5142200001023569 r009 Re(z^3+c),c=-33/62+11/41*I,n=14 5142200024786979 m005 (1/2*2^(1/2)-2/5)/(1/7*5^(1/2)-11/12) 5142200032078265 a007 Real Root Of -216*x^4+712*x^3-600*x^2-497*x+15 5142200057751703 m001 1/cos(Pi/5)/ln(cos(Pi/12))^2*sqrt(5)^2 5142200058062032 r009 Re(z^3+c),c=-47/114+2/59*I,n=46 5142200058416835 m001 Stephens^Rabbit*Stephens^FeigenbaumDelta 5142200068318972 r009 Im(z^3+c),c=-15/34+1/54*I,n=24 5142200081396942 a007 Real Root Of -86*x^4+601*x^3-610*x^2-424*x+31 5142200083591809 r005 Re(z^2+c),c=-15/14+67/252*I,n=12 5142200092949155 m002 -3+3/Pi^6-Pi+Tanh[Pi] 5142200093186639 r009 Im(z^3+c),c=-7/12+25/61*I,n=3 5142200118661256 a007 Real Root Of -659*x^4-395*x^3-535*x^2+82*x+176 5142200134420733 a001 4976784/281*199^(7/11) 5142200161881867 r002 17th iterates of z^2 + 5142200171584402 m001 (ln(3)-FeigenbaumC)/(Landau+QuadraticClass) 5142200184990086 m001 (gamma(3)-ErdosBorwein)/(GAMMA(3/4)+Ei(1)) 5142200186837701 a001 3*(1/2*5^(1/2)+1/2)^4*123^(4/21) 5142200186940712 m001 (Ei(1,1)-Psi(1,1/3))/(-CareFree+Sarnak) 5142200191519311 a003 sin(Pi*4/71)*sin(Pi*5/53) 5142200228074428 r009 Im(z^3+c),c=-1/50+13/20*I,n=55 5142200235437692 a007 Real Root Of 91*x^4-208*x^3-288*x^2-241*x+222 5142200278242397 m005 (1/2*gamma+9/10)/(5/7*5^(1/2)+5/7) 5142200300986873 r002 5th iterates of z^2 + 5142200318979693 r009 Im(z^3+c),c=-5/19+5/8*I,n=24 5142200332283631 r009 Im(z^3+c),c=-9/32+27/44*I,n=37 5142200343142803 a007 Real Root Of 342*x^4-741*x^3-57*x^2+77*x-70 5142200344751004 b008 85*E^(9/5) 5142200378403307 r002 13th iterates of z^2 + 5142200383069455 r009 Re(z^3+c),c=-2/21+17/30*I,n=8 5142200399638647 r009 Im(z^3+c),c=-17/106+21/29*I,n=42 5142200406005330 r009 Im(z^3+c),c=-5/106+37/57*I,n=61 5142200425960678 r002 4th iterates of z^2 + 5142200438306168 a001 365435296162/3*843^(5/9) 5142200442560179 a007 Real Root Of 501*x^4-122*x^3+851*x^2-267*x-16 5142200451482008 r005 Im(z^2+c),c=-23/26+4/105*I,n=19 5142200479619916 m001 1/ErdosBorwein/exp(Artin)^2*KhintchineHarmonic 5142200479811536 r005 Re(z^2+c),c=-7/10+14/89*I,n=52 5142200495843066 m001 (Cahen+Trott2nd)/(Psi(1,1/3)-exp(Pi)) 5142200503513113 m001 1/GAMMA(13/24)*ln(BesselK(0,1))/GAMMA(23/24) 5142200512423487 m005 (1/2*exp(1)-8/9)/(1/8*Catalan+4/5) 5142200517092789 q001 179/3481 5142200539754784 m001 arctan(1/3)*LaplaceLimit/PrimesInBinary 5142200553787649 a007 Real Root Of 297*x^4-x^3+948*x^2+392*x-70 5142200556600290 a007 Real Root Of -248*x^4-12*x^3-468*x^2+882*x+593 5142200557280900 a001 514229-4*5^(1/2) 5142200566899051 m001 (gamma(1)+ZetaP(3))/(cos(1)+3^(1/3)) 5142200577750145 r009 Im(z^3+c),c=-3/46+35/54*I,n=59 5142200593334990 m001 (Si(Pi)+BesselK(0,1))/(-Lehmer+MertensB2) 5142200595428093 m001 1/Sierpinski^2/ln(Porter)*log(2+sqrt(3)) 5142200627761761 m001 (Catalan+Zeta(1,-1))/(-gamma(3)+MinimumGamma) 5142200642749975 a007 Real Root Of -5*x^4-250*x^3+362*x^2-202*x-836 5142200643755357 r009 Im(z^3+c),c=-3/46+35/54*I,n=61 5142200656968265 l006 ln(6401/6434) 5142200678135936 a001 521/4052739537881*8^(2/3) 5142200679363672 m005 (1/2*5^(1/2)-4/9)/(5/9*2^(1/2)-11/12) 5142200681318305 a007 Real Root Of -117*x^4-503*x^3-523*x^2+346*x+256 5142200691895083 m001 (Cahen-KhinchinLevy)/(QuadraticClass+ZetaP(3)) 5142200729145414 r005 Re(z^2+c),c=9/118+7/19*I,n=6 5142200743169786 a007 Real Root Of -216*x^4-995*x^3+630*x^2+110*x-359 5142200754068219 r005 Re(z^2+c),c=49/122+3/14*I,n=39 5142200782296618 s002 sum(A046528[n]/(exp(pi*n)-1),n=1..infinity) 5142200785000311 m001 (Pi-3^(1/2))/(GAMMA(17/24)+Backhouse) 5142200787120368 a007 Real Root Of -124*x^4-856*x^3-957*x^2+861*x+41 5142200794686110 m001 (GAMMA(2/3)-exp(1))/(-BesselJ(1,1)+ZetaP(3)) 5142200805873008 r009 Re(z^3+c),c=-2/23+10/17*I,n=41 5142200812471958 p003 LerchPhi(1/125,4,150/127) 5142200815878061 r009 Im(z^3+c),c=-41/78+17/46*I,n=3 5142200824370656 r009 Im(z^3+c),c=-31/56+14/39*I,n=26 5142200862375360 a007 Real Root Of 906*x^4+877*x^3+729*x^2-537*x-413 5142200885401606 m001 (Ei(1)+polylog(4,1/2))/(Champernowne-Lehmer) 5142200891944219 m001 (ln(2)-ZetaP(4))^exp(1/Pi) 5142200899456297 r009 Im(z^3+c),c=-3/46+35/54*I,n=63 5142200901235949 m005 (1/2*Catalan+9/10)/(1/2*exp(1)-4) 5142200912140784 a007 Real Root Of -999*x^4+401*x^3+840*x^2+718*x-576 5142200920079869 a007 Real Root Of -697*x^4-241*x^3-811*x^2+604*x+541 5142200954814821 m001 (-PlouffeB+Riemann3rdZero)/(Si(Pi)-exp(1/Pi)) 5142200956949080 r009 Im(z^3+c),c=-11/82+34/53*I,n=51 5142200958833988 m001 GAMMA(7/12)*exp(FeigenbaumKappa)^2*sqrt(5) 5142201001602899 a001 1/89*832040^(37/47) 5142201011251105 r009 Im(z^3+c),c=-3/46+35/54*I,n=57 5142201020173771 m001 (Pi+FeigenbaumMu)/(MertensB3-Trott2nd) 5142201038121967 m001 (Ei(1,1)+AlladiGrinstead)/(Zeta(1/2)-cos(1)) 5142201040030054 m001 Catalan+ln(Pi)+GAMMA(7/24) 5142201040030054 m001 Catalan+ln(Pi)+Pi*csc(7/24*Pi)/GAMMA(17/24) 5142201063771679 s002 sum(A217696[n]/(n^2*exp(n)+1),n=1..infinity) 5142201078853813 r002 25th iterates of z^2 + 5142201086616105 l005 sech(489/82) 5142201102253875 r009 Re(z^3+c),c=-11/114+45/64*I,n=60 5142201121049127 p001 sum(1/(461*n+221)/(3^n),n=0..infinity) 5142201121163413 k007 concat of cont frac of 5142201135063931 a007 Real Root Of -154*x^4-807*x^3-144*x^2-516*x-899 5142201153820353 m005 (1/2*Catalan-1/3)/(9/11*exp(1)+1/5) 5142201179147725 r009 Im(z^3+c),c=-17/114+39/61*I,n=35 5142201183015449 m001 (FeigenbaumD-sin(1))/(Kac+Otter) 5142201217291421 r009 Im(z^3+c),c=-5/106+37/57*I,n=59 5142201231241131 k007 concat of cont frac of 5142201232635794 a001 2/233*144^(14/17) 5142201246951468 m005 (1/2*Catalan-1/12)/(1/11*2^(1/2)-6/7) 5142201250910825 s001 sum(exp(-Pi)^(n-1)*A195640[n],n=1..infinity) 5142201255827122 a003 cos(Pi*33/101)/cos(Pi*51/109) 5142201265219873 r005 Im(z^2+c),c=-1/98+28/45*I,n=47 5142201278634033 a007 Real Root Of 134*x^4+669*x^3-175*x^2-341*x+147 5142201279744168 r005 Re(z^2+c),c=-77/122+1/22*I,n=7 5142201284853329 a007 Real Root Of -846*x^4+183*x^3-824*x^2+498*x+558 5142201286265120 a007 Real Root Of -5*x^4+110*x^3+834*x^2+619*x-417 5142201296255458 m001 1/Robbin/GolombDickman^2*exp(Sierpinski) 5142201296715793 m006 (5*Pi^2-1)/(3/4*Pi^2+2) 5142201296715793 m008 (5*Pi^2-1)/(3/4*Pi^2+2) 5142201296715793 m009 (Pi^2-1/5)/(3/2*Pi^2+4) 5142201315121121 k006 concat of cont frac of 5142201321289134 m001 (-Totient+ZetaQ(2))/(Chi(1)-sin(1/5*Pi)) 5142201326756508 r009 Im(z^3+c),c=-37/114+37/63*I,n=20 5142201333056418 h001 (2/3*exp(2)+1/9)/(1/4*exp(1)+3/10) 5142201348072865 m001 (exp(Pi)+ln(2+3^(1/2)))/PlouffeB 5142201356398018 r009 Re(z^3+c),c=-25/58+3/49*I,n=12 5142201357966641 m001 ArtinRank2/(Weierstrass^FeigenbaumD) 5142201361492125 m001 (ln(gamma)+ln(2))/(BesselK(1,1)-FellerTornier) 5142201368969343 r005 Re(z^2+c),c=-39/70+11/29*I,n=8 5142201369497624 r009 Im(z^3+c),c=-35/118+20/33*I,n=37 5142201376161655 m001 GAMMA(1/4)*Bloch/exp(Zeta(3)) 5142201380054856 a007 Real Root Of 758*x^4-641*x^3+799*x^2+417*x-137 5142201386688162 r005 Re(z^2+c),c=-9/86+40/59*I,n=62 5142201404141672 r009 Im(z^3+c),c=-2/11+26/41*I,n=61 5142201414521616 a007 Real Root Of -126*x^4-809*x^3-915*x^2-605*x-819 5142201415905423 m001 PlouffeB^LaplaceLimit*sin(1) 5142201423642584 a007 Real Root Of -168*x^4+622*x^3-427*x^2+441*x+436 5142201434215503 r005 Im(z^2+c),c=-11/14+11/214*I,n=6 5142201447190074 r009 Im(z^3+c),c=-1/50+13/20*I,n=57 5142201448728926 r005 Re(z^2+c),c=-125/122+8/25*I,n=8 5142201449188551 m005 (1/2*Catalan-2/3)/(Pi+11/12) 5142201478712355 a001 18/13*196418^(29/43) 5142201496419741 r009 Im(z^3+c),c=-23/126+40/61*I,n=18 5142201502471707 a008 Real Root of x^4-2*x^3-18*x^2+5*x+23 5142201514208586 r002 36th iterates of z^2 + 5142201520598987 r002 30th iterates of z^2 + 5142201520598987 r002 30th iterates of z^2 + 5142201539380141 r009 Im(z^3+c),c=-5/126+13/20*I,n=25 5142201540164858 r009 Im(z^3+c),c=-31/126+41/63*I,n=24 5142201548410116 h001 (-exp(2)+12)/(-12*exp(2)-1) 5142201555441829 a001 10749957122/89*1836311903^(14/17) 5142201555441861 a001 12752043/89*6557470319842^(14/17) 5142201555445032 a001 9062201101803/89*514229^(14/17) 5142201572299118 r005 Im(z^2+c),c=-73/110+10/47*I,n=23 5142201649055262 l006 ln(647/1082) 5142201664873923 r009 Im(z^3+c),c=-23/126+36/55*I,n=18 5142201676029494 m001 GAMMA(5/6)/(FeigenbaumMu-exp(1/Pi)) 5142201688102903 a007 Real Root Of -80*x^4+454*x^3+246*x^2+297*x+155 5142201692635414 a007 Real Root Of 113*x^4+555*x^3-21*x^2+600*x+96 5142201692798051 a001 521/433494437*233^(4/15) 5142201702840856 a007 Real Root Of 170*x^4+255*x^3-278*x^2-988*x+535 5142201706958188 r009 Im(z^3+c),c=-2/11+26/41*I,n=52 5142201730764289 m001 FibonacciFactorial/Niven*TravellingSalesman 5142201741628768 s002 sum(A000838[n]/(64^n),n=1..infinity) 5142201741629938 s002 sum(A000838[n]/(64^n-1),n=1..infinity) 5142201761463343 m001 1/ln(KhintchineLevy)/LaplaceLimit^2/sin(Pi/12) 5142201762875573 r002 53th iterates of z^2 + 5142201773772231 a005 (1/cos(6/133*Pi))^848 5142201777448061 a007 Real Root Of 488*x^4+658*x^3+923*x^2+15*x-181 5142201805323016 l004 Pi/cosh(326/55*Pi) 5142201805323017 l004 Pi/sinh(326/55*Pi) 5142201812276924 m001 (BesselK(1,1)+Bloch)/(BesselI(0,1)-Shi(1)) 5142201812777473 r009 Re(z^3+c),c=-1/118+13/23*I,n=29 5142201818456009 r005 Im(z^2+c),c=-117/110+3/52*I,n=7 5142201834862385 q001 1121/2180 5142201880765036 r009 Im(z^3+c),c=-11/82+34/53*I,n=53 5142201883460830 r002 21th iterates of z^2 + 5142201883596419 r005 Im(z^2+c),c=4/17+35/64*I,n=49 5142201889177556 a007 Real Root Of -9*x^4-451*x^3+623*x^2+845*x+313 5142201896015317 m005 (1/2*gamma-4/5)/(3/11*Zeta(3)+2/3) 5142201912497930 s004 Continued Fraction of A232237 5142201912497930 s004 Continued fraction of A232237 5142201961295156 r004 Im(z^2+c),c=7/24-5/18*I,z(0)=exp(3/8*I*Pi),n=8 5142201984281236 r009 Re(z^3+c),c=-5/9+7/29*I,n=57 5142202016793421 r005 Re(z^2+c),c=-55/82+9/32*I,n=37 5142202028739269 m001 sin(1)/Zeta(1,2)/KhinchinHarmonic 5142202029666766 r005 Im(z^2+c),c=41/94+17/52*I,n=23 5142202031466961 m001 Kolakoski/ln(HardHexagonsEntropy)/arctan(1/2) 5142202039200905 a003 sin(Pi*1/14)-sin(Pi*29/110) 5142202051176901 r002 6th iterates of z^2 + 5142202051698657 s004 Continued Fraction of A353285 5142202079789781 r005 Im(z^2+c),c=-13/86+41/56*I,n=21 5142202083533615 r005 Re(z^2+c),c=1/122+43/60*I,n=5 5142202101984580 r009 Im(z^3+c),c=-3/106+37/57*I,n=21 5142202102090726 r009 Im(z^3+c),c=-5/106+37/57*I,n=47 5142202110903843 r005 Im(z^2+c),c=-17/74+1/14*I,n=15 5142202113336253 r008 a(0)=0,K{-n^6,60+61*n^3-62*n^2-78*n} 5142202123291054 r005 Re(z^2+c),c=-97/82+5/19*I,n=12 5142202125823508 r002 49th iterates of z^2 + 5142202146858115 a007 Real Root Of 156*x^4+933*x^3+826*x^2+654*x-691 5142202148548550 m001 ln(GAMMA(1/3))/FeigenbaumDelta^2/Zeta(1,2)^2 5142202153095233 m005 (1/2*Zeta(3)+2/9)/(6*exp(1)-3/10) 5142202174077610 m001 FeigenbaumMu*(ln(2+3^(1/2))+Champernowne) 5142202175989049 m005 (5*Pi-4/5)/(1/4*Catalan-1/5) 5142202179591083 s004 Continued Fraction of A153414 5142202179591083 s004 Continued fraction of A153414 5142202184882436 a007 Real Root Of 963*x^4-649*x^3-572*x^2-305*x+329 5142202206636083 a001 76/28657*4181^(16/45) 5142202213131611 k008 concat of cont frac of 5142202214924342 r009 Im(z^3+c),c=-3/46+35/54*I,n=56 5142202225254847 a007 Real Root Of -109*x^4-31*x^3-707*x^2+151*x+268 5142202228262839 r009 Re(z^3+c),c=-47/122+41/60*I,n=33 5142202240749544 b008 QPochhammer[7/8,6/13] 5142202263284586 r009 Im(z^3+c),c=-31/122+34/55*I,n=45 5142202268431001 r005 Re(z^2+c),c=-16/23+11/20*I,n=2 5142202275187894 r009 Im(z^3+c),c=-1/36+39/53*I,n=16 5142202281211112 k008 concat of cont frac of 5142202283072167 r009 Im(z^3+c),c=-8/23+5/7*I,n=43 5142202297385036 r009 Im(z^3+c),c=-1/50+13/20*I,n=59 5142202299359425 b008 Erf[1/8+E^(-1)] 5142202299736347 m001 (AlladiGrinstead+ZetaQ(4))/(cos(1)+Zeta(5)) 5142202301024286 r009 Im(z^3+c),c=-5/106+37/57*I,n=57 5142202306830030 a007 Real Root Of 652*x^4+48*x^3+802*x^2-202*x-355 5142202318731628 r005 Re(z^2+c),c=10/23+18/53*I,n=25 5142202323690465 s004 Continued Fraction of A158323 5142202323690465 s004 Continued fraction of A158323 5142202323725227 s004 Continued Fraction of A025119 5142202323725227 s004 Continued fraction of A025119 5142202323725227 s004 Continued Fraction of A025095 5142202323725227 s004 Continued fraction of A025095 5142202323736842 s004 Continued Fraction of A025114 5142202323736842 s004 Continued fraction of A025114 5142202329441745 r005 Im(z^2+c),c=-49/122+40/53*I,n=3 5142202379907890 m005 (7/18+1/6*5^(1/2))/(5/6*gamma+1) 5142202383265009 r005 Im(z^2+c),c=-19/34+1/108*I,n=44 5142202402698189 s004 Continued Fraction of A069688 5142202402698189 s004 Continued fraction of A069688 5142202447889211 r002 4th iterates of z^2 + 5142202466463826 m001 (Zeta(5)-ln(gamma))/(KhinchinHarmonic+Totient) 5142202482332759 a007 Real Root Of -438*x^4+343*x^3+229*x^2+372*x+208 5142202484600332 r009 Im(z^3+c),c=-3/46+35/54*I,n=55 5142202501487954 m001 ln(FeigenbaumD)/Cahen^2/arctan(1/2) 5142202504134444 r005 Re(z^2+c),c=-85/118+7/20*I,n=4 5142202514028935 r005 Re(z^2+c),c=-9/10+10/51*I,n=54 5142202551809499 r005 Im(z^2+c),c=-3/25+15/22*I,n=8 5142202567041055 a007 Real Root Of 644*x^4+365*x^3+949*x^2+551*x+37 5142202576212433 m001 (Cahen*TwinPrimes-LandauRamanujan)/TwinPrimes 5142202576212433 m001 (LandauRamanujan-TwinPrimes*Cahen)/TwinPrimes 5142202580579724 m001 1/cos(Pi/5)^2*ln(FeigenbaumD)^2*sin(Pi/5)^2 5142202582908313 a007 Real Root Of -155*x^4-916*x^3-504*x^2+542*x-61 5142202585745604 r005 Im(z^2+c),c=-23/34+1/75*I,n=30 5142202601413497 m001 KhinchinLevy/HardyLittlewoodC4*MertensB3 5142202611965297 m001 (MertensB2+MertensB3)/(1+Zeta(1/2)) 5142202623990719 r005 Re(z^2+c),c=-35/86+27/58*I,n=4 5142202625054029 a003 cos(Pi*41/105)+cos(Pi*47/106) 5142202626774986 a007 Real Root Of -855*x^4-274*x^3+166*x^2+905*x+444 5142202643582726 p004 log(15541/9293) 5142202647829434 m001 Niven^2/Conway/ln(cosh(1)) 5142202666139233 a001 29/17711*10946^(34/55) 5142202706089718 a001 3524578/521*199^(9/11) 5142202716874255 a007 Real Root Of -525*x^4+54*x^3-374*x^2-418*x-72 5142202721870798 a007 Real Root Of 76*x^4+415*x^3+308*x^2+877*x-345 5142202738661441 m005 (1/3*2^(1/2)-1/10)/(9/11*gamma+1/4) 5142202742432079 p001 sum((-1)^n/(554*n+215)/n/(25^n),n=1..infinity) 5142202743123520 r009 Im(z^3+c),c=-3/46+35/54*I,n=64 5142202748326396 a007 Real Root Of 453*x^4-372*x^3-253*x^2-541*x+364 5142202811189362 a007 Real Root Of 226*x^4-443*x^3-x^2-310*x-16 5142202822268459 r005 Im(z^2+c),c=-3/46+38/63*I,n=20 5142202841536282 r009 Im(z^3+c),c=-29/110+30/53*I,n=6 5142202843003765 m001 (Ei(1,1)+exp(1/exp(1)))/(5^(1/2)+1) 5142202844912435 a007 Real Root Of 69*x^4+159*x^3-986*x^2+125*x+90 5142202856912557 r002 47th iterates of z^2 + 5142202862080713 a007 Real Root Of 564*x^4-946*x^3-395*x^2+184*x+31 5142202868029968 h001 (3/10*exp(1)+5/9)/(8/9*exp(1)+1/4) 5142202873984563 b008 ArcCsch[2]^Sin[2] 5142202880714348 r009 Im(z^3+c),c=-1/50+13/20*I,n=61 5142202882998474 r002 58th iterates of z^2 + 5142202892222683 r009 Im(z^3+c),c=-7/114+35/54*I,n=30 5142202911812769 m009 (4/5*Psi(1,2/3)-4/5)/(3/10*Pi^2+1/4) 5142202912243526 r005 Re(z^2+c),c=-57/86+8/53*I,n=20 5142202914975667 r005 Re(z^2+c),c=5/34+31/56*I,n=56 5142202927507890 m001 Zeta(5)+GAMMA(7/12)*Khinchin 5142202927507890 m001 Zeta(5)+Khinchin*GAMMA(7/12) 5142202932274235 r009 Re(z^3+c),c=-53/98+21/55*I,n=4 5142202977419921 h001 (9/11*exp(1)+4/7)/(5/8*exp(2)+9/11) 5142202985202904 m006 (3/4/Pi-3/5)/(3*exp(Pi)+5/6) 5142202993118331 r002 9th iterates of z^2 + 5142203022635106 a007 Real Root Of -706*x^4+573*x^3+325*x^2+968*x+49 5142203026924268 r009 Im(z^3+c),c=-3/46+35/54*I,n=62 5142203027123786 a007 Real Root Of 900*x^4+299*x^3-90*x^2-297*x-15 5142203036871556 r005 Im(z^2+c),c=-43/122+2/25*I,n=22 5142203038500405 r002 15th iterates of z^2 + 5142203042557325 a001 34/29*123^(11/14) 5142203049536766 h001 (-exp(3)+8)/(-12*exp(3)+6) 5142203082754075 r009 Im(z^3+c),c=-3/46+35/54*I,n=58 5142203085371920 r008 a(0)=5,K{-n^6,-39+20*n+21*n^2-6*n^3} 5142203095432280 m001 (3^(1/2)-exp(Pi))/(PrimesInBinary+ZetaQ(4)) 5142203103827780 r009 Re(z^3+c),c=-31/46+12/25*I,n=37 5142203107345851 a007 Real Root Of x^4+513*x^3-629*x^2-767*x-38 5142203111711321 k007 concat of cont frac of 5142203130317028 m005 (2/3*exp(1)-1/4)/(1/6*gamma-2/5) 5142203142149014 m001 (MertensB1-Totient)/(Ei(1,1)+gamma(2)) 5142203145957329 h001 (1/11*exp(2)+2/9)/(4/11*exp(1)+3/4) 5142203148050347 b008 2/9+Log[137] 5142203158440565 r009 Im(z^3+c),c=-1/78+19/27*I,n=14 5142203159095062 a007 Real Root Of -15*x^4+608*x^3+762*x^2+836*x-713 5142203167525433 r005 Im(z^2+c),c=17/126+31/57*I,n=34 5142203173167638 r005 Re(z^2+c),c=-51/74+5/52*I,n=24 5142203193317823 a007 Real Root Of 515*x^4-623*x^3+991*x^2-720*x-753 5142203197535959 a007 Real Root Of 768*x^4-262*x^3-277*x^2-311*x-176 5142203205677010 m001 Si(Pi)^ln(2)/(Si(Pi)^(Pi^(1/2))) 5142203205677010 m001 Si(Pi)^ln(2)/(Si(Pi)^sqrt(Pi)) 5142203215481688 r009 Im(z^3+c),c=-3/46+35/54*I,n=60 5142203225818221 r002 16th iterates of z^2 + 5142203227453806 a007 Real Root Of -932*x^4-35*x^3-892*x^2-230*x+178 5142203230768587 m005 (1/2*gamma-5)/(7/11*Catalan+1/3) 5142203234180322 r005 Im(z^2+c),c=4/25+34/49*I,n=4 5142203240088847 m001 (StronglyCareFree-ZetaP(3))/(Kac+Landau) 5142203247765340 r005 Im(z^2+c),c=-55/94+1/12*I,n=19 5142203268480905 m001 (CopelandErdos-Psi(2,1/3))/OneNinth 5142203275490941 r009 Im(z^3+c),c=-1/50+13/20*I,n=63 5142203284478267 a007 Real Root Of 367*x^4-517*x^3+771*x^2-856*x-740 5142203300286176 m001 cos(1)*ln(GAMMA(1/4))*exp(1)^2 5142203321571322 a007 Real Root Of 125*x^4-317*x^3-103*x^2-415*x+275 5142203332490622 m001 ln(MinimumGamma)*Kolakoski*Niven 5142203334423014 q001 1573/3059 5142203334541177 m005 (5*Pi-3/4)/(4*gamma+3/5) 5142203347480683 m004 24+75/Pi-Cosh[Sqrt[5]*Pi] 5142203357083979 l006 ln(5411/9049) 5142203369541305 r009 Im(z^3+c),c=-51/106+13/27*I,n=56 5142203372732384 r002 3th iterates of z^2 + 5142203375296425 m001 (TwinPrimes+ZetaQ(4))/(gamma+Rabbit) 5142203380044954 a007 Real Root Of -833*x^4+305*x^3+165*x^2+416*x+270 5142203382179342 r009 Im(z^3+c),c=-9/31+19/36*I,n=2 5142203389511368 m001 Si(Pi)/Conway^2/ln(cos(Pi/5)) 5142203411314921 a007 Real Root Of -167*x^4-819*x^3+315*x^2+645*x+392 5142203434219580 r009 Im(z^3+c),c=-4/11+26/43*I,n=58 5142203443418350 a007 Real Root Of 860*x^4+587*x^3+629*x^2-131*x-214 5142203480210368 r009 Im(z^3+c),c=-31/90+35/59*I,n=50 5142203489862248 a007 Real Root Of 949*x^4-979*x^3+694*x^2-986*x-890 5142203507774371 b008 31+24*Csch[1] 5142203525451660 m001 (3^(1/3)-exp(-1/2*Pi))/(Zeta(1,2)+ArtinRank2) 5142203550223398 m001 GAMMA(1/4)^2/ln(FeigenbaumB)^2*log(2+sqrt(3)) 5142203556789643 r005 Re(z^2+c),c=-18/31+15/41*I,n=22 5142203559703394 r009 Re(z^3+c),c=-7/13+19/62*I,n=51 5142203560797397 r002 46th iterates of z^2 + 5142203569181469 r009 Im(z^3+c),c=-9/94+23/34*I,n=11 5142203575513064 m005 (1/2*5^(1/2)-1/2)/(11/12*Zeta(3)+1/10) 5142203579406226 r005 Re(z^2+c),c=-83/126+13/54*I,n=36 5142203589051753 l006 ln(4764/7967) 5142203592334771 r009 Im(z^3+c),c=-37/126+40/61*I,n=39 5142203594411716 r005 Im(z^2+c),c=-7/82+11/17*I,n=25 5142203628582563 r009 Im(z^3+c),c=-5/106+37/57*I,n=55 5142203631751822 a007 Real Root Of 816*x^4-170*x^3+822*x^2-596*x-604 5142203659266638 r009 Re(z^3+c),c=-23/54+1/24*I,n=46 5142203696827279 m001 (MertensB2+Otter)/(cos(1)+CopelandErdos) 5142203704954103 r005 Im(z^2+c),c=-5/8+23/239*I,n=63 5142203706152963 r002 22th iterates of z^2 + 5142203710327807 s004 Continued Fraction of A107639 5142203710327807 s004 Continued fraction of A107639 5142203716141231 k006 concat of cont frac of 5142203721777539 s002 sum(A167425[n]/((exp(n)+1)*n),n=1..infinity) 5142203728766062 a007 Real Root Of -173*x^4-731*x^3+897*x^2+608*x+973 5142203731907220 m001 GlaisherKinkelin*RenyiParking^Pi 5142203738713526 r009 Im(z^3+c),c=-27/110+18/29*I,n=58 5142203759876736 r009 Im(z^3+c),c=-19/60+33/56*I,n=27 5142203760898592 a007 Real Root Of 28*x^4-80*x^3+105*x^2-872*x-489 5142203772258425 r005 Re(z^2+c),c=-29/44+11/42*I,n=45 5142203773891159 h001 (3/7*exp(1)+1/3)/(3/8*exp(2)+1/7) 5142203810510298 r002 4th iterates of z^2 + 5142203815834471 a007 Real Root Of -919*x^4+615*x^3-615*x^2-246*x+184 5142203821348555 s002 sum(A018572[n]/(exp(pi*n)-1),n=1..infinity) 5142203828446546 h001 (-7*exp(7)+9)/(-5*exp(8)-6) 5142203843740542 m001 (-StolarskyHarborth+Thue)/(3^(1/2)-Ei(1,1)) 5142203865488749 m001 1/Riemann3rdZero/CopelandErdos*ln(GAMMA(2/3)) 5142203878225803 m008 (1/6*Pi^5-3/5)/(3*Pi^3+5) 5142203881600341 r009 Im(z^3+c),c=-9/46+12/19*I,n=63 5142203887583757 a007 Real Root Of 189*x^4-606*x^3+203*x^2-85*x-193 5142203893928505 l006 ln(4117/6885) 5142203901249318 r009 Im(z^3+c),c=-15/32+24/53*I,n=17 5142203906156373 r009 Im(z^3+c),c=-3/50+32/49*I,n=17 5142203909745665 m001 cosh(1)*ln(HardHexagonsEntropy) 5142203916184173 r005 Im(z^2+c),c=-1/8+34/49*I,n=11 5142203917379854 m001 Conway^2/exp(ErdosBorwein)/LaplaceLimit 5142203924496054 a007 Real Root Of -87*x^4+521*x^3-526*x^2+597*x+523 5142203946611336 a007 Real Root Of -723*x^4+675*x^3+61*x^2+478*x+372 5142203982033714 a007 Real Root Of 575*x^4-431*x^3-717*x^2-739*x+588 5142203994156112 a007 Real Root Of -137*x^4-108*x^3-548*x^2+401*x+346 5142204002175358 m001 (GAMMA(17/24)-MertensB2)/(Robbin-ZetaP(3)) 5142204035200704 m001 (Chi(1)-Kac)/(-TreeGrowth2nd+Trott2nd) 5142204040615343 b008 5+SinIntegral[3]/13 5142204058685908 a007 Real Root Of 634*x^4+700*x^3-834*x^2-737*x+460 5142204066776818 r002 4th iterates of z^2 + 5142204088608617 r009 Im(z^3+c),c=-41/78+7/25*I,n=11 5142204089782284 m001 (AlladiGrinstead+Robbin)/(3^(1/2)+GAMMA(5/6)) 5142204123349852 r005 Im(z^2+c),c=-20/21+2/43*I,n=7 5142204138101255 r005 Re(z^2+c),c=-87/122+7/43*I,n=64 5142204149800185 m001 (BesselJ(0,1)-GolombDickman)/Trott2nd 5142204164550533 q001 2025/3938 5142204175248430 r009 Im(z^3+c),c=-7/40+12/19*I,n=19 5142204191891875 p001 sum((-1)^n/(500*n+97)/n/(3^n),n=1..infinity) 5142204196797274 a007 Real Root Of -933*x^4-289*x^3+925*x^2+488*x-391 5142204199834413 a007 Real Root Of -134*x^4-420*x^3-279*x^2+967*x-357 5142204216834440 s002 sum(A034621[n]/(exp(n)+1),n=1..infinity) 5142204225684006 m001 Cahen*Weierstrass^(ln(2)/ln(10)) 5142204230945711 m005 (1/3*5^(1/2)+1/4)/(3/4*2^(1/2)+7/8) 5142204261459904 p004 log(29599/173) 5142204263290501 a007 Real Root Of -265*x^4+951*x^3-910*x^2+952*x+878 5142204284282322 m005 (1/2*Zeta(3)-7/12)/(9/10*3^(1/2)-5) 5142204291077274 m001 Zeta(1,-1)*Landau/ZetaP(3) 5142204312497034 l006 ln(3470/5803) 5142204321222221 k007 concat of cont frac of 5142204328592852 m001 1/MertensB1/FransenRobinson/ln(Riemann1stZero) 5142204345246231 r005 Re(z^2+c),c=-1/90+8/35*I,n=18 5142204353390830 m001 (-ln(gamma)+MertensB1)/(1+gamma) 5142204361712140 a007 Real Root Of -708*x^4+939*x^3-231*x^2+509*x+500 5142204376728619 a007 Real Root Of 16*x^4+818*x^3-236*x^2+430*x-83 5142204377478547 a007 Real Root Of 698*x^4-15*x^3+304*x^2-863*x-575 5142204410589417 a007 Real Root Of -499*x^4+649*x^3-88*x^2+451*x-262 5142204417667566 a007 Real Root Of 597*x^4-810*x^3+743*x^2-468*x-589 5142204430226631 s001 sum(exp(-Pi/4)^n*A034223[n],n=1..infinity) 5142204452185629 r005 Re(z^2+c),c=-11/21+13/28*I,n=26 5142204469236288 r002 55th iterates of z^2 + 5142204472907735 r005 Im(z^2+c),c=15/122+1/27*I,n=10 5142204481560089 r005 Im(z^2+c),c=-13/30+25/43*I,n=59 5142204498576710 a007 Real Root Of 916*x^4+32*x^3+732*x^2+510*x+9 5142204501677822 r005 Im(z^2+c),c=-67/106+7/19*I,n=45 5142204506539299 a007 Real Root Of 42*x^4+60*x^3-745*x^2+347*x+276 5142204507833972 m001 (PlouffeB*Rabbit+Trott2nd)/Rabbit 5142204508722255 a001 13/29*3571^(17/57) 5142204535991526 m001 Chi(1)-sin(1/12*Pi)^GaussAGM 5142204538078428 r005 Re(z^2+c),c=-57/82+4/43*I,n=34 5142204547217363 r009 Im(z^3+c),c=-2/11+26/41*I,n=63 5142204579403080 m001 BesselI(1,1)^Backhouse/GaussAGM(1,1/sqrt(2)) 5142204619576613 r002 9th iterates of z^2 + 5142204643389570 p003 LerchPhi(1/16,5,587/204) 5142204645521467 r009 Im(z^3+c),c=-1/50+13/20*I,n=64 5142204661437166 a007 Real Root Of -176*x^4-836*x^3+541*x^2+889*x-348 5142204662932083 m001 1/BesselK(0,1)^2*exp(FeigenbaumC)*Zeta(1/2) 5142204664437344 h001 (-6*exp(3)-5)/(-5*exp(3/2)-2) 5142204664606551 m005 (1/3*2^(1/2)+1/8)/(3/5*5^(1/2)-2/11) 5142204685542636 a007 Real Root Of 36*x^4+133*x^3-209*x^2+389*x+440 5142204704593638 m001 exp(FeigenbaumKappa)/LandauRamanujan/Pi^2 5142204720811051 a007 Real Root Of -45*x^4-191*x^3+155*x^2-187*x+433 5142204731835757 m001 (3^(1/3)+Kac)/(ReciprocalFibonacci+Robbin) 5142204742967629 r005 Im(z^2+c),c=-45/34+7/128*I,n=57 5142204747485441 m001 (1-GAMMA(3/4))/(-exp(-1/2*Pi)+MasserGramain) 5142204747745876 r002 11th iterates of z^2 + 5142204756562388 a003 cos(Pi*20/53)*cos(Pi*47/103) 5142204765580890 p001 sum(1/(417*n+200)/(12^n),n=0..infinity) 5142204766551480 r005 Im(z^2+c),c=-2/3+35/233*I,n=31 5142204770975933 r009 Re(z^3+c),c=-16/31+26/53*I,n=34 5142204791843698 a003 cos(Pi*25/102)-sin(Pi*19/68) 5142204795980872 r005 Re(z^2+c),c=-83/118+1/37*I,n=27 5142204803926397 r002 16th iterates of z^2 + 5142204806743066 r005 Im(z^2+c),c=-47/102+20/33*I,n=4 5142204810745303 a007 Real Root Of -68*x^4+744*x^3-163*x^2+280*x+293 5142204817088653 r009 Im(z^3+c),c=-31/60+19/48*I,n=59 5142204818460156 m001 Trott2nd*(BesselK(0,1)+Backhouse) 5142204822809713 m001 (Cahen-Catalan)/(-MasserGramain+Salem) 5142204831277865 s002 sum(A222771[n]/(n*exp(n)+1),n=1..infinity) 5142204831968595 m001 1/Catalan*FeigenbaumAlpha/ln(sin(Pi/5)) 5142204852941799 a007 Real Root Of 196*x^4+887*x^3-572*x^2+135*x-616 5142204860477118 a001 123/28657*832040^(13/25) 5142204865469368 r009 Im(z^3+c),c=-6/23+37/60*I,n=52 5142204878239178 m004 3+(150*Coth[Sqrt[5]*Pi])/Pi+Sin[Sqrt[5]*Pi] 5142204887106470 l006 ln(54/9239) 5142204918564804 a001 521/2178309*377^(4/31) 5142204922927974 l006 ln(2823/4721) 5142204938778845 r009 Im(z^3+c),c=-29/110+29/47*I,n=37 5142204947052450 r005 Im(z^2+c),c=-37/34+4/61*I,n=3 5142204952500416 r005 Im(z^2+c),c=-23/114+13/21*I,n=24 5142204964921757 a007 Real Root Of -520*x^4+561*x^3-377*x^2+610*x+526 5142204968814153 r009 Im(z^3+c),c=-1/50+13/20*I,n=62 5142204974426952 a008 Real Root of x^4+2*x^2-99*x-243 5142204984225650 r005 Im(z^2+c),c=-5/4+2/141*I,n=42 5142204991205452 a001 39088169/322*199^(3/11) 5142204997991803 r005 Re(z^2+c),c=-19/26+11/91*I,n=16 5142205026834952 a007 Real Root Of -529*x^4+561*x^3-631*x^2-817*x-140 5142205030111314 r009 Im(z^3+c),c=-5/106+37/57*I,n=53 5142205064233923 a007 Real Root Of 274*x^4-406*x^3+956*x^2-896*x+244 5142205066285053 r009 Im(z^3+c),c=-1/24+25/33*I,n=53 5142205087116677 a001 9349/3*14930352^(8/11) 5142205096157867 m005 (-11/36+1/4*5^(1/2))/(4/9*Catalan-9/10) 5142205112303088 a007 Real Root Of 182*x^4+784*x^3-707*x^2+435*x+280 5142205128366788 a007 Real Root Of -159*x^4-667*x^3+898*x^2+488*x-757 5142205145290645 m008 (1/2*Pi^4-2/3)/(3*Pi^3+2/5) 5142205146055644 a001 439204/3*75025^(8/11) 5142205146583757 a003 sin(Pi*12/89)-sin(Pi*41/109) 5142205151088710 r009 Im(z^3+c),c=-11/62+40/63*I,n=45 5142205157103945 a007 Real Root Of 396*x^4+445*x^3+728*x^2-796*x-569 5142205186813646 a007 Real Root Of -136*x^4-692*x^3-141*x^2-952*x-169 5142205189438749 m001 (Zeta(3)-BesselI(1,2))/(FeigenbaumB-ZetaP(4)) 5142205202790452 r005 Im(z^2+c),c=-77/64+8/23*I,n=6 5142205203783901 a007 Real Root Of 374*x^4-794*x^3-79*x^2-336*x-286 5142205211264946 a001 48/13201*2^(1/2) 5142205218197959 s002 sum(A026231[n]/((2^n-1)/n),n=1..infinity) 5142205219261671 m001 (ZetaQ(2)+ZetaQ(3))/(HardyLittlewoodC3-Si(Pi)) 5142205222328613 m001 (Psi(1,1/3)-cos(1/12*Pi))/(Bloch+Conway) 5142205233751969 r002 12th iterates of z^2 + 5142205255027314 a003 cos(Pi*4/119)/sin(Pi*7/113) 5142205287425303 a007 Real Root Of -56*x^4-257*x^3+23*x^2-682*x+95 5142205296321234 s002 sum(A054158[n]/((exp(n)+1)*n),n=1..infinity) 5142205324286514 m005 (1/2*exp(1)+1/6)/(1/7*Zeta(3)+1/8) 5142205330568590 m001 FeigenbaumDelta^2/exp(ErdosBorwein)^2/Niven 5142205330724248 a007 Real Root Of 105*x^4-930*x^3+29*x^2-672*x+457 5142205344945431 a007 Real Root Of -302*x^4+708*x^3-830*x^2+397*x+541 5142205346651769 l006 ln(4999/8360) 5142205369084348 a001 15127/2*89^(47/50) 5142205371490503 r002 59th iterates of z^2 + 5142205376238205 m008 (1/5*Pi-5)/(1/4*Pi^3+3/4) 5142205380739729 a005 (1/cos(7/129*Pi))^1216 5142205381247430 r009 Im(z^3+c),c=-9/34+34/57*I,n=16 5142205444574399 m001 FibonacciFactorial*(Thue-TreeGrowth2nd) 5142205449455429 r009 Im(z^3+c),c=-1/50+13/20*I,n=60 5142205449660941 a007 Real Root Of 254*x^4-951*x^3+287*x^2+208*x-116 5142205491883209 m001 1/exp(FeigenbaumKappa)^2/Conway^2*GAMMA(1/4)^2 5142205520532171 m001 (Pi^(1/2)-GAMMA(23/24))/(3^(1/3)-gamma(2)) 5142205539066957 m001 (GAMMA(7/12)-Artin)/(ErdosBorwein-FeigenbaumC) 5142205547976186 r002 39th iterates of z^2 + 5142205566009937 a003 sin(Pi*21/110)*sin(Pi*31/85) 5142205570371769 m001 MasserGramain^Catalan/(ZetaQ(3)^Catalan) 5142205580315110 m001 (ln(5)+BesselJ(1,1))/(Kac+ReciprocalFibonacci) 5142205665628347 r009 Im(z^3+c),c=-25/122+20/31*I,n=21 5142205678809093 a001 55/29*2139295485799^(12/23) 5142205695274006 a001 1322157322203/89*1836311903^(12/17) 5142205695274006 a001 4106118243/89*6557470319842^(12/17) 5142205710175602 r009 Im(z^3+c),c=-5/106+37/57*I,n=49 5142205716743488 r005 Re(z^2+c),c=-113/82+5/57*I,n=8 5142205721199965 m001 (CopelandErdos+LandauRamanujan)/(Cahen-Chi(1)) 5142205735653046 m005 (1/2*exp(1)-2/9)/(10/11*3^(1/2)+7/11) 5142205746033709 r005 Im(z^2+c),c=-71/110+6/61*I,n=51 5142205771356210 m009 (8/5*Catalan+1/5*Pi^2-3)/(1/3*Psi(1,2/3)-1/6) 5142205806229844 m005 (1/2*2^(1/2)-6)/(1/9*exp(1)+8/11) 5142205815803697 r009 Im(z^3+c),c=-23/78+17/28*I,n=47 5142205816774049 a007 Real Root Of -468*x^4+27*x^3-717*x^2+877*x+47 5142205818771758 r009 Im(z^3+c),c=-1/6+25/38*I,n=5 5142205820770263 m001 (1-ln(gamma))/(ln(5)+OrthogonalArrays) 5142205863714496 r009 Im(z^3+c),c=-3/46+35/54*I,n=53 5142205872354022 r009 Re(z^3+c),c=-9/19+5/59*I,n=5 5142205878711086 m009 (1/6*Psi(1,2/3)+3/4)/(5/6*Psi(1,3/4)+1/3) 5142205896363265 l006 ln(2176/3639) 5142205904018614 m004 (-8*Sqrt[5])/Pi+Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 5142205906428355 r005 Im(z^2+c),c=-5/6+6/199*I,n=46 5142205914152478 a005 (1/cos(8/191*Pi))^719 5142205926640018 a007 Real Root Of -661*x^4+898*x^3-616*x^2+935*x+812 5142205939706431 m001 (2^(1/3)-GAMMA(3/4))/(Trott+TwinPrimes) 5142205939912683 a007 Real Root Of 38*x^4-729*x^3+620*x^2-125*x-330 5142205945078009 a007 Real Root Of 723*x^4-30*x^3+724*x^2-546*x-30 5142205959051892 a001 281/516002918640*2178309^(2/13) 5142205959051925 a001 281/3536736619241*591286729879^(2/13) 5142205959051925 a001 843/4052739537881*1134903170^(2/13) 5142205962105304 a007 Real Root Of 784*x^4-582*x^3-131*x^2-857*x-540 5142205968103117 a001 843/591286729879*4181^(2/13) 5142205971819150 r002 16th iterates of z^2 + 5142206000000000 s003 concatenated sequence A254247 5142206010249138 r005 Im(z^2+c),c=-15/26+37/82*I,n=60 5142206010978357 m005 (1/3*3^(1/2)-1/9)/(1/3*gamma+5/7) 5142206051300407 r009 Im(z^3+c),c=-5/106+37/57*I,n=51 5142206070621093 r002 41th iterates of z^2 + 5142206099648968 a007 Real Root Of 80*x^4+520*x^3+812*x^2-872*x-598 5142206154995642 r009 Im(z^3+c),c=-1/50+13/20*I,n=58 5142206182653745 r005 Im(z^2+c),c=-2/13+8/13*I,n=19 5142206192996180 r005 Im(z^2+c),c=-9/14+16/151*I,n=37 5142206193396621 m001 BesselK(1,1)/Artin*exp(sqrt(3))^2 5142206198935237 a003 cos(Pi*1/35)-cos(Pi*17/50) 5142206203796648 m003 5+Sqrt[5]/4096-3*Cos[1/2+Sqrt[5]/2] 5142206207665319 m001 (5^(1/2)+1)/(-arctan(1/3)+sin(1/12*Pi)) 5142206231223202 k002 Champernowne real with 197/2*n^2-573/2*n+193 5142206232125583 r005 Re(z^2+c),c=-15/86+40/63*I,n=5 5142206243858844 m001 FeigenbaumKappa/Kolakoski^2*exp(GAMMA(1/24))^2 5142206244545897 p003 LerchPhi(1/1024,1,72/37) 5142206272597037 a002 10^(7/12)+15^(1/10) 5142206283717201 r009 Im(z^3+c),c=-23/98+38/61*I,n=39 5142206302973750 p004 log(16759/15919) 5142206314651350 a001 39088169/2207*199^(7/11) 5142206315200766 r005 Im(z^2+c),c=3/38+40/63*I,n=4 5142206317181304 r005 Im(z^2+c),c=5/16+17/48*I,n=26 5142206326855376 a007 Real Root Of x^4+515*x^3+401*x^2+121*x+545 5142206326912278 a007 Real Root Of 170*x^4+809*x^3-297*x^2+166*x-155 5142206337959259 m005 (1/2*5^(1/2)+7/11)/(2*2^(1/2)+7/12) 5142206339278540 r009 Im(z^3+c),c=-7/29+17/28*I,n=16 5142206344466641 a001 4/17711*1597^(25/59) 5142206363632034 l006 ln(5881/9835) 5142206370897397 m001 (BesselK(1,1)-sin(1)*Tribonacci)/Tribonacci 5142206381280381 r002 21th iterates of z^2 + 5142206408917578 r005 Re(z^2+c),c=5/32+5/17*I,n=28 5142206422590466 a007 Real Root Of -786*x^4+193*x^3-960*x^2+689*x+38 5142206427998612 a007 Real Root Of -738*x^4-718*x^3-984*x^2+340*x+389 5142206445418478 m001 1/Zeta(1,2)*exp(TreeGrowth2nd)^2*sqrt(2)^2 5142206457928825 r008 a(0)=5,K{-n^6,-1-7*n^2-n} 5142206477539843 a007 Real Root Of 986*x^4-796*x^3+601*x^2-978*x-839 5142206479258799 r005 Re(z^2+c),c=-11/32+9/14*I,n=13 5142206505001243 m005 (1/2*Pi-4/7)/(7/9*Pi-1/2) 5142206532408238 r002 6th iterates of z^2 + 5142206534444402 r009 Im(z^3+c),c=-19/56+24/41*I,n=27 5142206577731403 r005 Re(z^2+c),c=-39/98+31/55*I,n=33 5142206578258605 m001 1/exp(GAMMA(11/24))*Si(Pi)^2/cos(Pi/12) 5142206608553941 m001 exp(1/exp(1))^ZetaR(2)/gamma(3) 5142206610300118 a007 Real Root Of 883*x^4+611*x^3-995*x^2-709*x+39 5142206617726018 a007 Real Root Of 404*x^4-445*x^3+630*x^2+24*x-243 5142206623452484 r009 Im(z^3+c),c=-5/46+29/45*I,n=40 5142206638065719 l006 ln(3705/6196) 5142206646990445 r002 58th iterates of z^2 + 5142206672978649 m004 (-5*Pi)/4+3*Csc[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 5142206685320206 r009 Im(z^3+c),c=-41/118+25/42*I,n=44 5142206686464761 r009 Re(z^3+c),c=-17/60+45/64*I,n=22 5142206696892857 a007 Real Root Of -936*x^4+30*x^3-607*x^2+877*x+681 5142206698481779 r009 Im(z^3+c),c=-5/24+39/62*I,n=55 5142206703626566 r009 Im(z^3+c),c=-11/62+40/63*I,n=54 5142206720252293 m001 GAMMA(11/24)/ln(Ei(1))/sin(Pi/5) 5142206726478446 m005 (1/12+1/6*5^(1/2))/(27/154+7/22*5^(1/2)) 5142206734596130 r005 Re(z^2+c),c=-1/90+8/35*I,n=21 5142206742569099 s002 sum(A104617[n]/(n^3*pi^n-1),n=1..infinity) 5142206747769320 a003 sin(Pi*15/97)-sin(Pi*46/105) 5142206768100787 r009 Re(z^3+c),c=-23/58+1/42*I,n=60 5142206781722418 r005 Re(z^2+c),c=-1/90+8/35*I,n=22 5142206807039794 r005 Im(z^2+c),c=-3/17+39/61*I,n=63 5142206833363284 r005 Re(z^2+c),c=-1/90+8/35*I,n=25 5142206839587165 r005 Re(z^2+c),c=-1/90+8/35*I,n=28 5142206839785531 r005 Re(z^2+c),c=-1/90+8/35*I,n=29 5142206839897463 r005 Re(z^2+c),c=-1/90+8/35*I,n=32 5142206839913396 r005 Re(z^2+c),c=-1/90+8/35*I,n=35 5142206839914099 r005 Re(z^2+c),c=-1/90+8/35*I,n=36 5142206839914327 r005 Re(z^2+c),c=-1/90+8/35*I,n=39 5142206839914367 r005 Re(z^2+c),c=-1/90+8/35*I,n=42 5142206839914369 r005 Re(z^2+c),c=-1/90+8/35*I,n=43 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=46 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=45 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=49 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=50 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=53 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=52 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=56 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=57 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=59 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=60 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=63 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=64 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=62 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=61 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=58 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=55 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=54 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=51 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=48 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=47 5142206839914370 r005 Re(z^2+c),c=-1/90+8/35*I,n=44 5142206839914371 r005 Re(z^2+c),c=-1/90+8/35*I,n=38 5142206839914376 r005 Re(z^2+c),c=-1/90+8/35*I,n=41 5142206839914378 r005 Re(z^2+c),c=-1/90+8/35*I,n=40 5142206839914603 r005 Re(z^2+c),c=-1/90+8/35*I,n=37 5142206839916794 r005 Re(z^2+c),c=-1/90+8/35*I,n=33 5142206839916955 r005 Re(z^2+c),c=-1/90+8/35*I,n=34 5142206839920143 r005 Re(z^2+c),c=-1/90+8/35*I,n=31 5142206840000552 r005 Re(z^2+c),c=-1/90+8/35*I,n=30 5142206840495621 r005 Re(z^2+c),c=-1/90+8/35*I,n=26 5142206840989716 r005 Re(z^2+c),c=-1/90+8/35*I,n=27 5142206844115249 r005 Re(z^2+c),c=-1/90+8/35*I,n=24 5142206852631519 a007 Real Root Of 29*x^4-879*x^3+957*x^2+7*x-371 5142206852674725 a005 (1/sin(80/201*Pi))^384 5142206869938113 r008 a(0)=5,K{-n^6,-8-5*n^3+9*n^2+n} 5142206871093573 r005 Re(z^2+c),c=-1/90+8/35*I,n=23 5142206872449235 a007 Real Root Of 133*x^4+578*x^3-529*x^2+241*x+826 5142206896528671 m001 exp(CopelandErdos)^2/Conway^2/GAMMA(2/3)^2 5142206902107852 m001 (cos(1)-Riemann2ndZero)/(Pi+sin(1)) 5142206923615023 r005 Re(z^2+c),c=-1/90+8/35*I,n=19 5142206946423468 l006 ln(5234/8753) 5142206951998713 r005 Im(z^2+c),c=31/126+13/29*I,n=31 5142206971853112 m002 -6/Pi^6+(Pi^3*Tanh[Pi])/6 5142206972792403 r002 8th iterates of z^2 + 5142206991120297 m001 ln(2)^GAMMA(13/24)*ln(2)^ZetaP(3) 5142207009527733 r005 Re(z^2+c),c=3/20+25/49*I,n=49 5142207016365462 a007 Real Root Of -274*x^4+188*x^3-525*x^2+876*x+634 5142207026014860 a003 cos(Pi*3/68)-sin(Pi*33/85) 5142207053469852 q001 452/879 5142207065777689 m003 -1-Cos[1/2+Sqrt[5]/2]/2+Tanh[1/2+Sqrt[5]/2]/2 5142207077168773 m001 exp(Niven)/Artin^2/BesselJ(0,1) 5142207099968253 r005 Im(z^2+c),c=-107/122+1/27*I,n=36 5142207107563764 r005 Re(z^2+c),c=-17/24+2/29*I,n=46 5142207114410915 m001 GAMMA(23/24)/BesselK(0,1)^2/ln(GAMMA(7/24)) 5142207124592871 a003 cos(Pi*17/44)*cos(Pi*53/117) 5142207130505322 a003 sin(Pi*7/50)/cos(Pi*18/95) 5142207143150017 a001 1/3571*3^(26/47) 5142207152310962 m001 FeigenbaumC^2/Cahen*exp(GAMMA(1/12)) 5142207174591865 a007 Real Root Of 119*x^4-233*x^3+583*x^2+609*x+119 5142207175354868 r009 Im(z^3+c),c=-1/50+13/20*I,n=56 5142207182163112 a007 Real Root Of 77*x^4+240*x^3-652*x^2+903*x+679 5142207187624392 a007 Real Root Of 721*x^4-419*x^3-967*x^2-901*x-315 5142207205144140 r009 Im(z^3+c),c=-17/58+17/28*I,n=49 5142207207482054 r005 Re(z^2+c),c=-33/70+35/59*I,n=43 5142207214350058 a003 sin(Pi*1/28)-sin(Pi*14/65) 5142207216336086 a001 34111385/1926*199^(7/11) 5142207261886012 a007 Real Root Of 164*x^4+665*x^3-917*x^2+177*x+911 5142207274461827 a007 Real Root Of 11*x^4+580*x^3+747*x^2+466*x+897 5142207277719760 r005 Re(z^2+c),c=-1/90+8/35*I,n=20 5142207281476872 m001 Pi+1/cos(1/12*Pi)/polylog(4,1/2) 5142207294831182 a005 (1/cos(59/171*Pi))^84 5142207295497362 r009 Re(z^3+c),c=-7/19+31/32*I,n=3 5142207347890143 a001 267914296/15127*199^(7/11) 5142207353824745 a007 Real Root Of -760*x^4-144*x^3-357*x^2+671*x+473 5142207367083622 a001 17711*199^(7/11) 5142207369883913 a001 1836311903/103682*199^(7/11) 5142207370089597 m005 (2/5*gamma-5/6)/(2*2^(1/2)-4) 5142207370292470 a001 1602508992/90481*199^(7/11) 5142207370352077 a001 12586269025/710647*199^(7/11) 5142207370360774 a001 10983760033/620166*199^(7/11) 5142207370362043 a001 86267571272/4870847*199^(7/11) 5142207370362228 a001 75283811239/4250681*199^(7/11) 5142207370362255 a001 591286729879/33385282*199^(7/11) 5142207370362259 a001 516002918640/29134601*199^(7/11) 5142207370362259 a001 4052739537881/228826127*199^(7/11) 5142207370362259 a001 3536736619241/199691526*199^(7/11) 5142207370362259 a001 6557470319842/370248451*199^(7/11) 5142207370362260 a001 2504730781961/141422324*199^(7/11) 5142207370362261 a001 956722026041/54018521*199^(7/11) 5142207370362271 a001 365435296162/20633239*199^(7/11) 5142207370362342 a001 139583862445/7881196*199^(7/11) 5142207370362827 a001 53316291173/3010349*199^(7/11) 5142207370366149 a001 20365011074/1149851*199^(7/11) 5142207370388917 a001 7778742049/439204*199^(7/11) 5142207370544972 a001 2971215073/167761*199^(7/11) 5142207371614588 a001 1134903170/64079*199^(7/11) 5142207378945844 a001 433494437/24476*199^(7/11) 5142207381815417 r009 Im(z^3+c),c=-1/42+41/63*I,n=22 5142207382416172 m001 (BesselI(1,1)+Bloch)/(5^(1/2)-Ei(1,1)) 5142207404238702 l006 ln(43/7357) 5142207421638879 r009 Im(z^3+c),c=-11/122+31/48*I,n=27 5142207422573822 p001 sum((-1)^n/(392*n+185)/(6^n),n=0..infinity) 5142207429195025 a001 165580141/9349*199^(7/11) 5142207447347508 a001 1/29*(1/2*5^(1/2)+1/2)*322^(5/13) 5142207449178700 r002 46th iterates of z^2 + 5142207486897291 m005 (1/2*5^(1/2)+5/7)/(6*gamma+1/10) 5142207496133588 m005 (1/2*5^(1/2)-1)/(82/63+4/9*5^(1/2)) 5142207504510568 a007 Real Root Of -143*x^4-39*x^3-581*x^2+610*x+472 5142207543189406 a007 Real Root Of 66*x^4-950*x^3-408*x^2+169*x+61 5142207594676067 r009 Im(z^3+c),c=-1/38+25/39*I,n=13 5142207598355477 p003 LerchPhi(1/16,1,404/199) 5142207599648777 a005 (1/sin(90/193*Pi))^292 5142207600643185 a007 Real Root Of 828*x^4+900*x^3+215*x^2-853*x-431 5142207656745993 a007 Real Root Of 681*x^4-948*x^3+706*x^2+14*x-356 5142207659481313 m001 Zeta(3)^ZetaQ(4)/DuboisRaymond 5142207668739372 a007 Real Root Of 113*x^4+437*x^3-648*x^2+568*x+466 5142207682429706 b008 -7+Sqrt[Pi*Log[3]] 5142207693621243 l006 ln(1529/2557) 5142207702571366 a007 Real Root Of 165*x^4+708*x^3-575*x^2+660*x-501 5142207738164269 m005 (29/36+1/4*5^(1/2))/(3/5*gamma-3) 5142207743681353 r002 4th iterates of z^2 + 5142207773608059 a001 63245986/3571*199^(7/11) 5142207776703202 a003 sin(Pi*15/94)-sin(Pi*36/77) 5142207778877534 m001 1/ln(GAMMA(1/12))^2*(2^(1/3))^2*GAMMA(11/24) 5142207784232430 r005 Im(z^2+c),c=-23/98+41/63*I,n=33 5142207789833780 b008 3*(-6+E^Pi) 5142207789833780 m002 -18+3*E^Pi 5142207809936589 r005 Im(z^2+c),c=-29/122+3/47*I,n=3 5142207840993901 m008 (3*Pi^5+2/5)/(3/5*Pi^5-5) 5142207844206987 m005 (1/2*exp(1)-2)/(2/3*2^(1/2)-9/11) 5142207846049073 a007 Real Root Of 857*x^4-244*x^3+164*x^2-957*x+422 5142207860512826 r009 Re(z^3+c),c=-13/50+37/52*I,n=40 5142207866552959 r009 Im(z^3+c),c=-5/126+19/29*I,n=14 5142207883442067 r002 6th iterates of z^2 + 5142207886245567 r005 Re(z^2+c),c=5/62+20/49*I,n=16 5142207889279252 m001 Artin^Otter/(Artin^BesselI(0,2)) 5142207892285966 r005 Re(z^2+c),c=-15/22+10/39*I,n=41 5142207892393956 a007 Real Root Of 11*x^4+559*x^3-327*x^2+750*x-13 5142207896133315 r009 Im(z^3+c),c=-27/74+33/56*I,n=61 5142207906456230 a007 Real Root Of 146*x^4+691*x^3-431*x^2-560*x+391 5142207907065791 a007 Real Root Of -60*x^4-334*x^3-878*x^2+610*x-29 5142207907318703 a007 Real Root Of -921*x^4+543*x^3+970*x^2+638*x-594 5142207924685772 m001 (3^(1/3))^2*exp(Riemann2ndZero)*GAMMA(2/3)^2 5142207934875913 r005 Re(z^2+c),c=29/66+10/27*I,n=17 5142207945809627 r009 Im(z^3+c),c=-15/52+24/41*I,n=11 5142207959107444 r005 Im(z^2+c),c=-6/5+13/101*I,n=38 5142207966821458 m001 (Pi-exp(-1/2*Pi))/(GolombDickman-ZetaQ(2)) 5142207966956227 a007 Real Root Of -483*x^4+501*x^3+483*x^2+593*x-467 5142207991496111 a007 Real Root Of -544*x^4+460*x^3+46*x^2-135*x+19 5142207998489529 m001 (-gamma(1)+Champernowne)/(exp(1)+ln(3)) 5142208005332939 r009 Im(z^3+c),c=-5/23+37/59*I,n=51 5142208012393533 a001 3020733700601*32951280099^(11/16) 5142208014433883 r009 Re(z^3+c),c=-23/58+1/42*I,n=61 5142208027754830 m001 (Cahen-FellerTornier)/(ln(2)-ln(2+3^(1/2))) 5142208050131783 r009 Im(z^3+c),c=-15/98+23/36*I,n=45 5142208067618901 m007 (-3/4*gamma-9/4*ln(2)-3/8*Pi-4/5)/(-gamma+1/2) 5142208068048214 r005 Re(z^2+c),c=-11/10+58/255*I,n=46 5142208079494978 s001 sum(exp(-2*Pi/5)^n*A092516[n],n=1..infinity) 5142208079494978 s002 sum(A092516[n]/(exp(2/5*pi*n)),n=1..infinity) 5142208110446222 r009 Re(z^3+c),c=-13/32+1/33*I,n=57 5142208115272800 r005 Im(z^2+c),c=-1/20+37/58*I,n=24 5142208115897039 r009 Im(z^3+c),c=-25/66+34/59*I,n=60 5142208118129141 r005 Re(z^2+c),c=-11/8+4/163*I,n=10 5142208123380540 a007 Real Root Of -550*x^4-600*x^3-965*x^2+630*x+536 5142208127467708 m001 BesselI(0,1)/(Lehmer^GAMMA(1/3)) 5142208135034275 m001 ln(GAMMA(3/4))/LandauRamanujan*GAMMA(5/24)^2 5142208137293277 a007 Real Root Of 251*x^4-949*x^3-664*x^2-597*x-278 5142208153775720 r005 Im(z^2+c),c=1/86+13/21*I,n=51 5142208154717411 p003 LerchPhi(1/125,5,686/239) 5142208186505986 m001 exp(Pi)^Niven/(UniversalParabolic^Niven) 5142208187261842 p003 LerchPhi(1/512,3,503/187) 5142208199823617 a007 Real Root Of 262*x^4-313*x^3-378*x^2-760*x+515 5142208209724035 a007 Real Root Of -958*x^4-593*x^3+116*x^2+338*x+17 5142208223943236 m001 (Tetranacci-exp(Pi))/(-TreeGrowth2nd+Trott2nd) 5142208229232368 r009 Im(z^3+c),c=-9/62+16/25*I,n=46 5142208240314665 a007 Real Root Of 868*x^4+205*x^3+883*x^2+197*x-165 5142208264150591 m001 (cos(1/12*Pi)*BesselI(0,2)-Niven)/cos(1/12*Pi) 5142208265193918 m001 (Shi(1)+Ei(1,1))/(Mills+Salem) 5142208295570502 m005 (1/2*5^(1/2)+7/11)/(7/10*Catalan-3/10) 5142208300773513 r009 Im(z^3+c),c=-1/44+23/35*I,n=16 5142208306999678 a007 Real Root Of 16*x^4+838*x^3+786*x^2+112*x+512 5142208319998031 a007 Real Root Of 310*x^4-979*x^3-521*x^2-970*x+748 5142208322338048 m001 (Robbin+ThueMorse)/(GaussAGM-Kac) 5142208326838492 m001 (2^(1/2)-ln(2)/ln(10))/(-Zeta(1/2)+CareFree) 5142208329192690 h001 (-2*exp(5)-2)/(-8*exp(2)+1) 5142208342470921 m001 (5^(1/2)+CopelandErdos)/(-Totient+Thue) 5142208363152616 r002 34th iterates of z^2 + 5142208368467453 m001 MadelungNaCl/ln(LandauRamanujan)^2*GAMMA(5/12) 5142208375546550 r009 Im(z^3+c),c=-13/30+25/47*I,n=44 5142208376121657 a007 Real Root Of 634*x^4-830*x^3-746*x^2-181*x-53 5142208384741461 r005 Im(z^2+c),c=17/64+15/34*I,n=44 5142208403857208 a001 8/39603*1364^(33/43) 5142208408712277 l006 ln(5469/9146) 5142208422863242 m001 (ln(Pi)+cos(1/12*Pi))/(ArtinRank2+Magata) 5142208460879611 r005 Im(z^2+c),c=-32/31+25/62*I,n=3 5142208462792301 m001 (OrthogonalArrays+Totient)/(gamma(2)+Landau) 5142208473271731 m005 (3/4*Catalan-1/2)/(5^(1/2)+7/5) 5142208486767598 h001 (1/3*exp(2)+2/7)/(5/8*exp(2)+8/11) 5142208489865319 a007 Real Root Of 544*x^4-424*x^3+708*x^2-218*x-395 5142208511318832 r009 Im(z^3+c),c=-13/42+29/48*I,n=35 5142208537947466 r002 23th iterates of z^2 + 5142208542454554 r002 4th iterates of z^2 + 5142208558713695 a007 Real Root Of -780*x^4+446*x^3-921*x^2+442*x+586 5142208572896825 a001 1/11*(1/2*5^(1/2)+1/2)^30*7^(4/7) 5142208575863222 m001 (KomornikLoreti+Weierstrass)/TreeGrowth2nd 5142208584603472 m001 1/Riemann2ndZero/exp(CopelandErdos)^2*sqrt(3) 5142208589239624 m005 (-2/3+1/4*5^(1/2))/(7/11*exp(1)+4/11) 5142208594725365 a007 Real Root Of 664*x^4-793*x^3-526*x^2-880*x+653 5142208624713629 r009 Im(z^3+c),c=-1/50+13/20*I,n=54 5142208686218403 l006 ln(3940/6589) 5142208691733699 r009 Re(z^3+c),c=-23/58+1/42*I,n=59 5142208694399516 m001 exp(1/exp(1))^(Pi^(1/2))*PlouffeB^(Pi^(1/2)) 5142208703650206 r009 Im(z^3+c),c=-9/46+12/19*I,n=64 5142208710721708 m004 -(Sqrt[5]*Pi)+5*E^(Sqrt[5]*Pi)*Tan[Sqrt[5]*Pi] 5142208781917487 a007 Real Root Of -739*x^4-462*x^3+130*x^2+228*x-12 5142208783491271 a001 2207/5*610^(1/42) 5142208784458025 m001 (GAMMA(23/24)+CareFree)/(5^(1/2)+GAMMA(5/6)) 5142208786907422 m009 (8*Catalan+Pi^2-6)/(1/12*Pi^2-3) 5142208817881707 r002 16th iterates of z^2 + 5142208842406109 r009 Re(z^3+c),c=-1/25+38/53*I,n=17 5142208844598014 r005 Re(z^2+c),c=-1/32+25/33*I,n=54 5142208936917137 r002 4th iterates of z^2 + 5142208977201456 s002 sum(A099135[n]/(n^3*pi^n-1),n=1..infinity) 5142208999278128 m001 MasserGramainDelta+BesselI(1,2)^Sierpinski 5142209003689822 a007 Real Root Of 18*x^4+911*x^3-741*x^2+490*x-294 5142209007817093 m005 (1/3*Zeta(3)+2/11)/(10/11*5^(1/2)-9/10) 5142209016032524 m001 sin(1/12*Pi)/(Si(Pi)^Psi(1,1/3)) 5142209036967145 m001 1/Rabbit*Champernowne^2*exp(GAMMA(1/24))^2 5142209038993587 m005 (1/2*Catalan+4/7)/(11/12*Zeta(3)+9/10) 5142209076776916 a003 cos(Pi*13/67)*cos(Pi*27/95) 5142209098300562 a001 1028453/2-5/2*5^(1/2) 5142209122115972 r009 Im(z^3+c),c=-31/126+34/55*I,n=20 5142209137563284 r005 Im(z^2+c),c=43/114+4/11*I,n=44 5142209147065057 p001 sum((-1)^n/(369*n+2)/n/(5^n),n=1..infinity) 5142209157816539 r005 Re(z^2+c),c=-5/16+34/47*I,n=7 5142209194239499 r005 Re(z^2+c),c=-1/90+8/35*I,n=17 5142209199806182 a007 Real Root Of -961*x^4-251*x^3+136*x^2+696*x+355 5142209207472315 m001 Artin^MertensB1*Artin^PrimesInBinary 5142209220699242 m001 Thue-GlaisherKinkelin-Zeta(1,2) 5142209225688815 g007 Psi(2,8/9)+Psi(2,5/7)+Psi(2,1/3)-Psi(2,6/11) 5142209234048131 r009 Im(z^3+c),c=-41/122+22/37*I,n=54 5142209251223086 m003 29/12+(3*Sqrt[5])/64+Cosh[1/2+Sqrt[5]/2] 5142209256912913 m005 (1/2*5^(1/2)-10/11)/(6*gamma+3/5) 5142209261425434 m005 (1/2*Pi-6)/(1/4*Catalan-1/7) 5142209274332583 m001 (gamma(2)-BesselI(1,1))/(Porter-Sierpinski) 5142209276343410 r005 Re(z^2+c),c=-38/27+9/37*I,n=2 5142209281218412 k007 concat of cont frac of 5142209286852056 m001 (Landau+Trott2nd)/(Zeta(5)-gamma(1)) 5142209311552692 m002 -1-Pi^4/E^Pi+5*Log[Pi] 5142209315700334 l006 ln(2411/4032) 5142209343093463 a003 cos(Pi*17/109)-cos(Pi*19/50) 5142209368758994 r005 Re(z^2+c),c=-7/66+40/59*I,n=53 5142209376396673 m005 (1/2*Catalan-4/9)/(10/11*5^(1/2)+3/5) 5142209383206327 p003 LerchPhi(1/64,1,450/229) 5142209393769160 m001 1/Trott^2/ln(Cahen)^2*sinh(1) 5142209401211129 k006 concat of cont frac of 5142209410118367 r002 7th iterates of z^2 + 5142209414085876 a007 Real Root Of -153*x^4+695*x^3+19*x^2-399*x-105 5142209415073863 s002 sum(A134158[n]/(n^3*2^n-1),n=1..infinity) 5142209421974029 m001 GAMMA(11/24)*KhintchineHarmonic^2/ln(Pi) 5142209431551199 r005 Im(z^2+c),c=7/86+36/61*I,n=18 5142209457687790 m005 (21/4+1/4*5^(1/2))/(3/11*2^(1/2)-3/11) 5142209470500072 m001 (-Otter+Paris)/(BesselJ(1,1)-Psi(2,1/3)) 5142209479783913 m002 -6-E^Pi+Pi^2-Pi^3-Log[Pi] 5142209508165634 a001 305/9*7^(3/14) 5142209526375815 r005 Re(z^2+c),c=-17/28+1/59*I,n=5 5142209559190780 a007 Real Root Of 464*x^4-752*x^3-611*x^2-431*x+453 5142209565867421 r005 Im(z^2+c),c=-7/38+45/58*I,n=38 5142209583206295 h001 (4/9*exp(1)+6/11)/(2/5*exp(2)+5/11) 5142209585574704 r009 Re(z^3+c),c=-71/118+41/63*I,n=33 5142209601065271 a001 4/6765*832040^(19/58) 5142209621751237 r005 Im(z^2+c),c=-121/122+3/59*I,n=14 5142209646214254 m005 (1/3*5^(1/2)-1/12)/(5/6*Zeta(3)+2/7) 5142209646684516 r005 Im(z^2+c),c=-5/24+29/52*I,n=4 5142209647453411 a001 4/139583862445*144^(2/17) 5142209651805803 m009 (3/8*Pi^2+6)/(5/6*Psi(1,2/3)-2/3) 5142209653543430 r002 13th iterates of z^2 + 5142209676837686 r009 Re(z^3+c),c=-7/74+29/43*I,n=64 5142209695756586 r002 34th iterates of z^2 + 5142209700324974 r005 Re(z^2+c),c=-57/82+40/41*I,n=3 5142209713215872 r002 3th iterates of z^2 + 5142209733620485 m001 exp(Robbin)*ErdosBorwein*GAMMA(17/24)^2 5142209750510762 l006 ln(5704/9539) 5142209760304029 r009 Im(z^3+c),c=-5/22+30/47*I,n=17 5142209769671091 a001 322/6765*514229^(52/59) 5142209771211473 m001 GAMMA(5/6)^2/BesselK(0,1)/exp(sqrt(Pi)) 5142209780610729 m005 1/6*5^(1/2)/(1/8*Zeta(3)-7/8) 5142209783973113 a007 Real Root Of -196*x^4-845*x^3+880*x^2+120*x-506 5142209792716287 r005 Re(z^2+c),c=-19/22+17/52*I,n=8 5142209798526589 m001 Riemann1stZero^2/Rabbit*ln(sin(Pi/12))^2 5142209814237119 m001 Niven^2/FeigenbaumDelta*exp(GAMMA(11/12))^2 5142209814406600 a001 38*1346269^(36/43) 5142209835109515 a001 1322157322203/89*6557470319842^(10/17) 5142209856335619 a007 Real Root Of 230*x^4+347*x^3+492*x^2+70*x-63 5142209875237023 r005 Im(z^2+c),c=-11/60+31/40*I,n=56 5142209876543209 r005 Re(z^2+c),c=-41/36+41/50*I,n=2 5142209914864432 r005 Re(z^2+c),c=-79/122+14/39*I,n=20 5142209916939340 q001 2043/3973 5142209931593033 m005 (1/3*gamma+3/4)/(2*Zeta(3)-4/7) 5142209937013104 r009 Im(z^3+c),c=-31/94+23/33*I,n=33 5142209944889108 p004 log(18307/107) 5142209947459540 r005 Im(z^2+c),c=-9/82+21/22*I,n=6 5142209953577558 p001 sum(1/(379*n+195)/(125^n),n=0..infinity) 5142209964648715 m001 (ArtinRank2+MinimumGamma)/(Pi+Shi(1)) 5142209971534185 r009 Im(z^3+c),c=-21/106+12/19*I,n=35 5142209987027015 r009 Im(z^3+c),c=-1/20+13/20*I,n=25 5142209999985928 a001 317795/2+317811/2*5^(1/2) 5142210002492476 m001 DuboisRaymond+ln(5)^ReciprocalFibonacci 5142210006255230 r009 Im(z^3+c),c=-33/122+19/31*I,n=36 5142210049974354 a001 165580141/521*76^(1/9) 5142210052306980 r009 Im(z^3+c),c=-5/62+11/17*I,n=43 5142210068861172 l006 ln(3293/5507) 5142210075006946 m009 (1/6*Psi(1,2/3)-5)/(2/3*Psi(1,1/3)+2) 5142210077530420 a007 Real Root Of 205*x^4+895*x^3-947*x^2-517*x+742 5142210093476195 r009 Im(z^3+c),c=-25/94+31/52*I,n=16 5142210108489663 a001 7*(1/2*5^(1/2)+1/2)^6*76^(6/7) 5142210111213198 k006 concat of cont frac of 5142210115131119 k008 concat of cont frac of 5142210115218417 k006 concat of cont frac of 5142210126923589 r002 32th iterates of z^2 + 5142210131163311 k007 concat of cont frac of 5142210134251357 a001 24157817/1364*199^(7/11) 5142210141295191 a007 Real Root Of 534*x^4-943*x^3-339*x^2-76*x-115 5142210143051649 a001 2/4181*144^(16/17) 5142210162162789 a007 Real Root Of -700*x^4+408*x^3-737*x^2+225*x+415 5142210162753340 m001 FeigenbaumDelta^Otter/(FeigenbaumD^Otter) 5142210165190955 a007 Real Root Of 924*x^4-739*x^3+235*x^2-441*x-454 5142210183113213 k008 concat of cont frac of 5142210196055593 a001 4/2889*3571^(19/43) 5142210203420757 r005 Im(z^2+c),c=-1/5+38/51*I,n=48 5142210205729257 s002 sum(A226180[n]/(pi^n+1),n=1..infinity) 5142210221220262 k006 concat of cont frac of 5142210222611751 k007 concat of cont frac of 5142210227191838 s002 sum(A226180[n]/(pi^n),n=1..infinity) 5142210229299968 r002 63th iterates of z^2 + 5142210242536049 m001 BesselJ(0,1)^2/MertensB1*exp(exp(1))^2 5142210244806230 m001 (Pi+Psi(2,1/3))/(Zeta(1,-1)+Salem) 5142210248654420 s002 sum(A226180[n]/(pi^n-1),n=1..infinity) 5142210268732788 r009 Im(z^3+c),c=-2/21+31/48*I,n=49 5142210276583791 b008 2/11+CoshIntegral[3] 5142210297558248 m001 FeigenbaumMu^FeigenbaumD+Riemann2ndZero 5142210350974584 a001 4/2889*9349^(17/43) 5142210352646339 a007 Real Root Of -133*x^4+549*x^3-805*x^2+576*x+593 5142210399231647 m001 ln(GAMMA(13/24))^2*FeigenbaumD^2*cos(1)^2 5142210399709156 q001 1/1944689 5142210405383736 a007 Real Root Of 635*x^4-755*x^3+907*x^2+379*x-192 5142210409042288 r009 Im(z^3+c),c=-45/74+11/50*I,n=21 5142210425251009 m005 (1/3*Catalan-2/9)/(7/8*gamma-2/3) 5142210455387336 r009 Im(z^3+c),c=-13/38+28/45*I,n=44 5142210463872652 r002 4th iterates of z^2 + 5142210503800254 l006 ln(4175/6982) 5142210509573353 r005 Re(z^2+c),c=-59/122+18/35*I,n=2 5142210519876926 a001 8/3010349*24476^(42/43) 5142210524126365 b005 Number DB table 5142210527345947 a001 8/271443*64079^(29/43) 5142210527762285 r005 Im(z^2+c),c=29/126+27/59*I,n=19 5142210529384386 r005 Re(z^2+c),c=13/48+34/59*I,n=15 5142210576750434 a001 55/15127*199^(29/31) 5142210585986202 a001 192900153618/55*591286729879^(11/21) 5142210616620721 r005 Im(z^2+c),c=-49/106+2/23*I,n=36 5142210624895730 m005 (1/2*5^(1/2)-6/7)/(4*2^(1/2)-7/12) 5142210637611628 r009 Im(z^3+c),c=-1/50+13/20*I,n=52 5142210640928440 m001 (GAMMA(19/24)-Kac)/(Ei(1,1)-GAMMA(17/24)) 5142210641729426 a007 Real Root Of -576*x^4+862*x^3-508*x^2+576*x+588 5142210647812884 m005 (1/2*5^(1/2)+4/7)/(2/9*Catalan+1/8) 5142210651998036 s001 sum(exp(-Pi/2)^n*A216523[n],n=1..infinity) 5142210661870351 a003 sin(Pi*17/115)/cos(Pi*17/104) 5142210665015071 m001 (FeigenbaumC-FransenRobinson)/(Lehmer+Mills) 5142210681061731 a007 Real Root Of 324*x^4-39*x^3+560*x^2-525*x-446 5142210686771829 r002 17th iterates of z^2 + 5142210686857898 r005 Im(z^2+c),c=-17/74+1/14*I,n=17 5142210691998878 a007 Real Root Of 153*x^4-214*x^3-310*x^2-821*x-380 5142210694785769 m001 (Conway-FellerTornier)/(cos(1/5*Pi)+ln(3)) 5142210714313352 m001 (Paris+ReciprocalLucas)/(BesselK(1,1)+Magata) 5142210730446024 q001 1591/3094 5142210759833738 r002 13th iterates of z^2 + 5142210763095324 a007 Real Root Of -31*x^4-10*x^3+837*x^2+456*x+528 5142210787022392 l006 ln(5057/8457) 5142210789502770 m001 OneNinth^2/ln(Riemann1stZero)*sinh(1) 5142210809330771 r005 Re(z^2+c),c=-2/19+40/59*I,n=62 5142210814185477 r005 Re(z^2+c),c=47/122+8/53*I,n=51 5142210848197222 a007 Real Root Of -397*x^4+71*x^3+216*x^2+612*x+295 5142210848370344 m001 (-Gompertz+Stephens)/(ArtinRank2-ln(2)/ln(10)) 5142210857421689 m005 (7/20+1/4*5^(1/2))/(2/11*5^(1/2)-7/12) 5142210858288635 r005 Im(z^2+c),c=-17/14+9/133*I,n=58 5142210862534380 m001 1/ln(LaplaceLimit)/CopelandErdos^2*Trott^2 5142210875273767 a007 Real Root Of 516*x^4-248*x^3+357*x^2-865*x-609 5142210907909004 r009 Im(z^3+c),c=-19/102+19/30*I,n=52 5142210908574281 a007 Real Root Of -924*x^4+368*x^3+469*x^2+762*x+38 5142210909270498 a007 Real Root Of -853*x^4+356*x^3-738*x^2+760*x+694 5142210928011761 m005 (2*Catalan-2/5)/(5/6*Pi+1/6) 5142210938822886 a001 8/3571*15127^(14/43) 5142210941752595 a007 Real Root Of -142*x^4-905*x^3-755*x^2+568*x-884 5142210968434777 a007 Real Root Of 516*x^4-312*x^3+137*x^2-652*x-450 5142210975119185 r005 Re(z^2+c),c=5/58+19/46*I,n=39 5142210981080009 a001 199/46368*2178309^(17/35) 5142210984520216 a007 Real Root Of 147*x^4-331*x^3-650*x^2-942*x+691 5142210986121970 l006 ln(5939/9932) 5142211004633008 r009 Im(z^3+c),c=-16/31+14/57*I,n=7 5142211010783812 r005 Re(z^2+c),c=3/8+12/59*I,n=33 5142211011215325 k007 concat of cont frac of 5142211012211217 k007 concat of cont frac of 5142211028025473 m001 (ln(3)+2)/(GAMMA(23/24)+5) 5142211028561984 m001 Ei(1)/MertensB1^2/exp(Zeta(1/2))^2 5142211037730020 a007 Real Root Of -192*x^4-459*x^3-743*x^2+353*x+329 5142211038420160 r005 Im(z^2+c),c=11/106+30/53*I,n=40 5142211039691293 m001 1/ln(GAMMA(11/24))*Lehmer^2/Zeta(5) 5142211047646497 r009 Re(z^3+c),c=-2/23+10/17*I,n=39 5142211049732310 a007 Real Root Of -513*x^4+463*x^3-810*x^2+105*x+367 5142211057412131 a003 cos(Pi*28/85)/sin(Pi*43/93) 5142211058696435 r005 Re(z^2+c),c=-49/58+51/62*I,n=3 5142211059147358 m001 1/exp(OneNinth)^2/TwinPrimes*BesselK(0,1) 5142211079763475 a007 Real Root Of -359*x^4+325*x^3-701*x^2+376*x+448 5142211081112251 k007 concat of cont frac of 5142211101391312 k008 concat of cont frac of 5142211103213923 k007 concat of cont frac of 5142211108406267 m001 (Pi+arctan(1/2))/(LaplaceLimit-Lehmer) 5142211110131161 k008 concat of cont frac of 5142211110232212 k007 concat of cont frac of 5142211110411234 k007 concat of cont frac of 5142211111100611 k006 concat of cont frac of 5142211111113512 k008 concat of cont frac of 5142211111121611 k006 concat of cont frac of 5142211111151264 k007 concat of cont frac of 5142211111162212 k008 concat of cont frac of 5142211111181211 k007 concat of cont frac of 5142211111429854 m005 (1/2*exp(1)+1/11)/(1/12*Zeta(3)+2/11) 5142211111542112 k009 concat of cont frac of 5142211111986922 r009 Im(z^3+c),c=-23/98+30/43*I,n=49 5142211112112131 k006 concat of cont frac of 5142211112114111 k007 concat of cont frac of 5142211112146156 k008 concat of cont frac of 5142211112151162 k007 concat of cont frac of 5142211112164866 k008 concat of cont frac of 5142211112236321 k008 concat of cont frac of 5142211112331712 k006 concat of cont frac of 5142211112672812 k007 concat of cont frac of 5142211112811711 k009 concat of cont frac of 5142211114111110 k009 concat of cont frac of 5142211114111452 k009 concat of cont frac of 5142211114115153 k008 concat of cont frac of 5142211114122511 k007 concat of cont frac of 5142211114141315 k006 concat of cont frac of 5142211115112622 k009 concat of cont frac of 5142211115116133 k007 concat of cont frac of 5142211115333111 k009 concat of cont frac of 5142211115741114 k007 concat of cont frac of 5142211117112217 k006 concat of cont frac of 5142211119113321 k009 concat of cont frac of 5142211121101261 k008 concat of cont frac of 5142211121109213 k008 concat of cont frac of 5142211121111331 k009 concat of cont frac of 5142211121121112 k009 concat of cont frac of 5142211121231138 k007 concat of cont frac of 5142211121314222 k008 concat of cont frac of 5142211121523222 k007 concat of cont frac of 5142211121565621 k006 concat of cont frac of 5142211122113411 k008 concat of cont frac of 5142211122115422 k007 concat of cont frac of 5142211122612312 k006 concat of cont frac of 5142211123142731 k006 concat of cont frac of 5142211124151235 k006 concat of cont frac of 5142211126251111 k007 concat of cont frac of 5142211130361151 k006 concat of cont frac of 5142211131191141 k007 concat of cont frac of 5142211132141421 k007 concat of cont frac of 5142211132514142 k008 concat of cont frac of 5142211137512141 k006 concat of cont frac of 5142211141217323 k007 concat of cont frac of 5142211141372611 k006 concat of cont frac of 5142211141912531 k007 concat of cont frac of 5142211145811113 k006 concat of cont frac of 5142211151137122 k006 concat of cont frac of 5142211152682127 k008 concat of cont frac of 5142211153211112 k009 concat of cont frac of 5142211158111633 k007 concat of cont frac of 5142211163111836 k009 concat of cont frac of 5142211169211121 k008 concat of cont frac of 5142211175123131 k007 concat of cont frac of 5142211178714111 k007 concat of cont frac of 5142211182421522 k009 concat of cont frac of 5142211184808002 s002 sum(A022449[n]/(10^n-1),n=1..infinity) 5142211191177332 b008 15/4+(-2+E)^(-1) 5142211197728081 r009 Re(z^3+c),c=-9/22+1/28*I,n=18 5142211198276605 s002 sum(A285888[n]/((10^n-1)/n),n=1..infinity) 5142211203113251 k007 concat of cont frac of 5142211210112211 k006 concat of cont frac of 5142211210114332 k006 concat of cont frac of 5142211210311161 k007 concat of cont frac of 5142211211152141 k006 concat of cont frac of 5142211211312131 k006 concat of cont frac of 5142211211611229 k006 concat of cont frac of 5142211212118310 k006 concat of cont frac of 5142211213161143 k007 concat of cont frac of 5142211213179629 m005 (1/2*5^(1/2)-1/4)/(6/11*2^(1/2)+11/12) 5142211213912912 k007 concat of cont frac of 5142211214122131 k008 concat of cont frac of 5142211214721262 k006 concat of cont frac of 5142211216564625 r005 Im(z^2+c),c=-79/78+13/45*I,n=23 5142211217137121 k006 concat of cont frac of 5142211217360874 s002 sum(A264044[n]/(exp(pi*n)+1),n=1..infinity) 5142211219402132 k008 concat of cont frac of 5142211221131111 k007 concat of cont frac of 5142211221461124 k009 concat of cont frac of 5142211221616122 k006 concat of cont frac of 5142211224611711 r009 Re(z^3+c),c=-23/58+1/42*I,n=62 5142211227096790 b008 Sqrt[BesselJ[1,ArcCoth[2]]] 5142211228211417 k006 concat of cont frac of 5142211231142316 k006 concat of cont frac of 5142211231465131 k007 concat of cont frac of 5142211232216623 k007 concat of cont frac of 5142211241111101 k008 concat of cont frac of 5142211241141151 k006 concat of cont frac of 5142211241171321 k008 concat of cont frac of 5142211241316211 k008 concat of cont frac of 5142211251417958 m002 -5*ProductLog[Pi]+(3*Sech[Pi])/Log[Pi] 5142211254596684 a007 Real Root Of 983*x^4-882*x^3+418*x^2-690*x-654 5142211257412240 r002 18th iterates of z^2 + 5142211259263394 r009 Im(z^3+c),c=-23/82+11/18*I,n=51 5142211261411221 k007 concat of cont frac of 5142211261772114 k007 concat of cont frac of 5142211262111432 k007 concat of cont frac of 5142211267143222 k007 concat of cont frac of 5142211271296427 a008 Real Root of x^4-x^3+x^2+159*x-44 5142211294114693 k006 concat of cont frac of 5142211310220212 k009 concat of cont frac of 5142211311262118 k006 concat of cont frac of 5142211311511512 k009 concat of cont frac of 5142211312214221 k009 concat of cont frac of 5142211312622356 k006 concat of cont frac of 5142211313152411 k006 concat of cont frac of 5142211314224024 r009 Im(z^3+c),c=-11/82+34/53*I,n=55 5142211314611246 k009 concat of cont frac of 5142211315217217 k007 concat of cont frac of 5142211319475226 a007 Real Root Of -93*x^4-598*x^3-774*x^2-706*x+550 5142211325122231 k008 concat of cont frac of 5142211332265510 k006 concat of cont frac of 5142211340212313 k007 concat of cont frac of 5142211341162716 k008 concat of cont frac of 5142211342411371 k007 concat of cont frac of 5142211351632541 k007 concat of cont frac of 5142211352212121 k008 concat of cont frac of 5142211359131322 k008 concat of cont frac of 5142211364702964 a007 Real Root Of 767*x^4-593*x^3-915*x^2-857*x-333 5142211365050859 m001 (2^(1/3)-GAMMA(17/24))/(-Gompertz+OneNinth) 5142211373113371 k009 concat of cont frac of 5142211376581032 r005 Im(z^2+c),c=-59/106+5/11*I,n=7 5142211381141203 k007 concat of cont frac of 5142211381241131 k009 concat of cont frac of 5142211382039068 a001 76/75025*317811^(33/49) 5142211395932221 k008 concat of cont frac of 5142211411115413 k009 concat of cont frac of 5142211411142213 k007 concat of cont frac of 5142211411142221 k006 concat of cont frac of 5142211411231211 k008 concat of cont frac of 5142211412140065 m005 (1/2*Pi-1/8)/(1/8*Catalan+1/6) 5142211412141113 k008 concat of cont frac of 5142211412211121 k006 concat of cont frac of 5142211412232211 k007 concat of cont frac of 5142211412528111 k007 concat of cont frac of 5142211412911121 k009 concat of cont frac of 5142211421141521 k009 concat of cont frac of 5142211422119218 k007 concat of cont frac of 5142211423211149 k006 concat of cont frac of 5142211429073118 r005 Re(z^2+c),c=29/62+22/53*I,n=2 5142211437583782 m001 1/(3^(1/3))^2*(2^(1/3))^2*ln(BesselJ(1,1))^2 5142211443240613 r009 Im(z^3+c),c=-39/118+25/42*I,n=63 5142211451411212 k007 concat of cont frac of 5142211457365057 m002 -Pi^2/4-Pi^3*Sech[Pi] 5142211485949062 a001 8/167761*2207^(39/43) 5142211491711131 k006 concat of cont frac of 5142211495950036 r009 Im(z^3+c),c=-31/114+27/44*I,n=50 5142211511611233 k007 concat of cont frac of 5142211512313112 k009 concat of cont frac of 5142211515237149 p003 LerchPhi(1/16,2,86/61) 5142211519711274 k007 concat of cont frac of 5142211523211218 k006 concat of cont frac of 5142211524584393 a007 Real Root Of 65*x^4-968*x^3-214*x^2-973*x+684 5142211556131611 k007 concat of cont frac of 5142211561111121 k009 concat of cont frac of 5142211561147483 m001 1/ln(GAMMA(3/4))/MinimumGamma/cos(Pi/5)^2 5142211601560481 r005 Im(z^2+c),c=-35/26+7/111*I,n=22 5142211612061141 k009 concat of cont frac of 5142211621114631 k006 concat of cont frac of 5142211621124122 k006 concat of cont frac of 5142211626401418 r005 Re(z^2+c),c=-33/64+23/40*I,n=31 5142211632215965 m009 (24*Catalan+3*Pi^2-6)/(4/3*Catalan+1/6*Pi^2+6) 5142211637722689 r002 44th iterates of z^2 + 5142211641174472 r005 Im(z^2+c),c=15/106+33/61*I,n=38 5142211644610428 m001 (exp(1/Pi)+GAMMA(5/6))/(Magata+MinimumGamma) 5142211651884975 l006 ln(32/5475) 5142211652794292 r002 2th iterates of z^2 + 5142211667411984 r005 Im(z^2+c),c=1/9+17/30*I,n=40 5142211671807365 r005 Im(z^2+c),c=-51/118+4/47*I,n=28 5142211711244812 k007 concat of cont frac of 5142211714571353 m001 (Zeta(3)+Kolakoski)/(Magata+PlouffeB) 5142211738620056 r005 Re(z^2+c),c=-19/14+8/215*I,n=62 5142211746558928 r009 Im(z^3+c),c=-11/62+40/63*I,n=58 5142211754242232 k006 concat of cont frac of 5142211763564772 m001 GaussAGM/(BesselI(0,2)^sin(1/5*Pi)) 5142211793095111 a007 Real Root Of 996*x^4-738*x^3-883*x^2-338*x+438 5142211801260740 m001 ln(Pi)^gamma*PlouffeB 5142211811213142 k008 concat of cont frac of 5142211811341171 k007 concat of cont frac of 5142211814684585 m001 (Khinchin+ZetaQ(2))/(Psi(2,1/3)+Si(Pi)) 5142211818814243 k006 concat of cont frac of 5142211824131313 k009 concat of cont frac of 5142211824220152 k006 concat of cont frac of 5142211826112111 k008 concat of cont frac of 5142211841694655 h001 (3/8*exp(1)+1/10)/(2/11*exp(2)+5/6) 5142211844176830 m001 (Ei(1,1)*exp(-1/2*Pi)-GAMMA(19/24))/Ei(1,1) 5142211868492037 m005 (1/2*Zeta(3)-3/7)/(3*2^(1/2)-8/9) 5142211871187323 a007 Real Root Of -742*x^4+930*x^3-508*x^2+721*x-311 5142211893030152 a007 Real Root Of 552*x^4-982*x^3-869*x^2-864*x+769 5142211907654008 m001 (MertensB1+OrthogonalArrays)/(Ei(1,1)-Landau) 5142211912153133 k006 concat of cont frac of 5142211914062500 r005 Re(z^2+c),c=-13/16+77/128*I,n=2 5142211919691052 r005 Im(z^2+c),c=-15/13+4/61*I,n=50 5142211927243242 k007 concat of cont frac of 5142211928076598 m001 (Zeta(1,2)+Niven)/(GAMMA(3/4)-exp(1)) 5142211928968223 a007 Real Root Of 198*x^4+848*x^3-658*x^2+940*x-904 5142211938556245 a001 24157817/843*199^(6/11) 5142211938699839 a007 Real Root Of -135*x^4-523*x^3+918*x^2+41*x-785 5142211951887260 b008 1-164*Pi 5142211975065261 a007 Real Root Of 52*x^4+416*x^3+758*x^2-27*x+24 5142212012443165 k006 concat of cont frac of 5142212017317387 k009 concat of cont frac of 5142212017413267 r005 Re(z^2+c),c=-16/23+6/43*I,n=37 5142212031463775 r009 Re(z^3+c),c=-14/27+7/17*I,n=21 5142212049696504 r009 Im(z^3+c),c=-1/58+13/20*I,n=33 5142212071900903 m001 AlladiGrinstead^GAMMA(13/24)/exp(1/Pi) 5142212079343888 m001 (Ei(1,1)-cos(1))/(-Kac+ZetaQ(4)) 5142212081221128 m001 (2^(1/3))^HeathBrownMoroz/DuboisRaymond 5142212101111183 k007 concat of cont frac of 5142212101766849 a007 Real Root Of -762*x^4-127*x^3-884*x^2+720*x+640 5142212110744901 r005 Im(z^2+c),c=11/34+16/47*I,n=23 5142212111112133 k009 concat of cont frac of 5142212111114151 k007 concat of cont frac of 5142212111151312 k007 concat of cont frac of 5142212111151511 k006 concat of cont frac of 5142212111162634 k006 concat of cont frac of 5142212111293711 k009 concat of cont frac of 5142212111418162 k008 concat of cont frac of 5142212112711266 k006 concat of cont frac of 5142212114322321 k007 concat of cont frac of 5142212114361111 k007 concat of cont frac of 5142212119191416 k009 concat of cont frac of 5142212119951581 r009 Im(z^3+c),c=-3/11+30/49*I,n=38 5142212121161261 k009 concat of cont frac of 5142212121264221 k008 concat of cont frac of 5142212121590241 k007 concat of cont frac of 5142212122117821 k008 concat of cont frac of 5142212122166390 r002 34th iterates of z^2 + 5142212123113223 k007 concat of cont frac of 5142212127671288 l006 ln(882/1475) 5142212128122919 k006 concat of cont frac of 5142212130804833 r009 Im(z^3+c),c=-7/32+1/23*I,n=5 5142212130891957 r005 Im(z^2+c),c=-13/106+47/48*I,n=16 5142212131126111 k009 concat of cont frac of 5142212131139042 r009 Im(z^3+c),c=-3/40+11/17*I,n=26 5142212135385775 p001 sum((-1)^n/(487*n+313)/n/(24^n),n=1..infinity) 5142212138545371 m001 (GAMMA(5/6)+Niven)/(Psi(2,1/3)-gamma(2)) 5142212151131250 k007 concat of cont frac of 5142212151933156 k007 concat of cont frac of 5142212153722722 m005 (1/2*Zeta(3)+2/7)/(5/7*2^(1/2)+5/7) 5142212171222121 k006 concat of cont frac of 5142212180675446 r009 Re(z^3+c),c=-45/106+2/61*I,n=19 5142212181622161 k007 concat of cont frac of 5142212185490651 a007 Real Root Of -788*x^4+91*x^3-141*x^2+615*x+421 5142212187411113 k008 concat of cont frac of 5142212189616252 q001 1139/2215 5142212194268087 m001 1/ln(Rabbit)*ArtinRank2^2*BesselK(1,1)^2 5142212198659727 a003 cos(Pi*10/91)-sin(Pi*8/57) 5142212202265578 h001 (9/11*exp(2)+4/7)/(3/11*exp(1)+6/11) 5142212204159654 r005 Im(z^2+c),c=-93/122+2/59*I,n=16 5142212211112111 k007 concat of cont frac of 5142212211851132 k007 concat of cont frac of 5142212212115311 k007 concat of cont frac of 5142212212722143 k008 concat of cont frac of 5142212213155459 m001 1/(3^(1/3))*GaussKuzminWirsing*ln(GAMMA(1/12)) 5142212219925411 k007 concat of cont frac of 5142212221121617 k006 concat of cont frac of 5142212221823624 k007 concat of cont frac of 5142212231391245 k006 concat of cont frac of 5142212238113182 k006 concat of cont frac of 5142212239610114 k006 concat of cont frac of 5142212241241135 k007 concat of cont frac of 5142212252739788 a001 3665737348901/36*225851433717^(5/21) 5142212255411016 r001 29i'th iterates of 2*x^2-1 of 5142212271401211 k008 concat of cont frac of 5142212278862921 a007 Real Root Of 997*x^4-271*x^3+404*x^2-219*x-326 5142212279151267 a007 Real Root Of 636*x^4-605*x^3-613*x^2-887*x+656 5142212282199889 m001 Artin-ln(Pi)*StronglyCareFree 5142212305349240 r005 Re(z^2+c),c=-13/46+44/49*I,n=6 5142212312127621 k009 concat of cont frac of 5142212312249151 k007 concat of cont frac of 5142212312780033 m002 -5+5/Log[Pi]+Sinh[Pi]/2 5142212319384976 l006 ln(8926/9397) 5142212321176311 k007 concat of cont frac of 5142212322111124 k008 concat of cont frac of 5142212324818128 k007 concat of cont frac of 5142212327412241 k006 concat of cont frac of 5142212328040022 a007 Real Root Of -134*x^4-709*x^3+73*x^2+795*x-554 5142212331132131 k007 concat of cont frac of 5142212332073004 r009 Im(z^3+c),c=-17/50+33/56*I,n=40 5142212343624008 m001 (sin(1)+GAMMA(3/4))/(-KhinchinHarmonic+Niven) 5142212356151717 k006 concat of cont frac of 5142212359286478 a007 Real Root Of 456*x^4-3*x^3-803*x^2-970*x+52 5142212360930828 r005 Re(z^2+c),c=-33/46+2/37*I,n=60 5142212367348286 h001 (1/10*exp(2)+1/8)/(5/11*exp(1)+4/9) 5142212385065521 a007 Real Root Of 853*x^4-41*x^3+720*x^2-907*x-722 5142212386179629 a001 13/505618944676*4^(1/2) 5142212391577610 m005 (1/2*Zeta(3)+5/9)/(7/11*Pi+1/4) 5142212399943030 a007 Real Root Of 648*x^4-110*x^3+513*x^2-885*x-651 5142212410761311 k008 concat of cont frac of 5142212415111351 k008 concat of cont frac of 5142212415521912 k006 concat of cont frac of 5142212421314153 k006 concat of cont frac of 5142212427682801 r009 Im(z^3+c),c=-3/46+35/54*I,n=51 5142212430293633 r005 Im(z^2+c),c=-17/74+1/14*I,n=19 5142212435071997 m005 (1/3*Pi+1/12)/(7/8*Catalan-3) 5142212441127119 k006 concat of cont frac of 5142212464391549 m008 (1/5*Pi^4+1/4)/(2/5*Pi^6-5/6) 5142212487762376 r009 Im(z^3+c),c=-13/122+37/55*I,n=6 5142212512121147 k007 concat of cont frac of 5142212514355311 k007 concat of cont frac of 5142212523121132 k007 concat of cont frac of 5142212539224180 a007 Real Root Of 56*x^4+216*x^3-275*x^2+643*x+793 5142212541223115 k009 concat of cont frac of 5142212549149925 m001 (-Khinchin+Riemann2ndZero)/(1-Cahen) 5142212557410869 r009 Re(z^3+c),c=-9/94+42/61*I,n=60 5142212589657669 a007 Real Root Of 563*x^4-439*x^3-491*x^2-692*x+506 5142212600220313 p004 log(23993/14347) 5142212611571406 m001 (ErdosBorwein+Paris)/(sin(1/12*Pi)-gamma(1)) 5142212631121511 k006 concat of cont frac of 5142212642997935 a007 Real Root Of 124*x^4+562*x^3-221*x^2+692*x-882 5142212675650931 r009 Re(z^3+c),c=-4/29+29/38*I,n=11 5142212676577860 a007 Real Root Of 861*x^4-700*x^3-983*x^2+99*x+244 5142212683190375 m001 (2*Pi/GAMMA(5/6)*Rabbit-ln(2)/ln(10))/Rabbit 5142212683577032 r005 Re(z^2+c),c=-10/39*I,n=13 5142212695534992 r005 Re(z^2+c),c=-13/14+19/142*I,n=20 5142212696301048 r005 Im(z^2+c),c=-17/74+1/14*I,n=21 5142212701237951 r005 Im(z^2+c),c=-93/118+1/48*I,n=57 5142212712119211 k008 concat of cont frac of 5142212714308079 a007 Real Root Of 85*x^4+604*x^3+875*x^2+279*x+993 5142212718014523 r009 Re(z^3+c),c=-63/118+21/62*I,n=34 5142212719442286 m001 1/GAMMA(3/4)^2/Paris^2*exp(Zeta(7))^2 5142212720192272 m001 (3^(1/3)+GaussKuzminWirsing)/(Khinchin+Rabbit) 5142212725476094 r005 Im(z^2+c),c=-17/74+1/14*I,n=24 5142212725480285 r005 Im(z^2+c),c=-17/74+1/14*I,n=23 5142212725752814 r005 Im(z^2+c),c=-17/74+1/14*I,n=26 5142212726031799 r005 Im(z^2+c),c=-17/74+1/14*I,n=28 5142212726103101 r005 Im(z^2+c),c=-17/74+1/14*I,n=30 5142212726115861 r005 Im(z^2+c),c=-17/74+1/14*I,n=32 5142212726117584 r005 Im(z^2+c),c=-17/74+1/14*I,n=34 5142212726117716 r005 Im(z^2+c),c=-17/74+1/14*I,n=37 5142212726117722 r005 Im(z^2+c),c=-17/74+1/14*I,n=39 5142212726117725 r005 Im(z^2+c),c=-17/74+1/14*I,n=41 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=43 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=45 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=47 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=48 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=50 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=52 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=54 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=56 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=58 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=61 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=63 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=64 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=60 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=62 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=59 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=57 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=55 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=53 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=51 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=49 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=46 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=44 5142212726117726 r005 Im(z^2+c),c=-17/74+1/14*I,n=42 5142212726117727 r005 Im(z^2+c),c=-17/74+1/14*I,n=40 5142212726117732 r005 Im(z^2+c),c=-17/74+1/14*I,n=38 5142212726117735 r005 Im(z^2+c),c=-17/74+1/14*I,n=36 5142212726117743 r005 Im(z^2+c),c=-17/74+1/14*I,n=35 5142212726118296 r005 Im(z^2+c),c=-17/74+1/14*I,n=33 5142212726123166 r005 Im(z^2+c),c=-17/74+1/14*I,n=31 5142212726154404 r005 Im(z^2+c),c=-17/74+1/14*I,n=29 5142212726304100 r005 Im(z^2+c),c=-17/74+1/14*I,n=27 5142212726720227 r005 Im(z^2+c),c=-17/74+1/14*I,n=25 5142212727018676 a003 sin(Pi*16/101)/sin(Pi*25/66) 5142212729187630 r005 Re(z^2+c),c=-77/114+12/49*I,n=51 5142212730209087 m001 (GAMMA(2/3)-GAMMA(7/12))/(Khinchin+Rabbit) 5142212733142501 r005 Im(z^2+c),c=-17/74+1/14*I,n=22 5142212735576352 m002 -8+E^Pi+Pi*Sinh[Pi] 5142212737187670 a007 Real Root Of 481*x^4-742*x^3+669*x^2+100*x-260 5142212748543765 a007 Real Root Of -165*x^4+471*x^3-573*x^2+134*x+296 5142212760142601 r009 Re(z^3+c),c=-11/24+3/47*I,n=49 5142212762908169 m001 (ln(3)+gamma(1))/(GAMMA(17/24)+Rabbit) 5142212768902134 r009 Im(z^3+c),c=-29/126+13/20*I,n=21 5142212769011342 a001 5/4*47^(18/49) 5142212772146699 r009 Im(z^3+c),c=-17/58+31/51*I,n=53 5142212773208012 k007 concat of cont frac of 5142212774947589 r002 3th iterates of z^2 + 5142212781243138 k008 concat of cont frac of 5142212783722585 m005 (1/3*Zeta(3)+2/5)/(9/11*2^(1/2)+2/5) 5142212784421733 s002 sum(A229532[n]/((2^n+1)/n),n=1..infinity) 5142212786555945 m001 (-Backhouse+Landau)/(BesselK(0,1)+GAMMA(2/3)) 5142212790643186 a007 Real Root Of -163*x^4-762*x^3+247*x^2-585*x+819 5142212794155135 r005 Im(z^2+c),c=-3/4+5/232*I,n=44 5142212821193772 a001 1364/7778742049*317811^(4/15) 5142212821196488 a001 682/182717648081*591286729879^(4/15) 5142212821196488 a001 1364/53316291173*433494437^(4/15) 5142212821413394 g004 Im(GAMMA(7/20+I*43/12)) 5142212822111323 k007 concat of cont frac of 5142212826004490 r005 Im(z^2+c),c=-17/74+1/14*I,n=20 5142212836762754 m001 HardyLittlewoodC3^Magata-exp(-1/2*Pi) 5142212842115733 k007 concat of cont frac of 5142212843430703 r009 Im(z^3+c),c=-2/11+26/41*I,n=58 5142212848190467 r002 6th iterates of z^2 + 5142212869019567 r009 Re(z^3+c),c=-5/62+16/31*I,n=16 5142212875524767 a007 Real Root Of -164*x^4+386*x^3+947*x^2+427*x-511 5142212879730620 m001 (gamma(2)-GAMMA(17/24))/(Bloch-Sarnak) 5142212890133017 a001 29/75025*21^(3/32) 5142212909321377 r005 Re(z^2+c),c=-11/13+52/63*I,n=3 5142212910171221 k006 concat of cont frac of 5142212923041309 m001 (HardyLittlewoodC3+Thue)/(Pi-CopelandErdos) 5142212924397187 r005 Re(z^2+c),c=-73/114+3/32*I,n=7 5142212931119161 k006 concat of cont frac of 5142212941146280 a001 2/5*1597^(33/34) 5142212945504585 r005 Im(z^2+c),c=-77/102+6/37*I,n=16 5142212992357582 a003 sin(Pi*1/91)/sin(Pi*26/111) 5142213003150996 r009 Im(z^3+c),c=-4/11+15/26*I,n=41 5142213005863908 m005 (1/2*3^(1/2)+7/11)/(10/11*5^(1/2)+8/9) 5142213014159255 r002 18th iterates of z^2 + 5142213015499046 m001 (exp(-1/2*Pi)+Salem)/(ln(2+3^(1/2))+exp(1/Pi)) 5142213053693999 a007 Real Root Of -830*x^4+750*x^3-179*x^2+468*x+448 5142213068837623 a007 Real Root Of 776*x^4+472*x^3+903*x^2-977*x+5 5142213084609319 m001 (BesselI(1,2)-gamma)/(Kolakoski+Salem) 5142213090974950 a007 Real Root Of 479*x^4-133*x^3+688*x^2-211*x-342 5142213092625932 k009 concat of cont frac of 5142213096592831 a007 Real Root Of -723*x^4+465*x^3-894*x^2+480*x+597 5142213101611185 k006 concat of cont frac of 5142213110652110 k006 concat of cont frac of 5142213111119151 k007 concat of cont frac of 5142213111541617 k006 concat of cont frac of 5142213113212110 k007 concat of cont frac of 5142213117322576 k006 concat of cont frac of 5142213118845506 s002 sum(A112234[n]/(n^3*pi^n-1),n=1..infinity) 5142213119115112 k006 concat of cont frac of 5142213119412912 k006 concat of cont frac of 5142213119732321 k006 concat of cont frac of 5142213121213831 k006 concat of cont frac of 5142213137786925 r002 4th iterates of z^2 + 5142213139121111 k007 concat of cont frac of 5142213140055971 r005 Im(z^2+c),c=-67/60+1/16*I,n=23 5142213141111171 k006 concat of cont frac of 5142213143730507 a007 Real Root Of -5*x^4-274*x^3-872*x^2-182*x-67 5142213145416479 m001 (FeigenbaumDelta+Paris)/(Weierstrass+ZetaP(2)) 5142213147722111 k006 concat of cont frac of 5142213155441431 k009 concat of cont frac of 5142213156907558 a007 Real Root Of -313*x^4+914*x^3-491*x^2-70*x+240 5142213160411210 k008 concat of cont frac of 5142213161251112 k009 concat of cont frac of 5142213161915115 k007 concat of cont frac of 5142213165129131 k007 concat of cont frac of 5142213184114251 k006 concat of cont frac of 5142213191012145 r005 Im(z^2+c),c=13/60+8/17*I,n=26 5142213196044641 r009 Im(z^3+c),c=-51/110+17/38*I,n=14 5142213196731284 r002 4th iterates of z^2 + 5142213211691813 k007 concat of cont frac of 5142213222914451 a007 Real Root Of 689*x^4+674*x^3+159*x^2-909*x-466 5142213223211413 k006 concat of cont frac of 5142213225112091 k007 concat of cont frac of 5142213226454864 r005 Im(z^2+c),c=-14/29+5/63*I,n=11 5142213233143123 k008 concat of cont frac of 5142213241202191 k006 concat of cont frac of 5142213243114128 k006 concat of cont frac of 5142213253502951 m001 Trott/exp(FeigenbaumAlpha)^2*sin(1)^2 5142213261211712 k008 concat of cont frac of 5142213270501616 r005 Re(z^2+c),c=-1/25+39/50*I,n=28 5142213271113132 k006 concat of cont frac of 5142213288104469 a007 Real Root Of -710*x^4+5*x^3-243*x^2+100*x+166 5142213294282250 r002 2th iterates of z^2 + 5142213311321311 k006 concat of cont frac of 5142213322177676 m001 (gamma-ln(2))/(-ln(2+3^(1/2))+Zeta(1,2)) 5142213322676852 r009 Im(z^3+c),c=-23/74+40/61*I,n=45 5142213324212119 k009 concat of cont frac of 5142213343470969 m001 (-MasserGramainDelta+ZetaP(4))/(Landau-gamma) 5142213346068059 m001 (ln(2+sqrt(3))+5)/(-Ei(1)+2/3) 5142213347616121 k007 concat of cont frac of 5142213351841376 r009 Im(z^3+c),c=-1/50+13/20*I,n=50 5142213354315146 l006 ln(5527/9243) 5142213356026686 r009 Im(z^3+c),c=-35/62+19/41*I,n=28 5142213364832483 r005 Im(z^2+c),c=-5/16+43/63*I,n=10 5142213370968501 a001 123*39088169^(14/23) 5142213378811150 m001 (Ei(1,1)-exp(1/exp(1)))/(GaussAGM-Gompertz) 5142213385630520 m005 (1/2*3^(1/2)-2/11)/(5*exp(1)-2/7) 5142213388327282 m005 (-3/4+1/4*5^(1/2))/(4/11*2^(1/2)-1/7) 5142213418212111 k008 concat of cont frac of 5142213422111122 k007 concat of cont frac of 5142213427745794 r005 Re(z^2+c),c=-7/10+19/242*I,n=36 5142213431221211 k007 concat of cont frac of 5142213435008550 a001 29/21*86267571272^(9/13) 5142213436111211 k009 concat of cont frac of 5142213460996902 q001 1826/3551 5142213461893220 a007 Real Root Of 375*x^4-760*x^3+361*x^2-245*x-351 5142213483207307 r002 22th iterates of z^2 + 5142213515111342 k006 concat of cont frac of 5142213515812217 k007 concat of cont frac of 5142213518426365 r005 Re(z^2+c),c=-81/70+7/31*I,n=36 5142213530712376 r005 Im(z^2+c),c=-17/74+1/14*I,n=18 5142213531886018 r009 Re(z^3+c),c=-43/102+22/37*I,n=5 5142213573790878 h001 (-8*exp(5)-4)/(-3*exp(2)-1) 5142213587232219 l006 ln(4645/7768) 5142213589872398 m001 (5^(1/2)-CareFree)/(FeigenbaumAlpha+PlouffeB) 5142213595193487 m003 1+(3*Sqrt[5])/64+(5*Sinh[1/2+Sqrt[5]/2])/3 5142213611600626 r009 Im(z^3+c),c=-18/31+9/17*I,n=27 5142213613162608 a007 Real Root Of -752*x^4+248*x^3-419*x^2+134*x+266 5142213615677814 r009 Im(z^3+c),c=-17/110+41/64*I,n=22 5142213625274543 l006 ln(8149/8579) 5142213626314962 r005 Im(z^2+c),c=-123/98+4/61*I,n=22 5142213632165851 k007 concat of cont frac of 5142213633249100 m001 (ln(Pi)-Artin)/(FellerTornier+Salem) 5142213681243118 r005 Re(z^2+c),c=23/90+17/37*I,n=36 5142213687515224 m001 (ArtinRank2-OneNinth)^(2^(1/3)) 5142213702821321 k007 concat of cont frac of 5142213703459148 r005 Re(z^2+c),c=-7/13+13/24*I,n=36 5142213705752302 r009 Im(z^3+c),c=-5/118+13/20*I,n=19 5142213714640419 a001 7/18*(1/2*5^(1/2)+1/2)^14*18^(20/21) 5142213715117111 k006 concat of cont frac of 5142213721868240 m001 (PlouffeB+Sarnak)/(GAMMA(23/24)+Mills) 5142213733321242 k009 concat of cont frac of 5142213741113251 k006 concat of cont frac of 5142213749052620 r005 Re(z^2+c),c=-5/8+57/155*I,n=43 5142213752981013 r009 Re(z^3+c),c=-27/46+29/64*I,n=6 5142213753283376 r005 Re(z^2+c),c=-23/18+11/158*I,n=21 5142213769605212 r002 21th iterates of z^2 + 5142213770958489 r002 4th iterates of z^2 + 5142213771812705 m005 (1/2*5^(1/2)-11/12)/(1/10*Catalan+3/10) 5142213776608934 m001 1/ln(Ei(1))*Champernowne^2/arctan(1/2) 5142213785860926 a007 Real Root Of 98*x^4+630*x^3+830*x^2+985*x+259 5142213786086076 m001 Zeta(9)/ln(RenyiParking)/sin(Pi/12)^2 5142213794448937 m001 FeigenbaumMu^Stephens/(FeigenbaumMu^ln(3)) 5142213796874955 m001 FeigenbaumDelta/(GAMMA(1/6)^GAMMA(17/24)) 5142213812812115 k007 concat of cont frac of 5142213837070972 m001 1/ln(TwinPrimes)^2/CareFree^2*BesselJ(1,1) 5142213856285930 p001 sum(1/(523*n+195)/(100^n),n=0..infinity) 5142213874434471 m001 1/BesselJ(1,1)*CareFree^2/ln(GAMMA(5/24))^2 5142213888505749 m001 (Pi^(1/2)-Gompertz)/(LandauRamanujan2nd+Niven) 5142213929334963 l006 ln(3763/6293) 5142213930172619 r009 Re(z^3+c),c=-47/122+41/60*I,n=13 5142213982325162 m001 LaplaceLimit^2/ln(Backhouse)^2*sqrt(1+sqrt(3)) 5142213984042909 m001 Bloch^KhinchinLevy/(Bloch^(ln(2)/ln(10))) 5142214024817969 m001 5^(1/2)*Otter-Porter 5142214031293588 a007 Real Root Of 938*x^4-830*x^3-534*x^2-616*x-354 5142214042367226 m002 -3/Pi^6+Pi+E^Pi*Csch[Pi] 5142214111113241 k009 concat of cont frac of 5142214111341314 k007 concat of cont frac of 5142214112312151 k006 concat of cont frac of 5142214112813112 k008 concat of cont frac of 5142214116215729 r005 Re(z^2+c),c=-33/50+2/45*I,n=11 5142214117263123 k006 concat of cont frac of 5142214121123231 k006 concat of cont frac of 5142214122131828 k008 concat of cont frac of 5142214122471722 k006 concat of cont frac of 5142214122799819 a003 sin(Pi*20/101)*sin(Pi*32/93) 5142214123113121 k007 concat of cont frac of 5142214126111182 k007 concat of cont frac of 5142214131321013 k008 concat of cont frac of 5142214141013195 k009 concat of cont frac of 5142214141265323 k007 concat of cont frac of 5142214141524581 k007 concat of cont frac of 5142214142271129 k006 concat of cont frac of 5142214154737439 m001 (RenyiParking+ZetaQ(3))/(5^(1/2)-BesselJ(0,1)) 5142214154989847 r002 31th iterates of z^2 + 5142214167663189 r005 Im(z^2+c),c=-1/52+27/46*I,n=4 5142214172618072 r005 Im(z^2+c),c=-31/70+19/34*I,n=14 5142214179235200 m005 (1/2*Zeta(3)+4)/(6/7*gamma+2/5) 5142214181211323 k006 concat of cont frac of 5142214181612132 k006 concat of cont frac of 5142214200751158 m001 polylog(4,1/2)^(1/3*Backhouse*3^(2/3)) 5142214200751158 m001 polylog(4,1/2)^(Backhouse/(3^(1/3))) 5142214201194848 r002 8th iterates of z^2 + 5142214211255422 k007 concat of cont frac of 5142214211728644 k009 concat of cont frac of 5142214223111184 k007 concat of cont frac of 5142214231711976 a003 sin(Pi*11/67)-sin(Pi*11/60) 5142214232375608 r002 13th iterates of z^2 + 5142214255857010 m005 (1/2*5^(1/2)-3/7)/(8/11*gamma-2/7) 5142214255950664 r009 Im(z^3+c),c=-23/90+34/55*I,n=56 5142214261312131 k006 concat of cont frac of 5142214265564838 a007 Real Root Of -182*x^4-729*x^3+980*x^2-470*x-200 5142214274607281 m005 (1/2*exp(1)-9/11)/(4/9*3^(1/2)-7/8) 5142214275507520 a007 Real Root Of 969*x^4-651*x^3+959*x^2-819*x-831 5142214282380090 r002 23th iterates of z^2 + 5142214286235981 a001 75025/4*47^(43/50) 5142214286247311 a003 cos(Pi*10/83)*sin(Pi*14/75) 5142214288131253 k007 concat of cont frac of 5142214290195298 r009 Re(z^3+c),c=-55/94+37/43*I,n=2 5142214297066374 a001 8/3571*843^(20/43) 5142214311677959 m004 5+4*Sech[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/5 5142214313111102 k007 concat of cont frac of 5142214319762319 m001 Khinchin*GAMMA(7/24)^FeigenbaumDelta 5142214322939690 m004 5+4*Csch[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/5 5142214331211041 k008 concat of cont frac of 5142214401311351 k008 concat of cont frac of 5142214424226222 k006 concat of cont frac of 5142214426129227 k006 concat of cont frac of 5142214426513616 k009 concat of cont frac of 5142214445475669 r005 Im(z^2+c),c=45/98+1/3*I,n=7 5142214448753531 m001 (-Riemann1stZero+Robbin)/(Chi(1)+Grothendieck) 5142214464952908 m001 exp(Zeta(5))*GAMMA(23/24)^2/gamma 5142214465012230 g001 Psi(6/7,7/95) 5142214465883605 m005 (1/2*2^(1/2)+5/11)/(6/11*Pi+6/11) 5142214476987521 a007 Real Root Of -347*x^4+650*x^3+500*x^2+715*x-564 5142214480902881 l006 ln(2881/4818) 5142214490399716 r002 12th iterates of z^2 + 5142214496259888 a003 sin(Pi*1/108)/cos(Pi*25/81) 5142214497015718 a007 Real Root Of 270*x^4-304*x^3+512*x^2-872*x-644 5142214510231013 a001 5702887/521*199^(8/11) 5142214516945935 m001 (-ReciprocalLucas+ZetaP(2))/(exp(1)+Ei(1,1)) 5142214528595829 m001 (-LaplaceLimit+Tetranacci)/(exp(Pi)+Backhouse) 5142214528870959 a007 Real Root Of 468*x^4+439*x^3-921*x^2-976*x+653 5142214532871972 r005 Re(z^2+c),c=-29/34+53/85*I,n=2 5142214556723540 a001 2/29*11^(31/37) 5142214588683144 m001 1/GAMMA(11/24)^2/exp(OneNinth)^2*cosh(1)^2 5142214611577524 r005 Im(z^2+c),c=13/56+8/17*I,n=23 5142214618980757 r005 Im(z^2+c),c=-7/15+13/23*I,n=38 5142214623113813 k006 concat of cont frac of 5142214623136075 a007 Real Root Of -641*x^4+156*x^3-698*x^2+415*x+464 5142214626631148 k007 concat of cont frac of 5142214649657115 m005 (1/2*gamma-1/8)/(3/7*Zeta(3)-5/6) 5142214666847647 r005 Im(z^2+c),c=19/74+25/49*I,n=53 5142214668824708 a007 Real Root Of 152*x^4+917*x^3+767*x^2+372*x+40 5142214677774899 a007 Real Root Of 378*x^4-993*x^3-472*x^2-658*x-375 5142214682496700 r002 11th iterates of z^2 + 5142214711977164 r009 Im(z^3+c),c=-11/118+29/39*I,n=8 5142214720804826 m001 Pi/(Psi(2,1/3)-Pi*2^(1/2)/GAMMA(3/4))+gamma(3) 5142214748854957 r009 Re(z^3+c),c=-23/58+1/42*I,n=58 5142214771825768 r002 17th iterates of z^2 + 5142214772465823 a007 Real Root Of 893*x^4-716*x^3+271*x^2+946*x+255 5142214776856848 m005 (1/3*Catalan+1/5)/(3/5*gamma+7/11) 5142214790418509 m001 (Rabbit-StronglyCareFree)/GAMMA(17/24) 5142214792562445 m001 (ln(3)-Champernowne)/(KhinchinLevy+Rabbit) 5142214797289034 h001 (-4*exp(-1)+4)/(-2*exp(3)-9) 5142214810709442 m004 (-5*Pi*Coth[Sqrt[5]*Pi])/4+3*Csc[Sqrt[5]*Pi] 5142214810825972 g005 GAMMA(1/11)*GAMMA(6/7)/GAMMA(7/11)/GAMMA(5/9) 5142214812201122 k009 concat of cont frac of 5142214813212098 m001 Riemann3rdZero^FibonacciFactorial-Weierstrass 5142214814286972 s002 sum(A189467[n]/(n^3*pi^n-1),n=1..infinity) 5142214817406231 m001 (3^(1/2)-5^(1/2))/(Paris+QuadraticClass) 5142214824250385 r009 Im(z^3+c),c=-9/58+23/36*I,n=31 5142214827358842 r005 Im(z^2+c),c=-37/58+13/59*I,n=15 5142214831738729 m001 (Backhouse-Riemann1stZero)/(ln(2)+Pi^(1/2)) 5142214852093453 m001 (Mills+Otter)/(RenyiParking+StolarskyHarborth) 5142214889543324 a003 cos(Pi*37/85)/cos(Pi*39/80) 5142214906220500 l006 ln(4880/8161) 5142214907181795 m005 (1/3*5^(1/2)+2/9)/(2/5*Pi+5/8) 5142214907946202 m008 (4*Pi^5+4/5)/(5/6*Pi-5) 5142214931412541 k008 concat of cont frac of 5142214953337701 r009 Im(z^3+c),c=-19/126+13/22*I,n=3 5142214954238153 a007 Real Root Of 829*x^4-436*x^3+608*x^2+177*x-187 5142214983065306 a001 39603/55*317811^(9/58) 5142214988351387 a007 Real Root Of -458*x^4+932*x^3+940*x^2+509*x-605 5142214998328365 m001 (LambertW(1)+GAMMA(1/4)*Artin)/Artin 5142215010179752 a007 Real Root Of -283*x^4+221*x^3+412*x^2+970*x-618 5142215012472845 m001 (Porter+ZetaP(2))/(Ei(1,1)-Lehmer) 5142215033929344 r005 Im(z^2+c),c=-25/66+31/53*I,n=56 5142215039335803 r008 a(0)=0,K{-n^6,9*n-24*n^2-5*n^3} 5142215053345615 m001 1/LaplaceLimit^2*exp(Bloch)^2*Zeta(1,2)^2 5142215098075297 l006 ln(53/9068) 5142215111151522 k008 concat of cont frac of 5142215111741151 k007 concat of cont frac of 5142215112151541 k007 concat of cont frac of 5142215115287900 m001 arctan(1/2)*(exp(-1/2*Pi)-ln(2+3^(1/2))) 5142215115287900 m001 arctan(1/2)*(exp(-1/2*Pi)-ln(2+sqrt(3))) 5142215115512411 k009 concat of cont frac of 5142215116517160 a007 Real Root Of 111*x^4+18*x^3-8*x^2-895*x-46 5142215117413411 k006 concat of cont frac of 5142215121121233 k006 concat of cont frac of 5142215121170424 k006 concat of cont frac of 5142215121226411 k007 concat of cont frac of 5142215127132642 k008 concat of cont frac of 5142215132399364 a007 Real Root Of -182*x^4-880*x^3+335*x^2+131*x-586 5142215140589802 m001 (3^(1/3)-GAMMA(3/4)*Trott2nd)/Trott2nd 5142215149521256 m001 (ln(3)+TreeGrowth2nd)/(2^(1/3)+3^(1/2)) 5142215152989260 r009 Im(z^3+c),c=-11/19+5/41*I,n=3 5142215169030263 r009 Re(z^3+c),c=-61/90+16/23*I,n=2 5142215171181512 k006 concat of cont frac of 5142215173841852 a007 Real Root Of -43*x^4+467*x^3+581*x^2+132*x-282 5142215181121226 k006 concat of cont frac of 5142215181839386 a001 3571/20365011074*317811^(4/15) 5142215181842101 a001 3571/956722026041*591286729879^(4/15) 5142215181842101 a001 3571/139583862445*433494437^(4/15) 5142215185345185 r005 Re(z^2+c),c=1/16+20/53*I,n=16 5142215202258136 r009 Im(z^3+c),c=-12/31+29/52*I,n=24 5142215205121228 m005 (1/12+1/6*5^(1/2))/(1/12*Pi+5/8) 5142215206442492 l006 ln(7372/7761) 5142215208447637 m002 -3+(3*Pi*Sinh[Pi])/2 5142215211111341 k008 concat of cont frac of 5142215211132869 k006 concat of cont frac of 5142215211307060 m005 (1/2*Zeta(3)-1/11)/(4/9*3^(1/2)+2/9) 5142215211511144 k007 concat of cont frac of 5142215221509494 r009 Im(z^3+c),c=-1/60+4/7*I,n=3 5142215225298652 a007 Real Root Of 117*x^4+594*x^3+50*x^2+477*x+92 5142215232912467 r009 Re(z^3+c),c=-23/58+1/42*I,n=63 5142215241068910 m005 (1/2*Catalan-1/10)/(4/5*Zeta(3)+6) 5142215250868236 m008 (5*Pi^3-3)/(1/3*Pi^2-1/3) 5142215261714017 a007 Real Root Of -280*x^4+816*x^3-224*x^2+298*x+343 5142215268915773 m001 1/ln(GAMMA(17/24))/GAMMA(1/3)*sin(Pi/5)^2 5142215268958721 r009 Im(z^3+c),c=-13/22+29/57*I,n=25 5142215292448162 m001 (MertensB2-MinimumGamma)/(Backhouse-Kac) 5142215304108950 r009 Im(z^3+c),c=-4/25+11/15*I,n=64 5142215311411139 k009 concat of cont frac of 5142215322012227 m005 (1/4*Pi+1/4)/(47/40+3/8*5^(1/2)) 5142215327230642 m001 exp(GAMMA(17/24))/ArtinRank2^2/Zeta(3)^2 5142215336693380 r002 6th iterates of z^2 + 5142215359660737 r009 Im(z^3+c),c=-5/106+37/57*I,n=44 5142215380162826 a007 Real Root Of -108*x^4-26*x^3-160*x^2+977*x-449 5142215395961213 a008 Real Root of x^4-x^3-29*x^2-89*x-526 5142215414928269 r005 Im(z^2+c),c=-47/118+4/49*I,n=11 5142215427128212 k007 concat of cont frac of 5142215441864720 a007 Real Root Of -173*x^4-746*x^3+794*x^2+409*x+634 5142215446899942 r009 Im(z^3+c),c=-11/62+30/47*I,n=25 5142215466051422 k006 concat of cont frac of 5142215481211442 k007 concat of cont frac of 5142215482305184 a001 4/956722026041*1836311903^(2/17) 5142215482305184 a001 4/2504730781961*6557470319842^(2/17) 5142215482305642 a001 2/182717648081*514229^(2/17) 5142215485483582 a007 Real Root Of -62*x^4+929*x^3-770*x^2+931*x+813 5142215491339192 m001 (Zeta(1,2)-exp(1))/(-Conway+Lehmer) 5142215501785757 m001 (ln(3)+ln(Pi))/(MertensB1+ZetaP(3)) 5142215516241322 a007 Real Root Of -109*x^4-621*x^3-188*x^2+506*x-653 5142215519196985 l006 ln(1999/3343) 5142215519196985 p004 log(3343/1999) 5142215526252939 a001 9349/53316291173*317811^(4/15) 5142215526255654 a001 9349/2504730781961*591286729879^(4/15) 5142215526255654 a001 9349/365435296162*433494437^(4/15) 5142215535623330 r005 Re(z^2+c),c=-89/86+8/53*I,n=20 5142215558828491 p003 LerchPhi(1/256,3,135/233) 5142215568862275 q001 687/1336 5142215576502199 a001 24476/139583862445*317811^(4/15) 5142215576504914 a001 12238/3278735159921*591286729879^(4/15) 5142215576504914 a001 24476/956722026041*433494437^(4/15) 5142215583833467 a001 64079/365435296162*317811^(4/15) 5142215583836183 a001 64079/2504730781961*433494437^(4/15) 5142215584903085 a001 167761/956722026041*317811^(4/15) 5142215584905800 a001 167761/6557470319842*433494437^(4/15) 5142215585059140 a001 439204/2504730781961*317811^(4/15) 5142215585081908 a001 1149851/6557470319842*317811^(4/15) 5142215585087283 a001 620166/3536736619241*317811^(4/15) 5142215585095980 a001 710647/4052739537881*317811^(4/15) 5142215585155587 a001 90481/516002918640*317811^(4/15) 5142215585158303 a001 90481/3536736619241*433494437^(4/15) 5142215585564145 a001 103682/591286729879*317811^(4/15) 5142215585566860 a001 103682/4052739537881*433494437^(4/15) 5142215586321103 r002 29th iterates of z^2 + 5142215587974027 a007 Real Root Of -668*x^4+201*x^3+775*x^2+801*x+281 5142215588364440 a001 13201/75283811239*317811^(4/15) 5142215588367156 a001 13201/3536736619241*591286729879^(4/15) 5142215588367156 a001 13201/516002918640*433494437^(4/15) 5142215594289639 r005 Im(z^2+c),c=-79/70+8/23*I,n=4 5142215606716364 r009 Im(z^3+c),c=-10/31+29/43*I,n=45 5142215607557950 a001 15127/86267571272*317811^(4/15) 5142215607560665 a001 15127/4052739537881*591286729879^(4/15) 5142215607560665 a001 15127/591286729879*433494437^(4/15) 5142215611054798 r009 Im(z^3+c),c=-9/64+35/54*I,n=20 5142215641101279 m001 LambertW(1)^2*ln(Sierpinski)^2*sqrt(Pi) 5142215693613344 m001 Riemann3rdZero/(FellerTornier-cos(1/5*Pi)) 5142215739112221 a001 1926/10983760033*317811^(4/15) 5142215739114936 a001 321/86000486440*591286729879^(4/15) 5142215739114936 a001 1926/75283811239*433494437^(4/15) 5142215749319646 r005 Im(z^2+c),c=-9/56+41/44*I,n=6 5142215765721429 h003 exp(Pi*(1/5*(8*5^(1/2)+21^(1/2))*5^(1/2))) 5142215770303930 r005 Re(z^2+c),c=-7/10+15/194*I,n=34 5142215772558627 m001 GAMMA(5/12)^GAMMA(11/24)+sin(1) 5142215775539245 m001 1/(2^(1/3))^2/exp(Backhouse)^2*GAMMA(3/4)^2 5142215777751377 a001 121393/123*29^(25/51) 5142215781149815 a007 Real Root Of -644*x^4+384*x^3-895*x^2-204*x+229 5142215783545976 m001 1/GAMMA(1/3)*ln(Riemann3rdZero)/GAMMA(7/12)^2 5142215783611972 r002 39th iterates of z^2 + 5142215790608324 r009 Re(z^3+c),c=-31/46+12/25*I,n=47 5142215797230627 a007 Real Root Of 429*x^4-541*x^3-758*x^2-589*x-206 5142215810419267 r009 Im(z^3+c),c=-3/56+19/28*I,n=10 5142215811316011 k007 concat of cont frac of 5142215813469831 m009 (6*Psi(1,2/3)+4/5)/(Psi(1,2/3)+2/3) 5142215822121258 k008 concat of cont frac of 5142215837322956 r002 23th iterates of z^2 + 5142215848192284 a007 Real Root Of 547*x^4-305*x^3-673*x^2-620*x+500 5142215851104539 m001 Psi(1,1/3)^Lehmer*Mills 5142215862362500 r005 Re(z^2+c),c=-1/86+32/49*I,n=16 5142215900040865 m001 (exp(1/Pi)+Kac)/(ReciprocalLucas+Tetranacci) 5142215941320506 r005 Im(z^2+c),c=-23/38+19/44*I,n=10 5142215974380783 a007 Real Root Of 129*x^4+597*x^3-341*x^2-110*x-570 5142215989849565 a003 sin(Pi*1/72)+sin(Pi*17/109) 5142215990510305 r005 Im(z^2+c),c=4/11+10/47*I,n=23 5142215995759848 m005 (1/2*5^(1/2)-2/5)/(11/12*Catalan-7/10) 5142216011935852 h001 (3/11*exp(1)+6/11)/(3/10*exp(2)+2/7) 5142216029691840 r005 Im(z^2+c),c=2/7+16/31*I,n=13 5142216035080632 m001 (FellerTornier-Salem)/(ZetaP(3)-ZetaQ(3)) 5142216045161592 r009 Im(z^3+c),c=-35/114+26/43*I,n=48 5142216052173756 a007 Real Root Of 93*x^4+279*x^3-866*x^2+648*x-858 5142216081895197 a007 Real Root Of -661*x^4+921*x^3-943*x^2-900*x-42 5142216100071497 m001 ln(BesselK(0,1))*LaplaceLimit^2/exp(1)^2 5142216104011270 l006 ln(5115/8554) 5142216104663222 k009 concat of cont frac of 5142216104706809 m002 2+Pi+Log[Pi]/(6*Pi^5) 5142216110613122 k007 concat of cont frac of 5142216117100136 m001 1/2*Pi*2^(2/3)*(Zeta(1/2)-BesselK(1,1)) 5142216119336497 a007 Real Root Of -172*x^4+178*x^3-16*x^2+496*x-263 5142216122113319 k007 concat of cont frac of 5142216123765093 a007 Real Root Of -874*x^4+996*x^3-956*x^2-234*x+329 5142216141117027 a001 1322157322203*2971215073^(16/23) 5142216141141111 k007 concat of cont frac of 5142216148159113 k008 concat of cont frac of 5142216168999381 r005 Re(z^2+c),c=-7/10+19/184*I,n=36 5142216210396353 a007 Real Root Of 178*x^4-187*x^3+437*x^2-849*x-590 5142216211032391 k006 concat of cont frac of 5142216211610328 r002 18th iterates of z^2 + 5142216219921301 r009 Im(z^3+c),c=-11/82+34/53*I,n=48 5142216221182116 k007 concat of cont frac of 5142216226112524 k007 concat of cont frac of 5142216229126308 m005 (1/2*Catalan+1/5)/(1/4*exp(1)+3/5) 5142216237103732 r009 Im(z^3+c),c=-43/122+23/39*I,n=63 5142216250247395 r005 Re(z^2+c),c=-9/14+68/249*I,n=23 5142216250868127 m007 (-1/3*gamma+1/2)/(-1/2*gamma-ln(2)-5) 5142216261229203 k002 Champernowne real with 99*n^2-288*n+194 5142216267021167 a007 Real Root Of 438*x^4-901*x^3-181*x^2-510*x+402 5142216269486196 m001 (BesselK(0,1)+BesselJZeros(0,1))/log(gamma) 5142216290879689 r002 3th iterates of z^2 + 5142216296533547 a007 Real Root Of -797*x^4-648*x^3-214*x^2+935*x+505 5142216321515511 k007 concat of cont frac of 5142216322111214 k006 concat of cont frac of 5142216332117847 a003 cos(Pi*24/77)*sin(Pi*31/83) 5142216362476623 m001 1/ln(GAMMA(1/24))^2*Si(Pi)^2/sin(Pi/12)^2 5142216397866042 m001 1/GAMMA(1/6)*exp(Champernowne)^2*sqrt(5) 5142216400660192 m001 (Lehmer+MadelungNaCl)/(Ei(1,1)+CopelandErdos) 5142216404882170 a001 47/610*55^(9/19) 5142216419711828 r002 18th iterates of z^2 + 5142216419766691 r009 Im(z^3+c),c=-1/15+47/64*I,n=23 5142216431114661 k009 concat of cont frac of 5142216433211512 m001 (GAMMA(3/4)-Bloch)/(Porter-ZetaQ(4)) 5142216434654697 r005 Re(z^2+c),c=-83/114+1/17*I,n=36 5142216435043462 r005 Re(z^2+c),c=-53/98+19/32*I,n=56 5142216457436311 r009 Im(z^3+c),c=-35/106+29/48*I,n=33 5142216479185757 l006 ln(3116/5211) 5142216487113588 a001 322/317811*10946^(19/45) 5142216510928976 r002 14th iterates of z^2 + 5142216529461951 a003 sin(Pi*13/109)-sin(Pi*37/108) 5142216536581762 a007 Real Root Of 619*x^4-900*x^3-496*x^2-246*x-161 5142216591545390 a001 505019158607/21*14930352^(15/17) 5142216591545394 a001 370248451/21*53316291173^(15/17) 5142216605043734 a007 Real Root Of -330*x^4+973*x^3+384*x^2+368*x-400 5142216615671288 m001 Ei(1,1)*(CopelandErdos-HeathBrownMoroz) 5142216640798610 a001 2207/12586269025*317811^(4/15) 5142216640801325 a001 2207/591286729879*591286729879^(4/15) 5142216640801325 a001 2207/86267571272*433494437^(4/15) 5142216653055174 a001 29/2584*75025^(8/59) 5142216668660586 r009 Re(z^3+c),c=-3/106+59/63*I,n=6 5142216672895037 m001 (cos(1)+KomornikLoreti)/(-Salem+Sarnak) 5142216695806682 r009 Im(z^3+c),c=-1/11+19/30*I,n=12 5142216700533534 s002 sum(A033918[n]/(pi^n+1),n=1..infinity) 5142216743170310 h001 (5/11*exp(1)+1/5)/(11/12*exp(1)+3/10) 5142216757580179 a007 Real Root Of 18*x^4+943*x^3+884*x^2-559*x-197 5142216759458534 m001 (Psi(1,1/3)+sin(1))/(ln(5)+polylog(4,1/2)) 5142216764128560 m005 (1/3*Pi+1/5)/(10/11*3^(1/2)-4) 5142216768963428 a007 Real Root Of -739*x^4-496*x^3-816*x^2+422*x+417 5142216776707475 m009 (6*Psi(1,3/4)+5)/(4*Psi(1,1/3)-1) 5142216781213702 a007 Real Root Of 286*x^4-590*x^3-556*x^2-775*x+4 5142216792927969 r005 Re(z^2+c),c=5/46+15/44*I,n=33 5142216795352108 a001 31622993/161*199^(2/11) 5142216811171306 k008 concat of cont frac of 5142216836424003 r005 Im(z^2+c),c=-107/122+1/27*I,n=33 5142216840788875 m002 -5+6/Pi^6-Log[Pi]+Tanh[Pi] 5142216856650377 m008 (3/5*Pi^3+3)/(1/5*Pi^3-2) 5142216858254378 a001 1364/10610209857723*8^(2/3) 5142216864169572 r009 Im(z^3+c),c=-1/50+13/20*I,n=48 5142216868842361 a007 Real Root Of 442*x^4-954*x^3-209*x^2-768*x+549 5142216876589835 r002 16th iterates of z^2 + 5142216879155835 a007 Real Root Of 685*x^4-615*x^3-919*x^2-300*x+433 5142216891769104 m001 (GAMMA(3/4)-LambertW(1))^BesselI(1,2) 5142216896814089 m005 (1/2*gamma-6/7)/(3/4*5^(1/2)-4/7) 5142216914098075 a007 Real Root Of 70*x^4-329*x^3-170*x^2-761*x-396 5142216925487575 a007 Real Root Of -901*x^4+922*x^3-732*x^2-311*x+222 5142216926496239 a007 Real Root Of -607*x^4-774*x^3-545*x^2+822*x+504 5142216927344080 r005 Re(z^2+c),c=-13/14+32/237*I,n=42 5142216932532655 l006 ln(4233/7079) 5142216936089593 r005 Im(z^2+c),c=-37/62+24/49*I,n=6 5142216942123902 s002 sum(A092143[n]/(n^2*exp(n)+1),n=1..infinity) 5142216946675158 s002 sum(A092143[n]/(n^2*exp(n)-1),n=1..infinity) 5142216959449999 r009 Im(z^3+c),c=-73/122+9/35*I,n=14 5142216968288997 r009 Re(z^3+c),c=-13/25+13/25*I,n=64 5142216968291056 r009 Re(z^3+c),c=-13/25+13/25*I,n=61 5142216968298096 r009 Re(z^3+c),c=-13/25+13/25*I,n=58 5142216968321923 r009 Re(z^3+c),c=-13/25+13/25*I,n=55 5142216968401905 r009 Re(z^3+c),c=-13/25+13/25*I,n=52 5142216968668438 r009 Re(z^3+c),c=-13/25+13/25*I,n=49 5142216969551037 r009 Re(z^3+c),c=-13/25+13/25*I,n=46 5142216972457278 r009 Re(z^3+c),c=-13/25+13/25*I,n=43 5142216981978850 r009 Re(z^3+c),c=-13/25+13/25*I,n=40 5142216983925603 r009 Im(z^3+c),c=-3/13+34/53*I,n=9 5142216995848284 r005 Im(z^2+c),c=-65/56+13/45*I,n=24 5142217005905739 m005 (1/2*3^(1/2)+2)/(4*2^(1/2)-1/12) 5142217013031514 r009 Re(z^3+c),c=-13/25+13/25*I,n=37 5142217019512854 a007 Real Root Of -214*x^4-892*x^3+920*x^2-783*x-12 5142217024342124 r005 Im(z^2+c),c=-15/58+50/61*I,n=5 5142217031929772 a003 cos(Pi*5/43)/cos(Pi*19/43) 5142217043515390 h001 (9/10*exp(1)+2/5)/(7/11*exp(2)+5/6) 5142217055585938 m001 (Zeta(5)*gamma(2)+Landau)/Zeta(5) 5142217075736305 a007 Real Root Of 80*x^4+334*x^3-451*x^2-164*x+561 5142217101670391 r005 Im(z^2+c),c=-37/62+3/32*I,n=36 5142217111211381 k008 concat of cont frac of 5142217113880503 r009 Re(z^3+c),c=-13/25+13/25*I,n=34 5142217116191360 r005 Re(z^2+c),c=-19/34+43/98*I,n=20 5142217120165656 a007 Real Root Of 769*x^4-574*x^3+207*x^2+742*x+195 5142217127117112 k006 concat of cont frac of 5142217131431378 k007 concat of cont frac of 5142217142711241 k006 concat of cont frac of 5142217160185840 l006 ln(6595/6943) 5142217161271661 m005 (1/2*Pi+3)/(2/7*5^(1/2)+1/4) 5142217168069885 p001 sum((-1)^n/(447*n+194)/(125^n),n=0..infinity) 5142217173305824 r002 2th iterates of z^2 + 5142217174849763 r005 Re(z^2+c),c=-71/98+15/58*I,n=41 5142217182141121 k009 concat of cont frac of 5142217196575437 l006 ln(5350/8947) 5142217197123111 k007 concat of cont frac of 5142217199131113 k008 concat of cont frac of 5142217199250482 m001 (Pi+Psi(2,1/3))/Zeta(1/2)*exp(1/exp(1)) 5142217201195639 h001 (9/10*exp(1)+5/11)/(5/7*exp(2)+4/11) 5142217204580879 r005 Im(z^2+c),c=1/40+20/37*I,n=8 5142217205123844 r005 Re(z^2+c),c=-17/26+29/96*I,n=32 5142217210111293 k007 concat of cont frac of 5142217211111551 k007 concat of cont frac of 5142217211311138 k009 concat of cont frac of 5142217226757603 p003 LerchPhi(1/5,6,278/115) 5142217256165997 r005 Re(z^2+c),c=-15/22+2/67*I,n=17 5142217256806074 m005 (11/12+1/4*5^(1/2))/(3/4*Catalan-2/5) 5142217262557858 a007 Real Root Of -728*x^4+585*x^3-900*x^2+427*x+588 5142217263963030 a005 (1/sin(73/151*Pi))^1210 5142217266754377 r005 Im(z^2+c),c=-29/26+7/113*I,n=12 5142217286113483 r005 Im(z^2+c),c=-2/3+29/134*I,n=10 5142217308191504 m001 (Pi^(1/2)+Porter)/(Chi(1)-exp(-1/2*Pi)) 5142217315111212 k006 concat of cont frac of 5142217318690445 r005 Im(z^2+c),c=15/58+22/49*I,n=48 5142217319110241 k006 concat of cont frac of 5142217320974010 r009 Im(z^3+c),c=-23/114+41/57*I,n=14 5142217342620566 a007 Real Root Of -763*x^4-275*x^3-588*x^2+145*x+246 5142217375306704 a007 Real Root Of -503*x^4-410*x^3-441*x^2+947*x+583 5142217384585945 m001 CopelandErdos/(Pi+3^(1/3)) 5142217403267347 a003 cos(Pi*1/67)*sin(Pi*1/61) 5142217404634666 r005 Im(z^2+c),c=13/122+32/55*I,n=20 5142217440143318 r009 Re(z^3+c),c=-13/25+13/25*I,n=31 5142217441111121 k007 concat of cont frac of 5142217450163877 r009 Im(z^3+c),c=-21/86+35/57*I,n=23 5142217469563024 r002 7th iterates of z^2 + 5142217469755832 r002 29th iterates of z^2 + 5142217481529290 a007 Real Root Of 556*x^4-337*x^3+614*x^2+39*x-227 5142217484797535 a007 Real Root Of -309*x^4+507*x^3-292*x^2+193*x+267 5142217490040390 m001 (BesselI(1,2)-Bloch)/(Pi-cos(1/12*Pi)) 5142217497889325 m001 (3^(1/3)-exp(1))/(-Champernowne+Paris) 5142217507460937 m001 (MadelungNaCl-ZetaP(3))/(ln(5)-Conway) 5142217509138632 r009 Im(z^3+c),c=-7/20+13/22*I,n=52 5142217511469680 m001 (sin(1/12*Pi)-GAMMA(19/24))/(Conway+PlouffeB) 5142217512134102 k007 concat of cont frac of 5142217515752789 r009 Im(z^3+c),c=-5/18+22/31*I,n=14 5142217550507598 m001 (GlaisherKinkelin-Lehmer)/(Totient+ZetaQ(4)) 5142217556133341 r005 Im(z^2+c),c=-17/74+1/14*I,n=16 5142217567673394 r002 57th iterates of z^2 + 5142217572465241 h001 (1/2*exp(1)+5/11)/(2/5*exp(2)+4/7) 5142217585720912 b008 JacobiDS[4,5/7] 5142217624122757 a007 Real Root Of 70*x^4+525*x^3+946*x^2+527*x+137 5142217629232511 k006 concat of cont frac of 5142217633628694 m001 CopelandErdos^ZetaP(2)/(GAMMA(23/24)^ZetaP(2)) 5142217634087535 s002 sum(A206421[n]/(n*exp(pi*n)+1),n=1..infinity) 5142217638084040 r009 Re(z^3+c),c=-1/18+9/56*I,n=2 5142217643358174 a001 322/233*832040^(13/49) 5142217655008883 a001 843/233*3^(8/25) 5142217668469038 b008 46+7*Sqrt[3/5] 5142217673960793 r005 Re(z^2+c),c=-75/118+3/41*I,n=7 5142217675079662 m001 exp(Zeta(5))*Bloch/sin(Pi/12) 5142217675673178 m005 (1/2*Pi-9/10)/(gamma+8/11) 5142217681318923 m002 2-E^Pi+2*Pi*Sinh[Pi] 5142217686142554 b008 Pi+2*Cosh[1/40] 5142217691717681 m001 (-GAMMA(19/24)+ReciprocalLucas)/(sin(1)+ln(2)) 5142217708360365 m001 Thue^(FeigenbaumMu*FibonacciFactorial) 5142217719487287 r009 Im(z^3+c),c=-7/78+47/48*I,n=12 5142217722001014 r009 Im(z^3+c),c=-3/22+27/37*I,n=39 5142217733770945 r009 Re(z^3+c),c=-2/5+1/38*I,n=33 5142217792226812 p001 sum(1/(197*n+196)/(64^n),n=0..infinity) 5142217815582069 a007 Real Root Of 941*x^4-632*x^3+145*x^2-663*x-531 5142217822123226 m001 (Zeta(3)-cos(1/5*Pi))/(GAMMA(23/24)-MertensB1) 5142217831412549 r002 11th iterates of z^2 + 5142217833172672 a007 Real Root Of -630*x^4+806*x^3-902*x^2+622*x+712 5142217834116540 a001 3/2*4181^(41/42) 5142217849962967 a008 Real Root of x^4-2*x^3+12*x^2-11*x-688 5142217852453090 r002 7th iterates of z^2 + 5142217855026815 h001 (-3*exp(-2)+1)/(-6*exp(3)+5) 5142217855184662 a003 sin(Pi*11/64)/sin(Pi*36/73) 5142217862042959 r005 Re(z^2+c),c=-1/90+8/35*I,n=16 5142217863983738 h003 exp(Pi*(14^(11/12)+14^(6/5))) 5142217863983738 h008 exp(Pi*(14^(11/12)+14^(6/5))) 5142217869214329 r002 50th iterates of z^2 + 5142217872919686 a001 682/567451585*233^(4/15) 5142217885642381 r002 46th iterates of z^2 + 5142217908888255 m009 (1/3*Psi(1,1/3)-2/3)/(1/2*Psi(1,1/3)+1/5) 5142217925032268 k006 concat of cont frac of 5142217925143304 a007 Real Root Of -250*x^4+782*x^3+712*x^2+97*x-327 5142217930748561 m002 2*Csch[Pi]+(E^Pi*ProductLog[Pi])/5 5142217945902677 r005 Re(z^2+c),c=-51/98+17/35*I,n=23 5142217958489209 s002 sum(A116368[n]/(n*2^n+1),n=1..infinity) 5142217961009907 q001 1609/3129 5142217981640784 m005 (1/2*Catalan+1/11)/(4/7*Catalan-5/12) 5142217991495782 r009 Im(z^3+c),c=-5/62+11/17*I,n=27 5142218015864991 r009 Im(z^3+c),c=-45/122+37/64*I,n=49 5142218026932346 m006 (3*exp(2*Pi)-2/3)/(2*ln(Pi)+5/6) 5142218028460771 r009 Im(z^3+c),c=-11/98+38/59*I,n=40 5142218028514017 r002 47th iterates of z^2 + 5142218028717784 r009 Im(z^3+c),c=-21/110+41/58*I,n=34 5142218040314148 m005 (2*exp(1)+2/3)/(1/4*2^(1/2)+5/6) 5142218044975961 m001 ErdosBorwein/exp(Artin)/arctan(1/2)^2 5142218046105327 s001 sum(exp(-Pi/4)^(n-1)*A180096[n],n=1..infinity) 5142218059413233 r005 Im(z^2+c),c=-123/86+5/32*I,n=6 5142218071668424 a007 Real Root Of -129*x^4+677*x^3-533*x^2+175*x+332 5142218074218226 m001 1/sin(1)*exp(TwinPrimes)*sqrt(5) 5142218078559887 m001 (exp(1)+Ei(1,1))/(-MadelungNaCl+Salem) 5142218108944725 a007 Real Root Of 303*x^4+89*x^3+607*x^2-732*x-546 5142218111011172 k007 concat of cont frac of 5142218111111414 k006 concat of cont frac of 5142218112789100 r009 Im(z^3+c),c=-1/31+31/47*I,n=14 5142218116141115 k007 concat of cont frac of 5142218118801043 a001 63245986/2207*199^(6/11) 5142218119426856 m001 MasserGramain-arctan(1/2)*FeigenbaumAlpha 5142218121136621 k007 concat of cont frac of 5142218141117721 k006 concat of cont frac of 5142218141171911 k007 concat of cont frac of 5142218143513693 a003 cos(Pi*8/103)*sin(Pi*8/45) 5142218147443666 r005 Im(z^2+c),c=-25/31+1/40*I,n=47 5142218161878272 m001 1/exp(Si(Pi))^2*Conway/GolombDickman 5142218162468080 a007 Real Root Of -756*x^4+238*x^3+589*x^2+299*x-289 5142218162534012 m002 (6*Sech[Pi])/ProductLog[Pi]+Tanh[Pi]/Pi^3 5142218170059185 r002 45th iterates of z^2 + 5142218189463409 m001 LandauRamanujan*(Bloch-ln(Pi)) 5142218197195872 l006 ln(1117/1868) 5142218199058150 m005 (3*Pi+1/6)/(5/6*exp(1)-2/5) 5142218216528746 r005 Im(z^2+c),c=11/46+18/35*I,n=11 5142218220447096 m005 (1/2*gamma-7/9)/(2/11*3^(1/2)+7/11) 5142218228339463 a007 Real Root Of -952*x^4+470*x^3-530*x^2+695*x+628 5142218247506316 r002 5th iterates of z^2 + 5142218255714186 m001 1/Riemann1stZero^2*exp(Bloch)^2/Riemann3rdZero 5142218315836909 h001 (3/10*exp(2)+7/9)/(5/7*exp(2)+6/11) 5142218322311137 k007 concat of cont frac of 5142218330068096 r009 Im(z^3+c),c=-3/20+39/61*I,n=42 5142218330826665 b008 Cosh[1/2+SinIntegral[E]] 5142218339841595 h001 (1/10*exp(2)+4/9)/(7/11*exp(1)+4/7) 5142218359977247 r009 Im(z^3+c),c=-2/29+25/34*I,n=27 5142218373499073 r009 Im(z^3+c),c=-19/40+23/59*I,n=9 5142218391411115 k006 concat of cont frac of 5142218396579286 m001 (StronglyCareFree-Tribonacci)/(3^(1/3)+Kac) 5142218399850423 m005 (1/3*5^(1/2)+1/5)/(Zeta(3)+7/11) 5142218411112311 k008 concat of cont frac of 5142218413990109 r002 6th iterates of z^2 + 5142218421113322 k008 concat of cont frac of 5142218430417712 h001 (4/11*exp(1)+2/11)/(1/4*exp(2)+3/7) 5142218430868624 r009 Im(z^3+c),c=-19/58+19/32*I,n=37 5142218432031275 r005 Im(z^2+c),c=-121/122+3/59*I,n=11 5142218451353169 h001 (-11*exp(4)-2)/(-exp(1)-9) 5142218467786150 a008 Real Root of x^4-x^3-15*x^2+53*x-166 5142218491875694 r009 Re(z^3+c),c=-13/25+13/25*I,n=28 5142218509770174 m005 (1/2*2^(1/2)+4)/(-10/99+5/11*5^(1/2)) 5142218513623012 k006 concat of cont frac of 5142218546626955 a007 Real Root Of 324*x^4-832*x^3+501*x^2+405*x-60 5142218566572189 r005 Re(z^2+c),c=25/102+31/64*I,n=44 5142218572522431 r005 Re(z^2+c),c=3/13+30/61*I,n=49 5142218578996582 r009 Im(z^3+c),c=-19/70+38/59*I,n=24 5142218603661429 r009 Im(z^3+c),c=-25/94+21/34*I,n=34 5142218608799597 r009 Im(z^3+c),c=-45/98+13/28*I,n=20 5142218620223333 r009 Im(z^3+c),c=-23/94+41/64*I,n=24 5142218631940511 r009 Im(z^3+c),c=-79/114+33/64*I,n=9 5142218668482069 h001 (-6*exp(2/3)+3)/(-6*exp(1/2)-7) 5142218670637614 p001 sum(1/(447*n+341)/n/(25^n),n=1..infinity) 5142218680312773 a007 Real Root Of -220*x^4+901*x^3-520*x^2+359*x+460 5142218692311186 a007 Real Root Of 677*x^4-619*x^3-718*x^2-728*x-316 5142218693943493 r005 Re(z^2+c),c=19/46+13/40*I,n=12 5142218694777371 m001 (1-Chi(1))/(GAMMA(3/4)+Tetranacci) 5142218720725958 m005 (1/2*Pi+6/11)/(1/5*gamma+4) 5142218746567250 r005 Re(z^2+c),c=21/122+17/47*I,n=6 5142218758136245 r005 Im(z^2+c),c=-2/3+53/157*I,n=24 5142218771568726 r009 Im(z^3+c),c=-11/25+22/47*I,n=14 5142218780658183 r009 Im(z^3+c),c=-27/106+30/49*I,n=14 5142218782720664 m001 (Cahen-GlaisherKinkelin)/(ln(gamma)-ln(2)) 5142218783735061 a007 Real Root Of -239*x^4+187*x^3-756*x^2+665*x+584 5142218834704397 a003 cos(Pi*43/119)+cos(Pi*8/17) 5142218845041843 m001 (Ei(1,1)-GlaisherKinkelin)/(Magata-Totient) 5142218855141271 k009 concat of cont frac of 5142218884684969 m003 6/Log[1/2+Sqrt[5]/2]^3-Sinh[1/2+Sqrt[5]/2] 5142218906447633 r005 Re(z^2+c),c=-3/40+31/48*I,n=36 5142218912978621 m005 (1/3*Pi-1/9)/(9/11*Pi-3/4) 5142218918998805 s001 sum(exp(-Pi/2)^n*A135775[n],n=1..infinity) 5142218932086183 r005 Im(z^2+c),c=-5/18+34/57*I,n=9 5142218937528410 b008 45+BesselI[2,4] 5142218968180133 m001 1/sin(1)^2/Backhouse^2/exp(sin(Pi/12)) 5142218972505160 m005 (1/2*5^(1/2)+4/7)/(1/3*2^(1/2)-1/7) 5142218998289887 r005 Re(z^2+c),c=9/56+38/61*I,n=6 5142219000073423 a007 Real Root Of -883*x^4-204*x^3+791*x^2+831*x-547 5142219000862895 r005 Re(z^2+c),c=-1/28+29/43*I,n=14 5142219001552271 r009 Im(z^3+c),c=-13/90+39/61*I,n=5 5142219015844234 h001 (-exp(2)+6)/(-6*exp(-3)+3) 5142219019207506 a007 Real Root Of -937*x^4+998*x^3+261*x^2+900*x-602 5142219020487849 a001 165580141/5778*199^(6/11) 5142219026915258 r005 Im(z^2+c),c=-3/26+33/50*I,n=41 5142219031864978 r009 Re(z^3+c),c=-17/28+55/64*I,n=2 5142219057081074 a007 Real Root Of -853*x^4+57*x^3-716*x^2+90*x+303 5142219057861544 m001 (sin(1/5*Pi)+GAMMA(17/24))/(Bloch-OneNinth) 5142219060136498 g003 Re(GAMMA(-287/60+I*(-5/6))) 5142219066145546 a001 521/233*2504730781961^(4/21) 5142219079779307 a008 Real Root of x^4-x^3-17*x^2+96*x+108 5142219084112095 m003 -3/5+(5*Sqrt[5])/8+6*Cos[1/2+Sqrt[5]/2] 5142219088850453 r009 Re(z^3+c),c=-11/122+26/41*I,n=24 5142219101480657 r009 Re(z^3+c),c=-23/58+1/42*I,n=64 5142219111137612 k008 concat of cont frac of 5142219117010101 l006 ln(5820/9733) 5142219136706656 m001 BesselK(0,1)^2*RenyiParking/ln(BesselK(1,1))^2 5142219142819345 a003 sin(Pi*17/72)*sin(Pi*19/69) 5142219152042208 a001 433494437/15127*199^(6/11) 5142219171235730 a001 1134903170/39603*199^(6/11) 5142219174036028 a001 2971215073/103682*199^(6/11) 5142219174444586 a001 7778742049/271443*199^(6/11) 5142219174504193 a001 20365011074/710647*199^(6/11) 5142219174512890 a001 53316291173/1860498*199^(6/11) 5142219174514159 a001 139583862445/4870847*199^(6/11) 5142219174514344 a001 365435296162/12752043*199^(6/11) 5142219174514371 a001 956722026041/33385282*199^(6/11) 5142219174514375 a001 2504730781961/87403803*199^(6/11) 5142219174514375 a001 6557470319842/228826127*199^(6/11) 5142219174514376 a001 10610209857723/370248451*199^(6/11) 5142219174514376 a001 4052739537881/141422324*199^(6/11) 5142219174514377 a001 1548008755920/54018521*199^(6/11) 5142219174514388 a001 591286729879/20633239*199^(6/11) 5142219174514458 a001 225851433717/7881196*199^(6/11) 5142219174514943 a001 86267571272/3010349*199^(6/11) 5142219174518265 a001 32951280099/1149851*199^(6/11) 5142219174541033 a001 12586269025/439204*199^(6/11) 5142219174697088 a001 4807526976/167761*199^(6/11) 5142219175766707 a001 28657*199^(6/11) 5142219183097980 a001 701408733/24476*199^(6/11) 5142219183111331 k006 concat of cont frac of 5142219211211212 k009 concat of cont frac of 5142219215821411 k007 concat of cont frac of 5142219219218823 a005 (1/sin(87/191*Pi))^167 5142219221746328 a007 Real Root Of -916*x^4+551*x^3-646*x^2+226*x+426 5142219231598794 a007 Real Root Of -9*x^4+714*x^3-624*x^2+899*x+725 5142219233347276 a001 267914296/9349*199^(6/11) 5142219247452273 m001 (-BesselI(0,2)+Robbin)/(2^(1/2)+3^(1/2)) 5142219267469551 a007 Real Root Of -931*x^4+674*x^3-426*x^2+676*x+617 5142219304620919 a007 Real Root Of 13*x^4+675*x^3+328*x^2-338*x+693 5142219309853644 a007 Real Root Of 857*x^4+895*x^3+523*x^2-983*x-582 5142219321414151 k008 concat of cont frac of 5142219335473302 l006 ln(4703/7865) 5142219335740227 s002 sum(A009149[n]/((2*n)!),n=1..infinity) 5142219356792971 m001 (3^(1/3)-FeigenbaumC)^CareFree 5142219380994006 r009 Im(z^3+c),c=-9/26+31/50*I,n=15 5142219381280202 m005 (1/2*Catalan-1/7)/(4*3^(1/2)-4/5) 5142219421551111 k007 concat of cont frac of 5142219437611284 r005 Re(z^2+c),c=19/86+16/43*I,n=43 5142219454710600 a007 Real Root Of -607*x^4-475*x^3-825*x^2+70*x+232 5142219467725369 m005 (1/2*3^(1/2)-2/11)/(6/7*Catalan+6/11) 5142219478423006 r009 Re(z^3+c),c=-63/122+28/57*I,n=40 5142219487823079 a007 Real Root Of 93*x^4-274*x^3+53*x^2-930*x-536 5142219492148295 r005 Im(z^2+c),c=-21/31+19/54*I,n=14 5142219501371288 r005 Re(z^2+c),c=1/48+16/53*I,n=15 5142219516615120 a007 Real Root Of 375*x^4-328*x^3-910*x^2-527*x+530 5142219523982126 a007 Real Root Of 151*x^4-831*x^3+85*x^2-877*x-597 5142219525009226 a007 Real Root Of -151*x^4+598*x^3+129*x^2+115*x-164 5142219525912647 r009 Im(z^3+c),c=-3/11+37/58*I,n=27 5142219526325983 m005 1/6*5^(1/2)/(10/11*gamma+1/5) 5142219551393172 m001 (Kac+MinimumGamma)/(PrimesInBinary-ZetaQ(3)) 5142219577761101 a001 102334155/3571*199^(6/11) 5142219588167773 r005 Re(z^2+c),c=5/38+11/23*I,n=38 5142219602493545 r005 Im(z^2+c),c=1/62+25/27*I,n=5 5142219609046621 r009 Im(z^3+c),c=-33/94+23/39*I,n=60 5142219620756172 a001 521/144*28657^(29/41) 5142219622148573 a001 40/7778742049 5142219622148573 a001 2/10182505537*(1/2+1/2*5^(1/2))^2 5142219622148573 a001 4/53316291173*(1/2+1/2*5^(1/2))^4 5142219622148573 a001 4/139583862445*(1/2+1/2*5^(1/2))^6 5142219622148573 a001 2/182717648081*(1/2+1/2*5^(1/2))^8 5142219622148573 a001 4/956722026041*(1/2+1/2*5^(1/2))^10 5142219622148573 a001 4/2504730781961*(1/2+1/2*5^(1/2))^12 5142219622148573 a001 2/3278735159921*(1/2+1/2*5^(1/2))^14 5142219622148573 a001 4/10610209857723*(1/2+1/2*5^(1/2))^15 5142219622148573 a001 4/4052739537881*(1/2+1/2*5^(1/2))^13 5142219622148573 a001 1/387002188980*(1/2+1/2*5^(1/2))^11 5142219622148573 a001 4/225851433717*(1/2+1/2*5^(1/2))^7 5142219622148573 a001 1/21566892818*(1/2+1/2*5^(1/2))^5 5142219622148573 a001 4/32951280099*(1/2+1/2*5^(1/2))^3 5142219622148573 a001 2/12586269025+2/12586269025*5^(1/2) 5142219626116626 a007 Real Root Of -772*x^4+68*x^3+372*x^2+975*x-555 5142219635778079 l006 ln(5818/6125) 5142219647559792 m008 (1/4*Pi-5/6)/(3*Pi^3+1/5) 5142219649258211 r005 Im(z^2+c),c=-13/31+22/39*I,n=16 5142219658958535 m001 Conway/(GAMMA(7/12)-Grothendieck) 5142219663824526 r002 8th iterates of z^2 + 5142219677743403 r002 42th iterates of z^2 + 5142219690034315 l006 ln(3586/5997) 5142219713329553 a005 (1/cos(27/235*Pi))^232 5142219736912499 r009 Im(z^3+c),c=-19/102+19/30*I,n=43 5142219743446737 q001 922/1793 5142219745668867 r009 Im(z^3+c),c=-41/106+21/38*I,n=24 5142219755227623 a007 Real Root Of 233*x^4+996*x^3-876*x^2+869*x+147 5142219766071496 a007 Real Root Of 592*x^4-662*x^3-508*x^2-346*x-175 5142219810096150 m001 (Pi^(1/2)-GAMMA(23/24))/(PlouffeB-Tetranacci) 5142219811131214 k008 concat of cont frac of 5142219833595665 m001 (BesselJ(0,1)-Catalan)/(ln(Pi)+KomornikLoreti) 5142219836243601 r009 Re(z^3+c),c=-7/17+1/44*I,n=15 5142219837358510 a001 21/64079*199^(4/47) 5142219857200672 r009 Im(z^3+c),c=-19/32+31/61*I,n=31 5142219886281046 r005 Re(z^2+c),c=-53/74+1/6*I,n=28 5142219893974659 r002 28th iterates of z^2 + 5142219894300818 r005 Im(z^2+c),c=-59/122+3/34*I,n=32 5142219896981749 m001 1/GAMMA(3/4)^2/Champernowne/exp(sinh(1))^2 5142219915989506 m001 (Chi(1)+Zeta(1,-1))/(HeathBrownMoroz+Mills) 5142219932016018 r005 Im(z^2+c),c=-49/90+26/45*I,n=62 5142219939573982 r005 Re(z^2+c),c=-15/28+13/28*I,n=38 5142219939692264 m005 (1/3*Zeta(3)+1/4)/(3/4*Zeta(3)-8/9) 5142219972607755 m001 HardyLittlewoodC4/Paris*ZetaQ(4) 5142219973866352 m001 1/GAMMA(7/12)/GAMMA(1/3)/exp(GAMMA(7/24))^2 5142219978571468 b005 Number DB table 5142219987959991 m001 (Zeta(1/2)-exp(1))/(-Artin+KhinchinLevy) 5142219995877350 b008 Log[Sin[1]]^3 5142219995877350 m001 ln(sin(1))^3 5142220014576809 r005 Re(z^2+c),c=25/66+1/11*I,n=22 5142220015277896 a007 Real Root Of 735*x^4+189*x^3-920*x^2-585*x+467 5142220030713421 a003 cos(Pi*4/99)*cos(Pi*16/49) 5142220033090719 m001 Trott/(Khinchin-gamma) 5142220069127119 a007 Real Root Of -959*x^4-830*x^3+640*x^2+997*x-502 5142220081642261 r009 Im(z^3+c),c=-17/62+8/13*I,n=37 5142220141365369 m005 (1/2*Zeta(3)+3)/(5/6*Catalan-5/6) 5142220148900024 a001 2207*233^(9/58) 5142220189862418 m001 exp(Rabbit)^2/LandauRamanujan/GAMMA(23/24)^2 5142220198074680 r002 49th iterates of z^2 + 5142220216945872 m004 -2+(5*Pi)/2-(Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 5142220222512115 a007 Real Root Of -910*x^4+854*x^3+244*x^2+898*x+577 5142220222787032 r009 Im(z^3+c),c=-9/62+16/25*I,n=50 5142220233567618 a001 3571/2971215073*233^(4/15) 5142220239392699 a007 Real Root Of 951*x^4+216*x^3+431*x^2-978*x-654 5142220244131131 k007 concat of cont frac of 5142220304345399 m001 Pi+Psi(2,1/3)+3^(1/2)-GAMMA(19/24) 5142220319279043 r002 53th iterates of z^2 + 5142220320375136 a001 11/514229*75025^(21/43) 5142220320415558 m001 (PlouffeB+ZetaQ(3))/(2^(1/3)-GAMMA(2/3)) 5142220325693936 r002 18th iterates of z^2 + 5142220326611383 r005 Im(z^2+c),c=-1/70+17/27*I,n=15 5142220345751894 m001 (Champernowne-Lehmer)/(ln(2)-BesselK(1,1)) 5142220349390095 l006 ln(21/3593) 5142220351710477 p003 LerchPhi(1/64,1,31/159) 5142220360305504 r005 Im(z^2+c),c=-5/7+15/109*I,n=23 5142220365409107 l006 ln(2469/4129) 5142220367977552 a007 Real Root Of 417*x^4-384*x^3-665*x^2-666*x-248 5142220394302834 m001 1/Salem^2*Niven^2/ln(Ei(1))^2 5142220394577763 m001 (ln(2+3^(1/2))+LandauRamanujan2nd)/(1-Zeta(5)) 5142220399297583 m001 (Artin-Chi(1))/(Kolakoski+OneNinth) 5142220444343638 r005 Re(z^2+c),c=-11/19+11/40*I,n=6 5142220469789722 m009 (2/5*Psi(1,3/4)-1/5)/(3/5*Psi(1,2/3)-1/4) 5142220470475577 m001 (FransenRobinson+Khinchin)/(Lehmer+PlouffeB) 5142220487234287 m001 (FeigenbaumB+Landau)/(RenyiParking+Tetranacci) 5142220497975625 r009 Im(z^3+c),c=-11/82+34/53*I,n=49 5142220529153433 m001 ((1+3^(1/2))^(1/2)-exp(Pi))/(-Lehmer+ZetaP(3)) 5142220540468012 r005 Re(z^2+c),c=15/62+24/61*I,n=51 5142220542452441 r009 Im(z^3+c),c=-17/58+27/43*I,n=27 5142220577981510 a001 9349/7778742049*233^(4/15) 5142220581232266 r005 Re(z^2+c),c=-35/34+22/127*I,n=36 5142220598005686 m001 exp(LaplaceLimit)^2/Cahen*Zeta(1,2)^2 5142220610198146 r009 Im(z^3+c),c=-4/27+46/63*I,n=46 5142220612855068 m001 Conway-KhinchinHarmonic*ZetaP(2) 5142220615133154 m001 (Landau+ThueMorse)/(BesselI(0,2)-BesselK(0,1)) 5142220619248043 a007 Real Root Of -595*x^4-524*x^3+547*x^2+829*x-44 5142220628230819 a001 12238/10182505537*233^(4/15) 5142220635562095 a001 64079/53316291173*233^(4/15) 5142220636631713 a001 167761/139583862445*233^(4/15) 5142220636787769 a001 219602/182717648081*233^(4/15) 5142220636810537 a001 1149851/956722026041*233^(4/15) 5142220636813859 a001 3010349/2504730781961*233^(4/15) 5142220636814343 a001 3940598/3278735159921*233^(4/15) 5142220636814458 a001 4250681/3536736619241*233^(4/15) 5142220636814643 a001 4870847/4052739537881*233^(4/15) 5142220636815912 a001 1/832040*233^(4/15) 5142220636824608 a001 710647/591286729879*233^(4/15) 5142220636884216 a001 90481/75283811239*233^(4/15) 5142220637292774 a001 51841/43133785636*233^(4/15) 5142220640093072 a001 13201/10983760033*233^(4/15) 5142220659286600 a001 15127/12586269025*233^(4/15) 5142220660288171 r009 Re(z^3+c),c=-59/114+26/49*I,n=4 5142220661921043 r005 Re(z^2+c),c=-89/126+4/27*I,n=12 5142220679865941 m001 (Kac-TreeGrowth2nd)/(Pi+Bloch) 5142220731389676 a001 10749957122/21*591286729879^(13/17) 5142220731389676 a001 5600748293801/21*165580141^(13/17) 5142220746459757 r002 56th iterates of z^2 + 5142220770766485 r002 3th iterates of z^2 + 5142220780723153 a007 Real Root Of -261*x^4+568*x^3-612*x^2+822*x+680 5142220785026040 r009 Re(z^3+c),c=-16/29+10/47*I,n=3 5142220790841001 a001 321/267084832*233^(4/15) 5142220805375245 m001 LambertW(1)^2*Riemann2ndZero/ln(Zeta(5))^2 5142220826464431 m005 (-5/8+1/4*5^(1/2))/(1/3*exp(1)-7/9) 5142220839204704 r002 46th iterates of z^2 + 5142220916479022 m005 (7/8+1/4*5^(1/2))/(3/4*exp(1)+3/4) 5142220920327518 a008 Real Root of x^4-2*x^3-362*x^2-3122*x-7453 5142220938380417 m001 ln(3)^GaussKuzminWirsing+exp(sqrt(2)) 5142220957020188 r009 Im(z^3+c),c=-17/78+37/59*I,n=47 5142220963340048 h001 (1/10*exp(1)+5/12)/(1/10*exp(2)+3/5) 5142220975260327 s002 sum(A278906[n]/(n^2*2^n+1),n=1..infinity) 5142220977186819 r005 Re(z^2+c),c=-13/14+32/237*I,n=46 5142220980793585 a007 Real Root Of 276*x^4+556*x^3+779*x^2-866*x-595 5142220985604042 a007 Real Root Of -69*x^4+998*x^3-928*x^2+850*x+823 5142220999246805 l006 ln(3821/6390) 5142221005805178 m001 1/CareFree/exp(ArtinRank2)^2*MinimumGamma 5142221011464241 k006 concat of cont frac of 5142221021558445 a003 cos(Pi*20/41)*cos(Pi*58/117) 5142221040551650 m005 (1/3*gamma-2/11)/(9/10*3^(1/2)+1/2) 5142221042080595 m001 1/exp(Ei(1))^2*BesselJ(1,1)/GAMMA(5/24)^2 5142221049063032 r002 40th iterates of z^2 + 5142221071588598 m001 (Champernowne+Gompertz)/(GAMMA(23/24)+Artin) 5142221072301577 m001 1/2/(cos(Pi/12)^cos(Pi/5)) 5142221102338297 r009 Im(z^3+c),c=-11/29+10/17*I,n=54 5142221106681222 k008 concat of cont frac of 5142221110930089 m001 StolarskyHarborth^ZetaR(2)/Totient 5142221111113111 k006 concat of cont frac of 5142221111424122 k006 concat of cont frac of 5142221112111727 k008 concat of cont frac of 5142221112112113 k006 concat of cont frac of 5142221112113343 k007 concat of cont frac of 5142221112121116 k009 concat of cont frac of 5142221112121131 k007 concat of cont frac of 5142221112245111 k006 concat of cont frac of 5142221112871122 k006 concat of cont frac of 5142221113131452 k006 concat of cont frac of 5142221115514222 k007 concat of cont frac of 5142221121811283 k008 concat of cont frac of 5142221122001122 k006 concat of cont frac of 5142221122928518 q001 2079/4043 5142221123224101 k007 concat of cont frac of 5142221131101162 k007 concat of cont frac of 5142221131115816 k006 concat of cont frac of 5142221131152111 k007 concat of cont frac of 5142221131263211 k006 concat of cont frac of 5142221131431361 k006 concat of cont frac of 5142221132031143 k009 concat of cont frac of 5142221133101012 k008 concat of cont frac of 5142221133389613 r009 Im(z^3+c),c=-1/50+13/20*I,n=46 5142221137411222 k006 concat of cont frac of 5142221141656421 k007 concat of cont frac of 5142221147177999 r005 Re(z^2+c),c=11/122+18/43*I,n=22 5142221147192221 k007 concat of cont frac of 5142221155399490 r005 Re(z^2+c),c=-57/82+15/43*I,n=60 5142221160296007 v002 sum(1/(2^n*(5/6*n^3+13/6*n+11)),n=1..infinity) 5142221161211161 k007 concat of cont frac of 5142221174730674 m005 (5/66+1/6*5^(1/2))/(1/6*2^(1/2)+7/11) 5142221177257366 m001 ln(Robbin)*MinimumGamma/GAMMA(19/24) 5142221184761041 a007 Real Root Of -297*x^4+998*x^3+286*x^2-180*x-98 5142221185575004 m005 (1/2*2^(1/2)-3/11)/(1/4*5^(1/2)+2/7) 5142221199112531 k009 concat of cont frac of 5142221202221116 k007 concat of cont frac of 5142221211151113 k006 concat of cont frac of 5142221211410713 k008 concat of cont frac of 5142221211412513 k006 concat of cont frac of 5142221216441215 k008 concat of cont frac of 5142221217472323 k007 concat of cont frac of 5142221222112211 k006 concat of cont frac of 5142221222141313 k008 concat of cont frac of 5142221222151641 k007 concat of cont frac of 5142221231532531 k009 concat of cont frac of 5142221233512113 k008 concat of cont frac of 5142221236956921 a007 Real Root Of -172*x^4-895*x^3-98*x^2-362*x-703 5142221242118121 k006 concat of cont frac of 5142221242211117 k009 concat of cont frac of 5142221244427842 r005 Re(z^2+c),c=-21/38+29/54*I,n=45 5142221253308771 s002 sum(A003097[n]/(exp(pi*n)-1),n=1..infinity) 5142221256271118 r005 Re(z^2+c),c=-151/118+3/49*I,n=30 5142221262316413 k009 concat of cont frac of 5142221270929552 m001 (ln(2)/ln(10)+sin(1))/(-arctan(1/2)+Khinchin) 5142221271191051 a007 Real Root Of 159*x^4-988*x^3+386*x^2-657*x+359 5142221272384103 m001 1/GAMMA(5/12)^2*TreeGrowth2nd^2/ln(Zeta(7)) 5142221277217473 r009 Im(z^3+c),c=-11/82+34/53*I,n=57 5142221289153423 a003 cos(Pi*28/81)/sin(Pi*13/36) 5142221300324074 m001 (Psi(1,1/3)-cos(1))/(GAMMA(23/24)+FeigenbaumB) 5142221301768592 l006 ln(5173/8651) 5142221310479770 r009 Im(z^3+c),c=-31/110+25/41*I,n=34 5142221311918321 k008 concat of cont frac of 5142221312125211 k006 concat of cont frac of 5142221312215106 k008 concat of cont frac of 5142221313520132 k007 concat of cont frac of 5142221321212121 k007 concat of cont frac of 5142221323125821 k006 concat of cont frac of 5142221327288307 r009 Im(z^3+c),c=-9/46+12/19*I,n=61 5142221331123841 k007 concat of cont frac of 5142221331833446 a007 Real Root Of 422*x^4-459*x^3+558*x^2-600*x-548 5142221332931570 a007 Real Root Of -809*x^4+325*x^3-408*x^2+658*x+547 5142221338765750 a007 Real Root Of -130*x^4-488*x^3+811*x^2-603*x-4 5142221339792516 r009 Im(z^3+c),c=-2/31+38/51*I,n=33 5142221346510449 m001 KhinchinHarmonic/(ArtinRank2-Zeta(5)) 5142221350637925 r009 Re(z^3+c),c=-31/46+12/25*I,n=57 5142221359101106 r009 Im(z^3+c),c=-11/62+40/63*I,n=56 5142221360826835 p003 LerchPhi(1/256,1,349/179) 5142221379740667 m001 (-BesselI(1,2)+4)/(Khinchin+2) 5142221403314213 k007 concat of cont frac of 5142221410096595 r002 13th iterates of z^2 + 5142221422109111 k008 concat of cont frac of 5142221428536656 r002 4th iterates of z^2 + 5142221441305927 m001 1/exp(Porter)^2*MinimumGamma^2*GAMMA(5/12)^2 5142221451622514 k006 concat of cont frac of 5142221459227467 a001 119813760/233 5142221460257551 m001 (GaussAGM-Tribonacci)/(cos(1/5*Pi)+ln(Pi)) 5142221461125431 k006 concat of cont frac of 5142221465112111 k007 concat of cont frac of 5142221465607208 r005 Re(z^2+c),c=-61/44+1/60*I,n=16 5142221473221352 k007 concat of cont frac of 5142221476648104 r002 2th iterates of z^2 + 5142221477031213 r009 Re(z^3+c),c=-31/46+12/25*I,n=62 5142221496733475 g007 -Psi(2,11/12)-2*Psi(2,6/11)-Psi(2,5/11) 5142221504542656 m001 Paris/(Riemann2ndZero-Tribonacci) 5142221512221311 k008 concat of cont frac of 5142221514101599 a007 Real Root Of 721*x^4-200*x^3-677*x^2-858*x+597 5142221517622110 k006 concat of cont frac of 5142221518328031 m001 (FeigenbaumMu+OneNinth)/(Zeta(5)-arctan(1/3)) 5142221518982891 a007 Real Root Of -856*x^4+492*x^3-620*x^2+589*x+32 5142221521211111 k006 concat of cont frac of 5142221530925559 m001 Salem*exp(Rabbit)*arctan(1/2)^2 5142221532242186 k008 concat of cont frac of 5142221534545588 m001 (GAMMA(7/12)+Tetranacci)/(2^(1/3)-sin(1/5*Pi)) 5142221539431226 m001 (MinimumGamma+ZetaQ(2))/(Pi-DuboisRaymond) 5142221540706576 m001 (PlouffeB-sin(1))/(Rabbit+ZetaQ(4)) 5142221571939121 k009 concat of cont frac of 5142221581561591 k007 concat of cont frac of 5142221591900710 r009 Re(z^3+c),c=-19/46+1/29*I,n=49 5142221600213352 a007 Real Root Of 67*x^4-783*x^3-526*x^2-642*x+571 5142221621121213 k006 concat of cont frac of 5142221627349659 m001 1/Pi^2*Riemann2ndZero*exp(log(1+sqrt(2))) 5142221632596127 r005 Re(z^2+c),c=-11/12+9/53*I,n=24 5142221638883683 p003 LerchPhi(1/1024,3,589/219) 5142221639646527 m001 (gamma(2)+Otter)/(BesselI(0,1)-ln(2)) 5142221667468287 r005 Im(z^2+c),c=-7/10+55/183*I,n=7 5142221669339861 r005 Re(z^2+c),c=5/13+11/43*I,n=8 5142221671639698 r005 Re(z^2+c),c=-61/118+25/44*I,n=6 5142221673425648 a007 Real Root Of 897*x^4+36*x^3+993*x^2-851*x-758 5142221677684336 a007 Real Root Of 239*x^4-212*x^3-31*x^2-855*x-477 5142221692528276 a001 2207/1836311903*233^(4/15) 5142221713118301 k008 concat of cont frac of 5142221732810791 a001 28657/123*29^(34/37) 5142221751252119 k007 concat of cont frac of 5142221754376987 a007 Real Root Of -170*x^4-980*x^3-639*x^2-385*x+528 5142221773287816 r009 Re(z^3+c),c=-59/114+17/38*I,n=7 5142221776483442 a005 (1/cos(13/97*Pi))^799 5142221782649495 m001 (Magata+Niven)/(Zeta(3)-exp(-1/2*Pi)) 5142221793732492 a007 Real Root Of -875*x^4-738*x^3-678*x^2+414*x+353 5142221809579674 a007 Real Root Of -72*x^4-37*x^3-362*x^2+617*x+413 5142221820690126 s002 sum(A068064[n]/(n*2^n+1),n=1..infinity) 5142221830202790 a001 47*(1/2*5^(1/2)+1/2)^30*76^(9/22) 5142221835111410 k006 concat of cont frac of 5142221848634570 a007 Real Root Of -149*x^4+908*x^3+42*x^2+130*x-191 5142221870853284 r009 Re(z^3+c),c=-13/25+13/25*I,n=25 5142221876115822 k007 concat of cont frac of 5142221895951305 a001 18/75025*514229^(20/49) 5142221900188005 a005 (1/sin(59/131*Pi))^1078 5142221911912106 k007 concat of cont frac of 5142221913271438 k008 concat of cont frac of 5142221915856472 r005 Im(z^2+c),c=15/122+1/27*I,n=9 5142221917652716 a007 Real Root Of 602*x^4-447*x^3+997*x^2+176*x-276 5142221921712422 k007 concat of cont frac of 5142221925261325 k006 concat of cont frac of 5142221938409815 a001 39088169/1364*199^(6/11) 5142221951615433 r005 Im(z^2+c),c=-7/9+46/121*I,n=3 5142221957650030 a003 cos(Pi*7/67)*sin(Pi*17/93) 5142221976301184 m001 Pi+Psi(2,1/3)-cos(1)+ln(3) 5142221983868183 r009 Im(z^3+c),c=-11/74+42/59*I,n=15 5142221984914093 m007 (-gamma-1/5)/(-3/5*gamma-6/5*ln(2)-1/3) 5142221985894144 m001 (MinimumGamma+Totient)/(Psi(2,1/3)+Cahen) 5142221992119079 m001 (Khinchin+Lehmer)/(ln(Pi)-Grothendieck) 5142222014459986 a001 1346269/123*123^(4/5) 5142222036769480 r002 15th iterates of z^2 + 5142222044696215 m009 (6*Catalan+3/4*Pi^2+1/3)/(3/4*Psi(1,3/4)+2/3) 5142222058155507 a001 39088169/199*76^(2/9) 5142222060625681 m001 (Ei(1,1)*ReciprocalLucas+ArtinRank2)/Ei(1,1) 5142222082777317 a007 Real Root Of -276*x^4+635*x^3+597*x^2+323*x-391 5142222110615114 k007 concat of cont frac of 5142222111331721 k007 concat of cont frac of 5142222111511116 k007 concat of cont frac of 5142222114141121 k006 concat of cont frac of 5142222116211232 k008 concat of cont frac of 5142222122212311 k006 concat of cont frac of 5142222122251743 k007 concat of cont frac of 5142222123366364 m008 (1/2*Pi^6+1/5)/(3*Pi^3+1/2) 5142222135135361 k009 concat of cont frac of 5142222139955562 a007 Real Root Of 61*x^4-691*x^3-765*x^2-986*x+799 5142222141462808 m001 (FibonacciFactorial+Niven)/(Ei(1)-Psi(2,1/3)) 5142222156750604 l006 ln(1352/2261) 5142222171132213 k008 concat of cont frac of 5142222211132182 k008 concat of cont frac of 5142222212131113 k007 concat of cont frac of 5142222213155116 k006 concat of cont frac of 5142222214151117 k006 concat of cont frac of 5142222214528645 k006 concat of cont frac of 5142222221329080 r002 11th iterates of z^2 + 5142222222523178 k007 concat of cont frac of 5142222241221128 k007 concat of cont frac of 5142222274078299 m001 (Mills+ZetaQ(3))/(Zeta(3)+FeigenbaumKappa) 5142222280635077 a007 Real Root Of -965*x^4+819*x^3+97*x^2-224*x+38 5142222294827888 r005 Im(z^2+c),c=-21/110+24/43*I,n=4 5142222306874370 m001 (MasserGramain-ZetaP(3))/(Ei(1,1)+ArtinRank2) 5142222354875944 m001 1/3/(Catalan+GAMMA(1/6)) 5142222355967614 m003 5/6+E^(1/2+Sqrt[5]/2)*Tanh[1/2+Sqrt[5]/2]^2 5142222369698512 a007 Real Root Of 501*x^4-661*x^3+988*x^2-394*x+2 5142222381070216 a001 64079/55*89^(27/32) 5142222384007164 m001 TreeGrowth2nd^(Conway/ln(5)) 5142222386042768 a001 610/23725150497407*4^(1/2) 5142222392348836 m001 (gamma(1)+DuboisRaymond)/(Niven+Robbin) 5142222410562990 m001 (MertensB1-PlouffeB)/(3^(1/3)-GAMMA(23/24)) 5142222412213313 k008 concat of cont frac of 5142222415478051 k006 concat of cont frac of 5142222421223066 r009 Im(z^3+c),c=-15/98+23/36*I,n=47 5142222447897760 m006 (5/6*exp(2*Pi)-1/6)/(3*Pi-3/4) 5142222500553851 r005 Re(z^2+c),c=-25/24+7/57*I,n=40 5142222504024310 m001 ZetaP(2)-Trott-gamma(1) 5142222528419965 a003 cos(Pi*8/79)*cos(Pi*14/29) 5142222540319624 m005 (1/2*3^(1/2)+7/9)/(7/8*exp(1)+9/11) 5142222540467786 a007 Real Root Of -591*x^4-279*x^3-571*x^2+923*x+629 5142222561525737 m001 (Magata+Niven)/(ln(2)/ln(10)+ln(2)) 5142222567893596 a007 Real Root Of 431*x^4-375*x^3+991*x^2+469*x-102 5142222568349102 m005 (1/2*3^(1/2)-4/5)/(7/11*gamma+11/12) 5142222582872962 a007 Real Root Of 313*x^4-298*x^3+119*x^2-677*x-442 5142222592613643 a007 Real Root Of -145*x^4+373*x^3-516*x^2+799*x-315 5142222609634185 a007 Real Root Of -106*x^4-548*x^3-67*x^2-218*x+253 5142222612111111 k009 concat of cont frac of 5142222618924574 a005 (1/cos(10/223*Pi))^627 5142222638286232 m001 (gamma+BesselK(1,1))/(-LaplaceLimit+Otter) 5142222644207089 m001 1/log(2+sqrt(3))/TreeGrowth2nd*ln(sin(1))^2 5142222651899634 r009 Im(z^3+c),c=-17/122+41/60*I,n=7 5142222678727639 a001 1/1858291*(1/2*5^(1/2)+1/2)^18*64079^(1/22) 5142222717645600 a001 1/271121*(1/2*5^(1/2)+1/2)^9*9349^(7/22) 5142222724959940 r009 Im(z^3+c),c=-10/29+22/37*I,n=52 5142222737604787 r005 Im(z^2+c),c=-53/86+12/31*I,n=41 5142222740927739 r005 Im(z^2+c),c=-43/114+4/49*I,n=16 5142222742479246 m005 (16/15+2/5*5^(1/2))/(4/5*2^(1/2)-3/4) 5142222774862762 a001 3571/55*377^(15/43) 5142222780742503 r009 Im(z^3+c),c=-5/64+19/29*I,n=11 5142222786644405 a008 Real Root of (-2+8*x^2-2*x^4+5*x^8) 5142222787224770 m005 (1/2*gamma-6/11)/(1/4*Zeta(3)-4/5) 5142222792398826 r005 Re(z^2+c),c=3/58+23/64*I,n=15 5142222797715934 r002 4th iterates of z^2 + 5142222800237812 r002 2th iterates of z^2 + 5142222806792816 r002 30th iterates of z^2 + 5142222809843337 h001 (5/11*exp(1)+1/6)/(8/11*exp(1)+3/4) 5142222821049061 a001 281/1602508992*317811^(4/15) 5142222821051776 a001 1/267913919*591286729879^(4/15) 5142222821051776 a001 281/10983760033*433494437^(4/15) 5142222825784965 m001 Niven/GAMMA(11/12)/Pi 5142222839233869 a007 Real Root Of -911*x^4+804*x^3-928*x^2+991*x+928 5142222842496910 a001 1/103559*(1/2*5^(1/2)+1/2)^3*3571^(13/22) 5142222845723999 m009 (1/8*Pi^2+4/5)/(4*Psi(1,1/3)-5/6) 5142222854231647 r005 Re(z^2+c),c=-4/7+47/103*I,n=8 5142222873776346 a003 cos(Pi*37/99)+cos(Pi*45/98) 5142222874526412 l006 ln(5041/5307) 5142222877855436 m005 (1/3*gamma-1/4)/(121/126+1/14*5^(1/2)) 5142222888805429 r002 11th iterates of z^2 + 5142222892080651 a007 Real Root Of -750*x^4-143*x^3-298*x^2+366*x+300 5142222898504947 r002 20th iterates of z^2 + 5142222914742767 r002 43th iterates of z^2 + 5142222916876553 a001 514229/322*521^(12/13) 5142222917337502 r002 15th iterates of z^2 + 5142222917960675 a001 514229-3*5^(1/2) 5142222921998683 r002 4th iterates of z^2 + 5142222940521929 l006 ln(5643/9437) 5142222956752494 m001 (ln(2^(1/2)+1)+KhinchinHarmonic)/(ln(3)-ln(5)) 5142222995678274 a007 Real Root Of 13*x^4+685*x^3+838*x^2-554*x+686 5142223011121121 k007 concat of cont frac of 5142223014707829 a007 Real Root Of 195*x^4-867*x^3+157*x^2-595*x-479 5142223029243648 m001 ((3^(1/3))+sqrt(1+sqrt(3)))/BesselK(1,1) 5142223029243648 m001 (3^(1/3)+(1+3^(1/2))^(1/2))/BesselK(1,1) 5142223038423665 r009 Im(z^3+c),c=-1/50+13/20*I,n=38 5142223040843304 r009 Im(z^3+c),c=-6/17+24/41*I,n=51 5142223046372367 r009 Im(z^3+c),c=-27/110+18/29*I,n=60 5142223052882455 m008 (2/3*Pi-4/5)/(5/6*Pi^3-2/3) 5142223056212321 k006 concat of cont frac of 5142223066344401 b008 (21*CosIntegral[8])/5 5142223067485662 r009 Im(z^3+c),c=-7/44+37/58*I,n=48 5142223067528116 r009 Im(z^3+c),c=-19/102+19/30*I,n=54 5142223071590000 m001 1/Riemann1stZero/Lehmer/exp(Zeta(1/2)) 5142223079280194 a007 Real Root Of 943*x^4+506*x^3+926*x^2-739*x-622 5142223094215659 r002 4th iterates of z^2 + 5142223102339533 r009 Re(z^3+c),c=-19/48+1/43*I,n=28 5142223111239232 k007 concat of cont frac of 5142223111263733 k009 concat of cont frac of 5142223115116172 k007 concat of cont frac of 5142223121211811 k007 concat of cont frac of 5142223132131442 k006 concat of cont frac of 5142223139244944 a008 Real Root of x^4-2*x^3-18*x^2+12*x-13 5142223154478940 m001 exp(1/Pi)*ln(2)^FeigenbaumD 5142223158686229 m001 1/sinh(1)^2/ln(GAMMA(1/24))^2/sqrt(2) 5142223158916630 p001 sum(1/(549*n+199)/(12^n),n=0..infinity) 5142223161172717 m001 (Robbin-Tetranacci)/(ln(Pi)+ln(2+3^(1/2))) 5142223168458163 k006 concat of cont frac of 5142223187471073 l006 ln(4291/7176) 5142223204907604 m001 1/exp(GAMMA(2/3))*GAMMA(1/12)*sqrt(3) 5142223222171128 k006 concat of cont frac of 5142223237167270 a007 Real Root Of 30*x^4+40*x^3-400*x^2+803*x-831 5142223247172116 m005 (1/2*3^(1/2)-4/7)/(5/7*Zeta(3)-2/7) 5142223249913851 a001 599074578/55*433494437^(17/22) 5142223256546641 a001 2139295485799/55*10946^(17/22) 5142223264131112 k007 concat of cont frac of 5142223275638554 a007 Real Root Of -428*x^4+847*x^3-624*x^2-288*x+162 5142223291536912 r009 Re(z^3+c),c=-7/78+23/37*I,n=15 5142223294815731 r005 Im(z^2+c),c=-101/94+1/17*I,n=20 5142223324898988 m005 (1/3*Pi+3/5)/(1/11*5^(1/2)+3) 5142223336734704 r009 Im(z^3+c),c=-4/27+23/36*I,n=30 5142223337517433 a007 Real Root Of -587*x^4+355*x^3-805*x^2+515*x+567 5142223349553243 a007 Real Root Of -778*x^4-843*x^3-707*x^2+976*x-5 5142223350710387 r002 7th iterates of z^2 + 5142223351139821 r005 Im(z^2+c),c=-31/74+29/54*I,n=6 5142223359813183 r009 Im(z^3+c),c=-4/17+21/34*I,n=23 5142223403911736 h001 (9/10*exp(1)+3/7)/(7/11*exp(2)+8/9) 5142223412380321 k006 concat of cont frac of 5142223419268571 a001 521/75025*832040^(6/19) 5142223419451185 a001 521/1346269*7778742049^(6/19) 5142223422122340 m001 Ei(1,1)^ln(3)/(Ei(1,1)^TwinPrimes) 5142223423823692 a001 47/89*225851433717^(19/24) 5142223428878247 a007 Real Root Of -203*x^4+950*x^3-438*x^2+762*x-391 5142223440408439 a007 Real Root Of 170*x^4+739*x^3-497*x^2+989*x-153 5142223449518314 a007 Real Root Of -588*x^4+858*x^3+792*x^2+72*x-322 5142223457301478 r009 Im(z^3+c),c=-7/30+11/18*I,n=9 5142223457686478 r009 Re(z^3+c),c=-11/29+40/61*I,n=8 5142223494684657 r005 Im(z^2+c),c=-45/122+3/37*I,n=19 5142223511171181 k007 concat of cont frac of 5142223517541892 a007 Real Root Of 17*x^4+893*x^3+977*x^2+482*x+642 5142223520238707 r002 12th iterates of z^2 + 5142223528312150 m001 (Bloch-Tetranacci)/(exp(1/Pi)+Backhouse) 5142223536641991 r009 Im(z^3+c),c=-3/32+34/53*I,n=18 5142223546170414 m005 (1/2*Catalan-4/7)/(2/7*gamma-1/7) 5142223550840161 m001 ln(gamma)/(GAMMA(19/24)^PrimesInBinary) 5142223567252119 m001 (GAMMA(17/24)-ThueMorse)/(Pi-exp(1/exp(1))) 5142223579911059 m006 (Pi^2-4)/(3/4*ln(Pi)-2) 5142223580022466 a007 Real Root Of 706*x^4+105*x^3+407*x^2-794*x-551 5142223604327098 s002 sum(A236671[n]/(n^2*2^n+1),n=1..infinity) 5142223619799691 r005 Im(z^2+c),c=17/74+23/51*I,n=18 5142223627813791 r009 Im(z^3+c),c=-15/46+34/57*I,n=58 5142223651711709 r005 Im(z^2+c),c=-115/86+2/51*I,n=58 5142223652155614 m001 (2^(1/3)-Psi(1,1/3))/(Conway+PrimesInBinary) 5142223654109969 m005 (1/2*gamma+4/7)/(4*gamma-7/11) 5142223654160345 r009 Re(z^3+c),c=-83/118+13/21*I,n=3 5142223661623495 l006 ln(2939/4915) 5142223663517282 a007 Real Root Of 90*x^4+644*x^3+963*x^2+104*x-291 5142223682545660 p004 log(28573/167) 5142223685729001 r009 Re(z^3+c),c=-43/98+3/62*I,n=41 5142223691698055 m001 1/Salem^2*Khintchine^2*exp(GAMMA(1/12)) 5142223691983505 r009 Re(z^3+c),c=-31/46+12/25*I,n=52 5142223695758527 r005 Im(z^2+c),c=-21/52+1/12*I,n=23 5142223710258258 m005 (1/2*Catalan-3/4)/(4/11*gamma-7/9) 5142223711001111 k007 concat of cont frac of 5142223715322138 a007 Real Root Of 146*x^4-325*x^3+389*x^2-509*x-419 5142223742718846 a001 39088169/843*199^(5/11) 5142223764093451 a007 Real Root Of 138*x^4+614*x^3-317*x^2+917*x+95 5142223769611044 r009 Im(z^3+c),c=-7/20+17/29*I,n=54 5142223771182775 m001 (2^(1/2)-Bloch)/(FeigenbaumC+HeathBrownMoroz) 5142223773092965 s002 sum(A038691[n]/(exp(pi*n)-1),n=1..infinity) 5142223773651867 a007 Real Root Of -158*x^4+605*x^3-989*x^2-23*x+343 5142223773766993 m005 (1/3*Catalan-2/9)/(1/2*3^(1/2)+3/4) 5142223794471018 r009 Im(z^3+c),c=-47/78+16/63*I,n=2 5142223797998567 a001 29*(1/2*5^(1/2)+1/2)^17*7^(14/17) 5142223815220316 k006 concat of cont frac of 5142223816141271 m001 exp(FeigenbaumB)*DuboisRaymond*GAMMA(1/12) 5142223835824411 m001 exp(GAMMA(17/24))^2*ArtinRank2/sqrt(Pi) 5142223845242692 a007 Real Root Of 569*x^4-370*x^3-682*x^2-994*x+702 5142223859166237 m002 Cosh[Pi]/3+(Pi^6*Log[Pi])/E^Pi 5142223860725969 r005 Im(z^2+c),c=-27/44+31/44*I,n=4 5142223864056150 q001 1392/2707 5142223864803763 r002 7th iterates of z^2 + 5142223871524950 r005 Re(z^2+c),c=-165/122+8/37*I,n=6 5142223874090849 a001 7/3*8^(19/50) 5142223887434809 r002 11th iterates of z^2 + 5142223898004458 a001 9/31622993*3^(7/13) 5142223898204936 r009 Im(z^3+c),c=-3/46+35/54*I,n=49 5142223905157576 r005 Im(z^2+c),c=7/26+3/5*I,n=26 5142223910895054 m001 (GAMMA(1/4)*exp(1/2)-exp(sqrt(2)))/GAMMA(1/4) 5142223937444663 m001 (-LandauRamanujan+ZetaP(2))/(1-ErdosBorwein) 5142223943557446 r009 Re(z^3+c),c=-13/114+25/41*I,n=8 5142223960131964 r005 Re(z^2+c),c=-9/14+105/256*I,n=24 5142223970868462 m001 (Sierpinski+ZetaQ(3))/(gamma+gamma(1)) 5142223979368324 p003 LerchPhi(1/10,1,48/23) 5142223990354682 r005 Im(z^2+c),c=1/13+43/49*I,n=3 5142224011682122 s002 sum(A190058[n]/(n^3*pi^n-1),n=1..infinity) 5142224013028637 a007 Real Root Of 193*x^4+964*x^3-132*x^2+119*x+234 5142224022764889 m001 (Paris+Salem)/(exp(1/exp(1))+MertensB2) 5142224024666949 a007 Real Root Of -706*x^4+649*x^3-836*x^2-258*x+226 5142224026525659 a007 Real Root Of -951*x^4-763*x^3-799*x^2+350*x+354 5142224032946359 a008 Real Root of (2-5*x^2+5*x^3-x^4-2*x^5) 5142224043362130 m001 1/BesselK(0,1)/ln(TwinPrimes)^2*GAMMA(11/24)^2 5142224050156161 a007 Real Root Of 597*x^4-635*x^3+423*x^2-545*x+213 5142224064892401 a007 Real Root Of 460*x^4-517*x^3-369*x^2-794*x+544 5142224078446493 r005 Im(z^2+c),c=-7/46+57/58*I,n=3 5142224094340565 r009 Im(z^3+c),c=-1/110+39/61*I,n=13 5142224095504446 a007 Real Root Of 829*x^4-188*x^3-713*x^2-307*x+314 5142224111156847 l006 ln(4526/7569) 5142224111253822 k006 concat of cont frac of 5142224113621231 k007 concat of cont frac of 5142224114116553 m005 (1/2*3^(1/2)+6/11)/(10/11*Pi-1/9) 5142224115933307 r009 Im(z^3+c),c=-11/62+33/52*I,n=12 5142224120942494 m001 BesselI(1,2)*(Pi^(1/2)-Zeta(1/2)) 5142224120942494 m001 BesselI(1,2)*(Zeta(1/2)-sqrt(Pi)) 5142224121141145 k006 concat of cont frac of 5142224121222122 k007 concat of cont frac of 5142224124113913 k008 concat of cont frac of 5142224177643307 m001 GAMMA(1/24)*Trott/ln(GAMMA(13/24)) 5142224191878887 a001 55/18*1568397607^(2/15) 5142224192753193 a001 55/18*39603^(4/15) 5142224197997596 m001 (GAMMA(2/3)-gamma(3))/(FeigenbaumD-ZetaQ(2)) 5142224211152515 k008 concat of cont frac of 5142224221551223 k006 concat of cont frac of 5142224234981258 r009 Re(z^3+c),c=-19/42+3/62*I,n=26 5142224237491298 r002 54th iterates of z^2 + 5142224237514310 a007 Real Root Of 9*x^4-22*x^3-460*x^2-445*x+591 5142224249106997 s002 sum(A236671[n]/(n^2*2^n-1),n=1..infinity) 5142224251923907 h001 (1/10*exp(2)+1/9)/(5/9*exp(1)+1/7) 5142224255566450 a007 Real Root Of 977*x^4+138*x^3-115*x^2-584*x-3 5142224259218430 m001 ln(BesselK(1,1))*PisotVijayaraghavan^2*gamma 5142224266113683 m005 (5*Catalan+3/5)/(4*exp(1)-4/5) 5142224287406175 a007 Real Root Of -25*x^4+906*x^3-275*x^2-11*x+192 5142224292673641 a007 Real Root Of -408*x^4+989*x^3+659*x^2+91*x-327 5142224294063620 a007 Real Root Of -507*x^4+736*x^3+259*x^2+630*x+391 5142224311181133 k007 concat of cont frac of 5142224316131111 k006 concat of cont frac of 5142224327282886 p004 log(10223/6113) 5142224345639599 a007 Real Root Of 36*x^4+311*x^3+639*x^2-39*x+19 5142224350415238 r002 8th iterates of z^2 + 5142224355183568 a007 Real Root Of -836*x^4+410*x^3-890*x^2-38*x+330 5142224374106744 a001 416020/161*521^(11/13) 5142224381014940 a007 Real Root Of 652*x^4+222*x^3+314*x^2-497*x-354 5142224388119246 h001 (7/8*exp(1)+5/11)/(2/3*exp(2)+7/12) 5142224391388452 a007 Real Root Of 925*x^4-582*x^3-6*x^2-735*x+394 5142224398090651 a003 cos(Pi*17/73)*sin(Pi*17/70) 5142224402648610 r009 Im(z^3+c),c=-21/52+21/34*I,n=29 5142224411121215 k007 concat of cont frac of 5142224418450855 r009 Re(z^3+c),c=-3/106+37/45*I,n=8 5142224419442220 a008 Real Root of x^4-x^3-25*x^2+43*x+47 5142224431551162 k008 concat of cont frac of 5142224436795606 m001 cos(1)^(2^(1/3))+ZetaQ(2) 5142224446212235 g006 Psi(1,7/10)+Psi(1,2/5)-Psi(1,8/11)-Psi(1,4/5) 5142224455382039 m001 (PlouffeB-QuadraticClass)/(Landau-MertensB3) 5142224456066863 m001 Ei(1)*FeigenbaumAlpha*Trott 5142224462694118 r009 Im(z^3+c),c=-13/54+39/64*I,n=18 5142224493066139 a001 1/23184*3^(4/25) 5142224493261354 r002 50th iterates of z^2 + 5142224499587986 h001 (7/11*exp(1)+11/12)/(7/11*exp(2)+4/9) 5142224512592494 m005 (1/2*3^(1/2)-6/11)/(4/7*Catalan+1/10) 5142224517899930 a007 Real Root Of 465*x^4-364*x^3+319*x^2+201*x-63 5142224546955584 r009 Im(z^3+c),c=-1/94+41/63*I,n=26 5142224552981957 r002 46th iterates of z^2 + 5142224553868026 s002 sum(A109220[n]/(exp(pi*n)-1),n=1..infinity) 5142224570094188 r009 Im(z^3+c),c=-7/23+29/48*I,n=64 5142224578067713 r009 Im(z^3+c),c=-7/94+9/14*I,n=18 5142224578974207 a001 55/18*2207^(11/30) 5142224614116221 r009 Im(z^3+c),c=-39/118+27/46*I,n=15 5142224623808687 a007 Real Root Of 94*x^4-942*x^3-702*x^2-412*x+519 5142224624792046 m001 (Landau-MertensB2*Trott)/MertensB2 5142224626126934 a007 Real Root Of -979*x^4+336*x^3-211*x^2+743*x+552 5142224627529917 r009 Im(z^3+c),c=-21/74+27/44*I,n=35 5142224640829079 a007 Real Root Of -896*x^4+704*x^3-885*x^2+289*x+541 5142224647395102 h003 exp(Pi*(1/17*(9*17^(1/2)+9^(2/3))*17^(1/2))) 5142224663315637 a001 2207/21*46368^(34/43) 5142224684415723 r005 Re(z^2+c),c=-43/60+5/28*I,n=60 5142224688368181 m005 (1/2*3^(1/2)-5/12)/(-13/72+1/24*5^(1/2)) 5142224708213190 a003 cos(Pi*2/81)-sin(Pi*43/109) 5142224716658586 r005 Re(z^2+c),c=-1/19+38/49*I,n=54 5142224725135787 b008 ArcCot[2/3^(1/9)] 5142224727154780 m001 GAMMA(5/12)^2*ln(GAMMA(1/4))^2/Zeta(1/2) 5142224736261968 r009 Im(z^3+c),c=-1/17+19/25*I,n=25 5142224746124318 r002 23th iterates of z^2 + 5142224770560884 r009 Re(z^3+c),c=-25/62+1/35*I,n=23 5142224772382960 m005 (1/2*Catalan-2)/(Pi-1/7) 5142224775982623 s002 sum(A171293[n]/(n*exp(n)+1),n=1..infinity) 5142224782081917 m001 (Lehmer-Porter)/(ln(3)+BesselK(1,1)) 5142224803560512 m001 sin(1)/(MinimumGamma+ZetaP(3)) 5142224811222148 k007 concat of cont frac of 5142224831031953 a007 Real Root Of 14*x^4+712*x^3-392*x^2+780*x+906 5142224841216514 k008 concat of cont frac of 5142224850726354 m005 (1/2*5^(1/2)-3/8)/(5/11*5^(1/2)+3/7) 5142224871237290 a001 3020733700601/7*86267571272^(11/17) 5142224873872295 a007 Real Root Of 799*x^4-822*x^3+979*x^2-808*x-842 5142224881170312 k006 concat of cont frac of 5142224884796681 a007 Real Root Of 145*x^4+36*x^3-586*x^2-533*x+414 5142224898223468 b008 5*(50/7+Pi) 5142224899570722 l006 ln(9305/9796) 5142224912483830 r009 Im(z^3+c),c=-29/122+38/61*I,n=33 5142224915394351 m001 ZetaQ(4)/(MadelungNaCl-Zeta(1/2)) 5142224920868032 r002 41th iterates of z^2 + 5142224922430110 k007 concat of cont frac of 5142224929442318 r005 Re(z^2+c),c=-7/10+20/129*I,n=60 5142224939281833 a007 Real Root Of -673*x^4+735*x^3-813*x^2+494*x+616 5142224943332107 a007 Real Root Of -443*x^4+129*x^3-915*x^2+108*x+346 5142224943657437 l006 ln(1587/2654) 5142224953871246 m005 (1/3*2^(1/2)-1/4)/(1/7*5^(1/2)-3/4) 5142224957872643 m006 (3/Pi+2)/(2/3*Pi^2-5/6) 5142224979546954 r009 Re(z^3+c),c=-1/106+27/41*I,n=34 5142224991092225 m001 BesselJZeros(0,1)*(Artin-sin(Pi/5)) 5142225004686941 m001 (Salem+ZetaQ(4))/(Backhouse+GaussAGM) 5142225031605562 q001 1627/3164 5142225033004998 m001 1/ln(cos(Pi/12))*(3^(1/3))/cos(Pi/5) 5142225041253739 a007 Real Root Of -346*x^4+911*x^3-349*x^2+538*x+517 5142225052244408 r005 Im(z^2+c),c=-7/122+49/57*I,n=9 5142225054105603 r005 Re(z^2+c),c=-1/24+7/57*I,n=10 5142225064534378 a001 1/39556*(1/2*5^(1/2)+1/2)^9*1364^(3/22) 5142225076463581 r009 Re(z^3+c),c=-14/29+5/58*I,n=53 5142225084155493 m001 exp(MadelungNaCl)*MertensB1/cos(1)^2 5142225111463311 k006 concat of cont frac of 5142225111470089 p004 log(37549/22453) 5142225136924985 a007 Real Root Of 205*x^4-428*x^3+938*x^2-734*x-698 5142225161753059 g007 Psi(2,11/12)-Psi(2,4/11)-Psi(2,4/5)-Psi(2,2/3) 5142225165384561 r005 Re(z^2+c),c=-53/90+2/11*I,n=3 5142225211110210 k009 concat of cont frac of 5142225237134881 m001 (Artin+Thue)/(Zeta(1/2)+Zeta(1,2)) 5142225244131131 k006 concat of cont frac of 5142225246538905 m001 exp(TwinPrimes)*LaplaceLimit^2/sqrt(1+sqrt(3)) 5142225264107344 m001 (Pi^(1/2)-Artin)/(BesselJ(1,1)+BesselI(0,2)) 5142225268446646 a007 Real Root Of -115*x^4+791*x^3-577*x^2+410*x+479 5142225278640450 a001 514227-2*5^(1/2) 5142225287455491 a007 Real Root Of 922*x^4-505*x^3+815*x^2-623*x-669 5142225292140581 r005 Re(z^2+c),c=-30/31+7/36*I,n=44 5142225292538192 m001 1/log(2+sqrt(3))^2/TreeGrowth2nd^2*ln(sin(1)) 5142225297354489 a007 Real Root Of -772*x^4+575*x^3-790*x^2-426*x+122 5142225309059703 r009 Re(z^3+c),c=-23/58+1/42*I,n=57 5142225310983394 p001 sum((-1)^n/(607*n+194)/(100^n),n=0..infinity) 5142225336507540 m004 -36+25*Pi+6*Csc[Sqrt[5]*Pi] 5142225361151218 k006 concat of cont frac of 5142225383316034 a001 41*(1/2*5^(1/2)+1/2)^4*3^(11/20) 5142225416200163 m001 1/ln(GAMMA(1/6))*FeigenbaumB^2*GAMMA(5/6)^2 5142225453161723 r005 Re(z^2+c),c=-45/86+36/59*I,n=46 5142225467288759 m005 (7/20+1/4*5^(1/2))/(2*Zeta(3)-7/11) 5142225470915445 m001 FeigenbaumDelta+arctan(1/3)^TwinPrimes 5142225479952420 m001 PrimesInBinary^2*Paris*ln(GAMMA(2/3)) 5142225480101403 a007 Real Root Of -138*x^4-624*x^3+353*x^2-547*x-504 5142225489279633 r009 Im(z^3+c),c=-11/70+30/47*I,n=40 5142225489516700 m001 (PrimesInBinary+Rabbit)/(Artin-Lehmer) 5142225514212111 k007 concat of cont frac of 5142225520197474 a007 Real Root Of 684*x^4+354*x^3+791*x^2+95*x-160 5142225520590986 m005 (4/5*Pi+5)/(17/30+2/5*5^(1/2)) 5142225521013216 k008 concat of cont frac of 5142225530621834 r005 Im(z^2+c),c=-5/38+24/41*I,n=7 5142225532698051 m001 1/GAMMA(11/12)*(3^(1/3))/exp(GAMMA(13/24))^2 5142225536017522 a007 Real Root Of -187*x^4+648*x^3-600*x^2+644*x+591 5142225538643220 a007 Real Root Of -85*x^4-389*x^3+297*x^2+215*x-209 5142225541832032 m001 (-Porter+Robbin)/(Psi(1,1/3)+2*Pi/GAMMA(5/6)) 5142225556264526 h001 (5/11*exp(1)+8/9)/(1/9*exp(1)+1/9) 5142225557587943 m001 Paris/(GAMMA(13/24)^ln(2+3^(1/2))) 5142225558581807 a007 Real Root Of 875*x^4+999*x^3-701*x^2-925*x+464 5142225602384342 r005 Im(z^2+c),c=-1/6+1/15*I,n=6 5142225616674433 a007 Real Root Of 696*x^4-731*x^3+265*x^2-307*x-376 5142225623898556 m001 (2^(1/2)+GAMMA(3/4))/(Paris+PrimesInBinary) 5142225642390365 m001 1/exp(GAMMA(7/24))/Trott^2*log(2+sqrt(3)) 5142225644445472 r009 Im(z^3+c),c=-25/118+27/40*I,n=12 5142225668848026 r002 7th iterates of z^2 + 5142225687506817 m001 (exp(-1/2*Pi)-LaplaceLimit)/(Rabbit+ZetaP(3)) 5142225697133629 l006 ln(6207/6239) 5142225697840257 l006 ln(4996/8355) 5142225701663340 l006 ln(52/8897) 5142225708563859 r005 Re(z^2+c),c=-13/15+9/49*I,n=24 5142225709298243 r005 Re(z^2+c),c=-31/34+20/121*I,n=12 5142225714105211 k007 concat of cont frac of 5142225719709396 m001 Psi(1,1/3)^(FeigenbaumMu/cos(1/12*Pi)) 5142225771856264 a007 Real Root Of -6*x^4-325*x^3-848*x^2-66*x-68 5142225785258471 r009 Im(z^3+c),c=-1/50+13/20*I,n=44 5142225812331503 r002 6th iterates of z^2 + 5142225815080396 m001 (Artin-FransenRobinson)/(Weierstrass-ZetaQ(4)) 5142225831344775 a001 1346269/322*521^(10/13) 5142225865333495 m005 (1/2*gamma+1/6)/(1/9*exp(1)+7/12) 5142225872508160 a007 Real Root Of -466*x^4+224*x^3+430*x^2+100*x-163 5142225875651834 a007 Real Root Of -751*x^4+825*x^3+880*x^2+748*x-677 5142225894877551 a007 Real Root Of 925*x^4-221*x^3+848*x^2-706*x-682 5142225904446285 q001 1862/3621 5142225908341139 m001 cos(Pi/12)*exp(Rabbit)^2/log(1+sqrt(2))^2 5142225912389226 r009 Im(z^3+c),c=-7/38+39/59*I,n=18 5142225913545522 a007 Real Root Of 313*x^4+199*x^3+973*x^2-414*x-465 5142225916257132 a007 Real Root Of -224*x^4-583*x^3-938*x^2+322*x+350 5142225917020022 m001 (polylog(4,1/2)+Kac)/(MadelungNaCl+PlouffeB) 5142225925372810 l004 Chi(854/95) 5142225943546438 m001 1/FransenRobinson/ErdosBorwein*exp(sin(1)) 5142225947774723 a007 Real Root Of 218*x^4+927*x^3-925*x^2+325*x-249 5142225953745424 r005 Re(z^2+c),c=17/90+14/33*I,n=59 5142225958242184 a007 Real Root Of 169*x^4+817*x^3-151*x^2+680*x+414 5142225981000279 m001 GAMMA(5/6)^(KhinchinHarmonic/gamma(3)) 5142225985073293 r002 4th iterates of z^2 + 5142226011598327 m004 -Cos[Sqrt[5]*Pi]/4+150*Pi*Cot[Sqrt[5]*Pi] 5142226023396732 r005 Re(z^2+c),c=-25/24+7/57*I,n=42 5142226024876666 a007 Real Root Of -353*x^4-248*x^3-702*x^2+697*x+535 5142226034100121 r005 Re(z^2+c),c=19/58+35/62*I,n=56 5142226039645491 s002 sum(A227863[n]/((3*n+1)!),n=1..infinity) 5142226040219225 s002 sum(A115557[n]/((3*n+1)!),n=1..infinity) 5142226040219225 s002 sum(A167718[n]/((3*n+1)!),n=1..infinity) 5142226047845936 a007 Real Root Of -20*x^4+695*x^3-400*x^2+750*x-373 5142226048936787 l006 ln(3409/5701) 5142226051298215 l004 Shi(854/95) 5142226067581417 r005 Re(z^2+c),c=-65/126+19/33*I,n=16 5142226079575471 r009 Re(z^3+c),c=-17/60+17/18*I,n=5 5142226086209777 r002 4th iterates of z^2 + 5142226093579995 r005 Re(z^2+c),c=-41/58+7/30*I,n=33 5142226103115558 b008 1+(47*E^4)/5 5142226111131524 k007 concat of cont frac of 5142226119131061 s002 sum(A090301[n]/((2*n+1)!),n=1..infinity) 5142226127497746 m001 1/Zeta(5)/ln(Riemann1stZero)/sin(1)^2 5142226131020791 m005 (1/2*3^(1/2)-1/2)/(1/2*5^(1/2)+6) 5142226135253412 r009 Im(z^3+c),c=-11/82+34/53*I,n=62 5142226151151359 k008 concat of cont frac of 5142226154195029 r005 Im(z^2+c),c=19/110+20/37*I,n=62 5142226161022172 k006 concat of cont frac of 5142226171425111 k006 concat of cont frac of 5142226174167618 r009 Im(z^3+c),c=-8/27+3/5*I,n=29 5142226204342390 a007 Real Root Of -864*x^4+356*x^3-194*x^2+484*x+409 5142226205099608 m001 ln(GAMMA(5/12))^2*Conway/Zeta(3)^2 5142226209907631 v002 sum(1/(5^n+(5*n^2+12*n+9)),n=1..infinity) 5142226229073453 h001 (7/8*exp(2)+11/12)/(5/11*exp(1)+1/5) 5142226237689959 r005 Im(z^2+c),c=-79/64+1/16*I,n=12 5142226286594814 a001 55/3*3^(46/49) 5142226291235204 k002 Champernowne real with 199/2*n^2-579/2*n+195 5142226314399563 a001 9227465/521*199^(7/11) 5142226316812512 k008 concat of cont frac of 5142226317294709 r005 Re(z^2+c),c=-41/114+19/30*I,n=19 5142226326781452 a007 Real Root Of -137*x^4+820*x^3+297*x^2+390*x-381 5142226336906722 r009 Im(z^3+c),c=-3/29+38/59*I,n=23 5142226339965044 r009 Im(z^3+c),c=-11/82+34/53*I,n=64 5142226367052639 a001 29*(1/2*5^(1/2)+1/2)^9*76^(8/11) 5142226379756437 m005 (1/3*Zeta(3)+1/2)/(1/9*5^(1/2)-2) 5142226380374555 m001 ln(log(1+sqrt(2)))^2*(3^(1/3))*sqrt(5) 5142226384260473 l006 ln(5231/8748) 5142226401781292 a003 cos(Pi*11/63)*sin(Pi*7/34) 5142226412899865 m001 exp(GAMMA(13/24))*Champernowne^2*cos(Pi/5)^2 5142226420345180 a003 cos(Pi*8/117)-sin(Pi*17/111) 5142226426801357 p003 LerchPhi(1/5,1,369/163) 5142226434518832 m001 Lehmer^2*GolombDickman^2*exp(Robbin)^2 5142226435464609 m001 ln(CareFree)^2/FransenRobinson*Salem 5142226438839496 m001 ReciprocalLucas/LaplaceLimit/Stephens 5142226449057179 r005 Im(z^2+c),c=-95/122+11/58*I,n=11 5142226464831313 m001 (Zeta(1,2)-exp(1))/(-KhinchinLevy+PlouffeB) 5142226467045709 r009 Im(z^3+c),c=-17/66+21/34*I,n=53 5142226472237566 a007 Real Root Of -463*x^4-123*x^3+94*x^2+788*x+396 5142226480185487 r005 Im(z^2+c),c=-41/34+30/121*I,n=12 5142226482641254 r002 53th iterates of z^2 + 5142226489173849 a007 Real Root Of 946*x^4-472*x^3+775*x^2+510*x-73 5142226512370229 m001 1/Paris^2/Cahen*ln(Riemann3rdZero) 5142226519565768 a007 Real Root Of -836*x^4+840*x^3-739*x^2+381*x+564 5142226525432232 r002 8th iterates of z^2 + 5142226530092257 r009 Im(z^3+c),c=-3/19+37/58*I,n=37 5142226535053728 r002 5th iterates of z^2 + 5142226535664434 a001 38/31622993*2971215073^(5/18) 5142226535665546 a001 76/5702887*514229^(5/18) 5142226559478999 m005 (1/3*2^(1/2)+2/5)/(6*exp(1)+7/11) 5142226561128327 a007 Real Root Of 706*x^4-971*x^3+906*x^2-319*x-585 5142226581657675 q001 2097/4078 5142226625533892 r002 28th iterates of z^2 + 5142226630242963 r009 Im(z^3+c),c=-31/86+10/17*I,n=61 5142226632165578 m001 (Catalan+GaussKuzminWirsing)/(exp(Pi)+gamma) 5142226652234309 a007 Real Root Of -386*x^4+579*x^3+854*x^2+242*x-402 5142226660623149 p003 LerchPhi(1/16,3,114/91) 5142226674580421 a007 Real Root Of 213*x^4-101*x^3+565*x^2-420*x-394 5142226676701775 r005 Re(z^2+c),c=3/23+9/19*I,n=52 5142226677600975 g006 Psi(1,3/11)-Psi(1,8/11)-2*Psi(1,5/8) 5142226714133034 m001 (Psi(1,1/3)-exp(Pi))/(-sin(1)+sin(1/5*Pi)) 5142226719443824 s001 sum(exp(-Pi/4)^n*A204902[n],n=1..infinity) 5142226767495119 r009 Im(z^3+c),c=-19/106+33/52*I,n=55 5142226768275500 a007 Real Root Of 878*x^4-764*x^3+665*x^2-941*x-825 5142226782606509 m001 (BesselI(1,1)+OneNinth)/(ln(2)/ln(10)-ln(5)) 5142226785036128 r009 Im(z^3+c),c=-29/98+26/43*I,n=39 5142226785756029 r002 16th iterates of z^2 + 5142226791684944 r005 Re(z^2+c),c=-1/82+23/28*I,n=14 5142226800452075 a008 Real Root of x^4-45*x^2-12*x+429 5142226806209099 m001 (ln(2)+ln(3))^FransenRobinson 5142226806932424 a007 Real Root Of 197*x^4+853*x^3-623*x^2+869*x-816 5142226817366198 r005 Re(z^2+c),c=-3/8+13/22*I,n=18 5142226826234384 m008 (Pi-2/3)/(1/2*Pi^6+3/5) 5142226828197012 a007 Real Root Of 87*x^4-859*x^3+432*x^2+430*x-16 5142226830891300 m001 (ln(Pi)*Otter+FeigenbaumAlpha)/ln(Pi) 5142226841263235 a007 Real Root Of -803*x^4-26*x^3-159*x^2+411*x+306 5142226843646801 m005 (1/2*Catalan+6/11)/(1/2*5^(1/2)+5/6) 5142226845524984 a007 Real Root Of 144*x^4-676*x^3+209*x^2-662*x+367 5142226845579588 m001 (Zeta(5)+Artin)/(OrthogonalArrays+Totient) 5142226858117517 a001 843/6557470319842*8^(2/3) 5142226871041768 a003 cos(Pi*28/99)/cos(Pi*53/115) 5142226886452468 r005 Re(z^2+c),c=-43/102+15/28*I,n=22 5142226925863519 a005 (1/sin(88/189*Pi))^280 5142226938214469 m001 (Salem-ZetaP(3))/(Zeta(1,-1)-Grothendieck) 5142226947711049 a007 Real Root Of -579*x^4-905*x^3-92*x^2+650*x+276 5142226978380122 r009 Im(z^3+c),c=-15/82+31/49*I,n=26 5142226978740632 a007 Real Root Of 833*x^4-220*x^3+661*x^2+453*x-30 5142227004659982 s002 sum(A088297[n]/(exp(n)),n=1..infinity) 5142227011658054 l006 ln(1822/3047) 5142227024592304 m001 (2*Pi/GAMMA(5/6)-2^(1/3))/(MertensB1+Stephens) 5142227048063107 m002 -Pi^2+5*Log[Pi]-Tanh[Pi] 5142227076792625 r002 18th iterates of z^2 + 5142227078535782 m002 5+5/Pi^2-Log[Pi]/Pi 5142227081718156 a007 Real Root Of 758*x^4-336*x^3+49*x^2-693*x-468 5142227081923140 a007 Real Root Of -878*x^4-23*x^3+951*x^2+823*x+230 5142227084253379 a007 Real Root Of 162*x^4+958*x^3+596*x^2-59*x+928 5142227086037527 r005 Re(z^2+c),c=-53/82+12/43*I,n=39 5142227103777555 b008 SinIntegral[1]^12 5142227105258661 m001 GAMMA(17/24)*exp(ArtinRank2)^2/Zeta(7) 5142227105300554 r009 Im(z^3+c),c=-1/54+40/63*I,n=11 5142227112512846 s002 sum(A074985[n]/(n^2*pi^n+1),n=1..infinity) 5142227113326585 a001 2/19*64079^(33/43) 5142227114817642 a007 Real Root Of 226*x^4-657*x^3-264*x^2-223*x-150 5142227122216211 k007 concat of cont frac of 5142227123412439 k007 concat of cont frac of 5142227157194162 r002 3th iterates of z^2 + 5142227167490385 m009 (1/2*Psi(1,2/3)+4)/(32/5*Catalan+4/5*Pi^2-3) 5142227170816421 a007 Real Root Of -50*x^4-50*x^3+983*x^2-335*x+446 5142227178104036 m001 (BesselI(1,1)+TreeGrowth2nd)/(Zeta(5)-sin(1)) 5142227187769281 r005 Im(z^2+c),c=31/106+13/32*I,n=47 5142227202264329 r002 51th iterates of z^2 + 5142227210231039 r009 Im(z^3+c),c=-31/114+29/48*I,n=19 5142227240665569 r009 Re(z^3+c),c=-31/60+13/28*I,n=42 5142227243737312 m005 (1/2*gamma+5/9)/(5/7*exp(1)-3/10) 5142227254691176 m001 1/GAMMA(23/24)*ln(Riemann2ndZero)*sqrt(3) 5142227257021730 m001 (Stephens-exp(-1/2*Pi)*OneNinth)/OneNinth 5142227268262918 b008 Erfi[E^ArcTan[7]] 5142227277318940 a007 Real Root Of 475*x^4-655*x^3+840*x^2-324*x-511 5142227287277569 m001 (gamma+BesselK(0,1))/(-ln(5)+Riemann2ndZero) 5142227288580383 a001 311187/46*521^(9/13) 5142227293625165 l006 ln(4264/4489) 5142227306923084 r005 Re(z^2+c),c=-13/18+5/78*I,n=64 5142227321163866 s002 sum(A114051[n]/(n^2*2^n+1),n=1..infinity) 5142227342153228 k006 concat of cont frac of 5142227373199731 a007 Real Root Of 416*x^4-554*x^3+343*x^2-449*x-426 5142227382587258 r005 Im(z^2+c),c=35/106+13/36*I,n=35 5142227388938171 m001 1/exp(Salem)/LandauRamanujan*GAMMA(5/6)^2 5142227399711203 r002 20th iterates of z^2 + 5142227408769455 r005 Im(z^2+c),c=13/58+17/38*I,n=11 5142227415774340 r005 Im(z^2+c),c=-5/122+23/40*I,n=11 5142227441024523 m001 (Landau-Sierpinski)/(GAMMA(17/24)+Khinchin) 5142227446139357 a007 Real Root Of 365*x^4-397*x^3+492*x^2+7*x-206 5142227474092794 a005 (1/cos(26/127*Pi))^59 5142227491562735 a007 Real Root Of 174*x^4+938*x^3+252*x^2+150*x-11 5142227522104370 r009 Im(z^3+c),c=-9/70+23/36*I,n=21 5142227522498567 m001 ArtinRank2^ln(3)*ArtinRank2^RenyiParking 5142227545459478 r009 Im(z^3+c),c=-15/38+27/47*I,n=62 5142227546517609 r005 Re(z^2+c),c=-29/42+5/17*I,n=5 5142227554434876 m001 Zeta(1/2)/(LambertW(1)-Magata) 5142227555048093 r009 Im(z^3+c),c=-7/62+38/59*I,n=43 5142227561564637 m001 (sin(1)+MertensB3)/(1-gamma) 5142227587331891 l006 ln(5701/9534) 5142227598044518 r005 Im(z^2+c),c=-61/90+8/25*I,n=23 5142227598789669 r009 Im(z^3+c),c=-41/118+13/22*I,n=63 5142227602457842 m005 (1/2*Zeta(3)+4/7)/(5/6*5^(1/2)+5/12) 5142227606329168 a007 Real Root Of 936*x^4-412*x^3+116*x^2+45*x-129 5142227623324873 r005 Re(z^2+c),c=-73/106+16/47*I,n=4 5142227642577812 m005 (1/2*5^(1/2)-3/11)/(119/120+7/24*5^(1/2)) 5142227643022031 a007 Real Root Of -970*x^4+627*x^3+187*x^2+360*x-252 5142227654848750 a001 2207/610*3^(8/25) 5142227658081879 r009 Im(z^3+c),c=-13/44+21/32*I,n=39 5142227675975879 m005 (29/36+1/4*5^(1/2))/(7/10*Pi+5/11) 5142227711312135 k007 concat of cont frac of 5142227718046994 s002 sum(A074375[n]/(n^2*2^n+1),n=1..infinity) 5142227724297960 m001 GAMMA(1/3)/Khintchine*exp(GAMMA(13/24)) 5142227731117212 k008 concat of cont frac of 5142227749005737 r009 Im(z^3+c),c=-17/62+25/41*I,n=24 5142227756253367 a007 Real Root Of 117*x^4+662*x^3+206*x^2-507*x+153 5142227767457516 m001 ln(GAMMA(1/4))*Cahen^2/Zeta(5) 5142227796471265 r009 Im(z^3+c),c=-2/11+26/41*I,n=51 5142227802420607 v002 sum(1/(2^n+(29/2*n^2+3/2*n+25)),n=1..infinity) 5142227825028958 m001 (GAMMA(19/24)+2/3)/(-BesselK(0,1)+4) 5142227849680547 m005 (1/2*3^(1/2)+9/10)/(1/10*gamma+2/7) 5142227857730882 l006 ln(3879/6487) 5142227858660589 r009 Im(z^3+c),c=-37/118+30/47*I,n=28 5142227861086805 a007 Real Root Of -220*x^4-987*x^3+804*x^2+205*x-586 5142227872784798 a001 281/233802911*233^(4/15) 5142227881062343 a007 Real Root Of 121*x^4+489*x^3-610*x^2+408*x+115 5142227884872623 a007 Real Root Of 306*x^4-587*x^3-692*x^2-499*x+498 5142227908007190 m001 (Otter+ZetaQ(4))/(Ei(1,1)-Kolakoski) 5142227912634113 m001 PrimesInBinary/BesselK(1,1)/Totient 5142227913561160 r009 Im(z^3+c),c=-11/82+34/53*I,n=60 5142227913581030 a008 Real Root of (2+3*x+5*x^2-5*x^3+4*x^4+x^5) 5142227940789485 r002 19th iterates of z^2 + 5142227940789485 r002 19th iterates of z^2 + 5142227952425261 m005 (1/2*gamma-7/11)/(-33/80+3/16*5^(1/2)) 5142227963173565 r005 Im(z^2+c),c=-43/70+3/7*I,n=31 5142227967570846 r005 Re(z^2+c),c=-25/24+7/57*I,n=36 5142227974157350 m001 (1+gamma(2))/(Cahen+GlaisherKinkelin) 5142227975898849 s002 sum(A114051[n]/(n^2*2^n-1),n=1..infinity) 5142227989770641 r009 Re(z^3+c),c=-43/74+11/35*I,n=58 5142227995203109 r002 49th iterates of z^2 + 5142228064890113 a001 21/103682*521^(7/47) 5142228078198496 r009 Im(z^3+c),c=-5/14+11/18*I,n=60 5142228094763191 m005 (1/2*Zeta(3)+3/5)/(1/9*Zeta(3)+1/10) 5142228117425054 l006 ln(5936/9927) 5142228132212712 k006 concat of cont frac of 5142228138888629 r009 Im(z^3+c),c=-7/52+29/38*I,n=6 5142228138952493 m001 (Shi(1)+Catalan)/(Otter+QuadraticClass) 5142228155665872 r009 Im(z^3+c),c=-11/82+34/53*I,n=59 5142228162208008 a007 Real Root Of -37*x^4-180*x^3+247*x^2+871*x-657 5142228170595643 a001 1730726404001/72*121393^(11/24) 5142228170627631 a001 17393796001/144*12586269025^(11/24) 5142228172665910 m005 (1/3*2^(1/2)-2/3)/(5/11*Zeta(3)-1/6) 5142228205858794 a007 Real Root Of -27*x^4+42*x^3+934*x^2+13*x-41 5142228207239139 m001 Robbin*exp(Niven)/sin(1)^2 5142228209700628 a007 Real Root Of -792*x^4+821*x^3+973*x^2-3*x-312 5142228230905810 m005 (1/2*exp(1)+1/6)/(10/11*5^(1/2)-5) 5142228238394935 r005 Re(z^2+c),c=7/62+17/49*I,n=14 5142228243454540 p004 log(13367/7993) 5142228254589226 b008 FresnelC[2+(1+EulerGamma)^2] 5142228269667929 m001 (Pi-ln(gamma))/(Kolakoski-ZetaP(4)) 5142228292963787 a007 Real Root Of 944*x^4-413*x^3+578*x^2+457*x-40 5142228307929828 m001 2^(1/3)/BesselK(0,1)/LandauRamanujan2nd 5142228324286808 r009 Im(z^3+c),c=-2/21+31/48*I,n=51 5142228324585496 a001 1/5771*(1/2*5^(1/2)+1/2)^9*199^(9/13) 5142228337249305 h001 (7/11*exp(1)+5/11)/(5/9*exp(2)+1/7) 5142228359808184 r009 Im(z^3+c),c=-7/26+17/27*I,n=27 5142228381064359 r009 Im(z^3+c),c=-19/70+31/45*I,n=2 5142228398913261 a007 Real Root Of -7*x^4-370*x^3-514*x^2+113*x-763 5142228405647449 r005 Im(z^2+c),c=-61/82+2/61*I,n=9 5142228411311731 k007 concat of cont frac of 5142228423266935 s002 sum(A128224[n]/((exp(n)+1)*n),n=1..infinity) 5142228423266935 s002 sum(A125026[n]/((exp(n)+1)*n),n=1..infinity) 5142228423266935 s002 sum(A130295[n]/((exp(n)+1)*n),n=1..infinity) 5142228425540212 r002 15th iterates of z^2 + 5142228427987289 a003 sin(Pi*9/73)-sin(Pi*27/77) 5142228468476307 m001 exp(1/exp(1))/(FransenRobinson+ZetaQ(4)) 5142228484047454 r009 Im(z^3+c),c=-6/23+28/45*I,n=29 5142228489497153 r002 14th iterates of z^2 + 5142228530985397 r005 Re(z^2+c),c=-19/31+17/53*I,n=26 5142228540396036 m005 (1/2*Pi-9/11)/(6/11*Pi-1/4) 5142228541476949 r005 Re(z^2+c),c=25/122+17/48*I,n=29 5142228549360246 r005 Re(z^2+c),c=-127/94+9/61*I,n=8 5142228599525859 a001 14619165/46*199^(1/11) 5142228605674739 r005 Im(z^2+c),c=-11/28+21/37*I,n=19 5142228607144868 l006 ln(2057/3440) 5142228609201784 a007 Real Root Of -300*x^4-541*x^3-782*x^2+830*x+581 5142228611110153 k006 concat of cont frac of 5142228611236934 a007 Real Root Of -218*x^4-204*x^3+212*x^2+768*x-408 5142228614261155 a001 3/1346269*6765^(36/41) 5142228615083448 r009 Im(z^3+c),c=-3/50+24/37*I,n=31 5142228622030473 r005 Re(z^2+c),c=-65/106+20/59*I,n=26 5142228636159477 r005 Im(z^2+c),c=-17/74+1/14*I,n=11 5142228645692089 a007 Real Root Of 142*x^4+611*x^3-502*x^2+706*x+697 5142228650141286 r005 Im(z^2+c),c=13/64+20/39*I,n=64 5142228662487251 r005 Re(z^2+c),c=-23/52+8/15*I,n=19 5142228699864691 r005 Im(z^2+c),c=-15/56+38/59*I,n=8 5142228713599839 p001 sum(1/(356*n+199)/(16^n),n=0..infinity) 5142228744853940 a003 cos(Pi*21/107)/cos(Pi*49/99) 5142228745817487 a001 1762289/161*521^(8/13) 5142228763797221 a001 610/29*76^(31/42) 5142228769892295 r009 Im(z^3+c),c=-11/29+10/17*I,n=53 5142228805249367 m001 (BesselI(1,1)+GAMMA(5/6))/(Si(Pi)+3^(1/3)) 5142228823838660 r009 Im(z^3+c),c=-25/102+18/29*I,n=52 5142228837580337 a007 Real Root Of -510*x^4+24*x^3+243*x^2+621*x+294 5142228887588648 m001 (Catalan-ln(gamma))/(ln(Pi)+Niven) 5142228900622026 r002 8th iterates of z^2 + 5142228908990610 m001 (-Artin+CopelandErdos)/(Catalan+Pi^(1/2)) 5142228913456287 m001 (Cahen+Kac)/(3^(1/3)+GAMMA(23/24)) 5142228914567738 r002 51th iterates of z^2 + 5142228946516196 a007 Real Root Of -688*x^4+711*x^3+643*x^2+228*x+92 5142228952575349 r005 Re(z^2+c),c=-15/22+21/106*I,n=46 5142228966672864 m001 Pi/(Psi(2,1/3)-Chi(1))*Catalan 5142228991242995 m001 1/Paris*GlaisherKinkelin^2/exp(Salem) 5142228995609352 r002 11th iterates of z^2 + 5142229008918460 r005 Re(z^2+c),c=-73/114+14/45*I,n=30 5142229023297527 r005 Re(z^2+c),c=-61/118+26/43*I,n=52 5142229064000311 b008 71*Erfi[2*E] 5142229074936097 a007 Real Root Of 402*x^4-982*x^3+170*x^2+217*x-95 5142229075132723 a007 Real Root Of 55*x^4-75*x^3+627*x^2-609*x-493 5142229079100189 r005 Im(z^2+c),c=-103/90+3/52*I,n=10 5142229111012631 k007 concat of cont frac of 5142229112641531 r009 Im(z^3+c),c=-37/114+33/56*I,n=30 5142229113810985 a001 5778/1597*3^(8/25) 5142229130034733 b008 2/5+Pi*Tan[6] 5142229134040722 r009 Im(z^3+c),c=-35/102+29/49*I,n=49 5142229141709668 r009 Re(z^3+c),c=-11/23+16/27*I,n=25 5142229152287737 m001 GAMMA(2/3)^exp(gamma)*Si(Pi)^exp(gamma) 5142229162959484 a007 Real Root Of 457*x^4-596*x^3-671*x^2-347*x-114 5142229163124451 k007 concat of cont frac of 5142229165212282 r005 Re(z^2+c),c=-25/24+7/57*I,n=48 5142229166034604 r005 Im(z^2+c),c=-7/8+48/203*I,n=26 5142229173533918 a007 Real Root Of 305*x^4-791*x^3+54*x^2-270*x-282 5142229184222471 a007 Real Root Of 104*x^4+383*x^3-974*x^2-811*x+945 5142229196720326 m001 (-Cahen+LandauRamanujan2nd)/(Pi^(1/2)-gamma) 5142229211791839 r009 Im(z^3+c),c=-11/42+29/46*I,n=24 5142229215892125 m001 Bloch/Backhouse^2*ln((2^(1/3))) 5142229217862910 a007 Real Root Of -111*x^4-540*x^3+102*x^2-233*x+291 5142229231626213 a007 Real Root Of 218*x^4-702*x^3+798*x^2-900*x+332 5142229240249273 a001 21/3010349*1364^(28/47) 5142229275569022 l006 ln(4349/7273) 5142229276874488 r002 29th iterates of z^2 + 5142229285448375 a007 Real Root Of 486*x^4-986*x^3-822*x^2-584*x-251 5142229296453670 h005 exp(cos(Pi*5/39)+cos(Pi*13/53)) 5142229298508213 a007 Real Root Of -822*x^4+769*x^3+130*x^2+551*x+411 5142229300313544 r002 61th iterates of z^2 + 5142229321234447 m001 (Artin+Salem)/(exp(1/Pi)+GAMMA(13/24)) 5142229324211291 k006 concat of cont frac of 5142229326670819 a001 15127/4181*3^(8/25) 5142229327380552 l006 ln(31/5304) 5142229327786473 a007 Real Root Of -255*x^4+366*x^3-952*x^2+787*x-38 5142229339132580 m005 (1/2*3^(1/2)-10/11)/(3/10*5^(1/2)+1/6) 5142229339490221 r005 Re(z^2+c),c=5/27+13/30*I,n=11 5142229344729344 r009 Re(z^3+c),c=-13/30+1/52*I,n=2 5142229357726652 a001 39603/10946*3^(8/25) 5142229364096155 m001 1/BesselK(0,1)*Sierpinski^2*exp(sin(Pi/5))^2 5142229365057940 a001 64079/17711*3^(8/25) 5142229374653616 s003 concatenated sequence A190514 5142229376920213 a001 24476/6765*3^(8/25) 5142229379711098 h001 (9/10*exp(1)+5/9)/(7/9*exp(2)+1/11) 5142229390111413 r005 Im(z^2+c),c=-7/6+26/127*I,n=23 5142229425132218 m001 (-ArtinRank2+PrimesInBinary)/(cos(1)-gamma(2)) 5142229453959712 a005 (1/sin(92/229*Pi))^985 5142229458225445 a001 9349/2584*3^(8/25) 5142229461644296 a007 Real Root Of -831*x^4-956*x^3+879*x^2+785*x-448 5142229492555001 a007 Real Root Of 905*x^4-821*x^3+660*x^2+382*x-153 5142229493801373 a001 8/521*5778^(6/43) 5142229495450672 a007 Real Root Of -874*x^4+219*x^3+685*x^2+436*x-374 5142229504580837 a005 (1/sin(108/235*Pi))^772 5142229513618380 r009 Im(z^3+c),c=-3/62+37/57*I,n=37 5142229522727143 r002 3th iterates of z^2 + 5142229538235977 r009 Re(z^3+c),c=-53/98+23/60*I,n=46 5142229543437408 m001 LaplaceLimit^2*exp(Si(Pi))*FeigenbaumKappa^2 5142229546734893 m001 arctan(1/2)+DuboisRaymond^MasserGramainDelta 5142229560711802 a007 Real Root Of -210*x^4+272*x^3+607*x^2+576*x-479 5142229577134541 a007 Real Root Of 346*x^4-209*x^3+185*x^2-701*x-462 5142229577848861 r005 Im(z^2+c),c=29/74+20/63*I,n=40 5142229583404782 p004 log(14939/8933) 5142229587202044 a007 Real Root Of 416*x^4-947*x^3-411*x^2-515*x-314 5142229608240080 r002 12th iterates of z^2 + 5142229614678261 r009 Im(z^3+c),c=-43/126+35/59*I,n=60 5142229615191190 a001 1/76*(1/2*5^(1/2)+1/2)^6*7^(2/5) 5142229631792927 m005 (1/3*Zeta(3)+2/5)/(8/9*2^(1/2)+3/10) 5142229652191127 m001 1/Trott^2*ln(Champernowne)^2*sinh(1)^2 5142229652683235 m001 1/Lehmer^2*GlaisherKinkelin^2/exp(Magata)^2 5142229656347974 m001 GAMMA(17/24)/(GAMMA(13/24)+Thue) 5142229687582591 r008 a(0)=5,K{-n^6,30-41*n-19*n^2+24*n^3} 5142229689436656 r005 Im(z^2+c),c=-2/3+85/251*I,n=60 5142229699727373 r009 Im(z^3+c),c=-33/94+31/51*I,n=52 5142229712255384 m001 (MadelungNaCl+Otter)/(Catalan-HeathBrownMoroz) 5142229717744017 a007 Real Root Of 17*x^4+857*x^3-880*x^2+183*x+456 5142229723748947 m001 MadelungNaCl^2*CareFree^2/ln(GAMMA(1/6))^2 5142229727643681 m001 (Backhouse-Catalan)/(PolyaRandomWalk3D+Rabbit) 5142229733327451 a003 cos(Pi*17/97)*sin(Pi*20/97) 5142229734587571 a007 Real Root Of 480*x^4-720*x^3-637*x^2-867*x-43 5142229739825091 r009 Im(z^3+c),c=-1/50+13/20*I,n=42 5142229743621992 h001 (1/8*exp(2)+5/6)/(3/7*exp(2)+1/4) 5142229813626554 h001 (-6*exp(7)+9)/(-2*exp(2)+2) 5142229849979566 a007 Real Root Of 108*x^4+475*x^3-274*x^2+715*x-5 5142229871959486 r009 Re(z^3+c),c=-27/56+23/40*I,n=25 5142229875459249 l006 ln(2292/3833) 5142229877667583 m001 GAMMA(1/6)/Tribonacci/exp(sqrt(Pi)) 5142229879740263 m001 (-PrimesInBinary+Sierpinski)/(2^(1/3)-Chi(1)) 5142229905104920 r005 Im(z^2+c),c=-9/10+39/157*I,n=16 5142229922977833 a001 102334155/2207*199^(5/11) 5142229932135963 r005 Re(z^2+c),c=-25/24+7/57*I,n=54 5142229936214956 r009 Re(z^3+c),c=-1/126+22/39*I,n=11 5142229957246685 a007 Real Root Of -16*x^4-836*x^3-680*x^2+57*x+297 5142229963192966 a001 9/4*144^(17/27) 5142229963993511 m005 (1/3*exp(1)-3/4)/(2*3^(1/2)-3/7) 5142229967932765 a007 Real Root Of -201*x^4+657*x^3-670*x^2+172*x+369 5142229979271806 r005 Re(z^2+c),c=-7/10+19/125*I,n=60 5142229990172122 r005 Re(z^2+c),c=-1/24+7/57*I,n=13 5142229996827739 r005 Re(z^2+c),c=5/122+17/50*I,n=18 5142230015499905 a001 3571/987*3^(8/25) 5142230021153101 r005 Re(z^2+c),c=-25/24+7/57*I,n=46 5142230048885058 r005 Re(z^2+c),c=-25/24+7/57*I,n=60 5142230056779508 r005 Re(z^2+c),c=-25/24+7/57*I,n=62 5142230060490437 r005 Re(z^2+c),c=-1/24+7/57*I,n=16 5142230061395751 r005 Re(z^2+c),c=-1/24+7/57*I,n=17 5142230061414005 r005 Re(z^2+c),c=-1/24+7/57*I,n=19 5142230061423574 r005 Re(z^2+c),c=-1/24+7/57*I,n=20 5142230061424939 r005 Re(z^2+c),c=-1/24+7/57*I,n=22 5142230061425014 r005 Re(z^2+c),c=-1/24+7/57*I,n=23 5142230061425049 r005 Re(z^2+c),c=-1/24+7/57*I,n=25 5142230061425049 r005 Re(z^2+c),c=-1/24+7/57*I,n=26 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=29 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=32 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=35 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=38 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=41 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=39 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=42 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=44 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=45 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=47 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=48 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=51 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=50 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=54 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=57 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=60 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=63 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=64 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=61 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=62 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=59 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=58 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=56 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=55 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=53 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=52 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=49 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=46 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=43 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=40 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=37 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=36 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=34 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=33 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=31 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=30 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=28 5142230061425050 r005 Re(z^2+c),c=-1/24+7/57*I,n=27 5142230061425064 r005 Re(z^2+c),c=-1/24+7/57*I,n=24 5142230061426018 r005 Re(z^2+c),c=-1/24+7/57*I,n=21 5142230061487318 r005 Re(z^2+c),c=-1/24+7/57*I,n=18 5142230064372582 r005 Re(z^2+c),c=-1/24+7/57*I,n=14 5142230065106530 r005 Re(z^2+c),c=-1/24+7/57*I,n=15 5142230065151966 r005 Re(z^2+c),c=-61/98+8/17*I,n=55 5142230066347860 r005 Re(z^2+c),c=-25/24+7/57*I,n=64 5142230066654577 r005 Im(z^2+c),c=-93/82+13/51*I,n=6 5142230067397651 r005 Re(z^2+c),c=-25/24+7/57*I,n=56 5142230084287028 r005 Re(z^2+c),c=-15/16+28/107*I,n=29 5142230094223651 r005 Re(z^2+c),c=-25/24+7/57*I,n=58 5142230100466845 a007 Real Root Of 136*x^4+572*x^3-542*x^2+615*x+179 5142230109522562 a007 Real Root Of 699*x^4-868*x^3-842*x^2-401*x+498 5142230111716680 a007 Real Root Of -867*x^4-142*x^3-774*x^2+564*x+536 5142230118830165 a007 Real Root Of 966*x^4+678*x^3+872*x^2-286*x-353 5142230120928559 a001 3/6557470319842*1597^(20/21) 5142230135879972 a005 (1/sin(81/191*Pi))^1741 5142230137218882 r002 4th iterates of z^2 + 5142230167664127 l006 ln(7751/8160) 5142230199389132 r005 Re(z^2+c),c=-25/24+7/57*I,n=52 5142230203054590 a001 5702887/322*521^(7/13) 5142230225064446 a003 cos(Pi*7/33)-cos(Pi*40/97) 5142230230525374 a007 Real Root Of -73*x^4+876*x^3-775*x^2+517*x+595 5142230245063005 a007 Real Root Of 698*x^4-902*x^3+691*x^2-445*x-583 5142230255222564 r005 Re(z^2+c),c=-5/82+17/25*I,n=14 5142230255992935 r005 Re(z^2+c),c=-1/24+7/57*I,n=12 5142230257349606 m006 (3/5*Pi-5/6)/(3/Pi-3) 5142230269802088 r002 17th iterates of z^2 + 5142230292112671 r005 Im(z^2+c),c=-7/6+43/116*I,n=4 5142230297291550 m001 (TwinPrimes+ZetaQ(4))/(GAMMA(2/3)-GAMMA(3/4)) 5142230300661078 r002 12th iterates of z^2 + 5142230325984427 m001 exp(1)*MadelungNaCl^2/ln(sinh(1)) 5142230328674587 r009 Im(z^3+c),c=-17/46+29/50*I,n=58 5142230349800461 r001 51i'th iterates of 2*x^2-1 of 5142230354686433 m001 exp(BesselK(1,1))^2/DuboisRaymond/gamma^2 5142230359024609 m005 (1/2*3^(1/2)+8/11)/(3/4*Zeta(3)-4) 5142230370999125 r005 Re(z^2+c),c=-25/24+7/57*I,n=50 5142230379617070 a007 Real Root Of 491*x^4+84*x^3-640*x^2-810*x+540 5142230382033178 r002 63th iterates of z^2 + 5142230386597344 a002 19^(9/10)-13^(6/7) 5142230389866872 r002 28th iterates of z^2 + 5142230390586175 m001 (Pi-Psi(1,1/3)-GAMMA(3/4))/BesselI(1,2) 5142230391252188 a005 (1/cos(16/221*Pi))^857 5142230412236101 m001 (-Stephens+TreeGrowth2nd)/(exp(1)+gamma(1)) 5142230416841785 l006 ln(4819/8059) 5142230421037366 m005 (-7/12+1/6*5^(1/2))/(-53/180+3/20*5^(1/2)) 5142230434317516 m001 Sierpinski^OrthogonalArrays*FeigenbaumKappa 5142230459954281 m001 (ZetaP(2)+ZetaQ(3))/(HardyLittlewoodC5-Mills) 5142230465743665 r009 Im(z^3+c),c=-5/94+26/41*I,n=9 5142230472777813 m001 GAMMA(5/24)^2/exp(Trott)^2*exp(1) 5142230479210419 r002 40th iterates of z^2 + 5142230481024390 a007 Real Root Of -478*x^4+687*x^3+76*x^2+405*x+315 5142230501089679 r008 a(0)=5,K{-n^6,-15-8*n^3+41*n^2-23*n} 5142230505152543 a007 Real Root Of 984*x^4-744*x^3+244*x^2-679*x+317 5142230520767096 m001 Landau*(FeigenbaumDelta-Riemann1stZero) 5142230524248640 r009 Im(z^3+c),c=-1/50+13/20*I,n=40 5142230544279885 m009 (1/5*Psi(1,2/3)+3/5)/(3/5*Psi(1,3/4)+5/6) 5142230580437989 r005 Re(z^2+c),c=-1/24+7/57*I,n=11 5142230606865242 h001 (1/9*exp(2)+10/11)/(5/12*exp(2)+2/7) 5142230620066726 r005 Re(z^2+c),c=-21/32+9/64*I,n=7 5142230624082823 m001 (gamma(3)-GAMMA(11/12))/(Backhouse+Lehmer) 5142230628226356 r005 Im(z^2+c),c=-45/62+15/59*I,n=62 5142230654981714 m001 (TwinPrimes+ZetaP(4))/(Zeta(1/2)+Trott2nd) 5142230667555927 a001 76*(1/2*5^(1/2)+1/2)^8*4^(5/19) 5142230673883139 m006 (5*ln(Pi)+2/3)/(2/3*exp(Pi)-3) 5142230682466240 a007 Real Root Of 157*x^4+861*x^3+253*x^2-230*x-575 5142230701824061 a007 Real Root Of 48*x^4-837*x^3-408*x^2-855*x+658 5142230702767948 r002 20th iterates of z^2 + 5142230717886346 a007 Real Root Of -99*x^4-502*x^3+38*x^2-14*x-114 5142230747166526 m001 (Zeta(1/2)+GAMMA(17/24))/(Khinchin+Sarnak) 5142230748758208 r009 Im(z^3+c),c=-1/126+9/14*I,n=15 5142230755420513 r002 5th iterates of z^2 + 5142230757821051 g007 Psi(2,2/11)+Psi(2,2/9)+Psi(2,6/7)-Psi(2,2/3) 5142230795024056 s001 sum(exp(-4*Pi/5)^n*A151607[n],n=1..infinity) 5142230798384158 r005 Re(z^2+c),c=-19/62+9/14*I,n=27 5142230802318729 r009 Re(z^3+c),c=-9/98+23/36*I,n=27 5142230822301576 a008 Real Root of x^4-x^3+26*x^2+76*x+32 5142230824666709 a001 133957148/2889*199^(5/11) 5142230865510514 a007 Real Root Of -477*x^4+131*x^3-725*x^2+712*x+609 5142230881098376 a007 Real Root Of 248*x^4+108*x^3-148*x^2-379*x+202 5142230883175718 a001 21/3010349*24476^(20/47) 5142230886850597 a001 21/167761*64079^(6/47) 5142230888219607 a001 21/64079*39603^(2/47) 5142230892440909 a007 Real Root Of 817*x^4-161*x^3+798*x^2-455*x-524 5142230896869102 a001 21/3010349*15127^(21/47) 5142230900897199 r002 30th iterates of z^2 + 5142230907878077 l006 ln(2527/4226) 5142230910045142 a001 15127/3*3^(1/56) 5142230914609445 r005 Re(z^2+c),c=3/13+1/2*I,n=20 5142230924105457 r002 49th iterates of z^2 + 5142230927514527 a007 Real Root Of 65*x^4-861*x^3+974*x^2+47*x-355 5142230941800988 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(gamma^KhinchinLevy) 5142230956221369 a001 701408733/15127*199^(5/11) 5142230975414936 a001 1836311903/39603*199^(5/11) 5142230978215240 a001 46368*199^(5/11) 5142230978623798 a001 12586269025/271443*199^(5/11) 5142230978683406 a001 32951280099/710647*199^(5/11) 5142230978692103 a001 43133785636/930249*199^(5/11) 5142230978693372 a001 225851433717/4870847*199^(5/11) 5142230978693557 a001 591286729879/12752043*199^(5/11) 5142230978693584 a001 774004377960/16692641*199^(5/11) 5142230978693588 a001 4052739537881/87403803*199^(5/11) 5142230978693589 a001 225749145909/4868641*199^(5/11) 5142230978693589 a001 3278735159921/70711162*199^(5/11) 5142230978693590 a001 2504730781961/54018521*199^(5/11) 5142230978693601 a001 956722026041/20633239*199^(5/11) 5142230978693671 a001 182717648081/3940598*199^(5/11) 5142230978694156 a001 139583862445/3010349*199^(5/11) 5142230978697478 a001 53316291173/1149851*199^(5/11) 5142230978720246 a001 10182505537/219602*199^(5/11) 5142230978876302 a001 7778742049/167761*199^(5/11) 5142230979945923 a001 2971215073/64079*199^(5/11) 5142230987277213 a001 567451585/12238*199^(5/11) 5142230992064749 m001 GAMMA(7/12)-Mills^ZetaQ(2) 5142230993900132 r002 42th iterates of z^2 + 5142230993900132 r002 42th iterates of z^2 + 5142231012111721 k008 concat of cont frac of 5142231029280360 h001 (1/6*exp(1)+5/11)/(3/7*exp(1)+3/5) 5142231031566070 m008 (1/5*Pi^6+2/5)/(1/3*Pi^4+5) 5142231037526624 a001 433494437/9349*199^(5/11) 5142231055934328 m001 (sin(1/12*Pi)-Robbin)/(ZetaP(4)+ZetaQ(4)) 5142231086560272 r009 Re(z^3+c),c=-5/58+42/61*I,n=26 5142231097098745 m001 (cos(1/5*Pi)-gamma(3))/(MinimumGamma+OneNinth) 5142231111711442 k006 concat of cont frac of 5142231112322116 k006 concat of cont frac of 5142231113313513 k006 concat of cont frac of 5142231116276411 k006 concat of cont frac of 5142231116313114 k007 concat of cont frac of 5142231121111822 k006 concat of cont frac of 5142231121124141 k008 concat of cont frac of 5142231121512151 k007 concat of cont frac of 5142231122965018 m001 Si(Pi)^PisotVijayaraghavan/TreeGrowth2nd 5142231131512915 k007 concat of cont frac of 5142231132319115 k006 concat of cont frac of 5142231133112143 k008 concat of cont frac of 5142231133816111 k006 concat of cont frac of 5142231137954503 a007 Real Root Of 783*x^4-904*x^3-715*x^2-581*x+556 5142231139173769 s002 sum(A084020[n]/(n^3*pi^n-1),n=1..infinity) 5142231139532933 r009 Im(z^3+c),c=-1/24+38/59*I,n=13 5142231142233897 m005 (4/5*Catalan-1)/(1/3+1/12*5^(1/2)) 5142231156810767 a007 Real Root Of 191*x^4+943*x^3-6*x^2+829*x-904 5142231157834733 p004 log(17623/103) 5142231177028264 r004 Re(z^2+c),c=5/26-5/22*I,z(0)=exp(5/8*I*Pi),n=7 5142231177077252 r009 Re(z^3+c),c=-25/94+37/57*I,n=2 5142231181131221 k009 concat of cont frac of 5142231182152469 r002 20th iterates of z^2 + 5142231192133572 r009 Im(z^3+c),c=-9/46+12/19*I,n=57 5142231208378964 m001 (Niven+Thue)/(FeigenbaumC-MertensB3) 5142231211521221 k006 concat of cont frac of 5142231213219923 k008 concat of cont frac of 5142231213923211 k007 concat of cont frac of 5142231217860967 a001 7*(1/2*5^(1/2)+1/2)^4*4^(1/20) 5142231221317123 k007 concat of cont frac of 5142231221914317 k007 concat of cont frac of 5142231234130103 k007 concat of cont frac of 5142231261822160 a007 Real Root Of 28*x^4-47*x^3-933*x^2+258*x+29 5142231262422131 k007 concat of cont frac of 5142231271316110 k009 concat of cont frac of 5142231276003499 r005 Im(z^2+c),c=3/25+5/9*I,n=41 5142231291121554 k007 concat of cont frac of 5142231291312181 k006 concat of cont frac of 5142231297686953 a007 Real Root Of -521*x^4+964*x^3-545*x^2-606*x 5142231298530202 r002 44th iterates of z^2 + 5142231312411357 k007 concat of cont frac of 5142231316102121 k006 concat of cont frac of 5142231347695466 r009 Re(z^3+c),c=-43/82+35/57*I,n=26 5142231355279057 l006 ln(5289/8845) 5142231365546467 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)*(MertensB3+Thue) 5142231381941239 a001 165580141/3571*199^(5/11) 5142231397673056 r009 Im(z^3+c),c=-11/31+15/26*I,n=31 5142231411112151 k008 concat of cont frac of 5142231411117136 k008 concat of cont frac of 5142231412121173 k006 concat of cont frac of 5142231412351311 k006 concat of cont frac of 5142231414313133 k006 concat of cont frac of 5142231418151578 r009 Im(z^3+c),c=-11/82+34/53*I,n=61 5142231418225700 a007 Real Root Of 988*x^4+71*x^3+212*x^2-915*x-586 5142231433836108 m001 (Gompertz+MertensB1)/(Zeta(1/2)-exp(-1/2*Pi)) 5142231444488839 a007 Real Root Of 926*x^4-859*x^3+130*x^2+768*x+179 5142231455148786 a007 Real Root Of -818*x^4+846*x^3-956*x^2-142*x+352 5142231459231712 h001 (2/7*exp(2)+3/5)/(7/10*exp(2)+1/10) 5142231471242711 k008 concat of cont frac of 5142231509041619 r009 Re(z^3+c),c=-2/23+10/17*I,n=37 5142231521141412 k007 concat of cont frac of 5142231531117754 r005 Re(z^2+c),c=-65/126+17/30*I,n=31 5142231531567700 m001 1/exp(GAMMA(7/24))^2/Conway/Pi 5142231544178618 r005 Re(z^2+c),c=-33/46+5/9*I,n=3 5142231553458626 m001 (Tribonacci-TwinPrimes)/(LaplaceLimit-Otter) 5142231575538800 r009 Re(z^3+c),c=-33/64+32/59*I,n=4 5142231599936959 r005 Im(z^2+c),c=35/106+11/19*I,n=38 5142231615151881 k006 concat of cont frac of 5142231642202982 r005 Im(z^2+c),c=-59/102+4/43*I,n=32 5142231660292264 a001 9227465/322*521^(6/13) 5142231661343875 m001 (Ei(1)+HardHexagonsEntropy)^exp(1/Pi) 5142231675544884 s002 sum(A245856[n]/(n^2*pi^n+1),n=1..infinity) 5142231675966270 r009 Im(z^3+c),c=-29/102+35/58*I,n=26 5142231678060081 r009 Im(z^3+c),c=-41/118+27/47*I,n=28 5142231693140467 r009 Re(z^3+c),c=-7/74+27/41*I,n=27 5142231708356164 m001 (PlouffeB+Sierpinski)/(ln(gamma)+ln(Pi)) 5142231711461267 k008 concat of cont frac of 5142231712212111 k009 concat of cont frac of 5142231735120783 a007 Real Root Of 108*x^4-734*x^3+246*x^2-77*x-212 5142231743857255 m001 1-BesselK(0,1)^GaussAGM 5142231748201148 a007 Real Root Of 186*x^4+973*x^3+39*x^2-256*x-98 5142231753285671 m005 (1/2*Catalan-8/9)/(7/10*5^(1/2)-8/11) 5142231759735570 a007 Real Root Of -788*x^4+468*x^3+158*x^2+962*x-545 5142231764253506 b008 ArcCosh[13*2^E] 5142231764433165 m005 (1/2*Zeta(3)-4/11)/(1/5*Pi-1/6) 5142231764613679 l006 ln(2762/4619) 5142231766130411 m006 (Pi^2+2)/(Pi-5/6) 5142231766130411 m008 (Pi^2+2)/(Pi-5/6) 5142231795841465 m001 2*Pi/GAMMA(5/6)*HardyLittlewoodC3+ErdosBorwein 5142231861166396 r009 Im(z^3+c),c=-13/58+5/8*I,n=34 5142231910154432 k006 concat of cont frac of 5142231910299395 p001 sum(1/(504*n+109)/n/(32^n),n=1..infinity) 5142231913612173 k007 concat of cont frac of 5142231917500691 a007 Real Root Of -648*x^4-17*x^3+873*x^2+371*x-374 5142231920427208 a007 Real Root Of -16*x^4-823*x^3-18*x^2-276*x+377 5142231923598032 r005 Im(z^2+c),c=23/94+8/17*I,n=38 5142231924206054 m001 (Zeta(1,2)+FeigenbaumD)/(Porter+Tetranacci) 5142231947483588 q001 235/457 5142231948658501 r009 Im(z^3+c),c=-41/78+11/31*I,n=52 5142231961912511 k007 concat of cont frac of 5142231973751830 m001 exp(cos(Pi/12))^2*GAMMA(1/24)^2/exp(1)^2 5142231974928649 r002 26th iterates of z^2 + 5142231989440053 p003 LerchPhi(1/12,3,291/232) 5142231994857365 m001 ln(gamma)+gamma(3)^cos(1) 5142232007186025 m001 LandauRamanujan^Niven/(GAMMA(5/6)^Niven) 5142232007537148 r009 Im(z^3+c),c=-1/19+37/57*I,n=31 5142232014085963 a007 Real Root Of -290*x^4+33*x^3-998*x^2+516*x+554 5142232038023469 r009 Im(z^3+c),c=-11/82+34/53*I,n=63 5142232038434501 m005 (1/3*3^(1/2)-1/2)/(3/4*gamma-7/12) 5142232046132159 r002 49th iterates of z^2 + 5142232055000974 r009 Im(z^3+c),c=-5/32+42/59*I,n=7 5142232067937907 r009 Re(z^3+c),c=-23/58+1/42*I,n=50 5142232076470009 h001 (-3*exp(2)+2)/(-7*exp(4)-10) 5142232083679392 m001 Bloch^ThueMorse-Ei(1,1) 5142232087318714 m001 1/exp(GAMMA(1/3))^2/RenyiParking/GAMMA(3/4) 5142232101152151 k007 concat of cont frac of 5142232110188111 k009 concat of cont frac of 5142232111121613 k007 concat of cont frac of 5142232111611543 k009 concat of cont frac of 5142232113131215 k009 concat of cont frac of 5142232121212126 k008 concat of cont frac of 5142232123645993 r009 Im(z^3+c),c=-41/114+28/47*I,n=39 5142232127677308 m002 5*Pi^2+(Cosh[Pi]*ProductLog[Pi])/6 5142232128134797 m001 (Pi-CareFree)/(FeigenbaumKappa-QuadraticClass) 5142232131211714 k009 concat of cont frac of 5142232140541919 l006 ln(5759/9631) 5142232145278498 m001 1/exp(FeigenbaumD)/CareFree^2*GAMMA(11/24)^2 5142232147067969 a007 Real Root Of 964*x^4-304*x^3-602*x^2-769*x-38 5142232154512111 k008 concat of cont frac of 5142232161312265 k007 concat of cont frac of 5142232163577707 a001 3/10946*46368^(19/39) 5142232163812695 m005 (1/2*gamma-3)/(9/10*2^(1/2)+4) 5142232166009375 a001 123/196418*55^(31/59) 5142232177868723 r009 Im(z^3+c),c=-21/118+39/61*I,n=23 5142232192114152 k007 concat of cont frac of 5142232193906808 m005 (1/2*Zeta(3)+2/11)/(8/11*exp(1)-5/11) 5142232212093246 a001 76/6765*196418^(16/51) 5142232216888180 a007 Real Root Of 982*x^4+133*x^3+451*x^2-539*x-447 5142232219381588 m001 ln(Robbin)^2/CareFree^2/Sierpinski^2 5142232221118413 k006 concat of cont frac of 5142232224660776 a007 Real Root Of 988*x^4-405*x^3-859*x^2-694*x+570 5142232224824865 m001 (FellerTornier+Riemann1stZero)/(Zeta(3)+ln(5)) 5142232229111513 k006 concat of cont frac of 5142232240466601 r009 Re(z^3+c),c=-13/32+1/33*I,n=54 5142232263326664 a007 Real Root Of -331*x^4+804*x^3+817*x^2+954*x+407 5142232270276368 b008 19/4+Sqrt[2/13] 5142232272698753 m001 3^(1/3)-GlaisherKinkelin*Sarnak 5142232289449336 r009 Im(z^3+c),c=-41/122+31/52*I,n=52 5142232292926672 p001 sum((-1)^n/(592*n+193)/(32^n),n=0..infinity) 5142232295848582 r009 Im(z^3+c),c=-7/86+13/20*I,n=21 5142232311146101 k007 concat of cont frac of 5142232330583093 h001 (10/11*exp(1)+1/10)/(4/7*exp(2)+7/9) 5142232338264955 s001 sum(exp(-Pi)^(n-1)*A070436[n],n=1..infinity) 5142232360314851 a007 Real Root Of -128*x^4+581*x^3-682*x^2+50*x+294 5142232363596497 r002 2th iterates of z^2 + 5142232380195923 r005 Im(z^2+c),c=-27/86+1/13*I,n=9 5142232410061332 m005 (1/2*2^(1/2)+5/8)/(4/11*3^(1/2)-8/9) 5142232417067600 m001 1/ln(ArtinRank2)^2*Champernowne^2*Robbin^2 5142232421163421 k009 concat of cont frac of 5142232434407432 m005 (1/3*3^(1/2)+1/7)/(1/6*Catalan-1/6) 5142232437574779 m006 (3/4*exp(2*Pi)+3)/(4/5/Pi-1/3) 5142232450375061 a007 Real Root Of -572*x^4+402*x^3+87*x^2+691*x-393 5142232461305338 m001 (exp(-1/2*Pi)+ZetaP(4))/(Ei(1,1)-Psi(2,1/3)) 5142232461539202 r005 Re(z^2+c),c=-41/70+1/4*I,n=8 5142232462568247 p001 sum(1/(499*n+322)/n/(24^n),n=1..infinity) 5142232465463624 r002 2th iterates of z^2 + 5142232465986260 m005 (17/4+1/4*5^(1/2))/(3/11*gamma+7/9) 5142232467239531 m001 (PlouffeB-ZetaP(2))/(BesselI(1,2)+Otter) 5142232469559459 a008 Real Root of x^3-42*x-80 5142232483516097 r002 6th iterates of z^2 + 5142232486208271 a001 322/13*701408733^(3/8) 5142232486992957 l006 ln(2997/5012) 5142232488528183 r005 Im(z^2+c),c=-23/30+1/60*I,n=55 5142232510055007 r009 Im(z^3+c),c=-13/118+29/45*I,n=37 5142232517811217 k006 concat of cont frac of 5142232519800221 a007 Real Root Of -599*x^4+318*x^3-450*x^2+449*x+435 5142232527357799 r005 Re(z^2+c),c=-75/106+1/19*I,n=23 5142232532033762 h001 (-7*exp(4)-3)/(-5*exp(5)-7) 5142232554127636 m005 (1/3*5^(1/2)-1/10)/(10/11*5^(1/2)-7/9) 5142232555560658 m005 (1/2*2^(1/2)+10/11)/(2/11*2^(1/2)-4/7) 5142232575020568 r009 Im(z^3+c),c=-3/50+26/43*I,n=5 5142232577688545 m001 1/exp(Bloch)^2/DuboisRaymond^2*sqrt(5)^2 5142232584011771 a007 Real Root Of 128*x^4+738*x^3+312*x^2-477*x+147 5142232611217621 k007 concat of cont frac of 5142232629775638 a007 Real Root Of 145*x^4+946*x^3+867*x^2-789*x+263 5142232632915880 h001 (8/9*exp(1)+5/8)/(5/7*exp(2)+7/11) 5142232643790841 s002 sum(A178175[n]/(exp(n)+1),n=1..infinity) 5142232645666995 m005 (1/3*5^(1/2)-2/9)/(4/5*gamma+5/9) 5142232648354251 r005 Im(z^2+c),c=-39/70+39/59*I,n=14 5142232650113974 m005 (1/2*5^(1/2)+2/11)/(7/10*exp(1)+5/8) 5142232664621600 r005 Re(z^2+c),c=-63/106+11/52*I,n=3 5142232684420984 a007 Real Root Of -730*x^4-33*x^3-125*x^2+133*x+148 5142232692593755 r009 Re(z^3+c),c=-13/25+13/25*I,n=22 5142232694829593 r002 63th iterates of z^2 + 5142232694902694 a007 Real Root Of -995*x^4+222*x^3-801*x^2+312*x+472 5142232703649591 a007 Real Root Of 74*x^4-102*x^3+977*x^2-711*x-643 5142232708706446 r005 Im(z^2+c),c=5/52+23/37*I,n=11 5142232711125311 k006 concat of cont frac of 5142232717227655 r002 4th iterates of z^2 + 5142232720696432 a001 521/46368*4181^(36/49) 5142232722534484 r002 31th iterates of z^2 + 5142232739385495 a007 Real Root Of -735*x^4+302*x^3-34*x^2-172*x+13 5142232744624993 m001 sqrt(Pi)*(1/3-exp(-Pi)) 5142232750057373 g002 Psi(1/8)+Psi(5/7)-Psi(9/11)-Psi(3/10) 5142232751296227 r005 Re(z^2+c),c=19/50+21/61*I,n=5 5142232760854001 m001 (BesselJ(0,1)*Ei(1)-PlouffeB)/Ei(1) 5142232768033814 a007 Real Root Of 74*x^4+358*x^3+70*x^2+976*x+105 5142232785497346 a007 Real Root Of -416*x^4+983*x^3-555*x^2-598*x+2 5142232804717163 r005 Re(z^2+c),c=-7/10+14/157*I,n=15 5142232811326991 k007 concat of cont frac of 5142232813711211 k006 concat of cont frac of 5142232829459939 m001 (DuboisRaymond-cos(1))/(-MertensB3+TwinPrimes) 5142232836435577 a007 Real Root Of 833*x^4-856*x^3+390*x^2-333*x-449 5142232850539341 h002 exp(19^(12/5)+3^(6/5)) 5142232850539341 h007 exp(19^(12/5)+3^(6/5)) 5142232852280425 m001 1/Trott*RenyiParking/ln((3^(1/3)))^2 5142232857249891 r005 Im(z^2+c),c=-85/122+1/51*I,n=64 5142232874464106 m005 (1/2*5^(1/2)-5/6)/(1/22+5/22*5^(1/2)) 5142232883500042 r005 Re(z^2+c),c=-13/19+13/55*I,n=32 5142232886614277 m001 (sin(1)+gamma(1))/(GaussAGM+TwinPrimes) 5142232887728298 m005 (1/2*2^(1/2)+1/6)/(3/11*exp(1)-4/7) 5142232894589169 m001 Pi^2*exp(FibonacciFactorial)/cos(Pi/5)^2 5142232905370368 m001 (FellerTornier+Niven)/(Ei(1,1)-sin(1/12*Pi)) 5142232909703418 r005 Re(z^2+c),c=25/114+7/17*I,n=18 5142232911411122 k009 concat of cont frac of 5142232922252883 r009 Im(z^3+c),c=-11/82+34/53*I,n=58 5142232992450920 r005 Im(z^2+c),c=-41/102+2/27*I,n=7 5142233003435703 m001 (Ei(1,1)-Sarnak)/(ZetaP(3)-ZetaP(4)) 5142233010326769 a007 Real Root Of -111*x^4-450*x^3+416*x^2-878*x+909 5142233045426575 r009 Im(z^3+c),c=-27/110+18/29*I,n=50 5142233046272217 a003 sin(Pi*4/31)-sin(Pi*41/113) 5142233089389639 m004 150/Pi+Cos[Sqrt[5]*Pi]/6-Sinh[Sqrt[5]*Pi] 5142233104323226 l006 ln(3232/5405) 5142233111851212 k009 concat of cont frac of 5142233112232513 k006 concat of cont frac of 5142233113523001 r005 Im(z^2+c),c=-79/70+9/32*I,n=5 5142233114311384 k006 concat of cont frac of 5142233117530291 a001 7465176/161*521^(5/13) 5142233126819837 a007 Real Root Of -x^4-514*x^3+114*x^2-427*x+584 5142233167260353 a001 48/281*(1/2+1/2*5^(1/2))^31 5142233167260353 a001 48/281*9062201101803^(1/2) 5142233167728453 a001 377/322*7881196^(9/11) 5142233167728520 a001 377/322*141422324^(9/13) 5142233167728520 a001 377/322*2537720636^(3/5) 5142233167728520 a001 377/322*45537549124^(9/17) 5142233167728520 a001 377/322*817138163596^(9/19) 5142233167728520 a001 377/322*14662949395604^(3/7) 5142233167728520 a001 377/322*(1/2+1/2*5^(1/2))^27 5142233167728520 a001 377/322*192900153618^(1/2) 5142233167728520 a001 377/322*10749957122^(9/16) 5142233167728520 a001 377/322*599074578^(9/14) 5142233167728524 a001 377/322*33385282^(3/4) 5142233167729857 a001 377/322*1860498^(9/10) 5142233172823131 m001 TreeGrowth2nd/exp(PrimesInBinary)^2*GAMMA(1/3) 5142233185751751 a003 cos(Pi*1/55)-cos(Pi*39/115) 5142233187430246 r005 Re(z^2+c),c=-11/19+17/44*I,n=18 5142233195547957 m001 1/ln(MinimumGamma)^2*CareFree^2/sin(Pi/12)^2 5142233197983374 a001 7/10946*10946^(25/53) 5142233199968170 h001 (5/6*exp(1)+1/6)/(5/8*exp(2)+1/9) 5142233201371723 k006 concat of cont frac of 5142233212123116 k006 concat of cont frac of 5142233218845747 a001 1/17*39088169^(18/23) 5142233219907133 r002 2th iterates of z^2 + 5142233221246574 k007 concat of cont frac of 5142233236063325 r005 Re(z^2+c),c=-20/27+3/44*I,n=32 5142233244879235 p004 log(22013/13163) 5142233248177026 m001 (exp(1/Pi)+CareFree)/(FeigenbaumDelta-Kac) 5142233264106016 g001 abs(GAMMA(53/12+I*29/12)) 5142233266687749 m001 ln(Pi)/Si(Pi)/Zeta(3) 5142233266687749 m001 ln(Pi)/Zeta(3)/Si(Pi) 5142233272509723 r009 Re(z^3+c),c=-23/54+1/24*I,n=58 5142233274198937 a003 cos(Pi*32/95)/sin(Pi*29/72) 5142233290618559 m005 (1/3*Zeta(3)+1/12)/(-29/72+2/9*5^(1/2)) 5142233328210897 a007 Real Root Of -543*x^4+338*x^3-592*x^2-771*x-156 5142233347237794 a005 (1/cos(3/70*Pi))^1953 5142233365475242 a007 Real Root Of 946*x^4-287*x^3+778*x^2+344*x-134 5142233395468090 m001 HardHexagonsEntropy-ln(5)*KhinchinLevy 5142233415800542 r005 Re(z^2+c),c=3/8+4/27*I,n=21 5142233441933659 r005 Re(z^2+c),c=-25/24+7/57*I,n=44 5142233444059926 r009 Im(z^3+c),c=-29/110+37/58*I,n=19 5142233467573176 s001 sum(1/10^(n-1)*A214121[n],n=1..infinity) 5142233467573176 s001 sum(1/10^n*A214121[n],n=1..infinity) 5142233493664485 a007 Real Root Of 74*x^4+266*x^3-672*x^2-520*x-477 5142233505973964 a007 Real Root Of 873*x^4+625*x^3+8*x^2-937*x-460 5142233505977744 m001 GAMMA(3/4)/(Catalan+Porter) 5142233525452749 m004 -7+5*E^(Sqrt[5]*Pi)*Tan[Sqrt[5]*Pi] 5142233547886234 r009 Im(z^3+c),c=-5/24+39/64*I,n=11 5142233568731053 r005 Im(z^2+c),c=-11/54+19/24*I,n=3 5142233569824187 r005 Im(z^2+c),c=-11/10+8/131*I,n=22 5142233573882559 m005 (1/3*2^(1/2)+1/9)/(7/10*2^(1/2)+1/7) 5142233582259499 a007 Real Root Of -17*x^4-873*x^3+42*x^2-949*x+551 5142233584630519 m001 (MasserGramainDelta+Trott)/(1-Cahen) 5142233595432204 m001 (Zeta(1,-1)+gamma(1))^arctan(1/2) 5142233603539787 a001 1/13*121393^(14/39) 5142233611333621 k009 concat of cont frac of 5142233612167338 m001 (ln(Pi)+HardHexagonsEntropy)/(Lehmer-Paris) 5142233637965773 l006 ln(3467/5798) 5142233673406902 r009 Im(z^3+c),c=-19/106+33/52*I,n=57 5142233682118313 l006 ln(3487/3671) 5142233683862960 r005 Re(z^2+c),c=-79/110+13/44*I,n=28 5142233693272961 r009 Im(z^3+c),c=-3/118+13/20*I,n=26 5142233710630168 m001 (FellerTornier-cos(1))/(Trott+ThueMorse) 5142233713610952 a007 Real Root Of 324*x^4-613*x^3-216*x^2-992*x-559 5142233722782677 m005 (1/2*Zeta(3)+3/10)/(9/11*Pi-9/11) 5142233731125356 r009 Im(z^3+c),c=-11/94+31/42*I,n=26 5142233736165331 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^Totient/gamma(1) 5142233742595374 a001 31622993/682*199^(5/11) 5142233744511521 k006 concat of cont frac of 5142233760893307 r002 41th iterates of z^2 + 5142233767984917 r009 Im(z^3+c),c=-45/82+5/41*I,n=9 5142233771045835 a007 Real Root Of 818*x^4-324*x^3+233*x^2-537*x-439 5142233775450103 m001 (FeigenbaumC-Kac)/(GAMMA(13/24)+CareFree) 5142233791671925 p003 LerchPhi(1/512,2,86/195) 5142233824607368 a007 Real Root Of -510*x^4+996*x^3+704*x^2+778*x-42 5142233835121135 a001 1364/377*3^(8/25) 5142233837140270 m005 (1/2*exp(1)-2/3)/(5*exp(1)-1/8) 5142233857867543 m001 Landau^(Lehmer*Tribonacci) 5142233859639587 a007 Real Root Of -334*x^4+602*x^3+246*x^2+137*x-194 5142233873635936 m005 (1/2*5^(1/2)-3/4)/(9/11*2^(1/2)+6) 5142233877351303 a007 Real Root Of -637*x^4+209*x^3-76*x^2+875*x+543 5142233881262933 r009 Im(z^3+c),c=-17/126+34/53*I,n=27 5142233883646226 m001 Khinchin^(Tribonacci/StolarskyHarborth) 5142233900533322 h001 (3/7*exp(2)+4/9)/(8/9*exp(2)+5/11) 5142233905600792 r005 Im(z^2+c),c=-17/74+1/14*I,n=14 5142233916615035 m001 (Khinchin-MasserGramainDelta)/(Artin+Conway) 5142233925832253 l006 ln(41/7015) 5142233930630537 s002 sum(A245856[n]/(n^2*pi^n-1),n=1..infinity) 5142233932806308 r009 Re(z^3+c),c=-17/78+26/31*I,n=7 5142233937658259 m001 (GAMMA(11/12)-KhinchinLevy)/(Magata-Thue) 5142233942531199 b008 11+8*E^(1+Pi) 5142233948215466 m001 Zeta(9)*Zeta(1,2)/ln(sin(Pi/12))^2 5142233954172069 m006 (3/4*Pi+2/5)/(exp(2*Pi)+1/2) 5142233954915148 r009 Im(z^3+c),c=-11/54+29/45*I,n=21 5142233988304599 a007 Real Root Of -658*x^4+550*x^3+948*x^2+519*x+137 5142234001321802 r009 Re(z^3+c),c=-31/46+12/25*I,n=42 5142234009157795 m001 (ln(3)+arctan(1/3))/(Khinchin+ZetaP(4)) 5142234015000183 m001 (Kolakoski-Paris)/(ln(2^(1/2)+1)+Bloch) 5142234039203001 a007 Real Root Of 177*x^4+733*x^3-957*x^2-192*x+227 5142234040176386 r009 Re(z^3+c),c=-1/10+17/25*I,n=27 5142234070791953 a007 Real Root Of -441*x^4-906*x^3-996*x^2+632*x+496 5142234072269810 m001 (2*Pi/GAMMA(5/6)+Magata)/(MertensB3+ThueMorse) 5142234091380495 a007 Real Root Of 199*x^4+918*x^3-350*x^2+821*x-842 5142234092036658 h003 exp(Pi*(7^(5/3)-17^(2/5))) 5142234092036658 h008 exp(Pi*(7^(5/3)-17^(2/5))) 5142234096574073 p001 sum((-1)^n/(419*n+349)/n/(25^n),n=1..infinity) 5142234100291227 a007 Real Root Of -602*x^4-122*x^3-966*x^2-523*x+12 5142234103857893 l006 ln(3702/6191) 5142234130447697 a007 Real Root Of -833*x^4+344*x^3-596*x^2+730*x+638 5142234131114111 k006 concat of cont frac of 5142234131211385 k007 concat of cont frac of 5142234133082213 k007 concat of cont frac of 5142234151221322 k009 concat of cont frac of 5142234171111161 k009 concat of cont frac of 5142234174373532 a007 Real Root Of 875*x^4+39*x^3+439*x^2+630*x+152 5142234194936366 a007 Real Root Of 297*x^4-545*x^3+214*x^2-495*x-406 5142234197914309 q001 5/97234 5142234204901039 a007 Real Root Of -159*x^4-914*x^3-358*x^2+551*x-806 5142234212116129 k006 concat of cont frac of 5142234231366202 a007 Real Root Of 860*x^4-509*x^3-699*x^2-885*x+649 5142234233410276 a001 121393/4*3^(12/25) 5142234268925093 m001 Psi(2,1/3)+sin(1)*Pi*csc(5/24*Pi)/GAMMA(19/24) 5142234270052008 h001 (7/11*exp(2)+3/5)/(1/3*exp(1)+1/8) 5142234272502592 h001 (7/12*exp(2)+5/8)/(1/7*exp(1)+4/7) 5142234278811502 a007 Real Root Of -65*x^4+931*x^3+867*x^2+817*x+322 5142234283901579 m001 ArtinRank2^MadelungNaCl*ArtinRank2^Paris 5142234287195720 m001 (GAMMA(7/12)+Kac)/(BesselK(0,1)-gamma(3)) 5142234293390344 a007 Real Root Of 87*x^4+281*x^3-723*x^2+651*x-157 5142234296904060 a007 Real Root Of 934*x^4-857*x^3-280*x^2+513*x+156 5142234306165173 r002 42th iterates of z^2 + 5142234308452072 a003 sin(Pi*15/107)/cos(Pi*17/90) 5142234310858648 r002 13th iterates of z^2 + 5142234345724250 r005 Im(z^2+c),c=5/27+23/45*I,n=28 5142234364592840 a007 Real Root Of 447*x^4-778*x^3-23*x^2-238*x+203 5142234382042225 a001 15456/41*3^(13/46) 5142234389010907 r009 Im(z^3+c),c=-19/94+7/11*I,n=23 5142234416657069 r005 Im(z^2+c),c=31/94+27/52*I,n=13 5142234423595198 a007 Real Root Of 139*x^4+758*x^3+256*x^2+325*x+780 5142234449810588 r005 Im(z^2+c),c=-3/44+22/35*I,n=57 5142234450859750 r002 8th iterates of z^2 + 5142234465513583 r009 Im(z^3+c),c=-17/50+17/24*I,n=53 5142234468108988 r009 Re(z^3+c),c=-31/46+12/25*I,n=32 5142234497259015 a007 Real Root Of 536*x^4+269*x^3-599*x^2-843*x-276 5142234508603323 m001 (Magata+ThueMorse)/(BesselK(0,1)+arctan(1/3)) 5142234514131682 l006 ln(3937/6584) 5142234532221612 k007 concat of cont frac of 5142234533702677 r009 Im(z^3+c),c=-35/114+4/5*I,n=2 5142234538071455 a007 Real Root Of 163*x^4+940*x^3+508*x^2+53*x+684 5142234540629115 s002 sum(A222421[n]/((exp(n)-1)/n),n=1..infinity) 5142234551676341 m005 (1/2*3^(1/2)-11/12)/(2/3*gamma+3/5) 5142234562962210 r002 38th iterates of z^2 + 5142234574768754 a001 24157817/322*521^(4/13) 5142234581394558 r005 Im(z^2+c),c=-59/102+3/32*I,n=53 5142234588034736 a007 Real Root Of 223*x^4+965*x^3-928*x^2-160*x-993 5142234601870997 a007 Real Root Of -130*x^4-402*x^3-742*x^2+975*x+652 5142234602927878 r009 Im(z^3+c),c=-35/102+24/41*I,n=35 5142234634293329 m001 (BesselI(0,2)-BesselI(1,2))/Totient 5142234639700518 m005 (1/3*Pi+2/3)/(8/9*exp(1)+11/12) 5142234641150628 r009 Im(z^3+c),c=-6/23+37/60*I,n=55 5142234653600015 a007 Real Root Of 632*x^4-545*x^3-361*x^2+305*x+134 5142234669134787 r005 Im(z^2+c),c=-3/5+1/108*I,n=39 5142234675767812 r005 Re(z^2+c),c=-9/8+58/217*I,n=12 5142234710421896 h001 (8/9*exp(2)+5/8)/(3/10*exp(1)+7/12) 5142234724237212 h001 (9/10*exp(1)+6/11)/(8/11*exp(2)+4/9) 5142234733234589 r009 Im(z^3+c),c=-2/27+46/63*I,n=19 5142234745008365 a007 Real Root Of 545*x^4-664*x^3-954*x^2-215*x+415 5142234748112398 r005 Im(z^2+c),c=-63/118+22/45*I,n=37 5142234760381937 r005 Re(z^2+c),c=-2/19+40/59*I,n=53 5142234775627805 r009 Re(z^3+c),c=-1/12+29/53*I,n=20 5142234788686567 r009 Im(z^3+c),c=-2/21+31/48*I,n=56 5142234789062945 a007 Real Root Of -439*x^4+223*x^3+715*x^2+549*x-471 5142234820846999 a001 11/514229*46368^(4/49) 5142234820915250 a007 Real Root Of 738*x^4+419*x^3+517*x^2-820*x-553 5142234822166385 r009 Im(z^3+c),c=-2/21+31/48*I,n=58 5142234842994104 r002 30th iterates of z^2 + 5142234844165829 r002 41th iterates of z^2 + 5142234851141215 k006 concat of cont frac of 5142234862191258 m001 Zeta(9)^2/ln(GAMMA(5/12))^2*cos(1)^2 5142234863528100 m008 (4*Pi-1/4)/(1/4*Pi^6-5/6) 5142234878185734 l006 ln(4172/6977) 5142234884104319 m005 (-1/8+1/4*5^(1/2))/(7/9*Zeta(3)-1/11) 5142234893259658 r009 Im(z^3+c),c=-11/27+35/64*I,n=46 5142234897000586 r002 4th iterates of z^2 + 5142234909350666 r005 Re(z^2+c),c=1/52+24/37*I,n=31 5142234922855832 r009 Im(z^3+c),c=-37/114+19/32*I,n=40 5142234934120323 a007 Real Root Of -99*x^4-547*x^3-364*x^2-697*x+885 5142234940187030 h001 (-7*exp(6)+7)/(-5*exp(7)+5) 5142234943334395 h001 (3/8*exp(1)+7/12)/(3/10*exp(2)+9/10) 5142234946886010 a007 Real Root Of -755*x^4+161*x^3+74*x^2+470*x+24 5142234970341731 r002 49i'th iterates of 2*x/(1-x^2) of 5142234971393782 r009 Im(z^3+c),c=-9/56+35/53*I,n=18 5142234975814830 r009 Im(z^3+c),c=-25/42+32/63*I,n=52 5142234979786004 a007 Real Root Of 271*x^4+721*x^3+925*x^2-773*x-563 5142235002452816 r005 Im(z^2+c),c=5/56+43/49*I,n=3 5142235023296842 m001 (exp(-1/2*Pi)+ZetaQ(2))/(Zeta(3)-ln(2)) 5142235029695085 r009 Re(z^3+c),c=-25/64+1/54*I,n=16 5142235036474650 a007 Real Root Of 803*x^4-735*x^3-185*x^2-899*x+555 5142235039895322 m001 (GAMMA(17/24)+KhinchinLevy)/(ln(5)-GAMMA(5/6)) 5142235059889716 m001 (exp(1)+StolarskyHarborth)^BesselI(1,2) 5142235065207087 a007 Real Root Of -211*x^4+247*x^3-19*x^2+783*x+456 5142235088650431 m001 (polylog(4,1/2)-Conway)/GAMMA(7/12) 5142235097501751 h001 (3/8*exp(1)+2/3)/(5/12*exp(2)+1/5) 5142235098467734 r004 Im(z^2+c),c=3/22+19/24*I,z(0)=I,n=13 5142235101957723 a007 Real Root Of 954*x^4-502*x^3+783*x^2+774*x+56 5142235104944363 m001 (gamma(1)+FeigenbaumC)/(GaussAGM+Sierpinski) 5142235132311114 k008 concat of cont frac of 5142235143423900 m001 (-3^(1/3)+exp(1/Pi))/(Si(Pi)-cos(1)) 5142235156678450 r009 Im(z^3+c),c=-45/122+39/64*I,n=53 5142235163533274 a003 sin(Pi*29/85)/cos(Pi*53/119) 5142235179304812 m001 1/ln(Champernowne)^2/Artin*sin(1) 5142235203413952 l006 ln(4407/7370) 5142235208371913 m005 (1/2*3^(1/2)-1/5)/(4/9*2^(1/2)+2/3) 5142235212876134 a007 Real Root Of -798*x^4+300*x^3-503*x^2-534*x-45 5142235217826998 a007 Real Root Of 956*x^4-957*x^3-643*x^2-365*x+421 5142235223816323 a007 Real Root Of 119*x^4-961*x^3+916*x^2-91*x-428 5142235249104214 a005 (1/sin(53/175*Pi))^64 5142235251462620 r005 Re(z^2+c),c=-69/122+14/37*I,n=20 5142235252231412 k006 concat of cont frac of 5142235261112602 k007 concat of cont frac of 5142235264263670 r009 Im(z^3+c),c=-1/56+13/20*I,n=33 5142235279372755 p004 log(29873/17863) 5142235282442311 m001 Robbin^2/Magata/exp(Catalan) 5142235287576583 m001 (Magata+ReciprocalLucas)/(ln(5)-BesselI(1,1)) 5142235294976440 r005 Re(z^2+c),c=5/56+22/53*I,n=18 5142235308388766 r009 Im(z^3+c),c=-7/50+39/55*I,n=24 5142235311792126 s002 sum(A236032[n]/(exp(2/5*pi*n)),n=1..infinity) 5142235317445925 g006 Psi(1,10/11)+1/2*Pi^2-Psi(1,7/12)-Psi(1,3/8) 5142235332441189 a007 Real Root Of -982*x^4-594*x^3-553*x^2+887*x+47 5142235348657590 r005 Im(z^2+c),c=-1/82+47/59*I,n=43 5142235349531518 a003 sin(Pi*30/71)/cos(Pi*40/91) 5142235370675808 r005 Im(z^2+c),c=-17/20+7/31*I,n=10 5142235374127867 r009 Im(z^3+c),c=-55/102+17/52*I,n=18 5142235386433955 r005 Im(z^2+c),c=-39/106+3/37*I,n=14 5142235389172808 b008 -8/127+EulerGamma 5142235391916342 m001 (Lehmer+Trott)/(gamma+Gompertz) 5142235429390003 m001 sin(1/5*Pi)/(ZetaQ(4)^Shi(1)) 5142235437419426 r004 Re(z^2+c),c=7/38+1/3*I,z(0)=exp(5/8*I*Pi),n=22 5142235439213746 b008 Cos[1/15+Tanh[2]] 5142235461193230 a007 Real Root Of -862*x^4-697*x^3-233*x^2+379*x+222 5142235477365698 m001 GAMMA(1/4)*FeigenbaumKappa^2/exp(sin(Pi/12)) 5142235483508402 m002 -6*Csch[Pi]+(6*Sech[Pi])/Pi^4 5142235484070175 m001 HardyLittlewoodC3*ReciprocalLucas*ThueMorse 5142235489980220 m001 (Pi^(1/2)+GolombDickman)/(Niven+Otter) 5142235491562999 r005 Re(z^2+c),c=17/70+22/47*I,n=46 5142235495712979 l006 ln(4642/7763) 5142235502834236 m001 ThueMorse/MertensB3/BesselK(1,1) 5142235503213203 r009 Im(z^3+c),c=-13/106+9/14*I,n=30 5142235503288636 a007 Real Root Of 396*x^4-928*x^3-185*x^2-636*x-432 5142235505540847 a001 21/3010349*843^(30/47) 5142235507066796 r002 3th iterates of z^2 + 5142235541052612 m001 Weierstrass/(HardHexagonsEntropy-Bloch) 5142235544602462 m005 (1/2*exp(1)+3/10)/(1/3*3^(1/2)-9/10) 5142235546908546 a001 63245986/843*199^(4/11) 5142235568662725 m001 ln(Zeta(5))^2*GAMMA(19/24)*gamma^2 5142235602660486 m005 (1/2*gamma+1/6)/(7/12*3^(1/2)-1/8) 5142235611631158 a007 Real Root Of 570*x^4-644*x^3+687*x^2-873*x-758 5142235619024682 r002 60i'th iterates of 2*x/(1-x^2) of 5142235632607044 r009 Im(z^3+c),c=-13/50+29/47*I,n=54 5142235634601824 h001 (3/8*exp(1)+1/7)/(2/11*exp(2)+11/12) 5142235637110421 a007 Real Root Of -379*x^4-126*x^3-788*x^2+792*x+625 5142235638258221 r002 40th iterates of z^2 + 5142235643225197 a001 1/416020*4181^(18/49) 5142235652692437 m001 1/Salem/ln(Paris)^2/GAMMA(7/24) 5142235656040414 a007 Real Root Of 729*x^4-235*x^3+422*x^2-456*x-429 5142235658597132 m001 (5^(1/2)-Zeta(3))/(CareFree+Mills) 5142235670777977 r009 Im(z^3+c),c=-1/50+13/20*I,n=35 5142235676201306 a007 Real Root Of -218*x^4-945*x^3+853*x^2-386*x-608 5142235690804026 r009 Im(z^3+c),c=-1/16+24/37*I,n=29 5142235694459458 m001 (exp(1/Pi)+ZetaP(2))/(5^(1/2)+ln(2+3^(1/2))) 5142235700570518 s002 sum(A106844[n]/((pi^n-1)/n),n=1..infinity) 5142235704747550 r002 6th iterates of z^2 + 5142235728214750 r009 Im(z^3+c),c=-5/26+26/41*I,n=25 5142235753641699 r002 20th iterates of z^2 + 5142235759842931 l006 ln(4877/8156) 5142235775396483 h001 (1/4*exp(1)+7/9)/(8/11*exp(1)+6/7) 5142235780393902 a007 Real Root Of 50*x^4-864*x^3+753*x^2-712*x+281 5142235801541586 r002 3th iterates of z^2 + 5142235817853222 r005 Re(z^2+c),c=-9/14+75/227*I,n=12 5142235830467998 a007 Real Root Of -750*x^4-78*x^3+767*x^2+403*x-347 5142235841694419 r009 Im(z^3+c),c=-2/21+31/48*I,n=60 5142235862717876 r005 Im(z^2+c),c=-87/106+1/29*I,n=12 5142235863328703 a007 Real Root Of 835*x^4+307*x^3+378*x^2+112*x-59 5142235865557333 a001 521/28657*8^(1/2) 5142235879563774 r009 Im(z^3+c),c=-23/118+31/50*I,n=10 5142235882226332 a007 Real Root Of 564*x^4-159*x^3-803*x^2-526*x+465 5142235887026751 r005 Re(z^2+c),c=-23/34+53/124*I,n=36 5142235899301649 a007 Real Root Of -342*x^4+852*x^3-321*x^2-678*x-124 5142235932872247 a007 Real Root Of 314*x^4+345*x^3-758*x^2-874*x+581 5142235942638942 a001 4/377*121393^(47/51) 5142235956053582 p001 sum(1/(163*n+32)/n/(100^n),n=0..infinity) 5142235956760487 m001 1/exp(Pi)*Artin^2/sinh(1) 5142235962308720 r002 34th iterates of z^2 + 5142235976978035 r005 Im(z^2+c),c=11/56+33/62*I,n=37 5142235977411081 s002 sum(A161344[n]/(10^n-1),n=1..infinity) 5142235999688629 l006 ln(5112/8549) 5142236000479253 m001 (exp(1/exp(1))+Backhouse)/(LaplaceLimit-Paris) 5142236002192756 m001 exp(FeigenbaumC)*Kolakoski*Zeta(5) 5142236003394273 m001 GAMMA(5/24)^2*ln(GAMMA(2/3))^2/sin(Pi/5)^2 5142236020813066 r005 Im(z^2+c),c=-1/70+29/54*I,n=5 5142236032007621 a001 39088169/322*521^(3/13) 5142236049825212 m001 (cos(1/5*Pi)+Ei(1,1))/(Pi-exp(Pi)) 5142236077515332 a007 Real Root Of -530*x^4+624*x^3-897*x^2+626*x+681 5142236087501098 r002 6th iterates of z^2 + 5142236089301573 r009 Im(z^3+c),c=-13/50+38/61*I,n=20 5142236111527949 p004 log(17491/10459) 5142236113142185 k006 concat of cont frac of 5142236115039293 b008 -6+Sqrt[2/E] 5142236116121517 r009 Im(z^3+c),c=-2/11+26/41*I,n=56 5142236131212225 k007 concat of cont frac of 5142236143001734 m005 (-11/20+1/4*5^(1/2))/(3/5*3^(1/2)+5/7) 5142236168923505 a007 Real Root Of 642*x^4+87*x^3+600*x^2-934*x-672 5142236195170762 r009 Im(z^3+c),c=-43/106+26/49*I,n=27 5142236201834486 a007 Real Root Of -895*x^4+680*x^3+926*x^2+897*x-736 5142236212321114 k006 concat of cont frac of 5142236214478796 m001 (Zeta(3)-cos(1/12*Pi))/(GAMMA(11/12)-Gompertz) 5142236218451943 l006 ln(5347/8942) 5142236223098361 m001 1/ln(Zeta(9))/Niven^2*sqrt(3)^2 5142236231489727 m001 (Zeta(1,2)+GaussAGM)/(Robbin+Totient) 5142236241516585 k006 concat of cont frac of 5142236249519440 r005 Re(z^2+c),c=43/110+10/49*I,n=15 5142236250345414 m001 1/sqrt(5)^2/GAMMA(5/6)^2*ln(sqrt(Pi))^2 5142236269494678 m001 Paris^PlouffeB/MasserGramain 5142236300304329 r002 4th iterates of z^2 + 5142236302006756 m001 1/GAMMA(1/12)*exp(FeigenbaumC)/GAMMA(11/12) 5142236306650180 s001 sum(exp(-3*Pi/5)^n*A256949[n],n=1..infinity) 5142236310542177 p001 sum((-1)^n/(433*n+194)/(128^n),n=0..infinity) 5142236311258328 a007 Real Root Of -741*x^4-372*x^3-889*x^2+752*x+623 5142236321241205 k002 Champernowne real with 100*n^2-291*n+196 5142236339004472 m005 (-19/12+5/12*5^(1/2))/(4/5*Catalan-2) 5142236342422365 m005 (1/2*3^(1/2)-2/7)/(8/11*2^(1/2)+1/10) 5142236345019753 m001 Zeta(1,2)/sin(1/12*Pi)/CareFree 5142236345783096 m005 (1/2*Zeta(3)+5/8)/(5/11*2^(1/2)-2/3) 5142236370307921 p004 log(36947/22093) 5142236377600687 m001 1/GAMMA(1/3)*exp(TwinPrimes)^2/exp(1) 5142236378506606 a007 Real Root Of -237*x^4+587*x^3-829*x^2+415*x+529 5142236403703471 r009 Im(z^3+c),c=-13/34+26/43*I,n=51 5142236411111211 k009 concat of cont frac of 5142236412244832 m005 (1/2*3^(1/2)-5)/(-13/198+7/18*5^(1/2)) 5142236414693788 m001 GAMMA(1/12)^2*(2^(1/3))/exp(sin(Pi/5))^2 5142236418795555 l006 ln(5582/9335) 5142236420735069 m002 -6-(4*ProductLog[Pi])/Pi^3+Tanh[Pi] 5142236423133232 k009 concat of cont frac of 5142236424391825 m001 GAMMA(7/12)*ln(GAMMA(2/3))^2/sqrt(1+sqrt(3))^2 5142236427879524 a007 Real Root Of 19*x^4+958*x^3-992*x^2-704*x+8 5142236431625126 m005 (1/2*gamma+7/11)/(5/7*exp(1)-1/7) 5142236440818171 a007 Real Root Of -561*x^4-852*x^3-705*x^2+858*x+551 5142236441243354 r009 Re(z^3+c),c=-53/98+8/29*I,n=13 5142236453670356 a007 Real Root Of 68*x^4+293*x^3-230*x^2+240*x-390 5142236470448646 a007 Real Root Of -401*x^4+46*x^3-763*x^2+348*x+415 5142236504001051 r002 12th iterates of z^2 + 5142236509172385 m001 (BesselJ(0,1)+Zeta(5))/(ln(5)+Ei(1)) 5142236535892206 m001 LandauRamanujan-cos(1/12*Pi)*sin(1/12*Pi) 5142236535892206 m001 LandauRamanujan-cos(Pi/12)*sin(Pi/12) 5142236536912066 r002 50th iterates of z^2 + 5142236540948896 m001 1/BesselJ(0,1)/exp(Lehmer)^2/log(1+sqrt(2))^2 5142236575295069 a007 Real Root Of 19*x^4+967*x^3-507*x^2+442*x+235 5142236602951867 l006 ln(5817/9728) 5142236616676708 m001 MertensB1-Khinchin-exp(1) 5142236626034437 a007 Real Root Of -706*x^4+128*x^3+188*x^2-4*x+15 5142236634807821 a001 514229/3*521^(31/34) 5142236637934330 m001 (FellerTornier+PolyaRandomWalk3D)/(Pi-Si(Pi)) 5142236641688480 a007 Real Root Of 902*x^4-680*x^3+965*x^2-267*x-548 5142236647574558 m005 (1/3*3^(1/2)-2/5)/(7/8*Pi+7/10) 5142236672629596 r005 Re(z^2+c),c=-23/38+19/40*I,n=9 5142236675610469 p002 log(19^(7/4)-2^(6/7)) 5142236685155929 m001 GaussAGM/(BesselK(0,1)+Zeta(3)) 5142236689986469 r002 15th iterates of z^2 + 5142236690931055 m001 exp(Trott)^2/GolombDickman*Pi 5142236702598045 m001 Riemann3rdZero^2/Lehmer^2/exp(sqrt(Pi))^2 5142236720959229 l006 ln(51/8726) 5142236732157066 a001 377/123*76^(28/43) 5142236737077636 a001 11/21*32951280099^(19/20) 5142236743607781 m001 arctan(1/3)/QuadraticClass/Rabbit 5142236776160125 m006 (3*Pi^2-2/3)/(1/5*Pi+5) 5142236776160125 m008 (3*Pi^2-2/3)/(1/5*Pi+5) 5142236806218098 r009 Im(z^3+c),c=-5/58+39/61*I,n=16 5142236825672111 b008 FresnelC[6+Sech[1]] 5142236827668955 m001 (FeigenbaumC-sin(1))/(-Sierpinski+TwinPrimes) 5142236846833211 m001 (Chi(1)-PlouffeB)/CareFree 5142236857739331 a001 1597/123*7^(29/41) 5142236866578162 m005 (1/2*gamma-1)/(7/10*5^(1/2)-2/11) 5142236885308955 a007 Real Root Of -788*x^4+631*x^3-37*x^2+856*x-44 5142236914140571 r009 Im(z^3+c),c=-71/126+19/49*I,n=22 5142236925408470 a007 Real Root Of -20*x^4+36*x^3+686*x^2-307*x-839 5142236945078794 a007 Real Root Of -17*x^4-856*x^3+919*x^2-797*x+989 5142236957423313 r005 Re(z^2+c),c=-103/110+7/64*I,n=28 5142236959235365 m006 (3*Pi+4/5)/(5/6*exp(Pi)+3/5) 5142236962382923 r009 Im(z^3+c),c=-43/78+19/64*I,n=50 5142236976654767 r005 Im(z^2+c),c=-7/27+18/29*I,n=9 5142236997817141 a007 Real Root Of -747*x^4-161*x^3+13*x^2+927*x-406 5142237028784816 r009 Im(z^3+c),c=-2/21+31/48*I,n=62 5142237031733357 r009 Im(z^3+c),c=-3/7+9/16*I,n=47 5142237069183933 r005 Im(z^2+c),c=-11/12+3/70*I,n=8 5142237069345984 m001 BesselK(1,1)^MertensB2/(ln(Pi)^MertensB2) 5142237074606695 m001 ln(Pi)^sin(1/5*Pi)*Weierstrass 5142237087033687 a007 Real Root Of 779*x^4-142*x^3-221*x^2-855*x-455 5142237092504574 m001 1/ln(GAMMA(3/4))/GAMMA(1/12)*Zeta(3) 5142237100852629 r009 Re(z^3+c),c=-65/126+5/51*I,n=37 5142237105599010 m001 Salem/Riemann2ndZero*ln(GAMMA(2/3))^2 5142237116120311 k008 concat of cont frac of 5142237116810459 m005 (1/2*3^(1/2)-5/7)/(-1/4+1/8*5^(1/2)) 5142237141262911 k007 concat of cont frac of 5142237143594559 m001 (ln(Pi)-gamma(3))/(Grothendieck+TreeGrowth2nd) 5142237160464676 r009 Im(z^3+c),c=-2/21+31/48*I,n=54 5142237163223369 m001 1/ln(PisotVijayaraghavan)^2/Niven/(3^(1/3)) 5142237165898348 a001 321/8*3^(7/31) 5142237174302911 m001 OneNinth^2*Riemann3rdZero^2/exp(GAMMA(1/4))^2 5142237176927919 a007 Real Root Of 883*x^4-680*x^3+386*x^2-227*x-373 5142237197944907 r005 Im(z^2+c),c=-49/102+32/59*I,n=15 5142237198428126 r005 Re(z^2+c),c=-5/8+27/92*I,n=15 5142237201119863 m001 (Rabbit+RenyiParking)/(BesselK(0,1)-CareFree) 5142237201522441 m001 1/ln(GAMMA(1/24))^2/Tribonacci^2*sqrt(3) 5142237210218251 k006 concat of cont frac of 5142237222757955 r002 2th iterates of z^2 + 5142237237864934 r009 Im(z^3+c),c=-9/46+12/19*I,n=59 5142237256509265 r008 a(0)=5,K{-n^6,-7-5*n^3+n^2+2*n} 5142237269962519 m004 150*Pi*Cot[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/5 5142237300556355 r009 Im(z^3+c),c=-9/62+16/25*I,n=48 5142237314293513 m001 exp(Magata)^2*LandauRamanujan*exp(1)^2 5142237315683040 a003 sin(Pi*27/110)*sin(Pi*14/53) 5142237316455572 r002 6th iterates of z^2 + 5142237333749985 a007 Real Root Of 130*x^4+658*x^3-191*x^2-837*x-680 5142237339689528 r005 Re(z^2+c),c=-5/6+91/114*I,n=3 5142237342800515 r009 Im(z^3+c),c=-21/64+34/49*I,n=33 5142237343335366 r009 Re(z^3+c),c=-5/66+11/24*I,n=12 5142237345659297 a007 Real Root Of -535*x^4+431*x^3-532*x^2-435*x+13 5142237354709144 p001 sum(1/(423*n+197)/(25^n),n=0..infinity) 5142237360831425 m001 2*Pi/GAMMA(5/6)-HardyLittlewoodC5*MertensB2 5142237367710396 m001 (KomornikLoreti+Otter)/(RenyiParking+ZetaP(3)) 5142237370782457 r002 20th iterates of z^2 + 5142237411468004 m003 9/2+Sqrt[5]/32+(3*Sech[1/2+Sqrt[5]/2])/2 5142237430228996 r002 6th iterates of z^2 + 5142237466682377 r005 Re(z^2+c),c=-25/46+29/52*I,n=41 5142237473632698 m001 FeigenbaumKappa^FeigenbaumMu/Stephens 5142237489246904 a001 31622993/161*521^(2/13) 5142237529235007 a007 Real Root Of -142*x^4-913*x^3-824*x^2+750*x+789 5142237529855716 m001 (BesselK(1,1)+ZetaQ(4))/GAMMA(19/24) 5142237530730956 a003 sin(Pi*10/69)/cos(Pi*17/98) 5142237530897915 r009 Im(z^3+c),c=-1/78+33/50*I,n=16 5142237548818266 r005 Re(z^2+c),c=-17/122+40/59*I,n=9 5142237571822848 a003 cos(Pi*1/102)-sin(Pi*5/31) 5142237572665930 r005 Re(z^2+c),c=-5/11+28/53*I,n=37 5142237580869194 a007 Real Root Of 222*x^4-761*x^3-409*x^2-784*x-414 5142237589007406 r005 Re(z^2+c),c=-11/8+7/187*I,n=2 5142237590452674 r005 Re(z^2+c),c=-59/106+29/51*I,n=26 5142237600909020 m006 (2/3/Pi-5/6)/(2/5*ln(Pi)+3/4) 5142237606977754 a001 3571/233*102334155^(4/21) 5142237607056597 r005 Im(z^2+c),c=-25/32+1/46*I,n=31 5142237608548431 m006 (3*ln(Pi)-1/5)/(2*ln(Pi)+4) 5142237613563052 m005 (1/3*Catalan+1/8)/(1/7*2^(1/2)-2/7) 5142237635599886 m001 MinimumGamma^2*Bloch^2/ln(FeigenbaumKappa)^2 5142237639344262 a001 156838248/305 5142237651995590 m001 (exp(1)-exp(1/Pi))/(gamma(1)+Khinchin) 5142237652334464 a007 Real Root Of 825*x^4-230*x^3-697*x^2-411*x-116 5142237659927904 m005 (1/3*3^(1/2)+3/7)/(3/4*Pi-2/5) 5142237666651922 m001 (Otter-Tetranacci)/(ln(2)+Mills) 5142237668258578 a007 Real Root Of 611*x^4-968*x^3-972*x^2-146*x+421 5142237689450164 m001 (-BesselI(1,1)+TreeGrowth2nd)/(cos(1)+Ei(1)) 5142237705875688 m001 1/GAMMA(19/24)/ArtinRank2^2/exp(GAMMA(3/4)) 5142237707734339 r005 Im(z^2+c),c=-7/10+9/254*I,n=29 5142237722855322 a007 Real Root Of 154*x^4+862*x^3+263*x^2-392*x+561 5142237727182440 m001 (Porter+Thue)/(ln(3)-MasserGramain) 5142237736557827 h001 (10/11*exp(1)+1/9)/(5/9*exp(2)+11/12) 5142237751223484 a007 Real Root Of -472*x^4+679*x^3-995*x^2+75*x+427 5142237752100869 a003 sin(Pi*23/104)*sin(Pi*19/64) 5142237760894300 m005 (3/4*gamma+1/2)/(2^(1/2)+2/5) 5142237781647252 m001 1/5*5^(1/2)*(Artin+StronglyCareFree) 5142237787107881 b008 Sinh[EulerGamma]^6 5142237796360023 a007 Real Root Of 333*x^4-57*x^3+346*x^2-986*x+400 5142237824108312 a001 98209/161*1364^(14/15) 5142237836147832 r009 Im(z^3+c),c=-9/62+16/25*I,n=35 5142237843657298 m001 polylog(4,1/2)/(Grothendieck-StronglyCareFree) 5142237847048081 h001 (1/12*exp(1)+7/12)/(3/8*exp(1)+5/9) 5142237875914386 q001 1898/3691 5142237876369842 r002 43th iterates of z^2 + 5142237887294381 r002 15th iterates of z^2 + 5142237898273013 m009 (5/6*Psi(1,3/4)+4)/(6*Catalan+3/4*Pi^2-1) 5142237908233286 r005 Re(z^2+c),c=-27/52+23/38*I,n=11 5142237910429740 a007 Real Root Of -266*x^4-423*x^3-143*x^2+148*x+75 5142237915828954 m001 (KhinchinLevy+MadelungNaCl)/(gamma(1)+Cahen) 5142237917108556 m001 (OneNinth-OrthogonalArrays)/(Ei(1)+Kac) 5142237934086074 a008 Real Root of x^4-x^3-12*x^2-68*x-32 5142237963679087 m001 (-FeigenbaumD+MinimumGamma)/(3^(1/2)+Cahen) 5142237972829735 a007 Real Root Of 4*x^4-346*x^3+173*x^2-350*x+181 5142237999533916 a007 Real Root Of -86*x^4-386*x^3+315*x^2+276*x+736 5142238005785867 r009 Im(z^3+c),c=-2/21+31/48*I,n=64 5142238006942078 h001 (5/9*exp(1)+9/10)/(1/9*exp(1)+1/6) 5142238008331790 a001 317811/322*1364^(13/15) 5142238012848597 a001 24476/233*4181^(4/21) 5142238022418580 m009 (3/5*Psi(1,1/3)-1/6)/(4*Psi(1,2/3)-4/5) 5142238022965302 h001 (1/7*exp(2)+5/9)/(9/11*exp(1)+10/11) 5142238046317426 m001 (Pi-cos(1))/(ln(2+3^(1/2))-MasserGramainDelta) 5142238077879700 l006 ln(6197/6524) 5142238088024590 m005 (1/2*gamma-5/6)/(7/11*5^(1/2)-4/11) 5142238118595149 a001 14930352/521*199^(6/11) 5142238120623775 m001 Kolakoski^2/ln(CopelandErdos)^2/sin(Pi/5) 5142238165513724 a007 Real Root Of -359*x^4+707*x^3-698*x^2+541*x+584 5142238166236851 m001 LandauRamanujan-MadelungNaCl^BesselJ(1,1) 5142238166236851 m001 MadelungNaCl^BesselJ(1,1)-LandauRamanujan 5142238192606186 a001 514229/322*1364^(4/5) 5142238195485622 m001 exp(Pi)^ln(3)/(gamma(2)^ln(3)) 5142238211258139 s002 sum(A267796[n]/(10^n+1),n=1..infinity) 5142238243192111 k006 concat of cont frac of 5142238286647156 r002 51th iterates of z^2 + 5142238299225724 r009 Re(z^3+c),c=-57/110+26/49*I,n=19 5142238320054996 r009 Im(z^3+c),c=-2/21+31/48*I,n=53 5142238331654361 r005 Re(z^2+c),c=1/98+33/52*I,n=51 5142238336018704 r005 Re(z^2+c),c=15/38+15/49*I,n=33 5142238376861142 a001 416020/161*1364^(11/15) 5142238386448037 m001 (LaplaceLimit-Trott)/(Cahen+GolombDickman) 5142238391478612 a007 Real Root Of 79*x^4+263*x^3-575*x^2+900*x+356 5142238404194743 m005 (1/2*3^(1/2)-10/11)/(6/11*Zeta(3)+2/11) 5142238414998290 a007 Real Root Of -991*x^4+37*x^3+211*x^2+419*x+21 5142238415533273 r005 Re(z^2+c),c=1/98+24/37*I,n=17 5142238425977617 p003 LerchPhi(1/3,1,338/131) 5142238428257472 r009 Im(z^3+c),c=-13/114+32/51*I,n=12 5142238438193152 a007 Real Root Of 14*x^4+728*x^3+400*x^2-829*x-762 5142238474290729 m001 Riemann1stZero^(Khinchin/FeigenbaumB) 5142238499246888 a007 Real Root Of 85*x^4+426*x^3+46*x^2+586*x+289 5142238509537940 a007 Real Root Of 461*x^4-471*x^3+859*x^2-779*x-724 5142238522255594 a007 Real Root Of 385*x^4+652*x^3+109*x^2-943*x-452 5142238539086721 m001 ZetaQ(2)*(HardHexagonsEntropy-TreeGrowth2nd) 5142238541982752 m001 (-Totient+TravellingSalesman)/(sin(1)+Artin) 5142238551181846 a001 123/1597*121393^(5/9) 5142238552095457 r005 Re(z^2+c),c=-1/24+7/57*I,n=9 5142238561123533 a001 1346269/322*1364^(2/3) 5142238566161210 a001 233/9062201101803*4^(1/2) 5142238568001927 a001 199/5*1597^(29/44) 5142238582392119 h001 (1/3*exp(1)+7/11)/(8/9*exp(1)+7/12) 5142238584539032 p004 log(35569/21269) 5142238613278609 s002 sum(A034810[n]/(exp(n)),n=1..infinity) 5142238623860348 r005 Im(z^2+c),c=-9/20+5/58*I,n=32 5142238644321481 r005 Im(z^2+c),c=-23/74+18/29*I,n=18 5142238674386656 r009 Im(z^3+c),c=-31/126+18/29*I,n=48 5142238687496410 m001 1/GAMMA(7/24)/ln(GAMMA(1/24))*sqrt(5)^2 5142238713667285 q001 1663/3234 5142238722762868 m002 3+2*E^Pi+Log[Pi]+Tanh[Pi] 5142238726894029 r005 Re(z^2+c),c=7/102+22/57*I,n=21 5142238741518317 r002 8th iterates of z^2 + 5142238745383094 a001 311187/46*1364^(3/5) 5142238748935420 m001 (exp(1/Pi)-FransenRobinson)/(Tetranacci+Thue) 5142238773922789 r009 Im(z^3+c),c=-3/64+37/57*I,n=40 5142238778962655 r002 43th iterates of z^2 + 5142238788073598 r009 Im(z^3+c),c=-3/70+40/53*I,n=37 5142238817621011 a007 Real Root Of -161*x^4+941*x^3+901*x^2+918*x-827 5142238820101066 m005 (1/2*Pi-10/11)/(3/11*exp(1)+6/11) 5142238826817568 r009 Im(z^3+c),c=-2/21+31/48*I,n=38 5142238827604736 r005 Re(z^2+c),c=-13/14+29/214*I,n=18 5142238850745146 m001 gamma(3)*(Sierpinski-StolarskyHarborth) 5142238855473774 r005 Im(z^2+c),c=-19/22+20/83*I,n=22 5142238921745504 r005 Im(z^2+c),c=17/110+25/46*I,n=57 5142238929643744 a001 1762289/161*1364^(8/15) 5142238946486599 a001 14619165/46*521^(1/13) 5142238948385459 r005 Re(z^2+c),c=-31/86+9/14*I,n=60 5142238950886966 m001 (2^(1/3)-ln(2)/ln(10))/(-FeigenbaumMu+Niven) 5142238954442174 a001 123/196418*701408733^(5/9) 5142238954468830 a001 123/24157817*4052739537881^(5/9) 5142238954469048 a001 41/726103*53316291173^(5/9) 5142238957747496 a001 123/17711*9227465^(5/9) 5142238960579590 a007 Real Root Of -64*x^4-190*x^3+521*x^2-913*x+443 5142238966439902 a007 Real Root Of 427*x^4+520*x^3+704*x^2-787*x-550 5142238972769778 a008 Real Root of x^4-x^3-25*x^2+77*x+46 5142238977040363 m005 (1/3*Pi-1/11)/(8/11*3^(1/2)+3/5) 5142238983450210 a002 6^(7/2)-19^(11/12) 5142238984602255 a005 (1/cos(41/181*Pi))^97 5142238985515010 a003 cos(Pi*1/52)*cos(Pi*39/119) 5142238989890072 r005 Re(z^2+c),c=-31/22+15/83*I,n=4 5142239027020268 a001 377/3010349*47^(55/57) 5142239076262647 r005 Im(z^2+c),c=-55/94+1/54*I,n=8 5142239078678749 m001 (2^(1/3))+GAMMA(5/24)^Catalan 5142239078678749 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24))^Catalan+2^(1/3) 5142239096546612 a003 cos(Pi*24/73)/sin(Pi*35/74) 5142239099173284 s002 sum(A287643[n]/(n*2^n+1),n=1..infinity) 5142239107559326 m001 (Catalan+Zeta(3))/(BesselI(0,2)+Tribonacci) 5142239113903987 a001 5702887/322*1364^(7/15) 5142239127365679 m005 (1/2*exp(1)-11/12)/(31/88+5/22*5^(1/2)) 5142239135684898 m001 Backhouse*KhinchinLevy/ReciprocalFibonacci 5142239153891774 m001 (Zeta(3)+Zeta(1/2))/(2*Pi/GAMMA(5/6)-Landau) 5142239175918444 a007 Real Root Of 577*x^4-538*x^3-593*x^2-695*x+547 5142239176830101 a007 Real Root Of -995*x^4-876*x^3-882*x^2+866*x+629 5142239184099319 r009 Re(z^3+c),c=-11/23+4/41*I,n=28 5142239197019874 m001 (Bloch-Si(Pi))/(-Khinchin+ZetaQ(4)) 5142239213121113 k008 concat of cont frac of 5142239217762498 m001 Thue^arctan(1/3)/Si(Pi) 5142239220879194 a007 Real Root Of 381*x^4-34*x^3-417*x^2-791*x+495 5142239247745039 r005 Im(z^2+c),c=-43/102+32/53*I,n=23 5142239270746728 m001 (exp(Pi)+BesselI(1,1))/(ZetaP(2)+ZetaQ(3)) 5142239291893985 m001 BesselK(0,1)^GAMMA(3/4)*ZetaR(2) 5142239298164395 a001 9227465/322*1364^(2/5) 5142239304010089 a007 Real Root Of -532*x^4+389*x^3+403*x^2+966*x-619 5142239317753345 a007 Real Root Of -588*x^4+621*x^3+288*x^2+388*x-319 5142239344271788 r002 21th iterates of z^2 + 5142239347530667 a001 144/2207*141422324^(11/13) 5142239347530667 a001 144/2207*2537720636^(11/15) 5142239347530667 a001 144/2207*45537549124^(11/17) 5142239347530667 a001 144/2207*312119004989^(3/5) 5142239347530667 a001 144/2207*817138163596^(11/19) 5142239347530667 a001 144/2207*14662949395604^(11/21) 5142239347530667 a001 144/2207*(1/2+1/2*5^(1/2))^33 5142239347530667 a001 144/2207*192900153618^(11/18) 5142239347530667 a001 144/2207*10749957122^(11/16) 5142239347530667 a001 144/2207*1568397607^(3/4) 5142239347530667 a001 144/2207*599074578^(11/14) 5142239347530671 a001 144/2207*33385282^(11/12) 5142239348008791 a001 141/46*20633239^(5/7) 5142239348008800 a001 141/46*2537720636^(5/9) 5142239348008800 a001 141/46*312119004989^(5/11) 5142239348008800 a001 141/46*(1/2+1/2*5^(1/2))^25 5142239348008800 a001 141/46*3461452808002^(5/12) 5142239348008800 a001 141/46*28143753123^(1/2) 5142239348008800 a001 141/46*228826127^(5/8) 5142239348010038 a001 141/46*1860498^(5/6) 5142239350816610 m001 BesselI(0,1)^Porter/(PrimesInBinary^Porter) 5142239355944385 m003 E^(1/2+Sqrt[5]/2)+(6*Csch[1/2+Sqrt[5]/2])/25 5142239384069027 m001 Chi(1)-Ei(1)^Bloch 5142239388064850 r005 Re(z^2+c),c=5/62+23/57*I,n=18 5142239389567121 p003 LerchPhi(1/10,3,586/215) 5142239423408733 r005 Re(z^2+c),c=-2/3+32/113*I,n=45 5142239455870280 m005 (1/2*gamma-5/9)/(3/11*exp(1)-2/9) 5142239482424750 a001 7465176/161*1364^(1/3) 5142239484697739 r009 Im(z^3+c),c=-23/126+26/41*I,n=41 5142239490634926 m001 Khinchin*(FibonacciFactorial-Pi) 5142239498249589 r002 6th iterates of z^2 + 5142239535454456 m005 (1/2*5^(1/2)-2/11)/(5/8*Pi-1/7) 5142239539819178 r005 Im(z^2+c),c=37/106+12/47*I,n=26 5142239565690551 m001 Rabbit^2/ln(Khintchine)^2/Zeta(9)^2 5142239567037394 r005 Re(z^2+c),c=-23/58+29/60*I,n=4 5142239584522022 r009 Im(z^3+c),c=-29/110+27/44*I,n=33 5142239587064268 m001 (-Niven+ZetaP(2))/(exp(Pi)+GAMMA(3/4)) 5142239588299384 r008 a(0)=5,K{-n^6,23-46*n+30*n^2-15*n^3} 5142239590620235 a007 Real Root Of -142*x^4-807*x^3-534*x^2-726*x-56 5142239599614624 a001 682/98209*832040^(6/19) 5142239599641668 a001 682/1762289*7778742049^(6/19) 5142239604298521 r009 Im(z^3+c),c=-51/110+27/56*I,n=38 5142239611548848 m003 (9*Sqrt[5])/64+Sin[1/2+Sqrt[5]/2]/5 5142239651831420 p001 sum((-1)^n/(593*n+190)/(10^n),n=0..infinity) 5142239651913369 m001 1/ln(GAMMA(5/12))^2*BesselK(1,1)^2*cos(Pi/5) 5142239666685133 a001 24157817/322*1364^(4/15) 5142239671945724 a003 sin(Pi*11/80)-sin(Pi*31/81) 5142239675539550 r009 Im(z^3+c),c=-23/82+21/37*I,n=6 5142239676005533 r005 Im(z^2+c),c=-13/18+25/106*I,n=59 5142239684071167 r009 Im(z^3+c),c=-23/126+19/29*I,n=18 5142239689513814 s003 concatenated sequence A085950 5142239691900823 r009 Re(z^3+c),c=-16/31+7/45*I,n=37 5142239693207201 a007 Real Root Of 209*x^4+910*x^3-702*x^2+584*x-833 5142239695222870 p001 sum(1/(325*n+201)/(12^n),n=0..infinity) 5142239716142932 h001 (1/12*exp(2)+3/11)/(1/5*exp(2)+1/4) 5142239744339725 a007 Real Root Of 675*x^4-838*x^3+702*x^2+476*x-102 5142239755275605 m001 (Zeta(5)-GAMMA(23/24))/(Cahen-Thue) 5142239776040221 a007 Real Root Of 6*x^4+299*x^3-485*x^2+259*x-646 5142239778951213 r009 Im(z^3+c),c=-1/90+35/53*I,n=16 5142239785063597 r009 Re(z^3+c),c=-23/58+1/42*I,n=56 5142239793627663 m001 1/exp(Porter)*Magata*cos(Pi/5)^2 5142239798775567 l006 ln(8907/9377) 5142239799923202 r009 Im(z^3+c),c=-25/102+18/29*I,n=44 5142239811334915 m001 ln(FeigenbaumKappa)*Kolakoski^2/GAMMA(11/24)^2 5142239824010039 r005 Re(z^2+c),c=-55/38+23/63*I,n=2 5142239824505527 m008 (5/6*Pi^5-2/5)/(5*Pi^2+1/6) 5142239827151602 q001 1428/2777 5142239828972686 a007 Real Root Of -100*x^4-423*x^3+555*x^2+285*x-806 5142239834522498 r009 Im(z^3+c),c=-13/22+24/37*I,n=4 5142239835483186 m001 (Khinchin-Paris)/(GAMMA(5/6)-Kac) 5142239838299380 m001 BesselI(0,2)/Pi^(1/2)/Riemann3rdZero 5142239841929249 m001 FellerTornier^Robbin/(QuadraticClass^Robbin) 5142239850945515 a001 39088169/322*1364^(1/5) 5142239852862133 a001 8/521*322^(9/43) 5142239855054206 m001 1/exp(GAMMA(7/12))/PrimesInBinary/Zeta(7)^2 5142239867113523 m001 1/GAMMA(1/24)/Khintchine*exp(sin(Pi/5))^2 5142239876489338 m001 1/2*Psi(2,1/3)*GAMMA(5/6)*(1+3^(1/2))^(1/2) 5142239930907854 p003 LerchPhi(1/8,2,271/190) 5142239942961844 m008 (1/3*Pi-4/5)/(5*Pi^6+1/4) 5142239962350046 a003 cos(Pi*29/97)-cos(Pi*49/103) 5142239962978026 s002 sum(A152109[n]/(n^2*2^n+1),n=1..infinity) 5142239980541854 m001 gamma^FeigenbaumAlpha+MertensB1 5142239994224119 a007 Real Root Of 224*x^4+949*x^3-854*x^2+942*x-158 5142239999985928 a001 317801/2+317811/2*5^(1/2) 5142240006327421 r005 Im(z^2+c),c=-45/82+3/32*I,n=20 5142240011141098 p003 LerchPhi(1/125,3,568/211) 5142240024381553 a001 75025/322*3571^(16/17) 5142240026546489 a007 Real Root Of 730*x^4-647*x^3+600*x^2-269*x-436 5142240033258314 r005 Im(z^2+c),c=-35/52+29/64*I,n=42 5142240035205907 a001 31622993/161*1364^(2/15) 5142240038113209 m001 (Si(Pi)-exp(1/Pi))/(PlouffeB+ZetaP(2)) 5142240047458886 s002 sum(A152109[n]/(n^2*2^n-1),n=1..infinity) 5142240047849541 a001 121393/322*3571^(15/17) 5142240050202650 m001 (arctan(1/2)+KomornikLoreti)/(2^(1/2)-Si(Pi)) 5142240054668548 m001 (Sierpinski-Trott2nd)/(2*Pi/GAMMA(5/6)-Lehmer) 5142240061224894 r005 Im(z^2+c),c=-61/94+5/51*I,n=58 5142240071666480 a001 98209/161*3571^(14/17) 5142240095350131 a001 317811/322*3571^(13/17) 5142240104078941 m001 (Kac-Stephens)/(cos(1/12*Pi)+gamma(3)) 5142240109142073 m001 (Riemann1stZero+Thue)/(ln(5)+Mills) 5142240112223391 k006 concat of cont frac of 5142240114120782 m001 (2^(1/2)-CareFree)/(Conway+ZetaP(4)) 5142240119084694 a001 514229/322*3571^(12/17) 5142240142799810 a001 416020/161*3571^(11/17) 5142240166522355 a001 1346269/322*3571^(10/17) 5142240190242062 a001 311187/46*3571^(9/17) 5142240213962853 a001 1762289/161*3571^(8/17) 5142240216842485 a007 Real Root Of 808*x^4-764*x^3-329*x^2-676*x-421 5142240217645907 r005 Im(z^2+c),c=5/114+15/23*I,n=21 5142240219466304 a001 14619165/46*1364^(1/15) 5142240225799346 m001 (3^(1/3))^Sierpinski*Mills^Sierpinski 5142240234797574 m001 MasserGramain^(FeigenbaumC/Zeta(3)) 5142240235970969 m005 (1/2*Zeta(3)-2/11)/(8/11*3^(1/2)-4/9) 5142240237683230 a001 5702887/322*3571^(7/17) 5142240247444193 m001 1/FeigenbaumC^2*Conway^2/ln(GAMMA(1/3)) 5142240249221195 a001 8/321*2537720636^(7/9) 5142240249221195 a001 8/321*17393796001^(5/7) 5142240249221195 a001 8/321*312119004989^(7/11) 5142240249221195 a001 8/321*14662949395604^(5/9) 5142240249221195 a001 8/321*(1/2+1/2*5^(1/2))^35 5142240249221195 a001 8/321*505019158607^(5/8) 5142240249221195 a001 8/321*28143753123^(7/10) 5142240249221195 a001 8/321*599074578^(5/6) 5142240249221195 a001 8/321*228826127^(7/8) 5142240249699541 a001 1292/161*(1/2+1/2*5^(1/2))^23 5142240249699541 a001 1292/161*4106118243^(1/2) 5142240250157959 a001 1292/161*103682^(23/24) 5142240261403766 a001 9227465/322*3571^(6/17) 5142240285124241 a001 7465176/161*3571^(5/17) 5142240285877413 a007 Real Root Of 722*x^4-836*x^3+73*x^2-987*x-691 5142240295016382 r005 Im(z^2+c),c=-1/22+39/62*I,n=49 5142240308844740 a001 24157817/322*3571^(4/17) 5142240313366082 m001 (gamma(1)+GaussAGM)/(2^(1/2)-BesselI(0,1)) 5142240322715531 m001 (FeigenbaumAlpha-Magata)/(MertensB2+Sarnak) 5142240332565230 a001 39088169/322*3571^(3/17) 5142240334256452 h001 (-4*exp(5)+8)/(-exp(2)-4) 5142240338169444 r009 Im(z^3+c),c=-11/58+31/49*I,n=45 5142240339925939 a007 Real Root Of 234*x^4-733*x^3-608*x^2+111*x+187 5142240340477398 a007 Real Root Of -205*x^4-891*x^3+775*x^2-446*x-601 5142240344415211 a001 2149970688/4181 5142240349242382 a001 28657/322*9349^(18/19) 5142240350608177 a001 144*9349^(17/19) 5142240354365722 a001 75025/322*9349^(16/19) 5142240356285723 a001 31622993/161*3571^(2/17) 5142240357209699 a001 121393/322*9349^(15/19) 5142240359948448 a007 Real Root Of -880*x^4-462*x^3+502*x^2+727*x+36 5142240360402628 a001 98209/161*9349^(14/19) 5142240363462270 a001 317811/322*9349^(13/19) 5142240366572822 a001 514229/322*9349^(12/19) 5142240369663929 a001 416020/161*9349^(11/19) 5142240372762463 a001 1346269/322*9349^(10/19) 5142240375858160 a001 311187/46*9349^(9/19) 5142240378954941 a001 1762289/161*9349^(8/19) 5142240380006215 a001 14619165/46*3571^(1/17) 5142240380111009 a001 6765/322*64079^(21/23) 5142240380776097 a001 144/15127*(1/2+1/2*5^(1/2))^37 5142240381233713 a001 6765/322*439204^(7/9) 5142240381254394 a001 6765/322*7881196^(7/11) 5142240381254439 a001 6765/322*20633239^(3/5) 5142240381254447 a001 6765/322*141422324^(7/13) 5142240381254447 a001 6765/322*2537720636^(7/15) 5142240381254447 a001 6765/322*17393796001^(3/7) 5142240381254447 a001 6765/322*45537549124^(7/17) 5142240381254447 a001 6765/322*14662949395604^(1/3) 5142240381254447 a001 6765/322*(1/2+1/2*5^(1/2))^21 5142240381254447 a001 6765/322*192900153618^(7/18) 5142240381254447 a001 6765/322*10749957122^(7/16) 5142240381254447 a001 6765/322*599074578^(1/2) 5142240381254449 a001 6765/322*33385282^(7/12) 5142240381255487 a001 6765/322*1860498^(7/10) 5142240381262083 a001 6765/322*710647^(3/4) 5142240381673003 a001 6765/322*103682^(7/8) 5142240382051308 a001 5702887/322*9349^(7/19) 5142240384384075 a001 6765/322*39603^(21/22) 5142240385147832 a001 9227465/322*9349^(6/19) 5142240388244297 a001 7465176/161*9349^(5/19) 5142240391340784 a001 24157817/322*9349^(4/19) 5142240392681899 a001 17711/322*24476^(19/21) 5142240393389335 m001 Lehmer/DuboisRaymond^2/ln(Riemann2ndZero) 5142240394437263 a001 39088169/322*9349^(3/19) 5142240394664717 a001 2814348168/5473 5142240395000260 r002 9th iterates of z^2 + 5142240396299697 a001 144*24476^(17/21) 5142240397369505 a001 75025/322*24476^(16/21) 5142240397520421 m001 (1-Psi(1,1/3))/(GAMMA(2/3)+PrimesInBinary) 5142240397525746 a001 121393/322*24476^(5/7) 5142240397533745 a001 31622993/161*9349^(2/19) 5142240397621638 a001 28657/322*24476^(6/7) 5142240398030939 a001 98209/161*24476^(2/3) 5142240398402843 a001 317811/322*24476^(13/21) 5142240398825660 a001 514229/322*24476^(4/7) 5142240399229030 a001 416020/161*24476^(11/21) 5142240399413510 a001 17711/322*64079^(19/23) 5142240399639827 a001 1346269/322*24476^(10/21) 5142240399969699 a001 48/13201*2537720636^(13/15) 5142240399969699 a001 48/13201*45537549124^(13/17) 5142240399969699 a001 48/13201*14662949395604^(13/21) 5142240399969699 a001 48/13201*(1/2+1/2*5^(1/2))^39 5142240399969699 a001 48/13201*192900153618^(13/18) 5142240399969699 a001 48/13201*73681302247^(3/4) 5142240399969699 a001 48/13201*10749957122^(13/16) 5142240399969699 a001 48/13201*599074578^(13/14) 5142240400047788 a001 311187/46*24476^(3/7) 5142240400448049 a001 17711/322*817138163596^(1/3) 5142240400448049 a001 17711/322*(1/2+1/2*5^(1/2))^19 5142240400448049 a001 17711/322*87403803^(1/2) 5142240400456832 a001 1762289/161*24476^(8/21) 5142240400630226 a001 14619165/46*9349^(1/19) 5142240400826743 a001 17711/322*103682^(19/24) 5142240400865463 a001 5702887/322*24476^(1/3) 5142240401274251 a001 9227465/322*24476^(2/7) 5142240401682979 a001 7465176/161*24476^(5/21) 5142240401996021 a001 14736118320/28657 5142240402090021 r009 Im(z^3+c),c=-11/122+41/59*I,n=15 5142240402091730 a001 24157817/322*24476^(4/21) 5142240402322718 a001 144*64079^(17/23) 5142240402500473 a001 39088169/322*24476^(1/7) 5142240402770008 a001 72/51841*(1/2+1/2*5^(1/2))^41 5142240402840176 a001 121393/322*64079^(15/23) 5142240402909218 a001 31622993/161*24476^(2/21) 5142240402991073 a001 98209/161*64079^(14/23) 5142240403008683 a001 317811/322*64079^(13/23) 5142240403038231 a001 75025/322*64079^(16/23) 5142240403065644 a001 38579658624/75025 5142240403077204 a001 514229/322*64079^(12/23) 5142240403126279 a001 416020/161*64079^(11/23) 5142240403178567 a001 48/90481*(1/2+1/2*5^(1/2))^43 5142240403182781 a001 1346269/322*64079^(10/23) 5142240403221700 a001 50501428776/98209 5142240403236446 a001 311187/46*64079^(9/23) 5142240403238175 a001 144/710647*45537549124^(15/17) 5142240403238175 a001 144/710647*312119004989^(9/11) 5142240403238175 a001 144/710647*14662949395604^(5/7) 5142240403238175 a001 144/710647*(1/2+1/2*5^(1/2))^45 5142240403238175 a001 144/710647*192900153618^(5/6) 5142240403238175 a001 144/710647*28143753123^(9/10) 5142240403238175 a001 144/710647*10749957122^(15/16) 5142240403244468 a001 264428914032/514229 5142240403246872 a001 8/103361*(1/2+1/2*5^(1/2))^47 5142240403247790 a001 692283884544/1346269 5142240403248141 a001 144/4870847*14662949395604^(7/9) 5142240403248141 a001 144/4870847*(1/2+1/2*5^(1/2))^49 5142240403248141 a001 144/4870847*505019158607^(7/8) 5142240403248275 a001 906211369800/1762289 5142240403248326 a001 48/4250681*817138163596^(17/19) 5142240403248326 a001 48/4250681*14662949395604^(17/21) 5142240403248326 a001 48/4250681*(1/2+1/2*5^(1/2))^51 5142240403248326 a001 48/4250681*192900153618^(17/18) 5142240403248346 a001 4744984334256/9227465 5142240403248353 a001 72/16692641*(1/2+1/2*5^(1/2))^53 5142240403248356 a001 12422530263168/24157817 5142240403248357 a001 48/29134601*3461452808002^(11/12) 5142240403248357 a001 16261303227624/31622993 5142240403248358 a001 144/228826127*14662949395604^(19/21) 5142240403248358 a001 85145289102576/165580141 5142240403248358 a001 222913260852480/433494437 5142240403248358 a001 291797246727432/567451585 5142240403248358 a001 1527870219512112/2971215073 5142240403248358 a001 144*45537549124^(1/3) 5142240403248358 a001 944275726057248/1836311903 5142240403248358 a001 120227077534128/233802911 5142240403248358 a001 144/969323029*14662949395604^(20/21) 5142240403248358 a001 17220996468738/33489287 5142240403248358 a001 17540894215776/34111385 5142240403248358 a001 36/35355581*14662949395604^(8/9) 5142240403248358 a001 20100076192080/39088169 5142240403248359 a001 144/54018521*14662949395604^(6/7) 5142240403248362 a001 53316291173/103683 5142240403248370 a001 144/20633239*(1/2+1/2*5^(1/2))^52 5142240403248370 a001 144/20633239*23725150497407^(13/16) 5142240403248370 a001 144/20633239*505019158607^(13/14) 5142240403248373 a001 144*12752043^(1/2) 5142240403248389 a001 1836294048/3571 5142240403248440 a001 36/1970299*312119004989^(10/11) 5142240403248440 a001 36/1970299*(1/2+1/2*5^(1/2))^50 5142240403248440 a001 36/1970299*3461452808002^(5/6) 5142240403248574 a001 373379618352/726103 5142240403248925 a001 144/3010349*45537549124^(16/17) 5142240403248925 a001 144/3010349*14662949395604^(16/21) 5142240403248925 a001 144/3010349*(1/2+1/2*5^(1/2))^48 5142240403248925 a001 144/3010349*192900153618^(8/9) 5142240403248925 a001 144/3010349*73681302247^(12/13) 5142240403249843 a001 53481871314/104005 5142240403252247 a001 144/1149851*(1/2+1/2*5^(1/2))^46 5142240403252247 a001 144/1149851*10749957122^(23/24) 5142240403258540 a001 54475352160/105937 5142240403275015 a001 36/109801*312119004989^(4/5) 5142240403275015 a001 36/109801*(1/2+1/2*5^(1/2))^44 5142240403275015 a001 36/109801*23725150497407^(11/16) 5142240403275015 a001 36/109801*73681302247^(11/13) 5142240403275015 a001 36/109801*10749957122^(11/12) 5142240403275015 a001 36/109801*4106118243^(22/23) 5142240403279618 a001 17711/322*39603^(19/22) 5142240403291195 a001 1762289/161*64079^(8/23) 5142240403317963 a001 14619165/46*24476^(1/21) 5142240403318148 a001 62423198928/121393 5142240403345530 a001 5702887/322*64079^(7/23) 5142240403400023 a001 9227465/322*64079^(6/23) 5142240403431071 a001 144/167761*2537720636^(14/15) 5142240403431071 a001 144/167761*17393796001^(6/7) 5142240403431071 a001 144/167761*45537549124^(14/17) 5142240403431071 a001 144/167761*817138163596^(14/19) 5142240403431071 a001 144/167761*14662949395604^(2/3) 5142240403431071 a001 144/167761*(1/2+1/2*5^(1/2))^42 5142240403431071 a001 144/167761*505019158607^(3/4) 5142240403431071 a001 144/167761*192900153618^(7/9) 5142240403431071 a001 144/167761*10749957122^(7/8) 5142240403431071 a001 144/167761*4106118243^(21/23) 5142240403431071 a001 144/167761*1568397607^(21/22) 5142240403454456 a001 7465176/161*64079^(5/23) 5142240403508912 a001 24157817/322*64079^(4/23) 5142240403547289 a001 121393/322*167761^(3/5) 5142240403563359 a001 39088169/322*64079^(3/23) 5142240403587189 a001 144*103682^(17/24) 5142240403617809 a001 31622993/161*64079^(2/23) 5142240403642107 a001 121393/322*439204^(5/9) 5142240403654190 a001 1346269/322*167761^(2/5) 5142240403656880 a001 121393/322*7881196^(5/11) 5142240403656912 a001 121393/322*20633239^(3/7) 5142240403656917 a001 121393/322*141422324^(5/13) 5142240403656917 a001 121393/322*2537720636^(1/3) 5142240403656917 a001 121393/322*45537549124^(5/17) 5142240403656917 a001 121393/322*312119004989^(3/11) 5142240403656917 a001 121393/322*14662949395604^(5/21) 5142240403656917 a001 121393/322*(1/2+1/2*5^(1/2))^15 5142240403656917 a001 121393/322*192900153618^(5/18) 5142240403656917 a001 121393/322*28143753123^(3/10) 5142240403656917 a001 121393/322*10749957122^(5/16) 5142240403656917 a001 121393/322*599074578^(5/14) 5142240403656917 a001 121393/322*228826127^(3/8) 5142240403656919 a001 121393/322*33385282^(5/12) 5142240403657660 a001 121393/322*1860498^(1/2) 5142240403672258 a001 14619165/46*64079^(1/23) 5142240403690160 a001 7465176/161*167761^(1/5) 5142240403716525 a001 317811/322*141422324^(1/3) 5142240403716525 a001 317811/322*(1/2+1/2*5^(1/2))^13 5142240403716525 a001 317811/322*73681302247^(1/4) 5142240403717605 a001 311187/46*439204^(1/3) 5142240403718749 a001 514229/322*439204^(4/9) 5142240403720796 a001 9227465/322*439204^(2/9) 5142240403723745 a001 39088169/322*439204^(1/9) 5142240403725194 a001 416020/161*7881196^(1/3) 5142240403725222 a001 416020/161*312119004989^(1/5) 5142240403725222 a001 416020/161*(1/2+1/2*5^(1/2))^11 5142240403725222 a001 416020/161*1568397607^(1/4) 5142240403726468 a001 311187/46*7881196^(3/11) 5142240403726491 a001 311187/46*141422324^(3/13) 5142240403726491 a001 311187/46*2537720636^(1/5) 5142240403726491 a001 311187/46*45537549124^(3/17) 5142240403726491 a001 311187/46*817138163596^(3/19) 5142240403726491 a001 311187/46*14662949395604^(1/7) 5142240403726491 a001 311187/46*(1/2+1/2*5^(1/2))^9 5142240403726491 a001 311187/46*192900153618^(1/6) 5142240403726491 a001 311187/46*10749957122^(3/16) 5142240403726491 a001 311187/46*599074578^(3/14) 5142240403726492 a001 311187/46*33385282^(1/4) 5142240403726673 a001 5702887/322*20633239^(1/5) 5142240403726676 a001 5702887/322*17393796001^(1/7) 5142240403726676 a001 5702887/322*14662949395604^(1/9) 5142240403726676 a001 5702887/322*(1/2+1/2*5^(1/2))^7 5142240403726676 a001 5702887/322*599074578^(1/6) 5142240403726699 a001 39088169/322*7881196^(1/11) 5142240403726701 a001 7465176/161*20633239^(1/7) 5142240403726703 a001 7465176/161*2537720636^(1/9) 5142240403726703 a001 7465176/161*312119004989^(1/11) 5142240403726703 a001 7465176/161*(1/2+1/2*5^(1/2))^5 5142240403726703 a001 7465176/161*28143753123^(1/10) 5142240403726703 a001 7465176/161*228826127^(1/8) 5142240403726705 a001 9227465/322*7881196^(2/11) 5142240403726707 a001 39088169/322*141422324^(1/13) 5142240403726707 a001 39088169/322*2537720636^(1/15) 5142240403726707 a001 39088169/322*45537549124^(1/17) 5142240403726707 a001 39088169/322*14662949395604^(1/21) 5142240403726707 a001 39088169/322*(1/2+1/2*5^(1/2))^3 5142240403726707 a001 39088169/322*192900153618^(1/18) 5142240403726707 a001 39088169/322*10749957122^(1/16) 5142240403726707 a001 39088169/322*599074578^(1/14) 5142240403726707 a001 39088169/322*33385282^(1/12) 5142240403726707 a001 14619165/92+14619165/92*5^(1/2) 5142240403726708 a006 5^(1/2)*Fibonacci(41)/Lucas(12)/sqrt(5) 5142240403726708 a001 31622993/161*(1/2+1/2*5^(1/2))^2 5142240403726708 a001 31622993/161*10749957122^(1/24) 5142240403726708 a001 31622993/161*4106118243^(1/23) 5142240403726708 a001 31622993/161*1568397607^(1/22) 5142240403726708 a001 31622993/161*599074578^(1/21) 5142240403726708 a001 31622993/161*228826127^(1/20) 5142240403726708 a001 31622993/161*87403803^(1/19) 5142240403726708 a001 31622993/161*33385282^(1/18) 5142240403726709 a001 24157817/322*(1/2+1/2*5^(1/2))^4 5142240403726709 a001 24157817/322*23725150497407^(1/16) 5142240403726709 a001 24157817/322*73681302247^(1/13) 5142240403726709 a001 24157817/322*10749957122^(1/12) 5142240403726709 a001 24157817/322*4106118243^(2/23) 5142240403726709 a001 24157817/322*1568397607^(1/11) 5142240403726709 a001 24157817/322*599074578^(2/21) 5142240403726709 a001 24157817/322*228826127^(1/10) 5142240403726709 a001 24157817/322*87403803^(2/19) 5142240403726710 a001 31622993/161*12752043^(1/17) 5142240403726710 a001 24157817/322*33385282^(1/9) 5142240403726713 a001 24157817/322*12752043^(2/17) 5142240403726720 a001 9227465/322*141422324^(2/13) 5142240403726720 a001 9227465/322*2537720636^(2/15) 5142240403726720 a001 9227465/322*45537549124^(2/17) 5142240403726720 a001 9227465/322*14662949395604^(2/21) 5142240403726720 a001 9227465/322*(1/2+1/2*5^(1/2))^6 5142240403726720 a001 9227465/322*10749957122^(1/8) 5142240403726720 a001 9227465/322*4106118243^(3/23) 5142240403726720 a001 9227465/322*1568397607^(3/22) 5142240403726720 a001 9227465/322*599074578^(1/7) 5142240403726720 a001 9227465/322*228826127^(3/20) 5142240403726720 a001 9227465/322*87403803^(3/19) 5142240403726720 a001 9227465/322*33385282^(1/6) 5142240403726721 a001 31622993/161*4870847^(1/16) 5142240403726725 a001 9227465/322*12752043^(3/17) 5142240403726736 a001 24157817/322*4870847^(1/8) 5142240403726760 a001 9227465/322*4870847^(3/16) 5142240403726790 a001 1762289/161*(1/2+1/2*5^(1/2))^8 5142240403726790 a001 1762289/161*23725150497407^(1/8) 5142240403726790 a001 1762289/161*505019158607^(1/7) 5142240403726790 a001 1762289/161*73681302247^(2/13) 5142240403726790 a001 1762289/161*10749957122^(1/6) 5142240403726790 a001 1762289/161*4106118243^(4/23) 5142240403726790 a001 1762289/161*1568397607^(2/11) 5142240403726790 a001 1762289/161*599074578^(4/21) 5142240403726790 a001 1762289/161*228826127^(1/5) 5142240403726790 a001 1762289/161*87403803^(4/19) 5142240403726791 a001 1762289/161*33385282^(2/9) 5142240403726798 a001 1762289/161*12752043^(4/17) 5142240403726807 a001 31622993/161*1860498^(1/15) 5142240403726845 a001 1762289/161*4870847^(1/4) 5142240403726855 a001 39088169/322*1860498^(1/10) 5142240403726907 a001 24157817/322*1860498^(2/15) 5142240403726936 a001 311187/46*1860498^(3/10) 5142240403726951 a001 7465176/161*1860498^(1/6) 5142240403727017 a001 9227465/322*1860498^(1/5) 5142240403727186 a001 1762289/161*1860498^(4/15) 5142240403727272 a001 1346269/322*20633239^(2/7) 5142240403727275 a001 1346269/322*2537720636^(2/9) 5142240403727275 a001 1346269/322*312119004989^(2/11) 5142240403727275 a001 1346269/322*(1/2+1/2*5^(1/2))^10 5142240403727275 a001 1346269/322*28143753123^(1/5) 5142240403727275 a001 1346269/322*10749957122^(5/24) 5142240403727275 a001 1346269/322*4106118243^(5/23) 5142240403727275 a001 1346269/322*1568397607^(5/22) 5142240403727275 a001 1346269/322*599074578^(5/21) 5142240403727275 a001 1346269/322*228826127^(1/4) 5142240403727275 a001 1346269/322*87403803^(5/19) 5142240403727276 a001 1346269/322*33385282^(5/18) 5142240403727284 a001 1346269/322*12752043^(5/17) 5142240403727343 a001 1346269/322*4870847^(5/16) 5142240403727435 a001 31622993/161*710647^(1/14) 5142240403727770 a001 1346269/322*1860498^(1/3) 5142240403728164 a001 24157817/322*710647^(1/7) 5142240403728902 a001 9227465/322*710647^(3/14) 5142240403729221 a001 5702887/322*710647^(1/4) 5142240403729700 a001 1762289/161*710647^(2/7) 5142240403730567 a001 514229/322*7881196^(4/11) 5142240403730597 a001 514229/322*141422324^(4/13) 5142240403730597 a001 514229/322*2537720636^(4/15) 5142240403730597 a001 514229/322*45537549124^(4/17) 5142240403730597 a001 514229/322*817138163596^(4/19) 5142240403730597 a001 514229/322*14662949395604^(4/21) 5142240403730597 a001 514229/322*(1/2+1/2*5^(1/2))^12 5142240403730597 a001 514229/322*192900153618^(2/9) 5142240403730597 a001 514229/322*73681302247^(3/13) 5142240403730597 a001 514229/322*10749957122^(1/4) 5142240403730597 a001 514229/322*4106118243^(6/23) 5142240403730597 a001 514229/322*1568397607^(3/11) 5142240403730597 a001 514229/322*599074578^(2/7) 5142240403730597 a001 514229/322*228826127^(3/10) 5142240403730597 a001 514229/322*87403803^(6/19) 5142240403730598 a001 514229/322*33385282^(1/3) 5142240403730608 a001 514229/322*12752043^(6/17) 5142240403730678 a001 514229/322*4870847^(3/8) 5142240403730911 a001 1346269/322*710647^(5/14) 5142240403731191 a001 514229/322*1860498^(2/5) 5142240403732076 a001 31622993/161*271443^(1/13) 5142240403734961 a001 514229/322*710647^(3/7) 5142240403737446 a001 24157817/322*271443^(2/13) 5142240403742825 a001 9227465/322*271443^(3/13) 5142240403746639 a001 14619165/46*103682^(1/24) 5142240403748264 a001 1762289/161*271443^(4/13) 5142240403751420 a001 317811/322*271443^(1/2) 5142240403753360 a001 98209/161*20633239^(2/5) 5142240403753365 a001 98209/161*17393796001^(2/7) 5142240403753365 a001 98209/161*14662949395604^(2/9) 5142240403753365 a001 98209/161*(1/2+1/2*5^(1/2))^14 5142240403753365 a001 98209/161*10749957122^(7/24) 5142240403753365 a001 98209/161*4106118243^(7/23) 5142240403753365 a001 98209/161*1568397607^(7/22) 5142240403753365 a001 98209/161*599074578^(1/3) 5142240403753365 a001 98209/161*228826127^(7/20) 5142240403753365 a001 98209/161*87403803^(7/19) 5142240403753367 a001 98209/161*33385282^(7/18) 5142240403753378 a001 98209/161*12752043^(7/17) 5142240403753460 a001 98209/161*4870847^(7/16) 5142240403754058 a001 98209/161*1860498^(7/15) 5142240403754117 a001 1346269/322*271443^(5/13) 5142240403758456 a001 98209/161*710647^(1/2) 5142240403762808 a001 514229/322*271443^(6/13) 5142240403766570 a001 31622993/161*103682^(1/12) 5142240403786501 a001 39088169/322*103682^(1/8) 5142240403790944 a001 98209/161*271443^(7/13) 5142240403806434 a001 24157817/322*103682^(1/6) 5142240403826359 a001 7465176/161*103682^(5/24) 5142240403846307 a001 9227465/322*103682^(1/4) 5142240403866195 a001 5702887/322*103682^(7/24) 5142240403875737 a001 14619165/46*39603^(1/22) 5142240403886240 a001 1762289/161*103682^(1/3) 5142240403905872 a001 311187/46*103682^(3/8) 5142240403909421 a001 75025/322*(1/2+1/2*5^(1/2))^16 5142240403909421 a001 75025/322*23725150497407^(1/4) 5142240403909421 a001 75025/322*73681302247^(4/13) 5142240403909421 a001 75025/322*10749957122^(1/3) 5142240403909421 a001 75025/322*4106118243^(8/23) 5142240403909421 a001 75025/322*1568397607^(4/11) 5142240403909421 a001 75025/322*599074578^(8/21) 5142240403909421 a001 75025/322*228826127^(2/5) 5142240403909421 a001 75025/322*87403803^(8/19) 5142240403909423 a001 75025/322*33385282^(4/9) 5142240403909436 a001 75025/322*12752043^(8/17) 5142240403909529 a001 75025/322*4870847^(1/2) 5142240403910213 a001 75025/322*1860498^(8/15) 5142240403915239 a001 75025/322*710647^(4/7) 5142240403926587 a001 1346269/322*103682^(5/12) 5142240403944466 a001 416020/161*103682^(11/24) 5142240403952369 a001 75025/322*271443^(8/13) 5142240403955886 a001 121393/322*103682^(5/8) 5142240403969772 a001 514229/322*103682^(1/2) 5142240403975631 a001 317811/322*103682^(13/24) 5142240403998955 a001 28657/322*64079^(18/23) 5142240404024768 a001 31622993/161*39603^(1/11) 5142240404032402 a001 98209/161*103682^(7/12) 5142240404135452 a001 5473/161*24476^(20/21) 5142240404173797 a001 39088169/322*39603^(3/22) 5142240404228321 a001 75025/322*103682^(2/3) 5142240404322829 a001 24157817/322*39603^(2/11) 5142240404471853 a001 7465176/161*39603^(5/22) 5142240404500694 a001 144/64079*2537720636^(8/9) 5142240404500694 a001 144/64079*312119004989^(8/11) 5142240404500694 a001 144/64079*(1/2+1/2*5^(1/2))^40 5142240404500694 a001 144/64079*23725150497407^(5/8) 5142240404500694 a001 144/64079*73681302247^(10/13) 5142240404500694 a001 144/64079*28143753123^(4/5) 5142240404500694 a001 144/64079*10749957122^(5/6) 5142240404500694 a001 144/64079*4106118243^(20/23) 5142240404500694 a001 144/64079*1568397607^(10/11) 5142240404500694 a001 144/64079*599074578^(20/21) 5142240404620899 a001 9227465/322*39603^(3/11) 5142240404769885 a001 5702887/322*39603^(7/22) 5142240404850320 a001 14619165/46*15127^(1/20) 5142240404919030 a001 1762289/161*39603^(4/11) 5142240404961272 a001 28657/322*439204^(2/3) 5142240404978999 a001 28657/322*7881196^(6/11) 5142240404979044 a001 28657/322*141422324^(6/13) 5142240404979044 a001 28657/322*2537720636^(2/5) 5142240404979044 a001 28657/322*45537549124^(6/17) 5142240404979044 a001 28657/322*14662949395604^(2/7) 5142240404979044 a001 28657/322*(1/2+1/2*5^(1/2))^18 5142240404979044 a001 28657/322*192900153618^(1/3) 5142240404979044 a001 28657/322*10749957122^(3/8) 5142240404979044 a001 28657/322*4106118243^(9/23) 5142240404979044 a001 28657/322*1568397607^(9/22) 5142240404979044 a001 28657/322*599074578^(3/7) 5142240404979044 a001 28657/322*228826127^(9/20) 5142240404979044 a001 28657/322*87403803^(9/19) 5142240404979046 a001 28657/322*33385282^(1/2) 5142240404979060 a001 28657/322*12752043^(9/17) 5142240404979166 a001 28657/322*4870847^(9/16) 5142240404979935 a001 28657/322*1860498^(3/5) 5142240404985589 a001 28657/322*710647^(9/14) 5142240405027360 a001 28657/322*271443^(9/13) 5142240405067760 a001 311187/46*39603^(9/22) 5142240405217574 a001 1346269/322*39603^(5/11) 5142240405337806 a001 28657/322*103682^(3/4) 5142240405364551 a001 416020/161*39603^(1/2) 5142240405518956 a001 514229/322*39603^(6/11) 5142240405653914 a001 317811/322*39603^(13/22) 5142240405781867 a001 144*39603^(17/22) 5142240405839784 a001 98209/161*39603^(7/11) 5142240405892366 a001 121393/322*39603^(15/22) 5142240405973934 a001 31622993/161*15127^(1/10) 5142240406293900 a001 75025/322*39603^(8/11) 5142240406527017 a001 9107421984/17711 5142240407097546 a001 39088169/322*15127^(3/20) 5142240407661583 a001 28657/322*39603^(9/11) 5142240408221161 a001 24157817/322*15127^(1/5) 5142240409344768 a001 7465176/161*15127^(1/4) 5142240410468398 a001 9227465/322*15127^(3/10) 5142240411221359 a001 5473/161*64079^(20/23) 5142240411591967 a001 5702887/322*15127^(7/20) 5142240411831998 a001 36/6119*817138163596^(2/3) 5142240411831998 a001 36/6119*(1/2+1/2*5^(1/2))^38 5142240411831998 a001 36/6119*10749957122^(19/24) 5142240411831998 a001 36/6119*4106118243^(19/23) 5142240411831998 a001 36/6119*1568397607^(19/22) 5142240411831998 a001 36/6119*599074578^(19/21) 5142240411831998 a001 36/6119*228826127^(19/20) 5142240412164177 a001 5473/161*167761^(4/5) 5142240412283772 a001 14619165/46*5778^(1/18) 5142240412310340 a001 5473/161*20633239^(4/7) 5142240412310347 a001 5473/161*2537720636^(4/9) 5142240412310347 a001 5473/161*(1/2+1/2*5^(1/2))^20 5142240412310347 a001 5473/161*23725150497407^(5/16) 5142240412310347 a001 5473/161*505019158607^(5/14) 5142240412310347 a001 5473/161*73681302247^(5/13) 5142240412310347 a001 5473/161*28143753123^(2/5) 5142240412310347 a001 5473/161*10749957122^(5/12) 5142240412310347 a001 5473/161*4106118243^(10/23) 5142240412310347 a001 5473/161*1568397607^(5/11) 5142240412310347 a001 5473/161*599074578^(10/21) 5142240412310347 a001 5473/161*228826127^(1/2) 5142240412310348 a001 5473/161*87403803^(10/19) 5142240412310350 a001 5473/161*33385282^(5/9) 5142240412310366 a001 5473/161*12752043^(10/17) 5142240412310483 a001 5473/161*4870847^(5/8) 5142240412311338 a001 5473/161*1860498^(2/3) 5142240412317620 a001 5473/161*710647^(5/7) 5142240412364032 a001 5473/161*271443^(10/13) 5142240412708972 a001 5473/161*103682^(5/6) 5142240412715695 a001 1762289/161*15127^(2/5) 5142240413839008 a001 311187/46*15127^(9/20) 5142240414963405 a001 1346269/322*15127^(1/2) 5142240415290946 a001 5473/161*39603^(10/11) 5142240416084965 a001 416020/161*15127^(11/20) 5142240417213953 a001 514229/322*15127^(3/5) 5142240418323495 a001 317811/322*15127^(13/20) 5142240419483948 a001 98209/161*15127^(7/10) 5142240420511113 a001 121393/322*15127^(3/4) 5142240420840837 a001 31622993/161*5778^(1/9) 5142240421796697 a001 17711/322*15127^(19/20) 5142240421887230 a001 75025/322*15127^(4/5) 5142240422349779 a001 144*15127^(17/20) 5142240423019637 m001 (Artin+MinimumGamma)/(2^(1/2)-Shi(1)) 5142240425204078 a001 28657/322*15127^(9/10) 5142240425720620 a001 1159575216/2255 5142240429397901 a001 39088169/322*5778^(1/6) 5142240437954968 a001 24157817/322*5778^(2/9) 5142240446512027 a001 7465176/161*5778^(5/18) 5142240455069108 a001 9227465/322*5778^(1/3) 5142240456914652 r005 Im(z^2+c),c=-73/82+10/37*I,n=6 5142240461361963 a001 4181/322*64079^(22/23) 5142240462081501 a001 144/9349*141422324^(12/13) 5142240462081501 a001 144/9349*2537720636^(4/5) 5142240462081501 a001 144/9349*45537549124^(12/17) 5142240462081501 a001 144/9349*14662949395604^(4/7) 5142240462081501 a001 144/9349*(1/2+1/2*5^(1/2))^36 5142240462081501 a001 144/9349*505019158607^(9/14) 5142240462081501 a001 144/9349*192900153618^(2/3) 5142240462081501 a001 144/9349*73681302247^(9/13) 5142240462081501 a001 144/9349*10749957122^(3/4) 5142240462081501 a001 144/9349*4106118243^(18/23) 5142240462081501 a001 144/9349*1568397607^(9/11) 5142240462081501 a001 144/9349*599074578^(6/7) 5142240462081501 a001 144/9349*228826127^(9/10) 5142240462081502 a001 144/9349*87403803^(18/19) 5142240462382254 r009 Im(z^3+c),c=-35/58+15/59*I,n=38 5142240462559795 a001 4181/322*7881196^(2/3) 5142240462559850 a001 4181/322*312119004989^(2/5) 5142240462559850 a001 4181/322*(1/2+1/2*5^(1/2))^22 5142240462559850 a001 4181/322*10749957122^(11/24) 5142240462559850 a001 4181/322*4106118243^(11/23) 5142240462559850 a001 4181/322*1568397607^(1/2) 5142240462559850 a001 4181/322*599074578^(11/21) 5142240462559850 a001 4181/322*228826127^(11/20) 5142240462559851 a001 4181/322*87403803^(11/19) 5142240462559853 a001 4181/322*33385282^(11/18) 5142240462559871 a001 4181/322*12752043^(11/17) 5142240462559999 a001 4181/322*4870847^(11/16) 5142240462560940 a001 4181/322*1860498^(11/15) 5142240462567850 a001 4181/322*710647^(11/14) 5142240462618903 a001 4181/322*271443^(11/13) 5142240462998337 a001 4181/322*103682^(11/12) 5142240463626129 a001 5702887/322*5778^(7/18) 5142240469709070 a001 14619165/46*2207^(1/16) 5142240472183308 a001 1762289/161*5778^(4/9) 5142240480134482 r005 Re(z^2+c),c=1/9+13/29*I,n=45 5142240480740074 a001 311187/46*5778^(1/2) 5142240489297923 a001 1346269/322*5778^(5/9) 5142240489439244 r009 Im(z^3+c),c=-17/48+14/25*I,n=20 5142240495268594 r005 Re(z^2+c),c=-7/44+19/29*I,n=62 5142240497852935 a001 416020/161*5778^(11/18) 5142240504411045 m001 GAMMA(13/24)^2*exp(Porter)^2*Zeta(7)^2 5142240506415374 a001 514229/322*5778^(2/3) 5142240512851660 a007 Real Root Of 83*x^4+58*x^3-128*x^2-454*x-23 5142240514958368 a001 317811/322*5778^(13/18) 5142240521187014 m001 (1-Zeta(1,-1))/(-Conway+FeigenbaumMu) 5142240523552272 a001 98209/161*5778^(7/9) 5142240524415765 m001 (Si(Pi)+Champernowne)/(-Thue+Weierstrass) 5142240532012889 a001 121393/322*5778^(5/6) 5142240534320092 r005 Re(z^2+c),c=-35/74+37/62*I,n=34 5142240535691434 a001 31622993/161*2207^(1/8) 5142240540822458 a001 75025/322*5778^(8/9) 5142240548718460 a001 144*5778^(17/18) 5142240557275541 a001 166094370/323 5142240584637792 a007 Real Root Of 146*x^4+773*x^3+4*x^2-621*x-276 5142240585534970 a007 Real Root Of 19*x^4-119*x^3-958*x^2+766*x-195 5142240594072934 r005 Im(z^2+c),c=25/86+1/51*I,n=42 5142240597838495 a007 Real Root Of 846*x^4-351*x^3+698*x^2-812*x-709 5142240601656627 m001 (DuboisRaymond+MasserGramain)/(Salem-Totient) 5142240601673798 a001 39088169/322*2207^(3/16) 5142240603679036 a007 Real Root Of -317*x^4-467*x^3-981*x^2+628*x+541 5142240611155042 a007 Real Root Of 823*x^4-693*x^3+72*x^2+233*x-51 5142240625168459 a007 Real Root Of 954*x^4-828*x^3+622*x^2-604*x+192 5142240637474447 r009 Im(z^3+c),c=-2/21+31/48*I,n=63 5142240645766884 m001 (ln(gamma)+FeigenbaumC)/(Robbin-ThueMorse) 5142240659951010 m005 (1/3*2^(1/2)+2/11)/(3/4*Catalan+7/12) 5142240667656166 a001 24157817/322*2207^(1/4) 5142240669093243 r009 Im(z^3+c),c=-15/58+28/45*I,n=20 5142240670150729 r005 Re(z^2+c),c=11/30+5/31*I,n=3 5142240682404148 r005 Im(z^2+c),c=-35/26+33/125*I,n=4 5142240733638526 a001 7465176/161*2207^(5/16) 5142240733650073 r005 Re(z^2+c),c=-41/66+12/59*I,n=12 5142240753390208 r005 Re(z^2+c),c=11/126+17/41*I,n=36 5142240781179968 a007 Real Root Of -695*x^4+716*x^3+747*x^2+796*x-43 5142240796792119 s002 sum(A064648[n]/((exp(n)-1)/n),n=1..infinity) 5142240797514655 r005 Im(z^2+c),c=-15/28+17/35*I,n=30 5142240797881866 r009 Im(z^3+c),c=-45/86+13/44*I,n=14 5142240799620910 a001 9227465/322*2207^(3/8) 5142240806496747 a001 144/3571*45537549124^(2/3) 5142240806496747 a001 144/3571*(1/2+1/2*5^(1/2))^34 5142240806496747 a001 144/3571*10749957122^(17/24) 5142240806496747 a001 144/3571*4106118243^(17/23) 5142240806496747 a001 144/3571*1568397607^(17/22) 5142240806496748 a001 144/3571*599074578^(17/21) 5142240806496748 a001 144/3571*228826127^(17/20) 5142240806496748 a001 144/3571*87403803^(17/19) 5142240806496752 a001 144/3571*33385282^(17/18) 5142240806951370 a001 1597/322*439204^(8/9) 5142240806975006 a001 1597/322*7881196^(8/11) 5142240806975066 a001 1597/322*141422324^(8/13) 5142240806975066 a001 1597/322*2537720636^(8/15) 5142240806975066 a001 1597/322*45537549124^(8/17) 5142240806975066 a001 1597/322*14662949395604^(8/21) 5142240806975066 a001 1597/322*(1/2+1/2*5^(1/2))^24 5142240806975066 a001 1597/322*192900153618^(4/9) 5142240806975066 a001 1597/322*73681302247^(6/13) 5142240806975066 a001 1597/322*10749957122^(1/2) 5142240806975066 a001 1597/322*4106118243^(12/23) 5142240806975066 a001 1597/322*1568397607^(6/11) 5142240806975066 a001 1597/322*599074578^(4/7) 5142240806975066 a001 1597/322*228826127^(3/5) 5142240806975066 a001 1597/322*87403803^(12/19) 5142240806975069 a001 1597/322*33385282^(2/3) 5142240806975088 a001 1597/322*12752043^(12/17) 5142240806975228 a001 1597/322*4870847^(3/4) 5142240806976254 a001 1597/322*1860498^(4/5) 5142240806983793 a001 1597/322*710647^(6/7) 5142240807039488 a001 1597/322*271443^(12/13) 5142240809800855 m001 TreeGrowth2nd^2/Conway*exp(sqrt(Pi))^2 5142240812182574 r005 Im(z^2+c),c=-11/16+5/57*I,n=8 5142240820903600 a007 Real Root Of 180*x^4+914*x^3-264*x^2-999*x+266 5142240834080609 m001 (exp(Pi)-sin(1))/(GAMMA(7/12)+FransenRobinson) 5142240839254670 r005 Im(z^2+c),c=31/78+12/59*I,n=54 5142240839600194 r005 Re(z^2+c),c=-23/38+14/61*I,n=8 5142240851989220 s002 sum(A152462[n]/(n*pi^n-1),n=1..infinity) 5142240865603234 a001 5702887/322*2207^(7/16) 5142240893677152 r009 Im(z^3+c),c=-4/25+36/55*I,n=16 5142240907354320 r002 35th iterates of z^2 + 5142240920583383 a001 14619165/46*843^(1/14) 5142240921942409 r009 Im(z^3+c),c=-3/28+25/36*I,n=6 5142240922780386 m001 (-GAMMA(1/4)+3)/(GAMMA(1/12)+2/3) 5142240931585717 a001 1762289/161*2207^(1/2) 5142240937024771 m001 Zeta(3)/(BesselI(1,1)+Pi^(1/2)) 5142240937024771 m001 Zeta(3)/(BesselI(1,1)+sqrt(Pi)) 5142240944790672 b008 Coth[1/(10*(2+Pi))] 5142240961317960 a007 Real Root Of -569*x^4+324*x^3-130*x^2+266*x+255 5142240971740152 r002 6th iterates of z^2 + 5142240977251022 l006 ln(235/393) 5142240995769138 r002 6th iterates of z^2 + 5142240996962464 s002 sum(A236614[n]/(n*exp(pi*n)+1),n=1..infinity) 5142240996977796 a007 Real Root Of 793*x^4-727*x^3+982*x^2-846*x+41 5142240997567787 a001 311187/46*2207^(9/16) 5142241007138493 r005 Re(z^2+c),c=-15/16+9/85*I,n=16 5142241034661728 a007 Real Root Of -419*x^4+237*x^3-873*x^2+396*x+496 5142241063550942 a001 1346269/322*2207^(5/8) 5142241065255936 a007 Real Root Of -718*x^4+49*x^3-593*x^2+691*x+569 5142241081856084 r009 Im(z^3+c),c=-53/90+38/59*I,n=6 5142241083153204 a007 Real Root Of -196*x^4+432*x^3-755*x^2+29*x+287 5142241093051011 a005 (1/cos(16/165*Pi))^1549 5142241093617145 p003 LerchPhi(1/512,5,277/153) 5142241100459501 m001 (OrthogonalArrays+ZetaQ(2))/(GAMMA(3/4)+ln(5)) 5142241105056771 b008 FresnelS[13/E] 5142241111439212 k007 concat of cont frac of 5142241111571736 k007 concat of cont frac of 5142241112921322 k006 concat of cont frac of 5142241113562869 a003 cos(Pi*12/101)-sin(Pi*37/84) 5142241119854580 m001 (Champernowne+Trott2nd)/(5^(1/2)+ArtinRank2) 5142241121121121 k006 concat of cont frac of 5142241121892638 m001 arctan(1/3)-exp(Pi)*5^(1/2) 5142241122114714 k006 concat of cont frac of 5142241122744412 k007 concat of cont frac of 5142241124210465 r009 Im(z^3+c),c=-37/106+29/49*I,n=52 5142241125477368 r009 Im(z^3+c),c=-2/19+38/51*I,n=53 5142241126223114 k007 concat of cont frac of 5142241129531260 a001 416020/161*2207^(11/16) 5142241130613554 r005 Im(z^2+c),c=7/23+13/34*I,n=34 5142241141263383 m001 LaplaceLimit^PlouffeB/(FeigenbaumD^PlouffeB) 5142241143623141 k006 concat of cont frac of 5142241148728802 m005 (1/2*Catalan-1/10)/(4/7*exp(1)-6/7) 5142241151245525 r005 Re(z^2+c),c=-4/9+33/46*I,n=6 5142241156085555 m001 1/exp(arctan(1/2))^2*Pi^2*log(2+sqrt(3)) 5142241191710782 a007 Real Root Of -982*x^4-392*x^3-211*x^2+657*x+409 5142241192531448 k007 concat of cont frac of 5142241195519007 a001 514229/322*2207^(3/4) 5142241212131351 k008 concat of cont frac of 5142241212518215 k007 concat of cont frac of 5142241222122211 k008 concat of cont frac of 5142241223326196 k007 concat of cont frac of 5142241251099157 a007 Real Root Of 203*x^4+905*x^3-740*x^2-289*x-802 5142241253260568 a001 39088169/123*47^(1/8) 5142241258264448 s002 sum(A154780[n]/(16^n),n=1..infinity) 5142241261487309 a001 317811/322*2207^(13/16) 5142241274307251 h001 (-7*exp(5)-3)/(-5*exp(6)-9) 5142241281128246 r009 Re(z^3+c),c=-3/16+45/52*I,n=54 5142241287488001 p004 log(15083/14327) 5142241288914581 r009 Im(z^3+c),c=-2/11+26/41*I,n=54 5142241291631731 k007 concat of cont frac of 5142241294337586 a003 cos(Pi*32/77)-cos(Pi*16/37) 5142241294432905 a007 Real Root Of 179*x^4+952*x^3+220*x^2+147*x-773 5142241301663896 a007 Real Root Of 329*x^4-69*x^3-758*x^2-681*x+537 5142241320387084 r005 Im(z^2+c),c=-11/10+74/221*I,n=4 5142241321108181 k006 concat of cont frac of 5142241322317135 k008 concat of cont frac of 5142241327506522 a001 98209/161*2207^(7/8) 5142241328512913 k009 concat of cont frac of 5142241340310658 a008 Real Root of (1+2*x-6*x^2-3*x^3-x^4+x^5) 5142241356313819 k006 concat of cont frac of 5142241374614640 r005 Re(z^2+c),c=-71/98+1/37*I,n=45 5142241379123138 m008 (Pi^4+1/5)/(2*Pi^4-5) 5142241379310344 q001 1193/2320 5142241393392449 a001 121393/322*2207^(15/16) 5142241398404142 m001 exp(GAMMA(1/3))/KhintchineHarmonic^2*Zeta(5)^2 5142241411141512 k007 concat of cont frac of 5142241413742761 h001 (1/5*exp(2)+4/9)/(3/7*exp(2)+4/7) 5142241418069148 m001 (3^(1/2)-Cahen)/(GaussAGM+GlaisherKinkelin) 5142241426139721 a007 Real Root Of -942*x^4+302*x^3+520*x^2+462*x+207 5142241427986977 m003 5+(Sin[1/2+Sqrt[5]/2]*Tanh[1/2+Sqrt[5]/2]^2)/6 5142241428953087 m001 Backhouse/(cosh(1)-2^(1/3)) 5142241437440111 a001 31622993/161*843^(1/7) 5142241440462006 r004 Re(z^2+c),c=-23/20+8/23*I,z(0)=-1,n=7 5142241442181465 r002 13th iterates of z^2 + 5142241452966998 a001 2/3*55^(26/51) 5142241454538194 a007 Real Root Of -965*x^4+913*x^3+306*x^2+302*x+266 5142241458966565 a001 169179744/329 5142241458980337 a001 1028455/2-3/2*5^(1/2) 5142241463390719 a007 Real Root Of 37*x^4-816*x^3+656*x^2-562*x-576 5142241494581798 a001 9/17*13^(39/44) 5142241499381718 r009 Im(z^3+c),c=-21/74+14/23*I,n=34 5142241510122271 k008 concat of cont frac of 5142241511116104 k006 concat of cont frac of 5142241511122121 k007 concat of cont frac of 5142241511726533 a001 29/21*196418^(17/35) 5142241514162798 r002 8th iterates of z^2 + 5142241516897941 s004 Continued Fraction of A066172 5142241516897941 s004 Continued fraction of A066172 5142241533221204 k006 concat of cont frac of 5142241534221482 a007 Real Root Of -347*x^4+594*x^3+221*x^2+953*x-605 5142241563509214 r009 Im(z^3+c),c=-11/82+34/53*I,n=56 5142241585933556 r005 Re(z^2+c),c=1/3+3/40*I,n=32 5142241591158078 h001 (-5*exp(2)-9)/(-3*exp(8)+8) 5142241606350695 a001 123/53316291173*13^(5/16) 5142241626077385 m005 (1/2*Catalan-2/3)/(4*Zeta(3)-3/4) 5142241639373893 a001 55*11^(55/59) 5142241639921595 r005 Im(z^2+c),c=-27/38+5/38*I,n=18 5142241640499030 a007 Real Root Of 49*x^4-589*x^3+347*x^2-227*x-292 5142241666886289 h005 exp(cos(Pi*5/51)+cos(Pi*13/50)) 5142241684826495 b008 Sqrt[3]/5+Sqrt[23] 5142241697381058 a007 Real Root Of 695*x^4+100*x^3-548*x^2-442*x+310 5142241705671005 r009 Im(z^3+c),c=-19/78+23/36*I,n=24 5142241722408082 r009 Im(z^3+c),c=-9/110+23/35*I,n=8 5142241722649228 r009 Re(z^3+c),c=-45/86+3/31*I,n=25 5142241727181719 a001 165580141/2207*199^(4/11) 5142241735646671 r005 Im(z^2+c),c=-29/34+1/28*I,n=12 5142241746112541 r009 Im(z^3+c),c=-2/21+31/48*I,n=61 5142241748062771 a007 Real Root Of 919*x^4-184*x^3-40*x^2-232*x-198 5142241754780932 m005 (1/3*exp(1)+3/4)/(25/154+1/14*5^(1/2)) 5142241763690933 m005 (1/3*3^(1/2)-2/9)/(1/3*exp(1)+6) 5142241785045190 m005 (1/2*Catalan+1/3)/(4/5*5^(1/2)-1/4) 5142241787429772 r002 14th iterates of z^2 + 5142241820681445 a007 Real Root Of -19*x^4+77*x^3+928*x^2+286*x+687 5142241822852478 r009 Re(z^3+c),c=-7/66+41/58*I,n=40 5142241829010667 r005 Re(z^2+c),c=-9/20+23/56*I,n=4 5142241856213608 r005 Re(z^2+c),c=19/58+1/38*I,n=3 5142241867233558 r002 51th iterates of z^2 + 5142241883729342 a007 Real Root Of -731*x^4-829*x^3-939*x^2+936*x+668 5142241888868341 s002 sum(A134153[n]/(n^2*2^n-1),n=1..infinity) 5142241909408689 s004 Continued Fraction of A335121 5142241909435746 s004 Continued Fraction of A230997 5142241909435746 s004 Continued fraction of A230997 5142241924185208 a007 Real Root Of 689*x^4+111*x^3+730*x^2-935*x-50 5142241944019268 m001 Si(Pi)*gamma/exp(-1/2*Pi) 5142241944019268 m001 gamma*Si(Pi)/exp(-1/2*Pi) 5142241952479240 r009 Im(z^3+c),c=-35/94+33/61*I,n=13 5142241954296890 a001 39088169/322*843^(3/14) 5142241960295299 a001 3571/514229*832040^(6/19) 5142241960299645 a001 3571/9227465*7778742049^(6/19) 5142241966285510 r005 Im(z^2+c),c=-99/70+9/61*I,n=4 5142241969653417 m005 (1/12+1/6*5^(1/2))/(59/18+5/2*5^(1/2)) 5142241979395181 r005 Im(z^2+c),c=-35/52+1/53*I,n=42 5142241984712709 m004 150/Pi+Cos[Sqrt[5]*Pi]/6-Cosh[Sqrt[5]*Pi] 5142241990986485 m005 (1/2*5^(1/2)-7/10)/(1/3*gamma-1/9) 5142242002392582 r002 4th iterates of z^2 + 5142242030288655 a007 Real Root Of 912*x^4-349*x^3-772*x^2-856*x+628 5142242042302206 h001 (1/8*exp(2)+4/5)/(1/3*exp(2)+8/9) 5142242047252095 r005 Re(z^2+c),c=-49/78+15/56*I,n=21 5142242058158064 a007 Real Root Of -315*x^4+996*x^3-137*x^2+409*x+404 5142242071377747 r009 Re(z^3+c),c=-10/19+19/47*I,n=25 5142242073670469 r005 Re(z^2+c),c=15/106+16/33*I,n=44 5142242111134321 k007 concat of cont frac of 5142242111185212 k007 concat of cont frac of 5142242111237142 k008 concat of cont frac of 5142242114121162 k007 concat of cont frac of 5142242131159212 k008 concat of cont frac of 5142242142598228 m001 Salem*Riemann2ndZero^2/exp(Trott) 5142242151324211 k009 concat of cont frac of 5142242166902246 r005 Re(z^2+c),c=1/17+11/48*I,n=8 5142242170123033 r002 5th iterates of z^2 + 5142242171200934 r009 Im(z^3+c),c=-12/23+5/28*I,n=8 5142242211770747 m005 (1/2*2^(1/2)+7/11)/(8/9*5^(1/2)+5/8) 5142242212423215 k006 concat of cont frac of 5142242282114839 a003 cos(Pi*10/89)*sin(Pi*12/65) 5142242304713968 a001 9349/1346269*832040^(6/19) 5142242304715002 a001 9349/24157817*7778742049^(6/19) 5142242305817097 r005 Im(z^2+c),c=-103/126+1/29*I,n=12 5142242311714560 r009 Im(z^3+c),c=-3/46+35/54*I,n=47 5142242316143648 m001 (5^(1/2)+Zeta(1/2))/(Champernowne+Trott2nd) 5142242322114351 k007 concat of cont frac of 5142242327084226 r005 Re(z^2+c),c=7/30+22/39*I,n=7 5142242354963974 a001 12238/1762289*832040^(6/19) 5142242354964526 a001 12238/31622993*7778742049^(6/19) 5142242362295351 a001 64079/9227465*832040^(6/19) 5142242362295832 a001 64079/165580141*7778742049^(6/19) 5142242363364985 a001 167761/24157817*832040^(6/19) 5142242363365456 a001 167761/433494437*7778742049^(6/19) 5142242363521042 a001 219602/31622993*832040^(6/19) 5142242363521512 a001 219602/567451585*7778742049^(6/19) 5142242363543811 a001 1149851/165580141*832040^(6/19) 5142242363544280 a001 1149851/2971215073*7778742049^(6/19) 5142242363547133 a001 3010349/433494437*832040^(6/19) 5142242363547602 a001 3010349/7778742049*7778742049^(6/19) 5142242363547617 a001 3940598/567451585*832040^(6/19) 5142242363547688 a001 20633239/2971215073*832040^(6/19) 5142242363547698 a001 54018521/7778742049*832040^(6/19) 5142242363547700 a001 70711162/10182505537*832040^(6/19) 5142242363547700 a001 370248451/53316291173*832040^(6/19) 5142242363547700 a001 969323029/139583862445*832040^(6/19) 5142242363547700 a001 1268860318/182717648081*832040^(6/19) 5142242363547700 a001 6643838879/956722026041*832040^(6/19) 5142242363547700 a001 17393796001/2504730781961*832040^(6/19) 5142242363547700 a001 22768774562/3278735159921*832040^(6/19) 5142242363547700 a001 10525900321/1515744265389*832040^(6/19) 5142242363547700 a001 28143753123/4052739537881*832040^(6/19) 5142242363547700 a001 5374978561/774004377960*832040^(6/19) 5142242363547700 a001 4106118243/591286729879*832040^(6/19) 5142242363547700 a001 224056801/32264490531*832040^(6/19) 5142242363547700 a001 299537289/43133785636*832040^(6/19) 5142242363547700 a001 228826127/32951280099*832040^(6/19) 5142242363547701 a001 87403803/12586269025*832040^(6/19) 5142242363547705 a001 103681/14930208*832040^(6/19) 5142242363547732 a001 12752043/1836311903*832040^(6/19) 5142242363547917 a001 4870847/701408733*832040^(6/19) 5142242363548086 a001 3940598/10182505537*7778742049^(6/19) 5142242363548157 a001 20633239/53316291173*7778742049^(6/19) 5142242363548167 a001 54018521/139583862445*7778742049^(6/19) 5142242363548169 a001 70711162/182717648081*7778742049^(6/19) 5142242363548169 a001 370248451/956722026041*7778742049^(6/19) 5142242363548169 a001 969323029/2504730781961*7778742049^(6/19) 5142242363548169 a001 1268860318/3278735159921*7778742049^(6/19) 5142242363548169 a001 1368706081/3536736619241*7778742049^(6/19) 5142242363548169 a001 1568397607/4052739537881*7778742049^(6/19) 5142242363548169 a001 33281921/86000486440*7778742049^(6/19) 5142242363548169 a001 228826127/591286729879*7778742049^(6/19) 5142242363548170 a001 29134601/75283811239*7778742049^(6/19) 5142242363548174 a001 16692641/43133785636*7778742049^(6/19) 5142242363548201 a001 4250681/10983760033*7778742049^(6/19) 5142242363548386 a001 4870847/12586269025*7778742049^(6/19) 5142242363549186 a001 930249/133957148*832040^(6/19) 5142242363549655 a001 103361/267084832*7778742049^(6/19) 5142242363557882 a001 101521/14619165*832040^(6/19) 5142242363558351 a001 710647/1836311903*7778742049^(6/19) 5142242363617491 a001 271443/39088169*832040^(6/19) 5142242363617959 a001 90481/233802911*7778742049^(6/19) 5142242364026055 a001 51841/7465176*832040^(6/19) 5142242364026519 a001 51841/133957148*7778742049^(6/19) 5142242366826391 a001 39603/5702887*832040^(6/19) 5142242366826829 a001 13201/34111385*7778742049^(6/19) 5142242382221813 k007 concat of cont frac of 5142242386020186 a001 2161/311187*832040^(6/19) 5142242386020439 a001 15127/39088169*7778742049^(6/19) 5142242423319912 k006 concat of cont frac of 5142242428339643 r005 Re(z^2+c),c=-57/40+13/43*I,n=2 5142242432536874 m001 1/GAMMA(11/24)^2/ln(OneNinth)/GAMMA(7/12)^2 5142242436113399 r002 57th iterates of z^2 + 5142242449278427 m001 (OneNinth-Stephens)/(Kolakoski-Niven) 5142242471153724 a001 24157817/322*843^(2/7) 5142242483744933 m001 GAMMA(3/4)*LandauRamanujan2nd-Robbin 5142242494223432 r009 Im(z^3+c),c=-6/29+39/62*I,n=32 5142242502115111 k009 concat of cont frac of 5142242510533894 m005 (1/42+1/6*5^(1/2))/(3*exp(1)-4/9) 5142242517575399 a001 1/2584*7778742049^(6/19) 5142242517576411 a001 2889/416020*832040^(6/19) 5142242519272933 a003 sin(Pi*26/85)-sin(Pi*34/101) 5142242519507117 m001 (sin(1/5*Pi)+ln(3))/(FeigenbaumD+Gompertz) 5142242531839655 a007 Real Root Of 204*x^4+880*x^3-933*x^2-358*x-152 5142242537622078 r005 Im(z^2+c),c=-27/52+29/56*I,n=11 5142242539386770 a007 Real Root Of -54*x^4-277*x^3-26*x^2-268*x-598 5142242541102083 a007 Real Root Of 137*x^4-368*x^3-760*x^2-849*x+678 5142242541376847 r009 Im(z^3+c),c=-1/21+37/57*I,n=41 5142242550396842 a007 Real Root Of 872*x^4+204*x^3+371*x^2+129*x-65 5142242573259247 r005 Re(z^2+c),c=-27/122+41/63*I,n=60 5142242587126674 m001 BesselI(1,2)^(GAMMA(1/3)*ln(2+sqrt(3))) 5142242592822996 a007 Real Root Of -385*x^4+997*x^3+965*x^2-163*x-280 5142242598761573 m005 (1/2*2^(1/2)-1/4)/(1/2*2^(1/2)+2/11) 5142242628872665 a001 433494437/5778*199^(4/11) 5142242633218445 r009 Im(z^3+c),c=-2/21+31/48*I,n=55 5142242640776414 a001 9381251041*8^(9/11) 5142242652518057 r009 Im(z^3+c),c=-13/48+27/44*I,n=41 5142242681016899 r002 45th iterates of z^2 + 5142242688028161 m001 1/ln(Sierpinski)*CopelandErdos^2*Zeta(1,2)^2 5142242707627239 r009 Im(z^3+c),c=-27/82+28/47*I,n=61 5142242711140199 r009 Im(z^3+c),c=-7/30+13/21*I,n=25 5142242711211112 k008 concat of cont frac of 5142242711768120 a007 Real Root Of -116*x^4+602*x^3-690*x^2+357*x+456 5142242719916096 m008 (5/6*Pi^5+4/5)/(5*Pi^2+2/5) 5142242721549460 s002 sum(A018034[n]/(exp(pi*n)-1),n=1..infinity) 5142242728347115 r002 15th iterates of z^2 + 5142242732530910 m002 ProductLog[Pi]/4+(Log[Pi]*ProductLog[Pi])/5 5142242744120167 m001 (Zeta(5)+Bloch)/(3^(1/2)+Zeta(3)) 5142242760427628 a001 1134903170/15127*199^(4/11) 5142242777980908 a007 Real Root Of -558*x^4+150*x^3-871*x^2+687*x+643 5142242779621239 a001 2971215073/39603*199^(4/11) 5142242780190875 r002 9th iterates of z^2 + 5142242782421549 a001 7778742049/103682*199^(4/11) 5142242782830108 a001 20365011074/271443*199^(4/11) 5142242782889716 a001 53316291173/710647*199^(4/11) 5142242782898413 a001 139583862445/1860498*199^(4/11) 5142242782899682 a001 365435296162/4870847*199^(4/11) 5142242782899867 a001 956722026041/12752043*199^(4/11) 5142242782899894 a001 2504730781961/33385282*199^(4/11) 5142242782899898 a001 6557470319842/87403803*199^(4/11) 5142242782899899 a001 10610209857723/141422324*199^(4/11) 5142242782899900 a001 4052739537881/54018521*199^(4/11) 5142242782899911 a001 140728068720/1875749*199^(4/11) 5142242782899982 a001 591286729879/7881196*199^(4/11) 5142242782900466 a001 225851433717/3010349*199^(4/11) 5142242782903788 a001 86267571272/1149851*199^(4/11) 5142242782926556 a001 32951280099/439204*199^(4/11) 5142242783082612 a001 75025*199^(4/11) 5142242784152235 a001 4807526976/64079*199^(4/11) 5142242790382276 m001 (BesselK(1,1)-exp(Pi))/(-Gompertz+MertensB2) 5142242791483543 a001 1836311903/24476*199^(4/11) 5142242805890001 r009 Re(z^3+c),c=-63/122+28/57*I,n=34 5142242811102849 h001 (-5*exp(-1)-7)/(-8*exp(1/2)-4) 5142242839371232 a007 Real Root Of 905*x^4+350*x^3+81*x^2-801*x-449 5142242841733069 a001 701408733/9349*199^(4/11) 5142242852135692 r005 Re(z^2+c),c=-75/122+19/55*I,n=26 5142242885995771 a003 cos(Pi*16/103)*sin(Pi*18/91) 5142242887876609 r009 Im(z^3+c),c=-25/118+39/62*I,n=35 5142242888457862 r002 7th iterates of z^2 + 5142242896879078 a007 Real Root Of 393*x^4-303*x^3-250*x^2-487*x-253 5142242898197083 a008 Real Root of x^4-2*x^3-28*x^2+22*x+200 5142242915122012 k009 concat of cont frac of 5142242919975692 r009 Im(z^3+c),c=-2/21+31/48*I,n=59 5142242930209844 m004 -3+(25*Pi)/E^(Sqrt[5]*Pi)-3*Cos[Sqrt[5]*Pi] 5142242931008128 r009 Re(z^3+c),c=-59/110+11/54*I,n=28 5142242939719668 r002 6th iterates of z^2 + 5142242942089795 a007 Real Root Of 9*x^4+453*x^3-492*x^2+624*x+262 5142242976171126 a007 Real Root Of 180*x^4+961*x^3+375*x^2+921*x-367 5142242985999835 m005 (1/2*2^(1/2)-6)/(1/10*Zeta(3)+10/11) 5142242988010601 a001 7465176/161*843^(5/14) 5142242989610432 m001 exp(1/exp(1))/(Weierstrass^Niven) 5142242997666593 a007 Real Root Of -508*x^4+891*x^3+872*x^2+591*x+230 5142243005485665 m001 1/cosh(1)^2/Zeta(3)^2/exp(sqrt(3)) 5142243013960537 r002 31th iterates of z^2 + 5142243078720821 m005 (1/3*3^(1/2)+1/9)/(5/8*2^(1/2)-3/4) 5142243089341776 r009 Im(z^3+c),c=-1/32+24/37*I,n=19 5142243112124122 k007 concat of cont frac of 5142243117139820 r005 Re(z^2+c),c=31/122+17/36*I,n=27 5142243121522102 k006 concat of cont frac of 5142243123111112 k006 concat of cont frac of 5142243135619901 r005 Im(z^2+c),c=-41/30+15/107*I,n=7 5142243136813086 m001 (GAMMA(19/24)-GaussAGM)/(Ei(1,1)+BesselJ(1,1)) 5142243143371321 r005 Re(z^2+c),c=-23/34+16/91*I,n=29 5142243162835876 a007 Real Root Of 57*x^4+172*x^3-459*x^2+959*x+601 5142243167155208 a001 36/341*(1/2+1/2*5^(1/2))^32 5142243167155208 a001 36/341*23725150497407^(1/2) 5142243167155208 a001 36/341*505019158607^(4/7) 5142243167155208 a001 36/341*73681302247^(8/13) 5142243167155208 a001 36/341*10749957122^(2/3) 5142243167155208 a001 36/341*4106118243^(16/23) 5142243167155208 a001 36/341*1568397607^(8/11) 5142243167155208 a001 36/341*599074578^(16/21) 5142243167155208 a001 36/341*228826127^(4/5) 5142243167155209 a001 36/341*87403803^(16/19) 5142243167155212 a001 36/341*33385282^(8/9) 5142243167155238 a001 36/341*12752043^(16/17) 5142243167632072 a001 305/161*141422324^(2/3) 5142243167632073 a001 305/161*(1/2+1/2*5^(1/2))^26 5142243167632073 a001 305/161*73681302247^(1/2) 5142243167632073 a001 305/161*10749957122^(13/24) 5142243167632073 a001 305/161*4106118243^(13/23) 5142243167632073 a001 305/161*1568397607^(13/22) 5142243167632073 a001 305/161*599074578^(13/21) 5142243167632073 a001 305/161*228826127^(13/20) 5142243167632073 a001 305/161*87403803^(13/19) 5142243167632076 a001 305/161*33385282^(13/18) 5142243167632097 a001 305/161*12752043^(13/17) 5142243167632249 a001 305/161*4870847^(13/16) 5142243167633360 a001 305/161*1860498^(13/15) 5142243167641527 a001 305/161*710647^(13/14) 5142243179002856 r005 Re(z^2+c),c=-2/3+17/245*I,n=11 5142243186148475 a001 267914296/3571*199^(4/11) 5142243191724344 r002 3th iterates of z^2 + 5142243192871215 r002 40th iterates of z^2 + 5142243211141137 k006 concat of cont frac of 5142243220121103 k007 concat of cont frac of 5142243245001099 p004 log(37529/22441) 5142243252912125 k006 concat of cont frac of 5142243261850257 r002 3th iterates of z^2 + 5142243273373397 m001 (BesselK(0,1)-GAMMA(11/12))/(-MertensB3+Paris) 5142243275635371 r009 Im(z^3+c),c=-31/90+22/37*I,n=36 5142243323689849 r009 Re(z^3+c),c=-3/86+37/51*I,n=17 5142243332121011 k008 concat of cont frac of 5142243343283771 a007 Real Root Of -45*x^4-264*x^3-267*x^2-503*x+41 5142243344777291 r005 Im(z^2+c),c=13/42+27/53*I,n=17 5142243355947395 a001 682/17*610^(28/37) 5142243385452893 r009 Im(z^3+c),c=-33/82+23/40*I,n=35 5142243397039862 p004 log(35171/21031) 5142243403791154 r002 18th iterates of z^2 + 5142243412114213 k007 concat of cont frac of 5142243415127855 r009 Im(z^3+c),c=-41/78+1/6*I,n=33 5142243416947447 m001 1/BesselK(1,1)^2/ln(MinimumGamma)/sqrt(2) 5142243419266511 a001 2207/5702887*7778742049^(6/19) 5142243419276192 a001 2207/317811*832040^(6/19) 5142243431411252 k006 concat of cont frac of 5142243441631246 m001 (RenyiParking+Trott2nd)/(ln(2^(1/2)+1)+Kac) 5142243454726521 r009 Im(z^3+c),c=-1/38+35/54*I,n=19 5142243461614977 m001 exp(Lehmer)^2/Artin*sin(Pi/5) 5142243503569169 s001 sum(1/10^(n-1)*A267796[n],n=1..infinity) 5142243503569169 s001 sum(1/10^n*A267796[n],n=1..infinity) 5142243504867553 a001 9227465/322*843^(3/7) 5142243507583300 m001 Zeta(7)^2/ln(Trott)^2/cos(Pi/12) 5142243512220333 k007 concat of cont frac of 5142243525727294 r009 Re(z^3+c),c=-51/86+43/50*I,n=2 5142243531173031 k009 concat of cont frac of 5142243539329454 m001 (Si(Pi)+sin(1/12*Pi))/(CopelandErdos+ZetaP(3)) 5142243540395555 a001 3571/233*4807526976^(6/23) 5142243542921309 h001 (8/11*exp(1)+7/12)/(3/5*exp(2)+6/11) 5142243555876375 r005 Im(z^2+c),c=-7/60+1/16*I,n=9 5142243567917898 a007 Real Root Of 758*x^4-910*x^3-520*x^2-159*x+290 5142243569306367 r005 Re(z^2+c),c=-59/110+28/61*I,n=30 5142243578449157 r002 12th iterates of z^2 + 5142243583246036 r009 Im(z^3+c),c=-2/21+31/48*I,n=57 5142243589210312 a007 Real Root Of 709*x^4-601*x^3+396*x^2-597*x-543 5142243592774175 m001 1/2*2^(1/2)*(2^(1/2)*Artin)^(1/2) 5142243607360919 m001 1/GAMMA(2/3)*FeigenbaumKappa^2*ln(cos(1))^2 5142243615863219 m005 (7/44+1/4*5^(1/2))/(43/42+1/6*5^(1/2)) 5142243631945126 r005 Im(z^2+c),c=17/90+22/49*I,n=10 5142243651171311 k007 concat of cont frac of 5142243659408205 r009 Im(z^3+c),c=-13/60+27/43*I,n=35 5142243662523662 r009 Re(z^3+c),c=-19/30+18/37*I,n=10 5142243663445056 r002 10th iterates of z^2 + 5142243676745276 a007 Real Root Of 65*x^4-501*x^3+399*x^2-515*x-443 5142243686292989 r009 Im(z^3+c),c=-5/44+55/56*I,n=24 5142243690699379 m001 (Lehmer-PrimesInBinary)/(ln(3)-exp(1/exp(1))) 5142243692968330 q001 958/1863 5142243699135660 r005 Re(z^2+c),c=-9/14+37/158*I,n=23 5142243712383716 m001 (1+gamma(3))/(-FransenRobinson+Thue) 5142243719077298 m001 Pi-Psi(1,1/3)-Zeta(1,2)/polylog(4,1/2) 5142243725731713 s002 sum(A018113[n]/(n^3*pi^n-1),n=1..infinity) 5142243733975341 l006 ln(2710/2853) 5142243741466960 r009 Re(z^3+c),c=-29/70+1/17*I,n=3 5142243756368731 m007 (-5/6*gamma+2/5)/(-1/4*gamma-1/2*ln(2)+1/3) 5142243768600909 m001 ln(MinimumGamma)*Artin*BesselK(1,1)^2 5142243769923645 m002 2+Pi+Tanh[Pi]/(5*Pi^5) 5142243780161355 b008 5+E^(-2+E^(-3)) 5142243790793652 m001 PlouffeB/(StronglyCareFree^HardyLittlewoodC4) 5142243796184084 r005 Re(z^2+c),c=5/86+37/59*I,n=16 5142243805541487 m001 exp(-1/2*Pi)/(polylog(4,1/2)^exp(1/Pi)) 5142243812400070 b008 Sqrt[6]+Pi*Tanh[Glaisher] 5142243812691289 r002 10th iterates of z^2 + 5142243816441930 m001 (Psi(2,1/3)+Shi(1)*TravellingSalesman)/Shi(1) 5142243821266828 m001 (exp(-1/2*Pi)-sin(1))/(-OneNinth+Totient) 5142243845343195 r005 Im(z^2+c),c=-81/106+13/34*I,n=3 5142243845583903 m008 (3/4*Pi^4-5)/(1/6*Pi^4-3) 5142243858625511 l003 KelvinKer(0,63/85) 5142243874524891 m003 -49-Sinh[1/2+Sqrt[5]/2] 5142243886055578 r005 Re(z^2+c),c=-61/90+8/35*I,n=42 5142243908613478 r002 8th iterates of z^2 + 5142243918862048 r002 2th iterates of z^2 + 5142243929117115 m001 Psi(1,1/3)*FellerTornier^Gompertz 5142243931968115 m002 -5*Csch[Pi]+4*Log[Pi]+Tanh[Pi] 5142243938406203 m001 (GAMMA(11/12)-ZetaQ(4))/(ln(5)+BesselJ(1,1)) 5142243942439518 a001 64079/233*75025^(6/23) 5142243969833118 a007 Real Root Of 878*x^4-421*x^3+34*x^2-905*x-593 5142243983277168 a007 Real Root Of 758*x^4-366*x^3+867*x^2-877*x-783 5142244002281660 r009 Im(z^3+c),c=-2/21+31/48*I,n=52 5142244021724497 a001 5702887/322*843^(1/2) 5142244034946036 a007 Real Root Of 311*x^4-305*x^3-702*x^2-186*x+301 5142244059585262 m006 (4/5*Pi^2-1/4)/(3/5*ln(Pi)+4/5) 5142244064796177 m005 (1/3*Pi-1/5)/(8/9*Catalan+5/6) 5142244068263721 r002 9th iterates of z^2 + 5142244082562465 r005 Re(z^2+c),c=11/114+3/7*I,n=27 5142244105076850 m009 (1/3*Pi^2-2)/(1/5*Psi(1,3/4)+2) 5142244175429244 r005 Re(z^2+c),c=-17/26+40/117*I,n=21 5142244190729597 r009 Im(z^3+c),c=-37/102+29/49*I,n=58 5142244202536753 r009 Im(z^3+c),c=-8/23+3/5*I,n=37 5142244209719006 a007 Real Root Of -740*x^4+132*x^3-58*x^2+912*x+554 5142244212778049 r009 Im(z^3+c),c=-13/58+12/19*I,n=26 5142244222835376 r009 Im(z^3+c),c=-19/74+27/44*I,n=28 5142244224516927 a003 sin(Pi*1/107)/sin(Pi*1/55) 5142244255405245 m001 2/3-GAMMA(1/4)^Zeta(1/2) 5142244270598184 r009 Im(z^3+c),c=-19/60+14/23*I,n=26 5142244275592770 m005 (5/6+1/4*5^(1/2))/(Catalan-8/9) 5142244291288524 a003 cos(Pi*16/89)*sin(Pi*5/24) 5142244312113121 k006 concat of cont frac of 5142244326711648 a007 Real Root Of -728*x^4-66*x^3+914*x^2+611*x-496 5142244335966362 m001 (sin(1)+cos(1))/(Khinchin+ZetaQ(4)) 5142244338601194 m001 (Kac+MertensB3)/(BesselI(0,2)+GAMMA(7/12)) 5142244341078944 g002 Psi(7/12)+Psi(1/9)-Psi(3/10)-Psi(3/7) 5142244342602036 m001 (Landau+Sierpinski)/(2^(1/2)+FeigenbaumDelta) 5142244349966852 m001 FeigenbaumMu^(Conway/BesselK(0,1)) 5142244355590881 m001 (KhinchinLevy+Thue)/(BesselJ(1,1)-Chi(1)) 5142244361986464 a001 6/329*10946^(41/48) 5142244371822438 r002 11th iterates of z^2 + 5142244374958594 a003 cos(Pi*18/109)-sin(Pi*42/113) 5142244382214329 r005 Im(z^2+c),c=-63/110+5/11*I,n=3 5142244387649530 a007 Real Root Of 218*x^4+970*x^3-867*x^2-347*x+608 5142244395350436 r005 Im(z^2+c),c=15/56+33/64*I,n=9 5142244399460154 m002 5*Pi^4+(E^Pi*Cosh[Pi])/Pi^2 5142244411800543 r005 Im(z^2+c),c=-17/74+29/52*I,n=4 5142244418019985 r005 Re(z^2+c),c=-127/102+7/31*I,n=8 5142244430663496 m001 (KomornikLoreti-Riemann2ndZero)^MertensB3 5142244438847630 a007 Real Root Of 929*x^4-452*x^3-584*x^2-809*x-388 5142244453232242 k007 concat of cont frac of 5142244474846915 g001 Psi(5/9,45/119) 5142244485266871 m001 (ln(3)-GAMMA(5/6))/(Stephens+Trott) 5142244498227946 m001 1/ln(Kolakoski)/Champernowne*Zeta(1/2) 5142244510153488 r002 59th iterates of z^2 + 5142244524794060 r002 19th iterates of z^2 + 5142244536730887 a001 14619165/46*322^(1/12) 5142244538581650 a001 1762289/161*843^(4/7) 5142244546188404 m001 (Catalan+ln(2))/(MasserGramainDelta+Mills) 5142244552006222 m001 1/ln(GAMMA(23/24))/BesselJ(1,1)*gamma 5142244553154271 r002 58th iterates of z^2 + 5142244558221877 m001 (Zeta(1,2)-cos(1))/(MertensB2+Tribonacci) 5142244570042328 m001 (ArtinRank2*Weierstrass+Trott2nd)/ArtinRank2 5142244574582021 m001 LandauRamanujan*QuadraticClass^Pi 5142244584520766 r005 Re(z^2+c),c=-17/30+25/62*I,n=27 5142244587926396 m001 Psi(2,1/3)/PrimesInBinary/Sierpinski 5142244605129658 a007 Real Root Of 764*x^4-782*x^3-71*x^2-107*x-196 5142244606103400 m001 (Pi^(1/2)+Tribonacci)/(Zeta(1,2)+GAMMA(13/24)) 5142244612595132 a007 Real Root Of -851*x^4+587*x^3+657*x^2+802*x+378 5142244617223208 r009 Im(z^3+c),c=-13/36+12/23*I,n=10 5142244639983400 h001 (1/5*exp(1)+7/12)/(5/7*exp(1)+1/4) 5142244668430132 m001 (gamma(2)-BesselI(1,1))/(Otter-Riemann1stZero) 5142244693947394 m001 Si(Pi)/(Catalan+Khinchin) 5142244696076408 m001 1/(2^(1/3))^2*LaplaceLimit/exp(GAMMA(5/24)) 5142244705085248 m001 Paris/(ReciprocalLucas^cos(1/12*Pi)) 5142244709742761 g005 GAMMA(8/11)*GAMMA(5/7)/GAMMA(5/11)/GAMMA(5/9) 5142244712954723 r005 Re(z^2+c),c=-49/78+12/41*I,n=15 5142244719826623 m001 (LambertW(1)+sin(1/5*Pi))/(-Otter+Rabbit) 5142244728267807 b008 -1/2+BesselJ[0,15] 5142244730746775 a003 sin(Pi*13/101)/sin(Pi*33/119) 5142244732005042 r002 12th iterates of z^2 + 5142244749053951 r009 Im(z^3+c),c=-5/74+36/49*I,n=10 5142244752204666 a007 Real Root Of -35*x^4-55*x^3+650*x^2+69*x+161 5142244752284982 m001 Zeta(9)*exp(Zeta(3))^2*arctan(1/2) 5142244757915948 m005 (1/2*Pi-9/11)/(3/4*Catalan-5/6) 5142244769242612 m005 (1/2*Catalan+1/6)/(7/12*3^(1/2)-8/9) 5142244775069762 r005 Im(z^2+c),c=7/23+19/49*I,n=48 5142244789597705 r009 Im(z^3+c),c=-29/78+27/49*I,n=13 5142244809403428 r005 Im(z^2+c),c=-13/62+25/41*I,n=13 5142244820613574 m005 (1/2*5^(1/2)+1/5)/(7/11*exp(1)+5/6) 5142244835308111 m001 FeigenbaumD/exp(Si(Pi))^2/GAMMA(17/24) 5142244886337324 m001 (ln(5)-Zeta(1/2))/(Backhouse-Thue) 5142244891009667 a007 Real Root Of 323*x^4-672*x^3+255*x^2-746*x-565 5142244918409181 p001 sum((-1)^n/(411*n+178)/(3^n),n=0..infinity) 5142244935594200 m001 (-KhinchinLevy+Niven)/(Psi(1,1/3)+gamma(2)) 5142244943070323 a007 Real Root Of -263*x^4+3*x^3+954*x^2+402*x-441 5142244953213595 a007 Real Root Of -255*x^4+657*x^3-550*x^2-464*x+14 5142244961756336 m001 (ErdosBorwein-ZetaP(3))/(ln(Pi)+GAMMA(13/24)) 5142244983863788 m005 (1/2*exp(1)-2/3)/(5/6*Catalan+7/12) 5142245006018607 m005 (1/2*3^(1/2)+3/4)/(2/7*Pi-7/12) 5142245018712386 a007 Real Root Of 477*x^4-797*x^3+236*x^2-238*x+135 5142245023634714 r009 Im(z^3+c),c=-27/46+27/53*I,n=22 5142245046594731 m001 BesselI(0,1)^HeathBrownMoroz/DuboisRaymond 5142245055438442 a001 311187/46*843^(9/14) 5142245068253421 r009 Re(z^3+c),c=-12/31+1/64*I,n=20 5142245079953665 r009 Im(z^3+c),c=-11/48+18/29*I,n=23 5142245092892019 r005 Im(z^2+c),c=17/90+29/59*I,n=18 5142245110154319 r009 Im(z^3+c),c=-19/78+31/44*I,n=58 5142245112911313 k006 concat of cont frac of 5142245163314528 a003 cos(Pi*11/119)*sin(Pi*11/61) 5142245173692770 r005 Im(z^2+c),c=-67/60+1/16*I,n=38 5142245174348275 r005 Re(z^2+c),c=-17/98+14/17*I,n=45 5142245191715718 r002 54th iterates of z^2 + 5142245196377855 r002 49th iterates of z^2 + 5142245196891765 m005 (1/3*exp(1)+3/7)/(-23/8+1/8*5^(1/2)) 5142245220988783 a007 Real Root Of 888*x^4-851*x^3-767*x^2-180*x+349 5142245260688382 r005 Im(z^2+c),c=-107/122+1/27*I,n=34 5142245266023509 l006 ln(5933/9922) 5142245278640450 a001 514229-2*5^(1/2) 5142245300486713 m005 (1/2*Zeta(3)-6)/(5/8*Catalan-4/7) 5142245302259591 m006 (3/4*exp(2*Pi)-4)/(4/Pi-1/2) 5142245306860786 h001 (4/5*exp(1)+6/11)/(2/3*exp(2)+4/11) 5142245307495894 r009 Im(z^3+c),c=-11/46+28/45*I,n=60 5142245312941990 m001 BesselJ(0,1)^2/ln(MinimumGamma)/sqrt(3)^2 5142245332160036 a007 Real Root Of -167*x^4-255*x^3+218*x^2+612*x-326 5142245334964821 q001 1681/3269 5142245343613179 r009 Re(z^3+c),c=-49/118+1/28*I,n=52 5142245349311964 m001 (Chi(1)-KomornikLoreti)/(MadelungNaCl+Paris) 5142245354099547 r002 25th iterates of z^2 + 5142245363695803 m005 (1/2*gamma+2/3)/(6/11*exp(1)+3/8) 5142245389995607 a007 Real Root Of 205*x^4-137*x^3-617*x^2-285*x+314 5142245394052026 m001 (MertensB1+Mills)/(3^(1/2)+ln(2+3^(1/2))) 5142245422423296 p003 LerchPhi(1/8,3,293/233) 5142245423577114 a007 Real Root Of 784*x^4-487*x^3-283*x^2-89*x+132 5142245431511081 s002 sum(A164507[n]/(2^n-1),n=1..infinity) 5142245442882482 r002 12th iterates of z^2 + 5142245442903346 l006 ln(5698/9529) 5142245446120154 a007 Real Root Of 978*x^4-443*x^3+833*x^2-500*x-606 5142245456471841 r009 Im(z^3+c),c=-31/90+35/59*I,n=36 5142245463315357 a007 Real Root Of 889*x^4-237*x^3-459*x^2-702*x-334 5142245471951072 h001 (3/4*exp(1)+5/11)/(6/11*exp(2)+9/11) 5142245482799698 a007 Real Root Of -878*x^4+91*x^3-403*x^2+679*x+36 5142245502203345 r009 Im(z^3+c),c=-31/94+37/62*I,n=57 5142245509544265 r004 Im(z^2+c),c=-23/38+2/21*I,z(0)=-1,n=62 5142245546808028 a001 9303105/124*199^(4/11) 5142245572296370 a001 1346269/322*843^(5/7) 5142245576409370 r002 6th iterates of z^2 + 5142245598200116 a007 Real Root Of -642*x^4+869*x^3-935*x^2+85*x+454 5142245611873588 r002 3th iterates of z^2 + 5142245635000738 l006 ln(5463/9136) 5142245663839929 r005 Im(z^2+c),c=3/19+16/33*I,n=9 5142245685635466 p004 log(36151/21617) 5142245686105428 a007 Real Root Of 920*x^4-227*x^3-138*x^2-947*x+490 5142245692968524 r009 Im(z^3+c),c=-47/106+19/40*I,n=17 5142245728349450 m005 (1/2*2^(1/2)-10/11)/(1/6*Catalan-6/11) 5142245736858790 a007 Real Root Of -574*x^4+208*x^3-888*x^2-930*x-175 5142245776990262 m001 (Lehmer+ThueMorse)/(Zeta(5)-sin(1)) 5142245784838183 m001 (GAMMA(1/4)*Zeta(5)-Ei(1))/GAMMA(1/4) 5142245830976308 a003 cos(Pi*3/13)*sin(Pi*27/112) 5142245841827797 m001 1/GAMMA(17/24)/CopelandErdos^2/exp(Zeta(9)) 5142245844367784 l006 ln(5228/8743) 5142245856916324 m009 (1/5*Pi^2+5/6)/(24*Catalan+3*Pi^2+3) 5142245871574368 m001 (sin(1/5*Pi)-FeigenbaumMu)/(Gompertz-Salem) 5142245886773024 a007 Real Root Of 617*x^4-338*x^3-315*x^2-576*x-302 5142245891915967 r002 54th iterates of z^2 + 5142245892179028 a007 Real Root Of 60*x^4+125*x^3-769*x^2+764*x-693 5142245894081685 m001 1/Zeta(7)*MertensB1/exp(cos(Pi/5))^2 5142245902453213 m001 GAMMA(2/3)*ln(Conway)^2*cos(1) 5142245921060444 r009 Re(z^3+c),c=-16/31+3/44*I,n=17 5142245921107840 r005 Re(z^2+c),c=3/122+24/37*I,n=25 5142245946053468 m002 1+Csch[Pi]-Log[Pi]/2 5142245952454416 r009 Im(z^3+c),c=-12/19+24/41*I,n=3 5142245953903400 m001 (exp(1/Pi)+1/2)/(-GAMMA(2/3)+5) 5142245963884138 m001 1/Lehmer*Si(Pi)^2/ln(GAMMA(7/24)) 5142245981040102 a007 Real Root Of 206*x^4+917*x^3-841*x^2-687*x-644 5142245992759215 r009 Re(z^3+c),c=-16/31+26/53*I,n=40 5142246005442506 m001 (BesselI(0,1)+GAMMA(13/24))/(-Stephens+Trott) 5142246010762129 a007 Real Root Of 676*x^4-269*x^3+496*x^2-215 5142246029667542 m001 Gompertz-ln(Pi)^StronglyCareFree 5142246029749502 m001 exp(cosh(1))/GAMMA(17/24)/sin(1)^2 5142246050351294 a007 Real Root Of 143*x^4+752*x^3+136*x^2+190*x-354 5142246073442918 l006 ln(4993/8350) 5142246089151512 a001 416020/161*843^(11/14) 5142246092150113 m002 -5+Pi^3+E^Pi*Log[Pi]-ProductLog[Pi] 5142246095753497 a007 Real Root Of 621*x^4-183*x^3-156*x^2-418*x-242 5142246111232122 k007 concat of cont frac of 5142246128955339 a007 Real Root Of -70*x^4+456*x^3-561*x^2+229*x+333 5142246133059822 r005 Re(z^2+c),c=-65/126+17/30*I,n=46 5142246141011118 k006 concat of cont frac of 5142246144032696 r009 Re(z^3+c),c=-49/118+2/57*I,n=34 5142246151718345 r002 31th iterates of z^2 + 5142246151980059 a007 Real Root Of 171*x^4+813*x^3-204*x^2+774*x+356 5142246169499482 a008 Real Root of x^4-2*x^3-11*x^2-52*x+131 5142246173531014 a005 (1/cos(13/189*Pi))^461 5142246185502370 a001 2584/123*3^(22/27) 5142246206318403 m002 2+1/(5*Pi^5)+Pi 5142246221457320 r009 Re(z^3+c),c=-17/54+29/36*I,n=3 5142246241896028 a007 Real Root Of -205*x^4+512*x^3-538*x^2-226*x+110 5142246265894301 m001 (LandauRamanujan+MinimumGamma)/(1-LambertW(1)) 5142246271717952 m001 (1-3^(1/2))/(-PisotVijayaraghavan+Porter) 5142246272564337 m005 (1/2*exp(1)+2/3)/(1/5*2^(1/2)+1/9) 5142246284284243 r009 Re(z^3+c),c=-2/23+40/61*I,n=15 5142246296118124 m006 (5/6*ln(Pi)-3)/(4*ln(Pi)-3/5) 5142246298971167 r002 18th iterates of z^2 + 5142246307401239 r002 6th iterates of z^2 + 5142246309567586 m001 (cos(1/5*Pi)-arctan(1/2))/(Ei(1,1)+ZetaP(2)) 5142246311536685 r005 Im(z^2+c),c=-29/82+16/27*I,n=30 5142246314069286 a007 Real Root Of 825*x^4+24*x^3+400*x^2+119*x-99 5142246318489111 a007 Real Root Of -463*x^4+307*x^3-486*x^2+483*x+451 5142246325146318 l006 ln(4758/7957) 5142246329441776 m001 (Ei(1)+GAMMA(5/6))/(Pi^(1/2)-FeigenbaumC) 5142246330175623 a007 Real Root Of 585*x^4-941*x^3+558*x^2-668*x+283 5142246351247206 k002 Champernowne real with 201/2*n^2-585/2*n+197 5142246354929339 r009 Im(z^3+c),c=-29/114+26/37*I,n=56 5142246410161370 m001 (Ei(1,1)-BesselI(1,1))/(MertensB3-TwinPrimes) 5142246410205961 r005 Re(z^2+c),c=-22/31+5/49*I,n=55 5142246427418631 r005 Re(z^2+c),c=-65/126+17/30*I,n=56 5142246428757975 m001 Khintchine*FeigenbaumAlpha^2/exp(Lehmer)^2 5142246443954360 a007 Real Root Of -270*x^4+792*x^3+382*x^2+399*x-395 5142246443964635 m001 KhinchinLevy*Salem-QuadraticClass 5142246445937100 a001 11/317811*17711^(8/29) 5142246475766438 a007 Real Root Of 483*x^4-864*x^3-484*x^2-584*x+512 5142246482227675 r005 Re(z^2+c),c=-65/126+17/30*I,n=61 5142246493170181 a007 Real Root Of -647*x^4+599*x^3+345*x^2+530*x+308 5142246500952084 a003 cos(Pi*2/115)-sin(Pi*14/87) 5142246526355453 a007 Real Root Of 654*x^4+520*x^3-271*x^2-783*x-306 5142246534086900 m001 (Landau+MertensB2)/(1-ln(2)) 5142246586189490 a007 Real Root Of 198*x^4-637*x^3-963*x^2-709*x+692 5142246591006619 m001 (Niven-Totient)/(Zeta(5)-MadelungNaCl) 5142246603005049 l006 ln(4523/7564) 5142246606014134 a001 514229/322*843^(6/7) 5142246606925249 r002 64th iterates of z^2 + 5142246611722154 m001 (polylog(4,1/2)+Cahen)/(BesselI(1,1)-exp(Pi)) 5142246616088582 a007 Real Root Of -619*x^4+364*x^3+457*x^2+778*x+372 5142246629878947 r005 Re(z^2+c),c=-65/126+17/30*I,n=51 5142246650682912 r009 Im(z^3+c),c=-5/106+28/43*I,n=14 5142246659675161 r005 Re(z^2+c),c=-65/126+17/30*I,n=41 5142246679419720 a007 Real Root Of -608*x^4+765*x^3+871*x^2+399*x-497 5142246719534318 r005 Re(z^2+c),c=-61/44+6/41*I,n=2 5142246723580946 m001 exp(Robbin)*ArtinRank2^2/GAMMA(2/3)^2 5142246726575138 r009 Re(z^3+c),c=-3/28+21/29*I,n=59 5142246736592277 m001 (3^(1/3)+Grothendieck)/(HeathBrownMoroz+Kac) 5142246762043184 r002 34th iterates of z^2 + 5142246771340938 m005 (1/3*3^(1/2)+3/5)/(77/60+9/20*5^(1/2)) 5142246782183496 m001 (sin(1/5*Pi)+Tetranacci)/(ThueMorse+ZetaP(4)) 5142246798069308 a007 Real Root Of -39*x^4+479*x^3+39*x^2+524*x+327 5142246831115444 p004 log(29077/17387) 5142246869157761 a007 Real Root Of 366*x^4-796*x^3+587*x^2-806*x+40 5142246889143319 m005 (1/2*2^(1/2)+1/10)/(7/9*Catalan+6/7) 5142246899578028 a007 Real Root Of 144*x^4+643*x^3-423*x^2+380*x-116 5142246908017009 r005 Re(z^2+c),c=-5/7+2/75*I,n=35 5142246911038512 m005 (4*Catalan-1/3)/(5/6*gamma+1/6) 5142246911319369 l006 ln(4288/7171) 5142246914394094 r005 Im(z^2+c),c=-29/44+5/51*I,n=57 5142246918796632 a007 Real Root Of -841*x^4+474*x^3-219*x^2+375*x+374 5142246929915285 a007 Real Root Of 480*x^4-870*x^3-656*x^2-935*x+739 5142246937219408 a007 Real Root Of 46*x^4-382*x^3+465*x^2-519*x-445 5142246943411333 s002 sum(A100832[n]/(exp(pi*n)+1),n=1..infinity) 5142246985901152 m001 1/Riemann3rdZero/ln(Cahen)*LambertW(1) 5142246995622459 m009 (5/6*Psi(1,1/3)-2/3)/(3/4*Psi(1,3/4)-2/5) 5142247003326810 m001 (1+sin(1/5*Pi))/(-Bloch+Weierstrass) 5142247019730660 a007 Real Root Of -162*x^4-954*x^3-641*x^2-104*x-32 5142247032168209 a001 521/21*34^(49/57) 5142247034405956 r005 Re(z^2+c),c=-51/74+8/37*I,n=46 5142247070755202 r009 Im(z^3+c),c=-7/15+16/33*I,n=47 5142247081700374 r009 Im(z^3+c),c=-53/126+6/11*I,n=36 5142247088085951 r005 Im(z^2+c),c=15/44+11/41*I,n=20 5142247092845368 s001 sum(1/10^(n-1)*A114504[n]/n^n,n=1..infinity) 5142247113295304 m005 (1/3*gamma+1/11)/(4/5*Catalan-2/11) 5142247120354461 r009 Im(z^3+c),c=-15/82+13/18*I,n=56 5142247122857361 a001 317811/322*843^(13/14) 5142247123250563 a007 Real Root Of 740*x^4-577*x^3-902*x^2-479*x-138 5142247123322647 a007 Real Root Of -12*x^4-617*x^3+8*x^2+234*x+350 5142247131392107 r005 Im(z^2+c),c=-7/6+34/147*I,n=36 5142247136296713 m001 (5^(1/2)+arctan(1/3))/(Artin+Champernowne) 5142247141121142 k007 concat of cont frac of 5142247170893849 m003 5+Sqrt[5]/16+(Sqrt[5]*Cos[1/2+Sqrt[5]/2]^2)/2 5142247172042709 r005 Re(z^2+c),c=-27/44+19/51*I,n=10 5142247182306185 r009 Re(z^3+c),c=-1/106+23/33*I,n=53 5142247192735033 p001 sum(1/(419*n+223)/(3^n),n=0..infinity) 5142247205083125 a007 Real Root Of -317*x^4-353*x^3+207*x^2+954*x+410 5142247219503354 a007 Real Root Of -156*x^4-944*x^3-667*x^2+304*x-82 5142247228343154 a007 Real Root Of -363*x^4+344*x^3+778*x^2+62*x-259 5142247233176317 m001 (Champernowne+PlouffeB)/(Totient-ZetaP(3)) 5142247235405369 p001 sum((-1)^n/(555*n+214)/n/(25^n),n=1..infinity) 5142247245772980 m001 (FellerTornier-PlouffeB)/(ln(Pi)-3^(1/3)) 5142247255386880 l006 ln(4053/6778) 5142247260254262 r005 Im(z^2+c),c=-47/66+2/33*I,n=45 5142247261201865 m001 (Gompertz-ZetaQ(3))/(ln(Pi)-gamma(3)) 5142247267321766 m005 (1/3*Pi+1/7)/(2/9*2^(1/2)+2) 5142247277658602 a007 Real Root Of -952*x^4+644*x^3-967*x^2-375*x+217 5142247280427173 r002 43th iterates of z^2 + 5142247299878616 r002 4th iterates of z^2 + 5142247351125342 a001 34111385/281*199^(3/11) 5142247351863372 m001 (gamma(2)+GaussKuzminWirsing)^Landau 5142247372875983 r005 Re(z^2+c),c=15/118+23/49*I,n=58 5142247384279669 m005 (1/2*gamma-1/10)/(5/9*Zeta(3)+3) 5142247387272409 m008 (2/5*Pi^3+1/4)/(4/5*Pi^3-1/5) 5142247410990047 a007 Real Root Of 107*x^4+456*x^3-552*x^2-174*x+890 5142247419234576 q001 4/77787 5142247420895359 a007 Real Root Of -314*x^4-629*x^3-476*x^2+612*x+377 5142247428039026 r002 15th iterates of z^2 + 5142247435706798 r005 Im(z^2+c),c=-8/31+22/35*I,n=51 5142247438763761 m001 (Riemann3rdZero-sin(1/5*Pi))/Weierstrass 5142247460535941 r005 Re(z^2+c),c=17/48+4/59*I,n=60 5142247464581998 a008 Real Root of x^4-x^3-27*x^2+5*x+125 5142247476371296 a007 Real Root Of -834*x^4+319*x^3-562*x^2+682*x+601 5142247476791811 r005 Im(z^2+c),c=1/21+19/33*I,n=25 5142247478904567 a003 cos(Pi*17/90)-cos(Pi*41/103) 5142247502321404 r009 Im(z^3+c),c=-63/118+16/31*I,n=4 5142247504292666 h001 (5/9*exp(1)+9/11)/(1/2*exp(2)+5/6) 5142247510668563 q001 723/1406 5142247512911936 a007 Real Root Of -952*x^4+612*x^3-778*x^2+808*x+771 5142247515445072 r002 24th iterates of z^2 + 5142247516896281 a007 Real Root Of -16*x^4-823*x^3+x^2+680*x-365 5142247534141652 k009 concat of cont frac of 5142247534186601 a003 sin(Pi*16/89)*sin(Pi*39/95) 5142247537754347 r002 40th iterates of z^2 + 5142247565710042 r005 Re(z^2+c),c=-25/122+5/8*I,n=5 5142247570815116 r009 Re(z^3+c),c=-5/54+19/29*I,n=30 5142247574455130 a001 377/103682*2^(1/2) 5142247575109475 m001 (Robbin-ZetaQ(3))/(KhinchinHarmonic-PlouffeB) 5142247598072073 r005 Re(z^2+c),c=-61/60+43/59*I,n=2 5142247639257294 a001 193862736/377 5142247641809467 l006 ln(3818/6385) 5142247656817015 a007 Real Root Of 132*x^4-628*x^3+508*x^2-601*x-538 5142247694416639 m001 arctan(1/3)-gamma(3)+DuboisRaymond 5142247704750730 m001 (Kac+Sarnak)/(Pi-polylog(4,1/2)) 5142247726584455 r005 Im(z^2+c),c=-59/102+3/32*I,n=57 5142247772697085 m001 1/GAMMA(11/12)*ln((2^(1/3)))^2*Zeta(7)^2 5142247789924780 r002 35th iterates of z^2 + 5142247796484254 a007 Real Root Of -178*x^4-897*x^3+184*x^2+544*x+423 5142247811428598 m009 (2/5*Psi(1,3/4)+6)/(1/4*Psi(1,3/4)-2) 5142247849788691 a007 Real Root Of 208*x^4+493*x^3+880*x^2-695*x-38 5142247852060615 a007 Real Root Of 114*x^4-586*x^3+990*x^2-110*x-406 5142247860028567 a001 843/34*10946^(4/51) 5142247864938158 a003 cos(Pi*20/97)*cos(Pi*18/65) 5142247877765826 m001 (Zeta(1,2)-KhinchinLevy)/(Magata+Sarnak) 5142247910304456 r009 Im(z^3+c),c=-5/106+37/57*I,n=42 5142247958731243 a007 Real Root Of 995*x^4-940*x^3+387*x^2-125*x-364 5142247962710668 a007 Real Root Of 340*x^4-537*x^3+861*x^2-108*x-380 5142247986497970 m001 1/FeigenbaumB*Conway/ln(Riemann2ndZero) 5142247993186802 r005 Im(z^2+c),c=-28/23+6/41*I,n=14 5142247994712394 r005 Im(z^2+c),c=-67/110+3/34*I,n=23 5142247996064195 a001 123/233*2971215073^(8/19) 5142248009733620 r009 Im(z^3+c),c=-21/86+28/45*I,n=36 5142248014979580 a007 Real Root Of 825*x^4-503*x^3+551*x^2-613*x-587 5142248030966843 m001 (Lehmer+PlouffeB)/(3^(1/3)+HardyLittlewoodC3) 5142248034936906 p003 LerchPhi(1/256,4,261/221) 5142248053394954 r009 Re(z^3+c),c=-35/66+22/59*I,n=26 5142248066415485 m001 (2^(1/3)-Ei(1))/(-Grothendieck+Riemann1stZero) 5142248077568733 b008 -1/16+BesselJ[1,2] 5142248078921015 l006 ln(3583/5992) 5142248090766567 a007 Real Root Of 498*x^4+188*x^3+902*x^2+476*x-3 5142248102544289 a007 Real Root Of -790*x^4+142*x^3+211*x^2+158*x+100 5142248107707383 m001 cos(1)/(Pi^exp(-Pi)) 5142248124261399 m005 (1/2*Pi+1)/(1/11*Catalan+5/12) 5142248135968703 a007 Real Root Of 112*x^4+464*x^3-673*x^2-668*x-859 5142248136391028 r005 Im(z^2+c),c=17/114+27/41*I,n=29 5142248180898147 l006 ln(10/1711) 5142248181458211 k006 concat of cont frac of 5142248186665794 b008 (-2+Sqrt[119])*EulerGamma 5142248193914588 r005 Re(z^2+c),c=-1/6+43/62*I,n=27 5142248209464160 m001 (-BesselI(1,2)+Stephens)/(Shi(1)+Catalan) 5142248210009877 m002 Pi^6/2+36/ProductLog[Pi] 5142248214736768 r009 Im(z^3+c),c=-19/106+33/52*I,n=52 5142248223409702 r009 Re(z^3+c),c=-10/19+13/61*I,n=10 5142248243284960 m005 (1/2*Pi-3/4)/(2/9*exp(1)-4/9) 5142248248558310 a001 2/7*2^(39/46) 5142248251081399 r005 Im(z^2+c),c=-25/98+4/63*I,n=3 5142248291423268 r005 Im(z^2+c),c=19/126+34/63*I,n=38 5142248308902677 a007 Real Root Of 177*x^4+296*x^3+587*x^2-995*x-639 5142248314978820 a007 Real Root Of -8*x^4+894*x^3-758*x^2+699*x+682 5142248314993728 a007 Real Root Of -581*x^4+184*x^3+569*x^2+690*x+270 5142248315292241 a007 Real Root Of -933*x^4+163*x^3+577*x^2+434*x+158 5142248318979755 a001 322/591286729879*2178309^(2/13) 5142248318979788 a001 322/4052739537881*591286729879^(2/13) 5142248318979788 a001 161/774004377960*1134903170^(2/13) 5142248321252447 a003 cos(Pi*19/87)/cos(Pi*47/104) 5142248328031054 a001 46/32264490531*4181^(2/13) 5142248328134775 a007 Real Root Of 98*x^4+531*x^3+170*x^2+55*x-533 5142248330550249 m005 (1/3*exp(1)+1/8)/(1/4*Zeta(3)-1/10) 5142248351477677 m001 StronglyCareFree^BesselK(0,1)/ZetaP(3) 5142248358371806 a007 Real Root Of 210*x^4+938*x^3-728*x^2-93*x-519 5142248367718481 b008 JacobiCN[5/3,1/10] 5142248369862103 r002 24th iterates of z^2 + 5142248378842854 m001 (Thue+ZetaQ(2))/(cos(1/12*Pi)+AlladiGrinstead) 5142248392702527 m001 1/Conway/ln(Cahen)/Tribonacci^2 5142248393200311 a007 Real Root Of -573*x^4+125*x^3-568*x^2+931*x+686 5142248422293354 a007 Real Root Of -189*x^4+620*x^3+226*x^2+819*x-552 5142248428622994 m001 (Backhouse-Porter)/(3^(1/3)+ArtinRank2) 5142248429229424 m001 1/Tribonacci/exp(FeigenbaumDelta)*Zeta(7) 5142248438807721 a001 55/18*322^(22/45) 5142248442946365 a007 Real Root Of 17*x^4+866*x^3-423*x^2-112*x+188 5142248443140184 a001 161/72*4807526976^(19/22) 5142248443333652 m001 (PlouffeB+Sarnak)/(Pi-AlladiGrinstead) 5142248455778026 r005 Re(z^2+c),c=-2/3+87/161*I,n=2 5142248466975858 a001 124/5*610^(26/55) 5142248468361056 m001 (-BesselI(1,1)+Artin)/(1+exp(1)) 5142248474578392 a007 Real Root Of 432*x^4-997*x^3-743*x^2-405*x-19 5142248495895616 m001 1/2*Pi*2^(1/2)+exp(gamma)*GAMMA(13/24) 5142248500849115 l006 ln(7353/7741) 5142248516091945 m001 (Rabbit+Sarnak)/(3^(1/2)+GAMMA(11/12)) 5142248517603676 m001 exp(GAMMA(1/4))*Rabbit^2*exp(1) 5142248527254737 s001 sum(exp(-Pi/4)^(n-1)*A104893[n],n=1..infinity) 5142248527521701 s001 sum(exp(-Pi/4)^(n-1)*A104894[n],n=1..infinity) 5142248538840033 r002 7th iterates of z^2 + 5142248542064818 a007 Real Root Of 945*x^4-469*x^3+73*x^2+327*x+19 5142248543080408 r002 13th iterates of z^2 + 5142248545139250 a007 Real Root Of -634*x^4-274*x^3-734*x^2+797*x+611 5142248546988827 m001 FransenRobinson*(Zeta(5)+Kolakoski) 5142248547503142 r002 4th iterates of z^2 + 5142248549319380 m005 (1/2*exp(1)-2/3)/(4*Pi+9/10) 5142248567029067 m004 2+Pi+Cos[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 5142248577395273 l006 ln(3348/5599) 5142248579457211 a007 Real Root Of -234*x^4+232*x^3+545*x^2+858*x+345 5142248581980329 r005 Re(z^2+c),c=-7/30+38/51*I,n=40 5142248590291731 a007 Real Root Of 551*x^4-512*x^3+708*x^2-291*x-445 5142248597420853 a007 Real Root Of 133*x^4-686*x^3+796*x^2-558*x-600 5142248614355173 a001 208010*7^(20/43) 5142248667138952 r005 Re(z^2+c),c=-35/64+39/44*I,n=3 5142248669738390 a001 31622993/161*322^(1/6) 5142248678157642 m001 1/GAMMA(11/12)^2/ln(Tribonacci)^2*GAMMA(5/12) 5142248705049960 r002 34th iterates of z^2 + 5142248707657892 a007 Real Root Of -643*x^4+583*x^3-993*x^2+154*x+466 5142248710320502 r002 3th iterates of z^2 + 5142248714160472 r005 Im(z^2+c),c=-67/60+1/16*I,n=42 5142248751846054 m001 (GAMMA(3/4)-ln(2)/ln(10))/(-ln(5)+Magata) 5142248766765325 b008 1/2+2/(7*E^3) 5142248796842670 h001 (1/12*exp(1)+3/4)/(2/11*exp(2)+5/9) 5142248798065976 r009 Im(z^3+c),c=-5/31+37/58*I,n=34 5142248817116775 m001 RenyiParking^2/exp(Cahen)^2*gamma^2 5142248831675781 a007 Real Root Of 465*x^4+391*x^3+207*x^2-908*x-501 5142248841493305 m008 (1/2*Pi^4+1/3)/(Pi^2-1/3) 5142248872343612 a007 Real Root Of 7*x^4+353*x^3-342*x^2+811*x+9 5142248895892496 a007 Real Root Of -327*x^4+839*x^3+263*x^2+991*x+577 5142248900507137 a001 1364/121393*4181^(36/49) 5142248914242442 r005 Re(z^2+c),c=-7/10+4/105*I,n=23 5142248925083766 h001 (-3*exp(1/2)+2)/(-2*exp(-2)+6) 5142248928706311 r009 Im(z^3+c),c=-19/126+16/25*I,n=25 5142248935223501 m001 ln(5)*GAMMA(13/24)+FeigenbaumAlpha 5142248939657323 m001 exp(-1/2*Pi)*Totient+CopelandErdos 5142248947615994 r005 Re(z^2+c),c=-33/56+19/50*I,n=36 5142248951536459 m008 (2/5*Pi^5-4)/(3/4*Pi^5+3/4) 5142248960838880 r009 Re(z^3+c),c=-23/36+31/46*I,n=3 5142248965866754 r009 Re(z^3+c),c=-7/24+38/39*I,n=2 5142248970892092 p001 sum((-1)^n/(212*n+99)/n/(625^n),n=1..infinity) 5142248977322835 r005 Re(z^2+c),c=-65/126+17/30*I,n=36 5142248977483863 r002 62th iterates of z^2 + 5142248986400560 m001 (CareFree-GaussAGM)^Sierpinski 5142248987961727 r002 6i'th iterates of 2*x/(1-x^2) of 5142248991353724 a007 Real Root Of -x^4+908*x^3-481*x^2-297*x+98 5142249008883235 r005 Im(z^2+c),c=-7/60+1/16*I,n=6 5142249026934430 a001 610/4870847*47^(55/57) 5142249029675675 r002 3th iterates of z^2 + 5142249036984862 r009 Im(z^3+c),c=-21/74+25/41*I,n=39 5142249041532327 a007 Real Root Of -274*x^4+x^3-582*x^2+795*x+582 5142249044436612 m005 (1/2*Catalan+2/9)/(5*exp(1)-4/11) 5142249066062538 m005 (1/2*Catalan+4/7)/(10/11*Zeta(3)+10/11) 5142249101110994 r009 Im(z^3+c),c=-43/118+32/55*I,n=38 5142249109808226 a001 11/34*1597^(3/8) 5142249117868688 m003 1/2+(9*Sqrt[5])/64-5/(12*Log[1/2+Sqrt[5]/2]) 5142249131255328 a007 Real Root Of 680*x^4-182*x^3+441*x^2-815*x-608 5142249135096201 m001 1/Catalan/Artin^2*ln(GAMMA(11/24)) 5142249140335575 m001 1/Paris^2*CopelandErdos*exp(GAMMA(1/3))^2 5142249144133488 m001 (Stephens+ZetaQ(4))/(LandauRamanujan2nd-Niven) 5142249147223340 m001 (gamma(3)+Totient)/(1+ln(5)) 5142249151129025 l006 ln(3113/5206) 5142249207319537 a007 Real Root Of -849*x^4-283*x^3-901*x^2-185*x+164 5142249233067412 m001 (GAMMA(11/12)-Cahen)/(MinimumGamma-TwinPrimes) 5142249234412454 m001 (Zeta(1/2)-arctan(1/3))/(Artin-Trott2nd) 5142249235429085 m001 (AlladiGrinstead+ZetaQ(4))/(1+gamma) 5142249236192969 a007 Real Root Of -122*x^4-649*x^3+20*x^2+514*x-829 5142249252788312 r005 Im(z^2+c),c=-19/34+58/119*I,n=10 5142249265223526 m008 (2/3*Pi^6-3/4)/(1/6*Pi^2-2/5) 5142249276781934 r009 Im(z^3+c),c=-4/25+7/11*I,n=24 5142249286410531 r005 Im(z^2+c),c=11/38+24/61*I,n=29 5142249299423212 r005 Re(z^2+c),c=-29/66+32/59*I,n=50 5142249310199106 a007 Real Root Of 62*x^4+284*x^3-281*x^2-519*x+27 5142249310323177 m005 (1/3*Zeta(3)+1/3)/(2/3*3^(1/2)+3/11) 5142249320384836 a007 Real Root Of -308*x^4+453*x^3-881*x^2+591*x+620 5142249322096112 r009 Im(z^3+c),c=-13/60+32/51*I,n=42 5142249348010475 a003 cos(Pi*32/105)*sin(Pi*32/91) 5142249362554512 r002 25th iterates of z^2 + 5142249367755060 m001 (Artin-MertensB3)/(Paris-ReciprocalLucas) 5142249380819136 m001 1/exp(Si(Pi))^2*Cahen/GAMMA(7/24) 5142249396707710 a008 Real Root of (5+13*x+11*x^2+9*x^3) 5142249400443500 a007 Real Root Of 256*x^4-469*x^3+586*x^2+501*x+21 5142249401754852 q001 1934/3761 5142249411074136 m001 GolombDickman^2/ErdosBorwein^2*exp(GAMMA(3/4)) 5142249424442223 r005 Re(z^2+c),c=7/30+7/18*I,n=32 5142249426877774 r009 Im(z^3+c),c=-15/74+22/35*I,n=29 5142249468267519 m001 Pi+cos(1)-Zeta(1/2) 5142249471753380 l006 ln(5991/10019) 5142249481372409 a005 (1/cos(12/179*Pi))^1516 5142249489015307 h005 exp(sin(Pi*17/53)/cos(Pi*18/55)) 5142249494594068 a001 1/846*(1/2*5^(1/2)+1/2)^28*47^(8/17) 5142249497612684 m005 (1/2*Catalan-1/3)/(3/10*2^(1/2)-2/3) 5142249517310699 a007 Real Root Of -291*x^4+741*x^3-399*x^2+602*x-30 5142249528233239 r009 Im(z^3+c),c=-19/98+39/58*I,n=18 5142249530402728 r002 47th iterates of z^2 + 5142249540098001 m001 (2^(1/2)+Robbin)/(-ThueMorse+ZetaQ(3)) 5142249554793432 a007 Real Root Of 779*x^4-929*x^3-482*x^2-330*x+369 5142249555333220 m001 1/Ei(1)^2/ln(Artin)/GAMMA(1/24)^2 5142249581850613 h001 (3/7*exp(2)+2/9)/(7/8*exp(2)+1/8) 5142249584396703 m001 Niven^2*LandauRamanujan*exp(Pi) 5142249595573581 s002 sum(A207292[n]/(n^2*2^n+1),n=1..infinity) 5142249599549331 a001 281/726103*7778742049^(6/19) 5142249599618435 a001 843/121393*832040^(6/19) 5142249601351566 a007 Real Root Of 326*x^4-131*x^3+683*x^2-653*x-557 5142249617756093 b008 Sqrt[3]*LogGamma[1/20] 5142249622906781 m005 (1/2*2^(1/2)-3/7)/(1/7*5^(1/2)+2/9) 5142249628371859 r002 9th iterates of z^2 + 5142249630191342 s002 sum(A267796[n]/(10^n-1),n=1..infinity) 5142249630259895 m005 (1/2*2^(1/2)-1/11)/(4*Pi-7/12) 5142249631556791 a007 Real Root Of 441*x^4-962*x^3+858*x^2+810*x+28 5142249638228755 r009 Im(z^3+c),c=-19/66+39/64*I,n=57 5142249649881536 r005 Re(z^2+c),c=-79/118+7/31*I,n=40 5142249652158873 a007 Real Root Of 237*x^4-7*x^3+929*x^2-550*x-546 5142249679123270 h001 (-4*exp(5)-9)/(-2*exp(4)-8) 5142249684077132 r002 16th iterates of z^2 + 5142249684733659 m005 (17/66+1/6*5^(1/2))/(3/5*3^(1/2)-11/12) 5142249688104008 r005 Re(z^2+c),c=-41/60+4/35*I,n=18 5142249698102411 s002 sum(A229469[n]/(exp(pi*n)+1),n=1..infinity) 5142249715950619 a007 Real Root Of -656*x^4+528*x^3-836*x^2-297*x+186 5142249720983686 m001 FeigenbaumB^GaussKuzminWirsing/Tribonacci 5142249731456438 m005 (1/3*5^(1/2)+2/5)/(5/7*exp(1)+2/7) 5142249744304722 a001 9/4*75025^(15/31) 5142249747069194 r009 Im(z^3+c),c=-3/38+58/59*I,n=2 5142249748827403 m001 FeigenbaumDelta/(QuadraticClass^BesselJ(0,1)) 5142249775606450 a007 Real Root Of -999*x^4+818*x^3-823*x^2+759*x+789 5142249794252704 m001 exp(Porter)*LaplaceLimit/RenyiParking^2 5142249796294083 r005 Re(z^2+c),c=-83/62+1/28*I,n=40 5142249818557962 l006 ln(2878/4813) 5142249831158900 m001 ln(Pi)+FeigenbaumD^OrthogonalArrays 5142249859140235 m003 7+(19*Sqrt[5])/64-E^(1/2+Sqrt[5]/2)/2 5142249915424985 r002 7th iterates of z^2 + 5142249922817855 a001 24157817/521*199^(5/11) 5142249930515319 r005 Re(z^2+c),c=-19/29+9/37*I,n=34 5142249999423127 a007 Real Root Of 966*x^4-464*x^3+658*x^2-26*x-318 5142250000286057 a003 cos(Pi*5/109)/cos(Pi*32/73) 5142250008860365 m005 (-25/44+1/4*5^(1/2))/(5/8*exp(1)+1/12) 5142250021260947 r002 5th iterates of z^2 + 5142250029034759 r009 Re(z^3+c),c=-3/34+20/37*I,n=8 5142250043928946 a007 Real Root Of 755*x^4-793*x^3+53*x^2+853*x+264 5142250056146753 m001 (exp(1/Pi)+Cahen)/(Sierpinski+Totient) 5142250066859868 r005 Im(z^2+c),c=-43/60+11/59*I,n=53 5142250082264004 a003 sin(Pi*1/94)*sin(Pi*3/61) 5142250082834703 a007 Real Root Of -183*x^4+86*x^3-895*x^2+622*x+581 5142250124771558 a007 Real Root Of 976*x^4-626*x^3-668*x^2+x+193 5142250141421163 a007 Real Root Of 191*x^4+906*x^3-458*x^2-229*x+576 5142250142726816 r009 Im(z^3+c),c=-11/122+23/36*I,n=16 5142250170875407 r009 Im(z^3+c),c=-37/110+37/62*I,n=41 5142250172694738 r009 Re(z^3+c),c=-21/40+18/43*I,n=4 5142250174072244 a007 Real Root Of 103*x^4+378*x^3-824*x^2-98*x+664 5142250176214118 a001 8/103361*18^(19/29) 5142250186922105 g006 Psi(1,10/11)+Psi(1,1/6)+Psi(1,2/5)+1/2*Pi^2 5142250187119932 r002 37th iterates of z^2 + 5142250194082642 r009 Im(z^3+c),c=-75/118+5/21*I,n=12 5142250194885832 l006 ln(5521/9233) 5142250202556294 r002 3th iterates of z^2 + 5142250204150690 h001 (9/10*exp(1)+9/11)/(1/6*exp(1)+2/11) 5142250212420614 h001 (4/9*exp(1)+7/11)/(4/11*exp(2)+9/10) 5142250220378094 a001 36*18^(23/25) 5142250237071168 a007 Real Root Of -473*x^4-877*x^3-814*x^2+628*x+452 5142250254495610 m005 (-7/12+1/6*5^(1/2))/(Catalan-7/8) 5142250258369978 a007 Real Root Of -179*x^4-994*x^3-299*x^2+238*x-869 5142250260049066 m005 (3*gamma+2)/(5/3+5/2*5^(1/2)) 5142250272461303 m001 (Si(Pi)+Zeta(1,2))/(BesselK(1,1)+Salem) 5142250280607745 m001 (exp(1/exp(1))-gamma(3))/(GAMMA(23/24)-Mills) 5142250283482556 a007 Real Root Of -783*x^4+401*x^3-264*x^2+908*x+646 5142250285712798 r009 Im(z^3+c),c=-19/98+35/57*I,n=13 5142250312701124 m001 (Zeta(5)-ln(3))/(ln(5)-HardyLittlewoodC5) 5142250319307330 r009 Re(z^3+c),c=-23/44+5/22*I,n=15 5142250319484170 m001 (Gompertz+MertensB3)/(BesselI(0,1)-Conway) 5142250321432308 s002 sum(A288814[n]/(10^n-1),n=1..infinity) 5142250332430554 m001 (GAMMA(3/4)-ln(Pi))/(GAMMA(23/24)+Landau) 5142250333042424 m001 (Riemann1stZero+ZetaP(4))/(Cahen-Magata) 5142250356855625 m005 (1/2*Zeta(3)+7/8)/(9/11*Pi+3/10) 5142250363733813 a007 Real Root Of -554*x^4+856*x^3-247*x^2+742*x+602 5142250376750840 a001 64079*144^(15/17) 5142250381158489 r009 Im(z^3+c),c=-6/17+10/17*I,n=48 5142250394102967 m001 Zeta(1/2)*HardyLittlewoodC5*Thue 5142250414005506 m001 (gamma+GAMMA(17/24))/(Grothendieck+Tribonacci) 5142250455734969 m005 (1/3*2^(1/2)+2/9)/(7/8*3^(1/2)-1/6) 5142250461983711 m001 GAMMA(2/3)+FeigenbaumB+Otter 5142250489179472 m004 -1+E^(Sqrt[5]*Pi)/3+20*Sqrt[5]*Pi 5142250498849042 p004 log(35753/21379) 5142250502776080 m001 (1+3^(1/3))/(-GAMMA(5/6)+Salem) 5142250530785562 q001 1211/2355 5142250574457512 r009 Im(z^3+c),c=-5/23+37/59*I,n=43 5142250580581803 r005 Im(z^2+c),c=-37/54+10/29*I,n=59 5142250595687352 a007 Real Root Of 114*x^4-443*x^3+505*x^2-18*x-211 5142250602164293 r005 Im(z^2+c),c=4/17+21/44*I,n=31 5142250602200486 m001 (exp(Pi)+exp(1))/(-GAMMA(7/12)+GAMMA(23/24)) 5142250604674546 l006 ln(2643/4420) 5142250624568845 a007 Real Root Of -791*x^4+131*x^3+125*x^2+171*x+128 5142250627002776 m001 (FransenRobinson+Landau)^GAMMA(2/3) 5142250649918938 r005 Im(z^2+c),c=31/94+15/29*I,n=13 5142250670872739 h001 (2/11*exp(2)+1/10)/(7/8*exp(1)+3/7) 5142250672631927 a008 Real Root of x^4-2*x^3-10*x^2-27*x-24 5142250673418257 a007 Real Root Of -52*x^4+690*x^3+872*x^2+817*x+287 5142250681971669 m001 (CareFree-GAMMA(5/6))^StronglyCareFree 5142250701476258 a005 (1/sin(76/213*Pi))^521 5142250714778432 a007 Real Root Of 196*x^4-61*x^3+88*x^2-192*x-144 5142250734648971 s002 sum(A105001[n]/(n^3*2^n-1),n=1..infinity) 5142250743923890 r005 Re(z^2+c),c=17/90+14/33*I,n=60 5142250762623562 r005 Re(z^2+c),c=-79/110+8/23*I,n=40 5142250768464271 r009 Im(z^3+c),c=-11/82+34/53*I,n=50 5142250768652432 a008 Real Root of (1+2*x+15*x^2-3*x^3) 5142250771925569 a007 Real Root Of 664*x^4-993*x^3+590*x^2-108*x-393 5142250782863067 m001 (Grothendieck-Mills)/(ln(Pi)-Ei(1,1)) 5142250789386851 m001 (2/3)^sqrt(1+sqrt(3))-GAMMA(23/24) 5142250792404827 a007 Real Root Of -543*x^4+539*x^3+848*x^2+242*x-384 5142250802215124 m005 (1/2*2^(1/2)+7/9)/(8/9*5^(1/2)+9/10) 5142250812873489 r002 53th iterates of z^2 + 5142250813036435 r005 Re(z^2+c),c=-5/12+31/59*I,n=9 5142250837485521 m003 -1/3+Sqrt[5]/4+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/64 5142250846159642 r009 Im(z^3+c),c=-8/21+34/59*I,n=64 5142250848612812 m005 (1/2*gamma-5/9)/(1/45+2/9*5^(1/2)) 5142250881038202 m001 Zeta(9)^2*ln(FeigenbaumDelta)^2/arctan(1/2) 5142250929349001 r005 Re(z^2+c),c=-26/29+11/52*I,n=18 5142250943831346 r005 Re(z^2+c),c=-15/22+41/121*I,n=4 5142250951688993 m001 (5^(1/2)+KomornikLoreti)/(-Thue+ZetaP(4)) 5142250954494025 r005 Re(z^2+c),c=1/11+21/26*I,n=3 5142250967539638 r005 Im(z^2+c),c=21/74+27/44*I,n=5 5142250987454493 m001 (ln(2^(1/2)+1)*Mills+2*Pi/GAMMA(5/6))/Mills 5142250997261345 a007 Real Root Of 288*x^4+742*x^3+704*x^2-956*x-597 5142251009673455 r005 Re(z^2+c),c=-17/94+9/14*I,n=8 5142251012400373 m001 (Zeta(5)+3)/(-GAMMA(17/24)+1/2) 5142251022442683 r005 Im(z^2+c),c=-67/60+1/16*I,n=36 5142251052594440 l006 ln(5051/8447) 5142251052594440 p004 log(8447/5051) 5142251067619377 a001 1/2*89^(27/52) 5142251093494348 r005 Im(z^2+c),c=-27/31+2/55*I,n=16 5142251096802163 p001 sum((-1)^n/(455*n+191)/(16^n),n=0..infinity) 5142251108230986 m005 (1/2*gamma-10/11)/(4*Pi-1/2) 5142251108358022 r002 21th iterates of z^2 + 5142251111111012 k008 concat of cont frac of 5142251111174126 k006 concat of cont frac of 5142251111282151 k006 concat of cont frac of 5142251111357111 k006 concat of cont frac of 5142251111721011 k008 concat of cont frac of 5142251112321932 k006 concat of cont frac of 5142251113957639 r002 7th iterates of z^2 + 5142251114542475 m001 (3^(1/3)-Shi(1))/(-gamma(1)+gamma(3)) 5142251118822517 r009 Im(z^3+c),c=-9/74+9/14*I,n=32 5142251121111111 k008 concat of cont frac of 5142251121175320 k008 concat of cont frac of 5142251130458379 h001 (4/9*exp(2)+11/12)/(1/7*exp(1)+3/7) 5142251133113235 k006 concat of cont frac of 5142251139457515 r002 58th iterates of z^2 + 5142251158713767 a007 Real Root Of 130*x^4+624*x^3-297*x^2-194*x+806 5142251158743447 r005 Re(z^2+c),c=-29/70+40/59*I,n=5 5142251161211111 k006 concat of cont frac of 5142251172984672 r005 Re(z^2+c),c=-20/31+13/46*I,n=32 5142251191449131 k007 concat of cont frac of 5142251204698025 a007 Real Root Of -153*x^4-644*x^3+898*x^2+683*x-821 5142251214158338 k006 concat of cont frac of 5142251219588234 m001 (-Paris+Tribonacci)/(gamma+FransenRobinson) 5142251230661482 r005 Im(z^2+c),c=-107/102+3/53*I,n=5 5142251239619529 a008 Real Root of x^4-x^3-37*x^2+8*x+374 5142251241107600 r002 58th iterates of z^2 + 5142251248321016 r005 Re(z^2+c),c=-9/82+49/60*I,n=45 5142251254728883 a007 Real Root Of -192*x^4-898*x^3+509*x^2+64*x-986 5142251261109705 a001 3571/317811*4181^(36/49) 5142251273401286 r009 Im(z^3+c),c=-21/50+21/38*I,n=47 5142251283150954 l006 ln(4643/4888) 5142251287644107 r009 Im(z^3+c),c=-25/78+43/63*I,n=47 5142251293195640 a007 Real Root Of 666*x^4-910*x^3+869*x^2-591*x-704 5142251293548484 r005 Re(z^2+c),c=-1/36+24/29*I,n=7 5142251310174633 r005 Re(z^2+c),c=-11/16+7/71*I,n=28 5142251312090949 m001 sin(1/5*Pi)+Zeta(1,2)^sin(1) 5142251312090949 m001 sin(Pi/5)+Zeta(1,2)^sin(1) 5142251317311212 k008 concat of cont frac of 5142251321914113 k008 concat of cont frac of 5142251347201808 m005 (1/2*2^(1/2)-1/9)/(1/4*5^(1/2)+3/5) 5142251365973599 r009 Im(z^3+c),c=-29/56+13/36*I,n=3 5142251369549570 a007 Real Root Of 506*x^4-466*x^3+975*x^2-312*x-517 5142251380348324 r009 Re(z^3+c),c=-13/32+1/33*I,n=56 5142251391034760 m003 5+Cos[1/2+Sqrt[5]/2]/4+Tanh[1/2+Sqrt[5]/2]/6 5142251392362512 k007 concat of cont frac of 5142251416165131 k008 concat of cont frac of 5142251417119232 m001 BesselK(0,1)^2*ln(Robbin)^2/sin(Pi/5) 5142251426480754 a001 682/305*2504730781961^(4/21) 5142251428473347 a007 Real Root Of -66*x^4+979*x^3+930*x^2-100*x-323 5142251431142313 k007 concat of cont frac of 5142251443574167 m001 (cos(1/5*Pi)-GAMMA(2/3))/(OneNinth-ZetaQ(4)) 5142251448132108 m001 (Conway+MertensB3)/(GAMMA(2/3)-sin(1)) 5142251448882347 m001 LambertW(1)-gamma(3)^Weierstrass 5142251458076721 a007 Real Root Of 305*x^4+68*x^3-900*x^2-674*x+554 5142251482964271 a007 Real Root Of -31*x^4+18*x^3+802*x^2-515*x+268 5142251488572143 a007 Real Root Of 563*x^4+524*x^3-688*x^2-857*x+512 5142251504051694 h001 (10/11*exp(1)+2/7)/(5/7*exp(2)+1/12) 5142251505449790 a007 Real Root Of 867*x^4+143*x^3+849*x^2-796*x-675 5142251511172120 k008 concat of cont frac of 5142251512375729 a007 Real Root Of -349*x^4+649*x^3+979*x^2+90*x-369 5142251514877470 r005 Re(z^2+c),c=-31/50+10/27*I,n=56 5142251518514739 r002 36th iterates of z^2 + 5142251526646506 a007 Real Root Of 67*x^4+207*x^3-750*x^2-30*x+977 5142251537830934 r002 15th iterates of z^2 + 5142251543712350 r002 29th iterates of z^2 + 5142251544227425 l006 ln(2408/4027) 5142251548297829 r009 Re(z^3+c),c=-14/31+3/62*I,n=58 5142251555429674 r005 Re(z^2+c),c=6/17+7/60*I,n=19 5142251556517505 m001 (Shi(1)*Riemann3rdZero)^(1/2) 5142251568802545 a007 Real Root Of 148*x^4+876*x^3+773*x^2+874*x-316 5142251581911184 m001 FeigenbaumD/ln(3)/Weierstrass 5142251604101990 a003 cos(Pi*6/49)/cos(Pi*23/52) 5142251605516978 a001 9349/832040*4181^(36/49) 5142251609659948 a003 cos(Pi*24/107)*sin(Pi*25/106) 5142251611111271 k006 concat of cont frac of 5142251616931012 a007 Real Root Of -88*x^4+715*x^3+590*x^2+873*x-696 5142251641659152 r009 Re(z^3+c),c=-63/118+14/31*I,n=11 5142251644345013 m005 (5/6+1/6*5^(1/2))/(5/11*Catalan-2/11) 5142251655286554 a007 Real Root Of -91*x^4-348*x^3+410*x^2-921*x+732 5142251655765322 a001 24476/2178309*4181^(36/49) 5142251658789177 r005 Re(z^2+c),c=-37/54+16/33*I,n=3 5142251661744515 h001 (1/11*exp(2)+8/9)/(3/10*exp(2)+9/11) 5142251669619261 m001 Rabbit^2*GaussKuzminWirsing^2*exp(Zeta(3))^2 5142251670539451 r009 Im(z^3+c),c=-27/94+39/64*I,n=43 5142251686820507 a001 15127/1346269*4181^(36/49) 5142251712076795 a007 Real Root Of 781*x^4-574*x^3+986*x^2+730*x-18 5142251771319112 k007 concat of cont frac of 5142251780008383 r005 Im(z^2+c),c=-17/14+8/109*I,n=51 5142251795480535 m001 1/GAMMA(1/4)/ln(Riemann3rdZero)^2*GAMMA(11/24) 5142251797904047 m001 Pi+2^(1/2)+BesselK(0,1)-Zeta(1,-1) 5142251815980629 q001 1699/3304 5142251818372379 a001 5778/514229*4181^(36/49) 5142251820616432 a007 Real Root Of -504*x^4-651*x^3+652*x^2+763*x-441 5142251824156690 m005 (2*gamma+2/5)/(3/4*Pi+2/3) 5142251862000656 r002 18th iterates of z^2 + 5142251863156872 r005 Im(z^2+c),c=-17/14+13/206*I,n=35 5142251881810233 m001 (GAMMA(1/12)+2)/(-exp(1/Pi)+4) 5142251882098265 m003 -3-3*Sin[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]^2 5142251888809989 m001 Catalan*(GAMMA(17/24)-Sarnak) 5142251922089778 p003 LerchPhi(1/16,2,23/52) 5142251942787593 r009 Im(z^3+c),c=-25/106+38/61*I,n=56 5142251945710046 a003 cos(Pi*8/61)*sin(Pi*11/58) 5142251955591884 r009 Im(z^3+c),c=-9/29+32/51*I,n=35 5142251959952198 m001 (BesselK(1,1)-Mills)/(Rabbit+TwinPrimes) 5142251967378917 r009 Im(z^3+c),c=-11/82+34/53*I,n=54 5142251971380334 a001 24476/233*75025^(16/29) 5142251971746406 m001 (Landau+Niven)/(exp(1/Pi)+Zeta(1,2)) 5142251975333864 m006 (2/5*ln(Pi)+3/5)/(2*Pi^2+5/6) 5142251994481435 m001 1/cos(Pi/12)*LambertW(1)^2/ln(sqrt(5))^2 5142252000022732 m001 (sin(1/12*Pi)+Kac)/(MadelungNaCl-Trott2nd) 5142252002240661 r002 22th iterates of z^2 + 5142252035387613 m001 1/GAMMA(1/4)^2/Rabbit^2*exp(GAMMA(3/4)) 5142252046856119 a001 1364/75025*8^(1/2) 5142252061053137 r005 Im(z^2+c),c=-37/30+1/125*I,n=35 5142252066838910 r005 Re(z^2+c),c=13/50+25/62*I,n=33 5142252086300787 l006 ln(4581/7661) 5142252092927329 m001 (5^(1/2)+BesselJ(0,1))/(-Lehmer+Salem) 5142252104840929 m008 (Pi^5-1/6)/(2/5*Pi^2+2) 5142252107297332 r002 15th iterates of z^2 + 5142252111090872 a007 Real Root Of 555*x^4+188*x^3+990*x^2-912*x-744 5142252112304724 r009 Im(z^3+c),c=-1/29+17/27*I,n=9 5142252116172461 k008 concat of cont frac of 5142252124222152 k006 concat of cont frac of 5142252129220577 a007 Real Root Of -867*x^4+982*x^3-558*x^2-225*x+226 5142252152112131 k007 concat of cont frac of 5142252167712201 m005 (1/3*5^(1/2)-1/3)/(1/6*5^(1/2)+3/7) 5142252178445841 a007 Real Root Of 395*x^4-804*x^3+395*x^2-816*x-661 5142252183275384 a003 sin(Pi*11/34)/cos(Pi*47/95) 5142252184665318 r002 24th iterates of z^2 + 5142252202138466 m001 GAMMA(1/3)/FransenRobinson*exp(Zeta(1/2))^2 5142252209472316 r009 Im(z^3+c),c=-5/31+21/31*I,n=18 5142252222514395 b008 Pi*Sqrt[ExpIntegralE[2,19]] 5142252234290337 r002 21th iterates of z^2 + 5142252247111211 k006 concat of cont frac of 5142252301229948 h001 (1/12*exp(2)+4/11)/(1/2*exp(1)+6/11) 5142252308606978 m001 exp(gamma)/(polylog(4,1/2)^ln(5)) 5142252317173210 a007 Real Root Of -520*x^4+762*x^3-315*x^2+741*x-365 5142252326879099 a007 Real Root Of 64*x^4+161*x^3+417*x^2+130*x-26 5142252335683119 m001 (BesselI(0,2)-sin(1))/(Otter+Riemann3rdZero) 5142252353061511 l006 ln(6013/6044) 5142252378140802 m005 (1/3*Zeta(3)+2/9)/(8/9*Zeta(3)+1/7) 5142252409299554 r005 Re(z^2+c),c=-33/98+29/49*I,n=26 5142252412507919 a007 Real Root Of -197*x^4-808*x^3+994*x^2-359*x-252 5142252424583377 m001 1/(3^(1/3))*ln(Magata)/sqrt(1+sqrt(3)) 5142252432787989 m001 1/ln(Bloch)*FeigenbaumAlpha*cosh(1) 5142252434126154 k009 concat of cont frac of 5142252466714094 a001 29/701408733*121393^(14/23) 5142252466756575 a001 29/591286729879*7778742049^(14/23) 5142252475586819 a007 Real Root Of -972*x^4+601*x^3-970*x^2-329*x+237 5142252482289027 r009 Im(z^3+c),c=-9/26+23/39*I,n=62 5142252487656679 b008 1/7+5*Erf[E] 5142252515885837 m005 (1/3*gamma+3/5)/(6*exp(1)-9/10) 5142252522349450 m001 MertensB2^exp(Pi)/(FellerTornier^exp(Pi)) 5142252527443725 m008 (1/2*Pi^4+1)/(Pi^4-3/4) 5142252545591606 m008 (5/6*Pi^6+1/6)/(5*Pi^3+4/5) 5142252547826947 m005 (1/3*2^(1/2)-2/7)/(5^(1/2)+11/8) 5142252558359902 r009 Im(z^3+c),c=-19/106+33/52*I,n=59 5142252560695981 a007 Real Root Of 178*x^4+734*x^3-874*x^2+128*x-886 5142252561774162 r005 Re(z^2+c),c=-19/30+39/119*I,n=13 5142252561845950 r005 Re(z^2+c),c=3/58+2/41*I,n=4 5142252575522650 r002 16th iterates of z^2 + 5142252576416681 a007 Real Root Of -588*x^4-528*x^3-409*x^2+213*x+187 5142252594907953 m006 (2*ln(Pi)-1/6)/(1/5*exp(Pi)-1/2) 5142252597343876 a007 Real Root Of -725*x^4+471*x^3-535*x^2+887*x-328 5142252602249942 a007 Real Root Of 205*x^4+927*x^3-674*x^2-32*x+367 5142252607274402 m001 (Artin+ZetaP(2))/ErdosBorwein 5142252612875716 r009 Im(z^3+c),c=-29/74+23/41*I,n=43 5142252618812859 m005 (3/20+1/4*5^(1/2))/(1/2*Zeta(3)+7/9) 5142252637176969 a005 (1/sin(108/235*Pi))^1911 5142252642086700 r009 Im(z^3+c),c=-29/106+35/54*I,n=27 5142252657043731 m001 arctan(1/2)*BesselJ(1,1)^GAMMA(1/3) 5142252657224963 m001 Pi^2/exp(MertensB1)^2*Zeta(1,2)^2 5142252686996868 l006 ln(2173/3634) 5142252687070780 m001 (GAMMA(23/24)-exp(1/exp(1)))^LandauRamanujan 5142252687070780 m001 (exp(1/exp(1))-GAMMA(23/24))^LandauRamanujan 5142252689150192 r005 Re(z^2+c),c=-77/94+17/57*I,n=8 5142252691729607 m001 1/KhintchineLevy^2/exp(OneNinth)^3 5142252710469210 a001 377/7*123^(18/19) 5142252712119578 m001 ln(GAMMA(1/6))/GAMMA(1/3)^2*arctan(1/2)^2 5142252720042326 a001 2207/196418*4181^(36/49) 5142252737680239 r002 29th iterates of z^2 + 5142252741877994 m003 5+Sqrt[5]/16+(Sqrt[5]*Cot[1/2+Sqrt[5]/2]^2)/2 5142252748737130 r009 Im(z^3+c),c=-9/98+36/53*I,n=15 5142252763445892 m005 (-1/12+1/6*5^(1/2))/(1/5*3^(1/2)-10/11) 5142252763830903 a001 521/2*233^(29/53) 5142252792753853 a003 cos(Pi*16/105)/cos(Pi*45/91) 5142252802749212 a001 39088169/322*322^(1/4) 5142252808741919 r009 Im(z^3+c),c=-13/28+31/63*I,n=50 5142252811153716 a007 Real Root Of -128*x^4+900*x^3+238*x^2+783*x-579 5142252834198298 r009 Re(z^3+c),c=-47/110+2/47*I,n=63 5142252839890271 r005 Im(z^2+c),c=-37/52+7/31*I,n=41 5142252840135233 r005 Re(z^2+c),c=-81/110+2/47*I,n=52 5142252849502979 v003 sum((5/6*n^3+7/6*n+12)*n!/n^n,n=1..infinity) 5142252849755237 r009 Im(z^3+c),c=-25/82+40/61*I,n=52 5142252877907991 r005 Re(z^2+c),c=-5/58+32/47*I,n=8 5142252878383018 a003 sin(Pi*12/67)*sin(Pi*29/70) 5142252881170040 r005 Im(z^2+c),c=-7/6+66/203*I,n=9 5142252893456325 r005 Re(z^2+c),c=-5/8+65/184*I,n=45 5142252894792689 r009 Re(z^3+c),c=-14/27+28/53*I,n=7 5142252899800416 h001 (3/7*exp(2)+4/11)/(7/8*exp(2)+2/5) 5142252900351733 m001 1/ln(LaplaceLimit)/ErdosBorwein^2/FeigenbaumC 5142252902209050 a007 Real Root Of 160*x^4-842*x^3+930*x^2-415*x-585 5142252913122411 k008 concat of cont frac of 5142252919691819 r005 Re(z^2+c),c=-33/64+22/39*I,n=16 5142252925800536 r009 Im(z^3+c),c=-29/98+17/28*I,n=55 5142252958201117 k007 concat of cont frac of 5142252979623221 r005 Re(z^2+c),c=-19/18+13/153*I,n=2 5142252998610656 s001 sum(exp(-Pi)^n*A159612[n],n=1..infinity) 5142252998610656 s002 sum(A159612[n]/(exp(pi*n)),n=1..infinity) 5142253011869656 m001 Zeta(7)^2*FeigenbaumDelta^2*exp(sin(1)) 5142253022647911 p001 sum(1/(521*n+195)/(100^n),n=0..infinity) 5142253057290892 m001 (Champernowne+Tribonacci)/(exp(1)+ln(3)) 5142253058593640 r009 Im(z^3+c),c=-7/15+23/48*I,n=38 5142253074344742 m001 1/Pi^2*ln(Porter)^2*sin(Pi/5)^2 5142253075289370 a001 11/3*10946^(2/55) 5142253078424405 m001 (Kolakoski+Trott)/(cos(1)+GAMMA(23/24)) 5142253086562700 m001 1/ln(GAMMA(5/12))*GolombDickman^2/Zeta(9)^2 5142253087699688 r005 Re(z^2+c),c=-5/23+33/53*I,n=9 5142253106046220 r009 Im(z^3+c),c=-25/82+23/38*I,n=48 5142253132121562 k007 concat of cont frac of 5142253134943228 r009 Im(z^3+c),c=-29/110+16/23*I,n=62 5142253152082504 r005 Re(z^2+c),c=-137/102+1/25*I,n=4 5142253167106710 r002 12th iterates of z^2 + 5142253187289985 a007 Real Root Of 121*x^4+585*x^3-209*x^2-60*x+158 5142253211172591 k006 concat of cont frac of 5142253217160147 m001 Sierpinski*KhintchineLevy/ln(GAMMA(1/12))^2 5142253224489175 r009 Im(z^3+c),c=-19/106+33/52*I,n=53 5142253237177817 a003 cos(Pi*18/53)-sin(Pi*29/61) 5142253243217877 m001 Pi*Psi(1,1/3)*(1-Chi(1)) 5142253255214483 k007 concat of cont frac of 5142253260480854 a007 Real Root Of 126*x^4+617*x^3-355*x^2-937*x+364 5142253268176926 r009 Im(z^3+c),c=-25/74+16/27*I,n=58 5142253270358999 s002 sum(A066237[n]/(exp(pi*n)-1),n=1..infinity) 5142253279780208 r009 Im(z^3+c),c=-9/94+20/31*I,n=25 5142253299355426 m006 (3/5*Pi+5/6)/(1/4*ln(Pi)+5) 5142253306705589 r005 Im(z^2+c),c=-1/3+4/5*I,n=6 5142253322505176 m001 1/ln(Magata)/ArtinRank2*GAMMA(5/24) 5142253326906665 m001 (2^(1/3)*Stephens+5^(1/2))/Stephens 5142253340356338 a003 sin(Pi*11/65)/sin(Pi*25/56) 5142253342177657 a007 Real Root Of -986*x^4-29*x^3-65*x^2+268*x+220 5142253344517975 r005 Re(z^2+c),c=-19/26+6/25*I,n=44 5142253356368936 l006 ln(4111/6875) 5142253362684635 m001 (Cahen-RenyiParking)/(ln(Pi)+ln(2^(1/2)+1)) 5142253375121663 r005 Im(z^2+c),c=-67/60+1/16*I,n=37 5142253402990390 m001 (-Artin+PolyaRandomWalk3D)/(Si(Pi)-Zeta(3)) 5142253403982720 a008 Real Root of (-1-x+x^2-x^3+x^4+x^6-x^8-x^9+x^11) 5142253413274681 r002 18th iterates of z^2 + 5142253431278591 r002 3th iterates of z^2 + 5142253442111431 k007 concat of cont frac of 5142253443178290 r005 Re(z^2+c),c=-23/34+13/108*I,n=24 5142253480106868 r009 Im(z^3+c),c=-11/38+36/59*I,n=37 5142253482081898 r009 Im(z^3+c),c=-41/118+34/57*I,n=44 5142253491750010 m001 (Pi+ln(2)/ln(10))/(DuboisRaymond+Weierstrass) 5142253509657010 r005 Re(z^2+c),c=-53/78+1/62*I,n=17 5142253523236905 m008 (2/3*Pi^5-3/4)/(1/3*Pi-5) 5142253526696502 a007 Real Root Of 957*x^4-515*x^3-760*x^2-803*x+617 5142253529044267 r005 Re(z^2+c),c=39/118+29/52*I,n=35 5142253531412703 a001 267914296/2207*199^(3/11) 5142253531745424 a002 10^(7/12)+5^(12/5) 5142253544162276 m008 (4/5*Pi^4+3/5)/(5*Pi^5-3) 5142253565293047 m009 (1/2*Psi(1,2/3)+1/6)/(5/6*Psi(1,2/3)+3/4) 5142253567793508 a007 Real Root Of -225*x^4+546*x^3-21*x^2+701*x+456 5142253576109199 r009 Im(z^3+c),c=-1/56+37/57*I,n=23 5142253577755021 a007 Real Root Of -423*x^4+967*x^3-741*x^2-844*x-77 5142253602424162 a007 Real Root Of -98*x^4-597*x^3-512*x^2-98*x+381 5142253609187751 r005 Re(z^2+c),c=-65/126+8/23*I,n=6 5142253631583600 r005 Re(z^2+c),c=-73/102+6/59*I,n=51 5142253631807933 a007 Real Root Of -891*x^4+979*x^3-894*x^2+786*x+836 5142253634004419 r008 a(0)=5,K{-n^6,1+7*n^3-3*n^2-9*n} 5142253636076286 r005 Re(z^2+c),c=-15/26+7/86*I,n=3 5142253636503029 p001 sum((-1)^n/(213*n+98)/n/(625^n),n=1..infinity) 5142253665698060 m001 (Catalan+BesselK(0,1))/(-arctan(1/2)+Sarnak) 5142253669777620 m001 LandauRamanujan^(Pi^(1/2)*HardHexagonsEntropy) 5142253755161285 a001 329/90481*2^(1/2) 5142253767123681 r009 Im(z^3+c),c=-31/52+29/49*I,n=7 5142253800851336 r002 57th iterates of z^2 + 5142253801504515 p004 log(25657/24371) 5142253803954442 s002 sum(A019504[n]/(n^3*2^n+1),n=1..infinity) 5142253807190150 r002 8th iterates of z^2 + 5142253807272695 m001 exp(GAMMA(7/12))/LaplaceLimit*exp(1)^2 5142253810016223 m003 -6-Sin[1/2+Sqrt[5]/2]/15+Tanh[1/2+Sqrt[5]/2] 5142253817775319 m001 Robbin/(FellerTornier-ln(5)) 5142253820766167 r009 Im(z^3+c),c=-5/32+16/25*I,n=22 5142253841507474 a001 199/53316291173*3^(7/24) 5142253847105490 m001 FeigenbaumD^cos(1/12*Pi)*FeigenbaumD^ln(2) 5142253848216471 r009 Re(z^3+c),c=-9/94+20/29*I,n=56 5142253850417923 a007 Real Root Of -922*x^4-33*x^3-83*x^2+708*x+446 5142253851843218 m001 (2^(1/2)-ln(2)/ln(10))/(Kac+Riemann2ndZero) 5142253852564051 r005 Im(z^2+c),c=-67/60+1/16*I,n=35 5142253867594835 a001 105937*9349^(23/34) 5142253880699505 m001 1/RenyiParking^2/exp(Bloch)^2/GAMMA(2/3) 5142253888256799 r009 Im(z^3+c),c=-19/54+33/56*I,n=60 5142253890992669 s002 sum(A219786[n]/((10^n+1)/n),n=1..infinity) 5142253910868744 p004 log(26321/15739) 5142253924417574 r009 Im(z^3+c),c=-23/54+21/40*I,n=39 5142253925943004 r009 Im(z^3+c),c=-11/46+29/48*I,n=8 5142253937761723 h001 (-3*exp(2)-8)/(-4*exp(5)+7) 5142253940315203 m001 Pi*GAMMA(13/24)+gamma(2) 5142253955319763 p003 LerchPhi(1/12,1,472/229) 5142253962418296 m001 (BesselK(1,1)-MinimumGamma)/(ln(5)-3^(1/3)) 5142254013347675 r009 Im(z^3+c),c=-9/94+31/48*I,n=36 5142254016346730 a007 Real Root Of 752*x^4+226*x^3-965*x^2-537*x+448 5142254018602825 r009 Re(z^3+c),c=-17/28+9/44*I,n=4 5142254030031154 a007 Real Root Of -762*x^4+702*x^3-875*x^2+871*x+828 5142254033396800 r002 28th iterates of z^2 + 5142254033924245 a007 Real Root Of -29*x^4+902*x^3+523*x^2+533*x-533 5142254050042612 m005 (1/3*Catalan-1/12)/(-1/2+5/12*5^(1/2)) 5142254054573863 a007 Real Root Of 384*x^4-528*x^3+726*x^2-800*x-702 5142254083332948 r005 Im(z^2+c),c=-55/102+15/31*I,n=46 5142254106908358 l006 ln(1938/3241) 5142254116254410 r009 Re(z^3+c),c=-39/74+4/17*I,n=15 5142254117021956 m005 (1/3*gamma+1/10)/(1/5*3^(1/2)+2/9) 5142254121415123 k006 concat of cont frac of 5142254121686338 m005 (1/2*5^(1/2)-5/9)/(4/7*2^(1/2)+2/7) 5142254130631133 m001 (GAMMA(3/4)-ln(2)/ln(10))/(-arctan(1/2)+Cahen) 5142254131560228 a001 9349/610*102334155^(4/21) 5142254180567621 r002 61th iterates of z^2 + 5142254180701488 r005 Re(z^2+c),c=-29/102+32/53*I,n=13 5142254200347532 a001 64079/610*4181^(4/21) 5142254214430235 m008 (5/6*Pi^3+4/5)/(1/6*Pi^5+4/5) 5142254223052416 m005 (1/2*2^(1/2)+2/7)/(7/8*Pi-9/11) 5142254236121215 k008 concat of cont frac of 5142254280552077 m001 BesselK(0,1)*ln(Sierpinski)^2*GAMMA(2/3) 5142254287987492 r002 4th iterates of z^2 + 5142254288418150 r009 Im(z^3+c),c=-37/110+38/63*I,n=44 5142254300190227 r005 Im(z^2+c),c=-67/60+1/16*I,n=41 5142254315926852 r005 Re(z^2+c),c=-1/106+8/39*I,n=2 5142254345185867 m005 (1/2*exp(1)+8/9)/(1/5*Pi-5) 5142254354239157 a007 Real Root Of 46*x^4-910*x^3+783*x^2-492*x-587 5142254356515674 a007 Real Root Of -842*x^4+976*x^3-612*x^2+744*x+736 5142254376135926 r005 Re(z^2+c),c=-1/32+31/53*I,n=10 5142254378977307 a003 cos(Pi*25/73)-sin(Pi*29/64) 5142254390586387 r002 52th iterates of z^2 + 5142254394200957 l006 ln(6576/6923) 5142254407675795 a001 3571/196418*8^(1/2) 5142254408477748 r009 Im(z^3+c),c=-11/54+29/46*I,n=33 5142254412118616 a001 1/930249*7^(37/46) 5142254413281176 k007 concat of cont frac of 5142254413979328 m004 5+(25*Pi*Cot[Sqrt[5]*Pi])/2-Sinh[Sqrt[5]*Pi] 5142254433105719 a001 233802911/1926*199^(3/11) 5142254434300390 r005 Re(z^2+c),c=-25/24+7/57*I,n=38 5142254437606835 r002 7th iterates of z^2 + 5142254438575665 r002 4th iterates of z^2 + 5142254447793209 r009 Im(z^3+c),c=-31/126+33/53*I,n=31 5142254447993274 r005 Re(z^2+c),c=-19/18+55/254*I,n=16 5142254454424061 r005 Re(z^2+c),c=-7/10+16/107*I,n=58 5142254474963703 m001 (Backhouse+Weierstrass)/(exp(1)+Zeta(5)) 5142254503176352 r005 Im(z^2+c),c=-17/14+7/65*I,n=31 5142254518130168 r005 Im(z^2+c),c=-11/26+23/41*I,n=37 5142254532153551 r009 Im(z^3+c),c=-9/34+16/25*I,n=19 5142254537372728 a001 1/116*(1/2*5^(1/2)+1/2)^27*29^(1/11) 5142254554277985 m001 Conway^2/Champernowne^2*exp(GAMMA(7/12)) 5142254564660983 a001 1836311903/15127*199^(3/11) 5142254583854638 a001 1602508992/13201*199^(3/11) 5142254586654955 a001 12586269025/103682*199^(3/11) 5142254587063515 a001 121393*199^(3/11) 5142254587123124 a001 86267571272/710647*199^(3/11) 5142254587131820 a001 75283811239/620166*199^(3/11) 5142254587133089 a001 591286729879/4870847*199^(3/11) 5142254587133274 a001 516002918640/4250681*199^(3/11) 5142254587133301 a001 4052739537881/33385282*199^(3/11) 5142254587133305 a001 3536736619241/29134601*199^(3/11) 5142254587133308 a001 6557470319842/54018521*199^(3/11) 5142254587133318 a001 2504730781961/20633239*199^(3/11) 5142254587133389 a001 956722026041/7881196*199^(3/11) 5142254587133873 a001 365435296162/3010349*199^(3/11) 5142254587137195 a001 139583862445/1149851*199^(3/11) 5142254587159963 a001 53316291173/439204*199^(3/11) 5142254587316020 a001 20365011074/167761*199^(3/11) 5142254588385645 a001 7778742049/64079*199^(3/11) 5142254591055504 m001 (exp(-Pi)+1)/(GAMMA(7/12)+1/2) 5142254595716969 a001 2971215073/24476*199^(3/11) 5142254609909656 r002 37th iterates of z^2 + 5142254625832018 h001 (10/11*exp(1)+3/10)/(5/7*exp(2)+1/9) 5142254630775756 r005 Re(z^2+c),c=-51/44+11/59*I,n=28 5142254645966611 a001 1134903170/9349*199^(3/11) 5142254656914160 a001 2584/710647*2^(1/2) 5142254659958611 l006 ln(5579/9330) 5142254672465299 a003 sin(Pi*9/100)/cos(Pi*20/63) 5142254673135612 a007 Real Root Of 625*x^4-368*x^3-284*x^2-110*x+138 5142254701518254 r005 Re(z^2+c),c=-73/98+27/44*I,n=3 5142254718525119 a007 Real Root Of -302*x^4-639*x^3-698*x^2-21*x+108 5142254720240862 m001 (MertensB1+Salem)/(ln(5)+KhinchinLevy) 5142254746349498 r009 Im(z^3+c),c=-59/110+16/43*I,n=17 5142254752114744 a001 9349/514229*8^(1/2) 5142254765062185 a003 sin(Pi*5/116)+sin(Pi*13/105) 5142254766942208 r009 Re(z^3+c),c=-2/25+31/61*I,n=13 5142254775803120 m001 Niven^GaussKuzminWirsing-Robbin 5142254780240554 a007 Real Root Of -103*x^4+436*x^3+640*x^2+48*x-246 5142254781279809 a007 Real Root Of -391*x^4+767*x^3-164*x^2-492*x-78 5142254788478132 a001 55/15126*2^(1/2) 5142254796528402 m001 (-TreeGrowth2nd+Thue)/(FeigenbaumKappa-cos(1)) 5142254802367710 a001 24476/1346269*8^(1/2) 5142254807673056 a001 17711/4870847*2^(1/2) 5142254809699519 a001 64079/3524578*8^(1/2) 5142254810473558 a001 15456/4250681*2^(1/2) 5142254810769215 a001 167761/9227465*8^(1/2) 5142254810882146 a001 121393/33385282*2^(1/2) 5142254810925282 a001 439204/24157817*8^(1/2) 5142254810941758 a001 105937/29134601*2^(1/2) 5142254810948051 a001 1149851/63245986*8^(1/2) 5142254810950455 a001 832040/228826127*2^(1/2) 5142254810951374 a001 3010349/165580141*8^(1/2) 5142254810951724 a001 726103/199691526*2^(1/2) 5142254810951858 a001 7881196/433494437*8^(1/2) 5142254810951909 a001 5702887/1568397607*2^(1/2) 5142254810951929 a001 20633239/1134903170*8^(1/2) 5142254810951936 a001 4976784/1368706081*2^(1/2) 5142254810951939 a001 54018521/2971215073*8^(1/2) 5142254810951940 a001 39088169/10749957122*2^(1/2) 5142254810951941 a001 141422324/7778742049*8^(1/2) 5142254810951941 a001 831985/228811001*2^(1/2) 5142254810951941 a001 370248451/20365011074*8^(1/2) 5142254810951941 a001 267914296/73681302247*2^(1/2) 5142254810951941 a001 969323029/53316291173*8^(1/2) 5142254810951941 a001 233802911/64300051206*2^(1/2) 5142254810951941 a001 2537720636/139583862445*8^(1/2) 5142254810951941 a001 1836311903/505019158607*2^(1/2) 5142254810951941 a001 6643838879/365435296162*8^(1/2) 5142254810951941 a001 1602508992/440719107401*2^(1/2) 5142254810951941 a001 17393796001/956722026041*8^(1/2) 5142254810951941 a001 12586269025/3461452808002*2^(1/2) 5142254810951941 a001 45537549124/2504730781961*8^(1/2) 5142254810951941 a001 10983760033/3020733700601*2^(1/2) 5142254810951941 a001 119218851371/6557470319842*8^(1/2) 5142254810951941 a001 86267571272/23725150497407*2^(1/2) 5142254810951941 a001 64300051206/3536736619241*8^(1/2) 5142254810951941 a001 53316291173/14662949395604*2^(1/2) 5142254810951941 a001 73681302247/4052739537881*8^(1/2) 5142254810951941 a001 20365011074/5600748293801*2^(1/2) 5142254810951941 a001 228811001/12585437040*8^(1/2) 5142254810951941 a001 7778742049/2139295485799*2^(1/2) 5142254810951941 a001 10749957122/591286729879*8^(1/2) 5142254810951941 a001 2971215073/817138163596*2^(1/2) 5142254810951941 a001 1368706081/75283811239*8^(1/2) 5142254810951941 a001 1134903170/312119004989*2^(1/2) 5142254810951941 a001 1568397607/86267571272*8^(1/2) 5142254810951941 a001 433494437/119218851371*2^(1/2) 5142254810951941 a001 199691526/10983760033*8^(1/2) 5142254810951941 a001 165580141/45537549124*2^(1/2) 5142254810951941 a001 228826127/12586269025*8^(1/2) 5142254810951941 a001 63245986/17393796001*2^(1/2) 5142254810951942 a001 29134601/1602508992*8^(1/2) 5142254810951943 a001 24157817/6643838879*2^(1/2) 5142254810951946 a001 33385282/1836311903*8^(1/2) 5142254810951953 a001 9227465/2537720636*2^(1/2) 5142254810951973 a001 4250681/233802911*8^(1/2) 5142254810952024 a001 3524578/969323029*2^(1/2) 5142254810952158 a001 4870847/267914296*8^(1/2) 5142254810952509 a001 1346269/370248451*2^(1/2) 5142254810953427 a001 15126/831985*8^(1/2) 5142254810955831 a001 514229/141422324*2^(1/2) 5142254810962124 a001 710647/39088169*8^(1/2) 5142254810978600 a001 196418/54018521*2^(1/2) 5142254811021736 a001 90481/4976784*8^(1/2) 5142254811134667 a001 75025/20633239*2^(1/2) 5142254811409732 r002 51i'th iterates of 2*x/(1-x^2) of 5142254811430324 a001 103682/5702887*8^(1/2) 5142254812204364 a001 28657/7881196*2^(1/2) 5142254814230826 a001 13201/726103*8^(1/2) 5142254819536172 a001 10946/3010349*2^(1/2) 5142254822359021 a007 Real Root Of -385*x^4-369*x^3-656*x^2+161*x+233 5142254833425750 a001 15127/832040*8^(1/2) 5142254869789138 a001 4181/1149851*2^(1/2) 5142254870958223 r005 Re(z^2+c),c=41/106+7/48*I,n=56 5142254877108270 a007 Real Root Of -373*x^4+370*x^3+298*x^2+490*x-355 5142254883292383 r005 Im(z^2+c),c=1/64+19/32*I,n=31 5142254884920878 m001 FeigenbaumDelta+FellerTornier^Robbin 5142254903359113 a007 Real Root Of -979*x^4+760*x^3+145*x^2+968*x-571 5142254910204670 a001 29/2*317811^(19/41) 5142254921092700 r002 21th iterates of z^2 + 5142254935689947 r005 Im(z^2+c),c=-11/14+89/181*I,n=4 5142254937470923 r009 Im(z^3+c),c=-37/110+37/59*I,n=21 5142254945732253 m001 GAMMA(7/24)*GaussKuzminWirsing*ln(gamma) 5142254945732253 m001 log(gamma)*GaussKuzminWirsing*GAMMA(7/24) 5142254954331406 l006 ln(3641/6089) 5142254964989722 a001 1926/105937*8^(1/2) 5142254965549120 a008 Real Root of x^3-x^2-17*x+75 5142254966614670 p003 LerchPhi(1/256,6,402/167) 5142254974086542 a007 Real Root Of 224*x^4+81*x^3-689*x^2-948*x+643 5142254978067616 r005 Re(z^2+c),c=-9/14+29/148*I,n=5 5142254990382808 a001 433494437/3571*199^(3/11) 5142255005268703 q001 488/949 5142255005268703 r005 Im(z^2+c),c=-21/26+61/73*I,n=2 5142255010568920 m001 1/Porter^2*Niven^2/exp(cos(Pi/12)) 5142255012437937 r002 32th iterates of z^2 + 5142255053773117 m001 (Chi(1)+CareFree)/(-HardyLittlewoodC5+Rabbit) 5142255057174572 r005 Re(z^2+c),c=-31/44+1/14*I,n=34 5142255058377825 m001 Magata*(Kolakoski+TravellingSalesman) 5142255058517952 a005 (1/cos(7/107*Pi))^943 5142255062240377 a001 34/4870847*18^(38/55) 5142255063782998 r009 Im(z^3+c),c=-43/74+23/45*I,n=7 5142255071611166 a007 Real Root Of 282*x^4-610*x^3-664*x^2-119*x+300 5142255081476720 r005 Im(z^2+c),c=1/18+29/52*I,n=9 5142255085069081 b008 1-7*CosIntegral[14] 5142255090284614 r009 Im(z^3+c),c=-25/42+32/63*I,n=58 5142255097414819 m001 (Lehmer-Weierstrass)/(ZetaP(4)-ZetaQ(2)) 5142255104882790 p003 LerchPhi(1/100,3,622/231) 5142255108088420 m005 (1/3*3^(1/2)-1/3)/(5/9*Pi+3) 5142255119011169 m001 (Niven-Sarnak)/(Bloch-LaplaceLimit) 5142255124423896 m001 (ln(5)+ln(2^(1/2)+1))/(PlouffeB+ZetaQ(3)) 5142255139413987 m001 (-Riemann2ndZero+Sarnak)/(cos(1)+Magata) 5142255145107867 m001 (cos(1)+BesselK(1,1))/(KhinchinLevy+MertensB2) 5142255148252146 r009 Im(z^3+c),c=-1/110+35/54*I,n=21 5142255154662678 a007 Real Root Of 898*x^4-575*x^3-134*x^2-946*x-592 5142255171230099 a007 Real Root Of 781*x^4-980*x^3+420*x^2-598*x-32 5142255188766424 a007 Real Root Of -450*x^4-891*x^3-792*x^2+862*x+563 5142255214228087 a001 1597/439204*2^(1/2) 5142255223388494 m001 exp(gamma)^2*GAMMA(19/24)*sinh(1)^2 5142255224577469 r002 64th iterates of z^2 + 5142255244237680 r009 Im(z^3+c),c=-39/98+19/42*I,n=5 5142255253610758 a007 Real Root Of 174*x^4-18*x^3+927*x^2-405*x-468 5142255256014235 m001 (5^(1/2)+sin(1/12*Pi))/(exp(1/exp(1))+Magata) 5142255258876755 h001 (8/11*exp(2)+4/11)/(1/12*exp(2)+1/2) 5142255261649103 l006 ln(5344/8937) 5142255274490657 m001 Trott2nd-HeathBrownMoroz-cos(1) 5142255281920718 r009 Im(z^3+c),c=-39/118+25/42*I,n=56 5142255330652650 a007 Real Root Of -764*x^4-23*x^3-744*x^2-494*x-7 5142255331925475 r002 61th iterates of z^2 + 5142255344024212 r002 50th iterates of z^2 + 5142255352798029 r002 54th iterates of z^2 + 5142255354166653 s002 sum(A206102[n]/((exp(n)+1)/n),n=1..infinity) 5142255376882841 a007 Real Root Of 244*x^4+12*x^3+939*x^2+262*x-129 5142255382605949 r009 Im(z^3+c),c=-7/64+29/45*I,n=45 5142255399394595 a007 Real Root Of -421*x^4+327*x^3-57*x^2+986*x+596 5142255400750570 r009 Im(z^3+c),c=-1/66+33/52*I,n=11 5142255412585133 m001 (Psi(1,1/3)-ln(3))/(gamma(3)+MadelungNaCl) 5142255415241353 k006 concat of cont frac of 5142255421711270 r009 Im(z^3+c),c=-3/10+20/33*I,n=53 5142255422196308 m005 (1/2*Zeta(3)+5/11)/(5*gamma-5/6) 5142255424990942 a007 Real Root Of -443*x^4-297*x^3-719*x^2+477*x+426 5142255473531564 s001 sum(exp(-Pi/2)^(n-1)*A237662[n],n=1..infinity) 5142255482140338 r009 Re(z^3+c),c=-35/86+1/34*I,n=26 5142255485517198 a007 Real Root Of -187*x^4+57*x^3+65*x^2+572*x-306 5142255490839691 r009 Im(z^3+c),c=-17/66+21/34*I,n=58 5142255494198181 k007 concat of cont frac of 5142255496581206 a001 4/17711*233^(8/53) 5142255497122094 m002 Pi^2-Cosh[Pi]/5-Log[Pi]-Sinh[Pi] 5142255498613479 m001 (FransenRobinson-Magata)/(Salem-Trott) 5142255502136110 h001 (7/11*exp(2)+7/9)/(2/11*exp(1)+4/7) 5142255558197264 v002 sum(1/(3^n+(21/2*n^2+7/2*n+22)),n=1..infinity) 5142255643637128 m004 120+125*Pi+ProductLog[Sqrt[5]*Pi] 5142255650853959 m005 (1/2*Catalan+2/5)/(8/9*Zeta(3)+3/5) 5142255658420481 m001 ZetaQ(3)^ZetaP(3)/(ZetaQ(3)^Zeta(1,2)) 5142255674577249 r002 12th iterates of z^2 + 5142255701321425 a008 Real Root of x^4-2*x^3-51*x^2-31*x+218 5142255702219300 b008 Erfc[Sqrt[Csch[1]]/2] 5142255711435835 r009 Im(z^3+c),c=-15/44+35/64*I,n=12 5142255723092984 r009 Im(z^3+c),c=-25/58+7/13*I,n=59 5142255749326803 r002 20th iterates of z^2 + 5142255759116545 r005 Im(z^2+c),c=-5/8+14/143*I,n=43 5142255761166938 m004 (-5*Pi)/3+(15*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 5142255763500918 m001 (GAMMA(23/24)-CareFree)/(Paris-Sarnak) 5142255773482752 p001 sum((-1)^n/(449*n+194)/(125^n),n=0..infinity) 5142255785781053 r009 Im(z^3+c),c=-81/122+12/53*I,n=2 5142255797428079 r005 Im(z^2+c),c=-153/122+13/54*I,n=3 5142255822854366 s002 sum(A204901[n]/(exp(n)+1),n=1..infinity) 5142255824640802 r005 Re(z^2+c),c=-9/10+63/220*I,n=8 5142255842196642 r009 Im(z^3+c),c=-17/56+26/43*I,n=63 5142255843992741 r002 35th iterates of z^2 + 5142255866742597 a001 2207/121393*8^(1/2) 5142255871567213 m001 (2*Pi/GAMMA(5/6)+StronglyCareFree*Trott)/Trott 5142255880872703 a007 Real Root Of -740*x^4+873*x^3-400*x^2-613*x-39 5142255882627744 r009 Im(z^3+c),c=-10/31+35/54*I,n=43 5142255885392310 m001 (CareFree+TreeGrowth2nd)/(1+GAMMA(3/4)) 5142255891500022 r002 22th iterates of z^2 + 5142255893150275 a007 Real Root Of -645*x^4+552*x^3-505*x^2-330*x+84 5142255918691781 l006 ln(1703/2848) 5142255942380231 a007 Real Root Of 149*x^4+716*x^3-472*x^2-988*x+575 5142255949255795 r005 Re(z^2+c),c=-33/50+23/49*I,n=5 5142255953515638 r009 Im(z^3+c),c=-1/48+13/20*I,n=39 5142255957988541 r005 Im(z^2+c),c=-17/74+1/14*I,n=12 5142255964169438 h001 (5/7*exp(1)+9/10)/(2/3*exp(2)+3/5) 5142255996010238 a007 Real Root Of -170*x^4-726*x^3+746*x^2+35*x+603 5142255999607884 r002 9th iterates of z^2 + 5142256005020718 a007 Real Root Of -590*x^4+782*x^3-122*x^2-165*x+95 5142256007113925 a001 832040/123*123^(9/10) 5142256021983330 r005 Re(z^2+c),c=-11/90+12/17*I,n=33 5142256044570966 m001 (Kac+Paris)/(BesselJ(0,1)-GolombDickman) 5142256065947267 r002 7th iterates of z^2 + 5142256075832850 a007 Real Root Of -38*x^4+622*x^3-174*x^2+393*x-238 5142256091768805 l006 ln(8509/8958) 5142256107555097 m005 (1/3*Zeta(3)+2/5)/(2^(1/2)+1/7) 5142256120634813 a007 Real Root Of 594*x^4-945*x^3-106*x^2-352*x+296 5142256121078427 a007 Real Root Of 122*x^4-326*x^3+87*x^2-823*x+436 5142256130476756 a005 (1/sin(79/173*Pi))^671 5142256135141380 m002 5+(3*Pi^3*Sinh[Pi])/E^Pi 5142256136845546 r005 Im(z^2+c),c=-1/46+35/57*I,n=18 5142256140611673 a007 Real Root Of 47*x^4+21*x^3-958*x^2+933*x+122 5142256147807055 a001 3571/1597*2504730781961^(4/21) 5142256155599601 m001 (BesselK(1,1)+Backhouse)/(MertensB1-Robbin) 5142256159910477 m005 (1/3*gamma+3/7)/(7/12*Pi-5/8) 5142256175088649 a007 Real Root Of 649*x^4-888*x^3-62*x^2+192*x-51 5142256179726953 m005 (1/3*2^(1/2)-1/9)/(7/11*gamma+1/3) 5142256205630057 p001 sum((-1)^n/(609*n+194)/(100^n),n=0..infinity) 5142256212767583 m001 (ln(3)-TreeGrowth2nd)/(sin(1/5*Pi)+ln(2)) 5142256228054552 a007 Real Root Of -242*x^4+695*x^3+265*x^2+608*x+354 5142256228786154 m001 (Ei(1,1)-gamma)/(-Kolakoski+Paris) 5142256254801728 a007 Real Root Of -146*x^4+362*x^3-222*x^2+342*x+294 5142256254898321 a005 (1/sin(53/121*Pi))^1896 5142256258091652 r009 Im(z^3+c),c=-13/44+31/48*I,n=37 5142256262968020 r005 Im(z^2+c),c=1/48+39/64*I,n=57 5142256279813945 m001 (2^(1/3)+LandauRamanujan2nd)/(Magata+ZetaP(3)) 5142256284045893 r009 Im(z^3+c),c=-12/25+17/38*I,n=30 5142256289532098 m001 (GAMMA(2/3)-Rabbit)/(Salem+ZetaP(4)) 5142256295009178 m001 (BesselK(0,1)+sin(1/5*Pi))/(-Khinchin+Sarnak) 5142256308841403 a001 1836311903/76*3^(11/16) 5142256343591926 r009 Re(z^3+c),c=-23/58+1/42*I,n=55 5142256351976078 a007 Real Root Of 534*x^4-259*x^3-769*x^2-406*x+410 5142256352610438 m001 (-Gompertz+Landau)/(Chi(1)+DuboisRaymond) 5142256353956042 r005 Re(z^2+c),c=-13/18+4/123*I,n=39 5142256381253207 k002 Champernowne real with 101*n^2-294*n+198 5142256384404529 h001 (5/8*exp(1)+8/11)/(5/8*exp(2)+1/10) 5142256400259753 m001 LaplaceLimit^GAMMA(13/24)*Psi(1,1/3) 5142256405864167 r009 Im(z^3+c),c=-1/11+35/54*I,n=21 5142256458442570 m001 gamma^2*exp(cos(Pi/12))^2*sqrt(5) 5142256459415179 m001 ln(Rabbit)^2*Kolakoski^2/(3^(1/3)) 5142256465457437 a007 Real Root Of 140*x^4+896*x^3+824*x^2-241*x+915 5142256469465739 r009 Im(z^3+c),c=-3/28+52/53*I,n=10 5142256520112893 r005 Re(z^2+c),c=-89/122+4/31*I,n=38 5142256542473013 a001 24476/1597*102334155^(4/21) 5142256555080231 r005 Im(z^2+c),c=-113/122+1/23*I,n=11 5142256555332594 a007 Real Root Of 26*x^4-164*x^3-64*x^2-463*x+24 5142256561446031 m005 (1/2*3^(1/2)+2/5)/(-4/11+3/11*5^(1/2)) 5142256562080314 a001 167761/1597*4181^(4/21) 5142256566341577 r009 Re(z^3+c),c=-57/110+26/49*I,n=22 5142256573893590 r009 Im(z^3+c),c=-3/20+39/61*I,n=47 5142256586015167 r002 7th iterates of z^2 + 5142256589286689 a007 Real Root Of 702*x^4-903*x^3-276*x^2-535*x-374 5142256591467461 r002 2th iterates of z^2 + 5142256593802844 r002 6th iterates of z^2 + 5142256598738342 r002 13th iterates of z^2 + 5142256615614400 a007 Real Root Of -810*x^4+219*x^3-633*x^2+928*x+731 5142256616628161 r009 Re(z^3+c),c=-16/31+3/41*I,n=12 5142256632130553 r005 Re(z^2+c),c=-23/34+32/123*I,n=52 5142256639093058 l006 ln(4874/8151) 5142256652230824 m001 1/ln(Rabbit)^2/Cahen^2*Riemann3rdZero 5142256652391727 a007 Real Root Of -600*x^4+561*x^3+593*x^2+497*x+217 5142256661874724 m001 exp(Paris)/Si(Pi)/OneNinth^2 5142256666700040 r005 Im(z^2+c),c=-41/110+21/38*I,n=6 5142256688967183 m005 (1/2*Catalan+3/8)/(7/9*3^(1/2)+3/11) 5142256717653181 m001 (1-3^(1/2))/(-ln(5)+Porter) 5142256736204513 r005 Im(z^2+c),c=-67/60+1/16*I,n=46 5142256776448532 m005 (1/3*5^(1/2)-1/4)/(5/6*Catalan+1/5) 5142256787837725 r009 Re(z^3+c),c=-21/50+1/26*I,n=64 5142256793849876 a007 Real Root Of 64*x^4+392*x^3+252*x^2-293*x+382 5142256795174206 a007 Real Root Of -718*x^4+840*x^3-988*x^2-118*x+365 5142256803448366 r002 6th iterates of z^2 + 5142256810551435 s001 sum(exp(-Pi/2)^n*A035738[n],n=1..infinity) 5142256811525504 a007 Real Root Of -862*x^4+134*x^3+448*x^2+424*x-23 5142256811772914 a007 Real Root Of -144*x^4-668*x^3+216*x^2-988*x-936 5142256812471701 a007 Real Root Of 200*x^4-323*x^3+80*x^2-980*x-583 5142256823703619 r002 56th iterates of z^2 + 5142256832260526 a007 Real Root Of -876*x^4+195*x^3-292*x^2+840*x-320 5142256836639641 a001 9349/4181*2504730781961^(4/21) 5142256838310306 r009 Im(z^3+c),c=-11/38+41/56*I,n=18 5142256845004406 a007 Real Root Of -388*x^4+115*x^3-987*x^2+720*x+674 5142256847229176 r005 Im(z^2+c),c=-121/122+3/59*I,n=12 5142256851906044 r005 Re(z^2+c),c=-63/106+11/28*I,n=57 5142256860059099 r009 Im(z^3+c),c=-4/19+22/35*I,n=50 5142256880889050 a001 1/10182505537*1836311903^(16/17) 5142256880892698 a001 2/9227465*514229^(16/17) 5142256894220632 a001 64079/4181*102334155^(4/21) 5142256901241830 m001 (-sin(1/5*Pi)+arctan(1/2))/(exp(Pi)+1) 5142256906652664 a001 439204/4181*4181^(4/21) 5142256916937140 r009 Im(z^3+c),c=-9/82+20/31*I,n=28 5142256923295128 r009 Im(z^3+c),c=-35/114+29/48*I,n=46 5142256924295784 r005 Re(z^2+c),c=-17/25+1/50*I,n=17 5142256928060138 r002 51th iterates of z^2 + 5142256935763360 a001 24157817/322*322^(1/3) 5142256937138969 a001 12238/5473*2504730781961^(4/21) 5142256938864737 m001 (ln(2)/ln(10)*Niven+MertensB2)/ln(2)*ln(10) 5142256945539923 a001 167761/10946*102334155^(4/21) 5142256947807378 r009 Im(z^3+c),c=-1/102+11/17*I,n=19 5142256951801624 a001 64079/28657*2504730781961^(4/21) 5142256952623191 m005 (1/2*exp(1)-5/11)/(1/2*exp(1)+2/5) 5142256953027306 a001 439204/28657*102334155^(4/21) 5142256953940876 a001 167761/75025*2504730781961^(4/21) 5142256954119701 a001 1149851/75025*102334155^(4/21) 5142256954252989 a001 219602/98209*2504730781961^(4/21) 5142256954279079 a001 3010349/196418*102334155^(4/21) 5142256954298525 a001 1149851/514229*2504730781961^(4/21) 5142256954302332 a001 7881196/514229*102334155^(4/21) 5142256954305169 a001 3010349/1346269*2504730781961^(4/21) 5142256954305724 a001 20633239/1346269*102334155^(4/21) 5142256954306138 a001 3940598/1762289*2504730781961^(4/21) 5142256954306219 a001 54018521/3524578*102334155^(4/21) 5142256954306280 a001 20633239/9227465*2504730781961^(4/21) 5142256954306292 a001 141422324/9227465*102334155^(4/21) 5142256954306300 a001 54018521/24157817*2504730781961^(4/21) 5142256954306302 a001 370248451/24157817*102334155^(4/21) 5142256954306303 a001 70711162/31622993*2504730781961^(4/21) 5142256954306304 a001 969323029/63245986*102334155^(4/21) 5142256954306304 a001 370248451/165580141*2504730781961^(4/21) 5142256954306304 a001 2537720636/165580141*102334155^(4/21) 5142256954306304 a001 6643838879/433494437*102334155^(4/21) 5142256954306304 a001 17393796001/1134903170*102334155^(4/21) 5142256954306304 a001 45537549124/2971215073*102334155^(4/21) 5142256954306304 a001 119218851371/7778742049*102334155^(4/21) 5142256954306304 a001 312119004989/20365011074*102334155^(4/21) 5142256954306304 a001 817138163596/53316291173*102334155^(4/21) 5142256954306304 a001 2139295485799/139583862445*102334155^(4/21) 5142256954306304 a001 14662949395604/956722026041*102334155^(4/21) 5142256954306304 a001 494493258286/32264490531*102334155^(4/21) 5142256954306304 a001 1322157322203/86267571272*102334155^(4/21) 5142256954306304 a001 505019158607/32951280099*102334155^(4/21) 5142256954306304 a001 192900153618/12586269025*102334155^(4/21) 5142256954306304 a001 10525900321/686789568*102334155^(4/21) 5142256954306304 a001 28143753123/1836311903*102334155^(4/21) 5142256954306304 a001 10749957122/701408733*102334155^(4/21) 5142256954306304 a001 969323029/433494437*2504730781961^(4/21) 5142256954306304 a001 4106118243/267914296*102334155^(4/21) 5142256954306304 a001 1268860318/567451585*2504730781961^(4/21) 5142256954306304 a001 6643838879/2971215073*2504730781961^(4/21) 5142256954306304 a001 17393796001/7778742049*2504730781961^(4/21) 5142256954306304 a001 22768774562/10182505537*2504730781961^(4/21) 5142256954306304 a001 119218851371/53316291173*2504730781961^(4/21) 5142256954306304 a001 312119004989/139583862445*2504730781961^(4/21) 5142256954306304 a001 505019158607/225851433717*2504730781961^(4/21) 5142256954306304 a001 96450076809/43133785636*2504730781961^(4/21) 5142256954306304 a001 73681302247/32951280099*2504730781961^(4/21) 5142256954306304 a001 28143753123/12586269025*2504730781961^(4/21) 5142256954306304 a001 5374978561/2403763488*2504730781961^(4/21) 5142256954306304 a001 4106118243/1836311903*2504730781961^(4/21) 5142256954306304 a001 1568397607/701408733*2504730781961^(4/21) 5142256954306304 a001 299537289/133957148*2504730781961^(4/21) 5142256954306304 a001 224056801/14619165*102334155^(4/21) 5142256954306304 a001 228826127/102334155*2504730781961^(4/21) 5142256954306305 a001 599074578/39088169*102334155^(4/21) 5142256954306305 a001 87403803/39088169*2504730781961^(4/21) 5142256954306309 a001 228826127/14930352*102334155^(4/21) 5142256954306313 a001 16692641/7465176*2504730781961^(4/21) 5142256954306336 a001 87403803/5702887*102334155^(4/21) 5142256954306367 a001 12752043/5702887*2504730781961^(4/21) 5142256954306525 a001 4769326/311187*102334155^(4/21) 5142256954306737 a001 4870847/2178309*2504730781961^(4/21) 5142256954307821 a001 12752043/832040*102334155^(4/21) 5142256954309275 a001 930249/416020*2504730781961^(4/21) 5142256954316703 a001 4870847/317811*102334155^(4/21) 5142256954326669 a001 710647/317811*2504730781961^(4/21) 5142256954377580 a001 1860498/121393*102334155^(4/21) 5142256954445885 a001 271443/121393*2504730781961^(4/21) 5142256954794838 a001 101521/6624*102334155^(4/21) 5142256955263007 a001 51841/23184*2504730781961^(4/21) 5142256956925096 a001 1149851/10946*4181^(4/21) 5142256957654764 a001 271443/17711*102334155^(4/21) 5142256960863642 a001 39603/17711*2504730781961^(4/21) 5142256964259745 a001 3010349/28657*4181^(4/21) 5142256965329856 a001 7881196/75025*4181^(4/21) 5142256965485983 a001 20633239/196418*4181^(4/21) 5142256965508762 a001 54018521/514229*4181^(4/21) 5142256965512085 a001 141422324/1346269*4181^(4/21) 5142256965512570 a001 370248451/3524578*4181^(4/21) 5142256965512641 a001 969323029/9227465*4181^(4/21) 5142256965512651 a001 2537720636/24157817*4181^(4/21) 5142256965512653 a001 6643838879/63245986*4181^(4/21) 5142256965512653 a001 17393796001/165580141*4181^(4/21) 5142256965512653 a001 45537549124/433494437*4181^(4/21) 5142256965512653 a001 119218851371/1134903170*4181^(4/21) 5142256965512653 a001 312119004989/2971215073*4181^(4/21) 5142256965512653 a001 817138163596/7778742049*4181^(4/21) 5142256965512653 a001 2139295485799/20365011074*4181^(4/21) 5142256965512653 a001 5600748293801/53316291173*4181^(4/21) 5142256965512653 a001 14662949395604/139583862445*4181^(4/21) 5142256965512653 a001 23725150497407/225851433717*4181^(4/21) 5142256965512653 a001 9062201101803/86267571272*4181^(4/21) 5142256965512653 a001 3461452808002/32951280099*4181^(4/21) 5142256965512653 a001 1322157322203/12586269025*4181^(4/21) 5142256965512653 a001 10745088481/102287808*4181^(4/21) 5142256965512653 a001 192900153618/1836311903*4181^(4/21) 5142256965512653 a001 73681302247/701408733*4181^(4/21) 5142256965512653 a001 28143753123/267914296*4181^(4/21) 5142256965512653 a001 10749957122/102334155*4181^(4/21) 5142256965512654 a001 4106118243/39088169*4181^(4/21) 5142256965512657 a001 1568397607/14930352*4181^(4/21) 5142256965512684 a001 599074578/5702887*4181^(4/21) 5142256965512870 a001 4868641/46347*4181^(4/21) 5142256965514139 a001 87403803/832040*4181^(4/21) 5142256965522840 a001 33385282/317811*4181^(4/21) 5142256965582475 a001 12752043/121393*4181^(4/21) 5142256965991221 a001 4870847/46368*4181^(4/21) 5142256968792808 a001 1860498/17711*4181^(4/21) 5142256977256989 a001 103682/6765*102334155^(4/21) 5142256987995168 a001 710647/6765*4181^(4/21) 5142256999250970 a001 15127/6765*2504730781961^(4/21) 5142257007795304 a007 Real Root Of -67*x^4-262*x^3+572*x^2+640*x-612 5142257025987826 l006 ln(3171/5303) 5142257029165678 a007 Real Root Of 113*x^4-70*x^3+247*x^2-792*x-490 5142257031068600 m001 1/exp(cos(Pi/12))*GAMMA(23/24)*log(2+sqrt(3)) 5142257031830309 a001 199/55*55^(5/57) 5142257049597291 a007 Real Root Of 98*x^4+308*x^3-789*x^2+934*x-977 5142257064485883 a007 Real Root Of -185*x^4-928*x^3+260*x^2+819*x+507 5142257081615582 s001 sum(exp(-Pi)^(n-1)*A165381[n],n=1..infinity) 5142257100342551 r005 Im(z^2+c),c=23/102+1/59*I,n=20 5142257100733531 r009 Im(z^3+c),c=-11/46+14/23*I,n=16 5142257111612641 a001 39603/2584*102334155^(4/21) 5142257111629061 a007 Real Root Of 930*x^4+731*x^3+890*x^2-459*x-437 5142257113644280 m005 (4/5*exp(1)+3/4)/(7/3+3/2*5^(1/2)) 5142257119610111 a001 271443/2584*4181^(4/21) 5142257125900077 m001 (-GaussKuzminWirsing+Niven)/(Cahen-Catalan) 5142257141433450 r005 Re(z^2+c),c=-61/106+3/52*I,n=3 5142257161013081 v002 sum(1/(5^n*(28*n^2-37*n+52)),n=1..infinity) 5142257164239136 a007 Real Root Of -82*x^4-328*x^3+621*x^2+561*x-800 5142257191026770 m001 arctan(1/3)^gamma(1)-MertensB2 5142257193290544 r009 Re(z^3+c),c=-7/74+31/46*I,n=55 5142257244754691 m001 (Pi+BesselJ(0,1))/(HardyLittlewoodC4+ZetaP(2)) 5142257262361639 a001 2889/1292*2504730781961^(4/21) 5142257263030574 a001 11/21*2178309^(11/35) 5142257264040282 a007 Real Root Of -972*x^4-508*x^3-354*x^2+176*x+183 5142257265824536 r009 Im(z^3+c),c=-9/46+12/19*I,n=54 5142257272791922 r002 58th iterates of z^2 + 5142257277459529 a007 Real Root Of 494*x^4-160*x^3+253*x^2-443*x-351 5142257294514004 a001 13201*28657^(29/36) 5142257305050945 s002 sum(A041559[n]/(pi^n-1),n=1..infinity) 5142257308633063 r005 Im(z^2+c),c=-13/14+82/247*I,n=4 5142257319789726 r009 Re(z^3+c),c=-31/66+1/10*I,n=15 5142257326842222 r005 Im(z^2+c),c=-11/86+23/33*I,n=5 5142257351047780 a001 165580141/1364*199^(3/11) 5142257370132854 m003 9/2+Sqrt[5]/4+Sin[1/2+Sqrt[5]/2]/12 5142257370621644 m001 1/exp(GAMMA(1/3))/Khintchine^2*cos(1) 5142257395642040 r009 Im(z^3+c),c=-35/94+5/9*I,n=13 5142257403599491 a007 Real Root Of 114*x^4-794*x^3+711*x^2+453*x-71 5142257407940928 a007 Real Root Of 542*x^4+140*x^3-681*x^2-447*x+353 5142257425938958 m001 (exp(Pi)+GlaisherKinkelin)/Weierstrass 5142257427883327 r005 Re(z^2+c),c=-7/31+16/25*I,n=45 5142257432481688 l006 ln(4639/7758) 5142257436305797 r005 Im(z^2+c),c=-7/10+2/207*I,n=4 5142257444573328 a007 Real Root Of -849*x^4-960*x^3-902*x^2-24*x+155 5142257477354016 m001 exp(Robbin)*KhintchineLevy*sqrt(5) 5142257498959729 r005 Re(z^2+c),c=-3/10+37/56*I,n=25 5142257508460728 m001 1/Conway/Cahen*exp(MinimumGamma) 5142257522831256 r005 Im(z^2+c),c=27/106+43/47*I,n=3 5142257525917841 m001 (ln(2)+Ei(1,1))/(HardyLittlewoodC4+Porter) 5142257534367495 r009 Re(z^3+c),c=-31/46+12/25*I,n=27 5142257536560790 h001 (5/9*exp(1)+6/7)/(1/2*exp(2)+10/11) 5142257542112022 k008 concat of cont frac of 5142257569214775 r009 Im(z^3+c),c=-29/52+13/47*I,n=6 5142257574059344 r002 21th iterates of z^2 + 5142257575047764 a001 610/167761*2^(1/2) 5142257583417127 a007 Real Root Of 954*x^4+460*x^3+67*x^2-841*x+43 5142257586335647 m001 MertensB1-Zeta(3)*ZetaP(3) 5142257590783842 r009 Im(z^3+c),c=-9/17+16/31*I,n=4 5142257607552772 a007 Real Root Of 70*x^4-415*x^3-437*x^2-556*x+453 5142257608270050 r005 Re(z^2+c),c=-31/54+22/47*I,n=8 5142257618347304 a001 76/13*144^(7/16) 5142257618819562 a007 Real Root Of 462*x^4+984*x^3+907*x^2-433*x-361 5142257626582119 r005 Re(z^2+c),c=17/52+3/58*I,n=23 5142257629563179 r005 Re(z^2+c),c=-7/10+46/247*I,n=54 5142257639320225 a001 514228-5^(1/2) 5142257667797863 a007 Real Root Of -685*x^4+246*x^3+731*x^2+362*x-365 5142257673969179 r005 Re(z^2+c),c=-24/31+27/62*I,n=5 5142257686202333 a007 Real Root Of 287*x^4-316*x^3+110*x^2-624*x-413 5142257722319648 m001 1/GAMMA(7/24)/FeigenbaumC^2*ln(sin(Pi/5)) 5142257725731143 b008 15*(-37+E) 5142257730307125 r005 Re(z^2+c),c=-59/90+2/25*I,n=9 5142257731962749 r005 Im(z^2+c),c=-24/25+13/35*I,n=5 5142257732245638 r005 Re(z^2+c),c=-3/4+41/170*I,n=9 5142257765402610 r009 Im(z^3+c),c=-2/21+31/48*I,n=50 5142257773515213 r005 Im(z^2+c),c=-13/21+3/31*I,n=27 5142257777716320 v002 sum(1/(5^n+(7/2*n^2-15/2*n+36)),n=1..infinity) 5142257778744142 a007 Real Root Of 527*x^4-716*x^3+194*x^2-653*x+345 5142257786472956 m001 HardyLittlewoodC3^OneNinth/Si(Pi) 5142257787523124 m004 -Log[Sqrt[5]*Pi]/5+(2*Sec[Sqrt[5]*Pi])/3 5142257791698440 r005 Re(z^2+c),c=-37/106+39/58*I,n=11 5142257798529444 a007 Real Root Of -372*x^4-296*x^3-875*x^2+377*x+411 5142257800951536 a003 cos(Pi*18/67)*sin(Pi*20/71) 5142257812621495 r009 Re(z^3+c),c=-13/122+37/59*I,n=10 5142257818248553 r009 Im(z^3+c),c=-19/106+33/52*I,n=64 5142257826708352 r005 Im(z^2+c),c=-67/60+1/16*I,n=45 5142257839222754 a007 Real Root Of -969*x^4+291*x^3+778*x^2+419*x-393 5142257839659452 r002 6th iterates of z^2 + 5142257855245374 r009 Im(z^3+c),c=-13/50+29/47*I,n=42 5142257897175019 m005 (1/2*2^(1/2)+7/12)/(4/7*Pi+5/7) 5142257902744604 r009 Im(z^3+c),c=-11/30+45/49*I,n=2 5142257904860220 r002 55th iterates of z^2 + 5142257921102820 r002 11th iterates of z^2 + 5142257925423476 a008 Real Root of x^4-x^3-65*x-229 5142257933845692 m001 (Pi^(1/2)+Magata)/(BesselI(0,1)-sin(1/12*Pi)) 5142257934566425 m001 exp(Kolakoski)/ErdosBorwein/GAMMA(1/3) 5142257939552548 m005 (1/3*Pi+2/7)/(1/11*3^(1/2)-5/12) 5142257947221184 a003 cos(Pi*37/104)-cos(Pi*37/99) 5142257965651156 m001 1/exp(Zeta(3))*GAMMA(2/3)^2*cos(Pi/12)^2 5142258001913696 r005 Im(z^2+c),c=13/110+40/63*I,n=18 5142258021712529 a001 2206/21*4181^(4/21) 5142258032500164 a001 2161/141*102334155^(4/21) 5142258034894398 r002 2th iterates of z^2 + 5142258047282051 m005 (41/36+1/4*5^(1/2))/(2/9*Pi-4) 5142258049832616 m001 GAMMA(1/4)^2*FeigenbaumD^2/ln(Zeta(3)) 5142258065320655 m001 (Stephens+ZetaP(2))/(ln(2)+Mills) 5142258083868068 r005 Im(z^2+c),c=-7/60+1/16*I,n=11 5142258086841218 l006 ln(59/10095) 5142258089712846 s002 sum(A171211[n]/(n^3*2^n+1),n=1..infinity) 5142258096018551 m001 CopelandErdos^RenyiParking+ZetaP(3) 5142258102015753 h001 (1/4*exp(2)+9/10)/(3/5*exp(2)+10/11) 5142258104817022 m001 Zeta(1,-1)^Otter/(Zeta(1,-1)^Mills) 5142258115278548 m005 (1/2*Zeta(3)-4/11)/(1/3*exp(1)-4/9) 5142258123733382 r005 Re(z^2+c),c=-7/10+29/253*I,n=34 5142258132999180 r005 Im(z^2+c),c=-7/8+9/245*I,n=24 5142258152603875 m005 (1/42+1/6*5^(1/2))/(1/12*2^(1/2)-8/9) 5142258152950218 a008 Real Root of x^4-x^3-18*x^2-16*x-5 5142258161126085 q001 1717/3339 5142258161126085 r002 2th iterates of z^2 + 5142258168898442 m001 Paris*exp(FibonacciFactorial)*GAMMA(7/12) 5142258169698304 r005 Re(z^2+c),c=-43/64+11/50*I,n=18 5142258190996316 r005 Re(z^2+c),c=17/62+32/59*I,n=44 5142258203019255 m001 (Lehmer-Tribonacci)/(sin(1/12*Pi)-FeigenbaumD) 5142258211262467 a007 Real Root Of -869*x^4+688*x^3-307*x^2-351*x+55 5142258211870773 r002 3th iterates of z^2 + 5142258212956936 r009 Im(z^3+c),c=-45/94+25/57*I,n=24 5142258242859341 m005 (1/2*2^(1/2)-1/8)/(1/12*Pi-3/8) 5142258257219597 a007 Real Root Of -113*x^4-605*x^3-756*x^2+489*x+377 5142258263903353 r005 Re(z^2+c),c=-21/58+27/47*I,n=12 5142258268540263 r009 Re(z^3+c),c=-25/48+7/43*I,n=6 5142258284348278 p001 sum((-1)^n/(214*n+97)/n/(625^n),n=1..infinity) 5142258287045549 m002 -4-Pi+Pi^2*Csch[Pi]+Log[Pi] 5142258290754043 b008 -108/11+Pi^2 5142258305891373 m001 (Thue-Trott)/ZetaQ(4) 5142258310541600 l006 ln(1468/2455) 5142258368948164 r009 Im(z^3+c),c=-11/74+14/19*I,n=61 5142258374668145 r009 Im(z^3+c),c=-11/60+40/63*I,n=30 5142258375054071 m001 (ErdosBorwein*Salem-GAMMA(17/24))/Salem 5142258383205107 r005 Im(z^2+c),c=-5/6+57/256*I,n=20 5142258414038837 r009 Re(z^3+c),c=-59/114+14/43*I,n=5 5142258430119099 r005 Im(z^2+c),c=-13/14+39/140*I,n=6 5142258433234270 r009 Im(z^3+c),c=-11/82+34/53*I,n=52 5142258433633360 p001 sum((-1)^n/(285*n+181)/(5^n),n=0..infinity) 5142258453356768 a007 Real Root Of -214*x^4+951*x^3-565*x^2+831*x+721 5142258464090891 r005 Re(z^2+c),c=-39/86+16/31*I,n=2 5142258476553211 r009 Re(z^3+c),c=-1/122+30/53*I,n=13 5142258481986516 a005 (1/cos(9/148*Pi))^340 5142258486044259 r002 6th iterates of z^2 + 5142258486279952 s002 sum(A162962[n]/(n^2*exp(n)+1),n=1..infinity) 5142258496232114 m001 1/(sin(1/5*Pi)^(Pi*csc(7/24*Pi)/GAMMA(17/24))) 5142258508809253 m001 ln(GAMMA(23/24))*Si(Pi)^2*sin(Pi/5) 5142258519513769 a001 3/13*4181^(49/53) 5142258527695108 r005 Im(z^2+c),c=-67/60+1/16*I,n=52 5142258530628626 r002 60th iterates of z^2 + 5142258535871678 r009 Im(z^3+c),c=-1/13+23/35*I,n=17 5142258536070924 m005 (1/2*5^(1/2)-3/11)/(4/11*Zeta(3)-3/11) 5142258542827298 s002 sum(A000227[n]/(exp(pi*n)-1),n=1..infinity) 5142258567308898 r002 50th iterates of z^2 + 5142258570371208 r005 Re(z^2+c),c=-65/66+11/46*I,n=38 5142258570973519 r005 Im(z^2+c),c=-61/90+20/57*I,n=59 5142258576135985 a007 Real Root Of -532*x^4+130*x^3+223*x^2+850*x+433 5142258591391002 s002 sum(A206102[n]/((exp(n)-1)/n),n=1..infinity) 5142258602600477 m001 (PolyaRandomWalk3D+ZetaP(2))/(Lehmer-gamma) 5142258619084918 r009 Im(z^3+c),c=-1/48+13/20*I,n=41 5142258621270926 a003 sin(Pi*4/49)-sin(Pi*17/61) 5142258635345180 m005 (1/3*Zeta(3)-2/11)/(3/7*Catalan-9/11) 5142258641726796 m001 (GAMMA(17/24)+GAMMA(19/24))/(Pi+GAMMA(13/24)) 5142258645016929 a007 Real Root Of -154*x^4-667*x^3+673*x^2-3*x-827 5142258650965506 m008 (1/6*Pi^5-4)/(3*Pi^5-4) 5142258661280874 s002 sum(A171211[n]/(n^3*2^n-1),n=1..infinity) 5142258667054984 r002 59th iterates of z^2 + 5142258674669016 g002 Psi(6/11)+Psi(2/11)-Psi(8/9)-Psi(4/7) 5142258677801944 r005 Im(z^2+c),c=-67/60+1/16*I,n=56 5142258678916590 m001 GAMMA(1/4)/FeigenbaumDelta^2/exp(GAMMA(19/24)) 5142258682879038 r005 Im(z^2+c),c=-67/60+1/16*I,n=51 5142258683532375 r005 Im(z^2+c),c=1/21+17/29*I,n=35 5142258695150117 r009 Im(z^3+c),c=-11/62+40/63*I,n=51 5142258698750084 a001 4/6765*10946^(10/43) 5142258708271160 m001 Psi(2,1/3)^Zeta(3)/(Psi(2,1/3)^Ei(1,1)) 5142258720697245 a007 Real Root Of 676*x^4-197*x^3+226*x^2-259*x-267 5142258730293177 s001 sum(exp(-2*Pi)^(n-1)*A234879[n],n=1..infinity) 5142258743290775 r005 Im(z^2+c),c=-67/60+1/16*I,n=55 5142258776882751 r009 Im(z^3+c),c=-17/42+12/19*I,n=38 5142258778906281 r002 6th iterates of z^2 + 5142258781436016 r005 Im(z^2+c),c=-67/60+1/16*I,n=60 5142258783505099 r009 Im(z^3+c),c=-51/98+23/57*I,n=63 5142258789583365 r005 Im(z^2+c),c=-67/60+1/16*I,n=59 5142258791381501 m005 (1/3*2^(1/2)-1/8)/(7/11*3^(1/2)-3/7) 5142258792500259 r005 Im(z^2+c),c=-7/60+1/16*I,n=14 5142258795749220 r005 Im(z^2+c),c=-7/60+1/16*I,n=13 5142258796719271 r005 Im(z^2+c),c=-7/60+1/16*I,n=16 5142258797356236 r005 Im(z^2+c),c=-7/60+1/16*I,n=18 5142258797388101 r005 Im(z^2+c),c=-7/60+1/16*I,n=21 5142258797388180 r005 Im(z^2+c),c=-7/60+1/16*I,n=20 5142258797388276 r005 Im(z^2+c),c=-7/60+1/16*I,n=23 5142258797388304 r005 Im(z^2+c),c=-7/60+1/16*I,n=25 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=28 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=27 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=30 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=32 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=34 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=35 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=37 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=39 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=41 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=42 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=44 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=46 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=48 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=49 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=51 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=53 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=55 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=56 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=58 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=60 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=62 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=63 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=64 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=61 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=59 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=57 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=54 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=52 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=50 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=47 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=45 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=43 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=40 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=38 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=36 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=33 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=31 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=29 5142258797388305 r005 Im(z^2+c),c=-7/60+1/16*I,n=26 5142258797388312 r005 Im(z^2+c),c=-7/60+1/16*I,n=24 5142258797388400 r005 Im(z^2+c),c=-7/60+1/16*I,n=22 5142258797392838 r005 Im(z^2+c),c=-7/60+1/16*I,n=19 5142258797421479 r005 Im(z^2+c),c=-67/60+1/16*I,n=62 5142258797551226 r005 Im(z^2+c),c=-7/60+1/16*I,n=17 5142258797775898 r005 Im(z^2+c),c=-67/60+1/16*I,n=61 5142258799214103 r005 Im(z^2+c),c=-67/60+1/16*I,n=63 5142258799587663 r005 Im(z^2+c),c=-7/60+1/16*I,n=15 5142258800138096 r002 62th iterates of z^2 + 5142258801828415 r005 Im(z^2+c),c=-67/60+1/16*I,n=64 5142258804117672 m001 (Ei(1)*BesselJ(1,1)-GAMMA(1/24))/BesselJ(1,1) 5142258804772770 r002 61th iterates of z^2 + 5142258821996101 r005 Im(z^2+c),c=-67/60+1/16*I,n=57 5142258827025674 r002 63th iterates of z^2 + 5142258829194226 r002 9th iterates of z^2 + 5142258849218372 r005 Im(z^2+c),c=-67/60+1/16*I,n=49 5142258850391543 r005 Im(z^2+c),c=-67/60+1/16*I,n=58 5142258852663305 r005 Im(z^2+c),c=-39/74+27/53*I,n=7 5142258853730540 m002 -3*Pi^2-Pi^3+Pi^2/ProductLog[Pi] 5142258869588648 r002 64th iterates of z^2 + 5142258885524850 r002 56th iterates of z^2 + 5142258889736804 r005 Im(z^2+c),c=-67/60+1/16*I,n=53 5142258892169315 m002 -4+Pi^(-3)-Cosh[Pi]/Pi^2 5142258895562694 r005 Im(z^2+c),c=-7/60+1/16*I,n=12 5142258898432212 b008 5+(2+Sqrt[2])/24 5142258900180083 a001 843/75025*4181^(36/49) 5142258920952538 a007 Real Root Of -176*x^4-730*x^3+898*x^2+139*x+770 5142258928675207 m001 1/ln(Khintchine)*Bloch*OneNinth 5142258928990988 r002 7th iterates of z^2 + 5142258929556316 a001 1597/47*199^(55/58) 5142258930680629 r009 Re(z^3+c),c=-4/9+2/33*I,n=10 5142258938268584 a001 24476/89*55^(19/26) 5142258940141219 r002 12th iterates of z^2 + 5142258940544323 r005 Im(z^2+c),c=-1/78+17/27*I,n=47 5142258948454945 a007 Real Root Of -365*x^4+618*x^3+11*x^2-186*x+11 5142258949370317 r005 Im(z^2+c),c=-67/60+1/16*I,n=50 5142258949456553 m001 (Psi(1,1/3)-Zeta(5))/(-Pi^(1/2)+Trott) 5142258970438944 m001 Sierpinski^2*ln(Champernowne)/exp(1) 5142258984112313 h001 (9/10*exp(2)+1/9)/(1/6*exp(2)+1/12) 5142258998709706 m001 GAMMA(11/12)*ln(PisotVijayaraghavan)/gamma 5142259000024296 m001 (Robbin-StolarskyHarborth)/GAMMA(5/6) 5142259006504772 r005 Im(z^2+c),c=-67/60+1/16*I,n=54 5142259019485605 a005 (1/sin(61/143*Pi))^1948 5142259024976292 r009 Im(z^3+c),c=-21/118+33/52*I,n=35 5142259030489678 r002 12th iterates of z^2 + 5142259033145753 l006 ln(5637/9427) 5142259033349027 r005 Im(z^2+c),c=-67/60+1/16*I,n=47 5142259044087830 a007 Real Root Of -555*x^4+582*x^3-441*x^2-707*x-129 5142259045205955 h001 (7/9*exp(2)+4/11)/(1/7*exp(1)+4/5) 5142259046196916 a007 Real Root Of 361*x^4-212*x^3+580*x^2-145*x-282 5142259053845296 m005 (1/3*Catalan-2/7)/(1/7*2^(1/2)-7/12) 5142259053929200 r005 Re(z^2+c),c=-43/36+8/25*I,n=6 5142259054160695 m001 (BesselI(1,2)-PlouffeB)/(GAMMA(3/4)-3^(1/3)) 5142259058785946 m004 3750/Pi+Sqrt[5]*Pi*Sinh[Sqrt[5]*Pi] 5142259063976651 r005 Re(z^2+c),c=-17/24+3/46*I,n=38 5142259065749349 a001 2207/987*2504730781961^(4/21) 5142259073254609 m001 1/ln(Pi)^2/Champernowne/Zeta(3) 5142259085522347 a007 Real Root Of 476*x^4-69*x^3+985*x^2-694*x-660 5142259097230501 m005 (7/20+1/4*5^(1/2))/(6/7*2^(1/2)+5/9) 5142259099701771 a007 Real Root Of -741*x^4+800*x^3-157*x^2+379*x+397 5142259135723932 m001 (sin(1/5*Pi)-Ei(1))/(Riemann3rdZero+ThueMorse) 5142259144784252 a003 sin(Pi*11/111)/cos(Pi*19/64) 5142259145919862 a001 3/2*6557470319842^(9/10) 5142259151508168 m001 (ln(Pi)-Pi^(1/2))/(Riemann1stZero-Tetranacci) 5142259155369236 a001 165580141/843*199^(2/11) 5142259159108035 r005 Im(z^2+c),c=-71/126+37/64*I,n=11 5142259182464813 a007 Real Root Of 146*x^4-577*x^3+641*x^2-375*x-451 5142259205055212 r002 57th iterates of z^2 + 5142259253519141 r005 Im(z^2+c),c=-67/60+1/16*I,n=48 5142259256508537 m001 (Paris+Porter)/(Ei(1)-BesselI(1,2)) 5142259261943952 m001 (-gamma(2)+Stephens)/(ln(2)/ln(10)+Chi(1)) 5142259267282562 m001 (ln(2)-Ei(1))/(HardyLittlewoodC5+Tetranacci) 5142259271121111 k008 concat of cont frac of 5142259283121902 m009 (4/5*Psi(1,3/4)+3/4)/(5/6*Psi(1,1/3)-3) 5142259287591146 l006 ln(4169/6972) 5142259288579431 m001 ln(2)/(KhinchinLevy^KhinchinHarmonic) 5142259290108207 m001 LambertW(1)/(OrthogonalArrays-ln(2)/ln(10)) 5142259291104342 a001 29/28657*1346269^(26/43) 5142259298903630 r009 Im(z^3+c),c=-9/64+16/25*I,n=30 5142259311397015 a007 Real Root Of -11*x^4-580*x^3-747*x^2-475*x-601 5142259316274819 m005 (1/3*exp(1)-2/9)/(1/6*Zeta(3)-1/3) 5142259316439183 a007 Real Root Of 207*x^4-502*x^3+601*x^2-446*x-471 5142259335221057 p003 LerchPhi(1/8,1,217/102) 5142259337894415 m001 (HardyLittlewoodC5+Trott2nd)/(Thue-ZetaQ(3)) 5142259343512601 r002 53th iterates of z^2 + 5142259347407268 a001 144/521*7881196^(10/11) 5142259347407333 a001 144/521*20633239^(6/7) 5142259347407343 a001 144/521*141422324^(10/13) 5142259347407343 a001 144/521*2537720636^(2/3) 5142259347407343 a001 144/521*45537549124^(10/17) 5142259347407343 a001 144/521*312119004989^(6/11) 5142259347407343 a001 144/521*14662949395604^(10/21) 5142259347407343 a001 144/521*(1/2+1/2*5^(1/2))^30 5142259347407343 a001 144/521*192900153618^(5/9) 5142259347407343 a001 144/521*28143753123^(3/5) 5142259347407343 a001 144/521*10749957122^(5/8) 5142259347407343 a001 144/521*4106118243^(15/23) 5142259347407343 a001 144/521*1568397607^(15/22) 5142259347407343 a001 144/521*599074578^(5/7) 5142259347407343 a001 144/521*228826127^(3/4) 5142259347407344 a001 144/521*87403803^(15/19) 5142259347407347 a001 144/521*33385282^(5/6) 5142259347407371 a001 144/521*12752043^(15/17) 5142259347407546 a001 144/521*4870847^(15/16) 5142259347815894 a001 233/322*20633239^(4/5) 5142259347815904 a001 233/322*17393796001^(4/7) 5142259347815904 a001 233/322*14662949395604^(4/9) 5142259347815904 a001 233/322*(1/2+1/2*5^(1/2))^28 5142259347815904 a001 233/322*505019158607^(1/2) 5142259347815904 a001 233/322*73681302247^(7/13) 5142259347815904 a001 233/322*10749957122^(7/12) 5142259347815904 a001 233/322*4106118243^(14/23) 5142259347815904 a001 233/322*1568397607^(7/11) 5142259347815904 a001 233/322*599074578^(2/3) 5142259347815904 a001 233/322*228826127^(7/10) 5142259347815905 a001 233/322*87403803^(14/19) 5142259347815908 a001 233/322*33385282^(7/9) 5142259347815930 a001 233/322*12752043^(14/17) 5142259347816094 a001 233/322*4870847^(7/8) 5142259347817291 a001 233/322*1860498^(14/15) 5142259348737747 p004 log(26863/157) 5142259375563924 a007 Real Root Of 910*x^4-730*x^3+810*x^2-838*x-808 5142259381329164 g006 Psi(1,3/5)-Psi(1,7/9)-Psi(1,1/7)-Psi(1,4/5) 5142259381940697 r002 49th iterates of z^2 + 5142259405461230 m001 (-Cahen+5)/GaussAGM(1,1/sqrt(2)) 5142259414225941 q001 1229/2390 5142259434379551 m001 2*Pi/GAMMA(5/6)*Psi(2,1/3)^GAMMA(5/6) 5142259449541793 r009 Im(z^3+c),c=-11/23+19/43*I,n=14 5142259451574802 m001 (BesselJ(1,1)-KhinchinLevy)/(Lehmer+Thue) 5142259492251637 m001 (Psi(2,1/3)-cos(1/5*Pi))/(-Artin+MinimumGamma) 5142259493755583 a007 Real Root Of 136*x^4+537*x^3-825*x^2+28*x-116 5142259501357612 r005 Re(z^2+c),c=-7/102+28/45*I,n=13 5142259516687807 r002 21th iterates of z^2 + 5142259517338765 s002 sum(A286454[n]/(exp(pi*n)+1),n=1..infinity) 5142259525755907 r009 Im(z^3+c),c=-19/102+19/30*I,n=49 5142259530370537 r005 Im(z^2+c),c=9/56+33/61*I,n=61 5142259545328837 p003 LerchPhi(1/100,3,286/229) 5142259558941727 r009 Re(z^3+c),c=-5/54+29/46*I,n=19 5142259561513251 k007 concat of cont frac of 5142259563040900 m001 (Lehmer-MadelungNaCl)/(Otter-Rabbit) 5142259580232767 m001 (LambertW(1)-PlouffeB)/(Totient+TreeGrowth2nd) 5142259586438715 m001 (GAMMA(2/3)-ln(5))/(arctan(1/3)+ZetaP(3)) 5142259587251316 m001 (GAMMA(11/12)+ArtinRank2)/(Khinchin+Sarnak) 5142259589412437 a001 2/4181*34^(33/49) 5142259591056428 a001 1/45381*(1/2*5^(1/2)+1/2)*3^(1/3) 5142259591647168 r005 Re(z^2+c),c=19/58+16/37*I,n=13 5142259598919077 a007 Real Root Of 598*x^4-982*x^3-761*x^2-988*x+801 5142259605404591 m001 1/exp(GaussKuzminWirsing)^2*Conway/sinh(1)^2 5142259607553636 r002 49th iterates of z^2 + 5142259610250102 a001 1/118809*(1/2*5^(1/2)+1/2)^3*3^(1/3) 5142259614781114 a001 1/192237*(1/2*5^(1/2)+1/2)^4*3^(1/3) 5142259622112445 a001 1/73428*(1/2*5^(1/2)+1/2)^2*3^(1/3) 5142259659409319 a007 Real Root Of 195*x^4-95*x^3+162*x^2+168*x+17 5142259668588492 g001 Psi(2/11,4/89) 5142259675895069 r002 58th iterates of z^2 + 5142259691761711 m001 (1-exp(1/exp(1)))/(-gamma(1)+Zeta(1,2)) 5142259719625722 m005 (1/2*3^(1/2)-7/12)/(1/8*Zeta(3)-7/10) 5142259725308145 m001 FeigenbaumMu*GlaisherKinkelin^Porter 5142259749079760 a007 Real Root Of -825*x^4-881*x^3-486*x^2+534*x+341 5142259758491676 r005 Re(z^2+c),c=3/64+20/57*I,n=15 5142259774611412 g002 Psi(4/11)+Psi(2/5)-Psi(8/11)-Psi(1/9) 5142259777838301 r002 36th iterates of z^2 + 5142259787108632 b008 Sinh[EulerGamma+ArcCosh[3]] 5142259794675723 a007 Real Root Of 225*x^4-822*x^3+314*x^2-632*x+338 5142259796208492 r009 Im(z^3+c),c=-19/106+33/52*I,n=62 5142259797916570 m001 1/FeigenbaumD/Magata/exp(GAMMA(7/12))^2 5142259811191372 m005 (1/2*5^(1/2)-3/4)/(3/4*3^(1/2)-7/12) 5142259818619885 l006 ln(2701/4517) 5142259830370237 s002 sum(A058093[n]/((2^n+1)/n),n=1..infinity) 5142259842212679 m001 Psi(2,1/3)+OrthogonalArrays+UniversalParabolic 5142259862199337 r005 Im(z^2+c),c=-159/110+2/21*I,n=6 5142259862925872 a007 Real Root Of -377*x^4+577*x^3-687*x^2+880*x+739 5142259867065366 a007 Real Root Of -93*x^4-438*x^3+93*x^2-704*x-609 5142259868408753 r009 Re(z^3+c),c=-13/30+2/43*I,n=49 5142259891063719 m005 (1/3*Pi-1/10)/(5/8*5^(1/2)+4/9) 5142259901852431 a007 Real Root Of 686*x^4-620*x^3+775*x^2+893*x+122 5142259937601011 r005 Re(z^2+c),c=-13/14+31/229*I,n=26 5142259937949526 m001 (MinimumGamma+PlouffeB)/(Pi+Kac) 5142259974765099 a003 sin(Pi*17/83)*sin(Pi*39/119) 5142259976855049 a007 Real Root Of 185*x^4-760*x^3+742*x^2-915*x-783 5142259999985928 a001 317805/2+317811/2*5^(1/2) 5142260007157876 m001 exp(Robbin)/DuboisRaymond^2*Zeta(9)^2 5142260010325871 r009 Im(z^3+c),c=-13/122+31/48*I,n=22 5142260015441655 a001 521/144*3^(8/25) 5142260062399381 r009 Re(z^3+c),c=-35/74+3/53*I,n=52 5142260064997096 a001 9349/610*4807526976^(6/23) 5142260074509451 a007 Real Root Of -953*x^4+611*x^3+277*x^2+705*x+439 5142260075626218 r009 Re(z^3+c),c=-19/36+20/47*I,n=15 5142260078451510 m001 (GAMMA(11/12)+CareFree)/(Kolakoski-ZetaP(2)) 5142260094113814 r005 Re(z^2+c),c=-85/118+3/29*I,n=49 5142260108450196 l006 ln(49/8384) 5142260116808935 a007 Real Root Of -439*x^4+271*x^3+629*x^2+845*x-607 5142260117572720 a001 123/591286729879*102334155^(4/23) 5142260117572720 a001 123/4052739537881*6557470319842^(4/23) 5142260123695414 a001 167761/610*75025^(6/23) 5142260126703581 a007 Real Root Of -523*x^4+935*x^3-910*x^2+855*x+844 5142260131250405 a007 Real Root Of 699*x^4+825*x^3+532*x^2-958*x-570 5142260132142935 r002 47th iterates of z^2 + 5142260152414535 m005 (1/2*2^(1/2)-5/12)/(3/8*exp(1)-5/11) 5142260172269809 r009 Im(z^3+c),c=-45/106+20/37*I,n=39 5142260185041963 a001 199/5702887*3^(6/17) 5142260187703136 a001 123/86267571272*1597^(4/23) 5142260212356921 a007 Real Root Of -473*x^4+943*x^3-795*x^2+933*x-46 5142260216285687 r005 Re(z^2+c),c=-83/126+19/45*I,n=3 5142260221945288 m001 Ei(1)^FeigenbaumAlpha-Psi(1,1/3) 5142260226220197 r002 25th iterates of z^2 + 5142260239668230 m001 1/Riemann3rdZero^2/Bloch^2*ln(BesselJ(0,1))^2 5142260254647254 r004 Re(z^2+c),c=-31/30+3/20*I,z(0)=-1,n=11 5142260257073597 m001 (Shi(1)-gamma(3)*Landau)/gamma(3) 5142260286806999 r009 Im(z^3+c),c=-6/17+36/61*I,n=53 5142260289093644 r005 Im(z^2+c),c=23/58+4/17*I,n=20 5142260289874162 m001 BesselI(0,2)/exp(-Pi)/GAMMA(23/24) 5142260289874162 m001 exp(Pi)*BesselI(0,2)/GAMMA(23/24) 5142260315022856 r002 53th iterates of z^2 + 5142260337516578 r009 Re(z^3+c),c=-19/48+2/57*I,n=5 5142260352773460 a001 1149851*144^(13/17) 5142260377732115 a007 Real Root Of 572*x^4-328*x^3-560*x^2-936*x+634 5142260381369935 l006 ln(3934/6579) 5142260394158323 m001 (-ln(5)+arctan(1/2))/(Catalan-ln(2)) 5142260412103945 r009 Im(z^3+c),c=-19/86+45/62*I,n=37 5142260413653988 s002 sum(A206361[n]/(10^n-1),n=1..infinity) 5142260414332858 r009 Im(z^3+c),c=-51/86+17/41*I,n=3 5142260427814022 s001 sum(exp(-Pi/4)^n*A218918[n],n=1..infinity) 5142260429394668 m001 Pi*(ln(5)+Trott2nd) 5142260440865562 m005 (1/2*5^(1/2)-2/3)/(-1/60+2/5*5^(1/2)) 5142260445158777 a007 Real Root Of 850*x^4-491*x^3-808*x^2-911*x-381 5142260448434375 r002 11th iterates of z^2 + 5142260455297810 m001 2^(1/3)-Sierpinski+Tribonacci 5142260475041380 a007 Real Root Of 640*x^4-999*x^3+490*x^2+187*x-214 5142260475366240 r009 Re(z^3+c),c=-12/23+16/37*I,n=10 5142260477935322 r009 Im(z^3+c),c=-11/25+25/48*I,n=54 5142260499387114 r002 7th iterates of z^2 + 5142260503570501 a007 Real Root Of -182*x^4-870*x^3+495*x^2+981*x+915 5142260506395197 q001 197/3831 5142260518077852 a007 Real Root Of -814*x^4+434*x^3-853*x^2+36*x+360 5142260532824968 a007 Real Root Of 41*x^4+215*x^3-28*x^2-387*x-683 5142260533461999 m001 1/Zeta(1/2)*exp(GAMMA(1/4))*sqrt(2)^2 5142260540628266 m001 (Zeta(1,-1)+Weierstrass)^LambertW(1) 5142260567192835 r005 Re(z^2+c),c=-67/94+8/45*I,n=26 5142260568130909 m001 Zeta(7)/FeigenbaumD^2/exp(Zeta(9)) 5142260581437410 m001 (BesselJ(1,1)+Porter)/(Pi+LambertW(1)) 5142260583652692 m005 (1/2*5^(1/2)-5)/(1/2*3^(1/2)-1/9) 5142260584096969 m001 (Sierpinski-Trott2nd)/(ln(2)-Cahen) 5142260597578820 m001 (Ei(1,1)-arctan(1/2))^Bloch 5142260617616606 h001 (-4*exp(1)+10)/(-3*exp(4)-6) 5142260648364874 v003 sum((3/2*n^3+1/2*n^2+5)/n^(n-2),n=1..infinity) 5142260651342214 a007 Real Root Of 176*x^4+953*x^3+189*x^2-239*x+295 5142260654675613 m001 Pi+ln(2)/ln(10)+gamma(1)+Pi^(1/2) 5142260674148734 r002 4th iterates of z^2 + 5142260675542146 l006 ln(5167/8641) 5142260675542146 p004 log(8641/5167) 5142260690190883 r005 Im(z^2+c),c=-5/74+29/47*I,n=29 5142260709184777 m005 (1/2*2^(1/2)+3/4)/(1/9*3^(1/2)+1/11) 5142260742970175 m001 ln(ArtinRank2)^2/FeigenbaumAlpha/Zeta(7) 5142260759101544 a007 Real Root Of -851*x^4+522*x^3-273*x^2-223*x+88 5142260768100987 g006 Psi(1,2/7)-Psi(1,9/11)-Psi(1,3/10)-Psi(1,1/7) 5142260769685074 r005 Re(z^2+c),c=43/114+11/61*I,n=3 5142260771130632 m001 Bloch/(Catalan+ZetaQ(4)) 5142260771854085 r009 Im(z^3+c),c=-7/34+31/48*I,n=21 5142260779273671 r005 Im(z^2+c),c=-49/90+22/45*I,n=9 5142260783872011 a003 cos(Pi*33/113)*sin(Pi*26/81) 5142260788396731 r002 32th iterates of z^2 + 5142260797475341 r002 17th iterates of z^2 + 5142260824457885 a001 3/101521*47^(23/31) 5142260828321208 g007 Psi(2,6/11)+Psi(2,5/9)+Psi(2,1/6)+Psi(2,1/3) 5142260829185335 a007 Real Root Of -613*x^4+827*x^3-186*x^2+211*x+313 5142260837620578 a003 sin(Pi*17/99)/sin(Pi*33/68) 5142260837631840 m001 (Pi^(1/2)+Bloch)/(FeigenbaumMu+Kolakoski) 5142260849497556 r009 Im(z^3+c),c=-10/29+7/12*I,n=38 5142260860911860 r009 Re(z^3+c),c=-33/64+27/50*I,n=10 5142260904203806 m001 (Zeta(1,2)+Otter)/(Sierpinski+Totient) 5142260910635030 r009 Im(z^3+c),c=-17/58+31/51*I,n=60 5142260915587465 r009 Im(z^3+c),c=-17/64+8/13*I,n=55 5142260919064731 r009 Im(z^3+c),c=-7/64+29/45*I,n=50 5142260919240595 r009 Im(z^3+c),c=-11/42+21/34*I,n=39 5142260927440561 m001 (Shi(1)+FellerTornier)/(-Magata+Sarnak) 5142260930067053 r005 Im(z^2+c),c=-1/18+41/58*I,n=60 5142260941730534 r005 Im(z^2+c),c=-13/94+22/35*I,n=31 5142260944064041 a007 Real Root Of -17*x^4+53*x^3+640*x^2-521*x-509 5142260950524028 a007 Real Root Of 441*x^4-158*x^3+358*x^2+245*x-21 5142260964892054 a007 Real Root Of 726*x^4-560*x^3+854*x^2-300*x-507 5142260984988360 m001 (Robbin+Thue)/(3^(1/2)+GAMMA(3/4)) 5142260990773903 r009 Im(z^3+c),c=-2/13+23/36*I,n=34 5142261000181812 m001 Tribonacci/exp(LaplaceLimit)^2*GAMMA(23/24)^2 5142261000875139 r002 34th iterates of z^2 + 5142261010763549 h001 (1/8*exp(2)+11/12)/(5/12*exp(2)+1/2) 5142261011261112 k006 concat of cont frac of 5142261020742313 a001 1/98209*514229^(14/17) 5142261020765767 a001 2/165580141*1836311903^(14/17) 5142261020765767 a001 2/139583862445*6557470319842^(14/17) 5142261028760351 r009 Im(z^3+c),c=-13/122+31/45*I,n=6 5142261038808245 m001 polylog(4,1/2)*(Zeta(5)-exp(-Pi)) 5142261059222289 m001 1/GAMMA(11/24)*ln(PrimesInBinary)*GAMMA(5/6) 5142261059250561 r009 Im(z^3+c),c=-13/114+38/59*I,n=35 5142261061036144 r009 Im(z^3+c),c=-17/118+23/32*I,n=26 5142261062223054 r005 Im(z^2+c),c=-107/122+1/27*I,n=31 5142261068780822 a001 7465176/161*322^(5/12) 5142261085033188 m001 (Artin+Lehmer)/(Chi(1)-GAMMA(23/24)) 5142261087385713 m001 BesselK(1,1)^2/BesselJ(1,1)*exp(Catalan)^2 5142261099256960 r009 Im(z^3+c),c=-17/74+12/19*I,n=24 5142261099386005 r005 Re(z^2+c),c=-51/74+8/55*I,n=39 5142261111112312 k006 concat of cont frac of 5142261111116513 k007 concat of cont frac of 5142261111132122 k007 concat of cont frac of 5142261111192243 k006 concat of cont frac of 5142261112827212 k008 concat of cont frac of 5142261121322262 k007 concat of cont frac of 5142261125133580 m005 (1/2*exp(1)+8/11)/(-11/28+5/14*5^(1/2)) 5142261126652202 r005 Im(z^2+c),c=6/17+30/61*I,n=5 5142261130804007 h001 (-6*exp(3)-6)/(-12*exp(3)-5) 5142261131112265 k007 concat of cont frac of 5142261133913643 p004 log(16889/10099) 5142261142645353 m001 (FeigenbaumC-Sarnak)/(Ei(1)+sin(1/12*Pi)) 5142261144998781 m001 (gamma+BesselJ(0,1))/(-2*Pi/GAMMA(5/6)+Otter) 5142261155431921 k006 concat of cont frac of 5142261156690543 m001 (-TwinPrimes+ZetaQ(4))/(Chi(1)-cos(1/12*Pi)) 5142261156796898 m001 (3^(1/2))^Khinchin*Salem 5142261187900110 r005 Im(z^2+c),c=-67/60+1/16*I,n=43 5142261187975183 r005 Im(z^2+c),c=-15/13+4/61*I,n=44 5142261191852058 m001 BesselK(0,1)*Robbin^2*exp(GAMMA(23/24)) 5142261197712094 r009 Im(z^3+c),c=-15/122+13/18*I,n=28 5142261205715827 r002 50th iterates of z^2 + 5142261220632260 a007 Real Root Of 64*x^4-444*x^3-908*x^2-949*x+784 5142261226814233 k006 concat of cont frac of 5142261234395495 r009 Re(z^3+c),c=-7/86+32/61*I,n=20 5142261234922776 m005 (1/2*Catalan+2/5)/(9/11*exp(1)-5/9) 5142261241111184 k007 concat of cont frac of 5142261265385149 a007 Real Root Of -64*x^4+334*x^3-603*x^2-24*x+197 5142261291464346 a007 Real Root Of -908*x^4+539*x^3+943*x^2+727*x-633 5142261311313615 k007 concat of cont frac of 5142261317112417 k006 concat of cont frac of 5142261321191215 k007 concat of cont frac of 5142261321913136 k008 concat of cont frac of 5142261322763639 r009 Im(z^3+c),c=-1/24+24/37*I,n=20 5142261331721629 k007 concat of cont frac of 5142261332496654 r005 Re(z^2+c),c=1/32+8/25*I,n=10 5142261334121132 k007 concat of cont frac of 5142261338108501 r005 Re(z^2+c),c=13/90+25/64*I,n=31 5142261338489157 r005 Im(z^2+c),c=7/106+23/39*I,n=56 5142261343815482 r005 Re(z^2+c),c=-13/10+20/243*I,n=10 5142261369328762 r009 Re(z^3+c),c=-47/86+20/59*I,n=46 5142261376767468 a007 Real Root Of 331*x^4-680*x^3+360*x^2-998*x-724 5142261398539982 m001 1/exp(GAMMA(1/6))*GAMMA(1/12)^2*Zeta(7)^2 5142261411111612 k006 concat of cont frac of 5142261422818183 k008 concat of cont frac of 5142261443771273 r005 Im(z^2+c),c=-51/86+23/52*I,n=3 5142261466386726 r009 Re(z^3+c),c=-7/102+18/49*I,n=6 5142261471905392 r005 Im(z^2+c),c=7/44+14/27*I,n=28 5142261478630993 m001 1/ln(PisotVijayaraghavan)^2*CareFree*gamma 5142261480989370 m005 (1/2*gamma+1/12)/(23/14+5/2*5^(1/2)) 5142261481416130 m001 (2^(1/3))^2*exp(Salem)^2*GAMMA(7/24) 5142261485808703 m001 (exp(Pi)+GolombDickman)/(-MertensB1+Sarnak) 5142261512207820 a007 Real Root Of 769*x^4-887*x^3+334*x^2-724*x-635 5142261512295291 k006 concat of cont frac of 5142261512617113 k009 concat of cont frac of 5142261537300837 r002 5th iterates of z^2 + 5142261553044474 b008 Pi*ArcSinh[2*(-1+Sqrt[5])] 5142261561484405 r009 Im(z^3+c),c=-29/78+6/11*I,n=13 5142261573419870 m003 13/2+Sqrt[5]/64-24*Tan[1/2+Sqrt[5]/2] 5142261574712542 r005 Im(z^2+c),c=-49/106+2/23*I,n=34 5142261585079072 a001 17/38*18^(49/58) 5142261598505972 r005 Re(z^2+c),c=-15/14+53/156*I,n=9 5142261614125609 l006 ln(1233/2062) 5142261624803367 a007 Real Root Of -158*x^4-756*x^3+152*x^2-775*x-325 5142261631972853 r009 Re(z^3+c),c=-53/102+13/28*I,n=4 5142261652063874 r009 Re(z^3+c),c=-12/23+17/55*I,n=2 5142261655296328 a007 Real Root Of 231*x^4-400*x^3-808*x^2-183*x+346 5142261664999550 a003 cos(Pi*13/107)-sin(Pi*11/81) 5142261680074764 a007 Real Root Of -43*x^4-124*x^3+601*x^2+545*x+116 5142261682495369 m001 ZetaQ(4)/MertensB1/FibonacciFactorial 5142261706552498 r002 60th iterates of z^2 + 5142261713453485 m001 (-3^(1/3)+GAMMA(7/12))/(Zeta(5)-exp(1)) 5142261715141241 k009 concat of cont frac of 5142261717590779 m005 (1/2*2^(1/2)-3)/(3/10*gamma+3/11) 5142261727067650 a001 39088169/521*199^(4/11) 5142261729331024 r002 42th iterates of z^2 + 5142261736631078 m001 polylog(4,1/2)-Trott^BesselI(0,1) 5142261743031793 a007 Real Root Of 141*x^4-795*x^3-998*x^2-939*x+845 5142261746290793 m001 FeigenbaumKappa*ln(GaussKuzminWirsing)/Pi 5142261777831243 h001 (1/12*exp(2)+4/7)/(2/9*exp(2)+2/3) 5142261778646012 m001 (PisotVijayaraghavan-Trott)/(GAMMA(2/3)-ln(3)) 5142261795336006 m001 Zeta(5)^Tribonacci/exp(-1/2*Pi) 5142261797047770 r009 Im(z^3+c),c=-1/54+13/20*I,n=33 5142261811113332 k006 concat of cont frac of 5142261818965680 a003 1/2+cos(8/27*Pi)+cos(1/8*Pi)-2*cos(1/18*Pi) 5142261828880753 a007 Real Root Of -342*x^4+840*x^3-405*x^2+933*x+725 5142261866836446 l006 ln(1933/2035) 5142261877161528 a007 Real Root Of 522*x^4-539*x^3-247*x^2-810*x-461 5142261893661098 r002 63th iterates of z^2 + 5142261924191312 k007 concat of cont frac of 5142261926162395 a003 sin(Pi*12/73)/cos(Pi*23/49) 5142261935116756 a007 Real Root Of -436*x^4+749*x^3+404*x^2+773*x+423 5142261936036501 m001 Backhouse/(FeigenbaumD+ZetaR(2)) 5142261955212065 r002 10th iterates of z^2 + 5142261967757849 r005 Im(z^2+c),c=37/118+13/33*I,n=47 5142261987371231 m001 GAMMA(3/4)^2/Lehmer^2/ln(Zeta(7)) 5142262004288023 r005 Im(z^2+c),c=-59/122+23/37*I,n=21 5142262018216463 m001 1/Porter^2/exp(KhintchineLevy)*GAMMA(1/4) 5142262042076524 r009 Im(z^3+c),c=-17/98+23/36*I,n=25 5142262047448753 a001 281/15456*8^(1/2) 5142262053749265 s002 sum(A233255[n]/(n*exp(n)-1),n=1..infinity) 5142262058654562 m005 (1/2*Catalan-8/11)/(4*Zeta(3)+3/7) 5142262061888566 r002 27th iterates of z^2 + 5142262066510370 m001 FeigenbaumC^2*ln(Bloch)^2*exp(1) 5142262075220357 m005 (1/3*3^(1/2)-2/5)/(1/7*2^(1/2)+1/7) 5142262084576901 m001 (Grothendieck-Sarnak)/(GAMMA(2/3)+CareFree) 5142262088400746 r005 Re(z^2+c),c=-20/27+9/61*I,n=55 5142262099211279 h001 (1/12*exp(2)+5/9)/(1/5*exp(2)+4/5) 5142262102628894 a007 Real Root Of -881*x^4+803*x^3-405*x^2-27*x+264 5142262112124261 k006 concat of cont frac of 5142262116382568 r002 53th iterates of z^2 + 5142262117777120 p004 log(16103/9629) 5142262118830846 a007 Real Root Of 134*x^4+612*x^3-253*x^2+743*x+32 5142262119350796 a007 Real Root Of 143*x^4-975*x^3-731*x^2-782*x+718 5142262131302104 k006 concat of cont frac of 5142262133155372 r009 Im(z^3+c),c=-7/26+11/17*I,n=19 5142262148395801 m005 (1/2*2^(1/2)-2/11)/(43/180+7/20*5^(1/2)) 5142262152111654 a007 Real Root Of 929*x^4-224*x^3+640*x^2-376*x-458 5142262162202670 a007 Real Root Of 188*x^4+937*x^3-122*x^2+159*x-1 5142262180775371 a007 Real Root Of 742*x^4-547*x^3-231*x^2-135*x+153 5142262182446061 r009 Im(z^3+c),c=-19/56+14/23*I,n=44 5142262190520711 r009 Im(z^3+c),c=-3/8+22/37*I,n=51 5142262194941782 a007 Real Root Of 227*x^4-870*x^3+761*x^2+450*x-104 5142262197211060 r005 Im(z^2+c),c=-81/106+1/33*I,n=11 5142262203844597 a007 Real Root Of 919*x^4-920*x^3+837*x^2+997*x+102 5142262222727963 r008 a(0)=5,K{-n^6,-10-36*n+45*n^2-11*n^3} 5142262229069930 r009 Im(z^3+c),c=-47/106+13/24*I,n=31 5142262235401885 r002 54th iterates of z^2 + 5142262243275779 a007 Real Root Of -466*x^4+858*x^3+775*x^2+83*x-13 5142262272538920 m001 1/ln((3^(1/3)))^2*Cahen/cos(Pi/12)^2 5142262275877166 m001 FransenRobinson*Trott2nd^Bloch 5142262276370929 r005 Re(z^2+c),c=-55/82+2/43*I,n=13 5142262282122210 k007 concat of cont frac of 5142262288945040 r009 Im(z^3+c),c=-4/13+38/63*I,n=64 5142262295378820 r002 4th iterates of z^2 + 5142262296789599 m001 1/Paris^2*LaplaceLimit*ln(GAMMA(5/12)) 5142262300394602 m005 (1/2*exp(1)+2/3)/(7/8*gamma-1/9) 5142262309914053 m001 BesselJ(1,1)/Champernowne^2*exp(gamma) 5142262317834836 q001 741/1441 5142262355577100 m005 (3/4*exp(1)+1/5)/(1/4*2^(1/2)+4) 5142262355882448 r009 Re(z^3+c),c=-63/122+33/38*I,n=2 5142262365560206 m001 (Ei(1)+GAMMA(19/24))/(CareFree-OneNinth) 5142262381330815 m001 (2^(1/3))*(FeigenbaumDelta-sin(Pi/5)) 5142262381330815 m001 2^(1/3)*(FeigenbaumDelta-sin(1/5*Pi)) 5142262396276715 r009 Im(z^3+c),c=-17/58+36/59*I,n=12 5142262401619752 m001 (-sin(1/12*Pi)+MadelungNaCl)/(1+Ei(1)) 5142262429668841 h001 (5/11*exp(2)+1/3)/(7/8*exp(2)+5/7) 5142262430729262 m001 1/Riemann3rdZero^2/exp(Rabbit)/GAMMA(7/12) 5142262431943539 l006 ln(5930/9917) 5142262456857534 r009 Im(z^3+c),c=-41/122+25/42*I,n=57 5142262463897391 m001 (5^(1/2))^Niven/ZetaP(4) 5142262469345654 r005 Im(z^2+c),c=-7/60+1/16*I,n=10 5142262475912662 a001 24476/1597*4807526976^(6/23) 5142262484517345 a001 439204/1597*75025^(6/23) 5142262485663098 r009 Im(z^3+c),c=-9/25+32/53*I,n=45 5142262495077012 m009 (3/4*Psi(1,2/3)+3/5)/(1/4*Psi(1,3/4)+5) 5142262497092187 r009 Re(z^3+c),c=-49/94+10/61*I,n=16 5142262499011983 a008 Real Root of (1+2*x+x^2+6*x^3-4*x^4-x^5) 5142262514158284 m001 BesselI(0,2)*GAMMA(13/24)+OrthogonalArrays 5142262517474561 r009 Im(z^3+c),c=-5/58+29/41*I,n=17 5142262523042909 r009 Re(z^3+c),c=-57/110+26/49*I,n=25 5142262552874468 r005 Re(z^2+c),c=-23/34+23/75*I,n=34 5142262557469452 m001 (gamma(3)-BesselI(0,2))/(FeigenbaumMu+Thue) 5142262558903164 m005 (7/44+1/4*5^(1/2))/(7/11*exp(1)-1/3) 5142262560924152 m001 GAMMA(1/24)^2*Magata^2*ln(sqrt(5)) 5142262563406595 m001 ZetaQ(3)*(gamma(1)+TwinPrimes) 5142262564496824 m001 FellerTornier-Pi*2^(1/2)/GAMMA(3/4)-Tribonacci 5142262582695018 r002 6th iterates of z^2 + 5142262584030520 r002 22th iterates of z^2 + 5142262591621596 m001 1/Riemann3rdZero^2/Khintchine^2*exp(sin(1)) 5142262596113428 m001 (GAMMA(11/12)+Landau)/(Niven+OrthogonalArrays) 5142262601583545 r009 Re(z^3+c),c=-25/56+1/21*I,n=51 5142262603211905 a001 76/514229*89^(5/18) 5142262646627264 l006 ln(4697/7855) 5142262651443219 a001 1926/7*4181^(3/40) 5142262653200024 m001 (Chi(1)-Grothendieck)/(Salem+TwinPrimes) 5142262673329864 a007 Real Root Of -495*x^4+124*x^3-572*x^2+195*x+303 5142262692799320 r009 Re(z^3+c),c=-13/94+35/58*I,n=6 5142262696586060 r002 37th iterates of z^2 + 5142262705068307 m001 1/Zeta(5)*DuboisRaymond*exp(Zeta(7)) 5142262710139331 r008 a(0)=5,K{-n^6,-44+40*n+18*n^2-22*n^3} 5142262727502143 m006 (5/Pi-1)/(5*exp(Pi)-2/3) 5142262740567365 a007 Real Root Of 177*x^4+862*x^3-78*x^2+962*x+458 5142262766313870 r005 Im(z^2+c),c=43/90+6/43*I,n=3 5142262769077784 r002 47th iterates of z^2 + 5142262771528554 a007 Real Root Of -450*x^4-478*x^3+463*x^2+916*x-497 5142262810777096 a007 Real Root Of -34*x^4+360*x^3-867*x^2+767*x+675 5142262811070616 r005 Im(z^2+c),c=-37/64+4/43*I,n=28 5142262813631477 r005 Im(z^2+c),c=13/62+29/59*I,n=37 5142262824392909 m001 (2^(1/2)-gamma(1))/(KhinchinLevy+Niven) 5142262827660687 a001 64079/4181*4807526976^(6/23) 5142262828431909 r002 11th iterates of z^2 + 5142262828956804 a001 1149851/4181*75025^(6/23) 5142262845522008 s002 sum(A213881[n]/(exp(pi*n)+1),n=1..infinity) 5142262876173354 m003 3-E^(1/2+Sqrt[5]/2)/18+Sinh[1/2+Sqrt[5]/2] 5142262878980037 a001 167761/10946*4807526976^(6/23) 5142262879209848 a001 3010349/10946*75025^(6/23) 5142262886467429 a001 439204/28657*4807526976^(6/23) 5142262886541668 a001 7881196/28657*75025^(6/23) 5142262887559825 a001 1149851/75025*4807526976^(6/23) 5142262887611366 a001 20633239/75025*75025^(6/23) 5142262887719203 a001 3010349/196418*4807526976^(6/23) 5142262887742456 a001 7881196/514229*4807526976^(6/23) 5142262887745849 a001 20633239/1346269*4807526976^(6/23) 5142262887746344 a001 54018521/3524578*4807526976^(6/23) 5142262887746416 a001 141422324/9227465*4807526976^(6/23) 5142262887746426 a001 370248451/24157817*4807526976^(6/23) 5142262887746428 a001 969323029/63245986*4807526976^(6/23) 5142262887746428 a001 2537720636/165580141*4807526976^(6/23) 5142262887746428 a001 6643838879/433494437*4807526976^(6/23) 5142262887746428 a001 17393796001/1134903170*4807526976^(6/23) 5142262887746428 a001 45537549124/2971215073*4807526976^(6/23) 5142262887746428 a001 119218851371/7778742049*4807526976^(6/23) 5142262887746428 a001 312119004989/20365011074*4807526976^(6/23) 5142262887746428 a001 817138163596/53316291173*4807526976^(6/23) 5142262887746428 a001 2139295485799/139583862445*4807526976^(6/23) 5142262887746428 a001 14662949395604/956722026041*4807526976^(6/23) 5142262887746428 a001 494493258286/32264490531*4807526976^(6/23) 5142262887746428 a001 1322157322203/86267571272*4807526976^(6/23) 5142262887746428 a001 505019158607/32951280099*4807526976^(6/23) 5142262887746428 a001 192900153618/12586269025*4807526976^(6/23) 5142262887746428 a001 10525900321/686789568*4807526976^(6/23) 5142262887746428 a001 28143753123/1836311903*4807526976^(6/23) 5142262887746428 a001 10749957122/701408733*4807526976^(6/23) 5142262887746428 a001 4106118243/267914296*4807526976^(6/23) 5142262887746428 a001 224056801/14619165*4807526976^(6/23) 5142262887746429 a001 599074578/39088169*4807526976^(6/23) 5142262887746433 a001 228826127/14930352*4807526976^(6/23) 5142262887746460 a001 87403803/5702887*4807526976^(6/23) 5142262887746649 a001 4769326/311187*4807526976^(6/23) 5142262887747945 a001 12752043/832040*4807526976^(6/23) 5142262887756827 a001 4870847/317811*4807526976^(6/23) 5142262887767433 a001 54018521/196418*75025^(6/23) 5142262887790203 a001 141422324/514229*75025^(6/23) 5142262887793525 a001 370248451/1346269*75025^(6/23) 5142262887794010 a001 969323029/3524578*75025^(6/23) 5142262887794081 a001 2537720636/9227465*75025^(6/23) 5142262887794091 a001 6643838879/24157817*75025^(6/23) 5142262887794092 a001 17393796001/63245986*75025^(6/23) 5142262887794093 a001 45537549124/165580141*75025^(6/23) 5142262887794093 a001 119218851371/433494437*75025^(6/23) 5142262887794093 a001 312119004989/1134903170*75025^(6/23) 5142262887794093 a001 817138163596/2971215073*75025^(6/23) 5142262887794093 a001 2139295485799/7778742049*75025^(6/23) 5142262887794093 a001 5600748293801/20365011074*75025^(6/23) 5142262887794093 a001 14662949395604/53316291173*75025^(6/23) 5142262887794093 a001 23725150497407/86267571272*75025^(6/23) 5142262887794093 a001 3020733700601/10983760033*75025^(6/23) 5142262887794093 a001 3461452808002/12586269025*75025^(6/23) 5142262887794093 a001 440719107401/1602508992*75025^(6/23) 5142262887794093 a001 505019158607/1836311903*75025^(6/23) 5142262887794093 a001 64300051206/233802911*75025^(6/23) 5142262887794093 a001 73681302247/267914296*75025^(6/23) 5142262887794093 a001 228811001/831985*75025^(6/23) 5142262887794093 a001 10749957122/39088169*75025^(6/23) 5142262887794097 a001 1368706081/4976784*75025^(6/23) 5142262887794124 a001 1568397607/5702887*75025^(6/23) 5142262887794309 a001 199691526/726103*75025^(6/23) 5142262887795578 a001 228826127/832040*75025^(6/23) 5142262887804276 a001 29134601/105937*75025^(6/23) 5142262887817704 a001 1860498/121393*4807526976^(6/23) 5142262887863888 a001 33385282/121393*75025^(6/23) 5142262888234962 a001 101521/6624*4807526976^(6/23) 5142262888272476 a001 4250681/15456*75025^(6/23) 5142262889235215 a007 Real Root Of 393*x^4-968*x^3-491*x^2-142*x+307 5142262891072982 a001 4870847/17711*75025^(6/23) 5142262891094892 a001 271443/17711*4807526976^(6/23) 5142262896212143 m005 (1/2*Zeta(3)+2/3)/(7/10*5^(1/2)+9/10) 5142262910267937 a001 15126/55*75025^(6/23) 5142262910697139 a001 103682/6765*4807526976^(6/23) 5142262914529099 p001 sum((-1)^n/(215*n+96)/n/(625^n),n=1..infinity) 5142262922413222 m001 MadelungNaCl^2*exp(Si(Pi))^2*PrimesInBinary 5142262937874031 r005 Im(z^2+c),c=-33/70+34/61*I,n=53 5142262943315473 r002 18th iterates of z^2 + 5142262953524912 m006 (1/3*ln(Pi)-5/6)/(1/4*exp(Pi)+3) 5142262971852123 m001 1/ln(TreeGrowth2nd)*CareFree^2/sinh(1) 5142262972574871 a007 Real Root Of -946*x^4-12*x^3-332*x^2+330*x+322 5142263012722718 a007 Real Root Of -513*x^4+493*x^3-662*x^2+741*x+659 5142263014142983 l006 ln(3464/5793) 5142263036405960 r009 Im(z^3+c),c=-29/102+27/44*I,n=35 5142263037868775 r009 Re(z^3+c),c=-17/122+47/64*I,n=60 5142263041832120 a001 710647/2584*75025^(6/23) 5142263045052946 a001 39603/2584*4807526976^(6/23) 5142263049329726 r009 Im(z^3+c),c=-43/122+18/31*I,n=41 5142263075139667 m001 ZetaP(3)^(Riemann2ndZero/ZetaR(2)) 5142263077759049 m002 -5+ProductLog[Pi]^(-1)-ProductLog[Pi] 5142263112050474 m005 (13/6+3/2*5^(1/2))/(17/20+1/10*5^(1/2)) 5142263112192315 k007 concat of cont frac of 5142263121448341 p004 log(26903/16087) 5142263123141212 k007 concat of cont frac of 5142263124560254 m001 HardyLittlewoodC5/(Rabbit^Robbin) 5142263130938080 r009 Im(z^3+c),c=-21/62+37/61*I,n=44 5142263144535757 a007 Real Root Of -690*x^4+575*x^3+376*x^2+853*x-568 5142263154120852 a001 38/10182505537*34^(1/11) 5142263159828889 r009 Im(z^3+c),c=-25/42+32/63*I,n=64 5142263164429716 m001 1/(2^(1/3))*HardHexagonsEntropy^2*exp(Zeta(3)) 5142263166773960 l006 ln(39/6673) 5142263167643244 r005 Re(z^2+c),c=-7/114+19/28*I,n=53 5142263172414371 k006 concat of cont frac of 5142263221821011 k009 concat of cont frac of 5142263238312138 r005 Re(z^2+c),c=-25/46+15/32*I,n=13 5142263241745140 r009 Im(z^3+c),c=-1/48+13/20*I,n=37 5142263245891064 m001 1/Salem/Khintchine/ln(cos(1)) 5142263266678195 r005 Im(z^2+c),c=-71/106+6/17*I,n=50 5142263272656660 r009 Im(z^3+c),c=-33/62+31/60*I,n=10 5142263300152534 m001 (Trott+ZetaP(4))/(BesselI(0,2)-gamma) 5142263309302399 m004 5-Cosh[Sqrt[5]*Pi]+(25*Pi*Cot[Sqrt[5]*Pi])/2 5142263317254708 l006 ln(5695/9524) 5142263322836333 a007 Real Root Of 246*x^4-189*x^3-399*x^2-851*x-375 5142263347125186 a007 Real Root Of 75*x^4+407*x^3-60*x^2-998*x-645 5142263350610321 a007 Real Root Of 776*x^4-842*x^3+685*x^2+484*x-101 5142263353850726 b008 3+Pi-Tanh[4] 5142263367581689 m001 Riemann1stZero^2*exp(MinimumGamma)^2*Salem^2 5142263375606076 m001 Riemann1stZero^FeigenbaumB*LambertW(1) 5142263390640803 m001 (GAMMA(17/24)-ln(3))/GAMMA(1/4) 5142263390640803 m001 1/2*(GAMMA(17/24)-ln(3))/Pi*2^(1/2)*GAMMA(3/4) 5142263398738500 r009 Im(z^3+c),c=-3/34+27/41*I,n=17 5142263421121271 k007 concat of cont frac of 5142263442073204 m001 1/FeigenbaumKappa^2*exp(Artin)^2/sqrt(5) 5142263476437913 r002 33th iterates of z^2 + 5142263494958553 a007 Real Root Of 134*x^4+661*x^3-307*x^2-689*x+759 5142263498770193 a003 cos(Pi*11/115)*sin(Pi*19/105) 5142263516660417 r002 38th iterates of z^2 + 5142263517172210 m005 (1/18+1/6*5^(1/2))/(4/5*Catalan+1/10) 5142263519547732 r009 Im(z^3+c),c=-7/62+38/59*I,n=48 5142263519769167 r005 Re(z^2+c),c=-23/54+33/62*I,n=22 5142263564768773 a007 Real Root Of -717*x^4-775*x^3-837*x^2+381*x+362 5142263568911548 m001 1/OneNinth*exp(Cahen)^2*GAMMA(7/12) 5142263576472595 m005 (1/4*Pi+5/6)/(3*Catalan+2/5) 5142263578773530 r005 Im(z^2+c),c=29/90+19/46*I,n=9 5142263578845598 b008 2*(1+E^(-8))+Pi 5142263614686778 m001 Sierpinski*(GAMMA(2/3)+HardyLittlewoodC3) 5142263639042658 a007 Real Root Of -520*x^4+700*x^3+138*x^2+875*x+545 5142263649034950 m001 (Kolakoski-Stephens)/(3^(1/3)+FransenRobinson) 5142263674100777 a007 Real Root Of 340*x^4-532*x^3-950*x^2-508*x+561 5142263679170468 m001 FeigenbaumAlpha/(HardyLittlewoodC3-ZetaR(2)) 5142263682344660 m001 GAMMA(23/24)/exp(Champernowne)*LambertW(1) 5142263690191364 r009 Im(z^3+c),c=-11/106+29/38*I,n=42 5142263694977050 r009 Im(z^3+c),c=-35/106+24/41*I,n=30 5142263698048475 r005 Im(z^2+c),c=-8/11+5/46*I,n=62 5142263714859456 r005 Im(z^2+c),c=-9/46+50/61*I,n=27 5142263718267793 r009 Im(z^3+c),c=-59/98+32/55*I,n=6 5142263740054339 a007 Real Root Of -873*x^4+682*x^3+282*x^2+87*x-151 5142263741255468 a007 Real Root Of 426*x^4-381*x^3+811*x^2-770*x-692 5142263745050211 p002 log(12^(7/4)+7^(7/3)) 5142263764651872 r002 36th iterates of z^2 + 5142263773326295 a007 Real Root Of 209*x^4+874*x^3-999*x^2+355*x+947 5142263773390023 m001 (BesselJ(0,1)+Salem)/(exp(1)+Shi(1)) 5142263787886253 l006 ln(2231/3731) 5142263797010029 r009 Im(z^3+c),c=-8/31+37/60*I,n=38 5142263803991475 b008 1+Pi+Coth[4] 5142263813414296 r005 Re(z^2+c),c=7/44+28/45*I,n=6 5142263819742489 a001 119814747/233 5142263819898641 a007 Real Root Of 97*x^4+422*x^3-292*x^2+433*x-495 5142263820520679 h001 (7/9*exp(2)+3/11)/(2/5*exp(1)+1/12) 5142263827311523 h005 exp(cos(Pi*1/15)+cos(Pi*13/48)) 5142263832469888 m002 (4*Cosh[Pi]*Log[Pi])/(Pi^6*ProductLog[Pi]) 5142263839406570 r005 Im(z^2+c),c=-43/122+2/25*I,n=20 5142263867710716 r002 53th iterates of z^2 + 5142263876954334 r009 Im(z^3+c),c=-29/56+19/49*I,n=30 5142263882491596 a007 Real Root Of -897*x^4+319*x^3-864*x^2+347*x+513 5142263903184217 r002 6th iterates of z^2 + 5142263918798758 m001 cos(1)^2/ln(CopelandErdos)^2/exp(1) 5142263919649899 m005 (1/2*2^(1/2)-5/6)/(1/7*exp(1)-1/7) 5142263930818841 m001 Riemann2ndZero^Khinchin/ln(2) 5142263943586624 a001 90481/329*75025^(6/23) 5142263965941532 a001 2161/141*4807526976^(6/23) 5142263975417322 r005 Re(z^2+c),c=35/94+8/55*I,n=25 5142263987251912 r005 Re(z^2+c),c=-5/98+44/59*I,n=52 5142263999340062 m001 Khinchin^(StronglyCareFree/DuboisRaymond) 5142264013689464 m001 (-FeigenbaumD+Paris)/(2*Pi/GAMMA(5/6)-cos(1)) 5142264026943322 m001 ln(GAMMA(1/24))^2*Artin*sinh(1)^2 5142264033768199 r005 Im(z^2+c),c=-67/60+1/16*I,n=44 5142264037913860 r005 Im(z^2+c),c=41/118+13/57*I,n=15 5142264045339611 m001 (ln(Pi)-exp(1/exp(1)))/(OneNinth+PlouffeB) 5142264045375094 r009 Re(z^3+c),c=-19/48+19/21*I,n=2 5142264050517710 m001 (Chi(1)+Sarnak)/GaussKuzminWirsing 5142264055336264 m005 (1/3*Catalan-1/9)/(2/11*gamma+3/11) 5142264078820544 r002 29th iterates of z^2 + 5142264080024844 a007 Real Root Of 98*x^4+465*x^3-313*x^2-446*x+688 5142264091158287 r005 Im(z^2+c),c=-29/48+22/51*I,n=45 5142264104703803 m001 (ln(gamma)-arctan(1/3))/(Niven-Trott) 5142264123215399 s002 sum(A251394[n]/(n^2*pi^n+1),n=1..infinity) 5142264134111212 k007 concat of cont frac of 5142264148798721 r002 24th iterates of z^2 + 5142264163731669 r009 Im(z^3+c),c=-5/23+12/19*I,n=17 5142264172638397 r005 Im(z^2+c),c=-3/8+34/57*I,n=19 5142264177342286 m001 1/BesselJ(0,1)^2*ln(Backhouse)^2*Zeta(1/2)^2 5142264179460114 a001 47/144*75025^(14/57) 5142264186616639 r002 33th iterates of z^2 + 5142264187866452 r002 3th iterates of z^2 + 5142264196626966 m001 1/exp(GAMMA(7/12))^2*Ei(1)*gamma 5142264198729811 a001 124/5*317811^(8/19) 5142264200724809 r009 Re(z^3+c),c=-57/110+26/49*I,n=28 5142264204823001 a001 39603/377*4181^(4/21) 5142264205171563 m005 (1/3*gamma+3/5)/(Catalan+5/8) 5142264206292958 g002 Psi(1/9)-Psi(5/12)-Psi(7/9)-Psi(7/8) 5142264208787868 m001 GAMMA(5/24)^2/ln(FeigenbaumKappa)*cos(Pi/5) 5142264212749597 m005 (1/3*3^(1/2)-1/2)/(3/5*Catalan-7/10) 5142264216616221 r005 Re(z^2+c),c=10/29+35/64*I,n=11 5142264220208741 m001 1/DuboisRaymond/ln(Backhouse)^2/sin(1)^2 5142264223510923 r009 Im(z^3+c),c=-1/82+28/43*I,n=24 5142264232111213 k008 concat of cont frac of 5142264253826698 m001 sin(1/5*Pi)/(ErdosBorwein-arctan(1/2)) 5142264254561649 m001 Zeta(3)/FransenRobinson*ln(sqrt(2))^2 5142264256322071 r005 Re(z^2+c),c=-18/25+3/52*I,n=38 5142264276544977 h001 (-4*exp(1)-9)/(-exp(-2)+4) 5142264277488794 b008 ArcSinh[4+30*E] 5142264278773893 l006 ln(5460/9131) 5142264283886821 m005 (1/3*Zeta(3)+3/4)/(-17/36+1/9*5^(1/2)) 5142264296679027 r002 14th iterates of z^2 + 5142264320995401 r009 Im(z^3+c),c=-3/29+31/48*I,n=28 5142264323333776 b008 3+(1+ArcCot[2])^2 5142264330635694 a007 Real Root Of 862*x^4+739*x^3+576*x^2-204*x-217 5142264333912330 a007 Real Root Of -115*x^4+987*x^3+300*x^2+176*x-296 5142264338969185 r002 9th iterates of z^2 + 5142264339164113 m001 (1-exp(1))/(3^(1/2)+ln(5)) 5142264344365842 a001 5778/377*102334155^(4/21) 5142264357574968 m009 (1/10*Pi^2+5/6)/(1/3*Pi^2+1/4) 5142264360958003 r009 Im(z^3+c),c=-39/106+26/45*I,n=55 5142264363724185 a001 521/4181*89^(6/19) 5142264374629519 q001 1735/3374 5142264378097740 r002 47th iterates of z^2 + 5142264385108887 a007 Real Root Of -708*x^4-780*x^3+372*x^2+803*x+258 5142264385705213 m005 (1/3*Zeta(3)-1/10)/(1/6*Catalan-6) 5142264403670265 p003 LerchPhi(1/25,3,289/231) 5142264427647295 a001 29/2*317811^(20/31) 5142264434258487 a007 Real Root Of 725*x^4-489*x^3+232*x^2+635*x+148 5142264438567045 v002 sum(1/(3^n+(8*n^2+23*n+2)),n=1..infinity) 5142264440158371 m001 Conway*ln(ErdosBorwein)/Zeta(3) 5142264444587372 r009 Im(z^3+c),c=-2/31+35/54*I,n=32 5142264447971255 a007 Real Root Of 765*x^4-839*x^3-436*x^2+512*x+211 5142264469799349 r002 20th iterates of z^2 + 5142264471257653 r005 Re(z^2+c),c=-133/110+4/15*I,n=4 5142264475936101 a007 Real Root Of -736*x^4+361*x^3+248*x^2+494*x+289 5142264525804078 a007 Real Root Of 223*x^4-50*x^3-616*x^2-626*x+476 5142264534261098 m001 MadelungNaCl^2*exp(Kolakoski)/GAMMA(1/4)^2 5142264537627291 r005 Im(z^2+c),c=-7/32+36/47*I,n=29 5142264545602659 r005 Im(z^2+c),c=-9/58+43/48*I,n=42 5142264547578780 p001 sum((-1)^n/(583*n+186)/(5^n),n=0..infinity) 5142264555432310 a008 Real Root of x^4-2*x^3+10*x^2+180*x-310 5142264570323687 a007 Real Root Of 315*x^4+126*x^3+849*x^2-359*x-414 5142264573623938 r005 Im(z^2+c),c=-13/90+7/12*I,n=7 5142264603504875 r009 Re(z^3+c),c=-57/110+26/49*I,n=31 5142264617940905 l006 ln(3229/5400) 5142264644702058 r005 Im(z^2+c),c=-23/54+11/19*I,n=17 5142264660493827 r002 2th iterates of z^2 + 5142264662865286 a007 Real Root Of 995*x^4-640*x^3-925*x^2-984*x-418 5142264664139155 a007 Real Root Of -59*x^4+252*x^3-455*x^2-612*x-156 5142264678939165 r009 Re(z^3+c),c=-57/110+26/49*I,n=34 5142264679012823 r009 Re(z^3+c),c=-57/110+26/49*I,n=61 5142264679012893 r009 Re(z^3+c),c=-57/110+26/49*I,n=64 5142264679013478 r009 Re(z^3+c),c=-57/110+26/49*I,n=58 5142264679018457 r009 Re(z^3+c),c=-57/110+26/49*I,n=55 5142264679042417 r009 Re(z^3+c),c=-57/110+26/49*I,n=52 5142264679136505 r009 Re(z^3+c),c=-57/110+26/49*I,n=49 5142264679454606 r009 Re(z^3+c),c=-57/110+26/49*I,n=46 5142264680377786 r009 Re(z^3+c),c=-57/110+26/49*I,n=43 5142264682532602 r009 Re(z^3+c),c=-57/110+26/49*I,n=40 5142264685458569 r009 Re(z^3+c),c=-57/110+26/49*I,n=37 5142264701084104 r005 Re(z^2+c),c=-19/18+165/218*I,n=2 5142264704849142 r005 Im(z^2+c),c=33/122+29/64*I,n=45 5142264711080027 r005 Im(z^2+c),c=-25/34+33/97*I,n=9 5142264724395250 a007 Real Root Of -143*x^4-722*x^3+173*x^2+676*x+716 5142264727742256 r002 41th iterates of z^2 + 5142264759204942 m001 (ThueMorse-ZetaQ(4))^RenyiParking 5142264760687711 m001 (ReciprocalLucas+RenyiParking)/(Kac-Paris) 5142264764416724 a003 cos(Pi*17/63)*sin(Pi*17/60) 5142264770501404 a005 (1/cos(11/205*Pi))^1405 5142264786985413 a007 Real Root Of -589*x^4+884*x^3-20*x^2-645*x-165 5142264817850075 r009 Re(z^3+c),c=-13/32+1/33*I,n=55 5142264820283841 r005 Re(z^2+c),c=-25/36+1/49*I,n=23 5142264840131119 m001 Pi+Psi(2,1/3)+Shi(1)/Ei(1) 5142264845825135 m005 (1/2*Catalan+1/4)/(3/8*3^(1/2)+8/11) 5142264855714554 r009 Im(z^3+c),c=-1/48+13/20*I,n=43 5142264861371556 m001 (Zeta(3)-GAMMA(2/3))/(HeathBrownMoroz+Otter) 5142264870666023 a007 Real Root Of -810*x^4+725*x^3+60*x^2+678*x+488 5142264888762385 m001 (sin(1)+GAMMA(5/6)*GAMMA(5/24))/GAMMA(5/6) 5142264891522550 a007 Real Root Of -419*x^4-32*x^3+612*x^2+655*x-465 5142264893561065 a007 Real Root Of -142*x^4-854*x^3-676*x^2-195*x+39 5142264933056431 a007 Real Root Of 212*x^4+944*x^3-919*x^2-764*x+498 5142264938263451 a007 Real Root Of 525*x^4+88*x^3+532*x^2-814*x-584 5142264941728620 r009 Re(z^3+c),c=-2/23+10/17*I,n=35 5142264947878902 m006 (1/5*exp(2*Pi)+5)/(4/5*Pi-1/3) 5142264958427935 m001 1/ln(Pi)/BesselK(1,1)^2*Zeta(1/2)^2 5142264969281891 m001 (FeigenbaumKappa-Porter)/(ln(Pi)+GAMMA(23/24)) 5142264970137429 r005 Re(z^2+c),c=-7/12+53/88*I,n=10 5142264973081037 b008 -52+1/Sqrt[3] 5142264979578613 r002 6th iterates of z^2 + 5142264992516992 m001 1/Zeta(1/2)^2*ln(LaplaceLimit)^2/cosh(1) 5142265006210798 a007 Real Root Of 527*x^4-893*x^3+215*x^2-237*x-337 5142265018874676 s002 sum(A048175[n]/(10^n-1),n=1..infinity) 5142265021884508 r009 Im(z^3+c),c=-25/106+38/61*I,n=54 5142265029920601 a007 Real Root Of 18*x^4+919*x^3-328*x^2+603*x-157 5142265041736505 a007 Real Root Of 378*x^4-393*x^3+613*x^2-846*x-677 5142265052982256 r009 Im(z^3+c),c=-15/29+33/64*I,n=4 5142265055755678 a007 Real Root Of 873*x^4+745*x^3+4*x^2-928*x-438 5142265056041641 l006 ln(4227/7069) 5142265056243408 r004 Re(z^2+c),c=-27/38+2/17*I,z(0)=-1,n=56 5142265056450965 a003 sin(Pi*9/56)-sin(Pi*47/98) 5142265069103140 r009 Im(z^3+c),c=-59/110+7/44*I,n=23 5142265096568708 r009 Im(z^3+c),c=-29/98+16/31*I,n=2 5142265101815138 a001 2/4181*514229^(12/17) 5142265136233421 k006 concat of cont frac of 5142265160645250 a001 2/1346269*1836311903^(12/17) 5142265160645818 a001 2/433494437*6557470319842^(12/17) 5142265175792444 a007 Real Root Of -252*x^4+91*x^3-595*x^2+258*x+320 5142265180587201 r009 Im(z^3+c),c=-7/15+21/43*I,n=53 5142265181115827 a001 322/1836311903*317811^(4/15) 5142265181118543 a001 161/43133785636*591286729879^(4/15) 5142265181118543 a001 322/12586269025*433494437^(4/15) 5142265191475323 a007 Real Root Of -570*x^4+57*x^3-635*x^2+561*x+504 5142265195499399 m005 (1/3*3^(1/2)+1/12)/(2/3*gamma+9/10) 5142265196290472 r005 Re(z^2+c),c=-21/74+23/37*I,n=17 5142265201801627 a001 9227465/322*322^(1/2) 5142265207135429 a001 233/1860498*47^(55/57) 5142265210838346 m001 (Niven*Trott-Stephens)/Trott 5142265216836673 p003 LerchPhi(1/8,6,169/222) 5142265221779283 a007 Real Root Of -491*x^4+298*x^3-781*x^2+9*x+286 5142265226782161 r005 Im(z^2+c),c=-15/86+41/51*I,n=39 5142265244102168 r005 Im(z^2+c),c=-67/60+1/16*I,n=39 5142265247491267 r009 Re(z^3+c),c=-1/11+19/30*I,n=30 5142265276940787 a001 1346269/843*521^(12/13) 5142265293381695 a003 sin(Pi*16/87)*sin(Pi*25/64) 5142265299766755 m001 Thue-ThueMorse^Zeta(3) 5142265306054723 m001 (-Cahen+Tetranacci)/(3^(1/2)+BesselJ(0,1)) 5142265306422693 v002 sum(1/(3^n+(n^2+37*n-1)),n=1..infinity) 5142265307585600 m004 3750/Pi+Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi] 5142265326783694 l006 ln(5225/8738) 5142265335670784 a001 433494437/2207*199^(2/11) 5142265355401459 r005 Im(z^2+c),c=-1/6+25/33*I,n=14 5142265395423209 p004 log(27883/16673) 5142265431387481 a007 Real Root Of -681*x^4+524*x^3-732*x^2+40*x+333 5142265436451937 m001 (Zeta(1,2)-BesselK(1,1))/(ln(3)+Ei(1)) 5142265448728746 a007 Real Root Of -132*x^4-528*x^3+636*x^2-736*x-100 5142265448961966 m005 (1/2*Zeta(3)+5/11)/(5/7*exp(1)+1/9) 5142265456106963 a007 Real Root Of -257*x^4+723*x^3-608*x^2+910*x+745 5142265484482651 a007 Real Root Of 912*x^3-679*x^2+734*x+681 5142265519046402 m001 (FeigenbaumD+Thue)/(BesselI(0,1)-gamma) 5142265533753765 a007 Real Root Of 976*x^4-799*x^3-699*x^2-616*x+542 5142265543720893 r005 Re(z^2+c),c=-29/48+16/43*I,n=17 5142265559824267 m001 Cahen*exp(GaussAGM(1,1/sqrt(2)))/cos(1)^2 5142265575214033 a007 Real Root Of 830*x^4+53*x^3+931*x^2-210*x-405 5142265595550405 m001 Niven^MinimumGamma*CopelandErdos 5142265603315247 r002 55th iterates of z^2 + 5142265631966758 r009 Re(z^3+c),c=-19/48+1/43*I,n=20 5142265639269227 m001 ln(gamma)^LandauRamanujan*StolarskyHarborth 5142265679187710 r009 Im(z^3+c),c=-11/82+41/64*I,n=25 5142265679270358 r009 Re(z^3+c),c=-7/13+15/46*I,n=23 5142265680654838 a007 Real Root Of -162*x^4+218*x^3+626*x^2+327*x-352 5142265685483049 m001 (ln(2^(1/2)+1)+ZetaP(3))/gamma(3) 5142265685850405 r002 38th iterates of z^2 + 5142265712697649 a007 Real Root Of 437*x^4-719*x^3+830*x^2-471*x-590 5142265719994949 r009 Im(z^3+c),c=-19/78+23/37*I,n=41 5142265721729971 m001 (Psi(1,1/3)+Shi(1))/(arctan(1/2)+Niven) 5142265729735698 r009 Re(z^3+c),c=-23/58+1/42*I,n=51 5142265738653556 s001 sum(exp(-4*Pi/5)^n*A121872[n],n=1..infinity) 5142265740492743 a007 Real Root Of -983*x^4+482*x^3-766*x^2-23*x+325 5142265756614258 a007 Real Root Of 256*x^4-271*x^3+854*x^2+954*x+210 5142265767426322 r009 Im(z^3+c),c=-7/64+29/45*I,n=52 5142265815247631 a007 Real Root Of 145*x^4+695*x^3-155*x^2+370*x-883 5142265818215942 r009 Im(z^3+c),c=-13/82+30/47*I,n=34 5142265825917099 a007 Real Root Of -146*x^4+790*x^3-829*x^2+222*x+451 5142265851028913 a007 Real Root Of -334*x^4+311*x^3-980*x^2+683*x+676 5142265859830999 m005 (3/4*Catalan-1)/(2/5*exp(1)+5) 5142265861774685 r005 Im(z^2+c),c=-45/86+11/18*I,n=26 5142265872454702 a007 Real Root Of 566*x^4-304*x^3-919*x^2-473*x+488 5142265876374096 r009 Im(z^3+c),c=-5/44+55/56*I,n=26 5142265893851227 m001 (FellerTornier+ThueMorse)/(GAMMA(11/12)+Artin) 5142265907915157 q001 994/1933 5142265920556313 m001 (1+cos(1))/(GAMMA(13/24)+FeigenbaumKappa) 5142265928037653 m001 (Si(Pi)+BesselI(0,1))/(-TwinPrimes+ZetaQ(2)) 5142265952031170 r002 12th iterates of z^2 + 5142265952511553 m005 (1/3*gamma-1/5)/(8/11*exp(1)-1/2) 5142265953323462 m001 1/GAMMA(1/6)^2/(3^(1/3))^2/ln(sqrt(3))^2 5142265955084459 m009 (2*Psi(1,2/3)+1/3)/(6*Catalan+3/4*Pi^2-1/3) 5142265974600328 a007 Real Root Of -582*x^4+888*x^3-53*x^2-489*x-76 5142265987351007 a007 Real Root Of -353*x^4+675*x^3+158*x^2+22*x+86 5142265996374952 r002 2th iterates of z^2 + 5142265998791543 a007 Real Root Of -726*x^4-627*x^3+593*x^2+718*x-390 5142266005506653 a007 Real Root Of 167*x^4-421*x^3+563*x^2+56*x-189 5142266007197096 m001 1/ln(BesselK(0,1))^2/Salem*GAMMA(5/12)^2 5142266016882367 r005 Im(z^2+c),c=15/58+22/43*I,n=41 5142266068567552 r009 Im(z^3+c),c=-23/78+17/28*I,n=42 5142266071898501 m006 (4/Pi-4/5)/(Pi^2-2/3) 5142266076590765 r005 Re(z^2+c),c=51/118+5/27*I,n=4 5142266078837295 a007 Real Root Of -938*x^4+666*x^3-179*x^2+880*x+656 5142266098782885 s002 sum(A287551[n]/(exp(pi*n)+1),n=1..infinity) 5142266104696770 r005 Im(z^2+c),c=-71/86+4/17*I,n=12 5142266111222478 m001 BesselI(0,2)^Backhouse+MasserGramainDelta 5142266112211852 k006 concat of cont frac of 5142266129913124 m001 (Kac-Sarnak)/(gamma(1)-FeigenbaumC) 5142266137426177 a007 Real Root Of 144*x^4+547*x^3-986*x^2+203*x+807 5142266140624728 a005 (1/cos(16/233*Pi))^168 5142266158185057 m001 FeigenbaumC/(FeigenbaumMu-ZetaQ(3)) 5142266178609457 a007 Real Root Of -394*x^4+771*x^3-702*x^2+280*x+462 5142266209552271 m001 (HardyLittlewoodC3-OneNinth)/GAMMA(23/24) 5142266236368339 a001 86267571272/47*7^(9/17) 5142266237365869 a001 567451585/2889*199^(2/11) 5142266252711961 r009 Im(z^3+c),c=-25/66+33/59*I,n=20 5142266257348105 a007 Real Root Of -858*x^4+317*x^3+755*x^2+685*x-535 5142266272023033 m001 arctan(1/2)^GlaisherKinkelin-arctan(1/3) 5142266296761152 r005 Im(z^2+c),c=5/22+23/42*I,n=3 5142266325285697 a007 Real Root Of -180*x^4-799*x^3+781*x^2+613*x-284 5142266328670203 p003 LerchPhi(1/256,6,162/145) 5142266368356252 r009 Im(z^3+c),c=-17/82+30/49*I,n=3 5142266368921436 a001 2971215073/15127*199^(2/11) 5142266373975560 r005 Im(z^2+c),c=-155/122+1/26*I,n=57 5142266375574929 r008 a(0)=5,K{-n^6,-54-20*n^3+7*n^2+59*n} 5142266388115135 a001 7778742049/39603*199^(2/11) 5142266390915458 a001 10182505537/51841*199^(2/11) 5142266391324019 a001 53316291173/271443*199^(2/11) 5142266391383628 a001 139583862445/710647*199^(2/11) 5142266391392325 a001 182717648081/930249*199^(2/11) 5142266391393593 a001 956722026041/4870847*199^(2/11) 5142266391393778 a001 2504730781961/12752043*199^(2/11) 5142266391393805 a001 3278735159921/16692641*199^(2/11) 5142266391393812 a001 10610209857723/54018521*199^(2/11) 5142266391393822 a001 4052739537881/20633239*199^(2/11) 5142266391393893 a001 387002188980/1970299*199^(2/11) 5142266391394378 a001 591286729879/3010349*199^(2/11) 5142266391397699 a001 225851433717/1149851*199^(2/11) 5142266391420468 a001 196418*199^(2/11) 5142266391576524 a001 32951280099/167761*199^(2/11) 5142266392646153 a001 12586269025/64079*199^(2/11) 5142266399977493 a001 1201881744/6119*199^(2/11) 5142266411259208 k002 Champernowne real with 203/2*n^2-591/2*n+199 5142266417541738 r005 Re(z^2+c),c=27/70+10/49*I,n=39 5142266450227251 a001 1836311903/9349*199^(2/11) 5142266452286695 r002 11th iterates of z^2 + 5142266453368821 m003 1/4+Sqrt[5]/8-25/Log[1/2+Sqrt[5]/2] 5142266464104913 p001 sum(1/(443*n+286)/n/(3^n),n=1..infinity) 5142266465527902 r009 Im(z^3+c),c=-5/48+20/31*I,n=32 5142266472368084 a007 Real Root Of 415*x^4-889*x^3-563*x^2-897*x+702 5142266473503711 l006 ln(998/1669) 5142266475077746 r002 30th iterates of z^2 + 5142266500584041 r002 48th iterates of z^2 + 5142266516211423 a007 Real Root Of 334*x^4+124*x^3+755*x^2-869*x-653 5142266516982820 s002 sum(A057083[n]/(n^3*pi^n-1),n=1..infinity) 5142266522059385 a001 1/75640*1597^(38/47) 5142266545097886 m001 (-FeigenbaumC+RenyiParking)/(2^(1/2)+ln(2)) 5142266576737087 m001 (GAMMA(3/4)-Si(Pi))/(-Khinchin+Porter) 5142266588295840 g006 Psi(1,3/10)+Psi(1,4/7)-Psi(1,9/11)-Psi(1,1/8) 5142266622077075 a007 Real Root Of -789*x^4+612*x^3-32*x^2+819*x+568 5142266624766063 r005 Im(z^2+c),c=-25/26+33/86*I,n=3 5142266626696913 m001 Thue^FeigenbaumMu*Thue^AlladiGrinstead 5142266636663750 m001 (GAMMA(23/24)+Magata)/(cos(1)+arctan(1/3)) 5142266646994706 a007 Real Root Of 572*x^4+513*x^3+44*x^2-782*x-384 5142266653449944 m001 (1-cos(1))/(-BesselI(0,1)+FeigenbaumKappa) 5142266656415735 r005 Re(z^2+c),c=23/102+23/61*I,n=51 5142266673589656 a007 Real Root Of 750*x^4+988*x^3-65*x^2-885*x-356 5142266693986786 m006 (1/6*exp(2*Pi)-3/5)/(1/5*Pi^2-1/4) 5142266734187573 a001 726103/281*521^(11/13) 5142266779200016 r002 41th iterates of z^2 + 5142266784340137 r009 Re(z^3+c),c=-3/5+10/21*I,n=13 5142266786662006 m001 (Paris+StronglyCareFree)/(Shi(1)+Cahen) 5142266792664010 r005 Im(z^2+c),c=-45/74+3/32*I,n=36 5142266794644238 a001 701408733/3571*199^(2/11) 5142266812959309 r009 Im(z^3+c),c=-7/19+29/50*I,n=50 5142266819660672 r005 Im(z^2+c),c=17/70+29/57*I,n=5 5142266851256186 a008 Real Root of x^4-2*x^3-10*x^2-20*x-60 5142266853395674 p004 log(20749/19709) 5142266861302786 a007 Real Root Of 111*x^4+507*x^3-225*x^2+594*x+330 5142266863746304 r002 2th iterates of z^2 + 5142266864018946 r002 5th iterates of z^2 + 5142266876446226 r002 34th iterates of z^2 + 5142266882608636 m001 (FeigenbaumMu-Thue)/(gamma(2)-polylog(4,1/2)) 5142266897300312 r002 27th iterates of z^2 + 5142266916996792 a007 Real Root Of -464*x^4-144*x^3+267*x^2+592*x-323 5142266934631936 a007 Real Root Of -98*x^4+144*x^3-777*x^2+148*x+308 5142266963447390 h001 (1/3*exp(2)+5/8)/(5/7*exp(2)+8/11) 5142266965660993 m001 Catalan^2*ln(Bloch)/GAMMA(3/4) 5142266971736590 m001 -5^(1/2)/(-BesselI(1,1)+1) 5142266971736590 m001 5^(1/2)/(1-BesselI(1,1)) 5142266984426097 m005 (3*exp(1)-1/5)/(1/6*exp(1)-2) 5142267022037043 r009 Im(z^3+c),c=-7/64+29/45*I,n=48 5142267031058312 m001 ErdosBorwein-GAMMA(19/24)+StolarskyHarborth 5142267095207688 m005 (1/20+1/4*5^(1/2))/(2/11*5^(1/2)+7/9) 5142267096565177 m001 (MertensB1+Niven)/(sin(1/5*Pi)+ln(gamma)) 5142267111431451 k009 concat of cont frac of 5142267114273011 h001 (1/10*exp(2)+3/7)/(5/8*exp(1)+4/7) 5142267145287920 m001 (5^(1/2)+Thue)/BesselK(1,1) 5142267149440691 a003 sin(Pi*5/73)+sin(Pi*7/72) 5142267168488116 m005 (1/2*2^(1/2)+1/3)/(7/9*exp(1)-1/11) 5142267172694895 m001 Paris*(BesselJ(1,1)+StolarskyHarborth) 5142267176597430 r009 Im(z^3+c),c=-25/122+17/27*I,n=38 5142267200251718 r009 Im(z^3+c),c=-1/48+13/20*I,n=34 5142267201303699 g007 Psi(2,5/12)-Psi(2,5/9)-Psi(2,6/7)-Psi(2,2/3) 5142267201924585 r005 Im(z^2+c),c=-47/106+25/42*I,n=3 5142267203942047 r005 Re(z^2+c),c=-7/10+45/203*I,n=62 5142267207691056 m001 (Pi+Ei(1,1))/(Gompertz-Robbin) 5142267208401086 r005 Im(z^2+c),c=-79/86+2/47*I,n=15 5142267225812999 r009 Im(z^3+c),c=-11/30+36/61*I,n=26 5142267229913888 r002 5th iterates of z^2 + 5142267249151188 r009 Re(z^3+c),c=-13/25+13/25*I,n=19 5142267260690674 a007 Real Root Of 388*x^4+48*x^3-944*x^2-846*x+651 5142267270811100 r002 27th iterates of z^2 + 5142267272288281 r005 Im(z^2+c),c=5/19+28/51*I,n=40 5142267276132145 m001 (KomornikLoreti+PlouffeB)/BesselJ(1,1) 5142267309508907 r005 Re(z^2+c),c=-3/4+95/241*I,n=5 5142267320047007 r005 Re(z^2+c),c=-5/6+155/253*I,n=2 5142267352824237 a008 Real Root of x^4-19*x^2-76*x+194 5142267368946863 a007 Real Root Of 189*x^4+827*x^3-671*x^2+311*x-359 5142267375500169 a007 Real Root Of 242*x^4-960*x^3+554*x^2+805*x+120 5142267389173115 m001 exp(GAMMA(11/12))^2*Rabbit^2/cos(Pi/5) 5142267395644702 l006 ln(8888/9357) 5142267399180914 r005 Re(z^2+c),c=-65/86+7/31*I,n=8 5142267406836020 a007 Real Root Of 196*x^4+878*x^3-666*x^2+58*x+248 5142267428361163 m001 LaplaceLimit^2/Si(Pi)/exp(GAMMA(7/12)) 5142267433894396 r005 Re(z^2+c),c=-5/4+75/209*I,n=9 5142267449707264 r009 Im(z^3+c),c=-21/62+26/47*I,n=9 5142267461225338 k008 concat of cont frac of 5142267510234481 r005 Im(z^2+c),c=-11/48+45/56*I,n=5 5142267514979711 l006 ln(5753/9621) 5142267515256964 r005 Re(z^2+c),c=-11/34+25/46*I,n=2 5142267521780006 m001 (GAMMA(3/4)+Cahen)/(exp(1)+Catalan) 5142267527145984 p001 sum((-1)^n/(216*n+95)/n/(625^n),n=1..infinity) 5142267542000928 r005 Im(z^2+c),c=39/98+23/63*I,n=24 5142267542234325 h001 (5/11*exp(1)+1/10)/(1/4*exp(2)+3/4) 5142267547231552 r005 Im(z^2+c),c=-3/17+37/44*I,n=17 5142267553863917 a007 Real Root Of 678*x^4-705*x^3+883*x^2+159*x-295 5142267556221902 r002 6th iterates of z^2 + 5142267570596809 a007 Real Root Of -6*x^4-311*x^3-119*x^2+412*x+818 5142267578703623 m001 exp(BesselK(0,1))*(2^(1/3))*GAMMA(1/3) 5142267588329075 r002 12th iterates of z^2 + 5142267589308400 r009 Im(z^3+c),c=-23/64+21/37*I,n=28 5142267610249349 r009 Im(z^3+c),c=-43/126+13/23*I,n=17 5142267614388376 m001 ln(2)/(MertensB1-ln(5)) 5142267639320225 a001 514229-5^(1/2) 5142267640062755 r009 Im(z^3+c),c=-37/110+41/58*I,n=23 5142267662398654 m001 FeigenbaumC*(GAMMA(23/24)+Grothendieck) 5142267665980404 r002 9th iterates of z^2 + 5142267674230963 s002 sum(A237181[n]/(exp(pi*n)-1),n=1..infinity) 5142267675307357 r002 31th iterates of z^2 + 5142267703885741 a007 Real Root Of 273*x^4-364*x^3-748*x^2-823*x-294 5142267709904117 s002 sum(A063762[n]/((10^n+1)/n),n=1..infinity) 5142267713535956 p004 log(35393/33619) 5142267716500544 m001 Landau^FibonacciFactorial+FeigenbaumDelta 5142267728152304 m001 (gamma(2)-Champernowne)/(Robbin+Tetranacci) 5142267730419239 m001 (-GAMMA(3/4)+Salem)/(Psi(1,1/3)-cos(1)) 5142267733569192 l006 ln(4755/7952) 5142267734743134 r009 Im(z^3+c),c=-19/106+33/52*I,n=61 5142267746399129 a007 Real Root Of 13*x^4-828*x^3+961*x^2-238*x-490 5142267746638301 m005 (1/2*gamma-6/7)/(3/11*Zeta(3)+7/9) 5142267762761834 m001 (Mills+ZetaP(4))/(Ei(1)+Kolakoski) 5142267782720388 r002 27th iterates of z^2 + 5142267792308098 m001 cos(1)/(HardHexagonsEntropy^ZetaR(2)) 5142267798442344 m005 (1/2*5^(1/2)+8/9)/(7/10*exp(1)+2) 5142267800271677 r009 Im(z^3+c),c=-11/114+23/33*I,n=17 5142267819828675 m001 (ErdosBorwein-MadelungNaCl)/Trott2nd 5142267820106604 a001 21/3010349*322^(35/47) 5142267820766055 a007 Real Root Of 233*x^4+274*x^3+214*x^2-378*x-230 5142267831982670 a007 Real Root Of 623*x^4-747*x^3+711*x^2+924*x+142 5142267835832205 a007 Real Root Of 942*x^4+159*x^3-396*x^2-933*x+497 5142267837939492 r005 Im(z^2+c),c=-5/31+35/58*I,n=13 5142267839651305 r005 Re(z^2+c),c=-7/62+33/49*I,n=11 5142267843796282 m001 1/exp(MinimumGamma)*Bloch/GAMMA(5/12) 5142267846900584 r002 12th iterates of z^2 + 5142267852566729 p001 sum(1/(509*n+198)/(16^n),n=0..infinity) 5142267853307093 r002 24th iterates of z^2 + 5142267863231878 r009 Re(z^3+c),c=-1/58+39/49*I,n=36 5142267870621329 r009 Im(z^3+c),c=-7/106+35/54*I,n=36 5142267889110420 r009 Im(z^3+c),c=-13/30+14/25*I,n=64 5142267899377912 a007 Real Root Of -474*x^4-127*x^3-526*x^2+846*x+590 5142267928904471 m001 1/OneNinth/ln(GlaisherKinkelin)^2/cos(1)^2 5142267954465470 r005 Re(z^2+c),c=-3/5+36/107*I,n=22 5142267964015142 m001 1/ln(Conway)*Cahen^2/GaussKuzminWirsing 5142267979533895 r005 Im(z^2+c),c=-17/118+40/63*I,n=46 5142267982098838 m001 (Trott+ZetaP(4))/(FibonacciFactorial+PlouffeB) 5142268007886556 a007 Real Root Of 878*x^4+312*x^3+817*x^2-105*x-289 5142268013655681 r009 Im(z^3+c),c=-7/62+38/59*I,n=50 5142268022289292 m001 Riemann2ndZero*(ln(gamma)+Riemann3rdZero) 5142268025875175 l003 KelvinBei(1,7/48) 5142268027185247 m001 exp(Sierpinski)^2*MinimumGamma*sqrt(2)^2 5142268029477037 m001 (Chi(1)+ln(2))/(-FeigenbaumMu+Lehmer) 5142268032482134 a001 75025/18*2^(10/33) 5142268041237113 q001 1247/2425 5142268068289781 l006 ln(3757/6283) 5142268075224735 a003 cos(Pi*6/101)-cos(Pi*10/29) 5142268080328367 m001 CopelandErdos*(PisotVijayaraghavan-exp(Pi)) 5142268083182046 a007 Real Root Of 105*x^4-496*x^3-633*x^2-493*x+481 5142268182577674 m008 (5/6*Pi^6-3/5)/(1/6*Pi^4-2/3) 5142268190447796 a003 cos(Pi*19/108)-cos(Pi*25/64) 5142268190811082 r005 Re(z^2+c),c=-1/30+41/64*I,n=56 5142268191435855 a001 3524578/843*521^(10/13) 5142268203191334 a007 Real Root Of 118*x^4+609*x^3-129*x^2-787*x-335 5142268210472023 a007 Real Root Of -45*x^4-77*x^3-672*x^2+993*x+681 5142268230178028 a007 Real Root Of -533*x^4-213*x^3-923*x^2+44*x+275 5142268252109192 a007 Real Root Of -7*x^4+971*x^3+88*x^2+716*x-523 5142268264090589 m001 (Psi(1,1/3)-gamma(3))/ReciprocalLucas 5142268270584361 r002 10th iterates of z^2 + 5142268276635942 r002 8th iterates of z^2 + 5142268282621216 h001 (-7*exp(3)+11)/(-12*exp(3)-11) 5142268334265272 l006 ln(29/4962) 5142268344849007 r009 Im(z^3+c),c=-5/44+55/56*I,n=30 5142268386536302 h001 (-7*exp(5)+9)/(-7*exp(1)-1) 5142268388780159 h001 (2/5*exp(2)+7/12)/(7/8*exp(2)+5/12) 5142268401024845 m001 (Backhouse-Tetranacci)/(Ei(1,1)+ArtinRank2) 5142268420719232 r002 12th iterates of z^2 + 5142268433936566 a007 Real Root Of 334*x^4-958*x^3-258*x^2-921*x-559 5142268438084752 a007 Real Root Of 539*x^4-897*x^3+431*x^2-483*x-522 5142268449009536 r009 Im(z^3+c),c=-9/82+29/45*I,n=41 5142268457709496 r005 Im(z^2+c),c=43/98+8/51*I,n=3 5142268457835428 r005 Re(z^2+c),c=9/70+27/44*I,n=48 5142268489464351 m001 (Sarnak-Thue)/(Zeta(1/2)-GAMMA(19/24)) 5142268513342678 r005 Re(z^2+c),c=19/44+10/31*I,n=2 5142268531489877 m001 (FeigenbaumB-Rabbit)/(Riemann3rdZero-Salem) 5142268533717887 m001 (BesselK(1,1)-Psi(1,1/3))/(MadelungNaCl+Paris) 5142268559859319 m001 ln(5)^(FeigenbaumD*GlaisherKinkelin) 5142268567956129 m001 (Si(Pi)-sin(1/12*Pi))/(-Bloch+FeigenbaumMu) 5142268571786059 r009 Re(z^3+c),c=-49/102+9/62*I,n=8 5142268573488417 q001 1/1944667 5142268578214601 r009 Im(z^3+c),c=-13/42+32/53*I,n=46 5142268624246537 r009 Im(z^3+c),c=-7/31+37/59*I,n=31 5142268644133833 r002 56th iterates of z^2 + 5142268645164128 l006 ln(2759/4614) 5142268652670132 h001 (3/7*exp(1)+2/11)/(4/5*exp(1)+4/9) 5142268653933282 p001 sum(1/(267*n+20)/(3^n),n=0..infinity) 5142268661529383 a007 Real Root Of 146*x^4-505*x^3-870*x^2-948*x+776 5142268669687517 m009 (32*Catalan+4*Pi^2+1)/(3/4*Psi(1,1/3)+6) 5142268671659366 m001 LambertW(1)^(GAMMA(7/12)/Conway) 5142268677015030 a007 Real Root Of 937*x^4-886*x^3-493*x^2-118*x+246 5142268698060941 r002 2th iterates of z^2 + 5142268705871165 r001 55i'th iterates of 2*x^2-1 of 5142268732107423 r009 Im(z^3+c),c=-11/40+19/31*I,n=56 5142268736790948 m001 (Chi(1)*QuadraticClass+FeigenbaumMu)/Chi(1) 5142268741203080 r005 Im(z^2+c),c=-43/114+15/26*I,n=17 5142268750025589 r005 Re(z^2+c),c=-81/110+28/47*I,n=3 5142268751663820 a003 cos(Pi*36/109)/sin(Pi*14/31) 5142268758669048 m005 (1/2*gamma+5/11)/(8/11*2^(1/2)+5/12) 5142268772290730 a007 Real Root Of -143*x^4-715*x^3+158*x^2+412*x+707 5142268783585079 a001 4/317811*75025^(20/27) 5142268816565595 r005 Im(z^2+c),c=-79/64+1/60*I,n=52 5142268824127666 a001 11/75025*8^(35/58) 5142268858764181 r002 6th iterates of z^2 + 5142268896158654 m009 (3/5*Psi(1,3/4)+3/5)/(2*Catalan+1/4*Pi^2-1/6) 5142268898710153 r009 Re(z^3+c),c=-1/122+23/43*I,n=17 5142268932263823 l006 ln(6955/7322) 5142268935026365 r005 Re(z^2+c),c=-59/122+15/28*I,n=47 5142268937349340 r009 Im(z^3+c),c=-7/106+35/54*I,n=38 5142268942185585 m001 (Pi-Zeta(3))/(AlladiGrinstead-KhinchinLevy) 5142268949027769 r002 37th iterates of z^2 + 5142268956215828 m001 MertensB3/(GAMMA(17/24)+Mills) 5142268965782027 a007 Real Root Of -187*x^4+78*x^3-850*x^2-664*x-93 5142268972745296 m001 Lehmer*KhintchineHarmonic^2*ln(Niven)^2 5142268988088570 a007 Real Root Of 140*x^4+809*x^3+553*x^2+547*x+303 5142269019972651 m001 (Zeta(3)+cos(1/5*Pi))/(GAMMA(3/4)+Khinchin) 5142269045868385 r005 Re(z^2+c),c=-37/56+10/57*I,n=10 5142269070806734 a007 Real Root Of 310*x^4+427*x^3-441*x^2-984*x-353 5142269077551786 m001 (sin(1)+gamma(2))/(ErdosBorwein+Trott) 5142269091782380 s001 sum(exp(-Pi/2)^(n-1)*A037605[n],n=1..infinity) 5142269095571571 a007 Real Root Of -606*x^4+129*x^3-716*x^2+970*x-48 5142269115817155 a007 Real Root Of -167*x^4-672*x^3+934*x^2-212*x-393 5142269117515167 m001 2*Pi/GAMMA(5/6)*(Landau-Porter) 5142269119217799 m001 (BesselI(0,1)+MasserGramain)/(Pi+gamma) 5142269122378617 r005 Re(z^2+c),c=-27/56+19/31*I,n=31 5142269124107114 m001 1/exp(GAMMA(11/24))/Paris^2*sin(Pi/5)^2 5142269124658998 l006 ln(4520/7559) 5142269132838523 r009 Im(z^3+c),c=-27/58+29/57*I,n=41 5142269138947503 m001 (ArtinRank2-exp(Pi))/(FeigenbaumMu+Kolakoski) 5142269143571270 m005 (1/2*Zeta(3)-7/8)/(3/11*Zeta(3)+5) 5142269143848316 m001 (Kac+Kolakoski)/(ln(3)-exp(1/Pi)) 5142269147196542 a007 Real Root Of 494*x^4-850*x^3-764*x^2-696*x-306 5142269149796375 a007 Real Root Of 791*x^4-306*x^3+569*x^2-114*x-306 5142269155314629 a001 66978574/341*199^(2/11) 5142269157240945 m001 (ln(3)-BesselK(1,1))/cos(1/12*Pi) 5142269157240945 m001 (ln(3)-BesselK(1,1))/cos(Pi/12) 5142269167005951 a001 123/11*(1/2*5^(1/2)+1/2)^10*11^(11/20) 5142269191335391 p004 log(33181/19841) 5142269218217540 a001 322/2504730781961*8^(2/3) 5142269219223061 h001 (-4*exp(1)-4)/(-6*exp(1/2)+7) 5142269291945513 a001 1/5473*1836311903^(10/17) 5142269296791580 a003 cos(Pi*43/120)-cos(Pi*38/101) 5142269300528633 a001 2/1346269*6557470319842^(10/17) 5142269301935313 a007 Real Root Of -391*x^4+352*x^3+896*x^2+789*x+244 5142269304865231 a007 Real Root Of 294*x^4-453*x^3-288*x^2-900*x+580 5142269326821479 a003 cos(Pi*17/117)*sin(Pi*20/103) 5142269327423919 r005 Im(z^2+c),c=-20/23+10/41*I,n=24 5142269334825695 a001 5702887/322*322^(7/12) 5142269362118012 m005 (3/4*Pi+4)/(5^(1/2)-1) 5142269370106767 m005 (1/2*exp(1)-3/11)/(-39/80+5/16*5^(1/2)) 5142269378470118 p004 log(33023/193) 5142269435931737 h001 (1/12*exp(1)+8/11)/(7/11*exp(1)+1/8) 5142269442397689 h001 (1/7*exp(1)+2/9)/(2/5*exp(1)+1/10) 5142269447153027 a007 Real Root Of 798*x^4-75*x^3-208*x^2-991*x+519 5142269454919437 q001 15/2917 5142269454919437 q001 3/5834 5142269461078585 m001 StolarskyHarborth-ln(2)*Thue 5142269466062098 a007 Real Root Of 868*x^4-475*x^3+436*x^2-30*x-256 5142269487222209 r009 Im(z^3+c),c=-1/48+24/37*I,n=21 5142269496346487 m001 (Chi(1)-GAMMA(19/24))/(Kac+Trott2nd) 5142269499975646 r009 Im(z^3+c),c=-17/118+39/61*I,n=15 5142269545577972 b008 ArcCot[18*Sqrt[6]]^2 5142269559770252 m005 (1+1/4*5^(1/2))/(4/5*exp(1)+6/7) 5142269560112628 r009 Im(z^3+c),c=-3/46+35/54*I,n=45 5142269560437804 r009 Im(z^3+c),c=-6/19+3/5*I,n=55 5142269562767057 a005 (1/cos(6/133*Pi))^391 5142269594600594 m001 (-Salem+Stephens)/(BesselI(0,1)-Paris) 5142269639615443 a001 843/89*8^(48/59) 5142269648684137 a001 5702887/843*521^(9/13) 5142269686985174 r005 Re(z^2+c),c=-25/34+73/123*I,n=3 5142269693637828 a001 3/2584*956722026041^(7/23) 5142269699289101 a007 Real Root Of 474*x^4+294*x^3-743*x^2-739*x-36 5142269700342146 r009 Re(z^3+c),c=-13/28+4/57*I,n=45 5142269712271726 m001 (Conway-PlouffeB)/(Zeta(1,-1)-exp(1/exp(1))) 5142269716851611 r005 Im(z^2+c),c=-13/42+28/45*I,n=36 5142269720050067 a003 cos(Pi*35/107)*sin(Pi*51/109) 5142269722116076 r002 33th iterates of z^2 + 5142269723735036 m005 (1/2*gamma+1/11)/(2/3*3^(1/2)-5/12) 5142269732710398 m001 (GAMMA(1/3)+1/3)/(2-2^(1/2)) 5142269737827844 m001 (Grothendieck-Porter)^Stephens 5142269745553746 a003 sin(Pi*11/67)/sin(Pi*47/115) 5142269751294729 m001 HeathBrownMoroz^(Gompertz*MertensB3) 5142269803736237 r009 Re(z^3+c),c=-33/74+1/27*I,n=60 5142269855833588 a007 Real Root Of 444*x^4-510*x^3-156*x^2-974*x-560 5142269875894809 l006 ln(1761/2945) 5142269882828278 m001 Sierpinski/(BesselJ(1,1)^Chi(1)) 5142269883585968 a003 cos(Pi*1/67)*cos(Pi*20/61) 5142269896070225 a007 Real Root Of -816*x^4+784*x^3-151*x^2+345*x+381 5142269898457905 m001 (3^(1/3)-KomornikLoreti)/(MertensB3-Robbin) 5142269907739035 r002 19i'th iterates of 2*x/(1-x^2) of 5142269915211082 a001 3/365435296162*8^(15/17) 5142269919678947 m005 (1/3*Pi+1/8)/(7/10*5^(1/2)+5/7) 5142269921478711 a007 Real Root Of 858*x^4-510*x^3-69*x^2-485*x+277 5142269936464277 m001 ThueMorse/(Rabbit^Cahen) 5142269937308066 a007 Real Root Of 849*x^4+605*x^3+218*x^2-510*x-297 5142269941333655 m001 (Backhouse-Gompertz)/(ln(5)-3^(1/3)) 5142269946273781 m005 (3/4*gamma-4/5)/(1/3*Pi-1/3) 5142269959127349 a003 sin(Pi*11/82)/cos(Pi*23/111) 5142269961192427 r005 Re(z^2+c),c=-14/15+3/25*I,n=30 5142269962672109 a007 Real Root Of 865*x^4-930*x^3-496*x^2-226*x-172 5142269964521874 m001 5^(1/2)*(polylog(4,1/2)+Grothendieck) 5142269993978938 r005 Im(z^2+c),c=27/106+30/59*I,n=57 5142269994485785 m001 1/Porter^2*LandauRamanujan/exp(GAMMA(11/24)) 5142269999985928 a001 317807/2+317811/2*5^(1/2) 5142270004787923 r005 Re(z^2+c),c=-19/22+19/82*I,n=8 5142270008627454 r002 24th iterates of z^2 + 5142270014254973 r005 Im(z^2+c),c=15/44+15/56*I,n=20 5142270025956563 m005 (1/2*Pi+6)/(9/11*gamma+1) 5142270034156412 r009 Im(z^3+c),c=-11/114+29/44*I,n=9 5142270037835495 m009 (8*Catalan+Pi^2-1/5)/(2/3*Psi(1,3/4)-5) 5142270042084166 a007 Real Root Of 391*x^4+360*x^3+879*x^2-856*x-651 5142270048233073 r005 Im(z^2+c),c=-23/18+43/112*I,n=6 5142270102124442 r009 Im(z^3+c),c=-11/34+37/62*I,n=20 5142270105892427 r002 35th iterates of z^2 + 5142270116403788 a005 (1/cos(22/199*Pi))^251 5142270124312454 a001 103682/377*75025^(6/23) 5142270168656784 r009 Im(z^3+c),c=-3/118+21/32*I,n=16 5142270173993390 m001 (FeigenbaumDelta+Mills)/(Rabbit+ZetaP(2)) 5142270185504957 m001 (FransenRobinson+KhinchinLevy*Rabbit)/Rabbit 5142270226781806 a008 Real Root of x^4-2*x^3-2*x^2-66*x-35 5142270232893179 a001 161/133957148*233^(4/15) 5142270246949710 g007 Psi(2,7/8)+Psi(2,1/3)-Psi(2,9/10)-Psi(2,5/6) 5142270249372295 a007 Real Root Of -173*x^4-745*x^3+696*x^2-293*x-247 5142270250412482 m001 GAMMA(3/4)^sin(1)/(GAMMA(3/4)^exp(sqrt(2))) 5142270277814494 a001 5778/377*4807526976^(6/23) 5142270285563098 r005 Im(z^2+c),c=43/122+19/64*I,n=61 5142270290582393 r005 Re(z^2+c),c=-39/110+35/52*I,n=4 5142270295086478 m001 Conway^GAMMA(5/6)-GaussAGM 5142270299795944 r009 Im(z^3+c),c=-13/110+11/17*I,n=17 5142270322468670 m001 1/GAMMA(5/6)/exp(CopelandErdos)^2/Zeta(5)^2 5142270327570856 a001 20633239*144^(11/17) 5142270334749718 m001 (BesselI(1,2)-FransenRobinson)/(Niven+Robbin) 5142270351189596 a007 Real Root Of -390*x^4+789*x^3-218*x^2+21*x+203 5142270393774324 m001 (-BesselI(1,1)+CareFree)/(exp(1)+gamma(2)) 5142270396907074 a007 Real Root Of 71*x^4+315*x^3-173*x^2+295*x-721 5142270398936736 m005 (1/2*Zeta(3)-2)/(5/6*5^(1/2)+6/7) 5142270460545614 q001 1753/3409 5142270465355042 m001 exp(1/Pi)^(exp(1/exp(1))/ZetaQ(2)) 5142270473205852 m001 1/BesselK(0,1)^2/exp(Conway)^2/cos(Pi/5) 5142270493045560 r009 Im(z^3+c),c=-23/34+21/47*I,n=3 5142270493185473 r005 Im(z^2+c),c=-35/82+4/51*I,n=9 5142270499936100 m005 (1/3*gamma-1/2)/(5/8*2^(1/2)-2/7) 5142270500928531 a007 Real Root Of 615*x^4-710*x^3+821*x^2-728*x-731 5142270514069191 r009 Im(z^3+c),c=-19/106+33/52*I,n=60 5142270519180500 r002 6th iterates of z^2 + 5142270567429127 m001 (-GAMMA(7/12)+MertensB2)/(sin(1)+Zeta(1,2)) 5142270576739019 m001 2*Pi/GAMMA(5/6)-Rabbit^FeigenbaumAlpha 5142270578204304 s001 sum(exp(-Pi/2)^n*A119975[n],n=1..infinity) 5142270582094118 r005 Im(z^2+c),c=19/50+2/11*I,n=35 5142270583524070 r005 Re(z^2+c),c=9/58+33/52*I,n=18 5142270594696982 m001 exp(GAMMA(1/24))/FransenRobinson*cos(Pi/12)^2 5142270598471733 m001 GAMMA(1/24)/BesselK(1,1)/ln(log(2+sqrt(3)))^2 5142270607241302 m001 (Champernowne+Niven)/(exp(1)+Chi(1)) 5142270616847852 a003 sin(Pi*7/87)-sin(Pi*18/65) 5142270630598634 m005 (1/3*Zeta(3)+1/3)/(1/11*Pi-1/7) 5142270633737826 r002 6th iterates of z^2 + 5142270650318536 m006 (2/5*exp(Pi)-3)/(4*Pi-2/5) 5142270668132223 r005 Re(z^2+c),c=-31/32+4/25*I,n=50 5142270668330189 l006 ln(4285/7166) 5142270690923464 a007 Real Root Of -706*x^4+950*x^3-409*x^2+162*x+370 5142270695265910 h001 (4/11*exp(1)+2/7)/(7/9*exp(1)+4/11) 5142270720851014 r005 Im(z^2+c),c=1/3+27/55*I,n=19 5142270745057044 s002 sum(A139409[n]/(n^2*10^n-1),n=1..infinity) 5142270748147922 h003 exp(Pi*(10^(7/4)+14^(5/7))) 5142270748147922 h008 exp(Pi*(10^(7/4)+14^(5/7))) 5142270756141230 m001 cos(1)/(GAMMA(2/3)-BesselJZeros(0,1)) 5142270772055837 a007 Real Root Of -616*x^4+911*x^3+979*x^2-118*x-279 5142270791907577 b008 -1/10+PolyLog[3,-8] 5142270797038284 b008 4/3+5*Sinh[3] 5142270808994570 r009 Im(z^3+c),c=-1/4+18/29*I,n=36 5142270813395417 m001 (-GAMMA(11/12)+Sarnak)/(5^(1/2)-BesselI(1,2)) 5142270845204217 a003 sin(Pi*10/91)-sin(Pi*13/40) 5142270867591314 a007 Real Root Of -104*x^4-495*x^3+150*x^2-147*x+689 5142270901287553 a001 119814912/233 5142270905070821 r009 Im(z^3+c),c=-15/38+19/32*I,n=41 5142270910145985 r002 12th iterates of z^2 + 5142270946099506 m005 (1/2*5^(1/2)-8/11)/(2/9*3^(1/2)+3/8) 5142270959279051 r005 Re(z^2+c),c=25/94+26/49*I,n=6 5142270959640227 a001 267914296/843*199^(1/11) 5142270980706897 a007 Real Root Of -481*x^4+393*x^3-450*x^2+136*x+276 5142270983966699 m002 5+(6*Sinh[Pi])/(5*Pi^4) 5142270984146779 m001 gamma(3)*(Artin-GolombDickman) 5142271002016507 a005 (1/cos(9/106*Pi))^685 5142271005999453 m001 (Psi(1,1/3)-ln(Pi))/(-Paris+Tribonacci) 5142271020096963 m001 Totient/(Niven-exp(1/exp(1))) 5142271027827669 r005 Re(z^2+c),c=-79/118+16/63*I,n=27 5142271030042918 a001 119814915/233 5142271043669015 m001 (BesselJ(0,1)-Chi(1))/(-Zeta(1,2)+PlouffeB) 5142271055793991 a001 2/233*(1/2+1/2*5^(1/2))^42 5142271066584985 a007 Real Root Of -494*x^4+411*x^3-315*x^2+840*x-370 5142271072961373 a001 119814916/233 5142271090140185 m005 (7/20+1/4*5^(1/2))/(4/5*2^(1/2)+7/11) 5142271103814267 a003 cos(Pi*13/77)*cos(Pi*27/91) 5142271105932990 a001 9227465/843*521^(8/13) 5142271111411121 k006 concat of cont frac of 5142271115111032 k008 concat of cont frac of 5142271115313121 k007 concat of cont frac of 5142271115879828 a001 119814917/233 5142271121123411 k007 concat of cont frac of 5142271122162121 k009 concat of cont frac of 5142271123422812 k008 concat of cont frac of 5142271136001190 m001 Bloch/(GaussAGM^PlouffeB) 5142271140006557 a003 cos(Pi*30/73)*cos(Pi*48/109) 5142271140519817 m001 (-GAMMA(3/4)+Niven)/(BesselJ(0,1)-Psi(1,1/3)) 5142271144744548 r002 17th iterates of z^2 + 5142271145165951 a007 Real Root Of 440*x^4+140*x^3+728*x^2-581*x-503 5142271151364256 g001 Psi(1,41/84) 5142271151364256 l003 Psi(1,41/84) 5142271178127956 a007 Real Root Of -159*x^4-708*x^3+469*x^2-655*x-864 5142271181103827 a005 (1/sin(69/221*Pi))^270 5142271190071482 s002 sum(A208268[n]/(n*2^n-1),n=1..infinity) 5142271190214478 m009 (3*Psi(1,1/3)-1/6)/(6*Psi(1,1/3)-2) 5142271198172410 a003 sin(Pi*23/110)*sin(Pi*29/91) 5142271208765270 m001 (Pi*FellerTornier+BesselK(1,1))/Pi 5142271211181611 k006 concat of cont frac of 5142271212509612 q001 2006/3901 5142271214221811 k009 concat of cont frac of 5142271214358902 a007 Real Root Of -538*x^4-227*x^3-938*x^2+261*x+389 5142271221213949 l006 ln(2524/4221) 5142271249224058 m005 (1/2*gamma-7/12)/(5/6*Zeta(3)-3/7) 5142271285025023 a007 Real Root Of -724*x^4+220*x^3-411*x^2+336*x+362 5142271287110549 h001 (-4*exp(-1)-6)/(-9*exp(2/3)+3) 5142271293397913 a007 Real Root Of -875*x^4+114*x^3+316*x^2+852*x-476 5142271308623509 a007 Real Root Of -892*x^4+681*x^3+263*x^2-522*x-183 5142271312927715 k007 concat of cont frac of 5142271353028681 a005 (1/cos(8/153*Pi))^1480 5142271359766005 a007 Real Root Of -465*x^4+521*x^3+393*x^2+637*x+327 5142271379988903 r009 Im(z^3+c),c=-29/82+29/46*I,n=15 5142271394298138 m001 1/LandauRamanujan/ArtinRank2*exp(Zeta(7)) 5142271395215461 r009 Im(z^3+c),c=-9/26+16/25*I,n=54 5142271408354720 b008 Sin[Zeta[1/24]] 5142271417418456 a007 Real Root Of 874*x^4-388*x^3+151*x^2+478*x+92 5142271426369622 a001 843/377*2504730781961^(4/21) 5142271442323919 r009 Re(z^3+c),c=-23/58+1/42*I,n=42 5142271448648307 r002 52th iterates of z^2 + 5142271457249207 a001 3524578/2207*521^(12/13) 5142271459227467 a001 119814925/233 5142271460648960 a007 Real Root Of -11*x^4-574*x^3-443*x^2-715*x-770 5142271461132975 a007 Real Root Of -555*x^4+326*x^3-279*x^2+947*x-48 5142271469399748 m001 (-LambertW(1)+5)/(-GAMMA(7/12)+2/3) 5142271473667836 r002 44th iterates of z^2 + 5142271480930409 m001 Sarnak^(LambertW(1)*Pi*2^(1/2)/GAMMA(3/4)) 5142271489431370 r002 21th iterates of z^2 + 5142271504980292 r009 Im(z^3+c),c=-5/44+55/56*I,n=36 5142271517546459 r009 Im(z^3+c),c=-25/82+32/53*I,n=57 5142271518655364 a007 Real Root Of 983*x^4+202*x^3-349*x^2-874*x-44 5142271532930949 m002 -2-6*Pi^4*Sech[Pi]+Tanh[Pi] 5142271533433662 a007 Real Root Of -761*x^4-389*x^3-407*x^2+426*x+327 5142271542935018 r005 Im(z^2+c),c=-27/38+12/43*I,n=64 5142271558251903 r005 Re(z^2+c),c=11/62+19/59*I,n=9 5142271565589979 r002 6th iterates of z^2 + 5142271574626695 m001 (-Mills+ReciprocalLucas)/(Shi(1)+Ei(1,1)) 5142271599845359 r009 Im(z^3+c),c=-5/44+55/56*I,n=40 5142271603496459 h002 exp(19^(7/5)-7^(7/4)) 5142271603496459 h007 exp(19^(7/5)-7^(7/4)) 5142271609314526 r005 Re(z^2+c),c=-7/46+59/63*I,n=5 5142271617406993 r009 Im(z^3+c),c=-5/44+55/56*I,n=34 5142271619569611 r009 Im(z^3+c),c=-5/44+55/56*I,n=46 5142271620719605 r009 Im(z^3+c),c=-5/44+55/56*I,n=50 5142271620781474 m001 (Pi^(1/2)+Porter)/(Rabbit-Totient) 5142271620800892 r009 Im(z^3+c),c=-5/44+55/56*I,n=52 5142271620804940 r009 Im(z^3+c),c=-5/44+55/56*I,n=56 5142271620814854 r009 Im(z^3+c),c=-5/44+55/56*I,n=62 5142271620815108 r009 Im(z^3+c),c=-5/44+55/56*I,n=60 5142271620815397 r009 Im(z^3+c),c=-5/44+55/56*I,n=64 5142271620817916 r009 Im(z^3+c),c=-5/44+55/56*I,n=58 5142271620836883 r009 Im(z^3+c),c=-5/44+55/56*I,n=54 5142271621296597 r009 Im(z^3+c),c=-5/44+55/56*I,n=48 5142271622391590 r009 Im(z^3+c),c=-5/44+55/56*I,n=44 5142271623295691 r009 Im(z^3+c),c=-5/44+55/56*I,n=42 5142271623311576 r009 Im(z^3+c),c=-1/48+13/20*I,n=45 5142271628907427 l006 ln(5811/9718) 5142271630218409 m001 1/FeigenbaumDelta*FeigenbaumAlpha^2*ln(Porter) 5142271648682739 a007 Real Root Of 88*x^4+330*x^3-659*x^2-183*x-175 5142271651791989 l006 ln(5022/5287) 5142271656937633 a001 103682/13*514229^(16/19) 5142271657994679 a001 7/433494437*55^(19/22) 5142271659899198 r009 Im(z^3+c),c=-17/74+37/60*I,n=16 5142271681317515 r005 Im(z^2+c),c=-113/94+3/43*I,n=61 5142271681617329 r009 Im(z^3+c),c=-6/19+3/5*I,n=39 5142271681637088 r009 Im(z^3+c),c=-5/13+17/29*I,n=64 5142271686911726 r009 Im(z^3+c),c=-5/44+55/56*I,n=38 5142271694839909 m001 (Bloch-MadelungNaCl)/(Otter-Weierstrass) 5142271696937927 r009 Im(z^3+c),c=-25/94+8/13*I,n=58 5142271706318429 m001 (PolyaRandomWalk3D+ZetaP(2))/(Catalan+Kac) 5142271741191524 k007 concat of cont frac of 5142271742846232 m001 1/ln(GAMMA(11/24))^2*Bloch^2*Zeta(9) 5142271780252139 a007 Real Root Of -270*x^4+705*x^3-168*x^2+902*x+623 5142271796020725 r009 Re(z^3+c),c=-23/58+1/42*I,n=54 5142271796956050 a007 Real Root Of 284*x^4-362*x^3+250*x^2-303*x-291 5142271831940761 a007 Real Root Of 639*x^4-354*x^3-179*x^2+34*x-28 5142271851774992 a005 (1/cos(16/205*Pi))^888 5142271859994476 a007 Real Root Of 640*x^4-878*x^3+674*x^2-361*x-528 5142271871661634 p001 sum(1/(503*n+110)/n/(32^n),n=1..infinity) 5142271884431430 m001 (-KhinchinHarmonic+Thue)/(2^(1/3)+arctan(1/2)) 5142271894917558 r009 Im(z^3+c),c=-13/38+32/55*I,n=33 5142271902619509 a003 cos(Pi*4/33)-sin(Pi*17/39) 5142271911104422 k006 concat of cont frac of 5142271911211321 k006 concat of cont frac of 5142271915454422 b008 4*E^(1/11)+Tanh[1] 5142271931669947 r002 52th iterates of z^2 + 5142271941964409 l006 ln(3287/5497) 5142271945986730 m006 (1/5*Pi^2+5)/(3/4*Pi-1) 5142271945986730 m008 (1/5*Pi^2+5)/(3/4*Pi-1) 5142271981840299 a001 89/199*3571^(29/50) 5142271984942388 r009 Im(z^3+c),c=-27/106+29/47*I,n=35 5142271989026640 a001 4/3*8^(37/57) 5142272009186138 a007 Real Root Of -36*x^4-124*x^3-899*x^2+606*x+535 5142272015031423 h001 (3/4*exp(1)+7/11)/(7/11*exp(2)+1/2) 5142272016866967 a007 Real Root Of -150*x^4-718*x^3+188*x^2-273*x+878 5142272038883191 b008 Pi-11*CoshIntegral[3] 5142272053651704 r009 Im(z^3+c),c=-1/14+35/48*I,n=23 5142272078102177 m001 MasserGramainDelta/exp(-1/2*Pi)/Niven 5142272116846750 r009 Re(z^3+c),c=-53/102+26/61*I,n=17 5142272122298666 p001 sum((-1)^n/(217*n+94)/n/(625^n),n=1..infinity) 5142272122511356 k006 concat of cont frac of 5142272126721383 r005 Im(z^2+c),c=-85/126+11/17*I,n=4 5142272177137318 a007 Real Root Of -87*x^4-417*x^3+36*x^2-729*x-570 5142272188906872 r005 Re(z^2+c),c=-23/34+41/117*I,n=13 5142272189540799 r005 Im(z^2+c),c=-13/74+5/6*I,n=23 5142272219700219 m005 (1/2*2^(1/2)-3/4)/(1/6*3^(1/2)+6/11) 5142272223598960 r005 Im(z^2+c),c=-6/5+7/100*I,n=52 5142272227877039 r005 Re(z^2+c),c=17/62+32/59*I,n=56 5142272231731208 a001 29/6765*55^(31/50) 5142272238906652 r002 21th iterates of z^2 + 5142272257468181 r005 Re(z^2+c),c=-13/17+23/25*I,n=3 5142272260532663 r005 Re(z^2+c),c=17/62+32/59*I,n=60 5142272265102131 m001 ln(BesselK(1,1))^2/TwinPrimes^2/GAMMA(1/12) 5142272285028050 r002 39th iterates of z^2 + 5142272298712431 r009 Im(z^3+c),c=-71/118+24/49*I,n=55 5142272299954684 r005 Im(z^2+c),c=15/44+32/63*I,n=28 5142272302632536 m001 (3^(1/2)+Porter)/(-ReciprocalLucas+Sierpinski) 5142272323941570 r009 Im(z^3+c),c=-19/98+26/41*I,n=19 5142272324126777 m001 (exp(1)+gamma)/(-GAMMA(11/12)+PrimesInBinary) 5142272346484274 r008 a(0)=5,K{-n^6,-1-2*n^3-6*n^2} 5142272358945296 a001 9227465/5778*521^(12/13) 5142272371140555 m005 (1/2*2^(1/2)-1)/(6*Catalan+1/5) 5142272382731115 k006 concat of cont frac of 5142272391143188 l006 ln(4050/6773) 5142272394796091 r002 12th iterates of z^2 + 5142272409723775 m005 (1/3*Zeta(3)-3/5)/(11/12*Zeta(3)-5/7) 5142272412711915 a007 Real Root Of 903*x^4-445*x^3+281*x^2+770*x+198 5142272427419534 m001 (5^(1/2)+Si(Pi))/(BesselK(0,1)+Artin) 5142272438139915 m001 (HardyLittlewoodC5-HeathBrownMoroz)/Kolakoski 5142272444543763 r005 Re(z^2+c),c=17/62+32/59*I,n=64 5142272449119533 r009 Im(z^3+c),c=-5/44+55/56*I,n=32 5142272451139053 m005 (1/3*gamma+1/5)/(3/5*exp(1)+6) 5142272457152997 r009 Im(z^3+c),c=-49/114+17/32*I,n=56 5142272458587372 r009 Im(z^3+c),c=-11/82+34/53*I,n=47 5142272460626284 a007 Real Root Of -444*x^4+889*x^3-612*x^2+298*x+467 5142272461406863 p004 log(35141/21013) 5142272471912632 k009 concat of cont frac of 5142272490501009 a001 24157817/15127*521^(12/13) 5142272497886068 m001 Niven/LaplaceLimit^2/ln(GAMMA(5/12)) 5142272509694729 a001 63245986/39603*521^(12/13) 5142272512495055 a001 165580141/103682*521^(12/13) 5142272512903617 a001 433494437/271443*521^(12/13) 5142272512963225 a001 1134903170/710647*521^(12/13) 5142272512971922 a001 2971215073/1860498*521^(12/13) 5142272512973191 a001 7778742049/4870847*521^(12/13) 5142272512973376 a001 20365011074/12752043*521^(12/13) 5142272512973403 a001 53316291173/33385282*521^(12/13) 5142272512973407 a001 139583862445/87403803*521^(12/13) 5142272512973408 a001 365435296162/228826127*521^(12/13) 5142272512973408 a001 956722026041/599074578*521^(12/13) 5142272512973408 a001 2504730781961/1568397607*521^(12/13) 5142272512973408 a001 6557470319842/4106118243*521^(12/13) 5142272512973408 a001 10610209857723/6643838879*521^(12/13) 5142272512973408 a001 4052739537881/2537720636*521^(12/13) 5142272512973408 a001 1548008755920/969323029*521^(12/13) 5142272512973408 a001 591286729879/370248451*521^(12/13) 5142272512973408 a001 225851433717/141422324*521^(12/13) 5142272512973410 a001 86267571272/54018521*521^(12/13) 5142272512973420 a001 32951280099/20633239*521^(12/13) 5142272512973491 a001 12586269025/7881196*521^(12/13) 5142272512973975 a001 4807526976/3010349*521^(12/13) 5142272512977297 a001 1836311903/1149851*521^(12/13) 5142272513000065 a001 701408733/439204*521^(12/13) 5142272513156122 a001 267914296/167761*521^(12/13) 5142272513379789 a007 Real Root Of 608*x^4-671*x^3+506*x^2-699*x-627 5142272514225752 a001 102334155/64079*521^(12/13) 5142272514835340 r005 Re(z^2+c),c=-57/94+9/34*I,n=3 5142272519739018 r009 Re(z^3+c),c=-2/31+35/59*I,n=7 5142272521557101 a001 39088169/24476*521^(12/13) 5142272524967815 m001 1/OneNinth/ln(MertensB1)^2/Zeta(9)^2 5142272532832301 l006 ln(48/8213) 5142272535464102 s002 sum(A053852[n]/(n^3*exp(n)+1),n=1..infinity) 5142272554534226 m001 (Pi+cos(1/12*Pi))/(GAMMA(5/6)-Tetranacci) 5142272556170439 a007 Real Root Of -138*x^4-786*x^3-212*x^2+950*x+107 5142272561109315 m001 (3^(1/3))^Si(Pi)-Backhouse 5142272562694773 m001 (Artin-Magata)/(sin(1/5*Pi)+gamma(3)) 5142272563182195 a001 4976784/281*521^(7/13) 5142272570526279 a007 Real Root Of 294*x^4-788*x^3-740*x^2-227*x+399 5142272571806914 a001 14930352/9349*521^(12/13) 5142272584816622 r002 12th iterates of z^2 + 5142272603219579 r005 Re(z^2+c),c=-5/7+5/46*I,n=15 5142272612742830 m008 (4*Pi^4+2/5)/(1/4*Pi^3-1/6) 5142272626269406 m009 (1/3*Psi(1,2/3)+5)/(5*Psi(1,3/4)-1) 5142272655364732 s002 sum(A189471[n]/(n^3*pi^n-1),n=1..infinity) 5142272679836438 m001 exp(Pi)/GAMMA(7/24)/Zeta(1/2) 5142272679836438 m001 exp(Pi)/Zeta(1/2)/GAMMA(7/24) 5142272679836438 m001 exp(Pi)/Zeta(1/2)/Pi/csc(7/24*Pi)*GAMMA(17/24) 5142272690364068 m001 (FransenRobinson-sin(1))/(-GaussAGM+ZetaP(2)) 5142272692469726 a001 55/39603*7^(37/55) 5142272697906244 l006 ln(4813/8049) 5142272711504328 r005 Re(z^2+c),c=-15/58+29/44*I,n=11 5142272732664044 r005 Re(z^2+c),c=2/5+11/53*I,n=44 5142272736118939 r002 44th iterates of z^2 + 5142272747607133 m001 Si(Pi)/ln(ErdosBorwein)^2*GolombDickman 5142272758894167 r005 Im(z^2+c),c=-4/3+58/189*I,n=3 5142272781890529 a007 Real Root Of -702*x^4-49*x^3-261*x^2+672*x+457 5142272786567318 a007 Real Root Of 70*x^4-789*x^3-47*x^2-821*x+537 5142272788264735 a003 sin(Pi*11/115)/cos(Pi*32/105) 5142272789818736 a007 Real Root Of 249*x^4-36*x^3-165*x^2-886*x+46 5142272790030485 a001 3*18^(11/59) 5142272796277370 r005 Re(z^2+c),c=-31/56+20/43*I,n=61 5142272799648469 a007 Real Root Of -969*x^4+149*x^3+861*x^2+620*x-499 5142272841016304 m001 AlladiGrinstead^(Riemann3rdZero/Grothendieck) 5142272844361070 m001 1/GAMMA(1/12)^2/exp(BesselJ(0,1))^2*Pi 5142272883609668 m001 ln(Trott)/TreeGrowth2nd*sqrt(5)^2 5142272892449060 r005 Re(z^2+c),c=17/62+32/59*I,n=48 5142272909083311 r009 Im(z^3+c),c=-17/56+29/48*I,n=31 5142272914498414 a001 5702887/2207*521^(11/13) 5142272916224284 a001 1597*521^(12/13) 5142272920716564 l006 ln(5576/9325) 5142272927872756 m002 Coth[Pi]+6*Pi^4*Sech[Pi] 5142272940114852 m001 1/ln(GAMMA(7/24))^2*MadelungNaCl^2*Zeta(1/2)^2 5142272941459946 m001 (ln(2)-gamma(3))/(Gompertz+RenyiParking) 5142272963556603 r005 Im(z^2+c),c=-89/78+2/31*I,n=33 5142272982027299 p004 log(29251/17491) 5142273009383746 r005 Im(z^2+c),c=-11/12+25/87*I,n=20 5142273047201641 r005 Re(z^2+c),c=17/44+11/56*I,n=8 5142273079592527 m005 (1/3*gamma-2/7)/(1/11*exp(1)-3/7) 5142273081378345 a007 Real Root Of 982*x^4+529*x^3+425*x^2-529*x+26 5142273081484878 r009 Im(z^3+c),c=-8/25+31/52*I,n=29 5142273101678281 a003 sin(Pi*17/114)/sin(Pi*29/85) 5142273122356729 a007 Real Root Of -635*x^4+972*x^3-645*x^2-255*x+216 5142273126059579 m001 exp(1)^GAMMA(11/12)*exp(1)^LandauRamanujan2nd 5142273126059579 m001 exp(GAMMA(11/12)+LandauRamanujan2nd) 5142273129289978 a007 Real Root Of 447*x^4+81*x^3-856*x^2-579*x+3 5142273134347297 r009 Re(z^3+c),c=-17/28+13/54*I,n=33 5142273164968371 m001 1/Ei(1)^2/ln(BesselK(1,1))*Zeta(1,2) 5142273180744582 m001 1/ln(TwinPrimes)^2/Paris^2/OneNinth^2 5142273188140873 m001 (Catalan+Cahen)/(Otter+ZetaP(4)) 5142273191261352 k007 concat of cont frac of 5142273191577056 v002 sum(1/(3^n+(15*n^2-16*n+38)),n=1..infinity) 5142273197883223 m001 (2^(1/2)-Chi(1))/(-Zeta(3)+StolarskyHarborth) 5142273223166321 k008 concat of cont frac of 5142273226251988 m001 (BesselI(1,1)+ArtinRank2)/(5^(1/2)+Ei(1,1)) 5142273230287580 s002 sum(A047282[n]/(n^3*pi^n-1),n=1..infinity) 5142273235019861 r002 20th iterates of z^2 + 5142273239371363 m001 1/Tribonacci^2/exp(Cahen)^2/(2^(1/3))^2 5142273248229767 m001 1/LaplaceLimit^2/ln(Cahen)/Zeta(9)^2 5142273252411634 m002 20+Pi^2+E^Pi/ProductLog[Pi] 5142273272897312 r005 Re(z^2+c),c=-1/78+17/24*I,n=5 5142273274997173 a003 sin(Pi*1/61)*sin(Pi*49/101) 5142273289933484 r005 Re(z^2+c),c=-31/30+29/123*I,n=22 5142273327787165 r005 Im(z^2+c),c=-77/118+5/22*I,n=10 5142273348403873 a007 Real Root Of -102*x^4+329*x^3+109*x^2+954*x-557 5142273355575312 r009 Im(z^3+c),c=-23/114+29/46*I,n=49 5142273372795928 a007 Real Root Of 179*x^4-879*x^3-899*x^2-757*x+734 5142273377324835 a007 Real Root Of -69*x^4-166*x^3+839*x^2-570*x+558 5142273377962741 a005 (1/cos(1/43*Pi))^613 5142273381582397 a001 2/4181*6557470319842^(8/17) 5142273390452320 m005 (1/3*5^(1/2)-1/3)/(9/10*5^(1/2)+6) 5142273401211138 k006 concat of cont frac of 5142273408607121 r009 Im(z^3+c),c=-3/34+43/61*I,n=15 5142273412024792 m005 (-1/20+1/4*5^(1/2))/(8/11*5^(1/2)-7/11) 5142273446731380 r009 Im(z^3+c),c=-31/106+37/59*I,n=27 5142273449586841 m001 (ln(5)+polylog(4,1/2))/(Shi(1)-ln(3)) 5142273450159433 r009 Im(z^3+c),c=-9/19+27/59*I,n=27 5142273458702144 a001 322/1346269*377^(4/31) 5142273467853242 a001 1762289/161*322^(2/3) 5142273480903021 r009 Im(z^3+c),c=-15/82+39/53*I,n=42 5142273508823370 m001 (exp(-1/2*Pi)+Conway)/(ErdosBorwein+MertensB3) 5142273519715104 r009 Im(z^3+c),c=-1/36+13/20*I,n=24 5142273524097064 a001 7/4181*514229^(11/14) 5142273529077625 a007 Real Root Of -937*x^4+743*x^3-463*x^2+634*x+615 5142273531344545 a001 63245986/521*199^(3/11) 5142273534858333 m005 (1/2*Catalan+6/11)/(11/12*3^(1/2)+4/11) 5142273537494480 m001 1/ln(Porter)/MadelungNaCl^2*BesselK(1,1) 5142273541506591 r005 Re(z^2+c),c=-1/13+20/21*I,n=7 5142273542790438 r009 Im(z^3+c),c=-53/90+28/55*I,n=22 5142273550673250 a007 Real Root Of 564*x^4-781*x^3-565*x^2-546*x-277 5142273553030444 m001 Pi^exp(1)*Pi^Sarnak 5142273558686643 a007 Real Root Of 524*x^4-425*x^3-644*x^2-742*x+573 5142273559075078 r005 Im(z^2+c),c=-13/22+8/107*I,n=17 5142273571626397 g007 Psi(2,3/11)+Psi(2,1/6)-Psi(2,7/12)-Psi(2,7/11) 5142273582927529 a001 7/165580141*365435296162^(11/14) 5142273582929015 a001 7/832040*433494437^(11/14) 5142273586867667 r005 Im(z^2+c),c=-19/30+45/107*I,n=38 5142273596803730 r005 Im(z^2+c),c=-23/38+5/56*I,n=23 5142273608387188 a007 Real Root Of 465*x^4-24*x^3+105*x^2-489*x-315 5142273618009235 a007 Real Root Of 770*x^4+263*x^3-17*x^2-697*x-372 5142273618052776 m001 (Rabbit+Thue)/(Zeta(1/2)-BesselI(1,2)) 5142273625576625 m001 Niven^2*ln(GaussAGM(1,1/sqrt(2)))/Zeta(1,2) 5142273649217292 a003 cos(Pi*17/103)*sin(Pi*24/119) 5142273649539879 m008 (3*Pi^6+4)/(2*Pi-2/3) 5142273653179178 m006 (3*exp(Pi)-2/3)/(1/4*exp(2*Pi)-1/6) 5142273658803285 a001 11/46368*121393^(17/37) 5142273667387043 a007 Real Root Of -758*x^4+425*x^3+373*x^2+357*x-287 5142273674098629 r005 Im(z^2+c),c=13/98+37/63*I,n=22 5142273691996506 r005 Im(z^2+c),c=-67/60+1/16*I,n=40 5142273700011750 m001 1/exp(Zeta(7))^2/Artin^2*cos(1) 5142273702358832 a007 Real Root Of -155*x^4-679*x^3+546*x^2-278*x+185 5142273704425215 r002 50th iterates of z^2 + 5142273714031028 m002 -6+Pi+Pi^3-Pi^3*ProductLog[Pi] 5142273723088463 r002 17th iterates of z^2 + 5142273739484033 m001 BesselK(1,1)*exp(Artin)*sin(Pi/5) 5142273749195798 m005 (1/2*5^(1/2)-8/11)/(4/9*Pi-7/11) 5142273756346558 a001 233/64079*2^(1/2) 5142273758157441 m001 1/BesselJ(1,1)*exp(CopelandErdos)^2/sin(1)^2 5142273765730613 a001 2/13*89^(43/55) 5142273766114233 m001 (BesselI(1,1)-GAMMA(7/12))/(ArtinRank2+Salem) 5142273784133746 h001 (3/5*exp(1)+5/11)/(3/7*exp(2)+8/9) 5142273786383166 m001 (exp(-1/2*Pi)+Bloch)/(Robbin+TwinPrimes) 5142273795238433 r009 Im(z^3+c),c=-19/106+33/52*I,n=63 5142273801261782 r005 Im(z^2+c),c=-45/58+1/56*I,n=61 5142273816194856 a001 2584*521^(11/13) 5142273819660112 a001 1028457/2-1/2*5^(1/2) 5142273819742489 a001 119814980/233 5142273824600496 a007 Real Root Of -875*x^4+440*x^3-672*x^2+407*x+508 5142273835466356 m008 (1/4*Pi^3+1/5)/(5*Pi^3-2/5) 5142273841999375 a007 Real Root Of -914*x^4+970*x^3-621*x^2+315*x+522 5142273855433469 r009 Im(z^3+c),c=-6/25+23/37*I,n=42 5142273885481155 r009 Im(z^3+c),c=-17/54+36/61*I,n=27 5142273899420728 m001 (Kolakoski+Porter)/(Ei(1)+FeigenbaumAlpha) 5142273910191762 r009 Im(z^3+c),c=-7/64+29/45*I,n=54 5142273930425476 r005 Re(z^2+c),c=17/62+32/59*I,n=52 5142273947750620 a001 39088169/15127*521^(11/13) 5142273948391704 m001 exp(FeigenbaumB)/Bloch*GAMMA(11/12) 5142273957731432 a007 Real Root Of -766*x^4+225*x^3-787*x^2+87*x+337 5142273966944348 a001 34111385/13201*521^(11/13) 5142273969744675 a001 133957148/51841*521^(11/13) 5142273970153238 a001 233802911/90481*521^(11/13) 5142273970212846 a001 1836311903/710647*521^(11/13) 5142273970221543 a001 267084832/103361*521^(11/13) 5142273970222812 a001 12586269025/4870847*521^(11/13) 5142273970222997 a001 10983760033/4250681*521^(11/13) 5142273970223024 a001 43133785636/16692641*521^(11/13) 5142273970223028 a001 75283811239/29134601*521^(11/13) 5142273970223028 a001 591286729879/228826127*521^(11/13) 5142273970223028 a001 86000486440/33281921*521^(11/13) 5142273970223028 a001 4052739537881/1568397607*521^(11/13) 5142273970223028 a001 3536736619241/1368706081*521^(11/13) 5142273970223028 a001 3278735159921/1268860318*521^(11/13) 5142273970223028 a001 2504730781961/969323029*521^(11/13) 5142273970223028 a001 956722026041/370248451*521^(11/13) 5142273970223029 a001 182717648081/70711162*521^(11/13) 5142273970223030 a001 139583862445/54018521*521^(11/13) 5142273970223040 a001 53316291173/20633239*521^(11/13) 5142273970223111 a001 10182505537/3940598*521^(11/13) 5142273970223596 a001 7778742049/3010349*521^(11/13) 5142273970226918 a001 2971215073/1149851*521^(11/13) 5142273970249686 a001 567451585/219602*521^(11/13) 5142273970405743 a001 433494437/167761*521^(11/13) 5142273971475373 a001 165580141/64079*521^(11/13) 5142273978806724 a001 31622993/12238*521^(11/13) 5142273982642745 r005 Re(z^2+c),c=-75/58+3/44*I,n=14 5142273983726142 l006 ln(8111/8539) 5142273983726142 p004 log(8539/8111) 5142273996173460 m002 -Pi^2/3-Pi/ProductLog[Pi]+ProductLog[Pi] 5142273998524650 h001 (1/2*exp(2)+7/9)/(1/6*exp(1)+5/12) 5142274020431836 a001 24157817/843*521^(6/13) 5142274029056557 a001 24157817/9349*521^(11/13) 5142274031233264 b008 (13*Pi*ArcCsch[1])/7 5142274045637387 r005 Re(z^2+c),c=-13/18+1/43*I,n=45 5142274066046519 m001 (GAMMA(3/4)+GolombDickman)/(Kac-Robbin) 5142274068277991 r009 Im(z^3+c),c=-7/16+19/34*I,n=53 5142274074352843 r009 Im(z^3+c),c=-23/62+11/19*I,n=57 5142274088780135 a007 Real Root Of 688*x^4-941*x^3-233*x^2-847*x-550 5142274090723963 r005 Re(z^2+c),c=-85/118+6/43*I,n=35 5142274090916464 m001 exp(1/Pi)+GAMMA(13/24)+GAMMA(5/12) 5142274092176601 r005 Re(z^2+c),c=-9/14+8/47*I,n=12 5142274101121295 k009 concat of cont frac of 5142274105891768 a007 Real Root Of -948*x^4+303*x^3-612*x^2+575*x+565 5142274113113116 a007 Real Root Of -394*x^4+753*x^3+968*x^2+646*x-663 5142274149939161 r005 Im(z^2+c),c=-89/64+10/47*I,n=5 5142274154221114 k007 concat of cont frac of 5142274166397308 m009 (2*Catalan+1/4*Pi^2-5)/(3*Psi(1,3/4)+6) 5142274168681491 a007 Real Root Of -956*x^4-55*x^3+986*x^2+534*x-461 5142274180348415 m001 BesselJ(1,1)*LaplaceLimit*exp(LambertW(1)) 5142274180348415 m001 BesselJ(1,1)/LambertW(1)*LaplaceLimit 5142274181357912 m001 (Ei(1,1)+GAMMA(19/24))/(FransenRobinson-Paris) 5142274183226595 m005 (1/3*Zeta(3)-1/3)/(1/3*Zeta(3)+10/11) 5142274185871002 m001 Magata/(HardyLittlewoodC3+Trott2nd) 5142274190056586 r009 Re(z^3+c),c=-67/94+25/29*I,n=2 5142274191516174 m001 1/Lehmer*exp(MertensB1)*GAMMA(1/24) 5142274202006136 r009 Im(z^3+c),c=-5/86+5/7*I,n=10 5142274211881845 m001 (ln(2)+cos(1/12*Pi))/FellerTornier 5142274211933397 r005 Im(z^2+c),c=7/54+19/34*I,n=24 5142274233553338 r005 Im(z^2+c),c=5/126+9/14*I,n=43 5142274244161110 m001 (BesselJ(0,1)+Bloch)/(exp(Pi)+Catalan) 5142274249222617 r009 Im(z^3+c),c=-7/36+39/40*I,n=42 5142274263066675 m001 (2^(1/3))*ln(Paris)^2/GAMMA(1/4)^2 5142274266388762 r002 4th iterates of z^2 + 5142274276533318 s002 sum(A053852[n]/(n^3*exp(n)-1),n=1..infinity) 5142274277213432 r005 Re(z^2+c),c=-13/17+17/46*I,n=4 5142274283931858 a007 Real Root Of 199*x^4+844*x^3-771*x^2+730*x-241 5142274326202781 l006 ln(763/1276) 5142274332574099 m001 (exp(1/exp(1))-Robbin)^exp(1) 5142274371748192 a001 9227465/2207*521^(10/13) 5142274373474063 a001 9227465/3571*521^(11/13) 5142274375482647 r009 Im(z^3+c),c=-9/28+3/5*I,n=39 5142274396504261 a001 14619165/46*123^(1/10) 5142274398425434 r009 Re(z^3+c),c=-9/94+35/51*I,n=51 5142274403033061 r009 Re(z^3+c),c=-33/64+34/63*I,n=13 5142274424685081 r009 Re(z^3+c),c=-31/60+31/63*I,n=31 5142274433493890 m001 GAMMA(1/6)^2/Tribonacci^2/exp(gamma) 5142274447488109 b008 2+Pi*Cosh[1/48] 5142274449913608 m004 Cos[Sqrt[5]*Pi]/16+3*Sech[Sqrt[5]*Pi] 5142274471448316 m009 (5/12*Pi^2+3)/(20/3*Catalan+5/6*Pi^2-1/2) 5142274478814303 a007 Real Root Of 160*x^4+897*x^3+175*x^2-934*x+664 5142274481746312 m001 (-FeigenbaumC+Gompertz)/(5^(1/2)-Zeta(1,-1)) 5142274487840993 a007 Real Root Of -152*x^4+441*x^3-620*x^2+454*x+468 5142274488503600 m001 (gamma(3)-CareFree)/(PlouffeB-Riemann1stZero) 5142274500006584 r005 Re(z^2+c),c=-7/20+31/47*I,n=26 5142274503433171 s002 sum(A288663[n]/((exp(n)-1)/n),n=1..infinity) 5142274529374864 a001 11/10946*34^(25/54) 5142274546034500 s002 sum(A211835[n]/(2^n-1),n=1..infinity) 5142274600122293 a001 89/521*29^(18/55) 5142274625858875 m005 (1/2*Pi-5/11)/(7/9*Pi-3/11) 5142274640977138 r009 Im(z^3+c),c=-11/46+28/45*I,n=57 5142274641103641 m005 (1/3*2^(1/2)+1/3)/(7/11*Zeta(3)+4/5) 5142274679971853 s002 sum(A014242[n]/(n*exp(n)-1),n=1..infinity) 5142274682480182 m001 Lehmer*exp(KhintchineHarmonic)/TwinPrimes 5142274687562111 r002 10th iterates of z^2 + 5142274689608927 m001 Bloch^Champernowne/Pi^(1/2) 5142274725988041 p004 log(32783/19603) 5142274744805681 a007 Real Root Of 564*x^4-110*x^3+966*x^2-574*x-605 5142274745347598 a007 Real Root Of -175*x^4+666*x^3-219*x^2+864*x+605 5142274757764639 r009 Im(z^3+c),c=-4/29+25/39*I,n=46 5142274764026043 m005 (1/2*exp(1)+1/10)/(3/5*Catalan-5/6) 5142274771985552 a007 Real Root Of 768*x^4+681*x^3+337*x^2-231*x-169 5142274795252117 v002 sum(1/(2^n+(10*n^2-5*n+51)),n=1..infinity) 5142274817643275 r009 Re(z^3+c),c=-45/86+19/61*I,n=2 5142274818291686 r005 Im(z^2+c),c=-35/94+5/62*I,n=11 5142274818336102 m009 (1/6*Pi^2+5)/(4*Psi(1,2/3)+2/3) 5142274820084083 m001 (cos(1)-ln(5))/(FeigenbaumKappa+Sarnak) 5142274833177729 h001 (3/8*exp(1)+3/10)/(2/7*exp(2)+5/11) 5142274848883397 a007 Real Root Of 400*x^3+158*x^2+396*x+20 5142274859235190 a003 cos(Pi*16/109)*sin(Pi*22/113) 5142274863522538 r009 Im(z^3+c),c=-25/42+32/63*I,n=61 5142274866579497 r002 10th iterates of z^2 + 5142274872228197 m004 6/E^(Sqrt[5]*Pi)+Cos[Sqrt[5]*Pi]/16 5142274877357008 r002 2th iterates of z^2 + 5142274887815576 m001 1/Zeta(9)*ln(GAMMA(1/6))/gamma^2 5142274898064811 a007 Real Root Of 58*x^4-550*x^3-582*x^2-26*x+238 5142274898786967 m001 (-GAMMA(5/6)+ZetaQ(2))/(5^(1/2)-exp(Pi)) 5142274940295713 a007 Real Root Of -641*x^4-166*x^3-671*x^2+901*x+663 5142274980347628 r005 Re(z^2+c),c=-11/8+4/107*I,n=2 5142274986278737 a007 Real Root Of -192*x^4-922*x^3+498*x^2+949*x+593 5142275001148927 r002 4th iterates of z^2 + 5142275034885268 m002 -6+3/Pi^6+Pi^2*Csch[Pi] 5142275039093963 r005 Re(z^2+c),c=-1+5/222*I,n=6 5142275076348668 a003 sin(Pi*23/96)*sin(Pi*29/107) 5142275091190074 a001 1/76*(1/2*5^(1/2)+1/2)^11*199^(9/16) 5142275094989746 m005 (23/44+1/4*5^(1/2))/(7/12*3^(1/2)-4/5) 5142275122342213 k008 concat of cont frac of 5142275122569535 m001 1/MertensB1^2/Artin*ln(Zeta(5))^2 5142275124873238 m001 (ln(gamma)-ln(Pi))/(Rabbit+Sierpinski) 5142275130521293 a003 sin(Pi*10/71)/cos(Pi*17/91) 5142275151709727 m001 1/OneNinth^2/GaussKuzminWirsing^2*ln(gamma) 5142275164047865 r005 Re(z^2+c),c=-7/94+26/31*I,n=9 5142275165036484 r005 Re(z^2+c),c=19/94+6/19*I,n=8 5142275168263414 r009 Im(z^3+c),c=-5/23+37/59*I,n=53 5142275179612699 m001 FeigenbaumKappa/exp(Bloch)^2/GAMMA(23/24) 5142275181519639 r005 Re(z^2+c),c=-69/74+3/25*I,n=12 5142275182914720 m001 (cos(1)+ArtinRank2)/(KhinchinHarmonic+Robbin) 5142275202968931 a005 (1/cos(12/115*Pi))^72 5142275212787245 m001 (GaussAGM+StronglyCareFree)/(Pi+gamma(2)) 5142275235454122 r002 25th iterates of z^2 + 5142275242051516 r005 Re(z^2+c),c=17/52+1/64*I,n=3 5142275258969250 r009 Re(z^3+c),c=-11/114+19/27*I,n=54 5142275273444852 a001 24157817/5778*521^(10/13) 5142275276897300 a001 2178309/1364*521^(12/13) 5142275294543454 m004 Cos[Sqrt[5]*Pi]/16+3*Csch[Sqrt[5]*Pi] 5142275303314736 r005 Im(z^2+c),c=-15/29+2/37*I,n=5 5142275307189396 m001 1/OneNinth*Champernowne^2/ln(log(2+sqrt(3))) 5142275314125975 s002 sum(A189937[n]/(n^3*pi^n-1),n=1..infinity) 5142275314127908 s002 sum(A190325[n]/(n^3*pi^n-1),n=1..infinity) 5142275316465549 m001 (ln(gamma)-Backhouse)/(CopelandErdos-Kac) 5142275326163437 a007 Real Root Of -815*x^4+973*x^3-741*x^2+124*x+449 5142275335379938 m001 Zeta(3)^2*KhintchineLevy^2*exp(arctan(1/2))^2 5142275337816405 m008 (1/3*Pi^2+5/6)/(5/6*Pi^6+2/3) 5142275358000881 r009 Im(z^3+c),c=-5/28+40/63*I,n=20 5142275385296741 a003 sin(Pi*16/93)*sin(Pi*43/88) 5142275405000648 a001 63245986/15127*521^(10/13) 5142275410374120 m001 (Bloch-Lehmer)/(Porter+QuadraticClass) 5142275422873685 a007 Real Root Of -815*x^4-402*x^3+429*x-22 5142275423121638 s002 sum(A064437[n]/(n^3*pi^n-1),n=1..infinity) 5142275424194381 a001 165580141/39603*521^(10/13) 5142275426994709 a001 433494437/103682*521^(10/13) 5142275427403271 a001 1134903170/271443*521^(10/13) 5142275427462880 a001 2971215073/710647*521^(10/13) 5142275427471576 a001 7778742049/1860498*521^(10/13) 5142275427472845 a001 20365011074/4870847*521^(10/13) 5142275427473030 a001 53316291173/12752043*521^(10/13) 5142275427473057 a001 139583862445/33385282*521^(10/13) 5142275427473061 a001 365435296162/87403803*521^(10/13) 5142275427473062 a001 956722026041/228826127*521^(10/13) 5142275427473062 a001 2504730781961/599074578*521^(10/13) 5142275427473062 a001 6557470319842/1568397607*521^(10/13) 5142275427473062 a001 10610209857723/2537720636*521^(10/13) 5142275427473062 a001 4052739537881/969323029*521^(10/13) 5142275427473062 a001 1548008755920/370248451*521^(10/13) 5142275427473062 a001 591286729879/141422324*521^(10/13) 5142275427473064 a001 225851433717/54018521*521^(10/13) 5142275427473074 a001 86267571272/20633239*521^(10/13) 5142275427473145 a001 32951280099/7881196*521^(10/13) 5142275427473629 a001 12586269025/3010349*521^(10/13) 5142275427476951 a001 4807526976/1149851*521^(10/13) 5142275427499720 a001 1836311903/439204*521^(10/13) 5142275427655776 a001 701408733/167761*521^(10/13) 5142275428725407 a001 267914296/64079*521^(10/13) 5142275436056760 a001 102334155/24476*521^(10/13) 5142275439898504 r005 Re(z^2+c),c=-59/110+9/19*I,n=64 5142275469439791 r009 Im(z^3+c),c=-6/19+28/41*I,n=3 5142275477681881 a001 39088169/843*521^(5/13) 5142275485266787 m005 (1/3*2^(1/2)-1/6)/(13/154+5/22*5^(1/2)) 5142275486306605 a001 4181*521^(10/13) 5142275494225355 a001 76/21*2178309^(19/29) 5142275499508706 a008 Real Root of (4+7*x-x^2+x^3) 5142275510094469 a007 Real Root Of -835*x^4+742*x^3-751*x^2-307*x+200 5142275515604451 r005 Im(z^2+c),c=-13/44+3/38*I,n=6 5142275518895075 m005 (1/2*Zeta(3)-6/11)/(91/198+5/18*5^(1/2)) 5142275520066440 r005 Im(z^2+c),c=41/110+21/59*I,n=20 5142275522234973 p001 sum(1/(449*n+197)/(24^n),n=0..infinity) 5142275524698018 r002 6th iterates of z^2 + 5142275526229624 r005 Re(z^2+c),c=-41/64+19/60*I,n=21 5142275527880520 a001 377/843*(1/2+1/2*5^(1/2))^29 5142275527880520 a001 377/843*1322157322203^(1/2) 5142275605539399 r009 Im(z^3+c),c=-15/82+15/23*I,n=18 5142275618147623 l005 sech(140/109) 5142275622510397 a007 Real Root Of -401*x^4+485*x^3+135*x^2+625*x-395 5142275627775859 s002 sum(A063239[n]/(n!^2),n=1..infinity) 5142275627775859 s002 sum(A063226[n]/(n!^2),n=1..infinity) 5142275652093037 a007 Real Root Of -802*x^4+872*x^3+885*x^2-x-296 5142275661522269 l006 ln(5869/9815) 5142275672668261 r009 Im(z^3+c),c=-37/98+34/59*I,n=60 5142275674350246 r009 Im(z^3+c),c=-31/94+23/33*I,n=28 5142275687065577 m001 KhinchinHarmonic*(Pi^(1/2)+GAMMA(19/24)) 5142275693914989 r002 54th iterates of z^2 + 5142275703092504 r005 Im(z^2+c),c=-9/14+73/171*I,n=12 5142275714192847 p001 sum((-1)^n/(435*n+194)/(128^n),n=0..infinity) 5142275726655895 r009 Re(z^3+c),c=-21/94+23/44*I,n=2 5142275737603690 r005 Re(z^2+c),c=-11/106+40/59*I,n=47 5142275741221119 r009 Im(z^3+c),c=-3/11+27/44*I,n=59 5142275763362001 a007 Real Root Of 409*x^4-150*x^3-448*x^2-771*x-327 5142275772136002 m001 (Mills+TwinPrimes)/(GAMMA(23/24)-Cahen) 5142275783048223 m001 1/Khintchine^2/Champernowne^2*exp(sqrt(3)) 5142275798355756 s002 sum(A001358[n]/((10^n+1)/n),n=1..infinity) 5142275798355756 s002 sum(A108764[n]/((10^n+1)/n),n=1..infinity) 5142275798355756 s002 sum(A193801[n]/((10^n+1)/n),n=1..infinity) 5142275798355756 s002 sum(A129336[n]/((10^n+1)/n),n=1..infinity) 5142275798355808 s002 sum(A103607[n]/((10^n+1)/n),n=1..infinity) 5142275798358748 s002 sum(A264815[n]/((10^n+1)/n),n=1..infinity) 5142275798397259 s002 sum(A108574[n]/((10^n+1)/n),n=1..infinity) 5142275798397266 s002 sum(A157931[n]/((10^n+1)/n),n=1..infinity) 5142275806712763 m005 (1/2*3^(1/2)-1/5)/(4/7*Pi-1/2) 5142275816056127 r005 Re(z^2+c),c=-5/7+5/28*I,n=61 5142275816965140 p003 LerchPhi(1/2,1,9/41) 5142275828998323 a001 14930352/2207*521^(9/13) 5142275830724194 a001 14930352/3571*521^(10/13) 5142275831120495 r005 Re(z^2+c),c=-13/14+32/237*I,n=56 5142275861061770 l006 ln(5106/8539) 5142275868285614 m001 (sin(1/5*Pi)+Otter)/(Robbin+Trott2nd) 5142275872685565 s002 sum(A046368[n]/((10^n+1)/n),n=1..infinity) 5142275872685683 s002 sum(A236108[n]/((10^n+1)/n),n=1..infinity) 5142275880331090 r005 Im(z^2+c),c=1/32+27/53*I,n=5 5142275884988763 g001 GAMMA(3/11,61/112) 5142275901790613 r005 Im(z^2+c),c=-3/74+23/37*I,n=42 5142275905341128 a007 Real Root Of -667*x^4+616*x^3-631*x^2-18*x+288 5142275936744308 r009 Re(z^3+c),c=-23/50+2/19*I,n=9 5142275947296341 m001 FeigenbaumAlpha^GAMMA(13/24)/ZetaQ(3) 5142275949766760 m001 (Pi+gamma(2))/(LaplaceLimit-Sarnak) 5142275960000949 s002 sum(A253106[n]/((10^n+1)/n),n=1..infinity) 5142275962203541 r005 Im(z^2+c),c=-6/17+40/61*I,n=52 5142275970673180 m001 1-2*Pi/GAMMA(5/6)-Stephens 5142275971750406 m001 Ei(1)*exp(Riemann2ndZero)^2/sin(Pi/12)^2 5142275982543710 a007 Real Root Of -129*x^4-554*x^3+504*x^2-178*x+627 5142276009228625 s002 sum(A140484[n]/((exp(n)+1)*n),n=1..infinity) 5142276024085435 r009 Im(z^3+c),c=-31/126+35/54*I,n=24 5142276041509383 a007 Real Root Of -514*x^4+882*x^3+344*x^2+214*x-285 5142276052152729 r005 Re(z^2+c),c=-11/12+14/67*I,n=16 5142276059978299 h001 (9/10*exp(1)+6/7)/(6/7*exp(2)+1/11) 5142276063728677 r005 Re(z^2+c),c=-13/21+13/62*I,n=12 5142276067181731 r009 Im(z^3+c),c=-41/78+13/33*I,n=59 5142276068957858 a001 1/3*2207^(41/43) 5142276104024264 s001 sum(exp(-3*Pi/5)^n*A089319[n],n=1..infinity) 5142276118645785 a007 Real Root Of -468*x^4+439*x^3+991*x^2+923*x+305 5142276130713463 l006 ln(4343/7263) 5142276131183011 m005 (1/2*5^(1/2)-3/5)/(5/12*3^(1/2)+2/7) 5142276142872168 m005 (1/2*2^(1/2)-1/2)/(4/7*5^(1/2)-7/8) 5142276184669320 m005 (5*gamma+1/6)/(2*exp(1)+1/2) 5142276184686538 m001 Trott+TwinPrimes^((1+3^(1/2))^(1/2)) 5142276203305870 a007 Real Root Of 441*x^4+96*x^3+262*x^2-101*x-139 5142276209055279 m005 (1/18+1/6*5^(1/2))/(1/7*exp(1)+4/9) 5142276225032341 h002 exp(7^(1/2)*(18-2^(1/4))^(1/2)) 5142276234567901 r004 Re(z^2+c),c=-11/12-4/15*I,z(0)=-1,n=3 5142276236343945 m001 (Kac+LandauRamanujan2nd)/(Rabbit-Weierstrass) 5142276237324089 m005 (1/2*exp(1)-3/10)/(8/11*3^(1/2)+4/5) 5142276255557450 a003 cos(Pi*17/94)*cos(Pi*23/79) 5142276275122972 m005 (2/3*exp(1)+4/5)/(5*Catalan+1/2) 5142276324435878 m005 (1/2*3^(1/2)+1/3)/(7/9*Pi-1/9) 5142276328097306 m001 1/GAMMA(1/12)*CareFree*exp(GAMMA(5/12)) 5142276348522370 r009 Im(z^3+c),c=-31/126+13/20*I,n=24 5142276358640716 m001 LambertW(1)^(1/2*3^(1/2)*GAMMA(2/3)) 5142276358640716 m001 LambertW(1)^(Pi/GAMMA(1/3)) 5142276370101711 p004 log(19237/11503) 5142276372449646 r005 Im(z^2+c),c=-89/60+2/41*I,n=6 5142276388613737 a007 Real Root Of -680*x^4+590*x^3+854*x^2+773*x-656 5142276413798631 s001 sum(exp(-4*Pi/5)^n*A283094[n],n=1..infinity) 5142276422764227 q001 253/492 5142276422764227 r002 2th iterates of z^2 + 5142276422764227 r002 2th iterates of z^2 + 5142276422764227 r005 Im(z^2+c),c=-23/24+23/41*I,n=2 5142276441265209 k002 Champernowne real with 102*n^2-297*n+200 5142276443027266 m001 ln(CareFree)*GaussAGM(1,1/sqrt(2))/gamma 5142276465831569 p003 LerchPhi(1/2,3,184/63) 5142276489547443 a007 Real Root Of -134*x^4+681*x^3-880*x^2+691*x+690 5142276507016669 a007 Real Root Of 225*x^4+999*x^3-964*x^2-752*x+138 5142276515306060 l006 ln(3580/5987) 5142276543051948 r005 Re(z^2+c),c=9/23+9/62*I,n=24 5142276566788246 r005 Re(z^2+c),c=-51/70+6/55*I,n=44 5142276576100624 s002 sum(A176829[n]/((pi^n+1)/n),n=1..infinity) 5142276596301890 b008 39*Hyperfactorial[4/3] 5142276602878052 r005 Re(z^2+c),c=-33/64+31/55*I,n=36 5142276617630908 m005 (1/2*exp(1)-2/7)/(7/12*gamma-6/11) 5142276618772644 m001 (ln(2)-Artin)/(GlaisherKinkelin-Robbin) 5142276639833574 r002 13th iterates of z^2 + 5142276657617784 r002 30i'th iterates of 2*x/(1-x^2) of 5142276671625298 m001 (Si(Pi)+ArtinRank2)/(-Porter+ReciprocalLucas) 5142276675905403 a001 7/55*233^(19/28) 5142276697887964 r005 Re(z^2+c),c=-23/38+3/8*I,n=59 5142276698190611 m001 (1-ln(2^(1/2)+1))/(FeigenbaumC+PlouffeB) 5142276700086121 p001 sum((-1)^n/(218*n+93)/n/(625^n),n=1..infinity) 5142276726658649 a007 Real Root Of -483*x^4-28*x^3+748*x^2+231*x-279 5142276727400035 a008 Real Root of x^4-x^3-17*x^2+61*x-72 5142276730695253 a001 39088169/5778*521^(9/13) 5142276734085597 r009 Re(z^3+c),c=-23/118+23/32*I,n=29 5142276734148003 a001 1762289/682*521^(11/13) 5142276756493547 m001 (ZetaP(3)-ZetaP(4))/(Porter+TreeGrowth2nd) 5142276756711779 m001 1/Pi/exp(FeigenbaumC)*Zeta(7) 5142276758456481 r009 Im(z^3+c),c=-8/19+33/59*I,n=51 5142276762073314 a007 Real Root Of 287*x^4-189*x^3-62*x^2-947*x+509 5142276787732403 m001 1/Cahen^2/ErdosBorwein^2*ln(gamma) 5142276807529160 m001 Artin^GAMMA(17/24)*Artin^(3^(1/2)) 5142276807529160 m001 Artin^sqrt(3)*Artin^GAMMA(17/24) 5142276814193422 a001 38/305*377^(37/59) 5142276817270195 m001 1/(2^(1/3))*ln(Cahen)^2*gamma^2 5142276844974671 a007 Real Root Of 96*x^4+351*x^3-567*x^2+746*x-569 5142276862251088 a001 6765*521^(9/13) 5142276875918057 r005 Im(z^2+c),c=-19/48+15/26*I,n=45 5142276879365436 r005 Im(z^2+c),c=9/58+22/41*I,n=42 5142276881444826 a001 267914296/39603*521^(9/13) 5142276884245155 a001 701408733/103682*521^(9/13) 5142276884653718 a001 1836311903/271443*521^(9/13) 5142276884713326 a001 686789568/101521*521^(9/13) 5142276884722023 a001 12586269025/1860498*521^(9/13) 5142276884723292 a001 32951280099/4870847*521^(9/13) 5142276884723477 a001 86267571272/12752043*521^(9/13) 5142276884723504 a001 32264490531/4769326*521^(9/13) 5142276884723508 a001 591286729879/87403803*521^(9/13) 5142276884723508 a001 1548008755920/228826127*521^(9/13) 5142276884723508 a001 4052739537881/599074578*521^(9/13) 5142276884723508 a001 1515744265389/224056801*521^(9/13) 5142276884723508 a001 6557470319842/969323029*521^(9/13) 5142276884723508 a001 2504730781961/370248451*521^(9/13) 5142276884723509 a001 956722026041/141422324*521^(9/13) 5142276884723510 a001 365435296162/54018521*521^(9/13) 5142276884723520 a001 139583862445/20633239*521^(9/13) 5142276884723591 a001 53316291173/7881196*521^(9/13) 5142276884724076 a001 20365011074/3010349*521^(9/13) 5142276884727398 a001 7778742049/1149851*521^(9/13) 5142276884750166 a001 2971215073/439204*521^(9/13) 5142276884906223 a001 1134903170/167761*521^(9/13) 5142276885975853 a001 433494437/64079*521^(9/13) 5142276893307209 a001 165580141/24476*521^(9/13) 5142276902076197 m001 ZetaQ(4)/(FeigenbaumMu^Catalan) 5142276910314382 a007 Real Root Of -170*x^4-984*x^3-743*x^2-823*x+483 5142276918861255 a007 Real Root Of 58*x^4+177*x^3-753*x^2-633*x+169 5142276920460879 a005 (1/sin(49/121*Pi))^545 5142276924231403 m001 (TreeGrowth2nd+Weierstrass)/(Si(Pi)+gamma(1)) 5142276934932343 a001 63245986/843*521^(4/13) 5142276943557069 a001 63245986/9349*521^(9/13) 5142276955296856 r005 Re(z^2+c),c=29/106+25/58*I,n=45 5142276956780438 m004 (-5*Pi)/4+3*Csc[Sqrt[5]*Pi] 5142276959629608 r009 Re(z^3+c),c=-37/78+4/53*I,n=52 5142276962038732 a007 Real Root Of -497*x^4+551*x^3-258*x^2+710*x+543 5142276968409359 m001 (MertensB2-Salem)/(ln(5)+ln(Pi)) 5142276980546670 r005 Re(z^2+c),c=-1/23+4/35*I,n=4 5142276981874753 r009 Im(z^3+c),c=-13/44+17/28*I,n=60 5142276983211413 k006 concat of cont frac of 5142276992556959 m001 Zeta(5)^3*exp(GAMMA(7/12)) 5142276993388751 a007 Real Root Of 19*x^4+170*x^3+597*x^2-838*x-567 5142276994968619 m001 Pi^(Shi(1)*ln(gamma)) 5142276994968619 m001 gamma^(Shi(1)*ln(Pi)) 5142277016527668 m005 (1/2*gamma-8/11)/(2/9*Zeta(3)-2/11) 5142277033099623 a007 Real Root Of 43*x^4+247*x^3+334*x^2+953*x-412 5142277037657775 m001 FeigenbaumC^2*exp(Zeta(1,2))^2 5142277038802350 a003 sin(Pi*10/99)/cos(Pi*31/106) 5142277043806459 r005 Im(z^2+c),c=29/86+37/57*I,n=5 5142277055003799 r008 a(0)=0,K{-n^6,31+27*n^3-39*n^2-35*n} 5142277074839232 a001 5/4*2207^(43/55) 5142277086786643 r005 Im(z^2+c),c=37/110+9/41*I,n=3 5142277096225710 m001 (DuboisRaymond+Lehmer)/(gamma(3)+GAMMA(7/12)) 5142277097311265 r002 11th iterates of z^2 + 5142277102880886 m001 (2^(1/2)+Shi(1))/(Bloch+ZetaQ(3)) 5142277108236685 l006 ln(2817/4711) 5142277117057636 r009 Re(z^3+c),c=-1/9+21/29*I,n=44 5142277120196007 r005 Re(z^2+c),c=-13/24+35/64*I,n=11 5142277121131115 k009 concat of cont frac of 5142277124020288 m001 (OneNinth-Porter)/(Zeta(5)+ErdosBorwein) 5142277132698437 h001 (5/8*exp(2)+7/11)/(1/10*exp(1)+3/4) 5142277136828005 r009 Im(z^3+c),c=-13/54+28/45*I,n=41 5142277139955962 a001 701408733/2207*199^(1/11) 5142277160725579 r005 Im(z^2+c),c=-5/8+74/195*I,n=34 5142277173480193 r009 Im(z^3+c),c=-3/70+37/57*I,n=32 5142277176303502 m001 1/GAMMA(19/24)/ln(FeigenbaumC)^2/GAMMA(5/12)^2 5142277193401786 r002 20th iterates of z^2 + 5142277206604031 m001 (GAMMA(7/12)+Otter)/(Psi(1,1/3)-exp(1/Pi)) 5142277247541880 m005 (5/6*gamma+2/5)/(4/5*Pi-4/5) 5142277258917143 a007 Real Root Of 594*x^4-797*x^3+673*x^2-712*x-694 5142277285133617 a007 Real Root Of -461*x^4+969*x^3-819*x^2+874*x+830 5142277286248890 a001 24157817/2207*521^(8/13) 5142277287974761 a001 24157817/3571*521^(9/13) 5142277290277332 m001 Pi*(GAMMA(7/24)-exp(1/exp(1))) 5142277290686131 m005 (1/2*Catalan-5)/(1/11*Catalan+4/5) 5142277298932530 a003 cos(Pi*28/113)*sin(Pi*28/109) 5142277299065490 m001 (Lehmer-ReciprocalFibonacci)/ZetaQ(2) 5142277319349390 r002 58th iterates of z^2 + 5142277327950547 r009 Im(z^3+c),c=-13/118+29/45*I,n=35 5142277334961144 r009 Re(z^3+c),c=-33/74+1/18*I,n=10 5142277349369721 m001 (3^(1/3)-gamma(1))/(GAMMA(13/24)+Mills) 5142277351265270 r009 Re(z^3+c),c=-47/122+41/60*I,n=63 5142277362577901 m001 BesselI(0,1)/(HardyLittlewoodC3-ln(2^(1/2)+1)) 5142277363527941 r009 Im(z^3+c),c=-9/82+19/30*I,n=14 5142277369206464 h001 (-12*exp(3)-6)/(-9*exp(4)+11) 5142277378248424 r002 16th iterates of z^2 + 5142277394207193 a001 514229/123*7^(5/47) 5142277441687596 r009 Im(z^3+c),c=-19/98+23/36*I,n=23 5142277443692215 r009 Re(z^3+c),c=-47/122+41/60*I,n=43 5142277444124532 m001 MertensB3/(KhinchinLevy^(2*Pi/GAMMA(5/6))) 5142277504756013 r009 Im(z^3+c),c=-1/106+37/56*I,n=16 5142277509655139 a007 Real Root Of -692*x^4+701*x^3-965*x^2-554*x+114 5142277544018152 l006 ln(4871/8146) 5142277558962585 h001 (3/7*exp(1)+1/3)/(3/4*exp(1)+7/8) 5142277600265716 a001 521/8*1346269^(26/55) 5142277600883698 a001 311187/46*322^(3/4) 5142277602537112 r005 Im(z^2+c),c=13/54+31/64*I,n=63 5142277605522419 r002 10th iterates of z^2 + 5142277619532700 b008 5+3/(1+E^3) 5142277619532700 h001 (-8*exp(-3)-5)/(-exp(-3)-1) 5142277622347658 a007 Real Root Of -34*x^4+880*x^3+376*x^2+695*x+380 5142277640084319 r009 Im(z^3+c),c=-1/48+13/20*I,n=47 5142277661402442 a007 Real Root Of -82*x^4-520*x^3-537*x^2-329*x-863 5142277672418369 m005 (1/5*Pi-1/4)/(1/6*2^(1/2)+1/2) 5142277679971245 a007 Real Root Of -724*x^4+950*x^3+221*x^2-623*x-199 5142277700260212 a007 Real Root Of -202*x^4+735*x^3-919*x^2+381*x+553 5142277703199868 a007 Real Root Of -373*x^4+387*x^3+395*x^2+844*x-565 5142277708344356 r005 Re(z^2+c),c=-3/106+26/51*I,n=4 5142277744803224 a007 Real Root Of 754*x^4-971*x^3+853*x^2+971*x+89 5142277757260779 r005 Re(z^2+c),c=-7/10+2/145*I,n=27 5142277774911950 l006 ln(3089/3252) 5142277776785008 m001 GaussAGM^FeigenbaumAlpha*GaussAGM^Salem 5142277790471592 r005 Re(z^2+c),c=-13/14+32/237*I,n=54 5142277815754854 r005 Re(z^2+c),c=-1/20+46/61*I,n=25 5142277817576256 a007 Real Root Of -103*x^4-349*x^3+965*x^2+236*x+261 5142277819108583 a007 Real Root Of -213*x^4-461*x^3-588*x^2+127*x+173 5142277830035449 m005 (1/3*gamma+2/7)/(29/36+1/18*5^(1/2)) 5142277846533562 r009 Re(z^3+c),c=-33/64+23/47*I,n=40 5142277847587678 m005 (1/2*2^(1/2)+1/6)/(7/11*Pi-3/10) 5142277857285424 r009 Im(z^3+c),c=-19/58+28/47*I,n=42 5142277907741999 m001 (arctan(1/2)-Kolakoski)/Cahen 5142277913970763 a007 Real Root Of 508*x^4+68*x^3+842*x^2+311*x-89 5142277914815095 r005 Im(z^2+c),c=-15/58+46/61*I,n=8 5142277917100034 r002 18th iterates of z^2 + 5142277918919450 r002 25th iterates of z^2 + 5142277945354609 r005 Re(z^2+c),c=-21/40+22/35*I,n=18 5142277968255942 r009 Im(z^3+c),c=-15/46+34/57*I,n=55 5142277968583601 r009 Re(z^3+c),c=-29/52+12/31*I,n=57 5142277974623325 m001 GAMMA(1/24)^2/ln(FransenRobinson)/Zeta(5) 5142277981963736 a001 3/610*610^(29/40) 5142277990440011 p004 log(32191/19249) 5142278003954939 r009 Re(z^3+c),c=-49/102+32/53*I,n=4 5142278006239739 m001 GAMMA(7/12)*GAMMA(2/3)/ln(Zeta(9))^2 5142278020520714 r005 Re(z^2+c),c=-87/122+1/13*I,n=50 5142278041653117 a001 1836311903/5778*199^(1/11) 5142278044092421 a007 Real Root Of 168*x^4+728*x^3-583*x^2+769*x+891 5142278049590869 m001 GAMMA(1/6)^2*FeigenbaumD^2/ln(cosh(1)) 5142278091933427 r005 Re(z^2+c),c=7/110+14/37*I,n=27 5142278106056925 r005 Re(z^2+c),c=5/14+6/17*I,n=24 5142278112371080 m001 (PrimesInBinary+Thue)/(ThueMorse-TwinPrimes) 5142278120521812 r009 Im(z^3+c),c=-23/86+13/21*I,n=32 5142278122838408 a001 4/1346269*233^(52/55) 5142278131792110 m001 TreeGrowth2nd^2*Paris^2/ln((3^(1/3))) 5142278133636010 a007 Real Root Of -95*x^4-406*x^3+416*x^2-127*x-433 5142278141679461 l006 ln(2054/3435) 5142278142286660 r009 Re(z^3+c),c=-25/56+3/61*I,n=58 5142278157251301 m001 (GAMMA(7/12)+Lehmer)/(TreeGrowth2nd-Trott2nd) 5142278163425837 a001 39603/377*75025^(16/29) 5142278165795760 a007 Real Root Of 284*x^4-794*x^3+275*x^2-489*x-452 5142278170409642 r009 Im(z^3+c),c=-29/78+31/57*I,n=12 5142278173208986 a001 686789568/2161*199^(1/11) 5142278187946069 a001 31622993/2889*521^(8/13) 5142278191398706 a001 5702887/1364*521^(10/13) 5142278192402729 a001 12586269025/39603*199^(1/11) 5142278195203058 a001 32951280099/103682*199^(1/11) 5142278195611621 a001 86267571272/271443*199^(1/11) 5142278195671229 a001 317811*199^(1/11) 5142278195679926 a001 591286729879/1860498*199^(1/11) 5142278195681195 a001 1548008755920/4870847*199^(1/11) 5142278195681380 a001 4052739537881/12752043*199^(1/11) 5142278195681407 a001 1515744265389/4769326*199^(1/11) 5142278195681424 a001 6557470319842/20633239*199^(1/11) 5142278195681494 a001 2504730781961/7881196*199^(1/11) 5142278195681979 a001 956722026041/3010349*199^(1/11) 5142278195685301 a001 365435296162/1149851*199^(1/11) 5142278195708069 a001 139583862445/439204*199^(1/11) 5142278195864126 a001 53316291173/167761*199^(1/11) 5142278196933757 a001 20365011074/64079*199^(1/11) 5142278204265114 a001 7778742049/24476*199^(1/11) 5142278238571529 b008 Pi+2*Sec[Pi/120] 5142278243627225 m001 (cos(1/5*Pi)+BesselI(1,1))/(FeigenbaumD-Trott) 5142278254514987 a001 2971215073/9349*199^(1/11) 5142278264908812 r002 18th iterates of z^2 + 5142278273005125 m001 Pi*2^(1/3)+Psi(2,1/3)-sin(1/12*Pi) 5142278277306335 r002 11th iterates of z^2 + 5142278292681655 r002 11th iterates of z^2 + 5142278303076209 r005 Im(z^2+c),c=-41/66+3/31*I,n=27 5142278303187767 a007 Real Root Of -850*x^4+339*x^3+14*x^2+504*x+361 5142278317345114 r005 Im(z^2+c),c=-41/60+5/33*I,n=12 5142278319501941 a001 165580141/15127*521^(8/13) 5142278338275833 a007 Real Root Of 877*x^4+39*x^3+554*x^2-983*x-708 5142278338695685 a001 433494437/39603*521^(8/13) 5142278341496014 a001 567451585/51841*521^(8/13) 5142278341904577 a001 2971215073/271443*521^(8/13) 5142278341964185 a001 7778742049/710647*521^(8/13) 5142278341972882 a001 10182505537/930249*521^(8/13) 5142278341974151 a001 53316291173/4870847*521^(8/13) 5142278341974336 a001 139583862445/12752043*521^(8/13) 5142278341974363 a001 182717648081/16692641*521^(8/13) 5142278341974367 a001 956722026041/87403803*521^(8/13) 5142278341974368 a001 2504730781961/228826127*521^(8/13) 5142278341974368 a001 3278735159921/299537289*521^(8/13) 5142278341974368 a001 10610209857723/969323029*521^(8/13) 5142278341974368 a001 4052739537881/370248451*521^(8/13) 5142278341974368 a001 387002188980/35355581*521^(8/13) 5142278341974370 a001 591286729879/54018521*521^(8/13) 5142278341974380 a001 7787980473/711491*521^(8/13) 5142278341974451 a001 21566892818/1970299*521^(8/13) 5142278341974935 a001 32951280099/3010349*521^(8/13) 5142278341978257 a001 12586269025/1149851*521^(8/13) 5142278342001026 a001 1201881744/109801*521^(8/13) 5142278342157083 a001 1836311903/167761*521^(8/13) 5142278342754151 a007 Real Root Of 943*x^4+61*x^3+407*x^2-157*x-246 5142278343226713 a001 701408733/64079*521^(8/13) 5142278344824601 r009 Re(z^3+c),c=-31/110+41/56*I,n=5 5142278350558071 a001 10946*521^(8/13) 5142278354524032 l005 641/65/(exp(641/65)-1) 5142278360407564 r005 Re(z^2+c),c=-8/13+26/57*I,n=24 5142278371105140 s002 sum(A113433[n]/((10^n+1)/n),n=1..infinity) 5142278387088970 m001 (GAMMA(2/3)+StronglyCareFree)/(1-2^(1/2)) 5142278392183216 a001 34111385/281*521^(3/13) 5142278393172409 a003 cos(Pi*19/59)-cos(Pi*48/97) 5142278395798020 r005 Im(z^2+c),c=-47/48+15/47*I,n=4 5142278400807945 a001 102334155/9349*521^(8/13) 5142278400814393 r005 Re(z^2+c),c=19/90+17/47*I,n=36 5142278427524727 r005 Im(z^2+c),c=17/64+17/33*I,n=17 5142278430471852 s002 sum(A046797[n]/(n*2^n+1),n=1..infinity) 5142278433509846 b008 -52+EulerGamma 5142278433939922 m001 (Totient+Thue)/(BesselI(1,2)+Khinchin) 5142278464133642 a007 Real Root Of -300*x^4+663*x^3-602*x^2+48*x+295 5142278469650943 r009 Im(z^3+c),c=-11/86+16/25*I,n=16 5142278485692330 a007 Real Root Of -975*x^4+313*x^3-931*x^2-381*x+161 5142278500635416 a001 1/646*317811^(16/25) 5142278535555823 g006 Psi(1,10/11)+Psi(1,3/11)+Psi(1,1/6)-Psi(1,7/9) 5142278541252648 s002 sum(A115654[n]/((10^n+1)/n),n=1..infinity) 5142278567532550 r002 6th iterates of z^2 + 5142278576360788 r002 8th iterates of z^2 + 5142278598932765 a001 1134903170/3571*199^(1/11) 5142278605609282 a007 Real Root Of -930*x^4+307*x^3-243*x^2+525*x+441 5142278616332166 m001 (FeigenbaumKappa-Paris)/(Pi-ArtinRank2) 5142278617602692 m001 (MinimumGamma-Sarnak)/(AlladiGrinstead+Kac) 5142278680891921 l006 ln(5399/9029) 5142278680891921 p004 log(9029/5399) 5142278705149201 m001 (GAMMA(2/3)+Ei(1,1))/(Sierpinski+Weierstrass) 5142278708950487 r009 Im(z^3+c),c=-3/20+39/61*I,n=45 5142278721638452 r005 Im(z^2+c),c=-87/110+14/37*I,n=3 5142278725029167 a007 Real Root Of -172*x^4-728*x^3+846*x^2+233*x+104 5142278730879468 m001 (cos(1/5*Pi)-ln(gamma))/(Trott2nd-ZetaQ(2)) 5142278739791711 a003 sin(Pi*17/104)/sin(Pi*36/89) 5142278743499861 a001 39088169/2207*521^(7/13) 5142278745225732 a001 39088169/3571*521^(8/13) 5142278745254296 r005 Im(z^2+c),c=19/62+7/30*I,n=4 5142278757081353 r009 Im(z^3+c),c=-8/17+1/2*I,n=37 5142278775942033 m001 GAMMA(5/6)^2/exp(FeigenbaumB)^2*Zeta(1/2)^2 5142278781124714 r005 Im(z^2+c),c=-67/98+17/42*I,n=9 5142278781373945 r009 Im(z^3+c),c=-7/86+32/49*I,n=19 5142278787513158 s002 sum(A259297[n]/((exp(n)+1)*n),n=1..infinity) 5142278790006367 r005 Re(z^2+c),c=-11/90+29/43*I,n=23 5142278794482000 a007 Real Root Of -170*x^4-838*x^3+224*x^2+250*x+283 5142278814222340 r005 Im(z^2+c),c=-3/23+12/17*I,n=17 5142278822749451 r005 Im(z^2+c),c=-61/94+1/45*I,n=12 5142278827692383 a007 Real Root Of 487*x^4-418*x^3-735*x^2-482*x+465 5142278837015608 r002 29th iterates of z^2 + 5142278839728676 r002 40th iterates of z^2 + 5142278846268484 r009 Im(z^3+c),c=-5/44+55/56*I,n=28 5142278855544825 m001 1/FeigenbaumAlpha^2*exp(Champernowne)/Lehmer^2 5142278869829435 r008 a(0)=5,K{-n^6,-4+2*n^3-3*n^2+2*n} 5142278871255169 m005 (1/2*Pi-2/7)/(3/4*Pi+1/7) 5142278876008034 a007 Real Root Of -681*x^4+29*x^3-369*x^2+869*x+596 5142278906040300 a007 Real Root Of 188*x^4+876*x^3-421*x^2+107*x-657 5142278925273073 a007 Real Root Of -163*x^4+957*x^3+540*x^2+862*x+442 5142278941137464 l006 ln(19/3251) 5142278941137464 p004 log(3251/19) 5142278947897170 r009 Im(z^3+c),c=-9/32+11/18*I,n=63 5142278948586536 m001 BesselK(0,1)^LandauRamanujan-gamma(3) 5142278970076691 a007 Real Root Of -785*x^4+106*x^3+565*x^2+253*x+50 5142278972220719 r009 Im(z^3+c),c=-11/46+28/45*I,n=62 5142278999092856 r009 Im(z^3+c),c=-9/38+33/53*I,n=49 5142279003156283 m006 (2/5*Pi-4)/(exp(2*Pi)-2) 5142279011995762 l006 ln(3345/5594) 5142279052296217 r005 Im(z^2+c),c=-13/20+6/61*I,n=64 5142279055825509 h001 (-9*exp(3)-7)/(-7*exp(-3)+4) 5142279063117110 m002 -4+3/(4*Pi^5)-Log[Pi] 5142279081919715 m004 -150*Pi-(25*Sqrt[5]*Pi)/4+Tan[Sqrt[5]*Pi] 5142279093669680 a007 Real Root Of -745*x^4+89*x^3+366*x^2+331*x-227 5142279107990777 m005 (1/2*exp(1)-3/7)/(1/6*2^(1/2)-5/12) 5142279115660297 h001 (2/9*exp(1)+3/7)/(4/9*exp(1)+4/5) 5142279121749093 p001 sum(1/(285*n+197)/(32^n),n=0..infinity) 5142279132673045 m001 Zeta(5)^ZetaQ(3)/DuboisRaymond 5142279148186381 r005 Re(z^2+c),c=-149/126+13/51*I,n=42 5142279172354597 m001 GolombDickman^CareFree/HardHexagonsEntropy 5142279183133139 r005 Re(z^2+c),c=17/62+32/59*I,n=40 5142279191920831 a003 sin(Pi*3/38)/sin(Pi*16/101) 5142279200364873 m001 (-BesselI(1,2)+TwinPrimes)/(2^(1/3)-ln(gamma)) 5142279201746192 r002 3th iterates of z^2 + 5142279243815159 m005 (1/2*gamma+5/8)/(6/11*Zeta(3)-5/6) 5142279261365533 r002 64th iterates of z^2 + 5142279263578379 r005 Im(z^2+c),c=23/70+11/21*I,n=25 5142279286606959 r005 Re(z^2+c),c=-33/64+31/55*I,n=51 5142279287341922 m001 ln(GAMMA(5/12))^2/GaussKuzminWirsing^2/Zeta(3) 5142279287460851 s002 sum(A036326[n]/((10^n+1)/n),n=1..infinity) 5142279289605583 r005 Im(z^2+c),c=-101/122+13/57*I,n=14 5142279291048047 r009 Im(z^3+c),c=-21/62+17/29*I,n=28 5142279294334020 r002 10th iterates of z^2 + 5142279297461803 r009 Im(z^3+c),c=-13/82+30/47*I,n=36 5142279321873816 b008 51+Tan[2/5] 5142279330758169 a003 cos(Pi*13/115)*sin(Pi*17/92) 5142279343905996 m005 (1/2*2^(1/2)-1/12)/(11/12*2^(1/2)-1/12) 5142279346759994 r002 64th iterates of z^2 + 5142279348661558 r005 Re(z^2+c),c=-33/64+31/55*I,n=61 5142279350626101 r009 Im(z^3+c),c=-1/4+33/49*I,n=31 5142279355488874 r005 Re(z^2+c),c=-27/44+19/62*I,n=19 5142279361839697 m001 Riemann1stZero^2*Bloch^2/ln(BesselK(0,1)) 5142279366114396 r005 Re(z^2+c),c=-8/25+26/43*I,n=15 5142279367911432 r005 Re(z^2+c),c=-33/64+31/55*I,n=56 5142279370097980 r009 Im(z^3+c),c=-10/19+30/43*I,n=4 5142279372331570 m005 (21/4+1/4*5^(1/2))/(23/55+7/22*5^(1/2)) 5142279378241712 m001 BesselK(1,1)^(Psi(2,1/3)*ln(2^(1/2)+1)) 5142279379525323 a001 1/8*55^(6/17) 5142279382308560 a007 Real Root Of 776*x^4-328*x^3+353*x^2-583*x-492 5142279394977341 r005 Re(z^2+c),c=-5/48+40/59*I,n=62 5142279397593166 l006 ln(4636/7753) 5142279405704570 r009 Im(z^3+c),c=-4/29+25/39*I,n=51 5142279407065352 s002 sum(A160950[n]/(n!^2),n=1..infinity) 5142279420828239 s002 sum(A141168[n]/(n!^2),n=1..infinity) 5142279422097663 r005 Re(z^2+c),c=-33/64+31/55*I,n=46 5142279422140506 m001 1/Zeta(1/2)/exp(Sierpinski)/Zeta(9)^2 5142279428328127 m001 1/sin(Pi/12)/Riemann3rdZero^2/ln(sqrt(2))^2 5142279437459404 a007 Real Root Of -507*x^4+960*x^3+912*x^2+826*x-761 5142279439124015 r002 64th iterates of z^2 + 5142279440215009 s002 sum(A078972[n]/((10^n+1)/n),n=1..infinity) 5142279442978065 r002 50i'th iterates of 2*x/(1-x^2) of 5142279452298483 r009 Im(z^3+c),c=-43/118+16/27*I,n=35 5142279476499950 m001 Niven/ln(GaussAGM(1,1/sqrt(2)))*sqrt(5)^2 5142279487030941 s002 sum(A288709[n]/(n!^2),n=1..infinity) 5142279509925382 m001 Bloch^(2^(1/3))*PisotVijayaraghavan 5142279515666919 r009 Im(z^3+c),c=-37/122+26/43*I,n=36 5142279531530600 r005 Im(z^2+c),c=-20/31+4/41*I,n=56 5142279533337412 r005 Re(z^2+c),c=41/118+3/29*I,n=20 5142279537749785 r005 Re(z^2+c),c=-13/70+24/37*I,n=14 5142279544009658 r005 Re(z^2+c),c=-33/64+31/55*I,n=26 5142279544677171 m001 (Pi+FeigenbaumKappa)/(Paris+StronglyCareFree) 5142279546413362 r009 Im(z^3+c),c=-7/62+38/59*I,n=46 5142279555789109 s002 sum(A179930[n]/(n*2^n+1),n=1..infinity) 5142279557377484 m001 (-Paris+Sarnak)/(sin(1)+Artin) 5142279586090695 m001 ln(FeigenbaumC)/FeigenbaumB/Riemann1stZero 5142279604834187 m001 GAMMA(1/3)^2*exp(Khintchine)^2*gamma^2 5142279615211402 l006 ln(5927/9912) 5142279617068274 a001 4/28657*55^(9/10) 5142279621029837 a005 (1/cos(12/203*Pi))^1422 5142279629203820 m001 (ErdosBorwein-FeigenbaumC)/(Pi+GAMMA(3/4)) 5142279645197298 a001 34111385/1926*521^(7/13) 5142279645731421 s002 sum(A040106[n]/(n!^2),n=1..infinity) 5142279648649979 a001 9227465/1364*521^(9/13) 5142279649498994 s002 sum(A191028[n]/(n!^2),n=1..infinity) 5142279664305207 a007 Real Root Of -781*x^4-244*x^3-987*x^2+919*x+755 5142279685114655 r002 44th iterates of z^2 + 5142279689656339 m001 MertensB1*GlaisherKinkelin*exp(Zeta(1,2))^2 5142279694096379 a007 Real Root Of 528*x^4-624*x^3-994*x^2-543*x+590 5142279700452187 a007 Real Root Of 151*x^4+729*x^3-311*x^2-499*x-799 5142279704365413 m001 3^(1/2)*GolombDickman-LambertW(1) 5142279704365413 m001 LambertW(1)-sqrt(3)*GolombDickman 5142279712331529 r009 Im(z^3+c),c=-7/46+23/36*I,n=39 5142279723948591 v002 sum(1/(2^n+(6*n^2+5*n+53)),n=1..infinity) 5142279776129604 r005 Re(z^2+c),c=-33/64+31/55*I,n=41 5142279776753207 a001 267914296/15127*521^(7/13) 5142279795946956 a001 17711*521^(7/13) 5142279798747287 a001 1836311903/103682*521^(7/13) 5142279799155849 a001 1602508992/90481*521^(7/13) 5142279799215458 a001 12586269025/710647*521^(7/13) 5142279799224155 a001 10983760033/620166*521^(7/13) 5142279799225423 a001 86267571272/4870847*521^(7/13) 5142279799225609 a001 75283811239/4250681*521^(7/13) 5142279799225636 a001 591286729879/33385282*521^(7/13) 5142279799225640 a001 516002918640/29134601*521^(7/13) 5142279799225640 a001 4052739537881/228826127*521^(7/13) 5142279799225640 a001 3536736619241/199691526*521^(7/13) 5142279799225640 a001 6557470319842/370248451*521^(7/13) 5142279799225640 a001 2504730781961/141422324*521^(7/13) 5142279799225642 a001 956722026041/54018521*521^(7/13) 5142279799225652 a001 365435296162/20633239*521^(7/13) 5142279799225723 a001 139583862445/7881196*521^(7/13) 5142279799226208 a001 53316291173/3010349*521^(7/13) 5142279799229530 a001 20365011074/1149851*521^(7/13) 5142279799252298 a001 7778742049/439204*521^(7/13) 5142279799408355 a001 2971215073/167761*521^(7/13) 5142279800477986 a001 1134903170/64079*521^(7/13) 5142279807809346 a001 433494437/24476*521^(7/13) 5142279811034153 b008 3-E^(2+Pi)/21 5142279829728051 m005 (1/2*3^(1/2)+9/11)/(5/8*Catalan-9/10) 5142279836814924 b008 1/8+Log[151] 5142279847850860 a007 Real Root Of 897*x^4+131*x^3-519*x^2-829*x+483 5142279849434503 a001 165580141/843*521^(2/13) 5142279855240090 r009 Re(z^3+c),c=-47/114+1/61*I,n=28 5142279856174917 a007 Real Root Of -862*x^4+948*x^3+136*x^2+907*x-571 5142279858059234 a001 165580141/9349*521^(7/13) 5142279860026388 r005 Re(z^2+c),c=-53/86+4/39*I,n=5 5142279881222023 r002 56th iterates of z^2 + 5142279898781628 r009 Im(z^3+c),c=-7/62+38/59*I,n=52 5142279922280421 r009 Im(z^3+c),c=-31/110+14/23*I,n=36 5142279927492423 m001 1/(3^(1/3))/FeigenbaumD/ln(sqrt(1+sqrt(3))) 5142279935222239 a007 Real Root Of 185*x^4-538*x^3+931*x^2+160*x-250 5142279940333811 m001 FeigenbaumB/GolombDickman^2/ln(TwinPrimes) 5142279958853936 m001 (gamma(1)-Magata)/(Pi+Pi*2^(1/2)/GAMMA(3/4)) 5142279999985928 a001 317809/2+317811/2*5^(1/2) 5142279999997118 a007 Real Root Of -94*x^4-212*x^3+210*x^2+758*x+312 5142280012664382 r009 Im(z^3+c),c=-3/14+27/43*I,n=47 5142280023030586 a007 Real Root Of -208*x^4+880*x^3-786*x^2+313*x+503 5142280026725705 m001 Pi+(Psi(1,1/3)-2^(1/3))*Zeta(1,2) 5142280064274731 a007 Real Root Of 7*x^4+371*x^3+576*x^2+427*x+84 5142280072114125 r009 Im(z^3+c),c=-11/30+18/29*I,n=23 5142280074167032 a007 Real Root Of 618*x^4-47*x^3-162*x^2-772*x+403 5142280080109810 a007 Real Root Of -175*x^4-914*x^3+88*x^2+783*x-218 5142280086896969 m005 (31/6+1/6*5^(1/2))/(gamma+1/2) 5142280087426008 a001 47*(1/2*5^(1/2)+1/2)^26*3571^(11/15) 5142280093466283 a007 Real Root Of 423*x^4-209*x^3-849*x^2-995*x+735 5142280114371222 m006 (2/5/Pi-1/3)/(3/4*exp(2*Pi)-1) 5142280126336248 r009 Im(z^3+c),c=-61/126+9/28*I,n=2 5142280142273625 a007 Real Root Of -991*x^4-72*x^3-533*x^2-207*x+94 5142280155397777 r005 Re(z^2+c),c=-9/16+53/112*I,n=29 5142280158166081 r008 a(0)=5,K{-n^6,26+30*n^3-39*n^2-23*n} 5142280165194056 r005 Re(z^2+c),c=-27/56+26/43*I,n=21 5142280184275900 a001 514229/843*1364^(14/15) 5142280200751248 a001 63245986/2207*521^(6/13) 5142280202477120 a001 63245986/3571*521^(7/13) 5142280211670562 r005 Re(z^2+c),c=-5/7+1/104*I,n=41 5142280219262844 m005 (1/2*5^(1/2)-1/9)/(4/9*exp(1)+3/4) 5142280228807436 m001 Shi(1)*GaussKuzminWirsing/GolombDickman 5142280236556356 a007 Real Root Of 54*x^4+83*x^3-977*x^2+307*x+941 5142280252114784 r002 39th iterates of z^2 + 5142280256591183 a008 Real Root of x^4-27*x^2-23*x+133 5142280262704976 a007 Real Root Of -314*x^4-849*x^3-727*x^2+158*x+180 5142280299187880 r005 Re(z^2+c),c=-27/32+5/22*I,n=15 5142280302383735 a001 370248451*144^(9/17) 5142280303534111 m001 FeigenbaumB*MertensB1^2/exp(Zeta(3))^2 5142280316532124 s002 sum(A156131[n]/((exp(n)+1)/n),n=1..infinity) 5142280317600783 m006 (1/6*exp(2*Pi)+2/5)/(2/5*Pi-3) 5142280328932822 a005 (1/cos(13/192*Pi))^1991 5142280332154653 a001 47*(1/2*5^(1/2)+1/2)^22*9349^(13/15) 5142280345695054 r005 Re(z^2+c),c=-107/82+1/41*I,n=16 5142280368532362 a001 832040/843*1364^(13/15) 5142280378394433 p001 sum((-1)^n/(509*n+340)/n/(2^n),n=1..infinity) 5142280379430009 s002 sum(A156131[n]/((exp(n)-1)/n),n=1..infinity) 5142280381974917 a001 47*(1/2*5^(1/2)+1/2)^17*64079^(14/15) 5142280390928251 r009 Im(z^3+c),c=-23/78+37/60*I,n=17 5142280396681648 l006 ln(1291/2159) 5142280405084753 r002 59th iterates of z^2 + 5142280405863329 m001 Stephens^MasserGramainDelta+ZetaR(2) 5142280419559700 k002 Champernowne real with 1/2*n^2+271/2*n-131 5142280420719537 a007 Real Root Of 568*x^4-273*x^3+63*x^2-972*x-5 5142280433872387 r009 Im(z^3+c),c=-13/64+17/27*I,n=36 5142280436665730 m001 Zeta(1/2)^2*ln(FibonacciFactorial)^2/sqrt(3) 5142280436904753 m005 (1/2*Zeta(3)+1/12)/(1/4*Pi+6/11) 5142280437393700 m005 (1/2*Catalan+3/7)/(9/11*exp(1)-1/2) 5142280440539495 r009 Im(z^3+c),c=-2/21+31/48*I,n=48 5142280447990341 a001 17/2889*18^(3/4) 5142280449896777 m001 (Niven-Porter)/(Trott+ZetaP(2)) 5142280469556294 a001 514229/3*199^(11/53) 5142280478280378 h001 (11/12*exp(2)+5/11)/(1/10*exp(2)+2/3) 5142280502128139 m001 (Stephens-ZetaQ(3))/(ln(2)+HardyLittlewoodC5) 5142280516102803 r009 Im(z^3+c),c=-21/82+21/34*I,n=45 5142280517140788 h001 (-4*exp(7)-2)/(-4*exp(3)-5) 5142280518146234 r005 Im(z^2+c),c=-49/122+28/47*I,n=16 5142280536848832 a007 Real Root Of 184*x^4+903*x^3-321*x^2-666*x-808 5142280541517872 v003 sum((5/3*n^3+19/3*n-6)/n^(n-2),n=1..infinity) 5142280552796257 a001 1346269/843*1364^(4/5) 5142280566872534 m001 (Riemann3rdZero-Totient)/(Pi+MinimumGamma) 5142280567844926 r005 Im(z^2+c),c=-83/126+16/43*I,n=31 5142280591847481 m001 (Landau-Niven)/(FeigenbaumB-GaussAGM) 5142280594292910 a001 682/5473*89^(6/19) 5142280609743306 a007 Real Root Of 385*x^4-836*x^3+575*x^2-407*x+144 5142280622651017 r009 Re(z^3+c),c=-13/29+1/12*I,n=5 5142280631519982 a001 47/10946*17711^(24/25) 5142280643681273 a001 1/5*377^(29/31) 5142280662898615 m001 Kolakoski^2/exp(DuboisRaymond)^2*Zeta(3) 5142280687589483 g006 Psi(1,4/11)+Psi(1,3/4)-Psi(1,10/11)-Psi(1,5/9) 5142280690992154 r004 Im(z^2+c),c=-7/24+5/18*I,z(0)=-1,n=6 5142280697502869 m005 (1/2*5^(1/2)+1/9)/(10/11*gamma-2/7) 5142280707736084 a008 Real Root of (-4+2*x-4*x^2-5*x^4+x^5) 5142280717083168 m001 (Otter+ZetaP(2))/LaplaceLimit 5142280723579904 m001 BesselJ(1,1)-Landau^ZetaP(4) 5142280732285220 a007 Real Root Of 754*x^4-679*x^3-896*x^2-876*x+727 5142280737057322 a001 726103/281*1364^(11/15) 5142280739018737 m001 (Ei(1)+Zeta(1/2))/(GaussAGM+Trott) 5142280758430946 a007 Real Root Of -731*x^4+763*x^3-186*x^2-636*x-123 5142280765368862 r005 Re(z^2+c),c=-27/94+55/63*I,n=4 5142280778931860 m005 (2/3*Pi-3/5)/(1/3*exp(1)+2) 5142280786355858 l006 ln(5819/5849) 5142280848204036 r005 Re(z^2+c),c=-11/16+25/92*I,n=61 5142280864394667 p001 sum(1/(192*n+151)/n/(6^n),n=1..infinity) 5142280865831736 m005 (1/2*Zeta(3)+6/7)/(6/7*Pi+1/7) 5142280870881243 a007 Real Root Of 16*x^4-319*x^3+593*x^2+197*x-100 5142280875815934 a001 47*(1/2*5^(1/2)+1/2)^31*2207^(7/15) 5142280887736517 a007 Real Root Of 948*x^4+151*x^3+776*x^2-671*x-596 5142280898951520 a007 Real Root Of 74*x^4-327*x^3-901*x^2-981*x+782 5142280902554195 r009 Re(z^3+c),c=-1/26+29/37*I,n=6 5142280903267061 m001 (2*Pi/GAMMA(5/6))^exp(1)/(Mills^exp(1)) 5142280911499423 r005 Re(z^2+c),c=7/62+16/49*I,n=10 5142280915967914 p004 log(29833/17839) 5142280921319477 a001 3524578/843*1364^(2/3) 5142280956712086 r008 a(0)=5,K{-n^6,-3-9*n^3-n^2+5*n} 5142280959608575 a001 433494437/1364*199^(1/11) 5142280965623205 r002 10th iterates of z^2 + 5142280985386257 m001 1/ln(GAMMA(5/6))^2/RenyiParking/sqrt(Pi) 5142280988560526 m001 1/BesselK(0,1)^2*exp(MertensB1)^2*cos(1) 5142280996782414 m001 (Ei(1,1)-GAMMA(13/24))/(Backhouse+Mills) 5142281013165642 a007 Real Root Of 986*x^4-380*x^3+661*x^2+415*x-82 5142281064147260 r004 Re(z^2+c),c=-1/26-9/13*I,z(0)=I,n=32 5142281066129915 r002 35th iterates of z^2 + 5142281102448940 a001 165580141/5778*521^(6/13) 5142281105581225 a001 5702887/843*1364^(3/5) 5142281105901605 a001 3732588/341*521^(8/13) 5142281111121572 k008 concat of cont frac of 5142281122241651 k006 concat of cont frac of 5142281124017671 m001 (Si(Pi)+PlouffeB)/(-Salem+Sarnak) 5142281129917085 r009 Re(z^3+c),c=-47/122+41/60*I,n=53 5142281131312212 k007 concat of cont frac of 5142281133216117 k007 concat of cont frac of 5142281154532073 r002 20th iterates of z^2 + 5142281169440337 m001 FeigenbaumDelta*(MadelungNaCl-MasserGramain) 5142281172711024 a001 416020/9*11^(2/45) 5142281179052461 r005 Im(z^2+c),c=-79/122+11/28*I,n=10 5142281180986640 r005 Im(z^2+c),c=-11/19+5/53*I,n=35 5142281204541769 r009 Im(z^3+c),c=-23/90+34/55*I,n=48 5142281210415622 l006 ln(5692/9519) 5142281222297161 a007 Real Root Of 194*x^4-914*x^3+803*x^2-914*x+45 5142281231172111 k008 concat of cont frac of 5142281234004886 a001 433494437/15127*521^(6/13) 5142281251212152 k007 concat of cont frac of 5142281251313237 k008 concat of cont frac of 5142281253198641 a001 1134903170/39603*521^(6/13) 5142281255998972 a001 2971215073/103682*521^(6/13) 5142281256407535 a001 7778742049/271443*521^(6/13) 5142281256467143 a001 20365011074/710647*521^(6/13) 5142281256475840 a001 53316291173/1860498*521^(6/13) 5142281256477109 a001 139583862445/4870847*521^(6/13) 5142281256477294 a001 365435296162/12752043*521^(6/13) 5142281256477321 a001 956722026041/33385282*521^(6/13) 5142281256477325 a001 2504730781961/87403803*521^(6/13) 5142281256477326 a001 6557470319842/228826127*521^(6/13) 5142281256477326 a001 10610209857723/370248451*521^(6/13) 5142281256477326 a001 4052739537881/141422324*521^(6/13) 5142281256477327 a001 1548008755920/54018521*521^(6/13) 5142281256477338 a001 591286729879/20633239*521^(6/13) 5142281256477408 a001 225851433717/7881196*521^(6/13) 5142281256477893 a001 86267571272/3010349*521^(6/13) 5142281256481215 a001 32951280099/1149851*521^(6/13) 5142281256503983 a001 12586269025/439204*521^(6/13) 5142281256660040 a001 4807526976/167761*521^(6/13) 5142281257729672 a001 28657*521^(6/13) 5142281260606582 p001 sum((-1)^n/(219*n+92)/n/(625^n),n=1..infinity) 5142281261323779 r009 Im(z^3+c),c=-7/64+29/45*I,n=56 5142281265061034 a001 701408733/24476*521^(6/13) 5142281265669231 a007 Real Root Of 541*x^4-583*x^3+643*x^2+677*x+61 5142281284927456 h001 (2/7*exp(1)+8/11)/(4/5*exp(1)+3/4) 5142281289843138 a001 9227465/843*1364^(8/15) 5142281303804098 r009 Re(z^3+c),c=-23/58+1/42*I,n=52 5142281306686202 a001 267914296/843*521^(1/13) 5142281314500682 p004 log(16879/10093) 5142281315310936 a001 267914296/9349*521^(6/13) 5142281322314111 k008 concat of cont frac of 5142281333411471 r002 40th iterates of z^2 + 5142281335193590 m001 (Zeta(5)+Porter)/(Robbin-ZetaP(3)) 5142281337946943 r009 Im(z^3+c),c=-29/102+37/50*I,n=2 5142281357015844 m001 (Khinchin-Mills)/(FeigenbaumD-HeathBrownMoroz) 5142281381284519 r009 Im(z^3+c),c=-3/10+37/63*I,n=19 5142281393387493 r005 Re(z^2+c),c=-39/28+1/60*I,n=30 5142281397401272 m001 (OneNinth-Stephens)/(Pi^(1/2)-FeigenbaumD) 5142281408505497 h001 (4/11*exp(1)+2/11)/(1/2*exp(1)+11/12) 5142281412121511 k006 concat of cont frac of 5142281414372895 r005 Re(z^2+c),c=-15/26+17/50*I,n=13 5142281415982178 m002 4+E^Pi*Pi^4+3*Pi^6 5142281415995983 r005 Im(z^2+c),c=7/64+7/12*I,n=41 5142281422565710 k002 Champernowne real with n^2+134*n-130 5142281423564154 a007 Real Root Of -459*x^4+436*x^3-554*x^2+689*x-235 5142281426652394 r005 Re(z^2+c),c=-9/10+45/217*I,n=40 5142281449118305 l006 ln(4401/7360) 5142281453590751 a007 Real Root Of -124*x^4-492*x^3+607*x^2-571*x+817 5142281471721470 r005 Re(z^2+c),c=-57/82+5/51*I,n=34 5142281472999232 r005 Re(z^2+c),c=-83/126+9/32*I,n=37 5142281474104997 a001 4976784/281*1364^(7/15) 5142281492604889 r005 Re(z^2+c),c=-7/78+29/43*I,n=5 5142281500142977 r005 Re(z^2+c),c=-11/18+36/107*I,n=31 5142281507700186 s002 sum(A115652[n]/((10^n+1)/n),n=1..infinity) 5142281508776194 a003 sin(Pi*1/76)/cos(Pi*14/69) 5142281510305483 r005 Im(z^2+c),c=-19/14+5/184*I,n=35 5142281514421571 k006 concat of cont frac of 5142281524472838 a003 cos(Pi*27/116)-cos(Pi*49/115) 5142281535420396 r009 Im(z^3+c),c=-19/64+17/28*I,n=50 5142281541173507 q001 2042/3971 5142281551483702 m001 (BesselJ(0,1)+Robbin)/(-ZetaP(2)+ZetaP(3)) 5142281561407244 a007 Real Root Of -240*x^4+469*x^3+339*x^2+588*x-439 5142281565049131 m001 Si(Pi)/(MertensB1+Paris) 5142281590050591 r005 Im(z^2+c),c=-9/7+1/86*I,n=11 5142281595773223 r005 Re(z^2+c),c=-31/54+21/62*I,n=4 5142281601813858 m001 (Psi(2,1/3)-2*Zeta(3)*Pi/GAMMA(5/6))/Zeta(3) 5142281605162860 a005 (1/cos(5/133*Pi))^893 5142281607409470 m001 ArtinRank2/(arctan(1/3)+MertensB2) 5142281614363771 r005 Im(z^2+c),c=31/90+10/17*I,n=9 5142281621853571 a007 Real Root Of -391*x^4+431*x^3-956*x^2-509*x+77 5142281624714737 r005 Im(z^2+c),c=-37/70+33/61*I,n=7 5142281633248203 r009 Im(z^3+c),c=-9/56+43/58*I,n=48 5142281636402437 s001 sum(exp(-2*Pi)^(n-1)*A156027[n],n=1..infinity) 5142281645586369 a007 Real Root Of -761*x^4+819*x^3+461*x^2+980*x-684 5142281658003046 a001 102334155/2207*521^(5/13) 5142281658366885 a001 24157817/843*1364^(2/5) 5142281659728919 a001 102334155/3571*521^(6/13) 5142281662461030 r005 Re(z^2+c),c=23/60+6/25*I,n=17 5142281701289876 b008 Pi+2*Coth[13/3] 5142281701426099 r005 Re(z^2+c),c=-13/14+32/237*I,n=58 5142281708201745 a001 377/2207*(1/2+1/2*5^(1/2))^31 5142281708201745 a001 377/2207*9062201101803^(1/2) 5142281708211643 a001 329/281*7881196^(9/11) 5142281708211710 a001 329/281*141422324^(9/13) 5142281708211711 a001 329/281*2537720636^(3/5) 5142281708211711 a001 329/281*45537549124^(9/17) 5142281708211711 a001 329/281*817138163596^(9/19) 5142281708211711 a001 329/281*14662949395604^(3/7) 5142281708211711 a001 329/281*(1/2+1/2*5^(1/2))^27 5142281708211711 a001 329/281*192900153618^(1/2) 5142281708211711 a001 329/281*10749957122^(9/16) 5142281708211711 a001 329/281*599074578^(9/14) 5142281708211714 a001 329/281*33385282^(3/4) 5142281708213048 a001 329/281*1860498^(9/10) 5142281718698679 a007 Real Root Of -574*x^4-587*x^3+523*x^2+709*x+35 5142281733918559 a001 1346269/322*322^(5/6) 5142281740619992 a001 1/47*(1/2*5^(1/2)+1/2)^24*11^(6/17) 5142281742694183 m001 Pi-1+2/3*Pi*3^(1/2)/GAMMA(2/3)+arctan(1/3) 5142281761225170 r005 Re(z^2+c),c=-37/106+28/47*I,n=55 5142281768775180 a007 Real Root Of 865*x^4-660*x^3+854*x^2+74*x-338 5142281777892417 r009 Re(z^3+c),c=-23/58+1/42*I,n=53 5142281790130739 r009 Re(z^3+c),c=-51/98+22/43*I,n=13 5142281806908733 r005 Re(z^2+c),c=-55/78+13/64*I,n=38 5142281835527505 r009 Im(z^3+c),c=-63/118+17/46*I,n=26 5142281842628772 a001 39088169/843*1364^(1/3) 5142281881059621 r005 Im(z^2+c),c=23/66+9/56*I,n=11 5142281885997926 l006 ln(3110/5201) 5142281893135677 m005 (1/3*5^(1/2)-1/11)/(1/6*5^(1/2)+9/10) 5142281894971461 s002 sum(A037954[n]/(2^n-1),n=1..infinity) 5142281899166537 r005 Im(z^2+c),c=35/94+13/60*I,n=41 5142281911501124 k009 concat of cont frac of 5142281930306941 r009 Im(z^3+c),c=-23/52+26/49*I,n=14 5142281930985379 r009 Im(z^3+c),c=-15/122+41/64*I,n=23 5142281934851308 p001 sum((-1)^n/(593*n+193)/(32^n),n=0..infinity) 5142281936162598 a007 Real Root Of 601*x^4-856*x^3-142*x^2-255*x-252 5142281941559886 m001 (FeigenbaumMu+Trott)/(GAMMA(7/12)-FeigenbaumB) 5142281945240216 a003 sin(Pi*13/99)/cos(Pi*14/65) 5142281948921563 m001 (Paris+Sierpinski)/(ln(gamma)-FeigenbaumDelta) 5142281952067741 a007 Real Root Of -54*x^4-361*x^3-324*x^2+574*x+190 5142281957591181 m001 (-Ei(1,1)+Paris)/(1-BesselJ(0,1)) 5142281967754445 l006 ln(7334/7721) 5142281981333149 a003 cos(Pi*12/119)/cos(Pi*42/85) 5142282002516412 a007 Real Root Of 629*x^4-546*x^3+990*x^2-210*x-488 5142282007613784 h001 (3/7*exp(1)+2/3)/(4/11*exp(2)+7/8) 5142282017030387 m001 (ln(2)/ln(10)+Zeta(3))/(BesselI(0,2)+Cahen) 5142282024646381 a007 Real Root Of 749*x^4-501*x^3+266*x^2-907*x+46 5142282025604824 m001 FransenRobinson/(BesselK(0,1)-PlouffeB) 5142282026890668 a001 63245986/843*1364^(4/15) 5142282035453254 a003 cos(Pi*5/97)-cos(Pi*23/67) 5142282053328149 a007 Real Root Of -40*x^4+541*x^3-883*x^2+924*x+785 5142282057086870 a007 Real Root Of 613*x^4-296*x^3-426*x^2-635*x-297 5142282060111951 r005 Re(z^2+c),c=23/62+9/62*I,n=4 5142282071075690 r002 12th iterates of z^2 + 5142282103498331 a007 Real Root Of -950*x^4+238*x^3-475*x^2-590*x-79 5142282107846834 a003 cos(Pi*20/117)*cos(Pi*21/71) 5142282111343459 k006 concat of cont frac of 5142282121123713 k006 concat of cont frac of 5142282126897228 r009 Im(z^3+c),c=-15/62+23/38*I,n=8 5142282131755237 a007 Real Root Of -440*x^4+656*x^3-629*x^2+155*x+366 5142282137534050 a001 7/17711*4181^(43/50) 5142282148757346 m001 Artin/((Pi*csc(5/24*Pi)/GAMMA(19/24))^Totient) 5142282159389791 r005 Im(z^2+c),c=-65/102+23/55*I,n=40 5142282188913054 a008 Real Root of x^4-2*x^3-10*x^2-13*x-96 5142282190872120 p003 LerchPhi(1/12,4,21/100) 5142282194742456 a007 Real Root Of 607*x^4-314*x^3-602*x^2-707*x+523 5142282205447622 m005 (1/2*5^(1/2)+2/7)/(7/11*exp(1)+1) 5142282211152569 a001 34111385/281*1364^(1/5) 5142282211241214 k007 concat of cont frac of 5142282211513212 k007 concat of cont frac of 5142282211772490 r005 Im(z^2+c),c=-17/14+5/63*I,n=43 5142282221890792 m001 Rabbit^2*PisotVijayaraghavan*ln(Catalan)^2 5142282223550954 r005 Re(z^2+c),c=-13/18+3/62*I,n=48 5142282227023775 r002 6th iterates of z^2 + 5142282237872484 r009 Im(z^3+c),c=-9/74+9/14*I,n=34 5142282242171344 r005 Im(z^2+c),c=5/21+33/62*I,n=7 5142282250025827 r009 Im(z^3+c),c=-33/98+29/64*I,n=2 5142282252077639 m001 FeigenbaumMu^ln(Pi)/GaussAGM 5142282265018683 q001 1789/3479 5142282271610250 r005 Re(z^2+c),c=-27/98+26/43*I,n=13 5142282273702716 r005 Im(z^2+c),c=19/70+24/53*I,n=20 5142282276078497 l006 ln(4929/8243) 5142282286436163 a007 Real Root Of -941*x^4+687*x^3+134*x^2+910*x-531 5142282311157700 r008 a(0)=5,K{-n^6,6+7*n^3-6*n^2-9*n} 5142282312958244 k006 concat of cont frac of 5142282314743143 a007 Real Root Of -153*x^4-779*x^3+68*x^2+40*x-536 5142282353439510 p004 log(35353/33581) 5142282360676268 a001 821222493/1597 5142282361125819 a001 5/24476*521^(38/43) 5142282371181869 r009 Im(z^3+c),c=-31/78+27/49*I,n=27 5142282375331095 m005 (3*exp(1)+5/6)/(3*Catalan-1) 5142282377862792 m005 (1/3*Catalan+3/5)/(7/9*gamma-5/8) 5142282380974638 a007 Real Root Of 64*x^4+346*x^3+146*x^2+390*x+442 5142282384433979 a001 196418/843*3571^(16/17) 5142282395414478 a001 165580141/843*1364^(2/15) 5142282405709792 h001 (5/8*exp(2)+1/11)/(1/12*exp(2)+3/10) 5142282408117825 a001 377*3571^(15/17) 5142282408988113 r009 Im(z^3+c),c=-7/52+34/53*I,n=40 5142282409700492 m008 (3/5*Pi^6-5/6)/(1/5*Pi^3+5) 5142282418003068 r009 Re(z^3+c),c=-21/46+4/63*I,n=48 5142282425571720 k002 Champernowne real with 3/2*n^2+265/2*n-129 5142282431852583 a001 514229/843*3571^(14/17) 5142282440086504 m005 (5/6*gamma-3/4)/(2/5*gamma+5) 5142282440086504 m007 (-5/6*gamma+3/4)/(-2/5*gamma-5) 5142282450351558 a001 96450076809/4*987^(7/9) 5142282454812862 m001 1/Zeta(1,2)*ln(Riemann3rdZero)^2/arctan(1/2)^2 5142282455567895 a001 832040/843*3571^(13/17) 5142282458686638 a007 Real Root Of 102*x^4+328*x^3-919*x^2+423*x-245 5142282465797452 a007 Real Root Of -38*x^4-329*x^3-857*x^2+793*x+43 5142282471275095 r002 47th iterates of z^2 + 5142282479290634 a001 1346269/843*3571^(12/17) 5142282481591001 a007 Real Root Of 174*x^4+772*x^3-791*x^2-845*x-121 5142282503010537 a001 726103/281*3571^(11/17) 5142282504066294 r009 Im(z^3+c),c=-1/48+13/20*I,n=49 5142282512269582 r005 Im(z^2+c),c=-59/102+3/32*I,n=55 5142282513623917 k006 concat of cont frac of 5142282515069243 a007 Real Root Of -111*x^4-477*x^3+298*x^2-891*x+292 5142282526731523 a001 3524578/843*3571^(10/17) 5142282550452096 a001 5702887/843*3571^(9/17) 5142282558425470 r009 Im(z^3+c),c=-15/98+23/36*I,n=49 5142282559700994 a001 133957148/2889*521^(5/13) 5142282563153667 a001 24157817/1364*521^(7/13) 5142282574172827 a001 9227465/843*3571^(8/17) 5142282579676393 a001 267914296/843*1364^(1/15) 5142282588757464 r005 Re(z^2+c),c=5/22+10/19*I,n=48 5142282592676359 a007 Real Root Of 556*x^4+534*x^3-319*x^2-955*x-373 5142282597893497 a001 4976784/281*3571^(7/17) 5142282609899701 a001 377/5778*141422324^(11/13) 5142282609899702 a001 377/5778*2537720636^(11/15) 5142282609899702 a001 377/5778*45537549124^(11/17) 5142282609899702 a001 377/5778*312119004989^(3/5) 5142282609899702 a001 377/5778*14662949395604^(11/21) 5142282609899702 a001 377/5778*(1/2+1/2*5^(1/2))^33 5142282609899702 a001 377/5778*192900153618^(11/18) 5142282609899702 a001 377/5778*10749957122^(11/16) 5142282609899702 a001 377/5778*1568397607^(3/4) 5142282609899702 a001 377/5778*599074578^(11/14) 5142282609899706 a001 377/5778*33385282^(11/12) 5142282609909871 a001 2584/843*20633239^(5/7) 5142282609909879 a001 2584/843*2537720636^(5/9) 5142282609909879 a001 2584/843*312119004989^(5/11) 5142282609909879 a001 2584/843*(1/2+1/2*5^(1/2))^25 5142282609909879 a001 2584/843*3461452808002^(5/12) 5142282609909879 a001 2584/843*28143753123^(1/2) 5142282609909879 a001 2584/843*228826127^(5/8) 5142282609911117 a001 2584/843*1860498^(5/6) 5142282619190868 r005 Im(z^2+c),c=-17/31+15/28*I,n=33 5142282621614191 a001 24157817/843*3571^(6/17) 5142282645334876 a001 39088169/843*3571^(5/17) 5142282656324759 a001 75025/3*4^(13/25) 5142282656705008 r005 Re(z^2+c),c=5/122+14/41*I,n=12 5142282669055564 a001 63245986/843*3571^(4/17) 5142282678963706 a001 1322157322203/34*701408733^(11/19) 5142282678963706 a001 6643838879/34*6557470319842^(11/19) 5142282691256978 a001 701408733/15127*521^(5/13) 5142282692776251 a001 34111385/281*3571^(3/17) 5142282694888384 m001 exp(GAMMA(11/24))/MadelungNaCl^2/GAMMA(5/24) 5142282703037885 m001 (-polylog(4,1/2)+2/3)/(-exp(-Pi)+1/3) 5142282705094475 a001 2149988399/4181 5142282708383909 a001 75025/843*9349^(18/19) 5142282709557686 r002 2th iterates of z^2 + 5142282709557686 r002 2th iterates of z^2 + 5142282709557686 r002 2th iterates of z^2 + 5142282710450738 a001 1836311903/39603*521^(5/13) 5142282711052925 r002 16th iterates of z^2 + 5142282711227910 a001 121393/843*9349^(17/19) 5142282713251070 a001 46368*521^(5/13) 5142282713659633 a001 12586269025/271443*521^(5/13) 5142282713719242 a001 32951280099/710647*521^(5/13) 5142282713727938 a001 43133785636/930249*521^(5/13) 5142282713729207 a001 225851433717/4870847*521^(5/13) 5142282713729392 a001 591286729879/12752043*521^(5/13) 5142282713729419 a001 774004377960/16692641*521^(5/13) 5142282713729423 a001 4052739537881/87403803*521^(5/13) 5142282713729424 a001 225749145909/4868641*521^(5/13) 5142282713729424 a001 3278735159921/70711162*521^(5/13) 5142282713729426 a001 2504730781961/54018521*521^(5/13) 5142282713729436 a001 956722026041/20633239*521^(5/13) 5142282713729507 a001 182717648081/3940598*521^(5/13) 5142282713729991 a001 139583862445/3010349*521^(5/13) 5142282713733313 a001 53316291173/1149851*521^(5/13) 5142282713756082 a001 10182505537/219602*521^(5/13) 5142282713912139 a001 7778742049/167761*521^(5/13) 5142282714420866 a001 196418/843*9349^(16/19) 5142282714981770 a001 2971215073/64079*521^(5/13) 5142282715333521 m001 (Kolakoski+PrimesInBinary)/(exp(Pi)+Artin) 5142282716496939 a001 165580141/843*3571^(2/17) 5142282717480532 a001 377*9349^(15/19) 5142282720591111 a001 514229/843*9349^(14/19) 5142282722313134 a001 567451585/12238*521^(5/13) 5142282723682242 a001 832040/843*9349^(13/19) 5142282724313666 a007 Real Root Of 98*x^4+400*x^3-372*x^2+880*x+228 5142282726780802 a001 1346269/843*9349^(12/19) 5142282729876525 a001 726103/281*9349^(11/19) 5142282732973331 a001 3524578/843*9349^(10/19) 5142282734423042 a007 Real Root Of 604*x^4+430*x^3+965*x^2+66*x-205 5142282736069723 a001 5702887/843*9349^(9/19) 5142282739166273 a001 9227465/843*9349^(8/19) 5142282740217627 a001 267914296/843*3571^(1/17) 5142282741455687 a001 377/15127*2537720636^(7/9) 5142282741455687 a001 377/15127*17393796001^(5/7) 5142282741455687 a001 377/15127*312119004989^(7/11) 5142282741455687 a001 377/15127*14662949395604^(5/9) 5142282741455687 a001 377/15127*(1/2+1/2*5^(1/2))^35 5142282741455687 a001 377/15127*505019158607^(5/8) 5142282741455687 a001 377/15127*28143753123^(7/10) 5142282741455687 a001 377/15127*599074578^(5/6) 5142282741455687 a001 377/15127*228826127^(7/8) 5142282741465869 a001 2255/281*(1/2+1/2*5^(1/2))^23 5142282741465869 a001 2255/281*4106118243^(1/2) 5142282741924291 a001 2255/281*103682^(23/24) 5142282742262763 a001 4976784/281*9349^(7/19) 5142282742957046 m001 (-BesselK(1,1)+GAMMA(7/12))/(Catalan-exp(1)) 5142282745359277 a001 24157817/843*9349^(6/19) 5142282747099823 a007 Real Root Of 728*x^4-960*x^3+841*x^2-12*x-410 5142282748455781 a001 39088169/843*9349^(5/19) 5142282751552288 a001 63245986/843*9349^(4/19) 5142282754648795 a001 34111385/281*9349^(3/19) 5142282755344418 a001 216490104/421 5142282755693747 a001 15456/281*24476^(19/21) 5142282756763564 a001 75025/843*24476^(6/7) 5142282756919806 a001 121393/843*24476^(17/21) 5142282757015699 a001 28657/843*24476^(20/21) 5142282757425003 a001 196418/843*24476^(16/21) 5142282757745302 a001 165580141/843*9349^(2/19) 5142282757796911 a001 377*24476^(5/7) 5142282758219731 a001 514229/843*24476^(2/3) 5142282758623104 a001 832040/843*24476^(13/21) 5142282759033905 a001 1346269/843*24476^(4/7) 5142282759441869 a001 726103/281*24476^(11/21) 5142282759516183 a001 17711/843*64079^(21/23) 5142282759850917 a001 3524578/843*24476^(10/21) 5142282760259550 a001 5702887/843*24476^(3/7) 5142282760638896 a001 17711/843*439204^(7/9) 5142282760649447 a001 377/39603*(1/2+1/2*5^(1/2))^37 5142282760659577 a001 17711/843*7881196^(7/11) 5142282760659622 a001 17711/843*20633239^(3/5) 5142282760659629 a001 17711/843*141422324^(7/13) 5142282760659629 a001 17711/843*2537720636^(7/15) 5142282760659629 a001 17711/843*17393796001^(3/7) 5142282760659629 a001 17711/843*45537549124^(7/17) 5142282760659629 a001 17711/843*14662949395604^(1/3) 5142282760659629 a001 17711/843*(1/2+1/2*5^(1/2))^21 5142282760659629 a001 17711/843*192900153618^(7/18) 5142282760659629 a001 17711/843*10749957122^(7/16) 5142282760659629 a001 17711/843*599074578^(1/2) 5142282760659632 a001 17711/843*33385282^(7/12) 5142282760660669 a001 17711/843*1860498^(7/10) 5142282760667266 a001 17711/843*710647^(3/4) 5142282760668342 a001 9227465/843*24476^(8/21) 5142282760841808 a001 267914296/843*9349^(1/19) 5142282760993648 a001 271443/233*34^(8/19) 5142282761077074 a001 4976784/281*24476^(1/3) 5142282761078189 a001 17711/843*103682^(7/8) 5142282761485828 a001 24157817/843*24476^(2/7) 5142282761894574 a001 39088169/843*24476^(5/21) 5142282762303323 a001 63245986/843*24476^(4/21) 5142282762425414 a001 15456/281*64079^(19/23) 5142282762675786 a001 14736239713/28657 5142282762712071 a001 34111385/281*24476^(1/7) 5142282762942877 a001 121393/843*64079^(17/23) 5142282763093775 a001 196418/843*64079^(16/23) 5142282763111385 a001 377*64079^(15/23) 5142282763120819 a001 165580141/843*24476^(2/21) 5142282763140933 a001 75025/843*64079^(18/23) 5142282763179906 a001 514229/843*64079^(14/23) 5142282763228981 a001 832040/843*64079^(13/23) 5142282763285484 a001 1346269/843*64079^(12/23) 5142282763339150 a001 726103/281*64079^(11/23) 5142282763393899 a001 3524578/843*64079^(10/23) 5142282763448235 a001 5702887/843*64079^(9/23) 5142282763449779 a001 377/103682*2537720636^(13/15) 5142282763449779 a001 377/103682*45537549124^(13/17) 5142282763449779 a001 377/103682*14662949395604^(13/21) 5142282763449779 a001 377/103682*(1/2+1/2*5^(1/2))^39 5142282763449779 a001 377/103682*192900153618^(13/18) 5142282763449779 a001 377/103682*73681302247^(3/4) 5142282763449779 a001 377/103682*10749957122^(13/16) 5142282763449779 a001 377/103682*599074578^(13/14) 5142282763459961 a001 15456/281*817138163596^(1/3) 5142282763459961 a001 15456/281*(1/2+1/2*5^(1/2))^19 5142282763459962 a001 15456/281*87403803^(1/2) 5142282763502728 a001 9227465/843*64079^(8/23) 5142282763529567 a001 267914296/843*24476^(1/21) 5142282763557161 a001 4976784/281*64079^(7/23) 5142282763611618 a001 24157817/843*64079^(6/23) 5142282763666065 a001 39088169/843*64079^(5/23) 5142282763720516 a001 63245986/843*64079^(4/23) 5142282763745418 a001 7715995287/15005 5142282763774965 a001 34111385/281*64079^(3/23) 5142282763789284 a001 17711/843*39603^(21/22) 5142282763818504 a001 377*167761^(3/5) 5142282763829415 a001 165580141/843*64079^(2/23) 5142282763838658 a001 15456/281*103682^(19/24) 5142282763858342 a001 377/271443*(1/2+1/2*5^(1/2))^41 5142282763865312 a001 3524578/843*167761^(2/5) 5142282763868524 a001 121393/843*45537549124^(1/3) 5142282763868524 a001 121393/843*(1/2+1/2*5^(1/2))^17 5142282763868540 a001 121393/843*12752043^(1/2) 5142282763883865 a001 267914296/843*64079^(1/23) 5142282763901475 a001 50501844796/98209 5142282763901771 a001 39088169/843*167761^(1/5) 5142282763913323 a001 377*439204^(5/9) 5142282763917950 a001 377/710647*(1/2+1/2*5^(1/2))^43 5142282763924243 a001 264431092341/514229 5142282763926647 a001 377/1860498*45537549124^(15/17) 5142282763926647 a001 377/1860498*312119004989^(9/11) 5142282763926647 a001 377/1860498*14662949395604^(5/7) 5142282763926647 a001 377/1860498*(1/2+1/2*5^(1/2))^45 5142282763926647 a001 377/1860498*192900153618^(5/6) 5142282763926647 a001 377/1860498*28143753123^(9/10) 5142282763926647 a001 377/1860498*10749957122^(15/16) 5142282763927035 a001 1346269/843*439204^(4/9) 5142282763927565 a001 692289587431/1346269 5142282763927916 a001 377/4870847*(1/2+1/2*5^(1/2))^47 5142282763928050 a001 906218834976/1762289 5142282763928095 a001 377*7881196^(5/11) 5142282763928101 a001 377/12752043*14662949395604^(7/9) 5142282763928101 a001 377/12752043*(1/2+1/2*5^(1/2))^49 5142282763928101 a001 377/12752043*505019158607^(7/8) 5142282763928121 a001 73000360345/141961 5142282763928128 a001 377*20633239^(3/7) 5142282763928128 a001 377/33385282*817138163596^(17/19) 5142282763928128 a001 377/33385282*14662949395604^(17/21) 5142282763928128 a001 377/33385282*(1/2+1/2*5^(1/2))^51 5142282763928128 a001 377/33385282*192900153618^(17/18) 5142282763928131 a001 12422632597323/24157817 5142282763928132 a001 16261437184772/31622993 5142282763928133 a001 377*141422324^(5/13) 5142282763928133 a001 377/228826127*3461452808002^(11/12) 5142282763928133 a001 85145990511309/165580141 5142282763928133 a001 377/599074578*14662949395604^(19/21) 5142282763928133 a001 222915097164383/433494437 5142282763928133 a001 956720165544/1860497 5142282763928133 a001 377*2537720636^(1/3) 5142282763928133 a001 1527882805781137/2971215073 5142282763928133 a001 307696085873967/598364773 5142282763928133 a001 377*45537549124^(5/17) 5142282763928133 a001 377*312119004989^(3/11) 5142282763928133 a001 377*14662949395604^(5/21) 5142282763928133 a001 377*192900153618^(5/18) 5142282763928133 a001 377*28143753123^(3/10) 5142282763928133 a001 377*10749957122^(5/16) 5142282763928133 a001 1236083155290217/2403763488 5142282763928133 a001 944283504799297/1836311903 5142282763928133 a001 377/2537720636*14662949395604^(20/21) 5142282763928133 a001 360684203817457/701408733 5142282763928133 a001 377*599074578^(5/14) 5142282763928133 a001 182717648081/355324 5142282763928133 a001 377*228826127^(3/8) 5142282763928133 a001 377/370248451*14662949395604^(8/9) 5142282763928133 a001 10524623228353/20466831 5142282763928133 a001 377/141422324*14662949395604^(6/7) 5142282763928133 a001 20100241772221/39088169 5142282763928134 a001 377/54018521*23725150497407^(13/16) 5142282763928134 a001 377/54018521*505019158607^(13/14) 5142282763928135 a001 377*33385282^(5/12) 5142282763928137 a001 3838804587449/7465176 5142282763928145 a001 13/711491*312119004989^(10/11) 5142282763928145 a001 13/711491*(1/2+1/2*5^(1/2))^50 5142282763928145 a001 13/711491*3461452808002^(5/6) 5142282763928164 a001 2932585752473/5702887 5142282763928215 a001 377/7881196*45537549124^(16/17) 5142282763928215 a001 377/7881196*14662949395604^(16/21) 5142282763928215 a001 377/7881196*(1/2+1/2*5^(1/2))^48 5142282763928215 a001 377/7881196*192900153618^(8/9) 5142282763928215 a001 377/7881196*73681302247^(12/13) 5142282763928349 a001 1120148082521/2178309 5142282763928700 a001 377/3010349*(1/2+1/2*5^(1/2))^46 5142282763928700 a001 377/3010349*10749957122^(23/24) 5142282763928875 a001 377*1860498^(1/2) 5142282763929397 a001 5702887/843*439204^(1/3) 5142282763929618 a001 701407369/1364 5142282763932022 a001 377/1149851*312119004989^(4/5) 5142282763932022 a001 377/1149851*(1/2+1/2*5^(1/2))^44 5142282763932022 a001 377/1149851*23725150497407^(11/16) 5142282763932022 a001 377/1149851*73681302247^(11/13) 5142282763932022 a001 377/1149851*10749957122^(11/12) 5142282763932022 a001 377/1149851*4106118243^(22/23) 5142282763932393 a001 24157817/843*439204^(2/9) 5142282763935353 a001 34111385/281*439204^(1/9) 5142282763936829 a001 832040/843*141422324^(1/3) 5142282763936829 a001 832040/843*(1/2+1/2*5^(1/2))^13 5142282763936829 a001 832040/843*73681302247^(1/4) 5142282763938071 a001 726103/281*7881196^(1/3) 5142282763938098 a001 726103/281*312119004989^(1/5) 5142282763938098 a001 726103/281*(1/2+1/2*5^(1/2))^11 5142282763938098 a001 726103/281*1568397607^(1/4) 5142282763938261 a001 5702887/843*7881196^(3/11) 5142282763938283 a001 5702887/843*141422324^(3/13) 5142282763938283 a001 5702887/843*2537720636^(1/5) 5142282763938283 a001 5702887/843*45537549124^(3/17) 5142282763938283 a001 5702887/843*14662949395604^(1/7) 5142282763938283 a001 5702887/843*(1/2+1/2*5^(1/2))^9 5142282763938283 a001 5702887/843*192900153618^(1/6) 5142282763938283 a001 5702887/843*10749957122^(3/16) 5142282763938283 a001 5702887/843*599074578^(3/14) 5142282763938285 a001 5702887/843*33385282^(1/4) 5142282763938302 a001 24157817/843*7881196^(2/11) 5142282763938307 a001 34111385/281*7881196^(1/11) 5142282763938308 a001 4976784/281*20633239^(1/5) 5142282763938310 a001 4976784/281*17393796001^(1/7) 5142282763938310 a001 4976784/281*14662949395604^(1/9) 5142282763938310 a001 4976784/281*(1/2+1/2*5^(1/2))^7 5142282763938310 a001 4976784/281*599074578^(1/6) 5142282763938313 a001 39088169/843*20633239^(1/7) 5142282763938314 a001 39088169/843*2537720636^(1/9) 5142282763938314 a001 39088169/843*312119004989^(1/11) 5142282763938314 a001 39088169/843*(1/2+1/2*5^(1/2))^5 5142282763938314 a001 39088169/843*28143753123^(1/10) 5142282763938314 a001 39088169/843*228826127^(1/8) 5142282763938315 a001 34111385/281*141422324^(1/13) 5142282763938315 a001 34111385/281*2537720636^(1/15) 5142282763938315 a001 34111385/281*45537549124^(1/17) 5142282763938315 a001 34111385/281*14662949395604^(1/21) 5142282763938315 a001 34111385/281*(1/2+1/2*5^(1/2))^3 5142282763938315 a001 34111385/281*192900153618^(1/18) 5142282763938315 a001 34111385/281*10749957122^(1/16) 5142282763938315 a001 34111385/281*599074578^(1/14) 5142282763938315 a001 133957148/843+133957148/843*5^(1/2) 5142282763938315 a001 433494437/843 5142282763938315 a001 165580141/843*(1/2+1/2*5^(1/2))^2 5142282763938315 a001 165580141/843*10749957122^(1/24) 5142282763938315 a001 165580141/843*4106118243^(1/23) 5142282763938315 a001 165580141/843*1568397607^(1/22) 5142282763938315 a001 165580141/843*599074578^(1/21) 5142282763938315 a001 165580141/843*228826127^(1/20) 5142282763938315 a001 165580141/843*87403803^(1/19) 5142282763938315 a001 63245986/843*(1/2+1/2*5^(1/2))^4 5142282763938315 a001 63245986/843*23725150497407^(1/16) 5142282763938315 a001 63245986/843*73681302247^(1/13) 5142282763938315 a001 63245986/843*10749957122^(1/12) 5142282763938315 a001 63245986/843*4106118243^(2/23) 5142282763938315 a001 63245986/843*1568397607^(1/11) 5142282763938315 a001 63245986/843*599074578^(2/21) 5142282763938315 a001 63245986/843*228826127^(1/10) 5142282763938315 a001 34111385/281*33385282^(1/12) 5142282763938315 a001 165580141/843*33385282^(1/18) 5142282763938315 a001 63245986/843*87403803^(2/19) 5142282763938316 a001 63245986/843*33385282^(1/9) 5142282763938317 a001 24157817/843*141422324^(2/13) 5142282763938317 a001 24157817/843*2537720636^(2/15) 5142282763938317 a001 24157817/843*45537549124^(2/17) 5142282763938317 a001 24157817/843*14662949395604^(2/21) 5142282763938317 a001 24157817/843*(1/2+1/2*5^(1/2))^6 5142282763938317 a001 24157817/843*10749957122^(1/8) 5142282763938317 a001 24157817/843*4106118243^(3/23) 5142282763938317 a001 24157817/843*1568397607^(3/22) 5142282763938317 a001 24157817/843*599074578^(1/7) 5142282763938317 a001 24157817/843*228826127^(3/20) 5142282763938317 a001 24157817/843*87403803^(3/19) 5142282763938317 a001 165580141/843*12752043^(1/17) 5142282763938318 a001 24157817/843*33385282^(1/6) 5142282763938319 a001 63245986/843*12752043^(2/17) 5142282763938322 a001 24157817/843*12752043^(3/17) 5142282763938327 a001 9227465/843*(1/2+1/2*5^(1/2))^8 5142282763938327 a001 9227465/843*23725150497407^(1/8) 5142282763938327 a001 9227465/843*505019158607^(1/7) 5142282763938327 a001 9227465/843*73681302247^(2/13) 5142282763938327 a001 9227465/843*10749957122^(1/6) 5142282763938327 a001 9227465/843*4106118243^(4/23) 5142282763938327 a001 9227465/843*1568397607^(2/11) 5142282763938327 a001 9227465/843*599074578^(4/21) 5142282763938327 a001 9227465/843*228826127^(1/5) 5142282763938327 a001 9227465/843*87403803^(4/19) 5142282763938328 a001 9227465/843*33385282^(2/9) 5142282763938329 a001 165580141/843*4870847^(1/16) 5142282763938335 a001 9227465/843*12752043^(4/17) 5142282763938342 a001 63245986/843*4870847^(1/8) 5142282763938357 a001 24157817/843*4870847^(3/16) 5142282763938381 a001 9227465/843*4870847^(1/4) 5142282763938394 a001 3524578/843*20633239^(2/7) 5142282763938398 a001 3524578/843*2537720636^(2/9) 5142282763938398 a001 3524578/843*312119004989^(2/11) 5142282763938398 a001 3524578/843*(1/2+1/2*5^(1/2))^10 5142282763938398 a001 3524578/843*28143753123^(1/5) 5142282763938398 a001 3524578/843*10749957122^(5/24) 5142282763938398 a001 3524578/843*4106118243^(5/23) 5142282763938398 a001 3524578/843*1568397607^(5/22) 5142282763938398 a001 3524578/843*599074578^(5/21) 5142282763938398 a001 3524578/843*228826127^(1/4) 5142282763938398 a001 3524578/843*87403803^(5/19) 5142282763938399 a001 3524578/843*33385282^(5/18) 5142282763938407 a001 3524578/843*12752043^(5/17) 5142282763938414 a001 165580141/843*1860498^(1/15) 5142282763938463 a001 34111385/281*1860498^(1/10) 5142282763938466 a001 3524578/843*4870847^(5/16) 5142282763938513 a001 63245986/843*1860498^(2/15) 5142282763938562 a001 39088169/843*1860498^(1/6) 5142282763938614 a001 24157817/843*1860498^(1/5) 5142282763938723 a001 9227465/843*1860498^(4/15) 5142282763938729 a001 5702887/843*1860498^(3/10) 5142282763938852 a001 1346269/843*7881196^(4/11) 5142282763938882 a001 1346269/843*141422324^(4/13) 5142282763938882 a001 1346269/843*2537720636^(4/15) 5142282763938882 a001 1346269/843*45537549124^(4/17) 5142282763938882 a001 1346269/843*817138163596^(4/19) 5142282763938882 a001 1346269/843*14662949395604^(4/21) 5142282763938882 a001 1346269/843*(1/2+1/2*5^(1/2))^12 5142282763938882 a001 1346269/843*192900153618^(2/9) 5142282763938882 a001 1346269/843*73681302247^(3/13) 5142282763938882 a001 1346269/843*10749957122^(1/4) 5142282763938882 a001 1346269/843*4106118243^(6/23) 5142282763938882 a001 1346269/843*1568397607^(3/11) 5142282763938882 a001 1346269/843*599074578^(2/7) 5142282763938883 a001 1346269/843*228826127^(3/10) 5142282763938883 a001 1346269/843*87403803^(6/19) 5142282763938884 a001 1346269/843*33385282^(1/3) 5142282763938893 a001 3524578/843*1860498^(1/3) 5142282763938894 a001 1346269/843*12752043^(6/17) 5142282763938964 a001 1346269/843*4870847^(3/8) 5142282763939042 a001 165580141/843*710647^(1/14) 5142282763939477 a001 1346269/843*1860498^(2/5) 5142282763939770 a001 63245986/843*710647^(1/7) 5142282763940499 a001 24157817/843*710647^(3/14) 5142282763940856 a001 4976784/281*710647^(1/4) 5142282763941236 a001 9227465/843*710647^(2/7) 5142282763942034 a001 3524578/843*710647^(5/14) 5142282763942200 a001 514229/843*20633239^(2/5) 5142282763942204 a001 514229/843*17393796001^(2/7) 5142282763942204 a001 514229/843*14662949395604^(2/9) 5142282763942204 a001 514229/843*(1/2+1/2*5^(1/2))^14 5142282763942204 a001 514229/843*10749957122^(7/24) 5142282763942204 a001 514229/843*4106118243^(7/23) 5142282763942204 a001 514229/843*1568397607^(7/22) 5142282763942204 a001 514229/843*599074578^(1/3) 5142282763942204 a001 514229/843*228826127^(7/20) 5142282763942205 a001 514229/843*87403803^(7/19) 5142282763942206 a001 514229/843*33385282^(7/18) 5142282763942217 a001 514229/843*12752043^(7/17) 5142282763942299 a001 514229/843*4870847^(7/16) 5142282763942898 a001 514229/843*1860498^(7/15) 5142282763943246 a001 1346269/843*710647^(3/7) 5142282763943684 a001 165580141/843*271443^(1/13) 5142282763947296 a001 514229/843*710647^(1/2) 5142282763949052 a001 63245986/843*271443^(2/13) 5142282763954422 a001 24157817/843*271443^(3/13) 5142282763954790 a001 377/439204*2537720636^(14/15) 5142282763954790 a001 377/439204*17393796001^(6/7) 5142282763954790 a001 377/439204*45537549124^(14/17) 5142282763954790 a001 377/439204*817138163596^(14/19) 5142282763954790 a001 377/439204*14662949395604^(2/3) 5142282763954790 a001 377/439204*(1/2+1/2*5^(1/2))^42 5142282763954790 a001 377/439204*505019158607^(3/4) 5142282763954790 a001 377/439204*192900153618^(7/9) 5142282763954790 a001 377/439204*10749957122^(7/8) 5142282763954790 a001 377/439204*4106118243^(21/23) 5142282763954790 a001 377/439204*1568397607^(21/22) 5142282763958246 a001 267914296/843*103682^(1/24) 5142282763959801 a001 9227465/843*271443^(4/13) 5142282763964973 a001 196418/843*(1/2+1/2*5^(1/2))^16 5142282763964973 a001 196418/843*23725150497407^(1/4) 5142282763964973 a001 196418/843*73681302247^(4/13) 5142282763964973 a001 196418/843*10749957122^(1/3) 5142282763964973 a001 196418/843*4106118243^(8/23) 5142282763964973 a001 196418/843*1568397607^(4/11) 5142282763964973 a001 196418/843*599074578^(8/21) 5142282763964973 a001 196418/843*228826127^(2/5) 5142282763964973 a001 196418/843*87403803^(8/19) 5142282763964975 a001 196418/843*33385282^(4/9) 5142282763964988 a001 196418/843*12752043^(8/17) 5142282763965081 a001 196418/843*4870847^(1/2) 5142282763965240 a001 3524578/843*271443^(5/13) 5142282763965765 a001 196418/843*1860498^(8/15) 5142282763970791 a001 196418/843*710647^(4/7) 5142282763971094 a001 1346269/843*271443^(6/13) 5142282763971725 a001 832040/843*271443^(1/2) 5142282763978178 a001 165580141/843*103682^(1/12) 5142282763979784 a001 514229/843*271443^(7/13) 5142282763997924 a001 62423713157/121393 5142282763998109 a001 34111385/281*103682^(1/8) 5142282764007921 a001 196418/843*271443^(8/13) 5142282764018041 a001 63245986/843*103682^(1/6) 5142282764037971 a001 39088169/843*103682^(5/24) 5142282764057905 a001 24157817/843*103682^(1/4) 5142282764077830 a001 4976784/281*103682^(7/24) 5142282764087346 a001 267914296/843*39603^(1/22) 5142282764097778 a001 9227465/843*103682^(1/3) 5142282764101665 a001 28657/843*64079^(20/23) 5142282764103258 a001 75025/843*439204^(2/3) 5142282764110848 a001 377/167761*2537720636^(8/9) 5142282764110848 a001 377/167761*312119004989^(8/11) 5142282764110848 a001 377/167761*(1/2+1/2*5^(1/2))^40 5142282764110848 a001 377/167761*23725150497407^(5/8) 5142282764110848 a001 377/167761*73681302247^(10/13) 5142282764110848 a001 377/167761*28143753123^(4/5) 5142282764110848 a001 377/167761*10749957122^(5/6) 5142282764110848 a001 377/167761*4106118243^(20/23) 5142282764110848 a001 377/167761*1568397607^(10/11) 5142282764110848 a001 377/167761*599074578^(20/21) 5142282764117666 a001 5702887/843*103682^(3/8) 5142282764120985 a001 75025/843*7881196^(6/11) 5142282764121030 a001 75025/843*141422324^(6/13) 5142282764121030 a001 75025/843*2537720636^(2/5) 5142282764121030 a001 75025/843*45537549124^(6/17) 5142282764121030 a001 75025/843*14662949395604^(2/7) 5142282764121030 a001 75025/843*(1/2+1/2*5^(1/2))^18 5142282764121030 a001 75025/843*192900153618^(1/3) 5142282764121030 a001 75025/843*10749957122^(3/8) 5142282764121030 a001 75025/843*4106118243^(9/23) 5142282764121030 a001 75025/843*1568397607^(9/22) 5142282764121030 a001 75025/843*599074578^(3/7) 5142282764121030 a001 75025/843*228826127^(9/20) 5142282764121030 a001 75025/843*87403803^(9/19) 5142282764121032 a001 75025/843*33385282^(1/2) 5142282764121047 a001 75025/843*12752043^(9/17) 5142282764121152 a001 75025/843*4870847^(9/16) 5142282764121921 a001 75025/843*1860498^(3/5) 5142282764127576 a001 75025/843*710647^(9/14) 5142282764137712 a001 3524578/843*103682^(5/12) 5142282764157344 a001 726103/281*103682^(11/24) 5142282764169347 a001 75025/843*271443^(9/13) 5142282764178059 a001 1346269/843*103682^(1/2) 5142282764195938 a001 832040/843*103682^(13/24) 5142282764207358 a001 121393/843*103682^(17/24) 5142282764221244 a001 514229/843*103682^(7/12) 5142282764227104 a001 377*103682^(5/8) 5142282764236377 a001 165580141/843*39603^(1/11) 5142282764283875 a001 196418/843*103682^(2/3) 5142282764385408 a001 34111385/281*39603^(3/22) 5142282764406487 a001 11921868361/23184 5142282764479795 a001 75025/843*103682^(3/4) 5142282764534440 a001 63245986/843*39603^(2/11) 5142282764683470 a001 39088169/843*39603^(5/22) 5142282764832504 a001 24157817/843*39603^(3/11) 5142282764981529 a001 4976784/281*39603^(7/22) 5142282765044490 a001 28657/843*167761^(4/5) 5142282765061937 a001 267914296/843*15127^(1/20) 5142282765130576 a001 9227465/843*39603^(4/11) 5142282765180479 a001 377/64079*817138163596^(2/3) 5142282765180479 a001 377/64079*(1/2+1/2*5^(1/2))^38 5142282765180479 a001 377/64079*10749957122^(19/24) 5142282765180479 a001 377/64079*4106118243^(19/23) 5142282765180479 a001 377/64079*1568397607^(19/22) 5142282765180479 a001 377/64079*599074578^(19/21) 5142282765180479 a001 377/64079*228826127^(19/20) 5142282765190655 a001 28657/843*20633239^(4/7) 5142282765190662 a001 28657/843*2537720636^(4/9) 5142282765190662 a001 28657/843*(1/2+1/2*5^(1/2))^20 5142282765190662 a001 28657/843*23725150497407^(5/16) 5142282765190662 a001 28657/843*505019158607^(5/14) 5142282765190662 a001 28657/843*73681302247^(5/13) 5142282765190662 a001 28657/843*28143753123^(2/5) 5142282765190662 a001 28657/843*10749957122^(5/12) 5142282765190662 a001 28657/843*4106118243^(10/23) 5142282765190662 a001 28657/843*1568397607^(5/11) 5142282765190662 a001 28657/843*599074578^(10/21) 5142282765190662 a001 28657/843*228826127^(1/2) 5142282765190662 a001 28657/843*87403803^(10/19) 5142282765190664 a001 28657/843*33385282^(5/9) 5142282765190680 a001 28657/843*12752043^(10/17) 5142282765190797 a001 28657/843*4870847^(5/8) 5142282765191652 a001 28657/843*1860498^(2/3) 5142282765197935 a001 28657/843*710647^(5/7) 5142282765244347 a001 28657/843*271443^(10/13) 5142282765279564 a001 5702887/843*39603^(9/22) 5142282765428709 a001 3524578/843*39603^(5/11) 5142282765577441 a001 726103/281*39603^(1/2) 5142282765589290 a001 28657/843*103682^(5/6) 5142282765727256 a001 1346269/843*39603^(6/11) 5142282765874235 a001 832040/843*39603^(13/22) 5142282766028641 a001 514229/843*39603^(7/11) 5142282766163600 a001 377*39603^(15/22) 5142282766185560 a001 165580141/843*15127^(1/10) 5142282766291553 a001 15456/281*39603^(19/22) 5142282766349471 a001 196418/843*39603^(8/11) 5142282766402054 a001 121393/843*39603^(17/22) 5142282766803591 a001 75025/843*39603^(9/11) 5142282767166145 r005 Re(z^2+c),c=-12/19+10/49*I,n=14 5142282767206820 a001 9107497009/17711 5142282767309182 a001 34111385/281*15127^(3/20) 5142282768171285 a001 28657/843*39603^(10/11) 5142282768432804 a001 63245986/843*15127^(1/5) 5142282769556426 a001 39088169/843*15127^(1/4) 5142282770680051 a001 24157817/843*15127^(3/10) 5142282771324129 a001 10946/843*64079^(22/23) 5142282771803666 a001 4976784/281*15127^(7/20) 5142282772495450 a001 267914296/843*5778^(1/18) 5142282772511843 a001 13/844*141422324^(12/13) 5142282772511843 a001 13/844*2537720636^(4/5) 5142282772511843 a001 13/844*45537549124^(12/17) 5142282772511843 a001 13/844*14662949395604^(4/7) 5142282772511843 a001 13/844*(1/2+1/2*5^(1/2))^36 5142282772511843 a001 13/844*505019158607^(9/14) 5142282772511843 a001 13/844*192900153618^(2/3) 5142282772511843 a001 13/844*73681302247^(9/13) 5142282772511843 a001 13/844*10749957122^(3/4) 5142282772511843 a001 13/844*4106118243^(18/23) 5142282772511843 a001 13/844*1568397607^(9/11) 5142282772511843 a001 13/844*599074578^(6/7) 5142282772511843 a001 13/844*228826127^(9/10) 5142282772511844 a001 13/844*87403803^(18/19) 5142282772521970 a001 10946/843*7881196^(2/3) 5142282772522026 a001 10946/843*312119004989^(2/5) 5142282772522026 a001 10946/843*(1/2+1/2*5^(1/2))^22 5142282772522026 a001 10946/843*10749957122^(11/24) 5142282772522026 a001 10946/843*4106118243^(11/23) 5142282772522026 a001 10946/843*1568397607^(1/2) 5142282772522026 a001 10946/843*599074578^(11/21) 5142282772522026 a001 10946/843*228826127^(11/20) 5142282772522026 a001 10946/843*87403803^(11/19) 5142282772522028 a001 10946/843*33385282^(11/18) 5142282772522046 a001 10946/843*12752043^(11/17) 5142282772522175 a001 10946/843*4870847^(11/16) 5142282772523115 a001 10946/843*1860498^(11/15) 5142282772530026 a001 10946/843*710647^(11/14) 5142282772563051 a001 433494437/9349*521^(5/13) 5142282772581079 a001 10946/843*271443^(11/13) 5142282772927305 a001 9227465/843*15127^(2/5) 5142282772960517 a001 10946/843*103682^(11/12) 5142282774050884 a001 5702887/843*15127^(9/20) 5142282775174621 a001 3524578/843*15127^(1/2) 5142282776297944 a001 726103/281*15127^(11/20) 5142282777422350 a001 1346269/843*15127^(3/5) 5142282778543919 a001 832040/843*15127^(13/20) 5142282779672916 a001 514229/843*15127^(7/10) 5142282780782467 a001 377*15127^(3/4) 5142282781052585 a001 165580141/843*5778^(1/9) 5142282781942930 a001 196418/843*15127^(4/5) 5142282782970103 a001 121393/843*15127^(17/20) 5142282784346231 a001 75025/843*15127^(9/10) 5142282784808785 a001 15456/281*15127^(19/20) 5142282786400591 a001 695750861/1353 5142282789609721 a001 34111385/281*5778^(1/6) 5142282798166856 a001 63245986/843*5778^(2/9) 5142282806723990 a001 39088169/843*5778^(5/18) 5142282815281128 a001 24157817/843*5778^(1/3) 5142282822319774 m001 1/ln(FeigenbaumB)*GolombDickman/Robbin 5142282822748246 a001 4181/843*439204^(8/9) 5142282822761761 a001 377/9349*45537549124^(2/3) 5142282822761761 a001 377/9349*(1/2+1/2*5^(1/2))^34 5142282822761761 a001 377/9349*10749957122^(17/24) 5142282822761761 a001 377/9349*4106118243^(17/23) 5142282822761761 a001 377/9349*1568397607^(17/22) 5142282822761761 a001 377/9349*599074578^(17/21) 5142282822761761 a001 377/9349*228826127^(17/20) 5142282822761761 a001 377/9349*87403803^(17/19) 5142282822761765 a001 377/9349*33385282^(17/18) 5142282822771882 a001 4181/843*7881196^(8/11) 5142282822771942 a001 4181/843*141422324^(8/13) 5142282822771942 a001 4181/843*2537720636^(8/15) 5142282822771942 a001 4181/843*45537549124^(8/17) 5142282822771942 a001 4181/843*14662949395604^(8/21) 5142282822771942 a001 4181/843*(1/2+1/2*5^(1/2))^24 5142282822771942 a001 4181/843*192900153618^(4/9) 5142282822771942 a001 4181/843*73681302247^(6/13) 5142282822771942 a001 4181/843*10749957122^(1/2) 5142282822771942 a001 4181/843*4106118243^(12/23) 5142282822771942 a001 4181/843*1568397607^(6/11) 5142282822771942 a001 4181/843*599074578^(4/7) 5142282822771942 a001 4181/843*228826127^(3/5) 5142282822771943 a001 4181/843*87403803^(12/19) 5142282822771945 a001 4181/843*33385282^(2/3) 5142282822771965 a001 4181/843*12752043^(12/17) 5142282822772105 a001 4181/843*4870847^(3/4) 5142282822773131 a001 4181/843*1860498^(4/5) 5142282822780670 a001 4181/843*710647^(6/7) 5142282822836365 a001 4181/843*271443^(12/13) 5142282823838257 a001 4976784/281*5778^(7/18) 5142282829921221 a001 267914296/843*2207^(1/16) 5142282832395409 a001 9227465/843*5778^(4/9) 5142282833954831 r009 Im(z^3+c),c=-37/114+25/42*I,n=45 5142282840952501 a001 5702887/843*5778^(1/2) 5142282845147695 r005 Im(z^2+c),c=-25/34+9/37*I,n=43 5142282849509750 a001 3524578/843*5778^(5/9) 5142282858066586 a001 726103/281*5778^(11/18) 5142282866624506 a001 1346269/843*5778^(2/3) 5142282874901855 a005 (1/sin(42/139*Pi))^108 5142282875179588 a001 832040/843*5778^(13/18) 5142282883742098 a001 514229/843*5778^(7/9) 5142282892285162 a001 377*5778^(5/6) 5142282895904129 a001 165580141/843*2207^(1/8) 5142282900879138 a001 196418/843*5778^(8/9) 5142282909339824 a001 121393/843*5778^(17/18) 5142282917956656 a001 664382953/1292 5142282918704079 m001 1/exp(GAMMA(1/4))/TwinPrimes^2*sin(1) 5142282943011159 l006 ln(1819/3042) 5142282961887037 a001 34111385/281*2207^(3/16) 5142282962301001 a001 3571/28657*89^(6/19) 5142282964296419 a007 Real Root Of -845*x^4-199*x^3-573*x^2+32*x+200 5142282972151026 a007 Real Root Of -58*x^4+942*x^3-729*x^2+41*x+346 5142282984708533 m005 (1/2*Zeta(3)+2)/(-39/55+1/11*5^(1/2)) 5142282985225830 s002 sum(A183524[n]/(exp(n)),n=1..infinity) 5142282994484006 h001 (-2*exp(3)-7)/(-8*exp(-2)+2) 5142283019040238 r005 Re(z^2+c),c=-20/29+11/57*I,n=59 5142283027869946 a001 63245986/843*2207^(1/4) 5142283066402527 a007 Real Root Of 124*x^4+19*x^3+83*x^2-963*x+462 5142283083719812 a007 Real Root Of 773*x^4-293*x^3+638*x^2-485*x-512 5142283093852855 a001 39088169/843*2207^(5/16) 5142283104938770 r002 4th iterates of z^2 + 5142283115134268 m001 MertensB3^(FeigenbaumC*Riemann3rdZero) 5142283115197877 m001 2*Pi/GAMMA(5/6)*Gompertz+MasserGramainDelta 5142283115255259 a001 165580141/2207*521^(4/13) 5142283116981132 a001 165580141/3571*521^(5/13) 5142283124993541 a007 Real Root Of -41*x^4-122*x^3-59*x^2+988*x-473 5142283128302368 a007 Real Root Of 110*x^4+788*x^3+973*x^2-811*x+335 5142283130503489 m005 (1/2*3^(1/2)+7/12)/(9/10*Zeta(3)-4/5) 5142283158249005 a007 Real Root Of -154*x^4-704*x^3+632*x^2+998*x+374 5142283159835768 a001 24157817/843*2207^(3/8) 5142283159989323 a007 Real Root Of -273*x^4-242*x^3-951*x^2+481*x+485 5142283167179844 a001 377/3571*(1/2+1/2*5^(1/2))^32 5142283167179844 a001 377/3571*23725150497407^(1/2) 5142283167179844 a001 377/3571*505019158607^(4/7) 5142283167179844 a001 377/3571*73681302247^(8/13) 5142283167179844 a001 377/3571*10749957122^(2/3) 5142283167179844 a001 377/3571*4106118243^(16/23) 5142283167179844 a001 377/3571*1568397607^(8/11) 5142283167179844 a001 377/3571*599074578^(16/21) 5142283167179844 a001 377/3571*228826127^(4/5) 5142283167179845 a001 377/3571*87403803^(16/19) 5142283167179848 a001 377/3571*33385282^(8/9) 5142283167179874 a001 377/3571*12752043^(16/17) 5142283167189995 a001 1597/843*141422324^(2/3) 5142283167189995 a001 1597/843*(1/2+1/2*5^(1/2))^26 5142283167189995 a001 1597/843*73681302247^(1/2) 5142283167189995 a001 1597/843*10749957122^(13/24) 5142283167189995 a001 1597/843*4106118243^(13/23) 5142283167189995 a001 1597/843*1568397607^(13/22) 5142283167189995 a001 1597/843*599074578^(13/21) 5142283167189995 a001 1597/843*228826127^(13/20) 5142283167189996 a001 1597/843*87403803^(13/19) 5142283167189998 a001 1597/843*33385282^(13/18) 5142283167190019 a001 1597/843*12752043^(13/17) 5142283167190171 a001 1597/843*4870847^(13/16) 5142283167191283 a001 1597/843*1860498^(13/15) 5142283167199450 a001 1597/843*710647^(13/14) 5142283174245713 m002 -8-Pi^2+6*Sinh[Pi] 5142283180968374 m001 sqrt(Pi)^GAMMA(1/12)/(sqrt(Pi)^Lehmer) 5142283184300591 p003 LerchPhi(1/16,1,337/166) 5142283189106741 m001 cos(1/12*Pi)/(sin(1)+Zeta(5)) 5142283189106741 m001 cos(Pi/12)/(sin(1)+Zeta(5)) 5142283206970064 m001 1/FeigenbaumD^2/ln(Robbin)*GAMMA(7/12) 5142283209739012 r002 16th iterates of z^2 + 5142283211909777 r002 49th iterates of z^2 + 5142283212638717 a001 9349/8*2504730781961^(7/9) 5142283225353522 r002 3th iterates of z^2 + 5142283225818673 a001 4976784/281*2207^(7/16) 5142283227318379 q001 1536/2987 5142283270031843 r009 Re(z^3+c),c=-6/11+13/53*I,n=38 5142283271472267 a001 1970299/2*433494437^(7/9) 5142283271472326 a001 228826127/8*5702887^(7/9) 5142283271542141 a001 271443/8*32951280099^(7/9) 5142283271614462 a001 6643838879/8*75025^(7/9) 5142283278109244 m001 (FeigenbaumDelta+Paris)/(1+gamma(1)) 5142283280799248 a001 267914296/843*843^(1/14) 5142283291801602 a001 9227465/843*2207^(1/2) 5142283307421659 a001 41/15456*13^(8/31) 5142283307788725 a001 9349/75025*89^(6/19) 5142283340534519 r009 Im(z^3+c),c=-1/70+19/29*I,n=18 5142283345678908 r009 Re(z^3+c),c=-25/64+1/52*I,n=54 5142283348165850 r009 Im(z^3+c),c=-4/29+29/45*I,n=15 5142283357784472 a001 5702887/843*2207^(9/16) 5142283358194705 a001 12238/98209*89^(6/19) 5142283365548839 a001 64079/514229*89^(6/19) 5142283366621792 a001 167761/1346269*89^(6/19) 5142283366778334 a001 219602/1762289*89^(6/19) 5142283366801173 a001 1149851/9227465*89^(6/19) 5142283366804505 a001 3010349/24157817*89^(6/19) 5142283366804991 a001 3940598/31622993*89^(6/19) 5142283366805062 a001 20633239/165580141*89^(6/19) 5142283366805073 a001 54018521/433494437*89^(6/19) 5142283366805074 a001 70711162/567451585*89^(6/19) 5142283366805074 a001 370248451/2971215073*89^(6/19) 5142283366805074 a001 969323029/7778742049*89^(6/19) 5142283366805074 a001 1268860318/10182505537*89^(6/19) 5142283366805074 a001 6643838879/53316291173*89^(6/19) 5142283366805074 a001 17393796001/139583862445*89^(6/19) 5142283366805074 a001 22768774562/182717648081*89^(6/19) 5142283366805074 a001 119218851371/956722026041*89^(6/19) 5142283366805074 a001 312119004989/2504730781961*89^(6/19) 5142283366805074 a001 408569081798/3278735159921*89^(6/19) 5142283366805074 a001 505019158607/4052739537881*89^(6/19) 5142283366805074 a001 10716675201/86000486440*89^(6/19) 5142283366805074 a001 73681302247/591286729879*89^(6/19) 5142283366805074 a001 9381251041/75283811239*89^(6/19) 5142283366805074 a001 5374978561/43133785636*89^(6/19) 5142283366805074 a001 1368706081/10983760033*89^(6/19) 5142283366805074 a001 1568397607/12586269025*89^(6/19) 5142283366805074 a001 33281921/267084832*89^(6/19) 5142283366805075 a001 228826127/1836311903*89^(6/19) 5142283366805075 a001 29134601/233802911*89^(6/19) 5142283366805079 a001 16692641/133957148*89^(6/19) 5142283366805106 a001 4250681/34111385*89^(6/19) 5142283366805292 a001 4870847/39088169*89^(6/19) 5142283366806565 a001 103361/829464*89^(6/19) 5142283366815288 a001 710647/5702887*89^(6/19) 5142283366875082 a001 90481/726103*89^(6/19) 5142283367284914 a001 51841/416020*89^(6/19) 5142283369803494 r009 Re(z^3+c),c=-49/102+5/58*I,n=47 5142283370093943 a001 13201/105937*89^(6/19) 5142283374201131 r005 Im(z^2+c),c=-5/6+65/162*I,n=4 5142283379431915 r009 Re(z^3+c),c=-3/26+15/22*I,n=21 5142283387869453 a007 Real Root Of 149*x^4-529*x^3+565*x^2+299*x-78 5142283388546223 a007 Real Root Of 106*x^4+601*x^3+505*x^2+978*x-721 5142283389347314 a001 15127/121393*89^(6/19) 5142283392387142 a007 Real Root Of -986*x^4+947*x^3+821*x^2-184*x-114 5142283409111930 m005 (11/28+1/4*5^(1/2))/(1/9*Catalan+1/12) 5142283415794415 m005 (1/2*Pi+6/7)/(1/8*gamma+2/5) 5142283423767500 a001 3524578/843*2207^(5/8) 5142283424774898 h001 (2/11*exp(2)+2/3)/(4/9*exp(2)+5/8) 5142283428577730 k002 Champernowne real with 2*n^2+131*n-128 5142283431415251 a007 Real Root Of 499*x^4+158*x^3+931*x^2-672*x-37 5142283440465258 r009 Im(z^3+c),c=-19/66+8/15*I,n=2 5142283449057214 r009 Im(z^3+c),c=-43/110+28/51*I,n=32 5142283453951250 m001 (Sarnak-Trott2nd)/(MinimumGamma-OneNinth) 5142283462453457 r005 Im(z^2+c),c=-4/7+11/118*I,n=40 5142283467315574 m001 TreeGrowth2nd^2/ln(ErdosBorwein)*(2^(1/3)) 5142283475398586 a001 521*1836311903^(11/17) 5142283475916394 m001 (FeigenbaumKappa+Thue)/(ln(3)-GAMMA(11/12)) 5142283481185984 m001 exp(arctan(1/2))*MadelungNaCl/cos(1) 5142283489750116 a001 726103/281*2207^(11/16) 5142283492269453 l006 ln(5985/10009) 5142283521311882 a001 321/2576*89^(6/19) 5142283536957315 a003 cos(Pi*22/67)/sin(Pi*14/29) 5142283541719365 r005 Im(z^2+c),c=2/17+17/29*I,n=36 5142283547301684 m001 polylog(4,1/2)*Kolakoski^Trott2nd 5142283548080794 m001 Catalan^2*BesselJ(1,1)*exp(log(2+sqrt(3)))^2 5142283553401309 r002 45th iterates of z^2 + 5142283555733815 a001 1346269/843*2207^(3/4) 5142283556091290 r009 Re(z^3+c),c=-2/19+16/27*I,n=8 5142283558235906 m005 (1/2*5^(1/2)+7/9)/(4/11*5^(1/2)-4/9) 5142283563480645 r005 Re(z^2+c),c=-19/50+29/55*I,n=7 5142283570957196 a007 Real Root Of -196*x^4+526*x^3-944*x^2-587*x+33 5142283583623258 r005 Re(z^2+c),c=-25/18+14/87*I,n=2 5142283596698623 m001 (ArtinRank2+OneNinth)/(BesselK(0,1)+ln(Pi)) 5142283601423944 r005 Re(z^2+c),c=-2/3+53/158*I,n=40 5142283602654688 m001 (-Gompertz+Tribonacci)/(Si(Pi)+BesselI(1,1)) 5142283606340622 m004 -30+25*Pi-Sin[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 5142283607349393 p001 sum(1/(376*n+195)/(125^n),n=0..infinity) 5142283621714679 a001 832040/843*2207^(13/16) 5142283644546302 r009 Im(z^3+c),c=-7/25+35/57*I,n=37 5142283651897672 m005 (1/3*Pi-3/4)/(3*3^(1/2)+7/12) 5142283661460884 r005 Re(z^2+c),c=-71/126+25/59*I,n=16 5142283662487586 s002 sum(A034914[n]/(n!^2),n=1..infinity) 5142283668792954 s002 sum(A259394[n]/(n!^2),n=1..infinity) 5142283674092157 p001 sum(1/(327*n+287)/n/(32^n),n=1..infinity) 5142283687702971 a001 514229/843*2207^(7/8) 5142283692459512 r009 Im(z^3+c),c=-11/38+14/23*I,n=59 5142283723021934 a007 Real Root Of 971*x^4+51*x^3+431*x^2-286*x-322 5142283726611297 a007 Real Root Of 29*x^4+100*x^3-104*x^2+752*x-63 5142283730923222 r009 Re(z^3+c),c=-25/58+2/45*I,n=64 5142283732092016 l006 ln(4166/6967) 5142283739872215 m001 exp(BesselJ(0,1))^2*Rabbit^2/GAMMA(5/12)^2 5142283745413546 m001 (Niven-TwinPrimes)/(exp(1/Pi)-Magata) 5142283746122749 m001 (cos(1)-ln(3))/(-Ei(1)+AlladiGrinstead) 5142283748656416 a007 Real Root Of -243*x^4-670*x^3+142*x^2+917*x-401 5142283753671818 a001 377*2207^(15/16) 5142283785967560 r005 Re(z^2+c),c=13/32+17/53*I,n=23 5142283797660234 a001 165580141/843*843^(1/7) 5142283801165515 m001 Pi*(2^(1/3)/BesselJ(0,1)+gamma(2)) 5142283802963017 r002 10th iterates of z^2 + 5142283819655521 a001 507543413/987 5142283820410273 m001 (TreeGrowth2nd-Trott)/(gamma(3)+FeigenbaumB) 5142283822415572 p001 sum(1/(498*n+323)/n/(24^n),n=1..infinity) 5142283840872227 p003 LerchPhi(1/12,5,481/167) 5142283858359309 m005 (1/2*Pi+5)/(7/10*exp(1)-5/8) 5142283862925495 r005 Re(z^2+c),c=-51/122+22/49*I,n=4 5142283868180844 m005 (1/2*Pi-9/11)/(7/9*2^(1/2)+4/11) 5142283869310330 r005 Re(z^2+c),c=-16/25+17/53*I,n=55 5142283889846292 a001 1364/89*63245986^(17/24) 5142283896439941 s002 sum(A020529[n]/(n!^2),n=1..infinity) 5142283899945483 r009 Im(z^3+c),c=-17/58+36/59*I,n=40 5142283904997774 s002 sum(A034913[n]/(n!^2),n=1..infinity) 5142283931390037 a003 cos(Pi*7/99)/cos(Pi*47/107) 5142283932540418 m001 (BesselJ(0,1)+Cahen)/(Khinchin+ZetaQ(2)) 5142283935295204 a007 Real Root Of 178*x^4+997*x^3+572*x^2+588*x-996 5142283936830625 r009 Im(z^3+c),c=-12/29+29/55*I,n=30 5142283954196297 a001 13/505019158607*47^(7/9) 5142283955878000 r005 Re(z^2+c),c=-3/4+39/191*I,n=11 5142283961449508 a003 cos(Pi*10/63)*cos(Pi*34/113) 5142283978081365 h001 (11/12*exp(1)+8/9)/(5/6*exp(2)+5/12) 5142284016445611 r009 Im(z^3+c),c=-27/94+39/64*I,n=53 5142284016953462 a001 433494437/5778*521^(4/13) 5142284020406133 a001 39088169/1364*521^(6/13) 5142284023843616 a007 Real Root Of -565*x^4+772*x^3+384*x^2+953*x+533 5142284051360958 m008 (2/5*Pi^5-5)/(2*Pi-4) 5142284056233659 m001 GAMMA(19/24)/(PrimesInBinary^Zeta(1,2)) 5142284056419284 r009 Re(z^3+c),c=-25/64+1/52*I,n=55 5142284095797703 r009 Im(z^3+c),c=-39/118+21/37*I,n=17 5142284104882483 r005 Im(z^2+c),c=-21/62+22/37*I,n=28 5142284117782490 h003 exp(Pi*(2^(1/2)*(23^(1/2)+4^(3/4)))) 5142284119529013 m001 (-GAMMA(2/3)+ZetaP(2))/(Chi(1)+Catalan) 5142284122451841 a007 Real Root Of 44*x^4+30*x^3-554*x^2-925*x+615 5142284145529357 r005 Re(z^2+c),c=5/23+15/41*I,n=20 5142284148509483 a001 1134903170/15127*521^(4/13) 5142284152392610 r005 Im(z^2+c),c=-45/56+1/34*I,n=18 5142284167703249 a001 2971215073/39603*521^(4/13) 5142284170503581 a001 7778742049/103682*521^(4/13) 5142284170912144 a001 20365011074/271443*521^(4/13) 5142284170971753 a001 53316291173/710647*521^(4/13) 5142284170980450 a001 139583862445/1860498*521^(4/13) 5142284170981719 a001 365435296162/4870847*521^(4/13) 5142284170981904 a001 956722026041/12752043*521^(4/13) 5142284170981931 a001 2504730781961/33385282*521^(4/13) 5142284170981935 a001 6557470319842/87403803*521^(4/13) 5142284170981936 a001 10610209857723/141422324*521^(4/13) 5142284170981937 a001 4052739537881/54018521*521^(4/13) 5142284170981947 a001 140728068720/1875749*521^(4/13) 5142284170982018 a001 591286729879/7881196*521^(4/13) 5142284170982503 a001 225851433717/3010349*521^(4/13) 5142284170985825 a001 86267571272/1149851*521^(4/13) 5142284171008593 a001 32951280099/439204*521^(4/13) 5142284171164650 a001 75025*521^(4/13) 5142284172234282 a001 4807526976/64079*521^(4/13) 5142284179565648 a001 1836311903/24476*521^(4/13) 5142284188111584 a007 Real Root Of -111*x^4-520*x^3+340*x^2+259*x-752 5142284202089204 a007 Real Root Of 990*x^4+516*x^3+242*x^2-910*x-531 5142284206822863 a008 Real Root of (11+15*x-15*x^2-5*x^3) 5142284229815579 a001 701408733/9349*521^(4/13) 5142284232208710 m001 1/Lehmer^2/ln(TreeGrowth2nd)^3 5142284233413643 r005 Re(z^2+c),c=-17/46+35/64*I,n=4 5142284242371543 a001 47*(1/2*5^(1/2)+1/2)^31*843^(8/15) 5142284249780074 r005 Re(z^2+c),c=-1/24+7/57*I,n=8 5142284254791914 h001 (1/5*exp(1)+5/7)/(9/11*exp(1)+2/9) 5142284269354272 m005 (1/2*gamma-6)/(7/12*2^(1/2)+2/7) 5142284282276488 r005 Re(z^2+c),c=-39/62+23/50*I,n=15 5142284288719262 a003 cos(Pi*25/69)-sin(Pi*41/107) 5142284307508178 m001 Porter/exp(Paris)/Sierpinski 5142284311111132 k008 concat of cont frac of 5142284314521271 a001 34111385/281*843^(3/14) 5142284316287041 m001 (Psi(1,1/3)+3^(1/2))/(GAMMA(13/24)+TwinPrimes) 5142284341160061 m005 (1/3*Zeta(3)+2/11)/(4/5*Catalan+2/5) 5142284343654852 l006 ln(2347/3925) 5142284346528439 m005 (1/2*3^(1/2)-1/7)/(4/9*2^(1/2)+7/9) 5142284352522386 r002 6th iterates of z^2 + 5142284362213873 r005 Im(z^2+c),c=29/94+27/53*I,n=17 5142284362915289 a007 Real Root Of -343*x^4-24*x^3-237*x^2+943*x-395 5142284365657232 r009 Re(z^3+c),c=-19/122+42/55*I,n=52 5142284371694029 h001 (10/11*exp(1)+3/8)/(5/8*exp(2)+11/12) 5142284371700210 a007 Real Root Of 639*x^4-788*x^3+675*x^2-645*x-662 5142284420042374 m001 (Si(Pi)+3^(1/3))/(gamma(1)+ZetaQ(3)) 5142284420153337 r009 Im(z^3+c),c=-5/24+39/62*I,n=38 5142284425572680 r009 Im(z^3+c),c=-3/28+29/45*I,n=31 5142284425810489 a001 2207/17711*89^(6/19) 5142284431583740 k002 Champernowne real with 5/2*n^2+259/2*n-127 5142284459481570 r005 Re(z^2+c),c=-37/70+14/43*I,n=6 5142284474603283 m005 (1/3*3^(1/2)-2/9)/(2/11*Catalan-6/7) 5142284487153807 r005 Re(z^2+c),c=-13/14+32/237*I,n=64 5142284492889723 r005 Re(z^2+c),c=-83/126+4/15*I,n=28 5142284506836088 a007 Real Root Of -315*x^4+986*x^3-804*x^2+794*x+777 5142284508707563 m001 (Salem+ZetaP(3))/(ln(3)+GAMMA(7/12)) 5142284536041479 m001 (exp(1)+BesselI(1,2))/(Cahen+DuboisRaymond) 5142284543366837 r009 Im(z^3+c),c=-37/98+25/43*I,n=37 5142284569138276 q001 1283/2495 5142284572507884 a001 267914296/2207*521^(3/13) 5142284574233757 a001 267914296/3571*521^(4/13) 5142284615452335 m001 (MasserGramain-OneNinth)/(BesselI(1,2)-Landau) 5142284615746715 a003 sin(Pi*15/91)/sin(Pi*26/63) 5142284618444080 m001 (1-sinh(1))/Magata 5142284626964367 a007 Real Root Of -46*x^4-233*x^3+79*x^2+337*x+126 5142284627249232 r009 Re(z^3+c),c=-9/94+20/29*I,n=54 5142284629662014 a007 Real Root Of 759*x^4-750*x^3+774*x^2-687*x-713 5142284634387937 a001 5/1860498*2^(44/47) 5142284636454753 m005 (1/3*2^(1/2)+1/8)/(58/77+2/11*5^(1/2)) 5142284662414983 a007 Real Root Of 577*x^4-639*x^3+982*x^2+626*x-65 5142284666635752 a005 (1/sin(76/185*Pi))^620 5142284673518174 r005 Re(z^2+c),c=-77/118+12/55*I,n=23 5142284723680462 a007 Real Root Of -488*x^4+808*x^3+64*x^2-286*x-20 5142284742024120 p004 log(21391/12791) 5142284772652377 r002 52th iterates of z^2 + 5142284781899756 r009 Re(z^3+c),c=-57/122+1/11*I,n=17 5142284803636624 m001 Conway^Psi(2,1/3)/ZetaQ(3) 5142284830531310 r009 Re(z^3+c),c=-65/126+23/47*I,n=16 5142284831382361 a001 63245986/843*843^(2/7) 5142284831546587 l006 ln(5222/8733) 5142284832065929 r005 Re(z^2+c),c=-65/48+3/55*I,n=6 5142284837219079 m005 (exp(1)-1/6)/(1/6*gamma+2/5) 5142284857351882 m001 GAMMA(1/6)^2*ln(KhintchineLevy)^2*LambertW(1) 5142284870948149 m001 (Thue+ZetaQ(4))/(Zeta(1,-1)+Tribonacci) 5142284871197667 r005 Im(z^2+c),c=5/44+35/53*I,n=52 5142284922884060 r009 Im(z^3+c),c=-6/11+33/64*I,n=4 5142284944970344 r002 3th iterates of z^2 + 5142284953038613 r002 31th iterates of z^2 + 5142284960762685 r002 11th iterates of z^2 + 5142284961118077 r002 21th iterates of z^2 + 5142284967980602 r005 Re(z^2+c),c=-47/86+32/57*I,n=41 5142284972109428 r009 Im(z^3+c),c=-49/82+10/39*I,n=2 5142284975490398 a007 Real Root Of -160*x^4-700*x^3+462*x^2-771*x+512 5142284990340851 m001 (-arctan(1/2)+RenyiParking)/(Shi(1)-ln(5)) 5142284999332075 g007 Psi(2,5/11)+Psi(2,3/10)+Psi(2,1/6)+14*Zeta(3) 5142285000564656 h001 (-2*exp(6)-4)/(-8*exp(3)+3) 5142285018800381 l006 ln(4245/4469) 5142285020774335 r005 Re(z^2+c),c=1/21+11/15*I,n=5 5142285036453980 r002 19th iterates of z^2 + 5142285073772141 r005 Re(z^2+c),c=-1/94+23/33*I,n=8 5142285098155859 r002 2th iterates of z^2 + 5142285124634493 m001 (exp(-1/2*Pi)+FeigenbaumD)/(Psi(2,1/3)-ln(3)) 5142285145775583 a007 Real Root Of 578*x^4-583*x^3+87*x^2-689*x-497 5142285166214762 m001 LambertW(1)*exp(Kolakoski)^2/cos(1) 5142285177308505 r008 a(0)=5,K{-n^6,-5+8*n^3-9*n^2+2*n} 5142285193470185 m001 exp(1/exp(1))*CopelandErdos^TravellingSalesman 5142285196239718 r005 Im(z^2+c),c=25/94+13/31*I,n=16 5142285206059903 a007 Real Root Of -44*x^4+237*x^3+248*x^2+757*x-484 5142285208805217 r005 Im(z^2+c),c=-12/19+27/64*I,n=38 5142285221694357 r002 15i'th iterates of 2*x/(1-x^2) of 5142285228407236 a007 Real Root Of -42*x^4-54*x^3-924*x^2+743*x+622 5142285228974312 r005 Re(z^2+c),c=-95/102+5/16*I,n=9 5142285229835926 l006 ln(2875/4808) 5142285260288656 r005 Im(z^2+c),c=-43/90+31/58*I,n=11 5142285265389718 a007 Real Root Of -444*x^4+261*x^3+973*x^2+370*x-452 5142285287999863 r005 Re(z^2+c),c=-5/8+60/157*I,n=33 5142285293921523 m001 (Chi(1)-GAMMA(7/12))/(-Kolakoski+TwinPrimes) 5142285295307727 r005 Re(z^2+c),c=-4/7+44/115*I,n=15 5142285321080445 m001 (GAMMA(17/24)-BesselK(1,1))^KhinchinHarmonic 5142285335648536 a001 102334155/521*199^(2/11) 5142285342855035 a007 Real Root Of 613*x^4-766*x^3+81*x^2-994*x+51 5142285345687294 a001 199/10946*514229^(21/22) 5142285346927399 a007 Real Root Of 724*x^4+934*x^3+329*x^2-835*x-440 5142285347258577 r005 Im(z^2+c),c=-55/118+4/7*I,n=58 5142285348243501 a001 39088169/843*843^(5/14) 5142285354267296 a001 199/267914296*20365011074^(21/22) 5142285392456547 m001 (ln(Pi)-Champernowne)/(MasserGramain+Totient) 5142285400469410 a001 11/2*10946^(58/59) 5142285413252169 k009 concat of cont frac of 5142285430528213 r005 Im(z^2+c),c=-103/114+14/55*I,n=28 5142285430899347 r002 17th iterates of z^2 + 5142285430899347 r002 17th iterates of z^2 + 5142285430955931 a003 cos(Pi*2/51)-cos(Pi*10/91) 5142285434589750 k002 Champernowne real with 3*n^2+128*n-126 5142285438222478 a007 Real Root Of -249*x^4+839*x^3-323*x^2+885*x+672 5142285456053282 m002 -Pi^4+4*Cosh[Pi]-Log[Pi]/3 5142285471842543 r009 Im(z^3+c),c=-4/29+25/39*I,n=49 5142285474206343 a001 233802911/1926*521^(3/13) 5142285477659016 a001 31622993/682*521^(5/13) 5142285479279862 a007 Real Root Of 401*x^4+23*x^3-808*x^2-633*x+508 5142285480391467 m001 (Salem+Trott)/(sin(1)+Porter) 5142285485747160 l006 ln(47/8042) 5142285488219228 a007 Real Root Of 292*x^4+616*x^3+869*x^2-832*x-45 5142285491647646 m001 (Pi*ArtinRank2+HardHexagonsEntropy)/ArtinRank2 5142285492034574 p001 sum(1/(291*n+203)/(10^n),n=0..infinity) 5142285527857676 a001 377/1364*7881196^(10/11) 5142285527857741 a001 377/1364*20633239^(6/7) 5142285527857751 a001 377/1364*141422324^(10/13) 5142285527857751 a001 377/1364*2537720636^(2/3) 5142285527857751 a001 377/1364*45537549124^(10/17) 5142285527857751 a001 377/1364*312119004989^(6/11) 5142285527857751 a001 377/1364*14662949395604^(10/21) 5142285527857751 a001 377/1364*(1/2+1/2*5^(1/2))^30 5142285527857751 a001 377/1364*192900153618^(5/9) 5142285527857751 a001 377/1364*28143753123^(3/5) 5142285527857751 a001 377/1364*10749957122^(5/8) 5142285527857751 a001 377/1364*4106118243^(15/23) 5142285527857751 a001 377/1364*1568397607^(15/22) 5142285527857751 a001 377/1364*599074578^(5/7) 5142285527857752 a001 377/1364*228826127^(3/4) 5142285527857752 a001 377/1364*87403803^(15/19) 5142285527857755 a001 377/1364*33385282^(5/6) 5142285527857779 a001 377/1364*12752043^(15/17) 5142285527857955 a001 377/1364*4870847^(15/16) 5142285527866439 a001 610/843*20633239^(4/5) 5142285527866448 a001 610/843*17393796001^(4/7) 5142285527866448 a001 610/843*14662949395604^(4/9) 5142285527866448 a001 610/843*(1/2+1/2*5^(1/2))^28 5142285527866448 a001 610/843*73681302247^(7/13) 5142285527866448 a001 610/843*10749957122^(7/12) 5142285527866448 a001 610/843*4106118243^(14/23) 5142285527866448 a001 610/843*1568397607^(7/11) 5142285527866448 a001 610/843*599074578^(2/3) 5142285527866448 a001 610/843*228826127^(7/10) 5142285527866449 a001 610/843*87403803^(14/19) 5142285527866452 a001 610/843*33385282^(7/9) 5142285527866474 a001 610/843*12752043^(14/17) 5142285527866638 a001 610/843*4870847^(7/8) 5142285527867835 a001 610/843*1860498^(14/15) 5142285542463761 m001 (HardyLittlewoodC4+MertensB2)/(5^(1/2)+Artin) 5142285548569749 m005 (1/2*Zeta(3)-3/10)/(1/4*Pi-1/5) 5142285550008474 m001 Stephens^GAMMA(5/6)*Stephens^ZetaP(4) 5142285550893409 a007 Real Root Of 878*x^4+607*x^3-910*x^2-759*x+487 5142285565358313 r009 Im(z^3+c),c=-31/102+26/43*I,n=50 5142285568285998 m005 (1/2*exp(1)+5)/(4*Pi-1/5) 5142285572681023 b008 ArcCot[(3+Cos[1])/2] 5142285584062231 a007 Real Root Of 189*x^4+886*x^3-592*x^2-927*x-792 5142285600911338 m001 (-Kac+Porter)/(BesselI(0,1)-GlaisherKinkelin) 5142285605762401 a001 1836311903/15127*521^(3/13) 5142285606775989 m008 (4/5*Pi^5-1/5)/(1/2*Pi^6-5) 5142285624956172 a001 1602508992/13201*521^(3/13) 5142285627756505 a001 12586269025/103682*521^(3/13) 5142285628165069 a001 121393*521^(3/13) 5142285628224677 a001 86267571272/710647*521^(3/13) 5142285628233374 a001 75283811239/620166*521^(3/13) 5142285628234643 a001 591286729879/4870847*521^(3/13) 5142285628234828 a001 516002918640/4250681*521^(3/13) 5142285628234855 a001 4052739537881/33385282*521^(3/13) 5142285628234859 a001 3536736619241/29134601*521^(3/13) 5142285628234861 a001 6557470319842/54018521*521^(3/13) 5142285628234872 a001 2504730781961/20633239*521^(3/13) 5142285628234942 a001 956722026041/7881196*521^(3/13) 5142285628235427 a001 365435296162/3010349*521^(3/13) 5142285628238749 a001 139583862445/1149851*521^(3/13) 5142285628261517 a001 53316291173/439204*521^(3/13) 5142285628417575 a001 20365011074/167761*521^(3/13) 5142285629487207 a001 7778742049/64079*521^(3/13) 5142285636818575 a001 2971215073/24476*521^(3/13) 5142285641701019 r005 Re(z^2+c),c=-8/19+28/47*I,n=10 5142285644023078 m005 (1/2*gamma+10/11)/(3/4*gamma-1/5) 5142285646927711 a007 Real Root Of 807*x^4-571*x^3+145*x^2-252*x-302 5142285655944366 h001 (2/7*exp(2)+6/7)/(7/10*exp(2)+3/5) 5142285663720752 r009 Im(z^3+c),c=-17/86+39/62*I,n=24 5142285671021306 m005 (1/2*5^(1/2)+5/12)/(2/3*Catalan-10/11) 5142285674210680 r005 Im(z^2+c),c=-19/27+21/53*I,n=3 5142285682807163 a007 Real Root Of 306*x^4-211*x^3-247*x^2-660*x+412 5142285687068520 a001 1134903170/9349*521^(3/13) 5142285688086358 m001 (cos(1)+ln(2+3^(1/2)))/(Pi^(1/2)+Tribonacci) 5142285697599743 a007 Real Root Of -112*x^4+833*x^3-765*x^2-660*x-16 5142285707697847 r002 63i'th iterates of 2*x/(1-x^2) of 5142285709888666 r002 2th iterates of z^2 + 5142285710047885 r009 Re(z^3+c),c=-25/64+1/52*I,n=53 5142285715330055 r005 Im(z^2+c),c=31/90+16/57*I,n=24 5142285733491952 a007 Real Root Of 898*x^4+930*x^3+902*x^2-854*x-614 5142285744035180 r005 Im(z^2+c),c=37/102+9/52*I,n=38 5142285757631037 m005 (1/2*gamma-1/2)/(4/9*Catalan-9/11) 5142285767854692 m001 ln(2)/cos(1/12*Pi)/HardHexagonsEntropy 5142285774862814 g005 GAMMA(4/11)*GAMMA(2/3)/GAMMA(5/11)/GAMMA(3/11) 5142285776680417 b008 7/2+ArcSec[-14] 5142285787354919 r005 Re(z^2+c),c=-13/14+32/237*I,n=60 5142285793869876 r009 Re(z^3+c),c=-53/114+1/15*I,n=62 5142285803253549 m001 Landau-gamma(3)*Riemann1stZero 5142285803957541 p001 sum((-1)^n/(220*n+91)/n/(625^n),n=1..infinity) 5142285828226208 m005 (-11/24+3/8*5^(1/2))/(11/30+1/6*5^(1/2)) 5142285841022181 l006 ln(3403/5691) 5142285850016350 r004 Im(z^2+c),c=1/16-2/9*I,z(0)=exp(7/24*I*Pi),n=2 5142285857631960 m005 (1/2*2^(1/2)+1/5)/(11/12*5^(1/2)-2/7) 5142285862168022 r005 Im(z^2+c),c=-3/16+32/51*I,n=22 5142285865104696 a001 24157817/843*843^(3/7) 5142285866953904 a001 416020/161*322^(11/12) 5142285867922627 a007 Real Root Of 129*x^4+862*x^3+894*x^2-845*x-974 5142285871501526 h001 (5/11*exp(1)+1/7)/(1/4*exp(2)+5/6) 5142285874051016 a003 cos(Pi*21/74)-cos(Pi*51/110) 5142285879177997 a003 sin(Pi*11/64)/sin(Pi*35/71) 5142285884264968 r009 Re(z^3+c),c=-29/64+4/43*I,n=10 5142285888292229 a007 Real Root Of 170*x^4+799*x^3-413*x^2-239*x-532 5142285889782718 m005 (1/2*gamma+9/10)/(3/4*exp(1)+3/11) 5142285930646751 r005 Re(z^2+c),c=-13/14+32/237*I,n=62 5142285934418335 m003 3/16+Sqrt[5]/8-Cos[1/2+Sqrt[5]/2] 5142285949786577 s001 sum(exp(-Pi/4)^n*A220120[n],n=1..infinity) 5142285952075949 a007 Real Root Of -171*x^4-709*x^3+932*x^2+244*x-229 5142285965103688 r009 Re(z^3+c),c=-49/118+1/28*I,n=56 5142285966674594 r008 a(0)=5,K{-n^6,-9+n^3+7*n^2} 5142285981455604 a007 Real Root Of -223*x^4-966*x^3+896*x^2-58*x+584 5142286001908473 m001 KhinchinLevy^Zeta(1/2)*TwinPrimes 5142286017049184 m008 (4/5*Pi^3-2)/(5*Pi^2-5) 5142286029760922 a001 433494437/2207*521^(2/13) 5142286031486796 a001 433494437/3571*521^(3/13) 5142286040794431 h001 (2/7*exp(2)+5/6)/(2/3*exp(2)+4/5) 5142286050519393 a007 Real Root Of -861*x^4+356*x^3+816*x^2+142*x-277 5142286088899360 a007 Real Root Of 306*x^4-863*x^3-190*x^2-900*x+609 5142286118552570 a008 Real Root of x^4-x^3-34*x^2-13*x-3 5142286173483155 a007 Real Root Of 413*x^4-593*x^3+434*x^2+160*x-142 5142286180327868 a001 313679457/610 5142286183878712 a007 Real Root Of -930*x^4+193*x^3-434*x^2+630*x+530 5142286216885554 r002 39th iterates of z^2 + 5142286219530743 r009 Im(z^3+c),c=-1/48+13/20*I,n=51 5142286222982002 r009 Im(z^3+c),c=-11/70+35/54*I,n=13 5142286254203521 a007 Real Root Of 208*x^4+930*x^3-641*x^2+435*x+205 5142286274808133 m001 Magata*ln(Khintchine)/cos(Pi/5)^2 5142286288023043 l006 ln(3931/6574) 5142286289922165 h001 (-5*exp(3/2)+5)/(-8*exp(3/2)+2) 5142286291811676 r005 Re(z^2+c),c=19/126+2/7*I,n=13 5142286294772068 a001 64079/89*8^(52/55) 5142286299591845 m005 (4*Catalan-1/4)/(13/6+2*5^(1/2)) 5142286301592168 r002 14th iterates of z^2 + 5142286305711195 a007 Real Root Of 31*x^4-23*x^3-947*x^2+65*x+572 5142286311206363 m001 GAMMA(17/24)^2*ln(Lehmer)^2/Zeta(1,2)^2 5142286320345004 r009 Im(z^3+c),c=-7/64+29/45*I,n=58 5142286326548165 a007 Real Root Of 503*x^4-956*x^3+908*x^2-227*x-522 5142286356905306 m001 GAMMA(19/24)-Tribonacci^Thue 5142286362390589 r002 7th iterates of z^2 + 5142286364599400 a001 1346269/2207*1364^(14/15) 5142286381965935 a001 4976784/281*843^(1/2) 5142286396007405 m001 1/Si(Pi)^2*Cahen*exp(Zeta(7)) 5142286423183806 m005 (1/2*3^(1/2)-9/10)/(3/5*Catalan+1/9) 5142286437595760 k002 Champernowne real with 7/2*n^2+253/2*n-125 5142286444935731 a007 Real Root Of 982*x^4-681*x^3+886*x^2-664*x-737 5142286459874715 a007 Real Root Of 16*x^4+814*x^3-441*x^2+515*x+663 5142286462687196 m001 (Thue+TwinPrimes)/(HeathBrownMoroz-Otter) 5142286463125940 m001 1/exp(BesselK(1,1))^2/Si(Pi)^2*sin(Pi/5) 5142286464826939 v002 sum(1/(5^n*(11*n^2+16*n+16)),n=1..infinity) 5142286471271210 k002 Champernowne real with 205/2*n^2-597/2*n+201 5142286472026512 r005 Re(z^2+c),c=-47/34+14/117*I,n=2 5142286483852147 r009 Im(z^3+c),c=-1/21+37/57*I,n=43 5142286499914466 m001 ln(GolombDickman)^2*ErdosBorwein*(3^(1/3)) 5142286512413432 m001 (Paris+ZetaP(4))/(5^(1/2)+GAMMA(19/24)) 5142286523081662 m001 (1+arctan(1/2))/(-FeigenbaumMu+Sarnak) 5142286531791561 m001 Zeta(3)^KhinchinLevy*Weierstrass^KhinchinLevy 5142286531923506 r009 Im(z^3+c),c=-11/32+39/55*I,n=23 5142286532376834 a003 sin(Pi*3/85)*sin(Pi*2/13) 5142286544485567 m001 (Zeta(5)-Champernowne)/(KomornikLoreti-Trott) 5142286548860673 a001 987*1364^(13/15) 5142286553134942 m005 (1/20+1/4*5^(1/2))/(2/7*5^(1/2)+6/11) 5142286559889154 m005 (1/2*5^(1/2)+2/5)/(4/9*2^(1/2)-1/3) 5142286570144782 q001 103/2003 5142286570172662 r005 Re(z^2+c),c=-33/64+31/55*I,n=31 5142286570434713 r009 Im(z^3+c),c=-5/13+29/47*I,n=47 5142286597030094 r009 Im(z^3+c),c=-29/122+33/53*I,n=45 5142286603395023 r001 36i'th iterates of 2*x^2-1 of 5142286603672080 r005 Im(z^2+c),c=-127/94+1/28*I,n=14 5142286607531206 m001 exp(Khintchine)^2/CareFree^2*KhintchineLevy 5142286626880906 r005 Im(z^2+c),c=-1/90+37/57*I,n=52 5142286629163181 l006 ln(4459/7457) 5142286631994945 b008 E^E+10*Sinh[2] 5142286631994945 b008 E^E/10+Sinh[2] 5142286639586391 r009 Re(z^3+c),c=-53/110+6/35*I,n=3 5142286650976182 a001 199/46368*6557470319842^(17/24) 5142286652672942 m008 (4/5*Pi^4+2)/(5*Pi^3+2/5) 5142286658026443 a007 Real Root Of -358*x^4+132*x^3-832*x^2-702*x-98 5142286658301581 r005 Im(z^2+c),c=-15/26+9/13*I,n=6 5142286659228962 r009 Re(z^3+c),c=-14/31+9/61*I,n=2 5142286659570684 r009 Im(z^3+c),c=-31/60+36/61*I,n=24 5142286670645709 r002 54th iterates of z^2 + 5142286693433627 m005 (1/2*Catalan+4/9)/(1/2*3^(1/2)+8/9) 5142286696072710 m001 Psi(2,1/3)/(GAMMA(11/12)^GAMMA(17/24)) 5142286723889744 m001 (TwinPrimes-ZetaQ(3))/(Porter-Riemann1stZero) 5142286729412169 r009 Re(z^3+c),c=-25/64+1/52*I,n=56 5142286733123037 a001 3524578/2207*1364^(4/5) 5142286746077765 m001 Psi(1,1/3)/(ErdosBorwein-FeigenbaumMu) 5142286756987198 a007 Real Root Of 572*x^4+491*x^3+53*x^2-543*x-28 5142286783284736 r002 24th iterates of z^2 + 5142286789807547 m001 (Pi-HardyLittlewoodC3)/(Magata+Porter) 5142286797805607 a007 Real Root Of 806*x^4-296*x^3+816*x^2-219*x-425 5142286798098302 m001 (GAMMA(17/24)+Bloch)/(ln(gamma)+exp(-1/2*Pi)) 5142286811366409 a001 521/46368*28657^(19/51) 5142286841334631 r009 Re(z^3+c),c=-1/12+35/64*I,n=24 5142286844834282 a007 Real Root Of 81*x^4+347*x^3-377*x^2+6*x+546 5142286853302838 m005 (1/2*gamma+8/11)/(2*Zeta(3)-3/7) 5142286870589578 r009 Im(z^3+c),c=-41/102+21/47*I,n=5 5142286887094989 h001 (-7*exp(6)+8)/(-5*exp(7)+7) 5142286896976541 a001 267914296/843*322^(1/12) 5142286898066698 l006 ln(4987/8340) 5142286898827249 a001 9227465/843*843^(4/7) 5142286915031107 m004 -5+75*Sqrt[5]*Pi-5*ProductLog[Sqrt[5]*Pi] 5142286917384993 a001 5702887/2207*1364^(11/15) 5142286924190741 m001 Riemann2ndZero/ln(Si(Pi))^2/OneNinth 5142286931459636 a001 567451585/2889*521^(2/13) 5142286934912310 a001 9303105/124*521^(4/13) 5142286946898528 p001 sum((-1)^n/(611*n+194)/(100^n),n=0..infinity) 5142286952435282 a007 Real Root Of -502*x^4-956*x^3-147*x^2+613*x-31 5142286959043500 m001 arctan(1/2)^2*LandauRamanujan/exp(sqrt(3))^2 5142286959381513 m001 (-arctan(1/3)+ZetaQ(4))/(Chi(1)+Zeta(1/2)) 5142286961545392 r009 Re(z^3+c),c=-12/25+5/52*I,n=27 5142286967974879 m001 MadelungNaCl/FransenRobinson^2*exp(sin(1)) 5142286997270365 m001 (sin(1/12*Pi)+FransenRobinson)/Gompertz 5142286997973332 a007 Real Root Of 198*x^4+897*x^3-783*x^2-809*x+68 5142287028830352 a008 Real Root of x^4-x^3-17*x^2+54*x-108 5142287046868255 r005 Im(z^2+c),c=-5/6+6/199*I,n=41 5142287063015732 a001 2971215073/15127*521^(2/13) 5142287081967213 a001 156839756/305 5142287082209508 a001 7778742049/39603*521^(2/13) 5142287083603303 q001 5/97233 5142287085009843 a001 10182505537/51841*521^(2/13) 5142287085418406 a001 53316291173/271443*521^(2/13) 5142287085478014 a001 139583862445/710647*521^(2/13) 5142287085486711 a001 182717648081/930249*521^(2/13) 5142287085487980 a001 956722026041/4870847*521^(2/13) 5142287085488165 a001 2504730781961/12752043*521^(2/13) 5142287085488192 a001 3278735159921/16692641*521^(2/13) 5142287085488199 a001 10610209857723/54018521*521^(2/13) 5142287085488209 a001 4052739537881/20633239*521^(2/13) 5142287085488280 a001 387002188980/1970299*521^(2/13) 5142287085488764 a001 591286729879/3010349*521^(2/13) 5142287085492086 a001 225851433717/1149851*521^(2/13) 5142287085514855 a001 196418*521^(2/13) 5142287085670912 a001 32951280099/167761*521^(2/13) 5142287086740544 a001 12586269025/64079*521^(2/13) 5142287094071915 a001 1201881744/6119*521^(2/13) 5142287101647114 a001 9227465/2207*1364^(2/3) 5142287115481160 l006 ln(5515/9223) 5142287116291790 m001 (-GAMMA(1/24)+2)/(GAMMA(19/24)+3) 5142287116908031 m005 (1/2*5^(1/2)-3/5)/(1/8*Zeta(3)+6/7) 5142287120061530 a007 Real Root Of 92*x^4-467*x^3+855*x^2-912*x-765 5142287130104736 s002 sum(A072149[n]/(n^3*pi^n-1),n=1..infinity) 5142287136237866 a007 Real Root Of 151*x^4-763*x^3-927*x^2-610*x+652 5142287137288563 r009 Im(z^3+c),c=-7/64+29/45*I,n=63 5142287144321874 a001 1836311903/9349*521^(2/13) 5142287192135423 r009 Im(z^3+c),c=-37/78+25/56*I,n=24 5142287208908722 a007 Real Root Of 481*x^4-720*x^3-272*x^2-935*x+617 5142287211331111 k008 concat of cont frac of 5142287213114754 a001 31367952/61 5142287229508196 a001 313679521/610 5142287234379179 m001 (Champernowne+Rabbit)/(Catalan+CareFree) 5142287236065573 a001 1/305*(1/2+1/2*5^(1/2))^44 5142287245901639 a001 156839761/305 5142287246675047 m001 (Lehmer+Trott)/(Psi(1,1/3)+GAMMA(13/24)) 5142287266297688 a001 1762289/2889*1364^(14/15) 5142287280968483 a007 Real Root Of 378*x^4+617*x^3+285*x^2-675*x-365 5142287285909181 a001 14930352/2207*1364^(3/5) 5142287288869197 h001 (7/10*exp(1)+6/11)/(5/8*exp(2)+1/7) 5142287293174006 r009 Im(z^3+c),c=-13/22+33/47*I,n=10 5142287295081967 a001 62735905/122 5142287295441827 a007 Real Root Of -395*x^4+215*x^3-700*x^2+249*x+370 5142287307338598 r009 Im(z^3+c),c=-13/46+19/32*I,n=16 5142287308378665 m008 (3*Pi^3+3/4)/(1/6*Pi^4+2) 5142287314593897 m001 Salem/exp(Cahen)/Zeta(3) 5142287349676217 a005 (1/cos(8/41*Pi))^180 5142287394474934 a007 Real Root Of -962*x^4+290*x^3-880*x^2+499*x+596 5142287397853722 a001 9227465/15127*1364^(14/15) 5142287398578789 r002 22th iterates of z^2 + 5142287405091142 a007 Real Root Of 968*x^4-75*x^3-296*x^2-730*x-375 5142287415688554 a001 5702887/843*843^(9/14) 5142287417047489 a001 24157817/39603*1364^(14/15) 5142287419671781 m001 Shi(1)*(FellerTornier-cos(1/5*Pi)) 5142287419847822 a001 31622993/51841*1364^(14/15) 5142287420256385 a001 165580141/271443*1364^(14/15) 5142287420315994 a001 433494437/710647*1364^(14/15) 5142287420324691 a001 567451585/930249*1364^(14/15) 5142287420325960 a001 2971215073/4870847*1364^(14/15) 5142287420326145 a001 7778742049/12752043*1364^(14/15) 5142287420326172 a001 10182505537/16692641*1364^(14/15) 5142287420326176 a001 53316291173/87403803*1364^(14/15) 5142287420326176 a001 139583862445/228826127*1364^(14/15) 5142287420326176 a001 182717648081/299537289*1364^(14/15) 5142287420326176 a001 956722026041/1568397607*1364^(14/15) 5142287420326176 a001 2504730781961/4106118243*1364^(14/15) 5142287420326176 a001 3278735159921/5374978561*1364^(14/15) 5142287420326176 a001 10610209857723/17393796001*1364^(14/15) 5142287420326176 a001 4052739537881/6643838879*1364^(14/15) 5142287420326176 a001 1134903780/1860499*1364^(14/15) 5142287420326176 a001 591286729879/969323029*1364^(14/15) 5142287420326176 a001 225851433717/370248451*1364^(14/15) 5142287420326177 a001 21566892818/35355581*1364^(14/15) 5142287420326178 a001 32951280099/54018521*1364^(14/15) 5142287420326188 a001 1144206275/1875749*1364^(14/15) 5142287420326259 a001 1201881744/1970299*1364^(14/15) 5142287420326744 a001 1836311903/3010349*1364^(14/15) 5142287420330066 a001 701408733/1149851*1364^(14/15) 5142287420352834 a001 66978574/109801*1364^(14/15) 5142287420508891 a001 9303105/15251*1364^(14/15) 5142287421578523 a001 39088169/64079*1364^(14/15) 5142287424158287 g002 Psi(3/11)+Psi(4/9)+Psi(5/8)-Psi(5/12) 5142287427579009 r005 Im(z^2+c),c=25/78+17/57*I,n=9 5142287428407792 s002 sum(A058492[n]/(16^n),n=1..infinity) 5142287428909890 a001 3732588/6119*1364^(14/15) 5142287439706824 a001 41/48*75025^(50/51) 5142287440601770 k002 Champernowne real with 4*n^2+125*n-124 5142287443912556 r005 Im(z^2+c),c=-19/44+23/40*I,n=27 5142287450559664 a001 5702887/5778*1364^(13/15) 5142287467153433 r009 Im(z^3+c),c=-9/32+11/18*I,n=61 5142287470171278 a001 24157817/2207*1364^(8/15) 5142287476489166 m001 Lehmer^Khinchin/(Lehmer^(2^(1/2))) 5142287476489166 m001 Lehmer^Khinchin/(Lehmer^sqrt(2)) 5142287479159826 a001 5702887/9349*1364^(14/15) 5142287486792719 a007 Real Root Of -216*x^4-243*x^3+227*x^2+395*x-215 5142287487014373 a001 701408733/2207*521^(1/13) 5142287488740247 a001 701408733/3571*521^(2/13) 5142287495821057 m001 (BesselI(0,1)-Psi(2,1/3))/(-ln(3)+gamma(3)) 5142287507319531 m001 1/Zeta(1,2)^2*BesselJ(0,1)^2/exp(sin(Pi/12)) 5142287518154159 r005 Im(z^2+c),c=-2/31+31/54*I,n=4 5142287534009725 r002 31th iterates of z^2 + 5142287561078462 a007 Real Root Of 60*x^4+73*x^3-247*x^2-373*x+243 5142287571453785 a007 Real Root Of 488*x^4-831*x^3-589*x^2-940*x+718 5142287576204071 m001 Zeta(1/2)/ln(3)/Sierpinski 5142287582115800 a001 14930352/15127*1364^(13/15) 5142287586193795 m001 GAMMA(11/12)*HardyLittlewoodC3*ZetaP(4) 5142287593711456 m006 (5/6*ln(Pi)+5)/(4/5*ln(Pi)-4/5) 5142287601309582 a001 39088169/39603*1364^(13/15) 5142287601504154 m001 GAMMA(1/24)^2*FransenRobinson*exp(Zeta(3)) 5142287604109917 a001 102334155/103682*1364^(13/15) 5142287604518481 a001 267914296/271443*1364^(13/15) 5142287604578089 a001 701408733/710647*1364^(13/15) 5142287604586786 a001 1836311903/1860498*1364^(13/15) 5142287604588055 a001 4807526976/4870847*1364^(13/15) 5142287604588240 a001 12586269025/12752043*1364^(13/15) 5142287604588267 a001 32951280099/33385282*1364^(13/15) 5142287604588271 a001 86267571272/87403803*1364^(13/15) 5142287604588271 a001 225851433717/228826127*1364^(13/15) 5142287604588272 a001 591286729879/599074578*1364^(13/15) 5142287604588272 a001 1548008755920/1568397607*1364^(13/15) 5142287604588272 a001 4052739537881/4106118243*1364^(13/15) 5142287604588272 a001 4807525989/4870846*1364^(13/15) 5142287604588272 a001 6557470319842/6643838879*1364^(13/15) 5142287604588272 a001 2504730781961/2537720636*1364^(13/15) 5142287604588272 a001 956722026041/969323029*1364^(13/15) 5142287604588272 a001 365435296162/370248451*1364^(13/15) 5142287604588272 a001 139583862445/141422324*1364^(13/15) 5142287604588273 a001 53316291173/54018521*1364^(13/15) 5142287604588284 a001 20365011074/20633239*1364^(13/15) 5142287604588354 a001 7778742049/7881196*1364^(13/15) 5142287604588839 a001 2971215073/3010349*1364^(13/15) 5142287604592161 a001 1134903170/1149851*1364^(13/15) 5142287604614929 a001 433494437/439204*1364^(13/15) 5142287604770987 a001 165580141/167761*1364^(13/15) 5142287605840619 a001 63245986/64079*1364^(13/15) 5142287607631560 r005 Im(z^2+c),c=-19/90+44/57*I,n=50 5142287607654059 r009 Im(z^3+c),c=-7/64+29/45*I,n=61 5142287613171992 a001 24157817/24476*1364^(13/15) 5142287630551513 m001 1/exp(Lehmer)^2/MertensB1*TreeGrowth2nd 5142287634821804 a001 9227465/5778*1364^(4/5) 5142287639344262 a001 156839773/305 5142287643932961 r005 Im(z^2+c),c=-11/10+46/173*I,n=16 5142287654433372 a001 39088169/2207*1364^(7/15) 5142287654678980 r002 56th iterates of z^2 + 5142287663421967 a001 9227465/9349*1364^(13/15) 5142287669845860 m001 1/GAMMA(7/24)^2/ln(Riemann1stZero)^2/cos(1)^2 5142287713730967 r005 Im(z^2+c),c=27/106+11/27*I,n=15 5142287720454719 r009 Re(z^3+c),c=-31/70+1/21*I,n=50 5142287731291262 h001 (4/7*exp(2)+1/4)/(1/6*exp(1)+5/12) 5142287738563597 r009 Im(z^3+c),c=-25/42+32/63*I,n=55 5142287746620751 r009 Im(z^3+c),c=-6/23+37/60*I,n=48 5142287757501193 a001 47/8*1597^(5/17) 5142287766377907 a001 24157817/15127*1364^(4/5) 5142287782019144 b008 51+PolyLog[3,2/5] 5142287785571685 a001 63245986/39603*1364^(4/5) 5142287788372019 a001 165580141/103682*1364^(4/5) 5142287788780582 a001 433494437/271443*1364^(4/5) 5142287788840191 a001 1134903170/710647*1364^(4/5) 5142287788848888 a001 2971215073/1860498*1364^(4/5) 5142287788850157 a001 7778742049/4870847*1364^(4/5) 5142287788850342 a001 20365011074/12752043*1364^(4/5) 5142287788850369 a001 53316291173/33385282*1364^(4/5) 5142287788850373 a001 139583862445/87403803*1364^(4/5) 5142287788850373 a001 365435296162/228826127*1364^(4/5) 5142287788850373 a001 956722026041/599074578*1364^(4/5) 5142287788850373 a001 2504730781961/1568397607*1364^(4/5) 5142287788850373 a001 6557470319842/4106118243*1364^(4/5) 5142287788850373 a001 10610209857723/6643838879*1364^(4/5) 5142287788850373 a001 4052739537881/2537720636*1364^(4/5) 5142287788850373 a001 1548008755920/969323029*1364^(4/5) 5142287788850373 a001 591286729879/370248451*1364^(4/5) 5142287788850374 a001 225851433717/141422324*1364^(4/5) 5142287788850375 a001 86267571272/54018521*1364^(4/5) 5142287788850385 a001 32951280099/20633239*1364^(4/5) 5142287788850456 a001 12586269025/7881196*1364^(4/5) 5142287788850941 a001 4807526976/3010349*1364^(4/5) 5142287788854263 a001 1836311903/1149851*1364^(4/5) 5142287788877031 a001 701408733/439204*1364^(4/5) 5142287789033088 a001 267914296/167761*1364^(4/5) 5142287790102721 a001 102334155/64079*1364^(4/5) 5142287795841283 m001 (Pi+1+sin(1))/gamma(2) 5142287797434092 a001 39088169/24476*1364^(4/5) 5142287809730974 m005 (-1/2+1/4*5^(1/2))/(5/6*gamma+2/3) 5142287813915214 a001 1/8*5^(29/33) 5142287819083890 a001 2584*1364^(11/15) 5142287823578036 a001 2178309/3571*1364^(14/15) 5142287838695477 a001 63245986/2207*1364^(2/5) 5142287847499620 r005 Re(z^2+c),c=29/118+25/61*I,n=26 5142287847684054 a001 14930352/9349*1364^(4/5) 5142287870743368 m005 (1/2*Pi-3/7)/(7/9*Pi-2/9) 5142287873660171 m001 (polylog(4,1/2)-Cahen)/(KomornikLoreti+Robbin) 5142287888540364 a001 987/2207*(1/2+1/2*5^(1/2))^29 5142287888540364 a001 987/2207*1322157322203^(1/2) 5142287913423589 r005 Im(z^2+c),c=1/42+26/45*I,n=12 5142287926875547 a007 Real Root Of -829*x^4+527*x^3-697*x^2+883*x+768 5142287932550070 a001 3524578/843*843^(5/7) 5142287950640012 a001 39088169/15127*1364^(11/15) 5142287969833793 a001 34111385/13201*1364^(11/15) 5142287971150881 r009 Im(z^3+c),c=-13/94+25/39*I,n=42 5142287972634127 a001 133957148/51841*1364^(11/15) 5142287973042691 a001 233802911/90481*1364^(11/15) 5142287973102299 a001 1836311903/710647*1364^(11/15) 5142287973110996 a001 267084832/103361*1364^(11/15) 5142287973112265 a001 12586269025/4870847*1364^(11/15) 5142287973112450 a001 10983760033/4250681*1364^(11/15) 5142287973112477 a001 43133785636/16692641*1364^(11/15) 5142287973112481 a001 75283811239/29134601*1364^(11/15) 5142287973112482 a001 591286729879/228826127*1364^(11/15) 5142287973112482 a001 86000486440/33281921*1364^(11/15) 5142287973112482 a001 4052739537881/1568397607*1364^(11/15) 5142287973112482 a001 3536736619241/1368706081*1364^(11/15) 5142287973112482 a001 3278735159921/1268860318*1364^(11/15) 5142287973112482 a001 2504730781961/969323029*1364^(11/15) 5142287973112482 a001 956722026041/370248451*1364^(11/15) 5142287973112482 a001 182717648081/70711162*1364^(11/15) 5142287973112484 a001 139583862445/54018521*1364^(11/15) 5142287973112494 a001 53316291173/20633239*1364^(11/15) 5142287973112565 a001 10182505537/3940598*1364^(11/15) 5142287973113049 a001 7778742049/3010349*1364^(11/15) 5142287973116371 a001 2971215073/1149851*1364^(11/15) 5142287973139140 a001 567451585/219602*1364^(11/15) 5142287973295197 a001 433494437/167761*1364^(11/15) 5142287974364830 a001 165580141/64079*1364^(11/15) 5142287981696201 a001 31622993/12238*1364^(11/15) 5142287990893568 q001 1807/3514 5142287991944159 m002 (6*E^Pi*Cosh[Pi]*Coth[Pi])/Pi 5142287993239513 r005 Im(z^2+c),c=37/98+5/32*I,n=6 5142287993282704 a007 Real Root Of -390*x^4-9*x^3-660*x^2-5*x+198 5142288001653861 a007 Real Root Of 118*x^4+465*x^3-660*x^2+463*x+553 5142288003346006 a001 24157817/5778*1364^(2/3) 5142288007786358 a007 Real Root Of 236*x^4-450*x^3-42*x^2-401*x+262 5142288007840446 a001 3524578/3571*1364^(13/15) 5142288022957587 a001 102334155/2207*1364^(1/3) 5142288031946171 a001 24157817/9349*1364^(11/15) 5142288050120394 m005 (1/6*gamma+4/5)/(2/3*2^(1/2)+4/5) 5142288054465796 a003 sin(Pi*15/101)/cos(Pi*19/118) 5142288065211387 m001 (ln(2)+FeigenbaumB)/(Otter+Trott) 5142288070092131 a007 Real Root Of -653*x^4+681*x^3-810*x^2+390*x+553 5142288074238701 a007 Real Root Of -383*x^4+483*x^3-669*x^2+853*x+708 5142288109110422 m001 (Gompertz+TreeGrowth2nd)/(sin(1)+GAMMA(19/24)) 5142288118272896 a007 Real Root Of -388*x^4+572*x^3-862*x^2-130*x+266 5142288121121512 k007 concat of cont frac of 5142288123196608 r005 Re(z^2+c),c=-17/27+1/33*I,n=7 5142288134902128 a001 63245986/15127*1364^(2/3) 5142288149526276 a007 Real Root Of 370*x^4-746*x^3-75*x^2-388*x-307 5142288153462938 a007 Real Root Of 15*x^4+753*x^3-927*x^2+821*x-782 5142288154095908 a001 165580141/39603*1364^(2/3) 5142288156070294 a007 Real Root Of 989*x^4-148*x^3+921*x^2-364*x-520 5142288156896242 a001 433494437/103682*1364^(2/3) 5142288157304806 a001 1134903170/271443*1364^(2/3) 5142288157364414 a001 2971215073/710647*1364^(2/3) 5142288157373111 a001 7778742049/1860498*1364^(2/3) 5142288157374380 a001 20365011074/4870847*1364^(2/3) 5142288157374565 a001 53316291173/12752043*1364^(2/3) 5142288157374592 a001 139583862445/33385282*1364^(2/3) 5142288157374596 a001 365435296162/87403803*1364^(2/3) 5142288157374597 a001 956722026041/228826127*1364^(2/3) 5142288157374597 a001 2504730781961/599074578*1364^(2/3) 5142288157374597 a001 6557470319842/1568397607*1364^(2/3) 5142288157374597 a001 10610209857723/2537720636*1364^(2/3) 5142288157374597 a001 4052739537881/969323029*1364^(2/3) 5142288157374597 a001 1548008755920/370248451*1364^(2/3) 5142288157374597 a001 591286729879/141422324*1364^(2/3) 5142288157374599 a001 225851433717/54018521*1364^(2/3) 5142288157374609 a001 86267571272/20633239*1364^(2/3) 5142288157374680 a001 32951280099/7881196*1364^(2/3) 5142288157375164 a001 12586269025/3010349*1364^(2/3) 5142288157378486 a001 4807526976/1149851*1364^(2/3) 5142288157401255 a001 1836311903/439204*1364^(2/3) 5142288157557312 a001 701408733/167761*1364^(2/3) 5142288158626945 a001 267914296/64079*1364^(2/3) 5142288158891494 m001 (-Zeta(1,2)+CopelandErdos)/(3^(1/2)-ln(gamma)) 5142288160841464 h001 (5/12*exp(2)+2/3)/(7/8*exp(2)+9/11) 5142288165958316 a001 102334155/24476*1364^(2/3) 5142288165989467 r005 Re(z^2+c),c=-25/27+3/16*I,n=12 5142288177496513 a007 Real Root Of -921*x^4-428*x^3-675*x^2+619*x+503 5142288187608120 a001 39088169/5778*1364^(3/5) 5142288192102447 a001 1597*1364^(4/5) 5142288196940416 a007 Real Root Of 61*x^4+194*x^3-684*x^2-248*x+538 5142288207219704 a001 165580141/2207*1364^(4/15) 5142288216208286 a001 4181*1364^(2/3) 5142288229413560 r009 Re(z^3+c),c=-1/118+21/58*I,n=2 5142288233366912 m001 (3^(1/2)-Chi(1))/(BesselI(1,1)+GAMMA(19/24)) 5142288254358799 r005 Im(z^2+c),c=-31/110+19/31*I,n=29 5142288255430353 a007 Real Root Of 228*x^4+970*x^3-867*x^2+938*x+222 5142288255902433 m008 (3/5*Pi^2+4)/(1/5*Pi^6+2/3) 5142288271323203 a007 Real Root Of -322*x^4+723*x^3-517*x^2-73*x+220 5142288281590609 m001 (-Ei(1)+ThueMorse)/(Chi(1)+ln(gamma)) 5142288285485675 r002 53th iterates of z^2 + 5142288300485652 b008 52+Zeta[1/13] 5142288304432692 s002 sum(A274090[n]/(n^2*2^n-1),n=1..infinity) 5142288309149775 m001 Zeta(9)*ln(KhintchineLevy)*sqrt(3)^2 5142288310447350 a007 Real Root Of 623*x^4+365*x^3-722*x^2-664*x+36 5142288312966932 m001 (PlouffeB+TwinPrimes)/(2^(1/2)+Kolakoski) 5142288318034849 m001 (Backhouse+ZetaP(4))/(Si(Pi)+GAMMA(5/6)) 5142288319164248 a001 6765*1364^(3/5) 5142288328447395 b008 3*E^(2+Sin[1]) 5142288328447395 m001 exp(sin(1))*exp(1)^2*sqrt(3)^2 5142288338358029 a001 267914296/39603*1364^(3/5) 5142288341158364 a001 701408733/103682*1364^(3/5) 5142288341566927 a001 1836311903/271443*1364^(3/5) 5142288341626536 a001 686789568/101521*1364^(3/5) 5142288341635233 a001 12586269025/1860498*1364^(3/5) 5142288341636502 a001 32951280099/4870847*1364^(3/5) 5142288341636687 a001 86267571272/12752043*1364^(3/5) 5142288341636714 a001 32264490531/4769326*1364^(3/5) 5142288341636718 a001 591286729879/87403803*1364^(3/5) 5142288341636718 a001 1548008755920/228826127*1364^(3/5) 5142288341636718 a001 4052739537881/599074578*1364^(3/5) 5142288341636718 a001 1515744265389/224056801*1364^(3/5) 5142288341636718 a001 6557470319842/969323029*1364^(3/5) 5142288341636718 a001 2504730781961/370248451*1364^(3/5) 5142288341636719 a001 956722026041/141422324*1364^(3/5) 5142288341636720 a001 365435296162/54018521*1364^(3/5) 5142288341636730 a001 139583862445/20633239*1364^(3/5) 5142288341636801 a001 53316291173/7881196*1364^(3/5) 5142288341637286 a001 20365011074/3010349*1364^(3/5) 5142288341640608 a001 7778742049/1149851*1364^(3/5) 5142288341663376 a001 2971215073/439204*1364^(3/5) 5142288341819434 a001 1134903170/167761*1364^(3/5) 5142288342889066 a001 433494437/64079*1364^(3/5) 5142288350220438 a001 165580141/24476*1364^(3/5) 5142288355869959 m008 (1/2*Pi^4+3/4)/(Pi^6+1/3) 5142288357538386 r009 Im(z^3+c),c=-25/122+29/46*I,n=35 5142288371870243 a001 31622993/2889*1364^(8/15) 5142288376364614 a001 9227465/3571*1364^(11/15) 5142288379521328 a007 Real Root Of 733*x^4-448*x^3+265*x^2+685*x+170 5142288386185183 r009 Im(z^3+c),c=-5/106+24/37*I,n=28 5142288388713343 a001 1836311903/5778*521^(1/13) 5142288391481827 a001 267914296/2207*1364^(1/5) 5142288391589204 a007 Real Root Of -885*x^4-624*x^3-877*x^2+426*x+428 5142288392166018 a001 165580141/1364*521^(3/13) 5142288393538878 g002 -Psi(11/12)-Psi(10/11)-Psi(7/11)-Psi(4/9) 5142288400470410 a001 63245986/9349*1364^(3/5) 5142288410833240 a007 Real Root Of -679*x^4+492*x^3+103*x^2+879*x+45 5142288434549393 a001 199/75025*233^(31/57) 5142288443607780 k002 Champernowne real with 9/2*n^2+247/2*n-123 5142288444578720 a007 Real Root Of -848*x^4+956*x^3-943*x^2+868*x+885 5142288449411223 a001 726103/281*843^(11/14) 5142288454059605 m001 (2^(1/2)-Cahen)/(CareFree+Kolakoski) 5142288463448641 m001 (gamma(3)-FeigenbaumB)/(OneNinth+ZetaQ(2)) 5142288483081219 a001 11/233*13^(27/29) 5142288484270052 a001 1364/3*4181^(16/55) 5142288487097069 a001 233/76*11^(11/51) 5142288497417624 s002 sum(A285460[n]/(n^2*2^n+1),n=1..infinity) 5142288503426376 a001 165580141/15127*1364^(8/15) 5142288520269476 a001 686789568/2161*521^(1/13) 5142288522620157 a001 433494437/39603*1364^(8/15) 5142288525420492 a001 567451585/51841*1364^(8/15) 5142288525829056 a001 2971215073/271443*1364^(8/15) 5142288525888664 a001 7778742049/710647*1364^(8/15) 5142288525897361 a001 10182505537/930249*1364^(8/15) 5142288525898630 a001 53316291173/4870847*1364^(8/15) 5142288525898815 a001 139583862445/12752043*1364^(8/15) 5142288525898842 a001 182717648081/16692641*1364^(8/15) 5142288525898846 a001 956722026041/87403803*1364^(8/15) 5142288525898847 a001 2504730781961/228826127*1364^(8/15) 5142288525898847 a001 3278735159921/299537289*1364^(8/15) 5142288525898847 a001 10610209857723/969323029*1364^(8/15) 5142288525898847 a001 4052739537881/370248451*1364^(8/15) 5142288525898847 a001 387002188980/35355581*1364^(8/15) 5142288525898848 a001 591286729879/54018521*1364^(8/15) 5142288525898859 a001 7787980473/711491*1364^(8/15) 5142288525898929 a001 21566892818/1970299*1364^(8/15) 5142288525899414 a001 32951280099/3010349*1364^(8/15) 5142288525902736 a001 12586269025/1149851*1364^(8/15) 5142288525925504 a001 1201881744/109801*1364^(8/15) 5142288526081562 a001 1836311903/167761*1364^(8/15) 5142288527151195 a001 701408733/64079*1364^(8/15) 5142288533234514 a007 Real Root Of -698*x^4-109*x^3+725*x^2+978*x-631 5142288534482567 a001 10946*1364^(8/15) 5142288539463258 a001 12586269025/39603*521^(1/13) 5142288541014402 a001 821223480/1597 5142288542263593 a001 32951280099/103682*521^(1/13) 5142288542672156 a001 86267571272/271443*521^(1/13) 5142288542731765 a001 317811*521^(1/13) 5142288542740461 a001 591286729879/1860498*521^(1/13) 5142288542741730 a001 1548008755920/4870847*521^(1/13) 5142288542741915 a001 4052739537881/12752043*521^(1/13) 5142288542741942 a001 1515744265389/4769326*521^(1/13) 5142288542741959 a001 6557470319842/20633239*521^(1/13) 5142288542742030 a001 2504730781961/7881196*521^(1/13) 5142288542742514 a001 956722026041/3010349*521^(1/13) 5142288542745836 a001 365435296162/1149851*521^(1/13) 5142288542768605 a001 139583862445/439204*521^(1/13) 5142288542924662 a001 53316291173/167761*521^(1/13) 5142288543994295 a001 20365011074/64079*521^(1/13) 5142288551325667 a001 7778742049/24476*521^(1/13) 5142288552390114 a003 cos(Pi*5/33)-cos(Pi*17/45) 5142288556132372 a001 34111385/1926*1364^(7/15) 5142288560626727 a001 14930352/3571*1364^(2/3) 5142288561677600 a008 Real Root of (7+8*x-14*x^2-6*x^3) 5142288564740676 a001 514229/2207*3571^(16/17) 5142288575743957 a001 433494437/2207*1364^(2/15) 5142288584342140 a003 cos(Pi*3/79)-sin(Pi*17/107) 5142288584732540 a001 102334155/9349*1364^(8/15) 5142288588456016 a001 832040/2207*3571^(15/17) 5142288592134297 r005 Im(z^2+c),c=33/106+21/50*I,n=61 5142288594381429 m001 (GAMMA(2/3)+DuboisRaymond)/(Mills+Niven) 5142288599930400 r002 27th iterates of z^2 + 5142288601575641 a001 2971215073/9349*521^(1/13) 5142288602256065 m008 (2/5*Pi^3+5/6)/(1/5*Pi^2+3/5) 5142288605328766 r005 Re(z^2+c),c=-87/82+35/46*I,n=2 5142288611560488 a001 4870847/89*610^(17/24) 5142288612178784 a001 1346269/2207*3571^(14/17) 5142288618812248 m001 Si(Pi)^2*exp(FibonacciFactorial)*GAMMA(5/24) 5142288635898715 a001 987*3571^(13/17) 5142288638104656 g006 Psi(1,7/11)+2*Psi(1,9/10)-Psi(1,7/8) 5142288642429748 r002 16th iterates of z^2 + 5142288644939299 m001 (Bloch-Chi(1))^Robbin 5142288645936120 a007 Real Root Of 41*x^4+122*x^3-497*x^2-153*x+276 5142288659619730 a001 3524578/2207*3571^(12/17) 5142288669582982 m001 (Paris+Tetranacci)/(exp(-1/2*Pi)-BesselK(1,1)) 5142288680769587 m001 (Tribonacci-TwinPrimes)/(sin(1/5*Pi)+Niven) 5142288682967773 h005 exp(sin(Pi*16/55)+sin(Pi*17/53)) 5142288683340330 a001 5702887/2207*3571^(11/17) 5142288687688510 a001 267914296/15127*1364^(7/15) 5142288694511882 r009 Im(z^3+c),c=-29/74+19/33*I,n=51 5142288696794098 m001 Paris*exp(CareFree)^2*GAMMA(5/6)^2 5142288702926827 a003 sin(Pi*1/67)/sin(Pi*23/63) 5142288706882292 a001 17711*1364^(7/15) 5142288707061089 a001 9227465/2207*3571^(10/17) 5142288709682627 a001 1836311903/103682*1364^(7/15) 5142288710091191 a001 1602508992/90481*1364^(7/15) 5142288710150799 a001 12586269025/710647*1364^(7/15) 5142288710159496 a001 10983760033/620166*1364^(7/15) 5142288710160765 a001 86267571272/4870847*1364^(7/15) 5142288710160950 a001 75283811239/4250681*1364^(7/15) 5142288710160977 a001 591286729879/33385282*1364^(7/15) 5142288710160981 a001 516002918640/29134601*1364^(7/15) 5142288710160981 a001 4052739537881/228826127*1364^(7/15) 5142288710160981 a001 3536736619241/199691526*1364^(7/15) 5142288710160982 a001 6557470319842/370248451*1364^(7/15) 5142288710160982 a001 2504730781961/141422324*1364^(7/15) 5142288710160983 a001 956722026041/54018521*1364^(7/15) 5142288710160994 a001 365435296162/20633239*1364^(7/15) 5142288710161064 a001 139583862445/7881196*1364^(7/15) 5142288710161549 a001 53316291173/3010349*1364^(7/15) 5142288710164871 a001 20365011074/1149851*1364^(7/15) 5142288710187639 a001 7778742049/439204*1364^(7/15) 5142288710343697 a001 2971215073/167761*1364^(7/15) 5142288711413329 a001 1134903170/64079*1364^(7/15) 5142288718744702 a001 433494437/24476*1364^(7/15) 5142288719446172 m001 exp(Paris)*Artin^2*gamma^2 5142288730781788 a001 14930352/2207*3571^(9/17) 5142288733171502 m001 1/ln(Niven)^2/Backhouse*Zeta(1/2)^2 5142288740394508 a001 165580141/5778*1364^(2/5) 5142288744888869 a001 24157817/3571*1364^(3/5) 5142288746559397 m001 (GAMMA(11/12)+LaplaceLimit)/(3^(1/2)+ln(5)) 5142288748853117 m001 exp(Zeta(9))/MadelungNaCl^2/log(2+sqrt(3))^2 5142288750416539 m001 (-Pi^(1/2)+DuboisRaymond)/(1-ln(2)) 5142288754502510 a001 24157817/2207*3571^(8/17) 5142288759758664 m001 Paris*GaussKuzminWirsing*ln(GAMMA(1/6)) 5142288760006094 a001 701408733/2207*1364^(1/15) 5142288766155589 m001 exp(1)*Zeta(1/2)*exp(sin(Pi/12)) 5142288768994677 a001 165580141/9349*1364^(7/15) 5142288775231570 a001 41/48*1597^(5/9) 5142288778223223 a001 39088169/2207*3571^(7/17) 5142288787315310 r009 Im(z^3+c),c=-15/46+3/5*I,n=46 5142288788584448 a001 123/377*17711^(2/43) 5142288789543947 m001 1/Sierpinski*Riemann1stZero^2*exp(Ei(1)) 5142288790239404 a001 329/1926*(1/2+1/2*5^(1/2))^31 5142288790239404 a001 329/1926*9062201101803^(1/2) 5142288790239548 a001 2584/2207*7881196^(9/11) 5142288790239616 a001 2584/2207*141422324^(9/13) 5142288790239616 a001 2584/2207*2537720636^(3/5) 5142288790239616 a001 2584/2207*45537549124^(9/17) 5142288790239616 a001 2584/2207*817138163596^(9/19) 5142288790239616 a001 2584/2207*14662949395604^(3/7) 5142288790239616 a001 2584/2207*(1/2+1/2*5^(1/2))^27 5142288790239616 a001 2584/2207*192900153618^(1/2) 5142288790239616 a001 2584/2207*10749957122^(9/16) 5142288790239616 a001 2584/2207*599074578^(9/14) 5142288790239620 a001 2584/2207*33385282^(3/4) 5142288790240953 a001 2584/2207*1860498^(9/10) 5142288801943940 a001 63245986/2207*3571^(6/17) 5142288825664656 a001 102334155/2207*3571^(5/17) 5142288826796329 r005 Im(z^2+c),c=-65/66+21/64*I,n=15 5142288831163472 m005 (1/2*5^(1/2)-9/11)/(1/11*2^(1/2)+5/11) 5142288845423803 a007 Real Root Of -453*x^4+233*x^3+457*x^2+924*x-596 5142288849385372 a001 165580141/2207*3571^(4/17) 5142288854225458 r009 Im(z^3+c),c=-19/106+33/52*I,n=58 5142288861451214 m001 (MertensB1+Mills)/(Conway+KhinchinHarmonic) 5142288869904235 r005 Im(z^2+c),c=-59/102+17/26*I,n=20 5142288871950650 a001 433494437/15127*1364^(2/5) 5142288873106088 a001 267914296/2207*3571^(3/17) 5142288885434106 a001 2149990983/4181 5142288888557707 a001 196418/2207*9349^(18/19) 5142288891144433 a001 1134903170/39603*1364^(2/5) 5142288891617377 a001 317811/2207*9349^(17/19) 5142288893944769 a001 2971215073/103682*1364^(2/5) 5142288894353332 a001 7778742049/271443*1364^(2/5) 5142288894412941 a001 20365011074/710647*1364^(2/5) 5142288894421637 a001 53316291173/1860498*1364^(2/5) 5142288894422906 a001 139583862445/4870847*1364^(2/5) 5142288894423091 a001 365435296162/12752043*1364^(2/5) 5142288894423118 a001 956722026041/33385282*1364^(2/5) 5142288894423122 a001 2504730781961/87403803*1364^(2/5) 5142288894423123 a001 6557470319842/228826127*1364^(2/5) 5142288894423123 a001 10610209857723/370248451*1364^(2/5) 5142288894423123 a001 4052739537881/141422324*1364^(2/5) 5142288894423125 a001 1548008755920/54018521*1364^(2/5) 5142288894423135 a001 591286729879/20633239*1364^(2/5) 5142288894423206 a001 225851433717/7881196*1364^(2/5) 5142288894423690 a001 86267571272/3010349*1364^(2/5) 5142288894427012 a001 32951280099/1149851*1364^(2/5) 5142288894449781 a001 12586269025/439204*1364^(2/5) 5142288894605838 a001 4807526976/167761*1364^(2/5) 5142288894727960 a001 514229/2207*9349^(16/19) 5142288895675471 a001 28657*1364^(2/5) 5142288896826804 a001 433494437/2207*3571^(2/17) 5142288897819095 a001 832040/2207*9349^(15/19) 5142288900917658 a001 1346269/2207*9349^(14/19) 5142288903006844 a001 701408733/24476*1364^(2/5) 5142288904013385 a001 987*9349^(13/19) 5142288907110195 a001 3524578/2207*9349^(12/19) 5142288910206591 a001 5702887/2207*9349^(11/19) 5142288913303145 a001 9227465/2207*9349^(10/19) 5142288916399638 a001 14930352/2207*9349^(9/19) 5142288919496155 a001 24157817/2207*9349^(8/19) 5142288920547520 a001 701408733/2207*3571^(1/17) 5142288921795547 a001 141/2161*141422324^(11/13) 5142288921795547 a001 141/2161*2537720636^(11/15) 5142288921795547 a001 141/2161*45537549124^(11/17) 5142288921795547 a001 141/2161*312119004989^(3/5) 5142288921795547 a001 141/2161*817138163596^(11/19) 5142288921795547 a001 141/2161*14662949395604^(11/21) 5142288921795547 a001 141/2161*(1/2+1/2*5^(1/2))^33 5142288921795547 a001 141/2161*192900153618^(11/18) 5142288921795547 a001 141/2161*10749957122^(11/16) 5142288921795547 a001 141/2161*1568397607^(3/4) 5142288921795547 a001 141/2161*599074578^(11/14) 5142288921795552 a001 141/2161*33385282^(11/12) 5142288921795755 a001 6765/2207*20633239^(5/7) 5142288921795764 a001 6765/2207*2537720636^(5/9) 5142288921795764 a001 6765/2207*312119004989^(5/11) 5142288921795764 a001 6765/2207*(1/2+1/2*5^(1/2))^25 5142288921795764 a001 6765/2207*3461452808002^(5/12) 5142288921795764 a001 6765/2207*28143753123^(1/2) 5142288921795764 a001 6765/2207*228826127^(5/8) 5142288921797002 a001 6765/2207*1860498^(5/6) 5142288922592663 a001 39088169/2207*9349^(7/19) 5142288924656651 a001 133957148/2889*1364^(1/3) 5142288925689175 a001 63245986/2207*9349^(6/19) 5142288928785685 a001 102334155/2207*9349^(5/19) 5142288929151009 a001 39088169/3571*1364^(8/15) 5142288931882195 a001 165580141/2207*9349^(4/19) 5142288934978706 a001 267914296/2207*9349^(3/19) 5142288935684268 a001 5628749469/10946 5142288936275980 a001 75025/2207*24476^(20/21) 5142288936432222 a001 121393/2207*24476^(19/21) 5142288936937420 a001 196418/2207*24476^(6/7) 5142288937309328 a001 317811/2207*24476^(17/21) 5142288937732148 a001 514229/2207*24476^(16/21) 5142288938075216 a001 433494437/2207*9349^(2/19) 5142288938135522 a001 832040/2207*24476^(5/7) 5142288938546324 a001 1346269/2207*24476^(2/3) 5142288938954288 a001 987*24476^(13/21) 5142288939363336 a001 3524578/2207*24476^(4/7) 5142288939771971 a001 5702887/2207*24476^(11/21) 5142288940180763 a001 9227465/2207*24476^(10/21) 5142288940589495 a001 14930352/2207*24476^(3/7) 5142288940989331 a001 329/13201*2537720636^(7/9) 5142288940989331 a001 329/13201*17393796001^(5/7) 5142288940989331 a001 329/13201*312119004989^(7/11) 5142288940989331 a001 329/13201*14662949395604^(5/9) 5142288940989331 a001 329/13201*(1/2+1/2*5^(1/2))^35 5142288940989331 a001 329/13201*505019158607^(5/8) 5142288940989331 a001 329/13201*28143753123^(7/10) 5142288940989331 a001 329/13201*599074578^(5/6) 5142288940989331 a001 329/13201*228826127^(7/8) 5142288940989547 a001 17711/2207*(1/2+1/2*5^(1/2))^23 5142288940989547 a001 17711/2207*4106118243^(1/2) 5142288940998250 a001 24157817/2207*24476^(8/21) 5142288941171726 a001 701408733/2207*9349^(1/19) 5142288941406996 a001 39088169/2207*24476^(1/3) 5142288941447970 a001 17711/2207*103682^(23/24) 5142288941815746 a001 63245986/2207*24476^(2/7) 5142288942224494 a001 102334155/2207*24476^(5/21) 5142288942633243 a001 165580141/2207*24476^(4/21) 5142288942646434 a001 46368/2207*64079^(21/23) 5142288943015668 a001 14736257424/28657 5142288943041991 a001 267914296/2207*24476^(1/7) 5142288943163898 a001 121393/2207*64079^(19/23) 5142288943314796 a001 196418/2207*64079^(18/23) 5142288943332406 a001 317811/2207*64079^(17/23) 5142288943361954 a001 75025/2207*64079^(20/23) 5142288943400928 a001 514229/2207*64079^(16/23) 5142288943450003 a001 832040/2207*64079^(15/23) 5142288943450740 a001 433494437/2207*24476^(2/21) 5142288943506506 a001 1346269/2207*64079^(14/23) 5142288943560171 a001 987*64079^(13/23) 5142288943614921 a001 3524578/2207*64079^(12/23) 5142288943669256 a001 5702887/2207*64079^(11/23) 5142288943723750 a001 9227465/2207*64079^(10/23) 5142288943769149 a001 46368/2207*439204^(7/9) 5142288943778183 a001 14930352/2207*64079^(9/23) 5142288943789666 a001 21/2206*(1/2+1/2*5^(1/2))^37 5142288943789830 a001 46368/2207*7881196^(7/11) 5142288943789875 a001 46368/2207*20633239^(3/5) 5142288943789882 a001 46368/2207*141422324^(7/13) 5142288943789883 a001 46368/2207*2537720636^(7/15) 5142288943789883 a001 46368/2207*17393796001^(3/7) 5142288943789883 a001 46368/2207*45537549124^(7/17) 5142288943789883 a001 46368/2207*14662949395604^(1/3) 5142288943789883 a001 46368/2207*(1/2+1/2*5^(1/2))^21 5142288943789883 a001 46368/2207*192900153618^(7/18) 5142288943789883 a001 46368/2207*10749957122^(7/16) 5142288943789883 a001 46368/2207*599074578^(1/2) 5142288943789885 a001 46368/2207*33385282^(7/12) 5142288943790922 a001 46368/2207*1860498^(7/10) 5142288943797519 a001 46368/2207*710647^(3/4) 5142288943832639 a001 24157817/2207*64079^(8/23) 5142288943859488 a001 701408733/2207*24476^(1/21) 5142288943887087 a001 39088169/2207*64079^(7/23) 5142288943941538 a001 63245986/2207*64079^(6/23) 5142288943995987 a001 102334155/2207*64079^(5/23) 5142288944050437 a001 165580141/2207*64079^(4/23) 5142288944085304 a001 38580022803/75025 5142288944104887 a001 267914296/2207*64079^(3/23) 5142288944157122 a001 832040/2207*167761^(3/5) 5142288944159337 a001 433494437/2207*64079^(2/23) 5142288944195163 a001 9227465/2207*167761^(2/5) 5142288944198229 a001 329/90481*2537720636^(13/15) 5142288944198229 a001 329/90481*45537549124^(13/17) 5142288944198229 a001 329/90481*14662949395604^(13/21) 5142288944198229 a001 329/90481*(1/2+1/2*5^(1/2))^39 5142288944198229 a001 329/90481*192900153618^(13/18) 5142288944198229 a001 329/90481*73681302247^(3/4) 5142288944198229 a001 329/90481*10749957122^(13/16) 5142288944198229 a001 329/90481*599074578^(13/14) 5142288944198446 a001 121393/2207*817138163596^(1/3) 5142288944198446 a001 121393/2207*(1/2+1/2*5^(1/2))^19 5142288944198446 a001 121393/2207*87403803^(1/2) 5142288944208443 a001 46368/2207*103682^(7/8) 5142288944213787 a001 701408733/2207*64079^(1/23) 5142288944231694 a001 102334155/2207*167761^(1/5) 5142288944241362 a001 101003810985/196418 5142288944251941 a001 832040/2207*439204^(5/9) 5142288944256472 a001 3524578/2207*439204^(4/9) 5142288944257838 a001 141/101521*(1/2+1/2*5^(1/2))^41 5142288944258055 a001 317811/2207*45537549124^(1/3) 5142288944258055 a001 317811/2207*(1/2+1/2*5^(1/2))^17 5142288944258070 a001 317811/2207*12752043^(1/2) 5142288944259346 a001 14930352/2207*439204^(1/3) 5142288944262313 a001 63245986/2207*439204^(2/9) 5142288944264131 a001 264431410152/514229 5142288944265275 a001 267914296/2207*439204^(1/9) 5142288944266535 a001 329/620166*(1/2+1/2*5^(1/2))^43 5142288944266714 a001 832040/2207*7881196^(5/11) 5142288944266746 a001 832040/2207*20633239^(3/7) 5142288944266751 a001 832040/2207*141422324^(5/13) 5142288944266751 a001 832040/2207*2537720636^(1/3) 5142288944266751 a001 832040/2207*45537549124^(5/17) 5142288944266751 a001 832040/2207*312119004989^(3/11) 5142288944266751 a001 832040/2207*14662949395604^(5/21) 5142288944266751 a001 832040/2207*(1/2+1/2*5^(1/2))^15 5142288944266751 a001 832040/2207*192900153618^(5/18) 5142288944266751 a001 832040/2207*28143753123^(3/10) 5142288944266751 a001 832040/2207*10749957122^(5/16) 5142288944266751 a001 832040/2207*599074578^(5/14) 5142288944266751 a001 832040/2207*228826127^(3/8) 5142288944266753 a001 832040/2207*33385282^(5/12) 5142288944267453 a001 692290419471/1346269 5142288944267494 a001 832040/2207*1860498^(1/2) 5142288944267803 a001 987/4870847*45537549124^(15/17) 5142288944267803 a001 987/4870847*312119004989^(9/11) 5142288944267803 a001 987/4870847*14662949395604^(5/7) 5142288944267803 a001 987/4870847*(1/2+1/2*5^(1/2))^45 5142288944267803 a001 987/4870847*192900153618^(5/6) 5142288944267803 a001 987/4870847*28143753123^(9/10) 5142288944267803 a001 987/4870847*10749957122^(15/16) 5142288944267937 a001 1812439848261/3524578 5142288944267989 a001 329/4250681*(1/2+1/2*5^(1/2))^47 5142288944268008 a001 4745029125312/9227465 5142288944268016 a001 141/4769326*14662949395604^(7/9) 5142288944268016 a001 141/4769326*(1/2+1/2*5^(1/2))^49 5142288944268016 a001 141/4769326*505019158607^(7/8) 5142288944268018 a001 12422647527675/24157817 5142288944268020 a001 329/29134601*817138163596^(17/19) 5142288944268020 a001 329/29134601*14662949395604^(17/21) 5142288944268020 a001 329/29134601*192900153618^(17/18) 5142288944268020 a001 139583319561/271442 5142288944268020 a001 987*141422324^(1/3) 5142288944268020 a001 85146092845464/165580141 5142288944268020 a001 329/199691526*3461452808002^(11/12) 5142288944268020 a001 222915365078679/433494437 5142288944268020 a001 141/224056801*14662949395604^(19/21) 5142288944268020 a001 583600002390573/1134903170 5142288944268020 a001 1527884642093040/2971215073 5142288944268020 a001 4000053923888547/7778742049 5142288944268020 a001 10472277129572601/20365011074 5142288944268020 a001 987*73681302247^(1/4) 5142288944268020 a001 6472223205684054/12586269025 5142288944268020 a001 2504730781961/4870848 5142288944268020 a001 987/6643838879*14662949395604^(20/21) 5142288944268020 a001 944284639702467/1836311903 5142288944268020 a001 120228212437298/233802911 5142288944268020 a001 987/969323029*14662949395604^(8/9) 5142288944268020 a001 137769272233215/267914296 5142288944268020 a001 987/370248451*14662949395604^(6/7) 5142288944268020 a001 2505865685131/4873055 5142288944268020 a001 987/141422324*23725150497407^(13/16) 5142288944268020 a001 987/141422324*505019158607^(13/14) 5142288944268021 a001 20100265930038/39088169 5142288944268022 a001 987/54018521*312119004989^(10/11) 5142288944268022 a001 987/54018521*3461452808002^(5/6) 5142288944268025 a001 2559206134121/4976784 5142288944268032 a001 987/20633239*45537549124^(16/17) 5142288944268032 a001 987/20633239*14662949395604^(16/21) 5142288944268032 a001 987/20633239*(1/2+1/2*5^(1/2))^48 5142288944268032 a001 987/20633239*192900153618^(8/9) 5142288944268032 a001 987/20633239*73681302247^(12/13) 5142288944268052 a001 2932589277051/5702887 5142288944268103 a001 987/7881196*(1/2+1/2*5^(1/2))^46 5142288944268103 a001 987/7881196*10749957122^(23/24) 5142288944268178 a001 5702887/2207*7881196^(1/3) 5142288944268205 a001 5702887/2207*312119004989^(1/5) 5142288944268205 a001 5702887/2207*(1/2+1/2*5^(1/2))^11 5142288944268205 a001 5702887/2207*1568397607^(1/4) 5142288944268210 a001 14930352/2207*7881196^(3/11) 5142288944268222 a001 63245986/2207*7881196^(2/11) 5142288944268229 a001 267914296/2207*7881196^(1/11) 5142288944268232 a001 14930352/2207*141422324^(3/13) 5142288944268232 a001 14930352/2207*2537720636^(1/5) 5142288944268232 a001 14930352/2207*45537549124^(3/17) 5142288944268232 a001 14930352/2207*817138163596^(3/19) 5142288944268232 a001 14930352/2207*14662949395604^(1/7) 5142288944268232 a001 14930352/2207*(1/2+1/2*5^(1/2))^9 5142288944268232 a001 14930352/2207*192900153618^(1/6) 5142288944268232 a001 14930352/2207*10749957122^(3/16) 5142288944268232 a001 14930352/2207*599074578^(3/14) 5142288944268233 a001 14930352/2207*33385282^(1/4) 5142288944268234 a001 39088169/2207*20633239^(1/5) 5142288944268235 a001 102334155/2207*20633239^(1/7) 5142288944268236 a001 39088169/2207*17393796001^(1/7) 5142288944268236 a001 39088169/2207*14662949395604^(1/9) 5142288944268236 a001 39088169/2207*(1/2+1/2*5^(1/2))^7 5142288944268236 a001 39088169/2207*599074578^(1/6) 5142288944268237 a001 102334155/2207*2537720636^(1/9) 5142288944268237 a001 102334155/2207*312119004989^(1/11) 5142288944268237 a001 102334155/2207*(1/2+1/2*5^(1/2))^5 5142288944268237 a001 102334155/2207*28143753123^(1/10) 5142288944268237 a001 102334155/2207*228826127^(1/8) 5142288944268237 a001 267914296/2207*141422324^(1/13) 5142288944268237 a001 267914296/2207*2537720636^(1/15) 5142288944268237 a001 267914296/2207*45537549124^(1/17) 5142288944268237 a001 267914296/2207*14662949395604^(1/21) 5142288944268237 a001 267914296/2207*(1/2+1/2*5^(1/2))^3 5142288944268237 a001 267914296/2207*192900153618^(1/18) 5142288944268237 a001 267914296/2207*10749957122^(1/16) 5142288944268237 a001 267914296/2207*599074578^(1/14) 5142288944268237 a001 701408733/4414+701408733/4414*5^(1/2) 5142288944268237 a001 1134903170/2207 5142288944268237 a001 433494437/2207*(1/2+1/2*5^(1/2))^2 5142288944268237 a001 433494437/2207*10749957122^(1/24) 5142288944268237 a001 433494437/2207*4106118243^(1/23) 5142288944268237 a001 433494437/2207*1568397607^(1/22) 5142288944268237 a001 433494437/2207*599074578^(1/21) 5142288944268237 a001 433494437/2207*228826127^(1/20) 5142288944268237 a001 165580141/2207*(1/2+1/2*5^(1/2))^4 5142288944268237 a001 165580141/2207*23725150497407^(1/16) 5142288944268237 a001 165580141/2207*73681302247^(1/13) 5142288944268237 a001 165580141/2207*10749957122^(1/12) 5142288944268237 a001 165580141/2207*4106118243^(2/23) 5142288944268237 a001 165580141/2207*1568397607^(1/11) 5142288944268237 a001 165580141/2207*599074578^(2/21) 5142288944268237 a001 433494437/2207*87403803^(1/19) 5142288944268237 a001 165580141/2207*228826127^(1/10) 5142288944268237 a001 165580141/2207*87403803^(2/19) 5142288944268237 a001 63245986/2207*141422324^(2/13) 5142288944268237 a001 63245986/2207*2537720636^(2/15) 5142288944268237 a001 63245986/2207*45537549124^(2/17) 5142288944268237 a001 63245986/2207*14662949395604^(2/21) 5142288944268237 a001 63245986/2207*(1/2+1/2*5^(1/2))^6 5142288944268237 a001 63245986/2207*10749957122^(1/8) 5142288944268237 a001 63245986/2207*4106118243^(3/23) 5142288944268237 a001 63245986/2207*1568397607^(3/22) 5142288944268237 a001 63245986/2207*599074578^(1/7) 5142288944268237 a001 433494437/2207*33385282^(1/18) 5142288944268237 a001 63245986/2207*228826127^(3/20) 5142288944268237 a001 63245986/2207*87403803^(3/19) 5142288944268237 a001 267914296/2207*33385282^(1/12) 5142288944268237 a001 165580141/2207*33385282^(1/9) 5142288944268238 a001 63245986/2207*33385282^(1/6) 5142288944268239 a001 24157817/2207*(1/2+1/2*5^(1/2))^8 5142288944268239 a001 24157817/2207*23725150497407^(1/8) 5142288944268239 a001 24157817/2207*505019158607^(1/7) 5142288944268239 a001 24157817/2207*73681302247^(2/13) 5142288944268239 a001 24157817/2207*10749957122^(1/6) 5142288944268239 a001 24157817/2207*4106118243^(4/23) 5142288944268239 a001 24157817/2207*1568397607^(2/11) 5142288944268239 a001 24157817/2207*599074578^(4/21) 5142288944268239 a001 24157817/2207*228826127^(1/5) 5142288944268239 a001 433494437/2207*12752043^(1/17) 5142288944268239 a001 24157817/2207*87403803^(4/19) 5142288944268240 a001 24157817/2207*33385282^(2/9) 5142288944268241 a001 165580141/2207*12752043^(2/17) 5142288944268243 a001 63245986/2207*12752043^(3/17) 5142288944268246 a001 9227465/2207*20633239^(2/7) 5142288944268246 a001 24157817/2207*12752043^(4/17) 5142288944268249 a001 9227465/2207*2537720636^(2/9) 5142288944268249 a001 9227465/2207*312119004989^(2/11) 5142288944268249 a001 9227465/2207*(1/2+1/2*5^(1/2))^10 5142288944268249 a001 9227465/2207*28143753123^(1/5) 5142288944268249 a001 9227465/2207*10749957122^(5/24) 5142288944268249 a001 9227465/2207*4106118243^(5/23) 5142288944268249 a001 9227465/2207*1568397607^(5/22) 5142288944268249 a001 9227465/2207*599074578^(5/21) 5142288944268249 a001 9227465/2207*228826127^(1/4) 5142288944268249 a001 9227465/2207*87403803^(5/19) 5142288944268250 a001 9227465/2207*33385282^(5/18) 5142288944268250 a001 433494437/2207*4870847^(1/16) 5142288944268258 a001 9227465/2207*12752043^(5/17) 5142288944268264 a001 165580141/2207*4870847^(1/8) 5142288944268278 a001 63245986/2207*4870847^(3/16) 5142288944268290 a001 3524578/2207*7881196^(4/11) 5142288944268293 a001 24157817/2207*4870847^(1/4) 5142288944268317 a001 9227465/2207*4870847^(5/16) 5142288944268320 a001 3524578/2207*141422324^(4/13) 5142288944268320 a001 3524578/2207*2537720636^(4/15) 5142288944268320 a001 3524578/2207*45537549124^(4/17) 5142288944268320 a001 3524578/2207*817138163596^(4/19) 5142288944268320 a001 3524578/2207*14662949395604^(4/21) 5142288944268320 a001 3524578/2207*(1/2+1/2*5^(1/2))^12 5142288944268320 a001 3524578/2207*192900153618^(2/9) 5142288944268320 a001 3524578/2207*73681302247^(3/13) 5142288944268320 a001 3524578/2207*10749957122^(1/4) 5142288944268320 a001 3524578/2207*4106118243^(6/23) 5142288944268320 a001 3524578/2207*1568397607^(3/11) 5142288944268320 a001 3524578/2207*599074578^(2/7) 5142288944268320 a001 3524578/2207*228826127^(3/10) 5142288944268320 a001 3524578/2207*87403803^(6/19) 5142288944268321 a001 3524578/2207*33385282^(1/3) 5142288944268331 a001 3524578/2207*12752043^(6/17) 5142288944268336 a001 433494437/2207*1860498^(1/15) 5142288944268385 a001 267914296/2207*1860498^(1/10) 5142288944268401 a001 3524578/2207*4870847^(3/8) 5142288944268435 a001 165580141/2207*1860498^(2/15) 5142288944268484 a001 102334155/2207*1860498^(1/6) 5142288944268534 a001 63245986/2207*1860498^(1/5) 5142288944268588 a001 987/3010349*312119004989^(4/5) 5142288944268588 a001 987/3010349*(1/2+1/2*5^(1/2))^44 5142288944268588 a001 987/3010349*23725150497407^(11/16) 5142288944268588 a001 987/3010349*73681302247^(11/13) 5142288944268588 a001 987/3010349*10749957122^(11/12) 5142288944268588 a001 987/3010349*4106118243^(22/23) 5142288944268635 a001 24157817/2207*1860498^(4/15) 5142288944268678 a001 14930352/2207*1860498^(3/10) 5142288944268744 a001 9227465/2207*1860498^(1/3) 5142288944268800 a001 1346269/2207*20633239^(2/5) 5142288944268804 a001 1346269/2207*17393796001^(2/7) 5142288944268804 a001 1346269/2207*14662949395604^(2/9) 5142288944268804 a001 1346269/2207*(1/2+1/2*5^(1/2))^14 5142288944268804 a001 1346269/2207*10749957122^(7/24) 5142288944268804 a001 1346269/2207*4106118243^(7/23) 5142288944268804 a001 1346269/2207*1568397607^(7/22) 5142288944268804 a001 1346269/2207*599074578^(1/3) 5142288944268804 a001 1346269/2207*228826127^(7/20) 5142288944268805 a001 1346269/2207*87403803^(7/19) 5142288944268806 a001 1346269/2207*33385282^(7/18) 5142288944268817 a001 1346269/2207*12752043^(7/17) 5142288944268899 a001 1346269/2207*4870847^(7/16) 5142288944268914 a001 3524578/2207*1860498^(2/5) 5142288944268964 a001 433494437/2207*710647^(1/14) 5142288944269498 a001 1346269/2207*1860498^(7/15) 5142288944269506 a001 427859009319/832040 5142288944269692 a001 165580141/2207*710647^(1/7) 5142288944270419 a001 63245986/2207*710647^(3/14) 5142288944270782 a001 39088169/2207*710647^(1/4) 5142288944271148 a001 24157817/2207*710647^(2/7) 5142288944271886 a001 9227465/2207*710647^(5/14) 5142288944271909 a001 987/1149851*2537720636^(14/15) 5142288944271909 a001 987/1149851*17393796001^(6/7) 5142288944271909 a001 987/1149851*45537549124^(14/17) 5142288944271909 a001 987/1149851*817138163596^(14/19) 5142288944271909 a001 987/1149851*14662949395604^(2/3) 5142288944271909 a001 987/1149851*(1/2+1/2*5^(1/2))^42 5142288944271909 a001 987/1149851*505019158607^(3/4) 5142288944271909 a001 987/1149851*192900153618^(7/9) 5142288944271909 a001 987/1149851*10749957122^(7/8) 5142288944271909 a001 987/1149851*4106118243^(21/23) 5142288944271910 a001 987/1149851*1568397607^(21/22) 5142288944272126 a001 514229/2207*(1/2+1/2*5^(1/2))^16 5142288944272126 a001 514229/2207*23725150497407^(1/4) 5142288944272126 a001 514229/2207*73681302247^(4/13) 5142288944272126 a001 514229/2207*10749957122^(1/3) 5142288944272126 a001 514229/2207*4106118243^(8/23) 5142288944272126 a001 514229/2207*1568397607^(4/11) 5142288944272126 a001 514229/2207*599074578^(8/21) 5142288944272126 a001 514229/2207*228826127^(2/5) 5142288944272127 a001 514229/2207*87403803^(8/19) 5142288944272128 a001 514229/2207*33385282^(4/9) 5142288944272141 a001 514229/2207*12752043^(8/17) 5142288944272235 a001 514229/2207*4870847^(1/2) 5142288944272684 a001 3524578/2207*710647^(3/7) 5142288944272919 a001 514229/2207*1860498^(8/15) 5142288944273605 a001 433494437/2207*271443^(1/13) 5142288944273896 a001 1346269/2207*710647^(1/2) 5142288944277123 a001 196418/2207*439204^(2/3) 5142288944277945 a001 514229/2207*710647^(4/7) 5142288944278203 a001 54475866389/105937 5142288944278974 a001 165580141/2207*271443^(2/13) 5142288944284343 a001 63245986/2207*271443^(3/13) 5142288944288168 a001 701408733/2207*103682^(1/24) 5142288944289713 a001 24157817/2207*271443^(4/13) 5142288944294678 a001 987/439204*2537720636^(8/9) 5142288944294678 a001 987/439204*312119004989^(8/11) 5142288944294678 a001 987/439204*(1/2+1/2*5^(1/2))^40 5142288944294678 a001 987/439204*23725150497407^(5/8) 5142288944294678 a001 987/439204*73681302247^(10/13) 5142288944294678 a001 987/439204*28143753123^(4/5) 5142288944294678 a001 987/439204*10749957122^(5/6) 5142288944294678 a001 987/439204*4106118243^(20/23) 5142288944294678 a001 987/439204*1568397607^(10/11) 5142288944294678 a001 987/439204*599074578^(20/21) 5142288944294850 a001 196418/2207*7881196^(6/11) 5142288944294895 a001 196418/2207*141422324^(6/13) 5142288944294895 a001 196418/2207*2537720636^(2/5) 5142288944294895 a001 196418/2207*45537549124^(6/17) 5142288944294895 a001 196418/2207*14662949395604^(2/7) 5142288944294895 a001 196418/2207*(1/2+1/2*5^(1/2))^18 5142288944294895 a001 196418/2207*192900153618^(1/3) 5142288944294895 a001 196418/2207*10749957122^(3/8) 5142288944294895 a001 196418/2207*4106118243^(9/23) 5142288944294895 a001 196418/2207*1568397607^(9/22) 5142288944294895 a001 196418/2207*599074578^(3/7) 5142288944294895 a001 196418/2207*228826127^(9/20) 5142288944294895 a001 196418/2207*87403803^(9/19) 5142288944294897 a001 196418/2207*33385282^(1/2) 5142288944294911 a001 196418/2207*12752043^(9/17) 5142288944295017 a001 196418/2207*4870847^(9/16) 5142288944295092 a001 9227465/2207*271443^(5/13) 5142288944295786 a001 196418/2207*1860498^(3/5) 5142288944300531 a001 3524578/2207*271443^(6/13) 5142288944301441 a001 196418/2207*710647^(9/14) 5142288944302916 a001 987*271443^(1/2) 5142288944304780 a001 75025/2207*167761^(4/5) 5142288944306384 a001 1346269/2207*271443^(7/13) 5142288944308100 a001 433494437/2207*103682^(1/12) 5142288944315075 a001 514229/2207*271443^(8/13) 5142288944322687 a001 28657/2207*64079^(22/23) 5142288944328031 a001 267914296/2207*103682^(1/8) 5142288944337811 a001 267913254/521 5142288944343212 a001 196418/2207*271443^(9/13) 5142288944347963 a001 165580141/2207*103682^(1/6) 5142288944367894 a001 102334155/2207*103682^(5/24) 5142288944387826 a001 63245986/2207*103682^(1/4) 5142288944407756 a001 39088169/2207*103682^(7/24) 5142288944417268 a001 701408733/2207*39603^(1/22) 5142288944427690 a001 24157817/2207*103682^(1/3) 5142288944447615 a001 14930352/2207*103682^(3/8) 5142288944450735 a001 987/167761*817138163596^(2/3) 5142288944450735 a001 987/167761*(1/2+1/2*5^(1/2))^38 5142288944450735 a001 987/167761*10749957122^(19/24) 5142288944450735 a001 987/167761*4106118243^(19/23) 5142288944450735 a001 987/167761*1568397607^(19/22) 5142288944450735 a001 987/167761*599074578^(19/21) 5142288944450735 a001 987/167761*228826127^(19/20) 5142288944450945 a001 75025/2207*20633239^(4/7) 5142288944450952 a001 75025/2207*2537720636^(4/9) 5142288944450952 a001 75025/2207*(1/2+1/2*5^(1/2))^20 5142288944450952 a001 75025/2207*23725150497407^(5/16) 5142288944450952 a001 75025/2207*505019158607^(5/14) 5142288944450952 a001 75025/2207*73681302247^(5/13) 5142288944450952 a001 75025/2207*28143753123^(2/5) 5142288944450952 a001 75025/2207*10749957122^(5/12) 5142288944450952 a001 75025/2207*4106118243^(10/23) 5142288944450952 a001 75025/2207*1568397607^(5/11) 5142288944450952 a001 75025/2207*599074578^(10/21) 5142288944450952 a001 75025/2207*228826127^(1/2) 5142288944450952 a001 75025/2207*87403803^(10/19) 5142288944450955 a001 75025/2207*33385282^(5/9) 5142288944450971 a001 75025/2207*12752043^(10/17) 5142288944451088 a001 75025/2207*4870847^(5/8) 5142288944451942 a001 75025/2207*1860498^(2/3) 5142288944458225 a001 75025/2207*710647^(5/7) 5142288944467563 a001 9227465/2207*103682^(5/12) 5142288944487451 a001 5702887/2207*103682^(11/24) 5142288944504637 a001 75025/2207*271443^(10/13) 5142288944507497 a001 3524578/2207*103682^(1/2) 5142288944527129 a001 987*103682^(13/24) 5142288944547844 a001 1346269/2207*103682^(7/12) 5142288944565723 a001 832040/2207*103682^(5/8) 5142288944566300 a001 433494437/2207*39603^(1/11) 5142288944577143 a001 121393/2207*103682^(19/24) 5142288944591029 a001 514229/2207*103682^(2/3) 5142288944596889 a001 317811/2207*103682^(17/24) 5142288944653660 a001 196418/2207*103682^(3/4) 5142288944715331 a001 267914296/2207*39603^(3/22) 5142288944746376 a001 1135417399/2208 5142288944849581 a001 75025/2207*103682^(5/6) 5142288944864362 a001 165580141/2207*39603^(2/11) 5142288945013394 a001 102334155/2207*39603^(5/22) 5142288945162425 a001 63245986/2207*39603^(3/11) 5142288945311456 a001 39088169/2207*39603^(7/22) 5142288945391861 a001 701408733/2207*15127^(1/20) 5142288945460489 a001 24157817/2207*39603^(4/11) 5142288945520368 a001 987/64079*141422324^(12/13) 5142288945520368 a001 987/64079*2537720636^(4/5) 5142288945520368 a001 987/64079*45537549124^(12/17) 5142288945520368 a001 987/64079*14662949395604^(4/7) 5142288945520368 a001 987/64079*(1/2+1/2*5^(1/2))^36 5142288945520368 a001 987/64079*505019158607^(9/14) 5142288945520368 a001 987/64079*192900153618^(2/3) 5142288945520368 a001 987/64079*73681302247^(9/13) 5142288945520368 a001 987/64079*10749957122^(3/4) 5142288945520368 a001 987/64079*4106118243^(18/23) 5142288945520368 a001 987/64079*1568397607^(9/11) 5142288945520368 a001 987/64079*599074578^(6/7) 5142288945520368 a001 987/64079*228826127^(9/10) 5142288945520369 a001 987/64079*87403803^(18/19) 5142288945520530 a001 28657/2207*7881196^(2/3) 5142288945520585 a001 28657/2207*312119004989^(2/5) 5142288945520585 a001 28657/2207*(1/2+1/2*5^(1/2))^22 5142288945520585 a001 28657/2207*10749957122^(11/24) 5142288945520585 a001 28657/2207*4106118243^(11/23) 5142288945520585 a001 28657/2207*1568397607^(1/2) 5142288945520585 a001 28657/2207*599074578^(11/21) 5142288945520585 a001 28657/2207*228826127^(11/20) 5142288945520585 a001 28657/2207*87403803^(11/19) 5142288945520588 a001 28657/2207*33385282^(11/18) 5142288945520605 a001 28657/2207*12752043^(11/17) 5142288945520734 a001 28657/2207*4870847^(11/16) 5142288945521674 a001 28657/2207*1860498^(11/15) 5142288945528585 a001 28657/2207*710647^(11/14) 5142288945579639 a001 28657/2207*271443^(11/13) 5142288945609514 a001 14930352/2207*39603^(9/22) 5142288945758562 a001 9227465/2207*39603^(5/11) 5142288945907550 a001 5702887/2207*39603^(1/2) 5142288945959076 a001 28657/2207*103682^(11/12) 5142288945994112 a001 1134903170/3571*521^(1/13) 5142288946056696 a001 3524578/2207*39603^(6/11) 5142288946205428 a001 987*39603^(13/22) 5142288946355243 a001 1346269/2207*39603^(7/11) 5142288946502222 a001 832040/2207*39603^(15/22) 5142288946515484 a001 433494437/2207*15127^(1/10) 5142288946656628 a001 514229/2207*39603^(8/11) 5142288946791587 a001 317811/2207*39603^(17/22) 5142288946919541 a001 46368/2207*39603^(21/22) 5142288946977459 a001 196418/2207*39603^(9/11) 5142288947030042 a001 121393/2207*39603^(19/22) 5142288947431579 a001 75025/2207*39603^(10/11) 5142288947546722 a001 9107507955/17711 5142288947639108 a001 267914296/2207*15127^(3/20) 5142288948762732 a001 165580141/2207*15127^(1/5) 5142288949886355 a001 102334155/2207*15127^(1/4) 5142288951009979 a001 63245986/2207*15127^(3/10) 5142288951349262 r009 Im(z^3+c),c=-1/48+13/20*I,n=53 5142288952133602 a001 39088169/2207*15127^(7/20) 5142288952825382 a001 701408733/2207*5778^(1/18) 5142288952828262 a001 10946/2207*439204^(8/9) 5142288952851741 a001 987/24476*45537549124^(2/3) 5142288952851741 a001 987/24476*(1/2+1/2*5^(1/2))^34 5142288952851741 a001 987/24476*10749957122^(17/24) 5142288952851741 a001 987/24476*4106118243^(17/23) 5142288952851741 a001 987/24476*1568397607^(17/22) 5142288952851741 a001 987/24476*599074578^(17/21) 5142288952851741 a001 987/24476*228826127^(17/20) 5142288952851742 a001 987/24476*87403803^(17/19) 5142288952851745 a001 987/24476*33385282^(17/18) 5142288952851898 a001 10946/2207*7881196^(8/11) 5142288952851958 a001 10946/2207*141422324^(8/13) 5142288952851958 a001 10946/2207*2537720636^(8/15) 5142288952851958 a001 10946/2207*45537549124^(8/17) 5142288952851958 a001 10946/2207*14662949395604^(8/21) 5142288952851958 a001 10946/2207*(1/2+1/2*5^(1/2))^24 5142288952851958 a001 10946/2207*192900153618^(4/9) 5142288952851958 a001 10946/2207*73681302247^(6/13) 5142288952851958 a001 10946/2207*10749957122^(1/2) 5142288952851958 a001 10946/2207*4106118243^(12/23) 5142288952851958 a001 10946/2207*1568397607^(6/11) 5142288952851958 a001 10946/2207*599074578^(4/7) 5142288952851958 a001 10946/2207*228826127^(3/5) 5142288952851958 a001 10946/2207*87403803^(12/19) 5142288952851961 a001 10946/2207*33385282^(2/3) 5142288952851980 a001 10946/2207*12752043^(12/17) 5142288952852120 a001 10946/2207*4870847^(3/4) 5142288952853146 a001 10946/2207*1860498^(4/5) 5142288952860686 a001 10946/2207*710647^(6/7) 5142288952891578 m001 GAMMA(1/4)+ln(Pi)^GAMMA(7/24) 5142288952916380 a001 10946/2207*271443^(12/13) 5142288953256821 a001 267914296/9349*1364^(2/5) 5142288953257228 a001 24157817/2207*15127^(2/5) 5142288954380845 a001 14930352/2207*15127^(9/20) 5142288955504485 a001 9227465/2207*15127^(1/2) 5142288956628065 a001 5702887/2207*15127^(11/20) 5142288957751803 a001 3524578/2207*15127^(3/5) 5142288958875128 a001 987*15127^(13/20) 5142288959999535 a001 1346269/2207*15127^(7/10) 5142288961121106 a001 832040/2207*15127^(3/4) 5142288961382528 a001 433494437/2207*5778^(1/9) 5142288962250105 a001 514229/2207*15127^(4/5) 5142288963359657 a001 317811/2207*15127^(17/20) 5142288964520120 a001 196418/2207*15127^(9/10) 5142288965547295 a001 121393/2207*15127^(19/20) 5142288966273512 a001 1346269/843*843^(6/7) 5142288966740576 a001 1159586162/2255 5142288969939673 a001 267914296/2207*5778^(1/6) 5142288978496819 a001 165580141/2207*5778^(2/9) 5142288983106997 m008 (1/5*Pi^2-2/3)/(5/6*Pi^5-4/5) 5142288983437994 r005 Re(z^2+c),c=-67/70+13/55*I,n=30 5142288987053964 a001 102334155/2207*5778^(5/18) 5142288995611110 a001 63245986/2207*5778^(1/3) 5142289003101719 a001 987/9349*(1/2+1/2*5^(1/2))^32 5142289003101719 a001 987/9349*23725150497407^(1/2) 5142289003101719 a001 987/9349*505019158607^(4/7) 5142289003101719 a001 987/9349*73681302247^(8/13) 5142289003101719 a001 987/9349*10749957122^(2/3) 5142289003101719 a001 987/9349*4106118243^(16/23) 5142289003101719 a001 987/9349*1568397607^(8/11) 5142289003101719 a001 987/9349*599074578^(16/21) 5142289003101719 a001 987/9349*228826127^(4/5) 5142289003101719 a001 987/9349*87403803^(16/19) 5142289003101723 a001 987/9349*33385282^(8/9) 5142289003101749 a001 987/9349*12752043^(16/17) 5142289003101935 a001 4181/2207*141422324^(2/3) 5142289003101935 a001 4181/2207*(1/2+1/2*5^(1/2))^26 5142289003101935 a001 4181/2207*73681302247^(1/2) 5142289003101935 a001 4181/2207*10749957122^(13/24) 5142289003101935 a001 4181/2207*4106118243^(13/23) 5142289003101935 a001 4181/2207*1568397607^(13/22) 5142289003101935 a001 4181/2207*599074578^(13/21) 5142289003101935 a001 4181/2207*228826127^(13/20) 5142289003101935 a001 4181/2207*87403803^(13/19) 5142289003101938 a001 4181/2207*33385282^(13/18) 5142289003101959 a001 4181/2207*12752043^(13/17) 5142289003102111 a001 4181/2207*4870847^(13/16) 5142289003103222 a001 4181/2207*1860498^(13/15) 5142289003111390 a001 4181/2207*710647^(13/14) 5142289004168255 a001 39088169/2207*5778^(7/18) 5142289010251223 a001 701408733/2207*2207^(1/16) 5142289010769057 m001 Pi/(2^(1/3)-Si(Pi))*gamma(2) 5142289012725403 a001 24157817/2207*5778^(4/9) 5142289013368272 p003 LerchPhi(1/64,1,281/143) 5142289021282542 a001 14930352/2207*5778^(1/2) 5142289027093215 r009 Re(z^3+c),c=-13/30+3/61*I,n=30 5142289029839704 a001 9227465/2207*5778^(5/9) 5142289038396806 a001 5702887/2207*5778^(11/18) 5142289046954066 a001 3524578/2207*5778^(2/3) 5142289052137536 r002 2th iterates of z^2 + 5142289055510913 a001 987*5778^(13/18) 5142289056212798 a001 701408733/15127*1364^(1/3) 5142289060714014 p003 LerchPhi(1/25,5,664/231) 5142289064068842 a001 1346269/2207*5778^(7/9) 5142289070010958 r009 Im(z^3+c),c=-7/64+29/45*I,n=60 5142289072623935 a001 832040/2207*5778^(5/6) 5142289075406581 a001 1836311903/39603*1364^(1/3) 5142289076234209 a001 433494437/2207*2207^(1/8) 5142289078206917 a001 46368*1364^(1/3) 5142289078375907 b008 Cosh[Sqrt[11/3]+E] 5142289078615480 a001 12586269025/271443*1364^(1/3) 5142289078675089 a001 32951280099/710647*1364^(1/3) 5142289078683785 a001 43133785636/930249*1364^(1/3) 5142289078685054 a001 225851433717/4870847*1364^(1/3) 5142289078685239 a001 591286729879/12752043*1364^(1/3) 5142289078685266 a001 774004377960/16692641*1364^(1/3) 5142289078685270 a001 4052739537881/87403803*1364^(1/3) 5142289078685271 a001 225749145909/4868641*1364^(1/3) 5142289078685271 a001 3278735159921/70711162*1364^(1/3) 5142289078685273 a001 2504730781961/54018521*1364^(1/3) 5142289078685283 a001 956722026041/20633239*1364^(1/3) 5142289078685354 a001 182717648081/3940598*1364^(1/3) 5142289078685838 a001 139583862445/3010349*1364^(1/3) 5142289078689160 a001 53316291173/1149851*1364^(1/3) 5142289078711929 a001 10182505537/219602*1364^(1/3) 5142289078867986 a001 7778742049/167761*1364^(1/3) 5142289079937619 a001 2971215073/64079*1364^(1/3) 5142289081186456 a001 514229/2207*5778^(8/9) 5142289087268992 a001 567451585/12238*1364^(1/3) 5142289089729530 a001 317811/2207*5778^(17/18) 5142289092146886 m001 1/ln(Pi)/GAMMA(5/24)*sin(Pi/12) 5142289092146886 m001 sin(Pi/12)/ln(Pi)/GAMMA(5/24) 5142289098297213 a001 1328767503/2584 5142289107756231 r005 Im(z^2+c),c=-49/44+1/16*I,n=13 5142289108918800 a001 433494437/5778*1364^(4/15) 5142289113413160 a001 63245986/3571*1364^(7/15) 5142289123275624 m001 BesselI(0,2)/(Khinchin+MadelungNaCl) 5142289137518971 a001 433494437/9349*1364^(1/3) 5142289142217197 a001 267914296/2207*2207^(3/16) 5142289161805396 l006 ln(5401/5686) 5142289166367165 r005 Im(z^2+c),c=19/66+16/31*I,n=5 5142289168976985 l006 ln(528/883) 5142289169732253 m001 (2^(1/3)-exp(1/Pi))/(BesselI(1,2)+Cahen) 5142289172207933 b008 2+ArcSech[5/58] 5142289189876498 m001 1/exp((2^(1/3)))^2*Magata^2*GAMMA(1/24)^2 5142289194749582 r005 Im(z^2+c),c=7/50+34/63*I,n=23 5142289207504675 r005 Re(z^2+c),c=-7/10+123/223*I,n=2 5142289208200185 a001 165580141/2207*2207^(1/4) 5142289240474951 a001 1134903170/15127*1364^(4/15) 5142289259668736 a001 2971215073/39603*1364^(4/15) 5142289262469071 a001 7778742049/103682*1364^(4/15) 5142289262877635 a001 20365011074/271443*1364^(4/15) 5142289262937243 a001 53316291173/710647*1364^(4/15) 5142289262945940 a001 139583862445/1860498*1364^(4/15) 5142289262947209 a001 365435296162/4870847*1364^(4/15) 5142289262947394 a001 956722026041/12752043*1364^(4/15) 5142289262947421 a001 2504730781961/33385282*1364^(4/15) 5142289262947425 a001 6557470319842/87403803*1364^(4/15) 5142289262947426 a001 10610209857723/141422324*1364^(4/15) 5142289262947427 a001 4052739537881/54018521*1364^(4/15) 5142289262947438 a001 140728068720/1875749*1364^(4/15) 5142289262947508 a001 591286729879/7881196*1364^(4/15) 5142289262947993 a001 225851433717/3010349*1364^(4/15) 5142289262951315 a001 86267571272/1149851*1364^(4/15) 5142289262974083 a001 32951280099/439204*1364^(4/15) 5142289263130141 a001 75025*1364^(4/15) 5142289264199774 a001 4807526976/64079*1364^(4/15) 5142289271531147 a001 1836311903/24476*1364^(4/15) 5142289274183174 a001 102334155/2207*2207^(5/16) 5142289277821820 a007 Real Root Of -908*x^4+172*x^3+927*x^2+947*x-692 5142289293180955 a001 233802911/1926*1364^(1/5) 5142289297675315 a001 102334155/3571*1364^(2/5) 5142289314799568 r002 50th iterates of z^2 + 5142289321781128 a001 701408733/9349*1364^(4/15) 5142289340166164 a001 63245986/2207*2207^(3/8) 5142289341899410 m001 GAMMA(1/12)/Bloch^2*ln(GAMMA(1/24))^2 5142289347520141 a001 987/3571*7881196^(10/11) 5142289347520206 a001 987/3571*20633239^(6/7) 5142289347520216 a001 987/3571*141422324^(10/13) 5142289347520217 a001 987/3571*2537720636^(2/3) 5142289347520217 a001 987/3571*45537549124^(10/17) 5142289347520217 a001 987/3571*312119004989^(6/11) 5142289347520217 a001 987/3571*14662949395604^(10/21) 5142289347520217 a001 987/3571*(1/2+1/2*5^(1/2))^30 5142289347520217 a001 987/3571*192900153618^(5/9) 5142289347520217 a001 987/3571*28143753123^(3/5) 5142289347520217 a001 987/3571*10749957122^(5/8) 5142289347520217 a001 987/3571*4106118243^(15/23) 5142289347520217 a001 987/3571*1568397607^(15/22) 5142289347520217 a001 987/3571*599074578^(5/7) 5142289347520217 a001 987/3571*228826127^(3/4) 5142289347520217 a001 987/3571*87403803^(15/19) 5142289347520220 a001 987/3571*33385282^(5/6) 5142289347520244 a001 987/3571*12752043^(15/17) 5142289347520392 a001 1597/2207*20633239^(4/5) 5142289347520402 a001 1597/2207*17393796001^(4/7) 5142289347520402 a001 1597/2207*14662949395604^(4/9) 5142289347520402 a001 1597/2207*(1/2+1/2*5^(1/2))^28 5142289347520402 a001 1597/2207*505019158607^(1/2) 5142289347520402 a001 1597/2207*73681302247^(7/13) 5142289347520402 a001 1597/2207*10749957122^(7/12) 5142289347520402 a001 1597/2207*4106118243^(14/23) 5142289347520402 a001 1597/2207*1568397607^(7/11) 5142289347520402 a001 1597/2207*599074578^(2/3) 5142289347520402 a001 1597/2207*228826127^(7/10) 5142289347520402 a001 1597/2207*87403803^(14/19) 5142289347520405 a001 1597/2207*33385282^(7/9) 5142289347520420 a001 987/3571*4870847^(15/16) 5142289347520428 a001 1597/2207*12752043^(14/17) 5142289347520591 a001 1597/2207*4870847^(7/8) 5142289347521788 a001 1597/2207*1860498^(14/15) 5142289347980843 a005 (1/cos(23/125*Pi))^243 5142289348314462 a007 Real Root Of -111*x^4+517*x^3+2*x^2+841*x+510 5142289352132152 m001 (GAMMA(3/4)-Si(Pi))/(Kac+Lehmer) 5142289361091306 m001 (Psi(2,1/3)+exp(1/Pi))/(-Zeta(1,2)+OneNinth) 5142289386816396 m001 (exp(Pi)+FeigenbaumB)/(-Weierstrass+ZetaQ(3)) 5142289389887417 m001 Cahen-2*Pi/GAMMA(5/6)-Ei(1,1) 5142289406149154 a001 39088169/2207*2207^(7/16) 5142289416032512 r009 Im(z^3+c),c=-7/64+29/45*I,n=59 5142289424737112 a001 1836311903/15127*1364^(1/5) 5142289425524851 r002 46th iterates of z^2 + 5142289442638743 a007 Real Root Of -213*x^4+420*x^3+905*x^2+736*x-660 5142289442705072 a001 821223624/1597 5142289443930897 a001 1602508992/13201*1364^(1/5) 5142289444032315 m005 (1/2*Zeta(3)+2/3)/(5/6*exp(1)+1/5) 5142289446613790 k002 Champernowne real with 5*n^2+122*n-122 5142289446731232 a001 12586269025/103682*1364^(1/5) 5142289447139796 a001 121393*1364^(1/5) 5142289447199404 a001 86267571272/710647*1364^(1/5) 5142289447208101 a001 75283811239/620166*1364^(1/5) 5142289447209370 a001 591286729879/4870847*1364^(1/5) 5142289447209555 a001 516002918640/4250681*1364^(1/5) 5142289447209582 a001 4052739537881/33385282*1364^(1/5) 5142289447209586 a001 3536736619241/29134601*1364^(1/5) 5142289447209589 a001 6557470319842/54018521*1364^(1/5) 5142289447209599 a001 2504730781961/20633239*1364^(1/5) 5142289447209670 a001 956722026041/7881196*1364^(1/5) 5142289447210154 a001 365435296162/3010349*1364^(1/5) 5142289447213476 a001 139583862445/1149851*1364^(1/5) 5142289447236245 a001 53316291173/439204*1364^(1/5) 5142289447392302 a001 20365011074/167761*1364^(1/5) 5142289448461935 a001 7778742049/64079*1364^(1/5) 5142289455793309 a001 2971215073/24476*1364^(1/5) 5142289459365375 r009 Im(z^3+c),c=-1/23+34/45*I,n=49 5142289461129792 a001 701408733/2207*843^(1/14) 5142289466436513 a001 1346269/5778*3571^(16/17) 5142289472132148 a001 24157817/2207*2207^(1/2) 5142289477443118 a001 567451585/2889*1364^(2/15) 5142289481937478 a001 165580141/3571*1364^(1/3) 5142289483133016 a001 832040/843*843^(13/14) 5142289488358285 m005 (5/6*Pi+4)/(3/4*Catalan+3/5) 5142289490156448 a001 726103/1926*3571^(15/17) 5142289493782767 m001 (MasserGramain+PlouffeB)/(Zeta(5)+ln(Pi)) 5142289506043291 a001 1134903170/9349*1364^(1/5) 5142289513877467 a001 1762289/2889*3571^(14/17) 5142289522090678 r005 Im(z^2+c),c=19/58+14/33*I,n=33 5142289522438749 a007 Real Root Of -50*x^4+795*x^3-779*x^2+345*x+495 5142289529461283 a007 Real Root Of -17*x^4-887*x^3-669*x^2-516*x+524 5142289529568868 m002 -6/Log[Pi]+Csch[Pi]*Log[Pi] 5142289537598071 a001 5702887/5778*3571^(13/17) 5142289538115134 a001 14930352/2207*2207^(9/16) 5142289561318834 a001 9227465/5778*3571^(12/17) 5142289574201628 a001 821223645/1597 5142289579171445 r005 Im(z^2+c),c=23/70+19/61*I,n=23 5142289585039537 a001 2584*3571^(11/17) 5142289588905180 a003 cos(Pi*23/105)*sin(Pi*16/69) 5142289592986850 a001 821223648/1597 5142289596743894 a001 2/1597*(1/2+1/2*5^(1/2))^46 5142289597992189 a001 3524578/15127*3571^(16/17) 5142289599248591 a001 821223649/1597 5142289604098144 a001 9227465/2207*2207^(5/8) 5142289605510331 a001 821223650/1597 5142289608760263 a001 24157817/5778*3571^(10/17) 5142289608999279 a001 2971215073/15127*1364^(2/15) 5142289617185904 a001 9227465/39603*3571^(16/17) 5142289619986230 a001 24157817/103682*3571^(16/17) 5142289620394792 a001 63245986/271443*3571^(16/17) 5142289620454400 a001 165580141/710647*3571^(16/17) 5142289620463097 a001 433494437/1860498*3571^(16/17) 5142289620464366 a001 1134903170/4870847*3571^(16/17) 5142289620464551 a001 2971215073/12752043*3571^(16/17) 5142289620464578 a001 7778742049/33385282*3571^(16/17) 5142289620464582 a001 20365011074/87403803*3571^(16/17) 5142289620464582 a001 53316291173/228826127*3571^(16/17) 5142289620464582 a001 139583862445/599074578*3571^(16/17) 5142289620464582 a001 365435296162/1568397607*3571^(16/17) 5142289620464582 a001 956722026041/4106118243*3571^(16/17) 5142289620464582 a001 2504730781961/10749957122*3571^(16/17) 5142289620464582 a001 6557470319842/28143753123*3571^(16/17) 5142289620464582 a001 10610209857723/45537549124*3571^(16/17) 5142289620464582 a001 4052739537881/17393796001*3571^(16/17) 5142289620464582 a001 1548008755920/6643838879*3571^(16/17) 5142289620464582 a001 591286729879/2537720636*3571^(16/17) 5142289620464582 a001 225851433717/969323029*3571^(16/17) 5142289620464582 a001 86267571272/370248451*3571^(16/17) 5142289620464583 a001 63246219/271444*3571^(16/17) 5142289620464584 a001 12586269025/54018521*3571^(16/17) 5142289620464594 a001 4807526976/20633239*3571^(16/17) 5142289620464665 a001 1836311903/7881196*3571^(16/17) 5142289620465150 a001 701408733/3010349*3571^(16/17) 5142289620468472 a001 267914296/1149851*3571^(16/17) 5142289620491240 a001 102334155/439204*3571^(16/17) 5142289620647297 a001 39088169/167761*3571^(16/17) 5142289621712794 a001 5702887/15127*3571^(15/17) 5142289621716926 a001 14930352/64079*3571^(16/17) 5142289627369673 m001 Psi(1,1/3)^Gompertz*cosh(1)^Gompertz 5142289628193065 a001 7778742049/39603*1364^(2/15) 5142289629048273 a001 5702887/24476*3571^(16/17) 5142289630993400 a001 10182505537/51841*1364^(2/15) 5142289631401964 a001 53316291173/271443*1364^(2/15) 5142289631461572 a001 139583862445/710647*1364^(2/15) 5142289631470269 a001 182717648081/930249*1364^(2/15) 5142289631471538 a001 956722026041/4870847*1364^(2/15) 5142289631471723 a001 2504730781961/12752043*1364^(2/15) 5142289631471750 a001 3278735159921/16692641*1364^(2/15) 5142289631471756 a001 10610209857723/54018521*1364^(2/15) 5142289631471767 a001 4052739537881/20633239*1364^(2/15) 5142289631471837 a001 387002188980/1970299*1364^(2/15) 5142289631472322 a001 591286729879/3010349*1364^(2/15) 5142289631475644 a001 225851433717/1149851*1364^(2/15) 5142289631498412 a001 196418*1364^(2/15) 5142289631654470 a001 32951280099/167761*1364^(2/15) 5142289632480980 a001 39088169/5778*3571^(9/17) 5142289632724103 a001 12586269025/64079*1364^(2/15) 5142289634043767 m001 (-ln(2+3^(1/2))+Sarnak)/(Psi(1,1/3)+3^(1/3)) 5142289640055477 a001 1201881744/6119*1364^(2/15) 5142289640906607 a001 4976784/13201*3571^(15/17) 5142289643706947 a001 39088169/103682*3571^(15/17) 5142289644115511 a001 34111385/90481*3571^(15/17) 5142289644175120 a001 267914296/710647*3571^(15/17) 5142289644183816 a001 233802911/620166*3571^(15/17) 5142289644185085 a001 1836311903/4870847*3571^(15/17) 5142289644185270 a001 1602508992/4250681*3571^(15/17) 5142289644185297 a001 12586269025/33385282*3571^(15/17) 5142289644185301 a001 10983760033/29134601*3571^(15/17) 5142289644185302 a001 86267571272/228826127*3571^(15/17) 5142289644185302 a001 267913919/710646*3571^(15/17) 5142289644185302 a001 591286729879/1568397607*3571^(15/17) 5142289644185302 a001 516002918640/1368706081*3571^(15/17) 5142289644185302 a001 4052739537881/10749957122*3571^(15/17) 5142289644185302 a001 3536736619241/9381251041*3571^(15/17) 5142289644185302 a001 6557470319842/17393796001*3571^(15/17) 5142289644185302 a001 2504730781961/6643838879*3571^(15/17) 5142289644185302 a001 956722026041/2537720636*3571^(15/17) 5142289644185302 a001 365435296162/969323029*3571^(15/17) 5142289644185302 a001 139583862445/370248451*3571^(15/17) 5142289644185302 a001 53316291173/141422324*3571^(15/17) 5142289644185304 a001 20365011074/54018521*3571^(15/17) 5142289644185314 a001 7778742049/20633239*3571^(15/17) 5142289644185385 a001 2971215073/7881196*3571^(15/17) 5142289644185869 a001 1134903170/3010349*3571^(15/17) 5142289644189191 a001 433494437/1149851*3571^(15/17) 5142289644211960 a001 165580141/439204*3571^(15/17) 5142289644368017 a001 63245986/167761*3571^(15/17) 5142289645433558 a001 9227465/15127*3571^(14/17) 5142289645437652 a001 24157817/64079*3571^(15/17) 5142289652769036 a001 9227465/24476*3571^(15/17) 5142289655604257 a001 821223658/1597 5142289656201701 a001 31622993/2889*3571^(8/17) 5142289661705287 a001 1836311903/5778*1364^(1/15) 5142289664627333 a001 24157817/39603*3571^(14/17) 5142289666199647 a001 267914296/3571*1364^(4/15) 5142289667427668 a001 31622993/51841*3571^(14/17) 5142289667836231 a001 165580141/271443*3571^(14/17) 5142289667895839 a001 433494437/710647*3571^(14/17) 5142289667904536 a001 567451585/930249*3571^(14/17) 5142289667905805 a001 2971215073/4870847*3571^(14/17) 5142289667905990 a001 7778742049/12752043*3571^(14/17) 5142289667906017 a001 10182505537/16692641*3571^(14/17) 5142289667906021 a001 53316291173/87403803*3571^(14/17) 5142289667906022 a001 139583862445/228826127*3571^(14/17) 5142289667906022 a001 182717648081/299537289*3571^(14/17) 5142289667906022 a001 956722026041/1568397607*3571^(14/17) 5142289667906022 a001 2504730781961/4106118243*3571^(14/17) 5142289667906022 a001 3278735159921/5374978561*3571^(14/17) 5142289667906022 a001 10610209857723/17393796001*3571^(14/17) 5142289667906022 a001 4052739537881/6643838879*3571^(14/17) 5142289667906022 a001 1134903780/1860499*3571^(14/17) 5142289667906022 a001 591286729879/969323029*3571^(14/17) 5142289667906022 a001 225851433717/370248451*3571^(14/17) 5142289667906022 a001 21566892818/35355581*3571^(14/17) 5142289667906023 a001 32951280099/54018521*3571^(14/17) 5142289667906034 a001 1144206275/1875749*3571^(14/17) 5142289667906104 a001 1201881744/1970299*3571^(14/17) 5142289667906589 a001 1836311903/3010349*3571^(14/17) 5142289667909911 a001 701408733/1149851*3571^(14/17) 5142289667932679 a001 66978574/109801*3571^(14/17) 5142289668088737 a001 9303105/15251*3571^(14/17) 5142289669154261 a001 14930352/15127*3571^(13/17) 5142289669158369 a001 39088169/64079*3571^(14/17) 5142289670081095 a001 5702887/2207*2207^(11/16) 5142289670226912 a003 cos(Pi*10/81)-sin(Pi*19/44) 5142289673141179 r009 Im(z^3+c),c=-23/38+1/2*I,n=28 5142289676489739 a001 3732588/6119*3571^(14/17) 5142289679298072 a001 2178309/9349*3571^(16/17) 5142289679922420 a001 34111385/1926*3571^(7/17) 5142289688348051 a001 39088169/39603*3571^(13/17) 5142289690172442 m001 ThueMorse*(Kolakoski+ZetaP(2)) 5142289690305461 a001 1836311903/9349*1364^(2/15) 5142289691148387 a001 102334155/103682*3571^(13/17) 5142289691556951 a001 267914296/271443*3571^(13/17) 5142289691616559 a001 701408733/710647*3571^(13/17) 5142289691625256 a001 1836311903/1860498*3571^(13/17) 5142289691626525 a001 4807526976/4870847*3571^(13/17) 5142289691626710 a001 12586269025/12752043*3571^(13/17) 5142289691626737 a001 32951280099/33385282*3571^(13/17) 5142289691626741 a001 86267571272/87403803*3571^(13/17) 5142289691626742 a001 225851433717/228826127*3571^(13/17) 5142289691626742 a001 591286729879/599074578*3571^(13/17) 5142289691626742 a001 1548008755920/1568397607*3571^(13/17) 5142289691626742 a001 4052739537881/4106118243*3571^(13/17) 5142289691626742 a001 4807525989/4870846*3571^(13/17) 5142289691626742 a001 6557470319842/6643838879*3571^(13/17) 5142289691626742 a001 2504730781961/2537720636*3571^(13/17) 5142289691626742 a001 956722026041/969323029*3571^(13/17) 5142289691626742 a001 365435296162/370248451*3571^(13/17) 5142289691626742 a001 139583862445/141422324*3571^(13/17) 5142289691626743 a001 53316291173/54018521*3571^(13/17) 5142289691626754 a001 20365011074/20633239*3571^(13/17) 5142289691626824 a001 7778742049/7881196*3571^(13/17) 5142289691627309 a001 2971215073/3010349*3571^(13/17) 5142289691630631 a001 1134903170/1149851*3571^(13/17) 5142289691653399 a001 433494437/439204*3571^(13/17) 5142289691809457 a001 165580141/167761*3571^(13/17) 5142289691938814 a001 1292/2889*(1/2+1/2*5^(1/2))^29 5142289691938814 a001 1292/2889*1322157322203^(1/2) 5142289692874987 a001 24157817/15127*3571^(12/17) 5142289692879090 a001 63245986/64079*3571^(13/17) 5142289699181681 m001 (-CopelandErdos+ZetaP(4))/(exp(1)+Artin) 5142289700210465 a001 24157817/24476*3571^(13/17) 5142289703019091 a001 3524578/9349*3571^(15/17) 5142289703643140 a001 165580141/5778*3571^(6/17) 5142289712068772 a001 63245986/39603*3571^(12/17) 5142289714869107 a001 165580141/103682*3571^(12/17) 5142289715277671 a001 433494437/271443*3571^(12/17) 5142289715337279 a001 1134903170/710647*3571^(12/17) 5142289715345976 a001 2971215073/1860498*3571^(12/17) 5142289715347245 a001 7778742049/4870847*3571^(12/17) 5142289715347430 a001 20365011074/12752043*3571^(12/17) 5142289715347457 a001 53316291173/33385282*3571^(12/17) 5142289715347461 a001 139583862445/87403803*3571^(12/17) 5142289715347462 a001 365435296162/228826127*3571^(12/17) 5142289715347462 a001 956722026041/599074578*3571^(12/17) 5142289715347462 a001 2504730781961/1568397607*3571^(12/17) 5142289715347462 a001 6557470319842/4106118243*3571^(12/17) 5142289715347462 a001 10610209857723/6643838879*3571^(12/17) 5142289715347462 a001 4052739537881/2537720636*3571^(12/17) 5142289715347462 a001 1548008755920/969323029*3571^(12/17) 5142289715347462 a001 591286729879/370248451*3571^(12/17) 5142289715347462 a001 225851433717/141422324*3571^(12/17) 5142289715347463 a001 86267571272/54018521*3571^(12/17) 5142289715347474 a001 32951280099/20633239*3571^(12/17) 5142289715347544 a001 12586269025/7881196*3571^(12/17) 5142289715348029 a001 4807526976/3010349*3571^(12/17) 5142289715351351 a001 1836311903/1149851*3571^(12/17) 5142289715374119 a001 701408733/439204*3571^(12/17) 5142289715530177 a001 267914296/167761*3571^(12/17) 5142289716595705 a001 39088169/15127*3571^(11/17) 5142289716599810 a001 102334155/64079*3571^(12/17) 5142289723931183 a001 39088169/24476*3571^(12/17) 5142289726739697 a001 5702887/9349*3571^(14/17) 5142289727363860 a001 133957148/2889*3571^(5/17) 5142289727916308 q001 1/1944659 5142289732409115 k008 concat of cont frac of 5142289735789492 a001 34111385/13201*3571^(11/17) 5142289736064204 a001 3524578/2207*2207^(3/4) 5142289738589827 a001 133957148/51841*3571^(11/17) 5142289738998391 a001 233802911/90481*3571^(11/17) 5142289739057999 a001 1836311903/710647*3571^(11/17) 5142289739066696 a001 267084832/103361*3571^(11/17) 5142289739067965 a001 12586269025/4870847*3571^(11/17) 5142289739068150 a001 10983760033/4250681*3571^(11/17) 5142289739068177 a001 43133785636/16692641*3571^(11/17) 5142289739068181 a001 75283811239/29134601*3571^(11/17) 5142289739068182 a001 591286729879/228826127*3571^(11/17) 5142289739068182 a001 86000486440/33281921*3571^(11/17) 5142289739068182 a001 4052739537881/1568397607*3571^(11/17) 5142289739068182 a001 3536736619241/1368706081*3571^(11/17) 5142289739068182 a001 3278735159921/1268860318*3571^(11/17) 5142289739068182 a001 2504730781961/969323029*3571^(11/17) 5142289739068182 a001 956722026041/370248451*3571^(11/17) 5142289739068182 a001 182717648081/70711162*3571^(11/17) 5142289739068183 a001 139583862445/54018521*3571^(11/17) 5142289739068194 a001 53316291173/20633239*3571^(11/17) 5142289739068265 a001 10182505537/3940598*3571^(11/17) 5142289739068749 a001 7778742049/3010349*3571^(11/17) 5142289739072071 a001 2971215073/1149851*3571^(11/17) 5142289739094839 a001 567451585/219602*3571^(11/17) 5142289739250897 a001 433494437/167761*3571^(11/17) 5142289740316426 a001 63245986/15127*3571^(10/17) 5142289740320530 a001 165580141/64079*3571^(11/17) 5142289740929700 r009 Im(z^3+c),c=-13/25+22/59*I,n=40 5142289747651904 a001 31622993/12238*3571^(11/17) 5142289750460461 a001 9227465/9349*3571^(13/17) 5142289751084581 a001 433494437/5778*3571^(4/17) 5142289759510212 a001 165580141/39603*3571^(10/17) 5142289762310548 a001 433494437/103682*3571^(10/17) 5142289762719111 a001 1134903170/271443*3571^(10/17) 5142289762778720 a001 2971215073/710647*3571^(10/17) 5142289762787416 a001 7778742049/1860498*3571^(10/17) 5142289762788685 a001 20365011074/4870847*3571^(10/17) 5142289762788870 a001 53316291173/12752043*3571^(10/17) 5142289762788897 a001 139583862445/33385282*3571^(10/17) 5142289762788901 a001 365435296162/87403803*3571^(10/17) 5142289762788902 a001 956722026041/228826127*3571^(10/17) 5142289762788902 a001 2504730781961/599074578*3571^(10/17) 5142289762788902 a001 6557470319842/1568397607*3571^(10/17) 5142289762788902 a001 10610209857723/2537720636*3571^(10/17) 5142289762788902 a001 4052739537881/969323029*3571^(10/17) 5142289762788902 a001 1548008755920/370248451*3571^(10/17) 5142289762788902 a001 591286729879/141422324*3571^(10/17) 5142289762788904 a001 225851433717/54018521*3571^(10/17) 5142289762788914 a001 86267571272/20633239*3571^(10/17) 5142289762788985 a001 32951280099/7881196*3571^(10/17) 5142289762789469 a001 12586269025/3010349*3571^(10/17) 5142289762792791 a001 4807526976/1149851*3571^(10/17) 5142289762815560 a001 1836311903/439204*3571^(10/17) 5142289762971617 a001 701408733/167761*3571^(10/17) 5142289764037146 a001 6765*3571^(9/17) 5142289764041250 a001 267914296/64079*3571^(10/17) 5142289770463959 r009 Im(z^3+c),c=-7/52+34/53*I,n=42 5142289771372624 a001 102334155/24476*3571^(10/17) 5142289774181164 a001 14930352/9349*3571^(12/17) 5142289774786167 m005 (1/2*Zeta(3)-3/10)/(1/7*Catalan+5/11) 5142289774805301 a001 233802911/1926*3571^(3/17) 5142289777442833 a008 Real Root of x^4-x^3-19*x^2-27*x+78 5142289781230996 m008 (2/5*Pi^5+4/5)/(1/4*Pi^6-3/4) 5142289783230932 a001 267914296/39603*3571^(9/17) 5142289786031268 a001 701408733/103682*3571^(9/17) 5142289786301533 a007 Real Root Of 374*x^4-936*x^3+839*x^2-999*x-889 5142289786439831 a001 1836311903/271443*3571^(9/17) 5142289786499440 a001 686789568/101521*3571^(9/17) 5142289786508137 a001 12586269025/1860498*3571^(9/17) 5142289786509406 a001 32951280099/4870847*3571^(9/17) 5142289786509591 a001 86267571272/12752043*3571^(9/17) 5142289786509618 a001 32264490531/4769326*3571^(9/17) 5142289786509622 a001 591286729879/87403803*3571^(9/17) 5142289786509622 a001 1548008755920/228826127*3571^(9/17) 5142289786509622 a001 4052739537881/599074578*3571^(9/17) 5142289786509622 a001 1515744265389/224056801*3571^(9/17) 5142289786509622 a001 6557470319842/969323029*3571^(9/17) 5142289786509622 a001 2504730781961/370248451*3571^(9/17) 5142289786509623 a001 956722026041/141422324*3571^(9/17) 5142289786509624 a001 365435296162/54018521*3571^(9/17) 5142289786509634 a001 139583862445/20633239*3571^(9/17) 5142289786509705 a001 53316291173/7881196*3571^(9/17) 5142289786510190 a001 20365011074/3010349*3571^(9/17) 5142289786513512 a001 7778742049/1149851*3571^(9/17) 5142289786536280 a001 2971215073/439204*3571^(9/17) 5142289786692337 a001 1134903170/167761*3571^(9/17) 5142289787132265 a001 2149991360/4181 5142289787757866 a001 165580141/15127*3571^(8/17) 5142289787761970 a001 433494437/64079*3571^(9/17) 5142289790234154 a001 514229/5778*9349^(18/19) 5142289793261452 a001 686789568/2161*1364^(1/15) 5142289793325290 a001 416020/2889*9349^(17/19) 5142289795093345 a001 165580141/24476*3571^(9/17) 5142289796423854 a001 1346269/5778*9349^(16/19) 5142289797901891 a001 24157817/9349*3571^(11/17) 5142289798526021 a001 567451585/2889*3571^(2/17) 5142289798740834 r002 57th iterates of z^2 + 5142289799519581 a001 726103/1926*9349^(15/19) 5142289802046901 a001 987*2207^(13/16) 5142289802616392 a001 1762289/2889*9349^(14/19) 5142289805712788 a001 5702887/5778*9349^(13/19) 5142289806951653 a001 433494437/39603*3571^(8/17) 5142289808614355 m005 (1/2*Zeta(3)+7/10)/(5/6*5^(1/2)+2/3) 5142289808809343 a001 9227465/5778*9349^(12/19) 5142289809646613 m001 1/Ei(1)^2/ln(PisotVijayaraghavan)^2*Zeta(1/2) 5142289809751988 a001 567451585/51841*3571^(8/17) 5142289810160552 a001 2971215073/271443*3571^(8/17) 5142289810220160 a001 7778742049/710647*3571^(8/17) 5142289810228857 a001 10182505537/930249*3571^(8/17) 5142289810230126 a001 53316291173/4870847*3571^(8/17) 5142289810230311 a001 139583862445/12752043*3571^(8/17) 5142289810230338 a001 182717648081/16692641*3571^(8/17) 5142289810230342 a001 956722026041/87403803*3571^(8/17) 5142289810230343 a001 2504730781961/228826127*3571^(8/17) 5142289810230343 a001 3278735159921/299537289*3571^(8/17) 5142289810230343 a001 10610209857723/969323029*3571^(8/17) 5142289810230343 a001 4052739537881/370248451*3571^(8/17) 5142289810230343 a001 387002188980/35355581*3571^(8/17) 5142289810230344 a001 591286729879/54018521*3571^(8/17) 5142289810230355 a001 7787980473/711491*3571^(8/17) 5142289810230426 a001 21566892818/1970299*3571^(8/17) 5142289810230910 a001 32951280099/3010349*3571^(8/17) 5142289810234232 a001 12586269025/1149851*3571^(8/17) 5142289810257000 a001 1201881744/109801*3571^(8/17) 5142289810413058 a001 1836311903/167761*3571^(8/17) 5142289811478587 a001 267914296/15127*3571^(7/17) 5142289811482691 a001 701408733/64079*3571^(8/17) 5142289811905837 a001 2584*9349^(11/19) 5142289812455239 a001 12586269025/39603*1364^(1/15) 5142289815002354 a001 24157817/5778*9349^(10/19) 5142289815255575 a001 32951280099/103682*1364^(1/15) 5142289815664138 a001 86267571272/271443*1364^(1/15) 5142289815723747 a001 317811*1364^(1/15) 5142289815732444 a001 591286729879/1860498*1364^(1/15) 5142289815733712 a001 1548008755920/4870847*1364^(1/15) 5142289815733898 a001 4052739537881/12752043*1364^(1/15) 5142289815733925 a001 1515744265389/4769326*1364^(1/15) 5142289815733941 a001 6557470319842/20633239*1364^(1/15) 5142289815734012 a001 2504730781961/7881196*1364^(1/15) 5142289815734497 a001 956722026041/3010349*1364^(1/15) 5142289815737818 a001 365435296162/1149851*1364^(1/15) 5142289815760587 a001 139583862445/439204*1364^(1/15) 5142289815916644 a001 53316291173/167761*1364^(1/15) 5142289816986277 a001 20365011074/64079*1364^(1/15) 5142289818098863 a001 39088169/5778*9349^(9/19) 5142289818814065 a001 10946*3571^(8/17) 5142289821195375 a001 31622993/2889*9349^(8/19) 5142289821622609 a001 4181*3571^(10/17) 5142289822246742 a001 1836311903/5778*3571^(1/17) 5142289823494918 a001 2255/1926*7881196^(9/11) 5142289823494981 a001 2584/15127*(1/2+1/2*5^(1/2))^31 5142289823494981 a001 2584/15127*9062201101803^(1/2) 5142289823494985 a001 2255/1926*141422324^(9/13) 5142289823494985 a001 2255/1926*2537720636^(3/5) 5142289823494985 a001 2255/1926*45537549124^(9/17) 5142289823494985 a001 2255/1926*817138163596^(9/19) 5142289823494985 a001 2255/1926*14662949395604^(3/7) 5142289823494985 a001 2255/1926*(1/2+1/2*5^(1/2))^27 5142289823494985 a001 2255/1926*192900153618^(1/2) 5142289823494985 a001 2255/1926*10749957122^(9/16) 5142289823494985 a001 2255/1926*599074578^(9/14) 5142289823494989 a001 2255/1926*33385282^(3/4) 5142289823496322 a001 2255/1926*1860498^(9/10) 5142289823668346 m001 (Shi(1)-cos(1)*gamma(3))/gamma(3) 5142289824291885 a001 34111385/1926*9349^(7/19) 5142289824317651 a001 7778742049/24476*1364^(1/15) 5142289825731754 r009 Im(z^3+c),c=-12/29+31/57*I,n=49 5142289827388396 a001 165580141/5778*9349^(6/19) 5142289830484907 a001 133957148/2889*9349^(5/19) 5142289830672373 a001 17711*3571^(7/17) 5142289832352069 r005 Im(z^2+c),c=-17/114+3/46*I,n=6 5142289833472709 a001 1836311903/103682*3571^(7/17) 5142289833581418 a001 433494437/5778*9349^(4/19) 5142289833881272 a001 1602508992/90481*3571^(7/17) 5142289833940881 a001 12586269025/710647*3571^(7/17) 5142289833949578 a001 10983760033/620166*3571^(7/17) 5142289833950847 a001 86267571272/4870847*3571^(7/17) 5142289833951032 a001 75283811239/4250681*3571^(7/17) 5142289833951059 a001 591286729879/33385282*3571^(7/17) 5142289833951063 a001 516002918640/29134601*3571^(7/17) 5142289833951063 a001 4052739537881/228826127*3571^(7/17) 5142289833951063 a001 3536736619241/199691526*3571^(7/17) 5142289833951063 a001 6557470319842/370248451*3571^(7/17) 5142289833951064 a001 2504730781961/141422324*3571^(7/17) 5142289833951065 a001 956722026041/54018521*3571^(7/17) 5142289833951075 a001 365435296162/20633239*3571^(7/17) 5142289833951146 a001 139583862445/7881196*3571^(7/17) 5142289833951631 a001 53316291173/3010349*3571^(7/17) 5142289833954953 a001 20365011074/1149851*3571^(7/17) 5142289833977721 a001 7778742049/439204*3571^(7/17) 5142289834133778 a001 2971215073/167761*3571^(7/17) 5142289835199307 a001 433494437/15127*3571^(6/17) 5142289835203411 a001 1134903170/64079*3571^(7/17) 5142289836677929 a001 233802911/1926*9349^(3/19) 5142289837383519 a001 2814375228/5473 5142289837819146 a001 98209/2889*24476^(20/21) 5142289838191055 a001 105937/1926*24476^(19/21) 5142289838613875 a001 514229/5778*24476^(6/7) 5142289839017249 a001 416020/2889*24476^(17/21) 5142289839428051 a001 1346269/5778*24476^(16/21) 5142289839774440 a001 567451585/2889*9349^(2/19) 5142289839836015 a001 726103/1926*24476^(5/7) 5142289840245064 a001 1762289/2889*24476^(2/3) 5142289840653698 a001 5702887/5778*24476^(13/21) 5142289841062490 a001 9227465/5778*24476^(4/7) 5142289841471222 a001 2584*24476^(11/21) 5142289841879977 a001 24157817/5778*24476^(10/21) 5142289842288723 a001 39088169/5778*24476^(3/7) 5142289842534786 a001 433494437/24476*3571^(7/17) 5142289842688763 a001 17711/5778*20633239^(5/7) 5142289842688767 a001 2584/39603*141422324^(11/13) 5142289842688767 a001 2584/39603*2537720636^(11/15) 5142289842688767 a001 2584/39603*45537549124^(11/17) 5142289842688767 a001 2584/39603*312119004989^(3/5) 5142289842688767 a001 2584/39603*817138163596^(11/19) 5142289842688767 a001 2584/39603*14662949395604^(11/21) 5142289842688767 a001 2584/39603*(1/2+1/2*5^(1/2))^33 5142289842688767 a001 2584/39603*192900153618^(11/18) 5142289842688767 a001 2584/39603*10749957122^(11/16) 5142289842688767 a001 2584/39603*1568397607^(3/4) 5142289842688768 a001 2584/39603*599074578^(11/14) 5142289842688772 a001 2584/39603*33385282^(11/12) 5142289842688772 a001 17711/5778*2537720636^(5/9) 5142289842688772 a001 17711/5778*312119004989^(5/11) 5142289842688772 a001 17711/5778*(1/2+1/2*5^(1/2))^25 5142289842688772 a001 17711/5778*3461452808002^(5/12) 5142289842688772 a001 17711/5778*28143753123^(1/2) 5142289842688772 a001 17711/5778*228826127^(5/8) 5142289842690010 a001 17711/5778*1860498^(5/6) 5142289842697473 a001 31622993/2889*24476^(8/21) 5142289842870951 a001 1836311903/5778*9349^(1/19) 5142289843106221 a001 34111385/1926*24476^(1/3) 5142289843514970 a001 165580141/5778*24476^(2/7) 5142289843923719 a001 133957148/2889*24476^(5/21) 5142289844332468 a001 433494437/5778*24476^(4/21) 5142289844715078 a001 14736260008/28657 5142289844741216 a001 233802911/1926*24476^(1/7) 5142289844754223 a001 121393/5778*64079^(21/23) 5142289844905122 a001 98209/2889*64079^(20/23) 5142289844922731 a001 105937/1926*64079^(19/23) 5142289844952279 a001 75025/5778*64079^(22/23) 5142289844991253 a001 514229/5778*64079^(18/23) 5142289845040328 a001 416020/2889*64079^(17/23) 5142289845096831 a001 1346269/5778*64079^(16/23) 5142289845149965 a001 567451585/2889*24476^(2/21) 5142289845150497 a001 726103/1926*64079^(15/23) 5142289845205246 a001 1762289/2889*64079^(14/23) 5142289845259582 a001 5702887/5778*64079^(13/23) 5142289845314075 a001 9227465/5778*64079^(12/23) 5142289845343331 a001 63245986/9349*3571^(9/17) 5142289845368509 a001 2584*64079^(11/23) 5142289845422965 a001 24157817/5778*64079^(10/23) 5142289845477412 a001 39088169/5778*64079^(9/23) 5142289845489103 a001 1292/51841*2537720636^(7/9) 5142289845489103 a001 1292/51841*17393796001^(5/7) 5142289845489103 a001 1292/51841*312119004989^(7/11) 5142289845489103 a001 1292/51841*14662949395604^(5/9) 5142289845489103 a001 1292/51841*(1/2+1/2*5^(1/2))^35 5142289845489103 a001 1292/51841*505019158607^(5/8) 5142289845489103 a001 1292/51841*28143753123^(7/10) 5142289845489103 a001 1292/51841*599074578^(5/6) 5142289845489103 a001 1292/51841*228826127^(7/8) 5142289845489108 a001 2576/321*(1/2+1/2*5^(1/2))^23 5142289845489108 a001 2576/321*4106118243^(1/2) 5142289845531863 a001 31622993/2889*64079^(8/23) 5142289845558714 a001 1836311903/5778*24476^(1/21) 5142289845586313 a001 34111385/1926*64079^(7/23) 5142289845640763 a001 165580141/5778*64079^(6/23) 5142289845695213 a001 133957148/2889*64079^(5/23) 5142289845749663 a001 433494437/5778*64079^(4/23) 5142289845784738 a001 38580029568/75025 5142289845804113 a001 233802911/1926*64079^(3/23) 5142289845847948 a001 98209/2889*167761^(4/5) 5142289845857616 a001 726103/1926*167761^(3/5) 5142289845858562 a001 567451585/2889*64079^(2/23) 5142289845876937 a001 121393/5778*439204^(7/9) 5142289845894378 a001 24157817/5778*167761^(2/5) 5142289845897619 a001 121393/5778*7881196^(7/11) 5142289845897664 a001 121393/5778*20633239^(3/5) 5142289845897667 a001 2584/271443*(1/2+1/2*5^(1/2))^37 5142289845897671 a001 121393/5778*141422324^(7/13) 5142289845897671 a001 121393/5778*2537720636^(7/15) 5142289845897671 a001 121393/5778*17393796001^(3/7) 5142289845897671 a001 121393/5778*45537549124^(7/17) 5142289845897671 a001 121393/5778*14662949395604^(1/3) 5142289845897671 a001 121393/5778*(1/2+1/2*5^(1/2))^21 5142289845897671 a001 121393/5778*192900153618^(7/18) 5142289845897671 a001 121393/5778*10749957122^(7/16) 5142289845897671 a001 121393/5778*599074578^(1/2) 5142289845897674 a001 121393/5778*33385282^(7/12) 5142289845898711 a001 121393/5778*1860498^(7/10) 5142289845905308 a001 121393/5778*710647^(3/4) 5142289845913012 a001 1836311903/5778*64079^(1/23) 5142289845930919 a001 133957148/2889*167761^(1/5) 5142289845940799 a001 2970700844/5777 5142289845947531 a001 2576/321*103682^(23/24) 5142289845952436 a001 726103/1926*439204^(5/9) 5142289845953580 a001 514229/5778*439204^(2/3) 5142289845955626 a001 9227465/5778*439204^(4/9) 5142289845957275 a001 2584/710647*2537720636^(13/15) 5142289845957275 a001 2584/710647*45537549124^(13/17) 5142289845957275 a001 2584/710647*14662949395604^(13/21) 5142289845957275 a001 2584/710647*(1/2+1/2*5^(1/2))^39 5142289845957275 a001 2584/710647*192900153618^(13/18) 5142289845957275 a001 2584/710647*73681302247^(3/4) 5142289845957275 a001 2584/710647*10749957122^(13/16) 5142289845957275 a001 2584/710647*599074578^(13/14) 5142289845957280 a001 105937/1926*817138163596^(1/3) 5142289845957280 a001 105937/1926*(1/2+1/2*5^(1/2))^19 5142289845957280 a001 105937/1926*87403803^(1/2) 5142289845958576 a001 39088169/5778*439204^(1/3) 5142289845961538 a001 165580141/5778*439204^(2/9) 5142289845963568 a001 264431456520/514229 5142289845964500 a001 233802911/1926*439204^(1/9) 5142289845965972 a001 1292/930249*(1/2+1/2*5^(1/2))^41 5142289845965977 a001 416020/2889*45537549124^(1/3) 5142289845965977 a001 416020/2889*(1/2+1/2*5^(1/2))^17 5142289845965993 a001 416020/2889*12752043^(1/2) 5142289845966890 a001 692290540864/1346269 5142289845967208 a001 726103/1926*7881196^(5/11) 5142289845967240 a001 726103/1926*20633239^(3/7) 5142289845967241 a001 2584/4870847*(1/2+1/2*5^(1/2))^43 5142289845967245 a001 726103/1926*141422324^(5/13) 5142289845967246 a001 726103/1926*2537720636^(1/3) 5142289845967246 a001 726103/1926*45537549124^(5/17) 5142289845967246 a001 726103/1926*312119004989^(3/11) 5142289845967246 a001 726103/1926*14662949395604^(5/21) 5142289845967246 a001 726103/1926*(1/2+1/2*5^(1/2))^15 5142289845967246 a001 726103/1926*192900153618^(5/18) 5142289845967246 a001 726103/1926*28143753123^(3/10) 5142289845967246 a001 726103/1926*10749957122^(5/16) 5142289845967246 a001 726103/1926*599074578^(5/14) 5142289845967246 a001 726103/1926*228826127^(3/8) 5142289845967247 a001 726103/1926*33385282^(5/12) 5142289845967375 a001 10182248124/19801 5142289845967426 a001 2584/12752043*45537549124^(15/17) 5142289845967426 a001 2584/12752043*312119004989^(9/11) 5142289845967426 a001 2584/12752043*14662949395604^(5/7) 5142289845967426 a001 2584/12752043*(1/2+1/2*5^(1/2))^45 5142289845967426 a001 2584/12752043*192900153618^(5/6) 5142289845967426 a001 2584/12752043*28143753123^(9/10) 5142289845967426 a001 2584/12752043*10749957122^(15/16) 5142289845967430 a001 2584*7881196^(1/3) 5142289845967431 a001 5702887/5778*141422324^(1/3) 5142289845967431 a001 5702887/5778*(1/2+1/2*5^(1/2))^13 5142289845967431 a001 5702887/5778*73681302247^(1/4) 5142289845967439 a001 39088169/5778*7881196^(3/11) 5142289845967444 a001 9227465/5778*7881196^(4/11) 5142289845967446 a001 4745029957352/9227465 5142289845967447 a001 165580141/5778*7881196^(2/11) 5142289845967453 a001 1292/16692641*(1/2+1/2*5^(1/2))^47 5142289845967455 a001 233802911/1926*7881196^(1/11) 5142289845967456 a001 12422649705984/24157817 5142289845967457 a001 2584/87403803*14662949395604^(7/9) 5142289845967457 a001 2584/87403803*505019158607^(7/8) 5142289845967457 a001 16261459580300/31622993 5142289845967458 a001 2584/228826127*817138163596^(17/19) 5142289845967458 a001 2584/228826127*14662949395604^(17/21) 5142289845967458 a001 2584/228826127*192900153618^(17/18) 5142289845967458 a001 85146107775816/165580141 5142289845967458 a001 222915404166848/433494437 5142289845967458 a001 2584/1568397607*3461452808002^(11/12) 5142289845967458 a001 17164708962492/33379505 5142289845967458 a001 2584/4106118243*14662949395604^(19/21) 5142289845967458 a001 1527884910007336/2971215073 5142289845967458 a001 4000054625297280/7778742049 5142289845967458 a001 5236139482942252/10182505537 5142289845967458 a001 27416782272356232/53316291173 5142289845967458 a001 2584*312119004989^(1/5) 5142289845967458 a001 16944503306471728/32951280099 5142289845967458 a001 6472224340587224/12586269025 5142289845967458 a001 2584/17393796001*14662949395604^(20/21) 5142289845967458 a001 309021214411243/600940872 5142289845967458 a001 944284805282608/1836311903 5142289845967458 a001 2584*1568397607^(1/4) 5142289845967458 a001 34/33391061*14662949395604^(8/9) 5142289845967458 a001 4052637084920/7880997 5142289845967458 a001 2584/969323029*14662949395604^(6/7) 5142289845967458 a001 17221162048879/33489287 5142289845967458 a001 2584/370248451*23725150497407^(13/16) 5142289845967458 a001 2584/370248451*505019158607^(13/14) 5142289845967458 a001 52623188615216/102334155 5142289845967458 a001 646/35355581*312119004989^(10/11) 5142289845967458 a001 646/35355581*3461452808002^(5/6) 5142289845967458 a001 20100269454616/39088169 5142289845967459 a001 2584/54018521*45537549124^(16/17) 5142289845967459 a001 2584/54018521*14662949395604^(16/21) 5142289845967459 a001 2584/54018521*192900153618^(8/9) 5142289845967459 a001 2584/54018521*73681302247^(12/13) 5142289845967460 a001 34111385/1926*20633239^(1/5) 5142289845967461 a001 133957148/2889*20633239^(1/7) 5142289845967461 a001 24157817/5778*20633239^(2/7) 5142289845967462 a001 39088169/5778*141422324^(3/13) 5142289845967462 a001 39088169/5778*2537720636^(1/5) 5142289845967462 a001 39088169/5778*45537549124^(3/17) 5142289845967462 a001 39088169/5778*817138163596^(3/19) 5142289845967462 a001 39088169/5778*14662949395604^(1/7) 5142289845967462 a001 39088169/5778*(1/2+1/2*5^(1/2))^9 5142289845967462 a001 39088169/5778*192900153618^(1/6) 5142289845967462 a001 39088169/5778*10749957122^(3/16) 5142289845967462 a001 39088169/5778*599074578^(3/14) 5142289845967462 a001 34111385/1926*17393796001^(1/7) 5142289845967462 a001 34111385/1926*14662949395604^(1/9) 5142289845967462 a001 34111385/1926*(1/2+1/2*5^(1/2))^7 5142289845967462 a001 34111385/1926*599074578^(1/6) 5142289845967462 a001 233802911/1926*141422324^(1/13) 5142289845967462 a001 133957148/2889*2537720636^(1/9) 5142289845967462 a001 133957148/2889*312119004989^(1/11) 5142289845967462 a001 133957148/2889*(1/2+1/2*5^(1/2))^5 5142289845967462 a001 133957148/2889*28143753123^(1/10) 5142289845967462 a001 233802911/1926*2537720636^(1/15) 5142289845967462 a001 233802911/1926*45537549124^(1/17) 5142289845967462 a001 233802911/1926*14662949395604^(1/21) 5142289845967462 a001 233802911/1926*(1/2+1/2*5^(1/2))^3 5142289845967462 a001 233802911/1926*192900153618^(1/18) 5142289845967462 a001 233802911/1926*10749957122^(1/16) 5142289845967462 a001 133957148/2889*228826127^(1/8) 5142289845967462 a001 165580141/5778*141422324^(2/13) 5142289845967462 a001 233802911/1926*599074578^(1/14) 5142289845967462 a001 1836311903/11556+1836311903/11556*5^(1/2) 5142289845967462 a001 2971215073/5778 5142289845967462 a001 567451585/2889*(1/2+1/2*5^(1/2))^2 5142289845967462 a001 567451585/2889*10749957122^(1/24) 5142289845967462 a001 567451585/2889*4106118243^(1/23) 5142289845967462 a001 567451585/2889*1568397607^(1/22) 5142289845967462 a001 567451585/2889*599074578^(1/21) 5142289845967462 a001 433494437/5778*(1/2+1/2*5^(1/2))^4 5142289845967462 a001 433494437/5778*23725150497407^(1/16) 5142289845967462 a001 433494437/5778*73681302247^(1/13) 5142289845967462 a001 433494437/5778*10749957122^(1/12) 5142289845967462 a001 433494437/5778*4106118243^(2/23) 5142289845967462 a001 433494437/5778*1568397607^(1/11) 5142289845967462 a001 567451585/2889*228826127^(1/20) 5142289845967462 a001 433494437/5778*599074578^(2/21) 5142289845967462 a001 433494437/5778*228826127^(1/10) 5142289845967462 a001 567451585/2889*87403803^(1/19) 5142289845967462 a001 165580141/5778*2537720636^(2/15) 5142289845967462 a001 165580141/5778*45537549124^(2/17) 5142289845967462 a001 165580141/5778*14662949395604^(2/21) 5142289845967462 a001 165580141/5778*(1/2+1/2*5^(1/2))^6 5142289845967462 a001 165580141/5778*10749957122^(1/8) 5142289845967462 a001 165580141/5778*4106118243^(3/23) 5142289845967462 a001 165580141/5778*1568397607^(3/22) 5142289845967462 a001 165580141/5778*599074578^(1/7) 5142289845967462 a001 165580141/5778*228826127^(3/20) 5142289845967462 a001 433494437/5778*87403803^(2/19) 5142289845967462 a001 165580141/5778*87403803^(3/19) 5142289845967463 a001 31622993/2889*(1/2+1/2*5^(1/2))^8 5142289845967463 a001 31622993/2889*23725150497407^(1/8) 5142289845967463 a001 31622993/2889*505019158607^(1/7) 5142289845967463 a001 31622993/2889*73681302247^(2/13) 5142289845967463 a001 567451585/2889*33385282^(1/18) 5142289845967463 a001 31622993/2889*10749957122^(1/6) 5142289845967463 a001 31622993/2889*4106118243^(4/23) 5142289845967463 a001 31622993/2889*1568397607^(2/11) 5142289845967463 a001 31622993/2889*599074578^(4/21) 5142289845967463 a001 31622993/2889*228826127^(1/5) 5142289845967463 a001 233802911/1926*33385282^(1/12) 5142289845967463 a001 31622993/2889*87403803^(4/19) 5142289845967463 a001 39088169/5778*33385282^(1/4) 5142289845967463 a001 433494437/5778*33385282^(1/9) 5142289845967463 a001 165580141/5778*33385282^(1/6) 5142289845967464 a001 31622993/2889*33385282^(2/9) 5142289845967464 a001 24157817/5778*2537720636^(2/9) 5142289845967464 a001 24157817/5778*312119004989^(2/11) 5142289845967464 a001 24157817/5778*(1/2+1/2*5^(1/2))^10 5142289845967464 a001 24157817/5778*28143753123^(1/5) 5142289845967464 a001 24157817/5778*10749957122^(5/24) 5142289845967464 a001 24157817/5778*4106118243^(5/23) 5142289845967464 a001 24157817/5778*1568397607^(5/22) 5142289845967464 a001 24157817/5778*599074578^(5/21) 5142289845967464 a001 24157817/5778*228826127^(1/4) 5142289845967464 a001 567451585/2889*12752043^(1/17) 5142289845967464 a001 24157817/5778*87403803^(5/19) 5142289845967465 a001 24157817/5778*33385282^(5/18) 5142289845967466 a001 433494437/5778*12752043^(2/17) 5142289845967468 a001 165580141/5778*12752043^(3/17) 5142289845967470 a001 2584/20633239*(1/2+1/2*5^(1/2))^46 5142289845967470 a001 2584/20633239*10749957122^(23/24) 5142289845967470 a001 31622993/2889*12752043^(4/17) 5142289845967473 a001 24157817/5778*12752043^(5/17) 5142289845967474 a001 9227465/5778*141422324^(4/13) 5142289845967474 a001 9227465/5778*2537720636^(4/15) 5142289845967474 a001 9227465/5778*45537549124^(4/17) 5142289845967474 a001 9227465/5778*817138163596^(4/19) 5142289845967474 a001 9227465/5778*14662949395604^(4/21) 5142289845967474 a001 9227465/5778*(1/2+1/2*5^(1/2))^12 5142289845967474 a001 9227465/5778*192900153618^(2/9) 5142289845967474 a001 9227465/5778*73681302247^(3/13) 5142289845967474 a001 9227465/5778*10749957122^(1/4) 5142289845967474 a001 9227465/5778*4106118243^(6/23) 5142289845967474 a001 9227465/5778*1568397607^(3/11) 5142289845967474 a001 9227465/5778*599074578^(2/7) 5142289845967474 a001 9227465/5778*228826127^(3/10) 5142289845967475 a001 9227465/5778*87403803^(6/19) 5142289845967476 a001 567451585/2889*4870847^(1/16) 5142289845967476 a001 9227465/5778*33385282^(1/3) 5142289845967486 a001 9227465/5778*12752043^(6/17) 5142289845967489 a001 2932589791280/5702887 5142289845967489 a001 433494437/5778*4870847^(1/8) 5142289845967503 a001 165580141/5778*4870847^(3/16) 5142289845967517 a001 31622993/2889*4870847^(1/4) 5142289845967532 a001 24157817/5778*4870847^(5/16) 5142289845967540 a001 1762289/2889*20633239^(2/5) 5142289845967540 a001 646/1970299*312119004989^(4/5) 5142289845967540 a001 646/1970299*(1/2+1/2*5^(1/2))^44 5142289845967540 a001 646/1970299*23725150497407^(11/16) 5142289845967540 a001 646/1970299*73681302247^(11/13) 5142289845967540 a001 646/1970299*10749957122^(11/12) 5142289845967540 a001 646/1970299*4106118243^(22/23) 5142289845967545 a001 1762289/2889*17393796001^(2/7) 5142289845967545 a001 1762289/2889*14662949395604^(2/9) 5142289845967545 a001 1762289/2889*(1/2+1/2*5^(1/2))^14 5142289845967545 a001 1762289/2889*505019158607^(1/4) 5142289845967545 a001 1762289/2889*10749957122^(7/24) 5142289845967545 a001 1762289/2889*4106118243^(7/23) 5142289845967545 a001 1762289/2889*1568397607^(7/22) 5142289845967545 a001 1762289/2889*599074578^(1/3) 5142289845967545 a001 1762289/2889*228826127^(7/20) 5142289845967545 a001 1762289/2889*87403803^(7/19) 5142289845967547 a001 1762289/2889*33385282^(7/18) 5142289845967556 a001 9227465/5778*4870847^(3/8) 5142289845967558 a001 1762289/2889*12752043^(7/17) 5142289845967561 a001 567451585/2889*1860498^(1/15) 5142289845967611 a001 233802911/1926*1860498^(1/10) 5142289845967640 a001 1762289/2889*4870847^(7/16) 5142289845967660 a001 433494437/5778*1860498^(2/15) 5142289845967674 a001 1120149625208/2178309 5142289845967710 a001 133957148/2889*1860498^(1/6) 5142289845967759 a001 165580141/5778*1860498^(1/5) 5142289845967859 a001 31622993/2889*1860498^(4/15) 5142289845967907 a001 39088169/5778*1860498^(3/10) 5142289845967959 a001 24157817/5778*1860498^(1/3) 5142289845967988 a001 726103/1926*1860498^(1/2) 5142289845968025 a001 2584/3010349*2537720636^(14/15) 5142289845968025 a001 2584/3010349*17393796001^(6/7) 5142289845968025 a001 2584/3010349*45537549124^(14/17) 5142289845968025 a001 2584/3010349*14662949395604^(2/3) 5142289845968025 a001 2584/3010349*(1/2+1/2*5^(1/2))^42 5142289845968025 a001 2584/3010349*505019158607^(3/4) 5142289845968025 a001 2584/3010349*192900153618^(7/9) 5142289845968025 a001 2584/3010349*10749957122^(7/8) 5142289845968025 a001 2584/3010349*4106118243^(21/23) 5142289845968025 a001 2584/3010349*1568397607^(21/22) 5142289845968030 a001 1346269/5778*(1/2+1/2*5^(1/2))^16 5142289845968030 a001 1346269/5778*23725150497407^(1/4) 5142289845968030 a001 1346269/5778*73681302247^(4/13) 5142289845968030 a001 1346269/5778*10749957122^(1/3) 5142289845968030 a001 1346269/5778*4106118243^(8/23) 5142289845968030 a001 1346269/5778*1568397607^(4/11) 5142289845968030 a001 1346269/5778*599074578^(8/21) 5142289845968030 a001 1346269/5778*228826127^(2/5) 5142289845968030 a001 1346269/5778*87403803^(8/19) 5142289845968032 a001 1346269/5778*33385282^(4/9) 5142289845968045 a001 1346269/5778*12752043^(8/17) 5142289845968069 a001 9227465/5778*1860498^(2/5) 5142289845968138 a001 1346269/5778*4870847^(1/2) 5142289845968190 a001 567451585/2889*710647^(1/14) 5142289845968238 a001 1762289/2889*1860498^(7/15) 5142289845968822 a001 1346269/5778*1860498^(8/15) 5142289845968917 a001 433494437/5778*710647^(1/7) 5142289845968943 a001 53482385543/104005 5142289845969644 a001 165580141/5778*710647^(3/14) 5142289845970008 a001 34111385/1926*710647^(1/4) 5142289845970372 a001 31622993/2889*710647^(2/7) 5142289845971101 a001 24157817/5778*710647^(5/14) 5142289845971306 a001 514229/5778*7881196^(6/11) 5142289845971347 a001 2584/1149851*2537720636^(8/9) 5142289845971347 a001 2584/1149851*312119004989^(8/11) 5142289845971347 a001 2584/1149851*(1/2+1/2*5^(1/2))^40 5142289845971347 a001 2584/1149851*23725150497407^(5/8) 5142289845971347 a001 2584/1149851*73681302247^(10/13) 5142289845971347 a001 2584/1149851*28143753123^(4/5) 5142289845971347 a001 2584/1149851*10749957122^(5/6) 5142289845971347 a001 2584/1149851*4106118243^(20/23) 5142289845971347 a001 2584/1149851*1568397607^(10/11) 5142289845971347 a001 2584/1149851*599074578^(20/21) 5142289845971351 a001 514229/5778*141422324^(6/13) 5142289845971352 a001 514229/5778*2537720636^(2/5) 5142289845971352 a001 514229/5778*45537549124^(6/17) 5142289845971352 a001 514229/5778*14662949395604^(2/7) 5142289845971352 a001 514229/5778*(1/2+1/2*5^(1/2))^18 5142289845971352 a001 514229/5778*192900153618^(1/3) 5142289845971352 a001 514229/5778*10749957122^(3/8) 5142289845971352 a001 514229/5778*4106118243^(9/23) 5142289845971352 a001 514229/5778*1568397607^(9/22) 5142289845971352 a001 514229/5778*599074578^(3/7) 5142289845971352 a001 514229/5778*228826127^(9/20) 5142289845971352 a001 514229/5778*87403803^(9/19) 5142289845971354 a001 514229/5778*33385282^(1/2) 5142289845971368 a001 514229/5778*12752043^(9/17) 5142289845971474 a001 514229/5778*4870847^(9/16) 5142289845971838 a001 9227465/5778*710647^(3/7) 5142289845972243 a001 514229/5778*1860498^(3/5) 5142289845972636 a001 1762289/2889*710647^(1/2) 5142289845972831 a001 567451585/2889*271443^(1/13) 5142289845973848 a001 1346269/5778*710647^(4/7) 5142289845977640 a001 163427627824/317811 5142289845977897 a001 514229/5778*710647^(9/14) 5142289845978199 a001 433494437/5778*271443^(2/13) 5142289845983568 a001 165580141/5778*271443^(3/13) 5142289845987394 a001 1836311903/5778*103682^(1/24) 5142289845988937 a001 31622993/2889*271443^(4/13) 5142289845994113 a001 98209/2889*20633239^(4/7) 5142289845994115 a001 34/5779*817138163596^(2/3) 5142289845994115 a001 34/5779*(1/2+1/2*5^(1/2))^38 5142289845994115 a001 34/5779*10749957122^(19/24) 5142289845994115 a001 34/5779*4106118243^(19/23) 5142289845994115 a001 34/5779*1568397607^(19/22) 5142289845994115 a001 34/5779*599074578^(19/21) 5142289845994116 a001 34/5779*228826127^(19/20) 5142289845994120 a001 98209/2889*2537720636^(4/9) 5142289845994120 a001 98209/2889*(1/2+1/2*5^(1/2))^20 5142289845994120 a001 98209/2889*23725150497407^(5/16) 5142289845994120 a001 98209/2889*505019158607^(5/14) 5142289845994120 a001 98209/2889*73681302247^(5/13) 5142289845994120 a001 98209/2889*28143753123^(2/5) 5142289845994120 a001 98209/2889*10749957122^(5/12) 5142289845994120 a001 98209/2889*4106118243^(10/23) 5142289845994120 a001 98209/2889*1568397607^(5/11) 5142289845994120 a001 98209/2889*599074578^(10/21) 5142289845994120 a001 98209/2889*228826127^(1/2) 5142289845994120 a001 98209/2889*87403803^(10/19) 5142289845994123 a001 98209/2889*33385282^(5/9) 5142289845994139 a001 98209/2889*12752043^(10/17) 5142289845994256 a001 98209/2889*4870847^(5/8) 5142289845994307 a001 24157817/5778*271443^(5/13) 5142289845995110 a001 98209/2889*1860498^(2/3) 5142289845999686 a001 9227465/5778*271443^(6/13) 5142289846001393 a001 98209/2889*710647^(5/7) 5142289846002326 a001 5702887/5778*271443^(1/2) 5142289846005125 a001 1762289/2889*271443^(7/13) 5142289846007325 a001 567451585/2889*103682^(1/12) 5142289846010978 a001 1346269/5778*271443^(8/13) 5142289846019668 a001 514229/5778*271443^(9/13) 5142289846027257 a001 233802911/1926*103682^(1/8) 5142289846037250 a001 62423799128/121393 5142289846047188 a001 433494437/5778*103682^(1/6) 5142289846047805 a001 98209/2889*271443^(10/13) 5142289846067119 a001 133957148/2889*103682^(5/24) 5142289846087051 a001 165580141/5778*103682^(1/4) 5142289846106982 a001 34111385/1926*103682^(7/24) 5142289846116494 a001 1836311903/5778*39603^(1/22) 5142289846126914 a001 31622993/2889*103682^(1/3) 5142289846146845 a001 39088169/5778*103682^(3/8) 5142289846150122 a001 75025/5778*7881196^(2/3) 5142289846150173 a001 2584/167761*141422324^(12/13) 5142289846150173 a001 2584/167761*2537720636^(4/5) 5142289846150173 a001 2584/167761*45537549124^(12/17) 5142289846150173 a001 2584/167761*14662949395604^(4/7) 5142289846150173 a001 2584/167761*(1/2+1/2*5^(1/2))^36 5142289846150173 a001 2584/167761*505019158607^(9/14) 5142289846150173 a001 2584/167761*192900153618^(2/3) 5142289846150173 a001 2584/167761*73681302247^(9/13) 5142289846150173 a001 2584/167761*10749957122^(3/4) 5142289846150173 a001 2584/167761*4106118243^(18/23) 5142289846150173 a001 2584/167761*1568397607^(9/11) 5142289846150173 a001 2584/167761*599074578^(6/7) 5142289846150173 a001 2584/167761*228826127^(9/10) 5142289846150173 a001 2584/167761*87403803^(18/19) 5142289846150177 a001 75025/5778*312119004989^(2/5) 5142289846150177 a001 75025/5778*(1/2+1/2*5^(1/2))^22 5142289846150177 a001 75025/5778*10749957122^(11/24) 5142289846150177 a001 75025/5778*4106118243^(11/23) 5142289846150177 a001 75025/5778*1568397607^(1/2) 5142289846150177 a001 75025/5778*599074578^(11/21) 5142289846150177 a001 75025/5778*228826127^(11/20) 5142289846150178 a001 75025/5778*87403803^(11/19) 5142289846150180 a001 75025/5778*33385282^(11/18) 5142289846150198 a001 75025/5778*12752043^(11/17) 5142289846150326 a001 75025/5778*4870847^(11/16) 5142289846151267 a001 75025/5778*1860498^(11/15) 5142289846158178 a001 75025/5778*710647^(11/14) 5142289846166778 a001 24157817/5778*103682^(5/12) 5142289846186703 a001 2584*103682^(11/24) 5142289846206652 a001 9227465/5778*103682^(1/2) 5142289846209231 a001 75025/5778*271443^(11/13) 5142289846226539 a001 5702887/5778*103682^(13/24) 5142289846246585 a001 1762289/2889*103682^(7/12) 5142289846265525 a001 567451585/2889*39603^(1/11) 5142289846266217 a001 726103/1926*103682^(5/8) 5142289846286933 a001 1346269/5778*103682^(2/3) 5142289846304811 a001 416020/2889*103682^(17/24) 5142289846316231 a001 121393/5778*103682^(7/8) 5142289846330117 a001 514229/5778*103682^(3/4) 5142289846335977 a001 105937/1926*103682^(19/24) 5142289846392749 a001 98209/2889*103682^(5/6) 5142289846414556 a001 233802911/1926*39603^(3/22) 5142289846445824 a001 2980471195/5796 5142289846563588 a001 433494437/5778*39603^(2/11) 5142289846588669 a001 75025/5778*103682^(11/12) 5142289846712619 a001 133957148/2889*39603^(5/22) 5142289846861651 a001 165580141/5778*39603^(3/11) 5142289847010682 a001 34111385/1926*39603^(7/22) 5142289847091086 a001 1836311903/5778*15127^(1/20) 5142289847159714 a001 31622993/2889*39603^(4/11) 5142289847196115 a001 28657/5778*439204^(8/9) 5142289847219750 a001 28657/5778*7881196^(8/11) 5142289847219806 a001 2584/64079*45537549124^(2/3) 5142289847219806 a001 2584/64079*(1/2+1/2*5^(1/2))^34 5142289847219806 a001 2584/64079*10749957122^(17/24) 5142289847219806 a001 2584/64079*4106118243^(17/23) 5142289847219806 a001 2584/64079*1568397607^(17/22) 5142289847219806 a001 2584/64079*599074578^(17/21) 5142289847219806 a001 2584/64079*228826127^(17/20) 5142289847219806 a001 2584/64079*87403803^(17/19) 5142289847219810 a001 2584/64079*33385282^(17/18) 5142289847219810 a001 28657/5778*141422324^(8/13) 5142289847219811 a001 28657/5778*2537720636^(8/15) 5142289847219811 a001 28657/5778*45537549124^(8/17) 5142289847219811 a001 28657/5778*14662949395604^(8/21) 5142289847219811 a001 28657/5778*(1/2+1/2*5^(1/2))^24 5142289847219811 a001 28657/5778*192900153618^(4/9) 5142289847219811 a001 28657/5778*73681302247^(6/13) 5142289847219811 a001 28657/5778*10749957122^(1/2) 5142289847219811 a001 28657/5778*4106118243^(12/23) 5142289847219811 a001 28657/5778*1568397607^(6/11) 5142289847219811 a001 28657/5778*599074578^(4/7) 5142289847219811 a001 28657/5778*228826127^(3/5) 5142289847219811 a001 28657/5778*87403803^(12/19) 5142289847219814 a001 28657/5778*33385282^(2/3) 5142289847219833 a001 28657/5778*12752043^(12/17) 5142289847219973 a001 28657/5778*4870847^(3/4) 5142289847220999 a001 28657/5778*1860498^(4/5) 5142289847228538 a001 28657/5778*710647^(6/7) 5142289847284233 a001 28657/5778*271443^(12/13) 5142289847308744 a001 39088169/5778*39603^(9/22) 5142289847457778 a001 24157817/5778*39603^(5/11) 5142289847606803 a001 2584*39603^(1/2) 5142289847755851 a001 9227465/5778*39603^(6/11) 5142289847904839 a001 5702887/5778*39603^(13/22) 5142289847983552 a007 Real Root Of -841*x^4+127*x^3+86*x^2+855*x+493 5142289848053984 a001 1762289/2889*39603^(7/11) 5142289848202716 a001 726103/1926*39603^(15/22) 5142289848214710 a001 567451585/2889*15127^(1/10) 5142289848352532 a001 1346269/5778*39603^(8/11) 5142289848499510 a001 416020/2889*39603^(17/22) 5142289848653916 a001 514229/5778*39603^(9/11) 5142289848788876 a001 105937/1926*39603^(19/22) 5142289848974748 a001 98209/2889*39603^(10/11) 5142289849027330 a001 121393/5778*39603^(21/22) 5142289849246231 a001 102331568/199 5142289849338334 a001 233802911/1926*15127^(3/20) 5142289849420138 a001 66978574/341*521^(2/13) 5142289850461823 a001 433494437/3571*1364^(1/5) 5142289850461958 a001 433494437/5778*15127^(1/5) 5142289851585581 a001 133957148/2889*15127^(1/4) 5142289852709205 a001 165580141/5778*15127^(3/10) 5142289853832829 a001 34111385/1926*15127^(7/20) 5142289854393094 a001 1134903170/39603*3571^(6/17) 5142289854524609 a001 1836311903/5778*5778^(1/18) 5142289854551180 a001 646/6119*(1/2+1/2*5^(1/2))^32 5142289854551180 a001 646/6119*23725150497407^(1/2) 5142289854551180 a001 646/6119*505019158607^(4/7) 5142289854551180 a001 646/6119*73681302247^(8/13) 5142289854551180 a001 646/6119*10749957122^(2/3) 5142289854551180 a001 646/6119*4106118243^(16/23) 5142289854551180 a001 646/6119*1568397607^(8/11) 5142289854551180 a001 646/6119*599074578^(16/21) 5142289854551180 a001 646/6119*228826127^(4/5) 5142289854551181 a001 646/6119*87403803^(16/19) 5142289854551184 a001 646/6119*33385282^(8/9) 5142289854551184 a001 5473/2889*141422324^(2/3) 5142289854551185 a001 5473/2889*(1/2+1/2*5^(1/2))^26 5142289854551185 a001 5473/2889*73681302247^(1/2) 5142289854551185 a001 5473/2889*10749957122^(13/24) 5142289854551185 a001 5473/2889*4106118243^(13/23) 5142289854551185 a001 5473/2889*1568397607^(13/22) 5142289854551185 a001 5473/2889*599074578^(13/21) 5142289854551185 a001 5473/2889*228826127^(13/20) 5142289854551185 a001 5473/2889*87403803^(13/19) 5142289854551188 a001 5473/2889*33385282^(13/18) 5142289854551209 a001 5473/2889*12752043^(13/17) 5142289854551210 a001 646/6119*12752043^(16/17) 5142289854551361 a001 5473/2889*4870847^(13/16) 5142289854552472 a001 5473/2889*1860498^(13/15) 5142289854560640 a001 5473/2889*710647^(13/14) 5142289854956453 a001 31622993/2889*15127^(2/5) 5142289855405742 m001 1/Rabbit/LandauRamanujan*exp(GAMMA(23/24)) 5142289856080076 a001 39088169/5778*15127^(9/20) 5142289857193429 a001 2971215073/103682*3571^(6/17) 5142289857203702 a001 24157817/5778*15127^(1/2) 5142289857601993 a001 7778742049/271443*3571^(6/17) 5142289857661602 a001 20365011074/710647*3571^(6/17) 5142289857670298 a001 53316291173/1860498*3571^(6/17) 5142289857671567 a001 139583862445/4870847*3571^(6/17) 5142289857671752 a001 365435296162/12752043*3571^(6/17) 5142289857671779 a001 956722026041/33385282*3571^(6/17) 5142289857671783 a001 2504730781961/87403803*3571^(6/17) 5142289857671784 a001 6557470319842/228826127*3571^(6/17) 5142289857671784 a001 10610209857723/370248451*3571^(6/17) 5142289857671784 a001 4052739537881/141422324*3571^(6/17) 5142289857671786 a001 1548008755920/54018521*3571^(6/17) 5142289857671796 a001 591286729879/20633239*3571^(6/17) 5142289857671867 a001 225851433717/7881196*3571^(6/17) 5142289857672351 a001 86267571272/3010349*3571^(6/17) 5142289857675673 a001 32951280099/1149851*3571^(6/17) 5142289857698442 a001 12586269025/439204*3571^(6/17) 5142289857854499 a001 4807526976/167761*3571^(6/17) 5142289858327320 a001 2584*15127^(11/20) 5142289858920028 a001 701408733/15127*3571^(5/17) 5142289858924132 a001 28657*3571^(6/17) 5142289859450960 a001 9227465/5778*15127^(3/5) 5142289860574541 a001 5702887/5778*15127^(13/20) 5142289861698279 a001 1762289/2889*15127^(7/10) 5142289862821603 a001 726103/1926*15127^(3/4) 5142289863081756 a001 567451585/2889*5778^(1/9) 5142289863946011 a001 1346269/5778*15127^(4/5) 5142289865067582 a001 416020/2889*15127^(17/20) 5142289866196581 a001 514229/5778*15127^(9/10) 5142289866255506 a001 701408733/24476*3571^(6/17) 5142289867306133 a001 105937/1926*15127^(19/20) 5142289868030682 a001 1346269/2207*2207^(7/8) 5142289868440502 a001 3478759096/6765 5142289869064051 a001 102334155/9349*3571^(8/17) 5142289871638903 a001 233802911/1926*5778^(1/6) 5142289874255459 q001 777/1511 5142289874317928 m005 (1/3*Pi+3/4)/(7/8*gamma-4) 5142289874567638 a001 2971215073/9349*1364^(1/15) 5142289878113814 a001 1836311903/39603*3571^(5/17) 5142289880196050 a001 433494437/5778*5778^(2/9) 5142289880914150 a001 46368*3571^(5/17) 5142289881322714 a001 12586269025/271443*3571^(5/17) 5142289881382322 a001 32951280099/710647*3571^(5/17) 5142289881391019 a001 43133785636/930249*3571^(5/17) 5142289881392288 a001 225851433717/4870847*3571^(5/17) 5142289881392473 a001 591286729879/12752043*3571^(5/17) 5142289881392500 a001 774004377960/16692641*3571^(5/17) 5142289881392504 a001 4052739537881/87403803*3571^(5/17) 5142289881392505 a001 225749145909/4868641*3571^(5/17) 5142289881392505 a001 3278735159921/70711162*3571^(5/17) 5142289881392506 a001 2504730781961/54018521*3571^(5/17) 5142289881392517 a001 956722026041/20633239*3571^(5/17) 5142289881392587 a001 182717648081/3940598*3571^(5/17) 5142289881393072 a001 139583862445/3010349*3571^(5/17) 5142289881396394 a001 53316291173/1149851*3571^(5/17) 5142289881419162 a001 10182505537/219602*3571^(5/17) 5142289881575220 a001 7778742049/167761*3571^(5/17) 5142289882640749 a001 1134903170/15127*3571^(4/17) 5142289882644853 a001 2971215073/64079*3571^(5/17) 5142289888753197 a001 133957148/2889*5778^(5/18) 5142289889976227 a001 567451585/12238*3571^(5/17) 5142289892784772 a001 165580141/9349*3571^(7/17) 5142289893152631 m001 CareFree^2/exp(ErdosBorwein)/TreeGrowth2nd^2 5142289894541126 r005 Re(z^2+c),c=19/122+19/33*I,n=63 5142289897310344 a001 165580141/5778*5778^(1/3) 5142289901834535 a001 2971215073/39603*3571^(4/17) 5142289904634871 a001 7778742049/103682*3571^(4/17) 5142289904801091 a001 2584/9349*7881196^(10/11) 5142289904801156 a001 2584/9349*20633239^(6/7) 5142289904801161 a001 4181/5778*20633239^(4/5) 5142289904801166 a001 2584/9349*141422324^(10/13) 5142289904801167 a001 2584/9349*2537720636^(2/3) 5142289904801167 a001 2584/9349*45537549124^(10/17) 5142289904801167 a001 2584/9349*312119004989^(6/11) 5142289904801167 a001 2584/9349*14662949395604^(10/21) 5142289904801167 a001 2584/9349*(1/2+1/2*5^(1/2))^30 5142289904801167 a001 2584/9349*192900153618^(5/9) 5142289904801167 a001 2584/9349*28143753123^(3/5) 5142289904801167 a001 2584/9349*10749957122^(5/8) 5142289904801167 a001 2584/9349*4106118243^(15/23) 5142289904801167 a001 2584/9349*1568397607^(15/22) 5142289904801167 a001 2584/9349*599074578^(5/7) 5142289904801167 a001 2584/9349*228826127^(3/4) 5142289904801167 a001 2584/9349*87403803^(15/19) 5142289904801170 a001 2584/9349*33385282^(5/6) 5142289904801171 a001 4181/5778*17393796001^(4/7) 5142289904801171 a001 4181/5778*14662949395604^(4/9) 5142289904801171 a001 4181/5778*(1/2+1/2*5^(1/2))^28 5142289904801171 a001 4181/5778*505019158607^(1/2) 5142289904801171 a001 4181/5778*73681302247^(7/13) 5142289904801171 a001 4181/5778*10749957122^(7/12) 5142289904801171 a001 4181/5778*4106118243^(14/23) 5142289904801171 a001 4181/5778*1568397607^(7/11) 5142289904801171 a001 4181/5778*599074578^(2/3) 5142289904801171 a001 4181/5778*228826127^(7/10) 5142289904801171 a001 4181/5778*87403803^(14/19) 5142289904801174 a001 4181/5778*33385282^(7/9) 5142289904801195 a001 2584/9349*12752043^(15/17) 5142289904801197 a001 4181/5778*12752043^(14/17) 5142289904801360 a001 4181/5778*4870847^(7/8) 5142289904801370 a001 2584/9349*4870847^(15/16) 5142289904802557 a001 4181/5778*1860498^(14/15) 5142289905043435 a001 20365011074/271443*3571^(4/17) 5142289905103043 a001 53316291173/710647*3571^(4/17) 5142289905111740 a001 139583862445/1860498*3571^(4/17) 5142289905113009 a001 365435296162/4870847*3571^(4/17) 5142289905113194 a001 956722026041/12752043*3571^(4/17) 5142289905113221 a001 2504730781961/33385282*3571^(4/17) 5142289905113225 a001 6557470319842/87403803*3571^(4/17) 5142289905113226 a001 10610209857723/141422324*3571^(4/17) 5142289905113227 a001 4052739537881/54018521*3571^(4/17) 5142289905113238 a001 140728068720/1875749*3571^(4/17) 5142289905113308 a001 591286729879/7881196*3571^(4/17) 5142289905113793 a001 225851433717/3010349*3571^(4/17) 5142289905117115 a001 86267571272/1149851*3571^(4/17) 5142289905139883 a001 32951280099/439204*3571^(4/17) 5142289905295941 a001 75025*3571^(4/17) 5142289905867491 a001 34111385/1926*5778^(7/18) 5142289906361469 a001 1836311903/15127*3571^(3/17) 5142289906365574 a001 4807526976/64079*3571^(4/17) 5142289911950460 a001 1836311903/5778*2207^(1/16) 5142289913696948 a001 1836311903/24476*3571^(4/17) 5142289914424639 a001 31622993/2889*5778^(4/9) 5142289916505493 a001 267914296/9349*3571^(6/17) 5142289918679741 a001 2149991415/4181 5142289921787001 a001 1346269/15127*9349^(18/19) 5142289922981785 a001 39088169/5778*5778^(1/2) 5142289923288246 r009 Im(z^3+c),c=-25/94+8/13*I,n=62 5142289923930083 m001 HeathBrownMoroz^PlouffeB+ZetaQ(3) 5142289924882728 a001 311187/2161*9349^(17/19) 5142289925555256 a001 1602508992/13201*3571^(3/17) 5142289926707918 l006 ln(28/4791) 5142289927979539 a001 3524578/15127*9349^(16/19) 5142289928355592 a001 12586269025/103682*3571^(3/17) 5142289928764156 a001 121393*3571^(3/17) 5142289928823764 a001 86267571272/710647*3571^(3/17) 5142289928832461 a001 75283811239/620166*3571^(3/17) 5142289928833730 a001 591286729879/4870847*3571^(3/17) 5142289928833915 a001 516002918640/4250681*3571^(3/17) 5142289928833942 a001 4052739537881/33385282*3571^(3/17) 5142289928833946 a001 3536736619241/29134601*3571^(3/17) 5142289928833948 a001 6557470319842/54018521*3571^(3/17) 5142289928833959 a001 2504730781961/20633239*3571^(3/17) 5142289928834029 a001 956722026041/7881196*3571^(3/17) 5142289928834514 a001 365435296162/3010349*3571^(3/17) 5142289928837836 a001 139583862445/1149851*3571^(3/17) 5142289928860604 a001 53316291173/439204*3571^(3/17) 5142289929016662 a001 20365011074/167761*3571^(3/17) 5142289929965240 a007 Real Root Of 763*x^4+898*x^3+565*x^2-833*x-509 5142289930082190 a001 2971215073/15127*3571^(2/17) 5142289930086295 a001 7778742049/64079*3571^(3/17) 5142289931075935 a001 5702887/15127*9349^(15/19) 5142289931538935 a001 24157817/5778*5778^(5/9) 5142289932334282 m007 (-2*gamma+1/5)/(-3/4*gamma-9/4*ln(2)+3/8*Pi+1) 5142289934011626 a001 832040/2207*2207^(15/16) 5142289934172490 a001 9227465/15127*9349^(14/19) 5142289937268985 a001 14930352/15127*9349^(13/19) 5142289937417669 a001 2971215073/24476*3571^(3/17) 5142289937813920 a001 2149991423/4181 5142289940096075 a001 2584*5778^(11/18) 5142289940205692 a001 2149991424/4181 5142289940226214 a001 433494437/9349*3571^(5/17) 5142289940365502 a001 24157817/15127*9349^(12/19) 5142289940980304 a001 3524578/39603*9349^(18/19) 5142289941162401 a001 2/4181*(1/2+1/2*5^(1/2))^48 5142289942597464 a001 2149991425/4181 5142289943462011 a001 39088169/15127*9349^(11/19) 5142289943780569 a001 9227465/103682*9349^(18/19) 5142289944076700 a001 5702887/39603*9349^(17/19) 5142289944189122 a001 24157817/271443*9349^(18/19) 5142289944248729 a001 63245986/710647*9349^(18/19) 5142289944257426 a001 165580141/1860498*9349^(18/19) 5142289944258694 a001 433494437/4870847*9349^(18/19) 5142289944258880 a001 1134903170/12752043*9349^(18/19) 5142289944258907 a001 2971215073/33385282*9349^(18/19) 5142289944258911 a001 7778742049/87403803*9349^(18/19) 5142289944258911 a001 20365011074/228826127*9349^(18/19) 5142289944258911 a001 53316291173/599074578*9349^(18/19) 5142289944258911 a001 139583862445/1568397607*9349^(18/19) 5142289944258911 a001 365435296162/4106118243*9349^(18/19) 5142289944258911 a001 956722026041/10749957122*9349^(18/19) 5142289944258911 a001 2504730781961/28143753123*9349^(18/19) 5142289944258911 a001 6557470319842/73681302247*9349^(18/19) 5142289944258911 a001 10610209857723/119218851371*9349^(18/19) 5142289944258911 a001 4052739537881/45537549124*9349^(18/19) 5142289944258911 a001 1548008755920/17393796001*9349^(18/19) 5142289944258911 a001 591286729879/6643838879*9349^(18/19) 5142289944258911 a001 225851433717/2537720636*9349^(18/19) 5142289944258911 a001 86267571272/969323029*9349^(18/19) 5142289944258911 a001 32951280099/370248451*9349^(18/19) 5142289944258911 a001 12586269025/141422324*9349^(18/19) 5142289944258913 a001 4807526976/54018521*9349^(18/19) 5142289944258923 a001 1836311903/20633239*9349^(18/19) 5142289944258994 a001 3524667/39604*9349^(18/19) 5142289944259479 a001 267914296/3010349*9349^(18/19) 5142289944262800 a001 102334155/1149851*9349^(18/19) 5142289944285568 a001 39088169/439204*9349^(18/19) 5142289944441622 a001 14930352/167761*9349^(18/19) 5142289945511228 a001 5702887/64079*9349^(18/19) 5142289946558523 a001 63245986/15127*9349^(10/19) 5142289946877063 a001 7465176/51841*9349^(17/19) 5142289946898258 r002 10th iterates of z^2 + 5142289947173255 a001 9227465/39603*9349^(16/19) 5142289947285631 a001 39088169/271443*9349^(17/19) 5142289947345240 a001 14619165/101521*9349^(17/19) 5142289947353937 a001 133957148/930249*9349^(17/19) 5142289947355205 a001 701408733/4870847*9349^(17/19) 5142289947355391 a001 1836311903/12752043*9349^(17/19) 5142289947355418 a001 14930208/103681*9349^(17/19) 5142289947355422 a001 12586269025/87403803*9349^(17/19) 5142289947355422 a001 32951280099/228826127*9349^(17/19) 5142289947355422 a001 43133785636/299537289*9349^(17/19) 5142289947355422 a001 32264490531/224056801*9349^(17/19) 5142289947355422 a001 591286729879/4106118243*9349^(17/19) 5142289947355422 a001 774004377960/5374978561*9349^(17/19) 5142289947355422 a001 4052739537881/28143753123*9349^(17/19) 5142289947355422 a001 1515744265389/10525900321*9349^(17/19) 5142289947355422 a001 3278735159921/22768774562*9349^(17/19) 5142289947355422 a001 2504730781961/17393796001*9349^(17/19) 5142289947355422 a001 956722026041/6643838879*9349^(17/19) 5142289947355422 a001 182717648081/1268860318*9349^(17/19) 5142289947355422 a001 139583862445/969323029*9349^(17/19) 5142289947355422 a001 53316291173/370248451*9349^(17/19) 5142289947355422 a001 10182505537/70711162*9349^(17/19) 5142289947355424 a001 7778742049/54018521*9349^(17/19) 5142289947355434 a001 2971215073/20633239*9349^(17/19) 5142289947355505 a001 567451585/3940598*9349^(17/19) 5142289947355990 a001 433494437/3010349*9349^(17/19) 5142289947359312 a001 165580141/1149851*9349^(17/19) 5142289947382080 a001 31622993/219602*9349^(17/19) 5142289947538139 a001 24157817/167761*9349^(17/19) 5142289948607783 a001 9227465/64079*9349^(17/19) 5142289948653239 a001 9227465/5778*5778^(2/3) 5142289949275977 a001 7778742049/39603*3571^(2/17) 5142289949655033 a001 6765*9349^(9/19) 5142289949690573 m001 (GAMMA(2/3)-FeigenbaumDelta)/(Mills-Robbin) 5142289949772781 a001 2149991428/4181 5142289949973581 a001 24157817/103682*9349^(16/19) 5142289950269749 a001 4976784/13201*9349^(15/19) 5142289950382143 a001 63245986/271443*9349^(16/19) 5142289950441751 a001 165580141/710647*9349^(16/19) 5142289950450448 a001 433494437/1860498*9349^(16/19) 5142289950451717 a001 1134903170/4870847*9349^(16/19) 5142289950451902 a001 2971215073/12752043*9349^(16/19) 5142289950451929 a001 7778742049/33385282*9349^(16/19) 5142289950451933 a001 20365011074/87403803*9349^(16/19) 5142289950451933 a001 53316291173/228826127*9349^(16/19) 5142289950451933 a001 139583862445/599074578*9349^(16/19) 5142289950451933 a001 365435296162/1568397607*9349^(16/19) 5142289950451933 a001 956722026041/4106118243*9349^(16/19) 5142289950451933 a001 2504730781961/10749957122*9349^(16/19) 5142289950451933 a001 6557470319842/28143753123*9349^(16/19) 5142289950451933 a001 10610209857723/45537549124*9349^(16/19) 5142289950451933 a001 4052739537881/17393796001*9349^(16/19) 5142289950451933 a001 1548008755920/6643838879*9349^(16/19) 5142289950451933 a001 591286729879/2537720636*9349^(16/19) 5142289950451933 a001 225851433717/969323029*9349^(16/19) 5142289950451933 a001 86267571272/370248451*9349^(16/19) 5142289950451934 a001 63246219/271444*9349^(16/19) 5142289950451935 a001 12586269025/54018521*9349^(16/19) 5142289950451945 a001 4807526976/20633239*9349^(16/19) 5142289950452016 a001 1836311903/7881196*9349^(16/19) 5142289950452501 a001 701408733/3010349*9349^(16/19) 5142289950455823 a001 267914296/1149851*9349^(16/19) 5142289950478591 a001 102334155/439204*9349^(16/19) 5142289950634648 a001 39088169/167761*9349^(16/19) 5142289951704277 a001 14930352/64079*9349^(16/19) 5142289952076313 a001 10182505537/51841*3571^(2/17) 5142289952484877 a001 53316291173/271443*3571^(2/17) 5142289952544485 a001 139583862445/710647*3571^(2/17) 5142289952553182 a001 182717648081/930249*3571^(2/17) 5142289952554451 a001 956722026041/4870847*3571^(2/17) 5142289952554636 a001 2504730781961/12752043*3571^(2/17) 5142289952554663 a001 3278735159921/16692641*3571^(2/17) 5142289952554669 a001 10610209857723/54018521*3571^(2/17) 5142289952554680 a001 4052739537881/20633239*3571^(2/17) 5142289952554750 a001 387002188980/1970299*3571^(2/17) 5142289952555235 a001 591286729879/3010349*3571^(2/17) 5142289952558557 a001 225851433717/1149851*3571^(2/17) 5142289952581325 a001 196418*3571^(2/17) 5142289952737383 a001 32951280099/167761*3571^(2/17) 5142289952742263 a007 Real Root Of -112*x^4+91*x^3-911*x^2+801*x+673 5142289952751544 a001 165580141/15127*9349^(8/19) 5142289952842417 a001 2178309/24476*9349^(18/19) 5142289953070089 a001 39088169/103682*9349^(15/19) 5142289953366267 a001 24157817/39603*9349^(14/19) 5142289953478653 a001 34111385/90481*9349^(15/19) 5142289953538262 a001 267914296/710647*9349^(15/19) 5142289953546959 a001 233802911/620166*9349^(15/19) 5142289953548228 a001 1836311903/4870847*9349^(15/19) 5142289953548413 a001 1602508992/4250681*9349^(15/19) 5142289953548440 a001 12586269025/33385282*9349^(15/19) 5142289953548444 a001 10983760033/29134601*9349^(15/19) 5142289953548444 a001 86267571272/228826127*9349^(15/19) 5142289953548444 a001 267913919/710646*9349^(15/19) 5142289953548444 a001 591286729879/1568397607*9349^(15/19) 5142289953548444 a001 516002918640/1368706081*9349^(15/19) 5142289953548444 a001 4052739537881/10749957122*9349^(15/19) 5142289953548444 a001 3536736619241/9381251041*9349^(15/19) 5142289953548444 a001 6557470319842/17393796001*9349^(15/19) 5142289953548444 a001 2504730781961/6643838879*9349^(15/19) 5142289953548444 a001 956722026041/2537720636*9349^(15/19) 5142289953548444 a001 365435296162/969323029*9349^(15/19) 5142289953548444 a001 139583862445/370248451*9349^(15/19) 5142289953548445 a001 53316291173/141422324*9349^(15/19) 5142289953548446 a001 20365011074/54018521*9349^(15/19) 5142289953548456 a001 7778742049/20633239*9349^(15/19) 5142289953548527 a001 2971215073/7881196*9349^(15/19) 5142289953549012 a001 1134903170/3010349*9349^(15/19) 5142289953552334 a001 433494437/1149851*9349^(15/19) 5142289953575102 a001 165580141/439204*9349^(15/19) 5142289953731160 a001 63245986/167761*9349^(15/19) 5142289953802912 a001 686789568/2161*3571^(1/17) 5142289953807016 a001 12586269025/64079*3571^(2/17) 5142289954800794 a001 24157817/64079*9349^(15/19) 5142289955051155 a001 6765/15127*(1/2+1/2*5^(1/2))^29 5142289955051155 a001 6765/15127*1322157322203^(1/2) 5142289955848055 a001 267914296/15127*9349^(7/19) 5142289955939228 a001 1762289/12238*9349^(17/19) 5142289956166601 a001 31622993/51841*9349^(14/19) 5142289956462775 a001 39088169/39603*9349^(13/19) 5142289956575164 a001 165580141/271443*9349^(14/19) 5142289956634773 a001 433494437/710647*9349^(14/19) 5142289956643470 a001 567451585/930249*9349^(14/19) 5142289956644739 a001 2971215073/4870847*9349^(14/19) 5142289956644924 a001 7778742049/12752043*9349^(14/19) 5142289956644951 a001 10182505537/16692641*9349^(14/19) 5142289956644955 a001 53316291173/87403803*9349^(14/19) 5142289956644955 a001 139583862445/228826127*9349^(14/19) 5142289956644955 a001 182717648081/299537289*9349^(14/19) 5142289956644955 a001 956722026041/1568397607*9349^(14/19) 5142289956644955 a001 2504730781961/4106118243*9349^(14/19) 5142289956644955 a001 3278735159921/5374978561*9349^(14/19) 5142289956644955 a001 10610209857723/17393796001*9349^(14/19) 5142289956644955 a001 4052739537881/6643838879*9349^(14/19) 5142289956644955 a001 1134903780/1860499*9349^(14/19) 5142289956644955 a001 591286729879/969323029*9349^(14/19) 5142289956644955 a001 225851433717/370248451*9349^(14/19) 5142289956644956 a001 21566892818/35355581*9349^(14/19) 5142289956644957 a001 32951280099/54018521*9349^(14/19) 5142289956644967 a001 1144206275/1875749*9349^(14/19) 5142289956645038 a001 1201881744/1970299*9349^(14/19) 5142289956645523 a001 1836311903/3010349*9349^(14/19) 5142289956648845 a001 701408733/1149851*9349^(14/19) 5142289956671613 a001 66978574/109801*9349^(14/19) 5142289956827670 a001 9303105/15251*9349^(14/19) 5142289957210343 a001 5702887/5778*5778^(13/18) 5142289957897303 a001 39088169/64079*9349^(14/19) 5142289958944566 a001 433494437/15127*9349^(6/19) 5142289959035624 a001 5702887/24476*9349^(16/19) 5142289959263112 a001 102334155/103682*9349^(13/19) 5142289959559287 a001 63245986/39603*9349^(12/19) 5142289959671675 a001 267914296/271443*9349^(13/19) 5142289959731284 a001 701408733/710647*9349^(13/19) 5142289959739981 a001 1836311903/1860498*9349^(13/19) 5142289959741250 a001 4807526976/4870847*9349^(13/19) 5142289959741435 a001 12586269025/12752043*9349^(13/19) 5142289959741462 a001 32951280099/33385282*9349^(13/19) 5142289959741466 a001 86267571272/87403803*9349^(13/19) 5142289959741466 a001 225851433717/228826127*9349^(13/19) 5142289959741466 a001 591286729879/599074578*9349^(13/19) 5142289959741466 a001 1548008755920/1568397607*9349^(13/19) 5142289959741466 a001 4052739537881/4106118243*9349^(13/19) 5142289959741466 a001 4807525989/4870846*9349^(13/19) 5142289959741466 a001 6557470319842/6643838879*9349^(13/19) 5142289959741466 a001 2504730781961/2537720636*9349^(13/19) 5142289959741466 a001 956722026041/969323029*9349^(13/19) 5142289959741466 a001 365435296162/370248451*9349^(13/19) 5142289959741467 a001 139583862445/141422324*9349^(13/19) 5142289959741468 a001 53316291173/54018521*9349^(13/19) 5142289959741478 a001 20365011074/20633239*9349^(13/19) 5142289959741549 a001 7778742049/7881196*9349^(13/19) 5142289959742034 a001 2971215073/3010349*9349^(13/19) 5142289959745356 a001 1134903170/1149851*9349^(13/19) 5142289959768124 a001 433494437/439204*9349^(13/19) 5142289959924182 a001 165580141/167761*9349^(13/19) 5142289960993815 a001 63245986/64079*9349^(13/19) 5142289961138390 a001 1201881744/6119*3571^(2/17) 5142289962041077 a001 701408733/15127*9349^(5/19) 5142289962132179 a001 9227465/24476*9349^(15/19) 5142289962359623 a001 165580141/103682*9349^(12/19) 5142289962581424 r009 Im(z^3+c),c=-3/19+29/46*I,n=15 5142289962655798 a001 34111385/13201*9349^(11/19) 5142289962768186 a001 433494437/271443*9349^(12/19) 5142289962827795 a001 1134903170/710647*9349^(12/19) 5142289962836492 a001 2971215073/1860498*9349^(12/19) 5142289962837761 a001 7778742049/4870847*9349^(12/19) 5142289962837946 a001 20365011074/12752043*9349^(12/19) 5142289962837973 a001 53316291173/33385282*9349^(12/19) 5142289962837977 a001 139583862445/87403803*9349^(12/19) 5142289962837977 a001 365435296162/228826127*9349^(12/19) 5142289962837977 a001 956722026041/599074578*9349^(12/19) 5142289962837977 a001 2504730781961/1568397607*9349^(12/19) 5142289962837977 a001 6557470319842/4106118243*9349^(12/19) 5142289962837977 a001 10610209857723/6643838879*9349^(12/19) 5142289962837977 a001 4052739537881/2537720636*9349^(12/19) 5142289962837977 a001 1548008755920/969323029*9349^(12/19) 5142289962837977 a001 591286729879/370248451*9349^(12/19) 5142289962837978 a001 225851433717/141422324*9349^(12/19) 5142289962837979 a001 86267571272/54018521*9349^(12/19) 5142289962837990 a001 32951280099/20633239*9349^(12/19) 5142289962838060 a001 12586269025/7881196*9349^(12/19) 5142289962838545 a001 4807526976/3010349*9349^(12/19) 5142289962841867 a001 1836311903/1149851*9349^(12/19) 5142289962864635 a001 701408733/439204*9349^(12/19) 5142289963020693 a001 267914296/167761*9349^(12/19) 5142289963946935 a001 701408733/9349*3571^(4/17) 5142289964090326 a001 102334155/64079*9349^(12/19) 5142289965137589 a001 1134903170/15127*9349^(4/19) 5142289965228673 a001 3732588/6119*9349^(14/19) 5142289965356776 b008 Pi+2*Zeta[23/2] 5142289965456134 a001 133957148/51841*9349^(11/19) 5142289965752309 a001 165580141/39603*9349^(10/19) 5142289965767604 a001 1762289/2889*5778^(7/9) 5142289965864698 a001 233802911/90481*9349^(11/19) 5142289965924306 a001 1836311903/710647*9349^(11/19) 5142289965933003 a001 267084832/103361*9349^(11/19) 5142289965934272 a001 12586269025/4870847*9349^(11/19) 5142289965934457 a001 10983760033/4250681*9349^(11/19) 5142289965934484 a001 43133785636/16692641*9349^(11/19) 5142289965934488 a001 75283811239/29134601*9349^(11/19) 5142289965934488 a001 591286729879/228826127*9349^(11/19) 5142289965934488 a001 86000486440/33281921*9349^(11/19) 5142289965934489 a001 4052739537881/1568397607*9349^(11/19) 5142289965934489 a001 3536736619241/1368706081*9349^(11/19) 5142289965934489 a001 3278735159921/1268860318*9349^(11/19) 5142289965934489 a001 2504730781961/969323029*9349^(11/19) 5142289965934489 a001 956722026041/370248451*9349^(11/19) 5142289965934489 a001 182717648081/70711162*9349^(11/19) 5142289965934490 a001 139583862445/54018521*9349^(11/19) 5142289965934501 a001 53316291173/20633239*9349^(11/19) 5142289965934571 a001 10182505537/3940598*9349^(11/19) 5142289965935056 a001 7778742049/3010349*9349^(11/19) 5142289965938378 a001 2971215073/1149851*9349^(11/19) 5142289965961146 a001 567451585/219602*9349^(11/19) 5142289966117204 a001 433494437/167761*9349^(11/19) 5142289967186837 a001 165580141/64079*9349^(11/19) 5142289968227937 r005 Re(z^2+c),c=-23/31+3/29*I,n=60 5142289968234100 a001 1836311903/15127*9349^(3/19) 5142289968325191 a001 24157817/24476*9349^(13/19) 5142289968552645 a001 433494437/103682*9349^(10/19) 5142289968848820 a001 267914296/39603*9349^(9/19) 5142289968938424 a001 2814375300/5473 5142289968961209 a001 1134903170/271443*9349^(10/19) 5142289969020817 a001 2971215073/710647*9349^(10/19) 5142289969029514 a001 7778742049/1860498*9349^(10/19) 5142289969030783 a001 20365011074/4870847*9349^(10/19) 5142289969030968 a001 53316291173/12752043*9349^(10/19) 5142289969030995 a001 139583862445/33385282*9349^(10/19) 5142289969030999 a001 365435296162/87403803*9349^(10/19) 5142289969030999 a001 956722026041/228826127*9349^(10/19) 5142289969031000 a001 2504730781961/599074578*9349^(10/19) 5142289969031000 a001 6557470319842/1568397607*9349^(10/19) 5142289969031000 a001 10610209857723/2537720636*9349^(10/19) 5142289969031000 a001 4052739537881/969323029*9349^(10/19) 5142289969031000 a001 1548008755920/370248451*9349^(10/19) 5142289969031000 a001 591286729879/141422324*9349^(10/19) 5142289969031001 a001 225851433717/54018521*9349^(10/19) 5142289969031012 a001 86267571272/20633239*9349^(10/19) 5142289969031082 a001 32951280099/7881196*9349^(10/19) 5142289969031567 a001 12586269025/3010349*9349^(10/19) 5142289969034889 a001 4807526976/1149851*9349^(10/19) 5142289969057657 a001 1836311903/439204*9349^(10/19) 5142289969213715 a001 701408733/167761*9349^(10/19) 5142289969352548 a001 514229/15127*24476^(20/21) 5142289969755922 a001 832040/15127*24476^(19/21) 5142289970166724 a001 1346269/15127*24476^(6/7) 5142289970283348 a001 267914296/64079*9349^(10/19) 5142289970574688 a001 311187/2161*24476^(17/21) 5142289970983736 a001 3524578/15127*24476^(16/21) 5142289971330611 a001 2971215073/15127*9349^(2/19) 5142289971392371 a001 5702887/15127*24476^(5/7) 5142289971421699 a001 39088169/24476*9349^(12/19) 5142289971649156 a001 701408733/103682*9349^(9/19) 5142289971801163 a001 9227465/15127*24476^(2/3) 5142289971945331 a001 433494437/39603*9349^(8/19) 5142289972057720 a001 1836311903/271443*9349^(9/19) 5142289972117328 a001 686789568/101521*9349^(9/19) 5142289972126025 a001 12586269025/1860498*9349^(9/19) 5142289972127294 a001 32951280099/4870847*9349^(9/19) 5142289972127479 a001 86267571272/12752043*9349^(9/19) 5142289972127506 a001 32264490531/4769326*9349^(9/19) 5142289972127510 a001 591286729879/87403803*9349^(9/19) 5142289972127511 a001 1548008755920/228826127*9349^(9/19) 5142289972127511 a001 4052739537881/599074578*9349^(9/19) 5142289972127511 a001 1515744265389/224056801*9349^(9/19) 5142289972127511 a001 6557470319842/969323029*9349^(9/19) 5142289972127511 a001 2504730781961/370248451*9349^(9/19) 5142289972127511 a001 956722026041/141422324*9349^(9/19) 5142289972127512 a001 365435296162/54018521*9349^(9/19) 5142289972127523 a001 139583862445/20633239*9349^(9/19) 5142289972127593 a001 53316291173/7881196*9349^(9/19) 5142289972128078 a001 20365011074/3010349*9349^(9/19) 5142289972131400 a001 7778742049/1149851*9349^(9/19) 5142289972154168 a001 2971215073/439204*9349^(9/19) 5142289972209895 a001 14930352/15127*24476^(13/21) 5142289972310226 a001 1134903170/167761*9349^(9/19) 5142289972618650 a001 24157817/15127*24476^(4/7) 5142289972996699 a001 12586269025/39603*3571^(1/17) 5142289973027396 a001 39088169/15127*24476^(11/21) 5142289973379859 a001 433494437/64079*9349^(9/19) 5142289973436146 a001 63245986/15127*24476^(10/21) 5142289973844894 a001 6765*24476^(3/7) 5142289974244875 a001 17711/15127*7881196^(9/11) 5142289974244942 a001 17711/15127*141422324^(9/13) 5142289974244942 a001 2255/13201*(1/2+1/2*5^(1/2))^31 5142289974244942 a001 2255/13201*9062201101803^(1/2) 5142289974244942 a001 17711/15127*2537720636^(3/5) 5142289974244942 a001 17711/15127*45537549124^(9/17) 5142289974244942 a001 17711/15127*817138163596^(9/19) 5142289974244942 a001 17711/15127*14662949395604^(3/7) 5142289974244942 a001 17711/15127*(1/2+1/2*5^(1/2))^27 5142289974244942 a001 17711/15127*192900153618^(1/2) 5142289974244942 a001 17711/15127*10749957122^(9/16) 5142289974244942 a001 17711/15127*599074578^(9/14) 5142289974244946 a001 17711/15127*33385282^(3/4) 5142289974246279 a001 17711/15127*1860498^(9/10) 5142289974253643 a001 165580141/15127*24476^(8/21) 5142289974324452 a001 726103/1926*5778^(5/6) 5142289974427122 a001 686789568/2161*9349^(1/19) 5142289974518211 a001 31622993/12238*9349^(11/19) 5142289974656534 a003 cos(Pi*31/96)*sin(Pi*38/89) 5142289974662392 a001 267914296/15127*24476^(1/3) 5142289974745667 a001 567451585/51841*9349^(8/19) 5142289975041842 a001 17711*9349^(7/19) 5142289975071141 a001 433494437/15127*24476^(2/7) 5142289975154231 a001 2971215073/271443*9349^(8/19) 5142289975213839 a001 7778742049/710647*9349^(8/19) 5142289975222536 a001 10182505537/930249*9349^(8/19) 5142289975223805 a001 53316291173/4870847*9349^(8/19) 5142289975223990 a001 139583862445/12752043*9349^(8/19) 5142289975224017 a001 182717648081/16692641*9349^(8/19) 5142289975224021 a001 956722026041/87403803*9349^(8/19) 5142289975224022 a001 2504730781961/228826127*9349^(8/19) 5142289975224022 a001 3278735159921/299537289*9349^(8/19) 5142289975224022 a001 10610209857723/969323029*9349^(8/19) 5142289975224022 a001 4052739537881/370248451*9349^(8/19) 5142289975224022 a001 387002188980/35355581*9349^(8/19) 5142289975224023 a001 591286729879/54018521*9349^(8/19) 5142289975224034 a001 7787980473/711491*9349^(8/19) 5142289975224104 a001 21566892818/1970299*9349^(8/19) 5142289975224589 a001 32951280099/3010349*9349^(8/19) 5142289975227911 a001 12586269025/1149851*9349^(8/19) 5142289975250679 a001 1201881744/109801*9349^(8/19) 5142289975406737 a001 1836311903/167761*9349^(8/19) 5142289975479889 a001 701408733/15127*24476^(5/21) 5142289975797034 a001 32951280099/103682*3571^(1/17) 5142289975888638 a001 1134903170/15127*24476^(4/21) 5142289976205598 a001 86267571272/271443*3571^(1/17) 5142289976265206 a001 317811*3571^(1/17) 5142289976271068 a001 14736260385/28657 5142289976273903 a001 591286729879/1860498*3571^(1/17) 5142289976275172 a001 1548008755920/4870847*3571^(1/17) 5142289976275357 a001 4052739537881/12752043*3571^(1/17) 5142289976275384 a001 1515744265389/4769326*3571^(1/17) 5142289976275401 a001 6557470319842/20633239*3571^(1/17) 5142289976275472 a001 2504730781961/7881196*3571^(1/17) 5142289976275956 a001 956722026041/3010349*3571^(1/17) 5142289976279278 a001 365435296162/1149851*3571^(1/17) 5142289976297387 a001 1836311903/15127*24476^(1/7) 5142289976302047 a001 139583862445/439204*3571^(1/17) 5142289976352392 a001 196418/15127*64079^(22/23) 5142289976370002 a001 317811/15127*64079^(21/23) 5142289976438524 a001 514229/15127*64079^(20/23) 5142289976458104 a001 53316291173/167761*3571^(1/17) 5142289976476370 a001 701408733/64079*9349^(8/19) 5142289976487599 a001 832040/15127*64079^(19/23) 5142289976544102 a001 1346269/15127*64079^(18/23) 5142289976597767 a001 311187/2161*64079^(17/23) 5142289976652517 a001 3524578/15127*64079^(16/23) 5142289976706135 a001 2971215073/15127*24476^(2/21) 5142289976706852 a001 5702887/15127*64079^(15/23) 5142289976761346 a001 9227465/15127*64079^(14/23) 5142289976815779 a001 14930352/15127*64079^(13/23) 5142289976870235 a001 24157817/15127*64079^(12/23) 5142289976924683 a001 39088169/15127*64079^(11/23) 5142289976979134 a001 63245986/15127*64079^(10/23) 5142289977033583 a001 6765*64079^(9/23) 5142289977045270 a001 6624/2161*20633239^(5/7) 5142289977045278 a001 6765/103682*141422324^(11/13) 5142289977045278 a001 6765/103682*2537720636^(11/15) 5142289977045278 a001 6765/103682*45537549124^(11/17) 5142289977045278 a001 6765/103682*312119004989^(3/5) 5142289977045278 a001 6765/103682*817138163596^(11/19) 5142289977045278 a001 6765/103682*14662949395604^(11/21) 5142289977045278 a001 6765/103682*(1/2+1/2*5^(1/2))^33 5142289977045278 a001 6765/103682*192900153618^(11/18) 5142289977045278 a001 6765/103682*10749957122^(11/16) 5142289977045278 a001 6765/103682*1568397607^(3/4) 5142289977045278 a001 6765/103682*599074578^(11/14) 5142289977045278 a001 6624/2161*2537720636^(5/9) 5142289977045278 a001 6624/2161*312119004989^(5/11) 5142289977045278 a001 6624/2161*(1/2+1/2*5^(1/2))^25 5142289977045278 a001 6624/2161*3461452808002^(5/12) 5142289977045278 a001 6624/2161*28143753123^(1/2) 5142289977045278 a001 6624/2161*228826127^(5/8) 5142289977045282 a001 6765/103682*33385282^(11/12) 5142289977046516 a001 6624/2161*1860498^(5/6) 5142289977088033 a001 165580141/15127*64079^(8/23) 5142289977114884 a001 686789568/2161*24476^(1/21) 5142289977142483 a001 267914296/15127*64079^(7/23) 5142289977196933 a001 433494437/15127*64079^(6/23) 5142289977251383 a001 701408733/15127*64079^(5/23) 5142289977305833 a001 1134903170/15127*64079^(4/23) 5142289977340886 a001 7716006111/15005 5142289977360283 a001 1836311903/15127*64079^(3/23) 5142289977381350 a001 514229/15127*167761^(4/5) 5142289977413972 a001 5702887/15127*167761^(3/5) 5142289977414733 a001 2971215073/15127*64079^(2/23) 5142289977450547 a001 63245986/15127*167761^(2/5) 5142289977453842 a001 2255/90481*2537720636^(7/9) 5142289977453842 a001 2255/90481*17393796001^(5/7) 5142289977453842 a001 2255/90481*312119004989^(7/11) 5142289977453842 a001 2255/90481*14662949395604^(5/9) 5142289977453842 a001 2255/90481*(1/2+1/2*5^(1/2))^35 5142289977453842 a001 2255/90481*505019158607^(5/8) 5142289977453842 a001 2255/90481*28143753123^(7/10) 5142289977453842 a001 2255/90481*599074578^(5/6) 5142289977453842 a001 2255/90481*228826127^(7/8) 5142289977453842 a001 121393/15127*(1/2+1/2*5^(1/2))^23 5142289977453842 a001 121393/15127*4106118243^(1/2) 5142289977469183 a001 686789568/2161*64079^(1/23) 5142289977487090 a001 701408733/15127*167761^(1/5) 5142289977492717 a001 317811/15127*439204^(7/9) 5142289977496970 a001 2970700920/5777 5142289977506428 a001 1346269/15127*439204^(2/3) 5142289977508791 a001 5702887/15127*439204^(5/9) 5142289977511787 a001 24157817/15127*439204^(4/9) 5142289977513398 a001 317811/15127*7881196^(7/11) 5142289977513443 a001 317811/15127*20633239^(3/5) 5142289977513450 a001 317811/15127*141422324^(7/13) 5142289977513450 a001 6765/710647*(1/2+1/2*5^(1/2))^37 5142289977513450 a001 317811/15127*2537720636^(7/15) 5142289977513450 a001 317811/15127*17393796001^(3/7) 5142289977513450 a001 317811/15127*45537549124^(7/17) 5142289977513450 a001 317811/15127*14662949395604^(1/3) 5142289977513450 a001 317811/15127*(1/2+1/2*5^(1/2))^21 5142289977513450 a001 317811/15127*192900153618^(7/18) 5142289977513450 a001 317811/15127*10749957122^(7/16) 5142289977513450 a001 317811/15127*599074578^(1/2) 5142289977513453 a001 317811/15127*33385282^(7/12) 5142289977514490 a001 317811/15127*1860498^(7/10) 5142289977514747 a001 6765*439204^(1/3) 5142289977517709 a001 433494437/15127*439204^(2/9) 5142289977519743 a001 264431463285/514229 5142289977520671 a001 1836311903/15127*439204^(1/9) 5142289977521087 a001 317811/15127*710647^(3/4) 5142289977522147 a001 55/15126*2537720636^(13/15) 5142289977522147 a001 55/15126*45537549124^(13/17) 5142289977522147 a001 55/15126*14662949395604^(13/21) 5142289977522147 a001 55/15126*(1/2+1/2*5^(1/2))^39 5142289977522147 a001 55/15126*192900153618^(13/18) 5142289977522147 a001 55/15126*73681302247^(3/4) 5142289977522147 a001 55/15126*10749957122^(13/16) 5142289977522147 a001 55/15126*599074578^(13/14) 5142289977522147 a001 832040/15127*817138163596^(1/3) 5142289977522147 a001 832040/15127*(1/2+1/2*5^(1/2))^19 5142289977522147 a001 832040/15127*87403803^(1/2) 5142289977523065 a001 692290558575/1346269 5142289977523416 a001 6765/4870847*(1/2+1/2*5^(1/2))^41 5142289977523416 a001 311187/2161*45537549124^(1/3) 5142289977523416 a001 311187/2161*(1/2+1/2*5^(1/2))^17 5142289977523432 a001 311187/2161*12752043^(1/2) 5142289977523550 a001 906220106220/1762289 5142289977523563 a001 5702887/15127*7881196^(5/11) 5142289977523596 a001 5702887/15127*20633239^(3/7) 5142289977523601 a001 5702887/15127*141422324^(5/13) 5142289977523601 a001 2255/4250681*(1/2+1/2*5^(1/2))^43 5142289977523601 a001 5702887/15127*2537720636^(1/3) 5142289977523601 a001 5702887/15127*45537549124^(5/17) 5142289977523601 a001 5702887/15127*312119004989^(3/11) 5142289977523601 a001 5702887/15127*14662949395604^(5/21) 5142289977523601 a001 5702887/15127*(1/2+1/2*5^(1/2))^15 5142289977523601 a001 5702887/15127*192900153618^(5/18) 5142289977523601 a001 5702887/15127*28143753123^(3/10) 5142289977523601 a001 5702887/15127*10749957122^(5/16) 5142289977523601 a001 5702887/15127*599074578^(5/14) 5142289977523601 a001 5702887/15127*228826127^(3/8) 5142289977523603 a001 5702887/15127*33385282^(5/12) 5142289977523604 a001 24157817/15127*7881196^(4/11) 5142289977523604 a001 39088169/15127*7881196^(1/3) 5142289977523610 a001 6765*7881196^(3/11) 5142289977523618 a001 433494437/15127*7881196^(2/11) 5142289977523621 a001 949006015749/1845493 5142289977523625 a001 1836311903/15127*7881196^(1/11) 5142289977523628 a001 6765/33385282*45537549124^(15/17) 5142289977523628 a001 6765/33385282*312119004989^(9/11) 5142289977523628 a001 6765/33385282*14662949395604^(5/7) 5142289977523628 a001 6765/33385282*(1/2+1/2*5^(1/2))^45 5142289977523628 a001 6765/33385282*192900153618^(5/6) 5142289977523628 a001 6765/33385282*28143753123^(9/10) 5142289977523628 a001 6765/33385282*10749957122^(15/16) 5142289977523628 a001 14930352/15127*141422324^(1/3) 5142289977523628 a001 14930352/15127*(1/2+1/2*5^(1/2))^13 5142289977523628 a001 14930352/15127*73681302247^(1/4) 5142289977523630 a001 63245986/15127*20633239^(2/7) 5142289977523630 a001 267914296/15127*20633239^(1/5) 5142289977523631 a001 12422650023795/24157817 5142289977523631 a001 701408733/15127*20633239^(1/7) 5142289977523632 a001 39088169/15127*312119004989^(1/5) 5142289977523632 a001 39088169/15127*(1/2+1/2*5^(1/2))^11 5142289977523632 a001 39088169/15127*1568397607^(1/4) 5142289977523632 a001 16261459996320/31622993 5142289977523633 a001 6765/228826127*14662949395604^(7/9) 5142289977523633 a001 6765/228826127*505019158607^(7/8) 5142289977523633 a001 6765*141422324^(3/13) 5142289977523633 a001 85146109954125/165580141 5142289977523633 a001 2255/199691526*817138163596^(17/19) 5142289977523633 a001 2255/199691526*14662949395604^(17/21) 5142289977523633 a001 2255/199691526*192900153618^(17/18) 5142289977523633 a001 222915409869735/433494437 5142289977523633 a001 3432941880324/6675901 5142289977523633 a001 2255/1368706081*3461452808002^(11/12) 5142289977523633 a001 6765*2537720636^(1/5) 5142289977523633 a001 1527884949095505/2971215073 5142289977523633 a001 6765/10749957122*14662949395604^(19/21) 5142289977523633 a001 4000054727631435/7778742049 5142289977523633 a001 5236139616899400/10182505537 5142289977523633 a001 6765*45537549124^(3/17) 5142289977523633 a001 27416782973764965/53316291173 5142289977523633 a001 14355613937499219/27916772489 5142289977523633 a001 6765*14662949395604^(1/7) 5142289977523633 a001 6765*192900153618^(1/6) 5142289977523633 a001 1304743726874445/2537281508 5142289977523633 a001 5648167913322055/10983760033 5142289977523633 a001 6765/45537549124*14662949395604^(20/21) 5142289977523633 a001 117676809203043/228841255 5142289977523633 a001 6765*10749957122^(3/16) 5142289977523633 a001 412028296422655/801254496 5142289977523633 a001 6765/6643838879*14662949395604^(8/9) 5142289977523633 a001 944284829440425/1836311903 5142289977523633 a001 615/230701876*14662949395604^(6/7) 5142289977523633 a001 120228236595115/233802911 5142289977523633 a001 6765*599074578^(3/14) 5142289977523633 a001 6765/969323029*23725150497407^(13/16) 5142289977523633 a001 6765/969323029*505019158607^(13/14) 5142289977523633 a001 68884649957805/133957148 5142289977523633 a001 6765/370248451*312119004989^(10/11) 5142289977523633 a001 6765/370248451*3461452808002^(5/6) 5142289977523633 a001 433494437/15127*141422324^(2/13) 5142289977523633 a001 1836311903/15127*141422324^(1/13) 5142289977523633 a001 267914296/15127*17393796001^(1/7) 5142289977523633 a001 267914296/15127*14662949395604^(1/9) 5142289977523633 a001 267914296/15127*(1/2+1/2*5^(1/2))^7 5142289977523633 a001 267914296/15127*599074578^(1/6) 5142289977523633 a001 701408733/15127*2537720636^(1/9) 5142289977523633 a001 701408733/15127*312119004989^(1/11) 5142289977523633 a001 701408733/15127*(1/2+1/2*5^(1/2))^5 5142289977523633 a001 701408733/15127*28143753123^(1/10) 5142289977523633 a001 1836311903/15127*2537720636^(1/15) 5142289977523633 a001 1836311903/15127*45537549124^(1/17) 5142289977523633 a001 1836311903/15127*14662949395604^(1/21) 5142289977523633 a001 1836311903/15127*(1/2+1/2*5^(1/2))^3 5142289977523633 a001 1836311903/15127*192900153618^(1/18) 5142289977523633 a001 1836311903/15127*10749957122^(1/16) 5142289977523633 a001 343394784/2161+343394784/2161*5^(1/2) 5142289977523633 a001 7778742049/15127 5142289977523633 a001 2971215073/15127*(1/2+1/2*5^(1/2))^2 5142289977523633 a001 2971215073/15127*10749957122^(1/24) 5142289977523633 a001 2971215073/15127*4106118243^(1/23) 5142289977523633 a001 2971215073/15127*1568397607^(1/22) 5142289977523633 a001 1836311903/15127*599074578^(1/14) 5142289977523633 a001 1134903170/15127*(1/2+1/2*5^(1/2))^4 5142289977523633 a001 1134903170/15127*23725150497407^(1/16) 5142289977523633 a001 1134903170/15127*73681302247^(1/13) 5142289977523633 a001 2971215073/15127*599074578^(1/21) 5142289977523633 a001 1134903170/15127*10749957122^(1/12) 5142289977523633 a001 1134903170/15127*4106118243^(2/23) 5142289977523633 a001 1134903170/15127*1568397607^(1/11) 5142289977523633 a001 1134903170/15127*599074578^(2/21) 5142289977523633 a001 2971215073/15127*228826127^(1/20) 5142289977523633 a001 433494437/15127*2537720636^(2/15) 5142289977523633 a001 433494437/15127*45537549124^(2/17) 5142289977523633 a001 433494437/15127*14662949395604^(2/21) 5142289977523633 a001 433494437/15127*(1/2+1/2*5^(1/2))^6 5142289977523633 a001 433494437/15127*10749957122^(1/8) 5142289977523633 a001 433494437/15127*4106118243^(3/23) 5142289977523633 a001 433494437/15127*1568397607^(3/22) 5142289977523633 a001 433494437/15127*599074578^(1/7) 5142289977523633 a001 701408733/15127*228826127^(1/8) 5142289977523633 a001 1134903170/15127*228826127^(1/10) 5142289977523633 a001 433494437/15127*228826127^(3/20) 5142289977523633 a001 2971215073/15127*87403803^(1/19) 5142289977523633 a001 165580141/15127*(1/2+1/2*5^(1/2))^8 5142289977523633 a001 165580141/15127*23725150497407^(1/8) 5142289977523633 a001 165580141/15127*505019158607^(1/7) 5142289977523633 a001 165580141/15127*73681302247^(2/13) 5142289977523633 a001 165580141/15127*10749957122^(1/6) 5142289977523633 a001 165580141/15127*4106118243^(4/23) 5142289977523633 a001 165580141/15127*1568397607^(2/11) 5142289977523633 a001 165580141/15127*599074578^(4/21) 5142289977523633 a001 165580141/15127*228826127^(1/5) 5142289977523633 a001 1134903170/15127*87403803^(2/19) 5142289977523633 a001 433494437/15127*87403803^(3/19) 5142289977523633 a001 6765/141422324*45537549124^(16/17) 5142289977523633 a001 6765/141422324*14662949395604^(16/21) 5142289977523633 a001 6765/141422324*192900153618^(8/9) 5142289977523633 a001 6765/141422324*73681302247^(12/13) 5142289977523633 a001 165580141/15127*87403803^(4/19) 5142289977523633 a001 2971215073/15127*33385282^(1/18) 5142289977523633 a001 63245986/15127*2537720636^(2/9) 5142289977523633 a001 63245986/15127*312119004989^(2/11) 5142289977523633 a001 63245986/15127*(1/2+1/2*5^(1/2))^10 5142289977523633 a001 63245986/15127*28143753123^(1/5) 5142289977523633 a001 63245986/15127*10749957122^(5/24) 5142289977523633 a001 63245986/15127*4106118243^(5/23) 5142289977523633 a001 63245986/15127*1568397607^(5/22) 5142289977523633 a001 63245986/15127*599074578^(5/21) 5142289977523633 a001 63245986/15127*228826127^(1/4) 5142289977523633 a001 1836311903/15127*33385282^(1/12) 5142289977523633 a001 63245986/15127*87403803^(5/19) 5142289977523633 a001 1134903170/15127*33385282^(1/9) 5142289977523633 a001 20100269968845/39088169 5142289977523634 a001 433494437/15127*33385282^(1/6) 5142289977523634 a001 6765*33385282^(1/4) 5142289977523634 a001 165580141/15127*33385282^(2/9) 5142289977523634 a001 63245986/15127*33385282^(5/18) 5142289977523634 a001 6765/54018521*10749957122^(23/24) 5142289977523634 a001 24157817/15127*141422324^(4/13) 5142289977523635 a001 24157817/15127*2537720636^(4/15) 5142289977523635 a001 24157817/15127*45537549124^(4/17) 5142289977523635 a001 24157817/15127*817138163596^(4/19) 5142289977523635 a001 24157817/15127*14662949395604^(4/21) 5142289977523635 a001 24157817/15127*(1/2+1/2*5^(1/2))^12 5142289977523635 a001 24157817/15127*192900153618^(2/9) 5142289977523635 a001 24157817/15127*73681302247^(3/13) 5142289977523635 a001 24157817/15127*10749957122^(1/4) 5142289977523635 a001 24157817/15127*4106118243^(6/23) 5142289977523635 a001 24157817/15127*1568397607^(3/11) 5142289977523635 a001 24157817/15127*599074578^(2/7) 5142289977523635 a001 24157817/15127*228826127^(3/10) 5142289977523635 a001 2971215073/15127*12752043^(1/17) 5142289977523635 a001 24157817/15127*87403803^(6/19) 5142289977523636 a001 24157817/15127*33385282^(1/3) 5142289977523636 a001 1134903170/15127*12752043^(2/17) 5142289977523637 a001 75270783775/146376 5142289977523638 a001 433494437/15127*12752043^(3/17) 5142289977523640 a001 9227465/15127*20633239^(2/5) 5142289977523640 a001 165580141/15127*12752043^(4/17) 5142289977523642 a001 63245986/15127*12752043^(5/17) 5142289977523645 a001 615/1875749*312119004989^(4/5) 5142289977523645 a001 615/1875749*(1/2+1/2*5^(1/2))^44 5142289977523645 a001 615/1875749*23725150497407^(11/16) 5142289977523645 a001 615/1875749*73681302247^(11/13) 5142289977523645 a001 615/1875749*10749957122^(11/12) 5142289977523645 a001 615/1875749*4106118243^(22/23) 5142289977523645 a001 9227465/15127*17393796001^(2/7) 5142289977523645 a001 9227465/15127*14662949395604^(2/9) 5142289977523645 a001 9227465/15127*(1/2+1/2*5^(1/2))^14 5142289977523645 a001 9227465/15127*505019158607^(1/4) 5142289977523645 a001 9227465/15127*10749957122^(7/24) 5142289977523645 a001 9227465/15127*4106118243^(7/23) 5142289977523645 a001 9227465/15127*1568397607^(7/22) 5142289977523645 a001 9227465/15127*599074578^(1/3) 5142289977523645 a001 9227465/15127*228826127^(7/20) 5142289977523645 a001 9227465/15127*87403803^(7/19) 5142289977523646 a001 24157817/15127*12752043^(6/17) 5142289977523646 a001 2971215073/15127*4870847^(1/16) 5142289977523647 a001 9227465/15127*33385282^(7/18) 5142289977523658 a001 9227465/15127*12752043^(7/17) 5142289977523660 a001 1134903170/15127*4870847^(1/8) 5142289977523664 a001 2932589866305/5702887 5142289977523673 a001 433494437/15127*4870847^(3/16) 5142289977523687 a001 165580141/15127*4870847^(1/4) 5142289977523701 a001 63245986/15127*4870847^(5/16) 5142289977523715 a001 6765/7881196*2537720636^(14/15) 5142289977523715 a001 6765/7881196*17393796001^(6/7) 5142289977523715 a001 6765/7881196*45537549124^(14/17) 5142289977523715 a001 6765/7881196*817138163596^(14/19) 5142289977523715 a001 6765/7881196*14662949395604^(2/3) 5142289977523715 a001 6765/7881196*(1/2+1/2*5^(1/2))^42 5142289977523715 a001 6765/7881196*505019158607^(3/4) 5142289977523715 a001 6765/7881196*192900153618^(7/9) 5142289977523715 a001 6765/7881196*10749957122^(7/8) 5142289977523715 a001 6765/7881196*4106118243^(21/23) 5142289977523715 a001 6765/7881196*1568397607^(21/22) 5142289977523716 a001 3524578/15127*(1/2+1/2*5^(1/2))^16 5142289977523716 a001 3524578/15127*23725150497407^(1/4) 5142289977523716 a001 3524578/15127*73681302247^(4/13) 5142289977523716 a001 3524578/15127*10749957122^(1/3) 5142289977523716 a001 3524578/15127*4106118243^(8/23) 5142289977523716 a001 3524578/15127*1568397607^(4/11) 5142289977523716 a001 3524578/15127*599074578^(8/21) 5142289977523716 a001 3524578/15127*228826127^(2/5) 5142289977523716 a001 24157817/15127*4870847^(3/8) 5142289977523716 a001 3524578/15127*87403803^(8/19) 5142289977523718 a001 3524578/15127*33385282^(4/9) 5142289977523730 a001 3524578/15127*12752043^(8/17) 5142289977523732 a001 2971215073/15127*1860498^(1/15) 5142289977523740 a001 9227465/15127*4870847^(7/16) 5142289977523781 a001 1836311903/15127*1860498^(1/10) 5142289977523824 a001 3524578/15127*4870847^(1/2) 5142289977523831 a001 1134903170/15127*1860498^(2/15) 5142289977523849 a001 373383217955/726103 5142289977523880 a001 701408733/15127*1860498^(1/6) 5142289977523930 a001 433494437/15127*1860498^(1/5) 5142289977524029 a001 165580141/15127*1860498^(4/15) 5142289977524078 a001 6765*1860498^(3/10) 5142289977524128 a001 63245986/15127*1860498^(1/3) 5142289977524155 a001 1346269/15127*7881196^(6/11) 5142289977524200 a001 1346269/15127*141422324^(6/13) 5142289977524200 a001 6765/3010349*2537720636^(8/9) 5142289977524200 a001 6765/3010349*312119004989^(8/11) 5142289977524200 a001 6765/3010349*(1/2+1/2*5^(1/2))^40 5142289977524200 a001 6765/3010349*23725150497407^(5/8) 5142289977524200 a001 6765/3010349*73681302247^(10/13) 5142289977524200 a001 6765/3010349*28143753123^(4/5) 5142289977524200 a001 6765/3010349*10749957122^(5/6) 5142289977524200 a001 6765/3010349*4106118243^(20/23) 5142289977524200 a001 6765/3010349*1568397607^(10/11) 5142289977524200 a001 6765/3010349*599074578^(20/21) 5142289977524200 a001 1346269/15127*2537720636^(2/5) 5142289977524200 a001 1346269/15127*45537549124^(6/17) 5142289977524200 a001 1346269/15127*14662949395604^(2/7) 5142289977524200 a001 1346269/15127*(1/2+1/2*5^(1/2))^18 5142289977524200 a001 1346269/15127*192900153618^(1/3) 5142289977524200 a001 1346269/15127*10749957122^(3/8) 5142289977524200 a001 1346269/15127*4106118243^(9/23) 5142289977524200 a001 1346269/15127*1568397607^(9/22) 5142289977524200 a001 1346269/15127*599074578^(3/7) 5142289977524200 a001 1346269/15127*228826127^(9/20) 5142289977524201 a001 1346269/15127*87403803^(9/19) 5142289977524202 a001 1346269/15127*33385282^(1/2) 5142289977524217 a001 1346269/15127*12752043^(9/17) 5142289977524229 a001 24157817/15127*1860498^(2/5) 5142289977524322 a001 1346269/15127*4870847^(9/16) 5142289977524338 a001 9227465/15127*1860498^(7/15) 5142289977524344 a001 5702887/15127*1860498^(1/2) 5142289977524360 a001 2971215073/15127*710647^(1/14) 5142289977524508 a001 3524578/15127*1860498^(8/15) 5142289977525087 a001 1134903170/15127*710647^(1/7) 5142289977525092 a001 1346269/15127*1860498^(3/5) 5142289977525118 a001 3889628139/7564 5142289977525815 a001 433494437/15127*710647^(3/14) 5142289977526178 a001 267914296/15127*710647^(1/4) 5142289977526542 a001 165580141/15127*710647^(2/7) 5142289977527270 a001 63245986/15127*710647^(5/14) 5142289977527515 a001 514229/15127*20633239^(4/7) 5142289977527522 a001 6765/1149851*817138163596^(2/3) 5142289977527522 a001 6765/1149851*(1/2+1/2*5^(1/2))^38 5142289977527522 a001 6765/1149851*10749957122^(19/24) 5142289977527522 a001 6765/1149851*4106118243^(19/23) 5142289977527522 a001 6765/1149851*1568397607^(19/22) 5142289977527522 a001 6765/1149851*599074578^(19/21) 5142289977527522 a001 6765/1149851*228826127^(19/20) 5142289977527522 a001 514229/15127*2537720636^(4/9) 5142289977527522 a001 514229/15127*(1/2+1/2*5^(1/2))^20 5142289977527522 a001 514229/15127*23725150497407^(5/16) 5142289977527522 a001 514229/15127*505019158607^(5/14) 5142289977527522 a001 514229/15127*73681302247^(5/13) 5142289977527522 a001 514229/15127*28143753123^(2/5) 5142289977527522 a001 514229/15127*10749957122^(5/12) 5142289977527522 a001 514229/15127*4106118243^(10/23) 5142289977527522 a001 514229/15127*1568397607^(5/11) 5142289977527522 a001 514229/15127*599074578^(10/21) 5142289977527522 a001 514229/15127*228826127^(1/2) 5142289977527522 a001 514229/15127*87403803^(10/19) 5142289977527525 a001 514229/15127*33385282^(5/9) 5142289977527541 a001 514229/15127*12752043^(10/17) 5142289977527658 a001 514229/15127*4870847^(5/8) 5142289977527737 a001 20365011074/64079*3571^(1/17) 5142289977527998 a001 24157817/15127*710647^(3/7) 5142289977528512 a001 514229/15127*1860498^(2/3) 5142289977528736 a001 9227465/15127*710647^(1/2) 5142289977529001 a001 2971215073/15127*271443^(1/13) 5142289977529534 a001 3524578/15127*710647^(4/7) 5142289977530746 a001 1346269/15127*710647^(9/14) 5142289977533817 a001 54475877335/105937 5142289977534370 a001 1134903170/15127*271443^(2/13) 5142289977534795 a001 514229/15127*710647^(5/7) 5142289977539738 a001 433494437/15127*271443^(3/13) 5142289977543564 a001 686789568/2161*103682^(1/24) 5142289977545107 a001 165580141/15127*271443^(4/13) 5142289977550235 a001 196418/15127*7881196^(2/3) 5142289977550290 a001 6765/439204*141422324^(12/13) 5142289977550290 a001 6765/439204*2537720636^(4/5) 5142289977550290 a001 6765/439204*45537549124^(12/17) 5142289977550290 a001 6765/439204*14662949395604^(4/7) 5142289977550290 a001 6765/439204*(1/2+1/2*5^(1/2))^36 5142289977550290 a001 6765/439204*505019158607^(9/14) 5142289977550290 a001 6765/439204*192900153618^(2/3) 5142289977550290 a001 6765/439204*73681302247^(9/13) 5142289977550290 a001 6765/439204*10749957122^(3/4) 5142289977550290 a001 6765/439204*4106118243^(18/23) 5142289977550290 a001 6765/439204*1568397607^(9/11) 5142289977550290 a001 6765/439204*599074578^(6/7) 5142289977550291 a001 6765/439204*228826127^(9/10) 5142289977550291 a001 196418/15127*312119004989^(2/5) 5142289977550291 a001 196418/15127*(1/2+1/2*5^(1/2))^22 5142289977550291 a001 196418/15127*10749957122^(11/24) 5142289977550291 a001 196418/15127*4106118243^(11/23) 5142289977550291 a001 196418/15127*1568397607^(1/2) 5142289977550291 a001 196418/15127*599074578^(11/21) 5142289977550291 a001 196418/15127*228826127^(11/20) 5142289977550291 a001 196418/15127*87403803^(11/19) 5142289977550291 a001 6765/439204*87403803^(18/19) 5142289977550293 a001 196418/15127*33385282^(11/18) 5142289977550311 a001 196418/15127*12752043^(11/17) 5142289977550440 a001 196418/15127*4870847^(11/16) 5142289977550476 a001 63245986/15127*271443^(5/13) 5142289977551380 a001 196418/15127*1860498^(11/15) 5142289977555846 a001 24157817/15127*271443^(6/13) 5142289977558291 a001 196418/15127*710647^(11/14) 5142289977558524 a001 14930352/15127*271443^(1/2) 5142289977561225 a001 9227465/15127*271443^(7/13) 5142289977563496 a001 2971215073/15127*103682^(1/12) 5142289977566664 a001 3524578/15127*271443^(8/13) 5142289977572517 a001 1346269/15127*271443^(9/13) 5142289977581207 a001 514229/15127*271443^(10/13) 5142289977583427 a001 1836311903/15127*103682^(1/8) 5142289977593436 a001 62423800725/121393 5142289977603358 a001 1134903170/15127*103682^(1/6) 5142289977609344 a001 196418/15127*271443^(11/13) 5142289977614722 a001 102334155/24476*9349^(10/19) 5142289977623290 a001 701408733/15127*103682^(5/24) 5142289977643221 a001 433494437/15127*103682^(1/4) 5142289977663153 a001 267914296/15127*103682^(7/24) 5142289977672664 a001 686789568/2161*39603^(1/22) 5142289977682652 a001 75025/15127*439204^(8/9) 5142289977683084 a001 165580141/15127*103682^(1/3) 5142289977703016 a001 6765*103682^(3/8) 5142289977706288 a001 75025/15127*7881196^(8/11) 5142289977706348 a001 75025/15127*141422324^(8/13) 5142289977706348 a001 615/15251*45537549124^(2/3) 5142289977706348 a001 615/15251*(1/2+1/2*5^(1/2))^34 5142289977706348 a001 615/15251*10749957122^(17/24) 5142289977706348 a001 615/15251*4106118243^(17/23) 5142289977706348 a001 615/15251*1568397607^(17/22) 5142289977706348 a001 615/15251*599074578^(17/21) 5142289977706348 a001 615/15251*228826127^(17/20) 5142289977706348 a001 75025/15127*2537720636^(8/15) 5142289977706348 a001 75025/15127*45537549124^(8/17) 5142289977706348 a001 75025/15127*14662949395604^(8/21) 5142289977706348 a001 75025/15127*(1/2+1/2*5^(1/2))^24 5142289977706348 a001 75025/15127*192900153618^(4/9) 5142289977706348 a001 75025/15127*73681302247^(6/13) 5142289977706348 a001 75025/15127*10749957122^(1/2) 5142289977706348 a001 75025/15127*4106118243^(12/23) 5142289977706348 a001 75025/15127*1568397607^(6/11) 5142289977706348 a001 75025/15127*599074578^(4/7) 5142289977706348 a001 75025/15127*228826127^(3/5) 5142289977706348 a001 75025/15127*87403803^(12/19) 5142289977706348 a001 615/15251*87403803^(17/19) 5142289977706351 a001 75025/15127*33385282^(2/3) 5142289977706352 a001 615/15251*33385282^(17/18) 5142289977706370 a001 75025/15127*12752043^(12/17) 5142289977706510 a001 75025/15127*4870847^(3/4) 5142289977707536 a001 75025/15127*1860498^(4/5) 5142289977715076 a001 75025/15127*710647^(6/7) 5142289977722947 a001 63245986/15127*103682^(5/12) 5142289977742878 a001 39088169/15127*103682^(11/24) 5142289977762812 a001 24157817/15127*103682^(1/2) 5142289977770770 a001 75025/15127*271443^(12/13) 5142289977782737 a001 14930352/15127*103682^(13/24) 5142289977802685 a001 9227465/15127*103682^(7/12) 5142289977821695 a001 2971215073/15127*39603^(1/11) 5142289977822573 a001 5702887/15127*103682^(5/8) 5142289977842178 a001 1836311903/103682*9349^(7/19) 5142289977842619 a001 3524578/15127*103682^(2/3) 5142289977862250 a001 311187/2161*103682^(17/24) 5142289977882966 a001 1346269/15127*103682^(3/4) 5142289977900844 a001 832040/15127*103682^(19/24) 5142289977912265 a001 121393/15127*103682^(23/24) 5142289977926151 a001 514229/15127*103682^(5/6) 5142289977932011 a001 317811/15127*103682^(7/8) 5142289977933458 a001 567451585/2889*2207^(1/8) 5142289977970727 a001 1836311903/15127*39603^(3/22) 5142289977988782 a001 196418/15127*103682^(11/12) 5142289977991398 a001 433494437/2207*843^(1/7) 5142289978002070 a001 3973961695/7728 5142289978119758 a001 1134903170/15127*39603^(2/11) 5142289978138354 a001 1134903170/39603*9349^(6/19) 5142289978250742 a001 1602508992/90481*9349^(7/19) 5142289978268790 a001 701408733/15127*39603^(5/22) 5142289978310350 a001 12586269025/710647*9349^(7/19) 5142289978319047 a001 10983760033/620166*9349^(7/19) 5142289978320316 a001 86267571272/4870847*9349^(7/19) 5142289978320501 a001 75283811239/4250681*9349^(7/19) 5142289978320528 a001 591286729879/33385282*9349^(7/19) 5142289978320532 a001 516002918640/29134601*9349^(7/19) 5142289978320533 a001 4052739537881/228826127*9349^(7/19) 5142289978320533 a001 3536736619241/199691526*9349^(7/19) 5142289978320533 a001 6557470319842/370248451*9349^(7/19) 5142289978320533 a001 2504730781961/141422324*9349^(7/19) 5142289978320534 a001 956722026041/54018521*9349^(7/19) 5142289978320545 a001 365435296162/20633239*9349^(7/19) 5142289978320616 a001 139583862445/7881196*9349^(7/19) 5142289978321100 a001 53316291173/3010349*9349^(7/19) 5142289978324422 a001 20365011074/1149851*9349^(7/19) 5142289978347191 a001 7778742049/439204*9349^(7/19) 5142289978417821 a001 433494437/15127*39603^(3/11) 5142289978503248 a001 2971215073/167761*9349^(7/19) 5142289978566852 a001 267914296/15127*39603^(7/22) 5142289978647257 a001 686789568/2161*15127^(1/20) 5142289978715884 a001 165580141/15127*39603^(4/11) 5142289978775981 a001 28657/15127*141422324^(2/3) 5142289978775981 a001 6765/64079*(1/2+1/2*5^(1/2))^32 5142289978775981 a001 6765/64079*23725150497407^(1/2) 5142289978775981 a001 6765/64079*505019158607^(4/7) 5142289978775981 a001 6765/64079*73681302247^(8/13) 5142289978775981 a001 6765/64079*10749957122^(2/3) 5142289978775981 a001 6765/64079*4106118243^(16/23) 5142289978775981 a001 6765/64079*1568397607^(8/11) 5142289978775981 a001 6765/64079*599074578^(16/21) 5142289978775981 a001 6765/64079*228826127^(4/5) 5142289978775981 a001 28657/15127*(1/2+1/2*5^(1/2))^26 5142289978775981 a001 28657/15127*73681302247^(1/2) 5142289978775981 a001 28657/15127*10749957122^(13/24) 5142289978775981 a001 28657/15127*4106118243^(13/23) 5142289978775981 a001 28657/15127*1568397607^(13/22) 5142289978775981 a001 28657/15127*599074578^(13/21) 5142289978775981 a001 28657/15127*228826127^(13/20) 5142289978775981 a001 28657/15127*87403803^(13/19) 5142289978775981 a001 6765/64079*87403803^(16/19) 5142289978775984 a001 28657/15127*33385282^(13/18) 5142289978775985 a001 6765/64079*33385282^(8/9) 5142289978776005 a001 28657/15127*12752043^(13/17) 5142289978776011 a001 6765/64079*12752043^(16/17) 5142289978776157 a001 28657/15127*4870847^(13/16) 5142289978777268 a001 28657/15127*1860498^(13/15) 5142289978785436 a001 28657/15127*710647^(13/14) 5142289978864915 a001 6765*39603^(9/22) 5142289979013947 a001 63245986/15127*39603^(5/11) 5142289979162977 a001 39088169/15127*39603^(1/2) 5142289979312011 a001 24157817/15127*39603^(6/11) 5142289979461036 a001 14930352/15127*39603^(13/22) 5142289979572881 a001 1134903170/64079*9349^(7/19) 5142289979610084 a001 9227465/15127*39603^(7/11) 5142289979759072 a001 5702887/15127*39603^(15/22) 5142289979770880 a001 2971215073/15127*15127^(1/10) 5142289979908218 a001 3524578/15127*39603^(8/11) 5142289980056949 a001 311187/2161*39603^(17/22) 5142289980206765 a001 1346269/15127*39603^(9/11) 5142289980353743 a001 832040/15127*39603^(19/22) 5142289980508150 a001 514229/15127*39603^(10/11) 5142289980643109 a001 317811/15127*39603^(21/22) 5142289980711233 a001 165580141/24476*9349^(9/19) 5142289980802890 a001 9107509785/17711 5142289980894504 a001 1836311903/15127*15127^(3/20) 5142289980938689 a001 2971215073/103682*9349^(6/19) 5142289981234865 a001 1836311903/39603*9349^(5/19) 5142289981347253 a001 7778742049/271443*9349^(6/19) 5142289981406861 a001 20365011074/710647*9349^(6/19) 5142289981415558 a001 53316291173/1860498*9349^(6/19) 5142289981416827 a001 139583862445/4870847*9349^(6/19) 5142289981417012 a001 365435296162/12752043*9349^(6/19) 5142289981417039 a001 956722026041/33385282*9349^(6/19) 5142289981417043 a001 2504730781961/87403803*9349^(6/19) 5142289981417044 a001 6557470319842/228826127*9349^(6/19) 5142289981417044 a001 10610209857723/370248451*9349^(6/19) 5142289981417044 a001 4052739537881/141422324*9349^(6/19) 5142289981417046 a001 1548008755920/54018521*9349^(6/19) 5142289981417056 a001 591286729879/20633239*9349^(6/19) 5142289981417127 a001 225851433717/7881196*9349^(6/19) 5142289981417611 a001 86267571272/3010349*9349^(6/19) 5142289981420933 a001 32951280099/1149851*9349^(6/19) 5142289981443702 a001 12586269025/439204*9349^(6/19) 5142289981599759 a001 4807526976/167761*9349^(6/19) 5142289982018128 a001 1134903170/15127*15127^(1/5) 5142289982669392 a001 28657*9349^(6/19) 5142289982882383 a001 1346269/5778*5778^(8/9) 5142289983141752 a001 701408733/15127*15127^(1/4) 5142289983807744 a001 10946*9349^(8/19) 5142289984035200 a001 46368*9349^(5/19) 5142289984265376 a001 433494437/15127*15127^(3/10) 5142289984331376 a001 2971215073/39603*9349^(4/19) 5142289984443764 a001 12586269025/271443*9349^(5/19) 5142289984503372 a001 32951280099/710647*9349^(5/19) 5142289984512069 a001 43133785636/930249*9349^(5/19) 5142289984513338 a001 225851433717/4870847*9349^(5/19) 5142289984513523 a001 591286729879/12752043*9349^(5/19) 5142289984513550 a001 774004377960/16692641*9349^(5/19) 5142289984513554 a001 4052739537881/87403803*9349^(5/19) 5142289984513555 a001 225749145909/4868641*9349^(5/19) 5142289984513555 a001 3278735159921/70711162*9349^(5/19) 5142289984513557 a001 2504730781961/54018521*9349^(5/19) 5142289984513567 a001 956722026041/20633239*9349^(5/19) 5142289984513638 a001 182717648081/3940598*9349^(5/19) 5142289984514122 a001 139583862445/3010349*9349^(5/19) 5142289984517444 a001 53316291173/1149851*9349^(5/19) 5142289984540213 a001 10182505537/219602*9349^(5/19) 5142289984696270 a001 7778742049/167761*9349^(5/19) 5142289984859111 a001 7778742049/24476*3571^(1/17) 5142289985389000 a001 267914296/15127*15127^(7/20) 5142289985765903 a001 2971215073/64079*9349^(5/19) 5142289986080780 a001 686789568/2161*5778^(1/18) 5142289986107280 a001 6765/24476*7881196^(10/11) 5142289986107345 a001 6765/24476*20633239^(6/7) 5142289986107346 a001 10946/15127*20633239^(4/5) 5142289986107355 a001 6765/24476*141422324^(10/13) 5142289986107355 a001 6765/24476*2537720636^(2/3) 5142289986107355 a001 6765/24476*45537549124^(10/17) 5142289986107355 a001 6765/24476*312119004989^(6/11) 5142289986107355 a001 6765/24476*14662949395604^(10/21) 5142289986107355 a001 6765/24476*(1/2+1/2*5^(1/2))^30 5142289986107355 a001 6765/24476*192900153618^(5/9) 5142289986107355 a001 6765/24476*28143753123^(3/5) 5142289986107355 a001 6765/24476*10749957122^(5/8) 5142289986107355 a001 6765/24476*4106118243^(15/23) 5142289986107355 a001 6765/24476*1568397607^(15/22) 5142289986107355 a001 6765/24476*599074578^(5/7) 5142289986107355 a001 6765/24476*228826127^(3/4) 5142289986107355 a001 10946/15127*17393796001^(4/7) 5142289986107355 a001 10946/15127*14662949395604^(4/9) 5142289986107355 a001 10946/15127*(1/2+1/2*5^(1/2))^28 5142289986107355 a001 10946/15127*505019158607^(1/2) 5142289986107355 a001 10946/15127*73681302247^(7/13) 5142289986107355 a001 10946/15127*10749957122^(7/12) 5142289986107355 a001 10946/15127*4106118243^(14/23) 5142289986107355 a001 10946/15127*1568397607^(7/11) 5142289986107355 a001 10946/15127*599074578^(2/3) 5142289986107355 a001 10946/15127*228826127^(7/10) 5142289986107356 a001 6765/24476*87403803^(15/19) 5142289986107356 a001 10946/15127*87403803^(14/19) 5142289986107359 a001 10946/15127*33385282^(7/9) 5142289986107359 a001 6765/24476*33385282^(5/6) 5142289986107381 a001 10946/15127*12752043^(14/17) 5142289986107383 a001 6765/24476*12752043^(15/17) 5142289986107545 a001 10946/15127*4870847^(7/8) 5142289986107558 a001 6765/24476*4870847^(15/16) 5142289986108742 a001 10946/15127*1860498^(14/15) 5142289986512624 a001 165580141/15127*15127^(2/5) 5142289986904255 a001 433494437/24476*9349^(7/19) 5142289987131711 a001 7778742049/103682*9349^(4/19) 5142289987427887 a001 1602508992/13201*9349^(3/19) 5142289987540275 a001 20365011074/271443*9349^(4/19) 5142289987599884 a001 53316291173/710647*9349^(4/19) 5142289987608580 a001 139583862445/1860498*9349^(4/19) 5142289987609849 a001 365435296162/4870847*9349^(4/19) 5142289987610034 a001 956722026041/12752043*9349^(4/19) 5142289987610061 a001 2504730781961/33385282*9349^(4/19) 5142289987610065 a001 6557470319842/87403803*9349^(4/19) 5142289987610066 a001 10610209857723/141422324*9349^(4/19) 5142289987610068 a001 4052739537881/54018521*9349^(4/19) 5142289987610078 a001 140728068720/1875749*9349^(4/19) 5142289987610149 a001 591286729879/7881196*9349^(4/19) 5142289987610633 a001 225851433717/3010349*9349^(4/19) 5142289987613955 a001 86267571272/1149851*9349^(4/19) 5142289987636247 a001 6765*15127^(9/20) 5142289987636724 a001 32951280099/439204*9349^(4/19) 5142289987667656 a001 1134903170/9349*3571^(3/17) 5142289987792781 a001 75025*9349^(4/19) 5142289988123515 a001 432980817/842 5142289988543013 a001 1346269/39603*24476^(20/21) 5142289988759872 a001 63245986/15127*15127^(1/2) 5142289988862414 a001 4807526976/64079*9349^(4/19) 5142289988950978 a001 726103/13201*24476^(19/21) 5142289989360026 a001 3524578/39603*24476^(6/7) 5142289989768660 a001 5702887/39603*24476^(17/21) 5142289989883495 a001 39088169/15127*15127^(11/20) 5142289990000766 a001 701408733/24476*9349^(6/19) 5142289990177453 a001 9227465/39603*24476^(16/21) 5142289990228223 a001 12586269025/103682*9349^(3/19) 5142289990524398 a001 7778742049/39603*9349^(2/19) 5142289990586185 a001 4976784/13201*24476^(5/7) 5142289990636786 a001 121393*9349^(3/19) 5142289990696395 a001 86267571272/710647*9349^(3/19) 5142289990705091 a001 75283811239/620166*9349^(3/19) 5142289990706360 a001 591286729879/4870847*9349^(3/19) 5142289990706545 a001 516002918640/4250681*9349^(3/19) 5142289990706572 a001 4052739537881/33385282*9349^(3/19) 5142289990706576 a001 3536736619241/29134601*9349^(3/19) 5142289990706579 a001 6557470319842/54018521*9349^(3/19) 5142289990706589 a001 2504730781961/20633239*9349^(3/19) 5142289990706660 a001 956722026041/7881196*9349^(3/19) 5142289990707144 a001 365435296162/3010349*9349^(3/19) 5142289990710466 a001 139583862445/1149851*9349^(3/19) 5142289990733235 a001 53316291173/439204*9349^(3/19) 5142289990864242 a001 2814375312/5473 5142289990889292 a001 20365011074/167761*9349^(3/19) 5142289990994940 a001 24157817/39603*24476^(2/3) 5142289991007121 a001 24157817/15127*15127^(3/5) 5142289991342865 a001 1762289/51841*24476^(20/21) 5142289991403686 a001 39088169/39603*24476^(13/21) 5142289991412388 a001 1/5473*(1/2+1/2*5^(1/2))^50 5142289991437477 a001 416020/2889*5778^(17/18) 5142289991751357 a001 9227465/271443*24476^(20/21) 5142289991751499 a001 5702887/103682*24476^(19/21) 5142289991777818 a001 5628750625/10946 5142289991810956 a001 24157817/710647*24476^(20/21) 5142289991812436 a001 63245986/39603*24476^(4/7) 5142289991819651 a001 31622993/930249*24476^(20/21) 5142289991820920 a001 165580141/4870847*24476^(20/21) 5142289991821105 a001 433494437/12752043*24476^(20/21) 5142289991821132 a001 567451585/16692641*24476^(20/21) 5142289991821136 a001 2971215073/87403803*24476^(20/21) 5142289991821136 a001 7778742049/228826127*24476^(20/21) 5142289991821136 a001 10182505537/299537289*24476^(20/21) 5142289991821136 a001 53316291173/1568397607*24476^(20/21) 5142289991821136 a001 139583862445/4106118243*24476^(20/21) 5142289991821136 a001 182717648081/5374978561*24476^(20/21) 5142289991821136 a001 956722026041/28143753123*24476^(20/21) 5142289991821136 a001 2504730781961/73681302247*24476^(20/21) 5142289991821136 a001 3278735159921/96450076809*24476^(20/21) 5142289991821136 a001 10610209857723/312119004989*24476^(20/21) 5142289991821136 a001 4052739537881/119218851371*24476^(20/21) 5142289991821136 a001 387002188980/11384387281*24476^(20/21) 5142289991821136 a001 591286729879/17393796001*24476^(20/21) 5142289991821136 a001 225851433717/6643838879*24476^(20/21) 5142289991821136 a001 1135099622/33391061*24476^(20/21) 5142289991821136 a001 32951280099/969323029*24476^(20/21) 5142289991821136 a001 12586269025/370248451*24476^(20/21) 5142289991821137 a001 1201881744/35355581*24476^(20/21) 5142289991821138 a001 1836311903/54018521*24476^(20/21) 5142289991821148 a001 701408733/20633239*24476^(20/21) 5142289991821219 a001 66978574/1970299*24476^(20/21) 5142289991821704 a001 102334155/3010349*24476^(20/21) 5142289991825025 a001 39088169/1149851*24476^(20/21) 5142289991847789 a001 196452/5779*24476^(20/21) 5142289991958925 a001 7778742049/64079*9349^(3/19) 5142289992003820 a001 5702887/167761*24476^(20/21) 5142289992130738 a001 14930352/15127*15127^(13/20) 5142289992160089 a001 4976784/90481*24476^(19/21) 5142289992160291 a001 9227465/103682*24476^(6/7) 5142289992219702 a001 39088169/710647*24476^(19/21) 5142289992221184 a001 34111385/13201*24476^(11/21) 5142289992228399 a001 831985/15126*24476^(19/21) 5142289992229668 a001 267914296/4870847*24476^(19/21) 5142289992229853 a001 233802911/4250681*24476^(19/21) 5142289992229880 a001 1836311903/33385282*24476^(19/21) 5142289992229884 a001 1602508992/29134601*24476^(19/21) 5142289992229885 a001 12586269025/228826127*24476^(19/21) 5142289992229885 a001 10983760033/199691526*24476^(19/21) 5142289992229885 a001 86267571272/1568397607*24476^(19/21) 5142289992229885 a001 75283811239/1368706081*24476^(19/21) 5142289992229885 a001 591286729879/10749957122*24476^(19/21) 5142289992229885 a001 12585437040/228811001*24476^(19/21) 5142289992229885 a001 4052739537881/73681302247*24476^(19/21) 5142289992229885 a001 3536736619241/64300051206*24476^(19/21) 5142289992229885 a001 6557470319842/119218851371*24476^(19/21) 5142289992229885 a001 2504730781961/45537549124*24476^(19/21) 5142289992229885 a001 956722026041/17393796001*24476^(19/21) 5142289992229885 a001 365435296162/6643838879*24476^(19/21) 5142289992229885 a001 139583862445/2537720636*24476^(19/21) 5142289992229885 a001 53316291173/969323029*24476^(19/21) 5142289992229885 a001 20365011074/370248451*24476^(19/21) 5142289992229885 a001 7778742049/141422324*24476^(19/21) 5142289992229887 a001 2971215073/54018521*24476^(19/21) 5142289992229897 a001 1134903170/20633239*24476^(19/21) 5142289992229968 a001 433494437/7881196*24476^(19/21) 5142289992230452 a001 165580141/3010349*24476^(19/21) 5142289992233775 a001 63245986/1149851*24476^(19/21) 5142289992256545 a001 24157817/439204*24476^(19/21) 5142289992412612 a001 9227465/167761*24476^(19/21) 5142289992568844 a001 24157817/271443*24476^(6/7) 5142289992569023 a001 7465176/51841*24476^(17/21) 5142289992628452 a001 63245986/710647*24476^(6/7) 5142289992629933 a001 165580141/39603*24476^(10/21) 5142289992637148 a001 165580141/1860498*24476^(6/7) 5142289992638417 a001 433494437/4870847*24476^(6/7) 5142289992638602 a001 1134903170/12752043*24476^(6/7) 5142289992638629 a001 2971215073/33385282*24476^(6/7) 5142289992638633 a001 7778742049/87403803*24476^(6/7) 5142289992638634 a001 20365011074/228826127*24476^(6/7) 5142289992638634 a001 53316291173/599074578*24476^(6/7) 5142289992638634 a001 139583862445/1568397607*24476^(6/7) 5142289992638634 a001 365435296162/4106118243*24476^(6/7) 5142289992638634 a001 956722026041/10749957122*24476^(6/7) 5142289992638634 a001 2504730781961/28143753123*24476^(6/7) 5142289992638634 a001 6557470319842/73681302247*24476^(6/7) 5142289992638634 a001 10610209857723/119218851371*24476^(6/7) 5142289992638634 a001 4052739537881/45537549124*24476^(6/7) 5142289992638634 a001 1548008755920/17393796001*24476^(6/7) 5142289992638634 a001 591286729879/6643838879*24476^(6/7) 5142289992638634 a001 225851433717/2537720636*24476^(6/7) 5142289992638634 a001 86267571272/969323029*24476^(6/7) 5142289992638634 a001 32951280099/370248451*24476^(6/7) 5142289992638634 a001 12586269025/141422324*24476^(6/7) 5142289992638635 a001 4807526976/54018521*24476^(6/7) 5142289992638646 a001 1836311903/20633239*24476^(6/7) 5142289992638716 a001 3524667/39604*24476^(6/7) 5142289992639201 a001 267914296/3010349*24476^(6/7) 5142289992642523 a001 102334155/1149851*24476^(6/7) 5142289992665291 a001 39088169/439204*24476^(6/7) 5142289992691394 a001 2814375313/5473 5142289992821344 a001 14930352/167761*24476^(6/7) 5142289992977591 a001 39088169/271443*24476^(17/21) 5142289992977778 a001 24157817/103682*24476^(16/21) 5142289993037200 a001 14619165/101521*24476^(17/21) 5142289993038682 a001 267914296/39603*24476^(3/7) 5142289993045897 a001 133957148/930249*24476^(17/21) 5142289993047166 a001 701408733/4870847*24476^(17/21) 5142289993047351 a001 1836311903/12752043*24476^(17/21) 5142289993047378 a001 14930208/103681*24476^(17/21) 5142289993047382 a001 12586269025/87403803*24476^(17/21) 5142289993047382 a001 32951280099/228826127*24476^(17/21) 5142289993047382 a001 43133785636/299537289*24476^(17/21) 5142289993047382 a001 32264490531/224056801*24476^(17/21) 5142289993047382 a001 591286729879/4106118243*24476^(17/21) 5142289993047382 a001 774004377960/5374978561*24476^(17/21) 5142289993047382 a001 4052739537881/28143753123*24476^(17/21) 5142289993047382 a001 1515744265389/10525900321*24476^(17/21) 5142289993047382 a001 3278735159921/22768774562*24476^(17/21) 5142289993047382 a001 2504730781961/17393796001*24476^(17/21) 5142289993047382 a001 956722026041/6643838879*24476^(17/21) 5142289993047382 a001 182717648081/1268860318*24476^(17/21) 5142289993047382 a001 139583862445/969323029*24476^(17/21) 5142289993047382 a001 53316291173/370248451*24476^(17/21) 5142289993047383 a001 10182505537/70711162*24476^(17/21) 5142289993047384 a001 7778742049/54018521*24476^(17/21) 5142289993047394 a001 2971215073/20633239*24476^(17/21) 5142289993047465 a001 567451585/3940598*24476^(17/21) 5142289993047950 a001 433494437/3010349*24476^(17/21) 5142289993051272 a001 165580141/1149851*24476^(17/21) 5142289993073268 a001 2178309/64079*24476^(20/21) 5142289993074040 a001 31622993/219602*24476^(17/21) 5142289993097277 a001 567451585/12238*9349^(5/19) 5142289993230099 a001 24157817/167761*24476^(17/21) 5142289993254379 a001 9227465/15127*15127^(7/10) 5142289993324734 a001 10182505537/51841*9349^(2/19) 5142289993386340 a001 63245986/271443*24476^(16/21) 5142289993386525 a001 39088169/103682*24476^(5/7) 5142289993438730 a001 17711/39603*(1/2+1/2*5^(1/2))^29 5142289993438730 a001 17711/39603*1322157322203^(1/2) 5142289993445949 a001 165580141/710647*24476^(16/21) 5142289993447430 a001 433494437/39603*24476^(8/21) 5142289993454645 a001 433494437/1860498*24476^(16/21) 5142289993455914 a001 1134903170/4870847*24476^(16/21) 5142289993456099 a001 2971215073/12752043*24476^(16/21) 5142289993456126 a001 7778742049/33385282*24476^(16/21) 5142289993456130 a001 20365011074/87403803*24476^(16/21) 5142289993456131 a001 53316291173/228826127*24476^(16/21) 5142289993456131 a001 139583862445/599074578*24476^(16/21) 5142289993456131 a001 365435296162/1568397607*24476^(16/21) 5142289993456131 a001 956722026041/4106118243*24476^(16/21) 5142289993456131 a001 2504730781961/10749957122*24476^(16/21) 5142289993456131 a001 6557470319842/28143753123*24476^(16/21) 5142289993456131 a001 10610209857723/45537549124*24476^(16/21) 5142289993456131 a001 4052739537881/17393796001*24476^(16/21) 5142289993456131 a001 1548008755920/6643838879*24476^(16/21) 5142289993456131 a001 591286729879/2537720636*24476^(16/21) 5142289993456131 a001 225851433717/969323029*24476^(16/21) 5142289993456131 a001 86267571272/370248451*24476^(16/21) 5142289993456131 a001 63246219/271444*24476^(16/21) 5142289993456133 a001 12586269025/54018521*24476^(16/21) 5142289993456143 a001 4807526976/20633239*24476^(16/21) 5142289993456214 a001 1836311903/7881196*24476^(16/21) 5142289993456698 a001 701408733/3010349*24476^(16/21) 5142289993460020 a001 267914296/1149851*24476^(16/21) 5142289993482316 a001 3524578/64079*24476^(19/21) 5142289993482789 a001 102334155/439204*24476^(16/21) 5142289993620909 a001 12586269025/39603*9349^(1/19) 5142289993638846 a001 39088169/167761*24476^(16/21) 5142289993733297 a001 53316291173/271443*9349^(2/19) 5142289993792906 a001 139583862445/710647*9349^(2/19) 5142289993795089 a001 34111385/90481*24476^(5/7) 5142289993795274 a001 31622993/51841*24476^(2/3) 5142289993801602 a001 182717648081/930249*9349^(2/19) 5142289993802871 a001 956722026041/4870847*9349^(2/19) 5142289993803056 a001 2504730781961/12752043*9349^(2/19) 5142289993803083 a001 3278735159921/16692641*9349^(2/19) 5142289993803090 a001 10610209857723/54018521*9349^(2/19) 5142289993803100 a001 4052739537881/20633239*9349^(2/19) 5142289993803171 a001 387002188980/1970299*9349^(2/19) 5142289993803655 a001 591286729879/3010349*9349^(2/19) 5142289993806977 a001 225851433717/1149851*9349^(2/19) 5142289993829746 a001 196418*9349^(2/19) 5142289993854697 a001 267914296/710647*24476^(5/7) 5142289993856179 a001 17711*24476^(1/3) 5142289993863394 a001 233802911/620166*24476^(5/7) 5142289993864663 a001 1836311903/4870847*24476^(5/7) 5142289993864848 a001 1602508992/4250681*24476^(5/7) 5142289993864875 a001 12586269025/33385282*24476^(5/7) 5142289993864879 a001 10983760033/29134601*24476^(5/7) 5142289993864880 a001 86267571272/228826127*24476^(5/7) 5142289993864880 a001 267913919/710646*24476^(5/7) 5142289993864880 a001 591286729879/1568397607*24476^(5/7) 5142289993864880 a001 516002918640/1368706081*24476^(5/7) 5142289993864880 a001 4052739537881/10749957122*24476^(5/7) 5142289993864880 a001 3536736619241/9381251041*24476^(5/7) 5142289993864880 a001 6557470319842/17393796001*24476^(5/7) 5142289993864880 a001 2504730781961/6643838879*24476^(5/7) 5142289993864880 a001 956722026041/2537720636*24476^(5/7) 5142289993864880 a001 365435296162/969323029*24476^(5/7) 5142289993864880 a001 139583862445/370248451*24476^(5/7) 5142289993864880 a001 53316291173/141422324*24476^(5/7) 5142289993864882 a001 20365011074/54018521*24476^(5/7) 5142289993864892 a001 7778742049/20633239*24476^(5/7) 5142289993864963 a001 2971215073/7881196*24476^(5/7) 5142289993865447 a001 1134903170/3010349*24476^(5/7) 5142289993868769 a001 433494437/1149851*24476^(5/7) 5142289993890950 a001 5702887/64079*24476^(6/7) 5142289993891538 a001 165580141/439204*24476^(5/7) 5142289993985803 a001 32951280099/167761*9349^(2/19) 5142289994047595 a001 63245986/167761*24476^(5/7) 5142289994203838 a001 165580141/271443*24476^(2/3) 5142289994204023 a001 102334155/103682*24476^(13/21) 5142289994263446 a001 433494437/710647*24476^(2/3) 5142289994264928 a001 1134903170/39603*24476^(2/7) 5142289994272143 a001 567451585/930249*24476^(2/3) 5142289994273412 a001 2971215073/4870847*24476^(2/3) 5142289994273597 a001 7778742049/12752043*24476^(2/3) 5142289994273624 a001 10182505537/16692641*24476^(2/3) 5142289994273628 a001 53316291173/87403803*24476^(2/3) 5142289994273628 a001 139583862445/228826127*24476^(2/3) 5142289994273628 a001 182717648081/299537289*24476^(2/3) 5142289994273628 a001 956722026041/1568397607*24476^(2/3) 5142289994273628 a001 2504730781961/4106118243*24476^(2/3) 5142289994273628 a001 3278735159921/5374978561*24476^(2/3) 5142289994273628 a001 10610209857723/17393796001*24476^(2/3) 5142289994273628 a001 4052739537881/6643838879*24476^(2/3) 5142289994273628 a001 1134903780/1860499*24476^(2/3) 5142289994273628 a001 591286729879/969323029*24476^(2/3) 5142289994273628 a001 225851433717/370248451*24476^(2/3) 5142289994273629 a001 21566892818/35355581*24476^(2/3) 5142289994273630 a001 32951280099/54018521*24476^(2/3) 5142289994273641 a001 1144206275/1875749*24476^(2/3) 5142289994273711 a001 1201881744/1970299*24476^(2/3) 5142289994274196 a001 1836311903/3010349*24476^(2/3) 5142289994277518 a001 701408733/1149851*24476^(2/3) 5142289994299743 a001 9227465/64079*24476^(17/21) 5142289994300286 a001 66978574/109801*24476^(2/3) 5142289994377959 a001 5702887/15127*15127^(3/4) 5142289994456343 a001 9303105/15251*24476^(2/3) 5142289994612586 a001 267914296/271443*24476^(13/21) 5142289994612771 a001 165580141/103682*24476^(4/7) 5142289994637927 a001 2971215073/15127*5778^(1/9) 5142289994672195 a001 701408733/710647*24476^(13/21) 5142289994673676 a001 1836311903/39603*24476^(5/21) 5142289994680892 a001 1836311903/1860498*24476^(13/21) 5142289994682160 a001 4807526976/4870847*24476^(13/21) 5142289994682346 a001 12586269025/12752043*24476^(13/21) 5142289994682373 a001 32951280099/33385282*24476^(13/21) 5142289994682376 a001 86267571272/87403803*24476^(13/21) 5142289994682377 a001 225851433717/228826127*24476^(13/21) 5142289994682377 a001 591286729879/599074578*24476^(13/21) 5142289994682377 a001 1548008755920/1568397607*24476^(13/21) 5142289994682377 a001 4052739537881/4106118243*24476^(13/21) 5142289994682377 a001 4807525989/4870846*24476^(13/21) 5142289994682377 a001 6557470319842/6643838879*24476^(13/21) 5142289994682377 a001 2504730781961/2537720636*24476^(13/21) 5142289994682377 a001 956722026041/969323029*24476^(13/21) 5142289994682377 a001 365435296162/370248451*24476^(13/21) 5142289994682377 a001 139583862445/141422324*24476^(13/21) 5142289994682379 a001 53316291173/54018521*24476^(13/21) 5142289994682389 a001 20365011074/20633239*24476^(13/21) 5142289994682460 a001 7778742049/7881196*24476^(13/21) 5142289994682945 a001 2971215073/3010349*24476^(13/21) 5142289994686266 a001 1134903170/1149851*24476^(13/21) 5142289994708475 a001 14930352/64079*24476^(16/21) 5142289994709035 a001 433494437/439204*24476^(13/21) 5142289994865092 a001 165580141/167761*24476^(13/21) 5142289995021335 a001 433494437/271443*24476^(4/7) 5142289995021520 a001 133957148/51841*24476^(11/21) 5142289995055436 a001 12586269025/64079*9349^(2/19) 5142289995080943 a001 1134903170/710647*24476^(4/7) 5142289995082425 a001 2971215073/39603*24476^(4/21) 5142289995089640 a001 2971215073/1860498*24476^(4/7) 5142289995090909 a001 7778742049/4870847*24476^(4/7) 5142289995091094 a001 20365011074/12752043*24476^(4/7) 5142289995091121 a001 53316291173/33385282*24476^(4/7) 5142289995091125 a001 139583862445/87403803*24476^(4/7) 5142289995091126 a001 365435296162/228826127*24476^(4/7) 5142289995091126 a001 956722026041/599074578*24476^(4/7) 5142289995091126 a001 2504730781961/1568397607*24476^(4/7) 5142289995091126 a001 6557470319842/4106118243*24476^(4/7) 5142289995091126 a001 10610209857723/6643838879*24476^(4/7) 5142289995091126 a001 4052739537881/2537720636*24476^(4/7) 5142289995091126 a001 1548008755920/969323029*24476^(4/7) 5142289995091126 a001 591286729879/370248451*24476^(4/7) 5142289995091126 a001 225851433717/141422324*24476^(4/7) 5142289995091128 a001 86267571272/54018521*24476^(4/7) 5142289995091138 a001 32951280099/20633239*24476^(4/7) 5142289995091209 a001 12586269025/7881196*24476^(4/7) 5142289995091693 a001 4807526976/3010349*24476^(4/7) 5142289995095015 a001 1836311903/1149851*24476^(4/7) 5142289995117230 a001 24157817/64079*24476^(5/7) 5142289995117784 a001 701408733/439204*24476^(4/7) 5142289995273841 a001 267914296/167761*24476^(4/7) 5142289995430084 a001 233802911/90481*24476^(11/21) 5142289995430269 a001 433494437/103682*24476^(10/21) 5142289995463586 a001 14736260440/28657 5142289995489692 a001 1836311903/710647*24476^(11/21) 5142289995491174 a001 1602508992/13201*24476^(1/7) 5142289995498389 a001 267084832/103361*24476^(11/21) 5142289995499658 a001 12586269025/4870847*24476^(11/21) 5142289995499843 a001 10983760033/4250681*24476^(11/21) 5142289995499870 a001 43133785636/16692641*24476^(11/21) 5142289995499874 a001 75283811239/29134601*24476^(11/21) 5142289995499874 a001 591286729879/228826127*24476^(11/21) 5142289995499875 a001 86000486440/33281921*24476^(11/21) 5142289995499875 a001 4052739537881/1568397607*24476^(11/21) 5142289995499875 a001 3536736619241/1368706081*24476^(11/21) 5142289995499875 a001 3278735159921/1268860318*24476^(11/21) 5142289995499875 a001 2504730781961/969323029*24476^(11/21) 5142289995499875 a001 956722026041/370248451*24476^(11/21) 5142289995499875 a001 182717648081/70711162*24476^(11/21) 5142289995499876 a001 139583862445/54018521*24476^(11/21) 5142289995499887 a001 53316291173/20633239*24476^(11/21) 5142289995499957 a001 10182505537/3940598*24476^(11/21) 5142289995500442 a001 7778742049/3010349*24476^(11/21) 5142289995501697 a001 3524578/15127*15127^(4/5) 5142289995503764 a001 2971215073/1149851*24476^(11/21) 5142289995523411 a001 514229/39603*64079^(22/23) 5142289995525976 a001 39088169/64079*24476^(2/3) 5142289995526532 a001 567451585/219602*24476^(11/21) 5142289995572486 a001 832040/39603*64079^(21/23) 5142289995628989 a001 1346269/39603*64079^(20/23) 5142289995682590 a001 433494437/167761*24476^(11/21) 5142289995682655 a001 726103/13201*64079^(19/23) 5142289995737404 a001 3524578/39603*64079^(18/23) 5142289995791740 a001 5702887/39603*64079^(17/23) 5142289995838832 a001 1134903170/271443*24476^(10/21) 5142289995839017 a001 701408733/103682*24476^(3/7) 5142289995846233 a001 9227465/39603*64079^(16/23) 5142289995898441 a001 2971215073/710647*24476^(10/21) 5142289995899923 a001 7778742049/39603*24476^(2/21) 5142289995900666 a001 4976784/13201*64079^(15/23) 5142289995907138 a001 7778742049/1860498*24476^(10/21) 5142289995908406 a001 20365011074/4870847*24476^(10/21) 5142289995908592 a001 53316291173/12752043*24476^(10/21) 5142289995908619 a001 139583862445/33385282*24476^(10/21) 5142289995908623 a001 365435296162/87403803*24476^(10/21) 5142289995908623 a001 956722026041/228826127*24476^(10/21) 5142289995908623 a001 2504730781961/599074578*24476^(10/21) 5142289995908623 a001 6557470319842/1568397607*24476^(10/21) 5142289995908623 a001 10610209857723/2537720636*24476^(10/21) 5142289995908623 a001 4052739537881/969323029*24476^(10/21) 5142289995908623 a001 1548008755920/370248451*24476^(10/21) 5142289995908623 a001 591286729879/141422324*24476^(10/21) 5142289995908625 a001 225851433717/54018521*24476^(10/21) 5142289995908635 a001 86267571272/20633239*24476^(10/21) 5142289995908706 a001 32951280099/7881196*24476^(10/21) 5142289995909191 a001 12586269025/3010349*24476^(10/21) 5142289995912513 a001 4807526976/1149851*24476^(10/21) 5142289995934726 a001 63245986/64079*24476^(13/21) 5142289995935281 a001 1836311903/439204*24476^(10/21) 5142289995955123 a001 24157817/39603*64079^(14/23) 5142289996009570 a001 39088169/39603*64079^(13/23) 5142289996064021 a001 63245986/39603*64079^(12/23) 5142289996091338 a001 701408733/167761*24476^(10/21) 5142289996110918 r009 Im(z^3+c),c=-1/42+13/20*I,n=28 5142289996118471 a001 34111385/13201*64079^(11/23) 5142289996172921 a001 165580141/39603*64079^(10/23) 5142289996193789 a001 1836311903/24476*9349^(4/19) 5142289996227371 a001 267914296/39603*64079^(9/23) 5142289996238998 a001 15456/13201*7881196^(9/11) 5142289996239065 a001 15456/13201*141422324^(9/13) 5142289996239065 a001 17711/103682*(1/2+1/2*5^(1/2))^31 5142289996239065 a001 17711/103682*9062201101803^(1/2) 5142289996239065 a001 15456/13201*2537720636^(3/5) 5142289996239065 a001 15456/13201*45537549124^(9/17) 5142289996239065 a001 15456/13201*817138163596^(9/19) 5142289996239065 a001 15456/13201*14662949395604^(3/7) 5142289996239065 a001 15456/13201*(1/2+1/2*5^(1/2))^27 5142289996239065 a001 15456/13201*192900153618^(1/2) 5142289996239065 a001 15456/13201*10749957122^(9/16) 5142289996239065 a001 15456/13201*599074578^(9/14) 5142289996239069 a001 15456/13201*33385282^(3/4) 5142289996240402 a001 15456/13201*1860498^(9/10) 5142289996247581 a001 1836311903/271443*24476^(3/7) 5142289996247766 a001 567451585/51841*24476^(8/21) 5142289996281821 a001 433494437/39603*64079^(8/23) 5142289996307190 a001 686789568/101521*24476^(3/7) 5142289996308671 a001 12586269025/39603*24476^(1/21) 5142289996315886 a001 12586269025/1860498*24476^(3/7) 5142289996317155 a001 32951280099/4870847*24476^(3/7) 5142289996317340 a001 86267571272/12752043*24476^(3/7) 5142289996317367 a001 32264490531/4769326*24476^(3/7) 5142289996317371 a001 591286729879/87403803*24476^(3/7) 5142289996317372 a001 1548008755920/228826127*24476^(3/7) 5142289996317372 a001 4052739537881/599074578*24476^(3/7) 5142289996317372 a001 1515744265389/224056801*24476^(3/7) 5142289996317372 a001 6557470319842/969323029*24476^(3/7) 5142289996317372 a001 2504730781961/370248451*24476^(3/7) 5142289996317372 a001 956722026041/141422324*24476^(3/7) 5142289996317374 a001 365435296162/54018521*24476^(3/7) 5142289996317384 a001 139583862445/20633239*24476^(3/7) 5142289996317455 a001 53316291173/7881196*24476^(3/7) 5142289996317939 a001 20365011074/3010349*24476^(3/7) 5142289996321261 a001 7778742049/1149851*24476^(3/7) 5142289996336270 a001 17711*64079^(7/23) 5142289996343474 a001 102334155/64079*24476^(4/7) 5142289996344030 a001 2971215073/439204*24476^(3/7) 5142289996390720 a001 1134903170/39603*64079^(6/23) 5142289996421245 a001 32951280099/103682*9349^(1/19) 5142289996445170 a001 1836311903/39603*64079^(5/23) 5142289996499620 a001 2971215073/39603*64079^(4/23) 5142289996500087 a001 1134903170/167761*24476^(3/7) 5142289996534488 a001 38580030699/75025 5142289996554070 a001 1602508992/13201*64079^(3/23) 5142289996571815 a001 1346269/39603*167761^(4/5) 5142289996607786 a001 4976784/13201*167761^(3/5) 5142289996608520 a001 7778742049/39603*64079^(2/23) 5142289996625022 a001 311187/2161*15127^(17/20) 5142289996644334 a001 165580141/39603*167761^(2/5) 5142289996647620 a001 121393/39603*20633239^(5/7) 5142289996647629 a001 17711/271443*141422324^(11/13) 5142289996647629 a001 17711/271443*2537720636^(11/15) 5142289996647629 a001 17711/271443*45537549124^(11/17) 5142289996647629 a001 17711/271443*312119004989^(3/5) 5142289996647629 a001 17711/271443*817138163596^(11/19) 5142289996647629 a001 17711/271443*14662949395604^(11/21) 5142289996647629 a001 17711/271443*(1/2+1/2*5^(1/2))^33 5142289996647629 a001 17711/271443*192900153618^(11/18) 5142289996647629 a001 17711/271443*10749957122^(11/16) 5142289996647629 a001 17711/271443*1568397607^(3/4) 5142289996647629 a001 121393/39603*2537720636^(5/9) 5142289996647629 a001 121393/39603*312119004989^(5/11) 5142289996647629 a001 121393/39603*(1/2+1/2*5^(1/2))^25 5142289996647629 a001 121393/39603*3461452808002^(5/12) 5142289996647629 a001 121393/39603*28143753123^(1/2) 5142289996647629 a001 17711/271443*599074578^(11/14) 5142289996647629 a001 121393/39603*228826127^(5/8) 5142289996647633 a001 17711/271443*33385282^(11/12) 5142289996648867 a001 121393/39603*1860498^(5/6) 5142289996656330 a001 2971215073/271443*24476^(8/21) 5142289996656515 a001 1836311903/103682*24476^(1/3) 5142289996662970 a001 12586269025/39603*64079^(1/23) 5142289996680877 a001 1836311903/39603*167761^(1/5) 5142289996690730 a001 101003831657/196418 5142289996695200 a001 832040/39603*439204^(7/9) 5142289996699731 a001 3524578/39603*439204^(2/3) 5142289996702605 a001 4976784/13201*439204^(5/9) 5142289996705572 a001 63245986/39603*439204^(4/9) 5142289996707238 a001 17711/710647*2537720636^(7/9) 5142289996707238 a001 17711/710647*17393796001^(5/7) 5142289996707238 a001 17711/710647*312119004989^(7/11) 5142289996707238 a001 17711/710647*14662949395604^(5/9) 5142289996707238 a001 17711/710647*(1/2+1/2*5^(1/2))^35 5142289996707238 a001 17711/710647*505019158607^(5/8) 5142289996707238 a001 17711/710647*28143753123^(7/10) 5142289996707238 a001 105937/13201*(1/2+1/2*5^(1/2))^23 5142289996707238 a001 105937/13201*4106118243^(1/2) 5142289996707238 a001 17711/710647*599074578^(5/6) 5142289996707238 a001 17711/710647*228826127^(7/8) 5142289996708534 a001 267914296/39603*439204^(1/3) 5142289996711496 a001 1134903170/39603*439204^(2/9) 5142289996713526 a001 264431464272/514229 5142289996714458 a001 1602508992/13201*439204^(1/9) 5142289996715882 a001 832040/39603*7881196^(7/11) 5142289996715927 a001 832040/39603*20633239^(3/5) 5142289996715934 a001 832040/39603*141422324^(7/13) 5142289996715934 a001 17711/1860498*(1/2+1/2*5^(1/2))^37 5142289996715934 a001 832040/39603*2537720636^(7/15) 5142289996715934 a001 832040/39603*17393796001^(3/7) 5142289996715934 a001 832040/39603*45537549124^(7/17) 5142289996715934 a001 832040/39603*14662949395604^(1/3) 5142289996715934 a001 832040/39603*(1/2+1/2*5^(1/2))^21 5142289996715934 a001 832040/39603*192900153618^(7/18) 5142289996715934 a001 832040/39603*10749957122^(7/16) 5142289996715934 a001 832040/39603*599074578^(1/2) 5142289996715937 a001 832040/39603*33385282^(7/12) 5142289996715938 a001 7778742049/710647*24476^(8/21) 5142289996716852 a001 692290561159/1346269 5142289996716974 a001 832040/39603*1860498^(7/10) 5142289996717203 a001 17711/4870847*2537720636^(13/15) 5142289996717203 a001 17711/4870847*45537549124^(13/17) 5142289996717203 a001 17711/4870847*14662949395604^(13/21) 5142289996717203 a001 17711/4870847*(1/2+1/2*5^(1/2))^39 5142289996717203 a001 17711/4870847*192900153618^(13/18) 5142289996717203 a001 17711/4870847*73681302247^(3/4) 5142289996717203 a001 17711/4870847*10749957122^(13/16) 5142289996717203 a001 726103/13201*817138163596^(1/3) 5142289996717203 a001 726103/13201*(1/2+1/2*5^(1/2))^19 5142289996717203 a001 17711/4870847*599074578^(13/14) 5142289996717203 a001 726103/13201*87403803^(1/2) 5142289996717337 a001 20364496845/39602 5142289996717378 a001 4976784/13201*7881196^(5/11) 5142289996717388 a001 17711/12752043*(1/2+1/2*5^(1/2))^41 5142289996717388 a001 5702887/39603*45537549124^(1/3) 5142289996717388 a001 5702887/39603*(1/2+1/2*5^(1/2))^17 5142289996717390 a001 63245986/39603*7881196^(4/11) 5142289996717392 a001 34111385/13201*7881196^(1/3) 5142289996717397 a001 267914296/39603*7881196^(3/11) 5142289996717404 a001 5702887/39603*12752043^(1/2) 5142289996717405 a001 1134903170/39603*7881196^(2/11) 5142289996717408 a001 365002315112/709805 5142289996717410 a001 4976784/13201*20633239^(3/7) 5142289996717412 a001 1602508992/13201*7881196^(1/11) 5142289996717415 a001 4976784/13201*141422324^(5/13) 5142289996717415 a001 17711/33385282*(1/2+1/2*5^(1/2))^43 5142289996717415 a001 4976784/13201*2537720636^(1/3) 5142289996717415 a001 4976784/13201*45537549124^(5/17) 5142289996717415 a001 4976784/13201*312119004989^(3/11) 5142289996717415 a001 4976784/13201*14662949395604^(5/21) 5142289996717415 a001 4976784/13201*(1/2+1/2*5^(1/2))^15 5142289996717415 a001 4976784/13201*192900153618^(5/18) 5142289996717415 a001 4976784/13201*28143753123^(3/10) 5142289996717415 a001 4976784/13201*10749957122^(5/16) 5142289996717415 a001 4976784/13201*599074578^(5/14) 5142289996717415 a001 4976784/13201*228826127^(3/8) 5142289996717416 a001 165580141/39603*20633239^(2/7) 5142289996717417 a001 24157817/39603*20633239^(2/5) 5142289996717417 a001 4976784/13201*33385282^(5/12) 5142289996717417 a001 17711*20633239^(1/5) 5142289996717418 a001 12422650070163/24157817 5142289996717418 a001 1836311903/39603*20633239^(1/7) 5142289996717419 a001 39088169/39603*141422324^(1/3) 5142289996717419 a001 17711/87403803*45537549124^(15/17) 5142289996717419 a001 17711/87403803*312119004989^(9/11) 5142289996717419 a001 17711/87403803*14662949395604^(5/7) 5142289996717419 a001 17711/87403803*192900153618^(5/6) 5142289996717419 a001 17711/87403803*28143753123^(9/10) 5142289996717419 a001 17711/87403803*10749957122^(15/16) 5142289996717419 a001 39088169/39603*(1/2+1/2*5^(1/2))^13 5142289996717419 a001 39088169/39603*73681302247^(1/4) 5142289996717420 a001 32522920114033/63245986 5142289996717420 a001 34111385/13201*312119004989^(1/5) 5142289996717420 a001 34111385/13201*(1/2+1/2*5^(1/2))^11 5142289996717420 a001 34111385/13201*1568397607^(1/4) 5142289996717420 a001 267914296/39603*141422324^(3/13) 5142289996717420 a001 85146110271936/165580141 5142289996717420 a001 1134903170/39603*141422324^(2/13) 5142289996717420 a001 1602508992/13201*141422324^(1/13) 5142289996717420 a001 17711/599074578*14662949395604^(7/9) 5142289996717420 a001 17711/599074578*505019158607^(7/8) 5142289996717420 a001 267914296/39603*2537720636^(1/5) 5142289996717420 a001 267914296/39603*45537549124^(3/17) 5142289996717420 a001 267914296/39603*817138163596^(3/19) 5142289996717420 a001 267914296/39603*14662949395604^(1/7) 5142289996717420 a001 267914296/39603*(1/2+1/2*5^(1/2))^9 5142289996717420 a001 267914296/39603*192900153618^(1/6) 5142289996717420 a001 267914296/39603*10749957122^(3/16) 5142289996717420 a001 267914296/39603*599074578^(3/14) 5142289996717420 a001 222915410701775/433494437 5142289996717420 a001 17711/1568397607*817138163596^(17/19) 5142289996717420 a001 17711/1568397607*14662949395604^(17/21) 5142289996717420 a001 17711/1568397607*192900153618^(17/18) 5142289996717420 a001 583600121833389/1134903170 5142289996717420 a001 1527884954798392/2971215073 5142289996717420 a001 17711/10749957122*3461452808002^(11/12) 5142289996717420 a001 307696518658599/598364773 5142289996717420 a001 17711/28143753123*14662949395604^(19/21) 5142289996717420 a001 10472279272886969/20365011074 5142289996717420 a001 17711*17393796001^(1/7) 5142289996717420 a001 27416783076099120/53316291173 5142289996717420 a001 806495168038319/1568358005 5142289996717420 a001 17711*14662949395604^(1/9) 5142289996717420 a001 8933796679593974/17373187209 5142289996717420 a001 44361286879311271/86267571272 5142289996717420 a001 17711/119218851371*14662949395604^(20/21) 5142289996717420 a001 16944503803212151/32951280099 5142289996717420 a001 6472224530325182/12586269025 5142289996717420 a001 17711/17393796001*14662949395604^(8/9) 5142289996717420 a001 2472169787763395/4807526976 5142289996717420 a001 17711/6643838879*14662949395604^(6/7) 5142289996717420 a001 944284832965003/1836311903 5142289996717420 a001 17711/2537720636*23725150497407^(13/16) 5142289996717420 a001 17711/2537720636*505019158607^(13/14) 5142289996717420 a001 1836311903/39603*2537720636^(1/9) 5142289996717420 a001 1836311903/39603*312119004989^(1/11) 5142289996717420 a001 1836311903/39603*(1/2+1/2*5^(1/2))^5 5142289996717420 a001 1836311903/39603*28143753123^(1/10) 5142289996717420 a001 1602508992/13201*2537720636^(1/15) 5142289996717420 a001 1602508992/13201*45537549124^(1/17) 5142289996717420 a001 1602508992/13201*14662949395604^(1/21) 5142289996717420 a001 1602508992/13201*(1/2+1/2*5^(1/2))^3 5142289996717420 a001 1602508992/13201*192900153618^(1/18) 5142289996717420 a001 1602508992/13201*10749957122^(1/16) 5142289996717420 a001 12586269025/79206+12586269025/79206*5^(1/2) 5142289996717420 a001 20365011074/39603 5142289996717420 a001 7778742049/39603*(1/2+1/2*5^(1/2))^2 5142289996717420 a001 7778742049/39603*10749957122^(1/24) 5142289996717420 a001 7778742049/39603*4106118243^(1/23) 5142289996717420 a001 7778742049/39603*1568397607^(1/22) 5142289996717420 a001 2971215073/39603*(1/2+1/2*5^(1/2))^4 5142289996717420 a001 2971215073/39603*23725150497407^(1/16) 5142289996717420 a001 2971215073/39603*73681302247^(1/13) 5142289996717420 a001 2971215073/39603*10749957122^(1/12) 5142289996717420 a001 2971215073/39603*4106118243^(2/23) 5142289996717420 a001 17711*599074578^(1/6) 5142289996717420 a001 2971215073/39603*1568397607^(1/11) 5142289996717420 a001 1134903170/39603*2537720636^(2/15) 5142289996717420 a001 7778742049/39603*599074578^(1/21) 5142289996717420 a001 1134903170/39603*45537549124^(2/17) 5142289996717420 a001 1134903170/39603*14662949395604^(2/21) 5142289996717420 a001 1134903170/39603*(1/2+1/2*5^(1/2))^6 5142289996717420 a001 1134903170/39603*10749957122^(1/8) 5142289996717420 a001 1134903170/39603*4106118243^(3/23) 5142289996717420 a001 1602508992/13201*599074578^(1/14) 5142289996717420 a001 1134903170/39603*1568397607^(3/22) 5142289996717420 a001 2971215073/39603*599074578^(2/21) 5142289996717420 a001 1134903170/39603*599074578^(1/7) 5142289996717420 a001 17711/969323029*312119004989^(10/11) 5142289996717420 a001 17711/969323029*3461452808002^(5/6) 5142289996717420 a001 7778742049/39603*228826127^(1/20) 5142289996717420 a001 433494437/39603*(1/2+1/2*5^(1/2))^8 5142289996717420 a001 433494437/39603*23725150497407^(1/8) 5142289996717420 a001 433494437/39603*505019158607^(1/7) 5142289996717420 a001 433494437/39603*73681302247^(2/13) 5142289996717420 a001 433494437/39603*10749957122^(1/6) 5142289996717420 a001 433494437/39603*4106118243^(4/23) 5142289996717420 a001 433494437/39603*1568397607^(2/11) 5142289996717420 a001 433494437/39603*599074578^(4/21) 5142289996717420 a001 2971215073/39603*228826127^(1/10) 5142289996717420 a001 1836311903/39603*228826127^(1/8) 5142289996717420 a001 10597638494603/20608792 5142289996717420 a001 1134903170/39603*228826127^(3/20) 5142289996717420 a001 433494437/39603*228826127^(1/5) 5142289996717420 a001 17711/370248451*45537549124^(16/17) 5142289996717420 a001 17711/370248451*14662949395604^(16/21) 5142289996717420 a001 17711/370248451*192900153618^(8/9) 5142289996717420 a001 17711/370248451*73681302247^(12/13) 5142289996717420 a001 7778742049/39603*87403803^(1/19) 5142289996717420 a001 165580141/39603*2537720636^(2/9) 5142289996717420 a001 165580141/39603*312119004989^(2/11) 5142289996717420 a001 165580141/39603*(1/2+1/2*5^(1/2))^10 5142289996717420 a001 165580141/39603*28143753123^(1/5) 5142289996717420 a001 165580141/39603*10749957122^(5/24) 5142289996717420 a001 165580141/39603*4106118243^(5/23) 5142289996717420 a001 165580141/39603*1568397607^(5/22) 5142289996717420 a001 165580141/39603*599074578^(5/21) 5142289996717420 a001 165580141/39603*228826127^(1/4) 5142289996717420 a001 2971215073/39603*87403803^(2/19) 5142289996717420 a001 52623190157903/102334155 5142289996717420 a001 1134903170/39603*87403803^(3/19) 5142289996717420 a001 433494437/39603*87403803^(4/19) 5142289996717420 a001 63245986/39603*141422324^(4/13) 5142289996717420 a001 165580141/39603*87403803^(5/19) 5142289996717420 a001 17711/141422324*10749957122^(23/24) 5142289996717420 a001 7778742049/39603*33385282^(1/18) 5142289996717420 a001 63245986/39603*2537720636^(4/15) 5142289996717420 a001 63245986/39603*45537549124^(4/17) 5142289996717420 a001 63245986/39603*817138163596^(4/19) 5142289996717420 a001 63245986/39603*14662949395604^(4/21) 5142289996717420 a001 63245986/39603*(1/2+1/2*5^(1/2))^12 5142289996717420 a001 63245986/39603*192900153618^(2/9) 5142289996717420 a001 63245986/39603*73681302247^(3/13) 5142289996717420 a001 63245986/39603*10749957122^(1/4) 5142289996717420 a001 63245986/39603*4106118243^(6/23) 5142289996717420 a001 63245986/39603*1568397607^(3/11) 5142289996717420 a001 63245986/39603*599074578^(2/7) 5142289996717420 a001 63245986/39603*228826127^(3/10) 5142289996717420 a001 1602508992/13201*33385282^(1/12) 5142289996717420 a001 63245986/39603*87403803^(6/19) 5142289996717420 a001 2971215073/39603*33385282^(1/9) 5142289996717421 a001 20100270043870/39088169 5142289996717421 a001 1134903170/39603*33385282^(1/6) 5142289996717421 a001 433494437/39603*33385282^(2/9) 5142289996717421 a001 267914296/39603*33385282^(1/4) 5142289996717421 a001 165580141/39603*33385282^(5/18) 5142289996717422 a001 17711/54018521*312119004989^(4/5) 5142289996717422 a001 17711/54018521*23725150497407^(11/16) 5142289996717422 a001 17711/54018521*73681302247^(11/13) 5142289996717422 a001 17711/54018521*10749957122^(11/12) 5142289996717422 a001 17711/54018521*4106118243^(22/23) 5142289996717422 a001 24157817/39603*17393796001^(2/7) 5142289996717422 a001 24157817/39603*14662949395604^(2/9) 5142289996717422 a001 24157817/39603*(1/2+1/2*5^(1/2))^14 5142289996717422 a001 24157817/39603*505019158607^(1/4) 5142289996717422 a001 24157817/39603*10749957122^(7/24) 5142289996717422 a001 24157817/39603*4106118243^(7/23) 5142289996717422 a001 24157817/39603*1568397607^(7/22) 5142289996717422 a001 24157817/39603*599074578^(1/3) 5142289996717422 a001 63245986/39603*33385282^(1/3) 5142289996717422 a001 24157817/39603*228826127^(7/20) 5142289996717422 a001 7778742049/39603*12752043^(1/17) 5142289996717422 a001 24157817/39603*87403803^(7/19) 5142289996717423 a001 24157817/39603*33385282^(7/18) 5142289996717424 a001 2971215073/39603*12752043^(2/17) 5142289996717425 a001 7677619973707/14930352 5142289996717425 a001 1134903170/39603*12752043^(3/17) 5142289996717427 a001 433494437/39603*12752043^(4/17) 5142289996717429 a001 165580141/39603*12752043^(5/17) 5142289996717431 a001 63245986/39603*12752043^(6/17) 5142289996717432 a001 17711/20633239*2537720636^(14/15) 5142289996717432 a001 17711/20633239*17393796001^(6/7) 5142289996717432 a001 17711/20633239*45537549124^(14/17) 5142289996717432 a001 17711/20633239*817138163596^(14/19) 5142289996717432 a001 17711/20633239*14662949395604^(2/3) 5142289996717432 a001 17711/20633239*(1/2+1/2*5^(1/2))^42 5142289996717432 a001 17711/20633239*505019158607^(3/4) 5142289996717432 a001 17711/20633239*192900153618^(7/9) 5142289996717432 a001 17711/20633239*10749957122^(7/8) 5142289996717432 a001 17711/20633239*4106118243^(21/23) 5142289996717432 a001 17711/20633239*1568397607^(21/22) 5142289996717432 a001 9227465/39603*(1/2+1/2*5^(1/2))^16 5142289996717432 a001 9227465/39603*23725150497407^(1/4) 5142289996717432 a001 9227465/39603*73681302247^(4/13) 5142289996717432 a001 9227465/39603*10749957122^(1/3) 5142289996717432 a001 9227465/39603*4106118243^(8/23) 5142289996717432 a001 9227465/39603*1568397607^(4/11) 5142289996717432 a001 9227465/39603*599074578^(8/21) 5142289996717432 a001 9227465/39603*228826127^(2/5) 5142289996717432 a001 9227465/39603*87403803^(8/19) 5142289996717433 a001 7778742049/39603*4870847^(1/16) 5142289996717434 a001 9227465/39603*33385282^(4/9) 5142289996717435 a001 24157817/39603*12752043^(7/17) 5142289996717447 a001 9227465/39603*12752043^(8/17) 5142289996717447 a001 2971215073/39603*4870847^(1/8) 5142289996717452 a001 2932589877251/5702887 5142289996717458 a001 3524578/39603*7881196^(6/11) 5142289996717461 a001 1134903170/39603*4870847^(3/16) 5142289996717474 a001 433494437/39603*4870847^(1/4) 5142289996717488 a001 165580141/39603*4870847^(5/16) 5142289996717501 a001 63245986/39603*4870847^(3/8) 5142289996717503 a001 3524578/39603*141422324^(6/13) 5142289996717503 a001 89/39604*2537720636^(8/9) 5142289996717503 a001 89/39604*312119004989^(8/11) 5142289996717503 a001 89/39604*(1/2+1/2*5^(1/2))^40 5142289996717503 a001 89/39604*23725150497407^(5/8) 5142289996717503 a001 89/39604*73681302247^(10/13) 5142289996717503 a001 89/39604*28143753123^(4/5) 5142289996717503 a001 89/39604*10749957122^(5/6) 5142289996717503 a001 89/39604*4106118243^(20/23) 5142289996717503 a001 3524578/39603*2537720636^(2/5) 5142289996717503 a001 89/39604*1568397607^(10/11) 5142289996717503 a001 3524578/39603*45537549124^(6/17) 5142289996717503 a001 3524578/39603*14662949395604^(2/7) 5142289996717503 a001 3524578/39603*(1/2+1/2*5^(1/2))^18 5142289996717503 a001 3524578/39603*192900153618^(1/3) 5142289996717503 a001 3524578/39603*10749957122^(3/8) 5142289996717503 a001 3524578/39603*4106118243^(9/23) 5142289996717503 a001 3524578/39603*1568397607^(9/22) 5142289996717503 a001 3524578/39603*599074578^(3/7) 5142289996717503 a001 89/39604*599074578^(20/21) 5142289996717503 a001 3524578/39603*228826127^(9/20) 5142289996717503 a001 3524578/39603*87403803^(9/19) 5142289996717505 a001 3524578/39603*33385282^(1/2) 5142289996717516 a001 24157817/39603*4870847^(7/16) 5142289996717519 a001 7778742049/39603*1860498^(1/15) 5142289996717519 a001 3524578/39603*12752043^(9/17) 5142289996717540 a001 9227465/39603*4870847^(1/2) 5142289996717568 a001 1602508992/13201*1860498^(1/10) 5142289996717618 a001 2971215073/39603*1860498^(2/15) 5142289996717625 a001 3524578/39603*4870847^(9/16) 5142289996717637 a001 1120149658046/2178309 5142289996717667 a001 1836311903/39603*1860498^(1/6) 5142289996717717 a001 1134903170/39603*1860498^(1/5) 5142289996717816 a001 433494437/39603*1860498^(4/15) 5142289996717866 a001 267914296/39603*1860498^(3/10) 5142289996717915 a001 165580141/39603*1860498^(1/3) 5142289996717980 a001 1346269/39603*20633239^(4/7) 5142289996717987 a001 17711/3010349*817138163596^(2/3) 5142289996717987 a001 17711/3010349*(1/2+1/2*5^(1/2))^38 5142289996717987 a001 17711/3010349*10749957122^(19/24) 5142289996717987 a001 17711/3010349*4106118243^(19/23) 5142289996717987 a001 1346269/39603*2537720636^(4/9) 5142289996717987 a001 17711/3010349*1568397607^(19/22) 5142289996717987 a001 1346269/39603*(1/2+1/2*5^(1/2))^20 5142289996717987 a001 1346269/39603*23725150497407^(5/16) 5142289996717987 a001 1346269/39603*505019158607^(5/14) 5142289996717987 a001 1346269/39603*73681302247^(5/13) 5142289996717987 a001 1346269/39603*28143753123^(2/5) 5142289996717987 a001 1346269/39603*10749957122^(5/12) 5142289996717987 a001 1346269/39603*4106118243^(10/23) 5142289996717987 a001 1346269/39603*1568397607^(5/11) 5142289996717987 a001 1346269/39603*599074578^(10/21) 5142289996717987 a001 17711/3010349*599074578^(19/21) 5142289996717987 a001 1346269/39603*228826127^(1/2) 5142289996717987 a001 17711/3010349*228826127^(19/20) 5142289996717988 a001 1346269/39603*87403803^(10/19) 5142289996717990 a001 1346269/39603*33385282^(5/9) 5142289996718006 a001 1346269/39603*12752043^(10/17) 5142289996718014 a001 63245986/39603*1860498^(2/5) 5142289996718115 a001 24157817/39603*1860498^(7/15) 5142289996718123 a001 1346269/39603*4870847^(5/8) 5142289996718147 a001 7778742049/39603*710647^(1/14) 5142289996718158 a001 4976784/13201*1860498^(1/2) 5142289996718224 a001 9227465/39603*1860498^(8/15) 5142289996718394 a001 3524578/39603*1860498^(3/5) 5142289996718875 a001 2971215073/39603*710647^(1/7) 5142289996718907 a001 427859096887/832040 5142289996718978 a001 1346269/39603*1860498^(2/3) 5142289996719602 a001 1134903170/39603*710647^(3/14) 5142289996719965 a001 17711*710647^(1/4) 5142289996720329 a001 433494437/39603*710647^(2/7) 5142289996720382 a001 196418/39603*439204^(8/9) 5142289996721056 a001 165580141/39603*710647^(5/14) 5142289996721254 a001 514229/39603*7881196^(2/3) 5142289996721309 a001 17711/1149851*141422324^(12/13) 5142289996721309 a001 17711/1149851*2537720636^(4/5) 5142289996721309 a001 17711/1149851*45537549124^(12/17) 5142289996721309 a001 17711/1149851*14662949395604^(4/7) 5142289996721309 a001 17711/1149851*(1/2+1/2*5^(1/2))^36 5142289996721309 a001 17711/1149851*505019158607^(9/14) 5142289996721309 a001 17711/1149851*192900153618^(2/3) 5142289996721309 a001 17711/1149851*73681302247^(9/13) 5142289996721309 a001 17711/1149851*10749957122^(3/4) 5142289996721309 a001 17711/1149851*4106118243^(18/23) 5142289996721309 a001 17711/1149851*1568397607^(9/11) 5142289996721309 a001 514229/39603*312119004989^(2/5) 5142289996721309 a001 514229/39603*(1/2+1/2*5^(1/2))^22 5142289996721309 a001 514229/39603*10749957122^(11/24) 5142289996721309 a001 514229/39603*4106118243^(11/23) 5142289996721309 a001 514229/39603*1568397607^(1/2) 5142289996721309 a001 514229/39603*599074578^(11/21) 5142289996721309 a001 17711/1149851*599074578^(6/7) 5142289996721309 a001 514229/39603*228826127^(11/20) 5142289996721309 a001 17711/1149851*228826127^(9/10) 5142289996721310 a001 514229/39603*87403803^(11/19) 5142289996721310 a001 17711/1149851*87403803^(18/19) 5142289996721312 a001 514229/39603*33385282^(11/18) 5142289996721330 a001 514229/39603*12752043^(11/17) 5142289996721458 a001 514229/39603*4870847^(11/16) 5142289996721784 a001 63245986/39603*710647^(3/7) 5142289996722399 a001 514229/39603*1860498^(11/15) 5142289996722513 a001 24157817/39603*710647^(1/2) 5142289996722788 a001 7778742049/39603*271443^(1/13) 5142289996723250 a001 9227465/39603*710647^(4/7) 5142289996723571 a001 832040/39603*710647^(3/4) 5142289996724048 a001 3524578/39603*710647^(9/14) 5142289996724635 a001 10182505537/930249*24476^(8/21) 5142289996725260 a001 1346269/39603*710647^(5/7) 5142289996725904 a001 53316291173/4870847*24476^(8/21) 5142289996726089 a001 139583862445/12752043*24476^(8/21) 5142289996726116 a001 182717648081/16692641*24476^(8/21) 5142289996726120 a001 956722026041/87403803*24476^(8/21) 5142289996726121 a001 2504730781961/228826127*24476^(8/21) 5142289996726121 a001 3278735159921/299537289*24476^(8/21) 5142289996726121 a001 10610209857723/969323029*24476^(8/21) 5142289996726121 a001 4052739537881/370248451*24476^(8/21) 5142289996726121 a001 387002188980/35355581*24476^(8/21) 5142289996726122 a001 591286729879/54018521*24476^(8/21) 5142289996726133 a001 7787980473/711491*24476^(8/21) 5142289996726203 a001 21566892818/1970299*24476^(8/21) 5142289996726688 a001 32951280099/3010349*24476^(8/21) 5142289996727614 a001 12571356355/24447 5142289996728157 a001 2971215073/39603*271443^(2/13) 5142289996729310 a001 514229/39603*710647^(11/14) 5142289996730010 a001 12586269025/1149851*24476^(8/21) 5142289996733526 a001 1134903170/39603*271443^(3/13) 5142289996737351 a001 12586269025/39603*103682^(1/24) 5142289996738894 a001 433494437/39603*271443^(4/13) 5142289996744017 a001 196418/39603*7881196^(8/11) 5142289996744078 a001 196418/39603*141422324^(8/13) 5142289996744078 a001 17711/439204*45537549124^(2/3) 5142289996744078 a001 17711/439204*(1/2+1/2*5^(1/2))^34 5142289996744078 a001 17711/439204*10749957122^(17/24) 5142289996744078 a001 17711/439204*4106118243^(17/23) 5142289996744078 a001 17711/439204*1568397607^(17/22) 5142289996744078 a001 196418/39603*2537720636^(8/15) 5142289996744078 a001 196418/39603*45537549124^(8/17) 5142289996744078 a001 196418/39603*14662949395604^(8/21) 5142289996744078 a001 196418/39603*(1/2+1/2*5^(1/2))^24 5142289996744078 a001 196418/39603*192900153618^(4/9) 5142289996744078 a001 196418/39603*73681302247^(6/13) 5142289996744078 a001 196418/39603*10749957122^(1/2) 5142289996744078 a001 196418/39603*4106118243^(12/23) 5142289996744078 a001 196418/39603*1568397607^(6/11) 5142289996744078 a001 196418/39603*599074578^(4/7) 5142289996744078 a001 17711/439204*599074578^(17/21) 5142289996744078 a001 196418/39603*228826127^(3/5) 5142289996744078 a001 17711/439204*228826127^(17/20) 5142289996744078 a001 196418/39603*87403803^(12/19) 5142289996744078 a001 17711/439204*87403803^(17/19) 5142289996744081 a001 196418/39603*33385282^(2/3) 5142289996744082 a001 17711/439204*33385282^(17/18) 5142289996744100 a001 196418/39603*12752043^(12/17) 5142289996744240 a001 196418/39603*4870847^(3/4) 5142289996744263 a001 165580141/39603*271443^(5/13) 5142289996745266 a001 196418/39603*1860498^(4/5) 5142289996749631 a001 63245986/39603*271443^(6/13) 5142289996752223 a001 165580141/64079*24476^(11/21) 5142289996752315 a001 39088169/39603*271443^(1/2) 5142289996752778 a001 1201881744/109801*24476^(8/21) 5142289996752805 a001 196418/39603*710647^(6/7) 5142289996755001 a001 24157817/39603*271443^(7/13) 5142289996757283 a001 7778742049/39603*103682^(1/12) 5142289996760380 a001 9227465/39603*271443^(8/13) 5142289996765820 a001 3524578/39603*271443^(9/13) 5142289996771673 a001 1346269/39603*271443^(10/13) 5142289996777214 a001 1602508992/13201*103682^(1/8) 5142289996780363 a001 514229/39603*271443^(11/13) 5142289996787294 a001 62423800958/121393 5142289996797146 a001 2971215073/39603*103682^(1/6) 5142289996808500 a001 196418/39603*271443^(12/13) 5142289996817077 a001 1836311903/39603*103682^(5/24) 5142289996829808 a001 86267571272/271443*9349^(1/19) 5142289996837009 a001 1134903170/39603*103682^(1/4) 5142289996856940 a001 17711*103682^(7/24) 5142289996866451 a001 12586269025/39603*39603^(1/22) 5142289996876871 a001 433494437/39603*103682^(1/3) 5142289996889417 a001 317811*9349^(1/19) 5142289996896803 a001 267914296/39603*103682^(3/8) 5142289996898114 a001 591286729879/1860498*9349^(1/19) 5142289996899382 a001 1548008755920/4870847*9349^(1/19) 5142289996899567 a001 4052739537881/12752043*9349^(1/19) 5142289996899594 a001 1515744265389/4769326*9349^(1/19) 5142289996899611 a001 6557470319842/20633239*9349^(1/19) 5142289996899682 a001 2504730781961/7881196*9349^(1/19) 5142289996900135 a001 75025/39603*141422324^(2/3) 5142289996900135 a001 17711/167761*(1/2+1/2*5^(1/2))^32 5142289996900135 a001 17711/167761*23725150497407^(1/2) 5142289996900135 a001 17711/167761*505019158607^(4/7) 5142289996900135 a001 17711/167761*73681302247^(8/13) 5142289996900135 a001 17711/167761*10749957122^(2/3) 5142289996900135 a001 17711/167761*4106118243^(16/23) 5142289996900135 a001 17711/167761*1568397607^(8/11) 5142289996900135 a001 75025/39603*(1/2+1/2*5^(1/2))^26 5142289996900135 a001 75025/39603*73681302247^(1/2) 5142289996900135 a001 75025/39603*10749957122^(13/24) 5142289996900135 a001 75025/39603*4106118243^(13/23) 5142289996900135 a001 75025/39603*1568397607^(13/22) 5142289996900135 a001 17711/167761*599074578^(16/21) 5142289996900135 a001 75025/39603*599074578^(13/21) 5142289996900135 a001 75025/39603*228826127^(13/20) 5142289996900135 a001 17711/167761*228826127^(4/5) 5142289996900136 a001 75025/39603*87403803^(13/19) 5142289996900136 a001 17711/167761*87403803^(16/19) 5142289996900138 a001 75025/39603*33385282^(13/18) 5142289996900139 a001 17711/167761*33385282^(8/9) 5142289996900159 a001 75025/39603*12752043^(13/17) 5142289996900165 a001 17711/167761*12752043^(16/17) 5142289996900167 a001 956722026041/3010349*9349^(1/19) 5142289996900311 a001 75025/39603*4870847^(13/16) 5142289996901423 a001 75025/39603*1860498^(13/15) 5142289996903488 a001 365435296162/1149851*9349^(1/19) 5142289996908836 a001 1836311903/167761*24476^(8/21) 5142289996909590 a001 75025/39603*710647^(13/14) 5142289996916734 a001 165580141/39603*103682^(5/12) 5142289996926257 a001 139583862445/439204*9349^(1/19) 5142289996936666 a001 34111385/13201*103682^(11/24) 5142289996956597 a001 63245986/39603*103682^(1/2) 5142289996976528 a001 39088169/39603*103682^(13/24) 5142289996996462 a001 24157817/39603*103682^(7/12) 5142289997015483 a001 7778742049/39603*39603^(1/11) 5142289997016387 a001 4976784/13201*103682^(5/8) 5142289997036335 a001 9227465/39603*103682^(2/3) 5142289997056223 a001 5702887/39603*103682^(17/24) 5142289997065078 a001 1602508992/90481*24476^(1/3) 5142289997065264 a001 2971215073/103682*24476^(2/7) 5142289997076269 a001 3524578/39603*103682^(3/4) 5142289997082314 a001 53316291173/167761*9349^(1/19) 5142289997095900 a001 726103/13201*103682^(19/24) 5142289997116616 a001 1346269/39603*103682^(5/6) 5142289997124687 a001 12586269025/710647*24476^(1/3) 5142289997133384 a001 10983760033/620166*24476^(1/3) 5142289997134494 a001 832040/39603*103682^(7/8) 5142289997134653 a001 86267571272/4870847*24476^(1/3) 5142289997134838 a001 75283811239/4250681*24476^(1/3) 5142289997134865 a001 591286729879/33385282*24476^(1/3) 5142289997134869 a001 516002918640/29134601*24476^(1/3) 5142289997134869 a001 4052739537881/228826127*24476^(1/3) 5142289997134869 a001 3536736619241/199691526*24476^(1/3) 5142289997134869 a001 6557470319842/370248451*24476^(1/3) 5142289997134870 a001 2504730781961/141422324*24476^(1/3) 5142289997134871 a001 956722026041/54018521*24476^(1/3) 5142289997134881 a001 365435296162/20633239*24476^(1/3) 5142289997134952 a001 139583862445/7881196*24476^(1/3) 5142289997135437 a001 53316291173/3010349*24476^(1/3) 5142289997138759 a001 20365011074/1149851*24476^(1/3) 5142289997159801 a001 514229/39603*103682^(11/12) 5142289997160971 a001 267914296/64079*24476^(10/21) 5142289997161527 a001 7778742049/439204*24476^(1/3) 5142289997164514 a001 1602508992/13201*39603^(3/22) 5142289997165661 a001 105937/13201*103682^(23/24) 5142289997196342 a001 23843770259/46368 5142289997313545 a001 2971215073/39603*39603^(2/11) 5142289997317584 a001 2971215073/167761*24476^(1/3) 5142289997462577 a001 1836311903/39603*39603^(5/22) 5142289997473827 a001 7778742049/271443*24476^(2/7) 5142289997474012 a001 46368*24476^(5/21) 5142289997533436 a001 20365011074/710647*24476^(2/7) 5142289997542132 a001 53316291173/1860498*24476^(2/7) 5142289997543401 a001 139583862445/4870847*24476^(2/7) 5142289997543586 a001 365435296162/12752043*24476^(2/7) 5142289997543613 a001 956722026041/33385282*24476^(2/7) 5142289997543617 a001 2504730781961/87403803*24476^(2/7) 5142289997543618 a001 6557470319842/228826127*24476^(2/7) 5142289997543618 a001 10610209857723/370248451*24476^(2/7) 5142289997543618 a001 4052739537881/141422324*24476^(2/7) 5142289997543620 a001 1548008755920/54018521*24476^(2/7) 5142289997543630 a001 591286729879/20633239*24476^(2/7) 5142289997543701 a001 225851433717/7881196*24476^(2/7) 5142289997544185 a001 86267571272/3010349*24476^(2/7) 5142289997547507 a001 32951280099/1149851*24476^(2/7) 5142289997569720 a001 433494437/64079*24476^(3/7) 5142289997570276 a001 12586269025/439204*24476^(2/7) 5142289997611608 a001 1134903170/39603*39603^(3/11) 5142289997726333 a001 4807526976/167761*24476^(2/7) 5142289997749430 a001 1346269/15127*15127^(9/10) 5142289997760640 a001 17711*39603^(7/22) 5142289997841044 a001 12586269025/39603*15127^(1/20) 5142289997882576 a001 12586269025/271443*24476^(5/21) 5142289997882761 a001 7778742049/103682*24476^(4/21) 5142289997909671 a001 433494437/39603*39603^(4/11) 5142289997942184 a001 32951280099/710647*24476^(5/21) 5142289997950881 a001 43133785636/930249*24476^(5/21) 5142289997952150 a001 225851433717/4870847*24476^(5/21) 5142289997952335 a001 591286729879/12752043*24476^(5/21) 5142289997952362 a001 774004377960/16692641*24476^(5/21) 5142289997952366 a001 4052739537881/87403803*24476^(5/21) 5142289997952367 a001 225749145909/4868641*24476^(5/21) 5142289997952367 a001 3278735159921/70711162*24476^(5/21) 5142289997952368 a001 2504730781961/54018521*24476^(5/21) 5142289997952379 a001 956722026041/20633239*24476^(5/21) 5142289997952449 a001 182717648081/3940598*24476^(5/21) 5142289997952934 a001 139583862445/3010349*24476^(5/21) 5142289997956256 a001 53316291173/1149851*24476^(5/21) 5142289997969693 a001 17711/64079*7881196^(10/11) 5142289997969758 a001 17711/64079*20633239^(6/7) 5142289997969758 a001 28657/39603*20633239^(4/5) 5142289997969768 a001 17711/64079*141422324^(10/13) 5142289997969768 a001 17711/64079*2537720636^(2/3) 5142289997969768 a001 17711/64079*45537549124^(10/17) 5142289997969768 a001 17711/64079*312119004989^(6/11) 5142289997969768 a001 17711/64079*14662949395604^(10/21) 5142289997969768 a001 17711/64079*(1/2+1/2*5^(1/2))^30 5142289997969768 a001 17711/64079*192900153618^(5/9) 5142289997969768 a001 17711/64079*28143753123^(3/5) 5142289997969768 a001 17711/64079*10749957122^(5/8) 5142289997969768 a001 17711/64079*4106118243^(15/23) 5142289997969768 a001 17711/64079*1568397607^(15/22) 5142289997969768 a001 28657/39603*17393796001^(4/7) 5142289997969768 a001 28657/39603*14662949395604^(4/9) 5142289997969768 a001 28657/39603*(1/2+1/2*5^(1/2))^28 5142289997969768 a001 28657/39603*73681302247^(7/13) 5142289997969768 a001 28657/39603*10749957122^(7/12) 5142289997969768 a001 28657/39603*4106118243^(14/23) 5142289997969768 a001 28657/39603*1568397607^(7/11) 5142289997969768 a001 17711/64079*599074578^(5/7) 5142289997969768 a001 28657/39603*599074578^(2/3) 5142289997969768 a001 28657/39603*228826127^(7/10) 5142289997969768 a001 17711/64079*228826127^(3/4) 5142289997969769 a001 28657/39603*87403803^(14/19) 5142289997969769 a001 17711/64079*87403803^(15/19) 5142289997969772 a001 28657/39603*33385282^(7/9) 5142289997969772 a001 17711/64079*33385282^(5/6) 5142289997969794 a001 28657/39603*12752043^(14/17) 5142289997969796 a001 17711/64079*12752043^(15/17) 5142289997969958 a001 28657/39603*4870847^(7/8) 5142289997969971 a001 17711/64079*4870847^(15/16) 5142289997971155 a001 28657/39603*1860498^(14/15) 5142289997978469 a001 701408733/64079*24476^(8/21) 5142289997979024 a001 10182505537/219602*24476^(5/21) 5142289998058702 a001 267914296/39603*39603^(9/22) 5142289998135082 a001 7778742049/167761*24476^(5/21) 5142289998151947 a001 20365011074/64079*9349^(1/19) 5142289998207734 a001 165580141/39603*39603^(5/11) 5142289998255225 a001 14736260448/28657 5142289998258149 r009 Re(z^3+c),c=-25/64+1/52*I,n=33 5142289998291324 a001 20365011074/271443*24476^(4/21) 5142289998291510 a001 12586269025/103682*24476^(1/7) 5142289998320425 a001 1346269/103682*64079^(22/23) 5142289998350933 a001 53316291173/710647*24476^(4/21) 5142289998356765 a001 34111385/13201*39603^(1/2) 5142289998359630 a001 139583862445/1860498*24476^(4/21) 5142289998360899 a001 365435296162/4870847*24476^(4/21) 5142289998361084 a001 956722026041/12752043*24476^(4/21) 5142289998361111 a001 2504730781961/33385282*24476^(4/21) 5142289998361115 a001 6557470319842/87403803*24476^(4/21) 5142289998361116 a001 10610209857723/141422324*24476^(4/21) 5142289998361117 a001 4052739537881/54018521*24476^(4/21) 5142289998361127 a001 140728068720/1875749*24476^(4/21) 5142289998361198 a001 591286729879/7881196*24476^(4/21) 5142289998361683 a001 225851433717/3010349*24476^(4/21) 5142289998365005 a001 86267571272/1149851*24476^(4/21) 5142289998374091 a001 46347/2206*64079^(21/23) 5142289998387218 a001 1134903170/64079*24476^(1/3) 5142289998387773 a001 32951280099/439204*24476^(4/21) 5142289998428840 a001 1762289/51841*64079^(20/23) 5142289998483176 a001 5702887/103682*64079^(19/23) 5142289998505797 a001 63245986/39603*39603^(6/11) 5142289998537669 a001 9227465/103682*64079^(18/23) 5142289998543831 a001 75025*24476^(4/21) 5142289998592102 a001 7465176/51841*64079^(17/23) 5142289998604180 a001 14736260449/28657 5142289998646559 a001 24157817/103682*64079^(16/23) 5142289998654827 a001 39088169/39603*39603^(13/22) 5142289998700073 a001 121393*24476^(1/7) 5142289998700258 a001 10182505537/51841*24476^(2/21) 5142289998701006 a001 39088169/103682*64079^(15/23) 5142289998728504 a001 3524578/271443*64079^(22/23) 5142289998743762 a001 2/28657*(1/2+1/2*5^(1/2))^52 5142289998755457 a001 31622993/51841*64079^(14/23) 5142289998759682 a001 86267571272/710647*24476^(1/7) 5142289998768379 a001 75283811239/620166*24476^(1/7) 5142289998769647 a001 591286729879/4870847*24476^(1/7) 5142289998769832 a001 516002918640/4250681*24476^(1/7) 5142289998769859 a001 4052739537881/33385282*24476^(1/7) 5142289998769863 a001 3536736619241/29134601*24476^(1/7) 5142289998769866 a001 6557470319842/54018521*24476^(1/7) 5142289998769876 a001 2504730781961/20633239*24476^(1/7) 5142289998769947 a001 956722026041/7881196*24476^(1/7) 5142289998770432 a001 365435296162/3010349*24476^(1/7) 5142289998773753 a001 139583862445/1149851*24476^(1/7) 5142289998782839 a001 5702887/271443*64079^(21/23) 5142289998788042 a001 9227465/710647*64079^(22/23) 5142289998795966 a001 28657*24476^(2/7) 5142289998796522 a001 53316291173/439204*24476^(1/7) 5142289998796728 a001 24157817/1860498*64079^(22/23) 5142289998797995 a001 63245986/4870847*64079^(22/23) 5142289998798180 a001 165580141/12752043*64079^(22/23) 5142289998798207 a001 433494437/33385282*64079^(22/23) 5142289998798211 a001 1134903170/87403803*64079^(22/23) 5142289998798212 a001 2971215073/228826127*64079^(22/23) 5142289998798212 a001 7778742049/599074578*64079^(22/23) 5142289998798212 a001 20365011074/1568397607*64079^(22/23) 5142289998798212 a001 53316291173/4106118243*64079^(22/23) 5142289998798212 a001 139583862445/10749957122*64079^(22/23) 5142289998798212 a001 365435296162/28143753123*64079^(22/23) 5142289998798212 a001 956722026041/73681302247*64079^(22/23) 5142289998798212 a001 2504730781961/192900153618*64079^(22/23) 5142289998798212 a001 10610209857723/817138163596*64079^(22/23) 5142289998798212 a001 4052739537881/312119004989*64079^(22/23) 5142289998798212 a001 1548008755920/119218851371*64079^(22/23) 5142289998798212 a001 591286729879/45537549124*64079^(22/23) 5142289998798212 a001 7787980473/599786069*64079^(22/23) 5142289998798212 a001 86267571272/6643838879*64079^(22/23) 5142289998798212 a001 32951280099/2537720636*64079^(22/23) 5142289998798212 a001 12586269025/969323029*64079^(22/23) 5142289998798212 a001 4807526976/370248451*64079^(22/23) 5142289998798212 a001 1836311903/141422324*64079^(22/23) 5142289998798214 a001 701408733/54018521*64079^(22/23) 5142289998798224 a001 9238424/711491*64079^(22/23) 5142289998798295 a001 102334155/7881196*64079^(22/23) 5142289998798779 a001 39088169/3010349*64079^(22/23) 5142289998802097 a001 14930352/1149851*64079^(22/23) 5142289998803861 a001 24157817/39603*39603^(7/11) 5142289998809907 a001 102334155/103682*64079^(13/23) 5142289998824838 a001 5702887/439204*64079^(22/23) 5142289998837333 a001 9227465/271443*64079^(20/23) 5142289998842475 a001 14930352/710647*64079^(21/23) 5142289998851176 a001 39088169/1860498*64079^(21/23) 5142289998852445 a001 102334155/4870847*64079^(21/23) 5142289998852630 a001 267914296/12752043*64079^(21/23) 5142289998852657 a001 701408733/33385282*64079^(21/23) 5142289998852661 a001 1836311903/87403803*64079^(21/23) 5142289998852662 a001 102287808/4868641*64079^(21/23) 5142289998852662 a001 12586269025/599074578*64079^(21/23) 5142289998852662 a001 32951280099/1568397607*64079^(21/23) 5142289998852662 a001 86267571272/4106118243*64079^(21/23) 5142289998852662 a001 225851433717/10749957122*64079^(21/23) 5142289998852662 a001 591286729879/28143753123*64079^(21/23) 5142289998852662 a001 1548008755920/73681302247*64079^(21/23) 5142289998852662 a001 4052739537881/192900153618*64079^(21/23) 5142289998852662 a001 225749145909/10745088481*64079^(21/23) 5142289998852662 a001 6557470319842/312119004989*64079^(21/23) 5142289998852662 a001 2504730781961/119218851371*64079^(21/23) 5142289998852662 a001 956722026041/45537549124*64079^(21/23) 5142289998852662 a001 365435296162/17393796001*64079^(21/23) 5142289998852662 a001 139583862445/6643838879*64079^(21/23) 5142289998852662 a001 53316291173/2537720636*64079^(21/23) 5142289998852662 a001 20365011074/969323029*64079^(21/23) 5142289998852662 a001 7778742049/370248451*64079^(21/23) 5142289998852662 a001 2971215073/141422324*64079^(21/23) 5142289998852664 a001 1134903170/54018521*64079^(21/23) 5142289998852674 a001 433494437/20633239*64079^(21/23) 5142289998852745 a001 165580141/7881196*64079^(21/23) 5142289998853229 a001 63245986/3010349*64079^(21/23) 5142289998856553 a001 24157817/1149851*64079^(21/23) 5142289998864357 a001 165580141/103682*64079^(12/23) 5142289998871001 a001 832040/15127*15127^(19/20) 5142289998879332 a001 9227465/439204*64079^(21/23) 5142289998891766 a001 4976784/90481*64079^(19/23) 5142289998896931 a001 24157817/710647*64079^(20/23) 5142289998905626 a001 31622993/930249*64079^(20/23) 5142289998906895 a001 165580141/4870847*64079^(20/23) 5142289998907080 a001 433494437/12752043*64079^(20/23) 5142289998907107 a001 567451585/16692641*64079^(20/23) 5142289998907111 a001 2971215073/87403803*64079^(20/23) 5142289998907112 a001 7778742049/228826127*64079^(20/23) 5142289998907112 a001 10182505537/299537289*64079^(20/23) 5142289998907112 a001 53316291173/1568397607*64079^(20/23) 5142289998907112 a001 139583862445/4106118243*64079^(20/23) 5142289998907112 a001 182717648081/5374978561*64079^(20/23) 5142289998907112 a001 956722026041/28143753123*64079^(20/23) 5142289998907112 a001 2504730781961/73681302247*64079^(20/23) 5142289998907112 a001 3278735159921/96450076809*64079^(20/23) 5142289998907112 a001 10610209857723/312119004989*64079^(20/23) 5142289998907112 a001 4052739537881/119218851371*64079^(20/23) 5142289998907112 a001 387002188980/11384387281*64079^(20/23) 5142289998907112 a001 591286729879/17393796001*64079^(20/23) 5142289998907112 a001 225851433717/6643838879*64079^(20/23) 5142289998907112 a001 1135099622/33391061*64079^(20/23) 5142289998907112 a001 32951280099/969323029*64079^(20/23) 5142289998907112 a001 12586269025/370248451*64079^(20/23) 5142289998907112 a001 1201881744/35355581*64079^(20/23) 5142289998907113 a001 1836311903/54018521*64079^(20/23) 5142289998907124 a001 701408733/20633239*64079^(20/23) 5142289998907194 a001 66978574/1970299*64079^(20/23) 5142289998907679 a001 102334155/3010349*64079^(20/23) 5142289998911000 a001 39088169/1149851*64079^(20/23) 5142289998918807 a001 133957148/51841*64079^(11/23) 5142289998933765 a001 196452/5779*64079^(20/23) 5142289998946222 a001 24157817/271443*64079^(18/23) 5142289998951379 a001 39088169/710647*64079^(19/23) 5142289998952579 a001 20365011074/167761*24476^(1/7) 5142289998952886 a001 4976784/13201*39603^(15/22) 5142289998953135 a001 14736260450/28657 5142289998960076 a001 831985/15126*64079^(19/23) 5142289998961345 a001 267914296/4870847*64079^(19/23) 5142289998961530 a001 233802911/4250681*64079^(19/23) 5142289998961557 a001 1836311903/33385282*64079^(19/23) 5142289998961561 a001 1602508992/29134601*64079^(19/23) 5142289998961562 a001 12586269025/228826127*64079^(19/23) 5142289998961562 a001 10983760033/199691526*64079^(19/23) 5142289998961562 a001 86267571272/1568397607*64079^(19/23) 5142289998961562 a001 75283811239/1368706081*64079^(19/23) 5142289998961562 a001 591286729879/10749957122*64079^(19/23) 5142289998961562 a001 12585437040/228811001*64079^(19/23) 5142289998961562 a001 4052739537881/73681302247*64079^(19/23) 5142289998961562 a001 3536736619241/64300051206*64079^(19/23) 5142289998961562 a001 6557470319842/119218851371*64079^(19/23) 5142289998961562 a001 2504730781961/45537549124*64079^(19/23) 5142289998961562 a001 956722026041/17393796001*64079^(19/23) 5142289998961562 a001 365435296162/6643838879*64079^(19/23) 5142289998961562 a001 139583862445/2537720636*64079^(19/23) 5142289998961562 a001 53316291173/969323029*64079^(19/23) 5142289998961562 a001 20365011074/370248451*64079^(19/23) 5142289998961562 a001 7778742049/141422324*64079^(19/23) 5142289998961563 a001 2971215073/54018521*64079^(19/23) 5142289998961574 a001 1134903170/20633239*64079^(19/23) 5142289998961644 a001 433494437/7881196*64079^(19/23) 5142289998962129 a001 165580141/3010349*64079^(19/23) 5142289998964668 a001 7778742049/39603*15127^(1/10) 5142289998965451 a001 63245986/1149851*64079^(19/23) 5142289998973256 a001 433494437/103682*64079^(10/23) 5142289998980710 a001 2178309/167761*64079^(22/23) 5142289998988221 a001 24157817/439204*64079^(19/23) 5142289999000670 a001 39088169/271443*64079^(17/23) 5142289999005829 a001 63245986/710647*64079^(18/23) 5142289999014526 a001 165580141/1860498*64079^(18/23) 5142289999015795 a001 433494437/4870847*64079^(18/23) 5142289999015980 a001 1134903170/12752043*64079^(18/23) 5142289999016007 a001 2971215073/33385282*64079^(18/23) 5142289999016011 a001 7778742049/87403803*64079^(18/23) 5142289999016011 a001 20365011074/228826127*64079^(18/23) 5142289999016012 a001 53316291173/599074578*64079^(18/23) 5142289999016012 a001 139583862445/1568397607*64079^(18/23) 5142289999016012 a001 365435296162/4106118243*64079^(18/23) 5142289999016012 a001 956722026041/10749957122*64079^(18/23) 5142289999016012 a001 2504730781961/28143753123*64079^(18/23) 5142289999016012 a001 6557470319842/73681302247*64079^(18/23) 5142289999016012 a001 10610209857723/119218851371*64079^(18/23) 5142289999016012 a001 4052739537881/45537549124*64079^(18/23) 5142289999016012 a001 1548008755920/17393796001*64079^(18/23) 5142289999016012 a001 591286729879/6643838879*64079^(18/23) 5142289999016012 a001 225851433717/2537720636*64079^(18/23) 5142289999016012 a001 86267571272/969323029*64079^(18/23) 5142289999016012 a001 32951280099/370248451*64079^(18/23) 5142289999016012 a001 12586269025/141422324*64079^(18/23) 5142289999016013 a001 4807526976/54018521*64079^(18/23) 5142289999016024 a001 1836311903/20633239*64079^(18/23) 5142289999016094 a001 3524667/39604*64079^(18/23) 5142289999016579 a001 267914296/3010349*64079^(18/23) 5142289999019901 a001 102334155/1149851*64079^(18/23) 5142289999027706 a001 701408733/103682*64079^(9/23) 5142289999035460 a001 3524578/167761*64079^(21/23) 5142289999039401 a001 23184/51841*(1/2+1/2*5^(1/2))^29 5142289999039401 a001 23184/51841*1322157322203^(1/2) 5142289999042669 a001 39088169/439204*64079^(18/23) 5142289999055121 a001 63245986/271443*64079^(16/23) 5142289999060279 a001 14619165/101521*64079^(17/23) 5142289999068976 a001 133957148/930249*64079^(17/23) 5142289999070245 a001 701408733/4870847*64079^(17/23) 5142289999070430 a001 1836311903/12752043*64079^(17/23) 5142289999070457 a001 14930208/103681*64079^(17/23) 5142289999070461 a001 12586269025/87403803*64079^(17/23) 5142289999070461 a001 32951280099/228826127*64079^(17/23) 5142289999070461 a001 43133785636/299537289*64079^(17/23) 5142289999070461 a001 32264490531/224056801*64079^(17/23) 5142289999070461 a001 591286729879/4106118243*64079^(17/23) 5142289999070461 a001 774004377960/5374978561*64079^(17/23) 5142289999070461 a001 4052739537881/28143753123*64079^(17/23) 5142289999070461 a001 1515744265389/10525900321*64079^(17/23) 5142289999070461 a001 3278735159921/22768774562*64079^(17/23) 5142289999070461 a001 2504730781961/17393796001*64079^(17/23) 5142289999070461 a001 956722026041/6643838879*64079^(17/23) 5142289999070461 a001 182717648081/1268860318*64079^(17/23) 5142289999070461 a001 139583862445/969323029*64079^(17/23) 5142289999070462 a001 53316291173/370248451*64079^(17/23) 5142289999070462 a001 10182505537/70711162*64079^(17/23) 5142289999070463 a001 7778742049/54018521*64079^(17/23) 5142289999070474 a001 2971215073/20633239*64079^(17/23) 5142289999070544 a001 567451585/3940598*64079^(17/23) 5142289999071029 a001 433494437/3010349*64079^(17/23) 5142289999074351 a001 165580141/1149851*64079^(17/23) 5142289999082156 a001 567451585/51841*64079^(8/23) 5142289999089795 a001 5702887/167761*64079^(20/23) 5142289999097120 a001 31622993/219602*64079^(17/23) 5142289999101934 a001 9227465/39603*39603^(8/11) 5142289999108822 a001 53316291173/271443*24476^(2/21) 5142289999109007 a001 32951280099/103682*24476^(1/21) 5142289999109570 a001 34111385/90481*64079^(15/23) 5142289999114729 a001 165580141/710647*64079^(16/23) 5142289999123426 a001 433494437/1860498*64079^(16/23) 5142289999124695 a001 1134903170/4870847*64079^(16/23) 5142289999124880 a001 2971215073/12752043*64079^(16/23) 5142289999124907 a001 7778742049/33385282*64079^(16/23) 5142289999124911 a001 20365011074/87403803*64079^(16/23) 5142289999124911 a001 53316291173/228826127*64079^(16/23) 5142289999124911 a001 139583862445/599074578*64079^(16/23) 5142289999124911 a001 365435296162/1568397607*64079^(16/23) 5142289999124911 a001 956722026041/4106118243*64079^(16/23) 5142289999124911 a001 2504730781961/10749957122*64079^(16/23) 5142289999124911 a001 6557470319842/28143753123*64079^(16/23) 5142289999124911 a001 10610209857723/45537549124*64079^(16/23) 5142289999124911 a001 4052739537881/17393796001*64079^(16/23) 5142289999124911 a001 1548008755920/6643838879*64079^(16/23) 5142289999124911 a001 591286729879/2537720636*64079^(16/23) 5142289999124911 a001 225851433717/969323029*64079^(16/23) 5142289999124911 a001 86267571272/370248451*64079^(16/23) 5142289999124912 a001 63246219/271444*64079^(16/23) 5142289999124913 a001 12586269025/54018521*64079^(16/23) 5142289999124923 a001 4807526976/20633239*64079^(16/23) 5142289999124994 a001 1836311903/7881196*64079^(16/23) 5142289999125479 a001 701408733/3010349*64079^(16/23) 5142289999128801 a001 267914296/1149851*64079^(16/23) 5142289999136606 a001 1836311903/103682*64079^(7/23) 5142289999144289 a001 9227465/167761*64079^(19/23) 5142289999151569 a001 102334155/439204*64079^(16/23) 5142289999164020 a001 165580141/271443*64079^(14/23) 5142289999168430 a001 139583862445/710647*24476^(2/21) 5142289999169179 a001 267914296/710647*64079^(15/23) 5142289999177127 a001 182717648081/930249*24476^(2/21) 5142289999177876 a001 233802911/620166*64079^(15/23) 5142289999178396 a001 956722026041/4870847*24476^(2/21) 5142289999178581 a001 2504730781961/12752043*24476^(2/21) 5142289999178608 a001 3278735159921/16692641*24476^(2/21) 5142289999178615 a001 10610209857723/54018521*24476^(2/21) 5142289999178625 a001 4052739537881/20633239*24476^(2/21) 5142289999178696 a001 387002188980/1970299*24476^(2/21) 5142289999179145 a001 1836311903/4870847*64079^(15/23) 5142289999179180 a001 591286729879/3010349*24476^(2/21) 5142289999179330 a001 1602508992/4250681*64079^(15/23) 5142289999179357 a001 12586269025/33385282*64079^(15/23) 5142289999179361 a001 10983760033/29134601*64079^(15/23) 5142289999179361 a001 86267571272/228826127*64079^(15/23) 5142289999179361 a001 267913919/710646*64079^(15/23) 5142289999179361 a001 591286729879/1568397607*64079^(15/23) 5142289999179361 a001 516002918640/1368706081*64079^(15/23) 5142289999179361 a001 4052739537881/10749957122*64079^(15/23) 5142289999179361 a001 3536736619241/9381251041*64079^(15/23) 5142289999179361 a001 6557470319842/17393796001*64079^(15/23) 5142289999179361 a001 2504730781961/6643838879*64079^(15/23) 5142289999179361 a001 956722026041/2537720636*64079^(15/23) 5142289999179361 a001 365435296162/969323029*64079^(15/23) 5142289999179361 a001 139583862445/370248451*64079^(15/23) 5142289999179362 a001 53316291173/141422324*64079^(15/23) 5142289999179363 a001 20365011074/54018521*64079^(15/23) 5142289999179373 a001 7778742049/20633239*64079^(15/23) 5142289999179444 a001 2971215073/7881196*64079^(15/23) 5142289999179929 a001 1134903170/3010349*64079^(15/23) 5142289999182502 a001 225851433717/1149851*24476^(2/21) 5142289999183251 a001 433494437/1149851*64079^(15/23) 5142289999191056 a001 2971215073/103682*64079^(6/23) 5142289999198722 a001 14930352/167761*64079^(18/23) 5142289999204715 a001 2971215073/64079*24476^(5/21) 5142289999205271 a001 196418*24476^(2/21) 5142289999206019 a001 165580141/439204*64079^(15/23) 5142289999218470 a001 267914296/271443*64079^(13/23) 5142289999223629 a001 433494437/710647*64079^(14/23) 5142289999232326 a001 567451585/930249*64079^(14/23) 5142289999233595 a001 2971215073/4870847*64079^(14/23) 5142289999233780 a001 7778742049/12752043*64079^(14/23) 5142289999233807 a001 10182505537/16692641*64079^(14/23) 5142289999233811 a001 53316291173/87403803*64079^(14/23) 5142289999233811 a001 139583862445/228826127*64079^(14/23) 5142289999233811 a001 182717648081/299537289*64079^(14/23) 5142289999233811 a001 956722026041/1568397607*64079^(14/23) 5142289999233811 a001 2504730781961/4106118243*64079^(14/23) 5142289999233811 a001 3278735159921/5374978561*64079^(14/23) 5142289999233811 a001 10610209857723/17393796001*64079^(14/23) 5142289999233811 a001 4052739537881/6643838879*64079^(14/23) 5142289999233811 a001 1134903780/1860499*64079^(14/23) 5142289999233811 a001 591286729879/969323029*64079^(14/23) 5142289999233811 a001 225851433717/370248451*64079^(14/23) 5142289999233812 a001 21566892818/35355581*64079^(14/23) 5142289999233813 a001 32951280099/54018521*64079^(14/23) 5142289999233823 a001 1144206275/1875749*64079^(14/23) 5142289999233894 a001 1201881744/1970299*64079^(14/23) 5142289999234379 a001 1836311903/3010349*64079^(14/23) 5142289999237701 a001 701408733/1149851*64079^(14/23) 5142289999245506 a001 46368*64079^(5/23) 5142289999250922 a001 5702887/39603*39603^(17/22) 5142289999253178 a001 24157817/167761*64079^(17/23) 5142289999260469 a001 66978574/109801*64079^(14/23) 5142289999272920 a001 433494437/271443*64079^(12/23) 5142289999278079 a001 701408733/710647*64079^(13/23) 5142289999286776 a001 1836311903/1860498*64079^(13/23) 5142289999288044 a001 4807526976/4870847*64079^(13/23) 5142289999288230 a001 12586269025/12752043*64079^(13/23) 5142289999288257 a001 32951280099/33385282*64079^(13/23) 5142289999288260 a001 86267571272/87403803*64079^(13/23) 5142289999288261 a001 225851433717/228826127*64079^(13/23) 5142289999288261 a001 591286729879/599074578*64079^(13/23) 5142289999288261 a001 1548008755920/1568397607*64079^(13/23) 5142289999288261 a001 4052739537881/4106118243*64079^(13/23) 5142289999288261 a001 4807525989/4870846*64079^(13/23) 5142289999288261 a001 6557470319842/6643838879*64079^(13/23) 5142289999288261 a001 2504730781961/2537720636*64079^(13/23) 5142289999288261 a001 956722026041/969323029*64079^(13/23) 5142289999288261 a001 365435296162/370248451*64079^(13/23) 5142289999288261 a001 139583862445/141422324*64079^(13/23) 5142289999288263 a001 53316291173/54018521*64079^(13/23) 5142289999288273 a001 20365011074/20633239*64079^(13/23) 5142289999288344 a001 7778742049/7881196*64079^(13/23) 5142289999288829 a001 2971215073/3010349*64079^(13/23) 5142289999290300 a001 2971215073/24476*9349^(3/19) 5142289999292150 a001 1134903170/1149851*64079^(13/23) 5142289999299956 a001 7778742049/103682*64079^(4/23) 5142289999307626 a001 39088169/167761*64079^(16/23) 5142289999314919 a001 433494437/439204*64079^(13/23) 5142289999327370 a001 233802911/90481*64079^(11/23) 5142289999332529 a001 1134903170/710647*64079^(12/23) 5142289999333555 a001 7716006144/15005 5142289999341226 a001 2971215073/1860498*64079^(12/23) 5142289999342494 a001 7778742049/4870847*64079^(12/23) 5142289999342679 a001 20365011074/12752043*64079^(12/23) 5142289999342706 a001 53316291173/33385282*64079^(12/23) 5142289999342710 a001 139583862445/87403803*64079^(12/23) 5142289999342711 a001 365435296162/228826127*64079^(12/23) 5142289999342711 a001 956722026041/599074578*64079^(12/23) 5142289999342711 a001 2504730781961/1568397607*64079^(12/23) 5142289999342711 a001 6557470319842/4106118243*64079^(12/23) 5142289999342711 a001 10610209857723/6643838879*64079^(12/23) 5142289999342711 a001 4052739537881/2537720636*64079^(12/23) 5142289999342711 a001 1548008755920/969323029*64079^(12/23) 5142289999342711 a001 591286729879/370248451*64079^(12/23) 5142289999342711 a001 225851433717/141422324*64079^(12/23) 5142289999342713 a001 86267571272/54018521*64079^(12/23) 5142289999342723 a001 32951280099/20633239*64079^(12/23) 5142289999342794 a001 12586269025/7881196*64079^(12/23) 5142289999343279 a001 4807526976/3010349*64079^(12/23) 5142289999346600 a001 1836311903/1149851*64079^(12/23) 5142289999354406 a001 12586269025/103682*64079^(3/23) 5142289999361328 a001 32951280099/167761*24476^(2/21) 5142289999362077 a001 63245986/167761*64079^(15/23) 5142289999369369 a001 701408733/439204*64079^(12/23) 5142289999371666 a001 1762289/51841*167761^(4/5) 5142289999381820 a001 1134903170/271443*64079^(10/23) 5142289999386979 a001 1836311903/710647*64079^(11/23) 5142289999395675 a001 267084832/103361*64079^(11/23) 5142289999396944 a001 12586269025/4870847*64079^(11/23) 5142289999397129 a001 10983760033/4250681*64079^(11/23) 5142289999397156 a001 43133785636/16692641*64079^(11/23) 5142289999397160 a001 75283811239/29134601*64079^(11/23) 5142289999397161 a001 591286729879/228826127*64079^(11/23) 5142289999397161 a001 86000486440/33281921*64079^(11/23) 5142289999397161 a001 4052739537881/1568397607*64079^(11/23) 5142289999397161 a001 3536736619241/1368706081*64079^(11/23) 5142289999397161 a001 3278735159921/1268860318*64079^(11/23) 5142289999397161 a001 2504730781961/969323029*64079^(11/23) 5142289999397161 a001 956722026041/370248451*64079^(11/23) 5142289999397161 a001 182717648081/70711162*64079^(11/23) 5142289999397163 a001 139583862445/54018521*64079^(11/23) 5142289999397173 a001 53316291173/20633239*64079^(11/23) 5142289999397244 a001 10182505537/3940598*64079^(11/23) 5142289999397728 a001 7778742049/3010349*64079^(11/23) 5142289999400067 a001 3524578/39603*39603^(9/11) 5142289999401050 a001 2971215073/1149851*64079^(11/23) 5142289999408126 a001 39088169/103682*167761^(3/5) 5142289999408856 a001 10182505537/51841*64079^(2/23) 5142289999416526 a001 9303105/15251*64079^(14/23) 5142289999423819 a001 567451585/219602*64079^(11/23) 5142289999436270 a001 1836311903/271443*64079^(9/23) 5142289999441429 a001 2971215073/710647*64079^(10/23) 5142289999444670 a001 433494437/103682*167761^(2/5) 5142289999447897 a001 121393/103682*7881196^(9/11) 5142289999447965 a001 121393/103682*141422324^(9/13) 5142289999447965 a001 121393/103682*2537720636^(3/5) 5142289999447965 a001 15456/90481*(1/2+1/2*5^(1/2))^31 5142289999447965 a001 15456/90481*9062201101803^(1/2) 5142289999447965 a001 121393/103682*45537549124^(9/17) 5142289999447965 a001 121393/103682*817138163596^(9/19) 5142289999447965 a001 121393/103682*14662949395604^(3/7) 5142289999447965 a001 121393/103682*(1/2+1/2*5^(1/2))^27 5142289999447965 a001 121393/103682*192900153618^(1/2) 5142289999447965 a001 121393/103682*10749957122^(9/16) 5142289999447965 a001 121393/103682*599074578^(9/14) 5142289999447968 a001 121393/103682*33385282^(3/4) 5142289999449302 a001 121393/103682*1860498^(9/10) 5142289999450125 a001 7778742049/1860498*64079^(10/23) 5142289999451394 a001 20365011074/4870847*64079^(10/23) 5142289999451579 a001 53316291173/12752043*64079^(10/23) 5142289999451606 a001 139583862445/33385282*64079^(10/23) 5142289999451610 a001 365435296162/87403803*64079^(10/23) 5142289999451611 a001 956722026041/228826127*64079^(10/23) 5142289999451611 a001 2504730781961/599074578*64079^(10/23) 5142289999451611 a001 6557470319842/1568397607*64079^(10/23) 5142289999451611 a001 10610209857723/2537720636*64079^(10/23) 5142289999451611 a001 4052739537881/969323029*64079^(10/23) 5142289999451611 a001 1548008755920/370248451*64079^(10/23) 5142289999451611 a001 591286729879/141422324*64079^(10/23) 5142289999451613 a001 225851433717/54018521*64079^(10/23) 5142289999451623 a001 86267571272/20633239*64079^(10/23) 5142289999451694 a001 32951280099/7881196*64079^(10/23) 5142289999452178 a001 12586269025/3010349*64079^(10/23) 5142289999455500 a001 4807526976/1149851*64079^(10/23) 5142289999463306 a001 32951280099/103682*64079^(1/23) 5142289999470976 a001 165580141/167761*64079^(13/23) 5142289999478269 a001 1836311903/439204*64079^(10/23) 5142289999481213 a001 46368*167761^(1/5) 5142289999490720 a001 2971215073/271443*64079^(8/23) 5142289999490881 a001 50501915856/98209 5142289999495879 a001 686789568/101521*64079^(9/23) 5142289999496805 a001 46347/2206*439204^(7/9) 5142289999497949 a001 514229/103682*439204^(8/9) 5142289999499996 a001 9227465/103682*439204^(2/3) 5142289999502945 a001 39088169/103682*439204^(5/9) 5142289999504575 a001 12586269025/1860498*64079^(9/23) 5142289999505844 a001 32951280099/4870847*64079^(9/23) 5142289999505908 a001 165580141/103682*439204^(4/9) 5142289999506029 a001 86267571272/12752043*64079^(9/23) 5142289999506056 a001 32264490531/4769326*64079^(9/23) 5142289999506060 a001 591286729879/87403803*64079^(9/23) 5142289999506061 a001 1548008755920/228826127*64079^(9/23) 5142289999506061 a001 4052739537881/599074578*64079^(9/23) 5142289999506061 a001 1515744265389/224056801*64079^(9/23) 5142289999506061 a001 6557470319842/969323029*64079^(9/23) 5142289999506061 a001 2504730781961/370248451*64079^(9/23) 5142289999506061 a001 956722026041/141422324*64079^(9/23) 5142289999506063 a001 365435296162/54018521*64079^(9/23) 5142289999506073 a001 139583862445/20633239*64079^(9/23) 5142289999506144 a001 53316291173/7881196*64079^(9/23) 5142289999506628 a001 20365011074/3010349*64079^(9/23) 5142289999507565 a001 317811/103682*20633239^(5/7) 5142289999507573 a001 6624/101521*141422324^(11/13) 5142289999507573 a001 6624/101521*2537720636^(11/15) 5142289999507573 a001 317811/103682*2537720636^(5/9) 5142289999507573 a001 6624/101521*45537549124^(11/17) 5142289999507573 a001 6624/101521*312119004989^(3/5) 5142289999507573 a001 6624/101521*817138163596^(11/19) 5142289999507573 a001 6624/101521*14662949395604^(11/21) 5142289999507573 a001 6624/101521*(1/2+1/2*5^(1/2))^33 5142289999507573 a001 6624/101521*192900153618^(11/18) 5142289999507573 a001 6624/101521*10749957122^(11/16) 5142289999507573 a001 317811/103682*312119004989^(5/11) 5142289999507573 a001 317811/103682*(1/2+1/2*5^(1/2))^25 5142289999507573 a001 317811/103682*3461452808002^(5/12) 5142289999507573 a001 317811/103682*28143753123^(1/2) 5142289999507573 a001 6624/101521*1568397607^(3/4) 5142289999507573 a001 6624/101521*599074578^(11/14) 5142289999507573 a001 317811/103682*228826127^(5/8) 5142289999507578 a001 6624/101521*33385282^(11/12) 5142289999508811 a001 317811/103682*1860498^(5/6) 5142289999508870 a001 701408733/103682*439204^(1/3) 5142289999509950 a001 7778742049/1149851*64079^(9/23) 5142289999511832 a001 2971215073/103682*439204^(2/9) 5142289999513835 a001 264431464416/514229 5142289999514794 a001 12586269025/103682*439204^(1/9) 5142289999516270 a001 2576/103361*2537720636^(7/9) 5142289999516270 a001 2576/103361*17393796001^(5/7) 5142289999516270 a001 2576/103361*312119004989^(7/11) 5142289999516270 a001 2576/103361*14662949395604^(5/9) 5142289999516270 a001 2576/103361*(1/2+1/2*5^(1/2))^35 5142289999516270 a001 2576/103361*505019158607^(5/8) 5142289999516270 a001 2576/103361*28143753123^(7/10) 5142289999516270 a001 416020/51841*(1/2+1/2*5^(1/2))^23 5142289999516270 a001 416020/51841*4106118243^(1/2) 5142289999516270 a001 2576/103361*599074578^(5/6) 5142289999516270 a001 2576/103361*228826127^(7/8) 5142289999517184 a001 692290561536/1346269 5142289999517486 a001 46347/2206*7881196^(7/11) 5142289999517532 a001 46347/2206*20633239^(3/5) 5142289999517539 a001 46347/2206*141422324^(7/13) 5142289999517539 a001 46347/2206*2537720636^(7/15) 5142289999517539 a001 46368/4870847*(1/2+1/2*5^(1/2))^37 5142289999517539 a001 46347/2206*17393796001^(3/7) 5142289999517539 a001 46347/2206*45537549124^(7/17) 5142289999517539 a001 46347/2206*14662949395604^(1/3) 5142289999517539 a001 46347/2206*(1/2+1/2*5^(1/2))^21 5142289999517539 a001 46347/2206*192900153618^(7/18) 5142289999517539 a001 46347/2206*10749957122^(7/16) 5142289999517539 a001 46347/2206*599074578^(1/2) 5142289999517542 a001 46347/2206*33385282^(7/12) 5142289999517571 a001 86267571272/271443*24476^(1/21) 5142289999517672 a001 906220110096/1762289 5142289999517717 a001 39088169/103682*7881196^(5/11) 5142289999517723 a001 9227465/103682*7881196^(6/11) 5142289999517724 a001 15456/4250681*2537720636^(13/15) 5142289999517724 a001 15456/4250681*45537549124^(13/17) 5142289999517724 a001 15456/4250681*14662949395604^(13/21) 5142289999517724 a001 15456/4250681*(1/2+1/2*5^(1/2))^39 5142289999517724 a001 15456/4250681*192900153618^(13/18) 5142289999517724 a001 15456/4250681*73681302247^(3/4) 5142289999517724 a001 15456/4250681*10749957122^(13/16) 5142289999517724 a001 5702887/103682*817138163596^(1/3) 5142289999517724 a001 5702887/103682*(1/2+1/2*5^(1/2))^19 5142289999517724 a001 15456/4250681*599074578^(13/14) 5142289999517724 a001 5702887/103682*87403803^(1/2) 5142289999517726 a001 165580141/103682*7881196^(4/11) 5142289999517728 a001 133957148/51841*7881196^(1/3) 5142289999517733 a001 701408733/103682*7881196^(3/11) 5142289999517741 a001 2971215073/103682*7881196^(2/11) 5142289999517744 a001 949006019808/1845493 5142289999517748 a001 12586269025/103682*7881196^(1/11) 5142289999517750 a001 39088169/103682*20633239^(3/7) 5142289999517751 a001 144/103681*(1/2+1/2*5^(1/2))^41 5142289999517751 a001 7465176/51841*45537549124^(1/3) 5142289999517751 a001 7465176/51841*(1/2+1/2*5^(1/2))^17 5142289999517751 a001 31622993/51841*20633239^(2/5) 5142289999517752 a001 433494437/103682*20633239^(2/7) 5142289999517753 a001 1836311903/103682*20633239^(1/5) 5142289999517754 a001 12422650076928/24157817 5142289999517754 a001 46368*20633239^(1/7) 5142289999517755 a001 39088169/103682*141422324^(5/13) 5142289999517755 a001 39088169/103682*2537720636^(1/3) 5142289999517755 a001 39088169/103682*45537549124^(5/17) 5142289999517755 a001 39088169/103682*312119004989^(3/11) 5142289999517755 a001 39088169/103682*14662949395604^(5/21) 5142289999517755 a001 39088169/103682*(1/2+1/2*5^(1/2))^15 5142289999517755 a001 39088169/103682*192900153618^(5/18) 5142289999517755 a001 39088169/103682*28143753123^(3/10) 5142289999517755 a001 39088169/103682*10749957122^(5/16) 5142289999517755 a001 39088169/103682*599074578^(5/14) 5142289999517755 a001 39088169/103682*228826127^(3/8) 5142289999517755 a001 16261460065872/31622993 5142289999517756 a001 102334155/103682*141422324^(1/3) 5142289999517756 a001 46368/228826127*45537549124^(15/17) 5142289999517756 a001 46368/228826127*312119004989^(9/11) 5142289999517756 a001 46368/228826127*14662949395604^(5/7) 5142289999517756 a001 46368/228826127*192900153618^(5/6) 5142289999517756 a001 46368/228826127*28143753123^(9/10) 5142289999517756 a001 46368/228826127*10749957122^(15/16) 5142289999517756 a001 102334155/103682*(1/2+1/2*5^(1/2))^13 5142289999517756 a001 102334155/103682*73681302247^(1/4) 5142289999517756 a001 701408733/103682*141422324^(3/13) 5142289999517756 a001 165580141/103682*141422324^(4/13) 5142289999517756 a001 2971215073/103682*141422324^(2/13) 5142289999517756 a001 85146110318304/165580141 5142289999517756 a001 12586269025/103682*141422324^(1/13) 5142289999517756 a001 133957148/51841*312119004989^(1/5) 5142289999517756 a001 133957148/51841*(1/2+1/2*5^(1/2))^11 5142289999517756 a001 133957148/51841*1568397607^(1/4) 5142289999517756 a001 222915410823168/433494437 5142289999517756 a001 701408733/103682*2537720636^(1/5) 5142289999517756 a001 6624/224056801*14662949395604^(7/9) 5142289999517756 a001 6624/224056801*505019158607^(7/8) 5142289999517756 a001 701408733/103682*45537549124^(3/17) 5142289999517756 a001 701408733/103682*14662949395604^(1/7) 5142289999517756 a001 701408733/103682*(1/2+1/2*5^(1/2))^9 5142289999517756 a001 701408733/103682*192900153618^(1/6) 5142289999517756 a001 701408733/103682*10749957122^(3/16) 5142289999517756 a001 58360012215120/113490317 5142289999517756 a001 15456/1368706081*817138163596^(17/19) 5142289999517756 a001 15456/1368706081*14662949395604^(17/21) 5142289999517756 a001 15456/1368706081*192900153618^(17/18) 5142289999517756 a001 1836311903/103682*17393796001^(1/7) 5142289999517756 a001 1836311903/103682*14662949395604^(1/9) 5142289999517756 a001 1836311903/103682*(1/2+1/2*5^(1/2))^7 5142289999517756 a001 1527884955630432/2971215073 5142289999517756 a001 46368*2537720636^(1/9) 5142289999517756 a001 4000054744740096/7778742049 5142289999517756 a001 12586269025/103682*2537720636^(1/15) 5142289999517756 a001 15456/9381251041*3461452808002^(11/12) 5142289999517756 a001 5236139639294928/10182505537 5142289999517756 a001 6624/10525900321*14662949395604^(19/21) 5142289999517756 a001 27416783091029472/53316291173 5142289999517756 a001 14355613998899712/27916772489 5142289999517756 a001 46368*312119004989^(1/11) 5142289999517756 a001 491974210682900064/956722026041 5142289999517756 a001 304056783790433856/591286729879 5142289999517756 a001 5530445566569888/10754830177 5142289999517756 a001 46368/312119004989*14662949395604^(20/21) 5142289999517756 a001 5545160862933636/10783446409 5142289999517756 a001 46368*28143753123^(1/10) 5142289999517756 a001 5648167937479872/10983760033 5142289999517756 a001 11592/11384387281*14662949395604^(8/9) 5142289999517756 a001 1294444906769952/2517253805 5142289999517756 a001 46368/17393796001*14662949395604^(6/7) 5142289999517756 a001 12586269025/103682*45537549124^(1/17) 5142289999517756 a001 12586269025/103682*14662949395604^(1/21) 5142289999517756 a001 12586269025/103682*(1/2+1/2*5^(1/2))^3 5142289999517756 a001 12586269025/103682*192900153618^(1/18) 5142289999517756 a001 12586269025/103682*10749957122^(1/16) 5142289999517756 a001 32951280099/207364+32951280099/207364*5^(1/2) 5142289999517756 a001 53316291173/103682 5142289999517756 a001 10182505537/51841*(1/2+1/2*5^(1/2))^2 5142289999517756 a001 10182505537/51841*10749957122^(1/24) 5142289999517756 a001 2971215073/103682*2537720636^(2/15) 5142289999517756 a001 10182505537/51841*4106118243^(1/23) 5142289999517756 a001 7778742049/103682*(1/2+1/2*5^(1/2))^4 5142289999517756 a001 7778742049/103682*23725150497407^(1/16) 5142289999517756 a001 7778742049/103682*73681302247^(1/13) 5142289999517756 a001 7778742049/103682*10749957122^(1/12) 5142289999517756 a001 7778742049/103682*4106118243^(2/23) 5142289999517756 a001 46368/6643838879*23725150497407^(13/16) 5142289999517756 a001 46368/6643838879*505019158607^(13/14) 5142289999517756 a001 10182505537/51841*1568397607^(1/22) 5142289999517756 a001 2971215073/103682*45537549124^(2/17) 5142289999517756 a001 2971215073/103682*14662949395604^(2/21) 5142289999517756 a001 2971215073/103682*(1/2+1/2*5^(1/2))^6 5142289999517756 a001 2971215073/103682*10749957122^(1/8) 5142289999517756 a001 2971215073/103682*4106118243^(3/23) 5142289999517756 a001 7778742049/103682*1568397607^(1/11) 5142289999517756 a001 944284833479232/1836311903 5142289999517756 a001 2971215073/103682*1568397607^(3/22) 5142289999517756 a001 10182505537/51841*599074578^(1/21) 5142289999517756 a001 11592/634430159*312119004989^(10/11) 5142289999517756 a001 11592/634430159*3461452808002^(5/6) 5142289999517756 a001 567451585/51841*(1/2+1/2*5^(1/2))^8 5142289999517756 a001 567451585/51841*23725150497407^(1/8) 5142289999517756 a001 567451585/51841*505019158607^(1/7) 5142289999517756 a001 567451585/51841*73681302247^(2/13) 5142289999517756 a001 567451585/51841*10749957122^(1/6) 5142289999517756 a001 567451585/51841*4106118243^(4/23) 5142289999517756 a001 701408733/103682*599074578^(3/14) 5142289999517756 a001 12586269025/103682*599074578^(1/14) 5142289999517756 a001 567451585/51841*1568397607^(2/11) 5142289999517756 a001 7778742049/103682*599074578^(2/21) 5142289999517756 a001 120228237109344/233802911 5142289999517756 a001 1836311903/103682*599074578^(1/6) 5142289999517756 a001 2971215073/103682*599074578^(1/7) 5142289999517756 a001 567451585/51841*599074578^(4/21) 5142289999517756 a001 10182505537/51841*228826127^(1/20) 5142289999517756 a001 433494437/103682*2537720636^(2/9) 5142289999517756 a001 46368/969323029*45537549124^(16/17) 5142289999517756 a001 46368/969323029*14662949395604^(16/21) 5142289999517756 a001 46368/969323029*192900153618^(8/9) 5142289999517756 a001 46368/969323029*73681302247^(12/13) 5142289999517756 a001 433494437/103682*312119004989^(2/11) 5142289999517756 a001 433494437/103682*(1/2+1/2*5^(1/2))^10 5142289999517756 a001 433494437/103682*28143753123^(1/5) 5142289999517756 a001 433494437/103682*10749957122^(5/24) 5142289999517756 a001 433494437/103682*4106118243^(5/23) 5142289999517756 a001 433494437/103682*1568397607^(5/22) 5142289999517756 a001 433494437/103682*599074578^(5/21) 5142289999517756 a001 7778742049/103682*228826127^(1/10) 5142289999517756 a001 46368*228826127^(1/8) 5142289999517756 a001 17221162563108/33489287 5142289999517756 a001 2971215073/103682*228826127^(3/20) 5142289999517756 a001 567451585/51841*228826127^(1/5) 5142289999517756 a001 433494437/103682*228826127^(1/4) 5142289999517756 a001 10182505537/51841*87403803^(1/19) 5142289999517756 a001 165580141/103682*2537720636^(4/15) 5142289999517756 a001 46368/370248451*10749957122^(23/24) 5142289999517756 a001 165580141/103682*45537549124^(4/17) 5142289999517756 a001 165580141/103682*817138163596^(4/19) 5142289999517756 a001 165580141/103682*14662949395604^(4/21) 5142289999517756 a001 165580141/103682*(1/2+1/2*5^(1/2))^12 5142289999517756 a001 165580141/103682*192900153618^(2/9) 5142289999517756 a001 165580141/103682*73681302247^(3/13) 5142289999517756 a001 165580141/103682*10749957122^(1/4) 5142289999517756 a001 165580141/103682*4106118243^(6/23) 5142289999517756 a001 165580141/103682*1568397607^(3/11) 5142289999517756 a001 165580141/103682*599074578^(2/7) 5142289999517756 a001 165580141/103682*228826127^(3/10) 5142289999517756 a001 7778742049/103682*87403803^(2/19) 5142289999517756 a001 501173239872/974611 5142289999517756 a001 2971215073/103682*87403803^(3/19) 5142289999517756 a001 567451585/51841*87403803^(4/19) 5142289999517756 a001 433494437/103682*87403803^(5/19) 5142289999517756 a001 165580141/103682*87403803^(6/19) 5142289999517756 a001 10182505537/51841*33385282^(1/18) 5142289999517756 a001 11592/35355581*312119004989^(4/5) 5142289999517756 a001 11592/35355581*23725150497407^(11/16) 5142289999517756 a001 11592/35355581*73681302247^(11/13) 5142289999517756 a001 31622993/51841*17393796001^(2/7) 5142289999517756 a001 11592/35355581*10749957122^(11/12) 5142289999517756 a001 31622993/51841*14662949395604^(2/9) 5142289999517756 a001 31622993/51841*(1/2+1/2*5^(1/2))^14 5142289999517756 a001 31622993/51841*505019158607^(1/4) 5142289999517756 a001 31622993/51841*10749957122^(7/24) 5142289999517756 a001 31622993/51841*4106118243^(7/23) 5142289999517756 a001 11592/35355581*4106118243^(22/23) 5142289999517756 a001 31622993/51841*1568397607^(7/22) 5142289999517756 a001 31622993/51841*599074578^(1/3) 5142289999517756 a001 31622993/51841*228826127^(7/20) 5142289999517756 a001 12586269025/103682*33385282^(1/12) 5142289999517756 a001 31622993/51841*87403803^(7/19) 5142289999517756 a001 7778742049/103682*33385282^(1/9) 5142289999517756 a001 20100270054816/39088169 5142289999517756 a001 2971215073/103682*33385282^(1/6) 5142289999517757 a001 567451585/51841*33385282^(2/9) 5142289999517757 a001 701408733/103682*33385282^(1/4) 5142289999517757 a001 39088169/103682*33385282^(5/12) 5142289999517757 a001 433494437/103682*33385282^(5/18) 5142289999517757 a001 165580141/103682*33385282^(1/3) 5142289999517757 a001 46368/54018521*2537720636^(14/15) 5142289999517757 a001 46368/54018521*17393796001^(6/7) 5142289999517757 a001 46368/54018521*45537549124^(14/17) 5142289999517757 a001 46368/54018521*817138163596^(14/19) 5142289999517757 a001 46368/54018521*14662949395604^(2/3) 5142289999517757 a001 46368/54018521*505019158607^(3/4) 5142289999517757 a001 46368/54018521*192900153618^(7/9) 5142289999517757 a001 46368/54018521*10749957122^(7/8) 5142289999517757 a001 24157817/103682*(1/2+1/2*5^(1/2))^16 5142289999517757 a001 24157817/103682*23725150497407^(1/4) 5142289999517757 a001 24157817/103682*73681302247^(4/13) 5142289999517757 a001 24157817/103682*10749957122^(1/3) 5142289999517757 a001 24157817/103682*4106118243^(8/23) 5142289999517757 a001 46368/54018521*4106118243^(21/23) 5142289999517757 a001 24157817/103682*1568397607^(4/11) 5142289999517757 a001 46368/54018521*1568397607^(21/22) 5142289999517757 a001 24157817/103682*599074578^(8/21) 5142289999517758 a001 24157817/103682*228826127^(2/5) 5142289999517758 a001 10182505537/51841*12752043^(1/17) 5142289999517758 a001 24157817/103682*87403803^(8/19) 5142289999517758 a001 31622993/51841*33385282^(7/18) 5142289999517759 a001 7778742049/103682*12752043^(2/17) 5142289999517760 a001 24157817/103682*33385282^(4/9) 5142289999517760 a001 53316805402/103683 5142289999517761 a001 2971215073/103682*12752043^(3/17) 5142289999517763 a001 567451585/51841*12752043^(4/17) 5142289999517765 a001 433494437/103682*12752043^(5/17) 5142289999517767 a001 7465176/51841*12752043^(1/2) 5142289999517767 a001 165580141/103682*12752043^(6/17) 5142289999517768 a001 9227465/103682*141422324^(6/13) 5142289999517768 a001 46368/20633239*2537720636^(8/9) 5142289999517768 a001 9227465/103682*2537720636^(2/5) 5142289999517768 a001 46368/20633239*312119004989^(8/11) 5142289999517768 a001 46368/20633239*(1/2+1/2*5^(1/2))^40 5142289999517768 a001 46368/20633239*23725150497407^(5/8) 5142289999517768 a001 46368/20633239*73681302247^(10/13) 5142289999517768 a001 46368/20633239*28143753123^(4/5) 5142289999517768 a001 46368/20633239*10749957122^(5/6) 5142289999517768 a001 9227465/103682*45537549124^(6/17) 5142289999517768 a001 9227465/103682*14662949395604^(2/7) 5142289999517768 a001 9227465/103682*(1/2+1/2*5^(1/2))^18 5142289999517768 a001 9227465/103682*192900153618^(1/3) 5142289999517768 a001 9227465/103682*10749957122^(3/8) 5142289999517768 a001 9227465/103682*4106118243^(9/23) 5142289999517768 a001 46368/20633239*4106118243^(20/23) 5142289999517768 a001 9227465/103682*1568397607^(9/22) 5142289999517768 a001 46368/20633239*1568397607^(10/11) 5142289999517768 a001 9227465/103682*599074578^(3/7) 5142289999517768 a001 46368/20633239*599074578^(20/21) 5142289999517768 a001 9227465/103682*228826127^(9/20) 5142289999517768 a001 9227465/103682*87403803^(9/19) 5142289999517769 a001 31622993/51841*12752043^(7/17) 5142289999517769 a001 10182505537/51841*4870847^(1/16) 5142289999517770 a001 9227465/103682*33385282^(1/2) 5142289999517772 a001 24157817/103682*12752043^(8/17) 5142289999517783 a001 7778742049/103682*4870847^(1/8) 5142289999517785 a001 9227465/103682*12752043^(9/17) 5142289999517788 a001 2932589878848/5702887 5142289999517796 a001 2971215073/103682*4870847^(3/16) 5142289999517810 a001 567451585/51841*4870847^(1/4) 5142289999517823 a001 433494437/103682*4870847^(5/16) 5142289999517832 a001 1762289/51841*20633239^(4/7) 5142289999517837 a001 165580141/103682*4870847^(3/8) 5142289999517839 a001 1762289/51841*2537720636^(4/9) 5142289999517839 a001 11592/1970299*817138163596^(2/3) 5142289999517839 a001 11592/1970299*(1/2+1/2*5^(1/2))^38 5142289999517839 a001 11592/1970299*10749957122^(19/24) 5142289999517839 a001 1762289/51841*(1/2+1/2*5^(1/2))^20 5142289999517839 a001 1762289/51841*23725150497407^(5/16) 5142289999517839 a001 1762289/51841*505019158607^(5/14) 5142289999517839 a001 1762289/51841*73681302247^(5/13) 5142289999517839 a001 1762289/51841*28143753123^(2/5) 5142289999517839 a001 1762289/51841*10749957122^(5/12) 5142289999517839 a001 1762289/51841*4106118243^(10/23) 5142289999517839 a001 11592/1970299*4106118243^(19/23) 5142289999517839 a001 1762289/51841*1568397607^(5/11) 5142289999517839 a001 11592/1970299*1568397607^(19/22) 5142289999517839 a001 1762289/51841*599074578^(10/21) 5142289999517839 a001 11592/1970299*599074578^(19/21) 5142289999517839 a001 1762289/51841*228826127^(1/2) 5142289999517839 a001 11592/1970299*228826127^(19/20) 5142289999517839 a001 1762289/51841*87403803^(10/19) 5142289999517841 a001 1762289/51841*33385282^(5/9) 5142289999517851 a001 31622993/51841*4870847^(7/16) 5142289999517855 a001 10182505537/51841*1860498^(1/15) 5142289999517857 a001 1762289/51841*12752043^(10/17) 5142289999517866 a001 24157817/103682*4870847^(1/2) 5142289999517890 a001 9227465/103682*4870847^(9/16) 5142289999517904 a001 12586269025/103682*1860498^(1/10) 5142289999517954 a001 7778742049/103682*1860498^(2/15) 5142289999517974 a001 1762289/51841*4870847^(5/8) 5142289999517974 a001 53340459936/103729 5142289999518003 a001 46368*1860498^(1/6) 5142289999518053 a001 2971215073/103682*1860498^(1/5) 5142289999518152 a001 567451585/51841*1860498^(4/15) 5142289999518201 a001 701408733/103682*1860498^(3/10) 5142289999518251 a001 433494437/103682*1860498^(1/3) 5142289999518268 a001 1346269/103682*7881196^(2/3) 5142289999518323 a001 46368/3010349*141422324^(12/13) 5142289999518323 a001 46368/3010349*2537720636^(4/5) 5142289999518323 a001 46368/3010349*45537549124^(12/17) 5142289999518323 a001 46368/3010349*14662949395604^(4/7) 5142289999518323 a001 46368/3010349*(1/2+1/2*5^(1/2))^36 5142289999518323 a001 46368/3010349*505019158607^(9/14) 5142289999518323 a001 46368/3010349*192900153618^(2/3) 5142289999518323 a001 46368/3010349*73681302247^(9/13) 5142289999518323 a001 46368/3010349*10749957122^(3/4) 5142289999518323 a001 1346269/103682*312119004989^(2/5) 5142289999518323 a001 1346269/103682*(1/2+1/2*5^(1/2))^22 5142289999518323 a001 1346269/103682*10749957122^(11/24) 5142289999518323 a001 1346269/103682*4106118243^(11/23) 5142289999518323 a001 46368/3010349*4106118243^(18/23) 5142289999518323 a001 1346269/103682*1568397607^(1/2) 5142289999518323 a001 46368/3010349*1568397607^(9/11) 5142289999518323 a001 1346269/103682*599074578^(11/21) 5142289999518323 a001 46368/3010349*599074578^(6/7) 5142289999518323 a001 1346269/103682*228826127^(11/20) 5142289999518323 a001 46368/3010349*228826127^(9/10) 5142289999518324 a001 1346269/103682*87403803^(11/19) 5142289999518324 a001 46368/3010349*87403803^(18/19) 5142289999518326 a001 1346269/103682*33385282^(11/18) 5142289999518344 a001 1346269/103682*12752043^(11/17) 5142289999518350 a001 165580141/103682*1860498^(2/5) 5142289999518449 a001 31622993/51841*1860498^(7/15) 5142289999518472 a001 1346269/103682*4870847^(11/16) 5142289999518483 a001 10182505537/51841*710647^(1/14) 5142289999518498 a001 39088169/103682*1860498^(1/2) 5142289999518550 a001 24157817/103682*1860498^(8/15) 5142289999518579 a001 46347/2206*1860498^(7/10) 5142289999518659 a001 9227465/103682*1860498^(3/5) 5142289999518829 a001 1762289/51841*1860498^(2/3) 5142289999519210 a001 7778742049/103682*710647^(1/7) 5142289999519253 a001 10696477428/20801 5142289999519413 a001 1346269/103682*1860498^(11/15) 5142289999519938 a001 2971215073/103682*710647^(3/14) 5142289999520301 a001 1836311903/103682*710647^(1/4) 5142289999520665 a001 567451585/51841*710647^(2/7) 5142289999521392 a001 433494437/103682*710647^(5/14) 5142289999521585 a001 514229/103682*7881196^(8/11) 5142289999521645 a001 514229/103682*141422324^(8/13) 5142289999521645 a001 514229/103682*2537720636^(8/15) 5142289999521645 a001 46368/1149851*45537549124^(2/3) 5142289999521645 a001 46368/1149851*(1/2+1/2*5^(1/2))^34 5142289999521645 a001 46368/1149851*10749957122^(17/24) 5142289999521645 a001 514229/103682*45537549124^(8/17) 5142289999521645 a001 514229/103682*14662949395604^(8/21) 5142289999521645 a001 514229/103682*(1/2+1/2*5^(1/2))^24 5142289999521645 a001 514229/103682*192900153618^(4/9) 5142289999521645 a001 514229/103682*73681302247^(6/13) 5142289999521645 a001 514229/103682*10749957122^(1/2) 5142289999521645 a001 514229/103682*4106118243^(12/23) 5142289999521645 a001 46368/1149851*4106118243^(17/23) 5142289999521645 a001 514229/103682*1568397607^(6/11) 5142289999521645 a001 46368/1149851*1568397607^(17/22) 5142289999521645 a001 514229/103682*599074578^(4/7) 5142289999521645 a001 46368/1149851*599074578^(17/21) 5142289999521645 a001 514229/103682*228826127^(3/5) 5142289999521645 a001 46368/1149851*228826127^(17/20) 5142289999521645 a001 514229/103682*87403803^(12/19) 5142289999521646 a001 46368/1149851*87403803^(17/19) 5142289999521648 a001 514229/103682*33385282^(2/3) 5142289999521649 a001 46368/1149851*33385282^(17/18) 5142289999521667 a001 514229/103682*12752043^(12/17) 5142289999521808 a001 514229/103682*4870847^(3/4) 5142289999522120 a001 165580141/103682*710647^(3/7) 5142289999522834 a001 514229/103682*1860498^(4/5) 5142289999522847 a001 31622993/51841*710647^(1/2) 5142289999523124 a001 10182505537/51841*271443^(1/13) 5142289999523576 a001 24157817/103682*710647^(4/7) 5142289999524314 a001 9227465/103682*710647^(9/14) 5142289999525112 a001 1762289/51841*710647^(5/7) 5142289999525176 a001 46347/2206*710647^(3/4) 5142289999525426 a001 267914296/167761*64079^(12/23) 5142289999526324 a001 1346269/103682*710647^(11/14) 5142289999528021 a001 54475877568/105937 5142289999528493 a001 7778742049/103682*271443^(2/13) 5142289999530373 a001 514229/103682*710647^(6/7) 5142289999532719 a001 2971215073/439204*64079^(9/23) 5142289999533861 a001 2971215073/103682*271443^(3/13) 5142289999537687 a001 32951280099/103682*103682^(1/24) 5142289999539230 a001 567451585/51841*271443^(4/13) 5142289999544413 a001 98209/51841*141422324^(2/3) 5142289999544413 a001 11592/109801*(1/2+1/2*5^(1/2))^32 5142289999544413 a001 11592/109801*23725150497407^(1/2) 5142289999544413 a001 11592/109801*505019158607^(4/7) 5142289999544413 a001 11592/109801*73681302247^(8/13) 5142289999544413 a001 11592/109801*10749957122^(2/3) 5142289999544413 a001 98209/51841*(1/2+1/2*5^(1/2))^26 5142289999544413 a001 98209/51841*73681302247^(1/2) 5142289999544413 a001 98209/51841*10749957122^(13/24) 5142289999544413 a001 11592/109801*4106118243^(16/23) 5142289999544413 a001 98209/51841*4106118243^(13/23) 5142289999544413 a001 98209/51841*1568397607^(13/22) 5142289999544413 a001 11592/109801*1568397607^(8/11) 5142289999544414 a001 98209/51841*599074578^(13/21) 5142289999544414 a001 11592/109801*599074578^(16/21) 5142289999544414 a001 98209/51841*228826127^(13/20) 5142289999544414 a001 11592/109801*228826127^(4/5) 5142289999544414 a001 98209/51841*87403803^(13/19) 5142289999544414 a001 11592/109801*87403803^(16/19) 5142289999544417 a001 98209/51841*33385282^(13/18) 5142289999544418 a001 11592/109801*33385282^(8/9) 5142289999544438 a001 98209/51841*12752043^(13/17) 5142289999544443 a001 11592/109801*12752043^(16/17) 5142289999544590 a001 98209/51841*4870847^(13/16) 5142289999544598 a001 433494437/103682*271443^(5/13) 5142289999545170 a001 1602508992/90481*64079^(7/23) 5142289999545701 a001 98209/51841*1860498^(13/15) 5142289999548799 a001 726103/13201*39603^(19/22) 5142289999549967 a001 165580141/103682*271443^(6/13) 5142289999550328 a001 7778742049/710647*64079^(8/23) 5142289999552651 a001 102334155/103682*271443^(1/2) 5142289999553869 a001 98209/51841*710647^(13/14) 5142289999555336 a001 31622993/51841*271443^(7/13) 5142289999557619 a001 10182505537/51841*103682^(1/12) 5142289999559025 a001 10182505537/930249*64079^(8/23) 5142289999560294 a001 53316291173/4870847*64079^(8/23) 5142289999560479 a001 139583862445/12752043*64079^(8/23) 5142289999560506 a001 182717648081/16692641*64079^(8/23) 5142289999560510 a001 956722026041/87403803*64079^(8/23) 5142289999560511 a001 2504730781961/228826127*64079^(8/23) 5142289999560511 a001 3278735159921/299537289*64079^(8/23) 5142289999560511 a001 10610209857723/969323029*64079^(8/23) 5142289999560511 a001 4052739537881/370248451*64079^(8/23) 5142289999560511 a001 387002188980/35355581*64079^(8/23) 5142289999560513 a001 591286729879/54018521*64079^(8/23) 5142289999560523 a001 7787980473/711491*64079^(8/23) 5142289999560594 a001 21566892818/1970299*64079^(8/23) 5142289999560706 a001 24157817/103682*271443^(8/13) 5142289999561078 a001 32951280099/3010349*64079^(8/23) 5142289999564400 a001 12586269025/1149851*64079^(8/23) 5142289999566085 a001 9227465/103682*271443^(9/13) 5142289999571524 a001 1762289/51841*271443^(10/13) 5142289999577179 a001 317811*24476^(1/21) 5142289999577377 a001 1346269/103682*271443^(11/13) 5142289999577550 a001 12586269025/103682*103682^(1/8) 5142289999579876 a001 433494437/167761*64079^(11/23) 5142289999585876 a001 591286729879/1860498*24476^(1/21) 5142289999586067 a001 514229/103682*271443^(12/13) 5142289999587145 a001 1548008755920/4870847*24476^(1/21) 5142289999587169 a001 1201881744/109801*64079^(8/23) 5142289999587330 a001 4052739537881/12752043*24476^(1/21) 5142289999587357 a001 1515744265389/4769326*24476^(1/21) 5142289999587374 a001 6557470319842/20633239*24476^(1/21) 5142289999587444 a001 2504730781961/7881196*24476^(1/21) 5142289999587929 a001 956722026041/3010349*24476^(1/21) 5142289999588114 a001 62423800992/121393 5142289999591251 a001 365435296162/1149851*24476^(1/21) 5142289999597481 a001 7778742049/103682*103682^(1/6) 5142289999599620 a001 7778742049/271443*64079^(6/23) 5142289999604778 a001 12586269025/710647*64079^(7/23) 5142289999613464 a001 4807526976/64079*24476^(4/21) 5142289999613475 a001 10983760033/620166*64079^(7/23) 5142289999614019 a001 139583862445/439204*24476^(1/21) 5142289999614744 a001 86267571272/4870847*64079^(7/23) 5142289999614929 a001 75283811239/4250681*64079^(7/23) 5142289999614956 a001 591286729879/33385282*64079^(7/23) 5142289999614960 a001 516002918640/29134601*64079^(7/23) 5142289999614961 a001 4052739537881/228826127*64079^(7/23) 5142289999614961 a001 3536736619241/199691526*64079^(7/23) 5142289999614961 a001 6557470319842/370248451*64079^(7/23) 5142289999614961 a001 2504730781961/141422324*64079^(7/23) 5142289999614962 a001 956722026041/54018521*64079^(7/23) 5142289999614973 a001 365435296162/20633239*64079^(7/23) 5142289999615044 a001 139583862445/7881196*64079^(7/23) 5142289999615528 a001 53316291173/3010349*64079^(7/23) 5142289999617413 a001 46368*103682^(5/24) 5142289999618850 a001 20365011074/1149851*64079^(7/23) 5142289999634326 a001 701408733/167761*64079^(10/23) 5142289999637344 a001 2971215073/103682*103682^(1/4) 5142289999641618 a001 7778742049/439204*64079^(7/23) 5142289999654070 a001 12586269025/271443*64079^(5/23) 5142289999657276 a001 1836311903/103682*103682^(7/24) 5142289999659228 a001 20365011074/710647*64079^(6/23) 5142289999666787 a001 32951280099/103682*39603^(1/22) 5142289999667925 a001 53316291173/1860498*64079^(6/23) 5142289999669194 a001 139583862445/4870847*64079^(6/23) 5142289999669379 a001 365435296162/12752043*64079^(6/23) 5142289999669406 a001 956722026041/33385282*64079^(6/23) 5142289999669410 a001 2504730781961/87403803*64079^(6/23) 5142289999669411 a001 6557470319842/228826127*64079^(6/23) 5142289999669411 a001 10610209857723/370248451*64079^(6/23) 5142289999669411 a001 4052739537881/141422324*64079^(6/23) 5142289999669412 a001 1548008755920/54018521*64079^(6/23) 5142289999669423 a001 591286729879/20633239*64079^(6/23) 5142289999669493 a001 225851433717/7881196*64079^(6/23) 5142289999669978 a001 86267571272/3010349*64079^(6/23) 5142289999673300 a001 32951280099/1149851*64079^(6/23) 5142289999677207 a001 567451585/51841*103682^(1/3) 5142289999688776 a001 1134903170/167761*64079^(9/23) 5142289999696068 a001 12586269025/439204*64079^(6/23) 5142289999697139 a001 701408733/103682*103682^(3/8) 5142289999698615 a001 1346269/39603*39603^(10/11) 5142289999700396 a001 46368/167761*7881196^(10/11) 5142289999700461 a001 46368/167761*20633239^(6/7) 5142289999700461 a001 75025/103682*20633239^(4/5) 5142289999700471 a001 46368/167761*141422324^(10/13) 5142289999700471 a001 46368/167761*2537720636^(2/3) 5142289999700471 a001 46368/167761*45537549124^(10/17) 5142289999700471 a001 46368/167761*312119004989^(6/11) 5142289999700471 a001 46368/167761*14662949395604^(10/21) 5142289999700471 a001 46368/167761*(1/2+1/2*5^(1/2))^30 5142289999700471 a001 46368/167761*192900153618^(5/9) 5142289999700471 a001 46368/167761*28143753123^(3/5) 5142289999700471 a001 46368/167761*10749957122^(5/8) 5142289999700471 a001 75025/103682*17393796001^(4/7) 5142289999700471 a001 75025/103682*14662949395604^(4/9) 5142289999700471 a001 75025/103682*(1/2+1/2*5^(1/2))^28 5142289999700471 a001 75025/103682*505019158607^(1/2) 5142289999700471 a001 75025/103682*73681302247^(7/13) 5142289999700471 a001 75025/103682*10749957122^(7/12) 5142289999700471 a001 46368/167761*4106118243^(15/23) 5142289999700471 a001 75025/103682*4106118243^(14/23) 5142289999700471 a001 75025/103682*1568397607^(7/11) 5142289999700471 a001 46368/167761*1568397607^(15/22) 5142289999700471 a001 75025/103682*599074578^(2/3) 5142289999700471 a001 46368/167761*599074578^(5/7) 5142289999700471 a001 75025/103682*228826127^(7/10) 5142289999700471 a001 46368/167761*228826127^(3/4) 5142289999700471 a001 75025/103682*87403803^(14/19) 5142289999700471 a001 46368/167761*87403803^(15/19) 5142289999700474 a001 75025/103682*33385282^(7/9) 5142289999700475 a001 46368/167761*33385282^(5/6) 5142289999700497 a001 75025/103682*12752043^(14/17) 5142289999700499 a001 46368/167761*12752043^(15/17) 5142289999700661 a001 75025/103682*4870847^(7/8) 5142289999700674 a001 46368/167761*4870847^(15/16) 5142289999701857 a001 75025/103682*1860498^(14/15) 5142289999708520 a001 20365011074/271443*64079^(4/23) 5142289999713678 a001 32951280099/710647*64079^(5/23) 5142289999717070 a001 433494437/103682*103682^(5/12) 5142289999722375 a001 43133785636/930249*64079^(5/23) 5142289999723644 a001 225851433717/4870847*64079^(5/23) 5142289999723829 a001 591286729879/12752043*64079^(5/23) 5142289999723856 a001 774004377960/16692641*64079^(5/23) 5142289999723860 a001 4052739537881/87403803*64079^(5/23) 5142289999723860 a001 225749145909/4868641*64079^(5/23) 5142289999723861 a001 3278735159921/70711162*64079^(5/23) 5142289999723862 a001 2504730781961/54018521*64079^(5/23) 5142289999723873 a001 956722026041/20633239*64079^(5/23) 5142289999723943 a001 182717648081/3940598*64079^(5/23) 5142289999724428 a001 139583862445/3010349*64079^(5/23) 5142289999727750 a001 53316291173/1149851*64079^(5/23) 5142289999733422 a001 38580030723/75025 5142289999737001 a001 133957148/51841*103682^(11/24) 5142289999743226 a001 1836311903/167761*64079^(8/23) 5142289999750518 a001 10182505537/219602*64079^(5/23) 5142289999756933 a001 165580141/103682*103682^(1/2) 5142289999762969 a001 121393*64079^(3/23) 5142289999768128 a001 53316291173/710647*64079^(4/23) 5142289999770077 a001 53316291173/167761*24476^(1/21) 5142289999776825 a001 139583862445/1860498*64079^(4/23) 5142289999776864 a001 102334155/103682*103682^(13/24) 5142289999778094 a001 365435296162/4870847*64079^(4/23) 5142289999778279 a001 956722026041/12752043*64079^(4/23) 5142289999778306 a001 2504730781961/33385282*64079^(4/23) 5142289999778310 a001 6557470319842/87403803*64079^(4/23) 5142289999778311 a001 10610209857723/141422324*64079^(4/23) 5142289999778312 a001 4052739537881/54018521*64079^(4/23) 5142289999778323 a001 140728068720/1875749*64079^(4/23) 5142289999778393 a001 591286729879/7881196*64079^(4/23) 5142289999778878 a001 225851433717/3010349*64079^(4/23) 5142289999780159 a001 9227465/271443*167761^(4/5) 5142289999782200 a001 86267571272/1149851*64079^(4/23) 5142289999796796 a001 31622993/51841*103682^(7/12) 5142289999797676 a001 2971215073/167761*64079^(7/23) 5142289999804968 a001 32951280099/439204*64079^(4/23) 5142289999813395 a001 2/75025*(1/2+1/2*5^(1/2))^54 5142289999815818 a001 10182505537/51841*39603^(1/11) 5142289999816690 a001 34111385/90481*167761^(3/5) 5142289999816727 a001 39088169/103682*103682^(5/8) 5142289999817419 a001 53316291173/271443*64079^(2/23) 5142289999822578 a001 86267571272/710647*64079^(3/23) 5142289999831275 a001 75283811239/620166*64079^(3/23) 5142289999832544 a001 591286729879/4870847*64079^(3/23) 5142289999832729 a001 516002918640/4250681*64079^(3/23) 5142289999832756 a001 4052739537881/33385282*64079^(3/23) 5142289999832760 a001 3536736619241/29134601*64079^(3/23) 5142289999832762 a001 6557470319842/54018521*64079^(3/23) 5142289999832772 a001 2504730781961/20633239*64079^(3/23) 5142289999832843 a001 956722026041/7881196*64079^(3/23) 5142289999833328 a001 365435296162/3010349*64079^(3/23) 5142289999836650 a001 139583862445/1149851*64079^(3/23) 5142289999836660 a001 24157817/103682*103682^(2/3) 5142289999839757 a001 24157817/710647*167761^(4/5) 5142289999845593 a001 832040/39603*39603^(21/22) 5142289999848453 a001 31622993/930249*167761^(4/5) 5142289999849721 a001 165580141/4870847*167761^(4/5) 5142289999849906 a001 433494437/12752043*167761^(4/5) 5142289999849933 a001 567451585/16692641*167761^(4/5) 5142289999849937 a001 2971215073/87403803*167761^(4/5) 5142289999849938 a001 7778742049/228826127*167761^(4/5) 5142289999849938 a001 10182505537/299537289*167761^(4/5) 5142289999849938 a001 53316291173/1568397607*167761^(4/5) 5142289999849938 a001 139583862445/4106118243*167761^(4/5) 5142289999849938 a001 182717648081/5374978561*167761^(4/5) 5142289999849938 a001 956722026041/28143753123*167761^(4/5) 5142289999849938 a001 2504730781961/73681302247*167761^(4/5) 5142289999849938 a001 3278735159921/96450076809*167761^(4/5) 5142289999849938 a001 10610209857723/312119004989*167761^(4/5) 5142289999849938 a001 4052739537881/119218851371*167761^(4/5) 5142289999849938 a001 387002188980/11384387281*167761^(4/5) 5142289999849938 a001 591286729879/17393796001*167761^(4/5) 5142289999849938 a001 225851433717/6643838879*167761^(4/5) 5142289999849938 a001 1135099622/33391061*167761^(4/5) 5142289999849938 a001 32951280099/969323029*167761^(4/5) 5142289999849938 a001 12586269025/370248451*167761^(4/5) 5142289999849938 a001 1201881744/35355581*167761^(4/5) 5142289999849940 a001 1836311903/54018521*167761^(4/5) 5142289999849950 a001 701408733/20633239*167761^(4/5) 5142289999850021 a001 66978574/1970299*167761^(4/5) 5142289999850505 a001 102334155/3010349*167761^(4/5) 5142289999852126 a001 4807526976/167761*64079^(6/23) 5142289999853233 a001 1134903170/271443*167761^(2/5) 5142289999853827 a001 39088169/1149851*167761^(4/5) 5142289999856528 a001 121393/271443*(1/2+1/2*5^(1/2))^29 5142289999856528 a001 121393/271443*1322157322203^(1/2) 5142289999856586 a001 7465176/51841*103682^(17/24) 5142289999859418 a001 53316291173/439204*64079^(3/23) 5142289999866711 a001 38580030724/75025 5142289999871869 a001 86267571272/271443*64079^(1/23) 5142289999876299 a001 267914296/710647*167761^(3/5) 5142289999876534 a001 9227465/103682*103682^(3/4) 5142289999876591 a001 196452/5779*167761^(4/5) 5142289999877028 a001 139583862445/710647*64079^(2/23) 5142289999884996 a001 233802911/620166*167761^(3/5) 5142289999885725 a001 182717648081/930249*64079^(2/23) 5142289999886264 a001 1836311903/4870847*167761^(3/5) 5142289999886449 a001 1602508992/4250681*167761^(3/5) 5142289999886476 a001 12586269025/33385282*167761^(3/5) 5142289999886480 a001 10983760033/29134601*167761^(3/5) 5142289999886481 a001 86267571272/228826127*167761^(3/5) 5142289999886481 a001 267913919/710646*167761^(3/5) 5142289999886481 a001 591286729879/1568397607*167761^(3/5) 5142289999886481 a001 516002918640/1368706081*167761^(3/5) 5142289999886481 a001 4052739537881/10749957122*167761^(3/5) 5142289999886481 a001 3536736619241/9381251041*167761^(3/5) 5142289999886481 a001 6557470319842/17393796001*167761^(3/5) 5142289999886481 a001 2504730781961/6643838879*167761^(3/5) 5142289999886481 a001 956722026041/2537720636*167761^(3/5) 5142289999886481 a001 365435296162/969323029*167761^(3/5) 5142289999886481 a001 139583862445/370248451*167761^(3/5) 5142289999886481 a001 53316291173/141422324*167761^(3/5) 5142289999886483 a001 20365011074/54018521*167761^(3/5) 5142289999886493 a001 7778742049/20633239*167761^(3/5) 5142289999886564 a001 2971215073/7881196*167761^(3/5) 5142289999886994 a001 956722026041/4870847*64079^(2/23) 5142289999887049 a001 1134903170/3010349*167761^(3/5) 5142289999887179 a001 2504730781961/12752043*64079^(2/23) 5142289999887206 a001 3278735159921/16692641*64079^(2/23) 5142289999887212 a001 10610209857723/54018521*64079^(2/23) 5142289999887222 a001 4052739537881/20633239*64079^(2/23) 5142289999887293 a001 387002188980/1970299*64079^(2/23) 5142289999887778 a001 591286729879/3010349*64079^(2/23) 5142289999889776 a001 12586269025/271443*167761^(1/5) 5142289999890370 a001 433494437/1149851*167761^(3/5) 5142289999891100 a001 225851433717/1149851*64079^(2/23) 5142289999896421 a001 5702887/103682*103682^(19/24) 5142289999898176 a001 50501915860/98209 5142289999903191 a001 1346269/271443*439204^(8/9) 5142289999905554 a001 5702887/271443*439204^(7/9) 5142289999906576 a001 7778742049/167761*64079^(5/23) 5142289999908549 a001 24157817/271443*439204^(2/3) 5142289999911509 a001 34111385/90481*439204^(5/9) 5142289999912842 a001 2971215073/710647*167761^(2/5) 5142289999913139 a001 165580141/439204*167761^(3/5) 5142289999913868 a001 196418*64079^(2/23) 5142289999914471 a001 433494437/271443*439204^(4/9) 5142289999916069 a001 105937/90481*7881196^(9/11) 5142289999916137 a001 105937/90481*141422324^(9/13) 5142289999916137 a001 105937/90481*2537720636^(3/5) 5142289999916137 a001 105937/90481*45537549124^(9/17) 5142289999916137 a001 121393/710647*(1/2+1/2*5^(1/2))^31 5142289999916137 a001 121393/710647*9062201101803^(1/2) 5142289999916137 a001 105937/90481*817138163596^(9/19) 5142289999916137 a001 105937/90481*14662949395604^(3/7) 5142289999916137 a001 105937/90481*(1/2+1/2*5^(1/2))^27 5142289999916137 a001 105937/90481*192900153618^(1/2) 5142289999916137 a001 105937/90481*10749957122^(9/16) 5142289999916137 a001 105937/90481*599074578^(9/14) 5142289999916140 a001 105937/90481*33385282^(3/4) 5142289999916467 a001 1762289/51841*103682^(5/6) 5142289999917433 a001 1836311903/271443*439204^(1/3) 5142289999917474 a001 105937/90481*1860498^(9/10) 5142289999920395 a001 7778742049/271443*439204^(2/9) 5142289999921539 a001 7778742049/1860498*167761^(2/5) 5142289999922213 a001 264431464437/514229 5142289999922807 a001 20365011074/4870847*167761^(2/5) 5142289999922993 a001 53316291173/12752043*167761^(2/5) 5142289999923020 a001 139583862445/33385282*167761^(2/5) 5142289999923023 a001 365435296162/87403803*167761^(2/5) 5142289999923024 a001 956722026041/228826127*167761^(2/5) 5142289999923024 a001 2504730781961/599074578*167761^(2/5) 5142289999923024 a001 6557470319842/1568397607*167761^(2/5) 5142289999923024 a001 10610209857723/2537720636*167761^(2/5) 5142289999923024 a001 4052739537881/969323029*167761^(2/5) 5142289999923024 a001 1548008755920/370248451*167761^(2/5) 5142289999923024 a001 591286729879/141422324*167761^(2/5) 5142289999923026 a001 225851433717/54018521*167761^(2/5) 5142289999923036 a001 86267571272/20633239*167761^(2/5) 5142289999923107 a001 32951280099/7881196*167761^(2/5) 5142289999923357 a001 121393*439204^(1/9) 5142289999923592 a001 12586269025/3010349*167761^(2/5) 5142289999924825 a001 832040/271443*20633239^(5/7) 5142289999924833 a001 121393/1860498*141422324^(11/13) 5142289999924834 a001 121393/1860498*2537720636^(11/15) 5142289999924834 a001 832040/271443*2537720636^(5/9) 5142289999924834 a001 121393/1860498*45537549124^(11/17) 5142289999924834 a001 121393/1860498*312119004989^(3/5) 5142289999924834 a001 121393/1860498*14662949395604^(11/21) 5142289999924834 a001 121393/1860498*(1/2+1/2*5^(1/2))^33 5142289999924834 a001 121393/1860498*192900153618^(11/18) 5142289999924834 a001 832040/271443*312119004989^(5/11) 5142289999924834 a001 832040/271443*(1/2+1/2*5^(1/2))^25 5142289999924834 a001 832040/271443*3461452808002^(5/12) 5142289999924834 a001 832040/271443*28143753123^(1/2) 5142289999924834 a001 121393/1860498*10749957122^(11/16) 5142289999924834 a001 121393/1860498*1568397607^(3/4) 5142289999924834 a001 121393/1860498*599074578^(11/14) 5142289999924834 a001 832040/271443*228826127^(5/8) 5142289999924838 a001 121393/1860498*33385282^(11/12) 5142289999925720 a001 692290561591/1346269 5142289999926072 a001 832040/271443*1860498^(5/6) 5142289999926102 a001 121393/4870847*2537720636^(7/9) 5142289999926102 a001 121393/4870847*17393796001^(5/7) 5142289999926102 a001 121393/4870847*312119004989^(7/11) 5142289999926102 a001 121393/4870847*14662949395604^(5/9) 5142289999926102 a001 121393/4870847*(1/2+1/2*5^(1/2))^35 5142289999926102 a001 121393/4870847*505019158607^(5/8) 5142289999926102 a001 726103/90481*(1/2+1/2*5^(1/2))^23 5142289999926102 a001 121393/4870847*28143753123^(7/10) 5142289999926102 a001 726103/90481*4106118243^(1/2) 5142289999926102 a001 121393/4870847*599074578^(5/6) 5142289999926103 a001 121393/4870847*228826127^(7/8) 5142289999926232 a001 906220110168/1762289 5142289999926235 a001 5702887/271443*7881196^(7/11) 5142289999926276 a001 24157817/271443*7881196^(6/11) 5142289999926280 a001 5702887/271443*20633239^(3/5) 5142289999926281 a001 34111385/90481*7881196^(5/11) 5142289999926287 a001 5702887/271443*141422324^(7/13) 5142289999926288 a001 5702887/271443*2537720636^(7/15) 5142289999926288 a001 5702887/271443*17393796001^(3/7) 5142289999926288 a001 5702887/271443*45537549124^(7/17) 5142289999926288 a001 121393/12752043*(1/2+1/2*5^(1/2))^37 5142289999926288 a001 5702887/271443*14662949395604^(1/3) 5142289999926288 a001 5702887/271443*(1/2+1/2*5^(1/2))^21 5142289999926288 a001 5702887/271443*192900153618^(7/18) 5142289999926288 a001 5702887/271443*10749957122^(7/16) 5142289999926288 a001 5702887/271443*599074578^(1/2) 5142289999926289 a001 433494437/271443*7881196^(4/11) 5142289999926290 a001 5702887/271443*33385282^(7/12) 5142289999926292 a001 233802911/90481*7881196^(1/3) 5142289999926297 a001 1836311903/271443*7881196^(3/11) 5142289999926304 a001 7778742049/271443*7881196^(2/11) 5142289999926306 a001 4745030099417/9227465 5142289999926312 a001 121393*7881196^(1/11) 5142289999926314 a001 34111385/90481*20633239^(3/7) 5142289999926314 a001 165580141/271443*20633239^(2/5) 5142289999926315 a001 121393/33385282*2537720636^(13/15) 5142289999926315 a001 121393/33385282*45537549124^(13/17) 5142289999926315 a001 121393/33385282*14662949395604^(13/21) 5142289999926315 a001 121393/33385282*(1/2+1/2*5^(1/2))^39 5142289999926315 a001 121393/33385282*192900153618^(13/18) 5142289999926315 a001 121393/33385282*73681302247^(3/4) 5142289999926315 a001 4976784/90481*817138163596^(1/3) 5142289999926315 a001 4976784/90481*(1/2+1/2*5^(1/2))^19 5142289999926315 a001 121393/33385282*10749957122^(13/16) 5142289999926315 a001 121393/33385282*599074578^(13/14) 5142289999926315 a001 4976784/90481*87403803^(1/2) 5142289999926316 a001 1134903170/271443*20633239^(2/7) 5142289999926317 a001 1602508992/90481*20633239^(1/5) 5142289999926317 a001 12422650077915/24157817 5142289999926317 a001 12586269025/271443*20633239^(1/7) 5142289999926319 a001 39088169/271443*45537549124^(1/3) 5142289999926319 a001 39088169/271443*(1/2+1/2*5^(1/2))^17 5142289999926319 a001 69791674108/135721 5142289999926319 a001 34111385/90481*141422324^(5/13) 5142289999926319 a001 267914296/271443*141422324^(1/3) 5142289999926319 a001 34111385/90481*2537720636^(1/3) 5142289999926319 a001 34111385/90481*45537549124^(5/17) 5142289999926319 a001 34111385/90481*312119004989^(3/11) 5142289999926319 a001 34111385/90481*14662949395604^(5/21) 5142289999926319 a001 34111385/90481*(1/2+1/2*5^(1/2))^15 5142289999926319 a001 34111385/90481*192900153618^(5/18) 5142289999926319 a001 34111385/90481*28143753123^(3/10) 5142289999926319 a001 34111385/90481*10749957122^(5/16) 5142289999926319 a001 34111385/90481*599074578^(5/14) 5142289999926319 a001 433494437/271443*141422324^(4/13) 5142289999926319 a001 34111385/90481*228826127^(3/8) 5142289999926319 a001 1836311903/271443*141422324^(3/13) 5142289999926319 a001 85146110325069/165580141 5142289999926319 a001 7778742049/271443*141422324^(2/13) 5142289999926319 a001 121393*141422324^(1/13) 5142289999926319 a001 121393/599074578*45537549124^(15/17) 5142289999926319 a001 121393/599074578*312119004989^(9/11) 5142289999926319 a001 121393/599074578*14662949395604^(5/7) 5142289999926319 a001 121393/599074578*192900153618^(5/6) 5142289999926319 a001 267914296/271443*(1/2+1/2*5^(1/2))^13 5142289999926319 a001 267914296/271443*73681302247^(1/4) 5142289999926319 a001 121393/599074578*28143753123^(9/10) 5142289999926319 a001 121393/599074578*10749957122^(15/16) 5142289999926319 a001 222915410840879/433494437 5142289999926319 a001 233802911/90481*312119004989^(1/5) 5142289999926319 a001 233802911/90481*(1/2+1/2*5^(1/2))^11 5142289999926319 a001 233802911/90481*1568397607^(1/4) 5142289999926319 a001 291800061098784/567451585 5142289999926319 a001 1836311903/271443*2537720636^(1/5) 5142289999926319 a001 121393/4106118243*14662949395604^(7/9) 5142289999926319 a001 121393/4106118243*505019158607^(7/8) 5142289999926319 a001 1836311903/271443*45537549124^(3/17) 5142289999926319 a001 1836311903/271443*14662949395604^(1/7) 5142289999926319 a001 1836311903/271443*(1/2+1/2*5^(1/2))^9 5142289999926319 a001 1836311903/271443*192900153618^(1/6) 5142289999926319 a001 1836311903/271443*10749957122^(3/16) 5142289999926319 a001 1527884955751825/2971215073 5142289999926319 a001 12586269025/271443*2537720636^(1/9) 5142289999926319 a001 7778742049/271443*2537720636^(2/15) 5142289999926319 a001 121393*2537720636^(1/15) 5142289999926319 a001 1602508992/90481*17393796001^(1/7) 5142289999926319 a001 121393/10749957122*817138163596^(17/19) 5142289999926319 a001 121393/10749957122*14662949395604^(17/21) 5142289999926319 a001 121393/10749957122*192900153618^(17/18) 5142289999926319 a001 1602508992/90481*14662949395604^(1/9) 5142289999926319 a001 1602508992/90481*(1/2+1/2*5^(1/2))^7 5142289999926319 a001 4000054745057907/7778742049 5142289999926319 a001 12586269025/271443*312119004989^(1/11) 5142289999926319 a001 12586269025/271443*(1/2+1/2*5^(1/2))^5 5142289999926319 a001 12586269025/271443*28143753123^(1/10) 5142289999926319 a001 5236139639710948/10182505537 5142289999926319 a001 121393/73681302247*3461452808002^(11/12) 5142289999926319 a001 27416783093207781/53316291173 5142289999926319 a001 121393*45537549124^(1/17) 5142289999926319 a001 121393/192900153618*14662949395604^(19/21) 5142289999926319 a001 71778070000201447/139583862445 5142289999926319 a001 1288005205258568139/2504730781961 5142289999926319 a001 121393*14662949395604^(1/21) 5142289999926319 a001 121393*192900153618^(1/18) 5142289999926319 a001 116139356907195113/225851433717 5142289999926319 a001 22180643453496833/43133785636 5142289999926319 a001 121393/119218851371*14662949395604^(8/9) 5142289999926319 a001 43133785636/271443+43133785636/271443*5^(1/2) 5142289999926319 a001 139583862445/271443 5142289999926319 a001 53316291173/271443*(1/2+1/2*5^(1/2))^2 5142289999926319 a001 121393/45537549124*14662949395604^(6/7) 5142289999926319 a001 121393*10749957122^(1/16) 5142289999926319 a001 53316291173/271443*10749957122^(1/24) 5142289999926319 a001 20365011074/271443*(1/2+1/2*5^(1/2))^4 5142289999926319 a001 20365011074/271443*23725150497407^(1/16) 5142289999926319 a001 20365011074/271443*73681302247^(1/13) 5142289999926319 a001 6472224534363989/12586269025 5142289999926319 a001 20365011074/271443*10749957122^(1/12) 5142289999926319 a001 53316291173/271443*4106118243^(1/23) 5142289999926319 a001 121393/17393796001*23725150497407^(13/16) 5142289999926319 a001 121393/17393796001*505019158607^(13/14) 5142289999926319 a001 7778742049/271443*45537549124^(2/17) 5142289999926319 a001 7778742049/271443*14662949395604^(2/21) 5142289999926319 a001 7778742049/271443*(1/2+1/2*5^(1/2))^6 5142289999926319 a001 7778742049/271443*10749957122^(1/8) 5142289999926319 a001 20365011074/271443*4106118243^(2/23) 5142289999926319 a001 1236084894653041/2403763488 5142289999926319 a001 7778742049/271443*4106118243^(3/23) 5142289999926319 a001 53316291173/271443*1568397607^(1/22) 5142289999926319 a001 121393/6643838879*312119004989^(10/11) 5142289999926319 a001 121393/6643838879*3461452808002^(5/6) 5142289999926319 a001 2971215073/271443*(1/2+1/2*5^(1/2))^8 5142289999926319 a001 2971215073/271443*23725150497407^(1/8) 5142289999926319 a001 2971215073/271443*505019158607^(1/7) 5142289999926319 a001 2971215073/271443*73681302247^(2/13) 5142289999926319 a001 2971215073/271443*10749957122^(1/6) 5142289999926319 a001 2971215073/271443*4106118243^(4/23) 5142289999926319 a001 20365011074/271443*1568397607^(1/11) 5142289999926319 a001 7778742049/271443*1568397607^(3/22) 5142289999926319 a001 944284833554257/1836311903 5142289999926319 a001 2971215073/271443*1568397607^(2/11) 5142289999926319 a001 1134903170/271443*2537720636^(2/9) 5142289999926319 a001 53316291173/271443*599074578^(1/21) 5142289999926319 a001 121393/2537720636*45537549124^(16/17) 5142289999926319 a001 121393/2537720636*14662949395604^(16/21) 5142289999926319 a001 121393/2537720636*192900153618^(8/9) 5142289999926319 a001 121393/2537720636*73681302247^(12/13) 5142289999926319 a001 1134903170/271443*312119004989^(2/11) 5142289999926319 a001 1134903170/271443*(1/2+1/2*5^(1/2))^10 5142289999926319 a001 1134903170/271443*28143753123^(1/5) 5142289999926319 a001 1134903170/271443*10749957122^(5/24) 5142289999926319 a001 1134903170/271443*4106118243^(5/23) 5142289999926319 a001 121393*599074578^(1/14) 5142289999926319 a001 1134903170/271443*1568397607^(5/22) 5142289999926319 a001 20365011074/271443*599074578^(2/21) 5142289999926319 a001 7778742049/271443*599074578^(1/7) 5142289999926319 a001 360684711356689/701408733 5142289999926319 a001 1602508992/90481*599074578^(1/6) 5142289999926319 a001 1836311903/271443*599074578^(3/14) 5142289999926319 a001 2971215073/271443*599074578^(4/21) 5142289999926319 a001 1134903170/271443*599074578^(5/21) 5142289999926319 a001 53316291173/271443*228826127^(1/20) 5142289999926319 a001 433494437/271443*2537720636^(4/15) 5142289999926319 a001 433494437/271443*45537549124^(4/17) 5142289999926319 a001 433494437/271443*817138163596^(4/19) 5142289999926319 a001 433494437/271443*14662949395604^(4/21) 5142289999926319 a001 433494437/271443*(1/2+1/2*5^(1/2))^12 5142289999926319 a001 433494437/271443*192900153618^(2/9) 5142289999926319 a001 433494437/271443*73681302247^(3/13) 5142289999926319 a001 433494437/271443*10749957122^(1/4) 5142289999926319 a001 121393/969323029*10749957122^(23/24) 5142289999926319 a001 433494437/271443*4106118243^(6/23) 5142289999926319 a001 433494437/271443*1568397607^(3/11) 5142289999926319 a001 433494437/271443*599074578^(2/7) 5142289999926319 a001 20365011074/271443*228826127^(1/10) 5142289999926319 a001 12586269025/271443*228826127^(1/8) 5142289999926319 a001 7778742049/271443*228826127^(3/20) 5142289999926319 a001 68884650257905/133957148 5142289999926319 a001 2971215073/271443*228826127^(1/5) 5142289999926319 a001 1134903170/271443*228826127^(1/4) 5142289999926319 a001 433494437/271443*228826127^(3/10) 5142289999926319 a001 53316291173/271443*87403803^(1/19) 5142289999926319 a001 165580141/271443*17393796001^(2/7) 5142289999926319 a001 121393/370248451*312119004989^(4/5) 5142289999926319 a001 121393/370248451*23725150497407^(11/16) 5142289999926319 a001 121393/370248451*73681302247^(11/13) 5142289999926319 a001 165580141/271443*14662949395604^(2/9) 5142289999926319 a001 165580141/271443*(1/2+1/2*5^(1/2))^14 5142289999926319 a001 165580141/271443*505019158607^(1/4) 5142289999926319 a001 165580141/271443*10749957122^(7/24) 5142289999926319 a001 121393/370248451*10749957122^(11/12) 5142289999926319 a001 165580141/271443*4106118243^(7/23) 5142289999926319 a001 121393/370248451*4106118243^(22/23) 5142289999926319 a001 165580141/271443*1568397607^(7/22) 5142289999926319 a001 165580141/271443*599074578^(1/3) 5142289999926319 a001 20365011074/271443*87403803^(2/19) 5142289999926319 a001 165580141/271443*228826127^(7/20) 5142289999926319 a001 52623190190741/102334155 5142289999926319 a001 7778742049/271443*87403803^(3/19) 5142289999926319 a001 2971215073/271443*87403803^(4/19) 5142289999926319 a001 1134903170/271443*87403803^(5/19) 5142289999926319 a001 433494437/271443*87403803^(6/19) 5142289999926319 a001 53316291173/271443*33385282^(1/18) 5142289999926319 a001 233/271444*2537720636^(14/15) 5142289999926319 a001 233/271444*17393796001^(6/7) 5142289999926319 a001 233/271444*45537549124^(14/17) 5142289999926319 a001 233/271444*14662949395604^(2/3) 5142289999926319 a001 233/271444*505019158607^(3/4) 5142289999926319 a001 233/271444*192900153618^(7/9) 5142289999926319 a001 63245986/271443*(1/2+1/2*5^(1/2))^16 5142289999926319 a001 63245986/271443*23725150497407^(1/4) 5142289999926319 a001 63245986/271443*73681302247^(4/13) 5142289999926319 a001 63245986/271443*10749957122^(1/3) 5142289999926319 a001 233/271444*10749957122^(7/8) 5142289999926319 a001 63245986/271443*4106118243^(8/23) 5142289999926319 a001 233/271444*4106118243^(21/23) 5142289999926319 a001 63245986/271443*1568397607^(4/11) 5142289999926319 a001 233/271444*1568397607^(21/22) 5142289999926319 a001 63245986/271443*599074578^(8/21) 5142289999926319 a001 165580141/271443*87403803^(7/19) 5142289999926320 a001 63245986/271443*228826127^(2/5) 5142289999926320 a001 121393*33385282^(1/12) 5142289999926320 a001 20365011074/271443*33385282^(1/9) 5142289999926320 a001 63245986/271443*87403803^(8/19) 5142289999926320 a001 20100270056413/39088169 5142289999926320 a001 7778742049/271443*33385282^(1/6) 5142289999926320 a001 2971215073/271443*33385282^(2/9) 5142289999926320 a001 1836311903/271443*33385282^(1/4) 5142289999926320 a001 1134903170/271443*33385282^(5/18) 5142289999926321 a001 433494437/271443*33385282^(1/3) 5142289999926321 a001 24157817/271443*141422324^(6/13) 5142289999926321 a001 121393/54018521*2537720636^(8/9) 5142289999926321 a001 24157817/271443*2537720636^(2/5) 5142289999926321 a001 121393/54018521*312119004989^(8/11) 5142289999926321 a001 121393/54018521*23725150497407^(5/8) 5142289999926321 a001 24157817/271443*45537549124^(6/17) 5142289999926321 a001 121393/54018521*73681302247^(10/13) 5142289999926321 a001 24157817/271443*14662949395604^(2/7) 5142289999926321 a001 24157817/271443*(1/2+1/2*5^(1/2))^18 5142289999926321 a001 24157817/271443*192900153618^(1/3) 5142289999926321 a001 121393/54018521*28143753123^(4/5) 5142289999926321 a001 24157817/271443*10749957122^(3/8) 5142289999926321 a001 121393/54018521*10749957122^(5/6) 5142289999926321 a001 24157817/271443*4106118243^(9/23) 5142289999926321 a001 121393/54018521*4106118243^(20/23) 5142289999926321 a001 24157817/271443*1568397607^(9/22) 5142289999926321 a001 121393/54018521*1568397607^(10/11) 5142289999926321 a001 24157817/271443*599074578^(3/7) 5142289999926321 a001 121393/54018521*599074578^(20/21) 5142289999926321 a001 24157817/271443*228826127^(9/20) 5142289999926321 a001 34111385/90481*33385282^(5/12) 5142289999926321 a001 165580141/271443*33385282^(7/18) 5142289999926321 a001 53316291173/271443*12752043^(1/17) 5142289999926321 a001 24157817/271443*87403803^(9/19) 5142289999926322 a001 63245986/271443*33385282^(4/9) 5142289999926323 a001 20365011074/271443*12752043^(2/17) 5142289999926323 a001 24157817/271443*33385282^(1/2) 5142289999926324 a001 3838809989249/7465176 5142289999926324 a001 9227465/271443*20633239^(4/7) 5142289999926325 a001 7778742049/271443*12752043^(3/17) 5142289999926327 a001 2971215073/271443*12752043^(4/17) 5142289999926329 a001 1134903170/271443*12752043^(5/17) 5142289999926330 a001 433494437/271443*12752043^(6/17) 5142289999926331 a001 9227465/271443*2537720636^(4/9) 5142289999926331 a001 121393/20633239*817138163596^(2/3) 5142289999926331 a001 121393/20633239*(1/2+1/2*5^(1/2))^38 5142289999926331 a001 9227465/271443*(1/2+1/2*5^(1/2))^20 5142289999926331 a001 9227465/271443*23725150497407^(5/16) 5142289999926331 a001 9227465/271443*505019158607^(5/14) 5142289999926331 a001 9227465/271443*73681302247^(5/13) 5142289999926331 a001 9227465/271443*28143753123^(2/5) 5142289999926331 a001 9227465/271443*10749957122^(5/12) 5142289999926331 a001 121393/20633239*10749957122^(19/24) 5142289999926331 a001 9227465/271443*4106118243^(10/23) 5142289999926331 a001 121393/20633239*4106118243^(19/23) 5142289999926331 a001 9227465/271443*1568397607^(5/11) 5142289999926331 a001 121393/20633239*1568397607^(19/22) 5142289999926331 a001 9227465/271443*599074578^(10/21) 5142289999926331 a001 121393/20633239*599074578^(19/21) 5142289999926331 a001 9227465/271443*228826127^(1/2) 5142289999926331 a001 121393/20633239*228826127^(19/20) 5142289999926332 a001 9227465/271443*87403803^(10/19) 5142289999926332 a001 165580141/271443*12752043^(7/17) 5142289999926333 a001 53316291173/271443*4870847^(1/16) 5142289999926334 a001 9227465/271443*33385282^(5/9) 5142289999926334 a001 39088169/271443*12752043^(1/2) 5142289999926334 a001 63245986/271443*12752043^(8/17) 5142289999926338 a001 24157817/271443*12752043^(9/17) 5142289999926346 a001 20365011074/271443*4870847^(1/8) 5142289999926347 a001 3524578/271443*7881196^(2/3) 5142289999926350 a001 9227465/271443*12752043^(10/17) 5142289999926353 a001 2932589879081/5702887 5142289999926360 a001 7778742049/271443*4870847^(3/16) 5142289999926373 a001 2971215073/271443*4870847^(1/4) 5142289999926387 a001 1134903170/271443*4870847^(5/16) 5142289999926400 a001 433494437/271443*4870847^(3/8) 5142289999926402 a001 121393/7881196*141422324^(12/13) 5142289999926402 a001 121393/7881196*2537720636^(4/5) 5142289999926402 a001 121393/7881196*45537549124^(12/17) 5142289999926402 a001 121393/7881196*14662949395604^(4/7) 5142289999926402 a001 121393/7881196*(1/2+1/2*5^(1/2))^36 5142289999926402 a001 121393/7881196*505019158607^(9/14) 5142289999926402 a001 121393/7881196*192900153618^(2/3) 5142289999926402 a001 121393/7881196*73681302247^(9/13) 5142289999926402 a001 3524578/271443*312119004989^(2/5) 5142289999926402 a001 3524578/271443*(1/2+1/2*5^(1/2))^22 5142289999926402 a001 3524578/271443*10749957122^(11/24) 5142289999926402 a001 121393/7881196*10749957122^(3/4) 5142289999926402 a001 3524578/271443*4106118243^(11/23) 5142289999926402 a001 121393/7881196*4106118243^(18/23) 5142289999926402 a001 3524578/271443*1568397607^(1/2) 5142289999926402 a001 121393/7881196*1568397607^(9/11) 5142289999926402 a001 3524578/271443*599074578^(11/21) 5142289999926402 a001 121393/7881196*599074578^(6/7) 5142289999926402 a001 3524578/271443*228826127^(11/20) 5142289999926402 a001 121393/7881196*228826127^(9/10) 5142289999926402 a001 3524578/271443*87403803^(11/19) 5142289999926403 a001 121393/7881196*87403803^(18/19) 5142289999926405 a001 3524578/271443*33385282^(11/18) 5142289999926414 a001 165580141/271443*4870847^(7/16) 5142289999926418 a001 53316291173/271443*1860498^(1/15) 5142289999926422 a001 3524578/271443*12752043^(11/17) 5142289999926428 a001 63245986/271443*4870847^(1/2) 5142289999926443 a001 24157817/271443*4870847^(9/16) 5142289999926467 a001 9227465/271443*4870847^(5/8) 5142289999926468 a001 121393*1860498^(1/10) 5142289999926517 a001 20365011074/271443*1860498^(2/15) 5142289999926548 a001 1120149658745/2178309 5142289999926551 a001 3524578/271443*4870847^(11/16) 5142289999926567 a001 12586269025/271443*1860498^(1/6) 5142289999926616 a001 7778742049/271443*1860498^(1/5) 5142289999926715 a001 2971215073/271443*1860498^(4/15) 5142289999926765 a001 1836311903/271443*1860498^(3/10) 5142289999926814 a001 1134903170/271443*1860498^(1/3) 5142289999926826 a001 1346269/271443*7881196^(8/11) 5142289999926886 a001 1346269/271443*141422324^(8/13) 5142289999926887 a001 1346269/271443*2537720636^(8/15) 5142289999926887 a001 121393/3010349*45537549124^(2/3) 5142289999926887 a001 1346269/271443*45537549124^(8/17) 5142289999926887 a001 121393/3010349*(1/2+1/2*5^(1/2))^34 5142289999926887 a001 1346269/271443*14662949395604^(8/21) 5142289999926887 a001 1346269/271443*(1/2+1/2*5^(1/2))^24 5142289999926887 a001 1346269/271443*192900153618^(4/9) 5142289999926887 a001 1346269/271443*73681302247^(6/13) 5142289999926887 a001 1346269/271443*10749957122^(1/2) 5142289999926887 a001 121393/3010349*10749957122^(17/24) 5142289999926887 a001 1346269/271443*4106118243^(12/23) 5142289999926887 a001 121393/3010349*4106118243^(17/23) 5142289999926887 a001 1346269/271443*1568397607^(6/11) 5142289999926887 a001 121393/3010349*1568397607^(17/22) 5142289999926887 a001 1346269/271443*599074578^(4/7) 5142289999926887 a001 121393/3010349*599074578^(17/21) 5142289999926887 a001 1346269/271443*228826127^(3/5) 5142289999926887 a001 121393/3010349*228826127^(17/20) 5142289999926887 a001 1346269/271443*87403803^(12/19) 5142289999926887 a001 121393/3010349*87403803^(17/19) 5142289999926890 a001 1346269/271443*33385282^(2/3) 5142289999926891 a001 121393/3010349*33385282^(17/18) 5142289999926909 a001 1346269/271443*12752043^(12/17) 5142289999926913 a001 4807526976/1149851*167761^(2/5) 5142289999926913 a001 433494437/271443*1860498^(2/5) 5142289999927013 a001 165580141/271443*1860498^(7/15) 5142289999927047 a001 53316291173/271443*710647^(1/14) 5142289999927049 a001 1346269/271443*4870847^(3/4) 5142289999927062 a001 34111385/90481*1860498^(1/2) 5142289999927112 a001 63245986/271443*1860498^(8/15) 5142289999927212 a001 24157817/271443*1860498^(3/5) 5142289999927322 a001 9227465/271443*1860498^(2/3) 5142289999927327 a001 5702887/271443*1860498^(7/10) 5142289999927491 a001 3524578/271443*1860498^(11/15) 5142289999927774 a001 20365011074/271443*710647^(1/7) 5142289999927888 a001 213929548577/416020 5142289999928075 a001 1346269/271443*1860498^(4/5) 5142289999928501 a001 7778742049/271443*710647^(3/14) 5142289999928865 a001 1602508992/90481*710647^(1/4) 5142289999929228 a001 2971215073/271443*710647^(2/7) 5142289999929956 a001 1134903170/271443*710647^(5/14) 5142289999930208 a001 514229/271443*141422324^(2/3) 5142289999930209 a001 121393/1149851*(1/2+1/2*5^(1/2))^32 5142289999930209 a001 121393/1149851*23725150497407^(1/2) 5142289999930209 a001 121393/1149851*505019158607^(4/7) 5142289999930209 a001 121393/1149851*73681302247^(8/13) 5142289999930209 a001 514229/271443*(1/2+1/2*5^(1/2))^26 5142289999930209 a001 514229/271443*73681302247^(1/2) 5142289999930209 a001 514229/271443*10749957122^(13/24) 5142289999930209 a001 121393/1149851*10749957122^(2/3) 5142289999930209 a001 514229/271443*4106118243^(13/23) 5142289999930209 a001 121393/1149851*4106118243^(16/23) 5142289999930209 a001 514229/271443*1568397607^(13/22) 5142289999930209 a001 121393/1149851*1568397607^(8/11) 5142289999930209 a001 514229/271443*599074578^(13/21) 5142289999930209 a001 121393/1149851*599074578^(16/21) 5142289999930209 a001 514229/271443*228826127^(13/20) 5142289999930209 a001 121393/1149851*228826127^(4/5) 5142289999930209 a001 514229/271443*87403803^(13/19) 5142289999930209 a001 121393/1149851*87403803^(16/19) 5142289999930212 a001 514229/271443*33385282^(13/18) 5142289999930213 a001 121393/1149851*33385282^(8/9) 5142289999930233 a001 514229/271443*12752043^(13/17) 5142289999930238 a001 121393/1149851*12752043^(16/17) 5142289999930385 a001 514229/271443*4870847^(13/16) 5142289999930683 a001 433494437/271443*710647^(3/7) 5142289999931410 a001 165580141/271443*710647^(1/2) 5142289999931478 a001 317811*64079^(1/23) 5142289999931496 a001 514229/271443*1860498^(13/15) 5142289999931688 a001 53316291173/271443*271443^(1/13) 5142289999932138 a001 63245986/271443*710647^(4/7) 5142289999932867 a001 24157817/271443*710647^(9/14) 5142289999933604 a001 9227465/271443*710647^(5/7) 5142289999933924 a001 5702887/271443*710647^(3/4) 5142289999934402 a001 3524578/271443*710647^(11/14) 5142289999935614 a001 1346269/271443*710647^(6/7) 5142289999936099 a001 46347/2206*103682^(7/8) 5142289999937056 a001 20365011074/271443*271443^(2/13) 5142289999937069 a001 163427632717/317811 5142289999939664 a001 514229/271443*710647^(13/14) 5142289999940175 a001 591286729879/1860498*64079^(1/23) 5142289999941444 a001 1548008755920/4870847*64079^(1/23) 5142289999941629 a001 4052739537881/12752043*64079^(1/23) 5142289999941656 a001 1515744265389/4769326*64079^(1/23) 5142289999941672 a001 6557470319842/20633239*64079^(1/23) 5142289999941743 a001 2504730781961/7881196*64079^(1/23) 5142289999942228 a001 956722026041/3010349*64079^(1/23) 5142289999942425 a001 7778742049/271443*271443^(3/13) 5142289999945550 a001 365435296162/1149851*64079^(1/23) 5142289999946251 a001 86267571272/271443*103682^(1/24) 5142289999947793 a001 2971215073/271443*271443^(4/13) 5142289999949088 a001 23184+219602*5^(1/2) 5142289999949088 a001 101003831721/196418 5142289999949385 a001 32951280099/710647*167761^(1/5) 5142289999949682 a001 1836311903/439204*167761^(2/5) 5142289999952902 a001 121393/439204*7881196^(10/11) 5142289999952967 a001 121393/439204*20633239^(6/7) 5142289999952967 a001 196418/271443*20633239^(4/5) 5142289999952977 a001 121393/439204*141422324^(10/13) 5142289999952977 a001 121393/439204*2537720636^(2/3) 5142289999952977 a001 196418/271443*17393796001^(4/7) 5142289999952977 a001 121393/439204*45537549124^(10/17) 5142289999952977 a001 121393/439204*312119004989^(6/11) 5142289999952977 a001 121393/439204*14662949395604^(10/21) 5142289999952977 a001 121393/439204*(1/2+1/2*5^(1/2))^30 5142289999952977 a001 121393/439204*192900153618^(5/9) 5142289999952977 a001 196418/271443*14662949395604^(4/9) 5142289999952977 a001 196418/271443*(1/2+1/2*5^(1/2))^28 5142289999952977 a001 196418/271443*505019158607^(1/2) 5142289999952977 a001 196418/271443*73681302247^(7/13) 5142289999952977 a001 121393/439204*28143753123^(3/5) 5142289999952977 a001 196418/271443*10749957122^(7/12) 5142289999952977 a001 121393/439204*10749957122^(5/8) 5142289999952977 a001 196418/271443*4106118243^(14/23) 5142289999952977 a001 121393/439204*4106118243^(15/23) 5142289999952977 a001 196418/271443*1568397607^(7/11) 5142289999952977 a001 121393/439204*1568397607^(15/22) 5142289999952977 a001 196418/271443*599074578^(2/3) 5142289999952977 a001 121393/439204*599074578^(5/7) 5142289999952977 a001 196418/271443*228826127^(7/10) 5142289999952977 a001 121393/439204*228826127^(3/4) 5142289999952977 a001 196418/271443*87403803^(14/19) 5142289999952978 a001 121393/439204*87403803^(15/19) 5142289999952981 a001 196418/271443*33385282^(7/9) 5142289999952981 a001 121393/439204*33385282^(5/6) 5142289999953003 a001 196418/271443*12752043^(14/17) 5142289999953005 a001 121393/439204*12752043^(15/17) 5142289999953162 a001 1134903170/271443*271443^(5/13) 5142289999953167 a001 196418/271443*4870847^(7/8) 5142289999953180 a001 121393/439204*4870847^(15/16) 5142289999954364 a001 196418/271443*1860498^(14/15) 5142289999956815 a001 1346269/103682*103682^(11/12) 5142289999958082 a001 43133785636/930249*167761^(1/5) 5142289999958530 a001 433494437/271443*271443^(6/13) 5142289999959350 a001 225851433717/4870847*167761^(1/5) 5142289999959536 a001 591286729879/12752043*167761^(1/5) 5142289999959563 a001 774004377960/16692641*167761^(1/5) 5142289999959566 a001 4052739537881/87403803*167761^(1/5) 5142289999959567 a001 225749145909/4868641*167761^(1/5) 5142289999959567 a001 3278735159921/70711162*167761^(1/5) 5142289999959569 a001 2504730781961/54018521*167761^(1/5) 5142289999959579 a001 956722026041/20633239*167761^(1/5) 5142289999959650 a001 182717648081/3940598*167761^(1/5) 5142289999960135 a001 139583862445/3010349*167761^(1/5) 5142289999961026 a001 75025*64079^(4/23) 5142289999961215 a001 267914296/271443*271443^(1/2) 5142289999962315 a001 3524578/710647*439204^(8/9) 5142289999963159 a001 757015/2+121393/2*5^(1/2) 5142289999963456 a001 53316291173/1149851*167761^(1/5) 5142289999963899 a001 165580141/271443*271443^(7/13) 5142289999964850 a001 12586269025/103682*39603^(3/22) 5142289999965189 a001 14930352/710647*439204^(7/9) 5142289999966182 a001 53316291173/271443*103682^(1/12) 5142289999968156 a001 63245986/710647*439204^(2/3) 5142289999968318 a001 139583862445/439204*64079^(1/23) 5142289999969268 a001 63245986/271443*271443^(8/13) 5142289999969452 a001 1/98209*(1/2+1/2*5^(1/2))^56 5142289999970941 a001 9227465/1860498*439204^(8/9) 5142289999971118 a001 267914296/710647*439204^(5/9) 5142289999971856 a001 -196418+317811*5^(1/2) 5142289999972199 a001 24157817/4870847*439204^(8/9) 5142289999972383 a001 63245986/12752043*439204^(8/9) 5142289999972410 a001 165580141/33385282*439204^(8/9) 5142289999972414 a001 433494437/87403803*439204^(8/9) 5142289999972414 a001 1134903170/228826127*439204^(8/9) 5142289999972414 a001 2971215073/599074578*439204^(8/9) 5142289999972414 a001 7778742049/1568397607*439204^(8/9) 5142289999972414 a001 20365011074/4106118243*439204^(8/9) 5142289999972414 a001 53316291173/10749957122*439204^(8/9) 5142289999972414 a001 139583862445/28143753123*439204^(8/9) 5142289999972414 a001 365435296162/73681302247*439204^(8/9) 5142289999972414 a001 956722026041/192900153618*439204^(8/9) 5142289999972414 a001 2504730781961/505019158607*439204^(8/9) 5142289999972414 a001 10610209857723/2139295485799*439204^(8/9) 5142289999972414 a001 4052739537881/817138163596*439204^(8/9) 5142289999972414 a001 140728068720/28374454999*439204^(8/9) 5142289999972414 a001 591286729879/119218851371*439204^(8/9) 5142289999972414 a001 225851433717/45537549124*439204^(8/9) 5142289999972414 a001 86267571272/17393796001*439204^(8/9) 5142289999972414 a001 32951280099/6643838879*439204^(8/9) 5142289999972414 a001 1144206275/230701876*439204^(8/9) 5142289999972414 a001 4807526976/969323029*439204^(8/9) 5142289999972414 a001 1836311903/370248451*439204^(8/9) 5142289999972415 a001 701408733/141422324*439204^(8/9) 5142289999972416 a001 267914296/54018521*439204^(8/9) 5142289999972426 a001 9303105/1875749*439204^(8/9) 5142289999972496 a001 39088169/7881196*439204^(8/9) 5142289999972977 a001 14930352/3010349*439204^(8/9) 5142289999973890 a001 39088169/1860498*439204^(7/9) 5142289999974080 a001 1134903170/710647*439204^(4/9) 5142289999974638 a001 24157817/271443*271443^(9/13) 5142289999974693 a001 416020/51841*103682^(23/24) 5142289999975160 a001 102334155/4870847*439204^(7/9) 5142289999975345 a001 267914296/12752043*439204^(7/9) 5142289999975372 a001 701408733/33385282*439204^(7/9) 5142289999975376 a001 1836311903/87403803*439204^(7/9) 5142289999975376 a001 102287808/4868641*439204^(7/9) 5142289999975376 a001 12586269025/599074578*439204^(7/9) 5142289999975376 a001 32951280099/1568397607*439204^(7/9) 5142289999975376 a001 86267571272/4106118243*439204^(7/9) 5142289999975376 a001 225851433717/10749957122*439204^(7/9) 5142289999975376 a001 591286729879/28143753123*439204^(7/9) 5142289999975376 a001 1548008755920/73681302247*439204^(7/9) 5142289999975376 a001 4052739537881/192900153618*439204^(7/9) 5142289999975376 a001 225749145909/10745088481*439204^(7/9) 5142289999975376 a001 6557470319842/312119004989*439204^(7/9) 5142289999975376 a001 2504730781961/119218851371*439204^(7/9) 5142289999975376 a001 956722026041/45537549124*439204^(7/9) 5142289999975376 a001 365435296162/17393796001*439204^(7/9) 5142289999975376 a001 139583862445/6643838879*439204^(7/9) 5142289999975376 a001 53316291173/2537720636*439204^(7/9) 5142289999975376 a001 20365011074/969323029*439204^(7/9) 5142289999975376 a001 7778742049/370248451*439204^(7/9) 5142289999975377 a001 2971215073/141422324*439204^(7/9) 5142289999975378 a001 1134903170/54018521*439204^(7/9) 5142289999975388 a001 433494437/20633239*439204^(7/9) 5142289999975459 a001 165580141/7881196*439204^(7/9) 5142289999975745 a001 317811/710647*(1/2+1/2*5^(1/2))^29 5142289999975745 a001 317811/710647*1322157322203^(1/2) 5142289999975944 a001 63245986/3010349*439204^(7/9) 5142289999976272 a001 5702887/1149851*439204^(8/9) 5142289999976853 a001 165580141/1860498*439204^(2/3) 5142289999977042 a001 686789568/101521*439204^(1/3) 5142289999977231 a001 733831-98209*5^(1/2) 5142289999978122 a001 433494437/4870847*439204^(2/3) 5142289999978307 a001 1134903170/12752043*439204^(2/3) 5142289999978334 a001 2971215073/33385282*439204^(2/3) 5142289999978338 a001 7778742049/87403803*439204^(2/3) 5142289999978338 a001 20365011074/228826127*439204^(2/3) 5142289999978338 a001 53316291173/599074578*439204^(2/3) 5142289999978338 a001 139583862445/1568397607*439204^(2/3) 5142289999978338 a001 365435296162/4106118243*439204^(2/3) 5142289999978338 a001 956722026041/10749957122*439204^(2/3) 5142289999978338 a001 2504730781961/28143753123*439204^(2/3) 5142289999978338 a001 6557470319842/73681302247*439204^(2/3) 5142289999978338 a001 10610209857723/119218851371*439204^(2/3) 5142289999978338 a001 4052739537881/45537549124*439204^(2/3) 5142289999978338 a001 1548008755920/17393796001*439204^(2/3) 5142289999978338 a001 591286729879/6643838879*439204^(2/3) 5142289999978338 a001 225851433717/2537720636*439204^(2/3) 5142289999978338 a001 86267571272/969323029*439204^(2/3) 5142289999978338 a001 32951280099/370248451*439204^(2/3) 5142289999978339 a001 12586269025/141422324*439204^(2/3) 5142289999978340 a001 4807526976/54018521*439204^(2/3) 5142289999978350 a001 1836311903/20633239*439204^(2/3) 5142289999978421 a001 3524667/39604*439204^(2/3) 5142289999978906 a001 267914296/3010349*439204^(2/3) 5142289999979267 a001 24157817/1149851*439204^(7/9) 5142289999979815 a001 233802911/620166*439204^(5/9) 5142289999980004 a001 20365011074/710647*439204^(2/9) 5142289999980017 a001 9227465/271443*271443^(10/13) 5142289999980553 a001 -1542687/2+1149851/2*5^(1/2) 5142289999980553 a001 264431464440/514229 5142289999981084 a001 1836311903/4870847*439204^(5/9) 5142289999981269 a001 1602508992/4250681*439204^(5/9) 5142289999981296 a001 12586269025/33385282*439204^(5/9) 5142289999981300 a001 10983760033/29134601*439204^(5/9) 5142289999981300 a001 86267571272/228826127*439204^(5/9) 5142289999981300 a001 267913919/710646*439204^(5/9) 5142289999981300 a001 591286729879/1568397607*439204^(5/9) 5142289999981300 a001 516002918640/1368706081*439204^(5/9) 5142289999981300 a001 4052739537881/10749957122*439204^(5/9) 5142289999981300 a001 3536736619241/9381251041*439204^(5/9) 5142289999981300 a001 6557470319842/17393796001*439204^(5/9) 5142289999981300 a001 2504730781961/6643838879*439204^(5/9) 5142289999981300 a001 956722026041/2537720636*439204^(5/9) 5142289999981300 a001 365435296162/969323029*439204^(5/9) 5142289999981300 a001 139583862445/370248451*439204^(5/9) 5142289999981301 a001 53316291173/141422324*439204^(5/9) 5142289999981302 a001 20365011074/54018521*439204^(5/9) 5142289999981312 a001 7778742049/20633239*439204^(5/9) 5142289999981383 a001 2971215073/7881196*439204^(5/9) 5142289999981868 a001 1134903170/3010349*439204^(5/9) 5142289999982228 a001 102334155/1149851*439204^(2/3) 5142289999982777 a001 2971215073/1860498*439204^(4/9) 5142289999982966 a001 86267571272/710647*439204^(1/9) 5142289999984046 a001 7778742049/4870847*439204^(4/9) 5142289999984231 a001 20365011074/12752043*439204^(4/9) 5142289999984258 a001 53316291173/33385282*439204^(4/9) 5142289999984262 a001 139583862445/87403803*439204^(4/9) 5142289999984262 a001 365435296162/228826127*439204^(4/9) 5142289999984262 a001 956722026041/599074578*439204^(4/9) 5142289999984262 a001 2504730781961/1568397607*439204^(4/9) 5142289999984262 a001 6557470319842/4106118243*439204^(4/9) 5142289999984262 a001 10610209857723/6643838879*439204^(4/9) 5142289999984262 a001 4052739537881/2537720636*439204^(4/9) 5142289999984262 a001 1548008755920/969323029*439204^(4/9) 5142289999984262 a001 591286729879/370248451*439204^(4/9) 5142289999984263 a001 225851433717/141422324*439204^(4/9) 5142289999984264 a001 86267571272/54018521*439204^(4/9) 5142289999984274 a001 32951280099/20633239*439204^(4/9) 5142289999984345 a001 12586269025/7881196*439204^(4/9) 5142289999984374 a001 832040/710647*7881196^(9/11) 5142289999984442 a001 832040/710647*141422324^(9/13) 5142289999984442 a001 832040/710647*2537720636^(3/5) 5142289999984442 a001 832040/710647*45537549124^(9/17) 5142289999984442 a001 105937/620166*(1/2+1/2*5^(1/2))^31 5142289999984442 a001 105937/620166*9062201101803^(1/2) 5142289999984442 a001 832040/710647*817138163596^(9/19) 5142289999984442 a001 832040/710647*14662949395604^(3/7) 5142289999984442 a001 832040/710647*(1/2+1/2*5^(1/2))^27 5142289999984442 a001 832040/710647*192900153618^(1/2) 5142289999984442 a001 832040/710647*10749957122^(9/16) 5142289999984442 a001 832040/710647*599074578^(9/14) 5142289999984446 a001 832040/710647*33385282^(3/4) 5142289999984830 a001 4807526976/3010349*439204^(4/9) 5142289999985144 a001 692290561599/1346269 5142289999985190 a001 433494437/1149851*439204^(5/9) 5142289999985456 a001 3524578/271443*271443^(11/13) 5142289999985702 a001 311187/101521*20633239^(5/7) 5142289999985711 a001 317811/4870847*141422324^(11/13) 5142289999985711 a001 317811/4870847*2537720636^(11/15) 5142289999985711 a001 311187/101521*2537720636^(5/9) 5142289999985711 a001 317811/4870847*45537549124^(11/17) 5142289999985711 a001 317811/4870847*312119004989^(3/5) 5142289999985711 a001 311187/101521*312119004989^(5/11) 5142289999985711 a001 317811/4870847*14662949395604^(11/21) 5142289999985711 a001 317811/4870847*(1/2+1/2*5^(1/2))^33 5142289999985711 a001 311187/101521*(1/2+1/2*5^(1/2))^25 5142289999985711 a001 311187/101521*3461452808002^(5/12) 5142289999985711 a001 317811/4870847*192900153618^(11/18) 5142289999985711 a001 311187/101521*28143753123^(1/2) 5142289999985711 a001 317811/4870847*10749957122^(11/16) 5142289999985711 a001 317811/4870847*1568397607^(3/4) 5142289999985711 a001 317811/4870847*599074578^(11/14) 5142289999985711 a001 311187/101521*228826127^(5/8) 5142289999985715 a001 317811/4870847*33385282^(11/12) 5142289999985739 a001 12586269025/1860498*439204^(1/3) 5142289999985779 a001 832040/710647*1860498^(9/10) 5142289999985813 a001 1812440220357/3524578 5142289999985871 a001 14930352/710647*7881196^(7/11) 5142289999985883 a001 63245986/710647*7881196^(6/11) 5142289999985885 a001 9227465/710647*7881196^(2/3) 5142289999985890 a001 267914296/710647*7881196^(5/11) 5142289999985896 a001 105937/4250681*2537720636^(7/9) 5142289999985896 a001 105937/4250681*17393796001^(5/7) 5142289999985896 a001 105937/4250681*312119004989^(7/11) 5142289999985896 a001 105937/4250681*14662949395604^(5/9) 5142289999985896 a001 105937/4250681*(1/2+1/2*5^(1/2))^35 5142289999985896 a001 105937/4250681*505019158607^(5/8) 5142289999985896 a001 5702887/710647*(1/2+1/2*5^(1/2))^23 5142289999985896 a001 105937/4250681*28143753123^(7/10) 5142289999985896 a001 5702887/710647*4106118243^(1/2) 5142289999985896 a001 105937/4250681*599074578^(5/6) 5142289999985896 a001 105937/4250681*228826127^(7/8) 5142289999985898 a001 1134903170/710647*7881196^(4/11) 5142289999985900 a001 1836311903/710647*7881196^(1/3) 5142289999985905 a001 686789568/101521*7881196^(3/11) 5142289999985911 a001 365002315344/709805 5142289999985913 a001 20365011074/710647*7881196^(2/11) 5142289999985916 a001 14930352/710647*20633239^(3/5) 5142289999985920 a001 86267571272/710647*7881196^(1/11) 5142289999985923 a001 267914296/710647*20633239^(3/7) 5142289999985923 a001 24157817/710647*20633239^(4/7) 5142289999985923 a001 433494437/710647*20633239^(2/5) 5142289999985923 a001 14930352/710647*141422324^(7/13) 5142289999985923 a001 14930352/710647*2537720636^(7/15) 5142289999985923 a001 14930352/710647*17393796001^(3/7) 5142289999985923 a001 14930352/710647*45537549124^(7/17) 5142289999985923 a001 317811/33385282*(1/2+1/2*5^(1/2))^37 5142289999985923 a001 14930352/710647*14662949395604^(1/3) 5142289999985923 a001 14930352/710647*(1/2+1/2*5^(1/2))^21 5142289999985923 a001 14930352/710647*192900153618^(7/18) 5142289999985923 a001 14930352/710647*10749957122^(7/16) 5142289999985923 a001 14930352/710647*599074578^(1/2) 5142289999985924 a001 2971215073/710647*20633239^(2/7) 5142289999985925 a001 12422650078059/24157817 5142289999985925 a001 12586269025/710647*20633239^(1/5) 5142289999985926 a001 14930352/710647*33385282^(7/12) 5142289999985926 a001 32951280099/710647*20633239^(1/7) 5142289999985927 a001 105937/29134601*2537720636^(13/15) 5142289999985927 a001 105937/29134601*45537549124^(13/17) 5142289999985927 a001 105937/29134601*14662949395604^(13/21) 5142289999985927 a001 39088169/710647*817138163596^(1/3) 5142289999985927 a001 39088169/710647*(1/2+1/2*5^(1/2))^19 5142289999985927 a001 105937/29134601*192900153618^(13/18) 5142289999985927 a001 105937/29134601*73681302247^(3/4) 5142289999985927 a001 105937/29134601*10749957122^(13/16) 5142289999985927 a001 105937/29134601*599074578^(13/14) 5142289999985927 a001 32522920134705/63245986 5142289999985927 a001 39088169/710647*87403803^(1/2) 5142289999985928 a001 267914296/710647*141422324^(5/13) 5142289999985928 a001 14619165/101521*45537549124^(1/3) 5142289999985928 a001 14619165/101521*(1/2+1/2*5^(1/2))^17 5142289999985928 a001 701408733/710647*141422324^(1/3) 5142289999985928 a001 1134903170/710647*141422324^(4/13) 5142289999985928 a001 686789568/101521*141422324^(3/13) 5142289999985928 a001 85146110326056/165580141 5142289999985928 a001 20365011074/710647*141422324^(2/13) 5142289999985928 a001 86267571272/710647*141422324^(1/13) 5142289999985928 a001 267914296/710647*2537720636^(1/3) 5142289999985928 a001 267914296/710647*45537549124^(5/17) 5142289999985928 a001 267914296/710647*312119004989^(3/11) 5142289999985928 a001 267914296/710647*14662949395604^(5/21) 5142289999985928 a001 267914296/710647*(1/2+1/2*5^(1/2))^15 5142289999985928 a001 267914296/710647*192900153618^(5/18) 5142289999985928 a001 267914296/710647*28143753123^(3/10) 5142289999985928 a001 267914296/710647*10749957122^(5/16) 5142289999985928 a001 267914296/710647*599074578^(5/14) 5142289999985928 a001 222915410843463/433494437 5142289999985928 a001 317811/1568397607*45537549124^(15/17) 5142289999985928 a001 317811/1568397607*312119004989^(9/11) 5142289999985928 a001 317811/1568397607*14662949395604^(5/7) 5142289999985928 a001 701408733/710647*(1/2+1/2*5^(1/2))^13 5142289999985928 a001 317811/1568397607*192900153618^(5/6) 5142289999985928 a001 701408733/710647*73681302247^(1/4) 5142289999985928 a001 317811/1568397607*28143753123^(9/10) 5142289999985928 a001 317811/1568397607*10749957122^(15/16) 5142289999985928 a001 583600122204333/1134903170 5142289999985928 a001 1836311903/710647*312119004989^(1/5) 5142289999985928 a001 1836311903/710647*(1/2+1/2*5^(1/2))^11 5142289999985928 a001 686789568/101521*2537720636^(1/5) 5142289999985928 a001 1527884955769536/2971215073 5142289999985928 a001 20365011074/710647*2537720636^(2/15) 5142289999985928 a001 32951280099/710647*2537720636^(1/9) 5142289999985928 a001 2971215073/710647*2537720636^(2/9) 5142289999985928 a001 86267571272/710647*2537720636^(1/15) 5142289999985928 a001 686789568/101521*45537549124^(3/17) 5142289999985928 a001 317811/10749957122*14662949395604^(7/9) 5142289999985928 a001 317811/10749957122*505019158607^(7/8) 5142289999985928 a001 686789568/101521*14662949395604^(1/7) 5142289999985928 a001 686789568/101521*(1/2+1/2*5^(1/2))^9 5142289999985928 a001 686789568/101521*10749957122^(3/16) 5142289999985928 a001 307696518854175/598364773 5142289999985928 a001 12586269025/710647*17393796001^(1/7) 5142289999985928 a001 105937/9381251041*817138163596^(17/19) 5142289999985928 a001 105937/9381251041*14662949395604^(17/21) 5142289999985928 a001 12586269025/710647*(1/2+1/2*5^(1/2))^7 5142289999985928 a001 105937/9381251041*192900153618^(17/18) 5142289999985928 a001 10472279279543289/20365011074 5142289999985928 a001 32951280099/710647*312119004989^(1/11) 5142289999985928 a001 32951280099/710647*(1/2+1/2*5^(1/2))^5 5142289999985928 a001 27416783093525592/53316291173 5142289999985928 a001 32951280099/710647*28143753123^(1/10) 5142289999985928 a001 86267571272/710647*45537549124^(1/17) 5142289999985928 a001 105937/64300051206*3461452808002^(11/12) 5142289999985928 a001 86267571272/710647*14662949395604^(1/21) 5142289999985928 a001 86267571272/710647*(1/2+1/2*5^(1/2))^3 5142289999985928 a001 86267571272/710647*192900153618^(1/18) 5142289999985928 a001 71778070001033487/139583862445 5142289999985928 a001 187917426909574869/365435296162 5142289999985928 a001 1288005205273498491/2504730781961 5142289999985928 a001 317811/2+317811/2*5^(1/2) 5142289999985928 a001 365435296162/710647 5142289999985928 a001 317811/312119004989*14662949395604^(8/9) 5142289999985928 a001 139583862445/710647*(1/2+1/2*5^(1/2))^2 5142289999985928 a001 44361286907507895/86267571272 5142289999985928 a001 317811/119218851371*14662949395604^(6/7) 5142289999985928 a001 53316291173/710647*(1/2+1/2*5^(1/2))^4 5142289999985928 a001 53316291173/710647*23725150497407^(1/16) 5142289999985928 a001 53316291173/710647*73681302247^(1/13) 5142289999985928 a001 5648167937994101/10983760033 5142289999985928 a001 139583862445/710647*10749957122^(1/24) 5142289999985928 a001 20365011074/710647*45537549124^(2/17) 5142289999985928 a001 317811/45537549124*23725150497407^(13/16) 5142289999985928 a001 317811/45537549124*505019158607^(13/14) 5142289999985928 a001 20365011074/710647*14662949395604^(2/21) 5142289999985928 a001 20365011074/710647*(1/2+1/2*5^(1/2))^6 5142289999985928 a001 86267571272/710647*10749957122^(1/16) 5142289999985928 a001 53316291173/710647*10749957122^(1/12) 5142289999985928 a001 20365011074/710647*10749957122^(1/8) 5142289999985928 a001 6472224534439014/12586269025 5142289999985928 a001 139583862445/710647*4106118243^(1/23) 5142289999985928 a001 10959/599786069*312119004989^(10/11) 5142289999985928 a001 10959/599786069*3461452808002^(5/6) 5142289999985928 a001 7778742049/710647*(1/2+1/2*5^(1/2))^8 5142289999985928 a001 7778742049/710647*23725150497407^(1/8) 5142289999985928 a001 7778742049/710647*505019158607^(1/7) 5142289999985928 a001 7778742049/710647*73681302247^(2/13) 5142289999985928 a001 7778742049/710647*10749957122^(1/6) 5142289999985928 a001 53316291173/710647*4106118243^(2/23) 5142289999985928 a001 20365011074/710647*4106118243^(3/23) 5142289999985928 a001 824056596444913/1602508992 5142289999985928 a001 7778742049/710647*4106118243^(4/23) 5142289999985928 a001 139583862445/710647*1568397607^(1/22) 5142289999985928 a001 317811/6643838879*45537549124^(16/17) 5142289999985928 a001 317811/6643838879*14662949395604^(16/21) 5142289999985928 a001 2971215073/710647*312119004989^(2/11) 5142289999985928 a001 2971215073/710647*(1/2+1/2*5^(1/2))^10 5142289999985928 a001 317811/6643838879*192900153618^(8/9) 5142289999985928 a001 317811/6643838879*73681302247^(12/13) 5142289999985928 a001 2971215073/710647*28143753123^(1/5) 5142289999985928 a001 2971215073/710647*10749957122^(5/24) 5142289999985928 a001 2971215073/710647*4106118243^(5/23) 5142289999985928 a001 53316291173/710647*1568397607^(1/11) 5142289999985928 a001 1836311903/710647*1568397607^(1/4) 5142289999985928 a001 20365011074/710647*1568397607^(3/22) 5142289999985928 a001 7778742049/710647*1568397607^(2/11) 5142289999985928 a001 944284833565203/1836311903 5142289999985928 a001 1134903170/710647*2537720636^(4/15) 5142289999985928 a001 2971215073/710647*1568397607^(5/22) 5142289999985928 a001 139583862445/710647*599074578^(1/21) 5142289999985928 a001 1134903170/710647*45537549124^(4/17) 5142289999985928 a001 1134903170/710647*817138163596^(4/19) 5142289999985928 a001 1134903170/710647*14662949395604^(4/21) 5142289999985928 a001 1134903170/710647*(1/2+1/2*5^(1/2))^12 5142289999985928 a001 1134903170/710647*192900153618^(2/9) 5142289999985928 a001 1134903170/710647*73681302247^(3/13) 5142289999985928 a001 1134903170/710647*10749957122^(1/4) 5142289999985928 a001 317811/2537720636*10749957122^(23/24) 5142289999985928 a001 1134903170/710647*4106118243^(6/23) 5142289999985928 a001 86267571272/710647*599074578^(1/14) 5142289999985928 a001 53316291173/710647*599074578^(2/21) 5142289999985928 a001 1134903170/710647*1568397607^(3/11) 5142289999985928 a001 20365011074/710647*599074578^(1/7) 5142289999985928 a001 12586269025/710647*599074578^(1/6) 5142289999985928 a001 7778742049/710647*599074578^(4/21) 5142289999985928 a001 120228237120290/233802911 5142289999985928 a001 686789568/101521*599074578^(3/14) 5142289999985928 a001 2971215073/710647*599074578^(5/21) 5142289999985928 a001 1134903170/710647*599074578^(2/7) 5142289999985928 a001 139583862445/710647*228826127^(1/20) 5142289999985928 a001 433494437/710647*17393796001^(2/7) 5142289999985928 a001 317811/969323029*312119004989^(4/5) 5142289999985928 a001 317811/969323029*23725150497407^(11/16) 5142289999985928 a001 433494437/710647*14662949395604^(2/9) 5142289999985928 a001 433494437/710647*(1/2+1/2*5^(1/2))^14 5142289999985928 a001 433494437/710647*505019158607^(1/4) 5142289999985928 a001 317811/969323029*73681302247^(11/13) 5142289999985928 a001 433494437/710647*10749957122^(7/24) 5142289999985928 a001 317811/969323029*10749957122^(11/12) 5142289999985928 a001 433494437/710647*4106118243^(7/23) 5142289999985928 a001 317811/969323029*4106118243^(22/23) 5142289999985928 a001 433494437/710647*1568397607^(7/22) 5142289999985928 a001 53316291173/710647*228826127^(1/10) 5142289999985928 a001 433494437/710647*599074578^(1/3) 5142289999985928 a001 32951280099/710647*228826127^(1/8) 5142289999985928 a001 20365011074/710647*228826127^(3/20) 5142289999985928 a001 7778742049/710647*228826127^(1/5) 5142289999985928 a001 365435810391/710648 5142289999985928 a001 267914296/710647*228826127^(3/8) 5142289999985928 a001 2971215073/710647*228826127^(1/4) 5142289999985928 a001 1134903170/710647*228826127^(3/10) 5142289999985928 a001 139583862445/710647*87403803^(1/19) 5142289999985928 a001 317811/370248451*2537720636^(14/15) 5142289999985928 a001 317811/370248451*17393796001^(6/7) 5142289999985928 a001 317811/370248451*45537549124^(14/17) 5142289999985928 a001 317811/370248451*817138163596^(14/19) 5142289999985928 a001 317811/370248451*14662949395604^(2/3) 5142289999985928 a001 317811/370248451*505019158607^(3/4) 5142289999985928 a001 165580141/710647*(1/2+1/2*5^(1/2))^16 5142289999985928 a001 165580141/710647*23725150497407^(1/4) 5142289999985928 a001 317811/370248451*192900153618^(7/9) 5142289999985928 a001 165580141/710647*73681302247^(4/13) 5142289999985928 a001 165580141/710647*10749957122^(1/3) 5142289999985928 a001 317811/370248451*10749957122^(7/8) 5142289999985928 a001 165580141/710647*4106118243^(8/23) 5142289999985928 a001 317811/370248451*4106118243^(21/23) 5142289999985928 a001 165580141/710647*1568397607^(4/11) 5142289999985928 a001 317811/370248451*1568397607^(21/22) 5142289999985928 a001 433494437/710647*228826127^(7/20) 5142289999985928 a001 165580141/710647*599074578^(8/21) 5142289999985928 a001 53316291173/710647*87403803^(2/19) 5142289999985928 a001 165580141/710647*228826127^(2/5) 5142289999985928 a001 20365011074/710647*87403803^(3/19) 5142289999985928 a001 17541063397117/34111385 5142289999985928 a001 63245986/710647*141422324^(6/13) 5142289999985928 a001 7778742049/710647*87403803^(4/19) 5142289999985928 a001 2971215073/710647*87403803^(5/19) 5142289999985928 a001 1134903170/710647*87403803^(6/19) 5142289999985928 a001 433494437/710647*87403803^(7/19) 5142289999985928 a001 139583862445/710647*33385282^(1/18) 5142289999985928 a001 317811/141422324*2537720636^(8/9) 5142289999985928 a001 63245986/710647*2537720636^(2/5) 5142289999985928 a001 63245986/710647*45537549124^(6/17) 5142289999985928 a001 317811/141422324*312119004989^(8/11) 5142289999985928 a001 317811/141422324*23725150497407^(5/8) 5142289999985928 a001 63245986/710647*(1/2+1/2*5^(1/2))^18 5142289999985928 a001 63245986/710647*192900153618^(1/3) 5142289999985928 a001 317811/141422324*73681302247^(10/13) 5142289999985928 a001 317811/141422324*28143753123^(4/5) 5142289999985928 a001 63245986/710647*10749957122^(3/8) 5142289999985928 a001 317811/141422324*10749957122^(5/6) 5142289999985928 a001 63245986/710647*4106118243^(9/23) 5142289999985928 a001 317811/141422324*4106118243^(20/23) 5142289999985928 a001 63245986/710647*1568397607^(9/22) 5142289999985928 a001 317811/141422324*1568397607^(10/11) 5142289999985928 a001 63245986/710647*599074578^(3/7) 5142289999985928 a001 317811/141422324*599074578^(20/21) 5142289999985928 a001 63245986/710647*228826127^(9/20) 5142289999985928 a001 165580141/710647*87403803^(8/19) 5142289999985928 a001 86267571272/710647*33385282^(1/12) 5142289999985928 a001 53316291173/710647*33385282^(1/9) 5142289999985928 a001 63245986/710647*87403803^(9/19) 5142289999985929 a001 20365011074/710647*33385282^(1/6) 5142289999985929 a001 20100270056646/39088169 5142289999985929 a001 7778742049/710647*33385282^(2/9) 5142289999985929 a001 686789568/101521*33385282^(1/4) 5142289999985929 a001 2971215073/710647*33385282^(5/18) 5142289999985929 a001 1134903170/710647*33385282^(1/3) 5142289999985930 a001 24157817/710647*2537720636^(4/9) 5142289999985930 a001 317811/54018521*817138163596^(2/3) 5142289999985930 a001 24157817/710647*(1/2+1/2*5^(1/2))^20 5142289999985930 a001 24157817/710647*23725150497407^(5/16) 5142289999985930 a001 24157817/710647*505019158607^(5/14) 5142289999985930 a001 24157817/710647*73681302247^(5/13) 5142289999985930 a001 24157817/710647*28143753123^(2/5) 5142289999985930 a001 24157817/710647*10749957122^(5/12) 5142289999985930 a001 317811/54018521*10749957122^(19/24) 5142289999985930 a001 24157817/710647*4106118243^(10/23) 5142289999985930 a001 317811/54018521*4106118243^(19/23) 5142289999985930 a001 24157817/710647*1568397607^(5/11) 5142289999985930 a001 317811/54018521*1568397607^(19/22) 5142289999985930 a001 24157817/710647*599074578^(10/21) 5142289999985930 a001 317811/54018521*599074578^(19/21) 5142289999985930 a001 433494437/710647*33385282^(7/18) 5142289999985930 a001 24157817/710647*228826127^(1/2) 5142289999985930 a001 317811/54018521*228826127^(19/20) 5142289999985930 a001 139583862445/710647*12752043^(1/17) 5142289999985930 a001 267914296/710647*33385282^(5/12) 5142289999985930 a001 165580141/710647*33385282^(4/9) 5142289999985930 a001 24157817/710647*87403803^(10/19) 5142289999985930 a001 63245986/710647*33385282^(1/2) 5142289999985932 a001 53316291173/710647*12752043^(2/17) 5142289999985932 a001 24157817/710647*33385282^(5/9) 5142289999985933 a001 20365011074/710647*12752043^(3/17) 5142289999985934 a001 2559206659529/4976784 5142289999985935 a001 7778742049/710647*12752043^(4/17) 5142289999985937 a001 2971215073/710647*12752043^(5/17) 5142289999985939 a001 1134903170/710647*12752043^(6/17) 5142289999985940 a001 10959/711491*141422324^(12/13) 5142289999985940 a001 10959/711491*2537720636^(4/5) 5142289999985940 a001 10959/711491*45537549124^(12/17) 5142289999985940 a001 10959/711491*14662949395604^(4/7) 5142289999985940 a001 10959/711491*(1/2+1/2*5^(1/2))^36 5142289999985940 a001 10959/711491*505019158607^(9/14) 5142289999985940 a001 9227465/710647*(1/2+1/2*5^(1/2))^22 5142289999985940 a001 10959/711491*192900153618^(2/3) 5142289999985940 a001 10959/711491*73681302247^(9/13) 5142289999985940 a001 9227465/710647*10749957122^(11/24) 5142289999985940 a001 10959/711491*10749957122^(3/4) 5142289999985940 a001 9227465/710647*4106118243^(11/23) 5142289999985940 a001 10959/711491*4106118243^(18/23) 5142289999985940 a001 9227465/710647*1568397607^(1/2) 5142289999985940 a001 10959/711491*1568397607^(9/11) 5142289999985940 a001 9227465/710647*599074578^(11/21) 5142289999985940 a001 10959/711491*599074578^(6/7) 5142289999985940 a001 9227465/710647*228826127^(11/20) 5142289999985940 a001 10959/711491*228826127^(9/10) 5142289999985940 a001 9227465/710647*87403803^(11/19) 5142289999985941 a001 10959/711491*87403803^(18/19) 5142289999985941 a001 433494437/710647*12752043^(7/17) 5142289999985941 a001 139583862445/710647*4870847^(1/16) 5142289999985943 a001 9227465/710647*33385282^(11/18) 5142289999985943 a001 165580141/710647*12752043^(8/17) 5142289999985944 a001 14619165/101521*12752043^(1/2) 5142289999985945 a001 63245986/710647*12752043^(9/17) 5142289999985948 a001 24157817/710647*12752043^(10/17) 5142289999985950 a001 3524578/710647*7881196^(8/11) 5142289999985955 a001 53316291173/710647*4870847^(1/8) 5142289999985960 a001 9227465/710647*12752043^(11/17) 5142289999985968 a001 20365011074/710647*4870847^(3/16) 5142289999985972 a001 2932589879115/5702887 5142289999985982 a001 7778742049/710647*4870847^(1/4) 5142289999985996 a001 2971215073/710647*4870847^(5/16) 5142289999986009 a001 1134903170/710647*4870847^(3/8) 5142289999986010 a001 3524578/710647*141422324^(8/13) 5142289999986011 a001 3524578/710647*2537720636^(8/15) 5142289999986011 a001 317811/7881196*45537549124^(2/3) 5142289999986011 a001 3524578/710647*45537549124^(8/17) 5142289999986011 a001 317811/7881196*(1/2+1/2*5^(1/2))^34 5142289999986011 a001 3524578/710647*14662949395604^(8/21) 5142289999986011 a001 3524578/710647*(1/2+1/2*5^(1/2))^24 5142289999986011 a001 3524578/710647*192900153618^(4/9) 5142289999986011 a001 3524578/710647*73681302247^(6/13) 5142289999986011 a001 3524578/710647*10749957122^(1/2) 5142289999986011 a001 317811/7881196*10749957122^(17/24) 5142289999986011 a001 3524578/710647*4106118243^(12/23) 5142289999986011 a001 317811/7881196*4106118243^(17/23) 5142289999986011 a001 3524578/710647*1568397607^(6/11) 5142289999986011 a001 317811/7881196*1568397607^(17/22) 5142289999986011 a001 3524578/710647*599074578^(4/7) 5142289999986011 a001 317811/7881196*599074578^(17/21) 5142289999986011 a001 3524578/710647*228826127^(3/5) 5142289999986011 a001 317811/7881196*228826127^(17/20) 5142289999986011 a001 3524578/710647*87403803^(12/19) 5142289999986011 a001 317811/7881196*87403803^(17/19) 5142289999986014 a001 3524578/710647*33385282^(2/3) 5142289999986015 a001 317811/7881196*33385282^(17/18) 5142289999986023 a001 433494437/710647*4870847^(7/16) 5142289999986027 a001 139583862445/710647*1860498^(1/15) 5142289999986033 a001 3524578/710647*12752043^(12/17) 5142289999986036 a001 165580141/710647*4870847^(1/2) 5142289999986050 a001 63245986/710647*4870847^(9/16) 5142289999986065 a001 24157817/710647*4870847^(5/8) 5142289999986076 a001 86267571272/710647*1860498^(1/10) 5142289999986089 a001 9227465/710647*4870847^(11/16) 5142289999986114 a001 121393*103682^(1/8) 5142289999986126 a001 53316291173/710647*1860498^(2/15) 5142289999986173 a001 3524578/710647*4870847^(3/4) 5142289999986175 a001 32951280099/710647*1860498^(1/6) 5142289999986225 a001 10182505537/219602*167761^(1/5) 5142289999986225 a001 20365011074/710647*1860498^(1/5) 5142289999986227 a001 373383219586/726103 5142289999986324 a001 7778742049/710647*1860498^(4/15) 5142289999986373 a001 686789568/101521*1860498^(3/10) 5142289999986423 a001 2971215073/710647*1860498^(1/3) 5142289999986495 a001 1346269/710647*141422324^(2/3) 5142289999986495 a001 317811/3010349*(1/2+1/2*5^(1/2))^32 5142289999986495 a001 317811/3010349*23725150497407^(1/2) 5142289999986495 a001 317811/3010349*505019158607^(4/7) 5142289999986495 a001 1346269/710647*(1/2+1/2*5^(1/2))^26 5142289999986495 a001 1346269/710647*73681302247^(1/2) 5142289999986495 a001 317811/3010349*73681302247^(8/13) 5142289999986495 a001 1346269/710647*10749957122^(13/24) 5142289999986495 a001 317811/3010349*10749957122^(2/3) 5142289999986495 a001 1346269/710647*4106118243^(13/23) 5142289999986495 a001 317811/3010349*4106118243^(16/23) 5142289999986495 a001 1346269/710647*1568397607^(13/22) 5142289999986495 a001 317811/3010349*1568397607^(8/11) 5142289999986495 a001 1346269/710647*599074578^(13/21) 5142289999986495 a001 317811/3010349*599074578^(16/21) 5142289999986495 a001 1346269/710647*228826127^(13/20) 5142289999986495 a001 317811/3010349*228826127^(4/5) 5142289999986496 a001 1346269/710647*87403803^(13/19) 5142289999986496 a001 317811/3010349*87403803^(16/19) 5142289999986499 a001 1346269/710647*33385282^(13/18) 5142289999986499 a001 317811/3010349*33385282^(8/9) 5142289999986519 a001 1346269/710647*12752043^(13/17) 5142289999986522 a001 1134903170/710647*1860498^(2/5) 5142289999986525 a001 317811/3010349*12752043^(16/17) 5142289999986621 a001 433494437/710647*1860498^(7/15) 5142289999986655 a001 139583862445/710647*710647^(1/14) 5142289999986671 a001 267914296/710647*1860498^(1/2) 5142289999986671 a001 1346269/710647*4870847^(13/16) 5142289999986720 a001 165580141/710647*1860498^(8/15) 5142289999986819 a001 63245986/710647*1860498^(3/5) 5142289999986920 a001 24157817/710647*1860498^(2/3) 5142289999986949 a001 311187/101521*1860498^(5/6) 5142289999986963 a001 14930352/710647*1860498^(7/10) 5142289999987008 a001 32951280099/4870847*439204^(1/3) 5142289999987029 a001 9227465/710647*1860498^(11/15) 5142289999987193 a001 86267571272/12752043*439204^(1/3) 5142289999987199 a001 3524578/710647*1860498^(4/5) 5142289999987220 a001 32264490531/4769326*439204^(1/3) 5142289999987224 a001 591286729879/87403803*439204^(1/3) 5142289999987224 a001 1548008755920/228826127*439204^(1/3) 5142289999987224 a001 4052739537881/599074578*439204^(1/3) 5142289999987224 a001 1515744265389/224056801*439204^(1/3) 5142289999987224 a001 6557470319842/969323029*439204^(1/3) 5142289999987224 a001 2504730781961/370248451*439204^(1/3) 5142289999987225 a001 956722026041/141422324*439204^(1/3) 5142289999987226 a001 365435296162/54018521*439204^(1/3) 5142289999987236 a001 139583862445/20633239*439204^(1/3) 5142289999987307 a001 53316291173/7881196*439204^(1/3) 5142289999987382 a001 53316291173/710647*710647^(1/7) 5142289999987783 a001 1346269/710647*1860498^(13/15) 5142289999987792 a001 20365011074/3010349*439204^(1/3) 5142289999987981 a001 427859097159/832040 5142289999987981 a001 2594329-930249*5^(1/2) 5142289999988110 a001 20365011074/710647*710647^(3/14) 5142289999988152 a001 1836311903/1149851*439204^(4/9) 5142289999988473 a001 12586269025/710647*710647^(1/4) 5142289999988701 a001 53316291173/1860498*439204^(2/9) 5142289999988837 a001 7778742049/710647*710647^(2/7) 5142289999989250 a001 -1346269+832040*5^(1/2) 5142289999989564 a001 2971215073/710647*710647^(5/14) 5142289999989742 a001 317811/1149851*7881196^(10/11) 5142289999989807 a001 317811/1149851*20633239^(6/7) 5142289999989807 a001 514229/710647*20633239^(4/5) 5142289999989817 a001 317811/1149851*141422324^(10/13) 5142289999989817 a001 317811/1149851*2537720636^(2/3) 5142289999989817 a001 514229/710647*17393796001^(4/7) 5142289999989817 a001 317811/1149851*45537549124^(10/17) 5142289999989817 a001 317811/1149851*312119004989^(6/11) 5142289999989817 a001 317811/1149851*14662949395604^(10/21) 5142289999989817 a001 317811/1149851*(1/2+1/2*5^(1/2))^30 5142289999989817 a001 514229/710647*14662949395604^(4/9) 5142289999989817 a001 514229/710647*(1/2+1/2*5^(1/2))^28 5142289999989817 a001 317811/1149851*192900153618^(5/9) 5142289999989817 a001 514229/710647*73681302247^(7/13) 5142289999989817 a001 317811/1149851*28143753123^(3/5) 5142289999989817 a001 514229/710647*10749957122^(7/12) 5142289999989817 a001 317811/1149851*10749957122^(5/8) 5142289999989817 a001 514229/710647*4106118243^(14/23) 5142289999989817 a001 317811/1149851*4106118243^(15/23) 5142289999989817 a001 514229/710647*1568397607^(7/11) 5142289999989817 a001 317811/1149851*1568397607^(15/22) 5142289999989817 a001 514229/710647*599074578^(2/3) 5142289999989817 a001 317811/1149851*599074578^(5/7) 5142289999989817 a001 514229/710647*228826127^(7/10) 5142289999989817 a001 317811/1149851*228826127^(3/4) 5142289999989818 a001 514229/710647*87403803^(14/19) 5142289999989818 a001 317811/1149851*87403803^(15/19) 5142289999989821 a001 514229/710647*33385282^(7/9) 5142289999989821 a001 317811/1149851*33385282^(5/6) 5142289999989843 a001 514229/710647*12752043^(14/17) 5142289999989845 a001 317811/1149851*12752043^(15/17) 5142289999989969 a001 139583862445/4870847*439204^(2/9) 5142289999990007 a001 514229/710647*4870847^(7/8) 5142289999990020 a001 317811/1149851*4870847^(15/16) 5142289999990155 a001 365435296162/12752043*439204^(2/9) 5142289999990182 a001 956722026041/33385282*439204^(2/9) 5142289999990186 a001 2504730781961/87403803*439204^(2/9) 5142289999990186 a001 6557470319842/228826127*439204^(2/9) 5142289999990186 a001 10610209857723/370248451*439204^(2/9) 5142289999990186 a001 4052739537881/141422324*439204^(2/9) 5142289999990188 a001 1548008755920/54018521*439204^(2/9) 5142289999990198 a001 591286729879/20633239*439204^(2/9) 5142289999990269 a001 225851433717/7881196*439204^(2/9) 5142289999990292 a001 1134903170/710647*710647^(3/7) 5142289999990754 a001 86267571272/3010349*439204^(2/9) 5142289999991019 a001 433494437/710647*710647^(1/2) 5142289999991114 a001 7778742049/1149851*439204^(1/3) 5142289999991204 a001 514229/710647*1860498^(14/15) 5142289999991296 a001 139583862445/710647*271443^(1/13) 5142289999991303 a001 2178309/2-514229/2*5^(1/2) 5142289999991309 a001 1346269/271443*271443^(12/13) 5142289999991663 a001 75283811239/620166*439204^(1/9) 5142289999991746 a001 165580141/710647*710647^(4/7) 5142289999992221 a001 2/514229*(1/2+1/2*5^(1/2))^58 5142289999992474 a001 63245986/710647*710647^(9/14) 5142289999992572 a001 692290561600/1346269 5142289999992931 a001 591286729879/4870847*439204^(1/9) 5142289999993117 a001 516002918640/4250681*439204^(1/9) 5142289999993139 a001 416020/930249*(1/2+1/2*5^(1/2))^29 5142289999993139 a001 416020/930249*1322157322203^(1/2) 5142289999993144 a001 4052739537881/33385282*439204^(1/9) 5142289999993148 a001 3536736619241/29134601*439204^(1/9) 5142289999993150 a001 6557470319842/54018521*439204^(1/9) 5142289999993160 a001 2504730781961/20633239*439204^(1/9) 5142289999993203 a001 24157817/710647*710647^(5/7) 5142289999993231 a001 956722026041/7881196*439204^(1/9) 5142289999993356 a001 3524578-1346269*5^(1/2) 5142289999993560 a001 14930352/710647*710647^(3/4) 5142289999993716 a001 365435296162/3010349*439204^(1/9) 5142289999993940 a001 9227465/710647*710647^(11/14) 5142289999994076 a001 32951280099/1149851*439204^(2/9) 5142289999994325 a001 906220110180/1762289 5142289999994340 a001 726103/620166*7881196^(9/11) 5142289999994408 a001 726103/620166*141422324^(9/13) 5142289999994408 a001 726103/620166*2537720636^(3/5) 5142289999994408 a001 726103/620166*45537549124^(9/17) 5142289999994408 a001 726103/620166*817138163596^(9/19) 5142289999994408 a001 832040/4870847*(1/2+1/2*5^(1/2))^31 5142289999994408 a001 726103/620166*14662949395604^(3/7) 5142289999994408 a001 726103/620166*(1/2+1/2*5^(1/2))^27 5142289999994408 a001 726103/620166*192900153618^(1/2) 5142289999994408 a001 726103/620166*10749957122^(9/16) 5142289999994408 a001 726103/620166*599074578^(9/14) 5142289999994411 a001 726103/620166*33385282^(3/4) 5142289999994571 a001 24157817/1860498*7881196^(2/3) 5142289999994571 a001 39088169/1860498*7881196^(7/11) 5142289999994576 a001 9227465/1860498*7881196^(8/11) 5142289999994579 a001 165580141/1860498*7881196^(6/11) 5142289999994581 a001 949006019896/1845493 5142289999994584 a001 5702887/1860498*20633239^(5/7) 5142289999994587 a001 233802911/620166*7881196^(5/11) 5142289999994593 a001 832040/12752043*141422324^(11/13) 5142289999994593 a001 832040/12752043*2537720636^(11/15) 5142289999994593 a001 5702887/1860498*2537720636^(5/9) 5142289999994593 a001 832040/12752043*45537549124^(11/17) 5142289999994593 a001 832040/12752043*312119004989^(3/5) 5142289999994593 a001 5702887/1860498*312119004989^(5/11) 5142289999994593 a001 832040/12752043*14662949395604^(11/21) 5142289999994593 a001 832040/12752043*(1/2+1/2*5^(1/2))^33 5142289999994593 a001 5702887/1860498*(1/2+1/2*5^(1/2))^25 5142289999994593 a001 5702887/1860498*3461452808002^(5/12) 5142289999994593 a001 832040/12752043*192900153618^(11/18) 5142289999994593 a001 5702887/1860498*28143753123^(1/2) 5142289999994593 a001 832040/12752043*10749957122^(11/16) 5142289999994593 a001 832040/12752043*1568397607^(3/4) 5142289999994593 a001 832040/12752043*599074578^(11/14) 5142289999994593 a001 5702887/1860498*228826127^(5/8) 5142289999994594 a001 2971215073/1860498*7881196^(4/11) 5142289999994597 a001 267084832/103361*7881196^(1/3) 5142289999994597 a001 832040/12752043*33385282^(11/12) 5142289999994602 a001 12586269025/1860498*7881196^(3/11) 5142289999994610 a001 53316291173/1860498*7881196^(2/11) 5142289999994617 a001 39088169/1860498*20633239^(3/5) 5142289999994617 a001 75283811239/620166*7881196^(1/11) 5142289999994618 a001 31622993/930249*20633239^(4/7) 5142289999994618 a001 12422650078080/24157817 5142289999994619 a001 233802911/620166*20633239^(3/7) 5142289999994620 a001 567451585/930249*20633239^(2/5) 5142289999994620 a001 416020/16692641*2537720636^(7/9) 5142289999994620 a001 416020/16692641*17393796001^(5/7) 5142289999994620 a001 416020/16692641*312119004989^(7/11) 5142289999994620 a001 416020/16692641*14662949395604^(5/9) 5142289999994620 a001 416020/16692641*(1/2+1/2*5^(1/2))^35 5142289999994620 a001 829464/103361*(1/2+1/2*5^(1/2))^23 5142289999994620 a001 416020/16692641*505019158607^(5/8) 5142289999994620 a001 416020/16692641*28143753123^(7/10) 5142289999994620 a001 829464/103361*4106118243^(1/2) 5142289999994620 a001 416020/16692641*599074578^(5/6) 5142289999994620 a001 416020/16692641*228826127^(7/8) 5142289999994621 a001 7778742049/1860498*20633239^(2/7) 5142289999994622 a001 10983760033/620166*20633239^(1/5) 5142289999994623 a001 43133785636/930249*20633239^(1/7) 5142289999994624 a001 16261460067380/31622993 5142289999994624 a001 39088169/1860498*141422324^(7/13) 5142289999994624 a001 39088169/1860498*2537720636^(7/15) 5142289999994624 a001 39088169/1860498*17393796001^(3/7) 5142289999994624 a001 39088169/1860498*45537549124^(7/17) 5142289999994624 a001 39088169/1860498*14662949395604^(1/3) 5142289999994624 a001 39088169/1860498*(1/2+1/2*5^(1/2))^21 5142289999994624 a001 39088169/1860498*192900153618^(7/18) 5142289999994624 a001 39088169/1860498*10749957122^(7/16) 5142289999994624 a001 39088169/1860498*599074578^(1/2) 5142289999994624 a001 85146110326200/165580141 5142289999994624 a001 233802911/620166*141422324^(5/13) 5142289999994624 a001 832040/228826127*2537720636^(13/15) 5142289999994624 a001 832040/228826127*45537549124^(13/17) 5142289999994624 a001 831985/15126*817138163596^(1/3) 5142289999994624 a001 831985/15126*(1/2+1/2*5^(1/2))^19 5142289999994624 a001 832040/228826127*192900153618^(13/18) 5142289999994624 a001 832040/228826127*73681302247^(3/4) 5142289999994624 a001 832040/228826127*10749957122^(13/16) 5142289999994625 a001 1836311903/1860498*141422324^(1/3) 5142289999994625 a001 832040/228826127*599074578^(13/14) 5142289999994625 a001 165580141/1860498*141422324^(6/13) 5142289999994625 a001 2971215073/1860498*141422324^(4/13) 5142289999994625 a001 12586269025/1860498*141422324^(3/13) 5142289999994625 a001 53316291173/1860498*141422324^(2/13) 5142289999994625 a001 222915410843840/433494437 5142289999994625 a001 75283811239/620166*141422324^(1/13) 5142289999994625 a001 133957148/930249*45537549124^(1/3) 5142289999994625 a001 133957148/930249*(1/2+1/2*5^(1/2))^17 5142289999994625 a001 956721511812/1860497 5142289999994625 a001 233802911/620166*2537720636^(1/3) 5142289999994625 a001 233802911/620166*45537549124^(5/17) 5142289999994625 a001 233802911/620166*312119004989^(3/11) 5142289999994625 a001 233802911/620166*14662949395604^(5/21) 5142289999994625 a001 233802911/620166*(1/2+1/2*5^(1/2))^15 5142289999994625 a001 233802911/620166*192900153618^(5/18) 5142289999994625 a001 233802911/620166*28143753123^(3/10) 5142289999994625 a001 233802911/620166*10749957122^(5/16) 5142289999994625 a001 1527884955772120/2971215073 5142289999994625 a001 832040/4106118243*45537549124^(15/17) 5142289999994625 a001 832040/4106118243*312119004989^(9/11) 5142289999994625 a001 832040/4106118243*14662949395604^(5/7) 5142289999994625 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^13 5142289999994625 a001 832040/4106118243*192900153618^(5/6) 5142289999994625 a001 1836311903/1860498*73681302247^(1/4) 5142289999994625 a001 832040/4106118243*28143753123^(9/10) 5142289999994625 a001 832040/4106118243*10749957122^(15/16) 5142289999994625 a001 12586269025/1860498*2537720636^(1/5) 5142289999994625 a001 7778742049/1860498*2537720636^(2/9) 5142289999994625 a001 53316291173/1860498*2537720636^(2/15) 5142289999994625 a001 2971215073/1860498*2537720636^(4/15) 5142289999994625 a001 43133785636/930249*2537720636^(1/9) 5142289999994625 a001 4000054745111040/7778742049 5142289999994625 a001 75283811239/620166*2537720636^(1/15) 5142289999994625 a001 267084832/103361*312119004989^(1/5) 5142289999994625 a001 267084832/103361*(1/2+1/2*5^(1/2))^11 5142289999994625 a001 5236139639780500/10182505537 5142289999994625 a001 12586269025/1860498*45537549124^(3/17) 5142289999994625 a001 12586269025/1860498*817138163596^(3/19) 5142289999994625 a001 12586269025/1860498*14662949395604^(1/7) 5142289999994625 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^9 5142289999994625 a001 12586269025/1860498*192900153618^(1/6) 5142289999994625 a001 10983760033/620166*17393796001^(1/7) 5142289999994625 a001 27416783093571960/53316291173 5142289999994625 a001 832040/73681302247*817138163596^(17/19) 5142289999994625 a001 10983760033/620166*14662949395604^(1/9) 5142289999994625 a001 10983760033/620166*(1/2+1/2*5^(1/2))^7 5142289999994625 a001 832040/73681302247*192900153618^(17/18) 5142289999994625 a001 14355614000230976/27916772489 5142289999994625 a001 75283811239/620166*45537549124^(1/17) 5142289999994625 a001 43133785636/930249*312119004989^(1/11) 5142289999994625 a001 43133785636/930249*(1/2+1/2*5^(1/2))^5 5142289999994625 a001 75283811239/620166*(1/2+1/2*5^(1/2))^3 5142289999994625 a001 1288005205275676800/2504730781961 5142289999994625 a006 5^(1/2)*Fibonacci(59)/Lucas(30)/sqrt(5) 5142289999994625 a001 208010/204284540899*14662949395604^(8/9) 5142289999994625 a001 182717648081/930249*(1/2+1/2*5^(1/2))^2 5142289999994625 a001 304056783818630480/591286729879 5142289999994625 a001 75640/28374454999*14662949395604^(6/7) 5142289999994625 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^4 5142289999994625 a001 139583862445/1860498*23725150497407^(1/16) 5142289999994625 a001 116139356908737800/225851433717 5142289999994625 a001 139583862445/1860498*73681302247^(1/13) 5142289999994625 a001 53316291173/1860498*14662949395604^(2/21) 5142289999994625 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^6 5142289999994625 a001 832040/119218851371*505019158607^(13/14) 5142289999994625 a001 43133785636/930249*28143753123^(1/10) 5142289999994625 a001 12586269025/1860498*10749957122^(3/16) 5142289999994625 a001 208010/11384387281*312119004989^(10/11) 5142289999994625 a001 10182505537/930249*(1/2+1/2*5^(1/2))^8 5142289999994625 a001 10182505537/930249*23725150497407^(1/8) 5142289999994625 a001 10182505537/930249*505019158607^(1/7) 5142289999994625 a001 10182505537/930249*73681302247^(2/13) 5142289999994625 a001 75283811239/620166*10749957122^(1/16) 5142289999994625 a001 16944503814010960/32951280099 5142289999994625 a001 139583862445/1860498*10749957122^(1/12) 5142289999994625 a001 53316291173/1860498*10749957122^(1/8) 5142289999994625 a001 10182505537/930249*10749957122^(1/6) 5142289999994625 a001 182717648081/930249*4106118243^(1/23) 5142289999994625 a001 832040/17393796001*45537549124^(16/17) 5142289999994625 a001 7778742049/1860498*312119004989^(2/11) 5142289999994625 a001 832040/17393796001*14662949395604^(16/21) 5142289999994625 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^10 5142289999994625 a001 832040/17393796001*192900153618^(8/9) 5142289999994625 a001 832040/17393796001*73681302247^(12/13) 5142289999994625 a001 7778742049/1860498*28143753123^(1/5) 5142289999994625 a001 117676809717272/228841255 5142289999994625 a001 7778742049/1860498*10749957122^(5/24) 5142289999994625 a001 139583862445/1860498*4106118243^(2/23) 5142289999994625 a001 53316291173/1860498*4106118243^(3/23) 5142289999994625 a001 10182505537/930249*4106118243^(4/23) 5142289999994625 a001 7778742049/1860498*4106118243^(5/23) 5142289999994625 a001 182717648081/930249*1568397607^(1/22) 5142289999994625 a001 2971215073/1860498*45537549124^(4/17) 5142289999994625 a001 2971215073/1860498*817138163596^(4/19) 5142289999994625 a001 2971215073/1860498*14662949395604^(4/21) 5142289999994625 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^12 5142289999994625 a001 2971215073/1860498*192900153618^(2/9) 5142289999994625 a001 2971215073/1860498*73681302247^(3/13) 5142289999994625 a001 2971215073/1860498*10749957122^(1/4) 5142289999994625 a001 832040/6643838879*10749957122^(23/24) 5142289999994625 a001 309021223667365/600940872 5142289999994625 a001 139583862445/1860498*1568397607^(1/11) 5142289999994625 a001 2971215073/1860498*4106118243^(6/23) 5142289999994625 a001 53316291173/1860498*1568397607^(3/22) 5142289999994625 a001 10182505537/930249*1568397607^(2/11) 5142289999994625 a001 267084832/103361*1568397607^(1/4) 5142289999994625 a001 7778742049/1860498*1568397607^(5/22) 5142289999994625 a001 182717648081/930249*599074578^(1/21) 5142289999994625 a001 2971215073/1860498*1568397607^(3/11) 5142289999994625 a001 567451585/930249*17393796001^(2/7) 5142289999994625 a001 610/1860499*312119004989^(4/5) 5142289999994625 a001 567451585/930249*14662949395604^(2/9) 5142289999994625 a001 567451585/930249*(1/2+1/2*5^(1/2))^14 5142289999994625 a001 567451585/930249*505019158607^(1/4) 5142289999994625 a001 610/1860499*73681302247^(11/13) 5142289999994625 a001 567451585/930249*10749957122^(7/24) 5142289999994625 a001 610/1860499*10749957122^(11/12) 5142289999994625 a001 567451585/930249*4106118243^(7/23) 5142289999994625 a001 75283811239/620166*599074578^(1/14) 5142289999994625 a001 610/1860499*4106118243^(22/23) 5142289999994625 a001 944284833566800/1836311903 5142289999994625 a001 139583862445/1860498*599074578^(2/21) 5142289999994625 a001 567451585/930249*1568397607^(7/22) 5142289999994625 a001 53316291173/1860498*599074578^(1/7) 5142289999994625 a001 10983760033/620166*599074578^(1/6) 5142289999994625 a001 10182505537/930249*599074578^(4/21) 5142289999994625 a001 233802911/620166*599074578^(5/14) 5142289999994625 a001 12586269025/1860498*599074578^(3/14) 5142289999994625 a001 7778742049/1860498*599074578^(5/21) 5142289999994625 a001 2971215073/1860498*599074578^(2/7) 5142289999994625 a001 832040/969323029*2537720636^(14/15) 5142289999994625 a001 182717648081/930249*228826127^(1/20) 5142289999994625 a001 832040/969323029*17393796001^(6/7) 5142289999994625 a001 832040/969323029*45537549124^(14/17) 5142289999994625 a001 832040/969323029*817138163596^(14/19) 5142289999994625 a001 433494437/1860498*(1/2+1/2*5^(1/2))^16 5142289999994625 a001 433494437/1860498*23725150497407^(1/4) 5142289999994625 a001 832040/969323029*505019158607^(3/4) 5142289999994625 a001 832040/969323029*192900153618^(7/9) 5142289999994625 a001 433494437/1860498*73681302247^(4/13) 5142289999994625 a001 433494437/1860498*10749957122^(1/3) 5142289999994625 a001 832040/969323029*10749957122^(7/8) 5142289999994625 a001 567451585/930249*599074578^(1/3) 5142289999994625 a001 433494437/1860498*4106118243^(8/23) 5142289999994625 a001 832040/969323029*4106118243^(21/23) 5142289999994625 a001 433494437/1860498*1568397607^(4/11) 5142289999994625 a001 832040/969323029*1568397607^(21/22) 5142289999994625 a001 360684711361480/701408733 5142289999994625 a001 139583862445/1860498*228826127^(1/10) 5142289999994625 a001 433494437/1860498*599074578^(8/21) 5142289999994625 a001 43133785636/930249*228826127^(1/8) 5142289999994625 a001 53316291173/1860498*228826127^(3/20) 5142289999994625 a001 10182505537/930249*228826127^(1/5) 5142289999994625 a001 7778742049/1860498*228826127^(1/4) 5142289999994625 a001 2971215073/1860498*228826127^(3/10) 5142289999994625 a001 233802911/620166*228826127^(3/8) 5142289999994625 a001 567451585/930249*228826127^(7/20) 5142289999994625 a001 182717648081/930249*87403803^(1/19) 5142289999994625 a001 832040/370248451*2537720636^(8/9) 5142289999994625 a001 165580141/1860498*2537720636^(2/5) 5142289999994625 a001 165580141/1860498*45537549124^(6/17) 5142289999994625 a001 832040/370248451*312119004989^(8/11) 5142289999994625 a001 832040/370248451*23725150497407^(5/8) 5142289999994625 a001 165580141/1860498*14662949395604^(2/7) 5142289999994625 a001 165580141/1860498*(1/2+1/2*5^(1/2))^18 5142289999994625 a001 165580141/1860498*192900153618^(1/3) 5142289999994625 a001 832040/370248451*73681302247^(10/13) 5142289999994625 a001 832040/370248451*28143753123^(4/5) 5142289999994625 a001 165580141/1860498*10749957122^(3/8) 5142289999994625 a001 832040/370248451*10749957122^(5/6) 5142289999994625 a001 165580141/1860498*4106118243^(9/23) 5142289999994625 a001 832040/370248451*4106118243^(20/23) 5142289999994625 a001 165580141/1860498*1568397607^(9/22) 5142289999994625 a001 832040/370248451*1568397607^(10/11) 5142289999994625 a001 165580141/1860498*599074578^(3/7) 5142289999994625 a001 433494437/1860498*228826127^(2/5) 5142289999994625 a001 832040/370248451*599074578^(20/21) 5142289999994625 a001 17221162564705/33489287 5142289999994625 a001 139583862445/1860498*87403803^(2/19) 5142289999994625 a001 165580141/1860498*228826127^(9/20) 5142289999994625 a001 53316291173/1860498*87403803^(3/19) 5142289999994625 a001 10182505537/930249*87403803^(4/19) 5142289999994625 a001 7778742049/1860498*87403803^(5/19) 5142289999994625 a001 2971215073/1860498*87403803^(6/19) 5142289999994625 a001 831985/15126*87403803^(1/2) 5142289999994625 a001 567451585/930249*87403803^(7/19) 5142289999994625 a001 182717648081/930249*33385282^(1/18) 5142289999994625 a001 31622993/930249*2537720636^(4/9) 5142289999994625 a001 208010/35355581*817138163596^(2/3) 5142289999994625 a001 31622993/930249*(1/2+1/2*5^(1/2))^20 5142289999994625 a001 31622993/930249*505019158607^(5/14) 5142289999994625 a001 31622993/930249*73681302247^(5/13) 5142289999994625 a001 31622993/930249*28143753123^(2/5) 5142289999994625 a001 31622993/930249*10749957122^(5/12) 5142289999994625 a001 208010/35355581*10749957122^(19/24) 5142289999994625 a001 31622993/930249*4106118243^(10/23) 5142289999994625 a001 208010/35355581*4106118243^(19/23) 5142289999994625 a001 31622993/930249*1568397607^(5/11) 5142289999994625 a001 208010/35355581*1568397607^(19/22) 5142289999994625 a001 31622993/930249*599074578^(10/21) 5142289999994625 a001 208010/35355581*599074578^(19/21) 5142289999994625 a001 433494437/1860498*87403803^(8/19) 5142289999994625 a001 31622993/930249*228826127^(1/2) 5142289999994625 a001 208010/35355581*228826127^(19/20) 5142289999994625 a001 956785276208/1860621 5142289999994625 a001 165580141/1860498*87403803^(9/19) 5142289999994625 a001 75283811239/620166*33385282^(1/12) 5142289999994625 a001 139583862445/1860498*33385282^(1/9) 5142289999994625 a001 31622993/930249*87403803^(10/19) 5142289999994625 a001 53316291173/1860498*33385282^(1/6) 5142289999994626 a001 10182505537/930249*33385282^(2/9) 5142289999994626 a001 12586269025/1860498*33385282^(1/4) 5142289999994626 a001 7778742049/1860498*33385282^(5/18) 5142289999994626 a001 832040/54018521*141422324^(12/13) 5142289999994626 a001 2971215073/1860498*33385282^(1/3) 5142289999994626 a001 832040/54018521*2537720636^(4/5) 5142289999994626 a001 832040/54018521*45537549124^(12/17) 5142289999994626 a001 24157817/1860498*312119004989^(2/5) 5142289999994626 a001 832040/54018521*14662949395604^(4/7) 5142289999994626 a001 24157817/1860498*(1/2+1/2*5^(1/2))^22 5142289999994626 a001 832040/54018521*505019158607^(9/14) 5142289999994626 a001 832040/54018521*192900153618^(2/3) 5142289999994626 a001 832040/54018521*73681302247^(9/13) 5142289999994626 a001 24157817/1860498*10749957122^(11/24) 5142289999994626 a001 832040/54018521*10749957122^(3/4) 5142289999994626 a001 24157817/1860498*4106118243^(11/23) 5142289999994626 a001 832040/54018521*4106118243^(18/23) 5142289999994626 a001 24157817/1860498*1568397607^(1/2) 5142289999994626 a001 832040/54018521*1568397607^(9/11) 5142289999994626 a001 24157817/1860498*599074578^(11/21) 5142289999994626 a001 832040/54018521*599074578^(6/7) 5142289999994626 a001 567451585/930249*33385282^(7/18) 5142289999994626 a001 24157817/1860498*228826127^(11/20) 5142289999994626 a001 832040/54018521*228826127^(9/10) 5142289999994626 a001 182717648081/930249*12752043^(1/17) 5142289999994627 a001 233802911/620166*33385282^(5/12) 5142289999994627 a001 39088169/1860498*33385282^(7/12) 5142289999994627 a001 433494437/1860498*33385282^(4/9) 5142289999994627 a001 24157817/1860498*87403803^(11/19) 5142289999994627 a001 165580141/1860498*33385282^(1/2) 5142289999994627 a001 832040/54018521*87403803^(18/19) 5142289999994627 a001 20100270056680/39088169 5142289999994627 a001 31622993/930249*33385282^(5/9) 5142289999994628 a001 139583862445/1860498*12752043^(2/17) 5142289999994629 a001 24157817/1860498*33385282^(11/18) 5142289999994630 a001 53316291173/1860498*12752043^(3/17) 5142289999994632 a001 10182505537/930249*12752043^(4/17) 5142289999994634 a001 7778742049/1860498*12752043^(5/17) 5142289999994636 a001 2971215073/1860498*12752043^(6/17) 5142289999994637 a001 9227465/1860498*141422324^(8/13) 5142289999994637 a001 9227465/1860498*2537720636^(8/15) 5142289999994637 a001 75640/1875749*45537549124^(2/3) 5142289999994637 a001 9227465/1860498*45537549124^(8/17) 5142289999994637 a001 75640/1875749*(1/2+1/2*5^(1/2))^34 5142289999994637 a001 9227465/1860498*14662949395604^(8/21) 5142289999994637 a001 9227465/1860498*(1/2+1/2*5^(1/2))^24 5142289999994637 a001 9227465/1860498*192900153618^(4/9) 5142289999994637 a001 9227465/1860498*73681302247^(6/13) 5142289999994637 a001 9227465/1860498*10749957122^(1/2) 5142289999994637 a001 75640/1875749*10749957122^(17/24) 5142289999994637 a001 9227465/1860498*4106118243^(12/23) 5142289999994637 a001 75640/1875749*4106118243^(17/23) 5142289999994637 a001 9227465/1860498*1568397607^(6/11) 5142289999994637 a001 75640/1875749*1568397607^(17/22) 5142289999994637 a001 9227465/1860498*599074578^(4/7) 5142289999994637 a001 75640/1875749*599074578^(17/21) 5142289999994637 a001 9227465/1860498*228826127^(3/5) 5142289999994637 a001 75640/1875749*228826127^(17/20) 5142289999994637 a001 9227465/1860498*87403803^(12/19) 5142289999994637 a001 75640/1875749*87403803^(17/19) 5142289999994638 a001 567451585/930249*12752043^(7/17) 5142289999994638 a001 182717648081/930249*4870847^(1/16) 5142289999994639 a001 433494437/1860498*12752043^(8/17) 5142289999994640 a001 9227465/1860498*33385282^(2/3) 5142289999994640 a001 133957148/930249*12752043^(1/2) 5142289999994641 a001 75640/1875749*33385282^(17/18) 5142289999994641 a001 959702497325/1866294 5142289999994641 a001 165580141/1860498*12752043^(9/17) 5142289999994643 a001 31622993/930249*12752043^(10/17) 5142289999994647 a001 24157817/1860498*12752043^(11/17) 5142289999994652 a001 139583862445/1860498*4870847^(1/8) 5142289999994659 a001 9227465/1860498*12752043^(12/17) 5142289999994665 a001 53316291173/1860498*4870847^(3/16) 5142289999994679 a001 10182505537/930249*4870847^(1/4) 5142289999994692 a001 7778742049/1860498*4870847^(5/16) 5142289999994706 a001 2971215073/1860498*4870847^(3/8) 5142289999994707 a001 1762289/930249*141422324^(2/3) 5142289999994707 a001 208010/1970299*(1/2+1/2*5^(1/2))^32 5142289999994707 a001 208010/1970299*23725150497407^(1/2) 5142289999994707 a001 1762289/930249*(1/2+1/2*5^(1/2))^26 5142289999994707 a001 208010/1970299*505019158607^(4/7) 5142289999994707 a001 1762289/930249*73681302247^(1/2) 5142289999994707 a001 208010/1970299*73681302247^(8/13) 5142289999994707 a001 1762289/930249*10749957122^(13/24) 5142289999994707 a001 208010/1970299*10749957122^(2/3) 5142289999994707 a001 1762289/930249*4106118243^(13/23) 5142289999994707 a001 208010/1970299*4106118243^(16/23) 5142289999994707 a001 1762289/930249*1568397607^(13/22) 5142289999994707 a001 208010/1970299*1568397607^(8/11) 5142289999994707 a001 1762289/930249*599074578^(13/21) 5142289999994707 a001 208010/1970299*599074578^(16/21) 5142289999994707 a001 1762289/930249*228826127^(13/20) 5142289999994707 a001 208010/1970299*228826127^(4/5) 5142289999994708 a001 1762289/930249*87403803^(13/19) 5142289999994708 a001 208010/1970299*87403803^(16/19) 5142289999994711 a001 1762289/930249*33385282^(13/18) 5142289999994711 a001 208010/1970299*33385282^(8/9) 5142289999994719 a001 567451585/930249*4870847^(7/16) 5142289999994724 a001 182717648081/930249*1860498^(1/15) 5142289999994732 a001 1762289/930249*12752043^(13/17) 5142289999994733 a001 433494437/1860498*4870847^(1/2) 5142289999994737 a001 208010/1970299*12752043^(16/17) 5142289999994738 a001 3524578/710647*710647^(6/7) 5142289999994739 a001 2932589879120/5702887 5142289999994747 a001 165580141/1860498*4870847^(9/16) 5142289999994760 a001 31622993/930249*4870847^(5/8) 5142289999994773 a001 75283811239/620166*1860498^(1/10) 5142289999994775 a001 24157817/1860498*4870847^(11/16) 5142289999994799 a001 9227465/1860498*4870847^(3/4) 5142289999994823 a001 139583862445/1860498*1860498^(2/15) 5142289999994872 a001 43133785636/930249*1860498^(1/6) 5142289999994883 a001 1762289/930249*4870847^(13/16) 5142289999994922 a001 53316291173/1860498*1860498^(1/5) 5142289999995021 a001 10182505537/930249*1860498^(4/15) 5142289999995070 a001 12586269025/1860498*1860498^(3/10) 5142289999995117 a001 832040/3010349*7881196^(10/11) 5142289999995120 a001 7778742049/1860498*1860498^(1/3) 5142289999995182 a001 832040/3010349*20633239^(6/7) 5142289999995182 a001 1346269/1860498*20633239^(4/5) 5142289999995192 a001 832040/3010349*141422324^(10/13) 5142289999995192 a001 832040/3010349*2537720636^(2/3) 5142289999995192 a001 1346269/1860498*17393796001^(4/7) 5142289999995192 a001 832040/3010349*45537549124^(10/17) 5142289999995192 a001 832040/3010349*312119004989^(6/11) 5142289999995192 a001 832040/3010349*14662949395604^(10/21) 5142289999995192 a001 832040/3010349*(1/2+1/2*5^(1/2))^30 5142289999995192 a001 1346269/1860498*14662949395604^(4/9) 5142289999995192 a001 1346269/1860498*(1/2+1/2*5^(1/2))^28 5142289999995192 a001 1346269/1860498*505019158607^(1/2) 5142289999995192 a001 832040/3010349*192900153618^(5/9) 5142289999995192 a001 1346269/1860498*73681302247^(7/13) 5142289999995192 a001 832040/3010349*28143753123^(3/5) 5142289999995192 a001 1346269/1860498*10749957122^(7/12) 5142289999995192 a001 832040/3010349*10749957122^(5/8) 5142289999995192 a001 1346269/1860498*4106118243^(14/23) 5142289999995192 a001 832040/3010349*4106118243^(15/23) 5142289999995192 a001 1346269/1860498*1568397607^(7/11) 5142289999995192 a001 832040/3010349*1568397607^(15/22) 5142289999995192 a001 1346269/1860498*599074578^(2/3) 5142289999995192 a001 832040/3010349*599074578^(5/7) 5142289999995192 a001 1346269/1860498*228826127^(7/10) 5142289999995192 a001 832040/3010349*228826127^(3/4) 5142289999995193 a001 1346269/1860498*87403803^(14/19) 5142289999995193 a001 832040/3010349*87403803^(15/19) 5142289999995196 a001 1346269/1860498*33385282^(7/9) 5142289999995196 a001 832040/3010349*33385282^(5/6) 5142289999995218 a001 1346269/1860498*12752043^(14/17) 5142289999995219 a001 2971215073/1860498*1860498^(2/5) 5142289999995220 a001 832040/3010349*12752043^(15/17) 5142289999995318 a001 567451585/930249*1860498^(7/15) 5142289999995352 a001 182717648081/930249*710647^(1/14) 5142289999995367 a001 233802911/620166*1860498^(1/2) 5142289999995382 a001 1346269/1860498*4870847^(7/8) 5142289999995395 a001 832040/3010349*4870847^(15/16) 5142289999995409 a001 1120149658760/2178309 5142289999995417 a001 433494437/1860498*1860498^(8/15) 5142289999995516 a001 165580141/1860498*1860498^(3/5) 5142289999995543 a001 2/1346269*(1/2+1/2*5^(1/2))^60 5142289999995615 a001 31622993/930249*1860498^(2/3) 5142289999995664 a001 39088169/1860498*1860498^(7/10) 5142289999995665 a001 4745030099481/9227465 5142289999995677 a001 2178309/4870847*(1/2+1/2*5^(1/2))^29 5142289999995677 a001 2178309/4870847*1322157322203^(1/2) 5142289999995716 a001 24157817/1860498*1860498^(11/15) 5142289999995745 a001 726103/620166*1860498^(9/10) 5142289999995794 a001 5702887/4870847*7881196^(9/11) 5142289999995825 a001 9227465/1860498*1860498^(4/5) 5142289999995831 a001 5702887/1860498*1860498^(5/6) 5142289999995835 a001 24157817/4870847*7881196^(8/11) 5142289999995839 a001 63245986/4870847*7881196^(2/3) 5142289999995841 a001 102334155/4870847*7881196^(7/11) 5142289999995848 a001 433494437/4870847*7881196^(6/11) 5142289999995856 a001 1836311903/4870847*7881196^(5/11) 5142289999995860 a001 12422650078083/24157817 5142289999995862 a001 5702887/4870847*141422324^(9/13) 5142289999995862 a001 5702887/4870847*2537720636^(3/5) 5142289999995862 a001 5702887/4870847*45537549124^(9/17) 5142289999995862 a001 5702887/4870847*817138163596^(9/19) 5142289999995862 a001 5702887/4870847*14662949395604^(3/7) 5142289999995862 a001 726103/4250681*(1/2+1/2*5^(1/2))^31 5142289999995862 a001 5702887/4870847*(1/2+1/2*5^(1/2))^27 5142289999995862 a001 726103/4250681*9062201101803^(1/2) 5142289999995862 a001 5702887/4870847*192900153618^(1/2) 5142289999995862 a001 5702887/4870847*10749957122^(9/16) 5142289999995862 a001 5702887/4870847*599074578^(9/14) 5142289999995863 a001 7778742049/4870847*7881196^(4/11) 5142289999995865 a001 5702887/4870847*33385282^(3/4) 5142289999995866 a001 12586269025/4870847*7881196^(1/3) 5142289999995871 a001 32951280099/4870847*7881196^(3/11) 5142289999995878 a001 139583862445/4870847*7881196^(2/11) 5142289999995880 a001 14930352/4870847*20633239^(5/7) 5142289999995886 a001 591286729879/4870847*7881196^(1/11) 5142289999995886 a001 102334155/4870847*20633239^(3/5) 5142289999995887 a001 165580141/4870847*20633239^(4/7) 5142289999995888 a001 1836311903/4870847*20633239^(3/7) 5142289999995889 a001 16261460067384/31622993 5142289999995889 a001 2971215073/4870847*20633239^(2/5) 5142289999995889 a001 311187/4769326*141422324^(11/13) 5142289999995889 a001 311187/4769326*2537720636^(11/15) 5142289999995889 a001 14930352/4870847*2537720636^(5/9) 5142289999995889 a001 311187/4769326*45537549124^(11/17) 5142289999995889 a001 14930352/4870847*312119004989^(5/11) 5142289999995889 a001 311187/4769326*(1/2+1/2*5^(1/2))^33 5142289999995889 a001 14930352/4870847*(1/2+1/2*5^(1/2))^25 5142289999995889 a001 14930352/4870847*3461452808002^(5/12) 5142289999995889 a001 311187/4769326*192900153618^(11/18) 5142289999995889 a001 14930352/4870847*28143753123^(1/2) 5142289999995889 a001 311187/4769326*10749957122^(11/16) 5142289999995889 a001 311187/4769326*1568397607^(3/4) 5142289999995889 a001 311187/4769326*599074578^(11/14) 5142289999995889 a001 14930352/4870847*228826127^(5/8) 5142289999995890 a001 20365011074/4870847*20633239^(2/7) 5142289999995891 a001 86267571272/4870847*20633239^(1/5) 5142289999995892 a001 225851433717/4870847*20633239^(1/7) 5142289999995893 a001 85146110326221/165580141 5142289999995893 a001 726103/29134601*2537720636^(7/9) 5142289999995893 a001 726103/29134601*17393796001^(5/7) 5142289999995893 a001 726103/29134601*312119004989^(7/11) 5142289999995893 a001 726103/29134601*14662949395604^(5/9) 5142289999995893 a001 39088169/4870847*(1/2+1/2*5^(1/2))^23 5142289999995893 a001 726103/29134601*505019158607^(5/8) 5142289999995893 a001 726103/29134601*28143753123^(7/10) 5142289999995893 a001 39088169/4870847*4106118243^(1/2) 5142289999995893 a001 726103/29134601*599074578^(5/6) 5142289999995893 a001 726103/29134601*228826127^(7/8) 5142289999995893 a001 311187/4769326*33385282^(11/12) 5142289999995893 a001 102334155/4870847*141422324^(7/13) 5142289999995893 a001 433494437/4870847*141422324^(6/13) 5142289999995893 a001 222915410843895/433494437 5142289999995893 a001 1836311903/4870847*141422324^(5/13) 5142289999995893 a001 102334155/4870847*2537720636^(7/15) 5142289999995893 a001 102334155/4870847*17393796001^(3/7) 5142289999995893 a001 102334155/4870847*45537549124^(7/17) 5142289999995893 a001 102334155/4870847*14662949395604^(1/3) 5142289999995893 a001 102334155/4870847*(1/2+1/2*5^(1/2))^21 5142289999995893 a001 102334155/4870847*192900153618^(7/18) 5142289999995893 a001 102334155/4870847*10749957122^(7/16) 5142289999995893 a001 102334155/4870847*599074578^(1/2) 5142289999995893 a001 4807526976/4870847*141422324^(1/3) 5142289999995893 a001 7778742049/4870847*141422324^(4/13) 5142289999995893 a001 32951280099/4870847*141422324^(3/13) 5142289999995893 a001 139583862445/4870847*141422324^(2/13) 5142289999995893 a001 591286729879/4870847*141422324^(1/13) 5142289999995893 a001 291800061102732/567451585 5142289999995893 a001 726103/199691526*2537720636^(13/15) 5142289999995893 a001 726103/199691526*45537549124^(13/17) 5142289999995893 a001 267914296/4870847*817138163596^(1/3) 5142289999995893 a001 726103/199691526*14662949395604^(13/21) 5142289999995893 a001 267914296/4870847*(1/2+1/2*5^(1/2))^19 5142289999995893 a001 726103/199691526*192900153618^(13/18) 5142289999995893 a001 726103/199691526*73681302247^(3/4) 5142289999995893 a001 726103/199691526*10749957122^(13/16) 5142289999995893 a001 1527884955772497/2971215073 5142289999995893 a001 701408733/4870847*45537549124^(1/3) 5142289999995893 a001 701408733/4870847*(1/2+1/2*5^(1/2))^17 5142289999995893 a001 726103/199691526*599074578^(13/14) 5142289999995893 a001 1836311903/4870847*2537720636^(1/3) 5142289999995893 a001 4000054745112027/7778742049 5142289999995893 a001 1836311903/4870847*45537549124^(5/17) 5142289999995893 a001 1836311903/4870847*312119004989^(3/11) 5142289999995893 a001 1836311903/4870847*14662949395604^(5/21) 5142289999995893 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^15 5142289999995893 a001 1836311903/4870847*192900153618^(5/18) 5142289999995893 a001 1836311903/4870847*28143753123^(3/10) 5142289999995893 a001 1836311903/4870847*10749957122^(5/16) 5142289999995893 a001 7778742049/4870847*2537720636^(4/15) 5142289999995893 a001 20365011074/4870847*2537720636^(2/9) 5142289999995893 a001 32951280099/4870847*2537720636^(1/5) 5142289999995893 a001 139583862445/4870847*2537720636^(2/15) 5142289999995893 a001 225851433717/4870847*2537720636^(1/9) 5142289999995893 a001 591286729879/4870847*2537720636^(1/15) 5142289999995893 a001 5236139639781792/10182505537 5142289999995893 a001 987/4870846*45537549124^(15/17) 5142289999995893 a001 987/4870846*312119004989^(9/11) 5142289999995893 a001 987/4870846*14662949395604^(5/7) 5142289999995893 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^13 5142289999995893 a001 987/4870846*192900153618^(5/6) 5142289999995893 a001 4807526976/4870847*73681302247^(1/4) 5142289999995893 a001 987/4870846*28143753123^(9/10) 5142289999995893 a001 27416783093578725/53316291173 5142289999995893 a001 12586269025/4870847*312119004989^(1/5) 5142289999995893 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^11 5142289999995893 a001 987/4870846*10749957122^(15/16) 5142289999995893 a001 86267571272/4870847*17393796001^(1/7) 5142289999995893 a001 32951280099/4870847*45537549124^(3/17) 5142289999995893 a001 71778070001172591/139583862445 5142289999995893 a001 32951280099/4870847*817138163596^(3/19) 5142289999995893 a001 311187/10525900321*14662949395604^(7/9) 5142289999995893 a001 32951280099/4870847*14662949395604^(1/7) 5142289999995893 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^9 5142289999995893 a001 311187/10525900321*505019158607^(7/8) 5142289999995893 a001 32951280099/4870847*192900153618^(1/6) 5142289999995893 a001 139583862445/4870847*45537549124^(2/17) 5142289999995893 a001 591286729879/4870847*45537549124^(1/17) 5142289999995893 a001 93958713454969524/182717648081 5142289999995893 a001 726103/64300051206*14662949395604^(17/21) 5142289999995893 a001 86267571272/4870847*14662949395604^(1/9) 5142289999995893 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^7 5142289999995893 a001 225851433717/4870847*312119004989^(1/11) 5142289999995893 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^5 5142289999995893 a001 1288005205275994611/2504730781961 5142289999995893 a001 591286729879/4870847*(1/2+1/2*5^(1/2))^3 5142289999995893 a001 2178309/14662949395604*14662949395604^(20/21) 5142289999995893 a006 5^(1/2)*Fibonacci(61)/Lucas(32)/sqrt(5) 5142289999995893 a001 2178309/2139295485799*14662949395604^(8/9) 5142289999995893 a001 365435296162/4870847*23725150497407^(1/16) 5142289999995893 a001 132671832424558343/258001459320 5142289999995893 a001 139583862445/4870847*14662949395604^(2/21) 5142289999995893 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^6 5142289999995893 a001 304056783818705505/591286729879 5142289999995893 a001 2178309/312119004989*505019158607^(13/14) 5142289999995893 a001 365435296162/4870847*73681302247^(1/13) 5142289999995893 a001 2178309/45537549124*45537549124^(16/17) 5142289999995893 a001 2178309/119218851371*312119004989^(10/11) 5142289999995893 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^8 5142289999995893 a001 53316291173/4870847*23725150497407^(1/8) 5142289999995893 a001 2178309/119218851371*3461452808002^(5/6) 5142289999995893 a001 53316291173/4870847*505019158607^(1/7) 5142289999995893 a001 5530445567084117/10754830177 5142289999995893 a001 53316291173/4870847*73681302247^(2/13) 5142289999995893 a001 225851433717/4870847*28143753123^(1/10) 5142289999995893 a001 956722026041/4870847*10749957122^(1/24) 5142289999995893 a001 20365011074/4870847*312119004989^(2/11) 5142289999995893 a001 2178309/45537549124*14662949395604^(16/21) 5142289999995893 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^10 5142289999995893 a001 2178309/45537549124*192900153618^(8/9) 5142289999995893 a001 22180643453796933/43133785636 5142289999995893 a001 591286729879/4870847*10749957122^(1/16) 5142289999995893 a001 2178309/45537549124*73681302247^(12/13) 5142289999995893 a001 365435296162/4870847*10749957122^(1/12) 5142289999995893 a001 20365011074/4870847*28143753123^(1/5) 5142289999995893 a001 139583862445/4870847*10749957122^(1/8) 5142289999995893 a001 32951280099/4870847*10749957122^(3/16) 5142289999995893 a001 53316291173/4870847*10749957122^(1/6) 5142289999995893 a001 20365011074/4870847*10749957122^(5/24) 5142289999995893 a001 956722026041/4870847*4106118243^(1/23) 5142289999995893 a001 7778742049/4870847*45537549124^(4/17) 5142289999995893 a001 7778742049/4870847*817138163596^(4/19) 5142289999995893 a001 7778742049/4870847*14662949395604^(4/21) 5142289999995893 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^12 5142289999995893 a001 7778742049/4870847*192900153618^(2/9) 5142289999995893 a001 7778742049/4870847*73681302247^(3/13) 5142289999995893 a001 5648167938005047/10983760033 5142289999995893 a001 365435296162/4870847*4106118243^(2/23) 5142289999995893 a001 7778742049/4870847*10749957122^(1/4) 5142289999995893 a001 139583862445/4870847*4106118243^(3/23) 5142289999995893 a001 2178309/2537720636*2537720636^(14/15) 5142289999995893 a001 53316291173/4870847*4106118243^(4/23) 5142289999995893 a001 2178309/17393796001*10749957122^(23/24) 5142289999995893 a001 20365011074/4870847*4106118243^(5/23) 5142289999995893 a001 956722026041/4870847*1568397607^(1/22) 5142289999995893 a001 7778742049/4870847*4106118243^(6/23) 5142289999995893 a001 2971215073/4870847*17393796001^(2/7) 5142289999995893 a001 2178309/6643838879*312119004989^(4/5) 5142289999995893 a001 2971215073/4870847*14662949395604^(2/9) 5142289999995893 a001 2178309/6643838879*23725150497407^(11/16) 5142289999995893 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^14 5142289999995893 a001 2971215073/4870847*505019158607^(1/4) 5142289999995893 a001 2178309/6643838879*73681302247^(11/13) 5142289999995893 a001 6472224534451557/12586269025 5142289999995893 a001 2971215073/4870847*10749957122^(7/24) 5142289999995893 a001 2178309/6643838879*10749957122^(11/12) 5142289999995893 a001 365435296162/4870847*1568397607^(1/11) 5142289999995893 a001 2971215073/4870847*4106118243^(7/23) 5142289999995893 a001 139583862445/4870847*1568397607^(3/22) 5142289999995893 a001 53316291173/4870847*1568397607^(2/11) 5142289999995893 a001 2178309/6643838879*4106118243^(22/23) 5142289999995893 a001 20365011074/4870847*1568397607^(5/22) 5142289999995893 a001 12586269025/4870847*1568397607^(1/4) 5142289999995893 a001 7778742049/4870847*1568397607^(3/11) 5142289999995893 a001 956722026041/4870847*599074578^(1/21) 5142289999995893 a001 2971215073/4870847*1568397607^(7/22) 5142289999995893 a001 2178309/2537720636*17393796001^(6/7) 5142289999995893 a001 2178309/2537720636*45537549124^(14/17) 5142289999995893 a001 2178309/2537720636*817138163596^(14/19) 5142289999995893 a001 2178309/2537720636*14662949395604^(2/3) 5142289999995893 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^16 5142289999995893 a001 1134903170/4870847*23725150497407^(1/4) 5142289999995893 a001 2178309/2537720636*192900153618^(7/9) 5142289999995893 a001 1134903170/4870847*73681302247^(4/13) 5142289999995893 a001 1134903170/4870847*10749957122^(1/3) 5142289999995893 a001 2178309/2537720636*10749957122^(7/8) 5142289999995893 a001 1252365648095/2435424 5142289999995893 a001 1134903170/4870847*4106118243^(8/23) 5142289999995893 a001 591286729879/4870847*599074578^(1/14) 5142289999995893 a001 2178309/2537720636*4106118243^(21/23) 5142289999995893 a001 365435296162/4870847*599074578^(2/21) 5142289999995893 a001 1134903170/4870847*1568397607^(4/11) 5142289999995893 a001 139583862445/4870847*599074578^(1/7) 5142289999995893 a001 86267571272/4870847*599074578^(1/6) 5142289999995893 a001 53316291173/4870847*599074578^(4/21) 5142289999995893 a001 2178309/2537720636*1568397607^(21/22) 5142289999995893 a001 32951280099/4870847*599074578^(3/14) 5142289999995893 a001 20365011074/4870847*599074578^(5/21) 5142289999995893 a001 7778742049/4870847*599074578^(2/7) 5142289999995893 a001 2178309/969323029*2537720636^(8/9) 5142289999995893 a001 1836311903/4870847*599074578^(5/14) 5142289999995893 a001 2971215073/4870847*599074578^(1/3) 5142289999995893 a001 956722026041/4870847*228826127^(1/20) 5142289999995893 a001 433494437/4870847*2537720636^(2/5) 5142289999995893 a001 433494437/4870847*45537549124^(6/17) 5142289999995893 a001 2178309/969323029*312119004989^(8/11) 5142289999995893 a001 433494437/4870847*14662949395604^(2/7) 5142289999995893 a001 2178309/969323029*23725150497407^(5/8) 5142289999995893 a001 433494437/4870847*(1/2+1/2*5^(1/2))^18 5142289999995893 a001 433494437/4870847*192900153618^(1/3) 5142289999995893 a001 2178309/969323029*73681302247^(10/13) 5142289999995893 a001 2178309/969323029*28143753123^(4/5) 5142289999995893 a001 433494437/4870847*10749957122^(3/8) 5142289999995893 a001 2178309/969323029*10749957122^(5/6) 5142289999995893 a001 433494437/4870847*4106118243^(9/23) 5142289999995893 a001 2178309/969323029*4106118243^(20/23) 5142289999995893 a001 944284833567033/1836311903 5142289999995893 a001 1134903170/4870847*599074578^(8/21) 5142289999995893 a001 433494437/4870847*1568397607^(9/22) 5142289999995893 a001 2178309/969323029*1568397607^(10/11) 5142289999995893 a001 365435296162/4870847*228826127^(1/10) 5142289999995893 a001 433494437/4870847*599074578^(3/7) 5142289999995893 a001 225851433717/4870847*228826127^(1/8) 5142289999995893 a001 139583862445/4870847*228826127^(3/20) 5142289999995893 a001 2178309/969323029*599074578^(20/21) 5142289999995893 a001 53316291173/4870847*228826127^(1/5) 5142289999995893 a001 2178309/141422324*141422324^(12/13) 5142289999995893 a001 20365011074/4870847*228826127^(1/4) 5142289999995893 a001 7778742049/4870847*228826127^(3/10) 5142289999995893 a001 2971215073/4870847*228826127^(7/20) 5142289999995893 a001 956722026041/4870847*87403803^(1/19) 5142289999995893 a001 1836311903/4870847*228826127^(3/8) 5142289999995893 a001 165580141/4870847*2537720636^(4/9) 5142289999995893 a001 2178309/370248451*817138163596^(2/3) 5142289999995893 a001 165580141/4870847*(1/2+1/2*5^(1/2))^20 5142289999995893 a001 165580141/4870847*23725150497407^(5/16) 5142289999995893 a001 165580141/4870847*505019158607^(5/14) 5142289999995893 a001 165580141/4870847*73681302247^(5/13) 5142289999995893 a001 165580141/4870847*28143753123^(2/5) 5142289999995893 a001 165580141/4870847*10749957122^(5/12) 5142289999995893 a001 2178309/370248451*10749957122^(19/24) 5142289999995893 a001 165580141/4870847*4106118243^(10/23) 5142289999995893 a001 2178309/370248451*4106118243^(19/23) 5142289999995893 a001 165580141/4870847*1568397607^(5/11) 5142289999995893 a001 2178309/370248451*1568397607^(19/22) 5142289999995893 a001 120228237120523/233802911 5142289999995893 a001 1134903170/4870847*228826127^(2/5) 5142289999995893 a001 165580141/4870847*599074578^(10/21) 5142289999995893 a001 433494437/4870847*228826127^(9/20) 5142289999995893 a001 2178309/370248451*599074578^(19/21) 5142289999995894 a001 365435296162/4870847*87403803^(2/19) 5142289999995894 a001 165580141/4870847*228826127^(1/2) 5142289999995894 a001 139583862445/4870847*87403803^(3/19) 5142289999995894 a001 2178309/370248451*228826127^(19/20) 5142289999995894 a001 53316291173/4870847*87403803^(4/19) 5142289999995894 a001 20365011074/4870847*87403803^(5/19) 5142289999995894 a001 7778742049/4870847*87403803^(6/19) 5142289999995894 a001 2971215073/4870847*87403803^(7/19) 5142289999995894 a001 956722026041/4870847*33385282^(1/18) 5142289999995894 a001 2178309/141422324*2537720636^(4/5) 5142289999995894 a001 2178309/141422324*45537549124^(12/17) 5142289999995894 a001 63245986/4870847*312119004989^(2/5) 5142289999995894 a001 2178309/141422324*14662949395604^(4/7) 5142289999995894 a001 63245986/4870847*(1/2+1/2*5^(1/2))^22 5142289999995894 a001 2178309/141422324*505019158607^(9/14) 5142289999995894 a001 2178309/141422324*192900153618^(2/3) 5142289999995894 a001 2178309/141422324*73681302247^(9/13) 5142289999995894 a001 63245986/4870847*10749957122^(11/24) 5142289999995894 a001 2178309/141422324*10749957122^(3/4) 5142289999995894 a001 63245986/4870847*4106118243^(11/23) 5142289999995894 a001 2178309/141422324*4106118243^(18/23) 5142289999995894 a001 63245986/4870847*1568397607^(1/2) 5142289999995894 a001 2178309/141422324*1568397607^(9/11) 5142289999995894 a001 63245986/4870847*599074578^(11/21) 5142289999995894 a001 2178309/141422324*599074578^(6/7) 5142289999995894 a001 68884650258837/133957148 5142289999995894 a001 1134903170/4870847*87403803^(8/19) 5142289999995894 a001 63245986/4870847*228826127^(11/20) 5142289999995894 a001 267914296/4870847*87403803^(1/2) 5142289999995894 a001 433494437/4870847*87403803^(9/19) 5142289999995894 a001 2178309/141422324*228826127^(9/10) 5142289999995894 a001 591286729879/4870847*33385282^(1/12) 5142289999995894 a001 165580141/4870847*87403803^(10/19) 5142289999995894 a001 365435296162/4870847*33385282^(1/9) 5142289999995894 a001 63245986/4870847*87403803^(11/19) 5142289999995894 a001 139583862445/4870847*33385282^(1/6) 5142289999995894 a001 2178309/141422324*87403803^(18/19) 5142289999995894 a001 53316291173/4870847*33385282^(2/9) 5142289999995895 a001 32951280099/4870847*33385282^(1/4) 5142289999995895 a001 20365011074/4870847*33385282^(5/18) 5142289999995895 a001 7778742049/4870847*33385282^(1/3) 5142289999995895 a001 24157817/4870847*141422324^(8/13) 5142289999995895 a001 24157817/4870847*2537720636^(8/15) 5142289999995895 a001 2178309/54018521*45537549124^(2/3) 5142289999995895 a001 24157817/4870847*45537549124^(8/17) 5142289999995895 a001 24157817/4870847*14662949395604^(8/21) 5142289999995895 a001 24157817/4870847*(1/2+1/2*5^(1/2))^24 5142289999995895 a001 24157817/4870847*192900153618^(4/9) 5142289999995895 a001 24157817/4870847*73681302247^(6/13) 5142289999995895 a001 24157817/4870847*10749957122^(1/2) 5142289999995895 a001 2178309/54018521*10749957122^(17/24) 5142289999995895 a001 24157817/4870847*4106118243^(12/23) 5142289999995895 a001 2178309/54018521*4106118243^(17/23) 5142289999995895 a001 24157817/4870847*1568397607^(6/11) 5142289999995895 a001 2178309/54018521*1568397607^(17/22) 5142289999995895 a001 24157817/4870847*599074578^(4/7) 5142289999995895 a001 2178309/54018521*599074578^(17/21) 5142289999995895 a001 2971215073/4870847*33385282^(7/18) 5142289999995895 a001 24157817/4870847*228826127^(3/5) 5142289999995895 a001 2178309/54018521*228826127^(17/20) 5142289999995895 a001 956722026041/4870847*12752043^(1/17) 5142289999995895 a001 2505866199593/4873055 5142289999995895 a001 1836311903/4870847*33385282^(5/12) 5142289999995895 a001 1134903170/4870847*33385282^(4/9) 5142289999995896 a001 24157817/4870847*87403803^(12/19) 5142289999995896 a001 433494437/4870847*33385282^(1/2) 5142289999995896 a001 2178309/54018521*87403803^(17/19) 5142289999995896 a001 102334155/4870847*33385282^(7/12) 5142289999995896 a001 165580141/4870847*33385282^(5/9) 5142289999995897 a001 63245986/4870847*33385282^(11/18) 5142289999995897 a001 365435296162/4870847*12752043^(2/17) 5142289999995898 a001 24157817/4870847*33385282^(2/3) 5142289999995899 a001 139583862445/4870847*12752043^(3/17) 5142289999995900 a001 2178309/54018521*33385282^(17/18) 5142289999995901 a001 53316291173/4870847*12752043^(4/17) 5142289999995901 a001 2178309/7881196*7881196^(10/11) 5142289999995903 a001 20365011074/4870847*12752043^(5/17) 5142289999995905 a001 7778742049/4870847*12752043^(6/17) 5142289999995905 a001 9227465/4870847*141422324^(2/3) 5142289999995906 a001 2178309/20633239*(1/2+1/2*5^(1/2))^32 5142289999995906 a001 2178309/20633239*23725150497407^(1/2) 5142289999995906 a001 9227465/4870847*(1/2+1/2*5^(1/2))^26 5142289999995906 a001 2178309/20633239*505019158607^(4/7) 5142289999995906 a001 9227465/4870847*73681302247^(1/2) 5142289999995906 a001 2178309/20633239*73681302247^(8/13) 5142289999995906 a001 9227465/4870847*10749957122^(13/24) 5142289999995906 a001 2178309/20633239*10749957122^(2/3) 5142289999995906 a001 9227465/4870847*4106118243^(13/23) 5142289999995906 a001 2178309/20633239*4106118243^(16/23) 5142289999995906 a001 9227465/4870847*1568397607^(13/22) 5142289999995906 a001 2178309/20633239*1568397607^(8/11) 5142289999995906 a001 9227465/4870847*599074578^(13/21) 5142289999995906 a001 2178309/20633239*599074578^(16/21) 5142289999995906 a001 9227465/4870847*228826127^(13/20) 5142289999995906 a001 2178309/20633239*228826127^(4/5) 5142289999995906 a001 9227465/4870847*87403803^(13/19) 5142289999995906 a001 2178309/20633239*87403803^(16/19) 5142289999995906 a001 20100270056685/39088169 5142289999995906 a001 2971215073/4870847*12752043^(7/17) 5142289999995907 a001 956722026041/4870847*4870847^(1/16) 5142289999995908 a001 1134903170/4870847*12752043^(8/17) 5142289999995909 a001 9227465/4870847*33385282^(13/18) 5142289999995909 a001 701408733/4870847*12752043^(1/2) 5142289999995910 a001 2178309/20633239*33385282^(8/9) 5142289999995910 a001 433494437/4870847*12752043^(9/17) 5142289999995912 a001 165580141/4870847*12752043^(10/17) 5142289999995914 a001 63245986/4870847*12752043^(11/17) 5142289999995918 a001 24157817/4870847*12752043^(12/17) 5142289999995921 a001 365435296162/4870847*4870847^(1/8) 5142289999995930 a001 9227465/4870847*12752043^(13/17) 5142289999995934 a001 139583862445/4870847*4870847^(3/16) 5142289999995935 a001 2178309/20633239*12752043^(16/17) 5142289999995948 a001 53316291173/4870847*4870847^(1/4) 5142289999995950 a001 1346269/710647*710647^(13/14) 5142289999995961 a001 20365011074/4870847*4870847^(5/16) 5142289999995966 a001 2178309/7881196*20633239^(6/7) 5142289999995967 a001 3524578/4870847*20633239^(4/5) 5142289999995975 a001 7778742049/4870847*4870847^(3/8) 5142289999995976 a001 2178309/7881196*141422324^(10/13) 5142289999995976 a001 2178309/7881196*2537720636^(2/3) 5142289999995976 a001 3524578/4870847*17393796001^(4/7) 5142289999995976 a001 2178309/7881196*45537549124^(10/17) 5142289999995976 a001 2178309/7881196*312119004989^(6/11) 5142289999995976 a001 2178309/7881196*14662949395604^(10/21) 5142289999995976 a001 2178309/7881196*(1/2+1/2*5^(1/2))^30 5142289999995976 a001 3524578/4870847*(1/2+1/2*5^(1/2))^28 5142289999995976 a001 3524578/4870847*505019158607^(1/2) 5142289999995976 a001 2178309/7881196*192900153618^(5/9) 5142289999995976 a001 3524578/4870847*73681302247^(7/13) 5142289999995976 a001 2178309/7881196*28143753123^(3/5) 5142289999995976 a001 3524578/4870847*10749957122^(7/12) 5142289999995976 a001 2178309/7881196*10749957122^(5/8) 5142289999995976 a001 3524578/4870847*4106118243^(14/23) 5142289999995976 a001 2178309/7881196*4106118243^(15/23) 5142289999995976 a001 3524578/4870847*1568397607^(7/11) 5142289999995976 a001 2178309/7881196*1568397607^(15/22) 5142289999995976 a001 3524578/4870847*599074578^(2/3) 5142289999995976 a001 2178309/7881196*599074578^(5/7) 5142289999995976 a001 3524578/4870847*228826127^(7/10) 5142289999995976 a001 2178309/7881196*228826127^(3/4) 5142289999995977 a001 3524578/4870847*87403803^(14/19) 5142289999995977 a001 2178309/7881196*87403803^(15/19) 5142289999995980 a001 3524578/4870847*33385282^(7/9) 5142289999995980 a001 2178309/7881196*33385282^(5/6) 5142289999995981 a001 1279603329767/2488392 5142289999995988 a001 2971215073/4870847*4870847^(7/16) 5142289999995992 a001 956722026041/4870847*1860498^(1/15) 5142289999995995 a001 1762289/930249*1860498^(13/15) 5142289999996002 a001 1134903170/4870847*4870847^(1/2) 5142289999996002 a001 3524578/4870847*12752043^(14/17) 5142289999996004 a001 2178309/7881196*12752043^(15/17) 5142289999996006 a001 4976784/4250681*7881196^(9/11) 5142289999996015 a001 433494437/4870847*4870847^(9/16) 5142289999996015 a001 5702887/20633239*7881196^(10/11) 5142289999996019 a001 63245986/12752043*7881196^(8/11) 5142289999996023 a001 165580141/12752043*7881196^(2/3) 5142289999996026 a001 267914296/12752043*7881196^(7/11) 5142289999996027 a001 1/1762289*(1/2+1/2*5^(1/2))^62 5142289999996029 a001 165580141/4870847*4870847^(5/8) 5142289999996032 a001 14930352/54018521*7881196^(10/11) 5142289999996033 a001 1134903170/12752043*7881196^(6/11) 5142289999996035 a001 39088169/141422324*7881196^(10/11) 5142289999996035 a001 102334155/370248451*7881196^(10/11) 5142289999996035 a001 267914296/969323029*7881196^(10/11) 5142289999996035 a001 701408733/2537720636*7881196^(10/11) 5142289999996035 a001 1836311903/6643838879*7881196^(10/11) 5142289999996035 a001 4807526976/17393796001*7881196^(10/11) 5142289999996035 a001 12586269025/45537549124*7881196^(10/11) 5142289999996035 a001 32951280099/119218851371*7881196^(10/11) 5142289999996035 a001 86267571272/312119004989*7881196^(10/11) 5142289999996035 a001 225851433717/817138163596*7881196^(10/11) 5142289999996035 a001 1548008755920/5600748293801*7881196^(10/11) 5142289999996035 a001 139583862445/505019158607*7881196^(10/11) 5142289999996035 a001 53316291173/192900153618*7881196^(10/11) 5142289999996035 a001 20365011074/73681302247*7881196^(10/11) 5142289999996035 a001 7778742049/28143753123*7881196^(10/11) 5142289999996035 a001 2971215073/10749957122*7881196^(10/11) 5142289999996035 a001 1134903170/4106118243*7881196^(10/11) 5142289999996035 a001 433494437/1568397607*7881196^(10/11) 5142289999996035 a001 165580141/599074578*7881196^(10/11) 5142289999996035 a001 63245986/228826127*7881196^(10/11) 5142289999996036 a001 24157817/87403803*7881196^(10/11) 5142289999996037 a001 39088169/33385282*7881196^(9/11) 5142289999996041 a001 1602508992/4250681*7881196^(5/11) 5142289999996042 a001 34111385/29134601*7881196^(9/11) 5142289999996042 a001 591286729879/4870847*1860498^(1/10) 5142289999996042 a001 267914296/228826127*7881196^(9/11) 5142289999996042 a001 9227465/33385282*7881196^(10/11) 5142289999996042 a001 233802911/199691526*7881196^(9/11) 5142289999996042 a001 1836311903/1568397607*7881196^(9/11) 5142289999996042 a001 1602508992/1368706081*7881196^(9/11) 5142289999996042 a001 12586269025/10749957122*7881196^(9/11) 5142289999996042 a001 10983760033/9381251041*7881196^(9/11) 5142289999996042 a001 86267571272/73681302247*7881196^(9/11) 5142289999996042 a001 75283811239/64300051206*7881196^(9/11) 5142289999996042 a001 2504730781961/2139295485799*7881196^(9/11) 5142289999996042 a001 365435296162/312119004989*7881196^(9/11) 5142289999996042 a001 139583862445/119218851371*7881196^(9/11) 5142289999996042 a001 53316291173/45537549124*7881196^(9/11) 5142289999996042 a001 20365011074/17393796001*7881196^(9/11) 5142289999996042 a001 7778742049/6643838879*7881196^(9/11) 5142289999996042 a001 2971215073/2537720636*7881196^(9/11) 5142289999996042 a001 1134903170/969323029*7881196^(9/11) 5142289999996042 a001 433494437/370248451*7881196^(9/11) 5142289999996043 a001 63245986/4870847*4870847^(11/16) 5142289999996043 a001 165580141/141422324*7881196^(9/11) 5142289999996044 a001 63245986/54018521*7881196^(9/11) 5142289999996045 a001 165580141/33385282*7881196^(8/11) 5142289999996047 a001 32522920134769/63245986 5142289999996047 a001 5702887/12752043*(1/2+1/2*5^(1/2))^29 5142289999996047 a001 5702887/12752043*1322157322203^(1/2) 5142289999996048 a001 20365011074/12752043*7881196^(4/11) 5142289999996049 a001 433494437/87403803*7881196^(8/11) 5142289999996050 a001 1134903170/228826127*7881196^(8/11) 5142289999996050 a001 2971215073/599074578*7881196^(8/11) 5142289999996050 a001 7778742049/1568397607*7881196^(8/11) 5142289999996050 a001 20365011074/4106118243*7881196^(8/11) 5142289999996050 a001 53316291173/10749957122*7881196^(8/11) 5142289999996050 a001 139583862445/28143753123*7881196^(8/11) 5142289999996050 a001 365435296162/73681302247*7881196^(8/11) 5142289999996050 a001 956722026041/192900153618*7881196^(8/11) 5142289999996050 a001 2504730781961/505019158607*7881196^(8/11) 5142289999996050 a001 10610209857723/2139295485799*7881196^(8/11) 5142289999996050 a001 4052739537881/817138163596*7881196^(8/11) 5142289999996050 a001 140728068720/28374454999*7881196^(8/11) 5142289999996050 a001 591286729879/119218851371*7881196^(8/11) 5142289999996050 a001 225851433717/45537549124*7881196^(8/11) 5142289999996050 a001 86267571272/17393796001*7881196^(8/11) 5142289999996050 a001 32951280099/6643838879*7881196^(8/11) 5142289999996050 a001 1144206275/230701876*7881196^(8/11) 5142289999996050 a001 4807526976/969323029*7881196^(8/11) 5142289999996050 a001 1836311903/370248451*7881196^(8/11) 5142289999996050 a001 701408733/141422324*7881196^(8/11) 5142289999996050 a001 433494437/33385282*7881196^(2/3) 5142289999996051 a001 10983760033/4250681*7881196^(1/3) 5142289999996052 a001 267914296/54018521*7881196^(8/11) 5142289999996053 a001 701408733/33385282*7881196^(7/11) 5142289999996054 a001 1134903170/87403803*7881196^(2/3) 5142289999996055 a001 2971215073/228826127*7881196^(2/3) 5142289999996055 a001 7778742049/599074578*7881196^(2/3) 5142289999996055 a001 20365011074/1568397607*7881196^(2/3) 5142289999996055 a001 53316291173/4106118243*7881196^(2/3) 5142289999996055 a001 139583862445/10749957122*7881196^(2/3) 5142289999996055 a001 365435296162/28143753123*7881196^(2/3) 5142289999996055 a001 956722026041/73681302247*7881196^(2/3) 5142289999996055 a001 2504730781961/192900153618*7881196^(2/3) 5142289999996055 a001 10610209857723/817138163596*7881196^(2/3) 5142289999996055 a001 4052739537881/312119004989*7881196^(2/3) 5142289999996055 a001 1548008755920/119218851371*7881196^(2/3) 5142289999996055 a001 591286729879/45537549124*7881196^(2/3) 5142289999996055 a001 7787980473/599786069*7881196^(2/3) 5142289999996055 a001 86267571272/6643838879*7881196^(2/3) 5142289999996055 a001 32951280099/2537720636*7881196^(2/3) 5142289999996055 a001 12586269025/969323029*7881196^(2/3) 5142289999996055 a001 4807526976/370248451*7881196^(2/3) 5142289999996055 a001 1836311903/141422324*7881196^(2/3) 5142289999996056 a001 86267571272/12752043*7881196^(3/11) 5142289999996056 a001 24157817/20633239*7881196^(9/11) 5142289999996057 a001 701408733/54018521*7881196^(2/3) 5142289999996057 a001 1836311903/87403803*7881196^(7/11) 5142289999996057 a001 102287808/4868641*7881196^(7/11) 5142289999996057 a001 12586269025/599074578*7881196^(7/11) 5142289999996057 a001 32951280099/1568397607*7881196^(7/11) 5142289999996057 a001 86267571272/4106118243*7881196^(7/11) 5142289999996057 a001 225851433717/10749957122*7881196^(7/11) 5142289999996057 a001 591286729879/28143753123*7881196^(7/11) 5142289999996057 a001 1548008755920/73681302247*7881196^(7/11) 5142289999996057 a001 4052739537881/192900153618*7881196^(7/11) 5142289999996057 a001 225749145909/10745088481*7881196^(7/11) 5142289999996057 a001 6557470319842/312119004989*7881196^(7/11) 5142289999996057 a001 2504730781961/119218851371*7881196^(7/11) 5142289999996057 a001 956722026041/45537549124*7881196^(7/11) 5142289999996057 a001 365435296162/17393796001*7881196^(7/11) 5142289999996057 a001 139583862445/6643838879*7881196^(7/11) 5142289999996057 a001 53316291173/2537720636*7881196^(7/11) 5142289999996058 a001 20365011074/969323029*7881196^(7/11) 5142289999996058 a001 7778742049/370248451*7881196^(7/11) 5142289999996058 a001 2971215073/141422324*7881196^(7/11) 5142289999996058 a001 24157817/4870847*4870847^(3/4) 5142289999996059 a001 1134903170/54018521*7881196^(7/11) 5142289999996060 a001 2971215073/33385282*7881196^(6/11) 5142289999996062 a001 9303105/1875749*7881196^(8/11) 5142289999996064 a001 365435296162/12752043*7881196^(2/11) 5142289999996064 a001 7778742049/87403803*7881196^(6/11) 5142289999996065 a001 20365011074/228826127*7881196^(6/11) 5142289999996065 a001 53316291173/599074578*7881196^(6/11) 5142289999996065 a001 139583862445/1568397607*7881196^(6/11) 5142289999996065 a001 365435296162/4106118243*7881196^(6/11) 5142289999996065 a001 956722026041/10749957122*7881196^(6/11) 5142289999996065 a001 2504730781961/28143753123*7881196^(6/11) 5142289999996065 a001 6557470319842/73681302247*7881196^(6/11) 5142289999996065 a001 10610209857723/119218851371*7881196^(6/11) 5142289999996065 a001 4052739537881/45537549124*7881196^(6/11) 5142289999996065 a001 1548008755920/17393796001*7881196^(6/11) 5142289999996065 a001 591286729879/6643838879*7881196^(6/11) 5142289999996065 a001 225851433717/2537720636*7881196^(6/11) 5142289999996065 a001 86267571272/969323029*7881196^(6/11) 5142289999996065 a001 32951280099/370248451*7881196^(6/11) 5142289999996065 a001 12586269025/141422324*7881196^(6/11) 5142289999996067 a001 4807526976/54018521*7881196^(6/11) 5142289999996067 a001 9238424/711491*7881196^(2/3) 5142289999996068 a001 12586269025/33385282*7881196^(5/11) 5142289999996069 a001 39088169/12752043*20633239^(5/7) 5142289999996070 a001 433494437/20633239*7881196^(7/11) 5142289999996071 a001 516002918640/4250681*7881196^(1/11) 5142289999996071 a001 267914296/12752043*20633239^(3/5) 5142289999996072 a001 433494437/12752043*20633239^(4/7) 5142289999996072 a001 10983760033/29134601*7881196^(5/11) 5142289999996072 a001 86267571272/228826127*7881196^(5/11) 5142289999996073 a001 267913919/710646*7881196^(5/11) 5142289999996073 a001 591286729879/1568397607*7881196^(5/11) 5142289999996073 a001 516002918640/1368706081*7881196^(5/11) 5142289999996073 a001 4052739537881/10749957122*7881196^(5/11) 5142289999996073 a001 3536736619241/9381251041*7881196^(5/11) 5142289999996073 a001 6557470319842/17393796001*7881196^(5/11) 5142289999996073 a001 2504730781961/6643838879*7881196^(5/11) 5142289999996073 a001 956722026041/2537720636*7881196^(5/11) 5142289999996073 a001 365435296162/969323029*7881196^(5/11) 5142289999996073 a001 139583862445/370248451*7881196^(5/11) 5142289999996073 a001 53316291173/141422324*7881196^(5/11) 5142289999996073 a001 1602508992/4250681*20633239^(3/7) 5142289999996074 a001 7778742049/12752043*20633239^(2/5) 5142289999996074 a001 4976784/4250681*141422324^(9/13) 5142289999996074 a001 85146110326224/165580141 5142289999996074 a001 4976784/4250681*2537720636^(3/5) 5142289999996074 a001 4976784/4250681*45537549124^(9/17) 5142289999996074 a001 4976784/4250681*817138163596^(9/19) 5142289999996074 a001 4976784/4250681*14662949395604^(3/7) 5142289999996074 a001 5702887/33385282*(1/2+1/2*5^(1/2))^31 5142289999996074 a001 4976784/4250681*(1/2+1/2*5^(1/2))^27 5142289999996074 a001 5702887/33385282*9062201101803^(1/2) 5142289999996074 a001 4976784/4250681*192900153618^(1/2) 5142289999996074 a001 4976784/4250681*10749957122^(9/16) 5142289999996074 a001 4976784/4250681*599074578^(9/14) 5142289999996074 a001 20365011074/54018521*7881196^(5/11) 5142289999996075 a001 53316291173/12752043*20633239^(2/7) 5142289999996075 a001 53316291173/33385282*7881196^(4/11) 5142289999996076 a001 75283811239/4250681*20633239^(1/5) 5142289999996077 a001 591286729879/12752043*20633239^(1/7) 5142289999996077 a001 1836311903/20633239*7881196^(6/11) 5142289999996077 a001 4976784/4250681*33385282^(3/4) 5142289999996078 a001 5702887/87403803*141422324^(11/13) 5142289999996078 a001 222915410843903/433494437 5142289999996078 a001 5702887/87403803*2537720636^(11/15) 5142289999996078 a001 39088169/12752043*2537720636^(5/9) 5142289999996078 a001 5702887/87403803*45537549124^(11/17) 5142289999996078 a001 5702887/87403803*312119004989^(3/5) 5142289999996078 a001 39088169/12752043*312119004989^(5/11) 5142289999996078 a001 5702887/87403803*14662949395604^(11/21) 5142289999996078 a001 39088169/12752043*(1/2+1/2*5^(1/2))^25 5142289999996078 a001 39088169/12752043*3461452808002^(5/12) 5142289999996078 a001 5702887/87403803*192900153618^(11/18) 5142289999996078 a001 39088169/12752043*28143753123^(1/2) 5142289999996078 a001 5702887/87403803*10749957122^(11/16) 5142289999996078 a001 5702887/87403803*1568397607^(3/4) 5142289999996078 a001 5702887/87403803*599074578^(11/14) 5142289999996078 a001 39088169/12752043*228826127^(5/8) 5142289999996078 a001 43133785636/16692641*7881196^(1/3) 5142289999996078 a001 5702887/370248451*141422324^(12/13) 5142289999996078 a001 267914296/12752043*141422324^(7/13) 5142289999996078 a001 1134903170/12752043*141422324^(6/13) 5142289999996078 a001 116720024441097/226980634 5142289999996078 a001 1602508992/4250681*141422324^(5/13) 5142289999996078 a001 5702887/228826127*2537720636^(7/9) 5142289999996078 a001 5702887/228826127*17393796001^(5/7) 5142289999996078 a001 5702887/228826127*312119004989^(7/11) 5142289999996078 a001 5702887/228826127*14662949395604^(5/9) 5142289999996078 a001 34111385/4250681*(1/2+1/2*5^(1/2))^23 5142289999996078 a001 5702887/228826127*505019158607^(5/8) 5142289999996078 a001 5702887/228826127*28143753123^(7/10) 5142289999996078 a001 34111385/4250681*4106118243^(1/2) 5142289999996078 a001 5702887/228826127*599074578^(5/6) 5142289999996078 a001 12586269025/12752043*141422324^(1/3) 5142289999996078 a001 20365011074/12752043*141422324^(4/13) 5142289999996079 a001 86267571272/12752043*141422324^(3/13) 5142289999996079 a001 365435296162/12752043*141422324^(2/13) 5142289999996079 a001 516002918640/4250681*141422324^(1/13) 5142289999996079 a001 267914296/12752043*2537720636^(7/15) 5142289999996079 a001 1527884955772552/2971215073 5142289999996079 a001 267914296/12752043*17393796001^(3/7) 5142289999996079 a001 267914296/12752043*45537549124^(7/17) 5142289999996079 a001 267914296/12752043*14662949395604^(1/3) 5142289999996079 a001 267914296/12752043*(1/2+1/2*5^(1/2))^21 5142289999996079 a001 267914296/12752043*192900153618^(7/18) 5142289999996079 a001 267914296/12752043*10749957122^(7/16) 5142289999996079 a001 5702887/228826127*228826127^(7/8) 5142289999996079 a001 267914296/12752043*599074578^(1/2) 5142289999996079 a001 5702887/1568397607*2537720636^(13/15) 5142289999996079 a001 4000054745112171/7778742049 5142289999996079 a001 5702887/1568397607*45537549124^(13/17) 5142289999996079 a001 233802911/4250681*817138163596^(1/3) 5142289999996079 a001 5702887/1568397607*14662949395604^(13/21) 5142289999996079 a001 233802911/4250681*(1/2+1/2*5^(1/2))^19 5142289999996079 a001 5702887/1568397607*192900153618^(13/18) 5142289999996079 a001 5702887/1568397607*73681302247^(3/4) 5142289999996079 a001 5702887/1568397607*10749957122^(13/16) 5142289999996079 a001 5702887/6643838879*2537720636^(14/15) 5142289999996079 a001 1602508992/4250681*2537720636^(1/3) 5142289999996079 a001 6557469805613/12752042 5142289999996079 a001 1836311903/12752043*45537549124^(1/3) 5142289999996079 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^17 5142289999996079 a001 20365011074/12752043*2537720636^(4/15) 5142289999996079 a001 53316291173/12752043*2537720636^(2/9) 5142289999996079 a001 86267571272/12752043*2537720636^(1/5) 5142289999996079 a001 365435296162/12752043*2537720636^(2/15) 5142289999996079 a001 591286729879/12752043*2537720636^(1/9) 5142289999996079 a001 516002918640/4250681*2537720636^(1/15) 5142289999996079 a001 1602508992/4250681*45537549124^(5/17) 5142289999996079 a001 27416783093579712/53316291173 5142289999996079 a001 1602508992/4250681*312119004989^(3/11) 5142289999996079 a001 1602508992/4250681*14662949395604^(5/21) 5142289999996079 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^15 5142289999996079 a001 1602508992/4250681*192900153618^(5/18) 5142289999996079 a001 1602508992/4250681*28143753123^(3/10) 5142289999996079 a001 1602508992/4250681*10749957122^(5/16) 5142289999996079 a001 5702887/28143753123*45537549124^(15/17) 5142289999996079 a001 14355614000235035/27916772489 5142289999996079 a001 5702887/28143753123*312119004989^(9/11) 5142289999996079 a001 5702887/28143753123*14662949395604^(5/7) 5142289999996079 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^13 5142289999996079 a001 5702887/28143753123*192900153618^(5/6) 5142289999996079 a001 12586269025/12752043*73681302247^(1/4) 5142289999996079 a001 75283811239/4250681*17393796001^(1/7) 5142289999996079 a001 5702887/119218851371*45537549124^(16/17) 5142289999996079 a001 10983760033/4250681*312119004989^(1/5) 5142289999996079 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^11 5142289999996079 a001 5702887/28143753123*28143753123^(9/10) 5142289999996079 a001 86267571272/12752043*45537549124^(3/17) 5142289999996079 a001 365435296162/12752043*45537549124^(2/17) 5142289999996079 a001 516002918640/4250681*45537549124^(1/17) 5142289999996079 a001 491974210728662264/956722026041 5142289999996079 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^9 5142289999996079 a001 5702887/192900153618*505019158607^(7/8) 5142289999996079 a001 86267571272/12752043*192900153618^(1/6) 5142289999996079 a001 1288005205276040979/2504730781961 5142289999996079 a001 75283811239/4250681*14662949395604^(1/9) 5142289999996079 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^7 5142289999996079 a001 3372041405099460673/6557470319842 5142289999996079 a001 591286729879/12752043*(1/2+1/2*5^(1/2))^5 5142289999996079 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^3 5142289999996079 a006 5^(1/2)*Fibonacci(63)/Lucas(34)/sqrt(5) 5142289999996079 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^2 5142289999996079 a001 956722026041/12752043*(1/2+1/2*5^(1/2))^4 5142289999996079 a001 516002918640/4250681*192900153618^(1/18) 5142289999996079 a001 2084036199823419694/4052739537881 5142289999996079 a001 5702887/817138163596*505019158607^(13/14) 5142289999996079 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^8 5142289999996079 a001 139583862445/12752043*23725150497407^(1/8) 5142289999996079 a001 5702887/312119004989*3461452808002^(5/6) 5142289999996079 a001 159206198909475743/309601751184 5142289999996079 a001 139583862445/12752043*505019158607^(1/7) 5142289999996079 a001 5702887/505019158607*192900153618^(17/18) 5142289999996079 a001 139583862445/12752043*73681302247^(2/13) 5142289999996079 a001 53316291173/12752043*312119004989^(2/11) 5142289999996079 a001 5702887/119218851371*14662949395604^(16/21) 5142289999996079 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^10 5142289999996079 a001 304056783818716451/591286729879 5142289999996079 a001 5702887/119218851371*192900153618^(8/9) 5142289999996079 a001 591286729879/12752043*28143753123^(1/10) 5142289999996079 a001 5702887/119218851371*73681302247^(12/13) 5142289999996079 a001 53316291173/12752043*28143753123^(1/5) 5142289999996079 a001 2504730781961/12752043*10749957122^(1/24) 5142289999996079 a001 20365011074/12752043*45537549124^(4/17) 5142289999996079 a001 20365011074/12752043*817138163596^(4/19) 5142289999996079 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^12 5142289999996079 a001 116139356908770638/225851433717 5142289999996079 a001 20365011074/12752043*192900153618^(2/9) 5142289999996079 a001 20365011074/12752043*73681302247^(3/13) 5142289999996079 a001 516002918640/4250681*10749957122^(1/16) 5142289999996079 a001 956722026041/12752043*10749957122^(1/12) 5142289999996079 a001 365435296162/12752043*10749957122^(1/8) 5142289999996079 a001 139583862445/12752043*10749957122^(1/6) 5142289999996079 a001 86267571272/12752043*10749957122^(3/16) 5142289999996079 a001 53316291173/12752043*10749957122^(5/24) 5142289999996079 a001 7778742049/12752043*17393796001^(2/7) 5142289999996079 a001 2504730781961/12752043*4106118243^(1/23) 5142289999996079 a001 20365011074/12752043*10749957122^(1/4) 5142289999996079 a001 5702887/17393796001*312119004989^(4/5) 5142289999996079 a001 7778742049/12752043*14662949395604^(2/9) 5142289999996079 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^14 5142289999996079 a001 5702887/17393796001*23725150497407^(11/16) 5142289999996079 a001 44361286907595463/86267571272 5142289999996079 a001 5702887/17393796001*73681302247^(11/13) 5142289999996079 a001 956722026041/12752043*4106118243^(2/23) 5142289999996079 a001 7778742049/12752043*10749957122^(7/24) 5142289999996079 a001 5702887/28143753123*10749957122^(15/16) 5142289999996079 a001 365435296162/12752043*4106118243^(3/23) 5142289999996079 a001 1597/12752044*10749957122^(23/24) 5142289999996079 a001 139583862445/12752043*4106118243^(4/23) 5142289999996079 a001 5702887/17393796001*10749957122^(11/12) 5142289999996079 a001 53316291173/12752043*4106118243^(5/23) 5142289999996079 a001 20365011074/12752043*4106118243^(6/23) 5142289999996079 a001 5702887/2537720636*2537720636^(8/9) 5142289999996079 a001 2504730781961/12752043*1568397607^(1/22) 5142289999996079 a001 5702887/6643838879*17393796001^(6/7) 5142289999996079 a001 7778742049/12752043*4106118243^(7/23) 5142289999996079 a001 5702887/6643838879*45537549124^(14/17) 5142289999996079 a001 5702887/6643838879*817138163596^(14/19) 5142289999996079 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^16 5142289999996079 a001 2971215073/12752043*23725150497407^(1/4) 5142289999996079 a001 5702887/6643838879*505019158607^(3/4) 5142289999996079 a001 5702887/6643838879*192900153618^(7/9) 5142289999996079 a001 2971215073/12752043*73681302247^(4/13) 5142289999996079 a001 16944503814015751/32951280099 5142289999996079 a001 2971215073/12752043*10749957122^(1/3) 5142289999996079 a001 5702887/6643838879*10749957122^(7/8) 5142289999996079 a001 956722026041/12752043*1568397607^(1/11) 5142289999996079 a001 2971215073/12752043*4106118243^(8/23) 5142289999996079 a001 365435296162/12752043*1568397607^(3/22) 5142289999996079 a001 5702887/17393796001*4106118243^(22/23) 5142289999996079 a001 139583862445/12752043*1568397607^(2/11) 5142289999996079 a001 5702887/6643838879*4106118243^(21/23) 5142289999996079 a001 53316291173/12752043*1568397607^(5/22) 5142289999996079 a001 1134903170/12752043*2537720636^(2/5) 5142289999996079 a001 10983760033/4250681*1568397607^(1/4) 5142289999996079 a001 20365011074/12752043*1568397607^(3/11) 5142289999996079 a001 7778742049/12752043*1568397607^(7/22) 5142289999996079 a001 2504730781961/12752043*599074578^(1/21) 5142289999996079 a001 1134903170/12752043*45537549124^(6/17) 5142289999996079 a001 5702887/2537720636*312119004989^(8/11) 5142289999996079 a001 1134903170/12752043*14662949395604^(2/7) 5142289999996079 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^18 5142289999996079 a001 5702887/2537720636*23725150497407^(5/8) 5142289999996079 a001 1134903170/12752043*192900153618^(1/3) 5142289999996079 a001 5702887/2537720636*73681302247^(10/13) 5142289999996079 a001 5702887/2537720636*28143753123^(4/5) 5142289999996079 a001 1294444906890358/2517253805 5142289999996079 a001 1134903170/12752043*10749957122^(3/8) 5142289999996079 a001 5702887/2537720636*10749957122^(5/6) 5142289999996079 a001 2971215073/12752043*1568397607^(4/11) 5142289999996079 a001 1134903170/12752043*4106118243^(9/23) 5142289999996079 a001 516002918640/4250681*599074578^(1/14) 5142289999996079 a001 5702887/2537720636*4106118243^(20/23) 5142289999996079 a001 956722026041/12752043*599074578^(2/21) 5142289999996079 a001 1134903170/12752043*1568397607^(9/22) 5142289999996079 a001 365435296162/12752043*599074578^(1/7) 5142289999996079 a001 5702887/6643838879*1568397607^(21/22) 5142289999996079 a001 75283811239/4250681*599074578^(1/6) 5142289999996079 a001 5702887/2537720636*1568397607^(10/11) 5142289999996079 a001 139583862445/12752043*599074578^(4/21) 5142289999996079 a001 86267571272/12752043*599074578^(3/14) 5142289999996079 a001 53316291173/12752043*599074578^(5/21) 5142289999996079 a001 20365011074/12752043*599074578^(2/7) 5142289999996079 a001 7778742049/12752043*599074578^(1/3) 5142289999996079 a001 2504730781961/12752043*228826127^(1/20) 5142289999996079 a001 1602508992/4250681*599074578^(5/14) 5142289999996079 a001 433494437/12752043*2537720636^(4/9) 5142289999996079 a001 433494437/12752043*(1/2+1/2*5^(1/2))^20 5142289999996079 a001 433494437/12752043*23725150497407^(5/16) 5142289999996079 a001 433494437/12752043*505019158607^(5/14) 5142289999996079 a001 433494437/12752043*73681302247^(5/13) 5142289999996079 a001 433494437/12752043*28143753123^(2/5) 5142289999996079 a001 433494437/12752043*10749957122^(5/12) 5142289999996079 a001 5702887/969323029*10749957122^(19/24) 5142289999996079 a001 2472169789339619/4807526976 5142289999996079 a001 2971215073/12752043*599074578^(8/21) 5142289999996079 a001 433494437/12752043*4106118243^(10/23) 5142289999996079 a001 5702887/969323029*4106118243^(19/23) 5142289999996079 a001 433494437/12752043*1568397607^(5/11) 5142289999996079 a001 1134903170/12752043*599074578^(3/7) 5142289999996079 a001 5702887/969323029*1568397607^(19/22) 5142289999996079 a001 956722026041/12752043*228826127^(1/10) 5142289999996079 a001 5702887/1568397607*599074578^(13/14) 5142289999996079 a001 591286729879/12752043*228826127^(1/8) 5142289999996079 a001 433494437/12752043*599074578^(10/21) 5142289999996079 a001 5702887/2537720636*599074578^(20/21) 5142289999996079 a001 365435296162/12752043*228826127^(3/20) 5142289999996079 a001 5702887/969323029*599074578^(19/21) 5142289999996079 a001 139583862445/12752043*228826127^(1/5) 5142289999996079 a001 53316291173/12752043*228826127^(1/4) 5142289999996079 a001 20365011074/12752043*228826127^(3/10) 5142289999996079 a001 7778742049/12752043*228826127^(7/20) 5142289999996079 a001 2504730781961/12752043*87403803^(1/19) 5142289999996079 a001 1602508992/4250681*228826127^(3/8) 5142289999996079 a001 5702887/370248451*2537720636^(4/5) 5142289999996079 a001 5702887/370248451*45537549124^(12/17) 5142289999996079 a001 165580141/12752043*312119004989^(2/5) 5142289999996079 a001 5702887/370248451*14662949395604^(4/7) 5142289999996079 a001 165580141/12752043*(1/2+1/2*5^(1/2))^22 5142289999996079 a001 5702887/370248451*505019158607^(9/14) 5142289999996079 a001 5702887/370248451*192900153618^(2/3) 5142289999996079 a001 5702887/370248451*73681302247^(9/13) 5142289999996079 a001 165580141/12752043*10749957122^(11/24) 5142289999996079 a001 5702887/370248451*10749957122^(3/4) 5142289999996079 a001 165580141/12752043*4106118243^(11/23) 5142289999996079 a001 5702887/370248451*4106118243^(18/23) 5142289999996079 a001 944284833567067/1836311903 5142289999996079 a001 165580141/12752043*1568397607^(1/2) 5142289999996079 a001 5702887/370248451*1568397607^(9/11) 5142289999996079 a001 2971215073/12752043*228826127^(2/5) 5142289999996079 a001 1134903170/12752043*228826127^(9/20) 5142289999996079 a001 165580141/12752043*599074578^(11/21) 5142289999996079 a001 5702887/370248451*599074578^(6/7) 5142289999996079 a001 433494437/12752043*228826127^(1/2) 5142289999996079 a001 956722026041/12752043*87403803^(2/19) 5142289999996079 a001 165580141/12752043*228826127^(11/20) 5142289999996079 a001 5702887/969323029*228826127^(19/20) 5142289999996079 a001 63245986/12752043*141422324^(8/13) 5142289999996079 a001 365435296162/12752043*87403803^(3/19) 5142289999996079 a001 5702887/370248451*228826127^(9/10) 5142289999996079 a001 139583862445/12752043*87403803^(4/19) 5142289999996079 a001 53316291173/12752043*87403803^(5/19) 5142289999996079 a001 20365011074/12752043*87403803^(6/19) 5142289999996079 a001 7778742049/12752043*87403803^(7/19) 5142289999996079 a001 2504730781961/12752043*33385282^(1/18) 5142289999996079 a001 63245986/12752043*2537720636^(8/15) 5142289999996079 a001 5702887/141422324*45537549124^(2/3) 5142289999996079 a001 63245986/12752043*45537549124^(8/17) 5142289999996079 a001 63245986/12752043*14662949395604^(8/21) 5142289999996079 a001 63245986/12752043*(1/2+1/2*5^(1/2))^24 5142289999996079 a001 63245986/12752043*192900153618^(4/9) 5142289999996079 a001 63245986/12752043*73681302247^(6/13) 5142289999996079 a001 63245986/12752043*10749957122^(1/2) 5142289999996079 a001 5702887/141422324*10749957122^(17/24) 5142289999996079 a001 63245986/12752043*4106118243^(12/23) 5142289999996079 a001 5702887/141422324*4106118243^(17/23) 5142289999996079 a001 63245986/12752043*1568397607^(6/11) 5142289999996079 a001 5702887/141422324*1568397607^(17/22) 5142289999996079 a001 360684711361582/701408733 5142289999996079 a001 63245986/12752043*599074578^(4/7) 5142289999996079 a001 5702887/141422324*599074578^(17/21) 5142289999996079 a001 2971215073/12752043*87403803^(8/19) 5142289999996079 a001 63245986/12752043*228826127^(3/5) 5142289999996079 a001 1134903170/12752043*87403803^(9/19) 5142289999996079 a001 233802911/4250681*87403803^(1/2) 5142289999996079 a001 5702887/141422324*228826127^(17/20) 5142289999996079 a001 433494437/12752043*87403803^(10/19) 5142289999996079 a001 516002918640/4250681*33385282^(1/12) 5142289999996079 a001 165580141/12752043*87403803^(11/19) 5142289999996079 a001 956722026041/12752043*33385282^(1/9) 5142289999996079 a001 139583862445/1860498*710647^(1/7) 5142289999996079 a001 5702887/370248451*87403803^(18/19) 5142289999996079 a001 63245986/12752043*87403803^(12/19) 5142289999996079 a001 365435296162/12752043*33385282^(1/6) 5142289999996079 a001 139583862445/87403803*7881196^(4/11) 5142289999996079 a001 5702887/141422324*87403803^(17/19) 5142289999996080 a001 139583862445/12752043*33385282^(2/9) 5142289999996080 a001 86267571272/12752043*33385282^(1/4) 5142289999996080 a001 53316291173/12752043*33385282^(5/18) 5142289999996080 a001 365435296162/228826127*7881196^(4/11) 5142289999996080 a001 956722026041/599074578*7881196^(4/11) 5142289999996080 a001 2504730781961/1568397607*7881196^(4/11) 5142289999996080 a001 6557470319842/4106118243*7881196^(4/11) 5142289999996080 a001 10610209857723/6643838879*7881196^(4/11) 5142289999996080 a001 4052739537881/2537720636*7881196^(4/11) 5142289999996080 a001 1548008755920/969323029*7881196^(4/11) 5142289999996080 a001 20365011074/12752043*33385282^(1/3) 5142289999996080 a001 591286729879/370248451*7881196^(4/11) 5142289999996080 a001 24157817/12752043*141422324^(2/3) 5142289999996080 a001 5702887/20633239*20633239^(6/7) 5142289999996080 a001 24157817/12752043*(1/2+1/2*5^(1/2))^26 5142289999996080 a001 5702887/54018521*23725150497407^(1/2) 5142289999996080 a001 5702887/54018521*505019158607^(4/7) 5142289999996080 a001 24157817/12752043*73681302247^(1/2) 5142289999996080 a001 5702887/54018521*73681302247^(8/13) 5142289999996080 a001 24157817/12752043*10749957122^(13/24) 5142289999996080 a001 5702887/54018521*10749957122^(2/3) 5142289999996080 a001 24157817/12752043*4106118243^(13/23) 5142289999996080 a001 5702887/54018521*4106118243^(16/23) 5142289999996080 a001 24157817/12752043*1568397607^(13/22) 5142289999996080 a001 5702887/54018521*1568397607^(8/11) 5142289999996080 a001 24157817/12752043*599074578^(13/21) 5142289999996080 a001 5702887/54018521*599074578^(16/21) 5142289999996080 a001 225851433717/141422324*7881196^(4/11) 5142289999996080 a001 137769300517679/267914296 5142289999996080 a001 7778742049/12752043*33385282^(7/18) 5142289999996080 a001 24157817/12752043*228826127^(13/20) 5142289999996080 a001 5702887/54018521*228826127^(4/5) 5142289999996080 a001 2504730781961/12752043*12752043^(1/17) 5142289999996080 a001 1602508992/4250681*33385282^(5/12) 5142289999996081 a001 2971215073/12752043*33385282^(4/9) 5142289999996081 a001 24157817/12752043*87403803^(13/19) 5142289999996081 a001 1134903170/12752043*33385282^(1/2) 5142289999996081 a001 5702887/54018521*87403803^(16/19) 5142289999996081 a001 9227465/12752043*20633239^(4/5) 5142289999996081 a001 433494437/12752043*33385282^(5/9) 5142289999996081 a001 267914296/12752043*33385282^(7/12) 5142289999996081 a001 165580141/12752043*33385282^(11/18) 5142289999996082 a001 9227465/4870847*4870847^(13/16) 5142289999996082 a001 86267571272/54018521*7881196^(4/11) 5142289999996082 a001 63245986/12752043*33385282^(2/3) 5142289999996082 a001 75283811239/29134601*7881196^(1/3) 5142289999996082 a001 5702887/87403803*33385282^(11/12) 5142289999996082 a001 956722026041/12752043*12752043^(2/17) 5142289999996082 a001 591286729879/228826127*7881196^(1/3) 5142289999996083 a001 86000486440/33281921*7881196^(1/3) 5142289999996083 a001 4052739537881/1568397607*7881196^(1/3) 5142289999996083 a001 3536736619241/1368706081*7881196^(1/3) 5142289999996083 a001 3278735159921/1268860318*7881196^(1/3) 5142289999996083 a001 2504730781961/969323029*7881196^(1/3) 5142289999996083 a001 956722026041/370248451*7881196^(1/3) 5142289999996083 a001 182717648081/70711162*7881196^(1/3) 5142289999996083 a001 32264490531/4769326*7881196^(3/11) 5142289999996083 a001 5702887/141422324*33385282^(17/18) 5142289999996084 a001 24157817/12752043*33385282^(13/18) 5142289999996084 a001 365435296162/12752043*12752043^(3/17) 5142289999996084 a001 139583862445/54018521*7881196^(1/3) 5142289999996084 a001 5702887/54018521*33385282^(8/9) 5142289999996085 a001 7778742049/20633239*7881196^(5/11) 5142289999996086 a001 139583862445/12752043*12752043^(4/17) 5142289999996086 a001 3524578/12752043*7881196^(10/11) 5142289999996087 a001 591286729879/87403803*7881196^(3/11) 5142289999996088 a001 1548008755920/228826127*7881196^(3/11) 5142289999996088 a001 4052739537881/599074578*7881196^(3/11) 5142289999996088 a001 1515744265389/224056801*7881196^(3/11) 5142289999996088 a001 6557470319842/969323029*7881196^(3/11) 5142289999996088 a001 2504730781961/370248451*7881196^(3/11) 5142289999996088 a001 53316291173/12752043*12752043^(5/17) 5142289999996088 a001 956722026041/141422324*7881196^(3/11) 5142289999996089 a001 365435296162/54018521*7881196^(3/11) 5142289999996090 a001 20365011074/12752043*12752043^(6/17) 5142289999996090 a001 5702887/20633239*141422324^(10/13) 5142289999996091 a001 956722026041/33385282*7881196^(2/11) 5142289999996091 a001 5702887/20633239*2537720636^(2/3) 5142289999996091 a001 9227465/12752043*17393796001^(4/7) 5142289999996091 a001 5702887/20633239*45537549124^(10/17) 5142289999996091 a001 5702887/20633239*312119004989^(6/11) 5142289999996091 a001 5702887/20633239*14662949395604^(10/21) 5142289999996091 a001 5702887/20633239*(1/2+1/2*5^(1/2))^30 5142289999996091 a001 9227465/12752043*(1/2+1/2*5^(1/2))^28 5142289999996091 a001 9227465/12752043*505019158607^(1/2) 5142289999996091 a001 5702887/20633239*192900153618^(5/9) 5142289999996091 a001 9227465/12752043*73681302247^(7/13) 5142289999996091 a001 5702887/20633239*28143753123^(3/5) 5142289999996091 a001 9227465/12752043*10749957122^(7/12) 5142289999996091 a001 5702887/20633239*10749957122^(5/8) 5142289999996091 a001 9227465/12752043*4106118243^(14/23) 5142289999996091 a001 5702887/20633239*4106118243^(15/23) 5142289999996091 a001 9227465/12752043*1568397607^(7/11) 5142289999996091 a001 5702887/20633239*1568397607^(15/22) 5142289999996091 a001 9227465/12752043*599074578^(2/3) 5142289999996091 a001 5702887/20633239*599074578^(5/7) 5142289999996091 a001 9227465/12752043*228826127^(7/10) 5142289999996091 a001 5702887/20633239*228826127^(3/4) 5142289999996091 a001 10524638038291/20466831 5142289999996091 a001 9227465/12752043*87403803^(14/19) 5142289999996091 a001 5702887/20633239*87403803^(15/19) 5142289999996092 a001 365435296162/4870847*1860498^(2/15) 5142289999996092 a001 7778742049/12752043*12752043^(7/17) 5142289999996092 a001 2504730781961/12752043*4870847^(1/16) 5142289999996092 a001 32951280099/20633239*7881196^(4/11) 5142289999996093 a001 2971215073/12752043*12752043^(8/17) 5142289999996094 a001 9227465/12752043*33385282^(7/9) 5142289999996094 a001 1836311903/12752043*12752043^(1/2) 5142289999996094 a001 2504730781961/87403803*7881196^(2/11) 5142289999996094 a001 5702887/20633239*33385282^(5/6) 5142289999996095 a001 53316291173/20633239*7881196^(1/3) 5142289999996095 a001 6557470319842/228826127*7881196^(2/11) 5142289999996095 a001 10610209857723/370248451*7881196^(2/11) 5142289999996095 a001 1134903170/12752043*12752043^(9/17) 5142289999996095 a001 4052739537881/141422324*7881196^(2/11) 5142289999996097 a001 14619165/4769326*20633239^(5/7) 5142289999996097 a001 1548008755920/54018521*7881196^(2/11) 5142289999996097 a001 14930352/54018521*20633239^(6/7) 5142289999996097 a001 433494437/12752043*12752043^(10/17) 5142289999996098 a001 24157817/33385282*20633239^(4/5) 5142289999996098 a001 4052739537881/33385282*7881196^(1/11) 5142289999996098 a001 2/9227465*(1/2+1/2*5^(1/2))^64 5142289999996098 a001 23725150497407/9227465*8^(1/3) 5142289999996098 a001 701408733/33385282*20633239^(3/5) 5142289999996099 a001 567451585/16692641*20633239^(4/7) 5142289999996099 a001 165580141/12752043*12752043^(11/17) 5142289999996099 a001 39088169/141422324*20633239^(6/7) 5142289999996100 a001 139583862445/20633239*7881196^(3/11) 5142289999996100 a001 102334155/370248451*20633239^(6/7) 5142289999996100 a001 267914296/969323029*20633239^(6/7) 5142289999996100 a001 701408733/2537720636*20633239^(6/7) 5142289999996100 a001 1836311903/6643838879*20633239^(6/7) 5142289999996100 a001 4807526976/17393796001*20633239^(6/7) 5142289999996100 a001 12586269025/45537549124*20633239^(6/7) 5142289999996100 a001 32951280099/119218851371*20633239^(6/7) 5142289999996100 a001 86267571272/312119004989*20633239^(6/7) 5142289999996100 a001 225851433717/817138163596*20633239^(6/7) 5142289999996100 a001 1548008755920/5600748293801*20633239^(6/7) 5142289999996100 a001 139583862445/505019158607*20633239^(6/7) 5142289999996100 a001 53316291173/192900153618*20633239^(6/7) 5142289999996100 a001 20365011074/73681302247*20633239^(6/7) 5142289999996100 a001 7778742049/28143753123*20633239^(6/7) 5142289999996100 a001 2971215073/10749957122*20633239^(6/7) 5142289999996100 a001 1134903170/4106118243*20633239^(6/7) 5142289999996100 a001 433494437/1568397607*20633239^(6/7) 5142289999996100 a001 165580141/599074578*20633239^(6/7) 5142289999996100 a001 63245986/228826127*20633239^(6/7) 5142289999996100 a001 63245986/87403803*20633239^(4/5) 5142289999996100 a001 12586269025/33385282*20633239^(3/7) 5142289999996100 a001 165580141/228826127*20633239^(4/5) 5142289999996101 a001 433494437/599074578*20633239^(4/5) 5142289999996101 a001 1134903170/1568397607*20633239^(4/5) 5142289999996101 a001 2971215073/4106118243*20633239^(4/5) 5142289999996101 a001 7778742049/10749957122*20633239^(4/5) 5142289999996101 a001 20365011074/28143753123*20633239^(4/5) 5142289999996101 a001 53316291173/73681302247*20633239^(4/5) 5142289999996101 a001 139583862445/192900153618*20633239^(4/5) 5142289999996101 a001 365435296162/505019158607*20633239^(4/5) 5142289999996101 a001 10610209857723/14662949395604*20633239^(4/5) 5142289999996101 a001 591286729879/817138163596*20633239^(4/5) 5142289999996101 a001 225851433717/312119004989*20633239^(4/5) 5142289999996101 a001 86267571272/119218851371*20633239^(4/5) 5142289999996101 a001 32951280099/45537549124*20633239^(4/5) 5142289999996101 a001 12586269025/17393796001*20633239^(4/5) 5142289999996101 a001 4807526976/6643838879*20633239^(4/5) 5142289999996101 a001 1836311903/2537720636*20633239^(4/5) 5142289999996101 a001 701408733/969323029*20633239^(4/5) 5142289999996101 a001 267914296/370248451*20633239^(4/5) 5142289999996101 a001 102334155/141422324*20633239^(4/5) 5142289999996101 a001 10182505537/16692641*20633239^(2/5) 5142289999996101 a001 267914296/87403803*20633239^(5/7) 5142289999996101 a001 24157817/87403803*20633239^(6/7) 5142289999996101 a001 222915410843904/433494437 5142289999996101 a001 7465176/16692641*(1/2+1/2*5^(1/2))^29 5142289999996101 a001 7465176/16692641*1322157322203^(1/2) 5142289999996101 a001 63245986/12752043*12752043^(12/17) 5142289999996101 a001 701408733/228826127*20633239^(5/7) 5142289999996102 a001 1836311903/599074578*20633239^(5/7) 5142289999996102 a001 686789568/224056801*20633239^(5/7) 5142289999996102 a001 12586269025/4106118243*20633239^(5/7) 5142289999996102 a001 32951280099/10749957122*20633239^(5/7) 5142289999996102 a001 86267571272/28143753123*20633239^(5/7) 5142289999996102 a001 32264490531/10525900321*20633239^(5/7) 5142289999996102 a001 591286729879/192900153618*20633239^(5/7) 5142289999996102 a001 1548008755920/505019158607*20633239^(5/7) 5142289999996102 a001 1515744265389/494493258286*20633239^(5/7) 5142289999996102 a001 2504730781961/817138163596*20633239^(5/7) 5142289999996102 a001 956722026041/312119004989*20633239^(5/7) 5142289999996102 a001 365435296162/119218851371*20633239^(5/7) 5142289999996102 a001 139583862445/45537549124*20633239^(5/7) 5142289999996102 a001 53316291173/17393796001*20633239^(5/7) 5142289999996102 a001 20365011074/6643838879*20633239^(5/7) 5142289999996102 a001 7778742049/2537720636*20633239^(5/7) 5142289999996102 a001 2971215073/969323029*20633239^(5/7) 5142289999996102 a001 1134903170/370248451*20633239^(5/7) 5142289999996102 a001 39088169/54018521*20633239^(4/5) 5142289999996102 a001 433494437/141422324*20633239^(5/7) 5142289999996102 a001 3536736619241/29134601*7881196^(1/11) 5142289999996102 a001 139583862445/33385282*20633239^(2/7) 5142289999996102 a001 1836311903/87403803*20633239^(3/5) 5142289999996103 a001 2971215073/87403803*20633239^(4/7) 5142289999996103 a001 102287808/4868641*20633239^(3/5) 5142289999996103 a001 12586269025/599074578*20633239^(3/5) 5142289999996103 a001 32951280099/1568397607*20633239^(3/5) 5142289999996103 a001 86267571272/4106118243*20633239^(3/5) 5142289999996103 a001 225851433717/10749957122*20633239^(3/5) 5142289999996103 a001 591286729879/28143753123*20633239^(3/5) 5142289999996103 a001 1548008755920/73681302247*20633239^(3/5) 5142289999996103 a001 4052739537881/192900153618*20633239^(3/5) 5142289999996103 a001 225749145909/10745088481*20633239^(3/5) 5142289999996103 a001 6557470319842/312119004989*20633239^(3/5) 5142289999996103 a001 2504730781961/119218851371*20633239^(3/5) 5142289999996103 a001 956722026041/45537549124*20633239^(3/5) 5142289999996103 a001 365435296162/17393796001*20633239^(3/5) 5142289999996103 a001 139583862445/6643838879*20633239^(3/5) 5142289999996103 a001 53316291173/2537720636*20633239^(3/5) 5142289999996103 a001 20365011074/969323029*20633239^(3/5) 5142289999996103 a001 7778742049/370248451*20633239^(3/5) 5142289999996103 a001 591286729879/33385282*20633239^(1/5) 5142289999996103 a001 7778742049/228826127*20633239^(4/7) 5142289999996103 a001 2971215073/141422324*20633239^(3/5) 5142289999996103 a001 10182505537/299537289*20633239^(4/7) 5142289999996103 a001 53316291173/1568397607*20633239^(4/7) 5142289999996103 a001 139583862445/4106118243*20633239^(4/7) 5142289999996103 a001 182717648081/5374978561*20633239^(4/7) 5142289999996103 a001 956722026041/28143753123*20633239^(4/7) 5142289999996103 a001 2504730781961/73681302247*20633239^(4/7) 5142289999996103 a001 3278735159921/96450076809*20633239^(4/7) 5142289999996103 a001 10610209857723/312119004989*20633239^(4/7) 5142289999996103 a001 4052739537881/119218851371*20633239^(4/7) 5142289999996103 a001 387002188980/11384387281*20633239^(4/7) 5142289999996103 a001 591286729879/17393796001*20633239^(4/7) 5142289999996103 a001 225851433717/6643838879*20633239^(4/7) 5142289999996103 a001 1135099622/33391061*20633239^(4/7) 5142289999996103 a001 32951280099/969323029*20633239^(4/7) 5142289999996103 a001 12586269025/370248451*20633239^(4/7) 5142289999996103 a001 165580141/54018521*20633239^(5/7) 5142289999996104 a001 1201881744/35355581*20633239^(4/7) 5142289999996104 a001 774004377960/16692641*20633239^(1/7) 5142289999996104 a001 10983760033/29134601*20633239^(3/7) 5142289999996104 a001 6557470319842/54018521*7881196^(1/11) 5142289999996105 a001 24157817/12752043*12752043^(13/17) 5142289999996105 a001 53316291173/87403803*20633239^(2/5) 5142289999996105 a001 1134903170/54018521*20633239^(3/5) 5142289999996105 a001 39088169/33385282*141422324^(9/13) 5142289999996105 a001 17164709476632/33379505 5142289999996105 a001 39088169/33385282*2537720636^(3/5) 5142289999996105 a001 39088169/33385282*45537549124^(9/17) 5142289999996105 a001 39088169/33385282*817138163596^(9/19) 5142289999996105 a001 39088169/33385282*14662949395604^(3/7) 5142289999996105 a001 39088169/33385282*(1/2+1/2*5^(1/2))^27 5142289999996105 a001 4976784/29134601*9062201101803^(1/2) 5142289999996105 a001 39088169/33385282*192900153618^(1/2) 5142289999996105 a001 39088169/33385282*10749957122^(9/16) 5142289999996105 a001 39088169/33385282*599074578^(9/14) 5142289999996105 a001 86267571272/228826127*20633239^(3/7) 5142289999996105 a001 267913919/710646*20633239^(3/7) 5142289999996105 a001 591286729879/1568397607*20633239^(3/7) 5142289999996105 a001 516002918640/1368706081*20633239^(3/7) 5142289999996105 a001 4052739537881/10749957122*20633239^(3/7) 5142289999996105 a001 3536736619241/9381251041*20633239^(3/7) 5142289999996105 a001 6557470319842/17393796001*20633239^(3/7) 5142289999996105 a001 2504730781961/6643838879*20633239^(3/7) 5142289999996105 a001 956722026041/2537720636*20633239^(3/7) 5142289999996105 a001 365435296162/969323029*20633239^(3/7) 5142289999996105 a001 1836311903/54018521*20633239^(4/7) 5142289999996105 a001 139583862445/370248451*20633239^(3/7) 5142289999996105 a001 139583862445/228826127*20633239^(2/5) 5142289999996105 a001 14930352/228826127*141422324^(11/13) 5142289999996105 a001 53316291173/141422324*20633239^(3/7) 5142289999996105 a001 182717648081/299537289*20633239^(2/5) 5142289999996105 a001 14930352/969323029*141422324^(12/13) 5142289999996105 a001 956722026041/1568397607*20633239^(2/5) 5142289999996105 a001 2504730781961/4106118243*20633239^(2/5) 5142289999996105 a001 3278735159921/5374978561*20633239^(2/5) 5142289999996105 a001 10610209857723/17393796001*20633239^(2/5) 5142289999996105 a001 4052739537881/6643838879*20633239^(2/5) 5142289999996105 a001 1134903780/1860499*20633239^(2/5) 5142289999996105 a001 591286729879/969323029*20633239^(2/5) 5142289999996105 a001 225851433717/370248451*20633239^(2/5) 5142289999996105 a001 701408733/33385282*141422324^(7/13) 5142289999996105 a001 165580141/33385282*141422324^(8/13) 5142289999996105 a001 2971215073/33385282*141422324^(6/13) 5142289999996105 a001 12586269025/33385282*141422324^(5/13) 5142289999996105 a001 14930352/228826127*2537720636^(11/15) 5142289999996105 a001 14619165/4769326*2537720636^(5/9) 5142289999996105 a001 1527884955772560/2971215073 5142289999996105 a001 14930352/228826127*45537549124^(11/17) 5142289999996105 a001 14619165/4769326*312119004989^(5/11) 5142289999996105 a001 14930352/228826127*817138163596^(11/19) 5142289999996105 a001 14619165/4769326*(1/2+1/2*5^(1/2))^25 5142289999996105 a001 14619165/4769326*3461452808002^(5/12) 5142289999996105 a001 14930352/228826127*192900153618^(11/18) 5142289999996105 a001 14619165/4769326*28143753123^(1/2) 5142289999996105 a001 14930352/228826127*10749957122^(11/16) 5142289999996105 a001 14930352/228826127*1568397607^(3/4) 5142289999996105 a001 14930352/228826127*599074578^(11/14) 5142289999996105 a001 32951280099/33385282*141422324^(1/3) 5142289999996105 a001 53316291173/33385282*141422324^(4/13) 5142289999996106 a001 32264490531/4769326*141422324^(3/13) 5142289999996106 a001 956722026041/33385282*141422324^(2/13) 5142289999996106 a001 14619165/4769326*228826127^(5/8) 5142289999996106 a001 4052739537881/33385282*141422324^(1/13) 5142289999996106 a001 829464/33281921*2537720636^(7/9) 5142289999996106 a001 307696518854784/598364773 5142289999996106 a001 829464/33281921*17393796001^(5/7) 5142289999996106 a001 829464/33281921*312119004989^(7/11) 5142289999996106 a001 829464/33281921*14662949395604^(5/9) 5142289999996106 a001 133957148/16692641*(1/2+1/2*5^(1/2))^23 5142289999996106 a001 829464/33281921*505019158607^(5/8) 5142289999996106 a001 829464/33281921*28143753123^(7/10) 5142289999996106 a001 133957148/16692641*4106118243^(1/2) 5142289999996106 a001 701408733/33385282*2537720636^(7/15) 5142289999996106 a001 829464/33281921*599074578^(5/6) 5142289999996106 a001 701408733/33385282*17393796001^(3/7) 5142289999996106 a001 5236139639782008/10182505537 5142289999996106 a001 701408733/33385282*45537549124^(7/17) 5142289999996106 a001 701408733/33385282*14662949395604^(1/3) 5142289999996106 a001 701408733/33385282*(1/2+1/2*5^(1/2))^21 5142289999996106 a001 701408733/33385282*192900153618^(7/18) 5142289999996106 a001 701408733/33385282*10749957122^(7/16) 5142289999996106 a001 4976784/1368706081*2537720636^(13/15) 5142289999996106 a001 14930352/17393796001*2537720636^(14/15) 5142289999996106 a001 14930352/6643838879*2537720636^(8/9) 5142289999996106 a001 4976784/1368706081*45537549124^(13/17) 5142289999996106 a001 27416783093579856/53316291173 5142289999996106 a001 1836311903/33385282*817138163596^(1/3) 5142289999996106 a001 4976784/1368706081*14662949395604^(13/21) 5142289999996106 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^19 5142289999996106 a001 4976784/1368706081*192900153618^(13/18) 5142289999996106 a001 4976784/1368706081*73681302247^(3/4) 5142289999996106 a001 12586269025/33385282*2537720636^(1/3) 5142289999996106 a001 4976784/1368706081*10749957122^(13/16) 5142289999996106 a001 53316291173/33385282*2537720636^(4/15) 5142289999996106 a001 2971215073/33385282*2537720636^(2/5) 5142289999996106 a001 139583862445/33385282*2537720636^(2/9) 5142289999996106 a001 32264490531/4769326*2537720636^(1/5) 5142289999996106 a001 956722026041/33385282*2537720636^(2/15) 5142289999996106 a001 774004377960/16692641*2537720636^(1/9) 5142289999996106 a001 4052739537881/33385282*2537720636^(1/15) 5142289999996106 a001 14930208/103681*45537549124^(1/3) 5142289999996106 a001 71778070001175552/139583862445 5142289999996106 a001 14930208/103681*(1/2+1/2*5^(1/2))^17 5142289999996106 a001 12586269025/33385282*45537549124^(5/17) 5142289999996106 a001 12586269025/33385282*312119004989^(3/11) 5142289999996106 a001 93958713454973400/182717648081 5142289999996106 a001 12586269025/33385282*14662949395604^(5/21) 5142289999996106 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^15 5142289999996106 a001 12586269025/33385282*192900153618^(5/18) 5142289999996106 a001 12586269025/33385282*28143753123^(3/10) 5142289999996106 a001 14930352/73681302247*45537549124^(15/17) 5142289999996106 a001 591286729879/33385282*17393796001^(1/7) 5142289999996106 a001 10182505537/16692641*17393796001^(2/7) 5142289999996106 a001 14930352/312119004989*45537549124^(16/17) 5142289999996106 a001 14930352/73681302247*312119004989^(9/11) 5142289999996106 a001 14930352/73681302247*14662949395604^(5/7) 5142289999996106 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^13 5142289999996106 a001 14930352/73681302247*192900153618^(5/6) 5142289999996106 a001 32951280099/33385282*73681302247^(1/4) 5142289999996106 a001 32264490531/4769326*45537549124^(3/17) 5142289999996106 a001 956722026041/33385282*45537549124^(2/17) 5142289999996106 a001 53316291173/33385282*45537549124^(4/17) 5142289999996106 a001 43133785636/16692641*312119004989^(1/5) 5142289999996106 a001 4052739537881/33385282*45537549124^(1/17) 5142289999996106 a001 1288005205276047744/2504730781961 5142289999996106 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^11 5142289999996106 a001 3732588/204284540899*312119004989^(10/11) 5142289999996106 a001 14930352/505019158607*14662949395604^(7/9) 5142289999996106 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^9 5142289999996106 a001 14930352/505019158607*505019158607^(7/8) 5142289999996106 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^5 5142289999996106 a001 3278735159921/16692641*(1/2+1/2*5^(1/2))^2 5142289999996106 a001 2504730781961/33385282*(1/2+1/2*5^(1/2))^4 5142289999996106 a001 14930352/2139295485799*23725150497407^(13/16) 5142289999996106 a001 182717648081/16692641*23725150497407^(1/8) 5142289999996106 a001 14930352/2139295485799*505019158607^(13/14) 5142289999996106 a001 139583862445/33385282*312119004989^(2/11) 5142289999996106 a001 14930352/312119004989*14662949395604^(16/21) 5142289999996106 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^10 5142289999996106 a001 2084036199823430640/4052739537881 5142289999996106 a001 182717648081/16692641*73681302247^(2/13) 5142289999996106 a001 14930352/312119004989*192900153618^(8/9) 5142289999996106 a001 53316291173/33385282*817138163596^(4/19) 5142289999996106 a001 53316291173/33385282*14662949395604^(4/21) 5142289999996106 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^12 5142289999996106 a001 53316291173/33385282*192900153618^(2/9) 5142289999996106 a001 53316291173/33385282*73681302247^(3/13) 5142289999996106 a001 774004377960/16692641*28143753123^(1/10) 5142289999996106 a001 14930352/312119004989*73681302247^(12/13) 5142289999996106 a001 139583862445/33385282*28143753123^(1/5) 5142289999996106 a001 3278735159921/16692641*10749957122^(1/24) 5142289999996106 a001 14930352/17393796001*17393796001^(6/7) 5142289999996106 a001 3732588/11384387281*312119004989^(4/5) 5142289999996106 a001 10182505537/16692641*14662949395604^(2/9) 5142289999996106 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^14 5142289999996106 a001 10182505537/16692641*505019158607^(1/4) 5142289999996106 a001 4052739537881/33385282*10749957122^(1/16) 5142289999996106 a001 3732588/11384387281*73681302247^(11/13) 5142289999996106 a001 2504730781961/33385282*10749957122^(1/12) 5142289999996106 a001 14930352/73681302247*28143753123^(9/10) 5142289999996106 a001 956722026041/33385282*10749957122^(1/8) 5142289999996106 a001 12586269025/33385282*10749957122^(5/16) 5142289999996106 a001 32264490531/4769326*10749957122^(3/16) 5142289999996106 a001 139583862445/33385282*10749957122^(5/24) 5142289999996106 a001 53316291173/33385282*10749957122^(1/4) 5142289999996106 a001 3278735159921/16692641*4106118243^(1/23) 5142289999996106 a001 14930352/17393796001*45537549124^(14/17) 5142289999996106 a001 10182505537/16692641*10749957122^(7/24) 5142289999996106 a001 14930352/17393796001*817138163596^(14/19) 5142289999996106 a001 14930352/17393796001*14662949395604^(2/3) 5142289999996106 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^16 5142289999996106 a001 14930352/17393796001*505019158607^(3/4) 5142289999996106 a001 2977932228430032/5791062403 5142289999996106 a001 14930352/17393796001*192900153618^(7/9) 5142289999996106 a001 7778742049/33385282*73681302247^(4/13) 5142289999996106 a001 2504730781961/33385282*4106118243^(2/23) 5142289999996106 a001 7778742049/33385282*10749957122^(1/3) 5142289999996106 a001 956722026041/33385282*4106118243^(3/23) 5142289999996106 a001 14930352/73681302247*10749957122^(15/16) 5142289999996106 a001 14930352/119218851371*10749957122^(23/24) 5142289999996106 a001 3732588/11384387281*10749957122^(11/12) 5142289999996106 a001 182717648081/16692641*4106118243^(4/23) 5142289999996106 a001 14930352/17393796001*10749957122^(7/8) 5142289999996106 a001 139583862445/33385282*4106118243^(5/23) 5142289999996106 a001 53316291173/33385282*4106118243^(6/23) 5142289999996106 a001 3278735159921/16692641*1568397607^(1/22) 5142289999996106 a001 10182505537/16692641*4106118243^(7/23) 5142289999996106 a001 2971215073/33385282*45537549124^(6/17) 5142289999996106 a001 14930352/6643838879*312119004989^(8/11) 5142289999996106 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^18 5142289999996106 a001 14930352/6643838879*23725150497407^(5/8) 5142289999996106 a001 2971215073/33385282*192900153618^(1/3) 5142289999996106 a001 17167680691794/33385283 5142289999996106 a001 14930352/6643838879*73681302247^(10/13) 5142289999996106 a001 14930352/6643838879*28143753123^(4/5) 5142289999996106 a001 7778742049/33385282*4106118243^(8/23) 5142289999996106 a001 2971215073/33385282*10749957122^(3/8) 5142289999996106 a001 14930352/6643838879*10749957122^(5/6) 5142289999996106 a001 2504730781961/33385282*1568397607^(1/11) 5142289999996106 a001 2971215073/33385282*4106118243^(9/23) 5142289999996106 a001 956722026041/33385282*1568397607^(3/22) 5142289999996106 a001 3732588/11384387281*4106118243^(22/23) 5142289999996106 a001 14930352/17393796001*4106118243^(21/23) 5142289999996106 a001 182717648081/16692641*1568397607^(2/11) 5142289999996106 a001 14930352/6643838879*4106118243^(20/23) 5142289999996106 a001 567451585/16692641*2537720636^(4/9) 5142289999996106 a001 139583862445/33385282*1568397607^(5/22) 5142289999996106 a001 43133785636/16692641*1568397607^(1/4) 5142289999996106 a001 53316291173/33385282*1568397607^(3/11) 5142289999996106 a001 10182505537/16692641*1568397607^(7/22) 5142289999996106 a001 3278735159921/16692641*599074578^(1/21) 5142289999996106 a001 7778742049/33385282*1568397607^(4/11) 5142289999996106 a001 196452/33391061*817138163596^(2/3) 5142289999996106 a001 567451585/16692641*(1/2+1/2*5^(1/2))^20 5142289999996106 a001 567451585/16692641*505019158607^(5/14) 5142289999996106 a001 567451585/16692641*73681302247^(5/13) 5142289999996106 a001 5648167938005280/10983760033 5142289999996106 a001 567451585/16692641*28143753123^(2/5) 5142289999996106 a001 567451585/16692641*10749957122^(5/12) 5142289999996106 a001 196452/33391061*10749957122^(19/24) 5142289999996106 a001 567451585/16692641*4106118243^(10/23) 5142289999996106 a001 2971215073/33385282*1568397607^(9/22) 5142289999996106 a001 4052739537881/33385282*599074578^(1/14) 5142289999996106 a001 196452/33391061*4106118243^(19/23) 5142289999996106 a001 2504730781961/33385282*599074578^(2/21) 5142289999996106 a001 567451585/16692641*1568397607^(5/11) 5142289999996106 a001 14930352/17393796001*1568397607^(21/22) 5142289999996106 a001 14930352/6643838879*1568397607^(10/11) 5142289999996106 a001 956722026041/33385282*599074578^(1/7) 5142289999996106 a001 591286729879/33385282*599074578^(1/6) 5142289999996106 a001 196452/33391061*1568397607^(19/22) 5142289999996106 a001 182717648081/16692641*599074578^(4/21) 5142289999996106 a001 32264490531/4769326*599074578^(3/14) 5142289999996106 a001 139583862445/33385282*599074578^(5/21) 5142289999996106 a001 53316291173/33385282*599074578^(2/7) 5142289999996106 a001 10182505537/16692641*599074578^(1/3) 5142289999996106 a001 14930352/969323029*2537720636^(4/5) 5142289999996106 a001 3278735159921/16692641*228826127^(1/20) 5142289999996106 a001 701408733/33385282*599074578^(1/2) 5142289999996106 a001 12586269025/33385282*599074578^(5/14) 5142289999996106 a001 14930352/969323029*45537549124^(12/17) 5142289999996106 a001 433494437/33385282*312119004989^(2/5) 5142289999996106 a001 14930352/969323029*14662949395604^(4/7) 5142289999996106 a001 433494437/33385282*(1/2+1/2*5^(1/2))^22 5142289999996106 a001 14930352/969323029*505019158607^(9/14) 5142289999996106 a001 14930352/969323029*192900153618^(2/3) 5142289999996106 a001 14930352/969323029*73681302247^(9/13) 5142289999996106 a001 7778742049/33385282*599074578^(8/21) 5142289999996106 a001 6472224534451824/12586269025 5142289999996106 a001 433494437/33385282*10749957122^(11/24) 5142289999996106 a001 14930352/969323029*10749957122^(3/4) 5142289999996106 a001 433494437/33385282*4106118243^(11/23) 5142289999996106 a001 14930352/969323029*4106118243^(18/23) 5142289999996106 a001 2971215073/33385282*599074578^(3/7) 5142289999996106 a001 433494437/33385282*1568397607^(1/2) 5142289999996106 a001 14930352/969323029*1568397607^(9/11) 5142289999996106 a001 567451585/16692641*599074578^(10/21) 5142289999996106 a001 2504730781961/33385282*228826127^(1/10) 5142289999996106 a001 774004377960/16692641*228826127^(1/8) 5142289999996106 a001 433494437/33385282*599074578^(11/21) 5142289999996106 a001 4976784/1368706081*599074578^(13/14) 5142289999996106 a001 196452/33391061*599074578^(19/21) 5142289999996106 a001 14930352/6643838879*599074578^(20/21) 5142289999996106 a001 956722026041/33385282*228826127^(3/20) 5142289999996106 a001 14930352/969323029*599074578^(6/7) 5142289999996106 a001 182717648081/16692641*228826127^(1/5) 5142289999996106 a001 139583862445/33385282*228826127^(1/4) 5142289999996106 a001 53316291173/33385282*228826127^(3/10) 5142289999996106 a001 10182505537/16692641*228826127^(7/20) 5142289999996106 a001 3278735159921/16692641*87403803^(1/19) 5142289999996106 a001 12586269025/33385282*228826127^(3/8) 5142289999996106 a001 165580141/33385282*2537720636^(8/15) 5142289999996106 a001 14930352/370248451*45537549124^(2/3) 5142289999996106 a001 165580141/33385282*45537549124^(8/17) 5142289999996106 a001 165580141/33385282*14662949395604^(8/21) 5142289999996106 a001 165580141/33385282*(1/2+1/2*5^(1/2))^24 5142289999996106 a001 165580141/33385282*192900153618^(4/9) 5142289999996106 a001 165580141/33385282*73681302247^(6/13) 5142289999996106 a001 165580141/33385282*10749957122^(1/2) 5142289999996106 a001 14930352/370248451*10749957122^(17/24) 5142289999996106 a001 17167845759303/33385604 5142289999996106 a001 165580141/33385282*4106118243^(12/23) 5142289999996106 a001 14930352/370248451*4106118243^(17/23) 5142289999996106 a001 165580141/33385282*1568397607^(6/11) 5142289999996106 a001 14930352/370248451*1568397607^(17/22) 5142289999996106 a001 21566892818/35355581*20633239^(2/5) 5142289999996106 a001 7778742049/33385282*228826127^(2/5) 5142289999996106 a001 2971215073/33385282*228826127^(9/20) 5142289999996106 a001 165580141/33385282*599074578^(4/7) 5142289999996106 a001 14930352/370248451*599074578^(17/21) 5142289999996106 a001 567451585/16692641*228826127^(1/2) 5142289999996106 a001 433494437/33385282*228826127^(11/20) 5142289999996106 a001 2504730781961/33385282*87403803^(2/19) 5142289999996106 a001 829464/33281921*228826127^(7/8) 5142289999996106 a001 956722026041/12752043*4870847^(1/8) 5142289999996106 a001 31622993/16692641*141422324^(2/3) 5142289999996106 a001 14930352/969323029*228826127^(9/10) 5142289999996106 a001 196452/33391061*228826127^(19/20) 5142289999996106 a001 165580141/33385282*228826127^(3/5) 5142289999996106 a001 956722026041/33385282*87403803^(3/19) 5142289999996106 a001 14930352/370248451*228826127^(17/20) 5142289999996106 a001 182717648081/16692641*87403803^(4/19) 5142289999996106 a001 139583862445/33385282*87403803^(5/19) 5142289999996106 a001 53316291173/33385282*87403803^(6/19) 5142289999996106 a001 10182505537/16692641*87403803^(7/19) 5142289999996106 a001 3278735159921/16692641*33385282^(1/18) 5142289999996106 a001 31622993/16692641*(1/2+1/2*5^(1/2))^26 5142289999996106 a001 3732588/35355581*23725150497407^(1/2) 5142289999996106 a001 3732588/35355581*505019158607^(4/7) 5142289999996106 a001 31622993/16692641*73681302247^(1/2) 5142289999996106 a001 3732588/35355581*73681302247^(8/13) 5142289999996106 a001 31622993/16692641*10749957122^(13/24) 5142289999996106 a001 3732588/35355581*10749957122^(2/3) 5142289999996106 a001 31622993/16692641*4106118243^(13/23) 5142289999996106 a001 3732588/35355581*4106118243^(16/23) 5142289999996106 a001 944284833567072/1836311903 5142289999996106 a001 31622993/16692641*1568397607^(13/22) 5142289999996106 a001 3732588/35355581*1568397607^(8/11) 5142289999996106 a001 31622993/16692641*599074578^(13/21) 5142289999996106 a001 3732588/35355581*599074578^(16/21) 5142289999996106 a001 7778742049/33385282*87403803^(8/19) 5142289999996106 a001 2971215073/33385282*87403803^(9/19) 5142289999996106 a001 31622993/16692641*228826127^(13/20) 5142289999996106 a001 3732588/35355581*228826127^(4/5) 5142289999996106 a001 1836311903/33385282*87403803^(1/2) 5142289999996106 a001 567451585/16692641*87403803^(10/19) 5142289999996106 a001 4052739537881/33385282*33385282^(1/12) 5142289999996106 a001 433494437/33385282*87403803^(11/19) 5142289999996106 a001 165580141/33385282*87403803^(12/19) 5142289999996106 a001 365435296162/87403803*20633239^(2/7) 5142289999996106 a001 2504730781961/33385282*33385282^(1/9) 5142289999996106 a001 14930352/370248451*87403803^(17/19) 5142289999996106 a001 14930352/969323029*87403803^(18/19) 5142289999996106 a001 31622993/16692641*87403803^(13/19) 5142289999996106 a001 956722026041/33385282*33385282^(1/6) 5142289999996106 a001 3732588/35355581*87403803^(16/19) 5142289999996107 a001 182717648081/16692641*33385282^(2/9) 5142289999996107 a001 956722026041/228826127*20633239^(2/7) 5142289999996107 a001 2504730781961/599074578*20633239^(2/7) 5142289999996107 a001 32264490531/4769326*33385282^(1/4) 5142289999996107 a001 6557470319842/1568397607*20633239^(2/7) 5142289999996107 a001 10610209857723/2537720636*20633239^(2/7) 5142289999996107 a001 4052739537881/969323029*20633239^(2/7) 5142289999996107 a001 20365011074/54018521*20633239^(3/7) 5142289999996107 a001 1548008755920/370248451*20633239^(2/7) 5142289999996107 a001 139583862445/33385282*33385282^(5/18) 5142289999996107 a001 591286729879/141422324*20633239^(2/7) 5142289999996107 a001 516002918640/29134601*20633239^(1/5) 5142289999996107 a001 53316291173/33385282*33385282^(1/3) 5142289999996107 a001 32951280099/54018521*20633239^(2/5) 5142289999996107 a001 14930352/54018521*141422324^(10/13) 5142289999996107 a001 591286729879/20633239*7881196^(2/11) 5142289999996107 a001 9227465/33385282*20633239^(6/7) 5142289999996107 a001 14930352/54018521*2537720636^(2/3) 5142289999996107 a001 24157817/33385282*17393796001^(4/7) 5142289999996107 a001 14930352/54018521*45537549124^(10/17) 5142289999996107 a001 14930352/54018521*312119004989^(6/11) 5142289999996107 a001 14930352/54018521*14662949395604^(10/21) 5142289999996107 a001 24157817/33385282*14662949395604^(4/9) 5142289999996107 a001 24157817/33385282*(1/2+1/2*5^(1/2))^28 5142289999996107 a001 24157817/33385282*505019158607^(1/2) 5142289999996107 a001 14930352/54018521*192900153618^(5/9) 5142289999996107 a001 24157817/33385282*73681302247^(7/13) 5142289999996107 a001 14930352/54018521*28143753123^(3/5) 5142289999996107 a001 24157817/33385282*10749957122^(7/12) 5142289999996107 a001 14930352/54018521*10749957122^(5/8) 5142289999996107 a001 24157817/33385282*4106118243^(14/23) 5142289999996107 a001 14930352/54018521*4106118243^(15/23) 5142289999996107 a001 24157817/33385282*1568397607^(7/11) 5142289999996107 a001 14930352/54018521*1568397607^(15/22) 5142289999996107 a001 120228237120528/233802911 5142289999996107 a001 24157817/33385282*599074578^(2/3) 5142289999996107 a001 14930352/54018521*599074578^(5/7) 5142289999996107 a001 10182505537/16692641*33385282^(7/18) 5142289999996107 a001 24157817/33385282*228826127^(7/10) 5142289999996107 a001 14930352/54018521*228826127^(3/4) 5142289999996107 a001 3278735159921/16692641*12752043^(1/17) 5142289999996107 a001 12586269025/33385282*33385282^(5/12) 5142289999996108 a001 7778742049/33385282*33385282^(4/9) 5142289999996108 a001 4052739537881/228826127*20633239^(1/5) 5142289999996108 a001 3536736619241/199691526*20633239^(1/5) 5142289999996108 a001 4052739537881/87403803*20633239^(1/7) 5142289999996108 a001 6557470319842/370248451*20633239^(1/5) 5142289999996108 a001 24157817/33385282*87403803^(14/19) 5142289999996108 a001 14930352/54018521*87403803^(15/19) 5142289999996108 a001 2971215073/33385282*33385282^(1/2) 5142289999996108 a001 14930352/20633239*20633239^(4/5) 5142289999996108 a001 2504730781961/141422324*20633239^(1/5) 5142289999996108 a001 567451585/16692641*33385282^(5/9) 5142289999996108 a001 701408733/33385282*33385282^(7/12) 5142289999996108 a001 39088169/33385282*33385282^(3/4) 5142289999996108 a001 225749145909/4868641*20633239^(1/7) 5142289999996108 a001 433494437/33385282*33385282^(11/18) 5142289999996108 a001 225851433717/54018521*20633239^(2/7) 5142289999996109 a001 165580141/33385282*33385282^(2/3) 5142289999996109 a001 3278735159921/70711162*20633239^(1/7) 5142289999996109 a001 1527884955772561/2971215073 5142289999996109 a001 39088169/87403803*1322157322203^(1/2) 5142289999996109 a001 31622993/16692641*33385282^(13/18) 5142289999996109 a001 34111385/29134601*141422324^(9/13) 5142289999996109 a001 39088169/2537720636*141422324^(12/13) 5142289999996109 a001 39088169/599074578*141422324^(11/13) 5142289999996109 a001 2504730781961/33385282*12752043^(2/17) 5142289999996109 a001 433494437/87403803*141422324^(8/13) 5142289999996109 a001 1836311903/87403803*141422324^(7/13) 5142289999996109 a001 165580141/87403803*141422324^(2/3) 5142289999996109 a001 7778742049/87403803*141422324^(6/13) 5142289999996109 a001 10983760033/29134601*141422324^(5/13) 5142289999996109 a001 34111385/29134601*2537720636^(3/5) 5142289999996109 a001 4000054745112195/7778742049 5142289999996109 a001 34111385/29134601*45537549124^(9/17) 5142289999996109 a001 34111385/29134601*817138163596^(9/19) 5142289999996109 a001 34111385/29134601*14662949395604^(3/7) 5142289999996109 a001 34111385/29134601*192900153618^(1/2) 5142289999996109 a001 34111385/29134601*10749957122^(9/16) 5142289999996109 a001 34111385/29134601*599074578^(9/14) 5142289999996109 a001 86267571272/87403803*141422324^(1/3) 5142289999996109 a001 139583862445/87403803*141422324^(4/13) 5142289999996109 a001 591286729879/87403803*141422324^(3/13) 5142289999996109 a001 2504730781961/87403803*141422324^(2/13) 5142289999996109 a001 3536736619241/29134601*141422324^(1/13) 5142289999996109 a001 39088169/599074578*2537720636^(11/15) 5142289999996109 a001 267914296/87403803*2537720636^(5/9) 5142289999996109 a001 5236139639782012/10182505537 5142289999996109 a001 39088169/599074578*45537549124^(11/17) 5142289999996109 a001 267914296/87403803*312119004989^(5/11) 5142289999996109 a001 267914296/87403803*3461452808002^(5/12) 5142289999996109 a001 39088169/599074578*192900153618^(11/18) 5142289999996109 a001 267914296/87403803*28143753123^(1/2) 5142289999996109 a001 39088169/599074578*10749957122^(11/16) 5142289999996109 a001 39088169/599074578*1568397607^(3/4) 5142289999996110 a001 39088169/599074578*599074578^(11/14) 5142289999996110 a001 39088169/1568397607*2537720636^(7/9) 5142289999996110 a001 39088169/1568397607*17393796001^(5/7) 5142289999996110 a001 27416783093579877/53316291173 5142289999996110 a001 39088169/1568397607*312119004989^(7/11) 5142289999996110 a001 39088169/1568397607*14662949395604^(5/9) 5142289999996110 a001 39088169/1568397607*505019158607^(5/8) 5142289999996110 a001 39088169/1568397607*28143753123^(7/10) 5142289999996110 a001 233802911/29134601*4106118243^(1/2) 5142289999996110 a001 39088169/45537549124*2537720636^(14/15) 5142289999996110 a001 39088169/10749957122*2537720636^(13/15) 5142289999996110 a001 39088169/17393796001*2537720636^(8/9) 5142289999996110 a001 1836311903/87403803*2537720636^(7/15) 5142289999996110 a001 1836311903/87403803*17393796001^(3/7) 5142289999996110 a001 1836311903/87403803*45537549124^(7/17) 5142289999996110 a001 71778070001175607/139583862445 5142289999996110 a001 1836311903/87403803*14662949395604^(1/3) 5142289999996110 a001 1836311903/87403803*192900153618^(7/18) 5142289999996110 a001 7778742049/87403803*2537720636^(2/5) 5142289999996110 a001 1836311903/87403803*10749957122^(7/16) 5142289999996110 a001 10983760033/29134601*2537720636^(1/3) 5142289999996110 a001 2971215073/87403803*2537720636^(4/9) 5142289999996110 a001 139583862445/87403803*2537720636^(4/15) 5142289999996110 a001 365435296162/87403803*2537720636^(2/9) 5142289999996110 a001 591286729879/87403803*2537720636^(1/5) 5142289999996110 a001 2504730781961/87403803*2537720636^(2/15) 5142289999996110 a001 4052739537881/87403803*2537720636^(1/9) 5142289999996110 a001 3536736619241/29134601*2537720636^(1/15) 5142289999996110 a001 39088169/10749957122*45537549124^(13/17) 5142289999996110 a001 22472784849312/43701901 5142289999996110 a001 1602508992/29134601*817138163596^(1/3) 5142289999996110 a001 39088169/10749957122*14662949395604^(13/21) 5142289999996110 a001 39088169/10749957122*192900153618^(13/18) 5142289999996110 a001 39088169/10749957122*73681302247^(3/4) 5142289999996110 a001 39088169/45537549124*17393796001^(6/7) 5142289999996110 a001 39088169/10749957122*10749957122^(13/16) 5142289999996110 a001 12586269025/87403803*45537549124^(1/3) 5142289999996110 a001 491974210728665225/956722026041 5142289999996110 a001 53316291173/87403803*17393796001^(2/7) 5142289999996110 a001 516002918640/29134601*17393796001^(1/7) 5142289999996110 a001 39088169/192900153618*45537549124^(15/17) 5142289999996110 a001 4181/87403804*45537549124^(16/17) 5142289999996110 a001 10983760033/29134601*45537549124^(5/17) 5142289999996110 a001 10983760033/29134601*312119004989^(3/11) 5142289999996110 a001 1288005205276048731/2504730781961 5142289999996110 a001 10983760033/29134601*14662949395604^(5/21) 5142289999996110 a001 10983760033/29134601*192900153618^(5/18) 5142289999996110 a001 139583862445/87403803*45537549124^(4/17) 5142289999996110 a001 591286729879/87403803*45537549124^(3/17) 5142289999996110 a001 2504730781961/87403803*45537549124^(2/17) 5142289999996110 a001 39088169/192900153618*312119004989^(9/11) 5142289999996110 a001 3536736619241/29134601*45537549124^(1/17) 5142289999996110 a001 99177688385278852/192866774113 5142289999996110 a001 39088169/2139295485799*312119004989^(10/11) 5142289999996110 a001 39088169/192900153618*192900153618^(5/6) 5142289999996110 a001 3536736619241/29134601*14662949395604^(1/21) 5142289999996110 a001 2504730781961/87403803*14662949395604^(2/21) 5142289999996110 a001 4181/87403804*14662949395604^(16/21) 5142289999996110 a001 39088169/1322157322203*505019158607^(7/8) 5142289999996110 a001 139583862445/87403803*817138163596^(4/19) 5142289999996110 a001 139583862445/87403803*14662949395604^(4/21) 5142289999996110 a001 5456077604922913205/10610209857723 5142289999996110 a001 139583862445/87403803*192900153618^(2/9) 5142289999996110 a001 86267571272/87403803*73681302247^(1/4) 5142289999996110 a001 39088169/3461452808002*192900153618^(17/18) 5142289999996110 a001 4181/87403804*192900153618^(8/9) 5142289999996110 a001 956722026041/87403803*73681302247^(2/13) 5142289999996110 a001 139583862445/87403803*73681302247^(3/13) 5142289999996110 a001 39088169/119218851371*312119004989^(4/5) 5142289999996110 a001 2084036199823432237/4052739537881 5142289999996110 a001 39088169/45537549124*45537549124^(14/17) 5142289999996110 a001 4052739537881/87403803*28143753123^(1/10) 5142289999996110 a001 4181/87403804*73681302247^(12/13) 5142289999996110 a001 10983760033/29134601*28143753123^(3/10) 5142289999996110 a001 39088169/119218851371*73681302247^(11/13) 5142289999996110 a001 365435296162/87403803*28143753123^(1/5) 5142289999996110 a001 39088169/45537549124*817138163596^(14/19) 5142289999996110 a001 20365011074/87403803*23725150497407^(1/4) 5142289999996110 a001 39088169/45537549124*505019158607^(3/4) 5142289999996110 a001 39088169/45537549124*192900153618^(7/9) 5142289999996110 a001 20365011074/87403803*73681302247^(4/13) 5142289999996110 a001 3536736619241/29134601*10749957122^(1/16) 5142289999996110 a001 6557470319842/87403803*10749957122^(1/12) 5142289999996110 a001 2504730781961/87403803*10749957122^(1/8) 5142289999996110 a001 39088169/192900153618*28143753123^(9/10) 5142289999996110 a001 956722026041/87403803*10749957122^(1/6) 5142289999996110 a001 591286729879/87403803*10749957122^(3/16) 5142289999996110 a001 365435296162/87403803*10749957122^(5/24) 5142289999996110 a001 139583862445/87403803*10749957122^(1/4) 5142289999996110 a001 10983760033/29134601*10749957122^(5/16) 5142289999996110 a001 53316291173/87403803*10749957122^(7/24) 5142289999996110 a001 7778742049/87403803*45537549124^(6/17) 5142289999996110 a001 39088169/17393796001*312119004989^(8/11) 5142289999996110 a001 7778742049/87403803*14662949395604^(2/7) 5142289999996110 a001 39088169/17393796001*23725150497407^(5/8) 5142289999996110 a001 304056783818718281/591286729879 5142289999996110 a001 7778742049/87403803*192900153618^(1/3) 5142289999996110 a001 20365011074/87403803*10749957122^(1/3) 5142289999996110 a001 39088169/17393796001*73681302247^(10/13) 5142289999996110 a001 39088169/17393796001*28143753123^(4/5) 5142289999996110 a001 6557470319842/87403803*4106118243^(2/23) 5142289999996110 a001 7778742049/87403803*10749957122^(3/8) 5142289999996110 a001 2504730781961/87403803*4106118243^(3/23) 5142289999996110 a001 39088169/119218851371*10749957122^(11/12) 5142289999996110 a001 39088169/45537549124*10749957122^(7/8) 5142289999996110 a001 39088169/192900153618*10749957122^(15/16) 5142289999996110 a001 39088169/312119004989*10749957122^(23/24) 5142289999996110 a001 956722026041/87403803*4106118243^(4/23) 5142289999996110 a001 39088169/17393796001*10749957122^(5/6) 5142289999996110 a001 365435296162/87403803*4106118243^(5/23) 5142289999996110 a001 139583862445/87403803*4106118243^(6/23) 5142289999996110 a001 53316291173/87403803*4106118243^(7/23) 5142289999996110 a001 20365011074/87403803*4106118243^(8/23) 5142289999996110 a001 39088169/6643838879*817138163596^(2/3) 5142289999996110 a001 2971215073/87403803*23725150497407^(5/16) 5142289999996110 a001 116139356908771337/225851433717 5142289999996110 a001 2971215073/87403803*73681302247^(5/13) 5142289999996110 a001 2971215073/87403803*28143753123^(2/5) 5142289999996110 a001 2971215073/87403803*10749957122^(5/12) 5142289999996110 a001 7778742049/87403803*4106118243^(9/23) 5142289999996110 a001 39088169/6643838879*10749957122^(19/24) 5142289999996110 a001 39088169/2537720636*2537720636^(4/5) 5142289999996110 a001 6557470319842/87403803*1568397607^(1/11) 5142289999996110 a001 2971215073/87403803*4106118243^(10/23) 5142289999996110 a001 39088169/45537549124*4106118243^(21/23) 5142289999996110 a001 39088169/17393796001*4106118243^(20/23) 5142289999996110 a001 2504730781961/87403803*1568397607^(3/22) 5142289999996110 a001 39088169/119218851371*4106118243^(22/23) 5142289999996110 a001 39088169/6643838879*4106118243^(19/23) 5142289999996110 a001 956722026041/87403803*1568397607^(2/11) 5142289999996110 a001 365435296162/87403803*1568397607^(5/22) 5142289999996110 a001 75283811239/29134601*1568397607^(1/4) 5142289999996110 a001 139583862445/87403803*1568397607^(3/11) 5142289999996110 a001 53316291173/87403803*1568397607^(7/22) 5142289999996110 a001 20365011074/87403803*1568397607^(4/11) 5142289999996110 a001 39088169/2537720636*45537549124^(12/17) 5142289999996110 a001 1134903170/87403803*312119004989^(2/5) 5142289999996110 a001 39088169/2537720636*14662949395604^(4/7) 5142289999996110 a001 39088169/2537720636*505019158607^(9/14) 5142289999996110 a001 39088169/2537720636*192900153618^(2/3) 5142289999996110 a001 1304743732576345/2537281508 5142289999996110 a001 39088169/2537720636*73681302247^(9/13) 5142289999996110 a001 1134903170/87403803*10749957122^(11/24) 5142289999996110 a001 39088169/2537720636*10749957122^(3/4) 5142289999996110 a001 7778742049/87403803*1568397607^(9/22) 5142289999996110 a001 1134903170/87403803*4106118243^(11/23) 5142289999996110 a001 3536736619241/29134601*599074578^(1/14) 5142289999996110 a001 39088169/2537720636*4106118243^(18/23) 5142289999996110 a001 2971215073/87403803*1568397607^(5/11) 5142289999996110 a001 6557470319842/87403803*599074578^(2/21) 5142289999996110 a001 1134903170/87403803*1568397607^(1/2) 5142289999996110 a001 39088169/17393796001*1568397607^(10/11) 5142289999996110 a001 39088169/6643838879*1568397607^(19/22) 5142289999996110 a001 39088169/45537549124*1568397607^(21/22) 5142289999996110 a001 2504730781961/87403803*599074578^(1/7) 5142289999996110 a001 516002918640/29134601*599074578^(1/6) 5142289999996110 a001 39088169/2537720636*1568397607^(9/11) 5142289999996110 a001 956722026041/87403803*599074578^(4/21) 5142289999996110 a001 591286729879/87403803*599074578^(3/14) 5142289999996110 a001 365435296162/87403803*599074578^(5/21) 5142289999996110 a001 139583862445/87403803*599074578^(2/7) 5142289999996110 a001 53316291173/87403803*599074578^(1/3) 5142289999996110 a001 433494437/87403803*2537720636^(8/15) 5142289999996110 a001 10983760033/29134601*599074578^(5/14) 5142289999996110 a001 20365011074/87403803*599074578^(8/21) 5142289999996110 a001 39088169/969323029*45537549124^(2/3) 5142289999996110 a001 433494437/87403803*45537549124^(8/17) 5142289999996110 a001 433494437/87403803*14662949395604^(8/21) 5142289999996110 a001 433494437/87403803*192900153618^(4/9) 5142289999996110 a001 433494437/87403803*73681302247^(6/13) 5142289999996110 a001 16944503814015853/32951280099 5142289999996110 a001 433494437/87403803*10749957122^(1/2) 5142289999996110 a001 39088169/969323029*10749957122^(17/24) 5142289999996110 a001 433494437/87403803*4106118243^(12/23) 5142289999996110 a001 39088169/969323029*4106118243^(17/23) 5142289999996110 a001 7778742049/87403803*599074578^(3/7) 5142289999996110 a001 433494437/87403803*1568397607^(6/11) 5142289999996110 a001 1836311903/87403803*599074578^(1/2) 5142289999996110 a001 2971215073/87403803*599074578^(10/21) 5142289999996110 a001 39088169/969323029*1568397607^(17/22) 5142289999996110 a001 1134903170/87403803*599074578^(11/21) 5142289999996110 a001 6557470319842/87403803*228826127^(1/10) 5142289999996110 a001 39088169/1568397607*599074578^(5/6) 5142289999996110 a001 4052739537881/87403803*228826127^(1/8) 5142289999996110 a001 39088169/2537720636*599074578^(6/7) 5142289999996110 a001 39088169/6643838879*599074578^(19/21) 5142289999996110 a001 39088169/10749957122*599074578^(13/14) 5142289999996110 a001 433494437/87403803*599074578^(4/7) 5142289999996110 a001 39088169/17393796001*599074578^(20/21) 5142289999996110 a001 2504730781961/87403803*228826127^(3/20) 5142289999996110 a001 39088169/969323029*599074578^(17/21) 5142289999996110 a001 956722026041/54018521*20633239^(1/5) 5142289999996110 a001 956722026041/87403803*228826127^(1/5) 5142289999996110 a001 365435296162/87403803*228826127^(1/4) 5142289999996110 a001 139583862445/87403803*228826127^(3/10) 5142289999996110 a001 53316291173/87403803*228826127^(7/20) 5142289999996110 a001 10983760033/29134601*228826127^(3/8) 5142289999996110 a001 39088169/370248451*23725150497407^(1/2) 5142289999996110 a001 39088169/370248451*505019158607^(4/7) 5142289999996110 a001 165580141/87403803*73681302247^(1/2) 5142289999996110 a001 39088169/370248451*73681302247^(8/13) 5142289999996110 a001 6472224534451829/12586269025 5142289999996110 a001 165580141/87403803*10749957122^(13/24) 5142289999996110 a001 39088169/370248451*10749957122^(2/3) 5142289999996110 a001 165580141/87403803*4106118243^(13/23) 5142289999996110 a001 39088169/370248451*4106118243^(16/23) 5142289999996110 a001 165580141/87403803*1568397607^(13/22) 5142289999996110 a001 39088169/370248451*1568397607^(8/11) 5142289999996110 a001 20365011074/87403803*228826127^(2/5) 5142289999996110 a001 7778742049/87403803*228826127^(9/20) 5142289999996110 a001 165580141/87403803*599074578^(13/21) 5142289999996110 a001 267914296/87403803*228826127^(5/8) 5142289999996110 a001 39088169/370248451*599074578^(16/21) 5142289999996110 a001 2971215073/87403803*228826127^(1/2) 5142289999996110 a001 1134903170/87403803*228826127^(11/20) 5142289999996110 a001 39088169/141422324*141422324^(10/13) 5142289999996110 a001 433494437/87403803*228826127^(3/5) 5142289999996110 a001 6557470319842/87403803*87403803^(2/19) 5142289999996110 a001 39088169/1568397607*228826127^(7/8) 5142289999996110 a001 39088169/969323029*228826127^(17/20) 5142289999996110 a001 39088169/2537720636*228826127^(9/10) 5142289999996110 a001 39088169/6643838879*228826127^(19/20) 5142289999996110 a001 165580141/87403803*228826127^(13/20) 5142289999996110 a001 2504730781961/87403803*87403803^(3/19) 5142289999996110 a001 39088169/370248451*228826127^(4/5) 5142289999996110 a001 956722026041/87403803*87403803^(4/19) 5142289999996110 a001 365435296162/87403803*87403803^(5/19) 5142289999996110 a001 14930352/228826127*33385282^(11/12) 5142289999996110 a001 139583862445/87403803*87403803^(6/19) 5142289999996110 a001 53316291173/87403803*87403803^(7/19) 5142289999996110 a001 39088169/141422324*2537720636^(2/3) 5142289999996110 a001 63245986/87403803*17393796001^(4/7) 5142289999996110 a001 39088169/141422324*45537549124^(10/17) 5142289999996110 a001 39088169/141422324*312119004989^(6/11) 5142289999996110 a001 39088169/141422324*14662949395604^(10/21) 5142289999996110 a001 63245986/87403803*14662949395604^(4/9) 5142289999996110 a001 63245986/87403803*505019158607^(1/2) 5142289999996110 a001 39088169/141422324*192900153618^(5/9) 5142289999996110 a001 63245986/87403803*73681302247^(7/13) 5142289999996110 a001 39088169/141422324*28143753123^(3/5) 5142289999996110 a001 63245986/87403803*10749957122^(7/12) 5142289999996110 a001 39088169/141422324*10749957122^(5/8) 5142289999996110 a001 1236084894669817/2403763488 5142289999996110 a001 63245986/87403803*4106118243^(14/23) 5142289999996110 a001 39088169/141422324*4106118243^(15/23) 5142289999996110 a001 63245986/87403803*1568397607^(7/11) 5142289999996110 a001 39088169/141422324*1568397607^(15/22) 5142289999996110 a001 63245986/87403803*599074578^(2/3) 5142289999996110 a001 39088169/141422324*599074578^(5/7) 5142289999996110 a001 20365011074/87403803*87403803^(8/19) 5142289999996110 a001 7778742049/87403803*87403803^(9/19) 5142289999996110 a001 63245986/87403803*228826127^(7/10) 5142289999996110 a001 39088169/141422324*228826127^(3/4) 5142289999996110 a001 1602508992/29134601*87403803^(1/2) 5142289999996110 a001 102334155/6643838879*141422324^(12/13) 5142289999996110 a001 2971215073/87403803*87403803^(10/19) 5142289999996110 a001 14619165/224056801*141422324^(11/13) 5142289999996110 a001 267914296/228826127*141422324^(9/13) 5142289999996110 a001 3536736619241/29134601*33385282^(1/12) 5142289999996110 a001 1134903170/87403803*87403803^(11/19) 5142289999996110 a001 433494437/228826127*141422324^(2/3) 5142289999996110 a001 102334155/370248451*141422324^(10/13) 5142289999996110 a001 1134903170/228826127*141422324^(8/13) 5142289999996110 a001 3732588/35355581*33385282^(8/9) 5142289999996110 a001 9238424/599786069*141422324^(12/13) 5142289999996110 a001 433494437/87403803*87403803^(12/19) 5142289999996110 a001 701408733/45537549124*141422324^(12/13) 5142289999996110 a001 1836311903/119218851371*141422324^(12/13) 5142289999996110 a001 4807526976/312119004989*141422324^(12/13) 5142289999996110 a001 12586269025/817138163596*141422324^(12/13) 5142289999996110 a001 32951280099/2139295485799*141422324^(12/13) 5142289999996110 a001 86267571272/5600748293801*141422324^(12/13) 5142289999996110 a001 7787980473/505618944676*141422324^(12/13) 5142289999996110 a001 365435296162/23725150497407*141422324^(12/13) 5142289999996110 a001 139583862445/9062201101803*141422324^(12/13) 5142289999996110 a001 53316291173/3461452808002*141422324^(12/13) 5142289999996110 a001 20365011074/1322157322203*141422324^(12/13) 5142289999996110 a001 7778742049/505019158607*141422324^(12/13) 5142289999996110 a001 2971215073/192900153618*141422324^(12/13) 5142289999996110 a001 102287808/4868641*141422324^(7/13) 5142289999996110 a001 1134903170/73681302247*141422324^(12/13) 5142289999996110 a001 267914296/4106118243*141422324^(11/13) 5142289999996110 a001 433494437/28143753123*141422324^(12/13) 5142289999996110 a001 701408733/10749957122*141422324^(11/13) 5142289999996110 a001 14930352/370248451*33385282^(17/18) 5142289999996110 a001 1836311903/28143753123*141422324^(11/13) 5142289999996110 a001 686789568/10525900321*141422324^(11/13) 5142289999996110 a001 12586269025/192900153618*141422324^(11/13) 5142289999996110 a001 32951280099/505019158607*141422324^(11/13) 5142289999996110 a001 86267571272/1322157322203*141422324^(11/13) 5142289999996110 a001 32264490531/494493258286*141422324^(11/13) 5142289999996110 a001 591286729879/9062201101803*141422324^(11/13) 5142289999996110 a001 1548008755920/23725150497407*141422324^(11/13) 5142289999996110 a001 365435296162/5600748293801*141422324^(11/13) 5142289999996110 a001 139583862445/2139295485799*141422324^(11/13) 5142289999996110 a001 53316291173/817138163596*141422324^(11/13) 5142289999996110 a001 20365011074/312119004989*141422324^(11/13) 5142289999996110 a001 7778742049/119218851371*141422324^(11/13) 5142289999996110 a001 2971215073/45537549124*141422324^(11/13) 5142289999996110 a001 20365011074/228826127*141422324^(6/13) 5142289999996110 a001 1134903170/17393796001*141422324^(11/13) 5142289999996110 a001 433494437/6643838879*141422324^(11/13) 5142289999996110 a001 267914296/969323029*141422324^(10/13) 5142289999996110 a001 165580141/10749957122*141422324^(12/13) 5142289999996110 a001 701408733/2537720636*141422324^(10/13) 5142289999996110 a001 1836311903/6643838879*141422324^(10/13) 5142289999996110 a001 4807526976/17393796001*141422324^(10/13) 5142289999996110 a001 12586269025/45537549124*141422324^(10/13) 5142289999996110 a001 32951280099/119218851371*141422324^(10/13) 5142289999996110 a001 86267571272/312119004989*141422324^(10/13) 5142289999996110 a001 225851433717/817138163596*141422324^(10/13) 5142289999996110 a001 1548008755920/5600748293801*141422324^(10/13) 5142289999996110 a001 139583862445/505019158607*141422324^(10/13) 5142289999996110 a001 53316291173/192900153618*141422324^(10/13) 5142289999996110 a001 20365011074/73681302247*141422324^(10/13) 5142289999996110 a001 7778742049/28143753123*141422324^(10/13) 5142289999996110 a001 2971215073/10749957122*141422324^(10/13) 5142289999996110 a001 1134903170/4106118243*141422324^(10/13) 5142289999996110 a001 86267571272/228826127*141422324^(5/13) 5142289999996110 a001 10472279279564025/20365011074 5142289999996110 a001 102334155/228826127*1322157322203^(1/2) 5142289999996110 a001 233802911/199691526*141422324^(9/13) 5142289999996110 a001 433494437/1568397607*141422324^(10/13) 5142289999996110 a001 567451585/299537289*141422324^(2/3) 5142289999996110 a001 225851433717/228826127*141422324^(1/3) 5142289999996110 a001 1836311903/1568397607*141422324^(9/13) 5142289999996110 a001 165580141/2537720636*141422324^(11/13) 5142289999996110 a001 1602508992/1368706081*141422324^(9/13) 5142289999996110 a001 12586269025/10749957122*141422324^(9/13) 5142289999996110 a001 10983760033/9381251041*141422324^(9/13) 5142289999996110 a001 86267571272/73681302247*141422324^(9/13) 5142289999996110 a001 75283811239/64300051206*141422324^(9/13) 5142289999996110 a001 2504730781961/2139295485799*141422324^(9/13) 5142289999996110 a001 365435296162/312119004989*141422324^(9/13) 5142289999996110 a001 139583862445/119218851371*141422324^(9/13) 5142289999996110 a001 53316291173/45537549124*141422324^(9/13) 5142289999996110 a001 20365011074/17393796001*141422324^(9/13) 5142289999996110 a001 7778742049/6643838879*141422324^(9/13) 5142289999996110 a001 365435296162/228826127*141422324^(4/13) 5142289999996110 a001 2971215073/2537720636*141422324^(9/13) 5142289999996110 a001 165580141/87403803*87403803^(13/19) 5142289999996110 a001 165580141/599074578*141422324^(10/13) 5142289999996110 a001 2971215073/1568397607*141422324^(2/3) 5142289999996110 a001 2971215073/599074578*141422324^(8/13) 5142289999996110 a001 1134903170/969323029*141422324^(9/13) 5142289999996110 a001 7778742049/4106118243*141422324^(2/3) 5142289999996110 a001 10182505537/5374978561*141422324^(2/3) 5142289999996110 a001 53316291173/28143753123*141422324^(2/3) 5142289999996110 a001 139583862445/73681302247*141422324^(2/3) 5142289999996110 a001 182717648081/96450076809*141422324^(2/3) 5142289999996110 a001 956722026041/505019158607*141422324^(2/3) 5142289999996110 a001 10610209857723/5600748293801*141422324^(2/3) 5142289999996110 a001 591286729879/312119004989*141422324^(2/3) 5142289999996110 a001 225851433717/119218851371*141422324^(2/3) 5142289999996110 a001 21566892818/11384387281*141422324^(2/3) 5142289999996110 a001 32951280099/17393796001*141422324^(2/3) 5142289999996110 a001 12586269025/6643838879*141422324^(2/3) 5142289999996110 a001 1201881744/634430159*141422324^(2/3) 5142289999996110 a001 1836311903/969323029*141422324^(2/3) 5142289999996110 a001 6557470319842/87403803*33385282^(1/9) 5142289999996110 a001 7778742049/1568397607*141422324^(8/13) 5142289999996110 a001 20365011074/4106118243*141422324^(8/13) 5142289999996110 a001 53316291173/10749957122*141422324^(8/13) 5142289999996110 a001 139583862445/28143753123*141422324^(8/13) 5142289999996110 a001 365435296162/73681302247*141422324^(8/13) 5142289999996110 a001 956722026041/192900153618*141422324^(8/13) 5142289999996110 a001 2504730781961/505019158607*141422324^(8/13) 5142289999996110 a001 10610209857723/2139295485799*141422324^(8/13) 5142289999996110 a001 4052739537881/817138163596*141422324^(8/13) 5142289999996110 a001 140728068720/28374454999*141422324^(8/13) 5142289999996110 a001 591286729879/119218851371*141422324^(8/13) 5142289999996110 a001 225851433717/45537549124*141422324^(8/13) 5142289999996110 a001 86267571272/17393796001*141422324^(8/13) 5142289999996110 a001 32951280099/6643838879*141422324^(8/13) 5142289999996110 a001 1548008755920/228826127*141422324^(3/13) 5142289999996110 a001 1144206275/230701876*141422324^(8/13) 5142289999996110 a001 4807526976/969323029*141422324^(8/13) 5142289999996110 a001 12586269025/599074578*141422324^(7/13) 5142289999996110 a001 32951280099/1568397607*141422324^(7/13) 5142289999996110 a001 86267571272/4106118243*141422324^(7/13) 5142289999996110 a001 225851433717/10749957122*141422324^(7/13) 5142289999996110 a001 591286729879/28143753123*141422324^(7/13) 5142289999996110 a001 1548008755920/73681302247*141422324^(7/13) 5142289999996110 a001 4052739537881/192900153618*141422324^(7/13) 5142289999996110 a001 225749145909/10745088481*141422324^(7/13) 5142289999996110 a001 6557470319842/312119004989*141422324^(7/13) 5142289999996110 a001 2504730781961/119218851371*141422324^(7/13) 5142289999996110 a001 956722026041/45537549124*141422324^(7/13) 5142289999996110 a001 365435296162/17393796001*141422324^(7/13) 5142289999996110 a001 139583862445/6643838879*141422324^(7/13) 5142289999996110 a001 6557470319842/228826127*141422324^(2/13) 5142289999996110 a001 53316291173/2537720636*141422324^(7/13) 5142289999996110 a001 701408733/370248451*141422324^(2/3) 5142289999996110 a001 433494437/370248451*141422324^(9/13) 5142289999996110 a001 53316291173/599074578*141422324^(6/13) 5142289999996110 a001 20365011074/969323029*141422324^(7/13) 5142289999996110 a001 1836311903/370248451*141422324^(8/13) 5142289999996110 a001 139583862445/1568397607*141422324^(6/13) 5142289999996110 a001 365435296162/4106118243*141422324^(6/13) 5142289999996110 a001 956722026041/10749957122*141422324^(6/13) 5142289999996110 a001 2504730781961/28143753123*141422324^(6/13) 5142289999996110 a001 6557470319842/73681302247*141422324^(6/13) 5142289999996110 a001 10610209857723/119218851371*141422324^(6/13) 5142289999996110 a001 4052739537881/45537549124*141422324^(6/13) 5142289999996110 a001 1548008755920/17393796001*141422324^(6/13) 5142289999996110 a001 591286729879/6643838879*141422324^(6/13) 5142289999996110 a001 225851433717/2537720636*141422324^(6/13) 5142289999996110 a001 267913919/710646*141422324^(5/13) 5142289999996110 a001 86267571272/969323029*141422324^(6/13) 5142289999996110 a001 267914296/228826127*2537720636^(3/5) 5142289999996110 a001 267914296/228826127*45537549124^(9/17) 5142289999996110 a001 27416783093579880/53316291173 5142289999996110 a001 267914296/228826127*817138163596^(9/19) 5142289999996110 a001 267914296/228826127*14662949395604^(3/7) 5142289999996110 a001 267914296/228826127*192900153618^(1/2) 5142289999996110 a001 267914296/228826127*10749957122^(9/16) 5142289999996110 a001 267914296/228826127*599074578^(9/14) 5142289999996110 a001 591286729879/1568397607*141422324^(5/13) 5142289999996110 a001 7778742049/370248451*141422324^(7/13) 5142289999996110 a001 14619165/224056801*2537720636^(11/15) 5142289999996110 a001 701408733/228826127*2537720636^(5/9) 5142289999996110 a001 14619165/224056801*45537549124^(11/17) 5142289999996110 a001 161299033710507/313671601 5142289999996110 a001 14619165/224056801*312119004989^(3/5) 5142289999996110 a001 14619165/224056801*817138163596^(11/19) 5142289999996110 a001 14619165/224056801*14662949395604^(11/21) 5142289999996110 a001 14619165/224056801*192900153618^(11/18) 5142289999996110 a001 701408733/228826127*28143753123^(1/2) 5142289999996110 a001 14619165/224056801*10749957122^(11/16) 5142289999996110 a001 591286729879/599074578*141422324^(1/3) 5142289999996110 a001 516002918640/1368706081*141422324^(5/13) 5142289999996110 a001 34111385/1368706081*2537720636^(7/9) 5142289999996110 a001 102334155/119218851371*2537720636^(14/15) 5142289999996110 a001 4052739537881/10749957122*141422324^(5/13) 5142289999996110 a001 102334155/45537549124*2537720636^(8/9) 5142289999996110 a001 831985/228811001*2537720636^(13/15) 5142289999996110 a001 3536736619241/9381251041*141422324^(5/13) 5142289999996110 a001 6557470319842/17393796001*141422324^(5/13) 5142289999996110 a001 2504730781961/6643838879*141422324^(5/13) 5142289999996110 a001 14619165/224056801*1568397607^(3/4) 5142289999996110 a001 102334155/6643838879*2537720636^(4/5) 5142289999996110 a001 102287808/4868641*2537720636^(7/15) 5142289999996110 a001 7778742049/228826127*2537720636^(4/9) 5142289999996110 a001 34111385/1368706081*17393796001^(5/7) 5142289999996110 a001 20365011074/228826127*2537720636^(2/5) 5142289999996110 a001 34111385/1368706081*312119004989^(7/11) 5142289999996110 a001 187917426909946965/365435296162 5142289999996110 a001 34111385/1368706081*14662949395604^(5/9) 5142289999996110 a001 34111385/1368706081*505019158607^(5/8) 5142289999996110 a001 34111385/1368706081*28143753123^(7/10) 5142289999996110 a001 86267571272/228826127*2537720636^(1/3) 5142289999996110 a001 365435296162/228826127*2537720636^(4/15) 5142289999996110 a001 956722026041/228826127*2537720636^(2/9) 5142289999996110 a001 1548008755920/228826127*2537720636^(1/5) 5142289999996110 a001 1836311903/228826127*4106118243^(1/2) 5142289999996110 a001 6557470319842/228826127*2537720636^(2/15) 5142289999996110 a001 225749145909/4868641*2537720636^(1/9) 5142289999996110 a001 102287808/4868641*17393796001^(3/7) 5142289999996110 a001 102287808/4868641*45537549124^(7/17) 5142289999996110 a001 102287808/4868641*14662949395604^(1/3) 5142289999996110 a001 102287808/4868641*192900153618^(7/18) 5142289999996110 a001 102287808/4868641*10749957122^(7/16) 5142289999996110 a001 102334155/119218851371*17393796001^(6/7) 5142289999996110 a001 831985/228811001*45537549124^(13/17) 5142289999996110 a001 12586269025/228826127*817138163596^(1/3) 5142289999996110 a001 1288005205276048875/2504730781961 5142289999996110 a001 831985/228811001*14662949395604^(13/21) 5142289999996110 a001 831985/228811001*192900153618^(13/18) 5142289999996110 a001 831985/228811001*73681302247^(3/4) 5142289999996110 a001 139583862445/228826127*17393796001^(2/7) 5142289999996110 a001 4052739537881/228826127*17393796001^(1/7) 5142289999996110 a001 102334155/2139295485799*45537549124^(16/17) 5142289999996110 a001 102334155/505019158607*45537549124^(15/17) 5142289999996110 a001 32951280099/228826127*45537549124^(1/3) 5142289999996110 a001 102334155/119218851371*45537549124^(14/17) 5142289999996110 a001 3372041405099481345/6557470319842 5142289999996110 a001 86267571272/228826127*45537549124^(5/17) 5142289999996110 a001 365435296162/228826127*45537549124^(4/17) 5142289999996110 a001 1548008755920/228826127*45537549124^(3/17) 5142289999996110 a001 6557470319842/228826127*45537549124^(2/17) 5142289999996110 a001 86267571272/228826127*312119004989^(3/11) 5142289999996110 a001 86267571272/228826127*14662949395604^(5/21) 5142289999996110 a001 86267571272/228826127*192900153618^(5/18) 5142289999996110 a001 102334155/505019158607*312119004989^(9/11) 5142289999996110 a001 102334155/5600748293801*312119004989^(10/11) 5142289999996110 a001 102334155/505019158607*14662949395604^(5/7) 5142289999996110 a001 34111385/3020733700601*817138163596^(17/19) 5142289999996110 a001 225749145909/4868641*312119004989^(1/11) 5142289999996110 a001 1548008755920/228826127*817138163596^(3/19) 5142289999996110 a006 5^(1/2)*Fibonacci(69)/Lucas(40)/sqrt(5) 5142289999996110 a001 102334155/2139295485799*14662949395604^(16/21) 5142289999996110 a001 2504730781961/228826127*505019158607^(1/7) 5142289999996110 a001 6765/228826126*505019158607^(7/8) 5142289999996110 a001 102334155/14662949395604*505019158607^(13/14) 5142289999996110 a001 139583862445/228826127*14662949395604^(2/9) 5142289999996110 a001 9303105/28374454999*23725150497407^(11/16) 5142289999996110 a001 139583862445/228826127*505019158607^(1/4) 5142289999996110 a001 102334155/505019158607*192900153618^(5/6) 5142289999996110 a001 102334155/2139295485799*192900153618^(8/9) 5142289999996110 a001 2504730781961/228826127*73681302247^(2/13) 5142289999996110 a001 225851433717/228826127*73681302247^(1/4) 5142289999996110 a001 102334155/119218851371*817138163596^(14/19) 5142289999996110 a001 102334155/119218851371*14662949395604^(2/3) 5142289999996110 a001 102334155/119218851371*505019158607^(3/4) 5142289999996110 a001 102334155/119218851371*192900153618^(7/9) 5142289999996110 a001 225749145909/4868641*28143753123^(1/10) 5142289999996110 a001 53316291173/228826127*73681302247^(4/13) 5142289999996110 a001 9303105/28374454999*73681302247^(11/13) 5142289999996110 a001 102334155/2139295485799*73681302247^(12/13) 5142289999996110 a001 956722026041/228826127*28143753123^(1/5) 5142289999996110 a001 20365011074/228826127*45537549124^(6/17) 5142289999996110 a001 86267571272/228826127*28143753123^(3/10) 5142289999996110 a001 102334155/45537549124*312119004989^(8/11) 5142289999996110 a001 20365011074/228826127*14662949395604^(2/7) 5142289999996110 a001 102334155/45537549124*23725150497407^(5/8) 5142289999996110 a001 20365011074/228826127*192900153618^(1/3) 5142289999996110 a001 102334155/45537549124*73681302247^(10/13) 5142289999996110 a001 6557470319842/228826127*10749957122^(1/8) 5142289999996110 a001 102334155/505019158607*28143753123^(9/10) 5142289999996110 a001 2504730781961/228826127*10749957122^(1/6) 5142289999996110 a001 102334155/45537549124*28143753123^(4/5) 5142289999996110 a001 1548008755920/228826127*10749957122^(3/16) 5142289999996110 a001 956722026041/228826127*10749957122^(5/24) 5142289999996110 a001 365435296162/228826127*10749957122^(1/4) 5142289999996110 a001 139583862445/228826127*10749957122^(7/24) 5142289999996110 a001 86267571272/228826127*10749957122^(5/16) 5142289999996110 a001 53316291173/228826127*10749957122^(1/3) 5142289999996110 a001 102334155/17393796001*817138163596^(2/3) 5142289999996110 a001 117669030975223/228826128 5142289999996110 a001 7778742049/228826127*505019158607^(5/14) 5142289999996110 a001 7778742049/228826127*73681302247^(5/13) 5142289999996110 a001 20365011074/228826127*10749957122^(3/8) 5142289999996110 a001 7778742049/228826127*28143753123^(2/5) 5142289999996110 a001 831985/228811001*10749957122^(13/16) 5142289999996110 a001 7778742049/228826127*10749957122^(5/12) 5142289999996110 a001 102334155/119218851371*10749957122^(7/8) 5142289999996110 a001 102334155/45537549124*10749957122^(5/6) 5142289999996110 a001 6557470319842/228826127*4106118243^(3/23) 5142289999996110 a001 9303105/28374454999*10749957122^(11/12) 5142289999996110 a001 102334155/505019158607*10749957122^(15/16) 5142289999996110 a001 102334155/817138163596*10749957122^(23/24) 5142289999996110 a001 102334155/17393796001*10749957122^(19/24) 5142289999996110 a001 2504730781961/228826127*4106118243^(4/23) 5142289999996110 a001 956722026041/228826127*4106118243^(5/23) 5142289999996110 a001 365435296162/228826127*4106118243^(6/23) 5142289999996110 a001 139583862445/228826127*4106118243^(7/23) 5142289999996110 a001 53316291173/228826127*4106118243^(8/23) 5142289999996110 a001 102334155/6643838879*45537549124^(12/17) 5142289999996110 a001 2971215073/228826127*312119004989^(2/5) 5142289999996110 a001 102334155/6643838879*14662949395604^(4/7) 5142289999996110 a001 304056783818718315/591286729879 5142289999996110 a001 102334155/6643838879*505019158607^(9/14) 5142289999996110 a001 102334155/6643838879*192900153618^(2/3) 5142289999996110 a001 102334155/6643838879*73681302247^(9/13) 5142289999996110 a001 956722026041/2537720636*141422324^(5/13) 5142289999996110 a001 20365011074/228826127*4106118243^(9/23) 5142289999996110 a001 2971215073/228826127*10749957122^(11/24) 5142289999996110 a001 7778742049/228826127*4106118243^(10/23) 5142289999996110 a001 102334155/6643838879*10749957122^(3/4) 5142289999996110 a001 2971215073/228826127*4106118243^(11/23) 5142289999996110 a001 102334155/45537549124*4106118243^(20/23) 5142289999996110 a001 102334155/17393796001*4106118243^(19/23) 5142289999996110 a001 102334155/119218851371*4106118243^(21/23) 5142289999996110 a001 6557470319842/228826127*1568397607^(3/22) 5142289999996110 a001 9303105/28374454999*4106118243^(22/23) 5142289999996110 a001 5702887/54018521*12752043^(16/17) 5142289999996110 a001 102334155/6643838879*4106118243^(18/23) 5142289999996110 a001 1134903170/228826127*2537720636^(8/15) 5142289999996110 a001 2504730781961/228826127*1568397607^(2/11) 5142289999996110 a001 956722026041/228826127*1568397607^(5/22) 5142289999996110 a001 591286729879/228826127*1568397607^(1/4) 5142289999996110 a001 365435296162/228826127*1568397607^(3/11) 5142289999996110 a001 139583862445/228826127*1568397607^(7/22) 5142289999996110 a001 53316291173/228826127*1568397607^(4/11) 5142289999996110 a001 9303105/230701876*45537549124^(2/3) 5142289999996110 a001 1134903170/228826127*45537549124^(8/17) 5142289999996110 a001 1134903170/228826127*14662949395604^(8/21) 5142289999996110 a001 5530445567084350/10754830177 5142289999996110 a001 1134903170/228826127*192900153618^(4/9) 5142289999996110 a001 1134903170/228826127*73681302247^(6/13) 5142289999996110 a001 1134903170/228826127*10749957122^(1/2) 5142289999996110 a001 9303105/230701876*10749957122^(17/24) 5142289999996110 a001 20365011074/228826127*1568397607^(9/22) 5142289999996110 a001 1134903170/228826127*4106118243^(12/23) 5142289999996110 a001 7778742049/228826127*1568397607^(5/11) 5142289999996110 a001 9303105/230701876*4106118243^(17/23) 5142289999996110 a001 2971215073/228826127*1568397607^(1/2) 5142289999996110 a001 102334155/17393796001*1568397607^(19/22) 5142289999996110 a001 102334155/6643838879*1568397607^(9/11) 5142289999996110 a001 102334155/45537549124*1568397607^(10/11) 5142289999996110 a001 1134903170/228826127*1568397607^(6/11) 5142289999996110 a001 102334155/119218851371*1568397607^(21/22) 5142289999996110 a001 6557470319842/228826127*599074578^(1/7) 5142289999996110 a001 4052739537881/228826127*599074578^(1/6) 5142289999996110 a001 9303105/230701876*1568397607^(17/22) 5142289999996110 a001 2504730781961/228826127*599074578^(4/21) 5142289999996110 a001 1548008755920/228826127*599074578^(3/14) 5142289999996110 a001 956722026041/228826127*599074578^(5/21) 5142289999996110 a001 365435296162/228826127*599074578^(2/7) 5142289999996110 a001 956722026041/599074578*141422324^(4/13) 5142289999996110 a001 139583862445/228826127*599074578^(1/3) 5142289999996110 a001 365435296162/969323029*141422324^(5/13) 5142289999996110 a001 86267571272/228826127*599074578^(5/14) 5142289999996110 a001 53316291173/228826127*599074578^(8/21) 5142289999996110 a001 102334155/969323029*23725150497407^(1/2) 5142289999996110 a001 102334155/969323029*505019158607^(4/7) 5142289999996110 a001 44361286907595735/86267571272 5142289999996110 a001 433494437/228826127*73681302247^(1/2) 5142289999996110 a001 102334155/969323029*73681302247^(8/13) 5142289999996110 a001 433494437/228826127*10749957122^(13/24) 5142289999996110 a001 102334155/969323029*10749957122^(2/3) 5142289999996110 a001 433494437/228826127*4106118243^(13/23) 5142289999996110 a001 102334155/969323029*4106118243^(16/23) 5142289999996110 a001 20365011074/228826127*599074578^(3/7) 5142289999996110 a001 433494437/228826127*1568397607^(13/22) 5142289999996110 a001 7778742049/228826127*599074578^(10/21) 5142289999996110 a001 102334155/969323029*1568397607^(8/11) 5142289999996110 a001 102287808/4868641*599074578^(1/2) 5142289999996110 a001 2971215073/228826127*599074578^(11/21) 5142289999996110 a001 1134903170/228826127*599074578^(4/7) 5142289999996110 a001 14619165/224056801*599074578^(11/14) 5142289999996110 a001 1548008755920/1568397607*141422324^(1/3) 5142289999996110 a001 34111385/1368706081*599074578^(5/6) 5142289999996110 a001 4052739537881/4106118243*141422324^(1/3) 5142289999996110 a001 225749145909/4868641*228826127^(1/8) 5142289999996110 a001 9303105/230701876*599074578^(17/21) 5142289999996110 a001 102334155/6643838879*599074578^(6/7) 5142289999996110 a001 4807525989/4870846*141422324^(1/3) 5142289999996110 a001 6557470319842/6643838879*141422324^(1/3) 5142289999996110 a001 102334155/17393796001*599074578^(19/21) 5142289999996110 a001 831985/228811001*599074578^(13/14) 5142289999996110 a001 2504730781961/2537720636*141422324^(1/3) 5142289999996110 a001 102334155/45537549124*599074578^(20/21) 5142289999996110 a001 433494437/228826127*599074578^(13/21) 5142289999996110 a001 6557470319842/228826127*228826127^(3/20) 5142289999996110 a001 102334155/969323029*599074578^(16/21) 5142289999996110 a001 2504730781961/1568397607*141422324^(4/13) 5142289999996110 a001 32951280099/370248451*141422324^(6/13) 5142289999996110 a001 956722026041/969323029*141422324^(1/3) 5142289999996110 a001 6557470319842/4106118243*141422324^(4/13) 5142289999996110 a001 10610209857723/6643838879*141422324^(4/13) 5142289999996110 a001 2504730781961/228826127*228826127^(1/5) 5142289999996110 a001 4052739537881/2537720636*141422324^(4/13) 5142289999996110 a001 4052739537881/599074578*141422324^(3/13) 5142289999996110 a001 956722026041/228826127*228826127^(1/4) 5142289999996110 a001 1548008755920/969323029*141422324^(4/13) 5142289999996110 a001 39088169/370248451*87403803^(16/19) 5142289999996110 a001 365435296162/228826127*228826127^(3/10) 5142289999996110 a001 39088169/969323029*87403803^(17/19) 5142289999996110 a001 139583862445/228826127*228826127^(7/20) 5142289999996110 a001 1515744265389/224056801*141422324^(3/13) 5142289999996110 a001 86267571272/228826127*228826127^(3/8) 5142289999996110 a001 139583862445/370248451*141422324^(5/13) 5142289999996110 a001 102334155/370248451*2537720636^(2/3) 5142289999996110 a001 165580141/228826127*17393796001^(4/7) 5142289999996110 a001 102334155/370248451*45537549124^(10/17) 5142289999996110 a001 102334155/370248451*312119004989^(6/11) 5142289999996110 a001 102334155/370248451*14662949395604^(10/21) 5142289999996110 a001 165580141/228826127*14662949395604^(4/9) 5142289999996110 a001 165580141/228826127*505019158607^(1/2) 5142289999996110 a001 102334155/370248451*192900153618^(5/9) 5142289999996110 a001 165580141/228826127*73681302247^(7/13) 5142289999996110 a001 5648167938005285/10983760033 5142289999996110 a001 102334155/370248451*28143753123^(3/5) 5142289999996110 a001 165580141/228826127*10749957122^(7/12) 5142289999996110 a001 102334155/370248451*10749957122^(5/8) 5142289999996110 a001 165580141/228826127*4106118243^(14/23) 5142289999996110 a001 102334155/370248451*4106118243^(15/23) 5142289999996110 a001 165580141/228826127*1568397607^(7/11) 5142289999996110 a001 102334155/370248451*1568397607^(15/22) 5142289999996110 a001 53316291173/228826127*228826127^(2/5) 5142289999996110 a001 20365011074/228826127*228826127^(9/20) 5142289999996110 a001 6557470319842/969323029*141422324^(3/13) 5142289999996110 a001 165580141/228826127*599074578^(2/3) 5142289999996110 a001 102334155/370248451*599074578^(5/7) 5142289999996110 a001 7778742049/228826127*228826127^(1/2) 5142289999996110 a001 365435296162/370248451*141422324^(1/3) 5142289999996110 a001 2971215073/228826127*228826127^(11/20) 5142289999996110 a001 591286729879/370248451*141422324^(4/13) 5142289999996110 a001 701408733/228826127*228826127^(5/8) 5142289999996110 a001 63245986/228826127*141422324^(10/13) 5142289999996110 a001 1134903170/228826127*228826127^(3/5) 5142289999996110 a001 39088169/2537720636*87403803^(18/19) 5142289999996110 a001 433494437/228826127*228826127^(13/20) 5142289999996110 a001 71778070001175616/139583862445 5142289999996110 a001 133957148/299537289*1322157322203^(1/2) 5142289999996110 a001 2504730781961/370248451*141422324^(3/13) 5142289999996110 a001 233802911/199691526*2537720636^(3/5) 5142289999996110 a001 233802911/199691526*45537549124^(9/17) 5142289999996110 a001 93958713454973484/182717648081 5142289999996110 a001 233802911/199691526*817138163596^(9/19) 5142289999996110 a001 233802911/199691526*14662949395604^(3/7) 5142289999996110 a001 233802911/199691526*192900153618^(1/2) 5142289999996110 a001 233802911/199691526*10749957122^(9/16) 5142289999996110 a001 267914296/4106118243*2537720636^(11/15) 5142289999996110 a001 1836311903/599074578*2537720636^(5/9) 5142289999996110 a001 267914296/312119004989*2537720636^(14/15) 5142289999996110 a001 267914296/119218851371*2537720636^(8/9) 5142289999996110 a001 267914296/73681302247*2537720636^(13/15) 5142289999996110 a001 133957148/5374978561*2537720636^(7/9) 5142289999996110 a001 9238424/599786069*2537720636^(4/5) 5142289999996110 a001 12586269025/599074578*2537720636^(7/15) 5142289999996110 a001 10182505537/299537289*2537720636^(4/9) 5142289999996110 a001 53316291173/599074578*2537720636^(2/5) 5142289999996110 a001 2971215073/599074578*2537720636^(8/15) 5142289999996110 a001 267914296/4106118243*45537549124^(11/17) 5142289999996110 a001 1836311903/599074578*312119004989^(5/11) 5142289999996110 a001 267914296/4106118243*817138163596^(11/19) 5142289999996110 a001 1836311903/599074578*3461452808002^(5/12) 5142289999996110 a001 267914296/4106118243*192900153618^(11/18) 5142289999996110 a001 1836311903/599074578*28143753123^(1/2) 5142289999996110 a001 267914296/4106118243*10749957122^(11/16) 5142289999996110 a001 267913919/710646*2537720636^(1/3) 5142289999996110 a001 956722026041/599074578*2537720636^(4/15) 5142289999996110 a001 2504730781961/599074578*2537720636^(2/9) 5142289999996110 a001 4052739537881/599074578*2537720636^(1/5) 5142289999996110 a001 133957148/5374978561*17393796001^(5/7) 5142289999996110 a001 133957148/5374978561*312119004989^(7/11) 5142289999996110 a001 1288005205276048896/2504730781961 5142289999996110 a001 133957148/5374978561*14662949395604^(5/9) 5142289999996110 a001 133957148/5374978561*505019158607^(5/8) 5142289999996110 a001 133957148/5374978561*28143753123^(7/10) 5142289999996110 a001 267914296/312119004989*17393796001^(6/7) 5142289999996110 a001 12586269025/599074578*17393796001^(3/7) 5142289999996110 a001 12586269025/599074578*45537549124^(7/17) 5142289999996110 a001 12586269025/599074578*14662949395604^(1/3) 5142289999996110 a001 12586269025/599074578*192900153618^(7/18) 5142289999996110 a001 182717648081/299537289*17393796001^(2/7) 5142289999996110 a001 267914296/73681302247*45537549124^(13/17) 5142289999996110 a001 3536736619241/199691526*17393796001^(1/7) 5142289999996110 a001 267914296/5600748293801*45537549124^(16/17) 5142289999996110 a001 267914296/1322157322203*45537549124^(15/17) 5142289999996110 a001 267914296/312119004989*45537549124^(14/17) 5142289999996110 a001 43133785636/299537289*45537549124^(1/3) 5142289999996110 a001 10983760033/199691526*817138163596^(1/3) 5142289999996110 a001 267914296/73681302247*14662949395604^(13/21) 5142289999996110 a001 267914296/73681302247*192900153618^(13/18) 5142289999996110 a001 267913919/710646*45537549124^(5/17) 5142289999996110 a001 956722026041/599074578*45537549124^(4/17) 5142289999996110 a001 53316291173/599074578*45537549124^(6/17) 5142289999996110 a001 4052739537881/599074578*45537549124^(3/17) 5142289999996110 a001 267914296/73681302247*73681302247^(3/4) 5142289999996110 a001 10946/599074579*312119004989^(10/11) 5142289999996110 a001 267913919/710646*14662949395604^(5/21) 5142289999996110 a001 2504730781961/599074578*312119004989^(2/11) 5142289999996110 a001 267914296/1322157322203*14662949395604^(5/7) 5142289999996110 a006 5^(1/2)*Fibonacci(71)/Lucas(42)/sqrt(5) 5142289999996110 a001 10946/599074579*3461452808002^(5/6) 5142289999996110 a001 182717648081/299537289*505019158607^(1/4) 5142289999996110 a001 267914296/9062201101803*505019158607^(7/8) 5142289999996110 a001 4052739537881/599074578*192900153618^(1/6) 5142289999996110 a001 139583862445/599074578*23725150497407^(1/4) 5142289999996110 a001 267914296/312119004989*505019158607^(3/4) 5142289999996110 a001 267914296/1322157322203*192900153618^(5/6) 5142289999996110 a001 267914296/5600748293801*192900153618^(8/9) 5142289999996110 a001 267914296/23725150497407*192900153618^(17/18) 5142289999996110 a001 3278735159921/299537289*73681302247^(2/13) 5142289999996110 a001 267914296/312119004989*192900153618^(7/9) 5142289999996110 a001 956722026041/599074578*73681302247^(3/13) 5142289999996110 a001 591286729879/599074578*73681302247^(1/4) 5142289999996110 a001 267914296/119218851371*312119004989^(8/11) 5142289999996110 a001 139583862445/599074578*73681302247^(4/13) 5142289999996110 a001 267914296/119218851371*23725150497407^(5/8) 5142289999996110 a001 53316291173/599074578*192900153618^(1/3) 5142289999996110 a001 66978574/204284540899*73681302247^(11/13) 5142289999996110 a001 267914296/5600748293801*73681302247^(12/13) 5142289999996110 a001 267914296/119218851371*73681302247^(10/13) 5142289999996110 a001 2504730781961/599074578*28143753123^(1/5) 5142289999996110 a001 267913919/710646*28143753123^(3/10) 5142289999996110 a001 66978574/11384387281*817138163596^(2/3) 5142289999996110 a001 10182505537/299537289*23725150497407^(5/16) 5142289999996110 a001 5456077604922913904/10610209857723 5142289999996110 a001 10182505537/299537289*505019158607^(5/14) 5142289999996110 a001 10182505537/299537289*73681302247^(5/13) 5142289999996110 a001 10182505537/299537289*28143753123^(2/5) 5142289999996110 a001 267914296/119218851371*28143753123^(4/5) 5142289999996110 a001 267914296/1322157322203*28143753123^(9/10) 5142289999996110 a001 3278735159921/299537289*10749957122^(1/6) 5142289999996110 a001 4052739537881/599074578*10749957122^(3/16) 5142289999996110 a001 2504730781961/599074578*10749957122^(5/24) 5142289999996110 a001 956722026041/599074578*10749957122^(1/4) 5142289999996110 a001 12586269025/599074578*10749957122^(7/16) 5142289999996110 a001 267913919/710646*10749957122^(5/16) 5142289999996110 a001 139583862445/599074578*10749957122^(1/3) 5142289999996110 a001 9238424/599786069*45537549124^(12/17) 5142289999996110 a001 7778742049/599074578*312119004989^(2/5) 5142289999996110 a001 9238424/599786069*14662949395604^(4/7) 5142289999996110 a001 2084036199823432504/4052739537881 5142289999996110 a001 53316291173/599074578*10749957122^(3/8) 5142289999996110 a001 9238424/599786069*192900153618^(2/3) 5142289999996110 a001 9238424/599786069*73681302247^(9/13) 5142289999996110 a001 10182505537/299537289*10749957122^(5/12) 5142289999996110 a001 267914296/73681302247*10749957122^(13/16) 5142289999996110 a001 7778742049/599074578*10749957122^(11/24) 5142289999996110 a001 267914296/119218851371*10749957122^(5/6) 5142289999996110 a001 66978574/11384387281*10749957122^(19/24) 5142289999996110 a001 267914296/312119004989*10749957122^(7/8) 5142289999996110 a001 66978574/204284540899*10749957122^(11/12) 5142289999996110 a001 267914296/1322157322203*10749957122^(15/16) 5142289999996110 a001 267914296/2139295485799*10749957122^(23/24) 5142289999996110 a001 9238424/599786069*10749957122^(3/4) 5142289999996110 a001 3278735159921/299537289*4106118243^(4/23) 5142289999996110 a001 2504730781961/599074578*4106118243^(5/23) 5142289999996110 a001 956722026041/599074578*4106118243^(6/23) 5142289999996110 a001 182717648081/299537289*4106118243^(7/23) 5142289999996110 a001 139583862445/599074578*4106118243^(8/23) 5142289999996110 a001 267084832/33281921*4106118243^(1/2) 5142289999996110 a001 267914296/6643838879*45537549124^(2/3) 5142289999996110 a001 2971215073/599074578*45537549124^(8/17) 5142289999996110 a001 2971215073/599074578*14662949395604^(8/21) 5142289999996110 a001 99503874318422951/193501094490 5142289999996110 a001 2971215073/599074578*192900153618^(4/9) 5142289999996110 a001 2971215073/599074578*73681302247^(6/13) 5142289999996110 a001 53316291173/599074578*4106118243^(9/23) 5142289999996110 a001 10182505537/299537289*4106118243^(10/23) 5142289999996110 a001 2971215073/599074578*10749957122^(1/2) 5142289999996110 a001 267914296/6643838879*10749957122^(17/24) 5142289999996110 a001 102334155/969323029*228826127^(4/5) 5142289999996110 a001 7778742049/599074578*4106118243^(11/23) 5142289999996110 a001 66978574/11384387281*4106118243^(19/23) 5142289999996110 a001 9238424/599786069*4106118243^(18/23) 5142289999996110 a001 267914296/119218851371*4106118243^(20/23) 5142289999996110 a001 2971215073/599074578*4106118243^(12/23) 5142289999996110 a001 267914296/312119004989*4106118243^(21/23) 5142289999996110 a001 66978574/204284540899*4106118243^(22/23) 5142289999996110 a001 267914296/6643838879*4106118243^(17/23) 5142289999996110 a001 3278735159921/299537289*1568397607^(2/11) 5142289999996110 a001 9303105/230701876*228826127^(17/20) 5142289999996110 a001 2504730781961/599074578*1568397607^(5/22) 5142289999996110 a001 86000486440/33281921*1568397607^(1/4) 5142289999996110 a001 956722026041/599074578*1568397607^(3/11) 5142289999996110 a001 182717648081/299537289*1568397607^(7/22) 5142289999996110 a001 139583862445/599074578*1568397607^(4/11) 5142289999996110 a001 66978574/634430159*23725150497407^(1/2) 5142289999996110 a001 304056783818718320/591286729879 5142289999996110 a001 567451585/299537289*73681302247^(1/2) 5142289999996110 a001 66978574/634430159*73681302247^(8/13) 5142289999996110 a001 567451585/299537289*10749957122^(13/24) 5142289999996110 a001 66978574/634430159*10749957122^(2/3) 5142289999996110 a001 53316291173/599074578*1568397607^(9/22) 5142289999996110 a001 10182505537/299537289*1568397607^(5/11) 5142289999996110 a001 567451585/299537289*4106118243^(13/23) 5142289999996110 a001 66978574/634430159*4106118243^(16/23) 5142289999996110 a001 7778742049/599074578*1568397607^(1/2) 5142289999996110 a001 2971215073/599074578*1568397607^(6/11) 5142289999996110 a001 267914296/4106118243*1568397607^(3/4) 5142289999996110 a001 9238424/599786069*1568397607^(9/11) 5142289999996110 a001 267914296/6643838879*1568397607^(17/22) 5142289999996110 a001 34111385/1368706081*228826127^(7/8) 5142289999996110 a001 66978574/11384387281*1568397607^(19/22) 5142289999996110 a001 267914296/119218851371*1568397607^(10/11) 5142289999996110 a001 267914296/312119004989*1568397607^(21/22) 5142289999996110 a001 567451585/299537289*1568397607^(13/22) 5142289999996110 a001 66978574/634430159*1568397607^(8/11) 5142289999996110 a001 3536736619241/199691526*599074578^(1/6) 5142289999996110 a001 3278735159921/299537289*599074578^(4/21) 5142289999996110 a001 4052739537881/599074578*599074578^(3/14) 5142289999996110 a001 2504730781961/599074578*599074578^(5/21) 5142289999996110 a001 956722026041/599074578*599074578^(2/7) 5142289999996110 a001 102334155/6643838879*228826127^(9/10) 5142289999996110 a001 182717648081/299537289*599074578^(1/3) 5142289999996110 a001 267914296/969323029*2537720636^(2/3) 5142289999996110 a001 267913919/710646*599074578^(5/14) 5142289999996110 a001 139583862445/599074578*599074578^(8/21) 5142289999996110 a001 433494437/599074578*17393796001^(4/7) 5142289999996110 a001 267914296/969323029*45537549124^(10/17) 5142289999996110 a001 267914296/969323029*312119004989^(6/11) 5142289999996110 a001 267914296/969323029*14662949395604^(10/21) 5142289999996110 a001 433494437/599074578*14662949395604^(4/9) 5142289999996110 a001 433494437/599074578*505019158607^(1/2) 5142289999996110 a001 308061954665176/599075421 5142289999996110 a001 267914296/969323029*192900153618^(5/9) 5142289999996110 a001 433494437/599074578*73681302247^(7/13) 5142289999996110 a001 267914296/969323029*28143753123^(3/5) 5142289999996110 a001 433494437/599074578*10749957122^(7/12) 5142289999996110 a001 267914296/969323029*10749957122^(5/8) 5142289999996110 a001 433494437/599074578*4106118243^(14/23) 5142289999996110 a001 267914296/969323029*4106118243^(15/23) 5142289999996110 a001 53316291173/599074578*599074578^(3/7) 5142289999996110 a001 433494437/599074578*1568397607^(7/11) 5142289999996110 a001 10182505537/299537289*599074578^(10/21) 5142289999996110 a001 267914296/969323029*1568397607^(15/22) 5142289999996110 a001 233802911/199691526*599074578^(9/14) 5142289999996110 a001 12586269025/599074578*599074578^(1/2) 5142289999996110 a001 7778742049/599074578*599074578^(11/21) 5142289999996110 a001 2971215073/599074578*599074578^(4/7) 5142289999996110 a001 102334155/17393796001*228826127^(19/20) 5142289999996110 a001 567451585/299537289*599074578^(13/21) 5142289999996110 a001 491974210728665289/956722026041 5142289999996110 a001 701408733/1568397607*1322157322203^(1/2) 5142289999996110 a001 267914296/4106118243*599074578^(11/14) 5142289999996110 a001 1836311903/1568397607*2537720636^(3/5) 5142289999996110 a001 701408733/817138163596*2537720636^(14/15) 5142289999996110 a001 3524667/1568437211*2537720636^(8/9) 5142289999996110 a001 233802911/64300051206*2537720636^(13/15) 5142289999996110 a001 701408733/45537549124*2537720636^(4/5) 5142289999996110 a001 701408733/10749957122*2537720636^(11/15) 5142289999996110 a001 233802911/9381251041*2537720636^(7/9) 5142289999996110 a001 66978574/634430159*599074578^(16/21) 5142289999996110 a001 267914296/6643838879*599074578^(17/21) 5142289999996110 a001 686789568/224056801*2537720636^(5/9) 5142289999996110 a001 7778742049/1568397607*2537720636^(8/15) 5142289999996110 a001 32951280099/1568397607*2537720636^(7/15) 5142289999996110 a001 53316291173/1568397607*2537720636^(4/9) 5142289999996110 a001 133957148/5374978561*599074578^(5/6) 5142289999996110 a001 139583862445/1568397607*2537720636^(2/5) 5142289999996110 a001 1836311903/1568397607*45537549124^(9/17) 5142289999996110 a001 1836311903/1568397607*817138163596^(9/19) 5142289999996110 a001 1288005205276048899/2504730781961 5142289999996110 a001 233802911/1368706081*9062201101803^(1/2) 5142289999996110 a001 1836311903/1568397607*192900153618^(1/2) 5142289999996110 a001 1836311903/1568397607*10749957122^(9/16) 5142289999996110 a001 591286729879/1568397607*2537720636^(1/3) 5142289999996110 a001 2504730781961/1568397607*2537720636^(4/15) 5142289999996110 a001 6557470319842/1568397607*2537720636^(2/9) 5142289999996110 a001 1515744265389/224056801*2537720636^(1/5) 5142289999996110 a001 701408733/10749957122*45537549124^(11/17) 5142289999996110 a001 686789568/224056801*312119004989^(5/11) 5142289999996110 a001 701408733/10749957122*817138163596^(11/19) 5142289999996110 a001 1686020702549740704/3278735159921 5142289999996110 a001 701408733/10749957122*192900153618^(11/18) 5142289999996110 a001 686789568/224056801*28143753123^(1/2) 5142289999996110 a001 233802911/9381251041*17393796001^(5/7) 5142289999996110 a001 701408733/817138163596*17393796001^(6/7) 5142289999996110 a001 701408733/10749957122*10749957122^(11/16) 5142289999996110 a001 32951280099/1568397607*17393796001^(3/7) 5142289999996110 a001 233802911/9381251041*312119004989^(7/11) 5142289999996110 a001 233802911/9381251041*14662949395604^(5/9) 5142289999996110 a001 233802911/9381251041*505019158607^(5/8) 5142289999996110 a001 956722026041/1568397607*17393796001^(2/7) 5142289999996110 a001 701408733/14662949395604*45537549124^(16/17) 5142289999996110 a001 701408733/3461452808002*45537549124^(15/17) 5142289999996110 a001 233802911/64300051206*45537549124^(13/17) 5142289999996110 a001 701408733/817138163596*45537549124^(14/17) 5142289999996110 a001 32951280099/1568397607*45537549124^(7/17) 5142289999996110 a001 233802911/9381251041*28143753123^(7/10) 5142289999996110 a001 32951280099/1568397607*14662949395604^(1/3) 5142289999996110 a001 32951280099/1568397607*192900153618^(7/18) 5142289999996110 a001 32264490531/224056801*45537549124^(1/3) 5142289999996110 a001 139583862445/1568397607*45537549124^(6/17) 5142289999996110 a001 591286729879/1568397607*45537549124^(5/17) 5142289999996110 a001 2504730781961/1568397607*45537549124^(4/17) 5142289999996110 a001 1515744265389/224056801*45537549124^(3/17) 5142289999996110 a001 86267571272/1568397607*817138163596^(1/3) 5142289999996110 a001 233802911/64300051206*14662949395604^(13/21) 5142289999996110 a001 701408733/2139295485799*312119004989^(4/5) 5142289999996110 a001 233802911/64300051206*192900153618^(13/18) 5142289999996110 a001 591286729879/1568397607*312119004989^(3/11) 5142289999996110 a001 6557470319842/1568397607*312119004989^(2/11) 5142289999996110 a001 2504730781961/1568397607*817138163596^(4/19) 5142289999996110 a001 1515744265389/224056801*14662949395604^(1/7) 5142289999996110 a006 5^(1/2)*Fibonacci(73)/Lucas(44)/sqrt(5) 5142289999996110 a001 701408733/23725150497407*505019158607^(7/8) 5142289999996110 a001 1515744265389/224056801*192900153618^(1/6) 5142289999996110 a001 2504730781961/1568397607*192900153618^(2/9) 5142289999996110 a001 139583862445/1568397607*14662949395604^(2/7) 5142289999996110 a001 3524667/1568437211*23725150497407^(5/8) 5142289999996110 a001 139583862445/1568397607*192900153618^(1/3) 5142289999996110 a001 701408733/14662949395604*192900153618^(8/9) 5142289999996110 a001 2504730781961/1568397607*73681302247^(3/13) 5142289999996110 a001 1548008755920/1568397607*73681302247^(1/4) 5142289999996110 a001 365435296162/1568397607*73681302247^(4/13) 5142289999996110 a001 701408733/119218851371*817138163596^(2/3) 5142289999996110 a001 53316291173/1568397607*23725150497407^(5/16) 5142289999996110 a001 53316291173/1568397607*505019158607^(5/14) 5142289999996110 a001 233802911/64300051206*73681302247^(3/4) 5142289999996110 a001 53316291173/1568397607*73681302247^(5/13) 5142289999996110 a001 3524667/1568437211*73681302247^(10/13) 5142289999996110 a001 701408733/2139295485799*73681302247^(11/13) 5142289999996110 a001 701408733/14662949395604*73681302247^(12/13) 5142289999996110 a001 6557470319842/1568397607*28143753123^(1/5) 5142289999996110 a001 591286729879/1568397607*28143753123^(3/10) 5142289999996110 a001 20365011074/1568397607*312119004989^(2/5) 5142289999996110 a001 701408733/45537549124*14662949395604^(4/7) 5142289999996110 a001 701408733/45537549124*505019158607^(9/14) 5142289999996110 a001 701408733/45537549124*192900153618^(2/3) 5142289999996110 a001 53316291173/1568397607*28143753123^(2/5) 5142289999996110 a001 701408733/45537549124*73681302247^(9/13) 5142289999996110 a001 3524667/1568437211*28143753123^(4/5) 5142289999996110 a001 701408733/3461452808002*28143753123^(9/10) 5142289999996110 a001 1515744265389/224056801*10749957122^(3/16) 5142289999996110 a001 6557470319842/1568397607*10749957122^(5/24) 5142289999996110 a001 2504730781961/1568397607*10749957122^(1/4) 5142289999996110 a001 956722026041/1568397607*10749957122^(7/24) 5142289999996110 a001 591286729879/1568397607*10749957122^(5/16) 5142289999996110 a001 365435296162/1568397607*10749957122^(1/3) 5142289999996110 a001 701408733/17393796001*45537549124^(2/3) 5142289999996110 a001 7778742049/1568397607*45537549124^(8/17) 5142289999996110 a001 139583862445/1568397607*10749957122^(3/8) 5142289999996110 a001 7778742049/1568397607*14662949395604^(8/21) 5142289999996110 a001 1818692534974304639/3536736619241 5142289999996110 a001 7778742049/1568397607*192900153618^(4/9) 5142289999996110 a001 7778742049/1568397607*73681302247^(6/13) 5142289999996110 a001 32951280099/1568397607*10749957122^(7/16) 5142289999996110 a001 53316291173/1568397607*10749957122^(5/12) 5142289999996110 a001 20365011074/1568397607*10749957122^(11/24) 5142289999996110 a001 701408733/119218851371*10749957122^(19/24) 5142289999996110 a001 701408733/45537549124*10749957122^(3/4) 5142289999996110 a001 233802911/64300051206*10749957122^(13/16) 5142289999996110 a001 3524667/1568437211*10749957122^(5/6) 5142289999996110 a001 701408733/817138163596*10749957122^(7/8) 5142289999996110 a001 7778742049/1568397607*10749957122^(1/2) 5142289999996110 a001 701408733/2139295485799*10749957122^(11/12) 5142289999996110 a001 701408733/3461452808002*10749957122^(15/16) 5142289999996110 a001 701408733/5600748293801*10749957122^(23/24) 5142289999996110 a001 10610209857723/370248451*141422324^(2/13) 5142289999996110 a001 701408733/17393796001*10749957122^(17/24) 5142289999996110 a001 9238424/599786069*599074578^(6/7) 5142289999996110 a001 6557470319842/1568397607*4106118243^(5/23) 5142289999996110 a001 2504730781961/1568397607*4106118243^(6/23) 5142289999996110 a001 956722026041/1568397607*4106118243^(7/23) 5142289999996110 a001 365435296162/1568397607*4106118243^(8/23) 5142289999996110 a001 701408733/6643838879*23725150497407^(1/2) 5142289999996110 a001 2084036199823432509/4052739537881 5142289999996110 a001 2971215073/1568397607*73681302247^(1/2) 5142289999996110 a001 701408733/6643838879*73681302247^(8/13) 5142289999996110 a001 139583862445/1568397607*4106118243^(9/23) 5142289999996110 a001 53316291173/1568397607*4106118243^(10/23) 5142289999996110 a001 2971215073/1568397607*10749957122^(13/24) 5142289999996110 a001 12586269025/1568397607*4106118243^(1/2) 5142289999996110 a001 701408733/6643838879*10749957122^(2/3) 5142289999996110 a001 20365011074/1568397607*4106118243^(11/23) 5142289999996110 a001 7778742049/1568397607*4106118243^(12/23) 5142289999996110 a001 701408733/45537549124*4106118243^(18/23) 5142289999996110 a001 701408733/17393796001*4106118243^(17/23) 5142289999996110 a001 701408733/119218851371*4106118243^(19/23) 5142289999996110 a001 3524667/1568437211*4106118243^(20/23) 5142289999996110 a001 701408733/2537720636*2537720636^(2/3) 5142289999996110 a001 701408733/817138163596*4106118243^(21/23) 5142289999996110 a001 2971215073/1568397607*4106118243^(13/23) 5142289999996110 a001 701408733/2139295485799*4106118243^(22/23) 5142289999996110 a001 701408733/6643838879*4106118243^(16/23) 5142289999996110 a001 6557470319842/1568397607*1568397607^(5/22) 5142289999996110 a001 4052739537881/1568397607*1568397607^(1/4) 5142289999996110 a001 2504730781961/1568397607*1568397607^(3/11) 5142289999996110 a001 956722026041/1568397607*1568397607^(7/22) 5142289999996110 a001 66978574/11384387281*599074578^(19/21) 5142289999996110 a001 365435296162/1568397607*1568397607^(4/11) 5142289999996110 a001 1134903170/1568397607*17393796001^(4/7) 5142289999996110 a001 701408733/2537720636*45537549124^(10/17) 5142289999996110 a001 701408733/2537720636*312119004989^(6/11) 5142289999996110 a001 701408733/2537720636*14662949395604^(10/21) 5142289999996110 a001 1134903170/1568397607*14662949395604^(4/9) 5142289999996110 a001 1134903170/1568397607*505019158607^(1/2) 5142289999996110 a001 701408733/2537720636*192900153618^(5/9) 5142289999996110 a001 1134903170/1568397607*73681302247^(7/13) 5142289999996110 a001 701408733/2537720636*28143753123^(3/5) 5142289999996110 a001 1134903170/1568397607*10749957122^(7/12) 5142289999996110 a001 701408733/2537720636*10749957122^(5/8) 5142289999996110 a001 139583862445/1568397607*1568397607^(9/22) 5142289999996110 a001 53316291173/1568397607*1568397607^(5/11) 5142289999996110 a001 1134903170/1568397607*4106118243^(14/23) 5142289999996110 a001 701408733/2537720636*4106118243^(15/23) 5142289999996110 a001 1836311903/2139295485799*2537720636^(14/15) 5142289999996110 a001 20365011074/1568397607*1568397607^(1/2) 5142289999996110 a001 267914296/73681302247*599074578^(13/14) 5142289999996110 a001 1836311903/817138163596*2537720636^(8/9) 5142289999996110 a001 1836311903/505019158607*2537720636^(13/15) 5142289999996110 a001 1836311903/119218851371*2537720636^(4/5) 5142289999996110 a001 7778742049/1568397607*1568397607^(6/11) 5142289999996110 a001 1836311903/73681302247*2537720636^(7/9) 5142289999996110 a001 1836311903/28143753123*2537720636^(11/15) 5142289999996110 a001 1602508992/1368706081*2537720636^(3/5) 5142289999996110 a001 4807526976/5600748293801*2537720636^(14/15) 5142289999996110 a001 12586269025/4106118243*2537720636^(5/9) 5142289999996110 a001 4807526976/2139295485799*2537720636^(8/9) 5142289999996110 a001 12586269025/14662949395604*2537720636^(14/15) 5142289999996110 a001 20365011074/23725150497407*2537720636^(14/15) 5142289999996110 a001 2971215073/1568397607*1568397607^(13/22) 5142289999996110 a001 1602508992/440719107401*2537720636^(13/15) 5142289999996110 a001 20365011074/4106118243*2537720636^(8/15) 5142289999996110 a001 7778742049/9062201101803*2537720636^(14/15) 5142289999996110 a001 1836311903/6643838879*2537720636^(2/3) 5142289999996110 a001 12586269025/5600748293801*2537720636^(8/9) 5142289999996110 a001 32951280099/14662949395604*2537720636^(8/9) 5142289999996110 a001 53316291173/23725150497407*2537720636^(8/9) 5142289999996110 a001 20365011074/9062201101803*2537720636^(8/9) 5142289999996110 a001 12586269025/3461452808002*2537720636^(13/15) 5142289999996110 a001 10983760033/3020733700601*2537720636^(13/15) 5142289999996110 a001 7778742049/3461452808002*2537720636^(8/9) 5142289999996110 a001 86267571272/23725150497407*2537720636^(13/15) 5142289999996110 a001 53316291173/14662949395604*2537720636^(13/15) 5142289999996110 a001 20365011074/5600748293801*2537720636^(13/15) 5142289999996110 a001 4807526976/312119004989*2537720636^(4/5) 5142289999996110 a001 267914296/119218851371*599074578^(20/21) 5142289999996110 a001 86267571272/4106118243*2537720636^(7/15) 5142289999996110 a001 7778742049/2139295485799*2537720636^(13/15) 5142289999996110 a001 267084832/10716675201*2537720636^(7/9) 5142289999996110 a001 139583862445/4106118243*2537720636^(4/9) 5142289999996110 a001 12586269025/817138163596*2537720636^(4/5) 5142289999996110 a001 32951280099/2139295485799*2537720636^(4/5) 5142289999996110 a001 86267571272/5600748293801*2537720636^(4/5) 5142289999996110 a001 7787980473/505618944676*2537720636^(4/5) 5142289999996110 a001 365435296162/23725150497407*2537720636^(4/5) 5142289999996110 a001 139583862445/9062201101803*2537720636^(4/5) 5142289999996110 a001 53316291173/3461452808002*2537720636^(4/5) 5142289999996110 a001 20365011074/1322157322203*2537720636^(4/5) 5142289999996110 a001 686789568/10525900321*2537720636^(11/15) 5142289999996110 a001 2971215073/3461452808002*2537720636^(14/15) 5142289999996110 a001 12586269025/505019158607*2537720636^(7/9) 5142289999996110 a001 365435296162/4106118243*2537720636^(2/5) 5142289999996110 a001 10983760033/440719107401*2537720636^(7/9) 5142289999996110 a001 7778742049/505019158607*2537720636^(4/5) 5142289999996110 a001 43133785636/1730726404001*2537720636^(7/9) 5142289999996110 a001 75283811239/3020733700601*2537720636^(7/9) 5142289999996110 a001 182717648081/7331474697802*2537720636^(7/9) 5142289999996110 a001 139583862445/5600748293801*2537720636^(7/9) 5142289999996110 a001 53316291173/2139295485799*2537720636^(7/9) 5142289999996110 a001 10182505537/408569081798*2537720636^(7/9) 5142289999996110 a001 3372041405099481409/6557470319842 5142289999996110 a001 1836311903/4106118243*1322157322203^(1/2) 5142289999996110 a001 7778742049/312119004989*2537720636^(7/9) 5142289999996110 a001 2971215073/1322157322203*2537720636^(8/9) 5142289999996110 a001 12586269025/192900153618*2537720636^(11/15) 5142289999996110 a001 32951280099/505019158607*2537720636^(11/15) 5142289999996110 a001 86267571272/1322157322203*2537720636^(11/15) 5142289999996110 a001 32264490531/494493258286*2537720636^(11/15) 5142289999996110 a001 591286729879/9062201101803*2537720636^(11/15) 5142289999996110 a001 139583862445/2139295485799*2537720636^(11/15) 5142289999996110 a001 53316291173/817138163596*2537720636^(11/15) 5142289999996110 a001 20365011074/312119004989*2537720636^(11/15) 5142289999996110 a001 2971215073/817138163596*2537720636^(13/15) 5142289999996110 a001 516002918640/1368706081*2537720636^(1/3) 5142289999996110 a001 7778742049/119218851371*2537720636^(11/15) 5142289999996110 a001 701408733/10749957122*1568397607^(3/4) 5142289999996110 a001 4807526976/17393796001*2537720636^(2/3) 5142289999996110 a001 12586269025/45537549124*2537720636^(2/3) 5142289999996110 a001 32951280099/119218851371*2537720636^(2/3) 5142289999996110 a001 86267571272/312119004989*2537720636^(2/3) 5142289999996110 a001 225851433717/817138163596*2537720636^(2/3) 5142289999996110 a001 1548008755920/5600748293801*2537720636^(2/3) 5142289999996110 a001 139583862445/505019158607*2537720636^(2/3) 5142289999996110 a001 53316291173/192900153618*2537720636^(2/3) 5142289999996110 a001 20365011074/73681302247*2537720636^(2/3) 5142289999996110 a001 12586269025/10749957122*2537720636^(3/5) 5142289999996110 a001 2971215073/192900153618*2537720636^(4/5) 5142289999996110 a001 7778742049/28143753123*2537720636^(2/3) 5142289999996110 a001 6557470319842/4106118243*2537720636^(4/15) 5142289999996110 a001 2971215073/119218851371*2537720636^(7/9) 5142289999996110 a001 32951280099/10749957122*2537720636^(5/9) 5142289999996110 a001 10983760033/9381251041*2537720636^(3/5) 5142289999996110 a001 86267571272/73681302247*2537720636^(3/5) 5142289999996110 a001 75283811239/64300051206*2537720636^(3/5) 5142289999996110 a001 2504730781961/2139295485799*2537720636^(3/5) 5142289999996110 a001 365435296162/312119004989*2537720636^(3/5) 5142289999996110 a001 139583862445/119218851371*2537720636^(3/5) 5142289999996110 a001 53316291173/45537549124*2537720636^(3/5) 5142289999996110 a001 53316291173/10749957122*2537720636^(8/15) 5142289999996110 a001 2971215073/45537549124*2537720636^(11/15) 5142289999996110 a001 2971215073/10749957122*2537720636^(2/3) 5142289999996110 a001 20365011074/17393796001*2537720636^(3/5) 5142289999996110 a001 701408733/17393796001*1568397607^(17/22) 5142289999996110 a001 701408733/6643838879*1568397607^(8/11) 5142289999996110 a001 86267571272/28143753123*2537720636^(5/9) 5142289999996110 a001 32264490531/10525900321*2537720636^(5/9) 5142289999996110 a001 591286729879/192900153618*2537720636^(5/9) 5142289999996110 a001 1548008755920/505019158607*2537720636^(5/9) 5142289999996110 a001 1515744265389/494493258286*2537720636^(5/9) 5142289999996110 a001 2504730781961/817138163596*2537720636^(5/9) 5142289999996110 a001 956722026041/312119004989*2537720636^(5/9) 5142289999996110 a001 365435296162/119218851371*2537720636^(5/9) 5142289999996110 a001 139583862445/45537549124*2537720636^(5/9) 5142289999996110 a001 139583862445/28143753123*2537720636^(8/15) 5142289999996110 a001 365435296162/73681302247*2537720636^(8/15) 5142289999996110 a001 53316291173/17393796001*2537720636^(5/9) 5142289999996110 a001 956722026041/192900153618*2537720636^(8/15) 5142289999996110 a001 2504730781961/505019158607*2537720636^(8/15) 5142289999996110 a001 10610209857723/2139295485799*2537720636^(8/15) 5142289999996110 a001 4052739537881/817138163596*2537720636^(8/15) 5142289999996110 a001 140728068720/28374454999*2537720636^(8/15) 5142289999996110 a001 591286729879/119218851371*2537720636^(8/15) 5142289999996110 a001 225851433717/45537549124*2537720636^(8/15) 5142289999996110 a001 225851433717/10749957122*2537720636^(7/15) 5142289999996110 a001 86267571272/17393796001*2537720636^(8/15) 5142289999996110 a001 182717648081/5374978561*2537720636^(4/9) 5142289999996110 a001 591286729879/28143753123*2537720636^(7/15) 5142289999996110 a001 701408733/45537549124*1568397607^(9/11) 5142289999996110 a001 1548008755920/73681302247*2537720636^(7/15) 5142289999996110 a001 4052739537881/192900153618*2537720636^(7/15) 5142289999996110 a001 225749145909/10745088481*2537720636^(7/15) 5142289999996110 a001 6557470319842/312119004989*2537720636^(7/15) 5142289999996110 a001 2504730781961/119218851371*2537720636^(7/15) 5142289999996110 a001 956722026041/45537549124*2537720636^(7/15) 5142289999996110 a001 956722026041/10749957122*2537720636^(2/5) 5142289999996110 a001 956722026041/28143753123*2537720636^(4/9) 5142289999996110 a001 2504730781961/73681302247*2537720636^(4/9) 5142289999996110 a001 365435296162/17393796001*2537720636^(7/15) 5142289999996110 a001 3278735159921/96450076809*2537720636^(4/9) 5142289999996110 a001 10610209857723/312119004989*2537720636^(4/9) 5142289999996110 a001 4052739537881/119218851371*2537720636^(4/9) 5142289999996110 a001 387002188980/11384387281*2537720636^(4/9) 5142289999996110 a001 1602508992/1368706081*45537549124^(9/17) 5142289999996110 a001 1602508992/1368706081*817138163596^(9/19) 5142289999996110 a001 1602508992/1368706081*14662949395604^(3/7) 5142289999996110 a001 1836311903/10749957122*9062201101803^(1/2) 5142289999996110 a001 1602508992/1368706081*192900153618^(1/2) 5142289999996110 a001 7778742049/6643838879*2537720636^(3/5) 5142289999996110 a001 591286729879/17393796001*2537720636^(4/9) 5142289999996110 a001 2504730781961/28143753123*2537720636^(2/5) 5142289999996110 a001 20365011074/6643838879*2537720636^(5/9) 5142289999996110 a001 1602508992/1368706081*10749957122^(9/16) 5142289999996110 a001 6557470319842/73681302247*2537720636^(2/5) 5142289999996110 a001 1836311903/2139295485799*17393796001^(6/7) 5142289999996110 a001 10610209857723/119218851371*2537720636^(2/5) 5142289999996110 a001 1836311903/73681302247*17393796001^(5/7) 5142289999996110 a001 4052739537881/45537549124*2537720636^(2/5) 5142289999996110 a001 1836311903/28143753123*45537549124^(11/17) 5142289999996110 a001 86267571272/4106118243*17393796001^(3/7) 5142289999996110 a001 12586269025/4106118243*312119004989^(5/11) 5142289999996110 a001 1836311903/28143753123*817138163596^(11/19) 5142289999996110 a001 12586269025/4106118243*3461452808002^(5/12) 5142289999996110 a001 1836311903/28143753123*192900153618^(11/18) 5142289999996110 a001 4052739537881/10749957122*2537720636^(1/3) 5142289999996110 a001 32951280099/6643838879*2537720636^(8/15) 5142289999996110 a001 2504730781961/4106118243*17393796001^(2/7) 5142289999996110 a001 12586269025/4106118243*28143753123^(1/2) 5142289999996110 a001 1836311903/9062201101803*45537549124^(15/17) 5142289999996110 a001 1836311903/2139295485799*45537549124^(14/17) 5142289999996110 a001 1836311903/505019158607*45537549124^(13/17) 5142289999996110 a001 1836311903/119218851371*45537549124^(12/17) 5142289999996110 a001 86267571272/4106118243*45537549124^(7/17) 5142289999996110 a001 1836311903/73681302247*312119004989^(7/11) 5142289999996110 a001 1836311903/73681302247*14662949395604^(5/9) 5142289999996110 a001 1836311903/73681302247*505019158607^(5/8) 5142289999996110 a001 365435296162/4106118243*45537549124^(6/17) 5142289999996110 a001 591286729879/4106118243*45537549124^(1/3) 5142289999996110 a001 516002918640/1368706081*45537549124^(5/17) 5142289999996110 a001 6557470319842/4106118243*45537549124^(4/17) 5142289999996110 a001 86267571272/4106118243*14662949395604^(1/3) 5142289999996110 a001 86267571272/4106118243*192900153618^(7/18) 5142289999996110 a001 1836311903/9062201101803*312119004989^(9/11) 5142289999996110 a001 1836311903/5600748293801*312119004989^(4/5) 5142289999996110 a001 1836311903/505019158607*14662949395604^(13/21) 5142289999996110 a001 1836311903/2139295485799*817138163596^(14/19) 5142289999996110 a001 1836311903/9062201101803*14662949395604^(5/7) 5142289999996110 a006 5^(1/2)*Fibonacci(75)/Lucas(46)/sqrt(5) 5142289999996110 a001 1836311903/2139295485799*14662949395604^(2/3) 5142289999996110 a001 1836311903/2139295485799*505019158607^(3/4) 5142289999996110 a001 1836311903/312119004989*817138163596^(2/3) 5142289999996110 a001 139583862445/4106118243*23725150497407^(5/16) 5142289999996110 a001 139583862445/4106118243*505019158607^(5/14) 5142289999996110 a001 1836311903/505019158607*192900153618^(13/18) 5142289999996110 a001 1836311903/2139295485799*192900153618^(7/9) 5142289999996110 a001 6557470319842/4106118243*73681302247^(3/13) 5142289999996110 a001 4052739537881/4106118243*73681302247^(1/4) 5142289999996110 a001 956722026041/4106118243*73681302247^(4/13) 5142289999996110 a001 53316291173/4106118243*312119004989^(2/5) 5142289999996110 a001 1836311903/119218851371*14662949395604^(4/7) 5142289999996110 a001 1836311903/119218851371*505019158607^(9/14) 5142289999996110 a001 139583862445/4106118243*73681302247^(5/13) 5142289999996110 a001 1836311903/119218851371*192900153618^(2/3) 5142289999996110 a001 1836311903/505019158607*73681302247^(3/4) 5142289999996110 a001 1836311903/817138163596*73681302247^(10/13) 5142289999996110 a001 1836311903/5600748293801*73681302247^(11/13) 5142289999996110 a001 1836311903/45537549124*45537549124^(2/3) 5142289999996110 a001 1836311903/119218851371*73681302247^(9/13) 5142289999996110 a001 20365011074/4106118243*45537549124^(8/17) 5142289999996110 a001 516002918640/1368706081*28143753123^(3/10) 5142289999996110 a001 20365011074/4106118243*14662949395604^(8/21) 5142289999996110 a001 20365011074/4106118243*192900153618^(4/9) 5142289999996110 a001 1548008755920/17393796001*2537720636^(2/5) 5142289999996110 a001 139583862445/4106118243*28143753123^(2/5) 5142289999996110 a001 20365011074/4106118243*73681302247^(6/13) 5142289999996110 a001 1836311903/73681302247*28143753123^(7/10) 5142289999996110 a001 1836311903/817138163596*28143753123^(4/5) 5142289999996110 a001 1836311903/9062201101803*28143753123^(9/10) 5142289999996110 a001 6557470319842/4106118243*10749957122^(1/4) 5142289999996110 a001 2504730781961/4106118243*10749957122^(7/24) 5142289999996110 a001 516002918640/1368706081*10749957122^(5/16) 5142289999996110 a001 956722026041/4106118243*10749957122^(1/3) 5142289999996110 a001 365435296162/4106118243*10749957122^(3/8) 5142289999996110 a001 1836311903/17393796001*23725150497407^(1/2) 5142289999996110 a001 1836311903/17393796001*505019158607^(4/7) 5142289999996110 a001 7778742049/4106118243*73681302247^(1/2) 5142289999996110 a001 1836311903/17393796001*73681302247^(8/13) 5142289999996110 a001 139583862445/4106118243*10749957122^(5/12) 5142289999996110 a001 86267571272/4106118243*10749957122^(7/16) 5142289999996110 a001 701408733/119218851371*1568397607^(19/22) 5142289999996110 a001 53316291173/4106118243*10749957122^(11/24) 5142289999996110 a001 1836311903/28143753123*10749957122^(11/16) 5142289999996110 a001 20365011074/4106118243*10749957122^(1/2) 5142289999996110 a001 3536736619241/9381251041*2537720636^(1/3) 5142289999996110 a001 1836311903/119218851371*10749957122^(3/4) 5142289999996110 a001 1836311903/45537549124*10749957122^(17/24) 5142289999996110 a001 1836311903/312119004989*10749957122^(19/24) 5142289999996110 a001 1836311903/505019158607*10749957122^(13/16) 5142289999996110 a001 1836311903/817138163596*10749957122^(5/6) 5142289999996110 a001 1836311903/2139295485799*10749957122^(7/8) 5142289999996110 a001 1836311903/5600748293801*10749957122^(11/12) 5142289999996110 a001 7778742049/4106118243*10749957122^(13/24) 5142289999996110 a001 1836311903/9062201101803*10749957122^(15/16) 5142289999996110 a001 1836311903/14662949395604*10749957122^(23/24) 5142289999996110 a001 1836311903/17393796001*10749957122^(2/3) 5142289999996110 a001 139583862445/6643838879*2537720636^(7/15) 5142289999996110 a001 6557470319842/17393796001*2537720636^(1/3) 5142289999996110 a001 225851433717/6643838879*2537720636^(4/9) 5142289999996110 a001 6557470319842/4106118243*4106118243^(6/23) 5142289999996110 a001 2504730781961/4106118243*4106118243^(7/23) 5142289999996110 a001 591286729879/6643838879*2537720636^(2/5) 5142289999996110 a001 956722026041/4106118243*4106118243^(8/23) 5142289999996110 a001 2971215073/4106118243*17393796001^(4/7) 5142289999996110 a001 3524667/1568437211*1568397607^(10/11) 5142289999996110 a001 1836311903/6643838879*45537549124^(10/17) 5142289999996110 a001 1836311903/6643838879*312119004989^(6/11) 5142289999996110 a001 1836311903/6643838879*14662949395604^(10/21) 5142289999996110 a001 2971215073/4106118243*14662949395604^(4/9) 5142289999996110 a001 2971215073/4106118243*505019158607^(1/2) 5142289999996110 a001 1836311903/6643838879*192900153618^(5/9) 5142289999996110 a001 2971215073/4106118243*73681302247^(7/13) 5142289999996110 a001 365435296162/4106118243*4106118243^(9/23) 5142289999996110 a001 1836311903/6643838879*28143753123^(3/5) 5142289999996110 a001 139583862445/4106118243*4106118243^(10/23) 5142289999996110 a001 2971215073/4106118243*10749957122^(7/12) 5142289999996110 a001 1836311903/6643838879*10749957122^(5/8) 5142289999996110 a001 53316291173/4106118243*4106118243^(11/23) 5142289999996110 a001 10983760033/1368706081*4106118243^(1/2) 5142289999996110 a001 2504730781961/6643838879*2537720636^(1/3) 5142289999996110 a001 20365011074/4106118243*4106118243^(12/23) 5142289999996110 a001 7778742049/4106118243*4106118243^(13/23) 5142289999996110 a001 10610209857723/6643838879*2537720636^(4/15) 5142289999996110 a001 701408733/817138163596*1568397607^(21/22) 5142289999996110 a001 2403763488/5374978561*1322157322203^(1/2) 5142289999996110 a001 1836311903/45537549124*4106118243^(17/23) 5142289999996110 a001 1836311903/17393796001*4106118243^(16/23) 5142289999996110 a001 1836311903/119218851371*4106118243^(18/23) 5142289999996110 a001 4807526976/5600748293801*17393796001^(6/7) 5142289999996110 a001 267084832/10716675201*17393796001^(5/7) 5142289999996110 a001 1836311903/312119004989*4106118243^(19/23) 5142289999996110 a001 12586269025/10749957122*45537549124^(9/17) 5142289999996110 a001 225851433717/10749957122*17393796001^(3/7) 5142289999996110 a001 12586269025/10749957122*817138163596^(9/19) 5142289999996110 a001 12586269025/10749957122*14662949395604^(3/7) 5142289999996110 a001 12586269025/10749957122*192900153618^(1/2) 5142289999996110 a001 3278735159921/5374978561*17393796001^(2/7) 5142289999996110 a001 686789568/10525900321*45537549124^(11/17) 5142289999996110 a001 4807526976/23725150497407*45537549124^(15/17) 5142289999996110 a001 4807526976/5600748293801*45537549124^(14/17) 5142289999996110 a001 1602508992/440719107401*45537549124^(13/17) 5142289999996110 a001 4807526976/312119004989*45537549124^(12/17) 5142289999996110 a001 4807526976/119218851371*45537549124^(2/3) 5142289999996110 a001 225851433717/10749957122*45537549124^(7/17) 5142289999996110 a001 686789568/10525900321*312119004989^(3/5) 5142289999996110 a001 32951280099/10749957122*312119004989^(5/11) 5142289999996110 a001 686789568/10525900321*14662949395604^(11/21) 5142289999996110 a001 32951280099/10749957122*3461452808002^(5/12) 5142289999996110 a001 956722026041/10749957122*45537549124^(6/17) 5142289999996110 a001 686789568/10525900321*192900153618^(11/18) 5142289999996110 a001 774004377960/5374978561*45537549124^(1/3) 5142289999996110 a001 53316291173/10749957122*45537549124^(8/17) 5142289999996110 a001 4052739537881/10749957122*45537549124^(5/17) 5142289999996110 a001 267084832/10716675201*312119004989^(7/11) 5142289999996110 a001 267084832/10716675201*14662949395604^(5/9) 5142289999996110 a001 267084832/10716675201*505019158607^(5/8) 5142289999996110 a001 4807526976/23725150497407*312119004989^(9/11) 5142289999996110 a001 1201881744/3665737348901*312119004989^(4/5) 5142289999996110 a001 225851433717/10749957122*14662949395604^(1/3) 5142289999996110 a001 1602508992/440719107401*14662949395604^(13/21) 5142289999996110 a006 5^(1/2)*Fibonacci(77)/Lucas(48)/sqrt(5) 5142289999996110 a001 1201881744/204284540899*817138163596^(2/3) 5142289999996110 a001 182717648081/5374978561*23725150497407^(5/16) 5142289999996110 a001 182717648081/5374978561*505019158607^(5/14) 5142289999996110 a001 139583862445/10749957122*312119004989^(2/5) 5142289999996110 a001 4807526976/312119004989*505019158607^(9/14) 5142289999996110 a001 1602508992/440719107401*192900153618^(13/18) 5142289999996110 a001 4807526976/5600748293801*192900153618^(7/9) 5142289999996110 a001 4807526976/23725150497407*192900153618^(5/6) 5142289999996110 a001 4807525989/4870846*73681302247^(1/4) 5142289999996110 a001 2504730781961/10749957122*73681302247^(4/13) 5142289999996110 a001 53316291173/10749957122*14662949395604^(8/21) 5142289999996110 a001 182717648081/5374978561*73681302247^(5/13) 5142289999996110 a001 53316291173/10749957122*192900153618^(4/9) 5142289999996110 a001 1602508992/440719107401*73681302247^(3/4) 5142289999996110 a001 4807526976/312119004989*73681302247^(9/13) 5142289999996110 a001 4807526976/2139295485799*73681302247^(10/13) 5142289999996110 a001 53316291173/10749957122*73681302247^(6/13) 5142289999996110 a001 1201881744/3665737348901*73681302247^(11/13) 5142289999996110 a001 4052739537881/10749957122*28143753123^(3/10) 5142289999996110 a001 32951280099/10749957122*28143753123^(1/2) 5142289999996110 a001 1201881744/11384387281*23725150497407^(1/2) 5142289999996110 a001 1201881744/11384387281*505019158607^(4/7) 5142289999996110 a001 182717648081/5374978561*28143753123^(2/5) 5142289999996110 a001 10182505537/5374978561*73681302247^(1/2) 5142289999996110 a001 1201881744/11384387281*73681302247^(8/13) 5142289999996110 a001 267084832/10716675201*28143753123^(7/10) 5142289999996110 a001 1836311903/817138163596*4106118243^(20/23) 5142289999996110 a001 4807526976/2139295485799*28143753123^(4/5) 5142289999996110 a001 1134903170/4106118243*2537720636^(2/3) 5142289999996110 a001 4807526976/23725150497407*28143753123^(9/10) 5142289999996110 a001 7778742049/10749957122*17393796001^(4/7) 5142289999996110 a001 3278735159921/5374978561*10749957122^(7/24) 5142289999996110 a001 4052739537881/10749957122*10749957122^(5/16) 5142289999996110 a001 2504730781961/10749957122*10749957122^(1/3) 5142289999996110 a001 4807526976/17393796001*45537549124^(10/17) 5142289999996110 a001 956722026041/10749957122*10749957122^(3/8) 5142289999996110 a001 4807526976/17393796001*312119004989^(6/11) 5142289999996110 a001 4807526976/17393796001*14662949395604^(10/21) 5142289999996110 a001 7778742049/10749957122*14662949395604^(4/9) 5142289999996110 a001 7778742049/10749957122*505019158607^(1/2) 5142289999996110 a001 4807526976/17393796001*192900153618^(5/9) 5142289999996110 a001 7778742049/10749957122*73681302247^(7/13) 5142289999996110 a001 1836311903/2139295485799*4106118243^(21/23) 5142289999996110 a001 12586269025/10749957122*10749957122^(9/16) 5142289999996110 a001 182717648081/5374978561*10749957122^(5/12) 5142289999996110 a001 225851433717/10749957122*10749957122^(7/16) 5142289999996110 a001 139583862445/10749957122*10749957122^(11/24) 5142289999996110 a001 4807526976/17393796001*28143753123^(3/5) 5142289999996110 a001 53316291173/10749957122*10749957122^(1/2) 5142289999996110 a001 12586269025/14662949395604*17393796001^(6/7) 5142289999996110 a001 12586269025/505019158607*17393796001^(5/7) 5142289999996110 a001 10182505537/5374978561*10749957122^(13/24) 5142289999996110 a001 686789568/10525900321*10749957122^(11/16) 5142289999996110 a001 591286729879/28143753123*17393796001^(3/7) 5142289999996110 a001 20365011074/28143753123*17393796001^(4/7) 5142289999996110 a001 1836311903/5600748293801*4106118243^(22/23) 5142289999996110 a001 10983760033/440719107401*17393796001^(5/7) 5142289999996110 a001 12586269025/28143753123*1322157322203^(1/2) 5142289999996110 a001 4807526976/119218851371*10749957122^(17/24) 5142289999996110 a001 1201881744/11384387281*10749957122^(2/3) 5142289999996110 a001 43133785636/1730726404001*17393796001^(5/7) 5142289999996110 a001 75283811239/3020733700601*17393796001^(5/7) 5142289999996110 a001 182717648081/7331474697802*17393796001^(5/7) 5142289999996110 a001 139583862445/5600748293801*17393796001^(5/7) 5142289999996110 a001 53316291173/2139295485799*17393796001^(5/7) 5142289999996110 a001 4807526976/312119004989*10749957122^(3/4) 5142289999996110 a001 53316291173/73681302247*17393796001^(4/7) 5142289999996110 a001 139583862445/192900153618*17393796001^(4/7) 5142289999996110 a001 365435296162/505019158607*17393796001^(4/7) 5142289999996110 a001 591286729879/817138163596*17393796001^(4/7) 5142289999996110 a001 225851433717/312119004989*17393796001^(4/7) 5142289999996110 a001 10182505537/408569081798*17393796001^(5/7) 5142289999996110 a001 86267571272/119218851371*17393796001^(4/7) 5142289999996110 a001 1201881744/204284540899*10749957122^(19/24) 5142289999996110 a001 10983760033/9381251041*45537549124^(9/17) 5142289999996110 a001 12586269025/14662949395604*45537549124^(14/17) 5142289999996110 a001 12586269025/3461452808002*45537549124^(13/17) 5142289999996110 a001 1602508992/440719107401*10749957122^(13/16) 5142289999996110 a001 12586269025/192900153618*45537549124^(11/17) 5142289999996110 a001 12586269025/817138163596*45537549124^(12/17) 5142289999996110 a001 1548008755920/73681302247*17393796001^(3/7) 5142289999996110 a001 32951280099/45537549124*17393796001^(4/7) 5142289999996110 a001 1144206275/28374454999*45537549124^(2/3) 5142289999996110 a001 139583862445/28143753123*45537549124^(8/17) 5142289999996110 a001 591286729879/28143753123*45537549124^(7/17) 5142289999996110 a001 10983760033/9381251041*817138163596^(9/19) 5142289999996110 a001 10983760033/9381251041*14662949395604^(3/7) 5142289999996110 a001 12586269025/73681302247*9062201101803^(1/2) 5142289999996110 a001 4052739537881/192900153618*17393796001^(3/7) 5142289999996110 a001 4807526976/2139295485799*10749957122^(5/6) 5142289999996110 a001 10983760033/9381251041*192900153618^(1/2) 5142289999996110 a001 4052739537881/28143753123*45537549124^(1/3) 5142289999996110 a001 225749145909/10745088481*17393796001^(3/7) 5142289999996110 a001 3536736619241/9381251041*45537549124^(5/17) 5142289999996110 a001 2504730781961/119218851371*17393796001^(3/7) 5142289999996110 a001 12586269025/192900153618*312119004989^(3/5) 5142289999996110 a001 12586269025/505019158607*312119004989^(7/11) 5142289999996110 a001 12586269025/192900153618*192900153618^(11/18) 5142289999996110 a001 12586269025/505019158607*14662949395604^(5/9) 5142289999996110 a001 3536736619241/9381251041*312119004989^(3/11) 5142289999996110 a001 12585437040/228811001*817138163596^(1/3) 5142289999996110 a006 5^(1/2)*Fibonacci(79)/Lucas(50)/sqrt(5) 5142289999996110 a001 956722026041/28143753123*505019158607^(5/14) 5142289999996110 a001 12586269025/14662949395604*505019158607^(3/4) 5142289999996110 a001 12586269025/817138163596*505019158607^(9/14) 5142289999996110 a001 2504730781961/28143753123*192900153618^(1/3) 5142289999996110 a001 591286729879/28143753123*192900153618^(7/18) 5142289999996110 a001 139583862445/28143753123*14662949395604^(8/21) 5142289999996110 a001 12586269025/3461452808002*192900153618^(13/18) 5142289999996110 a001 12586269025/817138163596*192900153618^(2/3) 5142289999996110 a001 12586269025/14662949395604*192900153618^(7/9) 5142289999996110 a001 139583862445/28143753123*192900153618^(4/9) 5142289999996110 a001 6557470319842/28143753123*73681302247^(4/13) 5142289999996110 a001 12586269025/119218851371*23725150497407^(1/2) 5142289999996110 a001 956722026041/28143753123*73681302247^(5/13) 5142289999996110 a001 12586269025/119218851371*505019158607^(4/7) 5142289999996110 a001 139583862445/28143753123*73681302247^(6/13) 5142289999996110 a001 12586269025/817138163596*73681302247^(9/13) 5142289999996110 a001 12586269025/3461452808002*73681302247^(3/4) 5142289999996110 a001 12586269025/5600748293801*73681302247^(10/13) 5142289999996110 a001 53316291173/28143753123*73681302247^(1/2) 5142289999996110 a001 4807526976/5600748293801*10749957122^(7/8) 5142289999996110 a001 12586269025/119218851371*73681302247^(8/13) 5142289999996110 a001 12586269025/45537549124*45537549124^(10/17) 5142289999996110 a001 956722026041/45537549124*17393796001^(3/7) 5142289999996110 a001 3536736619241/9381251041*28143753123^(3/10) 5142289999996110 a001 12586269025/45537549124*312119004989^(6/11) 5142289999996110 a001 12586269025/45537549124*14662949395604^(10/21) 5142289999996110 a001 20365011074/28143753123*14662949395604^(4/9) 5142289999996110 a001 20365011074/28143753123*505019158607^(1/2) 5142289999996110 a001 12586269025/45537549124*192900153618^(5/9) 5142289999996110 a001 956722026041/28143753123*28143753123^(2/5) 5142289999996110 a001 1201881744/3665737348901*10749957122^(11/12) 5142289999996110 a001 20365011074/28143753123*73681302247^(7/13) 5142289999996110 a001 86267571272/28143753123*28143753123^(1/2) 5142289999996110 a001 10983760033/3020733700601*45537549124^(13/17) 5142289999996110 a001 4807526976/23725150497407*10749957122^(15/16) 5142289999996110 a001 32951280099/2139295485799*45537549124^(12/17) 5142289999996110 a001 32951280099/817138163596*45537549124^(2/3) 5142289999996110 a001 32951280099/505019158607*45537549124^(11/17) 5142289999996110 a001 86267571272/73681302247*45537549124^(9/17) 5142289999996110 a001 365435296162/73681302247*45537549124^(8/17) 5142289999996110 a001 32951280099/119218851371*45537549124^(10/17) 5142289999996110 a001 86267571272/23725150497407*45537549124^(13/17) 5142289999996110 a001 1548008755920/73681302247*45537549124^(7/17) 5142289999996110 a001 12586269025/505019158607*28143753123^(7/10) 5142289999996110 a001 32951280099/73681302247*1322157322203^(1/2) 5142289999996110 a001 86267571272/5600748293801*45537549124^(12/17) 5142289999996110 a001 6557470319842/73681302247*45537549124^(6/17) 5142289999996110 a001 86267571272/2139295485799*45537549124^(2/3) 5142289999996110 a001 1515744265389/10525900321*45537549124^(1/3) 5142289999996110 a001 7787980473/505618944676*45537549124^(12/17) 5142289999996110 a001 86267571272/1322157322203*45537549124^(11/17) 5142289999996110 a001 139583862445/9062201101803*45537549124^(12/17) 5142289999996110 a001 225851433717/5600748293801*45537549124^(2/3) 5142289999996110 a001 591286729879/14662949395604*45537549124^(2/3) 5142289999996110 a001 365435296162/9062201101803*45537549124^(2/3) 5142289999996110 a001 32264490531/494493258286*45537549124^(11/17) 5142289999996110 a001 139583862445/3461452808002*45537549124^(2/3) 5142289999996110 a001 365435296162/5600748293801*45537549124^(11/17) 5142289999996110 a001 139583862445/2139295485799*45537549124^(11/17) 5142289999996110 a001 86267571272/312119004989*45537549124^(10/17) 5142289999996110 a001 75283811239/64300051206*45537549124^(9/17) 5142289999996110 a001 225851433717/817138163596*45537549124^(10/17) 5142289999996110 a001 139583862445/505019158607*45537549124^(10/17) 5142289999996110 a001 53316291173/3461452808002*45537549124^(12/17) 5142289999996110 a001 2504730781961/2139295485799*45537549124^(9/17) 5142289999996110 a001 12586269025/5600748293801*28143753123^(4/5) 5142289999996110 a001 53316291173/1322157322203*45537549124^(2/3) 5142289999996110 a001 365435296162/312119004989*45537549124^(9/17) 5142289999996110 a001 53316291173/192900153618*45537549124^(10/17) 5142289999996110 a001 53316291173/817138163596*45537549124^(11/17) 5142289999996110 a001 2504730781961/505019158607*45537549124^(8/17) 5142289999996110 a001 4052739537881/817138163596*45537549124^(8/17) 5142289999996110 a001 140728068720/28374454999*45537549124^(8/17) 5142289999996110 a001 86267571272/73681302247*817138163596^(9/19) 5142289999996110 a001 10983760033/64300051206*9062201101803^(1/2) 5142289999996110 a001 225749145909/10745088481*45537549124^(7/17) 5142289999996110 a001 86267571272/73681302247*192900153618^(1/2) 5142289999996110 a001 32951280099/505019158607*312119004989^(3/5) 5142289999996110 a001 32264490531/10525900321*312119004989^(5/11) 5142289999996110 a001 10983760033/440719107401*312119004989^(7/11) 5142289999996110 a001 32264490531/10525900321*3461452808002^(5/12) 5142289999996110 a001 1548008755920/73681302247*14662949395604^(1/3) 5142289999996110 a006 5^(1/2)*Fibonacci(81)/Lucas(52)/sqrt(5) 5142289999996110 a001 2504730781961/73681302247*505019158607^(5/14) 5142289999996110 a001 10983760033/440719107401*505019158607^(5/8) 5142289999996110 a001 32951280099/2139295485799*505019158607^(9/14) 5142289999996110 a001 6557470319842/73681302247*192900153618^(1/3) 5142289999996110 a001 139583862445/119218851371*45537549124^(9/17) 5142289999996110 a001 1548008755920/73681302247*192900153618^(7/18) 5142289999996110 a001 365435296162/73681302247*192900153618^(4/9) 5142289999996110 a001 32951280099/2139295485799*192900153618^(2/3) 5142289999996110 a001 10983760033/3020733700601*192900153618^(13/18) 5142289999996110 a001 591286729879/119218851371*45537549124^(8/17) 5142289999996110 a001 2504730781961/119218851371*45537549124^(7/17) 5142289999996110 a001 32951280099/119218851371*312119004989^(6/11) 5142289999996110 a001 53316291173/73681302247*14662949395604^(4/9) 5142289999996110 a001 2504730781961/73681302247*73681302247^(5/13) 5142289999996110 a001 10610209857723/119218851371*45537549124^(6/17) 5142289999996110 a001 139583862445/73681302247*73681302247^(1/2) 5142289999996110 a001 32951280099/312119004989*73681302247^(8/13) 5142289999996110 a001 32951280099/2139295485799*73681302247^(9/13) 5142289999996110 a001 43133785636/96450076809*1322157322203^(1/2) 5142289999996110 a001 10983760033/3020733700601*73681302247^(3/4) 5142289999996110 a001 32951280099/14662949395604*73681302247^(10/13) 5142289999996110 a001 86267571272/1322157322203*312119004989^(3/5) 5142289999996110 a001 43133785636/1730726404001*312119004989^(7/11) 5142289999996110 a001 2504730781961/192900153618*312119004989^(2/5) 5142289999996110 a001 1135099622/192933544679*817138163596^(2/3) 5142289999996110 a001 43133785636/1730726404001*14662949395604^(5/9) 5142289999996110 a006 5^(1/2)*Fibonacci(83)/Lucas(54)/sqrt(5) 5142289999996110 a001 21566892818/204284540899*23725150497407^(1/2) 5142289999996110 a001 21566892818/204284540899*505019158607^(4/7) 5142289999996110 a001 12586269025/45537549124*28143753123^(3/5) 5142289999996110 a001 139583862445/192900153618*14662949395604^(4/9) 5142289999996110 a001 4052739537881/192900153618*192900153618^(7/18) 5142289999996110 a001 53316291173/73681302247*73681302247^(7/13) 5142289999996110 a001 1548008755920/505019158607*312119004989^(5/11) 5142289999996110 a001 1515744265389/494493258286*312119004989^(5/11) 5142289999996110 a006 5^(1/2)*Fibonacci(93)/Lucas(64)/sqrt(5) 5142289999996110 a006 5^(1/2)*Fibonacci(90)/Lucas(61)/sqrt(5) 5142289999996110 a006 5^(1/2)*Fibonacci(86)/Lucas(57)/sqrt(5) 5142289999996110 a001 139583862445/2139295485799*312119004989^(3/5) 5142289999996110 a001 2504730781961/505019158607*192900153618^(4/9) 5142289999996110 a006 5^(1/2)*Fibonacci(84)/Lucas(55)/sqrt(5) 5142289999996110 a001 6557470319842/312119004989*192900153618^(7/18) 5142289999996110 a001 139583862445/312119004989*1322157322203^(1/2) 5142289999996110 a001 139583862445/505019158607*192900153618^(5/9) 5142289999996110 a001 139583862445/9062201101803*192900153618^(2/3) 5142289999996110 a001 53316291173/192900153618*312119004989^(6/11) 5142289999996110 a001 3278735159921/96450076809*73681302247^(5/13) 5142289999996110 a001 86267571272/119218851371*505019158607^(1/2) 5142289999996110 a001 956722026041/192900153618*73681302247^(6/13) 5142289999996110 a001 53316291173/192900153618*192900153618^(5/9) 5142289999996110 a001 4807526976/17393796001*10749957122^(5/8) 5142289999996110 a001 53316291173/23725150497407*312119004989^(8/11) 5142289999996110 a001 1548008755920/119218851371*312119004989^(2/5) 5142289999996110 a001 53316291173/505019158607*505019158607^(4/7) 5142289999996110 a006 5^(1/2)*Fibonacci(82)/Lucas(53)/sqrt(5) 5142289999996110 a001 4052739537881/119218851371*505019158607^(5/14) 5142289999996110 a001 10610209857723/119218851371*192900153618^(1/3) 5142289999996110 a001 10610209857723/312119004989*73681302247^(5/13) 5142289999996110 a001 139583862445/192900153618*73681302247^(7/13) 5142289999996110 a001 4052739537881/817138163596*73681302247^(6/13) 5142289999996110 a001 10610209857723/5600748293801*73681302247^(1/2) 5142289999996110 a001 139583862445/119218851371*192900153618^(1/2) 5142289999996110 a001 140728068720/28374454999*73681302247^(6/13) 5142289999996110 a001 591286729879/817138163596*73681302247^(7/13) 5142289999996110 a001 591286729879/312119004989*73681302247^(1/2) 5142289999996110 a001 225851433717/312119004989*73681302247^(7/13) 5142289999996110 a001 225851433717/2139295485799*73681302247^(8/13) 5142289999996110 a001 20365011074/5600748293801*45537549124^(13/17) 5142289999996110 a001 182717648081/1730726404001*73681302247^(8/13) 5142289999996110 a001 139583862445/1322157322203*73681302247^(8/13) 5142289999996110 a001 7787980473/505618944676*73681302247^(9/13) 5142289999996110 a001 365435296162/23725150497407*73681302247^(9/13) 5142289999996110 a001 139583862445/9062201101803*73681302247^(9/13) 5142289999996110 a001 53316291173/119218851371*1322157322203^(1/2) 5142289999996110 a001 4052739537881/119218851371*73681302247^(5/13) 5142289999996110 a001 20365011074/1322157322203*45537549124^(12/17) 5142289999996110 a001 12586269025/17393796001*17393796001^(4/7) 5142289999996110 a001 20365011074/505019158607*45537549124^(2/3) 5142289999996110 a001 225851433717/119218851371*73681302247^(1/2) 5142289999996110 a001 53316291173/505019158607*73681302247^(8/13) 5142289999996110 a001 20365011074/312119004989*45537549124^(11/17) 5142289999996110 a001 53316291173/3461452808002*73681302247^(9/13) 5142289999996110 a001 53316291173/14662949395604*73681302247^(3/4) 5142289999996110 a001 53316291173/23725150497407*73681302247^(10/13) 5142289999996110 a001 225851433717/45537549124*45537549124^(8/17) 5142289999996110 a001 956722026041/45537549124*45537549124^(7/17) 5142289999996110 a001 20365011074/73681302247*312119004989^(6/11) 5142289999996110 a001 53316291173/45537549124*45537549124^(9/17) 5142289999996110 a001 20365011074/73681302247*14662949395604^(10/21) 5142289999996110 a001 32951280099/45537549124*14662949395604^(4/9) 5142289999996110 a001 20365011074/73681302247*192900153618^(5/9) 5142289999996110 a001 2504730781961/73681302247*28143753123^(2/5) 5142289999996110 a001 3278735159921/22768774562*45537549124^(1/3) 5142289999996110 a001 32951280099/45537549124*73681302247^(7/13) 5142289999996110 a001 32264490531/10525900321*28143753123^(1/2) 5142289999996110 a001 10182505537/96450076809*23725150497407^(1/2) 5142289999996110 a001 10182505537/96450076809*505019158607^(4/7) 5142289999996110 a001 7778742049/9062201101803*17393796001^(6/7) 5142289999996110 a001 20365011074/9062201101803*312119004989^(8/11) 5142289999996110 a001 225851433717/45537549124*14662949395604^(8/21) 5142289999996110 a001 10182505537/1730726404001*817138163596^(2/3) 5142289999996110 a001 10182505537/408569081798*14662949395604^(5/9) 5142289999996110 a001 10182505537/408569081798*505019158607^(5/8) 5142289999996110 a001 20365011074/312119004989*312119004989^(3/5) 5142289999996110 a001 139583862445/45537549124*312119004989^(5/11) 5142289999996110 a001 225851433717/45537549124*192900153618^(4/9) 5142289999996110 a001 139583862445/45537549124*3461452808002^(5/12) 5142289999996110 a001 956722026041/45537549124*192900153618^(7/18) 5142289999996110 a001 20365011074/1322157322203*192900153618^(2/3) 5142289999996110 a001 20365011074/5600748293801*192900153618^(13/18) 5142289999996110 a001 20365011074/23725150497407*192900153618^(7/9) 5142289999996110 a001 20365011074/312119004989*192900153618^(11/18) 5142289999996110 a001 10610209857723/312119004989*28143753123^(2/5) 5142289999996110 a001 10610209857723/45537549124*73681302247^(4/13) 5142289999996110 a001 21566892818/11384387281*73681302247^(1/2) 5142289999996110 a001 53316291173/45537549124*817138163596^(9/19) 5142289999996110 a001 53316291173/45537549124*14662949395604^(3/7) 5142289999996110 a001 20365011074/119218851371*9062201101803^(1/2) 5142289999996110 a001 387002188980/11384387281*73681302247^(5/13) 5142289999996110 a001 225851433717/45537549124*73681302247^(6/13) 5142289999996110 a001 53316291173/45537549124*192900153618^(1/2) 5142289999996110 a001 10182505537/96450076809*73681302247^(8/13) 5142289999996110 a001 4052739537881/119218851371*28143753123^(2/5) 5142289999996110 a001 591286729879/192900153618*28143753123^(1/2) 5142289999996110 a001 20365011074/1322157322203*73681302247^(9/13) 5142289999996110 a001 20365011074/5600748293801*73681302247^(3/4) 5142289999996110 a001 20365011074/9062201101803*73681302247^(10/13) 5142289999996110 a001 1548008755920/505019158607*28143753123^(1/2) 5142289999996110 a001 1515744265389/494493258286*28143753123^(1/2) 5142289999996110 a001 2504730781961/817138163596*28143753123^(1/2) 5142289999996110 a001 32951280099/119218851371*28143753123^(3/5) 5142289999996110 a001 10983760033/440719107401*28143753123^(7/10) 5142289999996110 a001 365435296162/119218851371*28143753123^(1/2) 5142289999996110 a001 86267571272/312119004989*28143753123^(3/5) 5142289999996110 a001 225851433717/817138163596*28143753123^(3/5) 5142289999996110 a001 1548008755920/5600748293801*28143753123^(3/5) 5142289999996110 a001 139583862445/505019158607*28143753123^(3/5) 5142289999996110 a001 53316291173/192900153618*28143753123^(3/5) 5142289999996110 a001 32951280099/14662949395604*28143753123^(4/5) 5142289999996110 a001 43133785636/1730726404001*28143753123^(7/10) 5142289999996110 a001 75283811239/3020733700601*28143753123^(7/10) 5142289999996110 a001 182717648081/7331474697802*28143753123^(7/10) 5142289999996110 a001 139583862445/5600748293801*28143753123^(7/10) 5142289999996110 a001 53316291173/2139295485799*28143753123^(7/10) 5142289999996110 a001 7778742049/312119004989*17393796001^(5/7) 5142289999996110 a001 10182505537/22768774562*1322157322203^(1/2) 5142289999996110 a001 387002188980/11384387281*28143753123^(2/5) 5142289999996110 a001 20365011074/73681302247*28143753123^(3/5) 5142289999996110 a001 53316291173/23725150497407*28143753123^(4/5) 5142289999996110 a001 139583862445/45537549124*28143753123^(1/2) 5142289999996110 a001 10182505537/408569081798*28143753123^(7/10) 5142289999996110 a001 3536736619241/9381251041*10749957122^(5/16) 5142289999996110 a001 20365011074/9062201101803*28143753123^(4/5) 5142289999996110 a001 6557470319842/28143753123*10749957122^(1/3) 5142289999996110 a001 7778742049/28143753123*45537549124^(10/17) 5142289999996110 a001 365435296162/17393796001*17393796001^(3/7) 5142289999996110 a001 2504730781961/28143753123*10749957122^(3/8) 5142289999996110 a001 1836311903/6643838879*4106118243^(15/23) 5142289999996110 a001 7778742049/28143753123*312119004989^(6/11) 5142289999996110 a001 7778742049/28143753123*14662949395604^(10/21) 5142289999996110 a001 12586269025/17393796001*14662949395604^(4/9) 5142289999996110 a001 12586269025/17393796001*505019158607^(1/2) 5142289999996110 a001 7778742049/28143753123*192900153618^(5/9) 5142289999996110 a001 12586269025/17393796001*73681302247^(7/13) 5142289999996110 a001 956722026041/28143753123*10749957122^(5/12) 5142289999996110 a001 10610209857723/17393796001*17393796001^(2/7) 5142289999996110 a001 591286729879/28143753123*10749957122^(7/16) 5142289999996110 a001 365435296162/28143753123*10749957122^(11/24) 5142289999996110 a001 7778742049/28143753123*28143753123^(3/5) 5142289999996110 a001 7778742049/9062201101803*45537549124^(14/17) 5142289999996110 a001 7778742049/2139295485799*45537549124^(13/17) 5142289999996110 a001 7778742049/192900153618*45537549124^(2/3) 5142289999996110 a001 7778742049/505019158607*45537549124^(12/17) 5142289999996110 a001 86267571272/17393796001*45537549124^(8/17) 5142289999996110 a001 6557470319842/73681302247*10749957122^(3/8) 5142289999996110 a001 7778742049/119218851371*45537549124^(11/17) 5142289999996110 a001 139583862445/28143753123*10749957122^(1/2) 5142289999996110 a001 365435296162/17393796001*45537549124^(7/17) 5142289999996110 a001 7778742049/73681302247*23725150497407^(1/2) 5142289999996110 a001 7778742049/73681302247*505019158607^(4/7) 5142289999996110 a001 1548008755920/17393796001*45537549124^(6/17) 5142289999996110 a001 2504730781961/17393796001*45537549124^(1/3) 5142289999996110 a001 6557470319842/17393796001*45537549124^(5/17) 5142289999996110 a001 32951280099/17393796001*73681302247^(1/2) 5142289999996110 a001 7778742049/73681302247*73681302247^(8/13) 5142289999996110 a001 86267571272/17393796001*14662949395604^(8/21) 5142289999996110 a001 7778742049/23725150497407*312119004989^(4/5) 5142289999996110 a001 7778742049/3461452808002*312119004989^(8/11) 5142289999996110 a001 6557470319842/17393796001*312119004989^(3/11) 5142289999996110 a001 591286729879/17393796001*23725150497407^(5/16) 5142289999996110 a006 5^(1/2)*Fibonacci(78)/Lucas(49)/sqrt(5) 5142289999996110 a001 591286729879/17393796001*505019158607^(5/14) 5142289999996110 a001 10610209857723/17393796001*505019158607^(1/4) 5142289999996110 a001 1548008755920/17393796001*192900153618^(1/3) 5142289999996110 a001 10610209857723/119218851371*10749957122^(3/8) 5142289999996110 a001 365435296162/17393796001*192900153618^(7/18) 5142289999996110 a001 7778742049/312119004989*505019158607^(5/8) 5142289999996110 a001 7778742049/2139295485799*192900153618^(13/18) 5142289999996110 a001 7778742049/9062201101803*192900153618^(7/9) 5142289999996110 a001 4052739537881/17393796001*73681302247^(4/13) 5142289999996110 a001 10610209857723/45537549124*10749957122^(1/3) 5142289999996110 a001 53316291173/17393796001*312119004989^(5/11) 5142289999996110 a001 591286729879/17393796001*73681302247^(5/13) 5142289999996110 a001 53316291173/17393796001*3461452808002^(5/12) 5142289999996110 a001 7778742049/119218851371*192900153618^(11/18) 5142289999996110 a001 10983760033/9381251041*10749957122^(9/16) 5142289999996110 a001 2504730781961/73681302247*10749957122^(5/12) 5142289999996110 a001 7778742049/505019158607*73681302247^(9/13) 5142289999996110 a001 7778742049/2139295485799*73681302247^(3/4) 5142289999996110 a001 7778742049/3461452808002*73681302247^(10/13) 5142289999996110 a001 7778742049/23725150497407*73681302247^(11/13) 5142289999996110 a001 53316291173/28143753123*10749957122^(13/24) 5142289999996110 a001 20365011074/17393796001*45537549124^(9/17) 5142289999996110 a001 3278735159921/96450076809*10749957122^(5/12) 5142289999996110 a001 1548008755920/73681302247*10749957122^(7/16) 5142289999996110 a001 10610209857723/312119004989*10749957122^(5/12) 5142289999996110 a001 4052739537881/119218851371*10749957122^(5/12) 5142289999996110 a001 6557470319842/17393796001*28143753123^(3/10) 5142289999996110 a001 4052739537881/45537549124*10749957122^(3/8) 5142289999996110 a001 4052739537881/192900153618*10749957122^(7/16) 5142289999996110 a001 225749145909/10745088481*10749957122^(7/16) 5142289999996110 a001 20365011074/17393796001*817138163596^(9/19) 5142289999996110 a001 20365011074/17393796001*14662949395604^(3/7) 5142289999996110 a001 7778742049/45537549124*9062201101803^(1/2) 5142289999996110 a001 6557470319842/312119004989*10749957122^(7/16) 5142289999996110 a001 20365011074/17393796001*192900153618^(1/2) 5142289999996110 a001 591286729879/17393796001*28143753123^(2/5) 5142289999996110 a001 2504730781961/119218851371*10749957122^(7/16) 5142289999996110 a001 2504730781961/192900153618*10749957122^(11/24) 5142289999996110 a001 4052739537881/312119004989*10749957122^(11/24) 5142289999996110 a001 53316291173/17393796001*28143753123^(1/2) 5142289999996110 a001 1548008755920/119218851371*10749957122^(11/24) 5142289999996110 a001 387002188980/11384387281*10749957122^(5/12) 5142289999996110 a001 365435296162/73681302247*10749957122^(1/2) 5142289999996110 a001 7778742049/312119004989*28143753123^(7/10) 5142289999996110 a001 20365011074/28143753123*10749957122^(7/12) 5142289999996110 a001 956722026041/45537549124*10749957122^(7/16) 5142289999996110 a001 956722026041/192900153618*10749957122^(1/2) 5142289999996110 a001 7778742049/3461452808002*28143753123^(4/5) 5142289999996110 a001 2504730781961/505019158607*10749957122^(1/2) 5142289999996110 a001 10610209857723/2139295485799*10749957122^(1/2) 5142289999996110 a001 4052739537881/817138163596*10749957122^(1/2) 5142289999996110 a001 140728068720/28374454999*10749957122^(1/2) 5142289999996110 a001 591286729879/119218851371*10749957122^(1/2) 5142289999996110 a001 591286729879/45537549124*10749957122^(11/24) 5142289999996110 a001 139583862445/73681302247*10749957122^(13/24) 5142289999996110 a001 12586269025/119218851371*10749957122^(2/3) 5142289999996110 a001 12586269025/45537549124*10749957122^(5/8) 5142289999996110 a001 86267571272/73681302247*10749957122^(9/16) 5142289999996110 a001 12586269025/192900153618*10749957122^(11/16) 5142289999996110 a001 182717648081/96450076809*10749957122^(13/24) 5142289999996110 a001 956722026041/505019158607*10749957122^(13/24) 5142289999996110 a001 591286729879/312119004989*10749957122^(13/24) 5142289999996110 a001 225851433717/119218851371*10749957122^(13/24) 5142289999996110 a001 225851433717/45537549124*10749957122^(1/2) 5142289999996110 a001 75283811239/64300051206*10749957122^(9/16) 5142289999996110 a001 2504730781961/2139295485799*10749957122^(9/16) 5142289999996110 a001 1144206275/28374454999*10749957122^(17/24) 5142289999996110 a001 365435296162/312119004989*10749957122^(9/16) 5142289999996110 a001 53316291173/73681302247*10749957122^(7/12) 5142289999996110 a001 139583862445/119218851371*10749957122^(9/16) 5142289999996110 a001 139583862445/192900153618*10749957122^(7/12) 5142289999996110 a001 365435296162/505019158607*10749957122^(7/12) 5142289999996110 a001 591286729879/817138163596*10749957122^(7/12) 5142289999996110 a001 225851433717/312119004989*10749957122^(7/12) 5142289999996110 a001 86267571272/119218851371*10749957122^(7/12) 5142289999996110 a001 21566892818/11384387281*10749957122^(13/24) 5142289999996110 a001 12586269025/817138163596*10749957122^(3/4) 5142289999996110 a001 32951280099/119218851371*10749957122^(5/8) 5142289999996110 a001 32951280099/45537549124*10749957122^(7/12) 5142289999996110 a001 86267571272/312119004989*10749957122^(5/8) 5142289999996110 a001 225851433717/817138163596*10749957122^(5/8) 5142289999996110 a001 1548008755920/5600748293801*10749957122^(5/8) 5142289999996110 a001 139583862445/505019158607*10749957122^(5/8) 5142289999996110 a001 53316291173/45537549124*10749957122^(9/16) 5142289999996110 a001 53316291173/192900153618*10749957122^(5/8) 5142289999996110 a001 12586269025/2139295485799*10749957122^(19/24) 5142289999996110 a001 32951280099/312119004989*10749957122^(2/3) 5142289999996110 a001 20365011074/73681302247*10749957122^(5/8) 5142289999996110 a001 21566892818/204284540899*10749957122^(2/3) 5142289999996110 a001 32951280099/505019158607*10749957122^(11/16) 5142289999996110 a001 225851433717/2139295485799*10749957122^(2/3) 5142289999996110 a001 12586269025/3461452808002*10749957122^(13/16) 5142289999996110 a001 182717648081/1730726404001*10749957122^(2/3) 5142289999996110 a001 139583862445/1322157322203*10749957122^(2/3) 5142289999996110 a001 10610209857723/17393796001*10749957122^(7/24) 5142289999996110 a001 53316291173/505019158607*10749957122^(2/3) 5142289999996110 a001 86267571272/1322157322203*10749957122^(11/16) 5142289999996110 a001 32264490531/494493258286*10749957122^(11/16) 5142289999996110 a001 591286729879/9062201101803*10749957122^(11/16) 5142289999996110 a001 12586269025/5600748293801*10749957122^(5/6) 5142289999996110 a001 139583862445/2139295485799*10749957122^(11/16) 5142289999996110 a001 6557470319842/17393796001*10749957122^(5/16) 5142289999996110 a001 53316291173/817138163596*10749957122^(11/16) 5142289999996110 a001 86267571272/2139295485799*10749957122^(17/24) 5142289999996110 a001 225851433717/5600748293801*10749957122^(17/24) 5142289999996110 a001 365435296162/9062201101803*10749957122^(17/24) 5142289999996110 a001 139583862445/3461452808002*10749957122^(17/24) 5142289999996110 a001 4052739537881/17393796001*10749957122^(1/3) 5142289999996110 a001 53316291173/1322157322203*10749957122^(17/24) 5142289999996110 a001 10182505537/96450076809*10749957122^(2/3) 5142289999996110 a001 32951280099/2139295485799*10749957122^(3/4) 5142289999996110 a001 12586269025/14662949395604*10749957122^(7/8) 5142289999996110 a001 20365011074/312119004989*10749957122^(11/16) 5142289999996110 a001 86267571272/5600748293801*10749957122^(3/4) 5142289999996110 a001 7787980473/505618944676*10749957122^(3/4) 5142289999996110 a001 365435296162/23725150497407*10749957122^(3/4) 5142289999996110 a001 139583862445/9062201101803*10749957122^(3/4) 5142289999996110 a001 1548008755920/17393796001*10749957122^(3/8) 5142289999996110 a001 53316291173/3461452808002*10749957122^(3/4) 5142289999996110 a001 20365011074/505019158607*10749957122^(17/24) 5142289999996110 a001 7778742049/17393796001*1322157322203^(1/2) 5142289999996110 a001 32951280099/5600748293801*10749957122^(19/24) 5142289999996110 a001 1135099622/192933544679*10749957122^(19/24) 5142289999996110 a001 10983760033/3020733700601*10749957122^(13/16) 5142289999996110 a001 591286729879/17393796001*10749957122^(5/12) 5142289999996110 a001 53316291173/9062201101803*10749957122^(19/24) 5142289999996110 a001 20365011074/1322157322203*10749957122^(3/4) 5142289999996110 a001 86267571272/23725150497407*10749957122^(13/16) 5142289999996110 a001 32951280099/14662949395604*10749957122^(5/6) 5142289999996110 a001 12586269025/17393796001*10749957122^(7/12) 5142289999996110 a001 365435296162/17393796001*10749957122^(7/16) 5142289999996110 a001 53316291173/14662949395604*10749957122^(13/16) 5142289999996110 a001 7787980473/599786069*10749957122^(11/24) 5142289999996110 a001 53316291173/23725150497407*10749957122^(5/6) 5142289999996110 a001 10182505537/1730726404001*10749957122^(19/24) 5142289999996110 a001 1134903170/1568397607*1568397607^(7/11) 5142289999996110 a001 20365011074/5600748293801*10749957122^(13/16) 5142289999996110 a001 86267571272/17393796001*10749957122^(1/2) 5142289999996110 a001 20365011074/9062201101803*10749957122^(5/6) 5142289999996110 a001 32951280099/17393796001*10749957122^(13/24) 5142289999996110 a001 20365011074/23725150497407*10749957122^(7/8) 5142289999996110 a001 20365011074/17393796001*10749957122^(9/16) 5142289999996110 a001 7778742049/73681302247*10749957122^(2/3) 5142289999996110 a001 7778742049/119218851371*10749957122^(11/16) 5142289999996110 a001 3278735159921/5374978561*4106118243^(7/23) 5142289999996110 a001 7778742049/192900153618*10749957122^(17/24) 5142289999996110 a001 7778742049/505019158607*10749957122^(3/4) 5142289999996110 a001 7778742049/1322157322203*10749957122^(19/24) 5142289999996110 a001 7778742049/2139295485799*10749957122^(13/16) 5142289999996110 a001 1134903170/1322157322203*2537720636^(14/15) 5142289999996110 a001 7778742049/3461452808002*10749957122^(5/6) 5142289999996110 a001 7778742049/9062201101803*10749957122^(7/8) 5142289999996110 a001 7778742049/23725150497407*10749957122^(11/12) 5142289999996110 a001 2504730781961/10749957122*4106118243^(8/23) 5142289999996110 a001 4807526976/6643838879*17393796001^(4/7) 5142289999996110 a001 2971215073/10749957122*45537549124^(10/17) 5142289999996110 a001 2971215073/10749957122*312119004989^(6/11) 5142289999996110 a001 2971215073/10749957122*14662949395604^(10/21) 5142289999996110 a001 4807526976/6643838879*14662949395604^(4/9) 5142289999996110 a001 2971215073/10749957122*192900153618^(5/9) 5142289999996110 a001 4807526976/6643838879*73681302247^(7/13) 5142289999996110 a001 956722026041/10749957122*4106118243^(9/23) 5142289999996110 a001 2971215073/10749957122*28143753123^(3/5) 5142289999996110 a001 182717648081/5374978561*4106118243^(10/23) 5142289999996110 a001 1134903170/505019158607*2537720636^(8/9) 5142289999996110 a001 4807526976/6643838879*10749957122^(7/12) 5142289999996110 a001 6557470319842/28143753123*4106118243^(8/23) 5142289999996110 a001 2971215073/10749957122*10749957122^(5/8) 5142289999996110 a001 139583862445/10749957122*4106118243^(11/23) 5142289999996110 a001 2971215073/3461452808002*17393796001^(6/7) 5142289999996110 a001 2971215073/119218851371*17393796001^(5/7) 5142289999996110 a001 1134903170/312119004989*2537720636^(13/15) 5142289999996110 a001 43133785636/5374978561*4106118243^(1/2) 5142289999996110 a001 10610209857723/45537549124*4106118243^(8/23) 5142289999996110 a001 139583862445/6643838879*17393796001^(3/7) 5142289999996110 a001 10610209857723/17393796001*4106118243^(7/23) 5142289999996110 a001 2971215073/28143753123*23725150497407^(1/2) 5142289999996110 a001 2971215073/28143753123*505019158607^(4/7) 5142289999996110 a001 12586269025/6643838879*73681302247^(1/2) 5142289999996110 a001 2971215073/28143753123*73681302247^(8/13) 5142289999996110 a001 4052739537881/6643838879*17393796001^(2/7) 5142289999996110 a001 2504730781961/28143753123*4106118243^(9/23) 5142289999996110 a001 2971215073/73681302247*45537549124^(2/3) 5142289999996110 a001 2971215073/14662949395604*45537549124^(15/17) 5142289999996110 a001 32951280099/6643838879*45537549124^(8/17) 5142289999996110 a001 2971215073/3461452808002*45537549124^(14/17) 5142289999996110 a001 2971215073/192900153618*45537549124^(12/17) 5142289999996110 a001 2971215073/817138163596*45537549124^(13/17) 5142289999996110 a001 53316291173/10749957122*4106118243^(12/23) 5142289999996110 a001 139583862445/6643838879*45537549124^(7/17) 5142289999996110 a001 32951280099/6643838879*14662949395604^(8/21) 5142289999996110 a001 32951280099/6643838879*192900153618^(4/9) 5142289999996110 a001 591286729879/6643838879*45537549124^(6/17) 5142289999996110 a001 956722026041/6643838879*45537549124^(1/3) 5142289999996110 a001 2504730781961/6643838879*45537549124^(5/17) 5142289999996110 a001 10610209857723/6643838879*45537549124^(4/17) 5142289999996110 a001 32951280099/6643838879*73681302247^(6/13) 5142289999996110 a001 86267571272/6643838879*312119004989^(2/5) 5142289999996110 a001 2971215073/192900153618*14662949395604^(4/7) 5142289999996110 a001 2971215073/192900153618*505019158607^(9/14) 5142289999996110 a001 2971215073/192900153618*192900153618^(2/3) 5142289999996110 a001 2971215073/1322157322203*312119004989^(8/11) 5142289999996110 a001 225851433717/6643838879*23725150497407^(5/16) 5142289999996110 a001 2971215073/3461452808002*817138163596^(14/19) 5142289999996110 a001 10610209857723/6643838879*817138163596^(4/19) 5142289999996110 a001 1548008755920/6643838879*23725150497407^(1/4) 5142289999996110 a006 5^(1/2)*Fibonacci(76)/Lucas(47)/sqrt(5) 5142289999996110 a001 10610209857723/6643838879*192900153618^(2/9) 5142289999996110 a001 139583862445/6643838879*14662949395604^(1/3) 5142289999996110 a001 139583862445/6643838879*192900153618^(7/18) 5142289999996110 a001 2971215073/3461452808002*192900153618^(7/9) 5142289999996110 a001 10610209857723/6643838879*73681302247^(3/13) 5142289999996110 a001 6557470319842/6643838879*73681302247^(1/4) 5142289999996110 a001 1548008755920/6643838879*73681302247^(4/13) 5142289999996110 a001 225851433717/6643838879*73681302247^(5/13) 5142289999996110 a001 2971215073/119218851371*14662949395604^(5/9) 5142289999996110 a001 2971215073/119218851371*505019158607^(5/8) 5142289999996110 a001 2971215073/192900153618*73681302247^(9/13) 5142289999996110 a001 2971215073/817138163596*73681302247^(3/4) 5142289999996110 a001 2971215073/1322157322203*73681302247^(10/13) 5142289999996110 a001 2971215073/9062201101803*73681302247^(11/13) 5142289999996110 a001 2971215073/45537549124*45537549124^(11/17) 5142289999996110 a001 6557470319842/73681302247*4106118243^(9/23) 5142289999996110 a001 2504730781961/6643838879*28143753123^(3/10) 5142289999996110 a001 2971215073/45537549124*312119004989^(3/5) 5142289999996110 a001 20365011074/6643838879*312119004989^(5/11) 5142289999996110 a001 2971215073/45537549124*14662949395604^(11/21) 5142289999996110 a001 20365011074/6643838879*3461452808002^(5/12) 5142289999996110 a001 2971215073/45537549124*192900153618^(11/18) 5142289999996110 a001 225851433717/6643838879*28143753123^(2/5) 5142289999996110 a001 10610209857723/119218851371*4106118243^(9/23) 5142289999996110 a001 2971215073/119218851371*28143753123^(7/10) 5142289999996110 a001 2971215073/1322157322203*28143753123^(4/5) 5142289999996110 a001 4052739537881/45537549124*4106118243^(9/23) 5142289999996110 a001 20365011074/6643838879*28143753123^(1/2) 5142289999996110 a001 2971215073/14662949395604*28143753123^(9/10) 5142289999996110 a001 4052739537881/17393796001*4106118243^(8/23) 5142289999996110 a001 956722026041/28143753123*4106118243^(10/23) 5142289999996110 a001 10610209857723/6643838879*10749957122^(1/4) 5142289999996110 a001 4052739537881/6643838879*10749957122^(7/24) 5142289999996110 a001 10182505537/5374978561*4106118243^(13/23) 5142289999996110 a001 2504730781961/6643838879*10749957122^(5/16) 5142289999996110 a001 1548008755920/6643838879*10749957122^(1/3) 5142289999996110 a001 2504730781961/73681302247*4106118243^(10/23) 5142289999996110 a001 7778742049/6643838879*45537549124^(9/17) 5142289999996110 a001 3278735159921/96450076809*4106118243^(10/23) 5142289999996110 a001 10610209857723/312119004989*4106118243^(10/23) 5142289999996110 a001 4052739537881/119218851371*4106118243^(10/23) 5142289999996110 a001 591286729879/6643838879*10749957122^(3/8) 5142289999996110 a001 701408733/2537720636*1568397607^(15/22) 5142289999996110 a001 7778742049/6643838879*14662949395604^(3/7) 5142289999996110 a001 2971215073/17393796001*9062201101803^(1/2) 5142289999996110 a001 7778742049/6643838879*192900153618^(1/2) 5142289999996110 a001 12586269025/6643838879*10749957122^(13/24) 5142289999996110 a001 225851433717/6643838879*10749957122^(5/12) 5142289999996110 a001 387002188980/11384387281*4106118243^(10/23) 5142289999996110 a001 139583862445/6643838879*10749957122^(7/16) 5142289999996110 a001 1548008755920/17393796001*4106118243^(9/23) 5142289999996110 a001 86267571272/6643838879*10749957122^(11/24) 5142289999996110 a001 32951280099/6643838879*10749957122^(1/2) 5142289999996110 a001 365435296162/28143753123*4106118243^(11/23) 5142289999996110 a001 2971215073/28143753123*10749957122^(2/3) 5142289999996110 a001 956722026041/73681302247*4106118243^(11/23) 5142289999996110 a001 2504730781961/192900153618*4106118243^(11/23) 5142289999996110 a001 10610209857723/817138163596*4106118243^(11/23) 5142289999996110 a001 4052739537881/312119004989*4106118243^(11/23) 5142289999996110 a001 75283811239/9381251041*4106118243^(1/2) 5142289999996110 a001 1548008755920/119218851371*4106118243^(11/23) 5142289999996110 a001 2971215073/73681302247*10749957122^(17/24) 5142289999996110 a001 591286729879/45537549124*4106118243^(11/23) 5142289999996110 a001 2971215073/45537549124*10749957122^(11/16) 5142289999996110 a001 591286729879/17393796001*4106118243^(10/23) 5142289999996110 a001 2971215073/192900153618*10749957122^(3/4) 5142289999996110 a001 591286729879/73681302247*4106118243^(1/2) 5142289999996110 a001 2971215073/505019158607*10749957122^(19/24) 5142289999996110 a001 86000486440/10716675201*4106118243^(1/2) 5142289999996110 a001 4052739537881/505019158607*4106118243^(1/2) 5142289999996110 a001 3278735159921/408569081798*4106118243^(1/2) 5142289999996110 a001 2504730781961/312119004989*4106118243^(1/2) 5142289999996110 a001 2971215073/817138163596*10749957122^(13/16) 5142289999996110 a001 139583862445/28143753123*4106118243^(12/23) 5142289999996110 a001 956722026041/119218851371*4106118243^(1/2) 5142289999996110 a001 2971215073/1322157322203*10749957122^(5/6) 5142289999996110 a001 182717648081/22768774562*4106118243^(1/2) 5142289999996110 a001 2971215073/3461452808002*10749957122^(7/8) 5142289999996110 a001 2971215073/9062201101803*10749957122^(11/12) 5142289999996110 a001 7778742049/10749957122*4106118243^(14/23) 5142289999996110 a001 365435296162/73681302247*4106118243^(12/23) 5142289999996110 a001 2971215073/14662949395604*10749957122^(15/16) 5142289999996110 a001 7778742049/6643838879*10749957122^(9/16) 5142289999996110 a001 1134903170/73681302247*2537720636^(4/5) 5142289999996110 a001 956722026041/192900153618*4106118243^(12/23) 5142289999996110 a001 2504730781961/505019158607*4106118243^(12/23) 5142289999996110 a001 4052739537881/817138163596*4106118243^(12/23) 5142289999996110 a001 2971215073/23725150497407*10749957122^(23/24) 5142289999996110 a001 140728068720/28374454999*4106118243^(12/23) 5142289999996110 a001 591286729879/119218851371*4106118243^(12/23) 5142289999996110 a001 225851433717/45537549124*4106118243^(12/23) 5142289999996110 a001 7787980473/599786069*4106118243^(11/23) 5142289999996110 a001 53316291173/28143753123*4106118243^(13/23) 5142289999996110 a001 139583862445/17393796001*4106118243^(1/2) 5142289999996110 a001 1201881744/11384387281*4106118243^(16/23) 5142289999996110 a001 4807526976/17393796001*4106118243^(15/23) 5142289999996110 a001 139583862445/73681302247*4106118243^(13/23) 5142289999996110 a001 182717648081/96450076809*4106118243^(13/23) 5142289999996110 a001 956722026041/505019158607*4106118243^(13/23) 5142289999996110 a001 591286729879/312119004989*4106118243^(13/23) 5142289999996110 a001 225851433717/119218851371*4106118243^(13/23) 5142289999996110 a001 21566892818/11384387281*4106118243^(13/23) 5142289999996110 a001 86267571272/17393796001*4106118243^(12/23) 5142289999996110 a001 567451585/22768774562*2537720636^(7/9) 5142289999996110 a001 4807526976/119218851371*4106118243^(17/23) 5142289999996110 a001 20365011074/28143753123*4106118243^(14/23) 5142289999996110 a001 53316291173/73681302247*4106118243^(14/23) 5142289999996110 a001 139583862445/192900153618*4106118243^(14/23) 5142289999996110 a001 365435296162/505019158607*4106118243^(14/23) 5142289999996110 a001 591286729879/817138163596*4106118243^(14/23) 5142289999996110 a001 225851433717/312119004989*4106118243^(14/23) 5142289999996110 a001 86267571272/119218851371*4106118243^(14/23) 5142289999996110 a001 32951280099/45537549124*4106118243^(14/23) 5142289999996110 a001 32951280099/17393796001*4106118243^(13/23) 5142289999996110 a001 4807526976/312119004989*4106118243^(18/23) 5142289999996110 a001 12586269025/45537549124*4106118243^(15/23) 5142289999996110 a001 10610209857723/6643838879*4106118243^(6/23) 5142289999996110 a001 12586269025/17393796001*4106118243^(14/23) 5142289999996110 a001 32951280099/119218851371*4106118243^(15/23) 5142289999996110 a001 86267571272/312119004989*4106118243^(15/23) 5142289999996110 a001 225851433717/817138163596*4106118243^(15/23) 5142289999996110 a001 1548008755920/5600748293801*4106118243^(15/23) 5142289999996110 a001 139583862445/505019158607*4106118243^(15/23) 5142289999996110 a001 53316291173/192900153618*4106118243^(15/23) 5142289999996110 a001 20365011074/73681302247*4106118243^(15/23) 5142289999996110 a001 12586269025/119218851371*4106118243^(16/23) 5142289999996110 a001 1201881744/204284540899*4106118243^(19/23) 5142289999996110 a001 4052739537881/6643838879*4106118243^(7/23) 5142289999996110 a001 7778742049/28143753123*4106118243^(15/23) 5142289999996110 a001 32951280099/312119004989*4106118243^(16/23) 5142289999996110 a001 21566892818/204284540899*4106118243^(16/23) 5142289999996110 a001 225851433717/2139295485799*4106118243^(16/23) 5142289999996110 a001 182717648081/1730726404001*4106118243^(16/23) 5142289999996110 a001 139583862445/1322157322203*4106118243^(16/23) 5142289999996110 a001 53316291173/505019158607*4106118243^(16/23) 5142289999996110 a001 10182505537/96450076809*4106118243^(16/23) 5142289999996110 a001 3536736619241/1368706081*1568397607^(1/4) 5142289999996110 a001 1144206275/28374454999*4106118243^(17/23) 5142289999996110 a001 4807526976/2139295485799*4106118243^(20/23) 5142289999996110 a001 1548008755920/6643838879*4106118243^(8/23) 5142289999996110 a001 32951280099/817138163596*4106118243^(17/23) 5142289999996110 a001 86267571272/2139295485799*4106118243^(17/23) 5142289999996110 a001 225851433717/5600748293801*4106118243^(17/23) 5142289999996110 a001 591286729879/14662949395604*4106118243^(17/23) 5142289999996110 a001 365435296162/9062201101803*4106118243^(17/23) 5142289999996110 a001 139583862445/3461452808002*4106118243^(17/23) 5142289999996110 a001 53316291173/1322157322203*4106118243^(17/23) 5142289999996110 a001 20365011074/505019158607*4106118243^(17/23) 5142289999996110 a001 7778742049/73681302247*4106118243^(16/23) 5142289999996110 a001 1134903170/17393796001*2537720636^(11/15) 5142289999996110 a001 12586269025/817138163596*4106118243^(18/23) 5142289999996110 a001 2971215073/6643838879*1322157322203^(1/2) 5142289999996110 a001 4807526976/5600748293801*4106118243^(21/23) 5142289999996110 a001 591286729879/6643838879*4106118243^(9/23) 5142289999996110 a001 32951280099/2139295485799*4106118243^(18/23) 5142289999996110 a001 86267571272/5600748293801*4106118243^(18/23) 5142289999996110 a001 7787980473/505618944676*4106118243^(18/23) 5142289999996110 a001 365435296162/23725150497407*4106118243^(18/23) 5142289999996110 a001 139583862445/9062201101803*4106118243^(18/23) 5142289999996110 a001 53316291173/3461452808002*4106118243^(18/23) 5142289999996110 a001 20365011074/1322157322203*4106118243^(18/23) 5142289999996110 a001 7778742049/192900153618*4106118243^(17/23) 5142289999996110 a001 12586269025/2139295485799*4106118243^(19/23) 5142289999996110 a001 1201881744/3665737348901*4106118243^(22/23) 5142289999996110 a001 225851433717/6643838879*4106118243^(10/23) 5142289999996110 a001 32951280099/5600748293801*4106118243^(19/23) 5142289999996110 a001 1135099622/192933544679*4106118243^(19/23) 5142289999996110 a001 139583862445/23725150497407*4106118243^(19/23) 5142289999996110 a001 53316291173/9062201101803*4106118243^(19/23) 5142289999996110 a001 10182505537/1730726404001*4106118243^(19/23) 5142289999996110 a001 7778742049/505019158607*4106118243^(18/23) 5142289999996110 a001 4807526976/6643838879*4106118243^(14/23) 5142289999996110 a001 12586269025/5600748293801*4106118243^(20/23) 5142289999996110 a001 86267571272/6643838879*4106118243^(11/23) 5142289999996110 a001 32951280099/14662949395604*4106118243^(20/23) 5142289999996110 a001 6557470319842/4106118243*1568397607^(3/11) 5142289999996110 a001 53316291173/23725150497407*4106118243^(20/23) 5142289999996110 a001 20365011074/9062201101803*4106118243^(20/23) 5142289999996110 a001 7778742049/1322157322203*4106118243^(19/23) 5142289999996110 a001 53316291173/6643838879*4106118243^(1/2) 5142289999996110 a001 2971215073/10749957122*4106118243^(15/23) 5142289999996110 a001 12586269025/14662949395604*4106118243^(21/23) 5142289999996110 a001 32951280099/6643838879*4106118243^(12/23) 5142289999996110 a001 20365011074/23725150497407*4106118243^(21/23) 5142289999996110 a001 7778742049/3461452808002*4106118243^(20/23) 5142289999996110 a001 12586269025/6643838879*4106118243^(13/23) 5142289999996110 a001 7778742049/9062201101803*4106118243^(21/23) 5142289999996110 a001 7778742049/23725150497407*4106118243^(22/23) 5142289999996110 a001 2971215073/28143753123*4106118243^(16/23) 5142289999996110 a001 2971215073/73681302247*4106118243^(17/23) 5142289999996110 a001 2971215073/192900153618*4106118243^(18/23) 5142289999996110 a001 2504730781961/4106118243*1568397607^(7/22) 5142289999996110 a001 1144206275/230701876*2537720636^(8/15) 5142289999996110 a001 2971215073/505019158607*4106118243^(19/23) 5142289999996110 a001 7778742049/2537720636*2537720636^(5/9) 5142289999996110 a001 2971215073/1322157322203*4106118243^(20/23) 5142289999996110 a001 2971215073/3461452808002*4106118243^(21/23) 5142289999996110 a001 2971215073/9062201101803*4106118243^(22/23) 5142289999996110 a001 53316291173/2537720636*2537720636^(7/15) 5142289999996110 a001 2971215073/2537720636*2537720636^(3/5) 5142289999996110 a001 1135099622/33391061*2537720636^(4/9) 5142289999996110 a001 956722026041/4106118243*1568397607^(4/11) 5142289999996110 a001 225851433717/2537720636*2537720636^(2/5) 5142289999996110 a001 1836311903/2537720636*17393796001^(4/7) 5142289999996110 a001 1134903170/4106118243*45537549124^(10/17) 5142289999996110 a001 1134903170/4106118243*312119004989^(6/11) 5142289999996110 a001 1134903170/4106118243*14662949395604^(10/21) 5142289999996110 a001 1836311903/2537720636*14662949395604^(4/9) 5142289999996110 a001 1134903170/4106118243*192900153618^(5/9) 5142289999996110 a001 1836311903/2537720636*73681302247^(7/13) 5142289999996110 a001 1134903170/4106118243*28143753123^(3/5) 5142289999996110 a001 1836311903/2537720636*10749957122^(7/12) 5142289999996110 a001 1134903170/4106118243*10749957122^(5/8) 5142289999996110 a001 956722026041/2537720636*2537720636^(1/3) 5142289999996110 a001 365435296162/4106118243*1568397607^(9/22) 5142289999996110 a001 4052739537881/2537720636*2537720636^(4/15) 5142289999996110 a001 3278735159921/5374978561*1568397607^(7/22) 5142289999996110 a001 10610209857723/2537720636*2537720636^(2/9) 5142289999996110 a001 139583862445/4106118243*1568397607^(5/11) 5142289999996110 a001 1836311903/2537720636*4106118243^(14/23) 5142289999996110 a001 10610209857723/17393796001*1568397607^(7/22) 5142289999996110 a001 10610209857723/6643838879*1568397607^(3/11) 5142289999996110 a001 1134903170/4106118243*4106118243^(15/23) 5142289999996110 a001 433494437/599074578*599074578^(2/3) 5142289999996110 a001 2504730781961/10749957122*1568397607^(4/11) 5142289999996110 a001 53316291173/4106118243*1568397607^(1/2) 5142289999996110 a001 6557470319842/28143753123*1568397607^(4/11) 5142289999996110 a001 567451585/5374978561*23725150497407^(1/2) 5142289999996110 a001 5527940835788160/10749959329 5142289999996110 a001 1201881744/634430159*73681302247^(1/2) 5142289999996110 a001 567451585/5374978561*73681302247^(8/13) 5142289999996110 a001 10610209857723/45537549124*1568397607^(4/11) 5142289999996110 a001 4052739537881/17393796001*1568397607^(4/11) 5142289999996110 a001 1201881744/634430159*10749957122^(13/24) 5142289999996110 a001 4052739537881/6643838879*1568397607^(7/22) 5142289999996110 a001 567451585/5374978561*10749957122^(2/3) 5142289999996110 a001 1134903170/1322157322203*17393796001^(6/7) 5142289999996110 a001 567451585/22768774562*17393796001^(5/7) 5142289999996110 a001 1134903170/28143753123*45537549124^(2/3) 5142289999996110 a001 1144206275/230701876*45537549124^(8/17) 5142289999996110 a001 53316291173/2537720636*17393796001^(3/7) 5142289999996110 a001 1144206275/230701876*14662949395604^(8/21) 5142289999996110 a001 1144206275/230701876*192900153618^(4/9) 5142289999996110 a001 1144206275/230701876*73681302247^(6/13) 5142289999996110 a001 1134903780/1860499*17393796001^(2/7) 5142289999996110 a001 1134903170/73681302247*45537549124^(12/17) 5142289999996110 a001 1134903170/23725150497407*45537549124^(16/17) 5142289999996110 a001 1134903170/5600748293801*45537549124^(15/17) 5142289999996110 a001 1134903170/1322157322203*45537549124^(14/17) 5142289999996110 a001 1134903170/312119004989*45537549124^(13/17) 5142289999996110 a001 32951280099/2537720636*312119004989^(2/5) 5142289999996110 a001 1134903170/73681302247*14662949395604^(4/7) 5142289999996110 a001 1134903170/73681302247*505019158607^(9/14) 5142289999996110 a001 225851433717/2537720636*45537549124^(6/17) 5142289999996110 a001 1134903170/73681302247*192900153618^(2/3) 5142289999996110 a001 182717648081/1268860318*45537549124^(1/3) 5142289999996110 a001 956722026041/2537720636*45537549124^(5/17) 5142289999996110 a001 53316291173/2537720636*45537549124^(7/17) 5142289999996110 a001 4052739537881/2537720636*45537549124^(4/17) 5142289999996110 a001 1134903170/73681302247*73681302247^(9/13) 5142289999996110 a001 1135099622/33391061*23725150497407^(5/16) 5142289999996110 a001 1135099622/33391061*505019158607^(5/14) 5142289999996110 a001 1134903170/505019158607*312119004989^(8/11) 5142289999996110 a001 1134903170/5600748293801*312119004989^(9/11) 5142289999996110 a001 567451585/1730726404001*312119004989^(4/5) 5142289999996110 a001 1134903170/505019158607*23725150497407^(5/8) 5142289999996110 a001 10610209857723/2537720636*312119004989^(2/11) 5142289999996110 a006 5^(1/2)*Fibonacci(74)/Lucas(45)/sqrt(5) 5142289999996110 a001 1134903780/1860499*505019158607^(1/4) 5142289999996110 a001 1134903170/1322157322203*505019158607^(3/4) 5142289999996110 a001 225851433717/2537720636*192900153618^(1/3) 5142289999996110 a001 4052739537881/2537720636*192900153618^(2/9) 5142289999996110 a001 956722026041/2537720636*192900153618^(5/18) 5142289999996110 a001 1134903170/312119004989*14662949395604^(13/21) 5142289999996110 a001 1134903170/1322157322203*192900153618^(7/9) 5142289999996110 a001 1134903170/5600748293801*192900153618^(5/6) 5142289999996110 a001 1134903170/312119004989*192900153618^(13/18) 5142289999996110 a001 1135099622/33391061*73681302247^(5/13) 5142289999996110 a001 2504730781961/2537720636*73681302247^(1/4) 5142289999996110 a001 591286729879/2537720636*73681302247^(4/13) 5142289999996110 a001 53316291173/2537720636*14662949395604^(1/3) 5142289999996110 a001 53316291173/2537720636*192900153618^(7/18) 5142289999996110 a001 1134903170/505019158607*73681302247^(10/13) 5142289999996110 a001 1134903170/312119004989*73681302247^(3/4) 5142289999996110 a001 567451585/1730726404001*73681302247^(11/13) 5142289999996110 a001 1134903170/23725150497407*73681302247^(12/13) 5142289999996110 a001 10610209857723/2537720636*28143753123^(1/5) 5142289999996110 a001 956722026041/2537720636*28143753123^(3/10) 5142289999996110 a001 567451585/22768774562*312119004989^(7/11) 5142289999996110 a001 1135099622/33391061*28143753123^(2/5) 5142289999996110 a001 567451585/22768774562*14662949395604^(5/9) 5142289999996110 a001 567451585/22768774562*505019158607^(5/8) 5142289999996110 a001 1134903170/505019158607*28143753123^(4/5) 5142289999996110 a001 1134903170/5600748293801*28143753123^(9/10) 5142289999996110 a001 567451585/22768774562*28143753123^(7/10) 5142289999996110 a001 10610209857723/2537720636*10749957122^(5/24) 5142289999996110 a001 4052739537881/2537720636*10749957122^(1/4) 5142289999996110 a001 956722026041/10749957122*1568397607^(9/22) 5142289999996110 a001 1134903780/1860499*10749957122^(7/24) 5142289999996110 a001 956722026041/2537720636*10749957122^(5/16) 5142289999996110 a001 591286729879/2537720636*10749957122^(1/3) 5142289999996110 a001 1134903170/17393796001*45537549124^(11/17) 5142289999996110 a001 1144206275/230701876*10749957122^(1/2) 5142289999996110 a001 225851433717/2537720636*10749957122^(3/8) 5142289999996110 a001 1134903170/17393796001*312119004989^(3/5) 5142289999996110 a001 7778742049/2537720636*312119004989^(5/11) 5142289999996110 a001 1134903170/17393796001*14662949395604^(11/21) 5142289999996110 a001 7778742049/2537720636*3461452808002^(5/12) 5142289999996110 a001 1134903170/17393796001*192900153618^(11/18) 5142289999996110 a001 1135099622/33391061*10749957122^(5/12) 5142289999996110 a001 32951280099/2537720636*10749957122^(11/24) 5142289999996110 a001 53316291173/2537720636*10749957122^(7/16) 5142289999996110 a001 7778742049/2537720636*28143753123^(1/2) 5142289999996110 a001 1134903170/28143753123*10749957122^(17/24) 5142289999996110 a001 1134903170/73681302247*10749957122^(3/4) 5142289999996110 a001 567451585/96450076809*10749957122^(19/24) 5142289999996110 a001 1134903170/312119004989*10749957122^(13/16) 5142289999996110 a001 1134903170/505019158607*10749957122^(5/6) 5142289999996110 a001 1134903170/1322157322203*10749957122^(7/8) 5142289999996110 a001 20365011074/4106118243*1568397607^(6/11) 5142289999996110 a001 567451585/1730726404001*10749957122^(11/12) 5142289999996110 a001 1134903170/5600748293801*10749957122^(15/16) 5142289999996110 a001 1134903170/9062201101803*10749957122^(23/24) 5142289999996110 a001 1134903170/17393796001*10749957122^(11/16) 5142289999996110 a001 2504730781961/28143753123*1568397607^(9/22) 5142289999996110 a001 6557470319842/73681302247*1568397607^(9/22) 5142289999996110 a001 10610209857723/119218851371*1568397607^(9/22) 5142289999996110 a001 4052739537881/45537549124*1568397607^(9/22) 5142289999996110 a001 10610209857723/2537720636*4106118243^(5/23) 5142289999996110 a001 1548008755920/17393796001*1568397607^(9/22) 5142289999996110 a001 1548008755920/6643838879*1568397607^(4/11) 5142289999996110 a001 4052739537881/2537720636*4106118243^(6/23) 5142289999996110 a001 1134903780/1860499*4106118243^(7/23) 5142289999996110 a001 591286729879/2537720636*4106118243^(8/23) 5142289999996110 a001 182717648081/5374978561*1568397607^(5/11) 5142289999996110 a001 2971215073/2537720636*45537549124^(9/17) 5142289999996110 a001 2971215073/2537720636*817138163596^(9/19) 5142289999996110 a001 2971215073/2537720636*14662949395604^(3/7) 5142289999996110 a001 1134903170/6643838879*9062201101803^(1/2) 5142289999996110 a001 2971215073/2537720636*192900153618^(1/2) 5142289999996110 a001 225851433717/2537720636*4106118243^(9/23) 5142289999996110 a001 1201881744/634430159*4106118243^(13/23) 5142289999996110 a001 1135099622/33391061*4106118243^(10/23) 5142289999996110 a001 2971215073/2537720636*10749957122^(9/16) 5142289999996110 a001 32951280099/2537720636*4106118243^(11/23) 5142289999996110 a001 956722026041/28143753123*1568397607^(5/11) 5142289999996110 a001 7778742049/4106118243*1568397607^(13/22) 5142289999996110 a001 2504730781961/73681302247*1568397607^(5/11) 5142289999996110 a001 3278735159921/96450076809*1568397607^(5/11) 5142289999996110 a001 10610209857723/312119004989*1568397607^(5/11) 5142289999996110 a001 4052739537881/119218851371*1568397607^(5/11) 5142289999996110 a001 1144206275/230701876*4106118243^(12/23) 5142289999996110 a001 387002188980/11384387281*1568397607^(5/11) 5142289999996110 a001 10182505537/1268860318*4106118243^(1/2) 5142289999996110 a001 567451585/5374978561*4106118243^(16/23) 5142289999996110 a001 591286729879/17393796001*1568397607^(5/11) 5142289999996110 a001 591286729879/6643838879*1568397607^(9/22) 5142289999996110 a001 1515744265389/224056801*599074578^(3/14) 5142289999996110 a001 139583862445/10749957122*1568397607^(1/2) 5142289999996110 a001 1134903170/28143753123*4106118243^(17/23) 5142289999996110 a001 1134903170/73681302247*4106118243^(18/23) 5142289999996110 a001 365435296162/28143753123*1568397607^(1/2) 5142289999996110 a001 956722026041/73681302247*1568397607^(1/2) 5142289999996110 a001 2504730781961/192900153618*1568397607^(1/2) 5142289999996110 a001 10610209857723/817138163596*1568397607^(1/2) 5142289999996110 a001 4052739537881/312119004989*1568397607^(1/2) 5142289999996110 a001 1548008755920/119218851371*1568397607^(1/2) 5142289999996110 a001 591286729879/45537549124*1568397607^(1/2) 5142289999996110 a001 567451585/96450076809*4106118243^(19/23) 5142289999996110 a001 7787980473/599786069*1568397607^(1/2) 5142289999996110 a001 1134903170/505019158607*4106118243^(20/23) 5142289999996110 a001 225851433717/6643838879*1568397607^(5/11) 5142289999996110 a001 1134903170/1322157322203*4106118243^(21/23) 5142289999996110 a001 567451585/1730726404001*4106118243^(22/23) 5142289999996110 a001 53316291173/10749957122*1568397607^(6/11) 5142289999996110 a001 139583862445/28143753123*1568397607^(6/11) 5142289999996110 a001 365435296162/73681302247*1568397607^(6/11) 5142289999996110 a001 956722026041/192900153618*1568397607^(6/11) 5142289999996110 a001 2504730781961/505019158607*1568397607^(6/11) 5142289999996110 a001 10610209857723/2139295485799*1568397607^(6/11) 5142289999996110 a001 4052739537881/817138163596*1568397607^(6/11) 5142289999996110 a001 140728068720/28374454999*1568397607^(6/11) 5142289999996110 a001 591286729879/119218851371*1568397607^(6/11) 5142289999996110 a001 2971215073/4106118243*1568397607^(7/11) 5142289999996110 a001 225851433717/45537549124*1568397607^(6/11) 5142289999996110 a001 86267571272/17393796001*1568397607^(6/11) 5142289999996110 a001 86267571272/6643838879*1568397607^(1/2) 5142289999996110 a001 10182505537/5374978561*1568397607^(13/22) 5142289999996110 a001 53316291173/28143753123*1568397607^(13/22) 5142289999996110 a001 1836311903/17393796001*1568397607^(8/11) 5142289999996110 a001 139583862445/73681302247*1568397607^(13/22) 5142289999996110 a001 182717648081/96450076809*1568397607^(13/22) 5142289999996110 a001 956722026041/505019158607*1568397607^(13/22) 5142289999996110 a001 591286729879/312119004989*1568397607^(13/22) 5142289999996110 a001 225851433717/119218851371*1568397607^(13/22) 5142289999996110 a001 1836311903/6643838879*1568397607^(15/22) 5142289999996110 a001 21566892818/11384387281*1568397607^(13/22) 5142289999996110 a001 32951280099/17393796001*1568397607^(13/22) 5142289999996110 a001 32951280099/6643838879*1568397607^(6/11) 5142289999996110 a001 1836311903/28143753123*1568397607^(3/4) 5142289999996110 a001 10610209857723/2537720636*1568397607^(5/22) 5142289999996110 a001 7778742049/10749957122*1568397607^(7/11) 5142289999996110 a001 1836311903/45537549124*1568397607^(17/22) 5142289999996110 a001 6557470319842/1568397607*599074578^(5/21) 5142289999996110 a001 3278735159921/1268860318*1568397607^(1/4) 5142289999996110 a001 20365011074/28143753123*1568397607^(7/11) 5142289999996110 a001 53316291173/73681302247*1568397607^(7/11) 5142289999996110 a001 139583862445/192900153618*1568397607^(7/11) 5142289999996110 a001 591286729879/817138163596*1568397607^(7/11) 5142289999996110 a001 225851433717/312119004989*1568397607^(7/11) 5142289999996110 a001 86267571272/119218851371*1568397607^(7/11) 5142289999996110 a001 32951280099/45537549124*1568397607^(7/11) 5142289999996110 a001 12586269025/17393796001*1568397607^(7/11) 5142289999996110 a001 12586269025/6643838879*1568397607^(13/22) 5142289999996110 a001 4052739537881/2537720636*1568397607^(3/11) 5142289999996110 a001 267914296/969323029*599074578^(5/7) 5142289999996110 a001 4807526976/17393796001*1568397607^(15/22) 5142289999996110 a001 4807526976/6643838879*1568397607^(7/11) 5142289999996110 a001 1836311903/119218851371*1568397607^(9/11) 5142289999996110 a001 12586269025/45537549124*1568397607^(15/22) 5142289999996110 a001 32951280099/119218851371*1568397607^(15/22) 5142289999996110 a001 86267571272/312119004989*1568397607^(15/22) 5142289999996110 a001 225851433717/817138163596*1568397607^(15/22) 5142289999996110 a001 1548008755920/5600748293801*1568397607^(15/22) 5142289999996110 a001 139583862445/505019158607*1568397607^(15/22) 5142289999996110 a001 53316291173/192900153618*1568397607^(15/22) 5142289999996110 a001 20365011074/73681302247*1568397607^(15/22) 5142289999996110 a001 7778742049/28143753123*1568397607^(15/22) 5142289999996110 a001 1134903780/1860499*1568397607^(7/22) 5142289999996110 a001 1201881744/11384387281*1568397607^(8/11) 5142289999996110 a001 2971215073/10749957122*1568397607^(15/22) 5142289999996110 a001 1836311903/312119004989*1568397607^(19/22) 5142289999996110 a001 12586269025/119218851371*1568397607^(8/11) 5142289999996110 a001 32951280099/312119004989*1568397607^(8/11) 5142289999996110 a001 21566892818/204284540899*1568397607^(8/11) 5142289999996110 a001 225851433717/2139295485799*1568397607^(8/11) 5142289999996110 a001 182717648081/1730726404001*1568397607^(8/11) 5142289999996110 a001 139583862445/1322157322203*1568397607^(8/11) 5142289999996110 a001 53316291173/505019158607*1568397607^(8/11) 5142289999996110 a001 686789568/10525900321*1568397607^(3/4) 5142289999996110 a001 10182505537/96450076809*1568397607^(8/11) 5142289999996110 a001 7778742049/73681302247*1568397607^(8/11) 5142289999996110 a001 591286729879/2537720636*1568397607^(4/11) 5142289999996110 a001 12586269025/192900153618*1568397607^(3/4) 5142289999996110 a001 32951280099/505019158607*1568397607^(3/4) 5142289999996110 a001 86267571272/1322157322203*1568397607^(3/4) 5142289999996110 a001 32264490531/494493258286*1568397607^(3/4) 5142289999996110 a001 1548008755920/23725150497407*1568397607^(3/4) 5142289999996110 a001 365435296162/5600748293801*1568397607^(3/4) 5142289999996110 a001 139583862445/2139295485799*1568397607^(3/4) 5142289999996110 a001 53316291173/817138163596*1568397607^(3/4) 5142289999996110 a001 20365011074/312119004989*1568397607^(3/4) 5142289999996110 a001 4807526976/119218851371*1568397607^(17/22) 5142289999996110 a001 7778742049/119218851371*1568397607^(3/4) 5142289999996110 a001 1836311903/817138163596*1568397607^(10/11) 5142289999996110 a001 1288005205276048900/2504730781961 5142289999996110 a001 567451585/1268860318*1322157322203^(1/2) 5142289999996110 a001 1144206275/28374454999*1568397607^(17/22) 5142289999996110 a001 32951280099/817138163596*1568397607^(17/22) 5142289999996110 a001 86267571272/2139295485799*1568397607^(17/22) 5142289999996110 a001 225851433717/5600748293801*1568397607^(17/22) 5142289999996110 a001 591286729879/14662949395604*1568397607^(17/22) 5142289999996110 a001 365435296162/9062201101803*1568397607^(17/22) 5142289999996110 a001 139583862445/3461452808002*1568397607^(17/22) 5142289999996110 a001 53316291173/1322157322203*1568397607^(17/22) 5142289999996110 a001 20365011074/505019158607*1568397607^(17/22) 5142289999996110 a001 2971215073/28143753123*1568397607^(8/11) 5142289999996110 a001 7778742049/192900153618*1568397607^(17/22) 5142289999996110 a001 225851433717/2537720636*1568397607^(9/22) 5142289999996110 a001 4807526976/312119004989*1568397607^(9/11) 5142289999996110 a001 2971215073/45537549124*1568397607^(3/4) 5142289999996110 a001 1836311903/2139295485799*1568397607^(21/22) 5142289999996110 a001 12586269025/817138163596*1568397607^(9/11) 5142289999996110 a001 32951280099/2139295485799*1568397607^(9/11) 5142289999996110 a001 86267571272/5600748293801*1568397607^(9/11) 5142289999996110 a001 7787980473/505618944676*1568397607^(9/11) 5142289999996110 a001 365435296162/23725150497407*1568397607^(9/11) 5142289999996110 a001 139583862445/9062201101803*1568397607^(9/11) 5142289999996110 a001 53316291173/3461452808002*1568397607^(9/11) 5142289999996110 a001 20365011074/1322157322203*1568397607^(9/11) 5142289999996110 a001 7778742049/505019158607*1568397607^(9/11) 5142289999996110 a001 2971215073/73681302247*1568397607^(17/22) 5142289999996110 a001 1135099622/33391061*1568397607^(5/11) 5142289999996110 a001 1201881744/204284540899*1568397607^(19/22) 5142289999996110 a001 12586269025/2139295485799*1568397607^(19/22) 5142289999996110 a001 32951280099/5600748293801*1568397607^(19/22) 5142289999996110 a001 1135099622/192933544679*1568397607^(19/22) 5142289999996110 a001 139583862445/23725150497407*1568397607^(19/22) 5142289999996110 a001 53316291173/9062201101803*1568397607^(19/22) 5142289999996110 a001 10182505537/1730726404001*1568397607^(19/22) 5142289999996110 a001 7778742049/1322157322203*1568397607^(19/22) 5142289999996110 a001 1836311903/2537720636*1568397607^(7/11) 5142289999996110 a001 2971215073/192900153618*1568397607^(9/11) 5142289999996110 a001 32951280099/2537720636*1568397607^(1/2) 5142289999996110 a001 4807526976/2139295485799*1568397607^(10/11) 5142289999996110 a001 12586269025/5600748293801*1568397607^(10/11) 5142289999996110 a001 32951280099/14662949395604*1568397607^(10/11) 5142289999996110 a001 53316291173/23725150497407*1568397607^(10/11) 5142289999996110 a001 20365011074/9062201101803*1568397607^(10/11) 5142289999996110 a001 7778742049/3461452808002*1568397607^(10/11) 5142289999996110 a001 1134903170/4106118243*1568397607^(15/22) 5142289999996110 a001 2971215073/505019158607*1568397607^(19/22) 5142289999996110 a001 1144206275/230701876*1568397607^(6/11) 5142289999996110 a001 4807526976/5600748293801*1568397607^(21/22) 5142289999996110 a001 12586269025/14662949395604*1568397607^(21/22) 5142289999996110 a001 1201881744/634430159*1568397607^(13/22) 5142289999996110 a001 20365011074/23725150497407*1568397607^(21/22) 5142289999996110 a001 2504730781961/1568397607*599074578^(2/7) 5142289999996110 a001 7778742049/9062201101803*1568397607^(21/22) 5142289999996110 a001 2971215073/1322157322203*1568397607^(10/11) 5142289999996110 a001 2971215073/3461452808002*1568397607^(21/22) 5142289999996110 a001 567451585/5374978561*1568397607^(8/11) 5142289999996110 a001 1134903170/17393796001*1568397607^(3/4) 5142289999996110 a001 1134903170/28143753123*1568397607^(17/22) 5142289999996110 a001 1134903170/73681302247*1568397607^(9/11) 5142289999996110 a001 567451585/96450076809*1568397607^(19/22) 5142289999996110 a001 956722026041/1568397607*599074578^(1/3) 5142289999996110 a001 1134903170/505019158607*1568397607^(10/11) 5142289999996110 a001 1134903170/1322157322203*1568397607^(21/22) 5142289999996110 a001 433494437/1568397607*2537720636^(2/3) 5142289999996110 a001 591286729879/1568397607*599074578^(5/14) 5142289999996110 a001 365435296162/1568397607*599074578^(8/21) 5142289999996110 a001 701408733/969323029*17393796001^(4/7) 5142289999996110 a001 433494437/1568397607*45537549124^(10/17) 5142289999996110 a001 433494437/1568397607*312119004989^(6/11) 5142289999996110 a001 433494437/1568397607*14662949395604^(10/21) 5142289999996110 a001 304056783818718321/591286729879 5142289999996110 a001 701408733/969323029*505019158607^(1/2) 5142289999996110 a001 433494437/1568397607*192900153618^(5/9) 5142289999996110 a001 701408733/969323029*73681302247^(7/13) 5142289999996110 a001 433494437/1568397607*28143753123^(3/5) 5142289999996110 a001 701408733/969323029*10749957122^(7/12) 5142289999996110 a001 433494437/1568397607*10749957122^(5/8) 5142289999996110 a001 701408733/969323029*4106118243^(14/23) 5142289999996110 a001 433494437/1568397607*4106118243^(15/23) 5142289999996110 a001 6557470319842/4106118243*599074578^(2/7) 5142289999996110 a001 139583862445/1568397607*599074578^(3/7) 5142289999996110 a001 10610209857723/2537720636*599074578^(5/21) 5142289999996110 a001 10610209857723/6643838879*599074578^(2/7) 5142289999996110 a001 2504730781961/4106118243*599074578^(1/3) 5142289999996110 a001 701408733/969323029*1568397607^(7/11) 5142289999996110 a001 433494437/505019158607*2537720636^(14/15) 5142289999996110 a001 3278735159921/5374978561*599074578^(1/3) 5142289999996110 a001 53316291173/1568397607*599074578^(10/21) 5142289999996110 a001 433494437/192900153618*2537720636^(8/9) 5142289999996110 a001 433494437/119218851371*2537720636^(13/15) 5142289999996110 a001 10610209857723/17393796001*599074578^(1/3) 5142289999996110 a001 433494437/1568397607*1568397607^(15/22) 5142289999996110 a001 516002918640/1368706081*599074578^(5/14) 5142289999996110 a001 433494437/28143753123*2537720636^(4/5) 5142289999996110 a001 433494437/17393796001*2537720636^(7/9) 5142289999996110 a001 4052739537881/2537720636*599074578^(2/7) 5142289999996110 a001 4052739537881/6643838879*599074578^(1/3) 5142289999996110 a001 4807526976/969323029*2537720636^(8/15) 5142289999996110 a001 433494437/6643838879*2537720636^(11/15) 5142289999996110 a001 32951280099/1568397607*599074578^(1/2) 5142289999996110 a001 4052739537881/10749957122*599074578^(5/14) 5142289999996110 a001 20365011074/969323029*2537720636^(7/15) 5142289999996110 a001 3536736619241/9381251041*599074578^(5/14) 5142289999996110 a001 32951280099/969323029*2537720636^(4/9) 5142289999996110 a001 6557470319842/17393796001*599074578^(5/14) 5142289999996110 a001 2971215073/969323029*2537720636^(5/9) 5142289999996110 a001 86267571272/969323029*2537720636^(2/5) 5142289999996110 a001 956722026041/4106118243*599074578^(8/21) 5142289999996110 a001 433494437/4106118243*23725150497407^(1/2) 5142289999996110 a001 796030994547383611/1548008755920 5142289999996110 a001 433494437/4106118243*505019158607^(4/7) 5142289999996110 a001 1836311903/969323029*73681302247^(1/2) 5142289999996110 a001 433494437/4106118243*73681302247^(8/13) 5142289999996110 a001 1836311903/969323029*10749957122^(13/24) 5142289999996110 a001 433494437/4106118243*10749957122^(2/3) 5142289999996110 a001 365435296162/969323029*2537720636^(1/3) 5142289999996110 a001 2504730781961/6643838879*599074578^(5/14) 5142289999996110 a001 1548008755920/969323029*2537720636^(4/15) 5142289999996110 a001 4052739537881/969323029*2537720636^(2/9) 5142289999996110 a001 3278735159921/299537289*228826127^(1/5) 5142289999996110 a001 6557470319842/969323029*2537720636^(1/5) 5142289999996110 a001 1836311903/969323029*4106118243^(13/23) 5142289999996110 a001 433494437/4106118243*4106118243^(16/23) 5142289999996110 a001 2504730781961/10749957122*599074578^(8/21) 5142289999996110 a001 20365011074/1568397607*599074578^(11/21) 5142289999996110 a001 433494437/10749957122*45537549124^(2/3) 5142289999996110 a001 4807526976/969323029*45537549124^(8/17) 5142289999996110 a001 4807526976/969323029*14662949395604^(8/21) 5142289999996110 a001 2084036199823432512/4052739537881 5142289999996110 a001 4807526976/969323029*192900153618^(4/9) 5142289999996110 a001 4807526976/969323029*73681302247^(6/13) 5142289999996110 a001 4807526976/969323029*10749957122^(1/2) 5142289999996110 a001 6557470319842/28143753123*599074578^(8/21) 5142289999996110 a001 433494437/505019158607*17393796001^(6/7) 5142289999996110 a001 433494437/10749957122*10749957122^(17/24) 5142289999996110 a001 10610209857723/45537549124*599074578^(8/21) 5142289999996110 a001 433494437/28143753123*45537549124^(12/17) 5142289999996110 a001 12586269025/969323029*312119004989^(2/5) 5142289999996110 a001 433494437/28143753123*14662949395604^(4/7) 5142289999996110 a001 5456077604922913925/10610209857723 5142289999996110 a001 433494437/28143753123*192900153618^(2/3) 5142289999996110 a001 433494437/28143753123*73681302247^(9/13) 5142289999996110 a001 591286729879/969323029*17393796001^(2/7) 5142289999996110 a001 20365011074/969323029*17393796001^(3/7) 5142289999996110 a001 433494437/9062201101803*45537549124^(16/17) 5142289999996110 a001 433494437/2139295485799*45537549124^(15/17) 5142289999996110 a001 433494437/505019158607*45537549124^(14/17) 5142289999996110 a001 433494437/119218851371*45537549124^(13/17) 5142289999996110 a001 86267571272/969323029*45537549124^(6/17) 5142289999996110 a001 433494437/73681302247*817138163596^(2/3) 5142289999996110 a001 32951280099/969323029*23725150497407^(5/16) 5142289999996110 a001 32951280099/969323029*505019158607^(5/14) 5142289999996110 a001 139583862445/969323029*45537549124^(1/3) 5142289999996110 a001 365435296162/969323029*45537549124^(5/17) 5142289999996110 a001 1548008755920/969323029*45537549124^(4/17) 5142289999996110 a001 6557470319842/969323029*45537549124^(3/17) 5142289999996110 a001 433494437/192900153618*312119004989^(8/11) 5142289999996110 a001 86267571272/969323029*14662949395604^(2/7) 5142289999996110 a001 433494437/192900153618*23725150497407^(5/8) 5142289999996110 a001 86267571272/969323029*192900153618^(1/3) 5142289999996110 a001 433494437/23725150497407*312119004989^(10/11) 5142289999996110 a001 433494437/1322157322203*312119004989^(4/5) 5142289999996110 a001 433494437/2139295485799*312119004989^(9/11) 5142289999996110 a001 433494437/505019158607*817138163596^(14/19) 5142289999996110 a001 225851433717/969323029*23725150497407^(1/4) 5142289999996110 a001 10610209857723/969323029*23725150497407^(1/8) 5142289999996110 a006 5^(1/2)*Fibonacci(72)/Lucas(43)/sqrt(5) 5142289999996110 a001 433494437/2139295485799*14662949395604^(5/7) 5142289999996110 a001 10610209857723/969323029*505019158607^(1/7) 5142289999996110 a001 365435296162/969323029*14662949395604^(5/21) 5142289999996110 a001 1548008755920/969323029*192900153618^(2/9) 5142289999996110 a001 365435296162/969323029*192900153618^(5/18) 5142289999996110 a001 433494437/505019158607*192900153618^(7/9) 5142289999996110 a001 433494437/2139295485799*192900153618^(5/6) 5142289999996110 a001 10610209857723/969323029*73681302247^(2/13) 5142289999996110 a001 1548008755920/969323029*73681302247^(3/13) 5142289999996110 a001 956722026041/969323029*73681302247^(1/4) 5142289999996110 a001 225851433717/969323029*73681302247^(4/13) 5142289999996110 a001 53316291173/969323029*817138163596^(1/3) 5142289999996110 a001 433494437/119218851371*14662949395604^(13/21) 5142289999996110 a001 433494437/119218851371*192900153618^(13/18) 5142289999996110 a001 433494437/192900153618*73681302247^(10/13) 5142289999996110 a001 433494437/1322157322203*73681302247^(11/13) 5142289999996110 a001 433494437/9062201101803*73681302247^(12/13) 5142289999996110 a001 433494437/119218851371*73681302247^(3/4) 5142289999996110 a001 4052739537881/969323029*28143753123^(1/5) 5142289999996110 a001 20365011074/969323029*45537549124^(7/17) 5142289999996110 a001 32951280099/969323029*28143753123^(2/5) 5142289999996110 a001 365435296162/969323029*28143753123^(3/10) 5142289999996110 a001 4052739537881/17393796001*599074578^(8/21) 5142289999996110 a001 20365011074/969323029*14662949395604^(1/3) 5142289999996110 a001 20365011074/969323029*192900153618^(7/18) 5142289999996110 a001 433494437/17393796001*17393796001^(5/7) 5142289999996110 a001 433494437/192900153618*28143753123^(4/5) 5142289999996110 a001 433494437/2139295485799*28143753123^(9/10) 5142289999996110 a001 10610209857723/969323029*10749957122^(1/6) 5142289999996110 a001 6557470319842/969323029*10749957122^(3/16) 5142289999996110 a001 4052739537881/969323029*10749957122^(5/24) 5142289999996110 a001 1548008755920/969323029*10749957122^(1/4) 5142289999996110 a001 591286729879/969323029*10749957122^(7/24) 5142289999996110 a001 12586269025/969323029*10749957122^(11/24) 5142289999996110 a001 365435296162/969323029*10749957122^(5/16) 5142289999996110 a001 225851433717/969323029*10749957122^(1/3) 5142289999996110 a001 86267571272/969323029*10749957122^(3/8) 5142289999996110 a001 433494437/17393796001*312119004989^(7/11) 5142289999996110 a001 259387800392267801/504420793834 5142289999996110 a001 433494437/17393796001*14662949395604^(5/9) 5142289999996110 a001 433494437/17393796001*505019158607^(5/8) 5142289999996110 a001 32951280099/969323029*10749957122^(5/12) 5142289999996110 a001 433494437/17393796001*28143753123^(7/10) 5142289999996110 a001 20365011074/969323029*10749957122^(7/16) 5142289999996110 a001 433494437/28143753123*10749957122^(3/4) 5142289999996110 a001 433494437/73681302247*10749957122^(19/24) 5142289999996110 a001 433494437/119218851371*10749957122^(13/16) 5142289999996110 a001 433494437/192900153618*10749957122^(5/6) 5142289999996110 a001 433494437/505019158607*10749957122^(7/8) 5142289999996110 a001 433494437/1322157322203*10749957122^(11/12) 5142289999996110 a001 433494437/2139295485799*10749957122^(15/16) 5142289999996110 a001 433494437/3461452808002*10749957122^(23/24) 5142289999996110 a001 10610209857723/969323029*4106118243^(4/23) 5142289999996110 a001 4052739537881/969323029*4106118243^(5/23) 5142289999996110 a001 1548008755920/969323029*4106118243^(6/23) 5142289999996110 a001 591286729879/969323029*4106118243^(7/23) 5142289999996110 a001 1134903780/1860499*599074578^(1/3) 5142289999996110 a001 1548008755920/6643838879*599074578^(8/21) 5142289999996110 a001 225851433717/969323029*4106118243^(8/23) 5142289999996110 a001 4807526976/969323029*4106118243^(12/23) 5142289999996110 a001 433494437/6643838879*45537549124^(11/17) 5142289999996110 a001 2971215073/969323029*312119004989^(5/11) 5142289999996110 a001 1288005205276048901/2504730781961 5142289999996110 a001 433494437/6643838879*192900153618^(11/18) 5142289999996110 a001 86267571272/969323029*4106118243^(9/23) 5142289999996110 a001 2971215073/969323029*28143753123^(1/2) 5142289999996110 a001 32951280099/969323029*4106118243^(10/23) 5142289999996110 a001 12586269025/969323029*4106118243^(11/23) 5142289999996110 a001 433494437/6643838879*10749957122^(11/16) 5142289999996110 a001 7778742049/969323029*4106118243^(1/2) 5142289999996110 a001 433494437/10749957122*4106118243^(17/23) 5142289999996110 a001 433494437/28143753123*4106118243^(18/23) 5142289999996110 a001 433494437/73681302247*4106118243^(19/23) 5142289999996110 a001 433494437/192900153618*4106118243^(20/23) 5142289999996110 a001 433494437/505019158607*4106118243^(21/23) 5142289999996110 a001 433494437/1322157322203*4106118243^(22/23) 5142289999996110 a001 1134903170/969323029*2537720636^(3/5) 5142289999996110 a001 365435296162/4106118243*599074578^(3/7) 5142289999996110 a001 10610209857723/969323029*1568397607^(2/11) 5142289999996110 a001 956722026041/2537720636*599074578^(5/14) 5142289999996110 a001 4052739537881/969323029*1568397607^(5/22) 5142289999996110 a001 2504730781961/969323029*1568397607^(1/4) 5142289999996110 a001 1548008755920/969323029*1568397607^(3/11) 5142289999996110 a001 956722026041/10749957122*599074578^(3/7) 5142289999996110 a001 7778742049/1568397607*599074578^(4/7) 5142289999996110 a001 2504730781961/28143753123*599074578^(3/7) 5142289999996110 a001 591286729879/969323029*1568397607^(7/22) 5142289999996110 a001 6557470319842/73681302247*599074578^(3/7) 5142289999996110 a001 10610209857723/119218851371*599074578^(3/7) 5142289999996110 a001 4052739537881/45537549124*599074578^(3/7) 5142289999996110 a001 1548008755920/17393796001*599074578^(3/7) 5142289999996110 a001 225851433717/969323029*1568397607^(4/11) 5142289999996110 a001 591286729879/2537720636*599074578^(8/21) 5142289999996110 a001 591286729879/6643838879*599074578^(3/7) 5142289999996110 a001 1134903170/969323029*45537549124^(9/17) 5142289999996110 a001 1134903170/969323029*817138163596^(9/19) 5142289999996110 a001 491974210728665290/956722026041 5142289999996110 a001 1134903170/969323029*14662949395604^(3/7) 5142289999996110 a001 1134903170/969323029*192900153618^(1/2) 5142289999996110 a001 1134903170/969323029*10749957122^(9/16) 5142289999996110 a001 86267571272/969323029*1568397607^(9/22) 5142289999996110 a001 1836311903/969323029*1568397607^(13/22) 5142289999996110 a001 32951280099/969323029*1568397607^(5/11) 5142289999996110 a001 12586269025/969323029*1568397607^(1/2) 5142289999996110 a001 139583862445/4106118243*599074578^(10/21) 5142289999996110 a001 4807526976/969323029*1568397607^(6/11) 5142289999996110 a001 433494437/4106118243*1568397607^(8/11) 5142289999996110 a001 182717648081/5374978561*599074578^(10/21) 5142289999996110 a001 1836311903/1568397607*599074578^(9/14) 5142289999996110 a001 956722026041/28143753123*599074578^(10/21) 5142289999996110 a001 2504730781961/73681302247*599074578^(10/21) 5142289999996110 a001 3278735159921/96450076809*599074578^(10/21) 5142289999996110 a001 10610209857723/312119004989*599074578^(10/21) 5142289999996110 a001 4052739537881/119218851371*599074578^(10/21) 5142289999996110 a001 387002188980/11384387281*599074578^(10/21) 5142289999996110 a001 591286729879/17393796001*599074578^(10/21) 5142289999996110 a001 86267571272/4106118243*599074578^(1/2) 5142289999996110 a001 2971215073/1568397607*599074578^(13/21) 5142289999996110 a001 225851433717/2537720636*599074578^(3/7) 5142289999996110 a001 225851433717/6643838879*599074578^(10/21) 5142289999996110 a001 433494437/10749957122*1568397607^(17/22) 5142289999996110 a001 225851433717/10749957122*599074578^(1/2) 5142289999996110 a001 433494437/6643838879*1568397607^(3/4) 5142289999996110 a001 591286729879/28143753123*599074578^(1/2) 5142289999996110 a001 1548008755920/73681302247*599074578^(1/2) 5142289999996110 a001 4052739537881/192900153618*599074578^(1/2) 5142289999996110 a001 225749145909/10745088481*599074578^(1/2) 5142289999996110 a001 6557470319842/312119004989*599074578^(1/2) 5142289999996110 a001 2504730781961/119218851371*599074578^(1/2) 5142289999996110 a001 956722026041/45537549124*599074578^(1/2) 5142289999996110 a001 433494437/28143753123*1568397607^(9/11) 5142289999996110 a001 365435296162/17393796001*599074578^(1/2) 5142289999996110 a001 53316291173/4106118243*599074578^(11/21) 5142289999996110 a001 433494437/73681302247*1568397607^(19/22) 5142289999996110 a001 139583862445/6643838879*599074578^(1/2) 5142289999996110 a001 433494437/192900153618*1568397607^(10/11) 5142289999996110 a001 139583862445/10749957122*599074578^(11/21) 5142289999996110 a001 433494437/505019158607*1568397607^(21/22) 5142289999996110 a001 365435296162/28143753123*599074578^(11/21) 5142289999996110 a001 956722026041/73681302247*599074578^(11/21) 5142289999996110 a001 2504730781961/192900153618*599074578^(11/21) 5142289999996110 a001 10610209857723/817138163596*599074578^(11/21) 5142289999996110 a001 4052739537881/312119004989*599074578^(11/21) 5142289999996110 a001 1548008755920/119218851371*599074578^(11/21) 5142289999996110 a001 591286729879/45537549124*599074578^(11/21) 5142289999996110 a001 7787980473/599786069*599074578^(11/21) 5142289999996110 a001 1135099622/33391061*599074578^(10/21) 5142289999996110 a001 86267571272/6643838879*599074578^(11/21) 5142289999996110 a001 20365011074/4106118243*599074578^(4/7) 5142289999996110 a001 53316291173/2537720636*599074578^(1/2) 5142289999996110 a001 165580141/228826127*228826127^(7/10) 5142289999996110 a001 6557470319842/228826127*87403803^(3/19) 5142289999996110 a001 53316291173/10749957122*599074578^(4/7) 5142289999996110 a001 139583862445/28143753123*599074578^(4/7) 5142289999996110 a001 365435296162/73681302247*599074578^(4/7) 5142289999996110 a001 956722026041/192900153618*599074578^(4/7) 5142289999996110 a001 2504730781961/505019158607*599074578^(4/7) 5142289999996110 a001 10610209857723/2139295485799*599074578^(4/7) 5142289999996110 a001 4052739537881/817138163596*599074578^(4/7) 5142289999996110 a001 140728068720/28374454999*599074578^(4/7) 5142289999996110 a001 591286729879/119218851371*599074578^(4/7) 5142289999996110 a001 225851433717/45537549124*599074578^(4/7) 5142289999996110 a001 10610209857723/969323029*599074578^(4/21) 5142289999996110 a001 86267571272/17393796001*599074578^(4/7) 5142289999996110 a001 1134903170/1568397607*599074578^(2/3) 5142289999996110 a001 32951280099/2537720636*599074578^(11/21) 5142289999996110 a001 32951280099/6643838879*599074578^(4/7) 5142289999996110 a001 6557470319842/969323029*599074578^(3/14) 5142289999996110 a001 7778742049/4106118243*599074578^(13/21) 5142289999996110 a001 10182505537/5374978561*599074578^(13/21) 5142289999996110 a001 1602508992/1368706081*599074578^(9/14) 5142289999996110 a001 53316291173/28143753123*599074578^(13/21) 5142289999996110 a001 139583862445/73681302247*599074578^(13/21) 5142289999996110 a001 182717648081/96450076809*599074578^(13/21) 5142289999996110 a001 956722026041/505019158607*599074578^(13/21) 5142289999996110 a001 10610209857723/5600748293801*599074578^(13/21) 5142289999996110 a001 591286729879/312119004989*599074578^(13/21) 5142289999996110 a001 225851433717/119218851371*599074578^(13/21) 5142289999996110 a001 21566892818/11384387281*599074578^(13/21) 5142289999996110 a001 4052739537881/969323029*599074578^(5/21) 5142289999996110 a001 32951280099/17393796001*599074578^(13/21) 5142289999996110 a001 701408733/2537720636*599074578^(5/7) 5142289999996110 a001 701408733/6643838879*599074578^(16/21) 5142289999996110 a001 1144206275/230701876*599074578^(4/7) 5142289999996110 a001 12586269025/6643838879*599074578^(13/21) 5142289999996110 a001 701408733/10749957122*599074578^(11/14) 5142289999996110 a001 12586269025/10749957122*599074578^(9/14) 5142289999996110 a001 10983760033/9381251041*599074578^(9/14) 5142289999996110 a001 86267571272/73681302247*599074578^(9/14) 5142289999996110 a001 75283811239/64300051206*599074578^(9/14) 5142289999996110 a001 2504730781961/2139295485799*599074578^(9/14) 5142289999996110 a001 365435296162/312119004989*599074578^(9/14) 5142289999996110 a001 139583862445/119218851371*599074578^(9/14) 5142289999996110 a001 53316291173/45537549124*599074578^(9/14) 5142289999996110 a001 20365011074/17393796001*599074578^(9/14) 5142289999996110 a001 7778742049/6643838879*599074578^(9/14) 5142289999996110 a001 2971215073/4106118243*599074578^(2/3) 5142289999996110 a001 7778742049/10749957122*599074578^(2/3) 5142289999996110 a001 701408733/17393796001*599074578^(17/21) 5142289999996110 a001 20365011074/28143753123*599074578^(2/3) 5142289999996110 a001 53316291173/73681302247*599074578^(2/3) 5142289999996110 a001 139583862445/192900153618*599074578^(2/3) 5142289999996110 a001 365435296162/505019158607*599074578^(2/3) 5142289999996110 a001 10610209857723/14662949395604*599074578^(2/3) 5142289999996110 a001 225851433717/312119004989*599074578^(2/3) 5142289999996110 a001 86267571272/119218851371*599074578^(2/3) 5142289999996110 a001 32951280099/45537549124*599074578^(2/3) 5142289999996110 a001 12586269025/17393796001*599074578^(2/3) 5142289999996110 a001 1548008755920/969323029*599074578^(2/7) 5142289999996110 a001 1201881744/634430159*599074578^(13/21) 5142289999996110 a001 4807526976/6643838879*599074578^(2/3) 5142289999996110 a001 233802911/9381251041*599074578^(5/6) 5142289999996110 a001 1836311903/2537720636*599074578^(2/3) 5142289999996110 a001 1836311903/6643838879*599074578^(5/7) 5142289999996110 a001 2971215073/2537720636*599074578^(9/14) 5142289999996110 a001 701408733/45537549124*599074578^(6/7) 5142289999996110 a001 4807526976/17393796001*599074578^(5/7) 5142289999996110 a001 2504730781961/599074578*228826127^(1/4) 5142289999996110 a001 12586269025/45537549124*599074578^(5/7) 5142289999996110 a001 32951280099/119218851371*599074578^(5/7) 5142289999996110 a001 86267571272/312119004989*599074578^(5/7) 5142289999996110 a001 225851433717/817138163596*599074578^(5/7) 5142289999996110 a001 1548008755920/5600748293801*599074578^(5/7) 5142289999996110 a001 139583862445/505019158607*599074578^(5/7) 5142289999996110 a001 53316291173/192900153618*599074578^(5/7) 5142289999996110 a001 20365011074/73681302247*599074578^(5/7) 5142289999996110 a001 7778742049/28143753123*599074578^(5/7) 5142289999996110 a001 591286729879/969323029*599074578^(1/3) 5142289999996110 a001 2971215073/10749957122*599074578^(5/7) 5142289999996110 a001 365435296162/969323029*599074578^(5/14) 5142289999996110 a001 1836311903/17393796001*599074578^(16/21) 5142289999996110 a001 1134903170/4106118243*599074578^(5/7) 5142289999996110 a001 701408733/119218851371*599074578^(19/21) 5142289999996110 a001 1201881744/11384387281*599074578^(16/21) 5142289999996110 a001 12586269025/119218851371*599074578^(16/21) 5142289999996110 a001 32951280099/312119004989*599074578^(16/21) 5142289999996110 a001 21566892818/204284540899*599074578^(16/21) 5142289999996110 a001 225851433717/2139295485799*599074578^(16/21) 5142289999996110 a001 182717648081/1730726404001*599074578^(16/21) 5142289999996110 a001 139583862445/1322157322203*599074578^(16/21) 5142289999996110 a001 53316291173/505019158607*599074578^(16/21) 5142289999996110 a001 10182505537/96450076809*599074578^(16/21) 5142289999996110 a001 225851433717/969323029*599074578^(8/21) 5142289999996110 a001 7778742049/73681302247*599074578^(16/21) 5142289999996110 a001 187917426909946969/365435296162 5142289999996110 a001 433494437/969323029*1322157322203^(1/2) 5142289999996110 a001 1836311903/28143753123*599074578^(11/14) 5142289999996110 a001 2971215073/28143753123*599074578^(16/21) 5142289999996110 a001 686789568/10525900321*599074578^(11/14) 5142289999996110 a001 233802911/64300051206*599074578^(13/14) 5142289999996110 a001 12586269025/192900153618*599074578^(11/14) 5142289999996110 a001 32951280099/505019158607*599074578^(11/14) 5142289999996110 a001 86267571272/1322157322203*599074578^(11/14) 5142289999996110 a001 32264490531/494493258286*599074578^(11/14) 5142289999996110 a001 591286729879/9062201101803*599074578^(11/14) 5142289999996110 a001 1548008755920/23725150497407*599074578^(11/14) 5142289999996110 a001 365435296162/5600748293801*599074578^(11/14) 5142289999996110 a001 139583862445/2139295485799*599074578^(11/14) 5142289999996110 a001 53316291173/817138163596*599074578^(11/14) 5142289999996110 a001 20365011074/312119004989*599074578^(11/14) 5142289999996110 a001 7778742049/119218851371*599074578^(11/14) 5142289999996110 a001 1836311903/45537549124*599074578^(17/21) 5142289999996110 a001 2971215073/45537549124*599074578^(11/14) 5142289999996110 a001 4807526976/119218851371*599074578^(17/21) 5142289999996110 a001 3524667/1568437211*599074578^(20/21) 5142289999996110 a001 1144206275/28374454999*599074578^(17/21) 5142289999996110 a001 32951280099/817138163596*599074578^(17/21) 5142289999996110 a001 86267571272/2139295485799*599074578^(17/21) 5142289999996110 a001 225851433717/5600748293801*599074578^(17/21) 5142289999996110 a001 591286729879/14662949395604*599074578^(17/21) 5142289999996110 a001 365435296162/9062201101803*599074578^(17/21) 5142289999996110 a001 139583862445/3461452808002*599074578^(17/21) 5142289999996110 a001 53316291173/1322157322203*599074578^(17/21) 5142289999996110 a001 20365011074/505019158607*599074578^(17/21) 5142289999996110 a001 86267571272/969323029*599074578^(3/7) 5142289999996110 a001 7778742049/192900153618*599074578^(17/21) 5142289999996110 a001 1836311903/73681302247*599074578^(5/6) 5142289999996110 a001 567451585/5374978561*599074578^(16/21) 5142289999996110 a001 2971215073/73681302247*599074578^(17/21) 5142289999996110 a001 267084832/10716675201*599074578^(5/6) 5142289999996110 a001 12586269025/505019158607*599074578^(5/6) 5142289999996110 a001 10983760033/440719107401*599074578^(5/6) 5142289999996110 a001 43133785636/1730726404001*599074578^(5/6) 5142289999996110 a001 75283811239/3020733700601*599074578^(5/6) 5142289999996110 a001 182717648081/7331474697802*599074578^(5/6) 5142289999996110 a001 139583862445/5600748293801*599074578^(5/6) 5142289999996110 a001 53316291173/2139295485799*599074578^(5/6) 5142289999996110 a001 10182505537/408569081798*599074578^(5/6) 5142289999996110 a001 7778742049/312119004989*599074578^(5/6) 5142289999996110 a001 1836311903/119218851371*599074578^(6/7) 5142289999996110 a001 2971215073/119218851371*599074578^(5/6) 5142289999996110 a001 1134903170/17393796001*599074578^(11/14) 5142289999996110 a001 4807526976/312119004989*599074578^(6/7) 5142289999996110 a001 12586269025/817138163596*599074578^(6/7) 5142289999996110 a001 32951280099/2139295485799*599074578^(6/7) 5142289999996110 a001 86267571272/5600748293801*599074578^(6/7) 5142289999996110 a001 7787980473/505618944676*599074578^(6/7) 5142289999996110 a001 365435296162/23725150497407*599074578^(6/7) 5142289999996110 a001 139583862445/9062201101803*599074578^(6/7) 5142289999996110 a001 53316291173/3461452808002*599074578^(6/7) 5142289999996110 a001 20365011074/1322157322203*599074578^(6/7) 5142289999996110 a001 32951280099/969323029*599074578^(10/21) 5142289999996110 a001 7778742049/505019158607*599074578^(6/7) 5142289999996110 a001 1134903170/28143753123*599074578^(17/21) 5142289999996110 a001 2971215073/192900153618*599074578^(6/7) 5142289999996110 a001 20365011074/969323029*599074578^(1/2) 5142289999996110 a001 1836311903/312119004989*599074578^(19/21) 5142289999996110 a001 567451585/22768774562*599074578^(5/6) 5142289999996110 a001 1201881744/204284540899*599074578^(19/21) 5142289999996110 a001 701408733/969323029*599074578^(2/3) 5142289999996110 a001 12586269025/2139295485799*599074578^(19/21) 5142289999996110 a001 102334155/370248451*228826127^(3/4) 5142289999996110 a001 32951280099/5600748293801*599074578^(19/21) 5142289999996110 a001 1135099622/192933544679*599074578^(19/21) 5142289999996110 a001 139583862445/23725150497407*599074578^(19/21) 5142289999996110 a001 53316291173/9062201101803*599074578^(19/21) 5142289999996110 a001 10182505537/1730726404001*599074578^(19/21) 5142289999996110 a001 12586269025/969323029*599074578^(11/21) 5142289999996110 a001 7778742049/1322157322203*599074578^(19/21) 5142289999996110 a001 1836311903/505019158607*599074578^(13/14) 5142289999996110 a001 1134903170/73681302247*599074578^(6/7) 5142289999996110 a001 2971215073/505019158607*599074578^(19/21) 5142289999996110 a001 1602508992/440719107401*599074578^(13/14) 5142289999996110 a001 12586269025/3461452808002*599074578^(13/14) 5142289999996110 a001 10983760033/3020733700601*599074578^(13/14) 5142289999996110 a001 86267571272/23725150497407*599074578^(13/14) 5142289999996110 a001 53316291173/14662949395604*599074578^(13/14) 5142289999996110 a001 20365011074/5600748293801*599074578^(13/14) 5142289999996110 a001 7778742049/2139295485799*599074578^(13/14) 5142289999996110 a001 1836311903/817138163596*599074578^(20/21) 5142289999996110 a001 2971215073/817138163596*599074578^(13/14) 5142289999996110 a001 4807526976/2139295485799*599074578^(20/21) 5142289999996110 a001 4807526976/969323029*599074578^(4/7) 5142289999996110 a001 433494437/1568397607*599074578^(5/7) 5142289999996110 a001 12586269025/5600748293801*599074578^(20/21) 5142289999996110 a001 32951280099/14662949395604*599074578^(20/21) 5142289999996110 a001 53316291173/23725150497407*599074578^(20/21) 5142289999996110 a001 20365011074/9062201101803*599074578^(20/21) 5142289999996110 a001 7778742049/3461452808002*599074578^(20/21) 5142289999996110 a001 567451585/96450076809*599074578^(19/21) 5142289999996110 a001 2971215073/1322157322203*599074578^(20/21) 5142289999996110 a001 1836311903/969323029*599074578^(13/21) 5142289999996110 a001 1134903170/312119004989*599074578^(13/14) 5142289999996110 a001 1134903170/505019158607*599074578^(20/21) 5142289999996110 a001 956722026041/599074578*228826127^(3/10) 5142289999996110 a001 1134903170/969323029*599074578^(9/14) 5142289999996110 a001 433494437/4106118243*599074578^(16/21) 5142289999996110 a001 433494437/6643838879*599074578^(11/14) 5142289999996110 a001 433494437/10749957122*599074578^(17/21) 5142289999996110 a001 433494437/17393796001*599074578^(5/6) 5142289999996110 a001 433494437/28143753123*599074578^(6/7) 5142289999996110 a001 433494437/73681302247*599074578^(19/21) 5142289999996110 a001 433494437/119218851371*599074578^(13/14) 5142289999996110 a001 433494437/192900153618*599074578^(20/21) 5142289999996110 a001 63245986/4106118243*141422324^(12/13) 5142289999996110 a001 182717648081/299537289*228826127^(7/20) 5142289999996110 a001 6557470319842/1568397607*228826127^(1/4) 5142289999996110 a001 267913919/710646*228826127^(3/8) 5142289999996110 a001 165580141/599074578*2537720636^(2/3) 5142289999996110 a001 267914296/370248451*17393796001^(4/7) 5142289999996110 a001 165580141/599074578*45537549124^(10/17) 5142289999996110 a001 165580141/599074578*312119004989^(6/11) 5142289999996110 a001 165580141/599074578*14662949395604^(10/21) 5142289999996110 a001 267914296/370248451*14662949395604^(4/9) 5142289999996110 a001 267914296/370248451*505019158607^(1/2) 5142289999996110 a001 165580141/599074578*192900153618^(5/9) 5142289999996110 a001 5545160863449467/10783446409 5142289999996110 a001 267914296/370248451*73681302247^(7/13) 5142289999996110 a001 165580141/599074578*28143753123^(3/5) 5142289999996110 a001 267914296/370248451*10749957122^(7/12) 5142289999996110 a001 165580141/599074578*10749957122^(5/8) 5142289999996110 a001 267914296/370248451*4106118243^(14/23) 5142289999996110 a001 165580141/599074578*4106118243^(15/23) 5142289999996110 a001 267914296/370248451*1568397607^(7/11) 5142289999996110 a001 165580141/599074578*1568397607^(15/22) 5142289999996110 a001 139583862445/599074578*228826127^(2/5) 5142289999996110 a001 10610209857723/969323029*228826127^(1/5) 5142289999996110 a001 10610209857723/2537720636*228826127^(1/4) 5142289999996110 a001 2504730781961/1568397607*228826127^(3/10) 5142289999996110 a001 6557470319842/4106118243*228826127^(3/10) 5142289999996110 a001 10610209857723/6643838879*228826127^(3/10) 5142289999996110 a001 53316291173/599074578*228826127^(9/20) 5142289999996110 a001 4052739537881/969323029*228826127^(1/4) 5142289999996110 a001 4052739537881/2537720636*228826127^(3/10) 5142289999996110 a001 956722026041/1568397607*228826127^(7/20) 5142289999996110 a001 267914296/370248451*599074578^(2/3) 5142289999996110 a001 165580141/599074578*599074578^(5/7) 5142289999996110 a001 2504730781961/4106118243*228826127^(7/20) 5142289999996110 a001 3278735159921/5374978561*228826127^(7/20) 5142289999996110 a001 10610209857723/17393796001*228826127^(7/20) 5142289999996110 a001 4052739537881/6643838879*228826127^(7/20) 5142289999996110 a001 591286729879/1568397607*228826127^(3/8) 5142289999996110 a001 10182505537/299537289*228826127^(1/2) 5142289999996110 a001 1548008755920/969323029*228826127^(3/10) 5142289999996110 a001 1134903780/1860499*228826127^(7/20) 5142289999996110 a001 165580141/1568397607*23725150497407^(1/2) 5142289999996110 a001 165580141/1568397607*505019158607^(4/7) 5142289999996110 a001 38713118969590451/75283811239 5142289999996110 a001 701408733/370248451*73681302247^(1/2) 5142289999996110 a001 165580141/1568397607*73681302247^(8/13) 5142289999996110 a001 701408733/370248451*10749957122^(13/24) 5142289999996110 a001 165580141/1568397607*10749957122^(2/3) 5142289999996110 a001 701408733/370248451*4106118243^(13/23) 5142289999996110 a001 165580141/1568397607*4106118243^(16/23) 5142289999996110 a001 516002918640/1368706081*228826127^(3/8) 5142289999996110 a001 701408733/370248451*1568397607^(13/22) 5142289999996110 a001 2504730781961/54018521*20633239^(1/7) 5142289999996110 a001 165580141/192900153618*2537720636^(14/15) 5142289999996110 a001 1836311903/370248451*2537720636^(8/15) 5142289999996110 a001 4052739537881/10749957122*228826127^(3/8) 5142289999996110 a001 165580141/73681302247*2537720636^(8/9) 5142289999996110 a001 3536736619241/9381251041*228826127^(3/8) 5142289999996110 a001 165580141/45537549124*2537720636^(13/15) 5142289999996110 a001 165580141/10749957122*2537720636^(4/5) 5142289999996110 a001 6557470319842/17393796001*228826127^(3/8) 5142289999996110 a001 165580141/1568397607*1568397607^(8/11) 5142289999996110 a001 2504730781961/6643838879*228826127^(3/8) 5142289999996110 a001 165580141/6643838879*2537720636^(7/9) 5142289999996110 a001 12586269025/370248451*2537720636^(4/9) 5142289999996110 a001 7778742049/370248451*2537720636^(7/15) 5142289999996110 a001 32951280099/370248451*2537720636^(2/5) 5142289999996110 a001 365435296162/1568397607*228826127^(2/5) 5142289999996110 a001 165580141/4106118243*45537549124^(2/3) 5142289999996110 a001 1836311903/370248451*45537549124^(8/17) 5142289999996110 a001 1836311903/370248451*14662949395604^(8/21) 5142289999996110 a001 304056783818718323/591286729879 5142289999996110 a001 1836311903/370248451*192900153618^(4/9) 5142289999996110 a001 1836311903/370248451*73681302247^(6/13) 5142289999996110 a001 1836311903/370248451*10749957122^(1/2) 5142289999996110 a001 165580141/4106118243*10749957122^(17/24) 5142289999996110 a001 139583862445/370248451*2537720636^(1/3) 5142289999996110 a001 591286729879/370248451*2537720636^(4/15) 5142289999996110 a001 1548008755920/370248451*2537720636^(2/9) 5142289999996110 a001 2504730781961/370248451*2537720636^(1/5) 5142289999996110 a001 1836311903/370248451*4106118243^(12/23) 5142289999996110 a001 10610209857723/370248451*2537720636^(2/15) 5142289999996110 a001 165580141/4106118243*4106118243^(17/23) 5142289999996110 a001 165580141/10749957122*45537549124^(12/17) 5142289999996110 a001 4807526976/370248451*312119004989^(2/5) 5142289999996110 a001 165580141/10749957122*14662949395604^(4/7) 5142289999996110 a001 165580141/10749957122*505019158607^(9/14) 5142289999996110 a001 165580141/10749957122*192900153618^(2/3) 5142289999996110 a001 165580141/10749957122*73681302247^(9/13) 5142289999996110 a001 4807526976/370248451*10749957122^(11/24) 5142289999996110 a001 165580141/192900153618*17393796001^(6/7) 5142289999996110 a001 165580141/10749957122*10749957122^(3/4) 5142289999996110 a001 165580141/28143753123*817138163596^(2/3) 5142289999996110 a001 12586269025/370248451*23725150497407^(5/16) 5142289999996110 a001 12586269025/370248451*505019158607^(5/14) 5142289999996110 a001 12586269025/370248451*73681302247^(5/13) 5142289999996110 a001 225851433717/370248451*17393796001^(2/7) 5142289999996110 a001 12586269025/370248451*28143753123^(2/5) 5142289999996110 a001 6557470319842/370248451*17393796001^(1/7) 5142289999996110 a001 165580141/3461452808002*45537549124^(16/17) 5142289999996110 a001 165580141/192900153618*45537549124^(14/17) 5142289999996110 a001 32951280099/370248451*45537549124^(6/17) 5142289999996110 a001 165580141/73681302247*312119004989^(8/11) 5142289999996110 a001 165580141/73681302247*23725150497407^(5/8) 5142289999996110 a001 1818692534974304653/3536736619241 5142289999996110 a001 32951280099/370248451*192900153618^(1/3) 5142289999996110 a001 139583862445/370248451*45537549124^(5/17) 5142289999996110 a001 591286729879/370248451*45537549124^(4/17) 5142289999996110 a001 53316291173/370248451*45537549124^(1/3) 5142289999996110 a001 2504730781961/370248451*45537549124^(3/17) 5142289999996110 a001 10610209857723/370248451*45537549124^(2/17) 5142289999996110 a001 165580141/73681302247*73681302247^(10/13) 5142289999996110 a001 165580141/192900153618*817138163596^(14/19) 5142289999996110 a001 165580141/192900153618*14662949395604^(2/3) 5142289999996110 a001 165580141/192900153618*505019158607^(3/4) 5142289999996110 a001 165580141/505019158607*312119004989^(4/5) 5142289999996110 a001 165580141/9062201101803*312119004989^(10/11) 5142289999996110 a001 165580141/192900153618*192900153618^(7/9) 5142289999996110 a001 225851433717/370248451*14662949395604^(2/9) 5142289999996110 a001 1548008755920/370248451*312119004989^(2/11) 5142289999996110 a001 10610209857723/370248451*14662949395604^(2/21) 5142289999996110 a006 5^(1/2)*Fibonacci(70)/Lucas(41)/sqrt(5) 5142289999996110 a001 165580141/5600748293801*505019158607^(7/8) 5142289999996110 a001 139583862445/370248451*312119004989^(3/11) 5142289999996110 a001 139583862445/370248451*14662949395604^(5/21) 5142289999996110 a001 139583862445/370248451*192900153618^(5/18) 5142289999996110 a001 165580141/3461452808002*192900153618^(8/9) 5142289999996110 a001 165580141/817138163596*192900153618^(5/6) 5142289999996110 a001 165580141/14662949395604*192900153618^(17/18) 5142289999996110 a001 4052739537881/370248451*73681302247^(2/13) 5142289999996110 a001 86267571272/370248451*73681302247^(4/13) 5142289999996110 a001 591286729879/370248451*73681302247^(3/13) 5142289999996110 a001 365435296162/370248451*73681302247^(1/4) 5142289999996110 a001 165580141/45537549124*45537549124^(13/17) 5142289999996110 a001 165580141/505019158607*73681302247^(11/13) 5142289999996110 a001 165580141/3461452808002*73681302247^(12/13) 5142289999996110 a001 1548008755920/370248451*28143753123^(1/5) 5142289999996110 a001 139583862445/370248451*28143753123^(3/10) 5142289999996110 a001 1686020702549740717/3278735159921 5142289999996110 a001 165580141/45537549124*14662949395604^(13/21) 5142289999996110 a001 165580141/45537549124*192900153618^(13/18) 5142289999996110 a001 165580141/45537549124*73681302247^(3/4) 5142289999996110 a001 165580141/73681302247*28143753123^(4/5) 5142289999996110 a001 10610209857723/370248451*10749957122^(1/8) 5142289999996110 a001 165580141/817138163596*28143753123^(9/10) 5142289999996110 a001 4052739537881/370248451*10749957122^(1/6) 5142289999996110 a001 2504730781961/370248451*10749957122^(3/16) 5142289999996110 a001 1548008755920/370248451*10749957122^(5/24) 5142289999996110 a001 7778742049/370248451*17393796001^(3/7) 5142289999996110 a001 591286729879/370248451*10749957122^(1/4) 5142289999996110 a001 12586269025/370248451*10749957122^(5/12) 5142289999996110 a001 225851433717/370248451*10749957122^(7/24) 5142289999996110 a001 139583862445/370248451*10749957122^(5/16) 5142289999996110 a001 86267571272/370248451*10749957122^(1/3) 5142289999996110 a001 32951280099/370248451*10749957122^(3/8) 5142289999996110 a001 7778742049/370248451*45537549124^(7/17) 5142289999996110 a001 1288005205276048909/2504730781961 5142289999996110 a001 7778742049/370248451*14662949395604^(1/3) 5142289999996110 a001 7778742049/370248451*192900153618^(7/18) 5142289999996110 a001 165580141/28143753123*10749957122^(19/24) 5142289999996110 a001 165580141/73681302247*10749957122^(5/6) 5142289999996110 a001 7778742049/370248451*10749957122^(7/16) 5142289999996110 a001 165580141/45537549124*10749957122^(13/16) 5142289999996110 a001 165580141/192900153618*10749957122^(7/8) 5142289999996110 a001 10610209857723/370248451*4106118243^(3/23) 5142289999996110 a001 165580141/505019158607*10749957122^(11/12) 5142289999996110 a001 165580141/817138163596*10749957122^(15/16) 5142289999996110 a001 165580141/1322157322203*10749957122^(23/24) 5142289999996110 a001 4052739537881/370248451*4106118243^(4/23) 5142289999996110 a001 1548008755920/370248451*4106118243^(5/23) 5142289999996110 a001 591286729879/370248451*4106118243^(6/23) 5142289999996110 a001 225851433717/370248451*4106118243^(7/23) 5142289999996110 a001 4807526976/370248451*4106118243^(11/23) 5142289999996110 a001 165580141/6643838879*17393796001^(5/7) 5142289999996110 a001 86267571272/370248451*4106118243^(8/23) 5142289999996110 a001 956722026041/2537720636*228826127^(3/8) 5142289999996110 a001 165580141/6643838879*312119004989^(7/11) 5142289999996110 a001 491974210728665293/956722026041 5142289999996110 a001 165580141/6643838879*14662949395604^(5/9) 5142289999996110 a001 165580141/6643838879*505019158607^(5/8) 5142289999996110 a001 32951280099/370248451*4106118243^(9/23) 5142289999996110 a001 165580141/6643838879*28143753123^(7/10) 5142289999996110 a001 12586269025/370248451*4106118243^(10/23) 5142289999996110 a001 165580141/10749957122*4106118243^(18/23) 5142289999996110 a001 165580141/2537720636*2537720636^(11/15) 5142289999996110 a001 165580141/28143753123*4106118243^(19/23) 5142289999996110 a001 165580141/73681302247*4106118243^(20/23) 5142289999996110 a001 2971215073/370248451*4106118243^(1/2) 5142289999996110 a001 165580141/192900153618*4106118243^(21/23) 5142289999996110 a001 10610209857723/370248451*1568397607^(3/22) 5142289999996110 a001 165580141/505019158607*4106118243^(22/23) 5142289999996110 a001 1134903170/370248451*2537720636^(5/9) 5142289999996110 a001 4052739537881/370248451*1568397607^(2/11) 5142289999996110 a001 1548008755920/370248451*1568397607^(5/22) 5142289999996110 a001 956722026041/370248451*1568397607^(1/4) 5142289999996110 a001 591286729879/370248451*1568397607^(3/11) 5142289999996110 a001 225851433717/370248451*1568397607^(7/22) 5142289999996110 a001 86267571272/370248451*1568397607^(4/11) 5142289999996110 a001 165580141/2537720636*45537549124^(11/17) 5142289999996110 a001 165580141/2537720636*312119004989^(3/5) 5142289999996110 a001 1134903170/370248451*312119004989^(5/11) 5142289999996110 a001 165580141/2537720636*14662949395604^(11/21) 5142289999996110 a001 1134903170/370248451*3461452808002^(5/12) 5142289999996110 a001 165580141/2537720636*192900153618^(11/18) 5142289999996110 a001 1134903170/370248451*28143753123^(1/2) 5142289999996110 a001 165580141/2537720636*10749957122^(11/16) 5142289999996110 a001 1836311903/370248451*1568397607^(6/11) 5142289999996110 a001 32951280099/370248451*1568397607^(9/22) 5142289999996110 a001 12586269025/370248451*1568397607^(5/11) 5142289999996110 a001 4807526976/370248451*1568397607^(1/2) 5142289999996110 a001 165580141/4106118243*1568397607^(17/22) 5142289999996110 a001 956722026041/4106118243*228826127^(2/5) 5142289999996110 a001 165580141/10749957122*1568397607^(9/11) 5142289999996110 a001 2504730781961/10749957122*228826127^(2/5) 5142289999996110 a001 6557470319842/28143753123*228826127^(2/5) 5142289999996110 a001 10610209857723/45537549124*228826127^(2/5) 5142289999996110 a001 4052739537881/17393796001*228826127^(2/5) 5142289999996110 a001 165580141/28143753123*1568397607^(19/22) 5142289999996110 a001 1548008755920/6643838879*228826127^(2/5) 5142289999996110 a001 165580141/73681302247*1568397607^(10/11) 5142289999996110 a001 165580141/192900153618*1568397607^(21/22) 5142289999996110 a001 10610209857723/370248451*599074578^(1/7) 5142289999996110 a001 7778742049/599074578*228826127^(11/20) 5142289999996110 a001 591286729879/969323029*228826127^(7/20) 5142289999996110 a001 165580141/2537720636*1568397607^(3/4) 5142289999996110 a001 6557470319842/370248451*599074578^(1/6) 5142289999996110 a001 591286729879/2537720636*228826127^(2/5) 5142289999996110 a001 4052739537881/370248451*599074578^(4/21) 5142289999996110 a001 2504730781961/370248451*599074578^(3/14) 5142289999996110 a001 1548008755920/370248451*599074578^(5/21) 5142289999996110 a001 591286729879/370248451*599074578^(2/7) 5142289999996110 a001 139583862445/1568397607*228826127^(9/20) 5142289999996110 a001 225851433717/370248451*599074578^(1/3) 5142289999996110 a001 365435296162/969323029*228826127^(3/8) 5142289999996110 a001 433494437/370248451*2537720636^(3/5) 5142289999996110 a001 139583862445/370248451*599074578^(5/14) 5142289999996110 a001 86267571272/370248451*599074578^(8/21) 5142289999996110 a001 433494437/370248451*45537549124^(9/17) 5142289999996110 a001 71778070001175617/139583862445 5142289999996110 a001 433494437/370248451*817138163596^(9/19) 5142289999996110 a001 433494437/370248451*14662949395604^(3/7) 5142289999996110 a001 165580141/969323029*9062201101803^(1/2) 5142289999996110 a001 433494437/370248451*192900153618^(1/2) 5142289999996110 a001 433494437/370248451*10749957122^(9/16) 5142289999996110 a001 2504730781961/228826127*87403803^(4/19) 5142289999996110 a001 32951280099/370248451*599074578^(3/7) 5142289999996110 a001 365435296162/4106118243*228826127^(9/20) 5142289999996110 a001 956722026041/10749957122*228826127^(9/20) 5142289999996110 a001 2504730781961/28143753123*228826127^(9/20) 5142289999996110 a001 6557470319842/73681302247*228826127^(9/20) 5142289999996110 a001 10610209857723/119218851371*228826127^(9/20) 5142289999996110 a001 4052739537881/45537549124*228826127^(9/20) 5142289999996110 a001 1548008755920/17393796001*228826127^(9/20) 5142289999996110 a001 701408733/370248451*599074578^(13/21) 5142289999996110 a001 591286729879/6643838879*228826127^(9/20) 5142289999996110 a001 12586269025/370248451*599074578^(10/21) 5142289999996110 a001 7778742049/370248451*599074578^(1/2) 5142289999996110 a001 2971215073/599074578*228826127^(3/5) 5142289999996110 a001 225851433717/969323029*228826127^(2/5) 5142289999996110 a001 4807526976/370248451*599074578^(11/21) 5142289999996110 a001 225851433717/2537720636*228826127^(9/20) 5142289999996110 a001 63245986/969323029*141422324^(11/13) 5142289999996110 a001 1836311903/370248451*599074578^(4/7) 5142289999996110 a001 165580141/1568397607*599074578^(16/21) 5142289999996110 a001 1836311903/599074578*228826127^(5/8) 5142289999996110 a001 53316291173/1568397607*228826127^(1/2) 5142289999996110 a001 139583862445/4106118243*228826127^(1/2) 5142289999996110 a001 165580141/4106118243*599074578^(17/21) 5142289999996110 a001 182717648081/5374978561*228826127^(1/2) 5142289999996110 a001 956722026041/28143753123*228826127^(1/2) 5142289999996110 a001 2504730781961/73681302247*228826127^(1/2) 5142289999996110 a001 3278735159921/96450076809*228826127^(1/2) 5142289999996110 a001 10610209857723/312119004989*228826127^(1/2) 5142289999996110 a001 4052739537881/119218851371*228826127^(1/2) 5142289999996110 a001 387002188980/11384387281*228826127^(1/2) 5142289999996110 a001 591286729879/17393796001*228826127^(1/2) 5142289999996110 a001 225851433717/6643838879*228826127^(1/2) 5142289999996110 a001 165580141/2537720636*599074578^(11/14) 5142289999996110 a001 165580141/6643838879*599074578^(5/6) 5142289999996110 a001 86267571272/969323029*228826127^(9/20) 5142289999996110 a001 165580141/10749957122*599074578^(6/7) 5142289999996110 a001 1135099622/33391061*228826127^(1/2) 5142289999996110 a001 567451585/299537289*228826127^(13/20) 5142289999996110 a001 165580141/28143753123*599074578^(19/21) 5142289999996110 a001 165580141/45537549124*599074578^(13/14) 5142289999996110 a001 165580141/73681302247*599074578^(20/21) 5142289999996110 a001 20365011074/1568397607*228826127^(11/20) 5142289999996110 a001 433494437/370248451*599074578^(9/14) 5142289999996110 a001 10610209857723/370248451*228826127^(3/20) 5142289999996110 a001 53316291173/4106118243*228826127^(11/20) 5142289999996110 a001 139583862445/10749957122*228826127^(11/20) 5142289999996110 a001 365435296162/28143753123*228826127^(11/20) 5142289999996110 a001 956722026041/73681302247*228826127^(11/20) 5142289999996110 a001 2504730781961/192900153618*228826127^(11/20) 5142289999996110 a001 10610209857723/817138163596*228826127^(11/20) 5142289999996110 a001 4052739537881/312119004989*228826127^(11/20) 5142289999996110 a001 1548008755920/119218851371*228826127^(11/20) 5142289999996110 a001 591286729879/45537549124*228826127^(11/20) 5142289999996110 a001 7787980473/599786069*228826127^(11/20) 5142289999996110 a001 86267571272/6643838879*228826127^(11/20) 5142289999996110 a001 32951280099/969323029*228826127^(1/2) 5142289999996110 a001 32951280099/2537720636*228826127^(11/20) 5142289999996110 a001 7778742049/1568397607*228826127^(3/5) 5142289999996110 a001 4052739537881/370248451*228826127^(1/5) 5142289999996110 a001 20365011074/4106118243*228826127^(3/5) 5142289999996110 a001 53316291173/10749957122*228826127^(3/5) 5142289999996110 a001 139583862445/28143753123*228826127^(3/5) 5142289999996110 a001 365435296162/73681302247*228826127^(3/5) 5142289999996110 a001 956722026041/192900153618*228826127^(3/5) 5142289999996110 a001 2504730781961/505019158607*228826127^(3/5) 5142289999996110 a001 10610209857723/2139295485799*228826127^(3/5) 5142289999996110 a001 4052739537881/817138163596*228826127^(3/5) 5142289999996110 a001 140728068720/28374454999*228826127^(3/5) 5142289999996110 a001 591286729879/119218851371*228826127^(3/5) 5142289999996110 a001 225851433717/45537549124*228826127^(3/5) 5142289999996110 a001 86267571272/17393796001*228826127^(3/5) 5142289999996110 a001 32951280099/6643838879*228826127^(3/5) 5142289999996110 a001 686789568/224056801*228826127^(5/8) 5142289999996110 a001 12586269025/969323029*228826127^(11/20) 5142289999996110 a001 1144206275/230701876*228826127^(3/5) 5142289999996110 a001 433494437/599074578*228826127^(7/10) 5142289999996110 a001 12586269025/4106118243*228826127^(5/8) 5142289999996110 a001 32951280099/10749957122*228826127^(5/8) 5142289999996110 a001 86267571272/28143753123*228826127^(5/8) 5142289999996110 a001 32264490531/10525900321*228826127^(5/8) 5142289999996110 a001 591286729879/192900153618*228826127^(5/8) 5142289999996110 a001 1548008755920/505019158607*228826127^(5/8) 5142289999996110 a001 1515744265389/494493258286*228826127^(5/8) 5142289999996110 a001 2504730781961/817138163596*228826127^(5/8) 5142289999996110 a001 956722026041/312119004989*228826127^(5/8) 5142289999996110 a001 365435296162/119218851371*228826127^(5/8) 5142289999996110 a001 139583862445/45537549124*228826127^(5/8) 5142289999996110 a001 53316291173/17393796001*228826127^(5/8) 5142289999996110 a001 20365011074/6643838879*228826127^(5/8) 5142289999996110 a001 2971215073/1568397607*228826127^(13/20) 5142289999996110 a001 1548008755920/370248451*228826127^(1/4) 5142289999996110 a001 7778742049/2537720636*228826127^(5/8) 5142289999996110 a001 7778742049/4106118243*228826127^(13/20) 5142289999996110 a001 10182505537/5374978561*228826127^(13/20) 5142289999996110 a001 53316291173/28143753123*228826127^(13/20) 5142289999996110 a001 139583862445/73681302247*228826127^(13/20) 5142289999996110 a001 182717648081/96450076809*228826127^(13/20) 5142289999996110 a001 956722026041/505019158607*228826127^(13/20) 5142289999996110 a001 10610209857723/5600748293801*228826127^(13/20) 5142289999996110 a001 591286729879/312119004989*228826127^(13/20) 5142289999996110 a001 225851433717/119218851371*228826127^(13/20) 5142289999996110 a001 21566892818/11384387281*228826127^(13/20) 5142289999996110 a001 32951280099/17393796001*228826127^(13/20) 5142289999996110 a001 12586269025/6643838879*228826127^(13/20) 5142289999996110 a001 4807526976/969323029*228826127^(3/5) 5142289999996110 a001 1201881744/634430159*228826127^(13/20) 5142289999996110 a001 267914296/969323029*228826127^(3/4) 5142289999996110 a001 66978574/634430159*228826127^(4/5) 5142289999996110 a001 2971215073/969323029*228826127^(5/8) 5142289999996110 a001 591286729879/370248451*228826127^(3/10) 5142289999996110 a001 1134903170/1568397607*228826127^(7/10) 5142289999996110 a001 2971215073/4106118243*228826127^(7/10) 5142289999996110 a001 7778742049/10749957122*228826127^(7/10) 5142289999996110 a001 20365011074/28143753123*228826127^(7/10) 5142289999996110 a001 53316291173/73681302247*228826127^(7/10) 5142289999996110 a001 139583862445/192900153618*228826127^(7/10) 5142289999996110 a001 365435296162/505019158607*228826127^(7/10) 5142289999996110 a001 10610209857723/14662949395604*228826127^(7/10) 5142289999996110 a001 591286729879/817138163596*228826127^(7/10) 5142289999996110 a001 225851433717/312119004989*228826127^(7/10) 5142289999996110 a001 86267571272/119218851371*228826127^(7/10) 5142289999996110 a001 32951280099/45537549124*228826127^(7/10) 5142289999996110 a001 12586269025/17393796001*228826127^(7/10) 5142289999996110 a001 4807526976/6643838879*228826127^(7/10) 5142289999996110 a001 1836311903/969323029*228826127^(13/20) 5142289999996110 a001 1836311903/2537720636*228826127^(7/10) 5142289999996110 a001 267914296/6643838879*228826127^(17/20) 5142289999996110 a001 66978574/35355581*141422324^(2/3) 5142289999996110 a001 133957148/5374978561*228826127^(7/8) 5142289999996110 a001 225851433717/370248451*228826127^(7/20) 5142289999996110 a001 701408733/969323029*228826127^(7/10) 5142289999996110 a001 701408733/2537720636*228826127^(3/4) 5142289999996110 a001 1836311903/6643838879*228826127^(3/4) 5142289999996110 a001 4807526976/17393796001*228826127^(3/4) 5142289999996110 a001 12586269025/45537549124*228826127^(3/4) 5142289999996110 a001 32951280099/119218851371*228826127^(3/4) 5142289999996110 a001 86267571272/312119004989*228826127^(3/4) 5142289999996110 a001 225851433717/817138163596*228826127^(3/4) 5142289999996110 a001 1548008755920/5600748293801*228826127^(3/4) 5142289999996110 a001 139583862445/505019158607*228826127^(3/4) 5142289999996110 a001 53316291173/192900153618*228826127^(3/4) 5142289999996110 a001 20365011074/73681302247*228826127^(3/4) 5142289999996110 a001 7778742049/28143753123*228826127^(3/4) 5142289999996110 a001 2971215073/10749957122*228826127^(3/4) 5142289999996110 a001 9238424/599786069*228826127^(9/10) 5142289999996110 a001 1134903170/4106118243*228826127^(3/4) 5142289999996110 a001 139583862445/370248451*228826127^(3/8) 5142289999996110 a001 27416783093579881/53316291173 5142289999996110 a001 165580141/370248451*1322157322203^(1/2) 5142289999996110 a001 701408733/6643838879*228826127^(4/5) 5142289999996110 a001 86267571272/370248451*228826127^(2/5) 5142289999996110 a001 433494437/1568397607*228826127^(3/4) 5142289999996110 a001 1836311903/17393796001*228826127^(4/5) 5142289999996110 a001 1201881744/11384387281*228826127^(4/5) 5142289999996110 a001 12586269025/119218851371*228826127^(4/5) 5142289999996110 a001 32951280099/312119004989*228826127^(4/5) 5142289999996110 a001 21566892818/204284540899*228826127^(4/5) 5142289999996110 a001 225851433717/2139295485799*228826127^(4/5) 5142289999996110 a001 182717648081/1730726404001*228826127^(4/5) 5142289999996110 a001 139583862445/1322157322203*228826127^(4/5) 5142289999996110 a001 53316291173/505019158607*228826127^(4/5) 5142289999996110 a001 10182505537/96450076809*228826127^(4/5) 5142289999996110 a001 7778742049/73681302247*228826127^(4/5) 5142289999996110 a001 2971215073/28143753123*228826127^(4/5) 5142289999996110 a001 956722026041/228826127*87403803^(5/19) 5142289999996110 a001 66978574/11384387281*228826127^(19/20) 5142289999996110 a001 567451585/5374978561*228826127^(4/5) 5142289999996110 a001 63245986/87403803*87403803^(14/19) 5142289999996110 a001 701408733/17393796001*228826127^(17/20) 5142289999996110 a001 32951280099/370248451*228826127^(9/20) 5142289999996110 a001 1836311903/45537549124*228826127^(17/20) 5142289999996110 a001 4807526976/119218851371*228826127^(17/20) 5142289999996110 a001 1144206275/28374454999*228826127^(17/20) 5142289999996110 a001 32951280099/817138163596*228826127^(17/20) 5142289999996110 a001 86267571272/2139295485799*228826127^(17/20) 5142289999996110 a001 225851433717/5600748293801*228826127^(17/20) 5142289999996110 a001 591286729879/14662949395604*228826127^(17/20) 5142289999996110 a001 365435296162/9062201101803*228826127^(17/20) 5142289999996110 a001 139583862445/3461452808002*228826127^(17/20) 5142289999996110 a001 53316291173/1322157322203*228826127^(17/20) 5142289999996110 a001 20365011074/505019158607*228826127^(17/20) 5142289999996110 a001 7778742049/192900153618*228826127^(17/20) 5142289999996110 a001 2971215073/73681302247*228826127^(17/20) 5142289999996110 a001 433494437/4106118243*228826127^(4/5) 5142289999996110 a001 233802911/9381251041*228826127^(7/8) 5142289999996110 a001 1134903170/28143753123*228826127^(17/20) 5142289999996110 a001 1836311903/73681302247*228826127^(7/8) 5142289999996110 a001 267084832/10716675201*228826127^(7/8) 5142289999996110 a001 12586269025/505019158607*228826127^(7/8) 5142289999996110 a001 10983760033/440719107401*228826127^(7/8) 5142289999996110 a001 43133785636/1730726404001*228826127^(7/8) 5142289999996110 a001 75283811239/3020733700601*228826127^(7/8) 5142289999996110 a001 182717648081/7331474697802*228826127^(7/8) 5142289999996110 a001 139583862445/5600748293801*228826127^(7/8) 5142289999996110 a001 53316291173/2139295485799*228826127^(7/8) 5142289999996110 a001 10182505537/408569081798*228826127^(7/8) 5142289999996110 a001 7778742049/312119004989*228826127^(7/8) 5142289999996110 a001 2971215073/119218851371*228826127^(7/8) 5142289999996110 a001 701408733/45537549124*228826127^(9/10) 5142289999996110 a001 12586269025/370248451*228826127^(1/2) 5142289999996110 a001 567451585/22768774562*228826127^(7/8) 5142289999996110 a001 1836311903/119218851371*228826127^(9/10) 5142289999996110 a001 4807526976/312119004989*228826127^(9/10) 5142289999996110 a001 12586269025/817138163596*228826127^(9/10) 5142289999996110 a001 32951280099/2139295485799*228826127^(9/10) 5142289999996110 a001 86267571272/5600748293801*228826127^(9/10) 5142289999996110 a001 7787980473/505618944676*228826127^(9/10) 5142289999996110 a001 365435296162/23725150497407*228826127^(9/10) 5142289999996110 a001 139583862445/9062201101803*228826127^(9/10) 5142289999996110 a001 53316291173/3461452808002*228826127^(9/10) 5142289999996110 a001 20365011074/1322157322203*228826127^(9/10) 5142289999996110 a001 7778742049/505019158607*228826127^(9/10) 5142289999996110 a001 2971215073/192900153618*228826127^(9/10) 5142289999996110 a001 433494437/10749957122*228826127^(17/20) 5142289999996110 a001 1134903170/73681302247*228826127^(9/10) 5142289999996110 a001 701408733/119218851371*228826127^(19/20) 5142289999996110 a001 433494437/17393796001*228826127^(7/8) 5142289999996110 a001 4807526976/370248451*228826127^(11/20) 5142289999996110 a001 267914296/370248451*228826127^(7/10) 5142289999996110 a001 1836311903/312119004989*228826127^(19/20) 5142289999996110 a001 1201881744/204284540899*228826127^(19/20) 5142289999996110 a001 12586269025/2139295485799*228826127^(19/20) 5142289999996110 a001 32951280099/5600748293801*228826127^(19/20) 5142289999996110 a001 1135099622/192933544679*228826127^(19/20) 5142289999996110 a001 139583862445/23725150497407*228826127^(19/20) 5142289999996110 a001 53316291173/9062201101803*228826127^(19/20) 5142289999996110 a001 10182505537/1730726404001*228826127^(19/20) 5142289999996110 a001 7778742049/1322157322203*228826127^(19/20) 5142289999996110 a001 2971215073/505019158607*228826127^(19/20) 5142289999996110 a001 433494437/28143753123*228826127^(9/10) 5142289999996110 a001 567451585/96450076809*228826127^(19/20) 5142289999996110 a001 2504730781961/87403803*33385282^(1/6) 5142289999996110 a001 1836311903/370248451*228826127^(3/5) 5142289999996110 a001 701408733/141422324*141422324^(8/13) 5142289999996110 a001 165580141/599074578*228826127^(3/4) 5142289999996110 a001 433494437/73681302247*228826127^(19/20) 5142289999996110 a001 701408733/370248451*228826127^(13/20) 5142289999996110 a001 1134903170/370248451*228826127^(5/8) 5142289999996110 a001 165580141/1568397607*228826127^(4/5) 5142289999996110 a001 365435296162/228826127*87403803^(6/19) 5142289999996110 a001 39088169/141422324*87403803^(15/19) 5142289999996110 a001 165580141/141422324*141422324^(9/13) 5142289999996110 a001 2971215073/141422324*141422324^(7/13) 5142289999996110 a001 165580141/4106118243*228826127^(17/20) 5142289999996110 a001 165580141/6643838879*228826127^(7/8) 5142289999996110 a001 165580141/10749957122*228826127^(9/10) 5142289999996110 a001 3278735159921/299537289*87403803^(4/19) 5142289999996110 a001 165580141/28143753123*228826127^(19/20) 5142289999996110 a001 12586269025/141422324*141422324^(6/13) 5142289999996110 a001 10610209857723/370248451*87403803^(3/19) 5142289999996110 a001 10610209857723/969323029*87403803^(4/19) 5142289999996110 a001 139583862445/228826127*87403803^(7/19) 5142289999996110 a001 53316291173/141422324*141422324^(5/13) 5142289999996110 a001 63245986/228826127*2537720636^(2/3) 5142289999996110 a001 102334155/141422324*17393796001^(4/7) 5142289999996110 a001 63245986/228826127*45537549124^(10/17) 5142289999996110 a001 63245986/228826127*312119004989^(6/11) 5142289999996110 a001 63245986/228826127*14662949395604^(10/21) 5142289999996110 a001 102334155/141422324*14662949395604^(4/9) 5142289999996110 a001 102334155/141422324*505019158607^(1/2) 5142289999996110 a001 63245986/228826127*192900153618^(5/9) 5142289999996110 a001 102334155/141422324*73681302247^(7/13) 5142289999996110 a001 63245986/228826127*28143753123^(3/5) 5142289999996110 a001 117676809717306/228841255 5142289999996110 a001 102334155/141422324*10749957122^(7/12) 5142289999996110 a001 63245986/228826127*10749957122^(5/8) 5142289999996110 a001 102334155/141422324*4106118243^(14/23) 5142289999996110 a001 63245986/228826127*4106118243^(15/23) 5142289999996110 a001 102334155/141422324*1568397607^(7/11) 5142289999996110 a001 63245986/228826127*1568397607^(15/22) 5142289999996110 a001 2504730781961/599074578*87403803^(5/19) 5142289999996110 a001 102334155/141422324*599074578^(2/3) 5142289999996110 a001 63245986/228826127*599074578^(5/7) 5142289999996110 a001 139583862445/141422324*141422324^(1/3) 5142289999996110 a001 6557470319842/1568397607*87403803^(5/19) 5142289999996110 a001 10610209857723/2537720636*87403803^(5/19) 5142289999996110 a001 225851433717/141422324*141422324^(4/13) 5142289999996110 a001 4052739537881/370248451*87403803^(4/19) 5142289999996110 a001 4052739537881/969323029*87403803^(5/19) 5142289999996110 a001 53316291173/228826127*87403803^(8/19) 5142289999996110 a001 956722026041/141422324*141422324^(3/13) 5142289999996110 a001 956722026041/599074578*87403803^(6/19) 5142289999996110 a001 2504730781961/1568397607*87403803^(6/19) 5142289999996110 a001 6557470319842/4106118243*87403803^(6/19) 5142289999996110 a001 10610209857723/6643838879*87403803^(6/19) 5142289999996110 a001 4052739537881/2537720636*87403803^(6/19) 5142289999996110 a001 1548008755920/370248451*87403803^(5/19) 5142289999996110 a001 4052739537881/141422324*141422324^(2/13) 5142289999996110 a001 1548008755920/969323029*87403803^(6/19) 5142289999996110 a001 20365011074/228826127*87403803^(9/19) 5142289999996110 a001 102334155/141422324*228826127^(7/10) 5142289999996110 a001 63245986/228826127*228826127^(3/4) 5142289999996110 a001 182717648081/299537289*87403803^(7/19) 5142289999996110 a001 12586269025/228826127*87403803^(1/2) 5142289999996110 a001 31622993/299537289*23725150497407^(1/2) 5142289999996110 a001 31622993/299537289*505019158607^(4/7) 5142289999996110 a001 66978574/35355581*73681302247^(1/2) 5142289999996110 a001 31622993/299537289*73681302247^(8/13) 5142289999996110 a001 72723192334832/141421803 5142289999996110 a001 66978574/35355581*10749957122^(13/24) 5142289999996110 a001 31622993/299537289*10749957122^(2/3) 5142289999996110 a001 66978574/35355581*4106118243^(13/23) 5142289999996110 a001 31622993/299537289*4106118243^(16/23) 5142289999996110 a001 66978574/35355581*1568397607^(13/22) 5142289999996110 a001 31622993/299537289*1568397607^(8/11) 5142289999996110 a001 956722026041/1568397607*87403803^(7/19) 5142289999996110 a001 2504730781961/4106118243*87403803^(7/19) 5142289999996110 a001 3278735159921/5374978561*87403803^(7/19) 5142289999996110 a001 10610209857723/17393796001*87403803^(7/19) 5142289999996110 a001 4052739537881/6643838879*87403803^(7/19) 5142289999996110 a001 1134903780/1860499*87403803^(7/19) 5142289999996110 a001 591286729879/370248451*87403803^(6/19) 5142289999996110 a001 66978574/35355581*599074578^(13/21) 5142289999996110 a001 591286729879/969323029*87403803^(7/19) 5142289999996110 a001 31622993/299537289*599074578^(16/21) 5142289999996110 a001 701408733/141422324*2537720636^(8/15) 5142289999996110 a001 63245986/1568397607*45537549124^(2/3) 5142289999996110 a001 701408733/141422324*45537549124^(8/17) 5142289999996110 a001 701408733/141422324*14662949395604^(8/21) 5142289999996110 a001 701408733/141422324*192900153618^(4/9) 5142289999996110 a001 22180643453797869/43133785636 5142289999996110 a001 701408733/141422324*73681302247^(6/13) 5142289999996110 a001 701408733/141422324*10749957122^(1/2) 5142289999996110 a001 63245986/1568397607*10749957122^(17/24) 5142289999996110 a001 701408733/141422324*4106118243^(12/23) 5142289999996110 a001 63245986/1568397607*4106118243^(17/23) 5142289999996110 a001 7778742049/228826127*87403803^(10/19) 5142289999996110 a001 701408733/141422324*1568397607^(6/11) 5142289999996110 a001 63245986/4106118243*2537720636^(4/5) 5142289999996110 a001 63245986/73681302247*2537720636^(14/15) 5142289999996110 a001 63245986/28143753123*2537720636^(8/9) 5142289999996110 a001 63245986/17393796001*2537720636^(13/15) 5142289999996110 a001 63245986/1568397607*1568397607^(17/22) 5142289999996110 a001 1201881744/35355581*2537720636^(4/9) 5142289999996110 a001 12586269025/141422324*2537720636^(2/5) 5142289999996110 a001 63245986/4106118243*45537549124^(12/17) 5142289999996110 a001 1836311903/141422324*312119004989^(2/5) 5142289999996110 a001 63245986/4106118243*14662949395604^(4/7) 5142289999996110 a001 63245986/4106118243*505019158607^(9/14) 5142289999996110 a001 116139356908771358/225851433717 5142289999996110 a001 63245986/4106118243*192900153618^(2/3) 5142289999996110 a001 63245986/4106118243*73681302247^(9/13) 5142289999996110 a001 1836311903/141422324*10749957122^(11/24) 5142289999996110 a001 63245986/4106118243*10749957122^(3/4) 5142289999996110 a001 53316291173/141422324*2537720636^(1/3) 5142289999996110 a001 2971215073/141422324*2537720636^(7/15) 5142289999996110 a001 225851433717/141422324*2537720636^(4/15) 5142289999996110 a001 591286729879/141422324*2537720636^(2/9) 5142289999996110 a001 956722026041/141422324*2537720636^(1/5) 5142289999996110 a001 1836311903/141422324*4106118243^(11/23) 5142289999996110 a001 4052739537881/141422324*2537720636^(2/15) 5142289999996110 a001 3278735159921/70711162*2537720636^(1/9) 5142289999996110 a001 63245986/4106118243*4106118243^(18/23) 5142289999996110 a001 31622993/5374978561*817138163596^(2/3) 5142289999996110 a001 1201881744/35355581*23725150497407^(5/16) 5142289999996110 a001 304056783818718336/591286729879 5142289999996110 a001 1201881744/35355581*505019158607^(5/14) 5142289999996110 a001 1201881744/35355581*73681302247^(5/13) 5142289999996110 a001 1201881744/35355581*28143753123^(2/5) 5142289999996110 a001 1201881744/35355581*10749957122^(5/12) 5142289999996110 a001 63245986/73681302247*17393796001^(6/7) 5142289999996110 a001 31622993/5374978561*10749957122^(19/24) 5142289999996110 a001 12586269025/141422324*45537549124^(6/17) 5142289999996110 a001 63245986/28143753123*312119004989^(8/11) 5142289999996110 a001 12586269025/141422324*14662949395604^(2/7) 5142289999996110 a001 12586269025/141422324*192900153618^(1/3) 5142289999996110 a001 63245986/28143753123*73681302247^(10/13) 5142289999996110 a001 21566892818/35355581*17393796001^(2/7) 5142289999996110 a001 63245986/73681302247*45537549124^(14/17) 5142289999996110 a001 2504730781961/141422324*17393796001^(1/7) 5142289999996110 a001 63245986/1322157322203*45537549124^(16/17) 5142289999996110 a001 63245986/312119004989*45537549124^(15/17) 5142289999996110 a001 63245986/28143753123*28143753123^(4/5) 5142289999996110 a001 63245986/73681302247*817138163596^(14/19) 5142289999996110 a001 63246219/271444*23725150497407^(1/4) 5142289999996110 a001 2084036199823432614/4052739537881 5142289999996110 a001 63245986/73681302247*505019158607^(3/4) 5142289999996110 a001 63245986/73681302247*192900153618^(7/9) 5142289999996110 a001 63246219/271444*73681302247^(4/13) 5142289999996110 a001 225851433717/141422324*45537549124^(4/17) 5142289999996110 a001 956722026041/141422324*45537549124^(3/17) 5142289999996110 a001 53316291173/141422324*45537549124^(5/17) 5142289999996110 a001 4052739537881/141422324*45537549124^(2/17) 5142289999996110 a001 31622993/96450076809*312119004989^(4/5) 5142289999996110 a001 21566892818/35355581*14662949395604^(2/9) 5142289999996110 a001 31622993/1730726404001*312119004989^(10/11) 5142289999996110 a001 225851433717/141422324*817138163596^(4/19) 5142289999996110 a001 225851433717/141422324*14662949395604^(4/21) 5142289999996110 a001 387002188980/35355581*23725150497407^(1/8) 5142289999996110 a001 31622993/1730726404001*3461452808002^(5/6) 5142289999996110 a001 10610209857723/141422324*23725150497407^(1/16) 5142289999996110 a006 5^(1/2)*Fibonacci(68)/Lucas(39)/sqrt(5) 5142289999996110 a001 63245986/9062201101803*505019158607^(13/14) 5142289999996110 a001 63245986/2139295485799*505019158607^(7/8) 5142289999996110 a001 63245986/312119004989*14662949395604^(5/7) 5142289999996110 a001 10610209857723/141422324*73681302247^(1/13) 5142289999996110 a001 63245986/1322157322203*192900153618^(8/9) 5142289999996110 a001 63245986/5600748293801*192900153618^(17/18) 5142289999996110 a001 387002188980/35355581*73681302247^(2/13) 5142289999996110 a001 63245986/312119004989*192900153618^(5/6) 5142289999996110 a001 225851433717/141422324*73681302247^(3/13) 5142289999996110 a001 139583862445/141422324*73681302247^(1/4) 5142289999996110 a001 53316291173/141422324*312119004989^(3/11) 5142289999996110 a001 1686020702549740789/3278735159921 5142289999996110 a001 53316291173/141422324*192900153618^(5/18) 5142289999996110 a001 3278735159921/70711162*28143753123^(1/10) 5142289999996110 a001 31622993/96450076809*73681302247^(11/13) 5142289999996110 a001 63245986/1322157322203*73681302247^(12/13) 5142289999996110 a001 591286729879/141422324*28143753123^(1/5) 5142289999996110 a001 10182505537/70711162*45537549124^(1/3) 5142289999996110 a001 53316291173/141422324*28143753123^(3/10) 5142289999996110 a001 1288005205276048964/2504730781961 5142289999996110 a001 10610209857723/141422324*10749957122^(1/12) 5142289999996110 a001 4052739537881/141422324*10749957122^(1/8) 5142289999996110 a001 63245986/312119004989*28143753123^(9/10) 5142289999996110 a001 387002188980/35355581*10749957122^(1/6) 5142289999996110 a001 956722026041/141422324*10749957122^(3/16) 5142289999996110 a001 591286729879/141422324*10749957122^(5/24) 5142289999996110 a001 12586269025/141422324*10749957122^(3/8) 5142289999996110 a001 225851433717/141422324*10749957122^(1/4) 5142289999996110 a001 21566892818/35355581*10749957122^(7/24) 5142289999996110 a001 63246219/271444*10749957122^(1/3) 5142289999996110 a001 53316291173/141422324*10749957122^(5/16) 5142289999996110 a001 63245986/17393796001*45537549124^(13/17) 5142289999996110 a001 491974210728665314/956722026041 5142289999996110 a001 63245986/17393796001*14662949395604^(13/21) 5142289999996110 a001 63245986/17393796001*192900153618^(13/18) 5142289999996110 a001 63245986/17393796001*73681302247^(3/4) 5142289999996110 a001 10610209857723/141422324*4106118243^(2/23) 5142289999996110 a001 63245986/28143753123*10749957122^(5/6) 5142289999996110 a001 63245986/73681302247*10749957122^(7/8) 5142289999996110 a001 4052739537881/141422324*4106118243^(3/23) 5142289999996110 a001 31622993/96450076809*10749957122^(11/12) 5142289999996110 a001 63245986/312119004989*10749957122^(15/16) 5142289999996110 a001 63245986/505019158607*10749957122^(23/24) 5142289999996110 a001 387002188980/35355581*4106118243^(4/23) 5142289999996110 a001 63245986/17393796001*10749957122^(13/16) 5142289999996110 a001 591286729879/141422324*4106118243^(5/23) 5142289999996110 a001 225851433717/141422324*4106118243^(6/23) 5142289999996110 a001 1201881744/35355581*4106118243^(10/23) 5142289999996110 a001 21566892818/35355581*4106118243^(7/23) 5142289999996110 a001 63246219/271444*4106118243^(8/23) 5142289999996110 a001 2971215073/141422324*17393796001^(3/7) 5142289999996110 a001 12586269025/141422324*4106118243^(9/23) 5142289999996110 a001 2971215073/141422324*45537549124^(7/17) 5142289999996110 a001 93958713454973489/182717648081 5142289999996110 a001 2971215073/141422324*14662949395604^(1/3) 5142289999996110 a001 2971215073/141422324*192900153618^(7/18) 5142289999996110 a001 2971215073/141422324*10749957122^(7/16) 5142289999996110 a001 31622993/1268860318*2537720636^(7/9) 5142289999996110 a001 10610209857723/141422324*1568397607^(1/11) 5142289999996110 a001 31622993/5374978561*4106118243^(19/23) 5142289999996110 a001 63245986/28143753123*4106118243^(20/23) 5142289999996110 a001 63245986/73681302247*4106118243^(21/23) 5142289999996110 a001 4052739537881/141422324*1568397607^(3/22) 5142289999996110 a001 31622993/96450076809*4106118243^(22/23) 5142289999996110 a001 387002188980/35355581*1568397607^(2/11) 5142289999996110 a001 591286729879/141422324*1568397607^(5/22) 5142289999996110 a001 182717648081/70711162*1568397607^(1/4) 5142289999996110 a001 225851433717/141422324*1568397607^(3/11) 5142289999996110 a001 21566892818/35355581*1568397607^(7/22) 5142289999996110 a001 1836311903/141422324*1568397607^(1/2) 5142289999996110 a001 63246219/271444*1568397607^(4/11) 5142289999996110 a001 31622993/1268860318*17393796001^(5/7) 5142289999996110 a001 14355614000235124/27916772489 5142289999996110 a001 31622993/1268860318*312119004989^(7/11) 5142289999996110 a001 31622993/1268860318*14662949395604^(5/9) 5142289999996110 a001 31622993/1268860318*505019158607^(5/8) 5142289999996110 a001 31622993/1268860318*28143753123^(7/10) 5142289999996110 a001 12586269025/141422324*1568397607^(9/22) 5142289999996110 a001 1201881744/35355581*1568397607^(5/11) 5142289999996110 a001 567451585/70711162*4106118243^(1/2) 5142289999996110 a001 10610209857723/141422324*599074578^(2/21) 5142289999996110 a001 63245986/4106118243*1568397607^(9/11) 5142289999996110 a001 31622993/5374978561*1568397607^(19/22) 5142289999996110 a001 63245986/28143753123*1568397607^(10/11) 5142289999996110 a001 63245986/73681302247*1568397607^(21/22) 5142289999996110 a001 4052739537881/141422324*599074578^(1/7) 5142289999996110 a001 2504730781961/141422324*599074578^(1/6) 5142289999996110 a001 387002188980/35355581*599074578^(4/21) 5142289999996110 a001 956722026041/141422324*599074578^(3/14) 5142289999996110 a001 591286729879/141422324*599074578^(5/21) 5142289999996110 a001 225851433717/141422324*599074578^(2/7) 5142289999996110 a001 21566892818/35355581*599074578^(1/3) 5142289999996110 a001 63245986/969323029*2537720636^(11/15) 5142289999996110 a001 433494437/141422324*2537720636^(5/9) 5142289999996110 a001 53316291173/141422324*599074578^(5/14) 5142289999996110 a001 63246219/271444*599074578^(8/21) 5142289999996110 a001 63245986/969323029*45537549124^(11/17) 5142289999996110 a001 27416783093579882/53316291173 5142289999996110 a001 433494437/141422324*312119004989^(5/11) 5142289999996110 a001 63245986/969323029*14662949395604^(11/21) 5142289999996110 a001 433494437/141422324*3461452808002^(5/12) 5142289999996110 a001 63245986/969323029*192900153618^(11/18) 5142289999996110 a001 433494437/141422324*28143753123^(1/2) 5142289999996110 a001 63245986/969323029*10749957122^(11/16) 5142289999996110 a001 701408733/141422324*599074578^(4/7) 5142289999996110 a001 12586269025/141422324*599074578^(3/7) 5142289999996110 a001 1201881744/35355581*599074578^(10/21) 5142289999996110 a001 63245986/969323029*1568397607^(3/4) 5142289999996110 a001 1836311903/141422324*599074578^(11/21) 5142289999996110 a001 2971215073/141422324*599074578^(1/2) 5142289999996110 a001 63245986/1568397607*599074578^(17/21) 5142289999996110 a001 10610209857723/141422324*228826127^(1/10) 5142289999996110 a001 63245986/4106118243*599074578^(6/7) 5142289999996110 a001 139583862445/599074578*87403803^(8/19) 5142289999996110 a001 3278735159921/70711162*228826127^(1/8) 5142289999996110 a001 31622993/1268860318*599074578^(5/6) 5142289999996110 a001 31622993/5374978561*599074578^(19/21) 5142289999996110 a001 63245986/17393796001*599074578^(13/14) 5142289999996110 a001 63245986/28143753123*599074578^(20/21) 5142289999996110 a001 4052739537881/141422324*228826127^(3/20) 5142289999996110 a001 63245986/969323029*599074578^(11/14) 5142289999996110 a001 387002188980/35355581*228826127^(1/5) 5142289999996110 a001 365435296162/1568397607*87403803^(8/19) 5142289999996110 a001 591286729879/141422324*228826127^(1/4) 5142289999996110 a001 956722026041/4106118243*87403803^(8/19) 5142289999996110 a001 2504730781961/10749957122*87403803^(8/19) 5142289999996110 a001 6557470319842/28143753123*87403803^(8/19) 5142289999996110 a001 10610209857723/45537549124*87403803^(8/19) 5142289999996110 a001 4052739537881/17393796001*87403803^(8/19) 5142289999996110 a001 1548008755920/6643838879*87403803^(8/19) 5142289999996110 a001 591286729879/2537720636*87403803^(8/19) 5142289999996110 a001 225851433717/370248451*87403803^(7/19) 5142289999996110 a001 225851433717/141422324*228826127^(3/10) 5142289999996110 a001 225851433717/969323029*87403803^(8/19) 5142289999996110 a001 21566892818/35355581*228826127^(7/20) 5142289999996110 a001 2971215073/228826127*87403803^(11/19) 5142289999996110 a001 53316291173/141422324*228826127^(3/8) 5142289999996110 a001 165580141/141422324*2537720636^(3/5) 5142289999996110 a001 5236139639782013/10182505537 5142289999996110 a001 165580141/141422324*45537549124^(9/17) 5142289999996110 a001 165580141/141422324*817138163596^(9/19) 5142289999996110 a001 165580141/141422324*14662949395604^(3/7) 5142289999996110 a001 63245986/370248451*9062201101803^(1/2) 5142289999996110 a001 165580141/141422324*192900153618^(1/2) 5142289999996110 a001 165580141/141422324*10749957122^(9/16) 5142289999996110 a001 63246219/271444*228826127^(2/5) 5142289999996110 a001 12586269025/141422324*228826127^(9/20) 5142289999996110 a001 165580141/141422324*599074578^(9/14) 5142289999996110 a001 53316291173/599074578*87403803^(9/19) 5142289999996110 a001 1201881744/35355581*228826127^(1/2) 5142289999996110 a001 66978574/35355581*228826127^(13/20) 5142289999996110 a001 1836311903/141422324*228826127^(11/20) 5142289999996110 a001 701408733/141422324*228826127^(3/5) 5142289999996110 a001 139583862445/1568397607*87403803^(9/19) 5142289999996111 a001 365435296162/4106118243*87403803^(9/19) 5142289999996111 a001 956722026041/10749957122*87403803^(9/19) 5142289999996111 a001 2504730781961/28143753123*87403803^(9/19) 5142289999996111 a001 6557470319842/73681302247*87403803^(9/19) 5142289999996111 a001 10610209857723/119218851371*87403803^(9/19) 5142289999996111 a001 4052739537881/45537549124*87403803^(9/19) 5142289999996111 a001 1548008755920/17393796001*87403803^(9/19) 5142289999996111 a001 591286729879/6643838879*87403803^(9/19) 5142289999996111 a001 225851433717/2537720636*87403803^(9/19) 5142289999996111 a001 86267571272/370248451*87403803^(8/19) 5142289999996111 a001 31622993/299537289*228826127^(4/5) 5142289999996111 a001 10983760033/199691526*87403803^(1/2) 5142289999996111 a001 433494437/141422324*228826127^(5/8) 5142289999996111 a001 86267571272/969323029*87403803^(9/19) 5142289999996111 a001 1134903170/228826127*87403803^(12/19) 5142289999996111 a001 10610209857723/141422324*87403803^(2/19) 5142289999996111 a001 86267571272/1568397607*87403803^(1/2) 5142289999996111 a001 75283811239/1368706081*87403803^(1/2) 5142289999996111 a001 591286729879/10749957122*87403803^(1/2) 5142289999996111 a001 12585437040/228811001*87403803^(1/2) 5142289999996111 a001 4052739537881/73681302247*87403803^(1/2) 5142289999996111 a001 3536736619241/64300051206*87403803^(1/2) 5142289999996111 a001 6557470319842/119218851371*87403803^(1/2) 5142289999996111 a001 2504730781961/45537549124*87403803^(1/2) 5142289999996111 a001 956722026041/17393796001*87403803^(1/2) 5142289999996111 a001 365435296162/6643838879*87403803^(1/2) 5142289999996111 a001 139583862445/2537720636*87403803^(1/2) 5142289999996111 a001 63245986/1568397607*228826127^(17/20) 5142289999996111 a001 10182505537/299537289*87403803^(10/19) 5142289999996111 a001 53316291173/969323029*87403803^(1/2) 5142289999996111 a001 31622993/1268860318*228826127^(7/8) 5142289999996111 a001 63245986/4106118243*228826127^(9/10) 5142289999996111 a001 31622993/5374978561*228826127^(19/20) 5142289999996111 a001 956722026041/87403803*33385282^(2/9) 5142289999996111 a001 53316291173/1568397607*87403803^(10/19) 5142289999996111 a001 139583862445/4106118243*87403803^(10/19) 5142289999996111 a001 182717648081/5374978561*87403803^(10/19) 5142289999996111 a001 956722026041/28143753123*87403803^(10/19) 5142289999996111 a001 2504730781961/73681302247*87403803^(10/19) 5142289999996111 a001 3278735159921/96450076809*87403803^(10/19) 5142289999996111 a001 10610209857723/312119004989*87403803^(10/19) 5142289999996111 a001 4052739537881/119218851371*87403803^(10/19) 5142289999996111 a001 387002188980/11384387281*87403803^(10/19) 5142289999996111 a001 591286729879/17393796001*87403803^(10/19) 5142289999996111 a001 225851433717/6643838879*87403803^(10/19) 5142289999996111 a001 1135099622/33391061*87403803^(10/19) 5142289999996111 a001 32951280099/370248451*87403803^(9/19) 5142289999996111 a001 32951280099/969323029*87403803^(10/19) 5142289999996111 a001 4052739537881/141422324*87403803^(3/19) 5142289999996111 a001 433494437/228826127*87403803^(13/19) 5142289999996111 a001 20365011074/370248451*87403803^(1/2) 5142289999996111 a001 7778742049/599074578*87403803^(11/19) 5142289999996111 a001 20365011074/1568397607*87403803^(11/19) 5142289999996111 a001 53316291173/4106118243*87403803^(11/19) 5142289999996111 a001 139583862445/10749957122*87403803^(11/19) 5142289999996111 a001 365435296162/28143753123*87403803^(11/19) 5142289999996111 a001 956722026041/73681302247*87403803^(11/19) 5142289999996111 a001 2504730781961/192900153618*87403803^(11/19) 5142289999996111 a001 10610209857723/817138163596*87403803^(11/19) 5142289999996111 a001 4052739537881/312119004989*87403803^(11/19) 5142289999996111 a001 1548008755920/119218851371*87403803^(11/19) 5142289999996111 a001 591286729879/45537549124*87403803^(11/19) 5142289999996111 a001 7787980473/599786069*87403803^(11/19) 5142289999996111 a001 86267571272/6643838879*87403803^(11/19) 5142289999996111 a001 32951280099/2537720636*87403803^(11/19) 5142289999996111 a001 12586269025/370248451*87403803^(10/19) 5142289999996111 a001 12586269025/969323029*87403803^(11/19) 5142289999996111 a001 387002188980/35355581*87403803^(4/19) 5142289999996111 a001 2971215073/599074578*87403803^(12/19) 5142289999996111 a001 7778742049/1568397607*87403803^(12/19) 5142289999996111 a001 20365011074/4106118243*87403803^(12/19) 5142289999996111 a001 53316291173/10749957122*87403803^(12/19) 5142289999996111 a001 139583862445/28143753123*87403803^(12/19) 5142289999996111 a001 365435296162/73681302247*87403803^(12/19) 5142289999996111 a001 956722026041/192900153618*87403803^(12/19) 5142289999996111 a001 2504730781961/505019158607*87403803^(12/19) 5142289999996111 a001 10610209857723/2139295485799*87403803^(12/19) 5142289999996111 a001 4052739537881/817138163596*87403803^(12/19) 5142289999996111 a001 140728068720/28374454999*87403803^(12/19) 5142289999996111 a001 591286729879/119218851371*87403803^(12/19) 5142289999996111 a001 225851433717/45537549124*87403803^(12/19) 5142289999996111 a001 86267571272/17393796001*87403803^(12/19) 5142289999996111 a001 32951280099/6643838879*87403803^(12/19) 5142289999996111 a001 1144206275/230701876*87403803^(12/19) 5142289999996111 a001 4807526976/370248451*87403803^(11/19) 5142289999996111 a001 4807526976/969323029*87403803^(12/19) 5142289999996111 a001 591286729879/141422324*87403803^(5/19) 5142289999996111 a001 165580141/228826127*87403803^(14/19) 5142289999996111 a001 567451585/299537289*87403803^(13/19) 5142289999996111 a001 2971215073/1568397607*87403803^(13/19) 5142289999996111 a001 7778742049/4106118243*87403803^(13/19) 5142289999996111 a001 10182505537/5374978561*87403803^(13/19) 5142289999996111 a001 53316291173/28143753123*87403803^(13/19) 5142289999996111 a001 139583862445/73681302247*87403803^(13/19) 5142289999996111 a001 182717648081/96450076809*87403803^(13/19) 5142289999996111 a001 956722026041/505019158607*87403803^(13/19) 5142289999996111 a001 10610209857723/5600748293801*87403803^(13/19) 5142289999996111 a001 591286729879/312119004989*87403803^(13/19) 5142289999996111 a001 225851433717/119218851371*87403803^(13/19) 5142289999996111 a001 21566892818/11384387281*87403803^(13/19) 5142289999996111 a001 32951280099/17393796001*87403803^(13/19) 5142289999996111 a001 12586269025/6643838879*87403803^(13/19) 5142289999996111 a001 1201881744/634430159*87403803^(13/19) 5142289999996111 a001 1836311903/370248451*87403803^(12/19) 5142289999996111 a001 1836311903/969323029*87403803^(13/19) 5142289999996111 a001 225851433717/141422324*87403803^(6/19) 5142289999996111 a001 102334155/370248451*87403803^(15/19) 5142289999996111 a001 102334155/969323029*87403803^(16/19) 5142289999996111 a001 591286729879/87403803*33385282^(1/4) 5142289999996111 a001 433494437/599074578*87403803^(14/19) 5142289999996111 a001 1134903170/1568397607*87403803^(14/19) 5142289999996111 a001 2971215073/4106118243*87403803^(14/19) 5142289999996111 a001 7778742049/10749957122*87403803^(14/19) 5142289999996111 a001 701408733/370248451*87403803^(13/19) 5142289999996111 a001 20365011074/28143753123*87403803^(14/19) 5142289999996111 a001 53316291173/73681302247*87403803^(14/19) 5142289999996111 a001 139583862445/192900153618*87403803^(14/19) 5142289999996111 a001 365435296162/505019158607*87403803^(14/19) 5142289999996111 a001 10610209857723/14662949395604*87403803^(14/19) 5142289999996111 a001 225851433717/312119004989*87403803^(14/19) 5142289999996111 a001 86267571272/119218851371*87403803^(14/19) 5142289999996111 a001 32951280099/45537549124*87403803^(14/19) 5142289999996111 a001 12586269025/17393796001*87403803^(14/19) 5142289999996111 a001 4807526976/6643838879*87403803^(14/19) 5142289999996111 a001 1836311903/2537720636*87403803^(14/19) 5142289999996111 a001 701408733/969323029*87403803^(14/19) 5142289999996111 a001 9303105/230701876*87403803^(17/19) 5142289999996111 a001 21566892818/35355581*87403803^(7/19) 5142289999996111 a001 4000054745112196/7778742049 5142289999996111 a001 31622993/70711162*1322157322203^(1/2) 5142289999996111 a001 267914296/370248451*87403803^(14/19) 5142289999996111 a001 267914296/969323029*87403803^(15/19) 5142289999996111 a001 701408733/2537720636*87403803^(15/19) 5142289999996111 a001 1836311903/6643838879*87403803^(15/19) 5142289999996111 a001 4807526976/17393796001*87403803^(15/19) 5142289999996111 a001 12586269025/45537549124*87403803^(15/19) 5142289999996111 a001 32951280099/119218851371*87403803^(15/19) 5142289999996111 a001 86267571272/312119004989*87403803^(15/19) 5142289999996111 a001 225851433717/817138163596*87403803^(15/19) 5142289999996111 a001 1548008755920/5600748293801*87403803^(15/19) 5142289999996111 a001 139583862445/505019158607*87403803^(15/19) 5142289999996111 a001 53316291173/192900153618*87403803^(15/19) 5142289999996111 a001 20365011074/73681302247*87403803^(15/19) 5142289999996111 a001 7778742049/28143753123*87403803^(15/19) 5142289999996111 a001 2971215073/10749957122*87403803^(15/19) 5142289999996111 a001 1134903170/4106118243*87403803^(15/19) 5142289999996111 a001 433494437/1568397607*87403803^(15/19) 5142289999996111 a001 102334155/6643838879*87403803^(18/19) 5142289999996111 a001 63246219/271444*87403803^(8/19) 5142289999996111 a001 66978574/634430159*87403803^(16/19) 5142289999996111 a001 165580141/599074578*87403803^(15/19) 5142289999996111 a001 701408733/6643838879*87403803^(16/19) 5142289999996111 a001 1836311903/17393796001*87403803^(16/19) 5142289999996111 a001 1201881744/11384387281*87403803^(16/19) 5142289999996111 a001 12586269025/119218851371*87403803^(16/19) 5142289999996111 a001 32951280099/312119004989*87403803^(16/19) 5142289999996111 a001 21566892818/204284540899*87403803^(16/19) 5142289999996111 a001 225851433717/2139295485799*87403803^(16/19) 5142289999996111 a001 182717648081/1730726404001*87403803^(16/19) 5142289999996111 a001 139583862445/1322157322203*87403803^(16/19) 5142289999996111 a001 53316291173/505019158607*87403803^(16/19) 5142289999996111 a001 10182505537/96450076809*87403803^(16/19) 5142289999996111 a001 7778742049/73681302247*87403803^(16/19) 5142289999996111 a001 2971215073/28143753123*87403803^(16/19) 5142289999996111 a001 567451585/5374978561*87403803^(16/19) 5142289999996111 a001 433494437/4106118243*87403803^(16/19) 5142289999996111 a001 12586269025/141422324*87403803^(9/19) 5142289999996111 a001 267914296/6643838879*87403803^(17/19) 5142289999996111 a001 7778742049/141422324*87403803^(1/2) 5142289999996111 a001 701408733/17393796001*87403803^(17/19) 5142289999996111 a001 1836311903/45537549124*87403803^(17/19) 5142289999996111 a001 4807526976/119218851371*87403803^(17/19) 5142289999996111 a001 1144206275/28374454999*87403803^(17/19) 5142289999996111 a001 165580141/1568397607*87403803^(16/19) 5142289999996111 a001 32951280099/817138163596*87403803^(17/19) 5142289999996111 a001 86267571272/2139295485799*87403803^(17/19) 5142289999996111 a001 225851433717/5600748293801*87403803^(17/19) 5142289999996111 a001 591286729879/14662949395604*87403803^(17/19) 5142289999996111 a001 365435296162/9062201101803*87403803^(17/19) 5142289999996111 a001 139583862445/3461452808002*87403803^(17/19) 5142289999996111 a001 53316291173/1322157322203*87403803^(17/19) 5142289999996111 a001 20365011074/505019158607*87403803^(17/19) 5142289999996111 a001 7778742049/192900153618*87403803^(17/19) 5142289999996111 a001 2971215073/73681302247*87403803^(17/19) 5142289999996111 a001 1134903170/28143753123*87403803^(17/19) 5142289999996111 a001 433494437/10749957122*87403803^(17/19) 5142289999996111 a001 365435296162/87403803*33385282^(5/18) 5142289999996111 a001 1201881744/35355581*87403803^(10/19) 5142289999996111 a001 9238424/599786069*87403803^(18/19) 5142289999996111 a001 701408733/45537549124*87403803^(18/19) 5142289999996111 a001 1836311903/119218851371*87403803^(18/19) 5142289999996111 a001 4807526976/312119004989*87403803^(18/19) 5142289999996111 a001 12586269025/817138163596*87403803^(18/19) 5142289999996111 a001 32951280099/2139295485799*87403803^(18/19) 5142289999996111 a001 86267571272/5600748293801*87403803^(18/19) 5142289999996111 a001 7787980473/505618944676*87403803^(18/19) 5142289999996111 a001 365435296162/23725150497407*87403803^(18/19) 5142289999996111 a001 139583862445/9062201101803*87403803^(18/19) 5142289999996111 a001 53316291173/3461452808002*87403803^(18/19) 5142289999996111 a001 20365011074/1322157322203*87403803^(18/19) 5142289999996111 a001 7778742049/505019158607*87403803^(18/19) 5142289999996111 a001 2971215073/192900153618*87403803^(18/19) 5142289999996111 a001 1134903170/73681302247*87403803^(18/19) 5142289999996111 a001 165580141/4106118243*87403803^(17/19) 5142289999996111 a001 433494437/28143753123*87403803^(18/19) 5142289999996111 a001 1836311903/141422324*87403803^(11/19) 5142289999996111 a001 102334155/141422324*87403803^(14/19) 5142289999996111 a001 6557470319842/228826127*33385282^(1/6) 5142289999996111 a001 165580141/10749957122*87403803^(18/19) 5142289999996111 a001 701408733/141422324*87403803^(12/19) 5142289999996111 a001 63245986/228826127*87403803^(15/19) 5142289999996111 a001 66978574/35355581*87403803^(13/19) 5142289999996111 a001 24157817/33385282*33385282^(7/9) 5142289999996111 a001 10610209857723/141422324*33385282^(1/9) 5142289999996111 a001 10610209857723/370248451*33385282^(1/6) 5142289999996111 a001 31622993/299537289*87403803^(16/19) 5142289999996111 a001 63245986/1568397607*87403803^(17/19) 5142289999996111 a001 139583862445/87403803*33385282^(1/3) 5142289999996111 a001 24157817/87403803*141422324^(10/13) 5142289999996111 a001 63245986/4106118243*87403803^(18/19) 5142289999996111 a001 2504730781961/228826127*33385282^(2/9) 5142289999996111 a001 956722026041/33385282*12752043^(3/17) 5142289999996111 a001 14930352/54018521*33385282^(5/6) 5142289999996111 a001 3278735159921/299537289*33385282^(2/9) 5142289999996111 a001 4052739537881/141422324*33385282^(1/6) 5142289999996111 a001 10610209857723/969323029*33385282^(2/9) 5142289999996111 a001 1548008755920/228826127*33385282^(1/4) 5142289999996111 a001 4052739537881/370248451*33385282^(2/9) 5142289999996111 a001 24157817/87403803*2537720636^(2/3) 5142289999996111 a001 39088169/54018521*17393796001^(4/7) 5142289999996111 a001 24157817/87403803*45537549124^(10/17) 5142289999996111 a001 24157817/87403803*312119004989^(6/11) 5142289999996111 a001 24157817/87403803*14662949395604^(10/21) 5142289999996111 a001 39088169/54018521*14662949395604^(4/9) 5142289999996111 a001 39088169/54018521*505019158607^(1/2) 5142289999996111 a001 24157817/87403803*192900153618^(5/9) 5142289999996111 a001 39088169/54018521*73681302247^(7/13) 5142289999996111 a001 24157817/87403803*28143753123^(3/5) 5142289999996111 a001 39088169/54018521*10749957122^(7/12) 5142289999996111 a001 24157817/87403803*10749957122^(5/8) 5142289999996111 a001 39088169/54018521*4106118243^(14/23) 5142289999996111 a001 24157817/87403803*4106118243^(15/23) 5142289999996111 a001 944284833567073/1836311903 5142289999996111 a001 39088169/54018521*1568397607^(7/11) 5142289999996111 a001 24157817/87403803*1568397607^(15/22) 5142289999996111 a001 39088169/54018521*599074578^(2/3) 5142289999996111 a001 24157817/87403803*599074578^(5/7) 5142289999996111 a001 53316291173/87403803*33385282^(7/18) 5142289999996111 a001 4052739537881/599074578*33385282^(1/4) 5142289999996111 a001 1515744265389/224056801*33385282^(1/4) 5142289999996111 a001 39088169/54018521*228826127^(7/10) 5142289999996111 a001 6557470319842/969323029*33385282^(1/4) 5142289999996111 a001 24157817/87403803*228826127^(3/4) 5142289999996111 a001 956722026041/228826127*33385282^(5/18) 5142289999996111 a001 2504730781961/370248451*33385282^(1/4) 5142289999996111 a001 10983760033/29134601*33385282^(5/12) 5142289999996111 a001 2504730781961/599074578*33385282^(5/18) 5142289999996111 a001 6557470319842/1568397607*33385282^(5/18) 5142289999996111 a001 387002188980/35355581*33385282^(2/9) 5142289999996111 a001 10610209857723/2537720636*33385282^(5/18) 5142289999996111 a001 4052739537881/969323029*33385282^(5/18) 5142289999996112 a001 1548008755920/370248451*33385282^(5/18) 5142289999996112 a001 20365011074/87403803*33385282^(4/9) 5142289999996112 a001 956722026041/141422324*33385282^(1/4) 5142289999996112 a001 365435296162/228826127*33385282^(1/3) 5142289999996112 a001 102334155/54018521*141422324^(2/3) 5142289999996112 a001 24157817/1568397607*141422324^(12/13) 5142289999996112 a001 956722026041/599074578*33385282^(1/3) 5142289999996112 a001 2504730781961/1568397607*33385282^(1/3) 5142289999996112 a001 6557470319842/4106118243*33385282^(1/3) 5142289999996112 a001 10610209857723/6643838879*33385282^(1/3) 5142289999996112 a001 591286729879/141422324*33385282^(5/18) 5142289999996112 a001 4052739537881/2537720636*33385282^(1/3) 5142289999996112 a001 1548008755920/969323029*33385282^(1/3) 5142289999996112 a001 591286729879/370248451*33385282^(1/3) 5142289999996112 a001 24157817/370248451*141422324^(11/13) 5142289999996112 a001 39088169/54018521*87403803^(14/19) 5142289999996112 a001 267914296/54018521*141422324^(8/13) 5142289999996112 a001 24157817/87403803*87403803^(15/19) 5142289999996112 a001 1134903170/54018521*141422324^(7/13) 5142289999996112 a001 7778742049/87403803*33385282^(1/2) 5142289999996112 a001 4807526976/54018521*141422324^(6/13) 5142289999996112 a001 20365011074/54018521*141422324^(5/13) 5142289999996112 a001 24157817/228826127*23725150497407^(1/2) 5142289999996112 a001 24157817/228826127*505019158607^(4/7) 5142289999996112 a001 102334155/54018521*73681302247^(1/2) 5142289999996112 a001 24157817/228826127*73681302247^(8/13) 5142289999996112 a001 102334155/54018521*10749957122^(13/24) 5142289999996112 a001 24157817/228826127*10749957122^(2/3) 5142289999996112 a001 117722370920935/228929856 5142289999996112 a001 102334155/54018521*4106118243^(13/23) 5142289999996112 a001 24157817/228826127*4106118243^(16/23) 5142289999996112 a001 102334155/54018521*1568397607^(13/22) 5142289999996112 a001 24157817/228826127*1568397607^(8/11) 5142289999996112 a001 102334155/54018521*599074578^(13/21) 5142289999996112 a001 24157817/228826127*599074578^(16/21) 5142289999996112 a001 53316291173/54018521*141422324^(1/3) 5142289999996112 a001 86267571272/54018521*141422324^(4/13) 5142289999996112 a001 139583862445/228826127*33385282^(7/18) 5142289999996112 a001 365435296162/54018521*141422324^(3/13) 5142289999996112 a001 1548008755920/54018521*141422324^(2/13) 5142289999996112 a001 102334155/54018521*228826127^(13/20) 5142289999996112 a001 6557470319842/54018521*141422324^(1/13) 5142289999996112 a001 24157817/228826127*228826127^(4/5) 5142289999996112 a001 267914296/54018521*2537720636^(8/15) 5142289999996112 a001 24157817/599074578*45537549124^(2/3) 5142289999996112 a001 267914296/54018521*45537549124^(8/17) 5142289999996112 a001 267914296/54018521*14662949395604^(8/21) 5142289999996112 a001 267914296/54018521*192900153618^(4/9) 5142289999996112 a001 267914296/54018521*73681302247^(6/13) 5142289999996112 a001 6472224534451832/12586269025 5142289999996112 a001 267914296/54018521*10749957122^(1/2) 5142289999996112 a001 24157817/599074578*10749957122^(17/24) 5142289999996112 a001 267914296/54018521*4106118243^(12/23) 5142289999996112 a001 24157817/599074578*4106118243^(17/23) 5142289999996112 a001 267914296/54018521*1568397607^(6/11) 5142289999996112 a001 24157817/599074578*1568397607^(17/22) 5142289999996112 a001 267914296/54018521*599074578^(4/7) 5142289999996112 a001 24157817/1568397607*2537720636^(4/5) 5142289999996112 a001 24157817/599074578*599074578^(17/21) 5142289999996112 a001 24157817/1568397607*45537549124^(12/17) 5142289999996112 a001 701408733/54018521*312119004989^(2/5) 5142289999996112 a001 24157817/1568397607*14662949395604^(4/7) 5142289999996112 a001 24157817/1568397607*505019158607^(9/14) 5142289999996112 a001 24157817/1568397607*192900153618^(2/3) 5142289999996112 a001 24157817/1568397607*73681302247^(9/13) 5142289999996112 a001 5648167938005287/10983760033 5142289999996112 a001 701408733/54018521*10749957122^(11/24) 5142289999996112 a001 24157817/1568397607*10749957122^(3/4) 5142289999996112 a001 701408733/54018521*4106118243^(11/23) 5142289999996112 a001 24157817/1568397607*4106118243^(18/23) 5142289999996112 a001 701408733/54018521*1568397607^(1/2) 5142289999996112 a001 24157817/10749957122*2537720636^(8/9) 5142289999996112 a001 24157817/28143753123*2537720636^(14/15) 5142289999996112 a001 1836311903/54018521*2537720636^(4/9) 5142289999996112 a001 24157817/6643838879*2537720636^(13/15) 5142289999996112 a001 24157817/1568397607*1568397607^(9/11) 5142289999996112 a001 4807526976/54018521*2537720636^(2/5) 5142289999996112 a001 1836311903/54018521*23725150497407^(5/16) 5142289999996112 a001 1836311903/54018521*505019158607^(5/14) 5142289999996112 a001 44361286907595751/86267571272 5142289999996112 a001 1836311903/54018521*73681302247^(5/13) 5142289999996112 a001 1836311903/54018521*28143753123^(2/5) 5142289999996112 a001 1836311903/54018521*10749957122^(5/12) 5142289999996112 a001 24157817/4106118243*10749957122^(19/24) 5142289999996112 a001 20365011074/54018521*2537720636^(1/3) 5142289999996112 a001 86267571272/54018521*2537720636^(4/15) 5142289999996112 a001 225851433717/54018521*2537720636^(2/9) 5142289999996112 a001 1836311903/54018521*4106118243^(10/23) 5142289999996112 a001 365435296162/54018521*2537720636^(1/5) 5142289999996112 a001 1548008755920/54018521*2537720636^(2/15) 5142289999996112 a001 2504730781961/54018521*2537720636^(1/9) 5142289999996112 a001 6557470319842/54018521*2537720636^(1/15) 5142289999996112 a001 24157817/4106118243*4106118243^(19/23) 5142289999996112 a001 4807526976/54018521*45537549124^(6/17) 5142289999996112 a001 24157817/10749957122*312119004989^(8/11) 5142289999996112 a001 4807526976/54018521*14662949395604^(2/7) 5142289999996112 a001 24157817/10749957122*23725150497407^(5/8) 5142289999996112 a001 5530445567084352/10754830177 5142289999996112 a001 4807526976/54018521*192900153618^(1/3) 5142289999996112 a001 24157817/10749957122*73681302247^(10/13) 5142289999996112 a001 24157817/10749957122*28143753123^(4/5) 5142289999996112 a001 4807526976/54018521*10749957122^(3/8) 5142289999996112 a001 24157817/28143753123*17393796001^(6/7) 5142289999996112 a001 24157817/28143753123*45537549124^(14/17) 5142289999996112 a001 24157817/10749957122*10749957122^(5/6) 5142289999996112 a001 24157817/28143753123*817138163596^(14/19) 5142289999996112 a001 24157817/28143753123*14662949395604^(2/3) 5142289999996112 a001 12586269025/54018521*23725150497407^(1/4) 5142289999996112 a001 304056783818718425/591286729879 5142289999996112 a001 24157817/28143753123*192900153618^(7/9) 5142289999996112 a001 12586269025/54018521*73681302247^(4/13) 5142289999996112 a001 32951280099/54018521*17393796001^(2/7) 5142289999996112 a001 956722026041/54018521*17393796001^(1/7) 5142289999996112 a001 24157817/505019158607*45537549124^(16/17) 5142289999996112 a001 24157817/119218851371*45537549124^(15/17) 5142289999996112 a001 24157817/73681302247*312119004989^(4/5) 5142289999996112 a001 32951280099/54018521*14662949395604^(2/9) 5142289999996112 a001 24157817/73681302247*23725150497407^(11/16) 5142289999996112 a001 265343664849127961/516002918640 5142289999996112 a001 86267571272/54018521*45537549124^(4/17) 5142289999996112 a001 365435296162/54018521*45537549124^(3/17) 5142289999996112 a001 1548008755920/54018521*45537549124^(2/17) 5142289999996112 a001 6557470319842/54018521*45537549124^(1/17) 5142289999996112 a001 24157817/73681302247*73681302247^(11/13) 5142289999996112 a001 2084036199823433224/4052739537881 5142289999996112 a001 86267571272/54018521*192900153618^(2/9) 5142289999996112 a001 24157817/1322157322203*312119004989^(10/11) 5142289999996112 a001 225851433717/54018521*312119004989^(2/11) 5142289999996112 a001 24157817/2139295485799*817138163596^(17/19) 5142289999996112 a001 2504730781961/54018521*312119004989^(1/11) 5142289999996112 a001 24157817/1322157322203*3461452808002^(5/6) 5142289999996112 a001 1548008755920/54018521*14662949395604^(2/21) 5142289999996112 a001 24157817/23725150497407*14662949395604^(8/9) 5142289999996112 a006 5^(1/2)*Fibonacci(66)/Lucas(37)/sqrt(5) 5142289999996112 a001 24157817/817138163596*505019158607^(7/8) 5142289999996112 a001 365435296162/54018521*192900153618^(1/6) 5142289999996112 a001 139583862445/54018521*312119004989^(1/5) 5142289999996112 a001 4052739537881/54018521*73681302247^(1/13) 5142289999996112 a001 24157817/505019158607*192900153618^(8/9) 5142289999996112 a001 24157817/2139295485799*192900153618^(17/18) 5142289999996112 a001 591286729879/54018521*73681302247^(2/13) 5142289999996112 a001 24157817/119218851371*312119004989^(9/11) 5142289999996112 a001 1288005205276049341/2504730781961 5142289999996112 a001 24157817/119218851371*14662949395604^(5/7) 5142289999996112 a001 24157817/119218851371*192900153618^(5/6) 5142289999996112 a001 53316291173/54018521*73681302247^(1/4) 5142289999996112 a001 2504730781961/54018521*28143753123^(1/10) 5142289999996112 a001 24157817/505019158607*73681302247^(12/13) 5142289999996112 a001 225851433717/54018521*28143753123^(1/5) 5142289999996112 a001 20365011074/54018521*45537549124^(5/17) 5142289999996112 a001 10610209857723/54018521*10749957122^(1/24) 5142289999996112 a001 20365011074/54018521*312119004989^(3/11) 5142289999996112 a001 491974210728665458/956722026041 5142289999996112 a001 20365011074/54018521*14662949395604^(5/21) 5142289999996112 a001 20365011074/54018521*192900153618^(5/18) 5142289999996112 a001 6557470319842/54018521*10749957122^(1/16) 5142289999996112 a001 4052739537881/54018521*10749957122^(1/12) 5142289999996112 a001 20365011074/54018521*28143753123^(3/10) 5142289999996112 a001 1548008755920/54018521*10749957122^(1/8) 5142289999996112 a001 24157817/119218851371*28143753123^(9/10) 5142289999996112 a001 591286729879/54018521*10749957122^(1/6) 5142289999996112 a001 12586269025/54018521*10749957122^(1/3) 5142289999996112 a001 365435296162/54018521*10749957122^(3/16) 5142289999996112 a001 225851433717/54018521*10749957122^(5/24) 5142289999996112 a001 86267571272/54018521*10749957122^(1/4) 5142289999996112 a001 32951280099/54018521*10749957122^(7/24) 5142289999996112 a001 10610209857723/54018521*4106118243^(1/23) 5142289999996112 a001 7778742049/54018521*45537549124^(1/3) 5142289999996112 a001 20365011074/54018521*10749957122^(5/16) 5142289999996112 a001 187917426909947033/365435296162 5142289999996112 a001 4052739537881/54018521*4106118243^(2/23) 5142289999996112 a001 24157817/28143753123*10749957122^(7/8) 5142289999996112 a001 1548008755920/54018521*4106118243^(3/23) 5142289999996112 a001 24157817/73681302247*10749957122^(11/12) 5142289999996112 a001 24157817/119218851371*10749957122^(15/16) 5142289999996112 a001 24157817/192900153618*10749957122^(23/24) 5142289999996112 a001 591286729879/54018521*4106118243^(4/23) 5142289999996112 a001 225851433717/54018521*4106118243^(5/23) 5142289999996112 a001 4807526976/54018521*4106118243^(9/23) 5142289999996112 a001 86267571272/54018521*4106118243^(6/23) 5142289999996112 a001 32951280099/54018521*4106118243^(7/23) 5142289999996112 a001 10610209857723/54018521*1568397607^(1/22) 5142289999996112 a001 12586269025/54018521*4106118243^(8/23) 5142289999996112 a001 24157817/6643838879*45537549124^(13/17) 5142289999996112 a001 71778070001175641/139583862445 5142289999996112 a001 2971215073/54018521*817138163596^(1/3) 5142289999996112 a001 24157817/6643838879*14662949395604^(13/21) 5142289999996112 a001 24157817/6643838879*192900153618^(13/18) 5142289999996112 a001 24157817/6643838879*73681302247^(3/4) 5142289999996112 a001 24157817/6643838879*10749957122^(13/16) 5142289999996112 a001 4052739537881/54018521*1568397607^(1/11) 5142289999996112 a001 24157817/10749957122*4106118243^(20/23) 5142289999996112 a001 24157817/28143753123*4106118243^(21/23) 5142289999996112 a001 1548008755920/54018521*1568397607^(3/22) 5142289999996112 a001 24157817/73681302247*4106118243^(22/23) 5142289999996112 a001 591286729879/54018521*1568397607^(2/11) 5142289999996112 a001 1134903170/54018521*2537720636^(7/15) 5142289999996112 a001 225851433717/54018521*1568397607^(5/22) 5142289999996112 a001 139583862445/54018521*1568397607^(1/4) 5142289999996112 a001 86267571272/54018521*1568397607^(3/11) 5142289999996112 a001 1836311903/54018521*1568397607^(5/11) 5142289999996112 a001 32951280099/54018521*1568397607^(7/22) 5142289999996112 a001 10610209857723/54018521*599074578^(1/21) 5142289999996112 a001 12586269025/54018521*1568397607^(4/11) 5142289999996112 a001 1134903170/54018521*17393796001^(3/7) 5142289999996112 a001 1134903170/54018521*45537549124^(7/17) 5142289999996112 a001 27416783093579890/53316291173 5142289999996112 a001 1134903170/54018521*14662949395604^(1/3) 5142289999996112 a001 1134903170/54018521*192900153618^(7/18) 5142289999996112 a001 4807526976/54018521*1568397607^(9/22) 5142289999996112 a001 1134903170/54018521*10749957122^(7/16) 5142289999996112 a001 6557470319842/54018521*599074578^(1/14) 5142289999996112 a001 4052739537881/54018521*599074578^(2/21) 5142289999996112 a001 24157817/4106118243*1568397607^(19/22) 5142289999996112 a001 24157817/10749957122*1568397607^(10/11) 5142289999996112 a001 24157817/28143753123*1568397607^(21/22) 5142289999996112 a001 1548008755920/54018521*599074578^(1/7) 5142289999996112 a001 956722026041/54018521*599074578^(1/6) 5142289999996112 a001 591286729879/54018521*599074578^(4/21) 5142289999996112 a001 365435296162/54018521*599074578^(3/14) 5142289999996112 a001 225851433717/54018521*599074578^(5/21) 5142289999996112 a001 86267571272/54018521*599074578^(2/7) 5142289999996112 a001 32951280099/54018521*599074578^(1/3) 5142289999996112 a001 24157817/969323029*2537720636^(7/9) 5142289999996112 a001 10610209857723/54018521*228826127^(1/20) 5142289999996112 a001 20365011074/54018521*599074578^(5/14) 5142289999996112 a001 701408733/54018521*599074578^(11/21) 5142289999996112 a001 12586269025/54018521*599074578^(8/21) 5142289999996112 a001 24157817/969323029*17393796001^(5/7) 5142289999996112 a001 10472279279564029/20365011074 5142289999996112 a001 24157817/969323029*312119004989^(7/11) 5142289999996112 a001 24157817/969323029*14662949395604^(5/9) 5142289999996112 a001 24157817/969323029*505019158607^(5/8) 5142289999996112 a001 24157817/969323029*28143753123^(7/10) 5142289999996112 a001 433494437/54018521*4106118243^(1/2) 5142289999996112 a001 4807526976/54018521*599074578^(3/7) 5142289999996112 a001 1836311903/54018521*599074578^(10/21) 5142289999996112 a001 1134903170/54018521*599074578^(1/2) 5142289999996112 a001 4052739537881/54018521*228826127^(1/10) 5142289999996112 a001 24157817/1568397607*599074578^(6/7) 5142289999996112 a001 2504730781961/54018521*228826127^(1/8) 5142289999996112 a001 24157817/4106118243*599074578^(19/21) 5142289999996112 a001 24157817/6643838879*599074578^(13/14) 5142289999996112 a001 24157817/10749957122*599074578^(20/21) 5142289999996112 a001 1548008755920/54018521*228826127^(3/20) 5142289999996112 a001 24157817/969323029*599074578^(5/6) 5142289999996112 a001 182717648081/299537289*33385282^(7/18) 5142289999996112 a001 591286729879/54018521*228826127^(1/5) 5142289999996112 a001 225851433717/54018521*228826127^(1/4) 5142289999996112 a001 86267571272/54018521*228826127^(3/10) 5142289999996112 a001 956722026041/1568397607*33385282^(7/18) 5142289999996112 a001 2504730781961/4106118243*33385282^(7/18) 5142289999996112 a001 3278735159921/5374978561*33385282^(7/18) 5142289999996112 a001 10610209857723/17393796001*33385282^(7/18) 5142289999996112 a001 4052739537881/6643838879*33385282^(7/18) 5142289999996112 a001 225851433717/141422324*33385282^(1/3) 5142289999996112 a001 1134903780/1860499*33385282^(7/18) 5142289999996112 a001 32951280099/54018521*228826127^(7/20) 5142289999996112 a001 10610209857723/54018521*87403803^(1/19) 5142289999996112 a001 20365011074/54018521*228826127^(3/8) 5142289999996112 a001 24157817/370248451*2537720636^(11/15) 5142289999996112 a001 165580141/54018521*2537720636^(5/9) 5142289999996112 a001 591286729879/969323029*33385282^(7/18) 5142289999996112 a001 4000054745112197/7778742049 5142289999996112 a001 24157817/370248451*45537549124^(11/17) 5142289999996112 a001 24157817/370248451*312119004989^(3/5) 5142289999996112 a001 165580141/54018521*312119004989^(5/11) 5142289999996112 a001 24157817/370248451*14662949395604^(11/21) 5142289999996112 a001 165580141/54018521*3461452808002^(5/12) 5142289999996112 a001 24157817/370248451*192900153618^(11/18) 5142289999996112 a001 165580141/54018521*28143753123^(1/2) 5142289999996112 a001 24157817/370248451*10749957122^(11/16) 5142289999996112 a001 24157817/370248451*1568397607^(3/4) 5142289999996112 a001 12586269025/54018521*228826127^(2/5) 5142289999996112 a001 4807526976/54018521*228826127^(9/20) 5142289999996112 a001 267914296/54018521*228826127^(3/5) 5142289999996112 a001 24157817/370248451*599074578^(11/14) 5142289999996112 a001 1836311903/54018521*228826127^(1/2) 5142289999996112 a001 701408733/54018521*228826127^(11/20) 5142289999996112 a001 86267571272/228826127*33385282^(5/12) 5142289999996112 a001 24157817/599074578*228826127^(17/20) 5142289999996112 a001 225851433717/370248451*33385282^(7/18) 5142289999996112 a001 4052739537881/54018521*87403803^(2/19) 5142289999996112 a001 63245986/54018521*141422324^(9/13) 5142289999996112 a001 24157817/1568397607*228826127^(9/10) 5142289999996112 a001 24157817/969323029*228826127^(7/8) 5142289999996112 a001 24157817/4106118243*228826127^(19/20) 5142289999996112 a001 165580141/54018521*228826127^(5/8) 5142289999996112 a001 1548008755920/54018521*87403803^(3/19) 5142289999996112 a001 2971215073/87403803*33385282^(5/9) 5142289999996112 a001 591286729879/54018521*87403803^(4/19) 5142289999996112 a001 267913919/710646*33385282^(5/12) 5142289999996112 a001 591286729879/1568397607*33385282^(5/12) 5142289999996112 a001 516002918640/1368706081*33385282^(5/12) 5142289999996112 a001 4052739537881/10749957122*33385282^(5/12) 5142289999996112 a001 3536736619241/9381251041*33385282^(5/12) 5142289999996112 a001 6557470319842/17393796001*33385282^(5/12) 5142289999996112 a001 2504730781961/6643838879*33385282^(5/12) 5142289999996112 a001 956722026041/2537720636*33385282^(5/12) 5142289999996112 a001 365435296162/969323029*33385282^(5/12) 5142289999996112 a001 225851433717/54018521*87403803^(5/19) 5142289999996112 a001 53316291173/228826127*33385282^(4/9) 5142289999996112 a001 139583862445/370248451*33385282^(5/12) 5142289999996112 a001 86267571272/54018521*87403803^(6/19) 5142289999996112 a001 32951280099/54018521*87403803^(7/19) 5142289999996112 a001 1836311903/87403803*33385282^(7/12) 5142289999996112 a001 10610209857723/54018521*33385282^(1/18) 5142289999996112 a001 63245986/54018521*2537720636^(3/5) 5142289999996112 a001 1527884955772562/2971215073 5142289999996112 a001 63245986/54018521*45537549124^(9/17) 5142289999996112 a001 63245986/54018521*817138163596^(9/19) 5142289999996112 a001 63245986/54018521*14662949395604^(3/7) 5142289999996112 a001 24157817/141422324*9062201101803^(1/2) 5142289999996112 a001 63245986/54018521*192900153618^(1/2) 5142289999996112 a001 63245986/54018521*10749957122^(9/16) 5142289999996112 a001 63245986/54018521*599074578^(9/14) 5142289999996112 a001 139583862445/599074578*33385282^(4/9) 5142289999996112 a001 12586269025/54018521*87403803^(8/19) 5142289999996112 a001 365435296162/1568397607*33385282^(4/9) 5142289999996112 a001 956722026041/4106118243*33385282^(4/9) 5142289999996112 a001 2504730781961/10749957122*33385282^(4/9) 5142289999996112 a001 6557470319842/28143753123*33385282^(4/9) 5142289999996112 a001 10610209857723/45537549124*33385282^(4/9) 5142289999996112 a001 4052739537881/17393796001*33385282^(4/9) 5142289999996112 a001 1548008755920/6643838879*33385282^(4/9) 5142289999996112 a001 21566892818/35355581*33385282^(7/18) 5142289999996112 a001 591286729879/2537720636*33385282^(4/9) 5142289999996112 a001 225851433717/969323029*33385282^(4/9) 5142289999996112 a001 4807526976/54018521*87403803^(9/19) 5142289999996112 a001 86267571272/370248451*33385282^(4/9) 5142289999996112 a001 2971215073/54018521*87403803^(1/2) 5142289999996112 a001 1836311903/54018521*87403803^(10/19) 5142289999996112 a001 102334155/54018521*87403803^(13/19) 5142289999996112 a001 6557470319842/54018521*33385282^(1/12) 5142289999996112 a001 1134903170/87403803*33385282^(11/18) 5142289999996112 a001 701408733/54018521*87403803^(11/19) 5142289999996112 a001 267914296/54018521*87403803^(12/19) 5142289999996112 a001 53316291173/141422324*33385282^(5/12) 5142289999996112 a001 20365011074/228826127*33385282^(1/2) 5142289999996112 a001 24157817/228826127*87403803^(16/19) 5142289999996112 a001 4052739537881/54018521*33385282^(1/9) 5142289999996112 a001 53316291173/599074578*33385282^(1/2) 5142289999996112 a001 139583862445/1568397607*33385282^(1/2) 5142289999996112 a001 365435296162/4106118243*33385282^(1/2) 5142289999996112 a001 956722026041/10749957122*33385282^(1/2) 5142289999996112 a001 2504730781961/28143753123*33385282^(1/2) 5142289999996112 a001 6557470319842/73681302247*33385282^(1/2) 5142289999996112 a001 10610209857723/119218851371*33385282^(1/2) 5142289999996112 a001 4052739537881/45537549124*33385282^(1/2) 5142289999996112 a001 1548008755920/17393796001*33385282^(1/2) 5142289999996112 a001 591286729879/6643838879*33385282^(1/2) 5142289999996112 a001 63246219/271444*33385282^(4/9) 5142289999996112 a001 225851433717/2537720636*33385282^(1/2) 5142289999996112 a001 86267571272/969323029*33385282^(1/2) 5142289999996113 a001 32951280099/370248451*33385282^(1/2) 5142289999996113 a001 24157817/599074578*87403803^(17/19) 5142289999996113 a001 24157817/1568397607*87403803^(18/19) 5142289999996113 a001 433494437/87403803*33385282^(2/3) 5142289999996113 a001 7778742049/228826127*33385282^(5/9) 5142289999996113 a001 1548008755920/54018521*33385282^(1/6) 5142289999996113 a001 10182505537/299537289*33385282^(5/9) 5142289999996113 a001 53316291173/1568397607*33385282^(5/9) 5142289999996113 a001 139583862445/4106118243*33385282^(5/9) 5142289999996113 a001 182717648081/5374978561*33385282^(5/9) 5142289999996113 a001 956722026041/28143753123*33385282^(5/9) 5142289999996113 a001 2504730781961/73681302247*33385282^(5/9) 5142289999996113 a001 3278735159921/96450076809*33385282^(5/9) 5142289999996113 a001 10610209857723/312119004989*33385282^(5/9) 5142289999996113 a001 4052739537881/119218851371*33385282^(5/9) 5142289999996113 a001 387002188980/11384387281*33385282^(5/9) 5142289999996113 a001 591286729879/17393796001*33385282^(5/9) 5142289999996113 a001 225851433717/6643838879*33385282^(5/9) 5142289999996113 a001 12586269025/141422324*33385282^(1/2) 5142289999996113 a001 1135099622/33391061*33385282^(5/9) 5142289999996113 a001 32951280099/969323029*33385282^(5/9) 5142289999996113 a001 102287808/4868641*33385282^(7/12) 5142289999996113 a001 12586269025/370248451*33385282^(5/9) 5142289999996113 a001 12586269025/599074578*33385282^(7/12) 5142289999996113 a001 34111385/29134601*33385282^(3/4) 5142289999996113 a001 32951280099/1568397607*33385282^(7/12) 5142289999996113 a001 86267571272/4106118243*33385282^(7/12) 5142289999996113 a001 225851433717/10749957122*33385282^(7/12) 5142289999996113 a001 591286729879/28143753123*33385282^(7/12) 5142289999996113 a001 1548008755920/73681302247*33385282^(7/12) 5142289999996113 a001 4052739537881/192900153618*33385282^(7/12) 5142289999996113 a001 225749145909/10745088481*33385282^(7/12) 5142289999996113 a001 6557470319842/312119004989*33385282^(7/12) 5142289999996113 a001 2504730781961/119218851371*33385282^(7/12) 5142289999996113 a001 956722026041/45537549124*33385282^(7/12) 5142289999996113 a001 365435296162/17393796001*33385282^(7/12) 5142289999996113 a001 139583862445/6643838879*33385282^(7/12) 5142289999996113 a001 53316291173/2537720636*33385282^(7/12) 5142289999996113 a001 165580141/87403803*33385282^(13/18) 5142289999996113 a001 20365011074/969323029*33385282^(7/12) 5142289999996113 a001 2971215073/228826127*33385282^(11/18) 5142289999996113 a001 7778742049/370248451*33385282^(7/12) 5142289999996113 a001 591286729879/54018521*33385282^(2/9) 5142289999996113 a001 7778742049/599074578*33385282^(11/18) 5142289999996113 a001 20365011074/1568397607*33385282^(11/18) 5142289999996113 a001 53316291173/4106118243*33385282^(11/18) 5142289999996113 a001 139583862445/10749957122*33385282^(11/18) 5142289999996113 a001 365435296162/28143753123*33385282^(11/18) 5142289999996113 a001 956722026041/73681302247*33385282^(11/18) 5142289999996113 a001 2504730781961/192900153618*33385282^(11/18) 5142289999996113 a001 10610209857723/817138163596*33385282^(11/18) 5142289999996113 a001 4052739537881/312119004989*33385282^(11/18) 5142289999996113 a001 1548008755920/119218851371*33385282^(11/18) 5142289999996113 a001 591286729879/45537549124*33385282^(11/18) 5142289999996113 a001 7787980473/599786069*33385282^(11/18) 5142289999996113 a001 86267571272/6643838879*33385282^(11/18) 5142289999996113 a001 1201881744/35355581*33385282^(5/9) 5142289999996113 a001 32951280099/2537720636*33385282^(11/18) 5142289999996113 a001 12586269025/969323029*33385282^(11/18) 5142289999996113 a001 182717648081/16692641*12752043^(4/17) 5142289999996113 a001 4807526976/370248451*33385282^(11/18) 5142289999996113 a001 365435296162/54018521*33385282^(1/4) 5142289999996113 a001 2971215073/141422324*33385282^(7/12) 5142289999996113 a001 1134903170/228826127*33385282^(2/3) 5142289999996113 a001 225851433717/54018521*33385282^(5/18) 5142289999996113 a001 6557470319842/87403803*12752043^(2/17) 5142289999996113 a001 2971215073/599074578*33385282^(2/3) 5142289999996113 a001 7778742049/1568397607*33385282^(2/3) 5142289999996113 a001 20365011074/4106118243*33385282^(2/3) 5142289999996113 a001 53316291173/10749957122*33385282^(2/3) 5142289999996113 a001 139583862445/28143753123*33385282^(2/3) 5142289999996113 a001 365435296162/73681302247*33385282^(2/3) 5142289999996113 a001 956722026041/192900153618*33385282^(2/3) 5142289999996113 a001 2504730781961/505019158607*33385282^(2/3) 5142289999996113 a001 10610209857723/2139295485799*33385282^(2/3) 5142289999996113 a001 4052739537881/817138163596*33385282^(2/3) 5142289999996113 a001 140728068720/28374454999*33385282^(2/3) 5142289999996113 a001 591286729879/119218851371*33385282^(2/3) 5142289999996113 a001 225851433717/45537549124*33385282^(2/3) 5142289999996113 a001 86267571272/17393796001*33385282^(2/3) 5142289999996113 a001 32951280099/6643838879*33385282^(2/3) 5142289999996113 a001 1836311903/141422324*33385282^(11/18) 5142289999996113 a001 1144206275/230701876*33385282^(2/3) 5142289999996113 a001 4807526976/969323029*33385282^(2/3) 5142289999996113 a001 1836311903/370248451*33385282^(2/3) 5142289999996113 a001 63245986/87403803*33385282^(7/9) 5142289999996113 a001 433494437/228826127*33385282^(13/18) 5142289999996113 a001 86267571272/54018521*33385282^(1/3) 5142289999996114 a001 567451585/299537289*33385282^(13/18) 5142289999996114 a001 2971215073/1568397607*33385282^(13/18) 5142289999996114 a001 701408733/141422324*33385282^(2/3) 5142289999996114 a001 7778742049/4106118243*33385282^(13/18) 5142289999996114 a001 10182505537/5374978561*33385282^(13/18) 5142289999996114 a001 53316291173/28143753123*33385282^(13/18) 5142289999996114 a001 139583862445/73681302247*33385282^(13/18) 5142289999996114 a001 182717648081/96450076809*33385282^(13/18) 5142289999996114 a001 956722026041/505019158607*33385282^(13/18) 5142289999996114 a001 10610209857723/5600748293801*33385282^(13/18) 5142289999996114 a001 591286729879/312119004989*33385282^(13/18) 5142289999996114 a001 225851433717/119218851371*33385282^(13/18) 5142289999996114 a001 21566892818/11384387281*33385282^(13/18) 5142289999996114 a001 32951280099/17393796001*33385282^(13/18) 5142289999996114 a001 12586269025/6643838879*33385282^(13/18) 5142289999996114 a001 1201881744/634430159*33385282^(13/18) 5142289999996114 a001 1836311903/969323029*33385282^(13/18) 5142289999996114 a001 267914296/228826127*33385282^(3/4) 5142289999996114 a001 701408733/370248451*33385282^(13/18) 5142289999996114 a001 39088169/141422324*33385282^(5/6) 5142289999996114 a001 233802911/199691526*33385282^(3/4) 5142289999996114 a001 1836311903/1568397607*33385282^(3/4) 5142289999996114 a001 1602508992/1368706081*33385282^(3/4) 5142289999996114 a001 12586269025/10749957122*33385282^(3/4) 5142289999996114 a001 10983760033/9381251041*33385282^(3/4) 5142289999996114 a001 86267571272/73681302247*33385282^(3/4) 5142289999996114 a001 75283811239/64300051206*33385282^(3/4) 5142289999996114 a001 2504730781961/2139295485799*33385282^(3/4) 5142289999996114 a001 365435296162/312119004989*33385282^(3/4) 5142289999996114 a001 139583862445/119218851371*33385282^(3/4) 5142289999996114 a001 53316291173/45537549124*33385282^(3/4) 5142289999996114 a001 20365011074/17393796001*33385282^(3/4) 5142289999996114 a001 7778742049/6643838879*33385282^(3/4) 5142289999996114 a001 2971215073/2537720636*33385282^(3/4) 5142289999996114 a001 39088169/370248451*33385282^(8/9) 5142289999996114 a001 1134903170/969323029*33385282^(3/4) 5142289999996114 a001 433494437/370248451*33385282^(3/4) 5142289999996114 a001 583600122205489/1134903170 5142289999996114 a001 24157817/54018521*1322157322203^(1/2) 5142289999996114 a001 165580141/228826127*33385282^(7/9) 5142289999996114 a001 39088169/599074578*33385282^(11/12) 5142289999996114 a001 32951280099/54018521*33385282^(7/18) 5142289999996114 a001 66978574/35355581*33385282^(13/18) 5142289999996114 a001 433494437/599074578*33385282^(7/9) 5142289999996114 a001 1134903170/1568397607*33385282^(7/9) 5142289999996114 a001 2971215073/4106118243*33385282^(7/9) 5142289999996114 a001 7778742049/10749957122*33385282^(7/9) 5142289999996114 a001 20365011074/28143753123*33385282^(7/9) 5142289999996114 a001 53316291173/73681302247*33385282^(7/9) 5142289999996114 a001 139583862445/192900153618*33385282^(7/9) 5142289999996114 a001 365435296162/505019158607*33385282^(7/9) 5142289999996114 a001 10610209857723/14662949395604*33385282^(7/9) 5142289999996114 a001 591286729879/817138163596*33385282^(7/9) 5142289999996114 a001 225851433717/312119004989*33385282^(7/9) 5142289999996114 a001 86267571272/119218851371*33385282^(7/9) 5142289999996114 a001 32951280099/45537549124*33385282^(7/9) 5142289999996114 a001 12586269025/17393796001*33385282^(7/9) 5142289999996114 a001 4807526976/6643838879*33385282^(7/9) 5142289999996114 a001 1836311903/2537720636*33385282^(7/9) 5142289999996114 a001 701408733/969323029*33385282^(7/9) 5142289999996114 a001 267914296/370248451*33385282^(7/9) 5142289999996114 a001 10610209857723/54018521*12752043^(1/17) 5142289999996114 a001 20365011074/54018521*33385282^(5/12) 5142289999996114 a001 39088169/969323029*33385282^(17/18) 5142289999996114 a001 63245986/20633239*20633239^(5/7) 5142289999996114 a001 102334155/141422324*33385282^(7/9) 5142289999996114 a001 165580141/141422324*33385282^(3/4) 5142289999996114 a001 102334155/370248451*33385282^(5/6) 5142289999996114 a001 12586269025/54018521*33385282^(4/9) 5142289999996114 a001 267914296/969323029*33385282^(5/6) 5142289999996114 a001 701408733/2537720636*33385282^(5/6) 5142289999996114 a001 1836311903/6643838879*33385282^(5/6) 5142289999996114 a001 4807526976/17393796001*33385282^(5/6) 5142289999996114 a001 12586269025/45537549124*33385282^(5/6) 5142289999996114 a001 32951280099/119218851371*33385282^(5/6) 5142289999996114 a001 86267571272/312119004989*33385282^(5/6) 5142289999996114 a001 225851433717/817138163596*33385282^(5/6) 5142289999996114 a001 1548008755920/5600748293801*33385282^(5/6) 5142289999996114 a001 139583862445/505019158607*33385282^(5/6) 5142289999996114 a001 53316291173/192900153618*33385282^(5/6) 5142289999996114 a001 20365011074/73681302247*33385282^(5/6) 5142289999996114 a001 7778742049/28143753123*33385282^(5/6) 5142289999996114 a001 2971215073/10749957122*33385282^(5/6) 5142289999996114 a001 1134903170/4106118243*33385282^(5/6) 5142289999996114 a001 433494437/1568397607*33385282^(5/6) 5142289999996114 a001 165580141/599074578*33385282^(5/6) 5142289999996114 a001 10610209857723/141422324*12752043^(2/17) 5142289999996114 a001 63245986/228826127*33385282^(5/6) 5142289999996114 a001 102334155/969323029*33385282^(8/9) 5142289999996114 a001 4807526976/54018521*33385282^(1/2) 5142289999996114 a001 66978574/634430159*33385282^(8/9) 5142289999996114 a001 701408733/6643838879*33385282^(8/9) 5142289999996114 a001 1836311903/17393796001*33385282^(8/9) 5142289999996114 a001 1201881744/11384387281*33385282^(8/9) 5142289999996114 a001 12586269025/119218851371*33385282^(8/9) 5142289999996114 a001 32951280099/312119004989*33385282^(8/9) 5142289999996114 a001 21566892818/204284540899*33385282^(8/9) 5142289999996114 a001 225851433717/2139295485799*33385282^(8/9) 5142289999996114 a001 182717648081/1730726404001*33385282^(8/9) 5142289999996114 a001 139583862445/1322157322203*33385282^(8/9) 5142289999996114 a001 53316291173/505019158607*33385282^(8/9) 5142289999996114 a001 10182505537/96450076809*33385282^(8/9) 5142289999996114 a001 7778742049/73681302247*33385282^(8/9) 5142289999996114 a001 2971215073/28143753123*33385282^(8/9) 5142289999996114 a001 567451585/5374978561*33385282^(8/9) 5142289999996114 a001 433494437/4106118243*33385282^(8/9) 5142289999996114 a001 14619165/224056801*33385282^(11/12) 5142289999996114 a001 165580141/1568397607*33385282^(8/9) 5142289999996114 a001 267914296/4106118243*33385282^(11/12) 5142289999996114 a001 701408733/10749957122*33385282^(11/12) 5142289999996114 a001 1836311903/28143753123*33385282^(11/12) 5142289999996114 a001 686789568/10525900321*33385282^(11/12) 5142289999996114 a001 12586269025/192900153618*33385282^(11/12) 5142289999996114 a001 32951280099/505019158607*33385282^(11/12) 5142289999996114 a001 86267571272/1322157322203*33385282^(11/12) 5142289999996114 a001 32264490531/494493258286*33385282^(11/12) 5142289999996114 a001 591286729879/9062201101803*33385282^(11/12) 5142289999996114 a001 1548008755920/23725150497407*33385282^(11/12) 5142289999996114 a001 139583862445/2139295485799*33385282^(11/12) 5142289999996114 a001 53316291173/817138163596*33385282^(11/12) 5142289999996114 a001 20365011074/312119004989*33385282^(11/12) 5142289999996114 a001 7778742049/119218851371*33385282^(11/12) 5142289999996114 a001 2971215073/45537549124*33385282^(11/12) 5142289999996114 a001 1134903170/17393796001*33385282^(11/12) 5142289999996114 a001 433494437/6643838879*33385282^(11/12) 5142289999996114 a001 9303105/230701876*33385282^(17/18) 5142289999996114 a001 165580141/2537720636*33385282^(11/12) 5142289999996115 a001 1836311903/54018521*33385282^(5/9) 5142289999996115 a001 267914296/6643838879*33385282^(17/18) 5142289999996115 a001 31622993/299537289*33385282^(8/9) 5142289999996115 a001 701408733/17393796001*33385282^(17/18) 5142289999996115 a001 1836311903/45537549124*33385282^(17/18) 5142289999996115 a001 4807526976/119218851371*33385282^(17/18) 5142289999996115 a001 1144206275/28374454999*33385282^(17/18) 5142289999996115 a001 32951280099/817138163596*33385282^(17/18) 5142289999996115 a001 86267571272/2139295485799*33385282^(17/18) 5142289999996115 a001 225851433717/5600748293801*33385282^(17/18) 5142289999996115 a001 591286729879/14662949395604*33385282^(17/18) 5142289999996115 a001 365435296162/9062201101803*33385282^(17/18) 5142289999996115 a001 139583862445/3461452808002*33385282^(17/18) 5142289999996115 a001 53316291173/1322157322203*33385282^(17/18) 5142289999996115 a001 20365011074/505019158607*33385282^(17/18) 5142289999996115 a001 7778742049/192900153618*33385282^(17/18) 5142289999996115 a001 2971215073/73681302247*33385282^(17/18) 5142289999996115 a001 1134903170/28143753123*33385282^(17/18) 5142289999996115 a001 433494437/10749957122*33385282^(17/18) 5142289999996115 a001 165580141/4106118243*33385282^(17/18) 5142289999996115 a001 1134903170/54018521*33385282^(7/12) 5142289999996115 a001 63245986/969323029*33385282^(11/12) 5142289999996115 a001 2504730781961/20633239*7881196^(1/11) 5142289999996115 a001 701408733/54018521*33385282^(11/18) 5142289999996115 a001 63245986/1568397607*33385282^(17/18) 5142289999996115 a001 39088169/54018521*33385282^(7/9) 5142289999996115 a001 139583862445/33385282*12752043^(5/17) 5142289999996115 a001 267914296/54018521*33385282^(2/3) 5142289999996115 a001 433494437/20633239*20633239^(3/5) 5142289999996115 a001 2504730781961/87403803*12752043^(3/17) 5142289999996115 a001 24157817/87403803*33385282^(5/6) 5142289999996115 a001 102334155/54018521*33385282^(13/18) 5142289999996115 a001 701408733/20633239*20633239^(4/7) 5142289999996116 a001 63245986/54018521*33385282^(3/4) 5142289999996116 a001 6557470319842/228826127*12752043^(3/17) 5142289999996116 a001 4052739537881/54018521*12752043^(2/17) 5142289999996116 a001 10610209857723/370248451*12752043^(3/17) 5142289999996116 a001 24157817/228826127*33385282^(8/9) 5142289999996116 a001 4052739537881/141422324*12752043^(3/17) 5142289999996116 a001 24157817/370248451*33385282^(11/12) 5142289999996116 a001 24157817/599074578*33385282^(17/18) 5142289999996117 a001 9227465/12752043*12752043^(14/17) 5142289999996117 a001 53316291173/33385282*12752043^(6/17) 5142289999996117 a001 956722026041/87403803*12752043^(4/17) 5142289999996117 a001 7778742049/20633239*20633239^(3/7) 5142289999996117 a001 1144206275/1875749*20633239^(2/5) 5142289999996117 a001 9227465/33385282*141422324^(10/13) 5142289999996118 a001 2504730781961/228826127*12752043^(4/17) 5142289999996118 a001 1548008755920/54018521*12752043^(3/17) 5142289999996118 a001 3278735159921/299537289*12752043^(4/17) 5142289999996118 a001 10610209857723/969323029*12752043^(4/17) 5142289999996118 a001 9227465/33385282*2537720636^(2/3) 5142289999996118 a001 14930352/20633239*17393796001^(4/7) 5142289999996118 a001 9227465/33385282*45537549124^(10/17) 5142289999996118 a001 9227465/33385282*312119004989^(6/11) 5142289999996118 a001 9227465/33385282*14662949395604^(10/21) 5142289999996118 a001 14930352/20633239*14662949395604^(4/9) 5142289999996118 a001 9227465/33385282*(1/2+1/2*5^(1/2))^30 5142289999996118 a001 14930352/20633239*(1/2+1/2*5^(1/2))^28 5142289999996118 a001 14930352/20633239*505019158607^(1/2) 5142289999996118 a001 9227465/33385282*192900153618^(5/9) 5142289999996118 a001 14930352/20633239*73681302247^(7/13) 5142289999996118 a001 9227465/33385282*28143753123^(3/5) 5142289999996118 a001 14930352/20633239*10749957122^(7/12) 5142289999996118 a001 9227465/33385282*10749957122^(5/8) 5142289999996118 a001 14930352/20633239*4106118243^(14/23) 5142289999996118 a001 9227465/33385282*4106118243^(15/23) 5142289999996118 a001 14930352/20633239*1568397607^(7/11) 5142289999996118 a001 9227465/33385282*1568397607^(15/22) 5142289999996118 a001 14930352/20633239*599074578^(2/3) 5142289999996118 a001 9227465/33385282*599074578^(5/7) 5142289999996118 a001 4052739537881/370248451*12752043^(4/17) 5142289999996118 a001 1324704812670/2576099 5142289999996118 a001 14930352/20633239*228826127^(7/10) 5142289999996118 a001 9227465/33385282*228826127^(3/4) 5142289999996118 a001 387002188980/35355581*12752043^(4/17) 5142289999996118 a001 14930352/20633239*87403803^(14/19) 5142289999996118 a001 9227465/33385282*87403803^(15/19) 5142289999996119 a001 5702887/20633239*12752043^(15/17) 5142289999996119 a001 10182505537/16692641*12752043^(7/17) 5142289999996119 a001 365435296162/87403803*12752043^(5/17) 5142289999996119 a001 86267571272/20633239*20633239^(2/7) 5142289999996119 a001 3278735159921/16692641*4870847^(1/16) 5142289999996119 a001 365435296162/12752043*4870847^(3/16) 5142289999996119 a001 956722026041/228826127*12752043^(5/17) 5142289999996119 a001 591286729879/54018521*12752043^(4/17) 5142289999996119 a001 2504730781961/599074578*12752043^(5/17) 5142289999996119 a001 6557470319842/1568397607*12752043^(5/17) 5142289999996119 a001 10610209857723/2537720636*12752043^(5/17) 5142289999996119 a001 4052739537881/969323029*12752043^(5/17) 5142289999996120 a001 1548008755920/370248451*12752043^(5/17) 5142289999996120 a001 591286729879/141422324*12752043^(5/17) 5142289999996120 a001 365435296162/20633239*20633239^(1/5) 5142289999996120 a001 7778742049/33385282*12752043^(8/17) 5142289999996121 a001 956722026041/20633239*20633239^(1/7) 5142289999996121 a001 139583862445/87403803*12752043^(6/17) 5142289999996121 a001 14930352/20633239*33385282^(7/9) 5142289999996121 a001 365435296162/228826127*12752043^(6/17) 5142289999996121 a001 225851433717/54018521*12752043^(5/17) 5142289999996121 a001 956722026041/599074578*12752043^(6/17) 5142289999996121 a001 2504730781961/1568397607*12752043^(6/17) 5142289999996121 a001 6557470319842/4106118243*12752043^(6/17) 5142289999996121 a001 10610209857723/6643838879*12752043^(6/17) 5142289999996121 a001 4052739537881/2537720636*12752043^(6/17) 5142289999996121 a001 1548008755920/969323029*12752043^(6/17) 5142289999996121 a001 14930208/103681*12752043^(1/2) 5142289999996121 a001 591286729879/370248451*12752043^(6/17) 5142289999996121 a001 39088169/20633239*141422324^(2/3) 5142289999996121 a001 9227465/33385282*33385282^(5/6) 5142289999996122 a001 39088169/20633239*(1/2+1/2*5^(1/2))^26 5142289999996122 a001 9227465/87403803*23725150497407^(1/2) 5142289999996122 a001 9227465/87403803*505019158607^(4/7) 5142289999996122 a001 39088169/20633239*73681302247^(1/2) 5142289999996122 a001 9227465/87403803*73681302247^(8/13) 5142289999996122 a001 39088169/20633239*10749957122^(13/24) 5142289999996122 a001 9227465/87403803*10749957122^(2/3) 5142289999996122 a001 39088169/20633239*4106118243^(13/23) 5142289999996122 a001 9227465/87403803*4106118243^(16/23) 5142289999996122 a001 39088169/20633239*1568397607^(13/22) 5142289999996122 a001 9227465/87403803*1568397607^(8/11) 5142289999996122 a001 360684711361585/701408733 5142289999996122 a001 39088169/20633239*599074578^(13/21) 5142289999996122 a001 9227465/87403803*599074578^(16/21) 5142289999996122 a001 225851433717/141422324*12752043^(6/17) 5142289999996122 a001 39088169/20633239*228826127^(13/20) 5142289999996122 a001 9227465/87403803*228826127^(4/5) 5142289999996122 a001 9303105/1875749*141422324^(8/13) 5142289999996122 a001 9227465/599074578*141422324^(12/13) 5142289999996122 a001 39088169/20633239*87403803^(13/19) 5142289999996122 a001 433494437/20633239*141422324^(7/13) 5142289999996122 a001 1836311903/20633239*141422324^(6/13) 5142289999996122 a001 9227465/87403803*87403803^(16/19) 5142289999996122 a001 7778742049/20633239*141422324^(5/13) 5142289999996122 a001 9303105/1875749*2537720636^(8/15) 5142289999996122 a001 9227465/228826127*45537549124^(2/3) 5142289999996122 a001 9303105/1875749*45537549124^(8/17) 5142289999996122 a001 9303105/1875749*14662949395604^(8/21) 5142289999996122 a001 9303105/1875749*(1/2+1/2*5^(1/2))^24 5142289999996122 a001 9303105/1875749*192900153618^(4/9) 5142289999996122 a001 9303105/1875749*73681302247^(6/13) 5142289999996122 a001 9303105/1875749*10749957122^(1/2) 5142289999996122 a001 9227465/228826127*10749957122^(17/24) 5142289999996122 a001 9303105/1875749*4106118243^(12/23) 5142289999996122 a001 9227465/228826127*4106118243^(17/23) 5142289999996122 a001 944284833567075/1836311903 5142289999996122 a001 9303105/1875749*1568397607^(6/11) 5142289999996122 a001 9227465/228826127*1568397607^(17/22) 5142289999996122 a001 9303105/1875749*599074578^(4/7) 5142289999996122 a001 9227465/228826127*599074578^(17/21) 5142289999996122 a001 20365011074/20633239*141422324^(1/3) 5142289999996122 a001 32951280099/20633239*141422324^(4/13) 5142289999996122 a001 139583862445/20633239*141422324^(3/13) 5142289999996122 a001 591286729879/20633239*141422324^(2/13) 5142289999996122 a001 9303105/1875749*228826127^(3/5) 5142289999996122 a001 2504730781961/20633239*141422324^(1/13) 5142289999996122 a001 9227465/599074578*2537720636^(4/5) 5142289999996122 a001 9227465/228826127*228826127^(17/20) 5142289999996122 a001 9227465/599074578*45537549124^(12/17) 5142289999996122 a001 9238424/711491*312119004989^(2/5) 5142289999996122 a001 9227465/599074578*14662949395604^(4/7) 5142289999996122 a001 9238424/711491*(1/2+1/2*5^(1/2))^22 5142289999996122 a001 9227465/599074578*505019158607^(9/14) 5142289999996122 a001 9227465/599074578*192900153618^(2/3) 5142289999996122 a001 9227465/599074578*73681302247^(9/13) 5142289999996122 a001 9238424/711491*10749957122^(11/24) 5142289999996122 a001 9227465/599074578*10749957122^(3/4) 5142289999996122 a001 309021223667455/600940872 5142289999996122 a001 9238424/711491*4106118243^(11/23) 5142289999996122 a001 9227465/599074578*4106118243^(18/23) 5142289999996122 a001 9238424/711491*1568397607^(1/2) 5142289999996122 a001 9227465/599074578*1568397607^(9/11) 5142289999996122 a001 9238424/711491*599074578^(11/21) 5142289999996122 a001 701408733/20633239*2537720636^(4/9) 5142289999996122 a001 9227465/1568397607*817138163596^(2/3) 5142289999996122 a001 701408733/20633239*(1/2+1/2*5^(1/2))^20 5142289999996122 a001 701408733/20633239*23725150497407^(5/16) 5142289999996122 a001 701408733/20633239*505019158607^(5/14) 5142289999996122 a001 701408733/20633239*73681302247^(5/13) 5142289999996122 a001 701408733/20633239*28143753123^(2/5) 5142289999996122 a001 1294444906890369/2517253805 5142289999996122 a001 701408733/20633239*10749957122^(5/12) 5142289999996122 a001 9227465/1568397607*10749957122^(19/24) 5142289999996122 a001 9227465/599074578*599074578^(6/7) 5142289999996122 a001 701408733/20633239*4106118243^(10/23) 5142289999996122 a001 9227465/1568397607*4106118243^(19/23) 5142289999996122 a001 701408733/20633239*1568397607^(5/11) 5142289999996122 a001 9227465/4106118243*2537720636^(8/9) 5142289999996122 a001 9227465/10749957122*2537720636^(14/15) 5142289999996122 a001 1836311903/20633239*2537720636^(2/5) 5142289999996122 a001 1836311903/20633239*45537549124^(6/17) 5142289999996122 a001 9227465/4106118243*312119004989^(8/11) 5142289999996122 a001 1836311903/20633239*14662949395604^(2/7) 5142289999996122 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^18 5142289999996122 a001 9227465/4106118243*23725150497407^(5/8) 5142289999996122 a001 1836311903/20633239*192900153618^(1/3) 5142289999996122 a001 9227465/4106118243*73681302247^(10/13) 5142289999996122 a001 16944503814015895/32951280099 5142289999996122 a001 9227465/4106118243*28143753123^(4/5) 5142289999996122 a001 1836311903/20633239*10749957122^(3/8) 5142289999996122 a001 9227465/1568397607*1568397607^(19/22) 5142289999996122 a001 9227465/4106118243*10749957122^(5/6) 5142289999996122 a001 7778742049/20633239*2537720636^(1/3) 5142289999996122 a001 32951280099/20633239*2537720636^(4/15) 5142289999996122 a001 1836311903/20633239*4106118243^(9/23) 5142289999996122 a001 86267571272/20633239*2537720636^(2/9) 5142289999996122 a001 139583862445/20633239*2537720636^(1/5) 5142289999996122 a001 591286729879/20633239*2537720636^(2/15) 5142289999996122 a001 956722026041/20633239*2537720636^(1/9) 5142289999996122 a001 9227465/10749957122*17393796001^(6/7) 5142289999996122 a001 2504730781961/20633239*2537720636^(1/15) 5142289999996122 a001 9227465/10749957122*45537549124^(14/17) 5142289999996122 a001 9227465/10749957122*14662949395604^(2/3) 5142289999996122 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^16 5142289999996122 a001 4807526976/20633239*23725150497407^(1/4) 5142289999996122 a001 9227465/10749957122*505019158607^(3/4) 5142289999996122 a001 9227465/10749957122*192900153618^(7/9) 5142289999996122 a001 5545160863449480/10783446409 5142289999996122 a001 4807526976/20633239*73681302247^(4/13) 5142289999996122 a001 9227465/4106118243*4106118243^(20/23) 5142289999996122 a001 4807526976/20633239*10749957122^(1/3) 5142289999996122 a001 1144206275/1875749*17393796001^(2/7) 5142289999996122 a001 9227465/28143753123*312119004989^(4/5) 5142289999996122 a001 1144206275/1875749*14662949395604^(2/9) 5142289999996122 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^14 5142289999996122 a001 1144206275/1875749*505019158607^(1/4) 5142289999996122 a001 8933796685290125/17373187209 5142289999996122 a001 9227465/28143753123*73681302247^(11/13) 5142289999996122 a001 9227465/10749957122*10749957122^(7/8) 5142289999996122 a001 9227465/192900153618*45537549124^(16/17) 5142289999996122 a001 365435296162/20633239*17393796001^(1/7) 5142289999996122 a001 32951280099/20633239*45537549124^(4/17) 5142289999996122 a001 32951280099/20633239*817138163596^(4/19) 5142289999996122 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^12 5142289999996122 a001 304056783818719035/591286729879 5142289999996122 a001 32951280099/20633239*192900153618^(2/9) 5142289999996122 a001 32951280099/20633239*73681302247^(3/13) 5142289999996122 a001 139583862445/20633239*45537549124^(3/17) 5142289999996122 a001 591286729879/20633239*45537549124^(2/17) 5142289999996122 a001 2504730781961/20633239*45537549124^(1/17) 5142289999996122 a001 9227465/192900153618*14662949395604^(16/21) 5142289999996122 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^10 5142289999996122 a001 9227465/505019158607*312119004989^(10/11) 5142289999996122 a001 7787980473/711491*(1/2+1/2*5^(1/2))^8 5142289999996122 a001 2084036199823437405/4052739537881 5142289999996122 a001 9227465/1322157322203*23725150497407^(13/16) 5142289999996122 a001 140728068720/1875749*(1/2+1/2*5^(1/2))^4 5142289999996122 a001 140728068720/1875749*23725150497407^(1/16) 5142289999996122 a006 5^(1/2)*Fibonacci(64)/Lucas(35)/sqrt(5) 5142289999996122 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^3 5142289999996122 a001 129693900196134205/252210396917 5142289999996122 a001 9227465/1322157322203*505019158607^(13/14) 5142289999996122 a001 1288005205276051925/2504730781961 5142289999996122 a001 139583862445/20633239*14662949395604^(1/7) 5142289999996122 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^9 5142289999996122 a001 9227465/312119004989*505019158607^(7/8) 5142289999996122 a001 140728068720/1875749*73681302247^(1/13) 5142289999996122 a001 139583862445/20633239*192900153618^(1/6) 5142289999996122 a001 9227465/45537549124*45537549124^(15/17) 5142289999996122 a001 53316291173/20633239*312119004989^(1/5) 5142289999996122 a001 491974210728666445/956722026041 5142289999996122 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^11 5142289999996122 a001 956722026041/20633239*28143753123^(1/10) 5142289999996122 a001 9227465/192900153618*73681302247^(12/13) 5142289999996122 a001 86267571272/20633239*28143753123^(1/5) 5142289999996122 a001 4052739537881/20633239*10749957122^(1/24) 5142289999996122 a001 9227465/45537549124*312119004989^(9/11) 5142289999996122 a001 9227465/45537549124*14662949395604^(5/7) 5142289999996122 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^13 5142289999996122 a001 9227465/45537549124*192900153618^(5/6) 5142289999996122 a001 20365011074/20633239*73681302247^(1/4) 5142289999996122 a001 2504730781961/20633239*10749957122^(1/16) 5142289999996122 a001 140728068720/1875749*10749957122^(1/12) 5142289999996122 a001 591286729879/20633239*10749957122^(1/8) 5142289999996122 a001 1144206275/1875749*10749957122^(7/24) 5142289999996122 a001 7787980473/711491*10749957122^(1/6) 5142289999996122 a001 9227465/45537549124*28143753123^(9/10) 5142289999996122 a001 139583862445/20633239*10749957122^(3/16) 5142289999996122 a001 86267571272/20633239*10749957122^(5/24) 5142289999996122 a001 32951280099/20633239*10749957122^(1/4) 5142289999996122 a001 4052739537881/20633239*4106118243^(1/23) 5142289999996122 a001 7778742049/20633239*45537549124^(5/17) 5142289999996122 a001 14355614000235157/27916772489 5142289999996122 a001 7778742049/20633239*312119004989^(3/11) 5142289999996122 a001 7778742049/20633239*14662949395604^(5/21) 5142289999996122 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^15 5142289999996122 a001 7778742049/20633239*192900153618^(5/18) 5142289999996122 a001 7778742049/20633239*28143753123^(3/10) 5142289999996122 a001 140728068720/1875749*4106118243^(2/23) 5142289999996122 a001 7778742049/20633239*10749957122^(5/16) 5142289999996122 a001 9227465/28143753123*10749957122^(11/12) 5142289999996122 a001 591286729879/20633239*4106118243^(3/23) 5142289999996122 a001 9227465/73681302247*10749957122^(23/24) 5142289999996122 a001 9227465/45537549124*10749957122^(15/16) 5142289999996122 a001 7787980473/711491*4106118243^(4/23) 5142289999996122 a001 4807526976/20633239*4106118243^(8/23) 5142289999996122 a001 86267571272/20633239*4106118243^(5/23) 5142289999996122 a001 32951280099/20633239*4106118243^(6/23) 5142289999996122 a001 1144206275/1875749*4106118243^(7/23) 5142289999996122 a001 4052739537881/20633239*1568397607^(1/22) 5142289999996122 a001 9227465/2537720636*2537720636^(13/15) 5142289999996122 a001 2971215073/20633239*45537549124^(1/3) 5142289999996122 a001 27416783093579945/53316291173 5142289999996122 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^17 5142289999996122 a001 140728068720/1875749*1568397607^(1/11) 5142289999996122 a001 9227465/10749957122*4106118243^(21/23) 5142289999996122 a001 591286729879/20633239*1568397607^(3/22) 5142289999996122 a001 9227465/28143753123*4106118243^(22/23) 5142289999996122 a001 7787980473/711491*1568397607^(2/11) 5142289999996122 a001 86267571272/20633239*1568397607^(5/22) 5142289999996122 a001 53316291173/20633239*1568397607^(1/4) 5142289999996122 a001 1836311903/20633239*1568397607^(9/22) 5142289999996122 a001 32951280099/20633239*1568397607^(3/11) 5142289999996122 a001 1144206275/1875749*1568397607^(7/22) 5142289999996122 a001 4052739537881/20633239*599074578^(1/21) 5142289999996122 a001 4807526976/20633239*1568397607^(4/11) 5142289999996122 a001 5236139639782025/10182505537 5142289999996122 a001 9227465/2537720636*45537549124^(13/17) 5142289999996122 a001 1134903170/20633239*817138163596^(1/3) 5142289999996122 a001 9227465/2537720636*14662949395604^(13/21) 5142289999996122 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^19 5142289999996122 a001 9227465/2537720636*192900153618^(13/18) 5142289999996122 a001 9227465/2537720636*73681302247^(3/4) 5142289999996122 a001 9227465/2537720636*10749957122^(13/16) 5142289999996122 a001 2504730781961/20633239*599074578^(1/14) 5142289999996122 a001 140728068720/1875749*599074578^(2/21) 5142289999996122 a001 9227465/4106118243*1568397607^(10/11) 5142289999996122 a001 9227465/10749957122*1568397607^(21/22) 5142289999996122 a001 591286729879/20633239*599074578^(1/7) 5142289999996122 a001 365435296162/20633239*599074578^(1/6) 5142289999996122 a001 7787980473/711491*599074578^(4/21) 5142289999996122 a001 139583862445/20633239*599074578^(3/14) 5142289999996122 a001 86267571272/20633239*599074578^(5/21) 5142289999996122 a001 32951280099/20633239*599074578^(2/7) 5142289999996122 a001 701408733/20633239*599074578^(10/21) 5142289999996122 a001 1144206275/1875749*599074578^(1/3) 5142289999996122 a001 4052739537881/20633239*228826127^(1/20) 5142289999996122 a001 433494437/20633239*2537720636^(7/15) 5142289999996122 a001 7778742049/20633239*599074578^(5/14) 5142289999996122 a001 4807526976/20633239*599074578^(8/21) 5142289999996122 a001 307696518854785/598364773 5142289999996122 a001 433494437/20633239*17393796001^(3/7) 5142289999996122 a001 433494437/20633239*45537549124^(7/17) 5142289999996122 a001 433494437/20633239*14662949395604^(1/3) 5142289999996122 a001 433494437/20633239*(1/2+1/2*5^(1/2))^21 5142289999996122 a001 433494437/20633239*192900153618^(7/18) 5142289999996122 a001 433494437/20633239*10749957122^(7/16) 5142289999996122 a001 1836311903/20633239*599074578^(3/7) 5142289999996122 a001 140728068720/1875749*228826127^(1/10) 5142289999996122 a001 9227465/1568397607*599074578^(19/21) 5142289999996122 a001 956722026041/20633239*228826127^(1/8) 5142289999996122 a001 433494437/20633239*599074578^(1/2) 5142289999996122 a001 9227465/4106118243*599074578^(20/21) 5142289999996122 a001 9227465/2537720636*599074578^(13/14) 5142289999996122 a001 591286729879/20633239*228826127^(3/20) 5142289999996122 a001 7787980473/711491*228826127^(1/5) 5142289999996122 a001 86267571272/20633239*228826127^(1/4) 5142289999996122 a001 32951280099/20633239*228826127^(3/10) 5142289999996122 a001 1144206275/1875749*228826127^(7/20) 5142289999996122 a001 4052739537881/20633239*87403803^(1/19) 5142289999996122 a001 7778742049/20633239*228826127^(3/8) 5142289999996122 a001 9227465/370248451*2537720636^(7/9) 5142289999996122 a001 1527884955772565/2971215073 5142289999996122 a001 9227465/370248451*17393796001^(5/7) 5142289999996122 a001 9227465/370248451*312119004989^(7/11) 5142289999996122 a001 9227465/370248451*14662949395604^(5/9) 5142289999996122 a001 165580141/20633239*(1/2+1/2*5^(1/2))^23 5142289999996122 a001 9227465/370248451*505019158607^(5/8) 5142289999996122 a001 9227465/370248451*28143753123^(7/10) 5142289999996122 a001 165580141/20633239*4106118243^(1/2) 5142289999996122 a001 4807526976/20633239*228826127^(2/5) 5142289999996122 a001 9227465/141422324*141422324^(11/13) 5142289999996122 a001 9238424/711491*228826127^(11/20) 5142289999996122 a001 1836311903/20633239*228826127^(9/20) 5142289999996122 a001 701408733/20633239*228826127^(1/2) 5142289999996122 a001 2971215073/33385282*12752043^(9/17) 5142289999996122 a001 9227465/370248451*599074578^(5/6) 5142289999996122 a001 140728068720/1875749*87403803^(2/19) 5142289999996122 a001 9227465/599074578*228826127^(9/10) 5142289999996122 a001 9227465/1568397607*228826127^(19/20) 5142289999996122 a001 591286729879/20633239*87403803^(3/19) 5142289999996122 a001 9227465/370248451*228826127^(7/8) 5142289999996122 a001 7787980473/711491*87403803^(4/19) 5142289999996122 a001 86267571272/20633239*87403803^(5/19) 5142289999996122 a001 32951280099/20633239*87403803^(6/19) 5142289999996123 a001 1144206275/1875749*87403803^(7/19) 5142289999996123 a001 58360012220549/113490317 5142289999996123 a001 4052739537881/20633239*33385282^(1/18) 5142289999996123 a001 9227465/141422324*2537720636^(11/15) 5142289999996123 a001 63245986/20633239*2537720636^(5/9) 5142289999996123 a001 9227465/141422324*45537549124^(11/17) 5142289999996123 a001 63245986/20633239*312119004989^(5/11) 5142289999996123 a001 9227465/141422324*817138163596^(11/19) 5142289999996123 a001 63245986/20633239*(1/2+1/2*5^(1/2))^25 5142289999996123 a001 63245986/20633239*3461452808002^(5/12) 5142289999996123 a001 9227465/141422324*192900153618^(11/18) 5142289999996123 a001 63245986/20633239*28143753123^(1/2) 5142289999996123 a001 9227465/141422324*10749957122^(11/16) 5142289999996123 a001 9227465/141422324*1568397607^(3/4) 5142289999996123 a001 9227465/141422324*599074578^(11/14) 5142289999996123 a001 53316291173/87403803*12752043^(7/17) 5142289999996123 a001 4807526976/20633239*87403803^(8/19) 5142289999996123 a001 63245986/20633239*228826127^(5/8) 5142289999996123 a001 1836311903/20633239*87403803^(9/19) 5142289999996123 a001 9303105/1875749*87403803^(12/19) 5142289999996123 a001 1134903170/20633239*87403803^(1/2) 5142289999996123 a001 701408733/20633239*87403803^(10/19) 5142289999996123 a001 9238424/711491*87403803^(11/19) 5142289999996123 a001 2504730781961/20633239*33385282^(1/12) 5142289999996123 a001 9227465/228826127*87403803^(17/19) 5142289999996123 a001 140728068720/1875749*33385282^(1/9) 5142289999996123 a001 9227465/599074578*87403803^(18/19) 5142289999996123 a001 591286729879/20633239*33385282^(1/6) 5142289999996123 a001 139583862445/228826127*12752043^(7/17) 5142289999996123 a001 86267571272/54018521*12752043^(6/17) 5142289999996123 a001 182717648081/299537289*12752043^(7/17) 5142289999996123 a001 956722026041/1568397607*12752043^(7/17) 5142289999996123 a001 2504730781961/4106118243*12752043^(7/17) 5142289999996123 a001 3278735159921/5374978561*12752043^(7/17) 5142289999996123 a001 10610209857723/17393796001*12752043^(7/17) 5142289999996123 a001 4052739537881/6643838879*12752043^(7/17) 5142289999996123 a001 1134903780/1860499*12752043^(7/17) 5142289999996123 a001 591286729879/969323029*12752043^(7/17) 5142289999996123 a001 225851433717/370248451*12752043^(7/17) 5142289999996123 a001 7787980473/711491*33385282^(2/9) 5142289999996123 a001 139583862445/20633239*33385282^(1/4) 5142289999996123 a001 21566892818/35355581*12752043^(7/17) 5142289999996124 a001 86267571272/20633239*33385282^(5/18) 5142289999996124 a001 32951280099/20633239*33385282^(1/3) 5142289999996124 a001 24157817/20633239*141422324^(9/13) 5142289999996124 a001 222915410843905/433494437 5142289999996124 a001 24157817/20633239*2537720636^(3/5) 5142289999996124 a001 24157817/20633239*45537549124^(9/17) 5142289999996124 a001 24157817/20633239*817138163596^(9/19) 5142289999996124 a001 24157817/20633239*14662949395604^(3/7) 5142289999996124 a001 24157817/20633239*(1/2+1/2*5^(1/2))^27 5142289999996124 a001 9227465/54018521*9062201101803^(1/2) 5142289999996124 a001 24157817/20633239*192900153618^(1/2) 5142289999996124 a001 24157817/20633239*10749957122^(9/16) 5142289999996124 a001 24157817/20633239*599074578^(9/14) 5142289999996124 a001 1144206275/1875749*33385282^(7/18) 5142289999996124 a001 4052739537881/20633239*12752043^(1/17) 5142289999996124 a001 567451585/16692641*12752043^(10/17) 5142289999996124 a001 7778742049/20633239*33385282^(5/12) 5142289999996124 a001 4807526976/20633239*33385282^(4/9) 5142289999996124 a001 20365011074/87403803*12752043^(8/17) 5142289999996125 a001 1836311903/20633239*33385282^(1/2) 5142289999996125 a001 701408733/20633239*33385282^(5/9) 5142289999996125 a001 39088169/20633239*33385282^(13/18) 5142289999996125 a001 433494437/20633239*33385282^(7/12) 5142289999996125 a001 53316291173/228826127*12752043^(8/17) 5142289999996125 a001 32951280099/54018521*12752043^(7/17) 5142289999996125 a001 139583862445/599074578*12752043^(8/17) 5142289999996125 a001 365435296162/1568397607*12752043^(8/17) 5142289999996125 a001 956722026041/4106118243*12752043^(8/17) 5142289999996125 a001 2504730781961/10749957122*12752043^(8/17) 5142289999996125 a001 6557470319842/28143753123*12752043^(8/17) 5142289999996125 a001 10610209857723/45537549124*12752043^(8/17) 5142289999996125 a001 4052739537881/17393796001*12752043^(8/17) 5142289999996125 a001 1548008755920/6643838879*12752043^(8/17) 5142289999996125 a001 591286729879/2537720636*12752043^(8/17) 5142289999996125 a001 9238424/711491*33385282^(11/18) 5142289999996125 a001 225851433717/969323029*12752043^(8/17) 5142289999996125 a001 86267571272/370248451*12752043^(8/17) 5142289999996125 a001 9303105/1875749*33385282^(2/3) 5142289999996125 a001 12586269025/87403803*12752043^(1/2) 5142289999996125 a001 63246219/271444*12752043^(8/17) 5142289999996125 a001 10610209857723/54018521*4870847^(1/16) 5142289999996126 a001 9227465/87403803*33385282^(8/9) 5142289999996126 a001 32951280099/228826127*12752043^(1/2) 5142289999996126 a001 43133785636/299537289*12752043^(1/2) 5142289999996126 a001 140728068720/1875749*12752043^(2/17) 5142289999996126 a001 32264490531/224056801*12752043^(1/2) 5142289999996126 a001 591286729879/4106118243*12752043^(1/2) 5142289999996126 a001 774004377960/5374978561*12752043^(1/2) 5142289999996126 a001 4052739537881/28143753123*12752043^(1/2) 5142289999996126 a001 1515744265389/10525900321*12752043^(1/2) 5142289999996126 a001 3278735159921/22768774562*12752043^(1/2) 5142289999996126 a001 2504730781961/17393796001*12752043^(1/2) 5142289999996126 a001 956722026041/6643838879*12752043^(1/2) 5142289999996126 a001 182717648081/1268860318*12752043^(1/2) 5142289999996126 a001 139583862445/969323029*12752043^(1/2) 5142289999996126 a001 53316291173/370248451*12752043^(1/2) 5142289999996126 a001 433494437/33385282*12752043^(11/17) 5142289999996126 a001 7778742049/87403803*12752043^(9/17) 5142289999996126 a001 10182505537/70711162*12752043^(1/2) 5142289999996127 a001 9227465/228826127*33385282^(17/18) 5142289999996127 a001 9227465/141422324*33385282^(11/12) 5142289999996127 a001 20365011074/228826127*12752043^(9/17) 5142289999996127 a001 12586269025/54018521*12752043^(8/17) 5142289999996127 a001 53316291173/599074578*12752043^(9/17) 5142289999996127 a001 139583862445/1568397607*12752043^(9/17) 5142289999996127 a001 365435296162/4106118243*12752043^(9/17) 5142289999996127 a001 956722026041/10749957122*12752043^(9/17) 5142289999996127 a001 2504730781961/28143753123*12752043^(9/17) 5142289999996127 a001 6557470319842/73681302247*12752043^(9/17) 5142289999996127 a001 10610209857723/119218851371*12752043^(9/17) 5142289999996127 a001 4052739537881/45537549124*12752043^(9/17) 5142289999996127 a001 1548008755920/17393796001*12752043^(9/17) 5142289999996127 a001 591286729879/6643838879*12752043^(9/17) 5142289999996127 a001 225851433717/2537720636*12752043^(9/17) 5142289999996127 a001 86267571272/969323029*12752043^(9/17) 5142289999996127 a001 32951280099/370248451*12752043^(9/17) 5142289999996127 a001 12586269025/141422324*12752043^(9/17) 5142289999996127 a001 24157817/20633239*33385282^(3/4) 5142289999996128 a001 7778742049/54018521*12752043^(1/2) 5142289999996128 a001 591286729879/20633239*12752043^(3/17) 5142289999996128 a001 165580141/33385282*12752043^(12/17) 5142289999996128 a001 2971215073/87403803*12752043^(10/17) 5142289999996129 a001 7778742049/228826127*12752043^(10/17) 5142289999996129 a001 4807526976/54018521*12752043^(9/17) 5142289999996129 a001 10182505537/299537289*12752043^(10/17) 5142289999996129 a001 53316291173/1568397607*12752043^(10/17) 5142289999996129 a001 139583862445/4106118243*12752043^(10/17) 5142289999996129 a001 182717648081/5374978561*12752043^(10/17) 5142289999996129 a001 956722026041/28143753123*12752043^(10/17) 5142289999996129 a001 2504730781961/73681302247*12752043^(10/17) 5142289999996129 a001 3278735159921/96450076809*12752043^(10/17) 5142289999996129 a001 10610209857723/312119004989*12752043^(10/17) 5142289999996129 a001 4052739537881/119218851371*12752043^(10/17) 5142289999996129 a001 387002188980/11384387281*12752043^(10/17) 5142289999996129 a001 591286729879/17393796001*12752043^(10/17) 5142289999996129 a001 225851433717/6643838879*12752043^(10/17) 5142289999996129 a001 1135099622/33391061*12752043^(10/17) 5142289999996129 a001 32951280099/969323029*12752043^(10/17) 5142289999996129 a001 12586269025/370248451*12752043^(10/17) 5142289999996129 a001 1201881744/35355581*12752043^(10/17) 5142289999996130 a001 7787980473/711491*12752043^(4/17) 5142289999996130 a001 1134903170/87403803*12752043^(11/17) 5142289999996130 a001 31622993/16692641*12752043^(13/17) 5142289999996131 a001 1836311903/54018521*12752043^(10/17) 5142289999996131 a001 2971215073/228826127*12752043^(11/17) 5142289999996131 a001 7778742049/599074578*12752043^(11/17) 5142289999996131 a001 20365011074/1568397607*12752043^(11/17) 5142289999996131 a001 53316291173/4106118243*12752043^(11/17) 5142289999996131 a001 139583862445/10749957122*12752043^(11/17) 5142289999996131 a001 365435296162/28143753123*12752043^(11/17) 5142289999996131 a001 956722026041/73681302247*12752043^(11/17) 5142289999996131 a001 2504730781961/192900153618*12752043^(11/17) 5142289999996131 a001 10610209857723/817138163596*12752043^(11/17) 5142289999996131 a001 4052739537881/312119004989*12752043^(11/17) 5142289999996131 a001 1548008755920/119218851371*12752043^(11/17) 5142289999996131 a001 591286729879/45537549124*12752043^(11/17) 5142289999996131 a001 7787980473/599786069*12752043^(11/17) 5142289999996131 a001 86267571272/6643838879*12752043^(11/17) 5142289999996131 a001 32951280099/2537720636*12752043^(11/17) 5142289999996131 a001 12586269025/969323029*12752043^(11/17) 5142289999996131 a001 4807526976/370248451*12752043^(11/17) 5142289999996131 a001 1836311903/141422324*12752043^(11/17) 5142289999996132 a001 86267571272/20633239*12752043^(5/17) 5142289999996132 a001 433494437/87403803*12752043^(12/17) 5142289999996132 a001 39088169/7881196*7881196^(8/11) 5142289999996132 a001 701408733/54018521*12752043^(11/17) 5142289999996132 a001 1134903170/228826127*12752043^(12/17) 5142289999996132 a001 2971215073/599074578*12752043^(12/17) 5142289999996133 a001 7778742049/1568397607*12752043^(12/17) 5142289999996133 a001 20365011074/4106118243*12752043^(12/17) 5142289999996133 a001 53316291173/10749957122*12752043^(12/17) 5142289999996133 a001 139583862445/28143753123*12752043^(12/17) 5142289999996133 a001 365435296162/73681302247*12752043^(12/17) 5142289999996133 a001 956722026041/192900153618*12752043^(12/17) 5142289999996133 a001 2504730781961/505019158607*12752043^(12/17) 5142289999996133 a001 10610209857723/2139295485799*12752043^(12/17) 5142289999996133 a001 4052739537881/817138163596*12752043^(12/17) 5142289999996133 a001 140728068720/28374454999*12752043^(12/17) 5142289999996133 a001 591286729879/119218851371*12752043^(12/17) 5142289999996133 a001 225851433717/45537549124*12752043^(12/17) 5142289999996133 a001 86267571272/17393796001*12752043^(12/17) 5142289999996133 a001 32951280099/6643838879*12752043^(12/17) 5142289999996133 a001 1144206275/230701876*12752043^(12/17) 5142289999996133 a001 4807526976/969323029*12752043^(12/17) 5142289999996133 a001 1836311903/370248451*12752043^(12/17) 5142289999996133 a001 2504730781961/33385282*4870847^(1/8) 5142289999996133 a001 139583862445/12752043*4870847^(1/4) 5142289999996133 a001 701408733/141422324*12752043^(12/17) 5142289999996133 a001 24157817/33385282*12752043^(14/17) 5142289999996133 a001 32951280099/20633239*12752043^(6/17) 5142289999996134 a001 165580141/87403803*12752043^(13/17) 5142289999996134 a001 267914296/54018521*12752043^(12/17) 5142289999996134 a001 433494437/228826127*12752043^(13/17) 5142289999996134 a001 85146110326225/165580141 5142289999996134 a001 9227465/20633239*(1/2+1/2*5^(1/2))^29 5142289999996134 a001 9227465/20633239*1322157322203^(1/2) 5142289999996134 a001 567451585/299537289*12752043^(13/17) 5142289999996134 a001 2971215073/1568397607*12752043^(13/17) 5142289999996134 a001 7778742049/4106118243*12752043^(13/17) 5142289999996134 a001 10182505537/5374978561*12752043^(13/17) 5142289999996134 a001 53316291173/28143753123*12752043^(13/17) 5142289999996134 a001 139583862445/73681302247*12752043^(13/17) 5142289999996134 a001 182717648081/96450076809*12752043^(13/17) 5142289999996134 a001 956722026041/505019158607*12752043^(13/17) 5142289999996134 a001 10610209857723/5600748293801*12752043^(13/17) 5142289999996134 a001 591286729879/312119004989*12752043^(13/17) 5142289999996134 a001 225851433717/119218851371*12752043^(13/17) 5142289999996134 a001 21566892818/11384387281*12752043^(13/17) 5142289999996134 a001 32951280099/17393796001*12752043^(13/17) 5142289999996134 a001 12586269025/6643838879*12752043^(13/17) 5142289999996134 a001 1201881744/634430159*12752043^(13/17) 5142289999996134 a001 1836311903/969323029*12752043^(13/17) 5142289999996134 a001 701408733/370248451*12752043^(13/17) 5142289999996135 a001 66978574/35355581*12752043^(13/17) 5142289999996135 a001 14930352/54018521*12752043^(15/17) 5142289999996135 a001 1144206275/1875749*12752043^(7/17) 5142289999996136 a001 3732588/35355581*12752043^(16/17) 5142289999996136 a001 4052739537881/20633239*4870847^(1/16) 5142289999996136 a001 63245986/87403803*12752043^(14/17) 5142289999996136 a001 102334155/54018521*12752043^(13/17) 5142289999996136 a001 165580141/228826127*12752043^(14/17) 5142289999996136 a001 433494437/599074578*12752043^(14/17) 5142289999996136 a001 1134903170/1568397607*12752043^(14/17) 5142289999996136 a001 2971215073/4106118243*12752043^(14/17) 5142289999996136 a001 7778742049/10749957122*12752043^(14/17) 5142289999996136 a001 20365011074/28143753123*12752043^(14/17) 5142289999996136 a001 53316291173/73681302247*12752043^(14/17) 5142289999996136 a001 139583862445/192900153618*12752043^(14/17) 5142289999996136 a001 365435296162/505019158607*12752043^(14/17) 5142289999996136 a001 10610209857723/14662949395604*12752043^(14/17) 5142289999996136 a001 591286729879/817138163596*12752043^(14/17) 5142289999996136 a001 225851433717/312119004989*12752043^(14/17) 5142289999996136 a001 86267571272/119218851371*12752043^(14/17) 5142289999996136 a001 32951280099/45537549124*12752043^(14/17) 5142289999996136 a001 12586269025/17393796001*12752043^(14/17) 5142289999996136 a001 4807526976/6643838879*12752043^(14/17) 5142289999996136 a001 1836311903/2537720636*12752043^(14/17) 5142289999996136 a001 701408733/969323029*12752043^(14/17) 5142289999996136 a001 267914296/370248451*12752043^(14/17) 5142289999996136 a001 102334155/141422324*12752043^(14/17) 5142289999996137 a001 6557470319842/87403803*4870847^(1/8) 5142289999996137 a001 4807526976/20633239*12752043^(8/17) 5142289999996137 a001 39088169/54018521*12752043^(14/17) 5142289999996137 a001 9227465/7881196*7881196^(9/11) 5142289999996138 a001 10610209857723/141422324*4870847^(1/8) 5142289999996138 a001 39088169/141422324*12752043^(15/17) 5142289999996138 a001 102334155/7881196*7881196^(2/3) 5142289999996138 a001 102334155/370248451*12752043^(15/17) 5142289999996138 a001 2971215073/20633239*12752043^(1/2) 5142289999996138 a001 267914296/969323029*12752043^(15/17) 5142289999996138 a001 701408733/2537720636*12752043^(15/17) 5142289999996138 a001 1836311903/6643838879*12752043^(15/17) 5142289999996138 a001 4807526976/17393796001*12752043^(15/17) 5142289999996138 a001 12586269025/45537549124*12752043^(15/17) 5142289999996138 a001 32951280099/119218851371*12752043^(15/17) 5142289999996138 a001 86267571272/312119004989*12752043^(15/17) 5142289999996138 a001 225851433717/817138163596*12752043^(15/17) 5142289999996138 a001 1548008755920/5600748293801*12752043^(15/17) 5142289999996138 a001 139583862445/505019158607*12752043^(15/17) 5142289999996138 a001 53316291173/192900153618*12752043^(15/17) 5142289999996138 a001 20365011074/73681302247*12752043^(15/17) 5142289999996138 a001 7778742049/28143753123*12752043^(15/17) 5142289999996138 a001 2971215073/10749957122*12752043^(15/17) 5142289999996138 a001 1134903170/4106118243*12752043^(15/17) 5142289999996138 a001 433494437/1568397607*12752043^(15/17) 5142289999996138 a001 165580141/599074578*12752043^(15/17) 5142289999996138 a001 63245986/228826127*12752043^(15/17) 5142289999996139 a001 1836311903/20633239*12752043^(9/17) 5142289999996139 a001 4052739537881/54018521*4870847^(1/8) 5142289999996139 a001 24157817/87403803*12752043^(15/17) 5142289999996139 a001 39088169/370248451*12752043^(16/17) 5142289999996140 a001 102334155/969323029*12752043^(16/17) 5142289999996140 a001 66978574/634430159*12752043^(16/17) 5142289999996140 a001 701408733/6643838879*12752043^(16/17) 5142289999996140 a001 1836311903/17393796001*12752043^(16/17) 5142289999996140 a001 1201881744/11384387281*12752043^(16/17) 5142289999996140 a001 12586269025/119218851371*12752043^(16/17) 5142289999996140 a001 32951280099/312119004989*12752043^(16/17) 5142289999996140 a001 21566892818/204284540899*12752043^(16/17) 5142289999996140 a001 225851433717/2139295485799*12752043^(16/17) 5142289999996140 a001 182717648081/1730726404001*12752043^(16/17) 5142289999996140 a001 139583862445/1322157322203*12752043^(16/17) 5142289999996140 a001 53316291173/505019158607*12752043^(16/17) 5142289999996140 a001 10182505537/96450076809*12752043^(16/17) 5142289999996140 a001 7778742049/73681302247*12752043^(16/17) 5142289999996140 a001 2971215073/28143753123*12752043^(16/17) 5142289999996140 a001 567451585/5374978561*12752043^(16/17) 5142289999996140 a001 433494437/4106118243*12752043^(16/17) 5142289999996140 a001 165580141/1568397607*12752043^(16/17) 5142289999996140 a001 31622993/299537289*12752043^(16/17) 5142289999996140 a001 165580141/7881196*7881196^(7/11) 5142289999996141 a001 701408733/20633239*12752043^(10/17) 5142289999996141 a001 225851433717/4870847*1860498^(1/6) 5142289999996142 a001 24157817/228826127*12752043^(16/17) 5142289999996142 a001 2/5702887*(1/2+1/2*5^(1/2))^63 5142289999996143 a001 9238424/711491*12752043^(11/17) 5142289999996144 a001 14930352/20633239*12752043^(14/17) 5142289999996144 a001 9303105/1875749*12752043^(12/17) 5142289999996146 a001 9227465/33385282*12752043^(15/17) 5142289999996146 a001 39088169/20633239*12752043^(13/17) 5142289999996146 a001 956722026041/33385282*4870847^(3/16) 5142289999996146 a001 53316291173/12752043*4870847^(5/16) 5142289999996148 a001 3524667/39604*7881196^(6/11) 5142289999996149 a001 140728068720/1875749*4870847^(1/8) 5142289999996150 a001 2504730781961/87403803*4870847^(3/16) 5142289999996151 a001 6557470319842/228826127*4870847^(3/16) 5142289999996151 a001 10610209857723/370248451*4870847^(3/16) 5142289999996151 a001 3524578/12752043*20633239^(6/7) 5142289999996151 a001 4052739537881/141422324*4870847^(3/16) 5142289999996151 a001 9227465/87403803*12752043^(16/17) 5142289999996152 a001 5702887/7881196*20633239^(4/5) 5142289999996153 a001 1548008755920/54018521*4870847^(3/16) 5142289999996155 a001 2971215073/7881196*7881196^(5/11) 5142289999996160 a001 182717648081/16692641*4870847^(1/4) 5142289999996160 a001 20365011074/12752043*4870847^(3/8) 5142289999996161 a001 3524578/12752043*141422324^(10/13) 5142289999996161 a001 3524578/12752043*2537720636^(2/3) 5142289999996161 a001 5702887/7881196*17393796001^(4/7) 5142289999996161 a001 3524578/12752043*45537549124^(10/17) 5142289999996161 a001 3524578/12752043*312119004989^(6/11) 5142289999996161 a001 3524578/12752043*14662949395604^(10/21) 5142289999996161 a001 5702887/7881196*14662949395604^(4/9) 5142289999996161 a001 3524578/12752043*(1/2+1/2*5^(1/2))^30 5142289999996161 a001 5702887/7881196*(1/2+1/2*5^(1/2))^28 5142289999996161 a001 3524578/12752043*192900153618^(5/9) 5142289999996161 a001 5702887/7881196*73681302247^(7/13) 5142289999996161 a001 3524578/12752043*28143753123^(3/5) 5142289999996161 a001 5702887/7881196*10749957122^(7/12) 5142289999996161 a001 3524578/12752043*10749957122^(5/8) 5142289999996161 a001 5702887/7881196*4106118243^(14/23) 5142289999996161 a001 3524578/12752043*4106118243^(15/23) 5142289999996161 a001 5702887/7881196*1568397607^(7/11) 5142289999996161 a001 3524578/12752043*1568397607^(15/22) 5142289999996161 a001 5702887/7881196*599074578^(2/3) 5142289999996161 a001 3524578/12752043*599074578^(5/7) 5142289999996161 a001 5702887/7881196*228826127^(7/10) 5142289999996161 a001 3524578/12752043*228826127^(3/4) 5142289999996162 a001 5702887/7881196*87403803^(14/19) 5142289999996162 a001 3524578/12752043*87403803^(15/19) 5142289999996162 a001 20100270056686/39088169 5142289999996163 a001 12586269025/7881196*7881196^(4/11) 5142289999996163 a001 591286729879/20633239*4870847^(3/16) 5142289999996164 a001 956722026041/87403803*4870847^(1/4) 5142289999996164 a001 2504730781961/228826127*4870847^(1/4) 5142289999996164 a001 3278735159921/299537289*4870847^(1/4) 5142289999996164 a001 10610209857723/969323029*4870847^(1/4) 5142289999996164 a001 4052739537881/370248451*4870847^(1/4) 5142289999996165 a001 387002188980/35355581*4870847^(1/4) 5142289999996165 a001 5702887/7881196*33385282^(7/9) 5142289999996165 a001 3524578/12752043*33385282^(5/6) 5142289999996165 a001 10182505537/3940598*7881196^(1/3) 5142289999996166 a001 3524578/4870847*4870847^(7/8) 5142289999996166 a001 591286729879/54018521*4870847^(1/4) 5142289999996170 a001 53316291173/7881196*7881196^(3/11) 5142289999996173 a001 139583862445/33385282*4870847^(5/16) 5142289999996173 a001 7778742049/12752043*4870847^(7/16) 5142289999996176 a001 7787980473/711491*4870847^(1/4) 5142289999996177 a001 365435296162/87403803*4870847^(5/16) 5142289999996178 a001 2504730781961/12752043*1860498^(1/15) 5142289999996178 a001 956722026041/228826127*4870847^(5/16) 5142289999996178 a001 2504730781961/599074578*4870847^(5/16) 5142289999996178 a001 6557470319842/1568397607*4870847^(5/16) 5142289999996178 a001 10610209857723/2537720636*4870847^(5/16) 5142289999996178 a001 225851433717/7881196*7881196^(2/11) 5142289999996178 a001 4052739537881/969323029*4870847^(5/16) 5142289999996178 a001 1548008755920/370248451*4870847^(5/16) 5142289999996178 a001 591286729879/141422324*4870847^(5/16) 5142289999996179 a001 2178309/7881196*4870847^(15/16) 5142289999996180 a001 225851433717/54018521*4870847^(5/16) 5142289999996185 a001 956722026041/7881196*7881196^(1/11) 5142289999996186 a001 165580141/7881196*20633239^(3/5) 5142289999996186 a001 66978574/1970299*20633239^(4/7) 5142289999996186 a001 24157817/7881196*20633239^(5/7) 5142289999996187 a001 53316291173/33385282*4870847^(3/8) 5142289999996187 a001 2971215073/12752043*4870847^(1/2) 5142289999996187 a001 5702887/7881196*12752043^(14/17) 5142289999996188 a001 2971215073/7881196*20633239^(3/7) 5142289999996188 a001 1201881744/1970299*20633239^(2/5) 5142289999996188 a001 3732588/1970299*141422324^(2/3) 5142289999996188 a001 1762289/16692641*(1/2+1/2*5^(1/2))^32 5142289999996188 a001 3732588/1970299*(1/2+1/2*5^(1/2))^26 5142289999996188 a001 1762289/16692641*23725150497407^(1/2) 5142289999996188 a001 1762289/16692641*505019158607^(4/7) 5142289999996188 a001 3732588/1970299*73681302247^(1/2) 5142289999996188 a001 1762289/16692641*73681302247^(8/13) 5142289999996188 a001 3732588/1970299*10749957122^(13/24) 5142289999996188 a001 1762289/16692641*10749957122^(2/3) 5142289999996188 a001 3732588/1970299*4106118243^(13/23) 5142289999996188 a001 1762289/16692641*4106118243^(16/23) 5142289999996188 a001 3732588/1970299*1568397607^(13/22) 5142289999996188 a001 1762289/16692641*1568397607^(8/11) 5142289999996188 a001 3732588/1970299*599074578^(13/21) 5142289999996188 a001 1762289/16692641*599074578^(16/21) 5142289999996188 a001 3732588/1970299*228826127^(13/20) 5142289999996188 a001 1762289/16692641*228826127^(4/5) 5142289999996188 a001 17541063397152/34111385 5142289999996189 a001 3732588/1970299*87403803^(13/19) 5142289999996189 a001 1762289/16692641*87403803^(16/19) 5142289999996189 a001 3524578/12752043*12752043^(15/17) 5142289999996190 a001 32951280099/7881196*20633239^(2/7) 5142289999996190 a001 86267571272/20633239*4870847^(5/16) 5142289999996191 a001 139583862445/4870847*1860498^(1/5) 5142289999996191 a001 139583862445/7881196*20633239^(1/5) 5142289999996191 a001 139583862445/87403803*4870847^(3/8) 5142289999996191 a001 182717648081/3940598*20633239^(1/7) 5142289999996191 a001 365435296162/228826127*4870847^(3/8) 5142289999996191 a001 956722026041/599074578*4870847^(3/8) 5142289999996191 a001 2504730781961/1568397607*4870847^(3/8) 5142289999996191 a001 6557470319842/4106118243*4870847^(3/8) 5142289999996191 a001 10610209857723/6643838879*4870847^(3/8) 5142289999996191 a001 4052739537881/2537720636*4870847^(3/8) 5142289999996191 a001 1548008755920/969323029*4870847^(3/8) 5142289999996191 a001 591286729879/370248451*4870847^(3/8) 5142289999996192 a001 3732588/1970299*33385282^(13/18) 5142289999996192 a001 225851433717/141422324*4870847^(3/8) 5142289999996192 a001 39088169/7881196*141422324^(8/13) 5142289999996192 a001 39088169/7881196*2537720636^(8/15) 5142289999996192 a001 3524578/87403803*45537549124^(2/3) 5142289999996192 a001 39088169/7881196*45537549124^(8/17) 5142289999996192 a001 39088169/7881196*14662949395604^(8/21) 5142289999996192 a001 39088169/7881196*(1/2+1/2*5^(1/2))^24 5142289999996192 a001 39088169/7881196*192900153618^(4/9) 5142289999996192 a001 39088169/7881196*73681302247^(6/13) 5142289999996192 a001 39088169/7881196*10749957122^(1/2) 5142289999996192 a001 3524578/87403803*10749957122^(17/24) 5142289999996192 a001 39088169/7881196*4106118243^(12/23) 5142289999996192 a001 3524578/87403803*4106118243^(17/23) 5142289999996192 a001 39088169/7881196*1568397607^(6/11) 5142289999996192 a001 3524578/87403803*1568397607^(17/22) 5142289999996192 a001 39088169/7881196*599074578^(4/7) 5142289999996192 a001 3524578/87403803*599074578^(17/21) 5142289999996192 a001 68884650258841/133957148 5142289999996192 a001 39088169/7881196*228826127^(3/5) 5142289999996192 a001 3524578/87403803*228826127^(17/20) 5142289999996192 a001 1762289/16692641*33385282^(8/9) 5142289999996193 a001 3524578/228826127*141422324^(12/13) 5142289999996193 a001 39088169/7881196*87403803^(12/19) 5142289999996193 a001 3524667/39604*141422324^(6/13) 5142289999996193 a001 165580141/7881196*141422324^(7/13) 5142289999996193 a001 3524578/228826127*2537720636^(4/5) 5142289999996193 a001 2971215073/7881196*141422324^(5/13) 5142289999996193 a001 3524578/228826127*45537549124^(12/17) 5142289999996193 a001 102334155/7881196*312119004989^(2/5) 5142289999996193 a001 3524578/228826127*14662949395604^(4/7) 5142289999996193 a001 102334155/7881196*(1/2+1/2*5^(1/2))^22 5142289999996193 a001 3524578/228826127*505019158607^(9/14) 5142289999996193 a001 3524578/228826127*192900153618^(2/3) 5142289999996193 a001 3524578/228826127*73681302247^(9/13) 5142289999996193 a001 102334155/7881196*10749957122^(11/24) 5142289999996193 a001 3524578/228826127*10749957122^(3/4) 5142289999996193 a001 102334155/7881196*4106118243^(11/23) 5142289999996193 a001 3524578/228826127*4106118243^(18/23) 5142289999996193 a001 102334155/7881196*1568397607^(1/2) 5142289999996193 a001 3524578/228826127*1568397607^(9/11) 5142289999996193 a001 1350879068770/2626999 5142289999996193 a001 102334155/7881196*599074578^(11/21) 5142289999996193 a001 3524578/228826127*599074578^(6/7) 5142289999996193 a001 7778742049/7881196*141422324^(1/3) 5142289999996193 a001 12586269025/7881196*141422324^(4/13) 5142289999996193 a001 3524578/87403803*87403803^(17/19) 5142289999996193 a001 53316291173/7881196*141422324^(3/13) 5142289999996193 a001 102334155/7881196*228826127^(11/20) 5142289999996193 a001 225851433717/7881196*141422324^(2/13) 5142289999996193 a001 956722026041/7881196*141422324^(1/13) 5142289999996193 a001 66978574/1970299*2537720636^(4/9) 5142289999996193 a001 1762289/299537289*817138163596^(2/3) 5142289999996193 a001 66978574/1970299*(1/2+1/2*5^(1/2))^20 5142289999996193 a001 66978574/1970299*23725150497407^(5/16) 5142289999996193 a001 66978574/1970299*505019158607^(5/14) 5142289999996193 a001 66978574/1970299*73681302247^(5/13) 5142289999996193 a001 66978574/1970299*28143753123^(2/5) 5142289999996193 a001 66978574/1970299*10749957122^(5/12) 5142289999996193 a001 1762289/299537289*10749957122^(19/24) 5142289999996193 a001 66978574/1970299*4106118243^(10/23) 5142289999996193 a001 1762289/299537289*4106118243^(19/23) 5142289999996193 a001 944284833567088/1836311903 5142289999996193 a001 66978574/1970299*1568397607^(5/11) 5142289999996193 a001 1762289/299537289*1568397607^(19/22) 5142289999996193 a001 3524578/228826127*228826127^(9/10) 5142289999996193 a001 66978574/1970299*599074578^(10/21) 5142289999996193 a001 3524578/1568397607*2537720636^(8/9) 5142289999996193 a001 3524667/39604*2537720636^(2/5) 5142289999996193 a001 3524667/39604*45537549124^(6/17) 5142289999996193 a001 3524578/1568397607*312119004989^(8/11) 5142289999996193 a001 3524667/39604*14662949395604^(2/7) 5142289999996193 a001 3524667/39604*(1/2+1/2*5^(1/2))^18 5142289999996193 a001 3524578/1568397607*23725150497407^(5/8) 5142289999996193 a001 3524667/39604*192900153618^(1/3) 5142289999996193 a001 3524578/1568397607*73681302247^(10/13) 5142289999996193 a001 3524578/1568397607*28143753123^(4/5) 5142289999996193 a001 3524667/39604*10749957122^(3/8) 5142289999996193 a001 3524578/1568397607*10749957122^(5/6) 5142289999996193 a001 412028298223279/801254496 5142289999996193 a001 3524667/39604*4106118243^(9/23) 5142289999996193 a001 3524578/1568397607*4106118243^(20/23) 5142289999996193 a001 1762289/299537289*599074578^(19/21) 5142289999996193 a001 3524667/39604*1568397607^(9/22) 5142289999996193 a001 3524578/4106118243*2537720636^(14/15) 5142289999996193 a001 3524578/4106118243*17393796001^(6/7) 5142289999996193 a001 3524578/4106118243*45537549124^(14/17) 5142289999996193 a001 3524578/4106118243*14662949395604^(2/3) 5142289999996193 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^16 5142289999996193 a001 1836311903/7881196*23725150497407^(1/4) 5142289999996193 a001 3524578/4106118243*505019158607^(3/4) 5142289999996193 a001 3524578/4106118243*192900153618^(7/9) 5142289999996193 a001 1836311903/7881196*73681302247^(4/13) 5142289999996193 a001 6472224534451934/12586269025 5142289999996193 a001 1836311903/7881196*10749957122^(1/3) 5142289999996193 a001 3524578/4106118243*10749957122^(7/8) 5142289999996193 a001 12586269025/7881196*2537720636^(4/15) 5142289999996193 a001 1836311903/7881196*4106118243^(8/23) 5142289999996193 a001 3524578/1568397607*1568397607^(10/11) 5142289999996193 a001 32951280099/7881196*2537720636^(2/9) 5142289999996193 a001 53316291173/7881196*2537720636^(1/5) 5142289999996193 a001 2971215073/7881196*2537720636^(1/3) 5142289999996193 a001 225851433717/7881196*2537720636^(2/15) 5142289999996193 a001 182717648081/3940598*2537720636^(1/9) 5142289999996193 a001 956722026041/7881196*2537720636^(1/15) 5142289999996193 a001 1201881744/1970299*17393796001^(2/7) 5142289999996193 a001 1762289/5374978561*312119004989^(4/5) 5142289999996193 a001 1201881744/1970299*14662949395604^(2/9) 5142289999996193 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^14 5142289999996193 a001 1762289/5374978561*23725150497407^(11/16) 5142289999996193 a001 1201881744/1970299*505019158607^(1/4) 5142289999996193 a001 1762289/5374978561*73681302247^(11/13) 5142289999996193 a001 5648167938005376/10983760033 5142289999996193 a001 1201881744/1970299*10749957122^(7/24) 5142289999996193 a001 3524578/4106118243*4106118243^(21/23) 5142289999996193 a001 12586269025/7881196*45537549124^(4/17) 5142289999996193 a001 12586269025/7881196*817138163596^(4/19) 5142289999996193 a001 12586269025/7881196*14662949395604^(4/21) 5142289999996193 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^12 5142289999996193 a001 12586269025/7881196*192900153618^(2/9) 5142289999996193 a001 22180643453798225/43133785636 5142289999996193 a001 12586269025/7881196*73681302247^(3/13) 5142289999996193 a001 1762289/5374978561*10749957122^(11/12) 5142289999996193 a001 3524578/73681302247*45537549124^(16/17) 5142289999996193 a001 139583862445/7881196*17393796001^(1/7) 5142289999996193 a001 32951280099/7881196*312119004989^(2/11) 5142289999996193 a001 3524578/73681302247*14662949395604^(16/21) 5142289999996193 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^10 5142289999996193 a001 38713118969591074/75283811239 5142289999996193 a001 3524578/73681302247*192900153618^(8/9) 5142289999996193 a001 225851433717/7881196*45537549124^(2/17) 5142289999996193 a001 1762289/96450076809*312119004989^(10/11) 5142289999996193 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^8 5142289999996193 a001 21566892818/1970299*23725150497407^(1/8) 5142289999996193 a001 1762289/96450076809*3461452808002^(5/6) 5142289999996193 a001 3524578/73681302247*73681302247^(12/13) 5142289999996193 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^6 5142289999996193 a001 132671832424566071/258001459320 5142289999996193 a001 1762289/1730726404001*14662949395604^(8/9) 5142289999996193 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^2 5142289999996193 a001 1686020702549767849/3278735159921 5142289999996193 a001 956722026041/7881196*(1/2+1/2*5^(1/2))^3 5142289999996193 a001 1288005205276069636/2504730781961 5142289999996193 a001 182717648081/3940598*(1/2+1/2*5^(1/2))^5 5142289999996193 a001 3524578/312119004989*817138163596^(17/19) 5142289999996193 a001 491974210728673210/956722026041 5142289999996193 a001 139583862445/7881196*14662949395604^(1/9) 5142289999996193 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^7 5142289999996193 a001 591286729879/7881196*73681302247^(1/13) 5142289999996193 a001 3524578/312119004989*192900153618^(17/18) 5142289999996193 a001 32951280099/7881196*28143753123^(1/5) 5142289999996193 a001 53316291173/7881196*817138163596^(3/19) 5142289999996193 a001 3524578/119218851371*14662949395604^(7/9) 5142289999996193 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^9 5142289999996193 a001 3524578/119218851371*505019158607^(7/8) 5142289999996193 a001 53316291173/7881196*192900153618^(1/6) 5142289999996193 a001 182717648081/3940598*28143753123^(1/10) 5142289999996193 a001 387002188980/1970299*10749957122^(1/24) 5142289999996193 a001 806495168552548/1568358005 5142289999996193 a001 10182505537/3940598*312119004989^(1/5) 5142289999996193 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^11 5142289999996193 a001 956722026041/7881196*10749957122^(1/16) 5142289999996193 a001 591286729879/7881196*10749957122^(1/12) 5142289999996193 a001 12586269025/7881196*10749957122^(1/4) 5142289999996193 a001 225851433717/7881196*10749957122^(1/8) 5142289999996193 a001 21566892818/1970299*10749957122^(1/6) 5142289999996193 a001 32951280099/7881196*10749957122^(5/24) 5142289999996193 a001 53316291173/7881196*10749957122^(3/16) 5142289999996193 a001 387002188980/1970299*4106118243^(1/23) 5142289999996193 a001 3524578/17393796001*45537549124^(15/17) 5142289999996193 a001 27416783093580322/53316291173 5142289999996193 a001 3524578/17393796001*312119004989^(9/11) 5142289999996193 a001 3524578/17393796001*14662949395604^(5/7) 5142289999996193 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^13 5142289999996193 a001 3524578/17393796001*192900153618^(5/6) 5142289999996193 a001 7778742049/7881196*73681302247^(1/4) 5142289999996193 a001 3524578/17393796001*28143753123^(9/10) 5142289999996193 a001 591286729879/7881196*4106118243^(2/23) 5142289999996193 a001 3524578/28143753123*10749957122^(23/24) 5142289999996193 a001 225851433717/7881196*4106118243^(3/23) 5142289999996193 a001 1201881744/1970299*4106118243^(7/23) 5142289999996193 a001 21566892818/1970299*4106118243^(4/23) 5142289999996193 a001 3524578/17393796001*10749957122^(15/16) 5142289999996193 a001 32951280099/7881196*4106118243^(5/23) 5142289999996193 a001 12586269025/7881196*4106118243^(6/23) 5142289999996193 a001 387002188980/1970299*1568397607^(1/22) 5142289999996193 a001 5236139639782097/10182505537 5142289999996193 a001 2971215073/7881196*45537549124^(5/17) 5142289999996193 a001 2971215073/7881196*312119004989^(3/11) 5142289999996193 a001 2971215073/7881196*14662949395604^(5/21) 5142289999996193 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^15 5142289999996193 a001 2971215073/7881196*192900153618^(5/18) 5142289999996193 a001 2971215073/7881196*28143753123^(3/10) 5142289999996193 a001 2971215073/7881196*10749957122^(5/16) 5142289999996193 a001 591286729879/7881196*1568397607^(1/11) 5142289999996193 a001 1762289/5374978561*4106118243^(22/23) 5142289999996193 a001 225851433717/7881196*1568397607^(3/22) 5142289999996193 a001 21566892818/1970299*1568397607^(2/11) 5142289999996193 a001 1836311903/7881196*1568397607^(4/11) 5142289999996193 a001 32951280099/7881196*1568397607^(5/22) 5142289999996193 a001 10182505537/3940598*1568397607^(1/4) 5142289999996193 a001 12586269025/7881196*1568397607^(3/11) 5142289999996193 a001 1201881744/1970299*1568397607^(7/22) 5142289999996193 a001 387002188980/1970299*599074578^(1/21) 5142289999996193 a001 4000054745112260/7778742049 5142289999996193 a001 567451585/3940598*45537549124^(1/3) 5142289999996193 a001 567451585/3940598*(1/2+1/2*5^(1/2))^17 5142289999996193 a001 956722026041/7881196*599074578^(1/14) 5142289999996193 a001 591286729879/7881196*599074578^(2/21) 5142289999996193 a001 3524578/4106118243*1568397607^(21/22) 5142289999996193 a001 225851433717/7881196*599074578^(1/7) 5142289999996193 a001 139583862445/7881196*599074578^(1/6) 5142289999996193 a001 21566892818/1970299*599074578^(4/21) 5142289999996193 a001 53316291173/7881196*599074578^(3/14) 5142289999996193 a001 32951280099/7881196*599074578^(5/21) 5142289999996193 a001 3524667/39604*599074578^(3/7) 5142289999996193 a001 12586269025/7881196*599074578^(2/7) 5142289999996193 a001 1201881744/1970299*599074578^(1/3) 5142289999996193 a001 3524578/969323029*2537720636^(13/15) 5142289999996193 a001 387002188980/1970299*228826127^(1/20) 5142289999996193 a001 1836311903/7881196*599074578^(8/21) 5142289999996193 a001 2971215073/7881196*599074578^(5/14) 5142289999996193 a001 1527884955772586/2971215073 5142289999996193 a001 3524578/969323029*45537549124^(13/17) 5142289999996193 a001 3524578/969323029*14662949395604^(13/21) 5142289999996193 a001 433494437/7881196*(1/2+1/2*5^(1/2))^19 5142289999996193 a001 3524578/969323029*192900153618^(13/18) 5142289999996193 a001 3524578/969323029*73681302247^(3/4) 5142289999996193 a001 3524578/969323029*10749957122^(13/16) 5142289999996193 a001 591286729879/7881196*228826127^(1/10) 5142289999996193 a001 3524578/1568397607*599074578^(20/21) 5142289999996193 a001 182717648081/3940598*228826127^(1/8) 5142289999996193 a001 225851433717/7881196*228826127^(3/20) 5142289999996193 a001 3524578/969323029*599074578^(13/14) 5142289999996193 a001 21566892818/1970299*228826127^(1/5) 5142289999996193 a001 32951280099/7881196*228826127^(1/4) 5142289999996193 a001 12586269025/7881196*228826127^(3/10) 5142289999996193 a001 1201881744/1970299*228826127^(7/20) 5142289999996193 a001 66978574/1970299*228826127^(1/2) 5142289999996193 a001 387002188980/1970299*87403803^(1/19) 5142289999996193 a001 291800061102749/567451585 5142289999996193 a001 2971215073/7881196*228826127^(3/8) 5142289999996193 a001 165580141/7881196*2537720636^(7/15) 5142289999996193 a001 165580141/7881196*17393796001^(3/7) 5142289999996193 a001 165580141/7881196*45537549124^(7/17) 5142289999996193 a001 165580141/7881196*14662949395604^(1/3) 5142289999996193 a001 165580141/7881196*(1/2+1/2*5^(1/2))^21 5142289999996193 a001 165580141/7881196*192900153618^(7/18) 5142289999996193 a001 165580141/7881196*10749957122^(7/16) 5142289999996193 a001 1836311903/7881196*228826127^(2/5) 5142289999996193 a001 3524667/39604*228826127^(9/20) 5142289999996193 a001 165580141/7881196*599074578^(1/2) 5142289999996193 a001 591286729879/7881196*87403803^(2/19) 5142289999996193 a001 1762289/299537289*228826127^(19/20) 5142289999996193 a001 225851433717/7881196*87403803^(3/19) 5142289999996193 a001 21566892818/1970299*87403803^(4/19) 5142289999996193 a001 32951280099/7881196*87403803^(5/19) 5142289999996193 a001 12586269025/7881196*87403803^(6/19) 5142289999996193 a001 1201881744/1970299*87403803^(7/19) 5142289999996193 a001 222915410843908/433494437 5142289999996193 a001 86267571272/54018521*4870847^(3/8) 5142289999996193 a001 387002188980/1970299*33385282^(1/18) 5142289999996193 a001 1762289/70711162*2537720636^(7/9) 5142289999996193 a001 1762289/70711162*17393796001^(5/7) 5142289999996193 a001 1762289/70711162*312119004989^(7/11) 5142289999996193 a001 1762289/70711162*14662949395604^(5/9) 5142289999996193 a001 31622993/3940598*(1/2+1/2*5^(1/2))^23 5142289999996193 a001 1762289/70711162*505019158607^(5/8) 5142289999996193 a001 1762289/70711162*28143753123^(7/10) 5142289999996193 a001 31622993/3940598*4106118243^(1/2) 5142289999996193 a001 1762289/70711162*599074578^(5/6) 5142289999996193 a001 1836311903/7881196*87403803^(8/19) 5142289999996193 a001 102334155/7881196*87403803^(11/19) 5142289999996193 a001 3524667/39604*87403803^(9/19) 5142289999996193 a001 66978574/1970299*87403803^(10/19) 5142289999996193 a001 433494437/7881196*87403803^(1/2) 5142289999996193 a001 1762289/70711162*228826127^(7/8) 5142289999996193 a001 956722026041/7881196*33385282^(1/12) 5142289999996193 a001 591286729879/7881196*33385282^(1/9) 5142289999996194 a001 3524578/228826127*87403803^(18/19) 5142289999996194 a001 225851433717/7881196*33385282^(1/6) 5142289999996194 a001 21566892818/1970299*33385282^(2/9) 5142289999996194 a001 53316291173/7881196*33385282^(1/4) 5142289999996194 a001 32951280099/7881196*33385282^(5/18) 5142289999996195 a001 12586269025/7881196*33385282^(1/3) 5142289999996195 a001 3524578/54018521*141422324^(11/13) 5142289999996195 a001 85146110326226/165580141 5142289999996195 a001 3524578/54018521*2537720636^(11/15) 5142289999996195 a001 24157817/7881196*2537720636^(5/9) 5142289999996195 a001 3524578/54018521*45537549124^(11/17) 5142289999996195 a001 3524578/54018521*312119004989^(3/5) 5142289999996195 a001 24157817/7881196*312119004989^(5/11) 5142289999996195 a001 24157817/7881196*(1/2+1/2*5^(1/2))^25 5142289999996195 a001 24157817/7881196*3461452808002^(5/12) 5142289999996195 a001 3524578/54018521*192900153618^(11/18) 5142289999996195 a001 24157817/7881196*28143753123^(1/2) 5142289999996195 a001 3524578/54018521*10749957122^(11/16) 5142289999996195 a001 3524578/54018521*1568397607^(3/4) 5142289999996195 a001 3524578/54018521*599074578^(11/14) 5142289999996195 a001 1201881744/1970299*33385282^(7/18) 5142289999996195 a001 24157817/7881196*228826127^(5/8) 5142289999996195 a001 387002188980/1970299*12752043^(1/17) 5142289999996195 a001 2971215073/7881196*33385282^(5/12) 5142289999996195 a001 1836311903/7881196*33385282^(4/9) 5142289999996195 a001 3524667/39604*33385282^(1/2) 5142289999996195 a001 39088169/7881196*33385282^(2/3) 5142289999996196 a001 66978574/1970299*33385282^(5/9) 5142289999996196 a001 102334155/7881196*33385282^(11/18) 5142289999996196 a001 165580141/7881196*33385282^(7/12) 5142289999996197 a001 3524578/87403803*33385282^(17/18) 5142289999996197 a001 591286729879/7881196*12752043^(2/17) 5142289999996199 a001 225851433717/7881196*12752043^(3/17) 5142289999996199 a001 3524578/54018521*33385282^(11/12) 5142289999996200 a001 10182505537/16692641*4870847^(7/16) 5142289999996200 a001 21566892818/1970299*12752043^(4/17) 5142289999996200 a001 1134903170/12752043*4870847^(9/16) 5142289999996202 a001 32951280099/7881196*12752043^(5/17) 5142289999996204 a001 32951280099/20633239*4870847^(3/8) 5142289999996204 a001 12586269025/7881196*12752043^(6/17) 5142289999996204 a001 53316291173/87403803*4870847^(7/16) 5142289999996205 a001 3278735159921/16692641*1860498^(1/15) 5142289999996205 a001 16261460067385/31622993 5142289999996205 a001 9227465/7881196*141422324^(9/13) 5142289999996205 a001 139583862445/228826127*4870847^(7/16) 5142289999996205 a001 182717648081/299537289*4870847^(7/16) 5142289999996205 a001 956722026041/1568397607*4870847^(7/16) 5142289999996205 a001 2504730781961/4106118243*4870847^(7/16) 5142289999996205 a001 3278735159921/5374978561*4870847^(7/16) 5142289999996205 a001 10610209857723/17393796001*4870847^(7/16) 5142289999996205 a001 4052739537881/6643838879*4870847^(7/16) 5142289999996205 a001 1134903780/1860499*4870847^(7/16) 5142289999996205 a001 591286729879/969323029*4870847^(7/16) 5142289999996205 a001 225851433717/370248451*4870847^(7/16) 5142289999996205 a001 9227465/7881196*2537720636^(3/5) 5142289999996205 a001 9227465/7881196*45537549124^(9/17) 5142289999996205 a001 9227465/7881196*817138163596^(9/19) 5142289999996205 a001 9227465/7881196*14662949395604^(3/7) 5142289999996205 a001 3524578/20633239*(1/2+1/2*5^(1/2))^31 5142289999996205 a001 9227465/7881196*(1/2+1/2*5^(1/2))^27 5142289999996205 a001 3524578/20633239*9062201101803^(1/2) 5142289999996205 a001 9227465/7881196*192900153618^(1/2) 5142289999996205 a001 9227465/7881196*10749957122^(9/16) 5142289999996205 a001 9227465/7881196*599074578^(9/14) 5142289999996205 a001 21566892818/35355581*4870847^(7/16) 5142289999996206 a001 1201881744/1970299*12752043^(7/17) 5142289999996207 a001 387002188980/1970299*4870847^(1/16) 5142289999996207 a001 32951280099/54018521*4870847^(7/16) 5142289999996208 a001 1836311903/7881196*12752043^(8/17) 5142289999996209 a001 9227465/7881196*33385282^(3/4) 5142289999996209 a001 567451585/3940598*12752043^(1/2) 5142289999996210 a001 3524667/39604*12752043^(9/17) 5142289999996211 a001 10610209857723/54018521*1860498^(1/15) 5142289999996212 a001 66978574/1970299*12752043^(10/17) 5142289999996213 a001 3732588/1970299*12752043^(13/17) 5142289999996213 a001 102334155/7881196*12752043^(11/17) 5142289999996214 a001 7778742049/33385282*4870847^(1/2) 5142289999996214 a001 433494437/12752043*4870847^(5/8) 5142289999996215 a001 39088169/7881196*12752043^(12/17) 5142289999996217 a001 1144206275/1875749*4870847^(7/16) 5142289999996218 a001 20365011074/87403803*4870847^(1/2) 5142289999996218 a001 1762289/16692641*12752043^(16/17) 5142289999996218 a001 53316291173/228826127*4870847^(1/2) 5142289999996219 a001 139583862445/599074578*4870847^(1/2) 5142289999996219 a001 365435296162/1568397607*4870847^(1/2) 5142289999996219 a001 956722026041/4106118243*4870847^(1/2) 5142289999996219 a001 2504730781961/10749957122*4870847^(1/2) 5142289999996219 a001 6557470319842/28143753123*4870847^(1/2) 5142289999996219 a001 10610209857723/45537549124*4870847^(1/2) 5142289999996219 a001 4052739537881/17393796001*4870847^(1/2) 5142289999996219 a001 1548008755920/6643838879*4870847^(1/2) 5142289999996219 a001 591286729879/2537720636*4870847^(1/2) 5142289999996219 a001 225851433717/969323029*4870847^(1/2) 5142289999996219 a001 86267571272/370248451*4870847^(1/2) 5142289999996219 a001 63246219/271444*4870847^(1/2) 5142289999996220 a001 591286729879/7881196*4870847^(1/8) 5142289999996220 a001 12586269025/54018521*4870847^(1/2) 5142289999996221 a001 4052739537881/20633239*1860498^(1/15) 5142289999996227 a001 516002918640/4250681*1860498^(1/10) 5142289999996227 a001 2971215073/33385282*4870847^(9/16) 5142289999996228 a001 165580141/12752043*4870847^(11/16) 5142289999996231 a001 4807526976/20633239*4870847^(1/2) 5142289999996231 a001 7778742049/87403803*4870847^(9/16) 5142289999996232 a001 20365011074/228826127*4870847^(9/16) 5142289999996232 a001 53316291173/599074578*4870847^(9/16) 5142289999996232 a001 139583862445/1568397607*4870847^(9/16) 5142289999996232 a001 365435296162/4106118243*4870847^(9/16) 5142289999996232 a001 956722026041/10749957122*4870847^(9/16) 5142289999996232 a001 2504730781961/28143753123*4870847^(9/16) 5142289999996232 a001 6557470319842/73681302247*4870847^(9/16) 5142289999996232 a001 10610209857723/119218851371*4870847^(9/16) 5142289999996232 a001 4052739537881/45537549124*4870847^(9/16) 5142289999996232 a001 1548008755920/17393796001*4870847^(9/16) 5142289999996232 a001 591286729879/6643838879*4870847^(9/16) 5142289999996232 a001 225851433717/2537720636*4870847^(9/16) 5142289999996232 a001 86267571272/969323029*4870847^(9/16) 5142289999996232 a001 32951280099/370248451*4870847^(9/16) 5142289999996232 a001 12586269025/141422324*4870847^(9/16) 5142289999996234 a001 225851433717/7881196*4870847^(3/16) 5142289999996234 a001 4807526976/54018521*4870847^(9/16) 5142289999996241 a001 567451585/16692641*4870847^(5/8) 5142289999996241 a001 63245986/12752043*4870847^(3/4) 5142289999996244 a001 1836311903/20633239*4870847^(9/16) 5142289999996245 a001 2971215073/87403803*4870847^(5/8) 5142289999996246 a001 7778742049/228826127*4870847^(5/8) 5142289999996246 a001 10182505537/299537289*4870847^(5/8) 5142289999996246 a001 53316291173/1568397607*4870847^(5/8) 5142289999996246 a001 139583862445/4106118243*4870847^(5/8) 5142289999996246 a001 182717648081/5374978561*4870847^(5/8) 5142289999996246 a001 956722026041/28143753123*4870847^(5/8) 5142289999996246 a001 2504730781961/73681302247*4870847^(5/8) 5142289999996246 a001 3278735159921/96450076809*4870847^(5/8) 5142289999996246 a001 10610209857723/312119004989*4870847^(5/8) 5142289999996246 a001 4052739537881/119218851371*4870847^(5/8) 5142289999996246 a001 387002188980/11384387281*4870847^(5/8) 5142289999996246 a001 591286729879/17393796001*4870847^(5/8) 5142289999996246 a001 225851433717/6643838879*4870847^(5/8) 5142289999996246 a001 1135099622/33391061*4870847^(5/8) 5142289999996246 a001 32951280099/969323029*4870847^(5/8) 5142289999996246 a001 12586269025/370248451*4870847^(5/8) 5142289999996246 a001 1201881744/35355581*4870847^(5/8) 5142289999996247 a001 21566892818/1970299*4870847^(1/4) 5142289999996247 a001 1836311903/54018521*4870847^(5/8) 5142289999996254 a001 4052739537881/33385282*1860498^(1/10) 5142289999996255 a001 433494437/33385282*4870847^(11/16) 5142289999996256 a001 24157817/12752043*4870847^(13/16) 5142289999996258 a001 701408733/20633239*4870847^(5/8) 5142289999996258 a001 3536736619241/29134601*1860498^(1/10) 5142289999996259 a001 1134903170/87403803*4870847^(11/16) 5142289999996259 a001 2971215073/228826127*4870847^(11/16) 5142289999996259 a001 7778742049/599074578*4870847^(11/16) 5142289999996259 a001 20365011074/1568397607*4870847^(11/16) 5142289999996259 a001 53316291173/4106118243*4870847^(11/16) 5142289999996259 a001 139583862445/10749957122*4870847^(11/16) 5142289999996259 a001 365435296162/28143753123*4870847^(11/16) 5142289999996259 a001 956722026041/73681302247*4870847^(11/16) 5142289999996259 a001 2504730781961/192900153618*4870847^(11/16) 5142289999996259 a001 10610209857723/817138163596*4870847^(11/16) 5142289999996259 a001 4052739537881/312119004989*4870847^(11/16) 5142289999996259 a001 1548008755920/119218851371*4870847^(11/16) 5142289999996259 a001 591286729879/45537549124*4870847^(11/16) 5142289999996259 a001 7787980473/599786069*4870847^(11/16) 5142289999996259 a001 86267571272/6643838879*4870847^(11/16) 5142289999996259 a001 32951280099/2537720636*4870847^(11/16) 5142289999996259 a001 12586269025/969323029*4870847^(11/16) 5142289999996259 a001 4807526976/370248451*4870847^(11/16) 5142289999996259 a001 1836311903/141422324*4870847^(11/16) 5142289999996261 a001 6557470319842/54018521*1860498^(1/10) 5142289999996261 a001 32951280099/7881196*4870847^(5/16) 5142289999996261 a001 701408733/54018521*4870847^(11/16) 5142289999996268 a001 165580141/33385282*4870847^(3/4) 5142289999996271 a001 2504730781961/20633239*1860498^(1/10) 5142289999996271 a001 9238424/711491*4870847^(11/16) 5142289999996272 a001 433494437/87403803*4870847^(3/4) 5142289999996273 a001 1134903170/228826127*4870847^(3/4) 5142289999996273 a001 2971215073/599074578*4870847^(3/4) 5142289999996273 a001 7778742049/1568397607*4870847^(3/4) 5142289999996273 a001 20365011074/4106118243*4870847^(3/4) 5142289999996273 a001 53316291173/10749957122*4870847^(3/4) 5142289999996273 a001 139583862445/28143753123*4870847^(3/4) 5142289999996273 a001 365435296162/73681302247*4870847^(3/4) 5142289999996273 a001 956722026041/192900153618*4870847^(3/4) 5142289999996273 a001 2504730781961/505019158607*4870847^(3/4) 5142289999996273 a001 10610209857723/2139295485799*4870847^(3/4) 5142289999996273 a001 4052739537881/817138163596*4870847^(3/4) 5142289999996273 a001 140728068720/28374454999*4870847^(3/4) 5142289999996273 a001 591286729879/119218851371*4870847^(3/4) 5142289999996273 a001 225851433717/45537549124*4870847^(3/4) 5142289999996273 a001 86267571272/17393796001*4870847^(3/4) 5142289999996273 a001 32951280099/6643838879*4870847^(3/4) 5142289999996273 a001 1144206275/230701876*4870847^(3/4) 5142289999996273 a001 4807526976/969323029*4870847^(3/4) 5142289999996273 a001 1836311903/370248451*4870847^(3/4) 5142289999996273 a001 701408733/141422324*4870847^(3/4) 5142289999996274 a001 12422650078084/24157817 5142289999996274 a001 12586269025/7881196*4870847^(3/8) 5142289999996274 a001 267914296/54018521*4870847^(3/4) 5142289999996276 a001 1762289/3940598*(1/2+1/2*5^(1/2))^29 5142289999996276 a001 1762289/3940598*1322157322203^(1/2) 5142289999996277 a001 956722026041/12752043*1860498^(2/15) 5142289999996280 a001 9227465/12752043*4870847^(7/8) 5142289999996282 a001 31622993/16692641*4870847^(13/16) 5142289999996285 a001 9303105/1875749*4870847^(3/4) 5142289999996286 a001 165580141/87403803*4870847^(13/16) 5142289999996286 a001 433494437/228826127*4870847^(13/16) 5142289999996286 a001 567451585/299537289*4870847^(13/16) 5142289999996286 a001 2971215073/1568397607*4870847^(13/16) 5142289999996286 a001 7778742049/4106118243*4870847^(13/16) 5142289999996286 a001 10182505537/5374978561*4870847^(13/16) 5142289999996286 a001 53316291173/28143753123*4870847^(13/16) 5142289999996286 a001 139583862445/73681302247*4870847^(13/16) 5142289999996286 a001 182717648081/96450076809*4870847^(13/16) 5142289999996286 a001 956722026041/505019158607*4870847^(13/16) 5142289999996286 a001 10610209857723/5600748293801*4870847^(13/16) 5142289999996286 a001 591286729879/312119004989*4870847^(13/16) 5142289999996286 a001 225851433717/119218851371*4870847^(13/16) 5142289999996286 a001 21566892818/11384387281*4870847^(13/16) 5142289999996286 a001 32951280099/17393796001*4870847^(13/16) 5142289999996286 a001 12586269025/6643838879*4870847^(13/16) 5142289999996286 a001 1201881744/634430159*4870847^(13/16) 5142289999996286 a001 1836311903/969323029*4870847^(13/16) 5142289999996286 a001 701408733/370248451*4870847^(13/16) 5142289999996287 a001 66978574/35355581*4870847^(13/16) 5142289999996288 a001 1201881744/1970299*4870847^(7/16) 5142289999996288 a001 102334155/54018521*4870847^(13/16) 5142289999996290 a001 53316291173/4870847*1860498^(4/15) 5142289999996292 a001 387002188980/1970299*1860498^(1/15) 5142289999996294 a001 5702887/20633239*4870847^(15/16) 5142289999996297 a001 24157817/33385282*4870847^(7/8) 5142289999996298 a001 39088169/20633239*4870847^(13/16) 5142289999996299 a001 63245986/87403803*4870847^(7/8) 5142289999996300 a001 165580141/228826127*4870847^(7/8) 5142289999996300 a001 433494437/599074578*4870847^(7/8) 5142289999996300 a001 1134903170/1568397607*4870847^(7/8) 5142289999996300 a001 2971215073/4106118243*4870847^(7/8) 5142289999996300 a001 7778742049/10749957122*4870847^(7/8) 5142289999996300 a001 20365011074/28143753123*4870847^(7/8) 5142289999996300 a001 53316291173/73681302247*4870847^(7/8) 5142289999996300 a001 139583862445/192900153618*4870847^(7/8) 5142289999996300 a001 10610209857723/14662949395604*4870847^(7/8) 5142289999996300 a001 591286729879/817138163596*4870847^(7/8) 5142289999996300 a001 225851433717/312119004989*4870847^(7/8) 5142289999996300 a001 86267571272/119218851371*4870847^(7/8) 5142289999996300 a001 32951280099/45537549124*4870847^(7/8) 5142289999996300 a001 12586269025/17393796001*4870847^(7/8) 5142289999996300 a001 4807526976/6643838879*4870847^(7/8) 5142289999996300 a001 1836311903/2537720636*4870847^(7/8) 5142289999996300 a001 701408733/969323029*4870847^(7/8) 5142289999996300 a001 267914296/370248451*4870847^(7/8) 5142289999996300 a001 102334155/141422324*4870847^(7/8) 5142289999996301 a001 39088169/54018521*4870847^(7/8) 5142289999996301 a001 1836311903/7881196*4870847^(1/2) 5142289999996304 a001 2504730781961/33385282*1860498^(2/15) 5142289999996307 a001 14930352/20633239*4870847^(7/8) 5142289999996308 a001 6557470319842/87403803*1860498^(2/15) 5142289999996309 a001 10610209857723/141422324*1860498^(2/15) 5142289999996310 a001 4052739537881/54018521*1860498^(2/15) 5142289999996311 a001 14930352/54018521*4870847^(15/16) 5142289999996313 a001 39088169/141422324*4870847^(15/16) 5142289999996313 a001 102334155/370248451*4870847^(15/16) 5142289999996313 a001 267914296/969323029*4870847^(15/16) 5142289999996313 a001 701408733/2537720636*4870847^(15/16) 5142289999996313 a001 1836311903/6643838879*4870847^(15/16) 5142289999996313 a001 4807526976/17393796001*4870847^(15/16) 5142289999996313 a001 12586269025/45537549124*4870847^(15/16) 5142289999996313 a001 32951280099/119218851371*4870847^(15/16) 5142289999996313 a001 86267571272/312119004989*4870847^(15/16) 5142289999996313 a001 225851433717/817138163596*4870847^(15/16) 5142289999996313 a001 1548008755920/5600748293801*4870847^(15/16) 5142289999996313 a001 139583862445/505019158607*4870847^(15/16) 5142289999996313 a001 53316291173/192900153618*4870847^(15/16) 5142289999996313 a001 20365011074/73681302247*4870847^(15/16) 5142289999996313 a001 7778742049/28143753123*4870847^(15/16) 5142289999996313 a001 2971215073/10749957122*4870847^(15/16) 5142289999996313 a001 1134903170/4106118243*4870847^(15/16) 5142289999996313 a001 433494437/1568397607*4870847^(15/16) 5142289999996313 a001 165580141/599074578*4870847^(15/16) 5142289999996314 a001 63245986/228826127*4870847^(15/16) 5142289999996314 a001 24157817/87403803*4870847^(15/16) 5142289999996315 a001 3524667/39604*4870847^(9/16) 5142289999996320 a001 140728068720/1875749*1860498^(2/15) 5142289999996321 a001 9227465/33385282*4870847^(15/16) 5142289999996326 a001 591286729879/12752043*1860498^(1/6) 5142289999996327 a001 2/2178309*(1/2+1/2*5^(1/2))^61 5142289999996328 a001 66978574/1970299*4870847^(5/8) 5142289999996339 a001 32951280099/4870847*1860498^(3/10) 5142289999996342 a001 956722026041/7881196*1860498^(1/10) 5142289999996342 a001 102334155/7881196*4870847^(11/16) 5142289999996351 a001 5702887/7881196*4870847^(7/8) 5142289999996353 a001 774004377960/16692641*1860498^(1/6) 5142289999996355 a001 39088169/7881196*4870847^(3/4) 5142289999996357 a001 4052739537881/87403803*1860498^(1/6) 5142289999996358 a001 225749145909/4868641*1860498^(1/6) 5142289999996358 a001 3278735159921/70711162*1860498^(1/6) 5142289999996360 a001 2504730781961/54018521*1860498^(1/6) 5142289999996364 a001 3732588/1970299*4870847^(13/16) 5142289999996365 a001 3524578/12752043*4870847^(15/16) 5142289999996370 a001 956722026041/20633239*1860498^(1/6) 5142289999996376 a001 365435296162/12752043*1860498^(1/5) 5142289999996386 a001 1346269/4870847*7881196^(10/11) 5142289999996389 a001 20365011074/4870847*1860498^(1/3) 5142289999996391 a001 591286729879/7881196*1860498^(2/15) 5142289999996403 a001 956722026041/33385282*1860498^(1/5) 5142289999996407 a001 2504730781961/87403803*1860498^(1/5) 5142289999996407 a001 6557470319842/228826127*1860498^(1/5) 5142289999996407 a001 10610209857723/370248451*1860498^(1/5) 5142289999996408 a001 4052739537881/141422324*1860498^(1/5) 5142289999996409 a001 1548008755920/54018521*1860498^(1/5) 5142289999996419 a001 591286729879/20633239*1860498^(1/5) 5142289999996441 a001 182717648081/3940598*1860498^(1/6) 5142289999996451 a001 1346269/4870847*20633239^(6/7) 5142289999996451 a001 2178309/3010349*20633239^(4/5) 5142289999996461 a001 1346269/4870847*141422324^(10/13) 5142289999996461 a001 1346269/4870847*2537720636^(2/3) 5142289999996461 a001 2178309/3010349*17393796001^(4/7) 5142289999996461 a001 1346269/4870847*45537549124^(10/17) 5142289999996461 a001 1346269/4870847*312119004989^(6/11) 5142289999996461 a001 1346269/4870847*14662949395604^(10/21) 5142289999996461 a001 1346269/4870847*(1/2+1/2*5^(1/2))^30 5142289999996461 a001 2178309/3010349*(1/2+1/2*5^(1/2))^28 5142289999996461 a001 2178309/3010349*505019158607^(1/2) 5142289999996461 a001 1346269/4870847*192900153618^(5/9) 5142289999996461 a001 2178309/3010349*73681302247^(7/13) 5142289999996461 a001 1346269/4870847*28143753123^(3/5) 5142289999996461 a001 2178309/3010349*10749957122^(7/12) 5142289999996461 a001 1346269/4870847*10749957122^(5/8) 5142289999996461 a001 2178309/3010349*4106118243^(14/23) 5142289999996461 a001 1346269/4870847*4106118243^(15/23) 5142289999996461 a001 2178309/3010349*1568397607^(7/11) 5142289999996461 a001 1346269/4870847*1568397607^(15/22) 5142289999996461 a001 2178309/3010349*599074578^(2/3) 5142289999996461 a001 1346269/4870847*599074578^(5/7) 5142289999996461 a001 2178309/3010349*228826127^(7/10) 5142289999996461 a001 1346269/4870847*228826127^(3/4) 5142289999996461 a001 2178309/3010349*87403803^(14/19) 5142289999996461 a001 1346269/4870847*87403803^(15/19) 5142289999996464 a001 2178309/3010349*33385282^(7/9) 5142289999996465 a001 1346269/4870847*33385282^(5/6) 5142289999996475 a001 139583862445/12752043*1860498^(4/15) 5142289999996487 a001 2178309/3010349*12752043^(14/17) 5142289999996488 a001 7778742049/4870847*1860498^(2/5) 5142289999996489 a001 1346269/4870847*12752043^(15/17) 5142289999996490 a001 225851433717/7881196*1860498^(1/5) 5142289999996493 a001 2932589879121/5702887 5142289999996502 a001 182717648081/16692641*1860498^(4/15) 5142289999996506 a001 956722026041/87403803*1860498^(4/15) 5142289999996506 a001 2504730781961/228826127*1860498^(4/15) 5142289999996506 a001 3278735159921/299537289*1860498^(4/15) 5142289999996506 a001 10610209857723/969323029*1860498^(4/15) 5142289999996506 a001 4052739537881/370248451*1860498^(4/15) 5142289999996507 a001 387002188980/35355581*1860498^(4/15) 5142289999996508 a001 591286729879/54018521*1860498^(4/15) 5142289999996518 a001 7787980473/711491*1860498^(4/15) 5142289999996524 a001 86267571272/12752043*1860498^(3/10) 5142289999996551 a001 32264490531/4769326*1860498^(3/10) 5142289999996555 a001 591286729879/87403803*1860498^(3/10) 5142289999996556 a001 1548008755920/228826127*1860498^(3/10) 5142289999996556 a001 4052739537881/599074578*1860498^(3/10) 5142289999996556 a001 1515744265389/224056801*1860498^(3/10) 5142289999996556 a001 6557470319842/969323029*1860498^(3/10) 5142289999996556 a001 2504730781961/370248451*1860498^(3/10) 5142289999996556 a001 956722026041/141422324*1860498^(3/10) 5142289999996558 a001 365435296162/54018521*1860498^(3/10) 5142289999996568 a001 139583862445/20633239*1860498^(3/10) 5142289999996574 a001 53316291173/12752043*1860498^(1/3) 5142289999996579 a001 1346269/1860498*1860498^(14/15) 5142289999996587 a001 2971215073/4870847*1860498^(7/15) 5142289999996589 a001 21566892818/1970299*1860498^(4/15) 5142289999996601 a001 139583862445/33385282*1860498^(1/3) 5142289999996605 a001 365435296162/87403803*1860498^(1/3) 5142289999996605 a001 956722026041/228826127*1860498^(1/3) 5142289999996605 a001 2504730781961/599074578*1860498^(1/3) 5142289999996605 a001 6557470319842/1568397607*1860498^(1/3) 5142289999996605 a001 10610209857723/2537720636*1860498^(1/3) 5142289999996605 a001 4052739537881/969323029*1860498^(1/3) 5142289999996605 a001 1548008755920/370248451*1860498^(1/3) 5142289999996606 a001 591286729879/141422324*1860498^(1/3) 5142289999996607 a001 225851433717/54018521*1860498^(1/3) 5142289999996613 a001 14930352/3010349*7881196^(8/11) 5142289999996617 a001 86267571272/20633239*1860498^(1/3) 5142289999996621 a001 956722026041/4870847*710647^(1/14) 5142289999996622 a001 39088169/3010349*7881196^(2/3) 5142289999996625 a001 63245986/3010349*7881196^(7/11) 5142289999996632 a001 267914296/3010349*7881196^(6/11) 5142289999996636 a001 1836311903/4870847*1860498^(1/2) 5142289999996639 a001 53316291173/7881196*1860498^(3/10) 5142289999996640 a001 1134903170/3010349*7881196^(5/11) 5142289999996646 a001 5702887/3010349*141422324^(2/3) 5142289999996646 a001 1346269/12752043*(1/2+1/2*5^(1/2))^32 5142289999996646 a001 1346269/12752043*23725150497407^(1/2) 5142289999996646 a001 5702887/3010349*(1/2+1/2*5^(1/2))^26 5142289999996646 a001 1346269/12752043*505019158607^(4/7) 5142289999996646 a001 5702887/3010349*73681302247^(1/2) 5142289999996646 a001 1346269/12752043*73681302247^(8/13) 5142289999996646 a001 5702887/3010349*10749957122^(13/24) 5142289999996646 a001 1346269/12752043*10749957122^(2/3) 5142289999996646 a001 5702887/3010349*4106118243^(13/23) 5142289999996646 a001 1346269/12752043*4106118243^(16/23) 5142289999996646 a001 5702887/3010349*1568397607^(13/22) 5142289999996646 a001 1346269/12752043*1568397607^(8/11) 5142289999996646 a001 5702887/3010349*599074578^(13/21) 5142289999996646 a001 1346269/12752043*599074578^(16/21) 5142289999996646 a001 5702887/3010349*228826127^(13/20) 5142289999996646 a001 1346269/12752043*228826127^(4/5) 5142289999996646 a001 5702887/3010349*87403803^(13/19) 5142289999996647 a001 1346269/12752043*87403803^(16/19) 5142289999996648 a001 4807526976/3010349*7881196^(4/11) 5142289999996649 a001 5702887/3010349*33385282^(13/18) 5142289999996650 a001 7778742049/3010349*7881196^(1/3) 5142289999996650 a001 1346269/12752043*33385282^(8/9) 5142289999996651 a001 2178309/3010349*4870847^(7/8) 5142289999996651 a001 7677619978603/14930352 5142289999996655 a001 20365011074/3010349*7881196^(3/11) 5142289999996663 a001 86267571272/3010349*7881196^(2/11) 5142289999996664 a001 1346269/4870847*4870847^(15/16) 5142289999996665 a001 53316291173/710647*271443^(2/13) 5142289999996670 a001 365435296162/3010349*7881196^(1/11) 5142289999996670 a001 5702887/3010349*12752043^(13/17) 5142289999996671 a001 102334155/3010349*20633239^(4/7) 5142289999996671 a001 63245986/3010349*20633239^(3/5) 5142289999996672 a001 1134903170/3010349*20633239^(3/7) 5142289999996673 a001 1836311903/3010349*20633239^(2/5) 5142289999996673 a001 20365011074/12752043*1860498^(2/5) 5142289999996673 a001 14930352/3010349*141422324^(8/13) 5142289999996673 a001 14930352/3010349*2537720636^(8/15) 5142289999996673 a001 1346269/33385282*45537549124^(2/3) 5142289999996673 a001 14930352/3010349*45537549124^(8/17) 5142289999996673 a001 1346269/33385282*(1/2+1/2*5^(1/2))^34 5142289999996673 a001 14930352/3010349*14662949395604^(8/21) 5142289999996673 a001 14930352/3010349*(1/2+1/2*5^(1/2))^24 5142289999996673 a001 14930352/3010349*192900153618^(4/9) 5142289999996673 a001 14930352/3010349*73681302247^(6/13) 5142289999996673 a001 14930352/3010349*10749957122^(1/2) 5142289999996673 a001 1346269/33385282*10749957122^(17/24) 5142289999996673 a001 14930352/3010349*4106118243^(12/23) 5142289999996673 a001 1346269/33385282*4106118243^(17/23) 5142289999996673 a001 14930352/3010349*1568397607^(6/11) 5142289999996673 a001 1346269/33385282*1568397607^(17/22) 5142289999996673 a001 14930352/3010349*599074578^(4/7) 5142289999996673 a001 1346269/33385282*599074578^(17/21) 5142289999996673 a001 14930352/3010349*228826127^(3/5) 5142289999996673 a001 1346269/33385282*228826127^(17/20) 5142289999996673 a001 14930352/3010349*87403803^(12/19) 5142289999996674 a001 1346269/33385282*87403803^(17/19) 5142289999996674 a001 20100270056688/39088169 5142289999996674 a001 12586269025/3010349*20633239^(2/7) 5142289999996675 a001 53316291173/3010349*20633239^(1/5) 5142289999996676 a001 1346269/12752043*12752043^(16/17) 5142289999996676 a001 139583862445/3010349*20633239^(1/7) 5142289999996676 a001 14930352/3010349*33385282^(2/3) 5142289999996677 a001 1346269/87403803*141422324^(12/13) 5142289999996677 a001 1346269/87403803*2537720636^(4/5) 5142289999996677 a001 1346269/87403803*45537549124^(12/17) 5142289999996677 a001 1346269/87403803*14662949395604^(4/7) 5142289999996677 a001 39088169/3010349*(1/2+1/2*5^(1/2))^22 5142289999996677 a001 1346269/87403803*505019158607^(9/14) 5142289999996677 a001 1346269/87403803*192900153618^(2/3) 5142289999996677 a001 1346269/87403803*73681302247^(9/13) 5142289999996677 a001 39088169/3010349*10749957122^(11/24) 5142289999996677 a001 1346269/87403803*10749957122^(3/4) 5142289999996677 a001 39088169/3010349*4106118243^(11/23) 5142289999996677 a001 1346269/87403803*4106118243^(18/23) 5142289999996677 a001 39088169/3010349*1568397607^(1/2) 5142289999996677 a001 1346269/87403803*1568397607^(9/11) 5142289999996677 a001 39088169/3010349*599074578^(11/21) 5142289999996677 a001 1346269/87403803*599074578^(6/7) 5142289999996677 a001 39088169/3010349*228826127^(11/20) 5142289999996677 a001 1346269/87403803*228826127^(9/10) 5142289999996677 a001 52623190191461/102334155 5142289999996677 a001 39088169/3010349*87403803^(11/19) 5142289999996677 a001 1346269/33385282*33385282^(17/18) 5142289999996677 a001 267914296/3010349*141422324^(6/13) 5142289999996678 a001 102334155/3010349*2537720636^(4/9) 5142289999996678 a001 102334155/3010349*(1/2+1/2*5^(1/2))^20 5142289999996678 a001 102334155/3010349*23725150497407^(5/16) 5142289999996678 a001 102334155/3010349*505019158607^(5/14) 5142289999996678 a001 102334155/3010349*73681302247^(5/13) 5142289999996678 a001 102334155/3010349*28143753123^(2/5) 5142289999996678 a001 102334155/3010349*10749957122^(5/12) 5142289999996678 a001 1346269/228826127*10749957122^(19/24) 5142289999996678 a001 1134903170/3010349*141422324^(5/13) 5142289999996678 a001 102334155/3010349*4106118243^(10/23) 5142289999996678 a001 1346269/228826127*4106118243^(19/23) 5142289999996678 a001 102334155/3010349*1568397607^(5/11) 5142289999996678 a001 1346269/228826127*1568397607^(19/22) 5142289999996678 a001 102334155/3010349*599074578^(10/21) 5142289999996678 a001 2971215073/3010349*141422324^(1/3) 5142289999996678 a001 1346269/228826127*599074578^(19/21) 5142289999996678 a001 137769300517695/267914296 5142289999996678 a001 4807526976/3010349*141422324^(4/13) 5142289999996678 a001 20365011074/3010349*141422324^(3/13) 5142289999996678 a001 102334155/3010349*228826127^(1/2) 5142289999996678 a001 86267571272/3010349*141422324^(2/13) 5142289999996678 a001 1346269/87403803*87403803^(18/19) 5142289999996678 a001 365435296162/3010349*141422324^(1/13) 5142289999996678 a001 1346269/599074578*2537720636^(8/9) 5142289999996678 a001 267914296/3010349*2537720636^(2/5) 5142289999996678 a001 267914296/3010349*45537549124^(6/17) 5142289999996678 a001 1346269/599074578*312119004989^(8/11) 5142289999996678 a001 1346269/599074578*23725150497407^(5/8) 5142289999996678 a001 267914296/3010349*14662949395604^(2/7) 5142289999996678 a001 267914296/3010349*(1/2+1/2*5^(1/2))^18 5142289999996678 a001 267914296/3010349*192900153618^(1/3) 5142289999996678 a001 1346269/599074578*73681302247^(10/13) 5142289999996678 a001 1346269/599074578*28143753123^(4/5) 5142289999996678 a001 267914296/3010349*10749957122^(3/8) 5142289999996678 a001 1346269/599074578*10749957122^(5/6) 5142289999996678 a001 267914296/3010349*4106118243^(9/23) 5142289999996678 a001 1346269/599074578*4106118243^(20/23) 5142289999996678 a001 267914296/3010349*1568397607^(9/22) 5142289999996678 a001 1346269/599074578*1568397607^(10/11) 5142289999996678 a001 360684711361624/701408733 5142289999996678 a001 267914296/3010349*599074578^(3/7) 5142289999996678 a001 1346269/228826127*228826127^(19/20) 5142289999996678 a001 1346269/1568397607*2537720636^(14/15) 5142289999996678 a001 1346269/1568397607*17393796001^(6/7) 5142289999996678 a001 1346269/1568397607*45537549124^(14/17) 5142289999996678 a001 1346269/1568397607*817138163596^(14/19) 5142289999996678 a001 1346269/1568397607*14662949395604^(2/3) 5142289999996678 a001 701408733/3010349*(1/2+1/2*5^(1/2))^16 5142289999996678 a001 701408733/3010349*23725150497407^(1/4) 5142289999996678 a001 1346269/1568397607*505019158607^(3/4) 5142289999996678 a001 1346269/1568397607*192900153618^(7/9) 5142289999996678 a001 701408733/3010349*73681302247^(4/13) 5142289999996678 a001 701408733/3010349*10749957122^(1/3) 5142289999996678 a001 1346269/1568397607*10749957122^(7/8) 5142289999996678 a001 701408733/3010349*4106118243^(8/23) 5142289999996678 a001 1346269/1568397607*4106118243^(21/23) 5142289999996678 a001 944284833567177/1836311903 5142289999996678 a001 701408733/3010349*1568397607^(4/11) 5142289999996678 a001 1346269/599074578*599074578^(20/21) 5142289999996678 a001 1836311903/3010349*17393796001^(2/7) 5142289999996678 a001 1346269/4106118243*312119004989^(4/5) 5142289999996678 a001 1346269/4106118243*23725150497407^(11/16) 5142289999996678 a001 1836311903/3010349*14662949395604^(2/9) 5142289999996678 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^14 5142289999996678 a001 1836311903/3010349*505019158607^(1/4) 5142289999996678 a001 1346269/4106118243*73681302247^(11/13) 5142289999996678 a001 1836311903/3010349*10749957122^(7/24) 5142289999996678 a001 1346269/4106118243*10749957122^(11/12) 5142289999996678 a001 2472169789339907/4807526976 5142289999996678 a001 4807526976/3010349*2537720636^(4/15) 5142289999996678 a001 1836311903/3010349*4106118243^(7/23) 5142289999996678 a001 12586269025/3010349*2537720636^(2/9) 5142289999996678 a001 20365011074/3010349*2537720636^(1/5) 5142289999996678 a001 86267571272/3010349*2537720636^(2/15) 5142289999996678 a001 1346269/1568397607*1568397607^(21/22) 5142289999996678 a001 139583862445/3010349*2537720636^(1/9) 5142289999996678 a001 365435296162/3010349*2537720636^(1/15) 5142289999996678 a001 4807526976/3010349*45537549124^(4/17) 5142289999996678 a001 4807526976/3010349*817138163596^(4/19) 5142289999996678 a001 4807526976/3010349*14662949395604^(4/21) 5142289999996678 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^12 5142289999996678 a001 4807526976/3010349*192900153618^(2/9) 5142289999996678 a001 4807526976/3010349*73681302247^(3/13) 5142289999996678 a001 6472224534452544/12586269025 5142289999996678 a001 4807526976/3010349*10749957122^(1/4) 5142289999996678 a001 1346269/4106118243*4106118243^(22/23) 5142289999996678 a001 1346269/28143753123*45537549124^(16/17) 5142289999996678 a001 12586269025/3010349*312119004989^(2/11) 5142289999996678 a001 1346269/28143753123*14662949395604^(16/21) 5142289999996678 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^10 5142289999996678 a001 1346269/28143753123*192900153618^(8/9) 5142289999996678 a001 1346269/28143753123*73681302247^(12/13) 5142289999996678 a001 16944503814017725/32951280099 5142289999996678 a001 12586269025/3010349*28143753123^(1/5) 5142289999996678 a001 53316291173/3010349*17393796001^(1/7) 5142289999996678 a001 1346269/10749957122*10749957122^(23/24) 5142289999996678 a001 1346269/73681302247*312119004989^(10/11) 5142289999996678 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^8 5142289999996678 a001 32951280099/3010349*23725150497407^(1/8) 5142289999996678 a001 1346269/73681302247*3461452808002^(5/6) 5142289999996678 a001 32951280099/3010349*505019158607^(1/7) 5142289999996678 a001 44361286907600631/86267571272 5142289999996678 a001 32951280099/3010349*73681302247^(2/13) 5142289999996678 a001 86267571272/3010349*45537549124^(2/17) 5142289999996678 a001 1346269/192900153618*23725150497407^(13/16) 5142289999996678 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^6 5142289999996678 a001 365435296162/3010349*45537549124^(1/17) 5142289999996678 a001 116139356908784168/225851433717 5142289999996678 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^4 5142289999996678 a001 225851433717/3010349*23725150497407^(1/16) 5142289999996678 a001 1346269/1322157322203*14662949395604^(8/9) 5142289999996678 a006 5^(1/2)*Fibonacci(60)/Lucas(31)/sqrt(5) 5142289999996678 a001 1346269/9062201101803*14662949395604^(20/21) 5142289999996678 a001 1288005205276191029/2504730781961 5142289999996678 a001 1346269/817138163596*3461452808002^(11/12) 5142289999996678 a001 187917426909967705/365435296162 5142289999996678 a001 139583862445/3010349*312119004989^(1/11) 5142289999996678 a001 225851433717/3010349*73681302247^(1/13) 5142289999996678 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^5 5142289999996678 a001 71778070001183537/139583862445 5142289999996678 a001 1346269/119218851371*817138163596^(17/19) 5142289999996678 a001 1346269/119218851371*14662949395604^(17/21) 5142289999996678 a001 53316291173/3010349*14662949395604^(1/9) 5142289999996678 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^7 5142289999996678 a001 1346269/119218851371*192900153618^(17/18) 5142289999996678 a001 139583862445/3010349*28143753123^(1/10) 5142289999996678 a001 591286729879/3010349*10749957122^(1/24) 5142289999996678 a001 20365011074/3010349*45537549124^(3/17) 5142289999996678 a001 27416783093582906/53316291173 5142289999996678 a001 1346269/45537549124*14662949395604^(7/9) 5142289999996678 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^9 5142289999996678 a001 1346269/45537549124*505019158607^(7/8) 5142289999996678 a001 20365011074/3010349*192900153618^(1/6) 5142289999996678 a001 12586269025/3010349*10749957122^(5/24) 5142289999996678 a001 365435296162/3010349*10749957122^(1/16) 5142289999996678 a001 225851433717/3010349*10749957122^(1/12) 5142289999996678 a001 86267571272/3010349*10749957122^(1/8) 5142289999996678 a001 32951280099/3010349*10749957122^(1/6) 5142289999996678 a001 20365011074/3010349*10749957122^(3/16) 5142289999996678 a001 591286729879/3010349*4106118243^(1/23) 5142289999996678 a001 10472279279565181/20365011074 5142289999996678 a001 7778742049/3010349*312119004989^(1/5) 5142289999996678 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^11 5142289999996678 a001 225851433717/3010349*4106118243^(2/23) 5142289999996678 a001 4807526976/3010349*4106118243^(6/23) 5142289999996678 a001 86267571272/3010349*4106118243^(3/23) 5142289999996678 a001 32951280099/3010349*4106118243^(4/23) 5142289999996678 a001 12586269025/3010349*4106118243^(5/23) 5142289999996678 a001 591286729879/3010349*1568397607^(1/22) 5142289999996678 a001 4000054745112637/7778742049 5142289999996678 a001 1346269/6643838879*45537549124^(15/17) 5142289999996678 a001 1346269/6643838879*312119004989^(9/11) 5142289999996678 a001 1346269/6643838879*14662949395604^(5/7) 5142289999996678 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^13 5142289999996678 a001 1346269/6643838879*192900153618^(5/6) 5142289999996678 a001 2971215073/3010349*73681302247^(1/4) 5142289999996678 a001 1346269/6643838879*28143753123^(9/10) 5142289999996678 a001 1346269/6643838879*10749957122^(15/16) 5142289999996678 a001 225851433717/3010349*1568397607^(1/11) 5142289999996678 a001 86267571272/3010349*1568397607^(3/22) 5142289999996678 a001 1836311903/3010349*1568397607^(7/22) 5142289999996678 a001 32951280099/3010349*1568397607^(2/11) 5142289999996678 a001 12586269025/3010349*1568397607^(5/22) 5142289999996678 a001 4807526976/3010349*1568397607^(3/11) 5142289999996678 a001 1134903170/3010349*2537720636^(1/3) 5142289999996678 a001 7778742049/3010349*1568397607^(1/4) 5142289999996678 a001 1527884955772730/2971215073 5142289999996678 a001 591286729879/3010349*599074578^(1/21) 5142289999996678 a001 1134903170/3010349*45537549124^(5/17) 5142289999996678 a001 1134903170/3010349*312119004989^(3/11) 5142289999996678 a001 1134903170/3010349*14662949395604^(5/21) 5142289999996678 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^15 5142289999996678 a001 1134903170/3010349*192900153618^(5/18) 5142289999996678 a001 1134903170/3010349*28143753123^(3/10) 5142289999996678 a001 1134903170/3010349*10749957122^(5/16) 5142289999996678 a001 365435296162/3010349*599074578^(1/14) 5142289999996678 a001 225851433717/3010349*599074578^(2/21) 5142289999996678 a001 86267571272/3010349*599074578^(1/7) 5142289999996678 a001 53316291173/3010349*599074578^(1/6) 5142289999996678 a001 32951280099/3010349*599074578^(4/21) 5142289999996678 a001 20365011074/3010349*599074578^(3/14) 5142289999996678 a001 701408733/3010349*599074578^(8/21) 5142289999996678 a001 12586269025/3010349*599074578^(5/21) 5142289999996678 a001 4807526976/3010349*599074578^(2/7) 5142289999996678 a001 1836311903/3010349*599074578^(1/3) 5142289999996678 a001 583600122205553/1134903170 5142289999996678 a001 591286729879/3010349*228826127^(1/20) 5142289999996678 a001 433494437/3010349*45537549124^(1/3) 5142289999996678 a001 433494437/3010349*(1/2+1/2*5^(1/2))^17 5142289999996678 a001 1134903170/3010349*599074578^(5/14) 5142289999996678 a001 225851433717/3010349*228826127^(1/10) 5142289999996678 a001 139583862445/3010349*228826127^(1/8) 5142289999996678 a001 86267571272/3010349*228826127^(3/20) 5142289999996678 a001 32951280099/3010349*228826127^(1/5) 5142289999996678 a001 12586269025/3010349*228826127^(1/4) 5142289999996678 a001 4807526976/3010349*228826127^(3/10) 5142289999996678 a001 267914296/3010349*228826127^(9/20) 5142289999996678 a001 222915410843929/433494437 5142289999996678 a001 1836311903/3010349*228826127^(7/20) 5142289999996678 a001 591286729879/3010349*87403803^(1/19) 5142289999996678 a001 1346269/370248451*2537720636^(13/15) 5142289999996678 a001 701408733/3010349*228826127^(2/5) 5142289999996678 a001 1346269/370248451*45537549124^(13/17) 5142289999996678 a001 165580141/3010349*817138163596^(1/3) 5142289999996678 a001 1346269/370248451*14662949395604^(13/21) 5142289999996678 a001 165580141/3010349*(1/2+1/2*5^(1/2))^19 5142289999996678 a001 1346269/370248451*192900153618^(13/18) 5142289999996678 a001 1346269/370248451*73681302247^(3/4) 5142289999996678 a001 1346269/370248451*10749957122^(13/16) 5142289999996678 a001 1134903170/3010349*228826127^(3/8) 5142289999996678 a001 1346269/370248451*599074578^(13/14) 5142289999996678 a001 225851433717/3010349*87403803^(2/19) 5142289999996678 a001 86267571272/3010349*87403803^(3/19) 5142289999996678 a001 63245986/3010349*141422324^(7/13) 5142289999996678 a001 32951280099/3010349*87403803^(4/19) 5142289999996678 a001 12586269025/3010349*87403803^(5/19) 5142289999996678 a001 4807526976/3010349*87403803^(6/19) 5142289999996678 a001 85146110326234/165580141 5142289999996678 a001 1836311903/3010349*87403803^(7/19) 5142289999996678 a001 102334155/3010349*87403803^(10/19) 5142289999996678 a001 591286729879/3010349*33385282^(1/18) 5142289999996678 a001 63245986/3010349*2537720636^(7/15) 5142289999996678 a001 63245986/3010349*17393796001^(3/7) 5142289999996678 a001 63245986/3010349*45537549124^(7/17) 5142289999996678 a001 63245986/3010349*14662949395604^(1/3) 5142289999996678 a001 63245986/3010349*(1/2+1/2*5^(1/2))^21 5142289999996678 a001 63245986/3010349*192900153618^(7/18) 5142289999996678 a001 63245986/3010349*10749957122^(7/16) 5142289999996678 a001 63245986/3010349*599074578^(1/2) 5142289999996678 a001 701408733/3010349*87403803^(8/19) 5142289999996678 a001 267914296/3010349*87403803^(9/19) 5142289999996678 a001 165580141/3010349*87403803^(1/2) 5142289999996678 a001 365435296162/3010349*33385282^(1/12) 5142289999996678 a001 225851433717/3010349*33385282^(1/9) 5142289999996678 a001 86267571272/3010349*33385282^(1/6) 5142289999996679 a001 32951280099/3010349*33385282^(2/9) 5142289999996679 a001 20365011074/3010349*33385282^(1/4) 5142289999996679 a001 12586269025/3010349*33385282^(5/18) 5142289999996679 a001 32522920134773/63245986 5142289999996679 a001 4807526976/3010349*33385282^(1/3) 5142289999996679 a001 1346269/54018521*2537720636^(7/9) 5142289999996679 a001 1346269/54018521*17393796001^(5/7) 5142289999996679 a001 1346269/54018521*312119004989^(7/11) 5142289999996679 a001 1346269/54018521*14662949395604^(5/9) 5142289999996679 a001 24157817/3010349*(1/2+1/2*5^(1/2))^23 5142289999996679 a001 1346269/54018521*505019158607^(5/8) 5142289999996679 a001 1346269/54018521*28143753123^(7/10) 5142289999996679 a001 24157817/3010349*4106118243^(1/2) 5142289999996679 a001 1346269/54018521*599074578^(5/6) 5142289999996679 a001 1836311903/3010349*33385282^(7/18) 5142289999996679 a001 1346269/54018521*228826127^(7/8) 5142289999996679 a001 591286729879/3010349*12752043^(1/17) 5142289999996680 a001 1134903170/3010349*33385282^(5/12) 5142289999996680 a001 701408733/3010349*33385282^(4/9) 5142289999996680 a001 39088169/3010349*33385282^(11/18) 5142289999996680 a001 267914296/3010349*33385282^(1/2) 5142289999996680 a001 102334155/3010349*33385282^(5/9) 5142289999996681 a001 63245986/3010349*33385282^(7/12) 5142289999996681 a001 9227465/3010349*20633239^(5/7) 5142289999996681 a001 225851433717/3010349*12752043^(2/17) 5142289999996683 a001 86267571272/3010349*12752043^(3/17) 5142289999996685 a001 32951280099/3010349*12752043^(4/17) 5142289999996686 a001 1134903170/4870847*1860498^(8/15) 5142289999996687 a001 12586269025/3010349*12752043^(5/17) 5142289999996688 a001 12422650078085/24157817 5142289999996688 a001 32951280099/7881196*1860498^(1/3) 5142289999996689 a001 4807526976/3010349*12752043^(6/17) 5142289999996689 a001 1346269/20633239*141422324^(11/13) 5142289999996690 a001 1346269/20633239*2537720636^(11/15) 5142289999996690 a001 9227465/3010349*2537720636^(5/9) 5142289999996690 a001 1346269/20633239*45537549124^(11/17) 5142289999996690 a001 1346269/20633239*312119004989^(3/5) 5142289999996690 a001 9227465/3010349*312119004989^(5/11) 5142289999996690 a001 1346269/20633239*817138163596^(11/19) 5142289999996690 a001 1346269/20633239*14662949395604^(11/21) 5142289999996690 a001 1346269/20633239*(1/2+1/2*5^(1/2))^33 5142289999996690 a001 9227465/3010349*(1/2+1/2*5^(1/2))^25 5142289999996690 a001 1346269/20633239*192900153618^(11/18) 5142289999996690 a001 9227465/3010349*28143753123^(1/2) 5142289999996690 a001 1346269/20633239*10749957122^(11/16) 5142289999996690 a001 1346269/20633239*1568397607^(3/4) 5142289999996690 a001 1346269/20633239*599074578^(11/14) 5142289999996690 a001 9227465/3010349*228826127^(5/8) 5142289999996691 a001 1836311903/3010349*12752043^(7/17) 5142289999996691 a001 591286729879/3010349*4870847^(1/16) 5142289999996693 a001 701408733/3010349*12752043^(8/17) 5142289999996693 a001 3524578/3010349*7881196^(9/11) 5142289999996693 a001 433494437/3010349*12752043^(1/2) 5142289999996694 a001 1346269/20633239*33385282^(11/12) 5142289999996694 a001 267914296/3010349*12752043^(9/17) 5142289999996695 a001 14930352/3010349*12752043^(12/17) 5142289999996696 a001 102334155/3010349*12752043^(10/17) 5142289999996697 a001 39088169/3010349*12752043^(11/17) 5142289999996700 a001 53316291173/33385282*1860498^(2/5) 5142289999996704 a001 139583862445/87403803*1860498^(2/5) 5142289999996704 a001 365435296162/228826127*1860498^(2/5) 5142289999996704 a001 956722026041/599074578*1860498^(2/5) 5142289999996704 a001 2504730781961/1568397607*1860498^(2/5) 5142289999996704 a001 6557470319842/4106118243*1860498^(2/5) 5142289999996704 a001 10610209857723/6643838879*1860498^(2/5) 5142289999996704 a001 4052739537881/2537720636*1860498^(2/5) 5142289999996704 a001 1548008755920/969323029*1860498^(2/5) 5142289999996704 a001 591286729879/370248451*1860498^(2/5) 5142289999996705 a001 225851433717/141422324*1860498^(2/5) 5142289999996705 a001 225851433717/3010349*4870847^(1/8) 5142289999996706 a001 86267571272/54018521*1860498^(2/5) 5142289999996716 a001 32951280099/20633239*1860498^(2/5) 5142289999996718 a001 86267571272/3010349*4870847^(3/16) 5142289999996732 a001 32951280099/3010349*4870847^(1/4) 5142289999996745 a001 12586269025/3010349*4870847^(5/16) 5142289999996748 a001 4745030099482/9227465 5142289999996759 a001 4807526976/3010349*4870847^(3/8) 5142289999996760 a001 3524578/3010349*141422324^(9/13) 5142289999996760 a001 3524578/3010349*2537720636^(3/5) 5142289999996760 a001 3524578/3010349*45537549124^(9/17) 5142289999996760 a001 3524578/3010349*817138163596^(9/19) 5142289999996760 a001 1346269/7881196*(1/2+1/2*5^(1/2))^31 5142289999996760 a001 1346269/7881196*9062201101803^(1/2) 5142289999996760 a001 3524578/3010349*(1/2+1/2*5^(1/2))^27 5142289999996760 a001 3524578/3010349*192900153618^(1/2) 5142289999996760 a001 3524578/3010349*10749957122^(9/16) 5142289999996760 a001 3524578/3010349*599074578^(9/14) 5142289999996764 a001 3524578/3010349*33385282^(3/4) 5142289999996772 a001 7778742049/12752043*1860498^(7/15) 5142289999996772 a001 1836311903/3010349*4870847^(7/16) 5142289999996777 a001 591286729879/3010349*1860498^(1/15) 5142289999996785 a001 433494437/4870847*1860498^(3/5) 5142289999996786 a001 701408733/3010349*4870847^(1/2) 5142289999996787 a001 12586269025/7881196*1860498^(2/5) 5142289999996799 a001 10182505537/16692641*1860498^(7/15) 5142289999996800 a001 267914296/3010349*4870847^(9/16) 5142289999996803 a001 53316291173/87403803*1860498^(7/15) 5142289999996803 a001 139583862445/228826127*1860498^(7/15) 5142289999996803 a001 182717648081/299537289*1860498^(7/15) 5142289999996803 a001 956722026041/1568397607*1860498^(7/15) 5142289999996803 a001 2504730781961/4106118243*1860498^(7/15) 5142289999996803 a001 3278735159921/5374978561*1860498^(7/15) 5142289999996803 a001 10610209857723/17393796001*1860498^(7/15) 5142289999996803 a001 4052739537881/6643838879*1860498^(7/15) 5142289999996803 a001 1134903780/1860499*1860498^(7/15) 5142289999996803 a001 591286729879/969323029*1860498^(7/15) 5142289999996803 a001 225851433717/370248451*1860498^(7/15) 5142289999996804 a001 21566892818/35355581*1860498^(7/15) 5142289999996805 a001 32951280099/54018521*1860498^(7/15) 5142289999996806 a001 2504730781961/12752043*710647^(1/14) 5142289999996807 a001 53316291173/1860498*710647^(3/14) 5142289999996813 a001 102334155/3010349*4870847^(5/8) 5142289999996816 a001 1144206275/1875749*1860498^(7/15) 5142289999996821 a001 1602508992/4250681*1860498^(1/2) 5142289999996822 a001 5702887/3010349*4870847^(13/16) 5142289999996826 a001 39088169/3010349*4870847^(11/16) 5142289999996826 a001 365435296162/3010349*1860498^(1/10) 5142289999996833 a001 3278735159921/16692641*710647^(1/14) 5142289999996836 a001 14930352/3010349*4870847^(3/4) 5142289999996839 a001 10610209857723/54018521*710647^(1/14) 5142289999996848 a001 12586269025/33385282*1860498^(1/2) 5142289999996850 a001 4052739537881/20633239*710647^(1/14) 5142289999996852 a001 10983760033/29134601*1860498^(1/2) 5142289999996853 a001 86267571272/228826127*1860498^(1/2) 5142289999996853 a001 267913919/710646*1860498^(1/2) 5142289999996853 a001 591286729879/1568397607*1860498^(1/2) 5142289999996853 a001 516002918640/1368706081*1860498^(1/2) 5142289999996853 a001 4052739537881/10749957122*1860498^(1/2) 5142289999996853 a001 3536736619241/9381251041*1860498^(1/2) 5142289999996853 a001 6557470319842/17393796001*1860498^(1/2) 5142289999996853 a001 2504730781961/6643838879*1860498^(1/2) 5142289999996853 a001 956722026041/2537720636*1860498^(1/2) 5142289999996853 a001 365435296162/969323029*1860498^(1/2) 5142289999996853 a001 139583862445/370248451*1860498^(1/2) 5142289999996853 a001 53316291173/141422324*1860498^(1/2) 5142289999996855 a001 20365011074/54018521*1860498^(1/2) 5142289999996865 a001 7778742049/20633239*1860498^(1/2) 5142289999996871 a001 2971215073/12752043*1860498^(8/15) 5142289999996876 a001 225851433717/3010349*1860498^(2/15) 5142289999996884 a001 165580141/4870847*1860498^(2/3) 5142289999996886 a001 1201881744/1970299*1860498^(7/15) 5142289999996898 a001 7778742049/33385282*1860498^(8/15) 5142289999996902 a001 20365011074/87403803*1860498^(8/15) 5142289999996902 a001 53316291173/228826127*1860498^(8/15) 5142289999996902 a001 139583862445/599074578*1860498^(8/15) 5142289999996902 a001 365435296162/1568397607*1860498^(8/15) 5142289999996902 a001 956722026041/4106118243*1860498^(8/15) 5142289999996902 a001 2504730781961/10749957122*1860498^(8/15) 5142289999996902 a001 6557470319842/28143753123*1860498^(8/15) 5142289999996902 a001 10610209857723/45537549124*1860498^(8/15) 5142289999996902 a001 4052739537881/17393796001*1860498^(8/15) 5142289999996902 a001 1548008755920/6643838879*1860498^(8/15) 5142289999996902 a001 591286729879/2537720636*1860498^(8/15) 5142289999996903 a001 225851433717/969323029*1860498^(8/15) 5142289999996903 a001 86267571272/370248451*1860498^(8/15) 5142289999996903 a001 63246219/271444*1860498^(8/15) 5142289999996904 a001 12586269025/54018521*1860498^(8/15) 5142289999996915 a001 4807526976/20633239*1860498^(8/15) 5142289999996920 a001 387002188980/1970299*710647^(1/14) 5142289999996925 a001 139583862445/3010349*1860498^(1/6) 5142289999996933 a001 102334155/4870847*1860498^(7/10) 5142289999996936 a001 2971215073/7881196*1860498^(1/2) 5142289999996970 a001 1134903170/12752043*1860498^(3/5) 5142289999996975 a001 86267571272/3010349*1860498^(1/5) 5142289999996983 a001 63245986/4870847*1860498^(11/15) 5142289999996985 a001 1836311903/7881196*1860498^(8/15) 5142289999996997 a001 2971215073/33385282*1860498^(3/5) 5142289999997001 a001 7778742049/87403803*1860498^(3/5) 5142289999997001 a001 20365011074/228826127*1860498^(3/5) 5142289999997002 a001 53316291173/599074578*1860498^(3/5) 5142289999997002 a001 139583862445/1568397607*1860498^(3/5) 5142289999997002 a001 365435296162/4106118243*1860498^(3/5) 5142289999997002 a001 956722026041/10749957122*1860498^(3/5) 5142289999997002 a001 2504730781961/28143753123*1860498^(3/5) 5142289999997002 a001 6557470319842/73681302247*1860498^(3/5) 5142289999997002 a001 10610209857723/119218851371*1860498^(3/5) 5142289999997002 a001 4052739537881/45537549124*1860498^(3/5) 5142289999997002 a001 1548008755920/17393796001*1860498^(3/5) 5142289999997002 a001 591286729879/6643838879*1860498^(3/5) 5142289999997002 a001 225851433717/2537720636*1860498^(3/5) 5142289999997002 a001 86267571272/969323029*1860498^(3/5) 5142289999997002 a001 32951280099/370248451*1860498^(3/5) 5142289999997002 a001 12586269025/141422324*1860498^(3/5) 5142289999997003 a001 4807526976/54018521*1860498^(3/5) 5142289999997014 a001 1836311903/20633239*1860498^(3/5) 5142289999997038 a001 139583862445/1149851*439204^(1/9) 5142289999997069 a001 433494437/12752043*1860498^(2/3) 5142289999997074 a001 32951280099/3010349*1860498^(4/15) 5142289999997084 a001 24157817/4870847*1860498^(4/5) 5142289999997084 a001 3524667/39604*1860498^(3/5) 5142289999997096 a001 567451585/16692641*1860498^(2/3) 5142289999997100 a001 2971215073/87403803*1860498^(2/3) 5142289999997100 a001 7778742049/228826127*1860498^(2/3) 5142289999997101 a001 10182505537/299537289*1860498^(2/3) 5142289999997101 a001 53316291173/1568397607*1860498^(2/3) 5142289999997101 a001 139583862445/4106118243*1860498^(2/3) 5142289999997101 a001 182717648081/5374978561*1860498^(2/3) 5142289999997101 a001 956722026041/28143753123*1860498^(2/3) 5142289999997101 a001 2504730781961/73681302247*1860498^(2/3) 5142289999997101 a001 3278735159921/96450076809*1860498^(2/3) 5142289999997101 a001 10610209857723/312119004989*1860498^(2/3) 5142289999997101 a001 4052739537881/119218851371*1860498^(2/3) 5142289999997101 a001 387002188980/11384387281*1860498^(2/3) 5142289999997101 a001 591286729879/17393796001*1860498^(2/3) 5142289999997101 a001 225851433717/6643838879*1860498^(2/3) 5142289999997101 a001 1135099622/33391061*1860498^(2/3) 5142289999997101 a001 32951280099/969323029*1860498^(2/3) 5142289999997101 a001 12586269025/370248451*1860498^(2/3) 5142289999997101 a001 1201881744/35355581*1860498^(2/3) 5142289999997102 a001 1836311903/54018521*1860498^(2/3) 5142289999997113 a001 701408733/20633239*1860498^(2/3) 5142289999997118 a001 267914296/12752043*1860498^(7/10) 5142289999997123 a001 20365011074/3010349*1860498^(3/10) 5142289999997127 a001 14930352/4870847*1860498^(5/6) 5142289999997145 a001 701408733/33385282*1860498^(7/10) 5142289999997149 a001 1836311903/87403803*1860498^(7/10) 5142289999997150 a001 102287808/4868641*1860498^(7/10) 5142289999997150 a001 12586269025/599074578*1860498^(7/10) 5142289999997150 a001 32951280099/1568397607*1860498^(7/10) 5142289999997150 a001 86267571272/4106118243*1860498^(7/10) 5142289999997150 a001 225851433717/10749957122*1860498^(7/10) 5142289999997150 a001 591286729879/28143753123*1860498^(7/10) 5142289999997150 a001 1548008755920/73681302247*1860498^(7/10) 5142289999997150 a001 4052739537881/192900153618*1860498^(7/10) 5142289999997150 a001 225749145909/10745088481*1860498^(7/10) 5142289999997150 a001 6557470319842/312119004989*1860498^(7/10) 5142289999997150 a001 2504730781961/119218851371*1860498^(7/10) 5142289999997150 a001 956722026041/45537549124*1860498^(7/10) 5142289999997150 a001 365435296162/17393796001*1860498^(7/10) 5142289999997150 a001 139583862445/6643838879*1860498^(7/10) 5142289999997150 a001 53316291173/2537720636*1860498^(7/10) 5142289999997150 a001 20365011074/969323029*1860498^(7/10) 5142289999997150 a001 7778742049/370248451*1860498^(7/10) 5142289999997150 a001 2971215073/141422324*1860498^(7/10) 5142289999997152 a001 1134903170/54018521*1860498^(7/10) 5142289999997162 a001 433494437/20633239*1860498^(7/10) 5142289999997162 a001 1812440220361/3524578 5142289999997168 a001 165580141/12752043*1860498^(11/15) 5142289999997170 a001 10983760033/620166*710647^(1/4) 5142289999997173 a001 12586269025/3010349*1860498^(1/3) 5142289999997183 a001 66978574/1970299*1860498^(2/3) 5142289999997193 a001 9227465/4870847*1860498^(13/15) 5142289999997195 a001 433494437/33385282*1860498^(11/15) 5142289999997199 a001 5702887/4870847*1860498^(9/10) 5142289999997199 a001 1134903170/87403803*1860498^(11/15) 5142289999997200 a001 2971215073/228826127*1860498^(11/15) 5142289999997200 a001 7778742049/599074578*1860498^(11/15) 5142289999997200 a001 20365011074/1568397607*1860498^(11/15) 5142289999997200 a001 53316291173/4106118243*1860498^(11/15) 5142289999997200 a001 139583862445/10749957122*1860498^(11/15) 5142289999997200 a001 365435296162/28143753123*1860498^(11/15) 5142289999997200 a001 956722026041/73681302247*1860498^(11/15) 5142289999997200 a001 2504730781961/192900153618*1860498^(11/15) 5142289999997200 a001 10610209857723/817138163596*1860498^(11/15) 5142289999997200 a001 4052739537881/312119004989*1860498^(11/15) 5142289999997200 a001 1548008755920/119218851371*1860498^(11/15) 5142289999997200 a001 591286729879/45537549124*1860498^(11/15) 5142289999997200 a001 7787980473/599786069*1860498^(11/15) 5142289999997200 a001 86267571272/6643838879*1860498^(11/15) 5142289999997200 a001 32951280099/2537720636*1860498^(11/15) 5142289999997200 a001 12586269025/969323029*1860498^(11/15) 5142289999997200 a001 4807526976/370248451*1860498^(11/15) 5142289999997200 a001 1836311903/141422324*1860498^(11/15) 5142289999997201 a001 701408733/54018521*1860498^(11/15) 5142289999997212 a001 9238424/711491*1860498^(11/15) 5142289999997233 a001 165580141/7881196*1860498^(7/10) 5142289999997245 a001 1346269/3010349*(1/2+1/2*5^(1/2))^29 5142289999997245 a001 1346269/3010349*1322157322203^(1/2) 5142289999997267 a001 63245986/12752043*1860498^(4/5) 5142289999997272 a001 4807526976/3010349*1860498^(2/5) 5142289999997282 a001 102334155/7881196*1860498^(11/15) 5142289999997294 a001 165580141/33385282*1860498^(4/5) 5142289999997298 a001 433494437/87403803*1860498^(4/5) 5142289999997299 a001 1134903170/228826127*1860498^(4/5) 5142289999997299 a001 2971215073/599074578*1860498^(4/5) 5142289999997299 a001 7778742049/1568397607*1860498^(4/5) 5142289999997299 a001 20365011074/4106118243*1860498^(4/5) 5142289999997299 a001 53316291173/10749957122*1860498^(4/5) 5142289999997299 a001 139583862445/28143753123*1860498^(4/5) 5142289999997299 a001 365435296162/73681302247*1860498^(4/5) 5142289999997299 a001 956722026041/192900153618*1860498^(4/5) 5142289999997299 a001 2504730781961/505019158607*1860498^(4/5) 5142289999997299 a001 10610209857723/2139295485799*1860498^(4/5) 5142289999997299 a001 4052739537881/817138163596*1860498^(4/5) 5142289999997299 a001 140728068720/28374454999*1860498^(4/5) 5142289999997299 a001 591286729879/119218851371*1860498^(4/5) 5142289999997299 a001 225851433717/45537549124*1860498^(4/5) 5142289999997299 a001 86267571272/17393796001*1860498^(4/5) 5142289999997299 a001 32951280099/6643838879*1860498^(4/5) 5142289999997299 a001 1144206275/230701876*1860498^(4/5) 5142289999997299 a001 4807526976/969323029*1860498^(4/5) 5142289999997299 a001 1836311903/370248451*1860498^(4/5) 5142289999997299 a001 701408733/141422324*1860498^(4/5) 5142289999997300 a001 267914296/54018521*1860498^(4/5) 5142289999997311 a001 9303105/1875749*1860498^(4/5) 5142289999997316 a001 39088169/12752043*1860498^(5/6) 5142289999997343 a001 14619165/4769326*1860498^(5/6) 5142289999997347 a001 267914296/87403803*1860498^(5/6) 5142289999997348 a001 365435296162/4870847*710647^(1/7) 5142289999997348 a001 701408733/228826127*1860498^(5/6) 5142289999997348 a001 1836311903/599074578*1860498^(5/6) 5142289999997348 a001 686789568/224056801*1860498^(5/6) 5142289999997348 a001 12586269025/4106118243*1860498^(5/6) 5142289999997348 a001 32951280099/10749957122*1860498^(5/6) 5142289999997348 a001 86267571272/28143753123*1860498^(5/6) 5142289999997348 a001 32264490531/10525900321*1860498^(5/6) 5142289999997348 a001 591286729879/192900153618*1860498^(5/6) 5142289999997348 a001 1548008755920/505019158607*1860498^(5/6) 5142289999997348 a001 1515744265389/494493258286*1860498^(5/6) 5142289999997348 a001 2504730781961/817138163596*1860498^(5/6) 5142289999997348 a001 956722026041/312119004989*1860498^(5/6) 5142289999997348 a001 365435296162/119218851371*1860498^(5/6) 5142289999997348 a001 139583862445/45537549124*1860498^(5/6) 5142289999997348 a001 53316291173/17393796001*1860498^(5/6) 5142289999997348 a001 20365011074/6643838879*1860498^(5/6) 5142289999997348 a001 7778742049/2537720636*1860498^(5/6) 5142289999997348 a001 2971215073/969323029*1860498^(5/6) 5142289999997348 a001 1134903170/370248451*1860498^(5/6) 5142289999997348 a001 433494437/141422324*1860498^(5/6) 5142289999997350 a001 165580141/54018521*1860498^(5/6) 5142289999997361 a001 63245986/20633239*1860498^(5/6) 5142289999997363 a001 3524578/4870847*1860498^(14/15) 5142289999997368 a001 24157817/12752043*1860498^(13/15) 5142289999997371 a001 1836311903/3010349*1860498^(7/15) 5142289999997381 a001 39088169/7881196*1860498^(4/5) 5142289999997393 a001 31622993/16692641*1860498^(13/15) 5142289999997397 a001 165580141/87403803*1860498^(13/15) 5142289999997398 a001 433494437/228826127*1860498^(13/15) 5142289999997398 a001 567451585/299537289*1860498^(13/15) 5142289999997398 a001 2971215073/1568397607*1860498^(13/15) 5142289999997398 a001 7778742049/4106118243*1860498^(13/15) 5142289999997398 a001 10182505537/5374978561*1860498^(13/15) 5142289999997398 a001 53316291173/28143753123*1860498^(13/15) 5142289999997398 a001 139583862445/73681302247*1860498^(13/15) 5142289999997398 a001 182717648081/96450076809*1860498^(13/15) 5142289999997398 a001 956722026041/505019158607*1860498^(13/15) 5142289999997398 a001 10610209857723/5600748293801*1860498^(13/15) 5142289999997398 a001 591286729879/312119004989*1860498^(13/15) 5142289999997398 a001 225851433717/119218851371*1860498^(13/15) 5142289999997398 a001 21566892818/11384387281*1860498^(13/15) 5142289999997398 a001 32951280099/17393796001*1860498^(13/15) 5142289999997398 a001 12586269025/6643838879*1860498^(13/15) 5142289999997398 a001 1201881744/634430159*1860498^(13/15) 5142289999997398 a001 1836311903/969323029*1860498^(13/15) 5142289999997398 a001 701408733/370248451*1860498^(13/15) 5142289999997398 a001 66978574/35355581*1860498^(13/15) 5142289999997399 a001 102334155/54018521*1860498^(13/15) 5142289999997405 a001 591286729879/3010349*710647^(1/14) 5142289999997409 a001 39088169/20633239*1860498^(13/15) 5142289999997411 a001 4976784/4250681*1860498^(9/10) 5142289999997420 a001 1134903170/3010349*1860498^(1/2) 5142289999997433 a001 24157817/7881196*1860498^(5/6) 5142289999997442 a001 39088169/33385282*1860498^(9/10) 5142289999997446 a001 34111385/29134601*1860498^(9/10) 5142289999997447 a001 267914296/228826127*1860498^(9/10) 5142289999997447 a001 233802911/199691526*1860498^(9/10) 5142289999997447 a001 1836311903/1568397607*1860498^(9/10) 5142289999997447 a001 1602508992/1368706081*1860498^(9/10) 5142289999997447 a001 12586269025/10749957122*1860498^(9/10) 5142289999997447 a001 10983760033/9381251041*1860498^(9/10) 5142289999997447 a001 86267571272/73681302247*1860498^(9/10) 5142289999997447 a001 75283811239/64300051206*1860498^(9/10) 5142289999997447 a001 2504730781961/2139295485799*1860498^(9/10) 5142289999997447 a001 365435296162/312119004989*1860498^(9/10) 5142289999997447 a001 139583862445/119218851371*1860498^(9/10) 5142289999997447 a001 53316291173/45537549124*1860498^(9/10) 5142289999997447 a001 20365011074/17393796001*1860498^(9/10) 5142289999997447 a001 7778742049/6643838879*1860498^(9/10) 5142289999997447 a001 2971215073/2537720636*1860498^(9/10) 5142289999997447 a001 1134903170/969323029*1860498^(9/10) 5142289999997447 a001 433494437/370248451*1860498^(9/10) 5142289999997448 a001 165580141/141422324*1860498^(9/10) 5142289999997449 a001 63245986/54018521*1860498^(9/10) 5142289999997461 a001 24157817/20633239*1860498^(9/10) 5142289999997470 a001 701408733/3010349*1860498^(8/15) 5142289999997476 a001 3732588/1970299*1860498^(13/15) 5142289999997477 a001 9227465/12752043*1860498^(14/15) 5142289999997494 a001 24157817/33385282*1860498^(14/15) 5142289999997496 a001 63245986/87403803*1860498^(14/15) 5142289999997497 a001 165580141/228826127*1860498^(14/15) 5142289999997497 a001 433494437/599074578*1860498^(14/15) 5142289999997497 a001 1134903170/1568397607*1860498^(14/15) 5142289999997497 a001 2971215073/4106118243*1860498^(14/15) 5142289999997497 a001 7778742049/10749957122*1860498^(14/15) 5142289999997497 a001 20365011074/28143753123*1860498^(14/15) 5142289999997497 a001 53316291173/73681302247*1860498^(14/15) 5142289999997497 a001 139583862445/192900153618*1860498^(14/15) 5142289999997497 a001 365435296162/505019158607*1860498^(14/15) 5142289999997497 a001 10610209857723/14662949395604*1860498^(14/15) 5142289999997497 a001 225851433717/312119004989*1860498^(14/15) 5142289999997497 a001 86267571272/119218851371*1860498^(14/15) 5142289999997497 a001 32951280099/45537549124*1860498^(14/15) 5142289999997497 a001 12586269025/17393796001*1860498^(14/15) 5142289999997497 a001 4807526976/6643838879*1860498^(14/15) 5142289999997497 a001 1836311903/2537720636*1860498^(14/15) 5142289999997497 a001 701408733/969323029*1860498^(14/15) 5142289999997497 a001 267914296/370248451*1860498^(14/15) 5142289999997497 a001 102334155/141422324*1860498^(14/15) 5142289999997498 a001 39088169/54018521*1860498^(14/15) 5142289999997504 a001 14930352/20633239*1860498^(14/15) 5142289999997533 a001 956722026041/12752043*710647^(1/7) 5142289999997534 a001 10182505537/930249*710647^(2/7) 5142289999997542 a001 9227465/7881196*1860498^(9/10) 5142289999997548 a001 5702887/7881196*1860498^(14/15) 5142289999997560 a001 2504730781961/33385282*710647^(1/7) 5142289999997564 a001 6557470319842/87403803*710647^(1/7) 5142289999997565 a001 10610209857723/141422324*710647^(1/7) 5142289999997567 a001 4052739537881/54018521*710647^(1/7) 5142289999997569 a001 267914296/3010349*1860498^(3/5) 5142289999997577 a001 140728068720/1875749*710647^(1/7) 5142289999997596 a001 2139295485799/832040*8^(1/3) 5142289999997596 a001 1/416020*(1/2+1/2*5^(1/2))^59 5142289999997648 a001 591286729879/7881196*710647^(1/7) 5142289999997668 a001 102334155/3010349*1860498^(2/3) 5142289999997718 a001 63245986/3010349*1860498^(7/10) 5142289999997766 a001 39088169/3010349*1860498^(11/15) 5142289999997847 a001 2178309/3010349*1860498^(14/15) 5142289999997861 a001 14930352/3010349*1860498^(4/5) 5142289999997928 a001 9227465/3010349*1860498^(5/6) 5142289999997934 a001 5702887/3010349*1860498^(13/15) 5142289999998075 a001 139583862445/4870847*710647^(3/14) 5142289999998097 a001 3524578/3010349*1860498^(9/10) 5142289999998132 a001 225851433717/3010349*710647^(1/7) 5142289999998260 a001 365435296162/12752043*710647^(3/14) 5142289999998261 a001 7778742049/1860498*710647^(5/14) 5142289999998288 a001 956722026041/33385282*710647^(3/14) 5142289999998291 a001 2504730781961/87403803*710647^(3/14) 5142289999998292 a001 6557470319842/228826127*710647^(3/14) 5142289999998292 a001 10610209857723/370248451*710647^(3/14) 5142289999998292 a001 4052739537881/141422324*710647^(3/14) 5142289999998294 a001 1548008755920/54018521*710647^(3/14) 5142289999998304 a001 591286729879/20633239*710647^(3/14) 5142289999998375 a001 225851433717/7881196*710647^(3/14) 5142289999998439 a001 514229/1860498*7881196^(10/11) 5142289999998439 a001 86267571272/4870847*710647^(1/4) 5142289999998504 a001 514229/1860498*20633239^(6/7) 5142289999998504 a001 832040/1149851*20633239^(4/5) 5142289999998514 a001 514229/1860498*141422324^(10/13) 5142289999998514 a001 514229/1860498*2537720636^(2/3) 5142289999998514 a001 832040/1149851*17393796001^(4/7) 5142289999998514 a001 514229/1860498*45537549124^(10/17) 5142289999998514 a001 514229/1860498*312119004989^(6/11) 5142289999998514 a001 514229/1860498*14662949395604^(10/21) 5142289999998514 a001 514229/1860498*(1/2+1/2*5^(1/2))^30 5142289999998514 a001 832040/1149851*14662949395604^(4/9) 5142289999998514 a001 832040/1149851*(1/2+1/2*5^(1/2))^28 5142289999998514 a001 832040/1149851*505019158607^(1/2) 5142289999998514 a001 514229/1860498*192900153618^(5/9) 5142289999998514 a001 832040/1149851*73681302247^(7/13) 5142289999998514 a001 514229/1860498*28143753123^(3/5) 5142289999998514 a001 832040/1149851*10749957122^(7/12) 5142289999998514 a001 514229/1860498*10749957122^(5/8) 5142289999998514 a001 832040/1149851*4106118243^(14/23) 5142289999998514 a001 514229/1860498*4106118243^(15/23) 5142289999998514 a001 832040/1149851*1568397607^(7/11) 5142289999998514 a001 514229/1860498*1568397607^(15/22) 5142289999998514 a001 832040/1149851*599074578^(2/3) 5142289999998514 a001 514229/1860498*599074578^(5/7) 5142289999998514 a001 832040/1149851*228826127^(7/10) 5142289999998514 a001 514229/1860498*228826127^(3/4) 5142289999998514 a001 832040/1149851*87403803^(14/19) 5142289999998514 a001 514229/1860498*87403803^(15/19) 5142289999998518 a001 832040/1149851*33385282^(7/9) 5142289999998518 a001 514229/1860498*33385282^(5/6) 5142289999998540 a001 832040/1149851*12752043^(14/17) 5142289999998542 a001 514229/1860498*12752043^(15/17) 5142289999998624 a001 75283811239/4250681*710647^(1/4) 5142289999998651 a001 591286729879/33385282*710647^(1/4) 5142289999998655 a001 516002918640/29134601*710647^(1/4) 5142289999998656 a001 4052739537881/228826127*710647^(1/4) 5142289999998656 a001 3536736619241/199691526*710647^(1/4) 5142289999998656 a001 6557470319842/370248451*710647^(1/4) 5142289999998656 a001 2504730781961/141422324*710647^(1/4) 5142289999998658 a001 956722026041/54018521*710647^(1/4) 5142289999998668 a001 365435296162/20633239*710647^(1/4) 5142289999998704 a001 832040/1149851*4870847^(7/8) 5142289999998717 a001 514229/1860498*4870847^(15/16) 5142289999998739 a001 139583862445/7881196*710647^(1/4) 5142289999998803 a001 53316291173/4870847*710647^(2/7) 5142289999998855 a001 2178309/439204*439204^(8/9) 5142289999998860 a001 86267571272/3010349*710647^(3/14) 5142289999998988 a001 139583862445/12752043*710647^(2/7) 5142289999998988 a001 2971215073/1860498*710647^(3/7) 5142289999999015 a001 182717648081/16692641*710647^(2/7) 5142289999999019 a001 956722026041/87403803*710647^(2/7) 5142289999999019 a001 2504730781961/228826127*710647^(2/7) 5142289999999019 a001 3278735159921/299537289*710647^(2/7) 5142289999999019 a001 10610209857723/969323029*710647^(2/7) 5142289999999019 a001 4052739537881/370248451*710647^(2/7) 5142289999999020 a001 387002188980/35355581*710647^(2/7) 5142289999999021 a001 591286729879/54018521*710647^(2/7) 5142289999999032 a001 7787980473/711491*710647^(2/7) 5142289999999102 a001 21566892818/1970299*710647^(2/7) 5142289999999223 a001 53316291173/3010349*710647^(1/4) 5142289999999530 a001 20365011074/4870847*710647^(5/14) 5142289999999587 a001 32951280099/3010349*710647^(2/7) 5142289999999715 a001 53316291173/12752043*710647^(5/14) 5142289999999716 a001 567451585/930249*710647^(1/2) 5142289999999742 a001 139583862445/33385282*710647^(5/14) 5142289999999746 a001 365435296162/87403803*710647^(5/14) 5142289999999747 a001 956722026041/228826127*710647^(5/14) 5142289999999747 a001 2504730781961/599074578*710647^(5/14) 5142289999999747 a001 6557470319842/1568397607*710647^(5/14) 5142289999999747 a001 10610209857723/2537720636*710647^(5/14) 5142289999999747 a001 4052739537881/969323029*710647^(5/14) 5142289999999747 a001 1548008755920/370248451*710647^(5/14) 5142289999999747 a001 591286729879/141422324*710647^(5/14) 5142289999999749 a001 225851433717/54018521*710647^(5/14) 5142289999999759 a001 86267571272/20633239*710647^(5/14) 5142289999999783 a001 2178309/1149851*141422324^(2/3) 5142289999999783 a001 514229/4870847*(1/2+1/2*5^(1/2))^32 5142289999999783 a001 514229/4870847*23725150497407^(1/2) 5142289999999783 a001 2178309/1149851*(1/2+1/2*5^(1/2))^26 5142289999999783 a001 514229/4870847*505019158607^(4/7) 5142289999999783 a001 2178309/1149851*73681302247^(1/2) 5142289999999783 a001 514229/4870847*73681302247^(8/13) 5142289999999783 a001 2178309/1149851*10749957122^(13/24) 5142289999999783 a001 514229/4870847*10749957122^(2/3) 5142289999999783 a001 2178309/1149851*4106118243^(13/23) 5142289999999783 a001 514229/4870847*4106118243^(16/23) 5142289999999783 a001 2178309/1149851*1568397607^(13/22) 5142289999999783 a001 514229/4870847*1568397607^(8/11) 5142289999999783 a001 2178309/1149851*599074578^(13/21) 5142289999999783 a001 514229/4870847*599074578^(16/21) 5142289999999783 a001 2178309/1149851*228826127^(13/20) 5142289999999783 a001 514229/4870847*228826127^(4/5) 5142289999999783 a001 2178309/1149851*87403803^(13/19) 5142289999999783 a001 514229/4870847*87403803^(16/19) 5142289999999786 a001 2178309/1149851*33385282^(13/18) 5142289999999787 a001 514229/4870847*33385282^(8/9) 5142289999999807 a001 2178309/1149851*12752043^(13/17) 5142289999999813 a001 514229/4870847*12752043^(16/17) 5142289999999830 a001 32951280099/7881196*710647^(5/14) 5142289999999900 a001 832040/1149851*1860498^(14/15) 5142289999999908 a001 5702887/1149851*7881196^(8/11) 5142289999999940 a001 14930352/1149851*7881196^(2/3) 5142289999999949 a001 24157817/1149851*7881196^(7/11) 5142289999999954 a001 102334155/1149851*7881196^(6/11) 5142289999999959 a001 2178309/1149851*4870847^(13/16) 5142289999999962 a001 433494437/1149851*7881196^(5/11) 5142289999999968 a001 5702887/1149851*141422324^(8/13) 5142289999999968 a001 5702887/1149851*2537720636^(8/15) 5142289999999968 a001 514229/12752043*45537549124^(2/3) 5142289999999968 a001 5702887/1149851*45537549124^(8/17) 5142289999999968 a001 514229/12752043*(1/2+1/2*5^(1/2))^34 5142289999999968 a001 5702887/1149851*14662949395604^(8/21) 5142289999999968 a001 5702887/1149851*(1/2+1/2*5^(1/2))^24 5142289999999968 a001 5702887/1149851*192900153618^(4/9) 5142289999999968 a001 5702887/1149851*73681302247^(6/13) 5142289999999968 a001 5702887/1149851*10749957122^(1/2) 5142289999999968 a001 514229/12752043*10749957122^(17/24) 5142289999999968 a001 5702887/1149851*4106118243^(12/23) 5142289999999968 a001 514229/12752043*4106118243^(17/23) 5142289999999968 a001 5702887/1149851*1568397607^(6/11) 5142289999999968 a001 514229/12752043*1568397607^(17/22) 5142289999999968 a001 5702887/1149851*599074578^(4/7) 5142289999999968 a001 514229/12752043*599074578^(17/21) 5142289999999968 a001 5702887/1149851*228826127^(3/5) 5142289999999968 a001 514229/12752043*228826127^(17/20) 5142289999999968 a001 5702887/1149851*87403803^(12/19) 5142289999999968 a001 514229/12752043*87403803^(17/19) 5142289999999969 a001 1836311903/1149851*7881196^(4/11) 5142289999999971 a001 5702887/1149851*33385282^(2/3) 5142289999999972 a001 2971215073/1149851*7881196^(1/3) 5142289999999972 a001 514229/12752043*33385282^(17/18) 5142289999999977 a001 7778742049/1149851*7881196^(3/11) 5142289999999984 a001 32951280099/1149851*7881196^(2/11) 5142289999999990 a001 5702887/1149851*12752043^(12/17) 5142289999999992 a001 39088169/1149851*20633239^(4/7) 5142289999999992 a001 139583862445/1149851*7881196^(1/11) 5142289999999993 a001 182717648081/930249*271443^(1/13) 5142289999999994 a001 24157817/1149851*20633239^(3/5) 5142289999999994 a001 433494437/1149851*20633239^(3/7) 5142289999999995 a001 514229/33385282*141422324^(12/13) 5142289999999995 a001 701408733/1149851*20633239^(2/5) 5142289999999995 a001 514229/33385282*2537720636^(4/5) 5142289999999995 a001 514229/33385282*45537549124^(12/17) 5142289999999995 a001 14930352/1149851*312119004989^(2/5) 5142289999999995 a001 514229/33385282*14662949395604^(4/7) 5142289999999995 a001 514229/33385282*(1/2+1/2*5^(1/2))^36 5142289999999995 a001 14930352/1149851*(1/2+1/2*5^(1/2))^22 5142289999999995 a001 514229/33385282*505019158607^(9/14) 5142289999999995 a001 514229/33385282*192900153618^(2/3) 5142289999999995 a001 514229/33385282*73681302247^(9/13) 5142289999999995 a001 14930352/1149851*10749957122^(11/24) 5142289999999995 a001 514229/33385282*10749957122^(3/4) 5142289999999995 a001 14930352/1149851*4106118243^(11/23) 5142289999999995 a001 514229/33385282*4106118243^(18/23) 5142289999999995 a001 14930352/1149851*1568397607^(1/2) 5142289999999995 a001 514229/33385282*1568397607^(9/11) 5142289999999995 a001 14930352/1149851*599074578^(11/21) 5142289999999995 a001 514229/33385282*599074578^(6/7) 5142289999999995 a001 14930352/1149851*228826127^(11/20) 5142289999999995 a001 514229/33385282*228826127^(9/10) 5142289999999995 a001 14930352/1149851*87403803^(11/19) 5142289999999996 a001 514229/33385282*87403803^(18/19) 5142289999999996 a001 4807526976/1149851*20633239^(2/7) 5142289999999997 a001 20365011074/1149851*20633239^(1/5) 5142289999999998 a001 14930352/1149851*33385282^(11/18) 5142289999999998 a001 53316291173/1149851*20633239^(1/7) 5142289999999999 a001 39088169/1149851*2537720636^(4/9) 5142289999999999 a001 39088169/1149851*(1/2+1/2*5^(1/2))^20 5142289999999999 a001 39088169/1149851*23725150497407^(5/16) 5142289999999999 a001 39088169/1149851*505019158607^(5/14) 5142289999999999 a001 39088169/1149851*73681302247^(5/13) 5142289999999999 a001 39088169/1149851*28143753123^(2/5) 5142289999999999 a001 39088169/1149851*10749957122^(5/12) 5142289999999999 a001 514229/87403803*10749957122^(19/24) 5142289999999999 a001 39088169/1149851*4106118243^(10/23) 5142289999999999 a001 514229/87403803*4106118243^(19/23) 5142289999999999 a001 39088169/1149851*1568397607^(5/11) 5142289999999999 a001 514229/87403803*1568397607^(19/22) 5142289999999999 a001 39088169/1149851*599074578^(10/21) 5142289999999999 a001 514229/87403803*599074578^(19/21) 5142289999999999 a001 39088169/1149851*228826127^(1/2) 5142289999999999 a001 514229/87403803*228826127^(19/20) 5142289999999999 a001 39088169/1149851*87403803^(10/19) 5142289999999999 a001 102334155/1149851*141422324^(6/13) 5142289999999999 a001 514229/228826127*2537720636^(8/9) 5142289999999999 a001 102334155/1149851*2537720636^(2/5) 5142289999999999 a001 102334155/1149851*45537549124^(6/17) 5142289999999999 a001 514229/228826127*312119004989^(8/11) 5142289999999999 a001 514229/228826127*23725150497407^(5/8) 5142289999999999 a001 102334155/1149851*14662949395604^(2/7) 5142289999999999 a001 102334155/1149851*(1/2+1/2*5^(1/2))^18 5142289999999999 a001 102334155/1149851*192900153618^(1/3) 5142289999999999 a001 514229/228826127*73681302247^(10/13) 5142289999999999 a001 514229/228826127*28143753123^(4/5) 5142289999999999 a001 102334155/1149851*10749957122^(3/8) 5142289999999999 a001 514229/228826127*10749957122^(5/6) 5142289999999999 a001 102334155/1149851*4106118243^(9/23) 5142289999999999 a001 514229/228826127*4106118243^(20/23) 5142289999999999 a001 102334155/1149851*1568397607^(9/22) 5142289999999999 a001 514229/228826127*1568397607^(10/11) 5142289999999999 a001 433494437/1149851*141422324^(5/13) 5142289999999999 a001 102334155/1149851*599074578^(3/7) 5142289999999999 a001 1134903170/1149851*141422324^(1/3) 5142289999999999 a001 514229/228826127*599074578^(20/21) 5142289999999999 a001 1836311903/1149851*141422324^(4/13) 5142289999999999 a001 7778742049/1149851*141422324^(3/13) 5142289999999999 a001 102334155/1149851*228826127^(9/20) 5142289999999999 a001 32951280099/1149851*141422324^(2/13) 5142289999999999 a001 139583862445/1149851*141422324^(1/13) 5142289999999999 a001 514229/599074578*2537720636^(14/15) 5142289999999999 a001 514229/599074578*17393796001^(6/7) 5142289999999999 a001 514229/599074578*45537549124^(14/17) 5142289999999999 a001 514229/599074578*817138163596^(14/19) 5142289999999999 a001 267914296/1149851*(1/2+1/2*5^(1/2))^16 5142289999999999 a001 267914296/1149851*23725150497407^(1/4) 5142289999999999 a001 514229/599074578*505019158607^(3/4) 5142289999999999 a001 514229/599074578*192900153618^(7/9) 5142289999999999 a001 267914296/1149851*73681302247^(4/13) 5142289999999999 a001 267914296/1149851*10749957122^(1/3) 5142289999999999 a001 514229/599074578*10749957122^(7/8) 5142289999999999 a001 267914296/1149851*4106118243^(8/23) 5142289999999999 a001 514229/599074578*4106118243^(21/23) 5142289999999999 a001 267914296/1149851*1568397607^(4/11) 5142289999999999 a001 514229/599074578*1568397607^(21/22) 5142289999999999 a001 267914296/1149851*599074578^(8/21) 5142289999999999 a001 701408733/1149851*17393796001^(2/7) 5142289999999999 a001 514229/1568397607*312119004989^(4/5) 5142289999999999 a001 514229/1568397607*23725150497407^(11/16) 5142289999999999 a001 701408733/1149851*14662949395604^(2/9) 5142289999999999 a001 701408733/1149851*(1/2+1/2*5^(1/2))^14 5142289999999999 a001 701408733/1149851*505019158607^(1/4) 5142289999999999 a001 514229/1568397607*73681302247^(11/13) 5142289999999999 a001 701408733/1149851*10749957122^(7/24) 5142289999999999 a001 514229/1568397607*10749957122^(11/12) 5142289999999999 a001 701408733/1149851*4106118243^(7/23) 5142289999999999 a001 514229/1568397607*4106118243^(22/23) 5142289999999999 a001 701408733/1149851*1568397607^(7/22) 5142289999999999 a001 1836311903/1149851*2537720636^(4/15) 5142289999999999 a001 1836311903/1149851*45537549124^(4/17) 5142289999999999 a001 1836311903/1149851*817138163596^(4/19) 5142289999999999 a001 1836311903/1149851*14662949395604^(4/21) 5142289999999999 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^12 5142289999999999 a001 1836311903/1149851*192900153618^(2/9) 5142289999999999 a001 1836311903/1149851*73681302247^(3/13) 5142289999999999 a001 1836311903/1149851*10749957122^(1/4) 5142289999999999 a001 514229/4106118243*10749957122^(23/24) 5142289999999999 a001 1836311903/1149851*4106118243^(6/23) 5142289999999999 a001 4807526976/1149851*2537720636^(2/9) 5142289999999999 a001 7778742049/1149851*2537720636^(1/5) 5142289999999999 a001 32951280099/1149851*2537720636^(2/15) 5142289999999999 a001 53316291173/1149851*2537720636^(1/9) 5142289999999999 a001 139583862445/1149851*2537720636^(1/15) 5142289999999999 a001 514229/10749957122*45537549124^(16/17) 5142289999999999 a001 4807526976/1149851*312119004989^(2/11) 5142289999999999 a001 514229/10749957122*14662949395604^(16/21) 5142289999999999 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^10 5142289999999999 a001 514229/10749957122*192900153618^(8/9) 5142289999999999 a001 514229/10749957122*73681302247^(12/13) 5142289999999999 a001 4807526976/1149851*28143753123^(1/5) 5142289999999999 a001 4807526976/1149851*10749957122^(5/24) 5142289999999999 a001 514229/28143753123*312119004989^(10/11) 5142289999999999 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^8 5142289999999999 a001 12586269025/1149851*23725150497407^(1/8) 5142289999999999 a001 12586269025/1149851*505019158607^(1/7) 5142289999999999 a001 12586269025/1149851*73681302247^(2/13) 5142289999999999 a001 32951280099/1149851*45537549124^(2/17) 5142289999999999 a001 514229/73681302247*23725150497407^(13/16) 5142289999999999 a001 32951280099/1149851*14662949395604^(2/21) 5142289999999999 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^6 5142289999999999 a001 514229/73681302247*505019158607^(13/14) 5142289999999999 a001 514229/192900153618*14662949395604^(6/7) 5142289999999999 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^4 5142289999999999 a001 86267571272/1149851*23725150497407^(1/16) 5142289999999999 a001 139583862445/1149851*45537549124^(1/17) 5142289999999999 a001 86267571272/1149851*73681302247^(1/13) 5142289999999999 a001 514229/505019158607*14662949395604^(8/9) 5142289999999999 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^2 5142290000000000 a001 514229/817138163596*14662949395604^(19/21) 5142290000000000 a001 514229/312119004989*3461452808002^(11/12) 5142290000000000 a001 139583862445/1149851*14662949395604^(1/21) 5142290000000000 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^3 5142290000000000 a001 139583862445/1149851*192900153618^(1/18) 5142290000000000 a001 53316291173/1149851*312119004989^(1/11) 5142290000000000 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^5 5142290000000000 a001 12586269025/1149851*10749957122^(1/6) 5142290000000000 a001 53316291173/1149851*28143753123^(1/10) 5142290000000000 a001 225851433717/1149851*10749957122^(1/24) 5142290000000000 a001 514229/45537549124*817138163596^(17/19) 5142290000000000 a001 514229/45537549124*14662949395604^(17/21) 5142290000000000 a001 20365011074/1149851*14662949395604^(1/9) 5142290000000000 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^7 5142290000000000 a001 514229/45537549124*192900153618^(17/18) 5142290000000000 a001 139583862445/1149851*10749957122^(1/16) 5142290000000000 a001 86267571272/1149851*10749957122^(1/12) 5142290000000000 a001 32951280099/1149851*10749957122^(1/8) 5142290000000000 a001 225851433717/1149851*4106118243^(1/23) 5142290000000000 a001 7778742049/1149851*45537549124^(3/17) 5142290000000000 a001 514229/17393796001*14662949395604^(7/9) 5142290000000000 a001 7778742049/1149851*14662949395604^(1/7) 5142290000000000 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^9 5142290000000000 a001 514229/17393796001*505019158607^(7/8) 5142290000000000 a001 4807526976/1149851*4106118243^(5/23) 5142290000000000 a001 7778742049/1149851*10749957122^(3/16) 5142290000000000 a001 86267571272/1149851*4106118243^(2/23) 5142290000000000 a001 32951280099/1149851*4106118243^(3/23) 5142290000000000 a001 12586269025/1149851*4106118243^(4/23) 5142290000000000 a001 225851433717/1149851*1568397607^(1/22) 5142290000000000 a001 2971215073/1149851*312119004989^(1/5) 5142290000000000 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^11 5142290000000000 a001 86267571272/1149851*1568397607^(1/11) 5142290000000000 a001 1836311903/1149851*1568397607^(3/11) 5142290000000000 a001 32951280099/1149851*1568397607^(3/22) 5142290000000000 a001 12586269025/1149851*1568397607^(2/11) 5142290000000000 a001 4807526976/1149851*1568397607^(5/22) 5142290000000000 a001 2971215073/1149851*1568397607^(1/4) 5142290000000000 a001 225851433717/1149851*599074578^(1/21) 5142290000000000 a001 514229/2537720636*45537549124^(15/17) 5142290000000000 a001 514229/2537720636*312119004989^(9/11) 5142290000000000 a001 514229/2537720636*14662949395604^(5/7) 5142290000000000 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^13 5142290000000000 a001 514229/2537720636*192900153618^(5/6) 5142290000000000 a001 1134903170/1149851*73681302247^(1/4) 5142290000000000 a001 514229/2537720636*28143753123^(9/10) 5142290000000000 a001 514229/2537720636*10749957122^(15/16) 5142290000000000 a001 139583862445/1149851*599074578^(1/14) 5142290000000000 a001 86267571272/1149851*599074578^(2/21) 5142290000000000 a001 32951280099/1149851*599074578^(1/7) 5142290000000000 a001 20365011074/1149851*599074578^(1/6) 5142290000000000 a001 701408733/1149851*599074578^(1/3) 5142290000000000 a001 12586269025/1149851*599074578^(4/21) 5142290000000000 a001 7778742049/1149851*599074578^(3/14) 5142290000000000 a001 4807526976/1149851*599074578^(5/21) 5142290000000000 a001 1836311903/1149851*599074578^(2/7) 5142290000000000 a001 225851433717/1149851*228826127^(1/20) 5142290000000000 a001 433494437/1149851*2537720636^(1/3) 5142290000000000 a001 433494437/1149851*45537549124^(5/17) 5142290000000000 a001 433494437/1149851*312119004989^(3/11) 5142290000000000 a001 433494437/1149851*14662949395604^(5/21) 5142290000000000 a001 433494437/1149851*(1/2+1/2*5^(1/2))^15 5142290000000000 a001 433494437/1149851*192900153618^(5/18) 5142290000000000 a001 433494437/1149851*28143753123^(3/10) 5142290000000000 a001 433494437/1149851*10749957122^(5/16) 5142290000000000 a001 86267571272/1149851*228826127^(1/10) 5142290000000000 a001 433494437/1149851*599074578^(5/14) 5142290000000000 a001 53316291173/1149851*228826127^(1/8) 5142290000000000 a001 32951280099/1149851*228826127^(3/20) 5142290000000000 a001 12586269025/1149851*228826127^(1/5) 5142290000000000 a001 4807526976/1149851*228826127^(1/4) 5142290000000000 a001 267914296/1149851*228826127^(2/5) 5142290000000000 a001 1836311903/1149851*228826127^(3/10) 5142290000000000 a001 701408733/1149851*228826127^(7/20) 5142290000000000 a001 225851433717/1149851*87403803^(1/19) 5142290000000000 a001 165580141/1149851*45537549124^(1/3) 5142290000000000 a001 165580141/1149851*(1/2+1/2*5^(1/2))^17 5142290000000000 a001 433494437/1149851*228826127^(3/8) 5142290000000000 a001 86267571272/1149851*87403803^(2/19) 5142290000000000 a001 32951280099/1149851*87403803^(3/19) 5142290000000000 a001 12586269025/1149851*87403803^(4/19) 5142290000000000 a001 4807526976/1149851*87403803^(5/19) 5142290000000000 a001 1836311903/1149851*87403803^(6/19) 5142290000000000 a001 102334155/1149851*87403803^(9/19) 5142290000000000 a001 701408733/1149851*87403803^(7/19) 5142290000000000 a001 225851433717/1149851*33385282^(1/18) 5142290000000000 a001 514229/141422324*2537720636^(13/15) 5142290000000000 a001 514229/141422324*45537549124^(13/17) 5142290000000000 a001 514229/141422324*14662949395604^(13/21) 5142290000000000 a001 63245986/1149851*817138163596^(1/3) 5142290000000000 a001 63245986/1149851*(1/2+1/2*5^(1/2))^19 5142290000000000 a001 514229/141422324*192900153618^(13/18) 5142290000000000 a001 514229/141422324*73681302247^(3/4) 5142290000000000 a001 514229/141422324*10749957122^(13/16) 5142290000000000 a001 267914296/1149851*87403803^(8/19) 5142290000000000 a001 514229/141422324*599074578^(13/14) 5142290000000000 a001 139583862445/1149851*33385282^(1/12) 5142290000000000 a001 86267571272/1149851*33385282^(1/9) 5142290000000000 a001 63245986/1149851*87403803^(1/2) 5142290000000000 a001 32951280099/1149851*33385282^(1/6) 5142290000000001 a001 12586269025/1149851*33385282^(2/9) 5142290000000001 a001 7778742049/1149851*33385282^(1/4) 5142290000000001 a001 4807526976/1149851*33385282^(5/18) 5142290000000001 a001 1836311903/1149851*33385282^(1/3) 5142290000000001 a001 24157817/1149851*141422324^(7/13) 5142290000000001 a001 24157817/1149851*2537720636^(7/15) 5142290000000001 a001 24157817/1149851*17393796001^(3/7) 5142290000000001 a001 24157817/1149851*45537549124^(7/17) 5142290000000001 a001 24157817/1149851*14662949395604^(1/3) 5142290000000001 a001 24157817/1149851*(1/2+1/2*5^(1/2))^21 5142290000000001 a001 24157817/1149851*192900153618^(7/18) 5142290000000001 a001 24157817/1149851*10749957122^(7/16) 5142290000000001 a001 24157817/1149851*599074578^(1/2) 5142290000000001 a001 701408733/1149851*33385282^(7/18) 5142290000000001 a001 225851433717/1149851*12752043^(1/17) 5142290000000001 a001 39088169/1149851*33385282^(5/9) 5142290000000001 a001 433494437/1149851*33385282^(5/12) 5142290000000002 a001 267914296/1149851*33385282^(4/9) 5142290000000002 a001 102334155/1149851*33385282^(1/2) 5142290000000003 a001 86267571272/1149851*12752043^(2/17) 5142290000000004 a001 24157817/1149851*33385282^(7/12) 5142290000000005 a001 32951280099/1149851*12752043^(3/17) 5142290000000007 a001 12586269025/1149851*12752043^(4/17) 5142290000000009 a001 4807526976/1149851*12752043^(5/17) 5142290000000011 a001 1836311903/1149851*12752043^(6/17) 5142290000000012 a001 514229/20633239*2537720636^(7/9) 5142290000000012 a001 514229/20633239*17393796001^(5/7) 5142290000000012 a001 514229/20633239*312119004989^(7/11) 5142290000000012 a001 514229/20633239*14662949395604^(5/9) 5142290000000012 a001 514229/20633239*(1/2+1/2*5^(1/2))^35 5142290000000012 a001 9227465/1149851*(1/2+1/2*5^(1/2))^23 5142290000000012 a001 514229/20633239*505019158607^(5/8) 5142290000000012 a001 514229/20633239*28143753123^(7/10) 5142290000000012 a001 9227465/1149851*4106118243^(1/2) 5142290000000012 a001 514229/20633239*599074578^(5/6) 5142290000000012 a001 514229/20633239*228826127^(7/8) 5142290000000013 a001 701408733/1149851*12752043^(7/17) 5142290000000013 a001 225851433717/1149851*4870847^(1/16) 5142290000000014 a001 267914296/1149851*12752043^(8/17) 5142290000000015 a001 14930352/1149851*12752043^(11/17) 5142290000000015 a001 165580141/1149851*12752043^(1/2) 5142290000000016 a001 102334155/1149851*12752043^(9/17) 5142290000000017 a001 39088169/1149851*12752043^(10/17) 5142290000000027 a001 86267571272/1149851*4870847^(1/8) 5142290000000040 a001 32951280099/1149851*4870847^(3/16) 5142290000000054 a001 12586269025/1149851*4870847^(1/4) 5142290000000067 a001 4807526976/1149851*4870847^(5/16) 5142290000000074 a001 3524578/1149851*20633239^(5/7) 5142290000000081 a001 1836311903/1149851*4870847^(3/8) 5142290000000082 a001 514229/7881196*141422324^(11/13) 5142290000000082 a001 514229/7881196*2537720636^(11/15) 5142290000000082 a001 3524578/1149851*2537720636^(5/9) 5142290000000082 a001 514229/7881196*45537549124^(11/17) 5142290000000082 a001 3524578/1149851*312119004989^(5/11) 5142290000000082 a001 514229/7881196*(1/2+1/2*5^(1/2))^33 5142290000000082 a001 3524578/1149851*(1/2+1/2*5^(1/2))^25 5142290000000082 a001 3524578/1149851*3461452808002^(5/12) 5142290000000082 a001 514229/7881196*192900153618^(11/18) 5142290000000082 a001 3524578/1149851*28143753123^(1/2) 5142290000000082 a001 514229/7881196*10749957122^(11/16) 5142290000000082 a001 514229/7881196*1568397607^(3/4) 5142290000000082 a001 514229/7881196*599074578^(11/14) 5142290000000082 a001 3524578/1149851*228826127^(5/8) 5142290000000087 a001 514229/7881196*33385282^(11/12) 5142290000000094 a001 701408733/1149851*4870847^(7/16) 5142290000000099 a001 225851433717/1149851*1860498^(1/15) 5142290000000108 a001 267914296/1149851*4870847^(1/2) 5142290000000121 a001 102334155/1149851*4870847^(9/16) 5142290000000130 a001 5702887/1149851*4870847^(3/4) 5142290000000134 a001 39088169/1149851*4870847^(5/8) 5142290000000144 a001 14930352/1149851*4870847^(11/16) 5142290000000148 a001 139583862445/1149851*1860498^(1/10) 5142290000000198 a001 86267571272/1149851*1860498^(2/15) 5142290000000247 a001 53316291173/1149851*1860498^(1/6) 5142290000000257 a001 7778742049/4870847*710647^(3/7) 5142290000000297 a001 32951280099/1149851*1860498^(1/5) 5142290000000314 a001 12586269025/3010349*710647^(5/14) 5142290000000396 a001 12586269025/1149851*1860498^(4/15) 5142290000000442 a001 20365011074/12752043*710647^(3/7) 5142290000000443 a001 433494437/1860498*710647^(4/7) 5142290000000445 a001 7778742049/1149851*1860498^(3/10) 5142290000000469 a001 53316291173/33385282*710647^(3/7) 5142290000000473 a001 139583862445/87403803*710647^(3/7) 5142290000000474 a001 365435296162/228826127*710647^(3/7) 5142290000000474 a001 956722026041/599074578*710647^(3/7) 5142290000000474 a001 2504730781961/1568397607*710647^(3/7) 5142290000000474 a001 6557470319842/4106118243*710647^(3/7) 5142290000000474 a001 10610209857723/6643838879*710647^(3/7) 5142290000000474 a001 4052739537881/2537720636*710647^(3/7) 5142290000000474 a001 1548008755920/969323029*710647^(3/7) 5142290000000474 a001 591286729879/370248451*710647^(3/7) 5142290000000474 a001 225851433717/141422324*710647^(3/7) 5142290000000476 a001 86267571272/54018521*710647^(3/7) 5142290000000486 a001 32951280099/20633239*710647^(3/7) 5142290000000495 a001 4807526976/1149851*1860498^(1/3) 5142290000000499 a001 1346269/1149851*7881196^(9/11) 5142290000000557 a001 12586269025/7881196*710647^(3/7) 5142290000000567 a001 1346269/1149851*141422324^(9/13) 5142290000000567 a001 1346269/1149851*2537720636^(3/5) 5142290000000567 a001 1346269/1149851*45537549124^(9/17) 5142290000000567 a001 1346269/1149851*817138163596^(9/19) 5142290000000567 a001 514229/3010349*(1/2+1/2*5^(1/2))^31 5142290000000567 a001 514229/3010349*9062201101803^(1/2) 5142290000000567 a001 1346269/1149851*14662949395604^(3/7) 5142290000000567 a001 1346269/1149851*(1/2+1/2*5^(1/2))^27 5142290000000567 a001 1346269/1149851*192900153618^(1/2) 5142290000000567 a001 1346269/1149851*10749957122^(9/16) 5142290000000567 a001 1346269/1149851*599074578^(9/14) 5142290000000570 a001 1346269/1149851*33385282^(3/4) 5142290000000594 a001 1836311903/1149851*1860498^(2/5) 5142290000000693 a001 701408733/1149851*1860498^(7/15) 5142290000000727 a001 225851433717/1149851*710647^(1/14) 5142290000000742 a001 433494437/1149851*1860498^(1/2) 5142290000000792 a001 267914296/1149851*1860498^(8/15) 5142290000000891 a001 102334155/1149851*1860498^(3/5) 5142290000000985 a001 2971215073/4870847*710647^(1/2) 5142290000000989 a001 39088169/1149851*1860498^(2/3) 5142290000001041 a001 24157817/1149851*1860498^(7/10) 5142290000001041 a001 4807526976/3010349*710647^(3/7) 5142290000001070 a001 2178309/1149851*1860498^(13/15) 5142290000001084 a001 14930352/1149851*1860498^(11/15) 5142290000001156 a001 5702887/1149851*1860498^(4/5) 5142290000001170 a001 7778742049/12752043*710647^(1/2) 5142290000001170 a001 165580141/1860498*710647^(9/14) 5142290000001197 a001 10182505537/16692641*710647^(1/2) 5142290000001201 a001 53316291173/87403803*710647^(1/2) 5142290000001201 a001 139583862445/228826127*710647^(1/2) 5142290000001201 a001 182717648081/299537289*710647^(1/2) 5142290000001201 a001 956722026041/1568397607*710647^(1/2) 5142290000001201 a001 2504730781961/4106118243*710647^(1/2) 5142290000001201 a001 3278735159921/5374978561*710647^(1/2) 5142290000001201 a001 10610209857723/17393796001*710647^(1/2) 5142290000001201 a001 4052739537881/6643838879*710647^(1/2) 5142290000001201 a001 1134903780/1860499*710647^(1/2) 5142290000001201 a001 591286729879/969323029*710647^(1/2) 5142290000001201 a001 225851433717/370248451*710647^(1/2) 5142290000001202 a001 21566892818/35355581*710647^(1/2) 5142290000001203 a001 32951280099/54018521*710647^(1/2) 5142290000001213 a001 1144206275/1875749*710647^(1/2) 5142290000001262 a001 956722026041/4870847*271443^(1/13) 5142290000001284 a001 1201881744/1970299*710647^(1/2) 5142290000001320 a001 3524578/1149851*1860498^(5/6) 5142290000001447 a001 2504730781961/12752043*271443^(1/13) 5142290000001454 a001 86267571272/1149851*710647^(1/7) 5142290000001474 a001 3278735159921/16692641*271443^(1/13) 5142290000001480 a001 10610209857723/54018521*271443^(1/13) 5142290000001491 a001 4052739537881/20633239*271443^(1/13) 5142290000001562 a001 387002188980/1970299*271443^(1/13) 5142290000001712 a001 1134903170/4870847*710647^(4/7) 5142290000001769 a001 1836311903/3010349*710647^(1/2) 5142290000001897 a001 2971215073/12752043*710647^(4/7) 5142290000001898 a001 31622993/930249*710647^(5/7) 5142290000001904 a001 1346269/1149851*1860498^(9/10) 5142290000001924 a001 7778742049/33385282*710647^(4/7) 5142290000001928 a001 20365011074/87403803*710647^(4/7) 5142290000001929 a001 53316291173/228826127*710647^(4/7) 5142290000001929 a001 139583862445/599074578*710647^(4/7) 5142290000001929 a001 365435296162/1568397607*710647^(4/7) 5142290000001929 a001 956722026041/4106118243*710647^(4/7) 5142290000001929 a001 2504730781961/10749957122*710647^(4/7) 5142290000001929 a001 6557470319842/28143753123*710647^(4/7) 5142290000001929 a001 10610209857723/45537549124*710647^(4/7) 5142290000001929 a001 4052739537881/17393796001*710647^(4/7) 5142290000001929 a001 1548008755920/6643838879*710647^(4/7) 5142290000001929 a001 591286729879/2537720636*710647^(4/7) 5142290000001929 a001 225851433717/969323029*710647^(4/7) 5142290000001929 a001 86267571272/370248451*710647^(4/7) 5142290000001929 a001 63246219/271444*710647^(4/7) 5142290000001930 a001 12586269025/54018521*710647^(4/7) 5142290000001941 a001 4807526976/20633239*710647^(4/7) 5142290000002011 a001 1836311903/7881196*710647^(4/7) 5142290000002033 a001 20365011074/710647*271443^(3/13) 5142290000002046 a001 591286729879/3010349*271443^(1/13) 5142290000002046 a001 9227465/439204*439204^(7/9) 5142290000002181 a001 32951280099/1149851*710647^(3/14) 5142290000002261 a001 39088169/1860498*710647^(3/4) 5142290000002439 a001 433494437/4870847*710647^(9/14) 5142290000002496 a001 701408733/3010349*710647^(4/7) 5142290000002545 a001 20365011074/1149851*710647^(1/4) 5142290000002624 a001 1134903170/12752043*710647^(9/14) 5142290000002627 a001 24157817/1860498*710647^(11/14) 5142290000002651 a001 2971215073/33385282*710647^(9/14) 5142290000002655 a001 7778742049/87403803*710647^(9/14) 5142290000002656 a001 20365011074/228826127*710647^(9/14) 5142290000002656 a001 53316291173/599074578*710647^(9/14) 5142290000002656 a001 139583862445/1568397607*710647^(9/14) 5142290000002656 a001 365435296162/4106118243*710647^(9/14) 5142290000002656 a001 956722026041/10749957122*710647^(9/14) 5142290000002656 a001 2504730781961/28143753123*710647^(9/14) 5142290000002656 a001 6557470319842/73681302247*710647^(9/14) 5142290000002656 a001 10610209857723/119218851371*710647^(9/14) 5142290000002656 a001 4052739537881/45537549124*710647^(9/14) 5142290000002656 a001 1548008755920/17393796001*710647^(9/14) 5142290000002656 a001 591286729879/6643838879*710647^(9/14) 5142290000002656 a001 225851433717/2537720636*710647^(9/14) 5142290000002656 a001 86267571272/969323029*710647^(9/14) 5142290000002656 a001 32951280099/370248451*710647^(9/14) 5142290000002656 a001 12586269025/141422324*710647^(9/14) 5142290000002658 a001 4807526976/54018521*710647^(9/14) 5142290000002668 a001 1836311903/20633239*710647^(9/14) 5142290000002739 a001 3524667/39604*710647^(9/14) 5142290000002909 a001 12586269025/1149851*710647^(2/7) 5142290000003167 a001 165580141/4870847*710647^(5/7) 5142290000003223 a001 267914296/3010349*710647^(9/14) 5142290000003352 a001 433494437/12752043*710647^(5/7) 5142290000003364 a001 9227465/1860498*710647^(6/7) 5142290000003379 a001 567451585/16692641*710647^(5/7) 5142290000003383 a001 2971215073/87403803*710647^(5/7) 5142290000003383 a001 7778742049/228826127*710647^(5/7) 5142290000003383 a001 10182505537/299537289*710647^(5/7) 5142290000003383 a001 53316291173/1568397607*710647^(5/7) 5142290000003383 a001 139583862445/4106118243*710647^(5/7) 5142290000003383 a001 182717648081/5374978561*710647^(5/7) 5142290000003383 a001 956722026041/28143753123*710647^(5/7) 5142290000003383 a001 2504730781961/73681302247*710647^(5/7) 5142290000003383 a001 3278735159921/96450076809*710647^(5/7) 5142290000003383 a001 10610209857723/312119004989*710647^(5/7) 5142290000003383 a001 4052739537881/119218851371*710647^(5/7) 5142290000003383 a001 387002188980/11384387281*710647^(5/7) 5142290000003383 a001 591286729879/17393796001*710647^(5/7) 5142290000003383 a001 225851433717/6643838879*710647^(5/7) 5142290000003383 a001 1135099622/33391061*710647^(5/7) 5142290000003383 a001 32951280099/969323029*710647^(5/7) 5142290000003383 a001 12586269025/370248451*710647^(5/7) 5142290000003384 a001 1201881744/35355581*710647^(5/7) 5142290000003385 a001 1836311903/54018521*710647^(5/7) 5142290000003395 a001 701408733/20633239*710647^(5/7) 5142290000003466 a001 66978574/1970299*710647^(5/7) 5142290000003530 a001 102334155/4870847*710647^(3/4) 5142290000003636 a001 4807526976/1149851*710647^(5/14) 5142290000003715 a001 267914296/12752043*710647^(3/4) 5142290000003742 a001 701408733/33385282*710647^(3/4) 5142290000003746 a001 1836311903/87403803*710647^(3/4) 5142290000003747 a001 102287808/4868641*710647^(3/4) 5142290000003747 a001 12586269025/599074578*710647^(3/4) 5142290000003747 a001 32951280099/1568397607*710647^(3/4) 5142290000003747 a001 86267571272/4106118243*710647^(3/4) 5142290000003747 a001 225851433717/10749957122*710647^(3/4) 5142290000003747 a001 591286729879/28143753123*710647^(3/4) 5142290000003747 a001 1548008755920/73681302247*710647^(3/4) 5142290000003747 a001 4052739537881/192900153618*710647^(3/4) 5142290000003747 a001 225749145909/10745088481*710647^(3/4) 5142290000003747 a001 6557470319842/312119004989*710647^(3/4) 5142290000003747 a001 2504730781961/119218851371*710647^(3/4) 5142290000003747 a001 956722026041/45537549124*710647^(3/4) 5142290000003747 a001 365435296162/17393796001*710647^(3/4) 5142290000003747 a001 139583862445/6643838879*710647^(3/4) 5142290000003747 a001 53316291173/2537720636*710647^(3/4) 5142290000003747 a001 20365011074/969323029*710647^(3/4) 5142290000003747 a001 7778742049/370248451*710647^(3/4) 5142290000003747 a001 2971215073/141422324*710647^(3/4) 5142290000003749 a001 1134903170/54018521*710647^(3/4) 5142290000003759 a001 433494437/20633239*710647^(3/4) 5142290000003830 a001 165580141/7881196*710647^(3/4) 5142290000003889 a001 514229/1149851*(1/2+1/2*5^(1/2))^29 5142290000003889 a001 514229/1149851*1322157322203^(1/2) 5142290000003894 a001 63245986/4870847*710647^(11/14) 5142290000003951 a001 102334155/3010349*710647^(5/7) 5142290000004079 a001 165580141/12752043*710647^(11/14) 5142290000004106 a001 433494437/33385282*710647^(11/14) 5142290000004110 a001 1134903170/87403803*710647^(11/14) 5142290000004111 a001 2971215073/228826127*710647^(11/14) 5142290000004111 a001 7778742049/599074578*710647^(11/14) 5142290000004111 a001 20365011074/1568397607*710647^(11/14) 5142290000004111 a001 53316291173/4106118243*710647^(11/14) 5142290000004111 a001 139583862445/10749957122*710647^(11/14) 5142290000004111 a001 365435296162/28143753123*710647^(11/14) 5142290000004111 a001 956722026041/73681302247*710647^(11/14) 5142290000004111 a001 2504730781961/192900153618*710647^(11/14) 5142290000004111 a001 10610209857723/817138163596*710647^(11/14) 5142290000004111 a001 4052739537881/312119004989*710647^(11/14) 5142290000004111 a001 1548008755920/119218851371*710647^(11/14) 5142290000004111 a001 591286729879/45537549124*710647^(11/14) 5142290000004111 a001 7787980473/599786069*710647^(11/14) 5142290000004111 a001 86267571272/6643838879*710647^(11/14) 5142290000004111 a001 32951280099/2537720636*710647^(11/14) 5142290000004111 a001 12586269025/969323029*710647^(11/14) 5142290000004111 a001 4807526976/370248451*710647^(11/14) 5142290000004111 a001 1836311903/141422324*710647^(11/14) 5142290000004112 a001 701408733/54018521*710647^(11/14) 5142290000004123 a001 9238424/711491*710647^(11/14) 5142290000004162 a001 1762289/930249*710647^(13/14) 5142290000004193 a001 102334155/7881196*710647^(11/14) 5142290000004315 a001 63245986/3010349*710647^(3/4) 5142290000004363 a001 1836311903/1149851*710647^(3/7) 5142290000004623 a001 24157817/4870847*710647^(6/7) 5142290000004677 a001 39088169/3010349*710647^(11/14) 5142290000004807 a001 63245986/12752043*710647^(6/7) 5142290000004833 a001 165580141/33385282*710647^(6/7) 5142290000004837 a001 433494437/87403803*710647^(6/7) 5142290000004838 a001 1134903170/228826127*710647^(6/7) 5142290000004838 a001 2971215073/599074578*710647^(6/7) 5142290000004838 a001 7778742049/1568397607*710647^(6/7) 5142290000004838 a001 20365011074/4106118243*710647^(6/7) 5142290000004838 a001 53316291173/10749957122*710647^(6/7) 5142290000004838 a001 139583862445/28143753123*710647^(6/7) 5142290000004838 a001 365435296162/73681302247*710647^(6/7) 5142290000004838 a001 956722026041/192900153618*710647^(6/7) 5142290000004838 a001 2504730781961/505019158607*710647^(6/7) 5142290000004838 a001 10610209857723/2139295485799*710647^(6/7) 5142290000004838 a001 4052739537881/817138163596*710647^(6/7) 5142290000004838 a001 140728068720/28374454999*710647^(6/7) 5142290000004838 a001 591286729879/119218851371*710647^(6/7) 5142290000004838 a001 225851433717/45537549124*710647^(6/7) 5142290000004838 a001 86267571272/17393796001*710647^(6/7) 5142290000004838 a001 32951280099/6643838879*710647^(6/7) 5142290000004838 a001 1144206275/230701876*710647^(6/7) 5142290000004838 a001 4807526976/969323029*710647^(6/7) 5142290000004838 a001 1836311903/370248451*710647^(6/7) 5142290000004838 a001 701408733/141422324*710647^(6/7) 5142290000004840 a001 267914296/54018521*710647^(6/7) 5142290000004850 a001 9303105/1875749*710647^(6/7) 5142290000004920 a001 39088169/7881196*710647^(6/7) 5142290000004995 a001 39088169/439204*439204^(2/3) 5142290000005091 a001 701408733/1149851*710647^(1/2) 5142290000005361 a001 9227465/4870847*710647^(13/14) 5142290000005362 a001 139583862445/1860498*271443^(2/13) 5142290000005368 a001 225851433717/1149851*271443^(1/13) 5142290000005401 a001 14930352/3010349*710647^(6/7) 5142290000005535 a001 24157817/12752043*710647^(13/14) 5142290000005561 a001 31622993/16692641*710647^(13/14) 5142290000005565 a001 165580141/87403803*710647^(13/14) 5142290000005565 a001 433494437/228826127*710647^(13/14) 5142290000005565 a001 567451585/299537289*710647^(13/14) 5142290000005565 a001 2971215073/1568397607*710647^(13/14) 5142290000005565 a001 7778742049/4106118243*710647^(13/14) 5142290000005565 a001 10182505537/5374978561*710647^(13/14) 5142290000005565 a001 53316291173/28143753123*710647^(13/14) 5142290000005565 a001 139583862445/73681302247*710647^(13/14) 5142290000005565 a001 182717648081/96450076809*710647^(13/14) 5142290000005565 a001 956722026041/505019158607*710647^(13/14) 5142290000005565 a001 10610209857723/5600748293801*710647^(13/14) 5142290000005565 a001 591286729879/312119004989*710647^(13/14) 5142290000005565 a001 225851433717/119218851371*710647^(13/14) 5142290000005565 a001 21566892818/11384387281*710647^(13/14) 5142290000005565 a001 32951280099/17393796001*710647^(13/14) 5142290000005565 a001 12586269025/6643838879*710647^(13/14) 5142290000005565 a001 1201881744/634430159*710647^(13/14) 5142290000005565 a001 1836311903/969323029*710647^(13/14) 5142290000005565 a001 701408733/370248451*710647^(13/14) 5142290000005565 a001 66978574/35355581*710647^(13/14) 5142290000005567 a001 102334155/54018521*710647^(13/14) 5142290000005577 a001 39088169/20633239*710647^(13/14) 5142290000005643 a001 3732588/1970299*710647^(13/14) 5142290000005818 a001 267914296/1149851*710647^(4/7) 5142290000005859 a001 317811*103682^(1/24) 5142290000006045 a001 20365011074/271443*103682^(1/6) 5142290000006101 a001 5702887/3010349*710647^(13/14) 5142290000006293 a001 2/317811*(1/2+1/2*5^(1/2))^57 5142290000006545 a001 102334155/1149851*710647^(9/14) 5142290000006631 a001 365435296162/4870847*271443^(2/13) 5142290000006816 a001 956722026041/12752043*271443^(2/13) 5142290000006843 a001 2504730781961/33385282*271443^(2/13) 5142290000006847 a001 6557470319842/87403803*271443^(2/13) 5142290000006848 a001 10610209857723/141422324*271443^(2/13) 5142290000006849 a001 4052739537881/54018521*271443^(2/13) 5142290000006859 a001 140728068720/1875749*271443^(2/13) 5142290000006930 a001 591286729879/7881196*271443^(2/13) 5142290000007272 a001 39088169/1149851*710647^(5/7) 5142290000007402 a001 7778742049/710647*271443^(4/13) 5142290000007415 a001 225851433717/3010349*271443^(2/13) 5142290000007638 a001 24157817/1149851*710647^(3/4) 5142290000007958 a001 165580141/439204*439204^(5/9) 5142290000007995 a001 14930352/1149851*710647^(11/14) 5142290000008696 a001 5702887/1149851*710647^(6/7) 5142290000008696 a001 -121393/2+514229/2*5^(1/2) 5142290000009238 a001 2178309/1149851*710647^(13/14) 5142290000010730 a001 53316291173/1860498*271443^(3/13) 5142290000010737 a001 86267571272/1149851*271443^(2/13) 5142290000010920 a001 701408733/439204*439204^(4/9) 5142290000011999 a001 139583862445/4870847*271443^(3/13) 5142290000012184 a001 365435296162/12752043*271443^(3/13) 5142290000012211 a001 956722026041/33385282*271443^(3/13) 5142290000012215 a001 2504730781961/87403803*271443^(3/13) 5142290000012216 a001 6557470319842/228826127*271443^(3/13) 5142290000012216 a001 10610209857723/370248451*271443^(3/13) 5142290000012216 a001 4052739537881/141422324*271443^(3/13) 5142290000012218 a001 1548008755920/54018521*271443^(3/13) 5142290000012228 a001 591286729879/20633239*271443^(3/13) 5142290000012299 a001 225851433717/7881196*271443^(3/13) 5142290000012510 a001 196418/710647*7881196^(10/11) 5142290000012575 a001 196418/710647*20633239^(6/7) 5142290000012576 a001 317811/439204*20633239^(4/5) 5142290000012585 a001 196418/710647*141422324^(10/13) 5142290000012586 a001 196418/710647*2537720636^(2/3) 5142290000012586 a001 317811/439204*17393796001^(4/7) 5142290000012586 a001 196418/710647*45537549124^(10/17) 5142290000012586 a001 196418/710647*312119004989^(6/11) 5142290000012586 a001 196418/710647*14662949395604^(10/21) 5142290000012586 a001 196418/710647*(1/2+1/2*5^(1/2))^30 5142290000012586 a001 196418/710647*192900153618^(5/9) 5142290000012586 a001 317811/439204*14662949395604^(4/9) 5142290000012586 a001 317811/439204*(1/2+1/2*5^(1/2))^28 5142290000012586 a001 317811/439204*505019158607^(1/2) 5142290000012586 a001 317811/439204*73681302247^(7/13) 5142290000012586 a001 196418/710647*28143753123^(3/5) 5142290000012586 a001 317811/439204*10749957122^(7/12) 5142290000012586 a001 196418/710647*10749957122^(5/8) 5142290000012586 a001 317811/439204*4106118243^(14/23) 5142290000012586 a001 196418/710647*4106118243^(15/23) 5142290000012586 a001 317811/439204*1568397607^(7/11) 5142290000012586 a001 196418/710647*1568397607^(15/22) 5142290000012586 a001 317811/439204*599074578^(2/3) 5142290000012586 a001 196418/710647*599074578^(5/7) 5142290000012586 a001 317811/439204*228826127^(7/10) 5142290000012586 a001 196418/710647*228826127^(3/4) 5142290000012586 a001 317811/439204*87403803^(14/19) 5142290000012586 a001 196418/710647*87403803^(15/19) 5142290000012589 a001 317811/439204*33385282^(7/9) 5142290000012589 a001 196418/710647*33385282^(5/6) 5142290000012612 a001 317811/439204*12752043^(14/17) 5142290000012613 a001 196418/710647*12752043^(15/17) 5142290000012770 a001 2971215073/710647*271443^(5/13) 5142290000012775 a001 317811/439204*4870847^(7/8) 5142290000012783 a001 86267571272/3010349*271443^(3/13) 5142290000012789 a001 196418/710647*4870847^(15/16) 5142290000013882 a001 2971215073/439204*439204^(1/3) 5142290000013972 a001 317811/439204*1860498^(14/15) 5142290000014556 a001 591286729879/1860498*103682^(1/24) 5142290000015476 a001 20365011074/167761*64079^(3/23) 5142290000015825 a001 1548008755920/4870847*103682^(1/24) 5142290000016010 a001 4052739537881/12752043*103682^(1/24) 5142290000016037 a001 1515744265389/4769326*103682^(1/24) 5142290000016054 a001 6557470319842/20633239*103682^(1/24) 5142290000016099 a001 10182505537/930249*271443^(4/13) 5142290000016105 a001 32951280099/1149851*271443^(3/13) 5142290000016124 a001 2504730781961/7881196*103682^(1/24) 5142290000016609 a001 956722026041/3010349*103682^(1/24) 5142290000016844 a001 12586269025/439204*439204^(2/9) 5142290000017368 a001 53316291173/4870847*271443^(4/13) 5142290000017553 a001 139583862445/12752043*271443^(4/13) 5142290000017580 a001 182717648081/16692641*271443^(4/13) 5142290000017584 a001 956722026041/87403803*271443^(4/13) 5142290000017584 a001 2504730781961/228826127*271443^(4/13) 5142290000017584 a001 3278735159921/299537289*271443^(4/13) 5142290000017584 a001 10610209857723/969323029*271443^(4/13) 5142290000017584 a001 4052739537881/370248451*271443^(4/13) 5142290000017585 a001 387002188980/35355581*271443^(4/13) 5142290000017586 a001 591286729879/54018521*271443^(4/13) 5142290000017596 a001 7787980473/711491*271443^(4/13) 5142290000017667 a001 21566892818/1970299*271443^(4/13) 5142290000018139 a001 1134903170/710647*271443^(6/13) 5142290000018152 a001 32951280099/3010349*271443^(4/13) 5142290000019446 a001 264431464442/514229 5142290000019806 a001 53316291173/439204*439204^(1/9) 5142290000019931 a001 365435296162/1149851*103682^(1/24) 5142290000020823 a001 701408733/710647*271443^(1/2) 5142290000021282 a001 208010/109801*141422324^(2/3) 5142290000021282 a001 98209/930249*(1/2+1/2*5^(1/2))^32 5142290000021282 a001 98209/930249*23725150497407^(1/2) 5142290000021282 a001 98209/930249*505019158607^(4/7) 5142290000021282 a001 208010/109801*(1/2+1/2*5^(1/2))^26 5142290000021282 a001 98209/930249*73681302247^(8/13) 5142290000021282 a001 208010/109801*73681302247^(1/2) 5142290000021282 a001 208010/109801*10749957122^(13/24) 5142290000021282 a001 98209/930249*10749957122^(2/3) 5142290000021282 a001 208010/109801*4106118243^(13/23) 5142290000021282 a001 98209/930249*4106118243^(16/23) 5142290000021282 a001 208010/109801*1568397607^(13/22) 5142290000021282 a001 98209/930249*1568397607^(8/11) 5142290000021282 a001 208010/109801*599074578^(13/21) 5142290000021282 a001 98209/930249*599074578^(16/21) 5142290000021282 a001 208010/109801*228826127^(13/20) 5142290000021282 a001 98209/930249*228826127^(4/5) 5142290000021283 a001 208010/109801*87403803^(13/19) 5142290000021283 a001 98209/930249*87403803^(16/19) 5142290000021286 a001 208010/109801*33385282^(13/18) 5142290000021286 a001 98209/930249*33385282^(8/9) 5142290000021307 a001 208010/109801*12752043^(13/17) 5142290000021312 a001 98209/930249*12752043^(16/17) 5142290000021458 a001 208010/109801*4870847^(13/16) 5142290000021467 a001 7778742049/1860498*271443^(5/13) 5142290000021474 a001 12586269025/1149851*271443^(4/13) 5142290000022212 a001 7778742049/64079*24476^(1/7) 5142290000022283 a001 692290561604/1346269 5142290000022491 a001 2178309/439204*7881196^(8/11) 5142290000022551 a001 2178309/439204*141422324^(8/13) 5142290000022551 a001 2178309/439204*2537720636^(8/15) 5142290000022551 a001 196418/4870847*45537549124^(2/3) 5142290000022551 a001 2178309/439204*45537549124^(8/17) 5142290000022551 a001 196418/4870847*(1/2+1/2*5^(1/2))^34 5142290000022551 a001 2178309/439204*14662949395604^(8/21) 5142290000022551 a001 2178309/439204*(1/2+1/2*5^(1/2))^24 5142290000022551 a001 2178309/439204*192900153618^(4/9) 5142290000022551 a001 2178309/439204*73681302247^(6/13) 5142290000022551 a001 2178309/439204*10749957122^(1/2) 5142290000022551 a001 196418/4870847*10749957122^(17/24) 5142290000022551 a001 2178309/439204*4106118243^(12/23) 5142290000022551 a001 196418/4870847*4106118243^(17/23) 5142290000022551 a001 2178309/439204*1568397607^(6/11) 5142290000022551 a001 196418/4870847*1568397607^(17/22) 5142290000022551 a001 2178309/439204*599074578^(4/7) 5142290000022551 a001 196418/4870847*599074578^(17/21) 5142290000022551 a001 2178309/439204*228826127^(3/5) 5142290000022551 a001 196418/4870847*228826127^(17/20) 5142290000022552 a001 2178309/439204*87403803^(12/19) 5142290000022552 a001 196418/4870847*87403803^(17/19) 5142290000022554 a001 2178309/439204*33385282^(2/3) 5142290000022556 a001 196418/4870847*33385282^(17/18) 5142290000022570 a001 208010/109801*1860498^(13/15) 5142290000022574 a001 2178309/439204*12752043^(12/17) 5142290000022681 a001 5702887/439204*7881196^(2/3) 5142290000022697 a001 906220110185/1762289 5142290000022714 a001 2178309/439204*4870847^(3/4) 5142290000022722 a001 39088169/439204*7881196^(6/11) 5142290000022727 a001 9227465/439204*7881196^(7/11) 5142290000022730 a001 165580141/439204*7881196^(5/11) 5142290000022736 a001 196418/12752043*141422324^(12/13) 5142290000022736 a001 20365011074/4870847*271443^(5/13) 5142290000022736 a001 196418/12752043*2537720636^(4/5) 5142290000022736 a001 196418/12752043*45537549124^(12/17) 5142290000022736 a001 196418/12752043*14662949395604^(4/7) 5142290000022736 a001 196418/12752043*(1/2+1/2*5^(1/2))^36 5142290000022736 a001 196418/12752043*505019158607^(9/14) 5142290000022736 a001 196418/12752043*192900153618^(2/3) 5142290000022736 a001 5702887/439204*312119004989^(2/5) 5142290000022736 a001 5702887/439204*(1/2+1/2*5^(1/2))^22 5142290000022736 a001 196418/12752043*73681302247^(9/13) 5142290000022736 a001 5702887/439204*10749957122^(11/24) 5142290000022736 a001 196418/12752043*10749957122^(3/4) 5142290000022736 a001 5702887/439204*4106118243^(11/23) 5142290000022736 a001 196418/12752043*4106118243^(18/23) 5142290000022736 a001 5702887/439204*1568397607^(1/2) 5142290000022736 a001 196418/12752043*1568397607^(9/11) 5142290000022736 a001 5702887/439204*599074578^(11/21) 5142290000022736 a001 196418/12752043*599074578^(6/7) 5142290000022736 a001 5702887/439204*228826127^(11/20) 5142290000022736 a001 196418/12752043*228826127^(9/10) 5142290000022737 a001 5702887/439204*87403803^(11/19) 5142290000022737 a001 196418/12752043*87403803^(18/19) 5142290000022738 a001 701408733/439204*7881196^(4/11) 5142290000022739 a001 5702887/439204*33385282^(11/18) 5142290000022740 a001 567451585/219602*7881196^(1/3) 5142290000022745 a001 2971215073/439204*7881196^(3/11) 5142290000022753 a001 12586269025/439204*7881196^(2/11) 5142290000022756 a001 196452/5779*20633239^(4/7) 5142290000022757 a001 5702887/439204*12752043^(11/17) 5142290000022758 a001 4745030099506/9227465 5142290000022760 a001 53316291173/439204*7881196^(1/11) 5142290000022763 a001 165580141/439204*20633239^(3/7) 5142290000022763 a001 66978574/109801*20633239^(2/5) 5142290000022763 a001 196452/5779*2537720636^(4/9) 5142290000022763 a001 98209/16692641*817138163596^(2/3) 5142290000022763 a001 98209/16692641*(1/2+1/2*5^(1/2))^38 5142290000022763 a001 196452/5779*(1/2+1/2*5^(1/2))^20 5142290000022763 a001 196452/5779*23725150497407^(5/16) 5142290000022763 a001 196452/5779*505019158607^(5/14) 5142290000022763 a001 196452/5779*73681302247^(5/13) 5142290000022763 a001 196452/5779*28143753123^(2/5) 5142290000022763 a001 196452/5779*10749957122^(5/12) 5142290000022763 a001 98209/16692641*10749957122^(19/24) 5142290000022763 a001 196452/5779*4106118243^(10/23) 5142290000022763 a001 98209/16692641*4106118243^(19/23) 5142290000022763 a001 196452/5779*1568397607^(5/11) 5142290000022763 a001 98209/16692641*1568397607^(19/22) 5142290000022763 a001 196452/5779*599074578^(10/21) 5142290000022763 a001 98209/16692641*599074578^(19/21) 5142290000022763 a001 196452/5779*228826127^(1/2) 5142290000022763 a001 98209/16692641*228826127^(19/20) 5142290000022764 a001 196452/5779*87403803^(10/19) 5142290000022765 a001 1836311903/439204*20633239^(2/7) 5142290000022766 a001 7778742049/439204*20633239^(1/5) 5142290000022766 a001 196452/5779*33385282^(5/9) 5142290000022766 a001 10182505537/219602*20633239^(1/7) 5142290000022766 a001 12422650078148/24157817 5142290000022767 a001 39088169/439204*141422324^(6/13) 5142290000022767 a001 196418/87403803*2537720636^(8/9) 5142290000022767 a001 39088169/439204*2537720636^(2/5) 5142290000022767 a001 39088169/439204*45537549124^(6/17) 5142290000022767 a001 196418/87403803*312119004989^(8/11) 5142290000022767 a001 196418/87403803*23725150497407^(5/8) 5142290000022767 a001 39088169/439204*14662949395604^(2/7) 5142290000022767 a001 39088169/439204*(1/2+1/2*5^(1/2))^18 5142290000022767 a001 39088169/439204*192900153618^(1/3) 5142290000022767 a001 196418/87403803*73681302247^(10/13) 5142290000022767 a001 196418/87403803*28143753123^(4/5) 5142290000022767 a001 39088169/439204*10749957122^(3/8) 5142290000022767 a001 196418/87403803*10749957122^(5/6) 5142290000022767 a001 39088169/439204*4106118243^(9/23) 5142290000022767 a001 196418/87403803*4106118243^(20/23) 5142290000022767 a001 39088169/439204*1568397607^(9/22) 5142290000022767 a001 196418/87403803*1568397607^(10/11) 5142290000022767 a001 39088169/439204*599074578^(3/7) 5142290000022767 a001 196418/87403803*599074578^(20/21) 5142290000022767 a001 39088169/439204*228826127^(9/20) 5142290000022768 a001 39088169/439204*87403803^(9/19) 5142290000022768 a001 16261460067469/31622993 5142290000022768 a001 196418/228826127*2537720636^(14/15) 5142290000022768 a001 196418/228826127*17393796001^(6/7) 5142290000022768 a001 196418/228826127*45537549124^(14/17) 5142290000022768 a001 196418/228826127*817138163596^(14/19) 5142290000022768 a001 196418/228826127*14662949395604^(2/3) 5142290000022768 a001 196418/228826127*505019158607^(3/4) 5142290000022768 a001 196418/228826127*192900153618^(7/9) 5142290000022768 a001 102334155/439204*(1/2+1/2*5^(1/2))^16 5142290000022768 a001 102334155/439204*23725150497407^(1/4) 5142290000022768 a001 102334155/439204*73681302247^(4/13) 5142290000022768 a001 102334155/439204*10749957122^(1/3) 5142290000022768 a001 196418/228826127*10749957122^(7/8) 5142290000022768 a001 102334155/439204*4106118243^(8/23) 5142290000022768 a001 196418/228826127*4106118243^(21/23) 5142290000022768 a001 102334155/439204*1568397607^(4/11) 5142290000022768 a001 196418/228826127*1568397607^(21/22) 5142290000022768 a001 102334155/439204*599074578^(8/21) 5142290000022768 a001 701408733/439204*141422324^(4/13) 5142290000022768 a001 433494437/439204*141422324^(1/3) 5142290000022768 a001 165580141/439204*141422324^(5/13) 5142290000022768 a001 2971215073/439204*141422324^(3/13) 5142290000022768 a001 102334155/439204*228826127^(2/5) 5142290000022768 a001 12586269025/439204*141422324^(2/13) 5142290000022768 a001 85146110326666/165580141 5142290000022768 a001 53316291173/439204*141422324^(1/13) 5142290000022768 a001 66978574/109801*17393796001^(2/7) 5142290000022768 a001 98209/299537289*312119004989^(4/5) 5142290000022768 a001 98209/299537289*23725150497407^(11/16) 5142290000022768 a001 66978574/109801*14662949395604^(2/9) 5142290000022768 a001 66978574/109801*(1/2+1/2*5^(1/2))^14 5142290000022768 a001 98209/299537289*73681302247^(11/13) 5142290000022768 a001 66978574/109801*10749957122^(7/24) 5142290000022768 a001 98209/299537289*10749957122^(11/12) 5142290000022768 a001 66978574/109801*4106118243^(7/23) 5142290000022768 a001 98209/299537289*4106118243^(22/23) 5142290000022768 a001 66978574/109801*1568397607^(7/22) 5142290000022768 a001 66978574/109801*599074578^(1/3) 5142290000022768 a001 222915410845060/433494437 5142290000022768 a001 701408733/439204*2537720636^(4/15) 5142290000022768 a001 701408733/439204*45537549124^(4/17) 5142290000022768 a001 701408733/439204*817138163596^(4/19) 5142290000022768 a001 701408733/439204*14662949395604^(4/21) 5142290000022768 a001 701408733/439204*(1/2+1/2*5^(1/2))^12 5142290000022768 a001 701408733/439204*192900153618^(2/9) 5142290000022768 a001 701408733/439204*73681302247^(3/13) 5142290000022768 a001 701408733/439204*10749957122^(1/4) 5142290000022768 a001 196418/1568397607*10749957122^(23/24) 5142290000022768 a001 701408733/439204*4106118243^(6/23) 5142290000022768 a001 701408733/439204*1568397607^(3/11) 5142290000022768 a001 17164709476721/33379505 5142290000022768 a001 1836311903/439204*2537720636^(2/9) 5142290000022768 a001 196418/4106118243*45537549124^(16/17) 5142290000022768 a001 196418/4106118243*14662949395604^(16/21) 5142290000022768 a001 196418/4106118243*192900153618^(8/9) 5142290000022768 a001 1836311903/439204*312119004989^(2/11) 5142290000022768 a001 1836311903/439204*(1/2+1/2*5^(1/2))^10 5142290000022768 a001 196418/4106118243*73681302247^(12/13) 5142290000022768 a001 1836311903/439204*28143753123^(1/5) 5142290000022768 a001 1836311903/439204*10749957122^(5/24) 5142290000022768 a001 1836311903/439204*4106118243^(5/23) 5142290000022768 a001 12586269025/439204*2537720636^(2/15) 5142290000022768 a001 1527884955780482/2971215073 5142290000022768 a001 10182505537/219602*2537720636^(1/9) 5142290000022768 a001 53316291173/439204*2537720636^(1/15) 5142290000022768 a001 98209/5374978561*312119004989^(10/11) 5142290000022768 a001 98209/5374978561*3461452808002^(5/6) 5142290000022768 a001 1201881744/109801*(1/2+1/2*5^(1/2))^8 5142290000022768 a001 1201881744/109801*23725150497407^(1/8) 5142290000022768 a001 1201881744/109801*505019158607^(1/7) 5142290000022768 a001 1201881744/109801*73681302247^(2/13) 5142290000022768 a001 2971215073/439204*2537720636^(1/5) 5142290000022768 a001 1201881744/109801*10749957122^(1/6) 5142290000022768 a001 4000054745132932/7778742049 5142290000022768 a001 12586269025/439204*45537549124^(2/17) 5142290000022768 a001 196418/28143753123*23725150497407^(13/16) 5142290000022768 a001 196418/28143753123*505019158607^(13/14) 5142290000022768 a001 12586269025/439204*14662949395604^(2/21) 5142290000022768 a001 12586269025/439204*(1/2+1/2*5^(1/2))^6 5142290000022768 a001 5236139639809157/10182505537 5142290000022768 a001 196418/73681302247*14662949395604^(6/7) 5142290000022768 a001 32951280099/439204*(1/2+1/2*5^(1/2))^4 5142290000022768 a001 32951280099/439204*23725150497407^(1/16) 5142290000022768 a001 12586269025/439204*10749957122^(1/8) 5142290000022768 a001 32951280099/439204*73681302247^(1/13) 5142290000022768 a001 27416783093722010/53316291173 5142290000022768 a001 98209/96450076809*14662949395604^(8/9) 5142290000022768 a001 196418/1322157322203*14662949395604^(20/21) 5142290000022768 a001 491974210731215698/956722026041 5142290000022768 a001 1288005205282725956/2504730781961 5142290000022768 a001 116139356909373422/225851433717 5142290000022768 a001 196418/312119004989*14662949395604^(19/21) 5142290000022768 a001 225851433717/439204 5142290000022768 a001 53316291173/439204*45537549124^(1/17) 5142290000022768 a001 196418/119218851371*3461452808002^(11/12) 5142290000022768 a001 53316291173/439204*14662949395604^(1/21) 5142290000022768 a001 53316291173/439204*(1/2+1/2*5^(1/2))^3 5142290000022768 a001 53316291173/439204*192900153618^(1/18) 5142290000022768 a001 16944503814103696/32951280099 5142290000022768 a001 196418*10749957122^(1/24) 5142290000022768 a001 10182505537/219602*312119004989^(1/11) 5142290000022768 a001 10182505537/219602*(1/2+1/2*5^(1/2))^5 5142290000022768 a001 32951280099/439204*10749957122^(1/12) 5142290000022768 a001 10182505537/219602*28143753123^(1/10) 5142290000022768 a001 53316291173/439204*10749957122^(1/16) 5142290000022768 a001 6472224534485382/12586269025 5142290000022768 a001 1201881744/109801*4106118243^(4/23) 5142290000022768 a001 196418*4106118243^(1/23) 5142290000022768 a001 7778742049/439204*17393796001^(1/7) 5142290000022768 a001 196418/17393796001*817138163596^(17/19) 5142290000022768 a001 196418/17393796001*14662949395604^(17/21) 5142290000022768 a001 196418/17393796001*192900153618^(17/18) 5142290000022768 a001 7778742049/439204*(1/2+1/2*5^(1/2))^7 5142290000022768 a001 32951280099/439204*4106118243^(2/23) 5142290000022768 a001 12586269025/439204*4106118243^(3/23) 5142290000022768 a001 1236084894676225/2403763488 5142290000022768 a001 196418*1568397607^(1/22) 5142290000022768 a001 2971215073/439204*45537549124^(3/17) 5142290000022768 a001 196418/6643838879*14662949395604^(7/9) 5142290000022768 a001 196418/6643838879*505019158607^(7/8) 5142290000022768 a001 2971215073/439204*14662949395604^(1/7) 5142290000022768 a001 2971215073/439204*(1/2+1/2*5^(1/2))^9 5142290000022768 a001 2971215073/439204*192900153618^(1/6) 5142290000022768 a001 2971215073/439204*10749957122^(3/16) 5142290000022768 a001 1836311903/439204*1568397607^(5/22) 5142290000022768 a001 32951280099/439204*1568397607^(1/11) 5142290000022768 a001 944284833571968/1836311903 5142290000022768 a001 12586269025/439204*1568397607^(3/22) 5142290000022768 a001 1201881744/109801*1568397607^(2/11) 5142290000022768 a001 196418*599074578^(1/21) 5142290000022768 a001 567451585/219602*312119004989^(1/5) 5142290000022768 a001 567451585/219602*(1/2+1/2*5^(1/2))^11 5142290000022768 a001 53316291173/439204*599074578^(1/14) 5142290000022768 a001 567451585/219602*1568397607^(1/4) 5142290000022768 a001 32951280099/439204*599074578^(2/21) 5142290000022768 a001 360684711363454/701408733 5142290000022768 a001 701408733/439204*599074578^(2/7) 5142290000022768 a001 12586269025/439204*599074578^(1/7) 5142290000022768 a001 7778742049/439204*599074578^(1/6) 5142290000022768 a001 1201881744/109801*599074578^(4/21) 5142290000022768 a001 1836311903/439204*599074578^(5/21) 5142290000022768 a001 2971215073/439204*599074578^(3/14) 5142290000022768 a001 196418*228826127^(1/20) 5142290000022768 a001 196418/969323029*45537549124^(15/17) 5142290000022768 a001 196418/969323029*312119004989^(9/11) 5142290000022768 a001 196418/969323029*14662949395604^(5/7) 5142290000022768 a001 196418/969323029*192900153618^(5/6) 5142290000022768 a001 433494437/439204*(1/2+1/2*5^(1/2))^13 5142290000022768 a001 433494437/439204*73681302247^(1/4) 5142290000022768 a001 196418/969323029*28143753123^(9/10) 5142290000022768 a001 196418/969323029*10749957122^(15/16) 5142290000022768 a001 32951280099/439204*228826127^(1/10) 5142290000022768 a001 68884650259197/133957148 5142290000022768 a001 10182505537/219602*228826127^(1/8) 5142290000022768 a001 12586269025/439204*228826127^(3/20) 5142290000022768 a001 1201881744/109801*228826127^(1/5) 5142290000022768 a001 66978574/109801*228826127^(7/20) 5142290000022768 a001 1836311903/439204*228826127^(1/4) 5142290000022768 a001 701408733/439204*228826127^(3/10) 5142290000022768 a001 196418*87403803^(1/19) 5142290000022768 a001 165580141/439204*2537720636^(1/3) 5142290000022768 a001 165580141/439204*45537549124^(5/17) 5142290000022768 a001 165580141/439204*312119004989^(3/11) 5142290000022768 a001 165580141/439204*14662949395604^(5/21) 5142290000022768 a001 165580141/439204*(1/2+1/2*5^(1/2))^15 5142290000022768 a001 165580141/439204*192900153618^(5/18) 5142290000022768 a001 165580141/439204*28143753123^(3/10) 5142290000022768 a001 165580141/439204*10749957122^(5/16) 5142290000022768 a001 165580141/439204*599074578^(5/14) 5142290000022768 a001 32951280099/439204*87403803^(2/19) 5142290000022768 a001 165580141/439204*228826127^(3/8) 5142290000022768 a001 52623190191728/102334155 5142290000022768 a001 12586269025/439204*87403803^(3/19) 5142290000022768 a001 1201881744/109801*87403803^(4/19) 5142290000022768 a001 1836311903/439204*87403803^(5/19) 5142290000022768 a001 102334155/439204*87403803^(8/19) 5142290000022768 a001 701408733/439204*87403803^(6/19) 5142290000022768 a001 66978574/109801*87403803^(7/19) 5142290000022768 a001 196418*33385282^(1/18) 5142290000022768 a001 31622993/219602*45537549124^(1/3) 5142290000022768 a001 31622993/219602*(1/2+1/2*5^(1/2))^17 5142290000022768 a001 53316291173/439204*33385282^(1/12) 5142290000022768 a001 32951280099/439204*33385282^(1/9) 5142290000022769 a001 20100270056790/39088169 5142290000022769 a001 12586269025/439204*33385282^(1/6) 5142290000022769 a001 1201881744/109801*33385282^(2/9) 5142290000022769 a001 2971215073/439204*33385282^(1/4) 5142290000022769 a001 1836311903/439204*33385282^(5/18) 5142290000022769 a001 701408733/439204*33385282^(1/3) 5142290000022770 a001 39088169/439204*33385282^(1/2) 5142290000022770 a001 196418/54018521*2537720636^(13/15) 5142290000022770 a001 196418/54018521*45537549124^(13/17) 5142290000022770 a001 196418/54018521*14662949395604^(13/21) 5142290000022770 a001 196418/54018521*192900153618^(13/18) 5142290000022770 a001 24157817/439204*817138163596^(1/3) 5142290000022770 a001 24157817/439204*(1/2+1/2*5^(1/2))^19 5142290000022770 a001 196418/54018521*73681302247^(3/4) 5142290000022770 a001 196418/54018521*10749957122^(13/16) 5142290000022770 a001 196418/54018521*599074578^(13/14) 5142290000022770 a001 66978574/109801*33385282^(7/18) 5142290000022770 a001 196418*12752043^(1/17) 5142290000022770 a001 102334155/439204*33385282^(4/9) 5142290000022770 a001 165580141/439204*33385282^(5/12) 5142290000022770 a001 24157817/439204*87403803^(1/2) 5142290000022772 a001 32951280099/439204*12752043^(2/17) 5142290000022772 a001 225812352313/439128 5142290000022773 a001 9227465/439204*20633239^(3/5) 5142290000022774 a001 12586269025/439204*12752043^(3/17) 5142290000022775 a001 1201881744/109801*12752043^(4/17) 5142290000022777 a001 1836311903/439204*12752043^(5/17) 5142290000022779 a001 701408733/439204*12752043^(6/17) 5142290000022780 a001 9227465/439204*141422324^(7/13) 5142290000022780 a001 9227465/439204*2537720636^(7/15) 5142290000022780 a001 9227465/439204*17393796001^(3/7) 5142290000022780 a001 9227465/439204*45537549124^(7/17) 5142290000022780 a001 196418/20633239*(1/2+1/2*5^(1/2))^37 5142290000022780 a001 9227465/439204*14662949395604^(1/3) 5142290000022780 a001 9227465/439204*(1/2+1/2*5^(1/2))^21 5142290000022780 a001 9227465/439204*192900153618^(7/18) 5142290000022780 a001 9227465/439204*10749957122^(7/16) 5142290000022780 a001 9227465/439204*599074578^(1/2) 5142290000022781 a001 66978574/109801*12752043^(7/17) 5142290000022782 a001 196418*4870847^(1/16) 5142290000022782 a001 196452/5779*12752043^(10/17) 5142290000022783 a001 9227465/439204*33385282^(7/12) 5142290000022783 a001 102334155/439204*12752043^(8/17) 5142290000022784 a001 39088169/439204*12752043^(9/17) 5142290000022784 a001 31622993/219602*12752043^(1/2) 5142290000022795 a001 2932589879136/5702887 5142290000022795 a001 32951280099/439204*4870847^(1/8) 5142290000022809 a001 12586269025/439204*4870847^(3/16) 5142290000022822 a001 1201881744/109801*4870847^(1/4) 5142290000022836 a001 1836311903/439204*4870847^(5/16) 5142290000022849 a001 701408733/439204*4870847^(3/8) 5142290000022851 a001 98209/3940598*2537720636^(7/9) 5142290000022851 a001 98209/3940598*17393796001^(5/7) 5142290000022851 a001 98209/3940598*312119004989^(7/11) 5142290000022851 a001 98209/3940598*14662949395604^(5/9) 5142290000022851 a001 98209/3940598*(1/2+1/2*5^(1/2))^35 5142290000022851 a001 98209/3940598*505019158607^(5/8) 5142290000022851 a001 1762289/219602*(1/2+1/2*5^(1/2))^23 5142290000022851 a001 98209/3940598*28143753123^(7/10) 5142290000022851 a001 1762289/219602*4106118243^(1/2) 5142290000022851 a001 98209/3940598*599074578^(5/6) 5142290000022851 a001 98209/3940598*228826127^(7/8) 5142290000022863 a001 66978574/109801*4870847^(7/16) 5142290000022867 a001 196418*1860498^(1/15) 5142290000022876 a001 102334155/439204*4870847^(1/2) 5142290000022885 a001 5702887/439204*4870847^(11/16) 5142290000022889 a001 39088169/439204*4870847^(9/16) 5142290000022899 a001 196452/5779*4870847^(5/8) 5142290000022917 a001 53316291173/439204*1860498^(1/10) 5142290000022921 a001 53316291173/12752043*271443^(5/13) 5142290000022948 a001 139583862445/33385282*271443^(5/13) 5142290000022952 a001 365435296162/87403803*271443^(5/13) 5142290000022953 a001 956722026041/228826127*271443^(5/13) 5142290000022953 a001 2504730781961/599074578*271443^(5/13) 5142290000022953 a001 6557470319842/1568397607*271443^(5/13) 5142290000022953 a001 10610209857723/2537720636*271443^(5/13) 5142290000022953 a001 4052739537881/969323029*271443^(5/13) 5142290000022953 a001 1548008755920/370248451*271443^(5/13) 5142290000022953 a001 1120149658766/2178309 5142290000022953 a001 591286729879/141422324*271443^(5/13) 5142290000022955 a001 225851433717/54018521*271443^(5/13) 5142290000022965 a001 86267571272/20633239*271443^(5/13) 5142290000022966 a001 32951280099/439204*1860498^(2/15) 5142290000023016 a001 10182505537/219602*1860498^(1/6) 5142290000023036 a001 32951280099/7881196*271443^(5/13) 5142290000023065 a001 12586269025/439204*1860498^(1/5) 5142290000023164 a001 1201881744/109801*1860498^(4/15) 5142290000023214 a001 2971215073/439204*1860498^(3/10) 5142290000023263 a001 1836311903/439204*1860498^(1/3) 5142290000023327 a001 1346269/439204*20633239^(5/7) 5142290000023335 a001 196418/3010349*141422324^(11/13) 5142290000023335 a001 196418/3010349*2537720636^(11/15) 5142290000023335 a001 1346269/439204*2537720636^(5/9) 5142290000023335 a001 196418/3010349*45537549124^(11/17) 5142290000023335 a001 196418/3010349*312119004989^(3/5) 5142290000023335 a001 196418/3010349*817138163596^(11/19) 5142290000023335 a001 196418/3010349*14662949395604^(11/21) 5142290000023335 a001 196418/3010349*(1/2+1/2*5^(1/2))^33 5142290000023335 a001 196418/3010349*192900153618^(11/18) 5142290000023335 a001 1346269/439204*312119004989^(5/11) 5142290000023335 a001 1346269/439204*(1/2+1/2*5^(1/2))^25 5142290000023335 a001 1346269/439204*3461452808002^(5/12) 5142290000023335 a001 1346269/439204*28143753123^(1/2) 5142290000023335 a001 196418/3010349*10749957122^(11/16) 5142290000023335 a001 196418/3010349*1568397607^(3/4) 5142290000023335 a001 196418/3010349*599074578^(11/14) 5142290000023335 a001 1346269/439204*228826127^(5/8) 5142290000023340 a001 196418/3010349*33385282^(11/12) 5142290000023362 a001 701408733/439204*1860498^(2/5) 5142290000023461 a001 66978574/109801*1860498^(7/15) 5142290000023495 a001 196418*710647^(1/14) 5142290000023508 a001 433494437/710647*271443^(7/13) 5142290000023511 a001 165580141/439204*1860498^(1/2) 5142290000023520 a001 12586269025/3010349*271443^(5/13) 5142290000023560 a001 102334155/439204*1860498^(8/15) 5142290000023659 a001 39088169/439204*1860498^(3/5) 5142290000023740 a001 2178309/439204*1860498^(4/5) 5142290000023754 a001 196452/5779*1860498^(2/3) 5142290000023820 a001 9227465/439204*1860498^(7/10) 5142290000023826 a001 5702887/439204*1860498^(11/15) 5142290000024037 a001 213929548581/416020 5142290000024223 a001 32951280099/439204*710647^(1/7) 5142290000024573 a001 1346269/439204*1860498^(5/6) 5142290000024950 a001 12586269025/439204*710647^(3/14) 5142290000025314 a001 7778742049/439204*710647^(1/4) 5142290000025677 a001 1201881744/109801*710647^(2/7) 5142290000025791 a001 139583862445/710647*103682^(1/12) 5142290000025976 a001 12586269025/271443*103682^(5/24) 5142290000026405 a001 1836311903/439204*710647^(5/14) 5142290000026590 a001 514229/439204*7881196^(9/11) 5142290000026657 a001 514229/439204*141422324^(9/13) 5142290000026657 a001 514229/439204*2537720636^(3/5) 5142290000026657 a001 514229/439204*45537549124^(9/17) 5142290000026657 a001 196418/1149851*(1/2+1/2*5^(1/2))^31 5142290000026657 a001 196418/1149851*9062201101803^(1/2) 5142290000026657 a001 514229/439204*817138163596^(9/19) 5142290000026657 a001 514229/439204*14662949395604^(3/7) 5142290000026657 a001 514229/439204*(1/2+1/2*5^(1/2))^27 5142290000026657 a001 514229/439204*192900153618^(1/2) 5142290000026657 a001 514229/439204*10749957122^(9/16) 5142290000026657 a001 514229/439204*599074578^(9/14) 5142290000026661 a001 514229/439204*33385282^(3/4) 5142290000026836 a001 2971215073/1860498*271443^(6/13) 5142290000026842 a001 4807526976/1149851*271443^(5/13) 5142290000027132 a001 701408733/439204*710647^(3/7) 5142290000027859 a001 66978574/109801*710647^(1/2) 5142290000027994 a001 514229/439204*1860498^(9/10) 5142290000028105 a001 7778742049/4870847*271443^(6/13) 5142290000028136 a001 196418*271443^(1/13) 5142290000028290 a001 20365011074/12752043*271443^(6/13) 5142290000028317 a001 53316291173/33385282*271443^(6/13) 5142290000028321 a001 139583862445/87403803*271443^(6/13) 5142290000028321 a001 365435296162/228826127*271443^(6/13) 5142290000028321 a001 956722026041/599074578*271443^(6/13) 5142290000028321 a001 2504730781961/1568397607*271443^(6/13) 5142290000028321 a001 6557470319842/4106118243*271443^(6/13) 5142290000028321 a001 10610209857723/6643838879*271443^(6/13) 5142290000028321 a001 4052739537881/2537720636*271443^(6/13) 5142290000028321 a001 1548008755920/969323029*271443^(6/13) 5142290000028321 a001 591286729879/370248451*271443^(6/13) 5142290000028322 a001 225851433717/141422324*271443^(6/13) 5142290000028323 a001 86267571272/54018521*271443^(6/13) 5142290000028333 a001 32951280099/20633239*271443^(6/13) 5142290000028404 a001 12586269025/7881196*271443^(6/13) 5142290000028586 a001 102334155/439204*710647^(4/7) 5142290000028876 a001 165580141/710647*271443^(8/13) 5142290000028889 a001 4807526976/3010349*271443^(6/13) 5142290000029313 a001 39088169/439204*710647^(9/14) 5142290000029520 a001 1836311903/1860498*271443^(1/2) 5142290000030036 a001 196452/5779*710647^(5/7) 5142290000030417 a001 9227465/439204*710647^(3/4) 5142290000030737 a001 5702887/439204*710647^(11/14) 5142290000030737 a001 208010/109801*710647^(13/14) 5142290000030789 a001 4807526976/4870847*271443^(1/2) 5142290000030974 a001 12586269025/12752043*271443^(1/2) 5142290000031001 a001 32951280099/33385282*271443^(1/2) 5142290000031005 a001 86267571272/87403803*271443^(1/2) 5142290000031006 a001 225851433717/228826127*271443^(1/2) 5142290000031006 a001 591286729879/599074578*271443^(1/2) 5142290000031006 a001 1548008755920/1568397607*271443^(1/2) 5142290000031006 a001 4052739537881/4106118243*271443^(1/2) 5142290000031006 a001 4807525989/4870846*271443^(1/2) 5142290000031006 a001 6557470319842/6643838879*271443^(1/2) 5142290000031006 a001 2504730781961/2537720636*271443^(1/2) 5142290000031006 a001 956722026041/969323029*271443^(1/2) 5142290000031006 a001 365435296162/370248451*271443^(1/2) 5142290000031006 a001 139583862445/141422324*271443^(1/2) 5142290000031007 a001 53316291173/54018521*271443^(1/2) 5142290000031018 a001 20365011074/20633239*271443^(1/2) 5142290000031088 a001 7778742049/7881196*271443^(1/2) 5142290000031279 a001 2178309/439204*710647^(6/7) 5142290000031465 a001 163427632720/317811 5142290000031573 a001 2971215073/3010349*271443^(1/2) 5142290000032204 a001 567451585/930249*271443^(7/13) 5142290000032211 a001 1836311903/1149851*271443^(6/13) 5142290000032622 a001 5702887/167761*167761^(4/5) 5142290000033473 a001 2971215073/4870847*271443^(7/13) 5142290000033505 a001 32951280099/439204*271443^(2/13) 5142290000033658 a001 7778742049/12752043*271443^(7/13) 5142290000033685 a001 10182505537/16692641*271443^(7/13) 5142290000033689 a001 53316291173/87403803*271443^(7/13) 5142290000033690 a001 139583862445/228826127*271443^(7/13) 5142290000033690 a001 182717648081/299537289*271443^(7/13) 5142290000033690 a001 956722026041/1568397607*271443^(7/13) 5142290000033690 a001 2504730781961/4106118243*271443^(7/13) 5142290000033690 a001 3278735159921/5374978561*271443^(7/13) 5142290000033690 a001 10610209857723/17393796001*271443^(7/13) 5142290000033690 a001 4052739537881/6643838879*271443^(7/13) 5142290000033690 a001 1134903780/1860499*271443^(7/13) 5142290000033690 a001 591286729879/969323029*271443^(7/13) 5142290000033690 a001 225851433717/370248451*271443^(7/13) 5142290000033690 a001 21566892818/35355581*271443^(7/13) 5142290000033692 a001 32951280099/54018521*271443^(7/13) 5142290000033702 a001 1144206275/1875749*271443^(7/13) 5142290000033773 a001 1201881744/1970299*271443^(7/13) 5142290000034245 a001 63245986/710647*271443^(9/13) 5142290000034257 a001 1836311903/3010349*271443^(7/13) 5142290000034487 a001 182717648081/930249*103682^(1/12) 5142290000034895 a001 1134903170/1149851*271443^(1/2) 5142290000035756 a001 956722026041/4870847*103682^(1/12) 5142290000035941 a001 2504730781961/12752043*103682^(1/12) 5142290000035968 a001 3278735159921/16692641*103682^(1/12) 5142290000035975 a001 10610209857723/54018521*103682^(1/12) 5142290000035985 a001 4052739537881/20633239*103682^(1/12) 5142290000036056 a001 387002188980/1970299*103682^(1/12) 5142290000036540 a001 591286729879/3010349*103682^(1/12) 5142290000037573 a001 433494437/1860498*271443^(8/13) 5142290000037579 a001 701408733/1149851*271443^(7/13) 5142290000038842 a001 1134903170/4870847*271443^(8/13) 5142290000038874 a001 12586269025/439204*271443^(3/13) 5142290000039027 a001 2971215073/12752043*271443^(8/13) 5142290000039054 a001 7778742049/33385282*271443^(8/13) 5142290000039058 a001 20365011074/87403803*271443^(8/13) 5142290000039058 a001 53316291173/228826127*271443^(8/13) 5142290000039058 a001 139583862445/599074578*271443^(8/13) 5142290000039058 a001 365435296162/1568397607*271443^(8/13) 5142290000039058 a001 956722026041/4106118243*271443^(8/13) 5142290000039058 a001 2504730781961/10749957122*271443^(8/13) 5142290000039058 a001 6557470319842/28143753123*271443^(8/13) 5142290000039058 a001 10610209857723/45537549124*271443^(8/13) 5142290000039058 a001 4052739537881/17393796001*271443^(8/13) 5142290000039058 a001 1548008755920/6643838879*271443^(8/13) 5142290000039058 a001 591286729879/2537720636*271443^(8/13) 5142290000039058 a001 225851433717/969323029*271443^(8/13) 5142290000039059 a001 86267571272/370248451*271443^(8/13) 5142290000039059 a001 63246219/271444*271443^(8/13) 5142290000039060 a001 12586269025/54018521*271443^(8/13) 5142290000039071 a001 4807526976/20633239*271443^(8/13) 5142290000039141 a001 1836311903/7881196*271443^(8/13) 5142290000039615 a001 24157817/710647*271443^(10/13) 5142290000039626 a001 701408733/3010349*271443^(8/13) 5142290000039862 a001 225851433717/1149851*103682^(1/12) 5142290000042699 a001 139583862445/439204*103682^(1/24) 5142290000042941 a001 165580141/1860498*271443^(9/13) 5142290000042948 a001 267914296/1149851*271443^(8/13) 5142290000044210 a001 433494437/4870847*271443^(9/13) 5142290000044242 a001 1201881744/109801*271443^(4/13) 5142290000044395 a001 1134903170/12752043*271443^(9/13) 5142290000044422 a001 2971215073/33385282*271443^(9/13) 5142290000044426 a001 7778742049/87403803*271443^(9/13) 5142290000044427 a001 20365011074/228826127*271443^(9/13) 5142290000044427 a001 53316291173/599074578*271443^(9/13) 5142290000044427 a001 139583862445/1568397607*271443^(9/13) 5142290000044427 a001 365435296162/4106118243*271443^(9/13) 5142290000044427 a001 956722026041/10749957122*271443^(9/13) 5142290000044427 a001 2504730781961/28143753123*271443^(9/13) 5142290000044427 a001 6557470319842/73681302247*271443^(9/13) 5142290000044427 a001 10610209857723/119218851371*271443^(9/13) 5142290000044427 a001 4052739537881/45537549124*271443^(9/13) 5142290000044427 a001 1548008755920/17393796001*271443^(9/13) 5142290000044427 a001 591286729879/6643838879*271443^(9/13) 5142290000044427 a001 225851433717/2537720636*271443^(9/13) 5142290000044427 a001 86267571272/969323029*271443^(9/13) 5142290000044427 a001 32951280099/370248451*271443^(9/13) 5142290000044427 a001 12586269025/141422324*271443^(9/13) 5142290000044429 a001 4807526976/54018521*271443^(9/13) 5142290000044439 a001 1836311903/20633239*271443^(9/13) 5142290000044510 a001 3524667/39604*271443^(9/13) 5142290000044994 a001 9227465/710647*271443^(11/13) 5142290000044994 a001 267914296/3010349*271443^(9/13) 5142290000045536 a001 75025+196418*5^(1/2) 5142290000045722 a001 86267571272/710647*103682^(1/8) 5142290000045908 a001 7778742049/271443*103682^(1/4) 5142290000048310 a001 31622993/930249*271443^(10/13) 5142290000048316 a001 102334155/1149851*271443^(9/13) 5142290000049075 a001 832040/64079*64079^(22/23) 5142290000049426 a001 98209/219602*(1/2+1/2*5^(1/2))^29 5142290000049426 a001 98209/219602*1322157322203^(1/2) 5142290000049579 a001 165580141/4870847*271443^(10/13) 5142290000049611 a001 1836311903/439204*271443^(5/13) 5142290000049764 a001 433494437/12752043*271443^(10/13) 5142290000049791 a001 567451585/16692641*271443^(10/13) 5142290000049795 a001 2971215073/87403803*271443^(10/13) 5142290000049795 a001 7778742049/228826127*271443^(10/13) 5142290000049796 a001 10182505537/299537289*271443^(10/13) 5142290000049796 a001 53316291173/1568397607*271443^(10/13) 5142290000049796 a001 139583862445/4106118243*271443^(10/13) 5142290000049796 a001 182717648081/5374978561*271443^(10/13) 5142290000049796 a001 956722026041/28143753123*271443^(10/13) 5142290000049796 a001 2504730781961/73681302247*271443^(10/13) 5142290000049796 a001 3278735159921/96450076809*271443^(10/13) 5142290000049796 a001 10610209857723/312119004989*271443^(10/13) 5142290000049796 a001 4052739537881/119218851371*271443^(10/13) 5142290000049796 a001 387002188980/11384387281*271443^(10/13) 5142290000049796 a001 591286729879/17393796001*271443^(10/13) 5142290000049796 a001 225851433717/6643838879*271443^(10/13) 5142290000049796 a001 1135099622/33391061*271443^(10/13) 5142290000049796 a001 32951280099/969323029*271443^(10/13) 5142290000049796 a001 12586269025/370248451*271443^(10/13) 5142290000049796 a001 1201881744/35355581*271443^(10/13) 5142290000049797 a001 1836311903/54018521*271443^(10/13) 5142290000049808 a001 701408733/20633239*271443^(10/13) 5142290000049878 a001 66978574/1970299*271443^(10/13) 5142290000050363 a001 102334155/3010349*271443^(10/13) 5142290000050433 a001 3524578/710647*271443^(12/13) 5142290000053680 a001 24157817/1860498*271443^(11/13) 5142290000053684 a001 39088169/1149851*271443^(10/13) 5142290000054419 a001 75283811239/620166*103682^(1/8) 5142290000054948 a001 63245986/4870847*271443^(11/13) 5142290000054979 a001 701408733/439204*271443^(6/13) 5142290000055132 a001 165580141/12752043*271443^(11/13) 5142290000055159 a001 433494437/33385282*271443^(11/13) 5142290000055163 a001 1134903170/87403803*271443^(11/13) 5142290000055164 a001 2971215073/228826127*271443^(11/13) 5142290000055164 a001 7778742049/599074578*271443^(11/13) 5142290000055164 a001 20365011074/1568397607*271443^(11/13) 5142290000055164 a001 53316291173/4106118243*271443^(11/13) 5142290000055164 a001 139583862445/10749957122*271443^(11/13) 5142290000055164 a001 365435296162/28143753123*271443^(11/13) 5142290000055164 a001 956722026041/73681302247*271443^(11/13) 5142290000055164 a001 2504730781961/192900153618*271443^(11/13) 5142290000055164 a001 10610209857723/817138163596*271443^(11/13) 5142290000055164 a001 4052739537881/312119004989*271443^(11/13) 5142290000055164 a001 1548008755920/119218851371*271443^(11/13) 5142290000055164 a001 591286729879/45537549124*271443^(11/13) 5142290000055164 a001 7787980473/599786069*271443^(11/13) 5142290000055164 a001 86267571272/6643838879*271443^(11/13) 5142290000055164 a001 32951280099/2537720636*271443^(11/13) 5142290000055164 a001 12586269025/969323029*271443^(11/13) 5142290000055164 a001 4807526976/370248451*271443^(11/13) 5142290000055164 a001 1836311903/141422324*271443^(11/13) 5142290000055166 a001 701408733/54018521*271443^(11/13) 5142290000055176 a001 9238424/711491*271443^(11/13) 5142290000055247 a001 102334155/7881196*271443^(11/13) 5142290000055688 a001 591286729879/4870847*103682^(1/8) 5142290000055731 a001 39088169/3010349*271443^(11/13) 5142290000055873 a001 516002918640/4250681*103682^(1/8) 5142290000055900 a001 4052739537881/33385282*103682^(1/8) 5142290000055904 a001 3536736619241/29134601*103682^(1/8) 5142290000055906 a001 6557470319842/54018521*103682^(1/8) 5142290000055917 a001 2504730781961/20633239*103682^(1/8) 5142290000055987 a001 956722026041/7881196*103682^(1/8) 5142290000056472 a001 365435296162/3010349*103682^(1/8) 5142290000057663 a001 433494437/439204*271443^(1/2) 5142290000059049 a001 14930352/1149851*271443^(11/13) 5142290000059059 a001 9227465/1860498*271443^(12/13) 5142290000059794 a001 139583862445/1149851*103682^(1/8) 5142290000060318 a001 24157817/4870847*271443^(12/13) 5142290000060348 a001 66978574/109801*271443^(7/13) 5142290000060501 a001 63245986/12752043*271443^(12/13) 5142290000060528 a001 165580141/33385282*271443^(12/13) 5142290000060532 a001 433494437/87403803*271443^(12/13) 5142290000060533 a001 1134903170/228826127*271443^(12/13) 5142290000060533 a001 2971215073/599074578*271443^(12/13) 5142290000060533 a001 7778742049/1568397607*271443^(12/13) 5142290000060533 a001 20365011074/4106118243*271443^(12/13) 5142290000060533 a001 53316291173/10749957122*271443^(12/13) 5142290000060533 a001 139583862445/28143753123*271443^(12/13) 5142290000060533 a001 365435296162/73681302247*271443^(12/13) 5142290000060533 a001 956722026041/192900153618*271443^(12/13) 5142290000060533 a001 2504730781961/505019158607*271443^(12/13) 5142290000060533 a001 10610209857723/2139295485799*271443^(12/13) 5142290000060533 a001 4052739537881/817138163596*271443^(12/13) 5142290000060533 a001 140728068720/28374454999*271443^(12/13) 5142290000060533 a001 591286729879/119218851371*271443^(12/13) 5142290000060533 a001 225851433717/45537549124*271443^(12/13) 5142290000060533 a001 86267571272/17393796001*271443^(12/13) 5142290000060533 a001 32951280099/6643838879*271443^(12/13) 5142290000060533 a001 1144206275/230701876*271443^(12/13) 5142290000060533 a001 4807526976/969323029*271443^(12/13) 5142290000060533 a001 1836311903/370248451*271443^(12/13) 5142290000060533 a001 701408733/141422324*271443^(12/13) 5142290000060534 a001 267914296/54018521*271443^(12/13) 5142290000060545 a001 9303105/1875749*271443^(12/13) 5142290000060615 a001 39088169/7881196*271443^(12/13) 5142290000061095 a001 14930352/3010349*271443^(12/13) 5142290000062631 a001 196418*103682^(1/12) 5142290000064390 a001 5702887/1149851*271443^(12/13) 5142290000065654 a001 53316291173/710647*103682^(1/6) 5142290000065716 a001 102334155/439204*271443^(8/13) 5142290000065839 a001 1602508992/90481*103682^(7/24) 5142290000065901 a001 312119004989/121393*8^(1/3) 5142290000065901 a001 2/121393*(1/2+1/2*5^(1/2))^55 5142290000069196 a001 63245986/167761*167761^(3/5) 5142290000069925 a001 32951280099/167761*64079^(2/23) 5142290000071084 a001 39088169/439204*271443^(9/13) 5142290000074350 a001 139583862445/1860498*103682^(1/6) 5142290000075351 a001 86267571272/271443*39603^(1/22) 5142290000075619 a001 365435296162/4870847*103682^(1/6) 5142290000075804 a001 956722026041/12752043*103682^(1/6) 5142290000075831 a001 2504730781961/33385282*103682^(1/6) 5142290000075835 a001 6557470319842/87403803*103682^(1/6) 5142290000075836 a001 10610209857723/141422324*103682^(1/6) 5142290000075838 a001 4052739537881/54018521*103682^(1/6) 5142290000075848 a001 140728068720/1875749*103682^(1/6) 5142290000075919 a001 591286729879/7881196*103682^(1/6) 5142290000076403 a001 225851433717/3010349*103682^(1/6) 5142290000076449 a001 196452/5779*271443^(10/13) 5142290000079725 a001 86267571272/1149851*103682^(1/6) 5142290000081790 a001 5702887/439204*271443^(11/13) 5142290000082377 a001 421493/2+271443/2*5^(1/2) 5142290000082377 a001 62423800998/121393 5142290000082562 a001 53316291173/439204*103682^(1/8) 5142290000085585 a001 32951280099/710647*103682^(5/24) 5142290000085771 a001 2971215073/271443*103682^(1/3) 5142290000086974 a001 2178309/439204*271443^(12/13) 5142290000088292 a001 1602508992/13201*15127^(3/20) 5142290000094282 a001 43133785636/930249*103682^(5/24) 5142290000095551 a001 225851433717/4870847*103682^(5/24) 5142290000095736 a001 591286729879/12752043*103682^(5/24) 5142290000095763 a001 774004377960/16692641*103682^(5/24) 5142290000095767 a001 4052739537881/87403803*103682^(5/24) 5142290000095767 a001 225749145909/4868641*103682^(5/24) 5142290000095768 a001 3278735159921/70711162*103682^(5/24) 5142290000095769 a001 2504730781961/54018521*103682^(5/24) 5142290000095779 a001 956722026041/20633239*103682^(5/24) 5142290000095850 a001 182717648081/3940598*103682^(5/24) 5142290000096335 a001 139583862445/3010349*103682^(5/24) 5142290000099657 a001 53316291173/1149851*103682^(5/24) 5142290000102494 a001 32951280099/439204*103682^(1/6) 5142290000105516 a001 20365011074/710647*103682^(1/4) 5142290000105577 a001 1346269/64079*64079^(21/23) 5142290000105702 a001 1836311903/271443*103682^(3/8) 5142290000105739 a001 701408733/167761*167761^(2/5) 5142290000108959 a001 75025/271443*7881196^(10/11) 5142290000109024 a001 75025/271443*20633239^(6/7) 5142290000109025 a001 121393/167761*20633239^(4/5) 5142290000109034 a001 75025/271443*141422324^(10/13) 5142290000109034 a001 75025/271443*2537720636^(2/3) 5142290000109034 a001 121393/167761*17393796001^(4/7) 5142290000109034 a001 75025/271443*45537549124^(10/17) 5142290000109034 a001 75025/271443*312119004989^(6/11) 5142290000109034 a001 75025/271443*14662949395604^(10/21) 5142290000109034 a001 75025/271443*(1/2+1/2*5^(1/2))^30 5142290000109034 a001 75025/271443*192900153618^(5/9) 5142290000109034 a001 75025/271443*28143753123^(3/5) 5142290000109034 a001 121393/167761*14662949395604^(4/9) 5142290000109034 a001 121393/167761*(1/2+1/2*5^(1/2))^28 5142290000109034 a001 121393/167761*505019158607^(1/2) 5142290000109034 a001 121393/167761*73681302247^(7/13) 5142290000109034 a001 75025/271443*10749957122^(5/8) 5142290000109034 a001 121393/167761*10749957122^(7/12) 5142290000109034 a001 121393/167761*4106118243^(14/23) 5142290000109034 a001 75025/271443*4106118243^(15/23) 5142290000109034 a001 121393/167761*1568397607^(7/11) 5142290000109034 a001 75025/271443*1568397607^(15/22) 5142290000109034 a001 121393/167761*599074578^(2/3) 5142290000109034 a001 75025/271443*599074578^(5/7) 5142290000109034 a001 121393/167761*228826127^(7/10) 5142290000109034 a001 75025/271443*228826127^(3/4) 5142290000109035 a001 121393/167761*87403803^(14/19) 5142290000109035 a001 75025/271443*87403803^(15/19) 5142290000109038 a001 121393/167761*33385282^(7/9) 5142290000109038 a001 75025/271443*33385282^(5/6) 5142290000109060 a001 121393/167761*12752043^(14/17) 5142290000109062 a001 75025/271443*12752043^(15/17) 5142290000109224 a001 121393/167761*4870847^(7/8) 5142290000109238 a001 75025/271443*4870847^(15/16) 5142290000110421 a001 121393/167761*1860498^(14/15) 5142290000113881 a001 7778742049/103682*39603^(2/11) 5142290000114213 a001 53316291173/1860498*103682^(1/4) 5142290000115482 a001 139583862445/4870847*103682^(1/4) 5142290000115667 a001 365435296162/12752043*103682^(1/4) 5142290000115694 a001 956722026041/33385282*103682^(1/4) 5142290000115698 a001 2504730781961/87403803*103682^(1/4) 5142290000115699 a001 6557470319842/228826127*103682^(1/4) 5142290000115699 a001 10610209857723/370248451*103682^(1/4) 5142290000115699 a001 4052739537881/141422324*103682^(1/4) 5142290000115701 a001 1548008755920/54018521*103682^(1/4) 5142290000115711 a001 591286729879/20633239*103682^(1/4) 5142290000115782 a001 225851433717/7881196*103682^(1/4) 5142290000116266 a001 86267571272/3010349*103682^(1/4) 5142290000119588 a001 32951280099/1149851*103682^(1/4) 5142290000122425 a001 10182505537/219602*103682^(5/24) 5142290000124375 a001 53316291173/167761*64079^(1/23) 5142290000125448 a001 12586269025/710647*103682^(7/24) 5142290000125634 a001 1134903170/271443*103682^(5/12) 5142290000134145 a001 10983760033/620166*103682^(7/24) 5142290000134959 a001 317811*39603^(1/22) 5142290000135413 a001 86267571272/4870847*103682^(7/24) 5142290000135599 a001 75283811239/4250681*103682^(7/24) 5142290000135626 a001 591286729879/33385282*103682^(7/24) 5142290000135630 a001 516002918640/29134601*103682^(7/24) 5142290000135630 a001 4052739537881/228826127*103682^(7/24) 5142290000135630 a001 3536736619241/199691526*103682^(7/24) 5142290000135630 a001 6557470319842/370248451*103682^(7/24) 5142290000135630 a001 2504730781961/141422324*103682^(7/24) 5142290000135632 a001 956722026041/54018521*103682^(7/24) 5142290000135642 a001 365435296162/20633239*103682^(7/24) 5142290000135713 a001 139583862445/7881196*103682^(7/24) 5142290000136198 a001 53316291173/3010349*103682^(7/24) 5142290000139520 a001 20365011074/1149851*103682^(7/24) 5142290000142282 a001 7778742049/167761*167761^(1/5) 5142290000142357 a001 12586269025/439204*103682^(1/4) 5142290000143656 a001 591286729879/1860498*39603^(1/22) 5142290000144925 a001 1548008755920/4870847*39603^(1/22) 5142290000145110 a001 4052739537881/12752043*39603^(1/22) 5142290000145137 a001 1515744265389/4769326*39603^(1/22) 5142290000145154 a001 6557470319842/20633239*39603^(1/22) 5142290000145224 a001 2504730781961/7881196*39603^(1/22) 5142290000145379 a001 7778742049/710647*103682^(1/3) 5142290000145565 a001 233802911/90481*103682^(11/24) 5142290000145709 a001 956722026041/3010349*39603^(1/22) 5142290000149031 a001 365435296162/1149851*39603^(1/22) 5142290000152735 a001 101003831725/196418 5142290000153644 a001 75640/15251*439204^(8/9) 5142290000154076 a001 10182505537/930249*103682^(1/3) 5142290000155345 a001 53316291173/4870847*103682^(1/3) 5142290000155530 a001 139583862445/12752043*103682^(1/3) 5142290000155557 a001 182717648081/16692641*103682^(1/3) 5142290000155561 a001 956722026041/87403803*103682^(1/3) 5142290000155562 a001 2504730781961/228826127*103682^(1/3) 5142290000155562 a001 3278735159921/299537289*103682^(1/3) 5142290000155562 a001 10610209857723/969323029*103682^(1/3) 5142290000155562 a001 4052739537881/370248451*103682^(1/3) 5142290000155562 a001 387002188980/35355581*103682^(1/3) 5142290000155563 a001 591286729879/54018521*103682^(1/3) 5142290000155574 a001 7787980473/711491*103682^(1/3) 5142290000155644 a001 21566892818/1970299*103682^(1/3) 5142290000156129 a001 32951280099/3010349*103682^(1/3) 5142290000158174 a001 3524578/167761*439204^(7/9) 5142290000159243 a001 2178309/64079*64079^(20/23) 5142290000159451 a001 12586269025/1149851*103682^(1/3) 5142290000161049 a001 14930352/167761*439204^(2/3) 5142290000162288 a001 7778742049/439204*103682^(7/24) 5142290000164016 a001 63245986/167761*439204^(5/9) 5142290000165311 a001 686789568/101521*103682^(3/8) 5142290000165496 a001 433494437/271443*103682^(1/2) 5142290000166977 a001 267914296/167761*439204^(4/9) 5142290000168643 a001 317811/167761*141422324^(2/3) 5142290000168643 a001 75025/710647*(1/2+1/2*5^(1/2))^32 5142290000168643 a001 75025/710647*23725150497407^(1/2) 5142290000168643 a001 75025/710647*505019158607^(4/7) 5142290000168643 a001 75025/710647*73681302247^(8/13) 5142290000168643 a001 317811/167761*(1/2+1/2*5^(1/2))^26 5142290000168643 a001 317811/167761*73681302247^(1/2) 5142290000168643 a001 75025/710647*10749957122^(2/3) 5142290000168643 a001 317811/167761*10749957122^(13/24) 5142290000168643 a001 317811/167761*4106118243^(13/23) 5142290000168643 a001 75025/710647*4106118243^(16/23) 5142290000168643 a001 317811/167761*1568397607^(13/22) 5142290000168643 a001 75025/710647*1568397607^(8/11) 5142290000168643 a001 317811/167761*599074578^(13/21) 5142290000168643 a001 75025/710647*599074578^(16/21) 5142290000168643 a001 317811/167761*228826127^(13/20) 5142290000168643 a001 75025/710647*228826127^(4/5) 5142290000168643 a001 317811/167761*87403803^(13/19) 5142290000168644 a001 75025/710647*87403803^(16/19) 5142290000168646 a001 317811/167761*33385282^(13/18) 5142290000168647 a001 75025/710647*33385282^(8/9) 5142290000168667 a001 317811/167761*12752043^(13/17) 5142290000168673 a001 75025/710647*12752043^(16/17) 5142290000168819 a001 317811/167761*4870847^(13/16) 5142290000169930 a001 317811/167761*1860498^(13/15) 5142290000169939 a001 1134903170/167761*439204^(1/3) 5142290000171799 a001 139583862445/439204*39603^(1/22) 5142290000172901 a001 4807526976/167761*439204^(2/9) 5142290000174008 a001 12586269025/1860498*103682^(3/8) 5142290000175019 a001 264431464450/514229 5142290000175276 a001 32951280099/4870847*103682^(3/8) 5142290000175461 a001 86267571272/12752043*103682^(3/8) 5142290000175488 a001 32264490531/4769326*103682^(3/8) 5142290000175492 a001 591286729879/87403803*103682^(3/8) 5142290000175493 a001 1548008755920/228826127*103682^(3/8) 5142290000175493 a001 4052739537881/599074578*103682^(3/8) 5142290000175493 a001 1515744265389/224056801*103682^(3/8) 5142290000175493 a001 6557470319842/969323029*103682^(3/8) 5142290000175493 a001 2504730781961/370248451*103682^(3/8) 5142290000175493 a001 956722026041/141422324*103682^(3/8) 5142290000175495 a001 365435296162/54018521*103682^(3/8) 5142290000175505 a001 139583862445/20633239*103682^(3/8) 5142290000175576 a001 53316291173/7881196*103682^(3/8) 5142290000175863 a001 20365011074/167761*439204^(1/9) 5142290000176061 a001 20365011074/3010349*103682^(3/8) 5142290000177280 a001 75640/15251*7881196^(8/11) 5142290000177340 a001 75640/15251*141422324^(8/13) 5142290000177340 a001 75640/15251*2537720636^(8/15) 5142290000177340 a001 75025/1860498*45537549124^(2/3) 5142290000177340 a001 75025/1860498*(1/2+1/2*5^(1/2))^34 5142290000177340 a001 75640/15251*45537549124^(8/17) 5142290000177340 a001 75640/15251*14662949395604^(8/21) 5142290000177340 a001 75640/15251*(1/2+1/2*5^(1/2))^24 5142290000177340 a001 75640/15251*192900153618^(4/9) 5142290000177340 a001 75640/15251*73681302247^(6/13) 5142290000177340 a001 75640/15251*10749957122^(1/2) 5142290000177340 a001 75025/1860498*10749957122^(17/24) 5142290000177340 a001 75640/15251*4106118243^(12/23) 5142290000177340 a001 75025/1860498*4106118243^(17/23) 5142290000177340 a001 75640/15251*1568397607^(6/11) 5142290000177340 a001 75025/1860498*1568397607^(17/22) 5142290000177340 a001 75640/15251*599074578^(4/7) 5142290000177340 a001 75025/1860498*599074578^(17/21) 5142290000177340 a001 75640/15251*228826127^(3/5) 5142290000177340 a001 75025/1860498*228826127^(17/20) 5142290000177340 a001 75640/15251*87403803^(12/19) 5142290000177340 a001 75025/1860498*87403803^(17/19) 5142290000177343 a001 75640/15251*33385282^(2/3) 5142290000177344 a001 75025/1860498*33385282^(17/18) 5142290000177362 a001 75640/15251*12752043^(12/17) 5142290000177502 a001 75640/15251*4870847^(3/4) 5142290000178098 a001 317811/167761*710647^(13/14) 5142290000178270 a001 692290561625/1346269 5142290000178528 a001 75640/15251*1860498^(4/5) 5142290000178553 a001 2178309/167761*7881196^(2/3) 5142290000178608 a001 75025/4870847*141422324^(12/13) 5142290000178609 a001 75025/4870847*2537720636^(4/5) 5142290000178609 a001 75025/4870847*45537549124^(12/17) 5142290000178609 a001 75025/4870847*14662949395604^(4/7) 5142290000178609 a001 75025/4870847*(1/2+1/2*5^(1/2))^36 5142290000178609 a001 75025/4870847*505019158607^(9/14) 5142290000178609 a001 75025/4870847*192900153618^(2/3) 5142290000178609 a001 75025/4870847*73681302247^(9/13) 5142290000178609 a001 2178309/167761*312119004989^(2/5) 5142290000178609 a001 2178309/167761*(1/2+1/2*5^(1/2))^22 5142290000178609 a001 2178309/167761*10749957122^(11/24) 5142290000178609 a001 75025/4870847*10749957122^(3/4) 5142290000178609 a001 2178309/167761*4106118243^(11/23) 5142290000178609 a001 75025/4870847*4106118243^(18/23) 5142290000178609 a001 2178309/167761*1568397607^(1/2) 5142290000178609 a001 75025/4870847*1568397607^(9/11) 5142290000178609 a001 2178309/167761*599074578^(11/21) 5142290000178609 a001 75025/4870847*599074578^(6/7) 5142290000178609 a001 2178309/167761*228826127^(11/20) 5142290000178609 a001 75025/4870847*228826127^(9/10) 5142290000178609 a001 2178309/167761*87403803^(11/19) 5142290000178609 a001 75025/4870847*87403803^(18/19) 5142290000178611 a001 2178309/167761*33385282^(11/18) 5142290000178629 a001 2178309/167761*12752043^(11/17) 5142290000178744 a001 1812440220425/3524578 5142290000178758 a001 2178309/167761*4870847^(11/16) 5142290000178776 a001 14930352/167761*7881196^(6/11) 5142290000178787 a001 5702887/167761*20633239^(4/7) 5142290000178788 a001 63245986/167761*7881196^(5/11) 5142290000178794 a001 5702887/167761*2537720636^(4/9) 5142290000178794 a001 75025/12752043*817138163596^(2/3) 5142290000178794 a001 75025/12752043*(1/2+1/2*5^(1/2))^38 5142290000178794 a001 5702887/167761*(1/2+1/2*5^(1/2))^20 5142290000178794 a001 5702887/167761*23725150497407^(5/16) 5142290000178794 a001 5702887/167761*505019158607^(5/14) 5142290000178794 a001 5702887/167761*73681302247^(5/13) 5142290000178794 a001 5702887/167761*28143753123^(2/5) 5142290000178794 a001 5702887/167761*10749957122^(5/12) 5142290000178794 a001 75025/12752043*10749957122^(19/24) 5142290000178794 a001 5702887/167761*4106118243^(10/23) 5142290000178794 a001 75025/12752043*4106118243^(19/23) 5142290000178794 a001 5702887/167761*1568397607^(5/11) 5142290000178794 a001 75025/12752043*1568397607^(19/22) 5142290000178794 a001 5702887/167761*599074578^(10/21) 5142290000178794 a001 75025/12752043*599074578^(19/21) 5142290000178794 a001 5702887/167761*228826127^(1/2) 5142290000178794 a001 75025/12752043*228826127^(19/20) 5142290000178794 a001 5702887/167761*87403803^(10/19) 5142290000178795 a001 267914296/167761*7881196^(4/11) 5142290000178796 a001 5702887/167761*33385282^(5/9) 5142290000178798 a001 433494437/167761*7881196^(1/3) 5142290000178803 a001 1134903170/167761*7881196^(3/11) 5142290000178810 a001 4807526976/167761*7881196^(2/11) 5142290000178812 a001 5702887/167761*12752043^(10/17) 5142290000178814 a001 949006019930/1845493 5142290000178818 a001 20365011074/167761*7881196^(1/11) 5142290000178820 a001 9303105/15251*20633239^(2/5) 5142290000178820 a001 63245986/167761*20633239^(3/7) 5142290000178821 a001 14930352/167761*141422324^(6/13) 5142290000178821 a001 75025/33385282*2537720636^(8/9) 5142290000178821 a001 14930352/167761*2537720636^(2/5) 5142290000178821 a001 75025/33385282*312119004989^(8/11) 5142290000178821 a001 75025/33385282*(1/2+1/2*5^(1/2))^40 5142290000178821 a001 75025/33385282*23725150497407^(5/8) 5142290000178821 a001 75025/33385282*73681302247^(10/13) 5142290000178821 a001 75025/33385282*28143753123^(4/5) 5142290000178821 a001 14930352/167761*45537549124^(6/17) 5142290000178821 a001 14930352/167761*14662949395604^(2/7) 5142290000178821 a001 14930352/167761*(1/2+1/2*5^(1/2))^18 5142290000178821 a001 14930352/167761*192900153618^(1/3) 5142290000178821 a001 14930352/167761*10749957122^(3/8) 5142290000178821 a001 75025/33385282*10749957122^(5/6) 5142290000178821 a001 14930352/167761*4106118243^(9/23) 5142290000178821 a001 75025/33385282*4106118243^(20/23) 5142290000178821 a001 14930352/167761*1568397607^(9/22) 5142290000178821 a001 75025/33385282*1568397607^(10/11) 5142290000178821 a001 14930352/167761*599074578^(3/7) 5142290000178821 a001 75025/33385282*599074578^(20/21) 5142290000178821 a001 14930352/167761*228826127^(9/20) 5142290000178821 a001 14930352/167761*87403803^(9/19) 5142290000178822 a001 701408733/167761*20633239^(2/7) 5142290000178823 a001 2971215073/167761*20633239^(1/5) 5142290000178823 a001 14930352/167761*33385282^(1/2) 5142290000178824 a001 7778742049/167761*20633239^(1/7) 5142290000178824 a001 12422650078525/24157817 5142290000178825 a001 75025/87403803*2537720636^(14/15) 5142290000178825 a001 75025/87403803*17393796001^(6/7) 5142290000178825 a001 75025/87403803*45537549124^(14/17) 5142290000178825 a001 75025/87403803*817138163596^(14/19) 5142290000178825 a001 75025/87403803*14662949395604^(2/3) 5142290000178825 a001 75025/87403803*505019158607^(3/4) 5142290000178825 a001 75025/87403803*192900153618^(7/9) 5142290000178825 a001 39088169/167761*(1/2+1/2*5^(1/2))^16 5142290000178825 a001 39088169/167761*23725150497407^(1/4) 5142290000178825 a001 39088169/167761*73681302247^(4/13) 5142290000178825 a001 39088169/167761*10749957122^(1/3) 5142290000178825 a001 75025/87403803*10749957122^(7/8) 5142290000178825 a001 39088169/167761*4106118243^(8/23) 5142290000178825 a001 75025/87403803*4106118243^(21/23) 5142290000178825 a001 39088169/167761*1568397607^(4/11) 5142290000178825 a001 75025/87403803*1568397607^(21/22) 5142290000178825 a001 39088169/167761*599074578^(8/21) 5142290000178825 a001 39088169/167761*228826127^(2/5) 5142290000178825 a001 39088169/167761*87403803^(8/19) 5142290000178825 a001 32522920135925/63245986 5142290000178825 a001 75025/228826127*312119004989^(4/5) 5142290000178825 a001 75025/228826127*23725150497407^(11/16) 5142290000178825 a001 75025/228826127*73681302247^(11/13) 5142290000178825 a001 9303105/15251*17393796001^(2/7) 5142290000178825 a001 9303105/15251*14662949395604^(2/9) 5142290000178825 a001 9303105/15251*(1/2+1/2*5^(1/2))^14 5142290000178825 a001 9303105/15251*505019158607^(1/4) 5142290000178825 a001 9303105/15251*10749957122^(7/24) 5142290000178825 a001 75025/228826127*10749957122^(11/12) 5142290000178825 a001 9303105/15251*4106118243^(7/23) 5142290000178825 a001 75025/228826127*4106118243^(22/23) 5142290000178825 a001 9303105/15251*1568397607^(7/22) 5142290000178825 a001 267914296/167761*141422324^(4/13) 5142290000178825 a001 9303105/15251*599074578^(1/3) 5142290000178825 a001 9303105/15251*228826127^(7/20) 5142290000178825 a001 1134903170/167761*141422324^(3/13) 5142290000178825 a001 165580141/167761*141422324^(1/3) 5142290000178825 a001 4807526976/167761*141422324^(2/13) 5142290000178825 a001 85146110329250/165580141 5142290000178825 a001 20365011074/167761*141422324^(1/13) 5142290000178825 a001 267914296/167761*2537720636^(4/15) 5142290000178825 a001 267914296/167761*45537549124^(4/17) 5142290000178825 a001 267914296/167761*817138163596^(4/19) 5142290000178825 a001 267914296/167761*14662949395604^(4/21) 5142290000178825 a001 267914296/167761*(1/2+1/2*5^(1/2))^12 5142290000178825 a001 267914296/167761*192900153618^(2/9) 5142290000178825 a001 267914296/167761*73681302247^(3/13) 5142290000178825 a001 267914296/167761*10749957122^(1/4) 5142290000178825 a001 75025/599074578*10749957122^(23/24) 5142290000178825 a001 267914296/167761*4106118243^(6/23) 5142290000178825 a001 267914296/167761*1568397607^(3/11) 5142290000178825 a001 267914296/167761*599074578^(2/7) 5142290000178825 a001 222915410851825/433494437 5142290000178825 a001 701408733/167761*2537720636^(2/9) 5142290000178825 a001 75025/1568397607*45537549124^(16/17) 5142290000178825 a001 75025/1568397607*14662949395604^(16/21) 5142290000178825 a001 75025/1568397607*192900153618^(8/9) 5142290000178825 a001 75025/1568397607*73681302247^(12/13) 5142290000178825 a001 701408733/167761*312119004989^(2/11) 5142290000178825 a001 701408733/167761*(1/2+1/2*5^(1/2))^10 5142290000178825 a001 701408733/167761*28143753123^(1/5) 5142290000178825 a001 701408733/167761*10749957122^(5/24) 5142290000178825 a001 701408733/167761*4106118243^(5/23) 5142290000178825 a001 701408733/167761*1568397607^(5/22) 5142290000178825 a001 116720024445245/226980634 5142290000178825 a001 75025/4106118243*312119004989^(10/11) 5142290000178825 a001 75025/4106118243*3461452808002^(5/6) 5142290000178825 a001 1836311903/167761*(1/2+1/2*5^(1/2))^8 5142290000178825 a001 1836311903/167761*23725150497407^(1/8) 5142290000178825 a001 1836311903/167761*505019158607^(1/7) 5142290000178825 a001 1836311903/167761*73681302247^(2/13) 5142290000178825 a001 1836311903/167761*10749957122^(1/6) 5142290000178825 a001 1836311903/167761*4106118243^(4/23) 5142290000178825 a001 4807526976/167761*2537720636^(2/15) 5142290000178825 a001 1527884955826850/2971215073 5142290000178825 a001 7778742049/167761*2537720636^(1/9) 5142290000178825 a001 75025/10749957122*23725150497407^(13/16) 5142290000178825 a001 75025/10749957122*505019158607^(13/14) 5142290000178825 a001 20365011074/167761*2537720636^(1/15) 5142290000178825 a001 4807526976/167761*45537549124^(2/17) 5142290000178825 a001 4807526976/167761*14662949395604^(2/21) 5142290000178825 a001 4807526976/167761*(1/2+1/2*5^(1/2))^6 5142290000178825 a001 4807526976/167761*10749957122^(1/8) 5142290000178825 a001 4000054745254325/7778742049 5142290000178825 a001 75025/28143753123*14662949395604^(6/7) 5142290000178825 a001 10472279279936125/20365011074 5142290000178825 a001 75025/73681302247*14662949395604^(8/9) 5142290000178825 a001 27416783094554050/53316291173 5142290000178825 a001 14355614000745205/27916772489 5142290000178825 a001 75025/505019158607*14662949395604^(20/21) 5142290000178825 a001 187917426916624025/365435296162 5142290000178825 a001 304056783829522025/591286729879 5142290000178825 a001 38713118970966000/75283811239 5142290000178825 a001 75025*73681302247^(1/13) 5142290000178825 a001 44361286909171975/86267571272 5142290000178825 a001 75025/119218851371*14662949395604^(19/21) 5142290000178825 a001 5648167938205975/10983760033 5142290000178825 a001 4807526976/167761*4106118243^(3/23) 5142290000178825 a001 75025/45537549124*3461452808002^(11/12) 5142290000178825 a001 75025*10749957122^(1/12) 5142290000178825 a001 32951280099/167761*(1/2+1/2*5^(1/2))^2 5142290000178825 a001 86267571272/167761 5142290000178825 a001 53316291173/335522+53316291173/335522*5^(1/2) 5142290000178825 a001 32951280099/167761*10749957122^(1/24) 5142290000178825 a001 20365011074/167761*45537549124^(1/17) 5142290000178825 a001 20365011074/167761*14662949395604^(1/21) 5142290000178825 a001 20365011074/167761*(1/2+1/2*5^(1/2))^3 5142290000178825 a001 20365011074/167761*192900153618^(1/18) 5142290000178825 a001 20365011074/167761*10749957122^(1/16) 5142290000178825 a001 32951280099/167761*4106118243^(1/23) 5142290000178825 a001 7778742049/167761*312119004989^(1/11) 5142290000178825 a001 7778742049/167761*(1/2+1/2*5^(1/2))^5 5142290000178825 a001 7778742049/167761*28143753123^(1/10) 5142290000178825 a001 75025*4106118243^(2/23) 5142290000178825 a001 824056596475825/1602508992 5142290000178825 a001 1836311903/167761*1568397607^(2/11) 5142290000178825 a001 32951280099/167761*1568397607^(1/22) 5142290000178825 a001 75025/6643838879*817138163596^(17/19) 5142290000178825 a001 75025/6643838879*14662949395604^(17/21) 5142290000178825 a001 75025/6643838879*192900153618^(17/18) 5142290000178825 a001 2971215073/167761*17393796001^(1/7) 5142290000178825 a001 2971215073/167761*14662949395604^(1/9) 5142290000178825 a001 2971215073/167761*(1/2+1/2*5^(1/2))^7 5142290000178825 a001 75025*1568397607^(1/11) 5142290000178825 a001 4807526976/167761*1568397607^(3/22) 5142290000178825 a001 944284833600625/1836311903 5142290000178825 a001 1134903170/167761*2537720636^(1/5) 5142290000178825 a001 32951280099/167761*599074578^(1/21) 5142290000178825 a001 75025/2537720636*14662949395604^(7/9) 5142290000178825 a001 75025/2537720636*505019158607^(7/8) 5142290000178825 a001 1134903170/167761*45537549124^(3/17) 5142290000178825 a001 1134903170/167761*817138163596^(3/19) 5142290000178825 a001 1134903170/167761*14662949395604^(1/7) 5142290000178825 a001 1134903170/167761*(1/2+1/2*5^(1/2))^9 5142290000178825 a001 1134903170/167761*192900153618^(1/6) 5142290000178825 a001 1134903170/167761*10749957122^(3/16) 5142290000178825 a001 20365011074/167761*599074578^(1/14) 5142290000178825 a001 701408733/167761*599074578^(5/21) 5142290000178825 a001 75025*599074578^(2/21) 5142290000178825 a001 4807526976/167761*599074578^(1/7) 5142290000178825 a001 120228237124800/233802911 5142290000178825 a001 1836311903/167761*599074578^(4/21) 5142290000178825 a001 2971215073/167761*599074578^(1/6) 5142290000178825 a001 1134903170/167761*599074578^(3/14) 5142290000178825 a001 32951280099/167761*228826127^(1/20) 5142290000178825 a001 433494437/167761*312119004989^(1/5) 5142290000178825 a001 433494437/167761*(1/2+1/2*5^(1/2))^11 5142290000178825 a001 433494437/167761*1568397607^(1/4) 5142290000178825 a001 75025*228826127^(1/10) 5142290000178825 a001 7778742049/167761*228826127^(1/8) 5142290000178825 a001 137769300522575/267914296 5142290000178825 a001 4807526976/167761*228826127^(3/20) 5142290000178825 a001 267914296/167761*228826127^(3/10) 5142290000178825 a001 1836311903/167761*228826127^(1/5) 5142290000178825 a001 701408733/167761*228826127^(1/4) 5142290000178825 a001 32951280099/167761*87403803^(1/19) 5142290000178825 a001 75025/370248451*45537549124^(15/17) 5142290000178825 a001 75025/370248451*312119004989^(9/11) 5142290000178825 a001 75025/370248451*14662949395604^(5/7) 5142290000178825 a001 75025/370248451*192900153618^(5/6) 5142290000178825 a001 75025/370248451*28143753123^(9/10) 5142290000178825 a001 165580141/167761*(1/2+1/2*5^(1/2))^13 5142290000178825 a001 165580141/167761*73681302247^(1/4) 5142290000178825 a001 75025/370248451*10749957122^(15/16) 5142290000178825 a001 75025*87403803^(2/19) 5142290000178825 a001 3508212679555/6822277 5142290000178825 a001 4807526976/167761*87403803^(3/19) 5142290000178825 a001 1836311903/167761*87403803^(4/19) 5142290000178825 a001 9303105/15251*87403803^(7/19) 5142290000178825 a001 63245986/167761*141422324^(5/13) 5142290000178826 a001 701408733/167761*87403803^(5/19) 5142290000178826 a001 267914296/167761*87403803^(6/19) 5142290000178826 a001 32951280099/167761*33385282^(1/18) 5142290000178826 a001 63245986/167761*2537720636^(1/3) 5142290000178826 a001 63245986/167761*45537549124^(5/17) 5142290000178826 a001 63245986/167761*312119004989^(3/11) 5142290000178826 a001 63245986/167761*14662949395604^(5/21) 5142290000178826 a001 63245986/167761*(1/2+1/2*5^(1/2))^15 5142290000178826 a001 63245986/167761*192900153618^(5/18) 5142290000178826 a001 63245986/167761*28143753123^(3/10) 5142290000178826 a001 63245986/167761*10749957122^(5/16) 5142290000178826 a001 63245986/167761*599074578^(5/14) 5142290000178826 a001 63245986/167761*228826127^(3/8) 5142290000178826 a001 20365011074/167761*33385282^(1/12) 5142290000178826 a001 75025*33385282^(1/9) 5142290000178826 a001 20100270057400/39088169 5142290000178826 a001 4807526976/167761*33385282^(1/6) 5142290000178826 a001 1836311903/167761*33385282^(2/9) 5142290000178826 a001 1134903170/167761*33385282^(1/4) 5142290000178827 a001 701408733/167761*33385282^(5/18) 5142290000178827 a001 39088169/167761*33385282^(4/9) 5142290000178827 a001 267914296/167761*33385282^(1/3) 5142290000178827 a001 9303105/15251*33385282^(7/18) 5142290000178827 a001 24157817/167761*45537549124^(1/3) 5142290000178827 a001 24157817/167761*(1/2+1/2*5^(1/2))^17 5142290000178827 a001 32951280099/167761*12752043^(1/17) 5142290000178828 a001 63245986/167761*33385282^(5/12) 5142290000178829 a001 75025*12752043^(2/17) 5142290000178830 a001 2559206659625/4976784 5142290000178831 a001 4807526976/167761*12752043^(3/17) 5142290000178833 a001 1836311903/167761*12752043^(4/17) 5142290000178835 a001 701408733/167761*12752043^(5/17) 5142290000178836 a001 267914296/167761*12752043^(6/17) 5142290000178837 a001 75025/20633239*2537720636^(13/15) 5142290000178837 a001 75025/20633239*45537549124^(13/17) 5142290000178837 a001 75025/20633239*14662949395604^(13/21) 5142290000178837 a001 75025/20633239*(1/2+1/2*5^(1/2))^39 5142290000178837 a001 75025/20633239*192900153618^(13/18) 5142290000178837 a001 75025/20633239*73681302247^(3/4) 5142290000178837 a001 9227465/167761*817138163596^(1/3) 5142290000178837 a001 9227465/167761*(1/2+1/2*5^(1/2))^19 5142290000178837 a001 75025/20633239*10749957122^(13/16) 5142290000178837 a001 75025/20633239*599074578^(13/14) 5142290000178837 a001 14930352/167761*12752043^(9/17) 5142290000178838 a001 9227465/167761*87403803^(1/2) 5142290000178838 a001 9303105/15251*12752043^(7/17) 5142290000178839 a001 32951280099/167761*4870847^(1/16) 5142290000178840 a001 39088169/167761*12752043^(8/17) 5142290000178843 a001 24157817/167761*12752043^(1/2) 5142290000178852 a001 75025*4870847^(1/8) 5142290000178855 a001 3524578/167761*7881196^(7/11) 5142290000178856 a001 2932589879225/5702887 5142290000178866 a001 4807526976/167761*4870847^(3/16) 5142290000178880 a001 1836311903/167761*4870847^(1/4) 5142290000178893 a001 701408733/167761*4870847^(5/16) 5142290000178901 a001 3524578/167761*20633239^(3/5) 5142290000178907 a001 267914296/167761*4870847^(3/8) 5142290000178908 a001 3524578/167761*141422324^(7/13) 5142290000178908 a001 3524578/167761*2537720636^(7/15) 5142290000178908 a001 3524578/167761*17393796001^(3/7) 5142290000178908 a001 3524578/167761*45537549124^(7/17) 5142290000178908 a001 3524578/167761*14662949395604^(1/3) 5142290000178908 a001 3524578/167761*(1/2+1/2*5^(1/2))^21 5142290000178908 a001 3524578/167761*192900153618^(7/18) 5142290000178908 a001 3524578/167761*10749957122^(7/16) 5142290000178908 a001 3524578/167761*599074578^(1/2) 5142290000178911 a001 3524578/167761*33385282^(7/12) 5142290000178920 a001 9303105/15251*4870847^(7/16) 5142290000178924 a001 32951280099/167761*1860498^(1/15) 5142290000178929 a001 5702887/167761*4870847^(5/8) 5142290000178933 a001 39088169/167761*4870847^(1/2) 5142290000178943 a001 14930352/167761*4870847^(9/16) 5142290000178974 a001 20365011074/167761*1860498^(1/10) 5142290000179023 a001 75025*1860498^(2/15) 5142290000179037 a001 373383219600/726103 5142290000179073 a001 7778742049/167761*1860498^(1/6) 5142290000179122 a001 4807526976/167761*1860498^(1/5) 5142290000179221 a001 1836311903/167761*1860498^(4/15) 5142290000179271 a001 1134903170/167761*1860498^(3/10) 5142290000179321 a001 701408733/167761*1860498^(1/3) 5142290000179382 a001 7778742049/1149851*103682^(3/8) 5142290000179393 a001 75025/3010349*2537720636^(7/9) 5142290000179393 a001 75025/3010349*17393796001^(5/7) 5142290000179393 a001 75025/3010349*312119004989^(7/11) 5142290000179393 a001 75025/3010349*14662949395604^(5/9) 5142290000179393 a001 75025/3010349*(1/2+1/2*5^(1/2))^35 5142290000179393 a001 75025/3010349*505019158607^(5/8) 5142290000179393 a001 75025/3010349*28143753123^(7/10) 5142290000179393 a001 1346269/167761*(1/2+1/2*5^(1/2))^23 5142290000179393 a001 1346269/167761*4106118243^(1/2) 5142290000179393 a001 75025/3010349*599074578^(5/6) 5142290000179393 a001 75025/3010349*228826127^(7/8) 5142290000179420 a001 267914296/167761*1860498^(2/5) 5142290000179519 a001 9303105/15251*1860498^(7/15) 5142290000179553 a001 32951280099/167761*710647^(1/14) 5142290000179568 a001 63245986/167761*1860498^(1/2) 5142290000179617 a001 39088169/167761*1860498^(8/15) 5142290000179698 a001 2178309/167761*1860498^(11/15) 5142290000179712 a001 14930352/167761*1860498^(3/5) 5142290000179784 a001 5702887/167761*1860498^(2/3) 5142290000179948 a001 3524578/167761*1860498^(7/10) 5142290000180279 a001 85571819435/166408 5142290000180280 a001 75025*710647^(1/7) 5142290000181007 a001 4807526976/167761*710647^(3/14) 5142290000181371 a001 2971215073/167761*710647^(1/4) 5142290000181735 a001 1836311903/167761*710647^(2/7) 5142290000182219 a001 1201881744/109801*103682^(1/3) 5142290000182462 a001 701408733/167761*710647^(5/14) 5142290000182706 a001 514229/167761*20633239^(5/7) 5142290000182714 a001 75025/1149851*141422324^(11/13) 5142290000182715 a001 75025/1149851*2537720636^(11/15) 5142290000182715 a001 514229/167761*2537720636^(5/9) 5142290000182715 a001 75025/1149851*45537549124^(11/17) 5142290000182715 a001 75025/1149851*312119004989^(3/5) 5142290000182715 a001 75025/1149851*817138163596^(11/19) 5142290000182715 a001 75025/1149851*14662949395604^(11/21) 5142290000182715 a001 75025/1149851*(1/2+1/2*5^(1/2))^33 5142290000182715 a001 75025/1149851*192900153618^(11/18) 5142290000182715 a001 514229/167761*312119004989^(5/11) 5142290000182715 a001 514229/167761*(1/2+1/2*5^(1/2))^25 5142290000182715 a001 514229/167761*3461452808002^(5/12) 5142290000182715 a001 514229/167761*28143753123^(1/2) 5142290000182715 a001 75025/1149851*10749957122^(11/16) 5142290000182715 a001 75025/1149851*1568397607^(3/4) 5142290000182715 a001 75025/1149851*599074578^(11/14) 5142290000182715 a001 514229/167761*228826127^(5/8) 5142290000182719 a001 75025/1149851*33385282^(11/12) 5142290000183189 a001 267914296/167761*710647^(3/7) 5142290000183916 a001 9303105/15251*710647^(1/2) 5142290000183953 a001 514229/167761*1860498^(5/6) 5142290000184194 a001 32951280099/167761*271443^(1/13) 5142290000184643 a001 39088169/167761*710647^(4/7) 5142290000185242 a001 2971215073/710647*103682^(5/12) 5142290000185367 a001 14930352/167761*710647^(9/14) 5142290000185428 a001 267914296/271443*103682^(13/24) 5142290000186067 a001 5702887/167761*710647^(5/7) 5142290000186067 a001 75640/15251*710647^(6/7) 5142290000186545 a001 3524578/167761*710647^(3/4) 5142290000186609 a001 2178309/167761*710647^(11/14) 5142290000188791 a001 54475877575/105937 5142290000189562 a001 75025*271443^(2/13) 5142290000193939 a001 7778742049/1860498*103682^(5/12) 5142290000194931 a001 4807526976/167761*271443^(3/13) 5142290000195208 a001 20365011074/4870847*103682^(5/12) 5142290000195393 a001 53316291173/12752043*103682^(5/12) 5142290000195420 a001 139583862445/33385282*103682^(5/12) 5142290000195424 a001 365435296162/87403803*103682^(5/12) 5142290000195424 a001 956722026041/228826127*103682^(5/12) 5142290000195425 a001 2504730781961/599074578*103682^(5/12) 5142290000195425 a001 6557470319842/1568397607*103682^(5/12) 5142290000195425 a001 10610209857723/2537720636*103682^(5/12) 5142290000195425 a001 4052739537881/969323029*103682^(5/12) 5142290000195425 a001 1548008755920/370248451*103682^(5/12) 5142290000195425 a001 591286729879/141422324*103682^(5/12) 5142290000195426 a001 225851433717/54018521*103682^(5/12) 5142290000195437 a001 86267571272/20633239*103682^(5/12) 5142290000195507 a001 32951280099/7881196*103682^(5/12) 5142290000195992 a001 12586269025/3010349*103682^(5/12) 5142290000198757 a001 53316291173/167761*103682^(1/24) 5142290000199314 a001 4807526976/1149851*103682^(5/12) 5142290000200299 a001 1836311903/167761*271443^(4/13) 5142290000202151 a001 2971215073/439204*103682^(3/8) 5142290000205174 a001 1836311903/710647*103682^(11/24) 5142290000205359 a001 165580141/271443*103682^(7/12) 5142290000205415 a001 196418/167761*7881196^(9/11) 5142290000205483 a001 196418/167761*141422324^(9/13) 5142290000205483 a001 196418/167761*2537720636^(3/5) 5142290000205483 a001 75025/439204*(1/2+1/2*5^(1/2))^31 5142290000205483 a001 75025/439204*9062201101803^(1/2) 5142290000205483 a001 196418/167761*45537549124^(9/17) 5142290000205483 a001 196418/167761*817138163596^(9/19) 5142290000205483 a001 196418/167761*14662949395604^(3/7) 5142290000205483 a001 196418/167761*(1/2+1/2*5^(1/2))^27 5142290000205483 a001 196418/167761*192900153618^(1/2) 5142290000205483 a001 196418/167761*10749957122^(9/16) 5142290000205483 a001 196418/167761*599074578^(9/14) 5142290000205487 a001 196418/167761*33385282^(3/4) 5142290000205668 a001 701408733/167761*271443^(5/13) 5142290000206820 a001 196418/167761*1860498^(9/10) 5142290000211037 a001 267914296/167761*271443^(6/13) 5142290000213721 a001 165580141/167761*271443^(1/2) 5142290000213870 a001 267084832/103361*103682^(11/24) 5142290000213993 a001 3524578/64079*64079^(19/23) 5142290000215139 a001 12586269025/4870847*103682^(11/24) 5142290000215324 a001 10983760033/4250681*103682^(11/24) 5142290000215351 a001 43133785636/16692641*103682^(11/24) 5142290000215355 a001 75283811239/29134601*103682^(11/24) 5142290000215356 a001 591286729879/228826127*103682^(11/24) 5142290000215356 a001 86000486440/33281921*103682^(11/24) 5142290000215356 a001 4052739537881/1568397607*103682^(11/24) 5142290000215356 a001 3536736619241/1368706081*103682^(11/24) 5142290000215356 a001 3278735159921/1268860318*103682^(11/24) 5142290000215356 a001 2504730781961/969323029*103682^(11/24) 5142290000215356 a001 956722026041/370248451*103682^(11/24) 5142290000215356 a001 182717648081/70711162*103682^(11/24) 5142290000215358 a001 139583862445/54018521*103682^(11/24) 5142290000215368 a001 53316291173/20633239*103682^(11/24) 5142290000215439 a001 10182505537/3940598*103682^(11/24) 5142290000215923 a001 7778742049/3010349*103682^(11/24) 5142290000216405 a001 9303105/15251*271443^(7/13) 5142290000218688 a001 32951280099/167761*103682^(1/12) 5142290000219245 a001 2971215073/1149851*103682^(11/24) 5142290000221773 a001 39088169/167761*271443^(8/13) 5142290000222082 a001 1836311903/439204*103682^(5/12) 5142290000224382 a001 53316291173/271443*39603^(1/11) 5142290000225105 a001 1134903170/710647*103682^(1/2) 5142290000225291 a001 34111385/90481*103682^(5/8) 5142290000227138 a001 14930352/167761*271443^(9/13) 5142290000232479 a001 5702887/167761*271443^(10/13) 5142290000233802 a001 2971215073/1860498*103682^(1/2) 5142290000235071 a001 7778742049/4870847*103682^(1/2) 5142290000235256 a001 20365011074/12752043*103682^(1/2) 5142290000235283 a001 53316291173/33385282*103682^(1/2) 5142290000235287 a001 139583862445/87403803*103682^(1/2) 5142290000235287 a001 365435296162/228826127*103682^(1/2) 5142290000235287 a001 956722026041/599074578*103682^(1/2) 5142290000235287 a001 2504730781961/1568397607*103682^(1/2) 5142290000235287 a001 6557470319842/4106118243*103682^(1/2) 5142290000235287 a001 10610209857723/6643838879*103682^(1/2) 5142290000235287 a001 4052739537881/2537720636*103682^(1/2) 5142290000235287 a001 1548008755920/969323029*103682^(1/2) 5142290000235287 a001 591286729879/370248451*103682^(1/2) 5142290000235288 a001 225851433717/141422324*103682^(1/2) 5142290000235289 a001 86267571272/54018521*103682^(1/2) 5142290000235299 a001 32951280099/20633239*103682^(1/2) 5142290000235370 a001 12586269025/7881196*103682^(1/2) 5142290000235855 a001 4807526976/3010349*103682^(1/2) 5142290000237662 a001 2178309/167761*271443^(11/13) 5142290000238620 a001 20365011074/167761*103682^(1/8) 5142290000239177 a001 1836311903/1149851*103682^(1/2) 5142290000241762 a001 75640/15251*271443^(12/13) 5142290000242014 a001 567451585/219602*103682^(11/24) 5142290000245036 a001 701408733/710647*103682^(13/24) 5142290000245222 a001 63245986/271443*103682^(2/3) 5142290000247131 a001 62423801000/121393 5142290000253733 a001 1836311903/1860498*103682^(13/24) 5142290000255002 a001 4807526976/4870847*103682^(13/24) 5142290000255187 a001 12586269025/12752043*103682^(13/24) 5142290000255214 a001 32951280099/33385282*103682^(13/24) 5142290000255218 a001 86267571272/87403803*103682^(13/24) 5142290000255219 a001 225851433717/228826127*103682^(13/24) 5142290000255219 a001 591286729879/599074578*103682^(13/24) 5142290000255219 a001 1548008755920/1568397607*103682^(13/24) 5142290000255219 a001 4052739537881/4106118243*103682^(13/24) 5142290000255219 a001 4807525989/4870846*103682^(13/24) 5142290000255219 a001 6557470319842/6643838879*103682^(13/24) 5142290000255219 a001 2504730781961/2537720636*103682^(13/24) 5142290000255219 a001 956722026041/969323029*103682^(13/24) 5142290000255219 a001 365435296162/370248451*103682^(13/24) 5142290000255219 a001 139583862445/141422324*103682^(13/24) 5142290000255221 a001 53316291173/54018521*103682^(13/24) 5142290000255231 a001 20365011074/20633239*103682^(13/24) 5142290000255302 a001 7778742049/7881196*103682^(13/24) 5142290000255786 a001 2971215073/3010349*103682^(13/24) 5142290000258551 a001 75025*103682^(1/6) 5142290000259108 a001 1134903170/1149851*103682^(13/24) 5142290000261945 a001 701408733/439204*103682^(1/2) 5142290000262913 a001 46368*39603^(5/22) 5142290000264968 a001 433494437/710647*103682^(7/12) 5142290000265153 a001 39088169/271443*103682^(17/24) 5142290000268328 a001 5702887/64079*64079^(18/23) 5142290000273665 a001 567451585/930249*103682^(7/12) 5142290000274934 a001 2971215073/4870847*103682^(7/12) 5142290000275119 a001 7778742049/12752043*103682^(7/12) 5142290000275146 a001 10182505537/16692641*103682^(7/12) 5142290000275150 a001 53316291173/87403803*103682^(7/12) 5142290000275150 a001 139583862445/228826127*103682^(7/12) 5142290000275150 a001 182717648081/299537289*103682^(7/12) 5142290000275150 a001 956722026041/1568397607*103682^(7/12) 5142290000275150 a001 2504730781961/4106118243*103682^(7/12) 5142290000275150 a001 3278735159921/5374978561*103682^(7/12) 5142290000275150 a001 10610209857723/17393796001*103682^(7/12) 5142290000275150 a001 4052739537881/6643838879*103682^(7/12) 5142290000275150 a001 1134903780/1860499*103682^(7/12) 5142290000275150 a001 591286729879/969323029*103682^(7/12) 5142290000275150 a001 225851433717/370248451*103682^(7/12) 5142290000275151 a001 21566892818/35355581*103682^(7/12) 5142290000275152 a001 32951280099/54018521*103682^(7/12) 5142290000275162 a001 1144206275/1875749*103682^(7/12) 5142290000275233 a001 1201881744/1970299*103682^(7/12) 5142290000275718 a001 1836311903/3010349*103682^(7/12) 5142290000278483 a001 7778742049/167761*103682^(5/24) 5142290000279040 a001 701408733/1149851*103682^(7/12) 5142290000281877 a001 433494437/439204*103682^(13/24) 5142290000283991 a001 139583862445/710647*39603^(1/11) 5142290000284899 a001 267914296/710647*103682^(5/8) 5142290000285087 a001 24157817/271443*103682^(3/4) 5142290000292687 a001 182717648081/930249*39603^(1/11) 5142290000293596 a001 233802911/620166*103682^(5/8) 5142290000293956 a001 956722026041/4870847*39603^(1/11) 5142290000294141 a001 2504730781961/12752043*39603^(1/11) 5142290000294168 a001 3278735159921/16692641*39603^(1/11) 5142290000294175 a001 10610209857723/54018521*39603^(1/11) 5142290000294185 a001 4052739537881/20633239*39603^(1/11) 5142290000294256 a001 387002188980/1970299*39603^(1/11) 5142290000294740 a001 591286729879/3010349*39603^(1/11) 5142290000294865 a001 1836311903/4870847*103682^(5/8) 5142290000295050 a001 1602508992/4250681*103682^(5/8) 5142290000295077 a001 12586269025/33385282*103682^(5/8) 5142290000295081 a001 10983760033/29134601*103682^(5/8) 5142290000295082 a001 86267571272/228826127*103682^(5/8) 5142290000295082 a001 267913919/710646*103682^(5/8) 5142290000295082 a001 591286729879/1568397607*103682^(5/8) 5142290000295082 a001 516002918640/1368706081*103682^(5/8) 5142290000295082 a001 4052739537881/10749957122*103682^(5/8) 5142290000295082 a001 3536736619241/9381251041*103682^(5/8) 5142290000295082 a001 6557470319842/17393796001*103682^(5/8) 5142290000295082 a001 2504730781961/6643838879*103682^(5/8) 5142290000295082 a001 956722026041/2537720636*103682^(5/8) 5142290000295082 a001 365435296162/969323029*103682^(5/8) 5142290000295082 a001 139583862445/370248451*103682^(5/8) 5142290000295082 a001 53316291173/141422324*103682^(5/8) 5142290000295083 a001 20365011074/54018521*103682^(5/8) 5142290000295094 a001 7778742049/20633239*103682^(5/8) 5142290000295165 a001 2971215073/7881196*103682^(5/8) 5142290000295649 a001 1134903170/3010349*103682^(5/8) 5142290000298062 a001 225851433717/1149851*39603^(1/11) 5142290000298414 a001 4807526976/167761*103682^(1/4) 5142290000298971 a001 433494437/1149851*103682^(5/8) 5142290000299346 a007 Real Root Of 870*x^4-216*x^3-162*x^2-431*x-269 5142290000301808 a001 66978574/109801*103682^(7/12) 5142290000304831 a001 165580141/710647*103682^(2/3) 5142290000305012 a001 4976784/90481*103682^(19/24) 5142290000313528 a001 433494437/1860498*103682^(2/3) 5142290000314796 a001 1134903170/4870847*103682^(2/3) 5142290000314982 a001 2971215073/12752043*103682^(2/3) 5142290000315009 a001 7778742049/33385282*103682^(2/3) 5142290000315012 a001 20365011074/87403803*103682^(2/3) 5142290000315013 a001 53316291173/228826127*103682^(2/3) 5142290000315013 a001 139583862445/599074578*103682^(2/3) 5142290000315013 a001 365435296162/1568397607*103682^(2/3) 5142290000315013 a001 956722026041/4106118243*103682^(2/3) 5142290000315013 a001 2504730781961/10749957122*103682^(2/3) 5142290000315013 a001 6557470319842/28143753123*103682^(2/3) 5142290000315013 a001 10610209857723/45537549124*103682^(2/3) 5142290000315013 a001 4052739537881/17393796001*103682^(2/3) 5142290000315013 a001 1548008755920/6643838879*103682^(2/3) 5142290000315013 a001 591286729879/2537720636*103682^(2/3) 5142290000315013 a001 225851433717/969323029*103682^(2/3) 5142290000315013 a001 86267571272/370248451*103682^(2/3) 5142290000315013 a001 63246219/271444*103682^(2/3) 5142290000315015 a001 12586269025/54018521*103682^(2/3) 5142290000315025 a001 4807526976/20633239*103682^(2/3) 5142290000315096 a001 1836311903/7881196*103682^(2/3) 5142290000315581 a001 701408733/3010349*103682^(2/3) 5142290000318345 a001 2971215073/167761*103682^(7/24) 5142290000318902 a001 267914296/1149851*103682^(2/3) 5142290000320831 a001 196418*39603^(1/11) 5142290000321740 a001 165580141/439204*103682^(5/8) 5142290000322822 a001 9227465/64079*64079^(17/23) 5142290000324762 a001 14619165/101521*103682^(17/24) 5142290000324960 a001 9227465/271443*103682^(5/6) 5142290000327857 a001 53316291173/167761*39603^(1/22) 5142290000333459 a001 133957148/930249*103682^(17/24) 5142290000334728 a001 701408733/4870847*103682^(17/24) 5142290000334913 a001 1836311903/12752043*103682^(17/24) 5142290000334940 a001 14930208/103681*103682^(17/24) 5142290000334944 a001 12586269025/87403803*103682^(17/24) 5142290000334944 a001 32951280099/228826127*103682^(17/24) 5142290000334945 a001 43133785636/299537289*103682^(17/24) 5142290000334945 a001 32264490531/224056801*103682^(17/24) 5142290000334945 a001 591286729879/4106118243*103682^(17/24) 5142290000334945 a001 774004377960/5374978561*103682^(17/24) 5142290000334945 a001 4052739537881/28143753123*103682^(17/24) 5142290000334945 a001 1515744265389/10525900321*103682^(17/24) 5142290000334945 a001 3278735159921/22768774562*103682^(17/24) 5142290000334945 a001 2504730781961/17393796001*103682^(17/24) 5142290000334945 a001 956722026041/6643838879*103682^(17/24) 5142290000334945 a001 182717648081/1268860318*103682^(17/24) 5142290000334945 a001 139583862445/969323029*103682^(17/24) 5142290000334945 a001 53316291173/370248451*103682^(17/24) 5142290000334945 a001 10182505537/70711162*103682^(17/24) 5142290000334946 a001 7778742049/54018521*103682^(17/24) 5142290000334957 a001 2971215073/20633239*103682^(17/24) 5142290000335027 a001 567451585/3940598*103682^(17/24) 5142290000335512 a001 433494437/3010349*103682^(17/24) 5142290000338277 a001 1836311903/167761*103682^(1/3) 5142290000338834 a001 165580141/1149851*103682^(17/24) 5142290000341671 a001 102334155/439204*103682^(2/3) 5142290000344694 a001 63245986/710647*103682^(3/4) 5142290000344848 a001 5702887/271443*103682^(7/8) 5142290000353390 a001 165580141/1860498*103682^(3/4) 5142290000354659 a001 433494437/4870847*103682^(3/4) 5142290000354844 a001 1134903170/12752043*103682^(3/4) 5142290000354871 a001 2971215073/33385282*103682^(3/4) 5142290000354875 a001 7778742049/87403803*103682^(3/4) 5142290000354876 a001 20365011074/228826127*103682^(3/4) 5142290000354876 a001 53316291173/599074578*103682^(3/4) 5142290000354876 a001 139583862445/1568397607*103682^(3/4) 5142290000354876 a001 365435296162/4106118243*103682^(3/4) 5142290000354876 a001 956722026041/10749957122*103682^(3/4) 5142290000354876 a001 2504730781961/28143753123*103682^(3/4) 5142290000354876 a001 6557470319842/73681302247*103682^(3/4) 5142290000354876 a001 10610209857723/119218851371*103682^(3/4) 5142290000354876 a001 4052739537881/45537549124*103682^(3/4) 5142290000354876 a001 1548008755920/17393796001*103682^(3/4) 5142290000354876 a001 591286729879/6643838879*103682^(3/4) 5142290000354876 a001 225851433717/2537720636*103682^(3/4) 5142290000354876 a001 86267571272/969323029*103682^(3/4) 5142290000354876 a001 32951280099/370248451*103682^(3/4) 5142290000354876 a001 12586269025/141422324*103682^(3/4) 5142290000354878 a001 4807526976/54018521*103682^(3/4) 5142290000354888 a001 1836311903/20633239*103682^(3/4) 5142290000354959 a001 3524667/39604*103682^(3/4) 5142290000355443 a001 267914296/3010349*103682^(3/4) 5142290000358208 a001 1134903170/167761*103682^(3/8) 5142290000358765 a001 102334155/1149851*103682^(3/4) 5142290000361540 a001 75025/167761*(1/2+1/2*5^(1/2))^29 5142290000361540 a001 75025/167761*1322157322203^(1/2) 5142290000361603 a001 31622993/219602*103682^(17/24) 5142290000364624 a001 39088169/710647*103682^(19/24) 5142290000364894 a001 3524578/271443*103682^(11/12) 5142290000373322 a001 831985/15126*103682^(19/24) 5142290000373413 a001 121393*39603^(3/22) 5142290000374591 a001 267914296/4870847*103682^(19/24) 5142290000374776 a001 233802911/4250681*103682^(19/24) 5142290000374803 a001 1836311903/33385282*103682^(19/24) 5142290000374807 a001 1602508992/29134601*103682^(19/24) 5142290000374807 a001 12586269025/228826127*103682^(19/24) 5142290000374807 a001 10983760033/199691526*103682^(19/24) 5142290000374807 a001 86267571272/1568397607*103682^(19/24) 5142290000374807 a001 75283811239/1368706081*103682^(19/24) 5142290000374807 a001 591286729879/10749957122*103682^(19/24) 5142290000374807 a001 12585437040/228811001*103682^(19/24) 5142290000374807 a001 4052739537881/73681302247*103682^(19/24) 5142290000374807 a001 3536736619241/64300051206*103682^(19/24) 5142290000374807 a001 6557470319842/119218851371*103682^(19/24) 5142290000374807 a001 2504730781961/45537549124*103682^(19/24) 5142290000374807 a001 956722026041/17393796001*103682^(19/24) 5142290000374807 a001 365435296162/6643838879*103682^(19/24) 5142290000374807 a001 139583862445/2537720636*103682^(19/24) 5142290000374807 a001 53316291173/969323029*103682^(19/24) 5142290000374808 a001 20365011074/370248451*103682^(19/24) 5142290000374808 a001 7778742049/141422324*103682^(19/24) 5142290000374809 a001 2971215073/54018521*103682^(19/24) 5142290000374820 a001 1134903170/20633239*103682^(19/24) 5142290000374890 a001 433494437/7881196*103682^(19/24) 5142290000375375 a001 165580141/3010349*103682^(19/24) 5142290000377255 a001 14930352/64079*64079^(16/23) 5142290000378140 a001 701408733/167761*103682^(5/12) 5142290000378697 a001 63245986/1149851*103682^(19/24) 5142290000381533 a001 39088169/439204*103682^(3/4) 5142290000384525 a001 726103/90481*103682^(23/24) 5142290000384558 a001 24157817/710647*103682^(5/6) 5142290000393254 a001 31622993/930249*103682^(5/6) 5142290000394522 a001 165580141/4870847*103682^(5/6) 5142290000394707 a001 433494437/12752043*103682^(5/6) 5142290000394734 a001 567451585/16692641*103682^(5/6) 5142290000394738 a001 2971215073/87403803*103682^(5/6) 5142290000394739 a001 7778742049/228826127*103682^(5/6) 5142290000394739 a001 10182505537/299537289*103682^(5/6) 5142290000394739 a001 53316291173/1568397607*103682^(5/6) 5142290000394739 a001 139583862445/4106118243*103682^(5/6) 5142290000394739 a001 182717648081/5374978561*103682^(5/6) 5142290000394739 a001 956722026041/28143753123*103682^(5/6) 5142290000394739 a001 2504730781961/73681302247*103682^(5/6) 5142290000394739 a001 3278735159921/96450076809*103682^(5/6) 5142290000394739 a001 10610209857723/312119004989*103682^(5/6) 5142290000394739 a001 4052739537881/119218851371*103682^(5/6) 5142290000394739 a001 387002188980/11384387281*103682^(5/6) 5142290000394739 a001 591286729879/17393796001*103682^(5/6) 5142290000394739 a001 225851433717/6643838879*103682^(5/6) 5142290000394739 a001 1135099622/33391061*103682^(5/6) 5142290000394739 a001 32951280099/969323029*103682^(5/6) 5142290000394739 a001 12586269025/370248451*103682^(5/6) 5142290000394739 a001 1201881744/35355581*103682^(5/6) 5142290000394741 a001 1836311903/54018521*103682^(5/6) 5142290000394751 a001 701408733/20633239*103682^(5/6) 5142290000394822 a001 66978574/1970299*103682^(5/6) 5142290000395306 a001 102334155/3010349*103682^(5/6) 5142290000398071 a001 433494437/167761*103682^(11/24) 5142290000398628 a001 39088169/1149851*103682^(5/6) 5142290000401467 a001 24157817/439204*103682^(19/24) 5142290000403373 a001 208010/6119*24476^(20/21) 5142290000404483 a001 14930352/710647*103682^(7/8) 5142290000411944 a001 2971215073/103682*39603^(3/11) 5142290000413184 a001 39088169/1860498*103682^(7/8) 5142290000414453 a001 102334155/4870847*103682^(7/8) 5142290000414639 a001 267914296/12752043*103682^(7/8) 5142290000414666 a001 701408733/33385282*103682^(7/8) 5142290000414670 a001 1836311903/87403803*103682^(7/8) 5142290000414670 a001 102287808/4868641*103682^(7/8) 5142290000414670 a001 12586269025/599074578*103682^(7/8) 5142290000414670 a001 32951280099/1568397607*103682^(7/8) 5142290000414670 a001 86267571272/4106118243*103682^(7/8) 5142290000414670 a001 225851433717/10749957122*103682^(7/8) 5142290000414670 a001 591286729879/28143753123*103682^(7/8) 5142290000414670 a001 1548008755920/73681302247*103682^(7/8) 5142290000414670 a001 4052739537881/192900153618*103682^(7/8) 5142290000414670 a001 225749145909/10745088481*103682^(7/8) 5142290000414670 a001 6557470319842/312119004989*103682^(7/8) 5142290000414670 a001 2504730781961/119218851371*103682^(7/8) 5142290000414670 a001 956722026041/45537549124*103682^(7/8) 5142290000414670 a001 365435296162/17393796001*103682^(7/8) 5142290000414670 a001 139583862445/6643838879*103682^(7/8) 5142290000414670 a001 53316291173/2537720636*103682^(7/8) 5142290000414670 a001 20365011074/969323029*103682^(7/8) 5142290000414670 a001 7778742049/370248451*103682^(7/8) 5142290000414671 a001 2971215073/141422324*103682^(7/8) 5142290000414672 a001 1134903170/54018521*103682^(7/8) 5142290000414682 a001 433494437/20633239*103682^(7/8) 5142290000414753 a001 165580141/7881196*103682^(7/8) 5142290000415238 a001 63245986/3010349*103682^(7/8) 5142290000418003 a001 267914296/167761*103682^(1/2) 5142290000418561 a001 24157817/1149851*103682^(7/8) 5142290000421392 a001 196452/5779*103682^(5/6) 5142290000424431 a001 9227465/710647*103682^(11/12) 5142290000430961 a001 12586269025/64079*24476^(2/21) 5142290000431331 a001 11921885137/23184 5142290000431711 a001 24157817/64079*64079^(15/23) 5142290000433022 a001 86267571272/710647*39603^(3/22) 5142290000433118 a001 24157817/1860498*103682^(11/12) 5142290000434385 a001 63245986/4870847*103682^(11/12) 5142290000434570 a001 165580141/12752043*103682^(11/12) 5142290000434597 a001 433494437/33385282*103682^(11/12) 5142290000434601 a001 1134903170/87403803*103682^(11/12) 5142290000434602 a001 2971215073/228826127*103682^(11/12) 5142290000434602 a001 7778742049/599074578*103682^(11/12) 5142290000434602 a001 20365011074/1568397607*103682^(11/12) 5142290000434602 a001 53316291173/4106118243*103682^(11/12) 5142290000434602 a001 139583862445/10749957122*103682^(11/12) 5142290000434602 a001 365435296162/28143753123*103682^(11/12) 5142290000434602 a001 956722026041/73681302247*103682^(11/12) 5142290000434602 a001 2504730781961/192900153618*103682^(11/12) 5142290000434602 a001 10610209857723/817138163596*103682^(11/12) 5142290000434602 a001 4052739537881/312119004989*103682^(11/12) 5142290000434602 a001 1548008755920/119218851371*103682^(11/12) 5142290000434602 a001 591286729879/45537549124*103682^(11/12) 5142290000434602 a001 7787980473/599786069*103682^(11/12) 5142290000434602 a001 86267571272/6643838879*103682^(11/12) 5142290000434602 a001 32951280099/2537720636*103682^(11/12) 5142290000434602 a001 12586269025/969323029*103682^(11/12) 5142290000434602 a001 4807526976/370248451*103682^(11/12) 5142290000434602 a001 1836311903/141422324*103682^(11/12) 5142290000434604 a001 701408733/54018521*103682^(11/12) 5142290000434614 a001 9238424/711491*103682^(11/12) 5142290000434684 a001 102334155/7881196*103682^(11/12) 5142290000435169 a001 39088169/3010349*103682^(11/12) 5142290000437934 a001 165580141/167761*103682^(13/24) 5142290000438486 a001 14930352/1149851*103682^(11/12) 5142290000441340 a001 9227465/439204*103682^(7/8) 5142290000441719 a001 75283811239/620166*39603^(3/22) 5142290000442988 a001 591286729879/4870847*39603^(3/22) 5142290000443173 a001 516002918640/4250681*39603^(3/22) 5142290000443200 a001 4052739537881/33385282*39603^(3/22) 5142290000443204 a001 3536736619241/29134601*39603^(3/22) 5142290000443206 a001 6557470319842/54018521*39603^(3/22) 5142290000443216 a001 2504730781961/20633239*39603^(3/22) 5142290000443287 a001 956722026041/7881196*39603^(3/22) 5142290000443772 a001 365435296162/3010349*39603^(3/22) 5142290000444319 a001 5702887/710647*103682^(23/24) 5142290000447094 a001 139583862445/1149851*39603^(3/22) 5142290000453043 a001 829464/103361*103682^(23/24) 5142290000454316 a001 39088169/4870847*103682^(23/24) 5142290000454501 a001 34111385/4250681*103682^(23/24) 5142290000454529 a001 133957148/16692641*103682^(23/24) 5142290000454533 a001 233802911/29134601*103682^(23/24) 5142290000454533 a001 1836311903/228826127*103682^(23/24) 5142290000454533 a001 267084832/33281921*103682^(23/24) 5142290000454533 a001 12586269025/1568397607*103682^(23/24) 5142290000454533 a001 10983760033/1368706081*103682^(23/24) 5142290000454533 a001 43133785636/5374978561*103682^(23/24) 5142290000454533 a001 75283811239/9381251041*103682^(23/24) 5142290000454533 a001 591286729879/73681302247*103682^(23/24) 5142290000454533 a001 86000486440/10716675201*103682^(23/24) 5142290000454533 a001 4052739537881/505019158607*103682^(23/24) 5142290000454533 a001 3278735159921/408569081798*103682^(23/24) 5142290000454533 a001 2504730781961/312119004989*103682^(23/24) 5142290000454533 a001 956722026041/119218851371*103682^(23/24) 5142290000454533 a001 182717648081/22768774562*103682^(23/24) 5142290000454533 a001 139583862445/17393796001*103682^(23/24) 5142290000454533 a001 53316291173/6643838879*103682^(23/24) 5142290000454533 a001 10182505537/1268860318*103682^(23/24) 5142290000454533 a001 7778742049/969323029*103682^(23/24) 5142290000454533 a001 2971215073/370248451*103682^(23/24) 5142290000454533 a001 567451585/70711162*103682^(23/24) 5142290000454535 a001 433494437/54018521*103682^(23/24) 5142290000454545 a001 165580141/20633239*103682^(23/24) 5142290000454616 a001 31622993/3940598*103682^(23/24) 5142290000455102 a001 24157817/3010349*103682^(23/24) 5142290000457865 a001 9303105/15251*103682^(7/12) 5142290000458435 a001 9227465/1149851*103682^(23/24) 5142290000461228 a001 5702887/439204*103682^(11/12) 5142290000469862 a001 53316291173/439204*39603^(3/22) 5142290000474465 a001 1/23184*(1/2+1/2*5^(1/2))^53 5142290000476888 a001 32951280099/167761*39603^(1/11) 5142290000477797 a001 63245986/167761*103682^(5/8) 5142290000481274 a001 1762289/219602*103682^(23/24) 5142290000486159 a001 39088169/64079*64079^(14/23) 5142290000497728 a001 39088169/167761*103682^(2/3) 5142290000517662 a001 24157817/167761*103682^(17/24) 5142290000522445 a001 20365011074/271443*39603^(2/11) 5142290000537587 a001 14930352/167761*103682^(3/4) 5142290000540610 a001 63245986/64079*64079^(13/23) 5142290000557535 a001 9227465/167761*103682^(19/24) 5142290000560975 a001 1836311903/103682*39603^(7/22) 5142290000577422 a001 5702887/167761*103682^(5/6) 5142290000582053 a001 53316291173/710647*39603^(2/11) 5142290000590750 a001 139583862445/1860498*39603^(2/11) 5142290000592019 a001 365435296162/4870847*39603^(2/11) 5142290000592204 a001 956722026041/12752043*39603^(2/11) 5142290000592231 a001 2504730781961/33385282*39603^(2/11) 5142290000592235 a001 6557470319842/87403803*39603^(2/11) 5142290000592236 a001 10610209857723/141422324*39603^(2/11) 5142290000592237 a001 4052739537881/54018521*39603^(2/11) 5142290000592248 a001 140728068720/1875749*39603^(2/11) 5142290000592318 a001 591286729879/7881196*39603^(2/11) 5142290000592803 a001 225851433717/3010349*39603^(2/11) 5142290000595059 a001 102334155/64079*64079^(12/23) 5142290000596125 a001 86267571272/1149851*39603^(2/11) 5142290000597468 a001 3524578/167761*103682^(7/8) 5142290000617100 a001 2178309/167761*103682^(11/12) 5142290000618893 a001 32951280099/439204*39603^(2/11) 5142290000625919 a001 20365011074/167761*39603^(3/22) 5142290000637816 a001 1346269/167761*103682^(23/24) 5142290000641380 a001 32951280099/103682*15127^(1/20) 5142290000646997 a001 7947923425/15456 5142290000649509 a001 165580141/64079*64079^(11/23) 5142290000671476 a001 12586269025/271443*39603^(5/22) 5142290000703959 a001 267914296/64079*64079^(10/23) 5142290000710007 a001 567451585/51841*39603^(4/11) 5142290000731085 a001 32951280099/710647*39603^(5/22) 5142290000739781 a001 43133785636/930249*39603^(5/22) 5142290000741050 a001 225851433717/4870847*39603^(5/22) 5142290000741235 a001 591286729879/12752043*39603^(5/22) 5142290000741262 a001 774004377960/16692641*39603^(5/22) 5142290000741266 a001 4052739537881/87403803*39603^(5/22) 5142290000741267 a001 225749145909/4868641*39603^(5/22) 5142290000741267 a001 3278735159921/70711162*39603^(5/22) 5142290000741269 a001 2504730781961/54018521*39603^(5/22) 5142290000741279 a001 956722026041/20633239*39603^(5/22) 5142290000741350 a001 182717648081/3940598*39603^(5/22) 5142290000741835 a001 139583862445/3010349*39603^(5/22) 5142290000745156 a001 53316291173/1149851*39603^(5/22) 5142290000758409 a001 433494437/64079*64079^(9/23) 5142290000767925 a001 10182505537/219602*39603^(5/22) 5142290000770029 a001 28657/103682*7881196^(10/11) 5142290000770094 a001 28657/103682*20633239^(6/7) 5142290000770094 a001 46368/64079*20633239^(4/5) 5142290000770104 a001 28657/103682*141422324^(10/13) 5142290000770104 a001 28657/103682*2537720636^(2/3) 5142290000770104 a001 28657/103682*45537549124^(10/17) 5142290000770104 a001 28657/103682*312119004989^(6/11) 5142290000770104 a001 28657/103682*14662949395604^(10/21) 5142290000770104 a001 28657/103682*(1/2+1/2*5^(1/2))^30 5142290000770104 a001 28657/103682*192900153618^(5/9) 5142290000770104 a001 28657/103682*28143753123^(3/5) 5142290000770104 a001 28657/103682*10749957122^(5/8) 5142290000770104 a001 28657/103682*4106118243^(15/23) 5142290000770104 a001 46368/64079*17393796001^(4/7) 5142290000770104 a001 46368/64079*14662949395604^(4/9) 5142290000770104 a001 46368/64079*(1/2+1/2*5^(1/2))^28 5142290000770104 a001 46368/64079*505019158607^(1/2) 5142290000770104 a001 46368/64079*73681302247^(7/13) 5142290000770104 a001 46368/64079*10749957122^(7/12) 5142290000770104 a001 46368/64079*4106118243^(14/23) 5142290000770104 a001 28657/103682*1568397607^(15/22) 5142290000770104 a001 46368/64079*1568397607^(7/11) 5142290000770104 a001 46368/64079*599074578^(2/3) 5142290000770104 a001 28657/103682*599074578^(5/7) 5142290000770104 a001 46368/64079*228826127^(7/10) 5142290000770104 a001 28657/103682*228826127^(3/4) 5142290000770104 a001 46368/64079*87403803^(14/19) 5142290000770104 a001 28657/103682*87403803^(15/19) 5142290000770108 a001 46368/64079*33385282^(7/9) 5142290000770108 a001 28657/103682*33385282^(5/6) 5142290000770130 a001 46368/64079*12752043^(14/17) 5142290000770132 a001 28657/103682*12752043^(15/17) 5142290000770294 a001 46368/64079*4870847^(7/8) 5142290000770307 a001 28657/103682*4870847^(15/16) 5142290000771491 a001 46368/64079*1860498^(14/15) 5142290000774951 a001 75025*39603^(2/11) 5142290000812859 a001 701408733/64079*64079^(8/23) 5142290000814175 a001 1346269/24476*24476^(19/21) 5142290000820507 a001 7778742049/271443*39603^(3/11) 5142290000839710 a001 20365011074/64079*24476^(1/21) 5142290000859038 a001 701408733/103682*39603^(9/22) 5142290000867309 a001 1134903170/64079*64079^(7/23) 5142290000880116 a001 20365011074/710647*39603^(3/11) 5142290000888813 a001 53316291173/1860498*39603^(3/11) 5142290000890082 a001 139583862445/4870847*39603^(3/11) 5142290000890267 a001 365435296162/12752043*39603^(3/11) 5142290000890294 a001 956722026041/33385282*39603^(3/11) 5142290000890298 a001 2504730781961/87403803*39603^(3/11) 5142290000890298 a001 6557470319842/228826127*39603^(3/11) 5142290000890298 a001 10610209857723/370248451*39603^(3/11) 5142290000890299 a001 4052739537881/141422324*39603^(3/11) 5142290000890300 a001 1548008755920/54018521*39603^(3/11) 5142290000890311 a001 591286729879/20633239*39603^(3/11) 5142290000890381 a001 225851433717/7881196*39603^(3/11) 5142290000890866 a001 86267571272/3010349*39603^(3/11) 5142290000894188 a001 32951280099/1149851*39603^(3/11) 5142290000916956 a001 12586269025/439204*39603^(3/11) 5142290000921759 a001 28657*64079^(6/23) 5142290000923982 a001 7778742049/167761*39603^(5/22) 5142290000969539 a001 1602508992/90481*39603^(7/22) 5142290000976209 a001 2971215073/64079*64079^(5/23) 5142290001008069 a001 433494437/103682*39603^(5/11) 5142290001029147 a001 12586269025/710647*39603^(7/22) 5142290001030659 a001 4807526976/64079*64079^(4/23) 5142290001037844 a001 10983760033/620166*39603^(7/22) 5142290001039113 a001 86267571272/4870847*39603^(7/22) 5142290001039298 a001 75283811239/4250681*39603^(7/22) 5142290001039325 a001 591286729879/33385282*39603^(7/22) 5142290001039329 a001 516002918640/29134601*39603^(7/22) 5142290001039330 a001 4052739537881/228826127*39603^(7/22) 5142290001039330 a001 3536736619241/199691526*39603^(7/22) 5142290001039330 a001 6557470319842/370248451*39603^(7/22) 5142290001039330 a001 2504730781961/141422324*39603^(7/22) 5142290001039332 a001 956722026041/54018521*39603^(7/22) 5142290001039342 a001 365435296162/20633239*39603^(7/22) 5142290001039413 a001 139583862445/7881196*39603^(7/22) 5142290001039897 a001 53316291173/3010349*39603^(7/22) 5142290001043219 a001 20365011074/1149851*39603^(7/22) 5142290001049943 a001 86267571272/271443*15127^(1/20) 5142290001065988 a001 7778742049/439204*39603^(7/22) 5142290001066311 a001 38580030733/75025 5142290001073014 a001 4807526976/167761*39603^(3/11) 5142290001085109 a001 7778742049/64079*64079^(3/23) 5142290001102070 a001 2178309/64079*167761^(4/5) 5142290001109552 a001 317811*15127^(1/20) 5142290001118248 a001 591286729879/1860498*15127^(1/20) 5142290001118570 a001 2971215073/271443*39603^(4/11) 5142290001119517 a001 1548008755920/4870847*15127^(1/20) 5142290001119702 a001 4052739537881/12752043*15127^(1/20) 5142290001119729 a001 1515744265389/4769326*15127^(1/20) 5142290001119746 a001 6557470319842/20633239*15127^(1/20) 5142290001119817 a001 2504730781961/7881196*15127^(1/20) 5142290001120302 a001 956722026041/3010349*15127^(1/20) 5142290001123623 a001 365435296162/1149851*15127^(1/20) 5142290001138831 a001 24157817/64079*167761^(3/5) 5142290001139559 a001 12586269025/64079*64079^(2/23) 5142290001146392 a001 139583862445/439204*15127^(1/20) 5142290001157101 a001 133957148/51841*39603^(1/2) 5142290001175372 a001 267914296/64079*167761^(2/5) 5142290001178179 a001 7778742049/710647*39603^(4/11) 5142290001178667 a001 121393/64079*141422324^(2/3) 5142290001178667 a001 28657/271443*(1/2+1/2*5^(1/2))^32 5142290001178667 a001 28657/271443*23725150497407^(1/2) 5142290001178667 a001 28657/271443*505019158607^(4/7) 5142290001178667 a001 28657/271443*73681302247^(8/13) 5142290001178667 a001 28657/271443*10749957122^(2/3) 5142290001178667 a001 28657/271443*4106118243^(16/23) 5142290001178667 a001 121393/64079*(1/2+1/2*5^(1/2))^26 5142290001178667 a001 121393/64079*73681302247^(1/2) 5142290001178667 a001 121393/64079*10749957122^(13/24) 5142290001178667 a001 121393/64079*4106118243^(13/23) 5142290001178667 a001 28657/271443*1568397607^(8/11) 5142290001178667 a001 121393/64079*1568397607^(13/22) 5142290001178667 a001 121393/64079*599074578^(13/21) 5142290001178667 a001 28657/271443*599074578^(16/21) 5142290001178668 a001 121393/64079*228826127^(13/20) 5142290001178668 a001 28657/271443*228826127^(4/5) 5142290001178668 a001 121393/64079*87403803^(13/19) 5142290001178668 a001 28657/271443*87403803^(16/19) 5142290001178671 a001 121393/64079*33385282^(13/18) 5142290001178672 a001 28657/271443*33385282^(8/9) 5142290001178692 a001 121393/64079*12752043^(13/17) 5142290001178697 a001 28657/271443*12752043^(16/17) 5142290001178844 a001 121393/64079*4870847^(13/16) 5142290001179955 a001 121393/64079*1860498^(13/15) 5142290001186876 a001 10182505537/930249*39603^(4/11) 5142290001188123 a001 121393/64079*710647^(13/14) 5142290001188144 a001 53316291173/4870847*39603^(4/11) 5142290001188330 a001 139583862445/12752043*39603^(4/11) 5142290001188357 a001 182717648081/16692641*39603^(4/11) 5142290001188361 a001 956722026041/87403803*39603^(4/11) 5142290001188361 a001 2504730781961/228826127*39603^(4/11) 5142290001188361 a001 3278735159921/299537289*39603^(4/11) 5142290001188361 a001 10610209857723/969323029*39603^(4/11) 5142290001188361 a001 4052739537881/370248451*39603^(4/11) 5142290001188361 a001 387002188980/35355581*39603^(4/11) 5142290001188363 a001 591286729879/54018521*39603^(4/11) 5142290001188373 a001 7787980473/711491*39603^(4/11) 5142290001188444 a001 21566892818/1970299*39603^(4/11) 5142290001188929 a001 32951280099/3010349*39603^(4/11) 5142290001192251 a001 12586269025/1149851*39603^(4/11) 5142290001194009 a001 20365011074/64079*64079^(1/23) 5142290001211915 a001 2971215073/39603*15127^(1/5) 5142290001211915 a001 2971215073/64079*167761^(1/5) 5142290001214580 a001 317811/64079*439204^(8/9) 5142290001215019 a001 1201881744/109801*39603^(4/11) 5142290001221883 a001 50501915873/98209 5142290001222045 a001 2971215073/167761*39603^(7/22) 5142290001222140 a001 2178309/24476*24476^(6/7) 5142290001228292 a001 1346269/64079*439204^(7/9) 5142290001230655 a001 5702887/64079*439204^(2/3) 5142290001233650 a001 24157817/64079*439204^(5/9) 5142290001236610 a001 102334155/64079*439204^(4/9) 5142290001238216 a001 317811/64079*7881196^(8/11) 5142290001238276 a001 317811/64079*141422324^(8/13) 5142290001238276 a001 317811/64079*2537720636^(8/15) 5142290001238276 a001 28657/710647*45537549124^(2/3) 5142290001238276 a001 28657/710647*(1/2+1/2*5^(1/2))^34 5142290001238276 a001 28657/710647*10749957122^(17/24) 5142290001238276 a001 28657/710647*4106118243^(17/23) 5142290001238276 a001 317811/64079*45537549124^(8/17) 5142290001238276 a001 317811/64079*14662949395604^(8/21) 5142290001238276 a001 317811/64079*(1/2+1/2*5^(1/2))^24 5142290001238276 a001 317811/64079*192900153618^(4/9) 5142290001238276 a001 317811/64079*73681302247^(6/13) 5142290001238276 a001 317811/64079*10749957122^(1/2) 5142290001238276 a001 317811/64079*4106118243^(12/23) 5142290001238276 a001 317811/64079*1568397607^(6/11) 5142290001238276 a001 28657/710647*1568397607^(17/22) 5142290001238276 a001 317811/64079*599074578^(4/7) 5142290001238276 a001 28657/710647*599074578^(17/21) 5142290001238276 a001 317811/64079*228826127^(3/5) 5142290001238276 a001 28657/710647*228826127^(17/20) 5142290001238276 a001 317811/64079*87403803^(12/19) 5142290001238277 a001 28657/710647*87403803^(17/19) 5142290001238279 a001 317811/64079*33385282^(2/3) 5142290001238280 a001 28657/710647*33385282^(17/18) 5142290001238298 a001 317811/64079*12752043^(12/17) 5142290001238439 a001 317811/64079*4870847^(3/4) 5142290001239465 a001 317811/64079*1860498^(4/5) 5142290001239573 a001 433494437/64079*439204^(1/3) 5142290001242534 a001 28657*439204^(2/9) 5142290001244581 a001 264431464505/514229 5142290001245496 a001 7778742049/64079*439204^(1/9) 5142290001246918 a001 832040/64079*7881196^(2/3) 5142290001246973 a001 28657/1860498*141422324^(12/13) 5142290001246973 a001 28657/1860498*2537720636^(4/5) 5142290001246973 a001 28657/1860498*45537549124^(12/17) 5142290001246973 a001 28657/1860498*14662949395604^(4/7) 5142290001246973 a001 28657/1860498*(1/2+1/2*5^(1/2))^36 5142290001246973 a001 28657/1860498*505019158607^(9/14) 5142290001246973 a001 28657/1860498*192900153618^(2/3) 5142290001246973 a001 28657/1860498*73681302247^(9/13) 5142290001246973 a001 28657/1860498*10749957122^(3/4) 5142290001246973 a001 28657/1860498*4106118243^(18/23) 5142290001246973 a001 832040/64079*312119004989^(2/5) 5142290001246973 a001 832040/64079*(1/2+1/2*5^(1/2))^22 5142290001246973 a001 832040/64079*10749957122^(11/24) 5142290001246973 a001 832040/64079*4106118243^(11/23) 5142290001246973 a001 832040/64079*1568397607^(1/2) 5142290001246973 a001 28657/1860498*1568397607^(9/11) 5142290001246973 a001 832040/64079*599074578^(11/21) 5142290001246973 a001 28657/1860498*599074578^(6/7) 5142290001246973 a001 832040/64079*228826127^(11/20) 5142290001246973 a001 28657/1860498*228826127^(9/10) 5142290001246973 a001 832040/64079*87403803^(11/19) 5142290001246973 a001 28657/1860498*87403803^(18/19) 5142290001246976 a001 832040/64079*33385282^(11/18) 5142290001246993 a001 832040/64079*12752043^(11/17) 5142290001247004 a001 317811/64079*710647^(6/7) 5142290001247122 a001 832040/64079*4870847^(11/16) 5142290001247893 a001 692290561769/1346269 5142290001248062 a001 832040/64079*1860498^(11/15) 5142290001248235 a001 2178309/64079*20633239^(4/7) 5142290001248242 a001 2178309/64079*2537720636^(4/9) 5142290001248242 a001 28657/4870847*817138163596^(2/3) 5142290001248242 a001 28657/4870847*(1/2+1/2*5^(1/2))^38 5142290001248242 a001 28657/4870847*10749957122^(19/24) 5142290001248242 a001 28657/4870847*4106118243^(19/23) 5142290001248242 a001 2178309/64079*(1/2+1/2*5^(1/2))^20 5142290001248242 a001 2178309/64079*23725150497407^(5/16) 5142290001248242 a001 2178309/64079*505019158607^(5/14) 5142290001248242 a001 2178309/64079*73681302247^(5/13) 5142290001248242 a001 2178309/64079*28143753123^(2/5) 5142290001248242 a001 2178309/64079*10749957122^(5/12) 5142290001248242 a001 2178309/64079*4106118243^(10/23) 5142290001248242 a001 2178309/64079*1568397607^(5/11) 5142290001248242 a001 28657/4870847*1568397607^(19/22) 5142290001248242 a001 2178309/64079*599074578^(10/21) 5142290001248242 a001 28657/4870847*599074578^(19/21) 5142290001248242 a001 2178309/64079*228826127^(1/2) 5142290001248242 a001 28657/4870847*228826127^(19/20) 5142290001248242 a001 2178309/64079*87403803^(10/19) 5142290001248244 a001 2178309/64079*33385282^(5/9) 5142290001248260 a001 2178309/64079*12752043^(10/17) 5142290001248376 a001 906220110401/1762289 5142290001248377 a001 2178309/64079*4870847^(5/8) 5142290001248382 a001 5702887/64079*7881196^(6/11) 5142290001248423 a001 24157817/64079*7881196^(5/11) 5142290001248427 a001 5702887/64079*141422324^(6/13) 5142290001248427 a001 28657/12752043*2537720636^(8/9) 5142290001248427 a001 5702887/64079*2537720636^(2/5) 5142290001248427 a001 28657/12752043*312119004989^(8/11) 5142290001248427 a001 28657/12752043*(1/2+1/2*5^(1/2))^40 5142290001248427 a001 28657/12752043*23725150497407^(5/8) 5142290001248427 a001 28657/12752043*73681302247^(10/13) 5142290001248427 a001 28657/12752043*28143753123^(4/5) 5142290001248427 a001 28657/12752043*10749957122^(5/6) 5142290001248427 a001 28657/12752043*4106118243^(20/23) 5142290001248427 a001 5702887/64079*45537549124^(6/17) 5142290001248427 a001 5702887/64079*14662949395604^(2/7) 5142290001248427 a001 5702887/64079*(1/2+1/2*5^(1/2))^18 5142290001248427 a001 5702887/64079*192900153618^(1/3) 5142290001248427 a001 5702887/64079*10749957122^(3/8) 5142290001248427 a001 5702887/64079*4106118243^(9/23) 5142290001248427 a001 5702887/64079*1568397607^(9/22) 5142290001248427 a001 28657/12752043*1568397607^(10/11) 5142290001248427 a001 5702887/64079*599074578^(3/7) 5142290001248427 a001 28657/12752043*599074578^(20/21) 5142290001248427 a001 5702887/64079*228826127^(9/20) 5142290001248427 a001 5702887/64079*87403803^(9/19) 5142290001248428 a001 102334155/64079*7881196^(4/11) 5142290001248429 a001 5702887/64079*33385282^(1/2) 5142290001248431 a001 165580141/64079*7881196^(1/3) 5142290001248436 a001 433494437/64079*7881196^(3/11) 5142290001248443 a001 28657*7881196^(2/11) 5142290001248444 a001 5702887/64079*12752043^(9/17) 5142290001248446 a001 4745030100637/9227465 5142290001248451 a001 7778742049/64079*7881196^(1/11) 5142290001248453 a001 39088169/64079*20633239^(2/5) 5142290001248454 a001 28657/33385282*2537720636^(14/15) 5142290001248454 a001 28657/33385282*17393796001^(6/7) 5142290001248454 a001 28657/33385282*45537549124^(14/17) 5142290001248454 a001 28657/33385282*817138163596^(14/19) 5142290001248454 a001 28657/33385282*14662949395604^(2/3) 5142290001248454 a001 28657/33385282*(1/2+1/2*5^(1/2))^42 5142290001248454 a001 28657/33385282*505019158607^(3/4) 5142290001248454 a001 28657/33385282*192900153618^(7/9) 5142290001248454 a001 28657/33385282*10749957122^(7/8) 5142290001248454 a001 28657/33385282*4106118243^(21/23) 5142290001248454 a001 14930352/64079*(1/2+1/2*5^(1/2))^16 5142290001248454 a001 14930352/64079*23725150497407^(1/4) 5142290001248454 a001 14930352/64079*73681302247^(4/13) 5142290001248454 a001 14930352/64079*10749957122^(1/3) 5142290001248454 a001 14930352/64079*4106118243^(8/23) 5142290001248454 a001 14930352/64079*1568397607^(4/11) 5142290001248454 a001 28657/33385282*1568397607^(21/22) 5142290001248454 a001 14930352/64079*599074578^(8/21) 5142290001248454 a001 14930352/64079*228826127^(2/5) 5142290001248454 a001 14930352/64079*87403803^(8/19) 5142290001248455 a001 267914296/64079*20633239^(2/7) 5142290001248455 a001 24157817/64079*20633239^(3/7) 5142290001248456 a001 14930352/64079*33385282^(4/9) 5142290001248456 a001 1134903170/64079*20633239^(1/5) 5142290001248457 a001 12422650081109/24157817 5142290001248457 a001 2971215073/64079*20633239^(1/7) 5142290001248458 a001 28657/87403803*312119004989^(4/5) 5142290001248458 a001 28657/87403803*23725150497407^(11/16) 5142290001248458 a001 28657/87403803*73681302247^(11/13) 5142290001248458 a001 28657/87403803*10749957122^(11/12) 5142290001248458 a001 28657/87403803*4106118243^(22/23) 5142290001248458 a001 39088169/64079*17393796001^(2/7) 5142290001248458 a001 39088169/64079*14662949395604^(2/9) 5142290001248458 a001 39088169/64079*(1/2+1/2*5^(1/2))^14 5142290001248458 a001 39088169/64079*10749957122^(7/24) 5142290001248458 a001 39088169/64079*4106118243^(7/23) 5142290001248458 a001 39088169/64079*1568397607^(7/22) 5142290001248458 a001 39088169/64079*599074578^(1/3) 5142290001248458 a001 39088169/64079*228826127^(7/20) 5142290001248458 a001 39088169/64079*87403803^(7/19) 5142290001248458 a001 16261460071345/31622993 5142290001248458 a001 102334155/64079*141422324^(4/13) 5142290001248458 a001 28657/228826127*10749957122^(23/24) 5142290001248458 a001 102334155/64079*2537720636^(4/15) 5142290001248458 a001 102334155/64079*45537549124^(4/17) 5142290001248458 a001 102334155/64079*817138163596^(4/19) 5142290001248458 a001 102334155/64079*14662949395604^(4/21) 5142290001248458 a001 102334155/64079*(1/2+1/2*5^(1/2))^12 5142290001248458 a001 102334155/64079*192900153618^(2/9) 5142290001248458 a001 102334155/64079*73681302247^(3/13) 5142290001248458 a001 102334155/64079*10749957122^(1/4) 5142290001248458 a001 102334155/64079*4106118243^(6/23) 5142290001248458 a001 102334155/64079*1568397607^(3/11) 5142290001248458 a001 102334155/64079*599074578^(2/7) 5142290001248458 a001 102334155/64079*228826127^(3/10) 5142290001248458 a001 433494437/64079*141422324^(3/13) 5142290001248458 a001 28657*141422324^(2/13) 5142290001248458 a001 85146110346961/165580141 5142290001248458 a001 7778742049/64079*141422324^(1/13) 5142290001248458 a001 28657/599074578*45537549124^(16/17) 5142290001248458 a001 28657/599074578*14662949395604^(16/21) 5142290001248458 a001 28657/599074578*192900153618^(8/9) 5142290001248458 a001 28657/599074578*73681302247^(12/13) 5142290001248458 a001 267914296/64079*2537720636^(2/9) 5142290001248458 a001 267914296/64079*312119004989^(2/11) 5142290001248458 a001 267914296/64079*(1/2+1/2*5^(1/2))^10 5142290001248458 a001 267914296/64079*28143753123^(1/5) 5142290001248458 a001 267914296/64079*10749957122^(5/24) 5142290001248458 a001 267914296/64079*4106118243^(5/23) 5142290001248458 a001 267914296/64079*1568397607^(5/22) 5142290001248458 a001 267914296/64079*599074578^(5/21) 5142290001248458 a001 222915410898193/433494437 5142290001248458 a001 28657/1568397607*312119004989^(10/11) 5142290001248458 a001 28657/1568397607*3461452808002^(5/6) 5142290001248458 a001 701408733/64079*(1/2+1/2*5^(1/2))^8 5142290001248458 a001 701408733/64079*23725150497407^(1/8) 5142290001248458 a001 701408733/64079*505019158607^(1/7) 5142290001248458 a001 701408733/64079*73681302247^(2/13) 5142290001248458 a001 701408733/64079*10749957122^(1/6) 5142290001248458 a001 701408733/64079*4106118243^(4/23) 5142290001248458 a001 701408733/64079*1568397607^(2/11) 5142290001248458 a001 291800061173809/567451585 5142290001248458 a001 28657/4106118243*23725150497407^(13/16) 5142290001248458 a001 28657/4106118243*505019158607^(13/14) 5142290001248458 a001 1527884956144661/2971215073 5142290001248458 a001 28657*2537720636^(2/15) 5142290001248458 a001 28657/10749957122*14662949395604^(6/7) 5142290001248458 a001 4000054746086365/7778742049 5142290001248458 a001 28657/28143753123*14662949395604^(8/9) 5142290001248458 a001 5236139641057217/10182505537 5142290001248458 a001 27416783100256937/53316291173 5142290001248458 a001 28657*45537549124^(2/17) 5142290001248458 a001 71778070018656377/139583862445 5142290001248458 a001 93958713477856097/182717648081 5142290001248458 a001 28657*14662949395604^(2/21) 5142290001248458 a001 116139356937055817/225851433717 5142290001248458 a001 5545160864799930/10783446409 5142290001248458 a001 16944503818142503/32951280099 5142290001248458 a001 28657/45537549124*14662949395604^(19/21) 5142290001248458 a001 28657*10749957122^(1/8) 5142290001248458 a001 6472224536028069/12586269025 5142290001248458 a001 28657/17393796001*3461452808002^(11/12) 5142290001248458 a001 28657*4106118243^(3/23) 5142290001248458 a001 309021223742713/600940872 5142290001248458 a001 4807526976/64079*(1/2+1/2*5^(1/2))^4 5142290001248458 a001 4807526976/64079*23725150497407^(1/16) 5142290001248458 a001 4807526976/64079*73681302247^(1/13) 5142290001248458 a001 4807526976/64079*10749957122^(1/12) 5142290001248458 a001 7778742049/64079*2537720636^(1/15) 5142290001248458 a001 28657*1568397607^(3/22) 5142290001248458 a001 4807526976/64079*4106118243^(2/23) 5142290001248458 a001 12586269025/64079*(1/2+1/2*5^(1/2))^2 5142290001248458 a001 12586269025/64079*10749957122^(1/24) 5142290001248458 a001 32951280099/64079 5142290001248458 a001 10182505537/64079+10182505537/64079*5^(1/2) 5142290001248458 a001 12586269025/64079*4106118243^(1/23) 5142290001248458 a001 7778742049/64079*45537549124^(1/17) 5142290001248458 a001 7778742049/64079*14662949395604^(1/21) 5142290001248458 a001 7778742049/64079*(1/2+1/2*5^(1/2))^3 5142290001248458 a001 7778742049/64079*192900153618^(1/18) 5142290001248458 a001 7778742049/64079*10749957122^(1/16) 5142290001248458 a001 2971215073/64079*2537720636^(1/9) 5142290001248458 a001 12586269025/64079*1568397607^(1/22) 5142290001248458 a001 2971215073/64079*312119004989^(1/11) 5142290001248458 a001 2971215073/64079*(1/2+1/2*5^(1/2))^5 5142290001248458 a001 2971215073/64079*28143753123^(1/10) 5142290001248458 a001 4807526976/64079*1568397607^(1/11) 5142290001248458 a001 28657/2537720636*817138163596^(17/19) 5142290001248458 a001 28657/2537720636*14662949395604^(17/21) 5142290001248458 a001 28657/2537720636*192900153618^(17/18) 5142290001248458 a001 701408733/64079*599074578^(4/21) 5142290001248458 a001 12586269025/64079*599074578^(1/21) 5142290001248458 a001 1134903170/64079*17393796001^(1/7) 5142290001248458 a001 1134903170/64079*14662949395604^(1/9) 5142290001248458 a001 1134903170/64079*(1/2+1/2*5^(1/2))^7 5142290001248458 a001 7778742049/64079*599074578^(1/14) 5142290001248458 a001 4807526976/64079*599074578^(2/21) 5142290001248458 a001 28657*599074578^(1/7) 5142290001248458 a001 360684711449425/701408733 5142290001248458 a001 1134903170/64079*599074578^(1/6) 5142290001248458 a001 12586269025/64079*228826127^(1/20) 5142290001248458 a001 28657/969323029*14662949395604^(7/9) 5142290001248458 a001 28657/969323029*505019158607^(7/8) 5142290001248458 a001 433494437/64079*2537720636^(1/5) 5142290001248458 a001 433494437/64079*45537549124^(3/17) 5142290001248458 a001 433494437/64079*817138163596^(3/19) 5142290001248458 a001 433494437/64079*14662949395604^(1/7) 5142290001248458 a001 433494437/64079*(1/2+1/2*5^(1/2))^9 5142290001248458 a001 433494437/64079*192900153618^(1/6) 5142290001248458 a001 433494437/64079*10749957122^(3/16) 5142290001248458 a001 433494437/64079*599074578^(3/14) 5142290001248458 a001 4807526976/64079*228826127^(1/10) 5142290001248458 a001 267914296/64079*228826127^(1/4) 5142290001248458 a001 2971215073/64079*228826127^(1/8) 5142290001248458 a001 17221162568904/33489287 5142290001248458 a001 28657*228826127^(3/20) 5142290001248458 a001 701408733/64079*228826127^(1/5) 5142290001248458 a001 12586269025/64079*87403803^(1/19) 5142290001248458 a001 165580141/64079*312119004989^(1/5) 5142290001248458 a001 165580141/64079*(1/2+1/2*5^(1/2))^11 5142290001248458 a001 165580141/64079*1568397607^(1/4) 5142290001248459 a001 4807526976/64079*87403803^(2/19) 5142290001248459 a001 52623190204271/102334155 5142290001248459 a001 28657*87403803^(3/19) 5142290001248459 a001 102334155/64079*87403803^(6/19) 5142290001248459 a001 701408733/64079*87403803^(4/19) 5142290001248459 a001 267914296/64079*87403803^(5/19) 5142290001248459 a001 63245986/64079*141422324^(1/3) 5142290001248459 a001 12586269025/64079*33385282^(1/18) 5142290001248459 a001 28657/141422324*45537549124^(15/17) 5142290001248459 a001 28657/141422324*312119004989^(9/11) 5142290001248459 a001 28657/141422324*14662949395604^(5/7) 5142290001248459 a001 28657/141422324*192900153618^(5/6) 5142290001248459 a001 28657/141422324*28143753123^(9/10) 5142290001248459 a001 28657/141422324*10749957122^(15/16) 5142290001248459 a001 63245986/64079*(1/2+1/2*5^(1/2))^13 5142290001248459 a001 63245986/64079*73681302247^(1/4) 5142290001248459 a001 7778742049/64079*33385282^(1/12) 5142290001248459 a001 4807526976/64079*33385282^(1/9) 5142290001248459 a001 20100270061581/39088169 5142290001248459 a001 28657*33385282^(1/6) 5142290001248459 a001 701408733/64079*33385282^(2/9) 5142290001248460 a001 39088169/64079*33385282^(7/18) 5142290001248460 a001 433494437/64079*33385282^(1/4) 5142290001248460 a001 267914296/64079*33385282^(5/18) 5142290001248460 a001 102334155/64079*33385282^(1/3) 5142290001248460 a001 24157817/64079*141422324^(5/13) 5142290001248460 a001 24157817/64079*2537720636^(1/3) 5142290001248460 a001 24157817/64079*45537549124^(5/17) 5142290001248460 a001 24157817/64079*312119004989^(3/11) 5142290001248460 a001 24157817/64079*14662949395604^(5/21) 5142290001248460 a001 24157817/64079*(1/2+1/2*5^(1/2))^15 5142290001248460 a001 24157817/64079*192900153618^(5/18) 5142290001248460 a001 24157817/64079*28143753123^(3/10) 5142290001248460 a001 24157817/64079*10749957122^(5/16) 5142290001248460 a001 24157817/64079*599074578^(5/14) 5142290001248460 a001 24157817/64079*228826127^(3/8) 5142290001248460 a001 12586269025/64079*12752043^(1/17) 5142290001248462 a001 24157817/64079*33385282^(5/12) 5142290001248462 a001 4807526976/64079*12752043^(2/17) 5142290001248463 a001 959702497559/1866294 5142290001248464 a001 28657*12752043^(3/17) 5142290001248466 a001 701408733/64079*12752043^(4/17) 5142290001248468 a001 267914296/64079*12752043^(5/17) 5142290001248469 a001 14930352/64079*12752043^(8/17) 5142290001248469 a001 102334155/64079*12752043^(6/17) 5142290001248471 a001 28657/20633239*(1/2+1/2*5^(1/2))^41 5142290001248471 a001 9227465/64079*45537549124^(1/3) 5142290001248471 a001 9227465/64079*(1/2+1/2*5^(1/2))^17 5142290001248471 a001 39088169/64079*12752043^(7/17) 5142290001248472 a001 12586269025/64079*4870847^(1/16) 5142290001248486 a001 4807526976/64079*4870847^(1/8) 5142290001248486 a001 9227465/64079*12752043^(1/2) 5142290001248490 a001 2932589879835/5702887 5142290001248499 a001 28657*4870847^(3/16) 5142290001248513 a001 701408733/64079*4870847^(1/4) 5142290001248526 a001 267914296/64079*4870847^(5/16) 5142290001248540 a001 102334155/64079*4870847^(3/8) 5142290001248541 a001 28657/7881196*2537720636^(13/15) 5142290001248541 a001 28657/7881196*45537549124^(13/17) 5142290001248541 a001 28657/7881196*14662949395604^(13/21) 5142290001248541 a001 28657/7881196*(1/2+1/2*5^(1/2))^39 5142290001248541 a001 28657/7881196*192900153618^(13/18) 5142290001248541 a001 28657/7881196*73681302247^(3/4) 5142290001248541 a001 28657/7881196*10749957122^(13/16) 5142290001248541 a001 3524578/64079*817138163596^(1/3) 5142290001248541 a001 3524578/64079*(1/2+1/2*5^(1/2))^19 5142290001248541 a001 28657/7881196*599074578^(13/14) 5142290001248542 a001 3524578/64079*87403803^(1/2) 5142290001248549 a001 5702887/64079*4870847^(9/16) 5142290001248553 a001 39088169/64079*4870847^(7/16) 5142290001248557 a001 12586269025/64079*1860498^(1/15) 5142290001248562 a001 14930352/64079*4870847^(1/2) 5142290001248607 a001 7778742049/64079*1860498^(1/10) 5142290001248657 a001 4807526976/64079*1860498^(2/15) 5142290001248675 a001 1120149659033/2178309 5142290001248706 a001 2971215073/64079*1860498^(1/6) 5142290001248756 a001 28657*1860498^(1/5) 5142290001248855 a001 701408733/64079*1860498^(4/15) 5142290001248904 a001 433494437/64079*1860498^(3/10) 5142290001248954 a001 267914296/64079*1860498^(1/3) 5142290001248973 a001 1346269/64079*7881196^(7/11) 5142290001249019 a001 1346269/64079*20633239^(3/5) 5142290001249026 a001 1346269/64079*141422324^(7/13) 5142290001249026 a001 1346269/64079*2537720636^(7/15) 5142290001249026 a001 28657/3010349*(1/2+1/2*5^(1/2))^37 5142290001249026 a001 1346269/64079*17393796001^(3/7) 5142290001249026 a001 1346269/64079*45537549124^(7/17) 5142290001249026 a001 1346269/64079*14662949395604^(1/3) 5142290001249026 a001 1346269/64079*(1/2+1/2*5^(1/2))^21 5142290001249026 a001 1346269/64079*192900153618^(7/18) 5142290001249026 a001 1346269/64079*10749957122^(7/16) 5142290001249026 a001 1346269/64079*599074578^(1/2) 5142290001249029 a001 1346269/64079*33385282^(7/12) 5142290001249053 a001 102334155/64079*1860498^(2/5) 5142290001249151 a001 39088169/64079*1860498^(7/15) 5142290001249186 a001 12586269025/64079*710647^(1/14) 5142290001249203 a001 24157817/64079*1860498^(1/2) 5142290001249232 a001 2178309/64079*1860498^(2/3) 5142290001249246 a001 14930352/64079*1860498^(8/15) 5142290001249318 a001 5702887/64079*1860498^(3/5) 5142290001249913 a001 4807526976/64079*710647^(1/7) 5142290001249939 a001 53482387158/104005 5142290001250066 a001 1346269/64079*1860498^(7/10) 5142290001250640 a001 28657*710647^(3/14) 5142290001251004 a001 1134903170/64079*710647^(1/4) 5142290001251368 a001 701408733/64079*710647^(2/7) 5142290001252095 a001 267914296/64079*710647^(5/14) 5142290001252348 a001 28657/1149851*2537720636^(7/9) 5142290001252348 a001 28657/1149851*17393796001^(5/7) 5142290001252348 a001 28657/1149851*312119004989^(7/11) 5142290001252348 a001 28657/1149851*14662949395604^(5/9) 5142290001252348 a001 28657/1149851*(1/2+1/2*5^(1/2))^35 5142290001252348 a001 28657/1149851*505019158607^(5/8) 5142290001252348 a001 28657/1149851*28143753123^(7/10) 5142290001252348 a001 514229/64079*(1/2+1/2*5^(1/2))^23 5142290001252348 a001 514229/64079*4106118243^(1/2) 5142290001252348 a001 28657/1149851*599074578^(5/6) 5142290001252348 a001 28657/1149851*228826127^(7/8) 5142290001252822 a001 102334155/64079*710647^(3/7) 5142290001253549 a001 39088169/64079*710647^(1/2) 5142290001253827 a001 12586269025/64079*271443^(1/13) 5142290001254272 a001 14930352/64079*710647^(4/7) 5142290001254973 a001 5702887/64079*710647^(9/14) 5142290001254973 a001 832040/64079*710647^(11/14) 5142290001255515 a001 2178309/64079*710647^(5/7) 5142290001256663 a001 1346269/64079*710647^(3/4) 5142290001258609 a001 163427632759/317811 5142290001259196 a001 4807526976/64079*271443^(2/13) 5142290001264564 a001 28657*271443^(3/13) 5142290001267602 a001 1836311903/271443*39603^(9/22) 5142290001268390 a001 20365011074/64079*103682^(1/24) 5142290001269933 a001 701408733/64079*271443^(4/13) 5142290001275108 a001 196418/64079*20633239^(5/7) 5142290001275116 a001 28657/439204*141422324^(11/13) 5142290001275116 a001 28657/439204*2537720636^(11/15) 5142290001275116 a001 196418/64079*2537720636^(5/9) 5142290001275116 a001 28657/439204*45537549124^(11/17) 5142290001275116 a001 28657/439204*312119004989^(3/5) 5142290001275116 a001 28657/439204*14662949395604^(11/21) 5142290001275116 a001 28657/439204*(1/2+1/2*5^(1/2))^33 5142290001275116 a001 28657/439204*192900153618^(11/18) 5142290001275116 a001 28657/439204*10749957122^(11/16) 5142290001275116 a001 196418/64079*312119004989^(5/11) 5142290001275116 a001 196418/64079*(1/2+1/2*5^(1/2))^25 5142290001275116 a001 196418/64079*3461452808002^(5/12) 5142290001275116 a001 196418/64079*28143753123^(1/2) 5142290001275116 a001 28657/439204*1568397607^(3/4) 5142290001275116 a001 28657/439204*599074578^(11/14) 5142290001275116 a001 196418/64079*228826127^(5/8) 5142290001275120 a001 28657/439204*33385282^(11/12) 5142290001275301 a001 267914296/64079*271443^(5/13) 5142290001276354 a001 196418/64079*1860498^(5/6) 5142290001280670 a001 102334155/64079*271443^(6/13) 5142290001283354 a001 63245986/64079*271443^(1/2) 5142290001286038 a001 39088169/64079*271443^(7/13) 5142290001288321 a001 12586269025/64079*103682^(1/12) 5142290001291402 a001 14930352/64079*271443^(8/13) 5142290001296744 a001 5702887/64079*271443^(9/13) 5142290001301927 a001 2178309/64079*271443^(10/13) 5142290001302449 a001 53316291173/167761*15127^(1/20) 5142290001302699 a001 317811/64079*271443^(12/13) 5142290001306027 a001 832040/64079*271443^(11/13) 5142290001306132 a001 165580141/103682*39603^(6/11) 5142290001308253 a001 7778742049/64079*103682^(1/8) 5142290001318033 a001 62423801013/121393 5142290001327210 a001 686789568/101521*39603^(9/22) 5142290001328184 a001 4807526976/64079*103682^(1/6) 5142290001335907 a001 12586269025/1860498*39603^(9/22) 5142290001337176 a001 32951280099/4870847*39603^(9/22) 5142290001337361 a001 86267571272/12752043*39603^(9/22) 5142290001337388 a001 32264490531/4769326*39603^(9/22) 5142290001337392 a001 591286729879/87403803*39603^(9/22) 5142290001337392 a001 1548008755920/228826127*39603^(9/22) 5142290001337393 a001 4052739537881/599074578*39603^(9/22) 5142290001337393 a001 1515744265389/224056801*39603^(9/22) 5142290001337393 a001 6557470319842/969323029*39603^(9/22) 5142290001337393 a001 2504730781961/370248451*39603^(9/22) 5142290001337393 a001 956722026041/141422324*39603^(9/22) 5142290001337394 a001 365435296162/54018521*39603^(9/22) 5142290001337405 a001 139583862445/20633239*39603^(9/22) 5142290001337475 a001 53316291173/7881196*39603^(9/22) 5142290001337960 a001 20365011074/3010349*39603^(9/22) 5142290001341282 a001 7778742049/1149851*39603^(9/22) 5142290001348116 a001 2971215073/64079*103682^(5/24) 5142290001364050 a001 2971215073/439204*39603^(9/22) 5142290001368047 a001 28657*103682^(1/4) 5142290001371076 a001 1836311903/167761*39603^(4/11) 5142290001387978 a001 1134903170/64079*103682^(7/24) 5142290001397490 a001 20365011074/64079*39603^(1/22) 5142290001407910 a001 701408733/64079*103682^(1/3) 5142290001416633 a001 1134903170/271443*39603^(5/11) 5142290001427841 a001 433494437/64079*103682^(3/8) 5142290001431106 a001 75025/64079*7881196^(9/11) 5142290001431173 a001 75025/64079*141422324^(9/13) 5142290001431174 a001 75025/64079*2537720636^(3/5) 5142290001431174 a001 28657/167761*(1/2+1/2*5^(1/2))^31 5142290001431174 a001 28657/167761*9062201101803^(1/2) 5142290001431174 a001 75025/64079*45537549124^(9/17) 5142290001431174 a001 75025/64079*817138163596^(9/19) 5142290001431174 a001 75025/64079*14662949395604^(3/7) 5142290001431174 a001 75025/64079*(1/2+1/2*5^(1/2))^27 5142290001431174 a001 75025/64079*192900153618^(1/2) 5142290001431174 a001 75025/64079*10749957122^(9/16) 5142290001431174 a001 75025/64079*599074578^(9/14) 5142290001431177 a001 75025/64079*33385282^(3/4) 5142290001432511 a001 75025/64079*1860498^(9/10) 5142290001447773 a001 267914296/64079*103682^(5/12) 5142290001455164 a001 102334155/103682*39603^(13/22) 5142290001467704 a001 165580141/64079*103682^(11/24) 5142290001476242 a001 2971215073/710647*39603^(5/11) 5142290001484938 a001 7778742049/1860498*39603^(5/11) 5142290001486207 a001 20365011074/4870847*39603^(5/11) 5142290001486392 a001 53316291173/12752043*39603^(5/11) 5142290001486419 a001 139583862445/33385282*39603^(5/11) 5142290001486423 a001 365435296162/87403803*39603^(5/11) 5142290001486424 a001 956722026041/228826127*39603^(5/11) 5142290001486424 a001 2504730781961/599074578*39603^(5/11) 5142290001486424 a001 6557470319842/1568397607*39603^(5/11) 5142290001486424 a001 10610209857723/2537720636*39603^(5/11) 5142290001486424 a001 4052739537881/969323029*39603^(5/11) 5142290001486424 a001 1548008755920/370248451*39603^(5/11) 5142290001486424 a001 591286729879/141422324*39603^(5/11) 5142290001486426 a001 225851433717/54018521*39603^(5/11) 5142290001486436 a001 86267571272/20633239*39603^(5/11) 5142290001486507 a001 32951280099/7881196*39603^(5/11) 5142290001486991 a001 12586269025/3010349*39603^(5/11) 5142290001487636 a001 102334155/64079*103682^(1/2) 5142290001490313 a001 4807526976/1149851*39603^(5/11) 5142290001507567 a001 63245986/64079*103682^(13/24) 5142290001513082 a001 1836311903/439204*39603^(5/11) 5142290001520108 a001 1134903170/167761*39603^(9/22) 5142290001527498 a001 39088169/64079*103682^(7/12) 5142290001546521 a001 12586269025/64079*39603^(1/11) 5142290001547432 a001 24157817/64079*103682^(5/8) 5142290001565664 a001 233802911/90481*39603^(1/2) 5142290001567357 a001 14930352/64079*103682^(2/3) 5142290001587305 a001 9227465/64079*103682^(17/24) 5142290001604195 a001 31622993/51841*39603^(7/11) 5142290001607193 a001 5702887/64079*103682^(3/4) 5142290001625273 a001 1836311903/710647*39603^(1/2) 5142290001627239 a001 3524578/64079*103682^(19/24) 5142290001631188 a001 1762289/12238*24476^(17/21) 5142290001633970 a001 267084832/103361*39603^(1/2) 5142290001635239 a001 12586269025/4870847*39603^(1/2) 5142290001635424 a001 10983760033/4250681*39603^(1/2) 5142290001635451 a001 43133785636/16692641*39603^(1/2) 5142290001635455 a001 75283811239/29134601*39603^(1/2) 5142290001635455 a001 591286729879/228826127*39603^(1/2) 5142290001635455 a001 86000486440/33281921*39603^(1/2) 5142290001635455 a001 4052739537881/1568397607*39603^(1/2) 5142290001635455 a001 3536736619241/1368706081*39603^(1/2) 5142290001635455 a001 3278735159921/1268860318*39603^(1/2) 5142290001635455 a001 2504730781961/969323029*39603^(1/2) 5142290001635455 a001 956722026041/370248451*39603^(1/2) 5142290001635456 a001 182717648081/70711162*39603^(1/2) 5142290001635457 a001 139583862445/54018521*39603^(1/2) 5142290001635467 a001 53316291173/20633239*39603^(1/2) 5142290001635538 a001 10182505537/3940598*39603^(1/2) 5142290001636023 a001 7778742049/3010349*39603^(1/2) 5142290001639345 a001 2971215073/1149851*39603^(1/2) 5142290001646870 a001 2178309/64079*103682^(5/6) 5142290001662113 a001 567451585/219602*39603^(1/2) 5142290001667586 a001 1346269/64079*103682^(7/8) 5142290001669139 a001 701408733/167761*39603^(5/11) 5142290001685464 a001 832040/64079*103682^(11/12) 5142290001695553 a001 7778742049/64079*39603^(3/22) 5142290001710771 a001 514229/64079*103682^(23/24) 5142290001714696 a001 433494437/271443*39603^(6/11) 5142290001725327 a001 2980471285/5796 5142290001753226 a001 39088169/103682*39603^(15/22) 5142290001765003 a001 10182505537/51841*15127^(1/10) 5142290001774304 a001 1134903170/710647*39603^(6/11) 5142290001783001 a001 2971215073/1860498*39603^(6/11) 5142290001784270 a001 7778742049/4870847*39603^(6/11) 5142290001784455 a001 20365011074/12752043*39603^(6/11) 5142290001784482 a001 53316291173/33385282*39603^(6/11) 5142290001784486 a001 139583862445/87403803*39603^(6/11) 5142290001784487 a001 365435296162/228826127*39603^(6/11) 5142290001784487 a001 956722026041/599074578*39603^(6/11) 5142290001784487 a001 2504730781961/1568397607*39603^(6/11) 5142290001784487 a001 6557470319842/4106118243*39603^(6/11) 5142290001784487 a001 10610209857723/6643838879*39603^(6/11) 5142290001784487 a001 4052739537881/2537720636*39603^(6/11) 5142290001784487 a001 1548008755920/969323029*39603^(6/11) 5142290001784487 a001 591286729879/370248451*39603^(6/11) 5142290001784487 a001 225851433717/141422324*39603^(6/11) 5142290001784488 a001 86267571272/54018521*39603^(6/11) 5142290001784499 a001 32951280099/20633239*39603^(6/11) 5142290001784569 a001 12586269025/7881196*39603^(6/11) 5142290001785054 a001 4807526976/3010349*39603^(6/11) 5142290001788376 a001 1836311903/1149851*39603^(6/11) 5142290001811144 a001 701408733/439204*39603^(6/11) 5142290001818170 a001 433494437/167761*39603^(1/2) 5142290001844584 a001 4807526976/64079*39603^(2/11) 5142290001863727 a001 267914296/271443*39603^(13/22) 5142290001902260 a001 24157817/103682*39603^(8/11) 5142290001923336 a001 701408733/710647*39603^(13/22) 5142290001932032 a001 1836311903/1860498*39603^(13/22) 5142290001933301 a001 4807526976/4870847*39603^(13/22) 5142290001933486 a001 12586269025/12752043*39603^(13/22) 5142290001933513 a001 32951280099/33385282*39603^(13/22) 5142290001933517 a001 86267571272/87403803*39603^(13/22) 5142290001933518 a001 225851433717/228826127*39603^(13/22) 5142290001933518 a001 591286729879/599074578*39603^(13/22) 5142290001933518 a001 1548008755920/1568397607*39603^(13/22) 5142290001933518 a001 4052739537881/4106118243*39603^(13/22) 5142290001933518 a001 4807525989/4870846*39603^(13/22) 5142290001933518 a001 6557470319842/6643838879*39603^(13/22) 5142290001933518 a001 2504730781961/2537720636*39603^(13/22) 5142290001933518 a001 956722026041/969323029*39603^(13/22) 5142290001933518 a001 365435296162/370248451*39603^(13/22) 5142290001933518 a001 139583862445/141422324*39603^(13/22) 5142290001933520 a001 53316291173/54018521*39603^(13/22) 5142290001933530 a001 20365011074/20633239*39603^(13/22) 5142290001933601 a001 7778742049/7881196*39603^(13/22) 5142290001934086 a001 2971215073/3010349*39603^(13/22) 5142290001937407 a001 1134903170/1149851*39603^(13/22) 5142290001960176 a001 433494437/439204*39603^(13/22) 5142290001967202 a001 267914296/167761*39603^(6/11) 5142290001993615 a001 2971215073/64079*39603^(5/22) 5142290002012759 a001 165580141/271443*39603^(7/11) 5142290002039822 a001 5702887/24476*24476^(16/21) 5142290002051285 a001 7465176/51841*39603^(17/22) 5142290002072367 a001 433494437/710647*39603^(7/11) 5142290002081064 a001 567451585/930249*39603^(7/11) 5142290002082333 a001 2971215073/4870847*39603^(7/11) 5142290002082518 a001 7778742049/12752043*39603^(7/11) 5142290002082545 a001 10182505537/16692641*39603^(7/11) 5142290002082549 a001 53316291173/87403803*39603^(7/11) 5142290002082549 a001 139583862445/228826127*39603^(7/11) 5142290002082549 a001 182717648081/299537289*39603^(7/11) 5142290002082549 a001 956722026041/1568397607*39603^(7/11) 5142290002082549 a001 2504730781961/4106118243*39603^(7/11) 5142290002082549 a001 3278735159921/5374978561*39603^(7/11) 5142290002082549 a001 10610209857723/17393796001*39603^(7/11) 5142290002082549 a001 4052739537881/6643838879*39603^(7/11) 5142290002082549 a001 1134903780/1860499*39603^(7/11) 5142290002082549 a001 591286729879/969323029*39603^(7/11) 5142290002082549 a001 225851433717/370248451*39603^(7/11) 5142290002082550 a001 21566892818/35355581*39603^(7/11) 5142290002082551 a001 32951280099/54018521*39603^(7/11) 5142290002082562 a001 1144206275/1875749*39603^(7/11) 5142290002082632 a001 1201881744/1970299*39603^(7/11) 5142290002083117 a001 1836311903/3010349*39603^(7/11) 5142290002086439 a001 701408733/1149851*39603^(7/11) 5142290002109207 a001 66978574/109801*39603^(7/11) 5142290002116233 a001 165580141/167761*39603^(13/22) 5142290002142647 a001 28657*39603^(3/11) 5142290002161790 a001 34111385/90481*39603^(15/22) 5142290002173567 a001 53316291173/271443*15127^(1/10) 5142290002200333 a001 9227465/103682*39603^(9/11) 5142290002221398 a001 267914296/710647*39603^(15/22) 5142290002230095 a001 233802911/620166*39603^(15/22) 5142290002231364 a001 1836311903/4870847*39603^(15/22) 5142290002231549 a001 1602508992/4250681*39603^(15/22) 5142290002231576 a001 12586269025/33385282*39603^(15/22) 5142290002231580 a001 10983760033/29134601*39603^(15/22) 5142290002231581 a001 86267571272/228826127*39603^(15/22) 5142290002231581 a001 267913919/710646*39603^(15/22) 5142290002231581 a001 591286729879/1568397607*39603^(15/22) 5142290002231581 a001 516002918640/1368706081*39603^(15/22) 5142290002231581 a001 4052739537881/10749957122*39603^(15/22) 5142290002231581 a001 3536736619241/9381251041*39603^(15/22) 5142290002231581 a001 6557470319842/17393796001*39603^(15/22) 5142290002231581 a001 2504730781961/6643838879*39603^(15/22) 5142290002231581 a001 956722026041/2537720636*39603^(15/22) 5142290002231581 a001 365435296162/969323029*39603^(15/22) 5142290002231581 a001 139583862445/370248451*39603^(15/22) 5142290002231581 a001 53316291173/141422324*39603^(15/22) 5142290002231583 a001 20365011074/54018521*39603^(15/22) 5142290002231593 a001 7778742049/20633239*39603^(15/22) 5142290002231664 a001 2971215073/7881196*39603^(15/22) 5142290002232148 a001 1134903170/3010349*39603^(15/22) 5142290002233176 a001 139583862445/710647*15127^(1/10) 5142290002235470 a001 433494437/1149851*39603^(15/22) 5142290002241872 a001 182717648081/930249*15127^(1/10) 5142290002243141 a001 956722026041/4870847*15127^(1/10) 5142290002243326 a001 2504730781961/12752043*15127^(1/10) 5142290002243353 a001 3278735159921/16692641*15127^(1/10) 5142290002243360 a001 10610209857723/54018521*15127^(1/10) 5142290002243370 a001 4052739537881/20633239*15127^(1/10) 5142290002243441 a001 387002188980/1970299*15127^(1/10) 5142290002243925 a001 591286729879/3010349*15127^(1/10) 5142290002247247 a001 225851433717/1149851*15127^(1/10) 5142290002258239 a001 165580141/439204*39603^(15/22) 5142290002265265 a001 9303105/15251*39603^(7/11) 5142290002270016 a001 196418*15127^(1/10) 5142290002291678 a001 1134903170/64079*39603^(7/22) 5142290002310821 a001 63245986/271443*39603^(8/11) 5142290002335539 a001 1836311903/39603*15127^(1/4) 5142290002349320 a001 5702887/103682*39603^(19/22) 5142290002370430 a001 165580141/710647*39603^(8/11) 5142290002372082 a001 20365011074/64079*15127^(1/20) 5142290002379127 a001 433494437/1860498*39603^(8/11) 5142290002380395 a001 1134903170/4870847*39603^(8/11) 5142290002380581 a001 2971215073/12752043*39603^(8/11) 5142290002380608 a001 7778742049/33385282*39603^(8/11) 5142290002380612 a001 20365011074/87403803*39603^(8/11) 5142290002380612 a001 53316291173/228826127*39603^(8/11) 5142290002380612 a001 139583862445/599074578*39603^(8/11) 5142290002380612 a001 365435296162/1568397607*39603^(8/11) 5142290002380612 a001 956722026041/4106118243*39603^(8/11) 5142290002380612 a001 2504730781961/10749957122*39603^(8/11) 5142290002380612 a001 6557470319842/28143753123*39603^(8/11) 5142290002380612 a001 10610209857723/45537549124*39603^(8/11) 5142290002380612 a001 4052739537881/17393796001*39603^(8/11) 5142290002380612 a001 1548008755920/6643838879*39603^(8/11) 5142290002380612 a001 591286729879/2537720636*39603^(8/11) 5142290002380612 a001 225851433717/969323029*39603^(8/11) 5142290002380612 a001 86267571272/370248451*39603^(8/11) 5142290002380612 a001 63246219/271444*39603^(8/11) 5142290002380614 a001 12586269025/54018521*39603^(8/11) 5142290002380624 a001 4807526976/20633239*39603^(8/11) 5142290002380695 a001 1836311903/7881196*39603^(8/11) 5142290002381180 a001 701408733/3010349*39603^(8/11) 5142290002384502 a001 267914296/1149851*39603^(8/11) 5142290002386811 a001 1201881744/6119*9349^(2/19) 5142290002407270 a001 102334155/439204*39603^(8/11) 5142290002414296 a001 63245986/167761*39603^(15/22) 5142290002426073 a001 32951280099/167761*15127^(1/10) 5142290002440709 a001 701408733/64079*39603^(4/11) 5142290002448614 a001 9227465/24476*24476^(5/7) 5142290002459852 a001 39088169/271443*39603^(17/22) 5142290002498466 a001 1762289/51841*39603^(10/11) 5142290002500807 a001 28657/64079*(1/2+1/2*5^(1/2))^29 5142290002500807 a001 28657/64079*1322157322203^(1/2) 5142290002519461 a001 14619165/101521*39603^(17/22) 5142290002528158 a001 133957148/930249*39603^(17/22) 5142290002529427 a001 701408733/4870847*39603^(17/22) 5142290002529612 a001 1836311903/12752043*39603^(17/22) 5142290002529639 a001 14930208/103681*39603^(17/22) 5142290002529643 a001 12586269025/87403803*39603^(17/22) 5142290002529643 a001 32951280099/228826127*39603^(17/22) 5142290002529644 a001 43133785636/299537289*39603^(17/22) 5142290002529644 a001 32264490531/224056801*39603^(17/22) 5142290002529644 a001 591286729879/4106118243*39603^(17/22) 5142290002529644 a001 774004377960/5374978561*39603^(17/22) 5142290002529644 a001 4052739537881/28143753123*39603^(17/22) 5142290002529644 a001 1515744265389/10525900321*39603^(17/22) 5142290002529644 a001 3278735159921/22768774562*39603^(17/22) 5142290002529644 a001 2504730781961/17393796001*39603^(17/22) 5142290002529644 a001 956722026041/6643838879*39603^(17/22) 5142290002529644 a001 182717648081/1268860318*39603^(17/22) 5142290002529644 a001 139583862445/969323029*39603^(17/22) 5142290002529644 a001 53316291173/370248451*39603^(17/22) 5142290002529644 a001 10182505537/70711162*39603^(17/22) 5142290002529645 a001 7778742049/54018521*39603^(17/22) 5142290002529656 a001 2971215073/20633239*39603^(17/22) 5142290002529726 a001 567451585/3940598*39603^(17/22) 5142290002530211 a001 433494437/3010349*39603^(17/22) 5142290002533533 a001 165580141/1149851*39603^(17/22) 5142290002556302 a001 31622993/219602*39603^(17/22) 5142290002563327 a001 39088169/167761*39603^(8/11) 5142290002589741 a001 433494437/64079*39603^(9/22) 5142290002608886 a001 24157817/271443*39603^(9/11) 5142290002647198 a001 46347/2206*39603^(21/22) 5142290002668493 a001 63245986/710647*39603^(9/11) 5142290002677189 a001 165580141/1860498*39603^(9/11) 5142290002678458 a001 433494437/4870847*39603^(9/11) 5142290002678643 a001 1134903170/12752043*39603^(9/11) 5142290002678670 a001 2971215073/33385282*39603^(9/11) 5142290002678674 a001 7778742049/87403803*39603^(9/11) 5142290002678675 a001 20365011074/228826127*39603^(9/11) 5142290002678675 a001 53316291173/599074578*39603^(9/11) 5142290002678675 a001 139583862445/1568397607*39603^(9/11) 5142290002678675 a001 365435296162/4106118243*39603^(9/11) 5142290002678675 a001 956722026041/10749957122*39603^(9/11) 5142290002678675 a001 2504730781961/28143753123*39603^(9/11) 5142290002678675 a001 6557470319842/73681302247*39603^(9/11) 5142290002678675 a001 10610209857723/119218851371*39603^(9/11) 5142290002678675 a001 4052739537881/45537549124*39603^(9/11) 5142290002678675 a001 1548008755920/17393796001*39603^(9/11) 5142290002678675 a001 591286729879/6643838879*39603^(9/11) 5142290002678675 a001 225851433717/2537720636*39603^(9/11) 5142290002678675 a001 86267571272/969323029*39603^(9/11) 5142290002678675 a001 32951280099/370248451*39603^(9/11) 5142290002678675 a001 12586269025/141422324*39603^(9/11) 5142290002678677 a001 4807526976/54018521*39603^(9/11) 5142290002678687 a001 1836311903/20633239*39603^(9/11) 5142290002678758 a001 3524667/39604*39603^(9/11) 5142290002679242 a001 267914296/3010349*39603^(9/11) 5142290002682564 a001 102334155/1149851*39603^(9/11) 5142290002705332 a001 39088169/439204*39603^(9/11) 5142290002712360 a001 24157817/167761*39603^(17/22) 5142290002738772 a001 267914296/64079*39603^(5/11) 5142290002757911 a001 4976784/90481*39603^(19/22) 5142290002817523 a001 39088169/710647*39603^(19/22) 5142290002823104 a001 9107509824/17711 5142290002826221 a001 831985/15126*39603^(19/22) 5142290002827490 a001 267914296/4870847*39603^(19/22) 5142290002827675 a001 233802911/4250681*39603^(19/22) 5142290002827702 a001 1836311903/33385282*39603^(19/22) 5142290002827706 a001 1602508992/29134601*39603^(19/22) 5142290002827706 a001 12586269025/228826127*39603^(19/22) 5142290002827706 a001 10983760033/199691526*39603^(19/22) 5142290002827706 a001 86267571272/1568397607*39603^(19/22) 5142290002827706 a001 75283811239/1368706081*39603^(19/22) 5142290002827706 a001 591286729879/10749957122*39603^(19/22) 5142290002827706 a001 12585437040/228811001*39603^(19/22) 5142290002827706 a001 4052739537881/73681302247*39603^(19/22) 5142290002827706 a001 3536736619241/64300051206*39603^(19/22) 5142290002827706 a001 6557470319842/119218851371*39603^(19/22) 5142290002827706 a001 2504730781961/45537549124*39603^(19/22) 5142290002827706 a001 956722026041/17393796001*39603^(19/22) 5142290002827706 a001 365435296162/6643838879*39603^(19/22) 5142290002827706 a001 139583862445/2537720636*39603^(19/22) 5142290002827706 a001 53316291173/969323029*39603^(19/22) 5142290002827706 a001 20365011074/370248451*39603^(19/22) 5142290002827707 a001 7778742049/141422324*39603^(19/22) 5142290002827708 a001 2971215073/54018521*39603^(19/22) 5142290002827718 a001 1134903170/20633239*39603^(19/22) 5142290002827789 a001 433494437/7881196*39603^(19/22) 5142290002828274 a001 165580141/3010349*39603^(19/22) 5142290002831596 a001 63245986/1149851*39603^(19/22) 5142290002854366 a001 24157817/439204*39603^(19/22) 5142290002857346 a001 3732588/6119*24476^(2/3) 5142290002861385 a001 14930352/167761*39603^(9/11) 5142290002887804 a001 165580141/64079*39603^(1/2) 5142290002888627 a001 12586269025/103682*15127^(3/20) 5142290002906959 a001 9227465/271443*39603^(10/11) 5142290002966557 a001 24157817/710647*39603^(10/11) 5142290002975252 a001 31622993/930249*39603^(10/11) 5142290002976521 a001 165580141/4870847*39603^(10/11) 5142290002976706 a001 433494437/12752043*39603^(10/11) 5142290002976733 a001 567451585/16692641*39603^(10/11) 5142290002976737 a001 2971215073/87403803*39603^(10/11) 5142290002976738 a001 7778742049/228826127*39603^(10/11) 5142290002976738 a001 10182505537/299537289*39603^(10/11) 5142290002976738 a001 53316291173/1568397607*39603^(10/11) 5142290002976738 a001 139583862445/4106118243*39603^(10/11) 5142290002976738 a001 182717648081/5374978561*39603^(10/11) 5142290002976738 a001 956722026041/28143753123*39603^(10/11) 5142290002976738 a001 2504730781961/73681302247*39603^(10/11) 5142290002976738 a001 3278735159921/96450076809*39603^(10/11) 5142290002976738 a001 10610209857723/312119004989*39603^(10/11) 5142290002976738 a001 4052739537881/119218851371*39603^(10/11) 5142290002976738 a001 387002188980/11384387281*39603^(10/11) 5142290002976738 a001 591286729879/17393796001*39603^(10/11) 5142290002976738 a001 225851433717/6643838879*39603^(10/11) 5142290002976738 a001 1135099622/33391061*39603^(10/11) 5142290002976738 a001 32951280099/969323029*39603^(10/11) 5142290002976738 a001 12586269025/370248451*39603^(10/11) 5142290002976738 a001 1201881744/35355581*39603^(10/11) 5142290002976739 a001 1836311903/54018521*39603^(10/11) 5142290002976750 a001 701408733/20633239*39603^(10/11) 5142290002976820 a001 66978574/1970299*39603^(10/11) 5142290002977305 a001 102334155/3010349*39603^(10/11) 5142290002980626 a001 39088169/1149851*39603^(10/11) 5142290003003391 a001 196452/5779*39603^(10/11) 5142290003010434 a001 9227465/167761*39603^(19/22) 5142290003036835 a001 102334155/64079*39603^(6/11) 5142290003055946 a001 5702887/271443*39603^(21/22) 5142290003091136 a001 832040/9349*9349^(18/19) 5142290003115582 a001 14930352/710647*39603^(21/22) 5142290003124283 a001 39088169/1860498*39603^(21/22) 5142290003125552 a001 102334155/4870847*39603^(21/22) 5142290003125737 a001 267914296/12752043*39603^(21/22) 5142290003125764 a001 701408733/33385282*39603^(21/22) 5142290003125768 a001 1836311903/87403803*39603^(21/22) 5142290003125769 a001 102287808/4868641*39603^(21/22) 5142290003125769 a001 12586269025/599074578*39603^(21/22) 5142290003125769 a001 32951280099/1568397607*39603^(21/22) 5142290003125769 a001 86267571272/4106118243*39603^(21/22) 5142290003125769 a001 225851433717/10749957122*39603^(21/22) 5142290003125769 a001 591286729879/28143753123*39603^(21/22) 5142290003125769 a001 1548008755920/73681302247*39603^(21/22) 5142290003125769 a001 4052739537881/192900153618*39603^(21/22) 5142290003125769 a001 225749145909/10745088481*39603^(21/22) 5142290003125769 a001 6557470319842/312119004989*39603^(21/22) 5142290003125769 a001 2504730781961/119218851371*39603^(21/22) 5142290003125769 a001 956722026041/45537549124*39603^(21/22) 5142290003125769 a001 365435296162/17393796001*39603^(21/22) 5142290003125769 a001 139583862445/6643838879*39603^(21/22) 5142290003125769 a001 53316291173/2537720636*39603^(21/22) 5142290003125769 a001 20365011074/969323029*39603^(21/22) 5142290003125769 a001 7778742049/370248451*39603^(21/22) 5142290003125769 a001 2971215073/141422324*39603^(21/22) 5142290003125771 a001 1134903170/54018521*39603^(21/22) 5142290003125781 a001 433494437/20633239*39603^(21/22) 5142290003125852 a001 165580141/7881196*39603^(21/22) 5142290003126337 a001 63245986/3010349*39603^(21/22) 5142290003129660 a001 24157817/1149851*39603^(21/22) 5142290003152439 a001 9227465/439204*39603^(21/22) 5142290003159421 a001 5702887/167761*39603^(10/11) 5142290003185867 a001 63245986/64079*39603^(13/22) 5142290003195074 a001 1836311903/15127*5778^(1/6) 5142290003266102 a001 24157817/24476*24476^(13/21) 5142290003274800 a001 2/17711*(1/2+1/2*5^(1/2))^51 5142290003297191 a001 121393*15127^(3/20) 5142290003308567 a001 3524578/167761*39603^(21/22) 5142290003334897 a001 39088169/64079*39603^(7/11) 5142290003356799 a001 86267571272/710647*15127^(3/20) 5142290003365496 a001 75283811239/620166*15127^(3/20) 5142290003366765 a001 591286729879/4870847*15127^(3/20) 5142290003366950 a001 516002918640/4250681*15127^(3/20) 5142290003366977 a001 4052739537881/33385282*15127^(3/20) 5142290003366981 a001 3536736619241/29134601*15127^(3/20) 5142290003366984 a001 6557470319842/54018521*15127^(3/20) 5142290003366994 a001 2504730781961/20633239*15127^(3/20) 5142290003367065 a001 956722026041/7881196*15127^(3/20) 5142290003367549 a001 365435296162/3010349*15127^(3/20) 5142290003370871 a001 139583862445/1149851*15127^(3/20) 5142290003387725 a001 9107509825/17711 5142290003393640 a001 53316291173/439204*15127^(3/20) 5142290003459163 a001 1134903170/39603*15127^(3/10) 5142290003483931 a001 24157817/64079*39603^(15/22) 5142290003495706 a001 12586269025/64079*15127^(1/10) 5142290003549697 a001 20365011074/167761*15127^(3/20) 5142290003632956 a001 14930352/64079*39603^(8/11) 5142290003674848 a001 39088169/24476*24476^(4/7) 5142290003782004 a001 9227465/64079*39603^(17/22) 5142290003930992 a001 5702887/64079*39603^(9/11) 5142290004012251 a001 7778742049/103682*15127^(1/5) 5142290004080137 a001 3524578/64079*39603^(19/22) 5142290004083597 a001 31622993/12238*24476^(11/21) 5142290004228869 a001 2178309/64079*39603^(10/11) 5142290004378685 a001 1346269/64079*39603^(21/22) 5142290004420815 a001 20365011074/271443*15127^(1/5) 5142290004480423 a001 53316291173/710647*15127^(1/5) 5142290004489120 a001 139583862445/1860498*15127^(1/5) 5142290004490389 a001 365435296162/4870847*15127^(1/5) 5142290004490574 a001 956722026041/12752043*15127^(1/5) 5142290004490601 a001 2504730781961/33385282*15127^(1/5) 5142290004490605 a001 6557470319842/87403803*15127^(1/5) 5142290004490606 a001 10610209857723/141422324*15127^(1/5) 5142290004490607 a001 4052739537881/54018521*15127^(1/5) 5142290004490618 a001 140728068720/1875749*15127^(1/5) 5142290004490688 a001 591286729879/7881196*15127^(1/5) 5142290004491173 a001 225851433717/3010349*15127^(1/5) 5142290004492346 a001 102334155/24476*24476^(10/21) 5142290004494495 a001 86267571272/1149851*15127^(1/5) 5142290004516966 a001 9107509827/17711 5142290004517263 a001 32951280099/439204*15127^(1/5) 5142290004582787 a001 17711*15127^(7/20) 5142290004619330 a001 7778742049/64079*15127^(3/20) 5142290004673321 a001 75025*15127^(1/5) 5142290004901095 a001 165580141/24476*24476^(3/7) 5142290005135875 a001 46368*15127^(1/4) 5142290005274567 a001 12586269025/39603*5778^(1/18) 5142290005301067 a001 10946/39603*7881196^(10/11) 5142290005301132 a001 10946/39603*20633239^(6/7) 5142290005301133 a001 17711/24476*20633239^(4/5) 5142290005301142 a001 10946/39603*141422324^(10/13) 5142290005301143 a001 10946/39603*2537720636^(2/3) 5142290005301143 a001 10946/39603*45537549124^(10/17) 5142290005301143 a001 10946/39603*312119004989^(6/11) 5142290005301143 a001 10946/39603*14662949395604^(10/21) 5142290005301143 a001 10946/39603*(1/2+1/2*5^(1/2))^30 5142290005301143 a001 10946/39603*192900153618^(5/9) 5142290005301143 a001 10946/39603*28143753123^(3/5) 5142290005301143 a001 10946/39603*10749957122^(5/8) 5142290005301143 a001 10946/39603*4106118243^(15/23) 5142290005301143 a001 10946/39603*1568397607^(15/22) 5142290005301143 a001 10946/39603*599074578^(5/7) 5142290005301143 a001 17711/24476*17393796001^(4/7) 5142290005301143 a001 17711/24476*14662949395604^(4/9) 5142290005301143 a001 17711/24476*(1/2+1/2*5^(1/2))^28 5142290005301143 a001 17711/24476*505019158607^(1/2) 5142290005301143 a001 17711/24476*73681302247^(7/13) 5142290005301143 a001 17711/24476*10749957122^(7/12) 5142290005301143 a001 17711/24476*4106118243^(14/23) 5142290005301143 a001 17711/24476*1568397607^(7/11) 5142290005301143 a001 17711/24476*599074578^(2/3) 5142290005301143 a001 10946/39603*228826127^(3/4) 5142290005301143 a001 17711/24476*228826127^(7/10) 5142290005301143 a001 17711/24476*87403803^(14/19) 5142290005301143 a001 10946/39603*87403803^(15/19) 5142290005301146 a001 17711/24476*33385282^(7/9) 5142290005301146 a001 10946/39603*33385282^(5/6) 5142290005301169 a001 17711/24476*12752043^(14/17) 5142290005301170 a001 10946/39603*12752043^(15/17) 5142290005301332 a001 17711/24476*4870847^(7/8) 5142290005301346 a001 10946/39603*4870847^(15/16) 5142290005302529 a001 17711/24476*1860498^(14/15) 5142290005309843 a001 10946*24476^(8/21) 5142290005483322 a001 7778742049/24476*9349^(1/19) 5142290005544439 a001 12586269025/271443*15127^(1/4) 5142290005604047 a001 32951280099/710647*15127^(1/4) 5142290005612744 a001 43133785636/930249*15127^(1/4) 5142290005614013 a001 225851433717/4870847*15127^(1/4) 5142290005614198 a001 591286729879/12752043*15127^(1/4) 5142290005614225 a001 774004377960/16692641*15127^(1/4) 5142290005614229 a001 4052739537881/87403803*15127^(1/4) 5142290005614229 a001 225749145909/4868641*15127^(1/4) 5142290005614230 a001 3278735159921/70711162*15127^(1/4) 5142290005614231 a001 2504730781961/54018521*15127^(1/4) 5142290005614242 a001 956722026041/20633239*15127^(1/4) 5142290005614312 a001 182717648081/3940598*15127^(1/4) 5142290005614797 a001 139583862445/3010349*15127^(1/4) 5142290005618119 a001 53316291173/1149851*15127^(1/4) 5142290005640887 a001 10182505537/219602*15127^(1/4) 5142290005706411 a001 433494437/39603*15127^(2/5) 5142290005718592 a001 433494437/24476*24476^(1/3) 5142290005742954 a001 4807526976/64079*15127^(1/5) 5142290005796945 a001 7778742049/167761*15127^(1/4) 5142290006127341 a001 701408733/24476*24476^(2/7) 5142290006189700 a001 1346269/9349*9349^(17/19) 5142290006259499 a001 2971215073/103682*15127^(3/10) 5142290006536089 a001 567451585/12238*24476^(5/21) 5142290006668062 a001 7778742049/271443*15127^(3/10) 5142290006727671 a001 20365011074/710647*15127^(3/10) 5142290006736368 a001 53316291173/1860498*15127^(3/10) 5142290006737637 a001 139583862445/4870847*15127^(3/10) 5142290006737822 a001 365435296162/12752043*15127^(3/10) 5142290006737849 a001 956722026041/33385282*15127^(3/10) 5142290006737853 a001 2504730781961/87403803*15127^(3/10) 5142290006737853 a001 6557470319842/228826127*15127^(3/10) 5142290006737853 a001 10610209857723/370248451*15127^(3/10) 5142290006737854 a001 4052739537881/141422324*15127^(3/10) 5142290006737855 a001 1548008755920/54018521*15127^(3/10) 5142290006737866 a001 591286729879/20633239*15127^(3/10) 5142290006737936 a001 225851433717/7881196*15127^(3/10) 5142290006738421 a001 86267571272/3010349*15127^(3/10) 5142290006741743 a001 32951280099/1149851*15127^(3/10) 5142290006764511 a001 12586269025/439204*15127^(3/10) 5142290006830035 a001 267914296/39603*15127^(9/20) 5142290006866578 a001 2971215073/64079*15127^(1/4) 5142290006920569 a001 4807526976/167761*15127^(3/10) 5142290006944838 a001 1836311903/24476*24476^(4/21) 5142290007328052 a001 14736260474/28657 5142290007353587 a001 2971215073/24476*24476^(1/7) 5142290007371752 a001 10959/844*64079^(22/23) 5142290007383123 a001 1836311903/103682*15127^(7/20) 5142290007440274 a001 514229/24476*64079^(21/23) 5142290007489349 a001 208010/6119*64079^(20/23) 5142290007545852 a001 1346269/24476*64079^(19/23) 5142290007599517 a001 2178309/24476*64079^(18/23) 5142290007654267 a001 1762289/12238*64079^(17/23) 5142290007708602 a001 5702887/24476*64079^(16/23) 5142290007762335 a001 1201881744/6119*24476^(2/21) 5142290007763096 a001 9227465/24476*64079^(15/23) 5142290007791686 a001 1602508992/90481*15127^(7/20) 5142290007817529 a001 3732588/6119*64079^(14/23) 5142290007851295 a001 12586269025/710647*15127^(7/20) 5142290007859992 a001 10983760033/620166*15127^(7/20) 5142290007861261 a001 86267571272/4870847*15127^(7/20) 5142290007861446 a001 75283811239/4250681*15127^(7/20) 5142290007861473 a001 591286729879/33385282*15127^(7/20) 5142290007861477 a001 516002918640/29134601*15127^(7/20) 5142290007861477 a001 4052739537881/228826127*15127^(7/20) 5142290007861477 a001 3536736619241/199691526*15127^(7/20) 5142290007861477 a001 6557470319842/370248451*15127^(7/20) 5142290007861478 a001 2504730781961/141422324*15127^(7/20) 5142290007861479 a001 956722026041/54018521*15127^(7/20) 5142290007861489 a001 365435296162/20633239*15127^(7/20) 5142290007861560 a001 139583862445/7881196*15127^(7/20) 5142290007862045 a001 53316291173/3010349*15127^(7/20) 5142290007865367 a001 20365011074/1149851*15127^(7/20) 5142290007871986 a001 24157817/24476*64079^(13/23) 5142290007888135 a001 7778742049/439204*15127^(7/20) 5142290007926433 a001 39088169/24476*64079^(12/23) 5142290007953659 a001 165580141/39603*15127^(1/2) 5142290007980884 a001 31622993/12238*64079^(11/23) 5142290007990202 a001 28657*15127^(3/10) 5142290008035333 a001 102334155/24476*64079^(10/23) 5142290008044192 a001 2971215073/167761*15127^(7/20) 5142290008074903 a001 32951280099/103682*5778^(1/18) 5142290008089784 a001 165580141/24476*64079^(9/23) 5142290008101478 a001 11592/6119*141422324^(2/3) 5142290008101478 a001 5473/51841*(1/2+1/2*5^(1/2))^32 5142290008101478 a001 5473/51841*23725150497407^(1/2) 5142290008101478 a001 5473/51841*505019158607^(4/7) 5142290008101478 a001 5473/51841*73681302247^(8/13) 5142290008101478 a001 5473/51841*10749957122^(2/3) 5142290008101478 a001 5473/51841*4106118243^(16/23) 5142290008101478 a001 5473/51841*1568397607^(8/11) 5142290008101478 a001 5473/51841*599074578^(16/21) 5142290008101478 a001 11592/6119*(1/2+1/2*5^(1/2))^26 5142290008101478 a001 11592/6119*73681302247^(1/2) 5142290008101478 a001 11592/6119*10749957122^(13/24) 5142290008101478 a001 11592/6119*4106118243^(13/23) 5142290008101478 a001 11592/6119*1568397607^(13/22) 5142290008101478 a001 11592/6119*599074578^(13/21) 5142290008101478 a001 11592/6119*228826127^(13/20) 5142290008101478 a001 5473/51841*228826127^(4/5) 5142290008101479 a001 11592/6119*87403803^(13/19) 5142290008101479 a001 5473/51841*87403803^(16/19) 5142290008101482 a001 11592/6119*33385282^(13/18) 5142290008101482 a001 5473/51841*33385282^(8/9) 5142290008101503 a001 11592/6119*12752043^(13/17) 5142290008101508 a001 5473/51841*12752043^(16/17) 5142290008101654 a001 11592/6119*4870847^(13/16) 5142290008102766 a001 11592/6119*1860498^(13/15) 5142290008110933 a001 11592/6119*710647^(13/14) 5142290008144233 a001 10946*64079^(8/23) 5142290008171084 a001 7778742049/24476*24476^(1/21) 5142290008198683 a001 433494437/24476*64079^(7/23) 5142290008253133 a001 701408733/24476*64079^(6/23) 5142290008307583 a001 567451585/12238*64079^(5/23) 5142290008362033 a001 1836311903/24476*64079^(4/23) 5142290008397200 a001 38580030788/75025 5142290008416483 a001 2971215073/24476*64079^(3/23) 5142290008432175 a001 208010/6119*167761^(4/5) 5142290008470216 a001 9227465/24476*167761^(3/5) 5142290008470933 a001 1201881744/6119*64079^(2/23) 5142290008483466 a001 86267571272/271443*5778^(1/18) 5142290008486346 a001 121393/24476*439204^(8/9) 5142290008506747 a001 102334155/24476*167761^(2/5) 5142290008506747 a001 567451585/51841*15127^(2/5) 5142290008509982 a001 121393/24476*7881196^(8/11) 5142290008510042 a001 121393/24476*141422324^(8/13) 5142290008510042 a001 10946/271443*45537549124^(2/3) 5142290008510042 a001 10946/271443*(1/2+1/2*5^(1/2))^34 5142290008510042 a001 10946/271443*10749957122^(17/24) 5142290008510042 a001 10946/271443*4106118243^(17/23) 5142290008510042 a001 10946/271443*1568397607^(17/22) 5142290008510042 a001 10946/271443*599074578^(17/21) 5142290008510042 a001 121393/24476*2537720636^(8/15) 5142290008510042 a001 121393/24476*45537549124^(8/17) 5142290008510042 a001 121393/24476*14662949395604^(8/21) 5142290008510042 a001 121393/24476*(1/2+1/2*5^(1/2))^24 5142290008510042 a001 121393/24476*192900153618^(4/9) 5142290008510042 a001 121393/24476*73681302247^(6/13) 5142290008510042 a001 121393/24476*10749957122^(1/2) 5142290008510042 a001 121393/24476*4106118243^(12/23) 5142290008510042 a001 121393/24476*1568397607^(6/11) 5142290008510042 a001 121393/24476*599074578^(4/7) 5142290008510042 a001 121393/24476*228826127^(3/5) 5142290008510042 a001 10946/271443*228826127^(17/20) 5142290008510042 a001 121393/24476*87403803^(12/19) 5142290008510042 a001 10946/271443*87403803^(17/19) 5142290008510045 a001 121393/24476*33385282^(2/3) 5142290008510046 a001 10946/271443*33385282^(17/18) 5142290008510064 a001 121393/24476*12752043^(12/17) 5142290008510204 a001 121393/24476*4870847^(3/4) 5142290008511230 a001 121393/24476*1860498^(4/5) 5142290008518770 a001 121393/24476*710647^(6/7) 5142290008525383 a001 7778742049/24476*64079^(1/23) 5142290008543075 a001 317811*5778^(1/18) 5142290008543290 a001 567451585/12238*167761^(1/5) 5142290008551772 a001 591286729879/1860498*5778^(1/18) 5142290008553041 a001 1548008755920/4870847*5778^(1/18) 5142290008553187 a001 50501915945/98209 5142290008553226 a001 4052739537881/12752043*5778^(1/18) 5142290008553253 a001 1515744265389/4769326*5778^(1/18) 5142290008553270 a001 6557470319842/20633239*5778^(1/18) 5142290008553340 a001 2504730781961/7881196*5778^(1/18) 5142290008553825 a001 956722026041/3010349*5778^(1/18) 5142290008557147 a001 365435296162/1149851*5778^(1/18) 5142290008561844 a001 2178309/24476*439204^(2/3) 5142290008562988 a001 514229/24476*439204^(7/9) 5142290008565035 a001 9227465/24476*439204^(5/9) 5142290008567984 a001 39088169/24476*439204^(4/9) 5142290008569595 a001 10959/844*7881196^(2/3) 5142290008569650 a001 10946/710647*141422324^(12/13) 5142290008569650 a001 10946/710647*2537720636^(4/5) 5142290008569650 a001 10946/710647*45537549124^(12/17) 5142290008569650 a001 10946/710647*14662949395604^(4/7) 5142290008569650 a001 10946/710647*(1/2+1/2*5^(1/2))^36 5142290008569650 a001 10946/710647*505019158607^(9/14) 5142290008569650 a001 10946/710647*192900153618^(2/3) 5142290008569650 a001 10946/710647*73681302247^(9/13) 5142290008569650 a001 10946/710647*10749957122^(3/4) 5142290008569650 a001 10946/710647*4106118243^(18/23) 5142290008569650 a001 10946/710647*1568397607^(9/11) 5142290008569650 a001 10946/710647*599074578^(6/7) 5142290008569650 a001 10959/844*312119004989^(2/5) 5142290008569650 a001 10959/844*(1/2+1/2*5^(1/2))^22 5142290008569650 a001 10959/844*10749957122^(11/24) 5142290008569650 a001 10959/844*4106118243^(11/23) 5142290008569650 a001 10959/844*1568397607^(1/2) 5142290008569650 a001 10959/844*599074578^(11/21) 5142290008569650 a001 10959/844*228826127^(11/20) 5142290008569651 a001 10946/710647*228826127^(9/10) 5142290008569651 a001 10959/844*87403803^(11/19) 5142290008569651 a001 10946/710647*87403803^(18/19) 5142290008569653 a001 10959/844*33385282^(11/18) 5142290008569671 a001 10959/844*12752043^(11/17) 5142290008569799 a001 10959/844*4870847^(11/16) 5142290008570740 a001 10959/844*1860498^(11/15) 5142290008570947 a001 165580141/24476*439204^(1/3) 5142290008573909 a001 701408733/24476*439204^(2/9) 5142290008574464 a001 121393/24476*271443^(12/13) 5142290008575945 a001 264431464882/514229 5142290008576871 a001 2971215073/24476*439204^(1/9) 5142290008577651 a001 10959/844*710647^(11/14) 5142290008578340 a001 208010/6119*20633239^(4/7) 5142290008578347 a001 5473/930249*817138163596^(2/3) 5142290008578347 a001 5473/930249*(1/2+1/2*5^(1/2))^38 5142290008578347 a001 5473/930249*10749957122^(19/24) 5142290008578347 a001 5473/930249*4106118243^(19/23) 5142290008578347 a001 5473/930249*1568397607^(19/22) 5142290008578347 a001 5473/930249*599074578^(19/21) 5142290008578347 a001 208010/6119*2537720636^(4/9) 5142290008578347 a001 208010/6119*(1/2+1/2*5^(1/2))^20 5142290008578347 a001 208010/6119*23725150497407^(5/16) 5142290008578347 a001 208010/6119*505019158607^(5/14) 5142290008578347 a001 208010/6119*73681302247^(5/13) 5142290008578347 a001 208010/6119*28143753123^(2/5) 5142290008578347 a001 208010/6119*10749957122^(5/12) 5142290008578347 a001 208010/6119*4106118243^(10/23) 5142290008578347 a001 208010/6119*1568397607^(5/11) 5142290008578347 a001 208010/6119*599074578^(10/21) 5142290008578347 a001 208010/6119*228826127^(1/2) 5142290008578347 a001 5473/930249*228826127^(19/20) 5142290008578348 a001 208010/6119*87403803^(10/19) 5142290008578350 a001 208010/6119*33385282^(5/9) 5142290008578366 a001 208010/6119*12752043^(10/17) 5142290008578483 a001 208010/6119*4870847^(5/8) 5142290008579266 a001 692290562756/1346269 5142290008579338 a001 208010/6119*1860498^(2/3) 5142290008579571 a001 2178309/24476*7881196^(6/11) 5142290008579616 a001 2178309/24476*141422324^(6/13) 5142290008579616 a001 10946/4870847*2537720636^(8/9) 5142290008579616 a001 10946/4870847*312119004989^(8/11) 5142290008579616 a001 10946/4870847*(1/2+1/2*5^(1/2))^40 5142290008579616 a001 10946/4870847*23725150497407^(5/8) 5142290008579616 a001 10946/4870847*73681302247^(10/13) 5142290008579616 a001 10946/4870847*28143753123^(4/5) 5142290008579616 a001 10946/4870847*10749957122^(5/6) 5142290008579616 a001 10946/4870847*4106118243^(20/23) 5142290008579616 a001 10946/4870847*1568397607^(10/11) 5142290008579616 a001 10946/4870847*599074578^(20/21) 5142290008579616 a001 2178309/24476*2537720636^(2/5) 5142290008579616 a001 2178309/24476*45537549124^(6/17) 5142290008579616 a001 2178309/24476*14662949395604^(2/7) 5142290008579616 a001 2178309/24476*(1/2+1/2*5^(1/2))^18 5142290008579616 a001 2178309/24476*192900153618^(1/3) 5142290008579616 a001 2178309/24476*10749957122^(3/8) 5142290008579616 a001 2178309/24476*4106118243^(9/23) 5142290008579616 a001 2178309/24476*1568397607^(9/22) 5142290008579616 a001 2178309/24476*599074578^(3/7) 5142290008579616 a001 2178309/24476*228826127^(9/20) 5142290008579616 a001 2178309/24476*87403803^(9/19) 5142290008579618 a001 2178309/24476*33385282^(1/2) 5142290008579633 a001 2178309/24476*12752043^(9/17) 5142290008579738 a001 2178309/24476*4870847^(9/16) 5142290008579750 a001 906220111693/1762289 5142290008579801 a001 10946/12752043*2537720636^(14/15) 5142290008579801 a001 10946/12752043*17393796001^(6/7) 5142290008579801 a001 10946/12752043*45537549124^(14/17) 5142290008579801 a001 10946/12752043*817138163596^(14/19) 5142290008579801 a001 10946/12752043*14662949395604^(2/3) 5142290008579801 a001 10946/12752043*(1/2+1/2*5^(1/2))^42 5142290008579801 a001 10946/12752043*505019158607^(3/4) 5142290008579801 a001 10946/12752043*192900153618^(7/9) 5142290008579801 a001 10946/12752043*10749957122^(7/8) 5142290008579801 a001 10946/12752043*4106118243^(21/23) 5142290008579801 a001 10946/12752043*1568397607^(21/22) 5142290008579801 a001 5702887/24476*(1/2+1/2*5^(1/2))^16 5142290008579801 a001 5702887/24476*23725150497407^(1/4) 5142290008579801 a001 5702887/24476*73681302247^(4/13) 5142290008579801 a001 5702887/24476*10749957122^(1/3) 5142290008579801 a001 5702887/24476*4106118243^(8/23) 5142290008579801 a001 5702887/24476*1568397607^(4/11) 5142290008579801 a001 5702887/24476*599074578^(8/21) 5142290008579801 a001 5702887/24476*228826127^(2/5) 5142290008579801 a001 5702887/24476*87403803^(8/19) 5142290008579802 a001 39088169/24476*7881196^(4/11) 5142290008579803 a001 5702887/24476*33385282^(4/9) 5142290008579805 a001 31622993/12238*7881196^(1/3) 5142290008579807 a001 9227465/24476*7881196^(5/11) 5142290008579810 a001 165580141/24476*7881196^(3/11) 5142290008579816 a001 5702887/24476*12752043^(8/17) 5142290008579818 a001 701408733/24476*7881196^(2/11) 5142290008579821 a001 365002315954/709805 5142290008579823 a001 3732588/6119*20633239^(2/5) 5142290008579825 a001 2971215073/24476*7881196^(1/11) 5142290008579828 a001 5473/16692641*312119004989^(4/5) 5142290008579828 a001 5473/16692641*(1/2+1/2*5^(1/2))^44 5142290008579828 a001 5473/16692641*23725150497407^(11/16) 5142290008579828 a001 5473/16692641*73681302247^(11/13) 5142290008579828 a001 5473/16692641*10749957122^(11/12) 5142290008579828 a001 5473/16692641*4106118243^(22/23) 5142290008579828 a001 3732588/6119*17393796001^(2/7) 5142290008579828 a001 3732588/6119*14662949395604^(2/9) 5142290008579828 a001 3732588/6119*(1/2+1/2*5^(1/2))^14 5142290008579828 a001 3732588/6119*505019158607^(1/4) 5142290008579828 a001 3732588/6119*10749957122^(7/24) 5142290008579828 a001 3732588/6119*4106118243^(7/23) 5142290008579828 a001 3732588/6119*1568397607^(7/22) 5142290008579828 a001 3732588/6119*599074578^(1/3) 5142290008579828 a001 3732588/6119*228826127^(7/20) 5142290008579828 a001 3732588/6119*87403803^(7/19) 5142290008579829 a001 102334155/24476*20633239^(2/7) 5142290008579830 a001 3732588/6119*33385282^(7/18) 5142290008579830 a001 433494437/24476*20633239^(1/5) 5142290008579831 a001 12422650098820/24157817 5142290008579831 a001 567451585/12238*20633239^(1/7) 5142290008579832 a001 39088169/24476*141422324^(4/13) 5142290008579832 a001 10946/87403803*10749957122^(23/24) 5142290008579832 a001 39088169/24476*2537720636^(4/15) 5142290008579832 a001 39088169/24476*45537549124^(4/17) 5142290008579832 a001 39088169/24476*817138163596^(4/19) 5142290008579832 a001 39088169/24476*14662949395604^(4/21) 5142290008579832 a001 39088169/24476*(1/2+1/2*5^(1/2))^12 5142290008579832 a001 39088169/24476*192900153618^(2/9) 5142290008579832 a001 39088169/24476*73681302247^(3/13) 5142290008579832 a001 39088169/24476*10749957122^(1/4) 5142290008579832 a001 39088169/24476*4106118243^(6/23) 5142290008579832 a001 39088169/24476*1568397607^(3/11) 5142290008579832 a001 39088169/24476*599074578^(2/7) 5142290008579832 a001 39088169/24476*228826127^(3/10) 5142290008579832 a001 39088169/24476*87403803^(6/19) 5142290008579833 a001 16261460094529/31622993 5142290008579833 a001 10946/228826127*45537549124^(16/17) 5142290008579833 a001 10946/228826127*14662949395604^(16/21) 5142290008579833 a001 10946/228826127*192900153618^(8/9) 5142290008579833 a001 10946/228826127*73681302247^(12/13) 5142290008579833 a001 102334155/24476*2537720636^(2/9) 5142290008579833 a001 102334155/24476*312119004989^(2/11) 5142290008579833 a001 102334155/24476*(1/2+1/2*5^(1/2))^10 5142290008579833 a001 102334155/24476*28143753123^(1/5) 5142290008579833 a001 102334155/24476*10749957122^(5/24) 5142290008579833 a001 102334155/24476*4106118243^(5/23) 5142290008579833 a001 102334155/24476*1568397607^(5/22) 5142290008579833 a001 102334155/24476*599074578^(5/21) 5142290008579833 a001 102334155/24476*228826127^(1/4) 5142290008579833 a001 85146110468354/165580141 5142290008579833 a001 701408733/24476*141422324^(2/13) 5142290008579833 a001 5473/299537289*312119004989^(10/11) 5142290008579833 a001 5473/299537289*3461452808002^(5/6) 5142290008579833 a001 165580141/24476*141422324^(3/13) 5142290008579833 a001 222915411216004/433494437 5142290008579833 a001 2971215073/24476*141422324^(1/13) 5142290008579833 a001 10946/1568397607*23725150497407^(13/16) 5142290008579833 a001 10946/1568397607*505019158607^(13/14) 5142290008579833 a001 291800061589829/567451585 5142290008579833 a001 10946/4106118243*14662949395604^(6/7) 5142290008579833 a001 1527884958322970/2971215073 5142290008579833 a001 5473/5374978561*14662949395604^(8/9) 5142290008579833 a001 307696519368404/598364773 5142290008579833 a001 5236139648522393/10182505537 5142290008579833 a001 10946/73681302247*14662949395604^(20/21) 5142290008579833 a001 27416783139345106/53316291173 5142290008579833 a001 71778070120990532/139583862445 5142290008579833 a001 10946*23725150497407^(1/8) 5142290008579833 a001 10946*505019158607^(1/7) 5142290008579833 a001 425418890485846/827294629 5142290008579833 a001 22180643490822713/43133785636 5142290008579833 a001 10946*73681302247^(2/13) 5142290008579833 a001 5648167947433440/10983760033 5142290008579833 a001 6472224545255534/12586269025 5142290008579833 a001 10946*10749957122^(1/6) 5142290008579833 a001 10946/17393796001*14662949395604^(19/21) 5142290008579833 a001 58861185558721/114464928 5142290008579833 a001 10946*4106118243^(4/23) 5142290008579833 a001 10946/6643838879*3461452808002^(11/12) 5142290008579833 a001 944284835143312/1836311903 5142290008579833 a001 10946*1568397607^(2/11) 5142290008579833 a001 120228237321218/233802911 5142290008579833 a001 10946*599074578^(4/21) 5142290008579833 a001 10946/969323029*817138163596^(17/19) 5142290008579833 a001 10946/969323029*14662949395604^(17/21) 5142290008579833 a001 10946/969323029*192900153618^(17/18) 5142290008579833 a001 701408733/24476*2537720636^(2/15) 5142290008579833 a001 701408733/24476*45537549124^(2/17) 5142290008579833 a001 701408733/24476*14662949395604^(2/21) 5142290008579833 a001 701408733/24476*(1/2+1/2*5^(1/2))^6 5142290008579833 a001 701408733/24476*10749957122^(1/8) 5142290008579833 a001 701408733/24476*4106118243^(3/23) 5142290008579833 a001 701408733/24476*1568397607^(3/22) 5142290008579833 a001 1836311903/24476*(1/2+1/2*5^(1/2))^4 5142290008579833 a001 1836311903/24476*23725150497407^(1/16) 5142290008579833 a001 1836311903/24476*73681302247^(1/13) 5142290008579833 a001 1836311903/24476*10749957122^(1/12) 5142290008579833 a001 1836311903/24476*4106118243^(2/23) 5142290008579833 a001 1836311903/24476*1568397607^(1/11) 5142290008579833 a001 1201881744/6119*(1/2+1/2*5^(1/2))^2 5142290008579833 a001 701408733/24476*599074578^(1/7) 5142290008579833 a001 1201881744/6119*10749957122^(1/24) 5142290008579833 a001 1201881744/6119*4106118243^(1/23) 5142290008579833 a001 12586269025/24476 5142290008579833 a001 7778742049/48952+7778742049/48952*5^(1/2) 5142290008579833 a001 1201881744/6119*1568397607^(1/22) 5142290008579833 a001 2971215073/24476*2537720636^(1/15) 5142290008579833 a001 2971215073/24476*45537549124^(1/17) 5142290008579833 a001 2971215073/24476*14662949395604^(1/21) 5142290008579833 a001 2971215073/24476*(1/2+1/2*5^(1/2))^3 5142290008579833 a001 2971215073/24476*192900153618^(1/18) 5142290008579833 a001 2971215073/24476*10749957122^(1/16) 5142290008579833 a001 1201881744/6119*599074578^(1/21) 5142290008579833 a001 567451585/12238*2537720636^(1/9) 5142290008579833 a001 567451585/12238*312119004989^(1/11) 5142290008579833 a001 567451585/12238*(1/2+1/2*5^(1/2))^5 5142290008579833 a001 567451585/12238*28143753123^(1/10) 5142290008579833 a001 1836311903/24476*599074578^(2/21) 5142290008579833 a001 2971215073/24476*599074578^(1/14) 5142290008579833 a001 1201881744/6119*228826127^(1/20) 5142290008579833 a001 10946*228826127^(1/5) 5142290008579833 a001 433494437/24476*17393796001^(1/7) 5142290008579833 a001 433494437/24476*14662949395604^(1/9) 5142290008579833 a001 433494437/24476*(1/2+1/2*5^(1/2))^7 5142290008579833 a001 433494437/24476*599074578^(1/6) 5142290008579833 a001 1836311903/24476*228826127^(1/10) 5142290008579833 a001 701408733/24476*228826127^(3/20) 5142290008579833 a001 567451585/12238*228826127^(1/8) 5142290008579833 a001 10946/370248451*14662949395604^(7/9) 5142290008579833 a001 10946/370248451*505019158607^(7/8) 5142290008579833 a001 1201881744/6119*87403803^(1/19) 5142290008579833 a001 165580141/24476*2537720636^(1/5) 5142290008579833 a001 165580141/24476*45537549124^(3/17) 5142290008579833 a001 165580141/24476*817138163596^(3/19) 5142290008579833 a001 165580141/24476*14662949395604^(1/7) 5142290008579833 a001 165580141/24476*(1/2+1/2*5^(1/2))^9 5142290008579833 a001 165580141/24476*192900153618^(1/6) 5142290008579833 a001 165580141/24476*10749957122^(3/16) 5142290008579833 a001 165580141/24476*599074578^(3/14) 5142290008579833 a001 1836311903/24476*87403803^(2/19) 5142290008579833 a001 102334155/24476*87403803^(5/19) 5142290008579833 a001 2505866203776/4873055 5142290008579833 a001 701408733/24476*87403803^(3/19) 5142290008579833 a001 10946*87403803^(4/19) 5142290008579833 a001 1201881744/6119*33385282^(1/18) 5142290008579833 a001 31622993/12238*312119004989^(1/5) 5142290008579833 a001 31622993/12238*(1/2+1/2*5^(1/2))^11 5142290008579833 a001 31622993/12238*1568397607^(1/4) 5142290008579833 a001 2971215073/24476*33385282^(1/12) 5142290008579833 a001 1836311903/24476*33385282^(1/9) 5142290008579833 a001 20100270090238/39088169 5142290008579834 a001 701408733/24476*33385282^(1/6) 5142290008579834 a001 39088169/24476*33385282^(1/3) 5142290008579834 a001 10946*33385282^(2/9) 5142290008579834 a001 102334155/24476*33385282^(5/18) 5142290008579834 a001 165580141/24476*33385282^(1/4) 5142290008579834 a001 24157817/24476*141422324^(1/3) 5142290008579835 a001 10946/54018521*45537549124^(15/17) 5142290008579835 a001 10946/54018521*312119004989^(9/11) 5142290008579835 a001 10946/54018521*14662949395604^(5/7) 5142290008579835 a001 10946/54018521*192900153618^(5/6) 5142290008579835 a001 10946/54018521*28143753123^(9/10) 5142290008579835 a001 10946/54018521*10749957122^(15/16) 5142290008579835 a001 24157817/24476*(1/2+1/2*5^(1/2))^13 5142290008579835 a001 24157817/24476*73681302247^(1/4) 5142290008579835 a001 1201881744/6119*12752043^(1/17) 5142290008579837 a001 1836311903/24476*12752043^(2/17) 5142290008579837 a001 1279603331903/2488392 5142290008579838 a001 701408733/24476*12752043^(3/17) 5142290008579840 a001 9227465/24476*20633239^(3/7) 5142290008579840 a001 10946*12752043^(4/17) 5142290008579841 a001 3732588/6119*12752043^(7/17) 5142290008579842 a001 102334155/24476*12752043^(5/17) 5142290008579843 a001 39088169/24476*12752043^(6/17) 5142290008579845 a001 9227465/24476*141422324^(5/13) 5142290008579845 a001 10946/20633239*(1/2+1/2*5^(1/2))^43 5142290008579845 a001 9227465/24476*2537720636^(1/3) 5142290008579845 a001 9227465/24476*45537549124^(5/17) 5142290008579845 a001 9227465/24476*312119004989^(3/11) 5142290008579845 a001 9227465/24476*14662949395604^(5/21) 5142290008579845 a001 9227465/24476*(1/2+1/2*5^(1/2))^15 5142290008579845 a001 9227465/24476*192900153618^(5/18) 5142290008579845 a001 9227465/24476*28143753123^(3/10) 5142290008579845 a001 9227465/24476*10749957122^(5/16) 5142290008579845 a001 9227465/24476*599074578^(5/14) 5142290008579845 a001 9227465/24476*228826127^(3/8) 5142290008579846 a001 1201881744/6119*4870847^(1/16) 5142290008579847 a001 9227465/24476*33385282^(5/12) 5142290008579860 a001 1836311903/24476*4870847^(1/8) 5142290008579864 a001 2932589884016/5702887 5142290008579873 a001 701408733/24476*4870847^(3/16) 5142290008579887 a001 10946*4870847^(1/4) 5142290008579900 a001 102334155/24476*4870847^(5/16) 5142290008579910 a001 5702887/24476*4870847^(1/2) 5142290008579913 a001 39088169/24476*4870847^(3/8) 5142290008579915 a001 139583862445/439204*5778^(1/18) 5142290008579916 a001 5473/3940598*(1/2+1/2*5^(1/2))^41 5142290008579916 a001 1762289/12238*45537549124^(1/3) 5142290008579916 a001 1762289/12238*(1/2+1/2*5^(1/2))^17 5142290008579923 a001 3732588/6119*4870847^(7/16) 5142290008579931 a001 1762289/12238*12752043^(1/2) 5142290008579932 a001 1201881744/6119*1860498^(1/15) 5142290008579981 a001 2971215073/24476*1860498^(1/10) 5142290008580031 a001 1836311903/24476*1860498^(2/15) 5142290008580049 a001 53340460030/103729 5142290008580080 a001 567451585/12238*1860498^(1/6) 5142290008580130 a001 701408733/24476*1860498^(1/5) 5142290008580229 a001 10946*1860498^(4/15) 5142290008580279 a001 165580141/24476*1860498^(3/10) 5142290008580328 a001 102334155/24476*1860498^(1/3) 5142290008580400 a001 10946/3010349*2537720636^(13/15) 5142290008580400 a001 10946/3010349*45537549124^(13/17) 5142290008580400 a001 10946/3010349*14662949395604^(13/21) 5142290008580400 a001 10946/3010349*(1/2+1/2*5^(1/2))^39 5142290008580400 a001 10946/3010349*192900153618^(13/18) 5142290008580400 a001 10946/3010349*73681302247^(3/4) 5142290008580400 a001 10946/3010349*10749957122^(13/16) 5142290008580400 a001 10946/3010349*599074578^(13/14) 5142290008580400 a001 1346269/24476*817138163596^(1/3) 5142290008580400 a001 1346269/24476*(1/2+1/2*5^(1/2))^19 5142290008580401 a001 1346269/24476*87403803^(1/2) 5142290008580426 a001 39088169/24476*1860498^(2/5) 5142290008580507 a001 2178309/24476*1860498^(3/5) 5142290008580521 a001 3732588/6119*1860498^(7/15) 5142290008580560 a001 1201881744/6119*710647^(1/14) 5142290008580588 a001 9227465/24476*1860498^(1/2) 5142290008580593 a001 5702887/24476*1860498^(8/15) 5142290008581287 a001 1836311903/24476*710647^(1/7) 5142290008581318 a001 213929548937/416020 5142290008582015 a001 701408733/24476*710647^(3/14) 5142290008582378 a001 433494437/24476*710647^(1/4) 5142290008582742 a001 10946*710647^(2/7) 5142290008583469 a001 102334155/24476*710647^(5/14) 5142290008583669 a001 514229/24476*7881196^(7/11) 5142290008583715 a001 514229/24476*20633239^(3/5) 5142290008583722 a001 514229/24476*141422324^(7/13) 5142290008583722 a001 10946/1149851*(1/2+1/2*5^(1/2))^37 5142290008583722 a001 514229/24476*2537720636^(7/15) 5142290008583722 a001 514229/24476*17393796001^(3/7) 5142290008583722 a001 514229/24476*45537549124^(7/17) 5142290008583722 a001 514229/24476*14662949395604^(1/3) 5142290008583722 a001 514229/24476*(1/2+1/2*5^(1/2))^21 5142290008583722 a001 514229/24476*192900153618^(7/18) 5142290008583722 a001 514229/24476*10749957122^(7/16) 5142290008583722 a001 514229/24476*599074578^(1/2) 5142290008583725 a001 514229/24476*33385282^(7/12) 5142290008584196 a001 39088169/24476*710647^(3/7) 5142290008584762 a001 514229/24476*1860498^(7/10) 5142290008584919 a001 3732588/6119*710647^(1/2) 5142290008585201 a001 1201881744/6119*271443^(1/13) 5142290008585620 a001 5702887/24476*710647^(4/7) 5142290008585620 a001 208010/6119*710647^(5/7) 5142290008586162 a001 2178309/24476*710647^(9/14) 5142290008590011 a001 4190452128/8149 5142290008590570 a001 1836311903/24476*271443^(2/13) 5142290008591359 a001 514229/24476*710647^(3/4) 5142290008595938 a001 701408733/24476*271443^(3/13) 5142290008599764 a001 7778742049/24476*103682^(1/24) 5142290008601307 a001 10946*271443^(4/13) 5142290008606491 a001 5473/219602*2537720636^(7/9) 5142290008606491 a001 5473/219602*17393796001^(5/7) 5142290008606491 a001 5473/219602*312119004989^(7/11) 5142290008606491 a001 5473/219602*14662949395604^(5/9) 5142290008606491 a001 5473/219602*(1/2+1/2*5^(1/2))^35 5142290008606491 a001 5473/219602*505019158607^(5/8) 5142290008606491 a001 5473/219602*28143753123^(7/10) 5142290008606491 a001 5473/219602*599074578^(5/6) 5142290008606491 a001 98209/12238*(1/2+1/2*5^(1/2))^23 5142290008606491 a001 98209/12238*4106118243^(1/2) 5142290008606491 a001 5473/219602*228826127^(7/8) 5142290008606675 a001 102334155/24476*271443^(5/13) 5142290008612043 a001 39088169/24476*271443^(6/13) 5142290008614730 a001 24157817/24476*271443^(1/2) 5142290008617408 a001 3732588/6119*271443^(7/13) 5142290008619696 a001 1201881744/6119*103682^(1/12) 5142290008622749 a001 5702887/24476*271443^(8/13) 5142290008627933 a001 2178309/24476*271443^(9/13) 5142290008628704 a001 10959/844*271443^(11/13) 5142290008632033 a001 208010/6119*271443^(10/13) 5142290008639627 a001 2971215073/24476*103682^(1/8) 5142290008649592 a001 62423801102/121393 5142290008659559 a001 1836311903/24476*103682^(1/6) 5142290008679490 a001 567451585/12238*103682^(5/24) 5142290008699421 a001 701408733/24476*103682^(1/4) 5142290008719353 a001 433494437/24476*103682^(7/24) 5142290008728864 a001 7778742049/24476*39603^(1/22) 5142290008735973 a001 53316291173/167761*5778^(1/18) 5142290008739284 a001 10946*103682^(1/3) 5142290008759216 a001 165580141/24476*103682^(3/8) 5142290008762539 a001 75025/24476*20633239^(5/7) 5142290008762548 a001 10946/167761*141422324^(11/13) 5142290008762548 a001 10946/167761*2537720636^(11/15) 5142290008762548 a001 10946/167761*45537549124^(11/17) 5142290008762548 a001 10946/167761*312119004989^(3/5) 5142290008762548 a001 10946/167761*817138163596^(11/19) 5142290008762548 a001 10946/167761*14662949395604^(11/21) 5142290008762548 a001 10946/167761*(1/2+1/2*5^(1/2))^33 5142290008762548 a001 10946/167761*192900153618^(11/18) 5142290008762548 a001 10946/167761*10749957122^(11/16) 5142290008762548 a001 10946/167761*1568397607^(3/4) 5142290008762548 a001 10946/167761*599074578^(11/14) 5142290008762548 a001 75025/24476*2537720636^(5/9) 5142290008762548 a001 75025/24476*312119004989^(5/11) 5142290008762548 a001 75025/24476*(1/2+1/2*5^(1/2))^25 5142290008762548 a001 75025/24476*3461452808002^(5/12) 5142290008762548 a001 75025/24476*28143753123^(1/2) 5142290008762548 a001 75025/24476*228826127^(5/8) 5142290008762552 a001 10946/167761*33385282^(11/12) 5142290008763786 a001 75025/24476*1860498^(5/6) 5142290008779147 a001 102334155/24476*103682^(5/12) 5142290008799079 a001 31622993/12238*103682^(11/24) 5142290008819009 a001 39088169/24476*103682^(1/2) 5142290008838943 a001 24157817/24476*103682^(13/24) 5142290008858868 a001 3732588/6119*103682^(7/12) 5142290008877896 a001 1201881744/6119*39603^(1/11) 5142290008878816 a001 9227465/24476*103682^(5/8) 5142290008898704 a001 5702887/24476*103682^(2/3) 5142290008915310 a001 2971215073/271443*15127^(2/5) 5142290008918750 a001 1762289/12238*103682^(17/24) 5142290008938382 a001 2178309/24476*103682^(3/4) 5142290008959098 a001 1346269/24476*103682^(19/24) 5142290008974919 a001 7778742049/710647*15127^(2/5) 5142290008976976 a001 208010/6119*103682^(5/6) 5142290008983616 a001 10182505537/930249*15127^(2/5) 5142290008984884 a001 53316291173/4870847*15127^(2/5) 5142290008985070 a001 139583862445/12752043*15127^(2/5) 5142290008985097 a001 182717648081/16692641*15127^(2/5) 5142290008985101 a001 956722026041/87403803*15127^(2/5) 5142290008985101 a001 2504730781961/228826127*15127^(2/5) 5142290008985101 a001 3278735159921/299537289*15127^(2/5) 5142290008985101 a001 10610209857723/969323029*15127^(2/5) 5142290008985101 a001 4052739537881/370248451*15127^(2/5) 5142290008985101 a001 387002188980/35355581*15127^(2/5) 5142290008985103 a001 591286729879/54018521*15127^(2/5) 5142290008985113 a001 7787980473/711491*15127^(2/5) 5142290008985184 a001 21566892818/1970299*15127^(2/5) 5142290008985669 a001 32951280099/3010349*15127^(2/5) 5142290008988991 a001 12586269025/1149851*15127^(2/5) 5142290009002282 a001 514229/24476*103682^(7/8) 5142290009008142 a001 10959/844*103682^(11/12) 5142290009011759 a001 1201881744/109801*15127^(2/5) 5142290009026927 a001 2971215073/24476*39603^(3/22) 5142290009057971 a001 567708817/1104 5142290009064914 a001 98209/12238*103682^(23/24) 5142290009077282 a001 34111385/13201*15127^(11/20) 5142290009113826 a001 1134903170/64079*15127^(7/20) 5142290009167816 a001 1836311903/167761*15127^(2/5) 5142290009175958 a001 1836311903/24476*39603^(2/11) 5142290009285427 a001 2178309/9349*9349^(16/19) 5142290009324990 a001 567451585/12238*39603^(5/22) 5142290009474021 a001 701408733/24476*39603^(3/11) 5142290009623052 a001 433494437/24476*39603^(7/22) 5142290009630371 a001 701408733/103682*15127^(9/20) 5142290009703457 a001 7778742049/24476*15127^(1/20) 5142290009772084 a001 10946*39603^(4/11) 5142290009805606 a001 20365011074/64079*5778^(1/18) 5142290009832113 a001 28657/24476*7881196^(9/11) 5142290009832181 a001 28657/24476*141422324^(9/13) 5142290009832181 a001 10946/64079*(1/2+1/2*5^(1/2))^31 5142290009832181 a001 10946/64079*9062201101803^(1/2) 5142290009832181 a001 28657/24476*2537720636^(3/5) 5142290009832181 a001 28657/24476*45537549124^(9/17) 5142290009832181 a001 28657/24476*817138163596^(9/19) 5142290009832181 a001 28657/24476*14662949395604^(3/7) 5142290009832181 a001 28657/24476*(1/2+1/2*5^(1/2))^27 5142290009832181 a001 28657/24476*192900153618^(1/2) 5142290009832181 a001 28657/24476*10749957122^(9/16) 5142290009832181 a001 28657/24476*599074578^(9/14) 5142290009832185 a001 28657/24476*33385282^(3/4) 5142290009833518 a001 28657/24476*1860498^(9/10) 5142290009921115 a001 165580141/24476*39603^(9/22) 5142290010038934 a001 1836311903/271443*15127^(9/20) 5142290010070146 a001 102334155/24476*39603^(5/11) 5142290010098543 a001 686789568/101521*15127^(9/20) 5142290010107239 a001 12586269025/1860498*15127^(9/20) 5142290010108508 a001 32951280099/4870847*15127^(9/20) 5142290010108693 a001 86267571272/12752043*15127^(9/20) 5142290010108720 a001 32264490531/4769326*15127^(9/20) 5142290010108724 a001 591286729879/87403803*15127^(9/20) 5142290010108725 a001 1548008755920/228826127*15127^(9/20) 5142290010108725 a001 4052739537881/599074578*15127^(9/20) 5142290010108725 a001 1515744265389/224056801*15127^(9/20) 5142290010108725 a001 6557470319842/969323029*15127^(9/20) 5142290010108725 a001 2504730781961/370248451*15127^(9/20) 5142290010108725 a001 956722026041/141422324*15127^(9/20) 5142290010108727 a001 365435296162/54018521*15127^(9/20) 5142290010108737 a001 139583862445/20633239*15127^(9/20) 5142290010108808 a001 53316291173/7881196*15127^(9/20) 5142290010109293 a001 20365011074/3010349*15127^(9/20) 5142290010112614 a001 7778742049/1149851*15127^(9/20) 5142290010135383 a001 2971215073/439204*15127^(9/20) 5142290010200907 a001 63245986/39603*15127^(3/5) 5142290010219178 a001 31622993/12238*39603^(1/2) 5142290010237449 a001 701408733/64079*15127^(2/5) 5142290010291440 a001 1134903170/167761*15127^(9/20) 5142290010368209 a001 39088169/24476*39603^(6/11) 5142290010517242 a001 24157817/24476*39603^(13/22) 5142290010666267 a001 3732588/6119*39603^(7/11) 5142290010753994 a001 433494437/103682*15127^(1/2) 5142290010815316 a001 9227465/24476*39603^(15/22) 5142290010827081 a001 1201881744/6119*15127^(1/10) 5142290010964303 a001 5702887/24476*39603^(8/11) 5142290011113449 a001 1762289/12238*39603^(17/22) 5142290011162558 a001 1134903170/271443*15127^(1/2) 5142290011222167 a001 2971215073/710647*15127^(1/2) 5142290011230863 a001 7778742049/1860498*15127^(1/2) 5142290011232132 a001 20365011074/4870847*15127^(1/2) 5142290011232317 a001 53316291173/12752043*15127^(1/2) 5142290011232344 a001 139583862445/33385282*15127^(1/2) 5142290011232348 a001 365435296162/87403803*15127^(1/2) 5142290011232349 a001 956722026041/228826127*15127^(1/2) 5142290011232349 a001 2504730781961/599074578*15127^(1/2) 5142290011232349 a001 6557470319842/1568397607*15127^(1/2) 5142290011232349 a001 10610209857723/2537720636*15127^(1/2) 5142290011232349 a001 4052739537881/969323029*15127^(1/2) 5142290011232349 a001 1548008755920/370248451*15127^(1/2) 5142290011232349 a001 591286729879/141422324*15127^(1/2) 5142290011232351 a001 225851433717/54018521*15127^(1/2) 5142290011232361 a001 86267571272/20633239*15127^(1/2) 5142290011232432 a001 32951280099/7881196*15127^(1/2) 5142290011232916 a001 12586269025/3010349*15127^(1/2) 5142290011236238 a001 4807526976/1149851*15127^(1/2) 5142290011259007 a001 1836311903/439204*15127^(1/2) 5142290011262181 a001 2178309/24476*39603^(9/11) 5142290011324530 a001 39088169/39603*15127^(13/20) 5142290011361073 a001 433494437/64079*15127^(9/20) 5142290011388378 a001 1836311903/9349*3571^(2/17) 5142290011411996 a001 1346269/24476*39603^(19/22) 5142290011415064 a001 701408733/167761*15127^(1/2) 5142290011558975 a001 208010/6119*39603^(10/11) 5142290011713381 a001 514229/24476*39603^(21/22) 5142290011752222 a001 1134903170/15127*5778^(2/9) 5142290011857037 a001 9107509840/17711 5142290011877618 a001 133957148/51841*15127^(11/20) 5142290011950704 a001 2971215073/24476*15127^(3/20) 5142290012286182 a001 233802911/90481*15127^(11/20) 5142290012345790 a001 1836311903/710647*15127^(11/20) 5142290012354487 a001 267084832/103361*15127^(11/20) 5142290012355756 a001 12586269025/4870847*15127^(11/20) 5142290012355941 a001 10983760033/4250681*15127^(11/20) 5142290012355968 a001 43133785636/16692641*15127^(11/20) 5142290012355972 a001 75283811239/29134601*15127^(11/20) 5142290012355973 a001 591286729879/228826127*15127^(11/20) 5142290012355973 a001 86000486440/33281921*15127^(11/20) 5142290012355973 a001 4052739537881/1568397607*15127^(11/20) 5142290012355973 a001 3536736619241/1368706081*15127^(11/20) 5142290012355973 a001 3278735159921/1268860318*15127^(11/20) 5142290012355973 a001 2504730781961/969323029*15127^(11/20) 5142290012355973 a001 956722026041/370248451*15127^(11/20) 5142290012355973 a001 182717648081/70711162*15127^(11/20) 5142290012355975 a001 139583862445/54018521*15127^(11/20) 5142290012355985 a001 53316291173/20633239*15127^(11/20) 5142290012356056 a001 10182505537/3940598*15127^(11/20) 5142290012356540 a001 7778742049/3010349*15127^(11/20) 5142290012359862 a001 2971215073/1149851*15127^(11/20) 5142290012382237 a001 3524578/9349*9349^(15/19) 5142290012382631 a001 567451585/219602*15127^(11/20) 5142290012448156 a001 24157817/39603*15127^(7/10) 5142290012484697 a001 267914296/64079*15127^(1/2) 5142290012538688 a001 433494437/167761*15127^(11/20) 5142290013001242 a001 165580141/103682*15127^(3/5) 5142290013074328 a001 1836311903/24476*15127^(1/5) 5142290013409806 a001 433494437/271443*15127^(3/5) 5142290013469414 a001 1134903170/710647*15127^(3/5) 5142290013478111 a001 2971215073/1860498*15127^(3/5) 5142290013479380 a001 7778742049/4870847*15127^(3/5) 5142290013479565 a001 20365011074/12752043*15127^(3/5) 5142290013479592 a001 53316291173/33385282*15127^(3/5) 5142290013479596 a001 139583862445/87403803*15127^(3/5) 5142290013479597 a001 365435296162/228826127*15127^(3/5) 5142290013479597 a001 956722026041/599074578*15127^(3/5) 5142290013479597 a001 2504730781961/1568397607*15127^(3/5) 5142290013479597 a001 6557470319842/4106118243*15127^(3/5) 5142290013479597 a001 10610209857723/6643838879*15127^(3/5) 5142290013479597 a001 4052739537881/2537720636*15127^(3/5) 5142290013479597 a001 1548008755920/969323029*15127^(3/5) 5142290013479597 a001 591286729879/370248451*15127^(3/5) 5142290013479597 a001 225851433717/141422324*15127^(3/5) 5142290013479598 a001 86267571272/54018521*15127^(3/5) 5142290013479609 a001 32951280099/20633239*15127^(3/5) 5142290013479679 a001 12586269025/7881196*15127^(3/5) 5142290013480164 a001 4807526976/3010349*15127^(3/5) 5142290013483486 a001 1836311903/1149851*15127^(3/5) 5142290013506254 a001 701408733/439204*15127^(3/5) 5142290013571773 a001 4976784/13201*15127^(3/4) 5142290013608321 a001 165580141/64079*15127^(11/20) 5142290013662312 a001 267914296/167761*15127^(3/5) 5142290013831714 a001 7778742049/39603*5778^(1/9) 5142290014124866 a001 102334155/103682*15127^(13/20) 5142290014197952 a001 567451585/12238*15127^(1/4) 5142290014533430 a001 267914296/271443*15127^(13/20) 5142290014593038 a001 701408733/710647*15127^(13/20) 5142290014601735 a001 1836311903/1860498*15127^(13/20) 5142290014603004 a001 4807526976/4870847*15127^(13/20) 5142290014603189 a001 12586269025/12752043*15127^(13/20) 5142290014603216 a001 32951280099/33385282*15127^(13/20) 5142290014603220 a001 86267571272/87403803*15127^(13/20) 5142290014603220 a001 225851433717/228826127*15127^(13/20) 5142290014603221 a001 591286729879/599074578*15127^(13/20) 5142290014603221 a001 1548008755920/1568397607*15127^(13/20) 5142290014603221 a001 4052739537881/4106118243*15127^(13/20) 5142290014603221 a001 4807525989/4870846*15127^(13/20) 5142290014603221 a001 6557470319842/6643838879*15127^(13/20) 5142290014603221 a001 2504730781961/2537720636*15127^(13/20) 5142290014603221 a001 956722026041/969323029*15127^(13/20) 5142290014603221 a001 365435296162/370248451*15127^(13/20) 5142290014603221 a001 139583862445/141422324*15127^(13/20) 5142290014603222 a001 53316291173/54018521*15127^(13/20) 5142290014603233 a001 20365011074/20633239*15127^(13/20) 5142290014603303 a001 7778742049/7881196*15127^(13/20) 5142290014603788 a001 2971215073/3010349*15127^(13/20) 5142290014607110 a001 1134903170/1149851*15127^(13/20) 5142290014629878 a001 433494437/439204*15127^(13/20) 5142290014695414 a001 9227465/39603*15127^(4/5) 5142290014731945 a001 102334155/64079*15127^(3/5) 5142290014785936 a001 165580141/167761*15127^(13/20) 5142290015248490 a001 31622993/51841*15127^(7/10) 5142290015321576 a001 701408733/24476*15127^(3/10) 5142290015478634 a001 5702887/9349*9349^(14/19) 5142290015657054 a001 165580141/271443*15127^(7/10) 5142290015716662 a001 433494437/710647*15127^(7/10) 5142290015725359 a001 567451585/930249*15127^(7/10) 5142290015726628 a001 2971215073/4870847*15127^(7/10) 5142290015726813 a001 7778742049/12752043*15127^(7/10) 5142290015726840 a001 10182505537/16692641*15127^(7/10) 5142290015726844 a001 53316291173/87403803*15127^(7/10) 5142290015726844 a001 139583862445/228826127*15127^(7/10) 5142290015726844 a001 182717648081/299537289*15127^(7/10) 5142290015726844 a001 956722026041/1568397607*15127^(7/10) 5142290015726844 a001 2504730781961/4106118243*15127^(7/10) 5142290015726844 a001 3278735159921/5374978561*15127^(7/10) 5142290015726844 a001 10610209857723/17393796001*15127^(7/10) 5142290015726844 a001 4052739537881/6643838879*15127^(7/10) 5142290015726844 a001 1134903780/1860499*15127^(7/10) 5142290015726844 a001 591286729879/969323029*15127^(7/10) 5142290015726844 a001 225851433717/370248451*15127^(7/10) 5142290015726845 a001 21566892818/35355581*15127^(7/10) 5142290015726846 a001 32951280099/54018521*15127^(7/10) 5142290015726857 a001 1144206275/1875749*15127^(7/10) 5142290015726927 a001 1201881744/1970299*15127^(7/10) 5142290015727412 a001 1836311903/3010349*15127^(7/10) 5142290015730734 a001 701408733/1149851*15127^(7/10) 5142290015753502 a001 66978574/109801*15127^(7/10) 5142290015818994 a001 5702887/39603*15127^(17/20) 5142290015855569 a001 63245986/64079*15127^(13/20) 5142290015909560 a001 9303105/15251*15127^(7/10) 5142290016372113 a001 39088169/103682*15127^(3/4) 5142290016445200 a001 433494437/24476*15127^(7/20) 5142290016632050 a001 10182505537/51841*5778^(1/9) 5142290016780677 a001 34111385/90481*15127^(3/4) 5142290016840286 a001 267914296/710647*15127^(3/4) 5142290016848983 a001 233802911/620166*15127^(3/4) 5142290016850252 a001 1836311903/4870847*15127^(3/4) 5142290016850437 a001 1602508992/4250681*15127^(3/4) 5142290016850464 a001 12586269025/33385282*15127^(3/4) 5142290016850468 a001 10983760033/29134601*15127^(3/4) 5142290016850468 a001 86267571272/228826127*15127^(3/4) 5142290016850468 a001 267913919/710646*15127^(3/4) 5142290016850468 a001 591286729879/1568397607*15127^(3/4) 5142290016850468 a001 516002918640/1368706081*15127^(3/4) 5142290016850468 a001 4052739537881/10749957122*15127^(3/4) 5142290016850468 a001 3536736619241/9381251041*15127^(3/4) 5142290016850468 a001 6557470319842/17393796001*15127^(3/4) 5142290016850468 a001 2504730781961/6643838879*15127^(3/4) 5142290016850468 a001 956722026041/2537720636*15127^(3/4) 5142290016850468 a001 365435296162/969323029*15127^(3/4) 5142290016850468 a001 139583862445/370248451*15127^(3/4) 5142290016850469 a001 53316291173/141422324*15127^(3/4) 5142290016850470 a001 20365011074/54018521*15127^(3/4) 5142290016850480 a001 7778742049/20633239*15127^(3/4) 5142290016850551 a001 2971215073/7881196*15127^(3/4) 5142290016851036 a001 1134903170/3010349*15127^(3/4) 5142290016854358 a001 433494437/1149851*15127^(3/4) 5142290016877126 a001 165580141/439204*15127^(3/4) 5142290016942732 a001 3524578/39603*15127^(9/10) 5142290016979192 a001 39088169/64079*15127^(7/10) 5142290017033184 a001 63245986/167761*15127^(3/4) 5142290017040614 a001 53316291173/271443*5778^(1/9) 5142290017100222 a001 139583862445/710647*5778^(1/9) 5142290017108919 a001 182717648081/930249*5778^(1/9) 5142290017110188 a001 956722026041/4870847*5778^(1/9) 5142290017110373 a001 2504730781961/12752043*5778^(1/9) 5142290017110400 a001 3278735159921/16692641*5778^(1/9) 5142290017110406 a001 10610209857723/54018521*5778^(1/9) 5142290017110417 a001 4052739537881/20633239*5778^(1/9) 5142290017110487 a001 387002188980/1970299*5778^(1/9) 5142290017110972 a001 591286729879/3010349*5778^(1/9) 5142290017114294 a001 225851433717/1149851*5778^(1/9) 5142290017136980 a001 7778742049/24476*5778^(1/18) 5142290017137062 a001 196418*5778^(1/9) 5142290017163555 a001 5473/12238*(1/2+1/2*5^(1/2))^29 5142290017163555 a001 5473/12238*1322157322203^(1/2) 5142290017293120 a001 32951280099/167761*5778^(1/9) 5142290017495740 a001 24157817/103682*15127^(4/5) 5142290017568824 a001 10946*15127^(2/5) 5142290017904301 a001 63245986/271443*15127^(4/5) 5142290017963910 a001 165580141/710647*15127^(4/5) 5142290017972607 a001 433494437/1860498*15127^(4/5) 5142290017973875 a001 1134903170/4870847*15127^(4/5) 5142290017974061 a001 2971215073/12752043*15127^(4/5) 5142290017974088 a001 7778742049/33385282*15127^(4/5) 5142290017974092 a001 20365011074/87403803*15127^(4/5) 5142290017974092 a001 53316291173/228826127*15127^(4/5) 5142290017974092 a001 139583862445/599074578*15127^(4/5) 5142290017974092 a001 365435296162/1568397607*15127^(4/5) 5142290017974092 a001 956722026041/4106118243*15127^(4/5) 5142290017974092 a001 2504730781961/10749957122*15127^(4/5) 5142290017974092 a001 6557470319842/28143753123*15127^(4/5) 5142290017974092 a001 10610209857723/45537549124*15127^(4/5) 5142290017974092 a001 4052739537881/17393796001*15127^(4/5) 5142290017974092 a001 1548008755920/6643838879*15127^(4/5) 5142290017974092 a001 591286729879/2537720636*15127^(4/5) 5142290017974092 a001 225851433717/969323029*15127^(4/5) 5142290017974092 a001 86267571272/370248451*15127^(4/5) 5142290017974092 a001 63246219/271444*15127^(4/5) 5142290017974094 a001 12586269025/54018521*15127^(4/5) 5142290017974104 a001 4807526976/20633239*15127^(4/5) 5142290017974175 a001 1836311903/7881196*15127^(4/5) 5142290017974660 a001 701408733/3010349*15127^(4/5) 5142290017977982 a001 267914296/1149851*15127^(4/5) 5142290018000750 a001 102334155/439204*15127^(4/5) 5142290018066057 a001 726103/13201*15127^(19/20) 5142290018102818 a001 24157817/64079*15127^(3/4) 5142290018156807 a001 39088169/167761*15127^(4/5) 5142290018362753 a001 12586269025/64079*5778^(1/9) 5142290018575189 a001 9227465/9349*9349^(13/19) 5142290018619357 a001 7465176/51841*15127^(17/20) 5142290018692448 a001 165580141/24476*15127^(9/20) 5142290019027924 a001 39088169/271443*15127^(17/20) 5142290019087534 a001 14619165/101521*15127^(17/20) 5142290019096230 a001 133957148/930249*15127^(17/20) 5142290019097499 a001 701408733/4870847*15127^(17/20) 5142290019097684 a001 1836311903/12752043*15127^(17/20) 5142290019097711 a001 14930208/103681*15127^(17/20) 5142290019097715 a001 12586269025/87403803*15127^(17/20) 5142290019097716 a001 32951280099/228826127*15127^(17/20) 5142290019097716 a001 43133785636/299537289*15127^(17/20) 5142290019097716 a001 32264490531/224056801*15127^(17/20) 5142290019097716 a001 591286729879/4106118243*15127^(17/20) 5142290019097716 a001 774004377960/5374978561*15127^(17/20) 5142290019097716 a001 4052739537881/28143753123*15127^(17/20) 5142290019097716 a001 1515744265389/10525900321*15127^(17/20) 5142290019097716 a001 3278735159921/22768774562*15127^(17/20) 5142290019097716 a001 2504730781961/17393796001*15127^(17/20) 5142290019097716 a001 956722026041/6643838879*15127^(17/20) 5142290019097716 a001 182717648081/1268860318*15127^(17/20) 5142290019097716 a001 139583862445/969323029*15127^(17/20) 5142290019097716 a001 53316291173/370248451*15127^(17/20) 5142290019097716 a001 10182505537/70711162*15127^(17/20) 5142290019097718 a001 7778742049/54018521*15127^(17/20) 5142290019097728 a001 2971215073/20633239*15127^(17/20) 5142290019097799 a001 567451585/3940598*15127^(17/20) 5142290019098284 a001 433494437/3010349*15127^(17/20) 5142290019101605 a001 165580141/1149851*15127^(17/20) 5142290019124374 a001 31622993/219602*15127^(17/20) 5142290019216555 a001 3478759198/6765 5142290019226436 a001 14930352/64079*15127^(4/5) 5142290019280433 a001 24157817/167761*15127^(17/20) 5142290019742998 a001 9227465/103682*15127^(9/10) 5142290019816071 a001 102334155/24476*15127^(1/2) 5142290020151551 a001 24157817/271443*15127^(9/10) 5142290020211158 a001 63245986/710647*15127^(9/10) 5142290020219854 a001 165580141/1860498*15127^(9/10) 5142290020221123 a001 433494437/4870847*15127^(9/10) 5142290020221308 a001 1134903170/12752043*15127^(9/10) 5142290020221335 a001 2971215073/33385282*15127^(9/10) 5142290020221339 a001 7778742049/87403803*15127^(9/10) 5142290020221340 a001 20365011074/228826127*15127^(9/10) 5142290020221340 a001 53316291173/599074578*15127^(9/10) 5142290020221340 a001 139583862445/1568397607*15127^(9/10) 5142290020221340 a001 365435296162/4106118243*15127^(9/10) 5142290020221340 a001 956722026041/10749957122*15127^(9/10) 5142290020221340 a001 2504730781961/28143753123*15127^(9/10) 5142290020221340 a001 6557470319842/73681302247*15127^(9/10) 5142290020221340 a001 10610209857723/119218851371*15127^(9/10) 5142290020221340 a001 4052739537881/45537549124*15127^(9/10) 5142290020221340 a001 1548008755920/17393796001*15127^(9/10) 5142290020221340 a001 591286729879/6643838879*15127^(9/10) 5142290020221340 a001 225851433717/2537720636*15127^(9/10) 5142290020221340 a001 86267571272/969323029*15127^(9/10) 5142290020221340 a001 32951280099/370248451*15127^(9/10) 5142290020221340 a001 12586269025/141422324*15127^(9/10) 5142290020221342 a001 4807526976/54018521*15127^(9/10) 5142290020221352 a001 1836311903/20633239*15127^(9/10) 5142290020221423 a001 3524667/39604*15127^(9/10) 5142290020221907 a001 267914296/3010349*15127^(9/10) 5142290020225229 a001 102334155/1149851*15127^(9/10) 5142290020247997 a001 39088169/439204*15127^(9/10) 5142290020309369 a001 701408733/15127*5778^(5/18) 5142290020350076 a001 9227465/64079*15127^(17/20) 5142290020404050 a001 14930352/167761*15127^(9/10) 5142290020866578 a001 5702887/103682*15127^(19/20) 5142290020939696 a001 31622993/12238*15127^(11/20) 5142290021275168 a001 4976784/90481*15127^(19/20) 5142290021334781 a001 39088169/710647*15127^(19/20) 5142290021343478 a001 831985/15126*15127^(19/20) 5142290021344747 a001 267914296/4870847*15127^(19/20) 5142290021344932 a001 233802911/4250681*15127^(19/20) 5142290021344959 a001 1836311903/33385282*15127^(19/20) 5142290021344963 a001 1602508992/29134601*15127^(19/20) 5142290021344964 a001 12586269025/228826127*15127^(19/20) 5142290021344964 a001 10983760033/199691526*15127^(19/20) 5142290021344964 a001 86267571272/1568397607*15127^(19/20) 5142290021344964 a001 75283811239/1368706081*15127^(19/20) 5142290021344964 a001 591286729879/10749957122*15127^(19/20) 5142290021344964 a001 12585437040/228811001*15127^(19/20) 5142290021344964 a001 4052739537881/73681302247*15127^(19/20) 5142290021344964 a001 3536736619241/64300051206*15127^(19/20) 5142290021344964 a001 6557470319842/119218851371*15127^(19/20) 5142290021344964 a001 2504730781961/45537549124*15127^(19/20) 5142290021344964 a001 956722026041/17393796001*15127^(19/20) 5142290021344964 a001 365435296162/6643838879*15127^(19/20) 5142290021344964 a001 139583862445/2537720636*15127^(19/20) 5142290021344964 a001 53316291173/969323029*15127^(19/20) 5142290021344964 a001 20365011074/370248451*15127^(19/20) 5142290021344964 a001 7778742049/141422324*15127^(19/20) 5142290021344966 a001 2971215073/54018521*15127^(19/20) 5142290021344976 a001 1134903170/20633239*15127^(19/20) 5142290021345047 a001 433494437/7881196*15127^(19/20) 5142290021345531 a001 165580141/3010349*15127^(19/20) 5142290021348853 a001 63245986/1149851*15127^(19/20) 5142290021371623 a001 24157817/439204*15127^(19/20) 5142290021473657 a001 5702887/64079*15127^(9/10) 5142290021527691 a001 9227465/167761*15127^(19/20) 5142290021671683 a001 14930352/9349*9349^(12/19) 5142290022063319 a001 39088169/24476*15127^(3/5) 5142290022172949 a001 231917280/451 5142290022388862 a001 1602508992/13201*5778^(1/6) 5142290022468588 a001 2/6765*(1/2+1/2*5^(1/2))^49 5142290022597395 a001 3524578/64079*15127^(19/20) 5142290023186945 a001 24157817/24476*15127^(13/20) 5142290023651145 a001 3478759201/6765 5142290023715346 a001 832040/3571*3571^(16/17) 5142290024310562 a001 3732588/6119*15127^(7/10) 5142290024768201 a001 24157817/9349*9349^(11/19) 5142290025189197 a001 12586269025/103682*5778^(1/6) 5142290025434203 a001 9227465/24476*15127^(3/4) 5142290025597761 a001 121393*5778^(1/6) 5142290025657370 a001 86267571272/710647*5778^(1/6) 5142290025666066 a001 75283811239/620166*5778^(1/6) 5142290025667335 a001 591286729879/4870847*5778^(1/6) 5142290025667520 a001 516002918640/4250681*5778^(1/6) 5142290025667547 a001 4052739537881/33385282*5778^(1/6) 5142290025667551 a001 3536736619241/29134601*5778^(1/6) 5142290025667554 a001 6557470319842/54018521*5778^(1/6) 5142290025667564 a001 2504730781961/20633239*5778^(1/6) 5142290025667635 a001 956722026041/7881196*5778^(1/6) 5142290025668119 a001 365435296162/3010349*5778^(1/6) 5142290025671441 a001 139583862445/1149851*5778^(1/6) 5142290025694127 a001 1201881744/6119*5778^(1/9) 5142290025694210 a001 53316291173/439204*5778^(1/6) 5142290025850267 a001 20365011074/167761*5778^(1/6) 5142290026557783 a001 5702887/24476*15127^(4/5) 5142290026919900 a001 7778742049/64079*5778^(1/6) 5142290027681522 a001 1762289/12238*15127^(17/20) 5142290027864709 a001 4181*9349^(10/19) 5142290028804846 a001 2178309/24476*15127^(9/10) 5142290028866516 a001 433494437/15127*5778^(1/3) 5142290029929254 a001 1346269/24476*15127^(19/20) 5142290030946009 a001 2971215073/39603*5778^(2/9) 5142290030961221 a001 63245986/9349*9349^(9/19) 5142290031042128 a001 1159586402/2255 5142290033746345 a001 7778742049/103682*5778^(2/9) 5142290034057732 a001 102334155/9349*9349^(8/19) 5142290034154908 a001 20365011074/271443*5778^(2/9) 5142290034214517 a001 53316291173/710647*5778^(2/9) 5142290034223214 a001 139583862445/1860498*5778^(2/9) 5142290034224482 a001 365435296162/4870847*5778^(2/9) 5142290034224668 a001 956722026041/12752043*5778^(2/9) 5142290034224695 a001 2504730781961/33385282*5778^(2/9) 5142290034224699 a001 6557470319842/87403803*5778^(2/9) 5142290034224699 a001 10610209857723/141422324*5778^(2/9) 5142290034224701 a001 4052739537881/54018521*5778^(2/9) 5142290034224711 a001 140728068720/1875749*5778^(2/9) 5142290034224782 a001 591286729879/7881196*5778^(2/9) 5142290034225267 a001 225851433717/3010349*5778^(2/9) 5142290034228589 a001 86267571272/1149851*5778^(2/9) 5142290034251275 a001 2971215073/24476*5778^(1/6) 5142290034251357 a001 32951280099/439204*5778^(2/9) 5142290034407414 a001 75025*5778^(2/9) 5142290034724005 a001 701408733/3571*1364^(2/15) 5142290035109099 a001 2971215073/9349*3571^(1/17) 5142290035477047 a001 4807526976/64079*5778^(2/9) 5142290036276821 m001 (-GAMMA(19/24)+ZetaP(2))/(Chi(1)+BesselI(1,1)) 5142290036357267 a001 4181/15127*7881196^(10/11) 5142290036357332 a001 4181/15127*20633239^(6/7) 5142290036357333 a001 6765/9349*20633239^(4/5) 5142290036357342 a001 4181/15127*141422324^(10/13) 5142290036357342 a001 4181/15127*2537720636^(2/3) 5142290036357342 a001 4181/15127*45537549124^(10/17) 5142290036357342 a001 4181/15127*312119004989^(6/11) 5142290036357342 a001 4181/15127*14662949395604^(10/21) 5142290036357342 a001 4181/15127*(1/2+1/2*5^(1/2))^30 5142290036357342 a001 4181/15127*192900153618^(5/9) 5142290036357342 a001 4181/15127*28143753123^(3/5) 5142290036357342 a001 4181/15127*10749957122^(5/8) 5142290036357342 a001 4181/15127*4106118243^(15/23) 5142290036357342 a001 4181/15127*1568397607^(15/22) 5142290036357343 a001 4181/15127*599074578^(5/7) 5142290036357343 a001 4181/15127*228826127^(3/4) 5142290036357343 a001 4181/15127*87403803^(15/19) 5142290036357343 a001 6765/9349*17393796001^(4/7) 5142290036357343 a001 6765/9349*14662949395604^(4/9) 5142290036357343 a001 6765/9349*(1/2+1/2*5^(1/2))^28 5142290036357343 a001 6765/9349*505019158607^(1/2) 5142290036357343 a001 6765/9349*73681302247^(7/13) 5142290036357343 a001 6765/9349*10749957122^(7/12) 5142290036357343 a001 6765/9349*4106118243^(14/23) 5142290036357343 a001 6765/9349*1568397607^(7/11) 5142290036357343 a001 6765/9349*599074578^(2/3) 5142290036357343 a001 6765/9349*228826127^(7/10) 5142290036357344 a001 6765/9349*87403803^(14/19) 5142290036357346 a001 4181/15127*33385282^(5/6) 5142290036357347 a001 6765/9349*33385282^(7/9) 5142290036357369 a001 6765/9349*12752043^(14/17) 5142290036357370 a001 4181/15127*12752043^(15/17) 5142290036357533 a001 6765/9349*4870847^(7/8) 5142290036357546 a001 4181/15127*4870847^(15/16) 5142290036358730 a001 6765/9349*1860498^(14/15) 5142290037154243 a001 165580141/9349*9349^(7/19) 5142290037423663 a001 267914296/15127*5778^(7/18) 5142290037785962 m005 (1/3*Zeta(3)+2/11)/(gamma+5/9) 5142290039503156 a001 1836311903/39603*5778^(5/18) 5142290040250754 a001 267914296/9349*9349^(6/19) 5142290042177744 a007 Real Root Of 202*x^4-611*x^3+386*x^2-367*x-388 5142290042303492 a001 46368*5778^(5/18) 5142290042712056 a001 12586269025/271443*5778^(5/18) 5142290042771664 a001 32951280099/710647*5778^(5/18) 5142290042780361 a001 43133785636/930249*5778^(5/18) 5142290042781630 a001 225851433717/4870847*5778^(5/18) 5142290042781815 a001 591286729879/12752043*5778^(5/18) 5142290042781842 a001 774004377960/16692641*5778^(5/18) 5142290042781846 a001 4052739537881/87403803*5778^(5/18) 5142290042781846 a001 225749145909/4868641*5778^(5/18) 5142290042781847 a001 3278735159921/70711162*5778^(5/18) 5142290042781848 a001 2504730781961/54018521*5778^(5/18) 5142290042781859 a001 956722026041/20633239*5778^(5/18) 5142290042781929 a001 182717648081/3940598*5778^(5/18) 5142290042782414 a001 139583862445/3010349*5778^(5/18) 5142290042785736 a001 53316291173/1149851*5778^(5/18) 5142290042808422 a001 1836311903/24476*5778^(2/9) 5142290042808504 a001 10182505537/219602*5778^(5/18) 5142290042964562 a001 7778742049/167761*5778^(5/18) 5142290043347265 a001 433494437/9349*9349^(5/19) 5142290043506632 a001 686789568/2161*2207^(1/16) 5142290043916457 a001 233802911/1926*2207^(3/16) 5142290044034195 a001 2971215073/64079*5778^(5/18) 5142290045980811 a001 165580141/15127*5778^(4/9) 5142290046443776 a001 701408733/9349*9349^(4/19) 5142290047438121 a001 1346269/3571*3571^(15/17) 5142290048060304 a001 1134903170/39603*5778^(1/3) 5142290049540288 a001 1134903170/9349*9349^(3/19) 5142290050246665 a001 5628750689/10946 5142290050644664 a001 317811/9349*24476^(20/21) 5142290050860639 a001 2971215073/103682*5778^(1/3) 5142290051067485 a001 514229/9349*24476^(19/21) 5142290051269203 a001 7778742049/271443*5778^(1/3) 5142290051328811 a001 20365011074/710647*5778^(1/3) 5142290051337508 a001 53316291173/1860498*5778^(1/3) 5142290051338777 a001 139583862445/4870847*5778^(1/3) 5142290051338962 a001 365435296162/12752043*5778^(1/3) 5142290051338989 a001 956722026041/33385282*5778^(1/3) 5142290051338993 a001 2504730781961/87403803*5778^(1/3) 5142290051338994 a001 6557470319842/228826127*5778^(1/3) 5142290051338994 a001 10610209857723/370248451*5778^(1/3) 5142290051338994 a001 4052739537881/141422324*5778^(1/3) 5142290051338996 a001 1548008755920/54018521*5778^(1/3) 5142290051339006 a001 591286729879/20633239*5778^(1/3) 5142290051339077 a001 225851433717/7881196*5778^(1/3) 5142290051339561 a001 86267571272/3010349*5778^(1/3) 5142290051342883 a001 32951280099/1149851*5778^(1/3) 5142290051365569 a001 567451585/12238*5778^(5/18) 5142290051365652 a001 12586269025/439204*5778^(1/3) 5142290051470859 a001 832040/9349*24476^(6/7) 5142290051521709 a001 4807526976/167761*5778^(1/3) 5142290051881660 a001 1346269/9349*24476^(17/21) 5142290052289625 a001 2178309/9349*24476^(16/21) 5142290052591342 a001 28657*5778^(1/3) 5142290052636799 a001 1836311903/9349*9349^(2/19) 5142290052698673 a001 3524578/9349*24476^(5/7) 5142290053107307 a001 5702887/9349*24476^(2/3) 5142290053516100 a001 9227465/9349*24476^(13/21) 5142290053924832 a001 14930352/9349*24476^(4/7) 5142290054333587 a001 24157817/9349*24476^(11/21) 5142290054537958 a001 6765*5778^(1/2) 5142290054742333 a001 4181*24476^(10/21) 5142290055115521 r002 29th iterates of z^2 + 5142290055151083 a001 63245986/9349*24476^(3/7) 5142290055551130 a001 4181/39603*(1/2+1/2*5^(1/2))^32 5142290055551130 a001 4181/39603*23725150497407^(1/2) 5142290055551130 a001 4181/39603*505019158607^(4/7) 5142290055551130 a001 4181/39603*73681302247^(8/13) 5142290055551130 a001 4181/39603*10749957122^(2/3) 5142290055551130 a001 4181/39603*4106118243^(16/23) 5142290055551130 a001 4181/39603*1568397607^(8/11) 5142290055551130 a001 4181/39603*599074578^(16/21) 5142290055551130 a001 4181/39603*228826127^(4/5) 5142290055551130 a001 17711/9349*141422324^(2/3) 5142290055551130 a001 4181/39603*87403803^(16/19) 5142290055551131 a001 17711/9349*(1/2+1/2*5^(1/2))^26 5142290055551131 a001 17711/9349*73681302247^(1/2) 5142290055551131 a001 17711/9349*10749957122^(13/24) 5142290055551131 a001 17711/9349*4106118243^(13/23) 5142290055551131 a001 17711/9349*1568397607^(13/22) 5142290055551131 a001 17711/9349*599074578^(13/21) 5142290055551131 a001 17711/9349*228826127^(13/20) 5142290055551131 a001 17711/9349*87403803^(13/19) 5142290055551134 a001 17711/9349*33385282^(13/18) 5142290055551134 a001 4181/39603*33385282^(8/9) 5142290055551155 a001 17711/9349*12752043^(13/17) 5142290055551160 a001 4181/39603*12752043^(16/17) 5142290055551307 a001 17711/9349*4870847^(13/16) 5142290055552418 a001 17711/9349*1860498^(13/15) 5142290055559831 a001 102334155/9349*24476^(8/21) 5142290055560586 a001 17711/9349*710647^(13/14) 5142290055733310 a001 2971215073/9349*9349^(1/19) 5142290055968580 a001 165580141/9349*24476^(1/3) 5142290056377329 a001 267914296/9349*24476^(2/7) 5142290056617451 a001 17711*5778^(7/18) 5142290056786077 a001 433494437/9349*24476^(5/21) 5142290057194826 a001 701408733/9349*24476^(4/21) 5142290057562132 a001 121393/9349*64079^(22/23) 5142290057577555 a001 14736260618/28657 5142290057603575 a001 1134903170/9349*24476^(1/7) 5142290057713030 a001 196418/9349*64079^(21/23) 5142290057730640 a001 317811/9349*64079^(20/23) 5142290057799162 a001 514229/9349*64079^(19/23) 5142290057848237 a001 832040/9349*64079^(18/23) 5142290057904740 a001 1346269/9349*64079^(17/23) 5142290057958405 a001 2178309/9349*64079^(16/23) 5142290058012323 a001 1836311903/9349*24476^(2/21) 5142290058013155 a001 3524578/9349*64079^(15/23) 5142290058067490 a001 5702887/9349*64079^(14/23) 5142290058121984 a001 9227465/9349*64079^(13/23) 5142290058176417 a001 14930352/9349*64079^(12/23) 5142290058230873 a001 24157817/9349*64079^(11/23) 5142290058285321 a001 4181*64079^(10/23) 5142290058327771 a001 46368/9349*439204^(8/9) 5142290058339772 a001 63245986/9349*64079^(9/23) 5142290058351406 a001 46368/9349*7881196^(8/11) 5142290058351466 a001 4181/103682*45537549124^(2/3) 5142290058351466 a001 4181/103682*(1/2+1/2*5^(1/2))^34 5142290058351466 a001 4181/103682*10749957122^(17/24) 5142290058351466 a001 4181/103682*4106118243^(17/23) 5142290058351466 a001 4181/103682*1568397607^(17/22) 5142290058351466 a001 4181/103682*599074578^(17/21) 5142290058351466 a001 4181/103682*228826127^(17/20) 5142290058351466 a001 46368/9349*141422324^(8/13) 5142290058351466 a001 4181/103682*87403803^(17/19) 5142290058351466 a001 46368/9349*2537720636^(8/15) 5142290058351466 a001 46368/9349*45537549124^(8/17) 5142290058351466 a001 46368/9349*14662949395604^(8/21) 5142290058351466 a001 46368/9349*(1/2+1/2*5^(1/2))^24 5142290058351466 a001 46368/9349*192900153618^(4/9) 5142290058351466 a001 46368/9349*73681302247^(6/13) 5142290058351466 a001 46368/9349*10749957122^(1/2) 5142290058351466 a001 46368/9349*4106118243^(12/23) 5142290058351466 a001 46368/9349*1568397607^(6/11) 5142290058351466 a001 46368/9349*599074578^(4/7) 5142290058351466 a001 46368/9349*228826127^(3/5) 5142290058351467 a001 46368/9349*87403803^(12/19) 5142290058351469 a001 46368/9349*33385282^(2/3) 5142290058351470 a001 4181/103682*33385282^(17/18) 5142290058351489 a001 46368/9349*12752043^(12/17) 5142290058351629 a001 46368/9349*4870847^(3/4) 5142290058352655 a001 46368/9349*1860498^(4/5) 5142290058360194 a001 46368/9349*710647^(6/7) 5142290058394221 a001 102334155/9349*64079^(8/23) 5142290058415889 a001 46368/9349*271443^(12/13) 5142290058421072 a001 2971215073/9349*24476^(1/21) 5142290058448671 a001 165580141/9349*64079^(7/23) 5142290058503121 a001 267914296/9349*64079^(6/23) 5142290058557571 a001 433494437/9349*64079^(5/23) 5142290058612021 a001 701408733/9349*64079^(4/23) 5142290058647117 a001 7716006233/15005 5142290058666471 a001 1134903170/9349*64079^(3/23) 5142290058673466 a001 317811/9349*167761^(4/5) 5142290058720275 a001 3524578/9349*167761^(3/5) 5142290058720921 a001 1836311903/9349*64079^(2/23) 5142290058756734 a001 4181*167761^(2/5) 5142290058759975 a001 121393/9349*7881196^(2/3) 5142290058760029 a001 4181/271443*141422324^(12/13) 5142290058760029 a001 4181/271443*2537720636^(4/5) 5142290058760029 a001 4181/271443*45537549124^(12/17) 5142290058760029 a001 4181/271443*14662949395604^(4/7) 5142290058760029 a001 4181/271443*(1/2+1/2*5^(1/2))^36 5142290058760029 a001 4181/271443*505019158607^(9/14) 5142290058760029 a001 4181/271443*192900153618^(2/3) 5142290058760029 a001 4181/271443*73681302247^(9/13) 5142290058760029 a001 4181/271443*10749957122^(3/4) 5142290058760029 a001 4181/271443*4106118243^(18/23) 5142290058760029 a001 4181/271443*1568397607^(9/11) 5142290058760029 a001 4181/271443*599074578^(6/7) 5142290058760029 a001 4181/271443*228826127^(9/10) 5142290058760030 a001 4181/271443*87403803^(18/19) 5142290058760030 a001 121393/9349*312119004989^(2/5) 5142290058760030 a001 121393/9349*(1/2+1/2*5^(1/2))^22 5142290058760030 a001 121393/9349*10749957122^(11/24) 5142290058760030 a001 121393/9349*4106118243^(11/23) 5142290058760030 a001 121393/9349*1568397607^(1/2) 5142290058760030 a001 121393/9349*599074578^(11/21) 5142290058760030 a001 121393/9349*228826127^(11/20) 5142290058760030 a001 121393/9349*87403803^(11/19) 5142290058760033 a001 121393/9349*33385282^(11/18) 5142290058760050 a001 121393/9349*12752043^(11/17) 5142290058760179 a001 121393/9349*4870847^(11/16) 5142290058761119 a001 121393/9349*1860498^(11/15) 5142290058768030 a001 121393/9349*710647^(11/14) 5142290058775371 a001 2971215073/9349*64079^(1/23) 5142290058793278 a001 433494437/9349*167761^(1/5) 5142290058803164 a001 101003832877/196418 5142290058810563 a001 832040/9349*439204^(2/3) 5142290058815094 a001 3524578/9349*439204^(5/9) 5142290058817968 a001 14930352/9349*439204^(4/9) 5142290058819084 a001 121393/9349*271443^(11/13) 5142290058819632 a001 317811/9349*20633239^(4/7) 5142290058819638 a001 4181/710647*817138163596^(2/3) 5142290058819638 a001 4181/710647*(1/2+1/2*5^(1/2))^38 5142290058819638 a001 4181/710647*10749957122^(19/24) 5142290058819638 a001 4181/710647*4106118243^(19/23) 5142290058819638 a001 4181/710647*1568397607^(19/22) 5142290058819638 a001 4181/710647*599074578^(19/21) 5142290058819638 a001 4181/710647*228826127^(19/20) 5142290058819639 a001 317811/9349*2537720636^(4/9) 5142290058819639 a001 317811/9349*(1/2+1/2*5^(1/2))^20 5142290058819639 a001 317811/9349*23725150497407^(5/16) 5142290058819639 a001 317811/9349*505019158607^(5/14) 5142290058819639 a001 317811/9349*73681302247^(5/13) 5142290058819639 a001 317811/9349*28143753123^(2/5) 5142290058819639 a001 317811/9349*10749957122^(5/12) 5142290058819639 a001 317811/9349*4106118243^(10/23) 5142290058819639 a001 317811/9349*1568397607^(5/11) 5142290058819639 a001 317811/9349*599074578^(10/21) 5142290058819639 a001 317811/9349*228826127^(1/2) 5142290058819639 a001 317811/9349*87403803^(10/19) 5142290058819641 a001 317811/9349*33385282^(5/9) 5142290058819657 a001 317811/9349*12752043^(10/17) 5142290058819774 a001 317811/9349*4870847^(5/8) 5142290058820629 a001 317811/9349*1860498^(2/3) 5142290058820935 a001 63245986/9349*439204^(1/3) 5142290058823897 a001 267914296/9349*439204^(2/9) 5142290058825931 a001 264431467466/514229 5142290058826859 a001 1134903170/9349*439204^(1/9) 5142290058826912 a001 317811/9349*710647^(5/7) 5142290058828290 a001 832040/9349*7881196^(6/11) 5142290058828335 a001 4181/1860498*2537720636^(8/9) 5142290058828335 a001 4181/1860498*312119004989^(8/11) 5142290058828335 a001 4181/1860498*(1/2+1/2*5^(1/2))^40 5142290058828335 a001 4181/1860498*23725150497407^(5/8) 5142290058828335 a001 4181/1860498*73681302247^(10/13) 5142290058828335 a001 4181/1860498*28143753123^(4/5) 5142290058828335 a001 4181/1860498*10749957122^(5/6) 5142290058828335 a001 4181/1860498*4106118243^(20/23) 5142290058828335 a001 4181/1860498*1568397607^(10/11) 5142290058828335 a001 4181/1860498*599074578^(20/21) 5142290058828335 a001 832040/9349*141422324^(6/13) 5142290058828335 a001 832040/9349*2537720636^(2/5) 5142290058828335 a001 832040/9349*45537549124^(6/17) 5142290058828335 a001 832040/9349*14662949395604^(2/7) 5142290058828335 a001 832040/9349*(1/2+1/2*5^(1/2))^18 5142290058828335 a001 832040/9349*192900153618^(1/3) 5142290058828335 a001 832040/9349*10749957122^(3/8) 5142290058828335 a001 832040/9349*4106118243^(9/23) 5142290058828335 a001 832040/9349*1568397607^(9/22) 5142290058828335 a001 832040/9349*599074578^(3/7) 5142290058828335 a001 832040/9349*228826127^(9/20) 5142290058828336 a001 832040/9349*87403803^(9/19) 5142290058828338 a001 832040/9349*33385282^(1/2) 5142290058828352 a001 832040/9349*12752043^(9/17) 5142290058828457 a001 832040/9349*4870847^(9/16) 5142290058829227 a001 832040/9349*1860498^(3/5) 5142290058829253 a001 692290569521/1346269 5142290058829603 a001 4181/4870847*2537720636^(14/15) 5142290058829603 a001 4181/4870847*17393796001^(6/7) 5142290058829603 a001 4181/4870847*45537549124^(14/17) 5142290058829603 a001 4181/4870847*817138163596^(14/19) 5142290058829603 a001 4181/4870847*14662949395604^(2/3) 5142290058829603 a001 4181/4870847*(1/2+1/2*5^(1/2))^42 5142290058829603 a001 4181/4870847*505019158607^(3/4) 5142290058829603 a001 4181/4870847*192900153618^(7/9) 5142290058829603 a001 4181/4870847*10749957122^(7/8) 5142290058829603 a001 4181/4870847*4106118243^(21/23) 5142290058829603 a001 4181/4870847*1568397607^(21/22) 5142290058829604 a001 2178309/9349*(1/2+1/2*5^(1/2))^16 5142290058829604 a001 2178309/9349*23725150497407^(1/4) 5142290058829604 a001 2178309/9349*73681302247^(4/13) 5142290058829604 a001 2178309/9349*10749957122^(1/3) 5142290058829604 a001 2178309/9349*4106118243^(8/23) 5142290058829604 a001 2178309/9349*1568397607^(4/11) 5142290058829604 a001 2178309/9349*599074578^(8/21) 5142290058829604 a001 2178309/9349*228826127^(2/5) 5142290058829604 a001 2178309/9349*87403803^(8/19) 5142290058829606 a001 2178309/9349*33385282^(4/9) 5142290058829619 a001 2178309/9349*12752043^(8/17) 5142290058829712 a001 2178309/9349*4870847^(1/2) 5142290058829737 a001 1812440241097/3524578 5142290058829784 a001 5702887/9349*20633239^(2/5) 5142290058829786 a001 14930352/9349*7881196^(4/11) 5142290058829789 a001 4181/12752043*312119004989^(4/5) 5142290058829789 a001 4181/12752043*(1/2+1/2*5^(1/2))^44 5142290058829789 a001 4181/12752043*23725150497407^(11/16) 5142290058829789 a001 4181/12752043*73681302247^(11/13) 5142290058829789 a001 4181/12752043*10749957122^(11/12) 5142290058829789 a001 4181/12752043*4106118243^(22/23) 5142290058829789 a001 5702887/9349*17393796001^(2/7) 5142290058829789 a001 5702887/9349*14662949395604^(2/9) 5142290058829789 a001 5702887/9349*(1/2+1/2*5^(1/2))^14 5142290058829789 a001 5702887/9349*505019158607^(1/4) 5142290058829789 a001 5702887/9349*10749957122^(7/24) 5142290058829789 a001 5702887/9349*4106118243^(7/23) 5142290058829789 a001 5702887/9349*1568397607^(7/22) 5142290058829789 a001 5702887/9349*599074578^(1/3) 5142290058829789 a001 5702887/9349*228826127^(7/20) 5142290058829789 a001 5702887/9349*87403803^(7/19) 5142290058829791 a001 5702887/9349*33385282^(7/18) 5142290058829795 a001 24157817/9349*7881196^(1/3) 5142290058829799 a001 63245986/9349*7881196^(3/11) 5142290058829802 a001 5702887/9349*12752043^(7/17) 5142290058829806 a001 267914296/9349*7881196^(2/11) 5142290058829808 a001 949006030754/1845493 5142290058829813 a001 1134903170/9349*7881196^(1/11) 5142290058829816 a001 4181/33385282*(1/2+1/2*5^(1/2))^46 5142290058829816 a001 4181/33385282*10749957122^(23/24) 5142290058829816 a001 14930352/9349*141422324^(4/13) 5142290058829816 a001 14930352/9349*2537720636^(4/15) 5142290058829816 a001 14930352/9349*45537549124^(4/17) 5142290058829816 a001 14930352/9349*817138163596^(4/19) 5142290058829816 a001 14930352/9349*14662949395604^(4/21) 5142290058829816 a001 14930352/9349*(1/2+1/2*5^(1/2))^12 5142290058829816 a001 14930352/9349*192900153618^(2/9) 5142290058829816 a001 14930352/9349*73681302247^(3/13) 5142290058829816 a001 14930352/9349*10749957122^(1/4) 5142290058829816 a001 14930352/9349*4106118243^(6/23) 5142290058829816 a001 14930352/9349*1568397607^(3/11) 5142290058829816 a001 14930352/9349*599074578^(2/7) 5142290058829816 a001 14930352/9349*228826127^(3/10) 5142290058829816 a001 14930352/9349*87403803^(6/19) 5142290058829817 a001 4181*20633239^(2/7) 5142290058829818 a001 14930352/9349*33385282^(1/3) 5142290058829818 a001 12422650220213/24157817 5142290058829818 a001 165580141/9349*20633239^(1/5) 5142290058829819 a001 433494437/9349*20633239^(1/7) 5142290058829820 a001 4181/87403803*45537549124^(16/17) 5142290058829820 a001 4181/87403803*14662949395604^(16/21) 5142290058829820 a001 4181/87403803*192900153618^(8/9) 5142290058829820 a001 4181/87403803*73681302247^(12/13) 5142290058829820 a001 32522920506869/63245986 5142290058829820 a001 4181/228826127*312119004989^(10/11) 5142290058829820 a001 4181/228826127*3461452808002^(5/6) 5142290058829820 a001 85146111300394/165580141 5142290058829820 a001 4181/599074578*23725150497407^(13/16) 5142290058829820 a001 4181/599074578*505019158607^(13/14) 5142290058829820 a001 222915413394313/433494437 5142290058829820 a001 4181/1568397607*14662949395604^(6/7) 5142290058829820 a001 116720025776509/226980634 5142290058829820 a001 4181/4106118243*14662949395604^(8/9) 5142290058829820 a001 4181*2537720636^(2/9) 5142290058829820 a001 1527884973253322/2971215073 5142290058829820 a001 4000054790877421/7778742049 5142290058829820 a001 4181/28143753123*14662949395604^(20/21) 5142290058829820 a001 10472279399378941/20365011074 5142290058829820 a001 27416783407259402/53316291173 5142290058829820 a001 4181*312119004989^(2/11) 5142290058829820 a001 44361287415139863/86267571272 5142290058829820 a001 16944504007880461/32951280099 5142290058829820 a001 4181*28143753123^(1/5) 5142290058829820 a001 117676811063664/228841255 5142290058829820 a001 4181*10749957122^(5/24) 5142290058829820 a001 2472169817624099/4807526976 5142290058829820 a001 4181*4106118243^(5/23) 5142290058829820 a001 4181/6643838879*14662949395604^(19/21) 5142290058829820 a001 944284844370777/1836311903 5142290058829820 a001 4181*1568397607^(5/22) 5142290058829820 a001 4181/2537720636*3461452808002^(11/12) 5142290058829820 a001 360684715488232/701408733 5142290058829820 a001 4181*599074578^(5/21) 5142290058829820 a001 137769302093919/267914296 5142290058829820 a001 4181*228826127^(1/4) 5142290058829820 a001 4181/370248451*817138163596^(17/19) 5142290058829820 a001 4181/370248451*14662949395604^(17/21) 5142290058829820 a001 4181/370248451*192900153618^(17/18) 5142290058829820 a001 956785287155/1860621 5142290058829820 a001 4181*87403803^(5/19) 5142290058829820 a001 4181/141422324*14662949395604^(7/9) 5142290058829820 a001 4181/141422324*505019158607^(7/8) 5142290058829821 a001 102334155/9349*(1/2+1/2*5^(1/2))^8 5142290058829821 a001 102334155/9349*23725150497407^(1/8) 5142290058829821 a001 102334155/9349*505019158607^(1/7) 5142290058829821 a001 102334155/9349*73681302247^(2/13) 5142290058829821 a001 102334155/9349*10749957122^(1/6) 5142290058829821 a001 102334155/9349*4106118243^(4/23) 5142290058829821 a001 102334155/9349*1568397607^(2/11) 5142290058829821 a001 102334155/9349*599074578^(4/21) 5142290058829821 a001 102334155/9349*228826127^(1/5) 5142290058829821 a001 267914296/9349*141422324^(2/13) 5142290058829821 a001 1134903170/9349*141422324^(1/13) 5142290058829821 a001 267914296/9349*2537720636^(2/15) 5142290058829821 a001 267914296/9349*45537549124^(2/17) 5142290058829821 a001 267914296/9349*14662949395604^(2/21) 5142290058829821 a001 267914296/9349*(1/2+1/2*5^(1/2))^6 5142290058829821 a001 267914296/9349*10749957122^(1/8) 5142290058829821 a001 267914296/9349*4106118243^(3/23) 5142290058829821 a001 267914296/9349*1568397607^(3/22) 5142290058829821 a001 267914296/9349*599074578^(1/7) 5142290058829821 a001 701408733/9349*(1/2+1/2*5^(1/2))^4 5142290058829821 a001 701408733/9349*23725150497407^(1/16) 5142290058829821 a001 701408733/9349*73681302247^(1/13) 5142290058829821 a001 701408733/9349*10749957122^(1/12) 5142290058829821 a001 701408733/9349*4106118243^(2/23) 5142290058829821 a001 701408733/9349*1568397607^(1/11) 5142290058829821 a001 701408733/9349*599074578^(2/21) 5142290058829821 a001 1836311903/9349*(1/2+1/2*5^(1/2))^2 5142290058829821 a001 1836311903/9349*10749957122^(1/24) 5142290058829821 a001 1836311903/9349*4106118243^(1/23) 5142290058829821 a001 1836311903/9349*1568397607^(1/22) 5142290058829821 a001 4807526976/9349 5142290058829821 a001 2971215073/18698+2971215073/18698*5^(1/2) 5142290058829821 a001 1836311903/9349*599074578^(1/21) 5142290058829821 a001 267914296/9349*228826127^(3/20) 5142290058829821 a001 1134903170/9349*2537720636^(1/15) 5142290058829821 a001 1134903170/9349*45537549124^(1/17) 5142290058829821 a001 1134903170/9349*14662949395604^(1/21) 5142290058829821 a001 1134903170/9349*(1/2+1/2*5^(1/2))^3 5142290058829821 a001 1134903170/9349*192900153618^(1/18) 5142290058829821 a001 1134903170/9349*10749957122^(1/16) 5142290058829821 a001 1134903170/9349*599074578^(1/14) 5142290058829821 a001 1836311903/9349*228826127^(1/20) 5142290058829821 a001 433494437/9349*2537720636^(1/9) 5142290058829821 a001 433494437/9349*312119004989^(1/11) 5142290058829821 a001 433494437/9349*(1/2+1/2*5^(1/2))^5 5142290058829821 a001 433494437/9349*28143753123^(1/10) 5142290058829821 a001 701408733/9349*228826127^(1/10) 5142290058829821 a001 433494437/9349*228826127^(1/8) 5142290058829821 a001 1836311903/9349*87403803^(1/19) 5142290058829821 a001 165580141/9349*17393796001^(1/7) 5142290058829821 a001 165580141/9349*14662949395604^(1/9) 5142290058829821 a001 165580141/9349*(1/2+1/2*5^(1/2))^7 5142290058829821 a001 165580141/9349*599074578^(1/6) 5142290058829821 a001 102334155/9349*87403803^(4/19) 5142290058829821 a001 701408733/9349*87403803^(2/19) 5142290058829821 a001 267914296/9349*87403803^(3/19) 5142290058829821 a001 63245986/9349*141422324^(3/13) 5142290058829821 a001 1836311903/9349*33385282^(1/18) 5142290058829821 a001 63245986/9349*2537720636^(1/5) 5142290058829821 a001 63245986/9349*45537549124^(3/17) 5142290058829821 a001 63245986/9349*817138163596^(3/19) 5142290058829821 a001 63245986/9349*14662949395604^(1/7) 5142290058829821 a001 63245986/9349*(1/2+1/2*5^(1/2))^9 5142290058829821 a001 63245986/9349*192900153618^(1/6) 5142290058829821 a001 63245986/9349*10749957122^(3/16) 5142290058829821 a001 63245986/9349*599074578^(3/14) 5142290058829821 a001 1134903170/9349*33385282^(1/12) 5142290058829821 a001 701408733/9349*33385282^(1/9) 5142290058829821 a001 4181*33385282^(5/18) 5142290058829822 a001 267914296/9349*33385282^(1/6) 5142290058829822 a001 102334155/9349*33385282^(2/9) 5142290058829822 a001 63245986/9349*33385282^(1/4) 5142290058829823 a001 24157817/9349*312119004989^(1/5) 5142290058829823 a001 24157817/9349*(1/2+1/2*5^(1/2))^11 5142290058829823 a001 24157817/9349*1568397607^(1/4) 5142290058829823 a001 1836311903/9349*12752043^(1/17) 5142290058829825 a001 701408733/9349*12752043^(2/17) 5142290058829825 a001 7677620066443/14930352 5142290058829826 a001 267914296/9349*12752043^(3/17) 5142290058829827 a001 14930352/9349*12752043^(6/17) 5142290058829828 a001 102334155/9349*12752043^(4/17) 5142290058829829 a001 4181*12752043^(5/17) 5142290058829832 a001 4181/20633239*45537549124^(15/17) 5142290058829832 a001 4181/20633239*312119004989^(9/11) 5142290058829832 a001 4181/20633239*14662949395604^(5/7) 5142290058829832 a001 4181/20633239*(1/2+1/2*5^(1/2))^45 5142290058829832 a001 4181/20633239*192900153618^(5/6) 5142290058829832 a001 4181/20633239*28143753123^(9/10) 5142290058829832 a001 4181/20633239*10749957122^(15/16) 5142290058829833 a001 9227465/9349*141422324^(1/3) 5142290058829833 a001 9227465/9349*(1/2+1/2*5^(1/2))^13 5142290058829833 a001 9227465/9349*73681302247^(1/4) 5142290058829834 a001 1836311903/9349*4870847^(1/16) 5142290058829848 a001 701408733/9349*4870847^(1/8) 5142290058829852 a001 2932589912673/5702887 5142290058829861 a001 267914296/9349*4870847^(3/16) 5142290058829866 a001 3524578/9349*7881196^(5/11) 5142290058829875 a001 102334155/9349*4870847^(1/4) 5142290058829884 a001 5702887/9349*4870847^(7/16) 5142290058829888 a001 4181*4870847^(5/16) 5142290058829898 a001 14930352/9349*4870847^(3/8) 5142290058829898 a001 3524578/9349*20633239^(3/7) 5142290058829903 a001 4181/7881196*(1/2+1/2*5^(1/2))^43 5142290058829904 a001 3524578/9349*141422324^(5/13) 5142290058829904 a001 3524578/9349*2537720636^(1/3) 5142290058829904 a001 3524578/9349*45537549124^(5/17) 5142290058829904 a001 3524578/9349*312119004989^(3/11) 5142290058829904 a001 3524578/9349*14662949395604^(5/21) 5142290058829904 a001 3524578/9349*(1/2+1/2*5^(1/2))^15 5142290058829904 a001 3524578/9349*192900153618^(5/18) 5142290058829904 a001 3524578/9349*28143753123^(3/10) 5142290058829904 a001 3524578/9349*10749957122^(5/16) 5142290058829904 a001 3524578/9349*599074578^(5/14) 5142290058829904 a001 3524578/9349*228826127^(3/8) 5142290058829906 a001 3524578/9349*33385282^(5/12) 5142290058829920 a001 1836311903/9349*1860498^(1/15) 5142290058829969 a001 1134903170/9349*1860498^(1/10) 5142290058830019 a001 701408733/9349*1860498^(2/15) 5142290058830037 a001 1120149671576/2178309 5142290058830068 a001 433494437/9349*1860498^(1/6) 5142290058830118 a001 267914296/9349*1860498^(1/5) 5142290058830217 a001 102334155/9349*1860498^(4/15) 5142290058830267 a001 63245986/9349*1860498^(3/10) 5142290058830315 a001 4181*1860498^(1/3) 5142290058830388 a001 4181/3010349*(1/2+1/2*5^(1/2))^41 5142290058830388 a001 1346269/9349*45537549124^(1/3) 5142290058830388 a001 1346269/9349*(1/2+1/2*5^(1/2))^17 5142290058830396 a001 2178309/9349*1860498^(8/15) 5142290058830404 a001 1346269/9349*12752043^(1/2) 5142290058830410 a001 14930352/9349*1860498^(2/5) 5142290058830483 a001 5702887/9349*1860498^(7/15) 5142290058830548 a001 1836311903/9349*710647^(1/14) 5142290058830646 a001 3524578/9349*1860498^(1/2) 5142290058831275 a001 701408733/9349*710647^(1/7) 5142290058831306 a001 7779256401/15128 5142290058832003 a001 267914296/9349*710647^(3/14) 5142290058832367 a001 165580141/9349*710647^(1/4) 5142290058832730 a001 102334155/9349*710647^(2/7) 5142290058833457 a001 4181*710647^(5/14) 5142290058833710 a001 4181/1149851*2537720636^(13/15) 5142290058833710 a001 4181/1149851*45537549124^(13/17) 5142290058833710 a001 4181/1149851*14662949395604^(13/21) 5142290058833710 a001 4181/1149851*(1/2+1/2*5^(1/2))^39 5142290058833710 a001 4181/1149851*192900153618^(13/18) 5142290058833710 a001 4181/1149851*73681302247^(3/4) 5142290058833710 a001 4181/1149851*10749957122^(13/16) 5142290058833710 a001 4181/1149851*599074578^(13/14) 5142290058833710 a001 514229/9349*817138163596^(1/3) 5142290058833710 a001 514229/9349*(1/2+1/2*5^(1/2))^19 5142290058833711 a001 514229/9349*87403803^(1/2) 5142290058834180 a001 14930352/9349*710647^(3/7) 5142290058834880 a001 5702887/9349*710647^(1/2) 5142290058834881 a001 832040/9349*710647^(9/14) 5142290058835189 a001 1836311903/9349*271443^(1/13) 5142290058835423 a001 2178309/9349*710647^(4/7) 5142290058835745 a001 196418/9349*439204^(7/9) 5142290058840002 a001 163427634589/317811 5142290058840558 a001 701408733/9349*271443^(2/13) 5142290058845926 a001 267914296/9349*271443^(3/13) 5142290058849752 a001 2971215073/9349*103682^(1/24) 5142290058851295 a001 102334155/9349*271443^(4/13) 5142290058856426 a001 196418/9349*7881196^(7/11) 5142290058856471 a001 196418/9349*20633239^(3/5) 5142290058856478 a001 4181/439204*(1/2+1/2*5^(1/2))^37 5142290058856479 a001 196418/9349*141422324^(7/13) 5142290058856479 a001 196418/9349*2537720636^(7/15) 5142290058856479 a001 196418/9349*17393796001^(3/7) 5142290058856479 a001 196418/9349*45537549124^(7/17) 5142290058856479 a001 196418/9349*14662949395604^(1/3) 5142290058856479 a001 196418/9349*(1/2+1/2*5^(1/2))^21 5142290058856479 a001 196418/9349*192900153618^(7/18) 5142290058856479 a001 196418/9349*10749957122^(7/16) 5142290058856479 a001 196418/9349*599074578^(1/2) 5142290058856481 a001 196418/9349*33385282^(7/12) 5142290058856663 a001 4181*271443^(5/13) 5142290058857519 a001 196418/9349*1860498^(7/10) 5142290058862027 a001 14930352/9349*271443^(6/13) 5142290058864115 a001 196418/9349*710647^(3/4) 5142290058864728 a001 9227465/9349*271443^(1/2) 5142290058867369 a001 5702887/9349*271443^(7/13) 5142290058869684 a001 1836311903/9349*103682^(1/12) 5142290058872552 a001 2178309/9349*271443^(8/13) 5142290058873324 a001 317811/9349*271443^(10/13) 5142290058876652 a001 832040/9349*271443^(9/13) 5142290058889615 a001 1134903170/9349*103682^(1/8) 5142290058899607 a001 62423801712/121393 5142290058909547 a001 701408733/9349*103682^(1/6) 5142290058929478 a001 433494437/9349*103682^(5/24) 5142290058949409 a001 267914296/9349*103682^(1/4) 5142290058969341 a001 165580141/9349*103682^(7/24) 5142290058978852 a001 2971215073/9349*39603^(1/22) 5142290058989272 a001 102334155/9349*103682^(1/3) 5142290059009204 a001 63245986/9349*103682^(3/8) 5142290059012535 a001 4181/167761*2537720636^(7/9) 5142290059012535 a001 4181/167761*17393796001^(5/7) 5142290059012535 a001 4181/167761*312119004989^(7/11) 5142290059012535 a001 4181/167761*14662949395604^(5/9) 5142290059012535 a001 4181/167761*(1/2+1/2*5^(1/2))^35 5142290059012535 a001 4181/167761*505019158607^(5/8) 5142290059012535 a001 4181/167761*28143753123^(7/10) 5142290059012535 a001 4181/167761*599074578^(5/6) 5142290059012535 a001 4181/167761*228826127^(7/8) 5142290059012536 a001 75025/9349*(1/2+1/2*5^(1/2))^23 5142290059012536 a001 75025/9349*4106118243^(1/2) 5142290059029135 a001 4181*103682^(5/12) 5142290059049068 a001 24157817/9349*103682^(11/24) 5142290059068993 a001 14930352/9349*103682^(1/2) 5142290059088942 a001 9227465/9349*103682^(13/24) 5142290059108829 a001 5702887/9349*103682^(7/12) 5142290059127884 a001 1836311903/9349*39603^(1/11) 5142290059128875 a001 3524578/9349*103682^(5/8) 5142290059148507 a001 2178309/9349*103682^(2/3) 5142290059169223 a001 1346269/9349*103682^(17/24) 5142290059187101 a001 832040/9349*103682^(3/4) 5142290059198521 a001 121393/9349*103682^(11/12) 5142290059212407 a001 514229/9349*103682^(19/24) 5142290059218267 a001 317811/9349*103682^(5/6) 5142290059275039 a001 196418/9349*103682^(7/8) 5142290059276915 a001 1134903170/9349*39603^(3/22) 5142290059308143 a001 23843770547/46368 5142290059417787 a001 1836311903/103682*5778^(7/18) 5142290059425946 a001 701408733/9349*39603^(2/11) 5142290059470959 a001 75025/9349*103682^(23/24) 5142290059574978 a001 433494437/9349*39603^(5/22) 5142290059724009 a001 267914296/9349*39603^(3/11) 5142290059826350 a001 1602508992/90481*5778^(7/18) 5142290059859102 m001 (LaplaceLimit+MinimumGamma)/(5^(1/2)+Ei(1)) 5142290059873041 a001 165580141/9349*39603^(7/22) 5142290059885959 a001 12586269025/710647*5778^(7/18) 5142290059894656 a001 10983760033/620166*5778^(7/18) 5142290059895924 a001 86267571272/4870847*5778^(7/18) 5142290059896110 a001 75283811239/4250681*5778^(7/18) 5142290059896137 a001 591286729879/33385282*5778^(7/18) 5142290059896140 a001 516002918640/29134601*5778^(7/18) 5142290059896141 a001 4052739537881/228826127*5778^(7/18) 5142290059896141 a001 3536736619241/199691526*5778^(7/18) 5142290059896141 a001 6557470319842/370248451*5778^(7/18) 5142290059896141 a001 2504730781961/141422324*5778^(7/18) 5142290059896143 a001 956722026041/54018521*5778^(7/18) 5142290059896153 a001 365435296162/20633239*5778^(7/18) 5142290059896224 a001 139583862445/7881196*5778^(7/18) 5142290059896709 a001 53316291173/3010349*5778^(7/18) 5142290059900030 a001 20365011074/1149851*5778^(7/18) 5142290059922717 a001 701408733/24476*5778^(1/3) 5142290059922799 a001 7778742049/439204*5778^(7/18) 5142290059953445 a001 2971215073/9349*15127^(1/20) 5142290060022072 a001 102334155/9349*39603^(4/11) 5142290060078856 a001 2971215073/167761*5778^(7/18) 5142290060082161 a001 28657/9349*20633239^(5/7) 5142290060082168 a001 4181/64079*141422324^(11/13) 5142290060082168 a001 4181/64079*2537720636^(11/15) 5142290060082168 a001 4181/64079*45537549124^(11/17) 5142290060082168 a001 4181/64079*312119004989^(3/5) 5142290060082168 a001 4181/64079*14662949395604^(11/21) 5142290060082168 a001 4181/64079*(1/2+1/2*5^(1/2))^33 5142290060082168 a001 4181/64079*192900153618^(11/18) 5142290060082168 a001 4181/64079*10749957122^(11/16) 5142290060082168 a001 4181/64079*1568397607^(3/4) 5142290060082168 a001 4181/64079*599074578^(11/14) 5142290060082169 a001 28657/9349*2537720636^(5/9) 5142290060082169 a001 28657/9349*312119004989^(5/11) 5142290060082169 a001 28657/9349*(1/2+1/2*5^(1/2))^25 5142290060082169 a001 28657/9349*3461452808002^(5/12) 5142290060082169 a001 28657/9349*28143753123^(1/2) 5142290060082169 a001 28657/9349*228826127^(5/8) 5142290060082173 a001 4181/64079*33385282^(11/12) 5142290060083407 a001 28657/9349*1860498^(5/6) 5142290060171104 a001 63245986/9349*39603^(9/22) 5142290060320134 a001 4181*39603^(5/11) 5142290060469168 a001 24157817/9349*39603^(1/2) 5142290060618193 a001 14930352/9349*39603^(6/11) 5142290060767241 a001 9227465/9349*39603^(13/22) 5142290060916229 a001 5702887/9349*39603^(7/11) 5142290061065374 a001 3524578/9349*39603^(15/22) 5142290061077069 a001 1836311903/9349*15127^(1/10) 5142290061148489 a001 1134903170/64079*5778^(7/18) 5142290061214106 a001 2178309/9349*39603^(8/11) 5142290061363922 a001 1346269/9349*39603^(17/22) 5142290061510900 a001 832040/9349*39603^(9/11) 5142290061665306 a001 514229/9349*39603^(19/22) 5142290061800266 a001 317811/9349*39603^(10/11) 5142290061986138 a001 196418/9349*39603^(21/22) 5142290062108294 a001 9107509929/17711 5142290062200693 a001 1134903170/9349*15127^(3/20) 5142290062700419 a001 12586269025/39603*2207^(1/16) 5142290063095106 a001 63245986/15127*5778^(5/9) 5142290063324316 a001 701408733/9349*15127^(1/5) 5142290064447940 a001 433494437/9349*15127^(1/4) 5142290065174598 a001 433494437/39603*5778^(4/9) 5142290065500755 a001 32951280099/103682*2207^(1/16) 5142290065571564 a001 267914296/9349*15127^(3/10) 5142290065909318 a001 86267571272/271443*2207^(1/16) 5142290065968927 a001 317811*2207^(1/16) 5142290065977624 a001 591286729879/1860498*2207^(1/16) 5142290065978893 a001 1548008755920/4870847*2207^(1/16) 5142290065979078 a001 4052739537881/12752043*2207^(1/16) 5142290065979105 a001 1515744265389/4769326*2207^(1/16) 5142290065979122 a001 6557470319842/20633239*2207^(1/16) 5142290065979192 a001 2504730781961/7881196*2207^(1/16) 5142290065979677 a001 956722026041/3010349*2207^(1/16) 5142290065982999 a001 365435296162/1149851*2207^(1/16) 5142290066005767 a001 139583862445/439204*2207^(1/16) 5142290066161825 a001 53316291173/167761*2207^(1/16) 5142290066695188 a001 165580141/9349*15127^(7/20) 5142290067231458 a001 20365011074/64079*2207^(1/16) 5142290067386968 a001 2971215073/9349*5778^(1/18) 5142290067413476 a001 10946/9349*7881196^(9/11) 5142290067413543 a001 4181/24476*(1/2+1/2*5^(1/2))^31 5142290067413543 a001 4181/24476*9062201101803^(1/2) 5142290067413543 a001 10946/9349*141422324^(9/13) 5142290067413544 a001 10946/9349*2537720636^(3/5) 5142290067413544 a001 10946/9349*45537549124^(9/17) 5142290067413544 a001 10946/9349*817138163596^(9/19) 5142290067413544 a001 10946/9349*14662949395604^(3/7) 5142290067413544 a001 10946/9349*(1/2+1/2*5^(1/2))^27 5142290067413544 a001 10946/9349*192900153618^(1/2) 5142290067413544 a001 10946/9349*10749957122^(9/16) 5142290067413544 a001 10946/9349*599074578^(9/14) 5142290067413547 a001 10946/9349*33385282^(3/4) 5142290067414881 a001 10946/9349*1860498^(9/10) 5142290067818812 a001 102334155/9349*15127^(2/5) 5142290067974934 a001 567451585/51841*5778^(4/9) 5142290068383498 a001 2971215073/271443*5778^(4/9) 5142290068443106 a001 7778742049/710647*5778^(4/9) 5142290068451803 a001 10182505537/930249*5778^(4/9) 5142290068453072 a001 53316291173/4870847*5778^(4/9) 5142290068453257 a001 139583862445/12752043*5778^(4/9) 5142290068453284 a001 182717648081/16692641*5778^(4/9) 5142290068453288 a001 956722026041/87403803*5778^(4/9) 5142290068453288 a001 2504730781961/228826127*5778^(4/9) 5142290068453288 a001 3278735159921/299537289*5778^(4/9) 5142290068453289 a001 10610209857723/969323029*5778^(4/9) 5142290068453289 a001 4052739537881/370248451*5778^(4/9) 5142290068453289 a001 387002188980/35355581*5778^(4/9) 5142290068453290 a001 591286729879/54018521*5778^(4/9) 5142290068453301 a001 7787980473/711491*5778^(4/9) 5142290068453371 a001 21566892818/1970299*5778^(4/9) 5142290068453856 a001 32951280099/3010349*5778^(4/9) 5142290068457178 a001 12586269025/1149851*5778^(4/9) 5142290068479864 a001 433494437/24476*5778^(7/18) 5142290068479946 a001 1201881744/109801*5778^(4/9) 5142290068636004 a001 1836311903/167761*5778^(4/9) 5142290068942436 a001 63245986/9349*15127^(9/20) 5142290069705637 a001 701408733/64079*5778^(4/9) 5142290070066059 a001 4181*15127^(1/2) 5142290071158058 a001 2178309/3571*3571^(14/17) 5142290071189685 a001 24157817/9349*15127^(11/20) 5142290071652252 a001 39088169/15127*5778^(11/18) 5142290072313303 a001 14930352/9349*15127^(3/5) 5142290073436944 a001 9227465/9349*15127^(13/20) 5142290073731746 a001 267914296/39603*5778^(1/2) 5142290074560524 a001 5702887/9349*15127^(7/10) 5142290074562832 a001 7778742049/24476*2207^(1/16) 5142290075684262 a001 3524578/9349*15127^(3/4) 5142290075944116 a001 1836311903/9349*5778^(1/9) 5142290076532081 a001 701408733/103682*5778^(1/2) 5142290076807586 a001 2178309/9349*15127^(4/5) 5142290076940645 a001 1836311903/271443*5778^(1/2) 5142290077000253 a001 686789568/101521*5778^(1/2) 5142290077008950 a001 12586269025/1860498*5778^(1/2) 5142290077010219 a001 32951280099/4870847*5778^(1/2) 5142290077010404 a001 86267571272/12752043*5778^(1/2) 5142290077010431 a001 32264490531/4769326*5778^(1/2) 5142290077010435 a001 591286729879/87403803*5778^(1/2) 5142290077010436 a001 1548008755920/228826127*5778^(1/2) 5142290077010436 a001 4052739537881/599074578*5778^(1/2) 5142290077010436 a001 1515744265389/224056801*5778^(1/2) 5142290077010436 a001 6557470319842/969323029*5778^(1/2) 5142290077010436 a001 2504730781961/370248451*5778^(1/2) 5142290077010436 a001 956722026041/141422324*5778^(1/2) 5142290077010438 a001 365435296162/54018521*5778^(1/2) 5142290077010448 a001 139583862445/20633239*5778^(1/2) 5142290077010519 a001 53316291173/7881196*5778^(1/2) 5142290077011003 a001 20365011074/3010349*5778^(1/2) 5142290077014325 a001 7778742049/1149851*5778^(1/2) 5142290077037011 a001 10946*5778^(4/9) 5142290077037094 a001 2971215073/439204*5778^(1/2) 5142290077193151 a001 1134903170/167761*5778^(1/2) 5142290077931994 a001 1346269/9349*15127^(17/20) 5142290078262784 a001 433494437/64079*5778^(1/2) 5142290079053565 a001 832040/9349*15127^(9/10) 5142290080182564 a001 514229/9349*15127^(19/20) 5142290080209402 a001 24157817/15127*5778^(2/3) 5142290081300813 a001 63250168/123 5142290082288893 a001 165580141/39603*5778^(5/9) 5142290083548498 a007 Real Root Of 640*x^4+87*x^3-64*x^2-995*x+472 5142290084501263 a001 1134903170/9349*5778^(1/6) 5142290085089229 a001 433494437/103682*5778^(5/9) 5142290085497792 a001 1134903170/271443*5778^(5/9) 5142290085557401 a001 2971215073/710647*5778^(5/9) 5142290085566098 a001 7778742049/1860498*5778^(5/9) 5142290085567366 a001 20365011074/4870847*5778^(5/9) 5142290085567552 a001 53316291173/12752043*5778^(5/9) 5142290085567579 a001 139583862445/33385282*5778^(5/9) 5142290085567583 a001 365435296162/87403803*5778^(5/9) 5142290085567583 a001 956722026041/228826127*5778^(5/9) 5142290085567583 a001 2504730781961/599074578*5778^(5/9) 5142290085567583 a001 6557470319842/1568397607*5778^(5/9) 5142290085567583 a001 10610209857723/2537720636*5778^(5/9) 5142290085567583 a001 4052739537881/969323029*5778^(5/9) 5142290085567583 a001 1548008755920/370248451*5778^(5/9) 5142290085567583 a001 591286729879/141422324*5778^(5/9) 5142290085567585 a001 225851433717/54018521*5778^(5/9) 5142290085567595 a001 86267571272/20633239*5778^(5/9) 5142290085567666 a001 32951280099/7881196*5778^(5/9) 5142290085568151 a001 12586269025/3010349*5778^(5/9) 5142290085571473 a001 4807526976/1149851*5778^(5/9) 5142290085594159 a001 165580141/24476*5778^(1/2) 5142290085594241 a001 1836311903/439204*5778^(5/9) 5142290085750298 a001 701408733/167761*5778^(5/9) 5142290086819931 a001 267914296/64079*5778^(5/9) 5142290088766543 a001 14930352/15127*5778^(13/18) 5142290090846040 a001 34111385/13201*5778^(11/18) 5142290093058410 a001 701408733/9349*5778^(2/9) 5142290093646376 a001 133957148/51841*5778^(11/18) 5142290094054940 a001 233802911/90481*5778^(11/18) 5142290094114548 a001 1836311903/710647*5778^(11/18) 5142290094123245 a001 267084832/103361*5778^(11/18) 5142290094124514 a001 12586269025/4870847*5778^(11/18) 5142290094124699 a001 10983760033/4250681*5778^(11/18) 5142290094124726 a001 43133785636/16692641*5778^(11/18) 5142290094124730 a001 75283811239/29134601*5778^(11/18) 5142290094124731 a001 591286729879/228826127*5778^(11/18) 5142290094124731 a001 86000486440/33281921*5778^(11/18) 5142290094124731 a001 4052739537881/1568397607*5778^(11/18) 5142290094124731 a001 3536736619241/1368706081*5778^(11/18) 5142290094124731 a001 3278735159921/1268860318*5778^(11/18) 5142290094124731 a001 2504730781961/969323029*5778^(11/18) 5142290094124731 a001 956722026041/370248451*5778^(11/18) 5142290094124731 a001 182717648081/70711162*5778^(11/18) 5142290094124732 a001 139583862445/54018521*5778^(11/18) 5142290094124743 a001 53316291173/20633239*5778^(11/18) 5142290094124813 a001 10182505537/3940598*5778^(11/18) 5142290094125298 a001 7778742049/3010349*5778^(11/18) 5142290094128620 a001 2971215073/1149851*5778^(11/18) 5142290094151306 a001 102334155/24476*5778^(5/9) 5142290094151388 a001 567451585/219602*5778^(11/18) 5142290094307446 a001 433494437/167761*5778^(11/18) 5142290094879079 a001 3524578/3571*3571^(13/17) 5142290095377079 a001 165580141/64079*5778^(11/18) 5142290097323707 a001 9227465/15127*5778^(7/9) 5142290099403188 a001 63245986/39603*5778^(2/3) 5142290101615558 a001 433494437/9349*5778^(5/18) 5142290102203524 a001 165580141/103682*5778^(2/3) 5142290102612087 a001 433494437/271443*5778^(2/3) 5142290102671696 a001 1134903170/710647*5778^(2/3) 5142290102680392 a001 2971215073/1860498*5778^(2/3) 5142290102681661 a001 7778742049/4870847*5778^(2/3) 5142290102681846 a001 20365011074/12752043*5778^(2/3) 5142290102681873 a001 53316291173/33385282*5778^(2/3) 5142290102681877 a001 139583862445/87403803*5778^(2/3) 5142290102681878 a001 365435296162/228826127*5778^(2/3) 5142290102681878 a001 956722026041/599074578*5778^(2/3) 5142290102681878 a001 2504730781961/1568397607*5778^(2/3) 5142290102681878 a001 6557470319842/4106118243*5778^(2/3) 5142290102681878 a001 10610209857723/6643838879*5778^(2/3) 5142290102681878 a001 4052739537881/2537720636*5778^(2/3) 5142290102681878 a001 1548008755920/969323029*5778^(2/3) 5142290102681878 a001 591286729879/370248451*5778^(2/3) 5142290102681878 a001 225851433717/141422324*5778^(2/3) 5142290102681880 a001 86267571272/54018521*5778^(2/3) 5142290102681890 a001 32951280099/20633239*5778^(2/3) 5142290102681961 a001 12586269025/7881196*5778^(2/3) 5142290102682445 a001 4807526976/3010349*5778^(2/3) 5142290102685767 a001 1836311903/1149851*5778^(2/3) 5142290102708454 a001 31622993/12238*5778^(11/18) 5142290102708536 a001 701408733/439204*5778^(2/3) 5142290102864593 a001 267914296/167761*5778^(2/3) 5142290103934226 a001 102334155/64079*5778^(2/3) 5142290105880811 a001 5702887/15127*5778^(5/6) 5142290107960334 a001 39088169/39603*5778^(13/18) 5142290109187430 r009 Im(z^3+c),c=-27/70+13/23*I,n=48 5142290109489632 a001 2971215073/15127*2207^(1/8) 5142290109899457 a001 433494437/5778*2207^(1/4) 5142290110172705 a001 267914296/9349*5778^(1/3) 5142290110760671 a001 102334155/103682*5778^(13/18) 5142290111169234 a001 267914296/271443*5778^(13/18) 5142290111228843 a001 701408733/710647*5778^(13/18) 5142290111237540 a001 1836311903/1860498*5778^(13/18) 5142290111238809 a001 4807526976/4870847*5778^(13/18) 5142290111238994 a001 12586269025/12752043*5778^(13/18) 5142290111239021 a001 32951280099/33385282*5778^(13/18) 5142290111239025 a001 86267571272/87403803*5778^(13/18) 5142290111239025 a001 225851433717/228826127*5778^(13/18) 5142290111239025 a001 591286729879/599074578*5778^(13/18) 5142290111239025 a001 1548008755920/1568397607*5778^(13/18) 5142290111239025 a001 4052739537881/4106118243*5778^(13/18) 5142290111239025 a001 4807525989/4870846*5778^(13/18) 5142290111239025 a001 6557470319842/6643838879*5778^(13/18) 5142290111239025 a001 2504730781961/2537720636*5778^(13/18) 5142290111239025 a001 956722026041/969323029*5778^(13/18) 5142290111239025 a001 365435296162/370248451*5778^(13/18) 5142290111239026 a001 139583862445/141422324*5778^(13/18) 5142290111239027 a001 53316291173/54018521*5778^(13/18) 5142290111239037 a001 20365011074/20633239*5778^(13/18) 5142290111239108 a001 7778742049/7881196*5778^(13/18) 5142290111239593 a001 2971215073/3010349*5778^(13/18) 5142290111242915 a001 1134903170/1149851*5778^(13/18) 5142290111265600 a001 39088169/24476*5778^(2/3) 5142290111265683 a001 433494437/439204*5778^(13/18) 5142290111421741 a001 165580141/167761*5778^(13/18) 5142290112491374 a001 63245986/64079*5778^(13/18) 5142290112540531 r009 Im(z^3+c),c=-1/36+28/37*I,n=22 5142290114438072 a001 3524578/15127*5778^(8/9) 5142290116055496 r005 Re(z^2+c),c=-79/126+17/57*I,n=12 5142290116517484 a001 24157817/39603*5778^(7/9) 5142290117663532 a001 4181/9349*(1/2+1/2*5^(1/2))^29 5142290117663532 a001 4181/9349*1322157322203^(1/2) 5142290118599687 a001 1597*3571^(12/17) 5142290118729853 a001 165580141/9349*5778^(7/18) 5142290118986617 r009 Im(z^3+c),c=-7/64+29/45*I,n=62 5142290119317819 a001 31622993/51841*5778^(7/9) 5142290119726382 a001 165580141/271443*5778^(7/9) 5142290119785990 a001 433494437/710647*5778^(7/9) 5142290119794687 a001 567451585/930249*5778^(7/9) 5142290119795956 a001 2971215073/4870847*5778^(7/9) 5142290119796141 a001 7778742049/12752043*5778^(7/9) 5142290119796168 a001 10182505537/16692641*5778^(7/9) 5142290119796172 a001 53316291173/87403803*5778^(7/9) 5142290119796173 a001 139583862445/228826127*5778^(7/9) 5142290119796173 a001 182717648081/299537289*5778^(7/9) 5142290119796173 a001 956722026041/1568397607*5778^(7/9) 5142290119796173 a001 2504730781961/4106118243*5778^(7/9) 5142290119796173 a001 3278735159921/5374978561*5778^(7/9) 5142290119796173 a001 10610209857723/17393796001*5778^(7/9) 5142290119796173 a001 4052739537881/6643838879*5778^(7/9) 5142290119796173 a001 1134903780/1860499*5778^(7/9) 5142290119796173 a001 591286729879/969323029*5778^(7/9) 5142290119796173 a001 225851433717/370248451*5778^(7/9) 5142290119796173 a001 21566892818/35355581*5778^(7/9) 5142290119796175 a001 32951280099/54018521*5778^(7/9) 5142290119796185 a001 1144206275/1875749*5778^(7/9) 5142290119796256 a001 1201881744/1970299*5778^(7/9) 5142290119796740 a001 1836311903/3010349*5778^(7/9) 5142290119800062 a001 701408733/1149851*5778^(7/9) 5142290119822750 a001 24157817/24476*5778^(13/18) 5142290119822831 a001 66978574/109801*5778^(7/9) 5142290119978888 a001 9303105/15251*5778^(7/9) 5142290121048520 a001 39088169/64079*5778^(7/9) 5142290121937327 m001 MinimumGamma/(GAMMA(11/12)-Totient) 5142290122994920 a001 311187/2161*5778^(17/18) 5142290124812821 a001 2971215073/9349*2207^(1/16) 5142290125074625 a001 4976784/13201*5778^(5/6) 5142290127287000 a001 102334155/9349*5778^(4/9) 5142290127874965 a001 39088169/103682*5778^(5/6) 5142290128283529 a001 34111385/90481*5778^(5/6) 5142290128343138 a001 267914296/710647*5778^(5/6) 5142290128351835 a001 233802911/620166*5778^(5/6) 5142290128353104 a001 1836311903/4870847*5778^(5/6) 5142290128353289 a001 1602508992/4250681*5778^(5/6) 5142290128353316 a001 12586269025/33385282*5778^(5/6) 5142290128353320 a001 10983760033/29134601*5778^(5/6) 5142290128353320 a001 86267571272/228826127*5778^(5/6) 5142290128353320 a001 267913919/710646*5778^(5/6) 5142290128353320 a001 591286729879/1568397607*5778^(5/6) 5142290128353320 a001 516002918640/1368706081*5778^(5/6) 5142290128353320 a001 4052739537881/10749957122*5778^(5/6) 5142290128353320 a001 3536736619241/9381251041*5778^(5/6) 5142290128353320 a001 6557470319842/17393796001*5778^(5/6) 5142290128353320 a001 2504730781961/6643838879*5778^(5/6) 5142290128353320 a001 956722026041/2537720636*5778^(5/6) 5142290128353320 a001 365435296162/969323029*5778^(5/6) 5142290128353320 a001 139583862445/370248451*5778^(5/6) 5142290128353321 a001 53316291173/141422324*5778^(5/6) 5142290128353322 a001 20365011074/54018521*5778^(5/6) 5142290128353332 a001 7778742049/20633239*5778^(5/6) 5142290128353403 a001 2971215073/7881196*5778^(5/6) 5142290128353888 a001 1134903170/3010349*5778^(5/6) 5142290128357210 a001 433494437/1149851*5778^(5/6) 5142290128379891 a001 3732588/6119*5778^(7/9) 5142290128379978 a001 165580141/439204*5778^(5/6) 5142290128536036 a001 63245986/167761*5778^(5/6) 5142290128683419 a001 7778742049/39603*2207^(1/8) 5142290129605670 a001 24157817/64079*5778^(5/6) 5142290131483755 a001 10182505537/51841*2207^(1/8) 5142290131892319 a001 53316291173/271443*2207^(1/8) 5142290131951927 a001 139583862445/710647*2207^(1/8) 5142290131960624 a001 182717648081/930249*2207^(1/8) 5142290131961893 a001 956722026041/4870847*2207^(1/8) 5142290131962078 a001 2504730781961/12752043*2207^(1/8) 5142290131962105 a001 3278735159921/16692641*2207^(1/8) 5142290131962111 a001 10610209857723/54018521*2207^(1/8) 5142290131962122 a001 4052739537881/20633239*2207^(1/8) 5142290131962192 a001 387002188980/1970299*2207^(1/8) 5142290131962677 a001 591286729879/3010349*2207^(1/8) 5142290131965999 a001 225851433717/1149851*2207^(1/8) 5142290131988767 a001 196418*2207^(1/8) 5142290132144825 a001 32951280099/167761*2207^(1/8) 5142290133214458 a001 12586269025/64079*2207^(1/8) 5142290133631789 a001 9227465/39603*5778^(8/9) 5142290135844148 a001 63245986/9349*5778^(1/2) 5142290136432115 a001 24157817/103682*5778^(8/9) 5142290136840677 a001 63245986/271443*5778^(8/9) 5142290136900285 a001 165580141/710647*5778^(8/9) 5142290136908982 a001 433494437/1860498*5778^(8/9) 5142290136910251 a001 1134903170/4870847*5778^(8/9) 5142290136910436 a001 2971215073/12752043*5778^(8/9) 5142290136910463 a001 7778742049/33385282*5778^(8/9) 5142290136910467 a001 20365011074/87403803*5778^(8/9) 5142290136910468 a001 53316291173/228826127*5778^(8/9) 5142290136910468 a001 139583862445/599074578*5778^(8/9) 5142290136910468 a001 365435296162/1568397607*5778^(8/9) 5142290136910468 a001 956722026041/4106118243*5778^(8/9) 5142290136910468 a001 2504730781961/10749957122*5778^(8/9) 5142290136910468 a001 6557470319842/28143753123*5778^(8/9) 5142290136910468 a001 10610209857723/45537549124*5778^(8/9) 5142290136910468 a001 4052739537881/17393796001*5778^(8/9) 5142290136910468 a001 1548008755920/6643838879*5778^(8/9) 5142290136910468 a001 591286729879/2537720636*5778^(8/9) 5142290136910468 a001 225851433717/969323029*5778^(8/9) 5142290136910468 a001 86267571272/370248451*5778^(8/9) 5142290136910468 a001 63246219/271444*5778^(8/9) 5142290136910469 a001 12586269025/54018521*5778^(8/9) 5142290136910480 a001 4807526976/20633239*5778^(8/9) 5142290136910551 a001 1836311903/7881196*5778^(8/9) 5142290136911035 a001 701408733/3010349*5778^(8/9) 5142290136914357 a001 267914296/1149851*5778^(8/9) 5142290136937055 a001 9227465/24476*5778^(5/6) 5142290136937125 a001 102334155/439204*5778^(8/9) 5142290137093182 a001 39088169/167761*5778^(8/9) 5142290138162811 a001 14930352/64079*5778^(8/9) 5142290140545832 a001 1201881744/6119*2207^(1/8) 5142290142188893 a001 5702887/39603*5778^(17/18) 5142290142320452 a001 9227465/3571*3571^(11/17) 5142290144401294 a001 4181*5778^(5/9) 5142290144989256 a001 7465176/51841*5778^(17/18) 5142290145397824 a001 39088169/271443*5778^(17/18) 5142290145457433 a001 14619165/101521*5778^(17/18) 5142290145466130 a001 133957148/930249*5778^(17/18) 5142290145467398 a001 701408733/4870847*5778^(17/18) 5142290145467584 a001 1836311903/12752043*5778^(17/18) 5142290145467611 a001 14930208/103681*5778^(17/18) 5142290145467615 a001 12586269025/87403803*5778^(17/18) 5142290145467615 a001 32951280099/228826127*5778^(17/18) 5142290145467615 a001 43133785636/299537289*5778^(17/18) 5142290145467615 a001 32264490531/224056801*5778^(17/18) 5142290145467615 a001 591286729879/4106118243*5778^(17/18) 5142290145467615 a001 774004377960/5374978561*5778^(17/18) 5142290145467615 a001 4052739537881/28143753123*5778^(17/18) 5142290145467615 a001 1515744265389/10525900321*5778^(17/18) 5142290145467615 a001 3278735159921/22768774562*5778^(17/18) 5142290145467615 a001 2504730781961/17393796001*5778^(17/18) 5142290145467615 a001 956722026041/6643838879*5778^(17/18) 5142290145467615 a001 182717648081/1268860318*5778^(17/18) 5142290145467615 a001 139583862445/969323029*5778^(17/18) 5142290145467615 a001 53316291173/370248451*5778^(17/18) 5142290145467615 a001 10182505537/70711162*5778^(17/18) 5142290145467617 a001 7778742049/54018521*5778^(17/18) 5142290145467627 a001 2971215073/20633239*5778^(17/18) 5142290145467698 a001 567451585/3940598*5778^(17/18) 5142290145468183 a001 433494437/3010349*5778^(17/18) 5142290145471505 a001 165580141/1149851*5778^(17/18) 5142290145494159 a001 5702887/24476*5778^(8/9) 5142290145494273 a001 31622993/219602*5778^(17/18) 5142290145650332 a001 24157817/167761*5778^(17/18) 5142290146719976 a001 9227465/64079*5778^(17/18) 5142290150928792 a001 1328767775/2584 5142290152958444 a001 24157817/9349*5778^(11/18) 5142290154024767 a001 1/1292*(1/2+1/2*5^(1/2))^47 5142290154051421 a001 1762289/12238*5778^(17/18) 5142290154798761 a001 166095972/323 5142290161515585 a001 14930352/9349*5778^(2/3) 5142290162538699 a001 664383889/1292 5142290166041158 a001 14930352/3571*3571^(10/17) 5142290169007562 r002 23th iterates of z^2 + 5142290170072749 a001 9227465/9349*5778^(13/18) 5142290174526543 h001 (-5*exp(2)-9)/(-6*exp(5)-3) 5142290175472632 a001 1836311903/15127*2207^(3/16) 5142290175798758 r009 Im(z^3+c),c=-7/64+29/45*I,n=64 5142290175882457 a001 133957148/2889*2207^(5/16) 5142290178629853 a001 5702887/9349*5778^(7/9) 5142290180927201 r002 36th iterates of z^2 + 5142290184256812 a001 610*1364^(14/15) 5142290187187115 a001 3524578/9349*5778^(5/6) 5142290188435359 r009 Im(z^3+c),c=-23/56+32/57*I,n=52 5142290188749575 r002 11th iterates of z^2 + 5142290189761886 a001 24157817/3571*3571^(9/17) 5142290190795822 a001 1836311903/9349*2207^(1/8) 5142290194666420 a001 1602508992/13201*2207^(3/16) 5142290195743963 a001 2178309/9349*5778^(8/9) 5142290197466756 a001 12586269025/103682*2207^(3/16) 5142290197875320 a001 121393*2207^(3/16) 5142290197934928 a001 86267571272/710647*2207^(3/16) 5142290197943625 a001 75283811239/620166*2207^(3/16) 5142290197944894 a001 591286729879/4870847*2207^(3/16) 5142290197945079 a001 516002918640/4250681*2207^(3/16) 5142290197945106 a001 4052739537881/33385282*2207^(3/16) 5142290197945110 a001 3536736619241/29134601*2207^(3/16) 5142290197945112 a001 6557470319842/54018521*2207^(3/16) 5142290197945123 a001 2504730781961/20633239*2207^(3/16) 5142290197945193 a001 956722026041/7881196*2207^(3/16) 5142290197945678 a001 365435296162/3010349*2207^(3/16) 5142290197949000 a001 139583862445/1149851*2207^(3/16) 5142290197971768 a001 53316291173/439204*2207^(3/16) 5142290198127826 a001 20365011074/167761*2207^(3/16) 5142290199197459 a001 7778742049/64079*2207^(3/16) 5142290204301895 a001 1346269/9349*5778^(17/18) 5142290206528834 a001 2971215073/24476*2207^(3/16) 5142290212848297 a001 1328767791/2584 5142290213482606 a001 39088169/3571*3571^(8/17) 5142290218986194 a001 1134903170/3571*1364^(1/15) 5142290231506262 a003 sin(Pi*5/56)/sin(Pi*19/105) 5142290237203330 a001 63245986/3571*3571^(7/17) 5142290241455634 a001 1134903170/15127*2207^(1/4) 5142290241865459 a001 165580141/5778*2207^(3/8) 5142290249219622 a001 1597/5778*7881196^(10/11) 5142290249219687 a001 1597/5778*20633239^(6/7) 5142290249219698 a001 1597/5778*141422324^(10/13) 5142290249219698 a001 1597/5778*2537720636^(2/3) 5142290249219698 a001 1597/5778*45537549124^(10/17) 5142290249219698 a001 1597/5778*312119004989^(6/11) 5142290249219698 a001 1597/5778*14662949395604^(10/21) 5142290249219698 a001 1597/5778*(1/2+1/2*5^(1/2))^30 5142290249219698 a001 1597/5778*192900153618^(5/9) 5142290249219698 a001 1597/5778*28143753123^(3/5) 5142290249219698 a001 1597/5778*10749957122^(5/8) 5142290249219698 a001 1597/5778*4106118243^(15/23) 5142290249219698 a001 1597/5778*1568397607^(15/22) 5142290249219698 a001 1597/5778*599074578^(5/7) 5142290249219698 a001 1597/5778*228826127^(3/4) 5142290249219698 a001 1597/5778*87403803^(15/19) 5142290249219702 a001 1597/5778*33385282^(5/6) 5142290249219715 a001 2584/3571*20633239^(4/5) 5142290249219725 a001 2584/3571*17393796001^(4/7) 5142290249219725 a001 2584/3571*14662949395604^(4/9) 5142290249219725 a001 2584/3571*(1/2+1/2*5^(1/2))^28 5142290249219725 a001 2584/3571*505019158607^(1/2) 5142290249219725 a001 2584/3571*73681302247^(7/13) 5142290249219725 a001 2584/3571*10749957122^(7/12) 5142290249219725 a001 2584/3571*4106118243^(14/23) 5142290249219725 a001 2584/3571*1568397607^(7/11) 5142290249219725 a001 2584/3571*599074578^(2/3) 5142290249219725 a001 2584/3571*228826127^(7/10) 5142290249219725 a001 2584/3571*87403803^(14/19) 5142290249219726 a001 1597/5778*12752043^(15/17) 5142290249219728 a001 2584/3571*33385282^(7/9) 5142290249219751 a001 2584/3571*12752043^(14/17) 5142290249219901 a001 1597/5778*4870847^(15/16) 5142290249219914 a001 2584/3571*4870847^(7/8) 5142290249221111 a001 2584/3571*1860498^(14/15) 5142290251207691 a007 Real Root Of -748*x^4+540*x^3-334*x^2+910*x+682 5142290256778824 a001 1134903170/9349*2207^(3/16) 5142290260649422 a001 2971215073/39603*2207^(1/4) 5142290260924052 a001 102334155/3571*3571^(6/17) 5142290263449758 a001 7778742049/103682*2207^(1/4) 5142290263858321 a001 20365011074/271443*2207^(1/4) 5142290263917930 a001 53316291173/710647*2207^(1/4) 5142290263926627 a001 139583862445/1860498*2207^(1/4) 5142290263927896 a001 365435296162/4870847*2207^(1/4) 5142290263928081 a001 956722026041/12752043*2207^(1/4) 5142290263928108 a001 2504730781961/33385282*2207^(1/4) 5142290263928112 a001 6557470319842/87403803*2207^(1/4) 5142290263928113 a001 10610209857723/141422324*2207^(1/4) 5142290263928114 a001 4052739537881/54018521*2207^(1/4) 5142290263928124 a001 140728068720/1875749*2207^(1/4) 5142290263928195 a001 591286729879/7881196*2207^(1/4) 5142290263928680 a001 225851433717/3010349*2207^(1/4) 5142290263932002 a001 86267571272/1149851*2207^(1/4) 5142290263954770 a001 32951280099/439204*2207^(1/4) 5142290264110828 a001 75025*2207^(1/4) 5142290265180461 a001 4807526976/64079*2207^(1/4) 5142290272511835 a001 1836311903/24476*2207^(1/4) 5142290277215952 a001 6643838879*144^(7/17) 5142290281060679 r005 Im(z^2+c),c=-65/54+4/63*I,n=27 5142290284641056 a007 Real Root Of -252*x^4-47*x^3-735*x^2+275*x+347 5142290284644775 a001 165580141/3571*3571^(5/17) 5142290296638523 r005 Im(z^2+c),c=-17/98+23/30*I,n=11 5142290304293509 a001 47/1597*2584^(23/35) 5142290307438636 a001 701408733/15127*2207^(5/16) 5142290307848461 a001 34111385/1926*2207^(7/16) 5142290308365497 a001 267914296/3571*3571^(4/17) 5142290322761826 a001 701408733/9349*2207^(1/4) 5142290324512595 r009 Im(z^3+c),c=-37/118+38/63*I,n=46 5142290326632425 a001 1836311903/39603*2207^(5/16) 5142290329432761 a001 46368*2207^(5/16) 5142290329841324 a001 12586269025/271443*2207^(5/16) 5142290329900933 a001 32951280099/710647*2207^(5/16) 5142290329909629 a001 43133785636/930249*2207^(5/16) 5142290329910898 a001 225851433717/4870847*2207^(5/16) 5142290329911083 a001 591286729879/12752043*2207^(5/16) 5142290329911110 a001 774004377960/16692641*2207^(5/16) 5142290329911114 a001 4052739537881/87403803*2207^(5/16) 5142290329911115 a001 225749145909/4868641*2207^(5/16) 5142290329911115 a001 3278735159921/70711162*2207^(5/16) 5142290329911117 a001 2504730781961/54018521*2207^(5/16) 5142290329911127 a001 956722026041/20633239*2207^(5/16) 5142290329911198 a001 182717648081/3940598*2207^(5/16) 5142290329911682 a001 139583862445/3010349*2207^(5/16) 5142290329915004 a001 53316291173/1149851*2207^(5/16) 5142290329937773 a001 10182505537/219602*2207^(5/16) 5142290330093830 a001 7778742049/167761*2207^(5/16) 5142290330235759 p001 sum((-1)^n/(221*n+90)/n/(625^n),n=1..infinity) 5142290331163463 a001 2971215073/64079*2207^(5/16) 5142290332086220 a001 433494437/3571*3571^(3/17) 5142290338494838 a001 567451585/12238*2207^(5/16) 5142290344415211 a001 2149991593/4181 5142290347501004 a001 317811/3571*9349^(18/19) 5142290350611587 a001 514229/3571*9349^(17/19) 5142290353702723 a001 832040/3571*9349^(16/19) 5142290355806943 a001 701408733/3571*3571^(2/17) 5142290356801287 a001 1346269/3571*9349^(15/19) 5142290359897014 a001 2178309/3571*9349^(14/19) 5142290362829108 a001 1836311903/5778*843^(1/14) 5142290362993825 a001 3524578/3571*9349^(13/19) 5142290366090222 a001 1597*9349^(12/19) 5142290366863416 r009 Re(z^3+c),c=-25/64+1/52*I,n=57 5142290368521060 a001 1346269/1364*1364^(13/15) 5142290369186777 a001 9227465/3571*9349^(11/19) 5142290372283272 a001 14930352/3571*9349^(10/19) 5142290373421639 a001 433494437/15127*2207^(3/8) 5142290373831465 a001 31622993/2889*2207^(1/2) 5142290375379789 a001 24157817/3571*9349^(9/19) 5142290376715450 m001 GAMMA(19/24)/(Pi-Thue) 5142290378476298 a001 39088169/3571*9349^(8/19) 5142290379527666 a001 1134903170/3571*3571^(1/17) 5142290380775878 a001 1597/15127*(1/2+1/2*5^(1/2))^32 5142290380775878 a001 1597/15127*23725150497407^(1/2) 5142290380775878 a001 1597/15127*505019158607^(4/7) 5142290380775878 a001 1597/15127*73681302247^(8/13) 5142290380775878 a001 1597/15127*10749957122^(2/3) 5142290380775878 a001 1597/15127*4106118243^(16/23) 5142290380775878 a001 1597/15127*1568397607^(8/11) 5142290380775878 a001 1597/15127*599074578^(16/21) 5142290380775879 a001 1597/15127*228826127^(4/5) 5142290380775879 a001 1597/15127*87403803^(16/19) 5142290380775883 a001 1597/15127*33385282^(8/9) 5142290380775908 a001 1597/15127*12752043^(16/17) 5142290380775910 a001 6765/3571*141422324^(2/3) 5142290380775910 a001 6765/3571*(1/2+1/2*5^(1/2))^26 5142290380775910 a001 6765/3571*73681302247^(1/2) 5142290380775910 a001 6765/3571*10749957122^(13/24) 5142290380775910 a001 6765/3571*4106118243^(13/23) 5142290380775910 a001 6765/3571*1568397607^(13/22) 5142290380775910 a001 6765/3571*599074578^(13/21) 5142290380775910 a001 6765/3571*228826127^(13/20) 5142290380775910 a001 6765/3571*87403803^(13/19) 5142290380775913 a001 6765/3571*33385282^(13/18) 5142290380775934 a001 6765/3571*12752043^(13/17) 5142290380776086 a001 6765/3571*4870847^(13/16) 5142290380777198 a001 6765/3571*1860498^(13/15) 5142290380785365 a001 6765/3571*710647^(13/14) 5142290381572810 a001 63245986/3571*9349^(7/19) 5142290384669321 a001 102334155/3571*9349^(6/19) 5142290387765833 a001 165580141/3571*9349^(5/19) 5142290388744829 a001 433494437/9349*2207^(5/16) 5142290390341656 a007 Real Root Of 379*x^4-680*x^3+91*x^2-525*x-413 5142290390862344 a001 267914296/3571*9349^(4/19) 5142290392615428 a001 1134903170/39603*2207^(3/8) 5142290393958855 a001 433494437/3571*9349^(3/19) 5142290394664717 a001 2814375533/5473 5142290395003624 a001 121393/3571*24476^(20/21) 5142290395415764 a001 2971215073/103682*2207^(3/8) 5142290395508821 a001 196418/3571*24476^(19/21) 5142290395824328 a001 7778742049/271443*2207^(3/8) 5142290395880730 a001 317811/3571*24476^(6/7) 5142290395883936 a001 20365011074/710647*2207^(3/8) 5142290395892633 a001 53316291173/1860498*2207^(3/8) 5142290395893902 a001 139583862445/4870847*2207^(3/8) 5142290395894087 a001 365435296162/12752043*2207^(3/8) 5142290395894114 a001 956722026041/33385282*2207^(3/8) 5142290395894118 a001 2504730781961/87403803*2207^(3/8) 5142290395894118 a001 6557470319842/228826127*2207^(3/8) 5142290395894119 a001 10610209857723/370248451*2207^(3/8) 5142290395894119 a001 4052739537881/141422324*2207^(3/8) 5142290395894120 a001 1548008755920/54018521*2207^(3/8) 5142290395894131 a001 591286729879/20633239*2207^(3/8) 5142290395894201 a001 225851433717/7881196*2207^(3/8) 5142290395894686 a001 86267571272/3010349*2207^(3/8) 5142290395898008 a001 32951280099/1149851*2207^(3/8) 5142290395920776 a001 12586269025/439204*2207^(3/8) 5142290396076834 a001 4807526976/167761*2207^(3/8) 5142290396303550 a001 514229/3571*24476^(17/21) 5142290396706924 a001 832040/3571*24476^(16/21) 5142290397055367 a001 701408733/3571*9349^(2/19) 5142290397117726 a001 1346269/3571*24476^(5/7) 5142290397146467 a001 28657*2207^(3/8) 5142290397525690 a001 2178309/3571*24476^(2/3) 5142290397934739 a001 3524578/3571*24476^(13/21) 5142290398343373 a001 1597*24476^(4/7) 5142290398752165 a001 9227465/3571*24476^(11/21) 5142290399160897 a001 14930352/3571*24476^(10/21) 5142290399569653 a001 24157817/3571*24476^(3/7) 5142290399946003 a001 17711/3571*439204^(8/9) 5142290399969639 a001 17711/3571*7881196^(8/11) 5142290399969667 a001 1597/39603*45537549124^(2/3) 5142290399969667 a001 1597/39603*(1/2+1/2*5^(1/2))^34 5142290399969667 a001 1597/39603*10749957122^(17/24) 5142290399969667 a001 1597/39603*4106118243^(17/23) 5142290399969667 a001 1597/39603*1568397607^(17/22) 5142290399969667 a001 1597/39603*599074578^(17/21) 5142290399969667 a001 1597/39603*228826127^(17/20) 5142290399969668 a001 1597/39603*87403803^(17/19) 5142290399969671 a001 1597/39603*33385282^(17/18) 5142290399969699 a001 17711/3571*141422324^(8/13) 5142290399969699 a001 17711/3571*2537720636^(8/15) 5142290399969699 a001 17711/3571*45537549124^(8/17) 5142290399969699 a001 17711/3571*14662949395604^(8/21) 5142290399969699 a001 17711/3571*(1/2+1/2*5^(1/2))^24 5142290399969699 a001 17711/3571*192900153618^(4/9) 5142290399969699 a001 17711/3571*73681302247^(6/13) 5142290399969699 a001 17711/3571*10749957122^(1/2) 5142290399969699 a001 17711/3571*4106118243^(12/23) 5142290399969699 a001 17711/3571*1568397607^(6/11) 5142290399969699 a001 17711/3571*599074578^(4/7) 5142290399969699 a001 17711/3571*228826127^(3/5) 5142290399969699 a001 17711/3571*87403803^(12/19) 5142290399969702 a001 17711/3571*33385282^(2/3) 5142290399969721 a001 17711/3571*12752043^(12/17) 5142290399969861 a001 17711/3571*4870847^(3/4) 5142290399970887 a001 17711/3571*1860498^(4/5) 5142290399978399 a001 39088169/3571*24476^(8/21) 5142290399978427 a001 17711/3571*710647^(6/7) 5142290400034121 a001 17711/3571*271443^(12/13) 5142290400151878 a001 1134903170/3571*9349^(1/19) 5142290400387148 a001 63245986/3571*24476^(1/3) 5142290400795897 a001 102334155/3571*24476^(2/7) 5142290401204646 a001 165580141/3571*24476^(5/21) 5142290401572136 a001 46368/3571*64079^(22/23) 5142290401613394 a001 267914296/3571*24476^(4/21) 5142290401996021 a001 14736261605/28657 5142290402022143 a001 433494437/3571*24476^(1/7) 5142290402089600 a001 121393/3571*64079^(20/23) 5142290402240498 a001 196418/3571*64079^(19/23) 5142290402258108 a001 317811/3571*64079^(18/23) 5142290402287656 a001 75025/3571*64079^(21/23) 5142290402326630 a001 514229/3571*64079^(17/23) 5142290402375705 a001 832040/3571*64079^(16/23) 5142290402430892 a001 701408733/3571*24476^(2/21) 5142290402432208 a001 1346269/3571*64079^(15/23) 5142290402485874 a001 2178309/3571*64079^(14/23) 5142290402540623 a001 3524578/3571*64079^(13/23) 5142290402594959 a001 1597*64079^(12/23) 5142290402649452 a001 9227465/3571*64079^(11/23) 5142290402703885 a001 14930352/3571*64079^(10/23) 5142290402758342 a001 24157817/3571*64079^(9/23) 5142290402769980 a001 46368/3571*7881196^(2/3) 5142290402770003 a001 1597/103682*141422324^(12/13) 5142290402770003 a001 1597/103682*2537720636^(4/5) 5142290402770003 a001 1597/103682*45537549124^(12/17) 5142290402770003 a001 1597/103682*14662949395604^(4/7) 5142290402770003 a001 1597/103682*(1/2+1/2*5^(1/2))^36 5142290402770003 a001 1597/103682*505019158607^(9/14) 5142290402770003 a001 1597/103682*192900153618^(2/3) 5142290402770003 a001 1597/103682*73681302247^(9/13) 5142290402770003 a001 1597/103682*10749957122^(3/4) 5142290402770003 a001 1597/103682*4106118243^(18/23) 5142290402770003 a001 1597/103682*1568397607^(9/11) 5142290402770003 a001 1597/103682*599074578^(6/7) 5142290402770003 a001 1597/103682*228826127^(9/10) 5142290402770004 a001 1597/103682*87403803^(18/19) 5142290402770035 a001 46368/3571*312119004989^(2/5) 5142290402770035 a001 46368/3571*(1/2+1/2*5^(1/2))^22 5142290402770035 a001 46368/3571*10749957122^(11/24) 5142290402770035 a001 46368/3571*4106118243^(11/23) 5142290402770035 a001 46368/3571*1568397607^(1/2) 5142290402770035 a001 46368/3571*599074578^(11/21) 5142290402770035 a001 46368/3571*228826127^(11/20) 5142290402770035 a001 46368/3571*87403803^(11/19) 5142290402770038 a001 46368/3571*33385282^(11/18) 5142290402770055 a001 46368/3571*12752043^(11/17) 5142290402770184 a001 46368/3571*4870847^(11/16) 5142290402771124 a001 46368/3571*1860498^(11/15) 5142290402778035 a001 46368/3571*710647^(11/14) 5142290402812789 a001 39088169/3571*64079^(8/23) 5142290402829089 a001 46368/3571*271443^(11/13) 5142290402839641 a001 1134903170/3571*24476^(1/21) 5142290402867240 a001 63245986/3571*64079^(7/23) 5142290402921690 a001 102334155/3571*64079^(6/23) 5142290402976140 a001 165580141/3571*64079^(5/23) 5142290403030590 a001 267914296/3571*64079^(4/23) 5142290403032426 a001 121393/3571*167761^(4/5) 5142290403065644 a001 38580033749/75025 5142290403085040 a001 433494437/3571*64079^(3/23) 5142290403139328 a001 1346269/3571*167761^(3/5) 5142290403139489 a001 701408733/3571*64079^(2/23) 5142290403175299 a001 14930352/3571*167761^(2/5) 5142290403178567 a001 1597/271443*817138163596^(2/3) 5142290403178567 a001 1597/271443*(1/2+1/2*5^(1/2))^38 5142290403178567 a001 1597/271443*10749957122^(19/24) 5142290403178567 a001 1597/271443*4106118243^(19/23) 5142290403178567 a001 1597/271443*1568397607^(19/22) 5142290403178567 a001 1597/271443*599074578^(19/21) 5142290403178567 a001 1597/271443*228826127^(19/20) 5142290403178591 a001 121393/3571*20633239^(4/7) 5142290403178598 a001 121393/3571*2537720636^(4/9) 5142290403178598 a001 121393/3571*(1/2+1/2*5^(1/2))^20 5142290403178598 a001 121393/3571*23725150497407^(5/16) 5142290403178598 a001 121393/3571*505019158607^(5/14) 5142290403178598 a001 121393/3571*73681302247^(5/13) 5142290403178598 a001 121393/3571*28143753123^(2/5) 5142290403178598 a001 121393/3571*10749957122^(5/12) 5142290403178598 a001 121393/3571*4106118243^(10/23) 5142290403178598 a001 121393/3571*1568397607^(5/11) 5142290403178598 a001 121393/3571*599074578^(10/21) 5142290403178598 a001 121393/3571*228826127^(1/2) 5142290403178599 a001 121393/3571*87403803^(10/19) 5142290403178601 a001 121393/3571*33385282^(5/9) 5142290403178617 a001 121393/3571*12752043^(10/17) 5142290403178734 a001 121393/3571*4870847^(5/8) 5142290403179589 a001 121393/3571*1860498^(2/3) 5142290403185871 a001 121393/3571*710647^(5/7) 5142290403193939 a001 1134903170/3571*64079^(1/23) 5142290403208526 a001 46368/3571*103682^(11/12) 5142290403211846 a001 165580141/3571*167761^(1/5) 5142290403220435 a001 317811/3571*439204^(2/3) 5142290403221700 a001 50501919821/98209 5142290403232284 a001 121393/3571*271443^(10/13) 5142290403234147 a001 1346269/3571*439204^(5/9) 5142290403236510 a001 1597*439204^(4/9) 5142290403238162 a001 317811/3571*7881196^(6/11) 5142290403238175 a001 1597/710647*2537720636^(8/9) 5142290403238175 a001 1597/710647*312119004989^(8/11) 5142290403238175 a001 1597/710647*(1/2+1/2*5^(1/2))^40 5142290403238175 a001 1597/710647*23725150497407^(5/8) 5142290403238175 a001 1597/710647*73681302247^(10/13) 5142290403238175 a001 1597/710647*28143753123^(4/5) 5142290403238175 a001 1597/710647*10749957122^(5/6) 5142290403238175 a001 1597/710647*4106118243^(20/23) 5142290403238175 a001 1597/710647*1568397607^(10/11) 5142290403238175 a001 1597/710647*599074578^(20/21) 5142290403238207 a001 317811/3571*141422324^(6/13) 5142290403238207 a001 317811/3571*2537720636^(2/5) 5142290403238207 a001 317811/3571*45537549124^(6/17) 5142290403238207 a001 317811/3571*14662949395604^(2/7) 5142290403238207 a001 317811/3571*(1/2+1/2*5^(1/2))^18 5142290403238207 a001 317811/3571*192900153618^(1/3) 5142290403238207 a001 317811/3571*10749957122^(3/8) 5142290403238207 a001 317811/3571*4106118243^(9/23) 5142290403238207 a001 317811/3571*1568397607^(9/22) 5142290403238207 a001 317811/3571*599074578^(3/7) 5142290403238207 a001 317811/3571*228826127^(9/20) 5142290403238207 a001 317811/3571*87403803^(9/19) 5142290403238209 a001 317811/3571*33385282^(1/2) 5142290403238224 a001 317811/3571*12752043^(9/17) 5142290403238329 a001 317811/3571*4870847^(9/16) 5142290403239098 a001 317811/3571*1860498^(3/5) 5142290403239505 a001 24157817/3571*439204^(1/3) 5142290403242465 a001 102334155/3571*439204^(2/9) 5142290403244468 a001 264431485177/514229 5142290403244753 a001 317811/3571*710647^(9/14) 5142290403245427 a001 433494437/3571*439204^(1/9) 5142290403246872 a001 1597/1860498*2537720636^(14/15) 5142290403246872 a001 1597/1860498*17393796001^(6/7) 5142290403246872 a001 1597/1860498*45537549124^(14/17) 5142290403246872 a001 1597/1860498*817138163596^(14/19) 5142290403246872 a001 1597/1860498*14662949395604^(2/3) 5142290403246872 a001 1597/1860498*(1/2+1/2*5^(1/2))^42 5142290403246872 a001 1597/1860498*505019158607^(3/4) 5142290403246872 a001 1597/1860498*192900153618^(7/9) 5142290403246872 a001 1597/1860498*10749957122^(7/8) 5142290403246872 a001 1597/1860498*4106118243^(21/23) 5142290403246872 a001 1597/1860498*1568397607^(21/22) 5142290403246904 a001 832040/3571*(1/2+1/2*5^(1/2))^16 5142290403246904 a001 832040/3571*23725150497407^(1/4) 5142290403246904 a001 832040/3571*73681302247^(4/13) 5142290403246904 a001 832040/3571*10749957122^(1/3) 5142290403246904 a001 832040/3571*4106118243^(8/23) 5142290403246904 a001 832040/3571*1568397607^(4/11) 5142290403246904 a001 832040/3571*599074578^(8/21) 5142290403246904 a001 832040/3571*228826127^(2/5) 5142290403246904 a001 832040/3571*87403803^(8/19) 5142290403246906 a001 832040/3571*33385282^(4/9) 5142290403246919 a001 832040/3571*12752043^(8/17) 5142290403247012 a001 832040/3571*4870847^(1/2) 5142290403247696 a001 832040/3571*1860498^(8/15) 5142290403247790 a001 692290615889/1346269 5142290403248141 a001 1597/4870847*312119004989^(4/5) 5142290403248141 a001 1597/4870847*(1/2+1/2*5^(1/2))^44 5142290403248141 a001 1597/4870847*23725150497407^(11/16) 5142290403248141 a001 1597/4870847*73681302247^(11/13) 5142290403248141 a001 1597/4870847*10749957122^(11/12) 5142290403248141 a001 1597/4870847*4106118243^(22/23) 5142290403248168 a001 2178309/3571*20633239^(2/5) 5142290403248173 a001 2178309/3571*17393796001^(2/7) 5142290403248173 a001 2178309/3571*14662949395604^(2/9) 5142290403248173 a001 2178309/3571*(1/2+1/2*5^(1/2))^14 5142290403248173 a001 2178309/3571*505019158607^(1/4) 5142290403248173 a001 2178309/3571*10749957122^(7/24) 5142290403248173 a001 2178309/3571*4106118243^(7/23) 5142290403248173 a001 2178309/3571*1568397607^(7/22) 5142290403248173 a001 2178309/3571*599074578^(1/3) 5142290403248173 a001 2178309/3571*228826127^(7/20) 5142290403248173 a001 2178309/3571*87403803^(7/19) 5142290403248174 a001 2178309/3571*33385282^(7/18) 5142290403248186 a001 2178309/3571*12752043^(7/17) 5142290403248267 a001 2178309/3571*4870847^(7/16) 5142290403248275 a001 906220181245/1762289 5142290403248326 a001 1597/12752043*(1/2+1/2*5^(1/2))^46 5142290403248326 a001 1597/12752043*10749957122^(23/24) 5142290403248328 a001 1597*7881196^(4/11) 5142290403248346 a001 4745030471581/9227465 5142290403248353 a001 1597/33385282*45537549124^(16/17) 5142290403248353 a001 1597/33385282*14662949395604^(16/21) 5142290403248353 a001 1597/33385282*(1/2+1/2*5^(1/2))^48 5142290403248353 a001 1597/33385282*192900153618^(8/9) 5142290403248353 a001 1597/33385282*73681302247^(12/13) 5142290403248356 a001 12422651052253/24157817 5142290403248357 a001 1597/87403803*312119004989^(10/11) 5142290403248357 a001 1597/87403803*3461452808002^(5/6) 5142290403248357 a001 16261461342589/31622993 5142290403248358 a001 1597/228826127*23725150497407^(13/16) 5142290403248358 a001 1597/228826127*505019158607^(13/14) 5142290403248358 a001 1597*141422324^(4/13) 5142290403248358 a001 85146117003281/165580141 5142290403248358 a001 1597/599074578*14662949395604^(6/7) 5142290403248358 a001 222915428324665/433494437 5142290403248358 a001 1597/1568397607*14662949395604^(8/9) 5142290403248358 a001 291800083985357/567451585 5142290403248358 a001 1597*2537720636^(4/15) 5142290403248358 a001 1527885075587477/2971215073 5142290403248358 a001 1597/10749957122*14662949395604^(20/21) 5142290403248358 a001 4000055058791717/7778742049 5142290403248358 a001 3278735159921/6376021 5142290403248358 a001 1597*45537549124^(4/17) 5142290403248358 a001 1597*817138163596^(4/19) 5142290403248358 a001 1597*14662949395604^(4/21) 5142290403248358 a001 1597*192900153618^(2/9) 5142290403248358 a001 1597*73681302247^(3/13) 5142290403248358 a001 5648168380927877/10983760033 5142290403248358 a001 6472225041995957/12586269025 5142290403248358 a001 1597*10749957122^(1/4) 5142290403248358 a001 17167847105585/33385604 5142290403248358 a001 1597*4106118243^(6/23) 5142290403248358 a001 944284907616763/1836311903 5142290403248358 a001 1597*1568397607^(3/11) 5142290403248358 a001 1597/2537720636*14662949395604^(19/21) 5142290403248358 a001 120228246548683/233802911 5142290403248358 a001 1597*599074578^(2/7) 5142290403248358 a001 1597/969323029*3461452808002^(11/12) 5142290403248358 a001 17221163915173/33489287 5142290403248358 a001 1597*228826127^(3/10) 5142290403248358 a001 17541064772701/34111385 5142290403248358 a001 1597*87403803^(6/19) 5142290403248358 a001 1597/141422324*817138163596^(17/19) 5142290403248358 a001 1597/141422324*14662949395604^(17/21) 5142290403248358 a001 1597/141422324*192900153618^(17/18) 5142290403248358 a001 20100271632925/39088169 5142290403248359 a001 1597*33385282^(1/3) 5142290403248359 a001 1597/54018521*14662949395604^(7/9) 5142290403248359 a001 1597/54018521*505019158607^(7/8) 5142290403248362 a001 53316809588/103683 5142290403248368 a001 24157817/3571*7881196^(3/11) 5142290403248369 a001 1597*12752043^(6/17) 5142290403248370 a001 1597/20633239*(1/2+1/2*5^(1/2))^47 5142290403248374 a001 9227465/3571*7881196^(1/3) 5142290403248374 a001 102334155/3571*7881196^(2/11) 5142290403248381 a001 14930352/3571*20633239^(2/7) 5142290403248382 a001 433494437/3571*7881196^(1/11) 5142290403248385 a001 14930352/3571*2537720636^(2/9) 5142290403248385 a001 14930352/3571*312119004989^(2/11) 5142290403248385 a001 14930352/3571*(1/2+1/2*5^(1/2))^10 5142290403248385 a001 14930352/3571*28143753123^(1/5) 5142290403248385 a001 14930352/3571*10749957122^(5/24) 5142290403248385 a001 14930352/3571*4106118243^(5/23) 5142290403248385 a001 14930352/3571*1568397607^(5/22) 5142290403248385 a001 14930352/3571*599074578^(5/21) 5142290403248385 a001 14930352/3571*228826127^(1/4) 5142290403248385 a001 14930352/3571*87403803^(5/19) 5142290403248386 a001 14930352/3571*33385282^(5/18) 5142290403248387 a001 63245986/3571*20633239^(1/5) 5142290403248388 a001 165580141/3571*20633239^(1/7) 5142290403248389 a001 39088169/3571*(1/2+1/2*5^(1/2))^8 5142290403248389 a001 39088169/3571*23725150497407^(1/8) 5142290403248389 a001 39088169/3571*505019158607^(1/7) 5142290403248389 a001 39088169/3571*73681302247^(2/13) 5142290403248389 a001 39088169/3571*10749957122^(1/6) 5142290403248389 a001 39088169/3571*4106118243^(4/23) 5142290403248389 a001 39088169/3571*1568397607^(2/11) 5142290403248389 a001 39088169/3571*599074578^(4/21) 5142290403248389 a001 39088169/3571*228826127^(1/5) 5142290403248389 a001 39088169/3571*87403803^(4/19) 5142290403248389 a001 102334155/3571*141422324^(2/13) 5142290403248389 a001 102334155/3571*2537720636^(2/15) 5142290403248389 a001 102334155/3571*45537549124^(2/17) 5142290403248389 a001 102334155/3571*14662949395604^(2/21) 5142290403248389 a001 102334155/3571*(1/2+1/2*5^(1/2))^6 5142290403248389 a001 102334155/3571*10749957122^(1/8) 5142290403248389 a001 102334155/3571*4106118243^(3/23) 5142290403248389 a001 102334155/3571*1568397607^(3/22) 5142290403248389 a001 102334155/3571*599074578^(1/7) 5142290403248389 a001 102334155/3571*228826127^(3/20) 5142290403248389 a001 267914296/3571*(1/2+1/2*5^(1/2))^4 5142290403248389 a001 267914296/3571*23725150497407^(1/16) 5142290403248389 a001 267914296/3571*73681302247^(1/13) 5142290403248389 a001 267914296/3571*10749957122^(1/12) 5142290403248389 a001 433494437/3571*141422324^(1/13) 5142290403248389 a001 267914296/3571*4106118243^(2/23) 5142290403248389 a001 267914296/3571*1568397607^(1/11) 5142290403248389 a001 267914296/3571*599074578^(2/21) 5142290403248389 a001 267914296/3571*228826127^(1/10) 5142290403248389 a001 701408733/3571*(1/2+1/2*5^(1/2))^2 5142290403248389 a001 701408733/3571*10749957122^(1/24) 5142290403248389 a001 701408733/3571*4106118243^(1/23) 5142290403248389 a001 701408733/3571*1568397607^(1/22) 5142290403248389 a001 701408733/3571*599074578^(1/21) 5142290403248389 a001 1836311903/3571 5142290403248389 a001 567451585/3571+567451585/3571*5^(1/2) 5142290403248389 a001 701408733/3571*228826127^(1/20) 5142290403248389 a001 433494437/3571*2537720636^(1/15) 5142290403248389 a001 433494437/3571*45537549124^(1/17) 5142290403248389 a001 433494437/3571*14662949395604^(1/21) 5142290403248389 a001 433494437/3571*(1/2+1/2*5^(1/2))^3 5142290403248389 a001 433494437/3571*192900153618^(1/18) 5142290403248389 a001 433494437/3571*10749957122^(1/16) 5142290403248389 a001 433494437/3571*599074578^(1/14) 5142290403248389 a001 102334155/3571*87403803^(3/19) 5142290403248389 a001 701408733/3571*87403803^(1/19) 5142290403248389 a001 165580141/3571*2537720636^(1/9) 5142290403248389 a001 165580141/3571*312119004989^(1/11) 5142290403248389 a001 165580141/3571*(1/2+1/2*5^(1/2))^5 5142290403248389 a001 165580141/3571*28143753123^(1/10) 5142290403248389 a001 165580141/3571*228826127^(1/8) 5142290403248389 a001 267914296/3571*87403803^(2/19) 5142290403248390 a001 701408733/3571*33385282^(1/18) 5142290403248390 a001 63245986/3571*17393796001^(1/7) 5142290403248390 a001 63245986/3571*14662949395604^(1/9) 5142290403248390 a001 63245986/3571*(1/2+1/2*5^(1/2))^7 5142290403248390 a001 63245986/3571*599074578^(1/6) 5142290403248390 a001 39088169/3571*33385282^(2/9) 5142290403248390 a001 433494437/3571*33385282^(1/12) 5142290403248390 a001 267914296/3571*33385282^(1/9) 5142290403248390 a001 102334155/3571*33385282^(1/6) 5142290403248391 a001 24157817/3571*141422324^(3/13) 5142290403248391 a001 24157817/3571*2537720636^(1/5) 5142290403248391 a001 24157817/3571*45537549124^(3/17) 5142290403248391 a001 24157817/3571*14662949395604^(1/7) 5142290403248391 a001 24157817/3571*(1/2+1/2*5^(1/2))^9 5142290403248391 a001 24157817/3571*192900153618^(1/6) 5142290403248391 a001 24157817/3571*10749957122^(3/16) 5142290403248391 a001 24157817/3571*599074578^(3/14) 5142290403248391 a001 701408733/3571*12752043^(1/17) 5142290403248392 a001 24157817/3571*33385282^(1/4) 5142290403248393 a001 267914296/3571*12752043^(2/17) 5142290403248394 a001 14930352/3571*12752043^(5/17) 5142290403248395 a001 102334155/3571*12752043^(3/17) 5142290403248396 a001 39088169/3571*12752043^(4/17) 5142290403248401 a001 9227465/3571*312119004989^(1/5) 5142290403248401 a001 9227465/3571*(1/2+1/2*5^(1/2))^11 5142290403248401 a001 9227465/3571*1568397607^(1/4) 5142290403248403 a001 701408733/3571*4870847^(1/16) 5142290403248416 a001 267914296/3571*4870847^(1/8) 5142290403248430 a001 102334155/3571*4870847^(3/16) 5142290403248439 a001 1597*4870847^(3/8) 5142290403248440 a001 1597/7881196*45537549124^(15/17) 5142290403248440 a001 1597/7881196*312119004989^(9/11) 5142290403248440 a001 1597/7881196*14662949395604^(5/7) 5142290403248440 a001 1597/7881196*(1/2+1/2*5^(1/2))^45 5142290403248440 a001 1597/7881196*192900153618^(5/6) 5142290403248440 a001 1597/7881196*28143753123^(9/10) 5142290403248440 a001 1597/7881196*10749957122^(15/16) 5142290403248443 a001 39088169/3571*4870847^(1/4) 5142290403248452 a001 14930352/3571*4870847^(5/16) 5142290403248472 a001 3524578/3571*141422324^(1/3) 5142290403248472 a001 3524578/3571*(1/2+1/2*5^(1/2))^13 5142290403248472 a001 3524578/3571*73681302247^(1/4) 5142290403248488 a001 701408733/3571*1860498^(1/15) 5142290403248538 a001 433494437/3571*1860498^(1/10) 5142290403248574 a001 373383248867/726103 5142290403248587 a001 267914296/3571*1860498^(2/15) 5142290403248637 a001 165580141/3571*1860498^(1/6) 5142290403248686 a001 102334155/3571*1860498^(1/5) 5142290403248785 a001 39088169/3571*1860498^(4/15) 5142290403248837 a001 24157817/3571*1860498^(3/10) 5142290403248866 a001 2178309/3571*1860498^(7/15) 5142290403248880 a001 14930352/3571*1860498^(1/3) 5142290403248919 a001 1346269/3571*7881196^(5/11) 5142290403248925 a001 1597/3010349*(1/2+1/2*5^(1/2))^43 5142290403248952 a001 1346269/3571*20633239^(3/7) 5142290403248952 a001 1597*1860498^(2/5) 5142290403248957 a001 1346269/3571*141422324^(5/13) 5142290403248957 a001 1346269/3571*2537720636^(1/3) 5142290403248957 a001 1346269/3571*45537549124^(5/17) 5142290403248957 a001 1346269/3571*312119004989^(3/11) 5142290403248957 a001 1346269/3571*14662949395604^(5/21) 5142290403248957 a001 1346269/3571*(1/2+1/2*5^(1/2))^15 5142290403248957 a001 1346269/3571*192900153618^(5/18) 5142290403248957 a001 1346269/3571*28143753123^(3/10) 5142290403248957 a001 1346269/3571*10749957122^(5/16) 5142290403248957 a001 1346269/3571*599074578^(5/14) 5142290403248957 a001 1346269/3571*228826127^(3/8) 5142290403248959 a001 1346269/3571*33385282^(5/12) 5142290403249117 a001 701408733/3571*710647^(1/14) 5142290403249700 a001 1346269/3571*1860498^(1/2) 5142290403249843 a001 53482391339/104005 5142290403249844 a001 267914296/3571*710647^(1/7) 5142290403250571 a001 102334155/3571*710647^(3/14) 5142290403250935 a001 63245986/3571*710647^(1/4) 5142290403251298 a001 39088169/3571*710647^(2/7) 5142290403252021 a001 14930352/3571*710647^(5/14) 5142290403252247 a001 1597/1149851*(1/2+1/2*5^(1/2))^41 5142290403252279 a001 514229/3571*45537549124^(1/3) 5142290403252279 a001 514229/3571*(1/2+1/2*5^(1/2))^17 5142290403252294 a001 514229/3571*12752043^(1/2) 5142290403252722 a001 1597*710647^(3/7) 5142290403252722 a001 832040/3571*710647^(4/7) 5142290403253264 a001 2178309/3571*710647^(1/2) 5142290403253758 a001 701408733/3571*271443^(1/13) 5142290403258540 a001 54475881845/105937 5142290403259126 a001 267914296/3571*271443^(2/13) 5142290403264495 a001 102334155/3571*271443^(3/13) 5142290403268321 a001 1134903170/3571*103682^(1/24) 5142290403269863 a001 39088169/3571*271443^(4/13) 5142290403275015 a001 1597/439204*2537720636^(13/15) 5142290403275015 a001 1597/439204*45537549124^(13/17) 5142290403275015 a001 1597/439204*14662949395604^(13/21) 5142290403275015 a001 1597/439204*(1/2+1/2*5^(1/2))^39 5142290403275015 a001 1597/439204*192900153618^(13/18) 5142290403275015 a001 1597/439204*73681302247^(3/4) 5142290403275015 a001 1597/439204*10749957122^(13/16) 5142290403275015 a001 1597/439204*599074578^(13/14) 5142290403275047 a001 196418/3571*817138163596^(1/3) 5142290403275047 a001 196418/3571*(1/2+1/2*5^(1/2))^19 5142290403275047 a001 196418/3571*87403803^(1/2) 5142290403275227 a001 14930352/3571*271443^(5/13) 5142290403280569 a001 1597*271443^(6/13) 5142290403283368 a001 3524578/3571*271443^(1/2) 5142290403285752 a001 2178309/3571*271443^(7/13) 5142290403286524 a001 317811/3571*271443^(9/13) 5142290403288252 a001 701408733/3571*103682^(1/12) 5142290403289852 a001 832040/3571*271443^(8/13) 5142290403308184 a001 433494437/3571*103682^(1/8) 5142290403318148 a001 62423805893/121393 5142290403328115 a001 267914296/3571*103682^(1/6) 5142290403348047 a001 165580141/3571*103682^(5/24) 5142290403367978 a001 102334155/3571*103682^(1/4) 5142290403387910 a001 63245986/3571*103682^(7/24) 5142290403397421 a001 1134903170/3571*39603^(1/22) 5142290403407840 a001 39088169/3571*103682^(1/3) 5142290403410371 a001 75025/3571*439204^(7/9) 5142290403427774 a001 24157817/3571*103682^(3/8) 5142290403431052 a001 75025/3571*7881196^(7/11) 5142290403431073 a001 1597/167761*(1/2+1/2*5^(1/2))^37 5142290403431097 a001 75025/3571*20633239^(3/5) 5142290403431104 a001 75025/3571*141422324^(7/13) 5142290403431104 a001 75025/3571*2537720636^(7/15) 5142290403431104 a001 75025/3571*17393796001^(3/7) 5142290403431104 a001 75025/3571*45537549124^(7/17) 5142290403431104 a001 75025/3571*14662949395604^(1/3) 5142290403431104 a001 75025/3571*(1/2+1/2*5^(1/2))^21 5142290403431104 a001 75025/3571*192900153618^(7/18) 5142290403431104 a001 75025/3571*10749957122^(7/16) 5142290403431104 a001 75025/3571*599074578^(1/2) 5142290403431107 a001 75025/3571*33385282^(7/12) 5142290403432144 a001 75025/3571*1860498^(7/10) 5142290403438741 a001 75025/3571*710647^(3/4) 5142290403447699 a001 14930352/3571*103682^(5/12) 5142290403467647 a001 9227465/3571*103682^(11/24) 5142290403487535 a001 1597*103682^(1/2) 5142290403507581 a001 3524578/3571*103682^(13/24) 5142290403527213 a001 2178309/3571*103682^(7/12) 5142290403546452 a001 701408733/3571*39603^(1/11) 5142290403547928 a001 1346269/3571*103682^(5/8) 5142290403565807 a001 832040/3571*103682^(2/3) 5142290403577227 a001 121393/3571*103682^(5/6) 5142290403591113 a001 514229/3571*103682^(17/24) 5142290403596973 a001 317811/3571*103682^(3/4) 5142290403653744 a001 196418/3571*103682^(19/24) 5142290403695483 a001 433494437/3571*39603^(3/22) 5142290403726708 a001 165581751/322 5142290403844515 a001 267914296/3571*39603^(2/11) 5142290403849665 a001 75025/3571*103682^(7/8) 5142290403993546 a001 165580141/3571*39603^(5/22) 5142290404142578 a001 102334155/3571*39603^(3/11) 5142290404291609 a001 63245986/3571*39603^(7/22) 5142290404372013 a001 1134903170/3571*15127^(1/20) 5142290404440640 a001 39088169/3571*39603^(4/11) 5142290404477842 a001 701408733/24476*2207^(3/8) 5142290404500706 a001 1597/64079*2537720636^(7/9) 5142290404500706 a001 1597/64079*17393796001^(5/7) 5142290404500706 a001 1597/64079*312119004989^(7/11) 5142290404500706 a001 1597/64079*14662949395604^(5/9) 5142290404500706 a001 1597/64079*(1/2+1/2*5^(1/2))^35 5142290404500706 a001 1597/64079*505019158607^(5/8) 5142290404500706 a001 1597/64079*28143753123^(7/10) 5142290404500706 a001 1597/64079*599074578^(5/6) 5142290404500706 a001 1597/64079*228826127^(7/8) 5142290404500738 a001 28657/3571*(1/2+1/2*5^(1/2))^23 5142290404500738 a001 28657/3571*4106118243^(1/2) 5142290404589674 a001 24157817/3571*39603^(9/22) 5142290404738699 a001 14930352/3571*39603^(5/11) 5142290404887747 a001 9227465/3571*39603^(1/2) 5142290404959161 a001 28657/3571*103682^(23/24) 5142290405036734 a001 1597*39603^(6/11) 5142290405185880 a001 3524578/3571*39603^(13/22) 5142290405334612 a001 2178309/3571*39603^(7/11) 5142290405484428 a001 1346269/3571*39603^(15/22) 5142290405495637 a001 701408733/3571*15127^(1/10) 5142290405631406 a001 832040/3571*39603^(8/11) 5142290405785812 a001 514229/3571*39603^(17/22) 5142290405920772 a001 317811/3571*39603^(9/11) 5142290406106643 a001 196418/3571*39603^(19/22) 5142290406159226 a001 121393/3571*39603^(10/11) 5142290406527017 a001 9107510539/17711 5142290406560764 a001 75025/3571*39603^(21/22) 5142290406619261 a001 433494437/3571*15127^(3/20) 5142290407742885 a001 267914296/3571*15127^(1/5) 5142290408866509 a001 165580141/3571*15127^(1/4) 5142290409990133 a001 102334155/3571*15127^(3/10) 5142290411113757 a001 63245986/3571*15127^(7/20) 5142290411805537 a001 1134903170/3571*5778^(1/18) 5142290411832081 a001 1597/24476*141422324^(11/13) 5142290411832081 a001 1597/24476*2537720636^(11/15) 5142290411832081 a001 1597/24476*45537549124^(11/17) 5142290411832081 a001 1597/24476*312119004989^(3/5) 5142290411832081 a001 1597/24476*817138163596^(11/19) 5142290411832081 a001 1597/24476*14662949395604^(11/21) 5142290411832081 a001 1597/24476*(1/2+1/2*5^(1/2))^33 5142290411832081 a001 1597/24476*192900153618^(11/18) 5142290411832081 a001 1597/24476*10749957122^(11/16) 5142290411832081 a001 1597/24476*1568397607^(3/4) 5142290411832081 a001 1597/24476*599074578^(11/14) 5142290411832085 a001 1597/24476*33385282^(11/12) 5142290411832104 a001 10946/3571*20633239^(5/7) 5142290411832113 a001 10946/3571*2537720636^(5/9) 5142290411832113 a001 10946/3571*312119004989^(5/11) 5142290411832113 a001 10946/3571*(1/2+1/2*5^(1/2))^25 5142290411832113 a001 10946/3571*3461452808002^(5/12) 5142290411832113 a001 10946/3571*28143753123^(1/2) 5142290411832113 a001 10946/3571*228826127^(5/8) 5142290411833351 a001 10946/3571*1860498^(5/6) 5142290412237380 a001 39088169/3571*15127^(2/5) 5142290413361007 a001 24157817/3571*15127^(9/20) 5142290414484624 a001 14930352/3571*15127^(1/2) 5142290415499087 a001 311187/46*18^(40/57) 5142290415608265 a001 9227465/3571*15127^(11/20) 5142290416731845 a001 1597*15127^(3/5) 5142290417855584 a001 3524578/3571*15127^(13/20) 5142290418978908 a001 2178309/3571*15127^(7/10) 5142290419715702 a007 Real Root Of -237*x^4+201*x^3+279*x^2+384*x-282 5142290419772604 a001 1/322*(1/2*5^(1/2)+1/2)^15*3^(3/17) 5142290420103316 a001 1346269/3571*15127^(3/4) 5142290420362685 a001 701408733/3571*5778^(1/9) 5142290421224887 a001 832040/3571*15127^(4/5) 5142290422353886 a001 514229/3571*15127^(17/20) 5142290423463438 a001 317811/3571*15127^(9/10) 5142290424623902 a001 196418/3571*15127^(19/20) 5142290425720620 a001 1159586491/2255 5142290427458955 m001 (Rabbit-Totient)/(Zeta(1/2)+Khinchin) 5142290428919833 a001 433494437/3571*5778^(1/6) 5142290429838720 m001 (Niven+Rabbit)/(Kolakoski-sin(1)) 5142290437476981 a001 267914296/3571*5778^(2/9) 5142290439404643 a001 267914296/15127*2207^(7/16) 5142290439814468 a001 39088169/5778*2207^(9/16) 5142290445601709 r005 Re(z^2+c),c=-15/28+31/53*I,n=51 5142290446034129 a001 165580141/3571*5778^(5/18) 5142290449619800 k002 Champernowne real with 11/2*n^2+241/2*n-121 5142290452906093 r009 Im(z^3+c),c=-65/122+5/16*I,n=44 5142290454591277 a001 102334155/3571*5778^(1/3) 5142290454727834 a001 267914296/9349*2207^(3/8) 5142290458598432 a001 17711*2207^(7/16) 5142290461398768 a001 1836311903/103682*2207^(7/16) 5142290461807332 a001 1602508992/90481*2207^(7/16) 5142290461866941 a001 12586269025/710647*2207^(7/16) 5142290461875637 a001 10983760033/620166*2207^(7/16) 5142290461876906 a001 86267571272/4870847*2207^(7/16) 5142290461877091 a001 75283811239/4250681*2207^(7/16) 5142290461877118 a001 591286729879/33385282*2207^(7/16) 5142290461877122 a001 516002918640/29134601*2207^(7/16) 5142290461877123 a001 4052739537881/228826127*2207^(7/16) 5142290461877123 a001 3536736619241/199691526*2207^(7/16) 5142290461877123 a001 6557470319842/370248451*2207^(7/16) 5142290461877123 a001 2504730781961/141422324*2207^(7/16) 5142290461877125 a001 956722026041/54018521*2207^(7/16) 5142290461877135 a001 365435296162/20633239*2207^(7/16) 5142290461877206 a001 139583862445/7881196*2207^(7/16) 5142290461877690 a001 53316291173/3010349*2207^(7/16) 5142290461881012 a001 20365011074/1149851*2207^(7/16) 5142290461903781 a001 7778742049/439204*2207^(7/16) 5142290462059838 a001 2971215073/167761*2207^(7/16) 5142290462082036 a001 4181/3571*7881196^(9/11) 5142290462082073 a001 1597/9349*(1/2+1/2*5^(1/2))^31 5142290462082073 a001 1597/9349*9062201101803^(1/2) 5142290462082104 a001 4181/3571*141422324^(9/13) 5142290462082104 a001 4181/3571*2537720636^(3/5) 5142290462082104 a001 4181/3571*45537549124^(9/17) 5142290462082104 a001 4181/3571*817138163596^(9/19) 5142290462082104 a001 4181/3571*14662949395604^(3/7) 5142290462082104 a001 4181/3571*(1/2+1/2*5^(1/2))^27 5142290462082104 a001 4181/3571*192900153618^(1/2) 5142290462082104 a001 4181/3571*10749957122^(9/16) 5142290462082104 a001 4181/3571*599074578^(9/14) 5142290462082107 a001 4181/3571*33385282^(3/4) 5142290462083441 a001 4181/3571*1860498^(9/10) 5142290463129471 a001 1134903170/64079*2207^(7/16) 5142290463148425 a001 63245986/3571*5778^(7/18) 5142290467421015 r009 Im(z^3+c),c=-11/18+25/47*I,n=31 5142290469231394 a001 1134903170/3571*2207^(1/16) 5142290470460846 a001 433494437/24476*2207^(7/16) 5142290471705572 a001 39088169/3571*5778^(4/9) 5142290472116736 r005 Im(z^2+c),c=-1/62+36/59*I,n=40 5142290480262723 a001 24157817/3571*5778^(1/2) 5142290488819864 a001 14930352/3571*5778^(5/9) 5142290494385291 a001 686789568/2161*843^(1/14) 5142290494843005 r005 Re(z^2+c),c=-61/46+3/40*I,n=33 5142290494853057 a001 267914296/2207*843^(3/14) 5142290497377029 a001 9227465/3571*5778^(11/18) 5142290505387648 a001 165580141/15127*2207^(1/2) 5142290505797475 a001 24157817/5778*2207^(5/8) 5142290505934134 a001 1597*5778^(2/3) 5142290513579080 a001 12586269025/39603*843^(1/14) 5142290514491396 a001 3524578/3571*5778^(13/18) 5142290516379416 a001 32951280099/103682*843^(1/14) 5142290516787980 a001 86267571272/271443*843^(1/14) 5142290516847589 a001 317811*843^(1/14) 5142290516856285 a001 591286729879/1860498*843^(1/14) 5142290516857554 a001 1548008755920/4870847*843^(1/14) 5142290516857739 a001 4052739537881/12752043*843^(1/14) 5142290516857766 a001 1515744265389/4769326*843^(1/14) 5142290516857783 a001 6557470319842/20633239*843^(1/14) 5142290516857854 a001 2504730781961/7881196*843^(1/14) 5142290516858338 a001 956722026041/3010349*843^(1/14) 5142290516861660 a001 365435296162/1149851*843^(1/14) 5142290516884429 a001 139583862445/439204*843^(1/14) 5142290517040486 a001 53316291173/167761*843^(1/14) 5142290518110119 a001 20365011074/64079*843^(1/14) 5142290520710839 a001 165580141/9349*2207^(7/16) 5142290523048245 a001 2178309/3571*5778^(7/9) 5142290523191911 m005 (1/2*gamma+2/3)/(6*Pi-3/11) 5142290524581437 a001 433494437/39603*2207^(1/2) 5142290524832697 a007 Real Root Of -204*x^4-824*x^3+947*x^2-950*x+672 5142290525441494 a001 7778742049/24476*843^(1/14) 5142290527381774 a001 567451585/51841*2207^(1/2) 5142290527790337 a001 2971215073/271443*2207^(1/2) 5142290527849946 a001 7778742049/710647*2207^(1/2) 5142290527858643 a001 10182505537/930249*2207^(1/2) 5142290527859911 a001 53316291173/4870847*2207^(1/2) 5142290527860096 a001 139583862445/12752043*2207^(1/2) 5142290527860123 a001 182717648081/16692641*2207^(1/2) 5142290527860127 a001 956722026041/87403803*2207^(1/2) 5142290527860128 a001 2504730781961/228826127*2207^(1/2) 5142290527860128 a001 3278735159921/299537289*2207^(1/2) 5142290527860128 a001 10610209857723/969323029*2207^(1/2) 5142290527860128 a001 4052739537881/370248451*2207^(1/2) 5142290527860128 a001 387002188980/35355581*2207^(1/2) 5142290527860130 a001 591286729879/54018521*2207^(1/2) 5142290527860140 a001 7787980473/711491*2207^(1/2) 5142290527860211 a001 21566892818/1970299*2207^(1/2) 5142290527860696 a001 32951280099/3010349*2207^(1/2) 5142290527864017 a001 12586269025/1149851*2207^(1/2) 5142290527886786 a001 1201881744/109801*2207^(1/2) 5142290528042843 a001 1836311903/167761*2207^(1/2) 5142290529112476 a001 701408733/64079*2207^(1/2) 5142290531606177 a001 1346269/3571*5778^(5/6) 5142290535214399 a001 701408733/3571*2207^(1/8) 5142290536443852 a001 10946*2207^(1/2) 5142290538541440 a007 Real Root Of -980*x^4+115*x^3-920*x^2+707*x+691 5142290540161272 a001 832040/3571*5778^(8/9) 5142290548723795 a001 514229/3571*5778^(17/18) 5142290550718541 a007 Real Root Of -629*x^4+178*x^3-925*x^2+753*x+700 5142290552782476 a001 2178309/1364*1364^(4/5) 5142290557275541 a001 166095985/323 5142290566116250 m008 (Pi-1/5)/(1/5*Pi^5-4) 5142290571370654 a001 6765*2207^(9/16) 5142290571780475 a001 2584*2207^(11/16) 5142290574603338 a007 Real Root Of 128*x^4+578*x^3-522*x^2-640*x-395 5142290575691487 a001 2971215073/9349*843^(1/14) 5142290584164984 a001 281*3524578^(22/23) 5142290586693845 a001 102334155/9349*2207^(1/2) 5142290587826536 r009 Im(z^3+c),c=-5/62+11/17*I,n=41 5142290590564443 a001 267914296/39603*2207^(9/16) 5142290590603512 m001 (Ei(1)+MertensB2)/(Psi(2,1/3)-Si(Pi)) 5142290593364780 a001 701408733/103682*2207^(9/16) 5142290593773343 a001 1836311903/271443*2207^(9/16) 5142290593832952 a001 686789568/101521*2207^(9/16) 5142290593841649 a001 12586269025/1860498*2207^(9/16) 5142290593842917 a001 32951280099/4870847*2207^(9/16) 5142290593843103 a001 86267571272/12752043*2207^(9/16) 5142290593843130 a001 32264490531/4769326*2207^(9/16) 5142290593843133 a001 591286729879/87403803*2207^(9/16) 5142290593843134 a001 1548008755920/228826127*2207^(9/16) 5142290593843134 a001 4052739537881/599074578*2207^(9/16) 5142290593843134 a001 1515744265389/224056801*2207^(9/16) 5142290593843134 a001 6557470319842/969323029*2207^(9/16) 5142290593843134 a001 2504730781961/370248451*2207^(9/16) 5142290593843134 a001 956722026041/141422324*2207^(9/16) 5142290593843136 a001 365435296162/54018521*2207^(9/16) 5142290593843146 a001 139583862445/20633239*2207^(9/16) 5142290593843217 a001 53316291173/7881196*2207^(9/16) 5142290593843702 a001 20365011074/3010349*2207^(9/16) 5142290593847023 a001 7778742049/1149851*2207^(9/16) 5142290593869792 a001 2971215073/439204*2207^(9/16) 5142290594025849 a001 1134903170/167761*2207^(9/16) 5142290595095483 a001 433494437/64079*2207^(9/16) 5142290595416733 r002 16th iterates of z^2 + 5142290601197405 a001 433494437/3571*2207^(3/16) 5142290602426858 a001 165580141/24476*2207^(9/16) 5142290625336198 a001 281/2255*89^(6/19) 5142290637353661 a001 63245986/15127*2207^(5/8) 5142290637763498 a001 9227465/5778*2207^(3/4) 5142290638289635 m001 1/GAMMA(5/6)^2/ln(OneNinth)*Zeta(1/2) 5142290647673231 m001 1/BesselJ(1,1)^2*Riemann1stZero^2/ln(Zeta(9)) 5142290652676852 a001 63245986/9349*2207^(9/16) 5142290656547450 a001 165580141/39603*2207^(5/8) 5142290659347787 a001 433494437/103682*2207^(5/8) 5142290659756350 a001 1134903170/271443*2207^(5/8) 5142290659815959 a001 2971215073/710647*2207^(5/8) 5142290659824655 a001 7778742049/1860498*2207^(5/8) 5142290659825924 a001 20365011074/4870847*2207^(5/8) 5142290659826109 a001 53316291173/12752043*2207^(5/8) 5142290659826136 a001 139583862445/33385282*2207^(5/8) 5142290659826140 a001 365435296162/87403803*2207^(5/8) 5142290659826141 a001 956722026041/228826127*2207^(5/8) 5142290659826141 a001 2504730781961/599074578*2207^(5/8) 5142290659826141 a001 6557470319842/1568397607*2207^(5/8) 5142290659826141 a001 10610209857723/2537720636*2207^(5/8) 5142290659826141 a001 4052739537881/969323029*2207^(5/8) 5142290659826141 a001 1548008755920/370248451*2207^(5/8) 5142290659826141 a001 591286729879/141422324*2207^(5/8) 5142290659826143 a001 225851433717/54018521*2207^(5/8) 5142290659826153 a001 86267571272/20633239*2207^(5/8) 5142290659826224 a001 32951280099/7881196*2207^(5/8) 5142290659826708 a001 12586269025/3010349*2207^(5/8) 5142290659830030 a001 4807526976/1149851*2207^(5/8) 5142290659852799 a001 1836311903/439204*2207^(5/8) 5142290660008856 a001 701408733/167761*2207^(5/8) 5142290661078489 a001 267914296/64079*2207^(5/8) 5142290664966969 a007 Real Root Of -140*x^4-534*x^3+829*x^2-821*x-862 5142290666771675 m005 (-2/3+1/4*5^(1/2))/(169/132+4/11*5^(1/2)) 5142290667180412 a001 267914296/3571*2207^(1/4) 5142290668409865 a001 102334155/24476*2207^(5/8) 5142290689246341 r005 Im(z^2+c),c=-11/17+22/53*I,n=38 5142290689343702 m005 (1/2*gamma+4/9)/(5/9*Catalan+11/12) 5142290703336667 a001 39088169/15127*2207^(11/16) 5142290703746462 a001 5702887/5778*2207^(13/16) 5142290707161004 p003 LerchPhi(1/100,1,231/118) 5142290709792148 r005 Re(z^2+c),c=17/122+47/63*I,n=4 5142290710860606 a007 Real Root Of 397*x^4+683*x^3+272*x^2-716*x-375 5142290718659859 a001 4181*2207^(5/8) 5142290722530458 a001 34111385/13201*2207^(11/16) 5142290725330794 a001 133957148/51841*2207^(11/16) 5142290725739358 a001 233802911/90481*2207^(11/16) 5142290725798966 a001 1836311903/710647*2207^(11/16) 5142290725807663 a001 267084832/103361*2207^(11/16) 5142290725808932 a001 12586269025/4870847*2207^(11/16) 5142290725809117 a001 10983760033/4250681*2207^(11/16) 5142290725809144 a001 43133785636/16692641*2207^(11/16) 5142290725809148 a001 75283811239/29134601*2207^(11/16) 5142290725809149 a001 591286729879/228826127*2207^(11/16) 5142290725809149 a001 86000486440/33281921*2207^(11/16) 5142290725809149 a001 4052739537881/1568397607*2207^(11/16) 5142290725809149 a001 3536736619241/1368706081*2207^(11/16) 5142290725809149 a001 3278735159921/1268860318*2207^(11/16) 5142290725809149 a001 2504730781961/969323029*2207^(11/16) 5142290725809149 a001 956722026041/370248451*2207^(11/16) 5142290725809149 a001 182717648081/70711162*2207^(11/16) 5142290725809151 a001 139583862445/54018521*2207^(11/16) 5142290725809161 a001 53316291173/20633239*2207^(11/16) 5142290725809232 a001 10182505537/3940598*2207^(11/16) 5142290725809716 a001 7778742049/3010349*2207^(11/16) 5142290725813038 a001 2971215073/1149851*2207^(11/16) 5142290725835807 a001 567451585/219602*2207^(11/16) 5142290725991864 a001 433494437/167761*2207^(11/16) 5142290727061497 a001 165580141/64079*2207^(11/16) 5142290733163420 a001 165580141/3571*2207^(5/16) 5142290734392873 a001 31622993/12238*2207^(11/16) 5142290737044983 a001 1762289/682*1364^(11/15) 5142290743046184 m001 ZetaP(4)/(FibonacciFactorial-exp(1)) 5142290753006507 a003 cos(Pi*6/19)-cos(Pi*47/96) 5142290761088025 a007 Real Root Of 887*x^4-117*x^3-152*x^2-932*x-517 5142290763564871 m001 (3^(1/3))^ln(1+sqrt(2))/Khinchin 5142290763564871 m001 (3^(1/3))^ln(2^(1/2)+1)/Khinchin 5142290765350722 r005 Re(z^2+c),c=-9/23+31/53*I,n=8 5142290769319678 a001 24157817/15127*2207^(3/4) 5142290769729584 a001 1762289/2889*2207^(7/8) 5142290773474958 a007 Real Root Of -622*x^4-7*x^3+593*x^2+361*x-298 5142290774791777 a007 Real Root Of 138*x^4+660*x^3-125*x^2+675*x+27 5142290784642870 a001 24157817/9349*2207^(11/16) 5142290788513467 a001 63245986/39603*2207^(3/4) 5142290791313803 a001 165580141/103682*2207^(3/4) 5142290791722366 a001 433494437/271443*2207^(3/4) 5142290791781975 a001 1134903170/710647*2207^(3/4) 5142290791790672 a001 2971215073/1860498*2207^(3/4) 5142290791791941 a001 7778742049/4870847*2207^(3/4) 5142290791792126 a001 20365011074/12752043*2207^(3/4) 5142290791792153 a001 53316291173/33385282*2207^(3/4) 5142290791792157 a001 139583862445/87403803*2207^(3/4) 5142290791792157 a001 365435296162/228826127*2207^(3/4) 5142290791792157 a001 956722026041/599074578*2207^(3/4) 5142290791792157 a001 2504730781961/1568397607*2207^(3/4) 5142290791792157 a001 6557470319842/4106118243*2207^(3/4) 5142290791792157 a001 10610209857723/6643838879*2207^(3/4) 5142290791792157 a001 4052739537881/2537720636*2207^(3/4) 5142290791792157 a001 1548008755920/969323029*2207^(3/4) 5142290791792157 a001 591286729879/370248451*2207^(3/4) 5142290791792158 a001 225851433717/141422324*2207^(3/4) 5142290791792159 a001 86267571272/54018521*2207^(3/4) 5142290791792169 a001 32951280099/20633239*2207^(3/4) 5142290791792240 a001 12586269025/7881196*2207^(3/4) 5142290791792725 a001 4807526976/3010349*2207^(3/4) 5142290791796047 a001 1836311903/1149851*2207^(3/4) 5142290791818815 a001 701408733/439204*2207^(3/4) 5142290791974873 a001 267914296/167761*2207^(3/4) 5142290793044506 a001 102334155/64079*2207^(3/4) 5142290799146429 a001 102334155/3571*2207^(3/8) 5142290800375881 a001 39088169/24476*2207^(3/4) 5142290801381838 a007 Real Root Of -293*x^4+252*x^3+595*x^2+814*x+316 5142290803027228 r008 a(0)=2,K{-n^6,14+33*n^3+9*n^2-56*n} 5142290806500668 a001 1597/3571*(1/2+1/2*5^(1/2))^29 5142290806500668 a001 1597/3571*1322157322203^(1/2) 5142290806897506 m001 (OneNinth-Riemann1stZero)/(ln(2)-cos(1/12*Pi)) 5142290814269512 m001 gamma(3)^cos(1)*Backhouse 5142290817587741 r009 Re(z^3+c),c=-41/74+27/41*I,n=29 5142290824483031 a007 Real Root Of 164*x^4+656*x^3-802*x^2+662*x-862 5142290835302681 a001 14930352/15127*2207^(13/16) 5142290835712294 a001 726103/1926*2207^(15/16) 5142290841890530 r005 Im(z^2+c),c=-1/22+20/29*I,n=38 5142290842472064 a001 4052739537881/3*123^(5/18) 5142290850625872 a001 14930352/9349*2207^(3/4) 5142290854496475 a001 39088169/39603*2207^(13/16) 5142290856529287 r009 Im(z^3+c),c=-7/114+41/63*I,n=13 5142290857296812 a001 102334155/103682*2207^(13/16) 5142290857705376 a001 267914296/271443*2207^(13/16) 5142290857764984 a001 701408733/710647*2207^(13/16) 5142290857773681 a001 1836311903/1860498*2207^(13/16) 5142290857774950 a001 4807526976/4870847*2207^(13/16) 5142290857775135 a001 12586269025/12752043*2207^(13/16) 5142290857775162 a001 32951280099/33385282*2207^(13/16) 5142290857775166 a001 86267571272/87403803*2207^(13/16) 5142290857775167 a001 225851433717/228826127*2207^(13/16) 5142290857775167 a001 591286729879/599074578*2207^(13/16) 5142290857775167 a001 1548008755920/1568397607*2207^(13/16) 5142290857775167 a001 4052739537881/4106118243*2207^(13/16) 5142290857775167 a001 4807525989/4870846*2207^(13/16) 5142290857775167 a001 6557470319842/6643838879*2207^(13/16) 5142290857775167 a001 2504730781961/2537720636*2207^(13/16) 5142290857775167 a001 956722026041/969323029*2207^(13/16) 5142290857775167 a001 365435296162/370248451*2207^(13/16) 5142290857775167 a001 139583862445/141422324*2207^(13/16) 5142290857775169 a001 53316291173/54018521*2207^(13/16) 5142290857775179 a001 20365011074/20633239*2207^(13/16) 5142290857775250 a001 7778742049/7881196*2207^(13/16) 5142290857775734 a001 2971215073/3010349*2207^(13/16) 5142290857779056 a001 1134903170/1149851*2207^(13/16) 5142290857801825 a001 433494437/439204*2207^(13/16) 5142290857957882 a001 165580141/167761*2207^(13/16) 5142290859027516 a001 63245986/64079*2207^(13/16) 5142290865129438 a001 63245986/3571*2207^(7/16) 5142290866358893 a001 24157817/24476*2207^(13/16) 5142290875755920 p003 LerchPhi(1/64,3,450/167) 5142290878305038 m001 1/2*(HardHexagonsEntropy-RenyiParking)*2^(2/3) 5142290879690805 a001 567451585/2889*843^(1/7) 5142290882712716 m001 GaussAGM-cos(1)*GAMMA(13/24) 5142290891269471 a007 Real Root Of 271*x^4-890*x^3+525*x^2-791*x+370 5142290891488531 a001 521/4181*2178309^(13/51) 5142290894321064 r009 Im(z^3+c),c=-23/60+31/55*I,n=42 5142290901285708 a001 9227465/15127*2207^(7/8) 5142290901722391 a001 507544112/987 5142290904699432 r009 Im(z^3+c),c=-1/48+13/20*I,n=55 5142290904847294 m005 (1/2*exp(1)+2/3)/(3*Zeta(3)+1/3) 5142290916608899 a001 9227465/9349*2207^(13/16) 5142290918416909 a007 Real Root Of -269*x^4+322*x^3-812*x^2-22*x+266 5142290920110091 a001 1134903170/3571*843^(1/14) 5142290920479488 a001 24157817/39603*2207^(7/8) 5142290921307083 a001 5702887/1364*1364^(2/3) 5142290923279823 a001 31622993/51841*2207^(7/8) 5142290923688386 a001 165580141/271443*2207^(7/8) 5142290923747995 a001 433494437/710647*2207^(7/8) 5142290923756691 a001 567451585/930249*2207^(7/8) 5142290923757960 a001 2971215073/4870847*2207^(7/8) 5142290923758145 a001 7778742049/12752043*2207^(7/8) 5142290923758172 a001 10182505537/16692641*2207^(7/8) 5142290923758176 a001 53316291173/87403803*2207^(7/8) 5142290923758177 a001 139583862445/228826127*2207^(7/8) 5142290923758177 a001 182717648081/299537289*2207^(7/8) 5142290923758177 a001 956722026041/1568397607*2207^(7/8) 5142290923758177 a001 2504730781961/4106118243*2207^(7/8) 5142290923758177 a001 3278735159921/5374978561*2207^(7/8) 5142290923758177 a001 10610209857723/17393796001*2207^(7/8) 5142290923758177 a001 4052739537881/6643838879*2207^(7/8) 5142290923758177 a001 1134903780/1860499*2207^(7/8) 5142290923758177 a001 591286729879/969323029*2207^(7/8) 5142290923758177 a001 225851433717/370248451*2207^(7/8) 5142290923758177 a001 21566892818/35355581*2207^(7/8) 5142290923758179 a001 32951280099/54018521*2207^(7/8) 5142290923758189 a001 1144206275/1875749*2207^(7/8) 5142290923758260 a001 1201881744/1970299*2207^(7/8) 5142290923758745 a001 1836311903/3010349*2207^(7/8) 5142290923762066 a001 701408733/1149851*2207^(7/8) 5142290923784835 a001 66978574/109801*2207^(7/8) 5142290923940892 a001 9303105/15251*2207^(7/8) 5142290925010525 a001 39088169/64079*2207^(7/8) 5142290926324668 m005 (1/2*2^(1/2)-1/11)/(3/7*Catalan-3/11) 5142290931112448 a001 39088169/3571*2207^(1/2) 5142290932341897 a001 3732588/6119*2207^(7/8) 5142290941076722 m001 (MadelungNaCl-Thue)/(ln(5)-Grothendieck) 5142290954346747 a001 2255*521^(46/53) 5142290967268675 a001 5702887/15127*2207^(15/16) 5142290971462319 a007 Real Root Of 443*x^4-432*x^3+774*x^2-816*x-714 5142290972032495 r002 12i'th iterates of 2*x/(1-x^2) of 5142290972511453 r005 Im(z^2+c),c=-25/56+33/56*I,n=3 5142290982591867 a001 5702887/9349*2207^(7/8) 5142290983418853 a007 Real Root Of -159*x^4-806*x^3+11*x^2-146*x+539 5142290983595529 r002 5th iterates of z^2 + 5142290986462493 a001 4976784/13201*2207^(15/16) 5142290989262833 a001 39088169/103682*2207^(15/16) 5142290989671397 a001 34111385/90481*2207^(15/16) 5142290989731006 a001 267914296/710647*2207^(15/16) 5142290989739703 a001 233802911/620166*2207^(15/16) 5142290989740971 a001 1836311903/4870847*2207^(15/16) 5142290989741157 a001 1602508992/4250681*2207^(15/16) 5142290989741184 a001 12586269025/33385282*2207^(15/16) 5142290989741188 a001 10983760033/29134601*2207^(15/16) 5142290989741188 a001 86267571272/228826127*2207^(15/16) 5142290989741188 a001 267913919/710646*2207^(15/16) 5142290989741188 a001 591286729879/1568397607*2207^(15/16) 5142290989741188 a001 516002918640/1368706081*2207^(15/16) 5142290989741188 a001 4052739537881/10749957122*2207^(15/16) 5142290989741188 a001 3536736619241/9381251041*2207^(15/16) 5142290989741188 a001 6557470319842/17393796001*2207^(15/16) 5142290989741188 a001 2504730781961/6643838879*2207^(15/16) 5142290989741188 a001 956722026041/2537720636*2207^(15/16) 5142290989741188 a001 365435296162/969323029*2207^(15/16) 5142290989741188 a001 139583862445/370248451*2207^(15/16) 5142290989741188 a001 53316291173/141422324*2207^(15/16) 5142290989741190 a001 20365011074/54018521*2207^(15/16) 5142290989741200 a001 7778742049/20633239*2207^(15/16) 5142290989741271 a001 2971215073/7881196*2207^(15/16) 5142290989741756 a001 1134903170/3010349*2207^(15/16) 5142290989745078 a001 433494437/1149851*2207^(15/16) 5142290989767846 a001 165580141/439204*2207^(15/16) 5142290989923904 a001 63245986/167761*2207^(15/16) 5142290990993538 a001 24157817/64079*2207^(15/16) 5142290992146446 m001 cos(Pi/5)/Zeta(1,2)/exp(sin(Pi/12))^2 5142290997095462 a001 24157817/3571*2207^(9/16) 5142290998324925 a001 9227465/24476*2207^(15/16) 5142291008959947 a007 Real Root Of -785*x^4-707*x^3+996*x^2+573*x-407 5142291011247002 a001 2971215073/15127*843^(1/7) 5142291011714767 a001 165580141/2207*843^(2/7) 5142291021193608 a007 Real Root Of 871*x^4-687*x^3+320*x^2+66*x-205 5142291022720458 a007 Real Root Of 517*x^4-157*x^3+954*x^2-845*x-46 5142291030018090 a001 165580141/843*322^(1/6) 5142291030440793 a001 7778742049/39603*843^(1/7) 5142291033241129 a001 10182505537/51841*843^(1/7) 5142291033434650 a001 169181375/329 5142291033649693 a001 53316291173/271443*843^(1/7) 5142291033709301 a001 139583862445/710647*843^(1/7) 5142291033717998 a001 182717648081/930249*843^(1/7) 5142291033719267 a001 956722026041/4870847*843^(1/7) 5142291033719452 a001 2504730781961/12752043*843^(1/7) 5142291033719479 a001 3278735159921/16692641*843^(1/7) 5142291033719485 a001 10610209857723/54018521*843^(1/7) 5142291033719496 a001 4052739537881/20633239*843^(1/7) 5142291033719566 a001 387002188980/1970299*843^(1/7) 5142291033720051 a001 591286729879/3010349*843^(1/7) 5142291033723373 a001 225851433717/1149851*843^(1/7) 5142291033746141 a001 196418*843^(1/7) 5142291033902199 a001 32951280099/167761*843^(1/7) 5142291034971832 a001 12586269025/64079*843^(1/7) 5142291042303208 a001 1201881744/6119*843^(1/7) 5142291048574993 a001 3524578/9349*2207^(15/16) 5142291053698074 a001 507544127/987 5142291055724417 a001 2/987*(1/2+1/2*5^(1/2))^45 5142291063078467 a001 14930352/3571*2207^(5/8) 5142291069380639 a007 Real Root Of -589*x^4+633*x^3+470*x^2+599*x+311 5142291077194936 r009 Im(z^3+c),c=-3/56+24/37*I,n=32 5142291078854746 m001 GAMMA(23/24)/ln(2+3^(1/2))*TwinPrimes 5142291078854746 m001 TwinPrimes/ln(2+sqrt(3))*GAMMA(23/24) 5142291079189698 m002 4-E^Pi/Pi^8+Log[Pi] 5142291088925209 a007 Real Root Of 100*x^4+435*x^3-507*x^2-599*x-447 5142291092553206 a001 1836311903/9349*843^(1/7) 5142291093993150 m001 1/Sierpinski^2*Riemann3rdZero^2*ln(sqrt(3)) 5142291098965249 r009 Im(z^3+c),c=-4/29+25/39*I,n=53 5142291105569347 a001 9227465/1364*1364^(3/5) 5142291114488348 a001 507544133/987 5142291117321315 k009 concat of cont frac of 5142291122151211 k007 concat of cont frac of 5142291129061497 a001 9227465/3571*2207^(11/16) 5142291148834488 r005 Re(z^2+c),c=-41/102+21/38*I,n=25 5142291152665795 m003 -Sinh[1/2+Sqrt[5]/2]/6+6*Tanh[1/2+Sqrt[5]/2] 5142291163464272 r005 Re(z^2+c),c=-87/122+8/63*I,n=39 5142291176199867 m001 (2^(1/2)+1/3)/(-TwinPrimes+1) 5142291178630853 a007 Real Root Of 454*x^4-601*x^3+67*x^2-870*x-45 5142291187463822 r009 Im(z^3+c),c=-7/44+43/60*I,n=7 5142291195044467 a001 1597*2207^(3/4) 5142291201101005 l006 ln(5573/9320) 5142291201441111 k008 concat of cont frac of 5142291203776531 r005 Re(z^2+c),c=13/110+17/37*I,n=31 5142291204969213 a007 Real Root Of 992*x^4-269*x^3+734*x^2-630*x-624 5142291210294792 a007 Real Root Of 81*x^4-571*x^3-515*x^2-340*x+383 5142291211363132 k007 concat of cont frac of 5142291215509429 m001 Si(Pi)*Zeta(1,-1)-exp(-1/2*Pi) 5142291261027596 a001 3524578/3571*2207^(13/16) 5142291266767939 a007 Real Root Of 118*x^4-331*x^3-282*x^2-584*x-279 5142291268337909 a007 Real Root Of 170*x^4-856*x^3+443*x^2-431*x+209 5142291287739465 r009 Re(z^3+c),c=-55/126+2/31*I,n=2 5142291289253406 m001 BesselK(0,1)/ln(CareFree)/GAMMA(7/12)^2 5142291289831558 a001 3732588/341*1364^(8/15) 5142291306674672 a001 433494437/1364*521^(1/13) 5142291310264351 m001 (Shi(1)+GolombDickman)/(-Landau+Stephens) 5142291323232516 k007 concat of cont frac of 5142291327010312 a001 2178309/3571*2207^(7/8) 5142291340946128 s001 sum(exp(-Pi/3)^n*A199972[n],n=1..infinity) 5142291342154111 k006 concat of cont frac of 5142291349728832 a007 Real Root Of 298*x^4-391*x^3-109*x^2-690*x-400 5142291358319404 r009 Im(z^3+c),c=-29/64+26/33*I,n=3 5142291358758751 m005 (3*Catalan+2)/(2/5*Pi-1/3) 5142291367186883 b008 6+BesselY[1,Catalan] 5142291386391139 a007 Real Root Of 829*x^4-367*x^3-712*x^2-723*x+552 5142291387181489 m001 ReciprocalFibonacci*(GAMMA(11/12)+Weierstrass) 5142291392994112 a001 1346269/3571*2207^(15/16) 5142291396552554 a001 233802911/1926*843^(3/14) 5142291413511531 k006 concat of cont frac of 5142291413779173 l006 ln(5045/8437) 5142291419412378 a007 Real Root Of -43*x^4+933*x^3-531*x^2+542*x+549 5142291423515381 k008 concat of cont frac of 5142291428517239 a007 Real Root Of 19*x^4+996*x^3+993*x^2+911*x-179 5142291431411112 k006 concat of cont frac of 5142291436971844 a001 701408733/3571*843^(1/7) 5142291449714805 r009 Im(z^3+c),c=-13/27+12/35*I,n=6 5142291450147246 r005 Re(z^2+c),c=-27/106+24/37*I,n=28 5142291452625810 k002 Champernowne real with 6*n^2+119*n-120 5142291454778539 a003 cos(Pi*30/91)/sin(Pi*39/85) 5142291457249201 a001 832040/521*521^(12/13) 5142291458652866 a007 Real Root Of 572*x^4-472*x^3+317*x^2-562*x-477 5142291458966565 a001 169181389/329 5142291467779825 r002 19th iterates of z^2 + 5142291474093798 a001 24157817/1364*1364^(7/15) 5142291477431305 r009 Im(z^3+c),c=-9/50+33/52*I,n=41 5142291484449136 a007 Real Root Of 451*x^4-443*x^3+703*x^2-726*x-651 5142291487756566 a007 Real Root Of 540*x^4+135*x^3+695*x^2-690*x-558 5142291501693572 a007 Real Root Of -571*x^4+763*x^3+749*x^2-27*x-248 5142291512001979 q001 2078/4041 5142291516778553 a007 Real Root Of 475*x^4+609*x^3-752*x^2-996*x+595 5142291518345550 r009 Re(z^3+c),c=-61/118+23/43*I,n=4 5142291528108764 a001 1836311903/15127*843^(3/14) 5142291528576529 a001 102334155/2207*843^(5/14) 5142291529650898 m001 (GAMMA(17/24)+Khinchin)/(Zeta(1,-1)-Zeta(1,2)) 5142291532305867 m001 (Otter+Tribonacci)/(cos(1/5*Pi)+Champernowne) 5142291546848318 a007 Real Root Of 152*x^4+915*x^3+483*x^2-911*x+679 5142291547302557 a001 1602508992/13201*843^(3/14) 5142291550102894 a001 12586269025/103682*843^(3/14) 5142291550511457 a001 121393*843^(3/14) 5142291550571066 a001 86267571272/710647*843^(3/14) 5142291550579763 a001 75283811239/620166*843^(3/14) 5142291550581031 a001 591286729879/4870847*843^(3/14) 5142291550581217 a001 516002918640/4250681*843^(3/14) 5142291550581244 a001 4052739537881/33385282*843^(3/14) 5142291550581247 a001 3536736619241/29134601*843^(3/14) 5142291550581250 a001 6557470319842/54018521*843^(3/14) 5142291550581260 a001 2504730781961/20633239*843^(3/14) 5142291550581331 a001 956722026041/7881196*843^(3/14) 5142291550581816 a001 365435296162/3010349*843^(3/14) 5142291550585137 a001 139583862445/1149851*843^(3/14) 5142291550607906 a001 53316291173/439204*843^(3/14) 5142291550763963 a001 20365011074/167761*843^(3/14) 5142291551833597 a001 7778742049/64079*843^(3/14) 5142291559164973 a001 2971215073/24476*843^(3/14) 5142291575774746 r009 Im(z^3+c),c=-3/28+48/61*I,n=12 5142291585986432 r005 Re(z^2+c),c=-3/4+29/225*I,n=19 5142291590257256 a007 Real Root Of -690*x^4+482*x^3-839*x^2-678*x-13 5142291592122117 k006 concat of cont frac of 5142291605986018 r005 Re(z^2+c),c=-63/118+32/61*I,n=24 5142291609414977 a001 1134903170/9349*843^(3/14) 5142291617158689 m001 (Salem-Sierpinski)/Trott2nd 5142291620354504 r009 Im(z^3+c),c=-7/62+38/59*I,n=54 5142291625970855 m001 Ei(1,1)^(CareFree/ErdosBorwein) 5142291657847105 b008 5+(-1/5+EulerGamma)^2 5142291658356036 a001 39088169/1364*1364^(2/5) 5142291661936110 p001 sum((-1)^n/(556*n+213)/n/(25^n),n=1..infinity) 5142291663076634 r002 47th iterates of z^2 + 5142291670513940 r005 Im(z^2+c),c=-137/114+4/29*I,n=3 5142291676177980 l006 ln(4517/7554) 5142291703919822 m001 (2^(1/3))^2/Cahen^2*ln((3^(1/3)))^2 5142291708199617 a001 610/2207*7881196^(10/11) 5142291708199682 a001 610/2207*20633239^(6/7) 5142291708199692 a001 610/2207*141422324^(10/13) 5142291708199692 a001 610/2207*2537720636^(2/3) 5142291708199692 a001 610/2207*45537549124^(10/17) 5142291708199692 a001 610/2207*312119004989^(6/11) 5142291708199692 a001 610/2207*14662949395604^(10/21) 5142291708199692 a001 610/2207*(1/2+1/2*5^(1/2))^30 5142291708199692 a001 610/2207*192900153618^(5/9) 5142291708199692 a001 610/2207*28143753123^(3/5) 5142291708199692 a001 610/2207*10749957122^(5/8) 5142291708199692 a001 610/2207*4106118243^(15/23) 5142291708199692 a001 610/2207*1568397607^(15/22) 5142291708199692 a001 610/2207*599074578^(5/7) 5142291708199692 a001 610/2207*228826127^(3/4) 5142291708199693 a001 610/2207*87403803^(15/19) 5142291708199696 a001 610/2207*33385282^(5/6) 5142291708199720 a001 610/2207*12752043^(15/17) 5142291708199895 a001 610/2207*4870847^(15/16) 5142291708200951 a001 987/1364*20633239^(4/5) 5142291708200961 a001 987/1364*17393796001^(4/7) 5142291708200961 a001 987/1364*14662949395604^(4/9) 5142291708200961 a001 987/1364*(1/2+1/2*5^(1/2))^28 5142291708200961 a001 987/1364*505019158607^(1/2) 5142291708200961 a001 987/1364*73681302247^(7/13) 5142291708200961 a001 987/1364*10749957122^(7/12) 5142291708200961 a001 987/1364*4106118243^(14/23) 5142291708200961 a001 987/1364*1568397607^(7/11) 5142291708200961 a001 987/1364*599074578^(2/3) 5142291708200961 a001 987/1364*228826127^(7/10) 5142291708200961 a001 987/1364*87403803^(14/19) 5142291708200964 a001 987/1364*33385282^(7/9) 5142291708200987 a001 987/1364*12752043^(14/17) 5142291708201150 a001 987/1364*4870847^(7/8) 5142291708202347 a001 987/1364*1860498^(14/15) 5142291760463025 a007 Real Root Of 410*x^4+113*x^3+217*x^2+13*x-64 5142291761411115 k006 concat of cont frac of 5142291764432611 a007 Real Root Of 69*x^4+155*x^3-861*x^2+811*x-233 5142291792356038 r009 Im(z^3+c),c=-27/106+3/5*I,n=16 5142291800140344 m001 exp(GAMMA(3/4))^2/MinimumGamma/cosh(1) 5142291842618284 a001 31622993/682*1364^(1/3) 5142291843985615 l006 ln(6557/6903) 5142291863284964 a007 Real Root Of 669*x^4-304*x^3+557*x^2+415*x-22 5142291869064853 m001 (Otter+PlouffeB)/(2^(1/3)-Lehmer) 5142291881490948 m001 (Zeta(5)+BesselJ(1,1))/(BesselI(0,2)+Lehmer) 5142291888193531 r009 Im(z^3+c),c=-11/36+26/43*I,n=36 5142291894184955 r002 4th iterates of z^2 + 5142291895472188 m005 (1/2*3^(1/2)+5/8)/(1/5*3^(1/2)-7/11) 5142291907984913 h002 exp(14^(7/4)+2^(7/10)) 5142291907984913 h007 exp(14^(7/4)+2^(7/10)) 5142291913414355 a001 433494437/5778*843^(2/7) 5142291939620355 m001 ln(GAMMA(7/12))*GAMMA(11/24)^2/GAMMA(7/24) 5142291953833649 a001 433494437/3571*843^(3/14) 5142291959837960 a001 161/416020*7778742049^(6/19) 5142291960314359 a001 1/144*832040^(6/19) 5142291970036161 r009 Im(z^3+c),c=-61/98+13/28*I,n=6 5142291977960485 h001 (-3*exp(5)-6)/(-8*exp(7)-2) 5142291988575709 p002 log(19^(7/4)-19^(1/5)) 5142291988625749 r009 Re(z^3+c),c=-8/19+1/26*I,n=40 5142291998123736 r005 Im(z^2+c),c=-73/106+6/19*I,n=14 5142292008041087 l006 ln(3989/6671) 5142292026880537 a001 9303105/124*1364^(4/15) 5142292035992933 m005 (1/2*Zeta(3)-1/12)/(1/12*2^(1/2)+8/9) 5142292044645074 m001 (Bloch+Thue)/(ln(2)+Ei(1)) 5142292044970578 a001 1134903170/15127*843^(2/7) 5142292045438344 a001 63245986/2207*843^(3/7) 5142292047840475 a007 Real Root Of -441*x^4+875*x^3-599*x^2+723*x+680 5142292064164373 a001 2971215073/39603*843^(2/7) 5142292066964710 a001 7778742049/103682*843^(2/7) 5142292067373274 a001 20365011074/271443*843^(2/7) 5142292067432882 a001 53316291173/710647*843^(2/7) 5142292067441579 a001 139583862445/1860498*843^(2/7) 5142292067442848 a001 365435296162/4870847*843^(2/7) 5142292067443033 a001 956722026041/12752043*843^(2/7) 5142292067443060 a001 2504730781961/33385282*843^(2/7) 5142292067443064 a001 6557470319842/87403803*843^(2/7) 5142292067443065 a001 10610209857723/141422324*843^(2/7) 5142292067443066 a001 4052739537881/54018521*843^(2/7) 5142292067443077 a001 140728068720/1875749*843^(2/7) 5142292067443148 a001 591286729879/7881196*843^(2/7) 5142292067443632 a001 225851433717/3010349*843^(2/7) 5142292067446954 a001 86267571272/1149851*843^(2/7) 5142292067469723 a001 32951280099/439204*843^(2/7) 5142292067600131 r005 Im(z^2+c),c=-33/52+18/43*I,n=52 5142292067625780 a001 75025*843^(2/7) 5142292068021344 r009 Im(z^3+c),c=-1/27+37/57*I,n=24 5142292068695413 a001 4807526976/64079*843^(2/7) 5142292076026791 a001 1836311903/24476*843^(2/7) 5142292077866741 m005 (7/20+1/4*5^(1/2))/(7/10*2^(1/2)+7/9) 5142292112566383 m001 BesselI(1,2)^Zeta(1/2)*BesselI(1,2)^Trott2nd 5142292120998182 m003 -19/4+Sqrt[5]/32-Tanh[1/2+Sqrt[5]/2]/2 5142292126276799 a001 701408733/9349*843^(2/7) 5142292135210981 m002 -36/E^Pi+ProductLog[Pi]+Tanh[Pi] 5142292150405609 m005 (2*Pi+2)/(5*Pi+2/5) 5142292150405609 m006 (2/Pi+2)/(2/5/Pi+5) 5142292150405609 m008 (2*Pi+2)/(5*Pi+2/5) 5142292151113112 k007 concat of cont frac of 5142292160475350 r002 56th iterates of z^2 + 5142292182212321 k007 concat of cont frac of 5142292205544893 a007 Real Root Of -784*x^4+948*x^3-763*x^2+523*x-25 5142292211142798 a001 165580141/1364*1364^(1/5) 5142292218670191 r009 Re(z^3+c),c=-25/64+1/52*I,n=52 5142292241090329 m001 Pi-1+3^(1/2)/gamma 5142292267130686 m001 (BesselI(0,1)+Bloch)/(-Magata+Trott2nd) 5142292271603212 r009 Im(z^3+c),c=-1/48+13/20*I,n=57 5142292297213765 m001 (ln(5)-ln(Pi))/(arctan(1/2)+BesselJ(1,1)) 5142292299993218 a007 Real Root Of -167*x^4-743*x^3+725*x^2+682*x+77 5142292304220124 r009 Im(z^3+c),c=-1/52+13/20*I,n=33 5142292333148050 m005 (1/2*gamma+4/7)/(1/9*Pi-2/11) 5142292355869128 r009 Im(z^3+c),c=-5/24+39/62*I,n=46 5142292360676268 a001 821224090/1597 5142292374689119 m001 1/Zeta(7)^2/LaplaceLimit^2*exp(exp(1))^2 5142292384387704 a001 317811/1364*3571^(16/17) 5142292395405065 a001 66978574/341*1364^(2/15) 5142292398104945 r009 Re(z^3+c),c=-65/122+11/27*I,n=25 5142292398740159 m001 ln(GAMMA(23/24))^2/MadelungNaCl*sinh(1)^2 5142292408122508 a001 514229/1364*3571^(15/17) 5142292416516027 m005 (-3/10+1/2*5^(1/2))/(5*Pi+1/5) 5142292421931623 m001 (1-cos(1/5*Pi))/(-ln(2)+arctan(1/3)) 5142292428771428 a007 Real Root Of 115*x^4+462*x^3-668*x^2-115*x-518 5142292430276208 a001 133957148/2889*843^(5/14) 5142292431837866 a001 610*3571^(14/17) 5142292441160302 l006 ln(3461/5788) 5142292455560651 a001 1346269/1364*3571^(13/17) 5142292455631820 k002 Champernowne real with 13/2*n^2+235/2*n-119 5142292462075357 p001 sum((-1)^n/(380*n+187)/(8^n),n=0..infinity) 5142292467195192 a007 Real Root Of -34*x^4-67*x^3+384*x^2-945*x-350 5142292467348282 r009 Im(z^3+c),c=-39/106+37/63*I,n=51 5142292470695506 a001 267914296/3571*843^(2/7) 5142292473533302 m001 (Mills+PlouffeB)/(1-MertensB2) 5142292479280600 a001 2178309/1364*3571^(12/17) 5142292482028428 p003 LerchPhi(1/12,6,258/107) 5142292490118577 q001 1301/2530 5142292490127702 s004 Continued Fraction of A081851 5142292490127702 s004 Continued fraction of A081851 5142292501663693 m004 -30+25*Pi-Cosh[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 5142292503001632 a001 1762289/682*3571^(11/17) 5142292521508119 b008 3^((-2+Pi)*Pi) 5142292526722251 a001 5702887/1364*3571^(10/17) 5142292531282909 m001 RenyiParking^2*exp(MertensB1)^2/GAMMA(2/3)^2 5142292536975670 a001 377/4870847*18^(19/29) 5142292549704939 m001 (MertensB1+Sarnak)/(BesselI(1,2)-Grothendieck) 5142292550443028 a001 9227465/1364*3571^(9/17) 5142292554707182 r005 Im(z^2+c),c=-27/106+3/5*I,n=12 5142292560981535 r005 Im(z^2+c),c=19/122+22/41*I,n=46 5142292561832445 a001 701408733/15127*843^(5/14) 5142292562300209 a001 39088169/2207*843^(1/2) 5142292562938830 m005 (1/2*Catalan-6/7)/(19/36+1/9*5^(1/2)) 5142292566802803 m001 (Si(Pi)-ln(3))/(-Pi^(1/2)+HardyLittlewoodC4) 5142292571305786 m001 LaplaceLimit^Zeta(5)*Kolakoski^Zeta(5) 5142292574163744 a001 3732588/341*3571^(8/17) 5142292579667338 a001 433494437/1364*1364^(1/15) 5142292581026241 a001 1836311903/39603*843^(5/14) 5142292583826579 a001 46368*843^(5/14) 5142292584235142 a001 12586269025/271443*843^(5/14) 5142292584294751 a001 32951280099/710647*843^(5/14) 5142292584303448 a001 43133785636/930249*843^(5/14) 5142292584304717 a001 225851433717/4870847*843^(5/14) 5142292584304902 a001 591286729879/12752043*843^(5/14) 5142292584304929 a001 774004377960/16692641*843^(5/14) 5142292584304933 a001 4052739537881/87403803*843^(5/14) 5142292584304933 a001 225749145909/4868641*843^(5/14) 5142292584304934 a001 3278735159921/70711162*843^(5/14) 5142292584304935 a001 2504730781961/54018521*843^(5/14) 5142292584304945 a001 956722026041/20633239*843^(5/14) 5142292584305016 a001 182717648081/3940598*843^(5/14) 5142292584305501 a001 139583862445/3010349*843^(5/14) 5142292584308823 a001 53316291173/1149851*843^(5/14) 5142292584331591 a001 10182505537/219602*843^(5/14) 5142292584487648 a001 7778742049/167761*843^(5/14) 5142292585557282 a001 2971215073/64079*843^(5/14) 5142292592888660 a001 567451585/12238*843^(5/14) 5142292593670718 p003 LerchPhi(1/64,4,124/59) 5142292597884484 a001 24157817/1364*3571^(7/17) 5142292606316635 m001 (Trott-ZetaP(2))/((1+3^(1/2))^(1/2)-Kolakoski) 5142292609899402 a001 305/2889*(1/2+1/2*5^(1/2))^32 5142292609899402 a001 305/2889*23725150497407^(1/2) 5142292609899402 a001 305/2889*505019158607^(4/7) 5142292609899402 a001 305/2889*73681302247^(8/13) 5142292609899402 a001 305/2889*10749957122^(2/3) 5142292609899402 a001 305/2889*4106118243^(16/23) 5142292609899402 a001 305/2889*1568397607^(8/11) 5142292609899402 a001 305/2889*599074578^(16/21) 5142292609899402 a001 305/2889*228826127^(4/5) 5142292609899403 a001 305/2889*87403803^(16/19) 5142292609899406 a001 305/2889*33385282^(8/9) 5142292609899432 a001 305/2889*12752043^(16/17) 5142292609900883 a001 646/341*141422324^(2/3) 5142292609900883 a001 646/341*(1/2+1/2*5^(1/2))^26 5142292609900883 a001 646/341*73681302247^(1/2) 5142292609900883 a001 646/341*10749957122^(13/24) 5142292609900883 a001 646/341*4106118243^(13/23) 5142292609900883 a001 646/341*1568397607^(13/22) 5142292609900883 a001 646/341*599074578^(13/21) 5142292609900883 a001 646/341*228826127^(13/20) 5142292609900883 a001 646/341*87403803^(13/19) 5142292609900886 a001 646/341*33385282^(13/18) 5142292609900907 a001 646/341*12752043^(13/17) 5142292609901059 a001 646/341*4870847^(13/16) 5142292609902170 a001 646/341*1860498^(13/15) 5142292609910338 a001 646/341*710647^(13/14) 5142292621605215 a001 39088169/1364*3571^(6/17) 5142292636922865 m001 CareFree*(KomornikLoreti-Shi(1)) 5142292639311951 r005 Im(z^2+c),c=33/94+19/47*I,n=14 5142292643138674 a001 433494437/9349*843^(5/14) 5142292644508061 m001 (GolombDickman+Lehmer)/(Chi(1)+GAMMA(7/12)) 5142292645325949 a001 31622993/682*3571^(5/17) 5142292666177901 m001 GAMMA(7/24)^2/exp(FeigenbaumDelta)/sqrt(3) 5142292668908411 a007 Real Root Of 429*x^4-741*x^3+435*x^2-753*x-633 5142292669046683 a001 9303105/124*3571^(4/17) 5142292679745134 a007 Real Root Of 474*x^4-836*x^3-890*x^2+132*x+248 5142292692767416 a001 165580141/1364*3571^(3/17) 5142292705094475 a001 2149992580/4181 5142292708122598 a001 121393/1364*9349^(18/19) 5142292709750653 r005 Re(z^2+c),c=-13/24+31/46*I,n=3 5142292711152766 r009 Im(z^3+c),c=-3/20+39/61*I,n=49 5142292711315560 a001 98209/682*9349^(17/19) 5142292714375232 a001 317811/1364*9349^(16/19) 5142292716488150 a001 66978574/341*3571^(2/17) 5142292717485817 a001 514229/1364*9349^(15/19) 5142292719416933 m001 (-GAMMA(2/3)+ZetaQ(3))/(2^(1/2)+Zeta(3)) 5142292720576955 a001 610*9349^(14/19) 5142292720947221 h001 (7/8*exp(1)+3/8)/(2/3*exp(2)+3/7) 5142292722688536 p003 LerchPhi(1/32,4,61/29) 5142292723675520 a001 1346269/1364*9349^(13/19) 5142292726771249 a001 2178309/1364*9349^(12/19) 5142292729868061 a001 1762289/682*9349^(11/19) 5142292732964459 a001 5702887/1364*9349^(10/19) 5142292736061016 a001 9227465/1364*9349^(9/19) 5142292739157512 a001 3732588/341*9349^(8/19) 5142292739988900 a007 Real Root Of 279*x^4-809*x^3-136*x^2-666*x-34 5142292740208884 a001 433494437/1364*3571^(1/17) 5142292741433433 a001 615/124*439204^(8/9) 5142292741455643 a001 610/15127*45537549124^(2/3) 5142292741455643 a001 610/15127*(1/2+1/2*5^(1/2))^34 5142292741455643 a001 610/15127*10749957122^(17/24) 5142292741455643 a001 610/15127*4106118243^(17/23) 5142292741455643 a001 610/15127*1568397607^(17/22) 5142292741455643 a001 610/15127*599074578^(17/21) 5142292741455643 a001 610/15127*228826127^(17/20) 5142292741455644 a001 610/15127*87403803^(17/19) 5142292741455648 a001 610/15127*33385282^(17/18) 5142292741457068 a001 615/124*7881196^(8/11) 5142292741457128 a001 615/124*141422324^(8/13) 5142292741457129 a001 615/124*2537720636^(8/15) 5142292741457129 a001 615/124*45537549124^(8/17) 5142292741457129 a001 615/124*14662949395604^(8/21) 5142292741457129 a001 615/124*(1/2+1/2*5^(1/2))^24 5142292741457129 a001 615/124*192900153618^(4/9) 5142292741457129 a001 615/124*73681302247^(6/13) 5142292741457129 a001 615/124*10749957122^(1/2) 5142292741457129 a001 615/124*4106118243^(12/23) 5142292741457129 a001 615/124*1568397607^(6/11) 5142292741457129 a001 615/124*599074578^(4/7) 5142292741457129 a001 615/124*228826127^(3/5) 5142292741457129 a001 615/124*87403803^(12/19) 5142292741457132 a001 615/124*33385282^(2/3) 5142292741457151 a001 615/124*12752043^(12/17) 5142292741457291 a001 615/124*4870847^(3/4) 5142292741458317 a001 615/124*1860498^(4/5) 5142292741465856 a001 615/124*710647^(6/7) 5142292741521551 a001 615/124*271443^(12/13) 5142292742254031 a001 24157817/1364*9349^(7/19) 5142292745350541 a001 39088169/1364*9349^(6/19) 5142292748447055 a001 31622993/682*9349^(5/19) 5142292751543567 a001 9303105/124*9349^(4/19) 5142292754640080 a001 165580141/1364*9349^(3/19) 5142292755207243 m005 (1/2*Zeta(3)-4)/(3/11*5^(1/2)+6) 5142292755276285 a001 11592/341*24476^(20/21) 5142292755344418 a001 216490525/421 5142292756346104 a001 75025/1364*24476^(19/21) 5142292756502347 a001 121393/1364*24476^(6/7) 5142292757007545 a001 98209/682*24476^(17/21) 5142292757379453 a001 317811/1364*24476^(16/21) 5142292757736593 a001 66978574/341*9349^(2/19) 5142292757802274 a001 514229/1364*24476^(5/7) 5142292758205648 a001 610*24476^(2/3) 5142292758616450 a001 1346269/1364*24476^(13/21) 5142292759024415 a001 2178309/1364*24476^(4/7) 5142292759433463 a001 1762289/682*24476^(11/21) 5142292759453027 a001 17711/1364*64079^(22/23) 5142292759842097 a001 5702887/1364*24476^(10/21) 5142292760250890 a001 9227465/1364*24476^(3/7) 5142292760649440 a001 610/39603*141422324^(12/13) 5142292760649441 a001 610/39603*2537720636^(4/5) 5142292760649441 a001 610/39603*45537549124^(12/17) 5142292760649441 a001 610/39603*14662949395604^(4/7) 5142292760649441 a001 610/39603*(1/2+1/2*5^(1/2))^36 5142292760649441 a001 610/39603*505019158607^(9/14) 5142292760649441 a001 610/39603*192900153618^(2/3) 5142292760649441 a001 610/39603*73681302247^(9/13) 5142292760649441 a001 610/39603*10749957122^(3/4) 5142292760649441 a001 610/39603*4106118243^(18/23) 5142292760649441 a001 610/39603*1568397607^(9/11) 5142292760649441 a001 610/39603*599074578^(6/7) 5142292760649441 a001 610/39603*228826127^(9/10) 5142292760649441 a001 610/39603*87403803^(18/19) 5142292760650871 a001 17711/1364*7881196^(2/3) 5142292760650926 a001 17711/1364*312119004989^(2/5) 5142292760650926 a001 17711/1364*(1/2+1/2*5^(1/2))^22 5142292760650926 a001 17711/1364*10749957122^(11/24) 5142292760650926 a001 17711/1364*4106118243^(11/23) 5142292760650926 a001 17711/1364*1568397607^(1/2) 5142292760650926 a001 17711/1364*599074578^(11/21) 5142292760650926 a001 17711/1364*228826127^(11/20) 5142292760650927 a001 17711/1364*87403803^(11/19) 5142292760650929 a001 17711/1364*33385282^(11/18) 5142292760650947 a001 17711/1364*12752043^(11/17) 5142292760651075 a001 17711/1364*4870847^(11/16) 5142292760652016 a001 17711/1364*1860498^(11/15) 5142292760658927 a001 17711/1364*710647^(11/14) 5142292760659622 a001 3732588/341*24476^(8/21) 5142292760709980 a001 17711/1364*271443^(11/13) 5142292760833106 a001 433494437/1364*9349^(1/19) 5142292761068378 a001 24157817/1364*24476^(1/3) 5142292761089418 a001 17711/1364*103682^(11/12) 5142292761477124 a001 39088169/1364*24476^(2/7) 5142292761885874 a001 31622993/682*24476^(5/21) 5142292762294623 a001 9303105/124*24476^(4/21) 5142292762362264 a001 11592/341*64079^(20/23) 5142292762675786 a001 14736268370/28657 5142292762703372 a001 165580141/1364*24476^(1/7) 5142292762879728 a001 121393/1364*64079^(18/23) 5142292762922415 k006 concat of cont frac of 5142292763030627 a001 98209/682*64079^(17/23) 5142292763048237 a001 317811/1364*64079^(16/23) 5142292763077784 a001 75025/1364*64079^(19/23) 5142292763112120 a001 66978574/341*24476^(2/21) 5142292763116758 a001 514229/1364*64079^(15/23) 5142292763165833 a001 610*64079^(14/23) 5142292763222336 a001 1346269/1364*64079^(13/23) 5142292763276002 a001 2178309/1364*64079^(12/23) 5142292763305091 a001 11592/341*167761^(4/5) 5142292763330752 a001 1762289/682*64079^(11/23) 5142292763385087 a001 5702887/1364*64079^(10/23) 5142292763439581 a001 9227465/1364*64079^(9/23) 5142292763449778 a001 305/51841*817138163596^(2/3) 5142292763449778 a001 305/51841*(1/2+1/2*5^(1/2))^38 5142292763449778 a001 305/51841*10749957122^(19/24) 5142292763449778 a001 305/51841*4106118243^(19/23) 5142292763449778 a001 305/51841*1568397607^(19/22) 5142292763449778 a001 305/51841*599074578^(19/21) 5142292763449778 a001 305/51841*228826127^(19/20) 5142292763451257 a001 11592/341*20633239^(4/7) 5142292763451264 a001 11592/341*2537720636^(4/9) 5142292763451264 a001 11592/341*(1/2+1/2*5^(1/2))^20 5142292763451264 a001 11592/341*23725150497407^(5/16) 5142292763451264 a001 11592/341*505019158607^(5/14) 5142292763451264 a001 11592/341*73681302247^(5/13) 5142292763451264 a001 11592/341*28143753123^(2/5) 5142292763451264 a001 11592/341*10749957122^(5/12) 5142292763451264 a001 11592/341*4106118243^(10/23) 5142292763451264 a001 11592/341*1568397607^(5/11) 5142292763451264 a001 11592/341*599074578^(10/21) 5142292763451264 a001 11592/341*228826127^(1/2) 5142292763451264 a001 11592/341*87403803^(10/19) 5142292763451266 a001 11592/341*33385282^(5/9) 5142292763451282 a001 11592/341*12752043^(10/17) 5142292763451399 a001 11592/341*4870847^(5/8) 5142292763452254 a001 11592/341*1860498^(2/3) 5142292763458537 a001 11592/341*710647^(5/7) 5142292763494014 a001 3732588/341*64079^(8/23) 5142292763504949 a001 11592/341*271443^(10/13) 5142292763520869 a001 433494437/1364*24476^(1/21) 5142292763548470 a001 24157817/1364*64079^(7/23) 5142292763602918 a001 39088169/1364*64079^(6/23) 5142292763657369 a001 31622993/682*64079^(5/23) 5142292763711818 a001 9303105/124*64079^(4/23) 5142292763745418 a001 7716010292/15005 5142292763766268 a001 165580141/1364*64079^(3/23) 5142292763820718 a001 66978574/341*64079^(2/23) 5142292763823878 a001 514229/1364*167761^(3/5) 5142292763842055 a001 121393/1364*439204^(2/3) 5142292763849892 a001 11592/341*103682^(5/6) 5142292763856501 a001 5702887/1364*167761^(2/5) 5142292763858342 a001 610/271443*2537720636^(8/9) 5142292763858342 a001 610/271443*312119004989^(8/11) 5142292763858342 a001 610/271443*(1/2+1/2*5^(1/2))^40 5142292763858342 a001 610/271443*23725150497407^(5/8) 5142292763858342 a001 610/271443*73681302247^(10/13) 5142292763858342 a001 610/271443*28143753123^(4/5) 5142292763858342 a001 610/271443*10749957122^(5/6) 5142292763858342 a001 610/271443*4106118243^(20/23) 5142292763858342 a001 610/271443*1568397607^(10/11) 5142292763858342 a001 610/271443*599074578^(20/21) 5142292763859782 a001 121393/1364*7881196^(6/11) 5142292763859827 a001 121393/1364*141422324^(6/13) 5142292763859827 a001 121393/1364*2537720636^(2/5) 5142292763859827 a001 121393/1364*45537549124^(6/17) 5142292763859827 a001 121393/1364*14662949395604^(2/7) 5142292763859827 a001 121393/1364*(1/2+1/2*5^(1/2))^18 5142292763859827 a001 121393/1364*192900153618^(1/3) 5142292763859827 a001 121393/1364*10749957122^(3/8) 5142292763859827 a001 121393/1364*4106118243^(9/23) 5142292763859827 a001 121393/1364*1568397607^(9/22) 5142292763859827 a001 121393/1364*599074578^(3/7) 5142292763859827 a001 121393/1364*228826127^(9/20) 5142292763859828 a001 121393/1364*87403803^(9/19) 5142292763859830 a001 121393/1364*33385282^(1/2) 5142292763859844 a001 121393/1364*12752043^(9/17) 5142292763859949 a001 121393/1364*4870847^(9/16) 5142292763860719 a001 121393/1364*1860498^(3/5) 5142292763866373 a001 121393/1364*710647^(9/14) 5142292763875168 a001 433494437/1364*64079^(1/23) 5142292763893075 a001 31622993/682*167761^(1/5) 5142292763901475 a001 50501943005/98209 5142292763908144 a001 121393/1364*271443^(9/13) 5142292763917554 a001 2178309/1364*439204^(4/9) 5142292763917950 a001 610/710647*2537720636^(14/15) 5142292763917950 a001 610/710647*17393796001^(6/7) 5142292763917950 a001 610/710647*45537549124^(14/17) 5142292763917950 a001 610/710647*817138163596^(14/19) 5142292763917950 a001 610/710647*14662949395604^(2/3) 5142292763917950 a001 610/710647*(1/2+1/2*5^(1/2))^42 5142292763917950 a001 610/710647*505019158607^(3/4) 5142292763917950 a001 610/710647*192900153618^(7/9) 5142292763917950 a001 610/710647*10749957122^(7/8) 5142292763917950 a001 610/710647*4106118243^(21/23) 5142292763917950 a001 610/710647*1568397607^(21/22) 5142292763918698 a001 514229/1364*439204^(5/9) 5142292763919436 a001 317811/1364*(1/2+1/2*5^(1/2))^16 5142292763919436 a001 317811/1364*23725150497407^(1/4) 5142292763919436 a001 317811/1364*73681302247^(4/13) 5142292763919436 a001 317811/1364*10749957122^(1/3) 5142292763919436 a001 317811/1364*4106118243^(8/23) 5142292763919436 a001 317811/1364*1568397607^(4/11) 5142292763919436 a001 317811/1364*599074578^(8/21) 5142292763919436 a001 317811/1364*228826127^(2/5) 5142292763919436 a001 317811/1364*87403803^(8/19) 5142292763919438 a001 317811/1364*33385282^(4/9) 5142292763919451 a001 317811/1364*12752043^(8/17) 5142292763919544 a001 317811/1364*4870847^(1/2) 5142292763920228 a001 317811/1364*1860498^(8/15) 5142292763920744 a001 9227465/1364*439204^(1/3) 5142292763923694 a001 39088169/1364*439204^(2/9) 5142292763924243 a001 264431606570/514229 5142292763925254 a001 317811/1364*710647^(4/7) 5142292763926647 a001 305/930249*312119004989^(4/5) 5142292763926647 a001 305/930249*(1/2+1/2*5^(1/2))^44 5142292763926647 a001 305/930249*23725150497407^(11/16) 5142292763926647 a001 305/930249*73681302247^(11/13) 5142292763926647 a001 305/930249*10749957122^(11/12) 5142292763926647 a001 305/930249*4106118243^(22/23) 5142292763926656 a001 165580141/1364*439204^(1/9) 5142292763927565 a001 692290933700/1346269 5142292763927916 a001 610/4870847*(1/2+1/2*5^(1/2))^46 5142292763927916 a001 610/4870847*10749957122^(23/24) 5142292763928050 a001 906220597265/1762289 5142292763928101 a001 610/12752043*45537549124^(16/17) 5142292763928101 a001 610/12752043*14662949395604^(16/21) 5142292763928101 a001 610/12752043*(1/2+1/2*5^(1/2))^48 5142292763928101 a001 610/12752043*192900153618^(8/9) 5142292763928101 a001 610/12752043*73681302247^(12/13) 5142292763928121 a001 73000502306/141961 5142292763928128 a001 610*20633239^(2/5) 5142292763928128 a001 305/16692641*312119004989^(10/11) 5142292763928128 a001 305/16692641*(1/2+1/2*5^(1/2))^50 5142292763928128 a001 305/16692641*3461452808002^(5/6) 5142292763928131 a001 12422656755140/24157817 5142292763928132 a001 610/87403803*23725150497407^(13/16) 5142292763928132 a001 610/87403803*505019158607^(13/14) 5142292763928132 a001 16261468807765/31622993 5142292763928133 a001 610/228826127*14662949395604^(6/7) 5142292763928133 a001 85146156091450/165580141 5142292763928133 a001 305/299537289*14662949395604^(8/9) 5142292763928133 a001 222915530658820/433494437 5142292763928133 a001 956722026041/1860497 5142292763928133 a001 610/4106118243*14662949395604^(20/21) 5142292763928133 a001 1527885776996210/2971215073 5142292763928133 a001 307696684238740/598364773 5142292763928133 a001 610*17393796001^(2/7) 5142292763928133 a001 610*14662949395604^(2/9) 5142292763928133 a001 1294445602642206/2517253805 5142292763928133 a001 610*10749957122^(7/24) 5142292763928133 a001 1236085559053705/2403763488 5142292763928133 a001 610*4106118243^(7/23) 5142292763928133 a001 944285341111200/1836311903 5142292763928133 a001 610*1568397607^(7/22) 5142292763928133 a001 360684905226190/701408733 5142292763928133 a001 610*599074578^(1/3) 5142292763928133 a001 610/969323029*14662949395604^(19/21) 5142292763928133 a001 182718003405/355324 5142292763928133 a001 610*228826127^(7/20) 5142292763928133 a001 610/370248451*3461452808002^(11/12) 5142292763928133 a001 10524643695184/20466831 5142292763928133 a001 610*87403803^(7/19) 5142292763928133 a001 20100280860390/39088169 5142292763928134 a001 610/54018521*817138163596^(17/19) 5142292763928134 a001 610/54018521*14662949395604^(17/21) 5142292763928134 a001 610/54018521*192900153618^(17/18) 5142292763928134 a001 610*33385282^(7/18) 5142292763928137 a001 3838812052625/7465176 5142292763928145 a001 610/20633239*14662949395604^(7/9) 5142292763928145 a001 610/20633239*(1/2+1/2*5^(1/2))^49 5142292763928145 a001 610/20633239*505019158607^(7/8) 5142292763928146 a001 610*12752043^(7/17) 5142292763928164 a001 2932591455360/5702887 5142292763928215 a001 305/3940598*(1/2+1/2*5^(1/2))^47 5142292763928228 a001 610*4870847^(7/16) 5142292763928349 a001 1120150260830/2178309 5142292763928700 a001 610/3010349*45537549124^(15/17) 5142292763928700 a001 610/3010349*312119004989^(9/11) 5142292763928700 a001 610/3010349*14662949395604^(5/7) 5142292763928700 a001 610/3010349*(1/2+1/2*5^(1/2))^45 5142292763928700 a001 610/3010349*192900153618^(5/6) 5142292763928700 a001 610/3010349*28143753123^(9/10) 5142292763928700 a001 610/3010349*10749957122^(15/16) 5142292763928826 a001 610*1860498^(7/15) 5142292763929371 a001 2178309/1364*7881196^(4/11) 5142292763929401 a001 2178309/1364*141422324^(4/13) 5142292763929402 a001 2178309/1364*2537720636^(4/15) 5142292763929402 a001 2178309/1364*45537549124^(4/17) 5142292763929402 a001 2178309/1364*817138163596^(4/19) 5142292763929402 a001 2178309/1364*14662949395604^(4/21) 5142292763929402 a001 2178309/1364*(1/2+1/2*5^(1/2))^12 5142292763929402 a001 2178309/1364*192900153618^(2/9) 5142292763929402 a001 2178309/1364*73681302247^(3/13) 5142292763929402 a001 2178309/1364*10749957122^(1/4) 5142292763929402 a001 2178309/1364*4106118243^(6/23) 5142292763929402 a001 2178309/1364*1568397607^(3/11) 5142292763929402 a001 2178309/1364*599074578^(2/7) 5142292763929402 a001 2178309/1364*228826127^(3/10) 5142292763929402 a001 2178309/1364*87403803^(6/19) 5142292763929403 a001 2178309/1364*33385282^(1/3) 5142292763929413 a001 2178309/1364*12752043^(6/17) 5142292763929483 a001 2178309/1364*4870847^(3/8) 5142292763929583 a001 5702887/1364*20633239^(2/7) 5142292763929587 a001 5702887/1364*2537720636^(2/9) 5142292763929587 a001 5702887/1364*312119004989^(2/11) 5142292763929587 a001 5702887/1364*(1/2+1/2*5^(1/2))^10 5142292763929587 a001 5702887/1364*28143753123^(1/5) 5142292763929587 a001 5702887/1364*10749957122^(5/24) 5142292763929587 a001 5702887/1364*4106118243^(5/23) 5142292763929587 a001 5702887/1364*1568397607^(5/22) 5142292763929587 a001 5702887/1364*599074578^(5/21) 5142292763929587 a001 5702887/1364*228826127^(1/4) 5142292763929587 a001 5702887/1364*87403803^(5/19) 5142292763929588 a001 5702887/1364*33385282^(5/18) 5142292763929596 a001 5702887/1364*12752043^(5/17) 5142292763929603 a001 39088169/1364*7881196^(2/11) 5142292763929608 a001 9227465/1364*7881196^(3/11) 5142292763929611 a001 165580141/1364*7881196^(1/11) 5142292763929614 a001 3732588/341*(1/2+1/2*5^(1/2))^8 5142292763929614 a001 3732588/341*23725150497407^(1/8) 5142292763929614 a001 3732588/341*505019158607^(1/7) 5142292763929614 a001 3732588/341*73681302247^(2/13) 5142292763929614 a001 3732588/341*10749957122^(1/6) 5142292763929614 a001 3732588/341*4106118243^(4/23) 5142292763929614 a001 3732588/341*1568397607^(2/11) 5142292763929614 a001 3732588/341*599074578^(4/21) 5142292763929614 a001 3732588/341*228826127^(1/5) 5142292763929614 a001 3732588/341*87403803^(4/19) 5142292763929615 a001 3732588/341*33385282^(2/9) 5142292763929617 a001 31622993/682*20633239^(1/7) 5142292763929618 a001 39088169/1364*141422324^(2/13) 5142292763929618 a001 39088169/1364*2537720636^(2/15) 5142292763929618 a001 39088169/1364*45537549124^(2/17) 5142292763929618 a001 39088169/1364*14662949395604^(2/21) 5142292763929618 a001 39088169/1364*(1/2+1/2*5^(1/2))^6 5142292763929618 a001 39088169/1364*10749957122^(1/8) 5142292763929618 a001 39088169/1364*4106118243^(3/23) 5142292763929618 a001 39088169/1364*1568397607^(3/22) 5142292763929618 a001 39088169/1364*599074578^(1/7) 5142292763929618 a001 39088169/1364*228826127^(3/20) 5142292763929618 a001 24157817/1364*20633239^(1/5) 5142292763929618 a001 39088169/1364*87403803^(3/19) 5142292763929618 a001 9303105/124*(1/2+1/2*5^(1/2))^4 5142292763929618 a001 9303105/124*23725150497407^(1/16) 5142292763929618 a001 9303105/124*73681302247^(1/13) 5142292763929618 a001 9303105/124*10749957122^(1/12) 5142292763929618 a001 9303105/124*4106118243^(2/23) 5142292763929618 a001 9303105/124*1568397607^(1/11) 5142292763929618 a001 9303105/124*599074578^(2/21) 5142292763929618 a001 9303105/124*228826127^(1/10) 5142292763929618 a001 9303105/124*87403803^(2/19) 5142292763929618 a001 66978574/341*(1/2+1/2*5^(1/2))^2 5142292763929618 a001 66978574/341*10749957122^(1/24) 5142292763929618 a001 66978574/341*4106118243^(1/23) 5142292763929618 a001 66978574/341*1568397607^(1/22) 5142292763929618 a001 66978574/341*599074578^(1/21) 5142292763929618 a001 66978574/341*228826127^(1/20) 5142292763929618 a001 701408733/1364 5142292763929618 a001 433494437/2728+433494437/2728*5^(1/2) 5142292763929618 a001 165580141/1364*141422324^(1/13) 5142292763929618 a001 66978574/341*87403803^(1/19) 5142292763929618 a001 165580141/1364*2537720636^(1/15) 5142292763929618 a001 165580141/1364*45537549124^(1/17) 5142292763929618 a001 165580141/1364*14662949395604^(1/21) 5142292763929618 a001 165580141/1364*(1/2+1/2*5^(1/2))^3 5142292763929618 a001 165580141/1364*192900153618^(1/18) 5142292763929618 a001 165580141/1364*10749957122^(1/16) 5142292763929618 a001 165580141/1364*599074578^(1/14) 5142292763929618 a001 39088169/1364*33385282^(1/6) 5142292763929619 a001 66978574/341*33385282^(1/18) 5142292763929619 a001 31622993/682*2537720636^(1/9) 5142292763929619 a001 31622993/682*312119004989^(1/11) 5142292763929619 a001 31622993/682*(1/2+1/2*5^(1/2))^5 5142292763929619 a001 31622993/682*28143753123^(1/10) 5142292763929619 a001 31622993/682*228826127^(1/8) 5142292763929619 a001 9303105/124*33385282^(1/9) 5142292763929619 a001 165580141/1364*33385282^(1/12) 5142292763929620 a001 24157817/1364*17393796001^(1/7) 5142292763929620 a001 24157817/1364*14662949395604^(1/9) 5142292763929620 a001 24157817/1364*(1/2+1/2*5^(1/2))^7 5142292763929620 a001 24157817/1364*599074578^(1/6) 5142292763929620 a001 66978574/341*12752043^(1/17) 5142292763929621 a001 3732588/341*12752043^(4/17) 5142292763929622 a001 9303105/124*12752043^(2/17) 5142292763929623 a001 39088169/1364*12752043^(3/17) 5142292763929630 a001 9227465/1364*141422324^(3/13) 5142292763929630 a001 9227465/1364*2537720636^(1/5) 5142292763929630 a001 9227465/1364*45537549124^(3/17) 5142292763929630 a001 9227465/1364*817138163596^(3/19) 5142292763929630 a001 9227465/1364*14662949395604^(1/7) 5142292763929630 a001 9227465/1364*(1/2+1/2*5^(1/2))^9 5142292763929630 a001 9227465/1364*192900153618^(1/6) 5142292763929630 a001 9227465/1364*10749957122^(3/16) 5142292763929630 a001 9227465/1364*599074578^(3/14) 5142292763929632 a001 9227465/1364*33385282^(1/4) 5142292763929632 a001 66978574/341*4870847^(1/16) 5142292763929645 a001 9303105/124*4870847^(1/8) 5142292763929654 a001 5702887/1364*4870847^(5/16) 5142292763929658 a001 39088169/1364*4870847^(3/16) 5142292763929668 a001 3732588/341*4870847^(1/4) 5142292763929673 a001 1762289/682*7881196^(1/3) 5142292763929701 a001 1762289/682*312119004989^(1/5) 5142292763929701 a001 1762289/682*(1/2+1/2*5^(1/2))^11 5142292763929701 a001 1762289/682*1568397607^(1/4) 5142292763929717 a001 66978574/341*1860498^(1/15) 5142292763929767 a001 165580141/1364*1860498^(1/10) 5142292763929816 a001 9303105/124*1860498^(2/15) 5142292763929866 a001 31622993/682*1860498^(1/6) 5142292763929915 a001 39088169/1364*1860498^(1/5) 5142292763929996 a001 2178309/1364*1860498^(2/5) 5142292763930010 a001 3732588/341*1860498^(4/15) 5142292763930076 a001 9227465/1364*1860498^(3/10) 5142292763930082 a001 5702887/1364*1860498^(1/3) 5142292763930186 a001 1346269/1364*141422324^(1/3) 5142292763930186 a001 1346269/1364*(1/2+1/2*5^(1/2))^13 5142292763930186 a001 1346269/1364*73681302247^(1/4) 5142292763930346 a001 66978574/341*710647^(1/14) 5142292763931073 a001 9303105/124*710647^(1/7) 5142292763931800 a001 39088169/1364*710647^(3/14) 5142292763932022 a001 610/1149851*(1/2+1/2*5^(1/2))^43 5142292763932166 a001 24157817/1364*710647^(1/4) 5142292763932523 a001 3732588/341*710647^(2/7) 5142292763933223 a001 5702887/1364*710647^(5/14) 5142292763933224 a001 610*710647^(1/2) 5142292763933470 a001 514229/1364*7881196^(5/11) 5142292763933502 a001 514229/1364*20633239^(3/7) 5142292763933507 a001 514229/1364*141422324^(5/13) 5142292763933508 a001 514229/1364*2537720636^(1/3) 5142292763933508 a001 514229/1364*45537549124^(5/17) 5142292763933508 a001 514229/1364*312119004989^(3/11) 5142292763933508 a001 514229/1364*14662949395604^(5/21) 5142292763933508 a001 514229/1364*(1/2+1/2*5^(1/2))^15 5142292763933508 a001 514229/1364*192900153618^(5/18) 5142292763933508 a001 514229/1364*28143753123^(3/10) 5142292763933508 a001 514229/1364*10749957122^(5/16) 5142292763933508 a001 514229/1364*599074578^(5/14) 5142292763933508 a001 514229/1364*228826127^(3/8) 5142292763933510 a001 514229/1364*33385282^(5/12) 5142292763933765 a001 2178309/1364*710647^(3/7) 5142292763934250 a001 514229/1364*1860498^(1/2) 5142292763934987 a001 66978574/341*271443^(1/13) 5142292763938315 a001 433495280/843 5142292763940355 a001 9303105/124*271443^(2/13) 5142292763945723 a001 39088169/1364*271443^(3/13) 5142292763949550 a001 433494437/1364*103682^(1/24) 5142292763951088 a001 3732588/341*271443^(4/13) 5142292763954790 a001 305/219602*(1/2+1/2*5^(1/2))^41 5142292763956276 a001 98209/682*45537549124^(1/3) 5142292763956276 a001 98209/682*(1/2+1/2*5^(1/2))^17 5142292763956292 a001 98209/682*12752043^(1/2) 5142292763956429 a001 5702887/1364*271443^(5/13) 5142292763961613 a001 2178309/1364*271443^(6/13) 5142292763962384 a001 317811/1364*271443^(8/13) 5142292763965081 a001 1346269/1364*271443^(1/2) 5142292763965712 a001 610*271443^(7/13) 5142292763969481 a001 66978574/341*103682^(1/12) 5142292763989413 a001 165580141/1364*103682^(1/8) 5142292763997924 a001 62423834550/121393 5142292764009344 a001 9303105/124*103682^(1/6) 5142292764029276 a001 31622993/682*103682^(5/24) 5142292764038518 a001 28657/1364*64079^(21/23) 5142292764049206 a001 39088169/1364*103682^(1/4) 5142292764069140 a001 24157817/1364*103682^(7/24) 5142292764078650 a001 433494437/1364*39603^(1/22) 5142292764089065 a001 3732588/341*103682^(1/3) 5142292764109013 a001 9227465/1364*103682^(3/8) 5142292764110848 a001 610/167761*2537720636^(13/15) 5142292764110848 a001 610/167761*45537549124^(13/17) 5142292764110848 a001 610/167761*14662949395604^(13/21) 5142292764110848 a001 610/167761*(1/2+1/2*5^(1/2))^39 5142292764110848 a001 610/167761*192900153618^(13/18) 5142292764110848 a001 610/167761*73681302247^(3/4) 5142292764110848 a001 610/167761*10749957122^(13/16) 5142292764110848 a001 610/167761*599074578^(13/14) 5142292764112334 a001 75025/1364*817138163596^(1/3) 5142292764112334 a001 75025/1364*(1/2+1/2*5^(1/2))^19 5142292764112334 a001 75025/1364*87403803^(1/2) 5142292764128901 a001 5702887/1364*103682^(5/12) 5142292764148947 a001 1762289/682*103682^(11/24) 5142292764168579 a001 2178309/1364*103682^(1/2) 5142292764189295 a001 1346269/1364*103682^(13/24) 5142292764207173 a001 610*103682^(7/12) 5142292764218593 a001 121393/1364*103682^(3/4) 5142292764227681 a001 66978574/341*39603^(1/11) 5142292764232479 a001 514229/1364*103682^(5/8) 5142292764238339 a001 317811/1364*103682^(2/3) 5142292764295111 a001 98209/682*103682^(17/24) 5142292764376713 a001 165580141/1364*39603^(3/22) 5142292764406487 a001 11921891545/23184 5142292764491031 a001 75025/1364*103682^(19/24) 5142292764525744 a001 9303105/124*39603^(2/11) 5142292764674776 a001 31622993/682*39603^(5/22) 5142292764823806 a001 39088169/1364*39603^(3/11) 5142292764972840 a001 24157817/1364*39603^(7/22) 5142292765053243 a001 433494437/1364*15127^(1/20) 5142292765121865 a001 3732588/341*39603^(4/11) 5142292765161233 a001 28657/1364*439204^(7/9) 5142292765180482 a001 610/64079*(1/2+1/2*5^(1/2))^37 5142292765181915 a001 28657/1364*7881196^(7/11) 5142292765181960 a001 28657/1364*20633239^(3/5) 5142292765181967 a001 28657/1364*141422324^(7/13) 5142292765181967 a001 28657/1364*2537720636^(7/15) 5142292765181967 a001 28657/1364*17393796001^(3/7) 5142292765181967 a001 28657/1364*45537549124^(7/17) 5142292765181967 a001 28657/1364*14662949395604^(1/3) 5142292765181967 a001 28657/1364*(1/2+1/2*5^(1/2))^21 5142292765181967 a001 28657/1364*192900153618^(7/18) 5142292765181967 a001 28657/1364*10749957122^(7/16) 5142292765181967 a001 28657/1364*599074578^(1/2) 5142292765181970 a001 28657/1364*33385282^(7/12) 5142292765183007 a001 28657/1364*1860498^(7/10) 5142292765189604 a001 28657/1364*710647^(3/4) 5142292765270913 a001 9227465/1364*39603^(9/22) 5142292765419901 a001 5702887/1364*39603^(5/11) 5142292765569047 a001 1762289/682*39603^(1/2) 5142292765600528 a001 28657/1364*103682^(7/8) 5142292765717779 a001 2178309/1364*39603^(6/11) 5142292765867595 a001 1346269/1364*39603^(13/22) 5142292766014573 a001 610*39603^(7/11) 5142292766168979 a001 514229/1364*39603^(15/22) 5142292766176867 a001 66978574/341*15127^(1/10) 5142292766303939 a001 317811/1364*39603^(8/11) 5142292766431893 a001 11592/341*39603^(10/11) 5142292766489811 a001 98209/682*39603^(17/22) 5142292766542393 a001 121393/1364*39603^(9/11) 5142292766943931 a001 75025/1364*39603^(19/22) 5142292767206820 a001 9107514720/17711 5142292767300492 a001 165580141/1364*15127^(3/20) 5142292768311628 a001 28657/1364*39603^(21/22) 5142292768424116 a001 9303105/124*15127^(1/5) 5142292769547741 a001 31622993/682*15127^(1/4) 5142292770671364 a001 39088169/1364*15127^(3/10) 5142292771794991 a001 24157817/1364*15127^(7/20) 5142292772486770 a001 433494437/1364*5778^(1/18) 5142292772511860 a001 305/12238*2537720636^(7/9) 5142292772511860 a001 305/12238*17393796001^(5/7) 5142292772511860 a001 305/12238*312119004989^(7/11) 5142292772511860 a001 305/12238*14662949395604^(5/9) 5142292772511860 a001 305/12238*(1/2+1/2*5^(1/2))^35 5142292772511860 a001 305/12238*505019158607^(5/8) 5142292772511860 a001 305/12238*28143753123^(7/10) 5142292772511860 a001 305/12238*599074578^(5/6) 5142292772511860 a001 305/12238*228826127^(7/8) 5142292772513345 a001 5473/682*(1/2+1/2*5^(1/2))^23 5142292772513345 a001 5473/682*4106118243^(1/2) 5142292772918609 a001 3732588/341*15127^(2/5) 5142292772971769 a001 5473/682*103682^(23/24) 5142292774042251 a001 9227465/1364*15127^(9/20) 5142292775165831 a001 5702887/1364*15127^(1/2) 5142292776289570 a001 1762289/682*15127^(11/20) 5142292777047904 a007 Real Root Of -222*x^4+587*x^3+61*x^2+723*x+451 5142292777412895 a001 2178309/1364*15127^(3/5) 5142292778537304 a001 1346269/1364*15127^(13/20) 5142292779657763 a007 Real Root Of 534*x^4-902*x^3-94*x^2-377*x-329 5142292779658875 a001 610*15127^(7/10) 5142292780787875 a001 514229/1364*15127^(3/4) 5142292781043922 a001 66978574/341*5778^(1/9) 5142292781897428 a001 317811/1364*15127^(4/5) 5142292783057892 a001 98209/682*15127^(17/20) 5142292784085068 a001 121393/1364*15127^(9/10) 5142292785461199 a001 75025/1364*15127^(19/20) 5142292786400591 a001 695752214/1353 5142292789601074 a001 165580141/1364*5778^(1/6) 5142292798158226 a001 9303105/124*5778^(2/9) 5142292806715378 a001 31622993/682*5778^(5/18) 5142292815272529 a001 39088169/1364*5778^(1/3) 5142292822761875 a001 610/9349*141422324^(11/13) 5142292822761875 a001 610/9349*2537720636^(11/15) 5142292822761875 a001 610/9349*45537549124^(11/17) 5142292822761875 a001 610/9349*312119004989^(3/5) 5142292822761875 a001 610/9349*14662949395604^(11/21) 5142292822761875 a001 610/9349*(1/2+1/2*5^(1/2))^33 5142292822761875 a001 610/9349*192900153618^(11/18) 5142292822761875 a001 610/9349*10749957122^(11/16) 5142292822761875 a001 610/9349*1568397607^(3/4) 5142292822761875 a001 610/9349*599074578^(11/14) 5142292822761879 a001 610/9349*33385282^(11/12) 5142292822763351 a001 4181/1364*20633239^(5/7) 5142292822763360 a001 4181/1364*2537720636^(5/9) 5142292822763360 a001 4181/1364*312119004989^(5/11) 5142292822763360 a001 4181/1364*(1/2+1/2*5^(1/2))^25 5142292822763360 a001 4181/1364*3461452808002^(5/12) 5142292822763360 a001 4181/1364*28143753123^(1/2) 5142292822763360 a001 4181/1364*228826127^(5/8) 5142292822764598 a001 4181/1364*1860498^(5/6) 5142292823454497 r002 12th iterates of z^2 + 5142292823829683 a001 24157817/1364*5778^(7/18) 5142292829912653 a001 433494437/1364*2207^(1/16) 5142292832386829 a001 3732588/341*5778^(4/9) 5142292840943997 a001 9227465/1364*5778^(1/2) 5142292846498996 r005 Im(z^2+c),c=-14/17+1/28*I,n=7 5142292849501106 a001 5702887/1364*5778^(5/9) 5142292858058372 a001 1762289/682*5778^(11/18) 5142292866615225 a001 2178309/1364*5778^(2/3) 5142292875173161 a001 1346269/1364*5778^(13/18) 5142292883728260 a001 610*5778^(7/9) 5142292888177129 p003 LerchPhi(1/25,3,246/91) 5142292892290787 a001 514229/1364*5778^(5/6) 5142292895895689 a001 66978574/341*2207^(1/8) 5142292900833867 a001 317811/1364*5778^(8/9) 5142292909427859 a001 98209/682*5778^(17/18) 5142292912193287 r009 Im(z^3+c),c=-19/58+31/50*I,n=36 5142292914506243 a001 1346269/521*521^(11/13) 5142292917956656 a001 664384245/1292 5142292934846403 r009 Im(z^3+c),c=-47/118+32/57*I,n=56 5142292935115393 r005 Re(z^2+c),c=-3/5+27/115*I,n=10 5142292936868770 r002 44th iterates of z^2 + 5142292939665070 m001 (Trott+ThueMorse)/(Ei(1)-exp(1)) 5142292946168326 a007 Real Root Of -151*x^4-746*x^3-17*x^2-998*x-537 5142292947138113 a001 165580141/5778*843^(3/7) 5142292953793024 h001 (4/11*exp(1)+6/7)/(3/8*exp(2)+9/11) 5142292953808209 a007 Real Root Of -774*x^4+794*x^3-215*x^2-31*x+203 5142292958315033 a005 (1/sin(48/121*Pi))^460 5142292961878725 a001 165580141/1364*2207^(3/16) 5142292961961168 p001 sum((-1)^n/(203*n+193)/(64^n),n=0..infinity) 5142292965702808 a007 Real Root Of 365*x^4-98*x^3-150*x^2-705*x+390 5142292966596375 r005 Re(z^2+c),c=-7/9+34/117*I,n=6 5142292969762202 m001 MadelungNaCl^2/GolombDickman*exp(Salem)^2 5142292987557415 a001 165580141/3571*843^(5/14) 5142292990625523 r005 Im(z^2+c),c=-79/70+4/63*I,n=29 5142292998606872 m005 (1/2*2^(1/2)+1/5)/(1/6*Pi-7/10) 5142293005163605 r009 Im(z^3+c),c=-1/48+13/20*I,n=35 5142293009886534 m001 (KhinchinHarmonic-Kolakoski)/(ln(Pi)+CareFree) 5142293010140700 m001 gamma(1)*FellerTornier^HardyLittlewoodC4 5142293016938569 a007 Real Root Of 582*x^4-936*x^3+261*x^2-809*x-653 5142293025036275 a007 Real Root Of 7*x^4+347*x^3-684*x^2-895*x+338 5142293027861762 a001 9303105/124*2207^(1/4) 5142293030220124 l006 ln(2933/4905) 5142293054012170 a005 (1/sin(82/225*Pi))^239 5142293077311431 a001 701408733/2207*322^(1/12) 5142293078694363 a001 433494437/15127*843^(3/7) 5142293079162130 a001 24157817/2207*843^(4/7) 5142293085617744 m001 (Conway+MasserGramainDelta)/(Porter-Thue) 5142293093844801 a001 31622993/682*2207^(5/16) 5142293097888161 a001 1134903170/39603*843^(3/7) 5142293100688499 a001 2971215073/103682*843^(3/7) 5142293101097063 a001 7778742049/271443*843^(3/7) 5142293101156671 a001 20365011074/710647*843^(3/7) 5142293101165368 a001 53316291173/1860498*843^(3/7) 5142293101166637 a001 139583862445/4870847*843^(3/7) 5142293101166822 a001 365435296162/12752043*843^(3/7) 5142293101166849 a001 956722026041/33385282*843^(3/7) 5142293101166853 a001 2504730781961/87403803*843^(3/7) 5142293101166854 a001 6557470319842/228826127*843^(3/7) 5142293101166854 a001 10610209857723/370248451*843^(3/7) 5142293101166854 a001 4052739537881/141422324*843^(3/7) 5142293101166855 a001 1548008755920/54018521*843^(3/7) 5142293101166866 a001 591286729879/20633239*843^(3/7) 5142293101166937 a001 225851433717/7881196*843^(3/7) 5142293101167421 a001 86267571272/3010349*843^(3/7) 5142293101170743 a001 32951280099/1149851*843^(3/7) 5142293101193512 a001 12586269025/439204*843^(3/7) 5142293101349569 a001 4807526976/167761*843^(3/7) 5142293102419203 a001 28657*843^(3/7) 5142293102643455 r005 Im(z^2+c),c=-5/46+25/39*I,n=35 5142293109750582 a001 701408733/24476*843^(3/7) 5142293114456168 r005 Re(z^2+c),c=-6/17+33/53*I,n=12 5142293119099555 r005 Re(z^2+c),c=-17/78+12/19*I,n=22 5142293149970896 r005 Im(z^2+c),c=-13/110+38/49*I,n=30 5142293159827839 a001 39088169/1364*2207^(3/8) 5142293160000600 a001 267914296/9349*843^(3/7) 5142293167180629 a001 610/3571*(1/2+1/2*5^(1/2))^31 5142293167180629 a001 610/3571*9062201101803^(1/2) 5142293167182015 a001 1597/1364*7881196^(9/11) 5142293167182082 a001 1597/1364*141422324^(9/13) 5142293167182083 a001 1597/1364*2537720636^(3/5) 5142293167182083 a001 1597/1364*45537549124^(9/17) 5142293167182083 a001 1597/1364*817138163596^(9/19) 5142293167182083 a001 1597/1364*14662949395604^(3/7) 5142293167182083 a001 1597/1364*(1/2+1/2*5^(1/2))^27 5142293167182083 a001 1597/1364*192900153618^(1/2) 5142293167182083 a001 1597/1364*10749957122^(9/16) 5142293167182083 a001 1597/1364*599074578^(9/14) 5142293167182086 a001 1597/1364*33385282^(3/4) 5142293167183420 a001 1597/1364*1860498^(9/10) 5142293171194540 a007 Real Root Of 169*x^4-453*x^3+142*x^2-389*x-311 5142293171311416 k006 concat of cont frac of 5142293178590499 r005 Re(z^2+c),c=-49/94+25/51*I,n=23 5142293196230142 m001 Robbin^(TwinPrimes/HardyLittlewoodC5) 5142293200236774 r009 Re(z^3+c),c=-63/122+26/53*I,n=16 5142293201335770 s001 sum(1/10^(n-1)*A233711[n]/n!^2,n=1..infinity) 5142293207526570 m001 1/FeigenbaumKappa/Robbin*exp(GAMMA(7/12)) 5142293211580749 r009 Im(z^3+c),c=-1/48+13/20*I,n=59 5142293223879471 r009 Im(z^3+c),c=-13/86+16/25*I,n=25 5142293225810881 a001 24157817/1364*2207^(7/16) 5142293233123217 m001 (BesselI(1,1)+QuadraticClass)/(5^(1/2)+gamma) 5142293248746099 r005 Re(z^2+c),c=-2/27+40/61*I,n=22 5142293251212161 k007 concat of cont frac of 5142293254380487 m001 (Paris+Riemann1stZero)/(Si(Pi)+Catalan) 5142293267240449 r009 Im(z^3+c),c=-7/64+29/45*I,n=57 5142293268176204 a007 Real Root Of 436*x^4-829*x^3-435*x^2-684*x+549 5142293280202074 m001 BesselK(1,1)/(Psi(1,1/3)+ln(5)) 5142293280791557 a001 433494437/1364*843^(1/14) 5142293291793915 a001 3732588/341*2207^(1/2) 5142293295426943 r009 Im(z^3+c),c=-3/50+31/48*I,n=20 5142293333064060 a001 1/98209*21^(25/47) 5142293341137487 r005 Re(z^2+c),c=-61/86+5/47*I,n=18 5142293351471184 m001 (gamma(2)+GAMMA(17/24))/(Otter-PlouffeB) 5142293357776973 a001 9227465/1364*2207^(9/16) 5142293370102933 r002 22th iterates of z^2 + 5142293380181995 a007 Real Root Of -861*x^4-40*x^3+890*x^2+884*x+274 5142293385557381 r009 Im(z^3+c),c=-9/26+6/11*I,n=12 5142293412148926 l006 ln(5338/8927) 5142293412213706 m005 (1/2*Catalan+4/9)/(2/9*exp(1)-3/7) 5142293414242604 a007 Real Root Of -692*x^4+698*x^3-421*x^2+975*x+756 5142293423759972 a001 5702887/1364*2207^(5/8) 5142293426420678 r005 Im(z^2+c),c=-5/21+25/38*I,n=31 5142293428335258 m008 (1/3*Pi-4/5)/(5*Pi^6+1/5) 5142293435023012 m005 (1/2*gamma+7/12)/(7/12*5^(1/2)-3) 5142293458637830 k002 Champernowne real with 7*n^2+116*n-118 5142293462437416 r009 Im(z^3+c),c=-4/21+31/49*I,n=44 5142293464000070 a001 34111385/1926*843^(1/2) 5142293465922599 m001 exp(Riemann1stZero)/Si(Pi)/Zeta(3)^2 5142293489743130 a001 1762289/682*2207^(11/16) 5142293504419376 a001 102334155/3571*843^(3/7) 5142293504526530 r005 Re(z^2+c),c=-1/106+22/31*I,n=5 5142293517724136 r009 Re(z^3+c),c=-29/54+11/34*I,n=27 5142293533052658 m005 (1/2*Pi+6/11)/(2/7*3^(1/2)-1/12) 5142293555725874 a001 2178309/1364*2207^(3/4) 5142293569280654 h001 (1/12*exp(2)+5/9)/(7/10*exp(1)+3/8) 5142293575237271 a007 Real Root Of -14*x^4+649*x^3-427*x^2+482*x+450 5142293580726143 a001 24476/55*3^(5/38) 5142293586086975 m001 BesselI(1,1)/((ln(2)/ln(10))^Tribonacci) 5142293595556333 a001 267914296/15127*843^(1/2) 5142293596024094 a001 14930352/2207*843^(9/14) 5142293603832065 q001 1825/3549 5142293613312181 k007 concat of cont frac of 5142293614750134 a001 17711*843^(1/2) 5142293616253777 r005 Re(z^2+c),c=-39/106+13/20*I,n=12 5142293617210552 m002 4+5*Pi^4+2*Cosh[Pi] 5142293617550471 a001 1836311903/103682*843^(1/2) 5142293617959035 a001 1602508992/90481*843^(1/2) 5142293618018644 a001 12586269025/710647*843^(1/2) 5142293618027341 a001 10983760033/620166*843^(1/2) 5142293618028609 a001 86267571272/4870847*843^(1/2) 5142293618028795 a001 75283811239/4250681*843^(1/2) 5142293618028822 a001 591286729879/33385282*843^(1/2) 5142293618028825 a001 516002918640/29134601*843^(1/2) 5142293618028826 a001 4052739537881/228826127*843^(1/2) 5142293618028826 a001 3536736619241/199691526*843^(1/2) 5142293618028826 a001 6557470319842/370248451*843^(1/2) 5142293618028826 a001 2504730781961/141422324*843^(1/2) 5142293618028828 a001 956722026041/54018521*843^(1/2) 5142293618028838 a001 365435296162/20633239*843^(1/2) 5142293618028909 a001 139583862445/7881196*843^(1/2) 5142293618029394 a001 53316291173/3010349*843^(1/2) 5142293618032715 a001 20365011074/1149851*843^(1/2) 5142293618050410 m005 (-11/20+1/4*5^(1/2))/(7/8*exp(1)-5/8) 5142293618055484 a001 7778742049/439204*843^(1/2) 5142293618211541 a001 2971215073/167761*843^(1/2) 5142293619279580 m001 1/KhintchineHarmonic^2*Si(Pi)^2/exp(cosh(1))^2 5142293619281175 a001 1134903170/64079*843^(1/2) 5142293620573643 r005 Im(z^2+c),c=-7/94+13/21*I,n=10 5142293621709703 a001 1346269/1364*2207^(13/16) 5142293625624375 r009 Im(z^3+c),c=-4/23+39/55*I,n=13 5142293625922392 r008 a(0)=6,K{-n^6,-1+16*n^3-11*n^2-2*n} 5142293626612555 a001 433494437/24476*843^(1/2) 5142293651880551 m005 (1/2*3^(1/2)+9/10)/(2/5*2^(1/2)-4) 5142293676862578 a001 165580141/9349*843^(1/2) 5142293680884914 a007 Real Root Of 91*x^4-884*x^3+686*x^2+560*x-20 5142293687690696 a001 610*2207^(7/8) 5142293688878044 a007 Real Root Of 324*x^4-558*x^3-781*x^2+17*x+251 5142293697250031 r005 Im(z^2+c),c=-19/106+36/41*I,n=9 5142293716540273 a007 Real Root Of 956*x^4+695*x^3-793*x^2-995*x+560 5142293722172446 l006 ln(7713/8120) 5142293725054326 a007 Real Root Of -846*x^4+586*x^3-92*x^2+937*x+645 5142293728020952 m002 -6+5*Cosh[Pi]-ProductLog[Pi]/2 5142293739554986 m001 (Chi(1)+Otter)/(Psi(1,1/3)-exp(1)) 5142293740218755 a003 sin(Pi*13/83)/sin(Pi*33/89) 5142293753679118 a001 514229/1364*2207^(15/16) 5142293775816973 m001 (Zeta(1/2)*HardyLittlewoodC4+Artin)/Zeta(1/2) 5142293786528821 r005 Im(z^2+c),c=-103/78+2/31*I,n=11 5142293797653547 a001 66978574/341*843^(1/7) 5142293817194206 a007 Real Root Of 70*x^4-783*x^3+169*x^2+39*x-136 5142293819655521 a001 507544400/987 5142293825262315 a007 Real Root Of 560*x^4-892*x^3-974*x^2-619*x+658 5142293837360284 m005 (1/2*Catalan-1/12)/(1/11*2^(1/2)+3/5) 5142293843167116 m001 (MinimumGamma+Porter)/(FeigenbaumC-Psi(2,1/3)) 5142293847027910 r005 Re(z^2+c),c=23/114+9/26*I,n=16 5142293848590752 r009 Im(z^3+c),c=-1/48+13/20*I,n=61 5142293852817240 r005 Re(z^2+c),c=21/86+27/47*I,n=26 5142293863352116 r009 Re(z^3+c),c=-25/64+1/52*I,n=42 5142293877565527 r009 Im(z^3+c),c=-7/36+19/30*I,n=30 5142293877927358 l006 ln(2405/4022) 5142293883820339 r005 Re(z^2+c),c=-2/3+13/54*I,n=47 5142293903594183 m001 GaussKuzminWirsing^Mills/HardyLittlewoodC5 5142293916223371 a007 Real Root Of -652*x^4-705*x^3-714*x^2+279*x+282 5142293927176516 r005 Im(z^2+c),c=-23/18+82/233*I,n=12 5142293931373015 m001 (BesselJ(0,1)-ln(gamma))/(-GAMMA(19/24)+Salem) 5142293932271477 r005 Im(z^2+c),c=1/9+27/49*I,n=30 5142293947605596 a007 Real Root Of -102*x^4-612*x^3-500*x^2-115*x+734 5142293947614553 r002 14th iterates of z^2 + 5142293956127959 r009 Im(z^3+c),c=-9/98+13/19*I,n=15 5142293974943444 r009 Re(z^3+c),c=-61/126+1/12*I,n=5 5142293979011381 a001 1836311903/5778*322^(1/12) 5142293980862079 a001 31622993/2889*843^(4/7) 5142294002530797 m001 Riemann2ndZero^(Conway*ThueMorse) 5142294003950863 p001 sum((-1)^n/(425*n+417)/n/(2^n),n=1..infinity) 5142294018840256 m001 (-Grothendieck+Kac)/(BesselJ(0,1)-cos(1)) 5142294021281389 a001 63245986/3571*843^(1/2) 5142294036783242 m001 (ln(3)+ln(Pi))/(arctan(1/2)-Trott2nd) 5142294057684706 r009 Im(z^3+c),c=-7/36+19/30*I,n=25 5142294062268300 m005 (1/2*2^(1/2)+5)/(3/11*5^(1/2)+1/2) 5142294071772280 r005 Re(z^2+c),c=-11/10+77/169*I,n=4 5142294076989045 m001 1/GAMMA(1/24)*LaplaceLimit/ln(sqrt(3)) 5142294088004184 r002 10th iterates of z^2 + 5142294098825406 m001 Zeta(3)/(Backhouse+QuadraticClass) 5142294101659342 r009 Im(z^3+c),c=-3/17+26/41*I,n=12 5142294105337282 m001 ln(GAMMA(19/24))/TreeGrowth2nd/sin(1)^2 5142294110567657 a001 686789568/2161*322^(1/12) 5142294112418355 a001 165580141/15127*843^(4/7) 5142294112886133 a001 9227465/2207*843^(5/7) 5142294129761460 a001 12586269025/39603*322^(1/12) 5142294131612158 a001 433494437/39603*843^(4/7) 5142294132561798 a001 32951280099/103682*322^(1/12) 5142294132970361 a001 86267571272/271443*322^(1/12) 5142294133029970 a001 317811*322^(1/12) 5142294133038667 a001 591286729879/1860498*322^(1/12) 5142294133039936 a001 1548008755920/4870847*322^(1/12) 5142294133040121 a001 4052739537881/12752043*322^(1/12) 5142294133040148 a001 1515744265389/4769326*322^(1/12) 5142294133040165 a001 6557470319842/20633239*322^(1/12) 5142294133040235 a001 2504730781961/7881196*322^(1/12) 5142294133040720 a001 956722026041/3010349*322^(1/12) 5142294133044042 a001 365435296162/1149851*322^(1/12) 5142294133066810 a001 139583862445/439204*322^(1/12) 5142294133222868 a001 53316291173/167761*322^(1/12) 5142294134292502 a001 20365011074/64079*322^(1/12) 5142294134412496 a001 567451585/51841*843^(4/7) 5142294134821059 a001 2971215073/271443*843^(4/7) 5142294134880668 a001 7778742049/710647*843^(4/7) 5142294134889365 a001 10182505537/930249*843^(4/7) 5142294134890634 a001 53316291173/4870847*843^(4/7) 5142294134890819 a001 139583862445/12752043*843^(4/7) 5142294134890846 a001 182717648081/16692641*843^(4/7) 5142294134890850 a001 956722026041/87403803*843^(4/7) 5142294134890850 a001 2504730781961/228826127*843^(4/7) 5142294134890850 a001 3278735159921/299537289*843^(4/7) 5142294134890851 a001 10610209857723/969323029*843^(4/7) 5142294134890851 a001 4052739537881/370248451*843^(4/7) 5142294134890851 a001 387002188980/35355581*843^(4/7) 5142294134890852 a001 591286729879/54018521*843^(4/7) 5142294134890863 a001 7787980473/711491*843^(4/7) 5142294134890933 a001 21566892818/1970299*843^(4/7) 5142294134891418 a001 32951280099/3010349*843^(4/7) 5142294134894740 a001 12586269025/1149851*843^(4/7) 5142294134917508 a001 1201881744/109801*843^(4/7) 5142294135073566 a001 1836311903/167761*843^(4/7) 5142294136143200 a001 701408733/64079*843^(4/7) 5142294139716727 p001 sum((-1)^n/(451*n+194)/(125^n),n=0..infinity) 5142294141623882 a001 7778742049/24476*322^(1/12) 5142294143474580 a001 10946*843^(4/7) 5142294154163442 a007 Real Root Of -661*x^4-240*x^3+816*x^2+638*x-465 5142294164212095 a003 cos(Pi*26/113)*sin(Pi*19/79) 5142294177182664 r009 Re(z^3+c),c=-25/64+1/52*I,n=58 5142294182755762 m005 (1/2*2^(1/2)-2/11)/(5/12*exp(1)-1/9) 5142294188298807 r005 Re(z^2+c),c=-17/29+22/59*I,n=29 5142294191873910 a001 2971215073/9349*322^(1/12) 5142294193307818 m001 (FeigenbaumB+Paris)/(3^(1/3)+Zeta(1/2)) 5142294193493495 a007 Real Root Of -176*x^4-788*x^3+538*x^2-218*x+568 5142294193724608 a001 102334155/9349*843^(4/7) 5142294274868599 r009 Im(z^3+c),c=-1/48+13/20*I,n=63 5142294281111116 k008 concat of cont frac of 5142294287440023 a007 Real Root Of -346*x^4-95*x^3-785*x^2+467*x+459 5142294300893531 m001 Ei(1,1)/MasserGramain/TwinPrimes 5142294301347041 m001 (Pi+arctan(1/3))/(sin(1/12*Pi)+PrimesInBinary) 5142294314515590 a001 165580141/1364*843^(3/14) 5142294315101489 a003 cos(Pi*37/109)-sin(Pi*53/111) 5142294328350960 a007 Real Root Of 469*x^4-715*x^3-216*x^2-288*x-221 5142294345832597 m002 2+Pi+ProductLog[Pi]/(5*Pi^5) 5142294350267724 a007 Real Root Of 100*x^4+571*x^3+381*x^2+536*x+401 5142294353182662 a007 Real Root Of 476*x^4+161*x^3+917*x^2-325*x-421 5142294359938913 a007 Real Root Of 473*x^4-53*x^3+984*x^2-950*x-789 5142294370293179 m005 (1/3*Zeta(3)+2/3)/(151/132+5/12*5^(1/2)) 5142294371760861 a001 2178309/521*521^(10/13) 5142294372352979 m001 (Niven-ZetaP(2))/(GAMMA(7/12)-GAMMA(17/24)) 5142294383101801 a001 89/18*2^(3/53) 5142294384129050 a007 Real Root Of -328*x^4+626*x^3+39*x^2+545*x+378 5142294438267020 r009 Im(z^3+c),c=-23/110+17/27*I,n=35 5142294457600600 r005 Im(z^2+c),c=-17/27+3/31*I,n=60 5142294458573116 l006 ln(4282/7161) 5142294461643840 k002 Champernowne real with 15/2*n^2+229/2*n-117 5142294484905359 a001 1346269/11*199^(16/59) 5142294497724139 a001 39088169/5778*843^(9/14) 5142294500056627 r009 Im(z^3+c),c=-13/82+31/48*I,n=4 5142294536292756 a001 1134903170/3571*322^(1/12) 5142294538143453 a001 39088169/3571*843^(4/7) 5142294573745492 r008 a(0)=5,K{-n^6,24-25*n-3*n^2-4*n^3} 5142294595912638 m001 2*Pi/GAMMA(5/6)-Lehmer^GAMMA(13/24) 5142294595912638 m001 GAMMA(1/6)-Lehmer^GAMMA(13/24) 5142294603378654 a007 Real Root Of 913*x^4+346*x^3-615*x^2-897*x+513 5142294610220503 r005 Im(z^2+c),c=-67/60+1/16*I,n=33 5142294616191571 m001 CareFree-FellerTornier^Porter 5142294629273329 a005 (1/cos(17/191*Pi))^1727 5142294629280429 a001 6765*843^(9/14) 5142294629748163 a001 5702887/2207*843^(11/14) 5142294633551688 r009 Im(z^3+c),c=-15/52+14/23*I,n=51 5142294648474234 a001 267914296/39603*843^(9/14) 5142294650650030 m001 (Paris+PrimesInBinary)/(gamma+BesselK(0,1)) 5142294651274572 a001 701408733/103682*843^(9/14) 5142294651683136 a001 1836311903/271443*843^(9/14) 5142294651742744 a001 686789568/101521*843^(9/14) 5142294651751441 a001 12586269025/1860498*843^(9/14) 5142294651752710 a001 32951280099/4870847*843^(9/14) 5142294651752895 a001 86267571272/12752043*843^(9/14) 5142294651752922 a001 32264490531/4769326*843^(9/14) 5142294651752926 a001 591286729879/87403803*843^(9/14) 5142294651752927 a001 1548008755920/228826127*843^(9/14) 5142294651752927 a001 4052739537881/599074578*843^(9/14) 5142294651752927 a001 1515744265389/224056801*843^(9/14) 5142294651752927 a001 6557470319842/969323029*843^(9/14) 5142294651752927 a001 2504730781961/370248451*843^(9/14) 5142294651752927 a001 956722026041/141422324*843^(9/14) 5142294651752929 a001 365435296162/54018521*843^(9/14) 5142294651752939 a001 139583862445/20633239*843^(9/14) 5142294651753010 a001 53316291173/7881196*843^(9/14) 5142294651753494 a001 20365011074/3010349*843^(9/14) 5142294651756816 a001 7778742049/1149851*843^(9/14) 5142294651779585 a001 2971215073/439204*843^(9/14) 5142294651935642 a001 1134903170/167761*843^(9/14) 5142294653005276 a001 433494437/64079*843^(9/14) 5142294660336657 a001 165580141/24476*843^(9/14) 5142294665981987 m001 (Si(Pi)+GAMMA(7/12))/(-Sierpinski+Tetranacci) 5142294675786785 r004 Re(z^2+c),c=2/5-3/8*I,z(0)=exp(3/8*I*Pi),n=22 5142294683959136 a001 3571/233*6765^(7/51) 5142294706153697 m005 (1/2*Catalan-5/9)/(6*Pi+1/8) 5142294710586691 a001 63245986/9349*843^(9/14) 5142294720866047 r009 Im(z^3+c),c=-33/106+28/47*I,n=32 5142294734194974 b008 29*(16+Sqrt[3]) 5142294736168334 b008 1/2+Zeta[3,-1/8] 5142294745045477 m001 Totient^Landau/BesselI(0,2) 5142294751620104 m001 1/3*GAMMA(13/24)*3^(2/3)*ZetaP(2) 5142294753583892 r009 Re(z^3+c),c=-43/102+4/49*I,n=4 5142294761988782 s002 sum(A270241[n]/(n*exp(pi*n)+1),n=1..infinity) 5142294767943980 a007 Real Root Of -209*x^4-995*x^3+507*x^2+589*x+465 5142294779505307 r009 Im(z^3+c),c=-17/58+31/51*I,n=47 5142294801311728 r005 Re(z^2+c),c=-23/18+179/192*I,n=2 5142294806668808 a007 Real Root Of 796*x^4+556*x^3+332*x^2-327*x-236 5142294814148720 r005 Re(z^2+c),c=-131/114+15/47*I,n=4 5142294818976099 a007 Real Root Of -171*x^4+117*x^3-329*x^2+642*x+445 5142294828553765 r009 Im(z^3+c),c=-15/98+23/36*I,n=42 5142294831377684 a001 9303105/124*843^(2/7) 5142294835463108 r009 Im(z^3+c),c=-41/102+11/18*I,n=21 5142294839537269 p001 sum((-1)^n/(222*n+89)/n/(625^n),n=1..infinity) 5142294916031663 r002 3th iterates of z^2 + 5142294943745607 r009 Im(z^3+c),c=-29/94+38/63*I,n=61 5142294947428864 h001 (7/12*exp(2)+5/11)/(3/10*exp(1)+1/9) 5142294981147361 r009 Re(z^3+c),c=-1/30+30/37*I,n=7 5142294994964276 m001 ln(Trott)*Sierpinski*GAMMA(5/24) 5142295001595925 r009 Im(z^3+c),c=-17/82+27/43*I,n=25 5142295009187735 a001 6765/4*76^(41/52) 5142295012121241 k007 concat of cont frac of 5142295014586254 a001 24157817/5778*843^(5/7) 5142295027993259 p003 LerchPhi(1/32,1,427/215) 5142295039827155 r005 Re(z^2+c),c=1/8+39/56*I,n=3 5142295055005572 a001 24157817/3571*843^(9/14) 5142295073962872 m001 (Zeta(1/2)+exp(-1/2*Pi))/(Gompertz+Tribonacci) 5142295110747353 l006 ln(8869/9337) 5142295135660233 m001 1/GAMMA(19/24)/exp(GAMMA(1/4))^2/sinh(1) 5142295141320906 m005 (2/5*2^(1/2)-3)/(1/6*Catalan-1/5) 5142295146142555 a001 63245986/15127*843^(5/7) 5142295146610404 a001 3524578/2207*843^(6/7) 5142295147996589 a003 cos(Pi*22/87)*sin(Pi*16/61) 5142295158618864 r009 Re(z^3+c),c=-1/122+14/25*I,n=13 5142295163062960 a001 34111385/281*322^(1/4) 5142295165336362 a001 165580141/39603*843^(5/7) 5142295167453619 a007 Real Root Of 675*x^4-808*x^3-410*x^2+81*x-7 5142295168136700 a001 433494437/103682*843^(5/7) 5142295168545264 a001 1134903170/271443*843^(5/7) 5142295168604873 a001 2971215073/710647*843^(5/7) 5142295168613570 a001 7778742049/1860498*843^(5/7) 5142295168614838 a001 20365011074/4870847*843^(5/7) 5142295168615023 a001 53316291173/12752043*843^(5/7) 5142295168615050 a001 139583862445/33385282*843^(5/7) 5142295168615054 a001 365435296162/87403803*843^(5/7) 5142295168615055 a001 956722026041/228826127*843^(5/7) 5142295168615055 a001 2504730781961/599074578*843^(5/7) 5142295168615055 a001 6557470319842/1568397607*843^(5/7) 5142295168615055 a001 10610209857723/2537720636*843^(5/7) 5142295168615055 a001 4052739537881/969323029*843^(5/7) 5142295168615055 a001 1548008755920/370248451*843^(5/7) 5142295168615055 a001 591286729879/141422324*843^(5/7) 5142295168615057 a001 225851433717/54018521*843^(5/7) 5142295168615067 a001 86267571272/20633239*843^(5/7) 5142295168615138 a001 32951280099/7881196*843^(5/7) 5142295168615623 a001 12586269025/3010349*843^(5/7) 5142295168618944 a001 4807526976/1149851*843^(5/7) 5142295168641713 a001 1836311903/439204*843^(5/7) 5142295168797770 a001 701408733/167761*843^(5/7) 5142295169867405 a001 267914296/64079*843^(5/7) 5142295171508477 r005 Im(z^2+c),c=-125/98+4/59*I,n=3 5142295173402118 r005 Re(z^2+c),c=-67/118+7/18*I,n=18 5142295177198786 a001 102334155/24476*843^(5/7) 5142295179024257 h001 (2/11*exp(1)+1/10)/(1/7*exp(2)+1/10) 5142295179830243 h001 (3/4*exp(1)+9/11)/(8/11*exp(2)+2/11) 5142295190841715 a001 28374454999/5*55^(11/20) 5142295195492885 r005 Re(z^2+c),c=-1/29+43/62*I,n=8 5142295202554447 l006 ln(1877/3139) 5142295219652382 m005 (1/2*exp(1)-5/12)/(10/11*5^(1/2)-1/5) 5142295220627755 a005 (1/sin(65/141*Pi))^1747 5142295227448824 a001 4181*843^(5/7) 5142295236561660 s002 sum(A040148[n]/(n!^2),n=1..infinity) 5142295248918266 r002 4th iterates of z^2 + 5142295271780305 a007 Real Root Of 15*x^4+757*x^3-746*x^2-414*x+855 5142295276358995 r009 Im(z^3+c),c=-5/82+44/61*I,n=10 5142295278898021 a007 Real Root Of 317*x^4-107*x^3+896*x^2-833*x-702 5142295285990362 r002 14th iterates of z^2 + 5142295299299486 m001 (2*Pi/GAMMA(5/6)*Magata-exp(1/exp(1)))/Magata 5142295300239008 r009 Re(z^3+c),c=-1/16+12/37*I,n=3 5142295305961615 r005 Im(z^2+c),c=-11/10+8/131*I,n=19 5142295314713109 m001 (-GaussAGM+Thue)/(BesselJ(1,1)-Catalan) 5142295317803964 s002 sum(A097957[n]/(n!^2),n=1..infinity) 5142295320704733 m001 sin(1/5*Pi)/(GAMMA(19/24)^GaussAGM) 5142295321601455 s002 sum(A071774[n]/(n!^2),n=1..infinity) 5142295326618020 h001 (3/11*exp(2)+1/4)/(5/9*exp(2)+3/10) 5142295348239831 a001 31622993/682*843^(5/14) 5142295362695880 r005 Re(z^2+c),c=-5/8+35/248*I,n=5 5142295382735691 r009 Im(z^3+c),c=-7/64+29/45*I,n=46 5142295383232125 m001 (ArtinRank2+FransenRobinson)/(ln(2)-exp(1/Pi)) 5142295398219401 m001 (Sierpinski+ZetaP(2))/(1-BesselI(1,2)) 5142295420125678 a007 Real Root Of -862*x^4+893*x^3-2*x^2+581*x+481 5142295424796288 r002 46th iterates of z^2 + 5142295427001915 r005 Im(z^2+c),c=3/82+31/53*I,n=28 5142295428676121 r005 Re(z^2+c),c=-31/32+8/35*I,n=54 5142295434336917 r002 15th iterates of z^2 + 5142295446287672 m001 (MertensB1+PlouffeB)/(Rabbit+Sarnak) 5142295464649850 k002 Champernowne real with 8*n^2+113*n-116 5142295477004062 a001 6765/322*7^(23/50) 5142295486496159 m001 (ErdosBorwein-Kac)/(cos(1/5*Pi)+ln(3)) 5142295508108945 m001 Mills*(BesselK(0,1)-Trott2nd) 5142295525371198 m004 -3-2*Sqrt[5]*Pi+5*Sqrt[5]*Pi*Log[Sqrt[5]*Pi] 5142295527863126 a001 305/682*(1/2+1/2*5^(1/2))^29 5142295527863126 a001 305/682*1322157322203^(1/2) 5142295531448413 a001 2584*843^(11/14) 5142295532347921 m001 (Bloch-PolyaRandomWalk3D)/(Pi-sin(1/5*Pi)) 5142295533612559 r009 Im(z^3+c),c=-7/31+19/28*I,n=23 5142295543595152 a007 Real Root Of -576*x^4+780*x^3-374*x^2-860*x-197 5142295554987545 r002 23th iterates of z^2 + 5142295567899902 l006 ln(37/6331) 5142295571867735 a001 14930352/3571*843^(5/7) 5142295580976627 a007 Real Root Of 680*x^4+189*x^3-862*x^2-619*x+473 5142295589555492 r009 Im(z^3+c),c=-1/26+13/20*I,n=25 5142295663004732 a001 39088169/15127*843^(11/14) 5142295663472282 a001 987*843^(13/14) 5142295671686957 r002 55th iterates of z^2 + 5142295677818521 a007 Real Root Of 384*x^4-780*x^3+542*x^2-651*x-611 5142295679124961 s001 sum(exp(-Pi)^n*A259450[n],n=1..infinity) 5142295679124961 s002 sum(A259450[n]/(exp(pi*n)),n=1..infinity) 5142295682198541 a001 34111385/13201*843^(11/14) 5142295684998880 a001 133957148/51841*843^(11/14) 5142295685407444 a001 233802911/90481*843^(11/14) 5142295685467053 a001 1836311903/710647*843^(11/14) 5142295685475750 a001 267084832/103361*843^(11/14) 5142295685477019 a001 12586269025/4870847*843^(11/14) 5142295685477204 a001 10983760033/4250681*843^(11/14) 5142295685477231 a001 43133785636/16692641*843^(11/14) 5142295685477235 a001 75283811239/29134601*843^(11/14) 5142295685477235 a001 591286729879/228826127*843^(11/14) 5142295685477235 a001 86000486440/33281921*843^(11/14) 5142295685477235 a001 4052739537881/1568397607*843^(11/14) 5142295685477235 a001 3536736619241/1368706081*843^(11/14) 5142295685477235 a001 3278735159921/1268860318*843^(11/14) 5142295685477235 a001 2504730781961/969323029*843^(11/14) 5142295685477235 a001 956722026041/370248451*843^(11/14) 5142295685477236 a001 182717648081/70711162*843^(11/14) 5142295685477237 a001 139583862445/54018521*843^(11/14) 5142295685477247 a001 53316291173/20633239*843^(11/14) 5142295685477318 a001 10182505537/3940598*843^(11/14) 5142295685477803 a001 7778742049/3010349*843^(11/14) 5142295685481125 a001 2971215073/1149851*843^(11/14) 5142295685503893 a001 567451585/219602*843^(11/14) 5142295685659951 a001 433494437/167761*843^(11/14) 5142295686729585 a001 165580141/64079*843^(11/14) 5142295694060968 a001 31622993/12238*843^(11/14) 5142295708766479 r009 Im(z^3+c),c=-1/48+13/20*I,n=64 5142295720470342 s002 sum(A246911[n]/((10^n+1)/n),n=1..infinity) 5142295735869541 m001 1/ln(GAMMA(1/3))^2/Magata/sin(Pi/5) 5142295744311013 a001 24157817/9349*843^(11/14) 5142295757095085 a007 Real Root Of 798*x^4-374*x^3+802*x^2-792*x-726 5142295767695495 r005 Re(z^2+c),c=-31/46+9/35*I,n=60 5142295773240447 r002 17th iterates of z^2 + 5142295786864669 r002 37th iterates of z^2 + 5142295798253771 r005 Im(z^2+c),c=-2/3+1/256*I,n=9 5142295801599842 r005 Re(z^2+c),c=-4/27+36/55*I,n=8 5142295802536349 m001 Porter*ArtinRank2*ln(sqrt(1+sqrt(3))) 5142295819719088 r005 Re(z^2+c),c=21/94+3/8*I,n=49 5142295826839738 l006 ln(5103/8534) 5142295829016975 a001 3524578/521*521^(9/13) 5142295833530767 h001 (4/11*exp(1)+7/12)/(3/8*exp(2)+2/7) 5142295843995542 a001 24476*34^(4/19) 5142295856374872 m001 Cahen*Artin/exp(cosh(1)) 5142295865102028 a001 39088169/1364*843^(3/7) 5142295874268859 m001 ln(2)^Si(Pi)/Paris 5142295894108696 m001 (RenyiParking-Thue)/(GAMMA(3/4)-3^(1/3)) 5142295895363646 m005 (3/5*gamma+1/4)/(Catalan-4/5) 5142295906330806 m001 arctan(1/3)*(3^(1/3)-GlaisherKinkelin) 5142295921071524 r009 Im(z^3+c),c=-3/19+11/16*I,n=20 5142295926750549 m001 GolombDickman^GaussAGM*GolombDickman^gamma 5142295943142780 r009 Im(z^3+c),c=-4/21+39/61*I,n=23 5142295994998542 a003 cos(Pi*13/105)-sin(Pi*47/109) 5142296034307963 a007 Real Root Of 347*x^4-342*x^3+883*x^2-87*x-349 5142296042087887 r005 Re(z^2+c),c=-5/8+83/252*I,n=3 5142296048310646 a001 9227465/5778*843^(6/7) 5142296055436403 m002 5+2/Pi^5+Pi/E^Pi 5142296055993373 r009 Im(z^3+c),c=-1/48+13/20*I,n=62 5142296088729972 a001 9227465/3571*843^(11/14) 5142296093117351 r009 Re(z^3+c),c=-59/114+8/17*I,n=7 5142296114233161 k007 concat of cont frac of 5142296144872215 r005 Im(z^2+c),c=-20/31+5/49*I,n=43 5142296155071941 r009 Re(z^3+c),c=-15/29+18/55*I,n=5 5142296176676085 b008 5+Sech[EulerGamma]/6 5142296179866965 a001 24157817/15127*843^(6/7) 5142296180371352 a001 193864566/377 5142296190070808 l006 ln(3226/5395) 5142296192351521 m005 (1/3*Catalan+1/10)/(3*exp(1)-3/11) 5142296194102905 a007 Real Root Of -356*x^4+385*x^3-711*x^2-18*x+256 5142296199060774 a001 63245986/39603*843^(6/7) 5142296201861112 a001 165580141/103682*843^(6/7) 5142296202269676 a001 433494437/271443*843^(6/7) 5142296202329285 a001 1134903170/710647*843^(6/7) 5142296202337982 a001 2971215073/1860498*843^(6/7) 5142296202339251 a001 7778742049/4870847*843^(6/7) 5142296202339436 a001 20365011074/12752043*843^(6/7) 5142296202339463 a001 53316291173/33385282*843^(6/7) 5142296202339467 a001 139583862445/87403803*843^(6/7) 5142296202339467 a001 365435296162/228826127*843^(6/7) 5142296202339467 a001 956722026041/599074578*843^(6/7) 5142296202339467 a001 2504730781961/1568397607*843^(6/7) 5142296202339467 a001 6557470319842/4106118243*843^(6/7) 5142296202339467 a001 10610209857723/6643838879*843^(6/7) 5142296202339467 a001 4052739537881/2537720636*843^(6/7) 5142296202339467 a001 1548008755920/969323029*843^(6/7) 5142296202339468 a001 591286729879/370248451*843^(6/7) 5142296202339468 a001 225851433717/141422324*843^(6/7) 5142296202339469 a001 86267571272/54018521*843^(6/7) 5142296202339480 a001 32951280099/20633239*843^(6/7) 5142296202339550 a001 12586269025/7881196*843^(6/7) 5142296202340035 a001 4807526976/3010349*843^(6/7) 5142296202343357 a001 1836311903/1149851*843^(6/7) 5142296202366125 a001 701408733/439204*843^(6/7) 5142296202522183 a001 267914296/167761*843^(6/7) 5142296203591817 a001 102334155/64079*843^(6/7) 5142296210923200 a001 39088169/24476*843^(6/7) 5142296217557805 h001 (9/11*exp(1)+1/2)/(7/10*exp(2)+1/8) 5142296218686442 a007 Real Root Of 484*x^4+417*x^3+535*x^2-203*x-223 5142296222813884 a007 Real Root Of 429*x^4-631*x^3+575*x^2-755*x+292 5142296237525244 m001 1/sinh(1)^2/FibonacciFactorial^2/exp(sqrt(5)) 5142296261173245 a001 14930352/9349*843^(6/7) 5142296270035776 a007 Real Root Of 825*x^4+96*x^3+198*x^2-352*x-278 5142296270797927 a007 Real Root Of -49*x^4-72*x^3+970*x^2+193*x-185 5142296287961433 m001 GAMMA(2/3)/ln(Catalan)/sqrt(3)^2 5142296320088229 m001 GAMMA(13/24)-PisotVijayaraghavan^BesselK(0,1) 5142296328151727 m005 (1/2*Catalan-3/7)/(5/11*5^(1/2)-4/9) 5142296360980905 r009 Im(z^3+c),c=-5/36+23/36*I,n=23 5142296367814982 a003 sin(Pi*19/112)/sin(Pi*32/71) 5142296368989205 q001 524/1019 5142296379546719 r005 Re(z^2+c),c=7/118+13/35*I,n=23 5142296381964281 a001 24157817/1364*843^(1/2) 5142296389812842 m005 (1/3*gamma-1/2)/(5/11*Catalan+2/11) 5142296394610699 a008 Real Root of x^4-27*x^2-16*x+97 5142296409887257 m001 (1+DuboisRaymond*ZetaQ(4))/DuboisRaymond 5142296439086856 m009 (5/6*Psi(1,2/3)+3/4)/(1/6*Psi(1,3/4)+6) 5142296456534797 r008 a(0)=5,K{-n^6,2-4*n^3+2*n^2-9*n} 5142296459013967 r005 Re(z^2+c),c=-21/29+4/43*I,n=55 5142296467655860 k002 Champernowne real with 17/2*n^2+223/2*n-115 5142296477442959 r009 Im(z^3+c),c=-29/114+26/49*I,n=4 5142296482266535 a007 Real Root Of -821*x^4+832*x^3-428*x^2+629*x-266 5142296501277211 k002 Champernowne real with 103*n^2-300*n+202 5142296502367856 r005 Re(z^2+c),c=-15/31+18/35*I,n=2 5142296506859040 r005 Re(z^2+c),c=29/118+21/53*I,n=43 5142296513960708 r005 Re(z^2+c),c=-13/14+32/237*I,n=52 5142296536250300 a007 Real Root Of -843*x^4+994*x^3+257*x^2+130*x+193 5142296562443023 a001 7/4*(1/2*5^(1/2)+1/2)^19*4^(19/23) 5142296565172871 a001 5702887/5778*843^(13/14) 5142296566327751 m001 (gamma(2)-sin(1))/(FellerTornier+MertensB3) 5142296574414520 r005 Im(z^2+c),c=-55/98+4/43*I,n=35 5142296577861499 r009 Im(z^3+c),c=-1/48+13/20*I,n=60 5142296595222301 l006 ln(4575/7651) 5142296605592201 a001 1597*843^(6/7) 5142296616731977 m001 (Tribonacci-ZetaP(4))/(Bloch+Otter) 5142296623986534 r005 Re(z^2+c),c=-39/62+17/54*I,n=33 5142296645923757 r005 Re(z^2+c),c=-9/10+71/190*I,n=6 5142296664552835 a001 47/1346269*514229^(9/44) 5142296667510421 a007 Real Root Of -392*x^4-798*x^3-878*x^2+241*x+275 5142296668591873 r005 Im(z^2+c),c=-7/10+97/238*I,n=7 5142296691534013 a008 Real Root of x^4-35*x^2-30*x+72 5142296696055001 r005 Re(z^2+c),c=-31/66+13/25*I,n=44 5142296696729240 a001 14930352/15127*843^(13/14) 5142296701637293 m005 (1/2*exp(1)-5/8)/(8/11*Pi-6/7) 5142296715923056 a001 39088169/39603*843^(13/14) 5142296718723396 a001 102334155/103682*843^(13/14) 5142296719131961 a001 267914296/271443*843^(13/14) 5142296719191569 a001 701408733/710647*843^(13/14) 5142296719200266 a001 1836311903/1860498*843^(13/14) 5142296719201535 a001 4807526976/4870847*843^(13/14) 5142296719201720 a001 12586269025/12752043*843^(13/14) 5142296719201747 a001 32951280099/33385282*843^(13/14) 5142296719201751 a001 86267571272/87403803*843^(13/14) 5142296719201752 a001 225851433717/228826127*843^(13/14) 5142296719201752 a001 591286729879/599074578*843^(13/14) 5142296719201752 a001 1548008755920/1568397607*843^(13/14) 5142296719201752 a001 4052739537881/4106118243*843^(13/14) 5142296719201752 a001 4807525989/4870846*843^(13/14) 5142296719201752 a001 6557470319842/6643838879*843^(13/14) 5142296719201752 a001 2504730781961/2537720636*843^(13/14) 5142296719201752 a001 956722026041/969323029*843^(13/14) 5142296719201752 a001 365435296162/370248451*843^(13/14) 5142296719201752 a001 139583862445/141422324*843^(13/14) 5142296719201753 a001 53316291173/54018521*843^(13/14) 5142296719201764 a001 20365011074/20633239*843^(13/14) 5142296719201834 a001 7778742049/7881196*843^(13/14) 5142296719202319 a001 2971215073/3010349*843^(13/14) 5142296719205641 a001 1134903170/1149851*843^(13/14) 5142296719228409 a001 433494437/439204*843^(13/14) 5142296719384467 a001 165580141/167761*843^(13/14) 5142296719541037 m001 (2^(1/2)-5^(1/2))/(-3^(1/3)+GlaisherKinkelin) 5142296720454102 a001 63245986/64079*843^(13/14) 5142296727785487 a001 24157817/24476*843^(13/14) 5142296728877155 a007 Real Root Of -983*x^4+808*x^3+822*x^2+738*x-638 5142296739292567 a007 Real Root Of 139*x^4+903*x^3+888*x^2-439*x-145 5142296751532007 r009 Im(z^3+c),c=-23/70+23/37*I,n=26 5142296751913616 r005 Im(z^2+c),c=5/17+25/63*I,n=15 5142296765005732 r005 Im(z^2+c),c=17/114+25/46*I,n=46 5142296778035551 a001 9227465/9349*843^(13/14) 5142296815853408 l006 ln(5924/9907) 5142296822186629 h001 (-7*exp(1/2)-9)/(-5*exp(2)-3) 5142296836064275 a007 Real Root Of 182*x^4-664*x^3+568*x^2-747*x+37 5142296854601845 b008 -6+(1+ArcCsch[6])^(-1) 5142296856573009 r002 9th iterates of z^2 + 5142296858448505 r005 Im(z^2+c),c=5/46+20/41*I,n=5 5142296872844840 m001 (Shi(1)+Bloch)/(-FeigenbaumMu+Gompertz) 5142296882710545 a001 11/987*13^(31/52) 5142296896975882 a001 433494437/1364*322^(1/12) 5142296898150004 m001 (2^(1/2)-arctan(1/2))/(-FeigenbaumD+GaussAGM) 5142296898826576 a001 3732588/341*843^(4/7) 5142296907617301 a007 Real Root Of -70*x^4-590*x^3-992*x^2+863*x-611 5142296920596972 r002 6th iterates of z^2 + 5142296944029395 a007 Real Root Of 784*x^4-218*x^3+583*x^2+9*x-234 5142296974466135 a001 24476/5*4181^(11/39) 5142296994520485 r005 Re(z^2+c),c=-83/90+9/59*I,n=30 5142297035762543 a007 Real Root Of -195*x^4-905*x^3+484*x^2-268*x-885 5142297045735218 m001 ln(TreeGrowth2nd)^2/Lehmer^2/GAMMA(11/24)^2 5142297050775713 a007 Real Root Of 131*x^4+585*x^3-595*x^2-776*x-310 5142297055509031 r005 Re(z^2+c),c=2/15+6/23*I,n=18 5142297065501601 r009 Im(z^3+c),c=-19/106+33/52*I,n=54 5142297082228116 a001 193864600/377 5142297087040459 m001 1/ln(Khintchine)^2/Conway/GAMMA(7/12) 5142297089342937 r005 Im(z^2+c),c=-1/13+31/49*I,n=44 5142297101264620 a007 Real Root Of -103*x^4+985*x^3-721*x^2+943*x-421 5142297101291022 m005 (1/2*3^(1/2)+5/12)/(2/3*Pi+2/5) 5142297119793422 r009 Im(z^3+c),c=-13/118+53/54*I,n=10 5142297122454640 a001 3524578/3571*843^(13/14) 5142297123880506 r009 Im(z^3+c),c=-19/70+35/57*I,n=52 5142297139979625 a001 165580141/521*199^(1/11) 5142297142039351 r002 3th iterates of z^2 + 5142297154479261 m001 (exp(Pi)+FeigenbaumMu)/(KomornikLoreti+Magata) 5142297162345027 m008 (3/5*Pi^4-2/3)/(1/6*Pi+3/5) 5142297180277184 m001 gamma^2*arctan(1/2)^2/exp(log(2+sqrt(3)))^2 5142297191493727 m001 (3^(1/2)-polylog(4,1/2))/(GAMMA(11/12)+Mills) 5142297210357946 a001 433494437/2207*322^(1/6) 5142297214854111 a001 193864605/377 5142297236074270 a001 2/377*(1/2+1/2*5^(1/2))^43 5142297251598949 r005 Im(z^2+c),c=-45/106+25/39*I,n=3 5142297272387785 m001 (Chi(1)+sin(1))/(-BesselK(0,1)+RenyiParking) 5142297278364657 r002 45th iterates of z^2 + 5142297286273089 a001 5702887/521*521^(8/13) 5142297294429708 a001 193864608/377 5142297317348749 r005 Im(z^2+c),c=-23/34+37/105*I,n=5 5142297320424193 r005 Im(z^2+c),c=-5/22+3/43*I,n=5 5142297335318988 a007 Real Root Of -37*x^4+340*x^3+103*x^2+957*x-563 5142297338189305 m001 1/exp(GAMMA(5/6))^2/GAMMA(1/3)*log(2+sqrt(3)) 5142297352973586 r009 Im(z^3+c),c=-1/48+13/20*I,n=58 5142297355590539 a007 Real Root Of -44*x^4-241*x^3-336*x^2+727*x+433 5142297356688777 h005 exp(cos(Pi*5/28)+sin(Pi*9/31)) 5142297362024197 m001 FibonacciFactorial+Otter*PisotVijayaraghavan 5142297365161278 a007 Real Root Of -387*x^4+849*x^3-560*x^2-709*x-74 5142297368118822 s001 sum(exp(-Pi/3)^(n-1)*A078167[n],n=1..infinity) 5142297387157746 r005 Im(z^2+c),c=-8/15+29/60*I,n=12 5142297413692707 r005 Re(z^2+c),c=23/126+21/64*I,n=36 5142297415688947 a001 9227465/1364*843^(9/14) 5142297418963031 m001 exp(log(2+sqrt(3)))^2*Pi*sinh(1) 5142297422576955 r009 Im(z^3+c),c=-8/31+21/34*I,n=51 5142297440839529 a007 Real Root Of 946*x^4-912*x^3-347*x^2-569*x-391 5142297470661870 k002 Champernowne real with 9*n^2+110*n-114 5142297474808551 r002 64th iterates of z^2 + 5142297490877648 m001 Bloch^MertensB3/TravellingSalesman 5142297500368436 r002 44th iterates of z^2 + 5142297503759227 m001 (StolarskyHarborth+Thue)/(Champernowne+Niven) 5142297504337185 a007 Real Root Of 179*x^4+884*x^3-258*x^2-457*x-487 5142297549420109 m001 Bloch^2*exp(ErdosBorwein)^2/OneNinth 5142297564101936 l006 ln(1349/2256) 5142297578933847 m001 (5^(1/2)-Backhouse)/(PolyaRandomWalk3D+Salem) 5142297580405404 a007 Real Root Of 4*x^4+219*x^3+667*x^2-900*x-423 5142297609134151 r009 Re(z^3+c),c=-25/64+1/52*I,n=59 5142297639257294 a001 193864621/377 5142297642446812 p001 sum((-1)^n/(244*n+191)/(24^n),n=0..infinity) 5142297668321922 a007 Real Root Of -759*x^4+957*x^3-308*x^2+376*x+458 5142297684369214 r005 Re(z^2+c),c=-109/106+8/45*I,n=38 5142297686957189 r002 15th iterates of z^2 + 5142297704403366 r005 Im(z^2+c),c=-61/64+12/41*I,n=6 5142297723990954 r009 Im(z^3+c),c=-11/70+40/61*I,n=4 5142297746418966 r002 20th iterates of z^2 + 5142297765945916 m001 arctan(1/2)^((2^(1/3))/Backhouse) 5142297765945916 m001 arctan(1/2)^(2^(1/3)/Backhouse) 5142297791914833 b008 2*(1+E^Pi)+Pi 5142297791914833 m002 -2-2*E^Pi-Pi 5142297807679318 r005 Re(z^2+c),c=-9/14+50/161*I,n=33 5142297835594672 m001 (-Bloch+PlouffeB)/(1-3^(1/2)) 5142297844064029 r005 Im(z^2+c),c=29/106+17/43*I,n=20 5142297850265532 m001 (FeigenbaumMu+Niven)/GAMMA(23/24) 5142297851287277 r005 Im(z^2+c),c=-24/23+11/27*I,n=3 5142297878854833 a007 Real Root Of 103*x^4-904*x^3-155*x^2-974*x-590 5142297891193748 m001 (Chi(1)+exp(1/Pi))/(FellerTornier+OneNinth) 5142297891935661 m001 BesselK(1,1)/sin(1/12*Pi)/ZetaP(2) 5142297900149277 r009 Im(z^3+c),c=-1/70+37/59*I,n=9 5142297901119367 m005 (1/2*Pi+6/7)/(7/9*3^(1/2)-7/8) 5142297904427708 m001 exp(Riemann2ndZero)^2/Conway^2/(3^(1/3))^2 5142297904611192 r009 Im(z^3+c),c=-11/70+30/47*I,n=45 5142297920631218 a007 Real Root Of 60*x^4-705*x^3-174*x^2-936*x+619 5142297932551310 a001 5702887/1364*843^(5/7) 5142297940082179 h001 (9/10*exp(2)+1/7)/(1/9*exp(2)+1/2) 5142297946653534 r009 Im(z^3+c),c=-23/110+32/51*I,n=29 5142297947225057 r005 Im(z^2+c),c=39/110+11/49*I,n=21 5142297949792396 p001 sum(1/(362*n+195)/(128^n),n=0..infinity) 5142297950569104 a007 Real Root Of -38*x^4+589*x^3+342*x^2+997*x+505 5142297980604555 a007 Real Root Of 865*x^4+79*x^3+921*x^2-999*x-807 5142298010141997 m001 exp(1)*CareFree*Khinchin 5142298012279893 r005 Re(z^2+c),c=-43/60+1/32*I,n=35 5142298020294809 r008 a(0)=5,K{-n^6,1-9*n^3+n^2-n} 5142298064547260 r009 Im(z^3+c),c=-37/126+31/51*I,n=37 5142298069431855 m001 Ei(1)*ln(2+3^(1/2))^(Pi*2^(1/2)/GAMMA(3/4)) 5142298069431855 m001 Ei(1)*ln(2+sqrt(3))^GAMMA(1/4) 5142298082877486 b008 51+CosIntegral[2] 5142298092276546 m001 FransenRobinson^KomornikLoreti-KhinchinLevy 5142298095065276 m005 (1/2*2^(1/2)+4/11)/(7/8*Pi-2/3) 5142298106846098 m004 10+25*Pi-Sinh[Sqrt[5]*Pi]/6 5142298111176387 m001 (ErdosBorwein-LambertW(1))/(Trott2nd+ZetaP(3)) 5142298112058621 a001 567451585/2889*322^(1/6) 5142298139734078 m001 1/MertensB1^2*Champernowne*ln(Niven)^2 5142298145865579 r009 Im(z^3+c),c=-47/78+28/55*I,n=7 5142298171430972 a001 75025/3*24476^(57/58) 5142298171652852 k008 concat of cont frac of 5142298208691198 a007 Real Root Of -802*x^4-145*x^3-262*x^2+271*x+245 5142298210799333 m001 (Zeta(1,2)-cos(1)*Magata)/cos(1) 5142298222774480 m001 Pi+Psi(2,1/3)+gamma*cos(1/12*Pi) 5142298243615003 a001 2971215073/15127*322^(1/6) 5142298247159432 h001 (-4*exp(6)-9)/(-4*exp(2)-2) 5142298262808821 a001 7778742049/39603*322^(1/6) 5142298265609161 a001 10182505537/51841*322^(1/6) 5142298266017726 a001 53316291173/271443*322^(1/6) 5142298266077334 a001 139583862445/710647*322^(1/6) 5142298266086031 a001 182717648081/930249*322^(1/6) 5142298266087300 a001 956722026041/4870847*322^(1/6) 5142298266087485 a001 2504730781961/12752043*322^(1/6) 5142298266087512 a001 3278735159921/16692641*322^(1/6) 5142298266087518 a001 10610209857723/54018521*322^(1/6) 5142298266087529 a001 4052739537881/20633239*322^(1/6) 5142298266087600 a001 387002188980/1970299*322^(1/6) 5142298266088084 a001 591286729879/3010349*322^(1/6) 5142298266091406 a001 225851433717/1149851*322^(1/6) 5142298266114175 a001 196418*322^(1/6) 5142298266270232 a001 32951280099/167761*322^(1/6) 5142298267339867 a001 12586269025/64079*322^(1/6) 5142298268361382 m005 (1/2*3^(1/2)+5/9)/(11/12*exp(1)+3/11) 5142298268978363 s002 sum(A053068[n]/(10^n+1),n=1..infinity) 5142298274671253 a001 1201881744/6119*322^(1/6) 5142298283308743 r009 Im(z^3+c),c=-19/62+26/43*I,n=40 5142298294934124 r002 43th iterates of z^2 + 5142298312611119 k006 concat of cont frac of 5142298324921322 a001 1836311903/9349*322^(1/6) 5142298340413568 r005 Im(z^2+c),c=-13/16+25/58*I,n=4 5142298341272569 a007 Real Root Of 642*x^4-837*x^3-818*x^2-511*x+548 5142298349552283 s002 sum(A044684[n]/(pi^n-1),n=1..infinity) 5142298355500259 r009 Im(z^3+c),c=-41/126+37/62*I,n=58 5142298362663630 r009 Re(z^3+c),c=-11/122+31/52*I,n=12 5142298368991778 r005 Re(z^2+c),c=-20/29+3/32*I,n=28 5142298371824330 s002 sum(A053068[n]/(10^n-1),n=1..infinity) 5142298384528895 a007 Real Root Of 108*x^4+585*x^3+178*x^2-45*x-909 5142298396505765 r005 Im(z^2+c),c=-2/3+19/211*I,n=48 5142298400584735 m001 Robbin/LandauRamanujan2nd*ZetaP(2) 5142298406350529 r009 Im(z^3+c),c=-11/78+41/64*I,n=44 5142298407022741 g003 Re(GAMMA(-67/15+I*(-18/5))) 5142298425743403 m001 exp(1/exp(1))/(Zeta(5)+Pi^(1/2)) 5142298425743403 m001 exp(1/exp(1))/(Zeta(5)+sqrt(Pi)) 5142298444194284 r009 Re(z^3+c),c=-9/98+13/20*I,n=28 5142298449413882 a001 1762289/682*843^(11/14) 5142298471347607 m005 (1/2*Catalan+3/8)/(9/11*Zeta(3)+7/11) 5142298473667880 k002 Champernowne real with 19/2*n^2+217/2*n-113 5142298474665599 l006 ln(4868/8141) 5142298481213393 a007 Real Root Of 144*x^4+535*x^3-920*x^2+567*x-699 5142298482304907 m008 (3*Pi^5-1/3)/(5/6*Pi-5/6) 5142298488736981 r009 Im(z^3+c),c=-1/48+13/20*I,n=56 5142298493794145 m005 (1/3*Pi-2/7)/(2/5*Zeta(3)+1) 5142298499463440 r002 10th iterates of z^2 + 5142298516796046 r009 Im(z^3+c),c=-11/60+41/63*I,n=18 5142298517478021 r005 Re(z^2+c),c=37/122+17/52*I,n=14 5142298521269945 a007 Real Root Of -474*x^4+945*x^3+604*x^2+743*x+384 5142298553146549 r005 Im(z^2+c),c=-95/122+1/22*I,n=8 5142298565553459 m001 (-GaussAGM+KhinchinLevy)/(Bloch-cos(1)) 5142298578852471 a007 Real Root Of -542*x^4+623*x^3+514*x^2-157*x-102 5142298599310710 a008 Real Root of (-6+9*x+6*x^2-3*x^4-x^8) 5142298613449059 a007 Real Root Of 257*x^4-973*x^3+349*x^2-909*x-710 5142298632873357 r005 Im(z^2+c),c=-43/34+4/127*I,n=25 5142298633705457 r009 Im(z^3+c),c=-7/44+37/58*I,n=42 5142298649878027 r005 Im(z^2+c),c=-5/8+21/62*I,n=29 5142298650786172 h001 (6/7*exp(1)+9/11)/(7/9*exp(2)+3/8) 5142298669340444 a001 701408733/3571*322^(1/6) 5142298701326891 r005 Re(z^2+c),c=-25/34+9/56*I,n=49 5142298705507147 a007 Real Root Of 893*x^4-613*x^3+918*x^2-67*x-423 5142298712486175 a007 Real Root Of 559*x^4-891*x^3+916*x^2-143*x-476 5142298714230522 m001 (-2*Pi/GAMMA(5/6)+Kac)/(sin(1)+Zeta(1,2)) 5142298714773705 a007 Real Root Of 128*x^4-875*x^3-751*x^2-870*x+756 5142298717400533 m001 1/FibonacciFactorial^2/ln(Backhouse)*Niven^2 5142298717944674 m002 2+5/(E^Pi*Pi^5)+Pi 5142298720513928 r005 Re(z^2+c),c=1/42+4/13*I,n=14 5142298722767927 m001 FeigenbaumMu+PisotVijayaraghavan^ln(5) 5142298727309567 r005 Im(z^2+c),c=11/98+31/54*I,n=62 5142298727402298 r005 Re(z^2+c),c=1/30+23/41*I,n=11 5142298730373010 r009 Im(z^3+c),c=-17/122+7/11*I,n=17 5142298734798151 r009 Im(z^3+c),c=-7/74+34/53*I,n=18 5142298743529774 a001 9227465/521*521^(7/13) 5142298763571789 r002 38th iterates of z^2 + 5142298785578389 m001 TwinPrimes/ln(Robbin)*LambertW(1)^2 5142298806211547 m002 (64*Sech[Pi])/ProductLog[Pi] 5142298823727919 l006 ln(3519/5885) 5142298823770196 r005 Im(z^2+c),c=-33/32+7/22*I,n=4 5142298834058754 m001 (2^(1/2)-ln(2^(1/2)+1))/(-Zeta(1,2)+Paris) 5142298836231846 r009 Re(z^3+c),c=-39/86+3/55*I,n=64 5142298836875312 m001 (polylog(4,1/2)+GAMMA(5/6))/(Artin-ZetaQ(2)) 5142298841550767 r005 Re(z^2+c),c=-65/126+17/30*I,n=26 5142298844736267 r009 Im(z^3+c),c=-3/31+20/31*I,n=29 5142298896742430 m005 (1/3*Zeta(3)+1/12)/(3/11*2^(1/2)+5/9) 5142298915966828 r002 41th iterates of z^2 + 5142298927340238 a005 (1/sin(49/128*Pi))^256 5142298927787285 a001 5/9349*3571^(24/43) 5142298941242453 a001 710647/610*34^(8/19) 5142298948609304 r002 10th iterates of z^2 + 5142298966276093 a001 2178309/1364*843^(6/7) 5142298966421923 a007 Real Root Of -808*x^4-571*x^3+47*x^2+989*x+475 5142298988818274 g001 abs(GAMMA(4+I*21/20)) 5142299001653355 l006 ln(46/7871) 5142299012178390 m005 (1/2*3^(1/2)+7/8)/(3/11*2^(1/2)+3) 5142299012203871 a007 Real Root Of 698*x^4-837*x^3-181*x^2-298*x-268 5142299067034700 a001 5/24476*9349^(26/43) 5142299076717101 r005 Re(z^2+c),c=-49/74+7/29*I,n=32 5142299077386893 r009 Im(z^3+c),c=-1/82+35/52*I,n=14 5142299097227911 a001 5/3010349*39603^(42/43) 5142299107142857 q001 1843/3584 5142299110433131 a001 5/64079*15127^(29/43) 5142299122415794 l006 ln(5689/9514) 5142299139901107 m005 (3/5*Pi+2/3)/(1/6*gamma+2/5) 5142299142687356 r005 Im(z^2+c),c=-53/78+1/16*I,n=28 5142299161219773 r009 Re(z^3+c),c=-1/44+40/53*I,n=45 5142299177201042 m001 (FeigenbaumD+Paris)/(Psi(2,1/3)+GAMMA(23/24)) 5142299185995474 r002 29th iterates of z^2 + 5142299190551719 r005 Im(z^2+c),c=7/30+4/9*I,n=19 5142299196885495 a007 Real Root Of 900*x^4-340*x^3+427*x^2+146*x-147 5142299202038284 a007 Real Root Of -621*x^4+22*x^3-99*x^2+907*x+539 5142299219766726 a003 sin(Pi*1/66)/cos(Pi*13/105) 5142299224102755 m005 (1/3*2^(1/2)-2/5)/(5/9*gamma-2/11) 5142299226744129 a001 5/167761*5778^(37/43) 5142299242377512 r004 Re(z^2+c),c=3/22+2/7*I,z(0)=exp(5/12*I*Pi),n=2 5142299292082937 a007 Real Root Of -971*x^4+358*x^3-805*x^2+812*x+747 5142299296111152 a001 63245986/843*322^(1/3) 5142299300828374 a001 7/12586269025*20365011074^(17/22) 5142299300831296 a001 7/3524578*514229^(17/22) 5142299302135071 m001 (Lehmer-ZetaP(3))/(Artin-KhinchinLevy) 5142299313321341 k007 concat of cont frac of 5142299322393912 g006 Psi(1,10/11)+Psi(1,7/8)+Psi(1,1/7)-Psi(1,7/10) 5142299324436393 m001 GAMMA(17/24)^2/Khintchine^2*exp(cos(Pi/5)) 5142299331957388 p001 sum((-1)^n/(223*n+88)/n/(625^n),n=1..infinity) 5142299332562543 m001 Rabbit^(Backhouse*MertensB3) 5142299335538968 a001 2207*514229^(13/17) 5142299339996603 a007 Real Root Of 141*x^4+775*x^3+383*x^2+826*x+910 5142299347865393 m001 (BesselJ(0,1)+ln(2))/(-BesselJ(1,1)+Sarnak) 5142299351523113 a007 Real Root Of -847*x^4+873*x^3-616*x^2+469*x+582 5142299378961753 a007 Real Root Of -207*x^4-879*x^3+869*x^2-597*x-831 5142299395431899 r009 Im(z^3+c),c=-5/56+27/41*I,n=17 5142299399311919 a001 1/140728068720*75025^(19/24) 5142299416772060 m001 (2^(1/2)-Artin)/(CopelandErdos+KomornikLoreti) 5142299422026364 r005 Re(z^2+c),c=43/118+8/55*I,n=10 5142299433285877 m005 (1/3*2^(1/2)+1/4)/(2/7*exp(1)-7/11) 5142299464576948 a007 Real Root Of -143*x^4+418*x^3+678*x^2+699*x+247 5142299476673890 k002 Champernowne real with 10*n^2+107*n-112 5142299483139439 a001 1346269/1364*843^(13/14) 5142299496409751 a007 Real Root Of 992*x^4-718*x^3-467*x^2-197*x-9 5142299496870147 a001 5/3571*64079^(14/43) 5142299498678607 m001 LaplaceLimit/(BesselI(1,1)+Sarnak) 5142299522226454 r009 Im(z^3+c),c=-8/31+29/47*I,n=25 5142299535261594 m001 (OrthogonalArrays+Paris)/(Ei(1,1)-gamma(1)) 5142299538737586 m001 (2^(1/3)+3^(1/2))/(exp(-1/2*Pi)+Artin) 5142299543256001 r009 Im(z^3+c),c=-7/64+29/45*I,n=55 5142299544489871 r005 Re(z^2+c),c=-83/126+10/37*I,n=39 5142299566671911 b008 -1/2+5^(2/3)+E 5142299575333318 m001 FeigenbaumDelta^exp(1)/GlaisherKinkelin 5142299575383375 m001 1/sin(Pi/12)/ln(Magata)^2*sqrt(2)^2 5142299583681633 r009 Im(z^3+c),c=-15/26+23/45*I,n=19 5142299593882234 r009 Im(z^3+c),c=-5/23+32/51*I,n=38 5142299597168967 m009 (4*Catalan+1/2*Pi^2-1/6)/(8*Catalan+Pi^2-4/5) 5142299606785650 l006 ln(2170/3629) 5142299607853567 a007 Real Root Of 777*x^4-138*x^3-663*x^2-685*x+492 5142299621856612 a007 Real Root Of -907*x^4+852*x^3-300*x^2+98*x+309 5142299623260334 r009 Re(z^3+c),c=-7/90+27/56*I,n=13 5142299699544546 m001 1/Rabbit^2/Si(Pi)^2/ln(GAMMA(7/24)) 5142299707735257 m005 (1/2*Pi-7/9)/(5/6*2^(1/2)+4/11) 5142299722830862 m001 ln(gamma)^(TravellingSalesman/Cahen) 5142299739719736 r009 Im(z^3+c),c=-23/90+34/55*I,n=58 5142299741295710 m001 1/exp(LambertW(1))^2*Niven*Zeta(1,2) 5142299744365751 r005 Re(z^2+c),c=-61/98+8/61*I,n=5 5142299745948504 a007 Real Root Of 9*x^4-34*x^3-433*x^2-256*x-783 5142299762821627 r009 Im(z^3+c),c=-7/64+29/45*I,n=47 5142299765181195 r009 Im(z^3+c),c=-17/78+21/34*I,n=18 5142299787167506 r009 Re(z^3+c),c=-10/23+34/49*I,n=4 5142299795409460 a007 Real Root Of -946*x^4+646*x^3+387*x^2+525*x-394 5142299796355474 m001 (BesselI(0,2)-MinimumGamma)/BesselI(1,2) 5142299816316077 a007 Real Root Of 561*x^4-638*x^3+510*x^2-257*x-393 5142299824455267 a007 Real Root Of -88*x^4+632*x^3+491*x^2+957*x+48 5142299826718162 m001 (Catalan+ArtinRank2)/(FeigenbaumC+Mills) 5142299830178640 m001 Pi^BesselI(1,1)-HardHexagonsEntropy 5142299834427335 m008 (Pi^5-1/3)/(3/5*Pi^4+1) 5142299841961271 r005 Re(z^2+c),c=-9/13+10/47*I,n=36 5142299863290458 m001 (Pi-2^(1/2))/(Cahen-HardyLittlewoodC4) 5142299876239091 r002 50th iterates of z^2 + 5142299899008791 a007 Real Root Of 130*x^4-252*x^3+403*x^2-673*x-496 5142299910551576 a007 Real Root Of -962*x^4-81*x^3-96*x^2+693*x+438 5142299937013925 r002 36th iterates of z^2 + 5142299940707407 a007 Real Root Of 804*x^4-690*x^3+645*x^2+956*x+171 5142299940781537 r005 Re(z^2+c),c=-57/86+7/15*I,n=39 5142299953128574 m001 (-Tribonacci+ZetaQ(3))/(exp(1)+sin(1)) 5142299957479469 m001 Riemann2ndZero/Champernowne*ln(gamma)^2 5142299967980194 r002 3th iterates of z^2 + 5142299970967589 a007 Real Root Of 64*x^4+395*x^3+272*x^2-418*x-382 5142299978658159 m001 1/TwinPrimes*Riemann1stZero^2/exp(sqrt(Pi)) 5142299983220307 a007 Real Root Of 262*x^4-684*x^3+685*x^2-699*x+253 5142299994591667 r005 Im(z^2+c),c=-77/122+3/31*I,n=53 5142299997866588 r009 Im(z^3+c),c=-15/82+25/38*I,n=18 5142299999985928 a001 317813/2+317811/2*5^(1/2)