5912800001220747 m001 gamma(3)^(5^(1/2))/(gamma(3)^LaplaceLimit) 5912800042094727 a003 cos(Pi*23/114)-cos(Pi*47/109) 5912800049901712 a007 Real Root Of -694*x^4-560*x^3-779*x^2+850*x+744 5912800050411478 a003 cos(Pi*5/94)/sin(Pi*4/75) 5912800059772077 a007 Real Root Of -386*x^4+166*x^3-810*x^2+124*x+438 5912800071584927 r005 Re(z^2+c),c=-107/102+3/23*I,n=40 5912800072668008 a007 Real Root Of 465*x^4-924*x^3+693*x^2-152*x-580 5912800081955424 r009 Re(z^3+c),c=-61/102+20/39*I,n=52 5912800087873719 r005 Im(z^2+c),c=-43/82+28/47*I,n=51 5912800106892582 r005 Re(z^2+c),c=-61/98+15/44*I,n=24 5912800143618965 a001 1926/329*233^(14/33) 5912800144349169 m005 (1/2*2^(1/2)+2/5)/(9/11*Zeta(3)+8/9) 5912800163234933 r002 4th iterates of z^2 + 5912800191604341 m008 (3*Pi^6-2)/(5*Pi^4+2/5) 5912800204257415 a007 Real Root Of 564*x^4+175*x^3+912*x^2+412*x-108 5912800212940008 a007 Real Root Of -154*x^4+458*x^3+974*x^2+89*x-469 5912800213933878 a007 Real Root Of -838*x^4+366*x^3-602*x^2-143*x+304 5912800216674060 a007 Real Root Of -977*x^4+645*x^3-361*x^2+792*x-356 5912800216823179 a001 1515744265389/46*521^(6/13) 5912800239210989 r005 Re(z^2+c),c=-19/18+11/117*I,n=40 5912800239779910 m005 (4*gamma-2)/(1/4*gamma-2/3) 5912800239779910 m007 (-4*gamma+2)/(-1/4*gamma+2/3) 5912800241661006 m001 2^(1/3)/(BesselK(0,1)^KomornikLoreti) 5912800252264611 a007 Real Root Of -849*x^4+400*x^3+979*x^2+480*x-605 5912800279026704 b008 InverseErfc[E^(-2/29)] 5912800303640476 m005 (1/3*gamma-1/2)/(-29/45+1/18*5^(1/2)) 5912800323165056 r005 Im(z^2+c),c=15/94+23/41*I,n=39 5912800343720889 m004 -20*Pi-Cos[Sqrt[5]*Pi]+3*Csc[Sqrt[5]*Pi] 5912800382099479 m001 Tribonacci/KhinchinHarmonic/Grothendieck 5912800383752735 m005 (1/2*Catalan+1/9)/(3*Pi+1/5) 5912800392757361 r005 Im(z^2+c),c=-91/74+7/32*I,n=8 5912800410161305 p003 LerchPhi(1/32,1,88/51) 5912800412567140 r005 Re(z^2+c),c=-21/34+20/43*I,n=56 5912800420583946 m001 ln(2)^(1/ArtinRank2) 5912800440975418 r005 Re(z^2+c),c=-17/30+33/74*I,n=44 5912800480536502 a007 Real Root Of 915*x^4+193*x^3+894*x^2+356*x-174 5912800512442030 m001 (Sierpinski*ZetaQ(3)-cos(1))/ZetaQ(3) 5912800530847870 r005 Re(z^2+c),c=-1/52+47/64*I,n=5 5912800531535555 m001 ZetaQ(4)^Thue*ZetaQ(4)^(ln(2)/ln(10)) 5912800533877862 m005 (1/2*exp(1)+4/5)/(-55/12+5/12*5^(1/2)) 5912800534845342 r005 Re(z^2+c),c=-31/34+10/61*I,n=18 5912800537761010 a001 17711/47*39603^(2/47) 5912800539091086 a001 144/9349*11^(23/41) 5912800570211199 r009 Im(z^3+c),c=-3/17+12/17*I,n=28 5912800587050387 a003 cos(Pi*1/69)-cos(Pi*37/101) 5912800610499844 r005 Re(z^2+c),c=9/122+27/43*I,n=23 5912800623885242 m001 LandauRamanujan2nd^MertensB2/cos(1/12*Pi) 5912800642392259 m001 GAMMA(1/6)-exp(gamma)+GAMMA(5/12) 5912800648644786 m001 cos(1)/(PrimesInBinary^exp(1)) 5912800649020177 b008 ExpIntegralEi[-19/40] 5912800649020177 l002 Ei(1,19/40) 5912800649020177 l003 Ei(1,19/40) 5912800650160244 r005 Im(z^2+c),c=-71/122+4/37*I,n=56 5912800696682258 a007 Real Root Of 343*x^4-745*x^3+55*x^2-798*x-687 5912800702034269 a007 Real Root Of -969*x^4+929*x^3+706*x^2+806*x-797 5912800709855471 r005 Im(z^2+c),c=-99/82+4/35*I,n=38 5912800723479132 m001 Artin/(GaussAGM-Porter) 5912800729732070 r002 2th iterates of z^2 + 5912800732370137 m001 (GolombDickman+Rabbit)/(exp(Pi)-gamma) 5912800741109526 r005 Im(z^2+c),c=-31/60+5/48*I,n=23 5912800762177119 m001 1/2*BesselK(0,1)*2^(2/3)/BesselI(1,1) 5912800762177119 m001 BesselK(0,1)/(2^(1/3))/BesselI(1,1) 5912800770187900 a007 Real Root Of 991*x^4+304*x^3+991*x^2+556*x-76 5912800781192365 m008 (3*Pi^2+2/3)/(1/6*Pi^5+1/5) 5912800800148565 r005 Re(z^2+c),c=-57/94+25/61*I,n=46 5912800810574979 r005 Re(z^2+c),c=5/114+4/11*I,n=9 5912800827962843 a001 39603/55*55^(31/59) 5912800830133287 a007 Real Root Of 256*x^4-521*x^3-129*x^2-586*x+468 5912800877828262 a007 Real Root Of 86*x^4+379*x^3-586*x^2+975*x-518 5912800879388492 r009 Re(z^3+c),c=-13/22+24/49*I,n=43 5912800891664127 a007 Real Root Of 409*x^4+193*x^3+410*x^2+317*x+34 5912800922452680 r005 Im(z^2+c),c=-19/30+11/38*I,n=22 5912800930541973 a008 Real Root of x^4-2*x^3-18*x^2-74*x+258 5912800933545781 m001 Pi/(Psi(2,1/3)+Chi(1)/BesselK(0,1)) 5912800934689950 m005 (1/2*Catalan+7/11)/(4/9*Pi+5/11) 5912800947461165 a007 Real Root Of 188*x^4+974*x^3-968*x^2-922*x-55 5912800956052129 m005 (1/3*5^(1/2)-3/7)/(5*Catalan+7/9) 5912800963002092 m005 (1/2*exp(1)+10/11)/(2/5*Catalan-3/4) 5912800965647114 r002 50th iterates of z^2 + 5912801008147767 m001 Pi*(2^(1/3)+GAMMA(3/4))-Ei(1) 5912801014566358 r002 3th iterates of z^2 + 5912801019143032 m001 ln(FeigenbaumC)^2/KhintchineLevy^2/GAMMA(5/24) 5912801044265613 m001 (-Sierpinski+Totient)/(FeigenbaumD-gamma) 5912801049782656 r005 Re(z^2+c),c=-103/110+3/38*I,n=18 5912801055958856 m004 2/3+4*Csc[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 5912801058380327 m001 (exp(1/exp(1))-Kolakoski)/(Salem-ZetaP(4)) 5912801091640573 h001 (5/12*exp(1)+11/12)/(4/9*exp(2)+2/11) 5912801116325264 r005 Im(z^2+c),c=-9/86+49/55*I,n=41 5912801119892238 m001 (MinimumGamma-Robbin)/(Khinchin-MertensB3) 5912801127119608 r005 Re(z^2+c),c=21/94+35/51*I,n=5 5912801159610515 a007 Real Root Of -129*x^4-686*x^3+379*x^2-589*x-867 5912801163722627 m001 ZetaP(4)^(ln(Pi)*KhinchinHarmonic) 5912801179847494 m005 (1/2*3^(1/2)+7/12)/(11/12*Pi-3/7) 5912801182366790 l006 ln(635/1147) 5912801183689702 r009 Re(z^3+c),c=-6/25+11/15*I,n=41 5912801205824521 r002 14th iterates of z^2 + 5912801217735866 a003 sin(Pi*1/16)-sin(Pi*9/110) 5912801228088857 a007 Real Root Of -210*x^4-187*x^3+422*x^2+679*x+4 5912801258556310 a007 Real Root Of 127*x^4-786*x^3-5*x^2-425*x+400 5912801259408453 r009 Im(z^3+c),c=-31/58+7/40*I,n=10 5912801263571770 m008 (1/3*Pi^4+4)/(2*Pi^3-1/3) 5912801266092889 a007 Real Root Of -986*x^4+103*x^3-478*x^2+817*x+792 5912801274219821 r005 Re(z^2+c),c=-91/64+5/54*I,n=2 5912801304851867 a007 Real Root Of 18*x^4-893*x^3-570*x^2-376*x+604 5912801340505217 a007 Real Root Of -928*x^4+716*x^3+101*x^2-100*x+167 5912801390160623 a003 cos(Pi*10/109)*sin(Pi*11/52) 5912801403714642 r009 Im(z^3+c),c=-33/64+22/37*I,n=10 5912801409913704 m001 1/ln(GAMMA(7/24))^2/GAMMA(19/24)*Zeta(1,2)^2 5912801413636920 m001 exp(1/Pi)^MertensB2/(exp(1/Pi)^Khinchin) 5912801413821931 m005 (1/2*5^(1/2)-3/11)/(5/8*Catalan+6/7) 5912801417956097 r009 Re(z^3+c),c=-29/60+1/17*I,n=9 5912801419059217 a007 Real Root Of 831*x^4-631*x^3-184*x^2-685*x-40 5912801435805748 m001 (sin(1/5*Pi)-Stephens)/(Totient+TwinPrimes) 5912801472097892 m001 GAMMA(1/4)^2/(3^(1/3))^2*exp(sqrt(5)) 5912801474544744 a001 199*(1/2*5^(1/2)+1/2)^4*47^(8/21) 5912801478093370 a007 Real Root Of 599*x^4-462*x^3+618*x^2-227*x-519 5912801496290344 m001 (5^(1/2)-BesselI(0,2))/(-GaussAGM+Paris) 5912801518085725 m005 (53/10+3/10*5^(1/2))/(2/5*2^(1/2)-2/3) 5912801545630281 a007 Real Root Of 904*x^4-305*x^3+827*x^2-513*x-766 5912801560291020 a007 Real Root Of -574*x^4+841*x^3+548*x^2-158*x-41 5912801574975139 r005 Re(z^2+c),c=-77/94+1/2*I,n=5 5912801610190948 a007 Real Root Of -60*x^4+807*x^3-640*x^2+494*x+690 5912801610562849 a001 29/610*196418^(41/53) 5912801619217882 m005 (1/2*exp(1)+3/4)/(7/8*Pi+9/11) 5912801629436459 m001 Salem/(Thue-TwinPrimes) 5912801636451403 a007 Real Root Of -668*x^4+424*x^3-708*x^2+232*x+554 5912801639844459 a007 Real Root Of 141*x^4+860*x^3+149*x^2+28*x+392 5912801643771976 a007 Real Root Of -188*x^4-957*x^3+899*x^2+57*x+867 5912801645220260 a007 Real Root Of -806*x^4-355*x^3+832*x^2+800*x-592 5912801657249407 r005 Re(z^2+c),c=-47/82+31/54*I,n=23 5912801675944810 r005 Im(z^2+c),c=31/126+31/64*I,n=34 5912801705793162 m005 (1/2*Pi+2/11)/(2*3^(1/2)-1/2) 5912801723246783 a007 Real Root Of -8*x^4+67*x^3-888*x^2+583*x+670 5912801723867664 m001 (2^(1/2)+gamma)/(GAMMA(7/12)+Tribonacci) 5912801753061801 r005 Im(z^2+c),c=31/78+16/45*I,n=25 5912801756377779 m005 (1/2*3^(1/2)-3/5)/(5/12*Zeta(3)-5) 5912801763272552 m001 (3^(1/3)-BesselI(0,1))/(GAMMA(13/24)+Totient) 5912801771314876 a007 Real Root Of -679*x^4+780*x^3+248*x^2+499*x-460 5912801795642186 r005 Im(z^2+c),c=-39/74+35/59*I,n=11 5912801800229107 r005 Im(z^2+c),c=31/122+31/56*I,n=55 5912801841071870 a001 682*233^(21/53) 5912801870707787 m005 (1/2*Pi+3/11)/(1/12*2^(1/2)+3) 5912801893035317 r001 46i'th iterates of 2*x^2-1 of 5912801907231128 m001 (ZetaP(4)/Ei(1,1))^(1/2) 5912801915049272 r005 Im(z^2+c),c=-19/34+75/121*I,n=11 5912801918712409 m001 1/exp(FeigenbaumD)^3*Si(Pi) 5912801949611957 a001 48/281*14662949395604^(20/21) 5912801950054728 a007 Real Root Of -451*x^4-39*x^3+292*x^2+883*x-561 5912801950150279 a001 377/322*14662949395604^(8/9) 5912801964226623 r005 Im(z^2+c),c=23/86+19/41*I,n=56 5912801973543826 m005 (1/2*Pi+5/6)/(5/9*gamma-8/11) 5912802004179612 m001 (Tribonacci+Trott2nd)/(exp(1/Pi)+Grothendieck) 5912802006090350 m005 (1/3*gamma-1/12)/(6/11*5^(1/2)+5/8) 5912802023928258 m001 (BesselK(1,1)-ErdosBorwein)/(Pi-3^(1/3)) 5912802035891196 a007 Real Root Of 22*x^4-255*x^3-368*x^2-858*x+686 5912802059332096 l006 ln(27/9983) 5912802086109046 h001 (8/11*exp(2)+5/6)/(2/11*exp(1)+5/9) 5912802101252876 p001 sum((-1)^n/(421*n+103)/n/(32^n),n=1..infinity) 5912802110946093 m005 (1/2*5^(1/2)-3/4)/(1/7*3^(1/2)+3/8) 5912802116321741 a007 Real Root Of -740*x^4-305*x^3-865*x^2-113*x+263 5912802123975077 a007 Real Root Of -782*x^4+844*x^3-463*x^2+817*x+915 5912802186215916 a007 Real Root Of 242*x^4+106*x^3-39*x^2-793*x+47 5912802203802938 s002 sum(A262710[n]/((exp(n)-1)/n),n=1..infinity) 5912802261368322 m001 (-Lehmer+ZetaP(2))/(exp(Pi)+BesselK(1,1)) 5912802265954317 a005 (1/cos(3/218*Pi))^1901 5912802279714084 s001 sum(exp(-Pi/4)^(n-1)*A090972[n],n=1..infinity) 5912802295863537 r005 Re(z^2+c),c=-11/21+36/61*I,n=62 5912802327322873 m005 (1/3*Zeta(3)+3/5)/(8/11*Zeta(3)+9/11) 5912802341354243 m009 (1/4*Psi(1,2/3)+3/4)/(Psi(1,2/3)-1/2) 5912802355746767 r005 Re(z^2+c),c=-13/27+24/41*I,n=62 5912802361460417 r002 28th iterates of z^2 + 5912802384812706 a007 Real Root Of 760*x^4-490*x^3-228*x^2-926*x-662 5912802413936863 m001 (BesselJ(0,1)-ln(2^(1/2)+1))/(-3^(1/3)+Magata) 5912802427663139 a007 Real Root Of 145*x^4+690*x^3-801*x^2+966*x-880 5912802435365375 m001 Pi-Psi(2,1/3)+exp(1/Pi)/BesselI(1,2) 5912802438692305 a007 Real Root Of 879*x^4-889*x^3+446*x^2-727*x-877 5912802459886693 a007 Real Root Of -93*x^4+779*x^3+x^2-44*x-124 5912802490141863 m001 ln(Pi)*(BesselK(0,1)+Zeta(1,2)) 5912802508196043 a007 Real Root Of -993*x^4+852*x^3-170*x^2-306*x+176 5912802521584639 a007 Real Root Of -109*x^4-579*x^3+235*x^2-903*x-16 5912802539232457 m001 (sin(1/5*Pi)+ZetaP(3))/(Pi-Si(Pi)) 5912802540369797 a007 Real Root Of -528*x^4-561*x^3-435*x^2+946*x+660 5912802553308951 a003 sin(Pi*8/119)-sin(Pi*34/115) 5912802573077472 r005 Re(z^2+c),c=15/106+27/53*I,n=53 5912802648980251 a001 7/233*17711^(27/50) 5912802671386215 a007 Real Root Of -997*x^4+113*x^3-262*x^2-984*x-345 5912802673581908 a001 521/5*6557470319842^(1/17) 5912802692745842 a007 Real Root Of -611*x^4+803*x^3-489*x^2-248*x+265 5912802699812309 a007 Real Root Of -615*x^4+74*x^3-571*x^2+710*x+44 5912802711412085 m001 Ei(1)*ln((3^(1/3)))/GAMMA(19/24) 5912802729005531 m001 1/exp(GAMMA(1/6))*FeigenbaumKappa^2*sin(1) 5912802730915875 r002 60th iterates of z^2 + 5912802737691778 m001 (Ei(1)-BesselK(1,1))/(Pi^(1/2)+PrimesInBinary) 5912802772165684 r005 Re(z^2+c),c=-141/118+5/16*I,n=20 5912802773083383 a007 Real Root Of -431*x^4+754*x^3+923*x^2+697*x-838 5912802783167219 b008 EllipticPi[Pi^(-1),Pi/5,-2] 5912802795186913 r008 a(0)=6,K{-n^6,10-16*n+18*n^3} 5912802813612538 a007 Real Root Of -789*x^4-343*x^3-332*x^2+941*x+698 5912802826726484 l006 ln(5302/9577) 5912802832182596 m001 (cos(1)-ln(2))/Sierpinski 5912802848321829 h001 (3/11*exp(2)+2/9)/(4/9*exp(2)+1/2) 5912802882864461 r005 Re(z^2+c),c=5/26+7/12*I,n=24 5912802896954032 m001 (-Chi(1)+ZetaP(2))/(Psi(1,1/3)-Psi(2,1/3)) 5912802911447716 b008 1/(15*E^(3/25)) 5912802911654244 m005 (1/2*3^(1/2)-7/8)/(5/11*2^(1/2)+7/8) 5912802924653877 a001 2/89*46368^(7/23) 5912802931346164 m001 (KhinchinLevy+MertensB2)/(Catalan-cos(1)) 5912802936549473 m001 GAMMA(19/24)*exp(Riemann3rdZero)/Zeta(3)^2 5912802947515741 a007 Real Root Of -107*x^4-516*x^3+847*x^2+960*x+182 5912802947620178 a007 Real Root Of -941*x^4-423*x^3-198*x^2+298*x+273 5912802954824612 r001 48i'th iterates of 2*x^2-1 of 5912802957483882 a007 Real Root Of -390*x^4+656*x^3+668*x^2+222*x+81 5912803005733220 a007 Real Root Of 733*x^4-862*x^3-941*x^2-388*x+647 5912803007901285 m001 1/BesselK(0,1)^2/Conway^2*exp(gamma) 5912803009230072 r005 Re(z^2+c),c=-21/34+20/53*I,n=43 5912803023547191 a007 Real Root Of 722*x^4-965*x^3+926*x^2+175*x-508 5912803043911593 r008 a(0)=6,K{-n^6,4+4*n^3+n^2+4*n} 5912803049217309 r009 Im(z^3+c),c=-11/46+23/35*I,n=8 5912803050460855 l006 ln(4667/8430) 5912803072373856 a003 cos(Pi*1/100)*cos(Pi*20/67) 5912803082114059 m001 (Kolakoski-Paris)/(gamma(2)+KhinchinLevy) 5912803085474489 m008 (4*Pi^2-1/3)/(1/5*Pi^5+5) 5912803087472186 a007 Real Root Of -337*x^4+80*x^3-619*x^2-741*x-164 5912803099947545 r009 Re(z^3+c),c=-5/48+22/35*I,n=52 5912803106635040 r002 27th iterates of z^2 + 5912803126307209 m001 (BesselK(0,1)+TreeGrowth2nd)/Backhouse 5912803131780694 a007 Real Root Of -51*x^4-222*x^3+357*x^2-792*x-719 5912803148521628 m001 1/ln(FeigenbaumDelta)/DuboisRaymond*sqrt(Pi) 5912803192486636 r009 Im(z^3+c),c=-12/31+37/54*I,n=20 5912803202803940 r005 Im(z^2+c),c=-49/82+6/55*I,n=45 5912803228316904 r009 Im(z^3+c),c=-49/86+7/23*I,n=22 5912803250606234 m005 (1/2*exp(1)-6/7)/(2/9*3^(1/2)-3/10) 5912803258300692 r009 Im(z^3+c),c=-21/46+2/53*I,n=15 5912803259516181 a007 Real Root Of -124*x^4-700*x^3+201*x^2-31*x-350 5912803263120386 r005 Re(z^2+c),c=-29/40+7/54*I,n=53 5912803335844919 m005 (1/2*3^(1/2)-5/8)/(1/12*Catalan+4) 5912803340715541 a007 Real Root Of -262*x^4-169*x^3-603*x^2+379*x+432 5912803344667106 l006 ln(4032/7283) 5912803376634938 a007 Real Root Of -584*x^4+414*x^3+194*x^2+957*x+56 5912803394531750 a001 89/47*18^(13/33) 5912803399366158 a007 Real Root Of 134*x^4-362*x^3+96*x^2+370*x+94 5912803420687649 m001 (Paris+Porter)/(3^(1/2)+Catalan) 5912803422014386 a007 Real Root Of -96*x^4+280*x^3-654*x^2+764*x+750 5912803426771747 a007 Real Root Of -12*x^4-696*x^3+795*x^2-328*x-580 5912803445467490 r005 Im(z^2+c),c=-95/126+1/44*I,n=46 5912803461830900 r005 Im(z^2+c),c=-17/106+14/17*I,n=41 5912803492378052 m001 exp(RenyiParking)*CareFree^2/sqrt(Pi) 5912803511592893 a007 Real Root Of -141*x^4+792*x^3+774*x^2+10*x-423 5912803513451832 a001 13201/329*28657^(18/37) 5912803528527979 r002 3th iterates of z^2 + 5912803545268290 m001 (HardyLittlewoodC5+Mills)/(3^(1/3)-Zeta(1/2)) 5912803580134311 r005 Im(z^2+c),c=19/50+19/62*I,n=45 5912803600846288 r009 Im(z^3+c),c=-53/98+5/13*I,n=12 5912803617826324 r005 Re(z^2+c),c=-15/106+34/49*I,n=29 5912803618260578 r005 Im(z^2+c),c=-41/34+8/75*I,n=46 5912803623891123 r005 Re(z^2+c),c=-19/29+3/8*I,n=63 5912803626029257 r002 21th iterates of z^2 + 5912803627113260 l006 ln(1349/1357) 5912803627857373 m002 5+Pi^4/5+3*Sinh[Pi] 5912803645058823 a007 Real Root Of 841*x^4-287*x^3+487*x^2+300*x-155 5912803663580633 m001 (2^(1/3)-cos(1))/(gamma(2)+FibonacciFactorial) 5912803667887942 m005 (1/2*exp(1)-1/12)/(1/8*exp(1)-5/9) 5912803691514147 r002 30th iterates of z^2 + 5912803702508407 r005 Im(z^2+c),c=-17/114+37/43*I,n=14 5912803709764416 a007 Real Root Of -980*x^4-47*x^3+564*x^2+491*x-358 5912803718369390 m001 1/exp(BesselK(1,1))^2*(3^(1/3))^2/GAMMA(11/12) 5912803741309764 r005 Im(z^2+c),c=-49/50+2/35*I,n=15 5912803748865081 l006 ln(3397/6136) 5912803772596567 m008 (3/4*Pi^4-1/6)/(4*Pi^3-3/4) 5912803775159069 a007 Real Root Of -537*x^4+228*x^3-649*x^2-818*x-144 5912803779932015 m009 (1/5*Psi(1,3/4)+1/4)/(1/6*Psi(1,1/3)-2/5) 5912803782967958 m002 -1+(Pi^3*Cosh[Pi]*Coth[Pi])/6 5912803791370632 r005 Im(z^2+c),c=-9/106+31/47*I,n=19 5912803799765708 a007 Real Root Of -436*x^4+786*x^3+798*x^2+984*x-970 5912803809199521 r009 Re(z^3+c),c=-49/82+26/51*I,n=64 5912803819499105 a007 Real Root Of -737*x^4+382*x^3-646*x^2-585*x+49 5912803855241768 a007 Real Root Of 100*x^4+512*x^3-498*x^2-253*x-474 5912803857146977 m001 1/(ln(3)+Lehmer) 5912803867467166 a001 18*46368^(13/40) 5912803891716461 m001 1/Niven*ln(GaussKuzminWirsing)^2*Rabbit 5912803899741789 m001 (MertensB1+Thue)/(Zeta(3)+ln(2)) 5912803901140721 m005 (1/2*Catalan+6)/(5/9*Catalan+7/12) 5912803908439548 a003 cos(Pi*17/120)/cos(Pi*37/82) 5912803917642045 s002 sum(A282549[n]/(n^2*10^n-1),n=1..infinity) 5912803929631953 m001 FeigenbaumD^2*ln(ErdosBorwein)*sqrt(3) 5912803937650569 m001 (ln(2)+Lehmer)/(Riemann2ndZero+Sarnak) 5912803940765159 p003 LerchPhi(1/100,5,157/224) 5912804020813661 m001 (Khinchin-ReciprocalLucas)/(Gompertz+Kac) 5912804034897165 a005 (1/sin(109/226*Pi))^1149 5912804036147237 r005 Re(z^2+c),c=-19/18+11/117*I,n=34 5912804039280364 r009 Re(z^3+c),c=-61/102+20/39*I,n=58 5912804065760930 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24)-exp(Pi))^Lehmer 5912804065760930 m001 (exp(Pi)-GAMMA(7/24))^Lehmer 5912804082368007 m001 (5^(1/2)+GAMMA(2/3))/(Gompertz+Trott) 5912804082845426 r005 Im(z^2+c),c=7/34+31/63*I,n=14 5912804092924693 a007 Real Root Of -845*x^4+263*x^3-787*x^2-184*x+324 5912804141785347 r009 Re(z^3+c),c=-57/118+3/38*I,n=43 5912804146726758 r009 Re(z^3+c),c=-16/27+1/4*I,n=57 5912804147018480 r005 Im(z^2+c),c=-5/54+40/57*I,n=38 5912804158837285 a007 Real Root Of 514*x^4-872*x^3-688*x^2-802*x+50 5912804190674046 r009 Re(z^3+c),c=-45/82+14/31*I,n=20 5912804193982697 r009 Re(z^3+c),c=-61/102+29/56*I,n=22 5912804196246616 m001 (ln(5)+polylog(4,1/2))/(Kac-Robbin) 5912804196987296 r009 Re(z^3+c),c=-73/122+15/29*I,n=28 5912804222429958 p004 log(31081/17207) 5912804224633298 a007 Real Root Of -540*x^4+115*x^3+279*x^2+348*x+198 5912804225966893 m001 MadelungNaCl^(BesselJ(0,1)/Trott2nd) 5912804234445351 m005 (1/3*3^(1/2)+1/6)/(3/7*5^(1/2)+3/10) 5912804285533960 r009 Im(z^3+c),c=-3/122+37/49*I,n=64 5912804338917999 l006 ln(2762/4989) 5912804361145801 h001 (5/9*exp(2)+1/4)/(7/8*exp(2)+9/10) 5912804365849489 m001 (Kolakoski-Niven)/(Zeta(1,-1)-exp(1/Pi)) 5912804394716506 a007 Real Root Of 707*x^4-14*x^3+628*x^2-604*x-666 5912804411086215 a007 Real Root Of 136*x^4-568*x^3+179*x^2-529*x+351 5912804417082597 m002 -6+(Csch[Pi]*ProductLog[Pi]^2)/Log[Pi] 5912804433606467 a007 Real Root Of -263*x^4+788*x^3+716*x^2+788*x-847 5912804448524690 a007 Real Root Of -917*x^4+566*x^3-335*x^2+299*x+523 5912804450490686 m002 -5+Cosh[Pi]-Tanh[Pi]+Tanh[Pi]/Pi 5912804451583150 a007 Real Root Of 638*x^4-132*x^3+313*x^2-814*x-696 5912804458863809 a007 Real Root Of 120*x^4+611*x^3-567*x^2-4*x-570 5912804486726235 a008 Real Root of (-4+5*x+2*x^2+4*x^4-2*x^5) 5912804498304759 m005 (1/2*3^(1/2)+1/7)/(8/9*3^(1/2)+1/6) 5912804516782296 p001 sum((-1)^n/(193*n+163)/(12^n),n=0..infinity) 5912804527031345 r002 8th iterates of z^2 + 5912804533193439 m002 -(Pi^3*Coth[Pi])+3*Pi^4*Sech[Pi] 5912804555541674 a007 Real Root Of -204*x^4-347*x^3-856*x^2+811*x+732 5912804571796122 m001 (-Weierstrass+ZetaP(2))/(GAMMA(3/4)-sin(1)) 5912804583881865 m001 (5^(1/2))^(ln(2+3^(1/2))/Gompertz) 5912804615901065 p001 sum((-1)^n/(198*n+169)/(625^n),n=0..infinity) 5912804632300408 r005 Im(z^2+c),c=-2/3+2/163*I,n=64 5912804632346648 a007 Real Root Of 966*x^4-192*x^3-192*x^2-119*x-161 5912804658164419 a007 Real Root Of 139*x^4+79*x^3+777*x^2-517*x-578 5912804689019586 a007 Real Root Of 851*x^4-51*x^3-563*x^2-611*x-279 5912804717402137 p003 LerchPhi(1/512,2,147/113) 5912804718730679 m008 (2*Pi^2+3)/(4*Pi^6+1/5) 5912804723867346 r002 22th iterates of z^2 + 5912804726204473 r005 Re(z^2+c),c=9/82+8/39*I,n=14 5912804748901566 l006 ln(4889/8831) 5912804748901566 p004 log(8831/4889) 5912804749376198 r005 Im(z^2+c),c=-13/31+52/59*I,n=3 5912804762901288 m005 (1/2*5^(1/2)-3/8)/(5/12*Catalan+7/8) 5912804784517054 m001 (BesselK(0,1)-Landau)/(-Magata+Totient) 5912804797926199 m001 GAMMA(3/4)-gamma*ln(3) 5912804801410399 m001 (BesselJ(1,1)+ArtinRank2)/(RenyiParking+Salem) 5912804814760532 r009 Im(z^3+c),c=-9/52+18/25*I,n=48 5912804818584562 r002 21th iterates of z^2 + 5912804847803804 m002 -4+Pi^2+(Log[Pi]*Sinh[Pi])/Pi^5 5912804904927119 a007 Real Root Of 756*x^4+12*x^3+990*x^2-624*x-805 5912804910734949 r009 Im(z^3+c),c=-1/16+19/26*I,n=26 5912804960354088 m002 (5*E^Pi*Pi^5)/6+Sinh[Pi] 5912805028313691 r005 Re(z^2+c),c=15/98+9/29*I,n=5 5912805053771933 a001 4870847/233*8^(1/2) 5912805062270457 r002 6th iterates of z^2 + 5912805082971422 r005 Im(z^2+c),c=25/62+19/51*I,n=7 5912805084262756 r005 Im(z^2+c),c=-2/13+4/53*I,n=8 5912805086434777 m001 exp(Trott)*Lehmer*Pi^2 5912805096796780 r002 2th iterates of z^2 + 5912805098832173 h001 (4/9*exp(1)+1/11)/(6/11*exp(1)+5/7) 5912805120062865 m001 Salem^2*Riemann2ndZero*ln(GAMMA(3/4)) 5912805122717628 a007 Real Root Of 480*x^4-411*x^3-497*x^2-602*x+556 5912805126599237 m001 FeigenbaumC^2/MinimumGamma*ln(BesselK(1,1))^2 5912805138037410 a007 Real Root Of 733*x^4-276*x^3-984*x^2-508*x-103 5912805178740487 r005 Re(z^2+c),c=-41/74+17/31*I,n=7 5912805197090870 a007 Real Root Of -124*x^4-582*x^3+974*x^2+449*x-144 5912805226002632 a003 sin(Pi*2/31)-sin(Pi*30/103) 5912805243851040 m001 (Mills*Sarnak-polylog(4,1/2))/Sarnak 5912805271638464 r005 Im(z^2+c),c=9/94+35/59*I,n=54 5912805281282647 l006 ln(2127/3842) 5912805338818322 l006 ln(7749/8221) 5912805349077346 p001 sum((-1)^n/(279*n+169)/(512^n),n=0..infinity) 5912805356953425 m005 (1/2*5^(1/2)+5/8)/(3*Catalan+1/5) 5912805359502360 r005 Re(z^2+c),c=-69/58+9/31*I,n=8 5912805381419767 m001 Landau^StolarskyHarborth/ln(5) 5912805381825930 m001 FeigenbaumC*ln(Niven)/sqrt(1+sqrt(3)) 5912805414537187 r009 Im(z^3+c),c=-5/122+38/51*I,n=44 5912805427514817 a007 Real Root Of -861*x^4-135*x^3-806*x^2+289*x+530 5912805447930358 a007 Real Root Of -163*x^4-971*x^3-79*x^2-276*x-361 5912805449824550 a007 Real Root Of -829*x^4+958*x^3-306*x^2+978*x-568 5912805455499558 r004 Re(z^2+c),c=-27/26+4/23*I,z(0)=-1,n=43 5912805488332707 b008 Sqrt[Pi]*FresnelS[2/5] 5912805529759491 a007 Real Root Of -587*x^4+353*x^3-447*x^2-849*x-201 5912805532278655 m009 (3/5*Psi(1,1/3)-1)/(5/6*Psi(1,2/3)+6) 5912805542571145 m001 exp(-1/2*Pi)*HardHexagonsEntropy-ln(2^(1/2)+1) 5912805561658466 r009 Im(z^3+c),c=-11/20+11/50*I,n=62 5912805565446371 m004 4+Log[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/25 5912805571286168 a007 Real Root Of 886*x^4+33*x^3+339*x^2-756*x-667 5912805572062467 m001 ln(Robbin)/Kolakoski/Zeta(1,2)^2 5912805587391101 r005 Re(z^2+c),c=-79/114+15/58*I,n=54 5912805590039064 a003 sin(Pi*21/104)*sin(Pi*11/23) 5912805591224181 r005 Im(z^2+c),c=-5/4+63/166*I,n=7 5912805593110528 m001 ln(GAMMA(1/24))*Cahen^2*GAMMA(5/12)^2 5912805595652166 r008 a(0)=0,K{-n^6,-6+35*n+8*n^2-21*n^3} 5912805611882291 p004 log(14221/7873) 5912805625477162 r005 Re(z^2+c),c=-165/122+11/41*I,n=4 5912805667028793 a007 Real Root Of 16*x^4+934*x^3-707*x^2+332*x+652 5912805669107556 r005 Re(z^2+c),c=-37/70+16/27*I,n=47 5912805679898174 m001 (KomornikLoreti-MertensB3)/(ln(gamma)-Ei(1,1)) 5912805704484544 a007 Real Root Of -875*x^4+75*x^3+691*x^2+467*x+157 5912805729671465 k002 Champernowne real with 103/2*n^2-137/2*n+22 5912805764051608 r009 Im(z^3+c),c=-25/74+8/11*I,n=27 5912805778870874 m005 (1/2*Catalan+4/9)/(3/11*3^(1/2)-5/8) 5912805782982911 b008 1/9+9*Sqrt[43] 5912805808012623 r002 39th iterates of z^2 + 5912805810984636 r002 24th iterates of z^2 + 5912805838042138 a007 Real Root Of 186*x^4-739*x^3-307*x^2-891*x-595 5912805858720559 a007 Real Root Of 325*x^4-316*x^3-177*x^2-776*x-502 5912805879718419 m001 Pi+PlouffeB+UniversalParabolic 5912805880904325 r005 Im(z^2+c),c=-1/66+35/41*I,n=5 5912805918407570 a007 Real Root Of 964*x^4-589*x^3+152*x^2-978*x-871 5912805948441082 m001 exp(OneNinth)^2/LandauRamanujan^2/Ei(1)^2 5912805956516520 m004 375/Pi+150*Pi+Sin[Sqrt[5]*Pi] 5912805976608863 r008 a(0)=6,K{-n^6,16+19*n-42*n^2+14*n^3} 5912806000489871 l006 ln(3619/6537) 5912806017394550 r002 8th iterates of z^2 + 5912806039061049 m001 (arctan(1/3)-Conway)/(ErdosBorwein+ZetaQ(2)) 5912806069740182 a007 Real Root Of -683*x^4+391*x^3+885*x^2+178*x-412 5912806078188292 r002 61th iterates of z^2 + 5912806107698994 m005 (17/30+1/6*5^(1/2))/(1/4*exp(1)+10/11) 5912806190312249 m001 (Si(Pi)-Zeta(5))/(cos(1/12*Pi)+ThueMorse) 5912806203882882 m001 (5^(1/2)-KhinchinLevy)/(MadelungNaCl+Trott2nd) 5912806246860993 p001 sum(1/(234*n+127)/n/(5^n),n=1..infinity) 5912806248452581 b008 33*Log[6] 5912806266913697 s002 sum(A033421[n]/(n^3*exp(n)-1),n=1..infinity) 5912806281236584 m002 6-Sinh[Pi]/(5*E^Pi*Log[Pi]) 5912806289490988 a007 Real Root Of -532*x^4-413*x^3-780*x^2+774*x+710 5912806299796012 l006 ln(5111/9232) 5912806313572083 r005 Im(z^2+c),c=5/42+19/30*I,n=35 5912806320165650 a007 Real Root Of -629*x^4-257*x^3-864*x^2+847*x-47 5912806321381567 m001 (-Thue+TwinPrimes)/(exp(1)+MasserGramain) 5912806334491837 a007 Real Root Of -723*x^4-63*x^3-439*x^2+95*x+285 5912806338215912 m001 Conway/ln(Champernowne)^2/Rabbit^2 5912806359230898 a007 Real Root Of 620*x^4-635*x^3-633*x^2-934*x-538 5912806359927962 a007 Real Root Of -599*x^4+861*x^3+265*x^2+224*x+291 5912806368667256 m001 Pi^(1/2)+FransenRobinson+MertensB3 5912806374662756 m001 ln(GlaisherKinkelin)^2/Bloch^2*GAMMA(5/12) 5912806374666582 r005 Re(z^2+c),c=-17/30+63/122*I,n=12 5912806387912262 r009 Im(z^3+c),c=-15/28+38/63*I,n=37 5912806409114241 a007 Real Root Of -417*x^4+422*x^3-993*x^2+593*x+836 5912806421445601 r005 Re(z^2+c),c=9/110+17/40*I,n=49 5912806444023513 r002 4th iterates of z^2 + 5912806459575224 a007 Real Root Of 584*x^4+842*x^3+617*x^2-998*x-61 5912806495186413 a008 Real Root of x^2-x-3437 5912806497637523 r009 Re(z^3+c),c=-7/74+37/53*I,n=20 5912806533578034 m001 (sin(1/5*Pi)+CareFree)/(Kolakoski-Stephens) 5912806537545960 r009 Im(z^3+c),c=-17/62+31/50*I,n=6 5912806539509536 q001 217/367 5912806541094893 m005 (1/2*Pi-3)/(9/11*3^(1/2)+1) 5912806569211989 a007 Real Root Of -809*x^4+677*x^3-726*x^2+327*x+686 5912806577819628 m001 1/Conway^2*ln(Cahen)^2/TreeGrowth2nd^2 5912806606148456 a007 Real Root Of 998*x^4+250*x^3-149*x^2-529*x-331 5912806614182095 m005 (1/2*Catalan+2/3)/(Zeta(3)+7/10) 5912806629421898 a003 cos(Pi*17/66)-sin(Pi*31/115) 5912806638751542 p004 log(17317/9587) 5912806665262343 a003 cos(Pi*15/53)*cos(Pi*55/117) 5912806677697531 m001 (Zeta(5)-ln(3))/(GAMMA(13/24)-FeigenbaumD) 5912806678688901 a005 (1/cos(17/162*Pi))^1072 5912806704483760 a007 Real Root Of -194*x^4-996*x^3+786*x^2-579*x+329 5912806714758047 r005 Im(z^2+c),c=31/94+11/26*I,n=35 5912806716768148 m001 1/Zeta(1,2)^2/exp((3^(1/3)))^2/Zeta(5)^2 5912806742673855 a007 Real Root Of 993*x^4-736*x^3+398*x^2+199*x-295 5912806792635255 r005 Im(z^2+c),c=-87/98+2/45*I,n=30 5912806801247187 m004 -15/Pi+(25*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi])/3 5912806801359895 m005 (1/3*Zeta(3)-1/11)/(-7/72+5/18*5^(1/2)) 5912806811506953 a001 15127/610*233^(32/55) 5912806819247145 a007 Real Root Of -738*x^4+992*x^3-879*x^2+640*x+981 5912806825644219 p004 log(33487/18539) 5912806837550275 m001 (2^(1/2)+gamma(3))/(-FeigenbaumAlpha+OneNinth) 5912806843511242 m008 (3/5*Pi-2)/(2*Pi^4-1/4) 5912806859861558 r005 Re(z^2+c),c=9/58+21/55*I,n=50 5912806871392596 a007 Real Root Of 151*x^4+895*x^3+105*x^2+480*x-385 5912806901414649 m003 -13/3-3*Tan[1/2+Sqrt[5]/2] 5912806903909828 r009 Im(z^3+c),c=-1/29+45/59*I,n=35 5912806927165272 m001 Trott/ln(KhintchineLevy)*cos(Pi/12)^2 5912806927177973 a007 Real Root Of -881*x^4+991*x^3-899*x^2-316*x+440 5912806963007759 r005 Im(z^2+c),c=-5/102+28/43*I,n=7 5912806968491871 m001 2^(1/3)-MasserGramain*MertensB2 5912806969847751 a007 Real Root Of 425*x^4-661*x^3-449*x^2-765*x+694 5912806996601535 r002 8th iterates of z^2 + 5912806998927042 a007 Real Root Of 748*x^4-967*x^3+444*x^2-224*x-579 5912807002584803 a007 Real Root Of -929*x^4+619*x^3-376*x^2-394*x+140 5912807025793913 l006 ln(1492/2695) 5912807032045874 r009 Im(z^3+c),c=-39/82+33/61*I,n=13 5912807054934402 r009 Im(z^3+c),c=-2/29+19/28*I,n=5 5912807082397138 r002 37th iterates of z^2 + 5912807091842360 a001 180340616301192/305 5912807104342756 a007 Real Root Of -955*x^4-344*x^3-102*x^2+353*x+290 5912807116257383 m005 (1/2*Catalan-1)/(3/5*exp(1)-5/7) 5912807135768152 m003 -11/2-Csch[1/2+Sqrt[5]/2] 5912807167199076 m005 (41/36+1/4*5^(1/2))/(1/5*2^(1/2)-2/7) 5912807181842893 r008 a(0)=6,K{-n^6,12-7*n-17*n^2+24*n^3} 5912807186486038 p003 LerchPhi(1/12,2,269/204) 5912807197788588 m005 (1/3*exp(1)-1/4)/(6/7*3^(1/2)-3/8) 5912807250990572 m001 (-TreeGrowth2nd+ThueMorse)/(exp(1)+Tetranacci) 5912807258297083 r005 Im(z^2+c),c=-2/3+26/227*I,n=50 5912807279262119 a007 Real Root Of -675*x^4+986*x^3+231*x^2+914*x+746 5912807298457974 a007 Real Root Of -382*x^4+193*x^3-471*x^2+901*x+784 5912807304262586 a001 32264490531/46*1364^(14/15) 5912807335314601 r002 6th iterates of z^2 + 5912807335320198 s002 sum(A046023[n]/((pi^n-1)/n),n=1..infinity) 5912807337211411 r009 Im(z^3+c),c=-55/126+33/58*I,n=26 5912807365982535 r005 Re(z^2+c),c=-33/94+31/49*I,n=24 5912807383901780 a005 (1/sin(68/145*Pi))^857 5912807399363780 r009 Im(z^3+c),c=-15/118+31/41*I,n=52 5912807412171477 a007 Real Root Of 6*x^4+356*x^3+78*x^2+318*x+691 5912807414226989 l006 ln(5861/6218) 5912807419627616 r009 Re(z^3+c),c=-69/118+21/38*I,n=25 5912807458949949 m001 LaplaceLimit*(TreeGrowth2nd+ZetaP(2)) 5912807497763273 m001 (Lehmer-ZetaP(4))/(sin(1/5*Pi)+Zeta(1/2)) 5912807501062350 r005 Im(z^2+c),c=11/64+1/26*I,n=3 5912807516134497 a001 182717648081/161*1364^(13/15) 5912807518300762 a001 4106118243/233*102334155^(4/21) 5912807518300762 a001 599074578/233*2504730781961^(4/21) 5912807526877672 m001 (exp(Pi)*ln(gamma)-cos(1/12*Pi))/exp(Pi) 5912807526877672 m001 (exp(Pi)*log(gamma)-cos(Pi/12))/exp(Pi) 5912807526877672 m001 cos(Pi/12)*exp(-Pi)-log(gamma) 5912807531186346 a001 28143753123/233*4181^(4/21) 5912807552145047 a007 Real Root Of 475*x^4-162*x^3-55*x^2-977*x-650 5912807562974805 m001 (Chi(1)+ln(gamma))/(FeigenbaumMu+Mills) 5912807574851531 r005 Re(z^2+c),c=-37/58+11/43*I,n=8 5912807585118421 a001 7/13*144^(27/56) 5912807587779839 r002 4th iterates of z^2 + 5912807599258864 a007 Real Root Of 85*x^4+441*x^3-334*x^2+109*x-410 5912807604178701 a005 (1/cos(43/189*Pi))^195 5912807606182789 r005 Re(z^2+c),c=-13/114+9/11*I,n=33 5912807651177936 a007 Real Root Of 118*x^4-808*x^3-979*x^2-697*x+907 5912807653487366 r002 34th iterates of z^2 + 5912807655363274 a007 Real Root Of 720*x^4-758*x^3-946*x^2-707*x-332 5912807661018955 r005 Re(z^2+c),c=-31/60+27/46*I,n=12 5912807662647057 r008 a(0)=6,K{-n^6,-27+n+39*n^2-n^3} 5912807683999395 m001 (BesselK(0,1)-Shi(1))/(-ln(5)+Khinchin) 5912807721570214 l006 ln(5333/9633) 5912807725984400 r005 Im(z^2+c),c=-21/34+38/55*I,n=5 5912807728006416 a001 591286729879/322*1364^(4/5) 5912807747938417 a007 Real Root Of 882*x^4-864*x^3+555*x^2+591*x-131 5912807753268009 m005 (1/2*Pi-2/11)/(-185/264+5/24*5^(1/2)) 5912807767781499 m001 (-Salem+ZetaQ(3))/(5^(1/2)-MertensB1) 5912807782392089 r005 Re(z^2+c),c=-11/18+36/85*I,n=7 5912807787811433 m001 Zeta(7)/GAMMA(11/24)^2*exp(cosh(1))^2 5912807802100707 a007 Real Root Of 141*x^4+948*x^3+581*x^2-398*x+961 5912807808083284 a001 1/15129*(1/2*5^(1/2)+1/2)^28*123^(10/19) 5912807823697875 r005 Re(z^2+c),c=23/118+33/64*I,n=54 5912807841693463 a007 Real Root Of -860*x^4+382*x^3-228*x^2-551*x-62 5912807849818870 a007 Real Root Of 722*x^4-129*x^3+509*x^2+749*x+150 5912807887751379 a007 Real Root Of 947*x^4-479*x^3+979*x^2-624*x-926 5912807906629048 m001 (Sarnak-TwinPrimes)/(ln(5)-FeigenbaumD) 5912807917895812 m005 (1/2*gamma+7/9)/(2/5*5^(1/2)+10/11) 5912807932606232 m001 cos(1/5*Pi)^(StolarskyHarborth/gamma(2)) 5912807939878342 a001 956722026041/322*1364^(11/15) 5912807942781982 s002 sum(A100677[n]/(exp(n)),n=1..infinity) 5912807966412031 m001 (ln(2)+GAMMA(11/12))/(3^(1/2)+GAMMA(3/4)) 5912807978864368 a007 Real Root Of -90*x^4+971*x^3+362*x^2+982*x+57 5912807991837902 l006 ln(3841/6938) 5912808052358252 r009 Im(z^3+c),c=-25/46+35/58*I,n=22 5912808054055863 a007 Real Root Of -607*x^4+942*x^3+129*x^2+599*x+578 5912808069299195 m001 (-Otter+QuadraticClass)/(BesselI(1,1)-Catalan) 5912808082874190 a007 Real Root Of 803*x^4-475*x^3+492*x^2-522*x-677 5912808092507444 m001 (GAMMA(1/4)+Zeta(3))^GAMMA(5/6) 5912808092507444 m001 (Pi*2^(1/2)/GAMMA(3/4)+Zeta(3))^GAMMA(5/6) 5912808118755102 a003 sin(Pi*13/83)/cos(Pi*23/112) 5912808121671131 s002 sum(A025899[n]/((exp(n)-1)/n),n=1..infinity) 5912808122727120 a007 Real Root Of 429*x^4-48*x^3+449*x^2-199*x-337 5912808128257642 a007 Real Root Of 32*x^4-968*x^3-916*x^2-532*x+831 5912808133048013 a003 cos(Pi*13/93)-sin(Pi*26/81) 5912808135033822 a003 sin(Pi*22/105)*sin(Pi*43/103) 5912808140595542 a007 Real Root Of 334*x^4-691*x^3+107*x^2+83*x-172 5912808141866969 m001 (-FellerTornier+Sarnak)/(GAMMA(19/24)-Si(Pi)) 5912808151750276 a001 774004377960/161*1364^(2/3) 5912808153571713 h001 (-exp(5)+6)/(-exp(3)-4) 5912808157543601 a001 233/7881196*4^(1/2) 5912808166203758 a001 3571/55*53316291173^(5/9) 5912808193236863 m001 (exp(Pi)+cos(1/5*Pi))/(Cahen+Magata) 5912808195748909 r005 Re(z^2+c),c=41/126+2/37*I,n=25 5912808205593295 a005 (1/cos(16/197*Pi))^1943 5912808209149809 r005 Re(z^2+c),c=-29/86+32/53*I,n=18 5912808269069113 r009 Im(z^3+c),c=-47/78+41/62*I,n=33 5912808286827693 a001 2207/377*233^(14/33) 5912808290236702 r005 Re(z^2+c),c=-11/16+23/126*I,n=18 5912808291490082 r001 25i'th iterates of 2*x^2-1 of 5912808300560993 r009 Re(z^3+c),c=-55/122+4/53*I,n=4 5912808301627022 m001 Riemann1stZero^Niven*Riemann1stZero^CareFree 5912808324004606 r009 Im(z^3+c),c=-37/78+19/42*I,n=8 5912808356909766 a007 Real Root Of 286*x^4+61*x^3-306*x^2-231*x+196 5912808363622217 a001 2504730781961/322*1364^(3/5) 5912808369402608 s002 sum(A277779[n]/(pi^n+1),n=1..infinity) 5912808373769667 a007 Real Root Of -802*x^4+71*x^3-410*x^2+120*x+327 5912808379307482 m001 (exp(1)+Zeta(3))/(HeathBrownMoroz+Robbin) 5912808400071431 r005 Re(z^2+c),c=-5/114+39/55*I,n=62 5912808418622277 r005 Im(z^2+c),c=-47/60+1/25*I,n=7 5912808426844667 r002 59th iterates of z^2 + 5912808445930625 m009 (5*Psi(1,3/4)+1/2)/(1/4*Psi(1,2/3)-3) 5912808448339588 r005 Re(z^2+c),c=-85/122+18/47*I,n=3 5912808449487030 m001 (OrthogonalArrays-PisotVijayaraghavan)/Totient 5912808450775712 m001 (Pi-gamma)/(BesselI(0,1)-FeigenbaumB) 5912808464939484 r009 Im(z^3+c),c=-31/110+19/30*I,n=11 5912808497667345 m001 1/ln(PisotVijayaraghavan)^2/Champernowne*gamma 5912808516940415 m001 (GAMMA(23/24)-Cahen)/(DuboisRaymond+ZetaP(2)) 5912808527592002 r002 7th iterates of z^2 + 5912808537177881 r005 Im(z^2+c),c=-67/118+4/41*I,n=17 5912808537431963 a007 Real Root Of -690*x^4+986*x^3-175*x^2+659*x+739 5912808542247716 r002 14th iterates of z^2 + 5912808564046676 p003 LerchPhi(1/8,5,129/184) 5912808566363890 a008 Real Root of x^4-x^3-47*x^2-21*x+90 5912808575494166 a001 4052739537881/322*1364^(8/15) 5912808605434120 l006 ln(2349/4243) 5912808629834824 a001 4870847/55*121393^(5/9) 5912808629848512 a001 439204/55*9227465^(5/9) 5912808633649125 a001 39603/55*701408733^(5/9) 5912808652354414 h001 (1/10*exp(2)+8/9)/(3/4*exp(1)+5/7) 5912808673262355 a007 Real Root Of -83*x^4-516*x^3+10*x^2+911*x-180 5912808674508524 a001 11/28657*46368^(35/39) 5912808687393561 a001 121393/843*47^(55/57) 5912808691970346 r005 Re(z^2+c),c=-3/94+9/44*I,n=4 5912808703661091 m001 (ln(2)/ln(10))^(exp(-1/2*Pi)/Weierstrass) 5912808710161957 m001 (2*Pi/GAMMA(5/6))^(ArtinRank2*Magata) 5912808720659026 m005 (1/2*gamma-3/4)/(6/11*5^(1/2)-2) 5912808723495791 m001 (BesselI(1,1)-2*Pi/GAMMA(5/6))/(Artin+Bloch) 5912808731337520 a001 2/47*2^(28/59) 5912808778563285 p004 log(37517/35363) 5912808784187882 r009 Im(z^3+c),c=-15/98+39/55*I,n=5 5912808787366122 a001 3278735159921/161*1364^(7/15) 5912808813678716 m001 (OneNinth+ZetaQ(3))/(BesselJ(1,1)+GAMMA(7/12)) 5912808817619877 a007 Real Root Of -675*x^4+864*x^3+437*x^2+703*x+524 5912808852742318 a007 Real Root Of 490*x^4-960*x^3+601*x^2+383*x-242 5912808871317306 m005 (1/2*3^(1/2)-11/12)/(1/3*5^(1/2)+1/9) 5912808887476594 a001 54018521/55*1597^(5/9) 5912808889412646 r005 Re(z^2+c),c=-25/24+4/25*I,n=20 5912808889826865 m001 CopelandErdos*FeigenbaumAlpha+HeathBrownMoroz 5912808927563662 m001 (sin(1/12*Pi)+ErdosBorwein)/(2^(1/3)+Ei(1)) 5912808953292142 m005 (1/2*Zeta(3)+1/12)/(3/11*gamma+1) 5912808968179557 a007 Real Root Of -72*x^4+591*x^3-384*x^2+989*x+850 5912808972923084 m005 (1/3*gamma-2/3)/(2/5*Pi-5/11) 5912808987405529 b008 (7*Csch[2]^2)/9 5912808989173249 m001 1/MadelungNaCl^2*exp(sqrt(3))^3 5912808999238086 a001 1515744265389/46*1364^(2/5) 5912809015618367 r002 18th iterates of z^2 + 5912809029704679 l006 ln(5555/10034) 5912809034200920 m009 (1/6*Psi(1,1/3)-1/3)/(1/2*Psi(1,2/3)+3/4) 5912809049721252 a001 11/34*1346269^(7/34) 5912809052773481 m001 (Khinchin+TwinPrimes)/(Psi(2,1/3)+Zeta(1/2)) 5912809056551739 a001 141/46*14662949395604^(6/7) 5912809066021099 a007 Real Root Of -120*x^4+860*x^3+230*x^2+394*x+345 5912809080626013 a007 Real Root Of 276*x^4+95*x^3+434*x^2-229*x+12 5912809081073510 m001 1/ln(GAMMA(11/24))*CareFree^2/GAMMA(5/6)^2 5912809087930369 r005 Im(z^2+c),c=-35/58+7/64*I,n=55 5912809097074974 m001 (FeigenbaumMu+Magata)/(Zeta(1,2)+GAMMA(11/12)) 5912809101901085 r005 Re(z^2+c),c=43/106+12/61*I,n=8 5912809134137399 r009 Im(z^3+c),c=-12/29+33/56*I,n=62 5912809135284950 m005 (2/3+1/4*5^(1/2))/(2/9*exp(1)-7/12) 5912809136622381 a007 Real Root Of -421*x^4+787*x^3+383*x^2+808*x+558 5912809158399505 r009 Re(z^3+c),c=-7/78+23/47*I,n=9 5912809181435191 m005 (1/2*Catalan-2/7)/(5/11*Catalan-1/8) 5912809226754341 p004 log(27407/15173) 5912809247134697 m001 Gompertz^BesselJ(0,1)*gamma(3)^BesselJ(0,1) 5912809255468127 m006 (4/5*exp(2*Pi)+5)/(2/3*Pi^2+3/4) 5912809273186789 m006 (5/Pi+1/4)/(2/5*Pi^2-5/6) 5912809277170742 a007 Real Root Of -38*x^4-213*x^3+149*x^2+340*x-783 5912809281738197 a003 sin(Pi*15/112)-sin(Pi*33/67) 5912809330244949 a007 Real Root Of 938*x^4+969*x^3+757*x^2-986*x-762 5912809340562915 l006 ln(3206/5791) 5912809340689557 m001 Chi(1)*Ei(1)/Khinchin 5912809345632761 r009 Re(z^3+c),c=-33/58+17/50*I,n=6 5912809345893557 a001 4870847/610*832040^(6/19) 5912809345974095 a001 271443/610*7778742049^(6/19) 5912809366226151 r008 a(0)=6,K{-n^6,10-5*n^3-60*n^2+66*n} 5912809379184426 s002 sum(A099875[n]/(n*pi^n-1),n=1..infinity) 5912809396654350 s002 sum(A218414[n]/(exp(pi*n)+1),n=1..infinity) 5912809412309042 a007 Real Root Of 858*x^4-238*x^3+57*x^2-174 5912809420001091 a007 Real Root Of 440*x^4-514*x^3-722*x^2-286*x+474 5912809436358384 m005 (1/2*Zeta(3)-10/11)/(1/4*Catalan-3/4) 5912809452849075 r005 Re(z^2+c),c=-9/98+17/20*I,n=15 5912809477173810 a007 Real Root Of -597*x^4+986*x^3+170*x^2+615*x+581 5912809481833709 r009 Im(z^3+c),c=-5/13+16/23*I,n=16 5912809485335385 r005 Im(z^2+c),c=-13/14+11/218*I,n=18 5912809495532692 h001 (1/3*exp(2)+6/11)/(7/12*exp(2)+7/9) 5912809503826606 m001 PrimesInBinary/exp(DuboisRaymond)*sqrt(3) 5912809503839193 a001 39603/1597*233^(32/55) 5912809518465666 m005 (1/2*gamma+6/7)/(241/264+11/24*5^(1/2)) 5912809521045979 m001 (BesselJ(1,1)-Gompertz)/(Porter+Salem) 5912809540808328 r005 Re(z^2+c),c=-19/78+35/48*I,n=33 5912809557289310 r002 20th iterates of z^2 + 5912809568438419 a003 sin(Pi*27/98)*sin(Pi*15/53) 5912809577891210 r009 Im(z^3+c),c=-1/23+25/33*I,n=62 5912809598584261 r005 Re(z^2+c),c=-3/4+1/37*I,n=41 5912809600800029 r005 Re(z^2+c),c=-16/29+16/37*I,n=18 5912809610704685 r005 Im(z^2+c),c=-5/8+23/208*I,n=49 5912809619007840 r005 Im(z^2+c),c=-13/110+39/59*I,n=52 5912809619689492 m001 (ReciprocalLucas-ZetaQ(3))/(Artin-CareFree) 5912809636945146 m001 (exp(Pi)+FeigenbaumDelta)/(MadelungNaCl+Otter) 5912809648216409 p001 sum(1/(422*n+17)/(8^n),n=0..infinity) 5912809668262643 h001 (2/7*exp(1)+2/11)/(1/9*exp(2)+4/5) 5912809687910761 a007 Real Root Of -905*x^4+288*x^3+64*x^2+696*x+41 5912809713132948 m005 (1/2*Zeta(3)+6)/(5/11*5^(1/2)+1/10) 5912809732524282 a007 Real Root Of -154*x^4-801*x^3+497*x^2-894*x-11 5912809734148897 m002 Pi-Cosh[Pi]*Coth[Pi]+Pi^4*Csch[Pi] 5912809742484032 m001 (cos(1/12*Pi)+Artin)/(1+BesselI(0,1)) 5912809765573360 l006 ln(4063/7339) 5912809773864720 a003 sin(Pi*23/114)*sin(Pi*40/83) 5912809778319524 m001 (Bloch-OneNinth)/(Zeta(5)-(1+3^(1/2))^(1/2)) 5912809806244508 a001 944275726057248/1597 5912809834069533 a001 43133785636/161*3571^(16/17) 5912809861344563 a001 139583862445/322*3571^(15/17) 5912809877924370 b008 5*(-2+(1+E)^2) 5912809877924370 m001 exp(1)*(1+sinh(1)) 5912809887616704 r005 Im(z^2+c),c=-43/94+3/34*I,n=9 5912809888619593 a001 32264490531/46*3571^(14/17) 5912809901276182 r005 Re(z^2+c),c=-29/42+13/51*I,n=19 5912809906845429 a007 Real Root Of -614*x^4+652*x^3-595*x^2+648*x+801 5912809915894624 a001 182717648081/161*3571^(13/17) 5912809916892060 a007 Real Root Of -331*x^4+815*x^3-68*x^2+907*x+769 5912809929625885 a003 cos(Pi*8/119)-sin(Pi*12/95) 5912809943169654 a001 591286729879/322*3571^(12/17) 5912809955036901 a007 Real Root Of -130*x^4-755*x^3+242*x^2+863*x-533 5912809960783405 m005 (1/3*3^(1/2)+1/12)/(5/6*gamma+7/11) 5912809970444685 a001 956722026041/322*3571^(11/17) 5912809975311967 r005 Im(z^2+c),c=-1/8+49/62*I,n=20 5912809976661170 m004 -96+(25*Sqrt[5]*Pi)/Log[Sqrt[5]*Pi] 5912809990878646 m001 (ln(2)+GAMMA(17/24))/(Khinchin+TwinPrimes) 5912809997719716 a001 774004377960/161*3571^(10/17) 5912810004894760 a007 Real Root Of 133*x^4+902*x^3+695*x^2-47*x-680 5912810024994747 a001 2504730781961/322*3571^(9/17) 5912810035476914 a007 Real Root Of -312*x^4+575*x^3-400*x^2+51*x+327 5912810042521214 l006 ln(4920/8887) 5912810046928363 r002 55i'th iterates of 2*x/(1-x^2) of 5912810052269778 a001 4052739537881/322*3571^(8/17) 5912810058112839 m001 FeigenbaumC^2*Bloch/ln(BesselJ(0,1)) 5912810062235725 m001 (LambertW(1)-exp(Pi))/(-Kolakoski+Salem) 5912810066625800 p003 LerchPhi(1/8,6,356/151) 5912810079544809 a001 3278735159921/161*3571^(7/17) 5912810090950004 s002 sum(A122146[n]/(n^3*exp(n)+1),n=1..infinity) 5912810093361739 a001 1292/161*23725150497407^(13/16) 5912810093361739 a001 1292/161*505019158607^(13/14) 5912810103302052 a007 Real Root Of 226*x^4-682*x^3+191*x^2-755*x+493 5912810106819840 a001 1515744265389/46*3571^(6/17) 5912810113448568 h001 (-4*exp(4)-5)/(-2*exp(2)+11) 5912810116317817 a003 cos(Pi*14/107)/cos(Pi*50/111) 5912810123843816 m001 (GAMMA(19/24)+KhinchinLevy)/(Khinchin+Mills) 5912810126226719 r005 Im(z^2+c),c=-65/102+16/35*I,n=30 5912810139412980 a001 64079/2584*233^(32/55) 5912810152260966 r005 Re(z^2+c),c=-105/118+7/34*I,n=24 5912810161364200 h001 (1/8*exp(2)+3/4)/(5/7*exp(1)+8/9) 5912810161829004 m001 (exp(1)+Catalan)/(gamma(2)+GolombDickman) 5912810174691012 a003 sin(Pi*5/62)/cos(Pi*22/61) 5912810197436454 a007 Real Root Of -580*x^4+137*x^3+5*x^2+948*x+658 5912810206381175 a001 32951280099/322*9349^(18/19) 5912810209941667 a001 53316291173/322*9349^(17/19) 5912810213502159 a001 43133785636/161*9349^(16/19) 5912810215550692 m009 (1/4*Psi(1,1/3)-6)/(16/5*Catalan+2/5*Pi^2-1) 5912810217062651 a001 139583862445/322*9349^(15/19) 5912810220623143 a001 32264490531/46*9349^(14/19) 5912810224183635 a001 182717648081/161*9349^(13/19) 5912810227744127 a001 591286729879/322*9349^(12/19) 5912810231304619 a001 956722026041/322*9349^(11/19) 5912810233814833 r002 24th iterates of z^2 + 5912810234865111 a001 774004377960/161*9349^(10/19) 5912810236537333 m006 (1/2*Pi+1)/(2/5*Pi^2+2/5) 5912810236537333 m008 (1/2*Pi+1)/(2/5*Pi^2+2/5) 5912810238425603 a001 2504730781961/322*9349^(9/19) 5912810241986095 a001 4052739537881/322*9349^(8/19) 5912810244630279 a001 6765/322*312119004989^(10/11) 5912810244630279 a001 6765/322*3461452808002^(5/6) 5912810245546587 a001 3278735159921/161*9349^(7/19) 5912810249107079 a001 1515744265389/46*9349^(6/19) 5912810253955592 r009 Im(z^3+c),c=-21/62+29/43*I,n=22 5912810261070119 a001 12586269025/322*24476^(20/21) 5912810261540115 a001 10182505537/161*24476^(19/21) 5912810262010110 a001 32951280099/322*24476^(6/7) 5912810262480106 a001 53316291173/322*24476^(17/21) 5912810262950102 a001 43133785636/161*24476^(16/21) 5912810263420097 a001 139583862445/322*24476^(5/7) 5912810263890093 a001 32264490531/46*24476^(2/3) 5912810264360088 a001 182717648081/161*24476^(13/21) 5912810264830084 a001 591286729879/322*24476^(4/7) 5912810265300079 a001 956722026041/322*24476^(11/21) 5912810265770075 a001 774004377960/161*24476^(10/21) 5912810266240070 a001 2504730781961/322*24476^(3/7) 5912810266700062 a001 17711/322*45537549124^(16/17) 5912810266700062 a001 17711/322*14662949395604^(16/21) 5912810266700062 a001 17711/322*192900153618^(8/9) 5912810266700062 a001 17711/322*73681302247^(12/13) 5912810266710066 a001 4052739537881/322*24476^(8/21) 5912810267180062 a001 3278735159921/161*24476^(1/3) 5912810267650057 a001 1515744265389/46*24476^(2/7) 5912810269092639 a001 14930208*64079^(22/23) 5912810269155248 a001 7778742049/322*64079^(21/23) 5912810269217857 a001 12586269025/322*64079^(20/23) 5912810269280465 a001 10182505537/161*64079^(19/23) 5912810269343074 a001 32951280099/322*64079^(18/23) 5912810269405683 a001 53316291173/322*64079^(17/23) 5912810269468291 a001 43133785636/161*64079^(16/23) 5912810269530900 a001 139583862445/322*64079^(15/23) 5912810269593509 a001 32264490531/46*64079^(14/23) 5912810269656118 a001 182717648081/161*64079^(13/23) 5912810269718726 a001 591286729879/322*64079^(12/23) 5912810269781335 a001 956722026041/322*64079^(11/23) 5912810269843944 a001 774004377960/161*64079^(10/23) 5912810269906552 a001 2504730781961/322*64079^(9/23) 5912810269919999 a001 144*10749957122^(23/24) 5912810269969161 a001 4052739537881/322*64079^(8/23) 5912810270031770 a001 3278735159921/161*64079^(7/23) 5912810270094378 a001 1515744265389/46*64079^(6/23) 5912810270301956 a001 12586269025/322*167761^(4/5) 5912810270343975 a001 139583862445/322*167761^(3/5) 5912810270385993 a001 774004377960/161*167761^(2/5) 5912810270389782 a001 121393/322*312119004989^(4/5) 5912810270389782 a001 121393/322*23725150497407^(11/16) 5912810270389782 a001 121393/322*73681302247^(11/13) 5912810270389782 a001 121393/322*10749957122^(11/12) 5912810270389782 a001 121393/322*4106118243^(22/23) 5912810270442784 a001 1836311903/322*439204^(8/9) 5912810270446190 a001 7778742049/322*439204^(7/9) 5912810270449596 a001 32951280099/322*439204^(2/3) 5912810270453002 a001 139583862445/322*439204^(5/9) 5912810270456407 a001 591286729879/322*439204^(4/9) 5912810270458322 a001 317811/322*2537720636^(14/15) 5912810270458322 a001 317811/322*17393796001^(6/7) 5912810270458322 a001 317811/322*45537549124^(14/17) 5912810270458322 a001 317811/322*817138163596^(14/19) 5912810270458322 a001 317811/322*14662949395604^(2/3) 5912810270458322 a001 317811/322*505019158607^(3/4) 5912810270458322 a001 317811/322*192900153618^(7/9) 5912810270458322 a001 317811/322*10749957122^(7/8) 5912810270458322 a001 317811/322*4106118243^(21/23) 5912810270458322 a001 317811/322*1568397607^(21/22) 5912810270459813 a001 2504730781961/322*439204^(1/3) 5912810270463219 a001 1515744265389/46*439204^(2/9) 5912810270468322 a001 416020/161*2537720636^(8/9) 5912810270468322 a001 416020/161*312119004989^(8/11) 5912810270468322 a001 416020/161*23725150497407^(5/8) 5912810270468322 a001 416020/161*73681302247^(10/13) 5912810270468322 a001 416020/161*28143753123^(4/5) 5912810270468322 a001 416020/161*10749957122^(5/6) 5912810270468322 a001 416020/161*4106118243^(20/23) 5912810270468322 a001 416020/161*1568397607^(10/11) 5912810270468322 a001 416020/161*599074578^(20/21) 5912810270469781 a001 311187/46*817138163596^(2/3) 5912810270469781 a001 311187/46*10749957122^(19/24) 5912810270469781 a001 311187/46*4106118243^(19/23) 5912810270469781 a001 311187/46*1568397607^(19/22) 5912810270469781 a001 311187/46*599074578^(19/21) 5912810270469781 a001 311187/46*228826127^(19/20) 5912810270469944 a001 14619165/46*7881196^(10/11) 5912810270469953 a001 433494437/322*7881196^(9/11) 5912810270469961 a001 1836311903/322*7881196^(8/11) 5912810270469967 a001 14930208*7881196^(2/3) 5912810270469970 a001 7778742049/322*7881196^(7/11) 5912810270469979 a001 32951280099/322*7881196^(6/11) 5912810270469987 a001 139583862445/322*7881196^(5/11) 5912810270469994 a001 5702887/322*141422324^(12/13) 5912810270469994 a001 5702887/322*2537720636^(4/5) 5912810270469994 a001 5702887/322*45537549124^(12/17) 5912810270469994 a001 5702887/322*14662949395604^(4/7) 5912810270469994 a001 5702887/322*505019158607^(9/14) 5912810270469994 a001 5702887/322*192900153618^(2/3) 5912810270469994 a001 5702887/322*73681302247^(9/13) 5912810270469994 a001 5702887/322*10749957122^(3/4) 5912810270469994 a001 5702887/322*4106118243^(18/23) 5912810270469994 a001 5702887/322*1568397607^(9/11) 5912810270469994 a001 5702887/322*599074578^(6/7) 5912810270469994 a001 5702887/322*228826127^(9/10) 5912810270469995 a001 5702887/322*87403803^(18/19) 5912810270469996 a001 591286729879/322*7881196^(4/11) 5912810270469999 a001 956722026041/322*7881196^(1/3) 5912810270470005 a001 2504730781961/322*7881196^(3/11) 5912810270470013 a001 1515744265389/46*7881196^(2/11) 5912810270470019 a001 14619165/46*20633239^(6/7) 5912810270470019 a001 133957148/161*20633239^(4/5) 5912810270470021 a001 567451585/161*20633239^(5/7) 5912810270470022 a001 7778742049/322*20633239^(3/5) 5912810270470023 a001 12586269025/322*20633239^(4/7) 5912810270470025 a001 139583862445/322*20633239^(3/7) 5912810270470025 a001 32264490531/46*20633239^(2/5) 5912810270470025 a001 7465176/161*45537549124^(2/3) 5912810270470025 a001 7465176/161*10749957122^(17/24) 5912810270470025 a001 7465176/161*4106118243^(17/23) 5912810270470025 a001 7465176/161*1568397607^(17/22) 5912810270470025 a001 7465176/161*599074578^(17/21) 5912810270470025 a001 7465176/161*228826127^(17/20) 5912810270470026 a001 7465176/161*87403803^(17/19) 5912810270470027 a001 774004377960/161*20633239^(2/7) 5912810270470028 a001 3278735159921/161*20633239^(1/5) 5912810270470030 a001 39088169/322*23725150497407^(1/2) 5912810270470030 a001 39088169/322*505019158607^(4/7) 5912810270470030 a001 39088169/322*73681302247^(8/13) 5912810270470030 a001 39088169/322*10749957122^(2/3) 5912810270470030 a001 39088169/322*4106118243^(16/23) 5912810270470030 a001 39088169/322*1568397607^(8/11) 5912810270470030 a001 39088169/322*599074578^(16/21) 5912810270470030 a001 39088169/322*228826127^(4/5) 5912810270470030 a001 14619165/46*141422324^(10/13) 5912810270470030 a001 7465176/161*33385282^(17/18) 5912810270470030 a001 701408733/322*141422324^(2/3) 5912810270470030 a001 433494437/322*141422324^(9/13) 5912810270470030 a001 1836311903/322*141422324^(8/13) 5912810270470030 a001 7778742049/322*141422324^(7/13) 5912810270470030 a001 32951280099/322*141422324^(6/13) 5912810270470030 a001 39088169/322*87403803^(16/19) 5912810270470030 a001 139583862445/322*141422324^(5/13) 5912810270470030 a001 14619165/46*2537720636^(2/3) 5912810270470030 a001 14619165/46*45537549124^(10/17) 5912810270470030 a001 14619165/46*312119004989^(6/11) 5912810270470030 a001 14619165/46*14662949395604^(10/21) 5912810270470030 a001 14619165/46*192900153618^(5/9) 5912810270470030 a001 14619165/46*28143753123^(3/5) 5912810270470030 a001 14619165/46*10749957122^(5/8) 5912810270470030 a001 14619165/46*4106118243^(15/23) 5912810270470030 a001 14619165/46*1568397607^(15/22) 5912810270470030 a001 14619165/46*599074578^(5/7) 5912810270470030 a001 182717648081/161*141422324^(1/3) 5912810270470030 a001 591286729879/322*141422324^(4/13) 5912810270470030 a001 2504730781961/322*141422324^(3/13) 5912810270470031 a001 1515744265389/46*141422324^(2/13) 5912810270470031 a001 14619165/46*228826127^(3/4) 5912810270470031 a001 133957148/161*17393796001^(4/7) 5912810270470031 a001 133957148/161*14662949395604^(4/9) 5912810270470031 a001 133957148/161*73681302247^(7/13) 5912810270470031 a001 133957148/161*10749957122^(7/12) 5912810270470031 a001 133957148/161*4106118243^(14/23) 5912810270470031 a001 133957148/161*1568397607^(7/11) 5912810270470031 a001 133957148/161*599074578^(2/3) 5912810270470031 a001 701408733/322*73681302247^(1/2) 5912810270470031 a001 701408733/322*10749957122^(13/24) 5912810270470031 a001 701408733/322*4106118243^(13/23) 5912810270470031 a001 701408733/322*1568397607^(13/22) 5912810270470031 a001 1836311903/322*2537720636^(8/15) 5912810270470031 a001 12586269025/322*2537720636^(4/9) 5912810270470031 a001 7778742049/322*2537720636^(7/15) 5912810270470031 a001 32951280099/322*2537720636^(2/5) 5912810270470031 a001 1836311903/322*45537549124^(8/17) 5912810270470031 a001 1836311903/322*14662949395604^(8/21) 5912810270470031 a001 1836311903/322*192900153618^(4/9) 5912810270470031 a001 1836311903/322*73681302247^(6/13) 5912810270470031 a001 1836311903/322*10749957122^(1/2) 5912810270470031 a001 139583862445/322*2537720636^(1/3) 5912810270470031 a001 591286729879/322*2537720636^(4/15) 5912810270470031 a001 774004377960/161*2537720636^(2/9) 5912810270470031 a001 2504730781961/322*2537720636^(1/5) 5912810270470031 a001 1836311903/322*4106118243^(12/23) 5912810270470031 a001 1515744265389/46*2537720636^(2/15) 5912810270470031 a001 14930208*312119004989^(2/5) 5912810270470031 a001 14930208*10749957122^(11/24) 5912810270470031 a001 12586269025/322*23725150497407^(5/16) 5912810270470031 a001 12586269025/322*505019158607^(5/14) 5912810270470031 a001 12586269025/322*73681302247^(5/13) 5912810270470031 a001 32264490531/46*17393796001^(2/7) 5912810270470031 a001 12586269025/322*28143753123^(2/5) 5912810270470031 a001 3278735159921/161*17393796001^(1/7) 5912810270470031 a001 32951280099/322*45537549124^(6/17) 5912810270470031 a001 32951280099/322*14662949395604^(2/7) 5912810270470031 a001 32951280099/322*192900153618^(1/3) 5912810270470031 a001 139583862445/322*45537549124^(5/17) 5912810270470031 a001 591286729879/322*45537549124^(4/17) 5912810270470031 a001 53316291173/322*45537549124^(1/3) 5912810270470031 a001 2504730781961/322*45537549124^(3/17) 5912810270470031 a001 1515744265389/46*45537549124^(2/17) 5912810270470031 a001 43133785636/161*23725150497407^(1/4) 5912810270470031 a001 32264490531/46*14662949395604^(2/9) 5912810270470031 a001 2504730781961/322*817138163596^(3/19) 5912810270470031 a001 1515744265389/46*14662949395604^(2/21) 5912810270470031 a001 2504730781961/322*14662949395604^(1/7) 5912810270470031 a001 2504730781961/322*192900153618^(1/6) 5912810270470031 a001 139583862445/322*312119004989^(3/11) 5912810270470031 a001 139583862445/322*14662949395604^(5/21) 5912810270470031 a001 139583862445/322*192900153618^(5/18) 5912810270470031 a001 4052739537881/322*73681302247^(2/13) 5912810270470031 a001 43133785636/161*73681302247^(4/13) 5912810270470031 a001 591286729879/322*73681302247^(3/13) 5912810270470031 a001 182717648081/161*73681302247^(1/4) 5912810270470031 a001 774004377960/161*28143753123^(1/5) 5912810270470031 a001 139583862445/322*28143753123^(3/10) 5912810270470031 a001 10182505537/161*817138163596^(1/3) 5912810270470031 a001 1515744265389/46*10749957122^(1/8) 5912810270470031 a001 4052739537881/322*10749957122^(1/6) 5912810270470031 a001 2504730781961/322*10749957122^(3/16) 5912810270470031 a001 774004377960/161*10749957122^(5/24) 5912810270470031 a001 7778742049/322*17393796001^(3/7) 5912810270470031 a001 591286729879/322*10749957122^(1/4) 5912810270470031 a001 12586269025/322*10749957122^(5/12) 5912810270470031 a001 32264490531/46*10749957122^(7/24) 5912810270470031 a001 139583862445/322*10749957122^(5/16) 5912810270470031 a001 43133785636/161*10749957122^(1/3) 5912810270470031 a001 32951280099/322*10749957122^(3/8) 5912810270470031 a001 7778742049/322*45537549124^(7/17) 5912810270470031 a001 7778742049/322*14662949395604^(1/3) 5912810270470031 a001 7778742049/322*192900153618^(7/18) 5912810270470031 a001 7778742049/322*10749957122^(7/16) 5912810270470031 a001 1515744265389/46*4106118243^(3/23) 5912810270470031 a001 4052739537881/322*4106118243^(4/23) 5912810270470031 a001 774004377960/161*4106118243^(5/23) 5912810270470031 a001 591286729879/322*4106118243^(6/23) 5912810270470031 a001 32264490531/46*4106118243^(7/23) 5912810270470031 a001 14930208*4106118243^(11/23) 5912810270470031 a001 43133785636/161*4106118243^(8/23) 5912810270470031 a001 32951280099/322*4106118243^(9/23) 5912810270470031 a001 12586269025/322*4106118243^(10/23) 5912810270470031 a001 2971215073/322*4106118243^(1/2) 5912810270470031 a001 1515744265389/46*1568397607^(3/22) 5912810270470031 a001 567451585/161*2537720636^(5/9) 5912810270470031 a001 4052739537881/322*1568397607^(2/11) 5912810270470031 a001 774004377960/161*1568397607^(5/22) 5912810270470031 a001 956722026041/322*1568397607^(1/4) 5912810270470031 a001 591286729879/322*1568397607^(3/11) 5912810270470031 a001 32264490531/46*1568397607^(7/22) 5912810270470031 a001 43133785636/161*1568397607^(4/11) 5912810270470031 a001 567451585/161*312119004989^(5/11) 5912810270470031 a001 567451585/161*3461452808002^(5/12) 5912810270470031 a001 567451585/161*28143753123^(1/2) 5912810270470031 a001 1836311903/322*1568397607^(6/11) 5912810270470031 a001 32951280099/322*1568397607^(9/22) 5912810270470031 a001 12586269025/322*1568397607^(5/11) 5912810270470031 a001 14930208*1568397607^(1/2) 5912810270470031 a001 1515744265389/46*599074578^(1/7) 5912810270470031 a001 3278735159921/161*599074578^(1/6) 5912810270470031 a001 4052739537881/322*599074578^(4/21) 5912810270470031 a001 2504730781961/322*599074578^(3/14) 5912810270470031 a001 774004377960/161*599074578^(5/21) 5912810270470031 a001 591286729879/322*599074578^(2/7) 5912810270470031 a001 32264490531/46*599074578^(1/3) 5912810270470031 a001 433494437/322*2537720636^(3/5) 5912810270470031 a001 139583862445/322*599074578^(5/14) 5912810270470031 a001 43133785636/161*599074578^(8/21) 5912810270470031 a001 433494437/322*45537549124^(9/17) 5912810270470031 a001 433494437/322*817138163596^(9/19) 5912810270470031 a001 433494437/322*14662949395604^(3/7) 5912810270470031 a001 433494437/322*192900153618^(1/2) 5912810270470031 a001 433494437/322*10749957122^(9/16) 5912810270470031 a001 32951280099/322*599074578^(3/7) 5912810270470031 a001 701408733/322*599074578^(13/21) 5912810270470031 a001 12586269025/322*599074578^(10/21) 5912810270470031 a001 7778742049/322*599074578^(1/2) 5912810270470031 a001 14930208*599074578^(11/21) 5912810270470031 a001 1836311903/322*599074578^(4/7) 5912810270470031 a001 433494437/322*599074578^(9/14) 5912810270470031 a001 1515744265389/46*228826127^(3/20) 5912810270470031 a001 4052739537881/322*228826127^(1/5) 5912810270470031 a001 774004377960/161*228826127^(1/4) 5912810270470031 a001 591286729879/322*228826127^(3/10) 5912810270470031 a001 32264490531/46*228826127^(7/20) 5912810270470031 a001 139583862445/322*228826127^(3/8) 5912810270470031 a001 165580141/322*1322157322203^(1/2) 5912810270470031 a001 43133785636/161*228826127^(2/5) 5912810270470031 a001 32951280099/322*228826127^(9/20) 5912810270470031 a001 12586269025/322*228826127^(1/2) 5912810270470031 a001 14930208*228826127^(11/20) 5912810270470031 a001 133957148/161*228826127^(7/10) 5912810270470031 a001 1836311903/322*228826127^(3/5) 5912810270470031 a001 701408733/322*228826127^(13/20) 5912810270470031 a001 567451585/161*228826127^(5/8) 5912810270470031 a001 1515744265389/46*87403803^(3/19) 5912810270470031 a001 4052739537881/322*87403803^(4/19) 5912810270470031 a001 774004377960/161*87403803^(5/19) 5912810270470031 a001 591286729879/322*87403803^(6/19) 5912810270470031 a001 32264490531/46*87403803^(7/19) 5912810270470031 a001 31622993/161*9062201101803^(1/2) 5912810270470031 a001 43133785636/161*87403803^(8/19) 5912810270470031 a001 32951280099/322*87403803^(9/19) 5912810270470031 a001 10182505537/161*87403803^(1/2) 5912810270470031 a001 12586269025/322*87403803^(10/19) 5912810270470031 a001 14930208*87403803^(11/19) 5912810270470031 a001 1836311903/322*87403803^(12/19) 5912810270470031 a001 14619165/46*87403803^(15/19) 5912810270470031 a001 701408733/322*87403803^(13/19) 5912810270470031 a001 133957148/161*87403803^(14/19) 5912810270470031 a001 1515744265389/46*33385282^(1/6) 5912810270470032 a001 4052739537881/322*33385282^(2/9) 5912810270470032 a001 2504730781961/322*33385282^(1/4) 5912810270470032 a001 774004377960/161*33385282^(5/18) 5912810270470032 a001 591286729879/322*33385282^(1/3) 5912810270470032 a001 24157817/322*141422324^(11/13) 5912810270470033 a001 24157817/322*2537720636^(11/15) 5912810270470033 a001 24157817/322*45537549124^(11/17) 5912810270470033 a001 24157817/322*312119004989^(3/5) 5912810270470033 a001 24157817/322*817138163596^(11/19) 5912810270470033 a001 24157817/322*14662949395604^(11/21) 5912810270470033 a001 24157817/322*192900153618^(11/18) 5912810270470033 a001 24157817/322*10749957122^(11/16) 5912810270470033 a001 24157817/322*1568397607^(3/4) 5912810270470033 a001 24157817/322*599074578^(11/14) 5912810270470033 a001 32264490531/46*33385282^(7/18) 5912810270470033 a001 139583862445/322*33385282^(5/12) 5912810270470033 a001 43133785636/161*33385282^(4/9) 5912810270470033 a001 32951280099/322*33385282^(1/2) 5912810270470034 a001 12586269025/322*33385282^(5/9) 5912810270470034 a001 7778742049/322*33385282^(7/12) 5912810270470034 a001 14930208*33385282^(11/18) 5912810270470034 a001 1836311903/322*33385282^(2/3) 5912810270470034 a001 701408733/322*33385282^(13/18) 5912810270470034 a001 39088169/322*33385282^(8/9) 5912810270470035 a001 433494437/322*33385282^(3/4) 5912810270470035 a001 133957148/161*33385282^(7/9) 5912810270470035 a001 14619165/46*33385282^(5/6) 5912810270470037 a001 1515744265389/46*12752043^(3/17) 5912810270470037 a001 24157817/322*33385282^(11/12) 5912810270470039 a001 4052739537881/322*12752043^(4/17) 5912810270470041 a001 774004377960/161*12752043^(5/17) 5912810270470043 a001 591286729879/322*12752043^(6/17) 5912810270470044 a001 9227465/322*2537720636^(7/9) 5912810270470044 a001 9227465/322*17393796001^(5/7) 5912810270470044 a001 9227465/322*312119004989^(7/11) 5912810270470044 a001 9227465/322*14662949395604^(5/9) 5912810270470044 a001 9227465/322*505019158607^(5/8) 5912810270470044 a001 9227465/322*28143753123^(7/10) 5912810270470044 a001 9227465/322*599074578^(5/6) 5912810270470045 a001 9227465/322*228826127^(7/8) 5912810270470046 a001 32264490531/46*12752043^(7/17) 5912810270470048 a001 43133785636/161*12752043^(8/17) 5912810270470049 a001 53316291173/322*12752043^(1/2) 5912810270470050 a001 32951280099/322*12752043^(9/17) 5912810270470052 a001 12586269025/322*12752043^(10/17) 5912810270470054 a001 14930208*12752043^(11/17) 5912810270470056 a001 1836311903/322*12752043^(12/17) 5912810270470058 a001 701408733/322*12752043^(13/17) 5912810270470060 a001 133957148/161*12752043^(14/17) 5912810270470063 a001 14619165/46*12752043^(15/17) 5912810270470064 a001 39088169/322*12752043^(16/17) 5912810270470077 a001 1515744265389/46*4870847^(3/16) 5912810270470093 a001 4052739537881/322*4870847^(1/4) 5912810270470108 a001 774004377960/161*4870847^(5/16) 5912810270470124 a001 591286729879/322*4870847^(3/8) 5912810270470140 a001 32264490531/46*4870847^(7/16) 5912810270470155 a001 43133785636/161*4870847^(1/2) 5912810270470171 a001 32951280099/322*4870847^(9/16) 5912810270470186 a001 12586269025/322*4870847^(5/8) 5912810270470202 a001 14930208*4870847^(11/16) 5912810270470217 a001 1836311903/322*4870847^(3/4) 5912810270470233 a001 701408733/322*4870847^(13/16) 5912810270470249 a001 133957148/161*4870847^(7/8) 5912810270470264 a001 14619165/46*4870847^(15/16) 5912810270470372 a001 1515744265389/46*1860498^(1/5) 5912810270470486 a001 4052739537881/322*1860498^(4/15) 5912810270470543 a001 2504730781961/322*1860498^(3/10) 5912810270470600 a001 774004377960/161*1860498^(1/3) 5912810270470683 a001 1346269/322*2537720636^(13/15) 5912810270470683 a001 1346269/322*45537549124^(13/17) 5912810270470683 a001 1346269/322*14662949395604^(13/21) 5912810270470683 a001 1346269/322*192900153618^(13/18) 5912810270470683 a001 1346269/322*73681302247^(3/4) 5912810270470683 a001 1346269/322*10749957122^(13/16) 5912810270470683 a001 1346269/322*599074578^(13/14) 5912810270470714 a001 591286729879/322*1860498^(2/5) 5912810270470828 a001 32264490531/46*1860498^(7/15) 5912810270470885 a001 139583862445/322*1860498^(1/2) 5912810270470942 a001 43133785636/161*1860498^(8/15) 5912810270471055 a001 32951280099/322*1860498^(3/5) 5912810270471169 a001 12586269025/322*1860498^(2/3) 5912810270471226 a001 7778742049/322*1860498^(7/10) 5912810270471283 a001 14930208*1860498^(11/15) 5912810270471397 a001 1836311903/322*1860498^(4/5) 5912810270471454 a001 567451585/161*1860498^(5/6) 5912810270471511 a001 701408733/322*1860498^(13/15) 5912810270471568 a001 433494437/322*1860498^(9/10) 5912810270471625 a001 133957148/161*1860498^(14/15) 5912810270472539 a001 1515744265389/46*710647^(3/14) 5912810270472958 a001 3278735159921/161*710647^(1/4) 5912810270473376 a001 4052739537881/322*710647^(2/7) 5912810270474212 a001 774004377960/161*710647^(5/14) 5912810270475048 a001 591286729879/322*710647^(3/7) 5912810270475885 a001 32264490531/46*710647^(1/2) 5912810270476721 a001 43133785636/161*710647^(4/7) 5912810270477557 a001 32951280099/322*710647^(9/14) 5912810270478393 a001 12586269025/322*710647^(5/7) 5912810270478812 a001 7778742049/322*710647^(3/4) 5912810270479230 a001 14930208*710647^(11/14) 5912810270480066 a001 1836311903/322*710647^(6/7) 5912810270480902 a001 701408733/322*710647^(13/14) 5912810270488549 a001 1515744265389/46*271443^(3/13) 5912810270494722 a001 4052739537881/322*271443^(4/13) 5912810270500895 a001 774004377960/161*271443^(5/13) 5912810270507068 a001 591286729879/322*271443^(6/13) 5912810270510155 a001 182717648081/161*271443^(1/2) 5912810270513241 a001 32264490531/46*271443^(7/13) 5912810270519414 a001 43133785636/161*271443^(8/13) 5912810270525587 a001 32951280099/322*271443^(9/13) 5912810270531760 a001 12586269025/322*271443^(10/13) 5912810270537933 a001 14930208*271443^(11/13) 5912810270544106 a001 1836311903/322*271443^(12/13) 5912810270607538 a001 1515744265389/46*103682^(1/4) 5912810270630456 a001 3278735159921/161*103682^(7/24) 5912810270653374 a001 4052739537881/322*103682^(1/3) 5912810270676292 a001 2504730781961/322*103682^(3/8) 5912810270680124 a001 75025/322*45537549124^(15/17) 5912810270680124 a001 75025/322*312119004989^(9/11) 5912810270680124 a001 75025/322*14662949395604^(5/7) 5912810270680124 a001 75025/322*192900153618^(5/6) 5912810270680124 a001 75025/322*28143753123^(9/10) 5912810270680124 a001 75025/322*10749957122^(15/16) 5912810270699210 a001 774004377960/161*103682^(5/12) 5912810270722128 a001 956722026041/322*103682^(11/24) 5912810270745046 a001 591286729879/322*103682^(1/2) 5912810270767964 a001 182717648081/161*103682^(13/24) 5912810270790882 a001 32264490531/46*103682^(7/12) 5912810270813800 a001 139583862445/322*103682^(5/8) 5912810270836718 a001 43133785636/161*103682^(2/3) 5912810270859636 a001 53316291173/322*103682^(17/24) 5912810270882554 a001 32951280099/322*103682^(3/4) 5912810270905472 a001 10182505537/161*103682^(19/24) 5912810270928390 a001 12586269025/322*103682^(5/6) 5912810270951308 a001 7778742049/322*103682^(7/8) 5912810270974226 a001 14930208*103682^(11/12) 5912810270997144 a001 2971215073/322*103682^(23/24) 5912810271498204 a001 1515744265389/46*39603^(3/11) 5912810271669566 a001 3278735159921/161*39603^(7/22) 5912810271840928 a001 4052739537881/322*39603^(4/11) 5912810272012291 a001 2504730781961/322*39603^(9/22) 5912810272183653 a001 774004377960/161*39603^(5/11) 5912810272355015 a001 956722026041/322*39603^(1/2) 5912810272526377 a001 591286729879/322*39603^(6/11) 5912810272697739 a001 182717648081/161*39603^(13/22) 5912810272869102 a001 32264490531/46*39603^(7/11) 5912810273040464 a001 139583862445/322*39603^(15/22) 5912810273211826 a001 43133785636/161*39603^(8/11) 5912810273383188 a001 53316291173/322*39603^(17/22) 5912810273554551 a001 32951280099/322*39603^(9/11) 5912810273725913 a001 10182505537/161*39603^(19/22) 5912810273897275 a001 12586269025/322*39603^(10/11) 5912810274068637 a001 7778742049/322*39603^(21/22) 5912810278221956 a001 1515744265389/46*15127^(3/10) 5912810279513944 a001 3278735159921/161*15127^(7/20) 5912810280339937 a001 5473/161*14662949395604^(7/9) 5912810280339937 a001 5473/161*505019158607^(7/8) 5912810280805931 a001 4052739537881/322*15127^(2/5) 5912810282097919 a001 2504730781961/322*15127^(9/20) 5912810283389906 a001 774004377960/161*15127^(1/2) 5912810284681894 a001 956722026041/322*15127^(11/20) 5912810285973881 a001 591286729879/322*15127^(3/5) 5912810287265869 a001 182717648081/161*15127^(13/20) 5912810288557857 a001 32264490531/46*15127^(7/10) 5912810289632209 m001 Bloch^2*FeigenbaumDelta^2*exp(Paris)^2 5912810289849844 a001 139583862445/322*15127^(3/4) 5912810291141832 a001 43133785636/161*15127^(4/5) 5912810292433819 a001 53316291173/322*15127^(17/20) 5912810293725807 a001 32951280099/322*15127^(9/10) 5912810294438250 r005 Im(z^2+c),c=37/118+11/31*I,n=12 5912810295017795 a001 10182505537/161*15127^(19/20) 5912810300913081 r002 5th iterates of z^2 + 5912810306858710 m001 FeigenbaumDelta+exp(1/exp(1))^Lehmer 5912810313253469 r002 14th iterates of z^2 + 5912810314871237 m001 StronglyCareFree+Tribonacci^Khinchin 5912810322982135 s002 sum(A084894[n]/(n^2*10^n+1),n=1..infinity) 5912810329506127 a001 1515744265389/46*5778^(1/3) 5912810338119378 a001 4181/322*817138163596^(17/19) 5912810338119378 a001 4181/322*14662949395604^(17/21) 5912810338119378 a001 4181/322*192900153618^(17/18) 5912810338153641 m001 GAMMA(23/24)*HeathBrownMoroz-Lehmer 5912810339345477 a001 3278735159921/161*5778^(7/18) 5912810342144954 m001 Pi^(3*polylog(4,1/2)) 5912810348061973 r008 a(0)=6,K{-n^6,44+24*n^3-n^2-55*n} 5912810349184826 a001 4052739537881/322*5778^(4/9) 5912810353397037 m005 (1/2*Zeta(3)+2)/(1/2*Zeta(3)-5) 5912810359024176 a001 2504730781961/322*5778^(1/2) 5912810364594783 a007 Real Root Of -676*x^4+328*x^3+607*x^2+412*x-441 5912810365927062 r009 Re(z^3+c),c=-15/26+27/59*I,n=25 5912810368863525 a001 774004377960/161*5778^(5/9) 5912810378702875 a001 956722026041/322*5778^(11/18) 5912810379595330 r009 Im(z^3+c),c=-37/66+17/44*I,n=26 5912810388542225 a001 591286729879/322*5778^(2/3) 5912810398381574 a001 182717648081/161*5778^(13/18) 5912810408220924 a001 32264490531/46*5778^(7/9) 5912810409087065 m001 (3^(1/2)-exp(1/Pi))/(2*Pi/GAMMA(5/6)+PlouffeB) 5912810416363852 m001 (Cahen-Kolakoski)/(Landau+Riemann3rdZero) 5912810418060273 a001 139583862445/322*5778^(5/6) 5912810424896612 r009 Re(z^3+c),c=-13/23+11/24*I,n=63 5912810427899623 a001 43133785636/161*5778^(8/9) 5912810430249277 a007 Real Root Of -952*x^4+321*x^3-824*x^2+780*x+932 5912810437738973 a001 53316291173/322*5778^(17/18) 5912810446342030 m009 (3/5*Psi(1,2/3)+1/4)/(1/3*Psi(1,1/3)+1/6) 5912810447028297 a001 190983777439014/323 5912810457345140 r002 21th iterates of z^2 + 5912810477058878 m001 (1-Pi^(1/2))/(MasserGramain+TwinPrimes) 5912810510767681 a008 Real Root of x^4-2*x^3-32*x^2+24*x+168 5912810526098704 m001 log(1+sqrt(2))^2*exp(Zeta(1/2))^2/sin(1)^2 5912810541241532 r009 Im(z^3+c),c=-17/40+26/49*I,n=10 5912810542527693 m001 (2^(1/3))*Khinchin*MadelungNaCl 5912810542527693 m001 2^(1/3)*Khinchin*MadelungNaCl 5912810560487408 a007 Real Root Of 41*x^4-323*x^3-841*x^2-558*x+36 5912810590495440 m002 -6+3/Pi^5+ProductLog[Pi]-Tanh[Pi] 5912810591278375 m001 (2^(1/3)-exp(1/2)*FeigenbaumKappa)/exp(1/2) 5912810598179644 m005 (1/3*Pi+2/5)/(6/7*gamma-1/4) 5912810637082550 a007 Real Root Of -188*x^4+546*x^3-382*x^2+390*x+500 5912810641924954 a001 15127/377*28657^(18/37) 5912810642432556 r005 Im(z^2+c),c=-19/24+19/45*I,n=3 5912810656644393 r005 Im(z^2+c),c=5/13+23/40*I,n=24 5912810671405290 r002 4th iterates of z^2 + 5912810678340578 a007 Real Root Of -115*x^4+191*x^3-853*x^2+523*x+661 5912810708641303 r005 Re(z^2+c),c=-13/22+49/79*I,n=25 5912810724319526 m001 (3^(1/2))^exp(1)+MinimumGamma 5912810725422854 a007 Real Root Of 863*x^4-313*x^3+598*x^2-167*x-478 5912810725689361 a001 1515744265389/46*2207^(3/8) 5912810749388239 r005 Re(z^2+c),c=-23/44+22/35*I,n=15 5912810763701415 r005 Im(z^2+c),c=19/52+8/35*I,n=21 5912810801559253 a001 3278735159921/161*2207^(7/16) 5912810826182463 a001 18/377*196418^(1/57) 5912810863056007 m001 ArtinRank2-Artin^BesselI(0,2) 5912810873422683 q001 1/1691243 5912810876206906 a007 Real Root Of 725*x^4-735*x^3-862*x^2-102*x+425 5912810877429145 a001 4052739537881/322*2207^(1/2) 5912810897508972 m001 Cahen-Otter^DuboisRaymond 5912810909492114 a007 Real Root Of 724*x^4+333*x^3+584*x^2-944*x-782 5912810911902695 m001 (Psi(2,1/3)+ln(2))/(sin(1/12*Pi)+Robbin) 5912810953299039 a001 2504730781961/322*2207^(9/16) 5912810967002808 h001 (6/7*exp(1)+7/11)/(3/5*exp(2)+7/12) 5912810979976531 r002 3th iterates of z^2 + 5912811000147155 r005 Im(z^2+c),c=7/20+16/37*I,n=9 5912811026775705 r005 Im(z^2+c),c=-13/86+20/31*I,n=34 5912811029168934 a001 774004377960/161*2207^(5/8) 5912811047133026 r002 49th iterates of z^2 + 5912811064428554 r002 19th iterates of z^2 + 5912811069105276 r005 Im(z^2+c),c=-7/8+1/239*I,n=23 5912811078748089 m005 (1/2*Catalan-1/3)/(4/9*exp(1)+9/10) 5912811102485878 r002 20th iterates of z^2 + 5912811105038829 a001 956722026041/322*2207^(11/16) 5912811111141154 k007 concat of cont frac of 5912811112111121 k006 concat of cont frac of 5912811121711345 k008 concat of cont frac of 5912811131256757 a007 Real Root Of -219*x^4+998*x^3-469*x^2+739*x+834 5912811133443342 m001 (GAMMA(11/12)+OneNinth)/(BesselJ(0,1)+Zeta(3)) 5912811135616063 a003 cos(Pi*22/101)*sin(Pi*21/76) 5912811136624580 a007 Real Root Of -441*x^4+439*x^3-121*x^2-5*x+184 5912811137162119 k006 concat of cont frac of 5912811145239269 a007 Real Root Of -609*x^4+434*x^3+606*x^2+223*x-359 5912811148166991 a007 Real Root Of -113*x^4+884*x^3+192*x^2+832*x-728 5912811164410931 a007 Real Root Of 757*x^4+90*x^3+971*x^2-642*x-793 5912811167793262 a001 24476/987*233^(32/55) 5912811180908726 a001 591286729879/322*2207^(3/4) 5912811215311261 k006 concat of cont frac of 5912811231365542 a007 Real Root Of 86*x^4-16*x^3-441*x^2-433*x+403 5912811246113476 r005 Im(z^2+c),c=13/98+27/47*I,n=38 5912811255700406 m001 FellerTornier^FransenRobinson-ln(gamma) 5912811256778624 a001 182717648081/161*2207^(13/16) 5912811266570797 r005 Re(z^2+c),c=-79/66+5/22*I,n=14 5912811268150632 a007 Real Root Of -846*x^4+207*x^3-677*x^2+308*x+565 5912811268324851 a007 Real Root Of 91*x^4-994*x^3-235*x^2-281*x-16 5912811273329187 m001 (ln(5)-exp(1/exp(1)))/(Tetranacci+Thue) 5912811279776111 a007 Real Root Of 169*x^4-236*x^3+258*x^2-680*x+340 5912811332210920 a007 Real Root Of 879*x^4+150*x^3+524*x^2-508*x-560 5912811332648522 a001 32264490531/46*2207^(7/8) 5912811339412088 s002 sum(A223691[n]/((2^n+1)/n),n=1..infinity) 5912811340424903 m005 (1/2*5^(1/2)-3/5)/(6/11*3^(1/2)-6/7) 5912811341342711 k007 concat of cont frac of 5912811346659976 m004 6+(5*Pi)/4+125*Pi*Csc[Sqrt[5]*Pi] 5912811355518926 l006 ln(857/1548) 5912811384286791 s002 sum(A245522[n]/(n*2^n+1),n=1..infinity) 5912811384683173 h001 (9/10*exp(1)+5/9)/(7/11*exp(2)+3/8) 5912811396886920 m005 (1/2*Catalan+7/8)/(25/22+1/2*5^(1/2)) 5912811407083659 a001 161/72*987^(19/40) 5912811408518422 a001 139583862445/322*2207^(15/16) 5912811445323226 r009 Im(z^3+c),c=-21/40+4/27*I,n=14 5912811445701836 a007 Real Root Of -75*x^4-447*x^3+25*x^2+222*x-293 5912811462135688 l006 ln(3973/4215) 5912811480329557 p001 sum((-1)^n/(579*n+155)/(2^n),n=0..infinity) 5912811483838541 a001 194531497818288/329 5912811554919869 r005 Im(z^2+c),c=-37/26+2/115*I,n=9 5912811558463377 a007 Real Root Of 906*x^4-693*x^3-932*x^2-752*x+803 5912811572243925 h001 (1/8*exp(1)+7/11)/(1/8*exp(2)+8/11) 5912811579928841 m002 -3/(2*E^Pi)+6*Tanh[Pi] 5912811580045665 a007 Real Root Of -961*x^4-875*x^3+289*x^2+980*x+415 5912811586496840 m001 (sin(1/5*Pi)*Bloch+ZetaQ(4))/Bloch 5912811605631635 m005 (1/2*2^(1/2)-5/12)/(1/10*5^(1/2)-3/11) 5912811618236142 k007 concat of cont frac of 5912811635679596 a003 sin(Pi*5/31)/cos(Pi*6/31) 5912811649434932 a007 Real Root Of -121*x^4-583*x^3+728*x^2-330*x-23 5912811653858456 a001 41/15456*13^(5/16) 5912811665236224 a007 Real Root Of 389*x^4-493*x^3-317*x^2-825*x+653 5912811680536692 m001 GaussKuzminWirsing^(Ei(1)/ZetaQ(2)) 5912811681665622 m005 (1/2*3^(1/2)-2/5)/(3/4*5^(1/2)-8/9) 5912811694300307 m001 (Gompertz-MadelungNaCl)/(Cahen+Conway) 5912811698951301 b008 Erf[Zeta[1/12]] 5912811708364143 m001 (BesselJ(0,1)-Cahen)/(-Kac+Khinchin) 5912811716476705 a007 Real Root Of -579*x^4+206*x^3+69*x^2-501*x-207 5912811721981422 m001 (MasserGramainDelta-Weierstrass)/BesselI(0,2) 5912811722591044 a007 Real Root Of -902*x^4+603*x^3-774*x^2+356*x+716 5912811738629345 r002 24th iterates of z^2 + 5912811741280525 a007 Real Root Of 217*x^4-8*x^3+632*x^2-497*x-543 5912811765611875 r005 Im(z^2+c),c=-3/13+21/26*I,n=14 5912811789807594 r009 Im(z^3+c),c=-13/31+14/25*I,n=27 5912811803507282 m005 (1/2*2^(1/2)-2)/(3^(1/2)+5/11) 5912811821874302 m005 1/4*5^(1/2)/(11/14+1/14*5^(1/2)) 5912811830250257 a007 Real Root Of -436*x^4+916*x^3+603*x^2+944*x+590 5912811838373510 r005 Re(z^2+c),c=-3/4+3/145*I,n=43 5912811843816474 r005 Im(z^2+c),c=-9/62+52/63*I,n=62 5912811847883595 m002 2*Pi-Cosh[Pi]*Log[Pi]+ProductLog[Pi] 5912811872326764 a007 Real Root Of 130*x^4-930*x^3+655*x^2-245*x-582 5912811899457237 s002 sum(A033422[n]/(n^3*exp(n)-1),n=1..infinity) 5912811906319886 a007 Real Root Of 796*x^4+945*x^3+958*x^2-949*x-798 5912811914797878 a001 322/13*832040^(3/47) 5912811945284772 a007 Real Root Of 691*x^4-636*x^3-65*x^2-414*x-438 5912811951787653 r002 10th iterates of z^2 + 5912811952339123 m001 (Zeta(1,2)+PolyaRandomWalk3D)/(1-gamma(2)) 5912811956879447 r009 Re(z^3+c),c=-12/19+13/59*I,n=14 5912811962031289 r005 Re(z^2+c),c=-23/34+27/89*I,n=3 5912811992331409 r005 Im(z^2+c),c=-91/118+5/17*I,n=8 5912811997348409 a007 Real Root Of -857*x^4-167*x^3-494*x^2-443*x-19 5912812022882897 a007 Real Root Of 216*x^4-671*x^3+537*x^2+338*x-153 5912812042502599 a007 Real Root Of 111*x^4-413*x^3-738*x^2-599*x+684 5912812058982108 m005 (1/2*2^(1/2)-5)/(1/8*Pi+1/3) 5912812060296527 a001 12752043/1597*832040^(6/19) 5912812060308738 a001 710647/1597*7778742049^(6/19) 5912812076339805 r002 13th iterates of z^2 + 5912812084952194 m001 exp(PrimesInBinary)*GolombDickman^2*Zeta(9) 5912812129932317 a003 sin(Pi*4/101)/cos(Pi*45/104) 5912812131711121 k006 concat of cont frac of 5912812134309880 h001 (10/11*exp(1)+1/8)/(5/9*exp(2)+2/7) 5912812136948318 a007 Real Root Of -216*x^4+992*x^3-628*x^2-800*x-22 5912812137148044 m005 (1/2*2^(1/2)+4/9)/(7/9*exp(1)-1/6) 5912812145477034 m001 (Cahen+Tribonacci)/(Pi+Shi(1)) 5912812153417824 m001 ReciprocalFibonacci^(Otter/ThueMorse) 5912812153498283 m001 (-Lehmer+Salem)/(gamma+HardyLittlewoodC5) 5912812154450970 a007 Real Root Of -508*x^4+811*x^3+816*x^2+303*x-570 5912812155446224 a007 Real Root Of -844*x^4-444*x^3+438*x^2+923*x+404 5912812184839070 r002 3th iterates of z^2 + 5912812193311211 a007 Real Root Of 144*x^4-775*x^3+328*x^2-170*x-393 5912812213183114 k009 concat of cont frac of 5912812228040642 a007 Real Root Of 738*x^4-988*x^3-888*x^2+219*x+295 5912812264476165 m001 (Zeta(3)-ln(5))/(HardyLittlewoodC3+ZetaQ(2)) 5912812288679266 s002 sum(A257945[n]/(n*10^n+1),n=1..infinity) 5912812302828002 a007 Real Root Of 892*x^4-767*x^3+533*x^2+903*x+80 5912812357982088 m001 Ei(1)^2/KhintchineHarmonic*exp(GAMMA(11/12)) 5912812368283678 a007 Real Root Of -558*x^4+860*x^3-406*x^2+198*x+505 5912812376601352 b008 ArcCsch[5*Tan[5]] 5912812391543329 m001 (ln(2)-Ei(1))/(GAMMA(19/24)+Thue) 5912812406500317 m001 (AlladiGrinstead-exp(1))/(Cahen+Sierpinski) 5912812410226946 r005 Re(z^2+c),c=-107/118+42/59*I,n=2 5912812435479269 a007 Real Root Of 441*x^4+117*x^3+873*x^2+788*x+131 5912812436651143 p001 sum((-1)^n/(223*n+168)/(64^n),n=0..infinity) 5912812441809048 m005 (1/2*3^(1/2)-5/8)/(13/18+3/2*5^(1/2)) 5912812446211728 m001 (LaplaceLimit+Paris)/(ln(5)-arctan(1/3)) 5912812456322791 a001 33385282/4181*832040^(6/19) 5912812456325033 a001 1860498/4181*7778742049^(6/19) 5912812461901931 s002 sum(A033427[n]/(n^3*exp(n)-1),n=1..infinity) 5912812477813238 s002 sum(A166935[n]/(pi^n+1),n=1..infinity) 5912812478327378 r002 3th iterates of z^2 + 5912812502781078 a007 Real Root Of -647*x^4+744*x^3+574*x^2-207*x-153 5912812514102249 a001 87403803/10946*832040^(6/19) 5912812514103037 a001 4870847/10946*7778742049^(6/19) 5912812518200730 s002 sum(A033426[n]/(n^3*exp(n)-1),n=1..infinity) 5912812522532158 a001 228826127/28657*832040^(6/19) 5912812522532734 a001 12752043/28657*7778742049^(6/19) 5912812523762065 a001 599074578/75025*832040^(6/19) 5912812523762610 a001 33385282/75025*7778742049^(6/19) 5912812523814541 s002 sum(A033425[n]/(n^3*exp(n)-1),n=1..infinity) 5912812523941506 a001 1568397607/196418*832040^(6/19) 5912812523942047 a001 87403803/196418*7778742049^(6/19) 5912812523967686 a001 4106118243/514229*832040^(6/19) 5912812523968226 a001 228826127/514229*7778742049^(6/19) 5912812523971506 a001 10749957122/1346269*832040^(6/19) 5912812523972045 a001 599074578/1346269*7778742049^(6/19) 5912812523972063 a001 28143753123/3524578*832040^(6/19) 5912812523972145 a001 73681302247/9227465*832040^(6/19) 5912812523972156 a001 192900153618/24157817*832040^(6/19) 5912812523972158 a001 505019158607/63245986*832040^(6/19) 5912812523972158 a001 1322157322203/165580141*832040^(6/19) 5912812523972158 a001 3461452808002/433494437*832040^(6/19) 5912812523972158 a001 9062201101803/1134903170*832040^(6/19) 5912812523972158 a001 23725150497407/2971215073*832040^(6/19) 5912812523972158 a001 14662949395604/1836311903*832040^(6/19) 5912812523972159 a001 5600748293801/701408733*832040^(6/19) 5912812523972159 a001 2139295485799/267914296*832040^(6/19) 5912812523972159 a001 817138163596/102334155*832040^(6/19) 5912812523972159 a001 312119004989/39088169*832040^(6/19) 5912812523972164 a001 119218851371/14930352*832040^(6/19) 5912812523972195 a001 12752044/1597*832040^(6/19) 5912812523972408 a001 17393796001/2178309*832040^(6/19) 5912812523972603 a001 1568397607/3524578*7778742049^(6/19) 5912812523972684 a001 4106118243/9227465*7778742049^(6/19) 5912812523972696 a001 10749957122/24157817*7778742049^(6/19) 5912812523972698 a001 28143753123/63245986*7778742049^(6/19) 5912812523972698 a001 73681302247/165580141*7778742049^(6/19) 5912812523972698 a001 192900153618/433494437*7778742049^(6/19) 5912812523972698 a001 505019158607/1134903170*7778742049^(6/19) 5912812523972698 a001 1322157322203/2971215073*7778742049^(6/19) 5912812523972698 a001 3461452808002/7778742049*7778742049^(6/19) 5912812523972698 a001 9062201101803/20365011074*7778742049^(6/19) 5912812523972698 a001 23725150497407/53316291173*7778742049^(6/19) 5912812523972698 a001 14662949395604/32951280099*7778742049^(6/19) 5912812523972698 a001 5600748293801/12586269025*7778742049^(6/19) 5912812523972698 a001 2139295485799/4807526976*7778742049^(6/19) 5912812523972698 a001 817138163596/1836311903*7778742049^(6/19) 5912812523972698 a001 1568437211/3524667*7778742049^(6/19) 5912812523972698 a001 119218851371/267914296*7778742049^(6/19) 5912812523972698 a001 45537549124/102334155*7778742049^(6/19) 5912812523972699 a001 17393796001/39088169*7778742049^(6/19) 5912812523972703 a001 6643838879/14930352*7778742049^(6/19) 5912812523972734 a001 2537720636/5702887*7778742049^(6/19) 5912812523972947 a001 969323029/2178309*7778742049^(6/19) 5912812523973867 a001 6643838879/832040*832040^(6/19) 5912812523974406 a001 370248451/832040*7778742049^(6/19) 5912812523983867 a001 2537720636/317811*832040^(6/19) 5912812523984406 a001 141422324/317811*7778742049^(6/19) 5912812524052407 a001 969323029/121393*832040^(6/19) 5912812524052944 a001 54018521/121393*7778742049^(6/19) 5912812524376730 s002 sum(A033424[n]/(n^3*exp(n)-1),n=1..infinity) 5912812524432841 s002 sum(A033423[n]/(n^3*exp(n)-1),n=1..infinity) 5912812524438344 s002 sum(A057072[n]/(n^3*exp(n)-1),n=1..infinity) 5912812524522190 a001 370248451/46368*832040^(6/19) 5912812524522715 a001 20633239/46368*7778742049^(6/19) 5912812527742129 a001 141422324/17711*832040^(6/19) 5912812527742573 a001 39604/89*7778742049^(6/19) 5912812534100229 r005 Re(z^2+c),c=-5/82+19/26*I,n=2 5912812549811807 a001 3010349/6765*7778742049^(6/19) 5912812549811918 a001 54018521/6765*832040^(6/19) 5912812559834349 l006 ln(5364/9689) 5912812568991914 r005 Re(z^2+c),c=9/110+17/40*I,n=55 5912812576567253 a007 Real Root Of -83*x^4+957*x^3+929*x^2-60*x-477 5912812611311134 k006 concat of cont frac of 5912812614154034 r009 Im(z^3+c),c=-43/98+21/37*I,n=8 5912812668321277 a007 Real Root Of 279*x^4-760*x^3+222*x^2+869*x+245 5912812669053660 a007 Real Root Of 285*x^4-508*x^3-754*x^2-939*x+889 5912812694479018 r002 21th iterates of z^2 + 5912812701076591 a001 1149851/2584*7778742049^(6/19) 5912812701080509 a001 20633239/2584*832040^(6/19) 5912812706320673 m001 (-Kac+Khinchin)/(exp(1)+BesselJ(0,1)) 5912812708259628 r005 Re(z^2+c),c=29/118+17/44*I,n=37 5912812719895431 m001 (Chi(1)+gamma(1))/(gamma(2)+Conway) 5912812723537482 r005 Im(z^2+c),c=-11/52+5/62*I,n=11 5912812738011223 a007 Real Root Of 928*x^4-763*x^3+268*x^2-29*x-382 5912812748887814 m001 Riemann2ndZero*MertensB1^2*exp(sqrt(2)) 5912812752445865 m001 (PrimesInBinary-ZetaQ(2))/(Cahen-CareFree) 5912812757839533 a007 Real Root Of -810*x^4-406*x^3-241*x^2+933*x+651 5912812764372090 m001 (sin(1/12*Pi)-ErdosBorwein)/BesselI(0,2) 5912812768704850 a007 Real Root Of -323*x^4+955*x^3-92*x^2+810*x+748 5912812777033418 r002 44th iterates of z^2 + 5912812779094262 a007 Real Root Of -926*x^4+840*x^3-758*x^2+73*x+595 5912812788833294 l006 ln(4507/8141) 5912812813611021 k008 concat of cont frac of 5912812825935164 m001 (HeathBrownMoroz-OneNinth)/(Zeta(3)+Gompertz) 5912812834592307 r005 Im(z^2+c),c=-57/98+4/37*I,n=50 5912812852251973 m001 (-KhinchinHarmonic+Trott)/(5^(1/2)+ArtinRank2) 5912812854315404 r009 Im(z^3+c),c=-23/44+3/5*I,n=25 5912812856280622 r005 Re(z^2+c),c=7/114+24/61*I,n=21 5912812900730772 r009 Im(z^3+c),c=-25/74+33/56*I,n=7 5912812925799696 r009 Im(z^3+c),c=-11/19+23/39*I,n=43 5912812953762451 m005 (1/3*3^(1/2)+3/5)/(3/7*Zeta(3)-5/7) 5912812962357906 a007 Real Root Of -449*x^4+60*x^3-921*x^2-748*x-53 5912812976207685 a007 Real Root Of -649*x^4+467*x^3+949*x^2+137*x-430 5912812988358797 a001 47/34*832040^(4/9) 5912813007462090 r009 Re(z^3+c),c=-49/82+12/41*I,n=33 5912813045714599 r002 28th iterates of z^2 + 5912813053291162 m001 (Psi(1,1/3)-gamma(2))/(Otter+Riemann1stZero) 5912813061209862 r004 Im(z^2+c),c=-1/42-11/17*I,z(0)=I,n=5 5912813098351183 r005 Re(z^2+c),c=29/126+10/27*I,n=32 5912813111111251 k007 concat of cont frac of 5912813119393060 a007 Real Root Of 693*x^4+517*x^3+915*x^2-244*x-442 5912813125367624 l006 ln(3650/6593) 5912813139951809 m001 (3^(1/2))^(Pi*2^(1/2)/GAMMA(3/4))-2^(1/2) 5912813139951809 m001 sqrt(2)-sqrt(3)^GAMMA(1/4) 5912813142659615 m001 exp(GAMMA(1/6))*Backhouse^2/Zeta(1,2) 5912813174172760 a007 Real Root Of -424*x^4+699*x^3-657*x^2+438*x+685 5912813180333941 m005 (1/2*Catalan-7/8)/(3/5*5^(1/2)-7/11) 5912813181789854 s001 sum(exp(-Pi/3)^(n-1)*A148253[n],n=1..infinity) 5912813186571578 a007 Real Root Of -787*x^4-351*x^3+453*x^2+764*x+317 5912813195110547 r005 Im(z^2+c),c=1/54+13/21*I,n=54 5912813212212212 k006 concat of cont frac of 5912813233058793 r009 Im(z^3+c),c=-37/94+44/49*I,n=2 5912813238613000 m001 Salem^2/RenyiParking*exp(sqrt(3))^2 5912813258506517 m002 -Pi^4/4-3*Cosh[Pi] 5912813267393068 r005 Re(z^2+c),c=19/98+1/2*I,n=6 5912813267493890 s002 sum(A250352[n]/(n*exp(n)+1),n=1..infinity) 5912813267862346 r005 Im(z^2+c),c=-2/3+17/149*I,n=25 5912813272870490 m001 (-sin(1/5*Pi)+Gompertz)/(Shi(1)-Zeta(3)) 5912813278438489 a007 Real Root Of 49*x^4+339*x^3+269*x^2-104*x+166 5912813300910159 m001 (GolombDickman+Kac)/(Zeta(1,-1)+BesselI(0,2)) 5912813303275055 m001 (KhinchinLevy+ZetaQ(2))/(2^(1/3)+Chi(1)) 5912813310059872 a007 Real Root Of -739*x^4+813*x^3-900*x^2+372*x+793 5912813315377258 a003 sin(Pi*3/52)*sin(Pi*5/47) 5912813320009209 a007 Real Root Of -956*x^4+442*x^3-690*x^2-246*x+304 5912813329448112 m001 (gamma(3)-Kolakoski)/(Lehmer+RenyiParking) 5912813344901564 a007 Real Root Of 4*x^4-889*x^3-262*x^2-902*x-626 5912813346883800 r002 8th iterates of z^2 + 5912813349157915 s002 sum(A225719[n]/(n^3*pi^n+1),n=1..infinity) 5912813365544117 r009 Re(z^3+c),c=-4/7+4/17*I,n=17 5912813369708792 r005 Im(z^2+c),c=-1/8+15/23*I,n=19 5912813386828888 a007 Real Root Of -449*x^4+65*x^3+483*x^2+828*x-617 5912813407507875 m001 2*Pi/GAMMA(5/6)+Zeta(1,2)^HardyLittlewoodC5 5912813409789501 m001 (Cahen+Salem)/(5^(1/2)+sin(1)) 5912813413553642 m001 1/exp(Zeta(5))/Tribonacci^2/sqrt(Pi) 5912813420950378 m001 (exp(Pi)+3)/(BesselK(0,1)+4) 5912813448549378 a001 305/161*3461452808002^(11/12) 5912813455114228 m001 (1-GolombDickman)/(-LaplaceLimit+Trott2nd) 5912813467867208 r002 22th iterates of z^2 + 5912813548573658 r002 25th iterates of z^2 + 5912813580815394 a001 2584/521*3^(4/25) 5912813585248438 b008 Sqrt[3]*ExpIntegralE[2,8] 5912813585566895 m005 (1/3*gamma-1/8)/(1/5*2^(1/2)+6/7) 5912813590227302 r002 12th iterates of z^2 + 5912813609888605 h001 (1/7*exp(2)+8/11)/(5/6*exp(1)+3/4) 5912813613811870 h001 (7/9*exp(1)+8/11)/(4/7*exp(2)+7/12) 5912813642592388 m001 1/Lehmer^2*ln(Khintchine)*Riemann2ndZero 5912813668425325 l006 ln(2793/5045) 5912813673809374 r009 Im(z^3+c),c=-9/50+59/60*I,n=24 5912813683306401 m001 FeigenbaumC*Niven*exp(Riemann1stZero)^2 5912813690939488 m001 (-GAMMA(19/24)+4)/(exp(sqrt(2))+2/3) 5912813692886423 r005 Re(z^2+c),c=-43/102+25/43*I,n=27 5912813718633913 b008 -7+(1+Pi)^(1/17) 5912813722460007 p001 sum((-1)^n/(386*n+131)/n/(3^n),n=1..infinity) 5912813737861050 a001 439204/987*7778742049^(6/19) 5912813737891067 a001 7881196/987*832040^(6/19) 5912813738441215 q001 2238/3785 5912813740994351 r005 Im(z^2+c),c=-41/30+9/109*I,n=10 5912813762518841 s002 sum(A124473[n]/(exp(n)-1),n=1..infinity) 5912813769658998 r005 Re(z^2+c),c=-101/98+4/27*I,n=6 5912813779368511 m005 (1/2*Catalan+7/9)/(2/5*Pi+5/6) 5912813792709680 m005 (1/2*3^(1/2)+1/5)/(115/132+5/12*5^(1/2)) 5912813810083899 m001 (Chi(1)-Psi(1,1/3))/(3^(1/3)+Champernowne) 5912813813295069 m005 (17/20+1/4*5^(1/2))/(9/10*Pi-4/9) 5912813836319919 a001 1515744265389/46*843^(3/7) 5912813850133424 a007 Real Root Of -180*x^4+333*x^3-691*x^2+719*x+45 5912813867065403 p001 sum((-1)^n/(505*n+17)/n/(3^n),n=1..infinity) 5912813890117802 m001 1/Ei(1)^2*ln(Khintchine)*arctan(1/2)^2 5912813900932212 a001 8/123*9349^(38/51) 5912813920748039 m001 (3^(1/3))^2*ErdosBorwein/exp(sqrt(3)) 5912813925398644 r005 Im(z^2+c),c=-12/29+8/51*I,n=4 5912813929416029 m001 1/Zeta(7)^2/Riemann1stZero^2*ln(sqrt(2))^2 5912813934151460 a007 Real Root Of -289*x^4+389*x^3-343*x^2+924*x+782 5912813961847596 r002 29th iterates of z^2 + 5912813962597114 r005 Re(z^2+c),c=9/110+17/40*I,n=56 5912813974806011 r002 17th iterates of z^2 + 5912813992016954 p004 log(22129/12251) 5912814021701440 a007 Real Root Of -230*x^4-75*x^3-690*x^2-431*x-1 5912814053667251 r009 Im(z^3+c),c=-9/98+13/19*I,n=5 5912814070322995 r009 Im(z^3+c),c=-39/74+1/59*I,n=3 5912814077459714 a007 Real Root Of -889*x^4+415*x^3-260*x^2+947*x+57 5912814084943600 m005 (1/2*3^(1/2)-4/5)/(2/5*5^(1/2)+2/9) 5912814087575360 l006 ln(4729/8542) 5912814089675472 s002 sum(A112189[n]/((exp(n)+1)/n),n=1..infinity) 5912814091949731 m001 (gamma(2)-OneNinth)/(Riemann2ndZero-Salem) 5912814109111431 k008 concat of cont frac of 5912814112714002 a001 2/29*123^(37/40) 5912814133922821 m003 1/2+(5*Sqrt[5])/128-Cos[1/2+Sqrt[5]/2]/12 5912814139150115 r009 Re(z^3+c),c=-3/106+39/47*I,n=12 5912814169976813 a007 Real Root Of 8*x^4+462*x^3-645*x^2+415*x+430 5912814179344654 m001 (Pi-exp(1))/(HardHexagonsEntropy-Porter) 5912814182272917 a007 Real Root Of -689*x^4+826*x^3-908*x^2+713*x+994 5912814219534242 m001 (LambertW(1)+Conway)/(FeigenbaumC+MertensB3) 5912814231755061 m001 (Si(Pi)+FeigenbaumD)/ZetaP(4) 5912814239674213 m002 -3+3*Pi^3-Pi^3*Tanh[Pi] 5912814241252598 a003 sin(Pi*17/114)/cos(Pi*21/94) 5912814250447589 a007 Real Root Of 541*x^4-45*x^3+852*x^2-172*x-475 5912814289067531 a007 Real Root Of 88*x^4-153*x^3-306*x^2-872*x-451 5912814308302626 m001 1/MadelungNaCl^2/Artin/ln(GAMMA(5/24)) 5912814340847688 a001 4106118243/233*4807526976^(6/23) 5912814340902495 a001 73681302247/233*75025^(6/23) 5912814350083669 r005 Im(z^2+c),c=-61/110+11/20*I,n=6 5912814375837354 a007 Real Root Of -321*x^4+313*x^3-740*x^2+809*x+841 5912814379931719 r005 Re(z^2+c),c=-63/106+26/63*I,n=60 5912814386942143 r002 32th iterates of z^2 + 5912814397582182 m001 (CareFree-KomornikLoreti)/FeigenbaumC 5912814399072279 a007 Real Root Of -137*x^4-811*x^3+65*x^2+267*x-889 5912814399789384 a007 Real Root Of 143*x^4-424*x^3+512*x^2-891*x+418 5912814403189447 r005 Im(z^2+c),c=-15/28+2/19*I,n=31 5912814405169044 r005 Re(z^2+c),c=-25/54+24/41*I,n=2 5912814415874887 m001 GAMMA(5/24)/Si(Pi)^2*exp(GAMMA(7/12)) 5912814430628443 a001 3278735159921/161*843^(1/2) 5912814457089405 r009 Im(z^3+c),c=-13/56+21/31*I,n=11 5912814466841019 a007 Real Root Of 663*x^4-160*x^3+601*x^2-233*x-462 5912814472466717 a007 Real Root Of -985*x^4-769*x^3-930*x^2+180*x+393 5912814496228740 m005 (1/2*3^(1/2)-2)/(3/7*Pi+4/7) 5912814499185516 m005 (3*exp(1)-4/5)/(gamma+2/3) 5912814511410181 q001 2021/3418 5912814518257620 r002 36th iterates of z^2 + 5912814522551193 a007 Real Root Of 391*x^4-588*x^3-380*x^2-515*x-341 5912814525418866 r005 Im(z^2+c),c=-23/98+1/12*I,n=6 5912814526760008 r009 Im(z^3+c),c=-1/94+44/61*I,n=15 5912814527649987 r009 Re(z^3+c),c=-61/102+25/48*I,n=10 5912814534130743 a007 Real Root Of -671*x^4+829*x^3+86*x^2+943*x-677 5912814549757453 a008 Real Root of x^4-x^3-39*x^2+101*x-46 5912814575187207 m001 (CareFree+Sarnak)/(Stephens+Tribonacci) 5912814641660497 s002 sum(A029024[n]/(n*2^n+1),n=1..infinity) 5912814643864110 r005 Im(z^2+c),c=-5/8+154/249*I,n=7 5912814650155787 m001 MasserGramain^Gompertz/Conway 5912814658926685 a007 Real Root Of 828*x^4-653*x^3+538*x^2+770*x+31 5912814670592144 a001 1597/3*2^(5/33) 5912814681600502 r008 a(0)=6,K{-n^6,14-19*n+24*n^2-6*n^3} 5912814692268535 l006 ln(1936/3497) 5912814710528126 m001 Porter/FeigenbaumDelta/ln(sin(Pi/5)) 5912814767739988 r005 Re(z^2+c),c=-29/54+7/13*I,n=17 5912814773009826 r005 Im(z^2+c),c=-41/118+17/28*I,n=52 5912814779198017 r009 Re(z^3+c),c=-73/122+33/64*I,n=52 5912814781970249 m001 1/GAMMA(5/6)^2/exp(Champernowne)^2/Zeta(5) 5912814818696771 m001 (-Khinchin+1)/(-GAMMA(17/24)+1) 5912814885576445 a007 Real Root Of 149*x^4+859*x^3-80*x^2+334*x+222 5912814893152259 a007 Real Root Of -605*x^4+669*x^3+965*x^2+863*x-912 5912814893955270 a007 Real Root Of 972*x^4+120*x^3-634*x^2-292*x-45 5912814941423680 h001 (-3*exp(3/2)+6)/(-5*exp(1)+1) 5912814989988607 m005 (1/2*exp(1)+1/12)/(3/11*gamma-2/11) 5912814998209284 b008 2/5+ArcCsch[3*Sqrt[3]] 5912815005403036 a007 Real Root Of -11*x^4-663*x^3-751*x^2-378*x+570 5912815019383254 a007 Real Root Of 892*x^4-967*x^3+501*x^2-629*x-856 5912815024937026 a001 4052739537881/322*843^(4/7) 5912815033362195 m005 (1/2*Pi+1/10)/(6/7*5^(1/2)+10/11) 5912815044400930 p001 sum((-1)^n/(280*n+169)/(512^n),n=0..infinity) 5912815049100627 r009 Re(z^3+c),c=-61/102+21/41*I,n=37 5912815079889048 s002 sum(A231062[n]/(n^2*pi^n+1),n=1..infinity) 5912815094439318 r009 Im(z^3+c),c=-3/122+20/31*I,n=3 5912815094766064 a007 Real Root Of -91*x^4+872*x^3-836*x^2+317*x-16 5912815107902058 s002 sum(A231062[n]/(n^2*pi^n-1),n=1..infinity) 5912815124458439 r009 Re(z^3+c),c=-9/106+10/23*I,n=17 5912815124991579 m001 (exp(1/Pi)+FeigenbaumMu)/(GaussAGM+ZetaQ(4)) 5912815130270795 m002 Pi^2*Log[Pi]^2+4*Sinh[Pi] 5912815175441787 m005 (1/2+1/6*5^(1/2))/(2/9*Pi+7/9) 5912815189054830 h001 (1/9*exp(2)+1/2)/(1/2*exp(1)+7/8) 5912815221490956 m005 (1/3*Pi-1/9)/(3/7*5^(1/2)-4/5) 5912815228407510 m001 gamma(1)^ZetaQ(3)/(1+3^(1/2))^(1/2) 5912815237166814 s001 sum(exp(-3*Pi/4)^n*A124457[n],n=1..infinity) 5912815269847580 l006 ln(4951/8943) 5912815282043175 m001 1/Robbin*Champernowne/ln(GAMMA(1/24)) 5912815293309444 a007 Real Root Of 951*x^4+684*x^3-363*x^2-543*x-169 5912815302025989 r002 2th iterates of z^2 + 5912815305293897 a007 Real Root Of 266*x^4-136*x^3-890*x^2-408*x+548 5912815311806443 a007 Real Root Of 184*x^4-740*x^3+836*x^2-819*x-952 5912815314899358 a001 3*21^(47/48) 5912815332903383 m001 1/GAMMA(3/4)/ln(GAMMA(1/4))^2*Zeta(3) 5912815347485200 r008 a(0)=6,K{-n^6,-57-68*n^3+96*n^2+40*n} 5912815355353501 r005 Im(z^2+c),c=-3/22+47/58*I,n=26 5912815361402548 m004 -5/E^(Sqrt[5]*Pi)-30*Pi+5*Sqrt[5]*Pi 5912815378410357 l006 ln(6058/6427) 5912815390363348 r005 Im(z^2+c),c=-35/58+7/64*I,n=44 5912815392711013 b008 (65*Sinh[4])/3 5912815419625083 m001 (Catalan+FransenRobinson)/(Stephens+ZetaQ(2)) 5912815423631031 a007 Real Root Of -739*x^4+497*x^3-149*x^2+546*x+568 5912815425187105 a007 Real Root Of 290*x^4+430*x^3+903*x^2-649*x-646 5912815432444186 r005 Re(z^2+c),c=-5/122+27/38*I,n=56 5912815463059066 m001 (gamma(1)+RenyiParking)/(3^(1/3)-ln(2)/ln(10)) 5912815470337594 q001 1804/3051 5912815488247368 s002 sum(A046152[n]/(n^2*pi^n+1),n=1..infinity) 5912815489030313 m002 -6*Pi^2+ProductLog[Pi]/12 5912815512819614 r002 38th iterates of z^2 + 5912815532781678 p004 log(30727/17011) 5912815561212420 m001 (Paris+Totient)/(exp(Pi)+KhinchinLevy) 5912815563197584 a003 cos(Pi*6/37)-cos(Pi*9/22) 5912815565184203 r005 Re(z^2+c),c=-7/10+25/232*I,n=7 5912815592039538 a007 Real Root Of -676*x^4+994*x^3+379*x^2+989*x-60 5912815600833134 p003 LerchPhi(1/16,3,533/206) 5912815613233283 a007 Real Root Of 94*x^4+431*x^3-920*x^2-954*x+724 5912815616291733 r008 a(0)=6,K{-n^6,18+14*n-59*n^2+39*n^3} 5912815619245670 a001 2504730781961/322*843^(9/14) 5912815625728227 r005 Im(z^2+c),c=-43/106+38/63*I,n=35 5912815640724190 l006 ln(3015/5446) 5912815641831789 m001 1/ln(Si(Pi))/FeigenbaumDelta/sin(Pi/5) 5912815682878910 a007 Real Root Of 314*x^4-670*x^3+574*x^2-202*x-497 5912815686802486 m001 FeigenbaumKappa^ln(2^(1/2)+1)*ZetaP(2) 5912815705211493 a007 Real Root Of -201*x^4+656*x^3-449*x^2+766*x+47 5912815711109988 m001 (Otter-Porter)/(Zeta(1,-1)+FeigenbaumD) 5912815726669343 m001 (BesselJ(1,1)+Gompertz)/(Tetranacci-ZetaP(3)) 5912815730149301 m001 (Cahen+GaussAGM)/(Kolakoski+Niven) 5912815750657502 m001 1/exp(GAMMA(11/12))*Riemann1stZero*Zeta(3) 5912815759731475 k002 Champernowne real with 52*n^2-70*n+23 5912815767008325 a007 Real Root Of -889*x^4+280*x^3-701*x^2+645*x+793 5912815769912592 r009 Re(z^3+c),c=-61/102+20/39*I,n=64 5912815783026280 m001 (LambertW(1)-Psi(1,1/3))/(ln(5)+gamma(3)) 5912815783912057 a003 sin(Pi*2/29)-sin(Pi*20/67) 5912815793860200 a001 317811/2207*47^(55/57) 5912815812218623 m005 (1/2*3^(1/2)+2/11)/(gamma-2/5) 5912815814792768 a007 Real Root Of 41*x^4-140*x^3-499*x^2-182*x+306 5912815852904656 r002 25th iterates of z^2 + 5912815854841336 m005 (25/4+1/4*5^(1/2))/(3/4*2^(1/2)+1/11) 5912815877706537 r005 Im(z^2+c),c=-141/110+3/64*I,n=9 5912815877837234 m001 1/exp(GAMMA(1/12))/FeigenbaumD^2/cosh(1)^2 5912815896536914 m001 (BesselK(0,1)-ln(Pi))/(-Ei(1)+Riemann1stZero) 5912815897311804 m001 (-Kac+ZetaP(2))/(3^(1/2)+Zeta(3)) 5912815899017908 p004 log(12841/7109) 5912815899042677 m005 (1/2*Catalan-1/9)/(1/9*Zeta(3)-6) 5912815921559039 m001 (polylog(4,1/2)+OneNinth)/(Chi(1)-Ei(1)) 5912815921559039 m001 (polylog(4,1/2)+OneNinth)/Shi(1) 5912815946467292 a007 Real Root Of 143*x^4+977*x^3+653*x^2-583*x+900 5912815948318395 a001 76*(1/2*5^(1/2)+1/2)^12*4^(7/11) 5912815948468514 a007 Real Root Of -130*x^4-700*x^3+232*x^2-876*x+904 5912815965372258 m002 -2/Pi+(Pi*Csch[Pi])/6 5912815971950281 s002 sum(A219140[n]/((exp(n)+1)*n),n=1..infinity) 5912815980536866 m001 (HardyLittlewoodC5-Niven)/(Porter+Sarnak) 5912816042244427 r005 Re(z^2+c),c=9/110+17/40*I,n=59 5912816071504704 m001 Bloch/(Sarnak^ArtinRank2) 5912816089236653 l006 ln(4094/7395) 5912816090002493 a003 -1/2+2*cos(2/7*Pi)-2*cos(4/15*Pi) 5912816096199835 m009 (40*Catalan+5*Pi^2-1/3)/(5*Psi(1,2/3)-5/6) 5912816105898842 r005 Re(z^2+c),c=-35/74+9/16*I,n=12 5912816110509075 r005 Im(z^2+c),c=-6/31+28/45*I,n=7 5912816114037637 a007 Real Root Of -753*x^4+433*x^3-540*x^2+62*x+407 5912816125941610 m005 (1/2*gamma-7/12)/(1/9*5^(1/2)+1/4) 5912816140010555 r005 Im(z^2+c),c=33/98+5/17*I,n=8 5912816198968854 a007 Real Root Of -394*x^4+455*x^3-287*x^2+339*x+443 5912816200357987 m005 (1/2*gamma+1/2)/(7/8*3^(1/2)-2/11) 5912816213554373 a001 774004377960/161*843^(5/7) 5912816214876752 a007 Real Root Of x^4+46*x^3-763*x^2+782*x-65 5912816224564996 s001 sum(exp(-Pi/3)^(n-1)*A085920[n],n=1..infinity) 5912816235938755 m005 (1/3*gamma-2/7)/(4/9*Pi+2/11) 5912816237694207 a007 Real Root Of 88*x^4+520*x^3-86*x^2-391*x+627 5912816297160672 m005 (4*exp(1)-1/4)/(3/5*gamma-1/6) 5912816299145897 r005 Im(z^2+c),c=-15/19+19/58*I,n=5 5912816308793855 m005 (1/3*2^(1/2)+1/8)/(2/5*gamma+7/9) 5912816320965847 m001 (arctan(1/2)+3)/(2-2^(1/2)) 5912816326625812 a003 cos(Pi*14/93)-cos(Pi*48/119) 5912816339747522 a007 Real Root Of 173*x^4-524*x^3-955*x^2-213*x+547 5912816344621950 m001 (sin(1)+ln(5))/(gamma(3)+ThueMorse) 5912816350644932 l006 ln(5173/9344) 5912816368898781 a007 Real Root Of -603*x^4+117*x^3-343*x^2+758*x+666 5912816381052959 r004 Re(z^2+c),c=3/8-4/19*I,z(0)=exp(5/12*I*Pi),n=8 5912816389786212 a007 Real Root Of -978*x^4+820*x^3-535*x^2+355*x+686 5912816403576406 a001 199/377*2584^(42/47) 5912816424409019 a007 Real Root Of 359*x^4-711*x^3+751*x^2-828*x-943 5912816425556309 a007 Real Root Of 239*x^4-929*x^3+669*x^2+763*x-4 5912816441158356 r005 Im(z^2+c),c=-35/29+15/61*I,n=13 5912816446877358 p001 sum((-1)^n/(199*n+169)/(625^n),n=0..infinity) 5912816450568117 a007 Real Root Of 891*x^4-976*x^3-328*x^2+712*x+225 5912816452027496 h001 (7/11*exp(2)+1/8)/(1/5*exp(1)+3/11) 5912816456230582 a007 Real Root Of -51*x^4+267*x^3-495*x^2+767*x+688 5912816466303036 m001 (ln(2^(1/2)+1)-Conway)/(Kac-Totient) 5912816480534822 a007 Real Root Of -275*x^4+569*x^3-727*x^2-481*x+121 5912816487997405 r005 Im(z^2+c),c=-59/98+6/55*I,n=42 5912816497404030 a007 Real Root Of -723*x^4+81*x^3-926*x^2-842*x-69 5912816497524216 a007 Real Root Of -117*x^4-617*x^3+289*x^2-955*x-288 5912816501303337 r005 Im(z^2+c),c=-7/74+24/37*I,n=29 5912816531713824 a007 Real Root Of 106*x^4-94*x^3+89*x^2-356*x-274 5912816542255147 a007 Real Root Of 526*x^4+77*x^3+726*x^2-940*x-858 5912816546648194 m001 1/GAMMA(1/3)^2/ln(ArtinRank2)*GAMMA(7/12) 5912816548231769 a007 Real Root Of -418*x^4-336*x^3-951*x^2+174*x+417 5912816557581714 a007 Real Root Of 876*x^4+93*x^3+472*x^2-237*x-393 5912816562475329 r005 Re(z^2+c),c=9/58+21/55*I,n=49 5912816566090485 r002 3th iterates of z^2 + 5912816569433998 m001 (Cahen-MinimumGamma)/(Sarnak+TwinPrimes) 5912816585391992 a007 Real Root Of -302*x^4-22*x^3-106*x^2+508*x-3 5912816588080577 m001 (-GAMMA(7/12)+KhinchinLevy)/(2^(1/3)-Zeta(3)) 5912816601418825 r005 Im(z^2+c),c=-9/94+18/25*I,n=17 5912816601498293 a005 (1/cos(8/185*Pi))^1187 5912816614983116 r009 Re(z^3+c),c=-3/29+23/37*I,n=37 5912816624663578 m001 (exp(1/Pi)+exp(-1/2*Pi))/(Khinchin-ZetaQ(3)) 5912816631727679 a007 Real Root Of 216*x^4-165*x^3+601*x^2-875*x-788 5912816639460758 m001 (exp(1/Pi)+Otter)/(Sarnak+ZetaQ(3)) 5912816644077756 a007 Real Root Of 177*x^4+959*x^3-692*x^2-951*x+468 5912816654809211 a007 Real Root Of 509*x^4-732*x^3-28*x^2-286*x+268 5912816660473439 a008 Real Root of x^4-20*x^2-68*x-121 5912816678266749 m001 (Conway+Mills)/(Trott-ZetaP(2)) 5912816681976092 p001 sum(1/(269*n+17)/(12^n),n=0..infinity) 5912816691505216 q001 1587/2684 5912816704063522 m001 Ei(1)*exp(Khintchine)*GAMMA(5/12) 5912816727592572 m009 (Pi^2+2/3)/(1/2*Psi(1,2/3)+1/4) 5912816746320791 m006 (1/5*exp(2*Pi)-5/6)/(1/3*Pi+3/4) 5912816748439459 r005 Re(z^2+c),c=-63/52+58/63*I,n=2 5912816750162874 m001 ln(GAMMA(11/24))^2/Cahen^2/sqrt(Pi) 5912816755320403 a007 Real Root Of 87*x^4+7*x^3-180*x^2-648*x+434 5912816755891811 a008 Real Root of (-5+2*x+9*x^2+5*x^4+4*x^8) 5912816768832804 m001 (Sarnak-Tribonacci)/(gamma(1)+MertensB1) 5912816781541731 m005 (1/2*gamma-4/11)/(6*5^(1/2)-8/11) 5912816783728486 r009 Im(z^3+c),c=-35/66+38/63*I,n=22 5912816784296159 a001 13/4870847*76^(9/49) 5912816807863135 a001 956722026041/322*843^(11/14) 5912816811594003 r002 55th iterates of z^2 + 5912816821216170 r002 4th iterates of z^2 + 5912816830681137 a001 416020/2889*47^(55/57) 5912816832572311 a007 Real Root Of -212*x^4-198*x^3-868*x^2-224*x+156 5912816863930678 a008 Real Root of (-6+4*x+8*x^2+6*x^4+7*x^8) 5912816911241415 a007 Real Root Of -967*x^4-352*x^3-845*x^2+878*x+860 5912816920599958 m001 cos(1/5*Pi)/ln(5)*Salem 5912816943429700 g006 Psi(1,10/11)+Psi(1,3/8)+Psi(1,4/5)-Psi(1,3/7) 5912816948148900 a007 Real Root Of -793*x^4+479*x^3+486*x^2+394*x+259 5912816970743573 a007 Real Root Of -681*x^4-538*x^3-959*x^2-447*x+43 5912816974476986 r009 Re(z^3+c),c=-13/38+33/41*I,n=3 5912816981951304 a001 311187/2161*47^(55/57) 5912817023548316 a007 Real Root Of 92*x^4-611*x^3+786*x^2-774*x-870 5912817034106199 r002 28th iterates of z^2 + 5912817036533543 r005 Re(z^2+c),c=-19/18+7/22*I,n=8 5912817041790633 s002 sum(A219140[n]/(n*exp(n)+1),n=1..infinity) 5912817045711186 h001 (2/9*exp(1)+10/11)/(8/9*exp(1)+1/7) 5912817061334271 a007 Real Root Of 588*x^4+795*x^3+807*x^2-716*x-45 5912817066958259 m001 ln(GAMMA(2/3))/Niven^2*LambertW(1) 5912817075380669 m001 (Cahen+ZetaQ(3))/(Zeta(1,-1)+Zeta(1,2)) 5912817075441412 a001 1346269/9349*47^(55/57) 5912817080004254 m005 (1/2*Zeta(3)-10/11)/(6*Catalan-2/7) 5912817103980931 r005 Im(z^2+c),c=-6/5+15/79*I,n=13 5912817151494254 a007 Real Root Of -825*x^4+961*x^3-827*x^2+508*x+889 5912817161958147 m001 (MinimumGamma-ln(2)/ln(10))/ReciprocalLucas 5912817168540442 m001 MinimumGamma^gamma*Weierstrass 5912817179657824 a007 Real Root Of -706*x^4+611*x^3-492*x^2-297*x+209 5912817200194574 s002 sum(A219140[n]/(n*exp(n)-1),n=1..infinity) 5912817216396783 m005 (1/2*exp(1)-2/7)/(5/7*Pi-3/7) 5912817223176324 a007 Real Root Of 838*x^4-72*x^3+873*x^2-175*x-526 5912817235659197 r005 Im(z^2+c),c=-69/106+15/58*I,n=28 5912817241764605 a007 Real Root Of -242*x^4+287*x^3-724*x^2+898*x+873 5912817244154204 m001 (3^(1/2)+5^(1/2))/(ln(Pi)+2*Pi/GAMMA(5/6)) 5912817246778263 m001 exp(GAMMA(1/4))/Cahen/Pi^2 5912817248260157 s002 sum(A250503[n]/(n^2*exp(n)+1),n=1..infinity) 5912817257652341 m001 (1+3^(1/2))^(1/2)+Khinchin^Porter 5912817289175285 l006 ln(8143/8639) 5912817313253694 a005 (1/cos(5/76*Pi))^1367 5912817327456416 m002 4+Log[Pi]+(5*Cosh[Pi])/ProductLog[Pi] 5912817328934894 b008 4+ArcCosh[Pi^(-1)+Pi] 5912817342494261 l006 ln(1079/1949) 5912817368979630 m001 exp(1)*ReciprocalLucas+gamma 5912817377353314 r005 Im(z^2+c),c=-91/74+3/61*I,n=48 5912817383768672 a007 Real Root Of 270*x^4-844*x^3+259*x^2-301*x-476 5912817384136714 a007 Real Root Of 482*x^4-918*x^3+210*x^2-333*x-519 5912817386843736 a007 Real Root Of -565*x^4+507*x^3+297*x^2+388*x-369 5912817388460670 a001 34/3571*199^(39/50) 5912817402171958 a001 591286729879/322*843^(6/7) 5912817419281412 m005 (5/6*2^(1/2)+4)/(3*Pi-2/3) 5912817455771422 r004 Re(z^2+c),c=1/20+3/8*I,z(0)=I,n=25 5912817468920916 m001 (Grothendieck+Stephens)/(Backhouse-Shi(1)) 5912817471471899 a001 514229/3571*47^(55/57) 5912817476236931 b008 11/2+Pi*Sech[E] 5912817477500309 a007 Real Root Of 579*x^4-585*x^3+750*x^2+377*x-231 5912817485059175 s002 sum(A259518[n]/(n^2*2^n-1),n=1..infinity) 5912817494561565 r005 Re(z^2+c),c=-2/3+77/207*I,n=12 5912817526574598 a001 29*(1/2*5^(1/2)+1/2)^16*18^(10/13) 5912817536074468 a007 Real Root Of -974*x^4+572*x^3-69*x^2+94*x+317 5912817545819529 h005 exp(sin(Pi*16/53)+sin(Pi*22/53)) 5912817548879381 a007 Real Root Of 821*x^4-683*x^3-976*x^2-76*x+427 5912817551213472 m001 (ln(Pi)+Bloch)/(Paris+ZetaP(3)) 5912817552077241 m001 (Bloch-ErdosBorwein)/(GAMMA(2/3)+BesselI(1,1)) 5912817567308017 m001 (GAMMA(5/6)+KhinchinLevy)/(Si(Pi)+Zeta(1/2)) 5912817579086404 b008 -19/3+FresnelS[4] 5912817585886877 m001 (ln(Pi)+gamma(1))/(Niven+OneNinth) 5912817589610440 m009 (Pi^2-2)/(5*Psi(1,3/4)+3/5) 5912817610064695 r005 Im(z^2+c),c=-21/110+34/53*I,n=59 5912817650665365 m001 (gamma(3)+Totient)/(cos(1/5*Pi)-Zeta(1/2)) 5912817662059581 a007 Real Root Of -746*x^4+411*x^3+23*x^2+484*x-288 5912817671270312 r005 Re(z^2+c),c=-31/44+15/59*I,n=53 5912817674061196 p003 LerchPhi(1/8,1,409/222) 5912817695211904 r005 Im(z^2+c),c=-23/48+13/22*I,n=36 5912817717217858 m001 (-Mills+Paris)/(BesselJ(0,1)-FransenRobinson) 5912817729758800 m001 (exp(-1/2*Pi)-Kolakoski)/(Porter-Weierstrass) 5912817732848054 a007 Real Root Of -535*x^4+659*x^3+283*x^2+124*x+176 5912817760492807 r005 Re(z^2+c),c=9/110+17/40*I,n=51 5912817795117747 a007 Real Root Of 845*x^4+345*x^3+970*x^2-974*x-947 5912817818032218 a007 Real Root Of -151*x^4+419*x^3+935*x^2+602*x-751 5912817841114751 a007 Real Root Of 233*x^4-900*x^3+833*x^2-775*x-964 5912817855395636 r002 4th iterates of z^2 + 5912817859157887 m001 1/GAMMA(1/3)/MertensB1/exp(log(1+sqrt(2))) 5912817876014394 m001 Psi(2,1/3)^BesselK(0,1)+OrthogonalArrays 5912817876337423 m001 exp(Ei(1))^2/BesselJ(1,1)*sin(Pi/5) 5912817880246187 a007 Real Root Of -665*x^4+371*x^3-993*x^2+937*x-52 5912817886546390 r005 Im(z^2+c),c=-9/44+31/48*I,n=64 5912817896875364 a007 Real Root Of 674*x^4-836*x^3-474*x^2-652*x-475 5912817902174148 m002 -((Cosh[Pi]*Coth[Pi])/Log[Pi])+6*Sinh[Pi] 5912817919000557 a007 Real Root Of -142*x^4-715*x^3+701*x^2-108*x+615 5912817932137708 r005 Re(z^2+c),c=-23/86+41/63*I,n=5 5912817967747832 m001 (-gamma(3)+Tribonacci)/(gamma(2)-ln(2)/ln(10)) 5912817987374652 r009 Re(z^3+c),c=-3/5+9/38*I,n=21 5912817992371735 m001 (Bloch+Thue)/(cos(1/12*Pi)+GAMMA(17/24)) 5912817994264919 m001 Landau^(MasserGramain*MertensB3) 5912817996329193 a007 Real Root Of -778*x^4-312*x^3+700*x^2+727*x-515 5912817996480840 a001 182717648081/161*843^(13/14) 5912818022564090 a001 1/24476*18^(49/53) 5912818024317548 m001 1/GAMMA(7/12)/exp(FeigenbaumC)/sqrt(Pi) 5912818037269832 b008 1/5+Pi*ArcSinh[3] 5912818068144496 m001 arctan(1/3)^GolombDickman+Paris 5912818107947152 r009 Re(z^3+c),c=-63/106+7/24*I,n=9 5912818136278027 a007 Real Root Of 722*x^4+108*x^3+25*x^2-168*x-174 5912818138401628 r002 3th iterates of z^2 + 5912818161813806 m006 (2/Pi-4/5)/(2/3*ln(Pi)+2) 5912818168071748 m008 (3/5*Pi^4+1/3)/(Pi^4+2) 5912818179389060 m001 FransenRobinson^Sarnak/FeigenbaumMu 5912818186716265 r005 Re(z^2+c),c=-53/114+29/42*I,n=3 5912818216426280 a001 9349/377*233^(32/55) 5912818234607871 a007 Real Root Of -645*x^4+459*x^3+151*x^2+428*x+374 5912818281204587 m001 1/ln(TreeGrowth2nd)*ArtinRank2^2/Zeta(9) 5912818282913062 h001 (3/11*exp(1)+5/7)/(7/8*exp(1)+1/12) 5912818285310024 r009 Im(z^3+c),c=-53/110+24/49*I,n=44 5912818299525248 q001 137/2317 5912818307926710 r005 Re(z^2+c),c=-37/60+29/63*I,n=31 5912818319353130 m002 -4+E^(-Pi)+Pi^2 5912818321041030 r005 Im(z^2+c),c=-77/118+4/35*I,n=60 5912818355167994 a007 Real Root Of 457*x^4-875*x^3+825*x^2-272*x-686 5912818359173225 r005 Im(z^2+c),c=-19/22+4/87*I,n=5 5912818359558997 m008 (3/4*Pi^4+3/4)/(4*Pi^3+4/5) 5912818398742540 r005 Im(z^2+c),c=-5/66+38/45*I,n=5 5912818413851143 a001 4/1597*28657^(28/37) 5912818417179727 a007 Real Root Of 151*x^4-247*x^3-656*x^2-806*x+50 5912818421628471 m005 (3/5*gamma+5/6)/(2*2^(1/2)-5/6) 5912818454969205 a001 76/28657*10946^(5/58) 5912818469492490 r005 Im(z^2+c),c=-5/36+2/27*I,n=8 5912818473132436 l006 ln(4538/8197) 5912818495247510 a008 Real Root of (-6+5*x+6*x^2+6*x^3-3*x^4+x^5) 5912818513177266 m001 ln(cosh(1))*Pi^2*sinh(1)^2 5912818513451148 r009 Re(z^3+c),c=-5/46+31/46*I,n=44 5912818516301113 a001 3524578/843*2^(1/2) 5912818568954150 r005 Im(z^2+c),c=-5/8+23/208*I,n=59 5912818575451616 a007 Real Root Of -391*x^4-36*x^3-604*x^2+564*x+585 5912818590251458 a001 222913260852480/377 5912818626170572 m002 -2+E^Pi/3+Tanh[Pi]/5 5912818646206662 m001 BesselK(0,1)^2*Magata^2*exp(GAMMA(11/12)) 5912818661984098 a007 Real Root Of -288*x^4+319*x^3+368*x^2+757*x-607 5912818662302014 r005 Re(z^2+c),c=9/110+17/40*I,n=63 5912818670202099 m001 (ln(2)+Ei(1,1))/(exp(1/exp(1))+Paris) 5912818692071689 a007 Real Root Of -36*x^4+880*x^3+986*x^2+715*x-945 5912818724440318 m001 (-Zeta(5)+2)/(GAMMA(5/6)+1/2) 5912818725071026 g006 -2*Psi(1,3/11)-Psi(1,3/5)-Psi(1,1/5) 5912818727634760 m006 (3*exp(2*Pi)+4/5)/(3/5*Pi+5/6) 5912818767006640 a007 Real Root Of -441*x^4+594*x^3+58*x^2+42*x-114 5912818769468127 a003 cos(Pi*7/109)-sin(Pi*8/63) 5912818778043950 a003 sin(Pi*2/103)*sin(Pi*35/83) 5912818782533956 m001 (-Gompertz+Sarnak)/(ln(2)/ln(10)+Si(Pi)) 5912818825823531 l006 ln(3459/6248) 5912818830209548 h001 (-11*exp(1)+7)/(-4*exp(1)+7) 5912818831265764 r009 Re(z^3+c),c=-16/27+29/49*I,n=10 5912818841891041 r005 Re(z^2+c),c=-41/56+2/39*I,n=17 5912818858317833 r001 11i'th iterates of 2*x^2-1 of 5912818861281757 r002 3th iterates of z^2 + 5912818861807070 m001 (ArtinRank2+RenyiParking)/(ln(2)+Zeta(1,2)) 5912818871609512 m001 (ln(Pi)+cos(1/12*Pi))/(2^(1/2)-Shi(1)) 5912818876729347 r005 Im(z^2+c),c=-47/70+9/26*I,n=63 5912818884664087 r005 Im(z^2+c),c=17/60+5/9*I,n=36 5912818898732650 a007 Real Root Of 856*x^4+225*x^3+268*x^2-988*x-736 5912818922303448 m001 ln(GAMMA(5/24))^2/PrimesInBinary^2*arctan(1/2) 5912818924814829 a007 Real Root Of -355*x^4+826*x^3-898*x^2+705*x+45 5912818952783383 m001 cos(1/12*Pi)/StronglyCareFree*Weierstrass 5912818955382765 p004 log(30689/83) 5912818962570354 m001 (ln(5)-Backhouse)/(Sierpinski+ZetaQ(3)) 5912818969541043 r008 a(0)=6,K{-n^6,10-5*n+7*n^2-6*n^3} 5912819012426927 m001 (Zeta(3)-Zeta(5))/(BesselK(1,1)-FellerTornier) 5912819018305246 r005 Im(z^2+c),c=-95/118+1/35*I,n=50 5912819025917709 r008 a(0)=6,K{-n^6,4-2*n^3+3*n^2+8*n} 5912819036637898 a007 Real Root Of 762*x^4-65*x^3+565*x^2-563*x-637 5912819044430675 m005 (1/2*5^(1/2)-6/7)/(5/7*gamma+4) 5912819098034987 m005 (1/2*Pi-8/9)/(3/4*gamma-4/9) 5912819099137360 g006 Psi(1,2/11)+Psi(1,1/7)-Psi(1,3/11)-Psi(1,3/8) 5912819194409427 r009 Im(z^3+c),c=-19/54+31/49*I,n=63 5912819210314743 m005 (1/2*exp(1)-6/11)/(5/12*5^(1/2)+4/9) 5912819231269431 a007 Real Root Of -724*x^4-144*x^3-13*x^2+490*x+353 5912819254920701 a001 21/103682*521^(49/54) 5912819267727958 r005 Re(z^2+c),c=-29/34+98/123*I,n=3 5912819298038119 r005 Re(z^2+c),c=-9/14+97/255*I,n=4 5912819315311880 m001 Zeta(5)^exp(1/2)-sqrt(1+sqrt(3)) 5912819326123374 r009 Im(z^3+c),c=-21/40+26/43*I,n=19 5912819344608242 r008 a(0)=6,K{-n^6,9+7*n^3-6*n^2+3*n} 5912819346857493 p004 log(27743/15359) 5912819360202329 m001 1/Salem/exp(Riemann1stZero)^2*log(2+sqrt(3)) 5912819360512655 s002 sum(A250503[n]/(n^2*exp(n)-1),n=1..infinity) 5912819361157133 r005 Im(z^2+c),c=-15/46+7/64*I,n=4 5912819369337514 m005 (1/3*2^(1/2)-1/6)/(6/7*3^(1/2)-2) 5912819371827190 a001 322/514229*2178309^(2/13) 5912819371831048 a001 322/1346269*1134903170^(2/13) 5912819371831605 a001 161/1762289*591286729879^(2/13) 5912819382208656 a001 161/98209*4181^(2/13) 5912819401086830 r002 2th iterates of z^2 + 5912819404818069 m009 (4/5*Psi(1,1/3)+3/5)/(1/4*Pi^2-1) 5912819439287556 m001 Chi(1)^KhinchinLevy-Ei(1,1) 5912819463673704 m005 (1/2*exp(1)-1/10)/(9/11*5^(1/2)+3/10) 5912819470551993 a008 Real Root of x^4-x^3-32*x^2-48*x+387 5912819478514430 m009 (1/5*Pi^2-2/3)/(3/10*Pi^2-3/4) 5912819486588702 a007 Real Root Of 289*x^4-319*x^3+368*x^2-569*x-35 5912819498307611 l006 ln(2380/4299) 5912819504521606 a007 Real Root Of 730*x^4-969*x^3+709*x^2+21*x-525 5912819540006012 m001 1/FeigenbaumD*ln(PisotVijayaraghavan)/sqrt(Pi) 5912819544333854 m001 (Rabbit-Trott2nd)/(arctan(1/3)+FeigenbaumB) 5912819562231617 a007 Real Root Of -413*x^4+414*x^3-796*x^2+385*x+642 5912819585698153 m005 (3/5*Pi+3/4)/(1/5*exp(1)-5) 5912819609052268 r002 29th iterates of z^2 + 5912819620728139 m001 (exp(Pi)-sin(1/5*Pi))/(GAMMA(5/6)+Khinchin) 5912819635845534 m001 (exp(1)-polylog(4,1/2))/(-Porter+Tribonacci) 5912819640197466 r002 22th iterates of z^2 + 5912819649822335 r005 Re(z^2+c),c=-49/54+10/59*I,n=54 5912819657657750 r005 Re(z^2+c),c=9/110+17/40*I,n=60 5912819657993749 r005 Re(z^2+c),c=9/110+17/40*I,n=62 5912819677343503 a007 Real Root Of 998*x^4-709*x^3+996*x^2+715*x-194 5912819682806841 a007 Real Root Of -369*x^4+839*x^3-675*x^2+38*x+477 5912819695046034 a007 Real Root Of -112*x^4-543*x^3-841*x^2-153*x+105 5912819695901537 r002 31th iterates of z^2 + 5912819698865209 m001 (-Porter+ZetaP(4))/(exp(Pi)+Artin) 5912819717292120 a007 Real Root Of 105*x^4+655*x^3+333*x^2+931*x+923 5912819721962805 m005 (1/2*2^(1/2)+1/4)/(4/9*gamma-3/11) 5912819726051842 r002 9th iterates of z^2 + 5912819747867999 m003 -3+Sqrt[5]+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/16 5912819749384124 m001 1/exp(GAMMA(19/24))/BesselJ(1,1)*sin(1) 5912819777719744 m001 Cahen*(TwinPrimes+sin(Pi/12)) 5912819777719744 m001 Cahen*(sin(1/12*Pi)+TwinPrimes) 5912819779482637 m001 1/Zeta(9)^2*exp(Rabbit)*cos(1)^2 5912819826197781 a005 (1/sin(104/223*Pi))^1553 5912819826934141 k002 Champernowne real with 1/2*n^2+135/2*n-9 5912819840413057 r005 Re(z^2+c),c=-2/3+49/236*I,n=14 5912819856143413 a007 Real Root Of -776*x^4-988*x^3-22*x^2+966*x+57 5912819896555232 a003 cos(Pi*17/67)*sin(Pi*35/109) 5912819905272993 m001 (Ei(1)-Psi(1,1/3))/(-ReciprocalLucas+Stephens) 5912819927234742 k002 Champernowne real with n^2+66*n-8 5912819927275445 m001 (MasserGramain+Weierstrass)/(Conway+Lehmer) 5912820000695635 m001 PisotVijayaraghavan/exp(Paris)^2/Tribonacci 5912820027535343 k002 Champernowne real with 3/2*n^2+129/2*n-7 5912820030810082 a007 Real Root Of -238*x^4+943*x^3-867*x^2+223*x+659 5912820040576313 a007 Real Root Of 127*x^4-517*x^3+265*x^2-487*x-503 5912820044136077 r005 Re(z^2+c),c=-47/70+5/21*I,n=8 5912820047472440 r009 Im(z^3+c),c=-47/82+8/13*I,n=28 5912820086125745 r008 a(0)=6,K{-n^6,-29+44*n+41*n^2-45*n^3} 5912820098348154 a007 Real Root Of 920*x^4-122*x^3+976*x^2-768*x-933 5912820117865966 r009 Im(z^3+c),c=-2/21+39/40*I,n=12 5912820127835944 k002 Champernowne real with 2*n^2+63*n-6 5912820130234338 l006 ln(3681/6649) 5912820154714824 r005 Im(z^2+c),c=-103/86+1/13*I,n=34 5912820157570306 b008 -1+E^(1/4)/Pi 5912820165106988 a007 Real Root Of -275*x^4+975*x^3-372*x^2+622*x+733 5912820185906663 a001 98209/682*47^(55/57) 5912820198085147 a007 Real Root Of -410*x^4+796*x^3-536*x^2-154*x+311 5912820211722616 a005 (1/cos(17/63*Pi))^166 5912820228136545 k002 Champernowne real with 5/2*n^2+123/2*n-5 5912820234291313 a007 Real Root Of -355*x^4+902*x^3-810*x^2-477*x+231 5912820240439120 v002 sum(1/(2^n*(30*n^2-80*n+61)),n=1..infinity) 5912820241407184 s002 sum(A080634[n]/(n*pi^n-1),n=1..infinity) 5912820243289560 a007 Real Root Of 836*x^4-429*x^3+639*x^2-857*x-921 5912820254811755 m005 (1/2*2^(1/2)+4/9)/(6/11*3^(1/2)-3/4) 5912820270023576 m008 (2/3*Pi^5-1/5)/(1/3*Pi^4+2) 5912820270989106 r005 Re(z^2+c),c=-14/19+1/56*I,n=23 5912820276306626 a007 Real Root Of -674*x^4-408*x^3-239*x^2+344*x+285 5912820283652988 h001 (4/9*exp(1)+7/12)/(9/10*exp(1)+7/12) 5912820289369790 a007 Real Root Of 481*x^4+227*x^3+889*x^2-995*x-911 5912820295172618 a007 Real Root Of -793*x^4-898*x^3+250*x^2+905*x+359 5912820300602620 a007 Real Root Of -629*x^4-470*x^3-774*x^2+955*x+815 5912820328437146 k002 Champernowne real with 3*n^2+60*n-4 5912820350001758 r002 54th iterates of z^2 + 5912820353099974 m006 (Pi^2-3/5)/(2/3*exp(Pi)+1/4) 5912820359504192 m001 (3^(1/2)-ln(3))/(Gompertz+Weierstrass) 5912820382350977 m001 ErdosBorwein^PlouffeB-Robbin 5912820394274483 r002 17th iterates of z^2 + 5912820410788295 a007 Real Root Of -908*x^4+435*x^3-845*x^2-283*x+329 5912820428537346 k004 Champernowne real with floor(Pi*(n^2+19*n-1)) 5912820428737747 k002 Champernowne real with 7/2*n^2+117/2*n-3 5912820430504346 m001 Salem^Totient/Riemann2ndZero 5912820432118228 l006 ln(4982/8999) 5912820433691033 m001 3^(1/2)*Catalan/FeigenbaumD 5912820512820512 q001 1153/1950 5912820519967976 m002 Pi^2*Log[Pi]+Sinh[Pi]+Pi*Sinh[Pi] 5912820521819497 m005 (1/2*Pi-5/9)/(4/7*3^(1/2)+8/11) 5912820529038348 k002 Champernowne real with 4*n^2+57*n-2 5912820556067690 r005 Re(z^2+c),c=9/110+17/40*I,n=64 5912820561399074 r005 Im(z^2+c),c=3/98+29/52*I,n=5 5912820609412214 r009 Im(z^3+c),c=-65/126+25/63*I,n=26 5912820629338949 k002 Champernowne real with 9/2*n^2+111/2*n-1 5912820654639958 a007 Real Root Of 548*x^4-216*x^3-655*x^2-853*x-387 5912820675130860 a007 Real Root Of 861*x^4-200*x^3+237*x^2-762*x-680 5912820679855893 m001 Stephens^(TwinPrimes/ln(2)) 5912820693114200 h001 (7/9*exp(2)+1/9)/(1/12*exp(2)+3/8) 5912820708796916 m001 (1+Si(Pi))/(-ln(2+3^(1/2))+GaussAGM) 5912820721147673 r002 62th iterates of z^2 + 5912820729539249 k004 Champernowne real with floor(Pi*(3/2*n^2+35/2*n)) 5912820729639550 k002 Champernowne real with 5*n^2+54*n 5912820730181823 a007 Real Root Of 376*x^4+270*x^3+19*x^2-572*x-335 5912820733718009 m001 GAMMA(19/24)*CopelandErdos/exp(cosh(1)) 5912820741199207 h001 (10/11*exp(2)+3/4)/(1/4*exp(1)+7/12) 5912820747272079 a007 Real Root Of 18*x^4-491*x^3+260*x^2-390*x+239 5912820797715128 r002 10th iterates of z^2 + 5912820829940151 k002 Champernowne real with 11/2*n^2+105/2*n+1 5912820839643076 m005 (21/20+1/4*5^(1/2))/(3/5*Zeta(3)+2) 5912820844097235 a001 167761/377*7778742049^(6/19) 5912820844306137 a001 3010349/377*832040^(6/19) 5912820846353114 m001 1/GAMMA(17/24)/Robbin^2*exp(Zeta(3)) 5912820852877750 r009 Re(z^3+c),c=-63/110+15/32*I,n=58 5912820867166975 r005 Im(z^2+c),c=-41/86+39/62*I,n=3 5912820900652762 r008 a(0)=4,K{-n^6,-26+2*n^3-7*n^2+34*n} 5912820903871520 m001 (ln(3)-PlouffeB)/(sin(1/5*Pi)-ln(2)) 5912820919968212 a007 Real Root Of -73*x^4+886*x^3-719*x^2-476*x+162 5912820930240752 k002 Champernowne real with 6*n^2+51*n+2 5912820959442673 r005 Im(z^2+c),c=-37/52+7/30*I,n=13 5912820963023045 a001 29/610*121393^(14/23) 5912820963118190 m003 -6+(5*Sqrt[5])/8-Cosh[1/2+Sqrt[5]/2]/2 5912820994843300 a007 Real Root Of 147*x^4+922*x^3+254*x^2-243*x+601 5912820997140851 a001 3/89*4181^(43/48) 5912821007663852 a007 Real Root Of 479*x^4-33*x^3-462*x^2-183*x+218 5912821007800534 r005 Re(z^2+c),c=-49/78+18/61*I,n=10 5912821030441153 k004 Champernowne real with floor(Pi*(2*n^2+16*n+1)) 5912821030541353 k002 Champernowne real with 13/2*n^2+99/2*n+3 5912821039058839 a001 1/46347*28657^(10/31) 5912821100453331 a007 Real Root Of -599*x^4+672*x^3-215*x^2+520*x-298 5912821103814710 k007 concat of cont frac of 5912821111338121 k007 concat of cont frac of 5912821114596096 m001 (BesselJ(1,1)-PlouffeB*ThueMorse)/ThueMorse 5912821119239915 s002 sum(A214756[n]/(2^n+1),n=1..infinity) 5912821130841954 k002 Champernowne real with 7*n^2+48*n+4 5912821135077860 a007 Real Root Of -124*x^4-637*x^3+454*x^2-666*x+74 5912821163017289 m001 2^(1/3)/(Ei(1)+CopelandErdos) 5912821210321874 a007 Real Root Of 406*x^4+198*x^3-284*x^2-956*x+574 5912821221125135 k007 concat of cont frac of 5912821222953157 a007 Real Root Of -211*x^4+211*x^3-501*x^2+799*x+717 5912821224034125 a007 Real Root Of 839*x^4-502*x^3-748*x^2-956*x+828 5912821231142555 k002 Champernowne real with 15/2*n^2+93/2*n+5 5912821235494058 a007 Real Root Of -313*x^4+498*x^3+88*x^2-202*x-9 5912821236069886 m001 (exp(1)+ln(gamma))^UniversalParabolic 5912821240040877 r005 Re(z^2+c),c=-41/74+23/37*I,n=29 5912821241964690 h001 (8/9*exp(1)+5/9)/(2/3*exp(2)+1/10) 5912821278427366 a001 1364/5*514229^(1/17) 5912821284163973 r002 4th iterates of z^2 + 5912821286256993 l006 ln(1301/2350) 5912821287700754 a003 cos(Pi*23/91)*cos(Pi*44/93) 5912821294368828 m001 1/cos(Pi/5)/GAMMA(19/24)/exp(gamma) 5912821307442367 h001 (-8*exp(3)+4)/(-5*exp(4)+8) 5912821314389757 a001 4*(1/2*5^(1/2)+1/2)^28*3^(2/3) 5912821316799613 m005 (1/2*gamma+8/9)/(5/12*Zeta(3)-7/10) 5912821321789993 m001 Tribonacci^(CareFree/gamma(3)) 5912821329033786 r005 Im(z^2+c),c=-7/10+79/214*I,n=5 5912821331443156 k002 Champernowne real with 8*n^2+45*n+6 5912821344847469 a007 Real Root Of -788*x^4+543*x^3-670*x^2+391*x+674 5912821348754046 m001 (LandauRamanujan2nd-OneNinth)^CareFree 5912821361841016 q001 5/84562 5912821372953706 r005 Im(z^2+c),c=19/66+21/52*I,n=16 5912821376662539 m001 (-exp(1/Pi)+BesselI(1,2))/(2^(1/2)+5^(1/2)) 5912821382776695 a001 3/24476*11^(21/32) 5912821395775941 r005 Re(z^2+c),c=-71/66+3/8*I,n=2 5912821431743757 k002 Champernowne real with 17/2*n^2+87/2*n+7 5912821437920857 r005 Re(z^2+c),c=-57/82+6/41*I,n=20 5912821462350933 h005 exp(cos(Pi*3/31)+cos(Pi*5/26)) 5912821470166157 a007 Real Root Of -999*x^4-255*x^3-679*x^2-392*x+75 5912821489486716 a007 Real Root Of 704*x^4-881*x^3-746*x^2-850*x-5 5912821494488313 r002 59th iterates of z^2 + 5912821497919977 m001 (Kac+ZetaQ(3))/(Psi(1,1/3)+HardyLittlewoodC3) 5912821500312694 r005 Re(z^2+c),c=1/78+15/49*I,n=10 5912821509366195 a001 28657/322*18^(19/29) 5912821531562946 r005 Im(z^2+c),c=-39/38+25/57*I,n=3 5912821532044358 k002 Champernowne real with 9*n^2+42*n+8 5912821563971833 r005 Im(z^2+c),c=-49/50+2/35*I,n=16 5912821575106235 a007 Real Root Of -786*x^4-254*x^3-825*x^2-482*x+47 5912821577149763 m001 (-Robbin+Tetranacci)/(3^(1/2)-exp(Pi)) 5912821579060894 p004 log(26251/14533) 5912821596362731 r005 Im(z^2+c),c=-17/22+4/93*I,n=12 5912821632344959 k004 Champernowne real with floor(Pi*(3*n^2+13*n+3)) 5912821632344959 k002 Champernowne real with 19/2*n^2+81/2*n+9 5912821650047456 r005 Re(z^2+c),c=-13/44+13/20*I,n=24 5912821671146748 r002 46th iterates of z^2 + 5912821688395364 m005 (1/2*2^(1/2)+1/6)/(2/5*5^(1/2)+7/12) 5912821694182004 a007 Real Root Of -653*x^4+906*x^3-298*x^2+561*x+703 5912821701734739 a007 Real Root Of -376*x^4+590*x^3+172*x^2+842*x-634 5912821709896935 m005 (1/2*Catalan+1/3)/(-3/11+2/11*5^(1/2)) 5912821730358124 p003 LerchPhi(1/6,4,223/109) 5912821732645560 k002 Champernowne real with 10*n^2+39*n+10 5912821739401806 a001 73681302247*144^(15/17) 5912821757367251 r005 Re(z^2+c),c=-11/94+35/43*I,n=63 5912821780393002 r002 39th iterates of z^2 + 5912821785865195 m001 Tribonacci^2*ln(Bloch)^2*GAMMA(1/6)^2 5912821790786448 p001 sum((-1)^n/(166*n+97)/n/(64^n),n=0..infinity) 5912821795923383 r005 Re(z^2+c),c=-19/18+19/202*I,n=20 5912821807239043 m001 cos(1/12*Pi)/(ln(2)/ln(10)+MertensB3) 5912821832946161 k002 Champernowne real with 21/2*n^2+75/2*n+11 5912821842852973 m005 (1/3*gamma-1/4)/(1/9*Pi+5/8) 5912821844569470 m001 Salem*ln(HardHexagonsEntropy)^2*GAMMA(5/12)^2 5912821892380050 a007 Real Root Of -681*x^4-171*x^3-870*x^2+98*x+410 5912821906292635 a007 Real Root Of -469*x^4+974*x^3-393*x^2+54*x+428 5912821916639854 m001 Backhouse^Kolakoski/BesselI(0,2) 5912821933246762 k002 Champernowne real with 11*n^2+36*n+12 5912821952287605 r005 Im(z^2+c),c=-33/31+1/15*I,n=5 5912821956197312 m001 (2^(1/3))^Catalan/((5^(1/2))^Catalan) 5912821964336258 q001 2089/3533 5912822008916868 s001 sum(exp(-Pi/4)^(n-1)*A090920[n],n=1..infinity) 5912822033547363 k002 Champernowne real with 23/2*n^2+69/2*n+13 5912822033823792 r009 Im(z^3+c),c=-9/17+29/48*I,n=40 5912822049811210 a007 Real Root Of 60*x^4+240*x^3-667*x^2-45*x-672 5912822066363940 a007 Real Root Of 371*x^4-206*x^3+118*x^2-962*x-698 5912822070503028 l006 ln(5426/9801) 5912822078652537 a003 sin(Pi*3/77)*sin(Pi*14/87) 5912822114733043 s002 sum(A187645[n]/(exp(2*pi*n)+1),n=1..infinity) 5912822118437203 m001 Magata/(RenyiParking^Ei(1)) 5912822120311062 m005 (1/2*2^(1/2)+6/7)/(2/3*exp(1)+5/6) 5912822133847964 k002 Champernowne real with 12*n^2+33*n+14 5912822140799401 a001 3/2161*7^(35/47) 5912822149009461 a007 Real Root Of 303*x^4-20*x^3+390*x^2-312*x-362 5912822149686343 r005 Re(z^2+c),c=-7/10+53/244*I,n=23 5912822155874901 r002 5th iterates of z^2 + 5912822173747296 m001 (ln(2)-FeigenbaumC)/(Sierpinski-TwinPrimes) 5912822194041413 r005 Im(z^2+c),c=-49/50+2/35*I,n=13 5912822211243314 k007 concat of cont frac of 5912822218698340 a007 Real Root Of 623*x^4-828*x^3-181*x^2-761*x-634 5912822223393247 r005 Re(z^2+c),c=9/110+17/40*I,n=58 5912822228853766 m001 exp(GAMMA(11/24))*Lehmer*Zeta(3)^2 5912822234148565 k002 Champernowne real with 25/2*n^2+63/2*n+15 5912822273253276 a007 Real Root Of 918*x^4+137*x^3+928*x^2-336*x-607 5912822315804260 a001 2207/5*144^(1/17) 5912822317165367 a007 Real Root Of 170*x^4+971*x^3-58*x^2+781*x-420 5912822317849461 l006 ln(4125/7451) 5912822326613273 m001 Gompertz/(PrimesInBinary^gamma(2)) 5912822331287207 a008 Real Root of x^4-2*x^3-25*x^2-2*x+77 5912822334248665 k004 Champernowne real with floor(Pi*(4*n^2+10*n+5)) 5912822334449166 k002 Champernowne real with 13*n^2+30*n+16 5912822362330859 p001 sum((-1)^n/(543*n+493)/n/(16^n),n=1..infinity) 5912822381180584 m005 (1/2*exp(1)-1/4)/(7/9*Catalan-9/10) 5912822397375250 m005 (1/2*3^(1/2)+2)/(2*5^(1/2)+3/8) 5912822434749767 k002 Champernowne real with 27/2*n^2+57/2*n+17 5912822445195661 m005 (1/2*exp(1)+7/12)/(8/11*2^(1/2)-7/10) 5912822453629520 a007 Real Root Of -312*x^4-293*x^3+462*x^2+369*x-281 5912822460289939 r005 Re(z^2+c),c=9/110+17/40*I,n=61 5912822475380997 m001 (Khinchin+1)/(GAMMA(1/6)+2/3) 5912822495636639 m001 (Psi(1,1/3)-exp(1/Pi))/(-GAMMA(7/12)+ZetaQ(2)) 5912822535050368 k002 Champernowne real with 14*n^2+27*n+18 5912822540540265 m005 (1/2*exp(1)-4/9)/(2*Zeta(3)-6/7) 5912822548204992 r002 25i'th iterates of 2*x/(1-x^2) of 5912822556763892 r005 Im(z^2+c),c=-3/8+3/32*I,n=24 5912822585171863 r002 10th iterates of z^2 + 5912822586798978 a007 Real Root Of 431*x^4-243*x^3-149*x^2-599*x-405 5912822589370181 r005 Re(z^2+c),c=-31/50+17/49*I,n=24 5912822624667420 m001 (GAMMA(17/24)+LaplaceLimit)/(Si(Pi)+3^(1/3)) 5912822633191987 a007 Real Root Of -608*x^4+854*x^3+582*x^2+562*x-638 5912822635350969 k002 Champernowne real with 29/2*n^2+51/2*n+19 5912822640818142 a003 sin(Pi*7/114)+sin(Pi*14/107) 5912822649056255 r002 4th iterates of z^2 + 5912822654453995 a007 Real Root Of 374*x^4-994*x^3+851*x^2+216*x-421 5912822673992701 r005 Im(z^2+c),c=-15/122+28/45*I,n=4 5912822706007406 a007 Real Root Of 741*x^4-696*x^3+313*x^2-78*x-390 5912822708283355 a007 Real Root Of 141*x^4-520*x^3+7*x^2-988*x+672 5912822719574382 r005 Im(z^2+c),c=-47/90+19/28*I,n=8 5912822735651570 k002 Champernowne real with 15*n^2+24*n+20 5912822741366932 a007 Real Root Of 158*x^4+884*x^3-433*x^2-854*x-294 5912822743808836 a007 Real Root Of 362*x^4-845*x^3-917*x^2-898*x+982 5912822753259529 a008 Real Root of x^4-x^3-49*x^2+166*x-284 5912822758872880 m005 (1/3*exp(1)+1/5)/(6*Pi-1/7) 5912822768572767 r005 Im(z^2+c),c=-43/64+7/29*I,n=39 5912822770234004 r005 Im(z^2+c),c=3/70+30/47*I,n=19 5912822786640911 a001 322/233*233^(4/15) 5912822791361535 m001 (Cahen-MasserGramain)/(Pi+(1+3^(1/2))^(1/2)) 5912822793097938 l006 ln(2824/5101) 5912822825207228 s001 sum(exp(-Pi)^n*A037576[n],n=1..infinity) 5912822825207228 s002 sum(A037576[n]/(exp(pi*n)),n=1..infinity) 5912822827744766 r009 Im(z^3+c),c=-47/118+32/53*I,n=17 5912822833464043 r005 Im(z^2+c),c=13/54+18/41*I,n=6 5912822835952171 k002 Champernowne real with 31/2*n^2+45/2*n+21 5912822840932359 l006 ln(2085/2212) 5912822848001171 r005 Im(z^2+c),c=-25/114+2/25*I,n=5 5912822858299500 r005 Im(z^2+c),c=23/126+19/35*I,n=35 5912822898224400 r009 Im(z^3+c),c=-47/98+21/37*I,n=4 5912822908709683 a007 Real Root Of -60*x^4+791*x^3+339*x^2+677*x-675 5912822920560465 m001 (-PolyaRandomWalk3D+Rabbit)/(1+Zeta(1,2)) 5912822921405888 m001 1/cos(Pi/5)/exp(Sierpinski)^2*sin(1) 5912822929902860 r005 Im(z^2+c),c=-51/86+19/40*I,n=16 5912822935378190 r002 55th iterates of z^2 + 5912822936152471 k004 Champernowne real with floor(Pi*(5*n^2+7*n+7)) 5912822936252772 k002 Champernowne real with 16*n^2+21*n+22 5912822950025195 a007 Real Root Of -775*x^4+442*x^3+790*x^2+922*x-818 5912822962477552 r002 63th iterates of z^2 + 5912822971835782 a001 1/48*5^(35/54) 5912822978796523 r005 Re(z^2+c),c=-15/31+37/63*I,n=37 5912822984240628 m001 1/ln((2^(1/3)))/Cahen*Zeta(1,2)^2 5912823036553373 k002 Champernowne real with 33/2*n^2+39/2*n+23 5912823066857653 a007 Real Root Of -921*x^4+88*x^3+82*x^2+470*x+380 5912823093719526 r005 Re(z^2+c),c=-27/22+12/41*I,n=8 5912823136853974 k002 Champernowne real with 17*n^2+18*n+24 5912823146266303 m001 (GaussAGM+Lehmer)/(GAMMA(5/6)+GAMMA(17/24)) 5912823146990377 r005 Re(z^2+c),c=-37/58+13/41*I,n=26 5912823159917912 m001 GAMMA(5/12)^ln(2+sqrt(3))*GAMMA(5/12)^Zeta(5) 5912823163890299 r005 Re(z^2+c),c=21/62+19/29*I,n=4 5912823167191543 r005 Im(z^2+c),c=-11/58+29/34*I,n=25 5912823188587091 a001 9/305*3^(31/49) 5912823212083550 m001 exp(1/Pi)^exp(Pi)*Artin 5912823215836201 a003 cos(Pi*16/119)-cos(Pi*40/101) 5912823237154575 k002 Champernowne real with 35/2*n^2+33/2*n+25 5912823244075596 l006 ln(4347/7852) 5912823261173472 m001 (-Khinchin+Robbin)/(5^(1/2)+KhinchinLevy) 5912823283862424 a003 sin(Pi*7/76)-sin(Pi*33/97) 5912823302451555 r002 61th iterates of z^2 + 5912823306427611 b008 -6+ArcCoth[23/2] 5912823311420573 p004 log(34159/18911) 5912823337455176 k002 Champernowne real with 18*n^2+15*n+26 5912823355703629 m005 (1/2*gamma+2/5)/(8/9*3^(1/2)-3/8) 5912823369270850 m001 LaplaceLimit^ZetaQ(2)/Zeta(1,-1) 5912823378934085 a007 Real Root Of x^4-673*x^3-258*x^2-854*x-554 5912823398023760 a001 1364/233*377^(23/59) 5912823437755777 k002 Champernowne real with 37/2*n^2+27/2*n+27 5912823470903626 r002 3th iterates of z^2 + 5912823484190817 r002 44i'th iterates of 2*x/(1-x^2) of 5912823505859045 a007 Real Root Of -351*x^4-4*x^3+196*x^2+550*x-350 5912823507348352 r005 Re(z^2+c),c=-67/94+7/48*I,n=39 5912823517784268 a001 7/317811*89^(11/50) 5912823538056278 k004 Champernowne real with floor(Pi*(6*n^2+4*n+9)) 5912823538056378 k002 Champernowne real with 19*n^2+12*n+28 5912823556148636 m001 (3^(1/2)+ln(gamma))/(Pi-exp(Pi)) 5912823559240561 a007 Real Root Of 672*x^4-763*x^3-750*x^2-413*x+582 5912823560125301 r009 Re(z^3+c),c=-15/31+6/59*I,n=9 5912823594478844 a007 Real Root Of 470*x^4-759*x^3+971*x^2+20*x-542 5912823603541995 r005 Im(z^2+c),c=-7/6+1/131*I,n=61 5912823603713062 m006 (1/5*exp(2*Pi)-3)/(3/4*exp(Pi)+1/4) 5912823631151802 m001 (Kolakoski-Rabbit)/(sin(1/12*Pi)+GAMMA(19/24)) 5912823638356979 k002 Champernowne real with 39/2*n^2+21/2*n+29 5912823640197208 m001 Cahen*(FellerTornier+Gompertz) 5912823641245976 b008 -6+Tan[2/23] 5912823645736878 r009 Re(z^3+c),c=-5/11+1/15*I,n=5 5912823658545865 a001 12752043/610*8^(1/2) 5912823669444892 a007 Real Root Of -447*x^4+521*x^3+750*x^2+267*x+58 5912823692757741 a007 Real Root Of 151*x^4-497*x^3-375*x^2-297*x+391 5912823711170141 r005 Re(z^2+c),c=-19/74+24/37*I,n=23 5912823737908763 m001 (3^(1/3))^2/ln(GlaisherKinkelin)/sqrt(2) 5912823738657580 k002 Champernowne real with 20*n^2+9*n+30 5912823751310572 a007 Real Root Of 896*x^4-612*x^3-648*x^2+121*x+172 5912823752368919 q001 936/1583 5912823755097013 p001 sum(1/(462*n+71)/n/(32^n),n=1..infinity) 5912823772380734 a007 Real Root Of 680*x^4-964*x^3+900*x^2+132*x-519 5912823800943923 r005 Im(z^2+c),c=15/58+29/55*I,n=7 5912823813122719 k007 concat of cont frac of 5912823819371755 m001 1/Zeta(9)/RenyiParking^2/ln(gamma)^2 5912823838958181 k002 Champernowne real with 41/2*n^2+15/2*n+31 5912823842576818 r005 Re(z^2+c),c=-29/42+1/27*I,n=7 5912823849618839 a008 Real Root of x^4-42*x^2-165*x-83 5912823894999723 m005 (1/2*2^(1/2)-3/11)/(3/7*Pi+6) 5912823905753203 r002 24th iterates of z^2 + 5912823935057396 r008 a(0)=6,K{-n^6,-49+14*n^3-17*n^2+64*n} 5912823939258782 k002 Champernowne real with 21*n^2+6*n+32 5912823940916404 m004 3/4+5*Sqrt[5]*Pi+5*Pi*Csc[Sqrt[5]*Pi] 5912823941883590 r009 Re(z^3+c),c=-11/98+30/43*I,n=45 5912823944393094 r002 7th iterates of z^2 + 5912823951079486 a007 Real Root Of -846*x^4-411*x^3-879*x^2+775*x+784 5912823957314294 r002 4th iterates of z^2 + 5912823974771217 h001 (3/11*exp(2)+1/11)/(4/11*exp(2)+7/8) 5912823995344800 m001 (Kolakoski-ZetaQ(4))/(ArtinRank2+Cahen) 5912823995821060 a007 Real Root Of 231*x^4-768*x^3+183*x^2-915*x-792 5912824005427950 m001 (-Bloch+Conway)/(sin(1)+BesselI(1,1)) 5912824009954368 m005 (1/2*exp(1)-7/12)/(3/4*Catalan-9/11) 5912824038541020 a001 1/2529*(1/2*5^(1/2)+1/2)^24*3^(1/3) 5912824039559383 k002 Champernowne real with 43/2*n^2+9/2*n+33 5912824050568675 a007 Real Root Of -823*x^4+441*x^3+169*x^2+442*x-311 5912824056061509 r009 Im(z^3+c),c=-19/82+33/37*I,n=7 5912824069975412 a007 Real Root Of -748*x^4-107*x^3-782*x^2+173*x+445 5912824075978749 m001 Kolakoski/Conway^2/ln(PisotVijayaraghavan)^2 5912824076436186 r005 Re(z^2+c),c=-9/19+4/7*I,n=62 5912824080294127 l006 ln(1523/2751) 5912824081732675 a007 Real Root Of -656*x^4+987*x^3-110*x^2+628*x+694 5912824114314773 m001 exp(PrimesInBinary)^2/Magata*Zeta(1,2)^2 5912824118524765 m003 -17/10+Sqrt[5]/4+Coth[1/2+Sqrt[5]/2] 5912824126213111 k006 concat of cont frac of 5912824138875913 m001 gamma+ErdosBorwein*ZetaQ(3) 5912824139859984 k002 Champernowne real with 22*n^2+3*n+34 5912824139860084 k004 Champernowne real with floor(Pi*(7*n^2+n+11)) 5912824141152515 a001 29/514229*7778742049^(14/23) 5912824180464476 h001 (-2*exp(1)+4)/(-6*exp(6)-9) 5912824182354595 a007 Real Root Of 961*x^4-578*x^3+912*x^2-665*x-949 5912824211235684 r005 Re(z^2+c),c=-19/74+31/34*I,n=3 5912824214565173 b008 23/4+(3+Pi)^(-1) 5912824215867186 h001 (3/7*exp(1)+7/10)/(5/6*exp(1)+8/9) 5912824219682657 r005 Im(z^2+c),c=-39/34+44/89*I,n=3 5912824226497250 m005 (1/2*5^(1/2)-5/9)/(5/8*Zeta(3)+1/5) 5912824237002719 m001 Zeta(1,2)^2*Paris^2*ln(Zeta(7))^2 5912824238487016 r005 Im(z^2+c),c=19/50+15/56*I,n=19 5912824240160585 k002 Champernowne real with 45/2*n^2+3/2*n+35 5912824272236680 a007 Real Root Of 64*x^4+192*x^3-975*x^2+761*x+50 5912824303890317 a003 cos(Pi*18/95)*sin(Pi*20/79) 5912824315287374 a007 Real Root Of -649*x^4-536*x^3-567*x^2+408*x+408 5912824340461186 k002 Champernowne real with 23*n^2+36 5912824345404385 r005 Im(z^2+c),c=-31/48+6/53*I,n=60 5912824379298176 p004 log(31177/29387) 5912824415231456 r005 Re(z^2+c),c=-10/9+11/36*I,n=13 5912824431985063 m001 BesselJ(0,1)^Rabbit-CopelandErdos 5912824440761787 k002 Champernowne real with 47/2*n^2-3/2*n+37 5912824456752043 m001 (5^(1/2))^GAMMA(19/24)*(5^(1/2))^MertensB2 5912824501566121 m001 (Pi+gamma(2))/(CareFree-ZetaP(3)) 5912824505891389 a008 Real Root of (9+11*x-3*x^2+7*x^3) 5912824523381844 m003 6+Cos[1/2+Sqrt[5]/2]-Sin[1/2+Sqrt[5]/2]/25 5912824532538415 a001 7/121393*6765^(21/40) 5912824534400719 m005 (1/3*gamma+2/9)/(6*Zeta(3)-1/5) 5912824541062388 k002 Champernowne real with 24*n^2-3*n+38 5912824553419442 m001 1/GlaisherKinkelin*Si(Pi)/ln(GAMMA(1/12)) 5912824585289033 r005 Re(z^2+c),c=-73/114+18/49*I,n=10 5912824589833398 h001 (7/11*exp(2)+5/11)/(1/11*exp(1)+5/8) 5912824601439556 m003 14/3+Sqrt[5]/64+Sinh[1/2+Sqrt[5]/2]/2 5912824611767685 a007 Real Root Of 676*x^4-284*x^3+597*x^2-213*x-476 5912824632068031 m005 (1/2*3^(1/2)-9/10)/(1/11*3^(1/2)-1/10) 5912824636971162 r005 Im(z^2+c),c=-7/52+53/64*I,n=26 5912824641358999 r005 Re(z^2+c),c=-5/86+43/60*I,n=38 5912824641362989 k002 Champernowne real with 49/2*n^2-9/2*n+39 5912824655617477 a007 Real Root Of -142*x^4-841*x^3+18*x^2+168*x+79 5912824658945225 m001 GAMMA(11/12)-KomornikLoreti^Thue 5912824678785297 m003 5/4+4*Log[1/2+Sqrt[5]/2]*Sinh[1/2+Sqrt[5]/2] 5912824696648945 p001 sum((-1)^n/(281*n+169)/(512^n),n=0..infinity) 5912824705423930 a007 Real Root Of 601*x^4-658*x^3-11*x^2-119*x-276 5912824708037944 r002 37th iterates of z^2 + 5912824741663590 k002 Champernowne real with 25*n^2-6*n+40 5912824749830671 a007 Real Root Of 187*x^4-909*x^3+950*x^2+952*x+20 5912824791090555 a007 Real Root Of -459*x^4+928*x^3-929*x^2-260*x+419 5912824839017079 l006 ln(4791/8654) 5912824841763790 k004 Champernowne real with floor(Pi*(8*n^2-2*n+13)) 5912824841964191 k002 Champernowne real with 51/2*n^2-15/2*n+41 5912824868514540 m002 E^Pi/Pi^4+Pi^5+Pi^5/ProductLog[Pi] 5912824894592846 r005 Im(z^2+c),c=-13/20+20/63*I,n=58 5912824905043203 r008 a(0)=6,K{-n^6,2-8*n^3+5*n^2+9*n} 5912824913783611 a007 Real Root Of 367*x^4-888*x^3+742*x^2-303*x-667 5912824922173995 r005 Im(z^2+c),c=1/23+8/13*I,n=42 5912824942264792 k002 Champernowne real with 26*n^2-9*n+42 5912824959323789 a007 Real Root Of -149*x^4+839*x^3+967*x^2+402*x-731 5912824977763326 r005 Re(z^2+c),c=7/38+21/44*I,n=18 5912824982401495 p004 log(14557/8059) 5912825037038114 r005 Im(z^2+c),c=-53/86+4/59*I,n=15 5912825037076575 a007 Real Root Of 112*x^4+779*x^3+613*x^2-469*x-67 5912825038014544 m001 MinimumGamma^2*exp(Si(Pi))^2/Porter 5912825041052699 a007 Real Root Of 947*x^4-948*x^3+292*x^2-139*x-496 5912825042565393 k002 Champernowne real with 53/2*n^2-21/2*n+43 5912825054217251 a001 4/3*233^(16/23) 5912825056488016 s002 sum(A011489[n]/((2^n-1)/n),n=1..infinity) 5912825065939714 b008 6+Sin[5]/11 5912825105938935 m001 (Kac+MertensB3)/(StolarskyHarborth-ThueMorse) 5912825107573593 m001 BesselJ(0,1)/cos(1/12*Pi)/Totient 5912825142865994 k002 Champernowne real with 27*n^2-12*n+44 5912825149525958 m001 (-GAMMA(13/24)+GaussKuzminWirsing)/(1+2^(1/3)) 5912825154175594 s002 sum(A065595[n]/((2*n)!),n=1..infinity) 5912825157011454 r009 Re(z^3+c),c=-49/82+26/51*I,n=58 5912825192607958 l006 ln(3268/5903) 5912825199101088 a008 Real Root of (-5+3*x+3*x^2-5*x^3+5*x^4+x^5) 5912825213846735 r005 Re(z^2+c),c=23/122+9/28*I,n=34 5912825231948070 m005 (1/2+1/3*5^(1/2))/(3/4*Pi-1/4) 5912825233910750 r005 Re(z^2+c),c=17/70+21/55*I,n=54 5912825243166595 k002 Champernowne real with 55/2*n^2-27/2*n+45 5912825282674091 r009 Im(z^3+c),c=-51/94+9/40*I,n=33 5912825343467196 k002 Champernowne real with 28*n^2-15*n+46 5912825350553959 m001 MasserGramain-Psi(2,1/3)+ReciprocalFibonacci 5912825353955679 a007 Real Root Of -883*x^4-645*x^3-610*x^2+741*x+626 5912825373035493 a007 Real Root Of 149*x^4+789*x^3-402*x^2+928*x+521 5912825375047780 r005 Im(z^2+c),c=23/62+8/17*I,n=4 5912825387055633 m001 (-CopelandErdos+Magata)/(1-arctan(1/2)) 5912825390781071 r002 15th iterates of z^2 + 5912825425801236 r005 Im(z^2+c),c=-7/46+29/45*I,n=28 5912825443667597 k004 Champernowne real with floor(Pi*(9*n^2-5*n+15)) 5912825443767797 k002 Champernowne real with 57/2*n^2-33/2*n+47 5912825452278156 b008 3*(1+Cos[Pi/13]) 5912825476255087 r009 Im(z^3+c),c=-47/86+38/63*I,n=46 5912825476537431 r005 Im(z^2+c),c=-25/34+1/110*I,n=4 5912825480566169 m001 OneNinth^BesselK(0,1)/Robbin 5912825530540103 l006 ln(5013/9055) 5912825533895966 m001 Shi(1)*Salem+FeigenbaumDelta 5912825537792810 r005 Im(z^2+c),c=23/114+14/27*I,n=33 5912825544068398 k002 Champernowne real with 29*n^2-18*n+48 5912825567109212 m005 (1/2*Zeta(3)+7/11)/(5/11*exp(1)+6/7) 5912825572265937 m001 1/GAMMA(1/12)/Champernowne*exp(GAMMA(5/12)) 5912825591409015 a007 Real Root Of 563*x^4-469*x^3+368*x^2-789*x+366 5912825593935828 a007 Real Root Of -13*x^4-759*x^3+567*x^2-288*x-904 5912825609240663 a007 Real Root Of -126*x^4-782*x^3-346*x^2-788*x-208 5912825610336070 a003 cos(Pi*34/97)+cos(Pi*36/79) 5912825621298072 a007 Real Root Of -100*x^4+846*x^3+307*x^2+961*x+648 5912825622710943 a001 9227465/2207*2^(1/2) 5912825625979340 a007 Real Root Of 375*x^4-394*x^3+863*x^2-115*x-497 5912825641073168 m001 1/Trott/ln(ArtinRank2)^2/Zeta(3) 5912825644368999 k002 Champernowne real with 59/2*n^2-39/2*n+49 5912825662640267 r005 Re(z^2+c),c=-7/17+25/43*I,n=28 5912825722465715 a001 199/46368*3^(7/24) 5912825742713913 r009 Im(z^3+c),c=-65/106+18/61*I,n=8 5912825744669510 k002 Champernowne real with 30*n^2-21*n+50 5912825746305447 r005 Im(z^2+c),c=-35/82+4/41*I,n=17 5912825755484852 a007 Real Root Of -413*x^4+659*x^3+243*x^2+587*x+34 5912825789791485 k002 Champernowne real with 105/2*n^2-143/2*n+24 5912825798322965 a007 Real Root Of -247*x^4-22*x^3-887*x^2+178*x+441 5912825821084237 m001 (QuadraticClass+Robbin)/(Conway+Mills) 5912825844970110 k002 Champernowne real with 61/2*n^2-45/2*n+51 5912825852093536 r005 Im(z^2+c),c=15/38+5/24*I,n=33 5912825854150116 r008 a(0)=6,K{-n^6,29-2*n+11*n^2-9*n^3} 5912825862557184 r005 Re(z^2+c),c=9/110+17/40*I,n=57 5912825877028341 b008 53+(13*Sqrt[2])/3 5912825883364171 r005 Im(z^2+c),c=-19/26+3/71*I,n=42 5912825887511294 m001 Lehmer^Chi(1)-ZetaQ(2) 5912825901361301 a007 Real Root Of -745*x^4+256*x^3+208*x^2+879*x+591 5912825905227624 r005 Im(z^2+c),c=-59/82+16/63*I,n=22 5912825905664860 a007 Real Root Of -491*x^4+53*x^3-361*x^2-2*x+196 5912825914613576 m001 OneNinth^FeigenbaumMu*OneNinth^FeigenbaumC 5912825927598910 m008 (3*Pi^5-2/5)/(5*Pi^3+1/6) 5912825941088734 b008 (13*ArcTan[7])/Pi 5912825945270710 k002 Champernowne real with 31*n^2-24*n+52 5912825958889935 m001 (cos(1)-ZetaR(2))/LaplaceLimit 5912825963718820 r005 Re(z^2+c),c=-81/56+7/30*I,n=2 5912825988718516 m001 Artin/CopelandErdos/FeigenbaumD 5912826002279091 a001 416020/9*199^(2/43) 5912826009289031 q001 1655/2799 5912826009908673 r004 Re(z^2+c),c=1/4-1/2*I,z(0)=exp(13/24*I*Pi),n=3 5912826045571310 k004 Champernowne real with floor(Pi*(10*n^2-8*n+17)) 5912826045571310 k002 Champernowne real with 63/2*n^2-51/2*n+53 5912826061898455 r008 a(0)=6,K{-n^6,5+7*n^3+31*n^2-31*n} 5912826072939174 r002 5th iterates of z^2 + 5912826089564695 m001 (FeigenbaumDelta-ln(5))/polylog(4,1/2) 5912826089564695 m001 (ln(5)-FeigenbaumDelta)/polylog(4,1/2) 5912826097180205 r002 2th iterates of z^2 + 5912826097180205 r002 2th iterates of z^2 + 5912826105469346 r005 Re(z^2+c),c=-1/19+27/38*I,n=29 5912826123082662 a001 5374978561/305*102334155^(4/21) 5912826123082662 a001 1568397607/610*2504730781961^(4/21) 5912826135968286 a001 73681302247/610*4181^(4/21) 5912826145871910 k002 Champernowne real with 32*n^2-27*n+54 5912826147928805 m005 (1/2*Zeta(3)+5/12)/(10/11*exp(1)-3/4) 5912826160432827 a007 Real Root Of 128*x^4+719*x^3-210*x^2+14*x-398 5912826163412422 l006 ln(1745/3152) 5912826172614798 r005 Re(z^2+c),c=-3/118+11/51*I,n=10 5912826180159763 r008 a(0)=0,K{-n^6,52-55*n+12*n^2+9*n^3} 5912826200428834 r009 Im(z^3+c),c=-29/54+19/64*I,n=18 5912826219846167 a007 Real Root Of 136*x^4-390*x^3+547*x^2-890*x+399 5912826232399207 m001 (3^(1/2)-sin(1)*Porter)/sin(1) 5912826246172510 k002 Champernowne real with 65/2*n^2-57/2*n+55 5912826268948744 r005 Re(z^2+c),c=19/56+4/63*I,n=19 5912826270657630 m001 (GAMMA(7/12)+ZetaQ(3))/(GAMMA(3/4)+exp(1/Pi)) 5912826291762257 m005 (1/2*5^(1/2)-1/5)/(5*Pi-2/11) 5912826291927818 m001 (-CareFree+MinimumGamma)/(Chi(1)-cos(1/12*Pi)) 5912826305572573 r005 Im(z^2+c),c=-71/114+12/47*I,n=4 5912826341863212 m001 1/FeigenbaumC^2*ln(ArtinRank2)^2/cos(Pi/5)^2 5912826346473110 k002 Champernowne real with 33*n^2-30*n+56 5912826361442395 m001 1/CareFree^2*exp(CopelandErdos)^2*FeigenbaumC 5912826363545165 r009 Re(z^3+c),c=-5/12+34/49*I,n=3 5912826372955587 a001 33385282/1597*8^(1/2) 5912826404287116 r009 Re(z^3+c),c=-19/32+30/59*I,n=7 5912826411324407 r002 8th iterates of z^2 + 5912826417124846 a007 Real Root Of -272*x^4-468*x^3-627*x^2+655*x+543 5912826433645379 r002 11th iterates of z^2 + 5912826441334564 m001 Ei(1,1)-cos(1/5*Pi)-ZetaQ(4) 5912826446773710 k002 Champernowne real with 67/2*n^2-63/2*n+57 5912826450181457 a007 Real Root Of -744*x^4-355*x^3-795*x^2+493*x+587 5912826484555915 m001 (ln(5)+Kolakoski)/(QuadraticClass-Weierstrass) 5912826492311344 m005 (1/2*Pi+9/11)/(1/10*2^(1/2)-6/11) 5912826492884153 r009 Im(z^3+c),c=-43/102+29/47*I,n=9 5912826509231460 a007 Real Root Of -835*x^4+917*x^3-119*x^2+600*x+688 5912826519228574 m001 (MasserGramain+ZetaP(4))/(Shi(1)-Zeta(1,-1)) 5912826521493966 r009 Re(z^3+c),c=-27/46+29/47*I,n=49 5912826528875240 a007 Real Root Of 842*x^4+556*x^3-378*x^2-707*x+43 5912826533847877 a007 Real Root Of 426*x^4-740*x^3-941*x^2+196*x+314 5912826539473534 p003 LerchPhi(1/2,4,218/189) 5912826547074310 k002 Champernowne real with 34*n^2-33*n+58 5912826552251622 m001 cos(Pi/5)^2*GlaisherKinkelin^2*ln(sqrt(3)) 5912826560740748 a007 Real Root Of 658*x^4+284*x^3+392*x^2-134*x-238 5912826605090677 r005 Im(z^2+c),c=3/50+34/59*I,n=12 5912826607318151 a007 Real Root Of -700*x^4-192*x^3-845*x^2-792*x-127 5912826628735756 a007 Real Root Of 397*x^4-478*x^3-536*x^2-124*x+311 5912826647374910 k002 Champernowne real with 69/2*n^2-69/2*n+59 5912826659523592 a001 24157817/5778*2^(1/2) 5912826689583688 r005 Im(z^2+c),c=-9/14+110/237*I,n=12 5912826692470710 a007 Real Root Of -19*x^4+201*x^3-758*x^2+560*x+640 5912826716549091 m001 (Artin-ln(2)/ln(10))/(-Bloch+Niven) 5912826722435907 r002 30th iterates of z^2 + 5912826744792070 l006 ln(5457/9857) 5912826747475010 k004 Champernowne real with floor(Pi*(11*n^2-11*n+19)) 5912826747675511 k002 Champernowne real with 35*n^2-36*n+60 5912826761791748 a007 Real Root Of -961*x^4-723*x^3-864*x^2+903*x+804 5912826768982837 a001 87403803/4181*8^(1/2) 5912826777281629 r002 28th iterates of z^2 + 5912826789718881 a003 sin(Pi*1/53)*sin(Pi*49/102) 5912826800769373 r002 5th iterates of z^2 + 5912826807181340 m005 (1/3*Catalan-1/11)/(8/11*5^(1/2)+2) 5912826808454148 a007 Real Root Of -289*x^4+205*x^3-315*x^2-157*x+95 5912826810792549 a001 63245986/15127*2^(1/2) 5912826826762438 a001 228826127/10946*8^(1/2) 5912826832862393 a001 165580141/39603*2^(1/2) 5912826835192369 a001 599074578/28657*8^(1/2) 5912826836082340 a001 433494437/103682*2^(1/2) 5912826836422279 a001 1568397607/75025*8^(1/2) 5912826836552124 a001 1134903170/271443*2^(1/2) 5912826836601720 a001 4106118243/196418*8^(1/2) 5912826836620664 a001 2971215073/710647*2^(1/2) 5912826836627900 a001 10749957122/514229*8^(1/2) 5912826836630664 a001 7778742049/1860498*2^(1/2) 5912826836631720 a001 28143753123/1346269*8^(1/2) 5912826836632123 a001 20365011074/4870847*2^(1/2) 5912826836632277 a001 73681302247/3524578*8^(1/2) 5912826836632336 a001 53316291173/12752043*2^(1/2) 5912826836632359 a001 192900153618/9227465*8^(1/2) 5912826836632367 a001 139583862445/33385282*2^(1/2) 5912826836632371 a001 505019158607/24157817*8^(1/2) 5912826836632372 a001 365435296162/87403803*2^(1/2) 5912826836632372 a001 1322157322203/63245986*8^(1/2) 5912826836632372 a001 956722026041/228826127*2^(1/2) 5912826836632372 a001 3461452808002/165580141*8^(1/2) 5912826836632373 a001 2504730781961/599074578*2^(1/2) 5912826836632373 a001 9062201101803/433494437*8^(1/2) 5912826836632373 a001 6557470319842/1568397607*2^(1/2) 5912826836632373 a001 23725150497407/1134903170*8^(1/2) 5912826836632373 a001 10610209857723/2537720636*2^(1/2) 5912826836632373 a001 14662949395604/701408733*8^(1/2) 5912826836632373 a001 4052739537881/969323029*2^(1/2) 5912826836632373 a001 5600748293801/267914296*8^(1/2) 5912826836632373 a001 1548008755920/370248451*2^(1/2) 5912826836632373 a001 2139295485799/102334155*8^(1/2) 5912826836632373 a001 591286729879/141422324*2^(1/2) 5912826836632373 a001 87403804/4181*8^(1/2) 5912826836632375 a001 225851433717/54018521*2^(1/2) 5912826836632378 a001 312119004989/14930352*8^(1/2) 5912826836632386 a001 86267571272/20633239*2^(1/2) 5912826836632409 a001 119218851371/5702887*8^(1/2) 5912826836632468 a001 32951280099/7881196*2^(1/2) 5912826836632622 a001 45537549124/2178309*8^(1/2) 5912826836633025 a001 12586269025/3010349*2^(1/2) 5912826836634081 a001 17393796001/832040*8^(1/2) 5912826836636845 a001 4807526976/1149851*2^(1/2) 5912826836644081 a001 6643838879/317811*8^(1/2) 5912826836663025 a001 1836311903/439204*2^(1/2) 5912826836712621 a001 2537720636/121393*8^(1/2) 5912826836842466 a001 701408733/167761*2^(1/2) 5912826837182405 a001 969323029/46368*8^(1/2) 5912826838072377 a001 267914296/64079*2^(1/2) 5912826840402352 a001 370248451/17711*8^(1/2) 5912826846502307 a001 102334155/24476*2^(1/2) 5912826847976111 k002 Champernowne real with 71/2*n^2-75/2*n+61 5912826853546093 m001 (Paris+ZetaP(4))/(exp(1/Pi)+BesselI(1,2)) 5912826862472196 a001 141422324/6765*8^(1/2) 5912826877536993 m001 (MinimumGamma+Paris)/(Sierpinski+ZetaQ(2)) 5912826895870238 a007 Real Root Of -57*x^4-330*x^3+70*x^2+25*x-846 5912826899128268 q001 2374/4015 5912826904281910 a001 4181*2^(1/2) 5912826929153696 a003 cos(Pi*5/116)*sin(Pi*23/113) 5912826948276711 k002 Champernowne real with 36*n^2-39*n+62 5912826962192825 r005 Re(z^2+c),c=-6/11+17/44*I,n=6 5912826972275667 r005 Re(z^2+c),c=-19/32+21/59*I,n=8 5912826976492931 m001 (QuadraticClass+Trott)/(cos(1/12*Pi)+Landau) 5912827000651395 m001 (Mills+ZetaP(3))/(gamma(3)+FeigenbaumAlpha) 5912827003079519 a007 Real Root Of -602*x^4+987*x^3+981*x^2+691*x-882 5912827010165521 m001 Zeta(1/2)+exp(Pi)^Mills 5912827011535047 a007 Real Root Of -347*x^4+826*x^3-633*x^2+646*x-289 5912827013741164 a001 54018521/2584*8^(1/2) 5912827013847877 r002 18i'th iterates of 2*x/(1-x^2) of 5912827018096877 l006 ln(3712/6705) 5912827048577311 k002 Champernowne real with 73/2*n^2-81/2*n+63 5912827057335282 p003 LerchPhi(1/16,5,143/204) 5912827068681646 a007 Real Root Of 662*x^4-435*x^3-625*x^2-564*x+561 5912827101590909 l006 ln(4/1479) 5912827105796403 r005 Im(z^2+c),c=-7/38+16/25*I,n=30 5912827130164351 r002 57th iterates of z^2 + 5912827148877911 k002 Champernowne real with 37*n^2-42*n+64 5912827160114156 m003 4*E^(-1/2-Sqrt[5]/2)-Sinh[1/2+Sqrt[5]/2]/12 5912827164907778 a007 Real Root Of 393*x^4+970*x^3+768*x^2-186*x-226 5912827173909139 m001 (Khinchin-Zeta(3)*GAMMA(5/24))/GAMMA(5/24) 5912827176911092 p004 log(16963/9391) 5912827179556890 a007 Real Root Of -361*x^4-812*x^3-930*x^2+850*x+704 5912827199305393 m001 (BesselJ(0,1)-Cahen)/(Lehmer+Porter) 5912827212178476 r005 Im(z^2+c),c=35/118+25/62*I,n=20 5912827227265307 a003 -1+cos(2/15*Pi)+2*cos(5/27*Pi)-cos(1/27*Pi) 5912827249178511 k002 Champernowne real with 75/2*n^2-87/2*n+65 5912827260588941 r004 Re(z^2+c),c=-13/14+1/9*I,z(0)=-1,n=17 5912827274502978 m005 (1/2*5^(1/2)+3/5)/(2/3*Pi-5) 5912827290078699 a003 cos(Pi*19/67)*sin(Pi*30/77) 5912827300309231 a001 14930352/3571*2^(1/2) 5912827305866113 m001 (-FeigenbaumC+TwinPrimes)/(Cahen-sin(1)) 5912827330597159 r005 Re(z^2+c),c=9/110+17/40*I,n=53 5912827349378811 k004 Champernowne real with floor(Pi*(12*n^2-14*n+21)) 5912827349479111 k002 Champernowne real with 38*n^2-45*n+66 5912827354047626 m005 (1/2*5^(1/2)+7/11)/(10/11*Pi+1/9) 5912827362216027 a007 Real Root Of -987*x^4-97*x^3-391*x^2-288*x+67 5912827367382823 r005 Re(z^2+c),c=1/15+37/60*I,n=54 5912827378888159 m001 (-GAMMA(13/24)+Otter)/(1+GAMMA(3/4)) 5912827390095106 r009 Im(z^3+c),c=-21/44+25/44*I,n=49 5912827418974932 r008 a(0)=6,K{-n^6,7-2*n^3+7*n^2+5*n} 5912827439669412 r002 33th iterates of z^2 + 5912827449779711 k002 Champernowne real with 77/2*n^2-93/2*n+67 5912827468063634 s002 sum(A114391[n]/(pi^n+1),n=1..infinity) 5912827508553830 m001 Catalan^(FeigenbaumMu/Gompertz) 5912827521200253 r009 Re(z^3+c),c=-19/58+33/49*I,n=44 5912827528746389 m001 (1-Si(Pi))/(BesselI(0,1)+ZetaP(3)) 5912827544335565 m005 (1/2*gamma+1/8)/(1/5*2^(1/2)+5/12) 5912827550080311 k002 Champernowne real with 39*n^2-48*n+68 5912827612753706 r005 Re(z^2+c),c=-51/86+17/53*I,n=6 5912827614633180 r002 5th iterates of z^2 + 5912827627052509 a005 (1/cos(9/235*Pi))^1197 5912827648371924 r005 Im(z^2+c),c=-9/14+18/155*I,n=41 5912827650380911 k002 Champernowne real with 79/2*n^2-99/2*n+69 5912827711144231 k009 concat of cont frac of 5912827719432409 a007 Real Root Of -868*x^4+642*x^3+884*x^2+178*x+35 5912827733303660 a007 Real Root Of -496*x^4+805*x^3-988*x^2+236*x+712 5912827750681512 k002 Champernowne real with 40*n^2-51*n+70 5912827753278035 a007 Real Root Of -89*x^4+246*x^3-983*x^2+987*x+989 5912827754504752 r005 Re(z^2+c),c=-11/14+27/184*I,n=32 5912827776319680 l006 ln(1967/3553) 5912827787061845 a007 Real Root Of -712*x^4-152*x^3-184*x^2+658*x+509 5912827800192665 a007 Real Root Of -164*x^4+562*x^3-933*x^2-136*x+382 5912827804247103 m005 (1/2*gamma-1/7)/(2/3*Catalan-6/7) 5912827814601896 a007 Real Root Of 15*x^4-989*x^3+365*x^2-171*x-435 5912827825249414 h001 (1/4*exp(1)+5/7)/(7/10*exp(1)+5/11) 5912827835138017 a007 Real Root Of 609*x^4-70*x^3+572*x^2-905*x-824 5912827844124683 r005 Im(z^2+c),c=9/32+37/61*I,n=29 5912827847947423 a007 Real Root Of 780*x^4-936*x^3+740*x^2+855*x-42 5912827850982112 k002 Champernowne real with 81/2*n^2-105/2*n+71 5912827878558474 m001 GAMMA(7/12)-LambertW(1)*(1+3^(1/2))^(1/2) 5912827878558474 m001 GAMMA(7/12)-LambertW(1)*sqrt(1+sqrt(3)) 5912827880609855 r002 13th iterates of z^2 + 5912827905324118 a007 Real Root Of 552*x^4-500*x^3-589*x^2-609*x-325 5912827925147396 m001 ArtinRank2^MertensB3/(MertensB2^MertensB3) 5912827939024826 m001 ((1+3^(1/2))^(1/2)-Kolakoski)/(Lehmer+Thue) 5912827950763195 m001 (Lehmer+Thue)/(BesselJ(1,1)-DuboisRaymond) 5912827951282612 k004 Champernowne real with floor(Pi*(13*n^2-17*n+23)) 5912827951282712 k002 Champernowne real with 41*n^2-54*n+72 5912827951972466 m001 (Zeta(1,2)+OneNinth)/(ln(Pi)+sin(1/12*Pi)) 5912827962780020 r009 Im(z^3+c),c=-29/118+20/29*I,n=39 5912827975694318 m001 (sin(1)+Pi^(1/2))/(PrimesInBinary+Trott2nd) 5912827988338192 r009 Im(z^3+c),c=-13/30+3/7*I,n=2 5912827998711865 a001 11/34*377^(24/49) 5912828010258384 m001 (-exp(-1/2*Pi)+Paris)/(2^(1/3)-exp(1/exp(1))) 5912828020753069 h001 (4/11*exp(1)+3/11)/(1/4*exp(2)+2/7) 5912828025249183 m005 (-7/4+1/4*5^(1/2))/(7/12*exp(1)+3/7) 5912828041972079 a007 Real Root Of -109*x^4+670*x^3-45*x^2+936*x+721 5912828050554301 a001 20633239/987*8^(1/2) 5912828051583312 k002 Champernowne real with 83/2*n^2-111/2*n+73 5912828095194442 r008 a(0)=6,K{-n^6,13+25*n-4*n^2-23*n^3} 5912828106355051 a007 Real Root Of 985*x^4+824*x^3+661*x^2-316*x-368 5912828136464209 l006 ln(8537/9057) 5912828151883912 k002 Champernowne real with 42*n^2-57*n+74 5912828153368305 m005 (1/2*gamma-5/12)/(19/16+7/16*5^(1/2)) 5912828154355549 m001 BesselI(0,2)^sin(1)*Otter 5912828177545634 a007 Real Root Of -346*x^4+910*x^3+818*x^2+873*x-948 5912828189831105 r002 2th iterates of z^2 + 5912828192561107 a005 (1/sin(59/233*Pi))^190 5912828212042134 a001 956722026041/123*123^(9/10) 5912828213754797 p001 sum((-1)^n/(200*n+169)/(625^n),n=0..infinity) 5912828231763192 m001 (3^(1/3)-CareFree)/(FeigenbaumKappa-OneNinth) 5912828242645486 m001 (ln(2)+Robbin)/(BesselI(0,1)-Zeta(5)) 5912828252184512 k002 Champernowne real with 85/2*n^2-117/2*n+75 5912828254522906 r009 Re(z^3+c),c=-9/106+10/23*I,n=19 5912828264224778 r005 Im(z^2+c),c=-69/106+4/35*I,n=58 5912828270382024 m001 (GAMMA(2/3)-LambertW(1))/(Bloch+Thue) 5912828285973560 m001 1/ln(arctan(1/2))^2*Porter*cosh(1)^2 5912828309074460 h001 (7/12*exp(1)+6/11)/(3/8*exp(2)+5/6) 5912828309792089 a007 Real Root Of -713*x^4+363*x^3-327*x^2+82*x+325 5912828333305214 r005 Im(z^2+c),c=-47/106+9/16*I,n=62 5912828336958494 a007 Real Root Of 501*x^4-731*x^3+136*x^2-149*x-348 5912828339999658 m001 (-GAMMA(2/3)+Sarnak)/(Psi(1,1/3)+LambertW(1)) 5912828352485112 k002 Champernowne real with 43*n^2-60*n+76 5912828362825213 m001 exp(FeigenbaumB)^2*Kolakoski^2*BesselK(0,1)^2 5912828365772916 b008 -2+E^Pi*(-1/2+Pi) 5912828365772916 m002 -2-E^Pi/2+E^Pi*Pi 5912828372205107 a001 47/10946*1597^(16/45) 5912828372243970 a007 Real Root Of -436*x^4+276*x^3-61*x^2+628*x+503 5912828376698780 m009 (3/4*Psi(1,3/4)+3)/(3/4*Psi(1,2/3)+6) 5912828409087053 m008 (1/2*Pi-2/3)/(5*Pi^5-1) 5912828452785712 k002 Champernowne real with 87/2*n^2-123/2*n+77 5912828453538843 l006 ln(4156/7507) 5912828454610494 a007 Real Root Of -361*x^4+320*x^3+60*x^2+172*x+191 5912828465925452 a007 Real Root Of -552*x^4+535*x^3+659*x^2+399*x-26 5912828492588587 m001 (exp(1/Pi)+LandauRamanujan2nd)/(2^(1/2)+Ei(1)) 5912828516218352 r005 Re(z^2+c),c=-27/40+10/43*I,n=25 5912828553086312 k002 Champernowne real with 44*n^2-63*n+78 5912828553086312 k004 Champernowne real with floor(Pi*(14*n^2-20*n+25)) 5912828554063423 a007 Real Root Of -210*x^4+322*x^3-392*x^2+583*x+574 5912828554315580 m001 HeathBrownMoroz/HardyLittlewoodC5*Tribonacci 5912828573985934 r002 22th iterates of z^2 + 5912828579866208 a007 Real Root Of 581*x^4-236*x^3+216*x^2-604*x+35 5912828586671841 m001 GAMMA(2/3)*(2^(1/3))*ln(sqrt(2)) 5912828590036765 a001 322*3^(26/47) 5912828612928825 m001 (GAMMA(19/24)+Conway)/(BesselK(0,1)-gamma(3)) 5912828624534732 a007 Real Root Of -240*x^4+931*x^3+163*x^2+276*x+328 5912828653386912 k002 Champernowne real with 89/2*n^2-129/2*n+79 5912828654084571 r009 Im(z^3+c),c=-5/38+37/50*I,n=21 5912828671732903 a007 Real Root Of -853*x^4+970*x^3-959*x^2+558*x+970 5912828680522795 m001 (Chi(1)-LambertW(1))/(-ln(2+3^(1/2))+Thue) 5912828705965041 r008 a(0)=6,K{-n^6,59-56*n+37*n^2-29*n^3} 5912828738072334 r008 a(0)=6,K{-n^6,5+42*n-57*n^2+23*n^3} 5912828739401283 a003 sin(Pi*14/73)/sin(Pi*31/76) 5912828753687513 k002 Champernowne real with 45*n^2-66*n+80 5912828765441117 a003 sin(Pi*7/67)/cos(Pi*25/79) 5912828767223011 r002 22th iterates of z^2 + 5912828775989345 r005 Im(z^2+c),c=-11/78+13/20*I,n=43 5912828784310937 r005 Re(z^2+c),c=3/32+23/52*I,n=37 5912828784836712 m005 (23/44+1/4*5^(1/2))/(7/11*3^(1/2)+8/11) 5912828787439796 a007 Real Root Of -407*x^4-656*x^3-283*x^2+881*x+534 5912828789732876 m005 (1/3*exp(1)-3/5)/(1/8*2^(1/2)+5) 5912828797599583 m001 OneNinth-Psi(1,1/3)*Gompertz 5912828822969044 r005 Im(z^2+c),c=-45/64+13/35*I,n=9 5912828837493546 a001 28143753123/1597*102334155^(4/21) 5912828837493546 a001 4106118243/1597*2504730781961^(4/21) 5912828850379177 a001 192900153618/1597*4181^(4/21) 5912828853988113 k002 Champernowne real with 91/2*n^2-135/2*n+81 5912828873679649 m002 Pi^3/6+4/(5*ProductLog[Pi]) 5912828892842515 a005 (1/cos(11/103*Pi))^1235 5912828894599044 p004 log(27277/15101) 5912828902557086 m001 (GaussAGM-Magata)/(cos(1/5*Pi)-Artin) 5912828910569517 r009 Im(z^3+c),c=-47/86+21/64*I,n=35 5912828915676153 r009 Re(z^3+c),c=-13/25+26/41*I,n=9 5912828920402226 h001 (7/10*exp(1)+9/11)/(6/11*exp(2)+4/7) 5912828922282469 m001 GaussKuzminWirsing^(Stephens/Mills) 5912828922922284 a007 Real Root Of -832*x^4+316*x^3-819*x^2+752*x+898 5912828947368421 q001 719/1216 5912828954288713 k002 Champernowne real with 46*n^2-69*n+82 5912829013600293 g006 Psi(1,3/7)+Psi(1,3/5)-Psi(1,7/8)-Psi(1,5/6) 5912829054589313 k002 Champernowne real with 93/2*n^2-141/2*n+83 5912829062076992 l006 ln(2189/3954) 5912829084184672 m001 (ln(gamma)+Niven)/(2^(1/2)+cos(1)) 5912829090047441 m006 (3/4*Pi^2-1/6)/(1/2*exp(Pi)+2/3) 5912829117732233 r009 Re(z^3+c),c=-9/106+10/23*I,n=22 5912829120187227 a008 Real Root of x^4-x^3-26*x^2+57*x-183 5912829121208323 m001 Bloch/cos(1/5*Pi)/Paris 5912829147503885 a007 Real Root Of -14*x^4+469*x^3-732*x^2+388*x+584 5912829154889913 k002 Champernowne real with 47*n^2-72*n+84 5912829165607366 h001 (5/12*exp(1)+6/11)/(1/3*exp(2)+3/8) 5912829168280932 h001 (5/7*exp(1)+7/12)/(1/9*exp(1)+1/8) 5912829183439364 a007 Real Root Of 298*x^4-593*x^3-563*x^2-640*x-36 5912829193384842 m008 (1/4*Pi^3+1)/(1/2*Pi^5-5) 5912829194451164 r005 Re(z^2+c),c=-23/44+23/48*I,n=26 5912829197833340 m001 gamma^2*GAMMA(5/6)^2*exp(log(2+sqrt(3)))^2 5912829216751628 a001 2/39088169*6557470319842^(16/17) 5912829220521608 a001 2/17711*1836311903^(16/17) 5912829233520965 a001 73681302247/4181*102334155^(4/21) 5912829233520965 a001 10749957122/4181*2504730781961^(4/21) 5912829246406597 a001 505019158607/4181*4181^(4/21) 5912829248550346 r009 Re(z^3+c),c=-9/106+10/23*I,n=24 5912829254990113 k004 Champernowne real with floor(Pi*(15*n^2-23*n+27)) 5912829255190513 k002 Champernowne real with 95/2*n^2-147/2*n+85 5912829267565111 a007 Real Root Of 658*x^4-322*x^3-669*x^2-433*x+28 5912829270377597 h001 (-11*exp(2)-9)/(-8*exp(3)+8) 5912829285218538 m005 (1/3*gamma-1/3)/(7/10*5^(1/2)+9/11) 5912829291300591 a001 96450076809/5473*102334155^(4/21) 5912829291300592 a001 28143753123/10946*2504730781961^(4/21) 5912829292084768 r009 Re(z^3+c),c=-9/106+10/23*I,n=20 5912829299016200 r009 Re(z^3+c),c=-9/106+10/23*I,n=26 5912829299730525 a001 505019158607/28657*102334155^(4/21) 5912829299730525 a001 73681302247/28657*2504730781961^(4/21) 5912829300960436 a001 1322157322203/75025*102334155^(4/21) 5912829300960436 a001 192900153618/75025*2504730781961^(4/21) 5912829300981646 r005 Re(z^2+c),c=-57/118+19/32*I,n=42 5912829301139878 a001 1730726404001/98209*102334155^(4/21) 5912829301139878 a001 505019158607/196418*2504730781961^(4/21) 5912829301166058 a001 9062201101803/514229*102334155^(4/21) 5912829301166058 a001 1322157322203/514229*2504730781961^(4/21) 5912829301169878 a001 23725150497407/1346269*102334155^(4/21) 5912829301169878 a001 3461452808002/1346269*2504730781961^(4/21) 5912829301170435 a001 9062201101803/3524578*2504730781961^(4/21) 5912829301170516 a001 23725150497407/9227465*2504730781961^(4/21) 5912829301170566 a001 14662949395604/5702887*2504730781961^(4/21) 5912829301170779 a001 5600748293801/2178309*2504730781961^(4/21) 5912829301172238 a001 3665737348901/208010*102334155^(4/21) 5912829301172238 a001 2139295485799/832040*2504730781961^(4/21) 5912829301182238 a001 5600748293801/317811*102334155^(4/21) 5912829301182238 a001 817138163596/317811*2504730781961^(4/21) 5912829301250779 a001 2139295485799/121393*102334155^(4/21) 5912829301250779 a001 312119004989/121393*2504730781961^(4/21) 5912829301720563 a001 204284540899/11592*102334155^(4/21) 5912829301720563 a001 119218851371/46368*2504730781961^(4/21) 5912829304186223 a001 1322157322203/10946*4181^(4/21) 5912829304940511 a001 1568437211/89*102334155^(4/21) 5912829304940511 a001 45537549124/17711*2504730781961^(4/21) 5912829310366269 r009 Re(z^3+c),c=-9/106+10/23*I,n=28 5912829312031741 r009 Re(z^3+c),c=-9/106+10/23*I,n=31 5912829312053694 r009 Re(z^3+c),c=-9/106+10/23*I,n=33 5912829312056479 r009 Re(z^3+c),c=-9/106+10/23*I,n=30 5912829312081825 r009 Re(z^3+c),c=-9/106+10/23*I,n=35 5912829312090241 r009 Re(z^3+c),c=-9/106+10/23*I,n=37 5912829312091875 r009 Re(z^3+c),c=-9/106+10/23*I,n=39 5912829312092040 r009 Re(z^3+c),c=-9/106+10/23*I,n=42 5912829312092050 r009 Re(z^3+c),c=-9/106+10/23*I,n=44 5912829312092056 r009 Re(z^3+c),c=-9/106+10/23*I,n=46 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=48 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=50 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=53 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=51 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=55 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=57 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=59 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=62 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=64 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=61 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=63 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=60 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=58 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=56 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=54 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=52 5912829312092057 r009 Re(z^3+c),c=-9/106+10/23*I,n=49 5912829312092058 r009 Re(z^3+c),c=-9/106+10/23*I,n=47 5912829312092061 r009 Re(z^3+c),c=-9/106+10/23*I,n=45 5912829312092069 r009 Re(z^3+c),c=-9/106+10/23*I,n=43 5912829312092071 r009 Re(z^3+c),c=-9/106+10/23*I,n=41 5912829312092084 r009 Re(z^3+c),c=-9/106+10/23*I,n=40 5912829312092698 r009 Re(z^3+c),c=-9/106+10/23*I,n=38 5912829312096588 r009 Re(z^3+c),c=-9/106+10/23*I,n=36 5912829312113036 r009 Re(z^3+c),c=-9/106+10/23*I,n=34 5912829312151007 r009 Re(z^3+c),c=-9/106+10/23*I,n=32 5912829312540765 r009 Re(z^3+c),c=-9/106+10/23*I,n=29 5912829312616157 a001 3461452808002/28657*4181^(4/21) 5912829313846068 a001 9062201101803/75025*4181^(4/21) 5912829314025509 a001 23725150497407/196418*4181^(4/21) 5912829314136410 a001 14662949395604/121393*4181^(4/21) 5912829314606194 a001 5600748293801/46368*4181^(4/21) 5912829317189168 r009 Re(z^3+c),c=-9/106+10/23*I,n=27 5912829317826143 a001 2139295485799/17711*4181^(4/21) 5912829327010365 a001 119218851371/6765*102334155^(4/21) 5912829327010365 a001 17393796001/6765*2504730781961^(4/21) 5912829334380467 m001 sin(1/5*Pi)+FellerTornier*Trott 5912829339032968 a007 Real Root Of 798*x^4-521*x^3-549*x^2-769*x-468 5912829339895996 a001 817138163596/6765*4181^(4/21) 5912829342327316 r009 Re(z^3+c),c=-9/106+10/23*I,n=25 5912829344277539 r009 Im(z^3+c),c=-5/11+29/64*I,n=5 5912829346698300 m005 (1/2*5^(1/2)+5/6)/(4*Catalan-4/11) 5912829355491113 k002 Champernowne real with 48*n^2-75*n+86 5912829376723673 m001 ln(cosh(1))/FeigenbaumB/log(1+sqrt(2)) 5912829385917607 a008 Real Root of (17+18*x-17*x^2+2*x^3) 5912829428606767 m002 E^Pi+Pi^4/4+Cosh[Pi]*Coth[Pi] 5912829432019635 r009 Re(z^3+c),c=-9/106+10/23*I,n=23 5912829439847403 a007 Real Root Of 105*x^4-755*x^3+668*x^2-6*x-406 5912829454741576 a001 29/1346269*832040^(2/27) 5912829455791713 k002 Champernowne real with 97/2*n^2-153/2*n+87 5912829478279397 a001 11384387281/646*102334155^(4/21) 5912829478279397 a001 6643838879/2584*2504730781961^(4/21) 5912829483381633 r008 a(0)=6,K{-n^6,11-19*n^3-17*n^2+36*n} 5912829484832461 m001 Mills^Zeta(1/2)/ln(Pi) 5912829491165029 a001 312119004989/2584*4181^(4/21) 5912829491658342 b008 SinIntegral[11/186] 5912829499507556 r002 41th iterates of z^2 + 5912829505024283 m001 Kolakoski*BesselK(1,1)^LandauRamanujan2nd 5912829526567420 r005 Re(z^2+c),c=-35/54+7/62*I,n=3 5912829532069748 r009 Im(z^3+c),c=-27/106+29/45*I,n=11 5912829543358693 r009 Re(z^3+c),c=-9/106+10/23*I,n=21 5912829556092313 k002 Champernowne real with 49*n^2-78*n+88 5912829559656783 r009 Im(z^3+c),c=-7/62+17/26*I,n=3 5912829560493802 m005 (1/2*Catalan-1/4)/(2/11*3^(1/2)-2/3) 5912829571271608 r002 6th iterates of z^2 + 5912829583385629 a007 Real Root Of 709*x^4-694*x^3+702*x^2+395*x-242 5912829592681418 m001 GAMMA(11/12)*FellerTornier/Stephens 5912829611877949 l006 ln(4600/8309) 5912829656392913 k002 Champernowne real with 99/2*n^2-159/2*n+89 5912829685900597 h001 (10/11*exp(1)+9/10)/(1/7*exp(1)+2/11) 5912829686489887 r002 18th iterates of z^2 + 5912829697199357 a007 Real Root Of -199*x^4+997*x^3-351*x^2+475*x+634 5912829725443497 m001 (exp(1/Pi)-Bloch)/(Lehmer-TreeGrowth2nd) 5912829756693514 k002 Champernowne real with 50*n^2-81*n+90 5912829758725522 p001 sum(1/(582*n+17)/(6^n),n=0..infinity) 5912829768198223 m001 2*Pi/GAMMA(5/6)+(1+3^(1/2))^(1/2)-Mills 5912829771072985 a001 3571/3*34^(5/11) 5912829798660872 r005 Im(z^2+c),c=27/74+13/46*I,n=31 5912829809015442 r002 4th iterates of z^2 + 5912829812740790 r009 Re(z^3+c),c=-19/32+15/59*I,n=29 5912829815759020 r009 Im(z^3+c),c=-35/102+37/49*I,n=2 5912829821134257 a007 Real Root Of -690*x^4+578*x^3+737*x^2+988*x-877 5912829824512176 b008 11*ArcSinh[108] 5912829831590889 p004 log(29683/16433) 5912829844199148 r005 Im(z^2+c),c=-8/7+1/127*I,n=16 5912829844310728 v002 sum(1/(5^n*(32*n^2-95*n+104)),n=1..infinity) 5912829847744978 l006 ln(6452/6845) 5912829856893914 k004 Champernowne real with floor(Pi*(16*n^2-26*n+29)) 5912829856994114 k002 Champernowne real with 101/2*n^2-165/2*n+91 5912829892893777 r002 17th iterates of z^2 + 5912829957278048 a007 Real Root Of -631*x^4+789*x^3+826*x^2+890*x-901 5912829957294714 k002 Champernowne real with 51*n^2-84*n+92 5912829972965922 a007 Real Root Of -87*x^4-203*x^3-889*x^2-427*x+27 5912829977229259 a007 Real Root Of 423*x^4-912*x^3+818*x^2-507*x-826 5912829981507921 m001 (OneNinth*Stephens+ZetaQ(4))/OneNinth 5912829993771289 r005 Im(z^2+c),c=29/122+27/55*I,n=38 5912830013280862 a007 Real Root Of -947*x^4+696*x^3+389*x^2+623*x+492 5912830014722296 a001 5702887/1364*2^(1/2) 5912830025296451 r008 a(0)=6,K{-n^6,-1+12*n^3+13*n^2-12*n} 5912830041810095 r002 43th iterates of z^2 + 5912830052623427 a001 2/377*13^(47/50) 5912830053344406 m001 Cahen*GlaisherKinkelin/HardHexagonsEntropy 5912830057595314 k002 Champernowne real with 103/2*n^2-171/2*n+93 5912830075774442 m001 (ln(5)+Cahen)/(FeigenbaumDelta-Thue) 5912830094874496 m001 exp(CareFree)/FeigenbaumAlpha^2*FeigenbaumC 5912830103603369 b008 1/2+Erfc[ArcSec[E]] 5912830111054321 l006 ln(2411/4355) 5912830133715988 m001 KhinchinLevy*(Totient-sin(1)) 5912830133889252 a007 Real Root Of -183*x^4-940*x^3+825*x^2-102*x-82 5912830143890564 m001 (ln(2)-BesselI(1,2))/(GAMMA(7/12)-Trott) 5912830157895914 k002 Champernowne real with 52*n^2-87*n+94 5912830163719929 v002 sum(1/(2^n+(n^2+46*n-8)),n=1..infinity) 5912830165917539 m001 (BesselK(0,1)-exp(1))/(Zeta(3)+FeigenbaumD) 5912830169255087 a003 cos(Pi*7/117)-cos(Pi*16/43) 5912830170156472 m001 (-Sierpinski+Totient)/(gamma+GAMMA(7/12)) 5912830172943070 r005 Im(z^2+c),c=-63/110+3/38*I,n=13 5912830195012014 a007 Real Root Of 684*x^4-309*x^3-938*x^2-896*x+838 5912830205495442 m005 (1/2*gamma+7/9)/(5/6*2^(1/2)+5/8) 5912830244873933 r009 Im(z^3+c),c=-13/42+38/61*I,n=6 5912830255580586 b008 -15*Sqrt[17]+E 5912830258196514 k002 Champernowne real with 105/2*n^2-177/2*n+95 5912830259358147 r004 Re(z^2+c),c=3/26-4/5*I,z(0)=exp(7/24*I*Pi),n=3 5912830305267333 a007 Real Root Of 785*x^4-261*x^3-245*x^2-304*x-244 5912830319529819 a007 Real Root Of 169*x^4-531*x^3+518*x^2+559*x+19 5912830329894727 m005 (1/2*Catalan-4)/(-23/48+3/16*5^(1/2)) 5912830357220497 h001 (3/10*exp(1)+4/5)/(9/10*exp(1)+2/7) 5912830358497114 k002 Champernowne real with 53*n^2-90*n+96 5912830383826014 m005 (1/3*exp(1)-1/11)/(3/7*3^(1/2)+7/11) 5912830400619363 a001 3/76*29^(3/25) 5912830413771442 a001 514229/18*521^(5/43) 5912830420249780 a007 Real Root Of -425*x^4+760*x^3-671*x^2-155*x+352 5912830449914731 a007 Real Root Of -869*x^4+181*x^3+21*x^2+309*x+319 5912830458797714 k004 Champernowne real with floor(Pi*(17*n^2-29*n+31)) 5912830458797714 k002 Champernowne real with 107/2*n^2-183/2*n+97 5912830459498764 r005 Re(z^2+c),c=-37/50+1/9*I,n=42 5912830460563052 r005 Im(z^2+c),c=11/98+2/45*I,n=9 5912830464566839 h001 (4/7*exp(2)+1/9)/(11/12*exp(2)+5/9) 5912830480774186 a001 305/38*18^(38/55) 5912830481964952 a007 Real Root Of 168*x^4-950*x^3+110*x^2-204*x-376 5912830486801356 m006 (5/6/Pi+4)/(1/3*exp(Pi)-1/2) 5912830515092978 a001 17393796001/987*102334155^(4/21) 5912830515092978 a001 2537720636/987*2504730781961^(4/21) 5912830527789777 r005 Im(z^2+c),c=-21/44+29/49*I,n=36 5912830527978612 a001 119218851371/987*4181^(4/21) 5912830528853696 r005 Im(z^2+c),c=-47/74+5/51*I,n=23 5912830537613148 r009 Re(z^3+c),c=-11/21+2/5*I,n=40 5912830541358673 a007 Real Root Of -196*x^4+705*x^3+12*x^2+241*x+308 5912830546185162 a007 Real Root Of 993*x^4-842*x^3+450*x^2-271*x-613 5912830557291802 m001 (MadelungNaCl-Robbin)/(Salem+TwinPrimes) 5912830559098314 k002 Champernowne real with 54*n^2-93*n+98 5912830561803684 r009 Im(z^3+c),c=-49/102+16/27*I,n=18 5912830566290482 l006 ln(5044/9111) 5912830575322765 a001 4181/18*1364^(33/43) 5912830580085796 a007 Real Root Of 106*x^4-685*x^3-105*x^2-867*x+678 5912830587993086 m001 (PolyaRandomWalk3D+Porter)/(Artin+FeigenbaumD) 5912830625742659 m004 -75/Pi+5*Pi+125*Pi*ProductLog[Sqrt[5]*Pi] 5912830633194776 a007 Real Root Of -492*x^4+880*x^3+523*x^2+184*x+168 5912830640784088 r002 2th iterates of z^2 + 5912830641038054 p001 sum(1/(320*n+171)/(32^n),n=0..infinity) 5912830643258422 r005 Im(z^2+c),c=-9/56+23/28*I,n=20 5912830659032292 g007 Psi(2,7/10)+Psi(2,4/9)+Psi(2,3/8)-Psi(2,3/5) 5912830659351901 a005 (1/cos(13/144*Pi))^1512 5912830659398914 k002 Champernowne real with 109/2*n^2-189/2*n+99 5912830692785670 r005 Im(z^2+c),c=-79/114+8/23*I,n=45 5912830697353190 m001 ln(Zeta(7))^2/KhintchineHarmonic/sin(Pi/12)^2 5912830706482372 m001 LandauRamanujan2nd/(Bloch-Backhouse) 5912830709566568 m001 HardyLittlewoodC5^(Ei(1,1)*Khinchin) 5912830721746051 m005 (1/3*Catalan-1/9)/(10/11*Pi+3/7) 5912830727626429 m001 (GolombDickman-Trott2nd)/Psi(1,1/3) 5912830728882793 a007 Real Root Of 473*x^4+23*x^3+122*x^2-961*x+463 5912830739166020 m009 (1/6*Psi(1,1/3)+1/6)/(3/10*Pi^2+1/6) 5912830759699515 k002 Champernowne real with 55*n^2-96*n+100 5912830788221764 r002 23th iterates of z^2 + 5912830792933867 a007 Real Root Of -474*x^4+492*x^3-617*x^2+867*x+888 5912830819426870 r005 Im(z^2+c),c=5/118+25/41*I,n=45 5912830855008023 m006 (3/4*Pi+4)/(1/5*exp(2*Pi)+2/5) 5912830859910011 k002 Champernowne real with 111/2*n^2-195/2*n+101 5912830868084696 a003 cos(Pi*29/107)*sin(Pi*39/110) 5912830871741982 m005 (1/2*3^(1/2)+1/9)/(4/9*exp(1)+4/9) 5912830883787986 m001 (gamma(1)+GAMMA(7/12))/(LambertW(1)+Ei(1)) 5912830888165271 a007 Real Root Of -131*x^4+737*x^3-184*x^2+814*x+714 5912830901195225 a007 Real Root Of -968*x^4-591*x^3+242*x^2+865*x+423 5912830924936026 m001 (Otter+Sarnak)/(gamma(3)-GolombDickman) 5912830927063025 m005 (1/2*Catalan+4/9)/(3/7*gamma-2/5) 5912830939388885 m001 (exp(-1/2*Pi)-Conway)/(FeigenbaumB-Khinchin) 5912830945349956 m005 (1/2*5^(1/2)-5/11)/(1/11*exp(1)+7/8) 5912830960210071 k002 Champernowne real with 56*n^2-99*n+102 5912830981259402 m001 (Zeta(3)-BesselK(1,1))/(GAMMA(23/24)-Trott) 5912830983143630 l006 ln(2633/4756) 5912830992412685 m001 (5^(1/2)-Zeta(3))/(exp(1/Pi)+Artin) 5912831055213032 m005 (1/3*Pi+1/12)/(5/9*Pi+1/6) 5912831055213032 m006 (1/Pi+4)/(1/5/Pi+2/3) 5912831055213032 m008 (4*Pi+1)/(2/3*Pi+1/5) 5912831060089689 m005 (1/2*Zeta(3)+3/4)/(7/11*Pi+2/7) 5912831060510131 k002 Champernowne real with 113/2*n^2-201/2*n+103 5912831061421362 r005 Im(z^2+c),c=-107/94+2/27*I,n=27 5912831082051447 r009 Im(z^3+c),c=-11/29+28/45*I,n=48 5912831088884484 a007 Real Root Of -638*x^4-941*x^3-547*x^2+929*x+624 5912831112507941 a007 Real Root Of -57*x^4+740*x^3-426*x^2+54*x-29 5912831124565035 s002 sum(A001468[n]/(n*pi^n-1),n=1..infinity) 5912831125221393 r002 21th iterates of z^2 + 5912831144957568 a001 1/6621*(1/2*5^(1/2)+1/2)^26*3^(1/3) 5912831160610141 k004 Champernowne real with floor(Pi*(18*n^2-32*n+33)) 5912831160810191 k002 Champernowne real with 57*n^2-102*n+104 5912831222257152 k007 concat of cont frac of 5912831231916753 r008 a(0)=6,K{-n^6,1-13*n+11*n^2+13*n^3} 5912831237333222 h001 (1/4*exp(1)+5/6)/(2/9*exp(2)+11/12) 5912831253119854 p003 LerchPhi(1/3,3,202/75) 5912831261110251 k002 Champernowne real with 115/2*n^2-207/2*n+105 5912831273042668 m005 (1/3*Pi+2/5)/(1/6*exp(1)-3/7) 5912831280958556 r005 Im(z^2+c),c=-99/94+4/61*I,n=9 5912831281252144 r005 Im(z^2+c),c=-9/7+27/80*I,n=5 5912831286385404 b008 17*Pi+LogIntegral[9] 5912831312424153 k007 concat of cont frac of 5912831329775822 r002 21th iterates of z^2 + 5912831353528474 a007 Real Root Of 245*x^4-55*x^3-346*x^2-889*x-446 5912831359143566 r009 Re(z^3+c),c=-47/126+32/51*I,n=33 5912831361410311 k002 Champernowne real with 58*n^2-105*n+106 5912831362449824 r005 Re(z^2+c),c=4/21+28/59*I,n=19 5912831366271763 l006 ln(5488/9913) 5912831387919709 s002 sum(A243699[n]/(10^n+1),n=1..infinity) 5912831388011689 s001 sum(1/10^(n-1)*A243699[n],n=1..infinity) 5912831388011689 s001 sum(1/10^n*A243699[n],n=1..infinity) 5912831388123892 s002 sum(A243699[n]/(10^n-1),n=1..infinity) 5912831417789243 m001 (2*Pi/GAMMA(5/6))^(Chi(1)/AlladiGrinstead) 5912831445712826 b008 -60+3^(-1/8) 5912831453825053 q001 194/3281 5912831457882576 r005 Re(z^2+c),c=3/44+17/42*I,n=23 5912831461710371 k002 Champernowne real with 117/2*n^2-213/2*n+107 5912831490131016 a007 Real Root Of -7*x^4+233*x^3-989*x^2-711*x-829 5912831503398953 r005 Im(z^2+c),c=17/126+34/61*I,n=27 5912831508364991 a007 Real Root Of -82*x^4-386*x^3+660*x^2+462*x+92 5912831517037469 a007 Real Root Of -595*x^4+130*x^3+607*x^2+916*x+429 5912831536809875 m009 (2/3*Psi(1,2/3)+1/3)/(4*Psi(1,1/3)-1/5) 5912831551628262 b008 115*(2+Pi) 5912831554647183 m001 sin(1/5*Pi)^(FeigenbaumC/Si(Pi)) 5912831555638840 r002 37i'th iterates of 2*x/(1-x^2) of 5912831562010431 k002 Champernowne real with 59*n^2-108*n+108 5912831592716752 r002 51th iterates of z^2 + 5912831599519263 m002 -6+(E^Pi*ProductLog[Pi]^2)/Pi^5 5912831606737747 a007 Real Root Of 82*x^4+621*x^3+688*x^2-629*x+372 5912831624100915 a007 Real Root Of -862*x^4+367*x^3+710*x^2+841*x-716 5912831662310491 k002 Champernowne real with 119/2*n^2-219/2*n+109 5912831668282364 m001 FeigenbaumKappa^2*Backhouse/ln(Trott) 5912831676884397 a007 Real Root Of 348*x^4-695*x^3+938*x^2-820*x-999 5912831677914768 r008 a(0)=6,K{-n^6,-14-8*n^3+67*n^2-33*n} 5912831702834850 m001 (StolarskyHarborth-ZetaQ(4))/(ln(5)-Otter) 5912831719608483 l006 ln(2855/5157) 5912831762510521 k004 Champernowne real with floor(Pi*(19*n^2-35*n+35)) 5912831762610551 k002 Champernowne real with 60*n^2-111*n+110 5912831764657704 m005 (1/3*exp(1)+1/3)/(10/11*exp(1)-3/8) 5912831771769340 a007 Real Root Of 594*x^4+61*x^3+350*x^2-799*x+46 5912831773159226 m001 Pi*2^(1/2)/GAMMA(3/4)*Conway+KhinchinLevy 5912831779863810 m001 (Pi-Psi(2,1/3))/(FellerTornier+LaplaceLimit) 5912831783887298 a007 Real Root Of x^4+592*x^3+424*x^2+92*x+54 5912831785843534 a003 cos(Pi*3/50)*sin(Pi*22/107) 5912831810992378 r005 Im(z^2+c),c=-25/58+23/40*I,n=42 5912831833373141 a007 Real Root Of -3*x^4+759*x^3+241*x^2+942*x+630 5912831850296558 q001 1/1691237 5912831862910611 k002 Champernowne real with 121/2*n^2-225/2*n+111 5912831864299582 m002 -2-E^Pi/Pi^5+Pi^5/5 5912831876607973 m005 (1/3*Pi+1/3)/(2/7*exp(1)-4/5) 5912831896015513 a007 Real Root Of 427*x^4-695*x^3+900*x^2-679*x-912 5912831929972695 m001 (Kac-Trott2nd)/(CareFree+HardyLittlewoodC4) 5912831963210671 k002 Champernowne real with 61*n^2-114*n+112 5912831985970608 a003 cos(Pi*2/35)-sin(Pi*14/109) 5912832001430020 r005 Re(z^2+c),c=-29/62+21/40*I,n=19 5912832017906627 m003 39/8+Sqrt[5]/2-Log[1/2+Sqrt[5]/2]/6 5912832023561301 r005 Re(z^2+c),c=23/106+17/48*I,n=47 5912832038475003 a007 Real Root Of 876*x^4-746*x^3-579*x^2-856*x-565 5912832053349937 a001 233/322*14662949395604^(19/21) 5912832061659013 a007 Real Root Of -944*x^4-378*x^3-913*x^2+877*x+875 5912832063510731 k002 Champernowne real with 123/2*n^2-231/2*n+113 5912832067518920 m005 (1/2*Catalan+2/7)/(8/11*Zeta(3)-1) 5912832071449816 r002 3th iterates of z^2 + 5912832077478829 a007 Real Root Of 740*x^4-220*x^3+768*x^2-417*x-651 5912832118440282 g005 GAMMA(5/11)/GAMMA(2/9)/GAMMA(1/7)/GAMMA(3/4) 5912832129700260 a008 Real Root of (1+2*x+4*x^2+4*x^3-2*x^4+2*x^5) 5912832160176242 m007 (-2/3*gamma-1/5)/(-3*gamma-6*ln(2)-4) 5912832162069255 m001 exp(Riemann3rdZero)/Rabbit/log(2+sqrt(3))^2 5912832163810791 k002 Champernowne real with 62*n^2-117*n+114 5912832164733094 m001 GAMMA(2/3)*(GAMMA(7/24)+GAMMA(17/24)) 5912832170133645 m001 (sin(1/12*Pi)+gamma(2))/(Cahen+FeigenbaumMu) 5912832176492736 a007 Real Root Of 517*x^4-876*x^3+354*x^2-120*x-439 5912832177462487 r009 Re(z^3+c),c=-59/98+18/37*I,n=13 5912832181771197 a001 1/17334*(1/2*5^(1/2)+1/2)^28*3^(1/3) 5912832188621814 a007 Real Root Of -209*x^4+946*x^3-474*x^2-135*x+307 5912832200823623 r005 Im(z^2+c),c=5/38+19/32*I,n=49 5912832211891403 m001 1/BesselJ(0,1)*ln(Khintchine)^2*arctan(1/2) 5912832216422630 m001 exp(-1/2*Pi)^(2*Pi/GAMMA(5/6)/Salem) 5912832264110851 k002 Champernowne real with 125/2*n^2-237/2*n+115 5912832269404961 a007 Real Root Of 271*x^4-580*x^3-402*x^2-725*x+656 5912832270870604 m001 (-ErdosBorwein+Porter)/(exp(Pi)+Bloch) 5912832296449963 r005 Re(z^2+c),c=-11/20+17/31*I,n=22 5912832297643741 r005 Re(z^2+c),c=-43/90+29/50*I,n=52 5912832316599282 a007 Real Root Of -776*x^4+907*x^3+293*x^2+629*x-567 5912832333040297 a001 1/45381*(1/2*5^(1/2)+1/2)^30*3^(1/3) 5912832349804072 l006 ln(3077/5558) 5912832355110162 a001 1/118809*(1/2*5^(1/2)+1/2)^32*3^(1/3) 5912832358880145 a001 1/3*(1/2*5^(1/2)+1/2)^10*3^(1/3) 5912832364410901 k004 Champernowne real with floor(Pi*(20*n^2-38*n+37)) 5912832364410911 k002 Champernowne real with 63*n^2-120*n+116 5912832368750089 a001 1/73428*(1/2*5^(1/2)+1/2)^31*3^(1/3) 5912832376755657 b008 ArcCot[Sqrt[1+ArcTan[E]]] 5912832391452253 m001 HardyLittlewoodC4^FeigenbaumDelta*Backhouse 5912832394790929 r009 Re(z^3+c),c=-63/106+27/50*I,n=40 5912832399197395 m001 1/cos(1)*PisotVijayaraghavan^2/ln(sqrt(3)) 5912832426529746 a001 1/28047*(1/2*5^(1/2)+1/2)^29*3^(1/3) 5912832445921482 m001 exp(Pi)^Cahen/(MinimumGamma^Cahen) 5912832450572726 r005 Im(z^2+c),c=-69/122+4/37*I,n=29 5912832464710971 k002 Champernowne real with 127/2*n^2-243/2*n+117 5912832490597742 r002 6i'th iterates of 2*x/(1-x^2) of 5912832498934142 a007 Real Root Of 140*x^4-649*x^3+642*x^2-726*x-805 5912832527439953 m001 (BesselI(0,1)-gamma)/(ln(2)+Bloch) 5912832530014986 r005 Im(z^2+c),c=-1+49/143*I,n=4 5912832532824811 a005 (1/cos(5/99*Pi))^1780 5912832556127794 a001 3571/89*3^(6/17) 5912832558174449 m001 (-FellerTornier+Lehmer)/(1-2*Pi/GAMMA(5/6)) 5912832565011031 k002 Champernowne real with 64*n^2-123*n+118 5912832572058154 m002 -Pi^6+Pi^6/E^Pi+Pi^5*ProductLog[Pi] 5912832580332989 a007 Real Root Of 289*x^4-506*x^3+314*x^2-58*x-284 5912832588656764 r005 Re(z^2+c),c=-61/42+10/39*I,n=2 5912832599997904 m001 (Zeta(1,2)+GaussAGM)/(Paris-Tribonacci) 5912832622848316 a007 Real Root Of -525*x^4+483*x^3+868*x^2+957*x-905 5912832624329439 r002 10th iterates of z^2 + 5912832637060670 m001 1/exp(GAMMA(17/24))/FeigenbaumDelta/Zeta(9) 5912832637901561 m005 (1/2*5^(1/2)-6/7)/(11/12*3^(1/2)-6) 5912832659513549 m001 (cos(1)+Ei(1))/(BesselI(0,2)+Tribonacci) 5912832662205833 s002 sum(A009675[n]/(pi^n+1),n=1..infinity) 5912832665311091 k002 Champernowne real with 129/2*n^2-249/2*n+119 5912832676941875 b008 InverseJacobiNS[2,13/6] 5912832694124481 r005 Im(z^2+c),c=-18/25+17/48*I,n=5 5912832696790763 m001 Landau^ZetaP(2)*Stephens^ZetaP(2) 5912832702785820 a007 Real Root Of -663*x^4+273*x^3+99*x^2+489*x+392 5912832705146044 m006 (3*Pi^2-2/3)/(5*Pi^2-2/5) 5912832705146044 m008 (3*Pi^2-2/3)/(5*Pi^2-2/5) 5912832705146044 m009 (3/2*Pi^2-1/3)/(5/2*Pi^2-1/5) 5912832737407424 r005 Im(z^2+c),c=-5/86+12/19*I,n=26 5912832741741576 a001 433494437/7*123^(18/19) 5912832743233150 a001 28657/18*3571^(19/43) 5912832765611151 k002 Champernowne real with 65*n^2-126*n+120 5912832776853790 a001 843/5*1836311903^(1/17) 5912832779681295 m005 (1/2*exp(1)+7/11)/(3/10*5^(1/2)-1/3) 5912832822557442 a001 1/10713*(1/2*5^(1/2)+1/2)^27*3^(1/3) 5912832832716019 m001 1/exp(Porter)^2*ErdosBorwein/Zeta(3)^2 5912832833750518 a001 329/6*2207^(39/43) 5912832865911211 k002 Champernowne real with 131/2*n^2-255/2*n+121 5912832866128250 a007 Real Root Of -392*x^4+968*x^3+558*x^2-14*x-339 5912832869382427 r009 Re(z^3+c),c=-15/26+9/19*I,n=31 5912832871721227 g007 Psi(2,1/7)+Psi(2,1/3)-Psi(2,5/11)-Psi(2,1/4) 5912832885281581 b008 1/13+Cosh[1]/3 5912832893585442 m001 Bloch/Backhouse^2/exp(LaplaceLimit)^2 5912832894817863 m001 GAMMA(11/12)^2/exp(Porter)^2/Zeta(9) 5912832895183974 l006 ln(3299/5959) 5912832897848902 m001 1/LaplaceLimit/exp(LandauRamanujan)*sin(1) 5912832911241151 k009 concat of cont frac of 5912832921368631 a001 28657/18*9349^(17/43) 5912832927240338 a007 Real Root Of 139*x^4+996*x^3+872*x^2-916*x+91 5912832929782082 q001 1221/2065 5912832938451109 a001 123/514229*102334155^(4/23) 5912832938455486 a001 123/3524578*6557470319842^(4/23) 5912832945651055 a001 5374978561/305*4807526976^(6/23) 5912832945705862 a001 96450076809/305*75025^(6/23) 5912832946759785 a001 416020/9*39603^(1/43) 5912832950769613 m001 Pi+2^(1/2)*3^(1/2)+arctan(1/3) 5912832954536761 a001 2576*15127^(14/43) 5912832966211271 k004 Champernowne real with floor(Pi*(21*n^2-41*n+39)) 5912832966211271 k002 Champernowne real with 66*n^2-129*n+122 5912832969418283 m002 -E^Pi-Pi^3-5*Tanh[Pi] 5912832971374991 a001 105937/6*5778^(6/43) 5912832974170156 r005 Im(z^2+c),c=-23/42+35/64*I,n=18 5912832978441712 a007 Real Root Of 125*x^4+906*x^3+998*x^2-7*x-432 5912832979646919 b008 ProductLog[(-1+Sqrt[2])^Pi] 5912833018885016 a001 123/75025*1597^(4/23) 5912833019937890 m001 Totient*Weierstrass^ln(3) 5912833027880655 m001 ln(Riemann3rdZero)^2/GaussKuzminWirsing/gamma 5912833052082164 r002 63th iterates of z^2 + 5912833056446432 r005 Re(z^2+c),c=-37/54+14/41*I,n=39 5912833066511331 k002 Champernowne real with 133/2*n^2-261/2*n+123 5912833076633787 a007 Real Root Of -71*x^4-241*x^3+911*x^2-709*x+922 5912833085393676 r002 21th iterates of z^2 + 5912833124911111 k007 concat of cont frac of 5912833132722056 m001 1/ln(Catalan)/Riemann1stZero^2*Zeta(5) 5912833133496232 r002 43i'th iterates of 2*x/(1-x^2) of 5912833159707907 m001 Tribonacci*ln(Riemann2ndZero)*GAMMA(11/12) 5912833166811391 k002 Champernowne real with 67*n^2-132*n+124 5912833193108741 l006 ln(4367/4633) 5912833195516524 m001 (CareFree+StronglyCareFree)/(exp(Pi)+Ei(1)) 5912833208671419 r002 52th iterates of z^2 + 5912833208905860 a001 1322157322203*144^(13/17) 5912833217427792 a003 cos(Pi*1/87)-sin(Pi*44/113) 5912833235610283 r005 Re(z^2+c),c=9/110+17/40*I,n=54 5912833246375614 r005 Re(z^2+c),c=-19/106+47/54*I,n=9 5912833267111451 k002 Champernowne real with 135/2*n^2-267/2*n+125 5912833280859218 m006 (3*ln(Pi)-2/5)/(2/3*ln(Pi)-1/4) 5912833281026692 m001 Trott/Magata/ZetaQ(2) 5912833299209325 m006 (2/Pi+1/6)/(3/4*ln(Pi)+1/2) 5912833303144915 s002 sum(A009675[n]/(pi^n),n=1..infinity) 5912833319283617 s002 sum(A107362[n]/(n*pi^n-1),n=1..infinity) 5912833319947478 a007 Real Root Of 77*x^4+427*x^3-77*x^2+588*x+321 5912833322298702 r005 Re(z^2+c),c=-19/32+19/54*I,n=8 5912833342554163 a001 3/196418*1346269^(19/45) 5912833367411511 k002 Champernowne real with 68*n^2-135*n+126 5912833371791153 l006 ln(3521/6360) 5912833381095383 r009 Re(z^3+c),c=-5/48+22/35*I,n=50 5912833382377516 m001 (1-Ei(1,1))/(-Pi^(1/2)+ZetaP(2)) 5912833426597062 r002 48th iterates of z^2 + 5912833428730765 a007 Real Root Of 498*x^4+489*x^3+981*x^2-41*x-327 5912833447636211 m005 (1/2*Zeta(3)-5/12)/(5/6*Pi+1/2) 5912833450329526 h001 (1/10*exp(1)+9/11)/(2/11*exp(2)+1/2) 5912833463092117 m002 6-Sinh[Pi]^2/(5*Pi^5) 5912833467711571 k002 Champernowne real with 137/2*n^2-273/2*n+127 5912833470683733 m001 (-KhinchinLevy+ZetaP(2))/(Grothendieck-cos(1)) 5912833484595891 p003 LerchPhi(1/3,6,61/82) 5912833485501945 m001 (Pi^(1/2))^exp(1)+GAMMA(19/24) 5912833485501945 m001 sqrt(Pi)^exp(1)+GAMMA(19/24) 5912833490100579 m001 1/Si(Pi)^2/ArtinRank2^2*exp(GAMMA(1/12)) 5912833490279476 a005 (1/sin(80/169*Pi))^1822 5912833499743284 b008 ArcCsc[Sqrt[1/2+E]] 5912833512209163 a007 Real Root Of -987*x^4+352*x^3-412*x^2+740*x+775 5912833516494319 r008 a(0)=6,K{-n^6,-25+40*n-23*n^2+20*n^3} 5912833534857843 m005 (7/20+1/4*5^(1/2))/(9/10*exp(1)-10/11) 5912833540824604 m001 (2^(1/2))^BesselI(1,2)*Magata 5912833568011631 k002 Champernowne real with 69*n^2-138*n+128 5912833572097361 b008 3/8+Pi*ArcCosh[3] 5912833588781846 s002 sum(A191956[n]/(n*exp(n)-1),n=1..infinity) 5912833627876818 m001 1/exp(sin(Pi/5))*Niven^2/sqrt(1+sqrt(3))^2 5912833631629929 m001 Khintchine/ln(FransenRobinson)/TreeGrowth2nd 5912833632858852 a005 (1/cos(20/219*Pi))^815 5912833641489362 m001 LaplaceLimit/(MertensB3-exp(1/exp(1))) 5912833648124530 a007 Real Root Of -979*x^4+813*x^3-877*x^2+177*x+699 5912833668111651 k004 Champernowne real with floor(Pi*(22*n^2-44*n+41)) 5912833668311691 k002 Champernowne real with 139/2*n^2-279/2*n+129 5912833677243826 m005 (1/2*exp(1)-3/8)/(4/7*exp(1)+1/9) 5912833680847084 a007 Real Root Of 139*x^4+875*x^3+351*x^2+284*x+388 5912833700234257 m001 (Conway+ZetaQ(4))/(BesselJ(0,1)+3^(1/3)) 5912833735423742 r002 41th iterates of z^2 + 5912833741360526 m005 (1/2*2^(1/2)+7/10)/(8/11*gamma-2/11) 5912833762953270 a007 Real Root Of 815*x^4-184*x^3+269*x^2-310*x-415 5912833765288706 m001 (-BesselI(0,2)+ZetaP(3))/(exp(1)+sin(1)) 5912833767031790 r009 Re(z^3+c),c=-11/20+10/47*I,n=12 5912833768611751 k002 Champernowne real with 70*n^2-141*n+130 5912833791862489 l006 ln(3743/6761) 5912833795853621 a007 Real Root Of -520*x^4-170*x^3-262*x^2+949*x+57 5912833798636918 b008 ModularLambda[1+I*Sqrt[19/3]] 5912833811119903 r009 Re(z^3+c),c=-33/56+17/35*I,n=37 5912833813424836 m001 1/exp(Lehmer)^2*GolombDickman*GAMMA(1/6)^2 5912833833510842 m001 (cos(1)-gamma(1))/Zeta(5) 5912833837533304 r002 10i'th iterates of 2*x/(1-x^2) of 5912833850570828 a007 Real Root Of -236*x^4+217*x^3-618*x^2+134*x+369 5912833851474413 m001 Trott*FeigenbaumAlpha*exp(GAMMA(7/24)) 5912833868911811 k002 Champernowne real with 141/2*n^2-285/2*n+131 5912833874171462 r005 Re(z^2+c),c=-2/3+59/231*I,n=3 5912833885426439 a007 Real Root Of -511*x^4+919*x^3+387*x^2+484*x-549 5912833892679099 r009 Re(z^3+c),c=-9/106+10/23*I,n=18 5912833905717108 a007 Real Root Of 616*x^4-578*x^3+968*x^2+435*x-276 5912833908420427 r005 Im(z^2+c),c=-11/18+11/101*I,n=40 5912833926944282 a007 Real Root Of 898*x^4-321*x^3+380*x^2-915*x-850 5912833944084132 s002 sum(A009675[n]/(pi^n-1),n=1..infinity) 5912833960153709 r009 Im(z^3+c),c=-9/56+43/58*I,n=61 5912833969211871 k002 Champernowne real with 71*n^2-144*n+132 5912833977073259 a001 2/121393*6557470319842^(14/17) 5912834012947635 m001 GAMMA(19/24)/gamma(3)*MertensB2 5912834019390786 m005 (1/3*exp(1)+1/10)/(3/4*Zeta(3)+4/5) 5912834052834292 r005 Im(z^2+c),c=-37/26+15/124*I,n=7 5912834055252788 a007 Real Root Of -543*x^4+985*x^3+286*x^2+964*x+740 5912834069511931 k002 Champernowne real with 143/2*n^2-291/2*n+133 5912834073277076 a007 Real Root Of -954*x^4+233*x^3-244*x^2+147*x+337 5912834086935540 m001 (Backhouse-Shi(1))/(-Cahen+Stephens) 5912834096770756 r008 a(0)=6,K{-n^6,-42+41*n+35*n^2-20*n^3} 5912834098747155 r009 Re(z^3+c),c=-57/118+2/37*I,n=16 5912834119174695 a007 Real Root Of 551*x^4-24*x^3+488*x^2-83*x-292 5912834144912282 m001 (ln(gamma)-Lehmer)/(Niven-Riemann2ndZero) 5912834154535397 m002 (3*Coth[Pi])/Pi^2+Log[Pi]/4 5912834164561311 m005 (1/2*3^(1/2)+4)/(3^(1/2)-10/11) 5912834164894296 l006 ln(3965/7162) 5912834169811991 k002 Champernowne real with 72*n^2-147*n+134 5912834174572515 r009 Im(z^3+c),c=-13/50+41/61*I,n=20 5912834186541847 r009 Re(z^3+c),c=-7/78+16/33*I,n=17 5912834208482066 r005 Im(z^2+c),c=-11/16+18/85*I,n=32 5912834228137838 a007 Real Root Of 899*x^4-205*x^3+711*x^2-303*x-580 5912834229575235 a001 199/8*10946^(10/17) 5912834232404053 a007 Real Root Of -415*x^4+146*x^3-576*x^2+997*x+61 5912834252931521 r002 34th iterates of z^2 + 5912834270012031 k004 Champernowne real with floor(Pi*(23*n^2-47*n+43)) 5912834270112051 k002 Champernowne real with 145/2*n^2-297/2*n+135 5912834278992731 m001 Stephens/(Chi(1)^ZetaR(2)) 5912834280159923 m008 (3/5*Pi^5+3/4)/(5/6*Pi+1/2) 5912834295818178 a007 Real Root Of -142*x^4-742*x^3+491*x^2-544*x-202 5912834301920333 m001 (Rabbit+Salem)/(3^(1/3)+MadelungNaCl) 5912834306107806 p001 sum((-1)^n/(282*n+169)/(512^n),n=0..infinity) 5912834353597337 m001 (Niven-Thue)/(GaussAGM+Gompertz) 5912834355908781 s002 sum(A053172[n]/(10^n+1),n=1..infinity) 5912834370412111 k002 Champernowne real with 73*n^2-150*n+136 5912834427888655 m005 (1/3*gamma-1/12)/(5/11*Pi+5/12) 5912834443522292 r009 Re(z^3+c),c=-67/110+25/47*I,n=25 5912834457509382 m001 Grothendieck^GaussAGM/Trott2nd 5912834470712171 k002 Champernowne real with 147/2*n^2-303/2*n+137 5912834474784920 m001 BesselI(0,1)*FeigenbaumDelta+HeathBrownMoroz 5912834480194379 m001 FeigenbaumB^sin(1)*Cahen^sin(1) 5912834490522328 a007 Real Root Of 264*x^4-740*x^3+680*x^2-411*x-666 5912834492126152 m001 (GAMMA(19/24)+Champernowne)/(Chi(1)-Shi(1)) 5912834492126152 m001 (GAMMA(19/24)+Champernowne)/Ei(1,1) 5912834498356074 b008 27*23^(1/4) 5912834498368861 l006 ln(4187/7563) 5912834499874222 a007 Real Root Of 450*x^4-844*x^3-507*x^2-978*x+875 5912834513223378 m005 (1/3*3^(1/2)-1/12)/(1/10*gamma+7/9) 5912834553621245 r008 a(0)=6,K{-n^6,-9-20*n+59*n^2-18*n^3} 5912834568421586 r008 a(0)=6,K{-n^6,7-16*n+5*n^2+16*n^3} 5912834571012231 k002 Champernowne real with 74*n^2-153*n+138 5912834572274707 a001 46/141*233^(6/55) 5912834573386145 r005 Re(z^2+c),c=-23/78+33/47*I,n=9 5912834591626630 q001 1723/2914 5912834611181352 a007 Real Root Of -715*x^4+903*x^3-674*x^2+540*x+829 5912834615580904 a001 377/7*29^(37/52) 5912834640300452 a007 Real Root Of 337*x^4-502*x^3-185*x^2-446*x-344 5912834650100323 m001 (KomornikLoreti-OneNinth)/(Pi-ln(2)/ln(10)) 5912834671312291 k002 Champernowne real with 149/2*n^2-309/2*n+139 5912834676654743 h001 (2/5*exp(2)+1/3)/(2/3*exp(2)+7/11) 5912834688780411 a001 377/47*322^(35/47) 5912834699698997 m001 (Landau-Porter)/(sin(1/12*Pi)+Conway) 5912834706659383 m001 FransenRobinson^ErdosBorwein+TwinPrimes 5912834709070126 a007 Real Root Of -607*x^4-88*x^3+824*x^2+929*x-745 5912834710670216 r002 13th iterates of z^2 + 5912834734379474 b008 6-E^(1/8)/13 5912834751468582 a007 Real Root Of -933*x^4+642*x^3+239*x^2+803*x+638 5912834753322676 a007 Real Root Of -438*x^4+333*x^3-848*x^2-86*x+368 5912834771612351 k002 Champernowne real with 75*n^2-156*n+140 5912834777639587 r008 a(0)=6,K{-n^6,63-36*n-16*n^3} 5912834790181756 m001 (BesselI(0,2)-Chi(1))/(-polylog(4,1/2)+Otter) 5912834798261492 l006 ln(4409/7964) 5912834812750030 m001 Pi+GAMMA(23/24)+KhinchinHarmonic 5912834835388750 m001 (Sarnak+Sierpinski)/(GaussAGM-Psi(2,1/3)) 5912834853667654 a007 Real Root Of -459*x^4+778*x^3-729*x^2+993*x-437 5912834871912401 k004 Champernowne real with floor(Pi*(24*n^2-50*n+45)) 5912834871912411 k002 Champernowne real with 151/2*n^2-315/2*n+141 5912834873342247 r005 Im(z^2+c),c=-16/29+5/47*I,n=33 5912834890359361 m001 ln(GAMMA(17/24))^2/Conway*GAMMA(3/4) 5912834897739687 r009 Re(z^3+c),c=-10/21+4/55*I,n=5 5912834898213969 r005 Re(z^2+c),c=25/118+30/47*I,n=3 5912834903479933 r009 Re(z^3+c),c=-53/90+16/33*I,n=55 5912834908692815 r002 2th iterates of z^2 + 5912834924741132 m001 1/exp(Pi)^2*OneNinth^2*sqrt(1+sqrt(3))^2 5912834926435680 m001 1/Paris^2*ln(Kolakoski)*Riemann3rdZero 5912834954171071 m001 (Conway-FellerTornier)/(GAMMA(17/24)+Artin) 5912834965585709 r005 Im(z^2+c),c=13/50+28/53*I,n=31 5912834972212471 k002 Champernowne real with 76*n^2-159*n+142 5912834982958424 r009 Im(z^3+c),c=-3/8+12/19*I,n=45 5912834991764307 a007 Real Root Of 71*x^4+313*x^3-449*x^2+912*x-990 5912835007781456 m005 (2*2^(1/2)+3/5)/(5*Catalan-4) 5912835010809655 r002 4th iterates of z^2 + 5912835028933839 a007 Real Root Of -923*x^4+628*x^3+618*x^2+435*x-28 5912835069401723 l006 ln(4631/8365) 5912835072351078 a007 Real Root Of 636*x^4-771*x^3+823*x^2+223*x-393 5912835072512531 k002 Champernowne real with 153/2*n^2-321/2*n+143 5912835080532800 r009 Re(z^3+c),c=-5/64+25/49*I,n=5 5912835089581673 b008 1/36+ProductLog[-1/3] 5912835116328821 a005 (1/cos(5/58*Pi))^730 5912835146988245 m001 exp(Khintchine)^2/ArtinRank2^2/RenyiParking 5912835156987048 a001 7881196/377*8^(1/2) 5912835160879662 a007 Real Root Of -982*x^4+311*x^3-450*x^2+694*x+752 5912835172812591 k002 Champernowne real with 77*n^2-162*n+144 5912835192203001 m005 (1/2*exp(1)-4/7)/(2/7*exp(1)+5/9) 5912835217132659 r005 Re(z^2+c),c=-1/50+31/41*I,n=2 5912835219452603 a008 Real Root of (8+7*x-14*x^2-5*x^3) 5912835237895803 s002 sum(A084169[n]/((2^n+1)/n),n=1..infinity) 5912835273112651 k002 Champernowne real with 155/2*n^2-327/2*n+145 5912835276409796 m008 (5/6*Pi+1/4)/(1/2*Pi^4-1/5) 5912835289006632 a001 28657/4*123^(25/57) 5912835309415796 a007 Real Root Of 147*x^4-947*x^3-606*x^2+199*x+272 5912835315735382 l006 ln(4853/8766) 5912835321370965 r005 Im(z^2+c),c=-3/98+26/33*I,n=63 5912835336216188 m005 (1/2*2^(1/2)-2/3)/(1/10*3^(1/2)-6/7) 5912835339789846 m001 ErdosBorwein/(Zeta(5)-BesselJ(0,1)) 5912835373412711 k002 Champernowne real with 78*n^2-165*n+146 5912835374775784 a007 Real Root Of -930*x^4+990*x^3+246*x^2+569*x+33 5912835377534566 a007 Real Root Of -248*x^4-181*x^3-103*x^2+764*x-348 5912835396674321 r005 Im(z^2+c),c=-11/46+29/46*I,n=24 5912835400400963 r005 Re(z^2+c),c=-11/46+31/41*I,n=26 5912835405692929 m005 (1/2*Catalan-7/8)/(1/2*gamma+5/12) 5912835408009840 r005 Re(z^2+c),c=-131/126+10/59*I,n=44 5912835428880730 a001 1597/47*47^(23/31) 5912835439550186 a003 sin(Pi*5/62)-sin(Pi*36/113) 5912835462078616 r002 22th iterates of z^2 + 5912835467423546 m001 (Tribonacci-ZetaP(4))/(Ei(1,1)-polylog(4,1/2)) 5912835473712771 k002 Champernowne real with 157/2*n^2-333/2*n+147 5912835487879270 a007 Real Root Of 129*x^4+606*x^3-970*x^2-277*x-130 5912835488301791 r005 Im(z^2+c),c=31/86+4/29*I,n=19 5912835491234045 a005 (1/cos(1/70*Pi))^1764 5912835493131629 r009 Re(z^3+c),c=-33/56+14/25*I,n=22 5912835501516770 m006 (5*exp(Pi)-1)/(4/Pi+2/3) 5912835502155029 m005 (1/3*Pi+2/5)/(7/9*exp(1)+1/3) 5912835503587563 q001 2225/3763 5912835510410367 m004 -4*Sqrt[5]*Pi-Cot[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 5912835517650225 r009 Re(z^3+c),c=-57/94+18/35*I,n=10 5912835536973073 a001 1/4092*(1/2*5^(1/2)+1/2)^25*3^(1/3) 5912835540218839 m001 (Trott2nd+Weierstrass)/(Artin+PlouffeB) 5912835540517875 l006 ln(5075/9167) 5912835560855071 r005 Re(z^2+c),c=5/58+4/9*I,n=11 5912835574012831 k002 Champernowne real with 79*n^2-168*n+148 5912835575445866 r002 13th iterates of z^2 + 5912835611288363 a005 (1/cos(5/94*Pi))^1604 5912835618844258 m001 Paris^2/exp(Khintchine)^2/BesselJ(0,1) 5912835618984939 m005 (-7/30+1/6*5^(1/2))/(3*gamma+5/8) 5912835625916237 r005 Im(z^2+c),c=-39/74+34/57*I,n=18 5912835638178666 m001 (OrthogonalArrays+Trott)/(cos(1)-ln(2)/ln(10)) 5912835648354034 a007 Real Root Of 599*x^4-932*x^3-x^2+329*x-71 5912835657320765 r002 60th iterates of z^2 + 5912835660065071 a001 28143753123/1597*4807526976^(6/23) 5912835660119878 a001 505019158607/1597*75025^(6/23) 5912835661573247 r002 14th iterates of z^2 + 5912835671968871 a001 29*55^(8/45) 5912835674312891 k002 Champernowne real with 159/2*n^2-339/2*n+149 5912835684512183 a007 Real Root Of 144*x^4+755*x^3-508*x^2+212*x-924 5912835685763895 a003 cos(Pi*33/113)*sin(Pi*20/47) 5912835693788136 r009 Re(z^3+c),c=-11/90+39/55*I,n=38 5912835708632756 a005 (1/cos(7/89*Pi))^1924 5912835716879652 a008 Real Root of x^4-x^3+4*x^2+139*x-747 5912835728131005 a001 47/514229*514229^(13/41) 5912835746458862 l006 ln(5297/9568) 5912835774612952 k002 Champernowne real with 80*n^2-171*n+150 5912835776835057 a001 13/3*76^(35/58) 5912835819851495 k002 Champernowne real with 53*n^2-73*n+25 5912835825264754 m002 -3+(4*Pi^3*Cosh[Pi])/E^Pi 5912835825509451 r009 Re(z^3+c),c=-3/28+25/38*I,n=50 5912835829606165 r002 46th iterates of z^2 + 5912835840090827 r009 Re(z^3+c),c=-61/102+20/39*I,n=49 5912835865447637 a007 Real Root Of 993*x^4+175*x^3+718*x^2-737*x-772 5912835874913012 k002 Champernowne real with 161/2*n^2-345/2*n+151 5912835875170331 r008 a(0)=6,K{-n^6,9-5*n^3-60*n^2+67*n} 5912835896139496 m001 (-Niven+Stephens)/(1-cos(1/5*Pi)) 5912835935832026 l006 ln(5519/9969) 5912835955213935 m008 (3*Pi^6-4/5)/(5*Pi^4+3/5) 5912835957593141 r009 Im(z^3+c),c=-39/86+20/37*I,n=34 5912835962582267 r009 Re(z^3+c),c=-16/27+28/57*I,n=34 5912835968220153 m005 (1/3*Catalan+1/11)/(7/12*Zeta(3)+6) 5912835971647053 m005 (1/3*gamma-1/7)/(7/10*5^(1/2)-8/11) 5912835975213072 k002 Champernowne real with 81*n^2-174*n+152 5912835986063833 r004 Im(z^2+c),c=1/16+1/3*I,z(0)=I,n=6 5912835987033769 a003 cos(Pi*1/27)*cos(Pi*30/101) 5912835990174736 r009 Im(z^3+c),c=-1/54+41/61*I,n=5 5912835997721598 m005 (1/6*Pi-1/6)/(2*exp(1)+3/5) 5912836001655673 a007 Real Root Of 577*x^4-557*x^3-709*x^2-550*x-263 5912836011178174 r005 Im(z^2+c),c=-2/19+39/59*I,n=34 5912836013248151 m001 LandauRamanujan/BesselI(1,2)/StolarskyHarborth 5912836014044651 r005 Im(z^2+c),c=-5/24+5/63*I,n=5 5912836028140052 a007 Real Root Of -142*x^4-707*x^3+679*x^2-595*x+159 5912836033950617 s002 sum(A072239[n]/(n!^2),n=1..infinity) 5912836035156957 m001 Khinchin*Magata*MasserGramain 5912836046176164 m001 (3^(1/2)+Zeta(1,-1))/(ln(2+3^(1/2))+MertensB3) 5912836056092947 a001 73681302247/4181*4807526976^(6/23) 5912836056147755 a001 1322157322203/4181*75025^(6/23) 5912836057608350 r005 Re(z^2+c),c=15/94+25/36*I,n=3 5912836062978231 m001 Niven/exp(GaussAGM(1,1/sqrt(2)))*cos(Pi/5) 5912836070904226 h001 (7/8*exp(1)+5/9)/(5/9*exp(2)+6/7) 5912836075513132 k002 Champernowne real with 163/2*n^2-351/2*n+153 5912836092174479 m003 -1/3+Sqrt[5]/16+ProductLog[1/2+Sqrt[5]/2]/3 5912836113872640 a001 96450076809/5473*4807526976^(6/23) 5912836113927447 a001 1730726404001/5473*75025^(6/23) 5912836117178569 m002 Pi^2/5+Log[Pi]+3/ProductLog[Pi] 5912836122302584 a001 505019158607/28657*4807526976^(6/23) 5912836122357391 a001 9062201101803/28657*75025^(6/23) 5912836123532496 a001 1322157322203/75025*4807526976^(6/23) 5912836123587303 a001 23725150497407/75025*75025^(6/23) 5912836123711938 a001 1730726404001/98209*4807526976^(6/23) 5912836123738118 a001 9062201101803/514229*4807526976^(6/23) 5912836123741938 a001 23725150497407/1346269*4807526976^(6/23) 5912836123744299 a001 3665737348901/208010*4807526976^(6/23) 5912836123754298 a001 5600748293801/317811*4807526976^(6/23) 5912836123794189 a001 305/9*64079^(29/43) 5912836123822839 a001 2139295485799/121393*4807526976^(6/23) 5912836124292624 a001 204284540899/11592*4807526976^(6/23) 5912836124347431 a001 3665737348901/11592*75025^(6/23) 5912836127512576 a001 1568437211/89*4807526976^(6/23) 5912836127567383 a001 5600748293801/17711*75025^(6/23) 5912836141622532 r002 7th iterates of z^2 + 5912836149582455 a001 119218851371/6765*4807526976^(6/23) 5912836149637262 a001 2139295485799/6765*75025^(6/23) 5912836150792880 a001 2889/17*89^(5/18) 5912836175813192 k002 Champernowne real with 82*n^2-177*n+154 5912836179276788 r005 Re(z^2+c),c=-5/102+43/60*I,n=8 5912836216826937 r002 7th iterates of z^2 + 5912836229068855 r005 Re(z^2+c),c=-47/106+31/58*I,n=9 5912836232561605 a003 cos(Pi*11/115)-cos(Pi*37/97) 5912836271111751 k002 Champernowne real with 115/2*n^2-337/2*n+116 5912836276113252 k002 Champernowne real with 165/2*n^2-357/2*n+155 5912836285503061 a007 Real Root Of -509*x^4+976*x^3-298*x^2+294*x+542 5912836300851662 a001 11384387281/646*4807526976^(6/23) 5912836300906469 a001 204284540899/646*75025^(6/23) 5912836307402644 r009 Re(z^3+c),c=-7/86+30/47*I,n=6 5912836347600503 m001 (-Kac+KomornikLoreti)/(2^(1/3)+CareFree) 5912836362586792 r005 Im(z^2+c),c=-23/18+5/193*I,n=26 5912836372034914 m005 (3/20+1/4*5^(1/2))/(7/10*Pi-1) 5912836375132252 m001 1/exp(Niven)/Kolakoski*Sierpinski 5912836376413312 k002 Champernowne real with 83*n^2-180*n+156 5912836391678805 m001 ln(GAMMA(1/4))*Champernowne/GAMMA(13/24)^2 5912836397545999 r005 Im(z^2+c),c=-5/8+107/223*I,n=3 5912836399218352 a007 Real Root Of -500*x^4+881*x^3-702*x^2-451*x+222 5912836410729087 p001 sum(1/(195*n+17)/(16^n),n=0..infinity) 5912836416589391 m001 (-exp(-1/2*Pi)+Totient)/(5^(1/2)-arctan(1/3)) 5912836425433191 a007 Real Root Of -746*x^4+965*x^3+260*x^2+731*x+632 5912836433803473 a001 76/17711*34^(1/11) 5912836439354235 l006 ln(6649/7054) 5912836473419537 m001 sin(Pi/12)/Artin^2*exp(sqrt(3))^2 5912836476713372 k002 Champernowne real with 167/2*n^2-363/2*n+157 5912836484090646 r008 a(0)=6,K{-n^6,3+2*n^3+7*n^2+n} 5912836488990697 r005 Im(z^2+c),c=-37/70+5/48*I,n=26 5912836508361370 a007 Real Root Of -808*x^4+982*x^3+460*x^2-328*x-53 5912836511371873 m009 (2/3*Psi(1,1/3)+3/5)/(3/4*Psi(1,3/4)-2/3) 5912836516495552 h001 (5/8*exp(2)+1/10)/(1/12*exp(1)+4/7) 5912836524361226 b008 -63+ArcSinh[24] 5912836525349141 r005 Im(z^2+c),c=-69/56+3/52*I,n=48 5912836533986191 h001 (-7*exp(1)+10)/(-8*exp(3)+8) 5912836538940654 m001 1/exp(MadelungNaCl)/ErdosBorwein/GAMMA(2/3)^2 5912836577013432 k002 Champernowne real with 84*n^2-183*n+158 5912836594964041 m001 (Niven+ZetaP(4))/(BesselI(0,1)+MadelungNaCl) 5912836629988266 a007 Real Root Of -338*x^4+515*x^3+184*x^2+789*x-596 5912836635683981 r005 Im(z^2+c),c=5/66+7/13*I,n=5 5912836638310149 m001 exp(1)*(PlouffeB-ln(2)) 5912836641734225 a008 Real Root of x^4-22*x^2-67*x-57 5912836677313492 k002 Champernowne real with 169/2*n^2-369/2*n+159 5912836695247554 r009 Im(z^3+c),c=-23/98+27/38*I,n=54 5912836706659351 h001 (11/12*exp(2)+1/11)/(2/11*exp(1)+2/3) 5912836742425252 r009 Im(z^3+c),c=-13/106+27/37*I,n=20 5912836746822346 h001 (-5*exp(-2)-4)/(-4*exp(2/3)+7) 5912836761444050 a007 Real Root Of -664*x^4+584*x^3-624*x^2+235*x+559 5912836777613552 k002 Champernowne real with 85*n^2-186*n+160 5912836780695326 a007 Real Root Of 957*x^4-702*x^3+70*x^2-880*x+524 5912836788298142 m001 (LaplaceLimit+Mills)/(2*Pi/GAMMA(5/6)-5^(1/2)) 5912836809647863 a001 29/196418*10946^(33/37) 5912836812458577 m001 sin(1/5*Pi)/(Trott2nd^ZetaQ(4)) 5912836813270975 m001 cos(Pi/5)^exp(1/2)-LandauRamanujan 5912836816053335 a001 2576*843^(20/43) 5912836832122449 a007 Real Root Of 868*x^4+563*x^3+773*x^2+394*x-27 5912836848951135 a007 Real Root Of -984*x^4-68*x^3-232*x^2-31*x+169 5912836868807667 m001 1/Lehmer*DuboisRaymond*ln(GAMMA(7/12))^2 5912836873512351 k003 Champernowne real with n^3+103/2*n^2-315/2*n+110 5912836877913612 k002 Champernowne real with 171/2*n^2-375/2*n+161 5912836888206915 m001 1/Paris^2*ln(FeigenbaumDelta)*GAMMA(11/24)^2 5912836898628591 a007 Real Root Of -274*x^4+865*x^3-900*x^2+225*x+660 5912836912047777 r005 Im(z^2+c),c=-17/14+33/202*I,n=23 5912836921555558 r005 Im(z^2+c),c=-21/38+25/47*I,n=3 5912836924478084 r008 a(0)=6,K{-n^6,-12-6*n^3+62*n^2-32*n} 5912836934742539 m001 MertensB1-arctan(1/2)*Tribonacci 5912836968450627 m001 ln(cos(Pi/5))*Ei(1)^2*log(1+sqrt(2))^2 5912836970877379 a007 Real Root Of 286*x^4-421*x^3-706*x^2-264*x+455 5912836978213672 k002 Champernowne real with 86*n^2-189*n+162 5912837017720334 m005 (1/2*Pi-1/10)/(1/2*Pi+11/12) 5912837019619907 m005 (-47/12+1/12*5^(1/2))/(4*gamma+4) 5912837023843562 h001 (4/7*exp(1)+5/8)/(4/9*exp(2)+2/5) 5912837032181561 m005 (1/2*Zeta(3)-5/8)/(1/5*Catalan+2/9) 5912837060162021 r002 43th iterates of z^2 + 5912837068699067 r009 Re(z^3+c),c=-19/34+8/9*I,n=2 5912837068960717 g006 Psi(1,1/10)-Psi(1,9/10)-Psi(1,1/6)-Psi(1,2/3) 5912837074771267 m001 ln(FeigenbaumDelta)^2/Backhouse*GAMMA(1/4) 5912837078513732 k002 Champernowne real with 173/2*n^2-381/2*n+163 5912837095341254 r005 Re(z^2+c),c=17/78+19/55*I,n=17 5912837099117740 r005 Im(z^2+c),c=-11/90+33/50*I,n=52 5912837116242766 m001 GAMMA(11/12)/(KomornikLoreti-gamma(3)) 5912837126642002 a007 Real Root Of -387*x^4+472*x^3-167*x^2-337*x+4 5912837135934361 r002 4th iterates of z^2 + 5912837156511850 a007 Real Root Of 309*x^4+312*x^3+900*x^2+169*x-188 5912837157828607 r005 Re(z^2+c),c=7/19+8/61*I,n=26 5912837170393517 m006 (1/4*exp(Pi)+2/5)/(5/6*ln(Pi)-2) 5912837174712651 k003 Champernowne real with 3/2*n^3+97/2*n^2-152*n+107 5912837178813792 k002 Champernowne real with 87*n^2-192*n+164 5912837183069855 a008 Real Root of x^4-2*x^3-25*x^2+21*x-59 5912837185306739 a007 Real Root Of -768*x^4+963*x^3+812*x^2+492*x-680 5912837195410901 a001 137769106653074/233 5912837198204432 r002 13th iterates of z^2 + 5912837236049246 a007 Real Root Of 47*x^4+343*x^3+287*x^2-448*x+774 5912837278753558 r005 Im(z^2+c),c=-9/17+11/20*I,n=53 5912837279113852 k002 Champernowne real with 175/2*n^2-387/2*n+165 5912837282531148 a001 3/13*832040^(35/47) 5912837288261364 a003 cos(Pi*20/87)*sin(Pi*13/45) 5912837288263130 r002 4th iterates of z^2 + 5912837308201585 r005 Im(z^2+c),c=-23/54+3/47*I,n=3 5912837315391998 a007 Real Root Of 796*x^4-942*x^3-822*x^2+250*x+237 5912837325693680 a007 Real Root Of 388*x^4-972*x^3+414*x^2-700*x-807 5912837328618959 r005 Re(z^2+c),c=-41/60+9/53*I,n=14 5912837337666439 a001 17393796001/987*4807526976^(6/23) 5912837337721246 a001 312119004989/987*75025^(6/23) 5912837349065586 m001 (ln(2)/ln(10)+5^(1/2))/(-TreeGrowth2nd+Trott) 5912837361717275 a007 Real Root Of -295*x^4+247*x^3-278*x^2+380*x+409 5912837379413912 k002 Champernowne real with 88*n^2-195*n+166 5912837391875827 a007 Real Root Of 122*x^4-835*x^3-671*x^2-543*x-274 5912837396028357 m001 (GAMMA(3/4)-ln(Pi))/(CareFree+TwinPrimes) 5912837435514041 m001 cos(Pi/5)^(3/2*sqrt(1+sqrt(3))) 5912837475912951 k003 Champernowne real with 2*n^3+91/2*n^2-293/2*n+104 5912837479713972 k002 Champernowne real with 177/2*n^2-393/2*n+167 5912837490024167 r009 Re(z^3+c),c=-41/70+27/49*I,n=40 5912837507024010 a003 cos(Pi*23/77)/sin(Pi*59/120) 5912837536966239 a007 Real Root Of 70*x^4-568*x^3+549*x^2-472*x-597 5912837563690357 p004 log(15583/8627) 5912837564583444 a007 Real Root Of 515*x^4-230*x^3+921*x^2+586*x-86 5912837567896366 a007 Real Root Of -162*x^4+241*x^3-497*x^2+764*x-308 5912837575017643 a007 Real Root Of -719*x^4-463*x^3-570*x^2-361*x-22 5912837576043789 a007 Real Root Of 837*x^4-241*x^3-429*x^2-590*x-351 5912837580014032 k002 Champernowne real with 89*n^2-198*n+168 5912837598478741 m001 1/Porter*ln(Champernowne)*PrimesInBinary 5912837608395251 r002 17th iterates of z^2 + 5912837621528769 a001 6643838879/377*102334155^(4/21) 5912837621528769 a001 969323029/377*2504730781961^(4/21) 5912837634414419 a001 45537549124/377*4181^(4/21) 5912837638509019 r005 Re(z^2+c),c=7/64+7/12*I,n=50 5912837670619536 m001 1/exp(GAMMA(2/3))^2*GAMMA(1/3)^2/cos(Pi/5) 5912837671804716 a007 Real Root Of -45*x^4-278*x^3+21*x^2+530*x-65 5912837680314092 k002 Champernowne real with 179/2*n^2-399/2*n+169 5912837691530193 m006 (3/5*exp(Pi)+1/5)/(5/6*Pi-5) 5912837703624415 r005 Re(z^2+c),c=7/34+28/55*I,n=48 5912837717150773 r008 a(0)=6,K{-n^6,6+4*n^3+2*n^2+n} 5912837724966400 a001 1/76*(1/2*5^(1/2)+1/2)^26*4^(4/11) 5912837757927337 m001 1/LaplaceLimit/ln(GolombDickman)^2/GAMMA(1/12) 5912837777113252 k003 Champernowne real with 5/2*n^3+85/2*n^2-141*n+101 5912837780614152 k002 Champernowne real with 90*n^2-201*n+170 5912837866491553 h001 (2/5*exp(2)+5/8)/(5/7*exp(2)+7/9) 5912837880914212 k002 Champernowne real with 181/2*n^2-405/2*n+171 5912837881808712 r009 Re(z^3+c),c=-61/102+9/17*I,n=25 5912837886946397 r005 Re(z^2+c),c=23/118+25/58*I,n=41 5912837888627007 a001 33385282/233*89^(6/19) 5912837909256500 m001 (2^(1/2)+FeigenbaumC)/(-Sarnak+ZetaP(3)) 5912837911398408 r005 Im(z^2+c),c=-9/40+36/49*I,n=25 5912837916267932 r005 Im(z^2+c),c=6/19+23/61*I,n=16 5912837933055431 r005 Re(z^2+c),c=-2/13+35/51*I,n=5 5912837975031303 a007 Real Root Of -54*x^4-179*x^3+903*x^2+521*x+512 5912837981214272 k002 Champernowne real with 91*n^2-204*n+172 5912837983754465 m005 (1/2*3^(1/2)-2/11)/(7/9*Zeta(3)+2/9) 5912837984337917 m001 GAMMA(5/6)/(ReciprocalLucas-ZetaQ(2)) 5912837984415984 r009 Re(z^3+c),c=-73/122+33/64*I,n=61 5912837990456315 r008 a(0)=0,K{-n^6,-18+4*n+51*n^2-36*n^3} 5912838026674102 l006 ln(8931/9475) 5912838029822736 m001 BesselI(0,1)-gamma(1)-RenyiParking 5912838031440986 a007 Real Root Of 709*x^4-116*x^3+519*x^2-722*x-719 5912838032590868 m001 (Pi^(1/2)-Artin)/(GAMMA(2/3)-BesselI(1,2)) 5912838047183698 m001 (ln(2)-BesselI(1,1))/(ArtinRank2+Porter) 5912838060661325 a007 Real Root Of 118*x^4-238*x^3-879*x^2-974*x+918 5912838066953322 a007 Real Root Of 696*x^4-607*x^3+537*x^2+310*x-215 5912838069085347 h001 (3/8*exp(1)+3/5)/(3/4*exp(1)+7/10) 5912838072929929 a007 Real Root Of 483*x^4-991*x^3+144*x^2-55*x+128 5912838078313552 k003 Champernowne real with 3*n^3+79/2*n^2-271/2*n+98 5912838081514332 k002 Champernowne real with 183/2*n^2-411/2*n+173 5912838089221669 m001 polylog(4,1/2)/(sin(1/12*Pi)^Paris) 5912838092441368 a007 Real Root Of 47*x^4-538*x^3+156*x^2-61*x+87 5912838099570416 r002 57th iterates of z^2 + 5912838102989919 a007 Real Root Of -897*x^4+720*x^3-904*x^2+502*x+3 5912838115778938 r005 Re(z^2+c),c=-29/40+1/5*I,n=25 5912838142344115 k008 concat of cont frac of 5912838144878501 m001 1/exp(GAMMA(5/12))^2/GAMMA(2/3)/sqrt(Pi) 5912838164801587 a007 Real Root Of -138*x^4-853*x^3-247*x^2-104*x+366 5912838167951771 m005 (1/3*gamma+5/6)/(5/6*exp(1)-4) 5912838179731017 r009 Im(z^3+c),c=-51/86+13/22*I,n=19 5912838181814392 k002 Champernowne real with 92*n^2-207*n+174 5912838205313164 r005 Im(z^2+c),c=3/56+15/26*I,n=8 5912838207955727 a007 Real Root Of -976*x^4+574*x^3-538*x^2+350*x+633 5912838231949051 r008 a(0)=6,K{-n^6,-8-38*n+64*n^2-6*n^3} 5912838238246482 m001 OrthogonalArrays/exp(-1/2*Pi)*ZetaQ(3) 5912838245341717 m001 GAMMA(1/4)*exp(Robbin)*sin(1) 5912838252586359 h001 (11/12*exp(2)+1/12)/(2/9*exp(1)+5/9) 5912838282114452 k002 Champernowne real with 185/2*n^2-417/2*n+175 5912838295470059 m001 (gamma(1)+Magata)/(StronglyCareFree-Totient) 5912838297097962 a001 322/1597*317811^(4/15) 5912838310462751 r002 5th iterates of z^2 + 5912838320864689 r005 Re(z^2+c),c=3/22+15/29*I,n=38 5912838363654604 a007 Real Root Of -624*x^4+673*x^3+604*x^2+967*x+576 5912838373930501 r009 Re(z^3+c),c=-1/40+30/49*I,n=4 5912838379513852 k003 Champernowne real with 7/2*n^3+73/2*n^2-130*n+95 5912838382414512 k002 Champernowne real with 93*n^2-210*n+176 5912838382513130 r009 Re(z^3+c),c=-5/114+45/52*I,n=11 5912838409431355 m005 (1/2*5^(1/2)-2/9)/(5/12*5^(1/2)+7/12) 5912838426633888 m001 Chi(1)*gamma+OneNinth 5912838437322828 a007 Real Root Of -281*x^4+20*x^3-227*x^2+900*x+650 5912838438950520 a007 Real Root Of -855*x^4+534*x^3-783*x^2+212*x+614 5912838467739405 a007 Real Root Of -601*x^4-521*x^3-890*x^2+220*x+407 5912838469327122 p001 sum(1/(487*n+171)/(24^n),n=0..infinity) 5912838480922826 a007 Real Root Of 662*x^4-806*x^3-810*x^2-171*x+470 5912838482714572 k002 Champernowne real with 187/2*n^2-423/2*n+177 5912838519916833 a007 Real Root Of -673*x^4+217*x^3+14*x^2+852*x+626 5912838525490338 a007 Real Root Of 78*x^4-777*x^3-763*x^2-166*x+516 5912838536327194 m005 (1/3*3^(1/2)-2/3)/(4/5*Catalan+7/9) 5912838573890238 r009 Im(z^3+c),c=-3/19+43/61*I,n=6 5912838583014632 k002 Champernowne real with 94*n^2-213*n+178 5912838617976045 a001 21/439204*3571^(47/54) 5912838627919207 m001 GAMMA(23/24)^FellerTornier/Niven 5912838633686690 q001 502/849 5912838642650773 r002 7th iterates of z^2 + 5912838645916943 m001 (-sin(1)+GaussKuzminWirsing)/(1-Psi(1,1/3)) 5912838655618546 r009 Im(z^3+c),c=-15/29+22/37*I,n=10 5912838656330256 r002 31i'th iterates of 2*x/(1-x^2) of 5912838674357727 m001 (FeigenbaumKappa+PrimesInBinary)/(ln(3)+Ei(1)) 5912838680714152 k003 Champernowne real with 4*n^3+67/2*n^2-249/2*n+92 5912838681526087 m004 -2+16*Log[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 5912838683314692 k002 Champernowne real with 189/2*n^2-429/2*n+179 5912838688646596 r005 Im(z^2+c),c=11/32+19/63*I,n=14 5912838709466833 a007 Real Root Of -903*x^4+892*x^3-720*x^2+11*x+553 5912838712016902 r005 Re(z^2+c),c=-65/118+24/53*I,n=30 5912838736649453 r009 Re(z^3+c),c=-63/106+7/13*I,n=13 5912838750908855 a001 161/5473*433494437^(4/15) 5912838760568716 a001 322/75025*591286729879^(4/15) 5912838774167304 p003 LerchPhi(1/256,1,295/174) 5912838783614752 k002 Champernowne real with 95*n^2-216*n+180 5912838783750909 r009 Re(z^3+c),c=-13/22+29/51*I,n=28 5912838784561261 a001 1515744265389/46*322^(1/2) 5912838790986404 a001 75025/521*47^(55/57) 5912838804736348 m001 (FeigenbaumD+Mills)/(gamma(1)-BesselK(1,1)) 5912838819878533 a007 Real Root Of 950*x^4-679*x^3-264*x^2+254*x-14 5912838822951899 a007 Real Root Of -339*x^4+272*x^3-306*x^2-637*x-172 5912838856022844 a003 cos(Pi*47/113)*cos(Pi*47/110) 5912838865845343 m001 Riemann1stZero^2/ln(Conway)^2*(3^(1/3))^2 5912838870959461 a001 516002918640/281*521^(12/13) 5912838883914812 k002 Champernowne real with 191/2*n^2-435/2*n+181 5912838896545251 a007 Real Root Of -151*x^4-726*x^3+971*x^2-223*x-777 5912838903986738 m001 BesselK(0,1)/(Cahen-FeigenbaumKappa) 5912838911184019 m001 FeigenbaumDelta^Mills/(FeigenbaumDelta^Pi) 5912838911812651 m006 (3/4*Pi^2+3/4)/(1/4*exp(2*Pi)+4) 5912838925632994 a003 cos(Pi*15/58)*sin(Pi*28/85) 5912838930641040 a007 Real Root Of -912*x^4+425*x^3-281*x^2-806*x-179 5912838933998536 a007 Real Root Of 180*x^4-139*x^3+80*x^2-907*x-615 5912838938027121 r002 11th iterates of z^2 + 5912838960091629 a007 Real Root Of -682*x^4+273*x^3+456*x^2+341*x+182 5912838965250891 a003 sin(Pi*1/54)/cos(Pi*5/86) 5912838975190086 m001 (Magata-MasserGramain)/FeigenbaumDelta 5912838976577414 m008 (3*Pi^5-1/5)/(1/6*Pi^6-5) 5912838980520762 m005 (1/3*3^(1/2)+1/6)/(3/5*5^(1/2)-1/12) 5912838981914452 k003 Champernowne real with 9/2*n^3+61/2*n^2-119*n+89 5912838982450872 r009 Re(z^3+c),c=-59/98+13/50*I,n=53 5912838984014796 a001 199/8*14930352^(8/17) 5912838984214872 k002 Champernowne real with 96*n^2-219*n+182 5912838984446344 m001 (ln(2)-Zeta(1/2))/(Bloch-OneNinth) 5912838996519406 p003 LerchPhi(1/12,4,389/191) 5912839000067458 a001 21/24476*9349^(25/54) 5912839011382967 a007 Real Root Of 86*x^4+629*x^3+776*x^2+298*x-459 5912839017133474 a001 7/13201*64079^(23/54) 5912839032108306 m001 Conway*(GAMMA(5/6)+Magata) 5912839056161947 m001 1/sinh(1)*ln(Paris)*sqrt(3)^2 5912839064441589 m008 (1/6*Pi^6+1/5)/(4/5*Pi+1/5) 5912839084514932 k002 Champernowne real with 193/2*n^2-441/2*n+183 5912839127703304 a007 Real Root Of -825*x^4+332*x^3-369*x^2+170*x+399 5912839149800817 a003 sin(Pi*7/117)+sin(Pi*11/83) 5912839150961416 a007 Real Root Of 612*x^4+729*x^3-244*x^2-780*x-300 5912839155309358 s002 sum(A088299[n]/(n!^3),n=1..infinity) 5912839155983594 m005 (1/3*3^(1/2)-2/5)/(9/11*2^(1/2)-6/7) 5912839161777398 a007 Real Root Of -94*x^4+152*x^3-798*x^2+494*x+614 5912839175268906 s002 sum(A084169[n]/((2^n-1)/n),n=1..infinity) 5912839184814992 k002 Champernowne real with 97*n^2-222*n+184 5912839212402964 r005 Re(z^2+c),c=-91/82+38/45*I,n=2 5912839228551782 r005 Im(z^2+c),c=-11/82+33/41*I,n=29 5912839264826444 a007 Real Root Of 879*x^4+448*x^3+876*x^2-355*x-531 5912839265905387 b008 7-Cosh[E]/7 5912839283114752 k003 Champernowne real with 5*n^3+55/2*n^2-227/2*n+86 5912839285115052 k002 Champernowne real with 195/2*n^2-447/2*n+185 5912839290361536 m001 (-ln(2+3^(1/2))+Bloch)/(sin(1)+sin(1/5*Pi)) 5912839298344185 a008 Real Root of x^4-2*x^3-49*x^2+50*x+373 5912839306204780 b005 Number DB table 5912839318693856 r009 Im(z^3+c),c=-39/70+11/17*I,n=10 5912839361241881 m001 (ln(2)+Champernowne)/(GlaisherKinkelin+Paris) 5912839361449608 h001 (4/7*exp(2)+3/10)/(11/12*exp(2)+7/8) 5912839385415112 k002 Champernowne real with 98*n^2-225*n+186 5912839402270744 m001 1/FeigenbaumB^2*exp(GolombDickman)^2*Trott^2 5912839427441338 m001 ln(Riemann1stZero)^2*ArtinRank2^2/gamma 5912839459139157 a007 Real Root Of -962*x^4+754*x^3-816*x^2+200*x+677 5912839468000994 a007 Real Root Of -596*x^4+467*x^3-290*x^2+227*x+405 5912839469034842 r009 Im(z^3+c),c=-15/52+34/53*I,n=16 5912839485715172 k002 Champernowne real with 197/2*n^2-453/2*n+187 5912839492430504 m001 (GAMMA(3/4)-ln(gamma))/(Weierstrass-ZetaP(3)) 5912839513637657 a007 Real Root Of -882*x^4+514*x^3-937*x^2+557*x+871 5912839517181479 m001 (-cos(1/12*Pi)+Cahen)/(Psi(2,1/3)+gamma) 5912839521371412 a007 Real Root Of 36*x^4+309*x^3+503*x^2-354*x+195 5912839528198423 s001 sum(exp(-4*Pi/5)^n*A033390[n],n=1..infinity) 5912839540091466 r005 Re(z^2+c),c=-5/114+9/59*I,n=5 5912839540433089 m005 (1/3*Catalan+1/8)/(4/7*5^(1/2)+6) 5912839558026004 r009 Im(z^3+c),c=-11/38+31/47*I,n=18 5912839580833781 a007 Real Root Of -524*x^4+600*x^3-733*x^2-212*x+319 5912839584315052 k003 Champernowne real with 11/2*n^3+49/2*n^2-108*n+83 5912839585443937 a007 Real Root Of -62*x^4-251*x^3+603*x^2-580*x-615 5912839586015232 k002 Champernowne real with 99*n^2-228*n+188 5912839590803943 m001 (FeigenbaumB+Riemann2ndZero)/(Bloch-sin(1)) 5912839602147719 a007 Real Root Of -170*x^4-962*x^3+324*x^2+267*x-822 5912839618022953 r005 Im(z^2+c),c=-61/78+3/11*I,n=8 5912839636763258 m005 (1/3*2^(1/2)-1/8)/(1/10*2^(1/2)-8/11) 5912839637448797 h001 (5/8*exp(1)+1/12)/(7/9*exp(1)+9/10) 5912839648393178 m002 2/E^Pi+Pi+Pi^3*Csch[Pi] 5912839659486762 r009 Re(z^3+c),c=-9/86+19/30*I,n=48 5912839674058190 a007 Real Root Of 729*x^4+87*x^3-713*x^2-962*x+711 5912839680713292 r009 Re(z^3+c),c=-61/102+20/39*I,n=61 5912839686315292 k002 Champernowne real with 199/2*n^2-459/2*n+189 5912839739387067 s002 sum(A013635[n]/(n!^3),n=1..infinity) 5912839750645413 a001 46368/11*39603^(46/51) 5912839759950882 a007 Real Root Of -922*x^4+808*x^3-283*x^2+513*x+682 5912839768977705 r008 a(0)=6,K{-n^6,27+20*n^3+3*n^2-38*n} 5912839786615352 k002 Champernowne real with 100*n^2-231*n+190 5912839823994193 a007 Real Root Of -128*x^4-686*x^3+539*x^2+707*x-19 5912839834214453 m005 (1/2*Catalan-1/3)/(3/10*Zeta(3)-4/7) 5912839854867704 a001 5/123*3571^(18/55) 5912839857246089 m001 (GAMMA(2/3)+GAMMA(3/4))/(MertensB1+ZetaP(3)) 5912839858726932 p004 log(19597/53) 5912839864753153 m008 (1/2*Pi^2-2/3)/(3/4*Pi^6+4/5) 5912839879633109 r005 Re(z^2+c),c=-69/106+14/51*I,n=19 5912839885515352 k003 Champernowne real with 6*n^3+43/2*n^2-205/2*n+80 5912839886915412 k002 Champernowne real with 201/2*n^2-465/2*n+191 5912839914926455 a007 Real Root Of 939*x^4+506*x^3+540*x^2-866*x-53 5912839917052834 p001 sum((-1)^n/(201*n+169)/(625^n),n=0..infinity) 5912839925194379 a007 Real Root Of -121*x^4+740*x^3-612*x^2-857*x-125 5912839948530773 a007 Real Root Of -287*x^4+400*x^3-111*x^2+158*x+250 5912839952550460 a007 Real Root Of 249*x^4-578*x^3-910*x^2-918*x+950 5912839987215472 k002 Champernowne real with 101*n^2-234*n+192 5912839987289270 r005 Re(z^2+c),c=-29/78+38/63*I,n=20 5912840007071035 m001 (Zeta(5)+arctan(1/3))/(Lehmer+Niven) 5912840015956029 a007 Real Root Of 91*x^4+495*x^3-277*x^2-90*x+249 5912840050447865 a007 Real Root Of -810*x^4+882*x^3-783*x^2-839*x+59 5912840057020017 m001 ln(GAMMA(7/12))^2*Ei(1)*sqrt(3) 5912840060407341 a007 Real Root Of 886*x^4-582*x^3+764*x^2+216*x-368 5912840061359663 a001 5/123*5778^(17/55) 5912840067901860 r005 Im(z^2+c),c=13/50+16/31*I,n=35 5912840068035895 a007 Real Root Of -636*x^4+467*x^3-661*x^2+89*x+458 5912840071122947 m001 Magata^LambertW(1)/(ZetaR(2)^LambertW(1)) 5912840076959317 r002 6th iterates of z^2 + 5912840082177639 a007 Real Root Of 196*x^4-972*x^3+93*x^2-948*x+705 5912840087515532 k002 Champernowne real with 203/2*n^2-471/2*n+193 5912840104954548 m008 (1/5*Pi^3+5)/(2/3*Pi-1/5) 5912840106755430 a007 Real Root Of -281*x^4+429*x^3-745*x^2+860*x+892 5912840126267972 r009 Re(z^3+c),c=-23/54+1/50*I,n=61 5912840172273702 v002 sum(1/(5^n+(11+4*n^2+7*n)),n=1..infinity) 5912840173904006 a001 199/233*20365011074^(21/22) 5912840179313993 a003 cos(Pi*5/77)*sin(Pi*13/63) 5912840186525562 a003 cos(Pi*9/59)*sin(Pi*13/56) 5912840186715652 k003 Champernowne real with 13/2*n^3+37/2*n^2-97*n+77 5912840187815592 k002 Champernowne real with 102*n^2-237*n+194 5912840195824164 p001 sum(1/(488*n+173)/(12^n),n=0..infinity) 5912840205668078 r005 Re(z^2+c),c=-37/70+13/21*I,n=62 5912840238778711 r002 42th iterates of z^2 + 5912840245483695 a007 Real Root Of 150*x^4+787*x^3-572*x^2+219*x+636 5912840259896061 b008 2+29*ArcCsch[E^2] 5912840288115652 k002 Champernowne real with 205/2*n^2-477/2*n+195 5912840296972698 a003 sin(Pi*4/93)-sin(Pi*15/58) 5912840300631773 m001 ln(GAMMA(5/24))^2/Khintchine/sinh(1)^2 5912840309286191 h001 (-7*exp(-2)+3)/(-4*exp(-1)-2) 5912840318090771 s002 sum(A191929[n]/(n!^3),n=1..infinity) 5912840318106454 s002 sum(A082728[n]/(n!^3),n=1..infinity) 5912840335782001 a001 15127/13*1346269^(26/43) 5912840349864740 r002 15th iterates of z^2 + 5912840388415712 k002 Champernowne real with 103*n^2-240*n+196 5912840409585524 a007 Real Root Of 40*x^4+198*x^3-377*x^2-873*x+57 5912840428319428 m001 RenyiParking^GAMMA(19/24)/Zeta(3) 5912840433633531 m001 (Pi+cos(1))/(sin(1/12*Pi)-QuadraticClass) 5912840454342897 l006 ln(222/401) 5912840467781081 h001 (7/9*exp(2)+11/12)/(1/5*exp(1)+7/12) 5912840477846031 a007 Real Root Of 845*x^4+76*x^3+213*x^2-854*x-667 5912840478895116 m001 Backhouse*FellerTornier/Kolakoski 5912840480590305 m001 (Porter-ZetaP(4))/(MasserGramain+Niven) 5912840487915952 k003 Champernowne real with 7*n^3+31/2*n^2-183/2*n+74 5912840488715772 k002 Champernowne real with 207/2*n^2-483/2*n+197 5912840497442453 m001 1/FeigenbaumC^2/Cahen^2*ln(BesselJ(1,1)) 5912840529958535 p003 LerchPhi(1/100,2,254/195) 5912840535010501 r009 Re(z^3+c),c=-41/70+27/49*I,n=43 5912840546577036 a001 2504730781961/843*521^(11/13) 5912840576036358 r005 Im(z^2+c),c=-13/56+24/29*I,n=33 5912840577311396 r005 Im(z^2+c),c=-11/12+2/41*I,n=20 5912840589015832 k002 Champernowne real with 104*n^2-243*n+198 5912840591230935 r005 Im(z^2+c),c=33/118+31/53*I,n=13 5912840599108517 m005 (1/2*3^(1/2)+7/9)/(5/6*5^(1/2)+11/12) 5912840606247810 r009 Im(z^3+c),c=-13/106+30/41*I,n=23 5912840633166010 r002 50th iterates of z^2 + 5912840648308343 m001 Paris/(KomornikLoreti^ln(2^(1/2)+1)) 5912840675075542 a001 29/144*233^(31/50) 5912840689315892 k002 Champernowne real with 209/2*n^2-489/2*n+199 5912840705133019 a007 Real Root Of -312*x^4+149*x^3+77*x^2+438*x+301 5912840710967644 a003 sin(Pi*9/64)/cos(Pi*25/103) 5912840719182202 a007 Real Root Of 587*x^4+636*x^3+22*x^2-900*x+53 5912840765726906 a007 Real Root Of 683*x^4-983*x^3-673*x^2-805*x+831 5912840773466349 m005 (1/2*Zeta(3)+8/9)/(8/9*Pi-3/11) 5912840778773107 r005 Re(z^2+c),c=33/86+10/61*I,n=14 5912840783614955 m001 (sin(1/5*Pi)+FransenRobinson)/(Paris+PlouffeB) 5912840789116252 k003 Champernowne real with 15/2*n^3+25/2*n^2-86*n+71 5912840789615952 k002 Champernowne real with 105*n^2-246*n+200 5912840792897211 a007 Real Root Of -208*x^4-184*x^3-804*x^2+904*x+803 5912840807368985 s002 sum(A181223[n]/(n^2*10^n+1),n=1..infinity) 5912840809273906 a001 1568397607/55*317811^(8/19) 5912840809278841 a001 33385282/55*2971215073^(8/19) 5912840818731049 m001 1/exp(Magata)*Backhouse*GAMMA(3/4) 5912840821292896 r009 Im(z^3+c),c=-5/26+32/45*I,n=37 5912840827060422 r002 4th iterates of z^2 + 5912840833621402 a007 Real Root Of 488*x^4-109*x^3-19*x^2-865*x-587 5912840839944805 m001 BesselJ(1,1)*Porter^2/ln(GAMMA(19/24)) 5912840879691582 m001 ln(GolombDickman)/FeigenbaumAlpha*Pi 5912840889916012 k002 Champernowne real with 211/2*n^2-495/2*n+201 5912840909373618 m001 (Chi(1)+BesselJ(1,1))/(-Kolakoski+Otter) 5912840915636651 a007 Real Root Of 694*x^4-862*x^3-219*x^2-718*x-611 5912840915893916 a007 Real Root Of -611*x^4+693*x^3-150*x^2-300*x+93 5912840949327032 a007 Real Root Of -526*x^4+483*x^3-433*x^2+175*x+419 5912840952815837 m001 (GAMMA(19/24)-Si(Pi))/(-Champernowne+ZetaQ(3)) 5912840959262812 a007 Real Root Of 986*x^4+303*x^3+715*x^2-374*x-529 5912840969361860 h001 (5/6*exp(2)+1/4)/(1/12*exp(1)+6/7) 5912840985749287 m006 (5*exp(2*Pi)+1/6)/(1/4*ln(Pi)+1/6) 5912840990216072 k002 Champernowne real with 106*n^2-249*n+202 5912840991567777 r009 Re(z^3+c),c=-49/118+29/46*I,n=32 5912841008622544 a007 Real Root Of -516*x^4+868*x^3-968*x^2+291*x+753 5912841015201269 a003 cos(Pi*11/91)-sin(Pi*41/108) 5912841022606499 r009 Im(z^3+c),c=-61/64+1/63*I,n=2 5912841041151310 r002 4th iterates of z^2 + 5912841063044926 a007 Real Root Of 61*x^4+228*x^3-885*x^2-523*x+420 5912841077916795 m001 (exp(Pi)+cos(1/12*Pi))/(-Cahen+CopelandErdos) 5912841079720970 r005 Re(z^2+c),c=13/46+30/53*I,n=30 5912841085440553 m001 (Shi(1)-exp(Pi))/(-BesselK(0,1)+Kolakoski) 5912841087990293 a007 Real Root Of 854*x^4-177*x^3+997*x^2-246*x-635 5912841090316552 k003 Champernowne real with 8*n^3+19/2*n^2-161/2*n+68 5912841090516132 k002 Champernowne real with 213/2*n^2-501/2*n+203 5912841122321122 k007 concat of cont frac of 5912841125371030 s001 sum(exp(-Pi/4)^(n-1)*A236629[n],n=1..infinity) 5912841128906504 a007 Real Root Of -450*x^4-19*x^3-874*x^2+777*x+49 5912841128955728 a001 47/610*8^(49/50) 5912841153155863 s002 sum(A277704[n]/(pi^n+1),n=1..infinity) 5912841153639329 s002 sum(A082752[n]/(pi^n+1),n=1..infinity) 5912841179923720 r002 10th iterates of z^2 + 5912841181751898 h002 exp(6^(12/5)+7^(2/7)) 5912841181751898 h007 exp(6^(12/5)+7^(2/7)) 5912841190816192 k002 Champernowne real with 107*n^2-252*n+204 5912841198235441 m005 (1/2*Pi+2/5)/(4/11*Catalan+3) 5912841216794675 m001 (-Robbin+Trott2nd)/(GAMMA(13/24)-LambertW(1)) 5912841218857720 m005 (1/2*Catalan-4)/(3/4*3^(1/2)-7/10) 5912841241172168 s002 sum(A100256[n]/(n^2*pi^n+1),n=1..infinity) 5912841251322288 a007 Real Root Of -2*x^4+948*x^3-833*x^2+258*x+640 5912841285295357 r005 Im(z^2+c),c=-9/122+33/52*I,n=32 5912841291116252 k002 Champernowne real with 215/2*n^2-507/2*n+205 5912841292453133 a007 Real Root Of 371*x^4+990*x^3+468*x^2-862*x-514 5912841321535512 m001 (1-sin(1))/(-gamma(3)+FeigenbaumD) 5912841328816601 a007 Real Root Of 650*x^4-591*x^3+809*x^2+268*x-326 5912841346713307 m001 1/ln(arctan(1/2))^2*GAMMA(7/24)^2/exp(1) 5912841365029422 a001 17/2889*11^(51/53) 5912841369238389 r005 Im(z^2+c),c=-9/98+35/51*I,n=38 5912841383107978 r005 Re(z^2+c),c=-107/126+26/33*I,n=3 5912841391416312 k002 Champernowne real with 108*n^2-255*n+206 5912841391516852 k003 Champernowne real with 17/2*n^3+13/2*n^2-75*n+65 5912841399749580 a007 Real Root Of 825*x^4-587*x^3-145*x^2-745*x-612 5912841401210028 m001 (exp(1/2)+1/3)/(Khinchin+2/3) 5912841403568238 a003 sin(Pi*11/89)-sin(Pi*35/83) 5912841463640191 r005 Re(z^2+c),c=-15/22+33/119*I,n=14 5912841468722524 r005 Re(z^2+c),c=-19/26+1/99*I,n=19 5912841491716372 k002 Champernowne real with 217/2*n^2-513/2*n+207 5912841515922236 m001 (cos(1/12*Pi)-exp(Pi))/(Kolakoski+Otter) 5912841522907915 r009 Re(z^3+c),c=-55/102+22/61*I,n=47 5912841528744766 m001 (2^(1/3)+GAMMA(17/24))/(-ErdosBorwein+Salem) 5912841556356960 r002 6th iterates of z^2 + 5912841556643189 a007 Real Root Of -228*x^4-181*x^3+123*x^2+633*x-352 5912841563541363 m001 1/Conway^2/ln(Champernowne)^2*GAMMA(5/24) 5912841585977090 m001 1/Trott*MinimumGamma^2/exp(BesselK(1,1))^2 5912841591868884 m001 (LandauRamanujan2nd+Thue)/(Pi-CareFree) 5912841592016432 k002 Champernowne real with 109*n^2-258*n+208 5912841606055397 m001 (ln(2)-Zeta(1,-1))/(CareFree+RenyiParking) 5912841614808675 a003 cos(Pi*23/73)+cos(Pi*18/37) 5912841622337914 m001 Zeta(1,2)/ln(GAMMA(13/24))^2*cosh(1) 5912841637689228 m001 (Shi(1)+arctan(1/3))/(GAMMA(23/24)+Mills) 5912841664394536 r005 Im(z^2+c),c=-9/8+21/82*I,n=48 5912841670964414 q001 2293/3878 5912841671973492 r009 Im(z^3+c),c=-3/17+35/48*I,n=35 5912841676937100 a007 Real Root Of 417*x^4+164*x^3+930*x^2-162*x-438 5912841681054294 a007 Real Root Of 289*x^4+462*x^3+573*x^2-86*x-191 5912841687235507 m001 (CareFree+KhinchinLevy)/(exp(Pi)+Psi(2,1/3)) 5912841689320462 a007 Real Root Of -281*x^4+957*x^3-228*x^2+768*x+766 5912841692316492 k002 Champernowne real with 219/2*n^2-519/2*n+209 5912841692717152 k003 Champernowne real with 9*n^3+7/2*n^2-139/2*n+62 5912841697576586 a007 Real Root Of -193*x^4+459*x^3+255*x^2+625*x-530 5912841709719236 p003 LerchPhi(1/8,3,28/235) 5912841727855212 a007 Real Root Of -997*x^4+484*x^3-243*x^2+897*x+54 5912841739891698 m001 Catalan/ln(2+3^(1/2))/Salem 5912841744965299 m005 (1/2*gamma-3/8)/(17/30+2/5*5^(1/2)) 5912841751500041 r005 Re(z^2+c),c=-31/26+13/43*I,n=4 5912841754981524 r005 Im(z^2+c),c=-25/62+18/31*I,n=19 5912841788122065 m001 (ln(2)+Gompertz)/(Niven+PlouffeB) 5912841792616552 k002 Champernowne real with 110*n^2-261*n+210 5912841799239610 m005 (1/2*2^(1/2)+9/10)/(5/6*Pi+1/10) 5912841801308352 a001 47/591286729879*14930352^(6/23) 5912841801308353 a001 1/225749145909*956722026041^(6/23) 5912841806392668 r008 a(0)=6,K{-n^6,-58-68*n^3+96*n^2+41*n} 5912841806736396 m001 exp(1)*5^(1/2)+Zeta(1,-1) 5912841813111111 k006 concat of cont frac of 5912841838768264 p004 log(32537/18013) 5912841840406312 m001 (ZetaP(4)+ZetaQ(3))/(Backhouse-Trott) 5912841856501055 a007 Real Root Of x^4+592*x^3+424*x^2+443*x-377 5912841874482416 r005 Re(z^2+c),c=5/32+17/33*I,n=62 5912841877065122 m001 1/Ei(1)^2/exp(Kolakoski)/GAMMA(5/12) 5912841892916612 k002 Champernowne real with 221/2*n^2-525/2*n+211 5912841945108786 m001 Ei(1,1)^(MertensB3/TravellingSalesman) 5912841951496926 a003 sin(Pi*17/83)*sin(Pi*37/83) 5912841956007932 a005 (1/sin(87/212*Pi))^904 5912841961519781 m005 (1/3*Pi+2/5)/(6/11*3^(1/2)-7/10) 5912841964831698 r005 Im(z^2+c),c=-75/118+2/11*I,n=19 5912841967004696 a007 Real Root Of -976*x^4-342*x^3+201*x^2+221*x+109 5912841979352064 r002 27th iterates of z^2 + 5912841983002688 m005 (1/2*gamma+2/3)/(5/8*exp(1)-1/12) 5912841987764887 h001 (-exp(2/3)+2)/(-5*exp(-1)-7) 5912841992716296 a007 Real Root Of 79*x^4+369*x^3-471*x^2+636*x-55 5912841993216672 k002 Champernowne real with 111*n^2-264*n+212 5912841993917452 k003 Champernowne real with 19/2*n^3+1/2*n^2-64*n+59 5912841997435406 r009 Re(z^3+c),c=-13/22+9/37*I,n=41 5912842003367816 m001 (cos(1)*GAMMA(11/12)+ZetaQ(2))/GAMMA(11/12) 5912842013692506 a001 1/322*(1/2*5^(1/2)+1/2)^21*76^(9/19) 5912842062262958 s002 sum(A154370[n]/(n!^3),n=1..infinity) 5912842071049471 m001 HeathBrownMoroz^gamma*exp(1) 5912842089865456 m001 1/KhintchineHarmonic/Backhouse*ln(Magata)^2 5912842093516732 k002 Champernowne real with 223/2*n^2-531/2*n+213 5912842125804021 s002 sum(A211796[n]/((exp(n)-1)/n),n=1..infinity) 5912842144222307 m001 (cos(1/12*Pi)-sin(1))/(-BesselI(0,2)+ZetaP(3)) 5912842150497204 a007 Real Root Of -95*x^4+112*x^3+739*x^2+609*x-630 5912842153908569 a005 (1/cos(10/117*Pi))^238 5912842177351719 m005 (5/6*gamma+3/4)/(2*Catalan+1/4) 5912842193816792 k002 Champernowne real with 112*n^2-267*n+214 5912842196935330 r009 Re(z^3+c),c=-59/122+2/37*I,n=16 5912842209499904 a003 cos(Pi*8/101)*cos(Pi*23/79) 5912842214946406 m001 Zeta(9)^2/Kolakoski*exp(cosh(1)) 5912842220511664 m001 (GAMMA(11/12)+Artin)/(GaussAGM-Riemann3rdZero) 5912842221320912 a007 Real Root Of -17*x^4-996*x^3+555*x^2+710*x-19 5912842222195087 a001 4052739537881/843*521^(10/13) 5912842240024213 m001 exp(sin(1))/FeigenbaumKappa*sin(Pi/5)^2 5912842241603047 r005 Im(z^2+c),c=-101/98+12/41*I,n=12 5912842270170851 m001 (2^(1/3)-Shi(1))/(Bloch+Otter) 5912842287414601 r005 Re(z^2+c),c=-151/106+1/57*I,n=15 5912842293566598 a007 Real Root Of 575*x^4-637*x^3+995*x^2-869*x-55 5912842294116852 k002 Champernowne real with 225/2*n^2-537/2*n+215 5912842295117752 k003 Champernowne real with 10*n^3-5/2*n^2-117/2*n+56 5912842296568232 m005 (1/2*Zeta(3)-1/9)/(1/11*2^(1/2)+7/10) 5912842329060745 r009 Re(z^3+c),c=-51/106+4/59*I,n=43 5912842341373927 a007 Real Root Of 883*x^4-97*x^3+365*x^2-963*x-825 5912842346210248 a007 Real Root Of -708*x^4+878*x^3-876*x^2-699*x+161 5912842371566314 r009 Re(z^3+c),c=-15/26+27/59*I,n=34 5912842394416912 k002 Champernowne real with 113*n^2-270*n+216 5912842398121782 m001 (ln(3)-GAMMA(17/24))/(MertensB1+ZetaQ(2)) 5912842401730767 a007 Real Root Of -491*x^4+954*x^3+326*x^2+387*x-480 5912842433833070 a003 cos(Pi*44/117)+cos(Pi*35/81) 5912842445722404 r005 Im(z^2+c),c=-49/62+2/53*I,n=14 5912842464518906 m009 (2/5*Pi^2+3)/(1/5*Psi(1,3/4)+2/3) 5912842468183323 a007 Real Root Of -697*x^4+368*x^3-441*x^2+373*x+536 5912842491566434 p004 log(22111/12241) 5912842494716972 k002 Champernowne real with 227/2*n^2-543/2*n+217 5912842515974059 m001 GAMMA(7/12)^Champernowne/Grothendieck 5912842522284582 q001 1791/3029 5912842530873812 s002 sum(A181223[n]/(n^2*10^n-1),n=1..infinity) 5912842559925773 r002 2th iterates of z^2 + 5912842562922715 m003 -47/12+Sqrt[5]/16+4*Sinh[1/2+Sqrt[5]/2] 5912842584730016 s002 sum(A056805[n]/(n*10^n-1),n=1..infinity) 5912842590641632 m005 (1/3*Pi-1/11)/(3/7*3^(1/2)+7/8) 5912842595017032 k002 Champernowne real with 114*n^2-273*n+218 5912842596318053 k003 Champernowne real with 21/2*n^3-11/2*n^2-53*n+53 5912842616116148 r005 Im(z^2+c),c=-3/25+25/32*I,n=20 5912842634597651 m001 (ln(2)-3^(1/3))/(Landau+Sarnak) 5912842636668398 a007 Real Root Of 39*x^4+120*x^3-758*x^2-617*x-11 5912842640982284 s002 sum(A099497[n]/(n!^3),n=1..infinity) 5912842642481386 r005 Re(z^2+c),c=-73/122+21/53*I,n=8 5912842650912361 p004 log(20507/11353) 5912842651603754 l006 ln(2282/2421) 5912842690377368 m001 (-arctan(1/2)+CareFree)/(exp(1)+GAMMA(2/3)) 5912842695317092 k002 Champernowne real with 229/2*n^2-549/2*n+219 5912842695390417 a001 9/416020*377^(10/59) 5912842712474619 b008 3+20*(28+Sqrt[2]) 5912842766105462 r009 Re(z^3+c),c=-73/122+16/55*I,n=41 5912842795617152 k002 Champernowne real with 115*n^2-276*n+220 5912842806721441 m001 (sin(1/5*Pi)+Ei(1,1))/(exp(1/Pi)+gamma(2)) 5912842807564714 m001 gamma^BesselK(1,1)*Sarnak^BesselK(1,1) 5912842830374126 s002 sum(A076427[n]/(n*2^n+1),n=1..infinity) 5912842844691174 a007 Real Root Of 724*x^4-49*x^3+770*x^2+639*x+10 5912842879685398 m005 (1/3*5^(1/2)+1/8)/(1/3*Pi-9/10) 5912842895917212 k002 Champernowne real with 231/2*n^2-555/2*n+221 5912842897518353 k003 Champernowne real with 11*n^3-17/2*n^2-95/2*n+50 5912842919963631 m001 (Mills-StolarskyHarborth)/(GAMMA(7/12)+Landau) 5912842993299643 a008 Real Root of (-3-6*x-3*x^2-x^3+3*x^4+x^5) 5912842996217272 k002 Champernowne real with 116*n^2-279*n+222 5912843007021758 m001 (FeigenbaumB+Kolakoski)/(ln(Pi)+ErdosBorwein) 5912843060492374 m001 (5^(1/2)+ln(2))/(-Ei(1,1)+TravellingSalesman) 5912843096517332 k002 Champernowne real with 233/2*n^2-561/2*n+223 5912843104341775 a001 322/75025*55^(36/55) 5912843148927915 r009 Re(z^3+c),c=-49/82+7/13*I,n=10 5912843167076048 m001 GAMMA(3/4)/LaplaceLimit^2*ln(cos(Pi/5)) 5912843176578989 m001 (GAMMA(19/24)-Niven)/(Paris-ZetaQ(3)) 5912843196817392 k002 Champernowne real with 117*n^2-282*n+224 5912843198718653 k003 Champernowne real with 23/2*n^3-23/2*n^2-42*n+47 5912843228758808 r002 27th iterates of z^2 + 5912843232097424 a007 Real Root Of 254*x^4-921*x^3-229*x^2-571*x-479 5912843247123100 r005 Im(z^2+c),c=-51/118+4/55*I,n=5 5912843247794877 m001 (-FeigenbaumC+Sierpinski)/(Si(Pi)-gamma) 5912843265974223 r009 Im(z^3+c),c=-49/94+23/37*I,n=4 5912843284961154 h003 exp(Pi*(5^(2/3)+6^(7/10))) 5912843284961154 h008 exp(Pi*(5^(2/3)+6^(7/10))) 5912843292604961 m001 (LambertW(1)-gamma(2)*BesselK(1,1))/gamma(2) 5912843297117452 k002 Champernowne real with 235/2*n^2-567/2*n+225 5912843309848865 m005 1/2*(1/2*gamma+5)*5^(1/2) 5912843310341477 a007 Real Root Of -747*x^4+758*x^3-824*x^2+492*x+827 5912843344288667 r005 Re(z^2+c),c=-17/23+1/53*I,n=25 5912843350978394 r001 47i'th iterates of 2*x^2-1 of 5912843355060038 a007 Real Root Of -341*x^4+392*x^3-905*x^2-78*x+393 5912843360830893 r002 8th iterates of z^2 + 5912843380546240 a007 Real Root Of -888*x^4+553*x^3-968*x^2+561*x+893 5912843387154634 r002 4th iterates of z^2 + 5912843390686899 m001 (MertensB1-Sarnak)/(GAMMA(3/4)-Conway) 5912843397417512 k002 Champernowne real with 118*n^2-285*n+226 5912843402841378 a001 46/311187*8^(2/3) 5912843403391163 a004 Lucas(3)/Fibonacci(12)/(1/2+sqrt(5)/2)^8 5912843403391163 m005 (1/3*5^(1/2)-3/4)/(9/20+3/20*5^(1/2)) 5912843403929707 a007 Real Root Of -135*x^4+775*x^3+297*x^2-121*x-176 5912843404826465 b008 3*JacobiAmplitude[Glaisher,-3] 5912843410197005 m001 sin(1/12*Pi)/(Si(Pi)-2^(1/2)) 5912843410197005 m001 sin(Pi/12)/(Si(Pi)-sqrt(2)) 5912843424103728 r005 Re(z^2+c),c=-19/82+9/14*I,n=2 5912843464386561 m005 (1/2*5^(1/2)+11/12)/(9/10*3^(1/2)-5) 5912843474545345 r005 Im(z^2+c),c=5/98+29/47*I,n=21 5912843497717572 k002 Champernowne real with 237/2*n^2-573/2*n+227 5912843499918953 k003 Champernowne real with 12*n^3-29/2*n^2-73/2*n+44 5912843523313550 a005 (1/cos(5/79*Pi))^1015 5912843526672432 r008 a(0)=6,K{-n^6,9-7*n^3+n^2+6*n} 5912843535931463 m001 (1-FibonacciFactorial)/(-PlouffeB+Thue) 5912843536923169 a001 3278735159921/161*322^(7/12) 5912843539077172 a003 sin(Pi*1/18)-sin(Pi*28/101) 5912843582161551 a007 Real Root Of 156*x^4+782*x^3-800*x^2+226*x+281 5912843586259391 a007 Real Root Of -958*x^4-323*x^3-541*x^2+444*x+502 5912843598017632 k002 Champernowne real with 119*n^2-288*n+228 5912843637808419 a007 Real Root Of 802*x^4-624*x^3+142*x^2-513*x-580 5912843644983171 r009 Im(z^3+c),c=-7/24+11/16*I,n=49 5912843652798384 a007 Real Root Of -159*x^4-873*x^3+236*x^2-862*x+532 5912843655650441 a007 Real Root Of 751*x^4-677*x^3-451*x^2-325*x+398 5912843657399766 m005 (1/2*exp(1)+5/6)/(3/8*Catalan-5/7) 5912843667235102 s002 sum(A005043[n]/(n^2*exp(n)-1),n=1..infinity) 5912843698317692 k002 Champernowne real with 239/2*n^2-579/2*n+229 5912843731012582 m001 exp(BesselK(0,1))^2*LandauRamanujan/sqrt(3)^2 5912843744264045 a001 199/8*2504730781961^(6/17) 5912843749404691 r005 Im(z^2+c),c=-51/74+2/43*I,n=38 5912843773288506 p001 sum(1/(570*n+143)/n/(24^n),n=1..infinity) 5912843781109658 a008 Real Root of (-4+4*x+5*x^2+3*x^3-6*x^4) 5912843791998366 m001 (exp(-1/2*Pi)-Landau)/(Stephens-ZetaQ(3)) 5912843794933182 a003 cos(Pi*6/119)*cos(Pi*34/115) 5912843798617752 k002 Champernowne real with 120*n^2-291*n+230 5912843810836310 m005 (5/36+1/4*5^(1/2))/(1/3*Catalan+7/8) 5912843814856879 m006 (2/3/Pi-1/2)/(4/5*Pi-3) 5912843831942221 r002 5th iterates of z^2 + 5912843851085656 r005 Re(z^2+c),c=13/110+29/63*I,n=17 5912843873061392 p001 sum((-1)^n/(283*n+169)/(512^n),n=0..infinity) 5912843874685608 a007 Real Root Of -61*x^4-192*x^3-904*x^2+966*x+855 5912843885519600 a001 2/4106118243*3^(3/17) 5912843897813612 a001 6557470319842/843*521^(9/13) 5912843916866579 p001 sum(1/(329*n+17)/(10^n),n=0..infinity) 5912843925338766 r005 Re(z^2+c),c=-19/118+7/8*I,n=11 5912843928077240 r005 Im(z^2+c),c=-3/52+38/59*I,n=5 5912843928358894 r009 Re(z^3+c),c=-27/46+10/27*I,n=6 5912843967876651 a007 Real Root Of -582*x^4+925*x^3-296*x^2+963*x-586 5912843971728354 a007 Real Root Of -507*x^4+24*x^3-271*x^2+491*x+452 5912843982333311 v002 sum(1/(5^n*(26*n^2-28*n+39)),n=1..infinity) 5912843987863691 p001 sum(1/(243*n+172)/(25^n),n=0..infinity) 5912844027574367 r005 Im(z^2+c),c=43/94+11/64*I,n=3 5912844033879613 a007 Real Root Of -445*x^4+757*x^3+426*x^2-98*x+4 5912844036697247 q001 1289/2180 5912844052999687 m005 (1/3*Pi-1/10)/(8/11*exp(1)-3/8) 5912844073850610 a007 Real Root Of 828*x^4-784*x^3+385*x^2-397*x+161 5912844084444819 m003 4+Sin[1/2+Sqrt[5]/2]/3+3*Tan[1/2+Sqrt[5]/2] 5912844089512005 m001 ArtinRank2/polylog(4,1/2)/BesselI(0,2) 5912844091342751 a007 Real Root Of 68*x^4+244*x^3-850*x^2+333*x-991 5912844099055504 r009 Im(z^3+c),c=-53/94+38/63*I,n=19 5912844108704454 r002 15th iterates of z^2 + 5912844116182673 r005 Im(z^2+c),c=-6/17+41/62*I,n=5 5912844136940594 m001 (2^(1/3)-gamma(1))/(PrimesInBinary+Tribonacci) 5912844186743522 m008 (1/6*Pi^3+1/2)/(1/3*Pi^3-3/4) 5912844204291558 a001 1/105937*8^(15/17) 5912844208402430 p001 sum((-1)^n/(517*n+152)/n/(25^n),n=1..infinity) 5912844225945721 r005 Im(z^2+c),c=-107/90+4/49*I,n=25 5912844257252341 b008 -6+Sin[Pi/36] 5912844266884857 a007 Real Root Of 221*x^4+453*x^3+745*x^2-325*x-386 5912844267490751 a008 Real Root of x^4-x^3-6*x^2+146*x-356 5912844271856027 m005 (1/3*gamma-1/6)/(2*3^(1/2)+8/9) 5912844296036592 a007 Real Root Of 49*x^4-514*x^3-515*x^2+124*x+207 5912844301854721 a001 137769272233215/233 5912844314139082 m005 (1/2*Zeta(3)+7/10)/(1/6*Zeta(3)+2) 5912844324902838 m001 (Shi(1)-KomornikLoreti)/Champernowne 5912844334309328 a007 Real Root Of 962*x^4-518*x^3-216*x^2-683*x-553 5912844337535750 m005 (1/2*2^(1/2)-5)/(1/2*Zeta(3)+1/8) 5912844347805700 r005 Im(z^2+c),c=-81/64+1/47*I,n=54 5912844373516672 a007 Real Root Of 144*x^4+709*x^3-882*x^2-257*x-131 5912844376076749 m001 (3^(1/2)-sin(1/5*Pi))/(GAMMA(3/4)+Rabbit) 5912844401927082 m001 (LambertW(1)-ln(5))/(gamma(2)+Pi^(1/2)) 5912844405733437 m004 -4*Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi]-Cot[Sqrt[5]*Pi] 5912844416596437 r009 Im(z^3+c),c=-8/23+33/58*I,n=2 5912844428871756 a007 Real Root Of 784*x^4+957*x^3+23*x^2-991*x-492 5912844444110430 a001 6643838879/377*4807526976^(6/23) 5912844444165237 a001 119218851371/377*75025^(6/23) 5912844446157579 p004 log(24419/23017) 5912844459066620 r005 Im(z^2+c),c=-17/86+51/64*I,n=51 5912844462769883 m001 1/exp(GAMMA(1/3))^2*BesselK(0,1)^2*sin(1)^2 5912844473500765 r005 Re(z^2+c),c=-67/94+1/6*I,n=56 5912844486273271 m005 (1/2*gamma-3/10)/(-14/55+1/5*5^(1/2)) 5912844486321462 r002 45th iterates of z^2 + 5912844500646159 r002 46th iterates of z^2 + 5912844522762826 r009 Im(z^3+c),c=-25/94+31/46*I,n=20 5912844536526240 r005 Re(z^2+c),c=3/74+7/38*I,n=6 5912844573940985 r002 3th iterates of z^2 + 5912844576085981 r005 Re(z^2+c),c=-55/102+25/42*I,n=47 5912844581697832 r005 Im(z^2+c),c=13/40+19/35*I,n=41 5912844582470166 m005 (1/2*Pi+1/9)/(1/10*Pi-2/7) 5912844589399140 s001 sum(exp(-2*Pi/3)^n*A053977[n],n=1..infinity) 5912844608246454 m001 (Artin+1/2)/(ln(Pi)+1/3) 5912844621869192 r005 Im(z^2+c),c=-6/13+4/7*I,n=40 5912844628922639 m001 (3^(1/3)+FeigenbaumD)/(FeigenbaumMu+Magata) 5912844643902421 m001 sqrt(3)*BesselJZeros(0,1)+MadelungNaCl 5912844646767352 m008 (3*Pi^5-1/5)/(5*Pi^3+1/5) 5912844665506662 m001 (Zeta(5)+gamma(2))/(GAMMA(17/24)+ZetaP(2)) 5912844669570530 q001 3/50737 5912844671749048 r005 Re(z^2+c),c=-23/34+31/125*I,n=34 5912844678432162 a001 23725150497407*144^(11/17) 5912844682989351 r002 4th iterates of z^2 + 5912844712806842 r005 Im(z^2+c),c=-67/56+2/25*I,n=53 5912844717275471 a001 3571/610*377^(23/59) 5912844729784060 p001 sum(1/(426*n+259)/n/(25^n),n=1..infinity) 5912844735077462 m001 (Champernowne-Gompertz)/(GAMMA(19/24)-Artin) 5912844746182356 m001 Pi-Psi(2,1/3)+gamma(1)-Zeta(1,2) 5912844760085224 a003 cos(Pi*7/60)-sin(Pi*6/13) 5912844776958071 a001 4181/4*76^(41/44) 5912844778174181 m001 (RenyiParking+Thue)/(BesselJ(0,1)-Zeta(5)) 5912844814090749 a003 sin(Pi*1/45)-sin(Pi*20/87) 5912844862434683 a007 Real Root Of 7*x^4+408*x^3-349*x^2-21*x-567 5912844873073614 r008 a(0)=6,K{-n^6,-1-20*n+51*n^2-17*n^3} 5912844873345603 m001 TreeGrowth2nd^2/Robbin/ln(GAMMA(13/24)) 5912844874704413 a007 Real Root Of 279*x^4-913*x^3+550*x^2-15*x-424 5912844877945065 m005 (1/2*gamma+4)/(1/11*gamma-7/9) 5912844882822368 a001 105937/6*322^(9/43) 5912844890562458 r005 Im(z^2+c),c=-13/24+29/54*I,n=43 5912844919615810 m001 Psi(2,1/3)*(2^(1/3))^GaussKuzminWirsing 5912844922655079 l006 ln(5581/10081) 5912844928021853 m001 MertensB1/exp(Champernowne)^2/sin(Pi/5)^2 5912844939389561 r005 Im(z^2+c),c=-16/31+35/61*I,n=13 5912844943278249 m001 Pi*(ln(2+3^(1/2))+BesselI(1,1)) 5912844943278249 m001 Pi*(ln(2+sqrt(3))+BesselI(1,1)) 5912844966504046 m001 LaplaceLimit*arctan(1/2)^ZetaR(2) 5912844974500029 r005 Im(z^2+c),c=-45/106+35/59*I,n=40 5912844977761102 r009 Re(z^3+c),c=-73/122+33/64*I,n=58 5912845022726998 m001 (FransenRobinson+GaussAGM)^exp(1/Pi) 5912845039028953 a007 Real Root Of -715*x^4+842*x^3-371*x^2-440*x+131 5912845094073209 a007 Real Root Of -67*x^4+934*x^3-219*x^2-409*x+36 5912845097134979 s001 sum(exp(-Pi/4)^n*A084450[n],n=1..infinity) 5912845107757724 l006 ln(5359/9680) 5912845114387501 m001 ArtinRank2^ln(2^(1/2)+1)*ArtinRank2^gamma 5912845152547383 r005 Re(z^2+c),c=-10/17+2/5*I,n=27 5912845154785517 a007 Real Root Of -68*x^4-519*x^3-553*x^2+911*x+549 5912845162625858 m001 (Gompertz-Rabbit)/(Tetranacci-ZetaQ(3)) 5912845190012750 a007 Real Root Of -32*x^4+834*x^3+71*x^2+11*x+158 5912845203791585 r005 Im(z^2+c),c=-79/78+3/49*I,n=5 5912845230331759 m005 (1/2*Catalan-6)/(4*5^(1/2)+3/7) 5912845261550493 m001 (Ei(1)-exp(-1/2*Pi))/(MinimumGamma-Salem) 5912845281129043 a007 Real Root Of 685*x^4+689*x^3-55*x^2-788*x-388 5912845302826188 a007 Real Root Of 959*x^4-125*x^3+310*x^2-395*x-485 5912845308859114 l006 ln(5137/9279) 5912845337322476 r002 53i'th iterates of 2*x/(1-x^2) of 5912845338670901 a001 137769296391032/233 5912845343207063 q001 2076/3511 5912845353603689 a007 Real Root Of -339*x^4+959*x^3+712*x^2-30*x-388 5912845375275889 p004 log(13681/37) 5912845380454108 m001 1/Rabbit^2*ln(FeigenbaumDelta)*GAMMA(5/24)^2 5912845386846466 h001 (-exp(1)+6)/(-9*exp(2)+11) 5912845390352475 r002 26th iterates of z^2 + 5912845395467476 r002 4th iterates of z^2 + 5912845429756315 r005 Re(z^2+c),c=17/90+20/57*I,n=10 5912845450059981 r002 9th iterates of z^2 + 5912845458935370 p003 LerchPhi(1/8,4,29/143) 5912845461298992 r009 Im(z^3+c),c=-41/122+39/59*I,n=17 5912845465653307 m001 (RenyiParking-Robbin)/(Tetranacci-Weierstrass) 5912845477463428 m005 (3*Pi+1/2)/(5/6*2^(1/2)+1/2) 5912845489940343 a001 137769299915610/233 5912845512010257 a001 137769300429839/233 5912845515230214 a001 137769300504864/233 5912845515768540 a001 137769300517407/233 5912845515778540 a001 137769300517640/233 5912845515780214 a001 137769300517679/233 5912845515780257 a001 137769300517680/233 5912845515780343 a001 137769300517682/233 5912845515780901 a001 137769300517695/233 5912845515784721 a001 137769300517784/233 5912845515810901 a001 137769300518394/233 5912845515990343 a001 137769300522575/233 5912845517220257 a001 137769300551232/233 5912845525650214 a001 137769300747650/233 5912845528127136 l006 ln(4915/8878) 5912845549322033 r005 Im(z^2+c),c=-13/56+2/23*I,n=4 5912845562941507 r002 4th iterates of z^2 + 5912845573432612 a001 3536736619241/281*521^(8/13) 5912845584460562 a007 Real Root Of -507*x^4+517*x^3-873*x^2-291*x+302 5912845607181061 r009 Im(z^3+c),c=-19/62+35/53*I,n=48 5912845610971259 m001 (Paris+Riemann2ndZero)/(gamma(3)+FeigenbaumMu) 5912845612174928 a001 521/3*4181^(11/26) 5912845620287499 m001 1/exp(Rabbit)*Backhouse^2*LambertW(1) 5912845627052085 r009 Im(z^3+c),c=-7/58+41/58*I,n=16 5912845645556338 a007 Real Root Of 537*x^4-772*x^3+596*x^2-941*x-990 5912845651705795 m005 (1/2*Zeta(3)-4/11)/(5/11*gamma-2/9) 5912845654382076 r002 6th iterates of z^2 + 5912845658102909 a007 Real Root Of 398*x^4-815*x^3+952*x^2+509*x-249 5912845665119371 r002 33th iterates of z^2 + 5912845698167664 a007 Real Root Of 592*x^4-308*x^3+851*x^2-454*x-702 5912845715968644 a003 cos(Pi*4/81)*cos(Pi*21/71) 5912845737136873 r005 Im(z^2+c),c=-39/70+6/11*I,n=6 5912845738967475 r005 Re(z^2+c),c=-19/70+27/43*I,n=38 5912845739632006 r008 a(0)=6,K{-n^6,-38+51*n+46*n^2-48*n^3} 5912845753504178 a007 Real Root Of -219*x^4+497*x^3-554*x^2+803*x+798 5912845768139879 l006 ln(4693/8477) 5912845792177384 m005 (1/2*5^(1/2)+3/7)/(6/7*exp(1)+2/7) 5912845807708740 r005 Re(z^2+c),c=43/102+9/41*I,n=16 5912845848750857 r005 Re(z^2+c),c=-19/44+30/49*I,n=10 5912845849911505 k002 Champernowne real with 107/2*n^2-149/2*n+26 5912845875330073 m001 (sin(1/5*Pi)-exp(1/Pi))/(Totient-ZetaQ(3)) 5912845903435495 r005 Im(z^2+c),c=-89/126+1/26*I,n=11 5912845909110900 r009 Re(z^3+c),c=-1/98+11/18*I,n=35 5912845943807362 r005 Im(z^2+c),c=-3/20+32/39*I,n=26 5912845949751535 m001 (BesselI(0,1)+ln(3))/(-GAMMA(5/6)+GAMMA(7/12)) 5912845957933678 m005 (1/3*gamma+1/5)/(7/8*gamma-4/7) 5912845960671873 r005 Re(z^2+c),c=-43/64+1/54*I,n=5 5912845968309307 a007 Real Root Of -347*x^4-336*x^3+311*x^2+727*x-44 5912845977393835 a001 4052739537881/2207*521^(12/13) 5912845979458540 a001 137769311321384/233 5912845980165837 m001 (Backhouse+Totient)/(2*Pi/GAMMA(5/6)-Chi(1)) 5912845984438496 a008 Real Root of x^4-2*x^3-41*x^2-69*x-27 5912846012842374 a007 Real Root Of 802*x^4-303*x^3+101*x^2+186*x-86 5912846020779394 a005 (1/sin(68/173*Pi))^191 5912846021364470 a007 Real Root Of -702*x^4+293*x^3-525*x^2-651*x-55 5912846031987474 l006 ln(4471/8076) 5912846051438718 a007 Real Root Of -185*x^4+515*x^3+872*x^2+151*x-478 5912846079304477 m001 FeigenbaumB^2*ln(Cahen)*TreeGrowth2nd^2 5912846080729406 m001 (-Landau+MasserGramain)/(3^(1/2)-gamma(2)) 5912846091079476 r002 9th iterates of z^2 + 5912846095108804 m001 1/MadelungNaCl/ln(Khintchine)^2*Zeta(7) 5912846106992866 a008 Real Root of x^4-2*x^3-26*x^2+10*x+41 5912846154455712 b008 4+LogIntegral[1/2+Sqrt[5]] 5912846173096287 m001 1/exp(BesselJ(0,1))^2*CareFree^2*GAMMA(1/24)^2 5912846186748140 a003 cos(Pi*32/97)*cos(Pi*25/54) 5912846193547063 p001 sum(1/(467*n+174)/(10^n),n=0..infinity) 5912846206452064 a001 54018521/13*4807526976^(16/19) 5912846206455832 a001 119218851371/13*514229^(16/19) 5912846214178947 r008 a(0)=6,K{-n^6,-18+19*n+59*n^2-49*n^3} 5912846226863025 r002 35th iterates of z^2 + 5912846236499276 r002 53th iterates of z^2 + 5912846267145021 g005 GAMMA(1/11)*GAMMA(7/9)*GAMMA(3/5)/GAMMA(2/7) 5912846277095366 a007 Real Root Of 822*x^4-189*x^3+958*x^2-55*x-507 5912846291364109 m001 Trott/Magata/exp(sin(1))^2 5912846296363342 r005 Im(z^2+c),c=-21/16+1/17*I,n=46 5912846306616811 a007 Real Root Of 832*x^4-425*x^3+720*x^2+381*x-216 5912846321290587 m001 (BesselI(1,2)-Pi^(1/2))/HardyLittlewoodC4 5912846323405863 l006 ln(4249/7675) 5912846330046338 m001 LandauRamanujan/(Tribonacci^BesselK(0,1)) 5912846361179005 m005 (1/2*exp(1)+4/9)/(2/9*exp(1)-10/11) 5912846400183435 a007 Real Root Of 886*x^4-603*x^3-36*x^2-478*x-503 5912846405701692 m005 (4/5*gamma+3/5)/(1/4*exp(1)-1/2) 5912846406858935 m001 (Catalan+LambertW(1))/(-Sierpinski+ZetaP(4)) 5912846407419161 r002 4th iterates of z^2 + 5912846416187302 a007 Real Root Of 345*x^4+624*x^3+494*x^2+59*x-51 5912846419743151 p003 LerchPhi(1/25,1,328/189) 5912846424027176 m005 (1/3*5^(1/2)+1/8)/(3/4*gamma-2/7) 5912846428736819 r008 a(0)=6,K{-n^6,9+19*n-51*n^2+35*n^3} 5912846450056573 m001 (-MadelungNaCl+Sierpinski)/(2^(1/2)+gamma(3)) 5912846473357788 a007 Real Root Of -247*x^4+878*x^3+974*x^2+670*x-888 5912846480816563 r005 Im(z^2+c),c=-49/90+13/21*I,n=11 5912846494064880 m001 Artin^BesselI(0,1)/(Artin^Psi(1,1/3)) 5912846504602663 m001 (Bloch+PolyaRandomWalk3D)/(1+Artin) 5912846508418948 m005 (5/66+1/6*5^(1/2))/(4/7*gamma+3/7) 5912846578787481 m001 (-GaussAGM+RenyiParking)/(1+Bloch) 5912846599451031 m005 (1/2*5^(1/2)-5/9)/(2/11*3^(1/2)+7/11) 5912846600463984 r009 Re(z^3+c),c=-53/90+6/11*I,n=7 5912846608223229 a007 Real Root Of -6*x^4+94*x^3+250*x^2+815*x-588 5912846626826161 m002 -5+24*E^Pi*ProductLog[Pi] 5912846628066457 a007 Real Root Of 715*x^4+361*x^3-989*x^2-912*x+723 5912846628731130 a007 Real Root Of 329*x^4-13*x^3+210*x^2+9*x-111 5912846646954801 l006 ln(4027/7274) 5912846662101949 m001 Ei(1)^2*(2^(1/3))*exp(GAMMA(17/24))^2 5912846673408590 a007 Real Root Of 429*x^4-503*x^3+679*x^2-506*x-693 5912846676103689 a007 Real Root Of 135*x^4-819*x^3-913*x^2+137*x+391 5912846676367503 m001 (Sierpinski+Thue)/(Pi+FeigenbaumD) 5912846689331403 r002 25th iterates of z^2 + 5912846703072449 r009 Im(z^3+c),c=-16/27+13/22*I,n=10 5912846715993088 p004 log(35969/19913) 5912846731078951 a003 sin(Pi*23/111)*sin(Pi*49/114) 5912846737029048 r005 Re(z^2+c),c=-3/23+53/59*I,n=15 5912846737851635 m001 1/5*5^(1/2)*GAMMA(23/24)/StronglyCareFree 5912846747750879 r002 13th iterates of z^2 + 5912846749775144 a007 Real Root Of 389*x^4+500*x^3+817*x^2-347*x-435 5912846755248154 m001 (gamma(3)-FeigenbaumDelta)/(Landau-MertensB3) 5912846757210100 p001 sum(1/(179*n+18)/(2^n),n=0..infinity) 5912846767010061 m001 (Cahen-FeigenbaumD)/(Khinchin+LandauRamanujan) 5912846767541212 r009 Re(z^3+c),c=-15/26+27/59*I,n=43 5912846769422593 m001 exp(Ei(1))^2*Paris*GAMMA(2/3) 5912846803934636 a007 Real Root Of -169*x^4-443*x^3-769*x^2+658*x+587 5912846806620544 m001 (Sarnak-Trott)/(FeigenbaumC-Kac) 5912846815496581 a007 Real Root Of -986*x^4+439*x^3-205*x^2+269*x+442 5912846822069844 a007 Real Root Of 831*x^4-84*x^3-610*x^2-628*x-277 5912846825890259 r009 Im(z^3+c),c=-45/82+13/41*I,n=7 5912846846697983 m005 (1/2*exp(1)-8/11)/(8/9*gamma+5/9) 5912846856027475 a007 Real Root Of -300*x^4-143*x^3-510*x^2+231*x+322 5912846864374945 r009 Re(z^3+c),c=-43/94+3/5*I,n=2 5912846874340849 r005 Im(z^2+c),c=-69/58+4/51*I,n=51 5912846894944458 m001 (Sierpinski-Tetranacci)/(DuboisRaymond-Mills) 5912846898521842 m001 (-3^(1/3)+Paris)/(3^(1/2)+cos(1)) 5912846902630504 a007 Real Root Of 207*x^4-839*x^3+712*x^2+818*x+36 5912846909785308 a007 Real Root Of 932*x^4-396*x^3+383*x^2+13*x-322 5912846916660196 r002 12th iterates of z^2 + 5912846926373708 r005 Im(z^2+c),c=-6/5+11/84*I,n=18 5912846933304585 m005 (1/2*Catalan+1/11)/(4/7*exp(1)-5/8) 5912846947195104 m001 ln(2+3^(1/2))/(BesselJ(1,1)+KomornikLoreti) 5912846951063006 r008 a(0)=6,K{-n^6,-44+5*n^3+13*n^2+38*n} 5912846970636162 r009 Re(z^3+c),c=-35/82+1/62*I,n=48 5912847008258190 l006 ln(3805/6873) 5912847014210066 a001 3536736619241/1926*521^(12/13) 5912847032710350 r005 Im(z^2+c),c=29/126+37/59*I,n=8 5912847040308426 a007 Real Root Of 531*x^4-387*x^3-758*x^2-563*x+613 5912847042689400 m001 (Lehmer+Niven)/(CopelandErdos-GolombDickman) 5912847057609743 a001 2/377*6557470319842^(12/17) 5912847064697074 a003 sin(Pi*5/27)/sin(Pi*41/108) 5912847078726186 r005 Im(z^2+c),c=-87/98+2/45*I,n=27 5912847081120628 l006 ln(9325/9893) 5912847091069299 m001 (ln(2)+GAMMA(19/24))/(Bloch+Khinchin) 5912847108702764 s002 sum(A066459[n]/((pi^n-1)/n),n=1..infinity) 5912847109206600 m001 (2^(1/3)-Gompertz)/(Rabbit+ThueMorse) 5912847125436923 a007 Real Root Of -639*x^4+5*x^3+965*x^2+632*x-634 5912847136253252 m001 (5^(1/2)-LambertW(1))/(FeigenbaumKappa+Porter) 5912847143875569 m001 Riemann3rdZero^2*Artin*exp(arctan(1/2))^2 5912847149039671 r005 Im(z^2+c),c=25/66+1/7*I,n=46 5912847168761098 r005 Im(z^2+c),c=-11/9+9/25*I,n=7 5912847193193884 m001 (Landau-exp(Pi))/(Magata+PrimesInBinary) 5912847204985127 a001 11/28657*75025^(17/26) 5912847223514849 a007 Real Root Of -73*x^4+240*x^3+134*x^2+16*x-97 5912847232086450 a001 2207/8*514229^(20/49) 5912847233599438 a007 Real Root Of -742*x^4-13*x^3-158*x^2-178*x+38 5912847238090321 h001 (5/12*exp(1)+7/10)/(1/3*exp(2)+7/11) 5912847276325343 a007 Real Root Of 872*x^4-598*x^2-767*x+556 5912847297364417 r009 Im(z^3+c),c=-21/40+21/53*I,n=5 5912847304963705 a007 Real Root Of -886*x^4+548*x^3+344*x^2-836*x-393 5912847311000797 g006 Psi(1,3/10)-Psi(1,9/10)-Psi(1,7/10)-Psi(1,2/7) 5912847311572305 r005 Im(z^2+c),c=-123/106+6/37*I,n=4 5912847333332867 r009 Re(z^3+c),c=-15/26+27/59*I,n=52 5912847337497576 r002 16th iterates of z^2 + 5912847348505353 r009 Re(z^3+c),c=-71/118+7/24*I,n=21 5912847360468613 r009 Im(z^3+c),c=-37/66+3/10*I,n=10 5912847371709569 g001 Psi(1/9,11/51) 5912847398577113 a007 Real Root Of 19*x^4+85*x^3-140*x^2+103*x-149 5912847402180807 r009 Re(z^3+c),c=-15/26+27/59*I,n=61 5912847407096346 a008 Real Root of x^4-51*x^2-72*x+135 5912847414299426 m001 (GAMMA(2/3)-exp(1))/(BesselK(1,1)+Niven) 5912847414333738 l006 ln(3583/6472) 5912847427354038 a001 196418/123*7^(37/55) 5912847430824100 r005 Re(z^2+c),c=-13/86+25/33*I,n=9 5912847431897233 r005 Im(z^2+c),c=-109/122+1/20*I,n=6 5912847436934918 h001 (5/12*exp(1)+7/11)/(11/12*exp(1)+1/2) 5912847437889176 r005 Im(z^2+c),c=5/29+32/61*I,n=10 5912847446639558 r002 62th iterates of z^2 + 5912847454741602 m005 (1/15+1/6*5^(1/2))/(-3/8+1/2*5^(1/2)) 5912847459533770 a007 Real Root Of 397*x^4+427*x^3+965*x^2-968*x-870 5912847466735354 m001 (3^(1/2)-exp(Pi))/(-Zeta(1,2)+FeigenbaumD) 5912847483095416 q001 787/1331 5912847483821329 a001 47/32951280099*233^(6/23) 5912847508831463 g002 -gamma-3*ln(2)-1/2*Pi+2*Psi(5/8)-Psi(7/10) 5912847511585603 m005 (1/3*Catalan+3/4)/(8/11*Pi-1/2) 5912847516328154 a001 161/72*196418^(27/59) 5912847519811997 m005 (1/2*2^(1/2)+3/10)/(2/7*Pi-8/11) 5912847573694296 m001 RenyiParking^2/Artin/exp(arctan(1/2))^2 5912847576849158 m004 -2+Cosh[Sqrt[5]*Pi]+16*Log[Sqrt[5]*Pi] 5912847580786179 r002 21th iterates of z^2 + 5912847582618979 r005 Re(z^2+c),c=-9/10+38/219*I,n=20 5912847617232361 m001 1/ln(Sierpinski)*FransenRobinson*sqrt(2)^2 5912847629375879 r005 Re(z^2+c),c=3/32+15/34*I,n=24 5912847647831549 m001 Paris^(HardyLittlewoodC4/FeigenbaumKappa) 5912847653013425 a001 6557470319842/2207*521^(11/13) 5912847654997918 a001 6557470319842/3571*521^(12/13) 5912847656783444 a007 Real Root Of 675*x^4-780*x^3+551*x^2+919*x+107 5912847671573523 r009 Re(z^3+c),c=-19/32+8/31*I,n=41 5912847677301304 s002 sum(A063068[n]/(10^n-1),n=1..infinity) 5912847781809047 a003 -1/2+cos(3/8*Pi)-cos(13/27*Pi)-2*cos(13/30*Pi) 5912847785420276 a007 Real Root Of 2*x^4-677*x^3+893*x^2-253*x-602 5912847795730470 r009 Re(z^3+c),c=-41/70+27/49*I,n=46 5912847814200870 r005 Im(z^2+c),c=-2/3+25/188*I,n=20 5912847824384090 m001 (Ei(1)-exp(1/Pi))/(BesselJ(1,1)+TreeGrowth2nd) 5912847827723592 a001 9349/1597*377^(23/59) 5912847834287852 m001 (MertensB2-OneNinth)/(Zeta(1/2)+Conway) 5912847839037355 r009 Im(z^3+c),c=-5/31+31/41*I,n=39 5912847842296517 r009 Re(z^3+c),c=-2/19+39/61*I,n=48 5912847869898969 m008 (3*Pi^6-2/5)/(5*Pi^4+2/3) 5912847874053283 l006 ln(3361/6071) 5912847892486141 a007 Real Root Of 225*x^4-567*x^3-153*x^2-737*x-527 5912847900327308 a007 Real Root Of -299*x^4+402*x^3+697*x^2+211*x-415 5912847902474804 m001 (BesselI(1,2)-QuadraticClass)^GAMMA(7/12) 5912847904607629 r009 Im(z^3+c),c=-5/18+26/41*I,n=11 5912847905533050 a007 Real Root Of -918*x^4+568*x^3+107*x^2-342*x-10 5912847909311127 r005 Re(z^2+c),c=-9/10+37/192*I,n=36 5912847924159897 m001 (Shi(1)+gamma(3))/(GAMMA(5/6)+LaplaceLimit) 5912847951569623 m001 (-BesselK(1,1)+CareFree)/(3^(1/2)+gamma(3)) 5912847971126660 a008 Real Root of x^4-x^3-28*x^2+56*x-119 5912847995391182 r002 14th iterates of z^2 + 5912847995391182 r002 14th iterates of z^2 + 5912848011302086 a007 Real Root Of 889*x^4-956*x^3+668*x^2-943*x+413 5912848012078424 a001 5778*233^(45/53) 5912848017977580 r009 Im(z^3+c),c=-1/38+25/33*I,n=37 5912848030482962 r005 Im(z^2+c),c=-139/106+1/52*I,n=11 5912848042612242 r005 Re(z^2+c),c=-5/102+3/23*I,n=10 5912848058291982 r002 37th iterates of z^2 + 5912848059078193 a007 Real Root Of -138*x^4+477*x^3-939*x^2+501*x+740 5912848082525786 a007 Real Root Of 969*x^4+649*x^3+893*x^2-515*x-601 5912848106566963 a001 17/299537289*47^(14/23) 5912848151616137 r009 Re(z^3+c),c=-53/98+14/59*I,n=27 5912848174272352 m002 (5*E^Pi*Pi^5)/6+Cosh[Pi] 5912848220564322 a007 Real Root Of -346*x^4-141*x^3-507*x^2+521*x-29 5912848246844136 r005 Re(z^2+c),c=35/102+5/26*I,n=6 5912848254220169 r005 Re(z^2+c),c=-35/64+29/49*I,n=12 5912848256804045 r005 Re(z^2+c),c=1/50+9/28*I,n=20 5912848268558576 a003 sin(Pi*7/101)+sin(Pi*6/49) 5912848273838764 m001 (exp(1)+GAMMA(2/3))/(-ln(3)+HardyLittlewoodC5) 5912848277465403 r005 Im(z^2+c),c=-139/114+4/45*I,n=49 5912848281532095 a001 24476/4181*377^(23/59) 5912848283087271 a001 13201/48*377^(4/31) 5912848289288896 a001 4052739537881/322*322^(2/3) 5912848316817586 m006 (2/3*Pi+5/6)/(5*Pi^2+1/6) 5912848316817586 m008 (2/3*Pi+5/6)/(5*Pi^2+1/6) 5912848333519229 a007 Real Root Of -379*x^4+28*x^3-890*x^2+238*x+504 5912848347741869 a001 64079/10946*377^(23/59) 5912848368414899 r005 Im(z^2+c),c=45/122+13/55*I,n=22 5912848383366107 a007 Real Root Of 907*x^4+33*x^3+84*x^2-116*x-202 5912848388661760 a001 13201/2255*377^(23/59) 5912848396372152 a007 Real Root Of -407*x^4+911*x^3-78*x^2-190*x+153 5912848398798442 l006 ln(3139/5670) 5912848407614569 m001 (Catalan-Chi(1))/(-exp(-1/2*Pi)+GAMMA(7/12)) 5912848479250569 m001 (Psi(1,1/3)+GAMMA(3/4))/(GAMMA(11/12)+Thue) 5912848516326820 l006 ln(7043/7472) 5912848562001205 a001 15127/2584*377^(23/59) 5912848571465353 r005 Im(z^2+c),c=23/90+17/35*I,n=46 5912848619653309 a001 2178309/521*2^(1/2) 5912848632016839 m005 (1/2*gamma-4/9)/(7/11*Pi+7/11) 5912848647121149 a003 sin(Pi*11/94)/cos(Pi*33/113) 5912848671763502 m005 (1/2*gamma-8/9)/(7/8*2^(1/2)-2/9) 5912848690921433 a007 Real Root Of 708*x^4-699*x^3+592*x^2+159*x-344 5912848693878540 a001 137769374567370/233 5912848702160067 m005 (1/2*5^(1/2)+3/7)/(1/6*5^(1/2)-1/9) 5912848711220346 a007 Real Root Of -788*x^4+946*x^3-427*x^2+524*x+751 5912848715633222 r005 Im(z^2+c),c=-13/18+2/67*I,n=31 5912848719812058 v002 sum(1/(5^n*(33/2*n^2+3/2*n+19)),n=1..infinity) 5912848779925423 m005 (1/3*3^(1/2)+1/7)/(2/3*Zeta(3)+5/12) 5912848787531713 h001 (-6*exp(1/3)-4)/(-4*exp(3/2)-3) 5912848803391748 r002 3th iterates of z^2 + 5912848803992851 h001 (1/3*exp(1)+2/9)/(3/8*exp(1)+8/9) 5912848803992851 m005 (1/3*exp(1)+2/9)/(3/8*exp(1)+8/9) 5912848807477522 r009 Re(z^3+c),c=-73/122+33/64*I,n=64 5912848811222108 r009 Re(z^3+c),c=-41/70+27/49*I,n=37 5912848811346090 r005 Re(z^2+c),c=-47/82+56/61*I,n=3 5912848814215340 m008 (Pi^4+1/5)/(5*Pi+4/5) 5912848824061425 m005 (3/4*2^(1/2)+2/3)/(-11/3+1/3*5^(1/2)) 5912848854611196 a001 76/5*75025^(17/32) 5912848867886887 r005 Re(z^2+c),c=-17/50+18/29*I,n=48 5912848875138238 a007 Real Root Of -831*x^4-167*x^3-836*x^2-765*x-93 5912848882387053 a007 Real Root Of -151*x^4+142*x^3-613*x^2+749*x+705 5912848900187484 a007 Real Root Of 547*x^4-80*x^3-65*x^2-987*x+556 5912848900254866 r005 Im(z^2+c),c=-15/31+23/39*I,n=51 5912848919324966 a007 Real Root Of -420*x^4+552*x^3+41*x^2+541*x+471 5912848922706367 p004 log(34939/32933) 5912848955439486 m001 1/ln(HardHexagonsEntropy)^2/Cahen^2*exp(1) 5912848970235710 a001 15127/5*4181^(31/49) 5912848978025192 a007 Real Root Of 763*x^4-733*x^3-317*x^2-355*x+379 5912848988857129 m001 (Tribonacci+ZetaQ(4))/(ln(Pi)-Backhouse) 5912849003415643 l006 ln(2917/5269) 5912849009545341 m005 (1/2*exp(1)-3/5)/(5/8*2^(1/2)+2/5) 5912849028014961 m001 5^(1/2)*(Zeta(3)+3^(1/3)) 5912849028014961 m001 sqrt(5)*(Zeta(3)+(3^(1/3))) 5912849029852723 m001 (BesselI(0,2)-Psi(1,1/3))/(Robbin+TwinPrimes) 5912849043348421 a007 Real Root Of -919*x^4-275*x^3+953*x^2+852*x+47 5912849072672486 r009 Re(z^3+c),c=-1/12+23/55*I,n=12 5912849104196808 a003 cos(Pi*17/77)*cos(Pi*17/77) 5912849104689542 r005 Im(z^2+c),c=-53/98+18/49*I,n=4 5912849106577646 p001 sum((-1)^n/(374*n+167)/(24^n),n=0..infinity) 5912849113470814 r005 Im(z^2+c),c=19/66+14/23*I,n=10 5912849118758574 m004 1/3-E^(Sqrt[5]*Pi)+125*Pi*Sec[Sqrt[5]*Pi] 5912849137751597 a007 Real Root Of 20*x^4-693*x^3-408*x^2-351*x+491 5912849146871224 a007 Real Root Of 132*x^4+905*x^3+856*x^2+776*x+399 5912849147155946 m001 (Riemann2ndZero+Trott)/(Si(Pi)+Niven) 5912849148250708 r008 a(0)=6,K{-n^6,35-14*n-11*n^2+5*n^3} 5912849155787237 m005 (1/3*exp(1)-1/7)/(1/3*5^(1/2)+6/11) 5912849166698105 a007 Real Root Of 688*x^4-905*x^3-538*x^2-262*x+446 5912849168361905 a007 Real Root Of 71*x^4-907*x^3-500*x^2-593*x-372 5912849183111464 k006 concat of cont frac of 5912849189701104 a001 13/844*11^(23/41) 5912849190367115 a007 Real Root Of 71*x^4+495*x^3+525*x^2+541*x+387 5912849203122576 a005 (1/sin(77/169*Pi))^1363 5912849223990673 m001 (BesselI(0,1)+ln(5))/(Backhouse+Magata) 5912849234921908 a005 (1/cos(8/227*Pi))^1789 5912849270482521 r005 Im(z^2+c),c=13/40+23/60*I,n=22 5912849287320633 r009 Re(z^3+c),c=-13/118+28/41*I,n=47 5912849313943957 m001 (Zeta(3)-ErdosBorwein)/(Thue-ZetaP(3)) 5912849328633489 a001 4807525989*521^(10/13) 5912849330617983 a001 10610209857723/3571*521^(11/13) 5912849335268920 m001 1/BesselK(1,1)^2*FeigenbaumB^2*exp(GAMMA(5/6)) 5912849357703884 r009 Re(z^3+c),c=-49/114+13/22*I,n=46 5912849371901763 m001 (Catalan-ln(3))/(BesselI(0,2)+AlladiGrinstead) 5912849378517111 k009 concat of cont frac of 5912849392109167 p004 log(35279/19531) 5912849398688852 m006 (1/5*Pi^2+3/4)/(1/6*exp(Pi)+3/4) 5912849482079880 m001 (MadelungNaCl+Trott2nd)/(Weierstrass-ZetaP(3)) 5912849493070737 a007 Real Root Of 810*x^4-895*x^3-965*x^2-412*x+667 5912849500207320 a001 47/165580141*377^(9/10) 5912849584278155 r005 Re(z^2+c),c=-109/126+31/45*I,n=2 5912849588786488 a007 Real Root Of 317*x^4-517*x^3+716*x^2-132*x-474 5912849590124774 a003 sin(Pi*9/107)/sin(Pi*15/103) 5912849615117400 m001 (2^(1/3)+cos(1/12*Pi))/(-Bloch+PlouffeB) 5912849626126767 r002 41th iterates of z^2 + 5912849648625332 b008 17/3+Sqrt[2/33] 5912849653024875 r005 Im(z^2+c),c=-49/50+2/35*I,n=14 5912849667351822 a003 cos(Pi*10/93)*cos(Pi*31/109) 5912849668898974 m001 (1-Grothendieck)/(LaplaceLimit+TwinPrimes) 5912849684941015 m001 (arctan(1/3)+ZetaQ(2))/HardyLittlewoodC3 5912849685217737 r009 Im(z^3+c),c=-8/19+4/7*I,n=26 5912849687260258 m001 Cahen^GAMMA(3/4)+ZetaQ(3) 5912849705212963 r008 a(0)=6,K{-n^6,53+16*n^3-12*n^2-44*n} 5912849707643202 l006 ln(2695/4868) 5912849750087679 a001 1926/329*377^(23/59) 5912849782962125 r009 Re(z^3+c),c=-27/46+12/25*I,n=43 5912849804575072 a007 Real Root Of -719*x^4+335*x^3+803*x^2+311*x-446 5912849811167184 r005 Re(z^2+c),c=-1/94+20/31*I,n=16 5912849812231141 a007 Real Root Of -841*x^4+19*x^3-821*x^2+271*x+554 5912849828623118 a001 9/17*377^(24/59) 5912849834157027 m001 (Robbin+Totient)/(gamma+FransenRobinson) 5912849848108947 m001 sinh(1)^2/BesselJ(0,1)*ln(sqrt(Pi))^2 5912849851704393 r005 Re(z^2+c),c=-19/18+11/117*I,n=28 5912849872773536 q001 1859/3144 5912849873056150 r009 Im(z^3+c),c=-55/94+27/46*I,n=37 5912849889376011 m001 (BesselI(0,1)-Champernowne)/(Lehmer+Totient) 5912849891482506 r005 Im(z^2+c),c=-71/102+1/26*I,n=17 5912849892398226 a005 (1/cos(16/179*Pi))^1197 5912849927665880 b008 404/7+Sqrt[2] 5912849965785019 r005 Re(z^2+c),c=-107/102+3/23*I,n=46 5912849995424423 m001 Salem/Cahen/exp(GAMMA(5/6)) 5912850010815955 r005 Re(z^2+c),c=-17/14+41/113*I,n=7 5912850064769433 r009 Re(z^3+c),c=-3/82+46/63*I,n=30 5912850080260813 r008 a(0)=6,K{-n^6,35+39*n^3-50*n^2-12*n} 5912850097286738 m001 (gamma(1)-GAMMA(11/12))/(Backhouse+ZetaP(2)) 5912850105133852 l006 ln(5168/9335) 5912850107860709 m005 (1/2*3^(1/2)+1/2)/(8/11*exp(1)+1/3) 5912850123748239 r004 Im(z^2+c),c=-31/46-2/13*I,z(0)=-1,n=45 5912850138264590 a007 Real Root Of 441*x^4-121*x^3+574*x^2+505*x+19 5912850138582808 r005 Re(z^2+c),c=-67/94+5/51*I,n=9 5912850138638210 r005 Im(z^2+c),c=-41/36+2/27*I,n=39 5912850140953990 a007 Real Root Of -92*x^4-545*x^3+141*x^2+826*x-256 5912850147796134 r005 Re(z^2+c),c=-17/42+37/64*I,n=43 5912850154877892 r005 Im(z^2+c),c=-17/122+31/50*I,n=4 5912850169041488 m001 Magata^(3^(1/3))+ZetaQ(2) 5912850215393440 a007 Real Root Of -489*x^4+830*x^3+245*x^2+929*x+695 5912850220874955 m001 ZetaQ(2)/(ZetaP(2)-Landau) 5912850221150301 m001 (-ArtinRank2+Stephens)/(1+GAMMA(11/12)) 5912850224018753 s002 sum(A245209[n]/((pi^n+1)/n),n=1..infinity) 5912850241320896 a007 Real Root Of -107*x^4-755*x^3-783*x^2-349*x+24 5912850245204942 a008 Real Root of (-6+6*x+4*x^2+3*x^3+6*x^5) 5912850355402244 m009 (2*Psi(1,1/3)+3)/(2/5*Psi(1,2/3)-5/6) 5912850359415732 m001 (Psi(2,1/3)*sin(1/12*Pi)-Zeta(5))/sin(1/12*Pi) 5912850369420359 a001 2504730781961/1364*521^(12/13) 5912850375466280 b008 5/9+ArcCoth[28] 5912850416233671 p004 log(10723/29) 5912850427210690 h001 (5/8*exp(1)+3/10)/(11/12*exp(1)+8/9) 5912850452858680 m001 BesselI(0,1)^BesselI(1,1)*polylog(4,1/2) 5912850458068524 r005 Re(z^2+c),c=-5/38+7/10*I,n=14 5912850479105350 m001 FeigenbaumD^exp(Pi)/OrthogonalArrays 5912850488706729 m002 -Pi-3*Cosh[Pi]+Pi^4*Tanh[Pi] 5912850503277056 m001 exp(1)/Champernowne*Khinchin 5912850520720118 m001 (-ErdosBorwein+Otter)/(3^(1/2)-ln(gamma)) 5912850529107067 s001 sum(exp(-Pi/3)^n*A127957[n],n=1..infinity) 5912850532000647 b008 1/(9*E^((5*Pi)/3)) 5912850537748137 h001 (2/7*exp(1)+7/12)/(3/10*exp(2)+1/12) 5912850538307024 l006 ln(2473/4467) 5912850554422077 a003 cos(Pi*2/73)*sin(Pi*18/89) 5912850590966836 r005 Im(z^2+c),c=3/94+13/21*I,n=44 5912850612848845 m001 (LambertW(1)-gamma)/(GAMMA(7/12)+ZetaP(3)) 5912850652287984 m001 1/CareFree/MertensB1^2*ln(Niven)^2 5912850660523079 m001 (MinimumGamma-Niven)/(ln(gamma)-FeigenbaumMu) 5912850662422417 a007 Real Root Of 404*x^4-513*x^3-575*x^2-505*x-253 5912850680168999 r009 Re(z^3+c),c=-61/102+20/39*I,n=55 5912850766672098 m001 (gamma(3)-FeigenbaumC)/(KomornikLoreti+Mills) 5912850771774015 m001 (exp(1)+GAMMA(5/6))/(-CareFree+ZetaQ(2)) 5912850774264288 m001 (GaussAGM-ZetaP(3))/(sin(1/12*Pi)-exp(1/Pi)) 5912850774637533 r009 Im(z^3+c),c=-17/42+31/44*I,n=12 5912850812136604 r001 21i'th iterates of 2*x^2-1 of 5912850815305938 a007 Real Root Of -973*x^4+863*x^3-462*x^2-108*x+395 5912850853027701 r002 19th iterates of z^2 + 5912850861673295 r002 13th iterates of z^2 + 5912850880051957 r005 Im(z^2+c),c=-159/118+2/29*I,n=13 5912850894401637 r009 Re(z^3+c),c=-19/32+8/31*I,n=53 5912850901534808 m001 (Mills-Riemann3rdZero)/(BesselK(1,1)+Magata) 5912850902761738 m001 (LambertW(1)+GAMMA(19/24))/(-FeigenbaumMu+Kac) 5912850908124395 r009 Re(z^3+c),c=-15/94+37/48*I,n=9 5912850912777062 a003 sin(Pi*3/10)/cos(Pi*47/103) 5912850930359753 r009 Im(z^3+c),c=-4/7+31/51*I,n=4 5912850948019028 a007 Real Root Of 676*x^4+402*x^3-322*x^2-981*x-467 5912850960604466 r005 Im(z^2+c),c=13/34+12/55*I,n=23 5912850963984465 a001 41/48*89^(25/58) 5912850977011615 r005 Re(z^2+c),c=-65/114+19/44*I,n=32 5912850978595655 a007 Real Root Of -99*x^4+730*x^3+343*x^2+244*x-403 5912851001049931 m001 (-gamma(1)+BesselI(1,2))/(5^(1/2)+gamma) 5912851012193319 l006 ln(4724/8533) 5912851018381175 r002 3th iterates of z^2 + 5912851022810944 m005 (1/2*2^(1/2)+11/12)/(9/11*5^(1/2)+11/12) 5912851025111988 a007 Real Root Of 638*x^4-104*x^3+612*x^2+109*x-249 5912851031284215 a003 cos(Pi*17/89)*sin(Pi*15/59) 5912851032311573 h001 (-8*exp(1/3)-3)/(-exp(1/3)-1) 5912851072005284 a001 2/13*75025^(25/34) 5912851076110592 m005 (1/2*Pi-1/10)/(5/6*exp(1)+2/9) 5912851076752593 h001 (-3*exp(-2)+8)/(-3*exp(2/3)-7) 5912851085537392 m006 (5/6*exp(2*Pi)-5)/(1/4/Pi+2/3) 5912851090082202 p003 LerchPhi(1/100,5,522/187) 5912851116213112 k006 concat of cont frac of 5912851118679579 r009 Re(z^3+c),c=-19/32+8/31*I,n=61 5912851139191406 a007 Real Root Of 378*x^4-996*x^3-546*x^2-47*x-89 5912851172164641 m001 (MertensB3-Robbin)/(Bloch+LaplaceLimit) 5912851181500501 r009 Re(z^3+c),c=-19/32+8/31*I,n=57 5912851258903645 m005 (1/2*5^(1/2)+3/5)/(3/11*3^(1/2)-2/11) 5912851271166838 a007 Real Root Of -82*x^4-446*x^3+261*x^2+126*x-348 5912851274781500 m005 (1/2*2^(1/2)+1/6)/(4/7*5^(1/2)+1/5) 5912851288149757 r008 a(0)=6,K{-n^6,-4+2*n^3+5*n^2-7*n} 5912851304106419 r009 Re(z^3+c),c=-19/32+8/31*I,n=49 5912851319939796 a007 Real Root Of 837*x^4-690*x^3+832*x^2-692*x-945 5912851327353381 l006 ln(4761/5051) 5912851329412351 r009 Re(z^3+c),c=-29/48+33/62*I,n=16 5912851349159368 a007 Real Root Of -132*x^4+110*x^3+413*x^2+652*x+280 5912851359183597 a007 Real Root Of -976*x^4-460*x^3-975*x^2+744*x+805 5912851371977053 r008 a(0)=6,K{-n^6,49-31*n-46*n^2+40*n^3} 5912851378376789 m001 FeigenbaumDelta^2/CopelandErdos*ln(Ei(1)) 5912851399095321 a007 Real Root Of 783*x^4-122*x^3-572*x^2-866*x-433 5912851402469694 v002 sum(1/(5^n*(5/2*n^2+91/2*n-11)),n=1..infinity) 5912851404098529 m005 (1/2*5^(1/2)-10/11)/(5/9*5^(1/2)-8/9) 5912851415426305 m008 (2*Pi^3+1/5)/(2/5*Pi^2-5) 5912851488779631 m001 (3^(1/2)-arctan(1/3))/(BesselI(1,2)+Kolakoski) 5912851501061226 r009 Im(z^3+c),c=-27/52+7/61*I,n=54 5912851508443871 m001 Robbin^2*Niven/ln(log(1+sqrt(2))) 5912851532815597 l006 ln(2251/4066) 5912851534868054 r005 Re(z^2+c),c=-33/40+8/45*I,n=62 5912851548000925 r005 Re(z^2+c),c=-2/3+70/251*I,n=41 5912851557285322 p001 sum((-1)^n/(202*n+169)/(625^n),n=0..infinity) 5912851584063292 r008 a(0)=6,K{-n^6,-18-3*n+29*n^2+4*n^3} 5912851627137341 q001 1072/1813 5912851627137341 r002 2th iterates of z^2 + 5912851627137341 r002 2th iterates of z^2 + 5912851642618757 h001 (2/9*exp(1)+5/6)/(3/5*exp(1)+4/5) 5912851654092945 a005 (1/sin(31/175*Pi))^10 5912851683680818 a001 55/3010349*76^(16/59) 5912851689335214 m001 1/Lehmer/ln(MertensB1)/GAMMA(5/12) 5912851691840126 a007 Real Root Of -347*x^4-291*x^3+688*x^2+937*x-692 5912851695770359 a007 Real Root Of -602*x^4+322*x^3-525*x^2-287*x+154 5912851702861105 a007 Real Root Of -96*x^4+565*x^3-71*x^2-464*x-121 5912851735495430 r002 53th iterates of z^2 + 5912851769188163 m001 Thue-arctan(1/3)*FeigenbaumB 5912851780322432 m001 (GAMMA(5/6)-exp(1))/(-FellerTornier+ZetaQ(2)) 5912851798424304 a007 Real Root Of -108*x^4-755*x^3-731*x^2-150*x+605 5912851818806823 r005 Re(z^2+c),c=-23/34+32/99*I,n=42 5912851840408392 a007 Real Root Of -406*x^4+4*x^3+154*x^2+185*x+106 5912851846054633 a007 Real Root Of 334*x^4-346*x^3+954*x^2-56*x-479 5912851873490132 m009 (40*Catalan+5*Pi^2+1/4)/(6*Psi(1,3/4)-2/3) 5912851886044398 m001 ReciprocalFibonacci*(KomornikLoreti-Trott2nd) 5912851903139766 a007 Real Root Of -518*x^4+641*x^3+816*x^2+865*x+422 5912851912254234 m001 CareFree*Backhouse^2*exp(Tribonacci)^2 5912851933016342 r009 Re(z^3+c),c=-19/32+8/31*I,n=45 5912851941840816 v002 sum(1/(3^n*(27/2*n^2-21/2*n+3)),n=1..infinity) 5912851941888546 r009 Re(z^3+c),c=-73/122+33/64*I,n=55 5912851956275831 a007 Real Root Of -99*x^4-457*x^3+659*x^2-748*x-925 5912851964675187 m001 Khintchine^2/Si(Pi)^2*ln(PisotVijayaraghavan) 5912851965357184 m001 1/MertensB1/GlaisherKinkelin/exp(cos(Pi/5))^2 5912851994040574 m001 (2^(1/3)+gamma(3))/(Kolakoski+Totient) 5912852005904211 r005 Im(z^2+c),c=-13/17+1/35*I,n=19 5912852010723996 r002 12th iterates of z^2 + 5912852018263425 a007 Real Root Of 761*x^4+36*x^3+425*x^2-891*x-761 5912852021733399 p004 log(27259/15091) 5912852023417552 h001 (1/7*exp(2)+2/11)/(5/11*exp(1)+6/7) 5912852037994467 r005 Im(z^2+c),c=-2/17+15/23*I,n=16 5912852045041193 a001 4052739537881/1364*521^(11/13) 5912852059047720 a007 Real Root Of -107*x^4-60*x^3-926*x^2+691*x+733 5912852091077975 a001 521/196418*233^(5/34) 5912852105617390 m001 (Bloch+Riemann1stZero)^LaplaceLimit 5912852107446322 l006 ln(4280/7731) 5912852112211239 m005 (1/3*3^(1/2)+2/7)/(1/3*5^(1/2)+5/7) 5912852131673895 m004 24+5/E^(Sqrt[5]*Pi)+5*Sqrt[5]*Pi 5912852131903957 r005 Re(z^2+c),c=-73/94+15/58*I,n=8 5912852133680442 a007 Real Root Of -902*x^4+669*x^3+699*x^2+72*x-315 5912852149822809 m001 Bloch^ln(2+3^(1/2))+Ei(1,1) 5912852182110166 m001 (Grothendieck+Kac)/(exp(1)+GAMMA(2/3)) 5912852187375280 m001 (-gamma(3)+GAMMA(17/24))/(3^(1/3)-exp(Pi)) 5912852196296258 m001 (Pi+exp(1/Pi))/(Salem-ThueMorse) 5912852208964855 r005 Im(z^2+c),c=-145/122+11/60*I,n=49 5912852228684217 a007 Real Root Of 155*x^4+950*x^3+116*x^2-375*x+654 5912852228876335 a003 cos(Pi*14/107)-cos(Pi*43/109) 5912852244262927 a007 Real Root Of -883*x^4-457*x^3-624*x^2+163*x+328 5912852281156319 m001 (GAMMA(7/12)+ZetaQ(4))/sin(1/12*Pi) 5912852283685898 r005 Im(z^2+c),c=-31/54+5/46*I,n=31 5912852296371160 s002 sum(A074766[n]/(n*exp(n)+1),n=1..infinity) 5912852303021684 a007 Real Root Of 447*x^4-390*x^3-708*x^2-474*x-168 5912852308457844 m001 CopelandErdos-Riemann2ndZero^Gompertz 5912852356255556 g005 2*Pi/GAMMA(5/6)*GAMMA(4/5)^2/GAMMA(5/7) 5912852435668541 a007 Real Root Of -557*x^4+151*x^3+645*x^2+486*x-476 5912852443632594 a007 Real Root Of 118*x^4+526*x^3-885*x^2+657*x-672 5912852454230668 a001 76/5*55^(20/59) 5912852463440954 p001 sum((-1)^n/(193*n+126)/n/(5^n),n=1..infinity) 5912852463950534 r008 a(0)=6,K{-n^6,61-47*n-43*n^2+41*n^3} 5912852472120444 m005 (1/2*Zeta(3)-2/5)/(2*2^(1/2)+4/7) 5912852486030172 m001 (Conway+ZetaP(3))/(exp(1/exp(1))+GAMMA(11/12)) 5912852486049164 r005 Im(z^2+c),c=-137/118+1/13*I,n=11 5912852508930690 a007 Real Root Of -127*x^4-106*x^3-706*x^2-569*x-96 5912852523189012 r009 Im(z^3+c),c=-2/7+25/38*I,n=23 5912852543029170 m006 (1/3*exp(Pi)+1/6)/(1/4*exp(2*Pi)-3/5) 5912852545874902 m002 -Sinh[Pi]+Tanh[Pi]+(5*Tanh[Pi])/ProductLog[Pi] 5912852559492395 m001 1/3*arctan(1/2)*3^(2/3)*Tribonacci 5912852567677941 m001 (exp(Pi)+Kac)/(-KhinchinHarmonic+Niven) 5912852583248652 s002 sum(A286231[n]/((exp(n)-1)/n),n=1..infinity) 5912852588848610 r005 Im(z^2+c),c=-43/34+1/52*I,n=42 5912852594034131 r005 Re(z^2+c),c=-1/19+4/35*I,n=3 5912852619565425 a007 Real Root Of 108*x^4+598*x^3-176*x^2+261*x-694 5912852632097209 r009 Re(z^3+c),c=-29/52+18/61*I,n=54 5912852642314222 r005 Im(z^2+c),c=-31/40+4/53*I,n=4 5912852659890817 m001 Pi^(FeigenbaumMu/HardyLittlewoodC4) 5912852661004846 b008 1/2+BesselI[1,2/11] 5912852675486117 m001 (BesselJ(1,1)+FeigenbaumC)/(5^(1/2)-Si(Pi)) 5912852689004095 a003 sin(Pi*10/101)/cos(Pi*44/91) 5912852695609117 m001 BesselK(0,1)/ln(ErdosBorwein)/GAMMA(3/4)^2 5912852698022999 a007 Real Root Of 123*x^4+570*x^3-899*x^2+309*x+744 5912852711178825 a007 Real Root Of -9*x^4-538*x^3-339*x^2+382*x-149 5912852722881408 a007 Real Root Of -109*x^4-772*x^3-811*x^2-242*x+566 5912852725155651 m008 (5/6*Pi-3)/(2/3*Pi^4-1/3) 5912852729406111 a007 Real Root Of -14*x^4-15*x^3-231*x^2+823*x+566 5912852744949371 l006 ln(2029/3665) 5912852759523588 a007 Real Root Of -267*x^4-634*x^3-676*x^2+105*x+200 5912852789230597 m001 (gamma(1)-FeigenbaumD)/(Niven+Otter) 5912852789860765 a007 Real Root Of 369*x^4-964*x^3-260*x^2-32*x+264 5912852791680490 m001 (Si(Pi)+ArtinRank2)/(-TreeGrowth2nd+ZetaQ(3)) 5912852802234628 r008 a(0)=6,K{-n^6,n^3+9*n^2+3*n} 5912852802271054 m001 1/OneNinth^2*exp(PrimesInBinary)*GAMMA(5/12)^2 5912852818551216 r005 Im(z^2+c),c=-2/15+41/51*I,n=35 5912852824197729 s002 sum(A061602[n]/((pi^n-1)/n),n=1..infinity) 5912852827319272 q001 1/1691231 5912852829211702 r005 Re(z^2+c),c=-73/102+5/32*I,n=43 5912852844167500 r009 Im(z^3+c),c=-59/114+37/62*I,n=19 5912852848979490 a007 Real Root Of 689*x^4-851*x^3-807*x^2-849*x-480 5912852861695448 a007 Real Root Of 48*x^4+438*x^3+995*x^2+658*x+977 5912852862042576 a007 Real Root Of -11*x^4-667*x^3-972*x^2+500*x-911 5912852918360834 m005 (1/2*3^(1/2)+3)/(7/11*Zeta(3)-1/9) 5912852921147339 a007 Real Root Of 400*x^4+164*x^3-430*x^2-498*x+362 5912852930282914 r002 6th iterates of z^2 + 5912852936796848 m001 ln(GAMMA(3/4))^2*Magata/cosh(1)^2 5912852946136151 r009 Re(z^3+c),c=-61/102+20/39*I,n=46 5912852969087931 p003 LerchPhi(1/25,4,317/156) 5912852980681513 a007 Real Root Of -514*x^4+819*x^3+284*x^2+900*x+665 5912853011971802 m001 exp(GAMMA(1/6))*TwinPrimes/cos(1)^2 5912853021484605 r005 Re(z^2+c),c=-5/54+35/43*I,n=12 5912853040858092 r002 24th iterates of z^2 + 5912853041658442 a001 2504730781961/322*322^(3/4) 5912853048399598 m005 (1/2*gamma+3/11)/(5/12*gamma-1/4) 5912853050986634 r002 18th iterates of z^2 + 5912853059216656 a007 Real Root Of -845*x^4+752*x^3+12*x^2-4*x-54 5912853072259170 a007 Real Root Of 9*x^4+535*x^3+173*x^2+293*x+248 5912853086008682 a001 199/2178309*1597^(43/49) 5912853101944448 m005 (1/2*Pi-5)/(7/12*gamma-11/12) 5912853105036690 s002 sum(A036255[n]/((3*n+1)!),n=1..infinity) 5912853137242559 s002 sum(A006242[n]/(n*exp(n)+1),n=1..infinity) 5912853176488629 a003 cos(Pi*7/106)-sin(Pi*10/79) 5912853179422760 m001 1+FeigenbaumAlpha*ReciprocalLucas 5912853180813760 r009 Re(z^3+c),c=-49/82+32/63*I,n=28 5912853200707232 m001 (Landau-TwinPrimes)/(ln(Pi)+FeigenbaumB) 5912853222822361 m003 4+3*Sec[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2]/6 5912853237759260 a007 Real Root Of 402*x^4-156*x^3-316*x^2-609*x-331 5912853240208503 m001 (Bloch+Sarnak)/(gamma+exp(1/exp(1))) 5912853313272544 m005 (1/2*2^(1/2)-2/9)/(10/11*Zeta(3)-3/11) 5912853317345316 m001 (LambertW(1)-exp(-Pi))^GAMMA(1/12) 5912853338319924 a007 Real Root Of 432*x^4-694*x^3+990*x^2+804*x-67 5912853359156232 a007 Real Root Of -526*x^4+736*x^3+152*x^2+769*x+618 5912853373315468 a007 Real Root Of -372*x^4-62*x^3-841*x^2+239*x+468 5912853379988175 m001 (Shi(1)-gamma(2))/(Bloch+MertensB3) 5912853382817870 a007 Real Root Of -427*x^4+687*x^3-292*x^2+769*x+751 5912853388797397 r009 Re(z^3+c),c=-17/30+10/33*I,n=25 5912853396396982 a007 Real Root Of -476*x^4+571*x^3-694*x^2+741*x+857 5912853397791078 p001 sum((-1)^n/(284*n+169)/(512^n),n=0..infinity) 5912853421113608 a007 Real Root Of -333*x^4-257*x^3-990*x^2+562*x+666 5912853442158122 a003 cos(Pi*37/91)-cos(Pi*49/115) 5912853456240524 l006 ln(3836/6929) 5912853468026166 m001 (1+exp(1/Pi))/(-Conway+Niven) 5912853468360413 m001 (ZetaP(4)+ZetaQ(4))/(2^(1/3)-Sierpinski) 5912853468398388 m001 (exp(1/exp(1))+TwinPrimes)/(exp(1)+sin(1)) 5912853509005391 r005 Im(z^2+c),c=7/82+29/49*I,n=33 5912853520285193 r009 Im(z^3+c),c=-23/102+30/43*I,n=38 5912853534924117 a007 Real Root Of 665*x^4-850*x^3+446*x^2-910*x-951 5912853539853929 a008 Real Root of x^4-x^3-25*x^2-28*x+24 5912853545089536 a007 Real Root Of 267*x^4-488*x^3+174*x^2-637*x-571 5912853548526670 a003 sin(Pi*7/33)*sin(Pi*28/69) 5912853548942752 r005 Im(z^2+c),c=-11/86+37/57*I,n=16 5912853557454015 a001 48*11^(2/23) 5912853580315305 m001 (cos(1/5*Pi)+GAMMA(3/4))/(ln(5)+FeigenbaumC) 5912853586594337 v002 sum(1/(3^n+(23*n^2-61*n+74)),n=1..infinity) 5912853608764558 a008 Real Root of (-4+4*x+3*x^2-6*x^3-5*x^4+x^5) 5912853612065313 a007 Real Root Of 161*x^4+827*x^3-755*x^2-115*x-118 5912853642642394 m001 (gamma(2)-BesselI(0,2))/(FellerTornier-Rabbit) 5912853651752902 a001 521/10946*1597^(1/34) 5912853660173649 m005 (1/2*Zeta(3)+6)/(2/5*Catalan+3/4) 5912853688941238 m001 exp(Tribonacci)^2*FeigenbaumD*GAMMA(1/6) 5912853712679622 a001 2/121393*317811^(13/46) 5912853714125970 a007 Real Root Of -845*x^4+924*x^3-634*x^2-372*x+296 5912853718138124 m005 (1/2*2^(1/2)-1/11)/(9/11*3^(1/2)-3/8) 5912853720662502 a001 3278735159921/682*521^(10/13) 5912853737904086 r005 Re(z^2+c),c=19/86+19/53*I,n=63 5912853747704531 a007 Real Root Of -147*x^4+929*x^3-832*x^2-815*x+19 5912853751102813 m005 (1/2*Catalan+3/7)/(5*Pi-5/7) 5912853754207562 p003 LerchPhi(1/2,2,249/172) 5912853782571821 p001 sum(1/(460*n+171)/(25^n),n=0..infinity) 5912853803489739 m005 (1/2*Zeta(3)+3)/(1/2+5/2*5^(1/2)) 5912853814067988 m001 1/Catalan^2*ln(DuboisRaymond)^2/cos(1) 5912853814277720 m001 (BesselI(0,1)-Grothendieck)^Kolakoski 5912853816824742 m001 (Champernowne-Thue)/(ln(2+3^(1/2))+gamma(1)) 5912853817665848 m001 (Sarnak+TreeGrowth2nd)/(Chi(1)-MertensB2) 5912853826204574 p001 sum((-1)^n/(479*n+42)/n/(3^n),n=1..infinity) 5912853828874282 r009 Re(z^3+c),c=-33/56+13/53*I,n=53 5912853874758465 m002 -3+2*Pi^3+Log[Pi]/Pi^2 5912853916536810 m003 -6+ProductLog[1/2+Sqrt[5]/2]^3/5 5912853920661024 r005 Re(z^2+c),c=-39/58+1/29*I,n=5 5912853920813538 a007 Real Root Of 802*x^4+333*x^3+302*x^2-594*x-486 5912853941683409 a007 Real Root Of -743*x^4-326*x^3+884*x^2+878*x-670 5912853965296090 a001 1/7*(1/2*5^(1/2)+1/2)^5*4^(19/20) 5912853970093036 a007 Real Root Of 105*x^4-133*x^3+824*x^2+618*x+37 5912853977012409 a001 55/1149851*3^(11/57) 5912854012947306 m002 -Pi+Pi^5/5+Log[Pi]/ProductLog[Pi] 5912854030501089 q001 1357/2295 5912854030501089 r002 2th iterates of z^2 + 5912854052458131 a003 sin(Pi*7/110)-sin(Pi*20/69) 5912854061891988 l006 ln(7240/7681) 5912854069933073 m001 2/3/(exp(gamma)^exp(-1/2*Pi)) 5912854070382371 r005 Re(z^2+c),c=-29/40+1/9*I,n=53 5912854076899011 m005 (1/2*5^(1/2)+5)/(5*5^(1/2)-5/6) 5912854131774156 a007 Real Root Of -867*x^4+803*x^3+422*x^2+317*x-395 5912854141921675 a001 1/1563*(1/2*5^(1/2)+1/2)^23*3^(1/3) 5912854146473461 a007 Real Root Of 676*x^4-419*x^3+636*x^2-689*x-799 5912854146526070 l006 ln(25/9244) 5912854168673632 r005 Im(z^2+c),c=-23/18+12/227*I,n=53 5912854186361671 r008 a(0)=1,K{-n^6,1+53*n^3-n^2-53*n} 5912854200209774 a007 Real Root Of -865*x^4+699*x^3-785*x^2-243*x+381 5912854216516486 a007 Real Root Of 662*x^4-257*x^3+848*x^2-60*x-466 5912854247365499 r005 Im(z^2+c),c=-25/46+33/56*I,n=29 5912854254917691 l006 ln(1807/3264) 5912854273794049 r005 Re(z^2+c),c=-31/114+19/30*I,n=41 5912854279897258 m002 4/Pi+(5*Tanh[Pi])/ProductLog[Pi] 5912854288430050 a007 Real Root Of -123*x^4+969*x^3+544*x^2+674*x-774 5912854290122833 m001 ErdosBorwein-MadelungNaCl^Trott2nd 5912854307394667 m001 (exp(1)+arctan(1/2))/ZetaQ(2) 5912854370877750 m001 1/ln(arctan(1/2))*Salem/sin(Pi/12) 5912854378975523 m001 MasserGramain^MertensB2/OneNinth 5912854434473417 a007 Real Root Of 149*x^4-603*x^3-486*x^2-729*x-404 5912854438508203 a007 Real Root Of -145*x^4-916*x^3-440*x^2-646*x-558 5912854464090410 m005 (1/2*Pi-7/8)/(4/11*5^(1/2)+4/11) 5912854494182468 p003 LerchPhi(1/1024,3,172/67) 5912854497499732 r005 Re(z^2+c),c=13/102+20/41*I,n=60 5912854528603342 a001 7/377*55^(19/22) 5912854541279587 m005 (1/36+1/4*5^(1/2))/(1/3*gamma+4/5) 5912854576112686 r008 a(0)=6,K{-n^6,63-38*n-60*n^2+47*n^3} 5912854586327981 m003 71/12+Sqrt[5]/8+6*Cos[1/2+Sqrt[5]/2] 5912854598070766 a001 1/76*(1/2*5^(1/2)+1/2)*4^(14/19) 5912854610432180 r005 Im(z^2+c),c=-3/56+51/61*I,n=22 5912854611563175 r005 Re(z^2+c),c=-31/30+28/109*I,n=46 5912854653163732 m001 1/ln(MertensB1)*Artin^2*LambertW(1) 5912854654226102 r009 Re(z^3+c),c=-41/70+27/49*I,n=49 5912854661688817 m005 (5/36+1/4*5^(1/2))/(1/6*exp(1)+8/11) 5912854664532759 a007 Real Root Of 956*x^4-667*x^3-228*x^2-682*x+504 5912854664969745 r002 26i'th iterates of 2*x/(1-x^2) of 5912854671135540 m005 (1/2*Pi-3)/(7/11*Catalan-3) 5912854673300874 m001 (2^(1/2)-GAMMA(19/24))/(Magata+TwinPrimes) 5912854717445645 a007 Real Root Of 151*x^4+871*x^3-25*x^2+516*x-590 5912854729806763 m001 GAMMA(1/24)^2*exp(GolombDickman)^2*GAMMA(7/24) 5912854736963057 m001 Shi(1)^Zeta(1/2)*FeigenbaumKappa^Zeta(1/2) 5912854739736084 r008 a(0)=6,K{-n^6,59-52*n-7*n^2+6*n^3} 5912854798563663 m001 1/Tribonacci^2*FeigenbaumB^2/exp(sqrt(Pi))^2 5912854805555962 a007 Real Root Of 944*x^4+915*x^3-529*x^2-928*x-290 5912854813044427 a007 Real Root Of -297*x^4-206*x^3-823*x^2-361*x+68 5912854818586549 m001 MertensB1/ln(Si(Pi))/GAMMA(1/3)^2 5912854844208978 l006 ln(5199/9391) 5912854848937509 a007 Real Root Of -96*x^4-430*x^3+935*x^2+826*x+647 5912854862577986 s002 sum(A021383[n]/(n*exp(pi*n)+1),n=1..infinity) 5912854872656341 m001 FeigenbaumB^Magata/(FeigenbaumB^Landau) 5912854876680519 m005 (1/2*exp(1)-2/5)/(3/8*exp(1)-6/7) 5912854878336342 m005 (-7/4+1/4*5^(1/2))/(9/11*2^(1/2)+6/7) 5912854904937030 r005 Re(z^2+c),c=-2/3+47/208*I,n=14 5912854917466399 r002 27th iterates of z^2 + 5912854923020965 a007 Real Root Of -309*x^4+232*x^3+362*x^2+157*x+52 5912854926634856 a007 Real Root Of -16*x^4-933*x^3+765*x^2-424*x-496 5912854934778001 m001 FeigenbaumKappa*Otter-Psi(2,1/3) 5912854971031666 r005 Im(z^2+c),c=35/82+19/56*I,n=24 5912854979126353 r005 Im(z^2+c),c=-77/90+16/55*I,n=7 5912854989719512 r005 Re(z^2+c),c=-55/78+11/49*I,n=5 5912854996959515 a007 Real Root Of 770*x^4-117*x^3+59*x^2-176*x-243 5912855000019418 m005 (1/2*2^(1/2)-7/9)/(9/10*3^(1/2)-4/11) 5912855003814639 r005 Re(z^2+c),c=-81/122+13/43*I,n=50 5912855013845727 m001 1/Artin^3/exp(GAMMA(19/24)) 5912855014760164 m001 1/FeigenbaumC^2/exp(cos(Pi/5))^2 5912855015475465 m006 (ln(Pi)-4)/(4*ln(Pi)+1/4) 5912855018028025 r009 Im(z^3+c),c=-41/114+7/13*I,n=2 5912855022549090 m001 ZetaR(2)/(exp(Pi)+ReciprocalLucas) 5912855022937301 a007 Real Root Of -124*x^4-583*x^3+909*x^2+28*x-566 5912855054212477 a007 Real Root Of -850*x^4+805*x^3-389*x^2-469*x+129 5912855066719513 r002 2th iterates of z^2 + 5912855066719513 r002 2th iterates of z^2 + 5912855069990243 m002 -2/3-E^Pi+Pi^6*Sech[Pi] 5912855078894775 a007 Real Root Of -831*x^4+876*x^3-771*x^2+255*x+703 5912855086826572 a001 1149851/8*55^(6/17) 5912855094063603 m001 exp(Robbin)^2*ErdosBorwein^2/GAMMA(13/24) 5912855094182786 r005 Re(z^2+c),c=-13/30+6/11*I,n=22 5912855096265893 r005 Re(z^2+c),c=-6/11+37/61*I,n=7 5912855111839643 r005 Re(z^2+c),c=-107/102+3/23*I,n=48 5912855132860579 m001 GolombDickman^(Kolakoski*OrthogonalArrays) 5912855143112782 a007 Real Root Of 516*x^4-871*x^3-432*x^2-837*x-587 5912855148453325 a007 Real Root Of 755*x^4-704*x^3-494*x^2-678*x-466 5912855158138608 l006 ln(3392/6127) 5912855161035833 a001 64079/13*55^(31/50) 5912855170658237 r005 Im(z^2+c),c=49/118+11/57*I,n=8 5912855189680134 m001 (-ZetaP(3)+ZetaQ(2))/(Khinchin-exp(Pi)) 5912855191615237 m001 (GAMMA(5/6)+Cahen)/(HardyLittlewoodC5-Magata) 5912855201940361 h001 (7/11*exp(2)+2/5)/(1/12*exp(1)+7/11) 5912855217228394 a001 1/13*2584^(21/38) 5912855233085227 r002 19i'th iterates of 2*x/(1-x^2) of 5912855234327010 h002 exp(5^(7/2)+6^(3/2)) 5912855234327010 h007 exp(5^(7/2)+6^(3/2)) 5912855245145334 h001 (1/5*exp(1)+11/12)/(3/11*exp(2)+5/11) 5912855255734340 m001 (Niven-TreeGrowth2nd)/(FeigenbaumD-Landau) 5912855265333503 a007 Real Root Of 445*x^4-236*x^3+996*x^2-505*x-750 5912855266204957 a007 Real Root Of 122*x^4+588*x^3-954*x^2-974*x+24 5912855310744751 m001 Khintchine^2*exp(MertensB1)*Kolakoski^2 5912855375381750 a007 Real Root Of -206*x^4-257*x^3-549*x^2+986*x+747 5912855392488722 a007 Real Root Of 978*x^4+199*x^3+175*x^2+116*x-71 5912855396284286 a001 10610209857723/1364*521^(9/13) 5912855404140889 m005 (1/3*gamma-1/9)/(-8/15+3/10*5^(1/2)) 5912855405398915 r009 Re(z^3+c),c=-14/23+8/15*I,n=43 5912855408288723 a001 13/2*521^(6/17) 5912855425113517 r005 Re(z^2+c),c=-15/22+33/125*I,n=47 5912855435265790 r008 a(0)=6,K{-n^6,58-55*n+37*n^2-29*n^3} 5912855437352255 m001 polylog(4,1/2)*GAMMA(19/24)^FeigenbaumB 5912855449926580 r009 Im(z^3+c),c=-17/66+43/63*I,n=37 5912855475774914 a007 Real Root Of -424*x^4+518*x^3-782*x^2+862*x+942 5912855476400422 v002 sum(1/(2^n+(18*n^2+10*n-1)),n=1..infinity) 5912855477755620 r002 24th iterates of z^2 + 5912855486071117 l006 ln(4977/8990) 5912855517315780 r002 43th iterates of z^2 + 5912855531333060 a007 Real Root Of 138*x^4-870*x^3-91*x^2-861*x-674 5912855549450780 a007 Real Root Of 800*x^4-442*x^3+539*x^2+757*x+70 5912855550019452 m001 (arctan(1/2)+Rabbit)/(Riemann2ndZero-Salem) 5912855562955601 r008 a(0)=6,K{-n^6,66-30*n^3+44*n^2-69*n} 5912855582335389 a007 Real Root Of -346*x^4+721*x^3-641*x^2+625*x+785 5912855599567879 q001 1642/2777 5912855603737532 a007 Real Root Of 366*x^4-722*x^3+182*x^2-760*x-707 5912855618364238 r009 Re(z^3+c),c=-19/32+8/31*I,n=37 5912855631636974 m001 (Psi(1,1/3)-Sierpinski)^ln(2^(1/2)+1) 5912855667321244 a007 Real Root Of -981*x^4+721*x^3+895*x^2+832*x+448 5912855669198364 r005 Re(z^2+c),c=41/94+4/11*I,n=4 5912855674007570 r005 Im(z^2+c),c=29/74+20/63*I,n=27 5912855701282472 m001 (Zeta(5)-GAMMA(7/12))/(Bloch-Conway) 5912855716584415 m001 (Pi-GAMMA(5/6))/(FransenRobinson+Gompertz) 5912855752683368 r005 Im(z^2+c),c=-7/6+31/92*I,n=6 5912855759765049 r005 Im(z^2+c),c=-37/54+2/47*I,n=19 5912855786981736 a008 Real Root of (2+2*x+x^2-6*x^4+6*x^5) 5912855788442590 m001 ZetaQ(3)^arctan(1/3)-cos(1/5*Pi) 5912855800286180 a001 360684203817457/610 5912855823805487 m001 (Gompertz+Trott)/(DuboisRaymond+FeigenbaumB) 5912855838975228 r002 56th iterates of z^2 + 5912855879971515 k002 Champernowne real with 54*n^2-76*n+27 5912855880150810 r005 Im(z^2+c),c=-29/102+32/51*I,n=30 5912855899144476 m006 (3/4*Pi^2-2/5)/(1/3*ln(Pi)-1/2) 5912855918466077 a007 Real Root Of -158*x^4-748*x^3+950*x^2-932*x-226 5912855919713689 a007 Real Root Of 41*x^4-941*x^3-189*x^2-476*x+29 5912855922165426 a007 Real Root Of -339*x^4+267*x^3+404*x^2+230*x-291 5912855933226826 m001 (Rabbit-Sierpinski)/(CopelandErdos-Magata) 5912855958775447 a005 (1/cos(54/229*Pi))^21 5912855963549511 m005 (1/2*gamma-3/4)/(4*3^(1/2)+7/8) 5912855968773395 m008 (2*Pi^2+3)/(4*Pi^6+1/6) 5912855974419810 m001 (polylog(4,1/2)-GAMMA(5/6))/(Thue+ZetaP(3)) 5912855991844854 m001 (Catalan-Zeta(5))/(Niven+PolyaRandomWalk3D) 5912855997072458 a007 Real Root Of -619*x^4-553*x^3-464*x^2+547*x+447 5912856009075450 m006 (4/5*ln(Pi)-2/3)/(4/5/Pi+1/6) 5912856012169829 a001 591286729879/843*1364^(14/15) 5912856013939500 r005 Re(z^2+c),c=9/110+17/40*I,n=40 5912856020964013 a008 Real Root of x^4-31*x^2-40*x+98 5912856021638538 r002 60th iterates of z^2 + 5912856037433427 r005 Re(z^2+c),c=1/58+25/33*I,n=21 5912856038269186 s002 sum(A205545[n]/(exp(n)),n=1..infinity) 5912856077591051 r009 Re(z^3+c),c=-13/22+10/31*I,n=21 5912856102470897 r005 Re(z^2+c),c=-45/62+14/61*I,n=24 5912856187867340 l006 ln(1585/2863) 5912856199424928 a007 Real Root Of -760*x^4+788*x^3-65*x^2+909*x+816 5912856224043485 a001 956722026041/843*1364^(13/15) 5912856228682180 r002 64th iterates of z^2 + 5912856243743278 a001 76/123*(1/2*5^(1/2)+1/2)^18*123^(7/12) 5912856264285290 m002 E^Pi/3+Pi^2+Pi^6/E^Pi 5912856287729367 a001 987/64079*11^(23/41) 5912856300655338 m001 gamma(3)*(GAMMA(19/24)+Niven) 5912856301085100 m001 GAMMA(19/24)^2/ln(FeigenbaumB)^2*Zeta(3)^2 5912856311820697 m005 (1/2*Catalan+5/8)/(9/10*3^(1/2)+3/11) 5912856324165186 a003 sin(Pi*11/91)/cos(Pi*29/102) 5912856331805432 a007 Real Root Of 615*x^4-104*x^3+573*x^2-230*x-433 5912856351171217 a007 Real Root Of 375*x^4-696*x^3+572*x^2-677*x-790 5912856355333272 m005 (1/2*Pi-5/12)/(1/12*gamma-2) 5912856385315751 g005 GAMMA(7/12)/GAMMA(9/11)/GAMMA(7/11)/GAMMA(5/9) 5912856391912640 a007 Real Root Of -43*x^4+486*x^3-707*x^2+12*x+360 5912856404091918 m001 (Sarnak+TreeGrowth2nd)/(Pi-GAMMA(19/24)) 5912856435917149 a001 516002918640/281*1364^(4/5) 5912856453342931 m001 1/ln(GAMMA(19/24))/RenyiParking*sin(1)^2 5912856459040497 r008 a(0)=6,K{-n^6,71+52*n^3-71*n^2-40*n} 5912856481704115 a007 Real Root Of 156*x^4+741*x^3-993*x^2+564*x+551 5912856486930664 b008 59+Sqrt[2]/11 5912856488813033 r009 Re(z^3+c),c=-6/13+2/33*I,n=19 5912856492020738 m005 (1/3*3^(1/2)-1/8)/(-1/6+5/12*5^(1/2)) 5912856493504462 a001 87403803/610*89^(6/19) 5912856510494908 m001 (exp(1)+GAMMA(2/3))/(-BesselJ(1,1)+GAMMA(5/6)) 5912856520426381 m005 (1/2*Zeta(3)+1/7)/(9/11*5^(1/2)-4/7) 5912856545470962 a007 Real Root Of -87*x^4-105*x^3-962*x^2+30*x+343 5912856546898206 r009 Re(z^3+c),c=-18/31+3/7*I,n=5 5912856554862824 m001 (sin(1/12*Pi)+GAMMA(23/24))/(2^(1/2)-exp(Pi)) 5912856555220735 r009 Im(z^3+c),c=-67/126+7/18*I,n=47 5912856564932269 r005 Im(z^2+c),c=-37/27+2/27*I,n=36 5912856610266170 r005 Re(z^2+c),c=-107/102+3/23*I,n=54 5912856622330560 r005 Re(z^2+c),c=-9/52+25/37*I,n=33 5912856622853936 r009 Re(z^3+c),c=-43/110+42/61*I,n=17 5912856626460368 m001 (Magata+QuadraticClass)/(Sarnak+ZetaQ(4)) 5912856632039900 m002 E^Pi/Pi^6+5*Cosh[Pi]+Log[Pi] 5912856638500713 r005 Re(z^2+c),c=-8/11+13/45*I,n=5 5912856647790820 a001 2504730781961/843*1364^(11/15) 5912856656636470 m001 (MertensB1+Tribonacci)/(exp(1)+GaussAGM) 5912856668656671 r005 Re(z^2+c),c=-5/82+33/46*I,n=17 5912856669630439 a001 514229/76*18^(3/4) 5912856671804874 m009 (3/5*Psi(1,1/3)-4)/(16*Catalan+2*Pi^2+2/5) 5912856697856740 m001 1/GAMMA(1/12)/FeigenbaumB^2/exp(GAMMA(1/3))^2 5912856704510586 q001 1927/3259 5912856713605475 a003 cos(Pi*7/19)-sin(Pi*49/106) 5912856729142777 m001 FransenRobinson*ln(CopelandErdos)^2*Zeta(7) 5912856730826593 g006 Psi(1,10/11)+Psi(1,8/9)+Psi(1,3/5)-Psi(1,2/7) 5912856737888256 a003 cos(Pi*37/115)/sin(Pi*27/76) 5912856753210121 a007 Real Root Of -384*x^4-738*x^3-553*x^2+518*x+394 5912856776805834 a001 75025/2*29^(5/37) 5912856839592365 a007 Real Root Of -666*x^4+684*x^3+170*x^2+72*x-162 5912856842590910 r005 Re(z^2+c),c=-107/102+3/23*I,n=52 5912856845460619 a007 Real Root Of -728*x^4+30*x^3-701*x^2+972*x+915 5912856859664499 a001 4052739537881/843*1364^(2/3) 5912856871368002 m001 (Psi(2,1/3)+Zeta(3))/(BesselJ(1,1)+Bloch) 5912856907708047 r008 a(0)=6,K{-n^6,50-24*n^3+18*n^2-33*n} 5912856937101413 m001 Lehmer/(Psi(1,1/3)+gamma(1)) 5912856958403308 l006 ln(4533/8188) 5912856974072185 m005 (1/3*2^(1/2)+1/2)/(2/5*exp(1)+5/9) 5912856988059757 a001 47/12586269025*46368^(9/10) 5912856988554756 a001 47/956722026041*5702887^(9/10) 5912856992694001 a003 sin(Pi*26/97)*sin(Pi*30/103) 5912857003663643 r005 Im(z^2+c),c=-5/52+29/34*I,n=35 5912857005772451 m005 (1/3*exp(1)-3/5)/(48/11+4/11*5^(1/2)) 5912857008358127 a003 sin(Pi*1/90)-sin(Pi*14/65) 5912857023711326 m006 (1/3/Pi-4)/(3/4*ln(Pi)-1/5) 5912857023830457 r009 Re(z^3+c),c=-1/90+9/19*I,n=4 5912857031454916 m006 (4*ln(Pi)-2/3)/(2*Pi+1/3) 5912857049106029 h001 (7/12*exp(1)+2/11)/(7/9*exp(1)+7/8) 5912857052225229 r005 Im(z^2+c),c=-2/3+24/203*I,n=60 5912857055887996 a007 Real Root Of -140*x^4-799*x^3+146*x^2-158*x-85 5912857071538186 a001 6557470319842/843*1364^(3/5) 5912857096895890 r001 25i'th iterates of 2*x^2-1 of 5912857116905271 m001 (-Robbin+ZetaP(2))/(5^(1/2)+Mills) 5912857121656811 p004 log(13513/7481) 5912857126354117 m005 (1/3*gamma-1/8)/(2/5*gamma+10/11) 5912857130022573 m005 (1/2*3^(1/2)-7/12)/(3/8*Pi-7/10) 5912857131356049 h001 (3/8*exp(1)+6/11)/(9/10*exp(1)+1/5) 5912857154695454 a007 Real Root Of 956*x^4+14*x^3-607*x^2-926*x+640 5912857193049646 m002 5*Cosh[Pi]+2*Sech[Pi]+Tanh[Pi] 5912857193875467 m001 Rabbit^2*Si(Pi)^2/ln(GAMMA(11/12))^2 5912857213020212 r005 Re(z^2+c),c=-5/102+3/23*I,n=13 5912857214661302 r005 Im(z^2+c),c=-11/20+4/7*I,n=6 5912857220125718 r005 Re(z^2+c),c=-107/102+3/23*I,n=60 5912857270040382 m005 (1/2*2^(1/2)+8/9)/(7/11*Pi+7/10) 5912857283411880 a001 3536736619241/281*1364^(8/15) 5912857299660638 a007 Real Root Of 708*x^4-397*x^3-744*x^2-850*x-5 5912857316527530 m001 (GAMMA(7/12)*Robbin-OneNinth)/GAMMA(7/12) 5912857323317732 a001 2584/167761*11^(23/41) 5912857324847514 m005 (1/2*Pi+5/8)/(6/11*Pi+2) 5912857336779788 m003 1/2+(9*Sqrt[5])/64-Cosh[1/2+Sqrt[5]/2]/3 5912857339722754 m001 (GAMMA(3/4)+Ei(1,1))/(Riemann3rdZero-Stephens) 5912857353389999 a007 Real Root Of 952*x^4-785*x^3+550*x^2+673*x-73 5912857364608941 m001 BesselK(0,1)*ZetaR(2)^(5^(1/2)) 5912857372683986 l006 ln(2948/5325) 5912857383558345 a007 Real Root Of 818*x^4+388*x^3-232*x^2-283*x-106 5912857386445954 r005 Re(z^2+c),c=-5/102+3/23*I,n=16 5912857389633606 r005 Re(z^2+c),c=-5/102+3/23*I,n=19 5912857389690638 r005 Re(z^2+c),c=-5/102+3/23*I,n=22 5912857389691631 r005 Re(z^2+c),c=-5/102+3/23*I,n=25 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=28 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=29 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=31 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=32 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=34 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=35 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=37 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=38 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=40 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=41 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=44 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=43 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=47 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=46 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=50 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=53 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=56 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=59 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=62 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=63 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=64 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=61 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=60 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=58 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=57 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=55 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=54 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=52 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=51 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=49 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=48 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=45 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=42 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=39 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=36 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=33 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=30 5912857389691648 r005 Re(z^2+c),c=-5/102+3/23*I,n=26 5912857389691649 r005 Re(z^2+c),c=-5/102+3/23*I,n=27 5912857389691703 r005 Re(z^2+c),c=-5/102+3/23*I,n=24 5912857389691708 r005 Re(z^2+c),c=-5/102+3/23*I,n=23 5912857389694266 r005 Re(z^2+c),c=-5/102+3/23*I,n=21 5912857389697366 r005 Re(z^2+c),c=-5/102+3/23*I,n=20 5912857389808738 r005 Re(z^2+c),c=-5/102+3/23*I,n=18 5912857390135312 r005 Re(z^2+c),c=-5/102+3/23*I,n=17 5912857392224814 m001 (Salem+ZetaQ(2))/(FeigenbaumB-GolombDickman) 5912857394427959 r005 Re(z^2+c),c=-5/102+3/23*I,n=15 5912857403919148 m001 (BesselK(0,1)-Otter)/(-RenyiParking+Salem) 5912857412262119 r005 Im(z^2+c),c=-11/10+48/215*I,n=12 5912857420763616 r005 Re(z^2+c),c=-5/102+3/23*I,n=14 5912857423067479 r005 Re(z^2+c),c=-107/102+3/23*I,n=64 5912857438909867 r005 Re(z^2+c),c=-107/102+3/23*I,n=62 5912857445309718 r005 Re(z^2+c),c=-107/102+3/23*I,n=58 5912857450687457 m001 FeigenbaumDelta+LandauRamanujan2nd+Robbin 5912857455093530 a003 cos(Pi*23/71)/sin(Pi*39/112) 5912857455581567 m001 gamma/arctan(1/2)*Weierstrass 5912857464149380 a007 Real Root Of -748*x^4+572*x^3+507*x^2+169*x-304 5912857474408038 a001 6765/439204*11^(23/41) 5912857491625838 m002 -3+E^Pi*Pi^3*Csch[Pi] 5912857496451817 a001 17711/1149851*11^(23/41) 5912857497751940 a007 Real Root Of -391*x^4-16*x^3-932*x^2+933*x+922 5912857499667961 a001 46368/3010349*11^(23/41) 5912857500427189 a001 75025/4870847*11^(23/41) 5912857501655647 a001 28657/1860498*11^(23/41) 5912857507168421 a007 Real Root Of -293*x^4+701*x^3-984*x^2+293*x+698 5912857509549080 r002 2th iterates of z^2 + 5912857510075621 a001 10946/710647*11^(23/41) 5912857524726009 q001 2212/3741 5912857534273348 a007 Real Root Of -107*x^4+763*x^3-892*x^2-451*x+216 5912857546307324 r005 Re(z^2+c),c=-5/102+3/23*I,n=12 5912857558673263 m001 (2^(1/3)+ln(Pi))/(BesselI(0,2)+KomornikLoreti) 5912857558681214 m005 (1/2*exp(1)-3/10)/(8/9*exp(1)-5/8) 5912857567786983 a001 4181/271443*11^(23/41) 5912857570480026 a007 Real Root Of -418*x^4+417*x^3+974*x^2+716*x-799 5912857592870844 r008 a(0)=6,K{-n^6,-42+51*n-10*n^2+13*n^3} 5912857602481930 m001 ln(Trott)^2*RenyiParking/sin(Pi/12) 5912857609882293 r002 5th iterates of z^2 + 5912857618724150 a007 Real Root Of 801*x^4-821*x^3-115*x^2-806*x-704 5912857634893735 m001 (1+sin(1/12*Pi))/(-Artin+FeigenbaumAlpha) 5912857639779628 a003 sin(Pi*1/5)/sin(Pi*47/101) 5912857672472211 m001 (Psi(2,1/3)+Kac)/(MertensB1+TwinPrimes) 5912857677984920 m001 (gamma(1)-BesselI(1,1))/(BesselK(1,1)-Rabbit) 5912857705046150 m001 (1-BesselJ(1,1))/(-BesselI(0,2)+MertensB3) 5912857710177831 m005 (1/2*Zeta(3)+3/10)/(67/110+9/22*5^(1/2)) 5912857712428922 a007 Real Root Of -545*x^4-194*x^3-641*x^2+48*x+279 5912857726401014 a007 Real Root Of -509*x^4+929*x^3+761*x^2+653*x-782 5912857764461957 a001 377/2207*14662949395604^(20/21) 5912857764473416 a001 329/281*14662949395604^(8/9) 5912857768618294 m001 (-Zeta(1/2)+Bloch)/(exp(1)-ln(gamma)) 5912857794031808 a001 774004377960/161*322^(5/6) 5912857808298514 l006 ln(4311/7787) 5912857810619318 a007 Real Root Of -311*x^4+495*x^3-979*x^2-319*x+294 5912857836899594 a007 Real Root Of 860*x^4+165*x^3+640*x^2+830*x+196 5912857865310164 r005 Re(z^2+c),c=-107/102+3/23*I,n=56 5912857868304217 m005 (1/2*Catalan+7/8)/(11/12*3^(1/2)+2/3) 5912857876553584 a001 1/492*(1/2*5^(1/2)+1/2)^5*4^(16/23) 5912857881860868 r005 Im(z^2+c),c=-7/25+17/28*I,n=4 5912857889882633 a007 Real Root Of -560*x^4+603*x^3+37*x^2-692*x-229 5912857893364725 a001 2207/377*377^(23/59) 5912857895699864 m001 (Porter+Trott)/(Shi(1)+3^(1/3)) 5912857904868022 r005 Re(z^2+c),c=-5/42+12/17*I,n=44 5912857911113195 r005 Re(z^2+c),c=-5/42+12/17*I,n=41 5912857928390616 r009 Im(z^3+c),c=-17/86+18/19*I,n=4 5912857935085824 r005 Re(z^2+c),c=-5/42+12/17*I,n=47 5912857945261865 a007 Real Root Of 614*x^4+220*x^3-643*x^2-720*x+530 5912857957804569 a007 Real Root Of -502*x^4-311*x^3-305*x^2+425*x+355 5912857960910571 r005 Re(z^2+c),c=-5/42+12/17*I,n=50 5912857963346540 a001 1597/103682*11^(23/41) 5912857969481888 m001 (Zeta(5)-gamma(2))/(GAMMA(19/24)+Gompertz) 5912857974492759 r002 29th iterates of z^2 + 5912857975967061 m001 (Niven+PlouffeB)/(Zeta(1,2)+Mills) 5912857976911930 r005 Re(z^2+c),c=-5/42+12/17*I,n=53 5912857985394249 a007 Real Root Of 968*x^4+714*x^3+825*x^2-913*x-799 5912857985614434 r005 Re(z^2+c),c=-5/42+12/17*I,n=56 5912857990013456 r005 Re(z^2+c),c=-5/42+12/17*I,n=59 5912857992132310 r005 Re(z^2+c),c=-5/42+12/17*I,n=62 5912858021608416 r005 Im(z^2+c),c=25/98+17/31*I,n=35 5912858022698253 a007 Real Root Of -511*x^4+982*x^3+248*x^2+156*x+271 5912858037516600 m001 (gamma(3)-Gompertz)/(Lehmer+ThueMorse) 5912858058915541 m001 FeigenbaumDelta-Psi(2,1/3)-LaplaceLimit 5912858074418750 h001 (1/9*exp(2)+2/11)/(1/9*exp(2)+7/8) 5912858118120092 r005 Re(z^2+c),c=-5/42+12/17*I,n=38 5912858159198922 p003 LerchPhi(1/3,3,37/144) 5912858178726548 m005 (1/2*exp(1)-1/3)/(3/4*Zeta(3)+5/6) 5912858180594736 s002 sum(A074308[n]/(n*2^n-1),n=1..infinity) 5912858189886494 a007 Real Root Of 784*x^4-165*x^3+512*x^2-774*x+44 5912858200142041 a007 Real Root Of -326*x^4-795*x^3-872*x^2+708*x+599 5912858206324946 a007 Real Root Of -256*x^4+842*x^3-915*x^2+167*x+624 5912858206352441 m001 (BesselJ(1,1)+Otter)/(Stephens-ZetaQ(4)) 5912858242952280 a007 Real Root Of 172*x^4+900*x^3-681*x^2+159*x+560 5912858252413619 m001 FellerTornier+Magata^OrthogonalArrays 5912858279117871 m001 ln(BesselK(0,1))^2/KhintchineLevy*Zeta(1,2) 5912858282555259 r005 Im(z^2+c),c=15/58+28/55*I,n=43 5912858311572284 a007 Real Root Of -516*x^4-460*x^3-264*x^2+950*x+622 5912858312255255 r009 Im(z^3+c),c=-37/110+41/57*I,n=2 5912858356974376 a007 Real Root Of 959*x^4-802*x^3+695*x^2-482*x-811 5912858364851038 m001 (Robbin-Totient)/(ln(Pi)+gamma(3)) 5912858378052349 a007 Real Root Of -10*x^4-579*x^3+731*x^2+272*x+155 5912858400286309 m001 (ln(Pi)+MadelungNaCl)/(ThueMorse+ZetaP(4)) 5912858400830257 a007 Real Root Of -151*x^4-991*x^3-678*x^2-661*x-496 5912858408261390 m005 (1/2*gamma-10/11)/(2/7*exp(1)+3/11) 5912858424911919 m009 (2*Pi^2+2/3)/(3/8*Pi^2-1/4) 5912858453911375 s002 sum(A122277[n]/(10^n-1),n=1..infinity) 5912858456734901 m001 (Khinchin+2/3)/(FeigenbaumDelta+1) 5912858477319385 a007 Real Root Of -651*x^4+978*x^3-355*x^2+719*x+831 5912858495790745 m001 (Backhouse+Otter)/(Ei(1)+2*Pi/GAMMA(5/6)) 5912858512005114 a007 Real Root Of -10*x^4-580*x^3+671*x^2+214*x-225 5912858514710688 a001 944283504799297/1597 5912858541997615 a001 267913919*3571^(16/17) 5912858549464257 a007 Real Root Of 355*x^4-510*x^3-115*x^2-441*x+363 5912858549833757 m001 gamma(1)/Artin*GaussKuzminWirsing 5912858569272870 a001 365435296162/843*3571^(15/17) 5912858570404353 m001 BesselK(0,1)*Bloch/ReciprocalFibonacci 5912858575187721 m001 PisotVijayaraghavan^2/exp(Magata)*Zeta(7)^2 5912858576890391 a007 Real Root Of 607*x^4+217*x^3+767*x^2-860*x-806 5912858596548125 a001 591286729879/843*3571^(14/17) 5912858614324801 r009 Im(z^3+c),c=-17/46+24/41*I,n=15 5912858623823380 a001 956722026041/843*3571^(13/17) 5912858651098635 a001 516002918640/281*3571^(12/17) 5912858654145919 a007 Real Root Of 4*x^4+97*x^3+687*x^2-875*x-738 5912858656660331 a007 Real Root Of -302*x^4+595*x^3-466*x^2+891*x-450 5912858674254377 r005 Im(z^2+c),c=-137/106+5/26*I,n=7 5912858676719938 a007 Real Root Of -591*x^4+256*x^3+472*x^2+590*x+309 5912858678373890 a001 2504730781961/843*3571^(11/17) 5912858700721758 a007 Real Root Of -855*x^4+930*x^3-313*x^2+977*x-556 5912858701265177 h001 (-9*exp(1)+5)/(-3*exp(7)-2) 5912858705649146 a001 4052739537881/843*3571^(10/17) 5912858718515275 r009 Re(z^3+c),c=-69/122+13/49*I,n=12 5912858732924402 a001 6557470319842/843*3571^(9/17) 5912858743160365 r005 Re(z^2+c),c=-7/10+41/185*I,n=31 5912858750478662 l006 ln(1363/2462) 5912858754365584 r008 a(0)=6,K{-n^6,-17+28*n^3-83*n^2+85*n} 5912858758124787 a007 Real Root Of 461*x^4-435*x^3-832*x^2-351*x+532 5912858760199657 a001 3536736619241/281*3571^(8/17) 5912858762190029 m001 (MertensB1+TreeGrowth2nd)/(1-ln(2^(1/2)+1)) 5912858787221301 a007 Real Root Of -314*x^4-72*x^3-725*x^2-164*x+180 5912858801291957 a001 2584/843*14662949395604^(6/7) 5912858816452288 r002 2th iterates of z^2 + 5912858824714678 m001 1/exp(Rabbit)^2/Champernowne^2/FeigenbaumD 5912858846993978 a007 Real Root Of -155*x^4-958*x^3-249*x^2+69*x+533 5912858860022516 r008 a(0)=6,K{-n^6,-11+22*n+2*n^3} 5912858871900226 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+GAMMA(7/12)+Niven 5912858878842541 s002 sum(A252276[n]/(n^2*exp(n)+1),n=1..infinity) 5912858885470687 a007 Real Root Of -596*x^4+663*x^3+771*x^2+386*x-562 5912858891345891 m001 (GAMMA(3/4)-exp(1))/(-Ei(1,1)+Bloch) 5912858891945136 m001 1/GAMMA(5/12)*ln(GAMMA(17/24))^2*sqrt(2)^2 5912858910740095 a001 2472166310580434/4181 5912858914312324 a001 86267571272/843*9349^(18/19) 5912858917872845 a001 139583862445/843*9349^(17/19) 5912858919633808 m001 (Magata+Riemann2ndZero)/(Si(Pi)+BesselI(0,2)) 5912858921433366 a001 267913919*9349^(16/19) 5912858924993888 a001 365435296162/843*9349^(15/19) 5912858928554409 a001 591286729879/843*9349^(14/19) 5912858932114930 a001 956722026041/843*9349^(13/19) 5912858933914090 m001 OneNinth^2*CopelandErdos/exp(BesselJ(0,1))^2 5912858934038909 a007 Real Root Of -331*x^4+327*x^3+811*x^2+606*x-669 5912858935675452 a001 516002918640/281*9349^(12/19) 5912858936930736 r009 Im(z^3+c),c=-37/126+11/17*I,n=21 5912858939235973 a001 2504730781961/843*9349^(11/19) 5912858939512400 a007 Real Root Of -840*x^4+16*x^3+288*x^2+473*x-281 5912858942796494 a001 4052739537881/843*9349^(10/19) 5912858946357016 a001 6557470319842/843*9349^(9/19) 5912858949917537 a001 3536736619241/281*9349^(8/19) 5912858952561743 a001 2255/281*23725150497407^(13/16) 5912858952561743 a001 2255/281*505019158607^(13/14) 5912858969001719 a001 10983760033/281*24476^(20/21) 5912858969471718 a001 53316291173/843*24476^(19/21) 5912858969941718 a001 86267571272/843*24476^(6/7) 5912858970411717 a001 139583862445/843*24476^(17/21) 5912858970881717 a001 267913919*24476^(16/21) 5912858971351716 a001 365435296162/843*24476^(5/7) 5912858971821716 a001 591286729879/843*24476^(2/3) 5912858972291715 a001 956722026041/843*24476^(13/21) 5912858972761714 a001 516002918640/281*24476^(4/7) 5912858973231714 a001 2504730781961/843*24476^(11/21) 5912858973701713 a001 4052739537881/843*24476^(10/21) 5912858974171713 a001 6557470319842/843*24476^(3/7) 5912858974631708 a001 17711/843*312119004989^(10/11) 5912858974631708 a001 17711/843*3461452808002^(5/6) 5912858974641712 a001 3536736619241/281*24476^(8/21) 5912858974935531 a001 312119004989/233*34^(8/19) 5912858977024305 a001 12586269025/843*64079^(22/23) 5912858977086914 a001 20365011074/843*64079^(21/23) 5912858977149523 a001 10983760033/281*64079^(20/23) 5912858977212133 a001 53316291173/843*64079^(19/23) 5912858977274742 a001 86267571272/843*64079^(18/23) 5912858977337351 a001 139583862445/843*64079^(17/23) 5912858977399960 a001 267913919*64079^(16/23) 5912858977462570 a001 365435296162/843*64079^(15/23) 5912858977525179 a001 591286729879/843*64079^(14/23) 5912858977587788 a001 956722026041/843*64079^(13/23) 5912858977650397 a001 516002918640/281*64079^(12/23) 5912858977713006 a001 2504730781961/843*64079^(11/23) 5912858977775616 a001 4052739537881/843*64079^(10/23) 5912858977838225 a001 6557470319842/843*64079^(9/23) 5912858977851672 a001 15456/281*45537549124^(16/17) 5912858977851672 a001 15456/281*14662949395604^(16/21) 5912858977851672 a001 15456/281*192900153618^(8/9) 5912858977851672 a001 15456/281*73681302247^(12/13) 5912858977900834 a001 3536736619241/281*64079^(8/23) 5912858978233632 a001 10983760033/281*167761^(4/5) 5912858978275651 a001 365435296162/843*167761^(3/5) 5912858978317670 a001 4052739537881/843*167761^(2/5) 5912858978321459 a001 121393/843*10749957122^(23/24) 5912858978374461 a001 1602508992/281*439204^(8/9) 5912858978377867 a001 20365011074/843*439204^(7/9) 5912858978381273 a001 86267571272/843*439204^(2/3) 5912858978384679 a001 365435296162/843*439204^(5/9) 5912858978388084 a001 516002918640/281*439204^(4/9) 5912858978389999 a001 377*312119004989^(4/5) 5912858978389999 a001 377*23725150497407^(11/16) 5912858978389999 a001 377*73681302247^(11/13) 5912858978389999 a001 377*10749957122^(11/12) 5912858978389999 a001 377*4106118243^(22/23) 5912858978391490 a001 6557470319842/843*439204^(1/3) 5912858978399999 a001 832040/843*2537720636^(14/15) 5912858978399999 a001 832040/843*17393796001^(6/7) 5912858978399999 a001 832040/843*45537549124^(14/17) 5912858978399999 a001 832040/843*817138163596^(14/19) 5912858978399999 a001 832040/843*14662949395604^(2/3) 5912858978399999 a001 832040/843*505019158607^(3/4) 5912858978399999 a001 832040/843*192900153618^(7/9) 5912858978399999 a001 832040/843*10749957122^(7/8) 5912858978399999 a001 832040/843*4106118243^(21/23) 5912858978399999 a001 832040/843*1568397607^(21/22) 5912858978401458 a001 726103/281*2537720636^(8/9) 5912858978401458 a001 726103/281*312119004989^(8/11) 5912858978401458 a001 726103/281*23725150497407^(5/8) 5912858978401458 a001 726103/281*73681302247^(10/13) 5912858978401458 a001 726103/281*28143753123^(4/5) 5912858978401458 a001 726103/281*10749957122^(5/6) 5912858978401458 a001 726103/281*4106118243^(20/23) 5912858978401458 a001 726103/281*1568397607^(10/11) 5912858978401458 a001 726103/281*599074578^(20/21) 5912858978401621 a001 267914296/843*7881196^(10/11) 5912858978401630 a001 1134903170/843*7881196^(9/11) 5912858978401638 a001 1602508992/281*7881196^(8/11) 5912858978401644 a001 12586269025/843*7881196^(2/3) 5912858978401647 a001 20365011074/843*7881196^(7/11) 5912858978401656 a001 86267571272/843*7881196^(6/11) 5912858978401664 a001 365435296162/843*7881196^(5/11) 5912858978401671 a001 5702887/843*817138163596^(2/3) 5912858978401671 a001 5702887/843*10749957122^(19/24) 5912858978401671 a001 5702887/843*4106118243^(19/23) 5912858978401671 a001 5702887/843*1568397607^(19/22) 5912858978401671 a001 5702887/843*599074578^(19/21) 5912858978401671 a001 5702887/843*228826127^(19/20) 5912858978401673 a001 516002918640/281*7881196^(4/11) 5912858978401676 a001 2504730781961/843*7881196^(1/3) 5912858978401682 a001 6557470319842/843*7881196^(3/11) 5912858978401696 a001 267914296/843*20633239^(6/7) 5912858978401697 a001 233802911/281*20633239^(4/5) 5912858978401698 a001 2971215073/843*20633239^(5/7) 5912858978401699 a001 20365011074/843*20633239^(3/5) 5912858978401700 a001 10983760033/281*20633239^(4/7) 5912858978401702 a001 365435296162/843*20633239^(3/7) 5912858978401702 a001 4976784/281*141422324^(12/13) 5912858978401702 a001 591286729879/843*20633239^(2/5) 5912858978401702 a001 4976784/281*2537720636^(4/5) 5912858978401702 a001 4976784/281*45537549124^(12/17) 5912858978401702 a001 4976784/281*14662949395604^(4/7) 5912858978401702 a001 4976784/281*505019158607^(9/14) 5912858978401702 a001 4976784/281*192900153618^(2/3) 5912858978401702 a001 4976784/281*73681302247^(9/13) 5912858978401702 a001 4976784/281*10749957122^(3/4) 5912858978401702 a001 4976784/281*4106118243^(18/23) 5912858978401702 a001 4976784/281*1568397607^(9/11) 5912858978401702 a001 4976784/281*599074578^(6/7) 5912858978401702 a001 4976784/281*228826127^(9/10) 5912858978401703 a001 4976784/281*87403803^(18/19) 5912858978401704 a001 4052739537881/843*20633239^(2/7) 5912858978401707 a001 39088169/843*45537549124^(2/3) 5912858978401707 a001 39088169/843*10749957122^(17/24) 5912858978401707 a001 39088169/843*4106118243^(17/23) 5912858978401707 a001 39088169/843*1568397607^(17/22) 5912858978401707 a001 39088169/843*599074578^(17/21) 5912858978401707 a001 39088169/843*228826127^(17/20) 5912858978401707 a001 267914296/843*141422324^(10/13) 5912858978401707 a001 1134903170/843*141422324^(9/13) 5912858978401707 a001 1836311903/843*141422324^(2/3) 5912858978401708 a001 1602508992/281*141422324^(8/13) 5912858978401708 a001 20365011074/843*141422324^(7/13) 5912858978401708 a001 86267571272/843*141422324^(6/13) 5912858978401708 a001 365435296162/843*141422324^(5/13) 5912858978401708 a001 34111385/281*23725150497407^(1/2) 5912858978401708 a001 34111385/281*505019158607^(4/7) 5912858978401708 a001 34111385/281*73681302247^(8/13) 5912858978401708 a001 34111385/281*10749957122^(2/3) 5912858978401708 a001 34111385/281*4106118243^(16/23) 5912858978401708 a001 34111385/281*1568397607^(8/11) 5912858978401708 a001 34111385/281*599074578^(16/21) 5912858978401708 a001 956722026041/843*141422324^(1/3) 5912858978401708 a001 516002918640/281*141422324^(4/13) 5912858978401708 a001 39088169/843*87403803^(17/19) 5912858978401708 a001 6557470319842/843*141422324^(3/13) 5912858978401708 a001 34111385/281*228826127^(4/5) 5912858978401708 a001 267914296/843*2537720636^(2/3) 5912858978401708 a001 267914296/843*45537549124^(10/17) 5912858978401708 a001 267914296/843*312119004989^(6/11) 5912858978401708 a001 267914296/843*14662949395604^(10/21) 5912858978401708 a001 267914296/843*192900153618^(5/9) 5912858978401708 a001 267914296/843*28143753123^(3/5) 5912858978401708 a001 267914296/843*10749957122^(5/8) 5912858978401708 a001 267914296/843*4106118243^(15/23) 5912858978401708 a001 267914296/843*1568397607^(15/22) 5912858978401708 a001 267914296/843*599074578^(5/7) 5912858978401708 a001 233802911/281*17393796001^(4/7) 5912858978401708 a001 233802911/281*14662949395604^(4/9) 5912858978401708 a001 233802911/281*505019158607^(1/2) 5912858978401708 a001 233802911/281*73681302247^(7/13) 5912858978401708 a001 233802911/281*10749957122^(7/12) 5912858978401708 a001 233802911/281*4106118243^(14/23) 5912858978401708 a001 233802911/281*1568397607^(7/11) 5912858978401708 a001 1602508992/281*2537720636^(8/15) 5912858978401708 a001 20365011074/843*2537720636^(7/15) 5912858978401708 a001 10983760033/281*2537720636^(4/9) 5912858978401708 a001 2971215073/843*2537720636^(5/9) 5912858978401708 a001 86267571272/843*2537720636^(2/5) 5912858978401708 a001 1836311903/843*73681302247^(1/2) 5912858978401708 a001 1836311903/843*10749957122^(13/24) 5912858978401708 a001 365435296162/843*2537720636^(1/3) 5912858978401708 a001 516002918640/281*2537720636^(4/15) 5912858978401708 a001 4052739537881/843*2537720636^(2/9) 5912858978401708 a001 6557470319842/843*2537720636^(1/5) 5912858978401708 a001 1836311903/843*4106118243^(13/23) 5912858978401708 a001 1602508992/281*45537549124^(8/17) 5912858978401708 a001 1602508992/281*14662949395604^(8/21) 5912858978401708 a001 1602508992/281*192900153618^(4/9) 5912858978401708 a001 1602508992/281*73681302247^(6/13) 5912858978401708 a001 1602508992/281*10749957122^(1/2) 5912858978401708 a001 12586269025/843*312119004989^(2/5) 5912858978401708 a001 591286729879/843*17393796001^(2/7) 5912858978401708 a001 20365011074/843*17393796001^(3/7) 5912858978401708 a001 86267571272/843*45537549124^(6/17) 5912858978401708 a001 10983760033/281*23725150497407^(5/16) 5912858978401708 a001 10983760033/281*505019158607^(5/14) 5912858978401708 a001 139583862445/843*45537549124^(1/3) 5912858978401708 a001 365435296162/843*45537549124^(5/17) 5912858978401708 a001 516002918640/281*45537549124^(4/17) 5912858978401708 a001 10983760033/281*73681302247^(5/13) 5912858978401708 a001 6557470319842/843*45537549124^(3/17) 5912858978401708 a001 86267571272/843*14662949395604^(2/7) 5912858978401708 a001 86267571272/843*192900153618^(1/3) 5912858978401708 a001 267913919*23725150497407^(1/4) 5912858978401708 a001 2504730781961/843*312119004989^(1/5) 5912858978401708 a001 365435296162/843*312119004989^(3/11) 5912858978401708 a001 3536736619241/281*23725150497407^(1/8) 5912858978401708 a001 3536736619241/281*505019158607^(1/7) 5912858978401708 a001 516002918640/281*192900153618^(2/9) 5912858978401708 a001 365435296162/843*192900153618^(5/18) 5912858978401708 a001 3536736619241/281*73681302247^(2/13) 5912858978401708 a001 516002918640/281*73681302247^(3/13) 5912858978401708 a001 956722026041/843*73681302247^(1/4) 5912858978401708 a001 267913919*73681302247^(4/13) 5912858978401708 a001 53316291173/843*817138163596^(1/3) 5912858978401708 a001 4052739537881/843*28143753123^(1/5) 5912858978401708 a001 20365011074/843*45537549124^(7/17) 5912858978401708 a001 10983760033/281*28143753123^(2/5) 5912858978401708 a001 365435296162/843*28143753123^(3/10) 5912858978401708 a001 20365011074/843*14662949395604^(1/3) 5912858978401708 a001 20365011074/843*192900153618^(7/18) 5912858978401708 a001 3536736619241/281*10749957122^(1/6) 5912858978401708 a001 6557470319842/843*10749957122^(3/16) 5912858978401708 a001 4052739537881/843*10749957122^(5/24) 5912858978401708 a001 516002918640/281*10749957122^(1/4) 5912858978401708 a001 591286729879/843*10749957122^(7/24) 5912858978401708 a001 12586269025/843*10749957122^(11/24) 5912858978401708 a001 365435296162/843*10749957122^(5/16) 5912858978401708 a001 267913919*10749957122^(1/3) 5912858978401708 a001 86267571272/843*10749957122^(3/8) 5912858978401708 a001 10983760033/281*10749957122^(5/12) 5912858978401708 a001 20365011074/843*10749957122^(7/16) 5912858978401708 a001 3536736619241/281*4106118243^(4/23) 5912858978401708 a001 4052739537881/843*4106118243^(5/23) 5912858978401708 a001 516002918640/281*4106118243^(6/23) 5912858978401708 a001 591286729879/843*4106118243^(7/23) 5912858978401708 a001 267913919*4106118243^(8/23) 5912858978401708 a001 1602508992/281*4106118243^(12/23) 5912858978401708 a001 2971215073/843*312119004989^(5/11) 5912858978401708 a001 2971215073/843*3461452808002^(5/12) 5912858978401708 a001 86267571272/843*4106118243^(9/23) 5912858978401708 a001 2971215073/843*28143753123^(1/2) 5912858978401708 a001 10983760033/281*4106118243^(10/23) 5912858978401708 a001 12586269025/843*4106118243^(11/23) 5912858978401708 a001 7778742049/843*4106118243^(1/2) 5912858978401708 a001 1134903170/843*2537720636^(3/5) 5912858978401708 a001 3536736619241/281*1568397607^(2/11) 5912858978401708 a001 4052739537881/843*1568397607^(5/22) 5912858978401708 a001 2504730781961/843*1568397607^(1/4) 5912858978401708 a001 516002918640/281*1568397607^(3/11) 5912858978401708 a001 591286729879/843*1568397607^(7/22) 5912858978401708 a001 267913919*1568397607^(4/11) 5912858978401708 a001 1134903170/843*45537549124^(9/17) 5912858978401708 a001 1134903170/843*817138163596^(9/19) 5912858978401708 a001 1134903170/843*14662949395604^(3/7) 5912858978401708 a001 1134903170/843*192900153618^(1/2) 5912858978401708 a001 1134903170/843*10749957122^(9/16) 5912858978401708 a001 86267571272/843*1568397607^(9/22) 5912858978401708 a001 1836311903/843*1568397607^(13/22) 5912858978401708 a001 10983760033/281*1568397607^(5/11) 5912858978401708 a001 12586269025/843*1568397607^(1/2) 5912858978401708 a001 1602508992/281*1568397607^(6/11) 5912858978401708 a001 3536736619241/281*599074578^(4/21) 5912858978401708 a001 6557470319842/843*599074578^(3/14) 5912858978401708 a001 4052739537881/843*599074578^(5/21) 5912858978401708 a001 516002918640/281*599074578^(2/7) 5912858978401708 a001 591286729879/843*599074578^(1/3) 5912858978401708 a001 365435296162/843*599074578^(5/14) 5912858978401708 a001 267913919*599074578^(8/21) 5912858978401708 a001 433494437/843*1322157322203^(1/2) 5912858978401708 a001 86267571272/843*599074578^(3/7) 5912858978401708 a001 10983760033/281*599074578^(10/21) 5912858978401708 a001 20365011074/843*599074578^(1/2) 5912858978401708 a001 233802911/281*599074578^(2/3) 5912858978401708 a001 12586269025/843*599074578^(11/21) 5912858978401708 a001 1602508992/281*599074578^(4/7) 5912858978401708 a001 1836311903/843*599074578^(13/21) 5912858978401708 a001 1134903170/843*599074578^(9/14) 5912858978401708 a001 3536736619241/281*228826127^(1/5) 5912858978401708 a001 4052739537881/843*228826127^(1/4) 5912858978401708 a001 516002918640/281*228826127^(3/10) 5912858978401708 a001 591286729879/843*228826127^(7/20) 5912858978401708 a001 365435296162/843*228826127^(3/8) 5912858978401708 a001 165580141/843*9062201101803^(1/2) 5912858978401708 a001 267913919*228826127^(2/5) 5912858978401708 a001 63245986/843*141422324^(11/13) 5912858978401708 a001 86267571272/843*228826127^(9/20) 5912858978401708 a001 10983760033/281*228826127^(1/2) 5912858978401708 a001 12586269025/843*228826127^(11/20) 5912858978401708 a001 1602508992/281*228826127^(3/5) 5912858978401708 a001 267914296/843*228826127^(3/4) 5912858978401708 a001 2971215073/843*228826127^(5/8) 5912858978401708 a001 1836311903/843*228826127^(13/20) 5912858978401708 a001 233802911/281*228826127^(7/10) 5912858978401708 a001 3536736619241/281*87403803^(4/19) 5912858978401708 a001 4052739537881/843*87403803^(5/19) 5912858978401708 a001 516002918640/281*87403803^(6/19) 5912858978401708 a001 591286729879/843*87403803^(7/19) 5912858978401708 a001 63245986/843*2537720636^(11/15) 5912858978401708 a001 63245986/843*45537549124^(11/17) 5912858978401708 a001 63245986/843*312119004989^(3/5) 5912858978401708 a001 63245986/843*817138163596^(11/19) 5912858978401708 a001 63245986/843*14662949395604^(11/21) 5912858978401708 a001 63245986/843*192900153618^(11/18) 5912858978401708 a001 63245986/843*10749957122^(11/16) 5912858978401708 a001 63245986/843*1568397607^(3/4) 5912858978401708 a001 63245986/843*599074578^(11/14) 5912858978401708 a001 267913919*87403803^(8/19) 5912858978401708 a001 86267571272/843*87403803^(9/19) 5912858978401708 a001 53316291173/843*87403803^(1/2) 5912858978401708 a001 10983760033/281*87403803^(10/19) 5912858978401708 a001 12586269025/843*87403803^(11/19) 5912858978401708 a001 1602508992/281*87403803^(12/19) 5912858978401708 a001 1836311903/843*87403803^(13/19) 5912858978401708 a001 34111385/281*87403803^(16/19) 5912858978401708 a001 233802911/281*87403803^(14/19) 5912858978401708 a001 267914296/843*87403803^(15/19) 5912858978401709 a001 3536736619241/281*33385282^(2/9) 5912858978401709 a001 6557470319842/843*33385282^(1/4) 5912858978401709 a001 4052739537881/843*33385282^(5/18) 5912858978401709 a001 516002918640/281*33385282^(1/3) 5912858978401710 a001 24157817/843*2537720636^(7/9) 5912858978401710 a001 24157817/843*17393796001^(5/7) 5912858978401710 a001 24157817/843*312119004989^(7/11) 5912858978401710 a001 24157817/843*14662949395604^(5/9) 5912858978401710 a001 24157817/843*505019158607^(5/8) 5912858978401710 a001 24157817/843*28143753123^(7/10) 5912858978401710 a001 24157817/843*599074578^(5/6) 5912858978401710 a001 591286729879/843*33385282^(7/18) 5912858978401710 a001 24157817/843*228826127^(7/8) 5912858978401710 a001 365435296162/843*33385282^(5/12) 5912858978401710 a001 267913919*33385282^(4/9) 5912858978401710 a001 86267571272/843*33385282^(1/2) 5912858978401711 a001 10983760033/281*33385282^(5/9) 5912858978401711 a001 20365011074/843*33385282^(7/12) 5912858978401711 a001 12586269025/843*33385282^(11/18) 5912858978401711 a001 1602508992/281*33385282^(2/3) 5912858978401712 a001 1836311903/843*33385282^(13/18) 5912858978401712 a001 1134903170/843*33385282^(3/4) 5912858978401712 a001 233802911/281*33385282^(7/9) 5912858978401712 a001 39088169/843*33385282^(17/18) 5912858978401712 a001 267914296/843*33385282^(5/6) 5912858978401712 a001 34111385/281*33385282^(8/9) 5912858978401713 a001 63245986/843*33385282^(11/12) 5912858978401716 a001 3536736619241/281*12752043^(4/17) 5912858978401718 a001 4052739537881/843*12752043^(5/17) 5912858978401721 a001 516002918640/281*12752043^(6/17) 5912858978401723 a001 591286729879/843*12752043^(7/17) 5912858978401725 a001 267913919*12752043^(8/17) 5912858978401726 a001 139583862445/843*12752043^(1/2) 5912858978401727 a001 86267571272/843*12752043^(9/17) 5912858978401729 a001 10983760033/281*12752043^(10/17) 5912858978401731 a001 12586269025/843*12752043^(11/17) 5912858978401733 a001 1602508992/281*12752043^(12/17) 5912858978401735 a001 1836311903/843*12752043^(13/17) 5912858978401738 a001 233802911/281*12752043^(14/17) 5912858978401740 a001 267914296/843*12752043^(15/17) 5912858978401742 a001 34111385/281*12752043^(16/17) 5912858978401770 a001 3536736619241/281*4870847^(1/4) 5912858978401786 a001 4052739537881/843*4870847^(5/16) 5912858978401801 a001 516002918640/281*4870847^(3/8) 5912858978401803 a001 3524578/843*2537720636^(13/15) 5912858978401803 a001 3524578/843*45537549124^(13/17) 5912858978401803 a001 3524578/843*14662949395604^(13/21) 5912858978401803 a001 3524578/843*192900153618^(13/18) 5912858978401803 a001 3524578/843*73681302247^(3/4) 5912858978401803 a001 3524578/843*10749957122^(13/16) 5912858978401803 a001 3524578/843*599074578^(13/14) 5912858978401817 a001 591286729879/843*4870847^(7/16) 5912858978401832 a001 267913919*4870847^(1/2) 5912858978401848 a001 86267571272/843*4870847^(9/16) 5912858978401863 a001 10983760033/281*4870847^(5/8) 5912858978401879 a001 12586269025/843*4870847^(11/16) 5912858978401895 a001 1602508992/281*4870847^(3/4) 5912858978401910 a001 1836311903/843*4870847^(13/16) 5912858978401926 a001 233802911/281*4870847^(7/8) 5912858978401941 a001 267914296/843*4870847^(15/16) 5912858978402163 a001 3536736619241/281*1860498^(4/15) 5912858978402220 a001 6557470319842/843*1860498^(3/10) 5912858978402277 a001 4052739537881/843*1860498^(1/3) 5912858978402391 a001 516002918640/281*1860498^(2/5) 5912858978402505 a001 591286729879/843*1860498^(7/15) 5912858978402562 a001 365435296162/843*1860498^(1/2) 5912858978402619 a001 267913919*1860498^(8/15) 5912858978402733 a001 86267571272/843*1860498^(3/5) 5912858978402846 a001 10983760033/281*1860498^(2/3) 5912858978402903 a001 20365011074/843*1860498^(7/10) 5912858978402960 a001 12586269025/843*1860498^(11/15) 5912858978403074 a001 1602508992/281*1860498^(4/5) 5912858978403131 a001 2971215073/843*1860498^(5/6) 5912858978403188 a001 1836311903/843*1860498^(13/15) 5912858978403245 a001 1134903170/843*1860498^(9/10) 5912858978403302 a001 233802911/281*1860498^(14/15) 5912858978405053 a001 3536736619241/281*710647^(2/7) 5912858978405889 a001 4052739537881/843*710647^(5/14) 5912858978406725 a001 516002918640/281*710647^(3/7) 5912858978407562 a001 591286729879/843*710647^(1/2) 5912858978408398 a001 267913919*710647^(4/7) 5912858978409234 a001 86267571272/843*710647^(9/14) 5912858978410071 a001 10983760033/281*710647^(5/7) 5912858978410489 a001 20365011074/843*710647^(3/4) 5912858978410907 a001 12586269025/843*710647^(11/14) 5912858978411743 a001 1602508992/281*710647^(6/7) 5912858978412580 a001 1836311903/843*710647^(13/14) 5912858978426400 a001 3536736619241/281*271443^(4/13) 5912858978432360 a001 196418/843*45537549124^(15/17) 5912858978432360 a001 196418/843*312119004989^(9/11) 5912858978432360 a001 196418/843*14662949395604^(5/7) 5912858978432360 a001 196418/843*192900153618^(5/6) 5912858978432360 a001 196418/843*28143753123^(9/10) 5912858978432360 a001 196418/843*10749957122^(15/16) 5912858978432573 a001 4052739537881/843*271443^(5/13) 5912858978438746 a001 516002918640/281*271443^(6/13) 5912858978441832 a001 956722026041/843*271443^(1/2) 5912858978444919 a001 591286729879/843*271443^(7/13) 5912858978451092 a001 267913919*271443^(8/13) 5912858978457265 a001 86267571272/843*271443^(9/13) 5912858978463438 a001 10983760033/281*271443^(10/13) 5912858978469611 a001 12586269025/843*271443^(11/13) 5912858978475784 a001 1602508992/281*271443^(12/13) 5912858978585053 a001 3536736619241/281*103682^(1/3) 5912858978607971 a001 6557470319842/843*103682^(3/8) 5912858978630889 a001 4052739537881/843*103682^(5/12) 5912858978653807 a001 2504730781961/843*103682^(11/24) 5912858978676725 a001 516002918640/281*103682^(1/2) 5912858978699644 a001 956722026041/843*103682^(13/24) 5912858978722562 a001 591286729879/843*103682^(7/12) 5912858978745480 a001 365435296162/843*103682^(5/8) 5912858978768398 a001 267913919*103682^(2/3) 5912858978791316 a001 139583862445/843*103682^(17/24) 5912858978814234 a001 86267571272/843*103682^(3/4) 5912858978837153 a001 53316291173/843*103682^(19/24) 5912858978860071 a001 10983760033/281*103682^(5/6) 5912858978882989 a001 20365011074/843*103682^(7/8) 5912858978905907 a001 12586269025/843*103682^(11/12) 5912858978928825 a001 7778742049/843*103682^(23/24) 5912858979772617 a001 3536736619241/281*39603^(4/11) 5912858979841720 a001 28657/843*14662949395604^(7/9) 5912858979841720 a001 28657/843*505019158607^(7/8) 5912858979943980 a001 6557470319842/843*39603^(9/22) 5912858980115344 a001 4052739537881/843*39603^(5/11) 5912858980261932 m001 Conway*(cos(1/12*Pi)+FeigenbaumMu) 5912858980286708 a001 2504730781961/843*39603^(1/2) 5912858980458071 a001 516002918640/281*39603^(6/11) 5912858980629435 a001 956722026041/843*39603^(13/22) 5912858980800799 a001 591286729879/843*39603^(7/11) 5912858980972162 a001 365435296162/843*39603^(15/22) 5912858981143526 a001 267913919*39603^(8/11) 5912858981314890 a001 139583862445/843*39603^(17/22) 5912858981486253 a001 86267571272/843*39603^(9/11) 5912858981657617 a001 53316291173/843*39603^(19/22) 5912858981828980 a001 10983760033/281*39603^(10/11) 5912858982000344 a001 20365011074/843*39603^(21/22) 5912858987979304 m004 4-E^(Sqrt[5]*Pi)+500*Pi*Sin[Sqrt[5]*Pi] 5912858988271696 a001 10946/843*817138163596^(17/19) 5912858988271696 a001 10946/843*14662949395604^(17/21) 5912858988271696 a001 10946/843*192900153618^(17/18) 5912858988737693 a001 3536736619241/281*15127^(2/5) 5912858990029692 a001 6557470319842/843*15127^(9/20) 5912858991321690 a001 4052739537881/843*15127^(1/2) 5912858992613688 a001 2504730781961/843*15127^(11/20) 5912858993133321 m001 1/Zeta(3)^2/ArtinRank2/exp(sin(Pi/12))^2 5912858993905686 a001 516002918640/281*15127^(3/5) 5912858995197685 a001 956722026041/843*15127^(13/20) 5912858996489683 a001 591286729879/843*15127^(7/10) 5912858996722362 m001 (Sierpinski-Thue)/(CopelandErdos+FeigenbaumD) 5912858997781681 a001 365435296162/843*15127^(3/4) 5912858999073679 a001 267913919*15127^(4/5) 5912859000365677 a001 139583862445/843*15127^(17/20) 5912859001657676 a001 86267571272/843*15127^(9/10) 5912859002949674 a001 53316291173/843*15127^(19/20) 5912859004229964 a001 1333349705453857/2255 5912859011727085 r005 Re(z^2+c),c=1/4+21/37*I,n=62 5912859022398543 r009 Im(z^3+c),c=-37/78+33/56*I,n=45 5912859025459257 p004 log(26681/14771) 5912859042915430 m001 (FeigenbaumKappa-RenyiParking)^GAMMA(11/12) 5912859057117152 a001 3536736619241/281*5778^(4/9) 5912859066956582 a001 6557470319842/843*5778^(1/2) 5912859074383687 p001 sum(1/(117*n+17)/(25^n),n=0..infinity) 5912859075179157 r005 Re(z^2+c),c=-5/42+12/17*I,n=35 5912859076796013 a001 4052739537881/843*5778^(5/9) 5912859086635444 a001 2504730781961/843*5778^(11/18) 5912859096474874 a001 516002918640/281*5778^(2/3) 5912859096792233 r002 35th iterates of z^2 + 5912859103802557 r005 Re(z^2+c),c=-29/22+5/86*I,n=44 5912859106314305 a001 956722026041/843*5778^(13/18) 5912859116153736 a001 591286729879/843*5778^(7/9) 5912859125993166 a001 365435296162/843*5778^(5/6) 5912859135832597 a001 267913919*5778^(8/9) 5912859135944192 m001 Ei(1,1)-gamma(3)+Artin 5912859138723077 m001 (ThueMorse+ZetaP(2))/(Zeta(1/2)-gamma(3)) 5912859139534150 r005 Im(z^2+c),c=13/36+5/44*I,n=27 5912859145672028 a001 139583862445/843*5778^(17/18) 5912859154128341 r009 Im(z^3+c),c=-21/122+34/47*I,n=52 5912859155499756 a001 1527882805781137/2584 5912859163169901 m005 (1/2*Pi+3/10)/(5/11*5^(1/2)-7/10) 5912859166191784 a007 Real Root Of -238*x^4+697*x^3+628*x^2+936*x-888 5912859171113588 r005 Re(z^2+c),c=-43/60+7/44*I,n=60 5912859172339843 m004 -9/2-Cos[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 5912859178283865 m001 (sin(1/12*Pi)+Weierstrass)/(Zeta(1/2)+Ei(1,1)) 5912859201440723 a007 Real Root Of -79*x^4+62*x^3+904*x^2+874*x-836 5912859207929288 a001 228826127/1597*89^(6/19) 5912859215370378 a007 Real Root Of 549*x^4-944*x^3-966*x^2-479*x+749 5912859232265661 r002 15th iterates of z^2 + 5912859256959823 r009 Re(z^3+c),c=-25/42+5/11*I,n=48 5912859272991934 r005 Re(z^2+c),c=17/82+26/51*I,n=4 5912859275557254 a007 Real Root Of -684*x^4+599*x^3+637*x^2+841*x+482 5912859293399051 g001 Psi(1/2,101/112) 5912859297859364 l006 ln(21/7765) 5912859298821536 p001 sum((-1)^n/(109*n+26)/n/(125^n),n=0..infinity) 5912859313661973 l006 ln(2479/2630) 5912859314005536 a007 Real Root Of -817*x^4+798*x^3+431*x^2+338*x+314 5912859320775511 r002 12th iterates of z^2 + 5912859345369491 a007 Real Root Of 40*x^4-976*x^3+899*x^2+739*x-84 5912859347127309 r008 a(0)=6,K{-n^6,-38+14*n^3-11*n^2+47*n} 5912859349916785 a003 sin(Pi*18/65)*sin(Pi*29/103) 5912859356269372 m001 Pi*(MertensB3-ln(gamma)) 5912859379450033 m001 1/Riemann2ndZero^2/CopelandErdos/ln(Salem) 5912859388283117 m001 (Catalan+FeigenbaumKappa)/(-Thue+Weierstrass) 5912859394098295 a007 Real Root Of 845*x^4+628*x^3+208*x^2-595*x-398 5912859403147110 s002 sum(A119638[n]/(exp(n)+1),n=1..infinity) 5912859406126998 a007 Real Root Of -121*x^4-757*x^3-237*x^2+55*x+23 5912859417176483 a001 1/3*29^(8/47) 5912859430899467 r005 Re(z^2+c),c=-5/102+3/23*I,n=11 5912859434006122 a007 Real Root Of -29*x^4-209*x^3-87*x^2+676*x-719 5912859442081055 a001 1597/843*3461452808002^(11/12) 5912859458365893 a007 Real Root Of -22*x^4-148*x^3-27*x^2+345*x-720 5912859465028291 p004 log(30803/17053) 5912859490486367 m001 (cos(1/5*Pi)+ln(gamma))/(FeigenbaumD+Niven) 5912859491475939 a003 cos(Pi*30/79)-sin(Pi*25/61) 5912859501667814 a001 321/8*28657^(18/37) 5912859516517541 m001 (Pi^(1/2)-Psi(1,1/3))/(Cahen+LandauRamanujan) 5912859517059135 a007 Real Root Of -798*x^4+303*x^3-655*x^2-117*x+320 5912859527101657 l006 ln(5230/9447) 5912859551069161 m001 (ln(Pi)-BesselI(1,1))/(Tribonacci-Thue) 5912859561990226 a001 312119004989/8*32951280099^(7/9) 5912859561990226 a001 5374978561/4*2504730781961^(7/9) 5912859561990226 a001 9062201101803/8*433494437^(7/9) 5912859564533120 b008 E^ArcCsch[1]*Tanh[1/4] 5912859573253262 a007 Real Root Of 784*x^4-236*x^3-171*x^2-567*x+348 5912859584981059 m005 (1/2*exp(1)-1/12)/(3/5*Pi+3/11) 5912859585365822 a001 3536736619241/281*2207^(1/2) 5912859599331751 m001 (MinimumGamma-Trott2nd)/(Cahen+Grothendieck) 5912859603958742 a001 599074578/4181*89^(6/19) 5912859607031528 r009 Re(z^3+c),c=-41/70+27/49*I,n=52 5912859640237846 a001 24476/3*225851433717^(22/23) 5912859647119001 r002 5th iterates of z^2 + 5912859650107927 a001 969323029/3*3524578^(22/23) 5912859661236341 a001 6557470319842/843*2207^(9/16) 5912859661738665 a001 1568397607/10946*89^(6/19) 5912859670168642 a001 4106118243/28657*89^(6/19) 5912859671398559 a001 10749957122/75025*89^(6/19) 5912859671578001 a001 28143753123/196418*89^(6/19) 5912859671604182 a001 73681302247/514229*89^(6/19) 5912859671608001 a001 192900153618/1346269*89^(6/19) 5912859671608559 a001 505019158607/3524578*89^(6/19) 5912859671608640 a001 1322157322203/9227465*89^(6/19) 5912859671608652 a001 3461452808002/24157817*89^(6/19) 5912859671608654 a001 9062201101803/63245986*89^(6/19) 5912859671608654 a001 23725150497407/165580141*89^(6/19) 5912859671608654 a001 14662949395604/102334155*89^(6/19) 5912859671608655 a001 5600748293801/39088169*89^(6/19) 5912859671608659 a001 2139295485799/14930352*89^(6/19) 5912859671608690 a001 817138163596/5702887*89^(6/19) 5912859671608903 a001 312119004989/2178309*89^(6/19) 5912859671610362 a001 119218851371/832040*89^(6/19) 5912859671620362 a001 45537549124/317811*89^(6/19) 5912859671688903 a001 17393796001/121393*89^(6/19) 5912859672158690 a001 6643838879/46368*89^(6/19) 5912859675378654 a001 2537720636/17711*89^(6/19) 5912859676046369 a003 cos(Pi*11/102)*sin(Pi*11/51) 5912859689795518 m006 (3*exp(Pi)+3/5)/(1/3*ln(Pi)-1/2) 5912859697448621 a001 969323029/6765*89^(6/19) 5912859701030273 b008 52+11*Sech[1] 5912859721853834 m002 Pi+6*Pi^4+Cosh[Pi]/Pi 5912859737106861 a001 4052739537881/843*2207^(5/8) 5912859755610275 m001 (5^(1/2)-Chi(1))/(BesselI(0,1)+ln(3)) 5912859770150206 m005 (1/3*3^(1/2)-2/3)/(7/9*gamma-3/5) 5912859782316119 a007 Real Root Of 994*x^4+371*x^3-800*x^2-723*x+509 5912859783580975 r009 Re(z^3+c),c=-19/32+8/31*I,n=33 5912859786732427 m001 1/Sierpinski^2/Paris/ln(GAMMA(19/24))^2 5912859787579896 r009 Re(z^3+c),c=-73/122+10/19*I,n=37 5912859800837651 l006 ln(3867/6985) 5912859801860261 r009 Re(z^3+c),c=-39/70+25/54*I,n=49 5912859809806359 r005 Re(z^2+c),c=-18/25+14/55*I,n=22 5912859810805322 m005 (1/2*Zeta(3)+1/5)/(6/11*2^(1/2)+7/12) 5912859812675025 a007 Real Root Of 464*x^4-982*x^3-337*x^2-631*x-515 5912859812977382 a001 2504730781961/843*2207^(11/16) 5912859815247946 m005 (4*Pi+3/4)/(3*Catalan-5) 5912859815756305 s002 sum(A225168[n]/(n!^3),n=1..infinity) 5912859817056910 m001 1/LaplaceLimit/HardHexagonsEntropy^2/ln(Pi)^2 5912859823482350 m001 (-Kac+Lehmer)/(ln(2)/ln(10)+sin(1/12*Pi)) 5912859829365665 m001 (HeathBrownMoroz+Kac)/(Ei(1)-GaussAGM) 5912859840857368 m001 1/exp(GAMMA(1/3))^2/FeigenbaumKappa/sin(Pi/5) 5912859847512020 r005 Re(z^2+c),c=-5/8+8/21*I,n=27 5912859848718431 a001 370248451/2584*89^(6/19) 5912859860521422 m001 (5^(1/2)-Psi(2,1/3))/(-ArtinRank2+Kolakoski) 5912859866881672 r005 Re(z^2+c),c=-69/98+5/22*I,n=18 5912859867736755 r005 Re(z^2+c),c=-5/102+3/23*I,n=9 5912859888847903 a001 516002918640/281*2207^(3/4) 5912859893495029 r002 2th iterates of z^2 + 5912859910058658 a007 Real Root Of 350*x^4+85*x^3+900*x^2-352*x-548 5912859929038943 m005 (1/2*exp(1)+1)/(5/7*2^(1/2)-5) 5912859934337053 m005 (1/3*Catalan-1/8)/(9/10*Pi+2/9) 5912859937772731 r002 50th iterates of z^2 + 5912859950735078 r009 Im(z^3+c),c=-1/62+35/46*I,n=57 5912859964718426 a001 956722026041/843*2207^(13/16) 5912859970423734 m001 (-Magata+ZetaP(4))/(Psi(2,1/3)-Zeta(3)) 5912860007840292 m001 (exp(1/exp(1))+Cahen)/(FransenRobinson+Sarnak) 5912860029745406 r005 Re(z^2+c),c=-91/118+13/33*I,n=5 5912860030573054 a007 Real Root Of -538*x^4+861*x^3-774*x^2+500*x+810 5912860040588949 a001 591286729879/843*2207^(7/8) 5912860045957952 a003 cos(1/18*Pi)-3^(1/2)-cos(5/27*Pi)+cos(1/24*Pi) 5912860047674946 m005 (1/2*Pi-7/9)/(7/10*Catalan+7/10) 5912860048287816 m002 E^Pi/2+(Pi^6*Log[Pi])/E^Pi 5912860083893901 a007 Real Root Of -351*x^4+983*x^3-286*x^2+610*x-421 5912860088415222 m005 (1/2*Catalan+5/9)/(2/9*2^(1/2)-1/7) 5912860090799992 m001 1/LambertW(1)*exp(GAMMA(19/24))*Zeta(5) 5912860093389193 m002 -1+(5*Cosh[Pi])/Pi^4+Tanh[Pi] 5912860099969970 r002 26i'th iterates of 2*x/(1-x^2) of 5912860116459474 a001 365435296162/843*2207^(15/16) 5912860132031623 r005 Re(z^2+c),c=-9/14+70/207*I,n=60 5912860147638742 a007 Real Root Of -22*x^4+812*x^3-519*x^2+115*x+420 5912860159949398 a007 Real Root Of -363*x^4+570*x^3-625*x^2+633*x+755 5912860169605461 m001 GAMMA(7/12)*Magata+CareFree 5912860185542846 r002 17th iterates of z^2 + 5912860186913937 a007 Real Root Of 591*x^4+294*x^3+60*x^2-762*x-483 5912860192318541 a001 194533100327280/329 5912860201071751 r005 Re(z^2+c),c=-107/102+3/23*I,n=42 5912860201464947 r005 Re(z^2+c),c=4/25+28/43*I,n=18 5912860211374636 m001 (GAMMA(1/12)+GAMMA(1/24))^(1/2) 5912860213687367 a007 Real Root Of 503*x^4-674*x^3+586*x^2+150*x-317 5912860213808064 a007 Real Root Of -772*x^4+751*x^3+477*x^2-316*x-104 5912860243276719 m005 (1/2*5^(1/2)+6)/(4/5*3^(1/2)-2/11) 5912860261880506 a007 Real Root Of -280*x^4+713*x^3+537*x^2+105*x-363 5912860265656506 r005 Re(z^2+c),c=17/50+19/48*I,n=18 5912860290062442 r005 Re(z^2+c),c=-19/29+2/11*I,n=3 5912860293509365 m001 1/FeigenbaumDelta*exp(Artin)^2/BesselJ(0,1) 5912860301080509 m001 (gamma(3)+Rabbit)/(Sarnak-Tetranacci) 5912860307163060 r009 Re(z^3+c),c=-37/78+3/31*I,n=4 5912860311911897 a005 (1/sin(90/217*Pi))^1698 5912860327027774 m001 OneNinth^2*LandauRamanujan^2/ln(Pi) 5912860335499170 r002 35th iterates of z^2 + 5912860341397439 m001 (-GAMMA(13/24)+FeigenbaumC)/(5^(1/2)+1) 5912860347051691 a001 13/439204*47^(7/9) 5912860350166577 r005 Re(z^2+c),c=-29/56+22/37*I,n=57 5912860352543585 r009 Re(z^3+c),c=-1/46+39/50*I,n=27 5912860372578540 l006 ln(2504/4523) 5912860380321336 r005 Im(z^2+c),c=-13/58+38/59*I,n=41 5912860415173400 a007 Real Root Of -15*x^4-888*x^3-69*x^2-332*x+217 5912860419117954 h001 (1/3*exp(2)+1/3)/(5/8*exp(2)+1/9) 5912860434124623 a007 Real Root Of 294*x^4-956*x^3-857*x^2-636*x-310 5912860439271912 r002 7th iterates of z^2 + 5912860440091252 a001 29/4052739537881*4181^(9/17) 5912860444921793 a007 Real Root Of -505*x^4-973*x^3-963*x^2+857*x+704 5912860503532447 a007 Real Root Of -80*x^4-458*x^3+x^2-449*x+417 5912860506488595 g004 Re(GAMMA(127/60+I*31/15)) 5912860508220692 a007 Real Root Of -222*x^4+872*x^3-773*x^2+190*x+590 5912860515193688 m001 1/ln(PrimesInBinary)/MinimumGamma/GAMMA(1/4)^2 5912860541003377 m005 (5*exp(1)-2/5)/(3/5*exp(1)+3/5) 5912860553925345 a001 1/98209*21^(26/45) 5912860555971192 m001 Salem/exp(CareFree)*Zeta(7)^2 5912860575845926 a007 Real Root Of -137*x^4-750*x^3+437*x^2+355*x-763 5912860582051388 r005 Im(z^2+c),c=-55/114+33/56*I,n=63 5912860583996666 r009 Im(z^3+c),c=-67/126+37/61*I,n=25 5912860584588101 a003 cos(Pi*1/101)*cos(Pi*20/67) 5912860589265697 r005 Re(z^2+c),c=-107/102+3/23*I,n=50 5912860591159442 m005 (1/3*5^(1/2)-1/10)/(3/10*Pi-5/6) 5912860606042450 a007 Real Root Of -541*x^4+650*x^3+577*x^2+433*x-526 5912860612281192 m005 (1/2*Pi-4)/(1/3*Pi-7/11) 5912860628288729 a007 Real Root Of -602*x^4-37*x^3-962*x^2-956*x-163 5912860639794461 b008 10+9*CoshIntegral[Pi] 5912860646843059 a007 Real Root Of 853*x^4-528*x^3-866*x^2-672*x+705 5912860661786318 a001 199*(1/2*5^(1/2)+1/2)^24*3^(23/24) 5912860674552076 a001 610/39603*11^(23/41) 5912860691507208 m009 (Pi^2+1/3)/(4*Psi(1,2/3)+5) 5912860720610579 a007 Real Root Of 13*x^4+774*x^3+303*x^2-703*x+539 5912860752409458 m001 LambertW(1)/KhintchineHarmonic/ln(gamma) 5912860752409458 m001 LambertW(1)/ln(gamma)/KhinchinHarmonic 5912860753464022 a007 Real Root Of 612*x^4-648*x^3-123*x^2-753*x-611 5912860765246176 a007 Real Root Of 452*x^4-285*x^3-638*x^2-129*x+303 5912860783620642 a007 Real Root Of 961*x^4-881*x^3-954*x^2+276*x+235 5912860787820240 m005 (3*2^(1/2)-3/4)/(4*2^(1/2)+1/4) 5912860798181918 r005 Im(z^2+c),c=33/106+19/48*I,n=39 5912860807983813 m005 (1/2*gamma-5/6)/(6*2^(1/2)+8/11) 5912860810994511 h001 (2/5*exp(1)+7/12)/(2/7*exp(2)+5/7) 5912860839744689 m001 GlaisherKinkelin^2/exp(Cahen)/MinimumGamma 5912860839801485 m001 exp(Salem)^2/Lehmer/sqrt(3)^2 5912860869684603 a007 Real Root Of -333*x^4+942*x^3-309*x^2+559*x+674 5912860882499500 a007 Real Root Of -324*x^4+430*x^3-16*x^2+607*x+493 5912860883785983 a001 2/1597*21^(26/51) 5912860885537337 a001 141422324/987*89^(6/19) 5912860893331580 a007 Real Root Of 97*x^4-795*x^3+707*x^2-67*x-463 5912860950360158 a007 Real Root Of -362*x^4+974*x^3-845*x^2+49*x+570 5912860952687350 m001 1/GAMMA(3/4)^2*exp(GAMMA(23/24))/Pi 5912860954121258 h001 (5/11*exp(2)+10/11)/(11/12*exp(2)+4/9) 5912860979141472 l006 ln(3645/6584) 5912861004068329 m001 (LambertW(1)+GAMMA(2/3))/(Grothendieck+Porter) 5912861005909028 p003 LerchPhi(1/1024,3,56/47) 5912861008572605 m001 RenyiParking^LandauRamanujan/GAMMA(2/3) 5912861038852478 a007 Real Root Of -596*x^4-190*x^3-919*x^2+697*x+767 5912861044955497 a007 Real Root Of -615*x^4+880*x^3-654*x^2-282*x+319 5912861045441122 m001 ln(5)*Riemann2ndZero*ZetaP(3) 5912861078343278 m001 1/ln(ArtinRank2)^2/Champernowne/GAMMA(11/12) 5912861080589781 m001 1/exp(Tribonacci)/FeigenbaumD^2/GAMMA(11/24)^2 5912861093343811 m001 BesselI(1,1)/(cos(1/12*Pi)^Conway) 5912861115110181 k007 concat of cont frac of 5912861137273242 p001 sum(1/(347*n+170)/(64^n),n=0..infinity) 5912861157177753 m001 (sin(1)+BesselI(1,2))/exp(sqrt(2)) 5912861189269617 r002 3th iterates of z^2 + 5912861215648087 m006 (4/5*Pi+3/5)/(5/6/Pi+5) 5912861221122940 a007 Real Root Of 515*x^4-873*x^3+813*x^2+429*x-274 5912861230768444 a007 Real Root Of -260*x^4-3*x^3-828*x^2+579*x+663 5912861238090771 a007 Real Root Of 806*x^4+781*x^3+651*x^2-513*x-468 5912861239762189 m001 (Zeta(3)-ln(3))/(GAMMA(23/24)+Sarnak) 5912861273724823 p001 sum(1/(356*n+217)/(2^n),n=0..infinity) 5912861296490722 l006 ln(4786/8645) 5912861301694157 r005 Im(z^2+c),c=-7/20+14/23*I,n=60 5912861330097264 a001 4870847/5*55^(9/20) 5912861342201431 r005 Im(z^2+c),c=-21/46+33/49*I,n=3 5912861342368120 a007 Real Root Of -89*x^4-523*x^3+15*x^2-134*x-646 5912861367698901 m001 (CareFree+FeigenbaumKappa)/(Magata+ZetaP(4)) 5912861372885054 a007 Real Root Of -990*x^4+113*x^3+542*x^2-37*x-67 5912861377396138 m005 (11/28+1/4*5^(1/2))/(1+3/11*5^(1/2)) 5912861387165473 a007 Real Root Of -717*x^4+729*x^3-581*x^2-772*x-15 5912861388285230 a007 Real Root Of -18*x^4-27*x^3+619*x^2+735*x-875 5912861390633277 m005 (1/2*Zeta(3)+1/10)/(1/11*Pi+9/10) 5912861406531912 m001 (exp(1)+BesselK(1,1))/(-Paris+TwinPrimes) 5912861406541141 m001 1/cos(Pi/5)^2*ln(GAMMA(17/24))*cosh(1) 5912861436961362 m001 (-MadelungNaCl+Trott2nd)/(Chi(1)-GAMMA(5/6)) 5912861455792934 r009 Re(z^3+c),c=-7/74+40/57*I,n=12 5912861473078069 r002 8th iterates of z^2 + 5912861475700264 a007 Real Root Of -838*x^4-593*x^3-80*x^2+736*x+443 5912861476168424 m001 GAMMA(1/12)/exp(Catalan)*GAMMA(17/24) 5912861514963569 r009 Re(z^3+c),c=-11/64+40/59*I,n=15 5912861566001878 m001 (cos(1/5*Pi)+Zeta(1,-1))/(MertensB2+ZetaQ(2)) 5912861580114033 a007 Real Root Of 124*x^4-978*x^3+244*x^2-831*x-794 5912861583510972 m005 (1/2*Zeta(3)-6/11)/(4*5^(1/2)+5/11) 5912861586509145 m001 1/Tribonacci^2*FeigenbaumC^2*ln(GAMMA(1/12))^2 5912861595765167 a007 Real Root Of -143*x^4-676*x^3+981*x^2+4*x+774 5912861597512701 a007 Real Root Of 188*x^4-17*x^3+259*x^2-120*x-188 5912861606254006 m001 Pi/Psi(1,1/3)/(Catalan-3^(1/3)) 5912861655167313 m001 Pi/(exp(Pi)*ln(2)/ln(10)-(1+3^(1/2))^(1/2)) 5912861658797356 m001 (ZetaP(2)-ZetaP(3))^HardyLittlewoodC5 5912861696504132 r005 Re(z^2+c),c=-43/70+15/41*I,n=29 5912861699669855 b008 Pi+ArcCsch[ArcCoth[8]] 5912861707307876 m001 1/LambertW(1)*ln(CareFree)^2*sqrt(1+sqrt(3))^2 5912861723634799 a007 Real Root Of 557*x^4-835*x^3-103*x^2-102*x-265 5912861733824302 a007 Real Root Of 506*x^4-590*x^3+619*x^2-348*x-606 5912861738809407 m005 (1/3*2^(1/2)+3/5)/(4/9*5^(1/2)+9/11) 5912861748228581 s002 sum(A166332[n]/(n*pi^n-1),n=1..infinity) 5912861754587651 m001 TwinPrimes/Riemann1stZero^2*exp((3^(1/3)))^2 5912861770198299 r005 Im(z^2+c),c=5/56+31/53*I,n=15 5912861786562467 m005 (1/2*Catalan-8/9)/(1/10*3^(1/2)+5/9) 5912861791222747 m001 (FeigenbaumMu+RenyiParking)/(Zeta(3)-Bloch) 5912861805808078 r008 a(0)=6,K{-n^6,-49+27*n+38*n^2-4*n^3} 5912861821194200 p004 log(35839/19841) 5912861823865659 m001 Pi/(Psi(2,1/3)+BesselJ(0,1)+GAMMA(3/4)) 5912861823944111 a003 cos(Pi*1/33)/cos(Pi*29/65) 5912861827209788 b008 Pi+ArcSech[ArcCsch[8]] 5912861860404279 a007 Real Root Of -744*x^4-152*x^3+299*x^2+526*x+266 5912861879595321 r005 Re(z^2+c),c=-53/102+36/61*I,n=42 5912861922393127 m007 (-2/5*gamma-6/5*ln(2)+1/5*Pi+5)/(-gamma+1/2) 5912861935199387 m001 (-MadelungNaCl+PlouffeB)/(LambertW(1)-exp(1)) 5912861957137761 r005 Im(z^2+c),c=-1/11+51/59*I,n=23 5912861960670056 a001 1860498/89*514229^(21/22) 5912861965881790 m005 (1/2*gamma-5/8)/(5/11*exp(1)-2/3) 5912861974040600 a007 Real Root Of 766*x^4+443*x^3+337*x^2-697*x-532 5912861974724264 b008 E*(5/3+E^3) 5912862004910037 r008 a(0)=6,K{-n^6,60-30*n-4*n^2-15*n^3} 5912862023164770 r009 Re(z^3+c),c=-13/36+23/32*I,n=16 5912862023966863 m001 1/GAMMA(11/24)^2/exp(GAMMA(1/6))*gamma 5912862034646886 r005 Im(z^2+c),c=-1/86+37/56*I,n=7 5912862043571095 r002 19th iterates of z^2 + 5912862044213784 a001 144/11*6643838879^(1/15) 5912862048739443 h001 (-9*exp(5)+2)/(-4*exp(2)+7) 5912862053965129 m005 (4/5*2^(1/2)-3/4)/(2*Pi+1/6) 5912862067425664 r008 a(0)=6,K{-n^6,3+4*n^3-5*n^2} 5912862070338027 m005 (1/2*3^(1/2)+3/7)/(9/10*2^(1/2)+11/12) 5912862119086204 r009 Im(z^3+c),c=-21/110+23/32*I,n=39 5912862130502284 m001 BesselI(0,1)^ZetaQ(3)/(BesselI(0,1)^(5^(1/2))) 5912862137312736 a007 Real Root Of 739*x^4-989*x^3+583*x^2-70*x-540 5912862140331535 r009 Re(z^3+c),c=-1/90+24/35*I,n=48 5912862156507236 a001 610/843*14662949395604^(19/21) 5912862177823402 m001 Zeta(7)^2*ln(GAMMA(1/12))*cosh(1)^2 5912862182746235 a007 Real Root Of -155*x^4+524*x^3-226*x^2-633*x-168 5912862183047750 a007 Real Root Of -162*x^4+824*x^3+761*x^2+262*x+79 5912862198011171 r002 40th iterates of z^2 + 5912862200816422 m006 (5/6*Pi+1/2)/(4/Pi+4) 5912862233540975 m005 (1/2*Zeta(3)+2/9)/(3/5*3^(1/2)-9/10) 5912862250409412 m001 1/FeigenbaumC^2/Bloch*exp(sqrt(5)) 5912862260170162 m001 (Khinchin-LandauRamanujan)/(GAMMA(2/3)+Ei(1)) 5912862270476075 m001 (CareFree+Thue)/(Zeta(3)+3^(1/3)) 5912862286100148 h001 (1/10*exp(2)+7/8)/(3/11*exp(2)+5/7) 5912862291746267 r002 4th iterates of z^2 + 5912862296334412 a007 Real Root Of -918*x^4-27*x^3+583*x^2+528*x+215 5912862305338627 a001 19/36*34^(37/54) 5912862310283833 l006 ln(1141/2061) 5912862310563152 m009 (1/5*Psi(1,3/4)+2/5)/(1/10*Pi^2-5/6) 5912862355989935 a005 (1/cos(15/197*Pi))^1576 5912862360642707 a005 (1/sin(45/163*Pi))^117 5912862369897145 a007 Real Root Of -146*x^4-966*x^3-716*x^2-545*x+575 5912862391765405 m001 PlouffeB/(GAMMA(3/4)-BesselK(0,1)) 5912862447880711 m001 Ei(1,1)+cos(1)^ErdosBorwein 5912862455580549 a003 cos(Pi*14/37)+cos(Pi*46/107) 5912862456368025 r005 Re(z^2+c),c=-5/42+12/17*I,n=32 5912862476253083 m001 1/cosh(1)^2/Cahen^2*exp(log(1+sqrt(2)))^2 5912862494257589 a007 Real Root Of 845*x^4-839*x^3+614*x^2+207*x-369 5912862500068977 r005 Im(z^2+c),c=-7/6+12/197*I,n=5 5912862529925703 r009 Re(z^3+c),c=-51/86+22/45*I,n=40 5912862530565495 a007 Real Root Of 717*x^4-877*x^3+490*x^2+430*x-186 5912862546408994 a001 956722026041/322*322^(11/12) 5912862549777615 a007 Real Root Of -559*x^4+820*x^3-665*x^2-420*x+222 5912862551115238 r005 Re(z^2+c),c=-11/16+29/102*I,n=36 5912862551759496 m005 (2*exp(1)-5/6)/(5/6*2^(1/2)-2/5) 5912862553674132 r005 Im(z^2+c),c=-11/14+62/231*I,n=7 5912862558181595 m001 exp(RenyiParking)^2/Bloch*Riemann3rdZero^2 5912862576094454 r005 Re(z^2+c),c=7/114+15/38*I,n=16 5912862577809761 a007 Real Root Of -132*x^4-776*x^3+112*x^2+460*x-266 5912862579851756 a007 Real Root Of 226*x^4-235*x^3+941*x^2-803*x-880 5912862586989092 m001 (arctan(1/2)+Backhouse)/(Robbin+Sierpinski) 5912862598708731 r009 Re(z^3+c),c=-47/82+26/43*I,n=58 5912862610049802 a007 Real Root Of -395*x^4+876*x^3+821*x^2+166*x-518 5912862621343500 r009 Re(z^3+c),c=-41/70+27/49*I,n=55 5912862638683328 a007 Real Root Of 150*x^4-726*x^3-256*x^2-587*x-426 5912862675826379 m005 (1/3*3^(1/2)-2/9)/(4/9*gamma-6/7) 5912862739765954 m006 (3/5*Pi+2)/(1/2*exp(Pi)-5) 5912862742349762 r005 Im(z^2+c),c=-57/106+19/34*I,n=28 5912862751047694 m001 (-BesselI(1,1)+GaussKuzminWirsing)/(1-3^(1/3)) 5912862756123595 m005 (1/2*2^(1/2)+2/3)/(7/8*gamma-3/11) 5912862798397624 r005 Re(z^2+c),c=-25/34+7/99*I,n=54 5912862813372051 m001 arctan(1/2)^2*MinimumGamma/ln(sin(Pi/5)) 5912862815063635 r005 Im(z^2+c),c=-23/48+37/63*I,n=56 5912862820093625 m001 (Cahen-ErdosBorwein)/(GaussAGM+Kolakoski) 5912862826224769 a007 Real Root Of -971*x^4+211*x^3+779*x^2+840*x+47 5912862850577551 m009 (16*Catalan+2*Pi^2-1)/(5*Psi(1,1/3)+6) 5912862853377477 r005 Im(z^2+c),c=-5/6+10/201*I,n=3 5912862870407283 a007 Real Root Of 87*x^4+305*x^3+478*x^2-792*x-583 5912862880575759 p001 sum((-1)^n/(285*n+169)/(512^n),n=0..infinity) 5912862887088831 r005 Im(z^2+c),c=11/40+23/51*I,n=24 5912862888973727 a007 Real Root Of -682*x^4+903*x^3-272*x^2+612*x+727 5912862897520576 m001 (-Pi^(1/2)+KomornikLoreti)/(exp(Pi)+Si(Pi)) 5912862906752360 a001 180342318655947/305 5912862917719105 m002 -(ProductLog[Pi]/Pi)-Sinh[Pi]+6*Tanh[Pi] 5912862922294526 m001 (Pi-Psi(2,1/3)-cos(1/12*Pi))/gamma(2) 5912862927839030 r005 Im(z^2+c),c=-157/122+18/61*I,n=5 5912862932540741 r002 3th iterates of z^2 + 5912862949571242 b008 ModularLambda[I*(10+3*Sqrt[2])] 5912862957226792 r002 11th iterates of z^2 + 5912862959487886 a001 7/2584*377^(5/38) 5912862961272046 r005 Im(z^2+c),c=-63/118+35/59*I,n=31 5912862977120032 a007 Real Root Of 510*x^4+142*x^3-278*x^2-723*x+433 5912862978844779 a007 Real Root Of 192*x^4-159*x^3-271*x^2+29*x+87 5912862991254632 r005 Re(z^2+c),c=-14/19+2/37*I,n=52 5912862992285012 a001 8/4870847*123^(35/47) 5912862992951791 a007 Real Root Of -897*x^4+185*x^3-455*x^2+937*x+861 5912863012375676 a007 Real Root Of -620*x^4-533*x^3-398*x^2+545*x+427 5912863028266080 r002 10th iterates of z^2 + 5912863047517186 m001 1/BesselK(1,1)/ln(Cahen)^2/Zeta(3)^2 5912863050875719 m001 (Chi(1)+sin(1/12*Pi))/(gamma(1)+Tetranacci) 5912863056412824 m001 (Pi-BesselI(1,2))/(ReciprocalLucas+TwinPrimes) 5912863063518424 a003 cos(Pi*5/93)*cos(Pi*31/105) 5912863066459105 a007 Real Root Of 682*x^4-989*x^3-764*x^2-540*x-340 5912863070539419 q001 285/482 5912863070539419 r005 Im(z^2+c),c=-9/8+114/241*I,n=2 5912863070622171 a007 Real Root Of -441*x^4+421*x^3-551*x^2+640*x+712 5912863077014583 a007 Real Root Of 104*x^4+557*x^3-492*x^2-745*x+819 5912863077344319 m001 1/TwinPrimes^2*Robbin^2*exp(sqrt(Pi)) 5912863096441834 a001 13/2*141422324^(2/17) 5912863096455996 a001 13/2*271443^(3/17) 5912863118624805 a001 1548008755920/2207*1364^(14/15) 5912863134960595 p001 sum((-1)^n/(203*n+169)/(625^n),n=0..infinity) 5912863141587488 a001 13/2*5778^(13/51) 5912863159676386 a007 Real Root Of 174*x^4+849*x^3-995*x^2+517*x+667 5912863166272477 a007 Real Root Of -941*x^4+358*x^3+409*x^2+991*x+632 5912863195203288 l006 ln(5483/9904) 5912863205993325 a007 Real Root Of 129*x^4+817*x^3+251*x^2-339*x+433 5912863209804581 r005 Re(z^2+c),c=-21/31+17/52*I,n=48 5912863243274732 m001 (sin(1/5*Pi)-ln(2))/(Niven+ZetaP(4)) 5912863253507383 a001 3/956722026041*21^(5/24) 5912863254772146 m001 (HardHexagonsEntropy-ZetaQ(2))/(Ei(1)+Artin) 5912863261373303 a003 cos(Pi*20/87)-cos(Pi*53/118) 5912863271320169 m001 1/exp(Zeta(7))*GAMMA(1/3)/sqrt(1+sqrt(3)) 5912863292145930 r002 10th iterates of z^2 + 5912863313801172 m001 CopelandErdos*gamma(3)^Totient 5912863324290962 r009 Re(z^3+c),c=-63/106+10/39*I,n=17 5912863328600032 m001 (Kac+Lehmer)/(Ei(1)-Zeta(1,-1)) 5912863330498715 a001 2504730781961/2207*1364^(13/15) 5912863347833274 p001 sum(1/(361*n+175)/(10^n),n=0..infinity) 5912863387338483 a007 Real Root Of -950*x^4+479*x^3+905*x^2+999*x-890 5912863396577130 r002 14th iterates of z^2 + 5912863414818649 r008 a(0)=6,K{-n^6,51+14*n^3-20*n^2-30*n} 5912863425934154 m001 Riemann3rdZero/Rabbit*exp(sin(Pi/12))^2 5912863427744293 l006 ln(4342/7843) 5912863435319481 m001 1/Robbin^2/MadelungNaCl*ln(Trott) 5912863451105401 a001 439204/89*6557470319842^(17/24) 5912863451136053 a001 1568397607/89*63245986^(17/24) 5912863476190516 m001 (Conway+Trott2nd)/(cos(1/12*Pi)+GAMMA(17/24)) 5912863479443007 m001 exp(Tribonacci)^2/Sierpinski^2/Zeta(9) 5912863480764972 b008 4+Log[5+Sqrt[Pi]] 5912863488972560 m001 (-FeigenbaumC+Sierpinski)/(gamma+ArtinRank2) 5912863490877759 m001 GAMMA(11/12)*FeigenbaumD^2*exp(GAMMA(23/24))^2 5912863512958182 m002 36+E^Pi-Cosh[Pi]/Pi^6 5912863515768136 m001 CareFree*Ei(1,1)^FeigenbaumDelta 5912863538480148 m001 (CopelandErdos+ReciprocalLucas)/(1+exp(1)) 5912863542372634 a001 4052739537881/2207*1364^(4/5) 5912863544376951 a007 Real Root Of -920*x^4+835*x^3-202*x^2+383*x-216 5912863544942873 a007 Real Root Of 44*x^4+167*x^3-719*x^2-908*x+509 5912863549998688 m001 (RenyiParking+ZetaQ(4))/(exp(1/Pi)-OneNinth) 5912863600081893 r005 Re(z^2+c),c=9/110+17/40*I,n=50 5912863600742445 m001 FeigenbaumC^2*ln(MertensB1)*GAMMA(1/4)^2 5912863617633248 a007 Real Root Of -168*x^4-938*x^3+189*x^2-795*x+136 5912863626942016 m001 (MasserGramain-Trott2nd)/(Zeta(5)-gamma(2)) 5912863649991474 m001 MertensB3/FeigenbaumC*StolarskyHarborth 5912863698000159 m006 (2*ln(Pi)+1/4)/(1/5*exp(Pi)-1/3) 5912863712783812 r009 Re(z^3+c),c=-1/70+5/7*I,n=24 5912863732907869 a001 3536736619241/281*843^(4/7) 5912863737384762 r005 Im(z^2+c),c=39/94+1/20*I,n=5 5912863747639087 a007 Real Root Of 428*x^4-585*x^3+651*x^2+453*x-133 5912863754246560 a001 6557470319842/2207*1364^(11/15) 5912863756765047 s002 sum(A273638[n]/(exp(n)),n=1..infinity) 5912863759600127 m001 ln(Paris)/MinimumGamma^2/GAMMA(2/3)^2 5912863764268758 m001 cos(1)^2*Ei(1)/exp(sqrt(5)) 5912863796685698 a007 Real Root Of -332*x^4+426*x^3+853*x^2+691*x+239 5912863807291419 r005 Im(z^2+c),c=13/86+32/57*I,n=45 5912863818713924 m001 (2^(1/2)+FibonacciFactorial)/(-Thue+ThueMorse) 5912863826064283 l006 ln(3201/5782) 5912863837278441 m001 (Salem-StolarskyHarborth)/Si(Pi) 5912863855382080 m001 (Psi(2,1/3)-gamma(1))/(FeigenbaumB+Paris) 5912863874820086 a001 199/987*4181^(4/31) 5912863879568239 r002 4th iterates of z^2 + 5912863895851320 a007 Real Root Of -110*x^4-114*x^3-678*x^2+450*x+493 5912863898064133 m001 1/Zeta(3)/exp(Tribonacci)/sqrt(5) 5912863906767255 m001 1/exp(Si(Pi))^2*ErdosBorwein^2/Zeta(5)^2 5912863943571803 a001 36068470055788/61 5912863964524401 m001 (GAMMA(3/4)-gamma(3))/(BesselK(1,1)+Porter) 5912863966120494 a001 4807525989*1364^(2/3) 5912863969704436 a007 Real Root Of 787*x^4-254*x^3-568*x^2-883*x+677 5912863976404530 a003 cos(Pi*6/29)-cos(Pi*43/99) 5912864003486163 m001 GAMMA(13/24)^BesselJ(1,1)*PlouffeB 5912864012740759 a007 Real Root Of -312*x^4-309*x^3-103*x^2+490*x+300 5912864027060809 m001 1/BesselK(1,1)/ln(RenyiParking)/cos(Pi/12) 5912864037119271 r005 Re(z^2+c),c=-17/36+32/57*I,n=52 5912864041015939 m001 ln(Catalan)^2*Kolakoski*cos(Pi/12) 5912864050942623 m005 (1/2*exp(1)+3/5)/(2/9*exp(1)-3/11) 5912864060936523 m001 (-Salem+ZetaP(4))/(gamma+GlaisherKinkelin) 5912864081763176 m001 (2^(1/2)+MertensB2)/(Pi+1) 5912864091595119 r005 Re(z^2+c),c=21/64+13/37*I,n=37 5912864094841721 a001 72136941957069/122 5912864101737515 a001 281/48*233^(14/33) 5912864116911704 a001 180342355565807/305 5912864120131672 a001 180342355664016/305 5912864120601459 a001 360684711356689/610 5912864120681459 a001 360684711361569/610 5912864120681672 a001 180342355680791/305 5912864120681704 a001 180342355680792/305 5912864120681721 a001 72136942272317/122 5912864120681803 a001 36068471136159/61 5912864120682360 a001 180342355680812/305 5912864120686180 a001 360684711361857/610 5912864120712360 a001 180342355681727/305 5912864120891803 a001 36068471137440/61 5912864122121721 a001 72136942289885/122 5912864130551704 a001 180342355981827/305 5912864131664193 a003 cos(Pi*34/111)/sin(Pi*33/79) 5912864153566548 m002 -6+Log[Pi]/Pi^6+Sech[Pi]*Tanh[Pi] 5912864154805080 l006 ln(5261/9503) 5912864155444040 a001 4052739537881/5778*1364^(14/15) 5912864167512501 r002 47th iterates of z^2 + 5912864171565049 r005 Im(z^2+c),c=-15/14+6/89*I,n=15 5912864181138639 m001 GolombDickman*(Cahen+GaussKuzminWirsing) 5912864181138639 m001 GolombDickman*(GaussKuzminWirsing+Cahen) 5912864184665249 r009 Re(z^3+c),c=-41/70+27/49*I,n=58 5912864188331672 a001 180342357744116/305 5912864233177802 m001 Pi^GaussAGM/Pi/csc(5/24*Pi)*GAMMA(19/24) 5912864238177450 m001 GAMMA(1/3)^2*Robbin^2*ln(cosh(1))^2 5912864241141771 r009 Re(z^3+c),c=-3/32+31/59*I,n=21 5912864247573234 r002 21i'th iterates of 2*x/(1-x^2) of 5912864260194550 m005 (-29/44+1/4*5^(1/2))/(3/10*Pi+3/4) 5912864284626555 b008 Sin[31/49] 5912864294381483 l006 ln(7634/8099) 5912864302407659 a007 Real Root Of -907*x^4+865*x^3-361*x^2+34*x+436 5912864306713959 a001 1515744265389/2161*1364^(14/15) 5912864313850620 h001 (-2*exp(1)+2)/(-6*exp(-2)-5) 5912864317521176 a007 Real Root Of 352*x^4-678*x^3+434*x^2-932*x-886 5912864326262706 m005 (1/2*Catalan-5/6)/(7/8*Catalan-1/6) 5912864327221408 a001 6557470319842/843*843^(9/14) 5912864329184743 h001 (11/12*exp(1)+1/3)/(4/7*exp(2)+5/9) 5912864335031093 r005 Re(z^2+c),c=-73/122+23/60*I,n=15 5912864343286702 a003 sin(Pi*11/96)-sin(Pi*42/107) 5912864353155942 a007 Real Root Of 675*x^4-198*x^3+701*x^2+422*x-119 5912864367317988 a001 3278735159921/2889*1364^(13/15) 5912864374217300 m005 (1/2*Zeta(3)+2/7)/(1/4*Pi+5/7) 5912864375223661 m001 (Kolakoski-TreeGrowth2nd)/(GAMMA(3/4)-Kac) 5912864378953417 a007 Real Root Of 719*x^4-715*x^3-980*x^2-591*x+752 5912864381496278 r009 Im(z^3+c),c=-17/30+20/63*I,n=2 5912864400203913 a001 6557470319842/9349*1364^(14/15) 5912864407372981 a003 cos(Pi*6/37)/cos(Pi*24/53) 5912864409069438 a007 Real Root Of 905*x^4+603*x^3+312*x^2-717*x-519 5912864429568773 m001 sin(1)^(FeigenbaumD/ln(2^(1/2)+1)) 5912864441057983 m001 1/Zeta(1,2)^2/exp(LaplaceLimit)*Zeta(7) 5912864459374159 m004 -6-Cos[Sqrt[5]*Pi]+8*Tan[Sqrt[5]*Pi] 5912864504268787 r005 Im(z^2+c),c=-7/86+31/47*I,n=19 5912864531791036 m001 Pi^FeigenbaumMu-HardyLittlewoodC5 5912864539931285 m005 (2/5*Pi+4)/(33/10+5/2*5^(1/2)) 5912864550552729 a007 Real Root Of 683*x^4-495*x^3+856*x^2+357*x-274 5912864568983828 m001 sin(Pi/5)+FeigenbaumAlpha*GAMMA(5/12) 5912864579191944 a001 3536736619241/1926*1364^(4/5) 5912864584361459 a001 360684739646049/610 5912864612077870 a001 10610209857723/9349*1364^(13/15) 5912864665629957 l006 ln(2060/3721) 5912864672302527 m005 (-11/42+1/6*5^(1/2))/(11/12*3^(1/2)+2/7) 5912864676934160 a003 sin(Pi*3/73)+sin(Pi*15/98) 5912864693815891 a007 Real Root Of -805*x^4+534*x^3-678*x^2+807*x+923 5912864702441484 r002 16th iterates of z^2 + 5912864745719580 m005 (1/2*Pi+4/5)/(2*3^(1/2)+6/11) 5912864746330477 m005 (1/2*Pi-4/5)/(213/220+3/20*5^(1/2)) 5912864754245627 r009 Im(z^3+c),c=-33/98+43/60*I,n=32 5912864769731412 a007 Real Root Of 532*x^4+819*x^3+315*x^2-396*x-240 5912864794517413 a008 Real Root of (7+3*x-18*x^2-12*x^3) 5912864796233750 a001 2504730781961/3571*1364^(14/15) 5912864811452856 a007 Real Root Of -807*x^4-475*x^3-383*x^2+752*x+579 5912864821237728 m002 -1+Pi-3*Pi^3*Csch[Pi] 5912864840212451 r009 Re(z^3+c),c=-41/70+27/49*I,n=61 5912864842443244 r002 36th iterates of z^2 + 5912864853904912 r005 Re(z^2+c),c=-59/54+16/47*I,n=8 5912864871134383 m005 (1/2*5^(1/2)-3/11)/(9/11*Pi-4) 5912864883193126 r009 Im(z^3+c),c=-1/102+37/50*I,n=27 5912864892612204 m001 (LandauRamanujan-Mills*Salem)/Mills 5912864921535007 a001 4052739537881/843*843^(5/7) 5912864941894921 m001 (3^(1/2)-exp(Pi))/(-Conway+Totient) 5912864954132082 a007 Real Root Of 385*x^4-234*x^3-157*x^2-246*x-186 5912864983331103 m001 (BesselK(1,1)-GAMMA(11/12))/(ln(2)+Zeta(1/2)) 5912865008107721 a001 4052739537881/3571*1364^(13/15) 5912865010822200 r009 Re(z^3+c),c=-41/70+27/49*I,n=64 5912865017421806 m008 (1/5*Pi^6-5)/(Pi^3+2/3) 5912865045630437 r009 Im(z^3+c),c=-5/23+34/35*I,n=48 5912865046676634 m001 (Landau+Mills)/(exp(1)+HardyLittlewoodC5) 5912865070287427 r005 Re(z^2+c),c=9/56+20/37*I,n=35 5912865075866866 r005 Im(z^2+c),c=-63/118+19/35*I,n=27 5912865079674320 r008 a(0)=6,K{-n^6,35-7*n^3+34*n^2-59*n} 5912865085842642 p004 log(32909/89) 5912865105866862 a007 Real Root Of -64*x^4-344*x^3+340*x^2+885*x+462 5912865133681986 m001 1/GAMMA(1/12)*ln(LaplaceLimit)*sqrt(1+sqrt(3)) 5912865152246712 r009 Im(z^3+c),c=-9/40+37/55*I,n=15 5912865164543079 a001 29/6557470319842*39088169^(7/17) 5912865168607197 a001 1/7787980473*10946^(7/17) 5912865182332073 a007 Real Root Of -670*x^4+545*x^3+271*x^2+851*x+603 5912865191352525 r002 64th iterates of z^2 + 5912865193468229 a007 Real Root Of -168*x^4-256*x^3+461*x^2+748*x-530 5912865198959891 l006 ln(5039/9102) 5912865200837994 a007 Real Root Of -121*x^4+792*x^3+701*x^2+899*x+465 5912865210837962 a007 Real Root Of -470*x^4+871*x^3+46*x^2-43*x+196 5912865211320410 r009 Re(z^3+c),c=-27/44+11/51*I,n=3 5912865219981700 a001 6557470319842/3571*1364^(4/5) 5912865223173845 r009 Im(z^3+c),c=-5/126+31/48*I,n=3 5912865227001007 r005 Re(z^2+c),c=5/17+24/55*I,n=30 5912865228976618 a007 Real Root Of -124*x^4+971*x^3+996*x^2-299*x-357 5912865234139914 a007 Real Root Of -323*x^4+427*x^3-476*x^2+823*x-369 5912865255078670 m001 TwinPrimes^TreeGrowth2nd*Rabbit 5912865322543103 r005 Re(z^2+c),c=1/11+17/54*I,n=14 5912865329191057 r005 Im(z^2+c),c=4/11+5/62*I,n=11 5912865333959881 r005 Im(z^2+c),c=-25/122+41/63*I,n=36 5912865336206729 a007 Real Root Of -288*x^4+465*x^3-756*x^2-500*x+100 5912865337928825 m001 exp(1/Pi)/exp(1/exp(1))/ln(5) 5912865340158013 m004 (125*Csc[Sqrt[5]*Pi])/Pi+Sin[Sqrt[5]*Pi]/3 5912865346709694 r002 54i'th iterates of 2*x/(1-x^2) of 5912865365503895 a001 199/10946*377^(27/46) 5912865374176417 r002 22th iterates of z^2 + 5912865419727412 m002 -1/6+Pi^2/2+Log[Pi] 5912865431855686 a001 10610209857723/3571*1364^(11/15) 5912865441186717 m001 (Salem+StronglyCareFree)/(ln(gamma)+Ei(1,1)) 5912865447836289 a007 Real Root Of 841*x^4-970*x^3+599*x^2-315*x-699 5912865450916734 m006 (3/4/Pi-1/4)/(2/3*Pi-4) 5912865452170813 a005 (1/cos(10/189*Pi))^1953 5912865453884537 m004 3/Log[Sqrt[5]*Pi]+(15*Tan[Sqrt[5]*Pi])/Pi 5912865512852634 m001 (ln(2)/ln(10)+KomornikLoreti)/(Otter+Stephens) 5912865515848666 a001 2504730781961/843*843^(11/14) 5912865535773885 h001 (5/9*exp(2)+1/12)/(6/7*exp(2)+3/4) 5912865555900318 a007 Real Root Of 289*x^4-438*x^3-557*x^2-592*x+600 5912865567761373 l006 ln(2979/5381) 5912865568881796 p001 sum(floor(nd*n)/(359*n+7)/(6^n),n=0..infinity) 5912865571643468 a007 Real Root Of 294*x^4-615*x^3-615*x^2-874*x+823 5912865575734128 h005 exp(cos(Pi*2/47)+cos(Pi*7/33)) 5912865576256690 a003 sin(Pi*4/21)/sin(Pi*47/117) 5912865606330629 a003 sin(Pi*11/92)/cos(Pi*33/115) 5912865607868585 m005 (1/2*exp(1)-1/9)/(7/10*5^(1/2)+6/11) 5912865613881755 b008 59+ArcCoth[E]/3 5912865621180131 a001 944284639702467/1597 5912865644436592 r009 Re(z^3+c),c=-3/52+41/43*I,n=9 5912865648455631 a001 591286729879/2207*3571^(16/17) 5912865651862972 a007 Real Root Of 271*x^4-385*x^3-616*x^2-692*x+671 5912865658183302 a001 322/55*4052739537881^(5/9) 5912865659747835 m001 (Zeta(1,2)-ln(5)*ZetaQ(3))/ln(5) 5912865675730919 a001 956722026041/2207*3571^(15/17) 5912865677373277 h001 (5/11*exp(2)+7/12)/(6/7*exp(2)+1/3) 5912865702295662 a001 5600748293801/89*610^(17/24) 5912865703006207 a001 1548008755920/2207*3571^(14/17) 5912865706952195 m001 OneNinth^GAMMA(11/24)/BesselI(0,2) 5912865727169597 m001 (Mills-ZetaP(2))/(HardyLittlewoodC5+MertensB2) 5912865730281495 a001 2504730781961/2207*3571^(13/17) 5912865739070527 a007 Real Root Of 378*x^4-499*x^3+39*x^2-734*x-597 5912865757556783 a001 4052739537881/2207*3571^(12/17) 5912865768027872 m001 (GAMMA(3/4)*Lehmer-ZetaQ(4))/GAMMA(3/4) 5912865775335905 a007 Real Root Of 666*x^4+783*x^3-16*x^2-981*x-494 5912865779489497 r005 Re(z^2+c),c=-11/18+40/61*I,n=7 5912865780170010 r009 Re(z^3+c),c=-13/22+27/47*I,n=58 5912865784832071 a001 6557470319842/2207*3571^(11/17) 5912865797290595 r002 8th iterates of z^2 + 5912865812107359 a001 4807525989*3571^(10/17) 5912865825619524 m001 BesselJ(1,1)/(LandauRamanujan^ln(3)) 5912865829375786 a003 sin(Pi*10/51)/sin(Pi*19/44) 5912865836320657 r002 7th iterates of z^2 + 5912865855031607 r005 Re(z^2+c),c=-65/98+16/53*I,n=59 5912865856886153 m005 (1/3*3^(1/2)+1/9)/(19/24+1/6*5^(1/2)) 5912865878307854 r005 Re(z^2+c),c=-17/16+1/66*I,n=8 5912865882188433 m001 (Grothendieck+Mills)/(Sarnak-StronglyCareFree) 5912865901003152 k002 Champernowne real with 109/2*n^2-155/2*n+28 5912865902076511 m005 (1/2*Catalan+5/12)/(7/11*Zeta(3)+5/7) 5912865907750041 a001 329/1926*14662949395604^(20/21) 5912865907750285 a001 2584/2207*14662949395604^(8/9) 5912865918813666 r005 Re(z^2+c),c=-73/86+7/31*I,n=18 5912865922139158 a007 Real Root Of 117*x^4+550*x^3-765*x^2+300*x-795 5912865947992722 r002 2th iterates of z^2 + 5912865985206598 r009 Im(z^3+c),c=-13/114+43/61*I,n=10 5912865991382483 a007 Real Root Of 29*x^4-95*x^3+767*x^2-659*x-681 5912866006970797 a007 Real Root Of -157*x^4-801*x^3+717*x^2-120*x+543 5912866017210014 a001 2472169281795507/4181 5912866020770788 a001 225851433717/2207*9349^(18/19) 5912866024331313 a001 365435296162/2207*9349^(17/19) 5912866026975053 r002 28th iterates of z^2 + 5912866027891839 a001 591286729879/2207*9349^(16/19) 5912866028824946 m001 Robbin/(Mills^BesselK(0,1)) 5912866031452365 a001 956722026041/2207*9349^(15/19) 5912866035012890 a001 1548008755920/2207*9349^(14/19) 5912866038573416 a001 2504730781961/2207*9349^(13/19) 5912866042133941 a001 4052739537881/2207*9349^(12/19) 5912866044516270 l006 ln(3898/7041) 5912866045694467 a001 6557470319842/2207*9349^(11/19) 5912866049254993 a001 4807525989*9349^(10/19) 5912866059020253 a001 6765/2207*14662949395604^(6/7) 5912866062010581 m001 (Trott-ZetaP(2))/(BesselJ(1,1)-KhinchinLevy) 5912866075460249 a001 86267571272/2207*24476^(20/21) 5912866075930249 a001 139583862445/2207*24476^(19/21) 5912866076400249 a001 225851433717/2207*24476^(6/7) 5912866076870249 a001 365435296162/2207*24476^(17/21) 5912866077340249 a001 591286729879/2207*24476^(16/21) 5912866077810249 a001 956722026041/2207*24476^(5/7) 5912866078280249 a001 1548008755920/2207*24476^(2/3) 5912866078750249 a001 2504730781961/2207*24476^(13/21) 5912866079220249 a001 4052739537881/2207*24476^(4/7) 5912866079690249 a001 6557470319842/2207*24476^(11/21) 5912866080160249 a001 4807525989*24476^(10/21) 5912866081090244 a001 17711/2207*23725150497407^(13/16) 5912866081090244 a001 17711/2207*505019158607^(13/14) 5912866083482844 a001 32951280099/2207*64079^(22/23) 5912866083545454 a001 53316291173/2207*64079^(21/23) 5912866083608063 a001 86267571272/2207*64079^(20/23) 5912866083670672 a001 139583862445/2207*64079^(19/23) 5912866083733282 a001 225851433717/2207*64079^(18/23) 5912866083795891 a001 365435296162/2207*64079^(17/23) 5912866083858500 a001 591286729879/2207*64079^(16/23) 5912866083921109 a001 956722026041/2207*64079^(15/23) 5912866083983719 a001 1548008755920/2207*64079^(14/23) 5912866084046328 a001 2504730781961/2207*64079^(13/23) 5912866084108937 a001 4052739537881/2207*64079^(12/23) 5912866084171547 a001 6557470319842/2207*64079^(11/23) 5912866084234156 a001 4807525989*64079^(10/23) 5912866084310212 a001 46368/2207*312119004989^(10/11) 5912866084310212 a001 46368/2207*3461452808002^(5/6) 5912866084692173 a001 86267571272/2207*167761^(4/5) 5912866084734192 a001 956722026041/2207*167761^(3/5) 5912866084776211 a001 4807525989*167761^(2/5) 5912866084779999 a001 121393/2207*45537549124^(16/17) 5912866084779999 a001 121393/2207*14662949395604^(16/21) 5912866084779999 a001 121393/2207*192900153618^(8/9) 5912866084779999 a001 121393/2207*73681302247^(12/13) 5912866084833002 a001 12586269025/2207*439204^(8/9) 5912866084836408 a001 53316291173/2207*439204^(7/9) 5912866084839814 a001 225851433717/2207*439204^(2/3) 5912866084843220 a001 956722026041/2207*439204^(5/9) 5912866084846625 a001 4052739537881/2207*439204^(4/9) 5912866084848541 a001 317811/2207*10749957122^(23/24) 5912866084858541 a001 832040/2207*312119004989^(4/5) 5912866084858541 a001 832040/2207*23725150497407^(11/16) 5912866084858541 a001 832040/2207*73681302247^(11/13) 5912866084858541 a001 832040/2207*10749957122^(11/12) 5912866084858541 a001 832040/2207*4106118243^(22/23) 5912866084859999 a001 987*2537720636^(14/15) 5912866084859999 a001 987*17393796001^(6/7) 5912866084859999 a001 987*45537549124^(14/17) 5912866084859999 a001 987*817138163596^(14/19) 5912866084859999 a001 987*14662949395604^(2/3) 5912866084859999 a001 987*505019158607^(3/4) 5912866084859999 a001 987*192900153618^(7/9) 5912866084859999 a001 987*10749957122^(7/8) 5912866084859999 a001 987*4106118243^(21/23) 5912866084859999 a001 987*1568397607^(21/22) 5912866084860162 a001 701408733/2207*7881196^(10/11) 5912866084860171 a001 2971215073/2207*7881196^(9/11) 5912866084860179 a001 12586269025/2207*7881196^(8/11) 5912866084860185 a001 32951280099/2207*7881196^(2/3) 5912866084860188 a001 53316291173/2207*7881196^(7/11) 5912866084860197 a001 225851433717/2207*7881196^(6/11) 5912866084860205 a001 956722026041/2207*7881196^(5/11) 5912866084860212 a001 5702887/2207*2537720636^(8/9) 5912866084860212 a001 5702887/2207*312119004989^(8/11) 5912866084860212 a001 5702887/2207*23725150497407^(5/8) 5912866084860212 a001 5702887/2207*73681302247^(10/13) 5912866084860212 a001 5702887/2207*28143753123^(4/5) 5912866084860212 a001 5702887/2207*10749957122^(5/6) 5912866084860212 a001 5702887/2207*4106118243^(20/23) 5912866084860212 a001 5702887/2207*1568397607^(10/11) 5912866084860212 a001 5702887/2207*599074578^(20/21) 5912866084860214 a001 4052739537881/2207*7881196^(4/11) 5912866084860217 a001 6557470319842/2207*7881196^(1/3) 5912866084860237 a001 701408733/2207*20633239^(6/7) 5912866084860238 a001 1836311903/2207*20633239^(4/5) 5912866084860239 a001 7778742049/2207*20633239^(5/7) 5912866084860240 a001 53316291173/2207*20633239^(3/5) 5912866084860241 a001 86267571272/2207*20633239^(4/7) 5912866084860243 a001 956722026041/2207*20633239^(3/7) 5912866084860243 a001 1548008755920/2207*20633239^(2/5) 5912866084860243 a001 14930352/2207*817138163596^(2/3) 5912866084860243 a001 14930352/2207*10749957122^(19/24) 5912866084860243 a001 14930352/2207*4106118243^(19/23) 5912866084860243 a001 14930352/2207*1568397607^(19/22) 5912866084860243 a001 14930352/2207*599074578^(19/21) 5912866084860244 a001 14930352/2207*228826127^(19/20) 5912866084860245 a001 4807525989*20633239^(2/7) 5912866084860248 a001 39088169/2207*141422324^(12/13) 5912866084860248 a001 39088169/2207*2537720636^(4/5) 5912866084860248 a001 39088169/2207*45537549124^(12/17) 5912866084860248 a001 39088169/2207*14662949395604^(4/7) 5912866084860248 a001 39088169/2207*505019158607^(9/14) 5912866084860248 a001 39088169/2207*192900153618^(2/3) 5912866084860248 a001 39088169/2207*73681302247^(9/13) 5912866084860248 a001 39088169/2207*10749957122^(3/4) 5912866084860248 a001 39088169/2207*4106118243^(18/23) 5912866084860248 a001 39088169/2207*1568397607^(9/11) 5912866084860248 a001 39088169/2207*599074578^(6/7) 5912866084860248 a001 39088169/2207*228826127^(9/10) 5912866084860248 a001 701408733/2207*141422324^(10/13) 5912866084860249 a001 165580141/2207*141422324^(11/13) 5912866084860249 a001 2971215073/2207*141422324^(9/13) 5912866084860249 a001 4807526976/2207*141422324^(2/3) 5912866084860249 a001 12586269025/2207*141422324^(8/13) 5912866084860249 a001 53316291173/2207*141422324^(7/13) 5912866084860249 a001 225851433717/2207*141422324^(6/13) 5912866084860249 a001 956722026041/2207*141422324^(5/13) 5912866084860249 a001 102334155/2207*45537549124^(2/3) 5912866084860249 a001 102334155/2207*10749957122^(17/24) 5912866084860249 a001 102334155/2207*4106118243^(17/23) 5912866084860249 a001 102334155/2207*1568397607^(17/22) 5912866084860249 a001 102334155/2207*599074578^(17/21) 5912866084860249 a001 2504730781961/2207*141422324^(1/3) 5912866084860249 a001 4052739537881/2207*141422324^(4/13) 5912866084860249 a001 39088169/2207*87403803^(18/19) 5912866084860249 a001 102334155/2207*228826127^(17/20) 5912866084860249 a001 267914296/2207*23725150497407^(1/2) 5912866084860249 a001 267914296/2207*505019158607^(4/7) 5912866084860249 a001 267914296/2207*73681302247^(8/13) 5912866084860249 a001 267914296/2207*10749957122^(2/3) 5912866084860249 a001 267914296/2207*4106118243^(16/23) 5912866084860249 a001 267914296/2207*1568397607^(8/11) 5912866084860249 a001 267914296/2207*599074578^(16/21) 5912866084860249 a001 701408733/2207*2537720636^(2/3) 5912866084860249 a001 701408733/2207*45537549124^(10/17) 5912866084860249 a001 701408733/2207*312119004989^(6/11) 5912866084860249 a001 701408733/2207*14662949395604^(10/21) 5912866084860249 a001 701408733/2207*192900153618^(5/9) 5912866084860249 a001 701408733/2207*28143753123^(3/5) 5912866084860249 a001 701408733/2207*10749957122^(5/8) 5912866084860249 a001 701408733/2207*4106118243^(15/23) 5912866084860249 a001 701408733/2207*1568397607^(15/22) 5912866084860249 a001 12586269025/2207*2537720636^(8/15) 5912866084860249 a001 7778742049/2207*2537720636^(5/9) 5912866084860249 a001 53316291173/2207*2537720636^(7/15) 5912866084860249 a001 2971215073/2207*2537720636^(3/5) 5912866084860249 a001 86267571272/2207*2537720636^(4/9) 5912866084860249 a001 225851433717/2207*2537720636^(2/5) 5912866084860249 a001 1836311903/2207*17393796001^(4/7) 5912866084860249 a001 1836311903/2207*14662949395604^(4/9) 5912866084860249 a001 1836311903/2207*505019158607^(1/2) 5912866084860249 a001 1836311903/2207*73681302247^(7/13) 5912866084860249 a001 1836311903/2207*10749957122^(7/12) 5912866084860249 a001 956722026041/2207*2537720636^(1/3) 5912866084860249 a001 4052739537881/2207*2537720636^(4/15) 5912866084860249 a001 4807525989*2537720636^(2/9) 5912866084860249 a001 1836311903/2207*4106118243^(14/23) 5912866084860249 a001 4807526976/2207*73681302247^(1/2) 5912866084860249 a001 4807526976/2207*10749957122^(13/24) 5912866084860249 a001 12586269025/2207*45537549124^(8/17) 5912866084860249 a001 53316291173/2207*17393796001^(3/7) 5912866084860249 a001 12586269025/2207*14662949395604^(8/21) 5912866084860249 a001 12586269025/2207*192900153618^(4/9) 5912866084860249 a001 12586269025/2207*73681302247^(6/13) 5912866084860249 a001 1548008755920/2207*17393796001^(2/7) 5912866084860249 a001 32951280099/2207*312119004989^(2/5) 5912866084860249 a001 225851433717/2207*45537549124^(6/17) 5912866084860249 a001 365435296162/2207*45537549124^(1/3) 5912866084860249 a001 956722026041/2207*45537549124^(5/17) 5912866084860249 a001 53316291173/2207*45537549124^(7/17) 5912866084860249 a001 4052739537881/2207*45537549124^(4/17) 5912866084860249 a001 86267571272/2207*23725150497407^(5/16) 5912866084860249 a001 86267571272/2207*505019158607^(5/14) 5912866084860249 a001 225851433717/2207*14662949395604^(2/7) 5912866084860249 a001 956722026041/2207*312119004989^(3/11) 5912866084860249 a001 1548008755920/2207*14662949395604^(2/9) 5912866084860249 a001 4052739537881/2207*14662949395604^(4/21) 5912866084860249 a001 1548008755920/2207*505019158607^(1/4) 5912866084860249 a001 4052739537881/2207*192900153618^(2/9) 5912866084860249 a001 956722026041/2207*192900153618^(5/18) 5912866084860249 a001 139583862445/2207*817138163596^(1/3) 5912866084860249 a001 4052739537881/2207*73681302247^(3/13) 5912866084860249 a001 2504730781961/2207*73681302247^(1/4) 5912866084860249 a001 591286729879/2207*73681302247^(4/13) 5912866084860249 a001 53316291173/2207*14662949395604^(1/3) 5912866084860249 a001 53316291173/2207*192900153618^(7/18) 5912866084860249 a001 4807525989*28143753123^(1/5) 5912866084860249 a001 956722026041/2207*28143753123^(3/10) 5912866084860249 a001 86267571272/2207*28143753123^(2/5) 5912866084860249 a001 4807525989*10749957122^(5/24) 5912866084860249 a001 4052739537881/2207*10749957122^(1/4) 5912866084860249 a001 1548008755920/2207*10749957122^(7/24) 5912866084860249 a001 956722026041/2207*10749957122^(5/16) 5912866084860249 a001 591286729879/2207*10749957122^(1/3) 5912866084860249 a001 12586269025/2207*10749957122^(1/2) 5912866084860249 a001 225851433717/2207*10749957122^(3/8) 5912866084860249 a001 7778742049/2207*312119004989^(5/11) 5912866084860249 a001 7778742049/2207*3461452808002^(5/12) 5912866084860249 a001 86267571272/2207*10749957122^(5/12) 5912866084860249 a001 32951280099/2207*10749957122^(11/24) 5912866084860249 a001 53316291173/2207*10749957122^(7/16) 5912866084860249 a001 7778742049/2207*28143753123^(1/2) 5912866084860249 a001 4807525989*4106118243^(5/23) 5912866084860249 a001 4052739537881/2207*4106118243^(6/23) 5912866084860249 a001 1548008755920/2207*4106118243^(7/23) 5912866084860249 a001 591286729879/2207*4106118243^(8/23) 5912866084860249 a001 2971215073/2207*45537549124^(9/17) 5912866084860249 a001 2971215073/2207*817138163596^(9/19) 5912866084860249 a001 2971215073/2207*14662949395604^(3/7) 5912866084860249 a001 2971215073/2207*192900153618^(1/2) 5912866084860249 a001 225851433717/2207*4106118243^(9/23) 5912866084860249 a001 4807526976/2207*4106118243^(13/23) 5912866084860249 a001 86267571272/2207*4106118243^(10/23) 5912866084860249 a001 2971215073/2207*10749957122^(9/16) 5912866084860249 a001 32951280099/2207*4106118243^(11/23) 5912866084860249 a001 12586269025/2207*4106118243^(12/23) 5912866084860249 a001 20365011074/2207*4106118243^(1/2) 5912866084860249 a001 4807525989*1568397607^(5/22) 5912866084860249 a001 6557470319842/2207*1568397607^(1/4) 5912866084860249 a001 4052739537881/2207*1568397607^(3/11) 5912866084860249 a001 1548008755920/2207*1568397607^(7/22) 5912866084860249 a001 591286729879/2207*1568397607^(4/11) 5912866084860249 a001 1134903170/2207*1322157322203^(1/2) 5912866084860249 a001 225851433717/2207*1568397607^(9/22) 5912866084860249 a001 86267571272/2207*1568397607^(5/11) 5912866084860249 a001 1836311903/2207*1568397607^(7/11) 5912866084860249 a001 32951280099/2207*1568397607^(1/2) 5912866084860249 a001 12586269025/2207*1568397607^(6/11) 5912866084860249 a001 4807526976/2207*1568397607^(13/22) 5912866084860249 a001 4807525989*599074578^(5/21) 5912866084860249 a001 4052739537881/2207*599074578^(2/7) 5912866084860249 a001 1548008755920/2207*599074578^(1/3) 5912866084860249 a001 956722026041/2207*599074578^(5/14) 5912866084860249 a001 591286729879/2207*599074578^(8/21) 5912866084860249 a001 433494437/2207*9062201101803^(1/2) 5912866084860249 a001 225851433717/2207*599074578^(3/7) 5912866084860249 a001 86267571272/2207*599074578^(10/21) 5912866084860249 a001 53316291173/2207*599074578^(1/2) 5912866084860249 a001 32951280099/2207*599074578^(11/21) 5912866084860249 a001 701408733/2207*599074578^(5/7) 5912866084860249 a001 12586269025/2207*599074578^(4/7) 5912866084860249 a001 4807526976/2207*599074578^(13/21) 5912866084860249 a001 1836311903/2207*599074578^(2/3) 5912866084860249 a001 2971215073/2207*599074578^(9/14) 5912866084860249 a001 4807525989*228826127^(1/4) 5912866084860249 a001 4052739537881/2207*228826127^(3/10) 5912866084860249 a001 1548008755920/2207*228826127^(7/20) 5912866084860249 a001 956722026041/2207*228826127^(3/8) 5912866084860249 a001 165580141/2207*2537720636^(11/15) 5912866084860249 a001 165580141/2207*45537549124^(11/17) 5912866084860249 a001 165580141/2207*312119004989^(3/5) 5912866084860249 a001 165580141/2207*817138163596^(11/19) 5912866084860249 a001 165580141/2207*14662949395604^(11/21) 5912866084860249 a001 165580141/2207*192900153618^(11/18) 5912866084860249 a001 165580141/2207*10749957122^(11/16) 5912866084860249 a001 165580141/2207*1568397607^(3/4) 5912866084860249 a001 591286729879/2207*228826127^(2/5) 5912866084860249 a001 225851433717/2207*228826127^(9/20) 5912866084860249 a001 165580141/2207*599074578^(11/14) 5912866084860249 a001 86267571272/2207*228826127^(1/2) 5912866084860249 a001 32951280099/2207*228826127^(11/20) 5912866084860249 a001 12586269025/2207*228826127^(3/5) 5912866084860249 a001 7778742049/2207*228826127^(5/8) 5912866084860249 a001 4807526976/2207*228826127^(13/20) 5912866084860249 a001 267914296/2207*228826127^(4/5) 5912866084860249 a001 1836311903/2207*228826127^(7/10) 5912866084860249 a001 701408733/2207*228826127^(3/4) 5912866084860249 a001 4807525989*87403803^(5/19) 5912866084860249 a001 4052739537881/2207*87403803^(6/19) 5912866084860249 a001 1548008755920/2207*87403803^(7/19) 5912866084860249 a001 63245986/2207*2537720636^(7/9) 5912866084860249 a001 63245986/2207*17393796001^(5/7) 5912866084860249 a001 63245986/2207*312119004989^(7/11) 5912866084860249 a001 63245986/2207*14662949395604^(5/9) 5912866084860249 a001 63245986/2207*505019158607^(5/8) 5912866084860249 a001 63245986/2207*28143753123^(7/10) 5912866084860249 a001 63245986/2207*599074578^(5/6) 5912866084860249 a001 591286729879/2207*87403803^(8/19) 5912866084860249 a001 225851433717/2207*87403803^(9/19) 5912866084860249 a001 139583862445/2207*87403803^(1/2) 5912866084860249 a001 63245986/2207*228826127^(7/8) 5912866084860249 a001 86267571272/2207*87403803^(10/19) 5912866084860249 a001 32951280099/2207*87403803^(11/19) 5912866084860249 a001 12586269025/2207*87403803^(12/19) 5912866084860249 a001 4807526976/2207*87403803^(13/19) 5912866084860249 a001 1836311903/2207*87403803^(14/19) 5912866084860249 a001 102334155/2207*87403803^(17/19) 5912866084860249 a001 701408733/2207*87403803^(15/19) 5912866084860249 a001 267914296/2207*87403803^(16/19) 5912866084860250 a001 4807525989*33385282^(5/18) 5912866084860250 a001 4052739537881/2207*33385282^(1/3) 5912866084860251 a001 1548008755920/2207*33385282^(7/18) 5912866084860251 a001 956722026041/2207*33385282^(5/12) 5912866084860251 a001 591286729879/2207*33385282^(4/9) 5912866084860251 a001 225851433717/2207*33385282^(1/2) 5912866084860252 a001 86267571272/2207*33385282^(5/9) 5912866084860252 a001 53316291173/2207*33385282^(7/12) 5912866084860252 a001 32951280099/2207*33385282^(11/18) 5912866084860252 a001 12586269025/2207*33385282^(2/3) 5912866084860253 a001 4807526976/2207*33385282^(13/18) 5912866084860253 a001 2971215073/2207*33385282^(3/4) 5912866084860253 a001 1836311903/2207*33385282^(7/9) 5912866084860253 a001 701408733/2207*33385282^(5/6) 5912866084860253 a001 267914296/2207*33385282^(8/9) 5912866084860254 a001 102334155/2207*33385282^(17/18) 5912866084860254 a001 165580141/2207*33385282^(11/12) 5912866084860259 a001 4807525989*12752043^(5/17) 5912866084860262 a001 4052739537881/2207*12752043^(6/17) 5912866084860263 a001 9227465/2207*2537720636^(13/15) 5912866084860263 a001 9227465/2207*45537549124^(13/17) 5912866084860263 a001 9227465/2207*14662949395604^(13/21) 5912866084860263 a001 9227465/2207*192900153618^(13/18) 5912866084860263 a001 9227465/2207*73681302247^(3/4) 5912866084860263 a001 9227465/2207*10749957122^(13/16) 5912866084860263 a001 9227465/2207*599074578^(13/14) 5912866084860264 a001 1548008755920/2207*12752043^(7/17) 5912866084860266 a001 591286729879/2207*12752043^(8/17) 5912866084860267 a001 365435296162/2207*12752043^(1/2) 5912866084860268 a001 225851433717/2207*12752043^(9/17) 5912866084860270 a001 86267571272/2207*12752043^(10/17) 5912866084860272 a001 32951280099/2207*12752043^(11/17) 5912866084860274 a001 12586269025/2207*12752043^(12/17) 5912866084860277 a001 4807526976/2207*12752043^(13/17) 5912866084860279 a001 1836311903/2207*12752043^(14/17) 5912866084860281 a001 701408733/2207*12752043^(15/17) 5912866084860283 a001 267914296/2207*12752043^(16/17) 5912866084860327 a001 4807525989*4870847^(5/16) 5912866084860342 a001 4052739537881/2207*4870847^(3/8) 5912866084860358 a001 1548008755920/2207*4870847^(7/16) 5912866084860373 a001 591286729879/2207*4870847^(1/2) 5912866084860389 a001 225851433717/2207*4870847^(9/16) 5912866084860404 a001 86267571272/2207*4870847^(5/8) 5912866084860420 a001 32951280099/2207*4870847^(11/16) 5912866084860436 a001 12586269025/2207*4870847^(3/4) 5912866084860451 a001 4807526976/2207*4870847^(13/16) 5912866084860467 a001 1836311903/2207*4870847^(7/8) 5912866084860482 a001 701408733/2207*4870847^(15/16) 5912866084860818 a001 4807525989*1860498^(1/3) 5912866084860932 a001 4052739537881/2207*1860498^(2/5) 5912866084861046 a001 1548008755920/2207*1860498^(7/15) 5912866084861103 a001 956722026041/2207*1860498^(1/2) 5912866084861160 a001 591286729879/2207*1860498^(8/15) 5912866084861274 a001 225851433717/2207*1860498^(3/5) 5912866084861388 a001 86267571272/2207*1860498^(2/3) 5912866084861444 a001 53316291173/2207*1860498^(7/10) 5912866084861501 a001 32951280099/2207*1860498^(11/15) 5912866084861615 a001 12586269025/2207*1860498^(4/5) 5912866084861672 a001 7778742049/2207*1860498^(5/6) 5912866084861729 a001 4807526976/2207*1860498^(13/15) 5912866084861786 a001 2971215073/2207*1860498^(9/10) 5912866084861843 a001 1836311903/2207*1860498^(14/15) 5912866084864430 a001 4807525989*710647^(5/14) 5912866084864721 a001 514229/2207*45537549124^(15/17) 5912866084864721 a001 514229/2207*312119004989^(9/11) 5912866084864721 a001 514229/2207*14662949395604^(5/7) 5912866084864721 a001 514229/2207*192900153618^(5/6) 5912866084864721 a001 514229/2207*28143753123^(9/10) 5912866084864721 a001 514229/2207*10749957122^(15/16) 5912866084865267 a001 4052739537881/2207*710647^(3/7) 5912866084866103 a001 1548008755920/2207*710647^(1/2) 5912866084866939 a001 591286729879/2207*710647^(4/7) 5912866084867775 a001 225851433717/2207*710647^(9/14) 5912866084868612 a001 86267571272/2207*710647^(5/7) 5912866084869030 a001 53316291173/2207*710647^(3/4) 5912866084869448 a001 32951280099/2207*710647^(11/14) 5912866084870284 a001 12586269025/2207*710647^(6/7) 5912866084871121 a001 4807526976/2207*710647^(13/14) 5912866084891114 a001 4807525989*271443^(5/13) 5912866084897287 a001 4052739537881/2207*271443^(6/13) 5912866084900373 a001 2504730781961/2207*271443^(1/2) 5912866084903460 a001 1548008755920/2207*271443^(7/13) 5912866084909633 a001 591286729879/2207*271443^(8/13) 5912866084915806 a001 225851433717/2207*271443^(9/13) 5912866084921979 a001 86267571272/2207*271443^(10/13) 5912866084928152 a001 32951280099/2207*271443^(11/13) 5912866084934325 a001 12586269025/2207*271443^(12/13) 5912866085070344 a001 75025/2207*14662949395604^(7/9) 5912866085070344 a001 75025/2207*505019158607^(7/8) 5912866085089430 a001 4807525989*103682^(5/12) 5912866085112349 a001 6557470319842/2207*103682^(11/24) 5912866085135267 a001 4052739537881/2207*103682^(1/2) 5912866085158185 a001 2504730781961/2207*103682^(13/24) 5912866085181103 a001 1548008755920/2207*103682^(7/12) 5912866085204021 a001 956722026041/2207*103682^(5/8) 5912866085226940 a001 591286729879/2207*103682^(2/3) 5912866085249858 a001 365435296162/2207*103682^(17/24) 5912866085272776 a001 225851433717/2207*103682^(3/4) 5912866085295694 a001 139583862445/2207*103682^(19/24) 5912866085318612 a001 86267571272/2207*103682^(5/6) 5912866085341530 a001 53316291173/2207*103682^(7/8) 5912866085364449 a001 32951280099/2207*103682^(11/12) 5912866085387367 a001 20365011074/2207*103682^(23/24) 5912866086300262 a001 28657/2207*817138163596^(17/19) 5912866086300262 a001 28657/2207*14662949395604^(17/21) 5912866086300262 a001 28657/2207*192900153618^(17/18) 5912866086573887 a001 4807525989*39603^(5/11) 5912866086745251 a001 6557470319842/2207*39603^(1/2) 5912866086916615 a001 4052739537881/2207*39603^(6/11) 5912866087087979 a001 2504730781961/2207*39603^(13/22) 5912866087233328 s001 sum(exp(-2*Pi/5)^n*A192817[n],n=1..infinity) 5912866087233328 s001 sum(exp(-2*Pi/5)^n*A229968[n],n=1..infinity) 5912866087233328 s002 sum(A192817[n]/(exp(2/5*pi*n)),n=1..infinity) 5912866087233328 s002 sum(A229968[n]/(exp(2/5*pi*n)),n=1..infinity) 5912866087259342 a001 1548008755920/2207*39603^(7/11) 5912866087430706 a001 956722026041/2207*39603^(15/22) 5912866087602070 a001 591286729879/2207*39603^(8/11) 5912866087773434 a001 365435296162/2207*39603^(17/22) 5912866087944798 a001 225851433717/2207*39603^(9/11) 5912866088116162 a001 139583862445/2207*39603^(19/22) 5912866088287526 a001 86267571272/2207*39603^(10/11) 5912866088458889 a001 53316291173/2207*39603^(21/22) 5912866088630004 a001 10472277129572601/17711 5912866097780246 a001 4807525989*15127^(1/2) 5912866099072246 a001 6557470319842/2207*15127^(11/20) 5912866100364246 a001 4052739537881/2207*15127^(3/5) 5912866101656246 a001 2504730781961/2207*15127^(13/20) 5912866102948246 a001 1548008755920/2207*15127^(7/10) 5912866104143787 a007 Real Root Of 508*x^4+325*x^3-935*x^2-782*x+660 5912866104240245 a001 956722026041/2207*15127^(3/4) 5912866105532245 a001 591286729879/2207*15127^(4/5) 5912866106824245 a001 365435296162/2207*15127^(17/20) 5912866108116245 a001 225851433717/2207*15127^(9/10) 5912866108672438 r005 Re(z^2+c),c=-11/114+58/63*I,n=19 5912866109408244 a001 139583862445/2207*15127^(19/20) 5912866110162384 a001 516002918640/281*843^(6/7) 5912866110699995 a001 1333351307962849/2255 5912866125515601 r009 Im(z^3+c),c=-23/64+1/40*I,n=15 5912866138496283 m001 gamma(2)^RenyiParking+ZetaP(4) 5912866141672211 m001 RenyiParking^BesselI(0,1)*RenyiParking^cos(1) 5912866152510235 a001 4181/2207*3461452808002^(11/12) 5912866157118569 p004 log(22783/12613) 5912866158458584 r005 Re(z^2+c),c=-9/70+51/64*I,n=48 5912866159894866 m001 ln(gamma)^PisotVijayaraghavan/BesselJ(0,1) 5912866176741014 a007 Real Root Of -976*x^4+677*x^3+74*x^2-48*x+205 5912866183254672 a001 4807525989*5778^(5/9) 5912866193094115 a001 6557470319842/2207*5778^(11/18) 5912866197362424 m001 (5^(1/2)+Si(Pi))/(-GAMMA(2/3)+LaplaceLimit) 5912866200391371 m005 (1/2*gamma-1/3)/(10/11*3^(1/2)-9/11) 5912866202933557 a001 4052739537881/2207*5778^(2/3) 5912866203711515 r002 21th iterates of z^2 + 5912866212773000 a001 2504730781961/2207*5778^(13/18) 5912866222612442 a001 1548008755920/2207*5778^(7/9) 5912866232451885 a001 956722026041/2207*5778^(5/6) 5912866242291327 a001 591286729879/2207*5778^(8/9) 5912866252130770 a001 365435296162/2207*5778^(17/18) 5912866261969969 a001 190985580261630/323 5912866281390331 a007 Real Root Of 524*x^4-617*x^3-566*x^2-504*x+3 5912866285815339 r005 Re(z^2+c),c=37/106+19/51*I,n=3 5912866295419017 r005 Re(z^2+c),c=-7/58+34/41*I,n=36 5912866302017124 a001 21/1149851*4^(50/59) 5912866314001867 r005 Im(z^2+c),c=-27/74+36/59*I,n=52 5912866339358036 l006 ln(4817/8701) 5912866360915896 m001 FellerTornier-Zeta(5)*ln(2^(1/2)+1) 5912866361555439 m001 (MertensB3+StronglyCareFree)/(1-Cahen) 5912866365502079 h001 (2/5*exp(1)+1/12)/(2/11*exp(2)+7/11) 5912866375902953 m001 ln(Tribonacci)*LandauRamanujan^2/BesselK(1,1) 5912866481995086 m001 1/Tribonacci*FransenRobinson*exp(GAMMA(2/3)) 5912866483257610 r009 Re(z^3+c),c=-63/106+10/41*I,n=5 5912866497045432 r005 Re(z^2+c),c=-91/122+3/25*I,n=15 5912866517935456 m001 FeigenbaumD^cos(1/12*Pi)*FeigenbaumD^GaussAGM 5912866528931763 a001 3571/144*233^(32/55) 5912866545025417 a007 Real Root Of 448*x^4-321*x^3-48*x^2-429*x-358 5912866548540154 a001 1597/2207*14662949395604^(19/21) 5912866572164473 r005 Re(z^2+c),c=3/62+19/51*I,n=24 5912866594197810 m001 exp(GAMMA(5/12))^2*GAMMA(3/4)/Zeta(1/2) 5912866597032419 r009 Re(z^3+c),c=-71/118+13/24*I,n=19 5912866598542258 r005 Re(z^2+c),c=-13/25+23/55*I,n=4 5912866614587586 a007 Real Root Of -76*x^4-413*x^3+153*x^2-206*x+953 5912866618794811 r005 Re(z^2+c),c=-7/12+39/88*I,n=58 5912866658000050 a001 944284805282608/1597 5912866675324906 r005 Re(z^2+c),c=-19/29+19/61*I,n=15 5912866677558948 r009 Im(z^3+c),c=-7/27+46/61*I,n=43 5912866685036500 m001 (Riemann3rdZero-Sarnak)/(Pi+cos(1/12*Pi)) 5912866685275311 a001 86000486440/321*3571^(16/17) 5912866689571242 l006 ln(5155/5469) 5912866693354139 r005 Re(z^2+c),c=1/126+44/59*I,n=13 5912866704476162 a001 956722026041/843*843^(13/14) 5912866712550603 a001 2504730781961/5778*3571^(15/17) 5912866724090977 m001 (ln(5)+GAMMA(13/24))/ln(gamma) 5912866724090977 m001 (ln(5)+GAMMA(13/24))/log(gamma) 5912866733785902 m005 (1/2*Catalan-11/12)/(1/3*gamma+7/12) 5912866739825896 a001 4052739537881/5778*3571^(14/17) 5912866743070143 m001 1/cos(1)/exp(Kolakoski)/sqrt(2) 5912866748409053 r002 6th iterates of z^2 + 5912866761185026 r005 Re(z^2+c),c=-1/23+47/61*I,n=55 5912866767101188 a001 3278735159921/2889*3571^(13/17) 5912866778641082 m001 (Catalan-exp(Pi))/(GAMMA(19/24)+Sierpinski) 5912866781590291 a003 sin(Pi*13/34)-sin(Pi*50/109) 5912866794376481 a001 3536736619241/1926*3571^(12/17) 5912866800057080 r002 4th iterates of z^2 + 5912866800165344 a007 Real Root Of 878*x^4-174*x^3-224*x^2-663*x-457 5912866809270037 a001 944284829440425/1597 5912866810271454 r009 Re(z^3+c),c=-9/106+10/23*I,n=16 5912866812083771 q001 1/1691227 5912866831340031 a001 944284832965003/1597 5912866835029787 a001 944284833554257/1597 5912866835098328 a001 944284833565203/1597 5912866835108328 a001 944284833566800/1597 5912866835109787 a001 944284833567033/1597 5912866835110031 a001 944284833567072/1597 5912866835110037 a001 944284833567073/1597 5912866835110050 a001 944284833567075/1597 5912866835110131 a001 944284833567088/1597 5912866835110688 a001 944284833567177/1597 5912866835114508 a001 944284833567787/1597 5912866835140688 a001 944284833571968/1597 5912866835320131 a001 944284833600625/1597 5912866836545294 a001 4052739537881/15127*3571^(16/17) 5912866836550050 a001 944284833797043/1597 5912866843566314 a001 4807525989*2207^(5/8) 5912866844980037 a001 944284835143312/1597 5912866858615288 a001 3536736619241/13201*3571^(16/17) 5912866862177562 a003 cos(Pi*29/79)-sin(Pi*28/59) 5912866863820587 a001 6557470319842/15127*3571^(15/17) 5912866872255294 a001 3278735159921/12238*3571^(16/17) 5912866873301296 l006 ln(17/6286) 5912866891095880 a001 1515744265389/2161*3571^(14/17) 5912866894197255 h001 (4/7*exp(1)+1/5)/(5/6*exp(1)+7/10) 5912866899530587 a001 10610209857723/24476*3571^(15/17) 5912866902760031 a001 944284844370777/1597 5912866915680918 m001 ln(GAMMA(5/24))^2*Khintchine*Zeta(9)^2 5912866919436926 a001 6557470319842/2207*2207^(11/16) 5912866930035289 a001 2504730781961/9349*3571^(16/17) 5912866939939978 m005 (1/3*Zeta(3)+1/4)/(2/9*Zeta(3)+5/6) 5912866954875215 m001 exp(GAMMA(11/12))^2*Salem^2/GAMMA(11/24) 5912866957310582 a001 4052739537881/9349*3571^(15/17) 5912866977611075 a007 Real Root Of -805*x^4+711*x^3+823*x^2-18*x-53 5912866984585876 a001 6557470319842/9349*3571^(14/17) 5912866986357064 a003 cos(Pi*2/111)*sin(Pi*23/114) 5912866991108604 r005 Re(z^2+c),c=-5/98+5/6*I,n=3 5912866992714049 r009 Re(z^3+c),c=-16/27+1/4*I,n=41 5912866995307538 a001 4052739537881/2207*2207^(3/4) 5912867006840262 p004 log(18661/10331) 5912867011861170 a001 10610209857723/9349*3571^(13/17) 5912867030352757 h001 (1/4*exp(1)+5/6)/(7/9*exp(1)+4/9) 5912867039328436 m001 (HeathBrownMoroz-Lehmer)/(Zeta(1,-1)-GaussAGM) 5912867043599140 a007 Real Root Of 650*x^4-776*x^3-58*x^2-114*x-287 5912867044310390 a001 370248451*34^(11/14) 5912867049062456 a001 199/121393*10946^(4/29) 5912867054030002 a001 2472169715289944/4181 5912867057590533 a001 591286729879/5778*9349^(18/19) 5912867061151059 a001 956722026041/5778*9349^(17/19) 5912867064711585 a001 86000486440/321*9349^(16/19) 5912867068272111 a001 2504730781961/5778*9349^(15/19) 5912867069672837 r005 Im(z^2+c),c=27/118+1/53*I,n=13 5912867071178152 a001 2504730781961/2207*2207^(13/16) 5912867071832637 a001 4052739537881/5778*9349^(14/19) 5912867075393164 a001 3278735159921/2889*9349^(13/19) 5912867078953690 a001 3536736619241/1926*9349^(12/19) 5912867095839999 a001 2584/15127*14662949395604^(20/21) 5912867095840005 a001 2255/1926*14662949395604^(8/9) 5912867111809998 a001 3236112170293612/5473 5912867112280003 a001 75283811239/1926*24476^(20/21) 5912867112750003 a001 182717648081/2889*24476^(19/21) 5912867113220003 a001 591286729879/5778*24476^(6/7) 5912867113690003 a001 956722026041/5778*24476^(17/21) 5912867114160003 a001 86000486440/321*24476^(16/21) 5912867114630003 a001 2504730781961/5778*24476^(5/7) 5912867115100004 a001 4052739537881/5778*24476^(2/3) 5912867115570004 a001 3278735159921/2889*24476^(13/21) 5912867116040004 a001 3536736619241/1926*24476^(4/7) 5912867117909999 a001 17711/5778*14662949395604^(6/7) 5912867120239986 a001 16944503306471728/28657 5912867120302600 a001 43133785636/2889*64079^(22/23) 5912867120365209 a001 139583862445/5778*64079^(21/23) 5912867120427819 a001 75283811239/1926*64079^(20/23) 5912867120490428 a001 182717648081/2889*64079^(19/23) 5912867120553037 a001 591286729879/5778*64079^(18/23) 5912867120615647 a001 956722026041/5778*64079^(17/23) 5912867120678256 a001 86000486440/321*64079^(16/23) 5912867120740865 a001 2504730781961/5778*64079^(15/23) 5912867120803475 a001 4052739537881/5778*64079^(14/23) 5912867120866084 a001 3278735159921/2889*64079^(13/23) 5912867120928693 a001 3536736619241/1926*64079^(12/23) 5912867121129968 a001 2576/321*23725150497407^(13/16) 5912867121129968 a001 2576/321*505019158607^(13/14) 5912867121511929 a001 75283811239/1926*167761^(4/5) 5912867121553948 a001 2504730781961/5778*167761^(3/5) 5912867121599755 a001 121393/5778*312119004989^(10/11) 5912867121599755 a001 121393/5778*3461452808002^(5/6) 5912867121652758 a001 10983760033/1926*439204^(8/9) 5912867121656164 a001 139583862445/5778*439204^(7/9) 5912867121659570 a001 591286729879/5778*439204^(2/3) 5912867121662976 a001 2504730781961/5778*439204^(5/9) 5912867121666381 a001 3536736619241/1926*439204^(4/9) 5912867121668296 a001 105937/1926*45537549124^(16/17) 5912867121668296 a001 105937/1926*14662949395604^(16/21) 5912867121668296 a001 105937/1926*192900153618^(8/9) 5912867121668296 a001 105937/1926*73681302247^(12/13) 5912867121678296 a001 416020/2889*10749957122^(23/24) 5912867121679755 a001 726103/1926*312119004989^(4/5) 5912867121679755 a001 726103/1926*23725150497407^(11/16) 5912867121679755 a001 726103/1926*73681302247^(11/13) 5912867121679755 a001 726103/1926*10749957122^(11/12) 5912867121679755 a001 726103/1926*4106118243^(22/23) 5912867121679918 a001 1836311903/5778*7881196^(10/11) 5912867121679927 a001 7778742049/5778*7881196^(9/11) 5912867121679935 a001 10983760033/1926*7881196^(8/11) 5912867121679941 a001 43133785636/2889*7881196^(2/3) 5912867121679944 a001 139583862445/5778*7881196^(7/11) 5912867121679953 a001 591286729879/5778*7881196^(6/11) 5912867121679961 a001 2504730781961/5778*7881196^(5/11) 5912867121679968 a001 5702887/5778*2537720636^(14/15) 5912867121679968 a001 5702887/5778*17393796001^(6/7) 5912867121679968 a001 5702887/5778*45537549124^(14/17) 5912867121679968 a001 5702887/5778*817138163596^(14/19) 5912867121679968 a001 5702887/5778*14662949395604^(2/3) 5912867121679968 a001 5702887/5778*505019158607^(3/4) 5912867121679968 a001 5702887/5778*192900153618^(7/9) 5912867121679968 a001 5702887/5778*10749957122^(7/8) 5912867121679968 a001 5702887/5778*4106118243^(21/23) 5912867121679968 a001 5702887/5778*1568397607^(21/22) 5912867121679970 a001 3536736619241/1926*7881196^(4/11) 5912867121679993 a001 1836311903/5778*20633239^(6/7) 5912867121679994 a001 267084832/321*20633239^(4/5) 5912867121679995 a001 10182505537/2889*20633239^(5/7) 5912867121679996 a001 139583862445/5778*20633239^(3/5) 5912867121679997 a001 75283811239/1926*20633239^(4/7) 5912867121679999 a001 2504730781961/5778*20633239^(3/7) 5912867121679999 a001 4052739537881/5778*20633239^(2/5) 5912867121679999 a001 2584*2537720636^(8/9) 5912867121679999 a001 2584*312119004989^(8/11) 5912867121679999 a001 2584*23725150497407^(5/8) 5912867121679999 a001 2584*73681302247^(10/13) 5912867121679999 a001 2584*28143753123^(4/5) 5912867121679999 a001 2584*10749957122^(5/6) 5912867121679999 a001 2584*4106118243^(20/23) 5912867121679999 a001 2584*1568397607^(10/11) 5912867121679999 a001 2584*599074578^(20/21) 5912867121680004 a001 39088169/5778*817138163596^(2/3) 5912867121680004 a001 39088169/5778*10749957122^(19/24) 5912867121680004 a001 39088169/5778*4106118243^(19/23) 5912867121680004 a001 39088169/5778*1568397607^(19/22) 5912867121680004 a001 39088169/5778*599074578^(19/21) 5912867121680004 a001 39088169/5778*228826127^(19/20) 5912867121680004 a001 34111385/1926*141422324^(12/13) 5912867121680004 a001 433494437/5778*141422324^(11/13) 5912867121680004 a001 1836311903/5778*141422324^(10/13) 5912867121680004 a001 7778742049/5778*141422324^(9/13) 5912867121680004 a001 12586269025/5778*141422324^(2/3) 5912867121680005 a001 10983760033/1926*141422324^(8/13) 5912867121680005 a001 139583862445/5778*141422324^(7/13) 5912867121680005 a001 591286729879/5778*141422324^(6/13) 5912867121680005 a001 2504730781961/5778*141422324^(5/13) 5912867121680005 a001 34111385/1926*2537720636^(4/5) 5912867121680005 a001 34111385/1926*45537549124^(12/17) 5912867121680005 a001 34111385/1926*14662949395604^(4/7) 5912867121680005 a001 34111385/1926*505019158607^(9/14) 5912867121680005 a001 34111385/1926*192900153618^(2/3) 5912867121680005 a001 34111385/1926*73681302247^(9/13) 5912867121680005 a001 34111385/1926*10749957122^(3/4) 5912867121680005 a001 34111385/1926*4106118243^(18/23) 5912867121680005 a001 34111385/1926*1568397607^(9/11) 5912867121680005 a001 34111385/1926*599074578^(6/7) 5912867121680005 a001 3278735159921/2889*141422324^(1/3) 5912867121680005 a001 3536736619241/1926*141422324^(4/13) 5912867121680005 a001 133957148/2889*45537549124^(2/3) 5912867121680005 a001 133957148/2889*10749957122^(17/24) 5912867121680005 a001 133957148/2889*4106118243^(17/23) 5912867121680005 a001 133957148/2889*1568397607^(17/22) 5912867121680005 a001 34111385/1926*228826127^(9/10) 5912867121680005 a001 133957148/2889*599074578^(17/21) 5912867121680005 a001 233802911/1926*23725150497407^(1/2) 5912867121680005 a001 233802911/1926*505019158607^(4/7) 5912867121680005 a001 233802911/1926*73681302247^(8/13) 5912867121680005 a001 233802911/1926*10749957122^(2/3) 5912867121680005 a001 233802911/1926*4106118243^(16/23) 5912867121680005 a001 1836311903/5778*2537720636^(2/3) 5912867121680005 a001 233802911/1926*1568397607^(8/11) 5912867121680005 a001 7778742049/5778*2537720636^(3/5) 5912867121680005 a001 10182505537/2889*2537720636^(5/9) 5912867121680005 a001 10983760033/1926*2537720636^(8/15) 5912867121680005 a001 139583862445/5778*2537720636^(7/15) 5912867121680005 a001 75283811239/1926*2537720636^(4/9) 5912867121680005 a001 591286729879/5778*2537720636^(2/5) 5912867121680005 a001 1836311903/5778*45537549124^(10/17) 5912867121680005 a001 1836311903/5778*312119004989^(6/11) 5912867121680005 a001 1836311903/5778*14662949395604^(10/21) 5912867121680005 a001 1836311903/5778*192900153618^(5/9) 5912867121680005 a001 1836311903/5778*28143753123^(3/5) 5912867121680005 a001 1836311903/5778*10749957122^(5/8) 5912867121680005 a001 2504730781961/5778*2537720636^(1/3) 5912867121680005 a001 3536736619241/1926*2537720636^(4/15) 5912867121680005 a001 1836311903/5778*4106118243^(15/23) 5912867121680005 a001 267084832/321*17393796001^(4/7) 5912867121680005 a001 267084832/321*14662949395604^(4/9) 5912867121680005 a001 267084832/321*505019158607^(1/2) 5912867121680005 a001 267084832/321*73681302247^(7/13) 5912867121680005 a001 267084832/321*10749957122^(7/12) 5912867121680005 a001 139583862445/5778*17393796001^(3/7) 5912867121680005 a001 12586269025/5778*73681302247^(1/2) 5912867121680005 a001 4052739537881/5778*17393796001^(2/7) 5912867121680005 a001 10983760033/1926*45537549124^(8/17) 5912867121680005 a001 139583862445/5778*45537549124^(7/17) 5912867121680005 a001 10983760033/1926*14662949395604^(8/21) 5912867121680005 a001 10983760033/1926*192900153618^(4/9) 5912867121680005 a001 591286729879/5778*45537549124^(6/17) 5912867121680005 a001 956722026041/5778*45537549124^(1/3) 5912867121680005 a001 2504730781961/5778*45537549124^(5/17) 5912867121680005 a001 3536736619241/1926*45537549124^(4/17) 5912867121680005 a001 10983760033/1926*73681302247^(6/13) 5912867121680005 a001 43133785636/2889*312119004989^(2/5) 5912867121680005 a001 75283811239/1926*23725150497407^(5/16) 5912867121680005 a001 2504730781961/5778*312119004989^(3/11) 5912867121680005 a001 3536736619241/1926*817138163596^(4/19) 5912867121680005 a001 2504730781961/5778*14662949395604^(5/21) 5912867121680005 a001 182717648081/2889*817138163596^(1/3) 5912867121680005 a001 3536736619241/1926*192900153618^(2/9) 5912867121680005 a001 2504730781961/5778*192900153618^(5/18) 5912867121680005 a001 139583862445/5778*14662949395604^(1/3) 5912867121680005 a001 139583862445/5778*192900153618^(7/18) 5912867121680005 a001 3536736619241/1926*73681302247^(3/13) 5912867121680005 a001 3278735159921/2889*73681302247^(1/4) 5912867121680005 a001 86000486440/321*73681302247^(4/13) 5912867121680005 a001 75283811239/1926*73681302247^(5/13) 5912867121680005 a001 2504730781961/5778*28143753123^(3/10) 5912867121680005 a001 10182505537/2889*312119004989^(5/11) 5912867121680005 a001 10182505537/2889*3461452808002^(5/12) 5912867121680005 a001 75283811239/1926*28143753123^(2/5) 5912867121680005 a001 10182505537/2889*28143753123^(1/2) 5912867121680005 a001 3536736619241/1926*10749957122^(1/4) 5912867121680005 a001 4052739537881/5778*10749957122^(7/24) 5912867121680005 a001 2504730781961/5778*10749957122^(5/16) 5912867121680005 a001 86000486440/321*10749957122^(1/3) 5912867121680005 a001 7778742049/5778*45537549124^(9/17) 5912867121680005 a001 591286729879/5778*10749957122^(3/8) 5912867121680005 a001 7778742049/5778*817138163596^(9/19) 5912867121680005 a001 7778742049/5778*14662949395604^(3/7) 5912867121680005 a001 7778742049/5778*192900153618^(1/2) 5912867121680005 a001 12586269025/5778*10749957122^(13/24) 5912867121680005 a001 75283811239/1926*10749957122^(5/12) 5912867121680005 a001 139583862445/5778*10749957122^(7/16) 5912867121680005 a001 43133785636/2889*10749957122^(11/24) 5912867121680005 a001 10983760033/1926*10749957122^(1/2) 5912867121680005 a001 7778742049/5778*10749957122^(9/16) 5912867121680005 a001 3536736619241/1926*4106118243^(6/23) 5912867121680005 a001 4052739537881/5778*4106118243^(7/23) 5912867121680005 a001 86000486440/321*4106118243^(8/23) 5912867121680005 a001 2971215073/5778*1322157322203^(1/2) 5912867121680005 a001 591286729879/5778*4106118243^(9/23) 5912867121680005 a001 75283811239/1926*4106118243^(10/23) 5912867121680005 a001 267084832/321*4106118243^(14/23) 5912867121680005 a001 43133785636/2889*4106118243^(11/23) 5912867121680005 a001 53316291173/5778*4106118243^(1/2) 5912867121680005 a001 10983760033/1926*4106118243^(12/23) 5912867121680005 a001 12586269025/5778*4106118243^(13/23) 5912867121680005 a001 3536736619241/1926*1568397607^(3/11) 5912867121680005 a001 4052739537881/5778*1568397607^(7/22) 5912867121680005 a001 86000486440/321*1568397607^(4/11) 5912867121680005 a001 567451585/2889*9062201101803^(1/2) 5912867121680005 a001 591286729879/5778*1568397607^(9/22) 5912867121680005 a001 75283811239/1926*1568397607^(5/11) 5912867121680005 a001 43133785636/2889*1568397607^(1/2) 5912867121680005 a001 1836311903/5778*1568397607^(15/22) 5912867121680005 a001 10983760033/1926*1568397607^(6/11) 5912867121680005 a001 12586269025/5778*1568397607^(13/22) 5912867121680005 a001 267084832/321*1568397607^(7/11) 5912867121680005 a001 3536736619241/1926*599074578^(2/7) 5912867121680005 a001 4052739537881/5778*599074578^(1/3) 5912867121680005 a001 433494437/5778*2537720636^(11/15) 5912867121680005 a001 2504730781961/5778*599074578^(5/14) 5912867121680005 a001 86000486440/321*599074578^(8/21) 5912867121680005 a001 433494437/5778*45537549124^(11/17) 5912867121680005 a001 433494437/5778*312119004989^(3/5) 5912867121680005 a001 433494437/5778*817138163596^(11/19) 5912867121680005 a001 433494437/5778*14662949395604^(11/21) 5912867121680005 a001 433494437/5778*192900153618^(11/18) 5912867121680005 a001 433494437/5778*10749957122^(11/16) 5912867121680005 a001 591286729879/5778*599074578^(3/7) 5912867121680005 a001 75283811239/1926*599074578^(10/21) 5912867121680005 a001 433494437/5778*1568397607^(3/4) 5912867121680005 a001 139583862445/5778*599074578^(1/2) 5912867121680005 a001 43133785636/2889*599074578^(11/21) 5912867121680005 a001 10983760033/1926*599074578^(4/7) 5912867121680005 a001 233802911/1926*599074578^(16/21) 5912867121680005 a001 12586269025/5778*599074578^(13/21) 5912867121680005 a001 7778742049/5778*599074578^(9/14) 5912867121680005 a001 267084832/321*599074578^(2/3) 5912867121680005 a001 1836311903/5778*599074578^(5/7) 5912867121680005 a001 433494437/5778*599074578^(11/14) 5912867121680005 a001 3536736619241/1926*228826127^(3/10) 5912867121680005 a001 4052739537881/5778*228826127^(7/20) 5912867121680005 a001 2504730781961/5778*228826127^(3/8) 5912867121680005 a001 165580141/5778*2537720636^(7/9) 5912867121680005 a001 165580141/5778*17393796001^(5/7) 5912867121680005 a001 165580141/5778*312119004989^(7/11) 5912867121680005 a001 165580141/5778*14662949395604^(5/9) 5912867121680005 a001 165580141/5778*505019158607^(5/8) 5912867121680005 a001 165580141/5778*28143753123^(7/10) 5912867121680005 a001 86000486440/321*228826127^(2/5) 5912867121680005 a001 591286729879/5778*228826127^(9/20) 5912867121680005 a001 75283811239/1926*228826127^(1/2) 5912867121680005 a001 165580141/5778*599074578^(5/6) 5912867121680005 a001 43133785636/2889*228826127^(11/20) 5912867121680005 a001 10983760033/1926*228826127^(3/5) 5912867121680005 a001 10182505537/2889*228826127^(5/8) 5912867121680005 a001 12586269025/5778*228826127^(13/20) 5912867121680005 a001 267084832/321*228826127^(7/10) 5912867121680005 a001 133957148/2889*228826127^(17/20) 5912867121680005 a001 1836311903/5778*228826127^(3/4) 5912867121680005 a001 233802911/1926*228826127^(4/5) 5912867121680005 a001 165580141/5778*228826127^(7/8) 5912867121680005 a001 3536736619241/1926*87403803^(6/19) 5912867121680005 a001 4052739537881/5778*87403803^(7/19) 5912867121680005 a001 86000486440/321*87403803^(8/19) 5912867121680005 a001 591286729879/5778*87403803^(9/19) 5912867121680005 a001 182717648081/2889*87403803^(1/2) 5912867121680005 a001 75283811239/1926*87403803^(10/19) 5912867121680005 a001 43133785636/2889*87403803^(11/19) 5912867121680005 a001 10983760033/1926*87403803^(12/19) 5912867121680005 a001 12586269025/5778*87403803^(13/19) 5912867121680005 a001 267084832/321*87403803^(14/19) 5912867121680005 a001 1836311903/5778*87403803^(15/19) 5912867121680005 a001 34111385/1926*87403803^(18/19) 5912867121680005 a001 233802911/1926*87403803^(16/19) 5912867121680005 a001 133957148/2889*87403803^(17/19) 5912867121680006 a001 3536736619241/1926*33385282^(1/3) 5912867121680007 a001 24157817/5778*2537720636^(13/15) 5912867121680007 a001 24157817/5778*45537549124^(13/17) 5912867121680007 a001 24157817/5778*14662949395604^(13/21) 5912867121680007 a001 24157817/5778*192900153618^(13/18) 5912867121680007 a001 24157817/5778*73681302247^(3/4) 5912867121680007 a001 24157817/5778*10749957122^(13/16) 5912867121680007 a001 24157817/5778*599074578^(13/14) 5912867121680007 a001 4052739537881/5778*33385282^(7/18) 5912867121680007 a001 2504730781961/5778*33385282^(5/12) 5912867121680007 a001 86000486440/321*33385282^(4/9) 5912867121680007 a001 591286729879/5778*33385282^(1/2) 5912867121680008 a001 75283811239/1926*33385282^(5/9) 5912867121680008 a001 139583862445/5778*33385282^(7/12) 5912867121680008 a001 43133785636/2889*33385282^(11/18) 5912867121680008 a001 10983760033/1926*33385282^(2/3) 5912867121680009 a001 12586269025/5778*33385282^(13/18) 5912867121680009 a001 7778742049/5778*33385282^(3/4) 5912867121680009 a001 267084832/321*33385282^(7/9) 5912867121680009 a001 1836311903/5778*33385282^(5/6) 5912867121680009 a001 233802911/1926*33385282^(8/9) 5912867121680010 a001 433494437/5778*33385282^(11/12) 5912867121680010 a001 133957148/2889*33385282^(17/18) 5912867121680018 a001 3536736619241/1926*12752043^(6/17) 5912867121680020 a001 4052739537881/5778*12752043^(7/17) 5912867121680022 a001 86000486440/321*12752043^(8/17) 5912867121680023 a001 956722026041/5778*12752043^(1/2) 5912867121680024 a001 591286729879/5778*12752043^(9/17) 5912867121680026 a001 75283811239/1926*12752043^(10/17) 5912867121680028 a001 43133785636/2889*12752043^(11/17) 5912867121680030 a001 10983760033/1926*12752043^(12/17) 5912867121680032 a001 12586269025/5778*12752043^(13/17) 5912867121680035 a001 267084832/321*12752043^(14/17) 5912867121680037 a001 1836311903/5778*12752043^(15/17) 5912867121680039 a001 233802911/1926*12752043^(16/17) 5912867121680098 a001 3536736619241/1926*4870847^(3/8) 5912867121680114 a001 4052739537881/5778*4870847^(7/16) 5912867121680129 a001 86000486440/321*4870847^(1/2) 5912867121680145 a001 591286729879/5778*4870847^(9/16) 5912867121680160 a001 75283811239/1926*4870847^(5/8) 5912867121680176 a001 43133785636/2889*4870847^(11/16) 5912867121680192 a001 10983760033/1926*4870847^(3/4) 5912867121680207 a001 12586269025/5778*4870847^(13/16) 5912867121680223 a001 267084832/321*4870847^(7/8) 5912867121680238 a001 1836311903/5778*4870847^(15/16) 5912867121680657 a001 1346269/5778*45537549124^(15/17) 5912867121680657 a001 1346269/5778*312119004989^(9/11) 5912867121680657 a001 1346269/5778*14662949395604^(5/7) 5912867121680657 a001 1346269/5778*192900153618^(5/6) 5912867121680657 a001 1346269/5778*28143753123^(9/10) 5912867121680657 a001 1346269/5778*10749957122^(15/16) 5912867121680688 a001 3536736619241/1926*1860498^(2/5) 5912867121680802 a001 4052739537881/5778*1860498^(7/15) 5912867121680859 a001 2504730781961/5778*1860498^(1/2) 5912867121680916 a001 86000486440/321*1860498^(8/15) 5912867121681030 a001 591286729879/5778*1860498^(3/5) 5912867121681143 a001 75283811239/1926*1860498^(2/3) 5912867121681200 a001 139583862445/5778*1860498^(7/10) 5912867121681257 a001 43133785636/2889*1860498^(11/15) 5912867121681371 a001 10983760033/1926*1860498^(4/5) 5912867121681428 a001 10182505537/2889*1860498^(5/6) 5912867121681485 a001 12586269025/5778*1860498^(13/15) 5912867121681542 a001 7778742049/5778*1860498^(9/10) 5912867121681599 a001 267084832/321*1860498^(14/15) 5912867121685022 a001 3536736619241/1926*710647^(3/7) 5912867121685859 a001 4052739537881/5778*710647^(1/2) 5912867121686695 a001 86000486440/321*710647^(4/7) 5912867121687531 a001 591286729879/5778*710647^(9/14) 5912867121688368 a001 75283811239/1926*710647^(5/7) 5912867121688786 a001 139583862445/5778*710647^(3/4) 5912867121689204 a001 43133785636/2889*710647^(11/14) 5912867121690040 a001 10983760033/1926*710647^(6/7) 5912867121690877 a001 12586269025/5778*710647^(13/14) 5912867121710657 a001 98209/2889*14662949395604^(7/9) 5912867121710657 a001 98209/2889*505019158607^(7/8) 5912867121717043 a001 3536736619241/1926*271443^(6/13) 5912867121720129 a001 3278735159921/2889*271443^(1/2) 5912867121723216 a001 4052739537881/5778*271443^(7/13) 5912867121729389 a001 86000486440/321*271443^(8/13) 5912867121735562 a001 591286729879/5778*271443^(9/13) 5912867121741735 a001 75283811239/1926*271443^(10/13) 5912867121747908 a001 43133785636/2889*271443^(11/13) 5912867121754081 a001 10983760033/1926*271443^(12/13) 5912867121890100 a001 75025/5778*817138163596^(17/19) 5912867121890100 a001 75025/5778*14662949395604^(17/21) 5912867121890100 a001 75025/5778*192900153618^(17/18) 5912867121955023 a001 3536736619241/1926*103682^(1/2) 5912867121977941 a001 3278735159921/2889*103682^(13/24) 5912867122000859 a001 4052739537881/5778*103682^(7/12) 5912867122023777 a001 2504730781961/5778*103682^(5/8) 5912867122046696 a001 86000486440/321*103682^(2/3) 5912867122069614 a001 956722026041/5778*103682^(17/24) 5912867122092532 a001 591286729879/5778*103682^(3/4) 5912867122115450 a001 182717648081/2889*103682^(19/24) 5912867122138368 a001 75283811239/1926*103682^(5/6) 5912867122161286 a001 139583862445/5778*103682^(7/8) 5912867122184205 a001 43133785636/2889*103682^(11/12) 5912867122207123 a001 53316291173/5778*103682^(23/24) 5912867122230036 a001 163195132573549/276 5912867123736371 a001 3536736619241/1926*39603^(6/11) 5912867123907735 a001 3278735159921/2889*39603^(13/22) 5912867124079099 a001 4052739537881/5778*39603^(7/11) 5912867124250463 a001 2504730781961/5778*39603^(15/22) 5912867124421827 a001 86000486440/321*39603^(8/11) 5912867124593191 a001 956722026041/5778*39603^(17/22) 5912867124764554 a001 591286729879/5778*39603^(9/11) 5912867124935918 a001 182717648081/2889*39603^(19/22) 5912867125107282 a001 75283811239/1926*39603^(10/11) 5912867125278646 a001 139583862445/5778*39603^(21/22) 5912867125450005 a001 10472278965884504/17711 5912867128173724 m005 (1/3*Catalan+2/3)/(119/120+7/24*5^(1/2)) 5912867131550006 a001 5473/2889*3461452808002^(11/12) 5912867137184005 a001 3536736619241/1926*15127^(3/5) 5912867137435435 r009 Im(z^3+c),c=-23/94+27/41*I,n=8 5912867138476005 a001 3278735159921/2889*15127^(13/20) 5912867139768005 a001 4052739537881/5778*15127^(7/10) 5912867141060005 a001 2504730781961/5778*15127^(3/4) 5912867142352005 a001 86000486440/321*15127^(4/5) 5912867143644005 a001 956722026041/5778*15127^(17/20) 5912867144936005 a001 591286729879/5778*15127^(9/10) 5912867146228005 a001 182717648081/2889*15127^(19/20) 5912867147048767 a001 1548008755920/2207*2207^(7/8) 5912867159495462 h001 (3/11*exp(2)+7/8)/(3/5*exp(2)+5/11) 5912867164272601 a007 Real Root Of -743*x^4+579*x^3-240*x^2+806*x+771 5912867164457826 r009 Re(z^3+c),c=-13/110+43/62*I,n=30 5912867180215495 a007 Real Root Of 326*x^4-898*x^3+382*x^2-96*x+69 5912867189330003 a001 4181/5778*14662949395604^(19/21) 5912867190994207 r008 a(0)=6,K{-n^6,80+3*n^2-73*n} 5912867208860525 a001 1548008755920/15127*9349^(18/19) 5912867212421051 a001 2504730781961/15127*9349^(17/19) 5912867215981578 a001 4052739537881/15127*9349^(16/19) 5912867219542104 a001 6557470319842/15127*9349^(15/19) 5912867222919383 a001 956722026041/2207*2207^(15/16) 5912867223102630 a001 1515744265389/2161*9349^(14/19) 5912867225281616 a001 1/123*(1/2*5^(1/2)+1/2)^14*199^(16/19) 5912867227283898 a007 Real Root Of -560*x^4+191*x^3-385*x^2+16*x+252 5912867227369995 a001 2472169787763395/4181 5912867230589964 a001 2472169789109664/4181 5912867230930520 a001 4052739537881/39603*9349^(18/19) 5912867231059751 a001 2472169789306082/4181 5912867231128292 a001 2472169789334739/4181 5912867231138292 a001 2472169789338920/4181 5912867231139751 a001 2472169789339530/4181 5912867231139964 a001 2472169789339619/4181 5912867231139995 a001 2472169789339632/4181 5912867231140002 a001 2472169789339635/4181 5912867231140014 a001 2472169789339640/4181 5912867231140095 a001 2472169789339674/4181 5912867231140652 a001 2472169789339907/4181 5912867231144472 a001 2472169789341504/4181 5912867231170652 a001 2472169789352450/4181 5912867231350095 a001 2472169789427475/4181 5912867232369921 a007 Real Root Of -153*x^4+137*x^3-452*x^2+947*x+765 5912867232580014 a001 2472169789941704/4181 5912867234150489 a001 225749145909/2206*9349^(18/19) 5912867234491047 a001 6557470319842/39603*9349^(17/19) 5912867236140539 a001 6557470319842/64079*9349^(18/19) 5912867237516029 m001 (DuboisRaymond-ZetaQ(2))/(3^(1/3)-Zeta(1,2)) 5912867238051573 a001 3536736619241/13201*9349^(16/19) 5912867239701066 a001 10610209857723/64079*9349^(17/19) 5912867239753334 a001 3536736619241/1926*5778^(2/3) 5912867241010002 a001 2472169793466282/4181 5912867244570527 a001 2504730781961/24476*9349^(18/19) 5912867248131054 a001 4052739537881/24476*9349^(17/19) 5912867249592778 a001 3278735159921/2889*5778^(13/18) 5912867251444255 a007 Real Root Of 372*x^4-108*x^3+28*x^2-733*x-511 5912867251691580 a001 3278735159921/12238*9349^(16/19) 5912867254735748 m001 (Catalan-Zeta(5))/(-exp(-1/2*Pi)+ThueMorse) 5912867255252106 a001 10610209857723/24476*9349^(15/19) 5912867258216601 r005 Re(z^2+c),c=19/74+20/51*I,n=47 5912867259432222 a001 4052739537881/5778*5778^(7/9) 5912867263079997 a001 6472224506167365/10946 5912867263549997 a001 591286729879/15127*24476^(20/21) 5912867264019997 a001 956722026041/15127*24476^(19/21) 5912867264489997 a001 1548008755920/15127*24476^(6/7) 5912867264959997 a001 2504730781961/15127*24476^(17/21) 5912867265429997 a001 4052739537881/15127*24476^(16/21) 5912867265899997 a001 6557470319842/15127*24476^(5/7) 5912867266369998 a001 1515744265389/2161*24476^(2/3) 5912867269179993 a001 2255/13201*14662949395604^(20/21) 5912867269179994 a001 17711/15127*14662949395604^(8/9) 5912867269271667 a001 2504730781961/5778*5778^(5/6) 5912867269808554 a007 Real Root Of 928*x^4-307*x^3+147*x^2-791*x-696 5912867271509985 a001 16944503739966165/28657 5912867271572594 a001 32264490531/2161*64079^(22/23) 5912867271635204 a001 365435296162/15127*64079^(21/23) 5912867271697813 a001 591286729879/15127*64079^(20/23) 5912867271760422 a001 956722026041/15127*64079^(19/23) 5912867271823031 a001 1548008755920/15127*64079^(18/23) 5912867271885641 a001 2504730781961/15127*64079^(17/23) 5912867271948250 a001 4052739537881/15127*64079^(16/23) 5912867272010859 a001 6557470319842/15127*64079^(15/23) 5912867272073469 a001 1515744265389/2161*64079^(14/23) 5912867272399962 a001 6624/2161*14662949395604^(6/7) 5912867272739904 a001 8872257342746226/15005 5912867272781923 a001 591286729879/15127*167761^(4/5) 5912867272823942 a001 6557470319842/15127*167761^(3/5) 5912867272869750 a001 121393/15127*23725150497407^(13/16) 5912867272869750 a001 121393/15127*505019158607^(13/14) 5912867272922752 a001 86267571272/15127*439204^(8/9) 5912867272926158 a001 365435296162/15127*439204^(7/9) 5912867272929564 a001 1548008755920/15127*439204^(2/3) 5912867272932970 a001 6557470319842/15127*439204^(5/9) 5912867272938291 a001 317811/15127*312119004989^(10/11) 5912867272938291 a001 317811/15127*3461452808002^(5/6) 5912867272948291 a001 832040/15127*45537549124^(16/17) 5912867272948291 a001 832040/15127*14662949395604^(16/21) 5912867272948291 a001 832040/15127*192900153618^(8/9) 5912867272948291 a001 832040/15127*73681302247^(12/13) 5912867272949750 a001 311187/2161*10749957122^(23/24) 5912867272949912 a001 686789568/2161*7881196^(10/11) 5912867272949921 a001 20365011074/15127*7881196^(9/11) 5912867272949930 a001 86267571272/15127*7881196^(8/11) 5912867272949935 a001 32264490531/2161*7881196^(2/3) 5912867272949938 a001 365435296162/15127*7881196^(7/11) 5912867272949947 a001 1548008755920/15127*7881196^(6/11) 5912867272949956 a001 6557470319842/15127*7881196^(5/11) 5912867272949962 a001 5702887/15127*312119004989^(4/5) 5912867272949962 a001 5702887/15127*23725150497407^(11/16) 5912867272949962 a001 5702887/15127*73681302247^(11/13) 5912867272949962 a001 5702887/15127*10749957122^(11/12) 5912867272949962 a001 5702887/15127*4106118243^(22/23) 5912867272949987 a001 686789568/2161*20633239^(6/7) 5912867272949988 a001 12586269025/15127*20633239^(4/5) 5912867272949989 a001 53316291173/15127*20633239^(5/7) 5912867272949991 a001 365435296162/15127*20633239^(3/5) 5912867272949991 a001 591286729879/15127*20633239^(4/7) 5912867272949993 a001 6557470319842/15127*20633239^(3/7) 5912867272949993 a001 1515744265389/2161*20633239^(2/5) 5912867272949994 a001 14930352/15127*2537720636^(14/15) 5912867272949994 a001 14930352/15127*17393796001^(6/7) 5912867272949994 a001 14930352/15127*45537549124^(14/17) 5912867272949994 a001 14930352/15127*817138163596^(14/19) 5912867272949994 a001 14930352/15127*14662949395604^(2/3) 5912867272949994 a001 14930352/15127*505019158607^(3/4) 5912867272949994 a001 14930352/15127*192900153618^(7/9) 5912867272949994 a001 14930352/15127*10749957122^(7/8) 5912867272949994 a001 14930352/15127*4106118243^(21/23) 5912867272949994 a001 14930352/15127*1568397607^(21/22) 5912867272949998 a001 39088169/15127*2537720636^(8/9) 5912867272949998 a001 39088169/15127*312119004989^(8/11) 5912867272949998 a001 39088169/15127*23725150497407^(5/8) 5912867272949998 a001 39088169/15127*73681302247^(10/13) 5912867272949998 a001 39088169/15127*28143753123^(4/5) 5912867272949998 a001 39088169/15127*10749957122^(5/6) 5912867272949998 a001 39088169/15127*4106118243^(20/23) 5912867272949998 a001 39088169/15127*1568397607^(10/11) 5912867272949998 a001 39088169/15127*599074578^(20/21) 5912867272949999 a001 267914296/15127*141422324^(12/13) 5912867272949999 a001 1134903170/15127*141422324^(11/13) 5912867272949999 a001 686789568/2161*141422324^(10/13) 5912867272949999 a001 20365011074/15127*141422324^(9/13) 5912867272949999 a001 32951280099/15127*141422324^(2/3) 5912867272949999 a001 86267571272/15127*141422324^(8/13) 5912867272949999 a001 365435296162/15127*141422324^(7/13) 5912867272949999 a001 1548008755920/15127*141422324^(6/13) 5912867272949999 a001 6557470319842/15127*141422324^(5/13) 5912867272949999 a001 6765*817138163596^(2/3) 5912867272949999 a001 6765*10749957122^(19/24) 5912867272949999 a001 6765*4106118243^(19/23) 5912867272949999 a001 6765*1568397607^(19/22) 5912867272949999 a001 6765*599074578^(19/21) 5912867272949999 a001 267914296/15127*2537720636^(4/5) 5912867272949999 a001 267914296/15127*45537549124^(12/17) 5912867272949999 a001 267914296/15127*14662949395604^(4/7) 5912867272949999 a001 267914296/15127*505019158607^(9/14) 5912867272949999 a001 267914296/15127*192900153618^(2/3) 5912867272949999 a001 267914296/15127*73681302247^(9/13) 5912867272949999 a001 267914296/15127*10749957122^(3/4) 5912867272949999 a001 267914296/15127*4106118243^(18/23) 5912867272949999 a001 267914296/15127*1568397607^(9/11) 5912867272949999 a001 6765*228826127^(19/20) 5912867272949999 a001 701408733/15127*45537549124^(2/3) 5912867272949999 a001 701408733/15127*10749957122^(17/24) 5912867272949999 a001 267914296/15127*599074578^(6/7) 5912867272949999 a001 701408733/15127*4106118243^(17/23) 5912867272949999 a001 686789568/2161*2537720636^(2/3) 5912867272949999 a001 20365011074/15127*2537720636^(3/5) 5912867272949999 a001 701408733/15127*1568397607^(17/22) 5912867272949999 a001 53316291173/15127*2537720636^(5/9) 5912867272949999 a001 86267571272/15127*2537720636^(8/15) 5912867272949999 a001 365435296162/15127*2537720636^(7/15) 5912867272949999 a001 591286729879/15127*2537720636^(4/9) 5912867272949999 a001 1548008755920/15127*2537720636^(2/5) 5912867272949999 a001 1836311903/15127*23725150497407^(1/2) 5912867272949999 a001 1836311903/15127*505019158607^(4/7) 5912867272949999 a001 1836311903/15127*73681302247^(8/13) 5912867272949999 a001 1836311903/15127*10749957122^(2/3) 5912867272949999 a001 6557470319842/15127*2537720636^(1/3) 5912867272949999 a001 1836311903/15127*4106118243^(16/23) 5912867272949999 a001 686789568/2161*45537549124^(10/17) 5912867272949999 a001 686789568/2161*312119004989^(6/11) 5912867272949999 a001 686789568/2161*14662949395604^(10/21) 5912867272949999 a001 686789568/2161*192900153618^(5/9) 5912867272949999 a001 686789568/2161*28143753123^(3/5) 5912867272949999 a001 686789568/2161*10749957122^(5/8) 5912867272949999 a001 12586269025/15127*17393796001^(4/7) 5912867272949999 a001 365435296162/15127*17393796001^(3/7) 5912867272949999 a001 12586269025/15127*14662949395604^(4/9) 5912867272949999 a001 12586269025/15127*505019158607^(1/2) 5912867272949999 a001 12586269025/15127*73681302247^(7/13) 5912867272949999 a001 1515744265389/2161*17393796001^(2/7) 5912867272949999 a001 86267571272/15127*45537549124^(8/17) 5912867272949999 a001 365435296162/15127*45537549124^(7/17) 5912867272949999 a001 1548008755920/15127*45537549124^(6/17) 5912867272949999 a001 2504730781961/15127*45537549124^(1/3) 5912867272949999 a001 6557470319842/15127*45537549124^(5/17) 5912867272949999 a001 32951280099/15127*73681302247^(1/2) 5912867272949999 a001 86267571272/15127*14662949395604^(8/21) 5912867272949999 a001 86267571272/15127*192900153618^(4/9) 5912867272949999 a001 591286729879/15127*23725150497407^(5/16) 5912867272949999 a001 1548008755920/15127*14662949395604^(2/7) 5912867272949999 a001 1515744265389/2161*14662949395604^(2/9) 5912867272949999 a001 591286729879/15127*505019158607^(5/14) 5912867272949999 a001 365435296162/15127*14662949395604^(1/3) 5912867272949999 a001 6557470319842/15127*192900153618^(5/18) 5912867272949999 a001 1548008755920/15127*192900153618^(1/3) 5912867272949999 a001 365435296162/15127*192900153618^(7/18) 5912867272949999 a001 4052739537881/15127*73681302247^(4/13) 5912867272949999 a001 86267571272/15127*73681302247^(6/13) 5912867272949999 a001 53316291173/15127*312119004989^(5/11) 5912867272949999 a001 53316291173/15127*3461452808002^(5/12) 5912867272949999 a001 20365011074/15127*45537549124^(9/17) 5912867272949999 a001 6557470319842/15127*28143753123^(3/10) 5912867272949999 a001 20365011074/15127*817138163596^(9/19) 5912867272949999 a001 20365011074/15127*14662949395604^(3/7) 5912867272949999 a001 20365011074/15127*192900153618^(1/2) 5912867272949999 a001 591286729879/15127*28143753123^(2/5) 5912867272949999 a001 53316291173/15127*28143753123^(1/2) 5912867272949999 a001 1515744265389/2161*10749957122^(7/24) 5912867272949999 a001 6557470319842/15127*10749957122^(5/16) 5912867272949999 a001 4052739537881/15127*10749957122^(1/3) 5912867272949999 a001 1548008755920/15127*10749957122^(3/8) 5912867272949999 a001 7778742049/15127*1322157322203^(1/2) 5912867272949999 a001 591286729879/15127*10749957122^(5/12) 5912867272949999 a001 12586269025/15127*10749957122^(7/12) 5912867272949999 a001 365435296162/15127*10749957122^(7/16) 5912867272949999 a001 32264490531/2161*10749957122^(11/24) 5912867272949999 a001 86267571272/15127*10749957122^(1/2) 5912867272949999 a001 32951280099/15127*10749957122^(13/24) 5912867272949999 a001 20365011074/15127*10749957122^(9/16) 5912867272949999 a001 1515744265389/2161*4106118243^(7/23) 5912867272949999 a001 4052739537881/15127*4106118243^(8/23) 5912867272949999 a001 2971215073/15127*9062201101803^(1/2) 5912867272949999 a001 1548008755920/15127*4106118243^(9/23) 5912867272949999 a001 591286729879/15127*4106118243^(10/23) 5912867272949999 a001 32264490531/2161*4106118243^(11/23) 5912867272949999 a001 139583862445/15127*4106118243^(1/2) 5912867272949999 a001 686789568/2161*4106118243^(15/23) 5912867272949999 a001 86267571272/15127*4106118243^(12/23) 5912867272949999 a001 32951280099/15127*4106118243^(13/23) 5912867272949999 a001 12586269025/15127*4106118243^(14/23) 5912867272949999 a001 1134903170/15127*2537720636^(11/15) 5912867272949999 a001 1515744265389/2161*1568397607^(7/22) 5912867272949999 a001 4052739537881/15127*1568397607^(4/11) 5912867272949999 a001 1134903170/15127*45537549124^(11/17) 5912867272949999 a001 1134903170/15127*312119004989^(3/5) 5912867272949999 a001 1134903170/15127*14662949395604^(11/21) 5912867272949999 a001 1134903170/15127*192900153618^(11/18) 5912867272949999 a001 1134903170/15127*10749957122^(11/16) 5912867272949999 a001 1548008755920/15127*1568397607^(9/22) 5912867272949999 a001 591286729879/15127*1568397607^(5/11) 5912867272949999 a001 32264490531/2161*1568397607^(1/2) 5912867272949999 a001 86267571272/15127*1568397607^(6/11) 5912867272949999 a001 1836311903/15127*1568397607^(8/11) 5912867272949999 a001 32951280099/15127*1568397607^(13/22) 5912867272949999 a001 12586269025/15127*1568397607^(7/11) 5912867272949999 a001 686789568/2161*1568397607^(15/22) 5912867272949999 a001 1134903170/15127*1568397607^(3/4) 5912867272949999 a001 1515744265389/2161*599074578^(1/3) 5912867272949999 a001 433494437/15127*2537720636^(7/9) 5912867272949999 a001 6557470319842/15127*599074578^(5/14) 5912867272949999 a001 4052739537881/15127*599074578^(8/21) 5912867272949999 a001 433494437/15127*17393796001^(5/7) 5912867272949999 a001 433494437/15127*312119004989^(7/11) 5912867272949999 a001 433494437/15127*14662949395604^(5/9) 5912867272949999 a001 433494437/15127*505019158607^(5/8) 5912867272949999 a001 433494437/15127*28143753123^(7/10) 5912867272949999 a001 1548008755920/15127*599074578^(3/7) 5912867272949999 a001 591286729879/15127*599074578^(10/21) 5912867272949999 a001 365435296162/15127*599074578^(1/2) 5912867272949999 a001 32264490531/2161*599074578^(11/21) 5912867272949999 a001 86267571272/15127*599074578^(4/7) 5912867272949999 a001 32951280099/15127*599074578^(13/21) 5912867272949999 a001 20365011074/15127*599074578^(9/14) 5912867272949999 a001 701408733/15127*599074578^(17/21) 5912867272949999 a001 12586269025/15127*599074578^(2/3) 5912867272949999 a001 686789568/2161*599074578^(5/7) 5912867272949999 a001 1836311903/15127*599074578^(16/21) 5912867272949999 a001 1134903170/15127*599074578^(11/14) 5912867272949999 a001 433494437/15127*599074578^(5/6) 5912867272949999 a001 1515744265389/2161*228826127^(7/20) 5912867272949999 a001 6557470319842/15127*228826127^(3/8) 5912867272949999 a001 4052739537881/15127*228826127^(2/5) 5912867272949999 a001 1548008755920/15127*228826127^(9/20) 5912867272949999 a001 591286729879/15127*228826127^(1/2) 5912867272949999 a001 32264490531/2161*228826127^(11/20) 5912867272949999 a001 86267571272/15127*228826127^(3/5) 5912867272949999 a001 53316291173/15127*228826127^(5/8) 5912867272949999 a001 32951280099/15127*228826127^(13/20) 5912867272949999 a001 12586269025/15127*228826127^(7/10) 5912867272949999 a001 686789568/2161*228826127^(3/4) 5912867272949999 a001 267914296/15127*228826127^(9/10) 5912867272949999 a001 1836311903/15127*228826127^(4/5) 5912867272949999 a001 701408733/15127*228826127^(17/20) 5912867272949999 a001 433494437/15127*228826127^(7/8) 5912867272949999 a001 1515744265389/2161*87403803^(7/19) 5912867272949999 a001 63245986/15127*2537720636^(13/15) 5912867272949999 a001 63245986/15127*45537549124^(13/17) 5912867272949999 a001 63245986/15127*14662949395604^(13/21) 5912867272949999 a001 63245986/15127*192900153618^(13/18) 5912867272949999 a001 63245986/15127*73681302247^(3/4) 5912867272949999 a001 63245986/15127*10749957122^(13/16) 5912867272949999 a001 63245986/15127*599074578^(13/14) 5912867272949999 a001 4052739537881/15127*87403803^(8/19) 5912867272949999 a001 1548008755920/15127*87403803^(9/19) 5912867272949999 a001 956722026041/15127*87403803^(1/2) 5912867272949999 a001 591286729879/15127*87403803^(10/19) 5912867272949999 a001 32264490531/2161*87403803^(11/19) 5912867272949999 a001 86267571272/15127*87403803^(12/19) 5912867272949999 a001 32951280099/15127*87403803^(13/19) 5912867272949999 a001 12586269025/15127*87403803^(14/19) 5912867272949999 a001 686789568/2161*87403803^(15/19) 5912867272949999 a001 1836311903/15127*87403803^(16/19) 5912867272950000 a001 701408733/15127*87403803^(17/19) 5912867272950000 a001 267914296/15127*87403803^(18/19) 5912867272950001 a001 1515744265389/2161*33385282^(7/18) 5912867272950001 a001 6557470319842/15127*33385282^(5/12) 5912867272950001 a001 4052739537881/15127*33385282^(4/9) 5912867272950001 a001 1548008755920/15127*33385282^(1/2) 5912867272950002 a001 591286729879/15127*33385282^(5/9) 5912867272950002 a001 365435296162/15127*33385282^(7/12) 5912867272950002 a001 32264490531/2161*33385282^(11/18) 5912867272950002 a001 86267571272/15127*33385282^(2/3) 5912867272950003 a001 32951280099/15127*33385282^(13/18) 5912867272950003 a001 20365011074/15127*33385282^(3/4) 5912867272950003 a001 12586269025/15127*33385282^(7/9) 5912867272950003 a001 686789568/2161*33385282^(5/6) 5912867272950004 a001 1836311903/15127*33385282^(8/9) 5912867272950004 a001 1134903170/15127*33385282^(11/12) 5912867272950004 a001 701408733/15127*33385282^(17/18) 5912867272950014 a001 1515744265389/2161*12752043^(7/17) 5912867272950016 a001 4052739537881/15127*12752043^(8/17) 5912867272950017 a001 2504730781961/15127*12752043^(1/2) 5912867272950018 a001 1548008755920/15127*12752043^(9/17) 5912867272950020 a001 591286729879/15127*12752043^(10/17) 5912867272950022 a001 32264490531/2161*12752043^(11/17) 5912867272950025 a001 86267571272/15127*12752043^(12/17) 5912867272950027 a001 32951280099/15127*12752043^(13/17) 5912867272950029 a001 12586269025/15127*12752043^(14/17) 5912867272950031 a001 686789568/2161*12752043^(15/17) 5912867272950033 a001 1836311903/15127*12752043^(16/17) 5912867272950094 a001 3524578/15127*45537549124^(15/17) 5912867272950094 a001 3524578/15127*312119004989^(9/11) 5912867272950094 a001 3524578/15127*14662949395604^(5/7) 5912867272950094 a001 3524578/15127*192900153618^(5/6) 5912867272950094 a001 3524578/15127*28143753123^(9/10) 5912867272950094 a001 3524578/15127*10749957122^(15/16) 5912867272950108 a001 1515744265389/2161*4870847^(7/16) 5912867272950123 a001 4052739537881/15127*4870847^(1/2) 5912867272950139 a001 1548008755920/15127*4870847^(9/16) 5912867272950155 a001 591286729879/15127*4870847^(5/8) 5912867272950170 a001 32264490531/2161*4870847^(11/16) 5912867272950186 a001 86267571272/15127*4870847^(3/4) 5912867272950201 a001 32951280099/15127*4870847^(13/16) 5912867272950217 a001 12586269025/15127*4870847^(7/8) 5912867272950232 a001 686789568/2161*4870847^(15/16) 5912867272950796 a001 1515744265389/2161*1860498^(7/15) 5912867272950853 a001 6557470319842/15127*1860498^(1/2) 5912867272950910 a001 4052739537881/15127*1860498^(8/15) 5912867272951024 a001 1548008755920/15127*1860498^(3/5) 5912867272951138 a001 591286729879/15127*1860498^(2/3) 5912867272951195 a001 365435296162/15127*1860498^(7/10) 5912867272951252 a001 32264490531/2161*1860498^(11/15) 5912867272951365 a001 86267571272/15127*1860498^(4/5) 5912867272951422 a001 53316291173/15127*1860498^(5/6) 5912867272951479 a001 32951280099/15127*1860498^(13/15) 5912867272951536 a001 20365011074/15127*1860498^(9/10) 5912867272951593 a001 12586269025/15127*1860498^(14/15) 5912867272954471 a001 514229/15127*14662949395604^(7/9) 5912867272954471 a001 514229/15127*505019158607^(7/8) 5912867272955853 a001 1515744265389/2161*710647^(1/2) 5912867272956689 a001 4052739537881/15127*710647^(4/7) 5912867272957526 a001 1548008755920/15127*710647^(9/14) 5912867272958362 a001 591286729879/15127*710647^(5/7) 5912867272958780 a001 365435296162/15127*710647^(3/4) 5912867272959198 a001 32264490531/2161*710647^(11/14) 5912867272960034 a001 86267571272/15127*710647^(6/7) 5912867272960871 a001 32951280099/15127*710647^(13/14) 5912867272980651 a001 196418/15127*817138163596^(17/19) 5912867272980651 a001 196418/15127*14662949395604^(17/21) 5912867272980651 a001 196418/15127*192900153618^(17/18) 5912867272993210 a001 1515744265389/2161*271443^(7/13) 5912867272999383 a001 4052739537881/15127*271443^(8/13) 5912867273005556 a001 1548008755920/15127*271443^(9/13) 5912867273011729 a001 591286729879/15127*271443^(10/13) 5912867273017902 a001 32264490531/2161*271443^(11/13) 5912867273024075 a001 86267571272/15127*271443^(12/13) 5912867273030248 a001 71778069687496095/121393 5912867273270853 a001 1515744265389/2161*103682^(7/12) 5912867273293772 a001 6557470319842/15127*103682^(5/8) 5912867273316690 a001 4052739537881/15127*103682^(2/3) 5912867273339608 a001 2504730781961/15127*103682^(17/24) 5912867273362526 a001 1548008755920/15127*103682^(3/4) 5912867273385444 a001 956722026041/15127*103682^(19/24) 5912867273397520 r009 Im(z^3+c),c=-11/26+33/56*I,n=20 5912867273408362 a001 591286729879/15127*103682^(5/6) 5912867273431281 a001 365435296162/15127*103682^(7/8) 5912867273454199 a001 32264490531/2161*103682^(11/12) 5912867273477117 a001 139583862445/15127*103682^(23/24) 5912867273500035 a001 9138927657921655/15456 5912867274390013 a001 28657/15127*3461452808002^(11/12) 5912867275349093 a001 1515744265389/2161*39603^(7/11) 5912867275520457 a001 6557470319842/15127*39603^(15/22) 5912867275691821 a001 4052739537881/15127*39603^(8/11) 5912867275863185 a001 2504730781961/15127*39603^(17/22) 5912867276034549 a001 1548008755920/15127*39603^(9/11) 5912867276205912 a001 956722026041/15127*39603^(19/22) 5912867276377276 a001 591286729879/15127*39603^(10/11) 5912867276548640 a001 365435296162/15127*39603^(21/22) 5912867276720004 a001 10472279233798800/17711 5912867279111111 a001 86000486440/321*5778^(8/9) 5912867279406372 s002 sum(A112272[n]/(pi^n+1),n=1..infinity) 5912867282820001 a001 10946/15127*14662949395604^(19/21) 5912867285149992 a001 3236112265162591/5473 5912867285619992 a001 516002918640/13201*24476^(20/21) 5912867286089992 a001 2504730781961/39603*24476^(19/21) 5912867286559992 a001 4052739537881/39603*24476^(6/7) 5912867287029993 a001 6557470319842/39603*24476^(17/21) 5912867287499993 a001 3536736619241/13201*24476^(16/21) 5912867288369961 a001 3236112266924880/5473 5912867288839748 a001 6472224534363989/10946 5912867288839961 a001 4052739537881/103682*24476^(20/21) 5912867288908289 a001 248931712863039/421 5912867288918289 a001 248931712863460/421 5912867288919748 a001 6472224534451557/10946 5912867288919961 a001 3236112267225895/5473 5912867288919992 a001 3236112267225912/5473 5912867288919997 a001 6472224534451829/10946 5912867288919998 a001 3236112267225915/5473 5912867288920011 a001 497863425727065/842 5912867288920093 a001 3236112267225967/5473 5912867288920650 a001 3236112267226272/5473 5912867288924470 a001 6472224534456725/10946 5912867288950555 a001 956722026041/5778*5778^(17/18) 5912867288950650 a001 3236112267242691/5473 5912867289130093 a001 3236112267340900/5473 5912867289309748 a001 3536736619241/90481*24476^(20/21) 5912867289309961 a001 3278735159921/51841*24476^(19/21) 5912867289600093 a001 6557470319842/167761*24476^(20/21) 5912867289779961 a001 225749145909/2206*24476^(6/7) 5912867290070093 a001 10610209857723/167761*24476^(19/21) 5912867290360011 a001 497863425848313/842 5912867290830011 a001 2504730781961/64079*24476^(20/21) 5912867291037999 a001 1515744265389/2161*15127^(7/10) 5912867291300012 a001 4052739537881/64079*24476^(19/21) 5912867291770012 a001 6557470319842/64079*24476^(6/7) 5912867292240012 a001 10610209857723/64079*24476^(17/21) 5912867292329999 a001 6557470319842/15127*15127^(3/4) 5912867293579980 a001 16944503803212151/28657 5912867293621999 a001 4052739537881/15127*15127^(4/5) 5912867293642590 a001 591286729879/39603*64079^(22/23) 5912867293705199 a001 956722026041/39603*64079^(21/23) 5912867293767808 a001 516002918640/13201*64079^(20/23) 5912867293830418 a001 2504730781961/39603*64079^(19/23) 5912867293893027 a001 4052739537881/39603*64079^(18/23) 5912867293955636 a001 6557470319842/39603*64079^(17/23) 5912867294018245 a001 3536736619241/13201*64079^(16/23) 5912867294469958 a001 17711/103682*14662949395604^(20/21) 5912867294469958 a001 15456/13201*14662949395604^(8/9) 5912867294809899 a001 44361286879311271/75025 5912867294851918 a001 516002918640/13201*167761^(4/5) 5912867294913999 a001 2504730781961/15127*15127^(17/20) 5912867294939745 a001 121393/39603*14662949395604^(6/7) 5912867294989342 a001 3415863436315343/5777 5912867294992748 a001 75283811239/13201*439204^(8/9) 5912867294996153 a001 956722026041/39603*439204^(7/9) 5912867294999559 a001 4052739537881/39603*439204^(2/3) 5912867295008286 a001 105937/13201*23725150497407^(13/16) 5912867295008286 a001 105937/13201*505019158607^(13/14) 5912867295018286 a001 832040/39603*312119004989^(10/11) 5912867295018286 a001 832040/39603*3461452808002^(5/6) 5912867295019745 a001 726103/13201*45537549124^(16/17) 5912867295019745 a001 726103/13201*14662949395604^(16/21) 5912867295019745 a001 726103/13201*192900153618^(8/9) 5912867295019745 a001 726103/13201*73681302247^(12/13) 5912867295019908 a001 12586269025/39603*7881196^(10/11) 5912867295019916 a001 53316291173/39603*7881196^(9/11) 5912867295019925 a001 75283811239/13201*7881196^(8/11) 5912867295019931 a001 591286729879/39603*7881196^(2/3) 5912867295019934 a001 956722026041/39603*7881196^(7/11) 5912867295019942 a001 4052739537881/39603*7881196^(6/11) 5912867295019958 a001 5702887/39603*10749957122^(23/24) 5912867295019982 a001 12586269025/39603*20633239^(6/7) 5912867295019983 a001 10983760033/13201*20633239^(4/5) 5912867295019984 a001 139583862445/39603*20633239^(5/7) 5912867295019986 a001 956722026041/39603*20633239^(3/5) 5912867295019986 a001 516002918640/13201*20633239^(4/7) 5912867295019989 a001 4976784/13201*312119004989^(4/5) 5912867295019989 a001 4976784/13201*23725150497407^(11/16) 5912867295019989 a001 4976784/13201*73681302247^(11/13) 5912867295019989 a001 4976784/13201*10749957122^(11/12) 5912867295019989 a001 4976784/13201*4106118243^(22/23) 5912867295019993 a001 39088169/39603*2537720636^(14/15) 5912867295019993 a001 39088169/39603*17393796001^(6/7) 5912867295019993 a001 39088169/39603*45537549124^(14/17) 5912867295019993 a001 39088169/39603*817138163596^(14/19) 5912867295019993 a001 39088169/39603*14662949395604^(2/3) 5912867295019993 a001 39088169/39603*505019158607^(3/4) 5912867295019993 a001 39088169/39603*192900153618^(7/9) 5912867295019993 a001 39088169/39603*10749957122^(7/8) 5912867295019993 a001 39088169/39603*4106118243^(21/23) 5912867295019993 a001 39088169/39603*1568397607^(21/22) 5912867295019994 a001 17711*141422324^(12/13) 5912867295019994 a001 2971215073/39603*141422324^(11/13) 5912867295019994 a001 12586269025/39603*141422324^(10/13) 5912867295019994 a001 53316291173/39603*141422324^(9/13) 5912867295019994 a001 86267571272/39603*141422324^(2/3) 5912867295019994 a001 75283811239/13201*141422324^(8/13) 5912867295019994 a001 956722026041/39603*141422324^(7/13) 5912867295019994 a001 4052739537881/39603*141422324^(6/13) 5912867295019994 a001 34111385/13201*2537720636^(8/9) 5912867295019994 a001 34111385/13201*312119004989^(8/11) 5912867295019994 a001 34111385/13201*23725150497407^(5/8) 5912867295019994 a001 34111385/13201*73681302247^(10/13) 5912867295019994 a001 34111385/13201*28143753123^(4/5) 5912867295019994 a001 34111385/13201*10749957122^(5/6) 5912867295019994 a001 34111385/13201*4106118243^(20/23) 5912867295019994 a001 34111385/13201*1568397607^(10/11) 5912867295019994 a001 34111385/13201*599074578^(20/21) 5912867295019994 a001 267914296/39603*817138163596^(2/3) 5912867295019994 a001 267914296/39603*10749957122^(19/24) 5912867295019994 a001 267914296/39603*4106118243^(19/23) 5912867295019994 a001 267914296/39603*1568397607^(19/22) 5912867295019994 a001 17711*2537720636^(4/5) 5912867295019994 a001 17711*45537549124^(12/17) 5912867295019994 a001 17711*14662949395604^(4/7) 5912867295019994 a001 17711*505019158607^(9/14) 5912867295019994 a001 17711*192900153618^(2/3) 5912867295019994 a001 17711*73681302247^(9/13) 5912867295019994 a001 17711*10749957122^(3/4) 5912867295019994 a001 17711*4106118243^(18/23) 5912867295019994 a001 267914296/39603*599074578^(19/21) 5912867295019994 a001 12586269025/39603*2537720636^(2/3) 5912867295019994 a001 53316291173/39603*2537720636^(3/5) 5912867295019994 a001 2971215073/39603*2537720636^(11/15) 5912867295019994 a001 139583862445/39603*2537720636^(5/9) 5912867295019994 a001 75283811239/13201*2537720636^(8/15) 5912867295019994 a001 17711*1568397607^(9/11) 5912867295019994 a001 956722026041/39603*2537720636^(7/15) 5912867295019994 a001 516002918640/13201*2537720636^(4/9) 5912867295019994 a001 4052739537881/39603*2537720636^(2/5) 5912867295019994 a001 1836311903/39603*45537549124^(2/3) 5912867295019994 a001 1836311903/39603*10749957122^(17/24) 5912867295019994 a001 1836311903/39603*4106118243^(17/23) 5912867295019994 a001 1602508992/13201*23725150497407^(1/2) 5912867295019994 a001 1602508992/13201*505019158607^(4/7) 5912867295019994 a001 1602508992/13201*73681302247^(8/13) 5912867295019994 a001 1602508992/13201*10749957122^(2/3) 5912867295019994 a001 10983760033/13201*17393796001^(4/7) 5912867295019994 a001 12586269025/39603*45537549124^(10/17) 5912867295019994 a001 956722026041/39603*17393796001^(3/7) 5912867295019994 a001 12586269025/39603*312119004989^(6/11) 5912867295019994 a001 12586269025/39603*14662949395604^(10/21) 5912867295019994 a001 12586269025/39603*192900153618^(5/9) 5912867295019994 a001 12586269025/39603*28143753123^(3/5) 5912867295019994 a001 75283811239/13201*45537549124^(8/17) 5912867295019994 a001 956722026041/39603*45537549124^(7/17) 5912867295019994 a001 10983760033/13201*14662949395604^(4/9) 5912867295019994 a001 10983760033/13201*505019158607^(1/2) 5912867295019994 a001 4052739537881/39603*45537549124^(6/17) 5912867295019994 a001 6557470319842/39603*45537549124^(1/3) 5912867295019994 a001 10983760033/13201*73681302247^(7/13) 5912867295019994 a001 75283811239/13201*14662949395604^(8/21) 5912867295019994 a001 2504730781961/39603*817138163596^(1/3) 5912867295019994 a001 4052739537881/39603*14662949395604^(2/7) 5912867295019994 a001 3536736619241/13201*23725150497407^(1/4) 5912867295019994 a001 139583862445/39603*312119004989^(5/11) 5912867295019994 a001 75283811239/13201*192900153618^(4/9) 5912867295019994 a001 4052739537881/39603*192900153618^(1/3) 5912867295019994 a001 139583862445/39603*3461452808002^(5/12) 5912867295019994 a001 956722026041/39603*192900153618^(7/18) 5912867295019994 a001 3536736619241/13201*73681302247^(4/13) 5912867295019994 a001 86267571272/39603*73681302247^(1/2) 5912867295019994 a001 53316291173/39603*817138163596^(9/19) 5912867295019994 a001 53316291173/39603*14662949395604^(3/7) 5912867295019994 a001 516002918640/13201*73681302247^(5/13) 5912867295019994 a001 75283811239/13201*73681302247^(6/13) 5912867295019994 a001 53316291173/39603*192900153618^(1/2) 5912867295019994 a001 20365011074/39603*1322157322203^(1/2) 5912867295019994 a001 516002918640/13201*28143753123^(2/5) 5912867295019994 a001 139583862445/39603*28143753123^(1/2) 5912867295019994 a001 3536736619241/13201*10749957122^(1/3) 5912867295019994 a001 4052739537881/39603*10749957122^(3/8) 5912867295019994 a001 7778742049/39603*9062201101803^(1/2) 5912867295019994 a001 516002918640/13201*10749957122^(5/12) 5912867295019994 a001 956722026041/39603*10749957122^(7/16) 5912867295019994 a001 591286729879/39603*10749957122^(11/24) 5912867295019994 a001 12586269025/39603*10749957122^(5/8) 5912867295019994 a001 75283811239/13201*10749957122^(1/2) 5912867295019994 a001 86267571272/39603*10749957122^(13/24) 5912867295019994 a001 10983760033/13201*10749957122^(7/12) 5912867295019994 a001 53316291173/39603*10749957122^(9/16) 5912867295019994 a001 3536736619241/13201*4106118243^(8/23) 5912867295019994 a001 2971215073/39603*45537549124^(11/17) 5912867295019994 a001 2971215073/39603*312119004989^(3/5) 5912867295019994 a001 2971215073/39603*817138163596^(11/19) 5912867295019994 a001 2971215073/39603*14662949395604^(11/21) 5912867295019994 a001 2971215073/39603*192900153618^(11/18) 5912867295019994 a001 4052739537881/39603*4106118243^(9/23) 5912867295019994 a001 516002918640/13201*4106118243^(10/23) 5912867295019994 a001 591286729879/39603*4106118243^(11/23) 5912867295019994 a001 2971215073/39603*10749957122^(11/16) 5912867295019994 a001 365435296162/39603*4106118243^(1/2) 5912867295019994 a001 75283811239/13201*4106118243^(12/23) 5912867295019994 a001 1602508992/13201*4106118243^(16/23) 5912867295019994 a001 86267571272/39603*4106118243^(13/23) 5912867295019994 a001 1134903170/39603*2537720636^(7/9) 5912867295019994 a001 10983760033/13201*4106118243^(14/23) 5912867295019994 a001 12586269025/39603*4106118243^(15/23) 5912867295019994 a001 3536736619241/13201*1568397607^(4/11) 5912867295019994 a001 1134903170/39603*17393796001^(5/7) 5912867295019994 a001 1134903170/39603*312119004989^(7/11) 5912867295019994 a001 1134903170/39603*14662949395604^(5/9) 5912867295019994 a001 1134903170/39603*505019158607^(5/8) 5912867295019994 a001 1134903170/39603*28143753123^(7/10) 5912867295019994 a001 4052739537881/39603*1568397607^(9/22) 5912867295019994 a001 516002918640/13201*1568397607^(5/11) 5912867295019994 a001 591286729879/39603*1568397607^(1/2) 5912867295019994 a001 75283811239/13201*1568397607^(6/11) 5912867295019994 a001 86267571272/39603*1568397607^(13/22) 5912867295019994 a001 1836311903/39603*1568397607^(17/22) 5912867295019994 a001 10983760033/13201*1568397607^(7/11) 5912867295019994 a001 12586269025/39603*1568397607^(15/22) 5912867295019994 a001 1602508992/13201*1568397607^(8/11) 5912867295019994 a001 2971215073/39603*1568397607^(3/4) 5912867295019994 a001 3536736619241/13201*599074578^(8/21) 5912867295019994 a001 4052739537881/39603*599074578^(3/7) 5912867295019994 a001 516002918640/13201*599074578^(10/21) 5912867295019994 a001 956722026041/39603*599074578^(1/2) 5912867295019994 a001 591286729879/39603*599074578^(11/21) 5912867295019994 a001 75283811239/13201*599074578^(4/7) 5912867295019994 a001 86267571272/39603*599074578^(13/21) 5912867295019994 a001 53316291173/39603*599074578^(9/14) 5912867295019994 a001 10983760033/13201*599074578^(2/3) 5912867295019994 a001 17711*599074578^(6/7) 5912867295019994 a001 12586269025/39603*599074578^(5/7) 5912867295019994 a001 1602508992/13201*599074578^(16/21) 5912867295019994 a001 1836311903/39603*599074578^(17/21) 5912867295019994 a001 2971215073/39603*599074578^(11/14) 5912867295019994 a001 1134903170/39603*599074578^(5/6) 5912867295019994 a001 165580141/39603*2537720636^(13/15) 5912867295019994 a001 165580141/39603*45537549124^(13/17) 5912867295019994 a001 165580141/39603*14662949395604^(13/21) 5912867295019994 a001 165580141/39603*192900153618^(13/18) 5912867295019994 a001 165580141/39603*73681302247^(3/4) 5912867295019994 a001 165580141/39603*10749957122^(13/16) 5912867295019994 a001 3536736619241/13201*228826127^(2/5) 5912867295019994 a001 4052739537881/39603*228826127^(9/20) 5912867295019994 a001 516002918640/13201*228826127^(1/2) 5912867295019994 a001 165580141/39603*599074578^(13/14) 5912867295019994 a001 591286729879/39603*228826127^(11/20) 5912867295019994 a001 75283811239/13201*228826127^(3/5) 5912867295019994 a001 139583862445/39603*228826127^(5/8) 5912867295019994 a001 86267571272/39603*228826127^(13/20) 5912867295019994 a001 10983760033/13201*228826127^(7/10) 5912867295019994 a001 12586269025/39603*228826127^(3/4) 5912867295019994 a001 1602508992/13201*228826127^(4/5) 5912867295019994 a001 267914296/39603*228826127^(19/20) 5912867295019994 a001 1836311903/39603*228826127^(17/20) 5912867295019994 a001 17711*228826127^(9/10) 5912867295019994 a001 1134903170/39603*228826127^(7/8) 5912867295019995 a001 3536736619241/13201*87403803^(8/19) 5912867295019995 a001 4052739537881/39603*87403803^(9/19) 5912867295019995 a001 2504730781961/39603*87403803^(1/2) 5912867295019995 a001 516002918640/13201*87403803^(10/19) 5912867295019995 a001 591286729879/39603*87403803^(11/19) 5912867295019995 a001 75283811239/13201*87403803^(12/19) 5912867295019995 a001 86267571272/39603*87403803^(13/19) 5912867295019995 a001 10983760033/13201*87403803^(14/19) 5912867295019995 a001 12586269025/39603*87403803^(15/19) 5912867295019995 a001 1602508992/13201*87403803^(16/19) 5912867295019995 a001 1836311903/39603*87403803^(17/19) 5912867295019995 a001 17711*87403803^(18/19) 5912867295019997 a001 3536736619241/13201*33385282^(4/9) 5912867295019997 a001 4052739537881/39603*33385282^(1/2) 5912867295019997 a001 516002918640/13201*33385282^(5/9) 5912867295019997 a001 956722026041/39603*33385282^(7/12) 5912867295019997 a001 591286729879/39603*33385282^(11/18) 5912867295019998 a001 75283811239/13201*33385282^(2/3) 5912867295019998 a001 86267571272/39603*33385282^(13/18) 5912867295019998 a001 53316291173/39603*33385282^(3/4) 5912867295019998 a001 10983760033/13201*33385282^(7/9) 5912867295019999 a001 12586269025/39603*33385282^(5/6) 5912867295019999 a001 1602508992/13201*33385282^(8/9) 5912867295019999 a001 2971215073/39603*33385282^(11/12) 5912867295019999 a001 1836311903/39603*33385282^(17/18) 5912867295020008 a001 9227465/39603*45537549124^(15/17) 5912867295020008 a001 9227465/39603*312119004989^(9/11) 5912867295020008 a001 9227465/39603*14662949395604^(5/7) 5912867295020008 a001 9227465/39603*192900153618^(5/6) 5912867295020008 a001 9227465/39603*28143753123^(9/10) 5912867295020008 a001 9227465/39603*10749957122^(15/16) 5912867295020011 a001 3536736619241/13201*12752043^(8/17) 5912867295020012 a001 6557470319842/39603*12752043^(1/2) 5912867295020013 a001 4052739537881/39603*12752043^(9/17) 5912867295020016 a001 516002918640/13201*12752043^(10/17) 5912867295020018 a001 591286729879/39603*12752043^(11/17) 5912867295020020 a001 75283811239/13201*12752043^(12/17) 5912867295020022 a001 86267571272/39603*12752043^(13/17) 5912867295020024 a001 10983760033/13201*12752043^(14/17) 5912867295020026 a001 12586269025/39603*12752043^(15/17) 5912867295020028 a001 1602508992/13201*12752043^(16/17) 5912867295020119 a001 3536736619241/13201*4870847^(1/2) 5912867295020134 a001 4052739537881/39603*4870847^(9/16) 5912867295020150 a001 516002918640/13201*4870847^(5/8) 5912867295020166 a001 591286729879/39603*4870847^(11/16) 5912867295020181 a001 75283811239/13201*4870847^(3/4) 5912867295020197 a001 86267571272/39603*4870847^(13/16) 5912867295020212 a001 10983760033/13201*4870847^(7/8) 5912867295020228 a001 12586269025/39603*4870847^(15/16) 5912867295020647 a001 1346269/39603*14662949395604^(7/9) 5912867295020647 a001 1346269/39603*505019158607^(7/8) 5912867295020905 a001 3536736619241/13201*1860498^(8/15) 5912867295021019 a001 4052739537881/39603*1860498^(3/5) 5912867295021133 a001 516002918640/13201*1860498^(2/3) 5912867295021190 a001 956722026041/39603*1860498^(7/10) 5912867295021247 a001 591286729879/39603*1860498^(11/15) 5912867295021361 a001 75283811239/13201*1860498^(4/5) 5912867295021418 a001 139583862445/39603*1860498^(5/6) 5912867295021475 a001 86267571272/39603*1860498^(13/15) 5912867295021532 a001 53316291173/39603*1860498^(9/10) 5912867295021589 a001 10983760033/13201*1860498^(14/15) 5912867295024466 a001 514229/39603*817138163596^(17/19) 5912867295024466 a001 514229/39603*14662949395604^(17/21) 5912867295024466 a001 514229/39603*192900153618^(17/18) 5912867295026685 a001 3536736619241/13201*710647^(4/7) 5912867295027521 a001 4052739537881/39603*710647^(9/14) 5912867295028357 a001 516002918640/13201*710647^(5/7) 5912867295028775 a001 956722026041/39603*710647^(3/4) 5912867295029194 a001 591286729879/39603*710647^(11/14) 5912867295030030 a001 75283811239/13201*710647^(6/7) 5912867295030866 a001 86267571272/39603*710647^(13/14) 5912867295031702 a001 62639142263377351/105937 5912867295069378 a001 3536736619241/13201*271443^(8/13) 5912867295075551 a001 4052739537881/39603*271443^(9/13) 5912867295081724 a001 516002918640/13201*271443^(10/13) 5912867295087897 a001 591286729879/39603*271443^(11/13) 5912867295094070 a001 75283811239/13201*271443^(12/13) 5912867295100243 a001 71778069955410391/121393 5912867295230089 a001 75025/39603*3461452808002^(11/12) 5912867295386685 a001 3536736619241/13201*103682^(2/3) 5912867295409603 a001 6557470319842/39603*103682^(17/24) 5912867295432521 a001 4052739537881/39603*103682^(3/4) 5912867295455440 a001 2504730781961/39603*103682^(19/24) 5912867295478358 a001 516002918640/13201*103682^(5/6) 5912867295501276 a001 956722026041/39603*103682^(7/8) 5912867295524194 a001 591286729879/39603*103682^(11/12) 5912867295547112 a001 365435296162/39603*103682^(23/24) 5912867295570031 a001 190394326917355/322 5912867296205999 a001 1548008755920/15127*15127^(9/10) 5912867296460008 a001 28657/39603*14662949395604^(19/21) 5912867296799949 a001 16944503812439616/28657 5912867296862559 a001 774004377960/51841*64079^(22/23) 5912867296925168 a001 2504730781961/103682*64079^(21/23) 5912867296987777 a001 4052739537881/103682*64079^(20/23) 5912867297050386 a001 3278735159921/51841*64079^(19/23) 5912867297112996 a001 225749145909/2206*64079^(18/23) 5912867297269736 a001 16944503813785885/28657 5912867297332346 a001 4052739537881/271443*64079^(22/23) 5912867297338277 a001 16944503813982303/28657 5912867297348277 a001 16944503814010960/28657 5912867297349736 a001 16944503814015141/28657 5912867297349949 a001 16944503814015751/28657 5912867297349980 a001 16944503814015840/28657 5912867297349985 a001 16944503814015853/28657 5912867297349986 a001 16944503814015855/28657 5912867297349986 a001 16944503814015856/28657 5912867297349988 a001 16944503814015861/28657 5912867297350081 a001 16944503814016128/28657 5912867297350638 a001 16944503814017725/28657 5912867297354458 a001 16944503814028671/28657 5912867297380638 a001 16944503814103696/28657 5912867297394955 a001 6557470319842/271443*64079^(21/23) 5912867297400887 a001 1515744265389/101521*64079^(22/23) 5912867297443247 a001 3278735159921/219602*64079^(22/23) 5912867297457564 a001 3536736619241/90481*64079^(20/23) 5912867297497999 a001 956722026041/15127*15127^(19/20) 5912867297505857 a001 10610209857723/439204*64079^(21/23) 5912867297560081 a001 16944503814617925/28657 5912867297622690 a001 2504730781961/167761*64079^(22/23) 5912867297685299 a001 4052739537881/167761*64079^(21/23) 5912867297747909 a001 6557470319842/167761*64079^(20/23) 5912867297761816 a001 3536736619241/13201*39603^(8/11) 5912867297810518 a001 10610209857723/167761*64079^(19/23) 5912867297933180 a001 6557470319842/39603*39603^(17/22) 5912867298029868 a001 44361286903469088/75025 5912867298071887 a001 4052739537881/103682*167761^(4/5) 5912867298104544 a001 4052739537881/39603*39603^(9/11) 5912867298159714 a001 15456/90481*14662949395604^(20/21) 5912867298159714 a001 121393/103682*14662949395604^(8/9) 5912867298209311 a001 58069678448983824/98209 5912867298212716 a001 591286729879/103682*439204^(8/9) 5912867298216122 a001 2504730781961/103682*439204^(7/9) 5912867298219528 a001 225749145909/2206*439204^(2/3) 5912867298228255 a001 317811/103682*14662949395604^(6/7) 5912867298235491 a001 304056783790433856/514229 5912867298238255 a001 416020/51841*23725150497407^(13/16) 5912867298238255 a001 416020/51841*505019158607^(13/14) 5912867298239714 a001 46347/2206*312119004989^(10/11) 5912867298239714 a001 46347/2206*3461452808002^(5/6) 5912867298239877 a001 32951280099/103682*7881196^(10/11) 5912867298239885 a001 139583862445/103682*7881196^(9/11) 5912867298239894 a001 591286729879/103682*7881196^(8/11) 5912867298239900 a001 774004377960/51841*7881196^(2/3) 5912867298239903 a001 2504730781961/103682*7881196^(7/11) 5912867298239911 a001 225749145909/2206*7881196^(6/11) 5912867298239927 a001 5702887/103682*45537549124^(16/17) 5912867298239927 a001 5702887/103682*14662949395604^(16/21) 5912867298239927 a001 5702887/103682*192900153618^(8/9) 5912867298239927 a001 5702887/103682*73681302247^(12/13) 5912867298239951 a001 32951280099/103682*20633239^(6/7) 5912867298239952 a001 43133785636/51841*20633239^(4/5) 5912867298239953 a001 182717648081/51841*20633239^(5/7) 5912867298239955 a001 2504730781961/103682*20633239^(3/5) 5912867298239955 a001 4052739537881/103682*20633239^(4/7) 5912867298239958 a001 7465176/51841*10749957122^(23/24) 5912867298239962 a001 39088169/103682*312119004989^(4/5) 5912867298239962 a001 39088169/103682*23725150497407^(11/16) 5912867298239962 a001 39088169/103682*73681302247^(11/13) 5912867298239962 a001 39088169/103682*10749957122^(11/12) 5912867298239962 a001 39088169/103682*4106118243^(22/23) 5912867298239963 a001 1836311903/103682*141422324^(12/13) 5912867298239963 a001 7778742049/103682*141422324^(11/13) 5912867298239963 a001 32951280099/103682*141422324^(10/13) 5912867298239963 a001 139583862445/103682*141422324^(9/13) 5912867298239963 a001 225851433717/103682*141422324^(2/3) 5912867298239963 a001 591286729879/103682*141422324^(8/13) 5912867298239963 a001 2504730781961/103682*141422324^(7/13) 5912867298239963 a001 225749145909/2206*141422324^(6/13) 5912867298239963 a001 102334155/103682*2537720636^(14/15) 5912867298239963 a001 102334155/103682*17393796001^(6/7) 5912867298239963 a001 102334155/103682*45537549124^(14/17) 5912867298239963 a001 102334155/103682*14662949395604^(2/3) 5912867298239963 a001 102334155/103682*505019158607^(3/4) 5912867298239963 a001 102334155/103682*192900153618^(7/9) 5912867298239963 a001 102334155/103682*10749957122^(7/8) 5912867298239963 a001 102334155/103682*4106118243^(21/23) 5912867298239963 a001 102334155/103682*1568397607^(21/22) 5912867298239963 a001 133957148/51841*2537720636^(8/9) 5912867298239963 a001 133957148/51841*312119004989^(8/11) 5912867298239963 a001 133957148/51841*23725150497407^(5/8) 5912867298239963 a001 133957148/51841*73681302247^(10/13) 5912867298239963 a001 133957148/51841*28143753123^(4/5) 5912867298239963 a001 133957148/51841*10749957122^(5/6) 5912867298239963 a001 133957148/51841*4106118243^(20/23) 5912867298239963 a001 133957148/51841*1568397607^(10/11) 5912867298239963 a001 701408733/103682*817138163596^(2/3) 5912867298239963 a001 701408733/103682*10749957122^(19/24) 5912867298239963 a001 701408733/103682*4106118243^(19/23) 5912867298239963 a001 1836311903/103682*2537720636^(4/5) 5912867298239963 a001 133957148/51841*599074578^(20/21) 5912867298239963 a001 7778742049/103682*2537720636^(11/15) 5912867298239963 a001 32951280099/103682*2537720636^(2/3) 5912867298239963 a001 2971215073/103682*2537720636^(7/9) 5912867298239963 a001 139583862445/103682*2537720636^(3/5) 5912867298239963 a001 182717648081/51841*2537720636^(5/9) 5912867298239963 a001 591286729879/103682*2537720636^(8/15) 5912867298239963 a001 2504730781961/103682*2537720636^(7/15) 5912867298239963 a001 4052739537881/103682*2537720636^(4/9) 5912867298239963 a001 225749145909/2206*2537720636^(2/5) 5912867298239963 a001 1836311903/103682*45537549124^(12/17) 5912867298239963 a001 1836311903/103682*14662949395604^(4/7) 5912867298239963 a001 1836311903/103682*505019158607^(9/14) 5912867298239963 a001 1836311903/103682*192900153618^(2/3) 5912867298239963 a001 1836311903/103682*73681302247^(9/13) 5912867298239963 a001 701408733/103682*1568397607^(19/22) 5912867298239963 a001 1836311903/103682*10749957122^(3/4) 5912867298239963 a001 1836311903/103682*4106118243^(18/23) 5912867298239963 a001 46368*45537549124^(2/3) 5912867298239963 a001 46368*10749957122^(17/24) 5912867298239963 a001 43133785636/51841*17393796001^(4/7) 5912867298239963 a001 2504730781961/103682*17393796001^(3/7) 5912867298239963 a001 12586269025/103682*23725150497407^(1/2) 5912867298239963 a001 12586269025/103682*505019158607^(4/7) 5912867298239963 a001 12586269025/103682*73681302247^(8/13) 5912867298239963 a001 32951280099/103682*45537549124^(10/17) 5912867298239963 a001 139583862445/103682*45537549124^(9/17) 5912867298239963 a001 591286729879/103682*45537549124^(8/17) 5912867298239963 a001 2504730781961/103682*45537549124^(7/17) 5912867298239963 a001 32951280099/103682*312119004989^(6/11) 5912867298239963 a001 32951280099/103682*14662949395604^(10/21) 5912867298239963 a001 225749145909/2206*45537549124^(6/17) 5912867298239963 a001 32951280099/103682*192900153618^(5/9) 5912867298239963 a001 43133785636/51841*14662949395604^(4/9) 5912867298239963 a001 43133785636/51841*505019158607^(1/2) 5912867298239963 a001 182717648081/51841*312119004989^(5/11) 5912867298239963 a001 591286729879/103682*14662949395604^(8/21) 5912867298239963 a001 4052739537881/103682*23725150497407^(5/16) 5912867298239963 a001 225749145909/2206*14662949395604^(2/7) 5912867298239963 a001 2504730781961/103682*14662949395604^(1/3) 5912867298239963 a001 4052739537881/103682*505019158607^(5/14) 5912867298239963 a001 182717648081/51841*3461452808002^(5/12) 5912867298239963 a001 139583862445/103682*817138163596^(9/19) 5912867298239963 a001 139583862445/103682*14662949395604^(3/7) 5912867298239963 a001 2504730781961/103682*192900153618^(7/18) 5912867298239963 a001 591286729879/103682*192900153618^(4/9) 5912867298239963 a001 139583862445/103682*192900153618^(1/2) 5912867298239963 a001 4052739537881/103682*73681302247^(5/13) 5912867298239963 a001 43133785636/51841*73681302247^(7/13) 5912867298239963 a001 591286729879/103682*73681302247^(6/13) 5912867298239963 a001 225851433717/103682*73681302247^(1/2) 5912867298239963 a001 10182505537/51841*9062201101803^(1/2) 5912867298239963 a001 4052739537881/103682*28143753123^(2/5) 5912867298239963 a001 32951280099/103682*28143753123^(3/5) 5912867298239963 a001 182717648081/51841*28143753123^(1/2) 5912867298239963 a001 7778742049/103682*45537549124^(11/17) 5912867298239963 a001 225749145909/2206*10749957122^(3/8) 5912867298239963 a001 7778742049/103682*312119004989^(3/5) 5912867298239963 a001 7778742049/103682*14662949395604^(11/21) 5912867298239963 a001 7778742049/103682*192900153618^(11/18) 5912867298239963 a001 4052739537881/103682*10749957122^(5/12) 5912867298239963 a001 2504730781961/103682*10749957122^(7/16) 5912867298239963 a001 774004377960/51841*10749957122^(11/24) 5912867298239963 a001 591286729879/103682*10749957122^(1/2) 5912867298239963 a001 12586269025/103682*10749957122^(2/3) 5912867298239963 a001 225851433717/103682*10749957122^(13/24) 5912867298239963 a001 139583862445/103682*10749957122^(9/16) 5912867298239963 a001 43133785636/51841*10749957122^(7/12) 5912867298239963 a001 32951280099/103682*10749957122^(5/8) 5912867298239963 a001 7778742049/103682*10749957122^(11/16) 5912867298239963 a001 2971215073/103682*17393796001^(5/7) 5912867298239963 a001 2971215073/103682*312119004989^(7/11) 5912867298239963 a001 2971215073/103682*14662949395604^(5/9) 5912867298239963 a001 2971215073/103682*505019158607^(5/8) 5912867298239963 a001 225749145909/2206*4106118243^(9/23) 5912867298239963 a001 2971215073/103682*28143753123^(7/10) 5912867298239963 a001 4052739537881/103682*4106118243^(10/23) 5912867298239963 a001 774004377960/51841*4106118243^(11/23) 5912867298239963 a001 956722026041/103682*4106118243^(1/2) 5912867298239963 a001 591286729879/103682*4106118243^(12/23) 5912867298239963 a001 225851433717/103682*4106118243^(13/23) 5912867298239963 a001 46368*4106118243^(17/23) 5912867298239963 a001 43133785636/51841*4106118243^(14/23) 5912867298239963 a001 32951280099/103682*4106118243^(15/23) 5912867298239963 a001 12586269025/103682*4106118243^(16/23) 5912867298239963 a001 225749145909/2206*1568397607^(9/22) 5912867298239963 a001 4052739537881/103682*1568397607^(5/11) 5912867298239963 a001 774004377960/51841*1568397607^(1/2) 5912867298239963 a001 591286729879/103682*1568397607^(6/11) 5912867298239963 a001 225851433717/103682*1568397607^(13/22) 5912867298239963 a001 43133785636/51841*1568397607^(7/11) 5912867298239963 a001 1836311903/103682*1568397607^(9/11) 5912867298239963 a001 32951280099/103682*1568397607^(15/22) 5912867298239963 a001 12586269025/103682*1568397607^(8/11) 5912867298239963 a001 46368*1568397607^(17/22) 5912867298239963 a001 7778742049/103682*1568397607^(3/4) 5912867298239963 a001 433494437/103682*2537720636^(13/15) 5912867298239963 a001 433494437/103682*45537549124^(13/17) 5912867298239963 a001 433494437/103682*14662949395604^(13/21) 5912867298239963 a001 433494437/103682*192900153618^(13/18) 5912867298239963 a001 433494437/103682*73681302247^(3/4) 5912867298239963 a001 433494437/103682*10749957122^(13/16) 5912867298239963 a001 225749145909/2206*599074578^(3/7) 5912867298239963 a001 4052739537881/103682*599074578^(10/21) 5912867298239963 a001 2504730781961/103682*599074578^(1/2) 5912867298239963 a001 774004377960/51841*599074578^(11/21) 5912867298239963 a001 591286729879/103682*599074578^(4/7) 5912867298239963 a001 225851433717/103682*599074578^(13/21) 5912867298239963 a001 139583862445/103682*599074578^(9/14) 5912867298239963 a001 43133785636/51841*599074578^(2/3) 5912867298239963 a001 32951280099/103682*599074578^(5/7) 5912867298239963 a001 701408733/103682*599074578^(19/21) 5912867298239963 a001 12586269025/103682*599074578^(16/21) 5912867298239963 a001 7778742049/103682*599074578^(11/14) 5912867298239963 a001 46368*599074578^(17/21) 5912867298239963 a001 1836311903/103682*599074578^(6/7) 5912867298239963 a001 2971215073/103682*599074578^(5/6) 5912867298239963 a001 433494437/103682*599074578^(13/14) 5912867298239963 a001 225749145909/2206*228826127^(9/20) 5912867298239963 a001 4052739537881/103682*228826127^(1/2) 5912867298239963 a001 774004377960/51841*228826127^(11/20) 5912867298239963 a001 591286729879/103682*228826127^(3/5) 5912867298239963 a001 182717648081/51841*228826127^(5/8) 5912867298239963 a001 225851433717/103682*228826127^(13/20) 5912867298239963 a001 43133785636/51841*228826127^(7/10) 5912867298239963 a001 32951280099/103682*228826127^(3/4) 5912867298239963 a001 12586269025/103682*228826127^(4/5) 5912867298239963 a001 46368*228826127^(17/20) 5912867298239963 a001 2971215073/103682*228826127^(7/8) 5912867298239963 a001 1836311903/103682*228826127^(9/10) 5912867298239963 a001 701408733/103682*228826127^(19/20) 5912867298239964 a001 225749145909/2206*87403803^(9/19) 5912867298239964 a001 3278735159921/51841*87403803^(1/2) 5912867298239964 a001 4052739537881/103682*87403803^(10/19) 5912867298239964 a001 774004377960/51841*87403803^(11/19) 5912867298239964 a001 591286729879/103682*87403803^(12/19) 5912867298239964 a001 225851433717/103682*87403803^(13/19) 5912867298239964 a001 43133785636/51841*87403803^(14/19) 5912867298239964 a001 32951280099/103682*87403803^(15/19) 5912867298239964 a001 12586269025/103682*87403803^(16/19) 5912867298239964 a001 46368*87403803^(17/19) 5912867298239964 a001 1836311903/103682*87403803^(18/19) 5912867298239965 a001 24157817/103682*45537549124^(15/17) 5912867298239965 a001 24157817/103682*312119004989^(9/11) 5912867298239965 a001 24157817/103682*14662949395604^(5/7) 5912867298239965 a001 24157817/103682*192900153618^(5/6) 5912867298239965 a001 24157817/103682*28143753123^(9/10) 5912867298239965 a001 24157817/103682*10749957122^(15/16) 5912867298239966 a001 225749145909/2206*33385282^(1/2) 5912867298239966 a001 4052739537881/103682*33385282^(5/9) 5912867298239966 a001 2504730781961/103682*33385282^(7/12) 5912867298239966 a001 774004377960/51841*33385282^(11/18) 5912867298239967 a001 591286729879/103682*33385282^(2/3) 5912867298239967 a001 225851433717/103682*33385282^(13/18) 5912867298239967 a001 139583862445/103682*33385282^(3/4) 5912867298239967 a001 43133785636/51841*33385282^(7/9) 5912867298239968 a001 32951280099/103682*33385282^(5/6) 5912867298239968 a001 12586269025/103682*33385282^(8/9) 5912867298239968 a001 7778742049/103682*33385282^(11/12) 5912867298239968 a001 46368*33385282^(17/18) 5912867298239982 a001 225749145909/2206*12752043^(9/17) 5912867298239985 a001 4052739537881/103682*12752043^(10/17) 5912867298239987 a001 774004377960/51841*12752043^(11/17) 5912867298239989 a001 591286729879/103682*12752043^(12/17) 5912867298239991 a001 225851433717/103682*12752043^(13/17) 5912867298239993 a001 43133785636/51841*12752043^(14/17) 5912867298239995 a001 32951280099/103682*12752043^(15/17) 5912867298239997 a001 12586269025/103682*12752043^(16/17) 5912867298240058 a001 1762289/51841*14662949395604^(7/9) 5912867298240058 a001 1762289/51841*505019158607^(7/8) 5912867298240103 a001 225749145909/2206*4870847^(9/16) 5912867298240119 a001 4052739537881/103682*4870847^(5/8) 5912867298240134 a001 774004377960/51841*4870847^(11/16) 5912867298240150 a001 591286729879/103682*4870847^(3/4) 5912867298240166 a001 225851433717/103682*4870847^(13/16) 5912867298240181 a001 43133785636/51841*4870847^(7/8) 5912867298240197 a001 32951280099/103682*4870847^(15/16) 5912867298240616 a001 1346269/103682*817138163596^(17/19) 5912867298240616 a001 1346269/103682*14662949395604^(17/21) 5912867298240616 a001 1346269/103682*192900153618^(17/18) 5912867298240988 a001 225749145909/2206*1860498^(3/5) 5912867298241102 a001 4052739537881/103682*1860498^(2/3) 5912867298241159 a001 2504730781961/103682*1860498^(7/10) 5912867298241216 a001 774004377960/51841*1860498^(11/15) 5912867298241330 a001 591286729879/103682*1860498^(4/5) 5912867298241387 a001 182717648081/51841*1860498^(5/6) 5912867298241444 a001 225851433717/103682*1860498^(13/15) 5912867298241501 a001 139583862445/103682*1860498^(9/10) 5912867298241557 a001 43133785636/51841*1860498^(14/15) 5912867298241671 a001 61496776335362508/104005 5912867298247490 a001 225749145909/2206*710647^(9/14) 5912867298248326 a001 4052739537881/103682*710647^(5/7) 5912867298248744 a001 2504730781961/103682*710647^(3/4) 5912867298249162 a001 774004377960/51841*710647^(11/14) 5912867298249999 a001 591286729879/103682*710647^(6/7) 5912867298250835 a001 225851433717/103682*710647^(13/14) 5912867298251671 a001 62639142297488736/105937 5912867298270616 a001 98209/51841*3461452808002^(11/12) 5912867298275908 a001 2504730781961/39603*39603^(19/22) 5912867298295520 a001 225749145909/2206*271443^(9/13) 5912867298301693 a001 4052739537881/103682*271443^(10/13) 5912867298307866 a001 774004377960/51841*271443^(11/13) 5912867298314039 a001 591286729879/103682*271443^(12/13) 5912867298320212 a001 71778069994498560/121393 5912867298447272 a001 516002918640/13201*39603^(10/11) 5912867298450058 a001 75025/103682*14662949395604^(19/21) 5912867298499655 a001 44361286906993666/75025 5912867298541674 a001 3536736619241/90481*167761^(4/5) 5912867298568196 a001 8872257381501579/15005 5912867298578196 a001 8872257381516584/15005 5912867298579655 a001 44361286907593866/75025 5912867298579868 a001 44361286907595463/75025 5912867298579899 a001 44361286907595696/75025 5912867298579904 a001 8872257381519146/15005 5912867298579904 a001 8872257381519147/15005 5912867298579904 a001 44361286907595736/75025 5912867298579905 a001 44361286907595738/75025 5912867298579906 a001 44361286907595751/75025 5912867298579918 a001 8872257381519168/15005 5912867298580557 a001 44361286907600631/75025 5912867298584376 a001 44361286907629288/75025 5912867298610557 a001 44361286907825706/75025 5912867298618636 a001 956722026041/39603*39603^(21/22) 5912867298652490 a001 225749145909/2206*103682^(3/4) 5912867298675409 a001 3278735159921/51841*103682^(19/24) 5912867298679098 a001 116139356907195113/196418 5912867298682504 a001 516002918640/90481*439204^(8/9) 5912867298685909 a001 6557470319842/271443*439204^(7/9) 5912867298698042 a001 121393/710647*14662949395604^(20/21) 5912867298698042 a001 105937/90481*14662949395604^(8/9) 5912867298698327 a001 4052739537881/103682*103682^(5/6) 5912867298705278 a001 304056783814591673/514229 5912867298708042 a001 832040/271443*14662949395604^(6/7) 5912867298709098 a001 796030994536579906/1346269 5912867298709501 a001 726103/90481*23725150497407^(13/16) 5912867298709501 a001 726103/90481*505019158607^(13/14) 5912867298709664 a001 86267571272/271443*7881196^(10/11) 5912867298709672 a001 365435296162/271443*7881196^(9/11) 5912867298709681 a001 516002918640/90481*7881196^(8/11) 5912867298709687 a001 4052739537881/271443*7881196^(2/3) 5912867298709690 a001 6557470319842/271443*7881196^(7/11) 5912867298709714 a001 5702887/271443*312119004989^(10/11) 5912867298709714 a001 5702887/271443*3461452808002^(5/6) 5912867298709738 a001 86267571272/271443*20633239^(6/7) 5912867298709739 a001 75283811239/90481*20633239^(4/5) 5912867298709740 a001 956722026041/271443*20633239^(5/7) 5912867298709742 a001 6557470319842/271443*20633239^(3/5) 5912867298709742 a001 3536736619241/90481*20633239^(4/7) 5912867298709745 a001 4976784/90481*45537549124^(16/17) 5912867298709745 a001 4976784/90481*14662949395604^(16/21) 5912867298709745 a001 4976784/90481*192900153618^(8/9) 5912867298709745 a001 4976784/90481*73681302247^(12/13) 5912867298709750 a001 39088169/271443*10749957122^(23/24) 5912867298709750 a001 1602508992/90481*141422324^(12/13) 5912867298709750 a001 20365011074/271443*141422324^(11/13) 5912867298709750 a001 86267571272/271443*141422324^(10/13) 5912867298709750 a001 365435296162/271443*141422324^(9/13) 5912867298709750 a001 591286729879/271443*141422324^(2/3) 5912867298709750 a001 516002918640/90481*141422324^(8/13) 5912867298709750 a001 6557470319842/271443*141422324^(7/13) 5912867298709750 a001 34111385/90481*312119004989^(4/5) 5912867298709750 a001 34111385/90481*23725150497407^(11/16) 5912867298709750 a001 34111385/90481*73681302247^(11/13) 5912867298709750 a001 34111385/90481*10749957122^(11/12) 5912867298709750 a001 34111385/90481*4106118243^(22/23) 5912867298709750 a001 267914296/271443*2537720636^(14/15) 5912867298709750 a001 267914296/271443*17393796001^(6/7) 5912867298709750 a001 267914296/271443*45537549124^(14/17) 5912867298709750 a001 267914296/271443*817138163596^(14/19) 5912867298709750 a001 267914296/271443*14662949395604^(2/3) 5912867298709750 a001 267914296/271443*505019158607^(3/4) 5912867298709750 a001 267914296/271443*192900153618^(7/9) 5912867298709750 a001 267914296/271443*10749957122^(7/8) 5912867298709750 a001 267914296/271443*4106118243^(21/23) 5912867298709750 a001 267914296/271443*1568397607^(21/22) 5912867298709750 a001 233802911/90481*2537720636^(8/9) 5912867298709750 a001 233802911/90481*312119004989^(8/11) 5912867298709750 a001 233802911/90481*23725150497407^(5/8) 5912867298709750 a001 233802911/90481*73681302247^(10/13) 5912867298709750 a001 233802911/90481*28143753123^(4/5) 5912867298709750 a001 233802911/90481*10749957122^(5/6) 5912867298709750 a001 233802911/90481*4106118243^(20/23) 5912867298709750 a001 1602508992/90481*2537720636^(4/5) 5912867298709750 a001 7778742049/271443*2537720636^(7/9) 5912867298709750 a001 20365011074/271443*2537720636^(11/15) 5912867298709750 a001 86267571272/271443*2537720636^(2/3) 5912867298709750 a001 365435296162/271443*2537720636^(3/5) 5912867298709750 a001 956722026041/271443*2537720636^(5/9) 5912867298709750 a001 516002918640/90481*2537720636^(8/15) 5912867298709750 a001 6557470319842/271443*2537720636^(7/15) 5912867298709750 a001 3536736619241/90481*2537720636^(4/9) 5912867298709750 a001 1836311903/271443*817138163596^(2/3) 5912867298709750 a001 1836311903/271443*10749957122^(19/24) 5912867298709750 a001 233802911/90481*1568397607^(10/11) 5912867298709750 a001 1836311903/271443*4106118243^(19/23) 5912867298709750 a001 1602508992/90481*45537549124^(12/17) 5912867298709750 a001 1602508992/90481*14662949395604^(4/7) 5912867298709750 a001 1602508992/90481*505019158607^(9/14) 5912867298709750 a001 1602508992/90481*192900153618^(2/3) 5912867298709750 a001 1602508992/90481*73681302247^(9/13) 5912867298709750 a001 1602508992/90481*10749957122^(3/4) 5912867298709750 a001 75283811239/90481*17393796001^(4/7) 5912867298709750 a001 12586269025/271443*45537549124^(2/3) 5912867298709750 a001 6557470319842/271443*17393796001^(3/7) 5912867298709750 a001 86267571272/271443*45537549124^(10/17) 5912867298709750 a001 365435296162/271443*45537549124^(9/17) 5912867298709750 a001 516002918640/90481*45537549124^(8/17) 5912867298709750 a001 6557470319842/271443*45537549124^(7/17) 5912867298709750 a001 121393*23725150497407^(1/2) 5912867298709750 a001 121393*505019158607^(4/7) 5912867298709750 a001 121393*73681302247^(8/13) 5912867298709750 a001 86267571272/271443*312119004989^(6/11) 5912867298709750 a001 86267571272/271443*14662949395604^(10/21) 5912867298709750 a001 86267571272/271443*192900153618^(5/9) 5912867298709750 a001 956722026041/271443*312119004989^(5/11) 5912867298709750 a001 4052739537881/271443*312119004989^(2/5) 5912867298709750 a001 3536736619241/90481*23725150497407^(5/16) 5912867298709750 a001 6557470319842/271443*14662949395604^(1/3) 5912867298709750 a001 956722026041/271443*3461452808002^(5/12) 5912867298709750 a001 365435296162/271443*817138163596^(9/19) 5912867298709750 a001 3536736619241/90481*505019158607^(5/14) 5912867298709750 a001 6557470319842/271443*192900153618^(7/18) 5912867298709750 a001 139583862445/271443*1322157322203^(1/2) 5912867298709750 a001 516002918640/90481*192900153618^(4/9) 5912867298709750 a001 365435296162/271443*192900153618^(1/2) 5912867298709750 a001 53316291173/271443*9062201101803^(1/2) 5912867298709750 a001 3536736619241/90481*73681302247^(5/13) 5912867298709750 a001 516002918640/90481*73681302247^(6/13) 5912867298709750 a001 591286729879/271443*73681302247^(1/2) 5912867298709750 a001 75283811239/90481*73681302247^(7/13) 5912867298709750 a001 20365011074/271443*45537549124^(11/17) 5912867298709750 a001 20365011074/271443*312119004989^(3/5) 5912867298709750 a001 20365011074/271443*817138163596^(11/19) 5912867298709750 a001 20365011074/271443*14662949395604^(11/21) 5912867298709750 a001 20365011074/271443*192900153618^(11/18) 5912867298709750 a001 3536736619241/90481*28143753123^(2/5) 5912867298709750 a001 956722026041/271443*28143753123^(1/2) 5912867298709750 a001 86267571272/271443*28143753123^(3/5) 5912867298709750 a001 7778742049/271443*17393796001^(5/7) 5912867298709750 a001 7778742049/271443*312119004989^(7/11) 5912867298709750 a001 7778742049/271443*14662949395604^(5/9) 5912867298709750 a001 7778742049/271443*505019158607^(5/8) 5912867298709750 a001 3536736619241/90481*10749957122^(5/12) 5912867298709750 a001 6557470319842/271443*10749957122^(7/16) 5912867298709750 a001 4052739537881/271443*10749957122^(11/24) 5912867298709750 a001 7778742049/271443*28143753123^(7/10) 5912867298709750 a001 516002918640/90481*10749957122^(1/2) 5912867298709750 a001 591286729879/271443*10749957122^(13/24) 5912867298709750 a001 12586269025/271443*10749957122^(17/24) 5912867298709750 a001 75283811239/90481*10749957122^(7/12) 5912867298709750 a001 86267571272/271443*10749957122^(5/8) 5912867298709750 a001 121393*10749957122^(2/3) 5912867298709750 a001 20365011074/271443*10749957122^(11/16) 5912867298709750 a001 1134903170/271443*2537720636^(13/15) 5912867298709750 a001 3536736619241/90481*4106118243^(10/23) 5912867298709750 a001 4052739537881/271443*4106118243^(11/23) 5912867298709750 a001 2504730781961/271443*4106118243^(1/2) 5912867298709750 a001 516002918640/90481*4106118243^(12/23) 5912867298709750 a001 591286729879/271443*4106118243^(13/23) 5912867298709750 a001 75283811239/90481*4106118243^(14/23) 5912867298709750 a001 1602508992/90481*4106118243^(18/23) 5912867298709750 a001 86267571272/271443*4106118243^(15/23) 5912867298709750 a001 121393*4106118243^(16/23) 5912867298709750 a001 12586269025/271443*4106118243^(17/23) 5912867298709750 a001 1134903170/271443*45537549124^(13/17) 5912867298709750 a001 1134903170/271443*14662949395604^(13/21) 5912867298709750 a001 1134903170/271443*192900153618^(13/18) 5912867298709750 a001 1134903170/271443*73681302247^(3/4) 5912867298709750 a001 1134903170/271443*10749957122^(13/16) 5912867298709750 a001 3536736619241/90481*1568397607^(5/11) 5912867298709750 a001 4052739537881/271443*1568397607^(1/2) 5912867298709750 a001 516002918640/90481*1568397607^(6/11) 5912867298709750 a001 591286729879/271443*1568397607^(13/22) 5912867298709750 a001 75283811239/90481*1568397607^(7/11) 5912867298709750 a001 86267571272/271443*1568397607^(15/22) 5912867298709750 a001 1836311903/271443*1568397607^(19/22) 5912867298709750 a001 121393*1568397607^(8/11) 5912867298709750 a001 20365011074/271443*1568397607^(3/4) 5912867298709750 a001 12586269025/271443*1568397607^(17/22) 5912867298709750 a001 1602508992/90481*1568397607^(9/11) 5912867298709750 a001 3536736619241/90481*599074578^(10/21) 5912867298709750 a001 6557470319842/271443*599074578^(1/2) 5912867298709750 a001 4052739537881/271443*599074578^(11/21) 5912867298709750 a001 516002918640/90481*599074578^(4/7) 5912867298709750 a001 591286729879/271443*599074578^(13/21) 5912867298709750 a001 365435296162/271443*599074578^(9/14) 5912867298709750 a001 75283811239/90481*599074578^(2/3) 5912867298709750 a001 86267571272/271443*599074578^(5/7) 5912867298709750 a001 121393*599074578^(16/21) 5912867298709750 a001 20365011074/271443*599074578^(11/14) 5912867298709750 a001 233802911/90481*599074578^(20/21) 5912867298709750 a001 12586269025/271443*599074578^(17/21) 5912867298709750 a001 7778742049/271443*599074578^(5/6) 5912867298709750 a001 1602508992/90481*599074578^(6/7) 5912867298709750 a001 1836311903/271443*599074578^(19/21) 5912867298709750 a001 1134903170/271443*599074578^(13/14) 5912867298709750 a001 3536736619241/90481*228826127^(1/2) 5912867298709750 a001 4052739537881/271443*228826127^(11/20) 5912867298709750 a001 516002918640/90481*228826127^(3/5) 5912867298709750 a001 956722026041/271443*228826127^(5/8) 5912867298709750 a001 591286729879/271443*228826127^(13/20) 5912867298709750 a001 75283811239/90481*228826127^(7/10) 5912867298709750 a001 86267571272/271443*228826127^(3/4) 5912867298709750 a001 121393*228826127^(4/5) 5912867298709750 a001 12586269025/271443*228826127^(17/20) 5912867298709750 a001 7778742049/271443*228826127^(7/8) 5912867298709750 a001 1602508992/90481*228826127^(9/10) 5912867298709750 a001 1836311903/271443*228826127^(19/20) 5912867298709751 a001 63245986/271443*45537549124^(15/17) 5912867298709751 a001 63245986/271443*312119004989^(9/11) 5912867298709751 a001 63245986/271443*14662949395604^(5/7) 5912867298709751 a001 63245986/271443*192900153618^(5/6) 5912867298709751 a001 63245986/271443*28143753123^(9/10) 5912867298709751 a001 63245986/271443*10749957122^(15/16) 5912867298709751 a001 3536736619241/90481*87403803^(10/19) 5912867298709751 a001 4052739537881/271443*87403803^(11/19) 5912867298709751 a001 516002918640/90481*87403803^(12/19) 5912867298709751 a001 591286729879/271443*87403803^(13/19) 5912867298709751 a001 75283811239/90481*87403803^(14/19) 5912867298709751 a001 86267571272/271443*87403803^(15/19) 5912867298709751 a001 121393*87403803^(16/19) 5912867298709751 a001 12586269025/271443*87403803^(17/19) 5912867298709751 a001 1602508992/90481*87403803^(18/19) 5912867298709753 a001 3536736619241/90481*33385282^(5/9) 5912867298709753 a001 6557470319842/271443*33385282^(7/12) 5912867298709754 a001 4052739537881/271443*33385282^(11/18) 5912867298709754 a001 516002918640/90481*33385282^(2/3) 5912867298709754 a001 591286729879/271443*33385282^(13/18) 5912867298709754 a001 365435296162/271443*33385282^(3/4) 5912867298709754 a001 75283811239/90481*33385282^(7/9) 5912867298709755 a001 86267571272/271443*33385282^(5/6) 5912867298709755 a001 121393*33385282^(8/9) 5912867298709755 a001 20365011074/271443*33385282^(11/12) 5912867298709755 a001 12586269025/271443*33385282^(17/18) 5912867298709764 a001 9227465/271443*14662949395604^(7/9) 5912867298709764 a001 9227465/271443*505019158607^(7/8) 5912867298709772 a001 3536736619241/90481*12752043^(10/17) 5912867298709774 a001 4052739537881/271443*12752043^(11/17) 5912867298709776 a001 516002918640/90481*12752043^(12/17) 5912867298709778 a001 591286729879/271443*12752043^(13/17) 5912867298709780 a001 75283811239/90481*12752043^(14/17) 5912867298709782 a001 86267571272/271443*12752043^(15/17) 5912867298709784 a001 121393*12752043^(16/17) 5912867298709845 a001 3524578/271443*817138163596^(17/19) 5912867298709845 a001 3524578/271443*14662949395604^(17/21) 5912867298709845 a001 3524578/271443*192900153618^(17/18) 5912867298709906 a001 3536736619241/90481*4870847^(5/8) 5912867298709922 a001 4052739537881/271443*4870847^(11/16) 5912867298709937 a001 516002918640/90481*4870847^(3/4) 5912867298709953 a001 591286729879/271443*4870847^(13/16) 5912867298709968 a001 75283811239/90481*4870847^(7/8) 5912867298709984 a001 86267571272/271443*4870847^(15/16) 5912867298710889 a001 3536736619241/90481*1860498^(2/3) 5912867298710946 a001 6557470319842/271443*1860498^(7/10) 5912867298711003 a001 4052739537881/271443*1860498^(11/15) 5912867298711117 a001 516002918640/90481*1860498^(4/5) 5912867298711174 a001 956722026041/271443*1860498^(5/6) 5912867298711231 a001 591286729879/271443*1860498^(13/15) 5912867298711288 a001 365435296162/271443*1860498^(9/10) 5912867298711345 a001 75283811239/90481*1860498^(14/15) 5912867298711458 a001 491974210721988233/832040 5912867298714222 a001 514229/271443*3461452808002^(11/12) 5912867298718113 a001 3536736619241/90481*710647^(5/7) 5912867298718531 a001 6557470319842/271443*710647^(3/4) 5912867298718950 a001 4052739537881/271443*710647^(11/14) 5912867298719786 a001 516002918640/90481*710647^(6/7) 5912867298720622 a001 591286729879/271443*710647^(13/14) 5912867298721245 a001 2504730781961/103682*103682^(7/8) 5912867298721458 a001 62639142302465520/105937 5912867298740403 a001 196418/271443*14662949395604^(19/21) 5912867298744163 a001 774004377960/51841*103682^(11/12) 5912867298747639 a001 58069678454270691/98209 5912867298751045 a001 4052739537881/710647*439204^(8/9) 5912867298757639 a001 58069678454368900/98209 5912867298759098 a001 116139356908766457/196418 5912867298759311 a001 58069678454385319/98209 5912867298759342 a001 3415863438493272/5777 5912867298759346 a001 116139356908771337/196418 5912867298759347 a001 3415863438493275/5777 5912867298759347 a001 58069678454385676/98209 5912867298759347 a001 116139356908771353/196418 5912867298759347 a001 58069678454385679/98209 5912867298759349 a001 58069678454385696/98209 5912867298759361 a001 116139356908771625/196418 5912867298759442 a001 58069678454386611/98209 5912867298761045 a001 3536736619241/620166*439204^(8/9) 5912867298763819 a001 116139356908859193/196418 5912867298767081 a001 956722026041/103682*103682^(23/24) 5912867298767225 a001 6557470319842/1149851*439204^(8/9) 5912867298771480 a001 3536736619241/90481*271443^(10/13) 5912867298773819 a001 304056783818116251/514229 5912867298776583 a001 105937/620166*14662949395604^(20/21) 5912867298776583 a001 832040/710647*14662949395604^(8/9) 5912867298777639 a001 796030994545807371/1346269 5912867298777653 a001 4052739537881/271443*271443^(11/13) 5912867298778042 a001 311187/101521*14662949395604^(6/7) 5912867298778196 a001 1042018099909652931/1762289 5912867298778205 a001 317811*7881196^(10/11) 5912867298778213 a001 956722026041/710647*7881196^(9/11) 5912867298778222 a001 4052739537881/710647*7881196^(8/11) 5912867298778228 a001 1515744265389/101521*7881196^(2/3) 5912867298778255 a001 5702887/710647*23725150497407^(13/16) 5912867298778255 a001 5702887/710647*505019158607^(13/14) 5912867298778279 a001 317811*20633239^(6/7) 5912867298778280 a001 591286729879/710647*20633239^(4/5) 5912867298778281 a001 2504730781961/710647*20633239^(5/7) 5912867298778286 a001 14930352/710647*312119004989^(10/11) 5912867298778286 a001 14930352/710647*3461452808002^(5/6) 5912867298778291 a001 39088169/710647*45537549124^(16/17) 5912867298778291 a001 39088169/710647*14662949395604^(16/21) 5912867298778291 a001 39088169/710647*192900153618^(8/9) 5912867298778291 a001 39088169/710647*73681302247^(12/13) 5912867298778291 a001 12586269025/710647*141422324^(12/13) 5912867298778291 a001 53316291173/710647*141422324^(11/13) 5912867298778291 a001 317811*141422324^(10/13) 5912867298778291 a001 956722026041/710647*141422324^(9/13) 5912867298778291 a001 1548008755920/710647*141422324^(2/3) 5912867298778291 a001 4052739537881/710647*141422324^(8/13) 5912867298778291 a001 14619165/101521*10749957122^(23/24) 5912867298778291 a001 267914296/710647*312119004989^(4/5) 5912867298778291 a001 267914296/710647*23725150497407^(11/16) 5912867298778291 a001 267914296/710647*73681302247^(11/13) 5912867298778291 a001 267914296/710647*10749957122^(11/12) 5912867298778291 a001 267914296/710647*4106118243^(22/23) 5912867298778291 a001 701408733/710647*2537720636^(14/15) 5912867298778291 a001 701408733/710647*17393796001^(6/7) 5912867298778291 a001 701408733/710647*45537549124^(14/17) 5912867298778291 a001 701408733/710647*817138163596^(14/19) 5912867298778291 a001 701408733/710647*14662949395604^(2/3) 5912867298778291 a001 701408733/710647*505019158607^(3/4) 5912867298778291 a001 701408733/710647*192900153618^(7/9) 5912867298778291 a001 701408733/710647*10749957122^(7/8) 5912867298778291 a001 701408733/710647*4106118243^(21/23) 5912867298778291 a001 1836311903/710647*2537720636^(8/9) 5912867298778291 a001 12586269025/710647*2537720636^(4/5) 5912867298778291 a001 20365011074/710647*2537720636^(7/9) 5912867298778291 a001 53316291173/710647*2537720636^(11/15) 5912867298778291 a001 2971215073/710647*2537720636^(13/15) 5912867298778291 a001 317811*2537720636^(2/3) 5912867298778291 a001 956722026041/710647*2537720636^(3/5) 5912867298778291 a001 2504730781961/710647*2537720636^(5/9) 5912867298778291 a001 4052739537881/710647*2537720636^(8/15) 5912867298778291 a001 1836311903/710647*312119004989^(8/11) 5912867298778291 a001 1836311903/710647*23725150497407^(5/8) 5912867298778291 a001 1836311903/710647*73681302247^(10/13) 5912867298778291 a001 1836311903/710647*28143753123^(4/5) 5912867298778291 a001 1836311903/710647*10749957122^(5/6) 5912867298778291 a001 701408733/710647*1568397607^(21/22) 5912867298778291 a001 686789568/101521*817138163596^(2/3) 5912867298778291 a001 1836311903/710647*4106118243^(20/23) 5912867298778291 a001 591286729879/710647*17393796001^(4/7) 5912867298778291 a001 20365011074/710647*17393796001^(5/7) 5912867298778291 a001 686789568/101521*10749957122^(19/24) 5912867298778291 a001 12586269025/710647*45537549124^(12/17) 5912867298778291 a001 12586269025/710647*14662949395604^(4/7) 5912867298778291 a001 12586269025/710647*505019158607^(9/14) 5912867298778291 a001 12586269025/710647*192900153618^(2/3) 5912867298778291 a001 12586269025/710647*73681302247^(9/13) 5912867298778291 a001 32951280099/710647*45537549124^(2/3) 5912867298778291 a001 317811*45537549124^(10/17) 5912867298778291 a001 956722026041/710647*45537549124^(9/17) 5912867298778291 a001 53316291173/710647*45537549124^(11/17) 5912867298778291 a001 4052739537881/710647*45537549124^(8/17) 5912867298778291 a001 86267571272/710647*23725150497407^(1/2) 5912867298778291 a001 86267571272/710647*505019158607^(4/7) 5912867298778291 a001 317811*312119004989^(6/11) 5912867298778291 a001 2504730781961/710647*312119004989^(5/11) 5912867298778291 a001 1515744265389/101521*312119004989^(2/5) 5912867298778291 a001 317811*14662949395604^(10/21) 5912867298778291 a001 591286729879/710647*14662949395604^(4/9) 5912867298778291 a001 956722026041/710647*817138163596^(9/19) 5912867298778291 a001 365435296162/710647*1322157322203^(1/2) 5912867298778291 a001 139583862445/710647*9062201101803^(1/2) 5912867298778291 a001 4052739537881/710647*192900153618^(4/9) 5912867298778291 a001 956722026041/710647*192900153618^(1/2) 5912867298778291 a001 53316291173/710647*312119004989^(3/5) 5912867298778291 a001 53316291173/710647*817138163596^(11/19) 5912867298778291 a001 53316291173/710647*14662949395604^(11/21) 5912867298778291 a001 4052739537881/710647*73681302247^(6/13) 5912867298778291 a001 53316291173/710647*192900153618^(11/18) 5912867298778291 a001 1548008755920/710647*73681302247^(1/2) 5912867298778291 a001 591286729879/710647*73681302247^(7/13) 5912867298778291 a001 20365011074/710647*312119004989^(7/11) 5912867298778291 a001 20365011074/710647*14662949395604^(5/9) 5912867298778291 a001 20365011074/710647*505019158607^(5/8) 5912867298778291 a001 2504730781961/710647*28143753123^(1/2) 5912867298778291 a001 317811*28143753123^(3/5) 5912867298778291 a001 20365011074/710647*28143753123^(7/10) 5912867298778291 a001 1515744265389/101521*10749957122^(11/24) 5912867298778291 a001 4052739537881/710647*10749957122^(1/2) 5912867298778291 a001 1548008755920/710647*10749957122^(13/24) 5912867298778291 a001 956722026041/710647*10749957122^(9/16) 5912867298778291 a001 591286729879/710647*10749957122^(7/12) 5912867298778291 a001 12586269025/710647*10749957122^(3/4) 5912867298778291 a001 317811*10749957122^(5/8) 5912867298778291 a001 86267571272/710647*10749957122^(2/3) 5912867298778291 a001 32951280099/710647*10749957122^(17/24) 5912867298778291 a001 53316291173/710647*10749957122^(11/16) 5912867298778291 a001 2971215073/710647*45537549124^(13/17) 5912867298778291 a001 2971215073/710647*14662949395604^(13/21) 5912867298778291 a001 2971215073/710647*192900153618^(13/18) 5912867298778291 a001 2971215073/710647*73681302247^(3/4) 5912867298778291 a001 1515744265389/101521*4106118243^(11/23) 5912867298778291 a001 6557470319842/710647*4106118243^(1/2) 5912867298778291 a001 2971215073/710647*10749957122^(13/16) 5912867298778291 a001 4052739537881/710647*4106118243^(12/23) 5912867298778291 a001 1548008755920/710647*4106118243^(13/23) 5912867298778291 a001 591286729879/710647*4106118243^(14/23) 5912867298778291 a001 317811*4106118243^(15/23) 5912867298778291 a001 686789568/101521*4106118243^(19/23) 5912867298778291 a001 86267571272/710647*4106118243^(16/23) 5912867298778291 a001 32951280099/710647*4106118243^(17/23) 5912867298778291 a001 12586269025/710647*4106118243^(18/23) 5912867298778291 a001 1515744265389/101521*1568397607^(1/2) 5912867298778291 a001 4052739537881/710647*1568397607^(6/11) 5912867298778291 a001 1548008755920/710647*1568397607^(13/22) 5912867298778291 a001 591286729879/710647*1568397607^(7/11) 5912867298778291 a001 317811*1568397607^(15/22) 5912867298778291 a001 86267571272/710647*1568397607^(8/11) 5912867298778291 a001 53316291173/710647*1568397607^(3/4) 5912867298778291 a001 1836311903/710647*1568397607^(10/11) 5912867298778291 a001 32951280099/710647*1568397607^(17/22) 5912867298778291 a001 12586269025/710647*1568397607^(9/11) 5912867298778291 a001 686789568/101521*1568397607^(19/22) 5912867298778291 a001 1515744265389/101521*599074578^(11/21) 5912867298778291 a001 4052739537881/710647*599074578^(4/7) 5912867298778291 a001 1548008755920/710647*599074578^(13/21) 5912867298778291 a001 956722026041/710647*599074578^(9/14) 5912867298778291 a001 591286729879/710647*599074578^(2/3) 5912867298778291 a001 317811*599074578^(5/7) 5912867298778291 a001 86267571272/710647*599074578^(16/21) 5912867298778291 a001 53316291173/710647*599074578^(11/14) 5912867298778291 a001 32951280099/710647*599074578^(17/21) 5912867298778291 a001 20365011074/710647*599074578^(5/6) 5912867298778291 a001 12586269025/710647*599074578^(6/7) 5912867298778291 a001 686789568/101521*599074578^(19/21) 5912867298778291 a001 1836311903/710647*599074578^(20/21) 5912867298778291 a001 2971215073/710647*599074578^(13/14) 5912867298778291 a001 165580141/710647*45537549124^(15/17) 5912867298778291 a001 165580141/710647*312119004989^(9/11) 5912867298778291 a001 165580141/710647*14662949395604^(5/7) 5912867298778291 a001 165580141/710647*192900153618^(5/6) 5912867298778291 a001 165580141/710647*28143753123^(9/10) 5912867298778291 a001 165580141/710647*10749957122^(15/16) 5912867298778291 a001 1515744265389/101521*228826127^(11/20) 5912867298778291 a001 4052739537881/710647*228826127^(3/5) 5912867298778291 a001 2504730781961/710647*228826127^(5/8) 5912867298778291 a001 1548008755920/710647*228826127^(13/20) 5912867298778291 a001 591286729879/710647*228826127^(7/10) 5912867298778291 a001 317811*228826127^(3/4) 5912867298778291 a001 86267571272/710647*228826127^(4/5) 5912867298778291 a001 32951280099/710647*228826127^(17/20) 5912867298778291 a001 20365011074/710647*228826127^(7/8) 5912867298778291 a001 12586269025/710647*228826127^(9/10) 5912867298778291 a001 686789568/101521*228826127^(19/20) 5912867298778292 a001 1515744265389/101521*87403803^(11/19) 5912867298778292 a001 4052739537881/710647*87403803^(12/19) 5912867298778292 a001 1548008755920/710647*87403803^(13/19) 5912867298778292 a001 591286729879/710647*87403803^(14/19) 5912867298778292 a001 317811*87403803^(15/19) 5912867298778292 a001 86267571272/710647*87403803^(16/19) 5912867298778292 a001 32951280099/710647*87403803^(17/19) 5912867298778292 a001 12586269025/710647*87403803^(18/19) 5912867298778293 a001 24157817/710647*14662949395604^(7/9) 5912867298778293 a001 24157817/710647*505019158607^(7/8) 5912867298778295 a001 1515744265389/101521*33385282^(11/18) 5912867298778295 a001 4052739537881/710647*33385282^(2/3) 5912867298778295 a001 1548008755920/710647*33385282^(13/18) 5912867298778295 a001 956722026041/710647*33385282^(3/4) 5912867298778295 a001 591286729879/710647*33385282^(7/9) 5912867298778296 a001 317811*33385282^(5/6) 5912867298778296 a001 86267571272/710647*33385282^(8/9) 5912867298778296 a001 53316291173/710647*33385282^(11/12) 5912867298778296 a001 32951280099/710647*33385282^(17/18) 5912867298778305 a001 9227465/710647*817138163596^(17/19) 5912867298778305 a001 9227465/710647*14662949395604^(17/21) 5912867298778305 a001 9227465/710647*192900153618^(17/18) 5912867298778315 a001 1515744265389/101521*12752043^(11/17) 5912867298778317 a001 4052739537881/710647*12752043^(12/17) 5912867298778319 a001 1548008755920/710647*12752043^(13/17) 5912867298778321 a001 591286729879/710647*12752043^(14/17) 5912867298778323 a001 317811*12752043^(15/17) 5912867298778326 a001 86267571272/710647*12752043^(16/17) 5912867298778328 a001 3372041405092804353/5702887 5912867298778463 a001 1515744265389/101521*4870847^(11/16) 5912867298778478 a001 4052739537881/710647*4870847^(3/4) 5912867298778494 a001 1548008755920/710647*4870847^(13/16) 5912867298778509 a001 591286729879/710647*4870847^(7/8) 5912867298778525 a001 317811*4870847^(15/16) 5912867298778541 a001 429335068424499497/726103 5912867298778944 a001 1346269/710647*3461452808002^(11/12) 5912867298779544 a001 1515744265389/101521*1860498^(11/15) 5912867298779658 a001 4052739537881/710647*1860498^(4/5) 5912867298779715 a001 2504730781961/710647*1860498^(5/6) 5912867298779772 a001 1548008755920/710647*1860498^(13/15) 5912867298779829 a001 956722026041/710647*1860498^(9/10) 5912867298779886 a001 591286729879/710647*1860498^(14/15) 5912867298782763 a001 514229/710647*14662949395604^(19/21) 5912867298783819 a001 304056783818630480/514229 5912867298783826 a001 516002918640/90481*271443^(12/13) 5912867298785278 a001 304056783818705505/514229 5912867298785491 a001 304056783818716451/514229 5912867298785522 a001 304056783818718048/514229 5912867298785527 a001 304056783818718281/514229 5912867298785527 a001 304056783818718315/514229 5912867298785527 a001 304056783818718320/514229 5912867298785527 a001 304056783818718321/514229 5912867298785527 a001 304056783818718323/514229 5912867298785528 a001 304056783818718336/514229 5912867298785529 a001 304056783818718425/514229 5912867298785541 a001 304056783818719035/514229 5912867298785623 a001 304056783818723216/514229 5912867298786180 a001 304056783818751873/514229 5912867298787491 a001 1515744265389/101521*710647^(11/14) 5912867298787639 a001 796030994547153640/1346269 5912867298788042 a001 726103/620166*14662949395604^(8/9) 5912867298788196 a001 1042018099911415220/1762289 5912867298788205 a001 591286729879/1860498*7881196^(10/11) 5912867298788213 a001 2504730781961/1860498*7881196^(9/11) 5912867298788222 a001 3536736619241/620166*7881196^(8/11) 5912867298788255 a001 5702887/1860498*14662949395604^(6/7) 5912867298788277 a001 83939655460328272/141961 5912867298788279 a001 591286729879/1860498*20633239^(6/7) 5912867298788280 a001 832040*20633239^(4/5) 5912867298788281 a001 3278735159921/930249*20633239^(5/7) 5912867298788286 a001 829464/103361*23725150497407^(13/16) 5912867298788286 a001 829464/103361*505019158607^(13/14) 5912867298788291 a001 39088169/1860498*312119004989^(10/11) 5912867298788291 a001 39088169/1860498*3461452808002^(5/6) 5912867298788291 a001 10983760033/620166*141422324^(12/13) 5912867298788291 a001 139583862445/1860498*141422324^(11/13) 5912867298788291 a001 591286729879/1860498*141422324^(10/13) 5912867298788291 a001 2504730781961/1860498*141422324^(9/13) 5912867298788291 a001 4052739537881/1860498*141422324^(2/3) 5912867298788291 a001 3536736619241/620166*141422324^(8/13) 5912867298788291 a001 831985/15126*45537549124^(16/17) 5912867298788291 a001 831985/15126*14662949395604^(16/21) 5912867298788291 a001 831985/15126*192900153618^(8/9) 5912867298788291 a001 831985/15126*73681302247^(12/13) 5912867298788291 a001 133957148/930249*10749957122^(23/24) 5912867298788291 a001 233802911/620166*312119004989^(4/5) 5912867298788291 a001 233802911/620166*23725150497407^(11/16) 5912867298788291 a001 233802911/620166*73681302247^(11/13) 5912867298788291 a001 233802911/620166*10749957122^(11/12) 5912867298788291 a001 233802911/620166*4106118243^(22/23) 5912867298788291 a001 1836311903/1860498*2537720636^(14/15) 5912867298788291 a001 267084832/103361*2537720636^(8/9) 5912867298788291 a001 7778742049/1860498*2537720636^(13/15) 5912867298788291 a001 10983760033/620166*2537720636^(4/5) 5912867298788291 a001 53316291173/1860498*2537720636^(7/9) 5912867298788291 a001 139583862445/1860498*2537720636^(11/15) 5912867298788291 a001 591286729879/1860498*2537720636^(2/3) 5912867298788291 a001 2504730781961/1860498*2537720636^(3/5) 5912867298788291 a001 3278735159921/930249*2537720636^(5/9) 5912867298788291 a001 3536736619241/620166*2537720636^(8/15) 5912867298788291 a001 1836311903/1860498*17393796001^(6/7) 5912867298788291 a001 1836311903/1860498*45537549124^(14/17) 5912867298788291 a001 1836311903/1860498*817138163596^(14/19) 5912867298788291 a001 1836311903/1860498*14662949395604^(2/3) 5912867298788291 a001 1836311903/1860498*505019158607^(3/4) 5912867298788291 a001 1836311903/1860498*192900153618^(7/9) 5912867298788291 a001 1836311903/1860498*10749957122^(7/8) 5912867298788291 a001 267084832/103361*312119004989^(8/11) 5912867298788291 a001 267084832/103361*23725150497407^(5/8) 5912867298788291 a001 267084832/103361*73681302247^(10/13) 5912867298788291 a001 267084832/103361*28143753123^(4/5) 5912867298788291 a001 1836311903/1860498*4106118243^(21/23) 5912867298788291 a001 53316291173/1860498*17393796001^(5/7) 5912867298788291 a001 832040*17393796001^(4/7) 5912867298788291 a001 267084832/103361*10749957122^(5/6) 5912867298788291 a001 12586269025/1860498*817138163596^(2/3) 5912867298788291 a001 10983760033/620166*45537549124^(12/17) 5912867298788291 a001 43133785636/930249*45537549124^(2/3) 5912867298788291 a001 139583862445/1860498*45537549124^(11/17) 5912867298788291 a001 591286729879/1860498*45537549124^(10/17) 5912867298788291 a001 2504730781961/1860498*45537549124^(9/17) 5912867298788291 a001 3536736619241/620166*45537549124^(8/17) 5912867298788291 a001 10983760033/620166*14662949395604^(4/7) 5912867298788291 a001 10983760033/620166*505019158607^(9/14) 5912867298788291 a001 10983760033/620166*192900153618^(2/3) 5912867298788291 a001 10983760033/620166*73681302247^(9/13) 5912867298788291 a001 591286729879/1860498*312119004989^(6/11) 5912867298788291 a001 3278735159921/930249*312119004989^(5/11) 5912867298788291 a001 2504730781961/1860498*817138163596^(9/19) 5912867298788291 a001 2504730781961/1860498*14662949395604^(3/7) 5912867298788291 a001 3278735159921/930249*3461452808002^(5/12) 5912867298788291 a001 182717648081/930249*9062201101803^(1/2) 5912867298788291 a001 139583862445/1860498*312119004989^(3/5) 5912867298788291 a001 139583862445/1860498*817138163596^(11/19) 5912867298788291 a001 139583862445/1860498*14662949395604^(11/21) 5912867298788291 a001 3536736619241/620166*192900153618^(4/9) 5912867298788291 a001 139583862445/1860498*192900153618^(11/18) 5912867298788291 a001 53316291173/1860498*312119004989^(7/11) 5912867298788291 a001 53316291173/1860498*14662949395604^(5/9) 5912867298788291 a001 53316291173/1860498*505019158607^(5/8) 5912867298788291 a001 3536736619241/620166*73681302247^(6/13) 5912867298788291 a001 4052739537881/1860498*73681302247^(1/2) 5912867298788291 a001 832040*73681302247^(7/13) 5912867298788291 a001 75283811239/620166*73681302247^(8/13) 5912867298788291 a001 3278735159921/930249*28143753123^(1/2) 5912867298788291 a001 591286729879/1860498*28143753123^(3/5) 5912867298788291 a001 53316291173/1860498*28143753123^(7/10) 5912867298788291 a001 7778742049/1860498*45537549124^(13/17) 5912867298788291 a001 7778742049/1860498*14662949395604^(13/21) 5912867298788291 a001 7778742049/1860498*192900153618^(13/18) 5912867298788291 a001 7778742049/1860498*73681302247^(3/4) 5912867298788291 a001 3536736619241/620166*10749957122^(1/2) 5912867298788291 a001 4052739537881/1860498*10749957122^(13/24) 5912867298788291 a001 2504730781961/1860498*10749957122^(9/16) 5912867298788291 a001 832040*10749957122^(7/12) 5912867298788291 a001 591286729879/1860498*10749957122^(5/8) 5912867298788291 a001 12586269025/1860498*10749957122^(19/24) 5912867298788291 a001 75283811239/620166*10749957122^(2/3) 5912867298788291 a001 139583862445/1860498*10749957122^(11/16) 5912867298788291 a001 43133785636/930249*10749957122^(17/24) 5912867298788291 a001 10983760033/620166*10749957122^(3/4) 5912867298788291 a001 7778742049/1860498*10749957122^(13/16) 5912867298788291 a001 3536736619241/620166*4106118243^(12/23) 5912867298788291 a001 4052739537881/1860498*4106118243^(13/23) 5912867298788291 a001 832040*4106118243^(14/23) 5912867298788291 a001 591286729879/1860498*4106118243^(15/23) 5912867298788291 a001 75283811239/620166*4106118243^(16/23) 5912867298788291 a001 267084832/103361*4106118243^(20/23) 5912867298788291 a001 43133785636/930249*4106118243^(17/23) 5912867298788291 a001 10983760033/620166*4106118243^(18/23) 5912867298788291 a001 12586269025/1860498*4106118243^(19/23) 5912867298788291 a001 3536736619241/620166*1568397607^(6/11) 5912867298788291 a001 4052739537881/1860498*1568397607^(13/22) 5912867298788291 a001 832040*1568397607^(7/11) 5912867298788291 a001 591286729879/1860498*1568397607^(15/22) 5912867298788291 a001 75283811239/620166*1568397607^(8/11) 5912867298788291 a001 139583862445/1860498*1568397607^(3/4) 5912867298788291 a001 43133785636/930249*1568397607^(17/22) 5912867298788291 a001 1836311903/1860498*1568397607^(21/22) 5912867298788291 a001 10983760033/620166*1568397607^(9/11) 5912867298788291 a001 12586269025/1860498*1568397607^(19/22) 5912867298788291 a001 267084832/103361*1568397607^(10/11) 5912867298788291 a001 433494437/1860498*45537549124^(15/17) 5912867298788291 a001 433494437/1860498*312119004989^(9/11) 5912867298788291 a001 433494437/1860498*14662949395604^(5/7) 5912867298788291 a001 433494437/1860498*192900153618^(5/6) 5912867298788291 a001 433494437/1860498*28143753123^(9/10) 5912867298788291 a001 433494437/1860498*10749957122^(15/16) 5912867298788291 a001 3536736619241/620166*599074578^(4/7) 5912867298788291 a001 4052739537881/1860498*599074578^(13/21) 5912867298788291 a001 2504730781961/1860498*599074578^(9/14) 5912867298788291 a001 832040*599074578^(2/3) 5912867298788291 a001 591286729879/1860498*599074578^(5/7) 5912867298788291 a001 75283811239/620166*599074578^(16/21) 5912867298788291 a001 139583862445/1860498*599074578^(11/14) 5912867298788291 a001 43133785636/930249*599074578^(17/21) 5912867298788291 a001 53316291173/1860498*599074578^(5/6) 5912867298788291 a001 10983760033/620166*599074578^(6/7) 5912867298788291 a001 12586269025/1860498*599074578^(19/21) 5912867298788291 a001 7778742049/1860498*599074578^(13/14) 5912867298788291 a001 267084832/103361*599074578^(20/21) 5912867298788291 a001 3536736619241/620166*228826127^(3/5) 5912867298788291 a001 3278735159921/930249*228826127^(5/8) 5912867298788291 a001 4052739537881/1860498*228826127^(13/20) 5912867298788291 a001 832040*228826127^(7/10) 5912867298788291 a001 591286729879/1860498*228826127^(3/4) 5912867298788291 a001 75283811239/620166*228826127^(4/5) 5912867298788291 a001 43133785636/930249*228826127^(17/20) 5912867298788291 a001 53316291173/1860498*228826127^(7/8) 5912867298788291 a001 10983760033/620166*228826127^(9/10) 5912867298788291 a001 12586269025/1860498*228826127^(19/20) 5912867298788292 a001 31622993/930249*14662949395604^(7/9) 5912867298788292 a001 31622993/930249*505019158607^(7/8) 5912867298788292 a001 3536736619241/620166*87403803^(12/19) 5912867298788292 a001 4052739537881/1860498*87403803^(13/19) 5912867298788292 a001 832040*87403803^(14/19) 5912867298788292 a001 591286729879/1860498*87403803^(15/19) 5912867298788292 a001 75283811239/620166*87403803^(16/19) 5912867298788292 a001 43133785636/930249*87403803^(17/19) 5912867298788292 a001 10983760033/620166*87403803^(18/19) 5912867298788293 a001 24157817/1860498*817138163596^(17/19) 5912867298788293 a001 24157817/1860498*14662949395604^(17/21) 5912867298788293 a001 24157817/1860498*192900153618^(17/18) 5912867298788295 a001 3536736619241/620166*33385282^(2/3) 5912867298788295 a001 4052739537881/1860498*33385282^(13/18) 5912867298788295 a001 2504730781961/1860498*33385282^(3/4) 5912867298788295 a001 832040*33385282^(7/9) 5912867298788296 a001 591286729879/1860498*33385282^(5/6) 5912867298788296 a001 75283811239/620166*33385282^(8/9) 5912867298788296 a001 139583862445/1860498*33385282^(11/12) 5912867298788296 a001 43133785636/930249*33385282^(17/18) 5912867298788297 a001 367838292084160205/622098 5912867298788317 a001 3536736619241/620166*12752043^(12/17) 5912867298788319 a001 4052739537881/1860498*12752043^(13/17) 5912867298788321 a001 832040*12752043^(14/17) 5912867298788323 a001 591286729879/1860498*12752043^(15/17) 5912867298788326 a001 75283811239/620166*12752043^(16/17) 5912867298788327 a001 4052739537881/710647*710647^(6/7) 5912867298788328 a001 3372041405098507240/5702887 5912867298788386 a001 1762289/930249*3461452808002^(11/12) 5912867298788478 a001 3536736619241/620166*4870847^(3/4) 5912867298788494 a001 4052739537881/1860498*4870847^(13/16) 5912867298788509 a001 832040*4870847^(7/8) 5912867298788525 a001 591286729879/1860498*4870847^(15/16) 5912867298788541 a001 429335068425225600/726103 5912867298788944 a001 1346269/1860498*14662949395604^(19/21) 5912867298789098 a001 796030994547350058/1346269 5912867298789163 a001 1548008755920/710647*710647^(13/14) 5912867298789311 a001 796030994547378715/1346269 5912867298789342 a001 796030994547382896/1346269 5912867298789346 a001 796030994547383506/1346269 5912867298789347 a001 796030994547383595/1346269 5912867298789347 a001 796030994547383608/1346269 5912867298789347 a001 796030994547383610/1346269 5912867298789347 a001 796030994547383611/1346269 5912867298789347 a001 796030994547383616/1346269 5912867298789347 a001 796030994547383650/1346269 5912867298789349 a001 796030994547383883/1346269 5912867298789361 a001 796030994547385480/1346269 5912867298789442 a001 796030994547396426/1346269 5912867298789655 a001 2084036199823344669/3524578 5912867298789658 a001 3536736619241/620166*1860498^(4/5) 5912867298789664 a001 1548008755920/4870847*7881196^(10/11) 5912867298789672 a001 6557470319842/4870847*7881196^(9/11) 5912867298789714 a001 726103/4250681*14662949395604^(20/21) 5912867298789714 a001 5702887/4870847*14662949395604^(8/9) 5912867298789715 a001 3278735159921/930249*1860498^(5/6) 5912867298789736 a001 5456077604922683949/9227465 5912867298789738 a001 1548008755920/4870847*20633239^(6/7) 5912867298789739 a001 4052739537881/4870847*20633239^(4/5) 5912867298789745 a001 14930352/4870847*14662949395604^(6/7) 5912867298789748 a001 14284196614944707178/24157817 5912867298789750 a001 39088169/4870847*23725150497407^(13/16) 5912867298789750 a001 39088169/4870847*505019158607^(13/14) 5912867298789750 a001 86267571272/4870847*141422324^(12/13) 5912867298789750 a001 365435296162/4870847*141422324^(11/13) 5912867298789750 a001 1548008755920/4870847*141422324^(10/13) 5912867298789750 a001 6557470319842/4870847*141422324^(9/13) 5912867298789750 a001 2178309*141422324^(2/3) 5912867298789750 a001 102334155/4870847*312119004989^(10/11) 5912867298789750 a001 102334155/4870847*3461452808002^(5/6) 5912867298789750 a001 267914296/4870847*45537549124^(16/17) 5912867298789750 a001 267914296/4870847*14662949395604^(16/21) 5912867298789750 a001 267914296/4870847*192900153618^(8/9) 5912867298789750 a001 267914296/4870847*73681302247^(12/13) 5912867298789750 a001 701408733/4870847*10749957122^(23/24) 5912867298789750 a001 4807526976/4870847*2537720636^(14/15) 5912867298789750 a001 12586269025/4870847*2537720636^(8/9) 5912867298789750 a001 20365011074/4870847*2537720636^(13/15) 5912867298789750 a001 86267571272/4870847*2537720636^(4/5) 5912867298789750 a001 139583862445/4870847*2537720636^(7/9) 5912867298789750 a001 365435296162/4870847*2537720636^(11/15) 5912867298789750 a001 1548008755920/4870847*2537720636^(2/3) 5912867298789750 a001 6557470319842/4870847*2537720636^(3/5) 5912867298789750 a001 1836311903/4870847*312119004989^(4/5) 5912867298789750 a001 1836311903/4870847*23725150497407^(11/16) 5912867298789750 a001 1836311903/4870847*73681302247^(11/13) 5912867298789750 a001 1836311903/4870847*10749957122^(11/12) 5912867298789750 a001 4807526976/4870847*17393796001^(6/7) 5912867298789750 a001 4807526976/4870847*45537549124^(14/17) 5912867298789750 a001 4807526976/4870847*817138163596^(14/19) 5912867298789750 a001 4807526976/4870847*14662949395604^(2/3) 5912867298789750 a001 4807526976/4870847*505019158607^(3/4) 5912867298789750 a001 4807526976/4870847*192900153618^(7/9) 5912867298789750 a001 1836311903/4870847*4106118243^(22/23) 5912867298789750 a001 139583862445/4870847*17393796001^(5/7) 5912867298789750 a001 4052739537881/4870847*17393796001^(4/7) 5912867298789750 a001 12586269025/4870847*312119004989^(8/11) 5912867298789750 a001 12586269025/4870847*23725150497407^(5/8) 5912867298789750 a001 12586269025/4870847*73681302247^(10/13) 5912867298789750 a001 4807526976/4870847*10749957122^(7/8) 5912867298789750 a001 86267571272/4870847*45537549124^(12/17) 5912867298789750 a001 225851433717/4870847*45537549124^(2/3) 5912867298789750 a001 365435296162/4870847*45537549124^(11/17) 5912867298789750 a001 1548008755920/4870847*45537549124^(10/17) 5912867298789750 a001 12586269025/4870847*28143753123^(4/5) 5912867298789750 a001 32951280099/4870847*817138163596^(2/3) 5912867298789750 a001 86267571272/4870847*14662949395604^(4/7) 5912867298789750 a001 86267571272/4870847*505019158607^(9/14) 5912867298789750 a001 86267571272/4870847*192900153618^(2/3) 5912867298789750 a001 1548008755920/4870847*312119004989^(6/11) 5912867298789750 a001 365435296162/4870847*312119004989^(3/5) 5912867298789750 a001 591286729879/4870847*23725150497407^(1/2) 5912867298789750 a001 1548008755920/4870847*14662949395604^(10/21) 5912867298789750 a001 2504730781961/4870847*1322157322203^(1/2) 5912867298789750 a001 365435296162/4870847*817138163596^(11/19) 5912867298789750 a001 139583862445/4870847*312119004989^(7/11) 5912867298789750 a001 139583862445/4870847*14662949395604^(5/9) 5912867298789750 a001 139583862445/4870847*505019158607^(5/8) 5912867298789750 a001 6557470319842/4870847*192900153618^(1/2) 5912867298789750 a001 1548008755920/4870847*192900153618^(5/9) 5912867298789750 a001 365435296162/4870847*192900153618^(11/18) 5912867298789750 a001 2178309*73681302247^(1/2) 5912867298789750 a001 4052739537881/4870847*73681302247^(7/13) 5912867298789750 a001 86267571272/4870847*73681302247^(9/13) 5912867298789750 a001 20365011074/4870847*45537549124^(13/17) 5912867298789750 a001 20365011074/4870847*14662949395604^(13/21) 5912867298789750 a001 20365011074/4870847*192900153618^(13/18) 5912867298789750 a001 20365011074/4870847*73681302247^(3/4) 5912867298789750 a001 1548008755920/4870847*28143753123^(3/5) 5912867298789750 a001 139583862445/4870847*28143753123^(7/10) 5912867298789750 a001 2178309*10749957122^(13/24) 5912867298789750 a001 6557470319842/4870847*10749957122^(9/16) 5912867298789750 a001 4052739537881/4870847*10749957122^(7/12) 5912867298789750 a001 1548008755920/4870847*10749957122^(5/8) 5912867298789750 a001 591286729879/4870847*10749957122^(2/3) 5912867298789750 a001 12586269025/4870847*10749957122^(5/6) 5912867298789750 a001 365435296162/4870847*10749957122^(11/16) 5912867298789750 a001 225851433717/4870847*10749957122^(17/24) 5912867298789750 a001 86267571272/4870847*10749957122^(3/4) 5912867298789750 a001 32951280099/4870847*10749957122^(19/24) 5912867298789750 a001 20365011074/4870847*10749957122^(13/16) 5912867298789750 a001 2178309*4106118243^(13/23) 5912867298789750 a001 4052739537881/4870847*4106118243^(14/23) 5912867298789750 a001 1548008755920/4870847*4106118243^(15/23) 5912867298789750 a001 591286729879/4870847*4106118243^(16/23) 5912867298789750 a001 225851433717/4870847*4106118243^(17/23) 5912867298789750 a001 4807526976/4870847*4106118243^(21/23) 5912867298789750 a001 86267571272/4870847*4106118243^(18/23) 5912867298789750 a001 32951280099/4870847*4106118243^(19/23) 5912867298789750 a001 12586269025/4870847*4106118243^(20/23) 5912867298789750 a001 1134903170/4870847*45537549124^(15/17) 5912867298789750 a001 1134903170/4870847*312119004989^(9/11) 5912867298789750 a001 1134903170/4870847*14662949395604^(5/7) 5912867298789750 a001 1134903170/4870847*192900153618^(5/6) 5912867298789750 a001 1134903170/4870847*28143753123^(9/10) 5912867298789750 a001 1134903170/4870847*10749957122^(15/16) 5912867298789750 a001 2178309*1568397607^(13/22) 5912867298789750 a001 4052739537881/4870847*1568397607^(7/11) 5912867298789750 a001 1548008755920/4870847*1568397607^(15/22) 5912867298789750 a001 591286729879/4870847*1568397607^(8/11) 5912867298789750 a001 365435296162/4870847*1568397607^(3/4) 5912867298789750 a001 225851433717/4870847*1568397607^(17/22) 5912867298789750 a001 86267571272/4870847*1568397607^(9/11) 5912867298789750 a001 32951280099/4870847*1568397607^(19/22) 5912867298789750 a001 12586269025/4870847*1568397607^(10/11) 5912867298789750 a001 4807526976/4870847*1568397607^(21/22) 5912867298789750 a001 2178309*599074578^(13/21) 5912867298789750 a001 6557470319842/4870847*599074578^(9/14) 5912867298789750 a001 4052739537881/4870847*599074578^(2/3) 5912867298789750 a001 1548008755920/4870847*599074578^(5/7) 5912867298789750 a001 591286729879/4870847*599074578^(16/21) 5912867298789750 a001 365435296162/4870847*599074578^(11/14) 5912867298789750 a001 225851433717/4870847*599074578^(17/21) 5912867298789750 a001 139583862445/4870847*599074578^(5/6) 5912867298789750 a001 86267571272/4870847*599074578^(6/7) 5912867298789750 a001 32951280099/4870847*599074578^(19/21) 5912867298789750 a001 20365011074/4870847*599074578^(13/14) 5912867298789750 a001 12586269025/4870847*599074578^(20/21) 5912867298789750 a001 165580141/4870847*14662949395604^(7/9) 5912867298789750 a001 165580141/4870847*505019158607^(7/8) 5912867298789750 a001 2178309*228826127^(13/20) 5912867298789750 a001 4052739537881/4870847*228826127^(7/10) 5912867298789750 a001 1548008755920/4870847*228826127^(3/4) 5912867298789750 a001 591286729879/4870847*228826127^(4/5) 5912867298789750 a001 225851433717/4870847*228826127^(17/20) 5912867298789750 a001 139583862445/4870847*228826127^(7/8) 5912867298789750 a001 86267571272/4870847*228826127^(9/10) 5912867298789750 a001 32951280099/4870847*228826127^(19/20) 5912867298789751 a001 63245986/4870847*817138163596^(17/19) 5912867298789751 a001 63245986/4870847*14662949395604^(17/21) 5912867298789751 a001 63245986/4870847*192900153618^(17/18) 5912867298789751 a001 2178309*87403803^(13/19) 5912867298789751 a001 4052739537881/4870847*87403803^(14/19) 5912867298789751 a001 1548008755920/4870847*87403803^(15/19) 5912867298789751 a001 591286729879/4870847*87403803^(16/19) 5912867298789751 a001 225851433717/4870847*87403803^(17/19) 5912867298789751 a001 86267571272/4870847*87403803^(18/19) 5912867298789751 a001 23112315624966730407/39088169 5912867298789754 a001 2178309*33385282^(13/18) 5912867298789754 a001 6557470319842/4870847*33385282^(3/4) 5912867298789754 a001 4052739537881/4870847*33385282^(7/9) 5912867298789755 a001 1548008755920/4870847*33385282^(5/6) 5912867298789755 a001 591286729879/4870847*33385282^(8/9) 5912867298789755 a001 365435296162/4870847*33385282^(11/12) 5912867298789755 a001 225851433717/4870847*33385282^(17/18) 5912867298789756 a001 2942706336674007743/4976784 5912867298789764 a001 9227465/4870847*3461452808002^(11/12) 5912867298789772 a001 4052739537881/1860498*1860498^(13/15) 5912867298789778 a001 2178309*12752043^(13/17) 5912867298789780 a001 4052739537881/4870847*12752043^(14/17) 5912867298789782 a001 1548008755920/4870847*12752043^(15/17) 5912867298789784 a001 591286729879/4870847*12752043^(16/17) 5912867298789787 a001 3372041405099339280/5702887 5912867298789829 a001 2504730781961/1860498*1860498^(9/10) 5912867298789845 a001 3524578/4870847*14662949395604^(19/21) 5912867298789868 a001 1042018099911709847/1762289 5912867298789877 a001 4052739537881/12752043*7881196^(10/11) 5912867298789886 a001 832040*1860498^(14/15) 5912867298789899 a001 11708068538333880/19801 5912867298789904 a001 2084036199823432237/3524578 5912867298789904 a001 1042018099911716235/1762289 5912867298789904 a001 1042018099911716252/1762289 5912867298789904 a001 23416137076667781/39602 5912867298789904 a001 1042018099911716255/1762289 5912867298789904 a001 1042018099911716256/1762289 5912867298789904 a001 2084036199823432525/3524578 5912867298789905 a001 1042018099911716307/1762289 5912867298789906 a001 1042018099911716612/1762289 5912867298789908 a001 1515744265389/4769326*7881196^(10/11) 5912867298789918 a001 2084036199823437405/3524578 5912867298789927 a001 6557470319842/20633239*7881196^(10/11) 5912867298789949 a001 5456077604922880367/9227465 5912867298789951 a001 4052739537881/12752043*20633239^(6/7) 5912867298789952 a001 3536736619241/4250681*20633239^(4/5) 5912867298789953 a001 2178309*4870847^(13/16) 5912867298789958 a001 5702887/33385282*14662949395604^(20/21) 5912867298789958 a001 4976784/4250681*14662949395604^(8/9) 5912867298789961 a001 14284196614945221407/24157817 5912867298789962 a001 39088169/12752043*14662949395604^(6/7) 5912867298789963 a001 18698256119956391927/31622993 5912867298789963 a001 75283811239/4250681*141422324^(12/13) 5912867298789963 a001 956722026041/12752043*141422324^(11/13) 5912867298789963 a001 4052739537881/12752043*141422324^(10/13) 5912867298789963 a001 34111385/4250681*23725150497407^(13/16) 5912867298789963 a001 34111385/4250681*505019158607^(13/14) 5912867298789963 a001 267914296/12752043*312119004989^(10/11) 5912867298789963 a001 267914296/12752043*3461452808002^(5/6) 5912867298789963 a001 233802911/4250681*45537549124^(16/17) 5912867298789963 a001 233802911/4250681*14662949395604^(16/21) 5912867298789963 a001 233802911/4250681*192900153618^(8/9) 5912867298789963 a001 233802911/4250681*73681302247^(12/13) 5912867298789963 a001 12586269025/12752043*2537720636^(14/15) 5912867298789963 a001 10983760033/4250681*2537720636^(8/9) 5912867298789963 a001 53316291173/12752043*2537720636^(13/15) 5912867298789963 a001 75283811239/4250681*2537720636^(4/5) 5912867298789963 a001 365435296162/12752043*2537720636^(7/9) 5912867298789963 a001 956722026041/12752043*2537720636^(11/15) 5912867298789963 a001 4052739537881/12752043*2537720636^(2/3) 5912867298789963 a001 1836311903/12752043*10749957122^(23/24) 5912867298789963 a001 1602508992/4250681*312119004989^(4/5) 5912867298789963 a001 1602508992/4250681*23725150497407^(11/16) 5912867298789963 a001 1602508992/4250681*73681302247^(11/13) 5912867298789963 a001 12586269025/12752043*17393796001^(6/7) 5912867298789963 a001 365435296162/12752043*17393796001^(5/7) 5912867298789963 a001 3536736619241/4250681*17393796001^(4/7) 5912867298789963 a001 12586269025/12752043*45537549124^(14/17) 5912867298789963 a001 12586269025/12752043*817138163596^(14/19) 5912867298789963 a001 12586269025/12752043*14662949395604^(2/3) 5912867298789963 a001 12586269025/12752043*505019158607^(3/4) 5912867298789963 a001 12586269025/12752043*192900153618^(7/9) 5912867298789963 a001 1602508992/4250681*10749957122^(11/12) 5912867298789963 a001 75283811239/4250681*45537549124^(12/17) 5912867298789963 a001 591286729879/12752043*45537549124^(2/3) 5912867298789963 a001 956722026041/12752043*45537549124^(11/17) 5912867298789963 a001 53316291173/12752043*45537549124^(13/17) 5912867298789963 a001 4052739537881/12752043*45537549124^(10/17) 5912867298789963 a001 10983760033/4250681*312119004989^(8/11) 5912867298789963 a001 10983760033/4250681*23725150497407^(5/8) 5912867298789963 a001 10983760033/4250681*73681302247^(10/13) 5912867298789963 a001 86267571272/12752043*817138163596^(2/3) 5912867298789963 a001 4052739537881/12752043*312119004989^(6/11) 5912867298789963 a001 365435296162/12752043*312119004989^(7/11) 5912867298789963 a001 75283811239/4250681*14662949395604^(4/7) 5912867298789963 a001 4052739537881/12752043*14662949395604^(10/21) 5912867298789963 a001 2504730781961/12752043*9062201101803^(1/2) 5912867298789963 a001 6557470319842/12752043*1322157322203^(1/2) 5912867298789963 a001 3536736619241/4250681*505019158607^(1/2) 5912867298789963 a001 365435296162/12752043*505019158607^(5/8) 5912867298789963 a001 75283811239/4250681*192900153618^(2/3) 5912867298789963 a001 4052739537881/12752043*192900153618^(5/9) 5912867298789963 a001 956722026041/12752043*192900153618^(11/18) 5912867298789963 a001 53316291173/12752043*14662949395604^(13/21) 5912867298789963 a001 53316291173/12752043*192900153618^(13/18) 5912867298789963 a001 3536736619241/4250681*73681302247^(7/13) 5912867298789963 a001 516002918640/4250681*73681302247^(8/13) 5912867298789963 a001 75283811239/4250681*73681302247^(9/13) 5912867298789963 a001 53316291173/12752043*73681302247^(3/4) 5912867298789963 a001 4052739537881/12752043*28143753123^(3/5) 5912867298789963 a001 10983760033/4250681*28143753123^(4/5) 5912867298789963 a001 365435296162/12752043*28143753123^(7/10) 5912867298789963 a001 3536736619241/4250681*10749957122^(7/12) 5912867298789963 a001 4052739537881/12752043*10749957122^(5/8) 5912867298789963 a001 516002918640/4250681*10749957122^(2/3) 5912867298789963 a001 956722026041/12752043*10749957122^(11/16) 5912867298789963 a001 591286729879/12752043*10749957122^(17/24) 5912867298789963 a001 12586269025/12752043*10749957122^(7/8) 5912867298789963 a001 75283811239/4250681*10749957122^(3/4) 5912867298789963 a001 86267571272/12752043*10749957122^(19/24) 5912867298789963 a001 10983760033/4250681*10749957122^(5/6) 5912867298789963 a001 53316291173/12752043*10749957122^(13/16) 5912867298789963 a001 2971215073/12752043*45537549124^(15/17) 5912867298789963 a001 2971215073/12752043*312119004989^(9/11) 5912867298789963 a001 2971215073/12752043*14662949395604^(5/7) 5912867298789963 a001 2971215073/12752043*192900153618^(5/6) 5912867298789963 a001 2971215073/12752043*28143753123^(9/10) 5912867298789963 a001 2971215073/12752043*10749957122^(15/16) 5912867298789963 a001 3536736619241/4250681*4106118243^(14/23) 5912867298789963 a001 4052739537881/12752043*4106118243^(15/23) 5912867298789963 a001 516002918640/4250681*4106118243^(16/23) 5912867298789963 a001 591286729879/12752043*4106118243^(17/23) 5912867298789963 a001 75283811239/4250681*4106118243^(18/23) 5912867298789963 a001 1602508992/4250681*4106118243^(22/23) 5912867298789963 a001 86267571272/12752043*4106118243^(19/23) 5912867298789963 a001 10983760033/4250681*4106118243^(20/23) 5912867298789963 a001 12586269025/12752043*4106118243^(21/23) 5912867298789963 a001 3536736619241/4250681*1568397607^(7/11) 5912867298789963 a001 4052739537881/12752043*1568397607^(15/22) 5912867298789963 a001 516002918640/4250681*1568397607^(8/11) 5912867298789963 a001 956722026041/12752043*1568397607^(3/4) 5912867298789963 a001 591286729879/12752043*1568397607^(17/22) 5912867298789963 a001 75283811239/4250681*1568397607^(9/11) 5912867298789963 a001 86267571272/12752043*1568397607^(19/22) 5912867298789963 a001 10983760033/4250681*1568397607^(10/11) 5912867298789963 a001 12586269025/12752043*1568397607^(21/22) 5912867298789963 a001 433494437/12752043*14662949395604^(7/9) 5912867298789963 a001 433494437/12752043*505019158607^(7/8) 5912867298789963 a001 3536736619241/4250681*599074578^(2/3) 5912867298789963 a001 4052739537881/12752043*599074578^(5/7) 5912867298789963 a001 516002918640/4250681*599074578^(16/21) 5912867298789963 a001 956722026041/12752043*599074578^(11/14) 5912867298789963 a001 591286729879/12752043*599074578^(17/21) 5912867298789963 a001 365435296162/12752043*599074578^(5/6) 5912867298789963 a001 75283811239/4250681*599074578^(6/7) 5912867298789963 a001 86267571272/12752043*599074578^(19/21) 5912867298789963 a001 53316291173/12752043*599074578^(13/14) 5912867298789963 a001 10983760033/4250681*599074578^(20/21) 5912867298789963 a001 165580141/12752043*817138163596^(17/19) 5912867298789963 a001 165580141/12752043*14662949395604^(17/21) 5912867298789963 a001 165580141/12752043*192900153618^(17/18) 5912867298789963 a001 3536736619241/4250681*228826127^(7/10) 5912867298789963 a001 4052739537881/12752043*228826127^(3/4) 5912867298789963 a001 516002918640/4250681*228826127^(4/5) 5912867298789963 a001 591286729879/12752043*228826127^(17/20) 5912867298789963 a001 365435296162/12752043*228826127^(7/8) 5912867298789963 a001 75283811239/4250681*228826127^(9/10) 5912867298789963 a001 86267571272/12752043*228826127^(19/20) 5912867298789963 a001 2881372755470492681/4873055 5912867298789964 a001 3536736619241/4250681*87403803^(14/19) 5912867298789964 a001 4052739537881/12752043*87403803^(15/19) 5912867298789964 a001 516002918640/4250681*87403803^(16/19) 5912867298789964 a001 591286729879/12752043*87403803^(17/19) 5912867298789964 a001 75283811239/4250681*87403803^(18/19) 5912867298789964 a001 23112315624967562447/39088169 5912867298789965 a001 24157817/12752043*3461452808002^(11/12) 5912867298789967 a001 3536736619241/4250681*33385282^(7/9) 5912867298789968 a001 4052739537881/12752043*33385282^(5/6) 5912867298789968 a001 516002918640/4250681*33385282^(8/9) 5912867298789968 a001 956722026041/12752043*33385282^(11/12) 5912867298789968 a001 591286729879/12752043*33385282^(17/18) 5912867298789968 a001 4052739537881/4870847*4870847^(7/8) 5912867298789968 a001 61306382014044035/103683 5912867298789977 a001 9227465/12752043*14662949395604^(19/21) 5912867298789980 a001 5456077604922909024/9227465 5912867298789982 a001 1515744265389/4769326*20633239^(6/7) 5912867298789984 a001 1548008755920/4870847*4870847^(15/16) 5912867298789985 a001 1091215520984582641/1845493 5912867298789985 a001 1091215520984582763/1845493 5912867298789986 a001 419698277301762608/709805 5912867298789986 a001 419698277301762609/709805 5912867298789986 a001 5456077604922913919/9227465 5912867298789986 a001 1091215520984582784/1845493 5912867298789986 a001 1091215520984582785/1845493 5912867298789986 a001 5456077604922913959/9227465 5912867298789986 a001 5456077604922914192/9227465 5912867298789988 a001 419698277301762753/709805 5912867298789992 a001 14284196614945296432/24157817 5912867298789993 a001 3536736619241/4250681*12752043^(14/17) 5912867298789993 a001 4976784/29134601*14662949395604^(20/21) 5912867298789993 a001 39088169/33385282*14662949395604^(8/9) 5912867298789994 a001 18698256119956490136/31622993 5912867298789994 a001 591286729879/33385282*141422324^(12/13) 5912867298789994 a001 2504730781961/33385282*141422324^(11/13) 5912867298789994 a001 1515744265389/4769326*141422324^(10/13) 5912867298789994 a001 14619165/4769326*14662949395604^(6/7) 5912867298789994 a001 97905340104793644384/165580141 5912867298789994 a001 133957148/16692641*23725150497407^(13/16) 5912867298789994 a001 133957148/16692641*505019158607^(13/14) 5912867298789994 a001 701408733/33385282*312119004989^(10/11) 5912867298789994 a001 701408733/33385282*3461452808002^(5/6) 5912867298789994 a001 32951280099/33385282*2537720636^(14/15) 5912867298789994 a001 43133785636/16692641*2537720636^(8/9) 5912867298789994 a001 139583862445/33385282*2537720636^(13/15) 5912867298789994 a001 591286729879/33385282*2537720636^(4/5) 5912867298789994 a001 956722026041/33385282*2537720636^(7/9) 5912867298789994 a001 2504730781961/33385282*2537720636^(11/15) 5912867298789994 a001 1515744265389/4769326*2537720636^(2/3) 5912867298789994 a001 1836311903/33385282*45537549124^(16/17) 5912867298789994 a001 1836311903/33385282*14662949395604^(16/21) 5912867298789994 a001 1836311903/33385282*192900153618^(8/9) 5912867298789994 a001 1836311903/33385282*73681302247^(12/13) 5912867298789994 a001 32951280099/33385282*17393796001^(6/7) 5912867298789994 a001 956722026041/33385282*17393796001^(5/7) 5912867298789994 a001 12586269025/33385282*312119004989^(4/5) 5912867298789994 a001 12586269025/33385282*23725150497407^(11/16) 5912867298789994 a001 12586269025/33385282*73681302247^(11/13) 5912867298789994 a001 32951280099/33385282*45537549124^(14/17) 5912867298789994 a001 14930208/103681*10749957122^(23/24) 5912867298789994 a001 139583862445/33385282*45537549124^(13/17) 5912867298789994 a001 591286729879/33385282*45537549124^(12/17) 5912867298789994 a001 774004377960/16692641*45537549124^(2/3) 5912867298789994 a001 2504730781961/33385282*45537549124^(11/17) 5912867298789994 a001 1515744265389/4769326*45537549124^(10/17) 5912867298789994 a001 32951280099/33385282*817138163596^(14/19) 5912867298789994 a001 32951280099/33385282*14662949395604^(2/3) 5912867298789994 a001 32951280099/33385282*505019158607^(3/4) 5912867298789994 a001 32951280099/33385282*192900153618^(7/9) 5912867298789994 a001 43133785636/16692641*312119004989^(8/11) 5912867298789994 a001 43133785636/16692641*23725150497407^(5/8) 5912867298789994 a001 956722026041/33385282*312119004989^(7/11) 5912867298789994 a001 2504730781961/33385282*312119004989^(3/5) 5912867298789994 a001 1515744265389/4769326*312119004989^(6/11) 5912867298789994 a001 591286729879/33385282*14662949395604^(4/7) 5912867298789994 a001 1515744265389/4769326*14662949395604^(10/21) 5912867298789994 a001 3278735159921/16692641*9062201101803^(1/2) 5912867298789994 a001 4052739537881/33385282*505019158607^(4/7) 5912867298789994 a001 139583862445/33385282*14662949395604^(13/21) 5912867298789994 a001 1515744265389/4769326*192900153618^(5/9) 5912867298789994 a001 2504730781961/33385282*192900153618^(11/18) 5912867298789994 a001 139583862445/33385282*192900153618^(13/18) 5912867298789994 a001 4052739537881/33385282*73681302247^(8/13) 5912867298789994 a001 43133785636/16692641*73681302247^(10/13) 5912867298789994 a001 591286729879/33385282*73681302247^(9/13) 5912867298789994 a001 139583862445/33385282*73681302247^(3/4) 5912867298789994 a001 1515744265389/4769326*28143753123^(3/5) 5912867298789994 a001 956722026041/33385282*28143753123^(7/10) 5912867298789994 a001 43133785636/16692641*28143753123^(4/5) 5912867298789994 a001 7778742049/33385282*45537549124^(15/17) 5912867298789994 a001 7778742049/33385282*312119004989^(9/11) 5912867298789994 a001 7778742049/33385282*14662949395604^(5/7) 5912867298789994 a001 7778742049/33385282*192900153618^(5/6) 5912867298789994 a001 7778742049/33385282*28143753123^(9/10) 5912867298789994 a001 1515744265389/4769326*10749957122^(5/8) 5912867298789994 a001 4052739537881/33385282*10749957122^(2/3) 5912867298789994 a001 2504730781961/33385282*10749957122^(11/16) 5912867298789994 a001 774004377960/16692641*10749957122^(17/24) 5912867298789994 a001 591286729879/33385282*10749957122^(3/4) 5912867298789994 a001 12586269025/33385282*10749957122^(11/12) 5912867298789994 a001 32264490531/4769326*10749957122^(19/24) 5912867298789994 a001 139583862445/33385282*10749957122^(13/16) 5912867298789994 a001 43133785636/16692641*10749957122^(5/6) 5912867298789994 a001 32951280099/33385282*10749957122^(7/8) 5912867298789994 a001 7778742049/33385282*10749957122^(15/16) 5912867298789994 a001 1515744265389/4769326*4106118243^(15/23) 5912867298789994 a001 4052739537881/33385282*4106118243^(16/23) 5912867298789994 a001 774004377960/16692641*4106118243^(17/23) 5912867298789994 a001 591286729879/33385282*4106118243^(18/23) 5912867298789994 a001 32264490531/4769326*4106118243^(19/23) 5912867298789994 a001 43133785636/16692641*4106118243^(20/23) 5912867298789994 a001 32951280099/33385282*4106118243^(21/23) 5912867298789994 a001 12586269025/33385282*4106118243^(22/23) 5912867298789994 a001 567451585/16692641*14662949395604^(7/9) 5912867298789994 a001 567451585/16692641*505019158607^(7/8) 5912867298789994 a001 1515744265389/4769326*1568397607^(15/22) 5912867298789994 a001 4052739537881/33385282*1568397607^(8/11) 5912867298789994 a001 2504730781961/33385282*1568397607^(3/4) 5912867298789994 a001 774004377960/16692641*1568397607^(17/22) 5912867298789994 a001 591286729879/33385282*1568397607^(9/11) 5912867298789994 a001 32264490531/4769326*1568397607^(19/22) 5912867298789994 a001 43133785636/16692641*1568397607^(10/11) 5912867298789994 a001 32951280099/33385282*1568397607^(21/22) 5912867298789994 a001 433494437/33385282*817138163596^(17/19) 5912867298789994 a001 433494437/33385282*14662949395604^(17/21) 5912867298789994 a001 433494437/33385282*192900153618^(17/18) 5912867298789994 a001 1515744265389/4769326*599074578^(5/7) 5912867298789994 a001 4052739537881/33385282*599074578^(16/21) 5912867298789994 a001 2504730781961/33385282*599074578^(11/14) 5912867298789994 a001 774004377960/16692641*599074578^(17/21) 5912867298789994 a001 956722026041/33385282*599074578^(5/6) 5912867298789994 a001 591286729879/33385282*599074578^(6/7) 5912867298789994 a001 32264490531/4769326*599074578^(19/21) 5912867298789994 a001 139583862445/33385282*599074578^(13/14) 5912867298789994 a001 43133785636/16692641*599074578^(20/21) 5912867298789994 a001 19801770996209288562/33489287 5912867298789994 a001 1515744265389/4769326*228826127^(3/4) 5912867298789994 a001 4052739537881/33385282*228826127^(4/5) 5912867298789994 a001 774004377960/16692641*228826127^(17/20) 5912867298789994 a001 956722026041/33385282*228826127^(7/8) 5912867298789994 a001 591286729879/33385282*228826127^(9/10) 5912867298789994 a001 32264490531/4769326*228826127^(19/20) 5912867298789994 a001 20169609288293554704/34111385 5912867298789994 a001 31622993/16692641*3461452808002^(11/12) 5912867298789995 a001 1515744265389/4769326*87403803^(15/19) 5912867298789995 a001 4052739537881/33385282*87403803^(16/19) 5912867298789995 a001 774004377960/16692641*87403803^(17/19) 5912867298789995 a001 591286729879/33385282*87403803^(18/19) 5912867298789995 a001 23112315624967683840/39088169 5912867298789995 a001 4052739537881/12752043*12752043^(15/17) 5912867298789996 a001 24157817/33385282*14662949395604^(19/21) 5912867298789997 a001 14284196614945307378/24157817 5912867298789997 a001 14284196614945308975/24157817 5912867298789997 a001 516002918640/4250681*12752043^(16/17) 5912867298789997 a001 14284196614945309208/24157817 5912867298789997 a001 14284196614945309242/24157817 5912867298789997 a001 14284196614945309247/24157817 5912867298789997 a001 14284196614945309248/24157817 5912867298789997 a001 14284196614945309250/24157817 5912867298789997 a001 14284196614945309263/24157817 5912867298789998 a001 14284196614945309352/24157817 5912867298789998 a001 14284196614945309962/24157817 5912867298789998 a001 37396512239913008929/63245986 5912867298789998 a001 516002918640/29134601*141422324^(12/13) 5912867298789998 a001 6557470319842/87403803*141422324^(11/13) 5912867298789999 a001 39088169/228826127*14662949395604^(20/21) 5912867298789999 a001 34111385/29134601*14662949395604^(8/9) 5912867298789999 a001 1515744265389/4769326*33385282^(5/6) 5912867298789999 a001 97905340104793719409/165580141 5912867298789999 a001 267914296/87403803*14662949395604^(6/7) 5912867298789999 a001 256319508074468149298/433494437 5912867298789999 a001 233802911/29134601*23725150497407^(13/16) 5912867298789999 a001 233802911/29134601*505019158607^(13/14) 5912867298789999 a001 86267571272/87403803*2537720636^(14/15) 5912867298789999 a001 75283811239/29134601*2537720636^(8/9) 5912867298789999 a001 365435296162/87403803*2537720636^(13/15) 5912867298789999 a001 516002918640/29134601*2537720636^(4/5) 5912867298789999 a001 2504730781961/87403803*2537720636^(7/9) 5912867298789999 a001 6557470319842/87403803*2537720636^(11/15) 5912867298789999 a001 1836311903/87403803*312119004989^(10/11) 5912867298789999 a001 1836311903/87403803*3461452808002^(5/6) 5912867298789999 a001 1602508992/29134601*45537549124^(16/17) 5912867298789999 a001 1602508992/29134601*14662949395604^(16/21) 5912867298789999 a001 1602508992/29134601*192900153618^(8/9) 5912867298789999 a001 1602508992/29134601*73681302247^(12/13) 5912867298789999 a001 86267571272/87403803*17393796001^(6/7) 5912867298789999 a001 2504730781961/87403803*17393796001^(5/7) 5912867298789999 a001 86267571272/87403803*45537549124^(14/17) 5912867298789999 a001 365435296162/87403803*45537549124^(13/17) 5912867298789999 a001 516002918640/29134601*45537549124^(12/17) 5912867298789999 a001 4052739537881/87403803*45537549124^(2/3) 5912867298789999 a001 6557470319842/87403803*45537549124^(11/17) 5912867298789999 a001 10983760033/29134601*312119004989^(4/5) 5912867298789999 a001 10983760033/29134601*23725150497407^(11/16) 5912867298789999 a001 10983760033/29134601*73681302247^(11/13) 5912867298789999 a001 86267571272/87403803*817138163596^(14/19) 5912867298789999 a001 86267571272/87403803*14662949395604^(2/3) 5912867298789999 a001 86267571272/87403803*505019158607^(3/4) 5912867298789999 a001 75283811239/29134601*312119004989^(8/11) 5912867298789999 a001 2504730781961/87403803*312119004989^(7/11) 5912867298789999 a001 3536736619241/29134601*23725150497407^(1/2) 5912867298789999 a001 2504730781961/87403803*14662949395604^(5/9) 5912867298789999 a001 365435296162/87403803*14662949395604^(13/21) 5912867298789999 a001 516002918640/29134601*505019158607^(9/14) 5912867298789999 a001 2504730781961/87403803*505019158607^(5/8) 5912867298789999 a001 516002918640/29134601*192900153618^(2/3) 5912867298789999 a001 365435296162/87403803*192900153618^(13/18) 5912867298789999 a001 20365011074/87403803*45537549124^(15/17) 5912867298789999 a001 3536736619241/29134601*73681302247^(8/13) 5912867298789999 a001 516002918640/29134601*73681302247^(9/13) 5912867298789999 a001 75283811239/29134601*73681302247^(10/13) 5912867298789999 a001 365435296162/87403803*73681302247^(3/4) 5912867298789999 a001 20365011074/87403803*312119004989^(9/11) 5912867298789999 a001 20365011074/87403803*14662949395604^(5/7) 5912867298789999 a001 20365011074/87403803*192900153618^(5/6) 5912867298789999 a001 2504730781961/87403803*28143753123^(7/10) 5912867298789999 a001 75283811239/29134601*28143753123^(4/5) 5912867298789999 a001 20365011074/87403803*28143753123^(9/10) 5912867298789999 a001 3536736619241/29134601*10749957122^(2/3) 5912867298789999 a001 6557470319842/87403803*10749957122^(11/16) 5912867298789999 a001 4052739537881/87403803*10749957122^(17/24) 5912867298789999 a001 516002918640/29134601*10749957122^(3/4) 5912867298789999 a001 591286729879/87403803*10749957122^(19/24) 5912867298789999 a001 12586269025/87403803*10749957122^(23/24) 5912867298789999 a001 365435296162/87403803*10749957122^(13/16) 5912867298789999 a001 75283811239/29134601*10749957122^(5/6) 5912867298789999 a001 86267571272/87403803*10749957122^(7/8) 5912867298789999 a001 10983760033/29134601*10749957122^(11/12) 5912867298789999 a001 20365011074/87403803*10749957122^(15/16) 5912867298789999 a001 2971215073/87403803*14662949395604^(7/9) 5912867298789999 a001 2971215073/87403803*505019158607^(7/8) 5912867298789999 a001 3536736619241/29134601*4106118243^(16/23) 5912867298789999 a001 4052739537881/87403803*4106118243^(17/23) 5912867298789999 a001 516002918640/29134601*4106118243^(18/23) 5912867298789999 a001 591286729879/87403803*4106118243^(19/23) 5912867298789999 a001 75283811239/29134601*4106118243^(20/23) 5912867298789999 a001 86267571272/87403803*4106118243^(21/23) 5912867298789999 a001 10983760033/29134601*4106118243^(22/23) 5912867298789999 a001 1134903170/87403803*817138163596^(17/19) 5912867298789999 a001 1134903170/87403803*14662949395604^(17/21) 5912867298789999 a001 1134903170/87403803*192900153618^(17/18) 5912867298789999 a001 3536736619241/29134601*1568397607^(8/11) 5912867298789999 a001 6557470319842/87403803*1568397607^(3/4) 5912867298789999 a001 4052739537881/87403803*1568397607^(17/22) 5912867298789999 a001 516002918640/29134601*1568397607^(9/11) 5912867298789999 a001 591286729879/87403803*1568397607^(19/22) 5912867298789999 a001 75283811239/29134601*1568397607^(10/11) 5912867298789999 a001 86267571272/87403803*1568397607^(21/22) 5912867298789999 a001 138244558681380859729/233802911 5912867298789999 a001 3536736619241/29134601*599074578^(16/21) 5912867298789999 a001 6557470319842/87403803*599074578^(11/14) 5912867298789999 a001 4052739537881/87403803*599074578^(17/21) 5912867298789999 a001 2504730781961/87403803*599074578^(5/6) 5912867298789999 a001 516002918640/29134601*599074578^(6/7) 5912867298789999 a001 591286729879/87403803*599074578^(19/21) 5912867298789999 a001 365435296162/87403803*599074578^(13/14) 5912867298789999 a001 75283811239/29134601*599074578^(20/21) 5912867298789999 a001 158414167969674429889/267914296 5912867298789999 a001 165580141/87403803*3461452808002^(11/12) 5912867298789999 a001 3536736619241/29134601*228826127^(4/5) 5912867298789999 a001 4052739537881/87403803*228826127^(17/20) 5912867298789999 a001 2504730781961/87403803*228826127^(7/8) 5912867298789999 a001 516002918640/29134601*228826127^(9/10) 5912867298789999 a001 591286729879/87403803*228826127^(19/20) 5912867298789999 a001 8944394362879632/15127 5912867298789999 a001 4052739537881/33385282*33385282^(8/9) 5912867298789999 a001 63245986/87403803*14662949395604^(19/21) 5912867298789999 a001 2504730781961/33385282*33385282^(11/12) 5912867298789999 a001 18698256119956506555/31622993 5912867298789999 a001 4052739537881/228826127*141422324^(12/13) 5912867298789999 a001 18698256119956506860/31622993 5912867298789999 a001 37396512239913013809/63245986 5912867298789999 a001 18698256119956506911/31622993 5912867298789999 a001 18698256119956506912/31622993 5912867298789999 a001 37396512239913013825/63245986 5912867298789999 a001 774004377960/16692641*33385282^(17/18) 5912867298789999 a001 80250026265907755/135721 5912867298789999 a001 3536736619241/199691526*141422324^(12/13) 5912867298789999 a001 18698256119956506932/31622993 5912867298789999 a001 37396512239913014097/63245986 5912867298789999 a001 6557470319842/370248451*141422324^(12/13) 5912867298789999 a001 97905340104793730355/165580141 5912867298789999 a001 34111385/199691526*14662949395604^(20/21) 5912867298789999 a001 267914296/228826127*14662949395604^(8/9) 5912867298789999 a001 3536736619241/29134601*87403803^(16/19) 5912867298789999 a001 256319508074468177955/433494437 5912867298789999 a001 701408733/228826127*14662949395604^(6/7) 5912867298789999 a001 3947371671285945903/6675901 5912867298789999 a001 225851433717/228826127*2537720636^(14/15) 5912867298789999 a001 591286729879/228826127*2537720636^(8/9) 5912867298789999 a001 956722026041/228826127*2537720636^(13/15) 5912867298789999 a001 4052739537881/228826127*2537720636^(4/5) 5912867298789999 a001 6557470319842/228826127*2537720636^(7/9) 5912867298789999 a001 1836311903/228826127*23725150497407^(13/16) 5912867298789999 a001 1836311903/228826127*505019158607^(13/14) 5912867298789999 a001 102287808/4868641*312119004989^(10/11) 5912867298789999 a001 102287808/4868641*3461452808002^(5/6) 5912867298789999 a001 225851433717/228826127*17393796001^(6/7) 5912867298789999 a001 6557470319842/228826127*17393796001^(5/7) 5912867298789999 a001 12586269025/228826127*45537549124^(16/17) 5912867298789999 a001 12586269025/228826127*14662949395604^(16/21) 5912867298789999 a001 12586269025/228826127*192900153618^(8/9) 5912867298789999 a001 12586269025/228826127*73681302247^(12/13) 5912867298789999 a001 225851433717/228826127*45537549124^(14/17) 5912867298789999 a001 956722026041/228826127*45537549124^(13/17) 5912867298789999 a001 53316291173/228826127*45537549124^(15/17) 5912867298789999 a001 4052739537881/228826127*45537549124^(12/17) 5912867298789999 a001 225749145909/4868641*45537549124^(2/3) 5912867298789999 a001 86267571272/228826127*312119004989^(4/5) 5912867298789999 a001 86267571272/228826127*23725150497407^(11/16) 5912867298789999 a001 591286729879/228826127*312119004989^(8/11) 5912867298789999 a001 6557470319842/228826127*312119004989^(7/11) 5912867298789999 a001 225851433717/228826127*817138163596^(14/19) 5912867298789999 a001 225851433717/228826127*14662949395604^(2/3) 5912867298789999 a001 1548008755920/228826127*817138163596^(2/3) 5912867298789999 a001 225851433717/228826127*505019158607^(3/4) 5912867298789999 a001 6557470319842/228826127*505019158607^(5/8) 5912867298789999 a001 4052739537881/228826127*505019158607^(9/14) 5912867298789999 a001 225851433717/228826127*192900153618^(7/9) 5912867298789999 a001 4052739537881/228826127*192900153618^(2/3) 5912867298789999 a001 956722026041/228826127*192900153618^(13/18) 5912867298789999 a001 53316291173/228826127*312119004989^(9/11) 5912867298789999 a001 53316291173/228826127*14662949395604^(5/7) 5912867298789999 a001 53316291173/228826127*192900153618^(5/6) 5912867298789999 a001 4052739537881/228826127*73681302247^(9/13) 5912867298789999 a001 956722026041/228826127*73681302247^(3/4) 5912867298789999 a001 591286729879/228826127*73681302247^(10/13) 5912867298789999 a001 6557470319842/228826127*28143753123^(7/10) 5912867298789999 a001 591286729879/228826127*28143753123^(4/5) 5912867298789999 a001 53316291173/228826127*28143753123^(9/10) 5912867298789999 a001 7778742049/228826127*14662949395604^(7/9) 5912867298789999 a001 7778742049/228826127*505019158607^(7/8) 5912867298789999 a001 225749145909/4868641*10749957122^(17/24) 5912867298789999 a001 4052739537881/228826127*10749957122^(3/4) 5912867298789999 a001 1548008755920/228826127*10749957122^(19/24) 5912867298789999 a001 956722026041/228826127*10749957122^(13/16) 5912867298789999 a001 591286729879/228826127*10749957122^(5/6) 5912867298789999 a001 225851433717/228826127*10749957122^(7/8) 5912867298789999 a001 86267571272/228826127*10749957122^(11/12) 5912867298789999 a001 32951280099/228826127*10749957122^(23/24) 5912867298789999 a001 53316291173/228826127*10749957122^(15/16) 5912867298789999 a001 2971215073/228826127*817138163596^(17/19) 5912867298789999 a001 2971215073/228826127*14662949395604^(17/21) 5912867298789999 a001 2971215073/228826127*192900153618^(17/18) 5912867298789999 a001 225749145909/4868641*4106118243^(17/23) 5912867298789999 a001 4052739537881/228826127*4106118243^(18/23) 5912867298789999 a001 1548008755920/228826127*4106118243^(19/23) 5912867298789999 a001 591286729879/228826127*4106118243^(20/23) 5912867298789999 a001 225851433717/228826127*4106118243^(21/23) 5912867298789999 a001 86267571272/228826127*4106118243^(22/23) 5912867298789999 a001 1085786860162753429065/1836311903 5912867298789999 a001 225749145909/4868641*1568397607^(17/22) 5912867298789999 a001 4052739537881/228826127*1568397607^(9/11) 5912867298789999 a001 1548008755920/228826127*1568397607^(19/22) 5912867298789999 a001 591286729879/228826127*1568397607^(10/11) 5912867298789999 a001 225851433717/228826127*1568397607^(21/22) 5912867298789999 a001 138244558681380875185/233802911 5912867298789999 a001 433494437/228826127*3461452808002^(11/12) 5912867298789999 a001 225749145909/4868641*599074578^(17/21) 5912867298789999 a001 6557470319842/228826127*599074578^(5/6) 5912867298789999 a001 4052739537881/228826127*599074578^(6/7) 5912867298789999 a001 1548008755920/228826127*599074578^(19/21) 5912867298789999 a001 956722026041/228826127*599074578^(13/14) 5912867298789999 a001 591286729879/228826127*599074578^(20/21) 5912867298789999 a001 19801770996209305950/33489287 5912867298789999 a001 4052739537881/87403803*87403803^(17/19) 5912867298789999 a001 165580141/228826127*14662949395604^(19/21) 5912867298789999 a001 97905340104793731952/165580141 5912867298789999 a001 97905340104793732185/165580141 5912867298789999 a001 97905340104793732219/165580141 5912867298789999 a001 97905340104793732224/165580141 5912867298789999 a001 97905340104793732225/165580141 5912867298789999 a001 97905340104793732227/165580141 5912867298789999 a001 97905340104793732240/165580141 5912867298789999 a001 516002918640/29134601*87403803^(18/19) 5912867298789999 a001 97905340104793732329/165580141 5912867298789999 a001 256319508074468182136/433494437 5912867298789999 a001 233802911/199691526*14662949395604^(8/9) 5912867298789999 a001 335526592059305407228/567451585 5912867298789999 a001 591286729879/599074578*2537720636^(14/15) 5912867298789999 a001 86000486440/33281921*2537720636^(8/9) 5912867298789999 a001 2504730781961/599074578*2537720636^(13/15) 5912867298789999 a001 3536736619241/199691526*2537720636^(4/5) 5912867298789999 a001 225749145909/4868641*228826127^(17/20) 5912867298789999 a001 1836311903/599074578*14662949395604^(6/7) 5912867298789999 a001 1756840044281364261232/2971215073 5912867298789999 a001 267084832/33281921*23725150497407^(13/16) 5912867298789999 a001 267084832/33281921*505019158607^(13/14) 5912867298789999 a001 591286729879/599074578*17393796001^(6/7) 5912867298789999 a001 12586269025/599074578*312119004989^(10/11) 5912867298789999 a001 12586269025/599074578*3461452808002^(5/6) 5912867298789999 a001 10983760033/199691526*45537549124^(16/17) 5912867298789999 a001 139583862445/599074578*45537549124^(15/17) 5912867298789999 a001 591286729879/599074578*45537549124^(14/17) 5912867298789999 a001 2504730781961/599074578*45537549124^(13/17) 5912867298789999 a001 3536736619241/199691526*45537549124^(12/17) 5912867298789999 a001 10983760033/199691526*14662949395604^(16/21) 5912867298789999 a001 10983760033/199691526*192900153618^(8/9) 5912867298789999 a001 10983760033/199691526*73681302247^(12/13) 5912867298789999 a001 86000486440/33281921*312119004989^(8/11) 5912867298789999 a001 86000486440/33281921*23725150497407^(5/8) 5912867298789999 a001 2504730781961/599074578*14662949395604^(13/21) 5912867298789999 a001 139583862445/599074578*312119004989^(9/11) 5912867298789999 a001 591286729879/599074578*505019158607^(3/4) 5912867298789999 a001 3536736619241/199691526*505019158607^(9/14) 5912867298789999 a001 139583862445/599074578*14662949395604^(5/7) 5912867298789999 a001 3536736619241/199691526*192900153618^(2/3) 5912867298789999 a001 2504730781961/599074578*192900153618^(13/18) 5912867298789999 a001 591286729879/599074578*192900153618^(7/9) 5912867298789999 a001 139583862445/599074578*192900153618^(5/6) 5912867298789999 a001 3536736619241/199691526*73681302247^(9/13) 5912867298789999 a001 2504730781961/599074578*73681302247^(3/4) 5912867298789999 a001 86000486440/33281921*73681302247^(10/13) 5912867298789999 a001 267913919/710646*73681302247^(11/13) 5912867298789999 a001 10182505537/299537289*14662949395604^(7/9) 5912867298789999 a001 10182505537/299537289*505019158607^(7/8) 5912867298789999 a001 86000486440/33281921*28143753123^(4/5) 5912867298789999 a001 139583862445/599074578*28143753123^(9/10) 5912867298789999 a001 7778742049/599074578*817138163596^(17/19) 5912867298789999 a001 7778742049/599074578*14662949395604^(17/21) 5912867298789999 a001 7778742049/599074578*192900153618^(17/18) 5912867298789999 a001 3536736619241/199691526*10749957122^(3/4) 5912867298789999 a001 4052739537881/599074578*10749957122^(19/24) 5912867298789999 a001 2504730781961/599074578*10749957122^(13/16) 5912867298789999 a001 86000486440/33281921*10749957122^(5/6) 5912867298789999 a001 591286729879/599074578*10749957122^(7/8) 5912867298789999 a001 267913919/710646*10749957122^(11/12) 5912867298789999 a001 139583862445/599074578*10749957122^(15/16) 5912867298789999 a001 43133785636/299537289*10749957122^(23/24) 5912867298789999 a001 360008473207208423/608856 5912867298789999 a001 3536736619241/199691526*4106118243^(18/23) 5912867298789999 a001 4052739537881/599074578*4106118243^(19/23) 5912867298789999 a001 86000486440/33281921*4106118243^(20/23) 5912867298789999 a001 591286729879/599074578*4106118243^(21/23) 5912867298789999 a001 267913919/710646*4106118243^(22/23) 5912867298789999 a001 1085786860162753446776/1836311903 5912867298789999 a001 567451585/299537289*3461452808002^(11/12) 5912867298789999 a001 3536736619241/199691526*1568397607^(9/11) 5912867298789999 a001 4052739537881/599074578*1568397607^(19/22) 5912867298789999 a001 86000486440/33281921*1568397607^(10/11) 5912867298789999 a001 591286729879/599074578*1568397607^(21/22) 5912867298789999 a001 6557470319842/228826127*228826127^(7/8) 5912867298789999 a001 138244558681380877440/233802911 5912867298789999 a001 4052739537881/228826127*228826127^(9/10) 5912867298789999 a001 433494437/599074578*14662949395604^(19/21) 5912867298789999 a001 256319508074468182746/433494437 5912867298789999 a001 256319508074468182835/433494437 5912867298789999 a001 256319508074468182848/433494437 5912867298789999 a001 256319508074468182850/433494437 5912867298789999 a001 256319508074468182851/433494437 5912867298789999 a001 256319508074468182856/433494437 5912867298789999 a001 1548008755920/228826127*228826127^(19/20) 5912867298789999 a001 256319508074468182890/433494437 5912867298789999 a001 671053184118610816053/1134903170 5912867298789999 a001 1548008755920/1568397607*2537720636^(14/15) 5912867298789999 a001 4052739537881/1568397607*2537720636^(8/9) 5912867298789999 a001 6557470319842/1568397607*2537720636^(13/15) 5912867298789999 a001 233802911/1368706081*14662949395604^(20/21) 5912867298789999 a001 1836311903/1568397607*14662949395604^(8/9) 5912867298789999 a001 1756840044281364265413/2971215073 5912867298789999 a001 686789568/224056801*14662949395604^(6/7) 5912867298789999 a001 353805149901960152322/598364773 5912867298789999 a001 1548008755920/1568397607*17393796001^(6/7) 5912867298789999 a001 12586269025/1568397607*23725150497407^(13/16) 5912867298789999 a001 12586269025/1568397607*505019158607^(13/14) 5912867298789999 a001 86267571272/1568397607*45537549124^(16/17) 5912867298789999 a001 365435296162/1568397607*45537549124^(15/17) 5912867298789999 a001 1548008755920/1568397607*45537549124^(14/17) 5912867298789999 a001 6557470319842/1568397607*45537549124^(13/17) 5912867298789999 a001 32951280099/1568397607*312119004989^(10/11) 5912867298789999 a001 32951280099/1568397607*3461452808002^(5/6) 5912867298789999 a001 86267571272/1568397607*14662949395604^(16/21) 5912867298789999 a001 591286729879/1568397607*312119004989^(4/5) 5912867298789999 a001 4052739537881/1568397607*312119004989^(8/11) 5912867298789999 a001 365435296162/1568397607*312119004989^(9/11) 5912867298789999 a001 86267571272/1568397607*192900153618^(8/9) 5912867298789999 a001 1548008755920/1568397607*817138163596^(14/19) 5912867298789999 a001 1515744265389/224056801*817138163596^(2/3) 5912867298789999 a001 1548008755920/1568397607*14662949395604^(2/3) 5912867298789999 a001 1548008755920/1568397607*505019158607^(3/4) 5912867298789999 a001 6557470319842/1568397607*192900153618^(13/18) 5912867298789999 a001 1548008755920/1568397607*192900153618^(7/9) 5912867298789999 a001 365435296162/1568397607*192900153618^(5/6) 5912867298789999 a001 53316291173/1568397607*14662949395604^(7/9) 5912867298789999 a001 53316291173/1568397607*505019158607^(7/8) 5912867298789999 a001 6557470319842/1568397607*73681302247^(3/4) 5912867298789999 a001 4052739537881/1568397607*73681302247^(10/13) 5912867298789999 a001 86267571272/1568397607*73681302247^(12/13) 5912867298789999 a001 591286729879/1568397607*73681302247^(11/13) 5912867298789999 a001 20365011074/1568397607*817138163596^(17/19) 5912867298789999 a001 20365011074/1568397607*14662949395604^(17/21) 5912867298789999 a001 20365011074/1568397607*192900153618^(17/18) 5912867298789999 a001 4052739537881/1568397607*28143753123^(4/5) 5912867298789999 a001 365435296162/1568397607*28143753123^(9/10) 5912867298789999 a001 7442093853169599694959/12586269025 5912867298789999 a001 1515744265389/224056801*10749957122^(19/24) 5912867298789999 a001 6557470319842/1568397607*10749957122^(13/16) 5912867298789999 a001 4052739537881/1568397607*10749957122^(5/6) 5912867298789999 a001 1548008755920/1568397607*10749957122^(7/8) 5912867298789999 a001 591286729879/1568397607*10749957122^(11/12) 5912867298789999 a001 365435296162/1568397607*10749957122^(15/16) 5912867298789999 a001 32264490531/224056801*10749957122^(23/24) 5912867298789999 a001 3536736619241/199691526*599074578^(6/7) 5912867298789999 a001 947542301481372571591/1602508992 5912867298789999 a001 2971215073/1568397607*3461452808002^(11/12) 5912867298789999 a001 1515744265389/224056801*4106118243^(19/23) 5912867298789999 a001 4052739537881/1568397607*4106118243^(20/23) 5912867298789999 a001 1548008755920/1568397607*4106118243^(21/23) 5912867298789999 a001 591286729879/1568397607*4106118243^(22/23) 5912867298789999 a001 1085786860162753449360/1836311903 5912867298789999 a001 4052739537881/599074578*599074578^(19/21) 5912867298789999 a001 1134903170/1568397607*14662949395604^(19/21) 5912867298789999 a001 335526592059305408143/567451585 5912867298789999 a001 4052739537881/4106118243*2537720636^(14/15) 5912867298789999 a001 2504730781961/599074578*599074578^(13/14) 5912867298789999 a001 3536736619241/1368706081*2537720636^(8/9) 5912867298789999 a001 67105318411861081632/113490317 5912867298789999 a001 134210636823722163265/226980634 5912867298789999 a001 335526592059305408163/567451585 5912867298789999 a001 4807525989/4870846*2537720636^(14/15) 5912867298789999 a001 19736858356429729892/33379505 5912867298789999 a001 86000486440/33281921*599074578^(20/21) 5912867298789999 a001 671053184118610816341/1134903170 5912867298789999 a001 6557470319842/6643838879*2537720636^(14/15) 5912867298789999 a001 1756840044281364266023/2971215073 5912867298789999 a001 1836311903/10749957122*14662949395604^(20/21) 5912867298789999 a001 1602508992/1368706081*14662949395604^(8/9) 5912867298789999 a001 4599466948725481981783/7778742049 5912867298789999 a001 4052739537881/4106118243*17393796001^(6/7) 5912867298789999 a001 12586269025/4106118243*14662949395604^(6/7) 5912867298789999 a001 6020780400947540839663/10182505537 5912867298789999 a001 75283811239/1368706081*45537549124^(16/17) 5912867298789999 a001 956722026041/4106118243*45537549124^(15/17) 5912867298789999 a001 4052739537881/4106118243*45537549124^(14/17) 5912867298789999 a001 10983760033/1368706081*23725150497407^(13/16) 5912867298789999 a001 10983760033/1368706081*505019158607^(13/14) 5912867298789999 a001 86267571272/4106118243*312119004989^(10/11) 5912867298789999 a001 86267571272/4106118243*3461452808002^(5/6) 5912867298789999 a001 516002918640/1368706081*312119004989^(4/5) 5912867298789999 a001 3536736619241/1368706081*312119004989^(8/11) 5912867298789999 a001 4052739537881/4106118243*817138163596^(14/19) 5912867298789999 a001 4052739537881/4106118243*14662949395604^(2/3) 5912867298789999 a001 3536736619241/1368706081*23725150497407^(5/8) 5912867298789999 a001 4052739537881/4106118243*505019158607^(3/4) 5912867298789999 a001 139583862445/4106118243*14662949395604^(7/9) 5912867298789999 a001 139583862445/4106118243*505019158607^(7/8) 5912867298789999 a001 75283811239/1368706081*192900153618^(8/9) 5912867298789999 a001 4052739537881/4106118243*192900153618^(7/9) 5912867298789999 a001 956722026041/4106118243*192900153618^(5/6) 5912867298789999 a001 53316291173/4106118243*817138163596^(17/19) 5912867298789999 a001 53316291173/4106118243*14662949395604^(17/21) 5912867298789999 a001 53316291173/4106118243*192900153618^(17/18) 5912867298789999 a001 3536736619241/1368706081*73681302247^(10/13) 5912867298789999 a001 516002918640/1368706081*73681302247^(11/13) 5912867298789999 a001 75283811239/1368706081*73681302247^(12/13) 5912867298789999 a001 6494551551688227125623/10983760033 5912867298789999 a001 3536736619241/1368706081*28143753123^(4/5) 5912867298789999 a001 956722026041/4106118243*28143753123^(9/10) 5912867298789999 a001 7442093853169599697543/12586269025 5912867298789999 a001 7778742049/4106118243*3461452808002^(11/12) 5912867298789999 a001 1515744265389/224056801*1568397607^(19/22) 5912867298789999 a001 3536736619241/1368706081*10749957122^(5/6) 5912867298789999 a001 4052739537881/4106118243*10749957122^(7/8) 5912867298789999 a001 516002918640/1368706081*10749957122^(11/12) 5912867298789999 a001 956722026041/4106118243*10749957122^(15/16) 5912867298789999 a001 591286729879/4106118243*10749957122^(23/24) 5912867298789999 a001 19740464614195261915/33385604 5912867298789999 a001 4052739537881/1568397607*1568397607^(10/11) 5912867298789999 a001 2971215073/4106118243*14662949395604^(19/21) 5912867298789999 a001 1756840044281364266112/2971215073 5912867298789999 a001 1756840044281364266125/2971215073 5912867298789999 a001 1756840044281364266127/2971215073 5912867298789999 a001 1756840044281364266128/2971215073 5912867298789999 a001 1756840044281364266133/2971215073 5912867298789999 a001 1548008755920/1568397607*1568397607^(21/22) 5912867298789999 a001 4599466948725481982016/7778742049 5912867298789999 a001 4807525989/4870846*17393796001^(6/7) 5912867298789999 a001 12586269025/10749957122*14662949395604^(8/9) 5912867298789999 a001 6020780400947540839968/10182505537 5912867298789999 a001 591286729879/10749957122*45537549124^(16/17) 5912867298789999 a001 2504730781961/10749957122*45537549124^(15/17) 5912867298789999 a001 4807525989/4870846*45537549124^(14/17) 5912867298789999 a001 32951280099/10749957122*14662949395604^(6/7) 5912867298789999 a001 31525215456959763057792/53316291173 5912867298789999 a001 43133785636/5374978561*23725150497407^(13/16) 5912867298789999 a001 43133785636/5374978561*505019158607^(13/14) 5912867298789999 a001 225851433717/10749957122*312119004989^(10/11) 5912867298789999 a001 2504730781961/10749957122*312119004989^(9/11) 5912867298789999 a001 4052739537881/10749957122*312119004989^(4/5) 5912867298789999 a001 225851433717/10749957122*3461452808002^(5/6) 5912867298789999 a001 4807525989/4870846*14662949395604^(2/3) 5912867298789999 a001 2504730781961/10749957122*14662949395604^(5/7) 5912867298789999 a001 182717648081/5374978561*14662949395604^(7/9) 5912867298789999 a001 4807525989/4870846*505019158607^(3/4) 5912867298789999 a001 182717648081/5374978561*505019158607^(7/8) 5912867298789999 a001 139583862445/10749957122*817138163596^(17/19) 5912867298789999 a001 4807525989/4870846*192900153618^(7/9) 5912867298789999 a001 2504730781961/10749957122*192900153618^(5/6) 5912867298789999 a001 591286729879/10749957122*192900153618^(8/9) 5912867298789999 a001 6376108764003055554456/10783446409 5912867298789999 a001 139583862445/10749957122*192900153618^(17/18) 5912867298789999 a001 4052739537881/10749957122*73681302247^(11/13) 5912867298789999 a001 591286729879/10749957122*73681302247^(12/13) 5912867298789999 a001 6494551551688227125952/10983760033 5912867298789999 a001 10182505537/5374978561*3461452808002^(11/12) 5912867298789999 a001 3536736619241/1368706081*4106118243^(20/23) 5912867298789999 a001 2504730781961/10749957122*28143753123^(9/10) 5912867298789999 a001 135310797330356358144/228841255 5912867298789999 a001 7778742049/10749957122*14662949395604^(19/21) 5912867298789999 a001 4052739537881/4106118243*4106118243^(21/23) 5912867298789999 a001 4599466948725481982050/7778742049 5912867298789999 a001 4599466948725481982055/7778742049 5912867298789999 a001 4599466948725481982056/7778742049 5912867298789999 a001 353805149901960152466/598364773 5912867298789999 a001 516002918640/1368706081*4106118243^(22/23) 5912867298789999 a001 12041560801895081680025/20365011074 5912867298789999 a001 12585437040/228811001*45537549124^(16/17) 5912867298789999 a001 6557470319842/28143753123*45537549124^(15/17) 5912867298789999 a001 12586269025/73681302247*14662949395604^(20/21) 5912867298789999 a001 10983760033/9381251041*14662949395604^(8/9) 5912867298789999 a001 31525215456959763058025/53316291173 5912867298789999 a001 86267571272/28143753123*14662949395604^(6/7) 5912867298789999 a001 16506817113796841498810/27916772489 5912867298789999 a001 6557470319842/28143753123*312119004989^(9/11) 5912867298789999 a001 3536736619241/9381251041*312119004989^(4/5) 5912867298789999 a001 75283811239/9381251041*23725150497407^(13/16) 5912867298789999 a001 12585437040/228811001*14662949395604^(16/21) 5912867298789999 a001 365435296162/28143753123*817138163596^(17/19) 5912867298789999 a001 956722026041/28143753123*505019158607^(7/8) 5912867298789999 a001 6359188365762316758575/10754830177 5912867298789999 a001 6557470319842/28143753123*192900153618^(5/6) 5912867298789999 a001 12585437040/228811001*192900153618^(8/9) 5912867298789999 a001 51008870112024444436025/86267571272 5912867298789999 a001 365435296162/28143753123*192900153618^(17/18) 5912867298789999 a001 53316291173/28143753123*3461452808002^(11/12) 5912867298789999 a001 3536736619241/9381251041*73681302247^(11/13) 5912867298789999 a001 12585437040/228811001*73681302247^(12/13) 5912867298789999 a001 4807525989/4870846*10749957122^(7/8) 5912867298789999 a001 6494551551688227126000/10983760033 5912867298789999 a001 20365011074/28143753123*14662949395604^(19/21) 5912867298789999 a001 4052739537881/10749957122*10749957122^(11/12) 5912867298789999 a001 6020780400947540840019/10182505537 5912867298789999 a001 4052739537881/73681302247*45537549124^(16/17) 5912867298789999 a001 2504730781961/10749957122*10749957122^(15/16) 5912867298789999 a001 6020780400947540840020/10182505537 5912867298789999 a001 3536736619241/64300051206*45537549124^(16/17) 5912867298789999 a001 12041560801895081680041/20365011074 5912867298789999 a001 6557470319842/119218851371*45537549124^(16/17) 5912867298789999 a001 774004377960/5374978561*10749957122^(23/24) 5912867298789999 a001 31525215456959763058059/53316291173 5912867298789999 a001 10983760033/64300051206*14662949395604^(20/21) 5912867298789999 a001 86267571272/73681302247*14662949395604^(8/9) 5912867298789999 a001 82534085568984207494139/139583862445 5912867298789999 a001 1548008755920/73681302247*312119004989^(10/11) 5912867298789999 a001 32264490531/10525900321*14662949395604^(6/7) 5912867298789999 a001 108038520624996429712179/182717648081 5912867298789999 a001 956722026041/73681302247*817138163596^(17/19) 5912867298789999 a001 2504730781961/73681302247*14662949395604^(7/9) 5912867298789999 a001 2504730781961/73681302247*505019158607^(7/8) 5912867298789999 a001 44514318560336217310073/75283811239 5912867298789999 a001 139583862445/73681302247*3461452808002^(11/12) 5912867298789999 a001 4052739537881/73681302247*192900153618^(8/9) 5912867298789999 a001 956722026041/73681302247*192900153618^(17/18) 5912867298789999 a001 6376108764003055554510/10783446409 5912867298789999 a001 6557470319842/28143753123*28143753123^(9/10) 5912867298789999 a001 53316291173/73681302247*14662949395604^(19/21) 5912867298789999 a001 31525215456959763058064/53316291173 5912867298789999 a001 31525215456959763058065/53316291173 5912867298789999 a001 82534085568984207494152/139583862445 5912867298789999 a001 108038520624996429712196/182717648081 5912867298789999 a001 182717648081/96450076809*3461452808002^(11/12) 5912867298789999 a001 3278735159921/96450076809*505019158607^(7/8) 5912867298789999 a001 4052739537881/73681302247*73681302247^(12/13) 5912867298789999 a001 225749145909/10745088481*312119004989^(10/11) 5912867298789999 a001 82534085568984207494154/139583862445 5912867298789999 a001 216077041249992859424397/365435296162 5912867298789999 a001 1481014073292990252912714/2504730781961 5912867298790000 a001 349619996931001511354642/591286729879 5912867298790000 a001 133542955681008651930244/225851433717 5912867298790000 a001 108038520624996429712200/182717648081 5912867298790000 a001 1481014073292990252912735/2504730781961 5912867298790000 a001 10610209857723/312119004989*505019158607^(7/8) 5912867298790000 a001 133542955681008651930245/225851433717 5912867298790000 a001 51008870112024444436089/86267571272 5912867298790000 a001 2504730781961/45537549124*45537549124^(16/17) 5912867298790000 a001 25504435056012222218045/43133785636 5912867298790000 a001 10610209857723/45537549124*45537549124^(15/17) 5912867298790000 a001 16506817113796841498832/27916772489 5912867298790000 a001 216077041249992859424413/365435296162 5912867298790000 a001 2504730781961/119218851371*3461452808002^(5/6) 5912867298790000 a001 4052739537881/119218851371*505019158607^(7/8) 5912867298790000 a001 133542955681008651930253/225851433717 5912867298790000 a001 139583862445/119218851371*14662949395604^(8/9) 5912867298790000 a001 6557470319842/119218851371*192900153618^(8/9) 5912867298790000 a001 51008870112024444436093/86267571272 5912867298790000 a001 3536736619241/64300051206*73681302247^(12/13) 5912867298790000 a001 6494551551688227126008/10983760033 5912867298790000 a001 19483654655064681378025/32951280099 5912867298790000 a001 6557470319842/119218851371*73681302247^(12/13) 5912867298790000 a001 19483654655064681378026/32951280099 5912867298790000 a001 32951280099/45537549124*14662949395604^(19/21) 5912867298790000 a001 31525215456959763058080/53316291173 5912867298790000 a001 21566892818/11384387281*3461452808002^(11/12) 5912867298790000 a001 956722026041/45537549124*312119004989^(10/11) 5912867298790000 a001 10610209857723/45537549124*312119004989^(9/11) 5912867298790000 a001 108038520624996429712251/182717648081 5912867298790000 a001 387002188980/11384387281*505019158607^(7/8) 5912867298790000 a001 10272535052385280917716/17373187209 5912867298790000 a001 139583862445/45537549124*14662949395604^(6/7) 5912867298790000 a001 10610209857723/45537549124*192900153618^(5/6) 5912867298790000 a001 591286729879/45537549124*192900153618^(17/18) 5912867298790000 a001 25504435056012222218057/43133785636 5912867298790000 a001 53316291173/45537549124*14662949395604^(8/9) 5912867298790000 a001 2504730781961/45537549124*73681302247^(12/13) 5912867298790000 a001 19483654655064681378034/32951280099 5912867298790000 a001 7442093853169599697983/12586269025 5912867298790000 a001 7442093853169599697984/12586269025 5912867298790000 a001 1488418770633919939597/2517253805 5912867298790000 a001 10610209857723/45537549124*28143753123^(9/10) 5912867298790000 a001 7442093853169599697988/12586269025 5912867298790000 a001 12586269025/17393796001*14662949395604^(19/21) 5912867298790000 a001 6020780400947540840040/10182505537 5912867298790000 a001 956722026041/17393796001*45537549124^(16/17) 5912867298790000 a001 4052739537881/17393796001*45537549124^(15/17) 5912867298790000 a001 32951280099/17393796001*3461452808002^(11/12) 5912867298790000 a001 31525215456959763058169/53316291173 5912867298790000 a001 4052739537881/17393796001*312119004989^(9/11) 5912867298790000 a001 6557470319842/17393796001*312119004989^(4/5) 5912867298790000 a001 365435296162/17393796001*312119004989^(10/11) 5912867298790000 a001 7787980473/599786069*14662949395604^(17/21) 5912867298790000 a001 591286729879/17393796001*14662949395604^(7/9) 5912867298790000 a001 4052739537881/17393796001*14662949395604^(5/7) 5912867298790000 a001 365435296162/17393796001*3461452808002^(5/6) 5912867298790000 a001 591286729879/17393796001*505019158607^(7/8) 5912867298790000 a001 139583862445/17393796001*505019158607^(13/14) 5912867298790000 a001 7787980473/599786069*192900153618^(17/18) 5912867298790000 a001 4052739537881/17393796001*192900153618^(5/6) 5912867298790000 a001 956722026041/17393796001*192900153618^(8/9) 5912867298790000 a001 1500260885647777777537/2537281508 5912867298790000 a001 53316291173/17393796001*14662949395604^(6/7) 5912867298790000 a001 6557470319842/17393796001*73681302247^(11/13) 5912867298790000 a001 956722026041/17393796001*73681302247^(12/13) 5912867298790000 a001 19483654655064681378089/32951280099 5912867298790000 a001 7778742049/45537549124*14662949395604^(20/21) 5912867298790000 a001 20365011074/17393796001*14662949395604^(8/9) 5912867298790000 a001 4052739537881/17393796001*28143753123^(9/10) 5912867298790000 a001 7442093853169599698009/12586269025 5912867298790000 a001 3536736619241/9381251041*10749957122^(11/12) 5912867298790000 a001 6557470319842/28143753123*10749957122^(15/16) 5912867298790000 a001 4052739537881/28143753123*10749957122^(23/24) 5912867298790000 a001 135363185925910367425/228929856 5912867298790000 a001 1515744265389/10525900321*10749957122^(23/24) 5912867298790000 a001 118442787685171571497/200313624 5912867298790000 a001 10610209857723/45537549124*10749957122^(15/16) 5912867298790000 a001 3278735159921/22768774562*10749957122^(23/24) 5912867298790000 a001 2842626904444117715929/4807526976 5912867298790000 a001 1421313452222058857965/2403763488 5912867298790000 a001 2504730781961/2537720636*2537720636^(14/15) 5912867298790000 a001 6557470319842/17393796001*10749957122^(11/12) 5912867298790000 a001 4052739537881/17393796001*10749957122^(15/16) 5912867298790000 a001 2504730781961/17393796001*10749957122^(23/24) 5912867298790000 a001 1421313452222058857969/2403763488 5912867298790000 a001 4807526976/6643838879*14662949395604^(19/21) 5912867298790000 a001 3278735159921/1268860318*2537720636^(8/9) 5912867298790000 a001 4599466948725481982160/7778742049 5912867298790000 a001 6557470319842/6643838879*17393796001^(6/7) 5912867298790000 a001 10610209857723/2537720636*2537720636^(13/15) 5912867298790000 a001 12586269025/6643838879*3461452808002^(11/12) 5912867298790000 a001 12041560801895081680313/20365011074 5912867298790000 a001 365435296162/6643838879*45537549124^(16/17) 5912867298790000 a001 1548008755920/6643838879*45537549124^(15/17) 5912867298790000 a001 6557470319842/6643838879*45537549124^(14/17) 5912867298790000 a001 31525215456959763058779/53316291173 5912867298790000 a001 86267571272/6643838879*817138163596^(17/19) 5912867298790000 a001 86267571272/6643838879*14662949395604^(17/21) 5912867298790000 a001 1548008755920/6643838879*312119004989^(9/11) 5912867298790000 a001 225851433717/6643838879*14662949395604^(7/9) 5912867298790000 a001 6557470319842/6643838879*817138163596^(14/19) 5912867298790000 a001 225851433717/6643838879*505019158607^(7/8) 5912867298790000 a001 1548008755920/6643838879*14662949395604^(5/7) 5912867298790000 a001 139583862445/6643838879*312119004989^(10/11) 5912867298790000 a001 365435296162/6643838879*14662949395604^(16/21) 5912867298790000 a001 139583862445/6643838879*3461452808002^(5/6) 5912867298790000 a001 1548008755920/6643838879*192900153618^(5/6) 5912867298790000 a001 365435296162/6643838879*192900153618^(8/9) 5912867298790000 a001 53316291173/6643838879*23725150497407^(13/16) 5912867298790000 a001 53316291173/6643838879*505019158607^(13/14) 5912867298790000 a001 2504730781961/6643838879*73681302247^(11/13) 5912867298790000 a001 365435296162/6643838879*73681302247^(12/13) 5912867298790000 a001 19483654655064681378466/32951280099 5912867298790000 a001 20365011074/6643838879*14662949395604^(6/7) 5912867298790000 a001 1548008755920/6643838879*28143753123^(9/10) 5912867298790000 a001 7442093853169599698153/12586269025 5912867298790000 a001 2971215073/17393796001*14662949395604^(20/21) 5912867298790000 a001 6557470319842/6643838879*10749957122^(7/8) 5912867298790000 a001 2504730781961/6643838879*10749957122^(11/12) 5912867298790000 a001 1548008755920/6643838879*10749957122^(15/16) 5912867298790000 a001 956722026041/6643838879*10749957122^(23/24) 5912867298790000 a001 2842626904444117715993/4807526976 5912867298790000 a001 4807525989/4870846*4106118243^(21/23) 5912867298790000 a001 4052739537881/10749957122*4106118243^(22/23) 5912867298790000 a001 1085786860162753449792/1836311903 5912867298790000 a001 3536736619241/9381251041*4106118243^(22/23) 5912867298790000 a001 1085786860162753449800/1836311903 5912867298790000 a001 1085786860162753449801/1836311903 5912867298790000 a001 1085786860162753449802/1836311903 5912867298790000 a001 6557470319842/17393796001*4106118243^(22/23) 5912867298790000 a001 1085786860162753449805/1836311903 5912867298790000 a001 6557470319842/6643838879*4106118243^(21/23) 5912867298790000 a001 2504730781961/6643838879*4106118243^(22/23) 5912867298790000 a001 1085786860162753449826/1836311903 5912867298790000 a001 1836311903/2537720636*14662949395604^(19/21) 5912867298790000 a001 1756840044281364266400/2971215073 5912867298790000 a001 1201881744/634430159*3461452808002^(11/12) 5912867298790000 a001 4599466948725481982770/7778742049 5912867298790000 a001 2504730781961/2537720636*17393796001^(6/7) 5912867298790000 a001 6020780400947540840955/10182505537 5912867298790000 a001 139583862445/2537720636*45537549124^(16/17) 5912867298790000 a001 591286729879/2537720636*45537549124^(15/17) 5912867298790000 a001 2504730781961/2537720636*45537549124^(14/17) 5912867298790000 a001 10610209857723/2537720636*45537549124^(13/17) 5912867298790000 a001 32951280099/2537720636*817138163596^(17/19) 5912867298790000 a001 32951280099/2537720636*14662949395604^(17/21) 5912867298790000 a001 32951280099/2537720636*192900153618^(17/18) 5912867298790000 a001 1135099622/33391061*14662949395604^(7/9) 5912867298790000 a001 1135099622/33391061*505019158607^(7/8) 5912867298790000 a001 956722026041/2537720636*312119004989^(4/5) 5912867298790000 a001 3278735159921/1268860318*312119004989^(8/11) 5912867298790000 a001 2504730781961/2537720636*817138163596^(14/19) 5912867298790000 a001 2504730781961/2537720636*14662949395604^(2/3) 5912867298790000 a001 2504730781961/2537720636*505019158607^(3/4) 5912867298790000 a001 139583862445/2537720636*14662949395604^(16/21) 5912867298790000 a001 10610209857723/2537720636*192900153618^(13/18) 5912867298790000 a001 2504730781961/2537720636*192900153618^(7/9) 5912867298790000 a001 591286729879/2537720636*192900153618^(5/6) 5912867298790000 a001 139583862445/2537720636*192900153618^(8/9) 5912867298790000 a001 53316291173/2537720636*312119004989^(10/11) 5912867298790000 a001 53316291173/2537720636*3461452808002^(5/6) 5912867298790000 a001 10610209857723/2537720636*73681302247^(3/4) 5912867298790000 a001 3278735159921/1268860318*73681302247^(10/13) 5912867298790000 a001 956722026041/2537720636*73681302247^(11/13) 5912867298790000 a001 139583862445/2537720636*73681302247^(12/13) 5912867298790000 a001 10182505537/1268860318*23725150497407^(13/16) 5912867298790000 a001 10182505537/1268860318*505019158607^(13/14) 5912867298790000 a001 3278735159921/1268860318*28143753123^(4/5) 5912867298790000 a001 591286729879/2537720636*28143753123^(9/10) 5912867298790000 a001 1488418770633919939828/2517253805 5912867298790000 a001 7778742049/2537720636*14662949395604^(6/7) 5912867298790000 a001 10610209857723/2537720636*10749957122^(13/16) 5912867298790000 a001 3278735159921/1268860318*10749957122^(5/6) 5912867298790000 a001 2504730781961/2537720636*10749957122^(7/8) 5912867298790000 a001 956722026041/2537720636*10749957122^(11/12) 5912867298790000 a001 591286729879/2537720636*10749957122^(15/16) 5912867298790000 a001 182717648081/1268860318*10749957122^(23/24) 5912867298790000 a001 1421313452222058858185/2403763488 5912867298790000 a001 1134903170/6643838879*14662949395604^(20/21) 5912867298790000 a001 2971215073/2537720636*14662949395604^(8/9) 5912867298790000 a001 3278735159921/1268860318*4106118243^(20/23) 5912867298790000 a001 2504730781961/2537720636*4106118243^(21/23) 5912867298790000 a001 956722026041/2537720636*4106118243^(22/23) 5912867298790000 a001 1085786860162753449970/1836311903 5912867298790000 a001 3536736619241/1368706081*1568397607^(10/11) 5912867298790000 a001 4052739537881/4106118243*1568397607^(21/22) 5912867298790000 a001 138244558681380877817/233802911 5912867298790000 a001 4807525989/4870846*1568397607^(21/22) 5912867298790000 a001 138244558681380877824/233802911 5912867298790000 a001 138244558681380877825/233802911 5912867298790000 a001 414733676044142633476/701408733 5912867298790000 a001 414733676044142633477/701408733 5912867298790000 a001 6557470319842/6643838879*1568397607^(21/22) 5912867298790000 a001 4659928944316209365/7880997 5912867298790000 a001 3278735159921/1268860318*1568397607^(10/11) 5912867298790000 a001 2504730781961/2537720636*1568397607^(21/22) 5912867298790000 a001 414733676044142633540/701408733 5912867298790000 a001 701408733/969323029*14662949395604^(19/21) 5912867298790000 a001 1100087187079689864/1860497 5912867298790000 a001 956722026041/969323029*2537720636^(14/15) 5912867298790000 a001 2504730781961/969323029*2537720636^(8/9) 5912867298790000 a001 4052739537881/969323029*2537720636^(13/15) 5912867298790000 a001 1836311903/969323029*3461452808002^(11/12) 5912867298790000 a001 1756840044281364267997/2971215073 5912867298790000 a001 4599466948725481986951/7778742049 5912867298790000 a001 956722026041/969323029*17393796001^(6/7) 5912867298790000 a001 12586269025/969323029*817138163596^(17/19) 5912867298790000 a001 12586269025/969323029*14662949395604^(17/21) 5912867298790000 a001 12586269025/969323029*192900153618^(17/18) 5912867298790000 a001 225851433717/969323029*45537549124^(15/17) 5912867298790000 a001 956722026041/969323029*45537549124^(14/17) 5912867298790000 a001 53316291173/969323029*45537549124^(16/17) 5912867298790000 a001 4052739537881/969323029*45537549124^(13/17) 5912867298790000 a001 32951280099/969323029*14662949395604^(7/9) 5912867298790000 a001 32951280099/969323029*505019158607^(7/8) 5912867298790000 a001 225851433717/969323029*312119004989^(9/11) 5912867298790000 a001 2504730781961/969323029*312119004989^(8/11) 5912867298790000 a001 225851433717/969323029*14662949395604^(5/7) 5912867298790000 a001 6557470319842/969323029*817138163596^(2/3) 5912867298790000 a001 4052739537881/969323029*14662949395604^(13/21) 5912867298790000 a001 2504730781961/969323029*23725150497407^(5/8) 5912867298790000 a001 365435296162/969323029*23725150497407^(11/16) 5912867298790000 a001 956722026041/969323029*505019158607^(3/4) 5912867298790000 a001 225851433717/969323029*192900153618^(5/6) 5912867298790000 a001 956722026041/969323029*192900153618^(7/9) 5912867298790000 a001 53316291173/969323029*14662949395604^(16/21) 5912867298790000 a001 53316291173/969323029*192900153618^(8/9) 5912867298790000 a001 4052739537881/969323029*73681302247^(3/4) 5912867298790000 a001 2504730781961/969323029*73681302247^(10/13) 5912867298790000 a001 365435296162/969323029*73681302247^(11/13) 5912867298790000 a001 53316291173/969323029*73681302247^(12/13) 5912867298790000 a001 20365011074/969323029*312119004989^(10/11) 5912867298790000 a001 20365011074/969323029*3461452808002^(5/6) 5912867298790000 a001 2504730781961/969323029*28143753123^(4/5) 5912867298790000 a001 225851433717/969323029*28143753123^(9/10) 5912867298790000 a001 7778742049/969323029*23725150497407^(13/16) 5912867298790000 a001 7778742049/969323029*505019158607^(13/14) 5912867298790000 a001 6557470319842/969323029*10749957122^(19/24) 5912867298790000 a001 4052739537881/969323029*10749957122^(13/16) 5912867298790000 a001 2504730781961/969323029*10749957122^(5/6) 5912867298790000 a001 956722026041/969323029*10749957122^(7/8) 5912867298790000 a001 365435296162/969323029*10749957122^(11/12) 5912867298790000 a001 225851433717/969323029*10749957122^(15/16) 5912867298790000 a001 139583862445/969323029*10749957122^(23/24) 5912867298790000 a001 1421313452222058859477/2403763488 5912867298790000 a001 2971215073/969323029*14662949395604^(6/7) 5912867298790000 a001 6557470319842/969323029*4106118243^(19/23) 5912867298790000 a001 2504730781961/969323029*4106118243^(20/23) 5912867298790000 a001 956722026041/969323029*4106118243^(21/23) 5912867298790000 a001 365435296162/969323029*4106118243^(22/23) 5912867298790000 a001 1085786860162753450957/1836311903 5912867298790000 a001 1134903170/969323029*14662949395604^(8/9) 5912867298790000 a001 6557470319842/969323029*1568397607^(19/22) 5912867298790000 a001 2504730781961/969323029*1568397607^(10/11) 5912867298790000 a001 956722026041/969323029*1568397607^(21/22) 5912867298790000 a001 414733676044142633917/701408733 5912867298790000 a001 1515744265389/224056801*599074578^(19/21) 5912867298790000 a001 6557470319842/1568397607*599074578^(13/14) 5912867298790000 a001 4052739537881/1568397607*599074578^(20/21) 5912867298790000 a001 420196732015051593/710648 5912867298790000 a001 3536736619241/1368706081*599074578^(20/21) 5912867298790000 a001 19801770996209306327/33489287 5912867298790000 a001 10610209857723/2537720636*599074578^(13/14) 5912867298790000 a001 19801770996209306328/33489287 5912867298790000 a001 158414167969674450625/267914296 5912867298790000 a001 6092852614218248101/10304396 5912867298790000 a001 3278735159921/1268860318*599074578^(20/21) 5912867298790000 a001 158414167969674450629/267914296 5912867298790000 a001 79207083984837225325/133957148 5912867298790000 a001 6557470319842/969323029*599074578^(19/21) 5912867298790000 a001 4052739537881/969323029*599074578^(13/14) 5912867298790000 a001 2504730781961/969323029*599074578^(20/21) 5912867298790000 a001 2504730781961/141422324*141422324^(12/13) 5912867298790000 a001 79207083984837225397/133957148 5912867298790000 a001 267914296/370248451*14662949395604^(19/21) 5912867298790000 a001 256319508074468184720/433494437 5912867298790000 a001 701408733/370248451*3461452808002^(11/12) 5912867298790000 a001 671053184118610821221/1134903170 5912867298790000 a001 365435296162/370248451*2537720636^(14/15) 5912867298790000 a001 956722026041/370248451*2537720636^(8/9) 5912867298790000 a001 1548008755920/370248451*2537720636^(13/15) 5912867298790000 a001 6557470319842/370248451*2537720636^(4/5) 5912867298790000 a001 10610209857723/370248451*2537720636^(7/9) 5912867298790000 a001 1756840044281364278943/2971215073 5912867298790000 a001 4807526976/370248451*817138163596^(17/19) 5912867298790000 a001 4807526976/370248451*14662949395604^(17/21) 5912867298790000 a001 4807526976/370248451*192900153618^(17/18) 5912867298790000 a001 365435296162/370248451*17393796001^(6/7) 5912867298790000 a001 10610209857723/370248451*17393796001^(5/7) 5912867298790000 a001 12586269025/370248451*14662949395604^(7/9) 5912867298790000 a001 12586269025/370248451*505019158607^(7/8) 5912867298790000 a001 86267571272/370248451*45537549124^(15/17) 5912867298790000 a001 365435296162/370248451*45537549124^(14/17) 5912867298790000 a001 1548008755920/370248451*45537549124^(13/17) 5912867298790000 a001 6557470319842/370248451*45537549124^(12/17) 5912867298790000 a001 86267571272/370248451*312119004989^(9/11) 5912867298790000 a001 86267571272/370248451*14662949395604^(5/7) 5912867298790000 a001 10610209857723/370248451*312119004989^(7/11) 5912867298790000 a001 1548008755920/370248451*14662949395604^(13/21) 5912867298790000 a001 10610209857723/370248451*14662949395604^(5/9) 5912867298790000 a001 365435296162/370248451*817138163596^(14/19) 5912867298790000 a001 365435296162/370248451*14662949395604^(2/3) 5912867298790000 a001 10610209857723/370248451*505019158607^(5/8) 5912867298790000 a001 365435296162/370248451*505019158607^(3/4) 5912867298790000 a001 139583862445/370248451*23725150497407^(11/16) 5912867298790000 a001 1548008755920/370248451*192900153618^(13/18) 5912867298790000 a001 365435296162/370248451*192900153618^(7/9) 5912867298790000 a001 20365011074/370248451*45537549124^(16/17) 5912867298790000 a001 6557470319842/370248451*73681302247^(9/13) 5912867298790000 a001 1548008755920/370248451*73681302247^(3/4) 5912867298790000 a001 956722026041/370248451*73681302247^(10/13) 5912867298790000 a001 139583862445/370248451*73681302247^(11/13) 5912867298790000 a001 20365011074/370248451*14662949395604^(16/21) 5912867298790000 a001 20365011074/370248451*192900153618^(8/9) 5912867298790000 a001 20365011074/370248451*73681302247^(12/13) 5912867298790000 a001 10610209857723/370248451*28143753123^(7/10) 5912867298790000 a001 956722026041/370248451*28143753123^(4/5) 5912867298790000 a001 86267571272/370248451*28143753123^(9/10) 5912867298790000 a001 7778742049/370248451*312119004989^(10/11) 5912867298790000 a001 7778742049/370248451*3461452808002^(5/6) 5912867298790000 a001 6557470319842/370248451*10749957122^(3/4) 5912867298790000 a001 2504730781961/370248451*10749957122^(19/24) 5912867298790000 a001 1548008755920/370248451*10749957122^(13/16) 5912867298790000 a001 956722026041/370248451*10749957122^(5/6) 5912867298790000 a001 365435296162/370248451*10749957122^(7/8) 5912867298790000 a001 139583862445/370248451*10749957122^(11/12) 5912867298790000 a001 86267571272/370248451*10749957122^(15/16) 5912867298790000 a001 53316291173/370248451*10749957122^(23/24) 5912867298790000 a001 2971215073/370248451*23725150497407^(13/16) 5912867298790000 a001 2971215073/370248451*505019158607^(13/14) 5912867298790000 a001 6557470319842/370248451*4106118243^(18/23) 5912867298790000 a001 2504730781961/370248451*4106118243^(19/23) 5912867298790000 a001 956722026041/370248451*4106118243^(20/23) 5912867298790000 a001 365435296162/370248451*4106118243^(21/23) 5912867298790000 a001 139583862445/370248451*4106118243^(22/23) 5912867298790000 a001 1085786860162753457722/1836311903 5912867298790000 a001 1134903170/370248451*14662949395604^(6/7) 5912867298790000 a001 6557470319842/370248451*1568397607^(9/11) 5912867298790000 a001 2504730781961/370248451*1568397607^(19/22) 5912867298790000 a001 956722026041/370248451*1568397607^(10/11) 5912867298790000 a001 365435296162/370248451*1568397607^(21/22) 5912867298790000 a001 10610209857723/141422324*141422324^(11/13) 5912867298790000 a001 414733676044142636501/701408733 5912867298790000 a001 165580141/969323029*14662949395604^(20/21) 5912867298790000 a001 433494437/370248451*14662949395604^(8/9) 5912867298790000 a001 10610209857723/370248451*599074578^(5/6) 5912867298790000 a001 6557470319842/370248451*599074578^(6/7) 5912867298790000 a001 2504730781961/370248451*599074578^(19/21) 5912867298790000 a001 1548008755920/370248451*599074578^(13/14) 5912867298790000 a001 956722026041/370248451*599074578^(20/21) 5912867298790000 a001 158414167969674451781/267914296 5912867298790000 a001 3536736619241/199691526*228826127^(9/10) 5912867298790000 a001 4052739537881/599074578*228826127^(19/20) 5912867298790000 a001 2881372755470510392/4873055 5912867298790000 a001 1515744265389/224056801*228826127^(19/20) 5912867298790000 a001 20169609288293572792/34111385 5912867298790000 a001 20169609288293572799/34111385 5912867298790000 a001 52388595554009280/88601 5912867298790000 a001 60508827864880718401/102334155 5912867298790000 a001 60508827864880718402/102334155 5912867298790000 a001 6557470319842/969323029*228826127^(19/20) 5912867298790000 a001 12101765572976143682/20466831 5912867298790000 a001 12101765572976143693/20466831 5912867298790000 a001 10610209857723/370248451*228826127^(7/8) 5912867298790000 a001 6557470319842/370248451*228826127^(9/10) 5912867298790000 a001 2504730781961/370248451*228826127^(19/20) 5912867298790000 a001 60508827864880718842/102334155 5912867298790000 a001 102334155/141422324*14662949395604^(19/21) 5912867298790000 a001 97905340104793737120/165580141 5912867298790000 a001 66978574/35355581*3461452808002^(11/12) 5912867298790000 a001 256319508074468195666/433494437 5912867298790000 a001 335526592059305424939/567451585 5912867298790000 a001 139583862445/141422324*2537720636^(14/15) 5912867298790000 a001 182717648081/70711162*2537720636^(8/9) 5912867298790000 a001 591286729879/141422324*2537720636^(13/15) 5912867298790000 a001 2504730781961/141422324*2537720636^(4/5) 5912867298790000 a001 4052739537881/141422324*2537720636^(7/9) 5912867298790000 a001 10610209857723/141422324*2537720636^(11/15) 5912867298790000 a001 1836311903/141422324*817138163596^(17/19) 5912867298790000 a001 1836311903/141422324*14662949395604^(17/21) 5912867298790000 a001 1836311903/141422324*192900153618^(17/18) 5912867298790000 a001 1201881744/35355581*14662949395604^(7/9) 5912867298790000 a001 1201881744/35355581*505019158607^(7/8) 5912867298790000 a001 139583862445/141422324*17393796001^(6/7) 5912867298790000 a001 4052739537881/141422324*17393796001^(5/7) 5912867298790000 a001 63246219/271444*45537549124^(15/17) 5912867298790000 a001 139583862445/141422324*45537549124^(14/17) 5912867298790000 a001 591286729879/141422324*45537549124^(13/17) 5912867298790000 a001 2504730781961/141422324*45537549124^(12/17) 5912867298790000 a001 3278735159921/70711162*45537549124^(2/3) 5912867298790000 a001 10610209857723/141422324*45537549124^(11/17) 5912867298790000 a001 63246219/271444*312119004989^(9/11) 5912867298790000 a001 63246219/271444*14662949395604^(5/7) 5912867298790000 a001 63246219/271444*192900153618^(5/6) 5912867298790000 a001 4052739537881/141422324*312119004989^(7/11) 5912867298790000 a001 10610209857723/141422324*312119004989^(3/5) 5912867298790000 a001 10610209857723/141422324*817138163596^(11/19) 5912867298790000 a001 956722026041/141422324*817138163596^(2/3) 5912867298790000 a001 2504730781961/141422324*14662949395604^(4/7) 5912867298790000 a001 182717648081/70711162*23725150497407^(5/8) 5912867298790000 a001 139583862445/141422324*817138163596^(14/19) 5912867298790000 a001 139583862445/141422324*14662949395604^(2/3) 5912867298790000 a001 139583862445/141422324*505019158607^(3/4) 5912867298790000 a001 10610209857723/141422324*192900153618^(11/18) 5912867298790000 a001 2504730781961/141422324*192900153618^(2/3) 5912867298790000 a001 591286729879/141422324*192900153618^(13/18) 5912867298790000 a001 139583862445/141422324*192900153618^(7/9) 5912867298790000 a001 53316291173/141422324*312119004989^(4/5) 5912867298790000 a001 53316291173/141422324*23725150497407^(11/16) 5912867298790000 a001 2504730781961/141422324*73681302247^(9/13) 5912867298790000 a001 591286729879/141422324*73681302247^(3/4) 5912867298790000 a001 182717648081/70711162*73681302247^(10/13) 5912867298790000 a001 53316291173/141422324*73681302247^(11/13) 5912867298790000 a001 4052739537881/141422324*28143753123^(7/10) 5912867298790000 a001 63246219/271444*28143753123^(9/10) 5912867298790000 a001 182717648081/70711162*28143753123^(4/5) 5912867298790000 a001 7778742049/141422324*45537549124^(16/17) 5912867298790000 a001 7778742049/141422324*14662949395604^(16/21) 5912867298790000 a001 7778742049/141422324*192900153618^(8/9) 5912867298790000 a001 7778742049/141422324*73681302247^(12/13) 5912867298790000 a001 10610209857723/141422324*10749957122^(11/16) 5912867298790000 a001 3278735159921/70711162*10749957122^(17/24) 5912867298790000 a001 2504730781961/141422324*10749957122^(3/4) 5912867298790000 a001 956722026041/141422324*10749957122^(19/24) 5912867298790000 a001 591286729879/141422324*10749957122^(13/16) 5912867298790000 a001 182717648081/70711162*10749957122^(5/6) 5912867298790000 a001 139583862445/141422324*10749957122^(7/8) 5912867298790000 a001 63246219/271444*10749957122^(15/16) 5912867298790000 a001 53316291173/141422324*10749957122^(11/12) 5912867298790000 a001 10182505537/70711162*10749957122^(23/24) 5912867298790000 a001 2971215073/141422324*312119004989^(10/11) 5912867298790000 a001 2971215073/141422324*3461452808002^(5/6) 5912867298790000 a001 3278735159921/70711162*4106118243^(17/23) 5912867298790000 a001 2504730781961/141422324*4106118243^(18/23) 5912867298790000 a001 956722026041/141422324*4106118243^(19/23) 5912867298790000 a001 182717648081/70711162*4106118243^(20/23) 5912867298790000 a001 139583862445/141422324*4106118243^(21/23) 5912867298790000 a001 53316291173/141422324*4106118243^(22/23) 5912867298790000 a001 567451585/70711162*23725150497407^(13/16) 5912867298790000 a001 567451585/70711162*505019158607^(13/14) 5912867298790000 a001 10610209857723/141422324*1568397607^(3/4) 5912867298790000 a001 3278735159921/70711162*1568397607^(17/22) 5912867298790000 a001 2504730781961/141422324*1568397607^(9/11) 5912867298790000 a001 956722026041/141422324*1568397607^(19/22) 5912867298790000 a001 182717648081/70711162*1568397607^(10/11) 5912867298790000 a001 139583862445/141422324*1568397607^(21/22) 5912867298790000 a001 414733676044142654212/701408733 5912867298790000 a001 433494437/141422324*14662949395604^(6/7) 5912867298790000 a001 10610209857723/141422324*599074578^(11/14) 5912867298790000 a001 3278735159921/70711162*599074578^(17/21) 5912867298790000 a001 4052739537881/141422324*599074578^(5/6) 5912867298790000 a001 2504730781961/141422324*599074578^(6/7) 5912867298790000 a001 956722026041/141422324*599074578^(19/21) 5912867298790000 a001 591286729879/141422324*599074578^(13/14) 5912867298790000 a001 182717648081/70711162*599074578^(20/21) 5912867298790000 a001 79207083984837229273/133957148 5912867298790000 a001 63245986/370248451*14662949395604^(20/21) 5912867298790000 a001 165580141/141422324*14662949395604^(8/9) 5912867298790000 a001 3278735159921/70711162*228826127^(17/20) 5912867298790000 a001 4052739537881/141422324*228826127^(7/8) 5912867298790000 a001 2504730781961/141422324*228826127^(9/10) 5912867298790000 a001 956722026041/141422324*228826127^(19/20) 5912867298790000 a001 60508827864880721426/102334155 5912867298790000 a001 225749145909/4868641*87403803^(17/19) 5912867298790000 a001 4052739537881/228826127*87403803^(18/19) 5912867298790000 a001 23112315624967704135/39088169 5912867298790000 a001 3536736619241/199691526*87403803^(18/19) 5912867298790000 a001 23112315624967704512/39088169 5912867298790000 a001 23112315624967704567/39088169 5912867298790000 a001 23112315624967704575/39088169 5912867298790000 a001 23112315624967704576/39088169 5912867298790000 a001 23112315624967704577/39088169 5912867298790000 a001 23112315624967704580/39088169 5912867298790000 a001 6557470319842/370248451*87403803^(18/19) 5912867298790000 a001 23112315624967704601/39088169 5912867298790000 a001 23112315624967704745/39088169 5912867298790000 a001 3278735159921/70711162*87403803^(17/19) 5912867298790001 a001 2504730781961/141422324*87403803^(18/19) 5912867298790001 a001 5527939637638772/9349 5912867298790001 a001 39088169/54018521*14662949395604^(19/21) 5912867298790001 a001 18698256119956513320/31622993 5912867298790001 a001 956722026041/54018521*141422324^(12/13) 5912867298790001 a001 4052739537881/54018521*141422324^(11/13) 5912867298790001 a001 102334155/54018521*3461452808002^(11/12) 5912867298790001 a001 97905340104793765777/165580141 5912867298790001 a001 6557470319842/20633239*20633239^(6/7) 5912867298790002 a001 256319508074468270691/433494437 5912867298790002 a001 701408733/54018521*817138163596^(17/19) 5912867298790002 a001 701408733/54018521*14662949395604^(17/21) 5912867298790002 a001 701408733/54018521*192900153618^(17/18) 5912867298790002 a001 53316291173/54018521*2537720636^(14/15) 5912867298790002 a001 139583862445/54018521*2537720636^(8/9) 5912867298790002 a001 225851433717/54018521*2537720636^(13/15) 5912867298790002 a001 956722026041/54018521*2537720636^(4/5) 5912867298790002 a001 1548008755920/54018521*2537720636^(7/9) 5912867298790002 a001 4052739537881/54018521*2537720636^(11/15) 5912867298790002 a001 1836311903/54018521*14662949395604^(7/9) 5912867298790002 a001 1836311903/54018521*505019158607^(7/8) 5912867298790002 a001 53316291173/54018521*17393796001^(6/7) 5912867298790002 a001 1548008755920/54018521*17393796001^(5/7) 5912867298790002 a001 12586269025/54018521*45537549124^(15/17) 5912867298790002 a001 12586269025/54018521*312119004989^(9/11) 5912867298790002 a001 12586269025/54018521*14662949395604^(5/7) 5912867298790002 a001 12586269025/54018521*192900153618^(5/6) 5912867298790002 a001 225851433717/54018521*45537549124^(13/17) 5912867298790002 a001 956722026041/54018521*45537549124^(12/17) 5912867298790002 a001 53316291173/54018521*45537549124^(14/17) 5912867298790002 a001 2504730781961/54018521*45537549124^(2/3) 5912867298790002 a001 4052739537881/54018521*45537549124^(11/17) 5912867298790002 a001 12586269025/54018521*28143753123^(9/10) 5912867298790002 a001 1548008755920/54018521*312119004989^(7/11) 5912867298790002 a001 225851433717/54018521*14662949395604^(13/21) 5912867298790002 a001 1548008755920/54018521*14662949395604^(5/9) 5912867298790002 a001 10610209857723/54018521*9062201101803^(1/2) 5912867298790002 a001 365435296162/54018521*817138163596^(2/3) 5912867298790002 a001 1548008755920/54018521*505019158607^(5/8) 5912867298790002 a001 139583862445/54018521*312119004989^(8/11) 5912867298790002 a001 139583862445/54018521*23725150497407^(5/8) 5912867298790002 a001 225851433717/54018521*192900153618^(13/18) 5912867298790002 a001 4052739537881/54018521*192900153618^(11/18) 5912867298790002 a001 53316291173/54018521*817138163596^(14/19) 5912867298790002 a001 53316291173/54018521*14662949395604^(2/3) 5912867298790002 a001 53316291173/54018521*505019158607^(3/4) 5912867298790002 a001 53316291173/54018521*192900153618^(7/9) 5912867298790002 a001 6557470319842/54018521*73681302247^(8/13) 5912867298790002 a001 956722026041/54018521*73681302247^(9/13) 5912867298790002 a001 225851433717/54018521*73681302247^(3/4) 5912867298790002 a001 139583862445/54018521*73681302247^(10/13) 5912867298790002 a001 20365011074/54018521*312119004989^(4/5) 5912867298790002 a001 20365011074/54018521*23725150497407^(11/16) 5912867298790002 a001 20365011074/54018521*73681302247^(11/13) 5912867298790002 a001 1548008755920/54018521*28143753123^(7/10) 5912867298790002 a001 139583862445/54018521*28143753123^(4/5) 5912867298790002 a001 6557470319842/54018521*10749957122^(2/3) 5912867298790002 a001 4052739537881/54018521*10749957122^(11/16) 5912867298790002 a001 2504730781961/54018521*10749957122^(17/24) 5912867298790002 a001 956722026041/54018521*10749957122^(3/4) 5912867298790002 a001 12586269025/54018521*10749957122^(15/16) 5912867298790002 a001 365435296162/54018521*10749957122^(19/24) 5912867298790002 a001 225851433717/54018521*10749957122^(13/16) 5912867298790002 a001 139583862445/54018521*10749957122^(5/6) 5912867298790002 a001 53316291173/54018521*10749957122^(7/8) 5912867298790002 a001 20365011074/54018521*10749957122^(11/12) 5912867298790002 a001 7778742049/54018521*10749957122^(23/24) 5912867298790002 a001 2971215073/54018521*45537549124^(16/17) 5912867298790002 a001 2971215073/54018521*14662949395604^(16/21) 5912867298790002 a001 2971215073/54018521*192900153618^(8/9) 5912867298790002 a001 2971215073/54018521*73681302247^(12/13) 5912867298790002 a001 6557470319842/54018521*4106118243^(16/23) 5912867298790002 a001 2504730781961/54018521*4106118243^(17/23) 5912867298790002 a001 956722026041/54018521*4106118243^(18/23) 5912867298790002 a001 365435296162/54018521*4106118243^(19/23) 5912867298790002 a001 139583862445/54018521*4106118243^(20/23) 5912867298790002 a001 53316291173/54018521*4106118243^(21/23) 5912867298790002 a001 20365011074/54018521*4106118243^(22/23) 5912867298790002 a001 1134903170/54018521*312119004989^(10/11) 5912867298790002 a001 1134903170/54018521*3461452808002^(5/6) 5912867298790002 a001 6557470319842/54018521*1568397607^(8/11) 5912867298790002 a001 4052739537881/54018521*1568397607^(3/4) 5912867298790002 a001 2504730781961/54018521*1568397607^(17/22) 5912867298790002 a001 956722026041/54018521*1568397607^(9/11) 5912867298790002 a001 365435296162/54018521*1568397607^(19/22) 5912867298790002 a001 139583862445/54018521*1568397607^(10/11) 5912867298790002 a001 53316291173/54018521*1568397607^(21/22) 5912867298790002 a001 433494437/54018521*23725150497407^(13/16) 5912867298790002 a001 433494437/54018521*505019158607^(13/14) 5912867298790002 a001 6557470319842/54018521*599074578^(16/21) 5912867298790002 a001 4052739537881/54018521*599074578^(11/14) 5912867298790002 a001 2504730781961/54018521*599074578^(17/21) 5912867298790002 a001 1548008755920/54018521*599074578^(5/6) 5912867298790002 a001 956722026041/54018521*599074578^(6/7) 5912867298790002 a001 365435296162/54018521*599074578^(19/21) 5912867298790002 a001 225851433717/54018521*599074578^(13/14) 5912867298790002 a001 139583862445/54018521*599074578^(20/21) 5912867298790002 a001 14472334000518409/24476 5912867298790002 a001 165580141/54018521*14662949395604^(6/7) 5912867298790002 a001 6557470319842/54018521*228826127^(4/5) 5912867298790002 a001 2504730781961/54018521*228826127^(17/20) 5912867298790002 a001 1548008755920/54018521*228826127^(7/8) 5912867298790002 a001 956722026041/54018521*228826127^(9/10) 5912867298790002 a001 365435296162/54018521*228826127^(19/20) 5912867298790002 a001 60508827864880739137/102334155 5912867298790002 a001 24157817/141422324*14662949395604^(20/21) 5912867298790002 a001 63245986/54018521*14662949395604^(8/9) 5912867298790002 a001 6557470319842/54018521*87403803^(16/19) 5912867298790002 a001 2504730781961/54018521*87403803^(17/19) 5912867298790002 a001 956722026041/54018521*87403803^(18/19) 5912867298790002 a001 23112315624967712497/39088169 5912867298790003 a001 3536736619241/29134601*33385282^(8/9) 5912867298790004 a001 6557470319842/87403803*33385282^(11/12) 5912867298790004 a001 4052739537881/87403803*33385282^(17/18) 5912867298790004 a001 2942706336674131391/4976784 5912867298790004 a001 225749145909/4868641*33385282^(17/18) 5912867298790005 a001 10610209857723/141422324*33385282^(11/12) 5912867298790005 a001 1138818241746955/1926 5912867298790005 a001 367838292084266471/622098 5912867298790005 a001 2942706336674131775/4976784 5912867298790005 a001 61306382014044412/103683 5912867298790005 a001 8828119010022395329/14930352 5912867298790005 a001 3278735159921/70711162*33385282^(17/18) 5912867298790005 a001 259650559118305745/439128 5912867298790005 a001 4414059505011197669/7465176 5912867298790005 a001 8828119010022395393/14930352 5912867298790005 a001 4414059505011197885/7465176 5912867298790006 a001 6557470319842/54018521*33385282^(8/9) 5912867298790006 a001 4052739537881/54018521*33385282^(11/12) 5912867298790007 a001 2504730781961/54018521*33385282^(17/18) 5912867298790007 a001 4414059505011199177/7465176 5912867298790008 a001 14930352/20633239*14662949395604^(19/21) 5912867298790008 a001 2504730781961/7881196*7881196^(10/11) 5912867298790011 a001 14284196614945342800/24157817 5912867298790013 a001 39088169/20633239*3461452808002^(11/12) 5912867298790013 a001 37396512239913101665/63245986 5912867298790013 a001 365435296162/20633239*141422324^(12/13) 5912867298790013 a001 140728068720/1875749*141422324^(11/13) 5912867298790013 a001 6557470319842/20633239*141422324^(10/13) 5912867298790013 a001 97905340104793962195/165580141 5912867298790013 a001 9238424/711491*817138163596^(17/19) 5912867298790013 a001 9238424/711491*14662949395604^(17/21) 5912867298790013 a001 9238424/711491*192900153618^(17/18) 5912867298790013 a001 701408733/20633239*14662949395604^(7/9) 5912867298790013 a001 701408733/20633239*505019158607^(7/8) 5912867298790013 a001 20365011074/20633239*2537720636^(14/15) 5912867298790013 a001 53316291173/20633239*2537720636^(8/9) 5912867298790013 a001 86267571272/20633239*2537720636^(13/15) 5912867298790013 a001 365435296162/20633239*2537720636^(4/5) 5912867298790013 a001 591286729879/20633239*2537720636^(7/9) 5912867298790013 a001 140728068720/1875749*2537720636^(11/15) 5912867298790013 a001 6557470319842/20633239*2537720636^(2/3) 5912867298790013 a001 4807526976/20633239*45537549124^(15/17) 5912867298790013 a001 4807526976/20633239*312119004989^(9/11) 5912867298790013 a001 4807526976/20633239*14662949395604^(5/7) 5912867298790013 a001 4807526976/20633239*192900153618^(5/6) 5912867298790013 a001 4807526976/20633239*28143753123^(9/10) 5912867298790013 a001 591286729879/20633239*17393796001^(5/7) 5912867298790013 a001 20365011074/20633239*17393796001^(6/7) 5912867298790013 a001 4807526976/20633239*10749957122^(15/16) 5912867298790013 a001 86267571272/20633239*45537549124^(13/17) 5912867298790013 a001 365435296162/20633239*45537549124^(12/17) 5912867298790013 a001 956722026041/20633239*45537549124^(2/3) 5912867298790013 a001 140728068720/1875749*45537549124^(11/17) 5912867298790013 a001 6557470319842/20633239*45537549124^(10/17) 5912867298790013 a001 86267571272/20633239*14662949395604^(13/21) 5912867298790013 a001 86267571272/20633239*192900153618^(13/18) 5912867298790013 a001 140728068720/1875749*312119004989^(3/5) 5912867298790013 a001 6557470319842/20633239*312119004989^(6/11) 5912867298790013 a001 140728068720/1875749*14662949395604^(11/21) 5912867298790013 a001 6557470319842/20633239*14662949395604^(10/21) 5912867298790013 a001 2504730781961/20633239*23725150497407^(1/2) 5912867298790013 a001 10610209857723/20633239*1322157322203^(1/2) 5912867298790013 a001 591286729879/20633239*505019158607^(5/8) 5912867298790013 a001 139583862445/20633239*817138163596^(2/3) 5912867298790013 a001 6557470319842/20633239*192900153618^(5/9) 5912867298790013 a001 140728068720/1875749*192900153618^(11/18) 5912867298790013 a001 365435296162/20633239*192900153618^(2/3) 5912867298790013 a001 53316291173/20633239*312119004989^(8/11) 5912867298790013 a001 53316291173/20633239*23725150497407^(5/8) 5912867298790013 a001 20365011074/20633239*45537549124^(14/17) 5912867298790013 a001 86267571272/20633239*73681302247^(3/4) 5912867298790013 a001 2504730781961/20633239*73681302247^(8/13) 5912867298790013 a001 365435296162/20633239*73681302247^(9/13) 5912867298790013 a001 53316291173/20633239*73681302247^(10/13) 5912867298790013 a001 20365011074/20633239*817138163596^(14/19) 5912867298790013 a001 20365011074/20633239*14662949395604^(2/3) 5912867298790013 a001 20365011074/20633239*505019158607^(3/4) 5912867298790013 a001 20365011074/20633239*192900153618^(7/9) 5912867298790013 a001 6557470319842/20633239*28143753123^(3/5) 5912867298790013 a001 591286729879/20633239*28143753123^(7/10) 5912867298790013 a001 53316291173/20633239*28143753123^(4/5) 5912867298790013 a001 7778742049/20633239*312119004989^(4/5) 5912867298790013 a001 7778742049/20633239*23725150497407^(11/16) 5912867298790013 a001 7778742049/20633239*73681302247^(11/13) 5912867298790013 a001 6557470319842/20633239*10749957122^(5/8) 5912867298790013 a001 2504730781961/20633239*10749957122^(2/3) 5912867298790013 a001 140728068720/1875749*10749957122^(11/16) 5912867298790013 a001 956722026041/20633239*10749957122^(17/24) 5912867298790013 a001 365435296162/20633239*10749957122^(3/4) 5912867298790013 a001 139583862445/20633239*10749957122^(19/24) 5912867298790013 a001 86267571272/20633239*10749957122^(13/16) 5912867298790013 a001 53316291173/20633239*10749957122^(5/6) 5912867298790013 a001 20365011074/20633239*10749957122^(7/8) 5912867298790013 a001 7778742049/20633239*10749957122^(11/12) 5912867298790013 a001 2971215073/20633239*10749957122^(23/24) 5912867298790013 a001 6557470319842/20633239*4106118243^(15/23) 5912867298790013 a001 2504730781961/20633239*4106118243^(16/23) 5912867298790013 a001 956722026041/20633239*4106118243^(17/23) 5912867298790013 a001 365435296162/20633239*4106118243^(18/23) 5912867298790013 a001 139583862445/20633239*4106118243^(19/23) 5912867298790013 a001 53316291173/20633239*4106118243^(20/23) 5912867298790013 a001 20365011074/20633239*4106118243^(21/23) 5912867298790013 a001 7778742049/20633239*4106118243^(22/23) 5912867298790013 a001 1134903170/20633239*45537549124^(16/17) 5912867298790013 a001 1134903170/20633239*14662949395604^(16/21) 5912867298790013 a001 1134903170/20633239*192900153618^(8/9) 5912867298790013 a001 1134903170/20633239*73681302247^(12/13) 5912867298790013 a001 6557470319842/20633239*1568397607^(15/22) 5912867298790013 a001 2504730781961/20633239*1568397607^(8/11) 5912867298790013 a001 140728068720/1875749*1568397607^(3/4) 5912867298790013 a001 956722026041/20633239*1568397607^(17/22) 5912867298790013 a001 365435296162/20633239*1568397607^(9/11) 5912867298790013 a001 139583862445/20633239*1568397607^(19/22) 5912867298790013 a001 53316291173/20633239*1568397607^(10/11) 5912867298790013 a001 20365011074/20633239*1568397607^(21/22) 5912867298790013 a001 433494437/20633239*312119004989^(10/11) 5912867298790013 a001 433494437/20633239*3461452808002^(5/6) 5912867298790013 a001 6557470319842/20633239*599074578^(5/7) 5912867298790013 a001 2504730781961/20633239*599074578^(16/21) 5912867298790013 a001 140728068720/1875749*599074578^(11/14) 5912867298790013 a001 956722026041/20633239*599074578^(17/21) 5912867298790013 a001 591286729879/20633239*599074578^(5/6) 5912867298790013 a001 365435296162/20633239*599074578^(6/7) 5912867298790013 a001 139583862445/20633239*599074578^(19/21) 5912867298790013 a001 86267571272/20633239*599074578^(13/14) 5912867298790013 a001 53316291173/20633239*599074578^(20/21) 5912867298790013 a001 165580141/20633239*23725150497407^(13/16) 5912867298790013 a001 165580141/20633239*505019158607^(13/14) 5912867298790013 a001 6557470319842/20633239*228826127^(3/4) 5912867298790013 a001 2504730781961/20633239*228826127^(4/5) 5912867298790013 a001 956722026041/20633239*228826127^(17/20) 5912867298790013 a001 591286729879/20633239*228826127^(7/8) 5912867298790013 a001 365435296162/20633239*228826127^(9/10) 5912867298790013 a001 139583862445/20633239*228826127^(19/20) 5912867298790014 a001 12101765572976172106/20466831 5912867298790014 a001 63245986/20633239*14662949395604^(6/7) 5912867298790014 a001 6557470319842/20633239*87403803^(15/19) 5912867298790014 a001 2504730781961/20633239*87403803^(16/19) 5912867298790014 a001 956722026041/20633239*87403803^(17/19) 5912867298790014 a001 365435296162/20633239*87403803^(18/19) 5912867298790014 a001 23112315624967758865/39088169 5912867298790015 a001 9227465/54018521*14662949395604^(20/21) 5912867298790015 a001 24157817/20633239*14662949395604^(8/9) 5912867298790017 a001 10610209857723/7881196*7881196^(9/11) 5912867298790018 a001 6557470319842/20633239*33385282^(5/6) 5912867298790018 a001 2504730781961/20633239*33385282^(8/9) 5912867298790018 a001 140728068720/1875749*33385282^(11/12) 5912867298790018 a001 956722026041/20633239*33385282^(17/18) 5912867298790019 a001 8828119010022416065/14930352 5912867298790026 a001 1515744265389/4769326*12752043^(15/17) 5912867298790028 a001 4052739537881/33385282*12752043^(16/17) 5912867298790031 a001 3372041405099478384/5702887 5912867298790033 a001 3536736619241/29134601*12752043^(16/17) 5912867298790035 a001 3372041405099480968/5702887 5912867298790036 a001 3372041405099481345/5702887 5912867298790036 a001 6557470319842/54018521*12752043^(16/17) 5912867298790036 a001 3372041405099481400/5702887 5912867298790036 a001 3372041405099481408/5702887 5912867298790036 a001 3372041405099481409/5702887 5912867298790036 a001 3372041405099481410/5702887 5912867298790036 a001 3372041405099481413/5702887 5912867298790036 a001 2111484912397922/3571 5912867298790036 a001 3372041405099481578/5702887 5912867298790038 a001 3372041405099482565/5702887 5912867298790045 a001 6557470319842/20633239*12752043^(15/17) 5912867298790048 a001 2504730781961/20633239*12752043^(16/17) 5912867298790050 a001 3372041405099489330/5702887 5912867298790058 a001 5702887/7881196*14662949395604^(19/21) 5912867298790081 a001 1091215520984600352/1845493 5912867298790083 a001 2504730781961/7881196*20633239^(6/7) 5912867298790084 a001 3278735159921/3940598*20633239^(4/5) 5912867298790089 a001 3732588/1970299*3461452808002^(11/12) 5912867298790093 a001 14284196614945539218/24157817 5912867298790094 a001 18698256119956807947/31622993 5912867298790094 a001 139583862445/7881196*141422324^(12/13) 5912867298790094 a001 591286729879/7881196*141422324^(11/13) 5912867298790094 a001 2504730781961/7881196*141422324^(10/13) 5912867298790094 a001 10610209857723/7881196*141422324^(9/13) 5912867298790095 a001 102334155/7881196*817138163596^(17/19) 5912867298790095 a001 102334155/7881196*14662949395604^(17/21) 5912867298790095 a001 102334155/7881196*192900153618^(17/18) 5912867298790095 a001 66978574/1970299*14662949395604^(7/9) 5912867298790095 a001 66978574/1970299*505019158607^(7/8) 5912867298790095 a001 7778742049/7881196*2537720636^(14/15) 5912867298790095 a001 10182505537/3940598*2537720636^(8/9) 5912867298790095 a001 32951280099/7881196*2537720636^(13/15) 5912867298790095 a001 139583862445/7881196*2537720636^(4/5) 5912867298790095 a001 225851433717/7881196*2537720636^(7/9) 5912867298790095 a001 591286729879/7881196*2537720636^(11/15) 5912867298790095 a001 2504730781961/7881196*2537720636^(2/3) 5912867298790095 a001 10610209857723/7881196*2537720636^(3/5) 5912867298790095 a001 1836311903/7881196*45537549124^(15/17) 5912867298790095 a001 1836311903/7881196*312119004989^(9/11) 5912867298790095 a001 1836311903/7881196*14662949395604^(5/7) 5912867298790095 a001 1836311903/7881196*192900153618^(5/6) 5912867298790095 a001 1836311903/7881196*28143753123^(9/10) 5912867298790095 a001 1836311903/7881196*10749957122^(15/16) 5912867298790095 a001 225851433717/7881196*17393796001^(5/7) 5912867298790095 a001 3278735159921/3940598*17393796001^(4/7) 5912867298790095 a001 32951280099/7881196*45537549124^(13/17) 5912867298790095 a001 139583862445/7881196*45537549124^(12/17) 5912867298790095 a001 182717648081/3940598*45537549124^(2/3) 5912867298790095 a001 591286729879/7881196*45537549124^(11/17) 5912867298790095 a001 2504730781961/7881196*45537549124^(10/17) 5912867298790095 a001 10610209857723/7881196*45537549124^(9/17) 5912867298790095 a001 32951280099/7881196*14662949395604^(13/21) 5912867298790095 a001 32951280099/7881196*192900153618^(13/18) 5912867298790095 a001 32951280099/7881196*73681302247^(3/4) 5912867298790095 a001 225851433717/7881196*312119004989^(7/11) 5912867298790095 a001 591286729879/7881196*312119004989^(3/5) 5912867298790095 a001 2504730781961/7881196*312119004989^(6/11) 5912867298790095 a001 225851433717/7881196*14662949395604^(5/9) 5912867298790095 a001 10610209857723/7881196*817138163596^(9/19) 5912867298790095 a001 387002188980/1970299*9062201101803^(1/2) 5912867298790095 a001 10610209857723/7881196*14662949395604^(3/7) 5912867298790095 a001 3278735159921/3940598*14662949395604^(4/9) 5912867298790095 a001 3278735159921/3940598*505019158607^(1/2) 5912867298790095 a001 139583862445/7881196*14662949395604^(4/7) 5912867298790095 a001 139583862445/7881196*505019158607^(9/14) 5912867298790095 a001 10610209857723/7881196*192900153618^(1/2) 5912867298790095 a001 2504730781961/7881196*192900153618^(5/9) 5912867298790095 a001 591286729879/7881196*192900153618^(11/18) 5912867298790095 a001 139583862445/7881196*192900153618^(2/3) 5912867298790095 a001 53316291173/7881196*817138163596^(2/3) 5912867298790095 a001 3278735159921/3940598*73681302247^(7/13) 5912867298790095 a001 956722026041/7881196*73681302247^(8/13) 5912867298790095 a001 139583862445/7881196*73681302247^(9/13) 5912867298790095 a001 7778742049/7881196*17393796001^(6/7) 5912867298790095 a001 10182505537/3940598*312119004989^(8/11) 5912867298790095 a001 10182505537/3940598*23725150497407^(5/8) 5912867298790095 a001 10182505537/3940598*73681302247^(10/13) 5912867298790095 a001 2504730781961/7881196*28143753123^(3/5) 5912867298790095 a001 225851433717/7881196*28143753123^(7/10) 5912867298790095 a001 10182505537/3940598*28143753123^(4/5) 5912867298790095 a001 7778742049/7881196*45537549124^(14/17) 5912867298790095 a001 7778742049/7881196*817138163596^(14/19) 5912867298790095 a001 7778742049/7881196*14662949395604^(2/3) 5912867298790095 a001 7778742049/7881196*505019158607^(3/4) 5912867298790095 a001 7778742049/7881196*192900153618^(7/9) 5912867298790095 a001 10610209857723/7881196*10749957122^(9/16) 5912867298790095 a001 3278735159921/3940598*10749957122^(7/12) 5912867298790095 a001 2504730781961/7881196*10749957122^(5/8) 5912867298790095 a001 956722026041/7881196*10749957122^(2/3) 5912867298790095 a001 591286729879/7881196*10749957122^(11/16) 5912867298790095 a001 182717648081/3940598*10749957122^(17/24) 5912867298790095 a001 139583862445/7881196*10749957122^(3/4) 5912867298790095 a001 32951280099/7881196*10749957122^(13/16) 5912867298790095 a001 53316291173/7881196*10749957122^(19/24) 5912867298790095 a001 10182505537/3940598*10749957122^(5/6) 5912867298790095 a001 7778742049/7881196*10749957122^(7/8) 5912867298790095 a001 2971215073/7881196*312119004989^(4/5) 5912867298790095 a001 2971215073/7881196*23725150497407^(11/16) 5912867298790095 a001 2971215073/7881196*73681302247^(11/13) 5912867298790095 a001 2971215073/7881196*10749957122^(11/12) 5912867298790095 a001 3278735159921/3940598*4106118243^(14/23) 5912867298790095 a001 2504730781961/7881196*4106118243^(15/23) 5912867298790095 a001 956722026041/7881196*4106118243^(16/23) 5912867298790095 a001 182717648081/3940598*4106118243^(17/23) 5912867298790095 a001 139583862445/7881196*4106118243^(18/23) 5912867298790095 a001 53316291173/7881196*4106118243^(19/23) 5912867298790095 a001 10182505537/3940598*4106118243^(20/23) 5912867298790095 a001 7778742049/7881196*4106118243^(21/23) 5912867298790095 a001 2971215073/7881196*4106118243^(22/23) 5912867298790095 a001 567451585/3940598*10749957122^(23/24) 5912867298790095 a001 3278735159921/3940598*1568397607^(7/11) 5912867298790095 a001 2504730781961/7881196*1568397607^(15/22) 5912867298790095 a001 956722026041/7881196*1568397607^(8/11) 5912867298790095 a001 591286729879/7881196*1568397607^(3/4) 5912867298790095 a001 182717648081/3940598*1568397607^(17/22) 5912867298790095 a001 139583862445/7881196*1568397607^(9/11) 5912867298790095 a001 53316291173/7881196*1568397607^(19/22) 5912867298790095 a001 10182505537/3940598*1568397607^(10/11) 5912867298790095 a001 7778742049/7881196*1568397607^(21/22) 5912867298790095 a001 433494437/7881196*45537549124^(16/17) 5912867298790095 a001 433494437/7881196*14662949395604^(16/21) 5912867298790095 a001 433494437/7881196*192900153618^(8/9) 5912867298790095 a001 433494437/7881196*73681302247^(12/13) 5912867298790095 a001 10610209857723/7881196*599074578^(9/14) 5912867298790095 a001 3278735159921/3940598*599074578^(2/3) 5912867298790095 a001 2504730781961/7881196*599074578^(5/7) 5912867298790095 a001 956722026041/7881196*599074578^(16/21) 5912867298790095 a001 591286729879/7881196*599074578^(11/14) 5912867298790095 a001 182717648081/3940598*599074578^(17/21) 5912867298790095 a001 225851433717/7881196*599074578^(5/6) 5912867298790095 a001 139583862445/7881196*599074578^(6/7) 5912867298790095 a001 53316291173/7881196*599074578^(19/21) 5912867298790095 a001 32951280099/7881196*599074578^(13/14) 5912867298790095 a001 10182505537/3940598*599074578^(20/21) 5912867298790095 a001 165580141/7881196*312119004989^(10/11) 5912867298790095 a001 165580141/7881196*3461452808002^(5/6) 5912867298790095 a001 3278735159921/3940598*228826127^(7/10) 5912867298790095 a001 2504730781961/7881196*228826127^(3/4) 5912867298790095 a001 956722026041/7881196*228826127^(4/5) 5912867298790095 a001 182717648081/3940598*228826127^(17/20) 5912867298790095 a001 225851433717/7881196*228826127^(7/8) 5912867298790095 a001 139583862445/7881196*228826127^(9/10) 5912867298790095 a001 53316291173/7881196*228826127^(19/20) 5912867298790095 a001 31622993/3940598*23725150497407^(13/16) 5912867298790095 a001 31622993/3940598*505019158607^(13/14) 5912867298790095 a001 3278735159921/3940598*87403803^(14/19) 5912867298790095 a001 2504730781961/7881196*87403803^(15/19) 5912867298790095 a001 956722026041/7881196*87403803^(16/19) 5912867298790095 a001 182717648081/3940598*87403803^(17/19) 5912867298790095 a001 139583862445/7881196*87403803^(18/19) 5912867298790095 a001 23112315624968076676/39088169 5912867298790097 a001 24157817/7881196*14662949395604^(6/7) 5912867298790099 a001 10610209857723/7881196*33385282^(3/4) 5912867298790099 a001 3278735159921/3940598*33385282^(7/9) 5912867298790099 a001 2504730781961/7881196*33385282^(5/6) 5912867298790099 a001 956722026041/7881196*33385282^(8/9) 5912867298790100 a001 591286729879/7881196*33385282^(11/12) 5912867298790100 a001 182717648081/3940598*33385282^(17/18) 5912867298790100 a001 4414059505011268729/7465176 5912867298790109 a001 3524578/20633239*14662949395604^(20/21) 5912867298790109 a001 9227465/7881196*14662949395604^(8/9) 5912867298790125 a001 3278735159921/3940598*12752043^(14/17) 5912867298790127 a001 2504730781961/7881196*12752043^(15/17) 5912867298790129 a001 956722026041/7881196*12752043^(16/17) 5912867298790131 a001 3372041405099535698/5702887 5912867298790181 a001 3536736619241/4250681*4870847^(7/8) 5912867298790197 a001 4052739537881/12752043*4870847^(15/16) 5912867298790212 a001 61333581203620999/103729 5912867298790228 a001 1515744265389/4769326*4870847^(15/16) 5912867298790243 a001 429335068425349248/726103 5912867298790247 a001 6557470319842/20633239*4870847^(15/16) 5912867298790248 a001 429335068425349577/726103 5912867298790249 a001 61333581203621375/103729 5912867298790249 a001 1304969812843008/2207 5912867298790249 a001 429335068425349633/726103 5912867298790249 a001 1288005205276048900/2178309 5912867298790249 a001 1288005205276048901/2178309 5912867298790249 a001 1288005205276048909/2178309 5912867298790249 a001 1288005205276048964/2178309 5912867298790251 a001 1288005205276049341/2178309 5912867298790263 a001 1288005205276051925/2178309 5912867298790313 a001 3278735159921/3940598*4870847^(7/8) 5912867298790328 a001 2504730781961/7881196*4870847^(15/16) 5912867298790344 a001 1288005205276069636/2178309 5912867298790403 a001 2178309/3010349*14662949395604^(19/21) 5912867298790557 a001 1042018099911831240/1762289 5912867298790565 a001 956722026041/3010349*7881196^(10/11) 5912867298790574 a001 1346269*7881196^(9/11) 5912867298790616 a001 5702887/3010349*3461452808002^(11/12) 5912867298790638 a001 5456077604923515989/9227465 5912867298790640 a001 956722026041/3010349*20633239^(6/7) 5912867298790641 a001 2504730781961/3010349*20633239^(4/5) 5912867298790642 a001 10610209857723/3010349*20633239^(5/7) 5912867298790650 a001 14284196614946885487/24157817 5912867298790651 a001 39088169/3010349*817138163596^(17/19) 5912867298790651 a001 39088169/3010349*14662949395604^(17/21) 5912867298790651 a001 39088169/3010349*192900153618^(17/18) 5912867298790652 a001 53316291173/3010349*141422324^(12/13) 5912867298790652 a001 225851433717/3010349*141422324^(11/13) 5912867298790652 a001 956722026041/3010349*141422324^(10/13) 5912867298790652 a001 1346269*141422324^(9/13) 5912867298790652 a001 6557470319842/3010349*141422324^(2/3) 5912867298790652 a001 102334155/3010349*14662949395604^(7/9) 5912867298790652 a001 102334155/3010349*505019158607^(7/8) 5912867298790652 a001 701408733/3010349*45537549124^(15/17) 5912867298790652 a001 701408733/3010349*312119004989^(9/11) 5912867298790652 a001 701408733/3010349*14662949395604^(5/7) 5912867298790652 a001 701408733/3010349*192900153618^(5/6) 5912867298790652 a001 701408733/3010349*28143753123^(9/10) 5912867298790652 a001 701408733/3010349*10749957122^(15/16) 5912867298790652 a001 12586269025/3010349*2537720636^(13/15) 5912867298790652 a001 7778742049/3010349*2537720636^(8/9) 5912867298790652 a001 53316291173/3010349*2537720636^(4/5) 5912867298790652 a001 2971215073/3010349*2537720636^(14/15) 5912867298790652 a001 86267571272/3010349*2537720636^(7/9) 5912867298790652 a001 225851433717/3010349*2537720636^(11/15) 5912867298790652 a001 956722026041/3010349*2537720636^(2/3) 5912867298790652 a001 1346269*2537720636^(3/5) 5912867298790652 a001 10610209857723/3010349*2537720636^(5/9) 5912867298790652 a001 86267571272/3010349*17393796001^(5/7) 5912867298790652 a001 2504730781961/3010349*17393796001^(4/7) 5912867298790652 a001 12586269025/3010349*45537549124^(13/17) 5912867298790652 a001 12586269025/3010349*14662949395604^(13/21) 5912867298790652 a001 12586269025/3010349*192900153618^(13/18) 5912867298790652 a001 12586269025/3010349*73681302247^(3/4) 5912867298790652 a001 225851433717/3010349*45537549124^(11/17) 5912867298790652 a001 139583862445/3010349*45537549124^(2/3) 5912867298790652 a001 956722026041/3010349*45537549124^(10/17) 5912867298790652 a001 53316291173/3010349*45537549124^(12/17) 5912867298790652 a001 1346269*45537549124^(9/17) 5912867298790652 a001 86267571272/3010349*312119004989^(7/11) 5912867298790652 a001 86267571272/3010349*14662949395604^(5/9) 5912867298790652 a001 86267571272/3010349*505019158607^(5/8) 5912867298790652 a001 225851433717/3010349*312119004989^(3/5) 5912867298790652 a001 225851433717/3010349*817138163596^(11/19) 5912867298790652 a001 10610209857723/3010349*312119004989^(5/11) 5912867298790652 a001 225851433717/3010349*14662949395604^(11/21) 5912867298790652 a001 1346269*817138163596^(9/19) 5912867298790652 a001 1346269*14662949395604^(3/7) 5912867298790652 a001 10610209857723/3010349*3461452808002^(5/12) 5912867298790652 a001 1548008755920/3010349*1322157322203^(1/2) 5912867298790652 a001 365435296162/3010349*23725150497407^(1/2) 5912867298790652 a001 365435296162/3010349*505019158607^(4/7) 5912867298790652 a001 1346269*192900153618^(1/2) 5912867298790652 a001 956722026041/3010349*192900153618^(5/9) 5912867298790652 a001 53316291173/3010349*14662949395604^(4/7) 5912867298790652 a001 53316291173/3010349*505019158607^(9/14) 5912867298790652 a001 53316291173/3010349*192900153618^(2/3) 5912867298790652 a001 6557470319842/3010349*73681302247^(1/2) 5912867298790652 a001 2504730781961/3010349*73681302247^(7/13) 5912867298790652 a001 365435296162/3010349*73681302247^(8/13) 5912867298790652 a001 53316291173/3010349*73681302247^(9/13) 5912867298790652 a001 20365011074/3010349*817138163596^(2/3) 5912867298790652 a001 10610209857723/3010349*28143753123^(1/2) 5912867298790652 a001 956722026041/3010349*28143753123^(3/5) 5912867298790652 a001 86267571272/3010349*28143753123^(7/10) 5912867298790652 a001 7778742049/3010349*312119004989^(8/11) 5912867298790652 a001 7778742049/3010349*23725150497407^(5/8) 5912867298790652 a001 7778742049/3010349*73681302247^(10/13) 5912867298790652 a001 7778742049/3010349*28143753123^(4/5) 5912867298790652 a001 6557470319842/3010349*10749957122^(13/24) 5912867298790652 a001 1346269*10749957122^(9/16) 5912867298790652 a001 2504730781961/3010349*10749957122^(7/12) 5912867298790652 a001 956722026041/3010349*10749957122^(5/8) 5912867298790652 a001 12586269025/3010349*10749957122^(13/16) 5912867298790652 a001 365435296162/3010349*10749957122^(2/3) 5912867298790652 a001 225851433717/3010349*10749957122^(11/16) 5912867298790652 a001 139583862445/3010349*10749957122^(17/24) 5912867298790652 a001 53316291173/3010349*10749957122^(3/4) 5912867298790652 a001 20365011074/3010349*10749957122^(19/24) 5912867298790652 a001 7778742049/3010349*10749957122^(5/6) 5912867298790652 a001 2971215073/3010349*17393796001^(6/7) 5912867298790652 a001 2971215073/3010349*45537549124^(14/17) 5912867298790652 a001 2971215073/3010349*817138163596^(14/19) 5912867298790652 a001 2971215073/3010349*14662949395604^(2/3) 5912867298790652 a001 2971215073/3010349*505019158607^(3/4) 5912867298790652 a001 2971215073/3010349*192900153618^(7/9) 5912867298790652 a001 2971215073/3010349*10749957122^(7/8) 5912867298790652 a001 6557470319842/3010349*4106118243^(13/23) 5912867298790652 a001 2504730781961/3010349*4106118243^(14/23) 5912867298790652 a001 956722026041/3010349*4106118243^(15/23) 5912867298790652 a001 365435296162/3010349*4106118243^(16/23) 5912867298790652 a001 139583862445/3010349*4106118243^(17/23) 5912867298790652 a001 53316291173/3010349*4106118243^(18/23) 5912867298790652 a001 20365011074/3010349*4106118243^(19/23) 5912867298790652 a001 7778742049/3010349*4106118243^(20/23) 5912867298790652 a001 2971215073/3010349*4106118243^(21/23) 5912867298790652 a001 1134903170/3010349*312119004989^(4/5) 5912867298790652 a001 1134903170/3010349*23725150497407^(11/16) 5912867298790652 a001 1134903170/3010349*73681302247^(11/13) 5912867298790652 a001 1134903170/3010349*10749957122^(11/12) 5912867298790652 a001 1134903170/3010349*4106118243^(22/23) 5912867298790652 a001 6557470319842/3010349*1568397607^(13/22) 5912867298790652 a001 2504730781961/3010349*1568397607^(7/11) 5912867298790652 a001 956722026041/3010349*1568397607^(15/22) 5912867298790652 a001 365435296162/3010349*1568397607^(8/11) 5912867298790652 a001 225851433717/3010349*1568397607^(3/4) 5912867298790652 a001 139583862445/3010349*1568397607^(17/22) 5912867298790652 a001 53316291173/3010349*1568397607^(9/11) 5912867298790652 a001 20365011074/3010349*1568397607^(19/22) 5912867298790652 a001 7778742049/3010349*1568397607^(10/11) 5912867298790652 a001 2971215073/3010349*1568397607^(21/22) 5912867298790652 a001 433494437/3010349*10749957122^(23/24) 5912867298790652 a001 6557470319842/3010349*599074578^(13/21) 5912867298790652 a001 1346269*599074578^(9/14) 5912867298790652 a001 2504730781961/3010349*599074578^(2/3) 5912867298790652 a001 956722026041/3010349*599074578^(5/7) 5912867298790652 a001 365435296162/3010349*599074578^(16/21) 5912867298790652 a001 225851433717/3010349*599074578^(11/14) 5912867298790652 a001 139583862445/3010349*599074578^(17/21) 5912867298790652 a001 86267571272/3010349*599074578^(5/6) 5912867298790652 a001 53316291173/3010349*599074578^(6/7) 5912867298790652 a001 20365011074/3010349*599074578^(19/21) 5912867298790652 a001 12586269025/3010349*599074578^(13/14) 5912867298790652 a001 7778742049/3010349*599074578^(20/21) 5912867298790652 a001 165580141/3010349*45537549124^(16/17) 5912867298790652 a001 165580141/3010349*14662949395604^(16/21) 5912867298790652 a001 165580141/3010349*192900153618^(8/9) 5912867298790652 a001 165580141/3010349*73681302247^(12/13) 5912867298790652 a001 10610209857723/3010349*228826127^(5/8) 5912867298790652 a001 6557470319842/3010349*228826127^(13/20) 5912867298790652 a001 2504730781961/3010349*228826127^(7/10) 5912867298790652 a001 956722026041/3010349*228826127^(3/4) 5912867298790652 a001 365435296162/3010349*228826127^(4/5) 5912867298790652 a001 139583862445/3010349*228826127^(17/20) 5912867298790652 a001 86267571272/3010349*228826127^(7/8) 5912867298790652 a001 53316291173/3010349*228826127^(9/10) 5912867298790652 a001 20365011074/3010349*228826127^(19/20) 5912867298790652 a001 63245986/3010349*312119004989^(10/11) 5912867298790652 a001 63245986/3010349*3461452808002^(5/6) 5912867298790653 a001 6557470319842/3010349*87403803^(13/19) 5912867298790653 a001 2504730781961/3010349*87403803^(14/19) 5912867298790653 a001 956722026041/3010349*87403803^(15/19) 5912867298790653 a001 365435296162/3010349*87403803^(16/19) 5912867298790653 a001 139583862445/3010349*87403803^(17/19) 5912867298790653 a001 53316291173/3010349*87403803^(18/19) 5912867298790654 a001 24157817/3010349*23725150497407^(13/16) 5912867298790654 a001 24157817/3010349*505019158607^(13/14) 5912867298790656 a001 6557470319842/3010349*33385282^(13/18) 5912867298790656 a001 1346269*33385282^(3/4) 5912867298790656 a001 2504730781961/3010349*33385282^(7/9) 5912867298790656 a001 956722026041/3010349*33385282^(5/6) 5912867298790657 a001 365435296162/3010349*33385282^(8/9) 5912867298790657 a001 225851433717/3010349*33385282^(11/12) 5912867298790657 a001 139583862445/3010349*33385282^(17/18) 5912867298790657 a001 259650559118334397/439128 5912867298790666 a001 9227465/3010349*14662949395604^(6/7) 5912867298790680 a001 6557470319842/3010349*12752043^(13/17) 5912867298790682 a001 2504730781961/3010349*12752043^(14/17) 5912867298790684 a001 956722026041/3010349*12752043^(15/17) 5912867298790686 a001 365435296162/3010349*12752043^(16/17) 5912867298790688 a001 3372041405099853509/5702887 5912867298790747 a001 1346269/7881196*14662949395604^(20/21) 5912867298790854 a001 6557470319842/3010349*4870847^(13/16) 5912867298790870 a001 2504730781961/3010349*4870847^(7/8) 5912867298790886 a001 956722026041/3010349*4870847^(15/16) 5912867298790901 a001 1288005205276191029/2178309 5912867298791231 a001 2178309*1860498^(13/15) 5912867298791288 a001 6557470319842/4870847*1860498^(9/10) 5912867298791345 a001 4052739537881/4870847*1860498^(14/15) 5912867298791458 a001 491974210728644553/832040 5912867298791557 a001 3536736619241/4250681*1860498^(14/15) 5912867298791632 a001 10610209857723/7881196*1860498^(9/10) 5912867298791671 a001 61496776341082783/104005 5912867298791689 a001 3278735159921/3940598*1860498^(14/15) 5912867298791702 a001 61496776341083106/104005 5912867298791707 a001 8944985649612095/15128 5912867298791708 a001 1118123206201512/1891 5912867298791708 a001 61496776341083161/104005 5912867298791708 a001 491974210728665289/832040 5912867298791708 a001 806515099555189/1364 5912867298791708 a001 491974210728665293/832040 5912867298791708 a001 245987105364332657/416020 5912867298791710 a001 245987105364332729/416020 5912867298791722 a001 98394842145733289/166408 5912867298791803 a001 49197421072867321/83204 5912867298792075 a001 10610209857723/3010349*1860498^(5/6) 5912867298792132 a001 6557470319842/3010349*1860498^(13/15) 5912867298792189 a001 1346269*1860498^(9/10) 5912867298792246 a001 2504730781961/3010349*1860498^(14/15) 5912867298792360 a001 245987105364359789/416020 5912867298792763 a001 832040/1149851*14662949395604^(19/21) 5912867298793405 a001 2504730781961/439204*439204^(8/9) 5912867298793819 a001 796030994547985680/1346269 5912867298794222 a001 2178309/1149851*3461452808002^(11/12) 5912867298794376 a001 2084036199825008749/3524578 5912867298794385 a001 365435296162/1149851*7881196^(10/11) 5912867298794394 a001 1548008755920/1149851*7881196^(9/11) 5912867298794402 a001 6557470319842/1149851*7881196^(8/11) 5912867298794458 a001 5456077604927040567/9227465 5912867298794460 a001 365435296162/1149851*20633239^(6/7) 5912867298794461 a001 956722026041/1149851*20633239^(4/5) 5912867298794462 a001 4052739537881/1149851*20633239^(5/7) 5912867298794466 a001 14930352/1149851*817138163596^(17/19) 5912867298794466 a001 14930352/1149851*14662949395604^(17/21) 5912867298794466 a001 14930352/1149851*192900153618^(17/18) 5912867298794471 a001 39088169/1149851*14662949395604^(7/9) 5912867298794471 a001 39088169/1149851*505019158607^(7/8) 5912867298794471 a001 20365011074/1149851*141422324^(12/13) 5912867298794471 a001 86267571272/1149851*141422324^(11/13) 5912867298794471 a001 365435296162/1149851*141422324^(10/13) 5912867298794471 a001 1548008755920/1149851*141422324^(9/13) 5912867298794471 a001 2504730781961/1149851*141422324^(2/3) 5912867298794471 a001 6557470319842/1149851*141422324^(8/13) 5912867298794472 a001 267914296/1149851*45537549124^(15/17) 5912867298794472 a001 267914296/1149851*312119004989^(9/11) 5912867298794472 a001 267914296/1149851*14662949395604^(5/7) 5912867298794472 a001 267914296/1149851*192900153618^(5/6) 5912867298794472 a001 267914296/1149851*28143753123^(9/10) 5912867298794472 a001 267914296/1149851*10749957122^(15/16) 5912867298794472 a001 4807526976/1149851*2537720636^(13/15) 5912867298794472 a001 20365011074/1149851*2537720636^(4/5) 5912867298794472 a001 32951280099/1149851*2537720636^(7/9) 5912867298794472 a001 2971215073/1149851*2537720636^(8/9) 5912867298794472 a001 86267571272/1149851*2537720636^(11/15) 5912867298794472 a001 365435296162/1149851*2537720636^(2/3) 5912867298794472 a001 1548008755920/1149851*2537720636^(3/5) 5912867298794472 a001 4052739537881/1149851*2537720636^(5/9) 5912867298794472 a001 6557470319842/1149851*2537720636^(8/15) 5912867298794472 a001 4807526976/1149851*45537549124^(13/17) 5912867298794472 a001 4807526976/1149851*14662949395604^(13/21) 5912867298794472 a001 4807526976/1149851*192900153618^(13/18) 5912867298794472 a001 4807526976/1149851*73681302247^(3/4) 5912867298794472 a001 32951280099/1149851*17393796001^(5/7) 5912867298794472 a001 956722026041/1149851*17393796001^(4/7) 5912867298794472 a001 4807526976/1149851*10749957122^(13/16) 5912867298794472 a001 86267571272/1149851*45537549124^(11/17) 5912867298794472 a001 365435296162/1149851*45537549124^(10/17) 5912867298794472 a001 1548008755920/1149851*45537549124^(9/17) 5912867298794472 a001 53316291173/1149851*45537549124^(2/3) 5912867298794472 a001 6557470319842/1149851*45537549124^(8/17) 5912867298794472 a001 32951280099/1149851*312119004989^(7/11) 5912867298794472 a001 32951280099/1149851*14662949395604^(5/9) 5912867298794472 a001 32951280099/1149851*505019158607^(5/8) 5912867298794472 a001 86267571272/1149851*312119004989^(3/5) 5912867298794472 a001 86267571272/1149851*817138163596^(11/19) 5912867298794472 a001 86267571272/1149851*14662949395604^(11/21) 5912867298794472 a001 86267571272/1149851*192900153618^(11/18) 5912867298794472 a001 4052739537881/1149851*312119004989^(5/11) 5912867298794472 a001 365435296162/1149851*312119004989^(6/11) 5912867298794472 a001 225851433717/1149851*9062201101803^(1/2) 5912867298794472 a001 1548008755920/1149851*817138163596^(9/19) 5912867298794472 a001 1548008755920/1149851*14662949395604^(3/7) 5912867298794472 a001 365435296162/1149851*14662949395604^(10/21) 5912867298794472 a001 139583862445/1149851*23725150497407^(1/2) 5912867298794472 a001 6557470319842/1149851*192900153618^(4/9) 5912867298794472 a001 139583862445/1149851*505019158607^(4/7) 5912867298794472 a001 1548008755920/1149851*192900153618^(1/2) 5912867298794472 a001 6557470319842/1149851*73681302247^(6/13) 5912867298794472 a001 2504730781961/1149851*73681302247^(1/2) 5912867298794472 a001 956722026041/1149851*73681302247^(7/13) 5912867298794472 a001 139583862445/1149851*73681302247^(8/13) 5912867298794472 a001 20365011074/1149851*45537549124^(12/17) 5912867298794472 a001 20365011074/1149851*14662949395604^(4/7) 5912867298794472 a001 20365011074/1149851*505019158607^(9/14) 5912867298794472 a001 20365011074/1149851*192900153618^(2/3) 5912867298794472 a001 20365011074/1149851*73681302247^(9/13) 5912867298794472 a001 4052739537881/1149851*28143753123^(1/2) 5912867298794472 a001 32951280099/1149851*28143753123^(7/10) 5912867298794472 a001 365435296162/1149851*28143753123^(3/5) 5912867298794472 a001 7778742049/1149851*817138163596^(2/3) 5912867298794472 a001 6557470319842/1149851*10749957122^(1/2) 5912867298794472 a001 2504730781961/1149851*10749957122^(13/24) 5912867298794472 a001 1548008755920/1149851*10749957122^(9/16) 5912867298794472 a001 956722026041/1149851*10749957122^(7/12) 5912867298794472 a001 365435296162/1149851*10749957122^(5/8) 5912867298794472 a001 139583862445/1149851*10749957122^(2/3) 5912867298794472 a001 86267571272/1149851*10749957122^(11/16) 5912867298794472 a001 53316291173/1149851*10749957122^(17/24) 5912867298794472 a001 20365011074/1149851*10749957122^(3/4) 5912867298794472 a001 7778742049/1149851*10749957122^(19/24) 5912867298794472 a001 1134903170/1149851*2537720636^(14/15) 5912867298794472 a001 2971215073/1149851*312119004989^(8/11) 5912867298794472 a001 2971215073/1149851*23725150497407^(5/8) 5912867298794472 a001 2971215073/1149851*73681302247^(10/13) 5912867298794472 a001 2971215073/1149851*28143753123^(4/5) 5912867298794472 a001 10610209857723/1149851*4106118243^(1/2) 5912867298794472 a001 2971215073/1149851*10749957122^(5/6) 5912867298794472 a001 6557470319842/1149851*4106118243^(12/23) 5912867298794472 a001 2504730781961/1149851*4106118243^(13/23) 5912867298794472 a001 956722026041/1149851*4106118243^(14/23) 5912867298794472 a001 365435296162/1149851*4106118243^(15/23) 5912867298794472 a001 139583862445/1149851*4106118243^(16/23) 5912867298794472 a001 53316291173/1149851*4106118243^(17/23) 5912867298794472 a001 20365011074/1149851*4106118243^(18/23) 5912867298794472 a001 7778742049/1149851*4106118243^(19/23) 5912867298794472 a001 2971215073/1149851*4106118243^(20/23) 5912867298794472 a001 1134903170/1149851*17393796001^(6/7) 5912867298794472 a001 1134903170/1149851*45537549124^(14/17) 5912867298794472 a001 1134903170/1149851*817138163596^(14/19) 5912867298794472 a001 1134903170/1149851*14662949395604^(2/3) 5912867298794472 a001 1134903170/1149851*505019158607^(3/4) 5912867298794472 a001 1134903170/1149851*192900153618^(7/9) 5912867298794472 a001 1134903170/1149851*10749957122^(7/8) 5912867298794472 a001 1134903170/1149851*4106118243^(21/23) 5912867298794472 a001 6557470319842/1149851*1568397607^(6/11) 5912867298794472 a001 2504730781961/1149851*1568397607^(13/22) 5912867298794472 a001 956722026041/1149851*1568397607^(7/11) 5912867298794472 a001 365435296162/1149851*1568397607^(15/22) 5912867298794472 a001 139583862445/1149851*1568397607^(8/11) 5912867298794472 a001 86267571272/1149851*1568397607^(3/4) 5912867298794472 a001 53316291173/1149851*1568397607^(17/22) 5912867298794472 a001 20365011074/1149851*1568397607^(9/11) 5912867298794472 a001 7778742049/1149851*1568397607^(19/22) 5912867298794472 a001 2971215073/1149851*1568397607^(10/11) 5912867298794472 a001 1134903170/1149851*1568397607^(21/22) 5912867298794472 a001 433494437/1149851*312119004989^(4/5) 5912867298794472 a001 433494437/1149851*23725150497407^(11/16) 5912867298794472 a001 433494437/1149851*73681302247^(11/13) 5912867298794472 a001 433494437/1149851*10749957122^(11/12) 5912867298794472 a001 433494437/1149851*4106118243^(22/23) 5912867298794472 a001 6557470319842/1149851*599074578^(4/7) 5912867298794472 a001 2504730781961/1149851*599074578^(13/21) 5912867298794472 a001 1548008755920/1149851*599074578^(9/14) 5912867298794472 a001 956722026041/1149851*599074578^(2/3) 5912867298794472 a001 365435296162/1149851*599074578^(5/7) 5912867298794472 a001 139583862445/1149851*599074578^(16/21) 5912867298794472 a001 86267571272/1149851*599074578^(11/14) 5912867298794472 a001 53316291173/1149851*599074578^(17/21) 5912867298794472 a001 32951280099/1149851*599074578^(5/6) 5912867298794472 a001 20365011074/1149851*599074578^(6/7) 5912867298794472 a001 7778742049/1149851*599074578^(19/21) 5912867298794472 a001 4807526976/1149851*599074578^(13/14) 5912867298794472 a001 2971215073/1149851*599074578^(20/21) 5912867298794472 a001 165580141/1149851*10749957122^(23/24) 5912867298794472 a001 6557470319842/1149851*228826127^(3/5) 5912867298794472 a001 4052739537881/1149851*228826127^(5/8) 5912867298794472 a001 2504730781961/1149851*228826127^(13/20) 5912867298794472 a001 956722026041/1149851*228826127^(7/10) 5912867298794472 a001 365435296162/1149851*228826127^(3/4) 5912867298794472 a001 139583862445/1149851*228826127^(4/5) 5912867298794472 a001 53316291173/1149851*228826127^(17/20) 5912867298794472 a001 32951280099/1149851*228826127^(7/8) 5912867298794472 a001 20365011074/1149851*228826127^(9/10) 5912867298794472 a001 7778742049/1149851*228826127^(19/20) 5912867298794472 a001 63245986/1149851*45537549124^(16/17) 5912867298794472 a001 63245986/1149851*14662949395604^(16/21) 5912867298794472 a001 63245986/1149851*192900153618^(8/9) 5912867298794472 a001 63245986/1149851*73681302247^(12/13) 5912867298794472 a001 6557470319842/1149851*87403803^(12/19) 5912867298794472 a001 2504730781961/1149851*87403803^(13/19) 5912867298794472 a001 956722026041/1149851*87403803^(14/19) 5912867298794472 a001 365435296162/1149851*87403803^(15/19) 5912867298794472 a001 139583862445/1149851*87403803^(16/19) 5912867298794472 a001 53316291173/1149851*87403803^(17/19) 5912867298794472 a001 20365011074/1149851*87403803^(18/19) 5912867298794474 a001 24157817/1149851*312119004989^(10/11) 5912867298794474 a001 24157817/1149851*3461452808002^(5/6) 5912867298794475 a001 6557470319842/1149851*33385282^(2/3) 5912867298794475 a001 2504730781961/1149851*33385282^(13/18) 5912867298794476 a001 1548008755920/1149851*33385282^(3/4) 5912867298794476 a001 956722026041/1149851*33385282^(7/9) 5912867298794476 a001 365435296162/1149851*33385282^(5/6) 5912867298794476 a001 139583862445/1149851*33385282^(8/9) 5912867298794476 a001 86267571272/1149851*33385282^(11/12) 5912867298794477 a001 53316291173/1149851*33385282^(17/18) 5912867298794486 a001 9227465/1149851*23725150497407^(13/16) 5912867298794486 a001 9227465/1149851*505019158607^(13/14) 5912867298794497 a001 6557470319842/1149851*12752043^(12/17) 5912867298794499 a001 2504730781961/1149851*12752043^(13/17) 5912867298794502 a001 956722026041/1149851*12752043^(14/17) 5912867298794504 a001 365435296162/1149851*12752043^(15/17) 5912867298794506 a001 139583862445/1149851*12752043^(16/17) 5912867298794508 a001 3372041405102031818/5702887 5912867298794567 a001 3524578/1149851*14662949395604^(6/7) 5912867298794659 a001 6557470319842/1149851*4870847^(3/4) 5912867298794674 a001 2504730781961/1149851*4870847^(13/16) 5912867298794690 a001 956722026041/1149851*4870847^(7/8) 5912867298794705 a001 365435296162/1149851*4870847^(15/16) 5912867298794721 a001 1288005205277023069/2178309 5912867298795124 a001 514229/3010349*14662949395604^(20/21) 5912867298795124 a001 1346269/1149851*14662949395604^(8/9) 5912867298795838 a001 6557470319842/1149851*1860498^(4/5) 5912867298795895 a001 4052739537881/1149851*1860498^(5/6) 5912867298795952 a001 2504730781961/1149851*1860498^(13/15) 5912867298796009 a001 1548008755920/1149851*1860498^(9/10) 5912867298796066 a001 956722026041/1149851*1860498^(14/15) 5912867298796180 a001 491974210729037389/832040 5912867298796811 a001 10610209857723/439204*439204^(7/9) 5912867298798327 a001 3536736619241/620166*710647^(6/7) 5912867298799163 a001 4052739537881/1860498*710647^(13/14) 5912867298800622 a001 2178309*710647^(13/14) 5912867298801458 a001 62639142303313016/105937 5912867298801524 a001 6557470319842/3010349*710647^(13/14) 5912867298801671 a001 62639142303315271/105937 5912867298801702 a001 62639142303315600/105937 5912867298801707 a001 62639142303315648/105937 5912867298801708 a001 62639142303315655/105937 5912867298801708 a001 166151571096328/281 5912867298801708 a001 187917426909946969/317811 5912867298801708 a001 187917426909946970/317811 5912867298801708 a001 187917426909946978/317811 5912867298801710 a001 14455186685380541/24447 5912867298801722 a001 14455186685380570/24447 5912867298801803 a001 187917426909949994/317811 5912867298802360 a001 187917426909967705/317811 5912867298804507 a001 6557470319842/1149851*710647^(6/7) 5912867298805344 a001 2504730781961/1149851*710647^(13/14) 5912867298806180 a001 187917426910089098/317811 5912867298808944 a001 317811/439204*14662949395604^(19/21) 5912867298816180 a001 304056783820294560/514229 5912867298818944 a001 208010/109801*3461452808002^(11/12) 5912867298820557 a001 1042018099917118107/1762289 5912867298820565 a001 139583862445/439204*7881196^(10/11) 5912867298820574 a001 591286729879/439204*7881196^(9/11) 5912867298820583 a001 2504730781961/439204*7881196^(8/11) 5912867298820589 a001 3278735159921/219602*7881196^(2/3) 5912867298820591 a001 10610209857723/439204*7881196^(7/11) 5912867298820616 a001 5702887/439204*817138163596^(17/19) 5912867298820616 a001 5702887/439204*14662949395604^(17/21) 5912867298820616 a001 5702887/439204*192900153618^(17/18) 5912867298820640 a001 139583862445/439204*20633239^(6/7) 5912867298820641 a001 182717648081/219602*20633239^(4/5) 5912867298820642 a001 387002188980/109801*20633239^(5/7) 5912867298820644 a001 10610209857723/439204*20633239^(3/5) 5912867298820647 a001 196452/5779*14662949395604^(7/9) 5912867298820647 a001 196452/5779*505019158607^(7/8) 5912867298820652 a001 7778742049/439204*141422324^(12/13) 5912867298820652 a001 32951280099/439204*141422324^(11/13) 5912867298820652 a001 139583862445/439204*141422324^(10/13) 5912867298820652 a001 591286729879/439204*141422324^(9/13) 5912867298820652 a001 956722026041/439204*141422324^(2/3) 5912867298820652 a001 2504730781961/439204*141422324^(8/13) 5912867298820652 a001 10610209857723/439204*141422324^(7/13) 5912867298820652 a001 102334155/439204*45537549124^(15/17) 5912867298820652 a001 102334155/439204*312119004989^(9/11) 5912867298820652 a001 102334155/439204*14662949395604^(5/7) 5912867298820652 a001 102334155/439204*192900153618^(5/6) 5912867298820652 a001 102334155/439204*28143753123^(9/10) 5912867298820652 a001 102334155/439204*10749957122^(15/16) 5912867298820652 a001 1836311903/439204*2537720636^(13/15) 5912867298820652 a001 12586269025/439204*2537720636^(7/9) 5912867298820652 a001 7778742049/439204*2537720636^(4/5) 5912867298820652 a001 32951280099/439204*2537720636^(11/15) 5912867298820652 a001 139583862445/439204*2537720636^(2/3) 5912867298820652 a001 591286729879/439204*2537720636^(3/5) 5912867298820652 a001 387002188980/109801*2537720636^(5/9) 5912867298820652 a001 2504730781961/439204*2537720636^(8/15) 5912867298820652 a001 10610209857723/439204*2537720636^(7/15) 5912867298820652 a001 1836311903/439204*45537549124^(13/17) 5912867298820652 a001 1836311903/439204*14662949395604^(13/21) 5912867298820652 a001 1836311903/439204*192900153618^(13/18) 5912867298820652 a001 1836311903/439204*73681302247^(3/4) 5912867298820652 a001 1836311903/439204*10749957122^(13/16) 5912867298820652 a001 12586269025/439204*17393796001^(5/7) 5912867298820652 a001 182717648081/219602*17393796001^(4/7) 5912867298820652 a001 10610209857723/439204*17393796001^(3/7) 5912867298820652 a001 12586269025/439204*312119004989^(7/11) 5912867298820652 a001 12586269025/439204*14662949395604^(5/9) 5912867298820652 a001 12586269025/439204*505019158607^(5/8) 5912867298820652 a001 32951280099/439204*45537549124^(11/17) 5912867298820652 a001 12586269025/439204*28143753123^(7/10) 5912867298820652 a001 139583862445/439204*45537549124^(10/17) 5912867298820652 a001 591286729879/439204*45537549124^(9/17) 5912867298820652 a001 2504730781961/439204*45537549124^(8/17) 5912867298820652 a001 10610209857723/439204*45537549124^(7/17) 5912867298820652 a001 32951280099/439204*312119004989^(3/5) 5912867298820652 a001 32951280099/439204*817138163596^(11/19) 5912867298820652 a001 32951280099/439204*14662949395604^(11/21) 5912867298820652 a001 32951280099/439204*192900153618^(11/18) 5912867298820652 a001 196418*9062201101803^(1/2) 5912867298820652 a001 387002188980/109801*312119004989^(5/11) 5912867298820652 a001 3278735159921/219602*312119004989^(2/5) 5912867298820652 a001 10610209857723/439204*14662949395604^(1/3) 5912867298820652 a001 2504730781961/439204*14662949395604^(8/21) 5912867298820652 a001 182717648081/219602*505019158607^(1/2) 5912867298820652 a001 139583862445/439204*312119004989^(6/11) 5912867298820652 a001 139583862445/439204*14662949395604^(10/21) 5912867298820652 a001 10610209857723/439204*192900153618^(7/18) 5912867298820652 a001 2504730781961/439204*192900153618^(4/9) 5912867298820652 a001 139583862445/439204*192900153618^(5/9) 5912867298820652 a001 53316291173/439204*23725150497407^(1/2) 5912867298820652 a001 53316291173/439204*505019158607^(4/7) 5912867298820652 a001 2504730781961/439204*73681302247^(6/13) 5912867298820652 a001 956722026041/439204*73681302247^(1/2) 5912867298820652 a001 182717648081/219602*73681302247^(7/13) 5912867298820652 a001 10182505537/219602*45537549124^(2/3) 5912867298820652 a001 53316291173/439204*73681302247^(8/13) 5912867298820652 a001 387002188980/109801*28143753123^(1/2) 5912867298820652 a001 139583862445/439204*28143753123^(3/5) 5912867298820652 a001 7778742049/439204*45537549124^(12/17) 5912867298820652 a001 7778742049/439204*14662949395604^(4/7) 5912867298820652 a001 7778742049/439204*505019158607^(9/14) 5912867298820652 a001 7778742049/439204*192900153618^(2/3) 5912867298820652 a001 7778742049/439204*73681302247^(9/13) 5912867298820652 a001 10610209857723/439204*10749957122^(7/16) 5912867298820652 a001 3278735159921/219602*10749957122^(11/24) 5912867298820652 a001 2504730781961/439204*10749957122^(1/2) 5912867298820652 a001 956722026041/439204*10749957122^(13/24) 5912867298820652 a001 591286729879/439204*10749957122^(9/16) 5912867298820652 a001 182717648081/219602*10749957122^(7/12) 5912867298820652 a001 139583862445/439204*10749957122^(5/8) 5912867298820652 a001 32951280099/439204*10749957122^(11/16) 5912867298820652 a001 53316291173/439204*10749957122^(2/3) 5912867298820652 a001 10182505537/219602*10749957122^(17/24) 5912867298820652 a001 7778742049/439204*10749957122^(3/4) 5912867298820652 a001 567451585/219602*2537720636^(8/9) 5912867298820652 a001 2971215073/439204*817138163596^(2/3) 5912867298820652 a001 3278735159921/219602*4106118243^(11/23) 5912867298820652 a001 2971215073/439204*10749957122^(19/24) 5912867298820652 a001 4052739537881/439204*4106118243^(1/2) 5912867298820652 a001 2504730781961/439204*4106118243^(12/23) 5912867298820652 a001 956722026041/439204*4106118243^(13/23) 5912867298820652 a001 182717648081/219602*4106118243^(14/23) 5912867298820652 a001 139583862445/439204*4106118243^(15/23) 5912867298820652 a001 53316291173/439204*4106118243^(16/23) 5912867298820652 a001 10182505537/219602*4106118243^(17/23) 5912867298820652 a001 7778742049/439204*4106118243^(18/23) 5912867298820652 a001 2971215073/439204*4106118243^(19/23) 5912867298820652 a001 567451585/219602*312119004989^(8/11) 5912867298820652 a001 567451585/219602*23725150497407^(5/8) 5912867298820652 a001 567451585/219602*73681302247^(10/13) 5912867298820652 a001 567451585/219602*28143753123^(4/5) 5912867298820652 a001 567451585/219602*10749957122^(5/6) 5912867298820652 a001 3278735159921/219602*1568397607^(1/2) 5912867298820652 a001 567451585/219602*4106118243^(20/23) 5912867298820652 a001 2504730781961/439204*1568397607^(6/11) 5912867298820652 a001 956722026041/439204*1568397607^(13/22) 5912867298820652 a001 182717648081/219602*1568397607^(7/11) 5912867298820652 a001 139583862445/439204*1568397607^(15/22) 5912867298820652 a001 53316291173/439204*1568397607^(8/11) 5912867298820652 a001 32951280099/439204*1568397607^(3/4) 5912867298820652 a001 10182505537/219602*1568397607^(17/22) 5912867298820652 a001 7778742049/439204*1568397607^(9/11) 5912867298820652 a001 2971215073/439204*1568397607^(19/22) 5912867298820652 a001 567451585/219602*1568397607^(10/11) 5912867298820652 a001 433494437/439204*2537720636^(14/15) 5912867298820652 a001 433494437/439204*17393796001^(6/7) 5912867298820652 a001 433494437/439204*45537549124^(14/17) 5912867298820652 a001 433494437/439204*817138163596^(14/19) 5912867298820652 a001 433494437/439204*14662949395604^(2/3) 5912867298820652 a001 433494437/439204*505019158607^(3/4) 5912867298820652 a001 433494437/439204*192900153618^(7/9) 5912867298820652 a001 433494437/439204*10749957122^(7/8) 5912867298820652 a001 433494437/439204*4106118243^(21/23) 5912867298820652 a001 10610209857723/439204*599074578^(1/2) 5912867298820652 a001 433494437/439204*1568397607^(21/22) 5912867298820652 a001 3278735159921/219602*599074578^(11/21) 5912867298820652 a001 2504730781961/439204*599074578^(4/7) 5912867298820652 a001 956722026041/439204*599074578^(13/21) 5912867298820652 a001 591286729879/439204*599074578^(9/14) 5912867298820652 a001 182717648081/219602*599074578^(2/3) 5912867298820652 a001 139583862445/439204*599074578^(5/7) 5912867298820652 a001 53316291173/439204*599074578^(16/21) 5912867298820652 a001 32951280099/439204*599074578^(11/14) 5912867298820652 a001 10182505537/219602*599074578^(17/21) 5912867298820652 a001 12586269025/439204*599074578^(5/6) 5912867298820652 a001 7778742049/439204*599074578^(6/7) 5912867298820652 a001 1836311903/439204*599074578^(13/14) 5912867298820652 a001 2971215073/439204*599074578^(19/21) 5912867298820652 a001 567451585/219602*599074578^(20/21) 5912867298820652 a001 165580141/439204*312119004989^(4/5) 5912867298820652 a001 165580141/439204*23725150497407^(11/16) 5912867298820652 a001 165580141/439204*73681302247^(11/13) 5912867298820652 a001 165580141/439204*10749957122^(11/12) 5912867298820652 a001 165580141/439204*4106118243^(22/23) 5912867298820652 a001 3278735159921/219602*228826127^(11/20) 5912867298820652 a001 2504730781961/439204*228826127^(3/5) 5912867298820652 a001 387002188980/109801*228826127^(5/8) 5912867298820652 a001 956722026041/439204*228826127^(13/20) 5912867298820652 a001 182717648081/219602*228826127^(7/10) 5912867298820652 a001 139583862445/439204*228826127^(3/4) 5912867298820652 a001 53316291173/439204*228826127^(4/5) 5912867298820652 a001 10182505537/219602*228826127^(17/20) 5912867298820652 a001 12586269025/439204*228826127^(7/8) 5912867298820652 a001 7778742049/439204*228826127^(9/10) 5912867298820652 a001 2971215073/439204*228826127^(19/20) 5912867298820652 a001 31622993/219602*10749957122^(23/24) 5912867298820652 a001 3278735159921/219602*87403803^(11/19) 5912867298820652 a001 2504730781961/439204*87403803^(12/19) 5912867298820653 a001 956722026041/439204*87403803^(13/19) 5912867298820653 a001 182717648081/219602*87403803^(14/19) 5912867298820653 a001 139583862445/439204*87403803^(15/19) 5912867298820653 a001 53316291173/439204*87403803^(16/19) 5912867298820653 a001 10182505537/219602*87403803^(17/19) 5912867298820653 a001 7778742049/439204*87403803^(18/19) 5912867298820654 a001 24157817/439204*45537549124^(16/17) 5912867298820654 a001 24157817/439204*14662949395604^(16/21) 5912867298820654 a001 24157817/439204*192900153618^(8/9) 5912867298820654 a001 24157817/439204*73681302247^(12/13) 5912867298820655 a001 10610209857723/439204*33385282^(7/12) 5912867298820655 a001 3278735159921/219602*33385282^(11/18) 5912867298820656 a001 2504730781961/439204*33385282^(2/3) 5912867298820656 a001 956722026041/439204*33385282^(13/18) 5912867298820656 a001 591286729879/439204*33385282^(3/4) 5912867298820656 a001 182717648081/219602*33385282^(7/9) 5912867298820656 a001 139583862445/439204*33385282^(5/6) 5912867298820657 a001 53316291173/439204*33385282^(8/9) 5912867298820657 a001 32951280099/439204*33385282^(11/12) 5912867298820657 a001 10182505537/219602*33385282^(17/18) 5912867298820666 a001 9227465/439204*312119004989^(10/11) 5912867298820666 a001 9227465/439204*3461452808002^(5/6) 5912867298820676 a001 3278735159921/219602*12752043^(11/17) 5912867298820678 a001 2504730781961/439204*12752043^(12/17) 5912867298820680 a001 956722026041/439204*12752043^(13/17) 5912867298820682 a001 182717648081/219602*12752043^(14/17) 5912867298820684 a001 139583862445/439204*12752043^(15/17) 5912867298820686 a001 53316291173/439204*12752043^(16/17) 5912867298820747 a001 1762289/219602*23725150497407^(13/16) 5912867298820747 a001 1762289/219602*505019158607^(13/14) 5912867298820823 a001 3278735159921/219602*4870847^(11/16) 5912867298820839 a001 2504730781961/439204*4870847^(3/4) 5912867298820854 a001 956722026041/439204*4870847^(13/16) 5912867298820870 a001 182717648081/219602*4870847^(7/8) 5912867298820886 a001 139583862445/439204*4870847^(15/16) 5912867298820901 a001 1288005205282725956/2178309 5912867298821304 a001 1346269/439204*14662949395604^(6/7) 5912867298821848 a001 10610209857723/439204*1860498^(7/10) 5912867298821905 a001 3278735159921/219602*1860498^(11/15) 5912867298822019 a001 2504730781961/439204*1860498^(4/5) 5912867298822075 a001 387002188980/109801*1860498^(5/6) 5912867298822132 a001 956722026041/439204*1860498^(13/15) 5912867298822189 a001 591286729879/439204*1860498^(9/10) 5912867298822246 a001 182717648081/219602*1860498^(14/15) 5912867298822360 a001 245987105365607849/416020 5912867298825124 a001 196418/1149851*14662949395604^(20/21) 5912867298825124 a001 514229/439204*14662949395604^(8/9) 5912867298829433 a001 10610209857723/439204*710647^(3/4) 5912867298829851 a001 3278735159921/219602*710647^(11/14) 5912867298830688 a001 2504730781961/439204*710647^(6/7) 5912867298831524 a001 956722026041/439204*710647^(13/14) 5912867298832019 a001 6557470319842/167761*167761^(4/5) 5912867298832360 a001 187917426910921138/317811 5912867298846194 a001 1515744265389/101521*271443^(11/13) 5912867298852368 a001 4052739537881/710647*271443^(12/13) 5912867298852609 a001 956722026041/64079*64079^(22/23) 5912867298858541 a001 71778070001033487/121393 5912867298862368 a001 3536736619241/620166*271443^(12/13) 5912867298868541 a001 71778070001154880/121393 5912867298868548 a001 6557470319842/1149851*271443^(12/13) 5912867298870212 a001 71778070001175175/121393 5912867298870243 a001 71778070001175552/121393 5912867298870248 a001 71778070001175607/121393 5912867298870249 a001 71778070001175615/121393 5912867298870249 a001 71778070001175616/121393 5912867298870249 a001 71778070001175617/121393 5912867298870249 a001 308060386271140/521 5912867298870251 a001 71778070001175641/121393 5912867298870263 a001 71778070001175785/121393 5912867298870344 a001 71778070001176772/121393 5912867298870901 a001 71778070001183537/121393 5912867298874721 a001 71778070001229905/121393 5912867298888555 a001 3278735159921/219602*271443^(11/13) 5912867298894728 a001 2504730781961/439204*271443^(12/13) 5912867298900901 a001 71778070001547716/121393 5912867298915218 a001 1548008755920/64079*64079^(21/23) 5912867298919845 a001 121393/167761*14662949395604^(19/21) 5912867298969442 a001 58069678456449000/98209 5912867298972848 a001 956722026041/167761*439204^(8/9) 5912867298976254 a001 4052739537881/167761*439204^(7/9) 5912867298977827 a001 2504730781961/64079*64079^(20/23) 5912867298988386 a001 317811/167761*3461452808002^(11/12) 5912867298995623 a001 304056783829522025/514229 5912867298999442 a001 796030994575668075/1346269 5912867298999845 a001 2178309/167761*817138163596^(17/19) 5912867298999845 a001 2178309/167761*14662949395604^(17/21) 5912867298999845 a001 2178309/167761*192900153618^(17/18) 5912867299000008 a001 53316291173/167761*7881196^(10/11) 5912867299000017 a001 225851433717/167761*7881196^(9/11) 5912867299000025 a001 956722026041/167761*7881196^(8/11) 5912867299000031 a001 2504730781961/167761*7881196^(2/3) 5912867299000034 a001 4052739537881/167761*7881196^(7/11) 5912867299000058 a001 5702887/167761*14662949395604^(7/9) 5912867299000058 a001 5702887/167761*505019158607^(7/8) 5912867299000083 a001 53316291173/167761*20633239^(6/7) 5912867299000084 a001 139583862445/167761*20633239^(4/5) 5912867299000085 a001 591286729879/167761*20633239^(5/7) 5912867299000086 a001 4052739537881/167761*20633239^(3/5) 5912867299000087 a001 6557470319842/167761*20633239^(4/7) 5912867299000094 a001 39088169/167761*45537549124^(15/17) 5912867299000094 a001 39088169/167761*312119004989^(9/11) 5912867299000094 a001 39088169/167761*14662949395604^(5/7) 5912867299000094 a001 39088169/167761*192900153618^(5/6) 5912867299000094 a001 39088169/167761*28143753123^(9/10) 5912867299000094 a001 39088169/167761*10749957122^(15/16) 5912867299000094 a001 2971215073/167761*141422324^(12/13) 5912867299000094 a001 75025*141422324^(11/13) 5912867299000094 a001 53316291173/167761*141422324^(10/13) 5912867299000094 a001 225851433717/167761*141422324^(9/13) 5912867299000094 a001 365435296162/167761*141422324^(2/3) 5912867299000095 a001 956722026041/167761*141422324^(8/13) 5912867299000095 a001 4052739537881/167761*141422324^(7/13) 5912867299000095 a001 701408733/167761*2537720636^(13/15) 5912867299000095 a001 701408733/167761*45537549124^(13/17) 5912867299000095 a001 701408733/167761*14662949395604^(13/21) 5912867299000095 a001 701408733/167761*192900153618^(13/18) 5912867299000095 a001 701408733/167761*73681302247^(3/4) 5912867299000095 a001 701408733/167761*10749957122^(13/16) 5912867299000095 a001 4807526976/167761*2537720636^(7/9) 5912867299000095 a001 75025*2537720636^(11/15) 5912867299000095 a001 53316291173/167761*2537720636^(2/3) 5912867299000095 a001 2971215073/167761*2537720636^(4/5) 5912867299000095 a001 225851433717/167761*2537720636^(3/5) 5912867299000095 a001 591286729879/167761*2537720636^(5/9) 5912867299000095 a001 956722026041/167761*2537720636^(8/15) 5912867299000095 a001 4052739537881/167761*2537720636^(7/15) 5912867299000095 a001 6557470319842/167761*2537720636^(4/9) 5912867299000095 a001 4807526976/167761*17393796001^(5/7) 5912867299000095 a001 4807526976/167761*312119004989^(7/11) 5912867299000095 a001 4807526976/167761*14662949395604^(5/9) 5912867299000095 a001 4807526976/167761*505019158607^(5/8) 5912867299000095 a001 4807526976/167761*28143753123^(7/10) 5912867299000095 a001 139583862445/167761*17393796001^(4/7) 5912867299000095 a001 75025*45537549124^(11/17) 5912867299000095 a001 4052739537881/167761*17393796001^(3/7) 5912867299000095 a001 75025*312119004989^(3/5) 5912867299000095 a001 75025*817138163596^(11/19) 5912867299000095 a001 75025*14662949395604^(11/21) 5912867299000095 a001 75025*192900153618^(11/18) 5912867299000095 a001 225851433717/167761*45537549124^(9/17) 5912867299000095 a001 956722026041/167761*45537549124^(8/17) 5912867299000095 a001 53316291173/167761*45537549124^(10/17) 5912867299000095 a001 4052739537881/167761*45537549124^(7/17) 5912867299000095 a001 32951280099/167761*9062201101803^(1/2) 5912867299000095 a001 86267571272/167761*1322157322203^(1/2) 5912867299000095 a001 591286729879/167761*312119004989^(5/11) 5912867299000095 a001 225851433717/167761*817138163596^(9/19) 5912867299000095 a001 2504730781961/167761*312119004989^(2/5) 5912867299000095 a001 225851433717/167761*14662949395604^(3/7) 5912867299000095 a001 10610209857723/167761*817138163596^(1/3) 5912867299000095 a001 6557470319842/167761*505019158607^(5/14) 5912867299000095 a001 139583862445/167761*14662949395604^(4/9) 5912867299000095 a001 4052739537881/167761*192900153618^(7/18) 5912867299000095 a001 956722026041/167761*192900153618^(4/9) 5912867299000095 a001 139583862445/167761*505019158607^(1/2) 5912867299000095 a001 53316291173/167761*312119004989^(6/11) 5912867299000095 a001 53316291173/167761*14662949395604^(10/21) 5912867299000095 a001 6557470319842/167761*73681302247^(5/13) 5912867299000095 a001 53316291173/167761*192900153618^(5/9) 5912867299000095 a001 365435296162/167761*73681302247^(1/2) 5912867299000095 a001 139583862445/167761*73681302247^(7/13) 5912867299000095 a001 20365011074/167761*23725150497407^(1/2) 5912867299000095 a001 20365011074/167761*505019158607^(4/7) 5912867299000095 a001 6557470319842/167761*28143753123^(2/5) 5912867299000095 a001 20365011074/167761*73681302247^(8/13) 5912867299000095 a001 591286729879/167761*28143753123^(1/2) 5912867299000095 a001 53316291173/167761*28143753123^(3/5) 5912867299000095 a001 7778742049/167761*45537549124^(2/3) 5912867299000095 a001 6557470319842/167761*10749957122^(5/12) 5912867299000095 a001 4052739537881/167761*10749957122^(7/16) 5912867299000095 a001 2504730781961/167761*10749957122^(11/24) 5912867299000095 a001 956722026041/167761*10749957122^(1/2) 5912867299000095 a001 75025*10749957122^(11/16) 5912867299000095 a001 365435296162/167761*10749957122^(13/24) 5912867299000095 a001 225851433717/167761*10749957122^(9/16) 5912867299000095 a001 139583862445/167761*10749957122^(7/12) 5912867299000095 a001 53316291173/167761*10749957122^(5/8) 5912867299000095 a001 20365011074/167761*10749957122^(2/3) 5912867299000095 a001 7778742049/167761*10749957122^(17/24) 5912867299000095 a001 2971215073/167761*45537549124^(12/17) 5912867299000095 a001 2971215073/167761*14662949395604^(4/7) 5912867299000095 a001 2971215073/167761*505019158607^(9/14) 5912867299000095 a001 2971215073/167761*192900153618^(2/3) 5912867299000095 a001 2971215073/167761*73681302247^(9/13) 5912867299000095 a001 6557470319842/167761*4106118243^(10/23) 5912867299000095 a001 2504730781961/167761*4106118243^(11/23) 5912867299000095 a001 2971215073/167761*10749957122^(3/4) 5912867299000095 a001 140728068720/15251*4106118243^(1/2) 5912867299000095 a001 956722026041/167761*4106118243^(12/23) 5912867299000095 a001 365435296162/167761*4106118243^(13/23) 5912867299000095 a001 139583862445/167761*4106118243^(14/23) 5912867299000095 a001 53316291173/167761*4106118243^(15/23) 5912867299000095 a001 20365011074/167761*4106118243^(16/23) 5912867299000095 a001 7778742049/167761*4106118243^(17/23) 5912867299000095 a001 2971215073/167761*4106118243^(18/23) 5912867299000095 a001 1134903170/167761*817138163596^(2/3) 5912867299000095 a001 1134903170/167761*10749957122^(19/24) 5912867299000095 a001 6557470319842/167761*1568397607^(5/11) 5912867299000095 a001 2504730781961/167761*1568397607^(1/2) 5912867299000095 a001 1134903170/167761*4106118243^(19/23) 5912867299000095 a001 956722026041/167761*1568397607^(6/11) 5912867299000095 a001 365435296162/167761*1568397607^(13/22) 5912867299000095 a001 139583862445/167761*1568397607^(7/11) 5912867299000095 a001 53316291173/167761*1568397607^(15/22) 5912867299000095 a001 20365011074/167761*1568397607^(8/11) 5912867299000095 a001 75025*1568397607^(3/4) 5912867299000095 a001 7778742049/167761*1568397607^(17/22) 5912867299000095 a001 2971215073/167761*1568397607^(9/11) 5912867299000095 a001 1134903170/167761*1568397607^(19/22) 5912867299000095 a001 433494437/167761*2537720636^(8/9) 5912867299000095 a001 433494437/167761*312119004989^(8/11) 5912867299000095 a001 433494437/167761*23725150497407^(5/8) 5912867299000095 a001 433494437/167761*73681302247^(10/13) 5912867299000095 a001 433494437/167761*28143753123^(4/5) 5912867299000095 a001 433494437/167761*10749957122^(5/6) 5912867299000095 a001 433494437/167761*4106118243^(20/23) 5912867299000095 a001 6557470319842/167761*599074578^(10/21) 5912867299000095 a001 4052739537881/167761*599074578^(1/2) 5912867299000095 a001 433494437/167761*1568397607^(10/11) 5912867299000095 a001 2504730781961/167761*599074578^(11/21) 5912867299000095 a001 956722026041/167761*599074578^(4/7) 5912867299000095 a001 365435296162/167761*599074578^(13/21) 5912867299000095 a001 225851433717/167761*599074578^(9/14) 5912867299000095 a001 139583862445/167761*599074578^(2/3) 5912867299000095 a001 53316291173/167761*599074578^(5/7) 5912867299000095 a001 20365011074/167761*599074578^(16/21) 5912867299000095 a001 701408733/167761*599074578^(13/14) 5912867299000095 a001 75025*599074578^(11/14) 5912867299000095 a001 7778742049/167761*599074578^(17/21) 5912867299000095 a001 4807526976/167761*599074578^(5/6) 5912867299000095 a001 2971215073/167761*599074578^(6/7) 5912867299000095 a001 1134903170/167761*599074578^(19/21) 5912867299000095 a001 433494437/167761*599074578^(20/21) 5912867299000095 a001 165580141/167761*2537720636^(14/15) 5912867299000095 a001 165580141/167761*17393796001^(6/7) 5912867299000095 a001 165580141/167761*45537549124^(14/17) 5912867299000095 a001 165580141/167761*817138163596^(14/19) 5912867299000095 a001 165580141/167761*14662949395604^(2/3) 5912867299000095 a001 165580141/167761*505019158607^(3/4) 5912867299000095 a001 165580141/167761*192900153618^(7/9) 5912867299000095 a001 165580141/167761*10749957122^(7/8) 5912867299000095 a001 165580141/167761*4106118243^(21/23) 5912867299000095 a001 165580141/167761*1568397607^(21/22) 5912867299000095 a001 6557470319842/167761*228826127^(1/2) 5912867299000095 a001 2504730781961/167761*228826127^(11/20) 5912867299000095 a001 956722026041/167761*228826127^(3/5) 5912867299000095 a001 591286729879/167761*228826127^(5/8) 5912867299000095 a001 365435296162/167761*228826127^(13/20) 5912867299000095 a001 139583862445/167761*228826127^(7/10) 5912867299000095 a001 53316291173/167761*228826127^(3/4) 5912867299000095 a001 20365011074/167761*228826127^(4/5) 5912867299000095 a001 7778742049/167761*228826127^(17/20) 5912867299000095 a001 4807526976/167761*228826127^(7/8) 5912867299000095 a001 2971215073/167761*228826127^(9/10) 5912867299000095 a001 1134903170/167761*228826127^(19/20) 5912867299000095 a001 63245986/167761*312119004989^(4/5) 5912867299000095 a001 63245986/167761*23725150497407^(11/16) 5912867299000095 a001 63245986/167761*73681302247^(11/13) 5912867299000095 a001 63245986/167761*10749957122^(11/12) 5912867299000095 a001 63245986/167761*4106118243^(22/23) 5912867299000095 a001 10610209857723/167761*87403803^(1/2) 5912867299000095 a001 6557470319842/167761*87403803^(10/19) 5912867299000095 a001 2504730781961/167761*87403803^(11/19) 5912867299000095 a001 956722026041/167761*87403803^(12/19) 5912867299000095 a001 365435296162/167761*87403803^(13/19) 5912867299000095 a001 139583862445/167761*87403803^(14/19) 5912867299000095 a001 53316291173/167761*87403803^(15/19) 5912867299000095 a001 20365011074/167761*87403803^(16/19) 5912867299000095 a001 7778742049/167761*87403803^(17/19) 5912867299000095 a001 2971215073/167761*87403803^(18/19) 5912867299000097 a001 24157817/167761*10749957122^(23/24) 5912867299000098 a001 6557470319842/167761*33385282^(5/9) 5912867299000098 a001 4052739537881/167761*33385282^(7/12) 5912867299000098 a001 2504730781961/167761*33385282^(11/18) 5912867299000098 a001 956722026041/167761*33385282^(2/3) 5912867299000099 a001 365435296162/167761*33385282^(13/18) 5912867299000099 a001 225851433717/167761*33385282^(3/4) 5912867299000099 a001 139583862445/167761*33385282^(7/9) 5912867299000099 a001 53316291173/167761*33385282^(5/6) 5912867299000099 a001 20365011074/167761*33385282^(8/9) 5912867299000100 a001 75025*33385282^(11/12) 5912867299000100 a001 7778742049/167761*33385282^(17/18) 5912867299000109 a001 9227465/167761*45537549124^(16/17) 5912867299000109 a001 9227465/167761*14662949395604^(16/21) 5912867299000109 a001 9227465/167761*192900153618^(8/9) 5912867299000109 a001 9227465/167761*73681302247^(12/13) 5912867299000116 a001 6557470319842/167761*12752043^(10/17) 5912867299000118 a001 2504730781961/167761*12752043^(11/17) 5912867299000120 a001 956722026041/167761*12752043^(12/17) 5912867299000123 a001 365435296162/167761*12752043^(13/17) 5912867299000125 a001 139583862445/167761*12752043^(14/17) 5912867299000127 a001 53316291173/167761*12752043^(15/17) 5912867299000129 a001 20365011074/167761*12752043^(16/17) 5912867299000190 a001 3524578/167761*312119004989^(10/11) 5912867299000190 a001 3524578/167761*3461452808002^(5/6) 5912867299000250 a001 6557470319842/167761*4870847^(5/8) 5912867299000266 a001 2504730781961/167761*4870847^(11/16) 5912867299000282 a001 956722026041/167761*4870847^(3/4) 5912867299000297 a001 365435296162/167761*4870847^(13/16) 5912867299000313 a001 139583862445/167761*4870847^(7/8) 5912867299000328 a001 53316291173/167761*4870847^(15/16) 5912867299000747 a001 1346269/167761*23725150497407^(13/16) 5912867299000747 a001 1346269/167761*505019158607^(13/14) 5912867299001233 a001 6557470319842/167761*1860498^(2/3) 5912867299001290 a001 4052739537881/167761*1860498^(7/10) 5912867299001347 a001 2504730781961/167761*1860498^(11/15) 5912867299001461 a001 956722026041/167761*1860498^(4/5) 5912867299001518 a001 591286729879/167761*1860498^(5/6) 5912867299001575 a001 365435296162/167761*1860498^(13/15) 5912867299001632 a001 225851433717/167761*1860498^(9/10) 5912867299001689 a001 139583862445/167761*1860498^(14/15) 5912867299001803 a001 49197421074614605/83204 5912867299004567 a001 514229/167761*14662949395604^(6/7) 5912867299008458 a001 6557470319842/167761*710647^(5/7) 5912867299008876 a001 4052739537881/167761*710647^(3/4) 5912867299009294 a001 2504730781961/167761*710647^(11/14) 5912867299010130 a001 956722026041/167761*710647^(6/7) 5912867299010967 a001 365435296162/167761*710647^(13/14) 5912867299011803 a001 187917426916624025/317811 5912867299030747 a001 75025/439204*14662949395604^(20/21) 5912867299030747 a001 196418/167761*14662949395604^(8/9) 5912867299040437 a001 4052739537881/64079*64079^(19/23) 5912867299061825 a001 6557470319842/167761*271443^(10/13) 5912867299067998 a001 2504730781961/167761*271443^(11/13) 5912867299074171 a001 956722026041/167761*271443^(12/13) 5912867299080344 a001 71778070003726025/121393 5912867299103046 a001 6557470319842/64079*64079^(18/23) 5912867299165655 a001 10610209857723/64079*64079^(17/23) 5912867299168114 a001 3536736619241/90481*103682^(5/6) 5912867299191032 a001 6557470319842/271443*103682^(7/8) 5912867299213950 a001 4052739537881/271443*103682^(11/12) 5912867299236868 a001 2504730781961/271443*103682^(23/24) 5912867299259787 a001 1305561099676561/2208 5912867299260000 a001 956722026041/24476*24476^(20/21) 5912867299282491 a001 1515744265389/101521*103682^(11/12) 5912867299301934 a001 10610209857723/439204*103682^(7/8) 5912867299305409 a001 6557470319842/710647*103682^(23/24) 5912867299321590 a001 10610209857723/1149851*103682^(23/24) 5912867299324852 a001 3278735159921/219602*103682^(11/12) 5912867299328328 a001 1142365962230233/1932 5912867299338328 a001 1142365962232165/1932 5912867299339787 a001 1305561099694225/2208 5912867299340031 a001 190394327038749/322 5912867299340035 a001 9138927697859959/15456 5912867299340036 a001 163195137461785/276 5912867299340036 a001 27416783093579881/46368 5912867299340036 a001 13708391546789941/23184 5912867299340038 a001 13708391546789945/23184 5912867299340050 a001 27416783093579945/46368 5912867299340131 a001 13708391546790161/23184 5912867299340688 a001 13708391546791453/23184 5912867299344508 a001 27416783093600617/46368 5912867299347770 a001 4052739537881/439204*103682^(23/24) 5912867299370688 a001 13708391546861005/23184 5912867299435540 a001 10610209857723/167761*103682^(19/24) 5912867299458458 a001 6557470319842/167761*103682^(5/6) 5912867299481377 a001 4052739537881/167761*103682^(7/8) 5912867299504295 a001 2504730781961/167761*103682^(11/12) 5912867299527213 a001 140728068720/15251*103682^(23/24) 5912867299550131 a001 13708391547277025/23184 5912867299679977 a001 46368/64079*14662949395604^(19/21) 5912867299730000 a001 387002188980/6119*24476^(19/21) 5912867300019918 a001 8872257383679888/15005 5912867300061937 a001 2504730781961/64079*167761^(4/5) 5912867300149764 a001 121393/64079*3461452808002^(11/12) 5912867300199361 a001 116139356937055817/196418 5912867300200000 a001 2504730781961/24476*24476^(6/7) 5912867300202767 a001 365435296162/64079*439204^(8/9) 5912867300206173 a001 1548008755920/64079*439204^(7/9) 5912867300209578 a001 6557470319842/64079*439204^(2/3) 5912867300225541 a001 304056783892768011/514229 5912867300228305 a001 832040/64079*817138163596^(17/19) 5912867300228305 a001 832040/64079*14662949395604^(17/21) 5912867300228305 a001 832040/64079*192900153618^(17/18) 5912867300229764 a001 2178309/64079*14662949395604^(7/9) 5912867300229764 a001 2178309/64079*505019158607^(7/8) 5912867300229927 a001 20365011074/64079*7881196^(10/11) 5912867300229936 a001 86267571272/64079*7881196^(9/11) 5912867300229944 a001 365435296162/64079*7881196^(8/11) 5912867300229950 a001 956722026041/64079*7881196^(2/3) 5912867300229953 a001 1548008755920/64079*7881196^(7/11) 5912867300229961 a001 6557470319842/64079*7881196^(6/11) 5912867300230001 a001 20365011074/64079*20633239^(6/7) 5912867300230002 a001 53316291173/64079*20633239^(4/5) 5912867300230003 a001 225851433717/64079*20633239^(5/7) 5912867300230005 a001 1548008755920/64079*20633239^(3/5) 5912867300230005 a001 2504730781961/64079*20633239^(4/7) 5912867300230008 a001 14930352/64079*45537549124^(15/17) 5912867300230008 a001 14930352/64079*312119004989^(9/11) 5912867300230008 a001 14930352/64079*14662949395604^(5/7) 5912867300230008 a001 14930352/64079*192900153618^(5/6) 5912867300230008 a001 14930352/64079*28143753123^(9/10) 5912867300230008 a001 14930352/64079*10749957122^(15/16) 5912867300230013 a001 1134903170/64079*141422324^(12/13) 5912867300230013 a001 4807526976/64079*141422324^(11/13) 5912867300230013 a001 20365011074/64079*141422324^(10/13) 5912867300230013 a001 86267571272/64079*141422324^(9/13) 5912867300230013 a001 139583862445/64079*141422324^(2/3) 5912867300230013 a001 365435296162/64079*141422324^(8/13) 5912867300230013 a001 1548008755920/64079*141422324^(7/13) 5912867300230013 a001 6557470319842/64079*141422324^(6/13) 5912867300230013 a001 267914296/64079*2537720636^(13/15) 5912867300230013 a001 267914296/64079*45537549124^(13/17) 5912867300230013 a001 267914296/64079*14662949395604^(13/21) 5912867300230013 a001 267914296/64079*192900153618^(13/18) 5912867300230013 a001 267914296/64079*73681302247^(3/4) 5912867300230013 a001 267914296/64079*10749957122^(13/16) 5912867300230013 a001 267914296/64079*599074578^(13/14) 5912867300230013 a001 28657*2537720636^(7/9) 5912867300230013 a001 4807526976/64079*2537720636^(11/15) 5912867300230013 a001 20365011074/64079*2537720636^(2/3) 5912867300230013 a001 86267571272/64079*2537720636^(3/5) 5912867300230013 a001 225851433717/64079*2537720636^(5/9) 5912867300230013 a001 365435296162/64079*2537720636^(8/15) 5912867300230013 a001 1548008755920/64079*2537720636^(7/15) 5912867300230013 a001 2504730781961/64079*2537720636^(4/9) 5912867300230013 a001 6557470319842/64079*2537720636^(2/5) 5912867300230013 a001 28657*17393796001^(5/7) 5912867300230013 a001 28657*312119004989^(7/11) 5912867300230013 a001 28657*14662949395604^(5/9) 5912867300230013 a001 28657*505019158607^(5/8) 5912867300230013 a001 28657*28143753123^(7/10) 5912867300230013 a001 4807526976/64079*45537549124^(11/17) 5912867300230013 a001 4807526976/64079*312119004989^(3/5) 5912867300230013 a001 4807526976/64079*817138163596^(11/19) 5912867300230013 a001 4807526976/64079*14662949395604^(11/21) 5912867300230013 a001 4807526976/64079*192900153618^(11/18) 5912867300230013 a001 4807526976/64079*10749957122^(11/16) 5912867300230013 a001 53316291173/64079*17393796001^(4/7) 5912867300230013 a001 1548008755920/64079*17393796001^(3/7) 5912867300230013 a001 12586269025/64079*9062201101803^(1/2) 5912867300230013 a001 86267571272/64079*45537549124^(9/17) 5912867300230013 a001 365435296162/64079*45537549124^(8/17) 5912867300230013 a001 1548008755920/64079*45537549124^(7/17) 5912867300230013 a001 32951280099/64079*1322157322203^(1/2) 5912867300230013 a001 6557470319842/64079*45537549124^(6/17) 5912867300230013 a001 10610209857723/64079*45537549124^(1/3) 5912867300230013 a001 86267571272/64079*817138163596^(9/19) 5912867300230013 a001 86267571272/64079*14662949395604^(3/7) 5912867300230013 a001 86267571272/64079*192900153618^(1/2) 5912867300230013 a001 225851433717/64079*312119004989^(5/11) 5912867300230013 a001 225851433717/64079*3461452808002^(5/12) 5912867300230013 a001 1548008755920/64079*14662949395604^(1/3) 5912867300230013 a001 6557470319842/64079*14662949395604^(2/7) 5912867300230013 a001 2504730781961/64079*505019158607^(5/14) 5912867300230013 a001 6557470319842/64079*192900153618^(1/3) 5912867300230013 a001 1548008755920/64079*192900153618^(7/18) 5912867300230013 a001 365435296162/64079*192900153618^(4/9) 5912867300230013 a001 53316291173/64079*14662949395604^(4/9) 5912867300230013 a001 2504730781961/64079*73681302247^(5/13) 5912867300230013 a001 365435296162/64079*73681302247^(6/13) 5912867300230013 a001 139583862445/64079*73681302247^(1/2) 5912867300230013 a001 53316291173/64079*73681302247^(7/13) 5912867300230013 a001 20365011074/64079*45537549124^(10/17) 5912867300230013 a001 20365011074/64079*312119004989^(6/11) 5912867300230013 a001 20365011074/64079*14662949395604^(10/21) 5912867300230013 a001 20365011074/64079*192900153618^(5/9) 5912867300230013 a001 2504730781961/64079*28143753123^(2/5) 5912867300230013 a001 225851433717/64079*28143753123^(1/2) 5912867300230013 a001 20365011074/64079*28143753123^(3/5) 5912867300230013 a001 6557470319842/64079*10749957122^(3/8) 5912867300230013 a001 7778742049/64079*23725150497407^(1/2) 5912867300230013 a001 7778742049/64079*505019158607^(4/7) 5912867300230013 a001 7778742049/64079*73681302247^(8/13) 5912867300230013 a001 2504730781961/64079*10749957122^(5/12) 5912867300230013 a001 1548008755920/64079*10749957122^(7/16) 5912867300230013 a001 956722026041/64079*10749957122^(11/24) 5912867300230013 a001 365435296162/64079*10749957122^(1/2) 5912867300230013 a001 139583862445/64079*10749957122^(13/24) 5912867300230013 a001 86267571272/64079*10749957122^(9/16) 5912867300230013 a001 53316291173/64079*10749957122^(7/12) 5912867300230013 a001 20365011074/64079*10749957122^(5/8) 5912867300230013 a001 7778742049/64079*10749957122^(2/3) 5912867300230013 a001 2971215073/64079*45537549124^(2/3) 5912867300230013 a001 6557470319842/64079*4106118243^(9/23) 5912867300230013 a001 2504730781961/64079*4106118243^(10/23) 5912867300230013 a001 956722026041/64079*4106118243^(11/23) 5912867300230013 a001 2971215073/64079*10749957122^(17/24) 5912867300230013 a001 591286729879/64079*4106118243^(1/2) 5912867300230013 a001 365435296162/64079*4106118243^(12/23) 5912867300230013 a001 1134903170/64079*2537720636^(4/5) 5912867300230013 a001 139583862445/64079*4106118243^(13/23) 5912867300230013 a001 53316291173/64079*4106118243^(14/23) 5912867300230013 a001 20365011074/64079*4106118243^(15/23) 5912867300230013 a001 7778742049/64079*4106118243^(16/23) 5912867300230013 a001 2971215073/64079*4106118243^(17/23) 5912867300230013 a001 1134903170/64079*45537549124^(12/17) 5912867300230013 a001 1134903170/64079*14662949395604^(4/7) 5912867300230013 a001 1134903170/64079*505019158607^(9/14) 5912867300230013 a001 1134903170/64079*192900153618^(2/3) 5912867300230013 a001 1134903170/64079*73681302247^(9/13) 5912867300230013 a001 1134903170/64079*10749957122^(3/4) 5912867300230013 a001 6557470319842/64079*1568397607^(9/22) 5912867300230013 a001 2504730781961/64079*1568397607^(5/11) 5912867300230013 a001 1134903170/64079*4106118243^(18/23) 5912867300230013 a001 956722026041/64079*1568397607^(1/2) 5912867300230013 a001 365435296162/64079*1568397607^(6/11) 5912867300230013 a001 139583862445/64079*1568397607^(13/22) 5912867300230013 a001 53316291173/64079*1568397607^(7/11) 5912867300230013 a001 20365011074/64079*1568397607^(15/22) 5912867300230013 a001 4807526976/64079*1568397607^(3/4) 5912867300230013 a001 7778742049/64079*1568397607^(8/11) 5912867300230013 a001 2971215073/64079*1568397607^(17/22) 5912867300230013 a001 1134903170/64079*1568397607^(9/11) 5912867300230013 a001 433494437/64079*817138163596^(2/3) 5912867300230013 a001 433494437/64079*10749957122^(19/24) 5912867300230013 a001 433494437/64079*4106118243^(19/23) 5912867300230013 a001 6557470319842/64079*599074578^(3/7) 5912867300230013 a001 2504730781961/64079*599074578^(10/21) 5912867300230013 a001 1548008755920/64079*599074578^(1/2) 5912867300230013 a001 433494437/64079*1568397607^(19/22) 5912867300230013 a001 956722026041/64079*599074578^(11/21) 5912867300230013 a001 365435296162/64079*599074578^(4/7) 5912867300230013 a001 139583862445/64079*599074578^(13/21) 5912867300230013 a001 86267571272/64079*599074578^(9/14) 5912867300230013 a001 53316291173/64079*599074578^(2/3) 5912867300230013 a001 20365011074/64079*599074578^(5/7) 5912867300230013 a001 7778742049/64079*599074578^(16/21) 5912867300230013 a001 4807526976/64079*599074578^(11/14) 5912867300230013 a001 28657*599074578^(5/6) 5912867300230013 a001 2971215073/64079*599074578^(17/21) 5912867300230013 a001 1134903170/64079*599074578^(6/7) 5912867300230013 a001 433494437/64079*599074578^(19/21) 5912867300230013 a001 165580141/64079*2537720636^(8/9) 5912867300230013 a001 165580141/64079*312119004989^(8/11) 5912867300230013 a001 165580141/64079*23725150497407^(5/8) 5912867300230013 a001 165580141/64079*73681302247^(10/13) 5912867300230013 a001 165580141/64079*28143753123^(4/5) 5912867300230013 a001 165580141/64079*10749957122^(5/6) 5912867300230013 a001 165580141/64079*4106118243^(20/23) 5912867300230013 a001 165580141/64079*1568397607^(10/11) 5912867300230013 a001 6557470319842/64079*228826127^(9/20) 5912867300230013 a001 2504730781961/64079*228826127^(1/2) 5912867300230013 a001 165580141/64079*599074578^(20/21) 5912867300230013 a001 956722026041/64079*228826127^(11/20) 5912867300230013 a001 365435296162/64079*228826127^(3/5) 5912867300230013 a001 225851433717/64079*228826127^(5/8) 5912867300230013 a001 139583862445/64079*228826127^(13/20) 5912867300230013 a001 53316291173/64079*228826127^(7/10) 5912867300230013 a001 20365011074/64079*228826127^(3/4) 5912867300230013 a001 7778742049/64079*228826127^(4/5) 5912867300230013 a001 2971215073/64079*228826127^(17/20) 5912867300230013 a001 28657*228826127^(7/8) 5912867300230013 a001 1134903170/64079*228826127^(9/10) 5912867300230014 a001 433494437/64079*228826127^(19/20) 5912867300230014 a001 63245986/64079*2537720636^(14/15) 5912867300230014 a001 63245986/64079*17393796001^(6/7) 5912867300230014 a001 63245986/64079*45537549124^(14/17) 5912867300230014 a001 63245986/64079*817138163596^(14/19) 5912867300230014 a001 63245986/64079*14662949395604^(2/3) 5912867300230014 a001 63245986/64079*505019158607^(3/4) 5912867300230014 a001 63245986/64079*192900153618^(7/9) 5912867300230014 a001 63245986/64079*10749957122^(7/8) 5912867300230014 a001 63245986/64079*4106118243^(21/23) 5912867300230014 a001 63245986/64079*1568397607^(21/22) 5912867300230014 a001 6557470319842/64079*87403803^(9/19) 5912867300230014 a001 4052739537881/64079*87403803^(1/2) 5912867300230014 a001 2504730781961/64079*87403803^(10/19) 5912867300230014 a001 956722026041/64079*87403803^(11/19) 5912867300230014 a001 365435296162/64079*87403803^(12/19) 5912867300230014 a001 139583862445/64079*87403803^(13/19) 5912867300230014 a001 53316291173/64079*87403803^(14/19) 5912867300230014 a001 20365011074/64079*87403803^(15/19) 5912867300230014 a001 7778742049/64079*87403803^(16/19) 5912867300230014 a001 2971215073/64079*87403803^(17/19) 5912867300230014 a001 1134903170/64079*87403803^(18/19) 5912867300230015 a001 24157817/64079*312119004989^(4/5) 5912867300230015 a001 24157817/64079*23725150497407^(11/16) 5912867300230015 a001 24157817/64079*73681302247^(11/13) 5912867300230015 a001 24157817/64079*10749957122^(11/12) 5912867300230015 a001 24157817/64079*4106118243^(22/23) 5912867300230016 a001 6557470319842/64079*33385282^(1/2) 5912867300230016 a001 2504730781961/64079*33385282^(5/9) 5912867300230016 a001 1548008755920/64079*33385282^(7/12) 5912867300230017 a001 956722026041/64079*33385282^(11/18) 5912867300230017 a001 365435296162/64079*33385282^(2/3) 5912867300230017 a001 139583862445/64079*33385282^(13/18) 5912867300230017 a001 86267571272/64079*33385282^(3/4) 5912867300230018 a001 53316291173/64079*33385282^(7/9) 5912867300230018 a001 20365011074/64079*33385282^(5/6) 5912867300230018 a001 7778742049/64079*33385282^(8/9) 5912867300230018 a001 4807526976/64079*33385282^(11/12) 5912867300230018 a001 2971215073/64079*33385282^(17/18) 5912867300230027 a001 9227465/64079*10749957122^(23/24) 5912867300230032 a001 10610209857723/64079*12752043^(1/2) 5912867300230033 a001 6557470319842/64079*12752043^(9/17) 5912867300230035 a001 2504730781961/64079*12752043^(10/17) 5912867300230037 a001 956722026041/64079*12752043^(11/17) 5912867300230039 a001 365435296162/64079*12752043^(12/17) 5912867300230041 a001 139583862445/64079*12752043^(13/17) 5912867300230043 a001 53316291173/64079*12752043^(14/17) 5912867300230045 a001 20365011074/64079*12752043^(15/17) 5912867300230048 a001 7778742049/64079*12752043^(16/17) 5912867300230109 a001 3524578/64079*45537549124^(16/17) 5912867300230109 a001 3524578/64079*14662949395604^(16/21) 5912867300230109 a001 3524578/64079*192900153618^(8/9) 5912867300230109 a001 3524578/64079*73681302247^(12/13) 5912867300230154 a001 6557470319842/64079*4870847^(9/16) 5912867300230169 a001 2504730781961/64079*4870847^(5/8) 5912867300230185 a001 956722026041/64079*4870847^(11/16) 5912867300230200 a001 365435296162/64079*4870847^(3/4) 5912867300230216 a001 139583862445/64079*4870847^(13/16) 5912867300230231 a001 53316291173/64079*4870847^(7/8) 5912867300230247 a001 20365011074/64079*4870847^(15/16) 5912867300230666 a001 1346269/64079*312119004989^(10/11) 5912867300230666 a001 1346269/64079*3461452808002^(5/6) 5912867300231038 a001 6557470319842/64079*1860498^(3/5) 5912867300231152 a001 2504730781961/64079*1860498^(2/3) 5912867300231209 a001 1548008755920/64079*1860498^(7/10) 5912867300231266 a001 956722026041/64079*1860498^(11/15) 5912867300231380 a001 365435296162/64079*1860498^(4/5) 5912867300231437 a001 225851433717/64079*1860498^(5/6) 5912867300231494 a001 139583862445/64079*1860498^(13/15) 5912867300231551 a001 86267571272/64079*1860498^(9/10) 5912867300231608 a001 53316291173/64079*1860498^(14/15) 5912867300234486 a001 514229/64079*23725150497407^(13/16) 5912867300234486 a001 514229/64079*505019158607^(13/14) 5912867300237540 a001 6557470319842/64079*710647^(9/14) 5912867300238376 a001 2504730781961/64079*710647^(5/7) 5912867300238795 a001 1548008755920/64079*710647^(3/4) 5912867300239213 a001 956722026041/64079*710647^(11/14) 5912867300240049 a001 365435296162/64079*710647^(6/7) 5912867300240885 a001 139583862445/64079*710647^(13/14) 5912867300241722 a001 14455186688900938/24447 5912867300260666 a001 196418/64079*14662949395604^(6/7) 5912867300285571 a001 6557470319842/64079*271443^(9/13) 5912867300291744 a001 2504730781961/64079*271443^(10/13) 5912867300297917 a001 956722026041/64079*271443^(11/13) 5912867300304090 a001 365435296162/64079*271443^(12/13) 5912867300310263 a001 71778070018656377/121393 5912867300440109 a001 28657/167761*14662949395604^(20/21) 5912867300440109 a001 75025/64079*14662949395604^(8/9) 5912867300619622 a001 10610209857723/64079*103682^(17/24) 5912867300642541 a001 6557470319842/64079*103682^(3/4) 5912867300665459 a001 4052739537881/64079*103682^(19/24) 5912867300670000 a001 4052739537881/24476*24476^(17/21) 5912867300688377 a001 2504730781961/64079*103682^(5/6) 5912867300711295 a001 1548008755920/64079*103682^(7/8) 5912867300734213 a001 956722026041/64079*103682^(11/12) 5912867300757132 a001 591286729879/64079*103682^(23/24) 5912867300780050 a001 27416783100256937/46368 5912867301140000 a001 3278735159921/12238*24476^(16/21) 5912867301324513 a001 225749145909/2206*39603^(9/11) 5912867301495877 a001 3278735159921/51841*39603^(19/22) 5912867301610000 a001 10610209857723/24476*24476^(5/7) 5912867301667241 a001 4052739537881/103682*39603^(10/11) 5912867301838605 a001 2504730781961/103682*39603^(21/22) 5912867302009968 a001 10472279278589856/17711 5912867302137028 a001 3536736619241/90481*39603^(10/11) 5912867302256008 a001 10610209857723/167761*39603^(19/22) 5912867302308392 a001 6557470319842/271443*39603^(21/22) 5912867302350526 a001 956722026041/9349*9349^(18/19) 5912867302419293 a001 10610209857723/439204*39603^(21/22) 5912867302427372 a001 6557470319842/167761*39603^(10/11) 5912867302479756 a001 10472279279421896/17711 5912867302548297 a001 10472279279543289/17711 5912867302558297 a001 10472279279561000/17711 5912867302559756 a001 10472279279563584/17711 5912867302559968 a001 10472279279563961/17711 5912867302560004 a001 10472279279564024/17711 5912867302560005 a001 10472279279564025/17711 5912867302560005 a001 10472279279564026/17711 5912867302560007 a001 10472279279564029/17711 5912867302560019 a001 10472279279564050/17711 5912867302560100 a001 117666059320946/199 5912867302560657 a001 10472279279565181/17711 5912867302564477 a001 10472279279571946/17711 5912867302590657 a001 10472279279618314/17711 5912867302598736 a001 4052739537881/167761*39603^(21/22) 5912867302770100 a001 117666059325125/199 5912867303143199 a001 10610209857723/64079*39603^(17/22) 5912867303314563 a001 6557470319842/64079*39603^(9/11) 5912867303485927 a001 4052739537881/64079*39603^(19/22) 5912867303657291 a001 2504730781961/64079*39603^(10/11) 5912867303828655 a001 1548008755920/64079*39603^(21/22) 5912867304000019 a001 10472279282114434/17711 5912867304889996 a001 17711/24476*14662949395604^(19/21) 5912867305911052 a001 1548008755920/9349*9349^(17/19) 5912867307219988 a001 16944503842300320/28657 5912867307282597 a001 182717648081/12238*64079^(22/23) 5912867307345206 a001 591286729879/24476*64079^(21/23) 5912867307407816 a001 956722026041/24476*64079^(20/23) 5912867307470425 a001 387002188980/6119*64079^(19/23) 5912867307533034 a001 2504730781961/24476*64079^(18/23) 5912867307595643 a001 4052739537881/24476*64079^(17/23) 5912867307658253 a001 3278735159921/12238*64079^(16/23) 5912867307720862 a001 10610209857723/24476*64079^(15/23) 5912867308109965 a001 11592/6119*3461452808002^(11/12) 5912867308449906 a001 44361286981645426/75025 5912867308491925 a001 956722026041/24476*167761^(4/5) 5912867308533944 a001 10610209857723/24476*167761^(3/5) 5912867308629349 a001 58069678551317979/98209 5912867308632755 a001 139583862445/24476*439204^(8/9) 5912867308636161 a001 591286729879/24476*439204^(7/9) 5912867308639567 a001 2504730781961/24476*439204^(2/3) 5912867308642972 a001 10610209857723/24476*439204^(5/9) 5912867308648293 a001 10959/844*817138163596^(17/19) 5912867308648293 a001 10959/844*14662949395604^(17/21) 5912867308648293 a001 10959/844*192900153618^(17/18) 5912867308658293 a001 208010/6119*14662949395604^(7/9) 5912867308658293 a001 208010/6119*505019158607^(7/8) 5912867308659915 a001 7778742049/24476*7881196^(10/11) 5912867308659924 a001 32951280099/24476*7881196^(9/11) 5912867308659932 a001 139583862445/24476*7881196^(8/11) 5912867308659938 a001 182717648081/12238*7881196^(2/3) 5912867308659941 a001 591286729879/24476*7881196^(7/11) 5912867308659950 a001 2504730781961/24476*7881196^(6/11) 5912867308659958 a001 10610209857723/24476*7881196^(5/11) 5912867308659965 a001 5702887/24476*45537549124^(15/17) 5912867308659965 a001 5702887/24476*312119004989^(9/11) 5912867308659965 a001 5702887/24476*14662949395604^(5/7) 5912867308659965 a001 5702887/24476*192900153618^(5/6) 5912867308659965 a001 5702887/24476*28143753123^(9/10) 5912867308659965 a001 5702887/24476*10749957122^(15/16) 5912867308659990 a001 7778742049/24476*20633239^(6/7) 5912867308659990 a001 10182505537/12238*20633239^(4/5) 5912867308659992 a001 21566892818/6119*20633239^(5/7) 5912867308659993 a001 591286729879/24476*20633239^(3/5) 5912867308659994 a001 956722026041/24476*20633239^(4/7) 5912867308659996 a001 10610209857723/24476*20633239^(3/7) 5912867308660001 a001 433494437/24476*141422324^(12/13) 5912867308660001 a001 1836311903/24476*141422324^(11/13) 5912867308660001 a001 7778742049/24476*141422324^(10/13) 5912867308660001 a001 32951280099/24476*141422324^(9/13) 5912867308660001 a001 53316291173/24476*141422324^(2/3) 5912867308660001 a001 139583862445/24476*141422324^(8/13) 5912867308660001 a001 591286729879/24476*141422324^(7/13) 5912867308660001 a001 2504730781961/24476*141422324^(6/13) 5912867308660001 a001 102334155/24476*2537720636^(13/15) 5912867308660001 a001 10610209857723/24476*141422324^(5/13) 5912867308660001 a001 102334155/24476*45537549124^(13/17) 5912867308660001 a001 102334155/24476*14662949395604^(13/21) 5912867308660001 a001 102334155/24476*192900153618^(13/18) 5912867308660001 a001 102334155/24476*73681302247^(3/4) 5912867308660001 a001 102334155/24476*10749957122^(13/16) 5912867308660001 a001 102334155/24476*599074578^(13/14) 5912867308660002 a001 701408733/24476*2537720636^(7/9) 5912867308660002 a001 701408733/24476*17393796001^(5/7) 5912867308660002 a001 701408733/24476*312119004989^(7/11) 5912867308660002 a001 701408733/24476*14662949395604^(5/9) 5912867308660002 a001 701408733/24476*505019158607^(5/8) 5912867308660002 a001 701408733/24476*28143753123^(7/10) 5912867308660002 a001 1836311903/24476*2537720636^(11/15) 5912867308660002 a001 7778742049/24476*2537720636^(2/3) 5912867308660002 a001 32951280099/24476*2537720636^(3/5) 5912867308660002 a001 21566892818/6119*2537720636^(5/9) 5912867308660002 a001 139583862445/24476*2537720636^(8/15) 5912867308660002 a001 591286729879/24476*2537720636^(7/15) 5912867308660002 a001 956722026041/24476*2537720636^(4/9) 5912867308660002 a001 2504730781961/24476*2537720636^(2/5) 5912867308660002 a001 1836311903/24476*45537549124^(11/17) 5912867308660002 a001 1836311903/24476*312119004989^(3/5) 5912867308660002 a001 1836311903/24476*14662949395604^(11/21) 5912867308660002 a001 1836311903/24476*192900153618^(11/18) 5912867308660002 a001 1836311903/24476*10749957122^(11/16) 5912867308660002 a001 10610209857723/24476*2537720636^(1/3) 5912867308660002 a001 1201881744/6119*9062201101803^(1/2) 5912867308660002 a001 591286729879/24476*17393796001^(3/7) 5912867308660002 a001 10182505537/12238*17393796001^(4/7) 5912867308660002 a001 12586269025/24476*1322157322203^(1/2) 5912867308660002 a001 32951280099/24476*45537549124^(9/17) 5912867308660002 a001 139583862445/24476*45537549124^(8/17) 5912867308660002 a001 591286729879/24476*45537549124^(7/17) 5912867308660002 a001 32951280099/24476*817138163596^(9/19) 5912867308660002 a001 32951280099/24476*14662949395604^(3/7) 5912867308660002 a001 2504730781961/24476*45537549124^(6/17) 5912867308660002 a001 4052739537881/24476*45537549124^(1/3) 5912867308660002 a001 10610209857723/24476*45537549124^(5/17) 5912867308660002 a001 21566892818/6119*312119004989^(5/11) 5912867308660002 a001 21566892818/6119*3461452808002^(5/12) 5912867308660002 a001 10610209857723/24476*312119004989^(3/11) 5912867308660002 a001 182717648081/12238*312119004989^(2/5) 5912867308660002 a001 10610209857723/24476*14662949395604^(5/21) 5912867308660002 a001 3278735159921/12238*23725150497407^(1/4) 5912867308660002 a001 956722026041/24476*505019158607^(5/14) 5912867308660002 a001 10610209857723/24476*192900153618^(5/18) 5912867308660002 a001 591286729879/24476*192900153618^(7/18) 5912867308660002 a001 139583862445/24476*192900153618^(4/9) 5912867308660002 a001 3278735159921/12238*73681302247^(4/13) 5912867308660002 a001 956722026041/24476*73681302247^(5/13) 5912867308660002 a001 139583862445/24476*73681302247^(6/13) 5912867308660002 a001 53316291173/24476*73681302247^(1/2) 5912867308660002 a001 10610209857723/24476*28143753123^(3/10) 5912867308660002 a001 10182505537/12238*14662949395604^(4/9) 5912867308660002 a001 10182505537/12238*505019158607^(1/2) 5912867308660002 a001 956722026041/24476*28143753123^(2/5) 5912867308660002 a001 10182505537/12238*73681302247^(7/13) 5912867308660002 a001 21566892818/6119*28143753123^(1/2) 5912867308660002 a001 10610209857723/24476*10749957122^(5/16) 5912867308660002 a001 3278735159921/12238*10749957122^(1/3) 5912867308660002 a001 7778742049/24476*45537549124^(10/17) 5912867308660002 a001 2504730781961/24476*10749957122^(3/8) 5912867308660002 a001 7778742049/24476*312119004989^(6/11) 5912867308660002 a001 7778742049/24476*14662949395604^(10/21) 5912867308660002 a001 7778742049/24476*192900153618^(5/9) 5912867308660002 a001 956722026041/24476*10749957122^(5/12) 5912867308660002 a001 591286729879/24476*10749957122^(7/16) 5912867308660002 a001 182717648081/12238*10749957122^(11/24) 5912867308660002 a001 7778742049/24476*28143753123^(3/5) 5912867308660002 a001 139583862445/24476*10749957122^(1/2) 5912867308660002 a001 32951280099/24476*10749957122^(9/16) 5912867308660002 a001 53316291173/24476*10749957122^(13/24) 5912867308660002 a001 10182505537/12238*10749957122^(7/12) 5912867308660002 a001 7778742049/24476*10749957122^(5/8) 5912867308660002 a001 3278735159921/12238*4106118243^(8/23) 5912867308660002 a001 2971215073/24476*23725150497407^(1/2) 5912867308660002 a001 2971215073/24476*505019158607^(4/7) 5912867308660002 a001 2971215073/24476*73681302247^(8/13) 5912867308660002 a001 2504730781961/24476*4106118243^(9/23) 5912867308660002 a001 956722026041/24476*4106118243^(10/23) 5912867308660002 a001 182717648081/12238*4106118243^(11/23) 5912867308660002 a001 2971215073/24476*10749957122^(2/3) 5912867308660002 a001 7787980473/844*4106118243^(1/2) 5912867308660002 a001 139583862445/24476*4106118243^(12/23) 5912867308660002 a001 53316291173/24476*4106118243^(13/23) 5912867308660002 a001 10182505537/12238*4106118243^(14/23) 5912867308660002 a001 7778742049/24476*4106118243^(15/23) 5912867308660002 a001 2971215073/24476*4106118243^(16/23) 5912867308660002 a001 3278735159921/12238*1568397607^(4/11) 5912867308660002 a001 567451585/12238*45537549124^(2/3) 5912867308660002 a001 567451585/12238*10749957122^(17/24) 5912867308660002 a001 2504730781961/24476*1568397607^(9/22) 5912867308660002 a001 956722026041/24476*1568397607^(5/11) 5912867308660002 a001 567451585/12238*4106118243^(17/23) 5912867308660002 a001 182717648081/12238*1568397607^(1/2) 5912867308660002 a001 139583862445/24476*1568397607^(6/11) 5912867308660002 a001 53316291173/24476*1568397607^(13/22) 5912867308660002 a001 1836311903/24476*1568397607^(3/4) 5912867308660002 a001 10182505537/12238*1568397607^(7/11) 5912867308660002 a001 7778742049/24476*1568397607^(15/22) 5912867308660002 a001 2971215073/24476*1568397607^(8/11) 5912867308660002 a001 567451585/12238*1568397607^(17/22) 5912867308660002 a001 433494437/24476*2537720636^(4/5) 5912867308660002 a001 10610209857723/24476*599074578^(5/14) 5912867308660002 a001 3278735159921/12238*599074578^(8/21) 5912867308660002 a001 433494437/24476*45537549124^(12/17) 5912867308660002 a001 433494437/24476*14662949395604^(4/7) 5912867308660002 a001 433494437/24476*505019158607^(9/14) 5912867308660002 a001 433494437/24476*192900153618^(2/3) 5912867308660002 a001 433494437/24476*73681302247^(9/13) 5912867308660002 a001 433494437/24476*10749957122^(3/4) 5912867308660002 a001 433494437/24476*4106118243^(18/23) 5912867308660002 a001 2504730781961/24476*599074578^(3/7) 5912867308660002 a001 956722026041/24476*599074578^(10/21) 5912867308660002 a001 591286729879/24476*599074578^(1/2) 5912867308660002 a001 433494437/24476*1568397607^(9/11) 5912867308660002 a001 182717648081/12238*599074578^(11/21) 5912867308660002 a001 139583862445/24476*599074578^(4/7) 5912867308660002 a001 53316291173/24476*599074578^(13/21) 5912867308660002 a001 32951280099/24476*599074578^(9/14) 5912867308660002 a001 10182505537/12238*599074578^(2/3) 5912867308660002 a001 701408733/24476*599074578^(5/6) 5912867308660002 a001 7778742049/24476*599074578^(5/7) 5912867308660002 a001 1836311903/24476*599074578^(11/14) 5912867308660002 a001 2971215073/24476*599074578^(16/21) 5912867308660002 a001 567451585/12238*599074578^(17/21) 5912867308660002 a001 433494437/24476*599074578^(6/7) 5912867308660002 a001 10610209857723/24476*228826127^(3/8) 5912867308660002 a001 165580141/24476*817138163596^(2/3) 5912867308660002 a001 165580141/24476*10749957122^(19/24) 5912867308660002 a001 165580141/24476*4106118243^(19/23) 5912867308660002 a001 3278735159921/12238*228826127^(2/5) 5912867308660002 a001 165580141/24476*1568397607^(19/22) 5912867308660002 a001 2504730781961/24476*228826127^(9/20) 5912867308660002 a001 956722026041/24476*228826127^(1/2) 5912867308660002 a001 165580141/24476*599074578^(19/21) 5912867308660002 a001 182717648081/12238*228826127^(11/20) 5912867308660002 a001 139583862445/24476*228826127^(3/5) 5912867308660002 a001 21566892818/6119*228826127^(5/8) 5912867308660002 a001 53316291173/24476*228826127^(13/20) 5912867308660002 a001 10182505537/12238*228826127^(7/10) 5912867308660002 a001 7778742049/24476*228826127^(3/4) 5912867308660002 a001 2971215073/24476*228826127^(4/5) 5912867308660002 a001 701408733/24476*228826127^(7/8) 5912867308660002 a001 567451585/12238*228826127^(17/20) 5912867308660002 a001 433494437/24476*228826127^(9/10) 5912867308660002 a001 165580141/24476*228826127^(19/20) 5912867308660002 a001 31622993/12238*2537720636^(8/9) 5912867308660002 a001 31622993/12238*312119004989^(8/11) 5912867308660002 a001 31622993/12238*23725150497407^(5/8) 5912867308660002 a001 31622993/12238*73681302247^(10/13) 5912867308660002 a001 31622993/12238*28143753123^(4/5) 5912867308660002 a001 31622993/12238*10749957122^(5/6) 5912867308660002 a001 31622993/12238*4106118243^(20/23) 5912867308660002 a001 31622993/12238*1568397607^(10/11) 5912867308660002 a001 31622993/12238*599074578^(20/21) 5912867308660002 a001 3278735159921/12238*87403803^(8/19) 5912867308660002 a001 2504730781961/24476*87403803^(9/19) 5912867308660002 a001 387002188980/6119*87403803^(1/2) 5912867308660002 a001 956722026041/24476*87403803^(10/19) 5912867308660002 a001 182717648081/12238*87403803^(11/19) 5912867308660002 a001 139583862445/24476*87403803^(12/19) 5912867308660002 a001 53316291173/24476*87403803^(13/19) 5912867308660002 a001 10182505537/12238*87403803^(14/19) 5912867308660002 a001 7778742049/24476*87403803^(15/19) 5912867308660002 a001 2971215073/24476*87403803^(16/19) 5912867308660002 a001 567451585/12238*87403803^(17/19) 5912867308660002 a001 433494437/24476*87403803^(18/19) 5912867308660004 a001 24157817/24476*2537720636^(14/15) 5912867308660004 a001 24157817/24476*17393796001^(6/7) 5912867308660004 a001 24157817/24476*45537549124^(14/17) 5912867308660004 a001 24157817/24476*817138163596^(14/19) 5912867308660004 a001 24157817/24476*14662949395604^(2/3) 5912867308660004 a001 24157817/24476*505019158607^(3/4) 5912867308660004 a001 24157817/24476*192900153618^(7/9) 5912867308660004 a001 24157817/24476*10749957122^(7/8) 5912867308660004 a001 24157817/24476*4106118243^(21/23) 5912867308660004 a001 24157817/24476*1568397607^(21/22) 5912867308660004 a001 10610209857723/24476*33385282^(5/12) 5912867308660004 a001 3278735159921/12238*33385282^(4/9) 5912867308660004 a001 2504730781961/24476*33385282^(1/2) 5912867308660004 a001 956722026041/24476*33385282^(5/9) 5912867308660005 a001 591286729879/24476*33385282^(7/12) 5912867308660005 a001 182717648081/12238*33385282^(11/18) 5912867308660005 a001 139583862445/24476*33385282^(2/3) 5912867308660005 a001 53316291173/24476*33385282^(13/18) 5912867308660006 a001 32951280099/24476*33385282^(3/4) 5912867308660006 a001 10182505537/12238*33385282^(7/9) 5912867308660006 a001 7778742049/24476*33385282^(5/6) 5912867308660006 a001 2971215073/24476*33385282^(8/9) 5912867308660006 a001 1836311903/24476*33385282^(11/12) 5912867308660007 a001 567451585/12238*33385282^(17/18) 5912867308660015 a001 9227465/24476*312119004989^(4/5) 5912867308660015 a001 9227465/24476*23725150497407^(11/16) 5912867308660015 a001 9227465/24476*73681302247^(11/13) 5912867308660015 a001 9227465/24476*10749957122^(11/12) 5912867308660015 a001 9227465/24476*4106118243^(22/23) 5912867308660019 a001 3278735159921/12238*12752043^(8/17) 5912867308660020 a001 4052739537881/24476*12752043^(1/2) 5912867308660021 a001 2504730781961/24476*12752043^(9/17) 5912867308660023 a001 956722026041/24476*12752043^(10/17) 5912867308660025 a001 182717648081/12238*12752043^(11/17) 5912867308660027 a001 139583862445/24476*12752043^(12/17) 5912867308660029 a001 53316291173/24476*12752043^(13/17) 5912867308660031 a001 10182505537/12238*12752043^(14/17) 5912867308660034 a001 7778742049/24476*12752043^(15/17) 5912867308660036 a001 2971215073/24476*12752043^(16/17) 5912867308660097 a001 1762289/12238*10749957122^(23/24) 5912867308660126 a001 3278735159921/12238*4870847^(1/2) 5912867308660142 a001 2504730781961/24476*4870847^(9/16) 5912867308660157 a001 956722026041/24476*4870847^(5/8) 5912867308660173 a001 182717648081/12238*4870847^(11/16) 5912867308660188 a001 139583862445/24476*4870847^(3/4) 5912867308660204 a001 53316291173/24476*4870847^(13/16) 5912867308660220 a001 10182505537/12238*4870847^(7/8) 5912867308660235 a001 7778742049/24476*4870847^(15/16) 5912867308660654 a001 1346269/24476*45537549124^(16/17) 5912867308660654 a001 1346269/24476*14662949395604^(16/21) 5912867308660654 a001 1346269/24476*192900153618^(8/9) 5912867308660654 a001 1346269/24476*73681302247^(12/13) 5912867308660856 a001 10610209857723/24476*1860498^(1/2) 5912867308660913 a001 3278735159921/12238*1860498^(8/15) 5912867308661026 a001 2504730781961/24476*1860498^(3/5) 5912867308661140 a001 956722026041/24476*1860498^(2/3) 5912867308661197 a001 591286729879/24476*1860498^(7/10) 5912867308661254 a001 182717648081/12238*1860498^(11/15) 5912867308661368 a001 139583862445/24476*1860498^(4/5) 5912867308661425 a001 21566892818/6119*1860498^(5/6) 5912867308661482 a001 53316291173/24476*1860498^(13/15) 5912867308661539 a001 32951280099/24476*1860498^(9/10) 5912867308661596 a001 10182505537/12238*1860498^(14/15) 5912867308664474 a001 514229/24476*312119004989^(10/11) 5912867308664474 a001 514229/24476*3461452808002^(5/6) 5912867308666692 a001 3278735159921/12238*710647^(4/7) 5912867308667528 a001 2504730781961/24476*710647^(9/14) 5912867308668365 a001 956722026041/24476*710647^(5/7) 5912867308668783 a001 591286729879/24476*710647^(3/4) 5912867308669201 a001 182717648081/12238*710647^(11/14) 5912867308670037 a001 139583862445/24476*710647^(6/7) 5912867308670873 a001 53316291173/24476*710647^(13/14) 5912867308690654 a001 98209/12238*23725150497407^(13/16) 5912867308690654 a001 98209/12238*505019158607^(13/14) 5912867308709386 a001 3278735159921/12238*271443^(8/13) 5912867308715559 a001 2504730781961/24476*271443^(9/13) 5912867308721732 a001 956722026041/24476*271443^(10/13) 5912867308727905 a001 182717648081/12238*271443^(11/13) 5912867308734078 a001 139583862445/24476*271443^(12/13) 5912867308740251 a001 71778070120990532/121393 5912867308870097 a001 75025/24476*14662949395604^(6/7) 5912867309003774 a001 10610209857723/24476*103682^(5/8) 5912867309026692 a001 3278735159921/12238*103682^(2/3) 5912867309049611 a001 4052739537881/24476*103682^(17/24) 5912867309072529 a001 2504730781961/24476*103682^(3/4) 5912867309095447 a001 387002188980/6119*103682^(19/24) 5912867309118365 a001 956722026041/24476*103682^(5/6) 5912867309141283 a001 591286729879/24476*103682^(7/8) 5912867309164202 a001 182717648081/12238*103682^(11/12) 5912867309187120 a001 7787980473/844*103682^(23/24) 5912867309210038 a001 13708391569672553/23184 5912867309471579 a001 2504730781961/9349*9349^(16/19) 5912867310100015 a001 10946/64079*14662949395604^(20/21) 5912867310100015 a001 28657/24476*14662949395604^(8/9) 5912867311230460 a001 10610209857723/24476*39603^(15/22) 5912867311401824 a001 3278735159921/12238*39603^(8/11) 5912867311573187 a001 4052739537881/24476*39603^(17/22) 5912867311744551 a001 2504730781961/24476*39603^(9/11) 5912867311915915 a001 387002188980/6119*39603^(19/22) 5912867312087279 a001 956722026041/24476*39603^(10/11) 5912867312258643 a001 591286729879/24476*39603^(21/22) 5912867312430007 a001 10472279297044786/17711 5912867313032105 a001 4052739537881/9349*9349^(15/19) 5912867315691995 a001 3536736619241/13201*15127^(4/5) 5912867316592631 a001 6557470319842/9349*9349^(14/19) 5912867316983995 a001 6557470319842/39603*15127^(17/20) 5912867318275995 a001 4052739537881/39603*15127^(9/10) 5912867319567995 a001 2504730781961/39603*15127^(19/20) 5912867320153158 a001 10610209857723/9349*9349^(13/19) 5912867320859995 a001 1333351580853929/2255 5912867321060079 r002 4th iterates of z^2 + 5912867321495964 a001 225749145909/2206*15127^(9/10) 5912867322194014 a001 10610209857723/64079*15127^(17/20) 5912867322787964 a001 3278735159921/51841*15127^(19/20) 5912867323486014 a001 6557470319842/64079*15127^(9/10) 5912867323548095 a001 10610209857723/167761*15127^(19/20) 5912867324079964 a001 1333351581580032/2255 5912867324549751 a001 1333351581685969/2255 5912867324629751 a001 1333351581704009/2255 5912867324629964 a001 1333351581704057/2255 5912867324629995 a001 1333351581704064/2255 5912867324630001 a001 4000054745112196/6765 5912867324630002 a001 4000054745112197/6765 5912867324630014 a001 800010949022441/1353 5912867324630096 a001 800010949022452/1353 5912867324630653 a001 4000054745112637/6765 5912867324634473 a001 4000054745115221/6765 5912867324660653 a001 4000054745132932/6765 5912867324778014 a001 4052739537881/64079*15127^(19/20) 5912867324840096 a001 800010949050865/1353 5912867326065295 a001 956722026041/3571*3571^(16/17) 5912867326070014 a001 800010949217273/1353 5912867328040002 a001 10610209857723/24476*15127^(3/4) 5912867329332002 a001 3278735159921/12238*15127^(4/5) 5912867330624002 a001 4052739537881/24476*15127^(17/20) 5912867331916002 a001 2504730781961/24476*15127^(9/10) 5912867333208002 a001 387002188980/6119*15127^(19/20) 5912867334500002 a001 4000054751789252/6765 5912867336291807 p001 sum((-1)^n/(227*n+43)/n/(6^n),n=1..infinity) 5912867340600000 a001 6765/9349*14662949395604^(19/21) 5912867353340590 a001 1548008755920/3571*3571^(15/17) 5912867355773691 r009 Re(z^3+c),c=-19/31+26/49*I,n=40 5912867356569998 a001 3236112304250760/5473 5912867357039999 a001 365435296162/9349*24476^(20/21) 5912867357509999 a001 591286729879/9349*24476^(19/21) 5912867357979999 a001 956722026041/9349*24476^(6/7) 5912867358449999 a001 1548008755920/9349*24476^(17/21) 5912867358919999 a001 2504730781961/9349*24476^(16/21) 5912867359389999 a001 4052739537881/9349*24476^(5/7) 5912867359859999 a001 6557470319842/9349*24476^(2/3) 5912867360329999 a001 10610209857723/9349*24476^(13/21) 5912867361358885 a001 2/7*123^(17/27) 5912867362669995 a001 17711/9349*3461452808002^(11/12) 5912867364999986 a001 16944504007880461/28657 5912867365062596 a001 139583862445/9349*64079^(22/23) 5912867365125205 a001 225851433717/9349*64079^(21/23) 5912867365187815 a001 365435296162/9349*64079^(20/23) 5912867365250424 a001 591286729879/9349*64079^(19/23) 5912867365313033 a001 956722026041/9349*64079^(18/23) 5912867365375642 a001 1548008755920/9349*64079^(17/23) 5912867365438252 a001 2504730781961/9349*64079^(16/23) 5912867365500861 a001 4052739537881/9349*64079^(15/23) 5912867365563470 a001 6557470319842/9349*64079^(14/23) 5912867365626080 a001 10610209857723/9349*64079^(13/23) 5912867366229905 a001 44361287415139863/75025 5912867366271924 a001 365435296162/9349*167761^(4/5) 5912867366313943 a001 4052739537881/9349*167761^(3/5) 5912867366359751 a001 121393/9349*817138163596^(17/19) 5912867366359751 a001 121393/9349*14662949395604^(17/21) 5912867366359751 a001 121393/9349*192900153618^(17/18) 5912867366412754 a001 53316291173/9349*439204^(8/9) 5912867366416160 a001 225851433717/9349*439204^(7/9) 5912867366419566 a001 956722026041/9349*439204^(2/3) 5912867366422971 a001 4052739537881/9349*439204^(5/9) 5912867366428292 a001 317811/9349*14662949395604^(7/9) 5912867366428292 a001 317811/9349*505019158607^(7/8) 5912867366439751 a001 2178309/9349*45537549124^(15/17) 5912867366439751 a001 2178309/9349*312119004989^(9/11) 5912867366439751 a001 2178309/9349*14662949395604^(5/7) 5912867366439751 a001 2178309/9349*192900153618^(5/6) 5912867366439751 a001 2178309/9349*28143753123^(9/10) 5912867366439751 a001 2178309/9349*10749957122^(15/16) 5912867366439914 a001 2971215073/9349*7881196^(10/11) 5912867366439923 a001 12586269025/9349*7881196^(9/11) 5912867366439931 a001 53316291173/9349*7881196^(8/11) 5912867366439937 a001 139583862445/9349*7881196^(2/3) 5912867366439940 a001 225851433717/9349*7881196^(7/11) 5912867366439949 a001 956722026041/9349*7881196^(6/11) 5912867366439957 a001 4052739537881/9349*7881196^(5/11) 5912867366439989 a001 2971215073/9349*20633239^(6/7) 5912867366439989 a001 7778742049/9349*20633239^(4/5) 5912867366439991 a001 32951280099/9349*20633239^(5/7) 5912867366439992 a001 225851433717/9349*20633239^(3/5) 5912867366439993 a001 365435296162/9349*20633239^(4/7) 5912867366439995 a001 4052739537881/9349*20633239^(3/7) 5912867366439995 a001 6557470319842/9349*20633239^(2/5) 5912867366440000 a001 4181*2537720636^(13/15) 5912867366440000 a001 4181*45537549124^(13/17) 5912867366440000 a001 4181*14662949395604^(13/21) 5912867366440000 a001 4181*192900153618^(13/18) 5912867366440000 a001 4181*73681302247^(3/4) 5912867366440000 a001 4181*10749957122^(13/16) 5912867366440000 a001 4181*599074578^(13/14) 5912867366440000 a001 701408733/9349*141422324^(11/13) 5912867366440000 a001 165580141/9349*141422324^(12/13) 5912867366440000 a001 2971215073/9349*141422324^(10/13) 5912867366440000 a001 12586269025/9349*141422324^(9/13) 5912867366440000 a001 20365011074/9349*141422324^(2/3) 5912867366440000 a001 53316291173/9349*141422324^(8/13) 5912867366440000 a001 225851433717/9349*141422324^(7/13) 5912867366440000 a001 956722026041/9349*141422324^(6/13) 5912867366440000 a001 4052739537881/9349*141422324^(5/13) 5912867366440000 a001 10610209857723/9349*141422324^(1/3) 5912867366440001 a001 267914296/9349*2537720636^(7/9) 5912867366440001 a001 267914296/9349*17393796001^(5/7) 5912867366440001 a001 267914296/9349*312119004989^(7/11) 5912867366440001 a001 267914296/9349*14662949395604^(5/9) 5912867366440001 a001 267914296/9349*505019158607^(5/8) 5912867366440001 a001 267914296/9349*28143753123^(7/10) 5912867366440001 a001 701408733/9349*2537720636^(11/15) 5912867366440001 a001 267914296/9349*599074578^(5/6) 5912867366440001 a001 701408733/9349*45537549124^(11/17) 5912867366440001 a001 701408733/9349*312119004989^(3/5) 5912867366440001 a001 701408733/9349*817138163596^(11/19) 5912867366440001 a001 701408733/9349*14662949395604^(11/21) 5912867366440001 a001 701408733/9349*192900153618^(11/18) 5912867366440001 a001 701408733/9349*10749957122^(11/16) 5912867366440001 a001 701408733/9349*1568397607^(3/4) 5912867366440001 a001 12586269025/9349*2537720636^(3/5) 5912867366440001 a001 32951280099/9349*2537720636^(5/9) 5912867366440001 a001 53316291173/9349*2537720636^(8/15) 5912867366440001 a001 2971215073/9349*2537720636^(2/3) 5912867366440001 a001 225851433717/9349*2537720636^(7/15) 5912867366440001 a001 365435296162/9349*2537720636^(4/9) 5912867366440001 a001 956722026041/9349*2537720636^(2/5) 5912867366440001 a001 1836311903/9349*9062201101803^(1/2) 5912867366440001 a001 4052739537881/9349*2537720636^(1/3) 5912867366440001 a001 4807526976/9349*1322157322203^(1/2) 5912867366440001 a001 12586269025/9349*45537549124^(9/17) 5912867366440001 a001 225851433717/9349*17393796001^(3/7) 5912867366440001 a001 12586269025/9349*817138163596^(9/19) 5912867366440001 a001 12586269025/9349*14662949395604^(3/7) 5912867366440001 a001 12586269025/9349*192900153618^(1/2) 5912867366440001 a001 6557470319842/9349*17393796001^(2/7) 5912867366440001 a001 225851433717/9349*45537549124^(7/17) 5912867366440001 a001 32951280099/9349*312119004989^(5/11) 5912867366440001 a001 32951280099/9349*3461452808002^(5/12) 5912867366440001 a001 956722026041/9349*45537549124^(6/17) 5912867366440001 a001 1548008755920/9349*45537549124^(1/3) 5912867366440001 a001 53316291173/9349*45537549124^(8/17) 5912867366440001 a001 4052739537881/9349*45537549124^(5/17) 5912867366440001 a001 225851433717/9349*14662949395604^(1/3) 5912867366440001 a001 2504730781961/9349*23725150497407^(1/4) 5912867366440001 a001 956722026041/9349*14662949395604^(2/7) 5912867366440001 a001 6557470319842/9349*505019158607^(1/4) 5912867366440001 a001 365435296162/9349*23725150497407^(5/16) 5912867366440001 a001 139583862445/9349*312119004989^(2/5) 5912867366440001 a001 225851433717/9349*192900153618^(7/18) 5912867366440001 a001 4052739537881/9349*192900153618^(5/18) 5912867366440001 a001 10610209857723/9349*73681302247^(1/4) 5912867366440001 a001 2504730781961/9349*73681302247^(4/13) 5912867366440001 a001 53316291173/9349*14662949395604^(8/21) 5912867366440001 a001 365435296162/9349*73681302247^(5/13) 5912867366440001 a001 53316291173/9349*192900153618^(4/9) 5912867366440001 a001 53316291173/9349*73681302247^(6/13) 5912867366440001 a001 4052739537881/9349*28143753123^(3/10) 5912867366440001 a001 32951280099/9349*28143753123^(1/2) 5912867366440001 a001 365435296162/9349*28143753123^(2/5) 5912867366440001 a001 20365011074/9349*73681302247^(1/2) 5912867366440001 a001 7778742049/9349*17393796001^(4/7) 5912867366440001 a001 6557470319842/9349*10749957122^(7/24) 5912867366440001 a001 4052739537881/9349*10749957122^(5/16) 5912867366440001 a001 2504730781961/9349*10749957122^(1/3) 5912867366440001 a001 956722026041/9349*10749957122^(3/8) 5912867366440001 a001 7778742049/9349*14662949395604^(4/9) 5912867366440001 a001 7778742049/9349*505019158607^(1/2) 5912867366440001 a001 7778742049/9349*73681302247^(7/13) 5912867366440001 a001 12586269025/9349*10749957122^(9/16) 5912867366440001 a001 365435296162/9349*10749957122^(5/12) 5912867366440001 a001 225851433717/9349*10749957122^(7/16) 5912867366440001 a001 139583862445/9349*10749957122^(11/24) 5912867366440001 a001 53316291173/9349*10749957122^(1/2) 5912867366440001 a001 20365011074/9349*10749957122^(13/24) 5912867366440001 a001 7778742049/9349*10749957122^(7/12) 5912867366440001 a001 6557470319842/9349*4106118243^(7/23) 5912867366440001 a001 2504730781961/9349*4106118243^(8/23) 5912867366440001 a001 2971215073/9349*45537549124^(10/17) 5912867366440001 a001 2971215073/9349*312119004989^(6/11) 5912867366440001 a001 2971215073/9349*14662949395604^(10/21) 5912867366440001 a001 2971215073/9349*192900153618^(5/9) 5912867366440001 a001 956722026041/9349*4106118243^(9/23) 5912867366440001 a001 2971215073/9349*28143753123^(3/5) 5912867366440001 a001 365435296162/9349*4106118243^(10/23) 5912867366440001 a001 2971215073/9349*10749957122^(5/8) 5912867366440001 a001 139583862445/9349*4106118243^(11/23) 5912867366440001 a001 86267571272/9349*4106118243^(1/2) 5912867366440001 a001 53316291173/9349*4106118243^(12/23) 5912867366440001 a001 20365011074/9349*4106118243^(13/23) 5912867366440001 a001 7778742049/9349*4106118243^(14/23) 5912867366440001 a001 2971215073/9349*4106118243^(15/23) 5912867366440001 a001 6557470319842/9349*1568397607^(7/22) 5912867366440001 a001 2504730781961/9349*1568397607^(4/11) 5912867366440001 a001 1134903170/9349*23725150497407^(1/2) 5912867366440001 a001 1134903170/9349*505019158607^(4/7) 5912867366440001 a001 1134903170/9349*73681302247^(8/13) 5912867366440001 a001 1134903170/9349*10749957122^(2/3) 5912867366440001 a001 956722026041/9349*1568397607^(9/22) 5912867366440001 a001 365435296162/9349*1568397607^(5/11) 5912867366440001 a001 1134903170/9349*4106118243^(16/23) 5912867366440001 a001 139583862445/9349*1568397607^(1/2) 5912867366440001 a001 53316291173/9349*1568397607^(6/11) 5912867366440001 a001 20365011074/9349*1568397607^(13/22) 5912867366440001 a001 7778742049/9349*1568397607^(7/11) 5912867366440001 a001 2971215073/9349*1568397607^(15/22) 5912867366440001 a001 1134903170/9349*1568397607^(8/11) 5912867366440001 a001 6557470319842/9349*599074578^(1/3) 5912867366440001 a001 4052739537881/9349*599074578^(5/14) 5912867366440001 a001 2504730781961/9349*599074578^(8/21) 5912867366440001 a001 433494437/9349*45537549124^(2/3) 5912867366440001 a001 433494437/9349*10749957122^(17/24) 5912867366440001 a001 433494437/9349*4106118243^(17/23) 5912867366440001 a001 956722026041/9349*599074578^(3/7) 5912867366440001 a001 365435296162/9349*599074578^(10/21) 5912867366440001 a001 433494437/9349*1568397607^(17/22) 5912867366440001 a001 225851433717/9349*599074578^(1/2) 5912867366440001 a001 139583862445/9349*599074578^(11/21) 5912867366440001 a001 53316291173/9349*599074578^(4/7) 5912867366440001 a001 20365011074/9349*599074578^(13/21) 5912867366440001 a001 701408733/9349*599074578^(11/14) 5912867366440001 a001 12586269025/9349*599074578^(9/14) 5912867366440001 a001 7778742049/9349*599074578^(2/3) 5912867366440001 a001 2971215073/9349*599074578^(5/7) 5912867366440001 a001 1134903170/9349*599074578^(16/21) 5912867366440001 a001 433494437/9349*599074578^(17/21) 5912867366440001 a001 6557470319842/9349*228826127^(7/20) 5912867366440001 a001 4052739537881/9349*228826127^(3/8) 5912867366440001 a001 165580141/9349*2537720636^(4/5) 5912867366440001 a001 165580141/9349*45537549124^(12/17) 5912867366440001 a001 165580141/9349*14662949395604^(4/7) 5912867366440001 a001 165580141/9349*505019158607^(9/14) 5912867366440001 a001 165580141/9349*192900153618^(2/3) 5912867366440001 a001 165580141/9349*73681302247^(9/13) 5912867366440001 a001 165580141/9349*10749957122^(3/4) 5912867366440001 a001 165580141/9349*4106118243^(18/23) 5912867366440001 a001 165580141/9349*1568397607^(9/11) 5912867366440001 a001 2504730781961/9349*228826127^(2/5) 5912867366440001 a001 956722026041/9349*228826127^(9/20) 5912867366440001 a001 365435296162/9349*228826127^(1/2) 5912867366440001 a001 165580141/9349*599074578^(6/7) 5912867366440001 a001 139583862445/9349*228826127^(11/20) 5912867366440001 a001 53316291173/9349*228826127^(3/5) 5912867366440001 a001 32951280099/9349*228826127^(5/8) 5912867366440001 a001 20365011074/9349*228826127^(13/20) 5912867366440001 a001 7778742049/9349*228826127^(7/10) 5912867366440001 a001 267914296/9349*228826127^(7/8) 5912867366440001 a001 2971215073/9349*228826127^(3/4) 5912867366440001 a001 1134903170/9349*228826127^(4/5) 5912867366440001 a001 433494437/9349*228826127^(17/20) 5912867366440001 a001 165580141/9349*228826127^(9/10) 5912867366440001 a001 6557470319842/9349*87403803^(7/19) 5912867366440001 a001 63245986/9349*817138163596^(2/3) 5912867366440001 a001 63245986/9349*10749957122^(19/24) 5912867366440001 a001 63245986/9349*4106118243^(19/23) 5912867366440001 a001 63245986/9349*1568397607^(19/22) 5912867366440001 a001 63245986/9349*599074578^(19/21) 5912867366440001 a001 2504730781961/9349*87403803^(8/19) 5912867366440001 a001 956722026041/9349*87403803^(9/19) 5912867366440001 a001 591286729879/9349*87403803^(1/2) 5912867366440001 a001 63245986/9349*228826127^(19/20) 5912867366440001 a001 365435296162/9349*87403803^(10/19) 5912867366440001 a001 139583862445/9349*87403803^(11/19) 5912867366440001 a001 53316291173/9349*87403803^(12/19) 5912867366440001 a001 20365011074/9349*87403803^(13/19) 5912867366440001 a001 7778742049/9349*87403803^(14/19) 5912867366440001 a001 2971215073/9349*87403803^(15/19) 5912867366440001 a001 1134903170/9349*87403803^(16/19) 5912867366440001 a001 433494437/9349*87403803^(17/19) 5912867366440001 a001 165580141/9349*87403803^(18/19) 5912867366440003 a001 24157817/9349*2537720636^(8/9) 5912867366440003 a001 24157817/9349*312119004989^(8/11) 5912867366440003 a001 24157817/9349*23725150497407^(5/8) 5912867366440003 a001 24157817/9349*73681302247^(10/13) 5912867366440003 a001 24157817/9349*28143753123^(4/5) 5912867366440003 a001 24157817/9349*10749957122^(5/6) 5912867366440003 a001 24157817/9349*4106118243^(20/23) 5912867366440003 a001 24157817/9349*1568397607^(10/11) 5912867366440003 a001 24157817/9349*599074578^(20/21) 5912867366440003 a001 6557470319842/9349*33385282^(7/18) 5912867366440003 a001 4052739537881/9349*33385282^(5/12) 5912867366440003 a001 2504730781961/9349*33385282^(4/9) 5912867366440003 a001 956722026041/9349*33385282^(1/2) 5912867366440004 a001 365435296162/9349*33385282^(5/9) 5912867366440004 a001 225851433717/9349*33385282^(7/12) 5912867366440004 a001 139583862445/9349*33385282^(11/18) 5912867366440004 a001 53316291173/9349*33385282^(2/3) 5912867366440004 a001 20365011074/9349*33385282^(13/18) 5912867366440005 a001 12586269025/9349*33385282^(3/4) 5912867366440005 a001 7778742049/9349*33385282^(7/9) 5912867366440005 a001 2971215073/9349*33385282^(5/6) 5912867366440005 a001 1134903170/9349*33385282^(8/9) 5912867366440005 a001 701408733/9349*33385282^(11/12) 5912867366440006 a001 433494437/9349*33385282^(17/18) 5912867366440014 a001 9227465/9349*2537720636^(14/15) 5912867366440014 a001 9227465/9349*17393796001^(6/7) 5912867366440014 a001 9227465/9349*45537549124^(14/17) 5912867366440014 a001 9227465/9349*817138163596^(14/19) 5912867366440014 a001 9227465/9349*14662949395604^(2/3) 5912867366440014 a001 9227465/9349*505019158607^(3/4) 5912867366440014 a001 9227465/9349*192900153618^(7/9) 5912867366440014 a001 9227465/9349*10749957122^(7/8) 5912867366440014 a001 9227465/9349*4106118243^(21/23) 5912867366440014 a001 9227465/9349*1568397607^(21/22) 5912867366440016 a001 6557470319842/9349*12752043^(7/17) 5912867366440018 a001 2504730781961/9349*12752043^(8/17) 5912867366440019 a001 1548008755920/9349*12752043^(1/2) 5912867366440020 a001 956722026041/9349*12752043^(9/17) 5912867366440022 a001 365435296162/9349*12752043^(10/17) 5912867366440024 a001 139583862445/9349*12752043^(11/17) 5912867366440026 a001 53316291173/9349*12752043^(12/17) 5912867366440028 a001 20365011074/9349*12752043^(13/17) 5912867366440031 a001 7778742049/9349*12752043^(14/17) 5912867366440033 a001 2971215073/9349*12752043^(15/17) 5912867366440035 a001 1134903170/9349*12752043^(16/17) 5912867366440096 a001 3524578/9349*312119004989^(4/5) 5912867366440096 a001 3524578/9349*23725150497407^(11/16) 5912867366440096 a001 3524578/9349*73681302247^(11/13) 5912867366440096 a001 3524578/9349*10749957122^(11/12) 5912867366440096 a001 3524578/9349*4106118243^(22/23) 5912867366440110 a001 6557470319842/9349*4870847^(7/16) 5912867366440125 a001 2504730781961/9349*4870847^(1/2) 5912867366440141 a001 956722026041/9349*4870847^(9/16) 5912867366440156 a001 365435296162/9349*4870847^(5/8) 5912867366440172 a001 139583862445/9349*4870847^(11/16) 5912867366440187 a001 53316291173/9349*4870847^(3/4) 5912867366440203 a001 20365011074/9349*4870847^(13/16) 5912867366440219 a001 7778742049/9349*4870847^(7/8) 5912867366440234 a001 2971215073/9349*4870847^(15/16) 5912867366440653 a001 1346269/9349*10749957122^(23/24) 5912867366440798 a001 6557470319842/9349*1860498^(7/15) 5912867366440855 a001 4052739537881/9349*1860498^(1/2) 5912867366440912 a001 2504730781961/9349*1860498^(8/15) 5912867366441025 a001 956722026041/9349*1860498^(3/5) 5912867366441139 a001 365435296162/9349*1860498^(2/3) 5912867366441196 a001 225851433717/9349*1860498^(7/10) 5912867366441253 a001 139583862445/9349*1860498^(11/15) 5912867366441367 a001 53316291173/9349*1860498^(4/5) 5912867366441424 a001 32951280099/9349*1860498^(5/6) 5912867366441481 a001 20365011074/9349*1860498^(13/15) 5912867366441538 a001 12586269025/9349*1860498^(9/10) 5912867366441595 a001 7778742049/9349*1860498^(14/15) 5912867366444473 a001 514229/9349*45537549124^(16/17) 5912867366444473 a001 514229/9349*14662949395604^(16/21) 5912867366444473 a001 514229/9349*192900153618^(8/9) 5912867366444473 a001 514229/9349*73681302247^(12/13) 5912867366445855 a001 6557470319842/9349*710647^(1/2) 5912867366446691 a001 2504730781961/9349*710647^(4/7) 5912867366447527 a001 956722026041/9349*710647^(9/14) 5912867366448364 a001 365435296162/9349*710647^(5/7) 5912867366448782 a001 225851433717/9349*710647^(3/4) 5912867366449200 a001 139583862445/9349*710647^(11/14) 5912867366450036 a001 53316291173/9349*710647^(6/7) 5912867366450872 a001 20365011074/9349*710647^(13/14) 5912867366470653 a001 196418/9349*312119004989^(10/11) 5912867366470653 a001 196418/9349*3461452808002^(5/6) 5912867366480125 a001 10610209857723/9349*271443^(1/2) 5912867366483212 a001 6557470319842/9349*271443^(7/13) 5912867366489385 a001 2504730781961/9349*271443^(8/13) 5912867366495558 a001 956722026041/9349*271443^(9/13) 5912867366501731 a001 365435296162/9349*271443^(10/13) 5912867366507904 a001 139583862445/9349*271443^(11/13) 5912867366514077 a001 53316291173/9349*271443^(12/13) 5912867366650096 a001 75025/9349*23725150497407^(13/16) 5912867366650096 a001 75025/9349*505019158607^(13/14) 5912867366737937 a001 10610209857723/9349*103682^(13/24) 5912867366760855 a001 6557470319842/9349*103682^(7/12) 5912867366783773 a001 4052739537881/9349*103682^(5/8) 5912867366806691 a001 2504730781961/9349*103682^(2/3) 5912867366829610 a001 1548008755920/9349*103682^(17/24) 5912867366852528 a001 956722026041/9349*103682^(3/4) 5912867366875446 a001 591286729879/9349*103682^(19/24) 5912867366898364 a001 365435296162/9349*103682^(5/6) 5912867366921282 a001 225851433717/9349*103682^(7/8) 5912867366944201 a001 139583862445/9349*103682^(11/12) 5912867366967119 a001 86267571272/9349*103682^(23/24) 5912867366990036 a001 13708391703629701/23184 5912867367823068 m005 (-1/2+1/6*5^(1/2))/(4/7*exp(1)+3/5) 5912867367880014 a001 28657/9349*14662949395604^(6/7) 5912867368667731 a001 10610209857723/9349*39603^(13/22) 5912867368839095 a001 6557470319842/9349*39603^(7/11) 5912867369010459 a001 4052739537881/9349*39603^(15/22) 5912867369181823 a001 2504730781961/9349*39603^(8/11) 5912867369353187 a001 1548008755920/9349*39603^(17/22) 5912867369524550 a001 956722026041/9349*39603^(9/11) 5912867369695914 a001 591286729879/9349*39603^(19/22) 5912867369867278 a001 365435296162/9349*39603^(10/11) 5912867370038642 a001 225851433717/9349*39603^(21/22) 5912867370210005 a001 10472279399378941/17711 5912867373128019 m001 Psi(1,1/3)^polylog(4,1/2)*KomornikLoreti 5912867376310002 a001 4181/24476*14662949395604^(20/21) 5912867376310003 a001 10946/9349*14662949395604^(8/9) 5912867380615886 a001 2504730781961/3571*3571^(14/17) 5912867383236001 a001 10610209857723/9349*15127^(13/20) 5912867384528001 a001 6557470319842/9349*15127^(7/10) 5912867385820001 a001 4052739537881/9349*15127^(3/4) 5912867387112001 a001 2504730781961/9349*15127^(4/5) 5912867388404001 a001 1548008755920/9349*15127^(17/20) 5912867389696002 a001 956722026041/9349*15127^(9/10) 5912867390988002 a001 591286729879/9349*15127^(19/20) 5912867392280001 a001 4000054790877421/6765 5912867407891181 a001 4052739537881/3571*3571^(13/17) 5912867410702220 a001 1515744265389/2161*5778^(7/9) 5912867420541665 a001 6557470319842/15127*5778^(5/6) 5912867426128860 m001 (Zeta(1,2)-MinimumGamma)/(Pi+Catalan) 5912867430381109 a001 4052739537881/15127*5778^(8/9) 5912867435166477 a001 6557470319842/3571*3571^(12/17) 5912867440220554 a001 2504730781961/15127*5778^(17/18) 5912867449333552 r005 Re(z^2+c),c=41/106+3/20*I,n=58 5912867450060003 a001 1527884949095505/2584 5912867452451105 a001 3536736619241/13201*5778^(8/9) 5912867456251668 a001 10610209857723/24476*5778^(5/6) 5912867462290550 a001 6557470319842/39603*5778^(17/18) 5912867462441773 a001 10610209857723/3571*3571^(11/17) 5912867466091113 a001 3278735159921/12238*5778^(8/9) 5912867467500569 a001 10610209857723/64079*5778^(17/18) 5912867475349969 a001 190985619453804/323 5912867475819756 a001 1527884955751825/2584 5912867475888297 a001 190985619471192/323 5912867475898297 a001 190985619471515/323 5912867475899756 a001 1527884955772497/2584 5912867475899969 a001 190985619471569/323 5912867475900003 a001 1527884955772561/2584 5912867475900007 a001 763942477886281/1292 5912867475900019 a001 1527884955772565/2584 5912867475900100 a001 763942477886293/1292 5912867475904477 a001 1527884955773717/2584 5912867475930557 a001 4052739537881/24476*5778^(17/18) 5912867476110100 a001 763942477913425/1292 5912867477340019 a001 1527884956144661/2584 5912867480134572 m001 1/Khintchine/exp(Champernowne)/GAMMA(1/6) 5912867480810624 a007 Real Root Of -43*x^4-162*x^3+549*x^2-69*x-531 5912867480859405 m001 (-Riemann3rdZero+Stephens)/(exp(1)+2^(1/2)) 5912867485770007 a001 763942479161485/1292 5912867490464758 a007 Real Root Of 7*x^4+417*x^3+197*x^2+797*x-926 5912867494352779 a001 10610209857723/9349*5778^(13/18) 5912867504192224 a001 6557470319842/9349*5778^(7/9) 5912867509171433 m001 (Artin-Paris)/(PisotVijayaraghavan-Thue) 5912867510664060 a001 956722026041/1364*1364^(14/15) 5912867514031669 a001 4052739537881/9349*5778^(5/6) 5912867523178405 r005 Re(z^2+c),c=-7/10+91/248*I,n=24 5912867523871113 a001 2504730781961/9349*5778^(8/9) 5912867533710558 a001 1548008755920/9349*5778^(17/18) 5912867539040260 r009 Re(z^3+c),c=-1/98+24/41*I,n=16 5912867543550007 a001 763942486626661/1292 5912867574174092 a007 Real Root Of 355*x^4-890*x^3+554*x^2+61*x-385 5912867582673656 a007 Real Root Of 988*x^4+678*x^3+461*x^2+25*x-127 5912867585360022 a001 2584/3571*14662949395604^(19/21) 5912867589949018 l006 ln(919/1660) 5912867599047700 a007 Real Root Of 140*x^4+728*x^3-499*x^2+442*x-572 5912867618656905 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24)-Trott)^Zeta(3) 5912867633210652 a007 Real Root Of -37*x^4-103*x^3+744*x^2+197*x-913 5912867662538991 a007 Real Root Of 877*x^4-982*x^3+475*x^2-720*x-902 5912867672115275 a003 sin(Pi*3/52)+sin(Pi*12/89) 5912867677014755 m001 (AlladiGrinstead+Landau)/(Catalan-ln(Pi)) 5912867681138068 a007 Real Root Of -545*x^4+875*x^3+948*x^2+655*x-833 5912867694819995 a001 2472169983204240/4181 5912867696089606 a007 Real Root Of 428*x^4-390*x^3-917*x^2-724*x+777 5912867698380557 a001 365435296162/3571*9349^(18/19) 5912867701941083 a001 591286729879/3571*9349^(17/19) 5912867705501610 a001 956722026041/3571*9349^(16/19) 5912867709062137 a001 1548008755920/3571*9349^(15/19) 5912867712622663 a001 2504730781961/3571*9349^(14/19) 5912867716183190 a001 4052739537881/3571*9349^(13/19) 5912867719743716 a001 6557470319842/3571*9349^(12/19) 5912867720682379 m005 (1/2*gamma+2/5)/(1/5*3^(1/2)+9/11) 5912867722538129 a001 1134903780*1364^(13/15) 5912867723304243 a001 10610209857723/3571*9349^(11/19) 5912867736630033 a001 6765/3571*3461452808002^(11/12) 5912867752599997 a001 6472225041995957/10946 5912867753070033 a001 139583862445/3571*24476^(20/21) 5912867753540033 a001 225851433717/3571*24476^(19/21) 5912867754010034 a001 365435296162/3571*24476^(6/7) 5912867754480034 a001 591286729879/3571*24476^(17/21) 5912867754950034 a001 956722026041/3571*24476^(16/21) 5912867755420034 a001 1548008755920/3571*24476^(5/7) 5912867755890034 a001 2504730781961/3571*24476^(2/3) 5912867756360034 a001 4052739537881/3571*24476^(13/21) 5912867756830034 a001 6557470319842/3571*24476^(4/7) 5912867757300034 a001 10610209857723/3571*24476^(11/21) 5912867761029986 a001 16944505142783631/28657 5912867761092631 a001 53316291173/3571*64079^(22/23) 5912867761155241 a001 86267571272/3571*64079^(21/23) 5912867761217850 a001 139583862445/3571*64079^(20/23) 5912867761280459 a001 225851433717/3571*64079^(19/23) 5912867761343068 a001 365435296162/3571*64079^(18/23) 5912867761405678 a001 591286729879/3571*64079^(17/23) 5912867761468287 a001 956722026041/3571*64079^(16/23) 5912867761530896 a001 1548008755920/3571*64079^(15/23) 5912867761593506 a001 2504730781961/3571*64079^(14/23) 5912867761656115 a001 4052739537881/3571*64079^(13/23) 5912867761718724 a001 6557470319842/3571*64079^(12/23) 5912867761781334 a001 10610209857723/3571*64079^(11/23) 5912867761920000 a001 46368/3571*817138163596^(17/19) 5912867761920000 a001 46368/3571*14662949395604^(17/21) 5912867761920000 a001 46368/3571*192900153618^(17/18) 5912867762301960 a001 139583862445/3571*167761^(4/5) 5912867762343979 a001 1548008755920/3571*167761^(3/5) 5912867762389787 a001 121393/3571*14662949395604^(7/9) 5912867762389787 a001 121393/3571*505019158607^(7/8) 5912867762442789 a001 20365011074/3571*439204^(8/9) 5912867762446195 a001 86267571272/3571*439204^(7/9) 5912867762449601 a001 365435296162/3571*439204^(2/3) 5912867762453007 a001 1548008755920/3571*439204^(5/9) 5912867762456413 a001 6557470319842/3571*439204^(4/9) 5912867762468328 a001 832040/3571*45537549124^(15/17) 5912867762468328 a001 832040/3571*312119004989^(9/11) 5912867762468328 a001 832040/3571*14662949395604^(5/7) 5912867762468328 a001 832040/3571*192900153618^(5/6) 5912867762468328 a001 832040/3571*28143753123^(9/10) 5912867762468328 a001 832040/3571*10749957122^(15/16) 5912867762469949 a001 1134903170/3571*7881196^(10/11) 5912867762469958 a001 4807526976/3571*7881196^(9/11) 5912867762469967 a001 20365011074/3571*7881196^(8/11) 5912867762469972 a001 53316291173/3571*7881196^(2/3) 5912867762469975 a001 86267571272/3571*7881196^(7/11) 5912867762469984 a001 365435296162/3571*7881196^(6/11) 5912867762469993 a001 1548008755920/3571*7881196^(5/11) 5912867762470001 a001 6557470319842/3571*7881196^(4/11) 5912867762470004 a001 10610209857723/3571*7881196^(1/3) 5912867762470024 a001 1134903170/3571*20633239^(6/7) 5912867762470025 a001 2971215073/3571*20633239^(4/5) 5912867762470026 a001 12586269025/3571*20633239^(5/7) 5912867762470028 a001 86267571272/3571*20633239^(3/5) 5912867762470028 a001 139583862445/3571*20633239^(4/7) 5912867762470030 a001 1548008755920/3571*20633239^(3/7) 5912867762470030 a001 2504730781961/3571*20633239^(2/5) 5912867762470031 a001 14930352/3571*2537720636^(13/15) 5912867762470031 a001 14930352/3571*45537549124^(13/17) 5912867762470031 a001 14930352/3571*14662949395604^(13/21) 5912867762470031 a001 14930352/3571*192900153618^(13/18) 5912867762470031 a001 14930352/3571*73681302247^(3/4) 5912867762470031 a001 14930352/3571*10749957122^(13/16) 5912867762470031 a001 14930352/3571*599074578^(13/14) 5912867762470036 a001 267914296/3571*141422324^(11/13) 5912867762470036 a001 1134903170/3571*141422324^(10/13) 5912867762470036 a001 4807526976/3571*141422324^(9/13) 5912867762470036 a001 7778742049/3571*141422324^(2/3) 5912867762470036 a001 20365011074/3571*141422324^(8/13) 5912867762470036 a001 86267571272/3571*141422324^(7/13) 5912867762470036 a001 365435296162/3571*141422324^(6/13) 5912867762470036 a001 1548008755920/3571*141422324^(5/13) 5912867762470036 a001 102334155/3571*2537720636^(7/9) 5912867762470036 a001 102334155/3571*17393796001^(5/7) 5912867762470036 a001 102334155/3571*312119004989^(7/11) 5912867762470036 a001 102334155/3571*14662949395604^(5/9) 5912867762470036 a001 102334155/3571*505019158607^(5/8) 5912867762470036 a001 102334155/3571*28143753123^(7/10) 5912867762470036 a001 102334155/3571*599074578^(5/6) 5912867762470036 a001 4052739537881/3571*141422324^(1/3) 5912867762470036 a001 6557470319842/3571*141422324^(4/13) 5912867762470036 a001 267914296/3571*2537720636^(11/15) 5912867762470036 a001 267914296/3571*45537549124^(11/17) 5912867762470036 a001 267914296/3571*312119004989^(3/5) 5912867762470036 a001 267914296/3571*14662949395604^(11/21) 5912867762470036 a001 267914296/3571*192900153618^(11/18) 5912867762470036 a001 267914296/3571*10749957122^(11/16) 5912867762470036 a001 267914296/3571*1568397607^(3/4) 5912867762470036 a001 102334155/3571*228826127^(7/8) 5912867762470036 a001 267914296/3571*599074578^(11/14) 5912867762470036 a001 701408733/3571*9062201101803^(1/2) 5912867762470036 a001 4807526976/3571*2537720636^(3/5) 5912867762470036 a001 12586269025/3571*2537720636^(5/9) 5912867762470036 a001 20365011074/3571*2537720636^(8/15) 5912867762470036 a001 86267571272/3571*2537720636^(7/15) 5912867762470036 a001 139583862445/3571*2537720636^(4/9) 5912867762470036 a001 365435296162/3571*2537720636^(2/5) 5912867762470036 a001 1836311903/3571*1322157322203^(1/2) 5912867762470036 a001 1548008755920/3571*2537720636^(1/3) 5912867762470036 a001 6557470319842/3571*2537720636^(4/15) 5912867762470036 a001 4807526976/3571*45537549124^(9/17) 5912867762470036 a001 4807526976/3571*817138163596^(9/19) 5912867762470036 a001 4807526976/3571*14662949395604^(3/7) 5912867762470036 a001 4807526976/3571*192900153618^(1/2) 5912867762470036 a001 4807526976/3571*10749957122^(9/16) 5912867762470036 a001 86267571272/3571*17393796001^(3/7) 5912867762470036 a001 12586269025/3571*312119004989^(5/11) 5912867762470036 a001 12586269025/3571*3461452808002^(5/12) 5912867762470036 a001 2504730781961/3571*17393796001^(2/7) 5912867762470036 a001 12586269025/3571*28143753123^(1/2) 5912867762470036 a001 86267571272/3571*45537549124^(7/17) 5912867762470036 a001 365435296162/3571*45537549124^(6/17) 5912867762470036 a001 591286729879/3571*45537549124^(1/3) 5912867762470036 a001 1548008755920/3571*45537549124^(5/17) 5912867762470036 a001 6557470319842/3571*45537549124^(4/17) 5912867762470036 a001 86267571272/3571*14662949395604^(1/3) 5912867762470036 a001 86267571272/3571*192900153618^(7/18) 5912867762470036 a001 1548008755920/3571*312119004989^(3/11) 5912867762470036 a001 10610209857723/3571*312119004989^(1/5) 5912867762470036 a001 1548008755920/3571*14662949395604^(5/21) 5912867762470036 a001 2504730781961/3571*14662949395604^(2/9) 5912867762470036 a001 6557470319842/3571*192900153618^(2/9) 5912867762470036 a001 1548008755920/3571*192900153618^(5/18) 5912867762470036 a001 139583862445/3571*23725150497407^(5/16) 5912867762470036 a001 139583862445/3571*505019158607^(5/14) 5912867762470036 a001 6557470319842/3571*73681302247^(3/13) 5912867762470036 a001 4052739537881/3571*73681302247^(1/4) 5912867762470036 a001 956722026041/3571*73681302247^(4/13) 5912867762470036 a001 53316291173/3571*312119004989^(2/5) 5912867762470036 a001 139583862445/3571*73681302247^(5/13) 5912867762470036 a001 20365011074/3571*45537549124^(8/17) 5912867762470036 a001 1548008755920/3571*28143753123^(3/10) 5912867762470036 a001 20365011074/3571*14662949395604^(8/21) 5912867762470036 a001 20365011074/3571*192900153618^(4/9) 5912867762470036 a001 139583862445/3571*28143753123^(2/5) 5912867762470036 a001 20365011074/3571*73681302247^(6/13) 5912867762470036 a001 6557470319842/3571*10749957122^(1/4) 5912867762470036 a001 2504730781961/3571*10749957122^(7/24) 5912867762470036 a001 1548008755920/3571*10749957122^(5/16) 5912867762470036 a001 956722026041/3571*10749957122^(1/3) 5912867762470036 a001 365435296162/3571*10749957122^(3/8) 5912867762470036 a001 7778742049/3571*73681302247^(1/2) 5912867762470036 a001 139583862445/3571*10749957122^(5/12) 5912867762470036 a001 86267571272/3571*10749957122^(7/16) 5912867762470036 a001 53316291173/3571*10749957122^(11/24) 5912867762470036 a001 20365011074/3571*10749957122^(1/2) 5912867762470036 a001 7778742049/3571*10749957122^(13/24) 5912867762470036 a001 6557470319842/3571*4106118243^(6/23) 5912867762470036 a001 2504730781961/3571*4106118243^(7/23) 5912867762470036 a001 956722026041/3571*4106118243^(8/23) 5912867762470036 a001 2971215073/3571*17393796001^(4/7) 5912867762470036 a001 2971215073/3571*14662949395604^(4/9) 5912867762470036 a001 2971215073/3571*505019158607^(1/2) 5912867762470036 a001 2971215073/3571*73681302247^(7/13) 5912867762470036 a001 365435296162/3571*4106118243^(9/23) 5912867762470036 a001 139583862445/3571*4106118243^(10/23) 5912867762470036 a001 2971215073/3571*10749957122^(7/12) 5912867762470036 a001 53316291173/3571*4106118243^(11/23) 5912867762470036 a001 32951280099/3571*4106118243^(1/2) 5912867762470036 a001 20365011074/3571*4106118243^(12/23) 5912867762470036 a001 7778742049/3571*4106118243^(13/23) 5912867762470036 a001 1134903170/3571*2537720636^(2/3) 5912867762470036 a001 2971215073/3571*4106118243^(14/23) 5912867762470036 a001 10610209857723/3571*1568397607^(1/4) 5912867762470036 a001 6557470319842/3571*1568397607^(3/11) 5912867762470036 a001 2504730781961/3571*1568397607^(7/22) 5912867762470036 a001 956722026041/3571*1568397607^(4/11) 5912867762470036 a001 1134903170/3571*45537549124^(10/17) 5912867762470036 a001 1134903170/3571*312119004989^(6/11) 5912867762470036 a001 1134903170/3571*14662949395604^(10/21) 5912867762470036 a001 1134903170/3571*192900153618^(5/9) 5912867762470036 a001 1134903170/3571*28143753123^(3/5) 5912867762470036 a001 1134903170/3571*10749957122^(5/8) 5912867762470036 a001 365435296162/3571*1568397607^(9/22) 5912867762470036 a001 139583862445/3571*1568397607^(5/11) 5912867762470036 a001 1134903170/3571*4106118243^(15/23) 5912867762470036 a001 53316291173/3571*1568397607^(1/2) 5912867762470036 a001 20365011074/3571*1568397607^(6/11) 5912867762470036 a001 7778742049/3571*1568397607^(13/22) 5912867762470036 a001 2971215073/3571*1568397607^(7/11) 5912867762470036 a001 1134903170/3571*1568397607^(15/22) 5912867762470036 a001 6557470319842/3571*599074578^(2/7) 5912867762470036 a001 2504730781961/3571*599074578^(1/3) 5912867762470036 a001 1548008755920/3571*599074578^(5/14) 5912867762470036 a001 956722026041/3571*599074578^(8/21) 5912867762470036 a001 433494437/3571*23725150497407^(1/2) 5912867762470036 a001 433494437/3571*505019158607^(4/7) 5912867762470036 a001 433494437/3571*73681302247^(8/13) 5912867762470036 a001 433494437/3571*10749957122^(2/3) 5912867762470036 a001 433494437/3571*4106118243^(16/23) 5912867762470036 a001 365435296162/3571*599074578^(3/7) 5912867762470036 a001 139583862445/3571*599074578^(10/21) 5912867762470036 a001 433494437/3571*1568397607^(8/11) 5912867762470036 a001 86267571272/3571*599074578^(1/2) 5912867762470036 a001 53316291173/3571*599074578^(11/21) 5912867762470036 a001 20365011074/3571*599074578^(4/7) 5912867762470036 a001 7778742049/3571*599074578^(13/21) 5912867762470036 a001 4807526976/3571*599074578^(9/14) 5912867762470036 a001 2971215073/3571*599074578^(2/3) 5912867762470036 a001 1134903170/3571*599074578^(5/7) 5912867762470036 a001 433494437/3571*599074578^(16/21) 5912867762470036 a001 63245986/3571*141422324^(12/13) 5912867762470036 a001 6557470319842/3571*228826127^(3/10) 5912867762470036 a001 2504730781961/3571*228826127^(7/20) 5912867762470036 a001 1548008755920/3571*228826127^(3/8) 5912867762470036 a001 165580141/3571*45537549124^(2/3) 5912867762470036 a001 165580141/3571*10749957122^(17/24) 5912867762470036 a001 165580141/3571*4106118243^(17/23) 5912867762470036 a001 165580141/3571*1568397607^(17/22) 5912867762470036 a001 956722026041/3571*228826127^(2/5) 5912867762470036 a001 365435296162/3571*228826127^(9/20) 5912867762470036 a001 139583862445/3571*228826127^(1/2) 5912867762470036 a001 165580141/3571*599074578^(17/21) 5912867762470036 a001 53316291173/3571*228826127^(11/20) 5912867762470036 a001 20365011074/3571*228826127^(3/5) 5912867762470036 a001 12586269025/3571*228826127^(5/8) 5912867762470036 a001 7778742049/3571*228826127^(13/20) 5912867762470036 a001 2971215073/3571*228826127^(7/10) 5912867762470036 a001 1134903170/3571*228826127^(3/4) 5912867762470036 a001 433494437/3571*228826127^(4/5) 5912867762470036 a001 165580141/3571*228826127^(17/20) 5912867762470036 a001 6557470319842/3571*87403803^(6/19) 5912867762470036 a001 2504730781961/3571*87403803^(7/19) 5912867762470036 a001 63245986/3571*2537720636^(4/5) 5912867762470036 a001 63245986/3571*45537549124^(12/17) 5912867762470036 a001 63245986/3571*14662949395604^(4/7) 5912867762470036 a001 63245986/3571*505019158607^(9/14) 5912867762470036 a001 63245986/3571*192900153618^(2/3) 5912867762470036 a001 63245986/3571*73681302247^(9/13) 5912867762470036 a001 63245986/3571*10749957122^(3/4) 5912867762470036 a001 63245986/3571*4106118243^(18/23) 5912867762470036 a001 63245986/3571*1568397607^(9/11) 5912867762470036 a001 63245986/3571*599074578^(6/7) 5912867762470036 a001 956722026041/3571*87403803^(8/19) 5912867762470036 a001 365435296162/3571*87403803^(9/19) 5912867762470036 a001 225851433717/3571*87403803^(1/2) 5912867762470036 a001 63245986/3571*228826127^(9/10) 5912867762470036 a001 139583862445/3571*87403803^(10/19) 5912867762470036 a001 53316291173/3571*87403803^(11/19) 5912867762470036 a001 20365011074/3571*87403803^(12/19) 5912867762470036 a001 7778742049/3571*87403803^(13/19) 5912867762470036 a001 2971215073/3571*87403803^(14/19) 5912867762470037 a001 1134903170/3571*87403803^(15/19) 5912867762470037 a001 433494437/3571*87403803^(16/19) 5912867762470037 a001 165580141/3571*87403803^(17/19) 5912867762470037 a001 63245986/3571*87403803^(18/19) 5912867762470038 a001 6557470319842/3571*33385282^(1/3) 5912867762470038 a001 24157817/3571*817138163596^(2/3) 5912867762470038 a001 24157817/3571*10749957122^(19/24) 5912867762470038 a001 24157817/3571*4106118243^(19/23) 5912867762470038 a001 24157817/3571*1568397607^(19/22) 5912867762470038 a001 24157817/3571*599074578^(19/21) 5912867762470038 a001 2504730781961/3571*33385282^(7/18) 5912867762470038 a001 24157817/3571*228826127^(19/20) 5912867762470038 a001 1548008755920/3571*33385282^(5/12) 5912867762470038 a001 956722026041/3571*33385282^(4/9) 5912867762470039 a001 365435296162/3571*33385282^(1/2) 5912867762470039 a001 139583862445/3571*33385282^(5/9) 5912867762470039 a001 86267571272/3571*33385282^(7/12) 5912867762470039 a001 53316291173/3571*33385282^(11/18) 5912867762470039 a001 20365011074/3571*33385282^(2/3) 5912867762470040 a001 7778742049/3571*33385282^(13/18) 5912867762470040 a001 4807526976/3571*33385282^(3/4) 5912867762470040 a001 2971215073/3571*33385282^(7/9) 5912867762470040 a001 1134903170/3571*33385282^(5/6) 5912867762470041 a001 433494437/3571*33385282^(8/9) 5912867762470041 a001 267914296/3571*33385282^(11/12) 5912867762470041 a001 165580141/3571*33385282^(17/18) 5912867762470049 a001 6557470319842/3571*12752043^(6/17) 5912867762470050 a001 9227465/3571*2537720636^(8/9) 5912867762470050 a001 9227465/3571*312119004989^(8/11) 5912867762470050 a001 9227465/3571*23725150497407^(5/8) 5912867762470050 a001 9227465/3571*73681302247^(10/13) 5912867762470050 a001 9227465/3571*28143753123^(4/5) 5912867762470050 a001 9227465/3571*10749957122^(5/6) 5912867762470050 a001 9227465/3571*4106118243^(20/23) 5912867762470050 a001 9227465/3571*1568397607^(10/11) 5912867762470050 a001 9227465/3571*599074578^(20/21) 5912867762470051 a001 2504730781961/3571*12752043^(7/17) 5912867762470053 a001 956722026041/3571*12752043^(8/17) 5912867762470054 a001 591286729879/3571*12752043^(1/2) 5912867762470055 a001 365435296162/3571*12752043^(9/17) 5912867762470057 a001 139583862445/3571*12752043^(10/17) 5912867762470059 a001 53316291173/3571*12752043^(11/17) 5912867762470062 a001 20365011074/3571*12752043^(12/17) 5912867762470064 a001 7778742049/3571*12752043^(13/17) 5912867762470066 a001 2971215073/3571*12752043^(14/17) 5912867762470068 a001 1134903170/3571*12752043^(15/17) 5912867762470070 a001 433494437/3571*12752043^(16/17) 5912867762470129 a001 6557470319842/3571*4870847^(3/8) 5912867762470131 a001 3524578/3571*2537720636^(14/15) 5912867762470131 a001 3524578/3571*17393796001^(6/7) 5912867762470131 a001 3524578/3571*45537549124^(14/17) 5912867762470131 a001 3524578/3571*817138163596^(14/19) 5912867762470131 a001 3524578/3571*14662949395604^(2/3) 5912867762470131 a001 3524578/3571*505019158607^(3/4) 5912867762470131 a001 3524578/3571*192900153618^(7/9) 5912867762470131 a001 3524578/3571*10749957122^(7/8) 5912867762470131 a001 3524578/3571*4106118243^(21/23) 5912867762470131 a001 3524578/3571*1568397607^(21/22) 5912867762470145 a001 2504730781961/3571*4870847^(7/16) 5912867762470161 a001 956722026041/3571*4870847^(1/2) 5912867762470176 a001 365435296162/3571*4870847^(9/16) 5912867762470192 a001 139583862445/3571*4870847^(5/8) 5912867762470207 a001 53316291173/3571*4870847^(11/16) 5912867762470223 a001 20365011074/3571*4870847^(3/4) 5912867762470238 a001 7778742049/3571*4870847^(13/16) 5912867762470254 a001 2971215073/3571*4870847^(7/8) 5912867762470270 a001 1134903170/3571*4870847^(15/16) 5912867762470688 a001 1346269/3571*312119004989^(4/5) 5912867762470688 a001 1346269/3571*23725150497407^(11/16) 5912867762470688 a001 1346269/3571*73681302247^(11/13) 5912867762470688 a001 1346269/3571*10749957122^(11/12) 5912867762470688 a001 1346269/3571*4106118243^(22/23) 5912867762470719 a001 6557470319842/3571*1860498^(2/5) 5912867762470833 a001 2504730781961/3571*1860498^(7/15) 5912867762470890 a001 1548008755920/3571*1860498^(1/2) 5912867762470947 a001 956722026041/3571*1860498^(8/15) 5912867762471061 a001 365435296162/3571*1860498^(3/5) 5912867762471175 a001 139583862445/3571*1860498^(2/3) 5912867762471232 a001 86267571272/3571*1860498^(7/10) 5912867762471289 a001 53316291173/3571*1860498^(11/15) 5912867762471402 a001 20365011074/3571*1860498^(4/5) 5912867762471459 a001 12586269025/3571*1860498^(5/6) 5912867762471516 a001 7778742049/3571*1860498^(13/15) 5912867762471573 a001 4807526976/3571*1860498^(9/10) 5912867762471630 a001 2971215073/3571*1860498^(14/15) 5912867762474508 a001 514229/3571*10749957122^(23/24) 5912867762475054 a001 6557470319842/3571*710647^(3/7) 5912867762475890 a001 2504730781961/3571*710647^(1/2) 5912867762476726 a001 956722026041/3571*710647^(4/7) 5912867762477563 a001 365435296162/3571*710647^(9/14) 5912867762478399 a001 139583862445/3571*710647^(5/7) 5912867762478817 a001 86267571272/3571*710647^(3/4) 5912867762479235 a001 53316291173/3571*710647^(11/14) 5912867762480072 a001 20365011074/3571*710647^(6/7) 5912867762480908 a001 7778742049/3571*710647^(13/14) 5912867762500688 a001 196418/3571*45537549124^(16/17) 5912867762500688 a001 196418/3571*14662949395604^(16/21) 5912867762500688 a001 196418/3571*192900153618^(8/9) 5912867762500688 a001 196418/3571*73681302247^(12/13) 5912867762507074 a001 6557470319842/3571*271443^(6/13) 5912867762510161 a001 4052739537881/3571*271443^(1/2) 5912867762513247 a001 2504730781961/3571*271443^(7/13) 5912867762519420 a001 956722026041/3571*271443^(8/13) 5912867762525593 a001 365435296162/3571*271443^(9/13) 5912867762531766 a001 139583862445/3571*271443^(10/13) 5912867762537939 a001 53316291173/3571*271443^(11/13) 5912867762544112 a001 20365011074/3571*271443^(12/13) 5912867762680131 a001 75025/3571*312119004989^(10/11) 5912867762680131 a001 75025/3571*3461452808002^(5/6) 5912867762722136 a001 10610209857723/3571*103682^(11/24) 5912867762745054 a001 6557470319842/3571*103682^(1/2) 5912867762767972 a001 4052739537881/3571*103682^(13/24) 5912867762790890 a001 2504730781961/3571*103682^(7/12) 5912867762813809 a001 1548008755920/3571*103682^(5/8) 5912867762836727 a001 956722026041/3571*103682^(2/3) 5912867762859645 a001 591286729879/3571*103682^(17/24) 5912867762882563 a001 365435296162/3571*103682^(3/4) 5912867762905481 a001 225851433717/3571*103682^(19/24) 5912867762928400 a001 139583862445/3571*103682^(5/6) 5912867762951318 a001 86267571272/3571*103682^(7/8) 5912867762974236 a001 53316291173/3571*103682^(11/12) 5912867762997154 a001 32951280099/3571*103682^(23/24) 5912867763910050 a001 28657/3571*23725150497407^(13/16) 5912867763910050 a001 28657/3571*505019158607^(13/14) 5912867764355039 a001 10610209857723/3571*39603^(1/2) 5912867764526403 a001 6557470319842/3571*39603^(6/11) 5912867764697766 a001 4052739537881/3571*39603^(13/22) 5912867764869130 a001 2504730781961/3571*39603^(7/11) 5912867765040494 a001 1548008755920/3571*39603^(15/22) 5912867765211858 a001 956722026041/3571*39603^(8/11) 5912867765383222 a001 591286729879/3571*39603^(17/22) 5912867765554586 a001 365435296162/3571*39603^(9/11) 5912867765725950 a001 225851433717/3571*39603^(19/22) 5912867765897314 a001 139583862445/3571*39603^(10/11) 5912867765975938 r005 Im(z^2+c),c=-8/25+22/29*I,n=6 5912867766068678 a001 86267571272/3571*39603^(21/22) 5912867766240005 a001 10472280100787674/17711 5912867772340039 a001 10946/3571*14662949395604^(6/7) 5912867774866012 g006 Psi(1,1/9)-Psi(1,10/11)-Psi(1,1/11)-Psi(1,1/4) 5912867776682037 a001 10610209857723/3571*15127^(11/20) 5912867777974038 a001 6557470319842/3571*15127^(3/5) 5912867779266038 a001 4052739537881/3571*15127^(13/20) 5912867780558038 a001 2504730781961/3571*15127^(7/10) 5912867781850038 a001 1548008755920/3571*15127^(3/4) 5912867783142038 a001 956722026041/3571*15127^(4/5) 5912867784434038 a001 591286729879/3571*15127^(17/20) 5912867785726038 a001 365435296162/3571*15127^(9/10) 5912867787018039 a001 225851433717/3571*15127^(19/20) 5912867788310002 a001 4000055058791717/6765 5912867794951903 m001 (-Pi^(1/2)+Bloch)/(exp(Pi)-ln(Pi)) 5912867798776434 a001 322*75025^(7/27) 5912867819169234 m005 (1/3*Pi+1/7)/(4/11*3^(1/2)-3/7) 5912867830120006 a001 1597/9349*14662949395604^(20/21) 5912867830120042 a001 4181/3571*14662949395604^(8/9) 5912867831300596 m001 (Riemann2ndZero-Sierpinski)/(Zeta(1,2)+Kac) 5912867834952587 r005 Im(z^2+c),c=7/24+1/46*I,n=17 5912867840252430 a007 Real Root Of 149*x^4-320*x^3+466*x^2-438*x+144 5912867840866196 r009 Re(z^3+c),c=-7/66+31/48*I,n=28 5912867869365404 r005 Re(z^2+c),c=-1/24+23/32*I,n=59 5912867870703933 a001 10610209857723/3571*5778^(11/18) 5912867880543378 a001 6557470319842/3571*5778^(2/3) 5912867890382823 a001 4052739537881/3571*5778^(13/18) 5912867900222269 a001 2504730781961/3571*5778^(7/9) 5912867904573774 m005 (7/8+1/4*5^(1/2))/(11/12*Pi-5/11) 5912867910061714 a001 1548008755920/3571*5778^(5/6) 5912867910971675 g005 GAMMA(7/12)*GAMMA(6/7)/GAMMA(4/9)/GAMMA(5/8) 5912867919731826 m001 (-Totient+TreeGrowth2nd)/(2^(1/2)+OneNinth) 5912867919901159 a001 956722026041/3571*5778^(8/9) 5912867929740605 a001 591286729879/3571*5778^(17/18) 5912867934412204 a001 2504730781961/1364*1364^(4/5) 5912867938816217 m005 (1/3*3^(1/2)+1/7)/(1/10+1/2*5^(1/2)) 5912867939394826 p004 log(31139/17239) 5912867939580019 a001 1527885075587477/2584 5912867960916549 a007 Real Root Of -620*x^4+998*x^3+838*x^2+656*x+377 5912867963802804 r008 a(0)=6,K{-n^6,-49-29*n^3+68*n^2+23*n} 5912867984888325 a007 Real Root Of -927*x^4+589*x^3-114*x^2+428*x+528 5912867992009627 a001 54018521/377*89^(6/19) 5912868000883898 a007 Real Root Of -976*x^4+534*x^3-113*x^2-46*x+242 5912868003466673 m001 Psi(2,1/3)*Rabbit/Robbin 5912868004625110 r009 Im(z^3+c),c=-13/56+40/61*I,n=8 5912868007903471 m002 36+E^Pi-Sinh[Pi]/Pi^6 5912868032127454 a001 3536736619241/1926*2207^(3/4) 5912868034488062 m001 GAMMA(17/24)^GAMMA(2/3)*BesselK(0,1) 5912868059018343 a007 Real Root Of 458*x^4+178*x^3+513*x^2-613*x-561 5912868090178913 a007 Real Root Of -700*x^4+905*x^3-146*x^2-517*x+18 5912868107998081 a001 3278735159921/2889*2207^(13/16) 5912868139946570 m001 TravellingSalesman^Rabbit/MertensB3 5912868142954761 h001 (1/4*exp(1)+8/9)/(9/11*exp(1)+3/7) 5912868146286288 a001 4052739537881/1364*1364^(11/15) 5912868162660856 m005 (1/2*gamma+5/12)/(10/11*Zeta(3)+1/10) 5912868170172607 m009 (40*Catalan+5*Pi^2+1/3)/(4*Catalan+1/2*Pi^2+6) 5912868183868709 a001 4052739537881/5778*2207^(7/8) 5912868206209481 a007 Real Root Of -104*x^4+525*x^3-193*x^2+659*x-418 5912868229765208 m005 (1/3*Zeta(3)-2/5)/(41/45+1/9*5^(1/2)) 5912868249007242 m007 (-2*gamma-6*ln(2)+Pi+1)/(-3*gamma-1/4) 5912868259739338 a001 2504730781961/5778*2207^(15/16) 5912868265420374 a003 cos(Pi*8/117)-sin(Pi*15/119) 5912868271303769 a007 Real Root Of -374*x^4+461*x^3-307*x^2+589*x+36 5912868295139763 q001 2348/3971 5912868335138731 a001 1515744265389/2161*2207^(7/8) 5912868335407281 m001 1/Salem^2*GolombDickman*ln(Pi)^2 5912868352758118 a001 10610209857723/9349*2207^(13/16) 5912868358160379 a001 3278735159921/682*1364^(2/3) 5912868389369182 a007 Real Root Of -214*x^4+241*x^3+618*x^2+359*x-452 5912868389896704 a007 Real Root Of 459*x^4-607*x^3-869*x^2-321*x+563 5912868404465789 a007 Real Root Of 850*x^4+546*x^3+259*x^2-755*x-528 5912868411009362 a001 6557470319842/15127*2207^(15/16) 5912868411503967 a003 cos(Pi*20/103)-cos(Pi*32/75) 5912868428628749 a001 6557470319842/9349*2207^(7/8) 5912868446719371 a001 10610209857723/24476*2207^(15/16) 5912868448076845 a001 2207/89*987^(23/50) 5912868456517808 a005 (1/sin(69/151*Pi))^1700 5912868457762874 m005 (1/3*Zeta(3)+2/5)/(6*5^(1/2)+1/8) 5912868464563885 r005 Re(z^2+c),c=-15/28+23/44*I,n=28 5912868486880243 a001 194533373218360/329 5912868490328535 m001 exp(-1/2*Pi)*(QuadraticClass+ReciprocalLucas) 5912868498730306 a007 Real Root Of 153*x^4+901*x^3+96*x^2+863*x+988 5912868504499381 a001 4052739537881/9349*2207^(15/16) 5912868508950243 a001 194533373944463/329 5912868512708541 a001 194533374068111/329 5912868512718541 a001 194533374068440/329 5912868512720243 a001 194533374068496/329 5912868512720253 a001 583600122205489/987 5912868512720263 a001 583600122205490/987 5912868512720344 a001 583600122205498/987 5912868512720901 a001 583600122205553/987 5912868512724721 a001 583600122205930/987 5912868512750901 a001 583600122208514/987 5912868512930344 a001 583600122226225/987 5912868513566280 r005 Im(z^2+c),c=-17/58+23/35*I,n=20 5912868514160263 a001 583600122347618/987 5912868517122553 m001 GAMMA(23/24)^Otter/(GAMMA(3/4)^Otter) 5912868522590253 a001 583600123179658/987 5912868525711873 m001 (ZetaP(2)-ZetaQ(2))/(ln(3)-Pi^(1/2)) 5912868537549218 r002 8th iterates of z^2 + 5912868548361681 m001 (cos(1/12*Pi)+sin(1/12*Pi))/(Si(Pi)+Ei(1,1)) 5912868548733451 m001 (-Robbin+TwinPrimes)/(3^(1/2)+QuadraticClass) 5912868570034478 a001 10610209857723/1364*1364^(3/5) 5912868570337560 a007 Real Root Of 206*x^4-533*x^3-245*x^2-535*x+487 5912868573161098 r009 Im(z^3+c),c=-1/3+17/26*I,n=37 5912868580370263 a001 583600128882545/987 5912868595541461 r005 Re(z^2+c),c=-17/16+1/80*I,n=18 5912868597046950 a001 10610209857723/3571*2207^(11/16) 5912868597626757 a003 cos(Pi*28/75)-sin(Pi*43/99) 5912868610464156 v002 sum(1/(3^n+(1/2*n^2+73/2*n-7)),n=1..infinity) 5912868664258126 a007 Real Root Of 824*x^4+796*x^3+962*x^2-356*x-483 5912868672917584 a001 6557470319842/3571*2207^(3/4) 5912868681834062 m001 Psi(2,1/3)^gamma(3)/Niven 5912868728289162 l006 ln(5292/9559) 5912868743398507 r009 Re(z^3+c),c=-39/70+9/31*I,n=46 5912868743653153 a007 Real Root Of -476*x^4-436*x^3-908*x^2+104*x+347 5912868748788219 a001 4052739537881/3571*2207^(13/16) 5912868781404436 g001 Psi(3/11,72/103) 5912868797464918 b008 Cos[(3/5)^(1/8)] 5912868798231967 p004 log(27017/14957) 5912868799926311 a007 Real Root Of 250*x^4-967*x^3+125*x^2-987*x-59 5912868806807150 r005 Im(z^2+c),c=-17/14+27/127*I,n=4 5912868817754249 r005 Re(z^2+c),c=9/86+27/31*I,n=3 5912868820787662 m001 (CareFree+FeigenbaumD)/(BesselI(0,1)-ln(2)) 5912868824658856 a001 2504730781961/3571*2207^(7/8) 5912868851672984 r002 4th iterates of z^2 + 5912868851708795 m001 Robbin/(gamma(2)+GAMMA(5/6)) 5912868859037900 h001 (2/3*exp(2)+1/10)/(1/10*exp(2)+1/9) 5912868889574915 m001 GAMMA(13/24)-ln(2)/ln(10)-RenyiParking 5912868900529493 a001 1548008755920/3571*2207^(15/16) 5912868906408565 a007 Real Root Of -599*x^4-574*x^3-507*x^2+369*x+350 5912868913699078 m001 (gamma(2)+Otter)/(2^(1/2)-Catalan) 5912868952305274 a007 Real Root Of -886*x^4+265*x^3+596*x^2+741*x-593 5912868959584851 m003 43/8+Sqrt[5]/8+(Sqrt[5]*Tanh[1/2+Sqrt[5]/2])/8 5912868966092857 a001 76/21*75025^(29/44) 5912868967514984 l006 ln(4373/7899) 5912868974415631 a001 956722026041/521*521^(12/13) 5912868976400344 a001 583600167970714/987 5912868997321332 a007 Real Root Of 556*x^4-766*x^3+328*x^2+93*x-286 5912868997618360 m001 (Artin+Backhouse)/(FeigenbaumMu-Weierstrass) 5912869016910289 q001 2063/3489 5912869021349903 r002 25th iterates of z^2 + 5912869024506524 l006 ln(7831/8308) 5912869027821743 a007 Real Root Of 175*x^4+156*x^3+55*x^2-823*x-495 5912869059693158 a003 cos(Pi*40/107)+cos(Pi*33/76) 5912869079813549 m001 LandauRamanujan/exp(Si(Pi))^2*Pi 5912869112359512 s002 sum(A165752[n]/(n*10^n+1),n=1..infinity) 5912869114690375 a007 Real Root Of 363*x^4+529*x^3+649*x^2-702*x-577 5912869116030626 m001 1/GAMMA(2/3)^2*ln(GAMMA(1/6))^2/exp(1) 5912869118905637 r005 Re(z^2+c),c=-37/48+13/42*I,n=7 5912869122245155 m001 Ei(1)^(MasserGramain*Riemann2ndZero) 5912869138350275 m001 LambertW(1)/(Catalan^Weierstrass) 5912869155419843 m005 (1/2*5^(1/2)+3)/(2/9*3^(1/2)-5/11) 5912869169247716 a007 Real Root Of 478*x^4-383*x^3-993*x^2-450*x+634 5912869181405743 r002 12th iterates of z^2 + 5912869204744322 r009 Re(z^3+c),c=-63/106+6/11*I,n=13 5912869220703401 a007 Real Root Of -132*x^4-591*x^3+998*x^2-893*x-998 5912869225778966 m001 (KhinchinLevy+Totient)/(Ei(1,1)+exp(-1/2*Pi)) 5912869228997886 r009 Re(z^3+c),c=-13/24+13/28*I,n=10 5912869242004865 m001 (GAMMA(2/3)-sin(1))/(-GAMMA(7/12)+Robbin) 5912869262971055 a001 987/1364*14662949395604^(19/21) 5912869264182257 m001 1/5*5^(1/2)*(GAMMA(19/24)+ZetaR(2)) 5912869291971913 h001 (4/9*exp(2)+5/7)/(6/7*exp(2)+3/7) 5912869324523917 s002 sum(A113964[n]/(n^2*2^n-1),n=1..infinity) 5912869334041624 l006 ln(3454/6239) 5912869336191119 m001 (sin(1/5*Pi)+ln(2))/(exp(-1/2*Pi)+ZetaQ(3)) 5912869340224311 m001 Trott/(Sarnak-cos(1)) 5912869364636660 m005 (5*2^(1/2)-3/4)/(1/6*2^(1/2)+5/6) 5912869378168124 a007 Real Root Of 241*x^4-61*x^3+394*x^2-599*x-534 5912869385370373 r005 Re(z^2+c),c=-15/22+17/75*I,n=27 5912869385404177 r001 50i'th iterates of 2*x^2-1 of 5912869389811287 h001 (4/5*exp(2)+3/5)/(3/10*exp(1)+2/7) 5912869408096389 a001 (5+5^(1/2))^(44/49) 5912869420144415 m005 (1/2*Zeta(3)-7/11)/(-67/176+7/16*5^(1/2)) 5912869452542921 r002 3th iterates of z^2 + 5912869471773841 r009 Re(z^3+c),c=-9/82+28/41*I,n=58 5912869473844954 r005 Re(z^2+c),c=-7/50+41/59*I,n=35 5912869501113159 a007 Real Root Of -142*x^4-804*x^3+111*x^2-570*x+114 5912869537203481 r009 Re(z^3+c),c=-47/86+6/13*I,n=10 5912869551424424 a001 64079/144*7778742049^(6/19) 5912869552042739 r005 Im(z^2+c),c=-17/14+58/179*I,n=5 5912869552859427 a001 1149851/144*832040^(6/19) 5912869562228098 a007 Real Root Of -766*x^4+707*x^3+41*x^2+6*x+229 5912869579779175 a003 cos(Pi*26/89)*sin(Pi*49/115) 5912869584926396 a007 Real Root Of 953*x^4-10*x^3-612*x^2-366*x-121 5912869622167489 a007 Real Root Of -184*x^4+683*x^3+63*x^2+830*x+49 5912869627097750 a007 Real Root Of 693*x^4-653*x^3-244*x^2-481*x+420 5912869627418966 m005 (1/2*Zeta(3)-7/11)/(2/7*Pi-3/10) 5912869652091515 a007 Real Root Of -193*x^4-990*x^3+910*x^2+243*x+875 5912869653168549 r009 Re(z^3+c),c=-55/94+11/36*I,n=13 5912869656627356 m004 -5-25*Pi+18*Sec[Sqrt[5]*Pi] 5912869664959935 m001 (sin(1)+MasserGramain)/(Salem+Totient) 5912869677468394 a007 Real Root Of -324*x^4+777*x^3-219*x^2-184*x+168 5912869685969552 m001 Backhouse^Landau-HardyLittlewoodC3 5912869700582585 a007 Real Root Of 561*x^4-702*x^3+636*x^2-580*x-779 5912869737326450 r005 Re(z^2+c),c=-127/118+11/46*I,n=56 5912869755516378 r009 Re(z^3+c),c=-23/98+43/47*I,n=4 5912869773026230 a007 Real Root Of -670*x^4+617*x^3+856*x^2+387*x+139 5912869784520877 a005 (1/sin(39/175*Pi))^135 5912869811227402 r009 Re(z^3+c),c=-37/62+11/38*I,n=25 5912869816311016 m001 exp(gamma)^LambertW(1)/GAMMA(1/24) 5912869816844045 r005 Re(z^2+c),c=-31/94+29/48*I,n=10 5912869825497724 a007 Real Root Of -544*x^4-137*x^3-317*x^2+712*x+570 5912869829573174 a007 Real Root Of -121*x^4-704*x^3+210*x^2+786*x-326 5912869843055762 a007 Real Root Of -622*x^4+662*x^3-976*x^2+426*x+806 5912869854991798 a001 1/7331474697802*47^(8/21) 5912869857206819 b008 1/6+Log[313] 5912869884497241 m001 (Kac-Paris)/(polylog(4,1/2)+Artin) 5912869896451079 m001 (sin(1)+BesselJ(0,1))/(-MertensB2+Mills) 5912869915687241 a007 Real Root Of 135*x^4-364*x^3-905*x^2-798*x+847 5912869924809960 a001 29/20365011074*317811^(5/17) 5912869924813404 a001 29/2504730781961*4052739537881^(5/17) 5912869924813404 a001 1/7787980473*1134903170^(5/17) 5912869931872311 m001 (gamma(3)+CareFree)/(Landau-LaplaceLimit) 5912869948087502 m001 (ln(Pi)-Backhouse)/(FeigenbaumDelta+Gompertz) 5912869959138323 m009 (1/4*Psi(1,2/3)+1/4)/(5/6*Psi(1,3/4)-2/5) 5912869966318119 l006 ln(2535/4579) 5912869970069837 q001 1778/3007 5912869972519269 s002 sum(A091718[n]/(exp(n)),n=1..infinity) 5912869998485642 a007 Real Root Of -808*x^4+618*x^3-825*x^2-372*x+295 5912869998788349 m001 (Zeta(1,-1)+LandauRamanujan2nd)/CareFree 5912870013219787 a001 944285341111200/1597 5912870021292075 a007 Real Root Of -118*x^4-548*x^3+926*x^2+125*x-685 5912870040496766 a001 182717648081/682*3571^(16/17) 5912870049980776 r002 2th iterates of z^2 + 5912870062984536 r005 Im(z^2+c),c=-9/8+4/55*I,n=25 5912870067772074 a001 591286729879/1364*3571^(15/17) 5912870095047382 a001 956722026041/1364*3571^(14/17) 5912870103915837 a007 Real Root Of -346*x^4+915*x^3-392*x^2-838*x-127 5912870111200675 a007 Real Root Of -175*x^4-973*x^3+330*x^2-375*x-989 5912870122322690 a001 1134903780*3571^(13/17) 5912870126392813 a008 Real Root of x^4-x^3-16*x^2-9*x+11 5912870132442457 a001 29/2*987^(34/39) 5912870137217643 r009 Im(z^3+c),c=-3/17+27/37*I,n=35 5912870139276744 m005 (1/2*exp(1)-5/6)/(4/11*2^(1/2)+3/8) 5912870144525961 r009 Re(z^3+c),c=-7/64+18/25*I,n=48 5912870147289862 r009 Re(z^3+c),c=-27/56+2/39*I,n=16 5912870149597999 a001 2504730781961/1364*3571^(12/17) 5912870168939102 m001 exp(BesselK(1,1))^2/Robbin^2*log(1+sqrt(2))^2 5912870176873307 a001 4052739537881/1364*3571^(11/17) 5912870192090252 a001 123/55*5702887^(1/16) 5912870204148616 a001 3278735159921/682*3571^(10/17) 5912870207733880 m001 (Catalan-Psi(2,1/3))/(-ln(5)+Robbin) 5912870216160536 a001 75025/843*18^(19/29) 5912870230127178 r009 Re(z^3+c),c=-13/22+25/52*I,n=64 5912870231423924 a001 10610209857723/1364*3571^(9/17) 5912870263237049 r005 Re(z^2+c),c=9/110+17/40*I,n=47 5912870264449851 m001 (ThueMorse-ZetaP(2))/(ln(gamma)-Champernowne) 5912870274484198 a001 1/39603*11^(11/31) 5912870277126680 m001 (FeigenbaumMu+Sierpinski)/(Trott2nd+ZetaP(4)) 5912870299791612 a001 646/341*3461452808002^(11/12) 5912870316640583 m005 (1/2*gamma-2/3)/(3/10*Zeta(3)-1) 5912870321172710 a001 46/1515744265389*34^(16/19) 5912870391561781 a007 Real Root Of 161*x^4+914*x^3-337*x^2-822*x-928 5912870409249964 a001 2472171118107410/4181 5912870411138655 a007 Real Root Of -730*x^4+215*x^3+929*x^2+208*x-403 5912870412214670 r005 Re(z^2+c),c=-53/114+20/37*I,n=32 5912870412812199 a001 139583862445/1364*9349^(18/19) 5912870416372728 a001 225851433717/1364*9349^(17/19) 5912870419933256 a001 182717648081/682*9349^(16/19) 5912870423493784 a001 591286729879/1364*9349^(15/19) 5912870424937923 m004 2+(5*Pi)/E^(Sqrt[5]*Pi)+2*Log[Sqrt[5]*Pi] 5912870427054312 a001 956722026041/1364*9349^(14/19) 5912870430614840 a001 1134903780*9349^(13/19) 5912870434175369 a001 2504730781961/1364*9349^(12/19) 5912870437735897 a001 4052739537881/1364*9349^(11/19) 5912870441296425 a001 3278735159921/682*9349^(10/19) 5912870443359589 m001 (CopelandErdos-ZetaP(4))/(ln(3)+BesselI(1,2)) 5912870444856953 a001 10610209857723/1364*9349^(9/19) 5912870446195340 r009 Re(z^3+c),c=-65/114+15/64*I,n=41 5912870467029992 a001 3236114006605515/5473 5912870467501701 a001 53316291173/1364*24476^(20/21) 5912870467971701 a001 21566892818/341*24476^(19/21) 5912870468441701 a001 139583862445/1364*24476^(6/7) 5912870468911702 a001 225851433717/1364*24476^(17/21) 5912870469381702 a001 182717648081/682*24476^(16/21) 5912870469851702 a001 591286729879/1364*24476^(5/7) 5912870470321703 a001 956722026041/1364*24476^(2/3) 5912870470791703 a001 1134903780*24476^(13/21) 5912870471261704 a001 2504730781961/1364*24476^(4/7) 5912870471731704 a001 4052739537881/1364*24476^(11/21) 5912870472201704 a001 3278735159921/682*24476^(10/21) 5912870472671705 a001 10610209857723/1364*24476^(3/7) 5912870473131700 a001 17711/1364*817138163596^(17/19) 5912870473131700 a001 17711/1364*14662949395604^(17/21) 5912870473131700 a001 17711/1364*192900153618^(17/18) 5912870475524302 a001 10182505537/682*64079^(22/23) 5912870475586912 a001 32951280099/1364*64079^(21/23) 5912870475649521 a001 53316291173/1364*64079^(20/23) 5912870475712130 a001 21566892818/341*64079^(19/23) 5912870475774740 a001 139583862445/1364*64079^(18/23) 5912870475837349 a001 225851433717/1364*64079^(17/23) 5912870475899958 a001 182717648081/682*64079^(16/23) 5912870475962568 a001 591286729879/1364*64079^(15/23) 5912870476025177 a001 956722026041/1364*64079^(14/23) 5912870476087786 a001 1134903780*64079^(13/23) 5912870476150396 a001 2504730781961/1364*64079^(12/23) 5912870476213005 a001 4052739537881/1364*64079^(11/23) 5912870476275614 a001 3278735159921/682*64079^(10/23) 5912870476338224 a001 10610209857723/1364*64079^(9/23) 5912870476351671 a001 11592/341*14662949395604^(7/9) 5912870476351671 a001 11592/341*505019158607^(7/8) 5912870476733631 a001 53316291173/1364*167761^(4/5) 5912870476775651 a001 591286729879/1364*167761^(3/5) 5912870476817670 a001 3278735159921/682*167761^(2/5) 5912870476874461 a001 7778742049/1364*439204^(8/9) 5912870476877867 a001 32951280099/1364*439204^(7/9) 5912870476881273 a001 139583862445/1364*439204^(2/3) 5912870476884679 a001 591286729879/1364*439204^(5/9) 5912870476888084 a001 2504730781961/1364*439204^(4/9) 5912870476890000 a001 317811/1364*45537549124^(15/17) 5912870476890000 a001 317811/1364*312119004989^(9/11) 5912870476890000 a001 317811/1364*14662949395604^(5/7) 5912870476890000 a001 317811/1364*192900153618^(5/6) 5912870476890000 a001 317811/1364*28143753123^(9/10) 5912870476890000 a001 317811/1364*10749957122^(15/16) 5912870476891490 a001 10610209857723/1364*439204^(1/3) 5912870476901621 a001 433494437/1364*7881196^(10/11) 5912870476901630 a001 1836311903/1364*7881196^(9/11) 5912870476901638 a001 7778742049/1364*7881196^(8/11) 5912870476901644 a001 10182505537/682*7881196^(2/3) 5912870476901647 a001 32951280099/1364*7881196^(7/11) 5912870476901656 a001 139583862445/1364*7881196^(6/11) 5912870476901664 a001 591286729879/1364*7881196^(5/11) 5912870476901671 a001 5702887/1364*2537720636^(13/15) 5912870476901671 a001 5702887/1364*45537549124^(13/17) 5912870476901671 a001 5702887/1364*14662949395604^(13/21) 5912870476901671 a001 5702887/1364*192900153618^(13/18) 5912870476901671 a001 5702887/1364*73681302247^(3/4) 5912870476901671 a001 5702887/1364*10749957122^(13/16) 5912870476901671 a001 5702887/1364*599074578^(13/14) 5912870476901673 a001 2504730781961/1364*7881196^(4/11) 5912870476901676 a001 4052739537881/1364*7881196^(1/3) 5912870476901682 a001 10610209857723/1364*7881196^(3/11) 5912870476901696 a001 433494437/1364*20633239^(6/7) 5912870476901697 a001 567451585/682*20633239^(4/5) 5912870476901698 a001 1201881744/341*20633239^(5/7) 5912870476901699 a001 32951280099/1364*20633239^(3/5) 5912870476901700 a001 53316291173/1364*20633239^(4/7) 5912870476901702 a001 591286729879/1364*20633239^(3/7) 5912870476901702 a001 956722026041/1364*20633239^(2/5) 5912870476901704 a001 3278735159921/682*20633239^(2/7) 5912870476901707 a001 39088169/1364*2537720636^(7/9) 5912870476901707 a001 39088169/1364*17393796001^(5/7) 5912870476901707 a001 39088169/1364*312119004989^(7/11) 5912870476901707 a001 39088169/1364*14662949395604^(5/9) 5912870476901707 a001 39088169/1364*505019158607^(5/8) 5912870476901707 a001 39088169/1364*28143753123^(7/10) 5912870476901707 a001 39088169/1364*599074578^(5/6) 5912870476901707 a001 39088169/1364*228826127^(7/8) 5912870476901707 a001 9303105/124*141422324^(11/13) 5912870476901707 a001 433494437/1364*141422324^(10/13) 5912870476901708 a001 1836311903/1364*141422324^(9/13) 5912870476901708 a001 2971215073/1364*141422324^(2/3) 5912870476901708 a001 7778742049/1364*141422324^(8/13) 5912870476901708 a001 32951280099/1364*141422324^(7/13) 5912870476901708 a001 139583862445/1364*141422324^(6/13) 5912870476901708 a001 591286729879/1364*141422324^(5/13) 5912870476901708 a001 9303105/124*2537720636^(11/15) 5912870476901708 a001 9303105/124*45537549124^(11/17) 5912870476901708 a001 9303105/124*312119004989^(3/5) 5912870476901708 a001 9303105/124*14662949395604^(11/21) 5912870476901708 a001 9303105/124*192900153618^(11/18) 5912870476901708 a001 9303105/124*10749957122^(11/16) 5912870476901708 a001 9303105/124*1568397607^(3/4) 5912870476901708 a001 9303105/124*599074578^(11/14) 5912870476901708 a001 1134903780*141422324^(1/3) 5912870476901708 a001 2504730781961/1364*141422324^(4/13) 5912870476901708 a001 10610209857723/1364*141422324^(3/13) 5912870476901708 a001 66978574/341*9062201101803^(1/2) 5912870476901708 a001 701408733/1364*1322157322203^(1/2) 5912870476901708 a001 1836311903/1364*2537720636^(3/5) 5912870476901708 a001 1201881744/341*2537720636^(5/9) 5912870476901708 a001 7778742049/1364*2537720636^(8/15) 5912870476901708 a001 32951280099/1364*2537720636^(7/15) 5912870476901708 a001 53316291173/1364*2537720636^(4/9) 5912870476901708 a001 139583862445/1364*2537720636^(2/5) 5912870476901708 a001 1836311903/1364*45537549124^(9/17) 5912870476901708 a001 1836311903/1364*817138163596^(9/19) 5912870476901708 a001 1836311903/1364*14662949395604^(3/7) 5912870476901708 a001 1836311903/1364*192900153618^(1/2) 5912870476901708 a001 1836311903/1364*10749957122^(9/16) 5912870476901708 a001 591286729879/1364*2537720636^(1/3) 5912870476901708 a001 2504730781961/1364*2537720636^(4/15) 5912870476901708 a001 3278735159921/682*2537720636^(2/9) 5912870476901708 a001 10610209857723/1364*2537720636^(1/5) 5912870476901708 a001 1201881744/341*312119004989^(5/11) 5912870476901708 a001 1201881744/341*3461452808002^(5/12) 5912870476901708 a001 1201881744/341*28143753123^(1/2) 5912870476901708 a001 32951280099/1364*17393796001^(3/7) 5912870476901708 a001 956722026041/1364*17393796001^(2/7) 5912870476901708 a001 32951280099/1364*45537549124^(7/17) 5912870476901708 a001 32951280099/1364*14662949395604^(1/3) 5912870476901708 a001 32951280099/1364*192900153618^(7/18) 5912870476901708 a001 225851433717/1364*45537549124^(1/3) 5912870476901708 a001 139583862445/1364*45537549124^(6/17) 5912870476901708 a001 591286729879/1364*45537549124^(5/17) 5912870476901708 a001 2504730781961/1364*45537549124^(4/17) 5912870476901708 a001 10610209857723/1364*45537549124^(3/17) 5912870476901708 a001 21566892818/341*817138163596^(1/3) 5912870476901708 a001 591286729879/1364*312119004989^(3/11) 5912870476901708 a001 2504730781961/1364*817138163596^(4/19) 5912870476901708 a001 10610209857723/1364*817138163596^(3/19) 5912870476901708 a001 10610209857723/1364*14662949395604^(1/7) 5912870476901708 a001 182717648081/682*23725150497407^(1/4) 5912870476901708 a001 10610209857723/1364*192900153618^(1/6) 5912870476901708 a001 2504730781961/1364*192900153618^(2/9) 5912870476901708 a001 591286729879/1364*192900153618^(5/18) 5912870476901708 a001 139583862445/1364*14662949395604^(2/7) 5912870476901708 a001 139583862445/1364*192900153618^(1/3) 5912870476901708 a001 2504730781961/1364*73681302247^(3/13) 5912870476901708 a001 1134903780*73681302247^(1/4) 5912870476901708 a001 182717648081/682*73681302247^(4/13) 5912870476901708 a001 53316291173/1364*23725150497407^(5/16) 5912870476901708 a001 53316291173/1364*505019158607^(5/14) 5912870476901708 a001 53316291173/1364*73681302247^(5/13) 5912870476901708 a001 3278735159921/682*28143753123^(1/5) 5912870476901708 a001 591286729879/1364*28143753123^(3/10) 5912870476901708 a001 10182505537/682*312119004989^(2/5) 5912870476901708 a001 53316291173/1364*28143753123^(2/5) 5912870476901708 a001 10610209857723/1364*10749957122^(3/16) 5912870476901708 a001 3278735159921/682*10749957122^(5/24) 5912870476901708 a001 2504730781961/1364*10749957122^(1/4) 5912870476901708 a001 956722026041/1364*10749957122^(7/24) 5912870476901708 a001 591286729879/1364*10749957122^(5/16) 5912870476901708 a001 182717648081/682*10749957122^(1/3) 5912870476901708 a001 7778742049/1364*45537549124^(8/17) 5912870476901708 a001 139583862445/1364*10749957122^(3/8) 5912870476901708 a001 7778742049/1364*14662949395604^(8/21) 5912870476901708 a001 7778742049/1364*192900153618^(4/9) 5912870476901708 a001 7778742049/1364*73681302247^(6/13) 5912870476901708 a001 32951280099/1364*10749957122^(7/16) 5912870476901708 a001 53316291173/1364*10749957122^(5/12) 5912870476901708 a001 10182505537/682*10749957122^(11/24) 5912870476901708 a001 7778742049/1364*10749957122^(1/2) 5912870476901708 a001 3278735159921/682*4106118243^(5/23) 5912870476901708 a001 2504730781961/1364*4106118243^(6/23) 5912870476901708 a001 956722026041/1364*4106118243^(7/23) 5912870476901708 a001 182717648081/682*4106118243^(8/23) 5912870476901708 a001 2971215073/1364*73681302247^(1/2) 5912870476901708 a001 139583862445/1364*4106118243^(9/23) 5912870476901708 a001 53316291173/1364*4106118243^(10/23) 5912870476901708 a001 2971215073/1364*10749957122^(13/24) 5912870476901708 a001 1144206275/124*4106118243^(1/2) 5912870476901708 a001 10182505537/682*4106118243^(11/23) 5912870476901708 a001 7778742049/1364*4106118243^(12/23) 5912870476901708 a001 2971215073/1364*4106118243^(13/23) 5912870476901708 a001 3278735159921/682*1568397607^(5/22) 5912870476901708 a001 4052739537881/1364*1568397607^(1/4) 5912870476901708 a001 2504730781961/1364*1568397607^(3/11) 5912870476901708 a001 956722026041/1364*1568397607^(7/22) 5912870476901708 a001 182717648081/682*1568397607^(4/11) 5912870476901708 a001 567451585/682*17393796001^(4/7) 5912870476901708 a001 567451585/682*14662949395604^(4/9) 5912870476901708 a001 567451585/682*505019158607^(1/2) 5912870476901708 a001 567451585/682*73681302247^(7/13) 5912870476901708 a001 567451585/682*10749957122^(7/12) 5912870476901708 a001 139583862445/1364*1568397607^(9/22) 5912870476901708 a001 53316291173/1364*1568397607^(5/11) 5912870476901708 a001 567451585/682*4106118243^(14/23) 5912870476901708 a001 10182505537/682*1568397607^(1/2) 5912870476901708 a001 7778742049/1364*1568397607^(6/11) 5912870476901708 a001 2971215073/1364*1568397607^(13/22) 5912870476901708 a001 567451585/682*1568397607^(7/11) 5912870476901708 a001 10610209857723/1364*599074578^(3/14) 5912870476901708 a001 3278735159921/682*599074578^(5/21) 5912870476901708 a001 2504730781961/1364*599074578^(2/7) 5912870476901708 a001 956722026041/1364*599074578^(1/3) 5912870476901708 a001 433494437/1364*2537720636^(2/3) 5912870476901708 a001 591286729879/1364*599074578^(5/14) 5912870476901708 a001 182717648081/682*599074578^(8/21) 5912870476901708 a001 433494437/1364*45537549124^(10/17) 5912870476901708 a001 433494437/1364*312119004989^(6/11) 5912870476901708 a001 433494437/1364*14662949395604^(10/21) 5912870476901708 a001 433494437/1364*192900153618^(5/9) 5912870476901708 a001 433494437/1364*28143753123^(3/5) 5912870476901708 a001 433494437/1364*10749957122^(5/8) 5912870476901708 a001 433494437/1364*4106118243^(15/23) 5912870476901708 a001 139583862445/1364*599074578^(3/7) 5912870476901708 a001 53316291173/1364*599074578^(10/21) 5912870476901708 a001 433494437/1364*1568397607^(15/22) 5912870476901708 a001 32951280099/1364*599074578^(1/2) 5912870476901708 a001 10182505537/682*599074578^(11/21) 5912870476901708 a001 7778742049/1364*599074578^(4/7) 5912870476901708 a001 1836311903/1364*599074578^(9/14) 5912870476901708 a001 2971215073/1364*599074578^(13/21) 5912870476901708 a001 567451585/682*599074578^(2/3) 5912870476901708 a001 433494437/1364*599074578^(5/7) 5912870476901708 a001 3278735159921/682*228826127^(1/4) 5912870476901708 a001 2504730781961/1364*228826127^(3/10) 5912870476901708 a001 956722026041/1364*228826127^(7/20) 5912870476901708 a001 591286729879/1364*228826127^(3/8) 5912870476901708 a001 165580141/1364*23725150497407^(1/2) 5912870476901708 a001 165580141/1364*505019158607^(4/7) 5912870476901708 a001 165580141/1364*73681302247^(8/13) 5912870476901708 a001 165580141/1364*10749957122^(2/3) 5912870476901708 a001 165580141/1364*4106118243^(16/23) 5912870476901708 a001 165580141/1364*1568397607^(8/11) 5912870476901708 a001 182717648081/682*228826127^(2/5) 5912870476901708 a001 139583862445/1364*228826127^(9/20) 5912870476901708 a001 165580141/1364*599074578^(16/21) 5912870476901708 a001 53316291173/1364*228826127^(1/2) 5912870476901708 a001 10182505537/682*228826127^(11/20) 5912870476901708 a001 7778742049/1364*228826127^(3/5) 5912870476901708 a001 1201881744/341*228826127^(5/8) 5912870476901708 a001 2971215073/1364*228826127^(13/20) 5912870476901708 a001 567451585/682*228826127^(7/10) 5912870476901708 a001 433494437/1364*228826127^(3/4) 5912870476901708 a001 165580141/1364*228826127^(4/5) 5912870476901708 a001 3278735159921/682*87403803^(5/19) 5912870476901708 a001 2504730781961/1364*87403803^(6/19) 5912870476901708 a001 956722026041/1364*87403803^(7/19) 5912870476901708 a001 31622993/682*45537549124^(2/3) 5912870476901708 a001 31622993/682*10749957122^(17/24) 5912870476901708 a001 31622993/682*4106118243^(17/23) 5912870476901708 a001 31622993/682*1568397607^(17/22) 5912870476901708 a001 31622993/682*599074578^(17/21) 5912870476901708 a001 182717648081/682*87403803^(8/19) 5912870476901708 a001 139583862445/1364*87403803^(9/19) 5912870476901708 a001 21566892818/341*87403803^(1/2) 5912870476901708 a001 31622993/682*228826127^(17/20) 5912870476901708 a001 53316291173/1364*87403803^(10/19) 5912870476901708 a001 10182505537/682*87403803^(11/19) 5912870476901708 a001 7778742049/1364*87403803^(12/19) 5912870476901708 a001 2971215073/1364*87403803^(13/19) 5912870476901708 a001 567451585/682*87403803^(14/19) 5912870476901708 a001 433494437/1364*87403803^(15/19) 5912870476901708 a001 165580141/1364*87403803^(16/19) 5912870476901709 a001 31622993/682*87403803^(17/19) 5912870476901709 a001 10610209857723/1364*33385282^(1/4) 5912870476901709 a001 3278735159921/682*33385282^(5/18) 5912870476901709 a001 24157817/1364*141422324^(12/13) 5912870476901709 a001 2504730781961/1364*33385282^(1/3) 5912870476901710 a001 24157817/1364*2537720636^(4/5) 5912870476901710 a001 24157817/1364*45537549124^(12/17) 5912870476901710 a001 24157817/1364*14662949395604^(4/7) 5912870476901710 a001 24157817/1364*505019158607^(9/14) 5912870476901710 a001 24157817/1364*192900153618^(2/3) 5912870476901710 a001 24157817/1364*73681302247^(9/13) 5912870476901710 a001 24157817/1364*10749957122^(3/4) 5912870476901710 a001 24157817/1364*4106118243^(18/23) 5912870476901710 a001 24157817/1364*1568397607^(9/11) 5912870476901710 a001 24157817/1364*599074578^(6/7) 5912870476901710 a001 956722026041/1364*33385282^(7/18) 5912870476901710 a001 24157817/1364*228826127^(9/10) 5912870476901710 a001 591286729879/1364*33385282^(5/12) 5912870476901710 a001 182717648081/682*33385282^(4/9) 5912870476901710 a001 139583862445/1364*33385282^(1/2) 5912870476901710 a001 24157817/1364*87403803^(18/19) 5912870476901711 a001 53316291173/1364*33385282^(5/9) 5912870476901711 a001 32951280099/1364*33385282^(7/12) 5912870476901711 a001 10182505537/682*33385282^(11/18) 5912870476901711 a001 7778742049/1364*33385282^(2/3) 5912870476901712 a001 2971215073/1364*33385282^(13/18) 5912870476901712 a001 1836311903/1364*33385282^(3/4) 5912870476901712 a001 567451585/682*33385282^(7/9) 5912870476901712 a001 433494437/1364*33385282^(5/6) 5912870476901712 a001 9303105/124*33385282^(11/12) 5912870476901712 a001 165580141/1364*33385282^(8/9) 5912870476901713 a001 31622993/682*33385282^(17/18) 5912870476901718 a001 3278735159921/682*12752043^(5/17) 5912870476901721 a001 2504730781961/1364*12752043^(6/17) 5912870476901722 a001 9227465/1364*817138163596^(2/3) 5912870476901722 a001 9227465/1364*10749957122^(19/24) 5912870476901722 a001 9227465/1364*4106118243^(19/23) 5912870476901722 a001 9227465/1364*1568397607^(19/22) 5912870476901722 a001 9227465/1364*599074578^(19/21) 5912870476901722 a001 9227465/1364*228826127^(19/20) 5912870476901723 a001 956722026041/1364*12752043^(7/17) 5912870476901725 a001 182717648081/682*12752043^(8/17) 5912870476901726 a001 225851433717/1364*12752043^(1/2) 5912870476901727 a001 139583862445/1364*12752043^(9/17) 5912870476901729 a001 53316291173/1364*12752043^(10/17) 5912870476901731 a001 10182505537/682*12752043^(11/17) 5912870476901733 a001 7778742049/1364*12752043^(12/17) 5912870476901736 a001 2971215073/1364*12752043^(13/17) 5912870476901738 a001 567451585/682*12752043^(14/17) 5912870476901740 a001 433494437/1364*12752043^(15/17) 5912870476901742 a001 165580141/1364*12752043^(16/17) 5912870476901786 a001 3278735159921/682*4870847^(5/16) 5912870476901801 a001 2504730781961/1364*4870847^(3/8) 5912870476901803 a001 1762289/682*2537720636^(8/9) 5912870476901803 a001 1762289/682*312119004989^(8/11) 5912870476901803 a001 1762289/682*23725150497407^(5/8) 5912870476901803 a001 1762289/682*73681302247^(10/13) 5912870476901803 a001 1762289/682*28143753123^(4/5) 5912870476901803 a001 1762289/682*10749957122^(5/6) 5912870476901803 a001 1762289/682*4106118243^(20/23) 5912870476901803 a001 1762289/682*1568397607^(10/11) 5912870476901803 a001 1762289/682*599074578^(20/21) 5912870476901817 a001 956722026041/1364*4870847^(7/16) 5912870476901832 a001 182717648081/682*4870847^(1/2) 5912870476901848 a001 139583862445/1364*4870847^(9/16) 5912870476901863 a001 53316291173/1364*4870847^(5/8) 5912870476901879 a001 10182505537/682*4870847^(11/16) 5912870476901895 a001 7778742049/1364*4870847^(3/4) 5912870476901910 a001 2971215073/1364*4870847^(13/16) 5912870476901926 a001 567451585/682*4870847^(7/8) 5912870476901941 a001 433494437/1364*4870847^(15/16) 5912870476902220 a001 10610209857723/1364*1860498^(3/10) 5912870476902277 a001 3278735159921/682*1860498^(1/3) 5912870476902360 a001 1346269/1364*2537720636^(14/15) 5912870476902360 a001 1346269/1364*17393796001^(6/7) 5912870476902360 a001 1346269/1364*45537549124^(14/17) 5912870476902360 a001 1346269/1364*817138163596^(14/19) 5912870476902360 a001 1346269/1364*14662949395604^(2/3) 5912870476902360 a001 1346269/1364*505019158607^(3/4) 5912870476902360 a001 1346269/1364*192900153618^(7/9) 5912870476902360 a001 1346269/1364*10749957122^(7/8) 5912870476902360 a001 1346269/1364*4106118243^(21/23) 5912870476902360 a001 1346269/1364*1568397607^(21/22) 5912870476902391 a001 2504730781961/1364*1860498^(2/5) 5912870476902505 a001 956722026041/1364*1860498^(7/15) 5912870476902562 a001 591286729879/1364*1860498^(1/2) 5912870476902619 a001 182717648081/682*1860498^(8/15) 5912870476902733 a001 139583862445/1364*1860498^(3/5) 5912870476902847 a001 53316291173/1364*1860498^(2/3) 5912870476902903 a001 32951280099/1364*1860498^(7/10) 5912870476902960 a001 10182505537/682*1860498^(11/15) 5912870476903074 a001 7778742049/1364*1860498^(4/5) 5912870476903131 a001 1201881744/341*1860498^(5/6) 5912870476903188 a001 2971215073/1364*1860498^(13/15) 5912870476903245 a001 1836311903/1364*1860498^(9/10) 5912870476903302 a001 567451585/682*1860498^(14/15) 5912870476905889 a001 3278735159921/682*710647^(5/14) 5912870476906180 a001 514229/1364*312119004989^(4/5) 5912870476906180 a001 514229/1364*23725150497407^(11/16) 5912870476906180 a001 514229/1364*73681302247^(11/13) 5912870476906180 a001 514229/1364*10749957122^(11/12) 5912870476906180 a001 514229/1364*4106118243^(22/23) 5912870476906726 a001 2504730781961/1364*710647^(3/7) 5912870476907562 a001 956722026041/1364*710647^(1/2) 5912870476908398 a001 182717648081/682*710647^(4/7) 5912870476909234 a001 139583862445/1364*710647^(9/14) 5912870476910071 a001 53316291173/1364*710647^(5/7) 5912870476910489 a001 32951280099/1364*710647^(3/4) 5912870476910907 a001 10182505537/682*710647^(11/14) 5912870476911743 a001 7778742049/1364*710647^(6/7) 5912870476912580 a001 2971215073/1364*710647^(13/14) 5912870476932360 a001 98209/682*10749957122^(23/24) 5912870476932573 a001 3278735159921/682*271443^(5/13) 5912870476938746 a001 2504730781961/1364*271443^(6/13) 5912870476941832 a001 1134903780*271443^(1/2) 5912870476944919 a001 956722026041/1364*271443^(7/13) 5912870476951092 a001 182717648081/682*271443^(8/13) 5912870476957265 a001 139583862445/1364*271443^(9/13) 5912870476963438 a001 53316291173/1364*271443^(10/13) 5912870476969611 a001 10182505537/682*271443^(11/13) 5912870476975784 a001 7778742049/1364*271443^(12/13) 5912870477107971 a001 10610209857723/1364*103682^(3/8) 5912870477111803 a001 75025/1364*45537549124^(16/17) 5912870477111803 a001 75025/1364*14662949395604^(16/21) 5912870477111803 a001 75025/1364*192900153618^(8/9) 5912870477111803 a001 75025/1364*73681302247^(12/13) 5912870477130890 a001 3278735159921/682*103682^(5/12) 5912870477153808 a001 4052739537881/1364*103682^(11/24) 5912870477176726 a001 2504730781961/1364*103682^(1/2) 5912870477199644 a001 1134903780*103682^(13/24) 5912870477222562 a001 956722026041/1364*103682^(7/12) 5912870477245481 a001 591286729879/1364*103682^(5/8) 5912870477268399 a001 182717648081/682*103682^(2/3) 5912870477291317 a001 225851433717/1364*103682^(17/24) 5912870477314235 a001 139583862445/1364*103682^(3/4) 5912870477337153 a001 21566892818/341*103682^(19/24) 5912870477360072 a001 53316291173/1364*103682^(5/6) 5912870477382990 a001 32951280099/1364*103682^(7/8) 5912870477405908 a001 10182505537/682*103682^(11/12) 5912870477428826 a001 1144206275/124*103682^(23/24) 5912870478341722 a001 28657/1364*312119004989^(10/11) 5912870478341722 a001 28657/1364*3461452808002^(5/6) 5912870478443983 a001 10610209857723/1364*39603^(9/22) 5912870478615347 a001 3278735159921/682*39603^(5/11) 5912870478786711 a001 4052739537881/1364*39603^(1/2) 5912870478958075 a001 2504730781961/1364*39603^(6/11) 5912870479129439 a001 1134903780*39603^(13/22) 5912870479300803 a001 956722026041/1364*39603^(7/11) 5912870479472167 a001 591286729879/1364*39603^(15/22) 5912870479643531 a001 182717648081/682*39603^(8/11) 5912870479814895 a001 225851433717/1364*39603^(17/22) 5912870479986259 a001 139583862445/1364*39603^(9/11) 5912870480157623 a001 21566892818/341*39603^(19/22) 5912870480328987 a001 53316291173/1364*39603^(10/11) 5912870480500351 a001 32951280099/1364*39603^(21/22) 5912870486771715 a001 5473/682*23725150497407^(13/16) 5912870486771715 a001 5473/682*505019158607^(13/14) 5912870488529714 a001 10610209857723/1364*15127^(9/20) 5912870489821715 a001 3278735159921/682*15127^(1/2) 5912870491113716 a001 4052739537881/1364*15127^(11/20) 5912870492405716 a001 2504730781961/1364*15127^(3/5) 5912870492428185 l006 ln(4151/7498) 5912870493697717 a001 1134903780*15127^(13/20) 5912870494989718 a001 956722026041/1364*15127^(7/10) 5912870496281719 a001 591286729879/1364*15127^(3/4) 5912870497573719 a001 182717648081/682*15127^(4/5) 5912870498865720 a001 225851433717/1364*15127^(17/20) 5912870499935415 r008 a(0)=6,K{-n^6,8+4*n^3+3*n^2-2*n} 5912870500157721 a001 139583862445/1364*15127^(9/10) 5912870501449722 a001 21566892818/341*15127^(19/20) 5912870502740014 a001 800011379020724/1353 5912870508884058 r002 36th iterates of z^2 + 5912870533493951 a003 sin(Pi*17/84)*sin(Pi*8/17) 5912870544551744 a001 4181/1364*14662949395604^(6/7) 5912870547257019 m001 (BesselK(0,1)+gamma(3))/(Robbin+ZetaQ(2)) 5912870560225184 r005 Re(z^2+c),c=19/98+20/61*I,n=27 5912870565456755 a001 10610209857723/1364*5778^(1/2) 5912870574398744 m001 (-Kac+Trott)/(Psi(1,1/3)+GaussKuzminWirsing) 5912870575296204 a001 3278735159921/682*5778^(5/9) 5912870583857949 r005 Re(z^2+c),c=3/26+25/53*I,n=51 5912870585135654 a001 4052739537881/1364*5778^(11/18) 5912870592815340 a007 Real Root Of 225*x^4-651*x^3-962*x^2-116*x+512 5912870594975104 a001 2504730781961/1364*5778^(2/3) 5912870604814554 a001 1134903780*5778^(13/18) 5912870607185120 a007 Real Root Of 784*x^4-350*x^3+597*x^2+722*x+50 5912870610215864 m001 1/3*3^(1/2)*Zeta(3)/GAMMA(19/24) 5912870610215864 m001 Zeta(3)/sqrt(3)/GAMMA(19/24) 5912870614654004 a001 956722026041/1364*5778^(7/9) 5912870624493453 a001 591286729879/1364*5778^(5/6) 5912870634332903 a001 182717648081/682*5778^(8/9) 5912870644172353 a001 225851433717/1364*5778^(17/18) 5912870645227034 r005 Re(z^2+c),c=-55/64+10/51*I,n=40 5912870649834335 m001 (Shi(1)+sin(1/12*Pi))/(-BesselI(0,2)+ZetaQ(2)) 5912870650041738 a001 1548008755920/521*521^(11/13) 5912870654010100 a001 763942888498105/1292 5912870663273212 r005 Im(z^2+c),c=-3/5+5/66*I,n=15 5912870678503647 a007 Real Root Of -716*x^4-167*x^3-928*x^2-454*x+109 5912870683133099 a007 Real Root Of 964*x^4-461*x^3+489*x^2-700*x-798 5912870685528218 m001 (BesselI(1,2)+ZetaP(4))/(Pi-arctan(1/3)) 5912870688982902 m001 LambertW(1)^(3^(1/3))*Totient 5912870694028928 a007 Real Root Of -926*x^4+411*x^3+929*x^2-72*x-254 5912870694817049 m002 (-5*Pi^3)/6-Pi^3*ProductLog[Pi] 5912870696104845 a001 1364/514229*233^(5/34) 5912870707973213 r008 a(0)=6,K{-n^6,-53+57*n+63*n^2-56*n^3} 5912870753486231 r005 Re(z^2+c),c=-18/31+14/37*I,n=13 5912870760375615 p003 LerchPhi(1/12,3,67/121) 5912870799847317 r008 a(0)=6,K{-n^6,85+15*n^3-82*n^2-7*n} 5912870801289705 a007 Real Root Of 202*x^4-405*x^3-511*x^2-102*x+298 5912870802846588 a007 Real Root Of 282*x^4-351*x^3+240*x^2-962*x+523 5912870812468019 a007 Real Root Of 317*x^4-740*x^3+360*x^2-366*x-534 5912870815545139 a007 Real Root Of 655*x^4-716*x^3+717*x^2-41*x-503 5912870824255902 m001 BesselJ(0,1)*ln(5)-MasserGramainDelta 5912870825821327 m001 (LambertW(1)+Zeta(5))/(Khinchin+Trott2nd) 5912870836512616 m001 1/ln(BesselJ(0,1))*(3^(1/3))^2/GAMMA(1/4)^2 5912870856341013 m001 sin(Pi/12)^2*sin(1)*exp(sinh(1))^2 5912870860515526 m005 (1/2*Zeta(3)+1/3)/(245/264+7/24*5^(1/2)) 5912870862234657 r009 Im(z^3+c),c=-55/98+38/63*I,n=16 5912870894156023 a007 Real Root Of -822*x^4+662*x^3+50*x^2+281*x+386 5912870904088394 a007 Real Root Of 174*x^4+987*x^3-377*x^2-891*x-737 5912870911537474 m001 (gamma(1)-ZetaQ(2))/(Pi-1) 5912870929175276 b008 5+Sqrt[5/6] 5912870940580285 a001 610/3571*14662949395604^(20/21) 5912870940581957 a001 1597/1364*14662949395604^(8/9) 5912870966501486 m001 (Robbin-StronglyCareFree)/(ln(3)+FeigenbaumB) 5912870990558430 r005 Im(z^2+c),c=-37/70+4/19*I,n=6 5912870999198589 m001 RenyiParking^GAMMA(2/3)*RenyiParking^ZetaP(2) 5912871003657990 b008 LogIntegral[Tan[2/13]] 5912871014140677 m001 (Zeta(3)*LandauRamanujan-exp(-1/2*Pi))/Zeta(3) 5912871021445585 a005 (1/cos(46/173*Pi))^166 5912871072700446 m001 (HeathBrownMoroz-Thue)/(arctan(1/3)-Pi^(1/2)) 5912871086193719 m001 (StronglyCareFree+Tribonacci)/(Otter+Porter) 5912871102886837 s001 sum(exp(-2*Pi/5)^n*A190853[n],n=1..infinity) 5912871102886837 s002 sum(A190853[n]/(exp(2/5*pi*n)),n=1..infinity) 5912871113202753 r005 Re(z^2+c),c=-51/74+11/50*I,n=29 5912871130341835 a007 Real Root Of 798*x^4-952*x^3-70*x^2-697*x-682 5912871141983527 a007 Real Root Of -515*x^4-21*x^3+968*x^2+590*x-620 5912871150201835 m001 sin(1/12*Pi)^Robbin*ZetaQ(2)^Robbin 5912871156740828 r009 Re(z^3+c),c=-25/42+25/52*I,n=43 5912871159737669 a001 10610209857723/1364*2207^(9/16) 5912871198534687 a007 Real Root Of 491*x^4-338*x^3+382*x^2-625*x-633 5912871204763330 r005 Im(z^2+c),c=-41/86+25/42*I,n=56 5912871235608336 a001 3278735159921/682*2207^(5/8) 5912871238200430 m001 exp(1/Pi)/CopelandErdos/Paris 5912871266104249 m005 (1/2*Catalan+8/9)/(-27/40+1/5*5^(1/2)) 5912871277491187 a007 Real Root Of -758*x^4-513*x^3-385*x^2+414*x+366 5912871287128712 q001 1493/2525 5912871311479005 a001 4052739537881/1364*2207^(11/16) 5912871317730740 l006 ln(1616/2919) 5912871374891123 a008 Real Root of (-6+3*x+6*x^2+5*x^3+6*x^4+5*x^5) 5912871376257050 m001 (exp(1)+sin(1))/(MertensB1+PolyaRandomWalk3D) 5912871387349674 a001 2504730781961/1364*2207^(3/4) 5912871388692911 r005 Re(z^2+c),c=31/74+14/23*I,n=8 5912871413936537 h001 (7/8*exp(1)+4/7)/(3/5*exp(2)+5/9) 5912871437190615 a007 Real Root Of -666*x^4+980*x^3-693*x^2-518*x+220 5912871437705027 a007 Real Root Of 517*x^4-837*x^3-595*x^2-551*x-354 5912871439200127 r005 Im(z^2+c),c=-31/26+5/63*I,n=53 5912871463220344 a001 1134903780*2207^(13/16) 5912871470398492 r009 Re(z^3+c),c=-41/70+19/40*I,n=37 5912871484746587 a007 Real Root Of -958*x^4+795*x^3+599*x^2+995*x-845 5912871497173998 a007 Real Root Of -267*x^4+871*x^3-917*x^2-425*x+282 5912871497854332 m001 (exp(Pi)+Catalan)/(-Thue+ZetaP(2)) 5912871518572231 a003 sin(Pi*21/109)/sin(Pi*47/114) 5912871527027077 r005 Im(z^2+c),c=-81/74+3/43*I,n=18 5912871527857702 m001 (Stephens-ZetaQ(3))/(Ei(1,1)-Champernowne) 5912871539091015 a001 956722026041/1364*2207^(7/8) 5912871539330513 m001 ln(GAMMA(5/6))^2/TreeGrowth2nd*sqrt(Pi) 5912871543442126 a007 Real Root Of 527*x^4-570*x^3-293*x^2-736*x-515 5912871563346836 a007 Real Root Of -75*x^4-548*x^3-533*x^2+479*x-143 5912871593696871 r005 Re(z^2+c),c=-11/10+19/80*I,n=33 5912871614961687 a001 591286729879/1364*2207^(15/16) 5912871614974256 a003 cos(Pi*35/117)/sin(Pi*56/117) 5912871624876281 a007 Real Root Of 545*x^4-704*x^3+847*x^2-698*x-921 5912871643042760 m001 (-sin(1/5*Pi)+gamma(2))/(Si(Pi)-sin(1)) 5912871654443664 m005 (1/2*5^(1/2)-1/6)/(2*gamma+5/11) 5912871669106069 r005 Re(z^2+c),c=-3/74+45/58*I,n=28 5912871689499809 m008 (3*Pi^6+2/5)/(5*Pi^4+4/5) 5912871690830901 a001 583600435885010/987 5912871713256508 a008 Real Root of x^4-2*x^3-7*x^2-90*x-32 5912871728653155 a007 Real Root Of -679*x^4+612*x^3-566*x^2-574*x+68 5912871747438877 a007 Real Root Of 672*x^4-662*x^3-357*x^2-847*x-595 5912871747833551 s002 sum(A042847[n]/(n^3*2^n+1),n=1..infinity) 5912871797492454 m005 (1/2*gamma+5/6)/(6*Pi+1/8) 5912871867453249 s002 sum(A136440[n]/((exp(n)+1)*n),n=1..infinity) 5912871870061616 m001 (RenyiParking-ZetaR(2))^GAMMA(23/24) 5912871883723616 m001 (Zeta(3)-Khinchin)/(Riemann3rdZero+ZetaP(4)) 5912871891286768 a008 Real Root of x^4-x^3-39*x^2+70*x-66 5912871914544670 r009 Re(z^3+c),c=-37/62+31/58*I,n=28 5912871933327567 s002 sum(A136440[n]/(n*exp(n)+1),n=1..infinity) 5912871934913827 r005 Im(z^2+c),c=-13/12+7/102*I,n=15 5912871935554123 l006 ln(5545/10016) 5912871952607932 s002 sum(A136440[n]/(n*exp(n)-1),n=1..infinity) 5912871962807078 m005 (1/3*2^(1/2)-1/9)/(2/11*gamma-5/7) 5912871968297738 a007 Real Root Of -316*x^4+56*x^3-596*x^2+158*x+352 5912871973336605 m001 (gamma(2)-Conway)/(KhinchinHarmonic+PlouffeB) 5912871975829049 m005 (1/2*Pi-5/11)/(10/11*exp(1)-7/12) 5912871978689184 r005 Im(z^2+c),c=-37/30+6/115*I,n=5 5912871983842855 a007 Real Root Of -71*x^4+471*x^3+90*x^2+431*x-375 5912871992173132 k007 concat of cont frac of 5912872028000691 a001 4807525989*843^(5/7) 5912872059065986 a001 54018521*514229^(15/17) 5912872060306545 r005 Im(z^2+c),c=23/78+7/13*I,n=4 5912872062832050 a001 39603*1836311903^(15/17) 5912872068017918 r002 59th iterates of z^2 + 5912872079611685 a003 sin(Pi*11/100)/sin(Pi*20/103) 5912872090857600 r009 Im(z^3+c),c=-13/36+21/34*I,n=38 5912872093008585 a005 (1/cos(10/237*Pi))^463 5912872095863212 a007 Real Root Of -497*x^4+638*x^3-869*x^2+581*x+840 5912872116559868 a007 Real Root Of 93*x^4-32*x^3+516*x^2-779*x-659 5912872140801119 r002 3th iterates of z^2 + 5912872167250144 a007 Real Root Of 296*x^4-192*x^3+731*x^2-625*x-701 5912872181078032 m001 3^(1/3)*Landau-exp(1/Pi) 5912872189665231 l006 ln(3929/7097) 5912872191474989 r005 Re(z^2+c),c=-3/118+11/51*I,n=14 5912872204376693 g003 abs(GAMMA(-211/60+I*(-197/60))) 5912872212348381 a007 Real Root Of -953*x^4+182*x^3-309*x^2+935*x+815 5912872217180739 r005 Im(z^2+c),c=-3/46+52/63*I,n=36 5912872262675470 r002 3th iterates of z^2 + 5912872265188498 a001 1364/28657*1597^(1/34) 5912872316288902 m006 (5*exp(Pi)-5/6)/(2/3*exp(Pi)+4) 5912872322723039 m001 (Pi+exp(1/Pi))/(Stephens-Totient) 5912872325668319 a001 2504730781961/521*521^(10/13) 5912872326759172 a007 Real Root Of -155*x^4+452*x^3+134*x^2-99*x+7 5912872331970020 a001 9/98209*377^(11/35) 5912872334132285 a007 Real Root Of -357*x^4-585*x^3-989*x^2-542*x-52 5912872349695418 r009 Re(z^3+c),c=-13/30+4/7*I,n=33 5912872382808149 r009 Im(z^3+c),c=-8/29+31/50*I,n=6 5912872402449972 m001 (CareFree+MertensB1)/(sin(1/12*Pi)+exp(1/Pi)) 5912872430209655 m001 1/exp(Catalan)*Conway^2/GAMMA(1/12) 5912872444049609 m001 FeigenbaumC^2*exp(Lehmer)/GAMMA(23/24) 5912872448387047 a007 Real Root Of -256*x^4-167*x^3-391*x^2+559*x+464 5912872454440049 a007 Real Root Of -337*x^4-561*x^3-696*x^2+454*x+437 5912872465808876 m001 (cos(1)+Zeta(1/2))/(FeigenbaumB+Sarnak) 5912872466535968 a003 sin(Pi*1/61)/sin(Pi*38/113) 5912872485681979 a007 Real Root Of 339*x^4+56*x^3+263*x^2-139*x-204 5912872508567424 m001 HardHexagonsEntropy/ThueMorse*ZetaP(3) 5912872517508807 m001 (Totient+Thue)/(Pi+gamma) 5912872534397768 a007 Real Root Of -532*x^4+942*x^3-76*x^2+842*x-601 5912872554682297 a007 Real Root Of -568*x^4-149*x^3+629*x^2+606*x-478 5912872561341898 a007 Real Root Of 705*x^4+335*x^3-79*x^2-884*x-512 5912872596347027 m002 -1+Pi+4/Log[Pi]-Sinh[Pi] 5912872605380156 m001 (ln(Pi)+AlladiGrinstead)/(Artin-CareFree) 5912872622315064 a001 6557470319842/2207*843^(11/14) 5912872647527736 r005 Re(z^2+c),c=-71/64+29/61*I,n=4 5912872665464371 m001 (StronglyCareFree+Trott)/(gamma(3)-MertensB3) 5912872667051188 a007 Real Root Of 949*x^4-203*x^3-531*x^2-782*x+574 5912872684993258 m002 -4+Pi^5/5+Sinh[Pi]/6 5912872693441706 a007 Real Root Of 835*x^4+199*x^3+860*x^2-574*x-701 5912872693898641 r005 Im(z^2+c),c=-11/18+9/82*I,n=44 5912872731277982 m005 (1/2*2^(1/2)-9/11)/(4/7*Pi+1/12) 5912872768072094 r009 Re(z^3+c),c=-57/118+1/10*I,n=9 5912872790426734 a001 7/4181*514229^(34/35) 5912872798850719 l006 ln(2313/4178) 5912872813923207 m001 (LandauRamanujan+Thue)/(1+KhinchinHarmonic) 5912872839304558 h001 (3/4*exp(2)+1/7)/(1/11*exp(1)+5/7) 5912872852090081 m005 (1/2*exp(1)+8/11)/(1/3*2^(1/2)-4) 5912872854094133 m005 (1/2*gamma-9/11)/(1/12*2^(1/2)+7/9) 5912872871163015 a007 Real Root Of 625*x^4-106*x^3+518*x^2+251*x-131 5912872874911026 a001 29/5*3^(1/57) 5912872883023049 r009 Im(z^3+c),c=-65/126+22/37*I,n=10 5912872887448631 r009 Im(z^3+c),c=-1/27+17/23*I,n=19 5912872907146007 a005 (1/sin(98/209*Pi))^1335 5912872929928467 m001 Artin^PlouffeB/(GAMMA(5/6)^PlouffeB) 5912872954143162 m001 (-Stephens+Weierstrass)/(Bloch-ln(2)/ln(10)) 5912872975814433 r009 Im(z^3+c),c=-11/40+31/50*I,n=6 5912872995303576 a007 Real Root Of 698*x^4+201*x^3+438*x^2-861*x-706 5912873002275732 a007 Real Root Of -584*x^4+289*x^3-435*x^2-205*x+162 5912873002337648 m001 (Zeta(3)-GAMMA(2/3))/(sin(1/12*Pi)-ZetaQ(4)) 5912873030209127 a007 Real Root Of -286*x^4+947*x^3+113*x^2+255*x+342 5912873039426624 p004 log(17971/9949) 5912873045515947 m001 exp(BesselJ(1,1))^2*Rabbit*sin(Pi/5)^2 5912873059552561 r005 Re(z^2+c),c=-13/22+31/80*I,n=4 5912873079300239 r005 Re(z^2+c),c=-5/42+12/17*I,n=29 5912873080786813 m001 (Robbin+ThueMorse)/(Gompertz-PrimesInBinary) 5912873105470637 a007 Real Root Of -789*x^4+961*x^3-201*x^2+916*x+907 5912873106112713 m001 GAMMA(5/24)*exp(Conway)^2/Zeta(7) 5912873106809697 m001 (Backhouse-Landau)/(Porter+ZetaP(4)) 5912873107434178 r005 Re(z^2+c),c=-17/16+1/80*I,n=14 5912873109320801 r009 Im(z^3+c),c=-1/42+20/29*I,n=7 5912873138304073 m001 Backhouse*gamma^GAMMA(13/24) 5912873138304073 m001 gamma^GAMMA(13/24)*Backhouse 5912873178909000 g006 Psi(1,1/4)-Psi(1,5/11)-Psi(1,5/8)-Psi(1,6/7) 5912873213858042 m001 (-ln(2)+4)/(Lehmer+5) 5912873214761117 m001 1/Riemann2ndZero^2*ln(Backhouse)^2/cos(1) 5912873216629496 a001 4052739537881/2207*843^(6/7) 5912873225648556 q001 1208/2043 5912873225648556 r002 1i'th iterates of 2*x/(1-x^2) of 5912873225648556 r005 Im(z^2+c),c=-17/18+151/227*I,n=2 5912873232004345 m005 (1/2*5^(1/2)-2/5)/(5/7*exp(1)-8/11) 5912873234892817 r002 41th iterates of z^2 + 5912873236353404 r005 Im(z^2+c),c=-137/110+10/47*I,n=9 5912873248501227 l006 ln(5323/9615) 5912873253720964 r005 Re(z^2+c),c=-21/40+23/36*I,n=12 5912873280095225 m001 (-FeigenbaumAlpha+Salem)/(CareFree-exp(Pi)) 5912873296703253 r005 Im(z^2+c),c=-9/82+29/44*I,n=25 5912873314686988 a007 Real Root Of 868*x^4+186*x^3+476*x^2-421*x-483 5912873321180925 m001 (-FeigenbaumB+Riemann1stZero)/(Cahen-exp(Pi)) 5912873346122524 a007 Real Root Of -539*x^4+629*x^3+814*x^2+934*x-901 5912873375480381 m001 1/Salem^2/Cahen^2*ln(Zeta(3))^2 5912873390081651 a007 Real Root Of -819*x^4-291*x^3-812*x^2-431*x+69 5912873395893547 m005 (1/3*gamma+2/7)/(5/7*3^(1/2)-3/7) 5912873410541683 a001 3571/1346269*233^(5/34) 5912873410965324 p004 log(26993/73) 5912873411628033 r005 Im(z^2+c),c=-18/25+3/50*I,n=28 5912873433235689 h001 (3/7*exp(2)+7/11)/(1/12*exp(1)+5/12) 5912873438343630 a007 Real Root Of 953*x^4-443*x^3-926*x^2-955*x-449 5912873461782390 r002 2th iterates of z^2 + 5912873479106423 m001 (MinimumGamma+ZetaQ(4))/(exp(Pi)+ErdosBorwein) 5912873496513459 a007 Real Root Of -133*x^4-612*x^3+868*x^2-855*x+653 5912873514082272 a007 Real Root Of 4*x^4+228*x^3-510*x^2-384*x+98 5912873516357117 a007 Real Root Of 423*x^4-135*x^3-344*x^2-674*x+495 5912873522485211 l006 ln(2676/2839) 5912873523664075 m001 (Salem-Totient)/(Conway+MinimumGamma) 5912873524933671 r005 Re(z^2+c),c=-17/16+1/80*I,n=22 5912873526135581 r005 Re(z^2+c),c=-59/82+6/53*I,n=32 5912873533014215 r009 Re(z^3+c),c=-65/122+16/43*I,n=59 5912873574721653 m002 -3+6*Pi^4+Pi^2*Tanh[Pi] 5912873584462731 m005 (1/2*Pi+8/11)/(1/3*Catalan+1/12) 5912873593047389 m001 FeigenbaumKappa*exp(LaplaceLimit)^2*OneNinth^2 5912873594029992 l006 ln(3010/5437) 5912873597379427 m001 (-Mills+Otter)/(Si(Pi)-Zeta(1,2)) 5912873610498450 b008 Pi^2*Log[ArcCoth[2]] 5912873616132596 m001 1/exp(CareFree)^2/ArtinRank2/Lehmer 5912873640828501 r008 a(0)=6,K{-n^6,-29+43*n+42*n^2-45*n^3} 5912873648268495 m001 (Si(Pi)+Trott2nd)/(2^(1/2)-3^(1/2)) 5912873672010936 a007 Real Root Of -332*x^4+616*x^3+869*x^2+985*x-973 5912873715168191 a005 (1/sin(107/237*Pi))^1929 5912873721079522 r005 Im(z^2+c),c=-43/90+37/59*I,n=3 5912873741848879 a007 Real Root Of -225*x^4+616*x^3+707*x^2+301*x-525 5912873750266049 a007 Real Root Of 165*x^4+903*x^3-460*x^2-204*x-137 5912873759620102 b008 23*ArcCsch[2/13] 5912873763133406 a007 Real Root Of 838*x^4-736*x^3-689*x^2-447*x-278 5912873794413191 m005 (1/2*Pi-3/4)/(7/12*Pi-4/9) 5912873794920142 a007 Real Root Of 338*x^4-438*x^3-109*x^2-293*x-267 5912873802882702 a007 Real Root Of -324*x^4-548*x^3-993*x^2+263*x+429 5912873804490827 q001 4/67649 5912873810943989 a001 2504730781961/2207*843^(13/14) 5912873825513836 s002 sum(A153180[n]/(n*exp(n)+1),n=1..infinity) 5912873829156957 m001 (Robbin-Trott2nd)/(Magata-Riemann1stZero) 5912873839662412 m005 (1/2*Catalan+3/7)/(10/11*Catalan+2/3) 5912873842914872 a007 Real Root Of 485*x^4-719*x^3-177*x^2-142*x-230 5912873848376846 a007 Real Root Of 324*x^4-161*x^3+312*x^2-203*x-302 5912873861763096 r005 Re(z^2+c),c=-31/23+1/51*I,n=32 5912873925391209 m001 (Trott+Weierstrass)/(2^(1/2)-Lehmer) 5912873925568618 r002 20th iterates of z^2 + 5912873934964888 r002 3th iterates of z^2 + 5912873945699996 b008 (8*Sqrt[3])/5+Pi 5912873965044856 a007 Real Root Of -391*x^4+787*x^3-796*x^2+687*x+895 5912873970559330 m001 1/Trott^2/exp(Porter)^2/BesselJ(0,1) 5912873978727500 m001 Catalan^Magata*Tribonacci^Magata 5912873983789330 a007 Real Root Of 492*x^4+866*x^3+923*x^2-851*x-707 5912873990869617 m001 1/exp(TreeGrowth2nd)^2*Paris*Zeta(3)^2 5912874001295375 a001 4052739537881/521*521^(9/13) 5912874001389114 r009 Im(z^3+c),c=-11/74+53/54*I,n=32 5912874016480241 m001 1/Zeta(7)^2*GAMMA(5/6)^2/ln(cos(Pi/5)) 5912874028388603 a001 28143753123*34^(4/19) 5912874036488500 m001 (RenyiParking-exp(1/exp(1)))^Backhouse 5912874036488500 m001 (exp(1/exp(1))-RenyiParking)^Backhouse 5912874046767399 r009 Im(z^3+c),c=-43/110+33/37*I,n=2 5912874051333298 a001 1926/726103*233^(5/34) 5912874059105903 a007 Real Root Of -623*x^4+323*x^3-293*x^2-601*x-110 5912874075013446 r008 a(0)=6,K{-n^6,-20+52*n-50*n^2+30*n^3} 5912874088327561 a007 Real Root Of -583*x^4-192*x^3+452*x^2+728*x+304 5912874090185789 l006 ln(3707/6696) 5912874093533020 r005 Re(z^2+c),c=-107/102+3/23*I,n=44 5912874098181626 r002 2i'th iterates of 2*x/(1-x^2) of 5912874104393739 p001 sum(1/(461*n+72)/n/(32^n),n=1..infinity) 5912874116862520 r009 Re(z^3+c),c=-7/64+36/53*I,n=58 5912874135332515 m005 (1/2*exp(1)-1/2)/(-23/44+5/22*5^(1/2)) 5912874135511575 r005 Re(z^2+c),c=-17/16+1/80*I,n=26 5912874141463715 m001 1/OneNinth^2/Robbin^2/exp(BesselK(1,1))^2 5912874161452718 m005 (1/3*Zeta(3)+2/11)/(7/9*Catalan+3/11) 5912874187954195 r005 Re(z^2+c),c=-17/16+1/80*I,n=30 5912874191667617 r005 Re(z^2+c),c=-17/16+1/80*I,n=34 5912874191891658 r005 Re(z^2+c),c=-17/16+1/80*I,n=38 5912874191902854 r005 Re(z^2+c),c=-17/16+1/80*I,n=42 5912874191903245 r005 Re(z^2+c),c=-17/16+1/80*I,n=48 5912874191903248 r005 Re(z^2+c),c=-17/16+1/80*I,n=52 5912874191903249 r005 Re(z^2+c),c=-17/16+1/80*I,n=56 5912874191903249 r005 Re(z^2+c),c=-17/16+1/80*I,n=60 5912874191903249 r005 Re(z^2+c),c=-17/16+1/80*I,n=64 5912874191903249 r005 Re(z^2+c),c=-17/16+1/80*I,n=62 5912874191903249 r005 Re(z^2+c),c=-17/16+1/80*I,n=58 5912874191903249 r005 Re(z^2+c),c=-17/16+1/80*I,n=54 5912874191903250 r005 Re(z^2+c),c=-17/16+1/80*I,n=46 5912874191903251 r005 Re(z^2+c),c=-17/16+1/80*I,n=50 5912874191903297 r005 Re(z^2+c),c=-17/16+1/80*I,n=44 5912874191905547 r005 Re(z^2+c),c=-17/16+1/80*I,n=40 5912874191957063 r005 Re(z^2+c),c=-17/16+1/80*I,n=36 5912874192887889 r005 Re(z^2+c),c=-17/16+1/80*I,n=32 5912874199457037 r009 Re(z^3+c),c=-11/28+40/63*I,n=11 5912874205581185 r005 Re(z^2+c),c=-109/106+11/51*I,n=54 5912874205958905 m005 (1/2*2^(1/2)-1/7)/(3^(1/2)-7/9) 5912874207132275 r005 Re(z^2+c),c=-17/16+1/80*I,n=28 5912874209369348 m001 (ln(3)-Mills)/(PolyaRandomWalk3D+Trott) 5912874234026158 m001 (-FeigenbaumC+FeigenbaumMu)/(5^(1/2)+CareFree) 5912874253450503 a001 3536736619241/1926*843^(6/7) 5912874270036798 a007 Real Root Of -707*x^4+192*x^3-372*x^2-210*x+132 5912874285184731 a005 (1/cos(4/73*Pi))^1975 5912874285935107 m001 (ln(2^(1/2)+1)+gamma(3))/(FeigenbaumB+Robbin) 5912874289617341 m001 Zeta(1/2)^GAMMA(5/24)*GAMMA(23/24)^GAMMA(5/24) 5912874295440727 a007 Real Root Of -400*x^4+266*x^3-936*x^2+382*x+657 5912874299926706 a001 10610209857723/3571*843^(11/14) 5912874304777694 a007 Real Root Of -138*x^4+127*x^3-270*x^2+427*x+390 5912874305102168 m001 LambertW(1)^QuadraticClass/GAMMA(23/24) 5912874324795762 r005 Im(z^2+c),c=-71/58+3/29*I,n=12 5912874329449594 m005 (1/2*2^(1/2)-5/8)/(1/10*exp(1)-2/7) 5912874339190363 r009 Im(z^3+c),c=-17/60+25/29*I,n=4 5912874352675242 m001 (Landau-TreeGrowth2nd)/ZetaP(3) 5912874366485650 m005 (1/2*3^(1/2)-3/4)/(5/9*3^(1/2)+1) 5912874391392642 r005 Re(z^2+c),c=-17/16+1/80*I,n=24 5912874404873685 r009 Im(z^3+c),c=-23/64+13/21*I,n=27 5912874422158273 m001 Si(Pi)^(3^(1/3))/exp(sqrt(2)) 5912874429293166 l006 ln(4404/7955) 5912874435582072 r008 a(0)=6,K{-n^6,56+3*n^3-60*n^2+12*n} 5912874444914852 a007 Real Root Of -778*x^4+930*x^3-641*x^2-498*x+217 5912874465343720 a007 Real Root Of -17*x^4+25*x^3+900*x^2+863*x-415 5912874466314675 r005 Im(z^2+c),c=-67/56+4/49*I,n=39 5912874470864333 a001 29/165580141*987^(3/17) 5912874473160352 h001 (-8*exp(-1)+2)/(-4*exp(1/2)+5) 5912874488706578 a001 521/317811*6765^(8/55) 5912874500366362 a007 Real Root Of 535*x^4-907*x^3-351*x^2-847*x-631 5912874511249399 a005 (1/cos(6/127*Pi))^1827 5912874511659148 m001 (GAMMA(1/12)-ln(5)*GAMMA(7/12))/GAMMA(7/12) 5912874517392993 r009 Re(z^3+c),c=-3/122+37/46*I,n=18 5912874524586536 r005 Im(z^2+c),c=-89/78+4/57*I,n=10 5912874531826260 m001 (Riemann2ndZero-Trott)^Totient 5912874533187214 a007 Real Root Of -116*x^4+895*x^3-758*x^2-320*x+275 5912874560175672 m001 HardyLittlewoodC4*(GAMMA(3/4)+ArtinRank2) 5912874583795782 q001 2131/3604 5912874617019894 a007 Real Root Of 6*x^4-476*x^3-452*x^2-80*x+303 5912874621164671 a007 Real Root Of 902*x^4-55*x^3-30*x^2+122*x-39 5912874626743584 a007 Real Root Of -240*x^4+729*x^3+293*x^2+574*x+417 5912874629575659 r002 10th iterates of z^2 + 5912874638468535 r005 Re(z^2+c),c=-17/31+19/41*I,n=64 5912874650581538 p001 sum((-1)^n/(204*n+169)/(625^n),n=0..infinity) 5912874660057578 a007 Real Root Of -715*x^4+826*x^3-221*x^2-870*x-179 5912874675729357 l006 ln(5101/9214) 5912874676951125 r009 Re(z^3+c),c=-14/23+32/61*I,n=22 5912874685087560 a001 29/2971215073*12586269025^(3/17) 5912874685087577 a001 29/701408733*3524578^(3/17) 5912874703340855 m005 (1/2*Pi-1/10)/(2*Zeta(3)+1/12) 5912874706160839 a008 Real Root of x^4-18*x^2-80*x-120 5912874707282222 r009 Re(z^3+c),c=-49/82+26/51*I,n=52 5912874716199450 r005 Im(z^2+c),c=-13/12+7/102*I,n=22 5912874736259062 m001 sin(1/5*Pi)+gamma(3)*Niven 5912874741104626 a001 11/139583862445*13^(11/14) 5912874749616319 a003 sin(Pi*25/109)*sin(Pi*29/82) 5912874764535179 m005 (1/2*5^(1/2)+3)/(2/9*Catalan-9/10) 5912874802009496 h001 (-6*exp(5)+9)/(-5*exp(8)-3) 5912874811040513 a007 Real Root Of 744*x^4-973*x^3+850*x^2-260*x-743 5912874811748685 r002 2th iterates of z^2 + 5912874817464346 a007 Real Root Of -758*x^4+231*x^3+48*x^2+508*x+424 5912874847765099 a001 3278735159921/2889*843^(13/14) 5912874864355569 a007 Real Root Of 887*x^4-855*x^3+391*x^2-330*x-617 5912874865888991 m001 gamma(1)/(Porter^Landau) 5912874869897199 a001 199/55*13^(9/47) 5912874882474158 b008 (47*E^(1+Pi))/5 5912874894241307 a001 6557470319842/3571*843^(6/7) 5912874895839727 m001 Pi-Psi(2,1/3)-gamma+3^(1/3) 5912874905738636 m001 GAMMA(5/6)^2/exp(Khintchine)^2/Zeta(9) 5912874925896289 a001 47/89*39088169^(8/15) 5912874980852157 a001 3571/75025*1597^(1/34) 5912874993451404 m001 ln(Backhouse)/Artin/Conway^2 5912875005976164 r005 Im(z^2+c),c=-2/3+47/201*I,n=13 5912875007522351 a007 Real Root Of 322*x^4-876*x^3+416*x^2+81*x-318 5912875046612410 a003 cos(Pi*8/95)*sin(Pi*17/81) 5912875060214900 m001 (TreeGrowth2nd-ZetaP(3))/(GAMMA(7/12)+Otter) 5912875078121839 a007 Real Root Of -10*x^4+766*x^3+202*x^2+729*x+520 5912875081199527 s002 sum(A117261[n]/((2*n)!),n=1..infinity) 5912875086332729 a007 Real Root Of -143*x^4-760*x^3+372*x^2-887*x-567 5912875088155909 a001 2207/832040*233^(5/34) 5912875092525415 a001 10610209857723/9349*843^(13/14) 5912875103182792 a007 Real Root Of 245*x^4-150*x^3-425*x^2-924*x+696 5912875112066185 m001 1/Khintchine*Conway*exp(Paris)^2 5912875112898887 m001 sqrt(2)^GAMMA(1/6)*Cahen^GAMMA(1/6) 5912875122382484 r005 Re(z^2+c),c=-31/46+7/24*I,n=3 5912875131433789 m001 (-GAMMA(5/6)+Riemann1stZero)/(exp(Pi)-ln(Pi)) 5912875164677965 a007 Real Root Of 579*x^4-994*x^3+997*x^2+157*x-532 5912875169398802 r009 Re(z^3+c),c=-29/98+11/15*I,n=7 5912875171399525 a007 Real Root Of -435*x^4+873*x^3+9*x^2+126*x+305 5912875181236675 m006 (4/5*exp(Pi)+1/2)/(3/5*exp(2*Pi)+1/4) 5912875183179924 r005 Re(z^2+c),c=-77/114+11/37*I,n=23 5912875218160076 a007 Real Root Of 572*x^4-608*x^3+50*x^2-125*x-287 5912875223391152 r005 Re(z^2+c),c=-39/62+4/13*I,n=10 5912875248701242 a007 Real Root Of 434*x^4-444*x^3+781*x^2+311*x-234 5912875266376494 r002 2th iterates of z^2 + 5912875284148915 m001 cos(1/12*Pi)/(2^(1/2)+Ei(1,1)) 5912875328157298 a003 cos(Pi*11/111)*sin(Pi*16/75) 5912875331227688 m001 Catalan^2/ln(Porter)^2/cos(Pi/12) 5912875333724901 h001 (7/12*exp(1)+5/9)/(3/7*exp(2)+5/11) 5912875338510560 h002 exp(10^(7/3)-19^(7/5)) 5912875338510560 h007 exp(10^(7/3)-19^(7/5)) 5912875365278223 a007 Real Root Of -177*x^4-922*x^3+656*x^2-360*x+690 5912875376111681 a007 Real Root Of 903*x^4+196*x^3-572*x^2-927*x-418 5912875377062145 a001 9349/196418*1597^(1/34) 5912875383635397 m001 QuadraticClass^MertensB2/ZetaR(2) 5912875408861135 r002 2th iterates of z^2 + 5912875412002759 r009 Re(z^3+c),c=-35/66+9/44*I,n=7 5912875434868403 a001 24476/514229*1597^(1/34) 5912875442091458 a001 222915404166848/377 5912875445938046 a007 Real Root Of 82*x^4+609*x^3+865*x^2+731*x-256 5912875448514610 a001 39603/832040*1597^(1/34) 5912875470147954 r005 Im(z^2+c),c=23/102+19/40*I,n=14 5912875470594636 a001 15127/317811*1597^(1/34) 5912875488123752 a007 Real Root Of -384*x^4+620*x^3+962*x^2+662*x-809 5912875488555968 a001 4052739537881/3571*843^(13/14) 5912875501684727 a007 Real Root Of 832*x^4-294*x^3-352*x^2-338*x+282 5912875506289224 r005 Re(z^2+c),c=9/23+17/37*I,n=4 5912875509536428 a007 Real Root Of 283*x^4-765*x^3+871*x^2+682*x-94 5912875512597818 m005 (1/3*2^(1/2)+1/7)/(4/5*5^(1/2)-3/4) 5912875521467771 m006 (1/Pi-3/5)/(1/6*Pi-1) 5912875537716982 a007 Real Root Of 121*x^4-661*x^3+801*x^2-285*x-600 5912875593361671 a001 222915409869735/377 5912875594099629 r009 Re(z^3+c),c=-37/62+17/57*I,n=53 5912875610592499 m005 (1/3*5^(1/2)-2/5)/(8/11*2^(1/2)-4/9) 5912875615431697 a001 222915410701775/377 5912875618651671 a001 222915410823168/377 5912875619121458 a001 222915410840879/377 5912875619201458 a001 222915410843895/377 5912875619201671 a001 222915410843903/377 5912875619201697 a001 222915410843904/377 5912875619201803 a001 222915410843908/377 5912875619202360 a001 222915410843929/377 5912875619206180 a001 222915410844073/377 5912875619232360 a001 222915410845060/377 5912875619411803 a001 222915410851825/377 5912875621933385 a001 5778/121393*1597^(1/34) 5912875646937989 r002 33th iterates of z^2 + 5912875657846068 a007 Real Root Of -143*x^4-868*x^3-264*x^2-813*x-220 5912875673891682 a007 Real Root Of -282*x^4+658*x^3+51*x^2+283*x+320 5912875676922906 a001 6557470319842/521*521^(8/13) 5912875686851803 a001 222915413394313/377 5912875697658827 r005 Im(z^2+c),c=-7/12+13/61*I,n=8 5912875706181762 a007 Real Root Of 123*x^4-498*x^3-124*x^2-853*x-579 5912875706776706 m001 Zeta(9)*GAMMA(5/24)^2/ln(sqrt(Pi))^2 5912875707753963 a007 Real Root Of 272*x^4-308*x^3-847*x^2-810*x-45 5912875716147195 h001 (-9*exp(5)+3)/(-4*exp(4)-7) 5912875725060500 a007 Real Root Of 154*x^4-909*x^3-203*x^2-19*x-147 5912875757954327 a007 Real Root Of -833*x^4+748*x^3+355*x^2+429*x+386 5912875780769974 r009 Im(z^3+c),c=-37/110+44/61*I,n=32 5912875783546387 a007 Real Root Of 790*x^4-531*x^3+917*x^2-39*x-550 5912875793015843 m001 GaussKuzminWirsing/(GAMMA(19/24)-TwinPrimes) 5912875804009885 m005 (3*Catalan-2/5)/(33/10+3/10*5^(1/2)) 5912875810180366 a007 Real Root Of 78*x^4+445*x^3-168*x^2-588*x-953 5912875813011645 a003 cos(Pi*7/83)-sin(Pi*5/41) 5912875825731810 a001 10610209857723/1364*843^(9/14) 5912875827513871 r009 Im(z^3+c),c=-99/118+5/26*I,n=2 5912875827832114 r009 Im(z^3+c),c=-23/50+17/33*I,n=40 5912875830938860 a007 Real Root Of 218*x^4-261*x^3+4*x^2-597*x-435 5912875832960348 a003 cos(Pi*3/59)/cos(Pi*46/103) 5912875835932641 v002 sum(1/(5^n+(4*n^3-17*n^2+36*n)),n=1..infinity) 5912875857607990 r008 a(0)=6,K{-n^6,2+5*n^3-3*n^2+9*n} 5912875901024361 a007 Real Root Of -974*x^4+728*x^3-593*x^2+560*x+808 5912875906584470 a008 Real Root of (1-3*x^2+4*x^3-4*x^4-4*x^5) 5912875910816060 r005 Re(z^2+c),c=-13/12+35/102*I,n=6 5912875912560903 a007 Real Root Of 278*x^4+86*x^3-271*x^2-718*x-346 5912875931009153 k002 Champernowne real with 55*n^2-79*n+29 5912875949865351 r005 Im(z^2+c),c=-19/28+1/35*I,n=32 5912875961479292 r002 10th iterates of z^2 + 5912875965110680 m001 RenyiParking^(GAMMA(1/6)/GAMMA(7/24)) 5912875965958140 m001 GaussAGM^Grothendieck/GAMMA(3/4) 5912875965995745 r005 Re(z^2+c),c=-16/29+35/54*I,n=48 5912875978453634 m001 (-GAMMA(7/24)+2/3)/(-Catalan+5) 5912875996470526 m001 1/GAMMA(1/3)/ln(FeigenbaumD)^2*cosh(1) 5912876000374961 a007 Real Root Of 202*x^4-398*x^3+236*x^2-55*x-222 5912876001798788 m001 (Ei(1,1)*OneNinth-TwinPrimes)/OneNinth 5912876028123931 h001 (1/12*exp(1)+6/7)/(1/8*exp(2)+10/11) 5912876030929348 m005 (1/2*Pi+5/9)/(Pi+5/11) 5912876038861322 r005 Re(z^2+c),c=-3/4+7/46*I,n=13 5912876046718262 a007 Real Root Of -199*x^4+468*x^3-77*x^2+137*x+229 5912876052345689 m005 (1/2*exp(1)+6/11)/(8/9*Pi+3/7) 5912876056983496 r005 Re(z^2+c),c=-17/18+69/94*I,n=2 5912876064502487 m001 (cos(1/12*Pi)-sin(1/12*Pi))/(Cahen-Tribonacci) 5912876074281541 m001 (GAMMA(1/4)-GAMMA(23/24))/GAMMA(5/24) 5912876078895634 r002 4th iterates of z^2 + 5912876082882360 a001 222915428324665/377 5912876129382236 r008 a(0)=6,K{-n^6,20+27*n^3-21*n^2-14*n} 5912876144556979 a007 Real Root Of -657*x^4+623*x^3+855*x^2+984*x+492 5912876177631171 a003 cos(Pi*13/119)*cos(Pi*12/25) 5912876188175471 r005 Re(z^2+c),c=-67/106+13/29*I,n=57 5912876204010794 a007 Real Root Of 112*x^4-190*x^3+756*x^2-216*x-445 5912876222317393 m001 1/ln((2^(1/3)))^2/FeigenbaumD^2/BesselJ(1,1) 5912876225450583 m001 (BesselI(0,1)-cos(1))/(GAMMA(5/6)+Paris) 5912876232838232 l006 ln(697/1259) 5912876235059922 m001 (GAMMA(7/12)-Weierstrass)/(gamma(2)-Pi^(1/2)) 5912876245039634 m001 1/GAMMA(7/12)/exp(GAMMA(1/3))*log(2+sqrt(3)) 5912876250141222 h001 (-3*exp(-2)-5)/(-5*exp(3)+9) 5912876253371461 r005 Re(z^2+c),c=-17/16+1/80*I,n=20 5912876271872030 r009 Re(z^3+c),c=-13/126+30/49*I,n=21 5912876283574073 a007 Real Root Of 531*x^4-562*x^3-257*x^2+19*x-80 5912876361306854 q001 923/1561 5912876371385302 r002 4th iterates of z^2 + 5912876377806387 r005 Im(z^2+c),c=-49/46+1/15*I,n=12 5912876383986337 a007 Real Root Of -956*x^4-150*x^3-671*x^2+510*x+622 5912876410193119 m001 (exp(1)+HardyLittlewoodC3)/LambertW(1) 5912876411185329 m001 GAMMA(11/24)*GAMMA(1/3)/exp(sqrt(5))^2 5912876411360455 m005 (1/2*Pi-5/7)/(2/3*exp(1)-4/11) 5912876420046565 a001 3278735159921/682*843^(5/7) 5912876460084627 m001 GAMMA(5/6)*(KhinchinLevy-LaplaceLimit) 5912876460791925 s002 sum(A121857[n]/(n^3*exp(n)+1),n=1..infinity) 5912876463974780 a007 Real Root Of 960*x^4-472*x^3-601*x^2-413*x-249 5912876482442362 m001 (ErdosBorwein+Sarnak)/(2^(1/2)-exp(1/Pi)) 5912876489853792 p003 LerchPhi(1/125,4,353/174) 5912876494805056 s002 sum(A121854[n]/(n^3*exp(n)+1),n=1..infinity) 5912876525796176 a001 199/89*5702887^(4/19) 5912876526099669 m005 (1/3*gamma+1/8)/(17/40+1/20*5^(1/2)) 5912876528866470 a007 Real Root Of 225*x^4+289*x^3-214*x^2-410*x+230 5912876546718416 a007 Real Root Of -383*x^4-62*x^3+894*x^2+910*x-791 5912876628179341 a007 Real Root Of 639*x^4-617*x^3-13*x^2-541*x-521 5912876657359306 m005 (-29/44+1/4*5^(1/2))/(1/2*exp(1)+1/3) 5912876659224601 a001 2207/46368*1597^(1/34) 5912876672267871 a007 Real Root Of 6*x^4+360*x^3+325*x^2+938*x-163 5912876740378413 a007 Real Root Of 118*x^4+779*x^3+541*x^2+291*x-391 5912876751687807 a001 9349*6557470319842^(13/17) 5912876778649679 a007 Real Root Of -918*x^4-461*x^3-342*x^2+170*x+237 5912876814560882 r009 Im(z^3+c),c=-59/110+35/58*I,n=37 5912876817508906 m005 (1/2*exp(1)-2/9)/(1/10*gamma-1/4) 5912876819338165 a001 4870847*1836311903^(13/17) 5912876819341336 a001 2537720636*514229^(13/17) 5912876820807150 r009 Im(z^3+c),c=-23/48+13/27*I,n=23 5912876824580946 m001 1/MadelungNaCl/CareFree*exp(Riemann3rdZero) 5912876839207652 m005 (-7/4+1/4*5^(1/2))/(7/9*exp(1)-1/10) 5912876858356440 r005 Re(z^2+c),c=-7/12+22/51*I,n=27 5912876861265065 a007 Real Root Of 929*x^4-294*x^3+523*x^2-710*x-777 5912876875529169 m005 (1/2*2^(1/2)+3/8)/(4/5*3^(1/2)+4/9) 5912876883296644 a007 Real Root Of -880*x^4+282*x^3-738*x^2-174*x+321 5912876901733110 m001 1/exp(BesselJ(1,1))*Conway^2*cos(1) 5912876918150238 a007 Real Root Of 665*x^4-95*x^3+229*x^2+690*x+227 5912876937576331 r005 Re(z^2+c),c=-39/110+31/54*I,n=7 5912876980252008 r005 Re(z^2+c),c=19/78+13/34*I,n=63 5912877014281113 r005 Im(z^2+c),c=-13/22+4/37*I,n=38 5912877014361379 a001 4052739537881/1364*843^(11/14) 5912877016605768 m005 (5/6*2^(1/2)-2/5)/(4*Pi+3/5) 5912877029067992 m001 exp(Lehmer)*GaussKuzminWirsing*OneNinth 5912877044170520 a008 Real Root of x^3-336*x-1780 5912877056409139 m004 -30/Pi+5*Pi-Cos[Sqrt[5]*Pi]/3 5912877079282125 a003 cos(Pi*8/93)-cos(Pi*15/107) 5912877130369083 r009 Re(z^3+c),c=-13/126+31/49*I,n=22 5912877157471108 m008 (5/6*Pi^2+1)/(1/2*Pi^5+3) 5912877186953270 r005 Im(z^2+c),c=11/30+21/59*I,n=15 5912877213316783 a003 cos(Pi*12/91)*sin(Pi*19/85) 5912877214010464 a007 Real Root Of 7*x^4-878*x^3+487*x^2+456*x-83 5912877240845569 m001 1/GAMMA(17/24)*exp(KhintchineLevy)^2*sin(1)^2 5912877245632599 h001 (-4*exp(4)+4)/(-9*exp(6)+5) 5912877254187548 r009 Re(z^3+c),c=-13/118+29/42*I,n=54 5912877259636175 r009 Im(z^3+c),c=-37/110+28/39*I,n=32 5912877268908087 m001 (Tribonacci+ZetaP(2))/(Chi(1)-GAMMA(3/4)) 5912877277298149 r009 Re(z^3+c),c=-16/27+7/25*I,n=17 5912877281003107 a007 Real Root Of 188*x^4+937*x^3-929*x^2+505*x-633 5912877292255379 m001 (GaussAGM-LandauRamanujan)/(Ei(1)-CareFree) 5912877296223162 r005 Im(z^2+c),c=-29/46+23/53*I,n=4 5912877300497753 b008 1+14/E^(Pi/3) 5912877307647016 m001 (-MertensB1+Sarnak)/(BesselI(0,2)-Psi(1,1/3)) 5912877322453140 a001 196418/2207*18^(19/29) 5912877323008123 a007 Real Root Of 483*x^4-58*x^3+884*x^2-470*x-658 5912877323506493 r005 Im(z^2+c),c=-21/22+35/83*I,n=3 5912877352550912 a001 10610209857723/521*521^(7/13) 5912877354013344 m001 GAMMA(11/24)*ArtinRank2^2*ln(GAMMA(17/24))^2 5912877366738242 a007 Real Root Of 231*x^4+104*x^3-669*x^2-776*x+643 5912877391761203 r005 Re(z^2+c),c=-67/102+13/45*I,n=12 5912877395825510 m001 2*Pi/GAMMA(5/6)+Artin-Trott2nd 5912877406238186 m001 CopelandErdos*(BesselI(1,2)-Totient) 5912877415446306 m001 DuboisRaymond/ln(Conway)^2*MinimumGamma^2 5912877438548518 r005 Im(z^2+c),c=19/86+25/47*I,n=40 5912877447639496 m001 (ln(Pi)+Ei(1))/(Bloch+FeigenbaumDelta) 5912877464861370 a007 Real Root Of 157*x^4-782*x^3-447*x^2-660*x+689 5912877473609577 m009 (2*Psi(1,2/3)-3/5)/(4*Catalan+1/2*Pi^2+3/4) 5912877499941146 r008 a(0)=6,K{-n^6,39-51*n+64*n^2-41*n^3} 5912877502049022 r005 Im(z^2+c),c=-5/8+87/190*I,n=39 5912877510721595 m001 GAMMA(2/3)^2/FeigenbaumD^2*exp(Zeta(1/2)) 5912877536370142 a007 Real Root Of 200*x^4-857*x^3+386*x^2-547*x-660 5912877543379891 a001 2/987*514229^(43/55) 5912877579879339 a001 408569081798/305*34^(8/19) 5912877590716727 m001 (Otter+PolyaRandomWalk3D)/(Kac-Psi(2,1/3)) 5912877597340191 h001 (1/10*exp(2)+9/11)/(3/10*exp(2)+5/12) 5912877597571856 m005 (1/2*exp(1)+1/5)/(1/6*5^(1/2)-7/11) 5912877607355082 a007 Real Root Of -849*x^4-5*x^3-477*x^2-515*x-35 5912877608676253 a001 2504730781961/1364*843^(6/7) 5912877630548499 s002 sum(A227066[n]/(n*10^n-1),n=1..infinity) 5912877630703883 a007 Real Root Of -261*x^4+757*x^3+761*x^2+199*x+40 5912877642365736 m008 (3*Pi^6+3/5)/(5*Pi^4+5/6) 5912877654382599 m005 (1/2*Zeta(3)-7/12)/(3/10*2^(1/2)-1/8) 5912877683849975 r002 32i'th iterates of 2*x/(1-x^2) of 5912877716366653 l006 ln(5354/9671) 5912877719349941 m001 1/CareFree/GolombDickman^2*ln(Salem) 5912877725581050 a007 Real Root Of -904*x^4-112*x^3-895*x^2+879*x+920 5912877738006922 m001 (-gamma(2)+MertensB3)/(Catalan+GAMMA(2/3)) 5912877747794528 m001 (Thue+Weierstrass)/(ln(2^(1/2)+1)+exp(1/Pi)) 5912877773546241 a007 Real Root Of -67*x^4+315*x^3+881*x^2+384*x-592 5912877783391862 p001 sum(1/(516*n+179)/(5^n),n=0..infinity) 5912877792640145 p001 sum(1/(233*n+203)/(3^n),n=0..infinity) 5912877804998227 l006 ln(8225/8726) 5912877833806037 r008 a(0)=6,K{-n^6,33+3*n-38*n^2+17*n^3} 5912877879105189 m001 (5^(1/2)-exp(1/exp(1)))/(-Rabbit+Stephens) 5912877881515492 m005 (1/2*exp(1)+8/9)/(-11/24+3/8*5^(1/2)) 5912877910193562 a007 Real Root Of -141*x^4-998*x^3-879*x^2+399*x-871 5912877911620759 r002 17th iterates of z^2 + 5912877916537477 m001 Gompertz*ZetaR(2)^(Pi*2^(1/2)/GAMMA(3/4)) 5912877927052168 r002 6th iterates of z^2 + 5912877935350136 r005 Im(z^2+c),c=-43/82+27/46*I,n=8 5912877938402131 l006 ln(4657/8412) 5912877941975294 a007 Real Root Of 502*x^4-258*x^3-443*x^2-741*x+585 5912877965758367 r009 Im(z^3+c),c=-21/94+45/62*I,n=43 5912877966362317 a007 Real Root Of 279*x^4-611*x^3+392*x^2-431*x+210 5912877971914436 m001 Artin^Chi(1)/(Artin^GaussKuzminWirsing) 5912877972783622 h001 (1/4*exp(1)+6/7)/(5/8*exp(1)+9/10) 5912877983491259 a001 7/10946*20365011074^(17/22) 5912878002575231 a007 Real Root Of 818*x^4-894*x^3-700*x^2-903*x-574 5912878004672583 r005 Re(z^2+c),c=-79/106+1/35*I,n=31 5912878006192440 r002 48th iterates of z^2 + 5912878031675020 r005 Im(z^2+c),c=-4/25+13/16*I,n=30 5912878032052600 a007 Real Root Of 470*x^4-5*x^3+729*x^2-615*x-677 5912878032650362 a007 Real Root Of -437*x^4+870*x^3+829*x^2+417*x+190 5912878054387765 m005 (2/3*gamma-2)/(3*gamma+1) 5912878054387765 m007 (-2/3*gamma+2)/(-3*gamma-1) 5912878061410350 r002 3th iterates of z^2 + 5912878064889375 m001 FellerTornier^(BesselJ(1,1)*GAMMA(11/12)) 5912878097110209 m002 -1+Pi^2*Csch[Pi]+Sech[Pi] 5912878098211070 m001 exp(BesselJ(1,1))^2*DuboisRaymond^2/cosh(1) 5912878106436356 a001 1/1144206275*7778742049^(19/24) 5912878106602029 a001 11/1346269*75025^(19/24) 5912878113147537 a007 Real Root Of 289*x^4-437*x^3+255*x^2-489*x+255 5912878129398080 m001 (Psi(1,1/3)+ln(2)/ln(10))/(MertensB2+Sarnak) 5912878133266043 r005 Re(z^2+c),c=-17/32+34/59*I,n=17 5912878140889909 m001 gamma+MertensB1*ZetaQ(2) 5912878157377463 r002 21th iterates of z^2 + 5912878175584693 m002 (4*ProductLog[Pi])/Pi^3+Sinh[Pi]/2 5912878188948468 r008 a(0)=6,K{-n^6,35-38*n^3+53*n^2-39*n} 5912878192627824 r009 Re(z^3+c),c=-14/25+17/58*I,n=2 5912878199160915 m001 (HeathBrownMoroz-ZetaP(4))/(Zeta(3)-gamma(1)) 5912878202991186 a001 1134903780*843^(13/14) 5912878220182047 r005 Re(z^2+c),c=-5/56+13/15*I,n=43 5912878229987012 a001 3/199*5600748293801^(1/8) 5912878238598575 l006 ln(3960/7153) 5912878239394990 r009 Re(z^3+c),c=-18/29+11/21*I,n=58 5912878289676130 a007 Real Root Of -993*x^4+82*x^3-870*x^2+356*x+653 5912878291563428 r002 8th iterates of z^2 + 5912878302839649 a007 Real Root Of 916*x^4-907*x^3+591*x^2-470*x-784 5912878306451352 p003 LerchPhi(1/3,5,353/199) 5912878333152820 r009 Im(z^3+c),c=-43/82+14/23*I,n=7 5912878339566276 m001 1/GAMMA(1/12)^2*exp(Ei(1))*sinh(1) 5912878356757956 a001 2/47*505019158607^(13/15) 5912878356757956 a001 2/47*73681302247^(14/15) 5912878359248686 a001 514229/5778*18^(19/29) 5912878374878688 m001 (3^(1/3)+1/3)/(FeigenbaumAlpha+1/2) 5912878422389943 m001 1/GAMMA(1/6)*ln(Khintchine)*gamma^2 5912878446665100 m001 (ln(5)+MasserGramain)/(Otter+Thue) 5912878449026534 a007 Real Root Of 363*x^4-400*x^3+526*x^2+142*x-227 5912878453144449 m005 (-23/36+1/4*5^(1/2))/(2/7*gamma-3/10) 5912878458192836 m001 BesselK(1,1)^ln(Pi)*Shi(1) 5912878474779200 b008 17-5*Sqrt[21] 5912878501107312 m001 (Backhouse+Robbin)/(Pi+BesselJ(1,1)) 5912878510515148 a001 1346269/15127*18^(19/29) 5912878514551911 a002 10^(2/7)+18^(7/5) 5912878537461991 a007 Real Root Of -917*x^4+761*x^3-178*x^2-133*x+253 5912878538279604 r005 Re(z^2+c),c=-3/52+10/13*I,n=4 5912878546224317 a001 2178309/24476*18^(19/29) 5912878586522283 r009 Im(z^3+c),c=-45/98+21/43*I,n=11 5912878594215020 a007 Real Root Of -883*x^4+790*x^3+411*x^2+339*x+328 5912878604002967 a001 832040/9349*18^(19/29) 5912878612084090 m005 (1/3*3^(1/2)-1/6)/(11/12*Catalan-10/11) 5912878620592453 r005 Im(z^2+c),c=-5/6+7/201*I,n=31 5912878633407274 a003 sin(Pi*25/114)*sin(Pi*27/71) 5912878642553099 m002 (Pi^2*Cosh[Pi])/2+Sinh[Pi]/6 5912878667043194 l006 ln(3263/5894) 5912878708175308 m001 ZetaP(4)/(Riemann2ndZero^sin(1)) 5912878708389020 m006 (3*Pi-1/2)/(2/3*exp(Pi)-1/3) 5912878711053882 m001 KhinchinHarmonic-FeigenbaumB-arctan(1/3) 5912878717211819 a007 Real Root Of -975*x^4+655*x^3+527*x^2+796*x+541 5912878719353738 r005 Re(z^2+c),c=13/122+23/50*I,n=33 5912878724434229 m005 (1/3*gamma-2/9)/(2/7*3^(1/2)-4/9) 5912878735568143 r005 Re(z^2+c),c=-29/25+9/34*I,n=24 5912878758018828 m001 (2^(1/2)+Magata)/(-MasserGramain+MinimumGamma) 5912878784645982 m001 (Khinchin+StronglyCareFree)/(Bloch-Shi(1)) 5912878787878787 q001 1561/2640 5912878797316180 a001 222915530658820/377 5912878805817482 m005 (2/5*exp(1)-5/6)/(1/6*gamma+1/3) 5912878806636621 r002 4th iterates of z^2 + 5912878812870795 r005 Im(z^2+c),c=-19/30+56/121*I,n=20 5912878829880187 m001 (ln(2)/ln(10))^(Thue/ReciprocalLucas) 5912878835586667 m001 ZetaQ(2)^CareFree+arctan(1/2) 5912878844780012 a007 Real Root Of 172*x^4-957*x^3+438*x^2+230*x-236 5912878853642855 b008 -23/2+Sqrt[119] 5912878867045287 a007 Real Root Of 567*x^4-931*x^3+328*x^2-143*x-461 5912878877141169 a007 Real Root Of -500*x^4+752*x^3+217*x^2+770*x+596 5912878881545290 a007 Real Root Of -223*x^4+851*x^3+908*x^2+37*x-488 5912878886530475 m001 GaussAGM^exp(1)/MertensB2 5912878905014552 m005 (1/2*gamma-11/12)/(2/3*exp(1)-3/4) 5912878929748399 a007 Real Root Of -859*x^4+606*x^3-344*x^2+958*x+917 5912878942443378 r005 Re(z^2+c),c=-15/22+9/38*I,n=36 5912878942925041 a003 cos(Pi*9/77)*sin(Pi*19/87) 5912878979241550 r005 Re(z^2+c),c=-20/29+1/46*I,n=7 5912878988272333 m001 BesselI(1,2)^FeigenbaumC*Bloch^FeigenbaumC 5912879000023755 a001 317811/3571*18^(19/29) 5912879052787968 m005 (1/3*Zeta(3)-1/8)/(3/5*Catalan-1/12) 5912879056464603 r002 28th iterates of z^2 + 5912879058065451 m001 Riemann2ndZero/exp(Bloch)^2/Salem^2 5912879077155390 m001 1/2*LandauRamanujan/GAMMA(23/24)*2^(2/3) 5912879077155390 m001 LandauRamanujan/(2^(1/3))/GAMMA(23/24) 5912879089933681 r005 Re(z^2+c),c=-11/20+19/41*I,n=30 5912879093360521 r002 25th iterates of z^2 + 5912879096241570 r009 Im(z^3+c),c=-27/110+17/24*I,n=38 5912879110432423 l006 ln(13/4807) 5912879110510362 a007 Real Root Of -914*x^4-735*x^3-820*x^2+444*x+509 5912879112674054 a007 Real Root Of 945*x^4-495*x^3+242*x^2+109*x-238 5912879120563354 m001 1/ln(Ei(1))^2*FeigenbaumDelta/GAMMA(11/24) 5912879153824393 a007 Real Root Of 215*x^4-111*x^3+202*x^2+86*x-69 5912879169850568 r005 Im(z^2+c),c=-111/122+5/12*I,n=3 5912879180449294 a007 Real Root Of -386*x^4+698*x^3+600*x^2+58*x+16 5912879194025059 h001 (8/11*exp(2)+5/8)/(1/8*exp(2)+1/11) 5912879204351098 m001 BesselK(1,1)*exp(Khintchine)*sin(Pi/12)^2 5912879215459972 m001 (Trott2nd+ZetaQ(3))/(FellerTornier-MertensB1) 5912879222365119 a001 1/532*(1/2*5^(1/2)+1/2)^11*7^(4/17) 5912879234340758 r005 Re(z^2+c),c=-11/15+2/33*I,n=48 5912879240131782 m001 GlaisherKinkelin^2*ln(ArtinRank2)/Zeta(9) 5912879257431193 a001 233/15127*11^(23/41) 5912879276404384 p001 sum(1/(421*n+17)/(8^n),n=0..infinity) 5912879284049669 m005 (5/6*Pi+2/5)/(7/4+3/2*5^(1/2)) 5912879295405461 m001 GAMMA(5/12)^2*Rabbit*ln(Zeta(3)) 5912879298534985 a007 Real Root Of -812*x^4-81*x^3-654*x^2+891*x+838 5912879299343625 a007 Real Root Of -635*x^4+38*x^3-560*x^2-934*x-271 5912879311109792 a007 Real Root Of 875*x^4-794*x^3+143*x^2-355*x-531 5912879316541854 a003 cos(Pi*16/107)*sin(Pi*3/13) 5912879319596803 a007 Real Root Of 32*x^4-891*x^3+379*x^2-185*x-430 5912879328243737 l006 ln(2566/4635) 5912879340133435 m001 (5^(1/2)-Backhouse)/(Landau+StronglyCareFree) 5912879340339478 r005 Im(z^2+c),c=-2/7+34/55*I,n=15 5912879351315631 a007 Real Root Of -446*x^4+722*x^3-890*x^2-673*x+117 5912879362039359 a007 Real Root Of 79*x^4+504*x^3+313*x^2+694*x+785 5912879388469101 b008 63*SphericalBesselJ[0,7] 5912879388469101 b008 9*Sin[7] 5912879422897696 a007 Real Root Of -694*x^4+957*x^3-184*x^2+482*x+632 5912879445333179 a001 29/9227465*46368^(1/17) 5912879445365546 a001 29/24157817*591286729879^(1/17) 5912879445365554 a001 29/14930352*165580141^(1/17) 5912879446109591 r009 Im(z^3+c),c=-47/102+1/2*I,n=14 5912879464583627 m001 GAMMA(1/24)^2/Khintchine/ln(cos(Pi/12)) 5912879476264337 r005 Re(z^2+c),c=-2/15+39/56*I,n=5 5912879478674724 a007 Real Root Of 747*x^4+597*x^3+882*x^2-994*x-864 5912879483672403 a001 1/8*34^(26/59) 5912879486906115 r002 3th iterates of z^2 + 5912879486931378 b008 -1/54+Sinh[EulerGamma] 5912879497011446 r009 Re(z^3+c),c=-65/106+14/59*I,n=6 5912879500942068 r002 62th iterates of z^2 + 5912879510653378 a003 cos(Pi*13/79)*sin(Pi*5/21) 5912879519817785 m001 CopelandErdos/(Rabbit^FeigenbaumD) 5912879520957367 m005 (1/3*5^(1/2)+2/11)/(5/12*5^(1/2)+7/11) 5912879523763183 r002 24th iterates of z^2 + 5912879554188224 r005 Im(z^2+c),c=-1/90+33/56*I,n=8 5912879587061718 g007 Psi(2,7/9)+Psi(2,4/9)-Psi(2,3/11)-Psi(13/10) 5912879588961132 m001 (ln(Pi)-GAMMA(5/6))/(Khinchin+Trott) 5912879623021631 a005 (1/cos(3/106*Pi))^449 5912879655148578 r005 Re(z^2+c),c=-43/56+10/39*I,n=9 5912879656614498 r005 Im(z^2+c),c=1/102+37/57*I,n=12 5912879663595086 r005 Re(z^2+c),c=-7/82+13/19*I,n=34 5912879669467635 r005 Im(z^2+c),c=13/30+13/56*I,n=17 5912879679784676 m001 BesselK(1,1)*ln(MinimumGamma)*sin(Pi/12) 5912879681105670 m001 (Robbin-Trott)/(ln(Pi)-MertensB2) 5912879707355537 a007 Real Root Of 366*x^4-776*x^3-489*x^2-212*x+412 5912879724398179 a007 Real Root Of -912*x^4+915*x^3-101*x^2+384*x+563 5912879726101911 r008 a(0)=6,K{-n^6,-52+38*n+51*n^2-24*n^3} 5912879735771492 m001 (-MinimumGamma+ZetaQ(4))/(BesselK(1,1)-gamma) 5912879751877171 a007 Real Root Of 498*x^4-60*x^3+635*x^2+36*x-274 5912879781347857 r005 Re(z^2+c),c=-6/13+31/57*I,n=22 5912879786026960 r005 Im(z^2+c),c=-3/38+3/44*I,n=6 5912879793106005 m001 (FeigenbaumDelta+ZetaQ(2))^ln(Pi) 5912879806399569 q001 2199/3719 5912879813966638 m005 (1/2*2^(1/2)-3/10)/(3/11*2^(1/2)-5/11) 5912879814714369 l006 ln(4435/8011) 5912879855333969 r005 Im(z^2+c),c=1/98+35/53*I,n=58 5912879870236011 l006 ln(5549/5887) 5912879882343732 m001 GAMMA(11/12)/(BesselI(1,2)+DuboisRaymond) 5912879882410924 r002 52th iterates of z^2 + 5912879892154716 r005 Im(z^2+c),c=-85/118+8/23*I,n=17 5912879898909210 b008 -63+Log[48] 5912879951487573 a007 Real Root Of 945*x^4-340*x^3+631*x^2-116*x-475 5912879956977395 m001 GAMMA(2/3)*ln(OneNinth)^2*Zeta(1,2)^2 5912879993838649 a007 Real Root Of 134*x^4-348*x^3+821*x^2-730*x-807 5912879995002341 r005 Im(z^2+c),c=-13/22+13/118*I,n=23 5912880062293253 m001 ln(3)/(ZetaQ(2)^Stephens) 5912880062949327 a007 Real Root Of -590*x^4-851*x^3-508*x^2+643*x+454 5912880063963803 a007 Real Root Of 946*x^4+694*x^3+758*x^2-847*x-738 5912880082539744 m001 LambertW(1)+ln(2^(1/2)+1)*Trott2nd 5912880086890712 r009 Re(z^3+c),c=-73/122+10/19*I,n=40 5912880112481621 m001 GAMMA(7/24)/(exp(gamma)-(2^(1/3))) 5912880112512302 a007 Real Root Of -124*x^4-635*x^3+472*x^2-564*x+463 5912880119425726 a003 cos(Pi*27/73)-sin(Pi*19/42) 5912880149586905 m001 (-Otter+Totient)/(Chi(1)+Ei(1)) 5912880172974066 a007 Real Root Of -675*x^4+21*x^3-935*x^2+430*x+668 5912880174170701 a007 Real Root Of 10*x^4+603*x^3+694*x^2+71*x-992 5912880183051956 a001 199/13*12586269025^(15/23) 5912880183366113 h001 (-8*exp(3/2)+5)/(-9*exp(-2)-4) 5912880185699096 h001 (10/11*exp(2)+8/9)/(1/6*exp(1)+5/6) 5912880221969701 r009 Im(z^3+c),c=-10/21+27/47*I,n=10 5912880224391546 a007 Real Root Of -637*x^4+257*x^3-145*x^2+584*x+527 5912880234998696 r009 Im(z^3+c),c=-61/98+9/19*I,n=43 5912880235497389 a001 47/317811*233^(15/59) 5912880286757891 a007 Real Root Of 38*x^4+100*x^3-768*x^2-307*x-741 5912880294313846 a001 2139295485799/1597*34^(8/19) 5912880336126628 r009 Re(z^3+c),c=-9/94+5/7*I,n=17 5912880353036597 m001 (Cahen+Kac)/(Pi^(1/2)+Artin) 5912880361300042 m001 BesselK(1,1)-OneNinth*Paris 5912880363422475 r005 Im(z^2+c),c=-5/21+29/46*I,n=24 5912880367562992 a007 Real Root Of -446*x^4+643*x^3-259*x^2-345*x+74 5912880383385440 a007 Real Root Of -858*x^4+564*x^3+92*x^2+193*x-158 5912880393112636 r002 18th iterates of z^2 + 5912880410312325 m001 DuboisRaymond/(MasserGramainDelta+Porter) 5912880425760940 m005 (1/2*Zeta(3)+8/11)/(9/10*exp(1)-1/5) 5912880448538744 a003 sin(Pi*16/79)*sin(Pi*52/111) 5912880451562497 a001 192900153618/55*377^(10/21) 5912880457924919 s002 sum(A176899[n]/(n*exp(n)-1),n=1..infinity) 5912880471274604 m005 (1/2*3^(1/2)+4/5)/(7/9*2^(1/2)-9/11) 5912880474898009 a007 Real Root Of -894*x^4+995*x^3-462*x^2+608*x+836 5912880482602848 l006 ln(1869/3376) 5912880483043045 r002 12i'th iterates of 2*x/(1-x^2) of 5912880498106009 m001 (ln(2)/ln(10)+ln(3))/(-Riemann3rdZero+Totient) 5912880501621025 r009 Im(z^3+c),c=-2/9+39/44*I,n=11 5912880567651660 m001 (ln(2)-ln(5))/(Lehmer-RenyiParking) 5912880571713259 a007 Real Root Of 587*x^4-615*x^3-131*x^2-710*x+521 5912880576654531 r008 a(0)=6,K{-n^6,7+27*n+3*n^2-26*n^3} 5912880592385154 h001 (10/11*exp(2)+2/9)/(1/8*exp(2)+1/4) 5912880630640021 r005 Im(z^2+c),c=-145/118+5/33*I,n=31 5912880634629709 g001 GAMMA(5/7,57/119) 5912880652669027 r005 Re(z^2+c),c=11/86+24/49*I,n=42 5912880663286047 r005 Im(z^2+c),c=29/98+26/61*I,n=50 5912880685014549 r005 Re(z^2+c),c=3/23+28/57*I,n=61 5912880690344712 a001 5600748293801/4181*34^(8/19) 5912880691133809 m001 (-ThueMorse+ZetaQ(4))/(2^(1/3)-BesselI(1,1)) 5912880704594952 r002 4th iterates of z^2 + 5912880705755954 r005 Im(z^2+c),c=-3/31+33/50*I,n=29 5912880706402022 m001 (polylog(4,1/2)+FeigenbaumMu)/(Lehmer+Paris) 5912880711095256 m001 Trott2nd^PlouffeB*Trott2nd^BesselI(1,2) 5912880721504364 a007 Real Root Of -720*x^4+735*x^3-819*x^2+424*x+777 5912880732519546 r005 Re(z^2+c),c=13/106+29/61*I,n=29 5912880733876933 r005 Im(z^2+c),c=21/82+20/51*I,n=3 5912880748124841 a001 7331474697802/5473*34^(8/19) 5912880759009127 m001 Lehmer/DuboisRaymond^2/ln(Riemann1stZero) 5912880761529596 a001 377/521*14662949395604^(19/21) 5912880761764879 a001 23725150497407/17711*34^(8/19) 5912880764143686 r002 21th iterates of z^2 + 5912880775772757 a007 Real Root Of 999*x^4+711*x^3+582*x^2-70*x-220 5912880783834925 a001 3020733700601/2255*34^(8/19) 5912880789898186 p001 sum(1/(581*n+17)/(6^n),n=0..infinity) 5912880810804294 r005 Im(z^2+c),c=-71/60+5/27*I,n=42 5912880838434434 m001 cosh(1)/Psi(1,1/3)/Sierpinski 5912880855204114 m001 1/ln(Trott)/RenyiParking*sqrt(2)^2 5912880857731916 a001 34/64079*2^(5/32) 5912880872024218 a001 956722026041/199*199^(10/11) 5912880895699469 a007 Real Root Of 925*x^4-425*x^3-384*x^2-146*x-153 5912880918337841 m009 (3/8*Pi^2-4/5)/(3/4*Psi(1,3/4)+3) 5912880922666897 m001 (GAMMA(5/24)-Zeta(3))/cos(1) 5912880922666897 m001 (Pi*csc(5/24*Pi)/GAMMA(19/24)-Zeta(3))/cos(1) 5912880935105274 a001 1730726404001/1292*34^(8/19) 5912880959307376 m001 (Backhouse-Bloch)/(Tribonacci-ZetaP(3)) 5912880984831636 m001 Zeta(1,2)^(exp(Pi)*Ei(1)) 5912880987280639 a007 Real Root Of -112*x^4-511*x^3+984*x^2+645*x+677 5912880998317138 r005 Re(z^2+c),c=-53/82+19/62*I,n=26 5912881008035002 a007 Real Root Of 94*x^4-622*x^3+417*x^2-352*x-494 5912881037615359 a007 Real Root Of -487*x^4+578*x^3-132*x^2+639*x+603 5912881040703458 r005 Im(z^2+c),c=-8/11+7/55*I,n=24 5912881049320431 r002 34th iterates of z^2 + 5912881085878860 l006 ln(4910/8869) 5912881100543249 a007 Real Root Of 201*x^4+434*x^3+274*x^2-694*x-441 5912881102774491 m005 (1/2*exp(1)-7/11)/(3/11*3^(1/2)+3/4) 5912881105892348 r005 Re(z^2+c),c=-147/122+11/47*I,n=11 5912881112129268 a007 Real Root Of -292*x^4+921*x^3-35*x^2+329*x-337 5912881121180071 r009 Im(z^3+c),c=-51/86+23/48*I,n=42 5912881169653753 r002 34th iterates of z^2 + 5912881185122566 a007 Real Root Of -20*x^4+944*x^3+966*x^2-202*x-411 5912881192818190 a007 Real Root Of -113*x^4-571*x^3-785*x^2+967*x+742 5912881212497034 a007 Real Root Of 303*x^4+778*x^3+920*x^2-741*x-636 5912881224737681 r002 33i'th iterates of 2*x/(1-x^2) of 5912881240709736 a007 Real Root Of -850*x^4+259*x^3-28*x^2+348*x+373 5912881242278465 r005 Re(z^2+c),c=-33/26+40/119*I,n=9 5912881243535568 r008 a(0)=6,K{-n^6,5+28*n-21*n^2+3*n^3} 5912881247575835 s002 sum(A259214[n]/(n^2*exp(n)-1),n=1..infinity) 5912881251464015 m001 Sierpinski*(Si(Pi)+Riemann2ndZero) 5912881255103995 r009 Re(z^3+c),c=-41/106+29/44*I,n=14 5912881284889606 m001 Zeta(3)^GAMMA(11/12)/gamma(3) 5912881305569637 r005 Im(z^2+c),c=23/78+19/45*I,n=6 5912881319252570 a007 Real Root Of 495*x^4-112*x^3-612*x^2-814*x-351 5912881325547642 r002 32th iterates of z^2 + 5912881350333857 m001 (ArtinRank2-MinimumGamma)/(Porter-ZetaP(3)) 5912881354992840 r009 Im(z^3+c),c=-35/106+25/36*I,n=42 5912881365918514 a007 Real Root Of 750*x^4-309*x^3-715*x^2-480*x+506 5912881383034495 m001 exp(FeigenbaumKappa)^2/Khintchine*GAMMA(11/12) 5912881383716821 m001 1/ln(TreeGrowth2nd)^2*Conway^2*GAMMA(1/24) 5912881430869517 a007 Real Root Of 441*x^4-566*x^3+358*x^2-514*x-600 5912881443780024 m001 Pi^(1/2)*FeigenbaumMu-PrimesInBinary 5912881456652557 l006 ln(3041/5493) 5912881507443649 a007 Real Root Of 907*x^4-271*x^3+832*x^2-112*x-524 5912881513950747 m001 1/GAMMA(13/24)/Lehmer^2*exp(GAMMA(3/4)) 5912881540750477 r009 Im(z^3+c),c=-27/98+31/50*I,n=6 5912881540889753 a003 cos(Pi*34/113)/sin(Pi*41/90) 5912881543595159 m008 (3/4*Pi^4-2/3)/(4*Pi^5+1/5) 5912881549592221 a001 7/10946*121393^(42/43) 5912881569092661 a001 9/4*377^(27/49) 5912881578760344 m001 (2^(1/2)+sin(1))/(Otter+Thue) 5912881579616970 a001 3010349*6557470319842^(11/17) 5912881579617623 a001 599074578*1836311903^(11/17) 5912881579620517 a001 119218851371*514229^(11/17) 5912881583503725 a007 Real Root Of -319*x^4+13*x^3-884*x^2+430*x+605 5912881628954217 r002 47th iterates of z^2 + 5912881638358674 a003 cos(Pi*23/83)*sin(Pi*27/73) 5912881675837697 m001 BesselK(1,1)/MadelungNaCl*ln(GAMMA(1/6)) 5912881691258912 r009 Im(z^3+c),c=-29/52+25/62*I,n=8 5912881694300278 a007 Real Root Of -217*x^4+712*x^3-408*x^2-831*x-175 5912881705292590 a007 Real Root Of 597*x^4+580*x^3+668*x^2-163*x-283 5912881706344184 r004 Im(z^2+c),c=5/46-3/4*I,z(0)=exp(5/24*I*Pi),n=2 5912881714392044 a001 121393/1364*18^(19/29) 5912881721413471 p001 sum((-1)^n/(287*n+169)/(512^n),n=0..infinity) 5912881732308407 a007 Real Root Of 107*x^4+477*x^3-879*x^2+124*x-718 5912881734824839 m001 sin(1)/(CareFree-Pi*csc(5/12*Pi)/GAMMA(7/12)) 5912881778241448 a007 Real Root Of 720*x^4+642*x^3+887*x^2-850*x-768 5912881784562300 m001 (FellerTornier+TreeGrowth2nd)/(Pi-Si(Pi)) 5912881821176578 r009 Im(z^3+c),c=-57/110+5/12*I,n=18 5912881854682303 m001 Ei(1)*MertensB1^Sierpinski 5912881854887311 a007 Real Root Of 987*x^4-686*x^3-133*x^2-995*x+656 5912881868478676 r005 Im(z^2+c),c=19/106+11/21*I,n=21 5912881887165533 l006 ln(8422/8935) 5912881888767149 l006 ln(4213/7610) 5912881912539376 a007 Real Root Of 916*x^4-425*x^3+298*x^2-323*x-495 5912881926003670 a007 Real Root Of -611*x^4-22*x^3-22*x^2+210*x+202 5912881927752334 r005 Im(z^2+c),c=-23/44+30/53*I,n=43 5912881959781778 r005 Re(z^2+c),c=25/98+24/61*I,n=64 5912881968605842 r009 Im(z^3+c),c=-10/19+3/31*I,n=33 5912881971927878 a001 440719107401/329*34^(8/19) 5912881975053474 m001 CopelandErdos+PlouffeB*RenyiParking 5912881986854796 m001 (Ei(1,1)-sin(1))/(-GAMMA(5/6)+ZetaP(4)) 5912882002141581 a007 Real Root Of 603*x^4-970*x^3-557*x^2-975*x-656 5912882065899828 h001 (4/7*exp(2)+9/11)/(3/11*exp(1)+1/9) 5912882086447964 a007 Real Root Of -17*x^4-991*x^3+830*x^2-546*x-695 5912882108651342 m001 (Conway*StronglyCareFree-Grothendieck)/Conway 5912882122121111 k006 concat of cont frac of 5912882132789513 l006 ln(5385/9727) 5912882140055774 m001 Zeta(1,-1)+StronglyCareFree^ln(3) 5912882149944818 a007 Real Root Of -907*x^4+570*x^3-978*x^2+371*x+790 5912882159103047 m001 1-arctan(1/2)*QuadraticClass 5912882159470206 m001 (arctan(1/3)*OneNinth+BesselK(1,1))/OneNinth 5912882187680437 m001 Pi-Psi(2,1/3)-Catalan+exp(gamma) 5912882194643812 a001 1/377*233^(5/34) 5912882200328251 m008 (3*Pi+1/3)/(1/2*Pi^3+1) 5912882214673265 h001 (6/11*exp(1)+3/7)/(4/11*exp(2)+6/11) 5912882221443059 r009 Im(z^3+c),c=-47/82+19/32*I,n=40 5912882234688609 a007 Real Root Of 988*x^4+250*x^3-358*x^2-565*x-278 5912882236054002 r008 a(0)=6,K{-n^6,-5-31*n+48*n^2} 5912882262230954 r005 Re(z^2+c),c=-61/90+4/41*I,n=5 5912882269046857 r009 Re(z^3+c),c=-8/23+32/33*I,n=2 5912882282129580 a007 Real Root Of -503*x^4+970*x^3-196*x^2+865*x+842 5912882298424467 q001 638/1079 5912882298424467 r005 Im(z^2+c),c=-35/26+29/83*I,n=2 5912882304324547 m001 (ln(3)-ReciprocalLucas)/MinimumGamma 5912882331651320 r005 Im(z^2+c),c=-53/94+33/50*I,n=25 5912882356613806 a007 Real Root Of -135*x^4-798*x^3-93*x^2-529*x+173 5912882365120039 a007 Real Root Of 801*x^4-596*x^3+428*x^2-638*x-748 5912882367011474 a003 sin(Pi*14/71)/sin(Pi*29/66) 5912882367997410 a007 Real Root Of -696*x^4+598*x^3+590*x^2-135*x-165 5912882379671202 a007 Real Root Of -207*x^4+650*x^3-406*x^2-801*x-172 5912882406089248 m001 (-GAMMA(5/6)+MasserGramain)/(3^(1/2)-Catalan) 5912882417710607 r009 Re(z^3+c),c=-57/98+19/40*I,n=22 5912882434739264 r009 Re(z^3+c),c=-5/48+22/35*I,n=48 5912882449284520 a008 Real Root of (-1-x+x^2-x^5-x^6-x^7+x^8+x^9-x^12) 5912882488418061 r005 Im(z^2+c),c=17/64+11/25*I,n=19 5912882498133654 a007 Real Root Of -226*x^4+847*x^3-999*x^2+252*x+701 5912882498160407 h003 exp(Pi*(18^(1/7)+3^(7/3))) 5912882498160407 h008 exp(Pi*(18^(1/7)+3^(7/3))) 5912882500061694 m005 (1/2*exp(1)-2/3)/(7/11*Catalan-7/10) 5912882513796011 m001 1/FeigenbaumB/ln(MertensB1)*TwinPrimes 5912882521035439 a007 Real Root Of -246*x^4+45*x^3+21*x^2+279*x+197 5912882526760155 a001 46368/11*7^(4/23) 5912882550774544 g001 GAMMA(7/11,44/93) 5912882551508481 s001 sum(exp(-Pi/2)^n*A005412[n],n=1..infinity) 5912882567990379 r005 Im(z^2+c),c=-36/31+5/58*I,n=7 5912882572754106 r002 17th iterates of z^2 + 5912882573330590 r005 Im(z^2+c),c=-17/74+25/41*I,n=4 5912882583362619 m006 (3*ln(Pi)-1/4)/(1/4*exp(Pi)-2/5) 5912882627387457 b008 68/3+Pi^Pi 5912882639582394 r005 Re(z^2+c),c=3/32+31/49*I,n=6 5912882675487093 r009 Im(z^3+c),c=-5/38+45/61*I,n=21 5912882681026751 r008 a(0)=6,K{-n^6,65-30*n^3+44*n^2-68*n} 5912882683664044 m001 BesselJ(0,1)^2/Niven^2/exp(GAMMA(3/4)) 5912882700940624 r002 8th iterates of z^2 + 5912882743922281 a007 Real Root Of -34*x^4+301*x^3+978*x^2+482*x-685 5912882744093095 m001 1/exp(Ei(1))*CopelandErdos^2*sin(1)^2 5912882747534409 a003 cos(Pi*23/85)*sin(Pi*35/99) 5912882753053033 a007 Real Root Of -152*x^4+955*x^3-518*x^2-286*x+228 5912882766815855 a007 Real Root Of 141*x^4+715*x^3-534*x^2+825*x-994 5912882771451263 r005 Re(z^2+c),c=-49/34+23/109*I,n=2 5912882784344439 m001 GaussAGM^arctan(1/3)*GaussAGM^Sierpinski 5912882786252896 r005 Im(z^2+c),c=-11/86+43/54*I,n=14 5912882797090814 a007 Real Root Of -783*x^4-588*x^3-645*x^2+535*x+516 5912882817432292 m001 (Pi-1)/(Zeta(5)+Sierpinski) 5912882821943228 r005 Re(z^2+c),c=-43/60+5/44*I,n=9 5912882834853060 r005 Im(z^2+c),c=35/102+13/42*I,n=4 5912882873768783 m001 (Kac-Riemann3rdZero)/(3^(1/3)-2*Pi/GAMMA(5/6)) 5912882874860216 v002 sum(1/(3^n+(8*n^2-23*n+61)),n=1..infinity) 5912882884158150 a007 Real Root Of 159*x^4+810*x^3-781*x^2-112*x-262 5912882886659811 r009 Im(z^3+c),c=-59/110+19/50*I,n=54 5912882934815881 m001 1/FeigenbaumKappa^2/exp(Rabbit)/GAMMA(5/12)^2 5912882946845187 m001 (GAMMA(3/4)-Conway)/(Robbin+TwinPrimes) 5912882960471357 m005 (1/3*Zeta(3)-1/12)/(1/4*exp(1)-1/7) 5912882975144502 m001 Robbin/ln(MinimumGamma)^2/log(1+sqrt(2))^2 5912882977038795 a003 cos(Pi*7/120)-sin(Pi*5/39) 5912882983501905 a007 Real Root Of 43*x^4+239*x^3-103*x^2-15*x+359 5912882986506623 a001 7/3*4807526976^(13/17) 5912882995919453 a005 (1/sin(97/217*Pi))^293 5912883003494317 p001 sum((-1)^n/(353*n+167)/(25^n),n=0..infinity) 5912883009979072 l006 ln(1172/2117) 5912883016616464 r009 Re(z^3+c),c=-49/82+9/31*I,n=37 5912883034398752 m001 (-Totient+Trott2nd)/(Catalan+Conway) 5912883041276563 r005 Im(z^2+c),c=-1/8+4/55*I,n=5 5912883045920976 m001 (Porter-Trott)/(GAMMA(7/12)-GlaisherKinkelin) 5912883066538752 r009 Re(z^3+c),c=-23/86+32/33*I,n=9 5912883077256107 a007 Real Root Of 304*x^4+64*x^3-516*x^2-920*x+674 5912883081698679 p003 LerchPhi(1/2,5,40/57) 5912883091725510 m005 (1/4*Catalan+5/6)/(3/5*gamma-1/6) 5912883111129939 m008 (2/5*Pi^2+1/3)/(3/4*Pi^6+3) 5912883141979407 m001 (TreeGrowth2nd+ThueMorse)/(5^(1/2)-Kolakoski) 5912883143729783 r005 Re(z^2+c),c=-3/4+5/152*I,n=39 5912883152376305 m001 1/Riemann1stZero^2*ln(Cahen)*GAMMA(1/3) 5912883152880389 a007 Real Root Of 269*x^4+29*x^3+966*x^2+319*x-176 5912883205475342 a007 Real Root Of 913*x^4+533*x^3-945*x^2-919*x+652 5912883241542654 p004 log(36847/20399) 5912883252465649 m005 (1/3*5^(1/2)+2/9)/(5/7*Zeta(3)+7/9) 5912883253794468 m006 (1/3*Pi^2-1)/(2/5/Pi-4) 5912883256985360 m001 gamma^(3^(1/2))/(gamma^StronglyCareFree) 5912883263571868 r005 Im(z^2+c),c=-13/122+39/59*I,n=34 5912883266188331 m001 (-BesselI(1,2)+Sierpinski)/(GAMMA(3/4)-Shi(1)) 5912883318385043 a007 Real Root Of 11*x^4+636*x^3-851*x^2+85*x-114 5912883343311003 m001 (cos(1)+Gompertz)/(MadelungNaCl+ZetaP(3)) 5912883347690500 m001 (Ei(1)-exp(1/exp(1)))/(gamma(1)+GaussAGM) 5912883357695900 m001 (arctan(1/2)+ln(2+3^(1/2)))/(gamma(1)+Artin) 5912883516194730 q001 9/15221 5912883539727064 m005 (1/2*3^(1/2)-2)/(3/4*2^(1/2)+6/7) 5912883562138932 m001 polylog(4,1/2)/(QuadraticClass^Shi(1)) 5912883565887788 m001 (BesselI(1,1)+Bloch)/(Chi(1)+Catalan) 5912883568243453 m001 1/Zeta(7)/exp(Cahen)/log(1+sqrt(2)) 5912883640246808 m001 (MertensB2+ZetaP(2))/(Si(Pi)+LaplaceLimit) 5912883652018959 r005 Re(z^2+c),c=-59/82+15/56*I,n=5 5912883652667297 m001 (-BesselK(0,1)+LaplaceLimit)/(5^(1/2)+Si(Pi)) 5912883671030487 a003 sin(Pi*2/107)/cos(Pi*37/79) 5912883678867749 r004 Im(z^2+c),c=-1/14-7/11*I,z(0)=I,n=13 5912883688053349 a007 Real Root Of 512*x^4-47*x^3+630*x^2+165*x-195 5912883701572122 m005 (1/2*Zeta(3)-3/5)/(8/11*Pi-6/11) 5912883713408944 a001 123/196418*514229^(7/41) 5912883725441595 a008 Real Root of x^3-x^2-38*x+17 5912883725461493 r005 Re(z^2+c),c=-129/122+4/49*I,n=8 5912883729929888 r005 Re(z^2+c),c=9/82+13/28*I,n=55 5912883741007031 a007 Real Root Of 220*x^4-621*x^3+810*x^2-696*x-850 5912883748001031 a007 Real Root Of 653*x^4+205*x^3+956*x^2-606*x-730 5912883759947480 a007 Real Root Of 603*x^4+730*x^3-978*x^2-977*x+695 5912883768081665 r005 Re(z^2+c),c=-3/5+49/64*I,n=3 5912883768924370 a001 843/17711*1597^(1/34) 5912883804419295 a007 Real Root Of 166*x^4-527*x^3+470*x^2-684*x-698 5912883851795010 r002 13th iterates of z^2 + 5912883865661505 a001 3010349/144*8^(1/2) 5912883865662158 a001 1/72*(1/2*5^(1/2)+1/2)^31*4^(1/4) 5912883872905650 a007 Real Root Of 109*x^4+606*x^3-60*x^2+836*x-919 5912883884539495 a001 5/45537549124*29^(1/2) 5912883890038409 m001 GAMMA(5/24)*Kolakoski/ln(arctan(1/2))^2 5912883897973607 m001 GaussAGM/Cahen/Ei(1,1) 5912883902837380 a007 Real Root Of 159*x^4+772*x^3-985*x^2+159*x+617 5912883904099236 a007 Real Root Of -418*x^4+294*x^3+125*x^2+272*x+229 5912883922153966 m001 (Pi+2^(1/2))/(DuboisRaymond+Stephens) 5912883923167821 a007 Real Root Of 801*x^4-624*x^3+982*x^2+386*x-342 5912883924886170 l006 ln(5163/9326) 5912884006284447 a007 Real Root Of 175*x^4-648*x^3+626*x^2-874*x-891 5912884051482249 m003 -5+Sqrt[5]/4+8*Log[1/2+Sqrt[5]/2] 5912884108869898 m001 exp((2^(1/3)))*CareFree*cosh(1)^2 5912884112584333 m001 GAMMA(11/24)^2*(2^(1/3))/exp(Zeta(5))^2 5912884124608888 h001 (-8*exp(3)-6)/(-7*exp(6)+5) 5912884157647702 a001 2/17711*610^(41/42) 5912884165069511 m001 Kolakoski-HardHexagonsEntropy-gamma(2) 5912884184815794 r004 Im(z^2+c),c=5/34+1/2*I,z(0)=I,n=3 5912884184815794 r009 Re(z^3+c),c=-15/17+31/51*I,n=2 5912884193558447 l006 ln(3991/7209) 5912884205437485 r005 Re(z^2+c),c=-13/34+39/64*I,n=64 5912884205642897 a001 29/514229*5^(1/34) 5912884217213831 r002 35th iterates of z^2 + 5912884222454528 m001 FibonacciFactorial^sin(1)-Gompertz 5912884232951585 m001 (cos(1/5*Pi)+GAMMA(19/24))/(Magata-ZetaQ(2)) 5912884242077335 a008 Real Root of x^4-2*x^3-36*x^2+3*x+432 5912884246575467 a001 521/86267571272*377^(17/22) 5912884259323266 r005 Re(z^2+c),c=41/102+30/49*I,n=5 5912884302392854 m001 Magata^(cos(1)*FeigenbaumD) 5912884356004528 m001 (LambertW(1)+GAMMA(7/12))/(Khinchin+Thue) 5912884362978716 r009 Im(z^3+c),c=-1/40+21/29*I,n=15 5912884364432574 r005 Re(z^2+c),c=3/46+6/59*I,n=2 5912884409149601 r004 Re(z^2+c),c=5/46-3/4*I,z(0)=exp(5/24*I*Pi),n=7 5912884409298498 m001 (Conway-Magata)/(MasserGramainDelta-Porter) 5912884412055855 r002 18th iterates of z^2 + 5912884413670670 a001 1568397607/55*9227465^(10/21) 5912884413670700 a001 12752043/55*225851433717^(10/21) 5912884419764339 m001 1/GAMMA(7/24)^2/Trott^2/exp(exp(1)) 5912884426518217 a007 Real Root Of 985*x^4+194*x^3-118*x^2-969*x-612 5912884434401041 m008 (2*Pi^4-3/5)/(5/6*Pi+2/3) 5912884434484343 a007 Real Root Of 456*x^4-938*x^3-902*x^2-520*x+761 5912884435649119 r005 Im(z^2+c),c=-85/122+13/27*I,n=19 5912884450943426 a007 Real Root Of 126*x^4+648*x^3-659*x^2-635*x-772 5912884454717926 r005 Re(z^2+c),c=-19/14+3/161*I,n=20 5912884481678693 p004 log(17393/9629) 5912884496382181 a001 281/7*514229^(9/44) 5912884498071430 m005 (1/2*Pi-5/6)/(1/5*5^(1/2)+4/5) 5912884503590597 m005 (35/44+1/4*5^(1/2))/(2/3*5^(1/2)+4/5) 5912884509756933 r005 Im(z^2+c),c=13/50+28/53*I,n=43 5912884542938151 m005 (1/3*Catalan-1/7)/(-79/198+1/18*5^(1/2)) 5912884563960208 m001 (-Gompertz+TreeGrowth2nd)/(exp(1)+gamma(1)) 5912884566207397 a007 Real Root Of -413*x^4+707*x^3+374*x^2+899*x-758 5912884570705513 r005 Re(z^2+c),c=-3/4+3/232*I,n=45 5912884591638074 r009 Re(z^3+c),c=-3/86+29/35*I,n=31 5912884592034160 m001 (-GAMMA(23/24)+Thue)/(cos(1)+BesselI(0,2)) 5912884616628208 r005 Im(z^2+c),c=-7/10+4/155*I,n=62 5912884623735472 r005 Re(z^2+c),c=-11/14+19/131*I,n=54 5912884626772313 r005 Re(z^2+c),c=-71/110+2/29*I,n=3 5912884630871430 a007 Real Root Of -998*x^4+593*x^3-502*x^2+240*x+562 5912884640793070 a007 Real Root Of -907*x^4+583*x^3+197*x^2+520*x-386 5912884648641861 m001 GAMMA(3/4)/ln(FeigenbaumC)*cos(1)^2 5912884657418594 a007 Real Root Of 859*x^4-508*x^3+932*x^2+245*x-391 5912884685631845 l006 ln(2819/5092) 5912884699078190 r008 a(0)=6,K{-n^6,9+8*n^3-9*n^2+5*n} 5912884706280022 r005 Re(z^2+c),c=-41/56+9/50*I,n=60 5912884712487298 a007 Real Root Of 57*x^4+221*x^3-853*x^2-858*x+762 5912884713633234 r009 Im(z^3+c),c=-79/90+11/61*I,n=2 5912884715701617 q001 2267/3834 5912884725659626 r005 Im(z^2+c),c=7/44+22/39*I,n=34 5912884725873642 m001 exp(1)^GAMMA(3/4)/Stephens 5912884735313615 r005 Im(z^2+c),c=-23/34+13/127*I,n=20 5912884741147642 a007 Real Root Of 450*x^4+422*x^3+331*x^2-860*x-592 5912884769664436 h001 (-8*exp(5)-6)/(-5*exp(6)-1) 5912884775226093 r005 Im(z^2+c),c=-23/36+9/55*I,n=23 5912884779627546 r008 a(0)=6,K{-n^6,65-58*n+29*n^2-25*n^3} 5912884789753713 a001 7/17711*3^(11/30) 5912884809105786 m006 (1/3*Pi+3/4)/(2*ln(Pi)+3/4) 5912884819139137 m005 (1/2*Pi+6/7)/(-133/264+1/24*5^(1/2)) 5912884828759866 r009 Im(z^3+c),c=-37/114+29/43*I,n=42 5912884846801953 m001 1/GAMMA(3/4)*ln((3^(1/3)))^2*cos(1) 5912884856725712 m001 (Si(Pi)+Artin)/(FellerTornier+ZetaQ(2)) 5912884866994870 h001 (1/2*exp(1)+5/8)/(2/5*exp(2)+2/5) 5912884901517566 a001 13/2*322^(13/34) 5912884918637056 a007 Real Root Of 15*x^4+879*x^3-455*x^2+828*x-176 5912884987469700 a007 Real Root Of 908*x^4+659*x^3+622*x^2-255*x-343 5912884993354676 r005 Re(z^2+c),c=-1/30+21/29*I,n=20 5912885034535477 r005 Re(z^2+c),c=-1/31+29/39*I,n=33 5912885060074844 m001 (exp(1)+BesselI(0,1))/(-ln(3)+Pi^(1/2)) 5912885062593685 m001 (ln(2)+Pi^(1/2))/(CareFree-LaplaceLimit) 5912885074736453 m001 (BesselI(0,1)+CopelandErdos)/(GaussAGM+Niven) 5912885087443063 r005 Im(z^2+c),c=-19/32+5/46*I,n=42 5912885088059249 a007 Real Root Of 616*x^4-715*x^3+21*x^2-373*x-451 5912885089687116 a007 Real Root Of -709*x^4-506*x^3-963*x^2-52*x+288 5912885117915722 a003 cos(Pi*7/44)*sin(Pi*4/17) 5912885125368711 l006 ln(4466/8067) 5912885141005806 a007 Real Root Of 405*x^4-848*x^3-366*x^2-878*x-616 5912885143358888 a007 Real Root Of -386*x^4+560*x^3-200*x^2+330*x+428 5912885148404473 h005 exp(cos(Pi*6/49)+cos(Pi*3/17)) 5912885165171757 a003 sin(Pi*11/42)*sin(Pi*23/77) 5912885168239372 m001 (Kac-RenyiParking)/(Riemann2ndZero-ThueMorse) 5912885181804709 r009 Re(z^3+c),c=-3/40+46/63*I,n=6 5912885183931955 a007 Real Root Of -763*x^4-162*x^3-834*x^2-831*x-140 5912885190986091 a007 Real Root Of -123*x^4+463*x^3+5*x^2+669*x-478 5912885196729578 a003 sin(Pi*5/83)-sin(Pi*33/116) 5912885235799454 a007 Real Root Of -42*x^4+266*x^3+229*x^2+932*x-681 5912885235806714 r009 Im(z^3+c),c=-3/122+14/19*I,n=21 5912885237782150 a007 Real Root Of -703*x^4-509*x^3-652*x^2+903*x-51 5912885243352589 a007 Real Root Of 190*x^4-485*x^3-618*x^2-563*x+626 5912885244086839 a007 Real Root Of -917*x^4+763*x^3-312*x^2+609*x+739 5912885247291056 m001 3^(1/3)*ArtinRank2-PrimesInBinary 5912885263463002 r008 a(0)=6,K{-n^6,52+43*n^3-53*n^2-30*n} 5912885272204412 m005 (1/2*5^(1/2)-1/4)/(2/3*Zeta(3)+2/3) 5912885320850105 m001 KhinchinHarmonic*UniversalParabolic-Psi(2,1/3) 5912885331603141 m001 MertensB1^(ln(2)*BesselI(1,1)) 5912885341982648 r002 55th iterates of z^2 + 5912885346854096 m001 (-Khinchin+2/3)/(2+2^(1/2)) 5912885352094416 a001 55/322*11^(29/56) 5912885367330192 m001 Champernowne/exp(Cahen)^2*log(2+sqrt(3))^2 5912885369009368 m001 1/Khintchine^2/GolombDickman/exp(Robbin)^2 5912885370488222 r005 Im(z^2+c),c=17/66+22/39*I,n=51 5912885374679296 a007 Real Root Of 711*x^4+559*x^3+799*x^2-80*x-298 5912885376451718 m001 (ln(Pi)-DuboisRaymond)/(Mills-Porter) 5912885379852656 a007 Real Root Of -80*x^4-376*x^3+594*x^2+280*x+947 5912885386990781 b008 -7+Sqrt[13/11] 5912885388542324 r002 3th iterates of z^2 + 5912885428256596 a007 Real Root Of -817*x^4-138*x^3-500*x^2+86*x+297 5912885457816119 a007 Real Root Of -525*x^4-37*x^3-243*x^2+882*x+53 5912885462023027 a007 Real Root Of 261*x^4-37*x^3+857*x^2-847*x-840 5912885471270331 m001 ZetaP(3)*(2/3*Pi*3^(1/2)/GAMMA(2/3)+CareFree) 5912885505105753 a007 Real Root Of -768*x^4+782*x^3+900*x^2+28*x-399 5912885517557917 m001 Lehmer-ZetaQ(3)^HardHexagonsEntropy 5912885526247423 r005 Re(z^2+c),c=-17/16+1/80*I,n=16 5912885530717542 m001 (Sarnak+ZetaQ(4))/(Ei(1)-Pi^(1/2)) 5912885541358890 g002 -Psi(11/12)-Psi(7/12)-Psi(10/11)-Psi(4/11) 5912885544516069 a007 Real Root Of 690*x^4+75*x^3+977*x^2-94*x-466 5912885563394346 r005 Im(z^2+c),c=1/29+5/9*I,n=5 5912885592603783 r005 Im(z^2+c),c=-23/31+7/37*I,n=13 5912885601508907 r005 Im(z^2+c),c=-7/48+47/57*I,n=56 5912885605169735 a001 2/341*11^(53/55) 5912885662431941 q001 1629/2755 5912885687110401 m001 (Shi(1)+BesselJ(0,1))/(3^(1/3)+GAMMA(13/24)) 5912885692053347 m005 (1/3*gamma+1/4)/(1/8*2^(1/2)+4/7) 5912885727910166 m001 gamma*FeigenbaumB/StolarskyHarborth 5912885734155344 r005 Im(z^2+c),c=-11/14+5/209*I,n=48 5912885735635210 r009 Re(z^3+c),c=-1/54+46/59*I,n=39 5912885782724734 l006 ln(2873/3048) 5912885805860073 m001 ln(Riemann3rdZero)*FransenRobinson/GAMMA(7/12) 5912885808571044 r009 Im(z^3+c),c=-27/122+37/51*I,n=28 5912885814182756 m006 (5/6*ln(Pi)-2/5)/(3/5*ln(Pi)+1/4) 5912885814823917 p003 LerchPhi(1/32,1,35/206) 5912885822649562 a007 Real Root Of 790*x^4-268*x^3+339*x^2-263*x-426 5912885849507111 r005 Re(z^2+c),c=-3/5+76/113*I,n=8 5912885874513389 r005 Re(z^2+c),c=-28/27+8/41*I,n=24 5912885877304114 a007 Real Root Of -536*x^4-479*x^3+578*x^2+949*x+54 5912885878020898 l006 ln(1647/2975) 5912885879263028 s002 sum(A040483[n]/(n*pi^n+1),n=1..infinity) 5912885961015154 k002 Champernowne real with 111/2*n^2-161/2*n+30 5912886067921649 m001 PisotVijayaraghavan^2*ln(Artin)/cos(1)^2 5912886084273982 l006 ln(8937/8990) 5912886089430349 r009 Im(z^3+c),c=-73/126+25/43*I,n=4 5912886094335477 a007 Real Root Of 828*x^4-610*x^3+507*x^2-525*x-715 5912886104645662 p001 sum((-1)^n/(205*n+169)/(625^n),n=0..infinity) 5912886114611123 a008 Real Root of x^4-2*x^3-225*x^2+226*x+7567 5912886115713268 a001 365435296162/521*1364^(14/15) 5912886177490702 a007 Real Root Of -117*x^4-724*x^3-332*x^2-948*x-653 5912886207503296 r001 35i'th iterates of 2*x^2-1 of 5912886213869322 r005 Re(z^2+c),c=-19/34+23/52*I,n=16 5912886251481668 a001 76/17711*55^(2/25) 5912886288936820 a007 Real Root Of 62*x^4-967*x^3+688*x^2+663*x-56 5912886295348152 a007 Real Root Of -97*x^4-619*x^3-137*x^2+850*x+420 5912886319192317 r005 Im(z^2+c),c=-9/98+24/35*I,n=41 5912886327588003 a001 591286729879/521*1364^(13/15) 5912886329239059 a007 Real Root Of -955*x^4+510*x^3-837*x^2-551*x+189 5912886330224086 a001 370248451/144*2504730781961^(4/21) 5912886330224086 a001 634430159/36*102334155^(4/21) 5912886332081036 r009 Re(z^3+c),c=-1/21+32/37*I,n=2 5912886332838186 r005 Im(z^2+c),c=7/19+9/44*I,n=41 5912886338465443 m001 (HardHexagonsEntropy+Trott)/(exp(Pi)+Cahen) 5912886339901162 a001 969323029*6557470319842^(9/17) 5912886339901162 a001 73681302247*1836311903^(9/17) 5912886339903530 a001 5600748293801*514229^(9/17) 5912886343109842 a001 17393796001/144*4181^(4/21) 5912886364194073 r005 Re(z^2+c),c=-14/27+39/58*I,n=8 5912886374778960 r009 Re(z^3+c),c=-2/19+39/61*I,n=42 5912886377184875 r005 Im(z^2+c),c=-37/30+12/115*I,n=49 5912886380009428 a007 Real Root Of -902*x^4+582*x^3+307*x^2+388*x+22 5912886416693734 r009 Re(z^3+c),c=-7/30+28/29*I,n=32 5912886416741059 p004 log(22541/12479) 5912886424747143 m001 (Stephens-TreeGrowth2nd)/(Zeta(3)+ln(3)) 5912886467981627 a007 Real Root Of 642*x^4-973*x^3+243*x^2-518*x+344 5912886498653179 l006 ln(5416/9783) 5912886502992128 m001 (FeigenbaumD-Rabbit)/(Ei(1)+3^(1/3)) 5912886535146348 a008 Real Root of (1+4*x+3*x^2-5*x^3+5*x^4+x^5) 5912886539160852 a007 Real Root Of 628*x^4-46*x^3+647*x^2-55*x-345 5912886539462746 a001 956722026041/521*1364^(4/5) 5912886543998450 a007 Real Root Of 96*x^4-334*x^3-151*x^2-389*x-258 5912886564154006 r005 Im(z^2+c),c=-3/106+37/51*I,n=18 5912886569222669 m005 (1/3*5^(1/2)-1/10)/(7/10*Zeta(3)+1/4) 5912886578457049 r002 4th iterates of z^2 + 5912886597463930 m006 (1/4*Pi^2-5)/(2*Pi-2) 5912886597463930 m008 (1/4*Pi^2-5)/(2*Pi-2) 5912886611282601 a007 Real Root Of -135*x^4+310*x^3+189*x^2+650*x-498 5912886616597939 a001 9/416020*987^(7/48) 5912886623922715 a007 Real Root Of 736*x^4-640*x^3+863*x^2-252*x-673 5912886635907345 r008 a(0)=6,K{-n^6,-26+56*n-7*n^2-13*n^3} 5912886649536557 h001 (3/7*exp(1)+3/11)/(8/11*exp(1)+5/11) 5912886661659143 a007 Real Root Of 613*x^4-822*x^3-587*x^2-118*x+370 5912886662625009 m001 (Magata+ZetaP(3))/(BesselI(1,1)-Kac) 5912886686127780 a007 Real Root Of 846*x^4+280*x^3+861*x^2+258*x-194 5912886693264786 a007 Real Root Of 934*x^4+873*x^3+776*x^2-115*x-273 5912886717121793 a007 Real Root Of 397*x^4-770*x^3-288*x^2+44*x-81 5912886751337496 a001 1548008755920/521*1364^(11/15) 5912886759586073 m001 (OneNinth+Trott2nd)/(exp(Pi)-ln(2)/ln(10)) 5912886759710105 r005 Im(z^2+c),c=-31/86+38/59*I,n=54 5912886769860746 l006 ln(3769/6808) 5912886779799041 g007 Psi(2,1/6)+Psi(2,3/4)-Psi(2,1/8)-Psi(2,4/5) 5912886802582787 m001 sin(1)+(3^(1/2))^Otter 5912886810348732 h001 (-7*exp(3)-3)/(-6*exp(6)-8) 5912886816403183 m006 (1/3*exp(2*Pi)-5/6)/(2/Pi-2/3) 5912886849317351 g002 Psi(8/11)-Psi(9/11)-Psi(3/11)-Psi(4/9) 5912886857733109 m001 BesselJ(0,1)^GAMMA(5/6)*BesselJ(0,1)^GaussAGM 5912886872235403 r005 Im(z^2+c),c=-89/114+19/51*I,n=6 5912886885743778 m001 ln(BesselK(0,1))^2/MertensB1^2*cos(1) 5912886891820942 r009 Re(z^3+c),c=-39/64+25/49*I,n=37 5912886904593991 m005 (1/3*exp(1)+1/8)/(4/9*5^(1/2)+3/4) 5912886908649616 a007 Real Root Of -651*x^4+621*x^3-25*x^2+447*x+481 5912886916903831 p004 log(30689/28927) 5912886918736566 a003 cos(Pi*3/118)*sin(Pi*19/94) 5912886922065995 m001 (StolarskyHarborth-TwinPrimes)/(Artin-Bloch) 5912886924210160 r002 10th iterates of z^2 + 5912886932792736 a007 Real Root Of -330*x^4+271*x^3-817*x^2+712*x+803 5912886943562011 r005 Re(z^2+c),c=11/98+31/57*I,n=33 5912886963212254 a001 2504730781961/521*1364^(2/3) 5912886963687582 h001 (1/12*exp(1)+1/7)/(7/9*exp(2)+1/2) 5912886995964516 m005 (1/3*Catalan+3/7)/(7/10*Catalan+3/5) 5912886998979504 a001 144/3571*199^(49/52) 5912887006524948 r009 Re(z^3+c),c=-59/110+2/9*I,n=15 5912887014083998 a007 Real Root Of 523*x^4+206*x^3+347*x^2-650*x-527 5912887031524356 a005 (1/cos(20/129*Pi))^33 5912887032865466 m001 (Zeta(1/2)-gamma)/(ErdosBorwein+Tribonacci) 5912887065567168 m001 (gamma(2)*HardyLittlewoodC4+Stephens)/gamma(2) 5912887069126773 m009 (1/6*Psi(1,2/3)-5/6)/(3/5*Psi(1,1/3)-3/5) 5912887079174598 a001 1/15456*17711^(23/33) 5912887080057784 r002 9th iterates of z^2 + 5912887125135515 m005 (1/3*gamma+2/5)/(-11/18+5/18*5^(1/2)) 5912887126793314 r009 Im(z^3+c),c=-35/118+35/53*I,n=31 5912887129899216 m001 Niven*(OneNinth+ReciprocalFibonacci) 5912887162155254 a007 Real Root Of -421*x^4+920*x^3+532*x^2+359*x-537 5912887169187901 m005 (1/2*Zeta(3)-3/7)/(6/7*5^(1/2)+1) 5912887172578851 a007 Real Root Of -828*x^4+675*x^3+701*x^2-136*x-203 5912887172862179 a007 Real Root Of -145*x^4-916*x^3-509*x^2-803*x+927 5912887175087019 a001 4052739537881/521*1364^(3/5) 5912887184589674 r005 Im(z^2+c),c=7/86+37/55*I,n=4 5912887199791462 m001 (Khinchin+Landau)/(Psi(2,1/3)+polylog(4,1/2)) 5912887217338921 a001 11/2584*610^(16/39) 5912887219985928 a007 Real Root Of -32*x^4-60*x^3+927*x^2+916*x-282 5912887255979452 p001 sum((-1)^n/(167*n+96)/n/(64^n),n=0..infinity) 5912887266285074 r004 Re(z^2+c),c=-9/22+7/18*I,z(0)=-1,n=8 5912887274753135 h001 (5/7*exp(1)+1/7)/(5/11*exp(2)+1/6) 5912887276967184 a007 Real Root Of -664*x^4-266*x^3+632*x^2+874*x+322 5912887385024892 r002 57th iterates of z^2 + 5912887386961792 a001 6557470319842/521*1364^(8/15) 5912887440935107 r005 Im(z^2+c),c=-40/29+1/58*I,n=23 5912887441280301 m001 (Porter-TwinPrimes)/(Niven-PolyaRandomWalk3D) 5912887443284076 r002 26th iterates of z^2 + 5912887462066266 l006 ln(2122/3833) 5912887473013135 m005 (4/5*Pi+3/5)/(5/6*exp(1)+3) 5912887473303845 a005 (1/cos(9/98*Pi))^1024 5912887487608823 a001 12752043/2*34^(12/19) 5912887488051096 a003 cos(Pi*1/62)*sin(Pi*24/119) 5912887516550792 m005 (1/3*Pi+2/7)/(-11/80+1/16*5^(1/2)) 5912887525834209 a001 18/13*14930352^(5/22) 5912887528538877 m001 FeigenbaumC^2*ln(ErdosBorwein)/GAMMA(13/24)^2 5912887565528796 r005 Re(z^2+c),c=-2/3+38/183*I,n=14 5912887595889042 r005 Re(z^2+c),c=-37/54+21/64*I,n=39 5912887598836573 a001 10610209857723/521*1364^(7/15) 5912887600820034 r002 19th iterates of z^2 + 5912887632261484 p004 log(27689/15329) 5912887653435900 r005 Re(z^2+c),c=-67/74+9/43*I,n=48 5912887676803201 a007 Real Root Of 573*x^4-877*x^3-558*x^2-571*x-32 5912887680777126 m001 CopelandErdos*MertensB2/ThueMorse 5912887719009455 a007 Real Root Of -133*x^4+271*x^3+962*x^2+448*x-641 5912887725981368 m004 24*E^(2*Sqrt[5]*Pi)*Log[Sqrt[5]*Pi] 5912887731067617 m001 GAMMA(23/24)^2/ln(MinimumGamma)*Zeta(1/2)^2 5912887734266233 p003 LerchPhi(1/32,4,186/163) 5912887766393700 a003 sin(Pi*3/17)/sin(Pi*36/103) 5912887781784949 m001 (-MadelungNaCl+Trott2nd)/(Si(Pi)+Shi(1)) 5912887785248423 s002 sum(A014321[n]/(pi^n+1),n=1..infinity) 5912887789059340 m001 (Cahen+Paris)/(polylog(4,1/2)-Pi^(1/2)) 5912887800155147 m001 (2^(1/3)+Si(Pi))/(-Catalan+3^(1/3)) 5912887828162291 q001 991/1676 5912887839058968 r009 Im(z^3+c),c=-43/78+23/38*I,n=52 5912887868025777 a001 987/521*3461452808002^(11/12) 5912887869929848 a005 (1/cos(11/217*Pi))^682 5912887889656413 m001 MertensB1/(3^(1/3)-1) 5912887892013986 r005 Im(z^2+c),c=-119/114+2/31*I,n=9 5912887938451778 p001 sum(1/(295*n+184)/(5^n),n=0..infinity) 5912887938988356 m005 (1/2*Zeta(3)-3)/(2/3*2^(1/2)-5) 5912887949633552 r002 6th iterates of z^2 + 5912888003022007 a003 cos(Pi*2/85)*sin(Pi*20/99) 5912888014921202 l006 ln(4719/8524) 5912888018436861 r005 Re(z^2+c),c=1/74+9/14*I,n=17 5912888026153564 m002 (-2*Coth[Pi])/Pi^3+6*Tanh[Pi] 5912888027218463 r005 Im(z^2+c),c=11/36+17/38*I,n=52 5912888043905269 m001 (FeigenbaumD+Trott2nd)^Grothendieck 5912888070856108 m001 GAMMA(2/3)*FeigenbaumD+BesselI(0,2) 5912888085639932 m001 (BesselI(0,1)*Mills-QuadraticClass)/Mills 5912888146716088 a007 Real Root Of 11*x^4-795*x^3-85*x^2-14*x+201 5912888159517893 h001 (2/9*exp(2)+3/5)/(3/7*exp(2)+5/8) 5912888185494005 a001 9349/3*75025^(39/58) 5912888195287307 a007 Real Root Of 271*x^4-419*x^3+687*x^2-888*x-885 5912888198869280 m008 (3/5*Pi^4-3/4)/(Pi^4+1/6) 5912888208085863 a005 (1/cos(25/203*Pi))^323 5912888219543087 a007 Real Root Of -962*x^4+940*x^3-359*x^2+784*x+901 5912888238642165 a001 11/2178309*5^(5/51) 5912888242156684 m001 1/ln(sinh(1))^2*BesselK(0,1)/sqrt(1+sqrt(3))^2 5912888250659795 m001 ln(Magata)/FibonacciFactorial^2/GAMMA(19/24)^2 5912888269788858 a003 sin(Pi*1/103)-sin(Pi*22/103) 5912888276552570 m001 1/ln(Paris)^2/Niven^2/Trott 5912888280901241 m001 (Otter-ReciprocalFibonacci)/(ln(2)+gamma(2)) 5912888321985627 r005 Im(z^2+c),c=-2/29+36/49*I,n=39 5912888339750430 r005 Im(z^2+c),c=4/21+29/49*I,n=26 5912888358208760 a001 119218851371/233*6557470319842^(16/17) 5912888360945878 a008 Real Root of x^4-2*x^3-2*x^2-138*x+77 5912888362946327 m001 Niven-sin(1/5*Pi)*Ei(1) 5912888373171670 a007 Real Root Of -897*x^4+707*x^3-994*x^2+336*x+802 5912888373415589 a007 Real Root Of -439*x^4+814*x^3-952*x^2-255*x+404 5912888398438329 m001 Shi(1)/(Pi-Riemann2ndZero) 5912888403852117 m005 (1/2*2^(1/2)-2/11)/(8/11*Catalan+2/9) 5912888404555555 m005 (1/2*3^(1/2)+4)/(7/11*5^(1/2)-3/5) 5912888413994706 m001 (-Grothendieck+Paris)/(AlladiGrinstead-Chi(1)) 5912888423739753 m001 1/ln(HardHexagonsEntropy)^2/Bloch*GAMMA(1/6)^2 5912888441079873 m001 (MertensB1-StronglyCareFree)/(Trott+Thue) 5912888466657095 l006 ln(2597/4691) 5912888517385807 r005 Re(z^2+c),c=-9/14+75/154*I,n=12 5912888523693612 r005 Re(z^2+c),c=-23/18+1/47*I,n=64 5912888527328488 m001 ln(BesselJ(1,1))/LandauRamanujan*GAMMA(1/24)^2 5912888529216278 m001 FeigenbaumKappa-GAMMA(2/3)-Lehmer 5912888532163802 s002 sum(A058596[n]/(n^3*exp(n)-1),n=1..infinity) 5912888566294822 l006 ln(22/8135) 5912888581757591 a007 Real Root Of 773*x^4-208*x^3-655*x^2-997*x-498 5912888589500205 p004 log(12401/11689) 5912888618198328 a001 944288312326273/1597 5912888621267157 m001 (Zeta(3)-GAMMA(17/24))/(Paris-Riemann1stZero) 5912888645553934 a001 139583862445/521*3571^(16/17) 5912888672829328 a001 225851433717/521*3571^(15/17) 5912888698245892 a007 Real Root Of 363*x^4-39*x^3-577*x^2-921*x+710 5912888700104722 a001 365435296162/521*3571^(14/17) 5912888713668376 m001 (-Landau+Lehmer)/(KhinchinHarmonic-Psi(1,1/3)) 5912888727380116 a001 591286729879/521*3571^(13/17) 5912888734673523 m006 (5/6/Pi-1/6)/(1/4*Pi^2-4/5) 5912888744803097 a007 Real Root Of 594*x^4+596*x^3+202*x^2-301*x-198 5912888754655510 a001 956722026041/521*3571^(12/17) 5912888770500011 m001 GAMMA(1/12)/exp(FransenRobinson)^2/sin(1)^2 5912888774453254 m001 PrimesInBinary^2/ln(Magata)^2/TreeGrowth2nd^2 5912888781930904 a001 1548008755920/521*3571^(11/17) 5912888795829051 m001 MertensB2^ZetaP(3)-PrimesInBinary 5912888808291703 a008 Real Root of (2+4*x-x^2-3*x^3-x^4-3*x^5) 5912888809206299 a001 2504730781961/521*3571^(10/17) 5912888810684802 r002 6th iterates of z^2 + 5912888823116011 m005 (1/2*5^(1/2)+5/8)/(3/11*2^(1/2)-1/11) 5912888836481693 a001 4052739537881/521*3571^(9/17) 5912888840383642 r002 2th iterates of z^2 + 5912888857598397 m001 (BesselK(0,1)+BesselJ(1,1))/(Catalan+cos(1)) 5912888863757088 a001 6557470319842/521*3571^(8/17) 5912888884082394 m001 (TreeGrowth2nd-ZetaQ(4))/(BesselI(1,1)-Mills) 5912888889338987 r005 Im(z^2+c),c=25/64+10/47*I,n=15 5912888891032482 a001 10610209857723/521*3571^(7/17) 5912888937866208 r008 a(0)=6,K{-n^6,70+52*n^3-71*n^2-39*n} 5912888940096824 b008 1/4-23*E+Pi 5912888943394790 r005 Re(z^2+c),c=-17/16+1/86*I,n=10 5912888969121932 a007 Real Root Of -713*x^4+849*x^3+578*x^2+877*x-809 5912888974667585 r009 Im(z^3+c),c=-3/34+42/55*I,n=15 5912888976719765 a003 sin(Pi*16/83)/sin(Pi*45/109) 5912888984125322 m001 Zeta(1/2)^2/ln(Ei(1))*sqrt(Pi) 5912888989687343 r002 20th iterates of z^2 + 5912888998362053 a007 Real Root Of -4*x^4+645*x^3-347*x^2+635*x-387 5912889014229751 a001 2472178896849459/4181 5912889017870539 a001 53316291173/521*9349^(18/19) 5912889021431078 a001 86267571272/521*9349^(17/19) 5912889024991618 a001 139583862445/521*9349^(16/19) 5912889028552157 a001 225851433717/521*9349^(15/19) 5912889032112697 a001 365435296162/521*9349^(14/19) 5912889035673236 a001 591286729879/521*9349^(13/19) 5912889039233776 a001 956722026041/521*9349^(12/19) 5912889042794315 a001 1548008755920/521*9349^(11/19) 5912889046354854 a001 2504730781961/521*9349^(10/19) 5912889049915394 a001 4052739537881/521*9349^(9/19) 5912889053475933 a001 6557470319842/521*9349^(8/19) 5912889056120153 a001 6765/521*817138163596^(17/19) 5912889056120153 a001 6765/521*14662949395604^(17/21) 5912889056120153 a001 6765/521*192900153618^(17/18) 5912889057036473 a001 10610209857723/521*9349^(7/19) 5912889072560212 a001 20365011074/521*24476^(20/21) 5912889073030214 a001 63246219*24476^(19/21) 5912889073500216 a001 53316291173/521*24476^(6/7) 5912889073970218 a001 86267571272/521*24476^(17/21) 5912889074440220 a001 139583862445/521*24476^(16/21) 5912889074910222 a001 225851433717/521*24476^(5/7) 5912889075380223 a001 365435296162/521*24476^(2/3) 5912889075850225 a001 591286729879/521*24476^(13/21) 5912889076320227 a001 956722026041/521*24476^(4/7) 5912889076790229 a001 1548008755920/521*24476^(11/21) 5912889077260231 a001 2504730781961/521*24476^(10/21) 5912889077730233 a001 4052739537881/521*24476^(3/7) 5912889078190230 a001 17711/521*14662949395604^(7/9) 5912889078190230 a001 17711/521*505019158607^(7/8) 5912889078200234 a001 6557470319842/521*24476^(8/21) 5912889078425513 a001 505019158607/377*34^(8/19) 5912889078670236 a001 10610209857723/521*24476^(1/3) 5912889080582839 a001 7778742049/521*64079^(22/23) 5912889080645449 a001 12586269025/521*64079^(21/23) 5912889080708058 a001 20365011074/521*64079^(20/23) 5912889080770668 a001 63246219*64079^(19/23) 5912889080833277 a001 53316291173/521*64079^(18/23) 5912889080895887 a001 86267571272/521*64079^(17/23) 5912889080958497 a001 139583862445/521*64079^(16/23) 5912889081021106 a001 225851433717/521*64079^(15/23) 5912889081083716 a001 365435296162/521*64079^(14/23) 5912889081146325 a001 591286729879/521*64079^(13/23) 5912889081208935 a001 956722026041/521*64079^(12/23) 5912889081271544 a001 1548008755920/521*64079^(11/23) 5912889081334154 a001 2504730781961/521*64079^(10/23) 5912889081396763 a001 4052739537881/521*64079^(9/23) 5912889081459373 a001 6557470319842/521*64079^(8/23) 5912889081521982 a001 10610209857723/521*64079^(7/23) 5912889081792172 a001 20365011074/521*167761^(4/5) 5912889081834191 a001 225851433717/521*167761^(3/5) 5912889081876211 a001 2504730781961/521*167761^(2/5) 5912889081880000 a001 233*45537549124^(15/17) 5912889081880000 a001 233*312119004989^(9/11) 5912889081880000 a001 233*14662949395604^(5/7) 5912889081880000 a001 233*192900153618^(5/6) 5912889081880000 a001 233*28143753123^(9/10) 5912889081880000 a001 233*10749957122^(15/16) 5912889081933002 a001 2971215073/521*439204^(8/9) 5912889081936408 a001 12586269025/521*439204^(7/9) 5912889081939814 a001 53316291173/521*439204^(2/3) 5912889081943220 a001 225851433717/521*439204^(5/9) 5912889081946626 a001 956722026041/521*439204^(4/9) 5912889081950031 a001 4052739537881/521*439204^(1/3) 5912889081960000 a001 2178309/521*2537720636^(13/15) 5912889081960000 a001 2178309/521*45537549124^(13/17) 5912889081960000 a001 2178309/521*14662949395604^(13/21) 5912889081960000 a001 2178309/521*192900153618^(13/18) 5912889081960000 a001 2178309/521*73681302247^(3/4) 5912889081960000 a001 2178309/521*10749957122^(13/16) 5912889081960000 a001 2178309/521*599074578^(13/14) 5912889081960163 a001 165580141/521*7881196^(10/11) 5912889081960171 a001 701408733/521*7881196^(9/11) 5912889081960180 a001 2971215073/521*7881196^(8/11) 5912889081960186 a001 7778742049/521*7881196^(2/3) 5912889081960188 a001 12586269025/521*7881196^(7/11) 5912889081960197 a001 53316291173/521*7881196^(6/11) 5912889081960206 a001 225851433717/521*7881196^(5/11) 5912889081960214 a001 956722026041/521*7881196^(4/11) 5912889081960217 a001 1548008755920/521*7881196^(1/3) 5912889081960223 a001 4052739537881/521*7881196^(3/11) 5912889081960237 a001 165580141/521*20633239^(6/7) 5912889081960238 a001 433494437/521*20633239^(4/5) 5912889081960239 a001 1836311903/521*20633239^(5/7) 5912889081960241 a001 12586269025/521*20633239^(3/5) 5912889081960241 a001 20365011074/521*20633239^(4/7) 5912889081960243 a001 225851433717/521*20633239^(3/7) 5912889081960243 a001 365435296162/521*20633239^(2/5) 5912889081960244 a001 14930352/521*2537720636^(7/9) 5912889081960244 a001 14930352/521*17393796001^(5/7) 5912889081960244 a001 14930352/521*312119004989^(7/11) 5912889081960244 a001 14930352/521*14662949395604^(5/9) 5912889081960244 a001 14930352/521*505019158607^(5/8) 5912889081960244 a001 14930352/521*28143753123^(7/10) 5912889081960244 a001 14930352/521*599074578^(5/6) 5912889081960244 a001 14930352/521*228826127^(7/8) 5912889081960245 a001 2504730781961/521*20633239^(2/7) 5912889081960246 a001 10610209857723/521*20633239^(1/5) 5912889081960248 a001 39088169/521*141422324^(11/13) 5912889081960248 a001 39088169/521*2537720636^(11/15) 5912889081960248 a001 39088169/521*45537549124^(11/17) 5912889081960248 a001 39088169/521*312119004989^(3/5) 5912889081960248 a001 39088169/521*14662949395604^(11/21) 5912889081960248 a001 39088169/521*192900153618^(11/18) 5912889081960248 a001 39088169/521*10749957122^(11/16) 5912889081960248 a001 39088169/521*1568397607^(3/4) 5912889081960248 a001 39088169/521*599074578^(11/14) 5912889081960249 a001 701408733/521*141422324^(9/13) 5912889081960249 a001 1134903170/521*141422324^(2/3) 5912889081960249 a001 165580141/521*141422324^(10/13) 5912889081960249 a001 2971215073/521*141422324^(8/13) 5912889081960249 a001 12586269025/521*141422324^(7/13) 5912889081960249 a001 53316291173/521*141422324^(6/13) 5912889081960249 a001 225851433717/521*141422324^(5/13) 5912889081960249 a001 102334155/521*9062201101803^(1/2) 5912889081960249 a001 591286729879/521*141422324^(1/3) 5912889081960249 a001 956722026041/521*141422324^(4/13) 5912889081960249 a001 4052739537881/521*141422324^(3/13) 5912889081960249 a001 267914296/521*1322157322203^(1/2) 5912889081960249 a001 701408733/521*2537720636^(3/5) 5912889081960249 a001 701408733/521*45537549124^(9/17) 5912889081960249 a001 701408733/521*817138163596^(9/19) 5912889081960249 a001 701408733/521*14662949395604^(3/7) 5912889081960249 a001 701408733/521*192900153618^(1/2) 5912889081960249 a001 701408733/521*10749957122^(9/16) 5912889081960249 a001 1836311903/521*2537720636^(5/9) 5912889081960249 a001 12586269025/521*2537720636^(7/15) 5912889081960249 a001 20365011074/521*2537720636^(4/9) 5912889081960249 a001 53316291173/521*2537720636^(2/5) 5912889081960249 a001 2971215073/521*2537720636^(8/15) 5912889081960249 a001 1836311903/521*312119004989^(5/11) 5912889081960249 a001 1836311903/521*3461452808002^(5/12) 5912889081960249 a001 1836311903/521*28143753123^(1/2) 5912889081960249 a001 225851433717/521*2537720636^(1/3) 5912889081960249 a001 956722026041/521*2537720636^(4/15) 5912889081960249 a001 2504730781961/521*2537720636^(2/9) 5912889081960249 a001 4052739537881/521*2537720636^(1/5) 5912889081960249 a001 12586269025/521*17393796001^(3/7) 5912889081960249 a001 12586269025/521*45537549124^(7/17) 5912889081960249 a001 12586269025/521*14662949395604^(1/3) 5912889081960249 a001 12586269025/521*192900153618^(7/18) 5912889081960249 a001 365435296162/521*17393796001^(2/7) 5912889081960249 a001 10610209857723/521*17393796001^(1/7) 5912889081960249 a001 86267571272/521*45537549124^(1/3) 5912889081960249 a001 63246219*817138163596^(1/3) 5912889081960249 a001 225851433717/521*45537549124^(5/17) 5912889081960249 a001 956722026041/521*45537549124^(4/17) 5912889081960249 a001 53316291173/521*45537549124^(6/17) 5912889081960249 a001 4052739537881/521*45537549124^(3/17) 5912889081960249 a001 225851433717/521*312119004989^(3/11) 5912889081960249 a001 225851433717/521*14662949395604^(5/21) 5912889081960249 a001 10610209857723/521*14662949395604^(1/9) 5912889081960249 a001 6557470319842/521*23725150497407^(1/8) 5912889081960249 a001 365435296162/521*14662949395604^(2/9) 5912889081960249 a001 365435296162/521*505019158607^(1/4) 5912889081960249 a001 225851433717/521*192900153618^(5/18) 5912889081960249 a001 956722026041/521*192900153618^(2/9) 5912889081960249 a001 139583862445/521*23725150497407^(1/4) 5912889081960249 a001 6557470319842/521*73681302247^(2/13) 5912889081960249 a001 956722026041/521*73681302247^(3/13) 5912889081960249 a001 591286729879/521*73681302247^(1/4) 5912889081960249 a001 139583862445/521*73681302247^(4/13) 5912889081960249 a001 53316291173/521*14662949395604^(2/7) 5912889081960249 a001 53316291173/521*192900153618^(1/3) 5912889081960249 a001 2504730781961/521*28143753123^(1/5) 5912889081960249 a001 225851433717/521*28143753123^(3/10) 5912889081960249 a001 20365011074/521*23725150497407^(5/16) 5912889081960249 a001 20365011074/521*505019158607^(5/14) 5912889081960249 a001 20365011074/521*73681302247^(5/13) 5912889081960249 a001 20365011074/521*28143753123^(2/5) 5912889081960249 a001 6557470319842/521*10749957122^(1/6) 5912889081960249 a001 4052739537881/521*10749957122^(3/16) 5912889081960249 a001 2504730781961/521*10749957122^(5/24) 5912889081960249 a001 956722026041/521*10749957122^(1/4) 5912889081960249 a001 12586269025/521*10749957122^(7/16) 5912889081960249 a001 365435296162/521*10749957122^(7/24) 5912889081960249 a001 225851433717/521*10749957122^(5/16) 5912889081960249 a001 139583862445/521*10749957122^(1/3) 5912889081960249 a001 7778742049/521*312119004989^(2/5) 5912889081960249 a001 53316291173/521*10749957122^(3/8) 5912889081960249 a001 20365011074/521*10749957122^(5/12) 5912889081960249 a001 7778742049/521*10749957122^(11/24) 5912889081960249 a001 6557470319842/521*4106118243^(4/23) 5912889081960249 a001 2504730781961/521*4106118243^(5/23) 5912889081960249 a001 956722026041/521*4106118243^(6/23) 5912889081960249 a001 365435296162/521*4106118243^(7/23) 5912889081960249 a001 139583862445/521*4106118243^(8/23) 5912889081960249 a001 4807526976/521*4106118243^(1/2) 5912889081960249 a001 2971215073/521*45537549124^(8/17) 5912889081960249 a001 2971215073/521*14662949395604^(8/21) 5912889081960249 a001 2971215073/521*192900153618^(4/9) 5912889081960249 a001 2971215073/521*73681302247^(6/13) 5912889081960249 a001 53316291173/521*4106118243^(9/23) 5912889081960249 a001 20365011074/521*4106118243^(10/23) 5912889081960249 a001 2971215073/521*10749957122^(1/2) 5912889081960249 a001 7778742049/521*4106118243^(11/23) 5912889081960249 a001 2971215073/521*4106118243^(12/23) 5912889081960249 a001 6557470319842/521*1568397607^(2/11) 5912889081960249 a001 2504730781961/521*1568397607^(5/22) 5912889081960249 a001 1548008755920/521*1568397607^(1/4) 5912889081960249 a001 956722026041/521*1568397607^(3/11) 5912889081960249 a001 365435296162/521*1568397607^(7/22) 5912889081960249 a001 139583862445/521*1568397607^(4/11) 5912889081960249 a001 1134903170/521*73681302247^(1/2) 5912889081960249 a001 1134903170/521*10749957122^(13/24) 5912889081960249 a001 53316291173/521*1568397607^(9/22) 5912889081960249 a001 20365011074/521*1568397607^(5/11) 5912889081960249 a001 1134903170/521*4106118243^(13/23) 5912889081960249 a001 7778742049/521*1568397607^(1/2) 5912889081960249 a001 2971215073/521*1568397607^(6/11) 5912889081960249 a001 1134903170/521*1568397607^(13/22) 5912889081960249 a001 10610209857723/521*599074578^(1/6) 5912889081960249 a001 6557470319842/521*599074578^(4/21) 5912889081960249 a001 4052739537881/521*599074578^(3/14) 5912889081960249 a001 2504730781961/521*599074578^(5/21) 5912889081960249 a001 956722026041/521*599074578^(2/7) 5912889081960249 a001 365435296162/521*599074578^(1/3) 5912889081960249 a001 225851433717/521*599074578^(5/14) 5912889081960249 a001 139583862445/521*599074578^(8/21) 5912889081960249 a001 433494437/521*17393796001^(4/7) 5912889081960249 a001 433494437/521*14662949395604^(4/9) 5912889081960249 a001 433494437/521*505019158607^(1/2) 5912889081960249 a001 433494437/521*73681302247^(7/13) 5912889081960249 a001 433494437/521*10749957122^(7/12) 5912889081960249 a001 433494437/521*4106118243^(14/23) 5912889081960249 a001 53316291173/521*599074578^(3/7) 5912889081960249 a001 433494437/521*1568397607^(7/11) 5912889081960249 a001 20365011074/521*599074578^(10/21) 5912889081960249 a001 701408733/521*599074578^(9/14) 5912889081960249 a001 12586269025/521*599074578^(1/2) 5912889081960249 a001 7778742049/521*599074578^(11/21) 5912889081960249 a001 2971215073/521*599074578^(4/7) 5912889081960249 a001 1134903170/521*599074578^(13/21) 5912889081960249 a001 433494437/521*599074578^(2/3) 5912889081960249 a001 6557470319842/521*228826127^(1/5) 5912889081960249 a001 2504730781961/521*228826127^(1/4) 5912889081960249 a001 956722026041/521*228826127^(3/10) 5912889081960249 a001 365435296162/521*228826127^(7/20) 5912889081960249 a001 225851433717/521*228826127^(3/8) 5912889081960249 a001 165580141/521*2537720636^(2/3) 5912889081960249 a001 165580141/521*45537549124^(10/17) 5912889081960249 a001 165580141/521*312119004989^(6/11) 5912889081960249 a001 165580141/521*14662949395604^(10/21) 5912889081960249 a001 165580141/521*192900153618^(5/9) 5912889081960249 a001 165580141/521*28143753123^(3/5) 5912889081960249 a001 165580141/521*10749957122^(5/8) 5912889081960249 a001 165580141/521*4106118243^(15/23) 5912889081960249 a001 165580141/521*1568397607^(15/22) 5912889081960249 a001 139583862445/521*228826127^(2/5) 5912889081960249 a001 53316291173/521*228826127^(9/20) 5912889081960249 a001 165580141/521*599074578^(5/7) 5912889081960249 a001 20365011074/521*228826127^(1/2) 5912889081960249 a001 7778742049/521*228826127^(11/20) 5912889081960249 a001 2971215073/521*228826127^(3/5) 5912889081960249 a001 1836311903/521*228826127^(5/8) 5912889081960249 a001 1134903170/521*228826127^(13/20) 5912889081960249 a001 433494437/521*228826127^(7/10) 5912889081960249 a001 165580141/521*228826127^(3/4) 5912889081960249 a001 6557470319842/521*87403803^(4/19) 5912889081960249 a001 2504730781961/521*87403803^(5/19) 5912889081960249 a001 956722026041/521*87403803^(6/19) 5912889081960249 a001 365435296162/521*87403803^(7/19) 5912889081960249 a001 63245986/521*23725150497407^(1/2) 5912889081960249 a001 63245986/521*505019158607^(4/7) 5912889081960249 a001 63245986/521*73681302247^(8/13) 5912889081960249 a001 63245986/521*10749957122^(2/3) 5912889081960249 a001 63245986/521*4106118243^(16/23) 5912889081960249 a001 63245986/521*1568397607^(8/11) 5912889081960249 a001 63245986/521*599074578^(16/21) 5912889081960249 a001 139583862445/521*87403803^(8/19) 5912889081960249 a001 53316291173/521*87403803^(9/19) 5912889081960249 a001 63245986/521*228826127^(4/5) 5912889081960249 a001 63246219*87403803^(1/2) 5912889081960249 a001 20365011074/521*87403803^(10/19) 5912889081960249 a001 7778742049/521*87403803^(11/19) 5912889081960250 a001 2971215073/521*87403803^(12/19) 5912889081960250 a001 1134903170/521*87403803^(13/19) 5912889081960250 a001 433494437/521*87403803^(14/19) 5912889081960250 a001 165580141/521*87403803^(15/19) 5912889081960250 a001 63245986/521*87403803^(16/19) 5912889081960250 a001 6557470319842/521*33385282^(2/9) 5912889081960250 a001 4052739537881/521*33385282^(1/4) 5912889081960250 a001 2504730781961/521*33385282^(5/18) 5912889081960251 a001 956722026041/521*33385282^(1/3) 5912889081960251 a001 24157817/521*45537549124^(2/3) 5912889081960251 a001 24157817/521*10749957122^(17/24) 5912889081960251 a001 24157817/521*4106118243^(17/23) 5912889081960251 a001 24157817/521*1568397607^(17/22) 5912889081960251 a001 24157817/521*599074578^(17/21) 5912889081960251 a001 365435296162/521*33385282^(7/18) 5912889081960251 a001 24157817/521*228826127^(17/20) 5912889081960251 a001 225851433717/521*33385282^(5/12) 5912889081960251 a001 139583862445/521*33385282^(4/9) 5912889081960252 a001 53316291173/521*33385282^(1/2) 5912889081960252 a001 24157817/521*87403803^(17/19) 5912889081960252 a001 20365011074/521*33385282^(5/9) 5912889081960252 a001 12586269025/521*33385282^(7/12) 5912889081960252 a001 7778742049/521*33385282^(11/18) 5912889081960253 a001 2971215073/521*33385282^(2/3) 5912889081960253 a001 1134903170/521*33385282^(13/18) 5912889081960253 a001 701408733/521*33385282^(3/4) 5912889081960253 a001 39088169/521*33385282^(11/12) 5912889081960253 a001 433494437/521*33385282^(7/9) 5912889081960253 a001 165580141/521*33385282^(5/6) 5912889081960254 a001 63245986/521*33385282^(8/9) 5912889081960256 a001 24157817/521*33385282^(17/18) 5912889081960258 a001 6557470319842/521*12752043^(4/17) 5912889081960260 a001 2504730781961/521*12752043^(5/17) 5912889081960262 a001 956722026041/521*12752043^(6/17) 5912889081960263 a001 9227465/521*141422324^(12/13) 5912889081960263 a001 9227465/521*2537720636^(4/5) 5912889081960263 a001 9227465/521*45537549124^(12/17) 5912889081960263 a001 9227465/521*14662949395604^(4/7) 5912889081960263 a001 9227465/521*505019158607^(9/14) 5912889081960263 a001 9227465/521*192900153618^(2/3) 5912889081960263 a001 9227465/521*73681302247^(9/13) 5912889081960263 a001 9227465/521*10749957122^(3/4) 5912889081960263 a001 9227465/521*4106118243^(18/23) 5912889081960263 a001 9227465/521*1568397607^(9/11) 5912889081960263 a001 9227465/521*599074578^(6/7) 5912889081960263 a001 9227465/521*228826127^(9/10) 5912889081960264 a001 9227465/521*87403803^(18/19) 5912889081960264 a001 365435296162/521*12752043^(7/17) 5912889081960266 a001 139583862445/521*12752043^(8/17) 5912889081960267 a001 86267571272/521*12752043^(1/2) 5912889081960268 a001 53316291173/521*12752043^(9/17) 5912889081960270 a001 20365011074/521*12752043^(10/17) 5912889081960273 a001 7778742049/521*12752043^(11/17) 5912889081960275 a001 2971215073/521*12752043^(12/17) 5912889081960277 a001 1134903170/521*12752043^(13/17) 5912889081960279 a001 433494437/521*12752043^(14/17) 5912889081960281 a001 165580141/521*12752043^(15/17) 5912889081960284 a001 63245986/521*12752043^(16/17) 5912889081960311 a001 6557470319842/521*4870847^(1/4) 5912889081960327 a001 2504730781961/521*4870847^(5/16) 5912889081960342 a001 956722026041/521*4870847^(3/8) 5912889081960344 a001 3524578/521*817138163596^(2/3) 5912889081960344 a001 3524578/521*10749957122^(19/24) 5912889081960344 a001 3524578/521*4106118243^(19/23) 5912889081960344 a001 3524578/521*1568397607^(19/22) 5912889081960344 a001 3524578/521*599074578^(19/21) 5912889081960344 a001 3524578/521*228826127^(19/20) 5912889081960358 a001 365435296162/521*4870847^(7/16) 5912889081960374 a001 139583862445/521*4870847^(1/2) 5912889081960389 a001 53316291173/521*4870847^(9/16) 5912889081960405 a001 20365011074/521*4870847^(5/8) 5912889081960420 a001 7778742049/521*4870847^(11/16) 5912889081960436 a001 2971215073/521*4870847^(3/4) 5912889081960452 a001 1134903170/521*4870847^(13/16) 5912889081960467 a001 433494437/521*4870847^(7/8) 5912889081960483 a001 165580141/521*4870847^(15/16) 5912889081960705 a001 6557470319842/521*1860498^(4/15) 5912889081960761 a001 4052739537881/521*1860498^(3/10) 5912889081960818 a001 2504730781961/521*1860498^(1/3) 5912889081960901 a001 1346269/521*2537720636^(8/9) 5912889081960901 a001 1346269/521*312119004989^(8/11) 5912889081960901 a001 1346269/521*23725150497407^(5/8) 5912889081960901 a001 1346269/521*73681302247^(10/13) 5912889081960901 a001 1346269/521*28143753123^(4/5) 5912889081960901 a001 1346269/521*10749957122^(5/6) 5912889081960901 a001 1346269/521*4106118243^(20/23) 5912889081960902 a001 1346269/521*1568397607^(10/11) 5912889081960902 a001 1346269/521*599074578^(20/21) 5912889081960932 a001 956722026041/521*1860498^(2/5) 5912889081961046 a001 365435296162/521*1860498^(7/15) 5912889081961103 a001 225851433717/521*1860498^(1/2) 5912889081961160 a001 139583862445/521*1860498^(8/15) 5912889081961274 a001 53316291173/521*1860498^(3/5) 5912889081961388 a001 20365011074/521*1860498^(2/3) 5912889081961445 a001 12586269025/521*1860498^(7/10) 5912889081961502 a001 7778742049/521*1860498^(11/15) 5912889081961616 a001 2971215073/521*1860498^(4/5) 5912889081961673 a001 1836311903/521*1860498^(5/6) 5912889081961729 a001 1134903170/521*1860498^(13/15) 5912889081961786 a001 701408733/521*1860498^(9/10) 5912889081961843 a001 433494437/521*1860498^(14/15) 5912889081963176 a001 10610209857723/521*710647^(1/4) 5912889081963594 a001 6557470319842/521*710647^(2/7) 5912889081964431 a001 2504730781961/521*710647^(5/14) 5912889081964721 a001 514229/521*2537720636^(14/15) 5912889081964721 a001 514229/521*17393796001^(6/7) 5912889081964721 a001 514229/521*45537549124^(14/17) 5912889081964721 a001 514229/521*817138163596^(14/19) 5912889081964721 a001 514229/521*14662949395604^(2/3) 5912889081964721 a001 514229/521*505019158607^(3/4) 5912889081964721 a001 514229/521*192900153618^(7/9) 5912889081964721 a001 514229/521*10749957122^(7/8) 5912889081964721 a001 514229/521*4106118243^(21/23) 5912889081964721 a001 514229/521*1568397607^(21/22) 5912889081965267 a001 956722026041/521*710647^(3/7) 5912889081966103 a001 365435296162/521*710647^(1/2) 5912889081966939 a001 139583862445/521*710647^(4/7) 5912889081967776 a001 53316291173/521*710647^(9/14) 5912889081968612 a001 20365011074/521*710647^(5/7) 5912889081969030 a001 12586269025/521*710647^(3/4) 5912889081969448 a001 7778742049/521*710647^(11/14) 5912889081970285 a001 2971215073/521*710647^(6/7) 5912889081971121 a001 1134903170/521*710647^(13/14) 5912889081984941 a001 6557470319842/521*271443^(4/13) 5912889081990902 a001 196418/521*312119004989^(4/5) 5912889081990902 a001 196418/521*23725150497407^(11/16) 5912889081990902 a001 196418/521*73681302247^(11/13) 5912889081990902 a001 196418/521*10749957122^(11/12) 5912889081990902 a001 196418/521*4106118243^(22/23) 5912889081991114 a001 2504730781961/521*271443^(5/13) 5912889081997287 a001 956722026041/521*271443^(6/13) 5912889082000374 a001 591286729879/521*271443^(1/2) 5912889082003460 a001 365435296162/521*271443^(7/13) 5912889082009633 a001 139583862445/521*271443^(8/13) 5912889082015806 a001 53316291173/521*271443^(9/13) 5912889082021979 a001 20365011074/521*271443^(10/13) 5912889082028152 a001 7778742049/521*271443^(11/13) 5912889082034325 a001 2971215073/521*271443^(12/13) 5912889082120677 a001 10610209857723/521*103682^(7/24) 5912889082143595 a001 6557470319842/521*103682^(1/3) 5912889082166513 a001 4052739537881/521*103682^(3/8) 5912889082170345 a001 75025/521*10749957122^(23/24) 5912889082189432 a001 2504730781961/521*103682^(5/12) 5912889082212350 a001 1548008755920/521*103682^(11/24) 5912889082235268 a001 956722026041/521*103682^(1/2) 5912889082258186 a001 591286729879/521*103682^(13/24) 5912889082281105 a001 365435296162/521*103682^(7/12) 5912889082304023 a001 225851433717/521*103682^(5/8) 5912889082326941 a001 139583862445/521*103682^(2/3) 5912889082349860 a001 86267571272/521*103682^(17/24) 5912889082372778 a001 53316291173/521*103682^(3/4) 5912889082395696 a001 63246219*103682^(19/24) 5912889082418614 a001 20365011074/521*103682^(5/6) 5912889082441533 a001 12586269025/521*103682^(7/8) 5912889082464451 a001 7778742049/521*103682^(11/12) 5912889082487369 a001 4807526976/521*103682^(23/24) 5912889083159801 a001 10610209857723/521*39603^(7/22) 5912889083331165 a001 6557470319842/521*39603^(4/11) 5912889083400268 a001 28657/521*45537549124^(16/17) 5912889083400268 a001 28657/521*14662949395604^(16/21) 5912889083400268 a001 28657/521*192900153618^(8/9) 5912889083400268 a001 28657/521*73681302247^(12/13) 5912889083502530 a001 4052739537881/521*39603^(9/22) 5912889083673894 a001 2504730781961/521*39603^(5/11) 5912889083845259 a001 1548008755920/521*39603^(1/2) 5912889084016623 a001 956722026041/521*39603^(6/11) 5912889084187988 a001 591286729879/521*39603^(13/22) 5912889084359352 a001 365435296162/521*39603^(7/11) 5912889084530717 a001 225851433717/521*39603^(15/22) 5912889084702081 a001 139583862445/521*39603^(8/11) 5912889084873446 a001 86267571272/521*39603^(17/22) 5912889085044810 a001 53316291173/521*39603^(9/11) 5912889085216175 a001 63246219*39603^(19/22) 5912889085387539 a001 20365011074/521*39603^(10/11) 5912889085558904 a001 12586269025/521*39603^(21/22) 5912889087226646 r005 Im(z^2+c),c=15/38+11/53*I,n=39 5912889087406235 s002 sum(A001678[n]/(n^2*exp(n)+1),n=1..infinity) 5912889091004283 a001 10610209857723/521*15127^(7/20) 5912889091830287 a001 10946/521*312119004989^(10/11) 5912889091830287 a001 10946/521*3461452808002^(5/6) 5912889091898270 a007 Real Root Of 485*x^4+828*x^3+637*x^2-944*x-669 5912889092296287 a001 6557470319842/521*15127^(2/5) 5912889093588292 a001 4052739537881/521*15127^(9/20) 5912889094880297 a001 2504730781961/521*15127^(1/2) 5912889096172302 a001 1548008755920/521*15127^(11/20) 5912889096248068 m001 (BesselJ(0,1)*Zeta(1/2)-Magata)/BesselJ(0,1) 5912889097464307 a001 956722026041/521*15127^(3/5) 5912889098756311 a001 591286729879/521*15127^(13/20) 5912889100048316 a001 365435296162/521*15127^(7/10) 5912889101340321 a001 225851433717/521*15127^(3/4) 5912889102632326 a001 139583862445/521*15127^(4/5) 5912889103924331 a001 86267571272/521*15127^(17/20) 5912889105216335 a001 53316291173/521*15127^(9/10) 5912889105462400 m005 (1/2*Zeta(3)-1/9)/(2/11*2^(1/2)+4/7) 5912889106508340 a001 63246219*15127^(19/20) 5912889111347970 m001 (QuadraticClass+ZetaP(2))/(2^(1/2)+sin(1)) 5912889133330662 m001 (Magata+Rabbit)/(Sarnak-Trott2nd) 5912889140115069 r005 Im(z^2+c),c=-41/38+3/44*I,n=22 5912889149610499 a001 4181/521*23725150497407^(13/16) 5912889149610499 a001 4181/521*505019158607^(13/14) 5912889150836613 a001 10610209857723/521*5778^(7/18) 5912889153592983 m001 GAMMA(2/3)*LandauRamanujan^GAMMA(7/24) 5912889159757119 h001 (3/8*exp(1)+7/8)/(5/12*exp(2)+1/8) 5912889160583384 l006 ln(3072/5549) 5912889160676094 a001 6557470319842/521*5778^(4/9) 5912889170515575 a001 4052739537881/521*5778^(1/2) 5912889177432776 a007 Real Root Of 162*x^4+798*x^3-787*x^2+918*x-110 5912889180355055 a001 2504730781961/521*5778^(5/9) 5912889187047194 m001 1/exp(GAMMA(11/12))^2/Catalan/sqrt(5) 5912889190194536 a001 1548008755920/521*5778^(11/18) 5912889200034017 a001 956722026041/521*5778^(2/3) 5912889209873498 a001 591286729879/521*5778^(13/18) 5912889211213191 r008 a(0)=6,K{-n^6,52+56*n^3-92*n^2-4*n} 5912889215185216 b008 6+Pi*SphericalBesselY[1,E] 5912889219712978 a001 365435296162/521*5778^(7/9) 5912889229552459 a001 225851433717/521*5778^(5/6) 5912889239391940 a001 139583862445/521*5778^(8/9) 5912889243207665 m001 FeigenbaumB^2/Backhouse*exp((2^(1/3)))^2 5912889243706855 m001 1/3*(Artin-FibonacciFactorial)*3^(2/3) 5912889249231421 a001 86267571272/521*5778^(17/18) 5912889269818667 m008 (3/4*Pi^3-1/6)/(4*Pi^4+5/6) 5912889273783892 r005 Re(z^2+c),c=-9/94+51/56*I,n=10 5912889295408110 r002 35th iterates of z^2 + 5912889310721194 b008 -1+EulerGamma*Haversine[2] 5912889318436637 m001 (Psi(1,1/3)+Lehmer)/(PolyaRandomWalk3D+Porter) 5912889336365598 a007 Real Root Of 180*x^4+902*x^3-829*x^2+868*x+560 5912889339073183 q001 2335/3949 5912889343535707 a007 Real Root Of -21*x^4-119*x^3-479*x^2+50*x+175 5912889347556857 r005 Re(z^2+c),c=-61/82+1/60*I,n=31 5912889381427781 r002 16th iterates of z^2 + 5912889393596349 a001 3/8*55^(5/44) 5912889397444671 m001 BesselI(1,1)*FeigenbaumKappa-ZetaP(3) 5912889400468625 m005 (1/3*3^(1/2)-1/11)/(2/9*Zeta(3)+5/9) 5912889407281968 r009 Re(z^3+c),c=-71/118+29/57*I,n=16 5912889410807238 m001 1/cos(1)/exp(Ei(1))^2*sqrt(2) 5912889411416178 s002 sum(A246197[n]/(n!^2),n=1..infinity) 5912889412688344 m002 4/E^Pi+5*Cosh[Pi]+Tanh[Pi] 5912889452262674 m001 1/exp(MadelungNaCl)^2*Artin^2/GAMMA(1/3)^2 5912889459530511 r008 a(0)=6,K{-n^6,49-13*n^3-15*n^2-10*n} 5912889490056786 m001 1/FeigenbaumB*Conway/ln(Riemann1stZero) 5912889504185525 l006 ln(8816/9353) 5912889513801556 a007 Real Root Of 100*x^4+630*x^3+188*x^2-198*x+259 5912889517012527 m001 (Khinchin-Porter)/(Ei(1)-Zeta(1,-1)) 5912889526991654 a007 Real Root Of 611*x^4+436*x^3+576*x^2-888*x-711 5912889540071689 r005 Re(z^2+c),c=-11/23+33/58*I,n=12 5912889545641957 a001 1597/521*14662949395604^(6/7) 5912889553259447 a007 Real Root Of 100*x^4+550*x^3-227*x^2+159*x+341 5912889568191525 r009 Im(z^3+c),c=-7/66+14/19*I,n=50 5912889578516293 m001 1/Robbin*Khintchine*exp(GAMMA(1/3)) 5912889592060207 m001 1/2*ln(2)+GAMMA(1/6) 5912889594406603 a007 Real Root Of 184*x^4+943*x^3-710*x^2+706*x-972 5912889604265930 a007 Real Root Of -700*x^4-862*x^3-588*x^2+866*x+625 5912889605668039 r005 Re(z^2+c),c=-79/90+7/38*I,n=22 5912889606618137 r002 10th iterates of z^2 + 5912889613056550 a001 10610209857723/521*2207^(7/16) 5912889630250119 a001 29/8*2^(12/17) 5912889642465963 r005 Im(z^2+c),c=-3/4+8/161*I,n=3 5912889644797348 m005 (1/3*Pi-3/5)/(9/10*Catalan-9/10) 5912889646086383 r009 Re(z^3+c),c=-25/118+41/54*I,n=24 5912889647361312 h001 (-3*exp(3)-5)/(-exp(7)-7) 5912889659765624 r002 24th iterates of z^2 + 5912889660756579 m001 MertensB1^CareFree*MertensB1^OrthogonalArrays 5912889662597250 a007 Real Root Of 330*x^4-275*x^3-515*x^2-180*x+303 5912889664693393 a001 123/6557470319842*514229^(7/16) 5912889668653997 l006 ln(3547/6407) 5912889681922651 a007 Real Root Of -382*x^4-263*x^3-721*x^2+735*x+679 5912889686928286 m008 (3/4*Pi+1/2)/(1/2*Pi^4-2/5) 5912889688927454 a001 6557470319842/521*2207^(1/2) 5912889715958305 a001 4/6765*233^(49/58) 5912889739303409 m005 (1/5*Pi+5/6)/(1/3*Pi-4/5) 5912889739303409 m006 (1/5*Pi+5/6)/(1/3*Pi-4/5) 5912889739303409 m008 (1/5*Pi+5/6)/(1/3*Pi-4/5) 5912889764798359 a001 4052739537881/521*2207^(9/16) 5912889772913521 r005 Re(z^2+c),c=-19/18+21/223*I,n=18 5912889783633844 a003 cos(Pi*27/89)/sin(Pi*27/62) 5912889806353936 m005 (1/2*2^(1/2)-7/12)/(exp(1)-5/8) 5912889829645838 m001 1/CareFree*ln(Conway)^2*Lehmer 5912889840669265 a001 2504730781961/521*2207^(5/8) 5912889842535081 m001 Artin-FibonacciFactorial+MertensB1 5912889876940447 g007 Psi(2,3/10)+Psi(2,6/7)-Psi(2,5/9)-Psi(2,2/3) 5912889882421816 m005 (-9/20+1/4*5^(1/2))/(3/4*5^(1/2)+1/6) 5912889893928719 r002 3th iterates of z^2 + 5912889895729676 r005 Im(z^2+c),c=10/29+4/45*I,n=49 5912889905833302 m005 (1/2*Pi-4)/(1/9*Catalan-1/7) 5912889916540172 a001 1548008755920/521*2207^(11/16) 5912889935231673 a003 cos(Pi*3/110)-sin(Pi*15/113) 5912889965889935 a003 sin(Pi*11/50)*sin(Pi*45/119) 5912889970127641 a007 Real Root Of 559*x^4-674*x^3+581*x^2+299*x-234 5912889987814132 a007 Real Root Of -77*x^4-618*x^3-992*x^2-122*x+325 5912889992411080 a001 956722026041/521*2207^(3/4) 5912889993946729 m001 (Shi(1)*TwinPrimes+gamma(1))/Shi(1) 5912889995824748 r009 Im(z^3+c),c=-11/126+31/42*I,n=43 5912890007158730 m001 (ErdosBorwein+Kac)/(exp(1)+Shi(1)) 5912890041008442 h005 exp(cos(Pi*8/37)+sin(Pi*18/37)) 5912890056717859 l006 ln(4022/7265) 5912890058506943 m001 (3^(1/3)-Backhouse*CareFree)/CareFree 5912890065489361 m001 Zeta(1,2)/HardyLittlewoodC5*Sierpinski 5912890068281989 a001 591286729879/521*2207^(13/16) 5912890081538426 m001 Robbin^2/exp(Champernowne)/cos(Pi/5)^2 5912890105284331 a007 Real Root Of 594*x^4-657*x^3+930*x^2+324*x-342 5912890114845165 m001 FeigenbaumD*ReciprocalLucas+MasserGramain 5912890115011438 a007 Real Root Of 561*x^4-418*x^3-368*x^2-818*x-510 5912890144152899 a001 365435296162/521*2207^(7/8) 5912890204320757 r005 Re(z^2+c),c=1/46+11/34*I,n=9 5912890208543847 m001 ln(5)^Cahen/(ln(5)^MadelungNaCl) 5912890220023809 a001 225851433717/521*2207^(15/16) 5912890250701358 r005 Im(z^2+c),c=-11/10+2/249*I,n=3 5912890253860827 m001 Pi/(Psi(2,1/3)+3^(1/2)+sin(1/12*Pi)) 5912890295814721 a001 583602272196913/987 5912890298106522 m005 (1/3*Zeta(3)+2/3)/(8/11*3^(1/2)+6/11) 5912890298699500 a007 Real Root Of 39*x^4+212*x^3-124*x^2+53*x+803 5912890301942546 m001 Sarnak^GAMMA(11/12)/Zeta(3) 5912890360267161 r002 18th iterates of z^2 + 5912890362802464 l006 ln(4497/8123) 5912890376642106 a007 Real Root Of 297*x^4-415*x^3+887*x^2-759*x-881 5912890400753615 a007 Real Root Of -89*x^4-397*x^3+665*x^2-607*x-120 5912890431615841 m001 (Landau-PlouffeB)/(Cahen-KomornikLoreti) 5912890445151211 a007 Real Root Of 569*x^4-998*x^3-61*x^2 5912890447640735 r002 25th iterates of z^2 + 5912890453145622 q001 1344/2273 5912890460277378 r005 Im(z^2+c),c=-43/74+6/55*I,n=33 5912890461785706 m005 (1/2*exp(1)-1/4)/(7/12*5^(1/2)+4/7) 5912890471857964 r005 Im(z^2+c),c=25/118+19/35*I,n=54 5912890491455245 m001 QuadraticClass/(ln(5)+Zeta(1/2)) 5912890512450302 a007 Real Root Of -785*x^4+432*x^3+154*x^2+688*x-454 5912890514271797 a008 Real Root of x^4-2*x^3-15*x^2-52*x+23 5912890514362227 a003 sin(Pi*8/85)-sin(Pi*21/61) 5912890547973714 m001 FeigenbaumC*exp(Conway)^2*cosh(1)^2 5912890551522526 r005 Im(z^2+c),c=-89/64+1/64*I,n=40 5912890592146474 m005 (1/3*2^(1/2)+2/3)/(11/12*5^(1/2)-1/8) 5912890602843524 r005 Re(z^2+c),c=-41/62+23/53*I,n=12 5912890602919900 r005 Im(z^2+c),c=-1/98+25/34*I,n=27 5912890610403480 l006 ln(4972/8981) 5912890624188771 m001 1/exp(GAMMA(7/24))^2*FransenRobinson 5912890640666835 m001 Trott2nd*(sin(1)+ln(2+3^(1/2))) 5912890645813505 s002 sum(A053728[n]/(2^n+1),n=1..infinity) 5912890706548507 a007 Real Root Of 90*x^4-577*x^3-961*x^2-490*x+734 5912890720498550 m003 -11/6+Sqrt[5]/1024+Sinh[1/2+Sqrt[5]/2] 5912890721885674 a001 1/843*(1/2*5^(1/2)+1/2)^23*76^(9/19) 5912890727422447 r002 14th iterates of z^2 + 5912890756538323 m005 (1/2*5^(1/2)-1/2)/(1/11*2^(1/2)+11/12) 5912890780483059 a007 Real Root Of -416*x^4+782*x^3-390*x^2+237*x+489 5912890785081430 m001 TravellingSalesman^MinimumGamma*cos(1/12*Pi) 5912890814820910 l006 ln(5447/9839) 5912890815827392 m006 (2/3*exp(Pi)+3/5)/(2*ln(Pi)-5) 5912890825465029 m001 exp(Zeta(1,2))^2/MertensB1*Zeta(7) 5912890832302408 a007 Real Root Of -368*x^4-99*x^3-448*x^2+568*x+517 5912890848739493 m001 (FeigenbaumKappa+Tribonacci)/cos(1) 5912890850640111 r005 Re(z^2+c),c=1/48+13/47*I,n=3 5912890853790732 r002 35th iterates of z^2 + 5912890867045202 r005 Re(z^2+c),c=-49/122+17/29*I,n=15 5912890884905117 r009 Re(z^3+c),c=-19/32+15/53*I,n=17 5912890910528956 a007 Real Root Of 158*x^4+913*x^3+22*x^2+753*x-707 5912890918928341 r005 Re(z^2+c),c=-37/52+5/54*I,n=9 5912890920967964 r005 Im(z^2+c),c=-9/14+89/151*I,n=4 5912890922332032 m002 6-Csch[Pi]*Log[Pi]+Sinh[Pi]/Pi^6 5912890924110747 a007 Real Root Of 926*x^4-571*x^3-175*x^2+247*x-24 5912890940416151 h001 (5/9*exp(1)+2/7)/(11/12*exp(1)+6/11) 5912890963070335 a007 Real Root Of -643*x^4+186*x^3+65*x^2+703*x+510 5912890982514049 a007 Real Root Of 345*x^4+169*x^3+868*x^2-173*x-413 5912891002958380 a007 Real Root Of -695*x^4+229*x^3+484*x^2+514*x+267 5912891006091664 a001 1/72*1836311903^(14/17) 5912891006955550 r009 Im(z^3+c),c=-33/56+27/61*I,n=22 5912891008807217 m006 (1/2/Pi-2)/(4/5*Pi+3/5) 5912891017422031 a007 Real Root Of -748*x^4+892*x^3-75*x^2+810*x+781 5912891029636385 a007 Real Root Of 583*x^4-561*x^3+710*x^2+520*x-128 5912891037284446 m005 (3/4*exp(1)-2/3)/(1/4*exp(1)-3) 5912891041941007 a008 Real Root of x^3-72*x-219 5912891057663418 a007 Real Root Of -57*x^4+807*x^3-518*x^2+638*x-356 5912891079851094 a007 Real Root Of 673*x^4+257*x^3+562*x^2-990*x-811 5912891080012150 p001 sum((-1)^n/(288*n+169)/(512^n),n=0..infinity) 5912891090828363 r005 Re(z^2+c),c=-27/50+13/22*I,n=12 5912891100188533 a001 9062201101803*1836311903^(7/17) 5912891100188533 a001 312119004989*6557470319842^(7/17) 5912891110821547 r005 Re(z^2+c),c=9/64+17/31*I,n=9 5912891125428981 a007 Real Root Of -89*x^4+61*x^3-399*x^2+986*x+746 5912891131988601 h001 (-6*exp(-1)-4)/(-exp(-3)-1) 5912891161403775 m001 Backhouse*FeigenbaumMu+TravellingSalesman 5912891165077397 m009 (4/3*Catalan+1/6*Pi^2+2/5)/(1/4*Psi(1,1/3)+3) 5912891181115820 a001 7/610*610^(37/38) 5912891184568158 a007 Real Root Of 6*x^4-818*x^3-372*x^2-227*x-174 5912891207072986 a007 Real Root Of -199*x^4+770*x^3-148*x^2+419*x+483 5912891214256721 m001 (1-sin(1/5*Pi))/(-gamma(1)+GolombDickman) 5912891218313458 m001 1/ln(LambertW(1))^2*GAMMA(1/24)^2*sin(Pi/5)^2 5912891249558199 r005 Im(z^2+c),c=-10/19+19/34*I,n=63 5912891264526714 a007 Real Root Of 422*x^4-799*x^3+x^2-311*x-401 5912891285580823 q001 5/84561 5912891303235931 l006 ln(5943/6305) 5912891354267577 a001 843*1597^(34/59) 5912891364334585 r002 32th iterates of z^2 + 5912891374420220 a007 Real Root Of -151*x^4+709*x^3+460*x^2+666*x+398 5912891384972535 a007 Real Root Of -623*x^4+322*x^3-790*x^2+565*x+753 5912891409401790 m001 (Grothendieck+OneNinth)/(Catalan-Gompertz) 5912891435374702 r005 Im(z^2+c),c=-89/74+3/38*I,n=31 5912891444000927 r009 Im(z^3+c),c=-37/64+38/63*I,n=7 5912891455988682 r002 3th iterates of z^2 + 5912891482933410 a007 Real Root Of 210*x^4+236*x^3-395*x^2-579*x+406 5912891485025720 s002 sum(A112606[n]/(pi^n-1),n=1..infinity) 5912891504206948 r005 Re(z^2+c),c=-7/52+44/63*I,n=23 5912891523408095 m005 (5*exp(1)-1/2)/(1/3*2^(1/2)-1/4) 5912891534531993 r005 Im(z^2+c),c=-67/54+3/50*I,n=38 5912891571029293 m002 ProductLog[Pi]/Pi+Sinh[Pi]/(2*E^Pi) 5912891587828051 a007 Real Root Of -828*x^4+622*x^3-278*x^2+22*x+340 5912891589511703 r008 a(0)=6,K{-n^6,-39-2*n^3+20*n^2-24*n} 5912891591616375 m001 (arctan(1/3)+PlouffeB)/(Totient+ZetaQ(3)) 5912891596636879 m001 (Zeta(1,-1)+MertensB3)/(Robbin-Thue) 5912891606815578 a007 Real Root Of 943*x^4-680*x^3+587*x^2-766*x-914 5912891632614879 m009 (3*Pi^2+1/3)/(Psi(1,2/3)+2) 5912891651870466 a007 Real Root Of 798*x^4-29*x^3+851*x^2+61*x-365 5912891674388637 m001 1/Khintchine/Backhouse^2*ln(FeigenbaumB)^2 5912891691136327 m002 E^Pi/Pi^5+6*Sech[Pi]*Tanh[Pi] 5912891699111752 r005 Re(z^2+c),c=-87/82+1/22*I,n=16 5912891704995442 r005 Re(z^2+c),c=-51/94+31/63*I,n=23 5912891741506349 r005 Im(z^2+c),c=4/27+30/53*I,n=52 5912891742218020 a005 (1/cos(10/231*Pi))^688 5912891782294813 m001 (-OneNinth+Sierpinski)/(BesselK(0,1)-gamma(3)) 5912891798517066 m005 (-1/3+1/4*5^(1/2))/(1/5*Catalan-4) 5912891801034288 r005 Im(z^2+c),c=-85/122+21/47*I,n=3 5912891804157726 a008 Real Root of (14+2*x+17*x^2-3*x^3) 5912891831590074 a007 Real Root Of 112*x^4+804*x^3+715*x^2-586*x+842 5912891836165143 a007 Real Root Of -304*x^4-137*x^3-378*x^2+849*x+643 5912891853299955 r005 Re(z^2+c),c=9/26+17/32*I,n=13 5912891860453251 a007 Real Root Of -551*x^4-126*x^3+502*x^2+426*x-334 5912891872051970 r005 Re(z^2+c),c=2/23+25/43*I,n=49 5912891898613781 r002 19th iterates of z^2 + 5912891906215027 r005 Im(z^2+c),c=-3/56+31/38*I,n=49 5912891915142653 a007 Real Root Of -997*x^4+252*x^3-614*x^2+486*x+676 5912891954857489 a007 Real Root Of -876*x^4+785*x^3-989*x^2+475*x+896 5912891982816616 a007 Real Root Of 293*x^4-529*x^3-765*x^2-942*x+898 5912891986062717 q001 1697/2870 5912891991070185 p004 log(21851/12097) 5912892007187664 r005 Re(z^2+c),c=5/56+39/47*I,n=2 5912892029062230 r009 Im(z^3+c),c=-35/102+19/31*I,n=14 5912892041386729 r002 27th iterates of z^2 + 5912892044836551 m005 (Catalan+1/6)/(3/5*exp(1)+1/5) 5912892046856787 m001 (-ArtinRank2+Thue)/(Chi(1)+Ei(1)) 5912892072262799 r005 Im(z^2+c),c=9/122+43/48*I,n=3 5912892092960727 m001 (gamma(3)-GAMMA(7/12)*Lehmer)/GAMMA(7/12) 5912892093151679 a007 Real Root Of 924*x^4+542*x^3-59*x^2-720*x-406 5912892122568934 s002 sum(A153180[n]/(n*exp(n)-1),n=1..infinity) 5912892125657217 a007 Real Root Of -803*x^4-858*x^3-576*x^2+696*x+43 5912892157785534 a005 (1/sin(33/151*Pi))^14 5912892171139735 m001 GAMMA(3/4)*(1-polylog(4,1/2)) 5912892173502491 a007 Real Root Of 232*x^4+280*x^3+45*x^2-714*x+42 5912892203389848 m001 Zeta(1/2)^2/Trott/exp(Zeta(3)) 5912892209311730 a007 Real Root Of 844*x^4+759*x^3+888*x^2-841*x-754 5912892211586251 a007 Real Root Of 686*x^4-959*x^3-918*x^2-867*x+948 5912892260003416 a001 233/1364*14662949395604^(20/21) 5912892260081957 a001 610/521*14662949395604^(8/9) 5912892262401467 m001 ln(3)/(Backhouse^exp(1/2)) 5912892295484486 m005 (1/2*2^(1/2)-3/10)/(-51/176+7/16*5^(1/2)) 5912892300919329 s002 sum(A247066[n]/(n^2*2^n+1),n=1..infinity) 5912892310086779 a007 Real Root Of 773*x^4+134*x^3+228*x^2-356*x-357 5912892325685129 m001 cos(1/5*Pi)/(Psi(2,1/3)^FibonacciFactorial) 5912892354278325 r005 Re(z^2+c),c=1/66+25/33*I,n=28 5912892358059637 a007 Real Root Of -577*x^4+374*x^3-110*x^2+632*x+560 5912892359905217 r002 3th iterates of z^2 + 5912892393575146 m001 StronglyCareFree/gamma(2)/GAMMA(2/3) 5912892416841276 r005 Im(z^2+c),c=37/110+12/55*I,n=4 5912892433596408 m001 GAMMA(1/24)^2/ln(Champernowne)^2/GAMMA(5/12) 5912892437969958 m002 6/Pi^4+(Pi^5*Cosh[Pi])/6 5912892440241487 m001 (-Gompertz+Kac)/(ln(2)/ln(10)+FeigenbaumDelta) 5912892441615036 r005 Im(z^2+c),c=-69/64+1/13*I,n=4 5912892443266638 r005 Im(z^2+c),c=-9/14+71/151*I,n=3 5912892444731918 m001 1/exp(Zeta(7))^2*Niven^2/cos(Pi/5)^2 5912892450829482 m001 1/exp(GAMMA(17/24))^2*GAMMA(1/4)^2*sin(Pi/5) 5912892459674207 m001 GAMMA(5/6)*(sin(1)+GAMMA(5/24)) 5912892462117643 r005 Im(z^2+c),c=-31/50+12/43*I,n=11 5912892466463277 m001 1/Zeta(1,2)^2*Si(Pi)^2*exp(exp(1)) 5912892475723126 a001 17393796001/21*987^(13/21) 5912892507347015 a001 64079/3*5^(31/49) 5912892526963409 h001 (9/10*exp(1)+3/8)/(5/9*exp(2)+2/3) 5912892537708741 m008 (3/4*Pi^5+2/5)/(4*Pi^4-4/5) 5912892537740313 a003 cos(Pi*8/103)-cos(Pi*38/101) 5912892559153119 m001 (Si(Pi)+Artin)/(DuboisRaymond+FeigenbaumMu) 5912892560916067 m001 (Kac+QuadraticClass)/(Rabbit+Tribonacci) 5912892572407703 r002 11th iterates of z^2 + 5912892574524941 m005 (4*2^(1/2)-1/6)/(5/6*2^(1/2)-1/4) 5912892586542894 m001 (Ei(1)+sin(1/12*Pi))/(CopelandErdos+Magata) 5912892599704874 r005 Re(z^2+c),c=-23/34+11/127*I,n=5 5912892627724056 a001 2/123*76^(39/47) 5912892632403105 m005 (1/2*Zeta(3)-7/10)/(6*exp(1)+3/7) 5912892664380526 r005 Im(z^2+c),c=-15/122+29/44*I,n=43 5912892713915812 r009 Im(z^3+c),c=-47/114+29/40*I,n=5 5912892746497685 a007 Real Root Of -767*x^4+175*x^3-381*x^2-7*x+259 5912892774921544 a007 Real Root Of -865*x^4-966*x^3-409*x^2+876*x+567 5912892778259588 m005 (1/2*Zeta(3)-7/9)/(7/9*exp(1)+7/8) 5912892786623315 g006 Psi(1,5/11)+Psi(1,5/7)-Psi(1,1/8)-Psi(1,4/5) 5912892821836162 r002 12th iterates of z^2 + 5912892826476065 r005 Re(z^2+c),c=-20/27+1/64*I,n=27 5912892857677682 m001 2*ln(2+3^(1/2))^Ei(1,1)*Pi/GAMMA(5/6) 5912892862105616 a007 Real Root Of 793*x^4+268*x^3-21*x^2-940*x-590 5912892869114030 m001 Zeta(1/2)^2/exp(Cahen)^2*Zeta(9)^2 5912892876616142 m001 1/exp(GAMMA(3/4))/FeigenbaumD*cos(1) 5912892877049186 r009 Re(z^3+c),c=-19/36+25/61*I,n=8 5912892890952449 m001 GAMMA(13/24)/(Mills+Porter) 5912892925095110 a003 cos(Pi*1/83)/cos(Pi*33/74) 5912892934761455 a007 Real Root Of 515*x^4-718*x^3-871*x^2-7*x+89 5912892939482517 r005 Re(z^2+c),c=-31/44+13/57*I,n=18 5912892954433858 r002 4th iterates of z^2 + 5912892954533210 l006 ln(475/858) 5912892969534226 m001 (Artin+2/3)/(2^(1/3)+1/2) 5912892976658141 r009 Im(z^3+c),c=-8/15+20/33*I,n=28 5912892990532849 r009 Im(z^3+c),c=-23/58+23/34*I,n=64 5912892991058552 q001 205/3467 5912893001719536 m006 (5*Pi^2-1/3)/(1/5*ln(Pi)+3/5) 5912893017506780 r009 Re(z^3+c),c=-41/70+27/49*I,n=34 5912893019958735 r004 Im(z^2+c),c=1/16-1/4*I,z(0)=I,n=8 5912893030224378 m001 (ZetaQ(3)-ZetaQ(4))/(Kac+Stephens) 5912893033474296 a007 Real Root Of 747*x^4-897*x^3-509*x^2-917*x-641 5912893040461987 a003 sin(Pi*1/91)/cos(Pi*19/63) 5912893062963889 l006 ln(9013/9562) 5912893063765257 m001 TwinPrimes/(Tribonacci-Otter) 5912893073872474 h001 (7/9*exp(2)+4/9)/(1/11*exp(1)+4/5) 5912893077165266 a007 Real Root Of 946*x^4+109*x^3-273*x^2-190*x-110 5912893093767743 a001 1/610*6765^(8/55) 5912893110660994 r002 56th iterates of z^2 + 5912893150182681 a007 Real Root Of 881*x^4-927*x^3-112*x^2-869*x-774 5912893150823218 p003 LerchPhi(1/16,1,37/21) 5912893152861950 a001 634430159/36*4807526976^(6/23) 5912893152916757 a001 11384387281/36*75025^(6/23) 5912893153289865 m005 (1/2*2^(1/2)+4/9)/(1/11*gamma-2) 5912893166189724 m001 (gamma(1)-Artin)/(FeigenbaumD-Tetranacci) 5912893167287618 m005 (5/6*Pi-1/3)/(4*Catalan+1/5) 5912893191013817 m001 (Cahen+MertensB2)/(5^(1/2)+BesselK(1,1)) 5912893193398251 r005 Re(z^2+c),c=-1/86+31/48*I,n=47 5912893207471826 m001 (Robbin-Trott)/(ln(2^(1/2)+1)+Ei(1,1)) 5912893225766907 a001 64079/21*591286729879^(13/21) 5912893226633417 a007 Real Root Of 286*x^4-914*x^3+960*x^2+603*x-203 5912893227206933 a001 4769326/3*24157817^(13/21) 5912893227504955 a007 Real Root Of -409*x^4+810*x^3-317*x^2+950*x+890 5912893242174112 a001 10610209857723/521*843^(1/2) 5912893257851701 m001 1/(3^(1/3))^2/Kolakoski^2/ln(GAMMA(1/4)) 5912893288823891 r005 Re(z^2+c),c=-4/7+38/111*I,n=6 5912893290809930 r005 Im(z^2+c),c=-40/31+9/22*I,n=7 5912893303288154 m001 (Otter+ZetaP(2))/(Chi(1)-MertensB1) 5912893317082313 m009 (1/6*Psi(1,1/3)-1/5)/(5/2*Pi^2+2/5) 5912893317925091 a007 Real Root Of -541*x^4-269*x^3-939*x^2+484*x+625 5912893350283207 m008 (3*Pi^4+1/3)/(2/5*Pi^2+1) 5912893369467296 m001 (GAMMA(13/24)+ErdosBorwein)/(ln(gamma)+ln(3)) 5912893377318872 r008 a(0)=6,K{-n^6,45+10*n-38*n^2-6*n^3} 5912893388632865 m005 (-7/12+1/12*5^(1/2))/(1/3*2^(1/2)+1/5) 5912893401273399 r009 Im(z^3+c),c=-23/44+14/23*I,n=46 5912893421551267 m001 (Zeta(1/2)-Kac)/(MasserGramainDelta+Niven) 5912893446470432 m001 1/sin(1)^2/ln(Zeta(7))^2/sin(Pi/5)^2 5912893451204269 a003 sin(Pi*2/83)*sin(Pi*2/7) 5912893459936081 a007 Real Root Of -617*x^4+139*x^3-464*x^2-163*x+170 5912893468286132 a007 Real Root Of -670*x^4+630*x^3+964*x^2+801*x-859 5912893470145351 m001 (exp(1/Pi)+Pi^(1/2))/(Psi(2,1/3)+Ei(1)) 5912893471582077 m001 Tribonacci/ln(Riemann3rdZero)^2*gamma^2 5912893497322188 m006 (5*exp(Pi)+3/4)/(1/6/Pi-1/4) 5912893511608185 a007 Real Root Of 77*x^4+203*x^3+338*x^2-970*x+404 5912893515084668 a001 6/2255*17711^(4/49) 5912893562397775 b008 5+ArcCosh[ArcTan[8]] 5912893574080421 a007 Real Root Of 950*x^4-963*x^3-16*x^2-667*x-704 5912893602374113 r009 Re(z^3+c),c=-35/58+15/28*I,n=16 5912893658080412 m005 (1/3*2^(1/2)+1/9)/(8/9*Zeta(3)-1/12) 5912893662934948 m005 (1/2*gamma-3/7)/(7/12*gamma-1/10) 5912893663260959 m001 (-GAMMA(7/12)+Magata)/(3^(1/2)+exp(1/exp(1))) 5912893681282490 a005 (1/cos(13/141*Pi))^150 5912893700787401 q001 2403/4064 5912893703734680 a007 Real Root Of -149*x^4+803*x^3+459*x^2+972*x-883 5912893739179383 m005 (1/2*gamma+4/7)/(9/11*5^(1/2)-3/8) 5912893747218154 a007 Real Root Of 131*x^4-916*x^3-597*x^2+198*x+265 5912893747420558 a007 Real Root Of -507*x^4+635*x^3-739*x^2-549*x+127 5912893751047572 a001 1/322*(1/2*5^(1/2)+1/2)^27*47^(8/21) 5912893755751928 a007 Real Root Of -47*x^4-195*x^3+376*x^2-698*x-134 5912893769414362 a007 Real Root Of 965*x^4-545*x^3-21*x^2+266*x-66 5912893770233403 m001 (gamma+DuboisRaymond)/(-MertensB3+Trott2nd) 5912893786019289 r005 Re(z^2+c),c=-7/10+113/183*I,n=2 5912893814452964 m001 arctan(1/2)^2/Riemann1stZero^2*ln(gamma) 5912893814491238 p004 log(24481/13553) 5912893836490617 a001 6557470319842/521*843^(4/7) 5912893864067701 m001 (Chi(1)+MertensB2)/(MinimumGamma+Niven) 5912893937817110 a007 Real Root Of 309*x^4-959*x^3+502*x^2-268*x-570 5912893955842679 p001 sum(1/(571*n+113)/n/(25^n),n=1..infinity) 5912893960768878 m005 (1/3*2^(1/2)+2/9)/(3/7*3^(1/2)-5/8) 5912893985603586 r009 Re(z^3+c),c=-25/42+1/2*I,n=49 5912894010586511 s001 sum(exp(-Pi/2)^n*A106652[n],n=1..infinity) 5912894010700251 m001 (KhinchinHarmonic+Kolakoski)/(Otter+Totient) 5912894010760058 m001 (gamma+FellerTornier)/(LaplaceLimit+Thue) 5912894054134553 r009 Re(z^3+c),c=-8/13+17/33*I,n=10 5912894055410661 r005 Re(z^2+c),c=1/58+23/31*I,n=5 5912894068398239 a007 Real Root Of -218*x^4-334*x^3-117*x^2+701*x+413 5912894083508421 r002 42th iterates of z^2 + 5912894085608473 m002 36+E^Pi-Log[Pi]/Pi^4 5912894095790799 m001 Zeta(1/2)/sin(1)*Magata 5912894123194691 m001 (-exp(1/Pi)+BesselI(0,2))/(Si(Pi)-arctan(1/3)) 5912894137332899 m001 MinimumGamma/(ln(2)^Psi(1,1/3)) 5912894146096207 m001 (Zeta(3)+Robbin)/(5^(1/2)+Catalan) 5912894147647743 s001 sum(exp(-Pi)^(n-1)*A114481[n],n=1..infinity) 5912894153014072 r002 2th iterates of z^2 + 5912894153014072 r002 2th iterates of z^2 + 5912894164000401 m001 OneNinth^Khinchin*exp(1/Pi)^Khinchin 5912894164000401 m001 exp(1/Pi)^Khinchin*OneNinth^Khinchin 5912894190932246 a007 Real Root Of 839*x^4-632*x^3+253*x^2-168*x-421 5912894200511288 a007 Real Root Of 984*x^4-440*x^3-746*x^2-324*x-142 5912894207124688 r005 Re(z^2+c),c=1/54+34/53*I,n=22 5912894217364492 a007 Real Root Of 492*x^4-890*x^3-568*x^2-532*x+637 5912894241278224 m001 (Mills-exp(Pi))/(-PolyaRandomWalk3D+Rabbit) 5912894241464923 a007 Real Root Of -535*x^4-373*x^3-481*x^2-361*x-57 5912894278514908 p004 log(15901/8803) 5912894297008165 r009 Re(z^3+c),c=-3/38+10/27*I,n=9 5912894298201720 m001 (Zeta(3)-ln(2))/(Landau-OrthogonalArrays) 5912894298542764 a003 cos(Pi*32/87)-sin(Pi*50/107) 5912894299065812 m005 (1/2*exp(1)-7/8)/(4/5*Zeta(3)-1/7) 5912894324947440 b008 59+BesselJ[3,2] 5912894327238650 r005 Im(z^2+c),c=-13/42+16/25*I,n=25 5912894349270053 h001 (2/5*exp(1)+5/8)/(3/8*exp(2)+1/8) 5912894355926990 m001 (BesselJ(0,1)-ln(gamma))/(-Niven+Tetranacci) 5912894401065691 a007 Real Root Of 645*x^4-319*x^3-335*x^2-283*x-195 5912894430807182 a001 4052739537881/521*843^(9/14) 5912894435761172 h002 exp(19^(7/10)-15^(1/7)) 5912894435761172 h007 exp(19^(7/10)-15^(1/7)) 5912894440555594 m001 (3^(1/2)+ln(5))/(-Stephens+Trott) 5912894445289594 a001 1548008755920/199*199^(9/11) 5912894446254618 m001 (-cos(1)+Artin)/(5^(1/2)+gamma) 5912894451737946 m001 (TravellingSalesman-ln(2)*TreeGrowth2nd)/ln(2) 5912894452582584 r005 Im(z^2+c),c=3/118+27/43*I,n=37 5912894461139541 a007 Real Root Of -344*x^4+994*x^3+514*x^2+922*x+613 5912894480172040 m001 1/Lehmer/Artin*ln(Pi)^2 5912894494146741 r005 Im(z^2+c),c=5/62+3/5*I,n=16 5912894512281658 m001 (MadelungNaCl-Mills)/(Ei(1)+2*Pi/GAMMA(5/6)) 5912894625058640 m002 -6*ProductLog[Pi]+(5*Sinh[Pi])/Pi^2 5912894641072366 a001 3/4181*2584^(47/55) 5912894641590885 m001 Riemann1stZero/(exp(Pi)+LandauRamanujan) 5912894653661106 r009 Im(z^3+c),c=-17/31+35/58*I,n=52 5912894666550021 m001 1/Zeta(7)/HardHexagonsEntropy/ln(cos(Pi/12))^2 5912894667885962 a007 Real Root Of 118*x^4+578*x^3-636*x^2+576*x+892 5912894694508462 a003 sin(Pi*3/58)-sin(Pi*19/70) 5912894699836778 m001 1/cosh(1)/ln(GAMMA(1/4))*sinh(1) 5912894724616695 m001 Shi(1)-cos(1/5*Pi)*Stephens 5912894776976135 r002 12th iterates of z^2 + 5912894781076276 a008 Real Root of (16+18*x-10*x^2+9*x^3) 5912894781811226 q001 1/1691219 5912894784644690 p004 log(19333/18223) 5912894798855915 m001 log(1+sqrt(2))^2*exp(Salem)^2/sinh(1)^2 5912894806802426 m001 (Cahen+CareFree)/(BesselK(1,1)-Artin) 5912894809831930 r005 Re(z^2+c),c=-53/48+13/51*I,n=22 5912894828471315 r005 Im(z^2+c),c=-127/98+1/32*I,n=60 5912894849460650 r008 a(0)=6,K{-n^6,-50+28*n+38*n^2-4*n^3} 5912894869769895 m001 (-MertensB2+Trott2nd)/(Shi(1)+MasserGramain) 5912894895069283 m001 (Champernowne-DuboisRaymond)/(ln(2)-Ei(1)) 5912894903895781 a007 Real Root Of -375*x^4+464*x^3-408*x^2-114*x+217 5912894912371361 p004 log(10753/5953) 5912894937535705 m005 (1/2*Pi-4/5)/(5*exp(1)-5/9) 5912894973053779 m001 (MinimumGamma-TwinPrimes)/FeigenbaumKappa 5912894979473800 m005 (1/3*Pi-1/9)/(7/11*Zeta(3)+9/11) 5912894980495577 b008 (7*Sqrt[SinIntegral[2]])/15 5912894987668400 m005 (1/2*2^(1/2)+5/12)/(1/3*Pi-6/7) 5912895017565856 m001 (Pi+1-LambertW(1))*Zeta(1,-1) 5912895025123806 a001 2504730781961/521*843^(5/7) 5912895053240491 a007 Real Root Of 722*x^4-273*x^3+331*x^2+618*x+105 5912895065748957 a003 sin(Pi*7/54)/sin(Pi*25/107) 5912895066357824 h001 (9/11*exp(1)+9/10)/(7/10*exp(2)+1/9) 5912895070352719 a007 Real Root Of -144*x^4-718*x^3+892*x^2+585*x-138 5912895079507214 m001 (-Cahen+FeigenbaumMu)/(BesselK(0,1)-Catalan) 5912895082136426 l006 ln(5478/9895) 5912895120783585 a005 (1/sin(57/131*Pi))^195 5912895129785845 r009 Im(z^3+c),c=-13/50+37/52*I,n=17 5912895133261234 a007 Real Root Of -712*x^4-56*x^3-491*x^2-78*x+201 5912895151918493 a007 Real Root Of -643*x^4+982*x^3-784*x^2-194*x+441 5912895152596962 r009 Im(z^3+c),c=-35/122+31/49*I,n=11 5912895161767811 m001 Rabbit*MertensB1^2/ln(BesselJ(1,1)) 5912895189985979 h001 (3/8*exp(2)+1/12)/(7/11*exp(2)+1/8) 5912895193024432 m006 (Pi-1/4)/(5*ln(Pi)-5/6) 5912895198100953 r009 Im(z^3+c),c=-19/34+32/53*I,n=61 5912895209480568 m001 (-gamma(2)+gamma(3))/(sin(1)+ln(Pi)) 5912895230958889 m009 (1/4*Psi(1,3/4)+5/6)/(5/2*Pi^2+1/6) 5912895239450953 m001 GAMMA(13/24)^2/ln((2^(1/3)))^2*GAMMA(19/24) 5912895242929913 m001 Rabbit^2*ln(DuboisRaymond)^2*Robbin^2 5912895246440306 m001 Zeta(1,2)^2*Trott^2*ln(sqrt(Pi)) 5912895248669386 h001 (4/5*exp(1)+7/9)/(5/8*exp(2)+3/8) 5912895284137507 l006 ln(5003/9037) 5912895295487696 r002 4th iterates of z^2 + 5912895317319828 r009 Im(z^3+c),c=-8/15+15/38*I,n=13 5912895331958434 r005 Im(z^2+c),c=-14/27+33/50*I,n=4 5912895335513328 m001 (BesselJ(1,1)-Si(Pi))/(GAMMA(7/12)+Thue) 5912895361549099 a007 Real Root Of 879*x^4-897*x^3+299*x^2-94*x-453 5912895378410541 r005 Re(z^2+c),c=-23/34+38/127*I,n=23 5912895391559967 a007 Real Root Of 122*x^4-407*x^3+337*x^2-330*x-412 5912895432630266 a003 cos(Pi*25/103)*sin(Pi*32/105) 5912895454195089 a003 cos(Pi*32/101)*cos(Pi*47/101) 5912895497238349 a007 Real Root Of -120*x^4+545*x^3+555*x^2+794*x-49 5912895528519552 l006 ln(4528/8179) 5912895549983808 m005 (3*Pi+1/5)/(11/15+2/5*5^(1/2)) 5912895580832444 m005 (1/2*exp(1)-5/6)/(5/12*2^(1/2)+3/10) 5912895601285256 a003 cos(Pi*31/83)-sin(Pi*49/113) 5912895606006063 a007 Real Root Of 954*x^4-858*x^3-331*x^2-627*x-549 5912895619440490 a001 1548008755920/521*843^(11/14) 5912895626697535 r002 62th iterates of z^2 + 5912895637468931 r001 57i'th iterates of 2*x^2-1 of 5912895642999119 m001 1/ln(GAMMA(5/6))/GolombDickman/sqrt(5) 5912895643304948 r002 37i'th iterates of 2*x/(1-x^2) of 5912895668484490 s001 sum(exp(-2*Pi/5)^n*A245029[n],n=1..infinity) 5912895668484490 s002 sum(A245029[n]/(exp(2/5*pi*n)),n=1..infinity) 5912895675267343 m001 (ln(Pi)+arctan(1/3))/(Otter-PlouffeB) 5912895688480380 r009 Im(z^3+c),c=-45/74+16/51*I,n=10 5912895697745984 r009 Re(z^3+c),c=-15/74+34/47*I,n=22 5912895699749596 m001 (BesselJ(1,1)*Kolakoski)^(1/2) 5912895703951358 m001 ln(2)/(Porter^PrimesInBinary) 5912895719441896 r009 Re(z^3+c),c=-73/122+33/64*I,n=37 5912895733481378 h001 (4/7*exp(1)+9/10)/(1/2*exp(2)+5/11) 5912895735727755 m005 (1/2*Pi-2/11)/(1/9*Pi+2) 5912895808209585 a001 3571/2178309*6765^(8/55) 5912895830183341 l006 ln(4053/7321) 5912895843724384 a005 (1/cos(36/169*Pi))^140 5912895856529580 a001 7/233*75025^(25/37) 5912895878357421 m001 1/GolombDickman/Si(Pi)*exp(GAMMA(1/6))^2 5912895879303853 m001 Landau^gamma(3)*Landau^Thue 5912895897609286 a007 Real Root Of 675*x^4-976*x^3-352*x^2-47*x-189 5912895918216822 r008 a(0)=6,K{-n^6,-58-68*n^3+97*n^2+40*n} 5912895925495006 m001 (sin(1/5*Pi)+Ei(1))/(FeigenbaumB-ThueMorse) 5912895966714518 a007 Real Root Of 222*x^4-951*x^3+837*x^2-341*x-718 5912895991021155 k002 Champernowne real with 56*n^2-82*n+31 5912895996846559 m005 (1/2*2^(1/2)-2/11)/(10/11*gamma+4/11) 5912896016925745 r005 Re(z^2+c),c=7/106+21/34*I,n=45 5912896025520696 m005 (3/5*2^(1/2)-4)/(5*Catalan+3/4) 5912896051385358 m005 (1/3*2^(1/2)-1/2)/(5/7*Zeta(3)-3/8) 5912896061567819 a007 Real Root Of 772*x^4-792*x^3+954*x^2+478*x-309 5912896072587833 m005 (27/28+1/4*5^(1/2))/(-21/40+7/20*5^(1/2)) 5912896082220178 a007 Real Root Of -124*x^4-638*x^3+571*x^2+148*x+592 5912896102186856 p003 LerchPhi(1/256,2,203/156) 5912896117366210 a007 Real Root Of -962*x^4+972*x^3+146*x^2+757*x-582 5912896124990117 m006 (5*Pi^2+1/3)/(3/4*Pi^2+1) 5912896124990117 m008 (5*Pi^2+1/3)/(3/4*Pi^2+1) 5912896124990117 m009 (5/2*Pi^2+1/6)/(3/8*Pi^2+1/2) 5912896130483925 m001 (GaussKuzminWirsing+1/2)/(GAMMA(23/24)+1/3) 5912896146662844 m001 1/Catalan^2/ln(GolombDickman)*GAMMA(7/12)^2 5912896183145181 a007 Real Root Of -6*x^4-355*x^3-30*x^2-977*x+350 5912896198681927 a007 Real Root Of 502*x^4-477*x^3-84*x^2-426*x-25 5912896211942309 l006 ln(3578/6463) 5912896213757234 a001 956722026041/521*843^(6/7) 5912896258275500 r002 33th iterates of z^2 + 5912896258470939 a008 Real Root of (-5+4*x+x^2+6*x^3+5*x^4+6*x^5) 5912896276473509 r009 Re(z^3+c),c=-33/56+29/53*I,n=22 5912896285277995 a001 726103/6*199^(36/49) 5912896290559000 m005 (1/2*3^(1/2)-1/10)/(6/7*2^(1/2)+1/12) 5912896298968632 r009 Im(z^3+c),c=-23/106+36/41*I,n=34 5912896312678741 a007 Real Root Of 732*x^4-637*x^3-180*x^2+249*x-11 5912896317997143 r002 5th iterates of z^2 + 5912896325411627 a007 Real Root Of 124*x^4+605*x^3-761*x^2-93*x-446 5912896325714717 g006 Psi(1,5/11)+Psi(1,3/7)-Psi(1,7/9)-Psi(1,4/7) 5912896331393388 m001 (exp(1/Pi)+LaplaceLimit)/(OneNinth-ZetaP(2)) 5912896333789236 a003 sin(Pi*6/85)-sin(Pi*25/83) 5912896360150112 r005 Im(z^2+c),c=-5/29+9/14*I,n=31 5912896369839339 h001 (5/12*exp(2)+9/10)/(5/6*exp(2)+4/7) 5912896398301283 r005 Re(z^2+c),c=-4/23+41/61*I,n=14 5912896443949316 m001 1/ln(Riemann2ndZero)^2*Conway^2/GAMMA(1/6)^2 5912896444004502 a007 Real Root Of -244*x^4+748*x^3-749*x^2+933*x+998 5912896469499065 l006 ln(3070/3257) 5912896471869625 a001 21/3010349*11^(41/46) 5912896478558381 m005 (1/2*Catalan-4/5)/(7/10*Catalan-7/12) 5912896492238311 m001 1/ln(BesselJ(1,1))/MinimumGamma^2*Zeta(5) 5912896493218632 m001 ln(gamma)^Weierstrass*BesselK(1,1)^Weierstrass 5912896494679685 m001 (Psi(2,1/3)-exp(1))/(-GAMMA(13/24)+Robbin) 5912896502051268 a007 Real Root Of -846*x^4+338*x^3-928*x^2-145*x+412 5912896517147444 r005 Im(z^2+c),c=17/64+25/53*I,n=51 5912896523112889 a007 Real Root Of -507*x^4+333*x^3-132*x^2+570*x+514 5912896528852714 r002 3th iterates of z^2 + 5912896555227723 a007 Real Root Of -475*x^4+53*x^3-223*x^2+756*x+594 5912896556096909 m001 (Zeta(3)+GAMMA(3/4))/(Zeta(1,-1)+Stephens) 5912896565635190 a007 Real Root Of -935*x^4+158*x^3-410*x^2+884*x+813 5912896569146838 a007 Real Root Of 655*x^4+136*x^3+797*x^2-574*x-670 5912896582924018 a007 Real Root Of -622*x^4-490*x^3-463*x^2+70*x+178 5912896596450439 a007 Real Root Of -637*x^4-766*x^3-916*x^2+616*x+604 5912896618082265 r005 Re(z^2+c),c=-11/17+4/41*I,n=3 5912896658356198 m001 exp(Kolakoski)^2*FeigenbaumDelta*Sierpinski 5912896671855556 r005 Im(z^2+c),c=17/56+27/64*I,n=59 5912896706012921 r002 18th iterates of z^2 + 5912896707424320 a003 cos(Pi*37/103)*cos(Pi*31/68) 5912896709088582 m001 (Rabbit-Sarnak)/(Zeta(1,2)-OrthogonalArrays) 5912896710578800 l006 ln(3103/5605) 5912896718744224 m001 1/Salem*ln(Artin)/sqrt(2) 5912896746573262 r009 Re(z^3+c),c=-2/21+20/37*I,n=20 5912896751531312 r005 Im(z^2+c),c=-11/14+161/241*I,n=4 5912896759279998 m001 (QuadraticClass+Totient)/(1-GolombDickman) 5912896764044571 s002 sum(A008903[n]/(n^3*exp(n)-1),n=1..infinity) 5912896802340862 a008 Real Root of x^4-20*x^2-79*x-56 5912896803057066 m005 (3/5*2^(1/2)+5/6)/(2/3*Pi+3/4) 5912896804416442 a007 Real Root Of -577*x^4+852*x^3-972*x^2-471*x+308 5912896808074038 a001 591286729879/521*843^(13/14) 5912896845849756 a007 Real Root Of -370*x^4+455*x^3+411*x^2-77*x-147 5912896846076575 a007 Real Root Of -638*x^4+406*x^3-941*x^2-492*x+200 5912896854800439 r009 Re(z^3+c),c=-3/118+31/43*I,n=22 5912896858423997 r005 Im(z^2+c),c=9/28+2/57*I,n=61 5912896880446522 r005 Re(z^2+c),c=-20/27+2/31*I,n=64 5912896892087999 a001 34*11^(3/13) 5912896925263191 a007 Real Root Of 70*x^4-377*x^3+897*x^2-678*x-801 5912896933127473 m005 (17/20+1/4*5^(1/2))/(2/7*Catalan-1/2) 5912896934103435 r008 a(0)=1,K{-n^6,-5-40*n-10*n^2+55*n^3} 5912896934954731 m001 (GAMMA(7/12)+Grothendieck)/(1-BesselJ(1,1)) 5912896960461735 a007 Real Root Of 916*x^4+384*x^3-207*x^2-874*x-477 5912896967278425 r002 22th iterates of z^2 + 5912896994440766 a007 Real Root Of 315*x^4-541*x^3+658*x^2-987*x-964 5912896997533760 a001 3536736619241/281*322^(2/3) 5912897000912361 h001 (1/8*exp(1)+9/11)/(1/4*exp(2)+1/9) 5912897007881613 b008 5+(1+EulerGamma)^(-1/5) 5912897010217814 r005 Im(z^2+c),c=-55/118+31/53*I,n=16 5912897030362317 a007 Real Root Of -71*x^4-348*x^3+496*x^2+299*x-727 5912897063843069 m001 exp(PrimesInBinary)^2*FeigenbaumC/Rabbit 5912897090222112 a007 Real Root Of 748*x^4-344*x^3+724*x^2-973*x-991 5912897098123673 b008 11*ArcCoth[8/5]^2 5912897099698111 r005 Im(z^2+c),c=-1/10+19/29*I,n=55 5912897102160073 m001 2*Pi/GAMMA(5/6)*DuboisRaymond/FeigenbaumC 5912897144208471 r005 Im(z^2+c),c=-3/86+4/63*I,n=4 5912897155814623 a003 sin(Pi*14/75)/sin(Pi*37/96) 5912897185335828 a007 Real Root Of 46*x^4-843*x^3-687*x^2+179*x+303 5912897226489364 r009 Im(z^3+c),c=-19/34+31/51*I,n=40 5912897229183598 r005 Re(z^2+c),c=-3/4+5/242*I,n=43 5912897231370645 r008 a(0)=6,K{-n^6,-3-5*n^3+4*n^2+5*n} 5912897264439344 r009 Im(z^3+c),c=-17/106+58/59*I,n=34 5912897280227359 r009 Re(z^3+c),c=-71/122+18/55*I,n=54 5912897292981698 m001 (ln(5)-exp(1/Pi))/(GAMMA(17/24)+FeigenbaumD) 5912897310354188 m001 (BesselK(1,1)-cos(1))/(-Cahen+RenyiParking) 5912897313963536 s002 sum(A018020[n]/(n^2*pi^n-1),n=1..infinity) 5912897361384071 m001 (TreeGrowth2nd+Thue)/(sin(1)+FeigenbaumKappa) 5912897377897586 r005 Re(z^2+c),c=5/26+14/43*I,n=22 5912897381835938 r005 Re(z^2+c),c=-17/14+227/246*I,n=2 5912897389468169 l006 ln(2628/4747) 5912897394488648 m001 (Chi(1)-ln(5))/(Conway+HeathBrownMoroz) 5912897402322360 a001 222916232067553/377 5912897415695592 a007 Real Root Of 895*x^4-533*x^3+594*x^2+337*x-228 5912897485473387 s002 sum(A243739[n]/(n*exp(n)-1),n=1..infinity) 5912897485826903 a001 2207/1346269*6765^(8/55) 5912897485836111 r009 Im(z^3+c),c=-23/82+20/31*I,n=16 5912897495626811 m005 (1/3*exp(1)-3/7)/(1/3*gamma-1) 5912897497645172 p001 sum((-1)^n/(206*n+169)/(625^n),n=0..infinity) 5912897499385500 r005 Re(z^2+c),c=-11/32+29/48*I,n=34 5912897506863662 b008 ExpIntegralEi[8+ArcCoth[3]] 5912897507017057 p004 log(32371/17921) 5912897510196087 m001 Trott2nd^FeigenbaumAlpha/exp(-1/2*Pi) 5912897525639313 r005 Re(z^2+c),c=-17/27+13/35*I,n=56 5912897528382342 a007 Real Root Of 564*x^4-429*x^3-440*x^2-388*x+403 5912897530646939 r005 Re(z^2+c),c=-25/34+7/45*I,n=48 5912897542336170 r005 Re(z^2+c),c=13/70+23/43*I,n=42 5912897554561574 r005 Re(z^2+c),c=-57/122+34/63*I,n=39 5912897577284609 m005 (1/3*Zeta(3)+1/3)/(2/5*Catalan+7/8) 5912897592235248 r008 a(0)=6,K{-n^6,-16-14*n^3+n^2+39*n} 5912897597806788 m001 GlaisherKinkelin^(GAMMA(23/24)*Riemann3rdZero) 5912897606369700 m003 -1/8+Sqrt[5]/4+4*E^(-1-Sqrt[5]) 5912897616038202 m001 Pi*2^(1/2)/GAMMA(3/4)/Lehmer/MertensB2 5912897623072026 r005 Re(z^2+c),c=-17/23+6/55*I,n=42 5912897627115587 a007 Real Root Of 584*x^4-966*x^3+435*x^2+95*x-367 5912897668858205 m001 cos(1)*(Chi(1)-Pi*csc(11/24*Pi)/GAMMA(13/24)) 5912897669633933 r002 8th iterates of z^2 + 5912897671486433 m001 (Lehmer-Trott2nd)/(BesselK(1,1)-ArtinRank2) 5912897676540119 h001 (1/7*exp(1)+4/11)/(1/11*exp(2)+3/5) 5912897681849344 m001 Zeta(3)/ln(KhintchineLevy)*sin(1) 5912897682008311 a007 Real Root Of 574*x^4-379*x^3-274*x^2-641*x+483 5912897695177619 m004 -2-(5*Pi)/4+5*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 5912897697451008 m001 (GaussKuzminWirsing+Salem)/FeigenbaumAlpha 5912897698443307 m001 1/Zeta(1,2)*KhintchineHarmonic^2/ln(gamma) 5912897713434177 a008 Real Root of x^4-47*x^2-36*x+208 5912897715696701 m001 (Robbin+Trott2nd)/(1-Zeta(1,-1)) 5912897721670717 b008 19*EllipticPi[3,2/3] 5912897746195624 a007 Real Root Of 308*x^4-65*x^3+617*x^2-873*x-783 5912897762906728 m001 (GlaisherKinkelin+ZetaP(2))/(Pi-exp(-1/2*Pi)) 5912897766188218 a001 3571/13*34^(47/54) 5912897775476937 m001 Psi(2,1/3)/(1-Pi*csc(11/24*Pi)/GAMMA(13/24)) 5912897781735073 r009 Re(z^3+c),c=-61/102+23/45*I,n=22 5912897797846484 r005 Re(z^2+c),c=-89/66+1/61*I,n=52 5912897800413719 m005 (1/2*exp(1)-6)/(6*Zeta(3)+7/11) 5912897817135826 m009 (2*Psi(1,1/3)+1/2)/(2*Catalan+1/4*Pi^2-4/5) 5912897822445561 q001 353/597 5912897823262531 a007 Real Root Of 629*x^4-841*x^3-141*x^2-970*x-775 5912897828382366 a001 1/2207*(1/2*5^(1/2)+1/2)^25*76^(9/19) 5912897830085946 l006 ln(4781/8636) 5912897831678674 r005 Im(z^2+c),c=-31/56+25/43*I,n=40 5912897835996907 m001 (Otter-Sierpinski)/(2*Pi/GAMMA(5/6)+CareFree) 5912897836435503 r009 Im(z^3+c),c=-41/122+31/52*I,n=9 5912897847538810 m001 (-Mills+Porter)/(2^(1/2)+Conway) 5912897863278472 m001 BesselJ(0,1)^ln(gamma)-LambertW(1) 5912897863278472 m001 BesselJ(0,1)^log(gamma)-LambertW(1) 5912897867371550 a007 Real Root Of -522*x^4+94*x^3-448*x^2+565*x+35 5912897891469673 m006 (1/6*ln(Pi)-4)/(3*exp(Pi)-5) 5912897936422935 m001 GAMMA(17/24)/(gamma(3)-Ei(1,1)) 5912897974377976 r005 Re(z^2+c),c=-3/52+23/34*I,n=58 5912897994583254 p001 sum(1/(569*n+144)/n/(24^n),n=1..infinity) 5912897999844346 a007 Real Root Of 850*x^4-642*x^3-372*x^2-317*x-294 5912898013257349 r005 Re(z^2+c),c=-7/17+27/46*I,n=15 5912898029237461 r005 Re(z^2+c),c=-17/26+13/76*I,n=3 5912898043029610 a001 55/123*76^(2/31) 5912898063274599 a007 Real Root Of -756*x^4+996*x^3-640*x^2-428*x+269 5912898079633278 m002 -5+Pi^2+(Pi*Tanh[Pi])/3 5912898103790346 m001 ln(FeigenbaumB)/ErdosBorwein^2/Zeta(3) 5912898114392902 r002 3th iterates of z^2 + 5912898118696076 p004 log(19751/18617) 5912898136520506 h001 (5/11*exp(1)+4/9)/(4/5*exp(1)+2/3) 5912898142241432 r005 Re(z^2+c),c=-55/74+6/53*I,n=44 5912898154806011 m004 -1+5*Pi-(25*Sqrt[5]*Pi)/4-Sinh[Sqrt[5]*Pi] 5912898168079364 a007 Real Root Of -15*x^4+830*x^3+248*x^2+518*x+393 5912898171872561 a007 Real Root Of 982*x^4-815*x^3-183*x^2-16*x-234 5912898176594844 m001 Bloch*(Pi*2^(1/2)/GAMMA(3/4))^ReciprocalLucas 5912898188718567 h001 (1/3*exp(1)+9/10)/(10/11*exp(1)+7/12) 5912898211182487 a007 Real Root Of -807*x^4+88*x^3-680*x^2-94*x+299 5912898220262220 m001 (exp(Pi)+Pi^(1/2))/(Cahen+FeigenbaumMu) 5912898226041519 m001 ArtinRank2^(GaussAGM*MadelungNaCl) 5912898230025088 a007 Real Root Of 947*x^4-281*x^3-26*x^2-753*x-610 5912898234396795 m001 (Psi(1,1/3)-sin(1))/(Conway+MertensB1) 5912898241358808 r005 Re(z^2+c),c=-13/22+67/107*I,n=13 5912898242198192 a007 Real Root Of -856*x^4-886*x^3-427*x^2+983*x+652 5912898261067471 r002 3th iterates of z^2 + 5912898334676809 r002 2th iterates of z^2 + 5912898363772800 m001 GAMMA(5/6)^2*Riemann3rdZero/exp(Zeta(1/2))^2 5912898367913842 l006 ln(2153/3889) 5912898367913842 p004 log(3889/2153) 5912898378701940 a003 cos(Pi*13/118)-sin(Pi*42/85) 5912898412809749 m001 FeigenbaumB*Sarnak^Shi(1) 5912898419056346 a007 Real Root Of -668*x^4+516*x^3+292*x^2+693*x+496 5912898443299337 m001 exp(1/Pi)*FeigenbaumAlpha/LandauRamanujan2nd 5912898449147946 r002 3th iterates of z^2 + 5912898452342328 a008 Real Root of x^4-x^3-96*x-448 5912898463245963 r002 25th iterates of z^2 + 5912898474001763 a001 20633239/5*4807526976^(17/23) 5912898474157066 a001 73681302247/5*75025^(17/23) 5912898480435662 b008 -3*E^3+Cosh[1/2] 5912898481225599 m001 1/exp(GAMMA(13/24))*PrimesInBinary^2*sqrt(Pi) 5912898498172910 a005 (1/sin(38/123*Pi))^213 5912898513896661 r005 Im(z^2+c),c=-53/78+9/14*I,n=5 5912898518770714 m001 (FeigenbaumB-Magata)/(AlladiGrinstead-Artin) 5912898520693272 a007 Real Root Of -993*x^4+981*x^3-840*x^2-842*x+120 5912898534958640 a007 Real Root Of 141*x^4-707*x^3+577*x^2-267*x-523 5912898537740252 a007 Real Root Of 802*x^4+163*x^3+303*x^2-238*x-311 5912898539286674 m001 (-GAMMA(1/24)+2/3)/(-ln(Pi)+5) 5912898544640039 a007 Real Root Of 630*x^4-602*x^3+137*x^2-730*x-681 5912898566019695 a007 Real Root Of -503*x^4-593*x^3-172*x^2+876*x+517 5912898595467782 r008 a(0)=6,K{-n^6,49-28*n^3+85*n^2-97*n} 5912898616585684 a005 (1/cos(1/67*Pi))^1616 5912898619219781 a007 Real Root Of -103*x^4+577*x^3-474*x^2+229*x+433 5912898627578143 a007 Real Root Of 181*x^4+910*x^3-879*x^2+296*x-643 5912898631477931 a007 Real Root Of 329*x^4-110*x^3-590*x^2-758*x+637 5912898646968825 r001 5i'th iterates of 2*x^2-1 of 5912898655505056 a007 Real Root Of 25*x^4-671*x^3-803*x^2+114*x+349 5912898675779457 a007 Real Root Of 121*x^4-3*x^3-119*x^2-988*x-558 5912898701912625 a007 Real Root Of -913*x^4+972*x^3-677*x^2-983*x-32 5912898723477161 r005 Im(z^2+c),c=7/94+11/19*I,n=9 5912898765755766 a001 1/11592*121393^(13/36) 5912898776805074 r004 Im(z^2+c),c=-35/26+9/23*I,z(0)=-1,n=3 5912898780698739 m001 (exp(-1/2*Pi)+MertensB1)/(3^(1/3)-5^(1/2)) 5912898800460946 b008 InverseJacobiDS[Sqrt[Pi],1/9] 5912898808505122 m001 ln(GAMMA(7/12))^2*Si(Pi)*sqrt(Pi) 5912898815083472 v002 sum(1/(2^n+(16*n^2-45*n+84)),n=1..infinity) 5912898865207688 a001 1/5778*(1/2*5^(1/2)+1/2)^27*76^(9/19) 5912898872340329 m005 (1/2*5^(1/2)-3/8)/(2/3*exp(1)-5/9) 5912898890293908 m001 (KomornikLoreti-PlouffeB)/(ln(5)-FeigenbaumC) 5912898893115428 a007 Real Root Of 29*x^4-729*x^3-382*x^2-863*x+791 5912898893302246 a007 Real Root Of 375*x^4+219*x^3-257*x^2-518*x-217 5912898908750378 r004 Im(z^2+c),c=1/26+1/18*I,z(0)=exp(7/8*I*Pi),n=9 5912898913701858 m001 (Otter+Salem)/(ArtinRank2+HeathBrownMoroz) 5912898922564841 a003 sin(Pi*2/53)/cos(Pi*17/39) 5912898940485060 r002 4th iterates of z^2 + 5912898951962226 r005 Re(z^2+c),c=3/44+27/55*I,n=11 5912898952160556 g001 GAMMA(5/9,38/81) 5912898952644360 r005 Im(z^2+c),c=-29/23+2/55*I,n=40 5912898975663227 r009 Im(z^3+c),c=-43/114+49/57*I,n=2 5912898995885882 a001 3571/3*8^(37/48) 5912898996099435 r002 5th iterates of z^2 + 5912899016478495 a001 1/15127*(1/2*5^(1/2)+1/2)^29*76^(9/19) 5912899032101016 r005 Im(z^2+c),c=35/106+4/11*I,n=41 5912899036473657 a001 1/33*(1/2*5^(1/2)+1/2)^14*11^(7/20) 5912899038341249 a007 Real Root Of 679*x^4-728*x^3-126*x-308 5912899038548608 a001 1/39603*(1/2*5^(1/2)+1/2)^31*76^(9/19) 5912899039110662 l006 ln(3831/6920) 5912899042318634 a001 (1/2*5^(1/2)+1/2)^9*76^(9/19) 5912899043758656 a001 1/64079*(1/2*5^(1/2)+1/2)^32*76^(9/19) 5912899045227996 r009 Re(z^3+c),c=-15/26+25/53*I,n=46 5912899052188689 a001 1/24476*(1/2*5^(1/2)+1/2)^30*76^(9/19) 5912899086327784 r005 Im(z^2+c),c=-29/122+21/23*I,n=3 5912899107016410 r002 38th iterates of z^2 + 5912899109968998 a001 1/9349*(1/2*5^(1/2)+1/2)^28*76^(9/19) 5912899121736936 m001 (ZetaQ(2)-ZetaQ(4))/(gamma(1)-AlladiGrinstead) 5912899169854382 m002 -4+Pi^2+Csch[Pi]/2 5912899181263031 r002 10th iterates of z^2 + 5912899194819486 a001 41/75283811239*233^(7/16) 5912899197918417 r002 11th iterates of z^2 + 5912899217604428 m001 BesselJ(1,1)^2/GlaisherKinkelin*exp(Zeta(1,2)) 5912899267925969 a001 521/1134903170*317811^(13/23) 5912899267932586 a001 521/591286729879*20365011074^(13/23) 5912899290343410 m001 (exp(1/Pi)+Pi^(1/2))/(GAMMA(3/4)-ln(2)) 5912899299395902 m005 (1/2*Catalan-5/9)/(9/11*Zeta(3)+2/3) 5912899301424455 l006 ln(5509/9951) 5912899301576025 a007 Real Root Of -389*x^4+637*x^3-820*x^2-169*x+366 5912899319454050 a007 Real Root Of 771*x^4+483*x^3+803*x^2-223*x-407 5912899323776703 m001 sin(1/5*Pi)/gamma(2)/GAMMA(23/24) 5912899361640578 r002 38th iterates of z^2 + 5912899394262582 a007 Real Root Of 484*x^4-466*x^3+843*x^2+249*x-303 5912899406804408 m001 (MertensB3-Porter)/(3^(1/3)+FeigenbaumB) 5912899419579941 v002 sum(1/(5^n*(24*n^2-42*n+56)),n=1..infinity) 5912899430425069 r005 Im(z^2+c),c=-9/98+29/42*I,n=38 5912899453806792 r005 Im(z^2+c),c=31/94+32/61*I,n=17 5912899486465029 m005 (-23/36+1/4*5^(1/2))/(5*exp(1)-1/12) 5912899504242562 m001 (RenyiParking-Totient)/(Cahen-Landau) 5912899506001160 a001 1/3571*(1/2*5^(1/2)+1/2)^26*76^(9/19) 5912899531653402 a007 Real Root Of 429*x^4+469*x^3+673*x^2-457*x-461 5912899536409852 r005 Im(z^2+c),c=25/66+1/7*I,n=60 5912899544300118 r005 Im(z^2+c),c=13/36+17/50*I,n=7 5912899560022107 b008 -1/5*Pi+ArcCsch[27] 5912899564880472 r009 Re(z^3+c),c=-15/106+9/13*I,n=2 5912899572605879 m009 (3*Psi(1,1/3)-4)/(5/12*Pi^2+1/3) 5912899572962168 r009 Re(z^3+c),c=-5/52+27/50*I,n=10 5912899592389529 m001 GAMMA(1/4)^2/Sierpinski^2/exp(Zeta(3)) 5912899603794674 p001 sum((-1)^n/(518*n+151)/n/(25^n),n=1..infinity) 5912899614203233 a001 9349/3*433494437^(11/18) 5912899621215304 s002 sum(A163667[n]/((exp(n)+1)*n),n=1..infinity) 5912899642159250 m001 ln(TwinPrimes)^2/FeigenbaumKappa^2/(2^(1/3))^2 5912899663846613 r009 Im(z^3+c),c=-61/110+23/38*I,n=64 5912899664392301 m001 ln(Trott)^2*FeigenbaumD*OneNinth 5912899681983704 a001 620166*75025^(11/18) 5912899684626189 m001 Lehmer-Trott^MinimumGamma 5912899690503255 m001 FeigenbaumD^2*Si(Pi)^2*exp(GAMMA(1/24))^2 5912899695951412 m008 (Pi^3-3/4)/(1/6*Pi^5+1/6) 5912899712396062 a001 9227465/123*18^(5/7) 5912899719508859 m005 (1/2*Catalan-1/12)/(2/5*Catalan-1) 5912899730670514 m003 13/3+Sqrt[5]/2+(Sqrt[5]*Csch[1/2+Sqrt[5]/2])/2 5912899733355822 l006 ln(9407/9980) 5912899761797383 a007 Real Root Of 795*x^4-529*x^3+711*x^2-519*x-762 5912899761925383 r005 Im(z^2+c),c=1/98+48/53*I,n=3 5912899780958692 r009 Im(z^3+c),c=-23/106+32/33*I,n=17 5912899791826292 r005 Im(z^2+c),c=-9/14+59/163*I,n=57 5912899813671091 m001 (Niven-ZetaP(4))/(ln(5)+ln(Pi)) 5912899855016300 r002 3th iterates of z^2 + 5912899862802664 a007 Real Root Of 346*x^4+76*x^3+502*x^2-470*x-480 5912899862943102 a003 sin(Pi*1/62)+sin(Pi*2/11) 5912899900306516 l006 ln(1678/3031) 5912899938910199 a007 Real Root Of -281*x^4+996*x^3+376*x^2+665*x+502 5912899953539067 a007 Real Root Of -773*x^4+625*x^3+353*x^2+842*x-656 5912899956183460 m005 (1/2*Catalan+5/8)/(7/8*5^(1/2)-1/8) 5912899956698813 a001 18/233*317811^(12/17) 5912899970257472 m001 GAMMA(11/12)/exp(Lehmer)/Pi^2 5912899979607322 m005 (1/2*5^(1/2)-9/11)/(3*3^(1/2)-1/8) 5912899985421660 m001 (2^(1/3)+cos(1/5*Pi))/(Landau+Otter)