6099900000846044 a007 Real Root Of -784*x^4+533*x^3+99*x^2+734*x-497 6099900013603175 a007 Real Root Of 761*x^4-728*x^3+271*x^2-978*x-968 6099900015234442 s002 sum(A129257[n]/(n^2*10^n-1),n=1..infinity) 6099900053285207 a007 Real Root Of -137*x^4+831*x^3+33*x^2+328*x-382 6099900068064087 s002 sum(A037597[n]/(exp(pi*n)-1),n=1..infinity) 6099900091388847 r005 Re(z^2+c),c=-19/94+29/43*I,n=5 6099900092781306 m001 FeigenbaumAlpha-ln(2+3^(1/2))-Stephens 6099900105220501 a007 Real Root Of 974*x^4+382*x^3-376*x^2-216*x-40 6099900110630512 a007 Real Root Of -679*x^4+550*x^3-822*x^2+671*x+934 6099900129122445 a001 1/11*(1/2*5^(1/2)+1/2)^16*7^(4/7) 6099900131430894 m006 (2/3*Pi+5)/(5*exp(Pi)+3/5) 6099900137175428 r008 a(0)=8,K{-n^6,28-10*n^2-19*n} 6099900145046697 a007 Real Root Of 247*x^4-994*x^3+926*x^2-814*x-5 6099900146824461 m005 (1/2*exp(1)-7/11)/(2/9*3^(1/2)+4/5) 6099900158219824 r005 Re(z^2+c),c=7/30+7/19*I,n=59 6099900161521894 r005 Im(z^2+c),c=-27/118+5/59*I,n=15 6099900166184161 m001 (gamma(1)+gamma(3))/(RenyiParking+ThueMorse) 6099900173449178 a007 Real Root Of -69*x^4+967*x^3+391*x^2+319*x-550 6099900186746415 a007 Real Root Of 752*x^4+259*x^3+984*x^2-314*x-603 6099900194650431 a007 Real Root Of -732*x^4-145*x^3+276*x^2+807*x+458 6099900205225880 m001 ln(5)^ReciprocalFibonacci*ln(5)^TreeGrowth2nd 6099900221679444 m001 (KhinchinLevy-Landau)/(Porter-ThueMorse) 6099900224466803 r005 Im(z^2+c),c=3/8+8/53*I,n=60 6099900230833703 m001 Tribonacci*FeigenbaumKappa*ln(GAMMA(13/24))^2 6099900253436251 m001 LandauRamanujan^gamma(3)-ln(5) 6099900258208360 r009 Re(z^3+c),c=-39/64+15/22*I,n=11 6099900275480223 r005 Im(z^2+c),c=5/42+25/41*I,n=29 6099900281081923 a007 Real Root Of -595*x^4+530*x^3-793*x^2+707*x+929 6099900293523649 l006 ln(4261/7842) 6099900298642366 a007 Real Root Of -413*x^4+516*x^3-218*x^2+119*x+328 6099900326980000 r005 Re(z^2+c),c=7/74+18/41*I,n=17 6099900329153355 m005 (1/3*2^(1/2)+2/9)/(4/11*Zeta(3)+7/10) 6099900353095729 b008 -61+ExpIntegralE[2,5] 6099900355427598 a007 Real Root Of 747*x^4+535*x^3+197*x^2-411*x-306 6099900363730703 a007 Real Root Of 707*x^4-798*x^3+186*x^2+602*x+19 6099900370490981 b008 E^(-17/3)+1/Sqrt[E] 6099900430025116 r002 60th iterates of z^2 + 6099900462105369 r005 Im(z^2+c),c=1/118+7/12*I,n=5 6099900491029610 b008 355*(-1+E) 6099900503194214 r005 Im(z^2+c),c=-39/64+2/17*I,n=20 6099900542000828 l006 ln(5132/9445) 6099900542753993 r009 Im(z^3+c),c=-5/16+33/50*I,n=46 6099900559022229 m005 (1/3*3^(1/2)-1/7)/(11/28+1/7*5^(1/2)) 6099900572841782 m001 ln(FeigenbaumKappa)^2*FeigenbaumD^2*Catalan 6099900576607807 r002 32th iterates of z^2 + 6099900683251304 r008 a(0)=6,K{-n^6,-9*n^3+4*n^2-6*n} 6099900698005456 m001 Kolakoski^Zeta(3)-ZetaR(2) 6099900704907066 r002 11th iterates of z^2 + 6099900713929027 b008 -6+BesselY[2,Pi] 6099900726990183 b008 7*(7+ArcSec[-7]) 6099900729824079 m005 (1/2*Catalan+2/3)/(3/4*5^(1/2)+1/6) 6099900733876194 m001 ln(GAMMA(1/4))^2*Riemann3rdZero^2*sin(Pi/5) 6099900751759125 a001 4181/7*18^(41/51) 6099900760833608 q001 1844/3023 6099900761520948 m009 (4/5*Psi(1,2/3)+2/5)/(1/4*Pi^2-2) 6099900771625999 a007 Real Root Of -246*x^4+135*x^3+693*x^2+937*x-826 6099900772211241 m005 (1/3*2^(1/2)-1/10)/(5/9*Catalan+1/10) 6099900795773859 a007 Real Root Of 9*x^4+546*x^3-176*x^2+398*x+269 6099900796597275 a007 Real Root Of 149*x^4-379*x^3-656*x^2-232*x+451 6099900813401323 r005 Im(z^2+c),c=-97/74+1/51*I,n=31 6099900841259739 a007 Real Root Of -814*x^4+625*x^3+330*x^2+746*x-607 6099900849561449 a007 Real Root Of 529*x^4+69*x^3-142*x^2-587*x+322 6099900860508150 m001 (Conway+ZetaQ(4))/(3^(1/3)+ArtinRank2) 6099900871270634 m001 (LambertW(1)+Riemann1stZero)^Psi(1,1/3) 6099900890699881 a007 Real Root Of 152*x^4+793*x^3-740*x^2+595*x+708 6099900913770992 r008 a(0)=6,K{-n^6,-6-8*n^3-2*n^2+5*n} 6099900920196810 m008 (1/6*Pi^2-1/4)/(3/4*Pi^5-5/6) 6099900931003950 r009 Re(z^3+c),c=-1/114+7/16*I,n=12 6099901009157084 m001 (BesselK(1,1)+ZetaQ(3))/(2^(1/3)-sin(1/12*Pi)) 6099901009912972 m001 (Si(Pi)+ln(3))/(Weierstrass+ZetaQ(3)) 6099901017737395 m001 ln(sin(Pi/5))^2/cosh(1)/sqrt(3)^2 6099901021377621 m001 FellerTornier/(ZetaP(4)^ln(Pi)) 6099901035895112 m005 (1/2*2^(1/2)+1/5)/(5/7*exp(1)-5/11) 6099901068329406 m001 Rabbit/exp(GlaisherKinkelin)*GAMMA(1/6)^2 6099901124575873 r005 Im(z^2+c),c=-5/19+5/57*I,n=10 6099901130236407 r005 Im(z^2+c),c=43/122+13/31*I,n=25 6099901186726216 m001 Zeta(7)/exp(GAMMA(1/3))*log(1+sqrt(2)) 6099901216224711 a001 3461452808002/3*20365011074^(15/23) 6099901227643486 a001 1/2*29^(26/35) 6099901255204232 r005 Re(z^2+c),c=17/54+9/40*I,n=5 6099901264944163 r009 Re(z^3+c),c=-3/118+32/39*I,n=42 6099901272526178 m001 (Artin+FeigenbaumKappa)/(Zeta(1/2)-exp(1/Pi)) 6099901288094550 s002 sum(A165406[n]/(n*2^n+1),n=1..infinity) 6099901298279363 m001 (GolombDickman+Landau)/(3^(1/3)+Bloch) 6099901355424206 a007 Real Root Of -759*x^4+298*x^3+470*x^2+897*x+545 6099901371175221 k001 Champernowne real with 381*n+228 6099901371175221 k005 Champernowne real with floor(sqrt(3)*(220*n+132)) 6099901381959825 r002 33th iterates of z^2 + 6099901389642492 a007 Real Root Of 128*x^4-673*x^3+353*x^2+62*x-264 6099901400314070 r005 Re(z^2+c),c=-43/90+13/22*I,n=27 6099901416089510 a008 Real Root of x^4-2*x^3-18*x^2-38*x-29 6099901422270248 a007 Real Root Of 200*x^4-754*x^3-342*x^2-971*x+863 6099901437123233 r002 12th iterates of z^2 + 6099901442012307 r002 4th iterates of z^2 + 6099901446394527 m005 (1/2*2^(1/2)-2/7)/(2*Pi+5/8) 6099901449638608 r009 Im(z^3+c),c=-17/46+30/37*I,n=2 6099901452440277 a008 Real Root of x^4-x^3-47*x^2+113*x-98 6099901474231876 m005 (1/2*Pi-9/10)/(5/9*Zeta(3)-7/9) 6099901506899301 r005 Im(z^2+c),c=9/28+20/51*I,n=11 6099901507612521 m001 1/exp(GAMMA(13/24))*GAMMA(1/3)*GAMMA(19/24) 6099901518889008 r005 Im(z^2+c),c=-11/94+37/46*I,n=20 6099901574803149 q001 2479/4064 6099901605536126 a007 Real Root Of -936*x^4+869*x^3+27*x^2+943*x+892 6099901611679972 m001 (LandauRamanujan+Paris)/(Riemann1stZero+Trott) 6099901626304807 m005 (1/2*Pi+6)/(7/11*5^(1/2)-2/11) 6099901626411254 a001 192900153618/89*1836311903^(10/17) 6099901626411254 a001 1568397607/89*6557470319842^(10/17) 6099901626413968 a001 23725150497407/89*514229^(10/17) 6099901670225410 a007 Real Root Of -665*x^4+690*x^3+352*x^2+330*x+319 6099901681666601 r009 Re(z^3+c),c=-16/27+12/25*I,n=25 6099901709879741 r005 Im(z^2+c),c=9/34+17/36*I,n=52 6099901739911771 a001 89/18*47^(3/55) 6099901757570501 l006 ln(871/1603) 6099901784645549 m001 1/Catalan^2*ln(Robbin)^2/gamma^2 6099901794238369 a007 Real Root Of -576*x^4-509*x^3-974*x^2-724*x-115 6099901808445495 g006 Psi(1,4/11)-Psi(1,6/7)-Psi(1,1/7)-Psi(1,1/4) 6099901817868113 a007 Real Root Of -695*x^4+20*x^3-640*x^2-190*x+223 6099901822166582 r005 Im(z^2+c),c=-35/31+4/53*I,n=36 6099901835487134 a007 Real Root Of -839*x^4-86*x^3-10*x^2+311*x+19 6099901848862883 g007 Psi(2,3/10)+Psi(2,5/7)-Psi(2,6/7)-Psi(2,1/7) 6099901851162312 m002 -2+(3*Cosh[Pi])/5+Log[Pi] 6099901851988136 m001 (Riemann3rdZero+ZetaR(2))/ThueMorse 6099901861150341 a001 9062201101803/55*987^(11/21) 6099901879458228 m001 polylog(4,1/2)^ln(5)/(polylog(4,1/2)^Thue) 6099901881324420 a001 196418/521*76^(1/9) 6099901889681387 m001 1/TwinPrimes^2*ErdosBorwein^2/ln(GAMMA(1/3))^2 6099901962566381 a003 cos(Pi*1/97)*sin(Pi*14/67) 6099901965000620 r005 Re(z^2+c),c=-87/122+7/62*I,n=7 6099901968998398 a003 cos(Pi*29/77)-sin(Pi*41/91) 6099901982751220 a001 28657/1364*199^(7/11) 6099902012100024 r005 Im(z^2+c),c=41/118+21/61*I,n=61 6099902019860808 r005 Im(z^2+c),c=13/50+29/52*I,n=59 6099902032194208 m001 (Trott+Weierstrass)/(GAMMA(11/12)-Si(Pi)) 6099902061494722 a001 1/1762289*144^(16/17) 6099902067221538 r005 Im(z^2+c),c=-29/46+23/47*I,n=3 6099902073147580 r005 Re(z^2+c),c=3/11+15/26*I,n=48 6099902123400152 m007 (-1/6*gamma-1/3*ln(2)-1/4)/(-3/5*gamma-3/5) 6099902163740847 m006 (5/Pi-2/5)/(5/6*exp(Pi)+1/4) 6099902167863368 m001 (ln(5)+Ei(1,1))/(3^(1/2)+BesselI(0,1)) 6099902174851992 r002 57th iterates of z^2 + 6099902181387558 m005 (1/2*exp(1)+4/7)/(2/7*gamma+3) 6099902188619918 a005 (1/cos(3/34*Pi))^993 6099902192607431 a007 Real Root Of 677*x^4-644*x^3+236*x^2-189*x-443 6099902224693222 r002 18th iterates of z^2 + 6099902228276995 a007 Real Root Of 201*x^4+563*x^3+611*x^2-x-128 6099902237292449 a001 8/4870847*3571^(19/43) 6099902258484011 a007 Real Root Of -204*x^4+977*x^3+670*x^2+520*x-760 6099902260171375 b008 (-2*Pi)/27+Erf[1] 6099902272456336 a007 Real Root Of 545*x^4-341*x^3+778*x^2-647*x-837 6099902292927086 a008 Real Root of (-8+8*x+7*x^2+4*x^4-2*x^8) 6099902316968419 a007 Real Root Of -708*x^4+840*x^3+90*x^2-79*x+207 6099902319108995 a001 1/233*3^(8/25) 6099902368441231 m005 (-13/28+1/4*5^(1/2))/(5/11*Pi+1/8) 6099902421063759 a001 8/4870847*9349^(17/43) 6099902448962560 a001 8/167761*39603^(1/43) 6099902450590432 a001 2139295485799/144*377^(5/21) 6099902452418795 m001 (Riemann1stZero-ZetaP(3))/(ZetaP(4)-ZetaQ(2)) 6099902457335188 a001 8/3010349*15127^(14/43) 6099902469523270 a007 Real Root Of 800*x^4-741*x^3-335*x^2-511*x-466 6099902474181736 a001 2/109801*5778^(6/43) 6099902475892069 r009 Re(z^3+c),c=-27/44+17/55*I,n=46 6099902517132184 a001 228826127/55*591286729879^(11/21) 6099902517132185 a001 45537549124/55*24157817^(11/21) 6099902525285195 a007 Real Root Of 607*x^4+672*x^3+512*x^2-418*x-377 6099902525494822 m005 (1/2*Zeta(3)-1/2)/(13/20+9/20*5^(1/2)) 6099902601710692 m001 GAMMA(1/4)*ln(KhintchineLevy)/Zeta(7)^2 6099902624705166 a007 Real Root Of -815*x^4+688*x^3-976*x^2-15*x+623 6099902632850700 m001 (Bloch-KhinchinLevy)/(gamma(3)-GAMMA(19/24)) 6099902665454570 m001 1/Zeta(9)^2*exp(Porter)/sin(1)^2 6099902669233531 r005 Re(z^2+c),c=-7/10+35/214*I,n=20 6099902705527655 r004 Im(z^2+c),c=-41/34-2/23*I,z(0)=-1,n=24 6099902716196663 r002 20th iterates of z^2 + 6099902749991574 a003 sin(Pi*2/105)/sin(Pi*45/103) 6099902766827078 h001 (2/11*exp(1)+9/10)/(7/12*exp(1)+7/10) 6099902794407314 a007 Real Root Of 256*x^4+102*x^3-493*x^2-556*x+464 6099902812511407 m005 (1/2*gamma+1/2)/(2/5*3^(1/2)+3/5) 6099902814238547 m001 (Pi-Psi(1,1/3))/(arctan(1/2)-ZetaP(2)) 6099902845574372 r002 4th iterates of z^2 + 6099902862757527 m005 (1/3*5^(1/2)-1/4)/(29/66+1/6*5^(1/2)) 6099902870623783 a007 Real Root Of 778*x^4-921*x^3+20*x^2-521*x-642 6099902884903143 m001 (Zeta(3)+HardyLittlewoodC5)/(gamma-sin(1)) 6099902886418788 m005 (1/2*exp(1)+2/5)/(5/8*2^(1/2)+2) 6099902893822227 h001 (11/12*exp(1)+4/7)/(5/9*exp(2)+11/12) 6099902924332229 a007 Real Root Of 440*x^4-812*x^3+182*x^2-787*x-793 6099902930183812 l006 ln(5320/9791) 6099903008592269 a007 Real Root Of -778*x^4-937*x^3-281*x^2+981*x+598 6099903020774176 m001 (Totient+ZetaP(3))/(sin(1/5*Pi)+Ei(1)) 6099903055463248 a007 Real Root Of -468*x^4+654*x^3-243*x^2+35*x+325 6099903063130136 m001 Zeta(1/2)^2/KhintchineLevy/exp(cos(1))^2 6099903076786533 a007 Real Root Of 227*x^4-168*x^3-632*x^2-274*x+409 6099903090577643 b008 3+E^((4*Sqrt[2])/5) 6099903103914954 r005 Im(z^2+c),c=-17/14+1/139*I,n=58 6099903126025872 r005 Re(z^2+c),c=-39/56+8/61*I,n=5 6099903140134206 m001 (Backhouse-Conway)/(Riemann3rdZero-Trott) 6099903159751383 l006 ln(4449/8188) 6099903174898456 r009 Im(z^3+c),c=-5/78+25/33*I,n=42 6099903240209636 m001 1/exp(Trott)/ArtinRank2^2*sqrt(3)^2 6099903270793733 m001 GAMMA(5/6)-polylog(4,1/2)-HeathBrownMoroz 6099903277278364 r002 7th iterates of z^2 + 6099903290847844 m002 -(E^Pi*Pi^5)+Pi^6+E^Pi/Log[Pi] 6099903304519199 m002 -6+Pi^(-6)-Tanh[Pi]/Pi^2 6099903305913643 l006 ln(3927/4174) 6099903314027132 r002 57th iterates of z^2 + 6099903346769186 m001 CopelandErdos/MadelungNaCl*ZetaP(2) 6099903388659220 r005 Im(z^2+c),c=-9/14+27/218*I,n=37 6099903398759625 m001 1/exp(GAMMA(7/12))*FransenRobinson*Zeta(9) 6099903400711516 m001 Pi*(2^(1/3)+LambertW(1)*Zeta(3)) 6099903405512270 a007 Real Root Of 468*x^4-440*x^3+595*x^2-395*x-627 6099903411525202 a007 Real Root Of -887*x^4+469*x^3+530*x^2+736*x+481 6099903428154000 r008 a(0)=0,K{-n^6,54+25*n-59*n^2-4*n^3} 6099903442910434 r005 Re(z^2+c),c=-55/106+14/23*I,n=26 6099903475578282 g002 Psi(11/12)+Psi(3/8)-Psi(7/11)-Psi(5/8) 6099903480419822 a007 Real Root Of 840*x^4-775*x^3-637*x^2-458*x+576 6099903495489871 r009 Re(z^3+c),c=-51/94+5/21*I,n=2 6099903501087169 l006 ln(3578/6585) 6099903511183680 a007 Real Root Of 59*x^4-623*x^3+659*x^2+298*x-213 6099903516254771 m009 (2/3*Psi(1,3/4)-5)/(Psi(1,3/4)-2) 6099903525769548 m001 (Catalan-ln(2)/ln(10))/(Zeta(1/2)+ZetaP(2)) 6099903533408961 a007 Real Root Of 623*x^4-288*x^3+976*x^2-595*x-40 6099903537031792 m001 (arctan(1/2)+MinimumGamma)/(ln(Pi)+Zeta(1/2)) 6099903581600782 m005 (1/3*exp(1)+2/9)/(5/11*5^(1/2)+5/6) 6099903606000664 b008 1+ArcCsch[1/82] 6099903606000664 b008 1+ArcSinh[82] 6099903608104087 m005 (1/3*5^(1/2)+1/9)/(5/7*Zeta(3)+6/11) 6099903616383361 a007 Real Root Of 841*x^4-447*x^3+22*x^2+228*x-87 6099903703237529 a007 Real Root Of 878*x^4-461*x^3-849*x^2-952*x-491 6099903710708836 a007 Real Root Of 134*x^4+742*x^3-329*x^2+780*x-111 6099903717948023 m001 (2^(1/2)+BesselK(0,1))/(-PlouffeB+ZetaP(3)) 6099903726756782 r005 Im(z^2+c),c=-17/86+5/61*I,n=11 6099903766497357 r002 23th iterates of z^2 + 6099903779232839 a003 sin(Pi*10/81)/cos(Pi*29/101) 6099903793883589 a007 Real Root Of 236*x^4-940*x^3+578*x^2-331*x-663 6099903800623736 a007 Real Root Of -811*x^4+952*x^3+173*x^2+444*x-439 6099903807717748 a007 Real Root Of 222*x^4-987*x^3+621*x^2-238*x-631 6099903810443092 m001 (GAMMA(13/24)-ZetaP(3))/(Zeta(3)-3^(1/3)) 6099903825740386 p003 LerchPhi(1/6,1,407/221) 6099903833353435 m001 (BesselJ(0,1)+arctan(1/3))/(Niven+ZetaP(4)) 6099903883595032 r002 40th iterates of z^2 + 6099903885936215 a007 Real Root Of 573*x^4+492*x^3+999*x^2+158*x-243 6099903896904451 a007 Real Root Of -199*x^4-59*x^3+731*x^2+395*x-472 6099903938520653 q001 127/2082 6099903987820662 m001 1/BesselK(0,1)/exp(Artin)/GAMMA(1/3) 6099903999503761 a007 Real Root Of 928*x^4-811*x^3+416*x^2+735*x-19 6099904001142774 b008 4+Sqrt[Pi]+ArcCsch[3] 6099904012642455 a007 Real Root Of -87*x^4-705*x^3-981*x^2+470*x-194 6099904015239240 m001 (Backhouse+Mills)/(Ei(1)-3^(1/3)) 6099904023212789 r005 Im(z^2+c),c=29/122+1/57*I,n=10 6099904051611158 r005 Re(z^2+c),c=-9/14+58/167*I,n=10 6099904062078245 l006 ln(2707/4982) 6099904073905877 r002 42th iterates of z^2 + 6099904098915685 r005 Im(z^2+c),c=-11/102+48/61*I,n=14 6099904123092179 a001 28657/843*199^(6/11) 6099904137192722 m001 arctan(1/3)^ThueMorse*Zeta(1,2)^ThueMorse 6099904143631044 a008 Real Root of (-3-2*x-5*x^3+x^4-6*x^5) 6099904267595630 m005 (1/2*3^(1/2)-1/12)/(4/5*Zeta(3)-5/6) 6099904276512850 p001 sum(1/(253*n+164)/(1024^n),n=0..infinity) 6099904287663807 a007 Real Root Of 556*x^4-826*x^3+997*x^2-936*x-61 6099904291433497 m009 (6*Psi(1,3/4)+3/4)/(1/3*Pi^2-2/3) 6099904334341279 m001 (Grothendieck-Trott2nd)/(ln(2)-FeigenbaumMu) 6099904346309966 p001 sum(1/(263*n+164)/(1000^n),n=0..infinity) 6099904358053509 a007 Real Root Of 10*x^4-787*x^3-276*x^2-787*x+760 6099904363696784 m001 1/GAMMA(1/6)*TreeGrowth2nd^2/ln(GAMMA(5/12))^2 6099904372237626 r009 Re(z^3+c),c=-9/14+24/61*I,n=2 6099904380486485 m001 1/(3^(1/3))*Khintchine*ln(sqrt(Pi))^2 6099904405579095 m001 (Zeta(3)+Pi^(1/2))/(FeigenbaumMu+Mills) 6099904445617210 r009 Im(z^3+c),c=-19/86+43/58*I,n=13 6099904449731982 r005 Im(z^2+c),c=-27/94+16/25*I,n=29 6099904465154398 a007 Real Root Of 295*x^4+516*x^3-406*x^2-890*x+536 6099904480557002 r002 10th iterates of z^2 + 6099904491105783 m001 (2^(1/3)+Lehmer)/(Otter+StolarskyHarborth) 6099904494304106 a001 17393796001/144*225851433717^(5/21) 6099904494304110 a001 10716675201/8*9227465^(5/21) 6099904503906546 l006 ln(4543/8361) 6099904515133769 r008 a(0)=0,K{-n^6,64-71*n^3-99*n^2-58*n} 6099904522748174 r008 a(0)=0,K{-n^6,-90+69*n^3+92*n^2+93*n} 6099904541269456 l006 ln(2615/2631) 6099904541432638 m001 TreeGrowth2nd/(QuadraticClass-AlladiGrinstead) 6099904544744017 r005 Re(z^2+c),c=5/46+17/30*I,n=39 6099904549944138 a007 Real Root Of 655*x^4-775*x^3-749*x^2-169*x+467 6099904559993048 a007 Real Root Of 615*x^4-365*x^3+53*x^2-723*x+419 6099904569635775 m005 (4/5*Catalan-4)/(3/4*Pi+3) 6099904589870521 m001 1/Lehmer^2/exp(Bloch)^2*GAMMA(1/24)^2 6099904595522299 a007 Real Root Of 389*x^4+481*x^3+319*x^2-42*x-89 6099904632249256 r005 Re(z^2+c),c=-93/64+1/31*I,n=8 6099904637191085 a007 Real Root Of -884*x^4-776*x^3-531*x^2+997*x+752 6099904637952849 h001 (7/8*exp(1)+3/7)/(6/11*exp(2)+4/7) 6099904646787080 a001 3571/144*10946^(3/31) 6099904684904442 a007 Real Root Of 21*x^4-666*x^3+373*x^2-614*x+384 6099904692916063 m001 (Shi(1)+ln(3))/(ErdosBorwein+Tetranacci) 6099904698526261 m001 GAMMA(13/24)*exp(TreeGrowth2nd)^2*cosh(1) 6099904704992998 r005 Re(z^2+c),c=-29/20+1/58*I,n=16 6099904713878547 h001 (6/7*exp(2)+7/10)/(1/6*exp(1)+7/10) 6099904774547830 p003 LerchPhi(1/100,4,33/164) 6099904797180954 r005 Re(z^2+c),c=-7/10+49/195*I,n=56 6099904843614879 b008 -61+AiryAi[4] 6099904854431592 s002 sum(A125584[n]/(n*pi^n+1),n=1..infinity) 6099904906887854 a007 Real Root Of 975*x^4-270*x^3-435*x^2-219*x-168 6099904911103032 m001 1/GAMMA(1/24)*Kolakoski*ln(GAMMA(7/12))^2 6099904942411430 r009 Im(z^3+c),c=-9/25+11/19*I,n=2 6099904975918594 m001 Pi*2^(1/3)*BesselK(1,1)-Pi^(1/2) 6099905001448703 p004 log(35393/19231) 6099905016616493 r005 Re(z^2+c),c=-23/34+11/40*I,n=52 6099905049431466 r005 Re(z^2+c),c=-1/82+9/35*I,n=21 6099905059597780 r005 Re(z^2+c),c=7/52+37/58*I,n=34 6099905063534337 m001 GAMMA(13/24)/Catalan*Magata 6099905065832944 r005 Im(z^2+c),c=-9/8+19/253*I,n=27 6099905086311690 r005 Re(z^2+c),c=11/90+19/35*I,n=19 6099905098258787 r005 Im(z^2+c),c=-3/31+29/38*I,n=8 6099905111033020 a003 cos(Pi*31/99)+cos(Pi*27/56) 6099905121491741 a007 Real Root Of 844*x^4-408*x^3+63*x^2-751*x-691 6099905150366539 m001 FeigenbaumAlpha-Otter+ZetaP(2) 6099905155338541 l006 ln(1836/3379) 6099905168575828 m001 (Artin-Porter)/(Totient+ZetaP(2)) 6099905168627694 a001 682/3278735159921*317811^(4/15) 6099905177103548 s002 sum(A038928[n]/(2^n+1),n=1..infinity) 6099905186314486 m001 1/exp(BesselK(1,1))^2/Bloch^2*GAMMA(5/12)^2 6099905206147199 a001 521/13*3^(13/34) 6099905253018318 r009 Im(z^3+c),c=-1/46+47/63*I,n=21 6099905254690654 r005 Im(z^2+c),c=-31/48+19/39*I,n=14 6099905268779849 r009 Im(z^3+c),c=-5/126+41/55*I,n=17 6099905296899749 r009 Im(z^3+c),c=-1/64+29/38*I,n=49 6099905333018456 m001 (HardyLittlewoodC3+Landau)/(Artin-LambertW(1)) 6099905339556937 a007 Real Root Of 846*x^4-726*x^3-913*x^2-924*x+951 6099905346976589 m001 (arctan(1/3)-ArtinRank2)/(OneNinth-Sarnak) 6099905352199797 r005 Im(z^2+c),c=23/64+23/45*I,n=5 6099905397202182 g006 -Psi(1,4/7)-Psi(1,1/7)-Psi(1,3/5)-Psi(1,2/3) 6099905414903988 a007 Real Root Of -908*x^4-260*x^3-750*x^2+684*x+763 6099905418627048 m001 exp(Magata)*FransenRobinson*FeigenbaumD^2 6099905433247258 m008 (3/4*Pi^6+5)/(4*Pi^3-5) 6099905437396218 a007 Real Root Of 166*x^4+900*x^3-817*x^2-864*x-424 6099905475577275 r002 9th iterates of z^2 + 6099905505030164 m001 sin(1)*exp(1/2)*GAMMA(5/24) 6099905521397126 r002 30th iterates of z^2 + 6099905522538719 a007 Real Root Of 268*x^4-712*x^3-878*x^2-221*x+586 6099905548944087 m009 (3/10*Pi^2-3)/(5/6*Psi(1,1/3)-2) 6099905557989774 m005 (1/2*Pi+5)/(2/3*Zeta(3)-10/11) 6099905614065491 r005 Re(z^2+c),c=1/64+19/60*I,n=9 6099905666476222 r002 8th iterates of z^2 + 6099905698579782 a007 Real Root Of 377*x^4-636*x^3-726*x^2-411*x+613 6099905709576068 a003 cos(Pi*34/109)+cos(Pi*43/89) 6099905713636860 a007 Real Root Of -368*x^4-35*x^3+651*x^2+647*x-578 6099905713925732 p001 sum(1/(519*n+164)/(625^n),n=0..infinity) 6099905717212020 m006 (1/4*exp(Pi)+3/4)/(1/3*exp(Pi)+3) 6099905719435617 r005 Re(z^2+c),c=15/122+9/40*I,n=18 6099905750178773 s004 Continued Fraction of A174322 6099905750178773 s004 Continued fraction of A174322 6099905789439077 m001 GolombDickman/exp(FibonacciFactorial)*gamma^2 6099905793564844 l006 ln(4637/8534) 6099905797269700 m001 (gamma+BesselI(0,1))/(DuboisRaymond+OneNinth) 6099905816895565 m001 (Niven+ZetaQ(3))/(gamma(3)+FransenRobinson) 6099905888276157 a007 Real Root Of -901*x^4+515*x^3-537*x^2+496*x+744 6099905903519954 s002 sum(A277186[n]/(n^2*2^n-1),n=1..infinity) 6099905904520292 m001 1/GAMMA(5/12)^2/exp(Conway)*Zeta(7)^2 6099905925863738 r008 a(0)=6,K{-n^6,-4-8*n^3-n^2+2*n} 6099905927281752 m001 (Chi(1)+cos(1/12*Pi))/(HeathBrownMoroz+Otter) 6099905935752710 l006 ln(9110/9683) 6099905947204441 m001 1/exp(BesselJ(0,1))/Bloch^2*cos(1)^2 6099905961229066 m005 (1/2*5^(1/2)-7/11)/(5/7*gamma-1/3) 6099905993594540 m001 1/GAMMA(1/12)*exp(Conway)^2/GAMMA(5/24)^2 6099905999343009 r005 Re(z^2+c),c=3/82+14/39*I,n=12 6099906022795692 m001 1/Salem^2/exp(FeigenbaumAlpha)^2*(2^(1/3)) 6099906081145991 r005 Im(z^2+c),c=5/22+15/29*I,n=21 6099906087233156 a007 Real Root Of -118*x^4-866*x^3-935*x^2-277*x-85 6099906094003187 s002 sum(A071419[n]/(n^3*exp(n)-1),n=1..infinity) 6099906095246714 p003 LerchPhi(1/512,6,503/215) 6099906119997522 a007 Real Root Of -592*x^4+408*x^3-547*x^2+931*x+946 6099906130205965 a007 Real Root Of -819*x^4+617*x^3+630*x^2+654*x-660 6099906138613587 r005 Re(z^2+c),c=-51/94+43/59*I,n=3 6099906149190389 m005 (1/2*Catalan+7/8)/(11/12*2^(1/2)+8/9) 6099906154356115 m001 (1-BesselJ(1,1))/(Champernowne+Kolakoski) 6099906154968982 h001 (1/11*exp(2)+2/5)/(1/8*exp(2)+5/6) 6099906155330229 m001 Zeta(5)/(exp(1/exp(1))^(3^(1/3))) 6099906164033141 b008 EulerGamma+Pi+Cosh[1]^2 6099906191369606 r002 2th iterates of z^2 + 6099906196918824 r005 Re(z^2+c),c=5/126+13/60*I,n=19 6099906211909517 l006 ln(2801/5155) 6099906222105006 r005 Im(z^2+c),c=-10/21+26/53*I,n=7 6099906232121680 r005 Re(z^2+c),c=-5/4+50/223*I,n=8 6099906236301185 r009 Im(z^3+c),c=-21/50+1/57*I,n=14 6099906256324670 a007 Real Root Of 87*x^4+548*x^3+288*x^2+968*x-883 6099906268669626 m001 Rabbit^(Pi*csc(1/12*Pi)/GAMMA(11/12))*Pi 6099906298317396 a008 Real Root of (-8+9*x+5*x^2+4*x^4+5*x^8) 6099906307390946 r005 Re(z^2+c),c=-1/82+9/35*I,n=22 6099906315548619 m001 (FellerTornier+Sarnak)/(ln(2)/ln(10)+2^(1/2)) 6099906316353213 m001 (-MadelungNaCl+OneNinth)/(Catalan+Pi^(1/2)) 6099906324402043 m001 (1+2*Pi/GAMMA(5/6))/(-GAMMA(7/12)+ZetaP(2)) 6099906326524259 r005 Im(z^2+c),c=-9/16+31/51*I,n=18 6099906329316965 a005 (1/cos(65/153*Pi))^6 6099906343342285 r002 38th iterates of z^2 + 6099906374098611 b008 57/2+ExpIntegralEi[11] 6099906390283709 a007 Real Root Of 321*x^4+414*x^3+691*x^2+19*x-196 6099906403749840 a007 Real Root Of -634*x^4+943*x^3-596*x^2+563*x+867 6099906410368199 m001 (1+CopelandErdos)/(DuboisRaymond+FeigenbaumC) 6099906413693139 r005 Re(z^2+c),c=-13/18+32/113*I,n=17 6099906415031739 a007 Real Root Of -404*x^4+577*x^3+112*x^2+198*x+266 6099906434953711 r002 23th iterates of z^2 + 6099906441021962 a001 8/3010349*843^(20/43) 6099906487256365 a007 Real Root Of -617*x^4+406*x^3+70*x^2-273*x-15 6099906506692751 m008 (4*Pi^2+1/2)/(2/3*Pi^4+3/5) 6099906512260515 a007 Real Root Of 331*x^4-484*x^3-45*x^2+354*x+77 6099906516936828 r002 48th iterates of z^2 + 6099906530446429 a003 cos(Pi*8/99)/cos(Pi*31/69) 6099906532255253 r008 a(0)=6,K{-n^6,8+9*n^3+19*n^2-45*n} 6099906537259021 a001 23725150497407/89*1836311903^(8/17) 6099906537259021 a001 505019158607/89*6557470319842^(8/17) 6099906563614732 r005 Re(z^2+c),c=-1/82+9/35*I,n=25 6099906563638710 r002 6th iterates of z^2 + 6099906590696317 m004 -3/5+Sqrt[5]*Pi-Log[Sqrt[5]*Pi]/6 6099906611591293 a001 39603/2*89^(42/55) 6099906612897611 a001 365435296162/123*11^(3/10) 6099906625398013 m005 (1/3*2^(1/2)+3/7)/(3/11*exp(1)-8/9) 6099906626285828 r005 Re(z^2+c),c=-1/82+9/35*I,n=24 6099906629641258 m001 (3^(1/3)-BesselI(1,2))/(Pi^(1/2)+TwinPrimes) 6099906632997819 r002 3th iterates of z^2 + 6099906646719033 r005 Re(z^2+c),c=-1/82+9/35*I,n=28 6099906649447845 a007 Real Root Of 153*x^4+114*x^3-705*x^2-534*x+541 6099906654174714 m001 (HeathBrownMoroz+ZetaQ(3))/(Zeta(3)-Zeta(5)) 6099906656072448 r005 Re(z^2+c),c=-1/82+9/35*I,n=29 6099906656279995 r005 Re(z^2+c),c=-1/82+9/35*I,n=31 6099906656287498 r005 Re(z^2+c),c=-1/82+9/35*I,n=32 6099906656413381 r009 Re(z^3+c),c=-5/82+1/30*I,n=2 6099906656663873 r005 Re(z^2+c),c=-1/82+9/35*I,n=35 6099906656717941 r005 Re(z^2+c),c=-1/82+9/35*I,n=38 6099906656719848 r005 Re(z^2+c),c=-1/82+9/35*I,n=39 6099906656721362 r005 Re(z^2+c),c=-1/82+9/35*I,n=42 6099906656721649 r005 Re(z^2+c),c=-1/82+9/35*I,n=45 6099906656721669 r005 Re(z^2+c),c=-1/82+9/35*I,n=46 6099906656721674 r005 Re(z^2+c),c=-1/82+9/35*I,n=49 6099906656721675 r005 Re(z^2+c),c=-1/82+9/35*I,n=48 6099906656721675 r005 Re(z^2+c),c=-1/82+9/35*I,n=52 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=53 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=56 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=55 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=59 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=62 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=63 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=64 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=60 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=61 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=58 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=57 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=54 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=51 6099906656721676 r005 Re(z^2+c),c=-1/82+9/35*I,n=50 6099906656721683 r005 Re(z^2+c),c=-1/82+9/35*I,n=47 6099906656721730 r005 Re(z^2+c),c=-1/82+9/35*I,n=43 6099906656721733 r005 Re(z^2+c),c=-1/82+9/35*I,n=44 6099906656721773 r005 Re(z^2+c),c=-1/82+9/35*I,n=41 6099906656722962 r005 Re(z^2+c),c=-1/82+9/35*I,n=40 6099906656725073 r005 Re(z^2+c),c=-1/82+9/35*I,n=36 6099906656733851 r005 Re(z^2+c),c=-1/82+9/35*I,n=37 6099906656769264 r005 Re(z^2+c),c=-1/82+9/35*I,n=34 6099906656926984 r005 Re(z^2+c),c=-1/82+9/35*I,n=33 6099906659130508 r005 Re(z^2+c),c=-1/82+9/35*I,n=30 6099906663249936 r002 6th iterates of z^2 + 6099906663846655 a003 cos(Pi*20/77)*sin(Pi*36/103) 6099906665046971 r005 Im(z^2+c),c=-25/56+11/15*I,n=3 6099906670455322 r005 Re(z^2+c),c=-1/82+9/35*I,n=27 6099906672670761 m001 (Champernowne+Khinchin)/(Porter-Tetranacci) 6099906686286966 r005 Re(z^2+c),c=-1/82+9/35*I,n=26 6099906708208784 a008 Real Root of (14+7*x-17*x^2+15*x^3) 6099906709986985 m001 (ln(2)+BesselJ(1,1))/(DuboisRaymond-ZetaQ(3)) 6099906720448474 a003 sin(Pi*24/115)/sin(Pi*47/96) 6099906727008869 l006 ln(3766/6931) 6099906744543758 m001 FransenRobinson^2*Backhouse*ln(sin(Pi/5)) 6099906744587787 a005 (1/sin(65/166*Pi))^264 6099906756612762 g006 Psi(1,1/9)-Psi(1,6/11)-Psi(1,3/11)-Psi(1,3/4) 6099906775697910 m001 LandauRamanujan2nd+Grothendieck^Otter 6099906801562415 r008 a(0)=0,K{-n^6,-61+92*n^3+37*n^2+96*n} 6099906804040095 a007 Real Root Of -283*x^4+10*x^3-684*x^2-36*x+274 6099906812556799 h001 (4/9*exp(1)+7/10)/(11/12*exp(1)+7/11) 6099906843147814 m009 (3*Pi^2-1/3)/(2*Catalan+1/4*Pi^2+1/2) 6099906887833792 m005 (1/3*3^(1/2)-2/3)/(5/6*2^(1/2)+2/7) 6099906919019547 q001 1966/3223 6099906929995339 a007 Real Root Of 614*x^4-456*x^3+234*x^2-738*x-46 6099906946406666 a007 Real Root Of -816*x^4+631*x^3-248*x^2+173*x+454 6099906948560376 m001 Zeta(1,2)/ln(3)*TravellingSalesman 6099906993917759 s001 sum(exp(-2*Pi/5)^n*A087495[n],n=1..infinity) 6099906993917759 s002 sum(A087495[n]/(exp(2/5*pi*n)),n=1..infinity) 6099906999014349 g006 -Psi(1,8/11)-Psi(1,5/11)-Psi(1,1/7)-Psi(1,5/6) 6099907009999449 m006 (1/6/Pi+1/4)/(5*Pi^2+1/3) 6099907011408462 a007 Real Root Of 383*x^4-997*x^3+318*x^2-987*x+657 6099907021797887 m005 (1/3*exp(1)+1/10)/(1/8*5^(1/2)-4/9) 6099907031974675 l006 ln(4731/8707) 6099907039031005 a007 Real Root Of -299*x^4-235*x^3+760*x^2+998*x+58 6099907085423634 a008 Real Root of (-5+6*x+6*x^2-7*x^4+4*x^8) 6099907089773483 r002 60th iterates of z^2 + 6099907094570640 m001 (1-gamma(2))/(-BesselI(0,2)+GolombDickman) 6099907096452848 r005 Im(z^2+c),c=-49/94+30/49*I,n=63 6099907102849157 m005 (1/2*Pi+7/10)/(9/11*gamma-1/10) 6099907103569817 r005 Re(z^2+c),c=-1/82+9/35*I,n=23 6099907106757503 a007 Real Root Of -535*x^4+961*x^3-249*x^2-44*x+358 6099907135041493 a007 Real Root Of -108*x^4+869*x^3-866*x^2-122*x+460 6099907145576057 a001 6765/521*199^(8/11) 6099907157591348 r005 Im(z^2+c),c=-15/14+8/115*I,n=22 6099907160062655 m001 1/Pi^2/GAMMA(1/24)^2/ln(sqrt(3))^2 6099907182161890 m002 -6+Tanh[Pi]/Pi^6-Tanh[Pi]/Pi^2 6099907182939767 r005 Im(z^2+c),c=-89/122+7/55*I,n=56 6099907191399878 m001 (Conway+MasserGramainDelta)/(2^(1/3)-Pi^(1/2)) 6099907201448955 r005 Re(z^2+c),c=-13/31+13/23*I,n=25 6099907210086349 r005 Im(z^2+c),c=23/102+13/23*I,n=5 6099907215641332 a007 Real Root Of -86*x^4+496*x^3+716*x^2+672*x-777 6099907239591956 r002 27th iterates of z^2 + 6099907247870705 m001 BesselK(1,1)*exp(Porter)*GAMMA(7/12)^2 6099907258591982 a001 47/121393*75025^(14/57) 6099907268028911 a007 Real Root Of -996*x^4-599*x^3-773*x^2+86*x+8 6099907341889800 a007 Real Root Of 156*x^4+943*x^3+85*x^2+855*x+104 6099907355074262 m004 -5/4+125*Pi*Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 6099907381422189 m009 (1/3*Psi(1,1/3)-3)/(1/10*Pi^2+5) 6099907418412907 r005 Im(z^2+c),c=-83/70+5/62*I,n=47 6099907445365151 m001 1/exp(GAMMA(3/4))*LandauRamanujan*exp(1) 6099907448070512 a007 Real Root Of 172*x^4-981*x^3+293*x^2-391*x-594 6099907451119413 a007 Real Root Of -537*x^4+588*x^3+520*x^2+781*x-729 6099907471659201 r005 Im(z^2+c),c=-23/18+14/251*I,n=19 6099907487194546 m001 (LaplaceLimit-Paris)/(3^(1/3)-polylog(4,1/2)) 6099907501170279 b008 InverseErfc[E/7] 6099907559418443 m005 (1/2*3^(1/2)+1/4)/(7/8*Zeta(3)+7/9) 6099907561208198 s002 sum(A247934[n]/(n*exp(n)-1),n=1..infinity) 6099907563491815 m005 (13/12+1/3*5^(1/2))/(3*Catalan+1/4) 6099907566352331 r005 Im(z^2+c),c=-19/102+49/60*I,n=62 6099907572380293 a007 Real Root Of -464*x^4+402*x^3-790*x^2+337*x+655 6099907590104677 m001 (Catalan-Ei(1))^(Pi*csc(1/24*Pi)/GAMMA(23/24)) 6099907595323534 r005 Im(z^2+c),c=-27/50+5/46*I,n=46 6099907610857227 a001 7/2*317811^(37/48) 6099907614996579 a007 Real Root Of 23*x^4-955*x^3-108*x^2-625*x-561 6099907616312648 a007 Real Root Of -462*x^4+895*x^3-566*x^2+530*x+801 6099907621479583 m005 (3*Pi+2/5)/(2/3*Catalan+1) 6099907641995537 m001 BesselJ(1,1)^BesselJ(0,1)+2*Pi/GAMMA(5/6) 6099907641995537 m001 BesselJ(1,1)^BesselJ(0,1)+GAMMA(1/6) 6099907648065733 r005 Re(z^2+c),c=5/126+13/60*I,n=18 6099907651737591 a007 Real Root Of -449*x^4+641*x^3-999*x^2-117*x+508 6099907667542411 s002 sum(A041170[n]/(16^n),n=1..infinity) 6099907677414651 m001 (Trott2nd-ThueMorse)/(gamma(1)-gamma(2)) 6099907677590035 m001 FeigenbaumD^2/Champernowne/exp(GAMMA(5/6))^2 6099907687873022 a007 Real Root Of 165*x^4-649*x^3+922*x^2-439*x-781 6099907695430458 r002 15th iterates of z^2 + 6099907741833346 a007 Real Root Of 315*x^4-11*x^3+758*x^2-185*x-441 6099907746587952 r002 60th iterates of z^2 + 6099907757815044 m004 -75*Pi+25*Sqrt[5]*Pi-Tanh[Sqrt[5]*Pi]^2 6099907764774940 r005 Re(z^2+c),c=-3/56+23/29*I,n=18 6099907775902769 b008 7+ExpIntegralEi[3/16] 6099907776899756 a007 Real Root Of 714*x^4+970*x^3+609*x^2-411*x-356 6099907802162336 r005 Im(z^2+c),c=9/25+28/41*I,n=11 6099907808880787 r005 Re(z^2+c),c=-129/122+3/31*I,n=14 6099907812366042 r005 Re(z^2+c),c=-61/82+3/61*I,n=19 6099907816487751 a001 123*610^(14/23) 6099907826184266 a007 Real Root Of -742*x^4+832*x^3+677*x^2+594*x+402 6099907828190142 a007 Real Root Of -367*x^4+728*x^3-351*x^2+976*x+942 6099907875030065 m001 1/(3^(1/3))*ln(Magata)*GAMMA(1/3)^2 6099907881620977 p001 sum((-1)^n/(243*n+68)/n/(5^n),n=1..infinity) 6099907899349386 a007 Real Root Of 938*x^4-987*x^3-81*x^2-766*x-791 6099907916068213 m004 -75*Pi+25*Sqrt[5]*Pi-Tanh[Sqrt[5]*Pi] 6099907928300998 l006 ln(5183/5509) 6099907954729305 a008 Real Root of (-5+6*x+6*x^2-6*x^3+4*x^4-x^5) 6099907962118555 a007 Real Root Of 664*x^4+615*x^3+139*x^2-454*x-281 6099907999827871 m001 (sin(1)+(1+3^(1/2))^(1/2))/(-Kac+MertensB2) 6099908043996640 m005 (1/3*3^(1/2)-3/5)/(11/12*Pi+5/6) 6099908052126873 r008 a(0)=6,K{-n^6,-8+3*n^3-7*n^2-2*n} 6099908067833634 b008 EulerGamma+Tanh[2/61] 6099908093056086 b008 EulerGamma+ArcCot[61/2] 6099908116182115 m005 (1/2*Catalan+4/9)/(4/11*3^(1/2)-7/9) 6099908134160501 r005 Im(z^2+c),c=-21/40+38/61*I,n=31 6099908157152981 a007 Real Root Of -16*x^4-963*x^3+789*x^2-192*x-208 6099908159777030 m001 GAMMA(3/4)^2*FibonacciFactorial/ln(gamma)^2 6099908178890457 m001 (Zeta(5)-ln(gamma))/(ln(Pi)+Backhouse) 6099908182048695 r005 Re(z^2+c),c=-45/64+1/59*I,n=7 6099908182957202 a001 233/3*228826127^(17/18) 6099908194108589 a007 Real Root Of 116*x^4-187*x^3+686*x^2-725*x-756 6099908216114902 m001 arctan(1/2)^2*ln(GAMMA(1/6))*sqrt(1+sqrt(3)) 6099908222131294 l006 ln(965/1776) 6099908230029465 m008 (1/5*Pi^5+1/5)/(2/5*Pi-1/4) 6099908232575053 m004 -2-75*Pi+25*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi] 6099908232575303 m004 -75*Pi+25*Sqrt[5]*Pi-Coth[Sqrt[5]*Pi] 6099908237273888 m005 (1/2*Catalan-3)/(10/11*Catalan-5) 6099908245296149 m002 Pi^(-3)+Pi+Pi/ProductLog[Pi] 6099908252696633 a007 Real Root Of -436*x^4+77*x^3+856*x^2+58*x-311 6099908280426791 a007 Real Root Of -610*x^4+235*x^3-867*x^2+401*x+705 6099908288316612 a007 Real Root Of -309*x^4+887*x^3+867*x^2+326*x-680 6099908311198570 a001 123*(1/2*5^(1/2)+1/2)^25*18^(3/8) 6099908337721691 r005 Im(z^2+c),c=-163/122+2/47*I,n=32 6099908340971585 q001 1331/2182 6099908348196203 m001 (ln(Pi)+LandauRamanujan2nd)/(3^(1/2)+ln(3)) 6099908373852083 m001 (-ln(5)+OneNinth)/(2^(1/3)+Zeta(3)) 6099908399857901 m001 (arctan(1/2)-Niven)/(Salem+Thue) 6099908404977414 m001 (Gompertz+OneNinth)/(arctan(1/3)+FeigenbaumB) 6099908411264729 a007 Real Root Of -973*x^4+270*x^3-607*x^2+215*x+553 6099908420715764 m001 ln(Khintchine)*GolombDickman^2/Kolakoski^2 6099908422722216 a007 Real Root Of -650*x^4-190*x^3-149*x^2-71*x+59 6099908434337680 a007 Real Root Of 923*x^4-232*x^3-651*x^2-831*x+674 6099908460726043 h001 (-6*exp(3)+8)/(-3*exp(3/2)-5) 6099908503547704 r008 a(0)=6,K{-n^6,-37-12*n+57*n^2-23*n^3} 6099908514242210 a001 9/4*21^(19/58) 6099908524919774 r002 41th iterates of z^2 + 6099908537975743 m001 (ln(Pi)+ZetaP(3))/(cos(1/5*Pi)+GAMMA(2/3)) 6099908604966028 a001 11/3*121393^(1/23) 6099908629520678 m001 (5^(1/2)+Landau)/(-StolarskyHarborth+ZetaP(4)) 6099908634322346 a003 sin(Pi*5/112)-sin(Pi*17/63) 6099908635957215 a003 cos(Pi*2/23)/cos(Pi*49/109) 6099908650886197 a007 Real Root Of -72*x^4+999*x^3+10*x^2+691*x-642 6099908660043788 s001 sum(exp(-Pi/4)^n*A153462[n],n=1..infinity) 6099908661463673 r005 Im(z^2+c),c=-33/86+22/35*I,n=45 6099908664773748 m001 1/exp((2^(1/3)))/FeigenbaumDelta*Zeta(9)^2 6099908667958983 a007 Real Root Of 577*x^4+64*x^3+995*x^2+219*x-302 6099908721836623 m001 1/(3^(1/3))/PrimesInBinary/exp(Zeta(7)) 6099908741563797 m001 GAMMA(7/12)/exp(Cahen)/log(2+sqrt(3)) 6099908747916193 p004 log(19709/10709) 6099908755170703 m005 (-9/44+1/4*5^(1/2))/(-26/63+4/9*5^(1/2)) 6099908784718550 m005 (1/2*gamma+3/10)/(7/11*Zeta(3)+1/5) 6099908825053730 r002 24th iterates of z^2 + 6099908828004394 m005 (1/2*2^(1/2)-7/10)/(1/8*3^(1/2)-1/10) 6099908847770636 m001 (ln(2)/ln(10)+LambertW(1))/(-Ei(1)+Bloch) 6099908855082452 a007 Real Root Of -415*x^4+662*x^3+5*x^2+115*x+276 6099908887918125 a007 Real Root Of 791*x^4-29*x^3-702*x^2-493*x+459 6099908894636938 a007 Real Root Of 688*x^4+84*x^3+917*x^2-401*x-662 6099908935586099 r005 Re(z^2+c),c=-1/11+25/37*I,n=61 6099908941750446 m001 1/exp(arctan(1/2))^2/Catalan/sin(1)^2 6099908945693378 m001 ln(OneNinth)/Trott^2*LambertW(1)^2 6099908991158748 r005 Re(z^2+c),c=29/126+25/48*I,n=4 6099909001756260 a003 cos(Pi*8/87)-cos(Pi*29/75) 6099909029772520 a007 Real Root Of -111*x^4-565*x^3+670*x^2-182*x-599 6099909042649476 a007 Real Root Of -58*x^4+439*x^3+395*x^2+571*x+309 6099909055370980 a007 Real Root Of -595*x^4+910*x^3-238*x^2-168*x+275 6099909058981764 m001 Si(Pi)/Bloch/Cahen 6099909060450801 a007 Real Root Of 56*x^4+200*x^3-793*x^2+373*x-356 6099909072764196 m001 (Kolakoski+StronglyCareFree)/(Pi-LambertW(1)) 6099909073114057 p003 LerchPhi(1/1024,2,178/139) 6099909077662685 a007 Real Root Of 7*x^4+428*x^3+57*x^2-282*x-877 6099909083031016 m008 (3/5*Pi+3)/(5/6*Pi^6-1/3) 6099909085041119 m001 (Zeta(1/2)+Kac)/(Riemann1stZero-ZetaP(2)) 6099909096604719 m005 (1/2*exp(1)-6/7)/(3^(1/2)-10/11) 6099909106462999 a001 3461452808002*46368^(16/23) 6099909106857737 a001 1568397607*2971215073^(16/23) 6099909133982745 a003 cos(Pi*2/43)-cos(Pi*41/109) 6099909143479952 r002 46th iterates of z^2 + 6099909145853321 a007 Real Root Of 852*x^4+281*x^3-843*x^2-287*x+307 6099909149289437 r008 a(0)=0,K{-n^6,-90+69*n^3+91*n^2+94*n} 6099909155534170 a003 cos(Pi*11/75)-cos(Pi*42/103) 6099909183069564 m006 (1/5*Pi^2-1/3)/(3/4*Pi+1/3) 6099909183069564 m008 (1/5*Pi^2-1/3)/(3/4*Pi+1/3) 6099909192594999 a007 Real Root Of 922*x^4-215*x^3+984*x^2+519*x-226 6099909193821761 m001 (Pi*2^(1/2)+Si(Pi))*gamma(2) 6099909206657846 a007 Real Root Of 128*x^4+889*x^3+757*x^2+593*x+11 6099909219261313 m005 (1/3*Catalan-3/4)/(1/4*Catalan+1/2) 6099909225048968 r005 Im(z^2+c),c=7/30+17/32*I,n=25 6099909234247685 m001 MasserGramain/ZetaP(3)*ZetaQ(4) 6099909234575184 m001 (BesselI(0,2)-Landau)/(MertensB1+Sierpinski) 6099909236677869 m001 (GAMMA(11/12)*Otter-ln(2+3^(1/2)))/Otter 6099909255477301 m001 ZetaP(4)^FibonacciFactorial+LambertW(1) 6099909261201485 m001 (Zeta(3)-ln(Pi))/(BesselI(0,2)-Totient) 6099909263377742 m005 (1/2*exp(1)+7/12)/(-9/56+3/14*5^(1/2)) 6099909268145538 h001 (4/9*exp(2)+5/6)/(8/9*exp(2)+2/11) 6099909268630198 r005 Re(z^2+c),c=-19/26+13/84*I,n=19 6099909289271184 r005 Im(z^2+c),c=-9/13+1/10*I,n=12 6099909295589437 m001 (-MertensB1+ThueMorse)/(exp(Pi)+ErdosBorwein) 6099909303789887 a007 Real Root Of 798*x^4-380*x^3+516*x^2-7*x-393 6099909313035273 m005 (41/36+1/4*5^(1/2))/(1/8*3^(1/2)-3) 6099909314551443 m005 (1/2*5^(1/2)-1/3)/(5*exp(1)-8/11) 6099909318247413 m001 (arctan(1/2)+Lehmer)/(OneNinth-Tribonacci) 6099909331604921 a007 Real Root Of -274*x^4+200*x^3-855*x^2+614*x+776 6099909333595502 a007 Real Root Of 606*x^4-769*x^3+844*x^2+609*x-201 6099909359390649 m005 (3/8+1/4*5^(1/2))/(131/198+7/18*5^(1/2)) 6099909366552483 m001 ln(GAMMA(1/24))^2/Si(Pi)/log(1+sqrt(2)) 6099909366801005 l006 ln(4919/9053) 6099909381255297 r005 Re(z^2+c),c=-6/25+38/49*I,n=11 6099909387911219 m001 (FeigenbaumB-Niven)/(ln(gamma)-ln(2^(1/2)+1)) 6099909403204964 m001 Rabbit/exp(MinimumGamma)^2/Riemann3rdZero^2 6099909417980210 r002 26th iterates of z^2 + 6099909432812856 m001 (Cahen+ReciprocalLucas)/(Ei(1,1)+exp(-1/2*Pi)) 6099909432924375 m005 (1/2*Zeta(3)-3/4)/(4/7*exp(1)+8/9) 6099909473933030 m001 (ln(2)/ln(10)-polylog(4,1/2))/(Lehmer+Otter) 6099909478422932 b008 ArcCot[3*InverseErf[1/2]] 6099909480572799 r005 Im(z^2+c),c=-11/12+2/35*I,n=4 6099909501566331 a007 Real Root Of 177*x^4+951*x^3-832*x^2-193*x+573 6099909525771333 a005 (1/sin(83/231*Pi))^223 6099909531183848 a007 Real Root Of -972*x^4-62*x^3-872*x^2-777*x-29 6099909531427621 a001 29/2178309*75025^(8/59) 6099909533382566 a007 Real Root Of -187*x^4+718*x^3-365*x^2-247*x+174 6099909538448822 m006 (3/Pi-4/5)/(1/3*Pi^2-3/4) 6099909540913220 r009 Re(z^3+c),c=-2/19+31/51*I,n=27 6099909548859115 r009 Re(z^3+c),c=-33/46+8/17*I,n=2 6099909551992791 m002 -Pi^5/5+(Log[Pi]*ProductLog[Pi])/6 6099909621433275 h001 (3/5*exp(1)+3/7)/(1/12*exp(1)+1/9) 6099909630589986 r009 Im(z^3+c),c=-57/94+11/38*I,n=27 6099909639477742 a007 Real Root Of -96*x^4+264*x^3-547*x^2+466*x+561 6099909641142842 a001 439204/21*53316291173^(15/17) 6099909641174460 a001 199691526/7*14930352^(15/17) 6099909646165242 l006 ln(3954/7277) 6099909650572170 a007 Real Root Of -947*x^4+416*x^3-169*x^2-522*x-30 6099909676333812 r002 55th iterates of z^2 + 6099909699600663 a001 1/4807525989*317811^(4/15) 6099909702753858 a001 817138163596/21*4181^(15/17) 6099909720132410 q001 2027/3323 6099909740024643 m001 (GAMMA(2/3)+GAMMA(11/12))/(Landau+Magata) 6099909757220222 m002 -3+3/Pi^2+Pi^2-ProductLog[Pi] 6099909782604073 m001 (exp(1)+Catalan)/(BesselK(0,1)+ZetaP(3)) 6099909784035966 h001 (-8*exp(-1)+1)/(-8*exp(3/2)+4) 6099909788833805 m001 (Niven-ZetaP(4))/(Pi-Bloch) 6099909824672868 a007 Real Root Of -498*x^4+789*x^3+197*x^2+748*x+631 6099909829220144 m005 (27/44+1/4*5^(1/2))/(4/9*exp(1)+5/7) 6099909881128855 r005 Re(z^2+c),c=3/28+17/18*I,n=3 6099909883155144 a001 75025/322*199^(2/11) 6099909931736789 a007 Real Root Of -917*x^4+281*x^3-942*x^2+616*x+917 6099909951107222 r002 4th iterates of z^2 + 6099909952544203 r005 Re(z^2+c),c=-1/82+9/35*I,n=20 6099909961420093 a007 Real Root Of -510*x^4+288*x^3+63*x^2+627*x+495 6099909997918947 m002 -41-E^Pi+Pi 6099910017809825 a007 Real Root Of 30*x^4+114*x^3-562*x^2-891*x-184 6099910018406455 r005 Re(z^2+c),c=-31/78+14/23*I,n=2 6099910040613899 m001 ln(sin(1))^2*Lehmer*sin(Pi/5)^2 6099910084610851 a007 Real Root Of -873*x^4+733*x^3-206*x^2+792*x+847 6099910091261555 a007 Real Root Of -112*x^4+809*x^3-355*x^2+839*x+843 6099910105915202 l006 ln(2989/5501) 6099910122040920 a003 sin(Pi*20/117)/cos(Pi*11/60) 6099910141443950 r005 Re(z^2+c),c=-7/29+37/48*I,n=19 6099910152582495 r004 Re(z^2+c),c=-1/26+2/11*I,z(0)=I,n=16 6099910183692466 r005 Re(z^2+c),c=13/38+3/44*I,n=6 6099910195421578 m001 (ln(3)+gamma(1))/(GAMMA(3/4)-Shi(1)) 6099910203930789 a007 Real Root Of 248*x^4-809*x^3+376*x^2-74*x-403 6099910207000867 m005 (1/3*2^(1/2)-1/3)/(5/8*Pi+3/10) 6099910211195152 a007 Real Root Of 471*x^4+639*x^3+377*x^2-355*x-277 6099910220116333 r009 Im(z^3+c),c=-27/50+20/49*I,n=57 6099910226422725 r005 Re(z^2+c),c=-1/82+9/35*I,n=19 6099910259987453 m001 LambertW(1)^2/MadelungNaCl/ln(sqrt(3))^2 6099910263846462 m001 ln(BesselK(1,1))^2/FeigenbaumB^2*GAMMA(13/24) 6099910271049116 a007 Real Root Of -35*x^4+202*x^3+978*x^2+610*x-777 6099910312548435 r008 a(0)=6,K{-n^6,-5-2*n^3+3*n^2+5*n} 6099910318166204 r005 Im(z^2+c),c=-7/74+25/33*I,n=8 6099910326176764 r005 Re(z^2+c),c=-15/16+8/121*I,n=8 6099910359800210 a007 Real Root Of -360*x^4+710*x^3-706*x^2+712*x+908 6099910364175867 a007 Real Root Of -253*x^4+58*x^3-155*x^2+674*x+517 6099910379919276 s002 sum(A025380[n]/(n^3*pi^n-1),n=1..infinity) 6099910403063020 a007 Real Root Of 715*x^4+253*x^3+388*x^2-987*x-788 6099910407868415 r005 Im(z^2+c),c=-111/86+2/61*I,n=62 6099910419863313 a007 Real Root Of -692*x^4+732*x^3+489*x^2+752*x-711 6099910429294200 m001 FeigenbaumD-gamma(2)+Magata 6099910439172474 a007 Real Root Of -533*x^4+746*x^3+940*x^2+11*x-452 6099910446062029 r002 43th iterates of z^2 + 6099910455342125 a007 Real Root Of -643*x^4+422*x^3-385*x^2-46*x+300 6099910468542624 l006 ln(5013/9226) 6099910475040329 m001 (2^(1/3))/Paris^2/exp(GAMMA(1/3))^2 6099910480429426 m001 (CareFree*FeigenbaumMu+Grothendieck)/CareFree 6099910505789719 a007 Real Root Of -56*x^4-243*x^3+755*x^2+876*x-371 6099910556551169 r008 a(0)=6,K{-n^6,44-41*n-40*n^2+29*n^3} 6099910583845526 m001 ln(Rabbit)^2*Khintchine^2*FeigenbaumD^2 6099910604639867 m001 (BesselI(0,2)-Rabbit)/(Riemann3rdZero+Sarnak) 6099910608220948 m001 (-FeigenbaumB+Niven)/(BesselK(0,1)-Si(Pi)) 6099910618351150 a003 sin(Pi*19/67)*sin(Pi*31/108) 6099910621380366 a007 Real Root Of 15*x^4+908*x^3-432*x^2-349*x+382 6099910624569997 a007 Real Root Of 807*x^4+279*x^3+758*x^2-896*x-877 6099910655181874 a007 Real Root Of 941*x^4-168*x^3+159*x^2-563*x-571 6099910658693885 r002 8th iterates of z^2 + 6099910675978382 m001 (Kac+Paris)/(RenyiParking+TreeGrowth2nd) 6099910690165618 a007 Real Root Of 72*x^4-996*x^3-175*x^2-669*x-579 6099910747390059 l006 ln(6439/6844) 6099910755848842 a007 Real Root Of 833*x^4-136*x^3+822*x^2-495*x-754 6099910766787485 a007 Real Root Of 594*x^4-220*x^3+676*x^2-434*x+24 6099910767557484 m005 (1/3*5^(1/2)-2/11)/(1/110+9/22*5^(1/2)) 6099910785253530 s002 sum(A216836[n]/(exp(pi*n)+1),n=1..infinity) 6099910795625323 m001 (FellerTornier+Sierpinski)/(2^(1/2)+Zeta(1,2)) 6099910829101531 r005 Im(z^2+c),c=-39/34+4/51*I,n=17 6099910831940643 m001 2*Pi/GAMMA(5/6)-ln(2)+FibonacciFactorial 6099910834288190 a007 Real Root Of 186*x^4-544*x^3-271*x^2-745*x+653 6099910852633852 m001 (KomornikLoreti-Robbin)/(ln(5)+CopelandErdos) 6099910857249758 a007 Real Root Of -350*x^4+414*x^3-178*x^2-506*x-100 6099910864869747 r005 Im(z^2+c),c=-7/40+25/34*I,n=48 6099910875949644 r005 Re(z^2+c),c=-1/82+9/35*I,n=17 6099910884503078 m001 Robbin/KhintchineLevy^2/ln(Catalan)^2 6099910885352865 r002 3th iterates of z^2 + 6099910885359751 r005 Im(z^2+c),c=43/106+5/23*I,n=51 6099910900211946 p003 LerchPhi(1/100,2,277/216) 6099910934081758 r005 Im(z^2+c),c=-29/50+5/44*I,n=23 6099910934557078 m001 FransenRobinson*exp(1)^StronglyCareFree 6099910954945999 a007 Real Root Of -93*x^4-388*x^3+911*x^2-998*x+709 6099910962037180 a007 Real Root Of -321*x^4+863*x^3+828*x^2+368*x-684 6099910963820496 s002 sum(A207171[n]/(n^2*exp(n)-1),n=1..infinity) 6099910972035638 m001 (PisotVijayaraghavan+ZetaQ(2))/(1+2^(1/3)) 6099910995463207 a007 Real Root Of 62*x^4-598*x^3-762*x^2-753*x+870 6099911004063037 l006 ln(2024/3725) 6099911019935404 r002 11th iterates of z^2 + 6099911035924130 m001 (Thue-ZetaQ(3))/(Pi-MadelungNaCl) 6099911048577616 r008 a(0)=6,K{-n^6,-2-8*n^3-n} 6099911077268605 r005 Re(z^2+c),c=11/52+10/29*I,n=43 6099911084985333 m001 BesselI(1,1)^(1/2/gamma) 6099911090189614 r005 Re(z^2+c),c=-31/66+19/40*I,n=4 6099911096370215 m001 (ReciprocalLucas-Trott)/(ln(5)+BesselI(1,2)) 6099911103989972 m002 -5-Log[Pi]+6*Csch[Pi]*Sech[Pi] 6099911127151614 m005 (1/2*2^(1/2)+2/5)/(6*Pi-7/10) 6099911136711095 a007 Real Root Of -781*x^4+686*x^3-583*x^2-16*x+471 6099911161193557 a001 1364/956722026041*233^(4/15) 6099911187591169 m001 GAMMA(7/12)/(Landau+ReciprocalLucas) 6099911189133147 a007 Real Root Of -716*x^4+701*x^3-44*x^2-101*x+213 6099911204817676 l006 ln(11/4904) 6099911205643721 a007 Real Root Of 858*x^4-347*x^3-995*x^2-821*x+831 6099911215571640 a007 Real Root Of 289*x^4-695*x^3+712*x^2-512*x-775 6099911227570983 s002 sum(A065606[n]/((2^n-1)/n),n=1..infinity) 6099911243140837 r008 a(0)=6,K{-n^6,-13+15*n^3-48*n^2+34*n} 6099911244051076 m005 (1/2*Pi+7/11)/(5/12*Catalan-4) 6099911251890166 a007 Real Root Of 789*x^4-155*x^3-359*x^2+244*x+138 6099911259780006 a007 Real Root Of -499*x^4+574*x^3-305*x^2-526*x-8 6099911272855385 m001 HardHexagonsEntropy*(exp(1)+(1+3^(1/2))^(1/2)) 6099911273635195 m001 Cahen/(ln(3)^LambertW(1)) 6099911312380999 a007 Real Root Of -528*x^4-448*x^3-654*x^2-557*x-125 6099911325178748 m001 (Zeta(1,2)-Gompertz)/(ZetaP(3)+ZetaP(4)) 6099911329150282 m006 (5/6*ln(Pi)-1/5)/(1/6*Pi-2/5) 6099911370867932 a007 Real Root Of 139*x^4+705*x^3-989*x^2-613*x+629 6099911373175521 k001 Champernowne real with 382*n+227 6099911385375352 s002 sum(A011591[n]/((pi^n+1)/n),n=1..infinity) 6099911400733369 r002 36th iterates of z^2 + 6099911426362709 a005 (1/sin(85/211*Pi))^1060 6099911440812339 m005 (4/5*exp(1)+1/6)/(1/5*2^(1/2)-2/3) 6099911442450436 a007 Real Root Of -260*x^4+720*x^3-455*x^2-352*x+154 6099911453084916 a001 75025/2207*199^(6/11) 6099911469213482 r008 a(0)=0,K{-n^6,-89+69*n^3+91*n^2+93*n} 6099911485751285 b008 7*(84+Pi) 6099911506706106 m001 TwinPrimes^2*CareFree^2*exp(Zeta(5)) 6099911525142889 a001 17/38*521^(11/14) 6099911529317723 a007 Real Root Of 376*x^4-830*x^3+278*x^2-892*x+577 6099911529726575 l006 ln(5107/9399) 6099911535893379 a007 Real Root Of 757*x^4-924*x^3+154*x^2-299*x+230 6099911546291096 m001 (Landau+Salem)/(Pi-FellerTornier) 6099911570414536 a007 Real Root Of -541*x^4+957*x^3+736*x^2-297*x-235 6099911590622739 p003 LerchPhi(1/125,1,374/227) 6099911604106801 a007 Real Root Of -852*x^4+855*x^3+294*x^2+658*x+604 6099911608464442 a007 Real Root Of -484*x^4+812*x^3+716*x^2+730*x-829 6099911614731746 a007 Real Root Of -302*x^4+972*x^3-832*x^2+700*x+999 6099911615090711 r002 3th iterates of z^2 + 6099911637913305 m002 2*Pi^5-E^Pi/(Pi^2*Log[Pi]) 6099911639846651 m002 -3+4*Cosh[Pi]*Log[Pi]*Sinh[Pi] 6099911653046635 a007 Real Root Of -302*x^4+701*x^3+591*x^2+459*x+261 6099911656073274 m005 (1/2*Catalan-2/7)/(7/10*Pi+5/8) 6099911689944844 b008 1+70*Tanh[Glaisher] 6099911706037019 a007 Real Root Of -551*x^4+652*x^3+167*x^2+897*x-681 6099911718486082 p004 log(20747/11273) 6099911761021496 a007 Real Root Of 98*x^4-119*x^3+897*x^2+935*x+196 6099911772932898 h001 (-3*exp(3)-8)/(-8*exp(1/2)+2) 6099911841760583 a003 sin(Pi*21/109)/sin(Pi*44/115) 6099911850077542 r005 Im(z^2+c),c=-19/102+30/47*I,n=16 6099911858729175 a007 Real Root Of 148*x^4-502*x^3-899*x^2-805*x+919 6099911872327467 a007 Real Root Of 637*x^4-492*x^3-137*x^2-355*x+291 6099911874826462 l006 ln(3083/5674) 6099911905412753 m001 (-Landau+Robbin)/(Catalan+GAMMA(23/24)) 6099911910147522 a005 (1/cos(18/211*Pi))^1760 6099911916172756 m001 (GAMMA(13/24)-Totient)/(ln(3)-BesselI(1,2)) 6099911918979644 a007 Real Root Of -941*x^4+505*x^3+835*x^2+880*x+471 6099911926054666 r005 Im(z^2+c),c=7/46+19/31*I,n=35 6099911962790136 a007 Real Root Of -201*x^4+579*x^3+62*x^2+603*x+504 6099911982985921 m001 (GAMMA(7/12)-Champernowne)/(Pi-Chi(1)) 6099912005299081 a001 24476/5*21^(29/35) 6099912018621176 m005 (1/2*Zeta(3)+5/9)/(6*Pi+1/9) 6099912044831096 m001 (FeigenbaumB+Rabbit)/(Zeta(1,2)-BesselI(1,2)) 6099912047122435 m001 1/exp(KhintchineLevy)^2*Artin^2/MinimumGamma^2 6099912058536714 a007 Real Root Of 483*x^4-665*x^3+646*x^2-803*x-948 6099912144098261 m001 Trott/FeigenbaumDelta*exp(cos(Pi/12)) 6099912144978557 r009 Im(z^3+c),c=-7/60+42/53*I,n=15 6099912156302996 m005 (1/2*2^(1/2)+7/11)/(3*Catalan-6/11) 6099912160491471 a007 Real Root Of 696*x^4-476*x^3+879*x^2-714*x-967 6099912191345035 a001 15127/89*317811^(13/46) 6099912216428853 a007 Real Root Of 821*x^4-826*x^3+703*x^2+593*x-201 6099912236273620 r002 46th iterates of z^2 + 6099912260742623 r009 Im(z^3+c),c=-3/10+52/53*I,n=17 6099912260891695 g003 Re(GAMMA(133/30+I*(-19/10))) 6099912261104319 r005 Im(z^2+c),c=-31/30+31/85*I,n=13 6099912265373994 b008 6+Pi*Csch[1+Pi] 6099912280186216 r002 16th iterates of z^2 + 6099912300327443 l006 ln(4142/7623) 6099912305126184 m001 ln(Zeta(3))^2*(2^(1/3))^2/log(1+sqrt(2)) 6099912308800587 a008 Real Root of (-6+5*x+4*x^2+4*x^3+4*x^4) 6099912313719676 a007 Real Root Of -670*x^4+538*x^3-857*x^2-816*x+36 6099912332191528 r002 17th iterates of z^2 + 6099912357581069 q001 696/1141 6099912357581069 r005 Im(z^2+c),c=-15/14+87/163*I,n=2 6099912363489020 s004 Continued Fraction of A359332 6099912364664757 a007 Real Root Of 868*x^4-79*x^3-579*x^2-621*x+492 6099912367163282 h001 (4/9*exp(1)+10/11)/(3/8*exp(2)+7/10) 6099912369427042 r009 Re(z^3+c),c=-5/54+16/33*I,n=22 6099912373747740 b008 -7+E^(-2/19) 6099912374748472 p004 log(32441/17627) 6099912384719049 r002 35th iterates of z^2 + 6099912399246883 p003 LerchPhi(1/2,1,527/200) 6099912418924317 b008 91/E^(2/5) 6099912428170568 a007 Real Root Of 949*x^4-116*x^3+521*x^2-763*x-817 6099912440185475 a007 Real Root Of 285*x^4+337*x^3+172*x^2-964*x-615 6099912465829929 a007 Real Root Of 689*x^4-603*x^3+406*x^2+653*x+15 6099912503452626 r005 Re(z^2+c),c=-59/78+10/29*I,n=5 6099912513945280 a007 Real Root Of 317*x^4-945*x^3+237*x^2-204*x-471 6099912519545935 r009 Im(z^3+c),c=-9/31+2/41*I,n=2 6099912522517917 a001 98209/2889*199^(6/11) 6099912552551914 l006 ln(5201/9572) 6099912562502933 r005 Re(z^2+c),c=-11/70+31/47*I,n=51 6099912567961390 a007 Real Root Of 892*x^4+401*x^3-109*x^2-528*x-314 6099912592914872 s001 sum(exp(-Pi/4)^(n-1)*A092134[n],n=1..infinity) 6099912595300221 m001 OneNinth^2*ln(FeigenbaumD)^2*cos(1) 6099912600945785 p001 sum(1/(517*n+164)/(625^n),n=0..infinity) 6099912635627127 a003 cos(Pi*11/98)*sin(Pi*25/111) 6099912646199449 l006 ln(7695/8179) 6099912651366293 r005 Re(z^2+c),c=-29/26+23/51*I,n=4 6099912663506135 r005 Re(z^2+c),c=-21/118+36/53*I,n=11 6099912678546120 a001 514229/15127*199^(6/11) 6099912698385590 a001 47/514229*55^(9/19) 6099912701310329 a001 1346269/39603*199^(6/11) 6099912704631582 a001 1762289/51841*199^(6/11) 6099912705116147 a001 9227465/271443*199^(6/11) 6099912705186844 a001 24157817/710647*199^(6/11) 6099912705197158 a001 31622993/930249*199^(6/11) 6099912705198663 a001 165580141/4870847*199^(6/11) 6099912705198883 a001 433494437/12752043*199^(6/11) 6099912705198915 a001 567451585/16692641*199^(6/11) 6099912705198919 a001 2971215073/87403803*199^(6/11) 6099912705198920 a001 7778742049/228826127*199^(6/11) 6099912705198920 a001 10182505537/299537289*199^(6/11) 6099912705198920 a001 53316291173/1568397607*199^(6/11) 6099912705198920 a001 139583862445/4106118243*199^(6/11) 6099912705198920 a001 182717648081/5374978561*199^(6/11) 6099912705198920 a001 956722026041/28143753123*199^(6/11) 6099912705198920 a001 2504730781961/73681302247*199^(6/11) 6099912705198920 a001 3278735159921/96450076809*199^(6/11) 6099912705198920 a001 10610209857723/312119004989*199^(6/11) 6099912705198920 a001 4052739537881/119218851371*199^(6/11) 6099912705198920 a001 387002188980/11384387281*199^(6/11) 6099912705198920 a001 591286729879/17393796001*199^(6/11) 6099912705198920 a001 225851433717/6643838879*199^(6/11) 6099912705198920 a001 1135099622/33391061*199^(6/11) 6099912705198920 a001 32951280099/969323029*199^(6/11) 6099912705198920 a001 12586269025/370248451*199^(6/11) 6099912705198921 a001 1201881744/35355581*199^(6/11) 6099912705198922 a001 1836311903/54018521*199^(6/11) 6099912705198935 a001 701408733/20633239*199^(6/11) 6099912705199018 a001 66978574/1970299*199^(6/11) 6099912705199593 a001 102334155/3010349*199^(6/11) 6099912705203533 a001 39088169/1149851*199^(6/11) 6099912705230537 a001 196452/5779*199^(6/11) 6099912705415624 a001 5702887/167761*199^(6/11) 6099912706684230 a001 2178309/64079*199^(6/11) 6099912713492773 m001 GolombDickman^CopelandErdos/Porter 6099912715379384 a001 208010/6119*199^(6/11) 6099912735588261 a007 Real Root Of 954*x^4+775*x^3-500*x^2-984*x-58 6099912745491490 m001 (HeathBrownMoroz+LaplaceLimit)/(3^(1/2)-Cahen) 6099912769149844 m001 (sin(1)+BesselJ(1,1))/(Kolakoski+Mills) 6099912774976857 a001 317811/9349*199^(6/11) 6099912778787812 a007 Real Root Of 411*x^4+250*x^3+677*x^2-554*x-590 6099912819944765 a001 2/89*832040^(29/50) 6099912832538847 m005 (1/2*exp(1)+1/2)/(13/72+1/18*5^(1/2)) 6099912835325981 r005 Im(z^2+c),c=-8/11+13/56*I,n=42 6099912846949758 b008 2/17+FresnelC[1/2] 6099912847790327 m001 2*Pi/GAMMA(5/6)-ln(2)/ln(10)+GaussAGM 6099912909845415 r009 Im(z^3+c),c=-5/114+20/29*I,n=5 6099912917921627 m001 1/Salem/exp(Khintchine)^2*cosh(1) 6099912941496170 m001 1/Catalan*FransenRobinson/ln(sqrt(1+sqrt(3))) 6099912946257171 m001 1/2*Pi*2^(2/3)*3^(1/2)+exp(gamma) 6099912952278791 m005 (1/3*2^(1/2)+3/4)/(7/12*exp(1)+5/12) 6099912964029963 a001 3/34*6765^(43/58) 6099912966622652 m001 (2^(1/3)-Mills)/(-PrimesInBinary+Salem) 6099912988003186 m006 (3/5*exp(2*Pi)-2/3)/(2/5*exp(Pi)-4) 6099913008006730 r009 Re(z^3+c),c=-5/54+16/33*I,n=24 6099913062788080 m001 1/arctan(1/2)/GAMMA(3/4)*ln(sqrt(2)) 6099913073042155 a007 Real Root Of -81*x^4-370*x^3+628*x^2-854*x-411 6099913088961314 a007 Real Root Of -257*x^4+371*x^3-616*x^2+961*x+61 6099913096379636 a007 Real Root Of 252*x^4-224*x^3+729*x^2+659*x+45 6099913108187456 r002 7th iterates of z^2 + 6099913110983266 m001 (FeigenbaumC-Magata)/(Sierpinski-ZetaQ(4)) 6099913183464048 a001 121393/3571*199^(6/11) 6099913186525858 m008 (1/5*Pi+5)/(3*Pi^3-3/4) 6099913190468411 m001 BesselK(1,1)^exp(1)/ThueMorse 6099913219897755 v003 sum((4+7*n^2-2*n)*n!/n^n,n=1..infinity) 6099913222499956 m001 Bloch*ln(Conway)^2*Tribonacci 6099913236201088 a001 20/3278735159921 6099913236201088 a001 2/10610209857723+2/10610209857723*5^(1/2) 6099913249525866 a007 Real Root Of 43*x^4-131*x^3+146*x^2-555*x+308 6099913249935858 m001 Chi(1)^(ln(5)/Stephens) 6099913257193512 b008 60+Sech[1/24] 6099913273373859 m005 (1/2*Zeta(3)-1)/(2/7*2^(1/2)+1/4) 6099913318995577 m001 (Zeta(3)+Artin)/(HeathBrownMoroz-Sierpinski) 6099913320956426 m001 (-2^(1/3)+Kac)/(Psi(1,1/3)+ln(2)/ln(10)) 6099913394963476 m005 (1/2*5^(1/2)+3/5)/(3/4*exp(1)+7/9) 6099913399547207 a007 Real Root Of 273*x^4-65*x^3+975*x^2-847*x-932 6099913411245415 m001 (2^(1/3)+gamma(2))/(Rabbit+Totient) 6099913432034321 h005 exp(cos(Pi*9/59)/sin(Pi*8/49)) 6099913436549010 a007 Real Root Of -901*x^4+222*x^3-182*x^2+215*x+374 6099913439272742 a007 Real Root Of -89*x^4-430*x^3+704*x^2+218*x+758 6099913454983736 r005 Re(z^2+c),c=-1/24+10/59*I,n=5 6099913472620449 m001 (MertensB3+OneNinth)/(GAMMA(7/12)+FeigenbaumB) 6099913475671964 a001 75025/3*199^(35/58) 6099913498467995 m001 (ln(gamma)+GlaisherKinkelin)^BesselI(1,2) 6099913508328460 r002 12th iterates of z^2 + 6099913523840368 m001 Chi(1)^(Pi^(1/2))*GaussAGM 6099913539061543 l006 ln(1059/1949) 6099913542681985 r008 a(0)=6,K{-n^6,3-9*n^3+36*n^2-40*n} 6099913552465336 a007 Real Root Of 625*x^4-198*x^3+120*x^2-308*x-364 6099913581372574 m001 ln(GAMMA(1/6))/BesselK(1,1)^2/log(1+sqrt(2))^2 6099913584836936 m001 Riemann1stZero*Kolakoski^2*exp(GAMMA(1/6))^2 6099913593291888 m005 (1/2*Zeta(3)-4/9)/(1/4*3^(1/2)-3) 6099913632513397 a007 Real Root Of 534*x^4-255*x^3+768*x^2+578*x-65 6099913649825902 m001 1/GAMMA(2/3)*exp(GAMMA(11/24))^2/gamma 6099913661623951 p004 log(37003/83) 6099913668291312 a007 Real Root Of 294*x^4-669*x^3+437*x^2-727*x+392 6099913684399587 r005 Im(z^2+c),c=8/23+19/35*I,n=7 6099913689689035 a007 Real Root Of -676*x^4+855*x^3-449*x^2+148*x+545 6099913695135660 m009 (1/2*Pi^2+1)/(1/3*Psi(1,3/4)-3/4) 6099913788368194 r005 Re(z^2+c),c=-3/4+2/63*I,n=27 6099913790369768 r005 Im(z^2+c),c=-27/118+5/59*I,n=17 6099913851939786 r002 16th iterates of z^2 + 6099913862472535 m005 (1/2*2^(1/2)-4/5)/(3/4*Pi-5/6) 6099913875387299 b008 1+13*Zeta[1/21] 6099913893859727 a001 1/98209*144^(14/17) 6099913896148372 a007 Real Root Of -795*x^4+374*x^3+791*x^2+317*x+94 6099913897238754 r002 39th iterates of z^2 + 6099913906355133 m001 1/GAMMA(5/24)/ln(GAMMA(5/12))^2*GAMMA(7/12) 6099913961491604 a001 3571/2504730781961*233^(4/15) 6099913965090333 r009 Im(z^3+c),c=-27/56+7/12*I,n=16 6099913982282970 m001 TreeGrowth2nd^2*Si(Pi)^2*ln(GAMMA(2/3))^2 6099913986588595 a007 Real Root Of 329*x^4+833*x^3+698*x^2-180*x-226 6099914012128783 l006 ln(8951/9514) 6099914029799686 a007 Real Root Of -578*x^4-248*x^3-631*x^2+468*x+544 6099914048381447 a007 Real Root Of 591*x^4-466*x^3-575*x^2-176*x-81 6099914071365897 r002 7th iterates of z^2 + 6099914076453724 r005 Im(z^2+c),c=-43/78+6/13*I,n=33 6099914084958994 r005 Re(z^2+c),c=23/118+15/46*I,n=24 6099914092777554 m001 Chi(1)/(PisotVijayaraghavan^GAMMA(5/6)) 6099914103168649 p004 log(33479/18191) 6099914108119259 r005 Re(z^2+c),c=-59/98+15/43*I,n=8 6099914111413838 m005 (1/2*exp(1)+3/5)/(1/24+1/8*5^(1/2)) 6099914112677570 b008 1/21+Tan[Sqrt[3]] 6099914141340401 r005 Im(z^2+c),c=-83/62+1/23*I,n=59 6099914148981898 m001 KhinchinLevy-TravellingSalesman^GAMMA(13/24) 6099914163090128 a001 142128/233 6099914173759865 a007 Real Root Of -160*x^4-891*x^3+594*x^2+417*x-269 6099914174912284 m001 ln(BesselK(0,1))^2*LandauRamanujan/Zeta(1,2) 6099914175511132 r009 Im(z^3+c),c=-17/48+1/27*I,n=3 6099914177503173 p004 log(29581/16073) 6099914180030054 r005 Re(z^2+c),c=3/14+15/43*I,n=20 6099914188856367 a007 Real Root Of -247*x^4+931*x^3-301*x^2-391*x+119 6099914210295995 a007 Real Root Of -526*x^4-813*x^3-713*x^2+988*x-6 6099914255985808 r005 Im(z^2+c),c=19/74+14/31*I,n=15 6099914277165398 s002 sum(A090265[n]/((10^n+1)/n),n=1..infinity) 6099914285405613 m001 (Lehmer-gamma)/(-MertensB1+ZetaQ(3)) 6099914285756448 r009 Im(z^3+c),c=-5/21+12/17*I,n=24 6099914286979171 a007 Real Root Of 39*x^4+40*x^3-56*x^2-432*x-239 6099914297727533 a007 Real Root Of -287*x^4+824*x^3+732*x^2+353*x+19 6099914342216879 a007 Real Root Of -349*x^4+626*x^3-920*x^2-493*x+232 6099914354608425 m001 1/Catalan^2*ln(Riemann1stZero)*GAMMA(11/24) 6099914367371364 m001 GAMMA(5/12)*GAMMA(1/12)^2/exp(GAMMA(7/12)) 6099914369109135 a007 Real Root Of 618*x^4-269*x^3-572*x^2-302*x-118 6099914370049583 a001 9349/6557470319842*233^(4/15) 6099914370311510 a007 Real Root Of 973*x^4-66*x^3+925*x^2-633*x-880 6099914378601313 r002 19th iterates of z^2 + 6099914382301475 r005 Im(z^2+c),c=-11/52+26/33*I,n=6 6099914427106943 r008 a(0)=6,K{-n^6,-5+7*n^3-3*n^2-6*n} 6099914466497039 a001 2161/1515744265389*233^(4/15) 6099914473814531 r005 Im(z^2+c),c=-27/50+5/46*I,n=42 6099914482407145 m001 (gamma+GAMMA(11/12))/(-Khinchin+ZetaQ(3)) 6099914487233139 r005 Re(z^2+c),c=-17/30+63/128*I,n=56 6099914491155824 l006 ln(5389/9918) 6099914537218835 m001 ln(2+3^(1/2))+FeigenbaumMu*Totient 6099914543028095 r005 Re(z^2+c),c=-2/3+30/209*I,n=3 6099914550820877 r005 Im(z^2+c),c=37/90+21/55*I,n=4 6099914551594762 a001 494493258286/3*46368^(13/17) 6099914552028684 a001 6643838879/21*165580141^(13/17) 6099914552028722 a001 4250681/7*591286729879^(13/17) 6099914579134266 a003 cos(Pi*2/101)*sin(Pi*9/43) 6099914583617581 r002 7th iterates of z^2 + 6099914583669513 a007 Real Root Of 959*x^4-362*x^3+561*x^2-12*x-431 6099914587390803 r005 Re(z^2+c),c=-37/52+13/63*I,n=5 6099914596842328 a007 Real Root Of -285*x^4+604*x^3-786*x^2-982*x-130 6099914600817921 r005 Re(z^2+c),c=33/122+19/44*I,n=43 6099914616410055 a003 cos(Pi*4/85)*sin(Pi*11/52) 6099914622552301 a001 5778/4052739537881*233^(4/15) 6099914628553742 b008 (5*ArcTanh[Log[2]])/7 6099914630715709 r005 Im(z^2+c),c=-1/8+24/29*I,n=26 6099914640148525 m001 (Bloch-Otter*Paris)/Otter 6099914707297863 r005 Re(z^2+c),c=-23/48+8/15*I,n=59 6099914724012126 l006 ln(4330/7969) 6099914734234610 m001 1/ln(Trott)^2*KhintchineLevy*GAMMA(23/24)^2 6099914762482061 a001 2/109801*322^(9/43) 6099914776874931 r005 Re(z^2+c),c=-3/4+1/98*I,n=29 6099914784378702 r005 Re(z^2+c),c=-3/70+45/62*I,n=50 6099914793746958 m001 GlaisherKinkelin/(Riemann2ndZero+ZetaQ(4)) 6099914797829946 a007 Real Root Of 76*x^4+424*x^3-393*x^2-936*x-73 6099914818591602 m001 (-exp(1/Pi)+4)/(GaussKuzminWirsing+4) 6099914845302299 q001 2149/3523 6099914870395524 m005 (1/2*3^(1/2)+1/9)/(11/12*Zeta(3)+1/2) 6099914943113294 a007 Real Root Of -279*x^4-519*x^3-448*x^2+668*x+495 6099914951907989 r002 13i'th iterates of 2*x/(1-x^2) of 6099914961188635 m001 (Porter-Salem)/(ln(gamma)-gamma(1)) 6099914978284812 r009 Re(z^3+c),c=-5/54+16/33*I,n=26 6099914983789003 r002 36th iterates of z^2 + 6099914990192407 p004 log(26029/14143) 6099915048880441 s002 sum(A214187[n]/(n^3*exp(n)-1),n=1..infinity) 6099915058281079 a007 Real Root Of 991*x^4-430*x^3-390*x^2-950*x+685 6099915080014880 a005 (1/cos(11/186*Pi))^900 6099915087522973 a007 Real Root Of -701*x^4+633*x^3+389*x^2+224*x-328 6099915091260603 a007 Real Root Of -112*x^4-715*x^3-78*x^2+546*x-987 6099915092589807 a003 cos(Pi*26/69)-sin(Pi*40/89) 6099915096047149 a007 Real Root Of 9*x^4+555*x^3+377*x^2+653*x+618 6099915107644828 l006 ln(3271/6020) 6099915132019177 a007 Real Root Of -155*x^4-948*x^3+83*x^2+488*x-682 6099915202046306 m001 1/Lehmer^2*Kolakoski^2/exp(cos(1))^2 6099915202052836 m001 Sierpinski*exp(GlaisherKinkelin)*cos(Pi/5)^2 6099915206035670 r005 Im(z^2+c),c=-133/94+7/55*I,n=14 6099915207406701 r009 Re(z^3+c),c=-5/54+16/33*I,n=21 6099915223220938 a007 Real Root Of 471*x^4-151*x^3+137*x^2+86*x-98 6099915229943740 a007 Real Root Of -577*x^4+15*x^3-944*x^2+386*x+670 6099915236521353 a001 9349/144*832040^(21/25) 6099915278771394 m005 (1/3*gamma-3/4)/(1/7*3^(1/2)+2/3) 6099915280060187 a007 Real Root Of -2*x^4+734*x^3-406*x^2-895*x-228 6099915282914692 m001 (ln(3)+TwinPrimes)/(Chi(1)+ln(gamma)) 6099915316525433 s002 sum(A064670[n]/(n^3*exp(n)-1),n=1..infinity) 6099915317264749 r005 Im(z^2+c),c=-113/94+5/59*I,n=31 6099915332019045 s004 Continued Fraction of A352132 6099915340141438 m003 1/50+(5*Sqrt[5])/32+Log[1/2+Sqrt[5]/2]/2 6099915375568968 p001 sum(1/(261*n+164)/(1000^n),n=0..infinity) 6099915376127783 r009 Im(z^3+c),c=-15/44+26/35*I,n=21 6099915376129442 a001 29/6765*4181^(22/37) 6099915384854809 r009 Im(z^3+c),c=-57/94+14/47*I,n=32 6099915394173482 q001 1/1639367 6099915410391881 a001 199/144*34^(8/19) 6099915410604803 l006 ln(5483/10091) 6099915410604803 p004 log(10091/5483) 6099915415179005 m001 gamma(1)/Sarnak/ZetaQ(4) 6099915415338899 a004 Fibonacci(12)*Lucas(13)/(1/2+sqrt(5)/2)^10 6099915415619687 a007 Real Root Of -89*x^4-470*x^3+299*x^2-751*x+838 6099915419310231 m001 ZetaQ(2)*(HardyLittlewoodC5+Sarnak) 6099915420561148 m001 ZetaQ(2)^(Weierstrass/FransenRobinson) 6099915445616464 m005 (-13/28+1/4*5^(1/2))/(6/7*5^(1/2)-4/11) 6099915455903689 m001 (GAMMA(7/12)+Salem)/(BesselJ(0,1)-arctan(1/3)) 6099915473866073 r009 Re(z^3+c),c=-11/18+29/55*I,n=10 6099915485665951 r005 Im(z^2+c),c=-7/6+14/177*I,n=57 6099915486976494 r009 Re(z^3+c),c=-1/94+28/45*I,n=35 6099915488996863 b008 -18/E^(2/3)+Pi 6099915506628704 r005 Im(z^2+c),c=-5/11+4/39*I,n=20 6099915531602781 a003 sin(Pi*4/87)-sin(Pi*28/103) 6099915565624571 a007 Real Root Of -325*x^4+754*x^3-249*x^2+402*x+554 6099915567553631 a007 Real Root Of -841*x^4+353*x^3-884*x^2+632*x+911 6099915571220174 p001 sum(1/(251*n+164)/(1024^n),n=0..infinity) 6099915585886660 b008 -19/2+ArcCosh[15] 6099915588304813 m001 (GAMMA(7/12)-Totient)/(Zeta(3)+Ei(1)) 6099915593510983 r005 Im(z^2+c),c=-27/118+5/59*I,n=19 6099915595163990 r002 10th iterates of z^2 + 6099915610661743 p004 log(18233/9907) 6099915611909834 m001 (Trott-ZetaQ(3))/(GaussAGM+Sierpinski) 6099915619501476 a007 Real Root Of 487*x^4+753*x^3+762*x^2+205*x-55 6099915624433054 a007 Real Root Of -735*x^4-524*x^3-441*x^2+188*x+13 6099915631016424 r005 Im(z^2+c),c=-109/86+17/36*I,n=4 6099915631180215 a007 Real Root Of 548*x^4+89*x^3+160*x^2-580*x-469 6099915651825440 m001 ln(2+3^(1/2))/(ln(5)-ln(gamma)) 6099915651825440 m001 ln(2+sqrt(3))/(ln(5)-log(gamma)) 6099915654584717 m001 1/Rabbit^2*exp(ErdosBorwein)^2/cos(Pi/5) 6099915659839398 b008 51*ArcSec[1+Sqrt[3]] 6099915660923355 r005 Im(z^2+c),c=-27/118+5/59*I,n=22 6099915661917559 r005 Im(z^2+c),c=-27/118+5/59*I,n=20 6099915675431847 r005 Im(z^2+c),c=-27/118+5/59*I,n=24 6099915679425028 r005 Im(z^2+c),c=-27/118+5/59*I,n=26 6099915680114607 r005 Im(z^2+c),c=-27/118+5/59*I,n=28 6099915680189764 r005 Im(z^2+c),c=-27/118+5/59*I,n=31 6099915680191301 r005 Im(z^2+c),c=-27/118+5/59*I,n=33 6099915680192260 r005 Im(z^2+c),c=-27/118+5/59*I,n=35 6099915680192480 r005 Im(z^2+c),c=-27/118+5/59*I,n=37 6099915680192481 r005 Im(z^2+c),c=-27/118+5/59*I,n=30 6099915680192513 r005 Im(z^2+c),c=-27/118+5/59*I,n=39 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=42 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=44 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=46 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=48 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=50 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=53 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=51 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=55 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=57 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=59 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=62 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=64 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=61 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=63 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=60 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=58 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=56 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=54 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=52 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=49 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=47 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=45 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=43 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=41 6099915680192516 r005 Im(z^2+c),c=-27/118+5/59*I,n=40 6099915680192527 r005 Im(z^2+c),c=-27/118+5/59*I,n=38 6099915680192617 r005 Im(z^2+c),c=-27/118+5/59*I,n=36 6099915680193104 r005 Im(z^2+c),c=-27/118+5/59*I,n=34 6099915680194664 r005 Im(z^2+c),c=-27/118+5/59*I,n=32 6099915680209216 r005 Im(z^2+c),c=-27/118+5/59*I,n=29 6099915680456641 r005 Im(z^2+c),c=-27/118+5/59*I,n=27 6099915682195915 r005 Im(z^2+c),c=-27/118+5/59*I,n=25 6099915688219511 m005 (1/3*exp(1)-1/6)/(4*Pi-4/9) 6099915690426043 r005 Im(z^2+c),c=-27/118+5/59*I,n=23 6099915692170976 a001 2207/1548008755920*233^(4/15) 6099915708847882 r005 Im(z^2+c),c=-27/118+5/59*I,n=21 6099915711558519 m005 (1/2*Zeta(3)+6)/(7/12*5^(1/2)-2/9) 6099915713251970 a007 Real Root Of 976*x^4+251*x^3+735*x^2-476*x-642 6099915716595439 m001 (HardHexagonsEntropy+Thue)/(Bloch-sin(1)) 6099915724659814 m001 (BesselI(0,1)+Ei(1,1))/(Pi^(1/2)+LaplaceLimit) 6099915735438955 a007 Real Root Of 35*x^4-528*x^3-121*x^2-959*x+745 6099915776413170 r005 Im(z^2+c),c=-5/8+33/212*I,n=14 6099915794400725 m001 (gamma(2)+Tribonacci)/(ln(Pi)-exp(1/exp(1))) 6099915824500840 a007 Real Root Of 900*x^4-821*x^3+46*x^2-654*x-727 6099915830204506 r002 33th iterates of z^2 + 6099915855486169 a001 47*(1/2*5^(1/2)+1/2)^16*76^(9/22) 6099915858607534 l006 ln(2212/4071) 6099915861944880 r009 Re(z^3+c),c=-5/54+16/33*I,n=28 6099915900595210 m001 (ln(3)-BesselI(1,1))/(Paris+StronglyCareFree) 6099915920487138 r005 Re(z^2+c),c=11/86+7/30*I,n=18 6099915983278375 a001 11592/341*199^(6/11) 6099915995033311 a007 Real Root Of -617*x^4+923*x^3+91*x^2-146*x+172 6099915999795352 a007 Real Root Of -205*x^4+254*x^3-799*x^2+347*x+595 6099916027438569 r002 5th iterates of z^2 + 6099916028146518 a007 Real Root Of -72*x^4+233*x^3-889*x^2+76*x+440 6099916036943744 q001 1453/2382 6099916037143198 a007 Real Root Of -688*x^4+953*x^3+382*x^2-22*x+156 6099916047651235 m001 (GaussAGM-Kac)/(MinimumGamma+ReciprocalLucas) 6099916054949240 a003 cos(Pi*11/65)-cos(Pi*31/74) 6099916061135205 a007 Real Root Of 230*x^4-393*x^3+45*x^2-902*x-688 6099916066308785 r008 a(0)=6,K{-n^6,1+9*n-32*n^2+11*n^3} 6099916094029733 a007 Real Root Of 140*x^4-647*x^3+633*x^2-784*x-880 6099916109789054 a003 cos(Pi*17/91)*sin(Pi*28/107) 6099916120667177 a005 (1/sin(74/171*Pi))^490 6099916122549878 r009 Re(z^3+c),c=-5/54+16/33*I,n=30 6099916125325659 a001 46368/199*76^(2/9) 6099916153463082 r005 Im(z^2+c),c=-3/25+57/64*I,n=24 6099916169971680 r009 Re(z^3+c),c=-5/54+16/33*I,n=33 6099916171216790 r009 Re(z^3+c),c=-5/54+16/33*I,n=35 6099916173291364 r009 Re(z^3+c),c=-5/54+16/33*I,n=37 6099916174175641 r009 Re(z^3+c),c=-5/54+16/33*I,n=39 6099916174428133 r009 Re(z^3+c),c=-5/54+16/33*I,n=41 6099916174469538 r009 Re(z^3+c),c=-5/54+16/33*I,n=44 6099916174471365 r009 Re(z^3+c),c=-5/54+16/33*I,n=46 6099916174473534 r009 Re(z^3+c),c=-5/54+16/33*I,n=48 6099916174474416 r009 Re(z^3+c),c=-5/54+16/33*I,n=50 6099916174474660 r009 Re(z^3+c),c=-5/54+16/33*I,n=52 6099916174474695 r009 Re(z^3+c),c=-5/54+16/33*I,n=55 6099916174474697 r009 Re(z^3+c),c=-5/54+16/33*I,n=57 6099916174474700 r009 Re(z^3+c),c=-5/54+16/33*I,n=59 6099916174474701 r009 Re(z^3+c),c=-5/54+16/33*I,n=61 6099916174474701 r009 Re(z^3+c),c=-5/54+16/33*I,n=63 6099916174474701 r009 Re(z^3+c),c=-5/54+16/33*I,n=64 6099916174474701 r009 Re(z^3+c),c=-5/54+16/33*I,n=62 6099916174474701 r009 Re(z^3+c),c=-5/54+16/33*I,n=60 6099916174474703 r009 Re(z^3+c),c=-5/54+16/33*I,n=58 6099916174474704 r009 Re(z^3+c),c=-5/54+16/33*I,n=54 6099916174474706 r009 Re(z^3+c),c=-5/54+16/33*I,n=56 6099916174474709 r009 Re(z^3+c),c=-5/54+16/33*I,n=53 6099916174474820 r009 Re(z^3+c),c=-5/54+16/33*I,n=51 6099916174475305 r009 Re(z^3+c),c=-5/54+16/33*I,n=49 6099916174476702 r009 Re(z^3+c),c=-5/54+16/33*I,n=43 6099916174476772 r009 Re(z^3+c),c=-5/54+16/33*I,n=47 6099916174479404 r009 Re(z^3+c),c=-5/54+16/33*I,n=45 6099916174485689 r009 Re(z^3+c),c=-5/54+16/33*I,n=42 6099916174603468 r009 Re(z^3+c),c=-5/54+16/33*I,n=40 6099916175018681 r009 Re(z^3+c),c=-5/54+16/33*I,n=32 6099916175096652 r009 Re(z^3+c),c=-5/54+16/33*I,n=38 6099916176539611 r009 Re(z^3+c),c=-5/54+16/33*I,n=36 6099916178067688 m001 (Grothendieck-Porter)/(TreeGrowth2nd+ZetaP(4)) 6099916178512166 a003 sin(Pi*1/28)-sin(Pi*19/74) 6099916178917767 r009 Re(z^3+c),c=-5/54+16/33*I,n=34 6099916188342485 r005 Im(z^2+c),c=-7/20+29/47*I,n=12 6099916188380052 r009 Re(z^3+c),c=-5/54+16/33*I,n=31 6099916195498697 r005 Im(z^2+c),c=-27/118+5/59*I,n=18 6099916226497623 a001 1/199*(1/2*5^(1/2)+1/2)^27*4^(11/15) 6099916229214619 r002 37th iterates of z^2 + 6099916234982512 m001 exp(GAMMA(17/24))/CopelandErdos^2*Zeta(1,2) 6099916241978679 r005 Im(z^2+c),c=-15/14+8/115*I,n=24 6099916263708049 a003 sin(Pi*3/56)*sin(Pi*7/59) 6099916285854401 r008 a(0)=6,K{-n^6,-8*n^3+n^2-4*n} 6099916286976832 r009 Im(z^3+c),c=-101/114+9/49*I,n=2 6099916295331199 r005 Im(z^2+c),c=-59/114+3/28*I,n=40 6099916296169612 m006 (4/5*exp(Pi)+3/4)/(4/5*ln(Pi)-3/5) 6099916299538691 r002 36th iterates of z^2 + 6099916310116472 r005 Im(z^2+c),c=-13/40+21/34*I,n=4 6099916312234146 r009 Re(z^3+c),c=-5/54+16/33*I,n=29 6099916313703952 a007 Real Root Of -830*x^4-435*x^3-587*x^2+981*x+833 6099916320295342 m001 exp(RenyiParking)*LaplaceLimit*TwinPrimes^2 6099916396860482 a007 Real Root Of -213*x^4+453*x^3+863*x^2+196*x-514 6099916418257470 r005 Im(z^2+c),c=5/19+15/28*I,n=3 6099916420272335 a007 Real Root Of 76*x^4+396*x^3-279*x^2+746*x-410 6099916448937088 a007 Real Root Of -543*x^4+823*x^3-519*x^2+131*x+535 6099916465869346 m005 (1/3*Zeta(3)-2/7)/(123/140+9/20*5^(1/2)) 6099916480963091 a007 Real Root Of 185*x^4+973*x^3-850*x^2+540*x-369 6099916495792576 r005 Im(z^2+c),c=15/62+19/31*I,n=4 6099916509338546 r009 Re(z^3+c),c=-49/90+10/53*I,n=61 6099916509837063 m001 TravellingSalesman^ZetaQ(4)-ln(5) 6099916523361636 a007 Real Root Of -616*x^4+283*x^3-514*x^2+343*x+550 6099916525917207 a007 Real Root Of 225*x^4-433*x^3+325*x^2+76*x-204 6099916528732540 m001 (MasserGramain+Sarnak)/(5^(1/2)-gamma(2)) 6099916552407133 a001 1597/123*123^(4/5) 6099916559265730 r008 a(0)=6,K{-n^6,-6-7*n^3-5*n^2+7*n} 6099916568745317 r005 Re(z^2+c),c=13/110+13/60*I,n=14 6099916588592327 l006 ln(3365/6193) 6099916594046841 p003 LerchPhi(1/3,3,89/74) 6099916609169918 m001 (ln(2)/ln(10)+Magata)/(-Robbin+ZetaQ(2)) 6099916610005628 a003 cos(Pi*1/36)-sin(Pi*13/103) 6099916617880269 r002 11th iterates of z^2 + 6099916634472662 q001 3/49181 6099916658656826 r009 Im(z^3+c),c=-13/38+36/55*I,n=7 6099916662436550 a001 591286729879/3*76^(6/23) 6099916684885671 h001 (1/6*exp(2)+5/12)/(8/9*exp(1)+2/7) 6099916689930758 a007 Real Root Of 161*x^4+989*x^3+187*x^2+830*x-326 6099916729798364 a007 Real Root Of -68*x^4+452*x^3-72*x^2+761*x+603 6099916737142051 v002 sum(1/(5^n+(25*n^2-37*n+30)),n=1..infinity) 6099916742941545 r009 Im(z^3+c),c=-5/56+2/3*I,n=3 6099916743638592 m001 MadelungNaCl/ln(ErdosBorwein)^2/GAMMA(5/6)^2 6099916774712898 m008 (3/4*Pi^5+5)/(4*Pi^6-1) 6099916774964978 a007 Real Root Of 845*x^4-314*x^3+896*x^2-775*x+44 6099916806755808 a007 Real Root Of 716*x^4+282*x^3-454*x^2-721*x-306 6099916809351857 r005 Re(z^2+c),c=23/86+25/57*I,n=47 6099916813193226 r009 Re(z^3+c),c=-5/54+16/33*I,n=27 6099916815423991 g002 Psi(1/8)-Psi(7/12)-Psi(7/11)-Psi(2/9) 6099916815728585 m001 (-GAMMA(19/24)+ZetaP(2))/(Psi(1,1/3)+3^(1/2)) 6099916836954772 m001 (Shi(1)+gamma(3))/(exp(-1/2*Pi)+GAMMA(7/12)) 6099916862041382 a001 1/1858291*(1/2*5^(1/2)+1/2)^4*64079^(1/22) 6099916914700326 s002 sum(A190819[n]/(n^2*pi^n+1),n=1..infinity) 6099916917063494 b008 ArcCosh[3+70*Pi] 6099916935809595 r005 Re(z^2+c),c=13/114+29/46*I,n=34 6099916944604707 m001 (MinimumGamma+Paris)/(Ei(1)+LaplaceLimit) 6099916945990794 l006 ln(4518/8315) 6099916949423439 a001 123/1597*377^(15/43) 6099916990696707 m005 (1/2*exp(1)+1/10)/(5/8*Pi+3/7) 6099916993349075 m001 (LaplaceLimit-Thue)^GaussKuzminWirsing 6099917030868928 a001 843/4052739537881*317811^(4/15) 6099917032530081 m001 (sin(1)+Gompertz)/CopelandErdos 6099917037100589 a003 cos(Pi*24/91)-cos(Pi*57/119) 6099917041695152 r002 6th iterates of z^2 + 6099917045273538 r002 47th iterates of z^2 + 6099917059356399 r005 Re(z^2+c),c=55/126+19/48*I,n=7 6099917062224762 r009 Re(z^3+c),c=-17/110+31/42*I,n=46 6099917068380094 a007 Real Root Of -990*x^4-158*x^3-97*x^2+911*x+693 6099917091462771 m001 1/arctan(1/2)^2/Zeta(1/2)/exp(sqrt(1+sqrt(3))) 6099917107059869 r005 Im(z^2+c),c=-65/102+5/43*I,n=52 6099917143656503 m001 (-ln(2^(1/2)+1)+MertensB2)/(2^(1/2)+ln(3)) 6099917167991917 r002 4th iterates of z^2 + 6099917168872980 a007 Real Root Of -98*x^4+928*x^3+610*x^2+777*x-898 6099917190239778 r005 Re(z^2+c),c=17/106+19/46*I,n=57 6099917195694176 q001 221/3623 6099917210762731 a007 Real Root Of -470*x^4-90*x^3-748*x^2-277*x+154 6099917211274352 m005 (1/2*gamma-3/8)/(6/11*Catalan+11/12) 6099917235752998 m008 (2/5*Pi^6-3)/(3/5*Pi^2+1/3) 6099917237919711 r005 Im(z^2+c),c=-27/46+21/32*I,n=7 6099917238497905 r005 Im(z^2+c),c=-51/50+3/47*I,n=14 6099917251661112 r005 Im(z^2+c),c=35/82+15/44*I,n=54 6099917258020624 m003 Sqrt[5]/64+8*ProductLog[1/2+Sqrt[5]/2] 6099917266879776 r002 36th iterates of z^2 + 6099917268445678 a007 Real Root Of -760*x^4-350*x^3-927*x^2-11*x+364 6099917268734217 m005 (1/2*exp(1)+9/10)/(1/3*5^(1/2)-3/8) 6099917292692450 a007 Real Root Of -326*x^4+898*x^3-694*x^2-479*x+215 6099917311044112 a007 Real Root Of -96*x^4+493*x^3+6*x^2+705*x+553 6099917311620188 r002 23th iterates of z^2 + 6099917352156830 a001 322/13*4181^(35/53) 6099917353491604 m001 (GAMMA(7/12)-Artin)/(Ei(1)-gamma(3)) 6099917358472024 g001 GAMMA(1/3,35/78) 6099917359053050 r005 Re(z^2+c),c=3/86+37/61*I,n=24 6099917375820838 h001 (5/7*exp(1)+9/11)/(3/5*exp(2)+1/11) 6099917387534657 r005 Im(z^2+c),c=17/62+16/27*I,n=19 6099917398343516 a003 cos(Pi*13/33)+cos(Pi*47/115) 6099917407373126 a003 sin(Pi*19/69)*sin(Pi*29/98) 6099917408559147 m001 GAMMA(19/24)/((3^(1/3))^KomornikLoreti) 6099917431526060 m001 (Ei(1)*ln(2+3^(1/2))-Totient)/Ei(1) 6099917444047496 a007 Real Root Of -395*x^4+701*x^3+618*x^2+83*x-385 6099917446768569 r009 Im(z^3+c),c=-9/44+17/24*I,n=31 6099917456514480 a007 Real Root Of -712*x^4+918*x^3+102*x^2+482*x+563 6099917459033583 r002 24th iterates of z^2 + 6099917482229868 a007 Real Root Of -314*x^4+752*x^3-469*x^2+794*x+873 6099917483439746 m004 -5/4+125*Pi*Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 6099917505896014 r005 Im(z^2+c),c=-19/46+24/41*I,n=22 6099917513114999 a007 Real Root Of 748*x^4-704*x^3+710*x^2+814*x-31 6099917517838459 a003 cos(Pi*23/79)*sin(Pi*47/95) 6099917531081352 a007 Real Root Of 528*x^4-250*x^3+823*x^2-613*x-810 6099917539618128 a001 710647/55*433494437^(17/22) 6099917547474139 a001 230701876/5*10946^(17/22) 6099917605713500 a003 cos(Pi*4/61)-cos(Pi*30/79) 6099917609684882 m001 1/FeigenbaumDelta*Cahen*exp(Ei(1))^2 6099917620839570 a001 141/46*521^(11/13) 6099917674557268 r005 Re(z^2+c),c=-87/122+3/17*I,n=12 6099917719695947 m001 Zeta(1,2)/(Si(Pi)^ArtinRank2) 6099917721171351 h001 (3/7*exp(1)+7/10)/(9/11*exp(1)+5/6) 6099917736831799 a007 Real Root Of 889*x^4-346*x^3-358*x^2-922*x-55 6099917740718352 a001 521/63245986*832040^(6/19) 6099917740718909 a001 521/1134903170*7778742049^(6/19) 6099917750319154 a007 Real Root Of -161*x^4+822*x^3+227*x^2+566*x-594 6099917788544498 r009 Im(z^3+c),c=-1/4+29/41*I,n=3 6099917845174652 m001 (Lehmer+Tetranacci)/(Si(Pi)+BesselI(0,2)) 6099917852294055 m001 gamma(2)/HardyLittlewoodC3/Riemann3rdZero 6099917854618927 a007 Real Root Of -92*x^4+634*x^3-547*x^2+103*x+423 6099917868299912 m005 (1/2*Pi+7/8)/(2*3^(1/2)+6/11) 6099917878464238 a007 Real Root Of -94*x^4-639*x^3-515*x^2-856*x-950 6099917882320964 m001 (-CareFree+GolombDickman)/(sin(1)+Bloch) 6099917910785569 m005 (1/2*Zeta(3)+11/12)/(6/7*5^(1/2)+4/7) 6099917911702513 b008 1+Sqrt[3]*Log[19] 6099917927996000 a007 Real Root Of 376*x^4-746*x^3+909*x^2+201*x-437 6099917936229386 m005 (1/2*Catalan+9/10)/(8/11*5^(1/2)+3/5) 6099917938021620 a007 Real Root Of 257*x^4-937*x^3-870*x^2+121*x+427 6099917957066339 a007 Real Root Of -874*x^4+327*x^3-674*x^2+559*x+787 6099917989048694 l006 ln(1153/2122) 6099917994296425 a007 Real Root Of 875*x^4-586*x^3-135*x^2-969*x-795 6099918013770703 r002 7th iterates of z^2 + 6099918026524572 m006 (2/3*exp(Pi)+3)/(3*Pi^2+3/5) 6099918032957611 m001 (1+Zeta(1,2))/(-MertensB2+Trott) 6099918052800866 m005 (1/2*gamma-2/7)/(1/7*3^(1/2)-1/5) 6099918069780516 m001 GAMMA(1/24)^2*OneNinth^2/exp(GAMMA(19/24))^2 6099918079771880 r005 Im(z^2+c),c=-7/52+29/44*I,n=43 6099918084692613 r005 Im(z^2+c),c=-11/9+8/41*I,n=12 6099918090292882 a007 Real Root Of 58*x^4-944*x^3-458*x^2-533*x-377 6099918094880699 r005 Re(z^2+c),c=53/126+14/39*I,n=12 6099918123624246 a001 15456/281*199^(5/11) 6099918131574263 h001 (4/9*exp(1)+7/9)/(2/5*exp(2)+3/10) 6099918137660947 r002 24th iterates of z^2 + 6099918140738938 m001 Porter/FeigenbaumMu*ZetaR(2) 6099918189766770 a001 29*(1/2*5^(1/2)+1/2)^3*7^(14/17) 6099918215366688 m001 gamma*Zeta(1/2)*Sarnak 6099918224028132 a007 Real Root Of -364*x^4-481*x^3+639*x^2+721*x-518 6099918226547308 r009 Re(z^3+c),c=-5/54+16/33*I,n=25 6099918228597082 a007 Real Root Of -67*x^4+267*x^3-60*x^2+380*x+324 6099918232922126 m001 (-HardyLittlewoodC5+Landau)/(gamma+ln(5)) 6099918260055381 p004 log(32003/17389) 6099918279166092 m001 (-3^(1/3)+arctan(1/3))/(exp(1)-ln(2^(1/2)+1)) 6099918308397888 a001 18/53316291173*3^(7/13) 6099918317206595 r002 2th iterates of z^2 + 6099918317206595 r002 2th iterates of z^2 + 6099918318401223 m001 (Gompertz-MertensB3)/(arctan(1/3)-GAMMA(7/12)) 6099918336139472 a007 Real Root Of -958*x^4+354*x^3-369*x^2+652*x+748 6099918352418372 a007 Real Root Of -914*x^4+305*x^3-945*x^2+701*x+975 6099918361823934 a001 521/55*121393^(7/44) 6099918381419170 r002 34th iterates of z^2 + 6099918407972541 m005 (1/3*Zeta(3)+2/9)/(2/3*gamma+7/11) 6099918415265903 r008 a(0)=0,K{-n^6,-2-90*n^3-72*n^2} 6099918415542560 r005 Re(z^2+c),c=-87/94+13/56*I,n=54 6099918422913373 r008 a(0)=0,K{-n^6,34-89*n^3-57*n^2-52*n} 6099918488700653 m001 1/Zeta(5)/ln(Pi)/sinh(1)^2 6099918488800814 m001 BesselK(0,1)^(PlouffeB/FeigenbaumB) 6099918497489409 r005 Im(z^2+c),c=23/66+15/43*I,n=7 6099918499263645 m004 150/Pi+Sinh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/6 6099918509070294 r005 Re(z^2+c),c=23/48+11/35*I,n=2 6099918534415274 p001 sum((-1)^n/(181*n+128)/n/(5^n),n=0..infinity) 6099918551608301 m001 (3^(1/3))^2*ArtinRank2^2/ln(GAMMA(1/4))^2 6099918562675109 a007 Real Root Of -51*x^4-237*x^3+515*x^2+460*x+461 6099918582495513 r009 Im(z^3+c),c=-7/82+29/39*I,n=28 6099918594959099 a007 Real Root Of 208*x^4-218*x^3-19*x^2-980*x-669 6099918634965790 b008 -7+Pi/E^(5/4) 6099918642827294 a007 Real Root Of -176*x^4+560*x^3-835*x^2+844*x+977 6099918649156152 a001 2/1597*610^(55/57) 6099918675568304 r005 Re(z^2+c),c=-19/74+31/47*I,n=5 6099918686264716 a007 Real Root Of -134*x^4+918*x^3+891*x^2+6*x-525 6099918771165322 a007 Real Root Of 234*x^4-284*x^3-489*x^2-559*x+555 6099918790680545 m001 1/exp(Zeta(1/2))^2/MadelungNaCl^2*Zeta(9)^2 6099918803596827 a007 Real Root Of 643*x^4-924*x^3+787*x^2-122*x-666 6099918814159776 m001 (Mills+Niven)/(StolarskyHarborth+ThueMorse) 6099918836309016 m004 2+5/Pi-Cot[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 6099918842841148 m001 Zeta(1,2)/((3^(1/3))^GAMMA(19/24)) 6099918871105035 a001 29/89*17711^(23/43) 6099918881341738 s002 sum(A154774[n]/(n^3*exp(n)-1),n=1..infinity) 6099918906459213 a007 Real Root Of 14*x^4+862*x^3+473*x^2-973*x-986 6099918973947655 m005 (1/2*gamma-5/8)/(7/8*Catalan-1/4) 6099918984484774 r009 Im(z^3+c),c=-79/126+27/59*I,n=4 6099918987598478 r008 a(0)=6,K{-n^6,-38+2*n+38*n^2-17*n^3} 6099918990437369 l006 ln(4706/8661) 6099919001508687 r005 Im(z^2+c),c=-177/122+1/50*I,n=11 6099919020145170 m001 (2^(1/3)-GAMMA(5/6))/(PlouffeB+Riemann2ndZero) 6099919030421637 a007 Real Root Of -6*x^4-357*x^3+545*x^2-222*x+212 6099919033249277 r005 Re(z^2+c),c=11/38+1/58*I,n=53 6099919041025114 m005 (1/2*Catalan-1/3)/(7/9*Pi-2/5) 6099919076708290 m005 (1/2*Catalan+10/11)/(7/11*5^(1/2)+9/11) 6099919084441398 a007 Real Root Of -644*x^4+628*x^3-901*x^2+505*x+875 6099919084644378 a007 Real Root Of 601*x^4-613*x^3+756*x^2-376*x-733 6099919088935009 m005 (1/3*Pi-1/4)/(123/154+5/22*5^(1/2)) 6099919090582021 a007 Real Root Of 122*x^4+82*x^3-44*x^2-910*x-537 6099919111946084 r009 Im(z^3+c),c=-8/23+23/36*I,n=2 6099919117451688 m001 (-Riemann1stZero+Robbin)/(2^(1/2)+Kolakoski) 6099919133411914 r005 Im(z^2+c),c=13/74+31/57*I,n=5 6099919140779769 r009 Re(z^3+c),c=-9/26+31/38*I,n=3 6099919141757724 r005 Re(z^2+c),c=-17/78+28/43*I,n=35 6099919144890520 r009 Re(z^3+c),c=-1/19+33/49*I,n=7 6099919152686636 a001 9349/89*21^(26/45) 6099919164614455 r005 Im(z^2+c),c=-73/62+3/49*I,n=5 6099919181588542 a007 Real Root Of 877*x^4-323*x^3+878*x^2+163*x-422 6099919185100248 m001 (Otter+Weierstrass)/(2^(1/3)-ArtinRank2) 6099919226447023 r005 Im(z^2+c),c=-7/6+79/233*I,n=7 6099919247160044 a007 Real Root Of 720*x^4-396*x^3+720*x^2-73*x-502 6099919257218974 m001 1/BesselK(1,1)*exp(Champernowne)/GAMMA(7/24) 6099919278592869 m001 gamma^2*cos(1)^2/ln(log(1+sqrt(2)))^2 6099919295990691 a007 Real Root Of -291*x^4-26*x^3+286*x^2+898*x-608 6099919302155960 h001 (2/9*exp(2)+8/9)/(1/2*exp(2)+5/11) 6099919315402488 l006 ln(3553/6539) 6099919319962314 a007 Real Root Of -128*x^4+356*x^3+206*x^2+107*x-205 6099919322786461 a007 Real Root Of -878*x^4+704*x^3-653*x^2+859*x+55 6099919330821641 m005 (1/2*gamma-3/8)/(5*exp(1)+4/7) 6099919342409302 m001 BesselJ(0,1)/ln((3^(1/3)))*cos(1)^2 6099919358455891 a001 199/5*5^(13/49) 6099919385609378 a007 Real Root Of 844*x^4-123*x^3+762*x^2-370*x-654 6099919386036768 a007 Real Root Of 252*x^4-481*x^3-35*x^2-870*x+618 6099919419822723 q001 757/1241 6099919432031053 r002 54th iterates of z^2 + 6099919436110548 r009 Im(z^3+c),c=-23/64+33/53*I,n=27 6099919446275372 r005 Im(z^2+c),c=-119/94+9/28*I,n=9 6099919455132074 r005 Im(z^2+c),c=-37/70+26/41*I,n=8 6099919462886857 a001 10749957122/21*86267571272^(11/17) 6099919462886859 a001 2139295485799/21*24157817^(11/17) 6099919466559054 a003 sin(Pi*3/47)/sin(Pi*9/85) 6099919511235449 m001 LambertW(1)^LaplaceLimit-ZetaP(4) 6099919517028131 a007 Real Root Of -383*x^4+733*x^3+697*x^2+71*x-416 6099919519456650 m001 GAMMA(19/24)*CareFree/FeigenbaumKappa 6099919520024910 m008 (5*Pi-3/4)/(4/5*Pi^5+2/5) 6099919528543149 p001 sum(1/(515*n+164)/(625^n),n=0..infinity) 6099919531886606 m009 (1/4*Psi(1,2/3)+2)/(3/8*Pi^2+5/6) 6099919534409332 m002 1+Sinh[Pi]/Pi^4+5*Tanh[Pi] 6099919599196640 r002 17i'th iterates of 2*x/(1-x^2) of 6099919602195871 m001 exp(cosh(1))^2/MadelungNaCl^2/sinh(1) 6099919625135513 g007 2*Psi(2,2/11)-Psi(2,3/7)-Psi(2,2/5) 6099919635859006 r002 13th iterates of z^2 + 6099919651581481 m005 (1/2*5^(1/2)+11/12)/(1/9*Zeta(3)+1/5) 6099919663840241 r009 Re(z^3+c),c=-11/82+29/43*I,n=19 6099919666192847 a007 Real Root Of 789*x^4-948*x^3-424*x^2-971*x+856 6099919677063067 m001 1/LaplaceLimit*GlaisherKinkelin/exp(gamma)^2 6099919681566931 p004 log(15373/8353) 6099919688874589 a005 (1/cos(8/179*Pi))^1347 6099919716891896 m001 1/cos(Pi/5)/ln(Robbin)^2*sin(1) 6099919730736686 m005 (1/2*2^(1/2)+5/11)/(7/12*5^(1/2)+3/5) 6099919776357550 m005 (1/2*5^(1/2)+5/6)/(1/4*Catalan+1/11) 6099919783285531 a007 Real Root Of -241*x^4+836*x^3+610*x^2+865*x-911 6099919790556673 a003 sin(Pi*17/109)/cos(Pi*9/41) 6099919809138921 m001 (FellerTornier-Shi(1))/(-Landau+MadelungNaCl) 6099919814261035 r002 19th iterates of z^2 + 6099919815247462 b008 1/4+Pi*LogIntegral[Khinchin] 6099919815923463 s002 sum(A107245[n]/(exp(n)+1),n=1..infinity) 6099919838528028 r009 Re(z^3+c),c=-14/27+4/33*I,n=29 6099919856517798 m001 1/Zeta(1/2)^2*ln(Bloch)*sqrt(3) 6099919864305606 m001 (-MertensB2+Salem)/(AlladiGrinstead-gamma) 6099919868326513 m001 3^(1/2)/(Shi(1)+Grothendieck) 6099919952604894 l006 ln(2400/4417) 6099919954537994 m003 12*E^(1/2+Sqrt[5]/2)+Log[1/2+Sqrt[5]/2] 6099919977099643 s002 sum(A171350[n]/(n^3*2^n+1),n=1..infinity) 6099919984748608 a001 9349/5*5^(36/49) 6099919987358318 p001 sum((-1)^n/(381*n+161)/(16^n),n=0..infinity) 6099920000110158 r002 36th iterates of z^2 + 6099920018051121 m001 1/ln(ArtinRank2)*Bloch^2*Pi^2 6099920021679668 m001 (GAMMA(2/3)+arctan(1/3))/(BesselI(1,1)-Lehmer) 6099920028335910 a007 Real Root Of 781*x^4+547*x^3-76*x^2-971*x-548 6099920043628571 r005 Re(z^2+c),c=23/98+19/35*I,n=19 6099920043688942 a007 Real Root Of -186*x^4-89*x^3-192*x^2+341*x+285 6099920046855904 m001 1/Zeta(1,2)^2/Salem^2*exp(Zeta(9))^2 6099920047208674 r005 Im(z^2+c),c=-17/114+41/63*I,n=22 6099920053298653 b008 60+Sech[1/25] 6099920076947497 a001 2207/3*832040^(9/58) 6099920094040817 m001 (GAMMA(17/24)+Artin)/(PlouffeB-RenyiParking) 6099920120687435 m001 (Ei(1)-Champernowne)/(Trott2nd+ZetaQ(4)) 6099920141158601 p001 sum(1/(377*n+140)/n/(32^n),n=1..infinity) 6099920148047925 a007 Real Root Of 615*x^4-936*x^3+760*x^2-242*x-728 6099920161324361 p004 log(19963/10847) 6099920168842934 a007 Real Root Of -554*x^4+509*x^3+96*x^2+9*x+162 6099920187431218 a003 cos(Pi*1/56)-sin(Pi*8/63) 6099920206287521 p001 sum((-1)^n/(21*n+11)/n/(512^n),,n=0..infinity) 6099920260248982 p004 log(37549/35327) 6099920299300228 a007 Real Root Of 805*x^4-948*x^3+321*x^2+787*x+34 6099920300147807 m001 (ln(Pi)+GAMMA(7/12))/(TreeGrowth2nd-ZetaQ(4)) 6099920317949659 m005 (1/2*2^(1/2)+1/12)/(3/10*5^(1/2)+5/8) 6099920323757996 r002 8th iterates of z^2 + 6099920333898359 r009 Re(z^3+c),c=-5/54+16/33*I,n=23 6099920334734576 b008 -7+Sech[(-1+Pi)^(-1)] 6099920345401289 a003 sin(Pi*6/95)-sin(Pi*29/97) 6099920371458937 a007 Real Root Of 147*x^4-531*x^3-24*x^2-546*x-465 6099920375311807 m001 1/GAMMA(2/3)^2*BesselK(1,1)/exp(sin(1))^2 6099920385235319 h001 (-3*exp(2)+4)/(-2*exp(5)-1) 6099920419047775 m001 (GAMMA(23/24)-GaussAGM)/(3^(1/3)-GAMMA(5/6)) 6099920423186357 a001 305/161*521^(12/13) 6099920438648878 a005 (1/cos(4/191*Pi))^1898 6099920445668447 r009 Re(z^3+c),c=-2/17+32/45*I,n=42 6099920453049697 r005 Im(z^2+c),c=9/34+23/43*I,n=19 6099920469949501 m001 (Backhouse+CopelandErdos)/(Mills+Porter) 6099920476844543 r002 7th iterates of z^2 + 6099920490473781 h001 (1/4*exp(1)+5/12)/(3/8*exp(1)+7/9) 6099920514189041 r005 Re(z^2+c),c=-55/74+13/42*I,n=5 6099920536738557 r009 Im(z^3+c),c=-41/90+25/48*I,n=11 6099920562867349 r002 39th iterates of z^2 + 6099920573383618 l006 ln(3647/6712) 6099920621706974 a003 sin(Pi*19/112)/cos(Pi*14/75) 6099920628965659 r005 Im(z^2+c),c=-1/8+50/61*I,n=62 6099920648353136 m001 Sierpinski^2/Bloch/exp(Zeta(1/2)) 6099920654636407 m001 FeigenbaumDelta+GAMMA(19/24)^sqrt(5) 6099920654636407 m001 GAMMA(19/24)^(5^(1/2))+FeigenbaumDelta 6099920666241990 a007 Real Root Of -696*x^4+892*x^3-590*x^2+565*x+863 6099920688410649 m001 (1+3^(1/2))^(1/2)*(ZetaR(2)-polylog(4,1/2)) 6099920698211885 m005 (1/2*exp(1)-1/4)/(7/10*gamma-2/9) 6099920700970972 r002 60th iterates of z^2 + 6099920704644924 a001 7/34*17711^(32/55) 6099920707515579 a001 11/34*2^(43/47) 6099920709834980 b008 5+E^(2/21) 6099920712143025 a007 Real Root Of -137*x^4-154*x^3+192*x^2+668*x+40 6099920727566429 r005 Im(z^2+c),c=19/60+19/33*I,n=41 6099920753490656 r008 a(0)=0,K{-n^6,-3-90*n^3-72*n^2+n} 6099920754927559 a007 Real Root Of 966*x^4+126*x^3+316*x^2-748*x-679 6099920763769130 r008 a(0)=0,K{-n^6,1+81*n^3+98*n^2-16*n} 6099920797874899 m005 (4/5*Catalan-3)/(1/5*Pi-1) 6099920809064858 m001 Zeta(1,2)^2/MadelungNaCl^2*ln(cos(Pi/5)) 6099920819054739 a007 Real Root Of -622*x^4-276*x^3+334*x^2+909*x-530 6099920845686976 r002 20th iterates of z^2 + 6099920877811258 l006 ln(4894/9007) 6099920887515331 b008 3*Sqrt[2]+Sqrt[1+Sqrt[6]] 6099920929584995 m001 (HeathBrownMoroz+OrthogonalArrays)/(Pi-Chi(1)) 6099920945105506 m005 (1/3*5^(1/2)+1/9)/(2/9*exp(1)+4/5) 6099920958821577 a007 Real Root Of 457*x^4-526*x^3+749*x^2-665*x-867 6099920984497674 m001 1/ln(GAMMA(19/24))/Riemann1stZero*sinh(1)^2 6099921020138010 m001 (exp(-1/2*Pi)+GaussAGM)/(Otter+Riemann1stZero) 6099921027726589 m001 BesselI(0,1)+AlladiGrinstead-Khinchin 6099921037903596 m007 (-gamma-2*ln(2)-4)/(-1/4*gamma-5/6) 6099921060418442 s002 sum(A107245[n]/(exp(n)),n=1..infinity) 6099921063056348 r005 Im(z^2+c),c=-8/15+11/50*I,n=6 6099921064184265 r005 Re(z^2+c),c=-3/52+19/26*I,n=14 6099921080153823 a001 1597/322*521^(10/13) 6099921104265656 m001 Chi(1)^(Si(Pi)/LaplaceLimit) 6099921107383253 m001 1/Robbin^2*exp(FeigenbaumC)/GAMMA(7/12)^2 6099921120709566 r002 12th iterates of z^2 + 6099921147728107 m001 (Zeta(1,-1)-FransenRobinson)/(Magata+Porter) 6099921147953987 m008 (3*Pi^4+4/5)/(1/2*Pi^4-2/3) 6099921150698657 r005 Im(z^2+c),c=-3/31+16/21*I,n=11 6099921167377012 m001 (-FeigenbaumD+Landau)/(BesselI(1,1)-Catalan) 6099921185007758 a001 10946/521*199^(7/11) 6099921187627072 h001 (1/3*exp(2)+2/3)/(7/11*exp(2)+3/7) 6099921210110252 a007 Real Root Of -276*x^4+928*x^3-750*x^2+69*x+570 6099921227017369 m005 (1/2*5^(1/2)+1/5)/(9/10*exp(1)-2/7) 6099921229016063 a007 Real Root Of 486*x^4-701*x^3+992*x^2+191*x-479 6099921237888241 a001 1/10959*121393^(14/39) 6099921247311362 m001 1/ln(MertensB1)*Champernowne*LaplaceLimit 6099921262302391 m005 (1/2*Zeta(3)+2/3)/(10/11*Pi-7/9) 6099921263055568 m002 4*Coth[Pi]^2+ProductLog[Pi]+Tanh[Pi] 6099921297782551 m001 (GAMMA(17/24)-GaussAGM)/(Zeta(3)-arctan(1/2)) 6099921303062164 a001 15127/2*46368^(36/43) 6099921326028206 r005 Im(z^2+c),c=25/114+23/45*I,n=25 6099921331887954 a007 Real Root Of 608*x^4-732*x^3-108*x^2+474*x+79 6099921332076720 r005 Im(z^2+c),c=39/106+16/51*I,n=44 6099921336174425 m005 (1/2*Pi-1/2)/(6/11*exp(1)+3/11) 6099921336521672 m001 (exp(1)-Riemann3rdZero)^FransenRobinson 6099921375175821 k005 Champernowne real with floor(sqrt(3)*(221*n+131)) 6099921375175821 k001 Champernowne real with 383*n+226 6099921376175921 k005 Champernowne real with floor(Pi*(122*n+72)) 6099921379285141 m005 (1/2*5^(1/2)-4/9)/(1/11*exp(1)+6/7) 6099921399348661 v002 sum(1/(5^n*(26*n^2-33*n+43)),n=1..infinity) 6099921414500693 r005 Im(z^2+c),c=-27/50+5/46*I,n=39 6099921414992337 r005 Re(z^2+c),c=37/118+29/49*I,n=3 6099921418822117 a007 Real Root Of -119*x^4+126*x^3-824*x^2+853*x+872 6099921424756145 r005 Im(z^2+c),c=-27/118+5/59*I,n=16 6099921432841403 r005 Re(z^2+c),c=-23/31+2/61*I,n=19 6099921437299059 a001 76/53316291173*2971215073^(5/18) 6099921437300341 a001 19/1201881744*514229^(5/18) 6099921441866214 m001 (LambertW(1)-gamma)/(Salem+Weierstrass) 6099921446384589 a007 Real Root Of -312*x^4+840*x^3+609*x^2+468*x-31 6099921450106283 a007 Real Root Of -581*x^4+415*x^3+136*x^2+965*x-653 6099921476909231 b008 -13/2+BarnesG[1/3] 6099921512599212 a001 1364/317811*3^(8/25) 6099921526730947 r009 Im(z^3+c),c=-29/56+25/41*I,n=49 6099921527596128 q001 2332/3823 6099921552210802 p003 LerchPhi(1/8,1,157/88) 6099921603182583 r005 Re(z^2+c),c=-69/94+1/43*I,n=15 6099921618871912 r005 Im(z^2+c),c=-45/74+40/63*I,n=5 6099921658157094 a007 Real Root Of -442*x^4+343*x^3+875*x^2+657*x-743 6099921676561212 m001 GAMMA(13/24)/(Catalan+Pi^(1/2)) 6099921676561212 m001 GAMMA(13/24)/(Catalan+sqrt(Pi)) 6099921682932769 g002 Psi(2/11)+Psi(2/9)-Psi(5/11)-Psi(4/9) 6099921699706858 a007 Real Root Of 104*x^4+686*x^3+426*x^2+815*x+834 6099921719238560 m001 (LaplaceLimit+Rabbit)/(Cahen+ErdosBorwein) 6099921720193663 m002 -1-Pi/3+2*Pi^5 6099921722283233 r002 58th iterates of z^2 + 6099921722798118 m001 FibonacciFactorial/exp(Artin)/Salem^2 6099921738249166 r005 Re(z^2+c),c=-19/26+15/86*I,n=26 6099921739967639 r005 Re(z^2+c),c=-12/17+2/15*I,n=20 6099921740593769 a007 Real Root Of -846*x^4+445*x^3-316*x^2+389*x+573 6099921741832848 m001 1/Tribonacci^2/exp(RenyiParking)*TwinPrimes^2 6099921751793306 m001 (Psi(1,1/3)+1)/(-CopelandErdos+ZetaQ(2)) 6099921768146090 l006 ln(1247/2295) 6099921782541973 a007 Real Root Of -860*x^4-44*x^3-881*x^2-890*x-106 6099921818745121 m001 (ln(2)-MadelungNaCl)/(MertensB1+Porter) 6099921843972059 r005 Im(z^2+c),c=-67/74+4/17*I,n=50 6099921863365307 r005 Im(z^2+c),c=37/98+1/12*I,n=5 6099921866288967 a007 Real Root Of -450*x^4-47*x^3-444*x^2+456*x+495 6099921866328921 r009 Im(z^3+c),c=-1/94+47/63*I,n=23 6099921875618435 a007 Real Root Of -331*x^4+995*x^3-764*x^2+246*x+706 6099921884976180 a007 Real Root Of -338*x^4-470*x^3-673*x^2+827*x+695 6099921888779686 a007 Real Root Of -775*x^4+807*x^3+899*x^2+905*x+508 6099921903549847 r002 10th iterates of z^2 + 6099921910209991 m001 Backhouse-FeigenbaumKappa^ln(gamma) 6099921916744900 r005 Re(z^2+c),c=15/122+31/64*I,n=40 6099921934937743 g006 -Psi(1,4/7)-Psi(1,1/6)-Psi(1,3/4)-Psi(1,1/4) 6099922017533581 m001 (3^(1/2)-exp(1))/(Zeta(1,-1)+Grothendieck) 6099922029840874 r005 Re(z^2+c),c=37/102+7/64*I,n=29 6099922045019187 a007 Real Root Of 389*x^4-781*x^3+608*x^2+776*x+16 6099922045815817 m001 Pi/(2^(1/3)-cos(1/5*Pi)-cos(1/12*Pi)) 6099922047277527 a007 Real Root Of -881*x^4+685*x^3-965*x^2-132*x+556 6099922068663959 a003 cos(Pi*16/101)-sin(Pi*7/18) 6099922086497666 m001 MinimumGamma*ln(Backhouse)^2/Tribonacci^2 6099922089366653 a007 Real Root Of -755*x^4+65*x^3-912*x^2+862*x+56 6099922101979087 m001 (Niven+TwinPrimes)/(exp(1/Pi)+FeigenbaumAlpha) 6099922111608846 a007 Real Root Of -822*x^4-16*x^3-560*x^2+786*x+798 6099922120140422 r005 Im(z^2+c),c=-9/14+1/129*I,n=27 6099922138243634 r002 5th iterates of z^2 + 6099922147726383 a001 1292/161*521^(9/13) 6099922181247162 m001 GAMMA(13/24)*Backhouse^2/ln(GAMMA(5/12))^2 6099922232421279 a007 Real Root Of -706*x^4+661*x^3+614*x^2+229*x+159 6099922306608611 s002 sum(A107245[n]/(exp(n)-1),n=1..infinity) 6099922310974301 r002 3th iterates of z^2 + 6099922335774956 m001 ln(CopelandErdos)^2*Backhouse^2*GAMMA(19/24)^2 6099922339841887 m001 (Landau+Trott2nd)/(arctan(1/2)+Bloch) 6099922340727929 m001 (Bloch+LaplaceLimit)/(sin(1/12*Pi)+gamma(1)) 6099922356170918 a003 cos(Pi*39/103)-sin(Pi*51/116) 6099922380620591 l006 ln(1256/1335) 6099922392602771 m005 (1/3*Catalan-1/7)/(5/6*5^(1/2)+4/5) 6099922403261764 a007 Real Root Of 365*x^4+2*x^3+376*x^2-882*x-728 6099922426617456 a007 Real Root Of -608*x^4+471*x^3-109*x^2+819*x+5 6099922430287684 r008 a(0)=6,K{-n^6,29+40*n^3-64*n^2-14*n} 6099922433429795 m005 (1/3*Zeta(3)-1/8)/(9/10*gamma+4) 6099922438426883 m009 (1/5*Psi(1,3/4)+6)/(Pi^2+4/5) 6099922440096756 a005 (1/cos(13/133*Pi))^230 6099922470469414 a007 Real Root Of 158*x^4+993*x^3+331*x^2+979*x+286 6099922499278501 a003 1/2+cos(11/30*Pi)-2*cos(5/18*Pi)+cos(1/21*Pi) 6099922500720498 r002 39i'th iterates of 2*x/(1-x^2) of 6099922504149796 m001 1/GAMMA(23/24)^2/exp(Artin)*cos(Pi/12)^2 6099922531847485 p004 log(21001/11411) 6099922540666150 q001 1575/2582 6099922545141014 m001 sin(1)/(exp(1/2)^Cahen) 6099922572055521 r005 Im(z^2+c),c=27/94+25/57*I,n=45 6099922602606978 m001 TreeGrowth2nd^2*exp(FeigenbaumC)^2*cos(Pi/5) 6099922611438624 a007 Real Root Of -547*x^4+257*x^3+563*x^2+772*x-663 6099922625544415 l006 ln(5082/9353) 6099922649664420 a007 Real Root Of 742*x^4-861*x^3+698*x^2-433*x-822 6099922663210254 m001 (Mills+Robbin)/(FeigenbaumD+Landau) 6099922681577939 p004 log(35117/19081) 6099922695402140 a007 Real Root Of -673*x^4+22*x^3-965*x^2-184*x+345 6099922748136120 s002 sum(A217009[n]/(exp(n)+1),n=1..infinity) 6099922763093246 m001 (Zeta(3)-exp(Pi))/(ln(2+3^(1/2))+BesselI(0,2)) 6099922765455342 m001 1/ln(ArtinRank2)^2*Backhouse/Tribonacci 6099922777946883 a007 Real Root Of 211*x^4+563*x^3+998*x^2-543*x-604 6099922783874390 a007 Real Root Of -108*x^4+845*x^3-687*x^2+83*x+513 6099922832514816 m001 HardHexagonsEntropy-Khinchin^CareFree 6099922863654301 a007 Real Root Of -610*x^4+892*x^3-53*x^2+717*x+744 6099922877348578 m001 (Psi(1,1/3)+GAMMA(13/24))/(RenyiParking+Salem) 6099922877769775 a007 Real Root Of -439*x^4-138*x^3-723*x^2-68*x+257 6099922888016630 m001 GAMMA(3/4)^ZetaQ(4)/GAMMA(13/24) 6099922904338588 l006 ln(3835/7058) 6099922943169916 r005 Re(z^2+c),c=1/20+32/49*I,n=26 6099922961425647 m009 (5/6*Psi(1,1/3)-5/6)/(2/3*Psi(1,2/3)-4/5) 6099922963424733 r005 Re(z^2+c),c=-7/82+11/16*I,n=37 6099922973190967 r005 Re(z^2+c),c=-83/110+3/55*I,n=39 6099922976429697 m001 (MinimumGamma-Stephens)/(3^(1/3)-gamma(2)) 6099922979120285 a007 Real Root Of 302*x^4-694*x^3-768*x^2-273*x+568 6099922981864815 a007 Real Root Of -612*x^4+816*x^3+799*x^2+176*x+80 6099922991728839 a007 Real Root Of 743*x^4-982*x^3-382*x^2-999*x-793 6099922995285438 a007 Real Root Of -491*x^4-269*x^3-603*x^2+611*x+604 6099923007603552 a007 Real Root Of -625*x^4+651*x^3-22*x^2-368*x+18 6099923012710409 h001 (7/12*exp(1)+3/10)/(4/5*exp(1)+11/12) 6099923015477677 a003 cos(Pi*10/97)-sin(Pi*9/82) 6099923021469965 m001 Paris*ln(CopelandErdos)/GAMMA(7/12)^2 6099923021570989 a007 Real Root Of 97*x^4-408*x^3+871*x^2-708*x-862 6099923023446444 a001 843/591286729879*233^(4/15) 6099923060363505 m005 (1/2*exp(1)-4/7)/(5/11*Catalan+7/8) 6099923072463831 r005 Re(z^2+c),c=-49/94+39/58*I,n=23 6099923074083191 m001 FeigenbaumD^MertensB1-FeigenbaumKappa 6099923097842229 r005 Re(z^2+c),c=-47/110+14/23*I,n=9 6099923099266695 r008 a(0)=0,K{-n^6,-6-87*n^3-82*n^2+11*n} 6099923148424514 a007 Real Root Of 399*x^4-684*x^3-577*x^2-430*x+577 6099923150795423 a007 Real Root Of 596*x^4+406*x^3-268*x^2-776*x-364 6099923167418299 m005 (1/2*gamma+2/9)/(7/8*2^(1/2)-2/5) 6099923176122522 m001 (Gompertz*Kolakoski+Trott)/Kolakoski 6099923176841876 a007 Real Root Of -989*x^4+383*x^3-796*x^2-905*x-32 6099923178752178 a001 18/233*1346269^(26/55) 6099923179353306 m001 Landau^GAMMA(19/24)-ln(3) 6099923199755813 l006 ln(17/7579) 6099923221681944 r005 Im(z^2+c),c=-3/16+39/53*I,n=9 6099923222331612 m001 Pi+LaplaceLimit+UniversalParabolic 6099923229978058 r002 8th iterates of z^2 + 6099923241918775 m005 (1/2*3^(1/2)+5/12)/(7/9*5^(1/2)+4/11) 6099923310218477 m003 2+3*Tan[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/2 6099923322320335 a007 Real Root Of -77*x^4+867*x^3+436*x^2+765*x-815 6099923364635875 r002 14th iterates of z^2 + 6099923367675586 a007 Real Root Of -125*x^4-447*x^3+91*x^2+931*x-483 6099923368086569 a007 Real Root Of 170*x^4+915*x^3-580*x^2+995*x-37 6099923376721965 a001 1368706081/48*121393^(11/24) 6099923376759895 a001 20633239/144*12586269025^(11/24) 6099923395584017 m001 (Zeta(5)*Ei(1)-MertensB3)/Zeta(5) 6099923408714505 r002 28th iterates of z^2 + 6099923408818221 r009 Im(z^3+c),c=-7/17+31/54*I,n=26 6099923429990339 r005 Im(z^2+c),c=-7/54+35/41*I,n=12 6099923451800692 l006 ln(2588/4763) 6099923465913289 m002 -4+Pi^5/4-Sinh[Pi]*Tanh[Pi] 6099923472138809 m001 (Grothendieck-Otter)/(RenyiParking+Salem) 6099923486111996 m005 (1/3*Catalan-1/4)/(4*5^(1/2)+1/8) 6099923508825329 m001 Porter*Stephens^BesselI(1,2) 6099923516929491 a007 Real Root Of 214*x^4-896*x^3+139*x^2+452*x-9 6099923527912312 q001 2393/3923 6099923534512942 a007 Real Root Of -75*x^4-318*x^3+739*x^2-569*x+693 6099923559071293 m005 (-5/42+1/6*5^(1/2))/(1/7*gamma+1/3) 6099923559706181 p004 log(35809/19457) 6099923560331916 r002 13i'th iterates of 2*x/(1-x^2) of 6099923564100086 h001 (2/3*exp(1)+5/8)/(5/12*exp(2)+11/12) 6099923612136602 r009 Re(z^3+c),c=-1/13+8/25*I,n=7 6099923614498119 m001 (-sin(Pi/5)+1/2)/(-Pi^(1/2)+1/3) 6099923635854145 r005 Im(z^2+c),c=-3/38+4/57*I,n=3 6099923666486044 m001 (Bloch+HeathBrownMoroz)/(5^(1/2)+Zeta(1/2)) 6099923668675592 m001 (BesselI(0,2)-gamma)/(FeigenbaumD+OneNinth) 6099923700161959 a007 Real Root Of 79*x^4-597*x^3-56*x^2-260*x+304 6099923735741620 a001 75025/199*3571^(28/31) 6099923742929355 a007 Real Root Of -996*x^4+921*x^3+475*x^2+821*x+671 6099923778004677 a007 Real Root Of 352*x^4-240*x^3-271*x^2-663*x+511 6099923798700829 r009 Re(z^3+c),c=-59/106+16/61*I,n=6 6099923803572123 m001 (FeigenbaumC+ZetaP(2))/(Pi+BesselK(1,1)) 6099923823111852 p004 log(31219/16963) 6099923827393253 p001 sum(1/(200*n+167)/(25^n),n=0..infinity) 6099923832589060 m002 -4-6*Pi^2+Log[Pi]+ProductLog[Pi] 6099923842603680 a003 cos(Pi*7/103)-cos(Pi*27/71) 6099923860307254 m005 (1/2*3^(1/2)+1/11)/(7/9*exp(1)-6/11) 6099923860702742 h001 (3/10*exp(2)+2/9)/(4/9*exp(2)+5/7) 6099923867329084 a007 Real Root Of -366*x^4-608*x^3-899*x^2+462*x+529 6099923877320713 r005 Im(z^2+c),c=-23/18+11/91*I,n=12 6099923885174130 m001 (Kac-PisotVijayaraghavan)/(ln(gamma)-Gompertz) 6099923885453909 a001 121393/322*199^(1/11) 6099923896728924 a007 Real Root Of 157*x^4+888*x^3-258*x^2+904*x-703 6099923914068336 s002 sum(A117810[n]/(n*exp(n)-1),n=1..infinity) 6099923944782401 r005 Re(z^2+c),c=-37/82+17/23*I,n=6 6099923949570003 m005 (1/2*gamma+2/11)/(179/264+1/24*5^(1/2)) 6099923952670759 a007 Real Root Of 221*x^4-107*x^3+959*x^2+152*x-319 6099923961814961 r005 Im(z^2+c),c=31/86+6/47*I,n=21 6099923982730608 m001 Kolakoski/exp(GlaisherKinkelin)^2/Zeta(9) 6099923986164920 l006 ln(3929/7231) 6099924012620335 a001 4/317811*121393^(47/51) 6099924028944599 r005 Re(z^2+c),c=-13/102+25/31*I,n=18 6099924035352806 m001 KhinchinHarmonic*(AlladiGrinstead+Khinchin) 6099924065682678 m001 Pi*(1/ln(2+3^(1/2))-BesselI(1,1)) 6099924065792755 m001 (Conway-ThueMorse)/(Zeta(3)+sin(1/12*Pi)) 6099924066238560 r005 Re(z^2+c),c=-29/98+19/30*I,n=35 6099924083801723 m001 (5^(1/2)+ln(Pi))/(-GAMMA(17/24)+Tribonacci) 6099924110507976 a008 Real Root of x^4-14*x^2-156*x+88 6099924122970160 a007 Real Root Of 289*x^4-90*x^3+462*x^2+535*x+94 6099924122977176 a007 Real Root Of -138*x^4-331*x^3-685*x^2+74*x+244 6099924123229984 m008 (1/4*Pi^4-3/5)/(4*Pi^4-1/4) 6099924128863913 a001 4181/322*521^(8/13) 6099924130325838 g001 GAMMA(7/11,32/71) 6099924164422569 r009 Im(z^3+c),c=-2/17+39/55*I,n=14 6099924169557198 r005 Im(z^2+c),c=-115/114+1/16*I,n=12 6099924169593819 a001 514229/199*39603^(16/31) 6099924180378926 r002 49th iterates of z^2 + 6099924182311612 a007 Real Root Of 664*x^4-988*x^3+16*x^2+774*x+150 6099924196890053 a007 Real Root Of 557*x^4+95*x^3-80*x^2-972*x+524 6099924197000238 a001 123/55*28657^(37/48) 6099924203561630 a001 10946/199*15127^(30/31) 6099924211408758 m005 (1/2*Catalan+4)/(1/10*Pi+5/12) 6099924220688263 r009 Im(z^3+c),c=-29/78+35/58*I,n=17 6099924248581347 l006 ln(5270/9699) 6099924278539858 m005 (1/3*3^(1/2)+2/9)/(-13/48+1/16*5^(1/2)) 6099924279727902 m001 (-Khinchin+TwinPrimes)/(exp(1)+BesselK(1,1)) 6099924287075546 m005 (1/2*5^(1/2)-1/11)/(7/8*5^(1/2)-3/11) 6099924294479100 a007 Real Root Of 369*x^4-198*x^3+801*x^2-513*x-707 6099924303174700 a001 196418/199*5778^(23/31) 6099924312891695 a001 3571/832040*3^(8/25) 6099924316601369 r005 Re(z^2+c),c=-1/28+3/4*I,n=23 6099924373748984 a001 494493258286/3*32951280099^(9/17) 6099924382337708 a001 322*(1/2*5^(1/2)+1/2)^24*4^(10/23) 6099924382497748 a007 Real Root Of -12*x^4+596*x^3+517*x^2+682*x-742 6099924391563386 a007 Real Root Of -331*x^4-626*x^3-679*x^2+301*x+340 6099924430198176 m001 Cahen/(Psi(1,1/3)+ZetaP(2)) 6099924430891472 m006 (1/5*exp(Pi)-1)/(2/5*Pi^2+2) 6099924441273293 a007 Real Root Of 152*x^4+786*x^3-830*x^2+204*x+82 6099924458914141 m005 (1/6*Pi-1/4)/(3/5*2^(1/2)-2/5) 6099924471220549 a007 Real Root Of -855*x^4+867*x^3+31*x^2+858*x+827 6099924475352178 m005 (Catalan-3/5)/(5*Catalan+3/5) 6099924483665415 m005 (1/2*Zeta(3)-7/10)/(5/9*3^(1/2)-4/5) 6099924484480078 m006 (4*Pi-3/5)/(5/6*exp(Pi)+1/3) 6099924532022476 s002 sum(A262509[n]/((exp(n)+1)/n),n=1..infinity) 6099924545751986 m001 ln(Pi)/GAMMA(17/24)/Zeta(1/2) 6099924545751986 m001 ln(Pi)/Zeta(1/2)/GAMMA(17/24) 6099924563184509 m005 (1/2*3^(1/2)-4/11)/(1/6*Pi+3/10) 6099924564462254 a007 Real Root Of -29*x^4+629*x^3+976*x^2+169*x-605 6099924594351520 b008 Pi+40*ArcTan[8] 6099924603443460 a007 Real Root Of 85*x^4-13*x^3+195*x^2-893*x-632 6099924626103714 m005 (1/2*Pi+3/8)/(5/6*gamma-4/5) 6099924643775002 a007 Real Root Of 392*x^4-272*x^3-161*x^2-390*x-294 6099924656030115 m005 (1/2*3^(1/2)-2/9)/(2/11*Catalan+8/9) 6099924659832638 r002 4th iterates of z^2 + 6099924667816278 a007 Real Root Of -560*x^4+266*x^3-766*x^2-113*x+354 6099924669181480 m001 Gompertz^gamma(2)*Gompertz^cos(1/12*Pi) 6099924676031292 m001 1/Riemann1stZero^2*exp(Porter)^2/cosh(1) 6099924706387455 a007 Real Root Of -6*x^4-372*x^3-375*x^2-521*x+699 6099924708548736 r002 24th iterates of z^2 + 6099924721448862 a001 9349/2178309*3^(8/25) 6099924739143633 a007 Real Root Of 127*x^4+801*x^3+317*x^2+928*x-163 6099924757982325 a007 Real Root Of 522*x^4-2*x^3+727*x^2-757*x-805 6099924769854446 a007 Real Root Of 202*x^4+745*x^3+999*x^2-181*x-341 6099924769863055 s001 sum(exp(-Pi/4)^(n-1)*A197393[n],n=1..infinity) 6099924782435126 m001 1/sin(Pi/12)^2*ln(Magata)/sqrt(3)^2 6099924812486020 s001 sum(exp(-Pi/2)^n*A038887[n],n=1..infinity) 6099924815055303 p004 log(36847/20021) 6099924822741223 a007 Real Root Of -856*x^4+508*x^3+415*x^2-140*x-6 6099924825169671 a007 Real Root Of -531*x^4+739*x^3-611*x^2-260*x+310 6099924827535654 a007 Real Root Of 329*x^4-904*x^3+726*x^2-233*x-663 6099924837703945 m001 (ln(2)-Thue)/(Pi-BesselK(0,1)) 6099924890298274 a003 cos(Pi*11/52)-cos(Pi*43/97) 6099924894111699 a007 Real Root Of -68*x^4-536*x^3-774*x^2-126*x+521 6099924913925612 a007 Real Root Of 352*x^4-642*x^3+624*x^2+524*x-107 6099924924761532 a007 Real Root Of 190*x^4-536*x^3+593*x^2-399*x-612 6099924931018175 a003 cos(Pi*18/47)-sin(Pi*8/19) 6099924932832167 m001 1/MertensB1^2/exp(Bloch)^2/cos(Pi/12)^2 6099924945752491 m001 (FibonacciFactorial-ZetaQ(3))/(ln(2)+Conway) 6099924961150775 r005 Re(z^2+c),c=-79/106+1/13*I,n=17 6099924973951078 a001 5778/1346269*3^(8/25) 6099924990390911 a007 Real Root Of -592*x^4+941*x^3+946*x^2+886*x+484 6099924993735053 a007 Real Root Of 601*x^4-596*x^3+592*x^2-384*x-673 6099924998277762 m001 (Psi(1,1/3)+Gompertz)/(-Tetranacci+ZetaP(3)) 6099925009589398 r005 Im(z^2+c),c=-87/110+17/30*I,n=4 6099925017435999 l006 ln(1341/2468) 6099925022895984 r005 Re(z^2+c),c=-31/44+2/11*I,n=20 6099925031082101 m001 ln(GAMMA(23/24))/DuboisRaymond/arctan(1/2)^2 6099925051662558 a003 sin(Pi*1/105)/cos(Pi*32/95) 6099925056339131 a001 514229/199*2207^(22/31) 6099925077079017 a005 (1/sin(55/136*Pi))^643 6099925083207251 r002 23th iterates of z^2 + 6099925108427936 a007 Real Root Of 12*x^4+748*x^3+971*x^2-324*x+836 6099925118807452 s002 sum(A253205[n]/(exp(pi*n)+1),n=1..infinity) 6099925140327146 a007 Real Root Of -903*x^4+921*x^3+413*x^2+471*x-525 6099925144533991 a007 Real Root Of -201*x^4+957*x^3-603*x^2+319*x+664 6099925237209212 m002 2+6*Cosh[Pi]-Sinh[Pi]+Tanh[Pi] 6099925237728998 a007 Real Root Of -590*x^4+666*x^3-811*x^2-542*x+204 6099925242100882 r009 Im(z^3+c),c=-27/62+33/59*I,n=61 6099925256065650 m001 ln(Pi)*(Cahen-Salem) 6099925277054317 r009 Re(z^3+c),c=-1/94+37/58*I,n=27 6099925289363031 a001 18/121393*55^(6/17) 6099925295199545 a001 47/377*46368^(34/43) 6099925350517033 a007 Real Root Of -395*x^4-714*x^3-831*x^2+997*x+810 6099925352905477 r005 Re(z^2+c),c=-9/14+99/218*I,n=29 6099925367394590 a007 Real Root Of 427*x^4-360*x^3+333*x^2-707*x-696 6099925369459856 a007 Real Root Of 80*x^4-898*x^3+485*x^2-224*x-532 6099925370490595 a007 Real Root Of 634*x^4-214*x^3+115*x^2-126*x-256 6099925379265130 r005 Im(z^2+c),c=-63/122+3/28*I,n=31 6099925382031283 m006 (2/5*exp(Pi)-1)/(3/5*ln(Pi)+2/3) 6099925387002522 m001 GAMMA(1/12)*FeigenbaumAlpha*ln(cos(Pi/5)) 6099925405902213 h001 (7/9*exp(1)+1/8)/(3/8*exp(2)+9/10) 6099925409809763 a007 Real Root Of 70*x^4+279*x^3-994*x^2-471*x+522 6099925428784489 q001 818/1341 6099925432253579 a007 Real Root Of 348*x^4-132*x^3-466*x^2-966*x-494 6099925444247215 r008 a(0)=0,K{-n^6,-3-90*n^3-71*n^2} 6099925446801697 r008 a(0)=0,K{-n^6,-7-87*n^3-82*n^2+12*n} 6099925455387285 a001 121393/2207*199^(5/11) 6099925479114358 r009 Im(z^3+c),c=-1/94+41/54*I,n=43 6099925488557172 r008 a(0)=0,K{-n^6,91-68*n^3-90*n^2-97*n} 6099925492936650 r005 Re(z^2+c),c=6/17+3/31*I,n=35 6099925504733295 m008 (5*Pi^2-3/5)/(5/6*Pi^6-2) 6099925519776520 m001 (GAMMA(2/3)+ln(Pi))/(Bloch-QuadraticClass) 6099925521213235 r005 Im(z^2+c),c=-7/12+55/83*I,n=18 6099925523342020 m005 (1/2*exp(1)+3/7)/(7/8*Pi+2/11) 6099925554463319 m001 (-exp(1/exp(1))+ZetaQ(2))/(Chi(1)+3^(1/3)) 6099925609422875 s002 sum(A036235[n]/(n*pi^n-1),n=1..infinity) 6099925635743173 r009 Im(z^3+c),c=-105/122+9/47*I,n=2 6099925638364434 m001 1/exp(DuboisRaymond)/Conway*cos(Pi/12) 6099925653070383 m008 (2/3*Pi+3)/(1/4*Pi^3+3/5) 6099925659776813 a003 cos(Pi*11/90)-cos(Pi*29/73) 6099925698360536 a003 sin(Pi*8/91)-sin(Pi*21/61) 6099925705414714 a007 Real Root Of -747*x^4+303*x^3+421*x^2+786*x+495 6099925705555320 g007 Psi(2,1/12)+Psi(2,1/11)+Psi(2,4/5)-Psi(2,3/7) 6099925716128583 a001 1/5473*144^(12/17) 6099925720817191 h001 (-8*exp(3)+10)/(-12*exp(3)-6) 6099925757572829 m001 GAMMA(1/3)+exp(gamma)+GAMMA(13/24) 6099925759807510 l006 ln(5458/10045) 6099925761051254 a001 6765/322*521^(7/13) 6099925775704794 a007 Real Root Of -926*x^4+300*x^3-371*x^2-835*x-175 6099925787285501 a007 Real Root Of 813*x^4+156*x^3+145*x^2+451*x+144 6099925804444802 a003 sin(Pi*3/83)*sin(Pi*19/105) 6099925814472650 a007 Real Root Of 626*x^4-255*x^3+765*x^2+220*x-295 6099925847162459 a007 Real Root Of -136*x^4+963*x^3-728*x^2-489*x+210 6099925851956116 a007 Real Root Of 523*x^4-807*x^3-992*x^2-133*x+561 6099925852849455 m001 ReciprocalFibonacci^(gamma*Sierpinski) 6099925862482586 a003 cos(Pi*14/59)-cos(Pi*52/113) 6099925874851274 v002 sum(1/(2^n+(12*n^2+18*n-1)),n=1..infinity) 6099925899177737 r005 Im(z^2+c),c=-25/36+28/61*I,n=3 6099925901180969 s001 sum(1/10^(n-1)*A285450[n]/n!,n=1..infinity) 6099925940378687 s002 sum(A273299[n]/(n^3*2^n+1),n=1..infinity) 6099925986923126 m002 71/24+Pi 6099926001614686 l006 ln(4117/7577) 6099926005321247 p003 LerchPhi(1/256,1,235/143) 6099926017773986 r005 Re(z^2+c),c=11/46+17/29*I,n=6 6099926021634788 m001 exp(Salem)^2*ArtinRank2/Zeta(3) 6099926031439729 a007 Real Root Of -953*x^4+576*x^3-691*x^2+761*x+984 6099926040924611 r009 Im(z^3+c),c=-29/62+25/61*I,n=2 6099926042532108 r002 62th iterates of z^2 + 6099926043567628 a001 2207/514229*3^(8/25) 6099926052812989 r005 Re(z^2+c),c=-12/23+12/25*I,n=11 6099926053835520 a007 Real Root Of -240*x^4-380*x^3-908*x^2+997*x+893 6099926054409657 m005 (1/3*Catalan+2/3)/(39/35+3/14*5^(1/2)) 6099926058919662 a007 Real Root Of -198*x^4+872*x^3-902*x^2-36*x+539 6099926060083397 r001 17i'th iterates of 2*x^2-1 of 6099926060761617 m001 1/Ei(1)*exp(Catalan)^2/cos(1) 6099926099030791 r005 Im(z^2+c),c=-53/82+7/60*I,n=45 6099926103077871 h001 (-6*exp(-3)+2)/(-6*exp(3/2)-1) 6099926107793381 m005 (1/2*5^(1/2)+4/5)/(5/12*exp(1)-9/11) 6099926116411079 a007 Real Root Of -962*x^4-131*x^3+460*x^2+711*x+366 6099926133728326 a003 sin(Pi*20/101)/sin(Pi*36/89) 6099926137155765 m006 (1/3*exp(Pi)+5)/(4/5*ln(Pi)-3) 6099926137773906 p004 log(21191/19937) 6099926176265021 a001 13201/7*2178309^(37/52) 6099926178265624 m001 (-Zeta(1/2)+BesselK(1,1))/(5^(1/2)+ln(Pi)) 6099926181583246 a007 Real Root Of -294*x^4+383*x^3+650*x^2+843*x+400 6099926183646631 s002 sum(A256691[n]/(2^n-1),n=1..infinity) 6099926209831553 r005 Im(z^2+c),c=45/118+8/55*I,n=49 6099926220134797 a007 Real Root Of 554*x^4-961*x^3-165*x^2+263*x-73 6099926220595409 m001 1/GAMMA(1/24)/ln(Riemann1stZero)^2*Zeta(9)^2 6099926265438096 m005 (1/3*Pi+2/11)/(5/6*3^(1/2)+4/7) 6099926268567598 a007 Real Root Of 713*x^4-769*x^3-33*x^2+118*x-189 6099926270782505 m006 (3*Pi-5/6)/(5/Pi-3) 6099926271164298 m001 1/Magata^2/LandauRamanujan^2*exp(Rabbit)^2 6099926297429557 m001 (Chi(1)-Pi^(1/2))/(ArtinRank2+GaussAGM) 6099926299207230 a005 (1/sin(55/171*Pi))^219 6099926299307898 m005 (1/2*Pi-1/3)/(265/264+11/24*5^(1/2)) 6099926308250424 a001 2/55*2178309^(29/57) 6099926331763374 a007 Real Root Of -102*x^4-758*x^3-742*x^2+605*x+475 6099926339106130 a005 (1/sin(65/211*Pi))^306 6099926345963925 a007 Real Root Of 851*x^4+132*x^3+844*x^2+431*x-139 6099926368755749 m001 LambertW(1)^2*ln(KhintchineLevy)^2/cosh(1) 6099926372318597 m001 exp(Cahen)^2*Backhouse^2*Kolakoski 6099926374864884 r005 Im(z^2+c),c=7/18+19/59*I,n=5 6099926413893112 r002 5th iterates of z^2 + 6099926442530308 a007 Real Root Of 996*x^4-969*x^3-342*x^2+78*x-183 6099926451052415 m005 (1/2*Pi-9/10)/(1/4*3^(1/2)+2/3) 6099926451326019 a005 (1/cos(7/138*Pi))^1767 6099926454481281 a007 Real Root Of 675*x^4-385*x^3+989*x^2+344*x-339 6099926454590526 a007 Real Root Of 814*x^4+809*x^3+218*x^2-621*x-389 6099926463027034 a001 377/322*1364^(13/15) 6099926472055509 m001 ln(Pi)/Riemann3rdZero^2/sqrt(3)^2 6099926477041028 l006 ln(2776/5109) 6099926487310089 m001 (ln(3)+Salem)/(Pi+sin(1/5*Pi)) 6099926492189943 r005 Im(z^2+c),c=-3/98+37/47*I,n=62 6099926497077502 p001 sum(1/(513*n+164)/(625^n),n=0..infinity) 6099926509142802 p001 sum(1/(259*n+164)/(1000^n),n=0..infinity) 6099926525078570 a001 105937/1926*199^(5/11) 6099926538836108 a007 Real Root Of 75*x^4+370*x^3-441*x^2+617*x+314 6099926592942823 a007 Real Root Of -145*x^4-598*x^3-918*x^2+728*x+670 6099926607354695 r005 Im(z^2+c),c=-43/30+3/61*I,n=8 6099926608371460 a007 Real Root Of 115*x^4+641*x^3-325*x^2+270*x+10 6099926616721464 a007 Real Root Of -756*x^4+425*x^3-517*x^2+550*x+729 6099926651544842 v003 sum((12+3/2*n^2+15/2*n)*n!/n^n,n=1..infinity) 6099926662186382 m001 cos(1/12*Pi)^gamma(2)/GAMMA(13/24) 6099926662491352 m001 Bloch*(Conway-Trott) 6099926674873411 m001 CopelandErdos-Psi(2,1/3)^ZetaP(2) 6099926681144456 a001 832040/15127*199^(5/11) 6099926692441472 a007 Real Root Of 191*x^4-827*x^3+701*x^2+459*x-195 6099926697227220 a007 Real Root Of -171*x^4-101*x^3-432*x^2+591*x+522 6099926703914163 a001 726103/13201*199^(5/11) 6099926707236218 a001 5702887/103682*199^(5/11) 6099926707720900 a001 4976784/90481*199^(5/11) 6099926707791614 a001 39088169/710647*199^(5/11) 6099926707801931 a001 831985/15126*199^(5/11) 6099926707803436 a001 267914296/4870847*199^(5/11) 6099926707803656 a001 233802911/4250681*199^(5/11) 6099926707803688 a001 1836311903/33385282*199^(5/11) 6099926707803692 a001 1602508992/29134601*199^(5/11) 6099926707803693 a001 12586269025/228826127*199^(5/11) 6099926707803693 a001 10983760033/199691526*199^(5/11) 6099926707803693 a001 86267571272/1568397607*199^(5/11) 6099926707803693 a001 75283811239/1368706081*199^(5/11) 6099926707803693 a001 591286729879/10749957122*199^(5/11) 6099926707803693 a001 12585437040/228811001*199^(5/11) 6099926707803693 a001 4052739537881/73681302247*199^(5/11) 6099926707803693 a001 3536736619241/64300051206*199^(5/11) 6099926707803693 a001 6557470319842/119218851371*199^(5/11) 6099926707803693 a001 2504730781961/45537549124*199^(5/11) 6099926707803693 a001 956722026041/17393796001*199^(5/11) 6099926707803693 a001 365435296162/6643838879*199^(5/11) 6099926707803693 a001 139583862445/2537720636*199^(5/11) 6099926707803693 a001 53316291173/969323029*199^(5/11) 6099926707803693 a001 20365011074/370248451*199^(5/11) 6099926707803693 a001 7778742049/141422324*199^(5/11) 6099926707803695 a001 2971215073/54018521*199^(5/11) 6099926707803707 a001 1134903170/20633239*199^(5/11) 6099926707803791 a001 433494437/7881196*199^(5/11) 6099926707804366 a001 165580141/3010349*199^(5/11) 6099926707808307 a001 63245986/1149851*199^(5/11) 6099926707835317 a001 24157817/439204*199^(5/11) 6099926708020449 a001 9227465/167761*199^(5/11) 6099926709289361 a001 3524578/64079*199^(5/11) 6099926712073986 m001 ln(BesselK(1,1))*Conway^2/sqrt(2) 6099926717986616 a001 1346269/24476*199^(5/11) 6099926731471365 a007 Real Root Of -193*x^4+532*x^3+740*x^2+783*x-847 6099926738910112 m001 1/GAMMA(11/12)*TreeGrowth2nd^2*exp(Zeta(3)) 6099926777598483 a001 514229/9349*199^(5/11) 6099926783734494 r005 Re(z^2+c),c=-33/46+8/37*I,n=52 6099926807498271 r005 Im(z^2+c),c=-97/122+1/6*I,n=21 6099926811817688 r009 Im(z^3+c),c=-4/27+49/50*I,n=16 6099926837834900 a003 cos(Pi*11/113)*sin(Pi*19/86) 6099926842429572 m001 (-gamma(3)+Thue)/(Chi(1)+LambertW(1)) 6099926916337233 r002 7th iterates of z^2 + 6099926916337233 r002 7th iterates of z^2 + 6099926920104790 m001 (ln(2)/ln(10)+2^(1/3))/(-ln(3)+Zeta(1/2)) 6099926941854649 l006 ln(4211/7750) 6099926972083146 s002 sum(A157506[n]/(n*exp(pi*n)+1),n=1..infinity) 6099926975339873 p001 sum(1/(249*n+164)/(1024^n),n=0..infinity) 6099926979545373 b008 ArcSinh[3+70*Pi] 6099926991530967 r005 Re(z^2+c),c=23/56+22/57*I,n=7 6099927041056527 a007 Real Root Of -63*x^4-323*x^3-704*x^2+324*x+395 6099927045483534 s002 sum(A183955[n]/(n^3*exp(n)-1),n=1..infinity) 6099927054667234 a007 Real Root Of -67*x^4-333*x^3+590*x^2+837*x+333 6099927077686589 r005 Re(z^2+c),c=-7/46+25/36*I,n=38 6099927089561715 r005 Im(z^2+c),c=-93/118+1/37*I,n=34 6099927116316066 r005 Re(z^2+c),c=-9/14+103/167*I,n=2 6099927139318481 a005 (1/sin(71/155*Pi))^1266 6099927141511578 r009 Im(z^3+c),c=-41/118+31/44*I,n=2 6099927142268682 r002 2th iterates of z^2 + 6099927142268682 r002 2th iterates of z^2 + 6099927158274220 h001 (1/3*exp(1)+5/9)/(5/7*exp(1)+5/11) 6099927160750959 m006 (Pi+3/4)/(2/3*Pi^2-1/5) 6099927160750959 m008 (Pi+3/4)/(2/3*Pi^2-1/5) 6099927171073439 r005 Re(z^2+c),c=-31/56+7/15*I,n=9 6099927174652473 a007 Real Root Of -598*x^4-83*x^3-325*x^2+692*x+607 6099927186184329 a001 196418/3571*199^(5/11) 6099927190908329 g007 -Psi(2,3/11)-Psi(2,1/5)-2*Psi(2,1/4) 6099927223670516 m001 1/Magata^2*Artin*exp(Riemann1stZero)^2 6099927241445982 r009 Re(z^3+c),c=-39/74+3/16*I,n=7 6099927268919122 a007 Real Root Of x^4+611*x^3+613*x^2-872*x-95 6099927293610042 h001 (-2*exp(-1)+4)/(-exp(1/2)+7) 6099927310181027 r005 Im(z^2+c),c=-29/42+10/29*I,n=45 6099927318565206 a003 sin(Pi*20/89)*sin(Pi*44/113) 6099927347478880 m005 (5/36+1/4*5^(1/2))/(1/10*Pi-3/7) 6099927363126373 m001 1/exp(arctan(1/2))^2/Rabbit^2*log(1+sqrt(2))^2 6099927371296770 a007 Real Root Of -132*x^4-647*x^3+959*x^2-64*x-169 6099927378694205 r009 Im(z^3+c),c=-33/118+19/28*I,n=47 6099927383679148 a007 Real Root Of 733*x^4-800*x^3+472*x^2-71*x-502 6099927394238460 m005 (7/20+1/4*5^(1/2))/(6/11*3^(1/2)+6/11) 6099927394586715 m004 150/Pi+Cosh[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi]/6 6099927398726806 a007 Real Root Of -639*x^4+482*x^3-419*x^2-298*x+172 6099927418320945 r009 Re(z^3+c),c=-1/13+8/25*I,n=8 6099927418815196 m001 (ln(5)+Kac)/(Catalan+ln(gamma)) 6099927422368073 r008 a(0)=6,K{-n^6,-2-7*n^3-3*n^2+n} 6099927426164699 r009 Re(z^3+c),c=-3/34+22/31*I,n=26 6099927428119464 a007 Real Root Of 64*x^4+501*x^3+622*x^2-172*x+911 6099927437455735 m001 (FellerTornier+GaussAGM)/(Ei(1)+gamma(3)) 6099927480437451 a003 cos(Pi*29/115)-cos(Pi*8/17) 6099927513236255 m001 1/GAMMA(1/24)/FeigenbaumB/exp(GAMMA(5/12)) 6099927513577740 a007 Real Root Of -508*x^4+240*x^3-437*x^2+119*x+360 6099927526526422 a001 5473/161*521^(6/13) 6099927531222462 r005 Im(z^2+c),c=-31/46+21/47*I,n=52 6099927533712929 a003 cos(Pi*32/107)/sin(Pi*18/43) 6099927535442363 a007 Real Root Of -169*x^4+697*x^3+50*x^2+541*x+493 6099927561671997 m001 (Gompertz+Kolakoski)/(Chi(1)+3^(1/3)) 6099927564339083 a007 Real Root Of 768*x^4-935*x^3-811*x^2-635*x+795 6099927572980374 m005 (-5/8+1/8*5^(1/2))/(2/5*Catalan+1/5) 6099927584121277 r002 27th iterates of z^2 + 6099927601510514 m001 BesselJ(1,1)/exp(CareFree)^2*LambertW(1) 6099927627747458 a007 Real Root Of 523*x^4-698*x^3+662*x^2-244*x-626 6099927633453924 r005 Im(z^2+c),c=9/118+33/47*I,n=7 6099927646823131 s002 sum(A043618[n]/(n*2^n-1),n=1..infinity) 6099927661048631 a007 Real Root Of -157*x^4-892*x^3+515*x^2+662*x-215 6099927675902669 r009 Re(z^3+c),c=-25/58+1/54*I,n=25 6099927676405470 m001 ln(cosh(1))*Si(Pi)/log(2+sqrt(3)) 6099927794107944 p003 LerchPhi(1/3,6,51/218) 6099927801602663 b008 E^(-1)+11*Sinh[1/2] 6099927836102429 a008 Real Root of x^4-14*x^2-126*x-95 6099927840836458 r008 a(0)=6,K{-n^6,-41+45*n-n^2-14*n^3} 6099927840903347 r008 a(0)=0,K{-n^6,90-68*n^3-90*n^2-96*n} 6099927841034107 l006 ln(1435/2641) 6099927916408154 a007 Real Root Of 996*x^4-594*x^3+298*x^2-440*x-652 6099927931750029 r005 Im(z^2+c),c=-5/82+43/46*I,n=6 6099927934476325 r009 Re(z^3+c),c=-5/106+31/46*I,n=12 6099927939645704 a008 Real Root of x^4-2*x^3-51*x^2+8*x+108 6099927942877339 m005 (1/3*5^(1/2)+1/9)/(2/7*2^(1/2)+1) 6099927959071487 a008 Real Root of (2+8*x-13*x^2-9*x^3) 6099927980820045 r005 Im(z^2+c),c=-13/86+41/45*I,n=15 6099927989719774 m001 (Psi(1,1/3)+Zeta(5))/(cos(1/12*Pi)+Thue) 6099928030189962 a007 Real Root Of -810*x^4+146*x^3+450*x^2+464*x-30 6099928031474209 r009 Re(z^3+c),c=-51/94+19/47*I,n=10 6099928047894677 m006 (Pi^2-4/5)/(3/5*ln(Pi)+4/5) 6099928071766997 a007 Real Root Of 819*x^4-330*x^3+668*x^2-15*x-446 6099928073307697 a003 cos(Pi*35/109)/sin(Pi*23/68) 6099928103157070 m005 (1/2*Zeta(3)-9/11)/(1/11*Pi-1/4) 6099928109273903 q001 1697/2782 6099928111925896 a007 Real Root Of -401*x^4-419*x^3-966*x^2-326*x+121 6099928118675190 m001 (-BesselK(0,1)+Lehmer)/(5^(1/2)+gamma) 6099928135898191 m001 (DuboisRaymond-HardyLittlewoodC4)/Si(Pi) 6099928142958615 r008 a(0)=6,K{-n^6,-9+3*n^3-2*n^2-n} 6099928163518976 r005 Re(z^2+c),c=-79/86+3/22*I,n=42 6099928187315012 m005 (1/2*Pi-2/11)/(7/12*Pi+4/9) 6099928232834351 s002 sum(A055408[n]/(n*exp(pi*n)+1),n=1..infinity) 6099928237513802 a001 17/51841*76^(27/40) 6099928262583685 m001 (BesselJ(1,1)-Chi(1))/(Cahen+ZetaQ(3)) 6099928264075819 r002 15th iterates of z^2 + 6099928264544728 m001 exp(GAMMA(13/24))^2*Porter^2/Zeta(1,2) 6099928264884106 m001 (Pi^(1/2)-FeigenbaumD)/(Rabbit-Thue) 6099928273351862 m001 Trott^2*ln(CopelandErdos)*Ei(1)^2 6099928284565705 h001 (5/7*exp(1)+4/5)/(1/2*exp(2)+4/5) 6099928293498325 a007 Real Root Of 21*x^4-175*x^3+618*x^2-22*x-286 6099928299127936 a007 Real Root Of -727*x^4-161*x^3-714*x^2+702*x+758 6099928313232182 m005 (2*exp(1)+5/6)/(-11/20+1/5*5^(1/2)) 6099928325214092 b008 ProductLog[Sqrt[E*ArcCot[2]]] 6099928326941174 m005 (1/2*3^(1/2)-3/5)/(2/7*5^(1/2)-5) 6099928327336312 r009 Im(z^3+c),c=-23/94+37/48*I,n=25 6099928364148258 r002 20th iterates of z^2 + 6099928370886308 p001 sum(1/(573*n+118)/n/(24^n),n=1..infinity) 6099928377670633 r008 a(0)=6,K{-n^6,-9-n^3+3*n^2-3*n} 6099928384888665 r004 Re(z^2+c),c=-25/24+3/11*I,z(0)=-1,n=9 6099928398087029 m001 exp(-1/2*Pi)^Porter-Rabbit 6099928404598831 m001 1/ln(Artin)^2/GaussAGM(1,1/sqrt(2))*sqrt(5)^2 6099928410177100 a007 Real Root Of 856*x^4-302*x^3+691*x^2-803*x-934 6099928427687395 s002 sum(A005381[n]/(pi^n-1),n=1..infinity) 6099928452104266 m001 HardyLittlewoodC4*(FeigenbaumDelta-Khinchin) 6099928466296578 m001 1/Zeta(7)^2/GAMMA(5/24)*exp(sqrt(1+sqrt(3)))^2 6099928493470659 m001 (FeigenbaumKappa-Lehmer)/(Niven-Otter) 6099928505360485 m001 ln(Zeta(3))^2*FeigenbaumC/Zeta(7)^2 6099928506951082 a007 Real Root Of 921*x^4-528*x^3+884*x^2-652*x-974 6099928508691925 a007 Real Root Of 197*x^4-898*x^3+252*x^2+867*x+204 6099928510321733 r002 37th iterates of z^2 + 6099928534842251 r009 Im(z^3+c),c=-33/70+33/62*I,n=55 6099928535737493 a007 Real Root Of 216*x^4-531*x^3+390*x^2+855*x+226 6099928543639636 r005 Re(z^2+c),c=-11/17+13/35*I,n=10 6099928546492047 m004 2+5/Pi-Cosh[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi] 6099928547593207 a003 cos(Pi*7/61)*cos(Pi*20/73) 6099928560488389 a007 Real Root Of -148*x^4+134*x^3-776*x^2-265*x+178 6099928583712425 a005 (1/cos(19/175*Pi))^729 6099928604421353 m001 cos(1)^RenyiParking/MertensB2 6099928622450057 r005 Re(z^2+c),c=-17/24+11/57*I,n=5 6099928634376452 r005 Im(z^2+c),c=7/27+24/53*I,n=19 6099928639243838 m001 (exp(1)+ln(3))/(Zeta(1/2)+GaussAGM) 6099928660904961 m001 3^(1/2)/((1+3^(1/2))^(1/2)+KhinchinLevy) 6099928671918309 a007 Real Root Of 612*x^4-783*x^3+147*x^2+15*x-308 6099928693894035 m001 (Champernowne-ZetaQ(4))/(Pi-ln(Pi)) 6099928701785270 l006 ln(4399/8096) 6099928749951765 r005 Re(z^2+c),c=-11/8+24/173*I,n=9 6099928770530743 m001 TwinPrimes^ln(3)*cos(1/12*Pi)^ln(3) 6099928770530743 m001 cos(Pi/12)^ln(3)*TwinPrimes^ln(3) 6099928780704551 a007 Real Root Of 711*x^4-8*x^3+280*x^2-96*x-263 6099928782641273 m001 (Zeta(5)+cos(1/5*Pi))/(ln(3)+Tetranacci) 6099928786742483 a003 sin(Pi*19/91)/sin(Pi*45/91) 6099928788616576 a007 Real Root Of 876*x^4-918*x^3-516*x^2-700*x-41 6099928795266753 a003 cos(Pi*30/103)/sin(Pi*57/116) 6099928800891372 m001 (Zeta(1,-1)-PlouffeB)/(Stephens+Weierstrass) 6099928843304181 a007 Real Root Of -429*x^4+913*x^3+869*x^2+693*x+366 6099928847428624 b008 4+E^4/26 6099928849355772 s002 sum(A209524[n]/(n*pi^n+1),n=1..infinity) 6099928849361449 r005 Re(z^2+c),c=-55/78+5/28*I,n=5 6099928863732583 p003 LerchPhi(1/16,3,84/71) 6099928900943313 r005 Re(z^2+c),c=-46/31+13/40*I,n=4 6099928918847717 a007 Real Root Of -165*x^4+494*x^3-933*x^2+67*x+523 6099928935425138 a001 13/3571*2^(35/47) 6099928938730879 a001 377/322*3571^(13/17) 6099928942399585 r005 Im(z^2+c),c=-7/31+48/49*I,n=4 6099928959227384 r005 Re(z^2+c),c=17/46+1/16*I,n=3 6099928965185744 m001 (BesselK(0,1)*MertensB1-Niven)/MertensB1 6099928974443486 m005 (1/2*Catalan-4/5)/(6*Catalan+1/9) 6099929013602138 h001 (5/9*exp(2)+1/4)/(8/9*exp(2)+4/7) 6099929017272014 r002 25th iterates of z^2 + 6099929019901164 r005 Re(z^2+c),c=-5/6+107/238*I,n=4 6099929035652128 r005 Re(z^2+c),c=-3/46+14/19*I,n=28 6099929075941057 a007 Real Root Of -381*x^4-750*x^3-873*x^2+865*x+735 6099929079975411 h001 (-9*exp(3/2)+5)/(-6*exp(-1)+8) 6099929084846963 a007 Real Root Of 523*x^4-759*x^3+936*x^2-64*x-632 6099929096589396 g001 Psi(11/12,36/95) 6099929101572048 a001 38/17*3^(53/58) 6099929106886001 m002 5+6/(E^Pi*Pi^2)+ProductLog[Pi] 6099929108726791 r009 Re(z^3+c),c=-15/28+23/50*I,n=10 6099929118511936 l006 ln(2964/5455) 6099929166795073 m001 OneNinth+GAMMA(11/24)^exp(1) 6099929173762468 m001 Zeta(1/2)^(FeigenbaumMu/RenyiParking) 6099929183706735 a001 17/38*39603^(13/28) 6099929187812555 r005 Im(z^2+c),c=-3/31+49/59*I,n=11 6099929221127940 r005 Re(z^2+c),c=-5/7+1/77*I,n=9 6099929221771405 a007 Real Root Of -552*x^4+562*x^3-509*x^2-158*x+297 6099929230639929 p004 log(30089/16349) 6099929241090832 a001 17711/322*521^(5/13) 6099929241528087 a001 48/281*9349^(17/19) 6099929256776121 a001 377/322*9349^(13/19) 6099929283696097 m001 (1+MasserGramain)/(-Rabbit+TreeGrowth2nd) 6099929292443893 r005 Re(z^2+c),c=7/62+15/37*I,n=7 6099929295729178 a001 48/281*24476^(17/21) 6099929298224014 a001 377/322*24476^(13/21) 6099929300382656 s002 sum(A108762[n]/(n*exp(pi*n)+1),n=1..infinity) 6099929302873924 a001 48/281*64079^(17/23) 6099929303687643 a001 377/322*64079^(13/23) 6099929303971955 a001 48/281*45537549124^(1/3) 6099929303971955 a001 48/281*(1/2+1/2*5^(1/2))^17 6099929303971973 a001 48/281*12752043^(1/2) 6099929304373890 a001 48/281*103682^(17/24) 6099929304527313 a001 377/322*141422324^(1/3) 6099929304527314 a001 377/322*(1/2+1/2*5^(1/2))^13 6099929304527314 a001 377/322*73681302247^(1/4) 6099929304568708 a001 377/322*271443^(1/2) 6099929304834676 a001 377/322*103682^(13/24) 6099929306825521 a001 377/322*39603^(13/22) 6099929306977303 a001 48/281*39603^(17/22) 6099929312574187 r002 3th iterates of z^2 + 6099929318836753 r005 Re(z^2+c),c=-23/22+19/122*I,n=50 6099929320669356 r005 Re(z^2+c),c=-7/12+5/12*I,n=32 6099929321854680 a001 377/322*15127^(13/20) 6099929326630818 a001 48/281*15127^(17/20) 6099929332223320 m001 (Gompertz-ZetaP(4))/(FeigenbaumC-FeigenbaumD) 6099929344772576 r005 Re(z^2+c),c=-49/74+5/64*I,n=3 6099929356323933 b008 3*(-3+E^Pi)+EulerGamma 6099929361169254 m005 (7/12+1/12*5^(1/2))/(4/5*gamma+4/5) 6099929362437498 r002 23th iterates of z^2 + 6099929374503833 a007 Real Root Of 426*x^4-858*x^3+183*x^2-879*x-858 6099929379674183 m006 (3/4*ln(Pi)-2)/(4/5*exp(Pi)+1/5) 6099929382859235 r002 10th iterates of z^2 + 6099929402504732 r005 Im(z^2+c),c=15/34+17/46*I,n=11 6099929436486794 a001 377/322*5778^(13/18) 6099929476534353 a001 48/281*5778^(17/18) 6099929488296740 m001 FeigenbaumDelta+Tribonacci^sin(1/5*Pi) 6099929526520067 l006 ln(4493/8269) 6099929526520067 p004 log(8269/4493) 6099929526562648 a003 sin(Pi*15/64)*sin(Pi*33/91) 6099929550608629 r002 11th iterates of z^2 + 6099929564752869 a001 7/233*701408733^(3/5) 6099929570099647 r008 a(0)=6,K{-n^6,-18+16*n^3-15*n^2+8*n} 6099929579320227 m001 (BesselI(0,1)+GAMMA(19/24))/(Lehmer+Magata) 6099929581134629 s002 sum(A269125[n]/(n*exp(pi*n)+1),n=1..infinity) 6099929581134657 s002 sum(A269125[n]/(n*exp(pi*n)-1),n=1..infinity) 6099929599029120 a007 Real Root Of -895*x^4+47*x^3-190*x^2-48*x+176 6099929627212917 r005 Im(z^2+c),c=-7/114+39/61*I,n=54 6099929631171613 m001 (ln(5)+HardyLittlewoodC3)/(OneNinth-PlouffeB) 6099929639993986 a003 cos(Pi*8/69)*sin(Pi*12/53) 6099929642070611 a003 cos(Pi*10/101)-cos(Pi*7/18) 6099929643055054 r005 Im(z^2+c),c=-1/28+37/58*I,n=46 6099929660138747 m005 (1/3*2^(1/2)+2/3)/(2/3*5^(1/2)+3/8) 6099929664615434 m002 Pi/4+6*Pi^2+Tanh[Pi] 6099929677015564 a007 Real Root Of 885*x^4-699*x^3+63*x^2-858*x-828 6099929685276888 a007 Real Root Of 97*x^4+643*x^3+428*x^2+823*x+740 6099929699287106 m005 (1/3*Catalan+2/3)/(2/11*5^(1/2)-2) 6099929718258547 m001 (Shi(1)-Zeta(5))/(Khinchin+MasserGramain) 6099929725930897 m002 -2+2*Pi^5-ProductLog[Pi]/E^Pi 6099929728481435 a007 Real Root Of -202*x^4+393*x^3-606*x^2+735*x+791 6099929734580626 a003 sin(Pi*7/106)-sin(Pi*24/79) 6099929734634946 m001 (MertensB2+Tribonacci)/(GolombDickman-gamma) 6099929741854095 r005 Re(z^2+c),c=-23/22+12/77*I,n=34 6099929761988257 m001 Zeta(1,2)/(FeigenbaumAlpha-cos(1/12*Pi)) 6099929761988257 m001 Zeta(1,2)/(cos(Pi/12)-FeigenbaumAlpha) 6099929787810295 a007 Real Root Of -430*x^4-717*x^3-833*x^2+966*x+796 6099929809900810 a007 Real Root Of -812*x^4+330*x^3-897*x^2+31*x+540 6099929818079882 m001 (Salem+ZetaQ(3))/(PlouffeB+Porter) 6099929831260971 a007 Real Root Of -581*x^4+790*x^3+501*x^2+852*x-805 6099929834113929 m001 Khintchine*ln(HardHexagonsEntropy)/Porter 6099929857595481 m001 1/MadelungNaCl^2/exp(ErdosBorwein)/OneNinth 6099929867733363 a007 Real Root Of -839*x^4+870*x^3+195*x^2+13*x+249 6099929890850945 r005 Re(z^2+c),c=9/25+2/29*I,n=8 6099929923443728 m001 (Kac+Porter)/(sin(1/12*Pi)-BesselK(1,1)) 6099929925020221 a008 Real Root of (-2+4*x-6*x^2+5*x^3+x^4) 6099929937076208 a003 cos(Pi*22/71)/sin(Pi*31/83) 6099929959581121 r008 a(0)=6,K{-n^6,57-60*n-44*n^2+38*n^3} 6099929960831991 m001 GAMMA(5/6)^Salem*LandauRamanujan2nd^Salem 6099929965525900 s002 sum(A184941[n]/(n*2^n-1),n=1..infinity) 6099929974855623 p003 LerchPhi(1/12,6,546/233) 6099929985930907 r002 30th iterates of z^2 + 6099929986674853 a001 75025/1364*199^(5/11) 6099930031999162 m002 -6+Pi/Log[Pi]-5*Sinh[Pi] 6099930035349816 m002 (-6*Coth[Pi])/E^Pi+Tanh[Pi]/5 6099930046701262 a003 cos(Pi*22/111)-sin(Pi*23/85) 6099930054134073 a007 Real Root Of 549*x^4-574*x^3+436*x^2-668*x-776 6099930056184518 r002 4th iterates of z^2 + 6099930057960607 a003 sin(Pi*15/118)/cos(Pi*7/25) 6099930064705601 a007 Real Root Of -40*x^4+430*x^3-170*x^2+301*x+350 6099930072868435 a007 Real Root Of 161*x^4-322*x^3+468*x^2-709*x-702 6099930088267615 r002 14th iterates of z^2 + 6099930097643143 r005 Re(z^2+c),c=-33/46+17/55*I,n=11 6099930097656240 r005 Re(z^2+c),c=-21/16+9/104*I,n=10 6099930101810152 r005 Re(z^2+c),c=-33/58+15/32*I,n=9 6099930106488191 a007 Real Root Of 108*x^4+639*x^3-43*x^2+534*x+365 6099930156268471 r008 a(0)=0,K{-n^6,-7-87*n^3-81*n^2+11*n} 6099930165278304 r008 a(0)=0,K{-n^6,1+80*n^3+99*n^2-16*n} 6099930174965781 r005 Im(z^2+c),c=37/102+12/61*I,n=11 6099930186936908 a007 Real Root Of -357*x^4+301*x^3-248*x^2+718*x+648 6099930210175920 a007 Real Root Of -458*x^4-903*x^3-106*x^2+851*x+417 6099930214529913 h001 (1/7*exp(2)+1/3)/(8/11*exp(1)+3/10) 6099930219356625 a007 Real Root Of -80*x^4-554*x^3-518*x^2-859*x-947 6099930222703448 m005 (1/3*3^(1/2)-2/7)/(3/8*Pi-7/10) 6099930248740319 b008 4+Sqrt[3]+E^(-1) 6099930289909346 m001 (Ei(1)-Pi^(1/2))/(GaussAGM+Salem) 6099930294234472 r005 Re(z^2+c),c=11/86+7/30*I,n=17 6099930294665252 m001 (Otter+QuadraticClass)/(GAMMA(3/4)-Gompertz) 6099930295181553 m005 (1/3*exp(1)+2/7)/(1/4*5^(1/2)-4/11) 6099930317452720 l006 ln(1529/2814) 6099930321019441 m005 (1/3*Catalan-1/6)/(4/11*3^(1/2)-6/7) 6099930322049002 a001 377/322*2207^(13/16) 6099930377684101 m001 1/LaplaceLimit^2*exp(Cahen)*KhintchineLevy^2 6099930383650721 a007 Real Root Of 680*x^4-347*x^3+543*x^2-405*x-622 6099930388054146 r002 32th iterates of z^2 + 6099930422683328 m001 MinimumGamma/(arctan(1/3)^(2^(1/3))) 6099930452694600 r009 Re(z^3+c),c=-37/52+20/43*I,n=2 6099930455497074 m001 1/BesselK(0,1)^2/exp(Porter)/Zeta(1/2)^2 6099930457800688 m001 Magata^ln(gamma)/(Magata^(3^(1/2))) 6099930459327794 a007 Real Root Of 393*x^4-455*x^3-89*x^2+237*x+20 6099930491684804 a007 Real Root Of 596*x^4-590*x^3+473*x^2-137*x-476 6099930501947419 a007 Real Root Of 317*x^4-193*x^3+540*x^2-658*x-690 6099930525494505 a007 Real Root Of -115*x^4-588*x^3+683*x^2-18*x+236 6099930526163017 h001 (2/5*exp(2)+1/11)/(1/7*exp(1)+1/9) 6099930526682477 m001 (Cahen+ZetaP(4))/(5^(1/2)-GAMMA(11/12)) 6099930542360988 m001 Magata^FeigenbaumC*MasserGramain 6099930567328109 h001 (9/11*exp(1)+3/10)/(1/11*exp(1)+1/6) 6099930579222569 m005 (Pi-1/2)/(4*Catalan+2/3) 6099930583784433 a007 Real Root Of -698*x^4+847*x^3-584*x^2-379*x+275 6099930603747397 q001 879/1441 6099930607613998 r002 9th iterates of z^2 + 6099930610494690 m003 -35/6+Sqrt[5]/4-2*Csch[1/2+Sqrt[5]/2] 6099930618101829 a003 sin(Pi*2/107)/cos(Pi*8/91) 6099930620424793 m005 (1/2*Pi-3/10)/(6/7*5^(1/2)+1/6) 6099930653979381 r009 Re(z^3+c),c=-11/26+1/60*I,n=55 6099930667741321 r005 Re(z^2+c),c=-5/86+1/11*I,n=5 6099930668733468 a007 Real Root Of -x^4+773*x^3-574*x^2-97*x+330 6099930680809431 m001 (exp(Pi)-Artin*QuadraticClass)/Artin 6099930681294509 s002 sum(A280083[n]/(exp(n)-1),n=1..infinity) 6099930713025951 r002 2th iterates of z^2 + 6099930727858024 a007 Real Root Of -468*x^4-35*x^3-625*x^2-181*x+179 6099930757371479 r005 Re(z^2+c),c=-11/106+31/43*I,n=5 6099930770313040 a001 55/843*11^(55/59) 6099930785994715 m001 (sin(1/12*Pi)-GAMMA(7/12))/(Backhouse+Kac) 6099930804209617 m001 (ln(2)-Ei(1,1))/(BesselK(1,1)+ZetaP(3)) 6099930805760067 r002 54th iterates of z^2 + 6099930822066718 m001 Magata*MertensB1^GlaisherKinkelin 6099930833390132 r005 Re(z^2+c),c=11/58+16/35*I,n=32 6099930850629374 m001 (Zeta(1/2)-exp(1/Pi))/(PlouffeB-Trott) 6099930856003528 m005 (1/2*5^(1/2)-11/12)/(3/4*Zeta(3)-4/7) 6099930899700932 a007 Real Root Of -457*x^4+637*x^3-503*x^2-482*x+101 6099930924750807 m001 1/CareFree/FeigenbaumDelta*ln(Zeta(9)) 6099930945003358 a007 Real Root Of -186*x^4+885*x^3-237*x^2-121*x+241 6099930967671580 r005 Im(z^2+c),c=7/50+28/45*I,n=52 6099930972523091 m001 1/Tribonacci^3*ln(MinimumGamma) 6099930975102104 a001 28657/322*521^(4/13) 6099931053157329 m001 (Gompertz+Salem)/(BesselI(0,1)+GAMMA(13/24)) 6099931054227553 a001 514229/18*3^(29/42) 6099931057368395 l006 ln(8633/9176) 6099931076619594 l006 ln(4681/8615) 6099931081087066 m001 1/GAMMA(13/24)^2*ln(DuboisRaymond)*Zeta(9) 6099931096234999 r005 Re(z^2+c),c=-57/122+17/31*I,n=27 6099931107248980 r005 Re(z^2+c),c=-87/118+6/61*I,n=42 6099931136857808 h001 (5/7*exp(2)+5/8)/(2/9*exp(1)+4/11) 6099931167360889 h005 exp(cos(Pi*7/50)+sin(Pi*14/39)) 6099931167654971 a007 Real Root Of -976*x^4-428*x^3-478*x^2+656*x+616 6099931190716620 p004 log(37447/20347) 6099931194144939 r005 Im(z^2+c),c=-23/78+33/53*I,n=15 6099931194290193 m001 (BesselI(1,2)-Chi(1)*ln(3))/ln(3) 6099931222589957 m001 (-ReciprocalLucas+Thue)/(2^(1/3)-ln(gamma)) 6099931223997540 m001 (5^(1/2)+MertensB3)^exp(Pi) 6099931224702703 r009 Re(z^3+c),c=-43/110+16/23*I,n=7 6099931224837755 r005 Im(z^2+c),c=-35/64+28/45*I,n=16 6099931250183686 r005 Re(z^2+c),c=5/52+9/20*I,n=46 6099931261262771 m001 (exp(1)-gamma(2))*5^(1/2) 6099931289119992 m001 1/Cahen^2*Artin/ln(GAMMA(5/24)) 6099931307557049 m001 sqrt(2)^2/ln(Artin)*sqrt(3)^2 6099931314354289 m005 (1/2*5^(1/2)-1/9)/(8/9*3^(1/2)+1/9) 6099931350374157 r005 Im(z^2+c),c=-11/18+5/44*I,n=43 6099931351151221 a007 Real Root Of 274*x^4+21*x^3-701*x^2-567*x+564 6099931377176121 k001 Champernowne real with 384*n+225 6099931377285859 r009 Im(z^3+c),c=-21/118+17/25*I,n=6 6099931381585482 a007 Real Root Of 324*x^4-630*x^3-415*x^2-537*x-361 6099931389374497 a008 Real Root of x^4-x^3-38*x^2+4*x+232 6099931444882945 l006 ln(3152/5801) 6099931452074111 b008 60+Sech[1/27] 6099931534027947 m001 (1+arctan(1/3))/(MasserGramain+Riemann2ndZero) 6099931539400437 a007 Real Root Of -622*x^4+81*x^3+860*x^2+934*x-822 6099931545894074 r002 48th iterates of z^2 + 6099931554073867 r009 Re(z^3+c),c=-5/26+23/32*I,n=6 6099931558893663 a007 Real Root Of -436*x^4-101*x^3+366*x^2+775*x+374 6099931560212589 a003 sin(Pi*3/22)/cos(Pi*17/65) 6099931562539152 m004 125*Pi+30*Sqrt[5]*Pi+6*Cot[Sqrt[5]*Pi] 6099931588663254 r009 Re(z^3+c),c=-11/106+35/59*I,n=34 6099931623297359 a007 Real Root Of -707*x^4+465*x^3-765*x^2-228*x+349 6099931628529915 m003 4/15+Sqrt[5]/64-Log[1/2+Sqrt[5]/2]/2 6099931647651453 a007 Real Root Of 986*x^4+331*x^3+984*x^2-568*x-774 6099931662741610 a008 Real Root of (-3+4*x^2+3*x^3+6*x^4) 6099931666980943 m001 ln(FeigenbaumC)*Lehmer/sin(Pi/5) 6099931675943964 m001 (Zeta(3)-GAMMA(13/24))/(Kolakoski-ZetaP(4)) 6099931694524476 b008 5*Csch[1/122] 6099931774579952 a007 Real Root Of 955*x^4-678*x^3-587*x^2-572*x+589 6099931786744343 m002 E^Pi/6+(6*Cosh[Pi])/Pi^3 6099931805896702 l006 ln(4775/8788) 6099931810350853 a007 Real Root Of 422*x^4-175*x^3-646*x^2-694*x+645 6099931840375009 m001 (ln(3)-arctan(1/2))/(Trott2nd+ZetaP(4)) 6099931852956871 p003 LerchPhi(1/64,4,33/164) 6099931907741804 p004 log(20563/11173) 6099931916339154 m001 GAMMA(23/24)-sin(1/12*Pi)*ErdosBorwein 6099931926593679 m005 (1/2*3^(1/2)-4/7)/(9/11*5^(1/2)+3) 6099931956284879 a007 Real Root Of 166*x^4-527*x^3-423*x^2-480*x-278 6099931983925235 r004 Im(z^2+c),c=-7/10+2/11*I,z(0)=-1,n=37 6099931985107304 m001 Mills^ZetaR(2)*Trott2nd^ZetaR(2) 6099931997611942 r005 Im(z^2+c),c=-18/17+10/29*I,n=5 6099931997889711 m001 GAMMA(13/24)^2/exp(Robbin)^2/GAMMA(19/24) 6099932003707645 a003 cos(Pi*43/110)-sin(Pi*47/119) 6099932029053966 m001 1/GAMMA(17/24)^2*Rabbit/exp(GAMMA(5/12))^2 6099932040836554 a007 Real Root Of 67*x^4+510*x^3+731*x^2+535*x-943 6099932070118540 p001 sum(1/(551*n+168)/(10^n),n=0..infinity) 6099932079832654 m001 ZetaQ(2)^(Sarnak/PrimesInBinary) 6099932085788713 m005 (1/3*2^(1/2)-2/11)/(2/7*Zeta(3)-9/11) 6099932087704076 a007 Real Root Of 923*x^4-529*x^3-392*x^2-366*x-21 6099932088862663 m004 -20/Pi-Log[Sqrt[5]*Pi]/3+Tan[Sqrt[5]*Pi] 6099932110464402 a007 Real Root Of 610*x^4-765*x^3+371*x^2-967*x-986 6099932127025637 a001 75025/843*199^(4/11) 6099932136582811 m005 (1/2*3^(1/2)+5/12)/(7/10*exp(1)+1/5) 6099932139258427 a007 Real Root Of -994*x^4-759*x^3+313*x^2+902*x-56 6099932149600746 h001 (9/10*exp(1)+7/8)/(7/10*exp(2)+3/11) 6099932172063758 r002 26th iterates of z^2 + 6099932181113073 m005 (1/3*Pi+2/3)/(5/11*Catalan-4/9) 6099932200887468 a007 Real Root Of -662*x^4+856*x^3+632*x^2+861*x-863 6099932221733456 r005 Im(z^2+c),c=-53/98+36/59*I,n=41 6099932229657197 r005 Re(z^2+c),c=-7/32+54/61*I,n=7 6099932240057319 a007 Real Root Of -562*x^4+627*x^3-415*x^2+86*x+427 6099932249654839 a007 Real Root Of -484*x^4+532*x^3-671*x^2+637*x+826 6099932254454401 m005 (1/2*gamma-7/12)/(1/12*Zeta(3)-7/12) 6099932264357766 m001 (-Backhouse+Otter)/(exp(Pi)+exp(1/exp(1))) 6099932295153236 r002 12th iterates of z^2 + 6099932306140388 m001 (GAMMA(17/24)*Paris+Weierstrass)/Paris 6099932355737459 r005 Im(z^2+c),c=-47/44+15/52*I,n=12 6099932358656052 a007 Real Root Of 95*x^4-80*x^3+982*x^2-730*x-842 6099932367237177 m001 (5^(1/2)-MertensB3)/(Mills+ZetaP(3)) 6099932385167609 a007 Real Root Of -886*x^4-631*x^3-460*x^2+99*x+211 6099932421735682 m009 (1/6*Psi(1,1/3)+3)/(4/5*Psi(1,1/3)-2/5) 6099932423685992 r005 Re(z^2+c),c=-15/22+38/97*I,n=4 6099932483917402 m001 (Magata-cos(1))/(ReciprocalFibonacci+Totient) 6099932485286525 m001 (ArtinRank2-Chi(1))/(-FeigenbaumD+Khinchin) 6099932485332624 r005 Re(z^2+c),c=-53/110+29/48*I,n=40 6099932486019038 s002 sum(A172721[n]/(n^2*pi^n+1),n=1..infinity) 6099932498521274 r002 32th iterates of z^2 + 6099932506288813 a001 521/24157817*8^(1/2) 6099932507015185 l006 ln(1623/2987) 6099932508892747 m005 (1/2*Zeta(3)-1/10)/(2/3*3^(1/2)-1/3) 6099932523893573 r005 Im(z^2+c),c=-79/114+11/64*I,n=12 6099932531236879 s002 sum(A058211[n]/(n*2^n+1),n=1..infinity) 6099932534661968 l006 ln(7377/7841) 6099932538130910 m001 exp(RenyiParking)^2*Si(Pi)/GAMMA(2/3) 6099932556226607 m001 exp(Bloch)/FransenRobinson^2*sqrt(3)^2 6099932560094866 r008 a(0)=0,K{-n^6,90-68*n^3-89*n^2-97*n} 6099932563659066 m001 1/arctan(1/2)/Cahen/ln(gamma) 6099932631020343 a007 Real Root Of -112*x^4+258*x^3+875*x^2+417*x-623 6099932649637110 m005 (1/2*gamma+2/9)/(7/10*3^(1/2)-3/8) 6099932664966809 a007 Real Root Of -101*x^4+428*x^3+169*x^2+716*x+485 6099932666216079 r005 Im(z^2+c),c=-25/94+28/33*I,n=12 6099932688942061 v002 sum(1/(2^n*(n^3+n^2-5*n+15)),n=1..infinity) 6099932691125581 m001 (BesselI(0,1)-ln(2)/ln(10))/(-ln(5)+Trott2nd) 6099932701686011 a001 144*521^(3/13) 6099932706012203 r005 Im(z^2+c),c=-35/66+27/44*I,n=61 6099932726795960 m001 1/FeigenbaumB/exp(FransenRobinson)*sin(1) 6099932729229765 a007 Real Root Of -41*x^4-98*x^3+785*x^2-949*x-476 6099932749998630 a007 Real Root Of 374*x^4-832*x^3+597*x^2-284*x-636 6099932752323976 r005 Im(z^2+c),c=17/64+13/20*I,n=5 6099932770298475 r009 Im(z^3+c),c=-63/118+5/39*I,n=13 6099932781508544 r009 Re(z^3+c),c=-1/102+38/63*I,n=15 6099932785968044 a007 Real Root Of 632*x^4-923*x^3-421*x^2+335*x+64 6099932798842219 m003 71/12+Sqrt[5]/8-Log[1/2+Sqrt[5]/2]/5 6099932801028391 r005 Im(z^2+c),c=-7/13+30/53*I,n=48 6099932801293344 a007 Real Root Of 956*x^4+156*x^3+849*x^2+226*x-275 6099932825851503 m001 GAMMA(3/4)-HardHexagonsEntropy-TreeGrowth2nd 6099932860469270 a007 Real Root Of 149*x^4+775*x^3-815*x^2+10*x-3 6099932864545445 m001 (2^(1/2)-CareFree)/(Sarnak+TreeGrowth2nd) 6099932876074778 a007 Real Root Of -540*x^4+378*x^3+982*x^2+878*x-912 6099932878152105 p004 log(33203/18041) 6099932884959831 b008 -62+Coth[4] 6099932902207514 m001 (GAMMA(2/3)+FeigenbaumMu)/(GaussAGM-Trott2nd) 6099932906291582 r005 Re(z^2+c),c=9/34+25/62*I,n=50 6099932929973906 b008 60+Tanh[4] 6099932930918846 q001 1819/2982 6099932932593392 r005 Im(z^2+c),c=-25/66+28/45*I,n=4 6099932949217708 m005 (1/2*gamma+2/11)/(2/11*Pi+1/5) 6099932954546149 h001 (7/10*exp(1)+3/10)/(3/7*exp(2)+4/9) 6099932955582513 r005 Im(z^2+c),c=33/106+43/45*I,n=3 6099932963678640 m005 (1/4*Pi-4)/(2*exp(1)-1/6) 6099933004797832 r009 Re(z^3+c),c=-7/29+11/12*I,n=20 6099933013883683 r009 Re(z^3+c),c=-3/46+3/19*I,n=5 6099933017021702 m002 -3+E^(2*Pi)*Log[Pi] 6099933020298303 a007 Real Root Of 433*x^4-660*x^3-364*x^2-611*x+598 6099933044504253 r008 a(0)=6,K{-n^6,-7*n^3-2*n^2-2*n} 6099933055565887 r009 Re(z^3+c),c=-5/54+16/33*I,n=20 6099933073363707 m001 Kolakoski/(Ei(1)-Lehmer) 6099933076232621 a007 Real Root Of 818*x^4+766*x^3+741*x^2-349*x-428 6099933104264290 b008 8/5+ArcSinh[45] 6099933115937522 a007 Real Root Of 402*x^4-635*x^3-237*x^2-40*x-136 6099933148608171 r009 Re(z^3+c),c=-7/58+23/32*I,n=58 6099933152974523 r002 9th iterates of z^2 + 6099933181575034 l006 ln(4963/9134) 6099933183553105 m001 ln(2)*Thue^sin(1) 6099933184036632 m001 (sin(1/5*Pi)+GAMMA(13/24))/(Artin-ZetaQ(3)) 6099933211031407 r005 Im(z^2+c),c=31/86+34/57*I,n=17 6099933226251597 r005 Im(z^2+c),c=47/118+10/29*I,n=37 6099933231304395 a007 Real Root Of 113*x^4+727*x^3+115*x^2-616*x+522 6099933240357438 r002 12th iterates of z^2 + 6099933279845871 a007 Real Root Of 751*x^4-505*x^3+491*x^2+530*x-78 6099933288695634 m001 1/Salem/ln(CopelandErdos)*Zeta(5) 6099933293571402 r009 Im(z^3+c),c=-25/58+39/64*I,n=35 6099933296558507 m001 1/GAMMA(2/3)^2*GAMMA(19/24)^2*exp(GAMMA(5/24)) 6099933307440102 a003 sin(Pi*12/65)/sin(Pi*27/76) 6099933342751057 r005 Im(z^2+c),c=-59/114+3/28*I,n=46 6099933360734475 m001 Tribonacci/(arctan(1/3)^Shi(1)) 6099933361007925 a001 161/98209*832040^(13/49) 6099933361128355 a003 cos(Pi*11/106)*cos(Pi*33/119) 6099933368283216 a007 Real Root Of 622*x^4-431*x^3+424*x^2+11*x-335 6099933374828528 a001 843/196418*3^(8/25) 6099933376174969 m001 (Catalan*FransenRobinson-Thue)/FransenRobinson 6099933379613041 s004 Continued Fraction of A153022 6099933379613041 s004 Continued fraction of A153022 6099933465585687 m001 LaplaceLimit-GlaisherKinkelin-gamma(2) 6099933500386229 m001 Tribonacci*Backhouse^2/ln(Ei(1)) 6099933506912789 p001 sum(1/(511*n+164)/(625^n),n=0..infinity) 6099933509362633 l006 ln(3340/6147) 6099933542284630 m001 1/TwinPrimes/Robbin^2*exp(LambertW(1)) 6099933548180370 m005 (1/2*5^(1/2)-7/8)/(1/9*2^(1/2)-5/9) 6099933562904325 m006 (4*exp(Pi)+1/6)/(3/5*ln(Pi)+5/6) 6099933567618266 m007 (-1/2*gamma-3/2*ln(2)-1/4*Pi+5)/(-3*gamma-3) 6099933643658994 m001 (Shi(1)+Thue)/Pi 6099933646475577 m004 15*Pi+(10*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 6099933655113029 a001 55/3571*7^(29/41) 6099933657604891 r009 Im(z^3+c),c=-19/32+11/17*I,n=6 6099933675542336 m001 (Cahen+ZetaQ(3))/(cos(1)-ln(5)) 6099933694637900 r005 Im(z^2+c),c=7/19+12/43*I,n=51 6099933705419599 a007 Real Root Of -883*x^4+889*x^3-397*x^2+525*x+792 6099933710022973 r005 Im(z^2+c),c=-85/58+1/28*I,n=9 6099933714277940 m005 (1/3*3^(1/2)+1/12)/(1/3*Catalan+7/9) 6099933717805927 a007 Real Root Of -15*x^4+420*x^3-130*x^2+491*x+3 6099933723368725 a007 Real Root Of 11*x^4-817*x^3-180*x^2-151*x+343 6099933764525753 m005 (1/2*exp(1)-1/9)/(9/11*2^(1/2)+8/9) 6099933764727232 m001 FibonacciFactorial^ZetaQ(4)/GAMMA(13/24) 6099933769463667 r002 2th iterates of z^2 + 6099933773224813 m001 (-DuboisRaymond+Weierstrass)/(Zeta(5)-gamma) 6099933801080806 r002 22th iterates of z^2 + 6099933829662046 a007 Real Root Of -459*x^4+570*x^3+388*x^2+445*x+320 6099933831057274 l006 ln(5057/9307) 6099933852644567 a007 Real Root Of 391*x^4-609*x^3-405*x^2-694*x-465 6099933857166994 m004 25*Sqrt[5]*Pi+(450*Sqrt[5]*Sec[Sqrt[5]*Pi])/Pi 6099933890698250 a001 322/6765*3^(7/31) 6099933892171016 m001 (Si(Pi)*CopelandErdos+ln(2))/Si(Pi) 6099933906533334 r002 29th iterates of z^2 + 6099933907908607 a007 Real Root Of -49*x^4-197*x^3+525*x^2-751*x-988 6099933930728087 a007 Real Root Of 209*x^4-272*x^3-129*x^2-20*x+93 6099933954361439 s002 sum(A208106[n]/(n^3*2^n+1),n=1..infinity) 6099933960730108 r009 Im(z^3+c),c=-29/74+30/47*I,n=6 6099933963643562 a005 (1/cos(11/179*Pi))^342 6099933968047361 p003 LerchPhi(1/16,5,69/157) 6099933986972283 m005 (37/40+1/8*5^(1/2))/(4/5*exp(1)-1/5) 6099934020095869 m001 (BesselJ(0,1)+CareFree)/(MadelungNaCl+Robbin) 6099934022333519 r005 Re(z^2+c),c=25/106+32/55*I,n=12 6099934027371941 r008 a(0)=0,K{-n^6,-66+8*n^3+41*n^2+n} 6099934027425364 m001 exp(FeigenbaumC)/MadelungNaCl/BesselJ(0,1)^2 6099934033584420 m001 GAMMA(1/4)^2/HardHexagonsEntropy*ln(sqrt(5))^2 6099934039218431 r005 Im(z^2+c),c=-77/122+6/47*I,n=31 6099934043957888 r005 Im(z^2+c),c=41/122+11/19*I,n=23 6099934053090112 m005 (1/2*5^(1/2)-5/8)/(1/4*2^(1/2)-3/11) 6099934072640407 a007 Real Root Of 559*x^4-631*x^3+495*x^2-120*x-478 6099934077960317 a007 Real Root Of 320*x^4-786*x^3-303*x^2-56*x+281 6099934085384214 r005 Re(z^2+c),c=-23/82+23/36*I,n=2 6099934107024001 b008 23/4+Csch[Sqrt[Pi]] 6099934112650836 m005 (1/2*Zeta(3)+1/3)/(2/5*exp(1)+4/9) 6099934137962952 a007 Real Root Of 62*x^4+228*x^3-791*x^2+901*x+838 6099934152417626 m002 -Pi^(-2)+Pi^3/5 6099934174435345 r005 Im(z^2+c),c=-29/23+15/61*I,n=7 6099934187744798 m001 (ThueMorse+TwinPrimes)/(MadelungNaCl+Trott) 6099934206655315 g003 Re(GAMMA(-91/20+I*(-197/60))) 6099934225808471 h001 (-5*exp(1)+6)/(-3*exp(3/2)+1) 6099934231481597 a001 141/46*1364^(11/15) 6099934232918267 r005 Im(z^2+c),c=-23/58+6/61*I,n=20 6099934232930091 m006 (1/5*ln(Pi)-1/6)/(1/5*exp(2*Pi)-5) 6099934243684992 r005 Re(z^2+c),c=3/86+17/48*I,n=18 6099934248575847 a007 Real Root Of -142*x^4+858*x^3-818*x^2+743*x+972 6099934251341303 r002 30th iterates of z^2 + 6099934257062300 m006 (4/5*Pi^2+5)/(exp(Pi)-2) 6099934270136989 m001 (Tetranacci-Thue)/(Zeta(3)-ln(gamma)) 6099934271353120 m005 (1/3*Zeta(3)+1/2)/(4/5*3^(1/2)+1/11) 6099934280096538 a001 1/305*144^(10/17) 6099934312252176 r005 Im(z^2+c),c=-35/31+13/35*I,n=4 6099934322184128 a003 sin(Pi*29/104)*sin(Pi*33/113) 6099934355500504 r002 11th iterates of z^2 + 6099934380624065 m001 (GAMMA(3/4)+exp(1/exp(1)))/(2^(1/2)-Si(Pi)) 6099934386986608 a003 cos(Pi*2/89)-cos(Pi*28/75) 6099934426229508 a001 186048/305 6099934431107596 a001 75025/322*521^(2/13) 6099934456834822 l006 ln(1717/3160) 6099934458696061 a007 Real Root Of -225*x^4+660*x^3-251*x^2+875*x-559 6099934458700723 r002 22th iterates of z^2 + 6099934462860997 a007 Real Root Of -244*x^4-95*x^3+687*x^2+352*x-415 6099934478626585 m001 (sin(1/12*Pi)-FeigenbaumC)/(Khinchin-OneNinth) 6099934485469842 m004 -2/3-Sqrt[5]*Pi+(5*Tanh[Sqrt[5]*Pi])/Pi 6099934500827269 a007 Real Root Of -33*x^4-216*x^3-731*x^2+286*x+402 6099934508007466 a007 Real Root Of 517*x^4-340*x^3+746*x^2-247*x-577 6099934524126768 a007 Real Root Of 758*x^4-944*x^3-332*x^2-853*x-716 6099934550642930 a007 Real Root Of 557*x^4-847*x^3+358*x^2-563*x-746 6099934562981256 m001 (Landau-ZetaP(2))/(ArtinRank2+Kolakoski) 6099934575683140 s002 sum(A246033[n]/(n^3*exp(n)+1),n=1..infinity) 6099934588929526 m001 arctan(1/2)*(HeathBrownMoroz-ln(2+3^(1/2))) 6099934592788068 r005 Re(z^2+c),c=-16/29+11/24*I,n=47 6099934608941032 a004 Fibonacci(12)*Lucas(15)/(1/2+sqrt(5)/2)^12 6099934618222692 l006 ln(6121/6506) 6099934626938615 a007 Real Root Of -848*x^4+5*x^3-231*x^2+891*x+748 6099934643904155 r002 58th iterates of z^2 + 6099934643976030 m001 (sin(1/12*Pi)+Tribonacci)/(2^(1/3)-Catalan) 6099934646008840 m001 1/Niven*Khintchine*exp(GAMMA(2/3)) 6099934648594282 m001 (ln(Pi)+gamma(1))/(gamma(2)-MadelungNaCl) 6099934661303371 m001 (3^(1/2)-sin(1))/(-MinimumGamma+ZetaQ(4)) 6099934665651050 m001 1/exp(Pi)^2/DuboisRaymond^2/cos(Pi/5) 6099934669750456 r005 Im(z^2+c),c=39/110+31/48*I,n=24 6099934673108326 m001 FeigenbaumB+FransenRobinson^ln(5) 6099934689588434 r005 Im(z^2+c),c=-61/46+3/62*I,n=38 6099934690385930 a001 13/521*76^(31/42) 6099934713828807 a007 Real Root Of -434*x^4+870*x^3+811*x^2+826*x-943 6099934752941895 a007 Real Root Of -793*x^4+442*x^3-160*x^2+741*x-383 6099934761483546 r005 Re(z^2+c),c=-12/17+3/49*I,n=7 6099934770897827 m001 (exp(Pi)+Gompertz)/(Mills+Sierpinski) 6099934813469480 m001 LandauRamanujan2nd/(GAMMA(5/6)-ZetaP(3)) 6099934850590912 a001 123/121393*75025^(50/51) 6099934869315593 r008 a(0)=0,K{-n^6,-37-96*n^3-68*n^2+37*n} 6099934873910627 a007 Real Root Of 993*x^4+234*x^3+984*x^2-9*x-456 6099934874656743 r008 a(0)=0,K{-n^6,-1-97*n^3-47*n^2-19*n} 6099934883051425 r008 a(0)=0,K{-n^6,-3-89*n^3-72*n^2} 6099934893619163 r008 a(0)=0,K{-n^6,1+80*n^3+98*n^2-15*n} 6099934915820921 a007 Real Root Of -139*x^4-977*x^3-706*x^2+567*x+424 6099934947914178 m001 (Zeta(5)+Zeta(1,-1))/(FeigenbaumB+Gompertz) 6099934953283450 r005 Im(z^2+c),c=-7/10+97/210*I,n=9 6099934981144095 a007 Real Root Of -980*x^4+327*x^3-597*x^2+436*x+698 6099934988192380 r009 Im(z^3+c),c=-33/98+22/31*I,n=52 6099934992318007 a001 521/4181*4181^(4/21) 6099935002965148 r005 Re(z^2+c),c=-107/114+1/4*I,n=6 6099935010817004 a007 Real Root Of 150*x^4+825*x^3-608*x^2-408*x-291 6099935012719179 a007 Real Root Of 81*x^4+553*x^3+385*x^2+56*x-614 6099935025879788 m001 FibonacciFactorial/(Zeta(3)+cos(1/5*Pi)) 6099935047329320 a001 521/28657*102334155^(4/21) 6099935048783270 a001 521/196418*2504730781961^(4/21) 6099935052437143 a007 Real Root Of -819*x^4-711*x^3-947*x^2+842*x+818 6099935060182175 l006 ln(5245/9653) 6099935061414708 b008 E^Pi*Pi*Cos[10] 6099935071441433 m001 ln(gamma)^Catalan*GAMMA(11/12) 6099935071441433 m001 log(gamma)^Catalan*GAMMA(11/12) 6099935077453869 r005 Re(z^2+c),c=-1/27+40/41*I,n=31 6099935083692470 m001 (Catalan-gamma)/(-Ei(1)+Totient) 6099935104891000 m002 -1+(5*Cosh[Pi])/36 6099935107073329 q001 94/1541 6099935116206473 r009 Im(z^3+c),c=-11/30+39/62*I,n=64 6099935148495600 m007 (-2/5*gamma+5)/(-2/3*gamma-2*ln(2)-1/3*Pi-5) 6099935157048469 r005 Im(z^2+c),c=-65/126+24/49*I,n=19 6099935173560455 a001 17711/521*199^(6/11) 6099935180769297 a007 Real Root Of 911*x^4-97*x^3+802*x^2-704*x-876 6099935202619611 m001 1-ArtinRank2+HardyLittlewoodC4 6099935213295463 m005 (1/2*Pi+5/8)/(5^(1/2)+15/11) 6099935220444371 a007 Real Root Of -798*x^4+455*x^3+171*x^2+67*x+191 6099935225850774 m001 (Riemann3rdZero-ZetaQ(3))/HardyLittlewoodC5 6099935228615207 p004 log(22639/12301) 6099935245911114 m008 (4*Pi^5+1/3)/(2*Pi^2+1/3) 6099935275663396 a003 cos(Pi*15/53)*cos(Pi*38/81) 6099935275861578 m001 (GaussAGM+Salem)/(Si(Pi)+exp(1/exp(1))) 6099935278881332 a007 Real Root Of 822*x^4-141*x^3+332*x^2-906*x-822 6099935285681216 a003 cos(Pi*19/97)*sin(Pi*29/108) 6099935290344975 m001 ln(FeigenbaumB)*Cahen/TreeGrowth2nd^2 6099935294488075 a001 18/121393*5^(29/33) 6099935319818414 p003 LerchPhi(1/64,4,439/218) 6099935329377383 r005 Re(z^2+c),c=-13/31+16/27*I,n=61 6099935336646137 m001 Zeta(1,-1)^Weierstrass/ArtinRank2 6099935353818048 l006 ln(3528/6493) 6099935372244199 r009 Im(z^3+c),c=-11/94+20/27*I,n=48 6099935381114743 a003 cos(Pi*12/89)*sin(Pi*7/30) 6099935396698007 m001 (Si(Pi)+Chi(1))/(-sin(1)+GlaisherKinkelin) 6099935450727392 m001 1/ln(GAMMA(5/12))/FeigenbaumDelta^2*Zeta(9)^2 6099935485052177 a007 Real Root Of 14*x^4+854*x^3-2*x^2-169*x-817 6099935493081294 a007 Real Root Of 606*x^4-896*x^3-313*x^2-920*x-732 6099935496973124 a007 Real Root Of 511*x^4-909*x^3-842*x^2-233*x+591 6099935520919407 a007 Real Root Of -958*x^4-662*x^3-704*x^2+824*x-5 6099935527509276 p004 log(16319/8867) 6099935540503271 m001 (2^(1/2)-exp(1/exp(1)))/(Bloch+Trott2nd) 6099935544835327 r002 5th iterates of z^2 + 6099935561004448 m005 (1/2*5^(1/2)-3)/(1/7*Catalan-1/10) 6099935573339565 a007 Real Root Of 747*x^4-359*x^3+813*x^2+222*x-352 6099935592136380 r005 Re(z^2+c),c=-47/62+1/51*I,n=57 6099935595604897 a007 Real Root Of 721*x^4+508*x^3+140*x^2-699*x-463 6099935597563387 g007 Psi(2,4/5)+Psi(2,1/3)-Psi(2,7/12)-Psi(13/10) 6099935604073265 a007 Real Root Of 900*x^4+109*x^3+357*x^2-630*x-617 6099935623807176 m001 (Backhouse-Chi(1))/(GaussKuzminWirsing+Rabbit) 6099935630242846 m001 Robbin^2/CareFree^2*ln(Zeta(7))^2 6099935642284073 l006 ln(5339/9826) 6099935643733098 b008 Sqrt[Pi*ProductLog[2/15]] 6099935658725470 a007 Real Root Of -199*x^4-68*x^3+865*x^2+533*x-604 6099935706017948 a001 322/75025*28657^(29/41) 6099935738258399 a001 1292/161*1364^(3/5) 6099935747149406 a007 Real Root Of 315*x^4+422*x^3-737*x^2-997*x+743 6099935769337282 a007 Real Root Of 477*x^4-940*x^3-422*x^2-683*x-539 6099935782200813 m001 (ArtinRank2+LaplaceLimit)/(2^(1/3)-Zeta(5)) 6099935787474829 r005 Im(z^2+c),c=-115/94+2/13*I,n=57 6099935798120848 a007 Real Root Of -135*x^4-725*x^3+508*x^2-417*x+909 6099935807810303 s002 sum(A097261[n]/(n^2*10^n+1),n=1..infinity) 6099935817941653 r009 Im(z^3+c),c=-51/110+26/51*I,n=14 6099935819767974 m009 (1/12*Pi^2+3/5)/(1/2*Psi(1,2/3)+4/5) 6099935852016188 r005 Im(z^2+c),c=27/74+31/60*I,n=10 6099935866845506 m004 -1-75*Pi+25*Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 6099935899475640 m001 (Lehmer+ThueMorse)/(ln(5)-exp(1/exp(1))) 6099935910400572 m001 (GAMMA(2/3)+LaplaceLimit)/(Porter+Tribonacci) 6099935917156973 r009 Re(z^3+c),c=-5/52+13/25*I,n=18 6099935926849745 a007 Real Root Of 31*x^4-35*x^3-277*x^2-248*x+258 6099935979192700 a007 Real Root Of -338*x^4+802*x^3+772*x^2+191*x-539 6099936032437942 m001 (BesselI(0,2)-Bloch)/(KomornikLoreti+Salem) 6099936055802398 r002 50th iterates of z^2 + 6099936075835639 r002 19th iterates of z^2 + 6099936085037593 b008 61*InverseEllipticNomeQ[1/2] 6099936139042422 m001 (Zeta(1,2)+Tribonacci)/(Shi(1)+BesselK(0,1)) 6099936159445962 a001 121393/322*521^(1/13) 6099936168950937 a001 123/1346269*121393^(5/9) 6099936168997603 a001 123/165580141*701408733^(5/9) 6099936168997603 a001 123/20365011074*4052739537881^(5/9) 6099936168997603 a001 123/1836311903*53316291173^(5/9) 6099936168997616 a001 41/4976784*9227465^(5/9) 6099936179703811 a007 Real Root Of -656*x^4+708*x^3-921*x^2-102*x+532 6099936180744177 a001 1597/322*1364^(2/3) 6099936186834509 a007 Real Root Of -734*x^4+652*x^3-688*x^2+99*x+566 6099936204243263 l006 ln(1811/3333) 6099936209004425 a008 Real Root of x^4-x^3-17*x^2-70*x-98 6099936209339244 a001 4181/322*1364^(8/15) 6099936216369293 a007 Real Root Of -443*x^4-562*x^3-943*x^2+633*x+42 6099936220056738 m001 (-exp(-Pi)+2)/(exp(-1/2*Pi)+3) 6099936222960296 m001 arctan(1/3)/cos(1/12*Pi)*FeigenbaumC 6099936234917605 m001 ln(GlaisherKinkelin)^2/Conway*GAMMA(17/24) 6099936242715584 r005 Re(z^2+c),c=-83/118+8/47*I,n=5 6099936270402517 r009 Re(z^3+c),c=-35/64+2/5*I,n=9 6099936279023301 r005 Re(z^2+c),c=-23/34+8/33*I,n=14 6099936281735250 r002 24th iterates of z^2 + 6099936297711333 a005 (1/cos(5/116*Pi))^447 6099936320386219 m001 (2^(1/2)+Backhouse)/(-Bloch+HeathBrownMoroz) 6099936325913132 h001 (1/3*exp(2)+11/12)/(8/11*exp(2)+1/6) 6099936326310529 a001 141/46*3571^(11/17) 6099936330048913 m001 (GAMMA(23/24)-ln(5)*Trott2nd)/ln(5) 6099936331468689 a001 6765/322*1364^(7/15) 6099936340810158 m001 1/FeigenbaumDelta^2/ln(Cahen)/Niven 6099936345585614 r005 Re(z^2+c),c=-2/19+50/61*I,n=18 6099936349798707 m001 1/exp(Zeta(1,2))/HardHexagonsEntropy/sqrt(3)^2 6099936353786261 m001 (Pi-ln(2)/ln(10))*(BesselI(0,1)+ln(2^(1/2)+1)) 6099936369858642 a007 Real Root Of 820*x^4+181*x^3+891*x^2-482*x-698 6099936386045972 a007 Real Root Of -686*x^4+881*x^3-9*x^2+211*x+427 6099936403066503 m002 (3*Pi^2)/2+4*Sinh[Pi] 6099936417684798 h001 (-9*exp(-2)+6)/(-5*exp(-1)-6) 6099936427608460 a007 Real Root Of -689*x^4+888*x^3-173*x^2-212*x+232 6099936434830230 a001 123/121393*1597^(5/9) 6099936453205598 a003 cos(Pi*19/109)*sin(Pi*19/75) 6099936501623141 m001 ln(KhintchineHarmonic)*ErdosBorwein/Porter 6099936525352344 m001 (ln(3)+arctan(1/3)*Khinchin)/arctan(1/3) 6099936533398365 m001 exp(cos(Pi/12))^2/Zeta(1,2)^2*log(1+sqrt(2))^2 6099936537923813 r005 Re(z^2+c),c=31/90+23/52*I,n=9 6099936548269942 m006 (2/3*exp(2*Pi)-4)/(4/5/Pi-5/6) 6099936578382026 s002 sum(A043102[n]/(pi^n+1),n=1..infinity) 6099936586885723 a001 5473/161*1364^(2/5) 6099936595426059 a001 141/46*9349^(11/19) 6099936620877441 a003 cos(Pi*13/111)*sin(Pi*22/97) 6099936626051255 a001 144/2207*24476^(19/21) 6099936630497395 a001 141/46*24476^(11/21) 6099936633219943 r009 Re(z^3+c),c=-11/102+27/41*I,n=24 6099936634036569 a001 144/2207*64079^(19/23) 6099936635120471 a001 141/46*64079^(11/23) 6099936635263782 a001 144/2207*817138163596^(1/3) 6099936635263782 a001 144/2207*(1/2+1/2*5^(1/2))^19 6099936635263782 a001 144/2207*87403803^(1/2) 6099936635713003 a001 144/2207*103682^(19/24) 6099936635830930 a001 141/46*7881196^(1/3) 6099936635830963 a001 141/46*312119004989^(1/5) 6099936635830963 a001 141/46*(1/2+1/2*5^(1/2))^11 6099936635830963 a001 141/46*1568397607^(1/4) 6099936636091038 a001 141/46*103682^(11/24) 6099936637775602 a001 141/46*39603^(1/2) 6099936638622705 a001 144/2207*39603^(19/22) 6099936638832241 m001 ln(5)^exp(sqrt(2))/(Zeta(5)^exp(sqrt(2))) 6099936650492598 a001 141/46*15127^(11/20) 6099936660588424 a001 144/2207*15127^(19/20) 6099936664279214 m005 (1/2*2^(1/2)+7/11)/(9/10*Pi-5/8) 6099936680109268 m001 1/Salem^2/Paris/ln(sqrt(2))^2 6099936695971583 a001 610/3*521^(31/34) 6099936704635931 a007 Real Root Of 442*x^4+279*x^3+598*x^2-242*x-368 6099936719266200 r005 Re(z^2+c),c=7/118+35/53*I,n=6 6099936719715130 a007 Real Root Of -388*x^4-242*x^3-826*x^2+26*x+322 6099936747489119 a001 141/46*5778^(11/18) 6099936761453602 m009 (3/8*Pi^2+4/5)/(16/5*Catalan+2/5*Pi^2+1/2) 6099936761551070 m001 1/Robbin^2*FransenRobinson/exp(Salem)^2 6099936786370571 m001 1/exp(RenyiParking)^2*Paris/GAMMA(1/4) 6099936791391438 a001 17711/322*1364^(1/3) 6099936792917397 a007 Real Root Of -120*x^4-568*x^3+883*x^2-693*x+139 6099936804219628 a007 Real Root Of 242*x^4-885*x^3+467*x^2-726*x-851 6099936811815037 r005 Im(z^2+c),c=-61/118+31/61*I,n=50 6099936822264630 m001 1/BesselK(0,1)^2*FeigenbaumAlpha^2*ln(sin(1)) 6099936827642307 m001 1/log(1+sqrt(2))/GolombDickman/ln(sin(1))^2 6099936841145027 b008 ArcCot[Cosh[1]!!] 6099936876653035 h001 (3/5*exp(2)+1/9)/(9/10*exp(2)+4/5) 6099936876872673 m005 (1/3*2^(1/2)-1/7)/(1/2*gamma+1/4) 6099936899570520 a003 cos(Pi*2/75)-sin(Pi*12/95) 6099936900328959 a007 Real Root Of 616*x^4-158*x^3+999*x^2+167*x-391 6099936934327802 a001 1364/165580141*832040^(6/19) 6099936934328359 a001 1364/2971215073*7778742049^(6/19) 6099936956167475 m005 (1/3*5^(1/2)-1/7)/(11/12*3^(1/2)-3/5) 6099936960057347 a007 Real Root Of -64*x^4+853*x^3-212*x^2+674*x-517 6099936975715972 m001 (Kolakoski+OrthogonalArrays)/(Chi(1)-sin(1)) 6099937011643669 l006 ln(3716/6839) 6099937014516532 g007 2*Psi(2,1/11)+Psi(2,1/9)-Psi(2,1/7) 6099937015343558 a001 28657/322*1364^(4/15) 6099937036088889 r005 Re(z^2+c),c=25/106+23/62*I,n=56 6099937050678738 r002 56th iterates of z^2 + 6099937081027899 a007 Real Root Of 555*x^4-484*x^3-464*x^2-794*x+690 6099937092586358 r005 Re(z^2+c),c=-27/98+40/63*I,n=58 6099937110570422 a007 Real Root Of -164*x^4-999*x^3+24*x^2+16*x-480 6099937116183323 m001 (Sarnak+Tribonacci)/(Kolakoski+Magata) 6099937146448774 q001 1941/3182 6099937150232496 m001 (-Artin+Tribonacci)/(exp(Pi)+ln(2^(1/2)+1)) 6099937162662348 a007 Real Root Of -14*x^4-846*x^3+500*x^2+753*x-734 6099937172633730 r005 Re(z^2+c),c=-1/58+38/53*I,n=7 6099937183710075 a007 Real Root Of 196*x^4+356*x^3+807*x^2-399*x-490 6099937226120612 s002 sum(A129801[n]/(exp(n)+1),n=1..infinity) 6099937231867823 a001 144*1364^(1/5) 6099937236053988 r005 Re(z^2+c),c=9/98+9/16*I,n=29 6099937241370687 r002 28th iterates of z^2 + 6099937245657663 r008 a(0)=0,K{-n^6,-2-97*n^3-47*n^2-18*n} 6099937246298887 h001 (1/10*exp(2)+1/10)/(1/10*exp(2)+7/11) 6099937249289215 r008 a(0)=0,K{-n^6,-42-87*n^3-97*n^2+62*n} 6099937264682953 r008 a(0)=0,K{-n^6,2+80*n^3+98*n^2-16*n} 6099937273295134 r008 a(0)=0,K{-n^6,-66+84*n^3+52*n^2+94*n} 6099937275038388 a001 377/322*843^(13/14) 6099937294915137 r001 3i'th iterates of 2*x^2-1 of 6099937312965030 h001 (-10*exp(4)+1)/(-4*exp(3)-9) 6099937315808596 p001 sum((-1)^n/(493*n+182)/n/(24^n),n=1..infinity) 6099937325229356 m001 (-arctan(1/3)+Totient)/(5^(1/2)-LambertW(1)) 6099937341464186 m001 CareFree/(gamma-3^(1/2)) 6099937341716456 s001 sum(exp(-Pi/4)^(n-1)*A265301[n],n=1..infinity) 6099937346747131 r009 Im(z^3+c),c=-7/82+29/39*I,n=43 6099937358686236 h003 exp(Pi*(13^(10/9)-7^(7/5))) 6099937358686236 h008 exp(Pi*(13^(10/9)-7^(7/5))) 6099937365587057 a007 Real Root Of 774*x^4-704*x^3-977*x^2-244*x+565 6099937369137486 m001 (Backhouse+Lehmer)/(Chi(1)-GAMMA(19/24)) 6099937381446114 a003 sin(Pi*9/71)/cos(Pi*16/57) 6099937382592360 a001 974160/1597 6099937388739893 m005 (13/10+3/10*5^(1/2))/(2/5*gamma+3) 6099937389424022 m001 (-Backhouse+Champernowne)/(ArtinRank2-Catalan) 6099937393390030 m001 1/ln(Ei(1))^2*Sierpinski/Zeta(5) 6099937393800730 h001 (-9*exp(8)+2)/(-8*exp(4)-3) 6099937394717447 a001 2576*18^(17/57) 6099937402904980 a007 Real Root Of 818*x^4-994*x^3+113*x^2-469*x-667 6099937403954528 m001 Sierpinski/PrimesInBinary/exp(Trott)^2 6099937409249844 a004 Fibonacci(12)*Lucas(17)/(1/2+sqrt(5)/2)^14 6099937421461872 a005 (1/cos(19/71*Pi))^175 6099937451229287 a001 75025/322*1364^(2/15) 6099937452209713 a001 1292/161*3571^(9/17) 6099937453815526 a001 3/2*7881196^(23/24) 6099937453815620 a001 3/2*4106118243^(11/16) 6099937456150051 a007 Real Root Of 81*x^4+349*x^3-760*x^2+638*x-762 6099937458293560 m001 arctan(1/3)*GaussKuzminWirsing*GolombDickman 6099937474838713 m005 (1/2*3^(1/2)+1/7)/(3/11*5^(1/2)-4/9) 6099937480932556 m001 (Chi(1)-FeigenbaumC)/(Salem+ZetaP(2)) 6099937482693070 r005 Im(z^2+c),c=-61/82+1/51*I,n=59 6099937496811877 a001 141/46*2207^(11/16) 6099937500757191 r009 Im(z^3+c),c=-11/106+39/40*I,n=8 6099937528723084 r002 12i'th iterates of 2*x/(1-x^2) of 6099937538377909 m005 (1/3*exp(1)-1/5)/(1/9*5^(1/2)+10/11) 6099937585369575 a007 Real Root Of 452*x^4-484*x^3-706*x^2-323*x+507 6099937596380777 m001 1/GAMMA(5/6)^2*FeigenbaumC*ln(GAMMA(7/12)) 6099937604460330 m001 (-Niven+ZetaQ(2))/(Chi(1)-LambertW(1)) 6099937610940612 a007 Real Root Of -929*x^4+320*x^3-149*x^2+971*x+849 6099937611173364 m001 (MinimumGamma-Totient)/(GAMMA(2/3)+Cahen) 6099937639475190 r005 Re(z^2+c),c=-55/82+9/20*I,n=16 6099937639839208 m001 (Ei(1)-cos(1))/(KhinchinHarmonic+PlouffeB) 6099937642425757 a007 Real Root Of -694*x^4-28*x^3-470*x^2+699*x+691 6099937664542021 a001 6765/322*3571^(7/17) 6099937669507048 a001 121393/322*1364^(1/15) 6099937672395186 a001 1292/161*9349^(9/19) 6099937687405539 m001 FibonacciFactorial*ln(Conway)^2/Riemann1stZero 6099937695090808 m001 (GAMMA(2/3)-Robbin)/(TwinPrimes+Weierstrass) 6099937701089921 a001 1292/161*24476^(3/7) 6099937703529924 a001 8/321*64079^(21/23) 6099937704861722 a001 8/321*439204^(7/9) 6099937704872439 a001 1292/161*64079^(9/23) 6099937704886255 a001 8/321*7881196^(7/11) 6099937704886308 a001 8/321*20633239^(3/5) 6099937704886317 a001 8/321*141422324^(7/13) 6099937704886317 a001 8/321*2537720636^(7/15) 6099937704886317 a001 8/321*17393796001^(3/7) 6099937704886317 a001 8/321*45537549124^(7/17) 6099937704886317 a001 8/321*14662949395604^(1/3) 6099937704886317 a001 8/321*(1/2+1/2*5^(1/2))^21 6099937704886317 a001 8/321*192900153618^(7/18) 6099937704886317 a001 8/321*10749957122^(7/16) 6099937704886317 a001 8/321*599074578^(1/2) 6099937704886320 a001 8/321*33385282^(7/12) 6099937704887551 a001 8/321*1860498^(7/10) 6099937704895376 a001 8/321*710647^(3/4) 6099937705382826 a001 8/321*103682^(7/8) 6099937705443209 a001 1292/161*439204^(1/3) 6099937705453723 a001 1292/161*7881196^(3/11) 6099937705453750 a001 1292/161*141422324^(3/13) 6099937705453750 a001 1292/161*2537720636^(1/5) 6099937705453750 a001 1292/161*45537549124^(3/17) 6099937705453750 a001 1292/161*817138163596^(3/19) 6099937705453750 a001 1292/161*14662949395604^(1/7) 6099937705453750 a001 1292/161*(1/2+1/2*5^(1/2))^9 6099937705453750 a001 1292/161*192900153618^(1/6) 6099937705453750 a001 1292/161*10749957122^(3/16) 6099937705453750 a001 1292/161*599074578^(3/14) 6099937705453751 a001 1292/161*33385282^(1/4) 6099937705454279 a001 1292/161*1860498^(3/10) 6099937705666539 a001 1292/161*103682^(3/8) 6099937707044819 a001 1292/161*39603^(9/22) 6099937708598812 a001 8/321*39603^(21/22) 6099937717449635 a001 1292/161*15127^(9/20) 6099937729520039 a001 5473/161*3571^(6/17) 6099937732851618 a001 4181/322*3571^(8/17) 6099937741811913 r005 Re(z^2+c),c=-17/16+14/93*I,n=8 6099937743586718 a001 17711/322*3571^(5/17) 6099937748518482 p001 sum(1/(257*n+164)/(1000^n),n=0..infinity) 6099937777099798 a001 28657/322*3571^(4/17) 6099937777611604 l006 ln(4865/5171) 6099937779203784 l006 ln(1905/3506) 6099937789693774 m005 (1/3*exp(1)-5/6)/(2/3*2^(1/2)+1/4) 6099937796810439 a001 1292/161*5778^(1/2) 6099937797578114 a003 cos(Pi*20/71)*sin(Pi*31/75) 6099937803185014 a001 144*3571^(3/17) 6099937809421504 a007 Real Root Of -534*x^4+951*x^3+8*x^2+851*x-664 6099937809692895 a007 Real Root Of 233*x^4-904*x^3-855*x^2-654*x+890 6099937813920114 a001 2550384/4181 6099937817809394 a004 Fibonacci(12)*Lucas(19)/(1/2+sqrt(5)/2)^16 6099937817998312 r002 15th iterates of z^2 + 6099937832107422 a001 75025/322*3571^(2/17) 6099937835797395 a001 6765/322*9349^(7/19) 6099937838521759 m001 GAMMA(13/24)/BesselI(1,1)*Riemann2ndZero 6099937858115522 a001 6765/322*24476^(1/3) 6099937859946119 a001 121393/322*3571^(1/17) 6099937860942173 a001 144/15127*(1/2+1/2*5^(1/2))^23 6099937860942173 a001 144/15127*4106118243^(1/2) 6099937861057481 a001 6765/322*64079^(7/23) 6099937861485968 a001 144/15127*103682^(23/24) 6099937861509609 a001 6765/322*20633239^(1/5) 6099937861509611 a001 6765/322*17393796001^(1/7) 6099937861509611 a001 6765/322*14662949395604^(1/9) 6099937861509611 a001 6765/322*(1/2+1/2*5^(1/2))^7 6099937861509611 a001 6765/322*599074578^(1/6) 6099937861512631 a001 6765/322*710647^(1/4) 6099937861675114 a001 6765/322*103682^(7/24) 6099937862747110 a001 6765/322*39603^(7/22) 6099937865911985 a001 17711/322*9349^(5/19) 6099937870839745 a001 6765/322*15127^(7/20) 6099937871277423 r005 Re(z^2+c),c=-7/6+43/220*I,n=18 6099937874960012 a001 28657/322*9349^(4/19) 6099937876310360 a001 5473/161*9349^(6/19) 6099937876580175 a001 144*9349^(3/19) 6099937876849990 a001 3338496/5473 6099937877417429 a004 Fibonacci(12)*Lucas(21)/(1/2+sqrt(5)/2)^18 6099937881037529 a001 75025/322*9349^(2/19) 6099937881853505 a001 17711/322*24476^(5/21) 6099937883710406 a001 48/13201*20633239^(5/7) 6099937883710416 a001 48/13201*2537720636^(5/9) 6099937883710416 a001 48/13201*312119004989^(5/11) 6099937883710416 a001 48/13201*(1/2+1/2*5^(1/2))^25 6099937883710416 a001 48/13201*3461452808002^(5/12) 6099937883710416 a001 48/13201*28143753123^(1/2) 6099937883710416 a001 48/13201*228826127^(5/8) 6099937883711885 a001 48/13201*1860498^(5/6) 6099937883954904 a001 17711/322*64079^(5/23) 6099937884189691 m001 (Catalan-ln(Pi))/(Kolakoski+Otter) 6099937884234506 a001 17711/322*167761^(1/5) 6099937884277853 a001 17711/322*20633239^(1/7) 6099937884277855 a001 17711/322*2537720636^(1/9) 6099937884277855 a001 17711/322*312119004989^(1/11) 6099937884277855 a001 17711/322*(1/2+1/2*5^(1/2))^5 6099937884277855 a001 17711/322*28143753123^(1/10) 6099937884277855 a001 17711/322*228826127^(1/8) 6099937884278148 a001 17711/322*1860498^(1/6) 6099937884396071 a001 17711/322*103682^(5/24) 6099937884411173 a001 121393/322*9349^(1/19) 6099937885161782 a001 17711/322*39603^(5/22) 6099937886031336 a001 17480592/28657 6099937886114124 a004 Fibonacci(12)*Lucas(23)/(1/2+sqrt(5)/2)^20 6099937886145087 a001 144*24476^(1/7) 6099937887032178 a001 72/51841*7881196^(9/11) 6099937887032258 a001 72/51841*141422324^(9/13) 6099937887032258 a001 72/51841*2537720636^(3/5) 6099937887032258 a001 72/51841*45537549124^(9/17) 6099937887032258 a001 72/51841*817138163596^(9/19) 6099937887032258 a001 72/51841*14662949395604^(3/7) 6099937887032258 a001 72/51841*(1/2+1/2*5^(1/2))^27 6099937887032258 a001 72/51841*192900153618^(1/2) 6099937887032258 a001 72/51841*10749957122^(9/16) 6099937887032258 a001 72/51841*599074578^(9/14) 6099937887032262 a001 72/51841*33385282^(3/4) 6099937887033844 a001 72/51841*1860498^(9/10) 6099937887370876 a001 45764784/75025 6099937887382955 a004 Fibonacci(12)*Lucas(25)/(1/2+sqrt(5)/2)^22 6099937887405926 a001 144*64079^(3/23) 6099937887414137 a001 75025/322*24476^(2/21) 6099937887516909 a001 48/90481*(1/2+1/2*5^(1/2))^29 6099937887516909 a001 48/90481*1322157322203^(1/2) 6099937887566312 a001 59906880/98209 6099937887568074 a004 Fibonacci(12)*Lucas(27)/(1/2+sqrt(5)/2)^24 6099937887587618 a001 144/710647*(1/2+1/2*5^(1/2))^31 6099937887587618 a001 144/710647*9062201101803^(1/2) 6099937887594826 a001 313676496/514229 6099937887595083 a004 Fibonacci(12)*Lucas(29)/(1/2+sqrt(5)/2)^26 6099937887596183 a001 144*439204^(1/9) 6099937887597934 a001 8/103361*141422324^(11/13) 6099937887597934 a001 8/103361*2537720636^(11/15) 6099937887597934 a001 8/103361*45537549124^(11/17) 6099937887597934 a001 8/103361*312119004989^(3/5) 6099937887597934 a001 8/103361*14662949395604^(11/21) 6099937887597934 a001 8/103361*(1/2+1/2*5^(1/2))^33 6099937887597934 a001 8/103361*192900153618^(11/18) 6099937887597934 a001 8/103361*10749957122^(11/16) 6099937887597934 a001 8/103361*1568397607^(3/4) 6099937887597934 a001 8/103361*599074578^(11/14) 6099937887597939 a001 8/103361*33385282^(11/12) 6099937887598986 a001 821215728/1346269 6099937887599024 a004 Fibonacci(12)*Lucas(31)/(1/2+sqrt(5)/2)^28 6099937887599440 a001 144/4870847*2537720636^(7/9) 6099937887599440 a001 144/4870847*17393796001^(5/7) 6099937887599440 a001 144/4870847*312119004989^(7/11) 6099937887599440 a001 144/4870847*14662949395604^(5/9) 6099937887599440 a001 144/4870847*(1/2+1/2*5^(1/2))^35 6099937887599440 a001 144/4870847*505019158607^(5/8) 6099937887599440 a001 144/4870847*28143753123^(7/10) 6099937887599440 a001 144/4870847*599074578^(5/6) 6099937887599440 a001 144/4870847*228826127^(7/8) 6099937887599477 a001 121393/322*24476^(1/21) 6099937887599593 a001 1074985344/1762289 6099937887599598 a004 Fibonacci(12)*Lucas(33)/(1/2+sqrt(5)/2)^30 6099937887599659 a001 48/4250681*(1/2+1/2*5^(1/2))^37 6099937887599682 a001 5628696336/9227465 6099937887599682 a004 Fibonacci(12)*Lucas(35)/(1/2+sqrt(5)/2)^32 6099937887599688 a001 144*7881196^(1/11) 6099937887599691 a001 72/16692641*2537720636^(13/15) 6099937887599691 a001 72/16692641*45537549124^(13/17) 6099937887599691 a001 72/16692641*14662949395604^(13/21) 6099937887599691 a001 72/16692641*(1/2+1/2*5^(1/2))^39 6099937887599691 a001 72/16692641*192900153618^(13/18) 6099937887599691 a001 72/16692641*73681302247^(3/4) 6099937887599691 a001 72/16692641*10749957122^(13/16) 6099937887599691 a001 72/16692641*599074578^(13/14) 6099937887599694 a001 14736118320/24157817 6099937887599695 a004 Fibonacci(12)*Lucas(37)/(1/2+sqrt(5)/2)^34 6099937887599696 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^41/Lucas(38) 6099937887599696 a001 19289829312/31622993 6099937887599696 a004 Fibonacci(12)*Lucas(39)/(1/2+sqrt(5)/2)^36 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^43/Lucas(40) 6099937887599697 a001 101002857552/165580141 6099937887599697 a004 Fibonacci(12)*Lucas(41)/(1/2+sqrt(5)/2)^38 6099937887599697 a001 144*141422324^(1/13) 6099937887599697 a001 8/33281921*45537549124^(15/17) 6099937887599697 a001 8/33281921*312119004989^(9/11) 6099937887599697 a001 8/33281921*14662949395604^(5/7) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^45/Lucas(42) 6099937887599697 a001 8/33281921*192900153618^(5/6) 6099937887599697 a001 8/33281921*28143753123^(9/10) 6099937887599697 a001 8/33281921*10749957122^(15/16) 6099937887599697 a001 264428914032/433494437 6099937887599697 a004 Fibonacci(12)*Lucas(43)/(1/2+sqrt(5)/2)^40 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^47/Lucas(44) 6099937887599697 a001 346141942272/567451585 6099937887599697 a004 Fibonacci(12)*Lucas(45)/(1/2+sqrt(5)/2)^42 6099937887599697 a001 48/1368706081*14662949395604^(7/9) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^49/Lucas(46) 6099937887599697 a001 48/1368706081*505019158607^(7/8) 6099937887599697 a001 1812422739600/2971215073 6099937887599697 a004 Fibonacci(12)*Lucas(47)/(1/2+sqrt(5)/2)^44 6099937887599697 a001 144*2537720636^(1/15) 6099937887599697 a001 72/5374978561*817138163596^(17/19) 6099937887599697 a001 72/5374978561*14662949395604^(17/21) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^51/Lucas(48) 6099937887599697 a001 72/5374978561*192900153618^(17/18) 6099937887599697 a001 4744984334256/7778742049 6099937887599697 a004 Fibonacci(12)*Lucas(49)/(1/2+sqrt(5)/2)^46 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^53/Lucas(50) 6099937887599697 a001 6211265131584/10182505537 6099937887599697 a004 Fibonacci(12)*Lucas(51)/(1/2+sqrt(5)/2)^48 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^55/Lucas(52) 6099937887599697 a001 144/73681302247*3461452808002^(11/12) 6099937887599697 a001 32522606455248/53316291173 6099937887599697 a004 Fibonacci(12)*Lucas(53)/(1/2+sqrt(5)/2)^50 6099937887599697 a001 144*45537549124^(1/17) 6099937887599697 a001 8/10716675201*14662949395604^(19/21) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^57/Lucas(54) 6099937887599697 a001 85145289102576/139583862445 6099937887599697 a004 Fibonacci(12)*Lucas(55)/(1/2+sqrt(5)/2)^52 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^59/Lucas(56) 6099937887599697 a001 111456630426240/182717648081 6099937887599697 a004 Fibonacci(12)*Lucas(57)/(1/2+sqrt(5)/2)^54 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^61/Lucas(58) 6099937887599697 a004 Fibonacci(12)*Lucas(59)/(1/2+sqrt(5)/2)^56 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^63/Lucas(60) 6099937887599697 a001 1527870219512112/2504730781961 6099937887599697 a004 Fibonacci(12)*Lucas(61)/(1/2+sqrt(5)/2)^58 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^65/Lucas(62) 6099937887599697 a004 Fibonacci(12)*Lucas(63)/(1/2+sqrt(5)/2)^60 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^67/Lucas(64) 6099937887599697 a004 Fibonacci(12)*Lucas(65)/(1/2+sqrt(5)/2)^62 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^69/Lucas(66) 6099937887599697 a004 Fibonacci(12)*Lucas(67)/(1/2+sqrt(5)/2)^64 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^71/Lucas(68) 6099937887599697 a004 Fibonacci(12)*Lucas(69)/(1/2+sqrt(5)/2)^66 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^73/Lucas(70) 6099937887599697 a004 Fibonacci(12)*Lucas(71)/(1/2+sqrt(5)/2)^68 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^75/Lucas(72) 6099937887599697 a004 Fibonacci(12)*Lucas(73)/(1/2+sqrt(5)/2)^70 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^77/Lucas(74) 6099937887599697 a004 Fibonacci(12)*Lucas(75)/(1/2+sqrt(5)/2)^72 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^79/Lucas(76) 6099937887599697 a004 Fibonacci(12)*Lucas(77)/(1/2+sqrt(5)/2)^74 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^81/Lucas(78) 6099937887599697 a004 Fibonacci(12)*Lucas(79)/(1/2+sqrt(5)/2)^76 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^83/Lucas(80) 6099937887599697 a004 Fibonacci(12)*Lucas(81)/(1/2+sqrt(5)/2)^78 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^85/Lucas(82) 6099937887599697 a004 Fibonacci(12)*Lucas(83)/(1/2+sqrt(5)/2)^80 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^87/Lucas(84) 6099937887599697 a004 Fibonacci(12)*Lucas(85)/(1/2+sqrt(5)/2)^82 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^89/Lucas(86) 6099937887599697 a004 Fibonacci(12)*Lucas(87)/(1/2+sqrt(5)/2)^84 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^91/Lucas(88) 6099937887599697 a004 Fibonacci(12)*Lucas(89)/(1/2+sqrt(5)/2)^86 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^93/Lucas(90) 6099937887599697 a004 Fibonacci(12)*Lucas(91)/(1/2+sqrt(5)/2)^88 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^95/Lucas(92) 6099937887599697 a004 Fibonacci(12)*Lucas(93)/(1/2+sqrt(5)/2)^90 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^97/Lucas(94) 6099937887599697 a004 Fibonacci(12)*Lucas(95)/(1/2+sqrt(5)/2)^92 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^99/Lucas(96) 6099937887599697 a004 Fibonacci(12)*Lucas(97)/(1/2+sqrt(5)/2)^94 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^3/Lucas(1) 6099937887599697 a004 Fibonacci(12)*Lucas(99)/(1/2+sqrt(5)/2)^96 6099937887599697 m005 (1/2*5^(1/2)+1/10)/(-23/144+1/16*5^(1/2)) 6099937887599697 a004 Fibonacci(12)*Lucas(100)/(1/2+sqrt(5)/2)^97 6099937887599697 a004 Fibonacci(12)*Lucas(98)/(1/2+sqrt(5)/2)^95 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^100/Lucas(97) 6099937887599697 a004 Fibonacci(12)*Lucas(96)/(1/2+sqrt(5)/2)^93 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^98/Lucas(95) 6099937887599697 a004 Fibonacci(12)*Lucas(94)/(1/2+sqrt(5)/2)^91 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^96/Lucas(93) 6099937887599697 a004 Fibonacci(12)*Lucas(92)/(1/2+sqrt(5)/2)^89 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^94/Lucas(91) 6099937887599697 a004 Fibonacci(12)*Lucas(90)/(1/2+sqrt(5)/2)^87 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^92/Lucas(89) 6099937887599697 a004 Fibonacci(12)*Lucas(88)/(1/2+sqrt(5)/2)^85 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^90/Lucas(87) 6099937887599697 a004 Fibonacci(12)*Lucas(86)/(1/2+sqrt(5)/2)^83 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^88/Lucas(85) 6099937887599697 a004 Fibonacci(12)*Lucas(84)/(1/2+sqrt(5)/2)^81 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^86/Lucas(83) 6099937887599697 a004 Fibonacci(12)*Lucas(82)/(1/2+sqrt(5)/2)^79 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^84/Lucas(81) 6099937887599697 a004 Fibonacci(12)*Lucas(80)/(1/2+sqrt(5)/2)^77 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^82/Lucas(79) 6099937887599697 a004 Fibonacci(12)*Lucas(78)/(1/2+sqrt(5)/2)^75 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^80/Lucas(77) 6099937887599697 a004 Fibonacci(12)*Lucas(76)/(1/2+sqrt(5)/2)^73 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^78/Lucas(75) 6099937887599697 a004 Fibonacci(12)*Lucas(74)/(1/2+sqrt(5)/2)^71 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^76/Lucas(73) 6099937887599697 a004 Fibonacci(12)*Lucas(72)/(1/2+sqrt(5)/2)^69 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^74/Lucas(71) 6099937887599697 a004 Fibonacci(12)*Lucas(70)/(1/2+sqrt(5)/2)^67 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^72/Lucas(69) 6099937887599697 a004 Fibonacci(12)*Lucas(68)/(1/2+sqrt(5)/2)^65 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^70/Lucas(67) 6099937887599697 a004 Fibonacci(12)*Lucas(66)/(1/2+sqrt(5)/2)^63 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^68/Lucas(65) 6099937887599697 a004 Fibonacci(12)*Lucas(64)/(1/2+sqrt(5)/2)^61 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^66/Lucas(63) 6099937887599697 a004 Fibonacci(12)*Lucas(62)/(1/2+sqrt(5)/2)^59 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^64/Lucas(61) 6099937887599697 a004 Fibonacci(12)*Lucas(60)/(1/2+sqrt(5)/2)^57 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^62/Lucas(59) 6099937887599697 a004 Fibonacci(12)*Lucas(58)/(1/2+sqrt(5)/2)^55 6099937887599697 a001 144*192900153618^(1/18) 6099937887599697 a001 36/204284540899*14662949395604^(20/21) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^60/Lucas(57) 6099937887599697 a004 Fibonacci(12)*Lucas(56)/(1/2+sqrt(5)/2)^53 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^58/Lucas(55) 6099937887599697 a004 Fibonacci(12)*Lucas(54)/(1/2+sqrt(5)/2)^51 6099937887599697 a001 6577835330916/10783446409 6099937887599697 a001 144/119218851371*14662949395604^(8/9) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^56/Lucas(53) 6099937887599697 a004 Fibonacci(12)*Lucas(52)/(1/2+sqrt(5)/2)^49 6099937887599697 a001 6700025397360/10983760033 6099937887599697 a001 36/11384387281*14662949395604^(6/7) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^54/Lucas(51) 6099937887599697 a001 144*10749957122^(1/16) 6099937887599697 a004 Fibonacci(12)*Lucas(50)/(1/2+sqrt(5)/2)^47 6099937887599697 a001 7677545928912/12586269025 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^52/Lucas(49) 6099937887599697 a001 144/17393796001*23725150497407^(13/16) 6099937887599697 a001 144/17393796001*505019158607^(13/14) 6099937887599697 a004 Fibonacci(12)*Lucas(48)/(1/2+sqrt(5)/2)^45 6099937887599697 a001 10182505537/16692802 6099937887599697 a001 144/6643838879*312119004989^(10/11) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^50/Lucas(47) 6099937887599697 a001 144/6643838879*3461452808002^(5/6) 6099937887599697 a004 Fibonacci(12)*Lucas(46)/(1/2+sqrt(5)/2)^43 6099937887599697 a001 1120138855056/1836311903 6099937887599697 a001 36/634430159*45537549124^(16/17) 6099937887599697 a001 36/634430159*14662949395604^(16/21) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^48/Lucas(45) 6099937887599697 a001 36/634430159*192900153618^(8/9) 6099937887599697 a001 36/634430159*73681302247^(12/13) 6099937887599697 a001 144*599074578^(1/14) 6099937887599697 a004 Fibonacci(12)*Lucas(44)/(1/2+sqrt(5)/2)^41 6099937887599697 a001 142618323504/233802911 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^46/Lucas(43) 6099937887599697 a001 144/969323029*10749957122^(23/24) 6099937887599697 a004 Fibonacci(12)*Lucas(42)/(1/2+sqrt(5)/2)^39 6099937887599697 a001 20428257060/33489287 6099937887599697 a001 144/370248451*312119004989^(4/5) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^44/Lucas(41) 6099937887599697 a001 144/370248451*23725150497407^(11/16) 6099937887599697 a001 144/370248451*73681302247^(11/13) 6099937887599697 a001 144/370248451*10749957122^(11/12) 6099937887599697 a001 144/370248451*4106118243^(22/23) 6099937887599697 a004 Fibonacci(12)*Lucas(40)/(1/2+sqrt(5)/2)^37 6099937887599697 a001 20807732976/34111385 6099937887599697 a001 36/35355581*2537720636^(14/15) 6099937887599697 a001 36/35355581*17393796001^(6/7) 6099937887599697 a001 36/35355581*45537549124^(14/17) 6099937887599697 a001 36/35355581*817138163596^(14/19) 6099937887599697 a001 36/35355581*14662949395604^(2/3) 6099937887599697 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^42/Lucas(39) 6099937887599697 a001 36/35355581*505019158607^(3/4) 6099937887599697 a001 36/35355581*192900153618^(7/9) 6099937887599697 a001 36/35355581*10749957122^(7/8) 6099937887599697 a001 36/35355581*4106118243^(21/23) 6099937887599697 a001 36/35355581*1568397607^(21/22) 6099937887599697 a001 144*33385282^(1/12) 6099937887599697 a004 Fibonacci(12)*Lucas(38)/(1/2+sqrt(5)/2)^35 6099937887599698 a001 23843540304/39088169 6099937887599699 a001 144/54018521*2537720636^(8/9) 6099937887599699 a001 144/54018521*312119004989^(8/11) 6099937887599699 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^40/Lucas(37) 6099937887599699 a001 144/54018521*23725150497407^(5/8) 6099937887599699 a001 144/54018521*73681302247^(10/13) 6099937887599699 a001 144/54018521*28143753123^(4/5) 6099937887599699 a001 144/54018521*10749957122^(5/6) 6099937887599699 a001 144/54018521*4106118243^(20/23) 6099937887599699 a001 144/54018521*1568397607^(10/11) 6099937887599699 a001 144/54018521*599074578^(20/21) 6099937887599702 a004 Fibonacci(12)*Lucas(36)/(1/2+sqrt(5)/2)^33 6099937887599702 a001 63245986/103683 6099937887599711 a001 144/20633239*817138163596^(2/3) 6099937887599711 a001 144/20633239*(1/2+1/2*5^(1/2))^38 6099937887599711 a001 144/20633239*10749957122^(19/24) 6099937887599711 a001 144/20633239*4106118243^(19/23) 6099937887599711 a001 144/20633239*1568397607^(19/22) 6099937887599711 a001 144/20633239*599074578^(19/21) 6099937887599711 a001 144/20633239*228826127^(19/20) 6099937887599734 a004 Fibonacci(12)*Lucas(34)/(1/2+sqrt(5)/2)^31 6099937887599736 a001 3478725648/5702887 6099937887599795 a001 36/1970299*141422324^(12/13) 6099937887599795 a001 36/1970299*2537720636^(4/5) 6099937887599795 a001 36/1970299*45537549124^(12/17) 6099937887599795 a001 36/1970299*14662949395604^(4/7) 6099937887599795 a001 36/1970299*(1/2+1/2*5^(1/2))^36 6099937887599795 a001 36/1970299*505019158607^(9/14) 6099937887599795 a001 36/1970299*192900153618^(2/3) 6099937887599795 a001 36/1970299*73681302247^(9/13) 6099937887599795 a001 36/1970299*10749957122^(3/4) 6099937887599795 a001 36/1970299*4106118243^(18/23) 6099937887599795 a001 36/1970299*1568397607^(9/11) 6099937887599795 a001 36/1970299*599074578^(6/7) 6099937887599795 a001 36/1970299*228826127^(9/10) 6099937887599796 a001 36/1970299*87403803^(18/19) 6099937887599873 a001 144*1860498^(1/10) 6099937887599954 a004 Fibonacci(12)*Lucas(32)/(1/2+sqrt(5)/2)^29 6099937887599968 a001 442918320/726103 6099937887600370 a001 144/3010349*45537549124^(2/3) 6099937887600370 a001 144/3010349*(1/2+1/2*5^(1/2))^34 6099937887600370 a001 144/3010349*10749957122^(17/24) 6099937887600370 a001 144/3010349*4106118243^(17/23) 6099937887600370 a001 144/3010349*1568397607^(17/22) 6099937887600370 a001 144/3010349*599074578^(17/21) 6099937887600370 a001 144/3010349*228826127^(17/20) 6099937887600370 a001 144/3010349*87403803^(17/19) 6099937887600375 a001 144/3010349*33385282^(17/18) 6099937887601459 a004 Fibonacci(12)*Lucas(30)/(1/2+sqrt(5)/2)^27 6099937887601557 a001 63442404/104005 6099937887604310 a001 144/1149851*(1/2+1/2*5^(1/2))^32 6099937887604310 a001 144/1149851*23725150497407^(1/2) 6099937887604310 a001 144/1149851*505019158607^(4/7) 6099937887604310 a001 144/1149851*73681302247^(8/13) 6099937887604310 a001 144/1149851*10749957122^(2/3) 6099937887604310 a001 144/1149851*4106118243^(16/23) 6099937887604310 a001 144/1149851*1568397607^(8/11) 6099937887604310 a001 144/1149851*599074578^(16/21) 6099937887604310 a001 144/1149851*228826127^(4/5) 6099937887604311 a001 144/1149851*87403803^(16/19) 6099937887604315 a001 144/1149851*33385282^(8/9) 6099937887604346 a001 144/1149851*12752043^(16/17) 6099937887611775 a004 Fibonacci(12)*Lucas(28)/(1/2+sqrt(5)/2)^25 6099937887612448 a001 64620912/105937 6099937887631230 a001 36/109801*7881196^(10/11) 6099937887631307 a001 36/109801*20633239^(6/7) 6099937887631319 a001 36/109801*141422324^(10/13) 6099937887631319 a001 36/109801*2537720636^(2/3) 6099937887631319 a001 36/109801*45537549124^(10/17) 6099937887631319 a001 36/109801*312119004989^(6/11) 6099937887631319 a001 36/109801*14662949395604^(10/21) 6099937887631319 a001 36/109801*(1/2+1/2*5^(1/2))^30 6099937887631319 a001 36/109801*192900153618^(5/9) 6099937887631319 a001 36/109801*28143753123^(3/5) 6099937887631319 a001 36/109801*10749957122^(5/8) 6099937887631319 a001 36/109801*4106118243^(15/23) 6099937887631319 a001 36/109801*1568397607^(15/22) 6099937887631319 a001 36/109801*599074578^(5/7) 6099937887631319 a001 36/109801*228826127^(3/4) 6099937887631320 a001 36/109801*87403803^(15/19) 6099937887631323 a001 36/109801*33385282^(5/6) 6099937887631352 a001 36/109801*12752043^(15/17) 6099937887631560 a001 36/109801*4870847^(15/16) 6099937887670626 a001 144*103682^(1/8) 6099937887682485 a004 Fibonacci(12)*Lucas(26)/(1/2+sqrt(5)/2)^23 6099937887687098 a001 74048976/121393 6099937887713228 a001 28657/322*24476^(4/21) 6099937887816427 a001 144/167761*20633239^(4/5) 6099937887816439 a001 144/167761*17393796001^(4/7) 6099937887816439 a001 144/167761*14662949395604^(4/9) 6099937887816439 a001 144/167761*(1/2+1/2*5^(1/2))^28 6099937887816439 a001 144/167761*505019158607^(1/2) 6099937887816439 a001 144/167761*73681302247^(7/13) 6099937887816439 a001 144/167761*10749957122^(7/12) 6099937887816439 a001 144/167761*4106118243^(14/23) 6099937887816439 a001 144/167761*1568397607^(7/11) 6099937887816439 a001 144/167761*599074578^(2/3) 6099937887816439 a001 144/167761*228826127^(7/10) 6099937887816439 a001 144/167761*87403803^(14/19) 6099937887816443 a001 144/167761*33385282^(7/9) 6099937887816470 a001 144/167761*12752043^(14/17) 6099937887816664 a001 144/167761*4870847^(7/8) 6099937887818084 a001 144/167761*1860498^(14/15) 6099937888019757 a001 121393/322*64079^(1/23) 6099937888084347 a001 121393/644+121393/644*5^(1/2) 6099937888107990 a001 121393/322*103682^(1/24) 6099937888130053 a001 144*39603^(3/22) 6099937888155056 a004 Fibonacci(28)/Lucas(12)/(1/2+sqrt(5)/2) 6099937888165373 a004 Fibonacci(30)/Lucas(12)/(1/2+sqrt(5)/2)^3 6099937888166878 a004 Fibonacci(32)/Lucas(12)/(1/2+sqrt(5)/2)^5 6099937888167097 a004 Fibonacci(34)/Lucas(12)/(1/2+sqrt(5)/2)^7 6099937888167130 a004 Fibonacci(36)/Lucas(12)/(1/2+sqrt(5)/2)^9 6099937888167134 a004 Fibonacci(38)/Lucas(12)/(1/2+sqrt(5)/2)^11 6099937888167135 a004 Fibonacci(40)/Lucas(12)/(1/2+sqrt(5)/2)^13 6099937888167135 a004 Fibonacci(42)/Lucas(12)/(1/2+sqrt(5)/2)^15 6099937888167135 a004 Fibonacci(44)/Lucas(12)/(1/2+sqrt(5)/2)^17 6099937888167135 a004 Fibonacci(46)/Lucas(12)/(1/2+sqrt(5)/2)^19 6099937888167135 a004 Fibonacci(12)*Lucas(24)/(1/2+sqrt(5)/2)^21 6099937888167135 a004 Fibonacci(50)/Lucas(12)/(1/2+sqrt(5)/2)^23 6099937888167135 a004 Fibonacci(52)/Lucas(12)/(1/2+sqrt(5)/2)^25 6099937888167135 a004 Fibonacci(54)/Lucas(12)/(1/2+sqrt(5)/2)^27 6099937888167135 a004 Fibonacci(56)/Lucas(12)/(1/2+sqrt(5)/2)^29 6099937888167135 a004 Fibonacci(58)/Lucas(12)/(1/2+sqrt(5)/2)^31 6099937888167135 a004 Fibonacci(60)/Lucas(12)/(1/2+sqrt(5)/2)^33 6099937888167135 a004 Fibonacci(62)/Lucas(12)/(1/2+sqrt(5)/2)^35 6099937888167135 a004 Fibonacci(64)/Lucas(12)/(1/2+sqrt(5)/2)^37 6099937888167135 a004 Fibonacci(66)/Lucas(12)/(1/2+sqrt(5)/2)^39 6099937888167135 a004 Fibonacci(68)/Lucas(12)/(1/2+sqrt(5)/2)^41 6099937888167135 a004 Fibonacci(70)/Lucas(12)/(1/2+sqrt(5)/2)^43 6099937888167135 a004 Fibonacci(72)/Lucas(12)/(1/2+sqrt(5)/2)^45 6099937888167135 a004 Fibonacci(74)/Lucas(12)/(1/2+sqrt(5)/2)^47 6099937888167135 a004 Fibonacci(76)/Lucas(12)/(1/2+sqrt(5)/2)^49 6099937888167135 a004 Fibonacci(78)/Lucas(12)/(1/2+sqrt(5)/2)^51 6099937888167135 a004 Fibonacci(80)/Lucas(12)/(1/2+sqrt(5)/2)^53 6099937888167135 a004 Fibonacci(82)/Lucas(12)/(1/2+sqrt(5)/2)^55 6099937888167135 a004 Fibonacci(84)/Lucas(12)/(1/2+sqrt(5)/2)^57 6099937888167135 a004 Fibonacci(86)/Lucas(12)/(1/2+sqrt(5)/2)^59 6099937888167135 a004 Fibonacci(88)/Lucas(12)/(1/2+sqrt(5)/2)^61 6099937888167135 a004 Fibonacci(90)/Lucas(12)/(1/2+sqrt(5)/2)^63 6099937888167135 a004 Fibonacci(92)/Lucas(12)/(1/2+sqrt(5)/2)^65 6099937888167135 a004 Fibonacci(94)/Lucas(12)/(1/2+sqrt(5)/2)^67 6099937888167135 a004 Fibonacci(96)/Lucas(12)/(1/2+sqrt(5)/2)^69 6099937888167135 a004 Fibonacci(100)/Lucas(12)/(1/2+sqrt(5)/2)^73 6099937888167135 a004 Fibonacci(98)/Lucas(12)/(1/2+sqrt(5)/2)^71 6099937888167135 a004 Fibonacci(99)/Lucas(12)/(1/2+sqrt(5)/2)^72 6099937888167135 a004 Fibonacci(97)/Lucas(12)/(1/2+sqrt(5)/2)^70 6099937888167135 a004 Fibonacci(95)/Lucas(12)/(1/2+sqrt(5)/2)^68 6099937888167135 a004 Fibonacci(93)/Lucas(12)/(1/2+sqrt(5)/2)^66 6099937888167135 a004 Fibonacci(91)/Lucas(12)/(1/2+sqrt(5)/2)^64 6099937888167135 a004 Fibonacci(89)/Lucas(12)/(1/2+sqrt(5)/2)^62 6099937888167135 a004 Fibonacci(87)/Lucas(12)/(1/2+sqrt(5)/2)^60 6099937888167135 a004 Fibonacci(85)/Lucas(12)/(1/2+sqrt(5)/2)^58 6099937888167135 a004 Fibonacci(83)/Lucas(12)/(1/2+sqrt(5)/2)^56 6099937888167135 a004 Fibonacci(81)/Lucas(12)/(1/2+sqrt(5)/2)^54 6099937888167135 a004 Fibonacci(79)/Lucas(12)/(1/2+sqrt(5)/2)^52 6099937888167135 a004 Fibonacci(77)/Lucas(12)/(1/2+sqrt(5)/2)^50 6099937888167135 a004 Fibonacci(75)/Lucas(12)/(1/2+sqrt(5)/2)^48 6099937888167135 a004 Fibonacci(73)/Lucas(12)/(1/2+sqrt(5)/2)^46 6099937888167135 a004 Fibonacci(71)/Lucas(12)/(1/2+sqrt(5)/2)^44 6099937888167135 a004 Fibonacci(69)/Lucas(12)/(1/2+sqrt(5)/2)^42 6099937888167135 a004 Fibonacci(67)/Lucas(12)/(1/2+sqrt(5)/2)^40 6099937888167135 a004 Fibonacci(65)/Lucas(12)/(1/2+sqrt(5)/2)^38 6099937888167135 a004 Fibonacci(63)/Lucas(12)/(1/2+sqrt(5)/2)^36 6099937888167135 a004 Fibonacci(61)/Lucas(12)/(1/2+sqrt(5)/2)^34 6099937888167135 a004 Fibonacci(59)/Lucas(12)/(1/2+sqrt(5)/2)^32 6099937888167135 a004 Fibonacci(57)/Lucas(12)/(1/2+sqrt(5)/2)^30 6099937888167135 a004 Fibonacci(55)/Lucas(12)/(1/2+sqrt(5)/2)^28 6099937888167135 a004 Fibonacci(53)/Lucas(12)/(1/2+sqrt(5)/2)^26 6099937888167135 a004 Fibonacci(51)/Lucas(12)/(1/2+sqrt(5)/2)^24 6099937888167135 a004 Fibonacci(49)/Lucas(12)/(1/2+sqrt(5)/2)^22 6099937888167135 a004 Fibonacci(47)/Lucas(12)/(1/2+sqrt(5)/2)^20 6099937888167135 a004 Fibonacci(45)/Lucas(12)/(1/2+sqrt(5)/2)^18 6099937888167135 a004 Fibonacci(43)/Lucas(12)/(1/2+sqrt(5)/2)^16 6099937888167135 a004 Fibonacci(41)/Lucas(12)/(1/2+sqrt(5)/2)^14 6099937888167135 a004 Fibonacci(39)/Lucas(12)/(1/2+sqrt(5)/2)^12 6099937888167137 a004 Fibonacci(37)/Lucas(12)/(1/2+sqrt(5)/2)^10 6099937888167149 a004 Fibonacci(35)/Lucas(12)/(1/2+sqrt(5)/2)^8 6099937888167233 a004 Fibonacci(33)/Lucas(12)/(1/2+sqrt(5)/2)^6 6099937888167808 a004 Fibonacci(31)/Lucas(12)/(1/2+sqrt(5)/2)^4 6099937888171749 a004 Fibonacci(29)/Lucas(12)/(1/2+sqrt(5)/2)^2 6099937888198757 a001 98209/161 6099937888254697 a001 75025/322*64079^(2/23) 6099937888261132 a001 121393/322*39603^(1/22) 6099937888383877 a001 75025/322*(1/2+1/2*5^(1/2))^2 6099937888383877 a001 75025/322*10749957122^(1/24) 6099937888383877 a001 75025/322*4106118243^(1/23) 6099937888383877 a001 75025/322*1568397607^(1/22) 6099937888383877 a001 75025/322*599074578^(1/21) 6099937888383877 a001 75025/322*228826127^(1/20) 6099937888383877 a001 75025/322*87403803^(1/19) 6099937888383877 a001 75025/322*33385282^(1/18) 6099937888383879 a001 75025/322*12752043^(1/17) 6099937888383893 a001 75025/322*4870847^(1/16) 6099937888383995 a001 75025/322*1860498^(1/15) 6099937888384740 a001 75025/322*710647^(1/14) 6099937888390245 a001 75025/322*271443^(1/13) 6099937888431164 a001 75025/322*103682^(1/12) 6099937888737448 a001 75025/322*39603^(1/11) 6099937889085269 a001 144/64079*141422324^(2/3) 6099937889085270 a001 144/64079*(1/2+1/2*5^(1/2))^26 6099937889085270 a001 144/64079*73681302247^(1/2) 6099937889085270 a001 144/64079*10749957122^(13/24) 6099937889085270 a001 144/64079*4106118243^(13/23) 6099937889085270 a001 144/64079*1568397607^(13/22) 6099937889085270 a001 144/64079*599074578^(13/21) 6099937889085270 a001 144/64079*228826127^(13/20) 6099937889085270 a001 144/64079*87403803^(13/19) 6099937889085273 a001 144/64079*33385282^(13/18) 6099937889085298 a001 144/64079*12752043^(13/17) 6099937889085478 a001 144/64079*4870847^(13/16) 6099937889086797 a001 144/64079*1860498^(13/15) 6099937889096485 a001 144/64079*710647^(13/14) 6099937889394347 a001 28657/322*64079^(4/23) 6099937889417223 a001 121393/322*15127^(1/20) 6099937889652708 a001 28657/322*(1/2+1/2*5^(1/2))^4 6099937889652708 a001 28657/322*23725150497407^(1/16) 6099937889652708 a001 28657/322*73681302247^(1/13) 6099937889652708 a001 28657/322*10749957122^(1/12) 6099937889652708 a001 28657/322*4106118243^(2/23) 6099937889652708 a001 28657/322*1568397607^(1/11) 6099937889652708 a001 28657/322*599074578^(2/21) 6099937889652708 a001 28657/322*228826127^(1/10) 6099937889652708 a001 28657/322*87403803^(2/19) 6099937889652708 a001 28657/322*33385282^(1/9) 6099937889652712 a001 28657/322*12752043^(2/17) 6099937889652740 a001 28657/322*4870847^(1/8) 6099937889652943 a001 28657/322*1860498^(2/15) 6099937889654433 a001 28657/322*710647^(1/7) 6099937889665445 a001 28657/322*271443^(2/13) 6099937889747281 a001 28657/322*103682^(1/6) 6099937890359850 a001 28657/322*39603^(2/11) 6099937890942236 a001 17711/322*15127^(1/4) 6099937891049630 a001 75025/322*15127^(1/10) 6099937891488977 a004 Fibonacci(12)*Lucas(22)/(1/2+sqrt(5)/2)^19 6099937891598325 a001 144*15127^(3/20) 6099937891705719 a001 10803600/17711 6099937893831821 a007 Real Root Of -122*x^4-610*x^3+686*x^2-647*x+986 6099937894984213 a001 28657/322*15127^(1/5) 6099937895440184 a001 5473/161*24476^(2/7) 6099937897753856 a001 36/6119*439204^(8/9) 6099937897781893 a001 36/6119*7881196^(8/11) 6099937897781964 a001 36/6119*141422324^(8/13) 6099937897781965 a001 36/6119*2537720636^(8/15) 6099937897781965 a001 36/6119*45537549124^(8/17) 6099937897781965 a001 36/6119*14662949395604^(8/21) 6099937897781965 a001 36/6119*(1/2+1/2*5^(1/2))^24 6099937897781965 a001 36/6119*192900153618^(4/9) 6099937897781965 a001 36/6119*73681302247^(6/13) 6099937897781965 a001 36/6119*10749957122^(1/2) 6099937897781965 a001 36/6119*4106118243^(12/23) 6099937897781965 a001 36/6119*1568397607^(6/11) 6099937897781965 a001 36/6119*599074578^(4/7) 6099937897781965 a001 36/6119*228826127^(3/5) 6099937897781965 a001 36/6119*87403803^(12/19) 6099937897781968 a001 36/6119*33385282^(2/3) 6099937897781991 a001 36/6119*12752043^(12/17) 6099937897782157 a001 36/6119*4870847^(3/4) 6099937897783374 a001 36/6119*1860498^(4/5) 6099937897792318 a001 36/6119*710647^(6/7) 6099937897858384 a001 36/6119*271443^(12/13) 6099937897961862 a001 5473/161*64079^(6/23) 6099937898235090 a001 121393/322*5778^(1/18) 6099937898342376 a001 5473/161*439204^(2/9) 6099937898349385 a001 5473/161*7881196^(2/11) 6099937898349403 a001 5473/161*141422324^(2/13) 6099937898349403 a001 5473/161*2537720636^(2/15) 6099937898349403 a001 5473/161*45537549124^(2/17) 6099937898349403 a001 5473/161*14662949395604^(2/21) 6099937898349403 a001 5473/161*(1/2+1/2*5^(1/2))^6 6099937898349403 a001 5473/161*10749957122^(1/8) 6099937898349403 a001 5473/161*4106118243^(3/23) 6099937898349403 a001 5473/161*1568397607^(3/22) 6099937898349403 a001 5473/161*599074578^(1/7) 6099937898349403 a001 5473/161*228826127^(3/20) 6099937898349403 a001 5473/161*87403803^(3/19) 6099937898349404 a001 5473/161*33385282^(1/6) 6099937898349410 a001 5473/161*12752043^(3/17) 6099937898349451 a001 5473/161*4870847^(3/16) 6099937898349755 a001 5473/161*1860498^(1/5) 6099937898351991 a001 5473/161*710647^(3/14) 6099937898368508 a001 5473/161*271443^(3/13) 6099937898491263 a001 5473/161*103682^(1/4) 6099937899410116 a001 5473/161*39603^(3/11) 6099937906346660 a001 5473/161*15127^(3/10) 6099937908685364 a001 75025/322*5778^(1/9) 6099937914257220 a004 Fibonacci(12)*Lucas(20)/(1/2+sqrt(5)/2)^17 6099937914547380 r002 6th iterates of z^2 + 6099937915742793 a001 1375536/2255 6099937918051927 a001 144*5778^(1/6) 6099937928572047 a001 4181/322*9349^(8/19) 6099937930255682 a001 28657/322*5778^(2/9) 6099937931976227 m001 (Ei(1)+arctan(1/3))/(exp(1)+Catalan) 6099937932491983 a007 Real Root Of -999*x^4+849*x^3+224*x^2-547*x-86 6099937932564816 a001 6765/322*5778^(7/18) 6099937935031572 a001 17711/322*5778^(5/18) 6099937944657306 p004 log(31727/17239) 6099937954078479 a001 4181/322*24476^(8/21) 6099937955969018 a001 144/9349*64079^(22/23) 6099937957389935 a001 144/9349*7881196^(2/3) 6099937957390000 a001 144/9349*312119004989^(2/5) 6099937957390000 a001 144/9349*(1/2+1/2*5^(1/2))^22 6099937957390000 a001 144/9349*10749957122^(11/24) 6099937957390000 a001 144/9349*4106118243^(11/23) 6099937957390000 a001 144/9349*1568397607^(1/2) 6099937957390000 a001 144/9349*599074578^(11/21) 6099937957390000 a001 144/9349*228826127^(11/20) 6099937957390001 a001 144/9349*87403803^(11/19) 6099937957390004 a001 144/9349*33385282^(11/18) 6099937957390025 a001 144/9349*12752043^(11/17) 6099937957390177 a001 144/9349*4870847^(11/16) 6099937957391293 a001 144/9349*1860498^(11/15) 6099937957399491 a001 144/9349*710647^(11/14) 6099937957440717 a001 4181/322*64079^(8/23) 6099937957460052 a001 144/9349*271443^(11/13) 6099937957910152 a001 144/9349*103682^(11/12) 6099937957957438 a001 4181/322*(1/2+1/2*5^(1/2))^8 6099937957957438 a001 4181/322*23725150497407^(1/8) 6099937957957438 a001 4181/322*505019158607^(1/7) 6099937957957438 a001 4181/322*73681302247^(2/13) 6099937957957438 a001 4181/322*10749957122^(1/6) 6099937957957438 a001 4181/322*4106118243^(4/23) 6099937957957438 a001 4181/322*1568397607^(2/11) 6099937957957438 a001 4181/322*599074578^(4/21) 6099937957957438 a001 4181/322*228826127^(1/5) 6099937957957438 a001 4181/322*87403803^(4/19) 6099937957957439 a001 4181/322*33385282^(2/9) 6099937957957447 a001 4181/322*12752043^(4/17) 6099937957957502 a001 4181/322*4870847^(1/4) 6099937957957908 a001 4181/322*1860498^(4/15) 6099937957960889 a001 4181/322*710647^(2/7) 6099937957982911 a001 4181/322*271443^(4/13) 6099937958146584 a001 4181/322*103682^(1/3) 6099937959253864 a001 5473/161*5778^(1/3) 6099937959371722 a001 4181/322*39603^(4/11) 6099937966355350 a001 121393/322*2207^(1/16) 6099937968620447 a001 4181/322*15127^(2/5) 6099938002330564 a007 Real Root Of 47*x^4+199*x^3-516*x^2+70*x-278 6099938033051412 m002 -4+4/Pi^4-Log[Pi]-Tanh[Pi] 6099938039163387 a001 4181/322*5778^(4/9) 6099938040335032 a007 Real Root Of 107*x^4+784*x^3+707*x^2-543*x+184 6099938044925885 a001 75025/322*2207^(1/8) 6099938070313082 a004 Fibonacci(12)*Lucas(18)/(1/2+sqrt(5)/2)^15 6099938080495356 a001 197028/323 6099938085134695 a001 1597/322*3571^(10/17) 6099938100635422 r005 Im(z^2+c),c=-35/86+17/29*I,n=37 6099938108587073 r009 Im(z^3+c),c=-49/90+11/18*I,n=40 6099938109774471 m001 (Artin+FeigenbaumMu)/(Trott+ZetaQ(2)) 6099938122412709 a001 144*2207^(3/16) 6099938136647446 p004 log(23629/53) 6099938141141255 m001 GAMMA(11/12)^2*exp(MertensB1)^2/GAMMA(7/24) 6099938149500079 a001 1/34*10946^(4/51) 6099938192005875 m001 (-Gompertz+StronglyCareFree)/(GaussAGM-cos(1)) 6099938202736727 a001 28657/322*2207^(1/4) 6099938264403952 r005 Im(z^2+c),c=-111/94+4/49*I,n=13 6099938268445462 a007 Real Root Of -648*x^4+753*x^3+945*x^2+238*x-578 6099938275632881 a001 17711/322*2207^(5/16) 6099938283878496 s002 sum(A059200[n]/(n!^2),n=1..infinity) 6099938305425400 m001 (GAMMA(19/24)-GAMMA(7/12))/LandauRamanujan2nd 6099938318252230 a007 Real Root Of -770*x^4+779*x^3-731*x^2+178*x+664 6099938318930565 a003 sin(Pi*1/52)/cos(Pi*1/22) 6099938329785246 a001 1597/322*9349^(10/19) 6099938342810569 r009 Re(z^3+c),c=-19/31+12/23*I,n=64 6099938348500035 m001 (GAMMA(11/12)+Gompertz)/(ln(3)+ln(5)) 6099938356252188 a001 144/3571*24476^(20/21) 6099938358742727 r005 Re(z^2+c),c=-2/3+31/216*I,n=3 6099938361668288 a001 1597/322*24476^(10/21) 6099938364657784 a001 144/3571*64079^(20/23) 6099938365776193 a001 144/3571*167761^(4/5) 6099938365871086 a001 1597/322*64079^(10/23) 6099938365949578 a001 144/3571*20633239^(4/7) 6099938365949587 a001 144/3571*2537720636^(4/9) 6099938365949587 a001 144/3571*(1/2+1/2*5^(1/2))^20 6099938365949587 a001 144/3571*23725150497407^(5/16) 6099938365949587 a001 144/3571*505019158607^(5/14) 6099938365949587 a001 144/3571*73681302247^(5/13) 6099938365949587 a001 144/3571*28143753123^(2/5) 6099938365949587 a001 144/3571*10749957122^(5/12) 6099938365949587 a001 144/3571*4106118243^(10/23) 6099938365949587 a001 144/3571*1568397607^(5/11) 6099938365949587 a001 144/3571*599074578^(10/21) 6099938365949587 a001 144/3571*228826127^(1/2) 6099938365949587 a001 144/3571*87403803^(10/19) 6099938365949590 a001 144/3571*33385282^(5/9) 6099938365949609 a001 144/3571*12752043^(10/17) 6099938365949747 a001 144/3571*4870847^(5/8) 6099938365950761 a001 144/3571*1860498^(2/3) 6099938365958214 a001 144/3571*710647^(5/7) 6099938366013270 a001 144/3571*271443^(10/13) 6099938366422452 a001 144/3571*103682^(5/6) 6099938366430291 a001 1597/322*167761^(2/5) 6099938366516983 a001 1597/322*20633239^(2/7) 6099938366516988 a001 1597/322*2537720636^(2/9) 6099938366516988 a001 1597/322*312119004989^(2/11) 6099938366516988 a001 1597/322*(1/2+1/2*5^(1/2))^10 6099938366516988 a001 1597/322*28143753123^(1/5) 6099938366516988 a001 1597/322*10749957122^(5/24) 6099938366516988 a001 1597/322*4106118243^(5/23) 6099938366516988 a001 1597/322*1568397607^(5/22) 6099938366516988 a001 1597/322*599074578^(5/21) 6099938366516988 a001 1597/322*228826127^(1/4) 6099938366516988 a001 1597/322*87403803^(5/19) 6099938366516989 a001 1597/322*33385282^(5/18) 6099938366516999 a001 1597/322*12752043^(5/17) 6099938366517068 a001 1597/322*4870847^(5/16) 6099938366517575 a001 1597/322*1860498^(1/3) 6099938366521301 a001 1597/322*710647^(5/14) 6099938366548829 a001 1597/322*271443^(5/13) 6099938366753420 a001 1597/322*103682^(5/12) 6099938367975438 a001 5473/161*2207^(3/8) 6099938368284842 a001 1597/322*39603^(5/11) 6099938369485296 a001 144/3571*39603^(10/11) 6099938379845750 a001 1597/322*15127^(1/2) 6099938395348861 m001 (Ei(1)-gamma)/(Backhouse+CareFree) 6099938398031206 a007 Real Root Of -270*x^4-25*x^3-107*x^2+728*x-44 6099938402497687 m001 1/Pi/GAMMA(7/24)^2/ln(gamma) 6099938409406653 a001 6765/322*2207^(7/16) 6099938409892794 a001 1292/161*2207^(9/16) 6099938424240096 a007 Real Root Of 301*x^4+71*x^3+887*x^2-840*x-868 6099938427783753 m003 -5+25*Cosh[1/2+Sqrt[5]/2]+Log[1/2+Sqrt[5]/2] 6099938441400242 m001 1/cos(Pi/5)/Zeta(1,2)^2*ln(cosh(1)) 6099938455681223 r002 11th iterates of z^2 + 6099938457848132 m001 (-FeigenbaumD+MertensB3)/(1-exp(Pi)) 6099938468024431 a001 1597/322*5778^(5/9) 6099938472361822 a007 Real Root Of -340*x^4+885*x^3-703*x^2-473*x+221 6099938490469582 p001 sum(1/(247*n+164)/(1024^n),n=0..infinity) 6099938501062347 r002 8th iterates of z^2 + 6099938501201076 a001 121393/322*843^(1/14) 6099938509801421 l006 ln(3904/7185) 6099938512201995 r009 Im(z^3+c),c=-7/86+43/60*I,n=7 6099938529924276 r002 34th iterates of z^2 + 6099938530553165 r008 a(0)=0,K{-n^6,-16+90*n^2-90*n} 6099938533459060 m001 (Zeta(1/2)+BesselK(1,1))/(ArtinRank2+Rabbit) 6099938535132346 h001 (6/7*exp(1)+5/9)/(6/11*exp(2)+7/10) 6099938543897317 a001 305/161*1364^(4/5) 6099938584125499 a001 4181/322*2207^(1/2) 6099938598813753 r005 Im(z^2+c),c=-13/118+34/39*I,n=17 6099938601253883 m001 ZetaQ(3)/(PisotVijayaraghavan^GAMMA(17/24)) 6099938604901714 m001 (HardyLittlewoodC3+Lehmer)/(Pi-GAMMA(5/6)) 6099938639664939 a003 sin(Pi*13/95)/sin(Pi*17/71) 6099938647753212 m001 (Psi(1,1/3)+gamma)/(HardyLittlewoodC5+Totient) 6099938659054661 a007 Real Root Of -326*x^4-153*x^3+753*x^2+488*x-498 6099938659242975 m004 500*Pi+(5*Pi*Sinh[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 6099938661988981 r005 Re(z^2+c),c=6/25+20/53*I,n=4 6099938667466227 r002 7th iterates of z^2 + 6099938674719006 h001 (7/12*exp(1)+8/11)/(3/7*exp(2)+5/8) 6099938675349532 a008 Real Root of x^4-x^3-38*x^2+44*x-12 6099938679804909 a007 Real Root Of 147*x^4-586*x^3+691*x^2-873*x-943 6099938702726046 r005 Im(z^2+c),c=-51/44+4/51*I,n=42 6099938754502691 m001 (Zeta(5)-FeigenbaumMu)/(Khinchin+Porter) 6099938762343581 m005 (1/2*Zeta(3)+5/7)/(7/8*exp(1)-2/9) 6099938800167923 r008 a(0)=6,K{-n^6,2-7*n^3-n^2-5*n} 6099938858736025 s001 sum(exp(-Pi/3)^n*A162840[n],n=1..infinity) 6099938890698340 r002 28th iterates of z^2 + 6099938895351839 a001 15456/41*47^(1/8) 6099938919519708 a007 Real Root Of -841*x^4+686*x^3+33*x^2-967*x-330 6099938943795263 r005 Im(z^2+c),c=-23/34+17/115*I,n=48 6099938944443115 a003 sin(Pi*14/115)-sin(Pi*34/77) 6099938945237847 a008 Real Root of x^4-2*x^3+18*x^2-11*x-14 6099938964729351 m005 (1/2*Pi-7/12)/(4/9*5^(1/2)+5/8) 6099938982231668 m001 1/exp(Zeta(1,2))^2/FeigenbaumB^2/cosh(1) 6099938984833101 a007 Real Root Of 992*x^4-354*x^3-111*x^2-301*x-360 6099939021027069 m001 (arctan(1/2)+Khinchin)/(Chi(1)-GAMMA(2/3)) 6099939033878530 a007 Real Root Of 844*x^4-642*x^3+878*x^2-616*x-41 6099939042681985 m001 1/GAMMA(1/6)^2*exp(BesselK(1,1))/cos(Pi/12) 6099939044942201 a007 Real Root Of -205*x^4-181*x^3+191*x^2+740*x-453 6099939058335141 m001 1/Ei(1)/exp(Riemann3rdZero)*sin(1) 6099939061547836 q001 1001/1641 6099939061726962 a007 Real Root Of 121*x^4+860*x^3+780*x^2+134*x-536 6099939062414796 m001 exp(Niven)^2/MertensB1^2*GAMMA(19/24)^2 6099939072071280 s002 sum(A176414[n]/(n*10^n+1),n=1..infinity) 6099939079519832 m005 (2/5*Catalan+1/5)/(5/6*2^(1/2)-1/4) 6099939083995437 a007 Real Root Of 292*x^4+205*x^3-972*x^2-989*x+878 6099939089310641 a007 Real Root Of 449*x^4+853*x^3+621*x^2-958*x-684 6099939090138720 b008 6+(3/7)^E 6099939103346954 a007 Real Root Of 72*x^4+384*x^3-426*x^2-612*x-410 6099939113122832 a007 Real Root Of -700*x^4+433*x^3+415*x^2+202*x-279 6099939114617398 a001 75025/322*843^(1/7) 6099939127143739 a007 Real Root Of -176*x^4-920*x^3+784*x^2-848*x+516 6099939127691947 a007 Real Root Of 167*x^4-482*x^3+875*x^2-690*x-879 6099939136248774 a003 cos(Pi*11/75)*cos(Pi*17/65) 6099939139935869 a004 Fibonacci(12)*Lucas(16)/(1/2+sqrt(5)/2)^13 6099939149219766 m005 (1/2*Pi+3/5)/(-85/22+3/22*5^(1/2)) 6099939149227126 a001 1597/322*2207^(5/8) 6099939164416798 r002 7th iterates of z^2 + 6099939167301076 a007 Real Root Of -85*x^4+773*x^3+385*x^2+822*x+5 6099939167499163 a007 Real Root Of 348*x^4-921*x^3+823*x^2+486*x-267 6099939202170693 m001 1/Zeta(3)/exp(CareFree)^2*sqrt(3)^2 6099939206043742 l006 ln(1999/3679) 6099939209726443 a001 200688/329 6099939219756570 m005 (1/2*gamma-3)/(7/10*2^(1/2)-6/11) 6099939224970910 m002 4+Pi^5+6*Pi^6*Coth[Pi] 6099939240838360 h001 (1/12*exp(1)+3/8)/(1/10*exp(1)+5/7) 6099939269067930 m001 (Cahen+FeigenbaumD)/(Psi(2,1/3)+sin(1/5*Pi)) 6099939279284755 h001 (2/7*exp(2)+8/9)/(5/8*exp(2)+3/10) 6099939292705966 r005 Re(z^2+c),c=-57/118+39/64*I,n=32 6099939293907516 a007 Real Root Of 522*x^4-673*x^3+666*x^2+44*x-446 6099939310857692 m001 1/Magata/exp(HardHexagonsEntropy)*Catalan^2 6099939330133442 a007 Real Root Of 408*x^4+633*x^3+568*x^2-444*x-395 6099939342592847 h001 (5/12*exp(1)+5/11)/(8/11*exp(1)+5/8) 6099939345264531 m001 1/FeigenbaumD*ln(Porter)^2*GAMMA(11/12)^2 6099939382085674 m005 (1/3*5^(1/2)+1/11)/(39/110+5/11*5^(1/2)) 6099939397054748 r002 45th iterates of z^2 + 6099939399655758 a001 1/76*64079^(45/59) 6099939399926420 b008 QPochhammer[5/11,-2/5] 6099939427648698 r005 Re(z^2+c),c=13/90+39/61*I,n=8 6099939435098709 a001 1/4*233^(9/55) 6099939458135737 a001 196418/2207*199^(4/11) 6099939468403936 r002 11th iterates of z^2 + 6099939476934156 r009 Im(z^3+c),c=-3/70+34/45*I,n=54 6099939483836735 m004 -1+(75*Pi)/Log[Sqrt[5]*Pi]^2 6099939491670861 a007 Real Root Of 490*x^4-232*x^3+890*x^2-394*x-692 6099939497110278 m005 (1/2*exp(1)-1/4)/(exp(1)-9/10) 6099939515921696 m005 (3/5*Pi+1/5)/(5/6*Pi+4/5) 6099939515921696 m006 (1/5/Pi+3/5)/(4/5/Pi+5/6) 6099939515921696 m008 (3/5*Pi+1/5)/(5/6*Pi+4/5) 6099939517405288 m001 (Zeta(3)+GAMMA(2/3))/(BesselJ(1,1)-Thue) 6099939524329136 a007 Real Root Of -526*x^4+927*x^3+495*x^2+784*x-800 6099939525381152 a005 (1/cos(17/147*Pi))^709 6099939605513089 m005 (1/2*Pi-5/7)/(1/2*Pi-1/6) 6099939607406695 a007 Real Root Of 100*x^4+268*x^3-6*x^2-602*x-318 6099939625043536 r008 a(0)=0,K{-n^6,-43-87*n^3-97*n^2+63*n} 6099939629785847 r009 Im(z^3+c),c=-6/17+7/11*I,n=60 6099939632849644 r008 a(0)=0,K{-n^6,-7-86*n^3-82*n^2+11*n} 6099939642090154 m004 (-75*Pi)/Log[Sqrt[5]*Pi]^2+Tanh[Sqrt[5]*Pi] 6099939644600034 m002 (2*Sech[Pi])/Pi^17 6099939660222446 a007 Real Root Of 484*x^4-447*x^3+89*x^2-822*x-703 6099939671508630 a007 Real Root Of -646*x^4+608*x^3+44*x^2-187*x+97 6099939699342756 m001 1/ln(Zeta(9))^2/FeigenbaumB^2/sin(Pi/5) 6099939703173960 a007 Real Root Of -572*x^4+994*x^3-657*x^2+393*x+789 6099939720411377 m001 TwinPrimes^2/ln(Salem)/BesselJ(1,1) 6099939726950070 a001 144*843^(3/14) 6099939734637682 a001 3571/433494437*832040^(6/19) 6099939734638238 a001 3571/7778742049*7778742049^(6/19) 6099939754287962 m003 -7+(65*Sqrt[5])/1024+ProductLog[1/2+Sqrt[5]/2] 6099939755719372 a007 Real Root Of 30*x^4-511*x^3+691*x^2-575*x-728 6099939755726069 m001 cos(1/5*Pi)^FeigenbaumD-Salem 6099939769693371 a007 Real Root Of -755*x^4-393*x^3-943*x^2+739*x+817 6099939784224512 r009 Re(z^3+c),c=-13/106+7/10*I,n=28 6099939786022255 m001 OrthogonalArrays/(Gompertz+Niven) 6099939797705282 m001 1/exp(1)^2*Zeta(1/2)/exp(sin(Pi/5))^2 6099939839437082 m002 -6+4/Pi^3-Log[Pi]/5 6099939844731302 m001 sqrt(3)^2*sin(Pi/5)^2*exp(sqrt(Pi)) 6099939849688974 r009 Im(z^3+c),c=-35/74+31/54*I,n=43 6099939852213251 a007 Real Root Of -830*x^4+965*x^3-729*x^2+280*x+776 6099939853999345 a007 Real Root Of -171*x^4+94*x^3+900*x^2+586*x-690 6099939855977582 a007 Real Root Of -741*x^4+694*x^3+536*x^2+353*x+276 6099939858299826 a007 Real Root Of -893*x^4+672*x^3-662*x^2+91*x+578 6099939863054253 a007 Real Root Of -165*x^4+946*x^3-785*x^2-806*x+38 6099939870298346 l006 ln(4092/7531) 6099939877461691 a003 cos(Pi*18/83)*sin(Pi*23/80) 6099939878319207 r002 26th iterates of z^2 + 6099939889625148 m001 (3^(1/2)-Ei(1))/(-FeigenbaumB+Thue) 6099939890111133 a007 Real Root Of 526*x^4-592*x^3+707*x^2+907*x+83 6099939893233958 a007 Real Root Of -624*x^4+652*x^3+94*x^2+860*x+724 6099939932972151 a007 Real Root Of -143*x^4-998*x^3-675*x^2+614*x+329 6099939940520442 a007 Real Root Of -27*x^4+539*x^3+685*x^2+732*x-820 6099939962118593 a001 514229/199*3^(43/55) 6099939980724559 r002 6th iterates of z^2 + 6099940041537499 m001 (Landau-Tetranacci)/(cos(1/5*Pi)-Zeta(1/2)) 6099940059723829 l006 ln(8474/9007) 6099940075947959 b008 -1/2+(1+E*EulerGamma)^2 6099940080070510 r005 Im(z^2+c),c=-67/94+19/42*I,n=3 6099940113146714 r005 Im(z^2+c),c=-49/94+37/62*I,n=28 6099940136013686 m001 1/Zeta(5)^2*ln(Riemann2ndZero)^2/sqrt(2) 6099940142656699 a007 Real Root Of 570*x^4+585*x^3+591*x^2-836*x-676 6099940143197387 a001 9349/1134903170*832040^(6/19) 6099940143197943 a001 9349/20365011074*7778742049^(6/19) 6099940144839071 a007 Real Root Of -575*x^4+812*x^3-551*x^2-554*x+131 6099940152806544 a007 Real Root Of -906*x^4+685*x^3+190*x^2-302*x+26 6099940155489568 r005 Re(z^2+c),c=21/64+23/51*I,n=10 6099940159843010 m005 (1/2*exp(1)-7/12)/(1/10*exp(1)+1) 6099940169634521 m001 ((1+3^(1/2))^(1/2))^BesselI(0,2)+Otter 6099940171348396 a007 Real Root Of -829*x^4+871*x^3-431*x^2-985*x-128 6099940188687773 m002 -3/Pi^2-Cosh[Pi]/2 6099940202805445 a001 24476/2971215073*832040^(6/19) 6099940202806001 a001 24476/53316291173*7778742049^(6/19) 6099940211502143 a001 64079/7778742049*832040^(6/19) 6099940211502700 a001 64079/139583862445*7778742049^(6/19) 6099940212770974 a001 167761/20365011074*832040^(6/19) 6099940212771531 a001 167761/365435296162*7778742049^(6/19) 6099940212956094 a001 439204/53316291173*832040^(6/19) 6099940212956651 a001 439204/956722026041*7778742049^(6/19) 6099940212983103 a001 1149851/139583862445*832040^(6/19) 6099940212983659 a001 1149851/2504730781961*7778742049^(6/19) 6099940212987043 a001 3010349/365435296162*832040^(6/19) 6099940212987600 a001 3010349/6557470319842*7778742049^(6/19) 6099940212987618 a001 7881196/956722026041*832040^(6/19) 6099940212987702 a001 20633239/2504730781961*832040^(6/19) 6099940212987714 a001 54018521/6557470319842*832040^(6/19) 6099940212987717 a001 29134601/3536736619241*832040^(6/19) 6099940212987722 a001 33385282/4052739537881*832040^(6/19) 6099940212987754 a001 4250681/516002918640*832040^(6/19) 6099940212987974 a001 4870847/591286729879*832040^(6/19) 6099940212988530 a001 1/2178309*7778742049^(6/19) 6099940212989479 a001 620166/75283811239*832040^(6/19) 6099940212990035 a001 1860498/4052739537881*7778742049^(6/19) 6099940212999795 a001 710647/86267571272*832040^(6/19) 6099940213000352 a001 710647/1548008755920*7778742049^(6/19) 6099940213070505 a001 1/121393*832040^(6/19) 6099940213071061 a001 271443/591286729879*7778742049^(6/19) 6099940213555155 a001 103682/12586269025*832040^(6/19) 6099940213555712 a001 103682/225851433717*7778742049^(6/19) 6099940216876998 a001 13201/1602508992*832040^(6/19) 6099940216877555 a001 39603/86267571272*7778742049^(6/19) 6099940222958195 a007 Real Root Of -662*x^4+878*x^3+150*x^2+908*x+789 6099940223203758 m001 (Magata+MertensB2)/gamma(1) 6099940224312291 m001 (BesselK(0,1)+TwinPrimes)/Pi^(1/2) 6099940224312291 m001 (BesselK(0,1)+TwinPrimes)/sqrt(Pi) 6099940226639144 a007 Real Root Of -786*x^4+369*x^3-548*x^2+732*x+843 6099940233659805 a007 Real Root Of -536*x^4+638*x^3-850*x^2-130*x+456 6099940239645250 a001 15127/1836311903*832040^(6/19) 6099940239645807 a001 15127/32951280099*7778742049^(6/19) 6099940242304308 m001 Riemann1stZero/(FeigenbaumAlpha^Catalan) 6099940254133590 m005 (1/3*Pi+1/6)/(6/7*2^(1/2)+7/9) 6099940274913820 m001 (Backhouse-FellerTornier)/(Kac-TreeGrowth2nd) 6099940288072236 m001 (Si(Pi)-arctan(1/3))/(-BesselI(1,2)+Totient) 6099940288194710 m001 (Sierpinski+Totient)/Cahen 6099940289819953 m005 (1/3*Zeta(3)-2/7)/(8/11*Pi-2/5) 6099940297179991 m001 (Grothendieck-MertensB1)/(Zeta(5)+Backhouse) 6099940300198892 r009 Im(z^3+c),c=-13/36+30/49*I,n=20 6099940319472785 m001 ln(Riemann3rdZero)^2*FeigenbaumB/sqrt(2) 6099940342119996 a001 28657/322*843^(2/7) 6099940355857234 m001 (Landau-Rabbit)/(exp(1/Pi)+FeigenbaumKappa) 6099940356732192 m005 (1/2*2^(1/2)-1/5)/(-8/63+3/7*5^(1/2)) 6099940364506420 m001 1/ArtinRank2^2*ln(FransenRobinson)^2/Ei(1)^2 6099940388553341 m001 (Mills-Robbin)/(GAMMA(7/12)-Bloch) 6099940395701171 a001 1926/233802911*832040^(6/19) 6099940395701728 a001 5778/12586269025*7778742049^(6/19) 6099940403623833 a007 Real Root Of 477*x^4-844*x^3-486*x^2-224*x+443 6099940404252997 r002 29th iterates of z^2 + 6099940410871147 p001 sum(1/(353*n+188)/(3^n),n=0..infinity) 6099940415411183 a007 Real Root Of 901*x^4-549*x^3+113*x^2-260*x-450 6099940448961610 a007 Real Root Of -175*x^4-928*x^3+952*x^2+477*x-853 6099940463424213 a007 Real Root Of -133*x^4+958*x^3-867*x^2+14*x+567 6099940480641421 m001 1/exp(GAMMA(5/6))^2/Si(Pi)^2*sqrt(2)^2 6099940487189297 m005 (3/4*exp(1)+4/5)/(3/5*gamma-5) 6099940498648356 r005 Re(z^2+c),c=-1/7+33/47*I,n=26 6099940504720164 l006 ln(2093/3852) 6099940507762782 a007 Real Root Of 755*x^4-47*x^3+743*x^2-794*x-876 6099940527731759 a001 514229/5778*199^(4/11) 6099940530472049 a007 Real Root Of -381*x^4+921*x^3-404*x^2-92*x+356 6099940541847869 a001 33385282/3*8^(9/11) 6099940558417281 p001 sum(1/(509*n+164)/(625^n),n=0..infinity) 6099940565864229 m001 (Catalan+Zeta(5))/(Ei(1)+Mills) 6099940603469487 m005 (1/3*Zeta(3)+1/7)/(1/8*2^(1/2)+5/7) 6099940606384517 r005 Im(z^2+c),c=37/90+21/62*I,n=17 6099940632534593 r002 10th iterates of z^2 + 6099940664760418 a001 1346269/7*199^(32/49) 6099940672069791 h001 (4/9*exp(2)+1/12)/(1/9*exp(1)+1/4) 6099940683783747 a001 1346269/15127*199^(4/11) 6099940687310114 a007 Real Root Of -777*x^4+78*x^3+28*x^2+574*x+465 6099940706551426 a001 3524578/39603*199^(4/11) 6099940708302710 a007 Real Root Of -16*x^4-981*x^3-299*x^2+394*x-434 6099940709873185 a001 9227465/103682*199^(4/11) 6099940710357824 a001 24157817/271443*199^(4/11) 6099940710428531 a001 63245986/710647*199^(4/11) 6099940710438847 a001 165580141/1860498*199^(4/11) 6099940710440353 a001 433494437/4870847*199^(4/11) 6099940710440572 a001 1134903170/12752043*199^(4/11) 6099940710440604 a001 2971215073/33385282*199^(4/11) 6099940710440609 a001 7778742049/87403803*199^(4/11) 6099940710440609 a001 20365011074/228826127*199^(4/11) 6099940710440610 a001 53316291173/599074578*199^(4/11) 6099940710440610 a001 139583862445/1568397607*199^(4/11) 6099940710440610 a001 365435296162/4106118243*199^(4/11) 6099940710440610 a001 956722026041/10749957122*199^(4/11) 6099940710440610 a001 2504730781961/28143753123*199^(4/11) 6099940710440610 a001 6557470319842/73681302247*199^(4/11) 6099940710440610 a001 10610209857723/119218851371*199^(4/11) 6099940710440610 a001 4052739537881/45537549124*199^(4/11) 6099940710440610 a001 1548008755920/17393796001*199^(4/11) 6099940710440610 a001 591286729879/6643838879*199^(4/11) 6099940710440610 a001 225851433717/2537720636*199^(4/11) 6099940710440610 a001 86267571272/969323029*199^(4/11) 6099940710440610 a001 32951280099/370248451*199^(4/11) 6099940710440610 a001 12586269025/141422324*199^(4/11) 6099940710440612 a001 4807526976/54018521*199^(4/11) 6099940710440624 a001 1836311903/20633239*199^(4/11) 6099940710440708 a001 3524667/39604*199^(4/11) 6099940710441283 a001 267914296/3010349*199^(4/11) 6099940710445223 a001 102334155/1149851*199^(4/11) 6099940710472231 a001 39088169/439204*199^(4/11) 6099940710657346 a001 14930352/167761*199^(4/11) 6099940711926146 a001 5702887/64079*199^(4/11) 6099940715179231 r002 49th iterates of z^2 + 6099940719609457 m005 (1/2*2^(1/2)-1/4)/(10/11*Catalan-1/12) 6099940720622625 a001 2178309/24476*199^(4/11) 6099940732912136 a001 322/11*(1/2*5^(1/2)+1/2)^26*11^(17/20) 6099940750581890 p004 log(19433/10559) 6099940751727950 a003 sin(Pi*13/53)*sin(Pi*18/53) 6099940766156339 g006 -Psi(1,5/12)-Psi(1,3/11)-Psi(1,1/6)-Psi(1,4/5) 6099940771389257 m006 (1/3/Pi+1/5)/(5*Pi^2+5/6) 6099940780229183 a001 832040/9349*199^(4/11) 6099940788139871 r005 Im(z^2+c),c=-11/18+6/53*I,n=51 6099940797671725 a007 Real Root Of 114*x^4-472*x^3+315*x^2-808*x-733 6099940829166895 a001 305/161*3571^(12/17) 6099940846413886 m001 BesselK(1,1)^(ln(5)/(1+3^(1/2))^(1/2)) 6099940846413886 m001 BesselK(1,1)^(ln(5)/sqrt(1+sqrt(3))) 6099940863394441 q001 2063/3382 6099940949862117 a001 17711/322*843^(5/14) 6099940958862907 m005 (1/2*Pi+1/6)/(3/7*Zeta(3)-4/5) 6099940966265726 a007 Real Root Of 172*x^4+887*x^3-850*x^2+731*x-726 6099940969065039 r005 Re(z^2+c),c=-14/23+34/55*I,n=21 6099940979687615 m001 (-gamma(1)+GAMMA(19/24))/(sin(1)+Zeta(3)) 6099940989465441 a003 cos(Pi*35/92)-sin(Pi*22/51) 6099941037228313 r002 56th iterates of z^2 + 6099941039802101 a007 Real Root Of -68*x^4-240*x^3+913*x^2-932*x+17 6099941056259523 a007 Real Root Of -46*x^4+661*x^3-624*x^2+822*x+890 6099941060669780 r009 Im(z^3+c),c=-1/29+37/49*I,n=46 6099941063208280 r002 58th iterates of z^2 + 6099941064902472 a007 Real Root Of -113*x^4+756*x^3-781*x^2+506*x-174 6099941068401562 r005 Im(z^2+c),c=-43/78+5/46*I,n=28 6099941094163600 r005 Im(z^2+c),c=-19/36+11/18*I,n=61 6099941100142959 a001 36/341*9349^(18/19) 6099941103585691 m001 (Rabbit-Sierpinski)/(BesselI(0,2)+Kolakoski) 6099941111274818 l006 ln(4280/7877) 6099941117588682 m001 ln((2^(1/3)))^2*Cahen^2/BesselK(1,1)^2 6099941122747690 a001 305/161*9349^(12/19) 6099941146876759 r005 Im(z^2+c),c=-41/34+36/101*I,n=7 6099941157532460 a001 36/341*24476^(6/7) 6099941161007358 a001 305/161*24476^(4/7) 6099941165097500 a001 36/341*64079^(18/23) 6099941166050718 a001 305/161*64079^(12/23) 6099941166239042 a001 36/341*439204^(2/3) 6099941166260070 a001 36/341*7881196^(6/11) 6099941166260123 a001 36/341*141422324^(6/13) 6099941166260123 a001 36/341*2537720636^(2/5) 6099941166260123 a001 36/341*45537549124^(6/17) 6099941166260123 a001 36/341*14662949395604^(2/7) 6099941166260123 a001 36/341*(1/2+1/2*5^(1/2))^18 6099941166260123 a001 36/341*192900153618^(1/3) 6099941166260123 a001 36/341*10749957122^(3/8) 6099941166260123 a001 36/341*4106118243^(9/23) 6099941166260123 a001 36/341*1568397607^(9/22) 6099941166260123 a001 36/341*599074578^(3/7) 6099941166260123 a001 36/341*228826127^(9/20) 6099941166260124 a001 36/341*87403803^(9/19) 6099941166260126 a001 36/341*33385282^(1/2) 6099941166260143 a001 36/341*12752043^(9/17) 6099941166260268 a001 36/341*4870847^(9/16) 6099941166261181 a001 36/341*1860498^(3/5) 6099941166267888 a001 36/341*710647^(9/14) 6099941166317438 a001 36/341*271443^(9/13) 6099941166603430 h001 (1/11*exp(2)+4/9)/(7/11*exp(1)+1/10) 6099941166685702 a001 36/341*103682^(3/4) 6099941166811745 a001 305/161*439204^(4/9) 6099941166825764 a001 305/161*7881196^(4/11) 6099941166825800 a001 305/161*141422324^(4/13) 6099941166825800 a001 305/161*2537720636^(4/15) 6099941166825800 a001 305/161*45537549124^(4/17) 6099941166825800 a001 305/161*817138163596^(4/19) 6099941166825800 a001 305/161*14662949395604^(4/21) 6099941166825800 a001 305/161*(1/2+1/2*5^(1/2))^12 6099941166825800 a001 305/161*192900153618^(2/9) 6099941166825800 a001 305/161*73681302247^(3/13) 6099941166825800 a001 305/161*10749957122^(1/4) 6099941166825800 a001 305/161*4106118243^(6/23) 6099941166825800 a001 305/161*1568397607^(3/11) 6099941166825800 a001 305/161*599074578^(2/7) 6099941166825800 a001 305/161*228826127^(3/10) 6099941166825800 a001 305/161*87403803^(6/19) 6099941166825801 a001 305/161*33385282^(1/3) 6099941166825813 a001 305/161*12752043^(6/17) 6099941166825896 a001 305/161*4870847^(3/8) 6099941166826505 a001 305/161*1860498^(2/5) 6099941166830976 a001 305/161*710647^(3/7) 6099941166864010 a001 305/161*271443^(6/13) 6099941167109519 a001 305/161*103682^(1/2) 6099941168947226 a001 305/161*39603^(6/11) 6099941169442263 a001 36/341*39603^(9/11) 6099941182820322 a001 305/161*15127^(3/5) 6099941188778642 a001 317811/3571*199^(4/11) 6099941190251907 a001 36/341*15127^(9/10) 6099941209958242 a003 sin(Pi*8/41)/sin(Pi*20/51) 6099941213115396 m001 1/ln(FeigenbaumD)/Conway/GAMMA(5/6)^2 6099941240614814 a007 Real Root Of 275*x^4-524*x^3-666*x^2-653*x+727 6099941241597010 a007 Real Root Of -10*x^4-620*x^3-615*x^2-273*x+640 6099941268030851 m005 (1/2*exp(1)+1/5)/(10/11*Pi-3/10) 6099941288634788 a001 305/161*5778^(2/3) 6099941331282919 a001 9/416020*10946^(41/48) 6099941353039998 a007 Real Root Of -170*x^4-917*x^3+573*x^2-828*x+863 6099941367504427 a007 Real Root Of 269*x^4-715*x^3+508*x^2-645*x-782 6099941378176321 k005 Champernowne real with floor(sqrt(3)*(222*n+130)) 6099941379176421 k001 Champernowne real with 385*n+224 6099941386026429 a007 Real Root Of -663*x^4+230*x^3-50*x^2+540*x+492 6099941392268901 m001 (ln(3)+Artin)/(exp(Pi)+1) 6099941399135983 m001 (GAMMA(3/4)-ln(Pi))/(arctan(1/2)+Thue) 6099941400861995 a007 Real Root Of -795*x^4-695*x^3-533*x^2-265*x-11 6099941410171955 a007 Real Root Of 815*x^4+146*x^3-385*x^2-896*x-483 6099941440562170 q001 5/81968 6099941448431321 h001 (1/5*exp(2)+1/9)/(7/11*exp(1)+7/8) 6099941455134495 p004 log(20719/20593) 6099941465324366 a001 2207/267914296*832040^(6/19) 6099941465324923 a001 2207/4807526976*7778742049^(6/19) 6099941515336466 m001 GAMMA(13/24)^(2^(1/2)*Sierpinski) 6099941521770294 r004 Im(z^2+c),c=3/7-5/23*I,z(0)=exp(5/8*I*Pi),n=41 6099941538892030 a007 Real Root Of -362*x^4+721*x^3-375*x^2+641*x-365 6099941548669570 m001 (Zeta(1,-1)+Landau)/(Robbin-Sarnak) 6099941577050711 a001 5473/161*843^(3/7) 6099941589565335 m001 Conway^Psi(2,1/3)*Zeta(5)^Psi(2,1/3) 6099941602697829 r009 Im(z^3+c),c=-21/106+31/44*I,n=26 6099941604956322 r005 Im(z^2+c),c=-67/60+4/53*I,n=7 6099941608987024 a001 521/1597*75025^(6/23) 6099941669625608 r005 Re(z^2+c),c=7/32+21/50*I,n=7 6099941671018498 r005 Re(z^2+c),c=-7/78+21/29*I,n=26 6099941679003596 r009 Im(z^3+c),c=-33/70+25/49*I,n=23 6099941680024216 p001 sum(1/(433*n+259)/n/(24^n),n=1..infinity) 6099941691758959 l006 ln(2187/4025) 6099941716373713 m001 (gamma+Zeta(5))/(Mills+Totient) 6099941720603896 m001 Champernowne+DuboisRaymond^BesselJ(1,1) 6099941726243628 a001 11/377*317811^(35/58) 6099941733263307 m001 GaussKuzminWirsing^(Si(Pi)*GAMMA(5/24)) 6099941738936002 r008 a(0)=6,K{-n^6,40+29*n^3-58*n^2-14*n} 6099941774780327 r002 7th iterates of z^2 + 6099941790691442 m005 (1/2*5^(1/2)-2/11)/(8/11*Pi-3/4) 6099941791266243 m001 gamma/(FeigenbaumB^(ln(2)/ln(10))) 6099941794553691 m001 1/ln(sinh(1))*CopelandErdos^2*sqrt(Pi) 6099941806756550 m001 (-ln(gamma)+Thue)/(3^(1/2)+gamma) 6099941810908885 a007 Real Root Of -611*x^4+925*x^3+365*x^2+407*x+407 6099941844784733 r005 Im(z^2+c),c=-11/8+59/255*I,n=4 6099941931607980 s002 sum(A209524[n]/(n*pi^n-1),n=1..infinity) 6099941958829329 s002 sum(A052533[n]/(n^2*exp(n)-1),n=1..infinity) 6099941980277407 m001 (exp(1/Pi)+BesselJ(1,1))/(ln(Pi)-3^(1/3)) 6099941988752749 a007 Real Root Of 588*x^4-138*x^3-955*x^2-134*x+387 6099942002261318 r008 a(0)=0,K{-n^6,-2-97*n^3-46*n^2-19*n} 6099942017158089 a007 Real Root Of 691*x^4+502*x^3+149*x^2-303*x-222 6099942019198259 a007 Real Root Of -696*x^4+553*x^3+142*x^2+536*x+496 6099942038873230 m001 (-Zeta(1,-1)+BesselK(1,1))/(exp(1)+Zeta(1/2)) 6099942056485704 r008 a(0)=0,K{-n^6,90-67*n^3-90*n^2-97*n} 6099942063130316 a001 55/15127*76^(28/43) 6099942072860314 m001 (-Grothendieck+Trott2nd)/(3^(1/2)+ln(Pi)) 6099942074963721 r005 Im(z^2+c),c=-83/82+3/49*I,n=4 6099942085745916 a007 Real Root Of 147*x^4+763*x^3-762*x^2+321*x-33 6099942085795053 a001 521/28657*4807526976^(6/23) 6099942090864727 a007 Real Root Of 196*x^4-293*x^3+472*x^2+307*x-82 6099942105281283 r005 Im(z^2+c),c=-27/22+1/13*I,n=18 6099942106078410 a001 305/161*2207^(3/4) 6099942118703664 r005 Im(z^2+c),c=-75/118+3/26*I,n=45 6099942137856425 m001 (KomornikLoreti+ZetaQ(2))/(Pi-Champernowne) 6099942143661135 m005 (1/2*3^(1/2)+1/8)/(1/3*Catalan-1/7) 6099942153327994 a001 6765/322*843^(1/2) 6099942176342852 r009 Im(z^3+c),c=-1/60+11/16*I,n=5 6099942205825036 m001 (BesselI(1,1)-Si(Pi))/(-Khinchin+Stephens) 6099942215039645 m005 (1/2*3^(1/2)-7/9)/(4/7*exp(1)-3) 6099942224850240 a007 Real Root Of 158*x^4-791*x^3-501*x^2+28*x+327 6099942234814451 m001 exp(1)*BesselI(0,1)*Pi^(1/2) 6099942234814451 m001 exp(1)*BesselI(0,1)*sqrt(Pi) 6099942234814451 b004 Shamos Catalog of real numbers 6099942243813796 m009 (1/5*Psi(1,2/3)-1)/(1/3*Psi(1,1/3)-4) 6099942247818041 l006 ln(4468/8223) 6099942256931957 m005 (1/2*gamma+7/8)/(2/9*Pi-8/9) 6099942299526327 m001 Riemann1stZero*(CareFree-RenyiParking) 6099942313897210 b008 (3*Sqrt[E])/2+Sinh[2] 6099942329191318 a007 Real Root Of -974*x^4-488*x^3-840*x^2-365*x+114 6099942374629370 a007 Real Root Of -543*x^4-406*x^3-647*x^2+443*x+494 6099942375749812 a007 Real Root Of -730*x^4+937*x^3-681*x^2+226*x+705 6099942385489335 a007 Real Root Of 839*x^4-812*x^3+567*x^2-396*x-753 6099942385858817 m001 Khinchin*exp(gamma)+ln(2+sqrt(3)) 6099942412939164 a007 Real Root Of 721*x^4-806*x^3+747*x^2+52*x-529 6099942429767310 r005 Re(z^2+c),c=-3/26+46/49*I,n=13 6099942438354719 r008 a(0)=6,K{-n^6,-49+63*n-14*n^2-11*n^3} 6099942494114308 s002 sum(A176148[n]/(n^3*exp(n)-1),n=1..infinity) 6099942544577925 m001 Rabbit*Lehmer^2/ln(Ei(1))^2 6099942561746122 q001 1062/1741 6099942568906240 m001 Sarnak^(Si(Pi)*FeigenbaumDelta) 6099942606331889 a007 Real Root Of 435*x^4-552*x^3+985*x^2+223*x-416 6099942630396669 b008 11*JacobiCN[1,1/8] 6099942632360591 m005 (1/2*2^(1/2)-7/10)/(3/8*Zeta(3)+5/7) 6099942657369351 m001 1/sqrt(3)^2/ln(GAMMA(1/6))*sqrt(Pi)^2 6099942668299273 a007 Real Root Of -96*x^4-102*x^3-639*x^2-431*x-35 6099942670328300 a007 Real Root Of 518*x^4-61*x^3-648*x^2-516*x+498 6099942674513843 r009 Im(z^3+c),c=-8/15+13/42*I,n=3 6099942690460616 a007 Real Root Of 691*x^4-66*x^3-4*x^2-544*x-441 6099942695143219 m001 (Pi+Psi(2,1/3)-gamma(2))*GAMMA(19/24) 6099942702964855 m002 9/Pi^4+6*Sech[Pi] 6099942706488983 a007 Real Root Of -529*x^4+934*x^3-752*x^2-5*x+562 6099942712871191 a007 Real Root Of -314*x^4+637*x^3-959*x^2-990*x-59 6099942713071697 a007 Real Root Of 830*x^4-274*x^3-321*x^2-461*x-27 6099942732754073 r005 Im(z^2+c),c=-2/3+47/142*I,n=15 6099942780961902 l006 ln(2281/4198) 6099942783827588 a007 Real Root Of -630*x^4-53*x^3-715*x^2+416*x+595 6099942789736897 a007 Real Root Of 265*x^4-153*x^3-814*x^2-128*x+379 6099942790824555 a001 121393/322*322^(1/12) 6099942817450333 m002 6+Log[Pi]/Pi^6+Log[Pi]*Sech[Pi] 6099942818241322 r005 Im(z^2+c),c=19/54+11/35*I,n=19 6099942845548539 h001 (5/11*exp(2)+5/9)/(6/7*exp(2)+1/12) 6099942848940657 m001 cos(1)/Zeta(1/2)*exp(1/2) 6099942851262175 m001 LaplaceLimit*exp(GlaisherKinkelin)^2*sin(1)^2 6099942856028185 a007 Real Root Of -650*x^4+989*x^3+534*x^2+843*x+630 6099942860952929 r005 Im(z^2+c),c=25/62+21/62*I,n=52 6099942862893056 a001 4181/322*843^(4/7) 6099942938166210 a007 Real Root Of 796*x^4+907*x^3+320*x^2-728*x+43 6099942939192205 m005 (1/2*gamma-1/12)/(2/3*3^(1/2)-9/11) 6099942950218859 a007 Real Root Of -81*x^4-375*x^3+775*x^2+336*x+244 6099943023310376 r005 Re(z^2+c),c=-15/22+47/104*I,n=31 6099943027752754 p003 LerchPhi(1/256,6,124/53) 6099943094719677 a003 cos(Pi*16/77)*sin(Pi*17/61) 6099943106069536 a003 cos(Pi*8/77)-sin(Pi*26/75) 6099943136054027 l006 ln(3609/3836) 6099943148333961 r002 22th iterates of z^2 + 6099943161810418 p003 LerchPhi(1/2,5,199/70) 6099943191306251 p003 LerchPhi(1/4,3,50/91) 6099943194956807 m008 (3/4*Pi^6-1/4)/(4*Pi-3/4) 6099943216259210 r009 Im(z^3+c),c=-33/94+26/35*I,n=13 6099943223506369 a001 1292/161*843^(9/14) 6099943224401327 r009 Re(z^3+c),c=-3/40+11/37*I,n=6 6099943227824413 m001 Zeta(1,2)^DuboisRaymond-MertensB2 6099943232894517 r002 10th iterates of z^2 + 6099943244138658 r005 Im(z^2+c),c=-10/27+31/50*I,n=28 6099943247542130 m001 1/GAMMA(3/4)*ln(GAMMA(17/24))^2/sin(1) 6099943254432278 h001 (2/7*exp(1)+1/11)/(2/9*exp(1)+9/11) 6099943254495381 a007 Real Root Of 510*x^4-743*x^3+656*x^2+635*x-96 6099943270867398 m001 1/FeigenbaumD*RenyiParking*exp(cosh(1))^2 6099943279984355 a007 Real Root Of -851*x^4+807*x^3-665*x^2+737*x+998 6099943285510152 s002 sum(A236335[n]/(n*2^n+1),n=1..infinity) 6099943292578450 l006 ln(4656/8569) 6099943317593925 m001 1/Magata^2*MadelungNaCl^2/exp(MinimumGamma) 6099943340404116 a007 Real Root Of 667*x^4-956*x^3-746*x^2-825*x-535 6099943366936899 m003 25/4+(5*Sqrt[5])/32-Sin[1/2+Sqrt[5]/2]/2 6099943367162087 r005 Re(z^2+c),c=-33/64+32/63*I,n=16 6099943379828811 m001 (2^(1/3)+Chi(1))/(-GAMMA(3/4)+QuadraticClass) 6099943380116992 a001 141/46*843^(11/14) 6099943380585335 r005 Im(z^2+c),c=31/90+10/29*I,n=12 6099943408940899 r005 Re(z^2+c),c=-3/20+39/56*I,n=41 6099943434460190 m001 ln(BesselK(1,1))^2*Cahen/exp(1) 6099943436660807 a007 Real Root Of -748*x^4+615*x^3+578*x^2+472*x+316 6099943454760552 a007 Real Root Of 906*x^4-568*x^3-127*x^2-790*x-689 6099943458780203 m005 (1/2*gamma+3/10)/(5/12*3^(1/2)-9/11) 6099943473710738 m001 1/sqrt(3)^2/LandauRamanujan^2/exp(sqrt(5)) 6099943486221760 m009 (3/4*Psi(1,2/3)-2)/(2*Psi(1,3/4)-1/5) 6099943528664136 r004 Re(z^2+c),c=-7/10+3/22*I,z(0)=-1,n=13 6099943538787675 a007 Real Root Of 433*x^4-938*x^3-917*x^2-244*x+643 6099943543755953 a007 Real Root Of -145*x^4-878*x^3-73*x^2-758*x-434 6099943590331894 m001 (Artin-Rabbit)/(sin(1/12*Pi)-AlladiGrinstead) 6099943608767185 a007 Real Root Of -485*x^4-753*x^3-776*x^2+382*x+418 6099943610811365 r009 Im(z^3+c),c=-41/94+17/32*I,n=13 6099943650466840 a001 55/2207*3^(22/27) 6099943659697246 r002 4th iterates of z^2 + 6099943664180699 m001 (-FeigenbaumAlpha+5)/(-BesselI(1,2)+2) 6099943676662245 m005 (1/2*Zeta(3)-4)/(11/10+2*5^(1/2)) 6099943710116280 r005 Im(z^2+c),c=-79/114+13/62*I,n=19 6099943717290027 m001 (1-Shi(1))/(-cos(1/5*Pi)+MadelungNaCl) 6099943719080116 m001 (gamma(3)+LaplaceLimit)/(cos(1)-ln(gamma)) 6099943719584142 m005 (1/3*Pi-3/4)/(2*5^(1/2)+2/5) 6099943725646405 m001 (Zeta(1/2)-gamma*FeigenbaumMu)/gamma 6099943726237963 m001 (3^(1/2))^Mills/ReciprocalFibonacci 6099943726844687 r005 Re(z^2+c),c=-29/122+29/40*I,n=28 6099943758149935 m006 (3/4*ln(Pi)+1/3)/(2*Pi^2-1/5) 6099943769376102 r005 Im(z^2+c),c=-19/26+25/121*I,n=47 6099943769463364 r005 Im(z^2+c),c=31/70+20/59*I,n=29 6099943783945729 l006 ln(2375/4371) 6099943788538914 m001 1/exp(GAMMA(5/24))*LandauRamanujan/cosh(1) 6099943807697307 a007 Real Root Of -586*x^4+877*x^3+621*x^2+541*x-679 6099943815176971 v002 sum(1/(2^n+(15/2*n^2-5/2*n+43)),n=1..infinity) 6099943815391897 a007 Real Root Of -903*x^4+847*x^3-107*x^2+872*x+889 6099943881845740 b008 5+(7*Sqrt[2])/9 6099943902228142 m001 exp(BesselJ(1,1))/Niven*sin(Pi/12)^2 6099943904253066 a007 Real Root Of 645*x^4-909*x^3-580*x^2-945*x+60 6099943923179060 m001 (5^(1/2)+AlladiGrinstead)/(-Stephens+ZetaP(4)) 6099943943776364 a007 Real Root Of -354*x^4+503*x^3-656*x^2+693*x+830 6099943944385261 r005 Re(z^2+c),c=-39/58+11/56*I,n=3 6099943945402334 a007 Real Root Of 95*x^4+520*x^3-230*x^2+967*x+953 6099943953395831 r009 Re(z^3+c),c=-45/74+15/31*I,n=25 6099943969052511 r005 Re(z^2+c),c=13/70+3/7*I,n=9 6099943972863539 m001 (MinimumGamma-Zeta(5))^gamma 6099943989019765 a001 121393/1364*199^(4/11) 6099943989791668 m003 21/4+(5*Sqrt[5])/32+Csc[1/2+Sqrt[5]/2]/2 6099944003267879 r005 Re(z^2+c),c=-43/114+35/57*I,n=44 6099944004234857 a007 Real Root Of 756*x^4-408*x^3-967*x^2-414*x-90 6099944007811599 a001 76/1597*610^(28/37) 6099944012639639 m001 (Kac+Khinchin)/(ln(Pi)-BesselK(1,1)) 6099944014263519 a007 Real Root Of 302*x^4-419*x^3+676*x^2-55*x-422 6099944015948743 a007 Real Root Of -103*x^4+419*x^3-271*x^2+800*x-468 6099944019287988 a007 Real Root Of -952*x^4+265*x^3+321*x^2+709*x+505 6099944039018091 a003 cos(Pi*26/101)*sin(Pi*10/29) 6099944070252413 a007 Real Root Of 606*x^4+67*x^3+160*x^2-57*x-163 6099944099792875 a007 Real Root Of 351*x^4-831*x^3+792*x^2-169*x-635 6099944132442091 a007 Real Root Of -122*x^4-855*x^3-620*x^2+476*x+823 6099944143689695 a007 Real Root Of -426*x^4+607*x^3-738*x^2-76*x+425 6099944148176170 r002 62th iterates of z^2 + 6099944151253346 m001 (GaussAGM+Sierpinski)/(Psi(2,1/3)+Zeta(1,2)) 6099944165270798 q001 2185/3582 6099944176163481 a007 Real Root Of -294*x^4+382*x^3-631*x^2+80*x+411 6099944188586760 r005 Im(z^2+c),c=-51/106+23/38*I,n=47 6099944216056323 a007 Real Root Of 113*x^4-522*x^3-673*x^2-775*x+826 6099944225388015 m001 TravellingSalesman^(GAMMA(2/3)/Trott) 6099944227493470 a007 Real Root Of 953*x^4-908*x^3+217*x^2-602*x-786 6099944233036951 s002 sum(A045467[n]/((2*n)!),n=1..infinity) 6099944238508904 m001 1/ln(GAMMA(11/12))*Rabbit^2*cos(Pi/5)^2 6099944256242579 l006 ln(4844/8915) 6099944267015133 r005 Im(z^2+c),c=-1/58+28/45*I,n=27 6099944295188370 m002 2-E^Pi+(Pi^5*ProductLog[Pi])/4 6099944298356279 a007 Real Root Of 44*x^4+125*x^3-778*x^2+428*x-988 6099944306440561 r009 Re(z^3+c),c=-7/74+23/49*I,n=6 6099944333488361 a007 Real Root Of 108*x^4-931*x^3-608*x^2-581*x+777 6099944334443803 r002 6i'th iterates of 2*x/(1-x^2) of 6099944337739304 r002 51th iterates of z^2 + 6099944339104601 a007 Real Root Of 56*x^4+422*x^3+626*x^2+816*x-66 6099944364786536 s002 sum(A146119[n]/(pi^n),n=1..infinity) 6099944369408383 m001 ln(Zeta(7))/FeigenbaumDelta/cos(1)^2 6099944373461076 r008 a(0)=6,K{-n^6,-54-38*n^3+65*n^2+16*n} 6099944376594849 m003 5+Sqrt[5]/4+Coth[1/2+Sqrt[5]/2]/2 6099944391202884 r008 a(0)=0,K{-n^6,-43-87*n^3-96*n^2+62*n} 6099944396457780 a007 Real Root Of 91*x^4-838*x^3+77*x^2-955*x-814 6099944411152392 m001 (GAMMA(17/24)-GaussAGM)/(Robbin+ZetaP(4)) 6099944416317771 r005 Im(z^2+c),c=-23/110+30/47*I,n=30 6099944419103600 m001 (BesselI(0,2)-ln(5))/ln(3) 6099944428378752 m005 (1/2*2^(1/2)-1/9)/(3/4*5^(1/2)-7/10) 6099944433414889 r005 Im(z^2+c),c=-81/122+15/53*I,n=35 6099944436064011 r005 Im(z^2+c),c=-71/118+5/31*I,n=12 6099944461108276 b008 6+SinIntegral[1/10] 6099944497687537 a001 1597/322*843^(5/7) 6099944529281173 a007 Real Root Of 646*x^4-243*x^3+56*x^2-537*x-493 6099944548187907 m006 (3*exp(2*Pi)+5/6)/(3/5*Pi+3/4) 6099944557097001 m005 (1/2*Pi-2/5)/(3/8*exp(1)+9/10) 6099944590642182 m001 (cos(1)+ln(3))/(HeathBrownMoroz+Khinchin) 6099944600319602 s002 sum(A266561[n]/(2^n-1),n=1..infinity) 6099944607273290 r002 40th iterates of z^2 + 6099944637750958 m001 (TreeGrowth2nd-Tribonacci)/(Otter-Robbin) 6099944661991349 m001 exp(Pi)^2*FransenRobinson^2*Zeta(3)^2 6099944674206397 m001 (GAMMA(2/3)-LambertW(1))/(ArtinRank2+Lehmer) 6099944706079994 m001 (exp(Pi)-ln(1+sqrt(2))*Artin)/Artin 6099944706079994 m001 (exp(Pi)-ln(2^(1/2)+1)*Artin)/Artin 6099944710558077 l006 ln(2469/4544) 6099944736453119 r002 47th iterates of z^2 + 6099944739365043 r001 27i'th iterates of 2*x^2-1 of 6099944740203761 m001 Paris/(ZetaP(4)^FeigenbaumAlpha) 6099944759952767 m001 GAMMA(11/12)/exp(Rabbit)*sinh(1) 6099944772139451 m001 (Zeta(5)+ln(5))/((1+3^(1/2))^(1/2)+Khinchin) 6099944772884106 m001 MertensB1*Conway*exp((3^(1/3)))^2 6099944774749698 m001 (ln(2)-sin(1/12*Pi))/(FellerTornier-MertensB2) 6099944784843601 r005 Re(z^2+c),c=31/122+23/37*I,n=20 6099944837202735 p004 log(31981/17377) 6099944841813995 r005 Im(z^2+c),c=17/64+25/46*I,n=7 6099944851385077 m005 (1/2*gamma-5/6)/(2/5*Pi-4/11) 6099944870828729 m001 1/cos(Pi/5)*ln(FeigenbaumD)*sqrt(5)^2 6099944909389772 r002 28th iterates of z^2 + 6099944918161701 r009 Re(z^3+c),c=-15/58+43/61*I,n=49 6099944944830805 m001 (ArtinRank2-Lehmer)/(Zeta(1/2)-sin(1/12*Pi)) 6099944958691226 r005 Re(z^2+c),c=17/78+27/50*I,n=34 6099944964655109 r009 Im(z^3+c),c=-19/42+26/47*I,n=24 6099944981089476 a007 Real Root Of 109*x^4+814*x^3+965*x^2+187*x-923 6099945009499488 a007 Real Root Of 544*x^4+206*x^3-304*x^2-996*x-523 6099945052270591 v002 sum(1/(5^n*(7+30*n)),n=1..infinity) 6099945054592880 r001 62i'th iterates of 2*x^2-1 of 6099945057873503 r008 a(0)=6,K{-n^6,-2-6*n^3-6*n^2+3*n} 6099945074978554 r005 Im(z^2+c),c=-13/86+53/60*I,n=10 6099945113838463 r005 Im(z^2+c),c=5/14+6/25*I,n=10 6099945147899925 l006 ln(5032/9261) 6099945168146808 r009 Im(z^3+c),c=-27/64+16/27*I,n=5 6099945174610811 m001 (Pi+Backhouse)/(FeigenbaumC-Sierpinski) 6099945186617592 a007 Real Root Of -971*x^4-370*x^3-280*x^2+676*x+567 6099945190102051 l006 ln(6/2675) 6099945237858843 b008 -68+LogIntegral[12] 6099945247020141 m005 (1/2*5^(1/2)-1/8)/(5*Pi+4/7) 6099945270799697 m005 (1/2*Zeta(3)+1/8)/(4/11*Catalan+6/7) 6099945275913208 a001 377/3*9349^(23/34) 6099945305849218 r005 Re(z^2+c),c=-9/10+41/239*I,n=20 6099945306084015 m001 (Totient-ZetaQ(3))/(FransenRobinson-Kac) 6099945322294179 a001 377/3*64079^(19/34) 6099945345081793 p003 LerchPhi(1/3,1,379/177) 6099945347380926 a007 Real Root Of 519*x^4-703*x^3+903*x^2-178*x-676 6099945350635306 m001 ArtinRank2^BesselJ(1,1)*TravellingSalesman 6099945356037599 r009 Re(z^3+c),c=-11/18+25/51*I,n=7 6099945361964230 m004 -1+25*Sqrt[5]*Pi-75*Pi*Coth[Sqrt[5]*Pi] 6099945362346534 h001 (-8*exp(-1)-3)/(-5*exp(3)+3) 6099945373439548 p003 LerchPhi(1/6,3,169/142) 6099945380474343 s002 sum(A255601[n]/(exp(n)),n=1..infinity) 6099945395025145 m001 (Zeta(5)-Khinchin)/(MertensB1+ZetaQ(3)) 6099945407880880 m001 (exp(-1/2*Pi)*Khinchin+Rabbit)/exp(-1/2*Pi) 6099945414525690 m001 (exp(1/exp(1))+GAMMA(11/12))/HardyLittlewoodC5 6099945417919550 a007 Real Root Of 147*x^4+786*x^3-613*x^2+380*x+3 6099945423013383 s002 sum(A115175[n]/((exp(n)-1)/n),n=1..infinity) 6099945445558032 m001 (1-FeigenbaumKappa)/(-Mills+Sarnak) 6099945457272309 a007 Real Root Of -819*x^4+746*x^3+142*x^2-108*x+164 6099945458125720 r005 Re(z^2+c),c=-49/52+7/48*I,n=4 6099945490859563 m001 (OrthogonalArrays-Trott)/(ln(2)+BesselI(1,2)) 6099945497457500 m001 FeigenbaumC*ln(GolombDickman)/sqrt(2) 6099945530557754 m001 1/ln(RenyiParking)*GlaisherKinkelin*Salem^2 6099945538402997 r002 15th iterates of z^2 + 6099945559864436 r004 Im(z^2+c),c=1/20+4/23*I,z(0)=exp(3/8*I*Pi),n=6 6099945569201905 l006 ln(2563/4717) 6099945590545777 m009 (1/5*Psi(1,3/4)-4)/(3/5*Psi(1,1/3)-1/3) 6099945603447795 a007 Real Root Of 466*x^4-446*x^3+921*x^2+345*x-298 6099945612426921 r009 Im(z^3+c),c=-45/122+38/47*I,n=2 6099945613932113 r005 Im(z^2+c),c=35/122+21/62*I,n=3 6099945617922036 r005 Im(z^2+c),c=-35/118+11/17*I,n=22 6099945632667862 r005 Im(z^2+c),c=-17/14+26/165*I,n=29 6099945651832694 m001 (Khinchin-Lehmer)/(sin(1/12*Pi)-BesselK(1,1)) 6099945655361967 m004 -9-Log[Sqrt[5]*Pi]+25*Pi*Tan[Sqrt[5]*Pi] 6099945681694731 q001 1123/1841 6099945741039168 m001 (gamma(2)-Cahen)/(CopelandErdos-Mills) 6099945751499330 a007 Real Root Of -654*x^4+950*x^3-470*x^2-246*x+331 6099945757888737 a007 Real Root Of 760*x^4+150*x^3-322*x^2-586*x+338 6099945775076859 a007 Real Root Of -168*x^4+803*x^3-472*x^2+483*x-278 6099945779609371 m009 (48*Catalan+6*Pi^2-2/3)/(1/3*Psi(1,3/4)+5/6) 6099945781509934 a003 cos(Pi*14/71)*sin(Pi*31/115) 6099945796609940 r009 Re(z^3+c),c=-14/25+15/49*I,n=40 6099945820287501 a007 Real Root Of 126*x^4-697*x^3-670*x^2-891*x+57 6099945826776948 m004 500*Pi+(5*Pi*Cosh[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 6099945848411069 m001 (1-3^(1/3))/(-StolarskyHarborth+ZetaQ(3)) 6099945852962406 m004 -3/16+Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 6099945853696737 r005 Re(z^2+c),c=5/58+17/39*I,n=44 6099945870860366 r005 Im(z^2+c),c=-5/8+2/173*I,n=54 6099945871070632 s001 sum(1/10^(n-1)*A159499[n]/n!,n=1..infinity) 6099945883404417 h001 (4/9*exp(2)+1/12)/(7/11*exp(2)+9/11) 6099945897699239 m001 KhinchinLevy/(GAMMA(17/24)+TwinPrimes) 6099945936095217 r002 3th iterates of z^2 + 6099945961488578 a007 Real Root Of -86*x^4+391*x^3+966*x^2+452*x-712 6099945963479559 m001 Niven*GlaisherKinkelin*exp(GAMMA(23/24)) 6099945975330541 l006 ln(5220/9607) 6099945978219113 r005 Re(z^2+c),c=2/29+16/39*I,n=33 6099945987280597 r005 Im(z^2+c),c=-9/16+7/64*I,n=30 6099945999248685 r009 Re(z^3+c),c=-13/22+13/40*I,n=2 6099946009162530 r005 Re(z^2+c),c=15/122+9/40*I,n=17 6099946010438322 a007 Real Root Of 15*x^4+903*x^3-740*x^2-515*x+215 6099946011742517 r009 Im(z^3+c),c=-25/62+11/18*I,n=17 6099946024773274 m001 (ln(gamma)+ln(3))/(HardyLittlewoodC4+Lehmer) 6099946029381932 a007 Real Root Of 955*x^4-479*x^3-432*x^2-926*x-55 6099946087692952 r005 Im(z^2+c),c=29/114+25/51*I,n=31 6099946116510091 m001 MertensB3^(ReciprocalFibonacci/ZetaQ(2)) 6099946129375463 a001 121393/843*199^(3/11) 6099946161501621 a007 Real Root Of 949*x^4-45*x^3+576*x^2-387*x-592 6099946166662857 a007 Real Root Of 784*x^4-812*x^3+993*x^2-6*x-666 6099946193159597 a005 (1/cos(7/219*Pi))^814 6099946194279979 r009 Im(z^3+c),c=-1/44+25/34*I,n=15 6099946213819522 r005 Im(z^2+c),c=-17/74+30/37*I,n=23 6099946283955706 m005 (1/3*5^(1/2)+3/5)/(4/5*5^(1/2)+5/12) 6099946306876922 a007 Real Root Of 146*x^4+83*x^3+998*x^2-848*x-890 6099946312529767 a007 Real Root Of -17*x^4+203*x^3-999*x^2+185*x+533 6099946328894319 a007 Real Root Of 848*x^4-634*x^3-463*x^2-277*x-258 6099946333520498 m001 (GolombDickman+Otter)/(gamma(2)-gamma) 6099946367091042 l006 ln(2657/4890) 6099946375617225 a001 987/4*7^(20/43) 6099946382575284 a007 Real Root Of -498*x^4+372*x^3-460*x^2-455*x+47 6099946387042031 a005 (1/cos(32/201*Pi))^472 6099946388716638 m001 (Porter+ReciprocalLucas)/(arctan(1/2)+Paris) 6099946391544024 r005 Im(z^2+c),c=-16/15+6/13*I,n=3 6099946394948705 a001 377/87403803*2^(1/2) 6099946401159235 m001 (Porter+TwinPrimes)/(DuboisRaymond-Landau) 6099946424191080 m001 (Catalan+ln(2))/(MinimumGamma+Salem) 6099946424473011 m001 LambertW(1)^RenyiParking/(ln(3)^RenyiParking) 6099946451247802 g001 GAMMA(5/6,55/118) 6099946465874625 a007 Real Root Of -230*x^4+477*x^3-116*x^2+793*x+667 6099946471239517 a004 Fibonacci(12)*Lucas(14)/(1/2+sqrt(5)/2)^11 6099946475541855 r002 31th iterates of z^2 + 6099946476522979 r009 Re(z^3+c),c=-29/66+1/32*I,n=23 6099946494580083 r005 Im(z^2+c),c=-5/6+5/139*I,n=30 6099946506331231 r002 34th iterates of z^2 + 6099946531825098 a007 Real Root Of 942*x^4-489*x^3-224*x^2-954*x-740 6099946538716863 r002 18i'th iterates of 2*x/(1-x^2) of 6099946550950467 m001 (ln(2)/ln(10)+GAMMA(11/12))/(-Artin+Gompertz) 6099946585410031 a007 Real Root Of 69*x^4+409*x^3-112*x^2-363*x-747 6099946598140945 r002 3th iterates of z^2 + 6099946630044223 m005 (1/3*gamma+1/7)/(3*3^(1/2)+3/10) 6099946666761662 m001 (Ei(1,1)+Riemann3rdZero)/(Shi(1)-ln(3)) 6099946671072978 a001 1/1292*13^(33/41) 6099946677298443 m005 (1/2*Zeta(3)+2/7)/(17/24+1/3*5^(1/2)) 6099946683492808 m001 (5^(1/2)-BesselI(1,2))/(Cahen+PrimesInBinary) 6099946687563644 a007 Real Root Of -691*x^4+958*x^3+921*x^2-227*x-326 6099946722823247 a007 Real Root Of -832*x^4+889*x^3-806*x^2+292*x+795 6099946734607238 r005 Re(z^2+c),c=-73/126+12/29*I,n=18 6099946745232635 l006 ln(5408/9953) 6099946749395157 a007 Real Root Of -703*x^4-145*x^3-369*x^2+748*x+658 6099946771840364 a007 Real Root Of 343*x^4-258*x^3-793*x^2-26*x+322 6099946789658936 a007 Real Root Of 619*x^4-608*x^3+435*x^2-804*x-876 6099946791037747 a007 Real Root Of -967*x^4+853*x^3-945*x^2+508*x+989 6099946807246380 r008 a(0)=0,K{-n^6,-66+83*n^3+53*n^2+94*n} 6099946809876901 a008 Real Root of (7+4*x-15*x^2-17*x^3) 6099946824461174 l006 ln(8989/9044) 6099946837654045 s002 sum(A149961[n]/(2^n+1),n=1..infinity) 6099946843527299 a007 Real Root Of 257*x^4-160*x^3+363*x^2+277*x-38 6099946847949855 a007 Real Root Of 671*x^4-939*x^3-985*x^2+32*x+80 6099946863184062 m001 (Trott+ZetaP(4))/(sin(1/12*Pi)+Salem) 6099946891039275 a007 Real Root Of -584*x^4+667*x^3+46*x^2+335*x-292 6099946909183233 s002 sum(A227734[n]/(n*exp(n)-1),n=1..infinity) 6099946910036425 r005 Im(z^2+c),c=-7/8+102/253*I,n=4 6099946910452926 a007 Real Root Of 770*x^4-853*x^3+360*x^2-503*x-741 6099946925490121 b008 Sqrt[2]+21/E^(3/2) 6099946926862387 m001 (-Stephens+Thue)/(BesselJ(0,1)-ln(2)/ln(10)) 6099946949602122 a001 229968/377 6099946951165273 r002 5th iterates of z^2 + 6099946958535228 a008 Real Root of x^4-2*x^3-20*x^2-24*x-40 6099946979425925 m001 1/exp((3^(1/3)))^2/RenyiParking/GAMMA(3/4) 6099946981007532 m001 LandauRamanujan2nd*OneNinth-ZetaQ(4) 6099947000645090 m005 (1/2*3^(1/2)+5)/(1/5*Pi+1/3) 6099947031795831 m001 (ln(2)/ln(10)/cos(1/5*Pi))^(1/2) 6099947034022820 r009 Im(z^3+c),c=-19/82+45/62*I,n=40 6099947036789333 a007 Real Root Of 637*x^4+780*x^3+730*x^2-502*x-489 6099947045350971 m001 (Landau+MadelungNaCl)/(ZetaP(2)-ZetaP(4)) 6099947045726435 a008 Real Root of (-4+4*x+5*x^2-4*x^4+3*x^5) 6099947046257988 m001 Pi*(ln(2)/ln(10)+Si(Pi)/GAMMA(5/6)) 6099947055313624 r009 Im(z^3+c),c=-19/122+52/53*I,n=16 6099947075825918 m001 (-BesselJ(1,1)+ArtinRank2)/(2^(1/3)-Chi(1)) 6099947076271576 m005 (1/2*3^(1/2)+3/11)/(55/63+4/9*5^(1/2)) 6099947083213043 r002 4th iterates of z^2 + 6099947110453346 l006 ln(2751/5063) 6099947112750746 r002 11th iterates of z^2 + 6099947113139699 a007 Real Root Of 84*x^4-793*x^3-210*x^2-150*x+338 6099947117927022 q001 2307/3782 6099947135490374 m001 LambertW(1)+FeigenbaumMu+ReciprocalLucas 6099947145722204 m001 CareFree/(BesselJ(1,1)+TravellingSalesman) 6099947150542166 a007 Real Root Of 30*x^4-967*x^3-124*x^2-173*x+367 6099947173686144 m001 ((1+3^(1/2))^(1/2)-Bloch)/(Gompertz+Totient) 6099947179052134 m001 GAMMA(17/24)*(Magata+Totient) 6099947182841962 h001 (1/12*exp(2)+11/12)/(2/3*exp(1)+7/10) 6099947195190955 r005 Re(z^2+c),c=11/126+7/16*I,n=41 6099947239405235 a001 123/34*6765^(25/43) 6099947240143894 r005 Im(z^2+c),c=-15/34+37/49*I,n=3 6099947247456005 s002 sum(A149961[n]/(2^n-1),n=1..infinity) 6099947262030726 r005 Im(z^2+c),c=-13/24+13/21*I,n=21 6099947264922024 m001 1/OneNinth^2*ln(FransenRobinson)/Zeta(1/2) 6099947268083246 a007 Real Root Of -745*x^4-135*x^3-237*x^2+471*x+448 6099947271574977 m005 (1/3*2^(1/2)-1/8)/(4/11*gamma-7/9) 6099947294615489 r009 Re(z^3+c),c=-79/118+32/59*I,n=4 6099947295671085 m001 -1/2*(Khinchin+5)*2^(2/3) 6099947303895397 m001 (2^(1/3)+Zeta(1,-1))/(-Artin+DuboisRaymond) 6099947317009794 a007 Real Root Of 13*x^4+805*x^3+732*x^2-36*x-665 6099947317686619 m001 (FeigenbaumDelta-ZetaQ(4))^GAMMA(19/24) 6099947325713310 r002 3th iterates of z^2 + 6099947335743151 r005 Im(z^2+c),c=-43/78+21/34*I,n=13 6099947351121927 a007 Real Root Of 762*x^4-337*x^3+757*x^2+547*x-130 6099947360039902 r009 Re(z^3+c),c=-11/98+33/49*I,n=56 6099947370268168 m001 1/Magata^2/DuboisRaymond^2/exp(log(2+sqrt(3))) 6099947386996514 r005 Im(z^2+c),c=11/86+22/39*I,n=23 6099947399159650 m001 (BesselJ(1,1)-ZetaQ(3))^sin(1/5*Pi) 6099947400635751 m001 (GAMMA(3/4)-3^(1/3))/(Pi^(1/2)+Grothendieck) 6099947433508380 r002 51th iterates of z^2 + 6099947467214217 m001 (Pi+2^(1/2)*Catalan)*exp(1/Pi) 6099947476875499 a007 Real Root Of 461*x^4-729*x^3-810*x^2-677*x+816 6099947498865252 m001 GAMMA(7/12)*(ln(1+sqrt(2))-sin(1)) 6099947498865252 m001 GAMMA(7/12)*(ln(2^(1/2)+1)-sin(1)) 6099947508550021 l006 ln(5962/6337) 6099947530161778 a007 Real Root Of 85*x^4-470*x^3-784*x^2-217*x+519 6099947534683384 a007 Real Root Of -917*x^4-552*x^3+696*x^2+871*x+274 6099947535529549 m001 ln(GlaisherKinkelin)^2*Conway/GAMMA(1/12)^2 6099947536346462 a007 Real Root Of 504*x^4-715*x^3-255*x^2-762*x-602 6099947548265715 a007 Real Root Of -114*x^4+605*x^3+352*x^2+609*x-624 6099947572429209 m001 (Thue-ZetaQ(3))/(DuboisRaymond-Riemann1stZero) 6099947584036171 m005 (1/2*3^(1/2)-5/11)/(5/9*2^(1/2)-1/9) 6099947587507834 m005 (1/3*Catalan-3/4)/(5/6*Zeta(3)-3/11) 6099947599027252 m005 (-23/36+1/4*5^(1/2))/(-39/110+1/10*5^(1/2)) 6099947622252601 m001 1/exp(Catalan)^2*Rabbit^2/GAMMA(1/12)^2 6099947624678549 m001 exp(gamma)+GAMMA(1/24)^arctan(1/2) 6099947647482871 r005 Im(z^2+c),c=-137/126+1/14*I,n=14 6099947647723473 r002 14th iterates of z^2 + 6099947651963639 p001 sum(1/(507*n+164)/(625^n),n=0..infinity) 6099947679875960 m009 (2/3*Psi(1,1/3)-3/5)/(3/5*Psi(1,2/3)-5/6) 6099947693868235 a001 75025/322*322^(1/6) 6099947703393392 r005 Im(z^2+c),c=19/52+17/57*I,n=18 6099947708790782 a001 521/2*4181^(5/49) 6099947717474331 r001 17i'th iterates of 2*x^2-1 of 6099947727578470 a007 Real Root Of -997*x^4+783*x^3-381*x^2-473*x+169 6099947730590292 m001 (Figure8HypebolicComplement+TreeGrowth2nd)^2 6099947734201938 a007 Real Root Of 199*x^4-863*x^3+232*x^2-300*x+265 6099947744523653 r005 Im(z^2+c),c=-2/3+59/140*I,n=13 6099947765626524 r005 Im(z^2+c),c=-109/94+4/51*I,n=63 6099947768260759 g007 Psi(2,3/11)+Psi(2,7/10)-Psi(2,5/12)-Psi(2,1/7) 6099947768558209 m001 (Porter-Totient)/(FeigenbaumD-Gompertz) 6099947775587128 a007 Real Root Of 502*x^4-977*x^3-804*x^2-819*x+951 6099947804693592 l006 ln(2845/5236) 6099947837049888 r005 Im(z^2+c),c=-1/58+31/43*I,n=24 6099947842987926 r005 Re(z^2+c),c=9/74+29/52*I,n=51 6099947852611385 a007 Real Root Of 437*x^4-222*x^3+390*x^2+141*x-170 6099947861414004 r009 Im(z^3+c),c=-59/102+13/49*I,n=8 6099947895498375 a007 Real Root Of -120*x^4-617*x^3+770*x^2+315*x-629 6099947947404537 r002 3th iterates of z^2 + 6099948008671602 a003 sin(Pi*6/67)+sin(Pi*11/102) 6099948010614405 a007 Real Root Of 581*x^4-745*x^3+584*x^2-156*x-562 6099948014732564 r009 Im(z^3+c),c=-27/106+37/54*I,n=27 6099948024767204 a007 Real Root Of -572*x^4+582*x^3+61*x^2+340*x-283 6099948026023390 p004 log(15881/8629) 6099948051009755 a007 Real Root Of 599*x^4-918*x^3+537*x^2-249*x-643 6099948063040972 m001 (Ei(1)-Psi(1,1/3))/(ln(2+3^(1/2))+Trott2nd) 6099948078463922 m005 (-5/24+1/6*5^(1/2))/(1/3*Pi-7/9) 6099948101821661 a003 cos(Pi*19/51)-sin(Pi*37/75) 6099948141467479 p003 LerchPhi(1/5,9,19/30) 6099948165679124 m005 (1/3*Zeta(3)+1/9)/(4/7*exp(1)-5/7) 6099948172127853 a007 Real Root Of 572*x^4-350*x^3-671*x^2-128*x+328 6099948175965521 r005 Im(z^2+c),c=-1/62+28/43*I,n=63 6099948230602742 m002 -1-4/Pi^5+2*Pi^3 6099948282808032 r009 Re(z^3+c),c=-7/82+7/17*I,n=9 6099948288659739 b008 11/(1+E)+Pi 6099948316606612 a007 Real Root Of 530*x^4+27*x^3+24*x^2-462*x-358 6099948334216178 m006 (4/Pi-1/6)/(exp(Pi)-5) 6099948359923312 m001 1/(2^(1/3))^2*ln(CopelandErdos)^2*arctan(1/2) 6099948367236847 a007 Real Root Of 287*x^4-290*x^3+983*x^2+553*x-134 6099948386104305 m003 61/10+(Sqrt[5]*Cot[1/2+Sqrt[5]/2])/2048 6099948421163114 m001 (Zeta(3)+gamma(2))/(Champernowne+FeigenbaumC) 6099948443679136 m003 61/10+(Sqrt[5]*Cos[1/2+Sqrt[5]/2])/2048 6099948454525096 l006 ln(2939/5409) 6099948471533042 a007 Real Root Of 447*x^4-213*x^3+140*x^2+453*x+114 6099948473584327 r005 Im(z^2+c),c=-7/10+27/230*I,n=16 6099948480164863 q001 1184/1941 6099948505406722 a007 Real Root Of 285*x^4-696*x^3+703*x^2+782*x+18 6099948510319069 r002 4th iterates of z^2 + 6099948514958488 m001 (ArtinRank2-FeigenbaumB)/(MertensB2+Salem) 6099948524234576 a001 305/161*843^(6/7) 6099948539490500 a007 Real Root Of 38*x^4+216*x^3-154*x^2-425*x-448 6099948563976313 a007 Real Root Of 922*x^4+398*x^3+536*x^2-84*x-288 6099948599838703 s002 sum(A241650[n]/(n^2*10^n-1),n=1..infinity) 6099948639200090 r009 Im(z^3+c),c=-41/118+27/38*I,n=37 6099948645201511 r009 Im(z^3+c),c=-9/52+21/29*I,n=37 6099948647878338 r005 Im(z^2+c),c=-2/3+40/181*I,n=34 6099948666202663 m001 ln(Tribonacci)^2/Kolakoski^2*Zeta(5) 6099948670203446 r005 Im(z^2+c),c=-7/10+10/111*I,n=8 6099948671664354 r008 a(0)=0,K{-n^6,60-8*n^3-44*n^2+8*n} 6099948672129356 a001 1/846*(1/2*5^(1/2)+1/2)^14*47^(8/17) 6099948675361828 r009 Im(z^3+c),c=-1/56+37/49*I,n=31 6099948683208710 a007 Real Root Of 305*x^4+15*x^3+90*x^2-429*x-334 6099948696300733 m001 BesselK(0,1)/Si(Pi)*FeigenbaumD 6099948719257506 a007 Real Root Of -792*x^4-431*x^3-790*x^2+602*x+673 6099948733228818 m001 FellerTornier*ZetaQ(2)+Lehmer 6099948737942910 a003 sin(Pi*27/118)*sin(Pi*23/61) 6099948740298247 r002 40th iterates of z^2 + 6099948768351515 h001 (1/9*exp(2)+4/7)/(6/11*exp(1)+4/5) 6099948796630809 a001 281/34111385*832040^(6/19) 6099948796631366 a001 843/1836311903*7778742049^(6/19) 6099948808486094 m001 (Thue+Weierstrass)/(BesselI(1,2)+Gompertz) 6099948834361943 r005 Im(z^2+c),c=41/118+13/40*I,n=33 6099948839321980 a007 Real Root Of 996*x^4-578*x^3+325*x^2-418*x-645 6099948843238651 r002 5th iterates of z^2 + 6099948867588821 r002 40th iterates of z^2 + 6099948879960159 a007 Real Root Of 120*x^4-899*x^3+892*x^2-563*x-896 6099948900929908 a005 (1/sin(48/113*Pi))^1698 6099948944964856 r005 Re(z^2+c),c=23/106+20/57*I,n=54 6099948960862728 r002 40th iterates of z^2 + 6099948969662281 r005 Im(z^2+c),c=-13/30+34/59*I,n=59 6099948973264243 r008 a(0)=6,K{-n^6,-5+6*n^3-3*n^2-4*n} 6099948996150463 p001 sum(1/(369*n+176)/(5^n),n=0..infinity) 6099948999185077 r009 Im(z^3+c),c=-10/21+32/63*I,n=35 6099949011940991 m005 (1/2*gamma+3)/(4/9*Pi-6/7) 6099949020834570 r005 Re(z^2+c),c=-11/26+31/44*I,n=5 6099949020999918 r005 Im(z^2+c),c=-6/23+41/63*I,n=21 6099949039520978 m001 GaussAGM/(GAMMA(19/24)+DuboisRaymond) 6099949055290079 m001 FeigenbaumDelta^2/exp(Cahen)^2/Pi^2 6099949058294611 a005 (1/sin(100/227*Pi))^103 6099949062521462 r002 2th iterates of z^2 + 6099949064076863 l006 ln(3033/5582) 6099949088215399 a007 Real Root Of 639*x^4-135*x^3+284*x^2+339*x-18 6099949095211421 p001 sum(1/(255*n+164)/(1000^n),n=0..infinity) 6099949096498243 m005 (1/3*Pi-1/4)/(11/12*gamma+7/9) 6099949096614643 m001 Pi+(2^(1/2)-BesselJ(0,1))/Ei(1,1) 6099949107673562 a007 Real Root Of 866*x^4-281*x^3+201*x^2-373*x-486 6099949149685412 a007 Real Root Of 368*x^4-636*x^3-595*x^2-220*x+449 6099949151049309 m001 (Magata-Mills)/(GAMMA(3/4)-FeigenbaumDelta) 6099949162968156 m001 1/exp(Robbin)^2*FransenRobinson/GAMMA(3/4) 6099949164567724 m005 (1/3*5^(1/2)+1/9)/(3/7*Zeta(3)+8/9) 6099949171712241 a007 Real Root Of -906*x^4+690*x^3-585*x^2-593*x+138 6099949180151793 r005 Im(z^2+c),c=-33/74+5/49*I,n=28 6099949181591668 a001 28657/521*199^(5/11) 6099949215529354 m001 (Lehmer+Sarnak)/(Zeta(1/2)-ArtinRank2) 6099949219505224 a007 Real Root Of -114*x^4-551*x^3+826*x^2-480*x-889 6099949227188731 a007 Real Root Of -96*x^4+252*x^3-966*x^2+387*x+666 6099949232571454 a007 Real Root Of -4*x^4-241*x^3+170*x^2-769*x+997 6099949235247365 p003 LerchPhi(1/16,1,169/99) 6099949242694548 m001 KomornikLoreti^MadelungNaCl/ZetaP(2) 6099949265137977 m001 (Conway+FeigenbaumDelta)/(Catalan-Ei(1)) 6099949282094447 m001 Salem/ln(MertensB1)^2*cos(Pi/12)^2 6099949288108202 r008 a(0)=6,K{-n^6,-48+36*n+62*n^2-34*n^3} 6099949297974592 m001 Sierpinski*ln(Kolakoski)*GAMMA(23/24) 6099949317787456 r005 Re(z^2+c),c=-65/118+5/11*I,n=35 6099949342202210 m001 (MertensB2+Trott2nd)/(ln(Pi)+Gompertz) 6099949348787903 m006 (2/5*exp(Pi)-3)/(2/5*exp(Pi)+1) 6099949374682793 a007 Real Root Of 456*x^4-877*x^3+310*x^2-663*x+425 6099949386512427 m008 (3*Pi^4+3/4)/(1/2*Pi^6-2/5) 6099949395601617 r002 2th iterates of z^2 + 6099949396564281 a005 (1/sin(101/227*Pi))^1192 6099949398277324 m005 (1/2*2^(1/2)-4)/(1/9*Pi-8/9) 6099949398939019 s001 sum(exp(-2*Pi/3)^n*A208010[n],n=1..infinity) 6099949406365722 l006 ln(8315/8838) 6099949417708479 m001 MertensB2^(Pi^(1/2))-ZetaP(2) 6099949425566795 r009 Im(z^3+c),c=-6/23+12/19*I,n=6 6099949429838691 m001 Grothendieck/(KhinchinHarmonic+Salem) 6099949432243267 m001 (Psi(2,1/3)-ln(3))/(MertensB1+TwinPrimes) 6099949441043985 b008 -62+Coth[1+Pi] 6099949444130415 m001 1/exp(Porter)^2*MinimumGamma/GAMMA(5/6)^2 6099949452295665 a007 Real Root Of -798*x^4+258*x^3-184*x^2+209*x+365 6099949453080372 r002 39th iterates of z^2 + 6099949465013798 a005 (1/cos(15/199*Pi))^552 6099949466593148 b008 60+Tanh[1+Pi] 6099949525414760 r005 Im(z^2+c),c=-67/102+7/61*I,n=63 6099949553524921 r005 Im(z^2+c),c=-11/14+47/173*I,n=8 6099949571180968 m001 Trott*(GAMMA(3/4)-LaplaceLimit) 6099949573428889 r002 8th iterates of z^2 + 6099949591924991 a007 Real Root Of -254*x^4+581*x^3+729*x^2+364*x-590 6099949620209287 s001 sum(exp(-Pi/2)^n*A136390[n],n=1..infinity) 6099949623307415 a007 Real Root Of -91*x^4-557*x^3-82*x^2-479*x-303 6099949636981417 l006 ln(3127/5755) 6099949646238055 m001 (HardyLittlewoodC5+MertensB2)/(exp(Pi)+cos(1)) 6099949653884126 r005 Im(z^2+c),c=13/34+8/23*I,n=22 6099949658510414 a007 Real Root Of -747*x^4+731*x^3+140*x^2+175*x+324 6099949685730593 a007 Real Root Of -960*x^4+966*x^3+228*x^2-694*x-156 6099949693612608 a001 15127/3*1346269^(34/41) 6099949701181121 h001 (3/5*exp(2)+7/12)/(1/4*exp(1)+1/7) 6099949729311446 r002 59th iterates of z^2 + 6099949750976671 m001 (-gamma(3)+TwinPrimes)/(Psi(1,1/3)+ln(2)) 6099949753461172 r005 Re(z^2+c),c=-9/10+53/254*I,n=60 6099949759494575 r009 Im(z^3+c),c=-15/64+29/41*I,n=11 6099949772163500 s002 sum(A215416[n]/((2*n)!),n=1..infinity) 6099949773982923 q001 2429/3982 6099949805748389 p003 LerchPhi(1/6,3,496/191) 6099949837919284 r005 Im(z^2+c),c=-10/17+7/62*I,n=35 6099949898206281 p003 LerchPhi(1/512,1,389/237) 6099949908430819 a007 Real Root Of 672*x^4+129*x^3+655*x^2-532*x-632 6099949912609610 a003 sin(Pi*16/63)*sin(Pi*25/77) 6099949922138649 p004 log(35221/79) 6099949925181836 m001 1/Rabbit/FeigenbaumDelta/ln(GAMMA(13/24)) 6099949940938496 m005 (1/2*Zeta(3)-3/10)/(7/9*Zeta(3)+4) 6099949951088739 m008 (1/2*Pi^3-3/5)/(4/5*Pi^5-1/2) 6099949953056577 m005 (1/3*exp(1)-1/12)/(1/7*Pi+9/10) 6099949963156845 m001 (ln(Pi)+CopelandErdos)/(OrthogonalArrays+Thue) 6099949978374421 m005 (1/4*2^(1/2)-2/3)/(5/6*Catalan-1/4) 6099949993221917 a007 Real Root Of 865*x^4-519*x^3-732*x^2-21*x+22 6099949995115204 r002 2th iterates of z^2 + 6099950003027212 r005 Re(z^2+c),c=-35/66+25/52*I,n=50 6099950027033359 m001 1/Paris*Si(Pi)^2/ln(GAMMA(5/12))^2 6099950040383799 m005 (1/2*3^(1/2)+8/9)/(8/11*exp(1)+9/10) 6099950049550916 m001 (-Kac+Rabbit)/(Chi(1)+cos(1)) 6099950058329374 a007 Real Root Of 432*x^4-989*x^3-312*x^2+16*x+271 6099950083027387 a007 Real Root Of -105*x^4-683*x^3-95*x^2+938*x-391 6099950086983321 m001 (Zeta(5)-ln(3))/(polylog(4,1/2)-GAMMA(7/12)) 6099950100592150 m001 1/Robbin*PrimesInBinary*exp(GAMMA(1/12))^2 6099950118238197 p001 sum(1/(245*n+164)/(1024^n),n=0..infinity) 6099950118452355 a007 Real Root Of 268*x^4-57*x^3+991*x^2+339*x-212 6099950138223740 a007 Real Root Of -832*x^4+294*x^3+590*x^2+513*x-484 6099950139045765 r005 Re(z^2+c),c=-117/82+18/61*I,n=4 6099950156156051 a007 Real Root Of 939*x^4-995*x^3-803*x^2-758*x+857 6099950176447239 l006 ln(3221/5928) 6099950205175853 m001 1/GAMMA(13/24)/GAMMA(1/4)^2*ln(Zeta(5))^2 6099950220331586 a001 161/4*196418^(46/47) 6099950244212034 a007 Real Root Of 402*x^4-225*x^3-850*x^2-171*x+416 6099950249405548 a007 Real Root Of -359*x^4+246*x^3+804*x^2+911*x-861 6099950256029057 m001 (Artin+MertensB1)/(Psi(1,1/3)+arctan(1/3)) 6099950274748901 m001 FeigenbaumB^2*exp(Champernowne)/GAMMA(17/24) 6099950280191354 h001 (-9*exp(6)-1)/(-2*exp(8)+8) 6099950303734438 r005 Re(z^2+c),c=23/94+7/18*I,n=28 6099950304638454 a007 Real Root Of -211*x^4+518*x^3-407*x^2-143*x+211 6099950311987377 a007 Real Root Of 930*x^4+909*x^3+264*x^2-853*x-541 6099950323398677 a007 Real Root Of 576*x^4-157*x^3+399*x^2-15*x-273 6099950333430965 r009 Im(z^3+c),c=-21/122+47/64*I,n=25 6099950333767780 r005 Re(z^2+c),c=6/29+18/53*I,n=42 6099950355218252 r005 Re(z^2+c),c=-25/54+31/60*I,n=9 6099950365892578 a007 Real Root Of 785*x^4-446*x^3+112*x^2-381*x-484 6099950368603364 r009 Im(z^3+c),c=-11/102+44/61*I,n=18 6099950376352405 m001 GAMMA(1/12)^2*Tribonacci*ln(GAMMA(17/24)) 6099950376440182 a007 Real Root Of 194*x^4-319*x^3+134*x^2-912*x+552 6099950382606407 a003 sin(Pi*4/91)-sin(Pi*25/93) 6099950403388129 m001 (ln(gamma)-Ei(1))/(cos(1/12*Pi)-BesselI(1,1)) 6099950417920420 r009 Re(z^3+c),c=-7/78+21/46*I,n=14 6099950428229735 a007 Real Root Of -704*x^4-909*x^3-922*x^2+298*x+416 6099950435514652 m001 (OrthogonalArrays+Paris)/(Conway-Shi(1)) 6099950456813966 r009 Re(z^3+c),c=-57/110+7/57*I,n=62 6099950456865068 a003 cos(Pi*3/71)*sin(Pi*23/109) 6099950502424035 m001 (exp(1)+exp(1/Pi))/(Trott+TwinPrimes) 6099950516413644 m001 (3^(1/2)-Chi(1))/(BesselJ(1,1)+GAMMA(23/24)) 6099950541380254 m006 (5*Pi+3/5)/(1/2*exp(2*Pi)-2/5) 6099950570112701 a007 Real Root Of 397*x^4-747*x^3+331*x^2-278*x+161 6099950574006223 r009 Im(z^3+c),c=-53/118+21/44*I,n=5 6099950581139588 b008 -62+Zeta[11] 6099950609167839 m001 (ln(5)-arctan(1/2))/(GAMMA(7/12)-Magata) 6099950609336561 m001 FeigenbaumD^2*ln(DuboisRaymond)/GAMMA(11/24) 6099950609974018 m001 (gamma(2)+Backhouse)/(Kac+KhinchinHarmonic) 6099950631637399 a001 18/13*233^(25/36) 6099950635343745 a001 123/4181*610^(26/55) 6099950651120025 m001 (Salem-ZetaQ(2))/(ArtinRank2-QuadraticClass) 6099950655964209 r009 Im(z^3+c),c=-19/50+1/63*I,n=26 6099950674235762 m001 BesselK(1,1)-gamma(2)*GaussAGM 6099950676658266 m005 (1/2*Catalan+4)/(2/5*Zeta(3)+1/4) 6099950685318895 l006 ln(3315/6101) 6099950689697264 r005 Im(z^2+c),c=-13/82+43/52*I,n=26 6099950710485610 p001 sum(1/(569*n+477)/n/(16^n),n=1..infinity) 6099950739518470 a003 sin(Pi*17/99)/sin(Pi*29/91) 6099950771815975 a007 Real Root Of 645*x^4-198*x^3+487*x^2-755*x-776 6099950798718983 m001 1/ln(OneNinth)^2*Robbin^2/Zeta(3)^2 6099950808192280 a007 Real Root Of -743*x^4+206*x^3+733*x^2+117*x-288 6099950818455229 a007 Real Root Of -143*x^4-840*x^3+111*x^2-625*x-613 6099950820667837 a007 Real Root Of 226*x^4-741*x^3+508*x^2-650*x-785 6099950827740839 r005 Im(z^2+c),c=-11/20+7/64*I,n=54 6099950829902264 r002 16th iterates of z^2 + 6099950863859574 a008 Real Root of (-3-3*x-x^2-3*x^3+5*x^4-2*x^5) 6099950880877631 p004 log(30851/16763) 6099950881777148 m005 (1/6*gamma-1)/(3*gamma-1/4) 6099950881777148 m007 (-1/6*gamma+1)/(-3*gamma+1/4) 6099950905055020 a003 sin(Pi*1/84)-sin(Pi*13/58) 6099950911314179 m001 sin(1)^Magata/(sin(1)^Landau) 6099950924844392 r001 12i'th iterates of 2*x^2-1 of 6099950927842727 r005 Im(z^2+c),c=-7/114+17/27*I,n=14 6099950935077863 r009 Re(z^3+c),c=-41/70+13/41*I,n=2 6099950940432516 r009 Im(z^3+c),c=-15/52+35/52*I,n=45 6099950967157254 a007 Real Root Of 991*x^4-915*x^3-170*x^2-917*x-841 6099950991747775 m005 (1/2*Pi-2/9)/(5/9*Zeta(3)-8/9) 6099950996341521 r005 Re(z^2+c),c=-31/30+22/111*I,n=50 6099951001923748 a007 Real Root Of 910*x^4-723*x^3-200*x^2+488*x+82 6099951004409603 q001 1245/2041 6099951018379306 a003 sin(Pi*21/85)*sin(Pi*37/110) 6099951019882332 a007 Real Root Of -828*x^4+349*x^3-699*x^2-395*x+213 6099951020668535 a007 Real Root Of -931*x^4+960*x^3+232*x^2+273*x+427 6099951032443734 a007 Real Root Of -821*x^4+326*x^3-84*x^2+128*x+297 6099951103684976 r009 Im(z^3+c),c=-1/44+10/13*I,n=63 6099951104953108 r002 16th iterates of z^2 + 6099951107942223 b008 1/3+Zeta[6/7] 6099951116204035 r008 a(0)=6,K{-n^6,-6*n^3-5*n^2} 6099951166127203 l006 ln(3409/6274) 6099951180179632 m001 (BesselI(1,1)-Psi(2,1/3))/(Thue+ZetaQ(2)) 6099951183902551 r005 Im(z^2+c),c=4/29+17/30*I,n=12 6099951192425224 a003 cos(Pi*12/73)*cos(Pi*25/99) 6099951198378999 m001 1/GAMMA(13/24)/ln(GAMMA(1/24))^2/Zeta(9)^2 6099951205853429 b008 1/7+21^(-1/4) 6099951206198721 a007 Real Root Of 647*x^4-685*x^3-703*x^2-132*x+408 6099951273832389 m001 ln(Niven)^2*Lehmer^2/GAMMA(13/24) 6099951281750269 r005 Re(z^2+c),c=-1/50+45/61*I,n=17 6099951300795840 m001 (CareFree+Rabbit)/(ln(Pi)+GAMMA(19/24)) 6099951304827857 r005 Re(z^2+c),c=-1/98+24/29*I,n=12 6099951321768273 r002 14th iterates of z^2 + 6099951350924671 r002 6th iterates of z^2 + 6099951364308307 m001 2*Pi/GAMMA(5/6)*ZetaP(4)-Zeta(5) 6099951381176721 k001 Champernowne real with 386*n+223 6099951381793436 m001 (LambertW(1)-Shi(1))^ln(2) 6099951382176821 k005 Champernowne real with floor(sqrt(3)*(223*n+129)) 6099951382176821 k005 Champernowne real with floor(Pi*(123*n+71)) 6099951388366559 a007 Real Root Of 317*x^4-586*x^3+180*x^2-933*x-813 6099951420275180 a007 Real Root Of -118*x^4-576*x^3+912*x^2+152*x-370 6099951421604506 h001 (3/7*exp(2)+5/6)/(5/6*exp(2)+2/5) 6099951421804151 r005 Im(z^2+c),c=19/60+17/43*I,n=17 6099951422476924 m009 (1/3*Psi(1,3/4)-1/3)/(3*Psi(1,3/4)+4/5) 6099951424661962 m001 (2^(1/3)+cos(1))/(-PrimesInBinary+Rabbit) 6099951433473024 m005 (5/6*2^(1/2)-1/5)/(5*Pi+1/3) 6099951465040818 h001 (3/5*exp(1)+2/11)/(8/9*exp(1)+5/9) 6099951474352385 m005 (1/3*Pi-2/9)/(4/9*Zeta(3)+9/11) 6099951507415103 m001 (Lehmer+QuadraticClass)/(exp(Pi)+GAMMA(23/24)) 6099951508425589 a007 Real Root Of -999*x^4+648*x^3+319*x^2-470*x-120 6099951550504535 a001 521/4181*75025^(16/29) 6099951551936905 a003 cos(Pi*23/79)*sin(Pi*48/97) 6099951573949476 r008 a(0)=0,K{-n^6,-2-96*n^3-47*n^2-19*n} 6099951599390804 r005 Im(z^2+c),c=-13/98+41/47*I,n=35 6099951602371062 r008 a(0)=0,K{-n^6,-66+83*n^3+52*n^2+95*n} 6099951605906254 r009 Re(z^3+c),c=-7/82+7/17*I,n=15 6099951621131333 l006 ln(3503/6447) 6099951648355790 a007 Real Root Of 986*x^4+105*x^3-440*x^2-683*x+420 6099951654408216 h001 (1/8*exp(1)+8/9)/(7/12*exp(1)+3/7) 6099951661029950 m001 (Thue+ZetaP(2))/(PlouffeB+Riemann2ndZero) 6099951662139196 a007 Real Root Of 243*x^4-380*x^3+254*x^2-931*x+526 6099951677794525 m001 (Shi(1)+ZetaQ(3))/MadelungNaCl 6099951678773605 r005 Re(z^2+c),c=-35/58+1/3*I,n=8 6099951699944725 a001 682/31622993*8^(1/2) 6099951737921789 a007 Real Root Of 50*x^4-451*x^3+202*x^2-355*x-401 6099951766961053 a007 Real Root Of -205*x^4+748*x^3-986*x^2-905*x+13 6099951794168732 a007 Real Root Of 974*x^4-469*x^3+85*x^2-787*x-753 6099951794773683 m001 1/GAMMA(2/3)^2*FeigenbaumB^2*ln(sinh(1)) 6099951811179081 a007 Real Root Of -180*x^4+649*x^3+739*x^2+624*x-778 6099951821188413 a007 Real Root Of 803*x^4-975*x^3+781*x^2+969*x-32 6099951824243467 r008 a(0)=6,K{-n^6,24+12*n^3+18*n^2-63*n} 6099951837023441 a007 Real Root Of 134*x^4+761*x^3-346*x^2-75*x-383 6099951868793561 m001 (gamma(2)+Sarnak)^Porter 6099951886030286 r005 Im(z^2+c),c=-65/54+1/11*I,n=35 6099951911068866 m005 (1/2*Catalan-5/7)/(5*Catalan-5) 6099951915760087 a007 Real Root Of -683*x^4-269*x^3-880*x^2+105*x+425 6099951943224882 m001 BesselJ(0,1)/(1+3^(1/2))^(1/2)*HeathBrownMoroz 6099951943839252 m001 (LambertW(1)-Porter)/(-Tetranacci+ZetaP(2)) 6099951956030109 a007 Real Root Of 138*x^4+796*x^3-253*x^2+50*x-675 6099951963990458 r005 Im(z^2+c),c=11/32+19/46*I,n=56 6099951967192541 a001 7/4181*86267571272^(3/5) 6099951979254616 s002 sum(A208106[n]/(n^3*2^n-1),n=1..infinity) 6099951981227266 m008 (3/5*Pi^5+4)/(Pi^3-1/4) 6099951988881561 r005 Re(z^2+c),c=-1/24+13/23*I,n=7 6099951991191861 r009 Im(z^3+c),c=-13/102+41/52*I,n=12 6099952001944848 m007 (-3/4*gamma-1/4)/(-1/3*gamma-ln(2)+1/6*Pi+1/4) 6099952005795298 r005 Im(z^2+c),c=17/44+2/9*I,n=21 6099952036766263 a001 7/75025*10610209857723^(3/5) 6099952040872295 a001 7/17711*956722026041^(3/5) 6099952041727945 a007 Real Root Of 938*x^4-564*x^3+679*x^2+814*x-14 6099952048590761 r005 Re(z^2+c),c=-1+107/137*I,n=2 6099952052354299 l006 ln(3597/6620) 6099952063237319 a007 Real Root Of -28*x^4-14*x^3+799*x^2-952*x+52 6099952065434457 s002 sum(A027734[n]/(n*2^n-1),n=1..infinity) 6099952122344576 m001 exp(GAMMA(1/4))^2*(3^(1/3))*sqrt(3)^2 6099952131506649 a007 Real Root Of -137*x^4-720*x^3+629*x^2-579*x-677 6099952175405683 r005 Im(z^2+c),c=-37/114+19/31*I,n=12 6099952181101524 a007 Real Root Of 424*x^4-32*x^3-584*x^2-994*x-455 6099952197780849 a001 29/591286729879*121393^(14/23) 6099952251350379 r005 Im(z^2+c),c=-37/58+13/30*I,n=53 6099952251976378 r002 33th iterates of z^2 + 6099952306637739 m001 (-Bloch+GolombDickman)/(Shi(1)+3^(1/3)) 6099952344697376 m001 (BesselJ(0,1)-Shi(1))/(-ArtinRank2+Salem) 6099952380789740 a007 Real Root Of -128*x^4+608*x^3-51*x^2+30*x+193 6099952382956875 r005 Im(z^2+c),c=19/44+19/56*I,n=19 6099952393422738 m005 (1/2*Zeta(3)+1/7)/(9/10*gamma+7/10) 6099952404753635 m001 (GaussAGM+Totient)/(BesselI(0,2)+GAMMA(17/24)) 6099952410278888 s004 Continued Fraction of A262081 6099952410278888 s004 Continued fraction of A262081 6099952457225018 r009 Re(z^3+c),c=-5/66+4/13*I,n=5 6099952461613033 l006 ln(3691/6793) 6099952461613033 p004 log(6793/3691) 6099952538191903 a005 (1/cos(11/216*Pi))^1753 6099952567047994 a007 Real Root Of 984*x^4-557*x^3+642*x^2+255*x-346 6099952569260535 m001 BesselJ(1,1)^(MertensB2/GaussKuzminWirsing) 6099952595832143 a001 144*322^(1/4) 6099952603368271 q001 1/1639357 6099952617063423 a007 Real Root Of -834*x^4+432*x^3-160*x^2-146*x+184 6099952647017882 r005 Re(z^2+c),c=-17/18+49/125*I,n=6 6099952649814568 r002 26th iterates of z^2 + 6099952663806851 m001 1/ln(log(1+sqrt(2)))^2*DuboisRaymond*sqrt(5)^2 6099952667432135 r005 Re(z^2+c),c=27/118+4/11*I,n=60 6099952697178476 r005 Im(z^2+c),c=-73/66+19/62*I,n=10 6099952701400190 a007 Real Root Of 23*x^4+87*x^3-315*x^2+196*x+819 6099952702300351 r009 Re(z^3+c),c=-3/46+3/19*I,n=7 6099952741020793 r002 2th iterates of z^2 + 6099952741020793 r002 2th iterates of z^2 + 6099952793249247 r002 43th iterates of z^2 + 6099952797261633 a007 Real Root Of 75*x^4+536*x^3+488*x^2-12*x-413 6099952805875165 r009 Re(z^3+c),c=-3/46+3/19*I,n=8 6099952806845140 r009 Re(z^3+c),c=-3/46+3/19*I,n=10 6099952806945007 r009 Re(z^3+c),c=-3/46+3/19*I,n=12 6099952806945028 r009 Re(z^3+c),c=-3/46+3/19*I,n=13 6099952806945064 r009 Re(z^3+c),c=-3/46+3/19*I,n=15 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=18 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=20 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=21 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=23 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=26 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=28 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=29 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=31 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=33 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=34 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=36 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=38 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=39 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=40 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=41 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=42 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=37 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=35 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=32 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=30 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=27 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=25 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=24 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=22 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=19 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=17 6099952806945065 r009 Re(z^3+c),c=-3/46+3/19*I,n=16 6099952806945070 r009 Re(z^3+c),c=-3/46+3/19*I,n=14 6099952806951247 r009 Re(z^3+c),c=-3/46+3/19*I,n=11 6099952807815993 r009 Re(z^3+c),c=-3/46+3/19*I,n=9 6099952813000416 r009 Re(z^3+c),c=-27/52+37/60*I,n=16 6099952842151938 a001 17711/3*1364^(11/34) 6099952847405210 m001 (5^(1/2)-Zeta(5))/(gamma(3)+DuboisRaymond) 6099952850543973 l006 ln(3785/6966) 6099952858310120 a001 11/377*55^(22/29) 6099952863363093 m003 6+Sqrt[5]/32+Log[1/2+Sqrt[5]/2]/16 6099952864352671 m005 (1/2*Catalan+5/12)/(4*gamma-7/8) 6099952887642721 r005 Im(z^2+c),c=37/110+10/29*I,n=17 6099952895026387 a007 Real Root Of 914*x^4+227*x^3+787*x^2-374*x-596 6099952897684264 a007 Real Root Of -6*x^4+422*x^3+498*x^2+329*x+112 6099952924959359 a007 Real Root Of -809*x^4-282*x^3-239*x^2+587*x+495 6099952926922871 a007 Real Root Of 689*x^4-885*x^3+525*x^2+442*x-222 6099952953908328 m002 E^Pi/Pi^4+2*Pi^5*Tanh[Pi] 6099952987349964 r005 Im(z^2+c),c=1/58+15/26*I,n=5 6099953009179442 a007 Real Root Of 31*x^4-236*x^3+892*x^2+757*x+72 6099953014586962 m001 (-Totient+ZetaP(4))/(5^(1/2)+Zeta(1,-1)) 6099953021435663 m009 (2/5*Psi(1,3/4)-1/4)/(1/6*Psi(1,3/4)+5/6) 6099953025923455 m001 1/Zeta(9)^2/Paris^2/exp(sin(Pi/12))^2 6099953026376853 m001 gamma(1)/(GAMMA(5/6)^MinimumGamma) 6099953066157049 a007 Real Root Of 579*x^4-350*x^3-622*x^2-488*x+3 6099953069587676 a007 Real Root Of -56*x^4-379*x^3-242*x^2-182*x-595 6099953069957739 r005 Im(z^2+c),c=29/78+9/26*I,n=12 6099953114206199 a001 3/76*2^(27/43) 6099953120518313 a007 Real Root Of -755*x^4-995*x^3-770*x^2+980*x+763 6099953146745752 m008 (5/6*Pi^5-2)/(4*Pi^2+2) 6099953147865034 m001 (ArtinRank2-BesselJ(0,1))/(-GaussAGM+Sarnak) 6099953182536691 a003 cos(Pi*16/63)*sin(Pi*23/68) 6099953188366098 r002 16th iterates of z^2 + 6099953214499636 a007 Real Root Of -446*x^4+669*x^3-985*x^2+49*x+610 6099953220624933 l006 ln(3879/7139) 6099953259737651 m001 (Khinchin+Sarnak)/(BesselJ(0,1)-Psi(2,1/3)) 6099953289322340 a001 1/141*7778742049^(3/5) 6099953292853806 q001 1306/2141 6099953344331288 m005 (1/2*5^(1/2)+2/7)/(7/11*exp(1)+4/7) 6099953377142315 b008 3*(20+EulerGamma^2) 6099953384155493 m001 (Conway-GaussKuzminWirsing)/(Trott-ZetaP(3)) 6099953398754755 a003 sin(Pi*2/103)/sin(Pi*45/92) 6099953420856262 r005 Im(z^2+c),c=-23/122+37/59*I,n=4 6099953432879473 a007 Real Root Of 315*x^4+600*x^3-194*x^2-679*x+42 6099953437524390 m001 (GAMMA(5/6)+Trott)/(ln(5)+sin(1/12*Pi)) 6099953460758222 a001 317811/2207*199^(3/11) 6099953482774407 h001 (-4*exp(3/2)+9)/(-7*exp(2/3)-1) 6099953491639961 p001 sum((-1)^n/(279*n+163)/(64^n),n=0..infinity) 6099953499446766 a007 Real Root Of 113*x^4+728*x^3+187*x^2-160*x+851 6099953503099208 r009 Im(z^3+c),c=-27/56+37/64*I,n=7 6099953527003832 m001 (-FeigenbaumB+Sierpinski)/(GAMMA(5/6)-sin(1)) 6099953538013628 m001 FeigenbaumD^2*Robbin^2*exp(TwinPrimes) 6099953552694540 a007 Real Root Of -545*x^4-35*x^3-434*x^2+500*x+534 6099953557110162 m001 cos(1)^sin(1/5*Pi)-Mills 6099953559248967 a007 Real Root Of 145*x^4+26*x^3-430*x^2-718*x+572 6099953573193869 l006 ln(3973/7312) 6099953588957894 m001 (-Totient+ZetaQ(3))/(Catalan+BesselI(0,1)) 6099953606113196 a007 Real Root Of 678*x^4-95*x^3+863*x^2-445*x-708 6099953626721775 m005 (1/2*Zeta(3)-6/7)/(2/3*Zeta(3)-5) 6099953652591924 r005 Re(z^2+c),c=-51/82+21/58*I,n=24 6099953662789653 a007 Real Root Of -669*x^4+817*x^3-510*x^2+697*x+893 6099953667515502 a007 Real Root Of 751*x^4-990*x^3-695*x^2-547*x+713 6099953673208868 r002 60th iterates of z^2 + 6099953683338561 r001 45i'th iterates of 2*x^2-1 of 6099953721199587 m001 exp(1)*FeigenbaumMu^HardyLittlewoodC3 6099953726272895 a001 21/4868641*2^(1/2) 6099953761996838 r005 Im(z^2+c),c=-27/118+5/59*I,n=14 6099953771773455 a007 Real Root Of 875*x^4+126*x^3+556*x^2-637*x-688 6099953806100214 a007 Real Root Of -561*x^4+547*x^3-688*x^2-103*x+395 6099953809586341 r009 Im(z^3+c),c=-7/106+14/19*I,n=24 6099953831948291 r005 Re(z^2+c),c=-17/12+46/57*I,n=2 6099953852198656 m001 Zeta(3)^2*MertensB1*ln(sinh(1)) 6099953852356338 a007 Real Root Of -138*x^4-902*x^3-442*x^2-442*x+85 6099953854255279 r005 Re(z^2+c),c=-3/4+2/197*I,n=29 6099953878665240 r009 Im(z^3+c),c=-1/32+43/61*I,n=7 6099953906105021 a001 75025/3*24476^(3/34) 6099953909465041 l006 ln(4067/7485) 6099953912153820 m005 (-3/20+1/4*5^(1/2))/(2/3*gamma+2/7) 6099953920418016 a007 Real Root Of -863*x^4-120*x^3-737*x^2+532*x+691 6099953939202968 r009 Im(z^3+c),c=-1/16+9/13*I,n=5 6099953941724767 m001 BesselJ(1,1)^(BesselI(0,1)*PlouffeB) 6099953970018527 r008 a(0)=0,K{-n^6,73+92*n^3+94*n^2-95*n} 6099953982194391 r008 a(0)=0,K{-n^6,-43-86*n^3-97*n^2+62*n} 6099953988288417 r008 a(0)=0,K{-n^6,-43+95*n^3+27*n^2+85*n} 6099954006965475 r008 a(0)=0,K{-n^6,-65+83*n^3+52*n^2+94*n} 6099954014004081 a007 Real Root Of -657*x^4+717*x^3-349*x^2-637*x-5 6099954019358482 r004 Re(z^2+c),c=-17/24+3/23*I,z(0)=-1,n=4 6099954036239874 r002 64th iterates of z^2 + 6099954036332324 r005 Im(z^2+c),c=9/28+14/43*I,n=8 6099954095661438 m001 (Rabbit+TwinPrimes)/(arctan(1/2)+Grothendieck) 6099954105354269 a007 Real Root Of 111*x^4-145*x^3-652*x^2-953*x-387 6099954135773727 a007 Real Root Of -160*x^4-60*x^3-807*x^2+869*x+56 6099954140232341 h001 (-7*exp(3)-8)/(-5*exp(1/2)+8) 6099954143982597 r002 5th iterates of z^2 + 6099954148362197 r005 Im(z^2+c),c=43/118+17/49*I,n=32 6099954150881385 r002 8th iterates of z^2 + 6099954161246138 a007 Real Root Of -661*x^4+670*x^3-196*x^2+568*x+663 6099954186889927 a003 cos(Pi*20/81)*sin(Pi*15/46) 6099954208300034 r005 Re(z^2+c),c=13/64+9/23*I,n=10 6099954215025656 l006 ln(2353/2501) 6099954222214682 r002 59th iterates of z^2 + 6099954230542985 l006 ln(4161/7658) 6099954231687513 b008 E^(1/5)+7*E*Pi 6099954242262060 a001 1364/75025*102334155^(4/21) 6099954242474189 a001 1364/514229*2504730781961^(4/21) 6099954245589934 a001 682/5473*4181^(4/21) 6099954271039137 m001 CareFree/(exp(1/Pi)^ZetaP(2)) 6099954317563811 m001 exp(sqrt(2))^GAMMA(5/6)/cos(Pi/5) 6099954374707658 a007 Real Root Of 539*x^4+524*x^3-143*x^2-432*x-166 6099954386693089 m001 (Zeta(1/2)+CareFree)/(ReciprocalLucas-Sarnak) 6099954395116172 m005 (1/2*gamma+1/2)/(5/9*Zeta(3)+5/8) 6099954405855375 m001 1/KhintchineLevy^2/CareFree*ln(FeigenbaumC) 6099954440811373 a001 18/55*2^(53/59) 6099954450666425 a003 cos(Pi*34/117)*sin(Pi*11/23) 6099954451692737 h001 (1/8*exp(2)+3/10)/(3/5*exp(1)+3/8) 6099954453282315 m001 (GAMMA(3/4)+arctan(1/2))/(3^(1/2)+Zeta(5)) 6099954466805590 a005 (1/cos(10/231*Pi))^1436 6099954484638481 a007 Real Root Of -329*x^4-329*x^3-542*x^2+345*x+383 6099954486409641 m005 (1/2*Catalan-6/7)/(1/5*exp(1)+6) 6099954500261383 a001 3571/165580141*8^(1/2) 6099954514090113 r009 Im(z^3+c),c=-17/31+13/46*I,n=31 6099954522438803 a007 Real Root Of -361*x^4+736*x^3-867*x^2+476*x+830 6099954530394024 a001 416020/2889*199^(3/11) 6099954530657283 r005 Im(z^2+c),c=-5/9-9/82*I,n=52 6099954537434631 l006 ln(4255/7831) 6099954549957072 m005 (1/2*gamma+3/8)/(3/10*Zeta(3)+8/11) 6099954561763319 m001 (1+3^(1/2))^(1/2)+Pi^Conway 6099954565756440 a005 (1/sin(82/191*Pi))^258 6099954609408340 a003 -1+2*cos(2/27*Pi)-cos(1/8*Pi)+cos(3/10*Pi) 6099954625411054 m001 1/RenyiParking/exp(CareFree)/Trott 6099954631830986 a007 Real Root Of -686*x^4+546*x^3-917*x^2-192*x+443 6099954633401917 s001 sum(exp(-3*Pi/4)^n*A226265[n],n=1..infinity) 6099954654081618 a001 1/116*(1/2*5^(1/2)+1/2)^13*29^(1/11) 6099954660796701 m001 GAMMA(11/12)*FeigenbaumKappa+FeigenbaumDelta 6099954679980279 s002 sum(A134912[n]/(2^n+1),n=1..infinity) 6099954679980279 s002 sum(A134913[n]/(2^n+1),n=1..infinity) 6099954686451816 a001 311187/2161*199^(3/11) 6099954709220341 a001 5702887/39603*199^(3/11) 6099954712542224 a001 7465176/51841*199^(3/11) 6099954713026881 a001 39088169/271443*199^(3/11) 6099954713097591 a001 14619165/101521*199^(3/11) 6099954713107907 a001 133957148/930249*199^(3/11) 6099954713109413 a001 701408733/4870847*199^(3/11) 6099954713109632 a001 1836311903/12752043*199^(3/11) 6099954713109664 a001 14930208/103681*199^(3/11) 6099954713109669 a001 12586269025/87403803*199^(3/11) 6099954713109670 a001 32951280099/228826127*199^(3/11) 6099954713109670 a001 43133785636/299537289*199^(3/11) 6099954713109670 a001 32264490531/224056801*199^(3/11) 6099954713109670 a001 591286729879/4106118243*199^(3/11) 6099954713109670 a001 774004377960/5374978561*199^(3/11) 6099954713109670 a001 4052739537881/28143753123*199^(3/11) 6099954713109670 a001 1515744265389/10525900321*199^(3/11) 6099954713109670 a001 3278735159921/22768774562*199^(3/11) 6099954713109670 a001 2504730781961/17393796001*199^(3/11) 6099954713109670 a001 956722026041/6643838879*199^(3/11) 6099954713109670 a001 182717648081/1268860318*199^(3/11) 6099954713109670 a001 139583862445/969323029*199^(3/11) 6099954713109670 a001 53316291173/370248451*199^(3/11) 6099954713109670 a001 10182505537/70711162*199^(3/11) 6099954713109672 a001 7778742049/54018521*199^(3/11) 6099954713109684 a001 2971215073/20633239*199^(3/11) 6099954713109768 a001 567451585/3940598*199^(3/11) 6099954713110343 a001 433494437/3010349*199^(3/11) 6099954713114283 a001 165580141/1149851*199^(3/11) 6099954713141292 a001 31622993/219602*199^(3/11) 6099954713326415 a001 24157817/167761*199^(3/11) 6099954714595261 a001 9227465/64079*199^(3/11) 6099954723292064 a001 1762289/12238*199^(3/11) 6099954729822174 a007 Real Root Of -74*x^4+732*x^3-628*x^2-587*x+52 6099954731398191 a007 Real Root Of -646*x^4+203*x^3-778*x^2-641*x+34 6099954782900839 a001 1346269/9349*199^(3/11) 6099954787391920 r009 Re(z^3+c),c=-3/46+3/19*I,n=6 6099954787928983 p001 sum(1/(505*n+164)/(625^n),n=0..infinity) 6099954795898679 a001 1292/299537289*2^(1/2) 6099954799910755 m005 (7/18+1/6*5^(1/2))/(3/4*5^(1/2)-3/7) 6099954810776358 m001 (Si(Pi)+ln(3))/(-GolombDickman+Stephens) 6099954831059856 l006 ln(4349/8004) 6099954833410980 m001 1/exp(GAMMA(5/12))^2*Tribonacci*GAMMA(7/12)^2 6099954844722342 a007 Real Root Of 863*x^4+131*x^3+34*x^2-760*x-566 6099954867707200 m004 15/Pi+Log[Sqrt[5]*Pi]/3+Sin[Sqrt[5]*Pi] 6099954868678693 a007 Real Root Of -880*x^4-505*x^3-375*x^2+525*x+467 6099954870538558 r009 Re(z^3+c),c=-11/18+17/53*I,n=19 6099954872537133 a005 (1/cos(3/220*Pi))^1970 6099954889564394 m001 Pi*Conway^FeigenbaumAlpha 6099954889901706 m001 Pi+ln(2)/ln(10)+5^(1/2)/sin(1) 6099954897883828 r005 Re(z^2+c),c=-16/31+23/53*I,n=4 6099954901628562 a007 Real Root Of 14*x^4+855*x^3+46*x^2-951*x-765 6099954908822078 a001 9349/433494437*8^(1/2) 6099954927820513 m001 (Champernowne+Porter)/(Chi(1)-ln(3)) 6099954940196098 m001 (Rabbit+StolarskyHarborth)/(Pi^(1/2)-PlouffeB) 6099954943179919 a007 Real Root Of -836*x^4+809*x^3-310*x^2+148*x+505 6099954945564913 a007 Real Root Of -500*x^4+843*x^3+819*x^2-226*x-289 6099954951954978 a001 6765/1568397607*2^(1/2) 6099954964774737 a001 3571/8*4181^(23/39) 6099954968430280 a001 12238/567451585*8^(1/2) 6099954974723285 a001 17711/4106118243*2^(1/2) 6099954977126999 a001 64079/2971215073*8^(1/2) 6099954978045136 a001 23184/5374978561*2^(1/2) 6099954978395833 a001 167761/7778742049*8^(1/2) 6099954978529788 a001 121393/28143753123*2^(1/2) 6099954978580954 a001 219602/10182505537*8^(1/2) 6099954978600498 a001 317811/73681302247*2^(1/2) 6099954978607963 a001 1149851/53316291173*8^(1/2) 6099954978610814 a001 416020/96450076809*2^(1/2) 6099954978611903 a001 3010349/139583862445*8^(1/2) 6099954978612319 a001 46347/10745088481*2^(1/2) 6099954978612478 a001 3940598/182717648081*8^(1/2) 6099954978612539 a001 5702887/1322157322203*2^(1/2) 6099954978612562 a001 20633239/956722026041*8^(1/2) 6099954978612571 a001 7465176/1730726404001*2^(1/2) 6099954978612574 a001 54018521/2504730781961*8^(1/2) 6099954978612575 a001 39088169/9062201101803*2^(1/2) 6099954978612576 a001 70711162/3278735159921*8^(1/2) 6099954978612576 a001 102334155/23725150497407*2^(1/2) 6099954978612576 a001 4868641/225749145909*8^(1/2) 6099954978612576 a001 31622993/7331474697802*2^(1/2) 6099954978612577 a001 87403803/4052739537881*8^(1/2) 6099954978612578 a001 24157817/5600748293801*2^(1/2) 6099954978612582 a001 16692641/774004377960*8^(1/2) 6099954978612590 a001 9227465/2139295485799*2^(1/2) 6099954978612614 a001 12752043/591286729879*8^(1/2) 6099954978612674 a001 1762289/408569081798*2^(1/2) 6099954978612833 a001 4870847/225851433717*8^(1/2) 6099954978613249 a001 1346269/312119004989*2^(1/2) 6099954978614338 a001 930249/43133785636*8^(1/2) 6099954978617190 a001 514229/119218851371*2^(1/2) 6099954978624655 a001 710647/32951280099*8^(1/2) 6099954978644199 a001 98209/22768774562*2^(1/2) 6099954978695365 a001 271443/12586269025*8^(1/2) 6099954978829319 a001 75025/17393796001*2^(1/2) 6099954979180016 a001 1/23184*2^(1/2) 6099954980098153 a001 28657/6643838879*2^(1/2) 6099954982501867 a001 39603/1836311903*8^(1/2) 6099954988794873 a001 5473/1268860318*2^(1/2) 6099954993905347 m001 (PrimesInBinary-ThueMorse)/(ArtinRank2+Otter) 6099954999094850 m005 (1/2*5^(1/2)-1/3)/(6/11*Pi-3) 6099955005270174 a001 15127/701408733*8^(1/2) 6099955018758265 a007 Real Root Of -142*x^4-909*x^3-194*x^2+264*x-887 6099955048403075 a001 4181/969323029*2^(1/2) 6099955066904010 a007 Real Root Of 923*x^4-311*x^3+485*x^2+285*x-205 6099955108216811 b008 E*(2+InverseGudermannian[Pi/13]) 6099955111749776 a007 Real Root Of 956*x^4-86*x^3-983*x^2-749*x-243 6099955112260687 l006 ln(4443/8177) 6099955145211100 a001 329/41*123^(9/10) 6099955149293984 a007 Real Root Of 857*x^4-68*x^3+140*x^2-662*x-590 6099955161326473 a001 2889/133957148*8^(1/2) 6099955167050730 a001 75025/4*7^(20/33) 6099955184358162 m001 (-FeigenbaumAlpha+Mills)/(2^(1/3)-Backhouse) 6099955186541900 a007 Real Root Of 97*x^4-714*x^3+912*x^2-256*x-671 6099955191465493 a001 514229/3571*199^(3/11) 6099955204691095 m002 -Pi^3+E^Pi*Pi^3-Pi^5/4 6099955216190078 m001 (Catalan+ln(2^(1/2)+1))/(ErdosBorwein+Totient) 6099955229265371 m005 (1/2*Pi+4/11)/(-1/18+1/6*5^(1/2)) 6099955264624149 m001 AlladiGrinstead^(Rabbit/GaussKuzminWirsing) 6099955287376765 m002 9+Pi^5/6+Tanh[Pi] 6099955317010869 a007 Real Root Of -14*x^4-854*x^3-4*x^2-209*x+715 6099955355395974 m001 (LaplaceLimit+Niven)/(GAMMA(2/3)-cos(1/12*Pi)) 6099955377063810 q001 1367/2241 6099955378614277 a007 Real Root Of 939*x^4-96*x^3+897*x^2+637*x-97 6099955381809372 l006 ln(4537/8350) 6099955388649778 m001 FeigenbaumC*Trott2nd-TwinPrimes 6099955396746772 a007 Real Root Of 368*x^4-867*x^3+397*x^2-214*x-526 6099955407019844 p003 LerchPhi(1/2,6,205/128) 6099955408693524 m001 (-FeigenbaumAlpha+Kac)/(Si(Pi)+GAMMA(3/4)) 6099955414134945 m001 1/GAMMA(13/24)/Porter*ln(GAMMA(5/6))^2 6099955418935734 r005 Im(z^2+c),c=-67/114+11/50*I,n=8 6099955426590198 a007 Real Root Of 809*x^4-905*x^3+365*x^2+584*x-97 6099955450746091 r005 Im(z^2+c),c=33/82+15/62*I,n=52 6099955453865368 r002 32th iterates of z^2 + 6099955456963769 a001 1597/370248451*2^(1/2) 6099955474370155 m007 (-4*gamma-8*ln(2)+1/3)/(-3/4*gamma-4/5) 6099955484564388 a007 Real Root Of -422*x^4-187*x^3-253*x^2+708*x+542 6099955489879731 a007 Real Root Of -151*x^4+713*x^3+618*x^2+392*x-610 6099955511510690 r005 Re(z^2+c),c=-131/106+18/55*I,n=5 6099955525917944 m006 (exp(2*Pi)+2/5)/(1/4*exp(Pi)+3) 6099955552060518 a003 cos(Pi*25/104)-sin(Pi*11/38) 6099955557161551 m001 Zeta(1,2)*(CareFree-ZetaQ(2)) 6099955605782667 m001 (Ei(1)-gamma(3))/(GaussKuzminWirsing-Magata) 6099955607351546 a007 Real Root Of 569*x^4+149*x^3+925*x^2+315*x-197 6099955613509669 r005 Im(z^2+c),c=-73/58+1/60*I,n=44 6099955640415456 l006 ln(4631/8523) 6099955659291282 m001 (Otter+Stephens)/(1-BesselK(0,1)) 6099955682379354 a007 Real Root Of -965*x^4+232*x^3+35*x^2+816*x+671 6099955717451943 r005 Re(z^2+c),c=13/66+18/55*I,n=16 6099955722060477 s002 sum(A273025[n]/((2*n+1)!),n=1..infinity) 6099955729653011 a007 Real Root Of 94*x^4+714*x^3+864*x^2+112*x+448 6099955734930993 r005 Im(z^2+c),c=-3/70+17/26*I,n=26 6099955749642822 a003 cos(Pi*4/13)*cos(Pi*34/73) 6099955758049646 r002 10th iterates of z^2 + 6099955764577577 a007 Real Root Of -97*x^4-532*x^3+503*x^2+869*x+134 6099955787690201 a007 Real Root Of 154*x^4+970*x^3+253*x^2+440*x+217 6099955798181239 a001 199*(1/2*5^(1/2)+1/2)^20*3^(9/14) 6099955810766520 r005 Re(z^2+c),c=-5/78+16/21*I,n=24 6099955811617277 a007 Real Root Of -939*x^4-434*x^3-860*x^2+550*x+687 6099955828289397 m009 (3/5*Psi(1,2/3)-6)/(1/12*Pi^2+6) 6099955838860952 m001 (Chi(1)+Totient)/FeigenbaumMu 6099955861339245 r005 Im(z^2+c),c=29/110+12/29*I,n=7 6099955885328325 m005 (1/3*gamma+3/5)/(4/9*exp(1)+1/11) 6099955888732022 l006 ln(4725/8696) 6099955893370054 m001 Si(Pi)*ln(2+3^(1/2))*Riemann3rdZero 6099955900555209 a007 Real Root Of 957*x^4-270*x^3+544*x^2-880*x-933 6099955902515325 r005 Im(z^2+c),c=11/102+35/61*I,n=19 6099955915775807 a003 cos(Pi*13/115)-sin(Pi*43/89) 6099955923478410 m001 (KhinchinLevy+Totient)/(Pi+1) 6099955923508027 m001 (3^(1/3)+sin(1/12*Pi))/(Backhouse+MertensB3) 6099955967849542 m001 ArtinRank2^Ei(1,1)*TwinPrimes 6099955969569808 m001 (5^(1/2)-CareFree)/(KomornikLoreti+Sarnak) 6099955975662025 a007 Real Root Of -82*x^4-374*x^3+850*x^2+435*x-331 6099955980964915 a001 89/439204*29^(18/55) 6099956004036869 r005 Re(z^2+c),c=9/26+12/37*I,n=54 6099956026017489 p003 LerchPhi(1/100,3,117/46) 6099956073212523 s001 sum(exp(-2*Pi/5)^n*A007627[n],n=1..infinity) 6099956073212523 s002 sum(A007627[n]/(exp(2/5*pi*n)),n=1..infinity) 6099956077671208 m001 ZetaQ(3)^polylog(4,1/2)/(ZetaQ(3)^gamma(1)) 6099956079381100 a007 Real Root Of 680*x^4-299*x^3+113*x^2-354*x-420 6099956083752065 r005 Im(z^2+c),c=-9/82+49/62*I,n=14 6099956088116668 m001 (Psi(1,1/3)-Si(Pi))/(-BesselK(0,1)+Pi^(1/2)) 6099956090685034 a007 Real Root Of 48*x^4-881*x^3-879*x^2-301*x+704 6099956102336415 m001 exp(1/Pi)-Riemann1stZero^sin(1/12*Pi) 6099956108065308 m001 GaussKuzminWirsing/(MasserGramain-ZetaR(2)) 6099956116861891 m001 (MertensB1+ZetaP(2))/(Conway-KhinchinLevy) 6099956127361196 l006 ln(4819/8869) 6099956128259680 a007 Real Root Of -785*x^4+837*x^3-102*x^2-142*x+250 6099956142928239 m005 (1/2*exp(1)+4/5)/(8/9*3^(1/2)+2) 6099956155337968 s002 sum(A011675[n]/((2^n+1)/n),n=1..infinity) 6099956176607856 a003 sin(Pi*25/107)*sin(Pi*43/118) 6099956203771888 a007 Real Root Of -846*x^4+813*x^3+895*x^2+878*x-936 6099956205013295 a007 Real Root Of -512*x^4-180*x^3+353*x^2+812*x+394 6099956218891485 m001 (GAMMA(2/3)-exp(Pi))/(FeigenbaumMu+ZetaQ(4)) 6099956228185131 m008 (1/5*Pi-3)/(4*Pi^4-5/6) 6099956230952257 a001 2207/102334155*8^(1/2) 6099956233285931 a007 Real Root Of -351*x^4+944*x^3-676*x^2-240*x+368 6099956251835377 m001 (Otter+PlouffeB)/(ln(2)/ln(10)+MertensB1) 6099956253527972 m001 (3^(1/3)-cos(1))/(FeigenbaumB+MasserGramain) 6099956302466573 m001 (Artin+FibonacciFactorial)/(Pi-polylog(4,1/2)) 6099956310025386 a007 Real Root Of -265*x^4+671*x^3-492*x^2+454*x+649 6099956311715250 a007 Real Root Of -359*x^4-585*x^3-133*x^2+619*x+344 6099956316552973 m001 (Psi(1,1/3)+GAMMA(3/4))/(-ln(gamma)+Mills) 6099956356859022 l006 ln(4913/9042) 6099956357314005 a007 Real Root Of 754*x^4-792*x^3-54*x^2-814*x+592 6099956376807634 r002 4th iterates of z^2 + 6099956380420540 r008 a(0)=0,K{-n^6,-26-99*n^3-49*n^2+10*n} 6099956394471846 m001 (exp(1/exp(1))+gamma(1))/(BesselJ(0,1)-cos(1)) 6099956400271323 r005 Im(z^2+c),c=-13/114+55/62*I,n=23 6099956402738500 m001 Artin*(CopelandErdos+HardHexagonsEntropy) 6099956403278249 r005 Im(z^2+c),c=27/74+33/49*I,n=5 6099956414943363 m001 exp(1)/(CareFree-sin(1/12*Pi)) 6099956425768705 r009 Re(z^3+c),c=-69/106+55/62*I,n=2 6099956441477916 m001 1/MinimumGamma*DuboisRaymond^2/ln(GAMMA(7/12)) 6099956460744168 r002 35th iterates of z^2 + 6099956461974628 r005 Re(z^2+c),c=-5/8+104/231*I,n=15 6099956488475381 a007 Real Root Of -700*x^4+897*x^3-403*x^2-27*x+434 6099956494884663 m004 -5*Pi-2*Tan[Sqrt[5]*Pi]+25*Pi*Tanh[Sqrt[5]*Pi] 6099956510210751 r005 Re(z^2+c),c=-1/86+19/45*I,n=4 6099956541357055 m001 (-GlaisherKinkelin+PlouffeB)/(1+FellerTornier) 6099956546666214 m005 (1/2*Pi-1/6)/(2/9*Pi-3) 6099956553698540 a007 Real Root Of 709*x^4-346*x^3+774*x^2+170*x-361 6099956559649845 a007 Real Root Of 290*x^4-944*x^3+274*x^2-283*x-529 6099956575101710 r009 Im(z^3+c),c=-3/16+37/54*I,n=10 6099956577739788 l006 ln(5007/9215) 6099956598148748 a007 Real Root Of 759*x^4-623*x^3+377*x^2-643*x-779 6099956598675836 r005 Re(z^2+c),c=-63/94+17/64*I,n=23 6099956602230280 a001 199/610*55^(19/26) 6099956633691276 a007 Real Root Of -360*x^4+809*x^3+460*x^2+846*x-821 6099956638890037 m001 GAMMA(5/12)^Ei(1)*exp(sqrt(2))^Ei(1) 6099956658771889 r005 Im(z^2+c),c=-7/62+41/51*I,n=11 6099956668072715 m005 (1/3*5^(1/2)+1/8)/(5/9*exp(1)-1/12) 6099956692450523 m001 (ln(gamma)+ArtinRank2)/(Cahen+Grothendieck) 6099956696814402 a007 Real Root Of -487*x^4+205*x^3-564*x^2-262*x+164 6099956705149598 m001 (GAMMA(2/3)*ZetaR(2)+CareFree)/ZetaR(2) 6099956714229546 r005 Re(z^2+c),c=-43/60+9/47*I,n=37 6099956723199745 a007 Real Root Of -990*x^4-306*x^3-744*x^2+855*x+866 6099956739416371 m001 1/ln(Lehmer)*Khintchine/sin(1) 6099956739836975 r009 Re(z^3+c),c=-39/62+23/48*I,n=16 6099956755470647 a001 2178309/76*3^(11/16) 6099956772128453 a007 Real Root Of -697*x^4+904*x^3-116*x^2+515*x+659 6099956780748937 h001 (11/12*exp(2)+4/7)/(2/9*exp(1)+3/5) 6099956787783136 a007 Real Root Of -857*x^4+24*x^3-298*x^2-659*x-167 6099956790159148 r002 5th iterates of z^2 + 6099956790479875 l006 ln(5101/9388) 6099956808615877 r009 Im(z^3+c),c=-29/106+34/47*I,n=24 6099956828915628 m001 (GAMMA(2/3)-cos(1))/(GolombDickman+Rabbit) 6099956830813212 r005 Im(z^2+c),c=-3/29+5/6*I,n=17 6099956837065599 r005 Im(z^2+c),c=-5/8+41/162*I,n=4 6099956841505003 m005 (1/3*Zeta(3)+1/9)/(14/5+5/2*5^(1/2)) 6099956848248765 m001 1/exp(BesselJ(1,1))^2*Rabbit^2*cos(1)^2 6099956857559098 r009 Re(z^3+c),c=-19/42+1/36*I,n=39 6099956864259418 r009 Re(z^3+c),c=-2/19+30/47*I,n=20 6099956867185846 m005 (1/2*5^(1/2)+5/7)/(6/11*Catalan-4/5) 6099956871482370 a007 Real Root Of -607*x^4+860*x^3-148*x^2+329*x+535 6099956879951767 m001 (Gompertz-LaplaceLimit)/(MertensB2+ZetaQ(2)) 6099956895437055 a007 Real Root Of 400*x^4-968*x^3-662*x^2+457*x+250 6099956931521376 m001 ln(5)^(Ei(1)/Ei(1,1)) 6099956956324030 m001 (Pi*2^(1/2)/GAMMA(3/4)+Niven)/(2^(1/2)-cos(1)) 6099956957294872 m001 1/exp(GAMMA(1/24))*(3^(1/3))*cos(Pi/5)^2 6099956960447439 m001 (BesselK(1,1)+Riemann3rdZero)/(Pi+Shi(1)) 6099956962666929 m001 exp(OneNinth)*Porter*GAMMA(11/24)^2 6099956970272346 r005 Re(z^2+c),c=-89/126+22/59*I,n=3 6099956995521183 l006 ln(5195/9561) 6099957001952068 m001 ln(Pi)*Khintchine^2*exp(1)^2 6099957002838351 r009 Re(z^3+c),c=-13/118+41/63*I,n=34 6099957015043698 m001 1/(2^(1/3))^2/ArtinRank2^2/exp(GAMMA(1/3))^2 6099957042765005 a001 3571/196418*102334155^(4/21) 6099957042795955 a001 3571/1346269*2504730781961^(4/21) 6099957054604483 a001 3571/28657*4181^(4/21) 6099957057010780 m001 Cahen^2/exp(Artin)/FeigenbaumDelta 6099957063797672 m005 (1/2*2^(1/2)-1)/(1/11*exp(1)-8/11) 6099957065528601 s002 sum(A190139[n]/(n^3*exp(n)-1),n=1..infinity) 6099957068723169 m001 (3^(1/3)+Mills)/(ZetaP(2)-ZetaQ(4)) 6099957072547419 m001 Lehmer^2/ArtinRank2*ln(GAMMA(5/6)) 6099957081386952 a001 55/2+521/2*5^(1/2) 6099957081545064 a001 142129/233 6099957088634483 a007 Real Root Of -983*x^4+969*x^3-483*x^2+584*x+892 6099957097575967 a007 Real Root Of -440*x^4+629*x^3+809*x^2+633*x-769 6099957102724711 m006 (5/6/Pi+2)/(1/3*exp(Pi)-4) 6099957127610804 a001 41/15456*832040^(48/53) 6099957135901325 p003 LerchPhi(1/256,4,320/159) 6099957164356446 a007 Real Root Of -640*x^4+83*x^3-238*x^2+916*x-55 6099957169574275 a003 sin(Pi*27/65)/cos(Pi*40/89) 6099957171076600 r005 Re(z^2+c),c=-95/126+2/47*I,n=33 6099957179476917 a007 Real Root Of 233*x^4-343*x^3-649*x^2-572*x+636 6099957179770054 a003 cos(Pi*35/117)/sin(Pi*23/55) 6099957185058341 r005 Re(z^2+c),c=-99/86+11/34*I,n=10 6099957188455054 m001 (Cahen-Landau)/(Porter+ZetaP(3)) 6099957192240960 r009 Im(z^3+c),c=-21/40+25/64*I,n=57 6099957193274196 l006 ln(5289/9734) 6099957196893872 r009 Re(z^3+c),c=-13/36+47/51*I,n=3 6099957207919006 r005 Re(z^2+c),c=13/102+33/58*I,n=62 6099957218571581 m004 5/Pi+4*E^(Sqrt[5]*Pi)*Sec[Sqrt[5]*Pi] 6099957218670924 m005 (1/2*gamma-2/5)/(5/8*5^(1/2)+3/7) 6099957240583445 m005 (1/6*2^(1/2)-3/5)/(3/2+2*5^(1/2)) 6099957283212302 q001 1428/2341 6099957290002970 m001 1/GAMMA(1/24)^2*RenyiParking*ln(cos(Pi/5))^2 6099957300335186 a001 233/322*1364^(14/15) 6099957304576257 a007 Real Root Of -384*x^4+719*x^3-308*x^2+978*x-592 6099957322346570 m001 2^(1/2)-Cahen-Rabbit 6099957323672528 a007 Real Root Of -767*x^4-92*x^3-77*x^2+964*x+702 6099957325950877 r008 a(0)=6,K{-n^6,2-6*n^3-4*n^2-3*n} 6099957330676472 m001 (ln(gamma)+Zeta(1,-1))/(GAMMA(19/24)-ZetaQ(4)) 6099957336108220 r002 2th iterates of z^2 + 6099957336108220 r002 2th iterates of z^2 + 6099957350079949 r005 Im(z^2+c),c=45/122+7/34*I,n=17 6099957384120729 l006 ln(5383/9907) 6099957392031590 r002 48th iterates of z^2 + 6099957401339620 m005 (1/2*exp(1)-5/8)/(17/55+2/5*5^(1/2)) 6099957404524211 m001 1/exp(Lehmer)*CopelandErdos/MinimumGamma^2 6099957405685316 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)-gamma(3)+Niven 6099957421720999 m001 1/Porter^2*ln(FeigenbaumDelta)/GAMMA(19/24) 6099957428103976 a007 Real Root Of 43*x^4+262*x^3+457*x^2-727*x-560 6099957434061784 a001 2/7778742049*514229^(16/17) 6099957451352879 a001 9349/514229*102334155^(4/21) 6099957451357394 a001 9349/3524578*2504730781961^(4/21) 6099957464434183 a001 9349/75025*4181^(4/21) 6099957486887004 a007 Real Root Of -798*x^4+934*x^3+584*x^2+579*x-672 6099957488425938 r005 Re(z^2+c),c=5/58+17/39*I,n=45 6099957492681541 a007 Real Root Of 841*x^4-132*x^3+607*x^2-634*x-759 6099957493345287 a007 Real Root Of 42*x^4-944*x^3-965*x^2-468*x+853 6099957500637190 a001 28657/322*322^(1/3) 6099957510965046 a001 24476/1346269*102334155^(4/21) 6099957510965705 a001 24476/9227465*2504730781961^(4/21) 6099957512646460 r005 Re(z^2+c),c=-13/18+14/57*I,n=5 6099957519662344 a001 64079/3524578*102334155^(4/21) 6099957519662440 a001 64079/24157817*2504730781961^(4/21) 6099957520931263 a001 167761/9227465*102334155^(4/21) 6099957520931277 a001 167761/63245986*2504730781961^(4/21) 6099957521116395 a001 439204/24157817*102334155^(4/21) 6099957521116397 a001 439204/165580141*2504730781961^(4/21) 6099957521143406 a001 1149851/63245986*102334155^(4/21) 6099957521143406 a001 1149851/433494437*2504730781961^(4/21) 6099957521147347 a001 3010349/165580141*102334155^(4/21) 6099957521147347 a001 3010349/1134903170*2504730781961^(4/21) 6099957521147922 a001 7881196/433494437*102334155^(4/21) 6099957521147922 a001 7881196/2971215073*2504730781961^(4/21) 6099957521148005 a001 20633239/1134903170*102334155^(4/21) 6099957521148005 a001 20633239/7778742049*2504730781961^(4/21) 6099957521148018 a001 54018521/2971215073*102334155^(4/21) 6099957521148018 a001 54018521/20365011074*2504730781961^(4/21) 6099957521148019 a001 141422324/7778742049*102334155^(4/21) 6099957521148019 a001 141422324/53316291173*2504730781961^(4/21) 6099957521148020 a001 370248451/20365011074*102334155^(4/21) 6099957521148020 a001 370248451/139583862445*2504730781961^(4/21) 6099957521148020 a001 969323029/53316291173*102334155^(4/21) 6099957521148020 a001 2537720636/139583862445*102334155^(4/21) 6099957521148020 a001 6643838879/365435296162*102334155^(4/21) 6099957521148020 a001 17393796001/956722026041*102334155^(4/21) 6099957521148020 a001 45537549124/2504730781961*102334155^(4/21) 6099957521148020 a001 119218851371/6557470319842*102334155^(4/21) 6099957521148020 a001 64300051206/3536736619241*102334155^(4/21) 6099957521148020 a001 73681302247/4052739537881*102334155^(4/21) 6099957521148020 a001 228811001/12585437040*102334155^(4/21) 6099957521148020 a001 10749957122/591286729879*102334155^(4/21) 6099957521148020 a001 1368706081/75283811239*102334155^(4/21) 6099957521148020 a001 1568397607/86267571272*102334155^(4/21) 6099957521148020 a001 969323029/365435296162*2504730781961^(4/21) 6099957521148020 a001 199691526/10983760033*102334155^(4/21) 6099957521148020 a001 2537720636/956722026041*2504730781961^(4/21) 6099957521148020 a001 6643838879/2504730781961*2504730781961^(4/21) 6099957521148020 a001 17393796001/6557470319842*2504730781961^(4/21) 6099957521148020 a001 9381251041/3536736619241*2504730781961^(4/21) 6099957521148020 a001 10749957122/4052739537881*2504730781961^(4/21) 6099957521148020 a001 1368706081/516002918640*2504730781961^(4/21) 6099957521148020 a001 1568397607/591286729879*2504730781961^(4/21) 6099957521148020 a001 710646/267913919*2504730781961^(4/21) 6099957521148020 a001 228826127/12586269025*102334155^(4/21) 6099957521148020 a001 228826127/86267571272*2504730781961^(4/21) 6099957521148021 a001 29134601/1602508992*102334155^(4/21) 6099957521148021 a001 29134601/10983760033*2504730781961^(4/21) 6099957521148025 a001 33385282/1836311903*102334155^(4/21) 6099957521148025 a001 33385282/12586269025*2504730781961^(4/21) 6099957521148057 a001 4250681/233802911*102334155^(4/21) 6099957521148057 a001 4250681/1602508992*2504730781961^(4/21) 6099957521148277 a001 4870847/267914296*102334155^(4/21) 6099957521148277 a001 4870847/1836311903*2504730781961^(4/21) 6099957521149782 a001 620166/233802911*2504730781961^(4/21) 6099957521149782 a001 15126/831985*102334155^(4/21) 6099957521160098 a001 710647/267914296*2504730781961^(4/21) 6099957521160099 a001 710647/39088169*102334155^(4/21) 6099957521230808 a001 90481/34111385*2504730781961^(4/21) 6099957521230814 a001 90481/4976784*102334155^(4/21) 6099957521715461 a001 103682/39088169*2504730781961^(4/21) 6099957521715497 a001 103682/5702887*102334155^(4/21) 6099957524227530 a001 12238/98209*4181^(4/21) 6099957525037318 a001 13201/4976784*2504730781961^(4/21) 6099957525037570 a001 13201/726103*102334155^(4/21) 6099957532951262 a001 64079/514229*4181^(4/21) 6099957534224038 a001 167761/1346269*4181^(4/21) 6099957534409733 a001 219602/1762289*4181^(4/21) 6099957534436826 a001 1149851/9227465*4181^(4/21) 6099957534440778 a001 3010349/24157817*4181^(4/21) 6099957534441355 a001 3940598/31622993*4181^(4/21) 6099957534441439 a001 20633239/165580141*4181^(4/21) 6099957534441451 a001 54018521/433494437*4181^(4/21) 6099957534441453 a001 70711162/567451585*4181^(4/21) 6099957534441454 a001 370248451/2971215073*4181^(4/21) 6099957534441454 a001 969323029/7778742049*4181^(4/21) 6099957534441454 a001 1268860318/10182505537*4181^(4/21) 6099957534441454 a001 6643838879/53316291173*4181^(4/21) 6099957534441454 a001 17393796001/139583862445*4181^(4/21) 6099957534441454 a001 22768774562/182717648081*4181^(4/21) 6099957534441454 a001 119218851371/956722026041*4181^(4/21) 6099957534441454 a001 312119004989/2504730781961*4181^(4/21) 6099957534441454 a001 408569081798/3278735159921*4181^(4/21) 6099957534441454 a001 505019158607/4052739537881*4181^(4/21) 6099957534441454 a001 10716675201/86000486440*4181^(4/21) 6099957534441454 a001 73681302247/591286729879*4181^(4/21) 6099957534441454 a001 9381251041/75283811239*4181^(4/21) 6099957534441454 a001 5374978561/43133785636*4181^(4/21) 6099957534441454 a001 1368706081/10983760033*4181^(4/21) 6099957534441454 a001 1568397607/12586269025*4181^(4/21) 6099957534441454 a001 33281921/267084832*4181^(4/21) 6099957534441454 a001 228826127/1836311903*4181^(4/21) 6099957534441454 a001 29134601/233802911*4181^(4/21) 6099957534441459 a001 16692641/133957148*4181^(4/21) 6099957534441491 a001 4250681/34111385*4181^(4/21) 6099957534441711 a001 4870847/39088169*4181^(4/21) 6099957534443221 a001 103361/829464*4181^(4/21) 6099957534453570 a001 710647/5702887*4181^(4/21) 6099957534524499 a001 90481/726103*4181^(4/21) 6099957535010656 a001 51841/416020*4181^(4/21) 6099957538342825 a001 13201/105937*4181^(4/21) 6099957547805667 a001 15127/5702887*2504730781961^(4/21) 6099957547807391 a001 15127/832040*102334155^(4/21) 6099957561181851 a001 15127/121393*4181^(4/21) 6099957568416382 l006 ln(5477/10080) 6099957588666027 s002 sum(A134912[n]/(2^n-1),n=1..infinity) 6099957588666027 s002 sum(A134913[n]/(2^n-1),n=1..infinity) 6099957636702582 p004 log(24841/23371) 6099957665760850 m005 (25/4+1/4*5^(1/2))/(-57/110+2/11*5^(1/2)) 6099957673803642 r005 Im(z^2+c),c=17/66+29/51*I,n=59 6099957683654545 h001 (4/7*exp(2)+1/3)/(9/10*exp(2)+9/11) 6099957701947882 a007 Real Root Of 9*x^4+545*x^3-258*x^2-870*x-106 6099957703862250 a001 1926/726103*2504730781961^(4/21) 6099957703874072 a001 1926/105937*102334155^(4/21) 6099957708714919 a007 Real Root Of 365*x^4-100*x^3-733*x^2-700*x-40 6099957717722867 a001 321/2576*4181^(4/21) 6099957734146545 m001 MinimumGamma*exp(Backhouse)*Paris^2 6099957747263036 a007 Real Root Of -318*x^4+420*x^3+935*x^2+39*x-423 6099957751481365 m005 (1/2*2^(1/2)+2/3)/(3*Catalan-5) 6099957757850090 a007 Real Root Of 118*x^4-446*x^3-286*x^2+15*x-2 6099957790502417 m001 1/Zeta(3)/Kolakoski/exp(cos(1)) 6099957818891483 a001 15127/34*5^(10/51) 6099957870861229 m005 (1/2*5^(1/2)-3/7)/(9/10*3^(1/2)-3/7) 6099957900955535 m001 (gamma(3)-GAMMA(17/24))/(Riemann2ndZero+Trott) 6099957904221287 r005 Re(z^2+c),c=11/90+29/60*I,n=22 6099957906501746 m001 (GAMMA(3/4)+4)/(GAMMA(1/6)+3) 6099957915036445 p003 LerchPhi(1/1024,1,187/114) 6099957929014988 m001 (ThueMorse-Weierstrass)/(Zeta(1,-1)-Thue) 6099957942785790 r009 Im(z^3+c),c=-43/74+11/18*I,n=4 6099957950871011 r009 Im(z^3+c),c=-11/86+26/35*I,n=59 6099957954038648 r005 Re(z^2+c),c=-23/22+19/122*I,n=56 6099957975588609 m005 (23/30+1/6*5^(1/2))/(11/12*2^(1/2)+4/7) 6099957991810762 a001 98209/682*199^(3/11) 6099958022476085 m001 (Artin+1)/(-RenyiParking+3) 6099958067490134 a007 Real Root Of 419*x^4-904*x^3-461*x^2-794*x-576 6099958078569898 a007 Real Root Of -724*x^4-148*x^3-666*x^2+914*x+872 6099958080537309 r005 Im(z^2+c),c=-59/66+3/64*I,n=21 6099958084993199 m001 (Landau-Riemann3rdZero)/(ln(3)-ArtinRank2) 6099958134458822 m005 (1/2*Pi-3/11)/(5/11*Pi+7/10) 6099958165762542 m001 (gamma+GAMMA(3/4))/(FeigenbaumAlpha+ZetaP(2)) 6099958216968868 g007 Psi(2,4/9)+14*Zeta(3)-Psi(2,11/12)-Psi(2,4/5) 6099958223010024 a007 Real Root Of 710*x^4+12*x^3+813*x^2-531*x-722 6099958227754609 a007 Real Root Of 693*x^4-945*x^3+592*x^2-448*x-804 6099958233582952 s002 sum(A067702[n]/(n*exp(pi*n)-1),n=1..infinity) 6099958242515464 a007 Real Root Of -808*x^4+406*x^3+134*x^2+426*x-290 6099958257280427 a001 305/70711162*2^(1/2) 6099958273883311 a001 1364*144^(13/17) 6099958344382830 r005 Im(z^2+c),c=-95/82+5/64*I,n=12 6099958376690946 r009 Im(z^3+c),c=-25/62+9/10*I,n=2 6099958388431655 a005 (1/cos(7/109*Pi))^1549 6099958399597190 r005 Im(z^2+c),c=33/86+9/34*I,n=52 6099958413238851 r009 Im(z^3+c),c=-33/70+34/61*I,n=31 6099958416149801 a007 Real Root Of -706*x^4+339*x^3+524*x^2+903*x-725 6099958430260339 a007 Real Root Of 856*x^4-715*x^3+710*x^2-641*x-936 6099958456199285 r005 Im(z^2+c),c=-4/13+2/21*I,n=6 6099958467857865 a007 Real Root Of 77*x^4+419*x^3-447*x^2-777*x+386 6099958475144675 r005 Im(z^2+c),c=41/110+15/43*I,n=29 6099958476230619 r002 27th iterates of z^2 + 6099958498431922 m001 KhintchineHarmonic*ln(CareFree)^2/Lehmer^2 6099958504208476 a007 Real Root Of -131*x^4-780*x^3+97*x^2-147*x-172 6099958512451956 a003 cos(Pi*22/75)/sin(Pi*27/59) 6099958513406037 a007 Real Root Of -277*x^4+880*x^3-333*x^2-300*x+179 6099958519021225 r005 Im(z^2+c),c=-29/50+3/34*I,n=15 6099958527970234 m001 BesselK(0,1)*(2^(1/3))*GAMMA(1/12) 6099958536476987 m009 (5*Psi(1,2/3)-1/6)/(5/2*Pi^2+1/6) 6099958553234849 m001 (sin(1/5*Pi)+Ei(1,1))/(ArtinRank2+Kac) 6099958557675238 a001 48*15127^(14/53) 6099958569378376 a007 Real Root Of 173*x^4+904*x^3-906*x^2+81*x-134 6099958569870732 a007 Real Root Of -650*x^4-40*x^3-789*x^2-150*x+283 6099958575368441 m002 6/Log[Pi]+(3*Log[Pi])/4 6099958584297213 m001 (3^(1/3)-ln(2+3^(1/2)))/(Mills+RenyiParking) 6099958585794352 r005 Re(z^2+c),c=-73/58+59/61*I,n=2 6099958602154567 p001 sum((-1)^n/(555*n+161)/(12^n),n=0..infinity) 6099958604989888 m001 (gamma(2)-GAMMA(11/12))/(Mills+TreeGrowth2nd) 6099958617151634 r005 Im(z^2+c),c=-81/118+11/36*I,n=51 6099958624526276 p004 log(28283/28111) 6099958628248245 a007 Real Root Of -318*x^4+592*x^3+224*x^2+171*x-278 6099958639130583 m001 Rabbit^(FeigenbaumDelta*MadelungNaCl) 6099958667352926 m001 (Pi-gamma)/(arctan(1/3)+Paris) 6099958680822019 r002 4th iterates of z^2 + 6099958698873823 m001 FransenRobinson*(Sierpinski-ThueMorse) 6099958701825185 a003 cos(Pi*13/119)*sin(Pi*24/107) 6099958720412349 m001 Zeta(1/2)^2/Cahen*ln(Zeta(3)) 6099958748201466 a007 Real Root Of -62*x^4-443*x^3-375*x^2+251*x+776 6099958752668366 m001 1/exp(arctan(1/2))*Zeta(9)^2*cos(Pi/12) 6099958773489985 a001 2207/832040*2504730781961^(4/21) 6099958773571011 a001 2207/121393*102334155^(4/21) 6099958780243455 a007 Real Root Of 839*x^4-829*x^3-67*x^2+840*x+233 6099958785453719 r005 Re(z^2+c),c=-2/19+33/40*I,n=54 6099958790670953 a001 2207/17711*4181^(4/21) 6099958801516087 a007 Real Root Of -991*x^4+427*x^3+50*x^2+668*x+623 6099958818782693 m003 -49/8+Sqrt[5]/16+5/ProductLog[1/2+Sqrt[5]/2] 6099958825286043 v002 sum(1/(2^n+(-27+60*n)),n=1..infinity) 6099958838264973 p001 sum(1/(236*n+165)/(64^n),n=0..infinity) 6099958846550580 m001 Khinchin+Riemann1stZero^arctan(1/2) 6099958881110695 m001 PrimesInBinary-ln(2)/ln(10)-Sarnak 6099958927381163 r005 Im(z^2+c),c=23/90+29/51*I,n=8 6099958934202077 s002 sum(A071461[n]/(exp(n)-1),n=1..infinity) 6099958940874859 r002 2th iterates of z^2 + 6099958961118876 a007 Real Root Of -968*x^4+397*x^3+385*x^2+506*x-408 6099958961627206 m001 ln(GAMMA(1/12))^2/Rabbit/GAMMA(19/24)^2 6099958980723569 m004 -2*Tan[Sqrt[5]*Pi]+20*Pi*Tanh[Sqrt[5]*Pi] 6099958999431455 m002 -Pi/3+2*Pi^5-Tanh[Pi] 6099959008402264 a007 Real Root Of 592*x^4-747*x^3+275*x^2-656*x-754 6099959033183121 q001 1489/2441 6099959035947701 a003 sin(Pi*1/70)-sin(Pi*5/22) 6099959036124616 r005 Im(z^2+c),c=-47/78+6/53*I,n=41 6099959059938375 a007 Real Root Of 148*x^4+978*x^3+596*x^2+989*x+926 6099959070208892 p004 log(35257/19157) 6099959071966815 m005 (1/2*gamma+4/5)/(6/7*3^(1/2)+3/10) 6099959097869800 r009 Re(z^3+c),c=-59/94+28/59*I,n=13 6099959117429459 l006 ln(8156/8669) 6099959118373320 r008 a(0)=6,K{-n^6,-36+23*n^3-45*n^2+49*n} 6099959122214353 r009 Re(z^3+c),c=-19/42+1/36*I,n=57 6099959139610313 h001 (7/10*exp(1)+2/9)/(5/11*exp(2)+1/8) 6099959142067789 m001 (GAMMA(2/3)+GAMMA(7/12))/(Artin+Paris) 6099959165907139 m001 (FeigenbaumC-ZetaQ(4))/(ln(Pi)-exp(1/exp(1))) 6099959183842440 r002 39th iterates of z^2 + 6099959185372763 a007 Real Root Of 948*x^4-641*x^3+756*x^2-195*x-677 6099959228047345 m001 1/ln(Conway)*ErdosBorwein^2*FeigenbaumAlpha^2 6099959244932713 m001 Robbin/exp(FeigenbaumC)^2*Ei(1)^2 6099959293152019 a007 Real Root Of 936*x^4-418*x^3+522*x^2-830*x-925 6099959304798255 b008 59+Erfc[-5/2] 6099959304798255 b008 60+Erf[5/2] 6099959322525329 a007 Real Root Of 846*x^4-887*x^3-968*x^2-842*x+958 6099959349205297 m001 (MertensB3-Paris)/(FeigenbaumB-MertensB2) 6099959353515366 a007 Real Root Of -590*x^4-169*x^3-293*x^2+765*x+619 6099959363383740 m005 (1/2*3^(1/2)-6)/(6*5^(1/2)-5) 6099959399446780 a007 Real Root Of 909*x^4-911*x^3-18*x^2-787*x-806 6099959402739332 a007 Real Root Of -720*x^4+271*x^3+241*x^2+768*x+540 6099959415528577 m001 1/GAMMA(3/4)*TreeGrowth2nd/exp(sqrt(Pi)) 6099959429084366 r002 19th iterates of z^2 + 6099959444556534 a007 Real Root Of 151*x^4+857*x^3-533*x^2-879*x-77 6099959444602088 r005 Re(z^2+c),c=-9/14+36/109*I,n=33 6099959448206920 m001 (Pi^(1/2)+OneNinth)/(3^(1/3)+GAMMA(13/24)) 6099959454863862 r009 Re(z^3+c),c=-3/64+48/55*I,n=11 6099959468097901 m001 Ei(1,1)*CopelandErdos-Robbin 6099959475431636 m008 (1/5*Pi^6+3)/(1/3*Pi^6-1/3) 6099959478211319 a007 Real Root Of -967*x^4+953*x^3+216*x^2+438*x+537 6099959506920350 m003 (17*Sqrt[5])/64+Log[1/2+Sqrt[5]/2]/30 6099959551600635 a007 Real Root Of -795*x^4-337*x^3-201*x^2+383*x+342 6099959591496096 m001 (Pi*2^(1/2)/GAMMA(3/4)+sin(1/12*Pi))^MertensB3 6099959593934690 a003 cos(Pi*20/67)/sin(Pi*43/102) 6099959610838418 a007 Real Root Of -844*x^4-311*x^3-561*x^2+359*x+474 6099959659553155 a007 Real Root Of -623*x^4+878*x^3-983*x^2+529*x+974 6099959662742423 r009 Re(z^3+c),c=-25/46+8/41*I,n=56 6099959668125800 a003 sin(Pi*7/61)-sin(Pi*45/109) 6099959690260368 a007 Real Root Of -184*x^4-193*x^3-994*x^2+427*x+612 6099959716036157 m001 (MertensB3+Rabbit)/(Khinchin+LaplaceLimit) 6099959738678813 r005 Re(z^2+c),c=-45/118+41/64*I,n=14 6099959785243908 a007 Real Root Of -126*x^4+617*x^3+64*x^2+819*x-646 6099959797133464 a007 Real Root Of -806*x^4-965*x^3-724*x^2-236*x+18 6099959803828200 a007 Real Root Of -140*x^4-950*x^3-509*x^2+444*x-143 6099959805103400 a003 cos(Pi*29/113)*sin(Pi*23/67) 6099959838062700 a003 sin(Pi*15/118)-sin(Pi*47/97) 6099959863941372 a007 Real Root Of 970*x^4-491*x^3+790*x^2-430*x-802 6099959876283003 h001 (4/11*exp(2)+4/9)/(3/5*exp(2)+7/10) 6099959882252181 r009 Im(z^3+c),c=-11/126+23/31*I,n=39 6099959889809678 a007 Real Root Of -59*x^4+999*x^3+453*x^2-176*x-41 6099959909729997 a001 144/521*3571^(16/17) 6099959931173577 a007 Real Root Of 500*x^4+481*x^3+970*x^2-982*x-920 6099959936866403 r002 34th iterates of z^2 + 6099959966491308 a001 233/322*3571^(14/17) 6099959979209323 m001 (MasserGramain+OrthogonalArrays)/(Pi+Ei(1,1)) 6099960020850638 m005 (1/2*gamma+5/9)/(5/8*2^(1/2)+1/2) 6099960050659982 m001 GAMMA(17/24)^2/ln(Sierpinski)^2*gamma^2 6099960060031895 m005 (1/2*2^(1/2)+1/9)/(3/11*exp(1)+3/5) 6099960060671991 r009 Im(z^3+c),c=-17/82+28/39*I,n=44 6099960061006116 m001 (Si(Pi)-gamma(3))/(GAMMA(17/24)+MadelungNaCl) 6099960061859692 m009 (6*Psi(1,2/3)-1/5)/(1/5*Psi(1,1/3)-5) 6099960075097179 g007 Psi(2,2/11)+Psi(2,3/7)+Psi(2,1/3)-Psi(2,1/8) 6099960081842743 a007 Real Root Of 351*x^4+149*x^3-387*x^2-922*x+624 6099960083170413 m001 1/LambertW(1)*ln((2^(1/3)))^2/cosh(1) 6099960087541302 r005 Re(z^2+c),c=-65/106+9/14*I,n=8 6099960108262304 a008 Real Root of (-4+4*x+2*x^2+7*x^4-8*x^8) 6099960132171373 a001 196418/843*199^(2/11) 6099960135890886 r002 53th iterates of z^2 + 6099960158463729 r005 Re(z^2+c),c=3/26+14/17*I,n=3 6099960177351297 m001 (Thue-ZetaP(3))/(MasserGramain+PlouffeB) 6099960197662989 m001 1/FeigenbaumC/exp(Conway)^2/TwinPrimes 6099960232874163 r002 28th iterates of z^2 + 6099960268801730 a008 Real Root of x^4-x^3-24*x^2+95*x-139 6099960279761387 m001 (-Pi^(1/2)+Conway)/(sin(1)+gamma(1)) 6099960301172285 a001 144/521*9349^(16/19) 6099960307693501 m001 (AlladiGrinstead+Artin)/(3^(1/2)+exp(-1/2*Pi)) 6099960309003311 a001 233/322*9349^(14/19) 6099960322700396 a007 Real Root Of -670*x^4-28*x^3+47*x^2+228*x+208 6099960328459001 r002 11th iterates of z^2 + 6099960329056419 a007 Real Root Of 9*x^4+44*x^3+473*x^2-34*x-188 6099960336671628 m005 (1/2*5^(1/2)+7/12)/(9/10*Catalan-6/11) 6099960343256693 r002 8th iterates of z^2 + 6099960352185336 a001 144/521*24476^(16/21) 6099960353639731 a001 233/322*24476^(2/3) 6099960354443916 m009 (32*Catalan+4*Pi^2-6)/(48*Catalan+6*Pi^2-1/4) 6099960358909837 a001 144/521*64079^(16/23) 6099960359523670 a001 233/322*64079^(14/23) 6099960359943283 a001 144/521*(1/2+1/2*5^(1/2))^16 6099960359943283 a001 144/521*23725150497407^(1/4) 6099960359943283 a001 144/521*73681302247^(4/13) 6099960359943283 a001 144/521*10749957122^(1/3) 6099960359943283 a001 144/521*4106118243^(8/23) 6099960359943283 a001 144/521*1568397607^(4/11) 6099960359943283 a001 144/521*599074578^(8/21) 6099960359943283 a001 144/521*228826127^(2/5) 6099960359943283 a001 144/521*87403803^(8/19) 6099960359943285 a001 144/521*33385282^(4/9) 6099960359943300 a001 144/521*12752043^(8/17) 6099960359943411 a001 144/521*4870847^(1/2) 6099960359944223 a001 144/521*1860498^(8/15) 6099960359950185 a001 144/521*710647^(4/7) 6099960359994229 a001 144/521*271443^(8/13) 6099960360321576 a001 144/521*103682^(2/3) 6099960360427929 a001 233/322*20633239^(2/5) 6099960360427935 a001 233/322*17393796001^(2/7) 6099960360427935 a001 233/322*14662949395604^(2/9) 6099960360427935 a001 233/322*(1/2+1/2*5^(1/2))^14 6099960360427935 a001 233/322*505019158607^(1/4) 6099960360427935 a001 233/322*10749957122^(7/24) 6099960360427935 a001 233/322*4106118243^(7/23) 6099960360427935 a001 233/322*1568397607^(7/22) 6099960360427935 a001 233/322*599074578^(1/3) 6099960360427935 a001 233/322*228826127^(7/20) 6099960360427935 a001 233/322*87403803^(7/19) 6099960360427937 a001 233/322*33385282^(7/18) 6099960360427950 a001 233/322*12752043^(7/17) 6099960360428047 a001 233/322*4870847^(7/16) 6099960360428757 a001 233/322*1860498^(7/15) 6099960360433974 a001 233/322*710647^(1/2) 6099960360472513 a001 233/322*271443^(7/13) 6099960360758942 a001 233/322*103682^(7/12) 6099960362771861 a001 144/521*39603^(8/11) 6099960362902940 a001 233/322*39603^(7/11) 6099960365000047 a007 Real Root Of -930*x^4+962*x^3+370*x^2+934*x-797 6099960369587516 a007 Real Root Of -467*x^4+835*x^3+670*x^2+203*x-498 6099960379088270 a001 233/322*15127^(7/10) 6099960381269380 a001 144/521*15127^(4/5) 6099960420903894 r005 Im(z^2+c),c=1/28+55/64*I,n=8 6099960429347864 a007 Real Root Of 784*x^4-255*x^3+578*x^2+350*x-168 6099960432706264 r005 Re(z^2+c),c=-21/31+13/56*I,n=3 6099960445224349 a007 Real Root Of 170*x^4+876*x^3-906*x^2+479*x+92 6099960446281247 r005 Re(z^2+c),c=-5/82+40/49*I,n=16 6099960489260925 m001 MinimumGamma+ReciprocalFibonacci^BesselI(0,1) 6099960496750484 r002 23th iterates of z^2 + 6099960502538868 a001 233/322*5778^(7/9) 6099960506852995 a001 9/1292*514229^(45/52) 6099960510429946 m001 (Artin+MertensB3)/(ln(Pi)+(1+3^(1/2))^(1/2)) 6099960517387561 m005 (1/2*Catalan+1/11)/(1/12*Zeta(3)-1) 6099960520221046 a007 Real Root Of 36*x^4-82*x^3+503*x^2-84*x-262 6099960522355779 a001 144/521*5778^(8/9) 6099960531652715 r009 Re(z^3+c),c=-1/106+44/61*I,n=12 6099960550061246 r009 Im(z^3+c),c=-3/23+17/23*I,n=7 6099960550766116 p001 sum(1/(253*n+164)/(1000^n),n=0..infinity) 6099960555126734 r002 10th iterates of z^2 + 6099960560664451 r005 Im(z^2+c),c=-41/54+18/41*I,n=3 6099960568673954 r005 Re(z^2+c),c=8/21+7/34*I,n=11 6099960574456400 p001 sum((-1)^n/(241*n+160)/(16^n),n=0..infinity) 6099960579232901 m001 arctan(1/2)*LambertW(1)*exp(sin(1)) 6099960581756823 m001 (GAMMA(23/24)+FibonacciFactorial)/(1-Zeta(5)) 6099960594949217 a007 Real Root Of 6*x^4+57*x^3+114*x^2-225*x-984 6099960631713666 m001 (Riemann3rdZero-Totient)/(arctan(1/3)-Rabbit) 6099960633015082 m001 (-Grothendieck+Robbin)/(exp(1)-ln(2^(1/2)+1)) 6099960645415190 q001 155/2541 6099960670157512 m001 (Lehmer-Mills)/(Conway-KhinchinLevy) 6099960675229772 r005 Re(z^2+c),c=-2/3+32/223*I,n=3 6099960696273168 r009 Im(z^3+c),c=-27/50+17/44*I,n=12 6099960698186736 a007 Real Root Of -491*x^4-148*x^3-806*x^2-630*x-50 6099960747334185 a003 cos(Pi*1/82)-cos(Pi*41/110) 6099960768642155 r002 36th iterates of z^2 + 6099960771951313 m002 E^Pi/Pi^3+Pi^4/2+Sinh[Pi] 6099960776496303 m001 1/PrimesInBinary*Magata^2*exp(GAMMA(7/24)) 6099960799249049 a007 Real Root Of 62*x^4-166*x^3+653*x^2-812*x-52 6099960806918027 m001 (FeigenbaumC+PrimesInBinary)/(Pi+cos(1)) 6099960810218153 a007 Real Root Of 550*x^4-763*x^3+172*x^2-947*x-891 6099960817411570 r002 48th iterates of z^2 + 6099960820491767 r009 Re(z^3+c),c=-13/24+28/57*I,n=27 6099960828008434 m001 1/GAMMA(13/24)^2*Ei(1)^2/exp(cosh(1))^2 6099960833024115 m001 ln(TreeGrowth2nd)^2/Artin*Tribonacci^2 6099960837427671 r005 Re(z^2+c),c=-3/70+31/44*I,n=47 6099960853288515 r005 Im(z^2+c),c=47/126+11/31*I,n=44 6099960876632807 r005 Im(z^2+c),c=-7/10+17/207*I,n=52 6099960890926632 r002 38th iterates of z^2 + 6099960892054941 r005 Re(z^2+c),c=-49/52+1/56*I,n=32 6099960892066430 r005 Re(z^2+c),c=-49/52+1/56*I,n=30 6099960892144272 r005 Re(z^2+c),c=-49/52+1/56*I,n=34 6099960892186172 r005 Re(z^2+c),c=-49/52+1/56*I,n=36 6099960892200298 r005 Re(z^2+c),c=-49/52+1/56*I,n=38 6099960892204372 r005 Re(z^2+c),c=-49/52+1/56*I,n=40 6099960892205428 r005 Re(z^2+c),c=-49/52+1/56*I,n=42 6099960892205637 r005 Re(z^2+c),c=3/52+1/56*I,n=14 6099960892205678 r005 Re(z^2+c),c=-49/52+1/56*I,n=44 6099960892205688 r005 Re(z^2+c),c=3/52+1/56*I,n=15 6099960892205731 r005 Re(z^2+c),c=-49/52+1/56*I,n=46 6099960892205731 r005 Re(z^2+c),c=3/52+1/56*I,n=16 6099960892205741 r002 60th iterates of z^2 + 6099960892205741 r005 Re(z^2+c),c=3/52+1/56*I,n=17 6099960892205742 r002 62th iterates of z^2 + 6099960892205742 r005 Re(z^2+c),c=-49/52+1/56*I,n=48 6099960892205743 r002 64th iterates of z^2 + 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=18 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=50 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=19 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=20 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=21 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=22 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=23 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=34 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=35 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=36 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=37 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=38 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=39 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=40 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=41 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=42 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=46 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=47 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=48 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=49 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=50 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=51 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=52 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=53 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=54 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=55 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=56 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=57 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=58 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=59 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=60 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=61 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=62 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=63 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=64 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=43 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=45 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=44 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=33 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=32 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=31 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=30 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=29 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=28 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=27 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=26 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=25 6099960892205743 r005 Re(z^2+c),c=3/52+1/56*I,n=24 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=64 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=62 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=60 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=58 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=56 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=54 6099960892205743 r005 Re(z^2+c),c=-49/52+1/56*I,n=52 6099960892205753 r002 58th iterates of z^2 + 6099960892205862 r002 56th iterates of z^2 + 6099960892206511 r002 54th iterates of z^2 + 6099960892207528 r005 Re(z^2+c),c=3/52+1/56*I,n=13 6099960892209784 r002 52th iterates of z^2 + 6099960892224534 r002 50th iterates of z^2 + 6099960892238530 r005 Re(z^2+c),c=3/52+1/56*I,n=12 6099960892285124 r002 48th iterates of z^2 + 6099960892511553 r002 46th iterates of z^2 + 6099960892581524 r005 Re(z^2+c),c=3/52+1/56*I,n=11 6099960893264110 r002 44th iterates of z^2 + 6099960893555716 m001 (exp(-1/2*Pi)-FransenRobinson)/(Mills+Otter) 6099960893688069 r005 Re(z^2+c),c=-49/52+1/56*I,n=28 6099960895335946 r002 42th iterates of z^2 + 6099960895767343 r005 Re(z^2+c),c=3/52+1/56*I,n=10 6099960898826121 r002 40th iterates of z^2 + 6099960898867028 h001 (4/11*exp(1)+4/9)/(9/11*exp(1)+1/8) 6099960906316671 r005 Re(z^2+c),c=-49/52+1/56*I,n=26 6099960915810156 m009 (Pi^2+1/6)/(1/4*Psi(1,3/4)-4/5) 6099960920393469 m008 (5/6*Pi^4+5/6)/(2/3*Pi-3/4) 6099960922029875 r005 Re(z^2+c),c=3/52+1/56*I,n=9 6099960943483302 a007 Real Root Of 563*x^4-482*x^3-868*x^2-337*x+560 6099960963359117 r005 Re(z^2+c),c=-20/29+17/63*I,n=63 6099960965115752 h001 (5/12*exp(1)+3/10)/(5/6*exp(1)+1/12) 6099960978407142 r005 Re(z^2+c),c=-49/52+1/56*I,n=24 6099960980753097 a007 Real Root Of 455*x^4-165*x^3+515*x^2+728*x+152 6099961030189136 m006 (5/6/Pi+3)/(exp(2*Pi)-1/5) 6099961053018273 r005 Im(z^2+c),c=9/44+8/15*I,n=56 6099961084004164 r005 Im(z^2+c),c=7/122+2/37*I,n=5 6099961094508080 m001 (-Zeta(1,2)+Weierstrass)/(Si(Pi)+arctan(1/2)) 6099961094909941 r005 Im(z^2+c),c=-67/56+5/61*I,n=63 6099961102012477 r005 Re(z^2+c),c=5/34+22/41*I,n=31 6099961105255713 l006 ln(5803/6168) 6099961110606569 a003 sin(Pi*6/31)/sin(Pi*22/57) 6099961116861037 r005 Re(z^2+c),c=3/52+1/56*I,n=8 6099961160859613 r005 Im(z^2+c),c=-10/19+30/49*I,n=21 6099961178264660 a007 Real Root Of 558*x^4+782*x^3+592*x^2-636*x-508 6099961194908229 r005 Im(z^2+c),c=-77/114+9/25*I,n=16 6099961211232656 a001 1364/4181*75025^(6/23) 6099961216914506 a007 Real Root Of 287*x^4-994*x^3+826*x^2-530*x-896 6099961225567755 r005 Re(z^2+c),c=29/86+20/53*I,n=36 6099961237526275 m001 1/GAMMA(1/4)*MertensB1^2/exp(GAMMA(5/6)) 6099961271078748 a003 cos(Pi*19/101)*sin(Pi*26/99) 6099961272285616 m009 (1/10*Pi^2+2/3)/(3/10*Pi^2-1/4) 6099961276753720 r005 Im(z^2+c),c=23/98+28/53*I,n=21 6099961280749941 a001 1364/75025*4807526976^(6/23) 6099961283495942 r005 Im(z^2+c),c=41/98+15/44*I,n=47 6099961283517816 m001 (-CareFree+Porter)/(2^(1/3)+gamma(2)) 6099961290632408 m001 1/3*(Gompertz-(1+3^(1/2))^(1/2))*3^(1/2) 6099961297418499 r002 8th iterates of z^2 + 6099961315702068 m001 OrthogonalArrays/ln(2+3^(1/2))/ZetaP(3) 6099961328649380 m001 (Artin-Sarnak)/(Zeta(3)-ln(Pi)) 6099961332162583 r005 Re(z^2+c),c=-49/52+1/56*I,n=22 6099961337046375 m001 gamma(3)^(Gompertz/Sarnak) 6099961337890146 r004 Im(z^2+c),c=-6/7-3/23*I,z(0)=exp(1/8*I*Pi),n=7 6099961353580017 a001 199/4807526976*3^(6/17) 6099961364732908 a007 Real Root Of -895*x^4+938*x^3-820*x^2-154*x+548 6099961382366759 m005 (1/2*exp(1)-5/8)/(3/4*2^(1/2)+1/7) 6099961383177021 k001 Champernowne real with 387*n+222 6099961394464576 r009 Im(z^3+c),c=-63/106+15/49*I,n=18 6099961411171901 r005 Im(z^2+c),c=-13/74+26/31*I,n=44 6099961456226108 a001 233/322*2207^(7/8) 6099961467082630 r005 Re(z^2+c),c=-13/11+5/22*I,n=16 6099961501049168 m001 (Kac+Trott2nd)/(exp(1/exp(1))-Artin) 6099961503983314 r005 Re(z^2+c),c=7/20+17/49*I,n=52 6099961539566790 b008 1/12+Pi*ProductLog[13] 6099961543696588 m003 3/8+(5*Sqrt[5])/8+4*Coth[1/2+Sqrt[5]/2] 6099961556522991 m002 -2+2*Pi^5-Cosh[Pi]+Sinh[Pi] 6099961557435537 m005 (1/3*Zeta(3)+2/11)/(4/11*Catalan-3/7) 6099961558574610 p003 LerchPhi(1/10,5,253/229) 6099961570824492 r002 38i'th iterates of 2*x/(1-x^2) of 6099961574328698 m005 (1/2*exp(1)-3/10)/(7/9*2^(1/2)+7/11) 6099961580845170 a007 Real Root Of 57*x^4-847*x^3+840*x^2-330*x-714 6099961581204593 r001 18i'th iterates of 2*x^2-1 of 6099961590958698 m001 1/exp(cos(1))^2/arctan(1/2)^2/sin(Pi/12) 6099961591866975 a007 Real Root Of 668*x^4-368*x^3+781*x^2-458*x-746 6099961602434874 a001 76/21*2178309^(6/31) 6099961613256496 m001 AlladiGrinstead+Riemann3rdZero^polylog(4,1/2) 6099961615728470 r004 Im(z^2+c),c=-31/38+9/23*I,z(0)=-1,n=3 6099961625468551 a001 5778/55*233^(38/51) 6099961631002603 a007 Real Root Of -137*x^4-717*x^3+646*x^2-376*x+610 6099961639302064 r005 Re(z^2+c),c=-25/18+5/211*I,n=18 6099961665728670 a005 (1/sin(61/135*Pi))^1962 6099961715703601 m001 (MinimumGamma+Rabbit)/(exp(1)+sin(1)) 6099961722779529 a007 Real Root Of -741*x^4-230*x^3+698*x^2+728*x-549 6099961735351840 m005 (1/2*Pi-5/7)/(10/11*Catalan+4/7) 6099961763245959 r005 Re(z^2+c),c=-55/102+8/13*I,n=32 6099961772115613 m005 (5/6*Pi-2/5)/(5*gamma+3/4) 6099961789752523 a001 48*843^(20/53) 6099961818178356 m007 (-1/6*gamma+3)/(-2*gamma-4*ln(2)-5/6) 6099961837263673 r002 48th iterates of z^2 + 6099961860306644 p001 sum(1/(243*n+164)/(1024^n),n=0..infinity) 6099961867519340 m008 (3/5*Pi^3-1)/(3*Pi^2-3/4) 6099961868941922 a007 Real Root Of -982*x^4+851*x^3+301*x^2-192*x+100 6099961870522275 m005 (1/2*5^(1/2)+6/7)/(1/9*2^(1/2)+1/6) 6099961891715626 m005 (1/2*5^(1/2)-5/12)/(3/10*Catalan+7/8) 6099961912426785 a007 Real Root Of -975*x^4+205*x^3-376*x^2+437*x+588 6099961916285816 a007 Real Root Of -111*x^4-550*x^3+682*x^2-469*x+610 6099961918543610 a007 Real Root Of -943*x^4+205*x^3-494*x^2-431*x+98 6099961949952723 r005 Im(z^2+c),c=-31/114+31/47*I,n=8 6099961955476956 a007 Real Root Of -28*x^4+304*x^3-196*x^2+921*x-554 6099961966195427 r009 Re(z^3+c),c=-23/44+5/53*I,n=32 6099961966694956 p001 sum(1/(503*n+164)/(625^n),n=0..infinity) 6099961990424223 m001 (Ei(1,1)-GAMMA(5/6))/(ln(5)+Zeta(1/2)) 6099962004751562 a001 1/72*13^(15/26) 6099962009605274 a007 Real Root Of 58*x^4+323*x^3-208*x^2-12*x+676 6099962026914977 m001 GAMMA(2/3)-GolombDickman-Totient 6099962041857336 m001 DuboisRaymond^(Lehmer/ReciprocalLucas) 6099962051033174 m001 exp(Pi)^Zeta(1/2)/(CareFree^Zeta(1/2)) 6099962052000690 s002 sum(A071057[n]/(n^3*2^n+1),n=1..infinity) 6099962060226320 s002 sum(A071057[n]/(n^3*2^n-1),n=1..infinity) 6099962061243195 a007 Real Root Of 919*x^4-235*x^3+631*x^2-483*x-710 6099962067363100 m005 (1/2*5^(1/2)+4/5)/(1/12*3^(1/2)+3) 6099962096734429 m005 (1/2*gamma+8/9)/(6/7*Zeta(3)+9/10) 6099962102151477 r005 Re(z^2+c),c=-51/118+25/44*I,n=38 6099962104000909 m005 (1/2*Zeta(3)+3)/(1/12*Catalan-2/3) 6099962115925009 m001 (Stephens+Totient)/(BesselK(1,1)-Catalan) 6099962135554714 q001 1611/2641 6099962169993443 m008 (1/3*Pi-3/4)/(5*Pi^4+1/6) 6099962173628430 m005 (2*exp(1)-3)/(4/5*Catalan-1/3) 6099962184701072 m009 (16/3*Catalan+2/3*Pi^2+3/4)/(2*Psi(1,1/3)-1/6) 6099962198662519 m001 Backhouse/(FeigenbaumD^QuadraticClass) 6099962206003301 a007 Real Root Of -212*x^4-764*x^3-778*x^2+637*x+534 6099962213374329 a007 Real Root Of 874*x^4-247*x^3+289*x^2+401*x-40 6099962224892435 r005 Im(z^2+c),c=-17/48+35/57*I,n=14 6099962245011907 m001 (MertensB1+Robbin)/(cos(1/5*Pi)+CareFree) 6099962275149243 m001 GAMMA(17/24)^2/FeigenbaumAlpha^2*exp(Pi) 6099962278598265 a007 Real Root Of -833*x^4-814*x^3-992*x^2+671*x+709 6099962283282653 m001 Pi/Psi(1,1/3)-Psi(2,1/3)+2*Pi/GAMMA(5/6) 6099962284706727 r004 Re(z^2+c),c=-7/34+13/23*I,z(0)=I,n=5 6099962318755939 h001 (8/9*exp(1)+3/8)/(6/11*exp(2)+6/11) 6099962321184380 m001 GAMMA(23/24)/Zeta(3)*TravellingSalesman 6099962344950138 a001 2/139583862445*1836311903^(14/17) 6099962344953937 a001 2/165580141*514229^(14/17) 6099962364164609 m001 LandauRamanujan/Champernowne*ln(GAMMA(1/3)) 6099962366360849 m001 ln(BesselJ(0,1))^2*Salem/sinh(1)^2 6099962366626105 a007 Real Root Of 135*x^4+925*x^3+720*x^2+766*x+921 6099962386731254 r008 a(0)=6,K{-n^6,-20*n^3+54*n^2-46*n} 6099962387165153 m001 1/exp(GAMMA(1/24))*ArtinRank2/exp(1)^2 6099962398018287 a001 17711/322*322^(5/12) 6099962403318569 r005 Re(z^2+c),c=3/52+1/56*I,n=7 6099962414309468 m001 (KomornikLoreti+Porter)/(Psi(2,1/3)+Pi^(1/2)) 6099962420391416 a007 Real Root Of -508*x^4+886*x^3+476*x^2+992*x-913 6099962420682104 a007 Real Root Of 551*x^4-333*x^3+912*x^2-798*x-978 6099962443557392 m001 (GAMMA(13/24)+Trott2nd)/(Si(Pi)+ln(2^(1/2)+1)) 6099962472425693 r005 Im(z^2+c),c=-13/106+31/38*I,n=44 6099962476219787 m001 GAMMA(1/4)*exp(1/exp(1))^sqrt(2) 6099962476219787 m001 Pi*2^(1/2)/GAMMA(3/4)*exp(1/exp(1))^(2^(1/2)) 6099962517387844 b008 Sqrt[2]+9*Tanh[EulerGamma] 6099962519981865 r002 19th iterates of z^2 + 6099962524250475 m005 (1/2*2^(1/2)-4/11)/(7/72+5/24*5^(1/2)) 6099962560985557 m001 (GAMMA(19/24)+GAMMA(23/24))/(Zeta(3)-sin(1)) 6099962567552832 a007 Real Root Of -263*x^4+567*x^3-660*x^2+671*x+820 6099962572555265 m001 (Chi(1)+exp(-1/2*Pi))/(ErdosBorwein+OneNinth) 6099962577002492 r005 Re(z^2+c),c=-25/38+14/55*I,n=12 6099962587633812 a001 9349/21*21^(3/29) 6099962595603672 p004 log(19249/10459) 6099962606087933 m001 (-Zeta(1,-1)+GAMMA(23/24))/(Catalan+Zeta(5)) 6099962636794212 m001 (Salem+ZetaQ(3))/(ln(2+3^(1/2))+Kac) 6099962644810054 g001 GAMMA(1/12,16/35) 6099962644870888 a005 (1/cos(25/192*Pi))^21 6099962649331507 m001 1/Zeta(1/2)^2*ln(RenyiParking)/sqrt(5) 6099962649599359 a007 Real Root Of -419*x^4+952*x^3+740*x^2-22*x-420 6099962649702194 r005 Re(z^2+c),c=-16/29+31/51*I,n=7 6099962657851247 m001 sin(1/5*Pi)+Trott^sin(1) 6099962678823349 m001 (2^(1/2)+gamma(2))/(GAMMA(5/6)+GAMMA(19/24)) 6099962705363765 r005 Im(z^2+c),c=-2/3+80/141*I,n=4 6099962709650487 r005 Re(z^2+c),c=-73/118+16/45*I,n=22 6099962755538408 r005 Re(z^2+c),c=-7/78+49/60*I,n=6 6099962757628012 a007 Real Root Of -651*x^4-76*x^3-891*x^2+278*x+574 6099962767512899 a007 Real Root Of -824*x^4-644*x^3-668*x^2+973*x+810 6099962769030659 m005 (1/3*gamma+1/5)/(3/4*gamma+6) 6099962772235047 a002 18^(5/7)-2^(5/6) 6099962773770454 m001 (2^(1/2)+GAMMA(2/3))/(-exp(-1/2*Pi)+Robbin) 6099962788868672 m001 (2^(1/2)+Artin)/(-Magata+PlouffeB) 6099962789059848 a007 Real Root Of 482*x^4-401*x^3+638*x^2+15*x-386 6099962823875527 r009 Re(z^3+c),c=-25/74+38/61*I,n=10 6099962837242803 a001 34/11*2^(51/52) 6099962857412919 l006 ln(9253/9835) 6099962883892784 a007 Real Root Of 575*x^4+207*x^3+625*x^2+779*x+210 6099962894649879 r005 Re(z^2+c),c=-49/52+1/56*I,n=20 6099962912676877 r005 Im(z^2+c),c=-31/110+5/56*I,n=13 6099962913259187 r008 a(0)=6,K{-n^6,-49+40*n-9*n^2+9*n^3} 6099962918650276 l002 Ei(9,67/106) 6099962966338478 a007 Real Root Of 243*x^4-32*x^3-787*x^2-638*x-36 6099962979416468 b008 3*(2+Tanh[1/30]) 6099962983123646 s002 sum(A079936[n]/(n^3*2^n+1),n=1..infinity) 6099962987634741 b008 3*(2+ArcCot[30]) 6099962993574474 r001 14i'th iterates of 2*x^2-1 of 6099963000817946 m001 (Bloch-Kolakoski)/(Niven-Salem) 6099963029609892 a003 cos(Pi*1/68)*sin(Pi*23/110) 6099963037247587 a003 cos(Pi*14/69)*sin(Pi*31/113) 6099963045033625 a007 Real Root Of 569*x^4-510*x^3+20*x^2-282*x-374 6099963047537926 r005 Im(z^2+c),c=-2/15+7/8*I,n=35 6099963060582601 m001 FeigenbaumAlpha*(CareFree-Pi) 6099963074096920 a001 1322157322203/233*144^(16/17) 6099963106329029 r005 Re(z^2+c),c=-30/29+11/46*I,n=30 6099963114334995 r002 13th iterates of z^2 + 6099963120836941 r002 42th iterates of z^2 + 6099963163364136 a007 Real Root Of -860*x^4+414*x^3+23*x^2+432*x+468 6099963167504926 m002 -2+2*Pi^5-Tanh[Pi]/E^Pi 6099963182227154 a001 46368/521*199^(4/11) 6099963190508871 m001 Thue-ZetaQ(2)^PlouffeB 6099963192172853 m001 (CopelandErdos-exp(1))/(LaplaceLimit+Magata) 6099963224630694 r005 Re(z^2+c),c=-9/74+15/22*I,n=3 6099963255844519 a007 Real Root Of -469*x^4-72*x^3+167*x^2+855*x+508 6099963275757566 m005 (-11/42+1/6*5^(1/2))/(Catalan+9/10) 6099963301486600 a003 cos(Pi*7/67)*cos(Pi*23/83) 6099963301749085 a007 Real Root Of 518*x^4-514*x^3+182*x^2+751*x+202 6099963308691800 h001 (7/12*exp(1)+11/12)/(4/9*exp(2)+9/11) 6099963318180204 m001 (Zeta(5)-Conway)^Artin 6099963322865693 m005 (1/2*Catalan+3/5)/(5/8*3^(1/2)-10/11) 6099963323586265 m001 Robbin^2/Kolakoski*exp(Zeta(3))^2 6099963357093687 a007 Real Root Of 87*x^4+512*x^3-161*x^2-180*x+649 6099963361666624 r002 12th iterates of z^2 + 6099963374892806 a007 Real Root Of 146*x^4+982*x^3+698*x^2+964*x+655 6099963377057077 m001 1/3*BesselK(1,1)*3^(2/3)*MinimumGamma 6099963410210058 r005 Im(z^2+c),c=-11/36+39/59*I,n=52 6099963497878799 r002 28th iterates of z^2 + 6099963510008234 a007 Real Root Of -135*x^4-825*x^3-19*x^2-54*x+36 6099963516964611 q001 1672/2741 6099963528208769 a007 Real Root Of -126*x^4-860*x^3-558*x^2-72*x-423 6099963529218637 s002 sum(A118431[n]/(n^2*pi^n+1),n=1..infinity) 6099963562276448 a001 843/39088169*8^(1/2) 6099963590748670 r009 Im(z^3+c),c=-55/102+10/39*I,n=7 6099963591698667 a003 sin(Pi*5/77)-sin(Pi*9/106) 6099963594550933 m001 gamma*DuboisRaymond*Landau 6099963597664669 a007 Real Root Of 342*x^4-999*x^3+180*x^2+328*x-141 6099963631895557 m001 5^(1/2)/(((1+3^(1/2))^(1/2))^Sierpinski) 6099963638308380 r008 a(0)=0,K{-n^6,73+91*n^3+95*n^2-95*n} 6099963655535812 a007 Real Root Of 92*x^4-100*x^3+847*x^2-140*x-436 6099963656944371 r008 a(0)=0,K{-n^6,-43+94*n^3+28*n^2+85*n} 6099963664713613 a003 cos(Pi*11/106)-cos(Pi*41/105) 6099963683209300 r005 Re(z^2+c),c=-15/38+13/18*I,n=4 6099963691657764 r009 Im(z^3+c),c=-51/94+33/53*I,n=31 6099963693384288 r008 a(0)=6,K{-n^6,4-6*n^3-3*n^2-6*n} 6099963716805958 a001 1/2255*2^(23/50) 6099963720687972 b008 58+3*Erf[E] 6099963728032530 r005 Im(z^2+c),c=-73/110+13/41*I,n=26 6099963737768418 a005 (1/cos(3/142*Pi))^1865 6099963770877590 a007 Real Root Of -470*x^4+22*x^3-578*x^2-374*x+57 6099963790386987 m001 (Psi(1,1/3)+Sierpinski)/exp(-1/2*Pi) 6099963859776994 r002 39th iterates of z^2 + 6099963864334447 a001 55/29*29^(17/49) 6099963879364408 a003 cos(Pi*12/35)/cos(Pi*48/101) 6099963898319137 m008 (3/4*Pi^3+1/5)/(4*Pi^6-1/2) 6099963898502500 r002 30th iterates of z^2 + 6099963898742120 m001 (Ei(1)+gamma(1))/(HardyLittlewoodC4-ZetaQ(3)) 6099963910349956 m001 (Shi(1)+BesselJ(0,1))/(GlaisherKinkelin+Niven) 6099963912668285 a007 Real Root Of -887*x^4-37*x^3-897*x^2+362*x+669 6099963918610034 m001 Zeta(3)/exp(Robbin)/Zeta(7)^2 6099963924045701 p001 sum((-1)^n/(439*n+65)/n/(3^n),n=1..infinity) 6099963928696393 r005 Re(z^2+c),c=-11/29+28/43*I,n=21 6099963985308947 a001 1/89*8^(48/59) 6099963991754783 b008 61+ExpIntegralEi[-6] 6099964034783005 a007 Real Root Of -370*x^4+827*x^3+583*x^2+919*x-914 6099964046186128 a007 Real Root Of -235*x^4+814*x^3-860*x^2-430*x+275 6099964047928048 m001 exp(GAMMA(2/3))/Sierpinski^2*GAMMA(23/24)^2 6099964061215359 a007 Real Root Of -965*x^4-396*x^3-917*x^2-554*x+47 6099964071161971 a001 3571/10946*75025^(6/23) 6099964081256118 a001 3571/196418*4807526976^(6/23) 6099964118045221 p003 LerchPhi(1/100,1,226/137) 6099964135031008 r002 56th iterates of z^2 + 6099964136984149 r008 a(0)=6,K{-n^6,-2-5*n^3-9*n^2+5*n} 6099964147402305 m001 (FibonacciFactorial+Niven)/(ln(5)-GAMMA(5/6)) 6099964156667681 m001 (Magata+PrimesInBinary)/(GAMMA(3/4)-Si(Pi)) 6099964166683463 r005 Re(z^2+c),c=-131/94+3/43*I,n=6 6099964171581201 l006 ln(6374/6413) 6099964202463339 r005 Im(z^2+c),c=15/46+13/41*I,n=8 6099964222117698 a001 76/433494437*89^(5/18) 6099964226440759 r005 Im(z^2+c),c=-13/18+26/85*I,n=7 6099964247425438 r002 32th iterates of z^2 + 6099964297029635 a005 (1/cos(34/207*Pi))^112 6099964300158689 h001 (3/8*exp(1)+5/6)/(11/12*exp(1)+6/11) 6099964306576522 a007 Real Root Of -61*x^4+268*x^3+767*x^2+402*x-583 6099964320109961 a007 Real Root Of -243*x^4-140*x^3+584*x^2+692*x-574 6099964327783883 r001 45i'th iterates of 2*x^2-1 of 6099964354391347 h001 (-2*exp(1/2)+9)/(-7*exp(-3)-9) 6099964358742596 a007 Real Root Of 549*x^4-894*x^3+378*x^2-422*x-677 6099964394087597 h001 (8/11*exp(1)+2/11)/(2/5*exp(2)+7/12) 6099964413308232 a007 Real Root Of -812*x^4-175*x^3-890*x^2-67*x+363 6099964429549001 m001 (gamma(2)+Conway)/(GaussAGM-Otter) 6099964449530210 r009 Re(z^3+c),c=-27/56+2/27*I,n=36 6099964457455943 m001 (FeigenbaumAlpha+Sarnak)/(ZetaP(2)+ZetaP(4)) 6099964477100438 m005 (3/5*exp(1)-2/5)/(5/6*Pi-3/5) 6099964488420039 a001 9349/28657*75025^(6/23) 6099964489844463 a001 9349/514229*4807526976^(6/23) 6099964505522220 m001 Ei(1,1)+CareFree^FeigenbaumD 6099964511463744 a007 Real Root Of -600*x^4+814*x^3+460*x^2-447*x-176 6099964524302159 r009 Re(z^3+c),c=-12/23+7/57*I,n=15 6099964527160326 m001 (2/3)^(GAMMA(23/24)/sin(1)) 6099964549297171 a001 24476/75025*75025^(6/23) 6099964549456699 a001 24476/1346269*4807526976^(6/23) 6099964557244792 r005 Im(z^2+c),c=-5/6+17/77*I,n=10 6099964558154007 a001 64079/3524578*4807526976^(6/23) 6099964558179025 a001 64079/196418*75025^(6/23) 6099964559422927 a001 167761/9227465*4807526976^(6/23) 6099964559474870 a001 167761/514229*75025^(6/23) 6099964559608060 a001 439204/24157817*4807526976^(6/23) 6099964559635071 a001 1149851/63245986*4807526976^(6/23) 6099964559639012 a001 3010349/165580141*4807526976^(6/23) 6099964559639586 a001 7881196/433494437*4807526976^(6/23) 6099964559639670 a001 20633239/1134903170*4807526976^(6/23) 6099964559639683 a001 54018521/2971215073*4807526976^(6/23) 6099964559639684 a001 141422324/7778742049*4807526976^(6/23) 6099964559639685 a001 370248451/20365011074*4807526976^(6/23) 6099964559639685 a001 969323029/53316291173*4807526976^(6/23) 6099964559639685 a001 2537720636/139583862445*4807526976^(6/23) 6099964559639685 a001 6643838879/365435296162*4807526976^(6/23) 6099964559639685 a001 17393796001/956722026041*4807526976^(6/23) 6099964559639685 a001 45537549124/2504730781961*4807526976^(6/23) 6099964559639685 a001 119218851371/6557470319842*4807526976^(6/23) 6099964559639685 a001 64300051206/3536736619241*4807526976^(6/23) 6099964559639685 a001 73681302247/4052739537881*4807526976^(6/23) 6099964559639685 a001 228811001/12585437040*4807526976^(6/23) 6099964559639685 a001 10749957122/591286729879*4807526976^(6/23) 6099964559639685 a001 1368706081/75283811239*4807526976^(6/23) 6099964559639685 a001 1568397607/86267571272*4807526976^(6/23) 6099964559639685 a001 199691526/10983760033*4807526976^(6/23) 6099964559639685 a001 228826127/12586269025*4807526976^(6/23) 6099964559639685 a001 29134601/1602508992*4807526976^(6/23) 6099964559639690 a001 33385282/1836311903*4807526976^(6/23) 6099964559639722 a001 4250681/233802911*4807526976^(6/23) 6099964559639942 a001 4870847/267914296*4807526976^(6/23) 6099964559641447 a001 15126/831985*4807526976^(6/23) 6099964559651764 a001 710647/39088169*4807526976^(6/23) 6099964559663931 a001 439204/1346269*75025^(6/23) 6099964559691515 a001 1149851/3524578*75025^(6/23) 6099964559695539 a001 3010349/9227465*75025^(6/23) 6099964559696126 a001 7881196/24157817*75025^(6/23) 6099964559696212 a001 20633239/63245986*75025^(6/23) 6099964559696224 a001 54018521/165580141*75025^(6/23) 6099964559696226 a001 141422324/433494437*75025^(6/23) 6099964559696226 a001 370248451/1134903170*75025^(6/23) 6099964559696226 a001 969323029/2971215073*75025^(6/23) 6099964559696226 a001 2537720636/7778742049*75025^(6/23) 6099964559696226 a001 6643838879/20365011074*75025^(6/23) 6099964559696226 a001 17393796001/53316291173*75025^(6/23) 6099964559696226 a001 45537549124/139583862445*75025^(6/23) 6099964559696226 a001 119218851371/365435296162*75025^(6/23) 6099964559696226 a001 312119004989/956722026041*75025^(6/23) 6099964559696226 a001 817138163596/2504730781961*75025^(6/23) 6099964559696226 a001 1322157322203/4052739537881*75025^(6/23) 6099964559696226 a001 505019158607/1548008755920*75025^(6/23) 6099964559696226 a001 192900153618/591286729879*75025^(6/23) 6099964559696226 a001 10525900321/32264490531*75025^(6/23) 6099964559696226 a001 28143753123/86267571272*75025^(6/23) 6099964559696226 a001 10749957122/32951280099*75025^(6/23) 6099964559696226 a001 4106118243/12586269025*75025^(6/23) 6099964559696226 a001 224056801/686789568*75025^(6/23) 6099964559696226 a001 599074578/1836311903*75025^(6/23) 6099964559696226 a001 228826127/701408733*75025^(6/23) 6099964559696227 a001 87403803/267914296*75025^(6/23) 6099964559696232 a001 4769326/14619165*75025^(6/23) 6099964559696265 a001 12752043/39088169*75025^(6/23) 6099964559696489 a001 4870847/14930352*75025^(6/23) 6099964559698026 a001 1860498/5702887*75025^(6/23) 6099964559708562 a001 101521/311187*75025^(6/23) 6099964559722479 a001 90481/4976784*4807526976^(6/23) 6099964559780777 a001 271443/832040*75025^(6/23) 6099964560207163 a001 103682/5702887*4807526976^(6/23) 6099964560275746 a001 103682/317811*75025^(6/23) 6099964563529239 a001 13201/726103*4807526976^(6/23) 6099964563668312 a001 39603/121393*75025^(6/23) 6099964584295438 a007 Real Root Of 108*x^4-981*x^3-478*x^2-863*x+912 6099964586299087 a001 15127/832040*4807526976^(6/23) 6099964586921307 a001 2161/6624*75025^(6/23) 6099964590931112 m001 GAMMA(1/24)*Champernowne/exp(GAMMA(7/24))^2 6099964632643619 g007 Psi(2,7/8)+Psi(2,1/3)-2*Psi(2,2/11) 6099964649222209 a008 Real Root of (-1-x-x^3+x^4+x^6+x^7+x^10-x^12) 6099964686541889 a007 Real Root Of 403*x^4-987*x^3+796*x^2-559*x-917 6099964742365947 a001 1926/105937*4807526976^(6/23) 6099964746299708 a001 5778/17711*75025^(6/23) 6099964750105885 m005 (1/2*Catalan+4/11)/(7/8*Catalan+6/11) 6099964750464030 r005 Im(z^2+c),c=29/118+25/52*I,n=22 6099964754013354 a003 sin(Pi*4/65)-sin(Pi*8/27) 6099964773099318 a007 Real Root Of 716*x^4-42*x^3-994*x^2-634*x+667 6099964774165677 r005 Re(z^2+c),c=17/110+16/53*I,n=5 6099964776062415 a001 47*(1/2*5^(1/2)+1/2)^23*199^(2/15) 6099964790726394 r005 Im(z^2+c),c=1/8+23/37*I,n=42 6099964801126363 q001 1733/2841 6099964827761360 m001 (-GAMMA(13/24)+1/2)/(Zeta(3)+2/3) 6099964860947382 a007 Real Root Of 979*x^4+697*x^3+919*x^2-170*x-423 6099964865265110 l006 ln(19/8471) 6099964880050794 r005 Im(z^2+c),c=-14/31+4/39*I,n=19 6099964957357749 r009 Im(z^3+c),c=-13/86+50/51*I,n=30 6099964969131208 r005 Im(z^2+c),c=-23/98+51/62*I,n=35 6099964978611424 m002 -3+Pi^3-Pi^4+Pi^4*Sech[Pi] 6099964994635786 r009 Re(z^3+c),c=-7/60+39/55*I,n=43 6099965021035451 a001 2207/5*1597^(50/51) 6099965032895941 a007 Real Root Of 32*x^4+136*x^3-303*x^2+303*x-314 6099965033044252 r005 Re(z^2+c),c=-11/46+38/59*I,n=50 6099965052686875 m005 (1/2*exp(1)-6/7)/(7/11*5^(1/2)-3/5) 6099965066964201 p004 log(34819/18919) 6099965073863625 r002 20th iterates of z^2 + 6099965092551715 m005 (1/2*exp(1)-4/5)/(6/7*5^(1/2)-1) 6099965140000119 m001 exp(Robbin)^2/Riemann2ndZero^2*GAMMA(1/3)^2 6099965148034889 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)+(5^(1/2))^Robbin 6099965149034143 m005 (1/2*gamma-4)/(5/8*Zeta(3)-1/7) 6099965187944771 a007 Real Root Of -51*x^4+119*x^3-845*x^2+691*x+770 6099965190531152 r005 Re(z^2+c),c=13/82+23/56*I,n=42 6099965204755113 a008 Real Root of x^4-x^3-39*x^2+56*x-48 6099965267240245 r009 Re(z^3+c),c=-5/46+16/25*I,n=49 6099965267937209 m001 (Pi-exp(1))/(GAMMA(2/3)-TwinPrimes) 6099965278246799 m001 (ArtinRank2+LaplaceLimit)/(exp(Pi)-sin(1)) 6099965282786121 r005 Im(z^2+c),c=-87/122+2/57*I,n=31 6099965297700220 m006 (3*Pi-5/6)/(3/5*exp(Pi)+1/5) 6099965331465862 a003 cos(Pi*6/43)*sin(Pi*4/17) 6099965346782651 a007 Real Root Of 711*x^4-421*x^3-318*x^2-753*x-535 6099965356446741 a007 Real Root Of 71*x^4+590*x^3+958*x^2-135*x-857 6099965364728083 a007 Real Root Of -757*x^4+461*x^3-594*x^2+573*x+780 6099965367926775 m005 (1/2*exp(1)-3/5)/(3/11*Zeta(3)+11/12) 6099965396280065 r005 Im(z^2+c),c=7/44+24/43*I,n=28 6099965397295472 r005 Im(z^2+c),c=-39/122+29/46*I,n=18 6099965413724859 r009 Re(z^3+c),c=-11/98+33/49*I,n=64 6099965427757206 a007 Real Root Of -797*x^4+653*x^3-128*x^2+921*x+868 6099965468367007 a007 Real Root Of 749*x^4-804*x^3+112*x^2-549*x+372 6099965479200088 h001 (7/8*exp(1)+3/5)/(5/9*exp(2)+7/9) 6099965509789806 r005 Re(z^2+c),c=-49/94+17/33*I,n=16 6099965530799608 r005 Im(z^2+c),c=-129/110+5/29*I,n=20 6099965531148960 a007 Real Root Of -653*x^4+624*x^3+635*x^2+950*x-867 6099965555369328 a007 Real Root Of -431*x^4+930*x^3+470*x^2-130*x-247 6099965556808593 a001 3571/233*4181^(28/39) 6099965559384031 s001 sum(exp(-3*Pi/5)^n*A085744[n],n=1..infinity) 6099965572508950 a007 Real Root Of -296*x^4-123*x^3-462*x^2+823*x+687 6099965608353823 a007 Real Root Of -470*x^4+916*x^3-437*x^2+357*x-198 6099965623996326 a007 Real Root Of -137*x^4-669*x^3+954*x^2-461*x-474 6099965640739997 a007 Real Root Of -929*x^4-509*x^3-386*x^2+748*x+613 6099965653187331 a008 Real Root of (-4+5*x+7*x^4-x^8) 6099965654313310 r005 Re(z^2+c),c=-23/44+7/15*I,n=16 6099965665141184 a004 Fibonacci(14)*Lucas(13)/(1/2+sqrt(5)/2)^12 6099965688043662 m001 (Khinchin-MertensB3)/(Robbin-TreeGrowth2nd) 6099965701711780 r009 Re(z^3+c),c=-51/82+11/23*I,n=4 6099965703084795 m001 (BesselK(1,1)+OneNinth)/(sin(1)+arctan(1/3)) 6099965715996914 a007 Real Root Of -159*x^4+577*x^3-953*x^2-719*x+69 6099965757945844 m001 Trott/Porter^2/exp(GAMMA(11/12))^2 6099965767210850 m002 -2+E^(2*Pi)+Pi^5/4 6099965768847203 m001 1/GAMMA(2/3)^2/exp(GAMMA(1/4))/cosh(1)^2 6099965775280198 a007 Real Root Of 183*x^4+958*x^3-875*x^2+547*x-34 6099965783996678 r009 Im(z^3+c),c=-41/98+11/18*I,n=49 6099965804592057 l006 ln(3450/3667) 6099965812064121 a001 2207/121393*4807526976^(6/23) 6099965821761494 m001 GAMMA(1/3)^2*OneNinth/ln(GAMMA(7/24))^2 6099965838695520 a001 2207/6765*75025^(6/23) 6099965842313550 m001 (sin(1/5*Pi)+Kolakoski)/(1+BesselI(0,1)) 6099965844623251 a007 Real Root Of 158*x^4+824*x^3-824*x^2+315*x+852 6099965854651351 m001 1/Magata/Lehmer/exp(GAMMA(5/24)) 6099965865999103 h005 exp(cos(Pi*1/5)+sin(Pi*20/41)) 6099965871668135 m005 (1/2*Catalan+5)/(6/7*gamma+2/5) 6099965876985279 m001 HardHexagonsEntropy*exp(Si(Pi))^2*OneNinth 6099965891514638 a007 Real Root Of -453*x^4+835*x^3+159*x^2+872*x+725 6099965917439598 r005 Im(z^2+c),c=-139/106+1/28*I,n=24 6099965925598614 m001 gamma^2*exp(BesselJ(1,1))^2/log(2+sqrt(3)) 6099965925848425 r005 Re(z^2+c),c=-9/29+26/29*I,n=3 6099965926547012 a007 Real Root Of -351*x^4-68*x^3-415*x^2+922*x+750 6099965938505803 m003 2+3*Coth[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]^2 6099965939528325 m003 7/12+(Sqrt[5]*Sech[1/2+Sqrt[5]/2])/32 6099965942576926 m005 (1/2*gamma+2/3)/(6/11*exp(1)+1/12) 6099965948909912 m006 (2*exp(Pi)+1/4)/(1/5*exp(Pi)+3) 6099965974559703 r005 Im(z^2+c),c=-1/31+11/18*I,n=11 6099965982636658 r005 Im(z^2+c),c=3/34+25/41*I,n=41 6099965983954674 r005 Im(z^2+c),c=-8/17+5/48*I,n=16 6099965986091098 m001 (Rabbit+Riemann2ndZero)/(Pi+BesselK(0,1)) 6099965997959877 q001 1794/2941 6099965998649094 a001 2207/3*10946^(19/40) 6099965998809045 m001 ln(Magata)^2/GaussAGM(1,1/sqrt(2))/Niven^2 6099966019652372 a001 1346269/47*29^(11/49) 6099966048347845 a007 Real Root Of -55*x^4-391*x^3-217*x^2+622*x-729 6099966057962389 a007 Real Root Of 918*x^4-841*x^3-138*x^2-176*x-374 6099966060649709 a007 Real Root Of 832*x^4-212*x^3+295*x^2-672*x-683 6099966070490468 a007 Real Root Of 454*x^4-451*x^3+84*x^2-575*x+359 6099966089866253 m001 Zeta(1/2)^2/Porter^2*ln(cos(1)) 6099966104827547 a001 1/377*2504730781961^(4/21) 6099966105382909 a001 281/15456*102334155^(4/21) 6099966130946479 m001 (GAMMA(13/24)+GAMMA(17/24))/(Otter+Tribonacci) 6099966140438361 r009 Im(z^3+c),c=-17/126+40/53*I,n=61 6099966144766568 a001 281/2255*4181^(4/21) 6099966148585307 m005 (1/3*gamma+1/4)/(1/11*gamma-1/8) 6099966152577166 m001 (Paris+ThueMorse)/(Ei(1)-Shi(1)) 6099966152577166 m001 (Paris+ThueMorse)/Chi(1) 6099966163903420 r002 14th iterates of z^2 + 6099966175415570 r005 Im(z^2+c),c=-59/114+3/28*I,n=48 6099966178632380 m001 (BesselK(0,1)+ln(3))/(-Paris+Riemann3rdZero) 6099966192658618 m005 (1/2*exp(1)+9/11)/(5^(1/2)+4/3) 6099966229518281 h001 (6/7*exp(2)+10/11)/(2/5*exp(1)+1/10) 6099966240988229 m001 1/FeigenbaumB*LaplaceLimit^2/ln(BesselK(0,1)) 6099966259332576 a007 Real Root Of -707*x^4-116*x^3-321*x^2+400*x+435 6099966261515739 a001 3/167761*76^(17/60) 6099966265745726 m001 1/ln(Pi)^2/GAMMA(13/24)^2*arctan(1/2)^2 6099966270266413 a007 Real Root Of -933*x^4+701*x^3+376*x^2+542*x+479 6099966283788170 h001 (1/9*exp(1)+1/9)/(9/11*exp(2)+8/11) 6099966285076807 a003 sin(Pi*5/48)-sin(Pi*37/97) 6099966288395191 m005 (1/2*2^(1/2)+10/11)/(3/8*3^(1/2)+2) 6099966300117822 m001 exp(1)*KhinchinHarmonic+FeigenbaumKappa 6099966310448847 a007 Real Root Of 744*x^4-876*x^3+219*x^2-547*x-717 6099966312672040 r005 Re(z^2+c),c=-5/94+33/41*I,n=43 6099966335158051 a007 Real Root Of 682*x^4-418*x^3-959*x^2-914*x-390 6099966346203008 a007 Real Root Of 13*x^4-809*x^3-349*x^2-904*x-607 6099966353595404 m008 (1/2*Pi^3-3/4)/(1/4*Pi^4-1/6) 6099966380295972 a001 521/3524578*89^(6/19) 6099966391536524 r005 Re(z^2+c),c=-37/30+20/69*I,n=6 6099966396739154 a003 cos(Pi*1/83)/cos(Pi*47/105) 6099966402837259 r005 Re(z^2+c),c=2/25+11/38*I,n=7 6099966404410700 a001 29/6765*4807526976^(16/19) 6099966411669437 a007 Real Root Of -880*x^4+711*x^3-525*x^2+563*x+822 6099966412600453 m009 (2*Psi(1,3/4)-5)/(20/3*Catalan+5/6*Pi^2-3/5) 6099966419827172 m001 Stephens^ln(2+3^(1/2))/(Stephens^BesselK(0,1)) 6099966438236353 m004 -25*Pi+5*Pi*Coth[Sqrt[5]*Pi]+2*Tan[Sqrt[5]*Pi] 6099966452511805 r005 Re(z^2+c),c=-77/86+8/43*I,n=36 6099966453367443 a005 (1/cos(21/176*Pi))^953 6099966453584929 m005 (1/2*5^(1/2)-7/12)/(4/11*gamma+2/3) 6099966459189158 r005 Re(z^2+c),c=-8/13+17/50*I,n=15 6099966492776189 a001 47/1597*34^(49/57) 6099966501730815 h001 (1/8*exp(2)+8/9)/(7/9*exp(1)+6/7) 6099966503254619 m001 1/Robbin^2*PrimesInBinary/exp(TreeGrowth2nd) 6099966525548465 m008 (1/4*Pi^6+1)/(1/3*Pi^2+2/3) 6099966533838014 a007 Real Root Of -34*x^4+949*x^3-53*x^2-3*x+238 6099966536001200 a001 41/48*317811^(9/58) 6099966543790527 m006 (4*ln(Pi)+2)/(1/4*exp(Pi)+5) 6099966554418504 r005 Im(z^2+c),c=-75/94+1/35*I,n=34 6099966561341747 m001 1/ln(Tribonacci)^2/GolombDickman*sqrt(2) 6099966570252229 a007 Real Root Of -563*x^4+894*x^3+829*x^2+160*x+70 6099966573357922 m001 (-GAMMA(2/3)+Mills)/(Psi(2,1/3)-exp(Pi)) 6099966644171997 m001 ReciprocalFibonacci^(Pi*Weierstrass) 6099966651240394 m006 (4/5/Pi-1/2)/(3/4*exp(2*Pi)+3/5) 6099966652990535 r005 Re(z^2+c),c=-23/38+13/36*I,n=15 6099966661513827 a007 Real Root Of 443*x^4-331*x^3+409*x^2-735*x-737 6099966679558983 a007 Real Root Of -851*x^4-46*x^3-190*x^2+972*x+60 6099966683606710 m005 (1/3*2^(1/2)+1/2)/(4/9*Zeta(3)-3/8) 6099966709401758 b008 E+2*(6+E^Pi) 6099966747193263 a007 Real Root Of -283*x^4+77*x^3-483*x^2+742*x+689 6099966748649190 h001 (1/12*exp(1)+4/7)/(4/9*exp(1)+1/10) 6099966762563606 b008 EulerGamma+Sin[2/61] 6099966787804133 b008 EulerGamma+ArcCsch[61/2] 6099966840491812 m001 1/TwinPrimes/CareFree/exp((2^(1/3))) 6099966842959633 a007 Real Root Of -782*x^4-231*x^3-8*x^2+492*x+30 6099966897473143 a007 Real Root Of 247*x^4-596*x^3-555*x^2-981*x+906 6099966931375930 p003 LerchPhi(1/25,5,233/211) 6099966943246997 a003 cos(Pi*1/98)*sin(Pi*14/67) 6099966957708995 m005 (1/2*Pi-1/6)/(10/11*3^(1/2)+8/11) 6099966960092883 a001 18/377*6765^(1/36) 6099967019669402 a007 Real Root Of 762*x^4+293*x^3+787*x^2+544*x 6099967043389754 r009 Re(z^3+c),c=-16/31+5/36*I,n=29 6099967098530662 s001 sum(exp(-Pi/4)^n*A173057[n],n=1..infinity) 6099967110812287 m005 (1/2*2^(1/2)+9/10)/(11/12*exp(1)+1/7) 6099967113091783 a007 Real Root Of 440*x^4-848*x^3-160*x^2-531*x+515 6099967116080236 q001 1855/3041 6099967160678159 a007 Real Root Of -89*x^4-376*x^3+914*x^2-613*x+133 6099967162183464 m001 (sin(1/12*Pi)+OneNinth)/(3^(1/3)-sin(1)) 6099967166880058 r004 Re(z^2+c),c=5/14+1/13*I,z(0)=exp(5/8*I*Pi),n=7 6099967168711879 r005 Re(z^2+c),c=-2/23+41/60*I,n=37 6099967170159970 a007 Real Root Of 711*x^4-777*x^3+819*x^2+55*x-546 6099967202335382 a003 sin(Pi*28/117)/cos(Pi*13/28) 6099967243477766 m001 (GAMMA(13/24)-gamma(1))/FransenRobinson 6099967253747426 a007 Real Root Of -902*x^4-48*x^3-720*x^2+310*x+571 6099967255846788 a001 1/567451585*1836311903^(12/17) 6099967255846788 a001 1/182717648081*6557470319842^(12/17) 6099967255849946 a001 1/1762289*514229^(12/17) 6099967262375834 m001 (arctan(1/2)-Cahen)/(Khinchin+MertensB1) 6099967270769710 m001 (FeigenbaumC+Paris)/(Pi^(1/2)-Backhouse) 6099967271278726 m001 (exp(1)-ln(Pi))/(FeigenbaumAlpha+ZetaP(4)) 6099967280129159 a001 161/774004377960*317811^(4/15) 6099967280132380 a001 46/1515744265389*433494437^(4/15) 6099967288616071 m001 (BesselK(0,1)-ln(Pi))/(-GAMMA(17/24)+Paris) 6099967311297482 a003 cos(Pi*23/93)*sin(Pi*33/101) 6099967312892302 m005 (-15/4+1/4*5^(1/2))/(71/14+1/14*5^(1/2)) 6099967314849811 a001 5473/161*322^(1/2) 6099967320327496 a002 17^(5/12)+6^(7/12) 6099967337929875 m008 (3*Pi^2-1/4)/(1/2*Pi^6+3/5) 6099967349600734 r005 Im(z^2+c),c=-5/52+31/34*I,n=8 6099967383596034 m005 (1/2*Catalan+1/6)/(2/7*Pi-1) 6099967403556921 a001 3/199*5600748293801^(1/21) 6099967408096312 r005 Re(z^2+c),c=-45/56+9/46*I,n=14 6099967431308863 a001 38*832040^(19/51) 6099967450565718 a007 Real Root Of 937*x^4-620*x^3-400*x^2-497*x+463 6099967463473243 a001 514229/2207*199^(2/11) 6099967482459924 a005 (1/cos(37/217*Pi))^485 6099967499105475 a007 Real Root Of 84*x^4-744*x^3+958*x^2+177*x-429 6099967538176947 a007 Real Root Of -144*x^4-804*x^3+443*x^2+38*x+634 6099967560553633 r005 Re(z^2+c),c=-17/16+5/68*I,n=2 6099967565249330 r002 17th iterates of z^2 + 6099967567395213 a007 Real Root Of -955*x^4+755*x^3-570*x^2-729*x+71 6099967568954233 m001 CareFree^Artin*CareFree^Zeta(5) 6099967573437561 a007 Real Root Of -942*x^4+721*x^3+622*x^2+617*x+439 6099967588926087 r005 Im(z^2+c),c=-7/10+44/219*I,n=51 6099967590062860 r005 Im(z^2+c),c=-17/32+5/46*I,n=25 6099967602154806 r005 Re(z^2+c),c=43/98+20/53*I,n=18 6099967613617747 a007 Real Root Of 858*x^4-201*x^3+912*x^2+357*x-286 6099967625220222 r002 48th iterates of z^2 + 6099967646185761 a007 Real Root Of -975*x^4+897*x^3+605*x^2+848*x-811 6099967672957220 r005 Re(z^2+c),c=-17/26+63/128*I,n=26 6099967722456091 a001 1/281*18^(11/59) 6099967778873940 r002 35th iterates of z^2 + 6099967792644572 a001 8/64079*199^(36/49) 6099967794856802 m005 (1/2*2^(1/2)+3/8)/(1/9*Catalan-1/10) 6099967798220193 r005 Im(z^2+c),c=-47/74+5/44*I,n=23 6099967809105286 a003 cos(Pi*8/49)-cos(Pi*42/101) 6099967858357930 a008 Real Root of x^4-2*x^3-21*x^2-52*x+168 6099967859732700 a007 Real Root Of 890*x^4-453*x^3-45*x^2-570*x-557 6099967860773476 a007 Real Root Of 148*x^4-982*x^3-172*x^2-842*x-693 6099967864233937 a007 Real Root Of 867*x^4-747*x^3+291*x^2-933*x-967 6099967870021595 g002 Psi(5/12)+Psi(4/11)+Psi(2/5)-Psi(6/11) 6099967872152176 a001 1597/843*521^(12/13) 6099967894861992 a007 Real Root Of 867*x^4-752*x^3+550*x^2-242*x-643 6099967901155341 a007 Real Root Of -978*x^4+94*x^3-561*x^2+391*x+604 6099967910251075 a007 Real Root Of 477*x^4-859*x^3+979*x^2+330*x-424 6099967915210619 m001 BesselI(1,1)^(Lehmer*MinimumGamma) 6099967974440810 r005 Im(z^2+c),c=11/42+28/55*I,n=43 6099968013097035 r002 2th iterates of z^2 + 6099968013280663 m006 (3*exp(Pi)+3/4)/(5*exp(Pi)-2/3) 6099968025067467 m001 (-GAMMA(5/6)+Pi^(1/2))/(Shi(1)-gamma(3)) 6099968060735048 m005 (3/5*Pi-1/3)/(1/5*exp(1)+2) 6099968061008131 r002 6th iterates of z^2 + 6099968115060071 a007 Real Root Of -744*x^4+944*x^3-845*x^2-370*x+406 6099968122277750 l006 ln(94/173) 6099968127465629 m005 (1/2*5^(1/2)-4)/(1/3*Catalan-7/9) 6099968142684604 r009 Re(z^3+c),c=-53/122+21/34*I,n=11 6099968146623900 m005 (31/10+5/2*5^(1/2))/(4/5*exp(1)-3/4) 6099968150223006 m001 (HardHexagonsEntropy-gamma)/(Totient+ZetaQ(4)) 6099968162664464 m002 -(E^Pi/Pi)+Pi^2+Pi*Log[Pi] 6099968163005412 q001 1916/3141 6099968188021640 m001 1/KhintchineLevy^2*ErdosBorwein^2*exp(Zeta(3)) 6099968193623248 a002 18^(10/7)-2^(1/6) 6099968207972132 m001 (BesselK(0,1)-GAMMA(19/24))/(-MertensB3+Paris) 6099968209733305 p001 sum(1/(397*n+166)/(24^n),n=0..infinity) 6099968214277881 a001 15127/5*6765^(44/51) 6099968221842171 m001 ln(FeigenbaumC)/LaplaceLimit*Sierpinski^2 6099968244863705 a007 Real Root Of 730*x^4-330*x^3-984*x^2-823*x+842 6099968264911413 m002 2/Pi^2-Log[Pi]+Tanh[Pi]/3 6099968269246642 m001 (-TravellingSalesman+ZetaQ(2))/(cos(1)+Landau) 6099968287807482 a003 sin(Pi*20/97)/sin(Pi*29/64) 6099968297507967 g006 2*Psi(1,6/11)-Psi(1,5/9)-Psi(1,1/8) 6099968302165105 r009 Re(z^3+c),c=-7/78+17/42*I,n=4 6099968326690257 a007 Real Root Of -153*x^4+736*x^3-297*x^2+525*x+619 6099968366804724 m001 (Tribonacci+ZetaP(2))/(Catalan-cos(1)) 6099968394159174 a007 Real Root Of -549*x^4-117*x^3-331*x^2-142*x+86 6099968397351282 r009 Re(z^3+c),c=-79/126+23/33*I,n=11 6099968401789878 r009 Re(z^3+c),c=-11/18+16/27*I,n=8 6099968422957629 a007 Real Root Of 247*x^4-444*x^3+928*x^2-552*x-817 6099968433429333 a007 Real Root Of -833*x^4+582*x^3-400*x^2+893*x+941 6099968435958924 m001 CareFree^(Zeta(3)*GAMMA(19/24)) 6099968451090961 a007 Real Root Of -500*x^4-362*x^3+205*x^2+702*x+339 6099968452346158 a007 Real Root Of 665*x^4-949*x^3+27*x^2-368*x-542 6099968461618421 p003 LerchPhi(1/100,5,138/125) 6099968496845259 r008 a(0)=0,K{-n^6,-49-99*n^3-58*n^2+42*n} 6099968501266356 r008 a(0)=0,K{-n^6,73+91*n^3+94*n^2-94*n} 6099968511352884 m001 1/(2^(1/3))^2/ln(Rabbit)^2/Zeta(1,2)^2 6099968513580211 m001 (FeigenbaumD-KomornikLoreti)/(Porter+ZetaQ(4)) 6099968520051738 r008 a(0)=0,K{-n^6,-43+94*n^3+27*n^2+86*n} 6099968531913259 a001 102334155/47*7^(9/17) 6099968533097244 a001 1346269/5778*199^(2/11) 6099968537041708 m009 (3/5*Psi(1,1/3)-4/5)/(40*Catalan+5*Pi^2+1/5) 6099968573128167 m005 (3*2^(1/2)+5)/(3/5*2^(1/2)+2/3) 6099968577699700 m001 GaussAGM/(Riemann1stZero-ZetaP(2)) 6099968594333359 a007 Real Root Of 994*x^4+213*x^3-708*x^2-973*x+671 6099968596721864 a007 Real Root Of 616*x^4+363*x^3+60*x^2-498*x-329 6099968621676239 a007 Real Root Of -199*x^4+224*x^3-304*x^2+909*x+746 6099968621888585 a008 Real Root of x^4-x^3-29*x^2-25*x+74 6099968628134003 a002 12^(5/3)-3^(7/12) 6099968634132542 m004 -20*Pi+2*Coth[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 6099968634513192 r002 6th iterates of z^2 + 6099968639484068 m001 (Chi(1)-gamma(1))/(exp(-1/2*Pi)+GAMMA(17/24)) 6099968654706128 a007 Real Root Of 771*x^4+582*x^3+665*x^2-731*x-668 6099968661146184 m008 (1/4*Pi^5+1/6)/(2/5*Pi^3+1/6) 6099968679330814 a007 Real Root Of 391*x^4+682*x^3+846*x^2-267*x-377 6099968687609162 m001 (sin(1)+4)/(Zeta(1/2)+2/3) 6099968689153314 a001 3524578/15127*199^(2/11) 6099968699737871 a003 cos(Pi*11/72)*sin(Pi*7/29) 6099968711921588 a001 9227465/39603*199^(2/11) 6099968715243434 a001 24157817/103682*199^(2/11) 6099968715728085 a001 63245986/271443*199^(2/11) 6099968715798795 a001 165580141/710647*199^(2/11) 6099968715809111 a001 433494437/1860498*199^(2/11) 6099968715810616 a001 1134903170/4870847*199^(2/11) 6099968715810836 a001 2971215073/12752043*199^(2/11) 6099968715810868 a001 7778742049/33385282*199^(2/11) 6099968715810873 a001 20365011074/87403803*199^(2/11) 6099968715810873 a001 53316291173/228826127*199^(2/11) 6099968715810874 a001 139583862445/599074578*199^(2/11) 6099968715810874 a001 365435296162/1568397607*199^(2/11) 6099968715810874 a001 956722026041/4106118243*199^(2/11) 6099968715810874 a001 2504730781961/10749957122*199^(2/11) 6099968715810874 a001 6557470319842/28143753123*199^(2/11) 6099968715810874 a001 10610209857723/45537549124*199^(2/11) 6099968715810874 a001 4052739537881/17393796001*199^(2/11) 6099968715810874 a001 1548008755920/6643838879*199^(2/11) 6099968715810874 a001 591286729879/2537720636*199^(2/11) 6099968715810874 a001 225851433717/969323029*199^(2/11) 6099968715810874 a001 86267571272/370248451*199^(2/11) 6099968715810874 a001 63246219/271444*199^(2/11) 6099968715810876 a001 12586269025/54018521*199^(2/11) 6099968715810888 a001 4807526976/20633239*199^(2/11) 6099968715810972 a001 1836311903/7881196*199^(2/11) 6099968715811547 a001 701408733/3010349*199^(2/11) 6099968715815487 a001 267914296/1149851*199^(2/11) 6099968715842496 a001 102334155/439204*199^(2/11) 6099968716027616 a001 39088169/167761*199^(2/11) 6099968717296448 a001 14930352/64079*199^(2/11) 6099968725993155 a001 5702887/24476*199^(2/11) 6099968734019530 a001 7/4*(1/2*5^(1/2)+1/2)^29*4^(4/5) 6099968764038700 r009 Re(z^3+c),c=-1/90+15/23*I,n=32 6099968771038957 a008 Real Root of (10+8*x-4*x^2+16*x^3) 6099968785601273 a001 2178309/9349*199^(2/11) 6099968792883412 r002 16th iterates of z^2 + 6099968808543080 r002 48th iterates of z^2 + 6099968831513536 a007 Real Root Of -356*x^4+881*x^3-945*x^2-549*x+266 6099968842709225 m005 (1/3*2^(1/2)+3/5)/(10/11*3^(1/2)+2/11) 6099968849232364 a007 Real Root Of 4*x^4-745*x^3+647*x^2+540*x-81 6099968852857114 m006 (1/6/Pi-1/3)/(2*exp(Pi)-1/3) 6099968874377838 m005 (1/2*exp(1)-9/10)/(3/11*5^(1/2)+1/7) 6099968900240718 a007 Real Root Of 620*x^4-417*x^3+630*x^2-869*x-945 6099968917375609 m001 Pi/(Zeta(5)+exp(sqrt(2))) 6099968919377018 m001 (Kac+KhinchinLevy)/(GAMMA(11/12)-GAMMA(23/24)) 6099968924079193 m004 2*Pi-Tan[Sqrt[5]*Pi]/5 6099968939732925 a001 2584/843*521^(11/13) 6099968943799848 a001 449+72*5^(1/2) 6099968957216099 a007 Real Root Of -239*x^4+668*x^3-61*x^2-81*x+158 6099968968627027 a007 Real Root Of 889*x^4-66*x^3-906*x^2-859*x+753 6099968984034738 m001 GAMMA(3/4)-GaussAGM^Khinchin 6099969003558124 a001 3571/89*28657^(2/49) 6099969012448250 m001 (Zeta(5)+Mills)/(Thue-Weierstrass) 6099969033336375 a007 Real Root Of 553*x^4-528*x^3+583*x^2-706*x-844 6099969036964153 m002 -4*Pi^3-5*Pi^4+ProductLog[Pi] 6099969076010766 r002 12th iterates of z^2 + 6099969080934992 r009 Re(z^3+c),c=-5/98+42/47*I,n=11 6099969109546225 m005 (1/2*Zeta(3)+1/7)/(7/11*Zeta(3)+5/11) 6099969123260800 a007 Real Root Of -126*x^4-634*x^3+820*x^2+146*x+929 6099969128169241 a007 Real Root Of -547*x^4+259*x^3-262*x^2+819*x+51 6099969132128880 s002 sum(A254917[n]/((2^n+1)/n),n=1..infinity) 6099969145325516 q001 1977/3241 6099969154397364 a007 Real Root Of 2*x^4+21*x^3+156*x^2+493*x-800 6099969157084529 r002 25th iterates of z^2 + 6099969160464581 m001 (3^(1/3)-Ei(1,1))/(Zeta(1,-1)-Tribonacci) 6099969167310063 m001 (RenyiParking+Tribonacci)/(GAMMA(17/24)+Otter) 6099969186240465 h001 (1/5*exp(2)+5/9)/(3/7*exp(2)+1/6) 6099969186434391 m001 (ln(gamma)-GAMMA(17/24))/(FeigenbaumC+Salem) 6099969188647794 p001 sum(1/(501*n+164)/(625^n),n=0..infinity) 6099969190306869 r005 Re(z^2+c),c=-49/52+1/56*I,n=18 6099969194161419 a001 832040/3571*199^(2/11) 6099969201695306 a007 Real Root Of -635*x^4-757*x^3-564*x^2-136*x+43 6099969206673274 s002 sum(A117757[n]/(exp(n)+1),n=1..infinity) 6099969214025385 m004 -20*Pi+2*Tan[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 6099969214651791 l006 ln(7997/8500) 6099969229820726 a007 Real Root Of 376*x^4-975*x^3+767*x^2-84*x-610 6099969256597105 m005 (1/2*Zeta(3)+1/5)/(Zeta(3)+1/9) 6099969284492835 r005 Im(z^2+c),c=-15/98+11/17*I,n=40 6099969295292603 m001 1/exp(GAMMA(13/24))/LaplaceLimit^2*sinh(1)^2 6099969297009578 a001 123/4181*317811^(8/19) 6099969315430688 r005 Re(z^2+c),c=-29/30+41/121*I,n=4 6099969316124234 m001 (Catalan+Zeta(5))/(Backhouse+KhinchinHarmonic) 6099969323229353 r009 Re(z^3+c),c=-15/23+19/41*I,n=3 6099969355082195 m001 ThueMorse^MasserGramainDelta-cos(1/5*Pi) 6099969358931439 a007 Real Root Of 545*x^4-541*x^3-355*x^2-237*x+324 6099969360355972 r001 46i'th iterates of 2*x^2-1 of 6099969366773704 a001 123/196418*2971215073^(8/19) 6099969390309429 r009 Re(z^3+c),c=-3/29+30/41*I,n=62 6099969395451692 b008 -7+Gamma[E^(1/4)] 6099969419242006 m001 (Lehmer-Thue)/(Pi+FibonacciFactorial) 6099969423539000 r009 Im(z^3+c),c=-27/98+28/39*I,n=3 6099969427513048 r005 Im(z^2+c),c=41/118+2/5*I,n=15 6099969453863874 p002 log(1/18*(360+11^(3/4))^(1/2)) 6099969458604656 a001 47/34*6765^(29/42) 6099969480198295 a007 Real Root Of 906*x^4-344*x^3-863*x^2-660*x-285 6099969481393961 r009 Re(z^3+c),c=-73/122+19/28*I,n=13 6099969504195089 a007 Real Root Of -711*x^4+462*x^3+882*x^2+199*x-456 6099969555890216 r008 a(0)=6,K{-n^6,-10+11*n-28*n^2+12*n^3} 6099969571798106 m001 (GolombDickman*Lehmer+Trott)/GolombDickman 6099969588429613 h005 exp(sin(Pi*9/31)/cos(Pi*21/59)) 6099969602474104 r005 Re(z^2+c),c=3/52+1/56*I,n=6 6099969609558553 a003 cos(Pi*31/97)/sin(Pi*37/108) 6099969629628787 m001 (FeigenbaumC+Rabbit)/(GAMMA(2/3)+Zeta(1,2)) 6099969642811124 r005 Im(z^2+c),c=-5/58+39/58*I,n=35 6099969673805327 m001 (cos(1)-ln(3))/(FellerTornier+Lehmer) 6099969687016250 a007 Real Root Of -99*x^4+867*x^3+285*x^2-245*x-45 6099969692336382 r002 3th iterates of z^2 + 6099969739815977 r005 Re(z^2+c),c=13/44+1/50*I,n=7 6099969743710612 m001 (Paris-sin(1))/(-Rabbit+Tetranacci) 6099969744634549 r005 Im(z^2+c),c=5/126+23/38*I,n=12 6099969747640146 m001 exp(GAMMA(1/12))*FeigenbaumAlpha^2*Pi^2 6099969764728407 a001 46368/11*76^(29/47) 6099969784793775 m001 (Chi(1)-Si(Pi))/(FellerTornier+Totient) 6099969789791436 r005 Re(z^2+c),c=-11/8+9/91*I,n=8 6099969796499445 r002 60th iterates of z^2 + 6099969831211321 r009 Re(z^3+c),c=-61/114+11/64*I,n=16 6099969835320239 r002 13th iterates of z^2 + 6099969835411804 a007 Real Root Of 150*x^4+932*x^3+180*x^2+431*x-209 6099969845363978 m001 (GlaisherKinkelin*ZetaP(2)-gamma)/ZetaP(2) 6099969851237686 a001 199/233*8^(52/55) 6099969876941489 b008 PolyGamma[1,3/74] 6099969876941489 g001 Psi(1,3/74) 6099969876941489 l003 Psi(1,3/74) 6099969905653253 a007 Real Root Of 903*x^4-772*x^3-320*x^2-462*x-463 6099969913444849 m005 (3*gamma+3)/(13/6+5/2*5^(1/2)) 6099969918483162 m002 2*Sech[Pi]+(Cosh[Pi]*Sinh[Pi])/Pi^5 6099969932917569 a007 Real Root Of -161*x^4+345*x^3+580*x^2+597*x-636 6099969933363370 a007 Real Root Of -430*x^4+973*x^3-12*x^2+115*x+355 6099969935748523 a007 Real Root Of 105*x^4+734*x^3+574*x^2-108*x-794 6099969957378327 a007 Real Root Of 118*x^4+283*x^3+567*x^2-572*x-512 6099969962198532 r002 30th iterates of z^2 + 6099969998844742 r005 Re(z^2+c),c=-23/54+19/23*I,n=4 6099969999240614 a007 Real Root Of -265*x^4-561*x^3-770*x^2+815*x+5 6099970008779986 a007 Real Root Of -730*x^4-251*x^3-907*x^2+881*x+919 6099970019309364 a007 Real Root Of 278*x^4+90*x^3+538*x^2-175*x-325 6099970019928562 a007 Real Root Of 258*x^4-878*x^3+503*x^2-803*x-912 6099970021881343 b008 E^(1/8)+Csch[1/5] 6099970043411108 s002 sum(A231024[n]/(n*10^n+1),n=1..infinity) 6099970058662680 s002 sum(A231024[n]/(n*10^n-1),n=1..infinity) 6099970064435874 a001 1/36*4181^(5/53) 6099970068841664 q001 2038/3341 6099970093377182 a003 sin(Pi*19/91)/sin(Pi*44/89) 6099970102707808 a007 Real Root Of -507*x^4-17*x^3-554*x^2-68*x+231 6099970119489666 r002 6th iterates of z^2 + 6099970132376904 a007 Real Root Of -901*x^4+915*x^3+580*x^2+625*x-680 6099970141087404 m001 Zeta(3)^LambertW(1)*ln(gamma) 6099970141087404 m001 Zeta(3)^LambertW(1)*log(gamma) 6099970159442758 m001 (sin(1)-GAMMA(5/6)*FeigenbaumKappa)/GAMMA(5/6) 6099970188950901 r002 6th iterates of z^2 + 6099970225157680 r008 a(0)=6,K{-n^6,6-6*n^3-2*n^2-9*n} 6099970226054298 r008 a(0)=6,K{-n^6,8+24*n^3-63*n^2+18*n} 6099970230704787 a008 Real Root of x^4-2*x^3-21*x^2-22*x-15 6099970257347554 h001 (-8*exp(3)-3)/(-9*exp(8)-5) 6099970292807145 r009 Re(z^3+c),c=-5/54+31/64*I,n=11 6099970295040094 r009 Im(z^3+c),c=-53/114+29/54*I,n=13 6099970296259495 m002 2-E^(2*Pi)*Log[Pi]+Tanh[Pi] 6099970302382752 a007 Real Root Of -758*x^4+535*x^3-41*x^2-524*x-78 6099970309886701 s002 sum(A230436[n]/(n^3*exp(n)+1),n=1..infinity) 6099970319484526 m001 ln(Catalan)^2/BesselK(0,1)/sqrt(3)^2 6099970324179274 m004 -(Sqrt[5]/Pi)+ProductLog[Sqrt[5]*Pi]/15 6099970338819833 a007 Real Root Of -145*x^4-719*x^3+867*x^2-841*x+173 6099970345374729 r002 16th iterates of z^2 + 6099970349646380 a001 15127/3*196418^(9/44) 6099970351046949 r005 Re(z^2+c),c=-17/24+10/39*I,n=32 6099970373107141 m006 (2*Pi^2+1/6)/(4/5*Pi+3/4) 6099970373107141 m008 (2*Pi^2+1/6)/(4/5*Pi+3/4) 6099970374642494 r009 Im(z^3+c),c=-61/114+12/61*I,n=17 6099970389433467 r005 Im(z^2+c),c=-17/14+17/190*I,n=57 6099970398834906 m001 (ZetaP(2)+ZetaP(3))/(gamma(3)+GAMMA(23/24)) 6099970409074786 m001 (GaussAGM-Paris)/(3^(1/3)-CopelandErdos) 6099970414132775 p001 sum((-1)^n/(363*n+311)/n/(24^n),n=1..infinity) 6099970427269107 a007 Real Root Of 755*x^4-346*x^3-451*x^2-975*x-610 6099970433819369 m001 (MasserGramainDelta-Rabbit)/(Pi-ln(2+3^(1/2))) 6099970441799099 m005 (1/2*Catalan+4)/(3*5^(1/2)+3/5) 6099970512156486 m001 ln(arctan(1/2))^2*RenyiParking*sinh(1)^2 6099970531050501 a007 Real Root Of 919*x^4-403*x^3+433*x^2-197*x-500 6099970562708100 r008 a(0)=3,K{-n^6,-1+3*n^3+6*n^2-6*n} 6099970607014984 m001 1/GAMMA(5/6)^2/Rabbit^2*exp(Zeta(1,2)) 6099970623482795 a007 Real Root Of -858*x^4+809*x^3-440*x^2+826*x+970 6099970664718596 a007 Real Root Of 583*x^4-800*x^3+191*x^2-783*x-811 6099970668984557 a007 Real Root Of -338*x^4-253*x^3+208*x^2+903*x-524 6099970679594903 m001 1/exp(Riemann2ndZero)/PrimesInBinary^2*sqrt(2) 6099970694536686 r008 a(0)=6,K{-n^6,-5*n^3-8*n^2+2*n} 6099970725527501 a008 Real Root of x^4-x^3-29*x^2+5*x-109 6099970732126022 a005 (1/cos(8/115*Pi))^649 6099970747130255 m005 (1/2*Catalan-1/11)/(6/7*Zeta(3)-3/7) 6099970779457958 r005 Re(z^2+c),c=-5/9-47/78*I,n=2 6099970795672177 m005 (4*exp(1)-1/3)/(gamma-3/4) 6099970799343232 r005 Re(z^2+c),c=-2/31+43/58*I,n=2 6099970803828725 a001 682/5473*75025^(16/29) 6099970805744771 r002 4th iterates of z^2 + 6099970806311053 m001 (exp(Pi)+5)/(exp(sqrt(2))+1/2) 6099970823168967 r009 Im(z^3+c),c=-31/56+9/28*I,n=7 6099970830105814 m005 (1/2*gamma-8/11)/(2/9*5^(1/2)+2/9) 6099970834739855 m001 (cos(1/5*Pi)-CareFree)/(ErdosBorwein+OneNinth) 6099970838387579 h001 (4/9*exp(1)+1/10)/(1/5*exp(2)+2/3) 6099970839386970 m001 (sin(1/5*Pi)-BesselI(0,2))/(Mills+Porter) 6099970856975952 r005 Re(z^2+c),c=-41/60+13/62*I,n=10 6099970870852722 a007 Real Root Of 179*x^4-809*x^3-825*x^2-338*x+672 6099970884720181 a007 Real Root Of -480*x^4+300*x^3-308*x^2-756*x-212 6099970887576878 a008 Real Root of (-4+6*x-2*x^2+7*x^4+6*x^8) 6099970911494037 a007 Real Root Of 920*x^4-975*x^3-986*x^2-379*x+692 6099970920885653 a001 4181/843*521^(10/13) 6099970933032325 h001 (1/8*exp(2)+7/11)/(9/11*exp(1)+1/3) 6099970934870093 r005 Re(z^2+c),c=-5/86+35/48*I,n=20 6099970935514304 r008 a(0)=0,K{-n^6,-50-99*n^3-58*n^2+43*n} 6099970938680616 q001 2099/3441 6099970939950077 r008 a(0)=0,K{-n^6,74+91*n^3+94*n^2-95*n} 6099970958798305 r008 a(0)=0,K{-n^6,-42+94*n^3+27*n^2+85*n} 6099970966852169 r008 a(0)=0,K{-n^6,40-87*n^3-49*n^2-68*n} 6099971003474706 r005 Re(z^2+c),c=-41/58+3/8*I,n=3 6099971013342555 a007 Real Root Of -632*x^4+738*x^3-495*x^2+480*x+732 6099971016533467 m001 (exp(Pi)-ln(3))/(FeigenbaumC+Grothendieck) 6099971019717692 a007 Real Root Of 492*x^4+23*x^3-483*x^2-642*x+498 6099971098710451 a007 Real Root Of -265*x^4+744*x^3+67*x^2+617*x+557 6099971099852814 a007 Real Root Of -724*x^4+52*x^3+493*x^2+440*x+197 6099971103664388 a007 Real Root Of 151*x^4+641*x^3+977*x^2-805*x-730 6099971121433838 m001 (GAMMA(13/24)-Cahen)/(sin(1/12*Pi)+exp(1/Pi)) 6099971135847921 r005 Im(z^2+c),c=7/26+24/43*I,n=3 6099971136223591 a007 Real Root Of 670*x^4-772*x^3-396*x^2-579*x+583 6099971136722027 a003 sin(Pi*13/85)/sin(Pi*26/95) 6099971151058901 m001 1/BesselJ(0,1)^2*exp(Lehmer)^2/Catalan 6099971152712131 m001 (1-ln(3))/(LandauRamanujan2nd+MertensB2) 6099971159278110 a007 Real Root Of -476*x^4+257*x^3-641*x^2+725*x+805 6099971161151805 a007 Real Root Of -980*x^4+182*x^3+610*x^2+740*x-584 6099971163130687 m001 ln(GAMMA(1/6))^2/Artin^2/sin(Pi/5)^2 6099971200317836 m008 (1/6*Pi^6+1/2)/(3/5*Pi+3/4) 6099971203207055 r009 Re(z^3+c),c=-33/56+34/61*I,n=64 6099971236917322 r005 Im(z^2+c),c=-57/94+6/55*I,n=30 6099971246139086 a007 Real Root Of 935*x^4-47*x^3+476*x^2-716*x-754 6099971261348686 r009 Re(z^3+c),c=-12/23+6/41*I,n=43 6099971263836489 m001 (Salem+ZetaP(2))/(Pi-Bloch) 6099971294580142 r005 Im(z^2+c),c=-11/25+6/59*I,n=19 6099971319700974 h001 (-5*exp(2/3)+2)/(-6*exp(2/3)-1) 6099971321724655 a007 Real Root Of -745*x^4-973*x^3-802*x^2+548*x+515 6099971322479411 a007 Real Root Of 697*x^4-687*x^3+460*x^2-640*x-814 6099971323752728 m001 (-exp(-Pi)+3)/(GaussAGM(1,1/sqrt(2))+4) 6099971351366437 m005 (1/2*Catalan+2/3)/(7/12*3^(1/2)+5/6) 6099971385177321 k001 Champernowne real with 388*n+221 6099971385177321 k005 Champernowne real with floor(sqrt(3)*(224*n+128)) 6099971405746076 m001 QuadraticClass^HardHexagonsEntropy/exp(1/Pi) 6099971409918098 m004 -25*Pi+2*Tan[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi] 6099971413726271 m002 Pi/E^Pi+(4*Sinh[Pi])/Pi^4 6099971415765048 m001 (BesselJ(0,1)-gamma)/(Ei(1)+KhinchinLevy) 6099971450220385 a003 sin(Pi*18/109)/cos(Pi*19/96) 6099971458702314 a007 Real Root Of -424*x^4-253*x^3+173*x^2+716*x-385 6099971466149502 m001 (Backhouse+Kac)/(Paris-TreeGrowth2nd) 6099971473794621 m005 (1/4*Pi+5/6)/(3/5*gamma-3) 6099971492850675 m001 (Zeta(1/2)+3)/(-RenyiParking+1) 6099971525900077 a001 8/3*521^(33/38) 6099971532872702 r005 Im(z^2+c),c=-31/118+29/46*I,n=50 6099971541168409 m001 (FeigenbaumMu-Trott)/(TwinPrimes-ZetaP(4)) 6099971590036909 a007 Real Root Of -828*x^4+911*x^3-640*x^2+4*x+562 6099971615689090 m005 (1/3*5^(1/2)+1/9)/(7/10*gamma+1) 6099971632881002 r002 8th iterates of z^2 + 6099971648654030 a007 Real Root Of 7*x^4+415*x^3-739*x^2-437*x-147 6099971669685070 m002 5+(Pi^5*Sech[Pi])/24 6099971677711091 b008 61*JacobiDC[2,3] 6099971685987314 a007 Real Root Of -472*x^4+624*x^3+968*x^2+873*x-969 6099971699855424 l004 Ssi(58/57) 6099971700761643 m001 (arctan(1/3)-HardyLittlewoodC5)/exp(1/exp(1)) 6099971712840342 m001 (Trott2nd+ThueMorse)/(2^(1/2)-ln(2)) 6099971720518712 m001 ErdosBorwein-StolarskyHarborth^HeathBrownMoroz 6099971721323426 m001 ln(2^(1/2)+1)^ReciprocalLucas-sin(1) 6099971759390002 q001 216/3541 6099971763058433 r005 Im(z^2+c),c=-41/114+25/39*I,n=30 6099971802007351 l006 ln(4547/4833) 6099971835877289 m001 exp(GAMMA(5/12))/Kolakoski/sqrt(3) 6099971858103087 a007 Real Root Of -555*x^4+990*x^3-363*x^2+758*x+899 6099971873838792 a007 Real Root Of 588*x^4-417*x^3+315*x^2-793*x-777 6099971929677845 a003 cos(Pi*13/79)*cos(Pi*26/103) 6099971963861307 m001 ln(Tribonacci)*Kolakoski*(2^(1/3)) 6099971966272862 a007 Real Root Of -17*x^4-35*x^3-148*x^2+419*x-25 6099971994475791 a001 317811/1364*199^(2/11) 6099972015945148 m005 (1/2*Zeta(3)-1/11)/(1/3*5^(1/2)+1/11) 6099972016763379 m001 (-ln(3)+Riemann2ndZero)/(2^(1/2)+Si(Pi)) 6099972023415504 a007 Real Root Of -703*x^4+572*x^3-375*x^2+730*x+812 6099972025678750 r005 Im(z^2+c),c=-13/118+16/19*I,n=23 6099972063813741 r008 a(0)=0,K{-n^6,-70+66*n^3-82*n^2-80*n} 6099972074941922 m005 (1/2*2^(1/2)+5/12)/(5/9*5^(1/2)+3/5) 6099972094405572 a007 Real Root Of 972*x^4+321*x^3+485*x^2-955*x-60 6099972098913815 m005 (1/2*gamma+7/11)/(8/11*gamma-4/7) 6099972116756843 p001 sum(1/(251*n+164)/(1000^n),n=0..infinity) 6099972118005342 m005 (1/2*Pi-4/7)/(9/11*Catalan+8/9) 6099972132681525 a007 Real Root Of -80*x^4+768*x^3+352*x^2+198*x-415 6099972150594301 r005 Re(z^2+c),c=-5/28+43/63*I,n=8 6099972159626106 m001 (Kolakoski-MadelungNaCl)/(sin(1/12*Pi)+Conway) 6099972166533362 a001 2/75025*514229^(10/17) 6099972166747377 a001 2/9227465*1836311903^(10/17) 6099972166747391 a001 1/567451585*6557470319842^(10/17) 6099972180773672 a001 6765/322*322^(7/12) 6099972182929956 m001 (Psi(2,1/3)+5^(1/2))/(-BesselI(1,2)+Sarnak) 6099972183752550 r009 Re(z^3+c),c=-7/82+7/17*I,n=17 6099972193106669 m003 1/2+(7*Sqrt[5])/16+5*Tanh[1/2+Sqrt[5]/2] 6099972220176373 m005 (1/3*Catalan-2/9)/(73/70+1/7*5^(1/2)) 6099972224238531 m001 1/ln(FeigenbaumB)^2/Cahen^2/Salem 6099972226158388 r005 Im(z^2+c),c=17/118+31/49*I,n=45 6099972238804671 r009 Im(z^3+c),c=-3/44+35/46*I,n=17 6099972239933932 a001 2/1597*34^(22/49) 6099972257270684 r005 Im(z^2+c),c=3/56+33/53*I,n=41 6099972266367627 a007 Real Root Of -870*x^4+390*x^3+447*x^2+701*x-562 6099972298027196 r009 Re(z^3+c),c=-81/122+12/53*I,n=3 6099972312972898 a007 Real Root Of 953*x^4-256*x^3+564*x^2+972*x+193 6099972341334538 a001 34/9349*11^(11/51) 6099972357826586 a007 Real Root Of -644*x^4+813*x^3+567*x^2-52*x+31 6099972376920420 r008 a(0)=6,K{-n^6,-82-38*n^3+68*n^2+40*n} 6099972396547073 m001 (GaussKuzminWirsing-MertensB1)/(Ei(1,1)+Bloch) 6099972416688325 p003 LerchPhi(1/25,5,415/237) 6099972422064307 m005 (1/3*Catalan+3/5)/(1/2*exp(1)+1/8) 6099972426114774 a007 Real Root Of -761*x^4+754*x^3-313*x^2+923*x+956 6099972442809040 a007 Real Root Of -627*x^4-343*x^3-207*x^2+882*x+624 6099972448640477 r005 Re(z^2+c),c=-19/46+3/5*I,n=3 6099972450137905 a001 3/75025*14930352^(7/23) 6099972450354907 a001 1/726103*956722026041^(7/23) 6099972451793002 m001 (-arctan(1/3)+Otter)/(Ei(1)-Si(Pi)) 6099972458658727 a005 (1/sin(78/179*Pi))^425 6099972504664951 h002 exp(14^(5/12)+19^(5/12)) 6099972504664951 h007 exp(14^(5/12)+19^(5/12)) 6099972522308149 m009 (1/3*Psi(1,2/3)-4/5)/(1/5*Psi(1,2/3)-1/4) 6099972524352398 a007 Real Root Of -133*x^4-972*x^3-971*x^2+46*x-65 6099972535017852 q001 2221/3641 6099972550456891 a007 Real Root Of -51*x^4-431*x^3-732*x^2+95*x+602 6099972553085514 a001 2255/281*521^(9/13) 6099972596222538 a007 Real Root Of -363*x^4+651*x^3-248*x^2+770*x+760 6099972596447657 h005 exp(cos(Pi*4/35)+cos(Pi*7/43)) 6099972644057171 m001 (Rabbit+Trott2nd)/(Cahen-Si(Pi)) 6099972693013527 a007 Real Root Of 826*x^4-344*x^3+231*x^2+240*x-132 6099972714532326 m001 (ln(Pi)+Ei(1,1))/(GAMMA(13/24)+Gompertz) 6099972716684858 m001 gamma(1)^FeigenbaumB/Si(Pi) 6099972745884771 r002 20th iterates of z^2 + 6099972757781181 m008 (5/6*Pi^2+3)/(3/5*Pi^5+2/5) 6099972763136659 r005 Im(z^2+c),c=25/98+34/57*I,n=7 6099972795967067 m001 (Psi(1,1/3)-RenyiParking)^cos(1/5*Pi) 6099972818416842 r009 Im(z^3+c),c=-5/98+41/55*I,n=15 6099972824017923 a007 Real Root Of 960*x^4-660*x^3-869*x^2+84*x+289 6099972855613911 r002 8th iterates of z^2 + 6099972859493370 a008 Real Root of x^4-27*x^2-59*x-20 6099972865307951 a007 Real Root Of -41*x^4+438*x^3+297*x^2+875*x-738 6099972879221326 r002 5th iterates of z^2 + 6099972890844790 m005 (1/2*5^(1/2)+5)/(1/6*3^(1/2)+5/7) 6099972899027969 p004 log(22271/12101) 6099972899940977 m001 (-GolombDickman+Robbin)/(Catalan-GAMMA(7/12)) 6099972909316726 a001 9/305*3^(39/59) 6099972923527057 m001 (DuboisRaymond-Salem)/ln(5) 6099972950396567 a007 Real Root Of 696*x^4-929*x^3+759*x^2+265*x-428 6099972956743756 a007 Real Root Of 12*x^4-172*x^3+795*x^2+532*x-12 6099972984261255 a007 Real Root Of 133*x^4+261*x^3+829*x^2-576*x-619 6099972988941769 a007 Real Root Of 186*x^4+972*x^3-899*x^2+510*x-343 6099972996488533 a004 Fibonacci(16)*Lucas(13)/(1/2+sqrt(5)/2)^14 6099973016778297 r002 62th iterates of z^2 + 6099973035836823 r008 a(0)=6,K{-n^6,27+8*n^3-26*n^2-20*n} 6099973038408368 h001 (-9*exp(7)+7)/(-8*exp(3)-1) 6099973061596053 r005 Im(z^2+c),c=-9/14+7/130*I,n=3 6099973122100643 m005 (1/2*2^(1/2)+1/10)/(2/9*Pi+5/8) 6099973137605044 m001 (Ei(1,1)+AlladiGrinstead)/(5^(1/2)+ln(gamma)) 6099973139687401 m001 (1-exp(1))/(Grothendieck+MertensB2) 6099973142855765 a007 Real Root Of -767*x^4+388*x^3-753*x^2+755*x+935 6099973143884479 a001 281/15456*4807526976^(6/23) 6099973174800541 a007 Real Root Of 308*x^4-398*x^3-899*x^2-829*x+54 6099973182005803 a007 Real Root Of -378*x^4+247*x^3+81*x^2+34*x+99 6099973219347022 m001 GAMMA(5/24)/MadelungNaCl/ThueMorse 6099973221568184 r002 2th iterates of z^2 + 6099973231254313 r008 a(0)=0,K{-n^6,15+6*n^3-48*n^2+10*n} 6099973259742199 r002 46th iterates of z^2 + 6099973269179363 q001 2282/3741 6099973270636046 a007 Real Root Of -841*x^4+43*x^3+879*x^2+601*x-587 6099973272756039 a001 46/32264490531*233^(4/15) 6099973275134465 m005 (1/3*Pi-1/7)/(5/8*3^(1/2)+2/5) 6099973277036773 p003 LerchPhi(1/12,3,552/215) 6099973280214801 a007 Real Root Of -738*x^4+424*x^3-488*x^2+900*x+929 6099973283181734 a003 sin(Pi*1/67)/cos(Pi*21/95) 6099973288181337 r009 Im(z^3+c),c=-69/122+13/42*I,n=6 6099973292390127 r005 Im(z^2+c),c=-107/102+3/44*I,n=6 6099973293405940 m008 (1/4*Pi^6-3/4)/(4*Pi^2-1/5) 6099973304234608 a001 5778/5*2178309^(38/51) 6099973312197339 a007 Real Root Of -496*x^4+505*x^3+509*x^2+310*x+183 6099973315462735 m005 (1/2*gamma-5)/(1/4*gamma-11/12) 6099973326088026 a001 843/2584*75025^(6/23) 6099973330567009 r002 4th iterates of z^2 + 6099973344964219 m001 (BesselJ(0,1)+Zeta(1/2))/(Gompertz+Landau) 6099973348430246 a007 Real Root Of -775*x^4+704*x^3+941*x^2+817*x-901 6099973349688451 m001 (Zeta(1/2)+ZetaP(3))/(sin(1)+BesselI(0,1)) 6099973353862890 r005 Im(z^2+c),c=-5/62+23/26*I,n=19 6099973362665549 a007 Real Root Of -140*x^4-691*x^3+837*x^2-981*x-132 6099973364686174 a003 sin(Pi*5/23)*sin(Pi*43/103) 6099973372939876 r002 34th iterates of z^2 + 6099973374884296 a001 24476*144^(11/17) 6099973378065030 r002 11th iterates of z^2 + 6099973379833680 a007 Real Root Of -16*x^4-981*x^3-317*x^2-706*x+624 6099973392536407 p001 sum(1/(467*n+200)/(2^n),n=0..infinity) 6099973401500393 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24)-exp(1))^Gompertz 6099973425254147 r008 a(0)=0,K{-n^6,61-79*n^3-62*n^2-84*n} 6099973441175470 m001 1/GAMMA(1/6)^2*Lehmer^2*exp(sin(1))^2 6099973453396666 m001 ln(FeigenbaumDelta)*Conway*GaussKuzminWirsing 6099973482597191 r002 3th iterates of z^2 + 6099973484638611 v002 sum(1/(2^n+(29*n^2-57*n+59)),n=1..infinity) 6099973487125716 m001 Pi*2^(1/2)/GAMMA(3/4)/(Robbin^(2^(1/3))) 6099973555474355 m001 (GAMMA(13/24)-exp(gamma))/exp(Pi) 6099973555474355 m001 exp(-Pi)*(GAMMA(13/24)-exp(gamma)) 6099973584316911 p003 LerchPhi(1/512,4,43/38) 6099973589734622 a007 Real Root Of -875*x^4+520*x^3+955*x^2+757*x-814 6099973612850899 a001 3571/28657*75025^(16/29) 6099973629250885 a007 Real Root Of 594*x^4-784*x^3+23*x^2+115*x+17 6099973642771709 r009 Im(z^3+c),c=-73/106+14/29*I,n=8 6099973655781785 m005 (1/2*Catalan-4/9)/(5*gamma-2/3) 6099973666321198 r005 Im(z^2+c),c=-9/106+18/25*I,n=17 6099973674207149 r009 Re(z^3+c),c=-1/10+10/19*I,n=8 6099973679860888 m005 (1/2*exp(1)-5/6)/(23/63+2/9*5^(1/2)) 6099973697283624 a007 Real Root Of 537*x^4-504*x^3-471*x^2-91*x-69 6099973697395123 r005 Im(z^2+c),c=-19/34+13/119*I,n=30 6099973697685641 m001 -GaussAGM(1,1/sqrt(2))/(GAMMA(11/12)+1/3) 6099973697685641 m001 GaussAGM(1,1/sqrt(2))/(1/3+GAMMA(11/12)) 6099973718368662 p001 sum(1/(241*n+164)/(1024^n),n=0..infinity) 6099973757107450 r005 Im(z^2+c),c=31/114+17/30*I,n=3 6099973772561535 m002 -1+Pi^3/2-Pi^4*Sech[Pi] 6099973778049174 b008 4*E^2+Sinh[1+Pi] 6099973788761487 r009 Re(z^3+c),c=-14/31+1/48*I,n=3 6099973790825537 a007 Real Root Of 11*x^4-274*x^3-163*x^2-288*x+297 6099973804343157 r005 Im(z^2+c),c=-5/6+43/174*I,n=8 6099973876116505 m005 (1/3*gamma+2/11)/(145/24+1/24*5^(1/2)) 6099973882560593 m001 (ln(gamma)-Backhouse)/(Champernowne-ZetaP(2)) 6099973883561729 m005 (1/3*5^(1/2)+1/8)/(5/7*2^(1/2)+5/12) 6099973890370307 r004 Im(z^2+c),c=1/46+3/22*I,z(0)=I,n=5 6099973890370307 r004 Im(z^2+c),c=1/46-3/22*I,z(0)=I,n=5 6099973922224341 m005 (1/3*Pi-1/5)/(4/5*5^(1/2)-2/5) 6099973938479833 a007 Real Root Of 27*x^4+2*x^3-969*x^2+240*x+591 6099973945979036 l006 ln(13/5796) 6099973948738010 a007 Real Root Of -454*x^4-616*x^3-305*x^2+27*x+53 6099973957941360 b008 61+ExpIntegralEi[-2*Pi] 6099973958987918 m001 (5^(1/2)+ln(Pi))/(Psi(2,1/3)-ln(2)/ln(10)) 6099973961689321 r002 31th iterates of z^2 + 6099973965113251 q001 2343/3841 6099973990453767 r009 Im(z^3+c),c=-73/78+10/59*I,n=2 6099974004053980 m005 (1/5*gamma+1/3)/(1/6*2^(1/2)+1/2) 6099974022681711 a001 9349/75025*75025^(16/29) 6099974024836338 a001 55/199*3571^(3/31) 6099974032513126 r005 Im(z^2+c),c=-3/29+23/29*I,n=5 6099974044698876 a007 Real Root Of -458*x^4+215*x^3-470*x^2-510*x-24 6099974049003989 m001 (Khinchin-Thue)/(GAMMA(2/3)+GAMMA(13/24)) 6099974065534267 r009 Re(z^3+c),c=-7/82+7/17*I,n=20 6099974066117697 a004 Fibonacci(18)*Lucas(13)/(1/2+sqrt(5)/2)^16 6099974068171080 m005 (1/2*gamma+7/9)/(72/77+4/11*5^(1/2)) 6099974082475221 a001 12238/98209*75025^(16/29) 6099974096590554 a001 13201/105937*75025^(16/29) 6099974101042659 m005 (1/3*gamma-1/9)/(10/11*Catalan+1/2) 6099974119429642 a001 15127/121393*75025^(16/29) 6099974130584375 m005 (1/2*gamma-1/9)/(8/11*Pi+5/8) 6099974134841316 a001 377*199^(1/11) 6099974134858025 g006 Psi(1,5/11)+Psi(1,7/10)-Psi(1,6/11)-Psi(1,1/8) 6099974135456263 r002 13th iterates of z^2 + 6099974147472723 r005 Im(z^2+c),c=-15/94+4/51*I,n=11 6099974154396616 a007 Real Root Of -305*x^4+948*x^3+125*x^2+284*x-18 6099974155549752 a007 Real Root Of 687*x^4-483*x^3-200*x^2-187*x+203 6099974160448394 r009 Re(z^3+c),c=-7/82+7/17*I,n=22 6099974188008488 m001 (Catalan+GAMMA(11/24))/FeigenbaumDelta 6099974191313591 m001 PlouffeB^Otter/MasserGramainDelta 6099974193052152 m003 61/10+(Sqrt[5]*Cot[1/2+Sqrt[5]/2])/4096 6099974194907667 a007 Real Root Of -386*x^4+701*x^3+708*x^2+849*x-887 6099974199055670 r009 Re(z^3+c),c=-7/82+7/17*I,n=24 6099974206733845 r009 Re(z^3+c),c=-7/82+7/17*I,n=26 6099974207648716 r009 Re(z^3+c),c=-7/82+7/17*I,n=29 6099974207667150 r009 Re(z^3+c),c=-7/82+7/17*I,n=31 6099974207679391 r009 Re(z^3+c),c=-7/82+7/17*I,n=33 6099974207679398 r009 Re(z^3+c),c=-7/82+7/17*I,n=28 6099974207682170 r009 Re(z^3+c),c=-7/82+7/17*I,n=35 6099974207682563 r009 Re(z^3+c),c=-7/82+7/17*I,n=37 6099974207682574 r009 Re(z^3+c),c=-7/82+7/17*I,n=38 6099974207682575 r009 Re(z^3+c),c=-7/82+7/17*I,n=40 6099974207682579 r009 Re(z^3+c),c=-7/82+7/17*I,n=42 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=44 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=46 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=49 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=51 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=53 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=55 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=58 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=60 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=62 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=64 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=63 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=61 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=59 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=57 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=56 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=54 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=52 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=47 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=50 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=48 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=45 6099974207682580 r009 Re(z^3+c),c=-7/82+7/17*I,n=43 6099974207682582 r009 Re(z^3+c),c=-7/82+7/17*I,n=41 6099974207682587 r009 Re(z^3+c),c=-7/82+7/17*I,n=39 6099974207682692 r009 Re(z^3+c),c=-7/82+7/17*I,n=36 6099974207683802 r009 Re(z^3+c),c=-7/82+7/17*I,n=34 6099974207690026 r009 Re(z^3+c),c=-7/82+7/17*I,n=32 6099974207709676 r009 Re(z^3+c),c=-7/82+7/17*I,n=30 6099974207894377 r009 Re(z^3+c),c=-7/82+7/17*I,n=27 6099974210781668 r009 Re(z^3+c),c=-7/82+7/17*I,n=25 6099974221839568 m003 61/10+(Sqrt[5]*Cos[1/2+Sqrt[5]/2])/4096 6099974222174488 a004 Fibonacci(20)*Lucas(13)/(1/2+sqrt(5)/2)^18 6099974229028745 r009 Re(z^3+c),c=-7/82+7/17*I,n=23 6099974229937198 m005 (1/2*exp(1)+5/8)/(Pi+1/9) 6099974244942867 a004 Fibonacci(22)*Lucas(13)/(1/2+sqrt(5)/2)^20 6099974248264729 a004 Fibonacci(24)*Lucas(13)/(1/2+sqrt(5)/2)^22 6099974248749382 a004 Fibonacci(26)*Lucas(13)/(1/2+sqrt(5)/2)^24 6099974248820092 a004 Fibonacci(28)*Lucas(13)/(1/2+sqrt(5)/2)^26 6099974248830409 a004 Fibonacci(30)*Lucas(13)/(1/2+sqrt(5)/2)^28 6099974248831914 a004 Fibonacci(32)*Lucas(13)/(1/2+sqrt(5)/2)^30 6099974248832133 a004 Fibonacci(34)*Lucas(13)/(1/2+sqrt(5)/2)^32 6099974248832165 a004 Fibonacci(36)*Lucas(13)/(1/2+sqrt(5)/2)^34 6099974248832170 a004 Fibonacci(38)*Lucas(13)/(1/2+sqrt(5)/2)^36 6099974248832171 a004 Fibonacci(40)*Lucas(13)/(1/2+sqrt(5)/2)^38 6099974248832171 a004 Fibonacci(42)*Lucas(13)/(1/2+sqrt(5)/2)^40 6099974248832171 a004 Fibonacci(44)*Lucas(13)/(1/2+sqrt(5)/2)^42 6099974248832171 a004 Fibonacci(46)*Lucas(13)/(1/2+sqrt(5)/2)^44 6099974248832171 a004 Fibonacci(48)*Lucas(13)/(1/2+sqrt(5)/2)^46 6099974248832171 a004 Fibonacci(50)*Lucas(13)/(1/2+sqrt(5)/2)^48 6099974248832171 a004 Fibonacci(52)*Lucas(13)/(1/2+sqrt(5)/2)^50 6099974248832171 a004 Fibonacci(54)*Lucas(13)/(1/2+sqrt(5)/2)^52 6099974248832171 a004 Fibonacci(56)*Lucas(13)/(1/2+sqrt(5)/2)^54 6099974248832171 a004 Fibonacci(58)*Lucas(13)/(1/2+sqrt(5)/2)^56 6099974248832171 a004 Fibonacci(60)*Lucas(13)/(1/2+sqrt(5)/2)^58 6099974248832171 a004 Fibonacci(62)*Lucas(13)/(1/2+sqrt(5)/2)^60 6099974248832171 a004 Fibonacci(64)*Lucas(13)/(1/2+sqrt(5)/2)^62 6099974248832171 a004 Fibonacci(66)*Lucas(13)/(1/2+sqrt(5)/2)^64 6099974248832171 a004 Fibonacci(68)*Lucas(13)/(1/2+sqrt(5)/2)^66 6099974248832171 a004 Fibonacci(70)*Lucas(13)/(1/2+sqrt(5)/2)^68 6099974248832171 a004 Fibonacci(72)*Lucas(13)/(1/2+sqrt(5)/2)^70 6099974248832171 a004 Fibonacci(74)*Lucas(13)/(1/2+sqrt(5)/2)^72 6099974248832171 a004 Fibonacci(76)*Lucas(13)/(1/2+sqrt(5)/2)^74 6099974248832171 a004 Fibonacci(78)*Lucas(13)/(1/2+sqrt(5)/2)^76 6099974248832171 a004 Fibonacci(80)*Lucas(13)/(1/2+sqrt(5)/2)^78 6099974248832171 a004 Fibonacci(82)*Lucas(13)/(1/2+sqrt(5)/2)^80 6099974248832171 a004 Fibonacci(84)*Lucas(13)/(1/2+sqrt(5)/2)^82 6099974248832171 a004 Fibonacci(86)*Lucas(13)/(1/2+sqrt(5)/2)^84 6099974248832171 a004 Fibonacci(88)*Lucas(13)/(1/2+sqrt(5)/2)^86 6099974248832171 a004 Fibonacci(90)*Lucas(13)/(1/2+sqrt(5)/2)^88 6099974248832171 a004 Fibonacci(92)*Lucas(13)/(1/2+sqrt(5)/2)^90 6099974248832171 a004 Fibonacci(94)*Lucas(13)/(1/2+sqrt(5)/2)^92 6099974248832171 a004 Fibonacci(96)*Lucas(13)/(1/2+sqrt(5)/2)^94 6099974248832171 a004 Fibonacci(100)*Lucas(13)/(1/2+sqrt(5)/2)^98 6099974248832171 a004 Fibonacci(98)*Lucas(13)/(1/2+sqrt(5)/2)^96 6099974248832171 a004 Fibonacci(99)*Lucas(13)/(1/2+sqrt(5)/2)^97 6099974248832171 a004 Fibonacci(97)*Lucas(13)/(1/2+sqrt(5)/2)^95 6099974248832171 a004 Fibonacci(95)*Lucas(13)/(1/2+sqrt(5)/2)^93 6099974248832171 a004 Fibonacci(93)*Lucas(13)/(1/2+sqrt(5)/2)^91 6099974248832171 a004 Fibonacci(91)*Lucas(13)/(1/2+sqrt(5)/2)^89 6099974248832171 a004 Fibonacci(89)*Lucas(13)/(1/2+sqrt(5)/2)^87 6099974248832171 a004 Fibonacci(87)*Lucas(13)/(1/2+sqrt(5)/2)^85 6099974248832171 a004 Fibonacci(85)*Lucas(13)/(1/2+sqrt(5)/2)^83 6099974248832171 a004 Fibonacci(83)*Lucas(13)/(1/2+sqrt(5)/2)^81 6099974248832171 a004 Fibonacci(81)*Lucas(13)/(1/2+sqrt(5)/2)^79 6099974248832171 a004 Fibonacci(79)*Lucas(13)/(1/2+sqrt(5)/2)^77 6099974248832171 a004 Fibonacci(77)*Lucas(13)/(1/2+sqrt(5)/2)^75 6099974248832171 a004 Fibonacci(75)*Lucas(13)/(1/2+sqrt(5)/2)^73 6099974248832171 a004 Fibonacci(73)*Lucas(13)/(1/2+sqrt(5)/2)^71 6099974248832171 a004 Fibonacci(71)*Lucas(13)/(1/2+sqrt(5)/2)^69 6099974248832171 a004 Fibonacci(69)*Lucas(13)/(1/2+sqrt(5)/2)^67 6099974248832171 a004 Fibonacci(67)*Lucas(13)/(1/2+sqrt(5)/2)^65 6099974248832171 a004 Fibonacci(65)*Lucas(13)/(1/2+sqrt(5)/2)^63 6099974248832171 a004 Fibonacci(63)*Lucas(13)/(1/2+sqrt(5)/2)^61 6099974248832171 a004 Fibonacci(61)*Lucas(13)/(1/2+sqrt(5)/2)^59 6099974248832171 a004 Fibonacci(59)*Lucas(13)/(1/2+sqrt(5)/2)^57 6099974248832171 a004 Fibonacci(57)*Lucas(13)/(1/2+sqrt(5)/2)^55 6099974248832171 a004 Fibonacci(55)*Lucas(13)/(1/2+sqrt(5)/2)^53 6099974248832171 a004 Fibonacci(53)*Lucas(13)/(1/2+sqrt(5)/2)^51 6099974248832171 a004 Fibonacci(51)*Lucas(13)/(1/2+sqrt(5)/2)^49 6099974248832171 a004 Fibonacci(49)*Lucas(13)/(1/2+sqrt(5)/2)^47 6099974248832171 a004 Fibonacci(47)*Lucas(13)/(1/2+sqrt(5)/2)^45 6099974248832171 a004 Fibonacci(45)*Lucas(13)/(1/2+sqrt(5)/2)^43 6099974248832171 a004 Fibonacci(43)*Lucas(13)/(1/2+sqrt(5)/2)^41 6099974248832171 a004 Fibonacci(41)*Lucas(13)/(1/2+sqrt(5)/2)^39 6099974248832171 a004 Fibonacci(39)*Lucas(13)/(1/2+sqrt(5)/2)^37 6099974248832173 a004 Fibonacci(37)*Lucas(13)/(1/2+sqrt(5)/2)^35 6099974248832185 a004 Fibonacci(35)*Lucas(13)/(1/2+sqrt(5)/2)^33 6099974248832269 a004 Fibonacci(33)*Lucas(13)/(1/2+sqrt(5)/2)^31 6099974248832844 a004 Fibonacci(31)*Lucas(13)/(1/2+sqrt(5)/2)^29 6099974248836784 a004 Fibonacci(29)*Lucas(13)/(1/2+sqrt(5)/2)^27 6099974248863793 a004 Fibonacci(27)*Lucas(13)/(1/2+sqrt(5)/2)^25 6099974248914959 a001 2/233*(1/2+1/2*5^(1/2))^28 6099974249048914 a004 Fibonacci(25)*Lucas(13)/(1/2+sqrt(5)/2)^23 6099974250317753 a004 Fibonacci(23)*Lucas(13)/(1/2+sqrt(5)/2)^21 6099974258362382 r005 Re(z^2+c),c=-1+18/227*I,n=12 6099974259014499 a004 Fibonacci(21)*Lucas(13)/(1/2+sqrt(5)/2)^19 6099974260209870 r002 6th iterates of z^2 + 6099974275971083 a001 321/2576*75025^(16/29) 6099974278237546 m001 (Riemann2ndZero+Totient)/(sin(1/12*Pi)+Magata) 6099974283726501 a007 Real Root Of 307*x^4+233*x^3-147*x^2-728*x-379 6099974287543166 a005 (1/cos(14/195*Pi))^968 6099974289283719 m001 LambertW(1)*Sierpinski^ZetaP(4) 6099974299054937 r009 Re(z^3+c),c=-7/82+7/17*I,n=21 6099974307353986 a007 Real Root Of 154*x^4+843*x^3-649*x^2-283*x+543 6099974318574224 a001 10946/843*521^(8/13) 6099974318622890 a004 Fibonacci(19)*Lucas(13)/(1/2+sqrt(5)/2)^17 6099974324611511 r009 Re(z^3+c),c=-7/82+7/17*I,n=19 6099974352436707 a007 Real Root Of -492*x^4+703*x^3+723*x^2-6*x-45 6099974353672862 m001 1/(2^(1/3))^2*ln(Lehmer)/cos(1) 6099974364558746 a007 Real Root Of 232*x^4-253*x^3+897*x^2+712*x+11 6099974375782778 a001 1926/7*6765^(13/37) 6099974378277974 r009 Im(z^3+c),c=-69/110+13/44*I,n=10 6099974380940325 a007 Real Root Of 147*x^4-243*x^3-705*x^2-367*x+521 6099974441107432 a007 Real Root Of 616*x^4+671*x^3+947*x^2-924*x-849 6099974449859780 s002 sum(A131395[n]/((2^n+1)/n),n=1..infinity) 6099974466664312 m001 (Kolakoski-Niven)/(Rabbit-Thue) 6099974481760263 m001 1/BesselK(1,1)/ln(FeigenbaumB)^2/cos(Pi/5) 6099974501707394 r009 Re(z^3+c),c=-7/82+7/17*I,n=18 6099974516217980 r005 Re(z^2+c),c=-9/16+51/86*I,n=11 6099974521062579 a007 Real Root Of -558*x^4-30*x^3+863*x^2+695*x-661 6099974558671793 a007 Real Root Of -271*x^4-51*x^3+390*x^2+118*x-168 6099974593761369 r009 Im(z^3+c),c=-37/98+40/57*I,n=31 6099974605530116 a003 cos(Pi*27/97)-cos(Pi*49/100) 6099974606469035 r002 13th iterates of z^2 + 6099974609607069 m001 1/Paris^2*exp(CopelandErdos)/Zeta(1/2)^2 6099974609697880 r002 4th iterates of z^2 + 6099974619469248 m001 Khinchin*(GAMMA(1/24)-RenyiParking) 6099974625729510 q001 2404/3941 6099974661601583 m001 OneNinth^2*Bloch^2/exp((3^(1/3))) 6099974672244286 a007 Real Root Of 524*x^4+167*x^3-755*x^2-676*x+44 6099974725959148 a007 Real Root Of -906*x^4+23*x^3+168*x^2-215*x-63 6099974727184875 a004 Fibonacci(17)*Lucas(13)/(1/2+sqrt(5)/2)^15 6099974740842457 m005 (1/2*5^(1/2)-2/3)/(7/10*2^(1/2)-1/4) 6099974755689731 a007 Real Root Of -165*x^4+25*x^3+869*x^2+562*x-649 6099974769683580 a008 Real Root of (12+16*x-17*x^2-18*x^3) 6099974787133547 h001 (7/10*exp(2)+11/12)/(1/5*exp(1)+5/11) 6099974794928339 a001 4181/2207*521^(12/13) 6099974796579716 a003 sin(Pi*4/19)*sin(Pi*31/67) 6099974819904245 m001 1/GAMMA(1/6)*ln(Porter)/GAMMA(5/6) 6099974826648285 a007 Real Root Of 104*x^4+511*x^3-602*x^2+823*x-588 6099974842690613 a007 Real Root Of 484*x^4-547*x^3+559*x^2-803*x-889 6099974870940380 m001 exp(1)*GAMMA(3/4)*FeigenbaumC 6099974880648238 a007 Real Root Of 274*x^4-943*x^3-961*x^2-901*x-444 6099974884153024 a007 Real Root Of 876*x^4+343*x^3+584*x^2+534*x+65 6099974906611799 a001 23725150497407/233*144^(14/17) 6099974908131767 m002 6+(ProductLog[Pi]*Sinh[Pi])/(4*Pi^3) 6099974918370567 r005 Re(z^2+c),c=-23/56+23/39*I,n=17 6099974935983116 r005 Im(z^2+c),c=-39/74+31/54*I,n=3 6099974939100906 a007 Real Root Of -380*x^4+483*x^3+388*x^2+301*x-385 6099974947064096 m001 (Zeta(1,2)-FeigenbaumDelta)/(Trott-ZetaQ(4)) 6099974963270281 a001 7/365435296162*55^(19/22) 6099975003350553 r002 41th iterates of z^2 + 6099975008058933 m005 (1/3*Pi+1/6)/(7/10*2^(1/2)+1) 6099975052044033 m001 exp(sin(1))^2/log(2+sqrt(3))/sin(Pi/12)^2 6099975070176331 m001 Weierstrass^GaussAGM-gamma(1) 6099975083830289 m001 1/exp(GAMMA(13/24))^2*Riemann3rdZero/cosh(1) 6099975089057498 r002 13th iterates of z^2 + 6099975103756731 a008 Real Root of (1+16*x-7*x^2-9*x^3) 6099975104226387 a007 Real Root Of 163*x^4-760*x^3-732*x^2-29*x+440 6099975111100120 r002 13th iterates of z^2 + 6099975132386593 a003 cos(Pi*10/57)-cos(Pi*19/45) 6099975133082719 r005 Im(z^2+c),c=-109/94+4/51*I,n=25 6099975136936130 m001 (BesselK(1,1)+Salem)^Pi 6099975150059353 a007 Real Root Of 523*x^4-664*x^3+55*x^2-581*x-598 6099975157551254 a007 Real Root Of 896*x^4-970*x^3+224*x^2-984*x+613 6099975159153338 r009 Im(z^3+c),c=-3/94+41/56*I,n=13 6099975174384055 m001 GAMMA(2/3)^2/Tribonacci^2*ln(GAMMA(7/24)) 6099975175263152 r005 Im(z^2+c),c=-59/86+3/61*I,n=28 6099975195587762 r005 Im(z^2+c),c=-11/98+43/54*I,n=26 6099975201289421 r002 22th iterates of z^2 + 6099975218068491 a007 Real Root Of -192*x^4+564*x^3+9*x^2+175*x+258 6099975253650086 q001 2465/4041 6099975270423348 a007 Real Root Of -23*x^4-92*x^3+433*x^2+829*x-92 6099975287068370 m001 (Artin-ln(2)/ln(10))/(Bloch+Sarnak) 6099975302137969 a007 Real Root Of 750*x^4-729*x^3-905*x^2-604*x-301 6099975304549130 m001 (-ReciprocalFibonacci+Thue)/(2^(1/2)+Khinchin) 6099975321084802 b008 60+Tanh[9/2] 6099975348922081 a001 2207/17711*75025^(16/29) 6099975372797447 a007 Real Root Of 444*x^4-233*x^3+325*x^2-811*x-730 6099975382997258 r002 30th iterates of z^2 + 6099975433985423 r002 16th iterates of z^2 + 6099975441565600 m001 (2*Pi/GAMMA(5/6))^BesselJ(0,1)*GAMMA(13/24) 6099975441565600 m001 GAMMA(1/6)^BesselJ(0,1)*GAMMA(13/24) 6099975445295869 a007 Real Root Of -260*x^4-44*x^3-47*x^2+50*x+74 6099975458386768 m001 (gamma+ln(5))/(KhinchinHarmonic+Tribonacci) 6099975468038847 l006 ln(5644/5999) 6099975479053279 r009 Im(z^3+c),c=-12/19+16/33*I,n=10 6099975479941130 a007 Real Root Of 83*x^4+185*x^3+301*x^2-850*x-600 6099975483943333 r005 Re(z^2+c),c=-17/25+5/27*I,n=14 6099975511398330 r009 Im(z^3+c),c=-27/64+16/17*I,n=2 6099975524103247 a007 Real Root Of 141*x^4+738*x^3-657*x^2+435*x-613 6099975551548161 m001 (1-Conway)/(FeigenbaumDelta+HardyLittlewoodC4) 6099975578303548 a003 cos(Pi*18/109)*cos(Pi*30/119) 6099975595914658 a007 Real Root Of -886*x^4-137*x^3-208*x^2+545*x+34 6099975596376985 a007 Real Root Of -777*x^4+661*x^3-184*x^2-428*x+65 6099975598275278 m004 -3+3/E^(Sqrt[5]*Pi)-(5*Log[Sqrt[5]*Pi])/Pi 6099975615548666 a007 Real Root Of -973*x^4+861*x^3+217*x^2+460*x+530 6099975666015607 a007 Real Root Of 614*x^4-916*x^3-6*x^2-671*x-700 6099975683639222 m001 (Si(Pi)-exp(1))/(Kac+Kolakoski) 6099975691652451 m001 HardyLittlewoodC3^Ei(1,1)*Zeta(1,-1)^Ei(1,1) 6099975703118460 m001 (DuboisRaymond+Khinchin)/(2^(1/3)-3^(1/2)) 6099975714093583 a007 Real Root Of -66*x^4-277*x^3+885*x^2+885*x+976 6099975719706146 a007 Real Root Of 185*x^4+452*x^3+682*x^2-161*x-275 6099975723730924 m005 (1/2*gamma+5/11)/(3/5*Pi-2/3) 6099975739018585 p004 log(13967/7589) 6099975754499299 r009 Im(z^3+c),c=-5/14+17/24*I,n=7 6099975773053916 m001 GAMMA(11/12)^2*Riemann1stZero*exp(GAMMA(2/3)) 6099975791036600 r005 Im(z^2+c),c=-47/78+7/62*I,n=44 6099975792777185 a007 Real Root Of 625*x^4-326*x^3+773*x^2-444*x-719 6099975804949161 a001 5473/2889*521^(12/13) 6099975815400748 h001 (3/7*exp(1)+1/2)/(3/11*exp(2)+5/7) 6099975828074634 r008 a(0)=0,K{-n^6,-50-99*n^3-57*n^2+42*n} 6099975860238718 a001 18/89*1346269^(7/29) 6099975880253463 r005 Re(z^2+c),c=5/44+9/19*I,n=50 6099975887437672 r002 43th iterates of z^2 + 6099975891840725 a007 Real Root Of -133*x^4-433*x^3+128*x^2+887*x-472 6099975892743321 a007 Real Root Of -927*x^4-188*x^3-311*x^2-340*x-6 6099975900404375 m001 (cos(1/5*Pi)-exp(1))/(-arctan(1/3)+ZetaQ(3)) 6099975910448473 m001 (cos(1/5*Pi)-BesselK(1,1))/(Khinchin+Rabbit) 6099975917378775 a001 6765/2*7^(10/33) 6099975929382088 a007 Real Root Of 860*x^4+114*x^3+555*x^2-289*x-476 6099975942785561 a001 29/1597*832040^(4/45) 6099975952309242 a001 28657/15127*521^(12/13) 6099975953059758 r002 17th iterates of z^2 + 6099975963651983 m005 (1/2*exp(1)+3/8)/(1/9*2^(1/2)-3) 6099975968528860 m001 PrimesInBinary*Khintchine/exp(BesselK(1,1)) 6099975973135971 m005 (1/3*exp(1)-1/11)/(7/11*Zeta(3)+4/7) 6099975973808789 a001 75025/39603*521^(12/13) 6099975976945531 a001 98209/51841*521^(12/13) 6099975977403175 a001 514229/271443*521^(12/13) 6099975977469945 a001 1346269/710647*521^(12/13) 6099975977479686 a001 1762289/930249*521^(12/13) 6099975977481107 a001 9227465/4870847*521^(12/13) 6099975977481315 a001 24157817/12752043*521^(12/13) 6099975977481345 a001 31622993/16692641*521^(12/13) 6099975977481349 a001 165580141/87403803*521^(12/13) 6099975977481350 a001 433494437/228826127*521^(12/13) 6099975977481350 a001 567451585/299537289*521^(12/13) 6099975977481350 a001 2971215073/1568397607*521^(12/13) 6099975977481350 a001 7778742049/4106118243*521^(12/13) 6099975977481350 a001 10182505537/5374978561*521^(12/13) 6099975977481350 a001 53316291173/28143753123*521^(12/13) 6099975977481350 a001 139583862445/73681302247*521^(12/13) 6099975977481350 a001 182717648081/96450076809*521^(12/13) 6099975977481350 a001 956722026041/505019158607*521^(12/13) 6099975977481350 a001 10610209857723/5600748293801*521^(12/13) 6099975977481350 a001 591286729879/312119004989*521^(12/13) 6099975977481350 a001 225851433717/119218851371*521^(12/13) 6099975977481350 a001 21566892818/11384387281*521^(12/13) 6099975977481350 a001 32951280099/17393796001*521^(12/13) 6099975977481350 a001 12586269025/6643838879*521^(12/13) 6099975977481350 a001 1201881744/634430159*521^(12/13) 6099975977481350 a001 1836311903/969323029*521^(12/13) 6099975977481350 a001 701408733/370248451*521^(12/13) 6099975977481350 a001 66978574/35355581*521^(12/13) 6099975977481352 a001 102334155/54018521*521^(12/13) 6099975977481364 a001 39088169/20633239*521^(12/13) 6099975977481443 a001 3732588/1970299*521^(12/13) 6099975977481986 a001 5702887/3010349*521^(12/13) 6099975977485707 a001 2178309/1149851*521^(12/13) 6099975977511210 a001 208010/109801*521^(12/13) 6099975977686015 a001 317811/167761*521^(12/13) 6099975978884144 a001 121393/64079*521^(12/13) 6099975978951292 a007 Real Root Of -422*x^4-312*x^3+557*x^2+959*x-663 6099975986689663 a007 Real Root Of 146*x^4+480*x^3+914*x^2-724*x-693 6099975987096240 a001 11592/6119*521^(12/13) 6099975994399211 r005 Im(z^2+c),c=25/118+12/23*I,n=13 6099976033151787 a001 17711/843*521^(7/13) 6099976043382785 a001 17711/9349*521^(12/13) 6099976066773745 a007 Real Root Of -671*x^4+936*x^3+593*x^2+480*x-633 6099976099624215 a007 Real Root Of -889*x^4+856*x^3+127*x^2+914*x-676 6099976107981847 r005 Re(z^2+c),c=-9/110+23/33*I,n=37 6099976112292618 m005 (1/2*Zeta(3)-5/7)/(7/11*2^(1/2)-5/7) 6099976145687102 a007 Real Root Of 102*x^4-845*x^3+730*x^2-45*x-505 6099976155433291 a007 Real Root Of 538*x^4-998*x^3-94*x^2-859*x+711 6099976167273593 r005 Re(z^2+c),c=-11/16+20/69*I,n=3 6099976171480883 m005 (1/2*gamma+3/7)/(53/66+1/6*5^(1/2)) 6099976201612627 s001 sum(exp(-3*Pi)^(n-1)*A015025[n],n=1..infinity) 6099976213154362 p003 LerchPhi(1/2,6,51/218) 6099976237895500 p001 sum((-1)^n/(425*n+83)/n/(32^n),n=1..infinity) 6099976244322711 a007 Real Root Of 90*x^4-391*x^3-123*x^2-696*x-480 6099976273993113 a007 Real Root Of -315*x^4+705*x^3-995*x^2+33*x+594 6099976275174207 a001 -233+377*5^(1/2) 6099976297523253 a007 Real Root Of -685*x^4+593*x^3+219*x^2+605*x+517 6099976313910530 a007 Real Root Of -772*x^4+920*x^3-611*x^2-146*x+454 6099976339162023 m003 51/10+Sqrt[5]/2048+Sin[1/2+Sqrt[5]/2] 6099976352231055 h001 (2/7*exp(2)+3/5)/(4/7*exp(2)+2/9) 6099976373556149 m004 1+30/Pi+125*Pi*ProductLog[Sqrt[5]*Pi] 6099976374146256 a007 Real Root Of -248*x^4+737*x^3+177*x^2-416*x-118 6099976380888579 a003 sin(Pi*19/90)*sin(Pi*37/81) 6099976386853673 v002 sum(1/(5^n+(3*n^2+16*n+1)),n=1..infinity) 6099976392655112 r005 Re(z^2+c),c=4/15+31/47*I,n=4 6099976401044720 a005 (1/cos(16/157*Pi))^1006 6099976408638913 m001 (Chi(1)-cos(1/12*Pi))/(gamma(3)+exp(-1/2*Pi)) 6099976427129237 a001 6765/2207*521^(11/13) 6099976427609320 a007 Real Root Of 650*x^4-941*x^3-445*x^2-138 6099976429176535 a001 6765/3571*521^(12/13) 6099976441935432 r005 Re(z^2+c),c=-59/78+1/35*I,n=45 6099976454178393 p001 sum(1/(499*n+164)/(625^n),n=0..infinity) 6099976455352792 r005 Im(z^2+c),c=-7/12+61/90*I,n=5 6099976522471644 m001 (FeigenbaumD-Sierpinski)/(cos(1/12*Pi)+Cahen) 6099976536370920 m002 -(Pi^4/Log[Pi])+2*Sinh[Pi]+Tanh[Pi] 6099976543879946 a008 Real Root of x^4-x^3-19*x^2-6*x-414 6099976551887509 a007 Real Root Of 281*x^4-696*x^3-134*x^2-918*x-707 6099976573864271 a007 Real Root Of -936*x^4+781*x^3+51*x^2-749*x-169 6099976587091959 m001 Porter^2/Paris^2/ln(Zeta(5)) 6099976589497575 r005 Im(z^2+c),c=-37/28+3/56*I,n=44 6099976599301231 a001 2/1597*514229^(8/17) 6099976604024024 a007 Real Root Of 417*x^4+118*x^3+219*x^2-896*x-659 6099976604922370 a007 Real Root Of -59*x^4+964*x^3-960*x^2-279*x+414 6099976634244791 a007 Real Root Of 112*x^4+574*x^3-623*x^2+258*x-30 6099976650221398 a007 Real Root Of 800*x^4-885*x^3+544*x^2-754*x-974 6099976653267496 a007 Real Root Of 101*x^4-950*x^3-747*x^2-840*x+992 6099976700101544 a007 Real Root Of -890*x^4+786*x^3-677*x^2+386*x+789 6099976709275377 a007 Real Root Of 903*x^4-511*x^3+453*x^2-863*x-936 6099976721151404 a007 Real Root Of 610*x^4-759*x^3+674*x^2+673*x-97 6099976730244509 r008 a(0)=6,K{-n^6,42+42*n^3-90*n^2} 6099976767862174 m005 (1/2*exp(1)-5/6)/(5/12*2^(1/2)+3/11) 6099976789252682 a007 Real Root Of -623*x^4+2*x^3-804*x^2-708*x-46 6099976826515724 r008 a(0)=6,K{-n^6,17+17*n-60*n^2+15*n^3} 6099976826936862 a007 Real Root Of 100*x^4+518*x^3-514*x^2+287*x-5 6099976850688016 a007 Real Root Of 426*x^4-787*x^3+551*x^2+24*x-428 6099976872123496 a008 Real Root of (-4+2*x+4*x^2+2*x^3+3*x^4+5*x^5) 6099976872990349 m001 (GAMMA(3/4)-Mills)/(OrthogonalArrays-ZetaP(4)) 6099976904824235 a007 Real Root Of -705*x^4-783*x^3-197*x^2+321*x+189 6099976908284936 r004 Re(z^2+c),c=5/38+5/7*I,z(0)=I,n=10 6099976952520326 r005 Re(z^2+c),c=19/90+21/61*I,n=35 6099976957416335 m001 exp(BesselK(0,1))/Khintchine*Zeta(5)^2 6099976959199000 a005 (1/cos(33/235*Pi))^201 6099976971002776 m001 (ZetaP(3)-ZetaQ(4))/(Pi-GaussKuzminWirsing) 6099976985202786 a007 Real Root Of -865*x^4+824*x^3-351*x^2+460*x+718 6099976989816357 a007 Real Root Of 839*x^4-118*x^3-637*x^2-612*x-35 6099976996567098 a005 (1/sin(82/185*Pi))^1698 6099977005843292 m001 (Kac-MertensB2)/(exp(1/Pi)-CareFree) 6099977008372175 a007 Real Root Of 296*x^4-875*x^3-605*x^2-173*x-120 6099977019945761 m005 (2/3*Pi-5)/(5/6*Catalan+4) 6099977035823366 a003 cos(Pi*4/93)*cos(Pi*49/102) 6099977051634340 r005 Im(z^2+c),c=-3/28+39/41*I,n=5 6099977055050821 p004 log(33493/31511) 6099977072753126 a007 Real Root Of -75*x^4+932*x^3-259*x^2+570*x+666 6099977077435205 a001 2/75025*1836311903^(8/17) 6099977077651850 a001 1/1762289*6557470319842^(8/17) 6099977100277744 a003 sin(Pi*16/103)/cos(Pi*19/86) 6099977111643638 m005 (1/2*5^(1/2)+5/8)/(5/12*2^(1/2)-7/8) 6099977122742644 a007 Real Root Of 196*x^4-337*x^3+831*x^2-856*x-935 6099977174254761 a007 Real Root Of 752*x^4+57*x^3-644*x^2-345*x-62 6099977178480244 m005 (1/2*3^(1/2)-3/7)/(8/11*5^(1/2)-10/11) 6099977179989890 a001 4181/322*322^(2/3) 6099977185216480 m004 (5*Pi)/4+(2*Sqrt[5]*ProductLog[Sqrt[5]*Pi])/Pi 6099977185731985 a001 75025/521*199^(3/11) 6099977187883323 m001 OneNinth+Trott2nd+Weierstrass 6099977189138737 a003 sin(Pi*23/107)*sin(Pi*49/114) 6099977216881460 m001 (-KhinchinLevy+Thue)/(Chi(1)-ln(2)/ln(10)) 6099977230164567 a001 521/13*1346269^(27/52) 6099977246705107 a001 7/139583862445*365435296162^(11/14) 6099977246705107 a001 7/701408733*433494437^(11/14) 6099977246708634 a001 7/3524578*514229^(11/14) 6099977263237095 m005 (1/3*2^(1/2)-3/7)/(-7/36+1/18*5^(1/2)) 6099977270539861 a007 Real Root Of -415*x^4+355*x^3-812*x^2-138*x+356 6099977276002473 a007 Real Root Of -810*x^4+285*x^3-511*x^2+82*x+417 6099977276400800 r005 Im(z^2+c),c=-7/52+45/53*I,n=30 6099977288208601 b008 6+Csc[2]/11 6099977315794471 a007 Real Root Of -751*x^4-28*x^3-589*x^2+261*x+476 6099977345687140 s002 sum(A117313[n]/(exp(pi*n)-1),n=1..infinity) 6099977355825891 a007 Real Root Of 778*x^4-467*x^3+997*x^2+470*x-298 6099977358620052 m005 (1/2*2^(1/2)-5/9)/(7/8*3^(1/2)-4) 6099977364939365 m001 Lehmer*ErdosBorwein^2/ln(GAMMA(17/24)) 6099977366480461 a001 18/4181*55^(2/23) 6099977390973394 a007 Real Root Of 49*x^4-340*x^3-249*x^2-236*x+307 6099977412086144 r005 Re(z^2+c),c=-3/74+31/55*I,n=7 6099977425489645 r008 a(0)=6,K{-n^6,2-5*n^3-7*n^2-n} 6099977450936339 a001 233/54018521*2^(1/2) 6099977500054015 a007 Real Root Of 196*x^4-254*x^3-933*x^2-812*x+873 6099977519527141 a001 17711/5778*521^(11/13) 6099977527510379 a004 Fibonacci(15)*Lucas(13)/(1/2+sqrt(5)/2)^13 6099977543773217 a007 Real Root Of -353*x^4-476*x^3-85*x^2+714*x+408 6099977578988112 m002 -3+E^Pi-E^Pi*Pi^5+Pi^6 6099977608789630 r002 53th iterates of z^2 + 6099977619273740 a007 Real Root Of 655*x^4-847*x^3-104*x^2-716*x-681 6099977619571860 m001 1/ln(Zeta(5))*LandauRamanujan/sin(Pi/5)^2 6099977633231719 r005 Im(z^2+c),c=-15/22+20/31*I,n=5 6099977657287425 m005 (1/2*Catalan+7/8)/(90/77+5/11*5^(1/2)) 6099977663025746 a003 cos(Pi*16/85)*sin(Pi*31/118) 6099977668184255 a003 sin(Pi*19/117)/cos(Pi*9/44) 6099977678905880 a001 6624/2161*521^(11/13) 6099977681247014 a007 Real Root Of 400*x^4-285*x^3+700*x^2+214*x-250 6099977702158925 a001 121393/39603*521^(11/13) 6099977705551499 a001 317811/103682*521^(11/13) 6099977706046468 a001 832040/271443*521^(11/13) 6099977706118684 a001 311187/101521*521^(11/13) 6099977706129220 a001 5702887/1860498*521^(11/13) 6099977706130757 a001 14930352/4870847*521^(11/13) 6099977706130981 a001 39088169/12752043*521^(11/13) 6099977706131014 a001 14619165/4769326*521^(11/13) 6099977706131019 a001 267914296/87403803*521^(11/13) 6099977706131019 a001 701408733/228826127*521^(11/13) 6099977706131019 a001 1836311903/599074578*521^(11/13) 6099977706131019 a001 686789568/224056801*521^(11/13) 6099977706131019 a001 12586269025/4106118243*521^(11/13) 6099977706131019 a001 32951280099/10749957122*521^(11/13) 6099977706131019 a001 86267571272/28143753123*521^(11/13) 6099977706131019 a001 32264490531/10525900321*521^(11/13) 6099977706131019 a001 591286729879/192900153618*521^(11/13) 6099977706131019 a001 1548008755920/505019158607*521^(11/13) 6099977706131019 a001 1515744265389/494493258286*521^(11/13) 6099977706131019 a001 2504730781961/817138163596*521^(11/13) 6099977706131019 a001 956722026041/312119004989*521^(11/13) 6099977706131019 a001 365435296162/119218851371*521^(11/13) 6099977706131019 a001 139583862445/45537549124*521^(11/13) 6099977706131019 a001 53316291173/17393796001*521^(11/13) 6099977706131019 a001 20365011074/6643838879*521^(11/13) 6099977706131019 a001 7778742049/2537720636*521^(11/13) 6099977706131019 a001 2971215073/969323029*521^(11/13) 6099977706131019 a001 1134903170/370248451*521^(11/13) 6099977706131020 a001 433494437/141422324*521^(11/13) 6099977706131022 a001 165580141/54018521*521^(11/13) 6099977706131034 a001 63245986/20633239*521^(11/13) 6099977706131120 a001 24157817/7881196*521^(11/13) 6099977706131707 a001 9227465/3010349*521^(11/13) 6099977706135731 a001 3524578/1149851*521^(11/13) 6099977706163315 a001 1346269/439204*521^(11/13) 6099977706352377 a001 514229/167761*521^(11/13) 6099977707648224 a001 196418/64079*521^(11/13) 6099977716530097 a001 75025/24476*521^(11/13) 6099977725411143 a003 sin(Pi*13/115)/cos(Pi*31/101) 6099977739014712 m001 Porter^OrthogonalArrays/FransenRobinson 6099977767176360 a001 28657/843*521^(6/13) 6099977770871987 r005 Re(z^2+c),c=-129/122+5/52*I,n=26 6099977777407361 a001 28657/9349*521^(11/13) 6099977777799309 r005 Im(z^2+c),c=-63/118+29/51*I,n=18 6099977780935281 s002 sum(A231634[n]/(n*10^n+1),n=1..infinity) 6099977782970833 s002 sum(A231634[n]/(n*10^n-1),n=1..infinity) 6099977787485501 m004 -4-(25*Sqrt[5]*Pi)/4-Sinh[Sqrt[5]*Pi] 6099977798673366 a007 Real Root Of -104*x^4-678*x^3-317*x^2-157*x+941 6099977804001568 m005 (1/2*Zeta(3)-3/11)/(1/12*Pi-4/5) 6099977804894046 a005 (1/sin(91/197*Pi))^1858 6099977809397826 h001 (7/12*exp(2)+4/11)/(11/12*exp(2)+8/9) 6099977817799539 m001 Pi^2/GAMMA(5/12)*ln(Zeta(5))^2 6099977845626992 a007 Real Root Of -722*x^4+491*x^3-329*x^2+897*x+881 6099977864713948 m001 GAMMA(5/24)^2*ln(GAMMA(1/24)) 6099977872081616 r009 Im(z^3+c),c=-4/29+41/56*I,n=29 6099977888981508 r005 Im(z^2+c),c=-39/82+32/49*I,n=3 6099977889890898 a007 Real Root Of 166*x^4+976*x^3-234*x^2-195*x-789 6099977905886555 r005 Re(z^2+c),c=-35/52+8/27*I,n=57 6099977911149331 r005 Re(z^2+c),c=-53/70+1/34*I,n=55 6099977924455108 p004 log(10853/5897) 6099977931989365 h001 (4/9*exp(1)+2/7)/(5/8*exp(1)+3/4) 6099977940883336 l006 ln(6741/7165) 6099977943154120 m005 (1/2*Zeta(3)+7/11)/(8/11*2^(1/2)+1) 6099977974154195 r008 a(0)=6,K{-n^6,64-24*n^3+49*n^2-35*n} 6099978018141358 m001 (PrimesInBinary-Tetranacci)/(Otter-PlouffeB) 6099978024474262 a007 Real Root Of -87*x^4-405*x^3+940*x^2+974*x-505 6099978028735214 a007 Real Root Of 941*x^4+58*x^3+37*x^2-151*x-223 6099978034554752 a007 Real Root Of 830*x^4-291*x^3+787*x^2-79*x-522 6099978051487820 a007 Real Root Of 152*x^4-335*x^3-530*x^2-733*x-347 6099978059658121 r005 Im(z^2+c),c=-15/118+43/52*I,n=56 6099978081349003 a007 Real Root Of -14*x^4-38*x^3+360*x^2+458*x+157 6099978134540242 m001 (-MinimumGamma+PolyaRandomWalk3D)/(1+Chi(1)) 6099978174952868 a007 Real Root Of 822*x^4+264*x^3+769*x^2-777*x-814 6099978192619069 a001 10946/2207*521^(10/13) 6099978194666367 a001 10946/3571*521^(11/13) 6099978201853425 r005 Re(z^2+c),c=-7/10+83/239*I,n=3 6099978211720630 a001 121393/322*123^(1/10) 6099978219077522 a001 15127/5*3^(30/47) 6099978228416781 m001 FeigenbaumB^2*Backhouse^2*ln(TwinPrimes) 6099978236406398 m001 Khintchine*exp(Artin)^2*Zeta(5)^2 6099978248578826 r009 Re(z^3+c),c=-11/18+15/29*I,n=7 6099978253974784 a007 Real Root Of -718*x^4+924*x^3-544*x^2+404*x+758 6099978258096910 m002 5+(3*Csch[Pi])/Pi^2+ProductLog[Pi] 6099978286090072 a007 Real Root Of -266*x^4+861*x^3+339*x^2+66*x-325 6099978295334225 m005 (1/2*Pi-1/4)/(7/10*5^(1/2)+3/5) 6099978299539198 m005 (1/2*Zeta(3)-5/7)/(4/11*Pi+5/7) 6099978319581859 r008 a(0)=0,K{-n^6,-9+77*n^3+93*n^2+3*n} 6099978358270757 m001 ((1+3^(1/2))^(1/2)*OneNinth-GaussAGM)/OneNinth 6099978363034340 a007 Real Root Of 154*x^4-803*x^3-374*x^2-778*x-539 6099978377863804 r009 Im(z^3+c),c=-3/82+31/45*I,n=5 6099978382853870 a007 Real Root Of -624*x^4+505*x^3-900*x^2-631*x+151 6099978389409977 r005 Im(z^2+c),c=-4/7+46/95*I,n=10 6099978424451630 m001 Lehmer^sin(1)/GAMMA(11/12) 6099978432426612 m001 (Shi(1)+Artin)/Pi/csc(1/24*Pi)*GAMMA(23/24) 6099978480033758 a001 123/233*3^(5/38) 6099978480508665 a007 Real Root Of -250*x^4+914*x^3+890*x^2+459*x-784 6099978494197006 r005 Im(z^2+c),c=-13/14+23/67*I,n=7 6099978552855385 r002 46th iterates of z^2 + 6099978557868615 m001 MadelungNaCl^FellerTornier/ReciprocalLucas 6099978586478268 a001 11/1597*225851433717^(11/21) 6099978602917824 m001 (exp(1/Pi)-RenyiParking)/(Stephens+ZetaP(2)) 6099978618479747 m006 (2/3*Pi-4/5)/(2/5*exp(2*Pi)-2) 6099978619489639 m005 (1/2*3^(1/2)+1)/(5/8*gamma-2/3) 6099978646754321 a007 Real Root Of 428*x^4-419*x^3+986*x^2-675*x-933 6099978650074724 q001 2/32787 6099978650941101 m001 (Ei(1)+GAMMA(13/24))/(Bloch+OneNinth) 6099978666440336 m001 gamma(1)*sin(1)^GAMMA(23/24) 6099978672348726 a003 cos(Pi*34/89)-sin(Pi*48/113) 6099978680934346 h001 (-2*exp(1)-11)/(-5*exp(2)+10) 6099978690205748 p003 LerchPhi(1/64,1,346/209) 6099978709879853 a001 1/305*1836311903^(6/17) 6099978710432140 a007 Real Root Of 42*x^4-741*x^3-641*x^2-891*x-479 6099978721172352 r005 Im(z^2+c),c=-5/74+41/61*I,n=56 6099978742203828 r005 Re(z^2+c),c=-69/122+26/35*I,n=3 6099978747802694 a007 Real Root Of -61*x^4+823*x^3+297*x^2+233*x-431 6099978773362590 l006 ln(5427/9988) 6099978775631188 a007 Real Root Of 540*x^4-6*x^3+873*x^2+277*x-232 6099978782564957 a007 Real Root Of 185*x^4-994*x^3-18*x^2-30*x+225 6099978802578427 r009 Re(z^3+c),c=-43/70+10/19*I,n=46 6099978832671411 r005 Re(z^2+c),c=-25/52+19/41*I,n=4 6099978867450552 m004 -20*Pi*Coth[Sqrt[5]*Pi]+2*Tan[Sqrt[5]*Pi] 6099978908988118 a003 sin(Pi*1/113)*sin(Pi*5/71) 6099978918630011 r005 Re(z^2+c),c=-3/94+37/57*I,n=56 6099978928043667 a007 Real Root Of 622*x^4+647*x^3+718*x^2-337*x-412 6099978934174207 r009 Re(z^3+c),c=-39/64+27/50*I,n=4 6099978945787959 r005 Im(z^2+c),c=19/122+27/47*I,n=41 6099978961099592 l006 ln(5333/9815) 6099978970488645 a007 Real Root Of 493*x^4-348*x^3+860*x^2-675*x-879 6099978984897934 a007 Real Root Of 91*x^4+622*x^3+492*x^2+579*x+410 6099978990845638 m001 (-BesselK(0,1)+3)/(1-gamma) 6099979014388441 a001 1/3*5778^(3/43) 6099979063722199 a007 Real Root Of -144*x^4-881*x^3-54*x^2-125*x+656 6099979064306800 a007 Real Root Of 9*x^4+550*x^3+69*x^2+484*x+183 6099979073447625 a001 646/341*521^(12/13) 6099979082108831 m008 (2*Pi^3-1)/(1/3*Pi^3-1/3) 6099979130523894 m005 (5/6*Pi-2/5)/(5^(1/2)+7/5) 6099979131467562 r002 16th iterates of z^2 + 6099979131812367 a001 377/843*3571^(15/17) 6099979138754418 m001 ArtinRank2^(BesselK(1,1)*BesselI(0,2)) 6099979155110625 r009 Im(z^3+c),c=-57/98+5/16*I,n=6 6099979155573478 l006 ln(5239/9642) 6099979160989184 m001 (GaussAGM+MertensB2)/(Zeta(1,-1)+Bloch) 6099979166055349 a007 Real Root Of -954*x^4+842*x^3+673*x^2+55*x-343 6099979170887538 r005 Re(z^2+c),c=-75/98+8/37*I,n=11 6099979177914906 r009 Im(z^3+c),c=-6/11+11/42*I,n=23 6099979184467942 m005 (1/2*gamma-1)/(2/11*2^(1/2)+10/11) 6099979198552042 m001 sin(1)^2*Champernowne^2*exp(sqrt(3)) 6099979209451041 a007 Real Root Of -638*x^4+990*x^3+671*x^2+495*x-688 6099979240506903 r005 Re(z^2+c),c=-11/27+25/43*I,n=17 6099979253552137 a001 28657/5778*521^(10/13) 6099979260591371 a007 Real Root Of 865*x^4-644*x^3+792*x^2-176*x-668 6099979263751444 a007 Real Root Of -210*x^4+553*x^3-754*x^2+892*x-360 6099979299035653 a007 Real Root Of -812*x^4+685*x^3+146*x^2+422*x+471 6099979311425238 a007 Real Root Of 513*x^4-799*x^3+223*x^2-924*x-899 6099979314268626 r005 Im(z^2+c),c=-7/6+109/212*I,n=3 6099979320744829 a001 47*(1/2*5^(1/2)+1/2)^21*521^(4/15) 6099979346884314 m001 Porter^KomornikLoreti*HardyLittlewoodC4 6099979354747890 r005 Re(z^2+c),c=-1/16+26/35*I,n=55 6099979357153501 l006 ln(5145/9469) 6099979359946389 r002 14th iterates of z^2 + 6099979404203619 a007 Real Root Of 717*x^4-196*x^3+868*x^2-866*x-995 6099979408340217 a001 75025/15127*521^(10/13) 6099979409618576 r002 20th iterates of z^2 + 6099979430923494 a001 196418/39603*521^(10/13) 6099979434218350 a001 514229/103682*521^(10/13) 6099979434699063 a001 1346269/271443*521^(10/13) 6099979434769198 a001 3524578/710647*521^(10/13) 6099979434779431 a001 9227465/1860498*521^(10/13) 6099979434780923 a001 24157817/4870847*521^(10/13) 6099979434781141 a001 63245986/12752043*521^(10/13) 6099979434781173 a001 165580141/33385282*521^(10/13) 6099979434781178 a001 433494437/87403803*521^(10/13) 6099979434781178 a001 1134903170/228826127*521^(10/13) 6099979434781178 a001 2971215073/599074578*521^(10/13) 6099979434781178 a001 7778742049/1568397607*521^(10/13) 6099979434781178 a001 20365011074/4106118243*521^(10/13) 6099979434781178 a001 53316291173/10749957122*521^(10/13) 6099979434781178 a001 139583862445/28143753123*521^(10/13) 6099979434781178 a001 365435296162/73681302247*521^(10/13) 6099979434781178 a001 956722026041/192900153618*521^(10/13) 6099979434781178 a001 2504730781961/505019158607*521^(10/13) 6099979434781178 a001 10610209857723/2139295485799*521^(10/13) 6099979434781178 a001 4052739537881/817138163596*521^(10/13) 6099979434781178 a001 140728068720/28374454999*521^(10/13) 6099979434781178 a001 591286729879/119218851371*521^(10/13) 6099979434781178 a001 225851433717/45537549124*521^(10/13) 6099979434781178 a001 86267571272/17393796001*521^(10/13) 6099979434781178 a001 32951280099/6643838879*521^(10/13) 6099979434781178 a001 1144206275/230701876*521^(10/13) 6099979434781178 a001 4807526976/969323029*521^(10/13) 6099979434781179 a001 1836311903/370248451*521^(10/13) 6099979434781179 a001 701408733/141422324*521^(10/13) 6099979434781181 a001 267914296/54018521*521^(10/13) 6099979434781193 a001 9303105/1875749*521^(10/13) 6099979434781276 a001 39088169/7881196*521^(10/13) 6099979434781846 a001 14930352/3010349*521^(10/13) 6099979434785755 a001 5702887/1149851*521^(10/13) 6099979434812544 a001 2178309/439204*521^(10/13) 6099979434996160 a001 75640/15251*521^(10/13) 6099979436254683 a001 317811/64079*521^(10/13) 6099979443250494 m001 (ArtinRank2+RenyiParking)/(exp(Pi)-ln(gamma)) 6099979444880727 a001 121393/24476*521^(10/13) 6099979452013333 r005 Re(z^2+c),c=33/122+10/23*I,n=30 6099979472482990 a001 3/2584*233^(7/23) 6099979473437988 r005 Im(z^2+c),c=3/13+24/43*I,n=13 6099979488378453 a007 Real Root Of 105*x^4+558*x^3-599*x^2-714*x-792 6099979493773512 a001 15456/281*521^(5/13) 6099979498790667 a001 377/843*9349^(15/19) 6099979499150832 a008 Real Root of (-1-x+x^2-x^6-x^7+x^8-x^9+x^10) 6099979504004515 a001 46368/9349*521^(10/13) 6099979507150329 a007 Real Root Of -286*x^4+727*x^3+411*x^2+12*x+59 6099979513796026 h001 (2/3*exp(1)+1/4)/(11/12*exp(1)+8/9) 6099979546615553 a001 377/843*24476^(5/7) 6099979552919792 a001 377/843*64079^(15/23) 6099979553758605 a001 377/843*167761^(3/5) 6099979553871083 a001 377/843*439204^(5/9) 6099979553888606 a001 377/843*7881196^(5/11) 6099979553888645 a001 377/843*20633239^(3/7) 6099979553888651 a001 377/843*141422324^(5/13) 6099979553888651 a001 377/843*2537720636^(1/3) 6099979553888651 a001 377/843*45537549124^(5/17) 6099979553888651 a001 377/843*312119004989^(3/11) 6099979553888651 a001 377/843*14662949395604^(5/21) 6099979553888651 a001 377/843*(1/2+1/2*5^(1/2))^15 6099979553888651 a001 377/843*192900153618^(5/18) 6099979553888651 a001 377/843*28143753123^(3/10) 6099979553888651 a001 377/843*10749957122^(5/16) 6099979553888651 a001 377/843*599074578^(5/14) 6099979553888651 a001 377/843*228826127^(3/8) 6099979553888653 a001 377/843*33385282^(5/12) 6099979553889532 a001 377/843*1860498^(1/2) 6099979554243302 a001 377/843*103682^(5/8) 6099979556540451 a001 377/843*39603^(15/22) 6099979565754152 m002 -6-Pi^3+(2*E^Pi)/ProductLog[Pi] 6099979566236398 l006 ln(5051/9296) 6099979566685536 b008 5*Sqrt[2]*Sech[Pi] 6099979566685536 m001 2^(1/2)/(exp(Pi)+exp(-Pi)) 6099979566685536 m001 sqrt(2)/(exp(Pi)+exp(-Pi)) 6099979571733577 m001 (GAMMA(3/4)+Conway)/(FeigenbaumMu+Stephens) 6099979573881930 a001 377/843*15127^(3/4) 6099979605929212 h001 (-3*exp(1)+4)/(-8*exp(2)-9) 6099979613302584 r005 Im(z^2+c),c=-61/64+2/7*I,n=8 6099979620548845 m001 (Cahen-Si(Pi))/(FeigenbaumKappa+Kac) 6099979677641576 m002 -Pi^5+Pi^6-4*Cosh[Pi]+Tanh[Pi] 6099979679464208 m001 TreeGrowth2nd^BesselJ(1,1)*ZetaQ(3) 6099979686039431 m001 Si(Pi)^2/exp(Champernowne)^2/LaplaceLimit^2 6099979697864517 h001 (-5*exp(-3)+8)/(-2*exp(-2)-1) 6099979706150845 a001 377/843*5778^(5/6) 6099979706307478 r005 Im(z^2+c),c=7/46+20/33*I,n=55 6099979706402436 a003 cos(Pi*22/95)-cos(Pi*47/103) 6099979718942780 a007 Real Root Of -741*x^4+837*x^3+89*x^2+414*x+512 6099979721533247 l006 ln(7838/8331) 6099979723310977 h001 (3/4*exp(1)+1/12)/(5/12*exp(2)+2/5) 6099979742897127 m001 (gamma(1)-MadelungNaCl)/(ln(5)+exp(1/Pi)) 6099979763867315 r005 Re(z^2+c),c=-13/36+12/19*I,n=10 6099979766408182 a007 Real Root Of 24*x^4+178*x^3+168*x^2-4*x+897 6099979783249004 l006 ln(4957/9123) 6099979784560013 m001 (-FeigenbaumD+Mills)/(2^(1/2)-GAMMA(13/24)) 6099979788602104 r005 Re(z^2+c),c=-141/122+27/55*I,n=2 6099979799918645 m001 BesselJ(0,1)*Porter/ln(Zeta(3)) 6099979802072230 m005 (1/2*gamma-1)/(7/11*Catalan+7/12) 6099979805729653 m001 (PlouffeB-ThueMorse)/(HardyLittlewoodC5+Kac) 6099979807272017 r009 Re(z^3+c),c=-3/29+36/61*I,n=33 6099979826699838 a001 7/17711*610^(11/14) 6099979855006962 a007 Real Root Of -786*x^4+810*x^3+779*x^2-49*x-335 6099979860519719 a007 Real Root Of 107*x^4+521*x^3-659*x^2+774*x-650 6099979891526439 a007 Real Root Of -750*x^4+963*x^3-75*x^2+147*x+440 6099979907197721 a001 17711/2207*521^(9/13) 6099979909245019 a001 17711/3571*521^(10/13) 6099979975080099 r002 2th iterates of z^2 + 6099979975080099 r005 Re(z^2+c),c=-7/8+75/106*I,n=2 6099979987351470 a003 cos(Pi*2/85)-sin(Pi*10/79) 6099979989630004 a007 Real Root Of 168*x^4+886*x^3-880*x^2-227*x-144 6099979999393259 m001 (Zeta(5)+GolombDickman)/(MertensB1+Trott) 6099980008651152 l006 ln(4863/8950) 6099980036332419 m005 (1/2*Catalan-1/3)/(7/8*5^(1/2)-4) 6099980038587625 r005 Im(z^2+c),c=-35/94+19/31*I,n=52 6099980041582155 m001 (Kac+ZetaP(4))/(Zeta(1,-1)+ln(2+3^(1/2))) 6099980058669914 r005 Re(z^2+c),c=-20/29+9/35*I,n=49 6099980067717041 b008 6+(EulerGamma+3*Pi)^(-1) 6099980144978044 a008 Real Root of x^4-x^3+10*x^2-17*x+1 6099980148171068 m001 (Niven+Thue)/(GAMMA(11/12)-HardyLittlewoodC3) 6099980181127204 a007 Real Root Of 508*x^4+152*x^3+766*x^2-974*x-915 6099980184523383 m001 1/Lehmer/ln(Champernowne)/GAMMA(1/12)^2 6099980205768317 h001 (-4*exp(1/3)-1)/(-4*exp(2/3)-3) 6099980238711322 r008 a(0)=6,K{-n^6,-40+63*n-59*n^2+27*n^3} 6099980242938932 l006 ln(4769/8777) 6099980247025176 a007 Real Root Of 4*x^4-271*x^3-478*x^2-38*x+262 6099980287778194 a007 Real Root Of -274*x^4-458*x^3-310*x^2+547*x+383 6099980333937097 m001 exp(Zeta(1,2))^2*Backhouse*sqrt(1+sqrt(3))^2 6099980374581814 m001 (GAMMA(7/12)-Sarnak)^BesselI(0,2) 6099980380733831 m001 (Pi+sin(1))/(GAMMA(13/24)-Niven) 6099980385800880 r005 Im(z^2+c),c=-139/106+2/63*I,n=8 6099980391427735 a007 Real Root Of -832*x^4-194*x^3-734*x^2+852*x+864 6099980393620038 a007 Real Root Of 287*x^4-829*x^3-49*x^2-594*x+529 6099980398514300 r008 a(0)=6,K{-n^6,-30+48*n-37*n^2+13*n^3} 6099980443443017 r002 26th iterates of z^2 + 6099980459551801 m001 (2^(1/2)-cos(1/5*Pi))/(-Porter+Weierstrass) 6099980461660204 m001 (Ei(1)+Cahen)/(HardyLittlewoodC4-Sarnak) 6099980486648332 l006 ln(4675/8604) 6099980487130755 a003 sin(Pi*1/51)-sin(Pi*15/64) 6099980498381941 m005 (-1/30+1/6*5^(1/2))/(6/55+1/5*5^(1/2)) 6099980516134892 m001 (Artin-FellerTornier)/(Kac-Porter) 6099980521211668 a007 Real Root Of 87*x^4+66*x^3+225*x^2-875*x+423 6099980529775128 a007 Real Root Of -795*x^4+526*x^3+182*x^2+927*x+56 6099980555436147 m001 (Tetranacci+ZetaQ(3))/(3^(1/2)+3^(1/3)) 6099980570077384 p004 log(25639/13931) 6099980588095054 r005 Re(z^2+c),c=11/78+4/7*I,n=5 6099980591152420 r002 9th iterates of z^2 + 6099980605997190 a001 21/521*199^(55/58) 6099980614088587 a007 Real Root Of 441*x^4+473*x^3+683*x^2-556*x-547 6099980632406043 a007 Real Root Of -956*x^4+371*x^3-661*x^2+127*x+540 6099980646238233 m001 sin(1)*BesselJ(0,1)^Zeta(3) 6099980654596233 m001 (Stephens+ThueMorse)/(ln(Pi)+PlouffeB) 6099980669011961 m001 TwinPrimes*cos(Pi/12)^BesselI(0,2) 6099980669011961 m001 cos(1/12*Pi)^BesselI(0,2)*TwinPrimes 6099980682525885 m001 1/FeigenbaumC/ln(Bloch)*Catalan^2 6099980715358939 m004 6+8*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 6099980716687442 a007 Real Root Of -383*x^4+711*x^3-547*x^2-895*x-128 6099980719710341 a007 Real Root Of -968*x^4-350*x^3-795*x^2+560*x+692 6099980720027398 a007 Real Root Of -647*x^4+255*x^3-834*x^2+261*x+617 6099980727961824 a001 377/843*2207^(15/16) 6099980729098262 r005 Im(z^2+c),c=-41/114+7/11*I,n=28 6099980740359335 l006 ln(4581/8431) 6099980743202696 r005 Re(z^2+c),c=-18/25+7/48*I,n=7 6099980745000355 a007 Real Root Of 671*x^4-258*x^3+227*x^2-587*x-594 6099980746954796 r005 Re(z^2+c),c=-59/86+7/29*I,n=8 6099980768046651 m001 (ln(5)-gamma(3))/(Riemann3rdZero+Totient) 6099980794470453 m004 6+(16*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 6099980806212745 a001 1741/2-233/2*5^(1/2) 6099980814266741 a007 Real Root Of -641*x^4+272*x^3+47*x^2+200*x+255 6099980825116310 r005 Re(z^2+c),c=-89/98+4/25*I,n=24 6099980840321418 m001 (2^(1/2)-ln(5))/(ArtinRank2+FeigenbaumAlpha) 6099980862679092 a007 Real Root Of 194*x^4-133*x^3+954*x^2+23*x-398 6099980873582091 m004 6+8*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 6099980888883964 m001 (BesselK(1,1)-exp(1))/(FransenRobinson+Robbin) 6099980902157601 m009 (1/6*Pi^2+1/4)/(1/6*Psi(1,2/3)-1/5) 6099980903343109 m001 (LambertW(1)-ln(2))/(OrthogonalArrays+Robbin) 6099980924889434 m001 (MasserGramainDelta-ln(2))/Si(Pi) 6099980929874532 a007 Real Root Of 848*x^4-996*x^3+413*x^2+756*x-36 6099980959470034 h001 (7/8*exp(1)+7/10)/(5/8*exp(2)+3/7) 6099980964471647 r005 Im(z^2+c),c=-23/38+6/53*I,n=54 6099980968844180 b008 6+9/E^(9/2) 6099980980149709 a001 2576/321*521^(9/13) 6099980985373239 a007 Real Root Of -698*x^4-454*x^3-628*x^2+893*x+772 6099980986508030 b008 6+KelvinBei[1,2/7] 6099981004700521 l006 ln(4487/8258) 6099981010749860 a007 Real Root Of -766*x^4+835*x^3-970*x^2-32*x+637 6099981013720754 m005 (1/2*5^(1/2)-5)/(5/7*Zeta(3)-2/9) 6099981036231664 m008 (2/3*Pi^5+1)/(3*Pi^2+4) 6099981042687970 a007 Real Root Of -487*x^4+980*x^3+615*x^2+515*x-698 6099981049902245 r005 Im(z^2+c),c=-1+11/179*I,n=16 6099981054603644 a001 4181/1364*521^(11/13) 6099981057501496 r005 Re(z^2+c),c=-17/28+24/61*I,n=8 6099981059214126 m001 gamma(3)+GAMMA(23/24)*Lehmer 6099981064942408 l006 ln(8935/9497) 6099981090737282 r005 Re(z^2+c),c=-1/50+34/43*I,n=17 6099981097105324 r005 Re(z^2+c),c=7/17+31/46*I,n=4 6099981103117375 a003 cos(Pi*2/31)-sin(Pi*10/83) 6099981105560869 r005 Re(z^2+c),c=-7/6+87/97*I,n=2 6099981118203598 r005 Re(z^2+c),c=-4/15+37/59*I,n=13 6099981129813561 m001 (3^(1/3)-Cahen)/(GaussAGM+Weierstrass) 6099981136691326 a001 121393/15127*521^(9/13) 6099981140577169 r005 Im(z^2+c),c=-69/62+3/40*I,n=14 6099981153838845 r008 a(0)=0,K{-n^6,-4-12*n-3*n^3+n^2} 6099981159530441 a001 105937/13201*521^(9/13) 6099981162862623 a001 416020/51841*521^(9/13) 6099981163348782 a001 726103/90481*521^(9/13) 6099981163419711 a001 5702887/710647*521^(9/13) 6099981163430060 a001 829464/103361*521^(9/13) 6099981163431570 a001 39088169/4870847*521^(9/13) 6099981163431790 a001 34111385/4250681*521^(9/13) 6099981163431822 a001 133957148/16692641*521^(9/13) 6099981163431827 a001 233802911/29134601*521^(9/13) 6099981163431827 a001 1836311903/228826127*521^(9/13) 6099981163431827 a001 267084832/33281921*521^(9/13) 6099981163431827 a001 12586269025/1568397607*521^(9/13) 6099981163431827 a001 10983760033/1368706081*521^(9/13) 6099981163431827 a001 43133785636/5374978561*521^(9/13) 6099981163431827 a001 75283811239/9381251041*521^(9/13) 6099981163431827 a001 591286729879/73681302247*521^(9/13) 6099981163431827 a001 86000486440/10716675201*521^(9/13) 6099981163431827 a001 4052739537881/505019158607*521^(9/13) 6099981163431827 a001 3536736619241/440719107401*521^(9/13) 6099981163431827 a001 3278735159921/408569081798*521^(9/13) 6099981163431827 a001 2504730781961/312119004989*521^(9/13) 6099981163431827 a001 956722026041/119218851371*521^(9/13) 6099981163431827 a001 182717648081/22768774562*521^(9/13) 6099981163431827 a001 139583862445/17393796001*521^(9/13) 6099981163431827 a001 53316291173/6643838879*521^(9/13) 6099981163431827 a001 10182505537/1268860318*521^(9/13) 6099981163431827 a001 7778742049/969323029*521^(9/13) 6099981163431827 a001 2971215073/370248451*521^(9/13) 6099981163431828 a001 567451585/70711162*521^(9/13) 6099981163431830 a001 433494437/54018521*521^(9/13) 6099981163431842 a001 165580141/20633239*521^(9/13) 6099981163431926 a001 31622993/3940598*521^(9/13) 6099981163432503 a001 24157817/3010349*521^(9/13) 6099981163436455 a001 9227465/1149851*521^(9/13) 6099981163463548 a001 1762289/219602*521^(9/13) 6099981163649244 a001 1346269/167761*521^(9/13) 6099981164922025 a001 514229/64079*521^(9/13) 6099981169305478 m001 Riemann1stZero*MinimumGamma/ln(Zeta(3))^2 6099981169730087 b008 59*E^(1/30) 6099981173645790 a001 98209/12238*521^(9/13) 6099981182130195 r005 Im(z^2+c),c=-17/26+1/95*I,n=51 6099981191507172 m001 (gamma+Rabbit)/(Riemann2ndZero+ZetaP(4)) 6099981223208363 a001 75025/843*521^(4/13) 6099981229771481 r005 Re(z^2+c),c=-61/86+6/31*I,n=20 6099981233439370 a001 75025/9349*521^(9/13) 6099981255271063 a007 Real Root Of 412*x^4+903*x^3+853*x^2-832*x-677 6099981260256766 r005 Im(z^2+c),c=-25/106+27/38*I,n=13 6099981269844988 m005 (1/2*Pi-1/7)/(4/7*Catalan-1/2) 6099981277678309 a007 Real Root Of 662*x^4-389*x^3+533*x^2-652*x-776 6099981280354276 l006 ln(4393/8085) 6099981287532888 m001 (OrthogonalArrays+Otter)/(Bloch-KhinchinLevy) 6099981307676801 a001 47/843*(1/2*5^(1/2)+1/2)^31*843^(8/15) 6099981323041567 r008 a(0)=6,K{-n^6,-7-2*n^3-6*n^2+3*n} 6099981327984622 h001 (5/9*exp(1)+1/4)/(6/7*exp(1)+5/9) 6099981344307270 r009 Im(z^3+c),c=-18/25+11/45*I,n=2 6099981351290871 b008 -1+(1+Pi)^(1/24) 6099981353293392 m004 -5*Pi+25*Pi*Coth[Sqrt[5]*Pi]-2*Tan[Sqrt[5]*Pi] 6099981376466373 m001 GAMMA(1/3)^2*Porter/ln(sin(1)) 6099981387177621 k001 Champernowne real with 389*n+220 6099981423438997 r005 Re(z^2+c),c=-1/26+2/11*I,n=11 6099981437263670 m003 Sqrt[5]/32+(7*Tan[1/2+Sqrt[5]/2])/24 6099981461311395 p003 LerchPhi(1/32,5,547/197) 6099981466197340 a001 832040/2207*199^(1/11) 6099981467587555 r005 Re(z^2+c),c=-3/22+27/40*I,n=24 6099981486884121 a003 sin(Pi*17/108)/cos(Pi*8/37) 6099981490734621 b008 3*(2+ArcCsch[30]) 6099981538417334 m001 (ln(3)+GAMMA(11/12))/(FransenRobinson+Sarnak) 6099981568062665 l006 ln(4299/7912) 6099981586094017 v002 sum(1/(2^n+(11*n^2-17*n+53)),n=1..infinity) 6099981629735862 r005 Re(z^2+c),c=-2/3+33/230*I,n=3 6099981641223395 a001 28657/2207*521^(8/13) 6099981643270695 a001 28657/3571*521^(9/13) 6099981645641344 a007 Real Root Of -154*x^4-783*x^3+978*x^2+293*x+895 6099981664180719 a005 (1/cos(8/83*Pi))^1374 6099981674142972 m001 cos(1)^BesselJ(1,1)*BesselK(1,1)^BesselJ(1,1) 6099981678978394 m007 (-3/4*gamma-5/6)/(-1/3*gamma-ln(2)-1/6*Pi-2/3) 6099981690018650 h001 (-9*exp(5)-4)/(-2*exp(7)-3) 6099981707039291 a007 Real Root Of 502*x^4-442*x^3+387*x^2-997*x-922 6099981715697880 a007 Real Root Of 602*x^4+553*x^3+557*x^2-31*x-184 6099981738169971 r009 Re(z^3+c),c=-7/82+7/17*I,n=16 6099981755849351 a007 Real Root Of -10*x^4-597*x^3+787*x^2-343*x+980 6099981764369350 a005 (1/cos(13/129*Pi))^442 6099981790403899 a001 11/89*55^(36/37) 6099981794420390 a007 Real Root Of -600*x^4-381*x^3-966*x^2+836*x+866 6099981812312480 a007 Real Root Of 96*x^4+474*x^3-721*x^2-368*x-747 6099981820128574 m005 (1/3*3^(1/2)+1/8)/(4/11*Zeta(3)+5/7) 6099981830256164 a001 1292/161*322^(3/4) 6099981834457710 a007 Real Root Of -271*x^4+813*x^3-279*x^2+533*x+651 6099981864474283 r009 Re(z^3+c),c=-8/13+23/64*I,n=2 6099981868634106 l006 ln(4205/7739) 6099981897527340 a007 Real Root Of -592*x^4+815*x^3-527*x^2-105*x+399 6099981952834605 m005 (1/2*gamma-4/9)/(9/10*Pi-3/11) 6099981954564419 m005 (1/3*exp(1)+1/5)/(4/5*Pi-7/10) 6099981962586425 a003 sin(Pi*11/53)/sin(Pi*43/92) 6099981978378117 a001 1/5473*6557470319842^(6/17) 6099982006589780 m005 (1/3*Catalan-3/7)/(2/5*2^(1/2)-4/11) 6099982009474998 a007 Real Root Of 50*x^4+170*x^3-743*x^2+401*x-549 6099982015562664 a008 Real Root of (-3-6*x-6*x^2-3*x^3+4*x^4-4*x^5) 6099982021995528 m001 1/exp(BesselJ(0,1))*ErdosBorwein/GAMMA(3/4) 6099982024797897 r005 Im(z^2+c),c=-13/21+7/64*I,n=26 6099982114033591 m001 (TravellingSalesman+ZetaP(2))/(Gompertz-gamma) 6099982115954253 m001 (Robbin+Trott2nd)/(ln(2)-MasserGramainDelta) 6099982127234755 m001 (1-Landau)/(-PisotVijayaraghavan+Stephens) 6099982129964636 m005 (1/2*Zeta(3)+4/9)/(5/11*Zeta(3)-3/8) 6099982151392497 m001 KhinchinLevy/LaplaceLimit*Magata 6099982151961426 a003 sin(Pi*18/91)/sin(Pi*23/57) 6099982175370299 r005 Re(z^2+c),c=3/52+1/56*I,n=4 6099982175498972 m001 (BesselI(1,1)-LaplaceLimit)/(ln(5)+gamma(2)) 6099982182950961 l006 ln(4111/7566) 6099982197438458 r005 Im(z^2+c),c=15/52+26/43*I,n=18 6099982206158215 a007 Real Root Of -50*x^4-447*x^3-760*x^2+738*x+550 6099982209352473 r005 Im(z^2+c),c=-35/58+7/62*I,n=59 6099982228108197 r005 Im(z^2+c),c=-13/56+49/62*I,n=6 6099982233529269 m005 (1/2*2^(1/2)-6/7)/(5/9*Pi+5/7) 6099982235147036 m004 4+E^(Sqrt[5]*Pi)/2+(25*Sqrt[5]*Pi)/4 6099982242211129 a007 Real Root Of -961*x^3-122*x^2-507*x-482 6099982265118889 r005 Re(z^2+c),c=23/94+19/50*I,n=57 6099982267767987 a001 1730726404001/305*144^(16/17) 6099982272228312 a003 sin(Pi*11/116)/cos(Pi*33/97) 6099982294111591 a007 Real Root Of -469*x^4+740*x^3-524*x^2-8*x+423 6099982298641007 a001 11/2*144^(1/48) 6099982306988627 m002 Pi^3+(3*Pi^6*Coth[Pi])/5 6099982332703454 r002 3th iterates of z^2 + 6099982370652385 a007 Real Root Of 500*x^4-296*x^3+623*x^2-657*x-769 6099982371050947 q001 1/1639349 6099982406020660 a007 Real Root Of 29*x^4-365*x^3-239*x^2-687*x-417 6099982427319590 m001 1/Rabbit/ln(Kolakoski)/Zeta(9)^2 6099982429176991 m001 1/ln(GAMMA(19/24))*GAMMA(1/12)^2*exp(1)^2 6099982435858223 r002 20th iterates of z^2 + 6099982448205513 a007 Real Root Of 119*x^4-795*x^3-514*x^2-157*x+451 6099982450242824 r009 Im(z^3+c),c=-7/40+60/61*I,n=64 6099982473936750 a007 Real Root Of -11*x^4+74*x^3+717*x^2-993*x-710 6099982476029694 m001 GAMMA(5/6)^MertensB2*ZetaQ(2) 6099982488137784 r002 12th iterates of z^2 + 6099982510459279 r009 Im(z^3+c),c=-51/118+20/31*I,n=6 6099982511978178 l006 ln(4017/7393) 6099982530580522 m001 (3^(1/2)+cos(1/5*Pi))/(GAMMA(2/3)+Zeta(1,2)) 6099982535829242 a001 726103/1926*199^(1/11) 6099982570837326 r008 a(0)=2,K{-n^6,11+69*n^3-70*n^2-10*n} 6099982572204978 r005 Re(z^2+c),c=3/28+20/43*I,n=51 6099982572580888 l006 ln(20/8917) 6099982573563347 a007 Real Root Of -690*x^4+313*x^3+554*x^2+835*x-691 6099982579306819 m001 (ln(2)/ln(10)+2^(1/3))/(2^(1/2)+ln(Pi)) 6099982625040329 a007 Real Root Of 584*x^4+633*x^3+129*x^2-962*x-572 6099982653005669 m001 Khinchin*(GAMMA(1/4)-GAMMA(2/3)) 6099982653005669 m001 Khinchin*(GAMMA(2/3)-Pi*2^(1/2)/GAMMA(3/4)) 6099982659590548 a007 Real Root Of 136*x^4-225*x^3+438*x^2+408*x+16 6099982661464745 m001 KhinchinHarmonic/(FellerTornier^Pi) 6099982686806217 a001 615/124*521^(10/13) 6099982688332305 m001 sin(1)^ZetaP(3)/BesselI(1,2) 6099982691886464 a001 5702887/15127*199^(1/11) 6099982703037659 a001 281/2255*75025^(16/29) 6099982703618710 a007 Real Root Of -920*x^4+77*x^3+70*x^2+479*x+411 6099982708630477 m005 (1/3*Pi+1/3)/(-41/112+1/16*5^(1/2)) 6099982709584982 a001 75025/5778*521^(8/13) 6099982714654907 a001 4976784/13201*199^(1/11) 6099982717976778 a001 39088169/103682*199^(1/11) 6099982718461432 a001 34111385/90481*199^(1/11) 6099982718532142 a001 267914296/710647*199^(1/11) 6099982718542459 a001 233802911/620166*199^(1/11) 6099982718543964 a001 1836311903/4870847*199^(1/11) 6099982718544184 a001 1602508992/4250681*199^(1/11) 6099982718544216 a001 12586269025/33385282*199^(1/11) 6099982718544220 a001 10983760033/29134601*199^(1/11) 6099982718544221 a001 86267571272/228826127*199^(1/11) 6099982718544221 a001 267913919/710646*199^(1/11) 6099982718544221 a001 591286729879/1568397607*199^(1/11) 6099982718544221 a001 516002918640/1368706081*199^(1/11) 6099982718544221 a001 4052739537881/10749957122*199^(1/11) 6099982718544221 a001 3536736619241/9381251041*199^(1/11) 6099982718544221 a001 6557470319842/17393796001*199^(1/11) 6099982718544221 a001 2504730781961/6643838879*199^(1/11) 6099982718544221 a001 956722026041/2537720636*199^(1/11) 6099982718544221 a001 365435296162/969323029*199^(1/11) 6099982718544221 a001 139583862445/370248451*199^(1/11) 6099982718544221 a001 53316291173/141422324*199^(1/11) 6099982718544223 a001 20365011074/54018521*199^(1/11) 6099982718544235 a001 7778742049/20633239*199^(1/11) 6099982718544319 a001 2971215073/7881196*199^(1/11) 6099982718544894 a001 1134903170/3010349*199^(1/11) 6099982718548835 a001 433494437/1149851*199^(1/11) 6099982718575844 a001 165580141/439204*199^(1/11) 6099982718760965 a001 63245986/167761*199^(1/11) 6099982720029807 a001 24157817/64079*199^(1/11) 6099982720537243 r005 Im(z^2+c),c=-91/122+2/39*I,n=12 6099982728726578 a001 9227465/24476*199^(1/11) 6099982729100826 r005 Im(z^2+c),c=17/66+20/41*I,n=50 6099982730406529 m001 1/3*Lehmer+ThueMorse 6099982763126761 m009 (20/3*Catalan+5/6*Pi^2-1/2)/(5/2*Pi^2-2) 6099982787084683 m001 1/BesselK(1,1)/Rabbit^2/ln(GAMMA(11/12)) 6099982788335136 a001 3524578/9349*199^(1/11) 6099982795276897 a005 (1/sin(83/197*Pi))^1849 6099982796866948 a007 Real Root Of 667*x^4+924*x^3+195*x^2-662*x-359 6099982809156511 m001 1-FellerTornier^FeigenbaumB 6099982817562141 m001 exp(OneNinth)/Paris*cos(1) 6099982822066608 m001 BesselK(0,1)^ErdosBorwein-Thue 6099982851586350 m001 (BesselI(1,1)+Thue)/(exp(Pi)+exp(-1/2*Pi)) 6099982856773193 l006 ln(3923/7220) 6099982857071831 r005 Re(z^2+c),c=-10/9+16/33*I,n=4 6099982865456869 a001 196418/15127*521^(8/13) 6099982888198271 a001 514229/39603*521^(8/13) 6099982891516197 a001 1346269/103682*521^(8/13) 6099982892000276 a001 3524578/271443*521^(8/13) 6099982892070902 a001 9227465/710647*521^(8/13) 6099982892081206 a001 24157817/1860498*521^(8/13) 6099982892082709 a001 63245986/4870847*521^(8/13) 6099982892082929 a001 165580141/12752043*521^(8/13) 6099982892082961 a001 433494437/33385282*521^(8/13) 6099982892082965 a001 1134903170/87403803*521^(8/13) 6099982892082966 a001 2971215073/228826127*521^(8/13) 6099982892082966 a001 7778742049/599074578*521^(8/13) 6099982892082966 a001 20365011074/1568397607*521^(8/13) 6099982892082966 a001 53316291173/4106118243*521^(8/13) 6099982892082966 a001 139583862445/10749957122*521^(8/13) 6099982892082966 a001 365435296162/28143753123*521^(8/13) 6099982892082966 a001 956722026041/73681302247*521^(8/13) 6099982892082966 a001 2504730781961/192900153618*521^(8/13) 6099982892082966 a001 10610209857723/817138163596*521^(8/13) 6099982892082966 a001 4052739537881/312119004989*521^(8/13) 6099982892082966 a001 1548008755920/119218851371*521^(8/13) 6099982892082966 a001 591286729879/45537549124*521^(8/13) 6099982892082966 a001 7787980473/599786069*521^(8/13) 6099982892082966 a001 86267571272/6643838879*521^(8/13) 6099982892082966 a001 32951280099/2537720636*521^(8/13) 6099982892082966 a001 12586269025/969323029*521^(8/13) 6099982892082966 a001 4807526976/370248451*521^(8/13) 6099982892082967 a001 1836311903/141422324*521^(8/13) 6099982892082968 a001 701408733/54018521*521^(8/13) 6099982892082981 a001 9238424/711491*521^(8/13) 6099982892083064 a001 102334155/7881196*521^(8/13) 6099982892083639 a001 39088169/3010349*521^(8/13) 6099982892087574 a001 14930352/1149851*521^(8/13) 6099982892114551 a001 5702887/439204*521^(8/13) 6099982892299453 a001 2178309/167761*521^(8/13) 6099982892394998 r005 Re(z^2+c),c=-11/16+23/78*I,n=6 6099982893566788 a001 832040/64079*521^(8/13) 6099982897578771 a001 4/2178309*317811^(16/25) 6099982902253231 a001 10959/844*521^(8/13) 6099982951559987 a001 121393/843*521^(3/13) 6099982961790996 a001 121393/9349*521^(8/13) 6099983017197310 r005 Im(z^2+c),c=-49/86+1/9*I,n=21 6099983045614919 r005 Im(z^2+c),c=-61/56+3/44*I,n=6 6099983056954253 r005 Im(z^2+c),c=-23/18+14/211*I,n=11 6099983067564808 r009 Re(z^3+c),c=-1/94+39/61*I,n=27 6099983087032576 a007 Real Root Of 104*x^4+482*x^3-921*x^2+150*x+594 6099983087951423 a007 Real Root Of -376*x^4+374*x^3+815*x^2+131*x-416 6099983106371430 a007 Real Root Of 868*x^4+59*x^3+801*x^2+444*x-134 6099983115439091 a007 Real Root Of 502*x^4-564*x^3+548*x^2-737*x-851 6099983141483593 m001 Chi(1)-ZetaP(4)^Stephens 6099983143358570 m001 (PlouffeB+TreeGrowth2nd)/(DuboisRaymond+Mills) 6099983155671847 a007 Real Root Of 417*x^4-755*x^3+741*x^2-197*x-625 6099983160837881 r005 Re(z^2+c),c=-27/40+11/51*I,n=3 6099983181933380 m001 (BesselK(0,1)-gamma(2))/(CareFree+ZetaQ(4)) 6099983182943031 m004 -2/5+Sqrt[5]*Pi-(Sqrt[5]*Cos[Sqrt[5]*Pi])/Pi 6099983196898300 a001 1346269/3571*199^(1/11) 6099983212077960 m001 (PlouffeB-ThueMorse)/(Zeta(5)-HeathBrownMoroz) 6099983218497279 l006 ln(3829/7047) 6099983220052391 a007 Real Root Of -794*x^4+920*x^3-341*x^2+576*x+797 6099983242358568 r008 a(0)=0,K{-n^6,-3+76*n^3+98*n^2-7*n} 6099983291306531 h001 (8/9*exp(2)+2/3)/(3/8*exp(1)+1/6) 6099983293868411 m001 GAMMA(7/24)/(sin(Pi/5)^GAMMA(17/24)) 6099983357255783 r005 Im(z^2+c),c=-11/10+1/139*I,n=13 6099983367821643 a001 46368/2207*521^(7/13) 6099983369868943 a001 46368/3571*521^(8/13) 6099983376007413 a007 Real Root Of 514*x^4-768*x^3+531*x^2-513*x-756 6099983387470152 a007 Real Root Of 128*x^4+719*x^3-441*x^2-477*x-527 6099983456596147 r005 Re(z^2+c),c=45/118+8/51*I,n=17 6099983469002745 a007 Real Root Of -454*x^4+579*x^3+205*x^2+956*x-728 6099983511216030 m001 (Trott+ZetaQ(3))/(KhinchinHarmonic+Porter) 6099983529244984 r005 Re(z^2+c),c=-24/19+3/11*I,n=4 6099983544327850 a003 cos(Pi*23/79)*sin(Pi*49/99) 6099983545126459 r005 Im(z^2+c),c=-5/6+10/217*I,n=5 6099983549771074 a007 Real Root Of -974*x^4+400*x^3-973*x^2+30*x+606 6099983556294511 m005 (1/2*gamma+6/11)/(7/11*gamma+1) 6099983564555264 m001 GAMMA(5/12)/Lehmer/exp(sqrt(Pi)) 6099983576410305 s002 sum(A285490[n]/(exp(n)),n=1..infinity) 6099983592115020 m001 (-ln(Pi)+Riemann2ndZero)/(exp(1)+cos(1)) 6099983598428615 l006 ln(3735/6874) 6099983606548565 a001 -915+682*5^(1/2) 6099983606557377 a001 372099/610 6099983615937204 m001 (BesselJ(1,1)-Shi(1))/(-KhinchinLevy+ZetaP(3)) 6099983624038274 a001 322/75025*3^(8/25) 6099983626053975 a007 Real Root Of -370*x^4+596*x^3-434*x^2-500*x+43 6099983638392474 h002 exp(6^(2/3)+7^(7/12)) 6099983638392474 h007 exp(6^(2/3)+7^(7/12)) 6099983654542742 r009 Im(z^3+c),c=-21/122+12/17*I,n=17 6099983672515351 m001 ln(GAMMA(11/12))^2*Khintchine^2/sin(Pi/5)^2 6099983693153556 a007 Real Root Of 116*x^4-755*x^3+253*x^2-663*x-686 6099983697521597 m001 (BesselI(0,1)+3^(1/3))/(-Conway+MadelungNaCl) 6099983726058733 r005 Im(z^2+c),c=7/110+37/61*I,n=9 6099983726603488 m001 (Niven-ZetaQ(4))/(BesselK(1,1)-FellerTornier) 6099983740348111 h005 exp(cos(Pi*7/59)+sin(Pi*16/47)) 6099983744979574 r005 Im(z^2+c),c=-31/54+1/9*I,n=39 6099983745130417 r005 Re(z^2+c),c=-13/58+35/53*I,n=2 6099983757049198 h001 (3/10*exp(2)+5/6)/(4/7*exp(2)+7/9) 6099983763682382 p001 sum(1/(497*n+164)/(625^n),n=0..infinity) 6099983793729520 a007 Real Root Of -125*x^4-338*x^3-871*x^2+825*x-5 6099983794788385 p001 sum(1/(249*n+164)/(1000^n),n=0..infinity) 6099983813337226 a007 Real Root Of -117*x^4+368*x^3-769*x^2+733*x+833 6099983840728246 r005 Re(z^2+c),c=-55/78+4/19*I,n=46 6099983844335449 m001 1/exp(GAMMA(1/4))*OneNinth*GAMMA(5/12) 6099983850401446 s002 sum(A022207[n]/(exp(n)-1),n=1..infinity) 6099983867197539 m005 (1/2*gamma+4)/(6*Zeta(3)-2/11) 6099983883535193 a007 Real Root Of -146*x^4-837*x^3+190*x^2-717*x+722 6099983883690581 a007 Real Root Of 100*x^4+636*x^3+4*x^2-880*x+385 6099983905849359 a003 cos(Pi*10/109)*sin(Pi*9/41) 6099983907975515 a007 Real Root Of -589*x^4+102*x^3-699*x^2-280*x+194 6099983929793249 a007 Real Root Of -729*x^4+718*x^3+794*x^2+214*x+99 6099983957236427 m001 (ln(2)+GAMMA(7/12))/(FransenRobinson+GaussAGM) 6099983960933230 r005 Re(z^2+c),c=-83/78+3/59*I,n=6 6099983972431382 r002 24th iterates of z^2 + 6099983972431382 r002 24th iterates of z^2 + 6099983997977372 l006 ln(3641/6701) 6099984000939830 r005 Im(z^2+c),c=21/122+13/24*I,n=10 6099984002216344 r002 5th iterates of z^2 + 6099984014563641 r009 Re(z^3+c),c=-11/122+16/33*I,n=7 6099984027712473 r005 Re(z^2+c),c=-18/17+18/55*I,n=9 6099984043725591 a001 329/281*1364^(13/15) 6099984074869476 r009 Re(z^3+c),c=-17/122+5/7*I,n=34 6099984084105520 h001 (-9*exp(1)-3)/(-3*exp(5)-5) 6099984087520760 p003 LerchPhi(1/5,3,223/187) 6099984100172553 m009 (3/5*Psi(1,2/3)-1/5)/(1/5*Psi(1,1/3)+2/3) 6099984111331011 a007 Real Root Of 56*x^4+125*x^3+500*x^2-137*x-249 6099984125565092 r009 Im(z^3+c),c=-23/122+41/54*I,n=11 6099984133370535 m001 (Backhouse-Si(Pi))/(-Paris+RenyiParking) 6099984157084677 a007 Real Root Of 501*x^4+278*x^3+812*x^2-219*x-442 6099984178161529 a007 Real Root Of -627*x^4+768*x^3-790*x^2+31*x+574 6099984185893125 r005 Re(z^2+c),c=-1/50+17/23*I,n=41 6099984204454044 r005 Re(z^2+c),c=39/106+41/61*I,n=8 6099984216387909 p001 sum(1/(572*n+119)/n/(24^n),n=1..infinity) 6099984218339582 m001 Zeta(1,-1)^(ZetaR(2)/cos(1)) 6099984238455168 m001 ln(Magata)/MadelungNaCl/GAMMA(1/12) 6099984262474747 a001 11/13*75025^(17/29) 6099984282550231 a007 Real Root Of 161*x^4+969*x^3-218*x^2-989*x-894 6099984289926041 r005 Re(z^2+c),c=-45/86+31/63*I,n=33 6099984328944602 a007 Real Root Of -280*x^4-384*x^3-726*x^2+725*x+664 6099984337559504 r008 a(0)=6,K{-n^6,4-5*n^3-6*n^2-4*n} 6099984339157123 a003 cos(Pi*25/119)*cos(Pi*16/73) 6099984340203235 m002 E^Pi/Pi^6+(Pi^5*Tanh[Pi])/5 6099984347325507 r002 4th iterates of z^2 + 6099984348363286 a007 Real Root Of -956*x^4+320*x^3+474*x^2+798*x+47 6099984357937351 a007 Real Root Of 477*x^4-464*x^3+376*x^2-793*x-795 6099984358443393 a001 76/514229*377^(37/59) 6099984361993880 r005 Re(z^2+c),c=13/126+23/50*I,n=38 6099984374300966 a007 Real Root Of 669*x^4+675*x^3+845*x^2+244*x-105 6099984387434452 a007 Real Root Of -735*x^4+550*x^3-865*x^2-427*x+288 6099984389512999 m001 (gamma+Gompertz)/(RenyiParking+Salem) 6099984400875590 r005 Re(z^2+c),c=-1/82+9/35*I,n=16 6099984402227309 a007 Real Root Of 96*x^4-583*x^3+71*x^2+164*x-72 6099984405929833 r004 Re(z^2+c),c=-27/26+2/11*I,z(0)=-1,n=55 6099984406137588 a001 4/24157817*55^(9/10) 6099984418703211 l006 ln(3547/6528) 6099984419310519 m001 (HardyLittlewoodC4-Paris)/(Ei(1)+GAMMA(7/12)) 6099984437937027 a001 121393/5778*521^(7/13) 6099984441638168 m002 Pi^5/4+4*Sinh[Pi]^2 6099984452297860 a001 5473/682*521^(9/13) 6099984515832965 a007 Real Root Of 957*x^4-602*x^3-202*x^2-682*x-610 6099984526401987 m001 (gamma-PisotVijayaraghavan)/GAMMA(3/4) 6099984530427575 a007 Real Root Of 633*x^4+258*x^3+371*x^2-667*x-574 6099984533558182 a007 Real Root Of -719*x^4-106*x^3+549*x^2+953*x-662 6099984537366277 m001 1/GAMMA(5/12)*ln(ArtinRank2)^2 6099984594064789 a001 317811/15127*521^(7/13) 6099984594072968 s004 Continued Fraction of A115677 6099984594072968 s004 Continued fraction of A115677 6099984616843523 a001 832040/39603*521^(7/13) 6099984620166895 a001 46347/2206*521^(7/13) 6099984620651769 a001 5702887/271443*521^(7/13) 6099984620722511 a001 14930352/710647*521^(7/13) 6099984620732832 a001 39088169/1860498*521^(7/13) 6099984620734338 a001 102334155/4870847*521^(7/13) 6099984620734557 a001 267914296/12752043*521^(7/13) 6099984620734590 a001 701408733/33385282*521^(7/13) 6099984620734594 a001 1836311903/87403803*521^(7/13) 6099984620734595 a001 102287808/4868641*521^(7/13) 6099984620734595 a001 12586269025/599074578*521^(7/13) 6099984620734595 a001 32951280099/1568397607*521^(7/13) 6099984620734595 a001 86267571272/4106118243*521^(7/13) 6099984620734595 a001 225851433717/10749957122*521^(7/13) 6099984620734595 a001 591286729879/28143753123*521^(7/13) 6099984620734595 a001 1548008755920/73681302247*521^(7/13) 6099984620734595 a001 4052739537881/192900153618*521^(7/13) 6099984620734595 a001 225749145909/10745088481*521^(7/13) 6099984620734595 a001 6557470319842/312119004989*521^(7/13) 6099984620734595 a001 2504730781961/119218851371*521^(7/13) 6099984620734595 a001 956722026041/45537549124*521^(7/13) 6099984620734595 a001 365435296162/17393796001*521^(7/13) 6099984620734595 a001 139583862445/6643838879*521^(7/13) 6099984620734595 a001 53316291173/2537720636*521^(7/13) 6099984620734595 a001 20365011074/969323029*521^(7/13) 6099984620734595 a001 7778742049/370248451*521^(7/13) 6099984620734595 a001 2971215073/141422324*521^(7/13) 6099984620734597 a001 1134903170/54018521*521^(7/13) 6099984620734609 a001 433494437/20633239*521^(7/13) 6099984620734693 a001 165580141/7881196*521^(7/13) 6099984620735268 a001 63245986/3010349*521^(7/13) 6099984620739211 a001 24157817/1149851*521^(7/13) 6099984620766232 a001 9227465/439204*521^(7/13) 6099984620951437 a001 3524578/167761*521^(7/13) 6099984622220852 a001 1346269/64079*521^(7/13) 6099984622521691 r009 Im(z^3+c),c=-21/62+1/28*I,n=4 6099984630921555 a001 514229/24476*521^(7/13) 6099984644175287 m001 Landau^GAMMA(17/24)/(Landau^Weierstrass) 6099984645530581 a007 Real Root Of -183*x^4+771*x^3-54*x^2+63*x-168 6099984669448648 r005 Re(z^2+c),c=17/60+34/61*I,n=60 6099984673172962 m001 Zeta(1/2)/exp(OneNinth)/arctan(1/2)^2 6099984674675439 a007 Real Root Of 978*x^4+847*x^3+606*x^2-635*x-556 6099984680326043 a001 196418/843*521^(2/13) 6099984684629168 a007 Real Root Of 747*x^4-591*x^3+42*x^2-180*x-363 6099984690557056 a001 196418/9349*521^(7/13) 6099984711845327 r005 Im(z^2+c),c=-19/26+7/95*I,n=48 6099984722980484 a007 Real Root Of 164*x^4-721*x^3+701*x^2+120*x-374 6099984730596229 r005 Im(z^2+c),c=-3/31+55/63*I,n=29 6099984742101998 r005 Im(z^2+c),c=3/74+29/48*I,n=12 6099984756255266 r005 Re(z^2+c),c=31/74+23/64*I,n=12 6099984762705210 r009 Im(z^3+c),c=-63/106+25/36*I,n=3 6099984784210937 m005 (1/2*Catalan+6)/(5/12*gamma+9/11) 6099984801990318 r009 Im(z^3+c),c=-25/126+32/45*I,n=35 6099984812486007 r009 Re(z^3+c),c=-19/78+33/47*I,n=53 6099984814237690 h001 (6/11*exp(2)+8/11)/(2/11*exp(1)+2/7) 6099984858901430 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^14 6099984860694296 a007 Real Root Of 749*x^4-209*x^3-468*x^2-700*x-404 6099984862335620 l006 ln(3453/6355) 6099984892502705 m001 1/GAMMA(1/6)^2/TreeGrowth2nd*ln(Zeta(7)) 6099984912163210 a007 Real Root Of 150*x^4+999*x^3+598*x^2+417*x-641 6099984923990846 a007 Real Root Of -796*x^4+232*x^3-757*x^2-455*x+167 6099984933335920 a007 Real Root Of 914*x^4-666*x^3+568*x^2+187*x-375 6099984949036533 p001 sum(1/(557*n+106)/n/(25^n),n=1..infinity) 6099984962609771 a001 47*(1/2*5^(1/2)+1/2)^12*3571^(11/15) 6099984964755950 m001 LambertW(1)/FransenRobinson*ln(gamma)^2 6099984966044971 m001 (Zeta(1,-1)+exp(1/Pi))/(Chi(1)+ln(Pi)) 6099984966344820 m002 2+Pi-Cosh[Pi]/Pi^5+Tanh[Pi] 6099984970457883 a005 (1/cos(52/239*Pi))^170 6099984972223207 s002 sum(A246202[n]/(n*exp(n)+1),n=1..infinity) 6099984978139604 a007 Real Root Of 736*x^4+286*x^3+940*x^2-384*x-621 6099984984995659 m005 (7/20+1/4*5^(1/2))/(7/9*Catalan+7/9) 6099984997675329 a001 329/6*11^(2/45) 6099985021930052 r005 Re(z^2+c),c=-37/54+17/48*I,n=12 6099985031611718 m005 (1/2*gamma+11/12)/(3/5*Pi+1/11) 6099985043738442 p003 LerchPhi(1/100,6,212/133) 6099985046480046 a001 610/123*7^(5/47) 6099985068096953 a001 9062201101803/1597*144^(16/17) 6099985075591731 m001 ln(GAMMA(3/4))^2*TwinPrimes*sqrt(5) 6099985083834597 h005 exp(cos(Pi*1/6)+sin(Pi*9/23)) 6099985090178856 a007 Real Root Of -461*x^4-305*x^3-801*x^2+435*x+558 6099985097257593 a001 75025/2207*521^(6/13) 6099985099304894 a001 75025/3571*521^(7/13) 6099985159050192 a001 9349/610*4181^(28/39) 6099985171807691 a007 Real Root Of 628*x^4+554*x^3+518*x^2-905*x-706 6099985180807452 r005 Re(z^2+c),c=-11/16+30/107*I,n=50 6099985201355859 m001 (-TwinPrimes+1/2)/(-GAMMA(1/4)+1) 6099985216816307 a007 Real Root Of -116*x^4-579*x^3+921*x^2+761*x-439 6099985217569880 a001 439204*144^(9/17) 6099985224890319 r002 25th iterates of z^2 + 6099985233236869 a007 Real Root Of -414*x^4-391*x^3-357*x^2+919*x+662 6099985252916995 a001 47*(1/2*5^(1/2)+1/2)^8*9349^(13/15) 6099985256482984 h001 (1/5*exp(1)+2/3)/(1/2*exp(1)+5/8) 6099985261920594 m001 MasserGramain^CareFree/(Conway^CareFree) 6099985262255737 p001 sum(1/(411*n+253)/n/(25^n),n=1..infinity) 6099985264600659 a003 sin(Pi*1/41)+sin(Pi*12/67) 6099985269794066 a007 Real Root Of -704*x^4-285*x^3-384*x^2+253*x+330 6099985275548147 a007 Real Root Of 492*x^4-3*x^3+643*x^2-654*x-707 6099985280202534 a007 Real Root Of -606*x^4-652*x^3+103*x^2+943*x+57 6099985291193350 m001 GAMMA(1/3)^2/GAMMA(1/24)^2*exp(cosh(1)) 6099985312015849 a001 47*(1/2*5^(1/2)+1/2)^3*64079^(14/15) 6099985313501433 a001 47/64079*(1/2*5^(1/2)+1/2)^26*64079^(14/15) 6099985313661682 a001 47*(1/2*5^(1/2)+1/2)^23*39603^(1/15) 6099985322421831 m001 (-exp(1/Pi)+1/2)/(-Cahen+1/2) 6099985322707840 a001 47/9349*(1/2*5^(1/2)+1/2)^27*9349^(13/15) 6099985324606508 a007 Real Root Of 788*x^4-853*x^3+611*x^2+287*x-355 6099985330797688 l006 ln(3359/6182) 6099985364019015 m005 (1/2*3^(1/2)+1/10)/(5/11*Catalan-2) 6099985395613349 a007 Real Root Of 116*x^4-36*x^3-601*x^2-866*x+744 6099985401551723 b008 60+Erf[Khinchin] 6099985410464133 a001 47/4181*6765^(39/40) 6099985418533602 a007 Real Root Of -247*x^4+874*x^3+514*x^2-304*x-170 6099985436502775 p001 sum((-1)^n/(204*n+161)/(24^n),n=0..infinity) 6099985440963353 a001 47/3571*(1/2*5^(1/2)+1/2)^29*3571^(11/15) 6099985443152380 a007 Real Root Of -91*x^4-388*x^3+953*x^2-540*x-827 6099985455929278 r005 Im(z^2+c),c=-2/31+16/25*I,n=11 6099985465671428 m001 (3^(1/2))^TreeGrowth2nd/((3^(1/2))^Totient) 6099985476659658 a001 23725150497407/4181*144^(16/17) 6099985477852843 r009 Re(z^3+c),c=-21/110+38/53*I,n=47 6099985528718783 a007 Real Root Of 273*x^4+151*x^3-359*x^2-409*x+311 6099985529540960 a007 Real Root Of -90*x^4-437*x^3+591*x^2-704*x-864 6099985550514698 a001 2584/843*1364^(11/15) 6099985561824684 r005 Im(z^2+c),c=-43/94+15/26*I,n=38 6099985573040621 a001 34/4870847*18^(3/4) 6099985574058552 a001 1364/9227465*89^(6/19) 6099985578736936 r002 45th iterates of z^2 + 6099985599105693 a007 Real Root Of 825*x^4+145*x^3-407*x^2-730*x+46 6099985628904491 s002 sum(A272245[n]/((10^n-1)/n),n=1..infinity) 6099985630301686 r005 Im(z^2+c),c=-31/60+6/55*I,n=16 6099985649273974 m005 (5/6*gamma+1/6)/(4/5*gamma+3/5) 6099985649273974 m007 (-5/6*gamma-1/6)/(-4/5*gamma-3/5) 6099985674175748 r008 a(0)=0,K{-n^6,-50-98*n^3-58*n^2+42*n} 6099985677075446 a007 Real Root Of 506*x^4-477*x^3-361*x^2-700*x-471 6099985681945364 a003 -1-cos(3/8*Pi)+2*cos(5/18*Pi)+1/2*2^(1/2) 6099985684928296 r008 a(0)=0,K{-n^6,-48-89*n^3-84*n^2+57*n} 6099985686408798 a007 Real Root Of -126*x^4-789*x^3+10*x^2+879*x+359 6099985694151627 p001 sum(1/(239*n+164)/(1024^n),n=0..infinity) 6099985699259183 r005 Re(z^2+c),c=-37/54+5/18*I,n=3 6099985700996009 r008 a(0)=0,K{-n^6,4+83*n^3+80*n^2-3*n} 6099985715209731 r005 Im(z^2+c),c=19/56+26/49*I,n=35 6099985729165323 a001 192933544679/34*144^(16/17) 6099985743701501 a001 3/514229*610^(29/40) 6099985750854554 r005 Re(z^2+c),c=-7/10+81/190*I,n=7 6099985763234260 m001 1/GAMMA(1/3)*CareFree*exp(sin(1)) 6099985764920811 r009 Re(z^3+c),c=-1/98+16/27*I,n=19 6099985791194166 a007 Real Root Of -629*x^4+347*x^3-795*x^2-347*x+250 6099985799795720 a007 Real Root Of -601*x^4+341*x^3+444*x^2+760*x+459 6099985826233965 l006 ln(3265/6009) 6099985832816109 m001 1/cos(Pi/12)*exp(Trott)^2/log(2+sqrt(3))^2 6099985836988752 r005 Im(z^2+c),c=23/74+25/56*I,n=19 6099985838937733 b008 61*JacobiCN[2,3] 6099985873274679 r009 Im(z^3+c),c=-25/62+35/54*I,n=9 6099985875807750 s002 sum(A041025[n]/(n!^2),n=1..infinity) 6099985881420689 r002 32th iterates of z^2 + 6099985882654667 m005 (5/6*gamma+3/5)/(gamma-2/5) 6099985882654667 m007 (-5/6*gamma-3/5)/(-gamma+2/5) 6099985885108810 m001 Pi*2^(1/2)/GAMMA(3/4)*gamma(2)/Stephens 6099985897830453 a001 47*(1/2*5^(1/2)+1/2)^17*2207^(7/15) 6099985909858757 m001 (Khinchin+LaplaceLimit)/(Sarnak-ZetaP(3)) 6099985949380089 a007 Real Root Of -233*x^4+712*x^3-15*x^2+955*x+782 6099985952415962 m001 DuboisRaymond^2*ln(Conway)/GlaisherKinkelin^2 6099985993004090 a001 1597/843*1364^(4/5) 6099985997233358 a001 514229/1364*199^(1/11) 6099985998283248 a003 sin(Pi*18/107)/sin(Pi*35/113) 6099986009223669 m001 1/ln(ArtinRank2)/Bloch*Zeta(5) 6099986013287588 a007 Real Root Of -539*x^4+705*x^3-534*x^2-435*x+168 6099986018752396 r005 Re(z^2+c),c=-37/54+16/57*I,n=39 6099986020024502 a007 Real Root Of -337*x^4+506*x^3+453*x^2+805*x+484 6099986021599390 a001 4181/843*1364^(2/3) 6099986025210153 m005 (1/2*Pi-1/8)/(4/11*3^(1/2)-3) 6099986025340664 a007 Real Root Of -779*x^4-922*x^3+476*x^2+909*x-57 6099986029768718 a007 Real Root Of -923*x^4-867*x^3-227*x^2+773*x+487 6099986036301484 r005 Re(z^2+c),c=-7/106+17/19*I,n=51 6099986042801492 m005 (1/2*Zeta(3)+7/9)/(8/9*5^(1/2)+3/11) 6099986048293077 m001 gamma(1)^(GaussKuzminWirsing/ln(5)) 6099986107390785 a007 Real Root Of 136*x^4+814*x^3-248*x^2-906*x+161 6099986111120917 r005 Re(z^2+c),c=-2/3+67/206*I,n=18 6099986118191003 m005 (1/3*Pi-1/10)/(1/5*5^(1/2)-2) 6099986120223164 m001 1/GAMMA(5/6)*exp(FeigenbaumD)^2*LambertW(1)^2 6099986142406746 m001 FeigenbaumD^((1+3^(1/2))^(1/2))/Chi(1) 6099986143729832 a001 2255/281*1364^(3/5) 6099986150465534 a007 Real Root Of 529*x^4-550*x^3-565*x^2-297*x+443 6099986150576188 a007 Real Root Of 348*x^4-840*x^3-901*x^2-166*x+579 6099986152512972 a007 Real Root Of 763*x^4-131*x^3-208*x^2-482*x-352 6099986158223071 a007 Real Root Of 295*x^4-987*x^3+199*x^2-828*x-844 6099986166703505 a001 98209/2889*521^(6/13) 6099986166878271 a001 17711/1364*521^(8/13) 6099986176941953 m009 (4/5*Psi(1,2/3)-1/2)/(1/3*Psi(1,1/3)-1/6) 6099986179248584 m001 (Psi(1,1/3)+StronglyCareFree)/Grothendieck 6099986227182828 a007 Real Root Of 831*x^4-701*x^3+471*x^2+863*x+77 6099986234832572 m001 (PlouffeB+Salem)/(ln(3)+ln(5)) 6099986280206869 r005 Re(z^2+c),c=-3/4+33/205*I,n=14 6099986295657496 a007 Real Root Of 641*x^4-763*x^3+455*x^2-816*x-929 6099986297540697 a007 Real Root Of 276*x^4-988*x^3+386*x^2+110*x-339 6099986322733592 a001 514229/15127*521^(6/13) 6099986330253143 m001 (gamma(2)+Riemann1stZero)/(Si(Pi)+arctan(1/2)) 6099986345498076 a001 1346269/39603*521^(6/13) 6099986348819369 a001 1762289/51841*521^(6/13) 6099986349303939 a001 9227465/271443*521^(6/13) 6099986349374637 a001 24157817/710647*521^(6/13) 6099986349384952 a001 31622993/930249*521^(6/13) 6099986349386457 a001 165580141/4870847*521^(6/13) 6099986349386676 a001 433494437/12752043*521^(6/13) 6099986349386708 a001 567451585/16692641*521^(6/13) 6099986349386713 a001 2971215073/87403803*521^(6/13) 6099986349386714 a001 7778742049/228826127*521^(6/13) 6099986349386714 a001 10182505537/299537289*521^(6/13) 6099986349386714 a001 53316291173/1568397607*521^(6/13) 6099986349386714 a001 139583862445/4106118243*521^(6/13) 6099986349386714 a001 182717648081/5374978561*521^(6/13) 6099986349386714 a001 956722026041/28143753123*521^(6/13) 6099986349386714 a001 2504730781961/73681302247*521^(6/13) 6099986349386714 a001 3278735159921/96450076809*521^(6/13) 6099986349386714 a001 10610209857723/312119004989*521^(6/13) 6099986349386714 a001 4052739537881/119218851371*521^(6/13) 6099986349386714 a001 387002188980/11384387281*521^(6/13) 6099986349386714 a001 591286729879/17393796001*521^(6/13) 6099986349386714 a001 225851433717/6643838879*521^(6/13) 6099986349386714 a001 1135099622/33391061*521^(6/13) 6099986349386714 a001 32951280099/969323029*521^(6/13) 6099986349386714 a001 12586269025/370248451*521^(6/13) 6099986349386714 a001 1201881744/35355581*521^(6/13) 6099986349386716 a001 1836311903/54018521*521^(6/13) 6099986349386728 a001 701408733/20633239*521^(6/13) 6099986349386812 a001 66978574/1970299*521^(6/13) 6099986349387387 a001 102334155/3010349*521^(6/13) 6099986349391326 a001 39088169/1149851*521^(6/13) 6099986349418331 a001 196452/5779*521^(6/13) 6099986349603420 a001 5702887/167761*521^(6/13) 6099986350872041 a001 2178309/64079*521^(6/13) 6099986351043289 l006 ln(3171/5836) 6099986354460216 a007 Real Root Of -567*x^4+612*x^3-654*x^2-757*x-1 6099986359567300 a001 208010/6119*521^(6/13) 6099986364130497 a007 Real Root Of -17*x^4+x^3+600*x^2-108*x+780 6099986365262300 a007 Real Root Of -490*x^4-94*x^3-659*x^2+548*x+626 6099986377737273 h001 (-5*exp(-2)+4)/(-9*exp(-3)-5) 6099986399148952 a001 10946/843*1364^(8/15) 6099986408376587 p003 LerchPhi(1/100,6,475/203) 6099986408934478 a001 377*521^(1/13) 6099986419165493 a001 317811/9349*521^(6/13) 6099986429316254 a007 Real Root Of 132*x^4-978*x^3-296*x^2-515*x+628 6099986432428858 m001 (Kolakoski+Mills)/(Sierpinski+Thue) 6099986445189821 a005 (1/cos(24/211*Pi))^63 6099986448170182 m003 1/60+Sqrt[5]/64+(Sqrt[5]*Sin[1/2+Sqrt[5]/2])/4 6099986452243777 m001 3^(1/2)-Grothendieck+TwinPrimes 6099986493615226 r005 Re(z^2+c),c=-53/66+22/51*I,n=4 6099986514690914 a007 Real Root Of -680*x^4+35*x^3-579*x^2+86*x+370 6099986518316698 a007 Real Root Of 534*x^4-352*x^3-653*x^2-646*x+643 6099986519452805 a001 329/281*3571^(13/17) 6099986521119493 r002 3th iterates of z^2 + 6099986563398123 r009 Im(z^3+c),c=-59/110+19/54*I,n=60 6099986567266958 a001 7/55*46368^(27/47) 6099986585885580 a005 (1/cos(17/171*Pi))^733 6099986603656337 a001 17711/843*1364^(7/15) 6099986630475824 r005 Re(z^2+c),c=29/114+12/23*I,n=16 6099986634098832 m006 (5*ln(Pi)+1/6)/(2/5*exp(Pi)+2/5) 6099986654179413 m001 (-sin(1/12*Pi)+FeigenbaumB)/(Psi(1,1/3)-ln(2)) 6099986663636915 m001 exp(cosh(1))^2*OneNinth*sin(Pi/12) 6099986674513054 m001 3*ln(3)/cos(1) 6099986677610607 r002 48th iterates of z^2 + 6099986682530793 a007 Real Root Of -181*x^4-927*x^3+959*x^2-713*x+164 6099986682808571 m004 -4-(25*Sqrt[5]*Pi)/4-Cosh[Sqrt[5]*Pi] 6099986690849742 a007 Real Root Of -326*x^4+938*x^3-71*x^2+565*x-486 6099986700574672 a001 41/105937*17711^(2/43) 6099986721049906 r009 Im(z^3+c),c=-4/17+45/61*I,n=23 6099986735632127 r005 Re(z^2+c),c=-11/28+32/49*I,n=4 6099986751709565 r005 Re(z^2+c),c=3/20+17/37*I,n=14 6099986779494368 a007 Real Root Of -113*x^4+468*x^3-228*x^2+389*x+444 6099986792692740 m005 (1/2*Catalan-1/7)/(2/5*gamma+2/7) 6099986798796719 a001 5600748293801/987*144^(16/17) 6099986822796415 a001 377/2207*9349^(17/19) 6099986825610314 a001 121393/2207*521^(5/13) 6099986827610286 a001 28657/843*1364^(2/5) 6099986827657615 a001 121393/3571*521^(6/13) 6099986829939256 a007 Real Root Of 547*x^4-320*x^3-831*x^2-849*x+824 6099986837501050 a001 329/281*9349^(13/19) 6099986838853314 a001 199/3*20365011074^(4/21) 6099986853180281 a003 sin(Pi*5/76)+sin(Pi*13/98) 6099986876998017 a001 377/2207*24476^(17/21) 6099986878949334 a001 329/281*24476^(13/21) 6099986884142831 a001 377/2207*64079^(17/23) 6099986884413015 a001 329/281*64079^(13/23) 6099986885240871 a001 377/2207*45537549124^(1/3) 6099986885240871 a001 377/2207*(1/2+1/2*5^(1/2))^17 6099986885240890 a001 377/2207*12752043^(1/2) 6099986885252693 a001 329/281*141422324^(1/3) 6099986885252693 a001 329/281*(1/2+1/2*5^(1/2))^13 6099986885252693 a001 329/281*73681302247^(1/4) 6099986885294087 a001 329/281*271443^(1/2) 6099986885560058 a001 329/281*103682^(13/24) 6099986885642810 a001 377/2207*103682^(17/24) 6099986887550923 a001 329/281*39603^(13/22) 6099986888246249 a001 377/2207*39603^(17/22) 6099986902580223 a001 329/281*15127^(13/20) 6099986907899949 a001 377/2207*15127^(17/20) 6099986907917631 l006 ln(3077/5663) 6099986923696734 a001 1/47*(1/2*5^(1/2)+1/2)^10*11^(6/17) 6099986945474003 a007 Real Root Of -672*x^4+656*x^3-414*x^2+441*x+665 6099986949991591 a007 Real Root Of -951*x^4+797*x^3-326*x^2-308*x+246 6099986971482019 r002 6th iterates of z^2 + 6099986979294621 r002 2th iterates of z^2 + 6099986991625854 a007 Real Root Of 15*x^4+917*x^3+131*x^2+538*x-229 6099987003511100 b008 7*(1/18+E)*Pi 6099987017213420 a001 329/281*5778^(13/18) 6099987022671247 g007 Psi(2,7/8)+Psi(2,5/7)+Psi(2,1/3)-Psi(2,6/7) 6099987027943520 a007 Real Root Of 406*x^4-809*x^3+710*x^2+23*x-490 6099987036944573 a003 sin(Pi*25/119)*sin(Pi*51/109) 6099987038556675 r005 Im(z^2+c),c=-9/25+32/49*I,n=19 6099987044136319 a001 15456/281*1364^(1/3) 6099987047108636 r005 Re(z^2+c),c=-1/62+17/23*I,n=41 6099987050942451 m001 (sin(1)+GAMMA(17/24)*ZetaP(3))/ZetaP(3) 6099987057804899 a001 377/2207*5778^(17/18) 6099987080892376 a007 Real Root Of 808*x^4-201*x^3-184*x^2-177*x-197 6099987109273960 s002 sum(A239059[n]/(exp(n)),n=1..infinity) 6099987123687515 a007 Real Root Of 231*x^4-227*x^3+997*x^2-91*x-510 6099987136577757 r002 20th iterates of z^2 + 6099987149703115 r009 Re(z^3+c),c=-1/102+33/61*I,n=25 6099987173799825 m008 (4/5*Pi^4-3)/(1/5*Pi+3/5) 6099987176271300 a005 (1/cos(33/151*Pi))^16 6099987180668694 m001 ((3^(1/3))-GAMMA(1/12))/exp(1/2) 6099987183173616 m001 (BesselI(0,1)-gamma(2))/(GolombDickman+Porter) 6099987206738384 m005 (1/2*Catalan+1/5)/(5/9*Pi-2/3) 6099987225467529 m005 (4/5*Pi+1)/(1/3*gamma-1/4) 6099987234948608 m001 (GaussAGM+ZetaQ(3))/(arctan(1/2)-BesselK(1,1)) 6099987247047940 m001 GAMMA(2/3)^(GAMMA(7/12)/Zeta(1,2)) 6099987263499574 a001 75025/843*1364^(4/15) 6099987265233282 r002 47th iterates of z^2 + 6099987268700945 r002 26th iterates of z^2 + 6099987276828025 a007 Real Root Of -422*x^4+668*x^3+653*x^2+813*x+463 6099987307027066 a007 Real Root Of -100*x^4-729*x^3-576*x^2+970*x+339 6099987310427116 a007 Real Root Of 441*x^4-942*x^3-598*x^2+7*x+371 6099987312884646 a005 (1/cos(9/137*Pi))^299 6099987314759396 m005 (1/2*5^(1/2)+9/10)/(Pi+1/6) 6099987326766409 m004 5+(375*Pi)/Log[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 6099987335679144 a005 (1/sin(95/199*Pi))^716 6099987384071722 r005 Im(z^2+c),c=-11/106+51/53*I,n=6 6099987394100242 a001 1597/322*322^(5/6) 6099987403505427 a007 Real Root Of 475*x^4-928*x^3+122*x^2-220*x-456 6099987405490287 m001 (FeigenbaumD-PrimesInBinary)/(Pi+gamma) 6099987413515448 a007 Real Root Of -663*x^4+228*x^3-992*x^2+153*x+606 6099987413632860 r005 Im(z^2+c),c=-31/118+13/19*I,n=8 6099987417654170 r005 Re(z^2+c),c=19/82+11/30*I,n=56 6099987428386875 b008 6+Sinh[Csch[3]] 6099987435185592 r002 7th iterates of z^2 + 6099987447942106 m001 (exp(1)-ln(gamma))/(-Conway+Tribonacci) 6099987464546906 a007 Real Root Of 300*x^4-19*x^3+134*x^2-789*x-577 6099987476518472 a001 974168/1597 6099987481779117 a001 121393/843*1364^(1/5) 6099987499888277 l006 ln(2983/5490) 6099987501415112 r002 50th iterates of z^2 + 6099987504975087 m001 (exp(Pi)+2^(1/3))/(ln(2+3^(1/2))+FeigenbaumD) 6099987548285748 a007 Real Root Of -321*x^4+459*x^3-930*x^2+12*x+502 6099987578650249 m008 (3/5*Pi^4+1/4)/(Pi^6+5/6) 6099987601055897 s002 sum(A003615[n]/(n^3*exp(n)-1),n=1..infinity) 6099987601351070 r005 Im(z^2+c),c=9/74+37/64*I,n=44 6099987610823176 r005 Im(z^2+c),c=-85/98+16/39*I,n=4 6099987611499952 m001 1/GAMMA(7/24)/Porter/ln(Zeta(5)) 6099987622787786 p004 log(27277/14821) 6099987643359675 a008 Real Root of (-5+2*x+6*x^2+6*x^3+5*x^4-6*x^5) 6099987645361254 a001 2584/843*3571^(11/17) 6099987659233310 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^16 6099987660733325 r005 Re(z^2+c),c=-71/102+12/55*I,n=42 6099987661885574 m001 Sierpinski*(GAMMA(13/24)-OrthogonalArrays) 6099987679617159 a007 Real Root Of 400*x^4-910*x^3+651*x^2-403*x-750 6099987698874907 r002 29th iterates of z^2 + 6099987700472613 a001 196418/843*1364^(2/15) 6099987725057512 r002 27th iterates of z^2 + 6099987728665242 b008 -62+Zeta[13] 6099987735540237 a007 Real Root Of -7*x^4-127*x^3-656*x^2-484*x-79 6099987753182314 m005 (1/2*Zeta(3)-3/4)/(8/9*5^(1/2)+5/11) 6099987759936415 b008 6+InverseGudermannian[Csch[3]] 6099987765609623 a001 228826127/8*987^(7/9) 6099987811473828 m005 (1/2*exp(1)+1/9)/(1/2*3^(1/2)-5/8) 6099987837913703 r002 15th iterates of z^2 + 6099987839421044 a007 Real Root Of -885*x^4-174*x^3-367*x^2+340*x+427 6099987844073954 r009 Re(z^3+c),c=-55/102+18/29*I,n=8 6099987857695309 a001 2255/281*3571^(9/17) 6099987895312360 a001 105937/1926*521^(5/13) 6099987900905725 a001 28657/1364*521^(7/13) 6099987902783987 a001 329/281*2207^(13/16) 6099987906895990 b008 59+Erfc[-E] 6099987906895990 b008 60+Erf[E] 6099987914479048 a001 2584/843*9349^(11/19) 6099987919008003 a001 377*1364^(1/15) 6099987922673861 a001 10946/843*3571^(8/17) 6099987926005468 a001 4181/843*3571^(10/17) 6099987930892311 m001 (sin(1/5*Pi)+GAMMA(11/12))/(FeigenbaumD+Trott) 6099987936740656 a001 17711/843*3571^(7/17) 6099987945659614 a001 377/5778*24476^(19/21) 6099987949550679 a001 2584/843*24476^(11/21) 6099987953644996 a001 377/5778*64079^(19/23) 6099987954173794 a001 2584/843*64079^(11/23) 6099987954872218 a001 377/5778*817138163596^(1/3) 6099987954872218 a001 377/5778*(1/2+1/2*5^(1/2))^19 6099987954872219 a001 377/5778*87403803^(1/2) 6099987954884259 a001 2584/843*7881196^(1/3) 6099987954884292 a001 2584/843*312119004989^(1/5) 6099987954884292 a001 2584/843*(1/2+1/2*5^(1/2))^11 6099987954884292 a001 2584/843*1568397607^(1/4) 6099987955144370 a001 2584/843*103682^(11/24) 6099987955321444 a001 377/5778*103682^(19/24) 6099987956828948 a001 2584/843*39603^(1/2) 6099987958231170 a001 377/5778*39603^(19/22) 6099987969546050 a001 2584/843*15127^(11/20) 6099987970254012 a001 28657/843*3571^(6/17) 6099987978224699 a007 Real Root Of 565*x^4-642*x^3-547*x^2-377*x+501 6099987980197074 a001 377/5778*15127^(19/20) 6099987991223830 m001 (Robbin+Totient)/(3^(1/2)-OrthogonalArrays) 6099987996339443 a001 15456/281*3571^(5/17) 6099988015733577 m001 (cos(1/5*Pi)+Ei(1))/(Khinchin+MadelungNaCl) 6099988018989010 a001 24476/1597*4181^(28/39) 6099988025262089 a001 75025/843*3571^(4/17) 6099988031087713 a008 Real Root of x^3-2808*x-55692 6099988031411325 r005 Im(z^2+c),c=-19/60+37/60*I,n=17 6099988036798694 a001 3940598/17*6557470319842^(11/19) 6099988036798792 a001 1568397607/34*701408733^(11/19) 6099988036924275 a001 312119004989/34*75025^(11/19) 6099988041138483 a001 2550405/4181 6099988044870331 r005 Re(z^2+c),c=-23/22+19/122*I,n=62 6099988048284410 s002 sum(A115781[n]/(n*2^n-1),n=1..infinity) 6099988051379817 a001 832040/15127*521^(5/13) 6099988053101015 a001 121393/843*3571^(3/17) 6099988065484030 a007 Real Root Of 107*x^4-660*x^3+5*x^2-967*x+723 6099988066543387 a001 2584/843*5778^(11/18) 6099988067796225 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^18 6099988074149753 a001 726103/13201*521^(5/13) 6099988077471842 a001 5702887/103682*521^(5/13) 6099988077882602 a001 2255/281*9349^(9/19) 6099988077956528 a001 4976784/90481*521^(5/13) 6099988078027243 a001 39088169/710647*521^(5/13) 6099988078037560 a001 831985/15126*521^(5/13) 6099988078039065 a001 267914296/4870847*521^(5/13) 6099988078039285 a001 233802911/4250681*521^(5/13) 6099988078039317 a001 1836311903/33385282*521^(5/13) 6099988078039321 a001 1602508992/29134601*521^(5/13) 6099988078039322 a001 12586269025/228826127*521^(5/13) 6099988078039322 a001 10983760033/199691526*521^(5/13) 6099988078039322 a001 86267571272/1568397607*521^(5/13) 6099988078039322 a001 75283811239/1368706081*521^(5/13) 6099988078039322 a001 591286729879/10749957122*521^(5/13) 6099988078039322 a001 12585437040/228811001*521^(5/13) 6099988078039322 a001 4052739537881/73681302247*521^(5/13) 6099988078039322 a001 3536736619241/64300051206*521^(5/13) 6099988078039322 a001 6557470319842/119218851371*521^(5/13) 6099988078039322 a001 2504730781961/45537549124*521^(5/13) 6099988078039322 a001 956722026041/17393796001*521^(5/13) 6099988078039322 a001 365435296162/6643838879*521^(5/13) 6099988078039322 a001 139583862445/2537720636*521^(5/13) 6099988078039322 a001 53316291173/969323029*521^(5/13) 6099988078039322 a001 20365011074/370248451*521^(5/13) 6099988078039322 a001 7778742049/141422324*521^(5/13) 6099988078039324 a001 2971215073/54018521*521^(5/13) 6099988078039336 a001 1134903170/20633239*521^(5/13) 6099988078039420 a001 433494437/7881196*521^(5/13) 6099988078039995 a001 165580141/3010349*521^(5/13) 6099988078043936 a001 63245986/1149851*521^(5/13) 6099988078070947 a001 24157817/439204*521^(5/13) 6099988078256080 a001 9227465/167761*521^(5/13) 6099988079525005 a001 3524578/64079*521^(5/13) 6099988081353886 a001 196418/843*3571^(2/17) 6099988087910286 p004 log(27197/61) 6099988088222347 a001 1346269/24476*521^(5/13) 6099988093546396 b008 6+ArcCsc[Sinh[3]] 6099988104112737 a007 Real Root Of 511*x^4-96*x^3-53*x^2-438*x-340 6099988106577574 a001 2255/281*24476^(3/7) 6099988107997441 a001 17711/843*9349^(7/19) 6099988109448644 a001 377*3571^(1/17) 6099988109572956 a001 377/15127*64079^(21/23) 6099988109919194 a007 Real Root Of 824*x^4-779*x^3-546*x^2-166*x-189 6099988110360123 a001 2255/281*64079^(9/23) 6099988110904765 a001 377/15127*439204^(7/9) 6099988110929297 a001 377/15127*7881196^(7/11) 6099988110929351 a001 377/15127*20633239^(3/5) 6099988110929360 a001 377/15127*141422324^(7/13) 6099988110929360 a001 377/15127*2537720636^(7/15) 6099988110929360 a001 377/15127*17393796001^(3/7) 6099988110929360 a001 377/15127*45537549124^(7/17) 6099988110929360 a001 377/15127*14662949395604^(1/3) 6099988110929360 a001 377/15127*(1/2+1/2*5^(1/2))^21 6099988110929360 a001 377/15127*192900153618^(7/18) 6099988110929360 a001 377/15127*10749957122^(7/16) 6099988110929360 a001 377/15127*599074578^(1/2) 6099988110929363 a001 377/15127*33385282^(7/12) 6099988110930594 a001 377/15127*1860498^(7/10) 6099988110930898 a001 2255/281*439204^(1/3) 6099988110938419 a001 377/15127*710647^(3/4) 6099988110941412 a001 2255/281*7881196^(3/11) 6099988110941439 a001 2255/281*141422324^(3/13) 6099988110941439 a001 2255/281*2537720636^(1/5) 6099988110941439 a001 2255/281*45537549124^(3/17) 6099988110941439 a001 2255/281*14662949395604^(1/7) 6099988110941439 a001 2255/281*(1/2+1/2*5^(1/2))^9 6099988110941439 a001 2255/281*192900153618^(1/6) 6099988110941439 a001 2255/281*10749957122^(3/16) 6099988110941439 a001 2255/281*599074578^(3/14) 6099988110941440 a001 2255/281*33385282^(1/4) 6099988110941967 a001 2255/281*1860498^(3/10) 6099988111154230 a001 2255/281*103682^(3/8) 6099988111425873 a001 377/15127*103682^(7/8) 6099988112532521 a001 2255/281*39603^(9/22) 6099988114641885 a001 377/15127*39603^(21/22) 6099988117045542 a001 28657/843*9349^(6/19) 6099988118395901 a001 10946/843*9349^(8/19) 6099988118665718 a001 15456/281*9349^(5/19) 6099988122937423 a001 2255/281*15127^(9/20) 6099988123123109 a001 75025/843*9349^(4/19) 6099988123515439 a001 513619/842 6099988126496781 a001 121393/843*9349^(3/19) 6099988127404751 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^20 6099988130284396 a001 196418/843*9349^(2/19) 6099988130315752 a001 17711/843*24476^(1/3) 6099988130381032 l006 ln(2889/5317) 6099988133257735 a001 17711/843*64079^(7/23) 6099988133697791 a001 377/39603*(1/2+1/2*5^(1/2))^23 6099988133697791 a001 377/39603*4106118243^(1/2) 6099988133709867 a001 17711/843*20633239^(1/5) 6099988133709869 a001 17711/843*17393796001^(1/7) 6099988133709869 a001 17711/843*14662949395604^(1/9) 6099988133709869 a001 17711/843*(1/2+1/2*5^(1/2))^7 6099988133709869 a001 17711/843*599074578^(1/6) 6099988133712889 a001 17711/843*710647^(1/4) 6099988133875374 a001 17711/843*103682^(7/24) 6099988133913899 a001 377*9349^(1/19) 6099988134241590 a001 377/39603*103682^(23/24) 6099988134607369 a001 15456/281*24476^(5/21) 6099988134657216 a007 Real Root Of -831*x^4+210*x^3-279*x^2-614*x-108 6099988134947378 a001 17711/843*39603^(7/22) 6099988135534075 a001 17480736/28657 6099988135876430 a001 75025/843*24476^(4/21) 6099988136061771 a001 121393/843*24476^(1/7) 6099988136101518 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^22 6099988136175524 a001 28657/843*24476^(2/7) 6099988136661057 a001 196418/843*24476^(2/21) 6099988136708785 a001 15456/281*64079^(5/23) 6099988136988390 a001 15456/281*167761^(1/5) 6099988137019650 a001 377/103682*20633239^(5/7) 6099988137019660 a001 377/103682*2537720636^(5/9) 6099988137019660 a001 377/103682*312119004989^(5/11) 6099988137019660 a001 377/103682*(1/2+1/2*5^(1/2))^25 6099988137019660 a001 377/103682*3461452808002^(5/12) 6099988137019660 a001 377/103682*28143753123^(1/2) 6099988137019660 a001 377/103682*228826127^(5/8) 6099988137021129 a001 377/103682*1860498^(5/6) 6099988137031737 a001 15456/281*20633239^(1/7) 6099988137031739 a001 15456/281*2537720636^(1/9) 6099988137031739 a001 15456/281*312119004989^(1/11) 6099988137031739 a001 15456/281*(1/2+1/2*5^(1/2))^5 6099988137031739 a001 15456/281*28143753123^(1/10) 6099988137031739 a001 15456/281*228826127^(1/8) 6099988137032032 a001 15456/281*1860498^(1/6) 6099988137086344 r005 Im(z^2+c),c=-17/27+3/26*I,n=52 6099988137102229 a001 377*24476^(1/21) 6099988137149956 a001 15456/281*103682^(5/24) 6099988137287570 a001 45765161/75025 6099988137322621 a001 121393/843*64079^(3/23) 6099988137370359 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^24 6099988137501623 a001 196418/843*64079^(2/23) 6099988137504234 a001 377/271443*7881196^(9/11) 6099988137504314 a001 377/271443*141422324^(9/13) 6099988137504314 a001 377/271443*2537720636^(3/5) 6099988137504314 a001 377/271443*45537549124^(9/17) 6099988137504314 a001 377/271443*817138163596^(9/19) 6099988137504314 a001 377/271443*14662949395604^(3/7) 6099988137504314 a001 377/271443*(1/2+1/2*5^(1/2))^27 6099988137504314 a001 377/271443*192900153618^(1/2) 6099988137504314 a001 377/271443*10749957122^(9/16) 6099988137504314 a001 377/271443*599074578^(9/14) 6099988137504318 a001 377/271443*33385282^(3/4) 6099988137505900 a001 377/271443*1860498^(9/10) 6099988137512879 a001 121393/843*439204^(1/9) 6099988137516384 a001 121393/843*7881196^(1/11) 6099988137516393 a001 121393/843*141422324^(1/13) 6099988137516393 a001 121393/843*2537720636^(1/15) 6099988137516393 a001 121393/843*45537549124^(1/17) 6099988137516393 a001 121393/843*14662949395604^(1/21) 6099988137516393 a001 121393/843*(1/2+1/2*5^(1/2))^3 6099988137516393 a001 121393/843*192900153618^(1/18) 6099988137516393 a001 121393/843*10749957122^(1/16) 6099988137516393 a001 121393/843*599074578^(1/14) 6099988137516393 a001 121393/843*33385282^(1/12) 6099988137516569 a001 121393/843*1860498^(1/10) 6099988137522512 a001 377*64079^(1/23) 6099988137543402 a001 119814747/196418 6099988137555481 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^26 6099988137557563 a001 75025/843*64079^(4/23) 6099988137575024 a001 377/710647*(1/2+1/2*5^(1/2))^29 6099988137575024 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^29/Lucas(28) 6099988137575024 a001 377/710647*1322157322203^(1/2) 6099988137580727 a001 313679080/514229 6099988137582489 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^28 6099988137585341 a001 377/1860498*(1/2+1/2*5^(1/2))^31 6099988137585341 a001 377/1860498*9062201101803^(1/2) 6099988137586173 a001 821222493/1346269 6099988137586430 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^30 6099988137586846 a001 377/4870847*141422324^(11/13) 6099988137586846 a001 377/4870847*2537720636^(11/15) 6099988137586846 a001 377/4870847*45537549124^(11/17) 6099988137586846 a001 377/4870847*312119004989^(3/5) 6099988137586846 a001 377/4870847*817138163596^(11/19) 6099988137586846 a001 377/4870847*14662949395604^(11/21) 6099988137586846 a001 377/4870847*(1/2+1/2*5^(1/2))^33 6099988137586846 a001 377/4870847*192900153618^(11/18) 6099988137586846 a001 377/4870847*10749957122^(11/16) 6099988137586846 a001 377/4870847*1568397607^(3/4) 6099988137586846 a001 377/4870847*599074578^(11/14) 6099988137586851 a001 377/4870847*33385282^(11/12) 6099988137586967 a001 2149988399/3524578 6099988137587005 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^32 6099988137587066 a001 377/12752043*2537720636^(7/9) 6099988137587066 a001 377/12752043*17393796001^(5/7) 6099988137587066 a001 377/12752043*312119004989^(7/11) 6099988137587066 a001 377/12752043*14662949395604^(5/9) 6099988137587066 a001 377/12752043*(1/2+1/2*5^(1/2))^35 6099988137587066 a001 377/12752043*505019158607^(5/8) 6099988137587066 a001 377/12752043*28143753123^(7/10) 6099988137587066 a001 377/12752043*599074578^(5/6) 6099988137587066 a001 377/12752043*228826127^(7/8) 6099988137587083 a001 432980208/709805 6099988137587089 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^34 6099988137587098 a001 377/33385282*(1/2+1/2*5^(1/2))^37 6099988137587100 a001 14736239713/24157817 6099988137587101 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^36 6099988137587102 a001 377/87403803*2537720636^(13/15) 6099988137587102 a001 377/87403803*45537549124^(13/17) 6099988137587102 a001 377/87403803*14662949395604^(13/21) 6099988137587102 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(38) 6099988137587102 a001 377/87403803*192900153618^(13/18) 6099988137587102 a001 377/87403803*73681302247^(3/4) 6099988137587102 a001 377/87403803*10749957122^(13/16) 6099988137587102 a001 377/87403803*599074578^(13/14) 6099988137587103 a001 38579976435/63245986 6099988137587103 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^38 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(40) 6099988137587103 a001 101003689592/165580141 6099988137587103 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^40 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(42) 6099988137587103 a001 264431092341/433494437 6099988137587103 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^42 6099988137587103 a001 377/1568397607*45537549124^(15/17) 6099988137587103 a001 377/1568397607*312119004989^(9/11) 6099988137587103 a001 377/1568397607*14662949395604^(5/7) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(44) 6099988137587103 a001 377/1568397607*192900153618^(5/6) 6099988137587103 a001 377/1568397607*28143753123^(9/10) 6099988137587103 a001 377/1568397607*10749957122^(15/16) 6099988137587103 a001 692289587431/1134903170 6099988137587103 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^44 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(46) 6099988137587103 a001 1812437669952/2971215073 6099988137587103 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^46 6099988137587103 a001 377/10749957122*14662949395604^(7/9) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(48) 6099988137587103 a001 377/10749957122*505019158607^(7/8) 6099988137587103 a001 365001801725/598364773 6099988137587103 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^48 6099988137587103 a001 377/28143753123*817138163596^(17/19) 6099988137587103 a001 377/28143753123*14662949395604^(17/21) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(50) 6099988137587103 a001 377/28143753123*192900153618^(17/18) 6099988137587103 a001 12422632597323/20365011074 6099988137587103 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^50 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(52) 6099988137587103 a001 32522874369544/53316291173 6099988137587103 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^52 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(54) 6099988137587103 a001 377/192900153618*3461452808002^(11/12) 6099988137587103 a001 85145990511309/139583862445 6099988137587103 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^54 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(56) 6099988137587103 a001 222915097164383/365435296162 6099988137587103 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^56 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(58) 6099988137587103 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^58 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(60) 6099988137587103 a001 1527882805781137/2504730781961 6099988137587103 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^60 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(62) 6099988137587103 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^62 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(64) 6099988137587103 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^64 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(66) 6099988137587103 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^66 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(68) 6099988137587103 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^68 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(70) 6099988137587103 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^70 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(72) 6099988137587103 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^72 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(74) 6099988137587103 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^74 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(76) 6099988137587103 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^76 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(78) 6099988137587103 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^78 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(80) 6099988137587103 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^80 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^83/Lucas(82) 6099988137587103 a004 Fibonacci(14)*Lucas(83)/(1/2+sqrt(5)/2)^82 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^85/Lucas(84) 6099988137587103 a004 Fibonacci(14)*Lucas(85)/(1/2+sqrt(5)/2)^84 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^87/Lucas(86) 6099988137587103 a004 Fibonacci(14)*Lucas(87)/(1/2+sqrt(5)/2)^86 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^89/Lucas(88) 6099988137587103 a004 Fibonacci(14)*Lucas(89)/(1/2+sqrt(5)/2)^88 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^91/Lucas(90) 6099988137587103 a004 Fibonacci(14)*Lucas(91)/(1/2+sqrt(5)/2)^90 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^93/Lucas(92) 6099988137587103 a004 Fibonacci(14)*Lucas(93)/(1/2+sqrt(5)/2)^92 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^95/Lucas(94) 6099988137587103 a004 Fibonacci(14)*Lucas(95)/(1/2+sqrt(5)/2)^94 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^97/Lucas(96) 6099988137587103 a004 Fibonacci(14)*Lucas(97)/(1/2+sqrt(5)/2)^96 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^99/Lucas(98) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)/Lucas(1) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^100/Lucas(99) 6099988137587103 a004 Fibonacci(14)*Lucas(100)/(1/2+sqrt(5)/2)^99 6099988137587103 a004 Fibonacci(14)*Lucas(99)/(1/2+sqrt(5)/2)^98 6099988137587103 a004 Fibonacci(14)*Lucas(98)/(1/2+sqrt(5)/2)^97 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^98/Lucas(97) 6099988137587103 a004 Fibonacci(14)*Lucas(96)/(1/2+sqrt(5)/2)^95 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^96/Lucas(95) 6099988137587103 a004 Fibonacci(14)*Lucas(94)/(1/2+sqrt(5)/2)^93 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^94/Lucas(93) 6099988137587103 a004 Fibonacci(14)*Lucas(92)/(1/2+sqrt(5)/2)^91 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^92/Lucas(91) 6099988137587103 a004 Fibonacci(14)*Lucas(90)/(1/2+sqrt(5)/2)^89 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^90/Lucas(89) 6099988137587103 a004 Fibonacci(14)*Lucas(88)/(1/2+sqrt(5)/2)^87 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^88/Lucas(87) 6099988137587103 a004 Fibonacci(14)*Lucas(86)/(1/2+sqrt(5)/2)^85 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^86/Lucas(85) 6099988137587103 a004 Fibonacci(14)*Lucas(84)/(1/2+sqrt(5)/2)^83 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^84/Lucas(83) 6099988137587103 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^81 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^82/Lucas(81) 6099988137587103 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^79 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(79) 6099988137587103 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^77 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(77) 6099988137587103 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^75 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(75) 6099988137587103 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^73 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(73) 6099988137587103 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^71 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(71) 6099988137587103 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^69 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(69) 6099988137587103 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^67 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(67) 6099988137587103 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^65 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(65) 6099988137587103 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^63 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(63) 6099988137587103 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^61 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(61) 6099988137587103 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^59 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(59) 6099988137587103 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^57 6099988137587103 a001 360684203817457/591286729879 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(57) 6099988137587103 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^55 6099988137587103 a001 365435296162/599075421 6099988137587103 a001 377/312119004989*14662949395604^(8/9) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(55) 6099988137587103 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^53 6099988137587103 a001 52623116141765/86267571272 6099988137587103 a001 377/119218851371*14662949395604^(6/7) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(53) 6099988137587103 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^51 6099988137587103 a001 20100241772221/32951280099 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(51) 6099988137587103 a001 377/45537549124*23725150497407^(13/16) 6099988137587103 a001 377/45537549124*505019158607^(13/14) 6099988137587103 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^49 6099988137587103 a001 7677609174898/12586269025 6099988137587103 a001 13/599786069*312119004989^(10/11) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(49) 6099988137587103 a001 13/599786069*3461452808002^(5/6) 6099988137587103 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^47 6099988137587103 a001 2932585752473/4807526976 6099988137587103 a001 377/6643838879*45537549124^(16/17) 6099988137587103 a001 377/6643838879*14662949395604^(16/21) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(47) 6099988137587103 a001 377/6643838879*192900153618^(8/9) 6099988137587103 a001 377/6643838879*73681302247^(12/13) 6099988137587103 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^45 6099988137587103 a001 1120148082521/1836311903 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(45) 6099988137587103 a001 377/2537720636*10749957122^(23/24) 6099988137587103 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^43 6099988137587103 a001 427858495090/701408733 6099988137587103 a001 377/969323029*312119004989^(4/5) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(43) 6099988137587103 a001 377/969323029*23725150497407^(11/16) 6099988137587103 a001 377/969323029*73681302247^(11/13) 6099988137587103 a001 377/969323029*10749957122^(11/12) 6099988137587103 a001 377/969323029*4106118243^(22/23) 6099988137587103 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^41 6099988137587103 a001 433494437/710648 6099988137587103 a001 377/370248451*2537720636^(14/15) 6099988137587103 a001 377/370248451*17393796001^(6/7) 6099988137587103 a001 377/370248451*45537549124^(14/17) 6099988137587103 a001 377/370248451*817138163596^(14/19) 6099988137587103 a001 377/370248451*14662949395604^(2/3) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(41) 6099988137587103 a001 377/370248451*505019158607^(3/4) 6099988137587103 a001 377/370248451*192900153618^(7/9) 6099988137587103 a001 377/370248451*10749957122^(7/8) 6099988137587103 a001 377/370248451*4106118243^(21/23) 6099988137587103 a001 377/370248451*1568397607^(21/22) 6099988137587103 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^39 6099988137587103 a001 62423713157/102334155 6099988137587103 a001 377/141422324*2537720636^(8/9) 6099988137587103 a001 377/141422324*312119004989^(8/11) 6099988137587103 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^40/Lucas(39) 6099988137587103 a001 377/141422324*23725150497407^(5/8) 6099988137587103 a001 377/141422324*73681302247^(10/13) 6099988137587103 a001 377/141422324*28143753123^(4/5) 6099988137587103 a001 377/141422324*10749957122^(5/6) 6099988137587103 a001 377/141422324*4106118243^(20/23) 6099988137587103 a001 377/141422324*1568397607^(10/11) 6099988137587103 a001 377/141422324*599074578^(20/21) 6099988137587104 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^37 6099988137587104 a001 23843736722/39088169 6099988137587105 a001 377/54018521*817138163596^(2/3) 6099988137587105 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^38/Lucas(37) 6099988137587105 a001 377/54018521*10749957122^(19/24) 6099988137587105 a001 377/54018521*4106118243^(19/23) 6099988137587105 a001 377/54018521*1568397607^(19/22) 6099988137587105 a001 377/54018521*599074578^(19/21) 6099988137587105 a001 377/54018521*228826127^(19/20) 6099988137587109 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^35 6099988137587111 a001 9107497009/14930352 6099988137587117 a001 13/711491*141422324^(12/13) 6099988137587117 a001 13/711491*2537720636^(4/5) 6099988137587117 a001 13/711491*45537549124^(12/17) 6099988137587117 a001 13/711491*14662949395604^(4/7) 6099988137587117 a001 13/711491*(1/2+1/2*5^(1/2))^36 6099988137587117 a001 13/711491*505019158607^(9/14) 6099988137587117 a001 13/711491*192900153618^(2/3) 6099988137587117 a001 13/711491*73681302247^(9/13) 6099988137587117 a001 13/711491*10749957122^(3/4) 6099988137587117 a001 13/711491*4106118243^(18/23) 6099988137587117 a001 13/711491*1568397607^(9/11) 6099988137587117 a001 13/711491*599074578^(6/7) 6099988137587118 a001 13/711491*228826127^(9/10) 6099988137587118 a001 13/711491*87403803^(18/19) 6099988137587141 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^33 6099988137587155 a001 3478754305/5702887 6099988137587201 a001 377/7881196*45537549124^(2/3) 6099988137587201 a001 377/7881196*(1/2+1/2*5^(1/2))^34 6099988137587201 a001 377/7881196*10749957122^(17/24) 6099988137587201 a001 377/7881196*4106118243^(17/23) 6099988137587201 a001 377/7881196*1568397607^(17/22) 6099988137587201 a001 377/7881196*599074578^(17/21) 6099988137587201 a001 377/7881196*228826127^(17/20) 6099988137587202 a001 377/7881196*87403803^(17/19) 6099988137587206 a001 377/7881196*33385282^(17/18) 6099988137587323 a001 121393/843*103682^(1/8) 6099988137587360 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^31 6099988137587458 a001 1328765906/2178309 6099988137587776 a001 377/3010349*(1/2+1/2*5^(1/2))^32 6099988137587776 a001 377/3010349*23725150497407^(1/2) 6099988137587776 a001 377/3010349*505019158607^(4/7) 6099988137587776 a001 377/3010349*73681302247^(8/13) 6099988137587776 a001 377/3010349*10749957122^(2/3) 6099988137587776 a001 377/3010349*4106118243^(16/23) 6099988137587776 a001 377/3010349*1568397607^(8/11) 6099988137587776 a001 377/3010349*599074578^(16/21) 6099988137587776 a001 377/3010349*228826127^(4/5) 6099988137587777 a001 377/3010349*87403803^(16/19) 6099988137587781 a001 377/3010349*33385282^(8/9) 6099988137587812 a001 377/3010349*12752043^(16/17) 6099988137588865 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^29 6099988137589538 a001 507543413/832040 6099988137591627 a001 377/1149851*7881196^(10/11) 6099988137591704 a001 377/1149851*20633239^(6/7) 6099988137591717 a001 377/1149851*141422324^(10/13) 6099988137591717 a001 377/1149851*2537720636^(2/3) 6099988137591717 a001 377/1149851*45537549124^(10/17) 6099988137591717 a001 377/1149851*312119004989^(6/11) 6099988137591717 a001 377/1149851*14662949395604^(10/21) 6099988137591717 a001 377/1149851*(1/2+1/2*5^(1/2))^30 6099988137591717 a001 377/1149851*192900153618^(5/9) 6099988137591717 a001 377/1149851*28143753123^(3/5) 6099988137591717 a001 377/1149851*10749957122^(5/8) 6099988137591717 a001 377/1149851*4106118243^(15/23) 6099988137591717 a001 377/1149851*1568397607^(15/22) 6099988137591717 a001 377/1149851*599074578^(5/7) 6099988137591717 a001 377/1149851*228826127^(3/4) 6099988137591717 a001 377/1149851*87403803^(15/19) 6099988137591721 a001 377/1149851*33385282^(5/6) 6099988137591750 a001 377/1149851*12752043^(15/17) 6099988137591958 a001 377/1149851*4870847^(15/16) 6099988137597420 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2) 6099988137598925 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^3 6099988137599144 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^5 6099988137599176 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^7 6099988137599181 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^9 6099988137599182 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^11 6099988137599182 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^13 6099988137599182 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^15 6099988137599182 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^17 6099988137599182 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^19 6099988137599182 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^21 6099988137599182 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^23 6099988137599182 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^25 6099988137599182 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^27 6099988137599182 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^29 6099988137599182 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^31 6099988137599182 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^33 6099988137599182 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^35 6099988137599182 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^37 6099988137599182 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^39 6099988137599182 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^41 6099988137599182 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^43 6099988137599182 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^45 6099988137599182 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^47 6099988137599182 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^49 6099988137599182 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^51 6099988137599182 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^53 6099988137599182 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^55 6099988137599182 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^57 6099988137599182 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^59 6099988137599182 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^61 6099988137599182 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^63 6099988137599182 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^65 6099988137599182 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^67 6099988137599182 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^69 6099988137599182 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^71 6099988137599182 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^70 6099988137599182 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^68 6099988137599182 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^66 6099988137599182 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^64 6099988137599182 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^62 6099988137599182 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^60 6099988137599182 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^58 6099988137599182 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^56 6099988137599182 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^54 6099988137599182 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^52 6099988137599182 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^50 6099988137599182 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^48 6099988137599182 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^46 6099988137599182 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^44 6099988137599182 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^42 6099988137599182 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^40 6099988137599182 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^38 6099988137599182 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^36 6099988137599182 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^34 6099988137599182 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^32 6099988137599182 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^30 6099988137599182 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^28 6099988137599182 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^26 6099988137599182 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^24 6099988137599182 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^22 6099988137599182 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^20 6099988137599182 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^18 6099988137599182 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^16 6099988137599182 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^14 6099988137599182 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^12 6099988137599182 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^10 6099988137599184 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^8 6099988137599196 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^6 6099988137599280 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^4 6099988137599855 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^2 6099988137603795 a001 514229/843 6099988137610747 a001 377*103682^(1/24) 6099988137618714 a001 377/439204*20633239^(4/5) 6099988137618726 a001 377/439204*17393796001^(4/7) 6099988137618726 a001 377/439204*14662949395604^(4/9) 6099988137618726 a001 377/439204*(1/2+1/2*5^(1/2))^28 6099988137618726 a001 377/439204*505019158607^(1/2) 6099988137618726 a001 377/439204*73681302247^(7/13) 6099988137618726 a001 377/439204*10749957122^(7/12) 6099988137618726 a001 377/439204*4106118243^(14/23) 6099988137618726 a001 377/439204*1568397607^(7/11) 6099988137618726 a001 377/439204*599074578^(2/3) 6099988137618726 a001 377/439204*228826127^(7/10) 6099988137618726 a001 377/439204*87403803^(14/19) 6099988137618730 a001 377/439204*33385282^(7/9) 6099988137618756 a001 377/439204*12752043^(14/17) 6099988137618951 a001 377/439204*4870847^(7/8) 6099988137620370 a001 377/439204*1860498^(14/15) 6099988137630804 a001 196418/843*(1/2+1/2*5^(1/2))^2 6099988137630804 a001 196418/843*10749957122^(1/24) 6099988137630804 a001 196418/843*4106118243^(1/23) 6099988137630804 a001 196418/843*1568397607^(1/22) 6099988137630804 a001 196418/843*599074578^(1/21) 6099988137630804 a001 196418/843*228826127^(1/20) 6099988137630804 a001 196418/843*87403803^(1/19) 6099988137630805 a001 196418/843*33385282^(1/18) 6099988137630807 a001 196418/843*12752043^(1/17) 6099988137630820 a001 196418/843*4870847^(1/16) 6099988137630922 a001 196418/843*1860498^(1/15) 6099988137631667 a001 196418/843*710647^(1/14) 6099988137637173 a001 196418/843*271443^(1/13) 6099988137669892 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^25 6099988137678091 a001 196418/843*103682^(1/12) 6099988137701514 a001 74049586/121393 6099988137763890 a001 377*39603^(1/22) 6099988137803847 a001 377/167761*141422324^(2/3) 6099988137803847 a001 377/167761*(1/2+1/2*5^(1/2))^26 6099988137803847 a001 377/167761*73681302247^(1/2) 6099988137803847 a001 377/167761*10749957122^(13/24) 6099988137803847 a001 377/167761*4106118243^(13/23) 6099988137803847 a001 377/167761*1568397607^(13/22) 6099988137803847 a001 377/167761*599074578^(13/21) 6099988137803847 a001 377/167761*228826127^(13/20) 6099988137803848 a001 377/167761*87403803^(13/19) 6099988137803851 a001 377/167761*33385282^(13/18) 6099988137803876 a001 377/167761*12752043^(13/17) 6099988137804056 a001 377/167761*4870847^(13/16) 6099988137805374 a001 377/167761*1860498^(13/15) 6099988137815063 a001 377/167761*710647^(13/14) 6099988137815926 a001 75025/843*(1/2+1/2*5^(1/2))^4 6099988137815926 a001 75025/843*23725150497407^(1/16) 6099988137815926 a001 75025/843*73681302247^(1/13) 6099988137815926 a001 75025/843*10749957122^(1/12) 6099988137815926 a001 75025/843*4106118243^(2/23) 6099988137815926 a001 75025/843*1568397607^(1/11) 6099988137815926 a001 75025/843*599074578^(2/21) 6099988137815926 a001 75025/843*228826127^(1/10) 6099988137815926 a001 75025/843*87403803^(2/19) 6099988137815926 a001 75025/843*33385282^(1/9) 6099988137815930 a001 75025/843*12752043^(2/17) 6099988137815958 a001 75025/843*4870847^(1/8) 6099988137816161 a001 75025/843*1860498^(2/15) 6099988137817651 a001 75025/843*710647^(1/7) 6099988137828662 a001 75025/843*271443^(2/13) 6099988137910500 a001 75025/843*103682^(1/6) 6099988137915673 a001 15456/281*39603^(5/22) 6099988137984378 a001 196418/843*39603^(1/11) 6099988138046754 a001 121393/843*39603^(3/22) 6099988138154546 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^23 6099988138371290 a001 28284425/46368 6099988138523073 a001 75025/843*39603^(2/11) 6099988138697223 a001 28657/843*64079^(6/23) 6099988138919990 a001 377*15127^(1/20) 6099988139044579 a001 377/64079*439204^(8/9) 6099988139072617 a001 377/64079*7881196^(8/11) 6099988139072688 a001 377/64079*141422324^(8/13) 6099988139072688 a001 377/64079*2537720636^(8/15) 6099988139072688 a001 377/64079*45537549124^(8/17) 6099988139072688 a001 377/64079*14662949395604^(8/21) 6099988139072688 a001 377/64079*(1/2+1/2*5^(1/2))^24 6099988139072688 a001 377/64079*192900153618^(4/9) 6099988139072688 a001 377/64079*73681302247^(6/13) 6099988139072688 a001 377/64079*10749957122^(1/2) 6099988139072688 a001 377/64079*4106118243^(12/23) 6099988139072688 a001 377/64079*1568397607^(6/11) 6099988139072688 a001 377/64079*599074578^(4/7) 6099988139072688 a001 377/64079*228826127^(3/5) 6099988139072689 a001 377/64079*87403803^(12/19) 6099988139072692 a001 377/64079*33385282^(2/3) 6099988139072715 a001 377/64079*12752043^(12/17) 6099988139072881 a001 377/64079*4870847^(3/4) 6099988139074098 a001 377/64079*1860498^(4/5) 6099988139077740 a001 28657/843*439204^(2/9) 6099988139083041 a001 377/64079*710647^(6/7) 6099988139084749 a001 28657/843*7881196^(2/11) 6099988139084767 a001 28657/843*141422324^(2/13) 6099988139084767 a001 28657/843*2537720636^(2/15) 6099988139084767 a001 28657/843*45537549124^(2/17) 6099988139084767 a001 28657/843*14662949395604^(2/21) 6099988139084767 a001 28657/843*(1/2+1/2*5^(1/2))^6 6099988139084767 a001 28657/843*10749957122^(1/8) 6099988139084767 a001 28657/843*4106118243^(3/23) 6099988139084767 a001 28657/843*1568397607^(3/22) 6099988139084767 a001 28657/843*599074578^(1/7) 6099988139084767 a001 28657/843*228826127^(3/20) 6099988139084767 a001 28657/843*87403803^(3/19) 6099988139084768 a001 28657/843*33385282^(1/6) 6099988139084774 a001 28657/843*12752043^(3/17) 6099988139084815 a001 28657/843*4870847^(3/16) 6099988139085119 a001 28657/843*1860498^(1/5) 6099988139087355 a001 28657/843*710647^(3/14) 6099988139103872 a001 28657/843*271443^(3/13) 6099988139149109 a001 377/64079*271443^(12/13) 6099988139226628 a001 28657/843*103682^(1/4) 6099988140145488 a001 28657/843*39603^(3/11) 6099988140296579 a001 196418/843*15127^(1/10) 6099988141476415 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^21 6099988141515054 a001 121393/843*15127^(3/20) 6099988142331546 r005 Re(z^2+c),c=-29/38+19/29*I,n=2 6099988142962001 a001 10803689/17711 6099988143040080 a001 17711/843*15127^(7/20) 6099988143147474 a001 75025/843*15127^(1/5) 6099988143696175 a001 15456/281*15127^(1/4) 6099988143902542 a001 10946/843*24476^(8/21) 6099988146348460 a001 13/844*64079^(22/23) 6099988147082090 a001 28657/843*15127^(3/10) 6099988147264808 a001 10946/843*64079^(8/23) 6099988147737930 a001 377*5778^(1/18) 6099988147769389 a001 13/844*7881196^(2/3) 6099988147769455 a001 13/844*312119004989^(2/5) 6099988147769455 a001 13/844*(1/2+1/2*5^(1/2))^22 6099988147769455 a001 13/844*10749957122^(11/24) 6099988147769455 a001 13/844*4106118243^(11/23) 6099988147769455 a001 13/844*1568397607^(1/2) 6099988147769455 a001 13/844*599074578^(11/21) 6099988147769455 a001 13/844*228826127^(11/20) 6099988147769455 a001 13/844*87403803^(11/19) 6099988147769458 a001 13/844*33385282^(11/18) 6099988147769479 a001 13/844*12752043^(11/17) 6099988147769632 a001 13/844*4870847^(11/16) 6099988147770747 a001 13/844*1860498^(11/15) 6099988147778945 a001 13/844*710647^(11/14) 6099988147781534 a001 10946/843*(1/2+1/2*5^(1/2))^8 6099988147781534 a001 10946/843*23725150497407^(1/8) 6099988147781534 a001 10946/843*505019158607^(1/7) 6099988147781534 a001 10946/843*73681302247^(2/13) 6099988147781534 a001 10946/843*10749957122^(1/6) 6099988147781534 a001 10946/843*4106118243^(4/23) 6099988147781534 a001 10946/843*1568397607^(2/11) 6099988147781534 a001 10946/843*599074578^(4/21) 6099988147781534 a001 10946/843*228826127^(1/5) 6099988147781534 a001 10946/843*87403803^(4/19) 6099988147781535 a001 10946/843*33385282^(2/9) 6099988147781542 a001 10946/843*12752043^(4/17) 6099988147781598 a001 10946/843*4870847^(1/4) 6099988147782004 a001 10946/843*1860498^(4/15) 6099988147784985 a001 10946/843*710647^(2/7) 6099988147807007 a001 10946/843*271443^(4/13) 6099988147834814 a001 514229/9349*521^(5/13) 6099988147839507 a001 13/844*271443^(11/13) 6099988147970681 a001 10946/843*103682^(1/3) 6099988148289611 a001 13/844*103682^(11/12) 6099988149195829 a001 10946/843*39603^(4/11) 6099988154512967 m005 (1/2*3^(1/2)+4/5)/(3/4*Pi+3/8) 6099988157932459 a001 196418/843*5778^(1/9) 6099988158444631 a001 10946/843*15127^(2/5) 6099988158580815 r008 a(0)=0,K{-n^6,-49-89*n^3-84*n^2+58*n} 6099988164244846 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^19 6099988167968874 a001 121393/843*5778^(1/6) 6099988170658018 a001 4181/843*9349^(10/19) 6099988174427198 a001 4126642/6765 6099988178419234 a001 75025/843*5778^(2/9) 6099988183223191 r005 Im(z^2+c),c=-1/14+37/45*I,n=20 6099988186518970 r008 a(0)=0,K{-n^6,-9+76*n^3+94*n^2+3*n} 6099988187785874 a001 15456/281*5778^(5/18) 6099988197680504 a001 377/9349*24476^(20/21) 6099988199989730 a001 28657/843*5778^(1/3) 6099988202298883 a001 2255/281*5778^(1/2) 6099988202541321 a001 4181/843*24476^(10/21) 6099988204765659 a001 17711/843*5778^(7/18) 6099988206086169 a001 377/9349*64079^(20/23) 6099988206744153 a001 4181/843*64079^(10/23) 6099988207204587 a001 377/9349*167761^(4/5) 6099988207303362 a001 4181/843*167761^(2/5) 6099988207377974 a001 377/9349*20633239^(4/7) 6099988207377982 a001 377/9349*2537720636^(4/9) 6099988207377982 a001 377/9349*(1/2+1/2*5^(1/2))^20 6099988207377982 a001 377/9349*23725150497407^(5/16) 6099988207377982 a001 377/9349*505019158607^(5/14) 6099988207377982 a001 377/9349*73681302247^(5/13) 6099988207377982 a001 377/9349*28143753123^(2/5) 6099988207377982 a001 377/9349*10749957122^(5/12) 6099988207377982 a001 377/9349*4106118243^(10/23) 6099988207377982 a001 377/9349*1568397607^(5/11) 6099988207377982 a001 377/9349*599074578^(10/21) 6099988207377982 a001 377/9349*228826127^(1/2) 6099988207377982 a001 377/9349*87403803^(10/19) 6099988207377985 a001 377/9349*33385282^(5/9) 6099988207378004 a001 377/9349*12752043^(10/17) 6099988207378142 a001 377/9349*4870847^(5/8) 6099988207379157 a001 377/9349*1860498^(2/3) 6099988207386609 a001 377/9349*710647^(5/7) 6099988207390056 a001 4181/843*20633239^(2/7) 6099988207390060 a001 4181/843*2537720636^(2/9) 6099988207390060 a001 4181/843*312119004989^(2/11) 6099988207390060 a001 4181/843*(1/2+1/2*5^(1/2))^10 6099988207390060 a001 4181/843*28143753123^(1/5) 6099988207390060 a001 4181/843*10749957122^(5/24) 6099988207390060 a001 4181/843*4106118243^(5/23) 6099988207390060 a001 4181/843*1568397607^(5/22) 6099988207390060 a001 4181/843*599074578^(5/21) 6099988207390060 a001 4181/843*228826127^(1/4) 6099988207390060 a001 4181/843*87403803^(5/19) 6099988207390061 a001 4181/843*33385282^(5/18) 6099988207390071 a001 4181/843*12752043^(5/17) 6099988207390140 a001 4181/843*4870847^(5/16) 6099988207390647 a001 4181/843*1860498^(1/3) 6099988207394373 a001 4181/843*710647^(5/14) 6099988207421901 a001 4181/843*271443^(5/13) 6099988207441665 a001 377/9349*271443^(10/13) 6099988207626494 a001 4181/843*103682^(5/12) 6099988207850851 a001 377/9349*103682^(5/6) 6099988209157929 a001 4181/843*39603^(5/11) 6099988210913720 a001 377/9349*39603^(10/11) 6099988214160654 r005 Re(z^2+c),c=37/98+17/49*I,n=20 6099988215858751 a001 377*2207^(1/16) 6099988220718931 a001 4181/843*15127^(1/2) 6099988228988151 a001 10946/843*5778^(4/9) 6099988240868894 a007 Real Root Of -362*x^4+414*x^3-437*x^2+816*x-379 6099988249953656 m001 BesselK(0,1)-GAMMA(11/12)^BesselI(1,1) 6099988251360406 a007 Real Root Of -185*x^4-952*x^3+987*x^2-583*x-221 6099988278291443 a001 1597/843*3571^(12/17) 6099988281223113 a007 Real Root Of -995*x^4+252*x^3-660*x^2-855*x-81 6099988283520115 a007 Real Root Of -x^4+837*x^3+280*x^2+977*x-890 6099988291655423 a007 Real Root Of 227*x^4-991*x^3+54*x^2-14*x-285 6099988291986474 m001 1/ln(Porter)^2*FeigenbaumB*OneNinth 6099988294174101 a001 196418/843*2207^(1/8) 6099988308898333 a001 4181/843*5778^(5/9) 6099988320301993 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^17 6099988322028567 a007 Real Root Of -535*x^4+802*x^3+692*x^2+158*x+95 6099988336349081 r005 Im(z^2+c),c=-53/114+3/29*I,n=27 6099988347826312 m001 ln(GAMMA(1/6))/Tribonacci^2*Zeta(3) 6099988356176527 a001 610/843*1364^(14/15) 6099988359261945 m001 (Paris-Porter)/(ln(3)+ln(Pi)) 6099988362103350 a007 Real Root Of -197*x^4+369*x^3-681*x^2+637*x+753 6099988362824435 b008 Pi+EllipticK[3/Pi] 6099988372331340 a001 121393/843*2207^(3/16) 6099988374390773 a001 3571/24157817*89^(6/19) 6099988390092879 a001 1576237/2584 6099988401104158 a007 Real Root Of -932*x^4+247*x^3-964*x^2-621*x+165 6099988406609625 r005 Re(z^2+c),c=-109/118+3/13*I,n=64 6099988417773880 r009 Im(z^3+c),c=-7/106+42/59*I,n=7 6099988419658833 m001 Trott^BesselI(1,1)/(GAMMA(7/12)^BesselI(1,1)) 6099988421497869 s002 sum(A100815[n]/(n^2*2^n+1),n=1..infinity) 6099988433823800 m001 (BesselK(1,1)*Totient+Trott)/Totient 6099988450902524 a001 75025/843*2207^(1/4) 6099988462688202 a007 Real Root Of 395*x^4-544*x^3-189*x^2-856*x-630 6099988497591096 r005 Im(z^2+c),c=1/15+35/58*I,n=49 6099988512115488 a007 Real Root Of 689*x^4+503*x^3+626*x^2-44*x-241 6099988528389989 a001 15456/281*2207^(5/16) 6099988543969407 r002 26th iterates of z^2 + 6099988547340415 m001 FeigenbaumKappa/DuboisRaymond*exp(sqrt(5))^2 6099988549823255 a001 377/3571*9349^(18/19) 6099988554377469 a001 196418/2207*521^(4/13) 6099988556424770 a001 196418/3571*521^(5/13) 6099988563218097 m001 (2^(1/3)+exp(1))/(Cahen+ZetaQ(3)) 6099988571874522 a001 1597/843*9349^(12/19) 6099988607213203 a001 377/3571*24476^(6/7) 6099988608714670 a001 28657/843*2207^(3/8) 6099988610134488 a001 1597/843*24476^(4/7) 6099988614778302 a001 377/3571*64079^(18/23) 6099988615177887 a001 1597/843*64079^(12/23) 6099988615919852 a001 377/3571*439204^(2/3) 6099988615938920 a001 1597/843*439204^(4/9) 6099988615940880 a001 377/3571*7881196^(6/11) 6099988615940933 a001 377/3571*141422324^(6/13) 6099988615940934 a001 377/3571*2537720636^(2/5) 6099988615940934 a001 377/3571*45537549124^(6/17) 6099988615940934 a001 377/3571*14662949395604^(2/7) 6099988615940934 a001 377/3571*(1/2+1/2*5^(1/2))^18 6099988615940934 a001 377/3571*192900153618^(1/3) 6099988615940934 a001 377/3571*10749957122^(3/8) 6099988615940934 a001 377/3571*4106118243^(9/23) 6099988615940934 a001 377/3571*1568397607^(9/22) 6099988615940934 a001 377/3571*599074578^(3/7) 6099988615940934 a001 377/3571*228826127^(9/20) 6099988615940934 a001 377/3571*87403803^(9/19) 6099988615940936 a001 377/3571*33385282^(1/2) 6099988615940953 a001 377/3571*12752043^(9/17) 6099988615941078 a001 377/3571*4870847^(9/16) 6099988615941991 a001 377/3571*1860498^(3/5) 6099988615948698 a001 377/3571*710647^(9/14) 6099988615952939 a001 1597/843*7881196^(4/11) 6099988615952975 a001 1597/843*141422324^(4/13) 6099988615952975 a001 1597/843*2537720636^(4/15) 6099988615952975 a001 1597/843*45537549124^(4/17) 6099988615952975 a001 1597/843*817138163596^(4/19) 6099988615952975 a001 1597/843*14662949395604^(4/21) 6099988615952975 a001 1597/843*(1/2+1/2*5^(1/2))^12 6099988615952975 a001 1597/843*192900153618^(2/9) 6099988615952975 a001 1597/843*73681302247^(3/13) 6099988615952975 a001 1597/843*10749957122^(1/4) 6099988615952975 a001 1597/843*4106118243^(6/23) 6099988615952975 a001 1597/843*1568397607^(3/11) 6099988615952975 a001 1597/843*599074578^(2/7) 6099988615952975 a001 1597/843*228826127^(3/10) 6099988615952975 a001 1597/843*87403803^(6/19) 6099988615952977 a001 1597/843*33385282^(1/3) 6099988615952988 a001 1597/843*12752043^(6/17) 6099988615953071 a001 1597/843*4870847^(3/8) 6099988615953680 a001 1597/843*1860498^(2/5) 6099988615958151 a001 1597/843*710647^(3/7) 6099988615991185 a001 1597/843*271443^(6/13) 6099988615998249 a001 377/3571*271443^(9/13) 6099988616236696 a001 1597/843*103682^(1/2) 6099988616366516 a001 377/3571*103682^(3/4) 6099988618074418 a001 1597/843*39603^(6/11) 6099988619123098 a001 377/3571*39603^(9/11) 6099988619396869 m001 (Khinchin+Sierpinski)/(Zeta(1/2)+Gompertz) 6099988624033820 a007 Real Root Of -598*x^4+991*x^3-565*x^2+123*x+593 6099988631947622 a001 1597/843*15127^(3/5) 6099988639932904 a001 377/3571*15127^(9/10) 6099988649704748 a007 Real Root Of -95*x^4-640*x^3-226*x^2+891*x+112 6099988654303881 a007 Real Root Of -997*x^4-198*x^3+860*x^2+718*x-575 6099988662266644 m008 (2*Pi^3+1/3)/(1/3*Pi^5+1/5) 6099988669866125 a001 9349/8*433494437^(7/9) 6099988681611426 a001 17711/843*2207^(7/16) 6099988694129366 a001 39603/2584*4181^(28/39) 6099988694588091 a001 610/3*199^(11/53) 6099988703641082 m006 (5/6*Pi-1/3)/(4/5/Pi-4) 6099988710270138 a007 Real Root Of -999*x^4+751*x^3-595*x^2-538*x+202 6099988737762911 a001 1597/843*5778^(2/3) 6099988739739770 a001 271443/8*5702887^(7/9) 6099988739825491 a001 1970299/2*75025^(7/9) 6099988749189773 a007 Real Root Of -448*x^4+857*x^3-552*x^2-895*x-84 6099988750708883 a001 377*843^(1/14) 6099988763183323 r002 8th iterates of z^2 + 6099988773954747 a001 10946/843*2207^(1/2) 6099988778546605 m001 1/3*(Niven-Sierpinski)*3^(2/3) 6099988782953738 a001 9349/63245986*89^(6/19) 6099988788043144 r009 Im(z^3+c),c=-13/54+16/25*I,n=4 6099988790661106 m001 GAMMA(19/24)*exp(FeigenbaumB)^2/Zeta(7)^2 6099988792435556 r005 Im(z^2+c),c=-3/31+45/59*I,n=5 6099988803282557 l006 ln(2795/5144) 6099988815386304 a001 2255/281*2207^(9/16) 6099988815872449 a001 2584/843*2207^(11/16) 6099988821682015 r005 Re(z^2+c),c=-65/98+6/61*I,n=3 6099988830563445 a001 1/3*3524578^(22/23) 6099988833044519 a007 Real Root Of 676*x^4-595*x^3+424*x^2+22*x-373 6099988842562271 a001 24476/165580141*89^(6/19) 6099988851259039 a001 64079/433494437*89^(6/19) 6099988852527880 a001 167761/1134903170*89^(6/19) 6099988852713001 a001 439204/2971215073*89^(6/19) 6099988852740010 a001 1149851/7778742049*89^(6/19) 6099988852743951 a001 3010349/20365011074*89^(6/19) 6099988852744526 a001 7881196/53316291173*89^(6/19) 6099988852744610 a001 20633239/139583862445*89^(6/19) 6099988852744622 a001 54018521/365435296162*89^(6/19) 6099988852744624 a001 141422324/956722026041*89^(6/19) 6099988852744624 a001 370248451/2504730781961*89^(6/19) 6099988852744624 a001 969323029/6557470319842*89^(6/19) 6099988852744624 a001 224056801/1515744265389*89^(6/19) 6099988852744624 a001 599074578/4052739537881*89^(6/19) 6099988852744624 a001 228826127/1548008755920*89^(6/19) 6099988852744625 a001 87403803/591286729879*89^(6/19) 6099988852744629 a001 4769326/32264490531*89^(6/19) 6099988852744662 a001 12752043/86267571272*89^(6/19) 6099988852744881 a001 4870847/32951280099*89^(6/19) 6099988852746386 a001 1860498/12586269025*89^(6/19) 6099988852756703 a001 101521/686789568*89^(6/19) 6099988852827413 a001 271443/1836311903*89^(6/19) 6099988853312067 a001 103682/701408733*89^(6/19) 6099988853574862 r005 Im(z^2+c),c=-33/70+4/35*I,n=10 6099988856633937 a001 39603/267914296*89^(6/19) 6099988857147854 m001 1/ln(MertensB1)^2/FransenRobinson*GAMMA(7/24) 6099988858167935 m001 Stephens^Ei(1)/(RenyiParking^Ei(1)) 6099988879402370 a001 1/6765*89^(6/19) 6099988887167220 r002 6i'th iterates of 2*x/(1-x^2) of 6099988919421280 a007 Real Root Of -692*x^4+50*x^3+210*x^2+718*x+467 6099988923222463 m006 (1/4*exp(Pi)+4)/(5*Pi+1/3) 6099988963702094 r005 Im(z^2+c),c=-3/56+17/26*I,n=5 6099988968623470 a007 Real Root Of -158*x^4+344*x^3+484*x^2+470*x-523 6099988976300739 m001 1/exp(GAMMA(5/24))/Bloch*GAMMA(7/12)^2 6099988990106594 a001 4181/843*2207^(5/8) 6099989002220897 m001 GAMMA(23/24)/BesselI(1,2)/Shi(1) 6099989019941906 m006 (3/5*exp(2*Pi)-5)/(1/4*exp(Pi)-3/5) 6099989027607053 m001 HardyLittlewoodC4+TreeGrowth2nd^Backhouse 6099989035459537 a001 5778/39088169*89^(6/19) 6099989037755168 p004 log(15259/8291) 6099989064658735 a007 Real Root Of -882*x^4+842*x^3+821*x^2+491*x-674 6099989095117000 a001 514229/18*7^(23/59) 6099989120839128 a007 Real Root Of 475*x^4+577*x^3+748*x^2+233*x-71 6099989140390383 m001 (GaussAGM+MadelungNaCl)/(Pi-exp(1)) 6099989175086092 r005 Re(z^2+c),c=-3/4+6/101*I,n=23 6099989175321229 g006 Psi(1,11/12)+Psi(1,7/10)+Psi(1,5/8)-Psi(1,7/8) 6099989202030018 r009 Re(z^3+c),c=-10/21+32/35*I,n=2 6099989204694853 m001 Landau^Kolakoski/Psi(1,1/3) 6099989236806134 m001 (GAMMA(19/24)-Riemann2ndZero)^Zeta(1,-1) 6099989250864253 a007 Real Root Of 19*x^4-415*x^3-364*x^2+141*x+141 6099989255418091 a001 161/4*75025^(1/27) 6099989285213376 a007 Real Root Of -270*x^4+222*x^3-813*x^2-689*x-30 6099989334466372 a007 Real Root Of 933*x^4+49*x^3+863*x^2+38*x-416 6099989354927707 r008 a(0)=6,K{-n^6,58-29*n-59*n^2+21*n^3} 6099989359661419 a007 Real Root Of -358*x^4+202*x^3-702*x^2+917*x+916 6099989363874426 a001 196418/843*843^(1/7) 6099989369988662 r005 Re(z^2+c),c=9/74+31/64*I,n=64 6099989382523903 a007 Real Root Of -418*x^4+672*x^3+79*x^2-141*x+95 6099989386601505 a007 Real Root Of -508*x^4+142*x^3+889*x^2+471*x-580 6099989389933592 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^15 6099989392847306 m001 GolombDickman/(BesselI(1,2)-LambertW(1)) 6099989409336973 h001 (2/7*exp(1)+4/7)/(6/11*exp(1)+8/11) 6099989433954406 r005 Im(z^2+c),c=15/98+26/47*I,n=31 6099989450644601 a007 Real Root Of -34*x^4+46*x^3-449*x^2+898*x+730 6099989465517118 m001 1/ln(GAMMA(1/12))/TwinPrimes/Zeta(7)^2 6099989474553621 a007 Real Root Of 615*x^4-53*x^3-430*x^2-992*x+692 6099989476104526 m005 (1/2*gamma-2/9)/(13/14+1/14*5^(1/2)) 6099989496080136 g007 Psi(2,10/11)+Psi(2,6/7)+Psi(2,2/7)-Psi(2,3/11) 6099989505970277 m001 (FeigenbaumMu-Rabbit)/(Pi^(1/2)-Conway) 6099989520843755 a007 Real Root Of -472*x^4+786*x^3-249*x^2+619*x+714 6099989523020570 l006 ln(2701/4971) 6099989531765600 a007 Real Root Of -46*x^4-460*x^3-932*x^2+947*x-264 6099989554839739 a007 Real Root Of -861*x^4+794*x^3+188*x^2-668*x-178 6099989555212891 a001 1597/843*2207^(3/4) 6099989567524981 a007 Real Root Of 652*x^4-179*x^3+599*x^2-761*x-818 6099989596545960 m001 (Ei(1,1)+exp(1/Pi))/(3^(1/2)+ln(2^(1/2)+1)) 6099989609063303 a007 Real Root Of -159*x^4-792*x^3+967*x^2-854*x-812 6099989623982099 a001 514229/5778*521^(4/13) 6099989624425508 r002 47i'th iterates of 2*x/(1-x^2) of 6099989627505745 a001 11592/341*521^(6/13) 6099989631032620 h001 (-8*exp(4)+3)/(-8*exp(2)-12) 6099989640892703 a007 Real Root Of -291*x^4+297*x^3+371*x^2+503*x-472 6099989677211308 m002 -Pi^2/4+E^Pi*Csch[Pi]+ProductLog[Pi] 6099989722891833 r002 47th iterates of z^2 + 6099989734844585 r005 Re(z^2+c),c=-3/4+3/65*I,n=25 6099989754733407 a007 Real Root Of 484*x^4+378*x^3+398*x^2-329*x-330 6099989759839568 a001 17711/3*521^(43/58) 6099989780035343 a001 1346269/15127*521^(4/13) 6099989781488218 r009 Im(z^3+c),c=-4/23+30/41*I,n=63 6099989783021866 r005 Im(z^2+c),c=-13/10+3/121*I,n=3 6099989786529718 a001 2161/141*4181^(28/39) 6099989801442875 r005 Im(z^2+c),c=29/66+19/56*I,n=12 6099989802803205 a001 3524578/39603*521^(4/13) 6099989805236522 a007 Real Root Of -902*x^4+105*x^3-276*x^2+778*x+726 6099989806124992 a001 9227465/103682*521^(4/13) 6099989806609634 a001 24157817/271443*521^(4/13) 6099989806680342 a001 63245986/710647*521^(4/13) 6099989806690658 a001 165580141/1860498*521^(4/13) 6099989806692163 a001 433494437/4870847*521^(4/13) 6099989806692383 a001 1134903170/12752043*521^(4/13) 6099989806692415 a001 2971215073/33385282*521^(4/13) 6099989806692420 a001 7778742049/87403803*521^(4/13) 6099989806692420 a001 20365011074/228826127*521^(4/13) 6099989806692420 a001 53316291173/599074578*521^(4/13) 6099989806692420 a001 139583862445/1568397607*521^(4/13) 6099989806692420 a001 365435296162/4106118243*521^(4/13) 6099989806692420 a001 956722026041/10749957122*521^(4/13) 6099989806692420 a001 2504730781961/28143753123*521^(4/13) 6099989806692420 a001 6557470319842/73681302247*521^(4/13) 6099989806692420 a001 10610209857723/119218851371*521^(4/13) 6099989806692420 a001 4052739537881/45537549124*521^(4/13) 6099989806692420 a001 1548008755920/17393796001*521^(4/13) 6099989806692420 a001 591286729879/6643838879*521^(4/13) 6099989806692420 a001 225851433717/2537720636*521^(4/13) 6099989806692420 a001 86267571272/969323029*521^(4/13) 6099989806692420 a001 32951280099/370248451*521^(4/13) 6099989806692421 a001 12586269025/141422324*521^(4/13) 6099989806692423 a001 4807526976/54018521*521^(4/13) 6099989806692435 a001 1836311903/20633239*521^(4/13) 6099989806692519 a001 3524667/39604*521^(4/13) 6099989806693094 a001 267914296/3010349*521^(4/13) 6099989806697034 a001 102334155/1149851*521^(4/13) 6099989806724042 a001 39088169/439204*521^(4/13) 6099989806909159 a001 14930352/167761*521^(4/13) 6099989808177968 a001 5702887/64079*521^(4/13) 6099989812943367 g005 GAMMA(5/11)/GAMMA(7/10)/GAMMA(7/9)/GAMMA(3/7) 6099989814128283 m001 Riemann1stZero/(2^(1/3)+Shi(1)) 6099989814413710 m001 (Catalan-FeigenbaumB)/(Kolakoski+Stephens) 6099989816874518 a001 2178309/24476*521^(4/13) 6099989829388213 r005 Re(z^2+c),c=-9/10+12/65*I,n=50 6099989859255656 r002 29th iterates of z^2 + 6099989868287740 a001 602069/987 6099989868289820 a001 6155/2-2207/2*5^(1/2) 6099989871781130 m004 -3+64*Tanh[Sqrt[5]*Pi] 6099989875797095 a007 Real Root Of 181*x^4+300*x^3+254*x^2+68*x-10 6099989876481556 a001 832040/9349*521^(4/13) 6099989891377721 a001 47*(1/2*5^(1/2)+1/2)^17*843^(8/15) 6099989902008444 l006 ln(5308/9769) 6099989919284014 a007 Real Root Of 943*x^4+782*x^3+464*x^2-958*x-60 6099989925581767 a007 Real Root Of -360*x^4+560*x^3+8*x^2+816*x-578 6099989946569009 m001 (GAMMA(3/4)+1/3)/(-exp(1/exp(1))+4) 6099989957846709 m005 (-1/12+1/6*5^(1/2))/(2/5*Pi-6) 6099989976881918 a001 121393/843*843^(3/14) 6099989992800442 a007 Real Root Of -70*x^4-298*x^3+613*x^2-926*x+822 6099990002416310 b008 -1/2+Zeta[2/3,7] 6099990034908081 r005 Re(z^2+c),c=-67/90+3/46*I,n=64 6099990041952380 a007 Real Root Of -914*x^4-67*x^3-61*x^2+536*x+461 6099990047210145 a007 Real Root Of 595*x^4-718*x^3-202*x^2+179*x-61 6099990049129497 m001 1/Riemann1stZero^2*ln(ArtinRank2)*Tribonacci^2 6099990064452695 a008 Real Root of (-6+3*x+4*x^2+6*x^3+5*x^4-x^5) 6099990077272730 m001 Rabbit/ln(FransenRobinson)^2*Catalan 6099990083218096 a007 Real Root Of -142*x^4-873*x^3-79*x^2-248*x-117 6099990105091265 a001 2207/14930352*89^(6/19) 6099990145360959 r002 4th iterates of z^2 + 6099990157631996 m001 1/ln(FeigenbaumC)*HardHexagonsEntropy^2*Ei(1) 6099990168500943 m001 GaussAGM/ln(5)*Salem 6099990188855309 a005 (1/sin(38/103*Pi))^179 6099990199587173 r005 Im(z^2+c),c=-4/21+31/49*I,n=7 6099990205545908 m005 (2^(1/2)+3/4)/(3*Catalan+4/5) 6099990213706256 h001 (-10*exp(1)-6)/(-10*exp(4)+2) 6099990245204195 m001 exp(GAMMA(5/6))^2*Cahen/Zeta(7) 6099990264400387 m001 (Si(Pi)+FeigenbaumB)/BesselJ(1,1) 6099990282987001 a001 317811/2207*521^(3/13) 6099990285034303 a001 317811/3571*521^(4/13) 6099990293885294 a007 Real Root Of 87*x^4-166*x^3-121*x^2-530*x-328 6099990294661381 l006 ln(2607/4798) 6099990299582802 m001 (5^(1/2)+Zeta(3))/(-BesselI(1,1)+GAMMA(5/6)) 6099990305205526 a007 Real Root Of 39*x^4-969*x^3+951*x^2+661*x-176 6099990310827723 r005 Re(z^2+c),c=-1+18/227*I,n=22 6099990316180390 r005 Re(z^2+c),c=-71/122+38/41*I,n=3 6099990326035888 r005 Re(z^2+c),c=5/62+25/56*I,n=11 6099990334857435 a007 Real Root Of 173*x^4+980*x^3-426*x^2+128*x-459 6099990335520715 a007 Real Root Of -54*x^4-333*x^3-35*x^2-31*x+296 6099990346541389 m004 (61*Tanh[Sqrt[5]*Pi])/10 6099990365447865 a007 Real Root Of 119*x^4+676*x^3-388*x^2-374*x+830 6099990365719903 g007 14*Zeta(3)-Psi(2,6/11)-Psi(2,4/9)-Psi(2,2/3) 6099990418143511 m001 (-Backhouse+Bloch)/(Catalan+ArtinRank2) 6099990440033921 r002 30th iterates of z^2 + 6099990447323479 r002 36th iterates of z^2 + 6099990450602924 a007 Real Root Of -7*x^4-426*x^3+75*x^2+851*x-335 6099990459359901 a007 Real Root Of -695*x^4+228*x^3-177*x^2+956*x+797 6099990460827472 m001 (cos(1)+GAMMA(17/24))/(-Magata+PrimesInBinary) 6099990483311428 r005 Im(z^2+c),c=-59/114+3/28*I,n=50 6099990497293253 r009 Re(z^3+c),c=-17/30+3/10*I,n=50 6099990498474660 r005 Re(z^2+c),c=-23/22+19/122*I,n=54 6099990504794809 m004 1/10+6*Tanh[Sqrt[5]*Pi] 6099990564391124 p004 log(14221/7727) 6099990565743492 r009 Im(z^3+c),c=-43/114+28/45*I,n=36 6099990566178914 a001 141/46*322^(11/12) 6099990575526914 r005 Im(z^2+c),c=-63/52+5/56*I,n=31 6099990590303416 a001 75025/843*843^(2/7) 6099990598020051 s002 sum(A251792[n]/(n^3*exp(n)-1),n=1..infinity) 6099990612173583 r002 6th iterates of z^2 + 6099990622301717 m001 (sin(1/5*Pi)+ln(5))/(MasserGramain+Otter) 6099990629513811 r008 a(0)=0,K{-n^6,-48-96*n^3-62*n^2+42*n} 6099990648752394 a003 sin(Pi*1/59)/cos(Pi*13/80) 6099990649847765 m005 (1/2*3^(1/2)+2/11)/(10/11*Zeta(3)+5/8) 6099990654710615 r008 a(0)=0,K{-n^6,42-90*n^3-35*n^2-81*n} 6099990663520744 l006 ln(1097/1166) 6099990672194942 a007 Real Root Of 400*x^4+47*x^3+746*x^2-770*x-792 6099990681049780 m001 (DuboisRaymond+Landau)/(ZetaP(3)-ZetaQ(2)) 6099990689734419 a007 Real Root Of -724*x^4-225*x^3-828*x^2+693*x+780 6099990701732027 l006 ln(5120/9423) 6099990702830967 r009 Re(z^3+c),c=-3/34+15/34*I,n=15 6099990738165574 r005 Re(z^2+c),c=39/110+3/34*I,n=14 6099990775946469 m001 (-FeigenbaumDelta+Kolakoski)/(2^(1/3)-Ei(1)) 6099990799512739 a007 Real Root Of -264*x^4+672*x^3+430*x^2+282*x-448 6099990821740284 a007 Real Root Of -118*x^4-868*x^3-757*x^2+768*x-786 6099990842900229 m001 (-GAMMA(5/6)+Stephens)/(Catalan+gamma(2)) 6099990864036053 a001 591286729879/47*505019158607^(21/23) 6099990865041801 r009 Im(z^3+c),c=-19/60+29/42*I,n=20 6099990866905982 s001 sum(1/10^(n-1)*A206629[n]/n!,n=1..infinity) 6099990878659478 r005 Re(z^2+c),c=-9/14+83/239*I,n=10 6099990903304672 m001 Niven^2*ln(ErdosBorwein)^2*cos(Pi/12)^2 6099990908574888 r002 44th iterates of z^2 + 6099990919567191 r005 Re(z^2+c),c=29/122+26/47*I,n=15 6099990929839286 a007 Real Root Of -8*x^4-487*x^3+68*x^2+445*x+933 6099990937922924 a001 -1597+987*5^(1/2) 6099990939287214 m001 (FeigenbaumAlpha+FeigenbaumD)^ln(3) 6099990954741508 r005 Im(z^2+c),c=-29/90+5/54*I,n=13 6099990966058961 a001 377/1364*3571^(16/17) 6099990989284343 m001 FeigenbaumB^FeigenbaumD*FeigenbaumB^Trott 6099991018811657 r009 Im(z^3+c),c=-17/94+17/23*I,n=15 6099991022346223 a001 610/843*3571^(14/17) 6099991072853637 h001 (6/11*exp(1)+1/5)/(6/7*exp(1)+3/7) 6099991103012876 m001 (Thue+ZetaQ(2))/(FeigenbaumD-KhinchinLevy) 6099991110396141 a007 Real Root Of 670*x^4-830*x^3+481*x^2+474*x-171 6099991117560194 p001 sum(1/(495*n+164)/(625^n),n=0..infinity) 6099991124029333 l006 ln(2513/4625) 6099991187568533 a007 Real Root Of 7*x^4+421*x^3-363*x^2+192*x+691 6099991188185243 a001 233*199^(2/11) 6099991194499245 a007 Real Root Of -317*x^4+670*x^3-897*x^2+466*x+814 6099991198570878 m001 1/Riemann1stZero/exp(GAMMA(3/4))^2 6099991202641256 a001 15456/281*843^(5/14) 6099991208787882 a007 Real Root Of 232*x^4-840*x^3+231*x^2-266*x-471 6099991210354373 a001 199/225851433717*20365011074^(21/22) 6099991210358763 a001 199/9227465*514229^(21/22) 6099991225844934 a007 Real Root Of 710*x^4+641*x^3+281*x^2-583*x-413 6099991227386345 s002 sum(A159821[n]/(pi^n),n=1..infinity) 6099991234315850 a007 Real Root Of 155*x^4+947*x^3+18*x^2+40*x-85 6099991235024192 r005 Im(z^2+c),c=-9/82+19/24*I,n=35 6099991250885129 a007 Real Root Of -718*x^4+82*x^3+958*x^2+653*x-674 6099991255045618 a007 Real Root Of -925*x^4-651*x^3-763*x^2+898*x+812 6099991258639596 m005 (1/2*exp(1)+1/7)/(15/7+1/7*5^(1/2)) 6099991261553603 a007 Real Root Of 84*x^4-984*x^3-916*x^2-604*x+921 6099991268623550 m001 sin(Pi/5)^(exp(1/2)/sqrt(Pi)) 6099991288823010 r005 Re(z^2+c),c=-19/26+14/79*I,n=17 6099991322762138 r005 Im(z^2+c),c=-21/34+44/87*I,n=6 6099991325019541 m001 (-Lehmer+Sierpinski)/(2^(1/2)+Si(Pi)) 6099991352629260 a001 416020/2889*521^(3/13) 6099991356943470 a001 75025/1364*521^(5/13) 6099991357503241 a001 377/1364*9349^(16/19) 6099991359481705 m002 -6+Pi^5/5+Cosh[Pi]/2 6099991364859970 a001 610/843*9349^(14/19) 6099991388177821 k005 Champernowne real with floor(Pi*(124*n+70)) 6099991389177821 k005 Champernowne real with floor(sqrt(3)*(225*n+127)) 6099991389177921 k001 Champernowne real with 390*n+219 6099991401837555 a007 Real Root Of -375*x^4+840*x^3+609*x^2-135*x-283 6099991408516552 a001 377/1364*24476^(16/21) 6099991409496617 a001 610/843*24476^(2/3) 6099991415241087 a001 377/1364*64079^(16/23) 6099991415380585 a001 610/843*64079^(14/23) 6099991416274539 a001 377/1364*(1/2+1/2*5^(1/2))^16 6099991416274539 a001 377/1364*23725150497407^(1/4) 6099991416274539 a001 377/1364*73681302247^(4/13) 6099991416274539 a001 377/1364*10749957122^(1/3) 6099991416274539 a001 377/1364*4106118243^(8/23) 6099991416274539 a001 377/1364*1568397607^(4/11) 6099991416274539 a001 377/1364*599074578^(8/21) 6099991416274539 a001 377/1364*228826127^(2/5) 6099991416274539 a001 377/1364*87403803^(8/19) 6099991416274541 a001 377/1364*33385282^(4/9) 6099991416274556 a001 377/1364*12752043^(8/17) 6099991416274667 a001 377/1364*4870847^(1/2) 6099991416275478 a001 377/1364*1860498^(8/15) 6099991416281441 a001 377/1364*710647^(4/7) 6099991416284849 a001 610/843*20633239^(2/5) 6099991416284855 a001 610/843*17393796001^(2/7) 6099991416284855 a001 610/843*14662949395604^(2/9) 6099991416284855 a001 610/843*(1/2+1/2*5^(1/2))^14 6099991416284855 a001 610/843*505019158607^(1/4) 6099991416284855 a001 610/843*10749957122^(7/24) 6099991416284855 a001 610/843*4106118243^(7/23) 6099991416284855 a001 610/843*1568397607^(7/22) 6099991416284855 a001 610/843*599074578^(1/3) 6099991416284855 a001 610/843*228826127^(7/20) 6099991416284855 a001 610/843*87403803^(7/19) 6099991416284857 a001 610/843*33385282^(7/18) 6099991416284870 a001 610/843*12752043^(7/17) 6099991416284967 a001 610/843*4870847^(7/16) 6099991416285677 a001 610/843*1860498^(7/15) 6099991416290894 a001 610/843*710647^(1/2) 6099991416325486 a001 377/1364*271443^(8/13) 6099991416329434 a001 610/843*271443^(7/13) 6099991416615864 a001 610/843*103682^(7/12) 6099991416616848 r009 Im(z^3+c),c=-27/46+26/55*I,n=39 6099991416652834 a001 377/1364*103682^(2/3) 6099991418759873 a001 610/843*39603^(7/11) 6099991419103131 a001 377/1364*39603^(8/11) 6099991426296396 b008 ArcCot[11/2+4*E] 6099991434945285 a001 610/843*15127^(7/10) 6099991436409084 a007 Real Root Of 313*x^4-454*x^3+134*x^2-515*x+324 6099991437600745 a001 377/1364*15127^(4/5) 6099991438977609 r008 a(0)=6,K{-n^6,6-5*n^3-5*n^2-7*n} 6099991439816867 b008 1/9-Sqrt[13]/5 6099991462646079 s002 sum(A002835[n]/(n^2*2^n+1),n=1..infinity) 6099991508687994 a001 311187/2161*521^(3/13) 6099991521162341 s001 sum(exp(-Pi)^n*A239612[n],n=1..infinity) 6099991521162341 s002 sum(A239612[n]/(exp(pi*n)),n=1..infinity) 6099991531456657 a001 5702887/39603*521^(3/13) 6099991534778560 a001 7465176/51841*521^(3/13) 6099991534973101 a007 Real Root Of -123*x^4+882*x^3+502*x^2-236*x-226 6099991535263219 a001 39088169/271443*521^(3/13) 6099991535333930 a001 14619165/101521*521^(3/13) 6099991535344246 a001 133957148/930249*521^(3/13) 6099991535345752 a001 701408733/4870847*521^(3/13) 6099991535345971 a001 1836311903/12752043*521^(3/13) 6099991535346003 a001 14930208/103681*521^(3/13) 6099991535346008 a001 12586269025/87403803*521^(3/13) 6099991535346009 a001 32951280099/228826127*521^(3/13) 6099991535346009 a001 43133785636/299537289*521^(3/13) 6099991535346009 a001 32264490531/224056801*521^(3/13) 6099991535346009 a001 591286729879/4106118243*521^(3/13) 6099991535346009 a001 774004377960/5374978561*521^(3/13) 6099991535346009 a001 4052739537881/28143753123*521^(3/13) 6099991535346009 a001 1515744265389/10525900321*521^(3/13) 6099991535346009 a001 3278735159921/22768774562*521^(3/13) 6099991535346009 a001 2504730781961/17393796001*521^(3/13) 6099991535346009 a001 956722026041/6643838879*521^(3/13) 6099991535346009 a001 182717648081/1268860318*521^(3/13) 6099991535346009 a001 139583862445/969323029*521^(3/13) 6099991535346009 a001 53316291173/370248451*521^(3/13) 6099991535346009 a001 10182505537/70711162*521^(3/13) 6099991535346011 a001 7778742049/54018521*521^(3/13) 6099991535346023 a001 2971215073/20633239*521^(3/13) 6099991535346107 a001 567451585/3940598*521^(3/13) 6099991535346682 a001 433494437/3010349*521^(3/13) 6099991535350622 a001 165580141/1149851*521^(3/13) 6099991535377632 a001 31622993/219602*521^(3/13) 6099991535562755 a001 24157817/167761*521^(3/13) 6099991536831609 a001 9227465/64079*521^(3/13) 6099991543326533 a007 Real Root Of 387*x^4-528*x^3+553*x^2+820*x+121 6099991545528464 a001 1762289/12238*521^(3/13) 6099991548779363 m001 GAMMA(5/6)^polylog(4,1/2)/KhinchinHarmonic 6099991549407651 b008 E^(-3)+Sinh[5/2] 6099991558396512 a001 610/843*5778^(7/9) 6099991558801483 r005 Im(z^2+c),c=-9/94+41/54*I,n=11 6099991559916206 m001 (LambertW(1)+ln(3))/(-Zeta(1,-1)+OneNinth) 6099991562423923 l006 ln(4932/9077) 6099991578687861 a001 377/1364*5778^(8/9) 6099991598526373 s001 sum(exp(-Pi/4)^n*A102003[n],n=1..infinity) 6099991605137599 a001 1346269/9349*521^(3/13) 6099991629208601 p001 sum(1/(45*n+17)/(8^n),n=0..infinity) 6099991634552064 r002 18th iterates of z^2 + 6099991638496747 m001 ln(GAMMA(2/3))/LandauRamanujan^2*sinh(1) 6099991650847508 a007 Real Root Of -552*x^4+854*x^3-905*x^2-982*x+8 6099991658423325 m008 (5/6*Pi+2)/(1/4*Pi^5-4/5) 6099991658698741 m001 (sin(1/12*Pi)+FeigenbaumKappa)/(Zeta(5)+ln(5)) 6099991662889383 b008 1/2-Cos[3]/9 6099991680600141 m002 20*Pi^3-Cosh[Pi]/Log[Pi] 6099991688052785 r005 Re(z^2+c),c=9/122+23/55*I,n=23 6099991693727059 r005 Im(z^2+c),c=-41/114+25/39*I,n=9 6099991734568592 a007 Real Root Of -314*x^4+734*x^3-763*x^2+741*x+946 6099991734726727 m005 (1/3*gamma-2/11)/(5/11*exp(1)+1/2) 6099991776789871 a007 Real Root Of 240*x^4-432*x^3+107*x^2+210*x-43 6099991817816373 a001 28657/843*843^(3/7) 6099991840370480 r001 29i'th iterates of 2*x^2-1 of 6099991841914420 a007 Real Root Of 921*x^4-36*x^3+838*x^2+291*x-270 6099991842148808 m001 Artin/BesselK(0,1)/Backhouse 6099991884244789 m001 (GAMMA(3/4)+Kolakoski)/(Lehmer-MertensB1) 6099991885935276 p004 log(31337/17027) 6099991891311058 r005 Im(z^2+c),c=-47/78+13/32*I,n=9 6099991911704489 a007 Real Root Of -674*x^4-141*x^3+260*x^2+663*x+369 6099991940934896 h001 (2/11*exp(2)+4/9)/(3/10*exp(2)+5/7) 6099991942235692 a005 (1/sin(59/215*Pi))^40 6099991944814762 r008 a(0)=0,K{-n^6,-9-4*n^3+2*n^2-7*n} 6099991976857573 a007 Real Root Of -339*x^4-175*x^3+819*x^2+531*x-542 6099991989736532 r005 Im(z^2+c),c=-11/62+52/61*I,n=13 6099991990455699 a007 Real Root Of -87*x^4+30*x^3+97*x^2+973*x+59 6099991990858010 a003 cos(Pi*8/75)*sin(Pi*19/85) 6099992003743040 a005 (1/cos(3/200*Pi))^1628 6099992011657416 a001 514229/2207*521^(2/13) 6099992013414070 m005 (1/3*Zeta(3)+1/7)/(1/10*gamma+5/6) 6099992013704719 a001 514229/3571*521^(3/13) 6099992014049100 m005 (1/3*5^(1/2)+3/5)/(107/84+5/12*5^(1/2)) 6099992017854081 l006 ln(2419/4452) 6099992049631383 r002 13th iterates of z^2 + 6099992063073939 m005 (1/2*gamma-1/6)/(3/4*3^(1/2)+7/10) 6099992066082405 m001 ln(Pi)^Pi/(Totient^Pi) 6099992106389663 r009 Re(z^3+c),c=-47/78+26/53*I,n=28 6099992116415848 r009 Im(z^3+c),c=-37/110+25/38*I,n=41 6099992157723191 a007 Real Root Of 694*x^4-944*x^3-839*x^2-883*x+969 6099992159240834 a007 Real Root Of -734*x^4-166*x^3+309*x^2+823*x+451 6099992190271848 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^16 6099992207461826 r005 Re(z^2+c),c=-49/52+1/56*I,n=16 6099992265453287 a007 Real Root Of 576*x^4-280*x^3+78*x^2+253*x-18 6099992275485457 m001 KomornikLoreti-ln(2+3^(1/2))^Lehmer 6099992294737104 m005 (1/2*Zeta(3)+4/9)/(6/11*2^(1/2)-3/5) 6099992324474449 m001 (Bloch-GaussAGM)/(Gompertz-ZetaQ(4)) 6099992334911113 r005 Re(z^2+c),c=-11/20+34/55*I,n=27 6099992337217024 r005 Re(z^2+c),c=-3/4+1/99*I,n=29 6099992340412478 m005 (1/3*2^(1/2)-3/5)/(4/9*exp(1)+9/10) 6099992355183941 r002 24th iterates of z^2 + 6099992378181393 a001 7/377*53316291173^(8/19) 6099992393714493 a007 Real Root Of -883*x^4+329*x^3+12*x^2-727*x-251 6099992411112477 m009 (6*Psi(1,2/3)+3/5)/(3*Psi(1,1/3)+5/6) 6099992425563622 a001 17711/843*843^(1/2) 6099992440698821 h001 (4/11*exp(2)+5/8)/(7/11*exp(2)+8/11) 6099992444715594 a001 2584/2207*1364^(13/15) 6099992472666881 a007 Real Root Of 577*x^4-509*x^3+654*x^2-663*x-43 6099992491332462 l006 ln(4744/8731) 6099992494282118 r002 5th iterates of z^2 + 6099992494742169 r005 Re(z^2+c),c=2/25+11/25*I,n=15 6099992512088608 a001 610/843*2207^(7/8) 6099992513040862 m005 (1/3*Pi-1/6)/(8/9*Zeta(3)+3/8) 6099992536479374 m001 (Magata-Robbin)/(FeigenbaumB-GlaisherKinkelin) 6099992552209724 r005 Re(z^2+c),c=-12/23+13/27*I,n=11 6099992568697086 r002 43th iterates of z^2 + 6099992602917328 a007 Real Root Of -270*x^4+978*x^3+643*x^2+649*x+416 6099992632036535 m008 (1/6*Pi^4-2/3)/(5/6*Pi^5+1/5) 6099992668625641 a001 1292-305*5^(1/2) 6099992668657133 a007 Real Root Of 783*x^4-4*x^3+748*x^2-635*x-775 6099992669978091 a007 Real Root Of 529*x^4+307*x^3+371*x^2+x-141 6099992687081783 m001 1/ln(Si(Pi))/Champernowne^2/KhintchineHarmonic 6099992737814191 a001 199/10946*63245986^(17/24) 6099992744415030 h001 (1/3*exp(2)+7/10)/(7/12*exp(2)+7/8) 6099992747996552 a001 199/39088169*6557470319842^(17/24) 6099992783712827 r002 12th iterates of z^2 + 6099992784521962 m001 MinimumGamma/exp(Khintchine)^2/GAMMA(11/12)^2 6099992824426601 m001 exp(1/Pi)^ZetaQ(2)/(exp(1/Pi)^ErdosBorwein) 6099992835954067 a007 Real Root Of -249*x^4+729*x^3+766*x^2+718*x-854 6099992851219223 r005 Re(z^2+c),c=-5/7+1/78*I,n=9 6099992854551587 m005 (1/3*Pi-2/11)/(1/5*exp(1)+7/8) 6099992859643804 m005 (1/3*gamma-3/7)/(1/8*5^(1/2)-2/3) 6099992887205486 a001 1597/2207*1364^(14/15) 6099992887871893 m001 (Zeta(1,2)+GaussAGM)/(Ei(1)-exp(-1/2*Pi)) 6099992893103437 a007 Real Root Of 738*x^4-588*x^3-227*x^2+438*x+116 6099992915800819 a001 4181/2207*1364^(4/5) 6099992924860263 a007 Real Root Of -582*x^4-350*x^3-729*x^2-540*x-57 6099992942214761 a007 Real Root Of -302*x^4+806*x^3+485*x^2-160*x-224 6099992950951841 r009 Im(z^3+c),c=-53/122+59/61*I,n=2 6099992983953601 l006 ln(2325/4279) 6099993009182309 r009 Re(z^3+c),c=-11/18+23/43*I,n=10 6099993012313980 r009 Re(z^3+c),c=-73/118+4/11*I,n=2 6099993015829385 a007 Real Root Of -896*x^4+638*x^3+277*x^2+120*x+239 6099993028209043 m005 (-7/4+1/4*5^(1/2))/(9/10*Pi-7/8) 6099993037742581 a007 Real Root Of -431*x^4-942*x^3-510*x^2+717*x+473 6099993037931398 a001 6765/2207*1364^(11/15) 6099993040367699 a001 377*322^(1/12) 6099993052757509 a001 10946/843*843^(4/7) 6099993081285722 a001 1346269/5778*521^(2/13) 6099993083716216 a007 Real Root Of -499*x^4-576*x^3-391*x^2+856*x+606 6099993083925964 a007 Real Root Of -391*x^4+391*x^3-964*x^2-219*x+368 6099993085297964 a001 121393/1364*521^(4/13) 6099993086635273 m005 (1/2*3^(1/2)+4/9)/(3*gamma+5/12) 6099993121455177 r008 a(0)=0,K{-n^6,-49-89*n^3-83*n^2+57*n} 6099993125113795 r002 8th iterates of z^2 + 6099993130290679 r004 Im(z^2+c),c=-2/3-1/8*I,z(0)=-1,n=43 6099993149621683 r008 a(0)=0,K{-n^6,-9+76*n^3+93*n^2+4*n} 6099993149621815 r008 a(0)=0,K{-n^6,-3+75*n^3+99*n^2-7*n} 6099993155744717 a001 8/199*7^(3/14) 6099993157569123 r002 32th iterates of z^2 + 6099993176502981 a003 cos(Pi*8/97)-cos(Pi*43/112) 6099993197106367 a007 Real Root Of 196*x^4-922*x^3+970*x^2+435*x-332 6099993204303532 r009 Re(z^3+c),c=-43/102+1/33*I,n=6 6099993215220764 r005 Re(z^2+c),c=-7/10+90/191*I,n=18 6099993237342419 a001 3524578/15127*521^(2/13) 6099993249532095 r005 Im(z^2+c),c=-19/34+59/109*I,n=3 6099993259904377 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^18 6099993260110786 a001 9227465/39603*521^(2/13) 6099993263432645 a001 24157817/103682*521^(2/13) 6099993263917298 a001 63245986/271443*521^(2/13) 6099993263988008 a001 165580141/710647*521^(2/13) 6099993263998325 a001 433494437/1860498*521^(2/13) 6099993263999830 a001 1134903170/4870847*521^(2/13) 6099993264000049 a001 2971215073/12752043*521^(2/13) 6099993264000081 a001 7778742049/33385282*521^(2/13) 6099993264000086 a001 20365011074/87403803*521^(2/13) 6099993264000087 a001 53316291173/228826127*521^(2/13) 6099993264000087 a001 139583862445/599074578*521^(2/13) 6099993264000087 a001 365435296162/1568397607*521^(2/13) 6099993264000087 a001 956722026041/4106118243*521^(2/13) 6099993264000087 a001 2504730781961/10749957122*521^(2/13) 6099993264000087 a001 6557470319842/28143753123*521^(2/13) 6099993264000087 a001 10610209857723/45537549124*521^(2/13) 6099993264000087 a001 4052739537881/17393796001*521^(2/13) 6099993264000087 a001 1548008755920/6643838879*521^(2/13) 6099993264000087 a001 591286729879/2537720636*521^(2/13) 6099993264000087 a001 225851433717/969323029*521^(2/13) 6099993264000087 a001 86267571272/370248451*521^(2/13) 6099993264000087 a001 63246219/271444*521^(2/13) 6099993264000089 a001 12586269025/54018521*521^(2/13) 6099993264000101 a001 4807526976/20633239*521^(2/13) 6099993264000185 a001 1836311903/7881196*521^(2/13) 6099993264000760 a001 701408733/3010349*521^(2/13) 6099993264004700 a001 267914296/1149851*521^(2/13) 6099993264031709 a001 102334155/439204*521^(2/13) 6099993264216830 a001 39088169/167761*521^(2/13) 6099993265485668 a001 14930352/64079*521^(2/13) 6099993274182410 a001 5702887/24476*521^(2/13) 6099993276739580 a007 Real Root Of 127*x^4+798*x^3+4*x^2-900*x-350 6099993282313206 p001 sum((-1)^n/(221*n+99)/n/(512^n),n=1..infinity) 6099993293350808 a001 10946/2207*1364^(2/3) 6099993315795251 a007 Real Root Of -993*x^4-727*x^3-889*x^2+193*x+421 6099993333790767 a001 2178309/9349*521^(2/13) 6099993334533047 b008 6+5*ArcCsch[50] 6099993415961659 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^20 6099993429425050 r005 Re(z^2+c),c=23/110+13/38*I,n=42 6099993438730110 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^22 6099993438835423 m008 (1/5*Pi^5-1/5)/(1/3*Pi^5-2) 6099993442051982 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^24 6099993442536637 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^26 6099993442607347 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^28 6099993442617664 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^30 6099993442619169 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^32 6099993442619388 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^34 6099993442619420 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^36 6099993442619425 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^38 6099993442619426 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^40 6099993442619426 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^42 6099993442619426 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^44 6099993442619426 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^46 6099993442619426 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^48 6099993442619426 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^50 6099993442619426 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^52 6099993442619426 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^54 6099993442619426 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^56 6099993442619426 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^58 6099993442619426 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^60 6099993442619426 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^62 6099993442619426 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^64 6099993442619426 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^66 6099993442619426 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^68 6099993442619426 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^70 6099993442619426 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^72 6099993442619426 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^74 6099993442619426 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^76 6099993442619426 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^78 6099993442619426 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^80 6099993442619426 a004 Fibonacci(82)*Lucas(15)/(1/2+sqrt(5)/2)^82 6099993442619426 a004 Fibonacci(84)*Lucas(15)/(1/2+sqrt(5)/2)^84 6099993442619426 a004 Fibonacci(86)*Lucas(15)/(1/2+sqrt(5)/2)^86 6099993442619426 a004 Fibonacci(88)*Lucas(15)/(1/2+sqrt(5)/2)^88 6099993442619426 a004 Fibonacci(90)*Lucas(15)/(1/2+sqrt(5)/2)^90 6099993442619426 a004 Fibonacci(92)*Lucas(15)/(1/2+sqrt(5)/2)^92 6099993442619426 a004 Fibonacci(94)*Lucas(15)/(1/2+sqrt(5)/2)^94 6099993442619426 a004 Fibonacci(96)*Lucas(15)/(1/2+sqrt(5)/2)^96 6099993442619426 a004 Fibonacci(100)*Lucas(15)/(1/2+sqrt(5)/2)^100 6099993442619426 a004 Fibonacci(98)*Lucas(15)/(1/2+sqrt(5)/2)^98 6099993442619426 a004 Fibonacci(99)*Lucas(15)/(1/2+sqrt(5)/2)^99 6099993442619426 a004 Fibonacci(97)*Lucas(15)/(1/2+sqrt(5)/2)^97 6099993442619426 a004 Fibonacci(95)*Lucas(15)/(1/2+sqrt(5)/2)^95 6099993442619426 a004 Fibonacci(93)*Lucas(15)/(1/2+sqrt(5)/2)^93 6099993442619426 a004 Fibonacci(91)*Lucas(15)/(1/2+sqrt(5)/2)^91 6099993442619426 a004 Fibonacci(89)*Lucas(15)/(1/2+sqrt(5)/2)^89 6099993442619426 a004 Fibonacci(87)*Lucas(15)/(1/2+sqrt(5)/2)^87 6099993442619426 a004 Fibonacci(85)*Lucas(15)/(1/2+sqrt(5)/2)^85 6099993442619426 a004 Fibonacci(83)*Lucas(15)/(1/2+sqrt(5)/2)^83 6099993442619426 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^81 6099993442619426 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^79 6099993442619426 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^77 6099993442619426 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^75 6099993442619426 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^73 6099993442619426 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^71 6099993442619426 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^69 6099993442619426 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^67 6099993442619426 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^65 6099993442619426 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^63 6099993442619426 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^61 6099993442619426 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^59 6099993442619426 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^57 6099993442619426 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^55 6099993442619426 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^53 6099993442619426 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^51 6099993442619426 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^49 6099993442619426 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^47 6099993442619426 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^45 6099993442619426 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^43 6099993442619426 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^41 6099993442619426 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^39 6099993442619428 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^37 6099993442619440 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^35 6099993442619524 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^33 6099993442620099 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^31 6099993442621188 a001 1/305*(1/2+1/2*5^(1/2))^30 6099993442622950 a001 930249/305*8^(1/3) 6099993442624039 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^29 6099993442651048 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^27 6099993442836170 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^25 6099993444105012 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^23 6099993452773362 a007 Real Root Of 356*x^4-763*x^3-536*x^2-206*x+449 6099993452801786 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^21 6099993455724170 a007 Real Root Of 470*x^4-533*x^3+712*x^2-441*x-720 6099993470186716 p004 log(32479/30557) 6099993496902364 l006 ln(4556/8385) 6099993497858423 a001 17711/2207*1364^(3/5) 6099993507467974 m007 (-2/5*gamma-4/5*ln(2)-5/6)/(-3/5*gamma+3) 6099993512410364 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^19 6099993515079518 m001 1/PisotVijayaraghavan*Si(Pi)^2/ln(GAMMA(7/12)) 6099993515336284 s004 Continued Fraction of A100129 6099993515336284 s004 Continued fraction of A100129 6099993521005520 m001 exp(GAMMA(5/24))^2/GAMMA(11/24)^2*sin(Pi/5)^2 6099993532961269 r002 4th iterates of z^2 + 6099993548274612 a001 4181/5778*1364^(14/15) 6099993550538841 r002 4th iterates of z^2 + 6099993563015316 a007 Real Root Of -14*x^4-869*x^3-926*x^2-671*x-201 6099993629039655 a001 2255/281*843^(9/14) 6099993632344200 m005 (1/2*gamma+2/3)/(1/2*3^(1/2)+7/10) 6099993637644329 a007 Real Root Of -559*x^4+37*x^3+405*x^2+830*x-588 6099993640425685 r005 Re(z^2+c),c=-159/122+3/32*I,n=10 6099993644723317 a001 10946/15127*1364^(14/15) 6099993658794994 a001 28657/39603*1364^(14/15) 6099993660848024 a001 75025/103682*1364^(14/15) 6099993661147557 a001 196418/271443*1364^(14/15) 6099993661191258 a001 514229/710647*1364^(14/15) 6099993661197634 a001 1346269/1860498*1364^(14/15) 6099993661198565 a001 3524578/4870847*1364^(14/15) 6099993661198700 a001 9227465/12752043*1364^(14/15) 6099993661198720 a001 24157817/33385282*1364^(14/15) 6099993661198723 a001 63245986/87403803*1364^(14/15) 6099993661198723 a001 165580141/228826127*1364^(14/15) 6099993661198723 a001 433494437/599074578*1364^(14/15) 6099993661198723 a001 1134903170/1568397607*1364^(14/15) 6099993661198723 a001 2971215073/4106118243*1364^(14/15) 6099993661198723 a001 7778742049/10749957122*1364^(14/15) 6099993661198723 a001 20365011074/28143753123*1364^(14/15) 6099993661198723 a001 53316291173/73681302247*1364^(14/15) 6099993661198723 a001 139583862445/192900153618*1364^(14/15) 6099993661198723 a001 365435296162/505019158607*1364^(14/15) 6099993661198723 a001 10610209857723/14662949395604*1364^(14/15) 6099993661198723 a001 591286729879/817138163596*1364^(14/15) 6099993661198723 a001 225851433717/312119004989*1364^(14/15) 6099993661198723 a001 86267571272/119218851371*1364^(14/15) 6099993661198723 a001 32951280099/45537549124*1364^(14/15) 6099993661198723 a001 12586269025/17393796001*1364^(14/15) 6099993661198723 a001 4807526976/6643838879*1364^(14/15) 6099993661198723 a001 1836311903/2537720636*1364^(14/15) 6099993661198723 a001 701408733/969323029*1364^(14/15) 6099993661198723 a001 267914296/370248451*1364^(14/15) 6099993661198724 a001 102334155/141422324*1364^(14/15) 6099993661198725 a001 39088169/54018521*1364^(14/15) 6099993661198732 a001 14930352/20633239*1364^(14/15) 6099993661198784 a001 5702887/7881196*1364^(14/15) 6099993661199139 a001 2178309/3010349*1364^(14/15) 6099993661201575 a001 832040/1149851*1364^(14/15) 6099993661218267 a001 317811/439204*1364^(14/15) 6099993661332679 a001 121393/167761*1364^(14/15) 6099993662116866 a001 46368/64079*1364^(14/15) 6099993667491769 a001 17711/24476*1364^(14/15) 6099993670405205 a001 2255/1926*1364^(13/15) 6099993675880091 a007 Real Root Of 324*x^4-600*x^3+539*x^2+x-381 6099993678548729 a007 Real Root Of 141*x^4+795*x^3-264*x^2+758*x-329 6099993685340826 m001 (2^(1/3))^2*exp(OneNinth)^2*GAMMA(1/6)^2 6099993687914945 m001 ln((2^(1/3)))*Magata^2/GAMMA(5/24) 6099993692315235 m001 (gamma(3)+Magata)/(BesselJ(0,1)-Psi(2,1/3)) 6099993703912144 a007 Real Root Of -294*x^4+210*x^3-766*x^2+760*x+837 6099993704331898 a001 6765/9349*1364^(14/15) 6099993721812625 a001 28657/2207*1364^(8/15) 6099993738259236 a001 974169/1597 6099993739005503 m005 (3/4*exp(1)-1/3)/(1/4*exp(1)-2/5) 6099993740305254 a001 832040/2207*521^(1/13) 6099993742352557 a001 832040/3571*521^(2/13) 6099993743143600 m004 375/(2*Pi)+Log[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 6099993744407431 r005 Im(z^2+c),c=-25/26+3/53*I,n=16 6099993773828739 a003 sin(Pi*5/81)-sin(Pi*35/118) 6099993794536426 a001 987/2207*3571^(15/17) 6099993816879431 a007 Real Root Of 515*x^4+105*x^3+578*x^2-506*x-33 6099993839641626 m006 (Pi^2+4/5)/(4/5*ln(Pi)+5/6) 6099993849230945 a001 17711/15127*1364^(13/15) 6099993866633249 r005 Im(z^2+c),c=-17/31+39/64*I,n=11 6099993875321269 a001 15456/13201*1364^(13/15) 6099993879127796 a001 121393/103682*1364^(13/15) 6099993879683161 a001 105937/90481*1364^(13/15) 6099993879764188 a001 832040/710647*1364^(13/15) 6099993879776010 a001 726103/620166*1364^(13/15) 6099993879777734 a001 5702887/4870847*1364^(13/15) 6099993879777986 a001 4976784/4250681*1364^(13/15) 6099993879778023 a001 39088169/33385282*1364^(13/15) 6099993879778028 a001 34111385/29134601*1364^(13/15) 6099993879778029 a001 267914296/228826127*1364^(13/15) 6099993879778029 a001 233802911/199691526*1364^(13/15) 6099993879778029 a001 1836311903/1568397607*1364^(13/15) 6099993879778029 a001 1602508992/1368706081*1364^(13/15) 6099993879778029 a001 12586269025/10749957122*1364^(13/15) 6099993879778029 a001 10983760033/9381251041*1364^(13/15) 6099993879778029 a001 86267571272/73681302247*1364^(13/15) 6099993879778029 a001 75283811239/64300051206*1364^(13/15) 6099993879778029 a001 2504730781961/2139295485799*1364^(13/15) 6099993879778029 a001 365435296162/312119004989*1364^(13/15) 6099993879778029 a001 139583862445/119218851371*1364^(13/15) 6099993879778029 a001 53316291173/45537549124*1364^(13/15) 6099993879778029 a001 20365011074/17393796001*1364^(13/15) 6099993879778029 a001 7778742049/6643838879*1364^(13/15) 6099993879778029 a001 2971215073/2537720636*1364^(13/15) 6099993879778029 a001 1134903170/969323029*1364^(13/15) 6099993879778029 a001 433494437/370248451*1364^(13/15) 6099993879778029 a001 165580141/141422324*1364^(13/15) 6099993879778031 a001 63245986/54018521*1364^(13/15) 6099993879778045 a001 24157817/20633239*1364^(13/15) 6099993879778141 a001 9227465/7881196*1364^(13/15) 6099993879778800 a001 3524578/3010349*1364^(13/15) 6099993879783316 a001 1346269/1149851*1364^(13/15) 6099993879814265 a001 514229/439204*1364^(13/15) 6099993880026396 a001 196418/167761*1364^(13/15) 6099993881480360 a001 75025/64079*1364^(13/15) 6099993891445977 a001 28657/24476*1364^(13/15) 6099993920973635 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^17 6099993925824640 a001 5473/2889*1364^(4/5) 6099993938338903 a001 46368/2207*1364^(7/15) 6099993956837917 a001 2584/3571*1364^(14/15) 6099993959751335 a001 10946/9349*1364^(13/15) 6099993967854787 r002 53th iterates of z^2 + 6099994016875376 r002 56th iterates of z^2 + 6099994031096928 m001 Trott^2/FeigenbaumD^2/ln(BesselJ(0,1)) 6099994031463463 l006 ln(2231/4106) 6099994047868367 a007 Real Root Of -66*x^4+423*x^3-133*x^2+176*x+262 6099994073185160 a001 28657/15127*1364^(4/5) 6099994094684770 a001 75025/39603*1364^(4/5) 6099994097821521 a001 98209/51841*1364^(4/5) 6099994098279167 a001 514229/271443*1364^(4/5) 6099994098345937 a001 1346269/710647*1364^(4/5) 6099994098355678 a001 1762289/930249*1364^(4/5) 6099994098357099 a001 9227465/4870847*1364^(4/5) 6099994098357307 a001 24157817/12752043*1364^(4/5) 6099994098357337 a001 31622993/16692641*1364^(4/5) 6099994098357341 a001 165580141/87403803*1364^(4/5) 6099994098357342 a001 433494437/228826127*1364^(4/5) 6099994098357342 a001 567451585/299537289*1364^(4/5) 6099994098357342 a001 2971215073/1568397607*1364^(4/5) 6099994098357342 a001 7778742049/4106118243*1364^(4/5) 6099994098357342 a001 10182505537/5374978561*1364^(4/5) 6099994098357342 a001 53316291173/28143753123*1364^(4/5) 6099994098357342 a001 139583862445/73681302247*1364^(4/5) 6099994098357342 a001 182717648081/96450076809*1364^(4/5) 6099994098357342 a001 956722026041/505019158607*1364^(4/5) 6099994098357342 a001 10610209857723/5600748293801*1364^(4/5) 6099994098357342 a001 591286729879/312119004989*1364^(4/5) 6099994098357342 a001 225851433717/119218851371*1364^(4/5) 6099994098357342 a001 21566892818/11384387281*1364^(4/5) 6099994098357342 a001 32951280099/17393796001*1364^(4/5) 6099994098357342 a001 12586269025/6643838879*1364^(4/5) 6099994098357342 a001 1201881744/634430159*1364^(4/5) 6099994098357342 a001 1836311903/969323029*1364^(4/5) 6099994098357342 a001 701408733/370248451*1364^(4/5) 6099994098357342 a001 66978574/35355581*1364^(4/5) 6099994098357344 a001 102334155/54018521*1364^(4/5) 6099994098357356 a001 39088169/20633239*1364^(4/5) 6099994098357435 a001 3732588/1970299*1364^(4/5) 6099994098357978 a001 5702887/3010349*1364^(4/5) 6099994098361699 a001 2178309/1149851*1364^(4/5) 6099994098387202 a001 208010/109801*1364^(4/5) 6099994098562008 a001 317811/167761*1364^(4/5) 6099994099760140 a001 121393/64079*1364^(4/5) 6099994104795808 r005 Re(z^2+c),c=-41/56+4/43*I,n=11 6099994107972260 a001 11592/6119*1364^(4/5) 6099994109697424 r005 Im(z^2+c),c=-15/94+4/51*I,n=13 6099994111363382 s002 sum(A081681[n]/(exp(n)+1),n=1..infinity) 6099994116528707 r002 13th iterates of z^2 + 6099994121985901 r002 15th iterates of z^2 + 6099994127732893 m002 -5-Log[Pi]+ProductLog[Pi]/24 6099994130169469 a001 2139295485799/377*144^(16/17) 6099994130332277 a001 17711/5778*1364^(11/15) 6099994134030110 r005 Im(z^2+c),c=13/50+25/52*I,n=30 6099994134801539 m001 (-polylog(4,1/2)+1/3)/(Khinchin+1/3) 6099994137664540 s002 sum(A081681[n]/(exp(n)),n=1..infinity) 6099994152974444 m001 GAMMA(17/24)^2*BesselJ(1,1)*exp(GAMMA(5/12)) 6099994157702406 a001 75025/2207*1364^(2/5) 6099994160271055 b008 -2+3^ArcTanh[EulerGamma] 6099994161515608 a001 987/2207*9349^(15/19) 6099994164258973 a001 17711/9349*1364^(4/5) 6099994165301485 s002 sum(A081681[n]/(exp(n)-1),n=1..infinity) 6099994186174014 a007 Real Root Of -61*x^4-275*x^3-959*x^2-767*x-165 6099994189768721 r004 Re(z^2+c),c=-25/24-1/6*I,z(0)=-1,n=9 6099994189885092 m001 (LaplaceLimit-gamma(1))^ln(5) 6099994209340609 a001 987/2207*24476^(5/7) 6099994215644864 a001 987/2207*64079^(15/23) 6099994216483678 a001 987/2207*167761^(3/5) 6099994216596157 a001 987/2207*439204^(5/9) 6099994216613680 a001 987/2207*7881196^(5/11) 6099994216613719 a001 987/2207*20633239^(3/7) 6099994216613725 a001 987/2207*141422324^(5/13) 6099994216613725 a001 987/2207*2537720636^(1/3) 6099994216613725 a001 987/2207*45537549124^(5/17) 6099994216613725 a001 987/2207*312119004989^(3/11) 6099994216613725 a001 987/2207*14662949395604^(5/21) 6099994216613725 a001 987/2207*(1/2+1/2*5^(1/2))^15 6099994216613725 a001 987/2207*192900153618^(5/18) 6099994216613725 a001 987/2207*28143753123^(3/10) 6099994216613725 a001 987/2207*10749957122^(5/16) 6099994216613725 a001 987/2207*599074578^(5/14) 6099994216613725 a001 987/2207*228826127^(3/8) 6099994216613727 a001 987/2207*33385282^(5/12) 6099994216614606 a001 987/2207*1860498^(1/2) 6099994216968377 a001 987/2207*103682^(5/8) 6099994219265531 a001 987/2207*39603^(15/22) 6099994233595447 m001 (-Champernowne+OneNinth)/(1+BesselI(1,2)) 6099994233726654 a007 Real Root Of 848*x^4-603*x^3-940*x^2-357*x+587 6099994236607052 a001 987/2207*15127^(3/4) 6099994246616362 m002 -5/Pi^5+2*Pi^3-Tanh[Pi] 6099994270034688 a007 Real Root Of -766*x^4-242*x^3-350*x^2+422*x+27 6099994289711450 a001 6624/2161*1364^(11/15) 6099994302876885 m004 25+36*Tanh[Sqrt[5]*Pi] 6099994312964558 a001 121393/39603*1364^(11/15) 6099994316357141 a001 317811/103682*1364^(11/15) 6099994316852112 a001 832040/271443*1364^(11/15) 6099994316924327 a001 311187/101521*1364^(11/15) 6099994316934864 a001 5702887/1860498*1364^(11/15) 6099994316936401 a001 14930352/4870847*1364^(11/15) 6099994316936625 a001 39088169/12752043*1364^(11/15) 6099994316936658 a001 14619165/4769326*1364^(11/15) 6099994316936662 a001 267914296/87403803*1364^(11/15) 6099994316936663 a001 701408733/228826127*1364^(11/15) 6099994316936663 a001 1836311903/599074578*1364^(11/15) 6099994316936663 a001 686789568/224056801*1364^(11/15) 6099994316936663 a001 12586269025/4106118243*1364^(11/15) 6099994316936663 a001 32951280099/10749957122*1364^(11/15) 6099994316936663 a001 86267571272/28143753123*1364^(11/15) 6099994316936663 a001 32264490531/10525900321*1364^(11/15) 6099994316936663 a001 591286729879/192900153618*1364^(11/15) 6099994316936663 a001 1548008755920/505019158607*1364^(11/15) 6099994316936663 a001 1515744265389/494493258286*1364^(11/15) 6099994316936663 a001 2504730781961/817138163596*1364^(11/15) 6099994316936663 a001 956722026041/312119004989*1364^(11/15) 6099994316936663 a001 365435296162/119218851371*1364^(11/15) 6099994316936663 a001 139583862445/45537549124*1364^(11/15) 6099994316936663 a001 53316291173/17393796001*1364^(11/15) 6099994316936663 a001 20365011074/6643838879*1364^(11/15) 6099994316936663 a001 7778742049/2537720636*1364^(11/15) 6099994316936663 a001 2971215073/969323029*1364^(11/15) 6099994316936663 a001 1134903170/370248451*1364^(11/15) 6099994316936664 a001 433494437/141422324*1364^(11/15) 6099994316936665 a001 165580141/54018521*1364^(11/15) 6099994316936678 a001 63245986/20633239*1364^(11/15) 6099994316936764 a001 24157817/7881196*1364^(11/15) 6099994316937351 a001 9227465/3010349*1364^(11/15) 6099994316941375 a001 3524578/1149851*1364^(11/15) 6099994316968959 a001 1346269/439204*1364^(11/15) 6099994317158021 a001 514229/167761*1364^(11/15) 6099994318453872 a001 196418/64079*1364^(11/15) 6099994327335770 a001 75025/24476*1364^(11/15) 6099994338610705 a001 4181/843*843^(5/7) 6099994349351481 a008 Real Root of x^4-x^3+26*x^2-36*x-32 6099994354286502 a001 28657/5778*1364^(2/3) 6099994364916034 m001 (-Gompertz+QuadraticClass)/(cos(1)+gamma(1)) 6099994368876285 a001 987/2207*5778^(5/6) 6099994375982196 a001 121393/2207*1364^(1/3) 6099994388213199 a001 28657/9349*1364^(11/15) 6099994391877552 m008 (2/5*Pi^4-3)/(4/5*Pi^2-2) 6099994399328358 a001 4181-1597*5^(1/2) 6099994418798691 a008 Real Root of x^4-2*x^3-22*x^2-40*x+132 6099994427923259 a001 4181/3571*1364^(13/15) 6099994435079293 p001 sum(1/(320*n+299)/n/(3^n),n=1..infinity) 6099994448016725 m005 (1/3*exp(1)+1/11)/(5*Pi+7/11) 6099994488834121 m005 (1/2*Catalan-1/10)/(1/9*exp(1)-8/9) 6099994499120465 a007 Real Root Of 664*x^4-6*x^3+930*x^2-565*x-784 6099994509074965 a001 75025/15127*1364^(2/3) 6099994516960861 a007 Real Root Of -112*x^4-713*x^3+4*x^2+970*x-996 6099994520216077 r002 24th iterates of z^2 + 6099994531658298 a001 196418/39603*1364^(2/3) 6099994534953162 a001 514229/103682*1364^(2/3) 6099994535433876 a001 1346269/271443*1364^(2/3) 6099994535504012 a001 3524578/710647*1364^(2/3) 6099994535514244 a001 9227465/1860498*1364^(2/3) 6099994535515737 a001 24157817/4870847*1364^(2/3) 6099994535515955 a001 63245986/12752043*1364^(2/3) 6099994535515987 a001 165580141/33385282*1364^(2/3) 6099994535515991 a001 433494437/87403803*1364^(2/3) 6099994535515992 a001 1134903170/228826127*1364^(2/3) 6099994535515992 a001 2971215073/599074578*1364^(2/3) 6099994535515992 a001 7778742049/1568397607*1364^(2/3) 6099994535515992 a001 20365011074/4106118243*1364^(2/3) 6099994535515992 a001 53316291173/10749957122*1364^(2/3) 6099994535515992 a001 139583862445/28143753123*1364^(2/3) 6099994535515992 a001 365435296162/73681302247*1364^(2/3) 6099994535515992 a001 956722026041/192900153618*1364^(2/3) 6099994535515992 a001 2504730781961/505019158607*1364^(2/3) 6099994535515992 a001 10610209857723/2139295485799*1364^(2/3) 6099994535515992 a001 4052739537881/817138163596*1364^(2/3) 6099994535515992 a001 140728068720/28374454999*1364^(2/3) 6099994535515992 a001 591286729879/119218851371*1364^(2/3) 6099994535515992 a001 225851433717/45537549124*1364^(2/3) 6099994535515992 a001 86267571272/17393796001*1364^(2/3) 6099994535515992 a001 32951280099/6643838879*1364^(2/3) 6099994535515992 a001 1144206275/230701876*1364^(2/3) 6099994535515992 a001 4807526976/969323029*1364^(2/3) 6099994535515992 a001 1836311903/370248451*1364^(2/3) 6099994535515993 a001 701408733/141422324*1364^(2/3) 6099994535515994 a001 267914296/54018521*1364^(2/3) 6099994535516006 a001 9303105/1875749*1364^(2/3) 6099994535516090 a001 39088169/7881196*1364^(2/3) 6099994535516660 a001 14930352/3010349*1364^(2/3) 6099994535520568 a001 5702887/1149851*1364^(2/3) 6099994535547358 a001 2178309/439204*1364^(2/3) 6099994535730974 a001 75640/15251*1364^(2/3) 6099994536989500 a001 317811/64079*1364^(2/3) 6099994545615566 a001 121393/24476*1364^(2/3) 6099994547883048 m001 (PlouffeB+Thue)/(2^(1/3)-exp(Pi)) 6099994550053869 a001 6765/3571*1364^(4/5) 6099994563780737 r005 Re(z^2+c),c=-61/82+1/13*I,n=56 6099994570812802 a001 2576/321*1364^(3/5) 6099994577643511 a001 4052739537881/18*9062201101803^(15/17) 6099994577643511 a001 3536736619241/6*23725150497407^(14/17) 6099994577643511 a001 3536736619241/6*505019158607^(16/17) 6099994589032198 l006 ln(4368/8039) 6099994589663096 m001 BesselJ(1,1)/Bloch^2/exp(sin(Pi/5))^2 6099994594675939 a001 196418/2207*1364^(4/15) 6099994604739500 a001 46368/9349*1364^(2/3) 6099994654278526 m001 (cos(1)*gamma(2)+Gompertz)/gamma(2) 6099994669474955 a005 (1/cos(1/72*Pi))^1899 6099994669487277 a007 Real Root Of -20*x^4+768*x^3+385*x^2+79*x-363 6099994683339765 m001 Niven^ln(3)*Artin^ln(3) 6099994689704182 a007 Real Root Of -175*x^4-943*x^3+810*x^2+422*x+693 6099994699227061 a001 2584/843*843^(11/14) 6099994718627473 r005 Im(z^2+c),c=-3/58+27/40*I,n=48 6099994727354768 a001 121393/15127*1364^(3/5) 6099994750193934 a001 105937/13201*1364^(3/5) 6099994753526123 a001 416020/51841*1364^(3/5) 6099994754012283 a001 726103/90481*1364^(3/5) 6099994754083213 a001 5702887/710647*1364^(3/5) 6099994754093561 a001 829464/103361*1364^(3/5) 6099994754095071 a001 39088169/4870847*1364^(3/5) 6099994754095291 a001 34111385/4250681*1364^(3/5) 6099994754095324 a001 133957148/16692641*1364^(3/5) 6099994754095328 a001 233802911/29134601*1364^(3/5) 6099994754095329 a001 1836311903/228826127*1364^(3/5) 6099994754095329 a001 267084832/33281921*1364^(3/5) 6099994754095329 a001 12586269025/1568397607*1364^(3/5) 6099994754095329 a001 10983760033/1368706081*1364^(3/5) 6099994754095329 a001 43133785636/5374978561*1364^(3/5) 6099994754095329 a001 75283811239/9381251041*1364^(3/5) 6099994754095329 a001 591286729879/73681302247*1364^(3/5) 6099994754095329 a001 86000486440/10716675201*1364^(3/5) 6099994754095329 a001 4052739537881/505019158607*1364^(3/5) 6099994754095329 a001 3536736619241/440719107401*1364^(3/5) 6099994754095329 a001 3278735159921/408569081798*1364^(3/5) 6099994754095329 a001 2504730781961/312119004989*1364^(3/5) 6099994754095329 a001 956722026041/119218851371*1364^(3/5) 6099994754095329 a001 182717648081/22768774562*1364^(3/5) 6099994754095329 a001 139583862445/17393796001*1364^(3/5) 6099994754095329 a001 53316291173/6643838879*1364^(3/5) 6099994754095329 a001 10182505537/1268860318*1364^(3/5) 6099994754095329 a001 7778742049/969323029*1364^(3/5) 6099994754095329 a001 2971215073/370248451*1364^(3/5) 6099994754095329 a001 567451585/70711162*1364^(3/5) 6099994754095331 a001 433494437/54018521*1364^(3/5) 6099994754095343 a001 165580141/20633239*1364^(3/5) 6099994754095428 a001 31622993/3940598*1364^(3/5) 6099994754096004 a001 24157817/3010349*1364^(3/5) 6099994754099957 a001 9227465/1149851*1364^(3/5) 6099994754127050 a001 1762289/219602*1364^(3/5) 6099994754312746 a001 1346269/167761*1364^(3/5) 6099994755585529 a001 514229/64079*1364^(3/5) 6099994764309315 a001 98209/12238*1364^(3/5) 6099994771557034 p003 LerchPhi(1/2,5,154/87) 6099994775422946 p003 LerchPhi(1/12,1,400/231) 6099994790176328 a001 75025/5778*1364^(8/15) 6099994805473341 a001 10946/3571*1364^(11/15) 6099994809939308 a001 726103/1926*521^(1/13) 6099994813211576 a001 317811/2207*1364^(1/5) 6099994814066893 a001 98209/682*521^(3/13) 6099994814930700 m001 (gamma+HardHexagonsEntropy)/(Mills+Tetranacci) 6099994822010373 m001 Zeta(3)^2*FeigenbaumC/ln(cosh(1)) 6099994824103028 a001 75025/9349*1364^(3/5) 6099994830307818 m008 (2*Pi^4+1/4)/(2/5*Pi^2-3/4) 6099994845094820 r005 Im(z^2+c),c=23/60+8/23*I,n=32 6099994855839006 a001 329/281*843^(13/14) 6099994857162062 r005 Re(z^2+c),c=5/126+22/61*I,n=9 6099994879145973 r005 Im(z^2+c),c=-33/46+4/35*I,n=54 6099994880862965 r002 6th iterates of z^2 + 6099994886353562 r005 Im(z^2+c),c=-3/98+37/47*I,n=17 6099994888869677 a003 cos(Pi*16/75)*sin(Pi*23/81) 6099994896855897 m001 (DuboisRaymond+FeigenbaumD)/(GaussAGM-Mills) 6099994896995620 a007 Real Root Of 79*x^4-819*x^3+574*x^2-378*x-641 6099994920446217 a001 2584/2207*3571^(13/17) 6099994937107276 r005 Re(z^2+c),c=-11/16+5/121*I,n=5 6099994943417070 a007 Real Root Of 9*x^4+545*x^3-260*x^2-969*x+531 6099994946048523 a001 196418/15127*1364^(8/15) 6099994961604585 m008 (1/4*Pi^4+2/3)/(1/2*Pi^2-5/6) 6099994961949271 a007 Real Root Of -789*x^4+798*x^3+592*x^2-197*x-172 6099994964176511 a007 Real Root Of -117*x^4+81*x^3-698*x^2+729*x+739 6099994965996844 a001 5702887/15127*521^(1/13) 6099994968789971 a001 514229/39603*1364^(8/15) 6099994972107903 a001 1346269/103682*1364^(8/15) 6099994972591983 a001 3524578/271443*1364^(8/15) 6099994972662609 a001 9227465/710647*1364^(8/15) 6099994972672914 a001 24157817/1860498*1364^(8/15) 6099994972674417 a001 63245986/4870847*1364^(8/15) 6099994972674636 a001 165580141/12752043*1364^(8/15) 6099994972674668 a001 433494437/33385282*1364^(8/15) 6099994972674673 a001 1134903170/87403803*1364^(8/15) 6099994972674674 a001 2971215073/228826127*1364^(8/15) 6099994972674674 a001 7778742049/599074578*1364^(8/15) 6099994972674674 a001 20365011074/1568397607*1364^(8/15) 6099994972674674 a001 53316291173/4106118243*1364^(8/15) 6099994972674674 a001 139583862445/10749957122*1364^(8/15) 6099994972674674 a001 365435296162/28143753123*1364^(8/15) 6099994972674674 a001 956722026041/73681302247*1364^(8/15) 6099994972674674 a001 2504730781961/192900153618*1364^(8/15) 6099994972674674 a001 10610209857723/817138163596*1364^(8/15) 6099994972674674 a001 4052739537881/312119004989*1364^(8/15) 6099994972674674 a001 1548008755920/119218851371*1364^(8/15) 6099994972674674 a001 591286729879/45537549124*1364^(8/15) 6099994972674674 a001 7787980473/599786069*1364^(8/15) 6099994972674674 a001 86267571272/6643838879*1364^(8/15) 6099994972674674 a001 32951280099/2537720636*1364^(8/15) 6099994972674674 a001 12586269025/969323029*1364^(8/15) 6099994972674674 a001 4807526976/370248451*1364^(8/15) 6099994972674674 a001 1836311903/141422324*1364^(8/15) 6099994972674676 a001 701408733/54018521*1364^(8/15) 6099994972674688 a001 9238424/711491*1364^(8/15) 6099994972674772 a001 102334155/7881196*1364^(8/15) 6099994972675346 a001 39088169/3010349*1364^(8/15) 6099994972679282 a001 14930352/1149851*1364^(8/15) 6099994972706259 a001 5702887/439204*1364^(8/15) 6099994972891161 a001 2178309/167761*1364^(8/15) 6099994974158498 a001 832040/64079*1364^(8/15) 6099994982844958 a001 10959/844*1364^(8/15) 6099994988765333 a001 4976784/13201*521^(1/13) 6099994990607094 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^18 6099994992087210 a001 39088169/103682*521^(1/13) 6099994992571866 a001 34111385/90481*521^(1/13) 6099994992642576 a001 267914296/710647*521^(1/13) 6099994992652893 a001 233802911/620166*521^(1/13) 6099994992654398 a001 1836311903/4870847*521^(1/13) 6099994992654617 a001 1602508992/4250681*521^(1/13) 6099994992654649 a001 12586269025/33385282*521^(1/13) 6099994992654654 a001 10983760033/29134601*521^(1/13) 6099994992654655 a001 86267571272/228826127*521^(1/13) 6099994992654655 a001 267913919/710646*521^(1/13) 6099994992654655 a001 591286729879/1568397607*521^(1/13) 6099994992654655 a001 516002918640/1368706081*521^(1/13) 6099994992654655 a001 4052739537881/10749957122*521^(1/13) 6099994992654655 a001 3536736619241/9381251041*521^(1/13) 6099994992654655 a001 6557470319842/17393796001*521^(1/13) 6099994992654655 a001 2504730781961/6643838879*521^(1/13) 6099994992654655 a001 956722026041/2537720636*521^(1/13) 6099994992654655 a001 365435296162/969323029*521^(1/13) 6099994992654655 a001 139583862445/370248451*521^(1/13) 6099994992654655 a001 53316291173/141422324*521^(1/13) 6099994992654657 a001 20365011074/54018521*521^(1/13) 6099994992654669 a001 7778742049/20633239*521^(1/13) 6099994992654753 a001 2971215073/7881196*521^(1/13) 6099994992655328 a001 1134903170/3010349*521^(1/13) 6099994992659268 a001 433494437/1149851*521^(1/13) 6099994992686277 a001 165580141/439204*521^(1/13) 6099994992871399 a001 63245986/167761*521^(1/13) 6099994994140244 a001 24157817/64079*521^(1/13) 6099995002837032 a001 9227465/24476*521^(1/13) 6099995008456141 a001 121393/5778*1364^(7/15) 6099995009981008 a001 17711/3571*1364^(2/3) 6099995031807615 a001 514229/2207*1364^(2/15) 6099995042382842 a001 121393/9349*1364^(8/15) 6099995062445710 a001 3524578/9349*521^(1/13) 6099995074319448 a005 (1/cos(23/210*Pi))^678 6099995078569718 m005 (3*Catalan-4/5)/(1/6*Catalan+1/6) 6099995080113891 r005 Im(z^2+c),c=-17/94+14/19*I,n=45 6099995080909449 s001 sum(exp(-3*Pi/4)^n*A276260[n],n=1..infinity) 6099995084511829 r002 7th iterates of z^2 + 6099995098438040 m005 (1/2*3^(1/2)-2/7)/(1/12*Catalan+7/8) 6099995114722137 m005 (1/3*Zeta(3)+2/9)/(4/9*Zeta(3)-7/11) 6099995118066293 m005 (1/2*Catalan-6)/(6*2^(1/2)+3/5) 6099995132780526 a001 6765/2207*3571^(11/17) 6099995164584173 a001 317811/15127*1364^(7/15) 6099995171126619 l006 ln(2137/3933) 6099995176477848 a007 Real Root Of 698*x^4-749*x^3+104*x^2-765*x-772 6099995178991598 a007 Real Root Of 981*x^4-683*x^3-462*x^2-649*x+587 6099995187362947 a001 832040/39603*1364^(7/15) 6099995190686325 a001 46347/2206*1364^(7/15) 6099995191171200 a001 5702887/271443*1364^(7/15) 6099995191241942 a001 14930352/710647*1364^(7/15) 6099995191252263 a001 39088169/1860498*1364^(7/15) 6099995191253769 a001 102334155/4870847*1364^(7/15) 6099995191253989 a001 267914296/12752043*1364^(7/15) 6099995191254021 a001 701408733/33385282*1364^(7/15) 6099995191254025 a001 1836311903/87403803*1364^(7/15) 6099995191254026 a001 102287808/4868641*1364^(7/15) 6099995191254026 a001 12586269025/599074578*1364^(7/15) 6099995191254026 a001 32951280099/1568397607*1364^(7/15) 6099995191254026 a001 86267571272/4106118243*1364^(7/15) 6099995191254026 a001 225851433717/10749957122*1364^(7/15) 6099995191254026 a001 591286729879/28143753123*1364^(7/15) 6099995191254026 a001 1548008755920/73681302247*1364^(7/15) 6099995191254026 a001 4052739537881/192900153618*1364^(7/15) 6099995191254026 a001 225749145909/10745088481*1364^(7/15) 6099995191254026 a001 6557470319842/312119004989*1364^(7/15) 6099995191254026 a001 2504730781961/119218851371*1364^(7/15) 6099995191254026 a001 956722026041/45537549124*1364^(7/15) 6099995191254026 a001 365435296162/17393796001*1364^(7/15) 6099995191254026 a001 139583862445/6643838879*1364^(7/15) 6099995191254026 a001 53316291173/2537720636*1364^(7/15) 6099995191254026 a001 20365011074/969323029*1364^(7/15) 6099995191254026 a001 7778742049/370248451*1364^(7/15) 6099995191254026 a001 2971215073/141422324*1364^(7/15) 6099995191254028 a001 1134903170/54018521*1364^(7/15) 6099995191254040 a001 433494437/20633239*1364^(7/15) 6099995191254124 a001 165580141/7881196*1364^(7/15) 6099995191254700 a001 63245986/3010349*1364^(7/15) 6099995191258642 a001 24157817/1149851*1364^(7/15) 6099995191285663 a001 9227465/439204*1364^(7/15) 6099995191470869 a001 3524578/167761*1364^(7/15) 6099995192740286 a001 1346269/64079*1364^(7/15) 6099995194260036 a007 Real Root Of 339*x^4-885*x^3-119*x^2-598*x+563 6099995196125520 m005 (1/3*gamma-2/7)/(9/11+7/22*5^(1/2)) 6099995196333035 r002 4th iterates of z^2 + 6099995197759156 a001 10946/2207*3571^(10/17) 6099995201090766 a001 4181/2207*3571^(12/17) 6099995201441003 a001 514229/24476*1364^(7/15) 6099995211825967 a001 17711/2207*3571^(9/17) 6099995216455393 a001 2550408/4181 6099995223801814 a001 329/1926*9349^(17/19) 6099995227149906 a001 98209/2889*1364^(2/5) 6099995233935265 a001 28657/3571*1364^(3/5) 6099995238494900 a001 2584/2207*9349^(13/19) 6099995241328631 r005 Im(z^2+c),c=21/122+33/59*I,n=27 6099995245339363 a001 28657/2207*3571^(8/17) 6099995250380594 a001 832040/2207*1364^(1/15) 6099995252397404 m004 1+30*E^(Sqrt[5]*Pi)*Sech[Sqrt[5]*Pi] 6099995257004891 a001 5778/89*610^(17/24) 6099995261076608 a001 196418/9349*1364^(7/15) 6099995271424825 a001 46368/2207*3571^(7/17) 6099995274168586 r005 Im(z^2+c),c=-15/94+4/51*I,n=16 6099995278003491 a001 329/1926*24476^(17/21) 6099995279943241 a001 2584/2207*24476^(13/21) 6099995285148315 a001 329/1926*64079^(17/23) 6099995285406929 a001 2584/2207*64079^(13/23) 6099995286246357 a001 329/1926*45537549124^(1/3) 6099995286246357 a001 329/1926*(1/2+1/2*5^(1/2))^17 6099995286246376 a001 329/1926*12752043^(1/2) 6099995286246609 a001 2584/2207*141422324^(1/3) 6099995286246609 a001 2584/2207*(1/2+1/2*5^(1/2))^13 6099995286246609 a001 2584/2207*73681302247^(1/4) 6099995286288003 a001 2584/2207*271443^(1/2) 6099995286553974 a001 2584/2207*103682^(13/24) 6099995286648297 a001 329/1926*103682^(17/24) 6099995288544842 a001 2584/2207*39603^(13/22) 6099995289251738 a001 329/1926*39603^(17/22) 6099995300347505 a001 75025/2207*3571^(6/17) 6099995302774062 r005 Im(z^2+c),c=-15/94+4/51*I,n=18 6099995303574162 a001 2584/2207*15127^(13/20) 6099995308198354 r005 Im(z^2+c),c=-15/94+4/51*I,n=20 6099995308656152 r005 Im(z^2+c),c=-15/94+4/51*I,n=22 6099995308658682 r005 Im(z^2+c),c=-15/94+4/51*I,n=23 6099995308661887 r005 Im(z^2+c),c=-15/94+4/51*I,n=25 6099995308663209 r005 Im(z^2+c),c=-15/94+4/51*I,n=27 6099995308663356 r005 Im(z^2+c),c=-15/94+4/51*I,n=29 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=32 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=34 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=36 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=39 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=41 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=43 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=45 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=46 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=48 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=50 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=52 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=55 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=57 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=59 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=61 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=62 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=64 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=63 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=60 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=58 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=56 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=54 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=53 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=51 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=49 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=47 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=44 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=42 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=38 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=40 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=37 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=35 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=33 6099995308663362 r005 Im(z^2+c),c=-15/94+4/51*I,n=30 6099995308663363 r005 Im(z^2+c),c=-15/94+4/51*I,n=31 6099995308663400 r005 Im(z^2+c),c=-15/94+4/51*I,n=28 6099995308663880 r005 Im(z^2+c),c=-15/94+4/51*I,n=26 6099995308666733 r005 Im(z^2+c),c=-15/94+4/51*I,n=24 6099995308754529 r005 Im(z^2+c),c=-15/94+4/51*I,n=21 6099995308905466 a001 329/1926*15127^(17/20) 6099995310471834 r005 Im(z^2+c),c=-15/94+4/51*I,n=19 6099995313523193 a007 Real Root Of -797*x^4-257*x^3-554*x^2+244*x+407 6099995314812869 m005 (3/4*Catalan-3/5)/(5*exp(1)+2/3) 6099995324794917 r005 Im(z^2+c),c=-15/94+4/51*I,n=17 6099995328186465 a001 121393/2207*3571^(5/17) 6099995328309395 m001 (KhinchinLevy+ZetaQ(2))/(3^(1/2)-GAMMA(7/12)) 6099995335211204 m001 (-Zeta(3)+Ei(1))/(Psi(1,1/3)+BesselI(0,1)) 6099995345776007 r005 Im(z^2+c),c=-15/94+4/51*I,n=15 6099995354985338 m004 -25*Pi+18*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 6099995356439369 a001 196418/2207*3571^(4/17) 6099995383180225 a001 514229/15127*1364^(2/5) 6099995384534161 a001 317811/2207*3571^(3/17) 6099995390689721 a001 987/2207*2207^(15/16) 6099995399170500 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^20 6099995401898650 a001 6765/2207*9349^(11/19) 6099995405944743 a001 1346269/39603*1364^(2/5) 6099995406696521 m001 (Gompertz*Rabbit-gamma(2))/Rabbit 6099995409266041 a001 1762289/51841*1364^(2/5) 6099995409750612 a001 9227465/271443*1364^(2/5) 6099995409821310 a001 24157817/710647*1364^(2/5) 6099995409831624 a001 31622993/930249*1364^(2/5) 6099995409833129 a001 165580141/4870847*1364^(2/5) 6099995409833349 a001 433494437/12752043*1364^(2/5) 6099995409833381 a001 567451585/16692641*1364^(2/5) 6099995409833386 a001 2971215073/87403803*1364^(2/5) 6099995409833386 a001 7778742049/228826127*1364^(2/5) 6099995409833386 a001 10182505537/299537289*1364^(2/5) 6099995409833386 a001 53316291173/1568397607*1364^(2/5) 6099995409833386 a001 139583862445/4106118243*1364^(2/5) 6099995409833386 a001 182717648081/5374978561*1364^(2/5) 6099995409833386 a001 956722026041/28143753123*1364^(2/5) 6099995409833386 a001 2504730781961/73681302247*1364^(2/5) 6099995409833386 a001 3278735159921/96450076809*1364^(2/5) 6099995409833386 a001 10610209857723/312119004989*1364^(2/5) 6099995409833386 a001 4052739537881/119218851371*1364^(2/5) 6099995409833386 a001 387002188980/11384387281*1364^(2/5) 6099995409833386 a001 591286729879/17393796001*1364^(2/5) 6099995409833386 a001 225851433717/6643838879*1364^(2/5) 6099995409833386 a001 1135099622/33391061*1364^(2/5) 6099995409833386 a001 32951280099/969323029*1364^(2/5) 6099995409833386 a001 12586269025/370248451*1364^(2/5) 6099995409833387 a001 1201881744/35355581*1364^(2/5) 6099995409833389 a001 1836311903/54018521*1364^(2/5) 6099995409833401 a001 701408733/20633239*1364^(2/5) 6099995409833485 a001 66978574/1970299*1364^(2/5) 6099995409834059 a001 102334155/3010349*1364^(2/5) 6099995409837999 a001 39088169/1149851*1364^(2/5) 6099995409865004 a001 196452/5779*1364^(2/5) 6099995410050093 a001 5702887/167761*1364^(2/5) 6099995411318716 a001 2178309/64079*1364^(2/5) 6099995412689346 a001 514229/2207*3571^(2/17) 6099995418207517 a001 2584/2207*5778^(13/18) 6099995420013988 a001 208010/6119*1364^(2/5) 6099995432013525 a001 17711/2207*9349^(9/19) 6099995432121322 a001 6677055/10946 6099995433091071 a001 141/2161*24476^(19/21) 6099995436970324 a001 6765/2207*24476^(11/21) 6099995440821463 a001 832040/2207*3571^(1/17) 6099995441061637 a001 28657/2207*9349^(8/19) 6099995441076463 a001 141/2161*64079^(19/23) 6099995441593445 a001 6765/2207*64079^(11/23) 6099995442303687 a001 141/2161*817138163596^(1/3) 6099995442303687 a001 141/2161*(1/2+1/2*5^(1/2))^19 6099995442303687 a001 141/2161*87403803^(1/2) 6099995442303911 a001 6765/2207*7881196^(1/3) 6099995442303943 a001 6765/2207*312119004989^(1/5) 6099995442303943 a001 6765/2207*(1/2+1/2*5^(1/2))^11 6099995442303943 a001 6765/2207*1568397607^(1/4) 6099995442411998 a001 10946/2207*9349^(10/19) 6099995442564022 a001 6765/2207*103682^(11/24) 6099995442681815 a001 46368/2207*9349^(7/19) 6099995442752913 a001 141/2161*103682^(19/24) 6099995444248602 a001 6765/2207*39603^(1/2) 6099995445662642 a001 141/2161*39603^(19/22) 6099995445685567 a001 105937/1926*1364^(1/3) 6099995446260182 r005 Im(z^2+c),c=-15/94+4/51*I,n=14 6099995447139212 a001 75025/2207*9349^(6/19) 6099995450461596 a001 46368/3571*1364^(8/15) 6099995450512887 a001 121393/2207*9349^(5/19) 6099995454300507 a001 196418/2207*9349^(4/19) 6099995456965720 a001 6765/2207*15127^(11/20) 6099995457045500 r009 Im(z^3+c),c=-51/118+30/53*I,n=19 6099995457930014 a001 317811/2207*9349^(3/19) 6099995458779098 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^22 6099995458810622 a001 329/1926*5778^(17/18) 6099995460708531 a001 17711/2207*24476^(3/7) 6099995461447714 a007 Real Root Of -419*x^4+352*x^3+594*x^2+669*x-651 6099995461619915 a001 514229/2207*9349^(2/19) 6099995463586558 a001 17480757/28657 6099995463715739 a001 329/13201*64079^(21/23) 6099995464491085 a001 17711/2207*64079^(9/23) 6099995465000154 a001 46368/2207*24476^(1/3) 6099995465047549 a001 329/13201*439204^(7/9) 6099995465061861 a001 17711/2207*439204^(1/3) 6099995465072082 a001 329/13201*7881196^(7/11) 6099995465072136 a001 329/13201*20633239^(3/5) 6099995465072144 a001 329/13201*141422324^(7/13) 6099995465072145 a001 329/13201*2537720636^(7/15) 6099995465072145 a001 329/13201*17393796001^(3/7) 6099995465072145 a001 329/13201*45537549124^(7/17) 6099995465072145 a001 329/13201*14662949395604^(1/3) 6099995465072145 a001 329/13201*(1/2+1/2*5^(1/2))^21 6099995465072145 a001 329/13201*192900153618^(7/18) 6099995465072145 a001 329/13201*10749957122^(7/16) 6099995465072145 a001 329/13201*599074578^(1/2) 6099995465072148 a001 329/13201*33385282^(7/12) 6099995465072375 a001 17711/2207*7881196^(3/11) 6099995465072402 a001 17711/2207*141422324^(3/13) 6099995465072402 a001 17711/2207*2537720636^(1/5) 6099995465072402 a001 17711/2207*45537549124^(3/17) 6099995465072402 a001 17711/2207*817138163596^(3/19) 6099995465072402 a001 17711/2207*14662949395604^(1/7) 6099995465072402 a001 17711/2207*(1/2+1/2*5^(1/2))^9 6099995465072402 a001 17711/2207*192900153618^(1/6) 6099995465072402 a001 17711/2207*10749957122^(3/16) 6099995465072402 a001 17711/2207*599074578^(3/14) 6099995465072403 a001 17711/2207*33385282^(1/4) 6099995465072930 a001 17711/2207*1860498^(3/10) 6099995465073378 a001 329/13201*1860498^(7/10) 6099995465081204 a001 329/13201*710647^(3/4) 6099995465285193 a001 17711/2207*103682^(3/8) 6099995465286748 a001 832040/2207*9349^(1/19) 6099995465568658 a001 329/13201*103682^(7/8) 6099995465884090 h001 (3/7*exp(2)+2/9)/(8/11*exp(2)+2/11) 6099995466269216 a001 75025/2207*24476^(2/7) 6099995466454557 a001 121393/2207*24476^(5/21) 6099995466568310 a001 28657/2207*24476^(8/21) 6099995466663486 a001 17711/2207*39603^(9/22) 6099995467053843 a001 196418/2207*24476^(4/21) 6099995467475875 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^24 6099995467495017 a001 317811/2207*24476^(1/7) 6099995467628573 a001 141/2161*15127^(19/20) 6099995467942140 a001 46368/2207*64079^(7/23) 6099995467996583 a001 514229/2207*24476^(2/21) 6099995468177274 a001 45765216/75025 6099995468394018 a001 21/2206*(1/2+1/2*5^(1/2))^23 6099995468394018 a001 21/2206*4106118243^(1/2) 6099995468394272 a001 46368/2207*20633239^(1/5) 6099995468394275 a001 46368/2207*17393796001^(1/7) 6099995468394275 a001 46368/2207*14662949395604^(1/9) 6099995468394275 a001 46368/2207*(1/2+1/2*5^(1/2))^7 6099995468394275 a001 46368/2207*599074578^(1/6) 6099995468397295 a001 46368/2207*710647^(1/4) 6099995468475082 a001 832040/2207*24476^(1/21) 6099995468555976 a001 121393/2207*64079^(5/23) 6099995468559779 a001 46368/2207*103682^(7/24) 6099995468734978 a001 196418/2207*64079^(4/23) 6099995468744717 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^26 6099995468755868 a001 317811/2207*64079^(3/23) 6099995468784675 a001 329/13201*39603^(21/22) 6099995468790919 a001 75025/2207*64079^(6/23) 6099995468835581 a001 121393/2207*167761^(1/5) 6099995468837151 a001 514229/2207*64079^(2/23) 6099995468847050 a001 119814891/196418 6099995468878662 a001 329/90481*20633239^(5/7) 6099995468878673 a001 329/90481*2537720636^(5/9) 6099995468878673 a001 329/90481*312119004989^(5/11) 6099995468878673 a001 329/90481*(1/2+1/2*5^(1/2))^25 6099995468878673 a001 329/90481*3461452808002^(5/12) 6099995468878673 a001 329/90481*28143753123^(1/2) 6099995468878673 a001 329/90481*228826127^(5/8) 6099995468878928 a001 121393/2207*20633239^(1/7) 6099995468878930 a001 121393/2207*2537720636^(1/9) 6099995468878930 a001 121393/2207*312119004989^(1/11) 6099995468878930 a001 121393/2207*(1/2+1/2*5^(1/2))^5 6099995468878930 a001 121393/2207*28143753123^(1/10) 6099995468878930 a001 121393/2207*228826127^(1/8) 6099995468879224 a001 121393/2207*1860498^(1/6) 6099995468880141 a001 329/90481*1860498^(5/6) 6099995468895366 a001 832040/2207*64079^(1/23) 6099995468929839 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^28 6099995468937818 a001 21/2206*103682^(23/24) 6099995468944769 a001 313679457/514229 6099995468946126 a001 317811/2207*439204^(1/9) 6099995468949303 a001 141/101521*7881196^(9/11) 6099995468949383 a001 141/101521*141422324^(9/13) 6099995468949383 a001 141/101521*2537720636^(3/5) 6099995468949383 a001 141/101521*45537549124^(9/17) 6099995468949383 a001 141/101521*817138163596^(9/19) 6099995468949383 a001 141/101521*14662949395604^(3/7) 6099995468949383 a001 141/101521*(1/2+1/2*5^(1/2))^27 6099995468949383 a001 141/101521*192900153618^(1/2) 6099995468949383 a001 141/101521*10749957122^(9/16) 6099995468949383 a001 141/101521*599074578^(9/14) 6099995468949387 a001 141/101521*33385282^(3/4) 6099995468949631 a001 317811/2207*7881196^(1/11) 6099995468949640 a001 317811/2207*141422324^(1/13) 6099995468949640 a001 317811/2207*2537720636^(1/15) 6099995468949640 a001 317811/2207*45537549124^(1/17) 6099995468949640 a001 317811/2207*14662949395604^(1/21) 6099995468949640 a001 317811/2207*(1/2+1/2*5^(1/2))^3 6099995468949640 a001 317811/2207*192900153618^(1/18) 6099995468949640 a001 317811/2207*10749957122^(1/16) 6099995468949640 a001 317811/2207*599074578^(1/14) 6099995468949640 a001 317811/2207*33385282^(1/12) 6099995468949816 a001 317811/2207*1860498^(1/10) 6099995468950969 a001 141/101521*1860498^(9/10) 6099995468956848 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^30 6099995468959026 a001 821223480/1346269 6099995468959699 a001 329/620166*(1/2+1/2*5^(1/2))^29 6099995468959699 a001 329/620166*1322157322203^(1/2) 6099995468959956 a001 416020/2207+416020/2207*5^(1/2) 6099995468960789 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^32 6099995468961106 a001 2149990983/3524578 6099995468961205 a001 987/4870847*(1/2+1/2*5^(1/2))^31 6099995468961205 a001 987/4870847*9062201101803^(1/2) 6099995468961363 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^34 6099995468961410 a001 5628749469/9227465 6099995468961424 a001 329/4250681*141422324^(11/13) 6099995468961424 a001 329/4250681*2537720636^(11/15) 6099995468961424 a001 329/4250681*45537549124^(11/17) 6099995468961424 a001 329/4250681*312119004989^(3/5) 6099995468961424 a001 329/4250681*14662949395604^(11/21) 6099995468961424 a001 329/4250681*(1/2+1/2*5^(1/2))^33 6099995468961424 a001 329/4250681*192900153618^(11/18) 6099995468961424 a001 329/4250681*10749957122^(11/16) 6099995468961424 a001 329/4250681*1568397607^(3/4) 6099995468961424 a001 329/4250681*599074578^(11/14) 6099995468961429 a001 329/4250681*33385282^(11/12) 6099995468961447 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^36 6099995468961454 a001 14736257424/24157817 6099995468961456 a001 141/4769326*2537720636^(7/9) 6099995468961456 a001 141/4769326*17393796001^(5/7) 6099995468961456 a001 141/4769326*312119004989^(7/11) 6099995468961456 a001 141/4769326*14662949395604^(5/9) 6099995468961456 a001 141/4769326*(1/2+1/2*5^(1/2))^35 6099995468961456 a001 141/4769326*505019158607^(5/8) 6099995468961456 a001 141/4769326*28143753123^(7/10) 6099995468961456 a001 141/4769326*599074578^(5/6) 6099995468961456 a001 141/4769326*228826127^(7/8) 6099995468961460 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^38 6099995468961461 a001 38580022803/63245986 6099995468961461 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(38) 6099995468961461 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^40 6099995468961461 a001 101003810985/165580141 6099995468961462 a001 21/4868641*2537720636^(13/15) 6099995468961462 a001 21/4868641*45537549124^(13/17) 6099995468961462 a001 21/4868641*14662949395604^(13/21) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(40) 6099995468961462 a001 21/4868641*192900153618^(13/18) 6099995468961462 a001 21/4868641*73681302247^(3/4) 6099995468961462 a001 21/4868641*10749957122^(13/16) 6099995468961462 a001 21/4868641*599074578^(13/14) 6099995468961462 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^42 6099995468961462 a001 264431410152/433494437 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(42) 6099995468961462 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^44 6099995468961462 a001 692290419471/1134903170 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(44) 6099995468961462 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^46 6099995468961462 a001 1812439848261/2971215073 6099995468961462 a001 329/1368706081*45537549124^(15/17) 6099995468961462 a001 329/1368706081*312119004989^(9/11) 6099995468961462 a001 329/1368706081*14662949395604^(5/7) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(46) 6099995468961462 a001 329/1368706081*192900153618^(5/6) 6099995468961462 a001 329/1368706081*28143753123^(9/10) 6099995468961462 a001 329/1368706081*10749957122^(15/16) 6099995468961462 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^48 6099995468961462 a001 4745029125312/7778742049 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(48) 6099995468961462 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^50 6099995468961462 a001 12422647527675/20365011074 6099995468961462 a001 329/9381251041*14662949395604^(7/9) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(50) 6099995468961462 a001 329/9381251041*505019158607^(7/8) 6099995468961462 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^52 6099995468961462 a001 32522913457713/53316291173 6099995468961462 a001 141/10525900321*817138163596^(17/19) 6099995468961462 a001 141/10525900321*14662949395604^(17/21) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(52) 6099995468961462 a001 141/10525900321*192900153618^(17/18) 6099995468961462 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^54 6099995468961462 a001 85146092845464/139583862445 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(54) 6099995468961462 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^56 6099995468961462 a001 222915365078679/365435296162 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(56) 6099995468961462 a001 21/10745088481*3461452808002^(11/12) 6099995468961462 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^58 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(58) 6099995468961462 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^60 6099995468961462 a001 1527884642093040/2504730781961 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(60) 6099995468961462 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^62 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(62) 6099995468961462 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^64 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(64) 6099995468961462 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^66 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(66) 6099995468961462 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^68 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(68) 6099995468961462 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^70 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(70) 6099995468961462 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^72 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(72) 6099995468961462 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^74 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(74) 6099995468961462 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^76 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(76) 6099995468961462 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^78 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(78) 6099995468961462 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^80 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(80) 6099995468961462 a004 Fibonacci(16)*Lucas(81)/(1/2+sqrt(5)/2)^82 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(82) 6099995468961462 a004 Fibonacci(16)*Lucas(83)/(1/2+sqrt(5)/2)^84 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(84) 6099995468961462 a004 Fibonacci(16)*Lucas(85)/(1/2+sqrt(5)/2)^86 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(86) 6099995468961462 a004 Fibonacci(16)*Lucas(87)/(1/2+sqrt(5)/2)^88 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(88) 6099995468961462 a004 Fibonacci(16)*Lucas(89)/(1/2+sqrt(5)/2)^90 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^89/Lucas(90) 6099995468961462 a004 Fibonacci(16)*Lucas(91)/(1/2+sqrt(5)/2)^92 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^91/Lucas(92) 6099995468961462 a004 Fibonacci(16)*Lucas(93)/(1/2+sqrt(5)/2)^94 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^93/Lucas(94) 6099995468961462 a004 Fibonacci(16)*Lucas(95)/(1/2+sqrt(5)/2)^96 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^95/Lucas(96) 6099995468961462 a004 Fibonacci(16)*Lucas(97)/(1/2+sqrt(5)/2)^98 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^97/Lucas(98) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^98/Lucas(99) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^99/Lucas(100) 6099995468961462 a004 Fibonacci(16)*Lucas(99)/(1/2+sqrt(5)/2)^100 6099995468961462 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2) 6099995468961462 a004 Fibonacci(16)*Lucas(98)/(1/2+sqrt(5)/2)^99 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^96/Lucas(97) 6099995468961462 a004 Fibonacci(16)*Lucas(96)/(1/2+sqrt(5)/2)^97 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^94/Lucas(95) 6099995468961462 a004 Fibonacci(16)*Lucas(94)/(1/2+sqrt(5)/2)^95 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^92/Lucas(93) 6099995468961462 a004 Fibonacci(16)*Lucas(92)/(1/2+sqrt(5)/2)^93 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^90/Lucas(91) 6099995468961462 a004 Fibonacci(16)*Lucas(90)/(1/2+sqrt(5)/2)^91 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^88/Lucas(89) 6099995468961462 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^89 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^86/Lucas(87) 6099995468961462 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^87 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^84/Lucas(85) 6099995468961462 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^85 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^82/Lucas(83) 6099995468961462 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^83 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(81) 6099995468961462 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^81 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(79) 6099995468961462 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^79 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(77) 6099995468961462 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^77 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(75) 6099995468961462 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^75 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(73) 6099995468961462 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^73 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(71) 6099995468961462 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^71 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(69) 6099995468961462 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^69 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(67) 6099995468961462 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^67 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(65) 6099995468961462 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^65 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(63) 6099995468961462 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^63 6099995468961462 a001 987/5600748293801*14662949395604^(20/21) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(61) 6099995468961462 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^61 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(59) 6099995468961462 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^59 6099995468961462 a001 987/817138163596*14662949395604^(8/9) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(57) 6099995468961462 a001 360684637311894/591286729879 6099995468961462 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^57 6099995468961462 a001 987/312119004989*14662949395604^(6/7) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(55) 6099995468961462 a001 6560441534915/10754830177 6099995468961462 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^55 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(53) 6099995468961462 a001 987/119218851371*23725150497407^(13/16) 6099995468961462 a001 987/119218851371*505019158607^(13/14) 6099995468961462 a001 52623179387751/86267571272 6099995468961462 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^53 6099995468961462 a001 987/45537549124*312119004989^(10/11) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(51) 6099995468961462 a001 987/45537549124*3461452808002^(5/6) 6099995468961462 a001 6700088643346/10983760033 6099995468961462 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^51 6099995468961462 a001 987/17393796001*45537549124^(16/17) 6099995468961462 a001 987/17393796001*14662949395604^(16/21) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(49) 6099995468961462 a001 987/17393796001*192900153618^(8/9) 6099995468961462 a001 987/17393796001*73681302247^(12/13) 6099995468961462 a001 7677618402363/12586269025 6099995468961462 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^49 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(47) 6099995468961462 a001 987/6643838879*10749957122^(23/24) 6099995468961462 a001 2971215073/4870848 6099995468961462 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^47 6099995468961462 a001 987/2537720636*312119004989^(4/5) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(45) 6099995468961462 a001 987/2537720636*23725150497407^(11/16) 6099995468961462 a001 987/2537720636*73681302247^(11/13) 6099995468961462 a001 987/2537720636*10749957122^(11/12) 6099995468961462 a001 987/2537720636*4106118243^(22/23) 6099995468961462 a001 1120149428790/1836311903 6099995468961462 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^45 6099995468961462 a001 987/969323029*2537720636^(14/15) 6099995468961462 a001 987/969323029*17393796001^(6/7) 6099995468961462 a001 987/969323029*45537549124^(14/17) 6099995468961462 a001 987/969323029*817138163596^(14/19) 6099995468961462 a001 987/969323029*14662949395604^(2/3) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(43) 6099995468961462 a001 987/969323029*505019158607^(3/4) 6099995468961462 a001 987/969323029*192900153618^(7/9) 6099995468961462 a001 987/969323029*10749957122^(7/8) 6099995468961462 a001 987/969323029*4106118243^(21/23) 6099995468961462 a001 987/969323029*1568397607^(21/22) 6099995468961462 a001 142619669773/233802911 6099995468961462 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^43 6099995468961462 a001 987/370248451*2537720636^(8/9) 6099995468961462 a001 987/370248451*312119004989^(8/11) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(41) 6099995468961462 a001 987/370248451*23725150497407^(5/8) 6099995468961462 a001 987/370248451*73681302247^(10/13) 6099995468961462 a001 987/370248451*28143753123^(4/5) 6099995468961462 a001 987/370248451*10749957122^(5/6) 6099995468961462 a001 987/370248451*4106118243^(20/23) 6099995468961462 a001 987/370248451*1568397607^(10/11) 6099995468961462 a001 987/370248451*599074578^(20/21) 6099995468961462 a001 163427599167/267914296 6099995468961462 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^41 6099995468961462 a001 987/141422324*817138163596^(2/3) 6099995468961462 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(39) 6099995468961462 a001 987/141422324*10749957122^(19/24) 6099995468961462 a001 987/141422324*4106118243^(19/23) 6099995468961462 a001 987/141422324*1568397607^(19/22) 6099995468961462 a001 987/141422324*599074578^(19/21) 6099995468961462 a001 987/141422324*228826127^(19/20) 6099995468961462 a001 2972561342/4873055 6099995468961462 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^39 6099995468961463 a001 987/54018521*141422324^(12/13) 6099995468961464 a001 987/54018521*2537720636^(4/5) 6099995468961464 a001 987/54018521*45537549124^(12/17) 6099995468961464 a001 987/54018521*14662949395604^(4/7) 6099995468961464 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(37) 6099995468961464 a001 987/54018521*505019158607^(9/14) 6099995468961464 a001 987/54018521*192900153618^(2/3) 6099995468961464 a001 987/54018521*73681302247^(9/13) 6099995468961464 a001 987/54018521*10749957122^(3/4) 6099995468961464 a001 987/54018521*4106118243^(18/23) 6099995468961464 a001 987/54018521*1568397607^(9/11) 6099995468961464 a001 987/54018521*599074578^(6/7) 6099995468961464 a001 987/54018521*228826127^(9/10) 6099995468961464 a001 987/54018521*87403803^(18/19) 6099995468961465 a001 23843765379/39088169 6099995468961467 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^37 6099995468961476 a001 987/20633239*45537549124^(2/3) 6099995468961476 a001 987/20633239*(1/2+1/2*5^(1/2))^34 6099995468961476 a001 987/20633239*10749957122^(17/24) 6099995468961476 a001 987/20633239*4106118243^(17/23) 6099995468961476 a001 987/20633239*1568397607^(17/22) 6099995468961476 a001 987/20633239*599074578^(17/21) 6099995468961476 a001 987/20633239*228826127^(17/20) 6099995468961477 a001 987/20633239*87403803^(17/19) 6099995468961481 a001 987/20633239*33385282^(17/18) 6099995468961481 a001 3035835985/4976784 6099995468961499 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^35 6099995468961560 a001 987/7881196*(1/2+1/2*5^(1/2))^32 6099995468961560 a001 987/7881196*23725150497407^(1/2) 6099995468961560 a001 987/7881196*505019158607^(4/7) 6099995468961560 a001 987/7881196*73681302247^(8/13) 6099995468961560 a001 987/7881196*10749957122^(2/3) 6099995468961560 a001 987/7881196*4106118243^(16/23) 6099995468961560 a001 987/7881196*1568397607^(8/11) 6099995468961560 a001 987/7881196*599074578^(16/21) 6099995468961560 a001 987/7881196*228826127^(4/5) 6099995468961561 a001 987/7881196*87403803^(16/19) 6099995468961565 a001 987/7881196*33385282^(8/9) 6099995468961595 a001 987/7881196*12752043^(16/17) 6099995468961597 a001 3478758486/5702887 6099995468961681 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^3 6099995468961713 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^5 6099995468961718 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^7 6099995468961719 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^9 6099995468961719 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^11 6099995468961719 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^13 6099995468961719 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^15 6099995468961719 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^17 6099995468961719 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^19 6099995468961719 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^21 6099995468961719 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^23 6099995468961719 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^25 6099995468961719 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^27 6099995468961719 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^29 6099995468961719 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^31 6099995468961719 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^33 6099995468961719 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^35 6099995468961719 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^37 6099995468961719 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^39 6099995468961719 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^41 6099995468961719 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^43 6099995468961719 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^45 6099995468961719 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^47 6099995468961719 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^49 6099995468961719 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^51 6099995468961719 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^53 6099995468961719 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^55 6099995468961719 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^57 6099995468961719 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^59 6099995468961719 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^61 6099995468961719 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^63 6099995468961719 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^65 6099995468961719 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^67 6099995468961719 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^69 6099995468961719 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^68 6099995468961719 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^66 6099995468961719 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^64 6099995468961719 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^62 6099995468961719 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^60 6099995468961719 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^58 6099995468961719 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^56 6099995468961719 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^54 6099995468961719 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^52 6099995468961719 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^50 6099995468961719 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^48 6099995468961719 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^46 6099995468961719 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^44 6099995468961719 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^42 6099995468961719 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^40 6099995468961719 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^38 6099995468961719 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^36 6099995468961719 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^34 6099995468961719 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^32 6099995468961719 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^30 6099995468961719 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^28 6099995468961719 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^26 6099995468961719 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^24 6099995468961719 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^22 6099995468961719 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^20 6099995468961719 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^18 6099995468961719 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^16 6099995468961719 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^14 6099995468961719 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^12 6099995468961719 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^10 6099995468961719 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^8 6099995468961721 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^6 6099995468961733 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^4 6099995468961817 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^2 6099995468962045 a001 987/3010349*7881196^(10/11) 6099995468962122 a001 987/3010349*20633239^(6/7) 6099995468962135 a001 987/3010349*141422324^(10/13) 6099995468962135 a001 987/3010349*2537720636^(2/3) 6099995468962135 a001 987/3010349*45537549124^(10/17) 6099995468962135 a001 987/3010349*312119004989^(6/11) 6099995468962135 a001 987/3010349*14662949395604^(10/21) 6099995468962135 a001 987/3010349*(1/2+1/2*5^(1/2))^30 6099995468962135 a001 987/3010349*192900153618^(5/9) 6099995468962135 a001 987/3010349*28143753123^(3/5) 6099995468962135 a001 987/3010349*10749957122^(5/8) 6099995468962135 a001 987/3010349*4106118243^(15/23) 6099995468962135 a001 987/3010349*1568397607^(15/22) 6099995468962135 a001 987/3010349*599074578^(5/7) 6099995468962135 a001 987/3010349*228826127^(3/4) 6099995468962135 a001 987/3010349*87403803^(15/19) 6099995468962139 a001 987/3010349*33385282^(5/6) 6099995468962168 a001 987/3010349*12752043^(15/17) 6099995468962376 a001 987/3010349*4870847^(15/16) 6099995468962392 a001 1346269/2207 6099995468963224 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^31 6099995468966064 a001 987/1149851*20633239^(4/5) 6099995468966075 a001 987/1149851*17393796001^(4/7) 6099995468966075 a001 987/1149851*14662949395604^(4/9) 6099995468966075 a001 987/1149851*(1/2+1/2*5^(1/2))^28 6099995468966075 a001 987/1149851*505019158607^(1/2) 6099995468966075 a001 987/1149851*73681302247^(7/13) 6099995468966075 a001 987/1149851*10749957122^(7/12) 6099995468966075 a001 987/1149851*4106118243^(14/23) 6099995468966075 a001 987/1149851*1568397607^(7/11) 6099995468966075 a001 987/1149851*599074578^(2/3) 6099995468966075 a001 987/1149851*228826127^(7/10) 6099995468966076 a001 987/1149851*87403803^(14/19) 6099995468966080 a001 987/1149851*33385282^(7/9) 6099995468966106 a001 987/1149851*12752043^(14/17) 6099995468966300 a001 987/1149851*4870847^(7/8) 6099995468966332 a001 514229/2207*(1/2+1/2*5^(1/2))^2 6099995468966332 a001 514229/2207*10749957122^(1/24) 6099995468966332 a001 514229/2207*4106118243^(1/23) 6099995468966332 a001 514229/2207*1568397607^(1/22) 6099995468966332 a001 514229/2207*599074578^(1/21) 6099995468966332 a001 514229/2207*228826127^(1/20) 6099995468966332 a001 514229/2207*87403803^(1/19) 6099995468966333 a001 514229/2207*33385282^(1/18) 6099995468966335 a001 514229/2207*12752043^(1/17) 6099995468966349 a001 514229/2207*4870847^(1/16) 6099995468966450 a001 514229/2207*1860498^(1/15) 6099995468967195 a001 514229/2207*710647^(1/14) 6099995468967720 a001 987/1149851*1860498^(14/15) 6099995468967838 a001 507544023/832040 6099995468972701 a001 514229/2207*271443^(1/13) 6099995468973540 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^29 6099995468983600 a001 832040/2207*103682^(1/24) 6099995468993084 a001 987/439204*141422324^(2/3) 6099995468993084 a001 987/439204*(1/2+1/2*5^(1/2))^26 6099995468993084 a001 987/439204*73681302247^(1/2) 6099995468993084 a001 987/439204*10749957122^(13/24) 6099995468993084 a001 987/439204*4106118243^(13/23) 6099995468993084 a001 987/439204*1568397607^(13/22) 6099995468993084 a001 987/439204*599074578^(13/21) 6099995468993084 a001 987/439204*228826127^(13/20) 6099995468993085 a001 987/439204*87403803^(13/19) 6099995468993088 a001 987/439204*33385282^(13/18) 6099995468993113 a001 987/439204*12752043^(13/17) 6099995468993293 a001 987/439204*4870847^(13/16) 6099995468993341 a001 196418/2207*(1/2+1/2*5^(1/2))^4 6099995468993341 a001 196418/2207*23725150497407^(1/16) 6099995468993341 a001 196418/2207*73681302247^(1/13) 6099995468993341 a001 196418/2207*10749957122^(1/12) 6099995468993341 a001 196418/2207*4106118243^(2/23) 6099995468993341 a001 196418/2207*1568397607^(1/11) 6099995468993341 a001 196418/2207*599074578^(2/21) 6099995468993341 a001 196418/2207*228826127^(1/10) 6099995468993341 a001 196418/2207*87403803^(2/19) 6099995468993342 a001 196418/2207*33385282^(1/9) 6099995468993346 a001 196418/2207*12752043^(2/17) 6099995468993373 a001 196418/2207*4870847^(1/8) 6099995468993576 a001 196418/2207*1860498^(2/15) 6099995468994612 a001 987/439204*1860498^(13/15) 6099995468995067 a001 196418/2207*710647^(1/7) 6099995468997147 a001 121393/2207*103682^(5/24) 6099995469004300 a001 987/439204*710647^(13/14) 6099995469005163 a001 64621522/105937 6099995469006078 a001 196418/2207*271443^(2/13) 6099995469013619 a001 514229/2207*103682^(1/12) 6099995469020570 a001 317811/2207*103682^(1/8) 6099995469026052 a001 987/64079*64079^(22/23) 6099995469044251 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^27 6099995469087915 a001 196418/2207*103682^(1/6) 6099995469136744 a001 832040/2207*39603^(1/22) 6099995469150097 a001 987/167761*439204^(8/9) 6099995469171436 a001 75025/2207*439204^(2/9) 6099995469178134 a001 987/167761*7881196^(8/11) 6099995469178206 a001 987/167761*141422324^(8/13) 6099995469178206 a001 987/167761*2537720636^(8/15) 6099995469178206 a001 987/167761*45537549124^(8/17) 6099995469178206 a001 987/167761*14662949395604^(8/21) 6099995469178206 a001 987/167761*(1/2+1/2*5^(1/2))^24 6099995469178206 a001 987/167761*192900153618^(4/9) 6099995469178206 a001 987/167761*73681302247^(6/13) 6099995469178206 a001 987/167761*10749957122^(1/2) 6099995469178206 a001 987/167761*4106118243^(12/23) 6099995469178206 a001 987/167761*1568397607^(6/11) 6099995469178206 a001 987/167761*599074578^(4/7) 6099995469178206 a001 987/167761*228826127^(3/5) 6099995469178206 a001 987/167761*87403803^(12/19) 6099995469178210 a001 987/167761*33385282^(2/3) 6099995469178232 a001 987/167761*12752043^(12/17) 6099995469178399 a001 987/167761*4870847^(3/4) 6099995469178445 a001 75025/2207*7881196^(2/11) 6099995469178463 a001 75025/2207*141422324^(2/13) 6099995469178463 a001 75025/2207*2537720636^(2/15) 6099995469178463 a001 75025/2207*45537549124^(2/17) 6099995469178463 a001 75025/2207*14662949395604^(2/21) 6099995469178463 a001 75025/2207*(1/2+1/2*5^(1/2))^6 6099995469178463 a001 75025/2207*10749957122^(1/8) 6099995469178463 a001 75025/2207*4106118243^(3/23) 6099995469178463 a001 75025/2207*1568397607^(3/22) 6099995469178463 a001 75025/2207*599074578^(1/7) 6099995469178463 a001 75025/2207*228826127^(3/20) 6099995469178463 a001 75025/2207*87403803^(3/19) 6099995469178464 a001 75025/2207*33385282^(1/6) 6099995469178470 a001 75025/2207*12752043^(3/17) 6099995469178511 a001 75025/2207*4870847^(3/16) 6099995469178815 a001 75025/2207*1860498^(1/5) 6099995469179616 a001 987/167761*1860498^(4/5) 6099995469181051 a001 75025/2207*710647^(3/14) 6099995469188559 a001 987/167761*710647^(6/7) 6099995469197568 a001 75025/2207*271443^(3/13) 6099995469254626 a001 987/167761*271443^(12/13) 6099995469260995 a001 74049675/121393 6099995469319907 a001 514229/2207*39603^(1/11) 6099995469320324 a001 75025/2207*103682^(1/4) 6099995469446336 a001 987/24476*24476^(20/21) 6099995469480001 a001 317811/2207*39603^(3/22) 6099995469528905 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^25 6099995469631785 a001 46368/2207*39603^(7/22) 6099995469700490 a001 196418/2207*39603^(2/11) 6099995469762866 a001 121393/2207*39603^(5/22) 6099995469930580 a001 28657/2207*64079^(8/23) 6099995470239186 a001 75025/2207*39603^(3/11) 6099995470292845 a001 832040/2207*15127^(1/20) 6099995470446983 a001 987/64079*7881196^(2/3) 6099995470447049 a001 987/64079*312119004989^(2/5) 6099995470447049 a001 987/64079*(1/2+1/2*5^(1/2))^22 6099995470447049 a001 987/64079*10749957122^(11/24) 6099995470447049 a001 987/64079*4106118243^(11/23) 6099995470447049 a001 987/64079*1568397607^(1/2) 6099995470447049 a001 987/64079*599074578^(11/21) 6099995470447049 a001 987/64079*228826127^(11/20) 6099995470447049 a001 987/64079*87403803^(11/19) 6099995470447052 a001 987/64079*33385282^(11/18) 6099995470447073 a001 987/64079*12752043^(11/17) 6099995470447225 a001 987/64079*4870847^(11/16) 6099995470447306 a001 28657/2207*(1/2+1/2*5^(1/2))^8 6099995470447306 a001 28657/2207*23725150497407^(1/8) 6099995470447306 a001 28657/2207*505019158607^(1/7) 6099995470447306 a001 28657/2207*73681302247^(2/13) 6099995470447306 a001 28657/2207*10749957122^(1/6) 6099995470447306 a001 28657/2207*4106118243^(4/23) 6099995470447306 a001 28657/2207*1568397607^(2/11) 6099995470447306 a001 28657/2207*599074578^(4/21) 6099995470447306 a001 28657/2207*228826127^(1/5) 6099995470447306 a001 28657/2207*87403803^(4/19) 6099995470447307 a001 28657/2207*33385282^(2/9) 6099995470447314 a001 28657/2207*12752043^(4/17) 6099995470447370 a001 28657/2207*4870847^(1/4) 6099995470447776 a001 28657/2207*1860498^(4/15) 6099995470448341 a001 987/64079*1860498^(11/15) 6099995470450757 a001 28657/2207*710647^(2/7) 6099995470456539 a001 987/64079*710647^(11/14) 6099995470472779 a001 28657/2207*271443^(4/13) 6099995470517101 a001 987/64079*271443^(11/13) 6099995470636454 a001 28657/2207*103682^(1/3) 6099995470967205 a001 987/64079*103682^(11/12) 6099995471009696 a001 1346269/3571*521^(1/13) 6099995471014492 a001 1346879/2208 6099995471632110 a001 514229/2207*15127^(1/10) 6099995471861603 a001 28657/2207*39603^(4/11) 6099995472634670 a001 987/9349*9349^(18/19) 6099995472850779 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^23 6099995472948306 a001 317811/2207*15127^(3/20) 6099995474295338 a001 10946/2207*24476^(10/21) 6099995474324896 a001 196418/2207*15127^(1/5) 6099995474788843 m001 (Gompertz+ZetaP(3))/(FeigenbaumC-LambertW(1)) 6099995475543374 a001 121393/2207*15127^(1/4) 6099995477068401 a001 17711/2207*15127^(9/20) 6099995477175796 a001 75025/2207*15127^(3/10) 6099995477724496 a001 46368/2207*15127^(7/20) 6099995477852011 a001 987/24476*64079^(20/23) 6099995478498176 a001 10946/2207*64079^(10/23) 6099995478970430 a001 987/24476*167761^(4/5) 6099995479057385 a001 10946/2207*167761^(2/5) 6099995479110796 a001 832040/2207*5778^(1/18) 6099995479143818 a001 987/24476*20633239^(4/7) 6099995479143826 a001 987/24476*2537720636^(4/9) 6099995479143826 a001 987/24476*(1/2+1/2*5^(1/2))^20 6099995479143826 a001 987/24476*23725150497407^(5/16) 6099995479143826 a001 987/24476*505019158607^(5/14) 6099995479143826 a001 987/24476*73681302247^(5/13) 6099995479143826 a001 987/24476*28143753123^(2/5) 6099995479143826 a001 987/24476*10749957122^(5/12) 6099995479143826 a001 987/24476*4106118243^(10/23) 6099995479143826 a001 987/24476*1568397607^(5/11) 6099995479143826 a001 987/24476*599074578^(10/21) 6099995479143826 a001 987/24476*228826127^(1/2) 6099995479143826 a001 987/24476*87403803^(10/19) 6099995479143829 a001 987/24476*33385282^(5/9) 6099995479143848 a001 987/24476*12752043^(10/17) 6099995479143986 a001 987/24476*4870847^(5/8) 6099995479144079 a001 10946/2207*20633239^(2/7) 6099995479144083 a001 10946/2207*2537720636^(2/9) 6099995479144083 a001 10946/2207*312119004989^(2/11) 6099995479144083 a001 10946/2207*(1/2+1/2*5^(1/2))^10 6099995479144083 a001 10946/2207*28143753123^(1/5) 6099995479144083 a001 10946/2207*10749957122^(5/24) 6099995479144083 a001 10946/2207*4106118243^(5/23) 6099995479144083 a001 10946/2207*1568397607^(5/22) 6099995479144083 a001 10946/2207*599074578^(5/21) 6099995479144083 a001 10946/2207*228826127^(1/4) 6099995479144083 a001 10946/2207*87403803^(5/19) 6099995479144084 a001 10946/2207*33385282^(5/18) 6099995479144094 a001 10946/2207*12752043^(5/17) 6099995479144163 a001 10946/2207*4870847^(5/16) 6099995479144670 a001 10946/2207*1860498^(1/3) 6099995479145001 a001 987/24476*1860498^(2/3) 6099995479148397 a001 10946/2207*710647^(5/14) 6099995479152453 a001 987/24476*710647^(5/7) 6099995479175925 a001 10946/2207*271443^(5/13) 6099995479207510 a001 987/24476*271443^(10/13) 6099995479380518 a001 10946/2207*103682^(5/12) 6099995479612270 a001 317811/9349*1364^(2/5) 6099995479616696 a001 987/24476*103682^(5/6) 6099995480911954 a001 10946/2207*39603^(5/11) 6099995481110416 a001 28657/2207*15127^(2/5) 6099995482080094 m001 (Si(Pi)-gamma(1))/(exp(-1/2*Pi)+OneNinth) 6099995482679568 a001 987/24476*39603^(10/11) 6099995483033143 a001 10803702/17711 6099995489268011 a001 514229/2207*5778^(1/9) 6099995492472970 a001 10946/2207*15127^(1/2) 6099995494674178 a001 4181/2207*9349^(12/19) 6099995495619237 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^21 6099995497099955 a001 987/3571*3571^(16/17) 6099995499306346 a007 Real Root Of 234*x^4-596*x^3-190*x^2-222*x+309 6099995499402158 a001 317811/2207*5778^(1/6) 6099995503709523 a007 Real Root Of 596*x^4-580*x^3-857*x^2-952*x-476 6099995507728662 a007 Real Root Of -413*x^4+547*x^3-228*x^2+362*x+487 6099995509596699 a001 196418/2207*5778^(2/9) 6099995518322932 m001 (BesselJ(1,1)+FeigenbaumB)/(Trott-ZetaQ(3)) 6099995519633126 a001 121393/2207*5778^(5/18) 6099995527182962 m001 (Ei(1,1)+Mills)/(Riemann3rdZero+ZetaQ(4)) 6099995530024683 a001 987/9349*24476^(6/7) 6099995530083499 a001 75025/2207*5778^(1/3) 6099995532934187 a001 4181/2207*24476^(4/7) 6099995535340088 p001 sum((-1)^n/(331*n+168)/n/(3^n),n=1..infinity) 6099995537589791 a001 987/9349*64079^(18/23) 6099995537977592 a001 4181/2207*64079^(12/23) 6099995538731342 a001 987/9349*439204^(2/3) 6099995538738626 a001 4181/2207*439204^(4/9) 6099995538752371 a001 987/9349*7881196^(6/11) 6099995538752424 a001 987/9349*141422324^(6/13) 6099995538752424 a001 987/9349*2537720636^(2/5) 6099995538752424 a001 987/9349*45537549124^(6/17) 6099995538752424 a001 987/9349*14662949395604^(2/7) 6099995538752424 a001 987/9349*(1/2+1/2*5^(1/2))^18 6099995538752424 a001 987/9349*192900153618^(1/3) 6099995538752424 a001 987/9349*10749957122^(3/8) 6099995538752424 a001 987/9349*4106118243^(9/23) 6099995538752424 a001 987/9349*1568397607^(9/22) 6099995538752424 a001 987/9349*599074578^(3/7) 6099995538752424 a001 987/9349*228826127^(9/20) 6099995538752425 a001 987/9349*87403803^(9/19) 6099995538752427 a001 987/9349*33385282^(1/2) 6099995538752444 a001 987/9349*12752043^(9/17) 6099995538752569 a001 987/9349*4870847^(9/16) 6099995538752645 a001 4181/2207*7881196^(4/11) 6099995538752680 a001 4181/2207*141422324^(4/13) 6099995538752680 a001 4181/2207*2537720636^(4/15) 6099995538752680 a001 4181/2207*45537549124^(4/17) 6099995538752680 a001 4181/2207*817138163596^(4/19) 6099995538752680 a001 4181/2207*14662949395604^(4/21) 6099995538752680 a001 4181/2207*(1/2+1/2*5^(1/2))^12 6099995538752680 a001 4181/2207*192900153618^(2/9) 6099995538752680 a001 4181/2207*73681302247^(3/13) 6099995538752680 a001 4181/2207*10749957122^(1/4) 6099995538752680 a001 4181/2207*4106118243^(6/23) 6099995538752680 a001 4181/2207*1568397607^(3/11) 6099995538752680 a001 4181/2207*599074578^(2/7) 6099995538752681 a001 4181/2207*228826127^(3/10) 6099995538752681 a001 4181/2207*87403803^(6/19) 6099995538752682 a001 4181/2207*33385282^(1/3) 6099995538752694 a001 4181/2207*12752043^(6/17) 6099995538752777 a001 4181/2207*4870847^(3/8) 6099995538753385 a001 4181/2207*1860498^(2/5) 6099995538753482 a001 987/9349*1860498^(3/5) 6099995538757857 a001 4181/2207*710647^(3/7) 6099995538760189 a001 987/9349*710647^(9/14) 6099995538790891 a001 4181/2207*271443^(6/13) 6099995538809740 a001 987/9349*271443^(9/13) 6099995539036402 a001 4181/2207*103682^(1/2) 6099995539178007 a001 987/9349*103682^(3/4) 6099995539450150 a001 46368/2207*5778^(7/18) 6099995540874126 a001 4181/2207*39603^(6/11) 6099995541934593 a001 987/9349*39603^(9/11) 6099995543522929 r002 7th iterates of z^2 + 6099995547231699 a001 832040/2207*2207^(1/16) 6099995551654021 a001 28657/2207*5778^(4/9) 6099995553377162 a001 1597/2207*3571^(14/17) 6099995553963176 a001 6765/2207*5778^(11/18) 6099995554747346 a001 4181/2207*15127^(3/5) 6099995556429956 a001 17711/2207*5778^(1/2) 6099995558056776 b008 ArcTan[2/3+Pi^(-3)] 6099995562744422 a001 987/9349*15127^(9/10) 6099995565410199 a001 1375549/2255 6099995580652477 a001 10946/2207*5778^(5/9) 6099995586496767 p001 sum(1/(247*n+164)/(1000^n),n=0..infinity) 6099995600251455 m005 (1/2*5^(1/2)+1/11)/(4/7*exp(1)+3/7) 6099995601753216 a001 832040/15127*1364^(1/3) 6099995604970602 a003 sin(Pi*11/48)*sin(Pi*44/117) 6099995621839563 s002 sum(A218260[n]/(n^2*exp(n)+1),n=1..infinity) 6099995624523180 a001 726103/13201*1364^(1/3) 6099995625509818 a001 514229/2207*2207^(1/8) 6099995627300910 s002 sum(A218260[n]/(n^2*exp(n)-1),n=1..infinity) 6099995627845273 a001 5702887/103682*1364^(1/3) 6099995628086831 a007 Real Root Of -731*x^4-150*x^3+36*x^2+343*x+263 6099995628329960 a001 4976784/90481*1364^(1/3) 6099995628400675 a001 39088169/710647*1364^(1/3) 6099995628410992 a001 831985/15126*1364^(1/3) 6099995628412497 a001 267914296/4870847*1364^(1/3) 6099995628412717 a001 233802911/4250681*1364^(1/3) 6099995628412749 a001 1836311903/33385282*1364^(1/3) 6099995628412754 a001 1602508992/29134601*1364^(1/3) 6099995628412754 a001 12586269025/228826127*1364^(1/3) 6099995628412755 a001 10983760033/199691526*1364^(1/3) 6099995628412755 a001 86267571272/1568397607*1364^(1/3) 6099995628412755 a001 75283811239/1368706081*1364^(1/3) 6099995628412755 a001 591286729879/10749957122*1364^(1/3) 6099995628412755 a001 12585437040/228811001*1364^(1/3) 6099995628412755 a001 4052739537881/73681302247*1364^(1/3) 6099995628412755 a001 3536736619241/64300051206*1364^(1/3) 6099995628412755 a001 6557470319842/119218851371*1364^(1/3) 6099995628412755 a001 2504730781961/45537549124*1364^(1/3) 6099995628412755 a001 956722026041/17393796001*1364^(1/3) 6099995628412755 a001 365435296162/6643838879*1364^(1/3) 6099995628412755 a001 139583862445/2537720636*1364^(1/3) 6099995628412755 a001 53316291173/969323029*1364^(1/3) 6099995628412755 a001 20365011074/370248451*1364^(1/3) 6099995628412755 a001 7778742049/141422324*1364^(1/3) 6099995628412757 a001 2971215073/54018521*1364^(1/3) 6099995628412769 a001 1134903170/20633239*1364^(1/3) 6099995628412853 a001 433494437/7881196*1364^(1/3) 6099995628413428 a001 165580141/3010349*1364^(1/3) 6099995628417369 a001 63245986/1149851*1364^(1/3) 6099995628444379 a001 24157817/439204*1364^(1/3) 6099995628629513 a001 9227465/167761*1364^(1/3) 6099995629898440 a001 3524578/64079*1364^(1/3) 6099995638576515 r008 a(0)=0,K{-n^6,-8+76*n^3+93*n^2+3*n} 6099995638595792 a001 1346269/24476*1364^(1/3) 6099995651676572 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^19 6099995658196554 a007 Real Root Of -907*x^4+96*x^3+77*x^2-252*x-35 6099995660562755 a001 4181/2207*5778^(2/3) 6099995664281628 a001 514229/5778*1364^(4/15) 6099995669825154 a001 75025/3571*1364^(7/15) 6099995687540832 a001 987/1364*1364^(14/15) 6099995698208333 a001 514229/9349*1364^(1/3) 6099995703496386 a003 sin(Pi*11/58)/sin(Pi*29/78) 6099995703764869 a001 317811/2207*2207^(3/16) 6099995734686374 a003 cos(Pi*45/116)*cos(Pi*47/106) 6099995735468021 a007 Real Root Of -70*x^4+766*x^3+574*x^2+284*x-551 6099995752281197 g006 Psi(1,3/10)-Psi(1,7/9)-Psi(1,2/7)-Psi(1,3/4) 6099995762614369 m005 (-1/2+1/4*5^(1/2))/(5/9*2^(1/2)+2/11) 6099995763264240 a003 sin(Pi*3/50)+sin(Pi*5/36) 6099995774462172 m001 1/ln(BesselK(0,1))^2*FeigenbaumD/sin(Pi/5) 6099995779401326 l006 ln(4180/7693) 6099995780344430 m001 1/MertensB1/exp(Backhouse)/MinimumGamma 6099995782080316 a001 196418/2207*2207^(1/4) 6099995820335027 a001 1346269/15127*1364^(4/15) 6099995823139719 m005 (2*Pi-3)/(4/5*gamma-1) 6099995830916773 r005 Im(z^2+c),c=-53/90+17/57*I,n=6 6099995833513430 r005 Im(z^2+c),c=-5/8+33/67*I,n=3 6099995838818546 r008 a(0)=6,K{-n^6,54-14*n-52*n^2+17*n^3} 6099995843102911 a001 3524578/39603*1364^(4/15) 6099995846424701 a001 9227465/103682*1364^(4/15) 6099995846909344 a001 24157817/271443*1364^(4/15) 6099995846980052 a001 63245986/710647*1364^(4/15) 6099995846990368 a001 165580141/1860498*1364^(4/15) 6099995846991873 a001 433494437/4870847*1364^(4/15) 6099995846992093 a001 1134903170/12752043*1364^(4/15) 6099995846992125 a001 2971215073/33385282*1364^(4/15) 6099995846992130 a001 7778742049/87403803*1364^(4/15) 6099995846992130 a001 20365011074/228826127*1364^(4/15) 6099995846992130 a001 53316291173/599074578*1364^(4/15) 6099995846992131 a001 139583862445/1568397607*1364^(4/15) 6099995846992131 a001 365435296162/4106118243*1364^(4/15) 6099995846992131 a001 956722026041/10749957122*1364^(4/15) 6099995846992131 a001 2504730781961/28143753123*1364^(4/15) 6099995846992131 a001 6557470319842/73681302247*1364^(4/15) 6099995846992131 a001 10610209857723/119218851371*1364^(4/15) 6099995846992131 a001 4052739537881/45537549124*1364^(4/15) 6099995846992131 a001 1548008755920/17393796001*1364^(4/15) 6099995846992131 a001 591286729879/6643838879*1364^(4/15) 6099995846992131 a001 225851433717/2537720636*1364^(4/15) 6099995846992131 a001 86267571272/969323029*1364^(4/15) 6099995846992131 a001 32951280099/370248451*1364^(4/15) 6099995846992131 a001 12586269025/141422324*1364^(4/15) 6099995846992133 a001 4807526976/54018521*1364^(4/15) 6099995846992145 a001 1836311903/20633239*1364^(4/15) 6099995846992229 a001 3524667/39604*1364^(4/15) 6099995846992804 a001 267914296/3010349*1364^(4/15) 6099995846996744 a001 102334155/1149851*1364^(4/15) 6099995847023752 a001 39088169/439204*1364^(4/15) 6099995847208869 a001 14930352/167761*1364^(4/15) 6099995848477680 a001 5702887/64079*1364^(4/15) 6099995857174238 a001 2178309/24476*1364^(4/15) 6099995860237650 a001 121393/2207*2207^(5/16) 6099995869505441 a007 Real Root Of 304*x^4-428*x^3+634*x^2+15*x-366 6099995882854630 a001 416020/2889*1364^(1/5) 6099995888104998 a001 121393/3571*1364^(2/5) 6099995888544526 a001 987/3571*9349^(16/19) 6099995894791002 a001 15127/34*121393^(29/47) 6099995895891163 a001 1597/2207*9349^(14/19) 6099995897376595 m001 HeathBrownMoroz^(Backhouse/Artin) 6099995916781335 a001 832040/9349*1364^(4/15) 6099995916853370 a007 Real Root Of -566*x^4+807*x^3+586*x^2+591*x+404 6099995933801982 a001 1292/2889*3571^(15/17) 6099995937627244 r009 Im(z^3+c),c=-1/74+37/49*I,n=33 6099995938808931 a001 75025/2207*2207^(3/8) 6099995939557875 a001 987/3571*24476^(16/21) 6099995940527843 a001 1597/2207*24476^(2/3) 6099995946282415 a001 987/3571*64079^(16/23) 6099995946411816 a001 1597/2207*64079^(14/23) 6099995947315867 a001 987/3571*(1/2+1/2*5^(1/2))^16 6099995947315867 a001 987/3571*23725150497407^(1/4) 6099995947315867 a001 987/3571*73681302247^(4/13) 6099995947315867 a001 987/3571*10749957122^(1/3) 6099995947315867 a001 987/3571*4106118243^(8/23) 6099995947315867 a001 987/3571*1568397607^(4/11) 6099995947315867 a001 987/3571*599074578^(8/21) 6099995947315867 a001 987/3571*228826127^(2/5) 6099995947315867 a001 987/3571*87403803^(8/19) 6099995947315870 a001 987/3571*33385282^(4/9) 6099995947315885 a001 987/3571*12752043^(8/17) 6099995947315996 a001 987/3571*4870847^(1/2) 6099995947316081 a001 1597/2207*20633239^(2/5) 6099995947316087 a001 1597/2207*17393796001^(2/7) 6099995947316087 a001 1597/2207*14662949395604^(2/9) 6099995947316087 a001 1597/2207*(1/2+1/2*5^(1/2))^14 6099995947316087 a001 1597/2207*505019158607^(1/4) 6099995947316087 a001 1597/2207*10749957122^(7/24) 6099995947316087 a001 1597/2207*4106118243^(7/23) 6099995947316087 a001 1597/2207*1568397607^(7/22) 6099995947316087 a001 1597/2207*599074578^(1/3) 6099995947316087 a001 1597/2207*228826127^(7/20) 6099995947316087 a001 1597/2207*87403803^(7/19) 6099995947316089 a001 1597/2207*33385282^(7/18) 6099995947316102 a001 1597/2207*12752043^(7/17) 6099995947316199 a001 1597/2207*4870847^(7/16) 6099995947316807 a001 987/3571*1860498^(8/15) 6099995947316909 a001 1597/2207*1860498^(7/15) 6099995947322126 a001 1597/2207*710647^(1/2) 6099995947322769 a001 987/3571*710647^(4/7) 6099995947360665 a001 1597/2207*271443^(7/13) 6099995947366814 a001 987/3571*271443^(8/13) 6099995947647096 a001 1597/2207*103682^(7/12) 6099995947694163 a001 987/3571*103682^(2/3) 6099995949791107 a001 1597/2207*39603^(7/11) 6099995950144461 a001 987/3571*39603^(8/11) 6099995956185358 m001 (Paris+Robbin)/(Pi-Ei(1)) 6099995964035969 p003 LerchPhi(1/125,4,155/77) 6099995965976531 a001 1597/2207*15127^(7/10) 6099995968642089 a001 987/3571*15127^(4/5) 6099995973418982 a001 1597/843*843^(6/7) 6099995982214144 m001 FellerTornier/RenyiParking*Riemann1stZero 6099995986796496 r002 49th iterates of z^2 + 6099996016296491 a001 46368/2207*2207^(7/16) 6099996018366059 s001 sum(exp(-4*Pi/5)^n*A022686[n],n=1..infinity) 6099996038913479 a001 311187/2161*1364^(1/5) 6099996043664503 m004 36+25*Tanh[Sqrt[5]*Pi] 6099996057275396 a007 Real Root Of -663*x^4+934*x^3-906*x^2-772*x+170 6099996060240113 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^20 6099996061682159 a001 5702887/39603*1364^(1/5) 6099996065004065 a001 7465176/51841*1364^(1/5) 6099996065488725 a001 39088169/271443*1364^(1/5) 6099996065559435 a001 14619165/101521*1364^(1/5) 6099996065569752 a001 133957148/930249*1364^(1/5) 6099996065571257 a001 701408733/4870847*1364^(1/5) 6099996065571477 a001 1836311903/12752043*1364^(1/5) 6099996065571509 a001 14930208/103681*1364^(1/5) 6099996065571513 a001 12586269025/87403803*1364^(1/5) 6099996065571514 a001 32951280099/228826127*1364^(1/5) 6099996065571514 a001 43133785636/299537289*1364^(1/5) 6099996065571514 a001 32264490531/224056801*1364^(1/5) 6099996065571514 a001 591286729879/4106118243*1364^(1/5) 6099996065571514 a001 774004377960/5374978561*1364^(1/5) 6099996065571514 a001 4052739537881/28143753123*1364^(1/5) 6099996065571514 a001 1515744265389/10525900321*1364^(1/5) 6099996065571514 a001 3278735159921/22768774562*1364^(1/5) 6099996065571514 a001 2504730781961/17393796001*1364^(1/5) 6099996065571514 a001 956722026041/6643838879*1364^(1/5) 6099996065571514 a001 182717648081/1268860318*1364^(1/5) 6099996065571514 a001 139583862445/969323029*1364^(1/5) 6099996065571514 a001 53316291173/370248451*1364^(1/5) 6099996065571515 a001 10182505537/70711162*1364^(1/5) 6099996065571516 a001 7778742049/54018521*1364^(1/5) 6099996065571529 a001 2971215073/20633239*1364^(1/5) 6099996065571613 a001 567451585/3940598*1364^(1/5) 6099996065572187 a001 433494437/3010349*1364^(1/5) 6099996065576128 a001 165580141/1149851*1364^(1/5) 6099996065603137 a001 31622993/219602*1364^(1/5) 6099996065788261 a001 24157817/167761*1364^(1/5) 6099996067057116 a001 9227465/64079*1364^(1/5) 6099996075753978 a001 1762289/12238*1364^(1/5) 6099996082082474 a001 832040/2207*843^(1/14) 6099996089427849 a001 1597/2207*5778^(7/9) 6099996090630976 m001 ln(Zeta(7))^2/GAMMA(5/6)/Zeta(9)^2 6099996096621271 a001 28657/2207*2207^(1/2) 6099996101436450 a001 1346269/5778*1364^(2/15) 6099996106798795 a001 196418/3571*1364^(1/3) 6099996109729311 a001 987/3571*5778^(8/9) 6099996125523085 r008 a(0)=6,K{-n^6,-9+6*n^3-7*n^2+5*n} 6099996130030959 a001 1576239/2584 6099996135363157 a001 1346269/9349*1364^(1/5) 6099996144731241 a001 843/2*10946^(23/43) 6099996146136326 a001 2255/1926*3571^(13/17) 6099996158169579 a001 2584/9349*3571^(16/17) 6099996162214018 m005 (1/2*3^(1/2)+8/9)/(4/5*Pi+4/11) 6099996169518116 a001 17711/2207*2207^(9/16) 6099996180853815 s002 sum(A043454[n]/(16^n-1),n=1..infinity) 6099996180921078 s002 sum(A044251[n]/(16^n-1),n=1..infinity) 6099996181037493 s002 sum(A044632[n]/(16^n-1),n=1..infinity) 6099996184283878 m001 2^(1/3)-GAMMA(23/24)*MasserGramainDelta 6099996199961450 s002 sum(A031494[n]/(16^n-1),n=1..infinity) 6099996206856822 m002 -4-E^Pi*Pi^3+Pi^4*Log[Pi] 6099996209484876 a007 Real Root Of 865*x^4-374*x^3+635*x^2-446*x-713 6099996211114966 a001 5473/2889*3571^(12/17) 6099996214446577 a001 4181/5778*3571^(14/17) 6099996216297468 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^22 6099996225181780 a001 17711/5778*3571^(11/17) 6099996239065929 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^24 6099996241190249 r005 Re(z^2+c),c=-47/74+23/50*I,n=21 6099996242387803 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^26 6099996242872458 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^28 6099996242943168 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^30 6099996242953484 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^32 6099996242954989 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^34 6099996242955209 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^36 6099996242955241 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^38 6099996242955246 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^40 6099996242955246 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^42 6099996242955247 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^44 6099996242955247 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^46 6099996242955247 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^48 6099996242955247 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^50 6099996242955247 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^52 6099996242955247 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^54 6099996242955247 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^56 6099996242955247 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^58 6099996242955247 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^60 6099996242955247 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^62 6099996242955247 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^64 6099996242955247 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^66 6099996242955247 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^68 6099996242955247 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^70 6099996242955247 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^72 6099996242955247 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^74 6099996242955247 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^76 6099996242955247 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^78 6099996242955247 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^80 6099996242955247 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^82 6099996242955247 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^84 6099996242955247 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^86 6099996242955247 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^88 6099996242955247 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^90 6099996242955247 a004 Fibonacci(90)*Lucas(17)/(1/2+sqrt(5)/2)^92 6099996242955247 a004 Fibonacci(92)*Lucas(17)/(1/2+sqrt(5)/2)^94 6099996242955247 a004 Fibonacci(94)*Lucas(17)/(1/2+sqrt(5)/2)^96 6099996242955247 a004 Fibonacci(96)*Lucas(17)/(1/2+sqrt(5)/2)^98 6099996242955247 a004 Fibonacci(98)*Lucas(17)/(1/2+sqrt(5)/2)^100 6099996242955247 a004 Fibonacci(97)*Lucas(17)/(1/2+sqrt(5)/2)^99 6099996242955247 a004 Fibonacci(95)*Lucas(17)/(1/2+sqrt(5)/2)^97 6099996242955247 a004 Fibonacci(93)*Lucas(17)/(1/2+sqrt(5)/2)^95 6099996242955247 a004 Fibonacci(91)*Lucas(17)/(1/2+sqrt(5)/2)^93 6099996242955247 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^91 6099996242955247 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^89 6099996242955247 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^87 6099996242955247 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^85 6099996242955247 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^83 6099996242955247 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^81 6099996242955247 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^79 6099996242955247 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^77 6099996242955247 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^75 6099996242955247 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^73 6099996242955247 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^71 6099996242955247 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^69 6099996242955247 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^67 6099996242955247 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^65 6099996242955247 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^63 6099996242955247 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^61 6099996242955247 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^59 6099996242955247 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^57 6099996242955247 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^55 6099996242955247 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^53 6099996242955247 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^51 6099996242955247 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^49 6099996242955247 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^47 6099996242955247 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^45 6099996242955247 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^43 6099996242955247 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^41 6099996242955249 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^39 6099996242955261 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^37 6099996242955284 a001 2/1597*(1/2+1/2*5^(1/2))^32 6099996242955345 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^35 6099996242955920 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^33 6099996242959860 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^31 6099996242986869 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^29 6099996243171991 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^27 6099996244440834 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^25 6099996245916683 a001 6765/15127*3571^(15/17) 6099996253137612 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^23 6099996254618330 a001 6765/24476*3571^(16/17) 6099996257493225 a001 3524578/15127*1364^(2/15) 6099996258695182 a001 28657/5778*3571^(10/17) 6099996260173460 a007 Real Root Of -514*x^4+340*x^3+5*x^2+932*x+715 6099996261861550 a001 10946/2207*2207^(5/8) 6099996268690013 a001 17711/64079*3571^(16/17) 6099996270743044 a001 46368/167761*3571^(16/17) 6099996271042577 a001 121393/439204*3571^(16/17) 6099996271086278 a001 317811/1149851*3571^(16/17) 6099996271092654 a001 832040/3010349*3571^(16/17) 6099996271093585 a001 2178309/7881196*3571^(16/17) 6099996271093720 a001 5702887/20633239*3571^(16/17) 6099996271093740 a001 14930352/54018521*3571^(16/17) 6099996271093743 a001 39088169/141422324*3571^(16/17) 6099996271093743 a001 102334155/370248451*3571^(16/17) 6099996271093743 a001 267914296/969323029*3571^(16/17) 6099996271093743 a001 701408733/2537720636*3571^(16/17) 6099996271093743 a001 1836311903/6643838879*3571^(16/17) 6099996271093743 a001 4807526976/17393796001*3571^(16/17) 6099996271093743 a001 12586269025/45537549124*3571^(16/17) 6099996271093743 a001 32951280099/119218851371*3571^(16/17) 6099996271093743 a001 86267571272/312119004989*3571^(16/17) 6099996271093743 a001 225851433717/817138163596*3571^(16/17) 6099996271093743 a001 1548008755920/5600748293801*3571^(16/17) 6099996271093743 a001 139583862445/505019158607*3571^(16/17) 6099996271093743 a001 53316291173/192900153618*3571^(16/17) 6099996271093743 a001 20365011074/73681302247*3571^(16/17) 6099996271093743 a001 7778742049/28143753123*3571^(16/17) 6099996271093743 a001 2971215073/10749957122*3571^(16/17) 6099996271093743 a001 1134903170/4106118243*3571^(16/17) 6099996271093743 a001 433494437/1568397607*3571^(16/17) 6099996271093744 a001 165580141/599074578*3571^(16/17) 6099996271093744 a001 63245986/228826127*3571^(16/17) 6099996271093745 a001 24157817/87403803*3571^(16/17) 6099996271093752 a001 9227465/33385282*3571^(16/17) 6099996271093804 a001 3524578/12752043*3571^(16/17) 6099996271094160 a001 1346269/4870847*3571^(16/17) 6099996271096595 a001 514229/1860498*3571^(16/17) 6099996271113287 a001 196418/710647*3571^(16/17) 6099996271227699 a001 75025/271443*3571^(16/17) 6099996272011887 a001 28657/103682*3571^(16/17) 6099996277386791 a001 10946/39603*3571^(16/17) 6099996280261603 a001 9227465/39603*1364^(2/15) 6099996283583464 a001 24157817/103682*1364^(2/15) 6099996283663439 h005 exp(cos(Pi*1/28)+sin(Pi*10/33)) 6099996284068117 a001 63245986/271443*1364^(2/15) 6099996284138827 a001 165580141/710647*1364^(2/15) 6099996284149144 a001 433494437/1860498*1364^(2/15) 6099996284150649 a001 1134903170/4870847*1364^(2/15) 6099996284150868 a001 2971215073/12752043*1364^(2/15) 6099996284150900 a001 7778742049/33385282*1364^(2/15) 6099996284150905 a001 20365011074/87403803*1364^(2/15) 6099996284150906 a001 53316291173/228826127*1364^(2/15) 6099996284150906 a001 139583862445/599074578*1364^(2/15) 6099996284150906 a001 365435296162/1568397607*1364^(2/15) 6099996284150906 a001 956722026041/4106118243*1364^(2/15) 6099996284150906 a001 2504730781961/10749957122*1364^(2/15) 6099996284150906 a001 6557470319842/28143753123*1364^(2/15) 6099996284150906 a001 10610209857723/45537549124*1364^(2/15) 6099996284150906 a001 4052739537881/17393796001*1364^(2/15) 6099996284150906 a001 1548008755920/6643838879*1364^(2/15) 6099996284150906 a001 591286729879/2537720636*1364^(2/15) 6099996284150906 a001 225851433717/969323029*1364^(2/15) 6099996284150906 a001 86267571272/370248451*1364^(2/15) 6099996284150906 a001 63246219/271444*1364^(2/15) 6099996284150908 a001 12586269025/54018521*1364^(2/15) 6099996284150920 a001 4807526976/20633239*1364^(2/15) 6099996284151004 a001 1836311903/7881196*1364^(2/15) 6099996284151579 a001 701408733/3010349*1364^(2/15) 6099996284155520 a001 267914296/1149851*1364^(2/15) 6099996284182528 a001 102334155/439204*1364^(2/15) 6099996284367649 a001 39088169/167761*1364^(2/15) 6099996284780648 a001 2576/321*3571^(9/17) 6099996285636488 a001 14930352/64079*1364^(2/15) 6099996291453606 a001 17711/39603*3571^(15/17) 6099996294333234 a001 5702887/24476*1364^(2/15) 6099996298097353 a001 23184/51841*3571^(15/17) 6099996299066663 a001 121393/271443*3571^(15/17) 6099996299208083 a001 317811/710647*3571^(15/17) 6099996299228716 a001 416020/930249*3571^(15/17) 6099996299231726 a001 2178309/4870847*3571^(15/17) 6099996299232166 a001 5702887/12752043*3571^(15/17) 6099996299232230 a001 7465176/16692641*3571^(15/17) 6099996299232239 a001 39088169/87403803*3571^(15/17) 6099996299232240 a001 102334155/228826127*3571^(15/17) 6099996299232241 a001 133957148/299537289*3571^(15/17) 6099996299232241 a001 701408733/1568397607*3571^(15/17) 6099996299232241 a001 1836311903/4106118243*3571^(15/17) 6099996299232241 a001 2403763488/5374978561*3571^(15/17) 6099996299232241 a001 12586269025/28143753123*3571^(15/17) 6099996299232241 a001 32951280099/73681302247*3571^(15/17) 6099996299232241 a001 43133785636/96450076809*3571^(15/17) 6099996299232241 a001 225851433717/505019158607*3571^(15/17) 6099996299232241 a001 591286729879/1322157322203*3571^(15/17) 6099996299232241 a001 10610209857723/23725150497407*3571^(15/17) 6099996299232241 a001 182717648081/408569081798*3571^(15/17) 6099996299232241 a001 139583862445/312119004989*3571^(15/17) 6099996299232241 a001 53316291173/119218851371*3571^(15/17) 6099996299232241 a001 10182505537/22768774562*3571^(15/17) 6099996299232241 a001 7778742049/17393796001*3571^(15/17) 6099996299232241 a001 2971215073/6643838879*3571^(15/17) 6099996299232241 a001 567451585/1268860318*3571^(15/17) 6099996299232241 a001 433494437/969323029*3571^(15/17) 6099996299232241 a001 165580141/370248451*3571^(15/17) 6099996299232241 a001 31622993/70711162*3571^(15/17) 6099996299232245 a001 24157817/54018521*3571^(15/17) 6099996299232269 a001 9227465/20633239*3571^(15/17) 6099996299232437 a001 1762289/3940598*3571^(15/17) 6099996299233587 a001 1346269/3010349*3571^(15/17) 6099996299241468 a001 514229/1149851*3571^(15/17) 6099996299295486 a001 98209/219602*3571^(15/17) 6099996299665729 a001 75025/167761*3571^(15/17) 6099996300781293 a001 1292/2889*9349^(15/19) 6099996302203415 a001 28657/64079*3571^(15/17) 6099996303293158 a001 6765/2207*2207^(11/16) 6099996303779304 a001 2584/2207*2207^(13/16) 6099996305976247 a003 cos(Pi*30/101)/sin(Pi*43/100) 6099996310895324 a001 10946/15127*3571^(14/17) 6099996312746217 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^21 6099996313703333 a001 75025/5778*3571^(8/17) 6099996314226935 a001 4181/15127*3571^(16/17) 6099996319596972 a001 5473/12238*3571^(15/17) 6099996320014913 a001 726103/1926*1364^(1/15) 6099996323580481 m001 (CareFree+Totient)/(Ei(1)+Backhouse) 6099996324962139 a001 17711/15127*3571^(13/17) 6099996324967007 a001 28657/39603*3571^(14/17) 6099996325334487 a001 317811/3571*1364^(4/15) 6099996327020038 a001 75025/103682*3571^(14/17) 6099996327319571 a001 196418/271443*3571^(14/17) 6099996327363273 a001 514229/710647*3571^(14/17) 6099996327369649 a001 1346269/1860498*3571^(14/17) 6099996327370579 a001 3524578/4870847*3571^(14/17) 6099996327370715 a001 9227465/12752043*3571^(14/17) 6099996327370734 a001 24157817/33385282*3571^(14/17) 6099996327370737 a001 63245986/87403803*3571^(14/17) 6099996327370738 a001 165580141/228826127*3571^(14/17) 6099996327370738 a001 433494437/599074578*3571^(14/17) 6099996327370738 a001 1134903170/1568397607*3571^(14/17) 6099996327370738 a001 2971215073/4106118243*3571^(14/17) 6099996327370738 a001 7778742049/10749957122*3571^(14/17) 6099996327370738 a001 20365011074/28143753123*3571^(14/17) 6099996327370738 a001 53316291173/73681302247*3571^(14/17) 6099996327370738 a001 139583862445/192900153618*3571^(14/17) 6099996327370738 a001 365435296162/505019158607*3571^(14/17) 6099996327370738 a001 10610209857723/14662949395604*3571^(14/17) 6099996327370738 a001 591286729879/817138163596*3571^(14/17) 6099996327370738 a001 225851433717/312119004989*3571^(14/17) 6099996327370738 a001 86267571272/119218851371*3571^(14/17) 6099996327370738 a001 32951280099/45537549124*3571^(14/17) 6099996327370738 a001 12586269025/17393796001*3571^(14/17) 6099996327370738 a001 4807526976/6643838879*3571^(14/17) 6099996327370738 a001 1836311903/2537720636*3571^(14/17) 6099996327370738 a001 701408733/969323029*3571^(14/17) 6099996327370738 a001 267914296/370248451*3571^(14/17) 6099996327370738 a001 102334155/141422324*3571^(14/17) 6099996327370739 a001 39088169/54018521*3571^(14/17) 6099996327370747 a001 14930352/20633239*3571^(14/17) 6099996327370799 a001 5702887/7881196*3571^(14/17) 6099996327371154 a001 2178309/3010349*3571^(14/17) 6099996327373589 a001 832040/1149851*3571^(14/17) 6099996327390282 a001 317811/439204*3571^(14/17) 6099996327504693 a001 121393/167761*3571^(14/17) 6099996328288881 a001 46368/64079*3571^(14/17) 6099996333663786 a001 17711/24476*3571^(14/17) 6099996339449744 a007 Real Root Of -115*x^4-578*x^3+724*x^2-50*x+787 6099996341542297 a001 121393/5778*3571^(7/17) 6099996345697058 a001 3338528/5473 6099996348606311 a001 1292/2889*24476^(5/7) 6099996351052474 a001 15456/13201*3571^(13/17) 6099996353941621 a001 2178309/9349*1364^(2/15) 6099996354859002 a001 121393/103682*3571^(13/17) 6099996354910568 a001 1292/2889*64079^(15/23) 6099996355414367 a001 105937/90481*3571^(13/17) 6099996355495394 a001 832040/710647*3571^(13/17) 6099996355507216 a001 726103/620166*3571^(13/17) 6099996355508941 a001 5702887/4870847*3571^(13/17) 6099996355509192 a001 4976784/4250681*3571^(13/17) 6099996355509229 a001 39088169/33385282*3571^(13/17) 6099996355509234 a001 34111385/29134601*3571^(13/17) 6099996355509235 a001 267914296/228826127*3571^(13/17) 6099996355509235 a001 233802911/199691526*3571^(13/17) 6099996355509235 a001 1836311903/1568397607*3571^(13/17) 6099996355509235 a001 1602508992/1368706081*3571^(13/17) 6099996355509235 a001 12586269025/10749957122*3571^(13/17) 6099996355509235 a001 10983760033/9381251041*3571^(13/17) 6099996355509235 a001 86267571272/73681302247*3571^(13/17) 6099996355509235 a001 75283811239/64300051206*3571^(13/17) 6099996355509235 a001 2504730781961/2139295485799*3571^(13/17) 6099996355509235 a001 365435296162/312119004989*3571^(13/17) 6099996355509235 a001 139583862445/119218851371*3571^(13/17) 6099996355509235 a001 53316291173/45537549124*3571^(13/17) 6099996355509235 a001 20365011074/17393796001*3571^(13/17) 6099996355509235 a001 7778742049/6643838879*3571^(13/17) 6099996355509235 a001 2971215073/2537720636*3571^(13/17) 6099996355509235 a001 1134903170/969323029*3571^(13/17) 6099996355509235 a001 433494437/370248451*3571^(13/17) 6099996355509236 a001 165580141/141422324*3571^(13/17) 6099996355509238 a001 63245986/54018521*3571^(13/17) 6099996355509252 a001 24157817/20633239*3571^(13/17) 6099996355509348 a001 9227465/7881196*3571^(13/17) 6099996355510007 a001 3524578/3010349*3571^(13/17) 6099996355514522 a001 1346269/1149851*3571^(13/17) 6099996355545471 a001 514229/439204*3571^(13/17) 6099996355749382 a001 1292/2889*167761^(3/5) 6099996355757602 a001 196418/167761*3571^(13/17) 6099996355861861 a001 1292/2889*439204^(5/9) 6099996355879384 a001 1292/2889*7881196^(5/11) 6099996355879423 a001 1292/2889*20633239^(3/7) 6099996355879429 a001 1292/2889*141422324^(5/13) 6099996355879429 a001 1292/2889*2537720636^(1/3) 6099996355879429 a001 1292/2889*45537549124^(5/17) 6099996355879429 a001 1292/2889*312119004989^(3/11) 6099996355879429 a001 1292/2889*14662949395604^(5/21) 6099996355879429 a001 1292/2889*(1/2+1/2*5^(1/2))^15 6099996355879429 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^15/Lucas(18) 6099996355879429 a001 1292/2889*192900153618^(5/18) 6099996355879429 a001 1292/2889*28143753123^(3/10) 6099996355879429 a001 1292/2889*10749957122^(5/16) 6099996355879429 a001 1292/2889*599074578^(5/14) 6099996355879429 a001 1292/2889*228826127^(3/8) 6099996355879431 a001 1292/2889*33385282^(5/12) 6099996355880310 a001 1292/2889*1860498^(1/2) 6099996356234081 a001 1292/2889*103682^(5/8) 6099996357211567 a001 75025/64079*3571^(13/17) 6099996358475541 a001 28657/15127*3571^(12/17) 6099996358531236 a001 1292/2889*39603^(15/22) 6099996367177188 a001 28657/24476*3571^(13/17) 6099996369795206 a001 98209/2889*3571^(6/17) 6099996370503931 a001 6765/9349*3571^(14/17) 6099996375872763 a001 1292/2889*15127^(3/4) 6099996379975159 a001 75025/39603*3571^(12/17) 6099996383111911 a001 98209/51841*3571^(12/17) 6099996383569557 a001 514229/271443*3571^(12/17) 6099996383636327 a001 1346269/710647*3571^(12/17) 6099996383646069 a001 1762289/930249*3571^(12/17) 6099996383647490 a001 9227465/4870847*3571^(12/17) 6099996383647697 a001 24157817/12752043*3571^(12/17) 6099996383647727 a001 31622993/16692641*3571^(12/17) 6099996383647732 a001 165580141/87403803*3571^(12/17) 6099996383647733 a001 433494437/228826127*3571^(12/17) 6099996383647733 a001 567451585/299537289*3571^(12/17) 6099996383647733 a001 2971215073/1568397607*3571^(12/17) 6099996383647733 a001 7778742049/4106118243*3571^(12/17) 6099996383647733 a001 10182505537/5374978561*3571^(12/17) 6099996383647733 a001 53316291173/28143753123*3571^(12/17) 6099996383647733 a001 139583862445/73681302247*3571^(12/17) 6099996383647733 a001 182717648081/96450076809*3571^(12/17) 6099996383647733 a001 956722026041/505019158607*3571^(12/17) 6099996383647733 a001 10610209857723/5600748293801*3571^(12/17) 6099996383647733 a001 591286729879/312119004989*3571^(12/17) 6099996383647733 a001 225851433717/119218851371*3571^(12/17) 6099996383647733 a001 21566892818/11384387281*3571^(12/17) 6099996383647733 a001 32951280099/17393796001*3571^(12/17) 6099996383647733 a001 12586269025/6643838879*3571^(12/17) 6099996383647733 a001 1201881744/634430159*3571^(12/17) 6099996383647733 a001 1836311903/969323029*3571^(12/17) 6099996383647733 a001 701408733/370248451*3571^(12/17) 6099996383647733 a001 66978574/35355581*3571^(12/17) 6099996383647735 a001 102334155/54018521*3571^(12/17) 6099996383647746 a001 39088169/20633239*3571^(12/17) 6099996383647825 a001 3732588/1970299*3571^(12/17) 6099996383648368 a001 5702887/3010349*3571^(12/17) 6099996383652089 a001 2178309/1149851*3571^(12/17) 6099996383677593 a001 208010/109801*3571^(12/17) 6099996383852398 a001 317811/167761*3571^(12/17) 6099996384561007 a001 6624/2161*3571^(11/17) 6099996385050531 a001 121393/64079*3571^(12/17) 6099996386812711 r009 Re(z^3+c),c=-15/28+1/6*I,n=13 6099996393262655 a001 11592/6119*3571^(12/17) 6099996397890002 a001 105937/1926*3571^(5/17) 6099996407814124 a001 121393/39603*3571^(11/17) 6099996410812262 r009 Im(z^3+c),c=-53/94+30/49*I,n=19 6099996411206708 a001 317811/103682*3571^(11/17) 6099996411701679 a001 832040/271443*3571^(11/17) 6099996411773894 a001 311187/101521*3571^(11/17) 6099996411784431 a001 5702887/1860498*3571^(11/17) 6099996411785968 a001 14930352/4870847*3571^(11/17) 6099996411786192 a001 39088169/12752043*3571^(11/17) 6099996411786225 a001 14619165/4769326*3571^(11/17) 6099996411786229 a001 267914296/87403803*3571^(11/17) 6099996411786230 a001 701408733/228826127*3571^(11/17) 6099996411786230 a001 1836311903/599074578*3571^(11/17) 6099996411786230 a001 686789568/224056801*3571^(11/17) 6099996411786230 a001 12586269025/4106118243*3571^(11/17) 6099996411786230 a001 32951280099/10749957122*3571^(11/17) 6099996411786230 a001 86267571272/28143753123*3571^(11/17) 6099996411786230 a001 32264490531/10525900321*3571^(11/17) 6099996411786230 a001 591286729879/192900153618*3571^(11/17) 6099996411786230 a001 1548008755920/505019158607*3571^(11/17) 6099996411786230 a001 1515744265389/494493258286*3571^(11/17) 6099996411786230 a001 2504730781961/817138163596*3571^(11/17) 6099996411786230 a001 956722026041/312119004989*3571^(11/17) 6099996411786230 a001 365435296162/119218851371*3571^(11/17) 6099996411786230 a001 139583862445/45537549124*3571^(11/17) 6099996411786230 a001 53316291173/17393796001*3571^(11/17) 6099996411786230 a001 20365011074/6643838879*3571^(11/17) 6099996411786230 a001 7778742049/2537720636*3571^(11/17) 6099996411786230 a001 2971215073/969323029*3571^(11/17) 6099996411786230 a001 1134903170/370248451*3571^(11/17) 6099996411786231 a001 433494437/141422324*3571^(11/17) 6099996411786232 a001 165580141/54018521*3571^(11/17) 6099996411786245 a001 63245986/20633239*3571^(11/17) 6099996411786331 a001 24157817/7881196*3571^(11/17) 6099996411786918 a001 9227465/3010349*3571^(11/17) 6099996411790942 a001 3524578/1149851*3571^(11/17) 6099996411818526 a001 1346269/439204*3571^(11/17) 6099996412007588 a001 514229/167761*3571^(11/17) 6099996413303440 a001 196418/64079*3571^(11/17) 6099996413483693 a001 75025/15127*3571^(10/17) 6099996415663181 l006 ln(2043/3760) 6099996422185340 a001 75025/24476*3571^(11/17) 6099996426045192 a001 514229/5778*3571^(4/17) 6099996435482574 a001 10946/9349*3571^(13/17) 6099996436067033 a001 196418/39603*3571^(10/17) 6099996438814185 a001 4181/9349*3571^(15/17) 6099996439361898 a001 514229/103682*3571^(10/17) 6099996439842612 a001 1346269/271443*3571^(10/17) 6099996439912747 a001 3524578/710647*3571^(10/17) 6099996439922980 a001 9227465/1860498*3571^(10/17) 6099996439924473 a001 24157817/4870847*3571^(10/17) 6099996439924691 a001 63245986/12752043*3571^(10/17) 6099996439924723 a001 165580141/33385282*3571^(10/17) 6099996439924727 a001 433494437/87403803*3571^(10/17) 6099996439924728 a001 1134903170/228826127*3571^(10/17) 6099996439924728 a001 2971215073/599074578*3571^(10/17) 6099996439924728 a001 7778742049/1568397607*3571^(10/17) 6099996439924728 a001 20365011074/4106118243*3571^(10/17) 6099996439924728 a001 53316291173/10749957122*3571^(10/17) 6099996439924728 a001 139583862445/28143753123*3571^(10/17) 6099996439924728 a001 365435296162/73681302247*3571^(10/17) 6099996439924728 a001 956722026041/192900153618*3571^(10/17) 6099996439924728 a001 2504730781961/505019158607*3571^(10/17) 6099996439924728 a001 10610209857723/2139295485799*3571^(10/17) 6099996439924728 a001 4052739537881/817138163596*3571^(10/17) 6099996439924728 a001 140728068720/28374454999*3571^(10/17) 6099996439924728 a001 591286729879/119218851371*3571^(10/17) 6099996439924728 a001 225851433717/45537549124*3571^(10/17) 6099996439924728 a001 86267571272/17393796001*3571^(10/17) 6099996439924728 a001 32951280099/6643838879*3571^(10/17) 6099996439924728 a001 1144206275/230701876*3571^(10/17) 6099996439924728 a001 4807526976/969323029*3571^(10/17) 6099996439924728 a001 1836311903/370248451*3571^(10/17) 6099996439924728 a001 701408733/141422324*3571^(10/17) 6099996439924730 a001 267914296/54018521*3571^(10/17) 6099996439924742 a001 9303105/1875749*3571^(10/17) 6099996439924825 a001 39088169/7881196*3571^(10/17) 6099996439925396 a001 14930352/3010349*3571^(10/17) 6099996439929304 a001 5702887/1149851*3571^(10/17) 6099996439956093 a001 2178309/439204*3571^(10/17) 6099996440139710 a001 75640/15251*3571^(10/17) 6099996441322657 a001 121393/15127*3571^(9/17) 6099996441398236 a001 317811/64079*3571^(10/17) 6099996449492230 a001 2584/15127*9349^(17/19) 6099996449549388 a001 17711/9349*3571^(12/17) 6099996450024305 a001 121393/24476*3571^(10/17) 6099996451309990 r005 Im(z^2+c),c=-7/12+13/111*I,n=18 6099996454177314 a001 416020/2889*3571^(3/17) 6099996454541450 a007 Real Root Of 559*x^4-299*x^3+126*x^2+515*x+122 6099996461289013 m005 (1/2*3^(1/2)-3/4)/(Zeta(3)+7/10) 6099996464161830 a001 105937/13201*3571^(9/17) 6099996464185072 a001 2255/1926*9349^(13/19) 6099996467494020 a001 416020/51841*3571^(9/17) 6099996467980180 a001 726103/90481*3571^(9/17) 6099996468051110 a001 5702887/710647*3571^(9/17) 6099996468061458 a001 829464/103361*3571^(9/17) 6099996468062968 a001 39088169/4870847*3571^(9/17) 6099996468063188 a001 34111385/4250681*3571^(9/17) 6099996468063220 a001 133957148/16692641*3571^(9/17) 6099996468063225 a001 233802911/29134601*3571^(9/17) 6099996468063226 a001 1836311903/228826127*3571^(9/17) 6099996468063226 a001 267084832/33281921*3571^(9/17) 6099996468063226 a001 12586269025/1568397607*3571^(9/17) 6099996468063226 a001 10983760033/1368706081*3571^(9/17) 6099996468063226 a001 43133785636/5374978561*3571^(9/17) 6099996468063226 a001 75283811239/9381251041*3571^(9/17) 6099996468063226 a001 591286729879/73681302247*3571^(9/17) 6099996468063226 a001 86000486440/10716675201*3571^(9/17) 6099996468063226 a001 4052739537881/505019158607*3571^(9/17) 6099996468063226 a001 3536736619241/440719107401*3571^(9/17) 6099996468063226 a001 3278735159921/408569081798*3571^(9/17) 6099996468063226 a001 2504730781961/312119004989*3571^(9/17) 6099996468063226 a001 956722026041/119218851371*3571^(9/17) 6099996468063226 a001 182717648081/22768774562*3571^(9/17) 6099996468063226 a001 139583862445/17393796001*3571^(9/17) 6099996468063226 a001 53316291173/6643838879*3571^(9/17) 6099996468063226 a001 10182505537/1268860318*3571^(9/17) 6099996468063226 a001 7778742049/969323029*3571^(9/17) 6099996468063226 a001 2971215073/370248451*3571^(9/17) 6099996468063226 a001 567451585/70711162*3571^(9/17) 6099996468063228 a001 433494437/54018521*3571^(9/17) 6099996468063240 a001 165580141/20633239*3571^(9/17) 6099996468063324 a001 31622993/3940598*3571^(9/17) 6099996468063901 a001 24157817/3010349*3571^(9/17) 6099996468067854 a001 9227465/1149851*3571^(9/17) 6099996468094947 a001 1762289/219602*3571^(9/17) 6099996468280643 a001 1346269/167761*3571^(9/17) 6099996468803591 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^22 6099996469553427 a001 514229/64079*3571^(9/17) 6099996469575567 a001 196418/15127*3571^(8/17) 6099996475477028 m005 (1/2*exp(1)+3)/(5/11*2^(1/2)-5/7) 6099996476072488 a001 5702887/15127*1364^(1/15) 6099996478013663 a001 4181/2207*2207^(3/4) 6099996478277214 a001 98209/12238*3571^(9/17) 6099996482318248 a001 1346269/5778*3571^(2/17) 6099996482659166 a001 646/6119*9349^(18/19) 6099996483062791 a001 28657/9349*3571^(11/17) 6099996484539754 a007 Real Root Of 871*x^4-26*x^3-941*x^2-555*x+574 6099996492317020 a001 514229/39603*3571^(8/17) 6099996494299952 a001 17711/5778*9349^(11/19) 6099996495634953 a001 1346269/103682*3571^(8/17) 6099996496119033 a001 3524578/271443*3571^(8/17) 6099996496189659 a001 9227465/710647*3571^(8/17) 6099996496199964 a001 24157817/1860498*3571^(8/17) 6099996496201467 a001 63245986/4870847*3571^(8/17) 6099996496201686 a001 165580141/12752043*3571^(8/17) 6099996496201718 a001 433494437/33385282*3571^(8/17) 6099996496201723 a001 1134903170/87403803*3571^(8/17) 6099996496201724 a001 2971215073/228826127*3571^(8/17) 6099996496201724 a001 7778742049/599074578*3571^(8/17) 6099996496201724 a001 20365011074/1568397607*3571^(8/17) 6099996496201724 a001 53316291173/4106118243*3571^(8/17) 6099996496201724 a001 139583862445/10749957122*3571^(8/17) 6099996496201724 a001 365435296162/28143753123*3571^(8/17) 6099996496201724 a001 956722026041/73681302247*3571^(8/17) 6099996496201724 a001 2504730781961/192900153618*3571^(8/17) 6099996496201724 a001 10610209857723/817138163596*3571^(8/17) 6099996496201724 a001 4052739537881/312119004989*3571^(8/17) 6099996496201724 a001 1548008755920/119218851371*3571^(8/17) 6099996496201724 a001 591286729879/45537549124*3571^(8/17) 6099996496201724 a001 7787980473/599786069*3571^(8/17) 6099996496201724 a001 86267571272/6643838879*3571^(8/17) 6099996496201724 a001 32951280099/2537720636*3571^(8/17) 6099996496201724 a001 12586269025/969323029*3571^(8/17) 6099996496201724 a001 4807526976/370248451*3571^(8/17) 6099996496201724 a001 1836311903/141422324*3571^(8/17) 6099996496201726 a001 701408733/54018521*3571^(8/17) 6099996496201738 a001 9238424/711491*3571^(8/17) 6099996496201822 a001 102334155/7881196*3571^(8/17) 6099996496202396 a001 39088169/3010349*3571^(8/17) 6099996496206332 a001 14930352/1149851*3571^(8/17) 6099996496233309 a001 5702887/439204*3571^(8/17) 6099996496418211 a001 2178309/167761*3571^(8/17) 6099996497670364 a001 317811/15127*3571^(7/17) 6099996497685549 a001 832040/64079*3571^(8/17) 6099996498219456 a007 Real Root Of 90*x^4+616*x^3+439*x^2+314*x+788 6099996498840982 a001 4976784/13201*1364^(1/15) 6099996502162861 a001 39088169/103682*1364^(1/15) 6099996502647516 a001 34111385/90481*1364^(1/15) 6099996502718227 a001 267914296/710647*1364^(1/15) 6099996502728543 a001 233802911/620166*1364^(1/15) 6099996502730048 a001 1836311903/4870847*1364^(1/15) 6099996502730268 a001 1602508992/4250681*1364^(1/15) 6099996502730300 a001 12586269025/33385282*1364^(1/15) 6099996502730305 a001 10983760033/29134601*1364^(1/15) 6099996502730305 a001 86267571272/228826127*1364^(1/15) 6099996502730305 a001 267913919/710646*1364^(1/15) 6099996502730305 a001 591286729879/1568397607*1364^(1/15) 6099996502730305 a001 516002918640/1368706081*1364^(1/15) 6099996502730305 a001 4052739537881/10749957122*1364^(1/15) 6099996502730305 a001 3536736619241/9381251041*1364^(1/15) 6099996502730305 a001 6557470319842/17393796001*1364^(1/15) 6099996502730305 a001 2504730781961/6643838879*1364^(1/15) 6099996502730305 a001 956722026041/2537720636*1364^(1/15) 6099996502730305 a001 365435296162/969323029*1364^(1/15) 6099996502730305 a001 139583862445/370248451*1364^(1/15) 6099996502730306 a001 53316291173/141422324*1364^(1/15) 6099996502730307 a001 20365011074/54018521*1364^(1/15) 6099996502730320 a001 7778742049/20633239*1364^(1/15) 6099996502730404 a001 2971215073/7881196*1364^(1/15) 6099996502730978 a001 1134903170/3010349*1364^(1/15) 6099996502734919 a001 433494437/1149851*1364^(1/15) 6099996502761928 a001 165580141/439204*1364^(1/15) 6099996502947050 a001 63245986/167761*1364^(1/15) 6099996503348066 a001 28657/5778*9349^(10/19) 6099996503693918 a001 2584/15127*24476^(17/21) 6099996504215895 a001 24157817/64079*1364^(1/15) 6099996504698427 a001 5473/2889*9349^(12/19) 6099996504968244 a001 2576/321*9349^(9/19) 6099996505633421 a001 2255/1926*24476^(13/21) 6099996506372011 a001 10959/844*3571^(8/17) 6099996508142042 a001 1292/2889*5778^(5/6) 6099996509148258 a001 46368/9349*3571^(10/17) 6099996509425642 a001 75025/5778*9349^(8/19) 6099996510451198 a001 17480760/28657 6099996510455815 a001 726103/1926*3571^(1/17) 6099996510838743 a001 2584/15127*64079^(17/23) 6099996511097111 a001 2255/1926*64079^(13/23) 6099996511936785 a001 2584/15127*45537549124^(1/3) 6099996511936785 a001 2584/15127*(1/2+1/2*5^(1/2))^17 6099996511936791 a001 2255/1926*141422324^(1/3) 6099996511936791 a001 2255/1926*(1/2+1/2*5^(1/2))^13 6099996511936791 a001 2255/1926*73681302247^(1/4) 6099996511936804 a001 2584/15127*12752043^(1/2) 6099996511978185 a001 2255/1926*271443^(1/2) 6099996512244156 a001 2255/1926*103682^(13/24) 6099996512338725 a001 2584/15127*103682^(17/24) 6099996512799318 a001 121393/5778*9349^(7/19) 6099996512912686 a001 9227465/24476*1364^(1/15) 6099996514175785 a007 Real Root Of 9*x^4-541*x^3-419*x^2-314*x+469 6099996514235024 a001 2255/1926*39603^(13/22) 6099996514942167 a001 2584/15127*39603^(17/22) 6099996516586938 a001 98209/2889*9349^(6/19) 6099996520216446 a001 105937/1926*9349^(5/19) 6099996520449142 a001 832040/39603*3571^(7/17) 6099996523772521 a001 46347/2206*3571^(7/17) 6099996523906348 a001 514229/5778*9349^(4/19) 6099996524257396 a001 5702887/271443*3571^(7/17) 6099996524325995 s002 sum(A077262[n]/(2^n+1),n=1..infinity) 6099996524328138 a001 14930352/710647*3571^(7/17) 6099996524338459 a001 39088169/1860498*3571^(7/17) 6099996524339965 a001 102334155/4870847*3571^(7/17) 6099996524340185 a001 267914296/12752043*3571^(7/17) 6099996524340217 a001 701408733/33385282*3571^(7/17) 6099996524340221 a001 1836311903/87403803*3571^(7/17) 6099996524340222 a001 102287808/4868641*3571^(7/17) 6099996524340222 a001 12586269025/599074578*3571^(7/17) 6099996524340222 a001 32951280099/1568397607*3571^(7/17) 6099996524340222 a001 86267571272/4106118243*3571^(7/17) 6099996524340222 a001 225851433717/10749957122*3571^(7/17) 6099996524340222 a001 591286729879/28143753123*3571^(7/17) 6099996524340222 a001 1548008755920/73681302247*3571^(7/17) 6099996524340222 a001 4052739537881/192900153618*3571^(7/17) 6099996524340222 a001 225749145909/10745088481*3571^(7/17) 6099996524340222 a001 6557470319842/312119004989*3571^(7/17) 6099996524340222 a001 2504730781961/119218851371*3571^(7/17) 6099996524340222 a001 956722026041/45537549124*3571^(7/17) 6099996524340222 a001 365435296162/17393796001*3571^(7/17) 6099996524340222 a001 139583862445/6643838879*3571^(7/17) 6099996524340222 a001 53316291173/2537720636*3571^(7/17) 6099996524340222 a001 20365011074/969323029*3571^(7/17) 6099996524340222 a001 7778742049/370248451*3571^(7/17) 6099996524340222 a001 2971215073/141422324*3571^(7/17) 6099996524340224 a001 1134903170/54018521*3571^(7/17) 6099996524340236 a001 433494437/20633239*3571^(7/17) 6099996524340320 a001 165580141/7881196*3571^(7/17) 6099996524340895 a001 63245986/3010349*3571^(7/17) 6099996524344838 a001 24157817/1149851*3571^(7/17) 6099996524371859 a001 9227465/439204*3571^(7/17) 6099996524557065 a001 3524578/167761*3571^(7/17) 6099996525492631 a001 2584/39603*24476^(19/21) 6099996525825554 a001 514229/15127*3571^(6/17) 6099996525826482 a001 1346269/64079*3571^(7/17) 6099996527573181 a001 416020/2889*9349^(3/19) 6099996528412199 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^24 6099996529264348 a001 2255/1926*15127^(13/20) 6099996529371633 a001 17711/5778*24476^(11/21) 6099996530382661 a001 2584/64079*24476^(20/21) 6099996531248826 a001 1346269/5778*9349^(2/19) 6099996533478023 a001 2584/39603*64079^(19/23) 6099996533663256 a001 2576/321*24476^(3/7) 6099996533994755 a001 17711/5778*64079^(11/23) 6099996534488503 a001 45765224/75025 6099996534527202 a001 514229/24476*3571^(7/17) 6099996534595898 a001 2584/15127*15127^(17/20) 6099996534705220 a001 17711/5778*7881196^(1/3) 6099996534705248 a001 2584/39603*817138163596^(1/3) 6099996534705248 a001 2584/39603*(1/2+1/2*5^(1/2))^19 6099996534705248 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^19/Lucas(22) 6099996534705248 a001 2584/39603*87403803^(1/2) 6099996534705253 a001 17711/5778*312119004989^(1/5) 6099996534705253 a001 17711/5778*(1/2+1/2*5^(1/2))^11 6099996534705253 a001 17711/5778*1568397607^(1/4) 6099996534921104 a001 726103/1926*9349^(1/19) 6099996534932318 a001 75025/5778*24476^(8/21) 6099996534965331 a001 17711/5778*103682^(11/24) 6099996535117660 a001 121393/5778*24476^(1/3) 6099996535154474 a001 2584/39603*103682^(19/24) 6099996535231412 a001 28657/5778*24476^(10/21) 6099996535716946 a001 98209/2889*24476^(2/7) 6099996536158119 a001 105937/1926*24476^(5/21) 6099996536649912 a001 17711/5778*39603^(1/2) 6099996536659686 a001 514229/5778*24476^(4/21) 6099996536670716 a001 1292/51841*64079^(21/23) 6099996537108978 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^26 6099996537138185 a001 416020/2889*24476^(1/7) 6099996537390313 a001 2584/167761*64079^(22/23) 6099996537445810 a001 2576/321*64079^(9/23) 6099996537625495 a001 1346269/5778*24476^(2/21) 6099996537995499 a001 3523968/5777 6099996538002526 a001 1292/51841*439204^(7/9) 6099996538016586 a001 2576/321*439204^(1/3) 6099996538027059 a001 1292/51841*7881196^(7/11) 6099996538027100 a001 2576/321*7881196^(3/11) 6099996538027113 a001 1292/51841*20633239^(3/5) 6099996538027121 a001 1292/51841*141422324^(7/13) 6099996538027121 a001 1292/51841*2537720636^(7/15) 6099996538027121 a001 1292/51841*17393796001^(3/7) 6099996538027121 a001 1292/51841*45537549124^(7/17) 6099996538027121 a001 1292/51841*14662949395604^(1/3) 6099996538027121 a001 1292/51841*(1/2+1/2*5^(1/2))^21 6099996538027121 a001 1292/51841*192900153618^(7/18) 6099996538027121 a001 1292/51841*10749957122^(7/16) 6099996538027121 a001 1292/51841*599074578^(1/2) 6099996538027125 a001 1292/51841*33385282^(7/12) 6099996538027127 a001 2576/321*141422324^(3/13) 6099996538027127 a001 2576/321*2537720636^(1/5) 6099996538027127 a001 2576/321*45537549124^(3/17) 6099996538027127 a001 2576/321*817138163596^(3/19) 6099996538027127 a001 2576/321*14662949395604^(1/7) 6099996538027127 a001 2576/321*(1/2+1/2*5^(1/2))^9 6099996538027127 a001 2576/321*192900153618^(1/6) 6099996538027127 a001 2576/321*10749957122^(3/16) 6099996538027127 a001 2576/321*599074578^(3/14) 6099996538027128 a001 2576/321*33385282^(1/4) 6099996538027656 a001 2576/321*1860498^(3/10) 6099996538028355 a001 1292/51841*1860498^(7/10) 6099996538036181 a001 1292/51841*710647^(3/4) 6099996538059647 a001 121393/5778*64079^(7/23) 6099996538064204 a001 2584/39603*39603^(19/22) 6099996538070944 a001 75025/9349*3571^(9/17) 6099996538109439 a001 726103/1926*24476^(1/21) 6099996538238649 a001 98209/2889*64079^(6/23) 6099996538239918 a001 2576/321*103682^(3/8) 6099996538259538 a001 105937/1926*64079^(5/23) 6099996538294589 a001 75025/5778*64079^(8/23) 6099996538340821 a001 514229/5778*64079^(4/23) 6099996538377821 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^28 6099996538399036 a001 416020/2889*64079^(3/23) 6099996538466062 a001 1346269/5778*64079^(2/23) 6099996538507163 a001 313679512/514229 6099996538511776 a001 2584/271443*(1/2+1/2*5^(1/2))^23 6099996538511776 a001 2584/271443*4106118243^(1/2) 6099996538511779 a001 121393/5778*20633239^(1/5) 6099996538511782 a001 121393/5778*17393796001^(1/7) 6099996538511782 a001 121393/5778*14662949395604^(1/9) 6099996538511782 a001 121393/5778*(1/2+1/2*5^(1/2))^7 6099996538511782 a001 121393/5778*599074578^(1/6) 6099996538514801 a001 121393/5778*710647^(1/4) 6099996538523635 a001 1292/51841*103682^(7/8) 6099996538529723 a001 726103/1926*64079^(1/23) 6099996538539143 a001 105937/1926*167761^(1/5) 6099996538562943 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^30 6099996538581813 a001 821223624/1346269 6099996538582476 a001 2584/710647*20633239^(5/7) 6099996538582487 a001 2584/710647*2537720636^(5/9) 6099996538582487 a001 2584/710647*312119004989^(5/11) 6099996538582487 a001 2584/710647*(1/2+1/2*5^(1/2))^25 6099996538582487 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^25/Lucas(28) 6099996538582487 a001 2584/710647*3461452808002^(5/12) 6099996538582487 a001 2584/710647*28143753123^(1/2) 6099996538582487 a001 2584/710647*228826127^(5/8) 6099996538582490 a001 105937/1926*20633239^(1/7) 6099996538582492 a001 105937/1926*2537720636^(1/9) 6099996538582492 a001 105937/1926*312119004989^(1/11) 6099996538582492 a001 105937/1926*(1/2+1/2*5^(1/2))^5 6099996538582492 a001 105937/1926*28143753123^(1/10) 6099996538582492 a001 105937/1926*228826127^(1/8) 6099996538582786 a001 105937/1926*1860498^(1/6) 6099996538583955 a001 2584/710647*1860498^(5/6) 6099996538589295 a001 416020/2889*439204^(1/9) 6099996538589952 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^32 6099996538592705 a001 1074995680/1762289 6099996538592723 a001 1292/930249*7881196^(9/11) 6099996538592800 a001 416020/2889*7881196^(1/11) 6099996538592803 a001 1292/930249*141422324^(9/13) 6099996538592803 a001 1292/930249*2537720636^(3/5) 6099996538592803 a001 1292/930249*45537549124^(9/17) 6099996538592803 a001 1292/930249*817138163596^(9/19) 6099996538592803 a001 1292/930249*14662949395604^(3/7) 6099996538592803 a001 1292/930249*(1/2+1/2*5^(1/2))^27 6099996538592803 a001 1292/930249*192900153618^(1/2) 6099996538592803 a001 1292/930249*10749957122^(9/16) 6099996538592803 a001 1292/930249*599074578^(9/14) 6099996538592807 a001 1292/930249*33385282^(3/4) 6099996538592808 a001 416020/2889*141422324^(1/13) 6099996538592808 a001 416020/2889*2537720636^(1/15) 6099996538592808 a001 416020/2889*45537549124^(1/17) 6099996538592808 a001 416020/2889*14662949395604^(1/21) 6099996538592808 a001 416020/2889*(1/2+1/2*5^(1/2))^3 6099996538592808 a001 416020/2889*192900153618^(1/18) 6099996538592808 a001 416020/2889*10749957122^(1/16) 6099996538592808 a001 416020/2889*599074578^(1/14) 6099996538592809 a001 416020/2889*33385282^(1/12) 6099996538592985 a001 416020/2889*1860498^(1/10) 6099996538593892 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^34 6099996538594294 a001 5628750456/9227465 6099996538594308 a001 2584/4870847*(1/2+1/2*5^(1/2))^29 6099996538594308 a001 2584/4870847*1322157322203^(1/2) 6099996538594314 a001 726103/3852+726103/3852*5^(1/2) 6099996538594389 a001 1292/930249*1860498^(9/10) 6099996538594467 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^36 6099996538594526 a001 14736260008/24157817 6099996538594528 a001 2584/12752043*(1/2+1/2*5^(1/2))^31 6099996538594528 a001 2584/12752043*9062201101803^(1/2) 6099996538594533 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2) 6099996538594551 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^38 6099996538594559 a001 19290014784/31622993 6099996538594560 a001 1292/16692641*141422324^(11/13) 6099996538594560 a001 1292/16692641*2537720636^(11/15) 6099996538594560 a001 1292/16692641*45537549124^(11/17) 6099996538594560 a001 1292/16692641*312119004989^(3/5) 6099996538594560 a001 1292/16692641*817138163596^(11/19) 6099996538594560 a001 1292/16692641*14662949395604^(11/21) 6099996538594560 a001 1292/16692641*(1/2+1/2*5^(1/2))^33 6099996538594560 a001 1292/16692641*192900153618^(11/18) 6099996538594560 a001 1292/16692641*10749957122^(11/16) 6099996538594560 a001 1292/16692641*1568397607^(3/4) 6099996538594560 a001 1292/16692641*599074578^(11/14) 6099996538594563 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^40 6099996538594564 a001 101003828696/165580141 6099996538594564 a001 2584/87403803*2537720636^(7/9) 6099996538594564 a001 2584/87403803*17393796001^(5/7) 6099996538594564 a001 2584/87403803*312119004989^(7/11) 6099996538594564 a001 2584/87403803*14662949395604^(5/9) 6099996538594564 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(38) 6099996538594564 a001 2584/87403803*505019158607^(5/8) 6099996538594564 a001 2584/87403803*28143753123^(7/10) 6099996538594564 a001 2584/87403803*599074578^(5/6) 6099996538594565 a001 2584/87403803*228826127^(7/8) 6099996538594565 a001 1292/16692641*33385282^(11/12) 6099996538594565 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^42 6099996538594565 a001 264431456520/433494437 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(40) 6099996538594565 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^44 6099996538594565 a001 20361486496/33379505 6099996538594565 a001 1292/299537289*2537720636^(13/15) 6099996538594565 a001 1292/299537289*45537549124^(13/17) 6099996538594565 a001 1292/299537289*14662949395604^(13/21) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(42) 6099996538594565 a001 1292/299537289*192900153618^(13/18) 6099996538594565 a001 1292/299537289*73681302247^(3/4) 6099996538594565 a001 1292/299537289*10749957122^(13/16) 6099996538594565 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^46 6099996538594565 a001 1812440166072/2971215073 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(44) 6099996538594565 a001 1292/299537289*599074578^(13/14) 6099996538594565 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^48 6099996538594565 a001 4745029957352/7778742049 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(46) 6099996538594565 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^50 6099996538594565 a001 6211324852992/10182505537 6099996538594565 a001 1292/5374978561*45537549124^(15/17) 6099996538594565 a001 1292/5374978561*312119004989^(9/11) 6099996538594565 a001 1292/5374978561*14662949395604^(5/7) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(48) 6099996538594565 a001 1292/5374978561*192900153618^(5/6) 6099996538594565 a001 1292/5374978561*28143753123^(9/10) 6099996538594565 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^52 6099996538594565 a001 32522919160600/53316291173 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(50) 6099996538594565 a001 1292/5374978561*10749957122^(15/16) 6099996538594565 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^54 6099996538594565 a001 85146107775816/139583862445 6099996538594565 a001 2584/73681302247*14662949395604^(7/9) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(52) 6099996538594565 a001 2584/73681302247*505019158607^(7/8) 6099996538594565 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^56 6099996538594565 a001 111457702083424/182717648081 6099996538594565 a001 1292/96450076809*817138163596^(17/19) 6099996538594565 a001 1292/96450076809*14662949395604^(17/21) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(54) 6099996538594565 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^58 6099996538594565 a001 583600104724728/956722026041 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(56) 6099996538594565 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^60 6099996538594565 a001 1292/96450076809*192900153618^(17/18) 6099996538594565 a001 1527884910007336/2504730781961 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(58) 6099996538594565 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^62 6099996538594565 a001 117648665449920/192866774113 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(60) 6099996538594565 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^64 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(62) 6099996538594565 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^66 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(64) 6099996538594565 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^68 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(66) 6099996538594565 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^70 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(68) 6099996538594565 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^72 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(70) 6099996538594565 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^74 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(72) 6099996538594565 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^76 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(74) 6099996538594565 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^78 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(76) 6099996538594565 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^80 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(78) 6099996538594565 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^82 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(80) 6099996538594565 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^84 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(82) 6099996538594565 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^86 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(84) 6099996538594565 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^88 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(86) 6099996538594565 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^90 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(88) 6099996538594565 a004 Fibonacci(18)*Lucas(89)/(1/2+sqrt(5)/2)^92 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(90) 6099996538594565 a004 Fibonacci(18)*Lucas(91)/(1/2+sqrt(5)/2)^94 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^89/Lucas(92) 6099996538594565 a004 Fibonacci(18)*Lucas(93)/(1/2+sqrt(5)/2)^96 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^91/Lucas(94) 6099996538594565 a004 Fibonacci(18)*Lucas(95)/(1/2+sqrt(5)/2)^98 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^93/Lucas(96) 6099996538594565 a004 Fibonacci(18)*Lucas(97)/(1/2+sqrt(5)/2)^100 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^95/Lucas(98) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^97/Lucas(100) 6099996538594565 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^3 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^96/Lucas(99) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^94/Lucas(97) 6099996538594565 a004 Fibonacci(18)*Lucas(96)/(1/2+sqrt(5)/2)^99 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^92/Lucas(95) 6099996538594565 a004 Fibonacci(18)*Lucas(94)/(1/2+sqrt(5)/2)^97 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^90/Lucas(93) 6099996538594565 a004 Fibonacci(18)*Lucas(92)/(1/2+sqrt(5)/2)^95 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(91) 6099996538594565 a004 Fibonacci(18)*Lucas(90)/(1/2+sqrt(5)/2)^93 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(89) 6099996538594565 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^91 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(87) 6099996538594565 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^89 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(85) 6099996538594565 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^87 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(83) 6099996538594565 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^85 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(81) 6099996538594565 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^83 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(79) 6099996538594565 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^81 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(77) 6099996538594565 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^79 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(75) 6099996538594565 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^77 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(73) 6099996538594565 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^75 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(71) 6099996538594565 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^73 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(69) 6099996538594565 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^71 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(67) 6099996538594565 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^69 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(65) 6099996538594565 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^67 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(63) 6099996538594565 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^65 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(61) 6099996538594565 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^63 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(59) 6099996538594565 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^61 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(57) 6099996538594565 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^59 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(55) 6099996538594565 a001 2584/312119004989*23725150497407^(13/16) 6099996538594565 a001 360684700557880/591286729879 6099996538594565 a001 2584/312119004989*505019158607^(13/14) 6099996538594565 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^57 6099996538594565 a001 646/11384387281*45537549124^(16/17) 6099996538594565 a001 2584/119218851371*312119004989^(10/11) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(53) 6099996538594565 a001 2584/119218851371*3461452808002^(5/6) 6099996538594565 a001 137769296391032/225851433717 6099996538594565 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^55 6099996538594565 a001 646/11384387281*14662949395604^(16/21) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(51) 6099996538594565 a001 646/11384387281*192900153618^(8/9) 6099996538594565 a001 20365011074/33385283 6099996538594565 a001 646/11384387281*73681302247^(12/13) 6099996538594565 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^53 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(49) 6099996538594565 a001 20100269454616/32951280099 6099996538594565 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^51 6099996538594565 a001 34/33391061*2537720636^(14/15) 6099996538594565 a001 2584/17393796001*10749957122^(23/24) 6099996538594565 a001 2584/6643838879*312119004989^(4/5) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(47) 6099996538594565 a001 2584/6643838879*23725150497407^(11/16) 6099996538594565 a001 2584/6643838879*73681302247^(11/13) 6099996538594565 a001 7677619748632/12586269025 6099996538594565 a001 2584/6643838879*10749957122^(11/12) 6099996538594565 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^49 6099996538594565 a001 2584/6643838879*4106118243^(22/23) 6099996538594565 a001 34/33391061*17393796001^(6/7) 6099996538594565 a001 34/33391061*45537549124^(14/17) 6099996538594565 a001 34/33391061*817138163596^(14/19) 6099996538594565 a001 34/33391061*14662949395604^(2/3) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(45) 6099996538594565 a001 34/33391061*505019158607^(3/4) 6099996538594565 a001 34/33391061*192900153618^(7/9) 6099996538594565 a001 34/33391061*10749957122^(7/8) 6099996538594565 a001 183286861955/300470436 6099996538594565 a001 34/33391061*4106118243^(21/23) 6099996538594565 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^47 6099996538594565 a001 34/33391061*1568397607^(21/22) 6099996538594565 a001 2584/969323029*2537720636^(8/9) 6099996538594565 a001 2584/969323029*312119004989^(8/11) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(43) 6099996538594565 a001 2584/969323029*23725150497407^(5/8) 6099996538594565 a001 2584/969323029*73681302247^(10/13) 6099996538594565 a001 2584/969323029*28143753123^(4/5) 6099996538594565 a001 2584/969323029*10749957122^(5/6) 6099996538594565 a001 2584/969323029*4106118243^(20/23) 6099996538594565 a001 1120149625208/1836311903 6099996538594565 a001 2584/969323029*1568397607^(10/11) 6099996538594565 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^45 6099996538594565 a001 2584/969323029*599074578^(20/21) 6099996538594565 a001 646/35355581*141422324^(12/13) 6099996538594565 a001 2584/370248451*817138163596^(2/3) 6099996538594565 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(41) 6099996538594565 a001 2584/370248451*10749957122^(19/24) 6099996538594565 a001 2584/370248451*4106118243^(19/23) 6099996538594565 a001 2584/370248451*1568397607^(19/22) 6099996538594565 a001 427859084344/701408733 6099996538594565 a001 2584/370248451*599074578^(19/21) 6099996538594565 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^43 6099996538594565 a001 2584/370248451*228826127^(19/20) 6099996538594566 a001 646/35355581*2537720636^(4/5) 6099996538594566 a001 646/35355581*45537549124^(12/17) 6099996538594566 a001 646/35355581*14662949395604^(4/7) 6099996538594566 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(39) 6099996538594566 a001 646/35355581*505019158607^(9/14) 6099996538594566 a001 646/35355581*192900153618^(2/3) 6099996538594566 a001 646/35355581*73681302247^(9/13) 6099996538594566 a001 646/35355581*10749957122^(3/4) 6099996538594566 a001 646/35355581*4106118243^(18/23) 6099996538594566 a001 646/35355581*1568397607^(9/11) 6099996538594566 a001 646/35355581*599074578^(6/7) 6099996538594566 a001 20428453478/33489287 6099996538594566 a001 646/35355581*228826127^(9/10) 6099996538594566 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^41 6099996538594566 a001 646/35355581*87403803^(18/19) 6099996538594567 a001 2584/54018521*45537549124^(2/3) 6099996538594567 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(37) 6099996538594567 a001 2584/54018521*10749957122^(17/24) 6099996538594567 a001 2584/54018521*4106118243^(17/23) 6099996538594567 a001 2584/54018521*1568397607^(17/22) 6099996538594567 a001 2584/54018521*599074578^(17/21) 6099996538594567 a001 2584/54018521*228826127^(17/20) 6099996538594567 a001 62423799128/102334155 6099996538594568 a001 2584/54018521*87403803^(17/19) 6099996538594570 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^5 6099996538594571 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^7 6099996538594571 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^9 6099996538594571 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^11 6099996538594571 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^13 6099996538594571 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^15 6099996538594571 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^17 6099996538594571 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^19 6099996538594571 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^21 6099996538594571 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^23 6099996538594571 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^25 6099996538594571 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^27 6099996538594571 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^29 6099996538594571 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^31 6099996538594571 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^33 6099996538594571 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^35 6099996538594571 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^37 6099996538594571 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^39 6099996538594571 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^41 6099996538594571 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^43 6099996538594571 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^45 6099996538594571 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^47 6099996538594571 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^49 6099996538594571 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^51 6099996538594571 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^53 6099996538594571 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^55 6099996538594571 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^57 6099996538594571 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^59 6099996538594571 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^61 6099996538594571 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^63 6099996538594571 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^65 6099996538594571 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^67 6099996538594571 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^66 6099996538594571 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^64 6099996538594571 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^62 6099996538594571 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^60 6099996538594571 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^58 6099996538594571 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^56 6099996538594571 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^54 6099996538594571 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^52 6099996538594571 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^50 6099996538594571 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^48 6099996538594571 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^46 6099996538594571 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^44 6099996538594571 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^42 6099996538594571 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^40 6099996538594571 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^38 6099996538594571 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^36 6099996538594571 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^34 6099996538594571 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^32 6099996538594571 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^30 6099996538594571 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^28 6099996538594571 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^26 6099996538594571 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^24 6099996538594571 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^22 6099996538594571 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^20 6099996538594571 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^18 6099996538594571 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^16 6099996538594571 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^14 6099996538594571 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^12 6099996538594571 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^10 6099996538594571 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^8 6099996538594571 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^6 6099996538594573 a001 2584/54018521*33385282^(17/18) 6099996538594573 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^4 6099996538594574 a001 646/1970299*7881196^(10/11) 6099996538594580 a001 2584/20633239*(1/2+1/2*5^(1/2))^32 6099996538594580 a001 2584/20633239*23725150497407^(1/2) 6099996538594580 a001 2584/20633239*505019158607^(4/7) 6099996538594580 a001 2584/20633239*73681302247^(8/13) 6099996538594580 a001 2584/20633239*10749957122^(2/3) 6099996538594580 a001 2584/20633239*4106118243^(16/23) 6099996538594580 a001 2584/20633239*1568397607^(8/11) 6099996538594580 a001 2584/20633239*599074578^(16/21) 6099996538594580 a001 2584/20633239*228826127^(4/5) 6099996538594580 a001 2584/20633239*87403803^(16/19) 6099996538594580 a001 23843769560/39088169 6099996538594584 a001 2584/20633239*33385282^(8/9) 6099996538594585 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^2 6099996538594603 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^37 6099996538594615 a001 2584/20633239*12752043^(16/17) 6099996538594651 a001 646/1970299*20633239^(6/7) 6099996538594663 a001 646/1970299*141422324^(10/13) 6099996538594663 a001 646/1970299*2537720636^(2/3) 6099996538594663 a001 646/1970299*45537549124^(10/17) 6099996538594663 a001 646/1970299*312119004989^(6/11) 6099996538594663 a001 646/1970299*14662949395604^(10/21) 6099996538594663 a001 646/1970299*(1/2+1/2*5^(1/2))^30 6099996538594663 a001 646/1970299*192900153618^(5/9) 6099996538594663 a001 646/1970299*28143753123^(3/5) 6099996538594663 a001 646/1970299*10749957122^(5/8) 6099996538594663 a001 646/1970299*4106118243^(15/23) 6099996538594663 a001 646/1970299*1568397607^(15/22) 6099996538594663 a001 646/1970299*599074578^(5/7) 6099996538594664 a001 646/1970299*228826127^(3/4) 6099996538594664 a001 646/1970299*87403803^(15/19) 6099996538594668 a001 646/1970299*33385282^(5/6) 6099996538594669 a001 1762289/2889 6099996538594697 a001 646/1970299*12752043^(15/17) 6099996538594822 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^35 6099996538594905 a001 646/1970299*4870847^(15/16) 6099996538595227 a001 2584/3010349*20633239^(4/5) 6099996538595238 a001 2584/3010349*17393796001^(4/7) 6099996538595238 a001 2584/3010349*14662949395604^(4/9) 6099996538595238 a001 2584/3010349*(1/2+1/2*5^(1/2))^28 6099996538595238 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^28/Lucas(31) 6099996538595238 a001 2584/3010349*505019158607^(1/2) 6099996538595238 a001 2584/3010349*73681302247^(7/13) 6099996538595238 a001 2584/3010349*10749957122^(7/12) 6099996538595238 a001 2584/3010349*4106118243^(14/23) 6099996538595238 a001 2584/3010349*1568397607^(7/11) 6099996538595238 a001 2584/3010349*599074578^(2/3) 6099996538595238 a001 2584/3010349*228826127^(7/10) 6099996538595239 a001 2584/3010349*87403803^(14/19) 6099996538595243 a001 2584/3010349*33385282^(7/9) 6099996538595244 a001 1346269/5778*(1/2+1/2*5^(1/2))^2 6099996538595244 a001 1346269/5778*10749957122^(1/24) 6099996538595244 a001 1346269/5778*4106118243^(1/23) 6099996538595244 a001 1346269/5778*1568397607^(1/22) 6099996538595244 a001 1346269/5778*599074578^(1/21) 6099996538595244 a001 1346269/5778*228826127^(1/20) 6099996538595244 a001 1346269/5778*87403803^(1/19) 6099996538595244 a001 1346269/5778*33385282^(1/18) 6099996538595246 a001 1346269/5778*12752043^(1/17) 6099996538595260 a001 1346269/5778*4870847^(1/16) 6099996538595269 a001 2584/3010349*12752043^(14/17) 6099996538595276 a001 3478759096/5702887 6099996538595361 a001 1346269/5778*1860498^(1/15) 6099996538595463 a001 2584/3010349*4870847^(7/8) 6099996538596107 a001 1346269/5778*710647^(1/14) 6099996538596328 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^33 6099996538596883 a001 2584/3010349*1860498^(14/15) 6099996538598079 a001 34/5779*439204^(8/9) 6099996538599179 a001 2584/1149851*141422324^(2/3) 6099996538599179 a001 2584/1149851*(1/2+1/2*5^(1/2))^26 6099996538599179 a001 2584/1149851*73681302247^(1/2) 6099996538599179 a001 2584/1149851*10749957122^(13/24) 6099996538599179 a001 2584/1149851*4106118243^(13/23) 6099996538599179 a001 2584/1149851*1568397607^(13/22) 6099996538599179 a001 2584/1149851*599074578^(13/21) 6099996538599179 a001 2584/1149851*228826127^(13/20) 6099996538599179 a001 2584/1149851*87403803^(13/19) 6099996538599183 a001 2584/1149851*33385282^(13/18) 6099996538599184 a001 514229/5778*(1/2+1/2*5^(1/2))^4 6099996538599184 a001 514229/5778*23725150497407^(1/16) 6099996538599184 a001 514229/5778*73681302247^(1/13) 6099996538599184 a001 514229/5778*10749957122^(1/12) 6099996538599184 a001 514229/5778*4106118243^(2/23) 6099996538599184 a001 514229/5778*1568397607^(1/11) 6099996538599184 a001 514229/5778*599074578^(2/21) 6099996538599184 a001 514229/5778*228826127^(1/10) 6099996538599184 a001 514229/5778*87403803^(2/19) 6099996538599185 a001 514229/5778*33385282^(1/9) 6099996538599189 a001 514229/5778*12752043^(2/17) 6099996538599208 a001 2584/1149851*12752043^(13/17) 6099996538599217 a001 514229/5778*4870847^(1/8) 6099996538599388 a001 2584/1149851*4870847^(13/16) 6099996538599419 a001 514229/5778*1860498^(2/15) 6099996538599436 a001 1328767736/2178309 6099996538600706 a001 2584/1149851*1860498^(13/15) 6099996538600910 a001 514229/5778*710647^(1/7) 6099996538601612 a001 1346269/5778*271443^(1/13) 6099996538606644 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^31 6099996538610395 a001 2584/1149851*710647^(13/14) 6099996538611921 a001 514229/5778*271443^(2/13) 6099996538617957 a001 726103/1926*103682^(1/24) 6099996538619166 a001 98209/2889*439204^(2/9) 6099996538626116 a001 34/5779*7881196^(8/11) 6099996538626175 a001 98209/2889*7881196^(2/11) 6099996538626188 a001 34/5779*141422324^(8/13) 6099996538626188 a001 34/5779*2537720636^(8/15) 6099996538626188 a001 34/5779*45537549124^(8/17) 6099996538626188 a001 34/5779*14662949395604^(8/21) 6099996538626188 a001 34/5779*(1/2+1/2*5^(1/2))^24 6099996538626188 a001 34/5779*192900153618^(4/9) 6099996538626188 a001 34/5779*73681302247^(6/13) 6099996538626188 a001 34/5779*10749957122^(1/2) 6099996538626188 a001 34/5779*4106118243^(12/23) 6099996538626188 a001 34/5779*1568397607^(6/11) 6099996538626188 a001 34/5779*599074578^(4/7) 6099996538626188 a001 34/5779*228826127^(3/5) 6099996538626188 a001 34/5779*87403803^(12/19) 6099996538626191 a001 34/5779*33385282^(2/3) 6099996538626193 a001 98209/2889*141422324^(2/13) 6099996538626193 a001 98209/2889*2537720636^(2/15) 6099996538626193 a001 98209/2889*45537549124^(2/17) 6099996538626193 a001 98209/2889*14662949395604^(2/21) 6099996538626193 a001 98209/2889*(1/2+1/2*5^(1/2))^6 6099996538626193 a001 98209/2889*10749957122^(1/8) 6099996538626193 a001 98209/2889*4106118243^(3/23) 6099996538626193 a001 98209/2889*1568397607^(3/22) 6099996538626193 a001 98209/2889*599074578^(1/7) 6099996538626193 a001 98209/2889*228826127^(3/20) 6099996538626193 a001 98209/2889*87403803^(3/19) 6099996538626194 a001 98209/2889*33385282^(1/6) 6099996538626200 a001 98209/2889*12752043^(3/17) 6099996538626214 a001 34/5779*12752043^(12/17) 6099996538626241 a001 98209/2889*4870847^(3/16) 6099996538626381 a001 34/5779*4870847^(3/4) 6099996538626546 a001 98209/2889*1860498^(1/5) 6099996538627598 a001 34/5779*1860498^(4/5) 6099996538627950 a001 63443014/104005 6099996538628782 a001 98209/2889*710647^(3/14) 6099996538636541 a001 34/5779*710647^(6/7) 6099996538642531 a001 1346269/5778*103682^(1/12) 6099996538645298 a001 98209/2889*271443^(3/13) 6099996538663739 a001 416020/2889*103682^(1/8) 6099996538677286 a001 121393/5778*103682^(7/24) 6099996538677354 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^29 6099996538693758 a001 514229/5778*103682^(1/6) 6099996538700709 a001 105937/1926*103682^(5/24) 6099996538702608 a001 34/5779*271443^(12/13) 6099996538768054 a001 98209/2889*103682^(1/4) 6099996538771101 a001 726103/1926*39603^(1/22) 6099996538788337 a001 2584/64079*64079^(20/23) 6099996538811244 a001 2584/167761*7881196^(2/3) 6099996538811310 a001 2584/167761*312119004989^(2/5) 6099996538811310 a001 2584/167761*(1/2+1/2*5^(1/2))^22 6099996538811310 a001 2584/167761*10749957122^(11/24) 6099996538811310 a001 2584/167761*4106118243^(11/23) 6099996538811310 a001 2584/167761*1568397607^(1/2) 6099996538811310 a001 2584/167761*599074578^(11/21) 6099996538811310 a001 2584/167761*228826127^(11/20) 6099996538811310 a001 2584/167761*87403803^(11/19) 6099996538811313 a001 2584/167761*33385282^(11/18) 6099996538811315 a001 75025/5778*(1/2+1/2*5^(1/2))^8 6099996538811315 a001 75025/5778*23725150497407^(1/8) 6099996538811315 a001 75025/5778*505019158607^(1/7) 6099996538811315 a001 75025/5778*73681302247^(2/13) 6099996538811315 a001 75025/5778*10749957122^(1/6) 6099996538811315 a001 75025/5778*4106118243^(4/23) 6099996538811315 a001 75025/5778*1568397607^(2/11) 6099996538811315 a001 75025/5778*599074578^(4/21) 6099996538811315 a001 75025/5778*228826127^(1/5) 6099996538811315 a001 75025/5778*87403803^(4/19) 6099996538811316 a001 75025/5778*33385282^(2/9) 6099996538811324 a001 75025/5778*12752043^(4/17) 6099996538811334 a001 2584/167761*12752043^(11/17) 6099996538811379 a001 75025/5778*4870847^(1/4) 6099996538811486 a001 2584/167761*4870847^(11/16) 6099996538811785 a001 75025/5778*1860498^(4/15) 6099996538812602 a001 2584/167761*1860498^(11/15) 6099996538814766 a001 75025/5778*710647^(2/7) 6099996538820800 a001 2584/167761*710647^(11/14) 6099996538823388 a001 193864600/317811 6099996538836788 a001 75025/5778*271443^(4/13) 6099996538881362 a001 2584/167761*271443^(11/13) 6099996538948818 a001 1346269/5778*39603^(1/11) 6099996539000463 a001 75025/5778*103682^(1/3) 6099996539055577 a001 2584/271443*103682^(23/24) 6099996539123170 a001 416020/2889*39603^(3/22) 6099996539162009 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^27 6099996539306333 a001 514229/5778*39603^(2/11) 6099996539331466 a001 2584/167761*103682^(11/12) 6099996539434250 a001 28657/5778*64079^(10/23) 6099996539466428 a001 105937/1926*39603^(5/22) 6099996539618211 a001 2576/321*39603^(9/22) 6099996539686916 a001 98209/2889*39603^(3/11) 6099996539749292 a001 121393/5778*39603^(7/22) 6099996539906757 a001 2584/64079*167761^(4/5) 6099996539927203 a001 726103/1926*15127^(1/20) 6099996539993460 a001 28657/5778*167761^(2/5) 6099996540049189 a001 646/6119*24476^(6/7) 6099996540080144 a001 2584/64079*20633239^(4/7) 6099996540080152 a001 2584/64079*2537720636^(4/9) 6099996540080152 a001 2584/64079*(1/2+1/2*5^(1/2))^20 6099996540080152 a001 2584/64079*23725150497407^(5/16) 6099996540080152 a001 2584/64079*505019158607^(5/14) 6099996540080152 a001 2584/64079*73681302247^(5/13) 6099996540080152 a001 2584/64079*28143753123^(2/5) 6099996540080152 a001 2584/64079*10749957122^(5/12) 6099996540080152 a001 2584/64079*4106118243^(10/23) 6099996540080152 a001 2584/64079*1568397607^(5/11) 6099996540080152 a001 2584/64079*599074578^(10/21) 6099996540080152 a001 2584/64079*228826127^(1/2) 6099996540080153 a001 2584/64079*87403803^(10/19) 6099996540080154 a001 28657/5778*20633239^(2/7) 6099996540080155 a001 2584/64079*33385282^(5/9) 6099996540080158 a001 28657/5778*2537720636^(2/9) 6099996540080158 a001 28657/5778*312119004989^(2/11) 6099996540080158 a001 28657/5778*(1/2+1/2*5^(1/2))^10 6099996540080158 a001 28657/5778*28143753123^(1/5) 6099996540080158 a001 28657/5778*10749957122^(5/24) 6099996540080158 a001 28657/5778*4106118243^(5/23) 6099996540080158 a001 28657/5778*1568397607^(5/22) 6099996540080158 a001 28657/5778*599074578^(5/21) 6099996540080158 a001 28657/5778*228826127^(1/4) 6099996540080158 a001 28657/5778*87403803^(5/19) 6099996540080159 a001 28657/5778*33385282^(5/18) 6099996540080169 a001 28657/5778*12752043^(5/17) 6099996540080174 a001 2584/64079*12752043^(10/17) 6099996540080238 a001 28657/5778*4870847^(5/16) 6099996540080313 a001 2584/64079*4870847^(5/8) 6099996540080745 a001 28657/5778*1860498^(1/3) 6099996540081327 a001 2584/64079*1860498^(2/3) 6099996540084472 a001 28657/5778*710647^(5/14) 6099996540088780 a001 2584/64079*710647^(5/7) 6099996540112000 a001 28657/5778*271443^(5/13) 6099996540143836 a001 2584/64079*271443^(10/13) 6099996540162941 a001 74049688/121393 6099996540225612 a001 75025/5778*39603^(4/11) 6099996540316593 a001 28657/5778*103682^(5/12) 6099996540553022 a001 2584/64079*103682^(5/6) 6099996541261022 a001 1346269/5778*15127^(1/10) 6099996541739652 a001 1292/51841*39603^(21/22) 6099996541848030 a001 28657/5778*39603^(5/11) 6099996542483883 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^25 6099996542591475 a001 416020/2889*15127^(3/20) 6099996542678199 a001 317811/1364*521^(2/13) 6099996542958442 a001 5473/2889*24476^(4/7) 6099996543615896 a001 2584/64079*39603^(10/11) 6099996543930580 a001 514229/3571*1364^(1/5) 6099996543930740 a001 514229/5778*15127^(1/5) 6099996545246937 a001 105937/1926*15127^(1/4) 6099996546623527 a001 98209/2889*15127^(3/10) 6099996547614298 a001 646/6119*64079^(18/23) 6099996547842005 a001 121393/5778*15127^(7/20) 6099996548001848 a001 5473/2889*64079^(12/23) 6099996548590076 a001 1346269/39603*3571^(6/17) 6099996548745155 a001 726103/1926*5778^(1/18) 6099996548755849 a001 646/6119*439204^(2/3) 6099996548762882 a001 5473/2889*439204^(4/9) 6099996548776878 a001 646/6119*7881196^(6/11) 6099996548776901 a001 5473/2889*7881196^(4/11) 6099996548776931 a001 646/6119*141422324^(6/13) 6099996548776931 a001 646/6119*2537720636^(2/5) 6099996548776931 a001 646/6119*45537549124^(6/17) 6099996548776931 a001 646/6119*14662949395604^(2/7) 6099996548776931 a001 646/6119*(1/2+1/2*5^(1/2))^18 6099996548776931 a001 646/6119*192900153618^(1/3) 6099996548776931 a001 646/6119*10749957122^(3/8) 6099996548776931 a001 646/6119*4106118243^(9/23) 6099996548776931 a001 646/6119*1568397607^(9/22) 6099996548776931 a001 646/6119*599074578^(3/7) 6099996548776931 a001 646/6119*228826127^(9/20) 6099996548776932 a001 646/6119*87403803^(9/19) 6099996548776934 a001 646/6119*33385282^(1/2) 6099996548776937 a001 5473/2889*141422324^(4/13) 6099996548776937 a001 5473/2889*2537720636^(4/15) 6099996548776937 a001 5473/2889*45537549124^(4/17) 6099996548776937 a001 5473/2889*817138163596^(4/19) 6099996548776937 a001 5473/2889*14662949395604^(4/21) 6099996548776937 a001 5473/2889*(1/2+1/2*5^(1/2))^12 6099996548776937 a001 5473/2889*192900153618^(2/9) 6099996548776937 a001 5473/2889*73681302247^(3/13) 6099996548776937 a001 5473/2889*10749957122^(1/4) 6099996548776937 a001 5473/2889*4106118243^(6/23) 6099996548776937 a001 5473/2889*1568397607^(3/11) 6099996548776937 a001 5473/2889*599074578^(2/7) 6099996548776937 a001 5473/2889*228826127^(3/10) 6099996548776937 a001 5473/2889*87403803^(6/19) 6099996548776938 a001 5473/2889*33385282^(1/3) 6099996548776950 a001 5473/2889*12752043^(6/17) 6099996548776951 a001 646/6119*12752043^(9/17) 6099996548777033 a001 5473/2889*4870847^(3/8) 6099996548777076 a001 646/6119*4870847^(9/16) 6099996548777642 a001 5473/2889*1860498^(2/5) 6099996548777989 a001 646/6119*1860498^(3/5) 6099996548782113 a001 5473/2889*710647^(3/7) 6099996548784696 a001 646/6119*710647^(9/14) 6099996548815147 a001 5473/2889*271443^(6/13) 6099996548834247 a001 646/6119*271443^(9/13) 6099996549060659 a001 5473/2889*103682^(1/2) 6099996549202514 a001 646/6119*103682^(3/4) 6099996549344375 a001 1767779/2898 6099996549367032 a001 17711/5778*15127^(11/20) 6099996549474427 a001 75025/5778*15127^(2/5) 6099996549614193 a001 2584/9349*9349^(16/19) 6099996550023128 a001 2576/321*15127^(9/20) 6099996550324452 a007 Real Root Of -209*x^4+648*x^3-590*x^2-196*x+276 6099996550898383 a001 5473/2889*39603^(6/11) 6099996551911375 a001 1762289/51841*3571^(6/17) 6099996551959100 a001 646/6119*39603^(9/11) 6099996552395946 a001 9227465/271443*3571^(6/17) 6099996552466644 a001 24157817/710647*3571^(6/17) 6099996552476958 a001 31622993/930249*3571^(6/17) 6099996552478463 a001 165580141/4870847*3571^(6/17) 6099996552478683 a001 433494437/12752043*3571^(6/17) 6099996552478715 a001 567451585/16692641*3571^(6/17) 6099996552478720 a001 2971215073/87403803*3571^(6/17) 6099996552478720 a001 7778742049/228826127*3571^(6/17) 6099996552478720 a001 10182505537/299537289*3571^(6/17) 6099996552478720 a001 53316291173/1568397607*3571^(6/17) 6099996552478720 a001 139583862445/4106118243*3571^(6/17) 6099996552478720 a001 182717648081/5374978561*3571^(6/17) 6099996552478720 a001 956722026041/28143753123*3571^(6/17) 6099996552478720 a001 2504730781961/73681302247*3571^(6/17) 6099996552478720 a001 3278735159921/96450076809*3571^(6/17) 6099996552478720 a001 10610209857723/312119004989*3571^(6/17) 6099996552478720 a001 4052739537881/119218851371*3571^(6/17) 6099996552478720 a001 387002188980/11384387281*3571^(6/17) 6099996552478720 a001 591286729879/17393796001*3571^(6/17) 6099996552478720 a001 225851433717/6643838879*3571^(6/17) 6099996552478720 a001 1135099622/33391061*3571^(6/17) 6099996552478720 a001 32951280099/969323029*3571^(6/17) 6099996552478720 a001 12586269025/370248451*3571^(6/17) 6099996552478721 a001 1201881744/35355581*3571^(6/17) 6099996552478722 a001 1836311903/54018521*3571^(6/17) 6099996552478735 a001 701408733/20633239*3571^(6/17) 6099996552478819 a001 66978574/1970299*3571^(6/17) 6099996552479393 a001 102334155/3010349*3571^(6/17) 6099996552483333 a001 39088169/1149851*3571^(6/17) 6099996552510337 a001 196452/5779*3571^(6/17) 6099996552695427 a001 5702887/167761*3571^(6/17) 6099996553409048 a001 28657/5778*15127^(1/2) 6099996553957676 a001 832040/15127*3571^(5/17) 6099996553964050 a001 2178309/64079*3571^(6/17) 6099996556960616 a001 4181/5778*9349^(14/19) 6099996558877224 a007 Real Root Of -511*x^4+942*x^3+961*x^2+382*x+160 6099996558896926 a001 1346269/5778*5778^(1/9) 6099996560030139 a001 2584/39603*15127^(19/20) 6099996562659324 a001 208010/6119*3571^(6/17) 6099996564771605 a001 5473/2889*15127^(3/5) 6099996565252345 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^23 6099996565909909 a001 121393/9349*3571^(8/17) 6099996566733032 a001 1597/5778*3571^(16/17) 6099996569045332 a001 416020/2889*5778^(1/6) 6099996572521378 a001 3524578/9349*1364^(1/15) 6099996572768933 a001 646/6119*15127^(9/10) 6099996576727644 a001 726103/13201*3571^(5/17) 6099996579202549 a001 514229/5778*5778^(2/9) 6099996580049737 a001 5702887/103682*3571^(5/17) 6099996580534424 a001 4976784/90481*3571^(5/17) 6099996580605139 a001 39088169/710647*3571^(5/17) 6099996580615456 a001 831985/15126*3571^(5/17) 6099996580616962 a001 267914296/4870847*3571^(5/17) 6099996580617181 a001 233802911/4250681*3571^(5/17) 6099996580617213 a001 1836311903/33385282*3571^(5/17) 6099996580617218 a001 1602508992/29134601*3571^(5/17) 6099996580617219 a001 12586269025/228826127*3571^(5/17) 6099996580617219 a001 10983760033/199691526*3571^(5/17) 6099996580617219 a001 86267571272/1568397607*3571^(5/17) 6099996580617219 a001 75283811239/1368706081*3571^(5/17) 6099996580617219 a001 591286729879/10749957122*3571^(5/17) 6099996580617219 a001 12585437040/228811001*3571^(5/17) 6099996580617219 a001 4052739537881/73681302247*3571^(5/17) 6099996580617219 a001 3536736619241/64300051206*3571^(5/17) 6099996580617219 a001 6557470319842/119218851371*3571^(5/17) 6099996580617219 a001 2504730781961/45537549124*3571^(5/17) 6099996580617219 a001 956722026041/17393796001*3571^(5/17) 6099996580617219 a001 365435296162/6643838879*3571^(5/17) 6099996580617219 a001 139583862445/2537720636*3571^(5/17) 6099996580617219 a001 53316291173/969323029*3571^(5/17) 6099996580617219 a001 20365011074/370248451*3571^(5/17) 6099996580617219 a001 7778742049/141422324*3571^(5/17) 6099996580617221 a001 2971215073/54018521*3571^(5/17) 6099996580617233 a001 1134903170/20633239*3571^(5/17) 6099996580617317 a001 433494437/7881196*3571^(5/17) 6099996580617892 a001 165580141/3010349*3571^(5/17) 6099996580621833 a001 63245986/1149851*3571^(5/17) 6099996580648843 a001 24157817/439204*3571^(5/17) 6099996580833977 a001 9227465/167761*3571^(5/17) 6099996582098610 a001 1346269/15127*3571^(4/17) 6099996582102904 a001 3524578/64079*3571^(5/17) 6099996589336698 a001 105937/1926*5778^(5/18) 6099996590800258 a001 1346269/24476*3571^(5/17) 6099996591335415 a007 Real Root Of 531*x^4-570*x^3+862*x^2-135*x-606 6099996594162819 a001 196418/9349*3571^(7/17) 6099996598794133 a007 Real Root Of -358*x^4+630*x^3+779*x^2+630*x+287 6099996599531240 a001 98209/2889*5778^(1/3) 6099996600627547 a001 2584/9349*24476^(16/21) 6099996601597301 a001 4181/5778*24476^(2/3) 6099996604866498 a001 3524578/39603*3571^(4/17) 6099996607352088 a001 2584/9349*64079^(16/23) 6099996607481274 a001 4181/5778*64079^(14/23) 6099996608188288 a001 9227465/103682*3571^(4/17) 6099996608385539 a001 4181/5778*20633239^(2/5) 6099996608385540 a001 2584/9349*(1/2+1/2*5^(1/2))^16 6099996608385540 a001 2584/9349*23725150497407^(1/4) 6099996608385540 a001 2584/9349*73681302247^(4/13) 6099996608385540 a001 2584/9349*10749957122^(1/3) 6099996608385540 a001 2584/9349*4106118243^(8/23) 6099996608385540 a001 2584/9349*1568397607^(4/11) 6099996608385540 a001 2584/9349*599074578^(8/21) 6099996608385540 a001 2584/9349*228826127^(2/5) 6099996608385540 a001 2584/9349*87403803^(8/19) 6099996608385542 a001 2584/9349*33385282^(4/9) 6099996608385545 a001 4181/5778*17393796001^(2/7) 6099996608385545 a001 4181/5778*14662949395604^(2/9) 6099996608385545 a001 4181/5778*(1/2+1/2*5^(1/2))^14 6099996608385545 a001 4181/5778*10749957122^(7/24) 6099996608385545 a001 4181/5778*4106118243^(7/23) 6099996608385545 a001 4181/5778*1568397607^(7/22) 6099996608385545 a001 4181/5778*599074578^(1/3) 6099996608385545 a001 4181/5778*228826127^(7/20) 6099996608385545 a001 4181/5778*87403803^(7/19) 6099996608385547 a001 4181/5778*33385282^(7/18) 6099996608385558 a001 2584/9349*12752043^(8/17) 6099996608385560 a001 4181/5778*12752043^(7/17) 6099996608385657 a001 4181/5778*4870847^(7/16) 6099996608385669 a001 2584/9349*4870847^(1/2) 6099996608386367 a001 4181/5778*1860498^(7/15) 6099996608386480 a001 2584/9349*1860498^(8/15) 6099996608391584 a001 4181/5778*710647^(1/2) 6099996608392442 a001 2584/9349*710647^(4/7) 6099996608430123 a001 4181/5778*271443^(7/13) 6099996608436487 a001 2584/9349*271443^(8/13) 6099996608672930 a001 24157817/271443*3571^(4/17) 6099996608716554 a001 4181/5778*103682^(7/12) 6099996608743639 a001 63245986/710647*3571^(4/17) 6099996608753955 a001 165580141/1860498*3571^(4/17) 6099996608755460 a001 433494437/4870847*3571^(4/17) 6099996608755680 a001 1134903170/12752043*3571^(4/17) 6099996608755712 a001 2971215073/33385282*3571^(4/17) 6099996608755716 a001 7778742049/87403803*3571^(4/17) 6099996608755717 a001 20365011074/228826127*3571^(4/17) 6099996608755717 a001 53316291173/599074578*3571^(4/17) 6099996608755717 a001 139583862445/1568397607*3571^(4/17) 6099996608755717 a001 365435296162/4106118243*3571^(4/17) 6099996608755717 a001 956722026041/10749957122*3571^(4/17) 6099996608755717 a001 2504730781961/28143753123*3571^(4/17) 6099996608755717 a001 6557470319842/73681302247*3571^(4/17) 6099996608755717 a001 10610209857723/119218851371*3571^(4/17) 6099996608755717 a001 4052739537881/45537549124*3571^(4/17) 6099996608755717 a001 1548008755920/17393796001*3571^(4/17) 6099996608755717 a001 591286729879/6643838879*3571^(4/17) 6099996608755717 a001 225851433717/2537720636*3571^(4/17) 6099996608755717 a001 86267571272/969323029*3571^(4/17) 6099996608755717 a001 32951280099/370248451*3571^(4/17) 6099996608755718 a001 12586269025/141422324*3571^(4/17) 6099996608755719 a001 4807526976/54018521*3571^(4/17) 6099996608755732 a001 1836311903/20633239*3571^(4/17) 6099996608755815 a001 3524667/39604*3571^(4/17) 6099996608756390 a001 267914296/3010349*3571^(4/17) 6099996608760331 a001 102334155/1149851*3571^(4/17) 6099996608763836 a001 2584/9349*103682^(2/3) 6099996608787339 a001 39088169/439204*3571^(4/17) 6099996608972456 a001 14930352/167761*3571^(4/17) 6099996609567670 a001 121393/5778*5778^(7/18) 6099996610236179 a001 311187/2161*3571^(3/17) 6099996610241267 a001 5702887/64079*3571^(4/17) 6099996610860565 a001 4181/5778*39603^(7/11) 6099996611214135 a001 2584/9349*39603^(8/11) 6099996612274857 a001 10803704/17711 6099996612896013 a001 6765/15127*9349^(15/19) 6099996616866069 a001 726103/1926*2207^(1/16) 6099996618937826 a001 2178309/24476*3571^(4/17) 6099996620018044 a001 75025/5778*5778^(4/9) 6099996622257616 a001 317811/9349*3571^(6/17) 6099996623010061 a001 2584/3571*3571^(14/17) 6099996624860956 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^24 6099996627045991 a001 4181/5778*15127^(7/10) 6099996628318057 a001 2255/13201*9349^(17/19) 6099996629384697 a001 2576/321*5778^(1/2) 6099996629711764 a001 2584/9349*15127^(4/5) 6099996630019753 a001 6765/64079*9349^(18/19) 6099996632445329 a007 Real Root Of -685*x^4-241*x^3-571*x^2+999*x+862 6099996633004861 a001 5702887/39603*3571^(3/17) 6099996636326767 a001 7465176/51841*3571^(3/17) 6099996636811426 a001 39088169/271443*3571^(3/17) 6099996636882137 a001 14619165/101521*3571^(3/17) 6099996636892454 a001 133957148/930249*3571^(3/17) 6099996636893959 a001 701408733/4870847*3571^(3/17) 6099996636894178 a001 1836311903/12752043*3571^(3/17) 6099996636894210 a001 14930208/103681*3571^(3/17) 6099996636894215 a001 12586269025/87403803*3571^(3/17) 6099996636894216 a001 32951280099/228826127*3571^(3/17) 6099996636894216 a001 43133785636/299537289*3571^(3/17) 6099996636894216 a001 32264490531/224056801*3571^(3/17) 6099996636894216 a001 591286729879/4106118243*3571^(3/17) 6099996636894216 a001 774004377960/5374978561*3571^(3/17) 6099996636894216 a001 4052739537881/28143753123*3571^(3/17) 6099996636894216 a001 1515744265389/10525900321*3571^(3/17) 6099996636894216 a001 3278735159921/22768774562*3571^(3/17) 6099996636894216 a001 2504730781961/17393796001*3571^(3/17) 6099996636894216 a001 956722026041/6643838879*3571^(3/17) 6099996636894216 a001 182717648081/1268860318*3571^(3/17) 6099996636894216 a001 139583862445/969323029*3571^(3/17) 6099996636894216 a001 53316291173/370248451*3571^(3/17) 6099996636894216 a001 10182505537/70711162*3571^(3/17) 6099996636894218 a001 7778742049/54018521*3571^(3/17) 6099996636894230 a001 2971215073/20633239*3571^(3/17) 6099996636894314 a001 567451585/3940598*3571^(3/17) 6099996636894889 a001 433494437/3010349*3571^(3/17) 6099996636898830 a001 165580141/1149851*3571^(3/17) 6099996636925839 a001 31622993/219602*3571^(3/17) 6099996637110962 a001 24157817/167761*3571^(3/17) 6099996638375033 a001 3524578/15127*3571^(2/17) 6099996638379817 a001 9227465/64079*3571^(3/17) 6099996641588569 a001 28657/5778*5778^(5/9) 6099996643010894 a001 17711/15127*9349^(13/19) 6099996643897725 a001 2255/1926*5778^(13/18) 6099996646062950 a001 6765/24476*9349^(16/19) 6099996646364506 a001 17711/5778*5778^(11/18) 6099996646486662 m001 (1+arctan(1/2))/(Bloch+Tetranacci) 6099996647076680 a001 1762289/12238*3571^(3/17) 6099996647629419 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^26 6099996650412808 a001 514229/9349*3571^(5/17) 6099996650951293 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^28 6099996651435948 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^30 6099996651506658 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^32 6099996651516974 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^34 6099996651518479 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^36 6099996651518699 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^38 6099996651518731 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^40 6099996651518736 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^42 6099996651518736 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^44 6099996651518737 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^46 6099996651518737 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^48 6099996651518737 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^50 6099996651518737 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^52 6099996651518737 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^54 6099996651518737 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^56 6099996651518737 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^58 6099996651518737 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^60 6099996651518737 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^62 6099996651518737 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^64 6099996651518737 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^66 6099996651518737 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^68 6099996651518737 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^70 6099996651518737 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^72 6099996651518737 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^74 6099996651518737 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^76 6099996651518737 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^78 6099996651518737 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^80 6099996651518737 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^82 6099996651518737 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^84 6099996651518737 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^86 6099996651518737 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^88 6099996651518737 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^90 6099996651518737 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^92 6099996651518737 a004 Fibonacci(90)*Lucas(19)/(1/2+sqrt(5)/2)^94 6099996651518737 a004 Fibonacci(92)*Lucas(19)/(1/2+sqrt(5)/2)^96 6099996651518737 a004 Fibonacci(94)*Lucas(19)/(1/2+sqrt(5)/2)^98 6099996651518737 a004 Fibonacci(96)*Lucas(19)/(1/2+sqrt(5)/2)^100 6099996651518737 a004 Fibonacci(95)*Lucas(19)/(1/2+sqrt(5)/2)^99 6099996651518737 a004 Fibonacci(93)*Lucas(19)/(1/2+sqrt(5)/2)^97 6099996651518737 a004 Fibonacci(91)*Lucas(19)/(1/2+sqrt(5)/2)^95 6099996651518737 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^93 6099996651518737 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^91 6099996651518737 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^89 6099996651518737 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^87 6099996651518737 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^85 6099996651518737 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^83 6099996651518737 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^81 6099996651518737 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^79 6099996651518737 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^77 6099996651518737 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^75 6099996651518737 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^73 6099996651518737 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^71 6099996651518737 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^69 6099996651518737 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^67 6099996651518737 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^65 6099996651518737 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^63 6099996651518737 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^61 6099996651518737 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^59 6099996651518737 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^57 6099996651518737 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^55 6099996651518737 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^53 6099996651518737 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^51 6099996651518737 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^49 6099996651518737 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^47 6099996651518737 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^45 6099996651518737 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^43 6099996651518737 a001 2/4181*(1/2+1/2*5^(1/2))^34 6099996651518739 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^41 6099996651518751 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^39 6099996651518835 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^37 6099996651519372 a001 17711/167761*9349^(18/19) 6099996651519410 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^35 6099996651523350 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^33 6099996651550359 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^31 6099996651735481 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^29 6099996652059008 a001 28657/15127*9349^(12/19) 6099996653004324 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^27 6099996653409369 a001 10946/15127*9349^(14/19) 6099996653679186 a001 6624/2161*9349^(11/19) 6099996654408394 a001 17711/103682*9349^(17/19) 6099996654656125 a001 11592/109801*9349^(18/19) 6099996655113771 a001 121393/1149851*9349^(18/19) 6099996655180540 a001 317811/3010349*9349^(18/19) 6099996655190282 a001 208010/1970299*9349^(18/19) 6099996655191703 a001 2178309/20633239*9349^(18/19) 6099996655191910 a001 5702887/54018521*9349^(18/19) 6099996655191941 a001 3732588/35355581*9349^(18/19) 6099996655191945 a001 39088169/370248451*9349^(18/19) 6099996655191946 a001 102334155/969323029*9349^(18/19) 6099996655191946 a001 66978574/634430159*9349^(18/19) 6099996655191946 a001 701408733/6643838879*9349^(18/19) 6099996655191946 a001 1836311903/17393796001*9349^(18/19) 6099996655191946 a001 1201881744/11384387281*9349^(18/19) 6099996655191946 a001 12586269025/119218851371*9349^(18/19) 6099996655191946 a001 32951280099/312119004989*9349^(18/19) 6099996655191946 a001 21566892818/204284540899*9349^(18/19) 6099996655191946 a001 225851433717/2139295485799*9349^(18/19) 6099996655191946 a001 182717648081/1730726404001*9349^(18/19) 6099996655191946 a001 139583862445/1322157322203*9349^(18/19) 6099996655191946 a001 53316291173/505019158607*9349^(18/19) 6099996655191946 a001 10182505537/96450076809*9349^(18/19) 6099996655191946 a001 7778742049/73681302247*9349^(18/19) 6099996655191946 a001 2971215073/28143753123*9349^(18/19) 6099996655191946 a001 567451585/5374978561*9349^(18/19) 6099996655191946 a001 433494437/4106118243*9349^(18/19) 6099996655191946 a001 165580141/1568397607*9349^(18/19) 6099996655191946 a001 31622993/299537289*9349^(18/19) 6099996655191948 a001 24157817/228826127*9349^(18/19) 6099996655191959 a001 9227465/87403803*9349^(18/19) 6099996655192039 a001 1762289/16692641*9349^(18/19) 6099996655192581 a001 1346269/12752043*9349^(18/19) 6099996655196302 a001 514229/4870847*9349^(18/19) 6099996655221806 a001 98209/930249*9349^(18/19) 6099996655396611 a001 75025/710647*9349^(18/19) 6099996656594744 a001 28657/271443*9349^(18/19) 6099996658136584 a001 75025/15127*9349^(10/19) 6099996658214922 a001 15456/90481*9349^(17/19) 6099996658432938 a001 17711/39603*9349^(15/19) 6099996658770287 a001 121393/710647*9349^(17/19) 6099996658851314 a001 105937/620166*9349^(17/19) 6099996658863136 a001 832040/4870847*9349^(17/19) 6099996658864860 a001 726103/4250681*9349^(17/19) 6099996658865112 a001 5702887/33385282*9349^(17/19) 6099996658865149 a001 4976784/29134601*9349^(17/19) 6099996658865154 a001 39088169/228826127*9349^(17/19) 6099996658865155 a001 34111385/199691526*9349^(17/19) 6099996658865155 a001 267914296/1568397607*9349^(17/19) 6099996658865155 a001 233802911/1368706081*9349^(17/19) 6099996658865155 a001 1836311903/10749957122*9349^(17/19) 6099996658865155 a001 1602508992/9381251041*9349^(17/19) 6099996658865155 a001 12586269025/73681302247*9349^(17/19) 6099996658865155 a001 10983760033/64300051206*9349^(17/19) 6099996658865155 a001 86267571272/505019158607*9349^(17/19) 6099996658865155 a001 75283811239/440719107401*9349^(17/19) 6099996658865155 a001 2504730781961/14662949395604*9349^(17/19) 6099996658865155 a001 139583862445/817138163596*9349^(17/19) 6099996658865155 a001 53316291173/312119004989*9349^(17/19) 6099996658865155 a001 20365011074/119218851371*9349^(17/19) 6099996658865155 a001 7778742049/45537549124*9349^(17/19) 6099996658865155 a001 2971215073/17393796001*9349^(17/19) 6099996658865155 a001 1134903170/6643838879*9349^(17/19) 6099996658865155 a001 433494437/2537720636*9349^(17/19) 6099996658865155 a001 165580141/969323029*9349^(17/19) 6099996658865155 a001 63245986/370248451*9349^(17/19) 6099996658865157 a001 24157817/141422324*9349^(17/19) 6099996658865172 a001 9227465/54018521*9349^(17/19) 6099996658865268 a001 3524578/20633239*9349^(17/19) 6099996658865926 a001 1346269/7881196*9349^(17/19) 6099996658870442 a001 514229/3010349*9349^(17/19) 6099996658901391 a001 196418/1149851*9349^(17/19) 6099996659113522 a001 75025/439204*9349^(17/19) 6099996660134634 a001 17711/64079*9349^(16/19) 6099996660567487 a001 28657/167761*9349^(17/19) 6099996660721033 a001 6765/15127*24476^(5/7) 6099996661143411 a001 9227465/39603*3571^(2/17) 6099996661510260 a001 121393/15127*9349^(9/19) 6099996661701103 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^25 6099996662187665 a001 46368/167761*9349^(16/19) 6099996662487198 a001 121393/439204*9349^(16/19) 6099996662530899 a001 317811/1149851*9349^(16/19) 6099996662537275 a001 832040/3010349*9349^(16/19) 6099996662538205 a001 2178309/7881196*9349^(16/19) 6099996662538341 a001 5702887/20633239*9349^(16/19) 6099996662538361 a001 14930352/54018521*9349^(16/19) 6099996662538364 a001 39088169/141422324*9349^(16/19) 6099996662538364 a001 102334155/370248451*9349^(16/19) 6099996662538364 a001 267914296/969323029*9349^(16/19) 6099996662538364 a001 701408733/2537720636*9349^(16/19) 6099996662538364 a001 1836311903/6643838879*9349^(16/19) 6099996662538364 a001 4807526976/17393796001*9349^(16/19) 6099996662538364 a001 12586269025/45537549124*9349^(16/19) 6099996662538364 a001 32951280099/119218851371*9349^(16/19) 6099996662538364 a001 86267571272/312119004989*9349^(16/19) 6099996662538364 a001 225851433717/817138163596*9349^(16/19) 6099996662538364 a001 1548008755920/5600748293801*9349^(16/19) 6099996662538364 a001 139583862445/505019158607*9349^(16/19) 6099996662538364 a001 53316291173/192900153618*9349^(16/19) 6099996662538364 a001 20365011074/73681302247*9349^(16/19) 6099996662538364 a001 7778742049/28143753123*9349^(16/19) 6099996662538364 a001 2971215073/10749957122*9349^(16/19) 6099996662538364 a001 1134903170/4106118243*9349^(16/19) 6099996662538364 a001 433494437/1568397607*9349^(16/19) 6099996662538364 a001 165580141/599074578*9349^(16/19) 6099996662538365 a001 63245986/228826127*9349^(16/19) 6099996662538366 a001 24157817/87403803*9349^(16/19) 6099996662538373 a001 9227465/33385282*9349^(16/19) 6099996662538425 a001 3524578/12752043*9349^(16/19) 6099996662538780 a001 1346269/4870847*9349^(16/19) 6099996662541216 a001 514229/1860498*9349^(16/19) 6099996662557908 a001 196418/710647*9349^(16/19) 6099996662672320 a001 75025/271443*9349^(16/19) 6099996663456508 a001 28657/103682*9349^(16/19) 6099996664465273 a001 24157817/103682*3571^(2/17) 6099996664806868 a001 5473/51841*9349^(18/19) 6099996664949926 a001 63245986/271443*3571^(2/17) 6099996665020636 a001 165580141/710647*3571^(2/17) 6099996665030952 a001 433494437/1860498*3571^(2/17) 6099996665032458 a001 1134903170/4870847*3571^(2/17) 6099996665032677 a001 2971215073/12752043*3571^(2/17) 6099996665032709 a001 7778742049/33385282*3571^(2/17) 6099996665032714 a001 20365011074/87403803*3571^(2/17) 6099996665032715 a001 53316291173/228826127*3571^(2/17) 6099996665032715 a001 139583862445/599074578*3571^(2/17) 6099996665032715 a001 365435296162/1568397607*3571^(2/17) 6099996665032715 a001 956722026041/4106118243*3571^(2/17) 6099996665032715 a001 2504730781961/10749957122*3571^(2/17) 6099996665032715 a001 6557470319842/28143753123*3571^(2/17) 6099996665032715 a001 10610209857723/45537549124*3571^(2/17) 6099996665032715 a001 4052739537881/17393796001*3571^(2/17) 6099996665032715 a001 1548008755920/6643838879*3571^(2/17) 6099996665032715 a001 591286729879/2537720636*3571^(2/17) 6099996665032715 a001 225851433717/969323029*3571^(2/17) 6099996665032715 a001 86267571272/370248451*3571^(2/17) 6099996665032715 a001 63246219/271444*3571^(2/17) 6099996665032717 a001 12586269025/54018521*3571^(2/17) 6099996665032729 a001 4807526976/20633239*3571^(2/17) 6099996665032813 a001 1836311903/7881196*3571^(2/17) 6099996665033388 a001 701408733/3010349*3571^(2/17) 6099996665037328 a001 267914296/1149851*3571^(2/17) 6099996665064337 a001 102334155/439204*3571^(2/17) 6099996665076686 a001 23184/51841*9349^(15/19) 6099996665249458 a001 39088169/167761*3571^(2/17) 6099996665297880 a001 196418/15127*9349^(8/19) 6099996666045996 a001 121393/271443*9349^(15/19) 6099996666187416 a001 317811/710647*9349^(15/19) 6099996666208049 a001 416020/930249*9349^(15/19) 6099996666211059 a001 2178309/4870847*9349^(15/19) 6099996666211499 a001 5702887/12752043*9349^(15/19) 6099996666211563 a001 7465176/16692641*9349^(15/19) 6099996666211572 a001 39088169/87403803*9349^(15/19) 6099996666211573 a001 102334155/228826127*9349^(15/19) 6099996666211574 a001 133957148/299537289*9349^(15/19) 6099996666211574 a001 701408733/1568397607*9349^(15/19) 6099996666211574 a001 1836311903/4106118243*9349^(15/19) 6099996666211574 a001 2403763488/5374978561*9349^(15/19) 6099996666211574 a001 12586269025/28143753123*9349^(15/19) 6099996666211574 a001 32951280099/73681302247*9349^(15/19) 6099996666211574 a001 43133785636/96450076809*9349^(15/19) 6099996666211574 a001 225851433717/505019158607*9349^(15/19) 6099996666211574 a001 591286729879/1322157322203*9349^(15/19) 6099996666211574 a001 10610209857723/23725150497407*9349^(15/19) 6099996666211574 a001 182717648081/408569081798*9349^(15/19) 6099996666211574 a001 139583862445/312119004989*9349^(15/19) 6099996666211574 a001 53316291173/119218851371*9349^(15/19) 6099996666211574 a001 10182505537/22768774562*9349^(15/19) 6099996666211574 a001 7778742049/17393796001*9349^(15/19) 6099996666211574 a001 2971215073/6643838879*9349^(15/19) 6099996666211574 a001 567451585/1268860318*9349^(15/19) 6099996666211574 a001 433494437/969323029*9349^(15/19) 6099996666211574 a001 165580141/370248451*9349^(15/19) 6099996666211574 a001 31622993/70711162*9349^(15/19) 6099996666211578 a001 24157817/54018521*9349^(15/19) 6099996666211602 a001 9227465/20633239*9349^(15/19) 6099996666211770 a001 1762289/3940598*9349^(15/19) 6099996666212920 a001 1346269/3010349*9349^(15/19) 6099996666220801 a001 514229/1149851*9349^(15/19) 6099996666274819 a001 98209/219602*9349^(15/19) 6099996666513396 a001 5702887/15127*3571^(1/17) 6099996666518296 a001 14930352/64079*3571^(2/17) 6099996666645062 a001 75025/167761*9349^(15/19) 6099996667025290 a001 6765/15127*64079^(15/23) 6099996667481052 a001 28657/39603*9349^(14/19) 6099996667777407 a001 1830609/3001 6099996667864105 a001 6765/15127*167761^(3/5) 6099996667976583 a001 6765/15127*439204^(5/9) 6099996667994107 a001 6765/15127*7881196^(5/11) 6099996667994145 a001 6765/15127*20633239^(3/7) 6099996667994151 a001 6765/15127*141422324^(5/13) 6099996667994151 a001 6765/15127*2537720636^(1/3) 6099996667994151 a001 6765/15127*45537549124^(5/17) 6099996667994151 a001 6765/15127*312119004989^(3/11) 6099996667994151 a001 6765/15127*14662949395604^(5/21) 6099996667994151 a001 6765/15127*(1/2+1/2*5^(1/2))^15 6099996667994151 a001 6765/15127*192900153618^(5/18) 6099996667994151 a001 6765/15127*28143753123^(3/10) 6099996667994151 a001 6765/15127*10749957122^(5/16) 6099996667994151 a001 6765/15127*599074578^(5/14) 6099996667994151 a001 6765/15127*228826127^(3/8) 6099996667994154 a001 6765/15127*33385282^(5/12) 6099996667995033 a001 6765/15127*1860498^(1/2) 6099996668348804 a001 6765/15127*103682^(5/8) 6099996668831413 a001 10946/39603*9349^(16/19) 6099996668927388 a001 317811/15127*9349^(7/19) 6099996669101231 a001 15456/13201*9349^(13/19) 6099996669182748 a001 28657/64079*9349^(15/19) 6099996669534083 a001 75025/103682*9349^(14/19) 6099996669833616 a001 196418/271443*9349^(14/19) 6099996669877318 a001 514229/710647*9349^(14/19) 6099996669883694 a001 1346269/1860498*9349^(14/19) 6099996669884624 a001 3524578/4870847*9349^(14/19) 6099996669884760 a001 9227465/12752043*9349^(14/19) 6099996669884779 a001 24157817/33385282*9349^(14/19) 6099996669884782 a001 63245986/87403803*9349^(14/19) 6099996669884783 a001 165580141/228826127*9349^(14/19) 6099996669884783 a001 433494437/599074578*9349^(14/19) 6099996669884783 a001 1134903170/1568397607*9349^(14/19) 6099996669884783 a001 2971215073/4106118243*9349^(14/19) 6099996669884783 a001 7778742049/10749957122*9349^(14/19) 6099996669884783 a001 20365011074/28143753123*9349^(14/19) 6099996669884783 a001 53316291173/73681302247*9349^(14/19) 6099996669884783 a001 139583862445/192900153618*9349^(14/19) 6099996669884783 a001 365435296162/505019158607*9349^(14/19) 6099996669884783 a001 10610209857723/14662949395604*9349^(14/19) 6099996669884783 a001 591286729879/817138163596*9349^(14/19) 6099996669884783 a001 225851433717/312119004989*9349^(14/19) 6099996669884783 a001 86267571272/119218851371*9349^(14/19) 6099996669884783 a001 32951280099/45537549124*9349^(14/19) 6099996669884783 a001 12586269025/17393796001*9349^(14/19) 6099996669884783 a001 4807526976/6643838879*9349^(14/19) 6099996669884783 a001 1836311903/2537720636*9349^(14/19) 6099996669884783 a001 701408733/969323029*9349^(14/19) 6099996669884783 a001 267914296/370248451*9349^(14/19) 6099996669884783 a001 102334155/141422324*9349^(14/19) 6099996669884784 a001 39088169/54018521*9349^(14/19) 6099996669884792 a001 14930352/20633239*9349^(14/19) 6099996669884844 a001 5702887/7881196*9349^(14/19) 6099996669885199 a001 2178309/3010349*9349^(14/19) 6099996669887634 a001 832040/1149851*9349^(14/19) 6099996669904327 a001 317811/439204*9349^(14/19) 6099996670018738 a001 121393/167761*9349^(14/19) 6099996670533108 a001 10946/64079*9349^(17/19) 6099996670587031 a001 5473/2889*5778^(2/3) 6099996670645959 a001 6765/15127*39603^(15/22) 6099996670802926 a001 46368/64079*9349^(14/19) 6099996672617290 a001 514229/15127*9349^(6/19) 6099996672907759 a001 121393/103682*9349^(13/19) 6099996673463124 a001 105937/90481*9349^(13/19) 6099996673544151 a001 832040/710647*9349^(13/19) 6099996673555973 a001 726103/620166*9349^(13/19) 6099996673557697 a001 5702887/4870847*9349^(13/19) 6099996673557949 a001 4976784/4250681*9349^(13/19) 6099996673557986 a001 39088169/33385282*9349^(13/19) 6099996673557991 a001 34111385/29134601*9349^(13/19) 6099996673557992 a001 267914296/228826127*9349^(13/19) 6099996673557992 a001 233802911/199691526*9349^(13/19) 6099996673557992 a001 1836311903/1568397607*9349^(13/19) 6099996673557992 a001 1602508992/1368706081*9349^(13/19) 6099996673557992 a001 12586269025/10749957122*9349^(13/19) 6099996673557992 a001 10983760033/9381251041*9349^(13/19) 6099996673557992 a001 86267571272/73681302247*9349^(13/19) 6099996673557992 a001 75283811239/64300051206*9349^(13/19) 6099996673557992 a001 2504730781961/2139295485799*9349^(13/19) 6099996673557992 a001 365435296162/312119004989*9349^(13/19) 6099996673557992 a001 139583862445/119218851371*9349^(13/19) 6099996673557992 a001 53316291173/45537549124*9349^(13/19) 6099996673557992 a001 20365011074/17393796001*9349^(13/19) 6099996673557992 a001 7778742049/6643838879*9349^(13/19) 6099996673557992 a001 2971215073/2537720636*9349^(13/19) 6099996673557992 a001 1134903170/969323029*9349^(13/19) 6099996673557992 a001 433494437/370248451*9349^(13/19) 6099996673557992 a001 165580141/141422324*9349^(13/19) 6099996673557995 a001 63245986/54018521*9349^(13/19) 6099996673558009 a001 24157817/20633239*9349^(13/19) 6099996673558105 a001 9227465/7881196*9349^(13/19) 6099996673558628 a001 75025/39603*9349^(12/19) 6099996673558763 a001 3524578/3010349*9349^(13/19) 6099996673563279 a001 1346269/1149851*9349^(13/19) 6099996673594228 a001 514229/439204*9349^(13/19) 6099996673806359 a001 196418/167761*9349^(13/19) 6099996675215043 a001 5702887/24476*3571^(2/17) 6099996675260324 a001 75025/64079*9349^(13/19) 6099996676177831 a001 17711/24476*9349^(14/19) 6099996676284123 a001 832040/15127*9349^(5/19) 6099996676695380 a001 98209/51841*9349^(12/19) 6099996676932304 a001 121393/39603*9349^(11/19) 6099996677153026 a001 514229/271443*9349^(12/19) 6099996677219796 a001 1346269/710647*9349^(12/19) 6099996677229537 a001 1762289/930249*9349^(12/19) 6099996677230959 a001 9227465/4870847*9349^(12/19) 6099996677231166 a001 24157817/12752043*9349^(12/19) 6099996677231196 a001 31622993/16692641*9349^(12/19) 6099996677231201 a001 165580141/87403803*9349^(12/19) 6099996677231201 a001 433494437/228826127*9349^(12/19) 6099996677231201 a001 567451585/299537289*9349^(12/19) 6099996677231201 a001 2971215073/1568397607*9349^(12/19) 6099996677231201 a001 7778742049/4106118243*9349^(12/19) 6099996677231201 a001 10182505537/5374978561*9349^(12/19) 6099996677231201 a001 53316291173/28143753123*9349^(12/19) 6099996677231201 a001 139583862445/73681302247*9349^(12/19) 6099996677231201 a001 182717648081/96450076809*9349^(12/19) 6099996677231201 a001 956722026041/505019158607*9349^(12/19) 6099996677231201 a001 10610209857723/5600748293801*9349^(12/19) 6099996677231201 a001 591286729879/312119004989*9349^(12/19) 6099996677231201 a001 225851433717/119218851371*9349^(12/19) 6099996677231201 a001 21566892818/11384387281*9349^(12/19) 6099996677231201 a001 32951280099/17393796001*9349^(12/19) 6099996677231201 a001 12586269025/6643838879*9349^(12/19) 6099996677231201 a001 1201881744/634430159*9349^(12/19) 6099996677231201 a001 1836311903/969323029*9349^(12/19) 6099996677231201 a001 701408733/370248451*9349^(12/19) 6099996677231202 a001 66978574/35355581*9349^(12/19) 6099996677231203 a001 102334155/54018521*9349^(12/19) 6099996677231215 a001 39088169/20633239*9349^(12/19) 6099996677231294 a001 3732588/1970299*9349^(12/19) 6099996677231837 a001 5702887/3010349*9349^(12/19) 6099996677235558 a001 2178309/1149851*9349^(12/19) 6099996677261062 a001 208010/109801*9349^(12/19) 6099996677328028 m008 (2*Pi^4-4/5)/(Pi^3+4/5) 6099996677435867 a001 317811/167761*9349^(12/19) 6099996678544931 a001 832040/9349*3571^(4/17) 6099996678634000 a001 121393/64079*9349^(12/19) 6099996679959768 a001 1346269/15127*9349^(4/19) 6099996680324888 a001 317811/103682*9349^(11/19) 6099996680719925 a001 196418/39603*9349^(10/19) 6099996680763309 g002 Psi(4/9)+Psi(3/8)-Psi(5/9)-Psi(1/9) 6099996680819859 a001 832040/271443*9349^(11/19) 6099996680892075 a001 311187/101521*9349^(11/19) 6099996680902611 a001 5702887/1860498*9349^(11/19) 6099996680904148 a001 14930352/4870847*9349^(11/19) 6099996680904372 a001 39088169/12752043*9349^(11/19) 6099996680904405 a001 14619165/4769326*9349^(11/19) 6099996680904410 a001 267914296/87403803*9349^(11/19) 6099996680904411 a001 701408733/228826127*9349^(11/19) 6099996680904411 a001 1836311903/599074578*9349^(11/19) 6099996680904411 a001 686789568/224056801*9349^(11/19) 6099996680904411 a001 12586269025/4106118243*9349^(11/19) 6099996680904411 a001 32951280099/10749957122*9349^(11/19) 6099996680904411 a001 86267571272/28143753123*9349^(11/19) 6099996680904411 a001 32264490531/10525900321*9349^(11/19) 6099996680904411 a001 591286729879/192900153618*9349^(11/19) 6099996680904411 a001 1548008755920/505019158607*9349^(11/19) 6099996680904411 a001 1515744265389/494493258286*9349^(11/19) 6099996680904411 a001 2504730781961/817138163596*9349^(11/19) 6099996680904411 a001 956722026041/312119004989*9349^(11/19) 6099996680904411 a001 365435296162/119218851371*9349^(11/19) 6099996680904411 a001 139583862445/45537549124*9349^(11/19) 6099996680904411 a001 53316291173/17393796001*9349^(11/19) 6099996680904411 a001 20365011074/6643838879*9349^(11/19) 6099996680904411 a001 7778742049/2537720636*9349^(11/19) 6099996680904411 a001 2971215073/969323029*9349^(11/19) 6099996680904411 a001 1134903170/370248451*9349^(11/19) 6099996680904411 a001 433494437/141422324*9349^(11/19) 6099996680904413 a001 165580141/54018521*9349^(11/19) 6099996680904425 a001 63245986/20633239*9349^(11/19) 6099996680904511 a001 24157817/7881196*9349^(11/19) 6099996680905098 a001 9227465/3010349*9349^(11/19) 6099996680909123 a001 3524578/1149851*9349^(11/19) 6099996680936706 a001 1346269/439204*9349^(11/19) 6099996681125769 a001 514229/167761*9349^(11/19) 6099996682177062 r002 39th iterates of z^2 + 6099996682421620 a001 196418/64079*9349^(11/19) 6099996682519746 a001 2255/13201*24476^(17/21) 6099996683632047 a001 311187/2161*9349^(3/19) 6099996684014790 a001 514229/103682*9349^(10/19) 6099996684349433 a001 105937/13201*9349^(9/19) 6099996684459245 a001 17711/15127*24476^(13/21) 6099996684469566 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^26 6099996684495504 a001 1346269/271443*9349^(10/19) 6099996684501085 a001 2584/15127*5778^(17/18) 6099996684565639 a001 3524578/710647*9349^(10/19) 6099996684575872 a001 9227465/1860498*9349^(10/19) 6099996684577365 a001 24157817/4870847*9349^(10/19) 6099996684577583 a001 63245986/12752043*9349^(10/19) 6099996684577614 a001 165580141/33385282*9349^(10/19) 6099996684577619 a001 433494437/87403803*9349^(10/19) 6099996684577620 a001 1134903170/228826127*9349^(10/19) 6099996684577620 a001 2971215073/599074578*9349^(10/19) 6099996684577620 a001 7778742049/1568397607*9349^(10/19) 6099996684577620 a001 20365011074/4106118243*9349^(10/19) 6099996684577620 a001 53316291173/10749957122*9349^(10/19) 6099996684577620 a001 139583862445/28143753123*9349^(10/19) 6099996684577620 a001 365435296162/73681302247*9349^(10/19) 6099996684577620 a001 956722026041/192900153618*9349^(10/19) 6099996684577620 a001 2504730781961/505019158607*9349^(10/19) 6099996684577620 a001 10610209857723/2139295485799*9349^(10/19) 6099996684577620 a001 4052739537881/817138163596*9349^(10/19) 6099996684577620 a001 140728068720/28374454999*9349^(10/19) 6099996684577620 a001 591286729879/119218851371*9349^(10/19) 6099996684577620 a001 225851433717/45537549124*9349^(10/19) 6099996684577620 a001 86267571272/17393796001*9349^(10/19) 6099996684577620 a001 32951280099/6643838879*9349^(10/19) 6099996684577620 a001 1144206275/230701876*9349^(10/19) 6099996684577620 a001 4807526976/969323029*9349^(10/19) 6099996684577620 a001 1836311903/370248451*9349^(10/19) 6099996684577620 a001 701408733/141422324*9349^(10/19) 6099996684577622 a001 267914296/54018521*9349^(10/19) 6099996684577634 a001 9303105/1875749*9349^(10/19) 6099996684577717 a001 39088169/7881196*9349^(10/19) 6099996684578288 a001 14930352/3010349*9349^(10/19) 6099996684582196 a001 5702887/1149851*9349^(10/19) 6099996684608985 a001 2178309/439204*9349^(10/19) 6099996684792602 a001 75640/15251*9349^(10/19) 6099996684871871 a001 6765/103682*24476^(19/21) 6099996685171185 a001 615/15251*24476^(20/21) 6099996685225945 a001 28657/24476*9349^(13/19) 6099996686051128 a001 317811/64079*9349^(10/19) 6099996686576306 a001 5473/12238*9349^(15/19) 6099996686846124 a001 11592/6119*9349^(12/19) 6099996687305612 a001 3524578/15127*9349^(2/19) 6099996687409777 a001 6765/64079*24476^(6/7) 6099996687681623 a001 416020/51841*9349^(9/19) 6099996687987487 a001 6765/15127*15127^(3/4) 6099996688039334 a001 514229/39603*9349^(8/19) 6099996688167783 a001 726103/90481*9349^(9/19) 6099996688238713 a001 5702887/710647*9349^(9/19) 6099996688249061 a001 829464/103361*9349^(9/19) 6099996688250571 a001 39088169/4870847*9349^(9/19) 6099996688250792 a001 34111385/4250681*9349^(9/19) 6099996688250824 a001 133957148/16692641*9349^(9/19) 6099996688250828 a001 233802911/29134601*9349^(9/19) 6099996688250829 a001 1836311903/228826127*9349^(9/19) 6099996688250829 a001 267084832/33281921*9349^(9/19) 6099996688250829 a001 12586269025/1568397607*9349^(9/19) 6099996688250829 a001 10983760033/1368706081*9349^(9/19) 6099996688250829 a001 43133785636/5374978561*9349^(9/19) 6099996688250829 a001 75283811239/9381251041*9349^(9/19) 6099996688250829 a001 591286729879/73681302247*9349^(9/19) 6099996688250829 a001 86000486440/10716675201*9349^(9/19) 6099996688250829 a001 4052739537881/505019158607*9349^(9/19) 6099996688250829 a001 3536736619241/440719107401*9349^(9/19) 6099996688250829 a001 3278735159921/408569081798*9349^(9/19) 6099996688250829 a001 2504730781961/312119004989*9349^(9/19) 6099996688250829 a001 956722026041/119218851371*9349^(9/19) 6099996688250829 a001 182717648081/22768774562*9349^(9/19) 6099996688250829 a001 139583862445/17393796001*9349^(9/19) 6099996688250829 a001 53316291173/6643838879*9349^(9/19) 6099996688250829 a001 10182505537/1268860318*9349^(9/19) 6099996688250829 a001 7778742049/969323029*9349^(9/19) 6099996688250829 a001 2971215073/370248451*9349^(9/19) 6099996688250829 a001 567451585/70711162*9349^(9/19) 6099996688250831 a001 433494437/54018521*9349^(9/19) 6099996688250844 a001 165580141/20633239*9349^(9/19) 6099996688250928 a001 31622993/3940598*9349^(9/19) 6099996688251504 a001 24157817/3010349*9349^(9/19) 6099996688255457 a001 9227465/1149851*9349^(9/19) 6099996688282550 a001 1762289/219602*9349^(9/19) 6099996688468247 a001 1346269/167761*9349^(9/19) 6099996688694059 a005 (1/cos(8/219*Pi))^274 6099996688750868 a001 6624/2161*24476^(11/21) 6099996689281890 a001 4976784/13201*3571^(1/17) 6099996689664571 a001 2255/13201*64079^(17/23) 6099996689741030 a001 514229/64079*9349^(9/19) 6099996689922935 a001 17711/15127*64079^(13/23) 6099996690019930 a001 75025/15127*24476^(10/21) 6099996690205272 a001 121393/15127*24476^(3/7) 6099996690319024 a001 28657/15127*24476^(4/7) 6099996690730992 a001 119814915/196418 6099996690762614 a001 2255/13201*45537549124^(1/3) 6099996690762614 a001 2255/13201*(1/2+1/2*5^(1/2))^17 6099996690762614 a001 17711/15127*141422324^(1/3) 6099996690762614 a001 17711/15127*(1/2+1/2*5^(1/2))^13 6099996690762614 a001 17711/15127*73681302247^(1/4) 6099996690762633 a001 2255/13201*12752043^(1/2) 6099996690804009 a001 17711/15127*271443^(1/2) 6099996690804558 a001 196418/15127*24476^(8/21) 6099996690978685 a001 5702887/15127*9349^(1/19) 6099996691069980 a001 17711/15127*103682^(13/24) 6099996691164554 a001 2255/13201*103682^(17/24) 6099996691245731 a001 317811/15127*24476^(1/3) 6099996691303521 a001 75025/24476*9349^(11/19) 6099996691357268 a001 1346269/103682*9349^(8/19) 6099996691706168 a001 832040/39603*9349^(7/19) 6099996691747298 a001 514229/15127*24476^(2/7) 6099996691841348 a001 3524578/271443*9349^(8/19) 6099996691911974 a001 9227465/710647*9349^(8/19) 6099996691922278 a001 24157817/1860498*9349^(8/19) 6099996691923782 a001 63245986/4870847*9349^(8/19) 6099996691924001 a001 165580141/12752043*9349^(8/19) 6099996691924033 a001 433494437/33385282*9349^(8/19) 6099996691924038 a001 1134903170/87403803*9349^(8/19) 6099996691924038 a001 2971215073/228826127*9349^(8/19) 6099996691924038 a001 7778742049/599074578*9349^(8/19) 6099996691924038 a001 20365011074/1568397607*9349^(8/19) 6099996691924038 a001 53316291173/4106118243*9349^(8/19) 6099996691924038 a001 139583862445/10749957122*9349^(8/19) 6099996691924038 a001 365435296162/28143753123*9349^(8/19) 6099996691924038 a001 956722026041/73681302247*9349^(8/19) 6099996691924038 a001 2504730781961/192900153618*9349^(8/19) 6099996691924038 a001 10610209857723/817138163596*9349^(8/19) 6099996691924038 a001 4052739537881/312119004989*9349^(8/19) 6099996691924038 a001 1548008755920/119218851371*9349^(8/19) 6099996691924038 a001 591286729879/45537549124*9349^(8/19) 6099996691924038 a001 7787980473/599786069*9349^(8/19) 6099996691924038 a001 86267571272/6643838879*9349^(8/19) 6099996691924038 a001 32951280099/2537720636*9349^(8/19) 6099996691924038 a001 12586269025/969323029*9349^(8/19) 6099996691924038 a001 4807526976/370248451*9349^(8/19) 6099996691924039 a001 1836311903/141422324*9349^(8/19) 6099996691924041 a001 701408733/54018521*9349^(8/19) 6099996691924053 a001 9238424/711491*9349^(8/19) 6099996691924137 a001 102334155/7881196*9349^(8/19) 6099996691924711 a001 39088169/3010349*9349^(8/19) 6099996691928647 a001 14930352/1149851*9349^(8/19) 6099996691955623 a001 5702887/439204*9349^(8/19) 6099996692140526 a001 2178309/167761*9349^(8/19) 6099996692225797 a001 832040/15127*24476^(5/21) 6099996692603769 a001 39088169/103682*3571^(1/17) 6099996692713107 a001 1346269/15127*24476^(4/21) 6099996692857264 a001 6765/103682*64079^(19/23) 6099996693060847 a001 17711/15127*39603^(13/22) 6099996693088425 a001 34111385/90481*3571^(1/17) 6099996693159135 a001 267914296/710647*3571^(1/17) 6099996693166345 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^28 6099996693169451 a001 233802911/620166*3571^(1/17) 6099996693170956 a001 1836311903/4870847*3571^(1/17) 6099996693171176 a001 1602508992/4250681*3571^(1/17) 6099996693171208 a001 12586269025/33385282*3571^(1/17) 6099996693171213 a001 10983760033/29134601*3571^(1/17) 6099996693171213 a001 86267571272/228826127*3571^(1/17) 6099996693171214 a001 267913919/710646*3571^(1/17) 6099996693171214 a001 591286729879/1568397607*3571^(1/17) 6099996693171214 a001 516002918640/1368706081*3571^(1/17) 6099996693171214 a001 4052739537881/10749957122*3571^(1/17) 6099996693171214 a001 3536736619241/9381251041*3571^(1/17) 6099996693171214 a001 6557470319842/17393796001*3571^(1/17) 6099996693171214 a001 2504730781961/6643838879*3571^(1/17) 6099996693171214 a001 956722026041/2537720636*3571^(1/17) 6099996693171214 a001 365435296162/969323029*3571^(1/17) 6099996693171214 a001 139583862445/370248451*3571^(1/17) 6099996693171214 a001 53316291173/141422324*3571^(1/17) 6099996693171216 a001 20365011074/54018521*3571^(1/17) 6099996693171228 a001 7778742049/20633239*3571^(1/17) 6099996693171312 a001 2971215073/7881196*3571^(1/17) 6099996693171887 a001 1134903170/3010349*3571^(1/17) 6099996693175827 a001 433494437/1149851*3571^(1/17) 6099996693197051 a001 311187/2161*24476^(1/7) 6099996693202836 a001 165580141/439204*3571^(1/17) 6099996693212737 a001 2255/90481*64079^(21/23) 6099996693262558 a001 6765/439204*64079^(22/23) 6099996693373990 a001 6624/2161*64079^(11/23) 6099996693387958 a001 63245986/167761*3571^(1/17) 6099996693407863 a001 832040/64079*9349^(8/19) 6099996693576861 a001 615/15251*64079^(20/23) 6099996693682281 a001 3524578/15127*24476^(2/21) 6099996693767996 a001 2255/13201*39603^(17/22) 6099996693987826 a001 121393/15127*64079^(9/23) 6099996694079874 a001 313679520/514229 6099996694084455 a001 6624/2161*7881196^(1/3) 6099996694084488 a001 6765/103682*817138163596^(1/3) 6099996694084488 a001 6765/103682*(1/2+1/2*5^(1/2))^19 6099996694084488 a001 6624/2161*312119004989^(1/5) 6099996694084488 a001 6624/2161*(1/2+1/2*5^(1/2))^11 6099996694084488 a001 6624/2161*1568397607^(1/4) 6099996694084488 a001 6765/103682*87403803^(1/2) 6099996694166829 a001 196418/15127*64079^(8/23) 6099996694167020 a001 5702887/15127*24476^(1/21) 6099996694187718 a001 317811/15127*64079^(7/23) 6099996694222769 a001 75025/15127*64079^(10/23) 6099996694269001 a001 514229/15127*64079^(6/23) 6099996694327216 a001 832040/15127*64079^(5/23) 6099996694344567 a001 6624/2161*103682^(11/24) 6099996694394242 a001 1346269/15127*64079^(4/23) 6099996694435188 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^30 6099996694457903 a001 311187/2161*64079^(3/23) 6099996694522849 a001 3524578/15127*64079^(2/23) 6099996694533714 a001 6765/103682*103682^(19/24) 6099996694544548 a001 2255/90481*439204^(7/9) 6099996694558602 a001 121393/15127*439204^(1/3) 6099996694568470 a001 821223645/1346269 6099996694569080 a001 2255/90481*7881196^(7/11) 6099996694569116 a001 121393/15127*7881196^(3/11) 6099996694569134 a001 2255/90481*20633239^(3/5) 6099996694569143 a001 2255/90481*141422324^(7/13) 6099996694569143 a001 2255/90481*2537720636^(7/15) 6099996694569143 a001 2255/90481*17393796001^(3/7) 6099996694569143 a001 2255/90481*45537549124^(7/17) 6099996694569143 a001 2255/90481*14662949395604^(1/3) 6099996694569143 a001 2255/90481*(1/2+1/2*5^(1/2))^21 6099996694569143 a001 2255/90481*192900153618^(7/18) 6099996694569143 a001 2255/90481*10749957122^(7/16) 6099996694569143 a001 2255/90481*599074578^(1/2) 6099996694569143 a001 121393/15127*141422324^(3/13) 6099996694569143 a001 121393/15127*2537720636^(1/5) 6099996694569143 a001 121393/15127*45537549124^(3/17) 6099996694569143 a001 121393/15127*817138163596^(3/19) 6099996694569143 a001 121393/15127*14662949395604^(1/7) 6099996694569143 a001 121393/15127*(1/2+1/2*5^(1/2))^9 6099996694569143 a001 121393/15127*192900153618^(1/6) 6099996694569143 a001 121393/15127*10749957122^(3/16) 6099996694569143 a001 121393/15127*599074578^(3/14) 6099996694569144 a001 121393/15127*33385282^(1/4) 6099996694569146 a001 2255/90481*33385282^(7/12) 6099996694569672 a001 121393/15127*1860498^(3/10) 6099996694570377 a001 2255/90481*1860498^(7/10) 6099996694578202 a001 2255/90481*710647^(3/4) 6099996694587304 a001 5702887/15127*64079^(1/23) 6099996694606821 a001 832040/15127*167761^(1/5) 6099996694620309 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^32 6099996694628437 a001 6765/1149851*439204^(8/9) 6099996694639755 a001 2149991415/3524578 6099996694639850 a001 317811/15127*20633239^(1/5) 6099996694639853 a001 6765/710647*(1/2+1/2*5^(1/2))^23 6099996694639853 a001 6765/710647*4106118243^(1/2) 6099996694639853 a001 317811/15127*17393796001^(1/7) 6099996694639853 a001 317811/15127*14662949395604^(1/9) 6099996694639853 a001 317811/15127*(1/2+1/2*5^(1/2))^7 6099996694639853 a001 317811/15127*599074578^(1/6) 6099996694642873 a001 317811/15127*710647^(1/4) 6099996694647318 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^34 6099996694648161 a001 311187/2161*439204^(1/9) 6099996694649518 a001 514229/15127*439204^(2/9) 6099996694650155 a001 1125750120/1845493 6099996694650159 a001 55/15126*20633239^(5/7) 6099996694650168 a001 832040/15127*20633239^(1/7) 6099996694650170 a001 55/15126*2537720636^(5/9) 6099996694650170 a001 55/15126*312119004989^(5/11) 6099996694650170 a001 55/15126*(1/2+1/2*5^(1/2))^25 6099996694650170 a001 55/15126*3461452808002^(5/12) 6099996694650170 a001 55/15126*28143753123^(1/2) 6099996694650170 a001 55/15126*228826127^(5/8) 6099996694650170 a001 832040/15127*2537720636^(1/9) 6099996694650170 a001 832040/15127*312119004989^(1/11) 6099996694650170 a001 832040/15127*(1/2+1/2*5^(1/2))^5 6099996694650170 a001 832040/15127*28143753123^(1/10) 6099996694650170 a001 832040/15127*228826127^(1/8) 6099996694650463 a001 832040/15127*1860498^(1/6) 6099996694651259 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^36 6099996694651594 a001 6765/4870847*7881196^(9/11) 6099996694651638 a001 55/15126*1860498^(5/6) 6099996694651666 a001 311187/2161*7881196^(1/11) 6099996694651673 a001 14736260385/24157817 6099996694651675 a001 6765/4870847*141422324^(9/13) 6099996694651675 a001 6765/4870847*2537720636^(3/5) 6099996694651675 a001 6765/4870847*45537549124^(9/17) 6099996694651675 a001 6765/4870847*817138163596^(9/19) 6099996694651675 a001 6765/4870847*14662949395604^(3/7) 6099996694651675 a001 6765/4870847*(1/2+1/2*5^(1/2))^27 6099996694651675 a001 6765/4870847*192900153618^(1/2) 6099996694651675 a001 6765/4870847*10749957122^(9/16) 6099996694651675 a001 6765/4870847*599074578^(9/14) 6099996694651675 a001 311187/2161*141422324^(1/13) 6099996694651675 a001 311187/2161*2537720636^(1/15) 6099996694651675 a001 311187/2161*45537549124^(1/17) 6099996694651675 a001 311187/2161*14662949395604^(1/21) 6099996694651675 a001 311187/2161*(1/2+1/2*5^(1/2))^3 6099996694651675 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^3/Lucas(20) 6099996694651675 a001 311187/2161*192900153618^(1/18) 6099996694651675 a001 311187/2161*10749957122^(1/16) 6099996694651675 a001 311187/2161*599074578^(1/14) 6099996694651675 a001 311187/2161*33385282^(1/12) 6099996694651679 a001 6765/4870847*33385282^(3/4) 6099996694651834 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^38 6099996694651851 a001 311187/2161*1860498^(1/10) 6099996694651857 a001 615/1875749*7881196^(10/11) 6099996694651894 a001 38580030555/63245986 6099996694651894 a001 2255/4250681*(1/2+1/2*5^(1/2))^29 6099996694651894 a001 2255/4250681*1322157322203^(1/2) 6099996694651895 a001 5702887/30254+5702887/30254*5^(1/2) 6099996694651918 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^40 6099996694651926 a001 101003831280/165580141 6099996694651926 a001 6765/33385282*(1/2+1/2*5^(1/2))^31 6099996694651926 a001 6765/33385282*9062201101803^(1/2) 6099996694651927 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2) 6099996694651930 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^42 6099996694651931 a001 2255/29134601*141422324^(11/13) 6099996694651931 a001 264431463285/433494437 6099996694651931 a001 2255/29134601*2537720636^(11/15) 6099996694651931 a001 2255/29134601*45537549124^(11/17) 6099996694651931 a001 2255/29134601*312119004989^(3/5) 6099996694651931 a001 2255/29134601*817138163596^(11/19) 6099996694651931 a001 2255/29134601*14662949395604^(11/21) 6099996694651931 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(38) 6099996694651931 a001 2255/29134601*192900153618^(11/18) 6099996694651931 a001 2255/29134601*10749957122^(11/16) 6099996694651931 a001 2255/29134601*1568397607^(3/4) 6099996694651931 a001 2255/29134601*599074578^(11/14) 6099996694651931 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^3 6099996694651932 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^44 6099996694651932 a001 6765/370248451*141422324^(12/13) 6099996694651932 a001 138458111715/226980634 6099996694651932 a001 6765/228826127*2537720636^(7/9) 6099996694651932 a001 6765/228826127*17393796001^(5/7) 6099996694651932 a001 6765/228826127*312119004989^(7/11) 6099996694651932 a001 6765/228826127*14662949395604^(5/9) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(40) 6099996694651932 a001 6765/228826127*505019158607^(5/8) 6099996694651932 a001 6765/228826127*28143753123^(7/10) 6099996694651932 a001 6765/228826127*599074578^(5/6) 6099996694651932 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^46 6099996694651932 a001 1812440212440/2971215073 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(42) 6099996694651932 a001 6765/228826127*228826127^(7/8) 6099996694651932 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^48 6099996694651932 a001 6765/1568397607*2537720636^(13/15) 6099996694651932 a001 4745030078745/7778742049 6099996694651932 a001 6765/1568397607*45537549124^(13/17) 6099996694651932 a001 6765/1568397607*14662949395604^(13/21) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(44) 6099996694651932 a001 6765/1568397607*192900153618^(13/18) 6099996694651932 a001 6765/1568397607*73681302247^(3/4) 6099996694651932 a001 6765/1568397607*10749957122^(13/16) 6099996694651932 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^50 6099996694651932 a001 6765/6643838879*2537720636^(14/15) 6099996694651932 a001 12422650023795/20365011074 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(46) 6099996694651932 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^52 6099996694651932 a001 32522919992640/53316291173 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(48) 6099996694651932 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^54 6099996694651932 a001 55/228811001*45537549124^(15/17) 6099996694651932 a001 17029221990825/27916772489 6099996694651932 a001 55/228811001*312119004989^(9/11) 6099996694651932 a001 55/228811001*14662949395604^(5/7) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(50) 6099996694651932 a001 55/228811001*192900153618^(5/6) 6099996694651932 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^56 6099996694651932 a001 6765/119218851371*45537549124^(16/17) 6099996694651932 a001 222915409869735/365435296162 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(52) 6099996694651932 a001 55/228811001*28143753123^(9/10) 6099996694651932 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^58 6099996694651932 a001 2255/64300051206*14662949395604^(7/9) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(54) 6099996694651932 a001 2255/64300051206*505019158607^(7/8) 6099996694651932 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^60 6099996694651932 a001 6765/505019158607*817138163596^(17/19) 6099996694651932 a001 1527884949095505/2504730781961 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(56) 6099996694651932 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^62 6099996694651932 a001 4000054727631435/6557470319842 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(58) 6099996694651932 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^64 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(60) 6099996694651932 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^66 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(62) 6099996694651932 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^68 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(64) 6099996694651932 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^70 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(66) 6099996694651932 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^72 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(68) 6099996694651932 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^74 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(70) 6099996694651932 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^76 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(72) 6099996694651932 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^78 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(74) 6099996694651932 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^80 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(76) 6099996694651932 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^82 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(78) 6099996694651932 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^84 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(80) 6099996694651932 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^86 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(82) 6099996694651932 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^88 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(84) 6099996694651932 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^90 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(86) 6099996694651932 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^92 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(88) 6099996694651932 a004 Fibonacci(20)*Lucas(89)/(1/2+sqrt(5)/2)^94 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(90) 6099996694651932 a004 Fibonacci(20)*Lucas(91)/(1/2+sqrt(5)/2)^96 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(92) 6099996694651932 a004 Fibonacci(20)*Lucas(93)/(1/2+sqrt(5)/2)^98 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^89/Lucas(94) 6099996694651932 a004 Fibonacci(20)*Lucas(95)/(1/2+sqrt(5)/2)^100 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^91/Lucas(96) 6099996694651932 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^5 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^93/Lucas(98) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^95/Lucas(100) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^94/Lucas(99) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^92/Lucas(97) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^90/Lucas(95) 6099996694651932 a004 Fibonacci(20)*Lucas(94)/(1/2+sqrt(5)/2)^99 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(93) 6099996694651932 a004 Fibonacci(20)*Lucas(92)/(1/2+sqrt(5)/2)^97 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(91) 6099996694651932 a004 Fibonacci(20)*Lucas(90)/(1/2+sqrt(5)/2)^95 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(89) 6099996694651932 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^93 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(87) 6099996694651932 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^91 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(85) 6099996694651932 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^89 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(83) 6099996694651932 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^87 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(81) 6099996694651932 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^85 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(79) 6099996694651932 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^83 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(77) 6099996694651932 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^81 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(75) 6099996694651932 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^79 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(73) 6099996694651932 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^77 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(71) 6099996694651932 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^75 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(69) 6099996694651932 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^73 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(67) 6099996694651932 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^71 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(65) 6099996694651932 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^69 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(63) 6099996694651932 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^67 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(61) 6099996694651932 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^65 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(59) 6099996694651932 a001 2157408168722455/3536736619241 6099996694651932 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^63 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(57) 6099996694651932 a001 2472169778535930/4052739537881 6099996694651932 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^61 6099996694651932 a001 6765/817138163596*505019158607^(13/14) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(55) 6099996694651932 a001 615/28374454999*3461452808002^(5/6) 6099996694651932 a001 139583862445/228826128 6099996694651932 a001 6765/505019158607*192900153618^(17/18) 6099996694651932 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^59 6099996694651932 a001 6765/119218851371*14662949395604^(16/21) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(53) 6099996694651932 a001 360684709785345/591286729879 6099996694651932 a001 6765/119218851371*192900153618^(8/9) 6099996694651932 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^57 6099996694651932 a001 6765/119218851371*73681302247^(12/13) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(51) 6099996694651932 a001 45923099971870/75283811239 6099996694651932 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^55 6099996694651932 a001 6765/17393796001*312119004989^(4/5) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(49) 6099996694651932 a001 6765/17393796001*23725150497407^(11/16) 6099996694651932 a001 52623189961485/86267571272 6099996694651932 a001 6765/17393796001*73681302247^(11/13) 6099996694651932 a001 55/228811001*10749957122^(15/16) 6099996694651932 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^53 6099996694651932 a001 6765/45537549124*10749957122^(23/24) 6099996694651932 a001 6765/17393796001*10749957122^(11/12) 6099996694651932 a001 615/230701876*2537720636^(8/9) 6099996694651932 a001 6765/6643838879*17393796001^(6/7) 6099996694651932 a001 6765/6643838879*45537549124^(14/17) 6099996694651932 a001 6765/6643838879*817138163596^(14/19) 6099996694651932 a001 6765/6643838879*14662949395604^(2/3) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(47) 6099996694651932 a001 6765/6643838879*505019158607^(3/4) 6099996694651932 a001 6765/6643838879*192900153618^(7/9) 6099996694651932 a001 6700089989615/10983760033 6099996694651932 a001 6765/6643838879*10749957122^(7/8) 6099996694651932 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^51 6099996694651932 a001 6765/17393796001*4106118243^(22/23) 6099996694651932 a001 6765/6643838879*4106118243^(21/23) 6099996694651932 a001 615/230701876*312119004989^(8/11) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(45) 6099996694651932 a001 615/230701876*23725150497407^(5/8) 6099996694651932 a001 615/230701876*73681302247^(10/13) 6099996694651932 a001 615/230701876*28143753123^(4/5) 6099996694651932 a001 27918617982/45768251 6099996694651932 a001 615/230701876*10749957122^(5/6) 6099996694651932 a001 615/230701876*4106118243^(20/23) 6099996694651932 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^49 6099996694651932 a001 6765/6643838879*1568397607^(21/22) 6099996694651932 a001 615/230701876*1568397607^(10/11) 6099996694651932 a001 6765/969323029*817138163596^(2/3) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(43) 6099996694651932 a001 6765/969323029*10749957122^(19/24) 6099996694651932 a001 977529955435/1602508992 6099996694651932 a001 6765/969323029*4106118243^(19/23) 6099996694651932 a001 6765/969323029*1568397607^(19/22) 6099996694651932 a001 6765/1568397607*599074578^(13/14) 6099996694651932 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^47 6099996694651932 a001 615/230701876*599074578^(20/21) 6099996694651932 a001 6765/969323029*599074578^(19/21) 6099996694651932 a001 6765/370248451*2537720636^(4/5) 6099996694651932 a001 6765/370248451*45537549124^(12/17) 6099996694651932 a001 6765/370248451*14662949395604^(4/7) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(41) 6099996694651932 a001 6765/370248451*505019158607^(9/14) 6099996694651932 a001 6765/370248451*192900153618^(2/3) 6099996694651932 a001 6765/370248451*73681302247^(9/13) 6099996694651932 a001 6765/370248451*10749957122^(3/4) 6099996694651932 a001 6765/370248451*4106118243^(18/23) 6099996694651932 a001 1120149653865/1836311903 6099996694651932 a001 6765/370248451*1568397607^(9/11) 6099996694651932 a001 6765/370248451*599074578^(6/7) 6099996694651932 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^7 6099996694651932 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^9 6099996694651932 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^11 6099996694651932 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^13 6099996694651932 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^15 6099996694651932 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^17 6099996694651932 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^19 6099996694651932 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^21 6099996694651932 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^23 6099996694651932 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^25 6099996694651932 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^27 6099996694651932 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^29 6099996694651932 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^31 6099996694651932 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^33 6099996694651932 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^35 6099996694651932 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^37 6099996694651932 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^39 6099996694651932 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^41 6099996694651932 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^43 6099996694651932 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^45 6099996694651932 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^47 6099996694651932 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^49 6099996694651932 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^51 6099996694651932 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^53 6099996694651932 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^55 6099996694651932 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^57 6099996694651932 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^59 6099996694651932 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^61 6099996694651932 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^65 6099996694651932 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^63 6099996694651932 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^64 6099996694651932 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^62 6099996694651932 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^60 6099996694651932 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^58 6099996694651932 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^56 6099996694651932 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^54 6099996694651932 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^52 6099996694651932 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^50 6099996694651932 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^48 6099996694651932 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^46 6099996694651932 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^44 6099996694651932 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^42 6099996694651932 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^40 6099996694651932 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^38 6099996694651932 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^36 6099996694651932 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^34 6099996694651932 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^32 6099996694651932 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^30 6099996694651932 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^28 6099996694651932 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^26 6099996694651932 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^24 6099996694651932 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^22 6099996694651932 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^20 6099996694651932 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^18 6099996694651932 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^16 6099996694651932 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^14 6099996694651932 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^12 6099996694651932 a001 6765/969323029*228826127^(19/20) 6099996694651932 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^10 6099996694651932 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^8 6099996694651932 a001 6765/370248451*228826127^(9/10) 6099996694651932 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^6 6099996694651932 a001 6765/141422324*45537549124^(2/3) 6099996694651932 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(39) 6099996694651932 a001 6765/141422324*10749957122^(17/24) 6099996694651932 a001 6765/141422324*4106118243^(17/23) 6099996694651932 a001 6765/141422324*1568397607^(17/22) 6099996694651932 a001 142619698430/233802911 6099996694651932 a001 6765/141422324*599074578^(17/21) 6099996694651932 a001 6765/141422324*228826127^(17/20) 6099996694651932 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^4 6099996694651933 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^43 6099996694651933 a001 6765/370248451*87403803^(18/19) 6099996694651933 a001 6765/141422324*87403803^(17/19) 6099996694651934 a001 615/1875749*20633239^(6/7) 6099996694651934 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(37) 6099996694651934 a001 6765/54018521*23725150497407^(1/2) 6099996694651934 a001 6765/54018521*505019158607^(4/7) 6099996694651934 a001 6765/54018521*73681302247^(8/13) 6099996694651934 a001 6765/54018521*10749957122^(2/3) 6099996694651934 a001 6765/54018521*4106118243^(16/23) 6099996694651934 a001 6765/54018521*1568397607^(8/11) 6099996694651934 a001 6765/54018521*599074578^(16/21) 6099996694651934 a001 163427632005/267914296 6099996694651934 a001 6765/54018521*228826127^(4/5) 6099996694651934 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^2 6099996694651935 a001 6765/54018521*87403803^(16/19) 6099996694651936 a001 2255/29134601*33385282^(11/12) 6099996694651937 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^41 6099996694651937 a001 6765/141422324*33385282^(17/18) 6099996694651939 a001 6765/54018521*33385282^(8/9) 6099996694651946 a001 615/1875749*141422324^(10/13) 6099996694651946 a001 615/1875749*2537720636^(2/3) 6099996694651946 a001 615/1875749*45537549124^(10/17) 6099996694651946 a001 615/1875749*312119004989^(6/11) 6099996694651946 a001 615/1875749*14662949395604^(10/21) 6099996694651946 a001 615/1875749*(1/2+1/2*5^(1/2))^30 6099996694651946 a001 615/1875749*192900153618^(5/9) 6099996694651946 a001 615/1875749*28143753123^(3/5) 6099996694651946 a001 615/1875749*10749957122^(5/8) 6099996694651946 a001 615/1875749*4106118243^(15/23) 6099996694651946 a001 615/1875749*1568397607^(15/22) 6099996694651946 a001 615/1875749*599074578^(5/7) 6099996694651946 a001 615/1875749*228826127^(3/4) 6099996694651946 a001 9227465/15127 6099996694651947 a001 615/1875749*87403803^(15/19) 6099996694651951 a001 615/1875749*33385282^(5/6) 6099996694651969 a001 6765/54018521*12752043^(16/17) 6099996694651969 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^39 6099996694651979 a001 615/1875749*12752043^(15/17) 6099996694652019 a001 6765/7881196*20633239^(4/5) 6099996694652030 a001 6765/7881196*17393796001^(4/7) 6099996694652030 a001 6765/7881196*14662949395604^(4/9) 6099996694652030 a001 6765/7881196*(1/2+1/2*5^(1/2))^28 6099996694652030 a001 6765/7881196*505019158607^(1/2) 6099996694652030 a001 6765/7881196*73681302247^(7/13) 6099996694652030 a001 6765/7881196*10749957122^(7/12) 6099996694652030 a001 6765/7881196*4106118243^(14/23) 6099996694652030 a001 6765/7881196*1568397607^(7/11) 6099996694652030 a001 6765/7881196*599074578^(2/3) 6099996694652030 a001 6765/7881196*228826127^(7/10) 6099996694652030 a001 3524578/15127*(1/2+1/2*5^(1/2))^2 6099996694652030 a001 3524578/15127*10749957122^(1/24) 6099996694652030 a001 3524578/15127*4106118243^(1/23) 6099996694652030 a001 3524578/15127*1568397607^(1/22) 6099996694652030 a001 3524578/15127*599074578^(1/21) 6099996694652030 a001 3524578/15127*228826127^(1/20) 6099996694652030 a001 3524578/15127*87403803^(1/19) 6099996694652031 a001 3524578/15127*33385282^(1/18) 6099996694652031 a001 6765/7881196*87403803^(14/19) 6099996694652031 a001 23843770170/39088169 6099996694652032 a001 3524578/15127*12752043^(1/17) 6099996694652034 a001 6765/7881196*33385282^(7/9) 6099996694652046 a001 3524578/15127*4870847^(1/16) 6099996694652061 a001 6765/7881196*12752043^(14/17) 6099996694652148 a001 3524578/15127*1860498^(1/15) 6099996694652187 a001 615/1875749*4870847^(15/16) 6099996694652189 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^37 6099996694652255 a001 6765/7881196*4870847^(7/8) 6099996694652605 a001 6765/3010349*141422324^(2/3) 6099996694652605 a001 6765/3010349*(1/2+1/2*5^(1/2))^26 6099996694652605 a001 6765/3010349*73681302247^(1/2) 6099996694652605 a001 6765/3010349*10749957122^(13/24) 6099996694652605 a001 6765/3010349*4106118243^(13/23) 6099996694652605 a001 6765/3010349*1568397607^(13/22) 6099996694652605 a001 6765/3010349*599074578^(13/21) 6099996694652605 a001 6765/3010349*228826127^(13/20) 6099996694652605 a001 1346269/15127*(1/2+1/2*5^(1/2))^4 6099996694652605 a001 1346269/15127*23725150497407^(1/16) 6099996694652605 a001 1346269/15127*73681302247^(1/13) 6099996694652605 a001 1346269/15127*10749957122^(1/12) 6099996694652605 a001 1346269/15127*4106118243^(2/23) 6099996694652605 a001 1346269/15127*1568397607^(1/11) 6099996694652605 a001 1346269/15127*599074578^(2/21) 6099996694652605 a001 1346269/15127*228826127^(1/10) 6099996694652605 a001 1346269/15127*87403803^(2/19) 6099996694652606 a001 6765/3010349*87403803^(13/19) 6099996694652606 a001 1346269/15127*33385282^(1/9) 6099996694652609 a001 6765/3010349*33385282^(13/18) 6099996694652610 a001 1346269/15127*12752043^(2/17) 6099996694652611 a001 3035836595/4976784 6099996694652634 a001 6765/3010349*12752043^(13/17) 6099996694652637 a001 1346269/15127*4870847^(1/8) 6099996694652814 a001 6765/3010349*4870847^(13/16) 6099996694652840 a001 1346269/15127*1860498^(2/15) 6099996694652893 a001 3524578/15127*710647^(1/14) 6099996694653261 a001 6765/4870847*1860498^(9/10) 6099996694653675 a001 6765/7881196*1860498^(14/15) 6099996694653694 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^35 6099996694654132 a001 6765/3010349*1860498^(13/15) 6099996694654331 a001 1346269/15127*710647^(1/7) 6099996694656474 a001 6765/1149851*7881196^(8/11) 6099996694656528 a001 514229/15127*7881196^(2/11) 6099996694656545 a001 6765/1149851*141422324^(8/13) 6099996694656546 a001 6765/1149851*2537720636^(8/15) 6099996694656546 a001 6765/1149851*45537549124^(8/17) 6099996694656546 a001 6765/1149851*14662949395604^(8/21) 6099996694656546 a001 6765/1149851*(1/2+1/2*5^(1/2))^24 6099996694656546 a001 6765/1149851*192900153618^(4/9) 6099996694656546 a001 6765/1149851*73681302247^(6/13) 6099996694656546 a001 6765/1149851*10749957122^(1/2) 6099996694656546 a001 6765/1149851*4106118243^(12/23) 6099996694656546 a001 6765/1149851*1568397607^(6/11) 6099996694656546 a001 6765/1149851*599074578^(4/7) 6099996694656546 a001 514229/15127*141422324^(2/13) 6099996694656546 a001 6765/1149851*228826127^(3/5) 6099996694656546 a001 514229/15127*2537720636^(2/15) 6099996694656546 a001 514229/15127*45537549124^(2/17) 6099996694656546 a001 514229/15127*14662949395604^(2/21) 6099996694656546 a001 514229/15127*(1/2+1/2*5^(1/2))^6 6099996694656546 a001 514229/15127*10749957122^(1/8) 6099996694656546 a001 514229/15127*4106118243^(3/23) 6099996694656546 a001 514229/15127*1568397607^(3/22) 6099996694656546 a001 514229/15127*599074578^(1/7) 6099996694656546 a001 514229/15127*228826127^(3/20) 6099996694656546 a001 514229/15127*87403803^(3/19) 6099996694656546 a001 6765/1149851*87403803^(12/19) 6099996694656547 a001 514229/15127*33385282^(1/6) 6099996694656549 a001 6765/1149851*33385282^(2/3) 6099996694656552 a001 514229/15127*12752043^(3/17) 6099996694656572 a001 6765/1149851*12752043^(12/17) 6099996694656583 a001 3478759185/5702887 6099996694656594 a001 514229/15127*4870847^(3/16) 6099996694656738 a001 6765/1149851*4870847^(3/4) 6099996694656803 a001 24157817/64079*3571^(1/17) 6099996694656898 a001 514229/15127*1860498^(1/5) 6099996694657955 a001 6765/1149851*1860498^(4/5) 6099996694658399 a001 3524578/15127*271443^(1/13) 6099996694659134 a001 514229/15127*710647^(3/14) 6099996694663821 a001 6765/3010349*710647^(13/14) 6099996694664011 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^33 6099996694665342 a001 1346269/15127*271443^(2/13) 6099996694666899 a001 6765/1149851*710647^(6/7) 6099996694675538 a001 5702887/15127*103682^(1/24) 6099996694675651 a001 514229/15127*271443^(3/13) 6099996694677197 a001 121393/24476*9349^(10/19) 6099996694683489 a001 6765/439204*7881196^(2/3) 6099996694683554 a001 6765/439204*312119004989^(2/5) 6099996694683554 a001 6765/439204*(1/2+1/2*5^(1/2))^22 6099996694683554 a001 6765/439204*10749957122^(11/24) 6099996694683554 a001 6765/439204*4106118243^(11/23) 6099996694683554 a001 6765/439204*1568397607^(1/2) 6099996694683554 a001 6765/439204*599074578^(11/21) 6099996694683555 a001 6765/439204*228826127^(11/20) 6099996694683555 a001 196418/15127*(1/2+1/2*5^(1/2))^8 6099996694683555 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^8/Lucas(20) 6099996694683555 a001 196418/15127*23725150497407^(1/8) 6099996694683555 a001 196418/15127*505019158607^(1/7) 6099996694683555 a001 196418/15127*73681302247^(2/13) 6099996694683555 a001 196418/15127*10749957122^(1/6) 6099996694683555 a001 196418/15127*4106118243^(4/23) 6099996694683555 a001 196418/15127*1568397607^(2/11) 6099996694683555 a001 196418/15127*599074578^(4/21) 6099996694683555 a001 196418/15127*228826127^(1/5) 6099996694683555 a001 196418/15127*87403803^(4/19) 6099996694683555 a001 6765/439204*87403803^(11/19) 6099996694683556 a001 196418/15127*33385282^(2/9) 6099996694683558 a001 6765/439204*33385282^(11/18) 6099996694683563 a001 196418/15127*12752043^(4/17) 6099996694683579 a001 6765/439204*12752043^(11/17) 6099996694683619 a001 196418/15127*4870847^(1/4) 6099996694683731 a001 6765/439204*4870847^(11/16) 6099996694683812 a001 442922590/726103 6099996694684025 a001 196418/15127*1860498^(4/15) 6099996694684847 a001 6765/439204*1860498^(11/15) 6099996694687006 a001 196418/15127*710647^(2/7) 6099996694693045 a001 6765/439204*710647^(11/14) 6099996694695281 a001 615/15251*167761^(4/5) 6099996694699317 a001 3524578/15127*103682^(1/12) 6099996694709028 a001 196418/15127*271443^(4/13) 6099996694722605 a001 311187/2161*103682^(1/8) 6099996694732966 a001 6765/1149851*271443^(12/13) 6099996694734721 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^31 6099996694747179 a001 1346269/15127*103682^(1/6) 6099996694753607 a001 6765/439204*271443^(11/13) 6099996694768387 a001 832040/15127*103682^(5/24) 6099996694781935 a001 121393/15127*103682^(3/8) 6099996694781979 a001 75025/15127*167761^(2/5) 6099996694798407 a001 514229/15127*103682^(1/4) 6099996694805358 a001 317811/15127*103682^(7/24) 6099996694828682 a001 5702887/15127*39603^(1/22) 6099996694868668 a001 615/15251*20633239^(4/7) 6099996694868672 a001 75025/15127*20633239^(2/7) 6099996694868676 a001 615/15251*2537720636^(4/9) 6099996694868676 a001 615/15251*(1/2+1/2*5^(1/2))^20 6099996694868676 a001 615/15251*23725150497407^(5/16) 6099996694868676 a001 615/15251*505019158607^(5/14) 6099996694868676 a001 615/15251*73681302247^(5/13) 6099996694868676 a001 615/15251*28143753123^(2/5) 6099996694868676 a001 615/15251*10749957122^(5/12) 6099996694868676 a001 615/15251*4106118243^(10/23) 6099996694868676 a001 615/15251*1568397607^(5/11) 6099996694868676 a001 615/15251*599074578^(10/21) 6099996694868676 a001 615/15251*228826127^(1/2) 6099996694868676 a001 75025/15127*2537720636^(2/9) 6099996694868676 a001 75025/15127*312119004989^(2/11) 6099996694868676 a001 75025/15127*(1/2+1/2*5^(1/2))^10 6099996694868676 a001 75025/15127*28143753123^(1/5) 6099996694868676 a001 75025/15127*10749957122^(5/24) 6099996694868676 a001 75025/15127*4106118243^(5/23) 6099996694868676 a001 75025/15127*1568397607^(5/22) 6099996694868676 a001 75025/15127*599074578^(5/21) 6099996694868676 a001 75025/15127*228826127^(1/4) 6099996694868676 a001 75025/15127*87403803^(5/19) 6099996694868677 a001 615/15251*87403803^(10/19) 6099996694868678 a001 75025/15127*33385282^(5/18) 6099996694868679 a001 615/15251*33385282^(5/9) 6099996694868687 a001 75025/15127*12752043^(5/17) 6099996694868698 a001 615/15251*12752043^(10/17) 6099996694868757 a001 75025/15127*4870847^(5/16) 6099996694868837 a001 615/15251*4870847^(5/8) 6099996694869264 a001 75025/15127*1860498^(1/3) 6099996694869851 a001 615/15251*1860498^(2/3) 6099996694870438 a001 9228075/15128 6099996694872703 a001 196418/15127*103682^(1/3) 6099996694872990 a001 75025/15127*710647^(5/14) 6099996694877304 a001 615/15251*710647^(5/7) 6099996694900518 a001 75025/15127*271443^(5/13) 6099996694932360 a001 615/15251*271443^(10/13) 6099996694974886 a001 6765/64079*64079^(18/23) 6099996695005605 a001 3524578/15127*39603^(1/11) 6099996695029547 a001 46347/2206*9349^(7/19) 6099996695065656 a001 2255/90481*103682^(7/8) 6099996695105111 a001 75025/15127*103682^(5/12) 6099996695138756 a001 1346269/5778*2207^(1/8) 6099996695152372 m002 6/Pi^2+(2*Tanh[Pi])/Pi^6 6099996695182036 a001 311187/2161*39603^(3/22) 6099996695183653 a001 6765/710647*103682^(23/24) 6099996695203711 a001 6765/439204*103682^(11/12) 6099996695211428 a001 514229/2207*843^(1/7) 6099996695219376 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^29 6099996695341546 a001 615/15251*103682^(5/6) 6099996695359754 a001 1346269/15127*39603^(2/11) 6099996695362430 a001 28657/15127*64079^(12/23) 6099996695381812 a001 1346269/39603*9349^(6/19) 6099996695514421 a001 5702887/271443*9349^(7/19) 6099996695534106 a001 832040/15127*39603^(5/22) 6099996695585163 a001 14930352/710647*9349^(7/19) 6099996695595485 a001 39088169/1860498*9349^(7/19) 6099996695596990 a001 102334155/4870847*9349^(7/19) 6099996695597210 a001 267914296/12752043*9349^(7/19) 6099996695597242 a001 701408733/33385282*9349^(7/19) 6099996695597247 a001 1836311903/87403803*9349^(7/19) 6099996695597248 a001 102287808/4868641*9349^(7/19) 6099996695597248 a001 12586269025/599074578*9349^(7/19) 6099996695597248 a001 32951280099/1568397607*9349^(7/19) 6099996695597248 a001 86267571272/4106118243*9349^(7/19) 6099996695597248 a001 225851433717/10749957122*9349^(7/19) 6099996695597248 a001 591286729879/28143753123*9349^(7/19) 6099996695597248 a001 1548008755920/73681302247*9349^(7/19) 6099996695597248 a001 4052739537881/192900153618*9349^(7/19) 6099996695597248 a001 225749145909/10745088481*9349^(7/19) 6099996695597248 a001 6557470319842/312119004989*9349^(7/19) 6099996695597248 a001 2504730781961/119218851371*9349^(7/19) 6099996695597248 a001 956722026041/45537549124*9349^(7/19) 6099996695597248 a001 365435296162/17393796001*9349^(7/19) 6099996695597248 a001 139583862445/6643838879*9349^(7/19) 6099996695597248 a001 53316291173/2537720636*9349^(7/19) 6099996695597248 a001 20365011074/969323029*9349^(7/19) 6099996695597248 a001 7778742049/370248451*9349^(7/19) 6099996695597248 a001 2971215073/141422324*9349^(7/19) 6099996695597250 a001 1134903170/54018521*9349^(7/19) 6099996695597262 a001 433494437/20633239*9349^(7/19) 6099996695597346 a001 165580141/7881196*9349^(7/19) 6099996695597921 a001 63245986/3010349*9349^(7/19) 6099996695601863 a001 24157817/1149851*9349^(7/19) 6099996695628885 a001 9227465/439204*9349^(7/19) 6099996695717269 a001 514229/15127*39603^(3/11) 6099996695814090 a001 3524578/167761*9349^(7/19) 6099996695877363 a001 317811/15127*39603^(7/22) 6099996695984784 a001 5702887/15127*15127^(1/20) 6099996696029147 a001 6624/2161*39603^(1/2) 6099996696097852 a001 196418/15127*39603^(4/11) 6099996696116437 a001 6765/64079*439204^(2/3) 6099996696123465 a001 28657/15127*439204^(4/9) 6099996696137466 a001 6765/64079*7881196^(6/11) 6099996696137484 a001 28657/15127*7881196^(4/11) 6099996696137519 a001 6765/64079*141422324^(6/13) 6099996696137519 a001 6765/64079*2537720636^(2/5) 6099996696137519 a001 6765/64079*45537549124^(6/17) 6099996696137519 a001 6765/64079*14662949395604^(2/7) 6099996696137519 a001 6765/64079*(1/2+1/2*5^(1/2))^18 6099996696137519 a001 6765/64079*192900153618^(1/3) 6099996696137519 a001 6765/64079*10749957122^(3/8) 6099996696137519 a001 6765/64079*4106118243^(9/23) 6099996696137519 a001 6765/64079*1568397607^(9/22) 6099996696137519 a001 6765/64079*599074578^(3/7) 6099996696137519 a001 28657/15127*141422324^(4/13) 6099996696137519 a001 6765/64079*228826127^(9/20) 6099996696137519 a001 28657/15127*2537720636^(4/15) 6099996696137519 a001 28657/15127*45537549124^(4/17) 6099996696137519 a001 28657/15127*817138163596^(4/19) 6099996696137519 a001 28657/15127*14662949395604^(4/21) 6099996696137519 a001 28657/15127*(1/2+1/2*5^(1/2))^12 6099996696137519 a001 28657/15127*192900153618^(2/9) 6099996696137519 a001 28657/15127*73681302247^(3/13) 6099996696137519 a001 28657/15127*10749957122^(1/4) 6099996696137519 a001 28657/15127*4106118243^(6/23) 6099996696137519 a001 28657/15127*1568397607^(3/11) 6099996696137519 a001 28657/15127*599074578^(2/7) 6099996696137519 a001 28657/15127*228826127^(3/10) 6099996696137519 a001 28657/15127*87403803^(6/19) 6099996696137519 a001 6765/64079*87403803^(9/19) 6099996696137521 a001 28657/15127*33385282^(1/3) 6099996696137522 a001 6765/64079*33385282^(1/2) 6099996696137532 a001 28657/15127*12752043^(6/17) 6099996696137539 a001 6765/64079*12752043^(9/17) 6099996696137616 a001 28657/15127*4870847^(3/8) 6099996696137664 a001 6765/64079*4870847^(9/16) 6099996696138224 a001 28657/15127*1860498^(2/5) 6099996696138576 a001 6765/64079*1860498^(3/5) 6099996696142696 a001 28657/15127*710647^(3/7) 6099996696145284 a001 6765/64079*710647^(9/14) 6099996696149598 a001 64621535/105937 6099996696160228 a001 121393/15127*39603^(9/22) 6099996696175729 a001 28657/15127*271443^(6/13) 6099996696194835 a001 6765/64079*271443^(9/13) 6099996696421241 a001 28657/15127*103682^(1/2) 6099996696563102 a001 6765/64079*103682^(3/4) 6099996696636548 a001 75025/15127*39603^(5/11) 6099996697076305 a001 6765/24476*24476^(16/21) 6099996697083508 a001 1346269/64079*9349^(7/19) 6099996697317808 a001 3524578/15127*15127^(1/10) 6099996697443444 a001 6765/103682*39603^(19/22) 6099996698046054 a001 10946/15127*24476^(2/3) 6099996698258965 a001 28657/15127*39603^(6/11) 6099996698281674 a001 2255/90481*39603^(21/22) 6099996698404420 a001 615/15251*39603^(10/11) 6099996698464818 a001 98209/12238*9349^(9/19) 6099996698541250 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^27 6099996698650342 a001 311187/2161*15127^(3/20) 6099996698703111 a001 1762289/51841*9349^(6/19) 6099996699054091 a001 726103/13201*9349^(5/19) 6099996699187682 a001 9227465/271443*9349^(6/19) 6099996699258380 a001 24157817/710647*9349^(6/19) 6099996699268695 a001 31622993/930249*9349^(6/19) 6099996699270200 a001 165580141/4870847*9349^(6/19) 6099996699270419 a001 433494437/12752043*9349^(6/19) 6099996699270451 a001 567451585/16692641*9349^(6/19) 6099996699270456 a001 2971215073/87403803*9349^(6/19) 6099996699270457 a001 7778742049/228826127*9349^(6/19) 6099996699270457 a001 10182505537/299537289*9349^(6/19) 6099996699270457 a001 53316291173/1568397607*9349^(6/19) 6099996699270457 a001 139583862445/4106118243*9349^(6/19) 6099996699270457 a001 182717648081/5374978561*9349^(6/19) 6099996699270457 a001 956722026041/28143753123*9349^(6/19) 6099996699270457 a001 2504730781961/73681302247*9349^(6/19) 6099996699270457 a001 3278735159921/96450076809*9349^(6/19) 6099996699270457 a001 10610209857723/312119004989*9349^(6/19) 6099996699270457 a001 4052739537881/119218851371*9349^(6/19) 6099996699270457 a001 387002188980/11384387281*9349^(6/19) 6099996699270457 a001 591286729879/17393796001*9349^(6/19) 6099996699270457 a001 225851433717/6643838879*9349^(6/19) 6099996699270457 a001 1135099622/33391061*9349^(6/19) 6099996699270457 a001 32951280099/969323029*9349^(6/19) 6099996699270457 a001 12586269025/370248451*9349^(6/19) 6099996699270457 a001 1201881744/35355581*9349^(6/19) 6099996699270459 a001 1836311903/54018521*9349^(6/19) 6099996699270471 a001 701408733/20633239*9349^(6/19) 6099996699270555 a001 66978574/1970299*9349^(6/19) 6099996699271130 a001 102334155/3010349*9349^(6/19) 6099996699275070 a001 39088169/1149851*9349^(6/19) 6099996699302074 a001 196452/5779*9349^(6/19) 6099996699319688 a001 6765/64079*39603^(9/11) 6099996699487164 a001 5702887/167761*9349^(6/19) 6099996699984161 a001 1346269/15127*15127^(1/5) 6099996700755787 a001 2178309/64079*9349^(6/19) 6099996701314615 a001 832040/15127*15127^(1/4) 6099996702094326 a001 10959/844*9349^(8/19) 6099996702376185 a001 5702887/103682*9349^(5/19) 6099996702653880 a001 514229/15127*15127^(3/10) 6099996702727656 a001 3524578/39603*9349^(4/19) 6099996702860872 a001 4976784/90481*9349^(5/19) 6099996702931587 a001 39088169/710647*9349^(5/19) 6099996702941904 a001 831985/15126*9349^(5/19) 6099996702943409 a001 267914296/4870847*9349^(5/19) 6099996702943629 a001 233802911/4250681*9349^(5/19) 6099996702943661 a001 1836311903/33385282*9349^(5/19) 6099996702943665 a001 1602508992/29134601*9349^(5/19) 6099996702943666 a001 12586269025/228826127*9349^(5/19) 6099996702943666 a001 10983760033/199691526*9349^(5/19) 6099996702943666 a001 86267571272/1568397607*9349^(5/19) 6099996702943666 a001 75283811239/1368706081*9349^(5/19) 6099996702943666 a001 591286729879/10749957122*9349^(5/19) 6099996702943666 a001 12585437040/228811001*9349^(5/19) 6099996702943666 a001 4052739537881/73681302247*9349^(5/19) 6099996702943666 a001 3536736619241/64300051206*9349^(5/19) 6099996702943666 a001 6557470319842/119218851371*9349^(5/19) 6099996702943666 a001 2504730781961/45537549124*9349^(5/19) 6099996702943666 a001 956722026041/17393796001*9349^(5/19) 6099996702943666 a001 365435296162/6643838879*9349^(5/19) 6099996702943666 a001 139583862445/2537720636*9349^(5/19) 6099996702943666 a001 53316291173/969323029*9349^(5/19) 6099996702943666 a001 20365011074/370248451*9349^(5/19) 6099996702943667 a001 7778742049/141422324*9349^(5/19) 6099996702943668 a001 2971215073/54018521*9349^(5/19) 6099996702943681 a001 1134903170/20633239*9349^(5/19) 6099996702943764 a001 433494437/7881196*9349^(5/19) 6099996702944339 a001 165580141/3010349*9349^(5/19) 6099996702948280 a001 63245986/1149851*9349^(5/19) 6099996702975291 a001 24157817/439204*9349^(5/19) 6099996703160425 a001 9227465/167761*9349^(5/19) 6099996703353594 a001 9227465/24476*3571^(1/17) 6099996703800846 a001 6765/24476*64079^(16/23) 6099996703930028 a001 10946/15127*64079^(14/23) 6099996703970076 a001 317811/15127*15127^(7/20) 6099996704429352 a001 3524578/64079*9349^(5/19) 6099996704802736 a001 5702887/15127*5778^(1/18) 6099996704834292 a001 10946/15127*20633239^(2/5) 6099996704834298 a001 6765/24476*(1/2+1/2*5^(1/2))^16 6099996704834298 a001 6765/24476*23725150497407^(1/4) 6099996704834298 a001 6765/24476*73681302247^(4/13) 6099996704834298 a001 6765/24476*10749957122^(1/3) 6099996704834298 a001 6765/24476*4106118243^(8/23) 6099996704834298 a001 6765/24476*1568397607^(4/11) 6099996704834298 a001 6765/24476*599074578^(8/21) 6099996704834298 a001 6765/24476*228826127^(2/5) 6099996704834298 a001 10946/15127*17393796001^(2/7) 6099996704834298 a001 10946/15127*14662949395604^(2/9) 6099996704834298 a001 10946/15127*(1/2+1/2*5^(1/2))^14 6099996704834298 a001 10946/15127*505019158607^(1/4) 6099996704834298 a001 10946/15127*10749957122^(7/24) 6099996704834298 a001 10946/15127*4106118243^(7/23) 6099996704834298 a001 10946/15127*1568397607^(7/22) 6099996704834298 a001 10946/15127*599074578^(1/3) 6099996704834298 a001 10946/15127*228826127^(7/20) 6099996704834298 a001 6765/24476*87403803^(8/19) 6099996704834298 a001 10946/15127*87403803^(7/19) 6099996704834300 a001 10946/15127*33385282^(7/18) 6099996704834300 a001 6765/24476*33385282^(4/9) 6099996704834314 a001 10946/15127*12752043^(7/17) 6099996704834316 a001 6765/24476*12752043^(8/17) 6099996704834411 a001 10946/15127*4870847^(7/16) 6099996704834427 a001 6765/24476*4870847^(1/2) 6099996704835121 a001 10946/15127*1860498^(7/15) 6099996704835238 a001 6765/24476*1860498^(8/15) 6099996704840338 a001 10946/15127*710647^(1/2) 6099996704841200 a001 6765/24476*710647^(4/7) 6099996704878877 a001 10946/15127*271443^(7/13) 6099996704885245 a001 6765/24476*271443^(8/13) 6099996704917087 a001 74049690/121393 6099996705165307 a001 10946/15127*103682^(7/12) 6099996705212594 a001 6765/24476*103682^(2/3) 6099996705346667 a001 196418/15127*15127^(2/5) 6099996705520901 a007 Real Root Of 160*x^4+871*x^3-517*x^2+753*x-2 6099996705671559 a001 4181/15127*9349^(16/19) 6099996705784228 a001 514229/24476*9349^(7/19) 6099996706049446 a001 9227465/103682*9349^(4/19) 6099996706257958 a001 17711/39603*24476^(5/7) 6099996706400729 a001 5702887/39603*9349^(3/19) 6099996706534089 a001 24157817/271443*9349^(4/19) 6099996706565144 a001 121393/15127*15127^(9/20) 6099996706604797 a001 63245986/710647*9349^(4/19) 6099996706615113 a001 165580141/1860498*9349^(4/19) 6099996706616618 a001 433494437/4870847*9349^(4/19) 6099996706616838 a001 1134903170/12752043*9349^(4/19) 6099996706616870 a001 2971215073/33385282*9349^(4/19) 6099996706616875 a001 7778742049/87403803*9349^(4/19) 6099996706616875 a001 20365011074/228826127*9349^(4/19) 6099996706616876 a001 53316291173/599074578*9349^(4/19) 6099996706616876 a001 139583862445/1568397607*9349^(4/19) 6099996706616876 a001 365435296162/4106118243*9349^(4/19) 6099996706616876 a001 956722026041/10749957122*9349^(4/19) 6099996706616876 a001 2504730781961/28143753123*9349^(4/19) 6099996706616876 a001 6557470319842/73681302247*9349^(4/19) 6099996706616876 a001 10610209857723/119218851371*9349^(4/19) 6099996706616876 a001 4052739537881/45537549124*9349^(4/19) 6099996706616876 a001 1548008755920/17393796001*9349^(4/19) 6099996706616876 a001 591286729879/6643838879*9349^(4/19) 6099996706616876 a001 225851433717/2537720636*9349^(4/19) 6099996706616876 a001 86267571272/969323029*9349^(4/19) 6099996706616876 a001 32951280099/370248451*9349^(4/19) 6099996706616876 a001 12586269025/141422324*9349^(4/19) 6099996706616878 a001 4807526976/54018521*9349^(4/19) 6099996706616890 a001 1836311903/20633239*9349^(4/19) 6099996706616974 a001 3524667/39604*9349^(4/19) 6099996706617549 a001 267914296/3010349*9349^(4/19) 6099996706621489 a001 102334155/1149851*9349^(4/19) 6099996706648497 a001 39088169/439204*9349^(4/19) 6099996706685865 a001 1346269/9349*3571^(3/17) 6099996706833614 a001 14930352/167761*9349^(4/19) 6099996707238029 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^28 6099996707309319 a001 10946/15127*39603^(7/11) 6099996707662893 a001 6765/24476*39603^(8/11) 6099996707754526 a001 17711/439204*24476^(20/21) 6099996708090172 a001 17711/15127*15127^(13/20) 6099996708102425 a001 5702887/64079*9349^(4/19) 6099996708124989 a001 17711/271443*24476^(19/21) 6099996708197567 a001 75025/15127*15127^(1/2) 6099996708610083 a001 17711/103682*24476^(17/21) 6099996708746268 a001 6624/2161*15127^(11/20) 6099996708909397 a001 17711/167761*24476^(6/7) 6099996709451061 a001 208010/6119*9349^(6/19) 6099996709722636 a001 7465176/51841*9349^(3/19) 6099996710073991 a001 9227465/39603*9349^(2/19) 6099996710207295 a001 39088169/271443*9349^(3/19) 6099996710278006 a001 14619165/101521*9349^(3/19) 6099996710288323 a001 133957148/930249*9349^(3/19) 6099996710289828 a001 701408733/4870847*9349^(3/19) 6099996710290047 a001 1836311903/12752043*9349^(3/19) 6099996710290079 a001 14930208/103681*9349^(3/19) 6099996710290084 a001 12586269025/87403803*9349^(3/19) 6099996710290085 a001 32951280099/228826127*9349^(3/19) 6099996710290085 a001 43133785636/299537289*9349^(3/19) 6099996710290085 a001 32264490531/224056801*9349^(3/19) 6099996710290085 a001 591286729879/4106118243*9349^(3/19) 6099996710290085 a001 774004377960/5374978561*9349^(3/19) 6099996710290085 a001 4052739537881/28143753123*9349^(3/19) 6099996710290085 a001 1515744265389/10525900321*9349^(3/19) 6099996710290085 a001 3278735159921/22768774562*9349^(3/19) 6099996710290085 a001 2504730781961/17393796001*9349^(3/19) 6099996710290085 a001 956722026041/6643838879*9349^(3/19) 6099996710290085 a001 182717648081/1268860318*9349^(3/19) 6099996710290085 a001 139583862445/969323029*9349^(3/19) 6099996710290085 a001 53316291173/370248451*9349^(3/19) 6099996710290085 a001 10182505537/70711162*9349^(3/19) 6099996710290087 a001 7778742049/54018521*9349^(3/19) 6099996710290099 a001 2971215073/20633239*9349^(3/19) 6099996710290183 a001 567451585/3940598*9349^(3/19) 6099996710290758 a001 433494437/3010349*9349^(3/19) 6099996710294699 a001 165580141/1149851*9349^(3/19) 6099996710321708 a001 31622993/219602*9349^(3/19) 6099996710506831 a001 24157817/167761*9349^(3/19) 6099996710549581 a001 15456/13201*24476^(13/21) 6099996710559903 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^30 6099996711044558 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^32 6099996711049391 a001 46368/1149851*24476^(20/21) 6099996711115268 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^34 6099996711125584 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^36 6099996711127089 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^38 6099996711127309 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^40 6099996711127341 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^42 6099996711127346 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^44 6099996711127346 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^46 6099996711127346 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^48 6099996711127346 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^50 6099996711127346 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^52 6099996711127346 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^54 6099996711127346 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^56 6099996711127346 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^58 6099996711127346 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^60 6099996711127346 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^62 6099996711127346 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^64 6099996711127346 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^66 6099996711127346 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^68 6099996711127346 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^70 6099996711127346 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^72 6099996711127346 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^74 6099996711127346 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^76 6099996711127346 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^78 6099996711127346 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^80 6099996711127346 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^82 6099996711127346 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^84 6099996711127346 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^86 6099996711127346 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^88 6099996711127346 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^90 6099996711127346 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^92 6099996711127346 a004 Fibonacci(88)*Lucas(21)/(1/2+sqrt(5)/2)^94 6099996711127346 a004 Fibonacci(90)*Lucas(21)/(1/2+sqrt(5)/2)^96 6099996711127346 a004 Fibonacci(92)*Lucas(21)/(1/2+sqrt(5)/2)^98 6099996711127346 a004 Fibonacci(94)*Lucas(21)/(1/2+sqrt(5)/2)^100 6099996711127346 a004 Fibonacci(93)*Lucas(21)/(1/2+sqrt(5)/2)^99 6099996711127346 a004 Fibonacci(91)*Lucas(21)/(1/2+sqrt(5)/2)^97 6099996711127346 a004 Fibonacci(89)*Lucas(21)/(1/2+sqrt(5)/2)^95 6099996711127346 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^93 6099996711127346 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^91 6099996711127346 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^89 6099996711127346 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^87 6099996711127346 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^85 6099996711127346 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^83 6099996711127346 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^81 6099996711127346 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^79 6099996711127346 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^77 6099996711127346 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^75 6099996711127346 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^73 6099996711127346 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^71 6099996711127346 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^69 6099996711127346 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^67 6099996711127346 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^65 6099996711127346 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^63 6099996711127346 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^61 6099996711127346 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^59 6099996711127346 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^57 6099996711127346 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^55 6099996711127346 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^53 6099996711127346 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^51 6099996711127346 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^49 6099996711127346 a001 1/5473*(1/2+1/2*5^(1/2))^36 6099996711127347 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^47 6099996711127347 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^45 6099996711127349 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^43 6099996711127361 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^41 6099996711127445 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^39 6099996711128020 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^37 6099996711131960 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^35 6099996711147989 a001 17711/64079*24476^(16/21) 6099996711158969 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^33 6099996711344091 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^31 6099996711517573 a001 6624/101521*24476^(19/21) 6099996711530105 a001 121393/3010349*24476^(20/21) 6099996711600241 a001 317811/7881196*24476^(20/21) 6099996711610473 a001 75640/1875749*24476^(20/21) 6099996711611966 a001 2178309/54018521*24476^(20/21) 6099996711612184 a001 5702887/141422324*24476^(20/21) 6099996711612216 a001 14930352/370248451*24476^(20/21) 6099996711612220 a001 39088169/969323029*24476^(20/21) 6099996711612221 a001 9303105/230701876*24476^(20/21) 6099996711612221 a001 267914296/6643838879*24476^(20/21) 6099996711612221 a001 701408733/17393796001*24476^(20/21) 6099996711612221 a001 1836311903/45537549124*24476^(20/21) 6099996711612221 a001 4807526976/119218851371*24476^(20/21) 6099996711612221 a001 1144206275/28374454999*24476^(20/21) 6099996711612221 a001 32951280099/817138163596*24476^(20/21) 6099996711612221 a001 86267571272/2139295485799*24476^(20/21) 6099996711612221 a001 225851433717/5600748293801*24476^(20/21) 6099996711612221 a001 591286729879/14662949395604*24476^(20/21) 6099996711612221 a001 365435296162/9062201101803*24476^(20/21) 6099996711612221 a001 139583862445/3461452808002*24476^(20/21) 6099996711612221 a001 53316291173/1322157322203*24476^(20/21) 6099996711612221 a001 20365011074/505019158607*24476^(20/21) 6099996711612221 a001 7778742049/192900153618*24476^(20/21) 6099996711612221 a001 2971215073/73681302247*24476^(20/21) 6099996711612221 a001 1134903170/28143753123*24476^(20/21) 6099996711612221 a001 433494437/10749957122*24476^(20/21) 6099996711612221 a001 165580141/4106118243*24476^(20/21) 6099996711612221 a001 63245986/1568397607*24476^(20/21) 6099996711612223 a001 24157817/599074578*24476^(20/21) 6099996711612235 a001 9227465/228826127*24476^(20/21) 6099996711612318 a001 3524578/87403803*24476^(20/21) 6099996711612889 a001 1346269/33385282*24476^(20/21) 6099996711616797 a001 514229/12752043*24476^(20/21) 6099996711643586 a001 196418/4870847*24476^(20/21) 6099996711775686 a001 9227465/64079*9349^(3/19) 6099996711818644 a001 75025/39603*24476^(4/7) 6099996711827203 a001 75025/1860498*24476^(20/21) 6099996712003986 a001 121393/39603*24476^(11/21) 6099996712012544 a001 121393/1860498*24476^(19/21) 6099996712046149 a001 11592/109801*24476^(6/7) 6099996712084760 a001 317811/4870847*24476^(19/21) 6099996712095296 a001 832040/12752043*24476^(19/21) 6099996712096833 a001 311187/4769326*24476^(19/21) 6099996712097057 a001 5702887/87403803*24476^(19/21) 6099996712097090 a001 14930352/228826127*24476^(19/21) 6099996712097095 a001 39088169/599074578*24476^(19/21) 6099996712097096 a001 14619165/224056801*24476^(19/21) 6099996712097096 a001 267914296/4106118243*24476^(19/21) 6099996712097096 a001 701408733/10749957122*24476^(19/21) 6099996712097096 a001 1836311903/28143753123*24476^(19/21) 6099996712097096 a001 686789568/10525900321*24476^(19/21) 6099996712097096 a001 12586269025/192900153618*24476^(19/21) 6099996712097096 a001 32951280099/505019158607*24476^(19/21) 6099996712097096 a001 86267571272/1322157322203*24476^(19/21) 6099996712097096 a001 32264490531/494493258286*24476^(19/21) 6099996712097096 a001 591286729879/9062201101803*24476^(19/21) 6099996712097096 a001 1548008755920/23725150497407*24476^(19/21) 6099996712097096 a001 139583862445/2139295485799*24476^(19/21) 6099996712097096 a001 53316291173/817138163596*24476^(19/21) 6099996712097096 a001 20365011074/312119004989*24476^(19/21) 6099996712097096 a001 7778742049/119218851371*24476^(19/21) 6099996712097096 a001 2971215073/45537549124*24476^(19/21) 6099996712097096 a001 1134903170/17393796001*24476^(19/21) 6099996712097096 a001 433494437/6643838879*24476^(19/21) 6099996712097096 a001 165580141/2537720636*24476^(19/21) 6099996712097096 a001 63245986/969323029*24476^(19/21) 6099996712097098 a001 24157817/370248451*24476^(19/21) 6099996712097110 a001 9227465/141422324*24476^(19/21) 6099996712097196 a001 3524578/54018521*24476^(19/21) 6099996712097783 a001 1346269/20633239*24476^(19/21) 6099996712101808 a001 514229/7881196*24476^(19/21) 6099996712117738 a001 28657/39603*24476^(2/3) 6099996712129391 a001 196418/3010349*24476^(19/21) 6099996712132188 a001 28657/15127*15127^(3/5) 6099996712318454 a001 75025/1149851*24476^(19/21) 6099996712416612 a001 15456/90481*24476^(17/21) 6099996712503795 a001 121393/1149851*24476^(6/7) 6099996712562216 a001 17711/39603*64079^(15/23) 6099996712570565 a001 317811/3010349*24476^(6/7) 6099996712580306 a001 208010/1970299*24476^(6/7) 6099996712581727 a001 2178309/20633239*24476^(6/7) 6099996712581935 a001 5702887/54018521*24476^(6/7) 6099996712581965 a001 3732588/35355581*24476^(6/7) 6099996712581969 a001 39088169/370248451*24476^(6/7) 6099996712581970 a001 102334155/969323029*24476^(6/7) 6099996712581970 a001 66978574/634430159*24476^(6/7) 6099996712581970 a001 701408733/6643838879*24476^(6/7) 6099996712581970 a001 1836311903/17393796001*24476^(6/7) 6099996712581970 a001 1201881744/11384387281*24476^(6/7) 6099996712581970 a001 12586269025/119218851371*24476^(6/7) 6099996712581970 a001 32951280099/312119004989*24476^(6/7) 6099996712581970 a001 21566892818/204284540899*24476^(6/7) 6099996712581970 a001 225851433717/2139295485799*24476^(6/7) 6099996712581970 a001 182717648081/1730726404001*24476^(6/7) 6099996712581970 a001 139583862445/1322157322203*24476^(6/7) 6099996712581970 a001 53316291173/505019158607*24476^(6/7) 6099996712581970 a001 10182505537/96450076809*24476^(6/7) 6099996712581970 a001 7778742049/73681302247*24476^(6/7) 6099996712581970 a001 2971215073/28143753123*24476^(6/7) 6099996712581970 a001 567451585/5374978561*24476^(6/7) 6099996712581970 a001 433494437/4106118243*24476^(6/7) 6099996712581970 a001 165580141/1568397607*24476^(6/7) 6099996712581970 a001 31622993/299537289*24476^(6/7) 6099996712581972 a001 24157817/228826127*24476^(6/7) 6099996712581984 a001 9227465/87403803*24476^(6/7) 6099996712582063 a001 1762289/16692641*24476^(6/7) 6099996712582606 a001 1346269/12752043*24476^(6/7) 6099996712586327 a001 514229/4870847*24476^(6/7) 6099996712603272 a001 196418/39603*24476^(10/21) 6099996712611831 a001 98209/930249*24476^(6/7) 6099996712612934 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^29 6099996712786636 a001 75025/710647*24476^(6/7) 6099996712901706 a001 23184/51841*24476^(5/7) 6099996712971977 a001 121393/710647*24476^(17/21) 6099996713017978 a001 6765/9349*9349^(14/19) 6099996713044445 a001 105937/13201*24476^(3/7) 6099996713053004 a001 105937/620166*24476^(17/21) 6099996713064825 a001 832040/4870847*24476^(17/21) 6099996713066550 a001 726103/4250681*24476^(17/21) 6099996713066802 a001 5702887/33385282*24476^(17/21) 6099996713066839 a001 4976784/29134601*24476^(17/21) 6099996713066844 a001 39088169/228826127*24476^(17/21) 6099996713066845 a001 34111385/199691526*24476^(17/21) 6099996713066845 a001 267914296/1568397607*24476^(17/21) 6099996713066845 a001 233802911/1368706081*24476^(17/21) 6099996713066845 a001 1836311903/10749957122*24476^(17/21) 6099996713066845 a001 1602508992/9381251041*24476^(17/21) 6099996713066845 a001 12586269025/73681302247*24476^(17/21) 6099996713066845 a001 10983760033/64300051206*24476^(17/21) 6099996713066845 a001 86267571272/505019158607*24476^(17/21) 6099996713066845 a001 75283811239/440719107401*24476^(17/21) 6099996713066845 a001 2504730781961/14662949395604*24476^(17/21) 6099996713066845 a001 139583862445/817138163596*24476^(17/21) 6099996713066845 a001 53316291173/312119004989*24476^(17/21) 6099996713066845 a001 20365011074/119218851371*24476^(17/21) 6099996713066845 a001 7778742049/45537549124*24476^(17/21) 6099996713066845 a001 2971215073/17393796001*24476^(17/21) 6099996713066845 a001 1134903170/6643838879*24476^(17/21) 6099996713066845 a001 433494437/2537720636*24476^(17/21) 6099996713066845 a001 165580141/969323029*24476^(17/21) 6099996713066845 a001 63245986/370248451*24476^(17/21) 6099996713066847 a001 24157817/141422324*24476^(17/21) 6099996713066861 a001 9227465/54018521*24476^(17/21) 6099996713066957 a001 3524578/20633239*24476^(17/21) 6099996713067616 a001 1346269/7881196*24476^(17/21) 6099996713072132 a001 514229/3010349*24476^(17/21) 6099996713085730 a001 28657/710647*24476^(20/21) 6099996713103081 a001 196418/1149851*24476^(17/21) 6099996713126706 a001 1346269/24476*9349^(5/19) 6099996713201020 a001 46368/167761*24476^(16/21) 6099996713315212 a001 75025/439204*24476^(17/21) 6099996713395852 a001 24157817/103682*9349^(2/19) 6099996713401031 a001 17711/39603*167761^(3/5) 6099996713421728 a001 2255/13201*15127^(17/20) 6099996713500553 a001 121393/439204*24476^(16/21) 6099996713513509 a001 17711/39603*439204^(5/9) 6099996713526463 a001 313679521/514229 6099996713531032 a001 17711/39603*7881196^(5/11) 6099996713531071 a001 17711/39603*20633239^(3/7) 6099996713531077 a001 17711/39603*141422324^(5/13) 6099996713531077 a001 17711/39603*2537720636^(1/3) 6099996713531077 a001 17711/39603*45537549124^(5/17) 6099996713531077 a001 17711/39603*312119004989^(3/11) 6099996713531077 a001 17711/39603*14662949395604^(5/21) 6099996713531077 a001 17711/39603*(1/2+1/2*5^(1/2))^15 6099996713531077 a001 17711/39603*192900153618^(5/18) 6099996713531077 a001 17711/39603*28143753123^(3/10) 6099996713531077 a001 17711/39603*10749957122^(5/16) 6099996713531077 a001 17711/39603*599074578^(5/14) 6099996713531077 a001 17711/39603*228826127^(3/8) 6099996713531079 a001 17711/39603*33385282^(5/12) 6099996713531958 a001 17711/39603*1860498^(1/2) 6099996713544254 a001 317811/1149851*24476^(16/21) 6099996713546012 a001 514229/39603*24476^(8/21) 6099996713550630 a001 832040/3010349*24476^(16/21) 6099996713551560 a001 2178309/7881196*24476^(16/21) 6099996713551696 a001 5702887/20633239*24476^(16/21) 6099996713551716 a001 14930352/54018521*24476^(16/21) 6099996713551719 a001 39088169/141422324*24476^(16/21) 6099996713551719 a001 102334155/370248451*24476^(16/21) 6099996713551719 a001 267914296/969323029*24476^(16/21) 6099996713551719 a001 701408733/2537720636*24476^(16/21) 6099996713551719 a001 1836311903/6643838879*24476^(16/21) 6099996713551719 a001 4807526976/17393796001*24476^(16/21) 6099996713551719 a001 12586269025/45537549124*24476^(16/21) 6099996713551719 a001 32951280099/119218851371*24476^(16/21) 6099996713551719 a001 86267571272/312119004989*24476^(16/21) 6099996713551719 a001 225851433717/817138163596*24476^(16/21) 6099996713551719 a001 1548008755920/5600748293801*24476^(16/21) 6099996713551719 a001 139583862445/505019158607*24476^(16/21) 6099996713551719 a001 53316291173/192900153618*24476^(16/21) 6099996713551719 a001 20365011074/73681302247*24476^(16/21) 6099996713551719 a001 7778742049/28143753123*24476^(16/21) 6099996713551719 a001 2971215073/10749957122*24476^(16/21) 6099996713551719 a001 1134903170/4106118243*24476^(16/21) 6099996713551719 a001 433494437/1568397607*24476^(16/21) 6099996713551719 a001 165580141/599074578*24476^(16/21) 6099996713551720 a001 63245986/228826127*24476^(16/21) 6099996713551721 a001 24157817/87403803*24476^(16/21) 6099996713551728 a001 9227465/33385282*24476^(16/21) 6099996713551780 a001 3524578/12752043*24476^(16/21) 6099996713552135 a001 1346269/4870847*24476^(16/21) 6099996713554571 a001 514229/1860498*24476^(16/21) 6099996713571263 a001 196418/710647*24476^(16/21) 6099996713614305 a001 28657/439204*24476^(19/21) 6099996713685675 a001 75025/271443*24476^(16/21) 6099996713747180 a001 4976784/13201*9349^(1/19) 6099996713871016 a001 121393/271443*24476^(5/7) 6099996713880505 a001 63245986/271443*9349^(2/19) 6099996713885729 a001 17711/39603*103682^(5/8) 6099996713951215 a001 165580141/710647*9349^(2/19) 6099996713961532 a001 433494437/1860498*9349^(2/19) 6099996713963037 a001 1134903170/4870847*9349^(2/19) 6099996713963257 a001 2971215073/12752043*9349^(2/19) 6099996713963289 a001 7778742049/33385282*9349^(2/19) 6099996713963293 a001 20365011074/87403803*9349^(2/19) 6099996713963294 a001 53316291173/228826127*9349^(2/19) 6099996713963294 a001 139583862445/599074578*9349^(2/19) 6099996713963294 a001 365435296162/1568397607*9349^(2/19) 6099996713963294 a001 956722026041/4106118243*9349^(2/19) 6099996713963294 a001 2504730781961/10749957122*9349^(2/19) 6099996713963294 a001 6557470319842/28143753123*9349^(2/19) 6099996713963294 a001 10610209857723/45537549124*9349^(2/19) 6099996713963294 a001 4052739537881/17393796001*9349^(2/19) 6099996713963294 a001 1548008755920/6643838879*9349^(2/19) 6099996713963294 a001 591286729879/2537720636*9349^(2/19) 6099996713963294 a001 225851433717/969323029*9349^(2/19) 6099996713963294 a001 86267571272/370248451*9349^(2/19) 6099996713963294 a001 63246219/271444*9349^(2/19) 6099996713963296 a001 12586269025/54018521*9349^(2/19) 6099996713963308 a001 4807526976/20633239*9349^(2/19) 6099996713963392 a001 1836311903/7881196*9349^(2/19) 6099996713963967 a001 701408733/3010349*9349^(2/19) 6099996713967908 a001 267914296/1149851*9349^(2/19) 6099996713984768 a001 28657/271443*24476^(6/7) 6099996713994917 a001 102334155/439204*9349^(2/19) 6099996714012436 a001 317811/710647*24476^(5/7) 6099996714024511 a001 832040/39603*24476^(1/3) 6099996714033069 a001 416020/930249*24476^(5/7) 6099996714036080 a001 2178309/4870847*24476^(5/7) 6099996714036519 a001 5702887/12752043*24476^(5/7) 6099996714036583 a001 7465176/16692641*24476^(5/7) 6099996714036592 a001 39088169/87403803*24476^(5/7) 6099996714036594 a001 102334155/228826127*24476^(5/7) 6099996714036594 a001 133957148/299537289*24476^(5/7) 6099996714036594 a001 701408733/1568397607*24476^(5/7) 6099996714036594 a001 1836311903/4106118243*24476^(5/7) 6099996714036594 a001 2403763488/5374978561*24476^(5/7) 6099996714036594 a001 12586269025/28143753123*24476^(5/7) 6099996714036594 a001 32951280099/73681302247*24476^(5/7) 6099996714036594 a001 43133785636/96450076809*24476^(5/7) 6099996714036594 a001 225851433717/505019158607*24476^(5/7) 6099996714036594 a001 591286729879/1322157322203*24476^(5/7) 6099996714036594 a001 10610209857723/23725150497407*24476^(5/7) 6099996714036594 a001 182717648081/408569081798*24476^(5/7) 6099996714036594 a001 139583862445/312119004989*24476^(5/7) 6099996714036594 a001 53316291173/119218851371*24476^(5/7) 6099996714036594 a001 10182505537/22768774562*24476^(5/7) 6099996714036594 a001 7778742049/17393796001*24476^(5/7) 6099996714036594 a001 2971215073/6643838879*24476^(5/7) 6099996714036594 a001 567451585/1268860318*24476^(5/7) 6099996714036594 a001 433494437/969323029*24476^(5/7) 6099996714036594 a001 165580141/370248451*24476^(5/7) 6099996714036595 a001 31622993/70711162*24476^(5/7) 6099996714036598 a001 24157817/54018521*24476^(5/7) 6099996714036623 a001 9227465/20633239*24476^(5/7) 6099996714036790 a001 1762289/3940598*24476^(5/7) 6099996714037940 a001 1346269/3010349*24476^(5/7) 6099996714045821 a001 514229/1149851*24476^(5/7) 6099996714099839 a001 98209/219602*24476^(5/7) 6099996714170769 a001 75025/103682*24476^(2/3) 6099996714180038 a001 39088169/167761*9349^(2/19) 6099996714356110 a001 121393/103682*24476^(13/21) 6099996714469863 a001 28657/103682*24476^(16/21) 6099996714470082 a001 75025/167761*24476^(5/7) 6099996714470302 a001 196418/271443*24476^(2/3) 6099996714511821 a001 1346269/39603*24476^(2/7) 6099996714514003 a001 514229/710647*24476^(2/3) 6099996714520379 a001 1346269/1860498*24476^(2/3) 6099996714521310 a001 3524578/4870847*24476^(2/3) 6099996714521445 a001 9227465/12752043*24476^(2/3) 6099996714521465 a001 24157817/33385282*24476^(2/3) 6099996714521468 a001 63245986/87403803*24476^(2/3) 6099996714521468 a001 165580141/228826127*24476^(2/3) 6099996714521469 a001 433494437/599074578*24476^(2/3) 6099996714521469 a001 1134903170/1568397607*24476^(2/3) 6099996714521469 a001 2971215073/4106118243*24476^(2/3) 6099996714521469 a001 7778742049/10749957122*24476^(2/3) 6099996714521469 a001 20365011074/28143753123*24476^(2/3) 6099996714521469 a001 53316291173/73681302247*24476^(2/3) 6099996714521469 a001 139583862445/192900153618*24476^(2/3) 6099996714521469 a001 10610209857723/14662949395604*24476^(2/3) 6099996714521469 a001 591286729879/817138163596*24476^(2/3) 6099996714521469 a001 225851433717/312119004989*24476^(2/3) 6099996714521469 a001 86267571272/119218851371*24476^(2/3) 6099996714521469 a001 32951280099/45537549124*24476^(2/3) 6099996714521469 a001 12586269025/17393796001*24476^(2/3) 6099996714521469 a001 4807526976/6643838879*24476^(2/3) 6099996714521469 a001 1836311903/2537720636*24476^(2/3) 6099996714521469 a001 701408733/969323029*24476^(2/3) 6099996714521469 a001 267914296/370248451*24476^(2/3) 6099996714521469 a001 102334155/141422324*24476^(2/3) 6099996714521470 a001 39088169/54018521*24476^(2/3) 6099996714521477 a001 14930352/20633239*24476^(2/3) 6099996714521529 a001 5702887/7881196*24476^(2/3) 6099996714521885 a001 2178309/3010349*24476^(2/3) 6099996714524320 a001 832040/1149851*24476^(2/3) 6099996714541012 a001 317811/439204*24476^(2/3) 6099996714655424 a001 121393/167761*24476^(2/3) 6099996714769176 a001 28657/167761*24476^(17/21) 6099996714911475 a001 105937/90481*24476^(13/21) 6099996714953713 a001 3524578/15127*5778^(1/9) 6099996714955396 a001 98209/51841*24476^(4/7) 6099996714992502 a001 832040/710647*24476^(13/21) 6099996714995765 a001 726103/13201*24476^(5/21) 6099996715004324 a001 726103/620166*24476^(13/21) 6099996715006048 a001 5702887/4870847*24476^(13/21) 6099996715006300 a001 4976784/4250681*24476^(13/21) 6099996715006337 a001 39088169/33385282*24476^(13/21) 6099996715006342 a001 34111385/29134601*24476^(13/21) 6099996715006343 a001 267914296/228826127*24476^(13/21) 6099996715006343 a001 233802911/199691526*24476^(13/21) 6099996715006343 a001 1836311903/1568397607*24476^(13/21) 6099996715006343 a001 1602508992/1368706081*24476^(13/21) 6099996715006343 a001 12586269025/10749957122*24476^(13/21) 6099996715006343 a001 10983760033/9381251041*24476^(13/21) 6099996715006343 a001 86267571272/73681302247*24476^(13/21) 6099996715006343 a001 75283811239/64300051206*24476^(13/21) 6099996715006343 a001 2504730781961/2139295485799*24476^(13/21) 6099996715006343 a001 365435296162/312119004989*24476^(13/21) 6099996715006343 a001 139583862445/119218851371*24476^(13/21) 6099996715006343 a001 53316291173/45537549124*24476^(13/21) 6099996715006343 a001 20365011074/17393796001*24476^(13/21) 6099996715006343 a001 7778742049/6643838879*24476^(13/21) 6099996715006343 a001 2971215073/2537720636*24476^(13/21) 6099996715006343 a001 1134903170/969323029*24476^(13/21) 6099996715006343 a001 433494437/370248451*24476^(13/21) 6099996715006343 a001 165580141/141422324*24476^(13/21) 6099996715006346 a001 63245986/54018521*24476^(13/21) 6099996715006360 a001 24157817/20633239*24476^(13/21) 6099996715006456 a001 9227465/7881196*24476^(13/21) 6099996715007114 a001 3524578/3010349*24476^(13/21) 6099996715011630 a001 1346269/1149851*24476^(13/21) 6099996715042579 a001 514229/439204*24476^(13/21) 6099996715254710 a001 196418/167761*24476^(13/21) 6099996715396570 a001 317811/103682*24476^(11/21) 6099996715413042 a001 514229/271443*24476^(4/7) 6099996715439612 a001 46368/64079*24476^(2/3) 6099996715448876 a001 14930352/64079*9349^(2/19) 6099996715479812 a001 1346269/710647*24476^(4/7) 6099996715480995 a001 3524578/39603*24476^(4/21) 6099996715489554 a001 1762289/930249*24476^(4/7) 6099996715490975 a001 9227465/4870847*24476^(4/7) 6099996715491182 a001 24157817/12752043*24476^(4/7) 6099996715491213 a001 31622993/16692641*24476^(4/7) 6099996715491217 a001 165580141/87403803*24476^(4/7) 6099996715491218 a001 433494437/228826127*24476^(4/7) 6099996715491218 a001 567451585/299537289*24476^(4/7) 6099996715491218 a001 2971215073/1568397607*24476^(4/7) 6099996715491218 a001 7778742049/4106118243*24476^(4/7) 6099996715491218 a001 10182505537/5374978561*24476^(4/7) 6099996715491218 a001 53316291173/28143753123*24476^(4/7) 6099996715491218 a001 139583862445/73681302247*24476^(4/7) 6099996715491218 a001 182717648081/96450076809*24476^(4/7) 6099996715491218 a001 956722026041/505019158607*24476^(4/7) 6099996715491218 a001 10610209857723/5600748293801*24476^(4/7) 6099996715491218 a001 591286729879/312119004989*24476^(4/7) 6099996715491218 a001 225851433717/119218851371*24476^(4/7) 6099996715491218 a001 21566892818/11384387281*24476^(4/7) 6099996715491218 a001 32951280099/17393796001*24476^(4/7) 6099996715491218 a001 12586269025/6643838879*24476^(4/7) 6099996715491218 a001 1201881744/634430159*24476^(4/7) 6099996715491218 a001 1836311903/969323029*24476^(4/7) 6099996715491218 a001 701408733/370248451*24476^(4/7) 6099996715491218 a001 66978574/35355581*24476^(4/7) 6099996715491220 a001 102334155/54018521*24476^(4/7) 6099996715491231 a001 39088169/20633239*24476^(4/7) 6099996715491310 a001 3732588/1970299*24476^(4/7) 6099996715491853 a001 5702887/3010349*24476^(4/7) 6099996715495574 a001 2178309/1149851*24476^(4/7) 6099996715521078 a001 208010/109801*24476^(4/7) 6099996715695883 a001 317811/167761*24476^(4/7) 6099996715754908 a001 17711/103682*64079^(17/23) 6099996715891541 a001 832040/271443*24476^(11/21) 6099996715898137 a001 514229/103682*24476^(10/21) 6099996715934808 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^30 6099996715963756 a001 311187/101521*24476^(11/21) 6099996715965734 a001 5702887/39603*24476^(1/7) 6099996715974292 a001 5702887/1860498*24476^(11/21) 6099996715975830 a001 14930352/4870847*24476^(11/21) 6099996715976054 a001 39088169/12752043*24476^(11/21) 6099996715976087 a001 14619165/4769326*24476^(11/21) 6099996715976091 a001 267914296/87403803*24476^(11/21) 6099996715976092 a001 701408733/228826127*24476^(11/21) 6099996715976092 a001 1836311903/599074578*24476^(11/21) 6099996715976092 a001 686789568/224056801*24476^(11/21) 6099996715976092 a001 12586269025/4106118243*24476^(11/21) 6099996715976092 a001 32951280099/10749957122*24476^(11/21) 6099996715976092 a001 86267571272/28143753123*24476^(11/21) 6099996715976092 a001 32264490531/10525900321*24476^(11/21) 6099996715976092 a001 591286729879/192900153618*24476^(11/21) 6099996715976092 a001 1548008755920/505019158607*24476^(11/21) 6099996715976092 a001 1515744265389/494493258286*24476^(11/21) 6099996715976092 a001 2504730781961/817138163596*24476^(11/21) 6099996715976092 a001 956722026041/312119004989*24476^(11/21) 6099996715976092 a001 365435296162/119218851371*24476^(11/21) 6099996715976092 a001 139583862445/45537549124*24476^(11/21) 6099996715976092 a001 53316291173/17393796001*24476^(11/21) 6099996715976092 a001 20365011074/6643838879*24476^(11/21) 6099996715976092 a001 7778742049/2537720636*24476^(11/21) 6099996715976092 a001 2971215073/969323029*24476^(11/21) 6099996715976092 a001 1134903170/370248451*24476^(11/21) 6099996715976093 a001 433494437/141422324*24476^(11/21) 6099996715976094 a001 165580141/54018521*24476^(11/21) 6099996715976107 a001 63245986/20633239*24476^(11/21) 6099996715976193 a001 24157817/7881196*24476^(11/21) 6099996715976780 a001 9227465/3010349*24476^(11/21) 6099996715980804 a001 3524578/1149851*24476^(11/21) 6099996716004012 a001 17711/1149851*64079^(22/23) 6099996716008388 a001 1346269/439204*24476^(11/21) 6099996716013271 a001 15456/13201*64079^(13/23) 6099996716051910 a001 17711/710647*64079^(21/23) 6099996716110382 a001 17711/271443*64079^(19/23) 6099996716160202 a001 17711/439204*64079^(20/23) 6099996716182885 a001 17711/39603*39603^(15/22) 6099996716197450 a001 514229/167761*24476^(11/21) 6099996716376635 a001 416020/51841*24476^(3/7) 6099996716378851 a001 1346269/271443*24476^(10/21) 6099996716448986 a001 3524578/710647*24476^(10/21) 6099996716450660 a001 9227465/39603*24476^(2/21) 6099996716459219 a001 9227465/1860498*24476^(10/21) 6099996716460712 a001 24157817/4870847*24476^(10/21) 6099996716460930 a001 63245986/12752043*24476^(10/21) 6099996716460961 a001 165580141/33385282*24476^(10/21) 6099996716460966 a001 433494437/87403803*24476^(10/21) 6099996716460967 a001 1134903170/228826127*24476^(10/21) 6099996716460967 a001 2971215073/599074578*24476^(10/21) 6099996716460967 a001 7778742049/1568397607*24476^(10/21) 6099996716460967 a001 20365011074/4106118243*24476^(10/21) 6099996716460967 a001 53316291173/10749957122*24476^(10/21) 6099996716460967 a001 139583862445/28143753123*24476^(10/21) 6099996716460967 a001 365435296162/73681302247*24476^(10/21) 6099996716460967 a001 956722026041/192900153618*24476^(10/21) 6099996716460967 a001 2504730781961/505019158607*24476^(10/21) 6099996716460967 a001 10610209857723/2139295485799*24476^(10/21) 6099996716460967 a001 4052739537881/817138163596*24476^(10/21) 6099996716460967 a001 140728068720/28374454999*24476^(10/21) 6099996716460967 a001 591286729879/119218851371*24476^(10/21) 6099996716460967 a001 225851433717/45537549124*24476^(10/21) 6099996716460967 a001 86267571272/17393796001*24476^(10/21) 6099996716460967 a001 32951280099/6643838879*24476^(10/21) 6099996716460967 a001 1144206275/230701876*24476^(10/21) 6099996716460967 a001 4807526976/969323029*24476^(10/21) 6099996716460967 a001 1836311903/370248451*24476^(10/21) 6099996716460967 a001 701408733/141422324*24476^(10/21) 6099996716460969 a001 267914296/54018521*24476^(10/21) 6099996716460981 a001 9303105/1875749*24476^(10/21) 6099996716461064 a001 39088169/7881196*24476^(10/21) 6099996716461634 a001 14930352/3010349*24476^(10/21) 6099996716465543 a001 5702887/1149851*24476^(10/21) 6099996716474506 a001 17711/167761*64079^(18/23) 6099996716492332 a001 2178309/439204*24476^(10/21) 6099996716627108 a001 121393/39603*64079^(11/23) 6099996716675949 a001 75640/15251*24476^(10/21) 6099996716708675 a001 75025/64079*24476^(13/21) 6099996716798985 a001 2178309/24476*9349^(4/19) 6099996716806110 a001 196418/39603*64079^(10/23) 6099996716826999 a001 105937/13201*64079^(9/23) 6099996716852278 a001 821223648/1346269 6099996716852951 a001 15456/13201*141422324^(1/3) 6099996716852951 a001 17711/103682*45537549124^(1/3) 6099996716852951 a001 17711/103682*(1/2+1/2*5^(1/2))^17 6099996716852951 a001 15456/13201*(1/2+1/2*5^(1/2))^13 6099996716852951 a001 15456/13201*73681302247^(1/4) 6099996716852970 a001 17711/103682*12752043^(1/2) 6099996716862050 a001 75025/39603*64079^(12/23) 6099996716862795 a001 726103/90481*24476^(3/7) 6099996716863945 a001 1346269/103682*24476^(8/21) 6099996716894016 a001 121393/64079*24476^(4/7) 6099996716894346 a001 15456/13201*271443^(1/2) 6099996716908283 a001 514229/39603*64079^(8/23) 6099996716933725 a001 5702887/710647*24476^(3/7) 6099996716935515 a001 4976784/13201*24476^(1/21) 6099996716944074 a001 829464/103361*24476^(3/7) 6099996716945584 a001 39088169/4870847*24476^(3/7) 6099996716945804 a001 34111385/4250681*24476^(3/7) 6099996716945836 a001 133957148/16692641*24476^(3/7) 6099996716945841 a001 233802911/29134601*24476^(3/7) 6099996716945841 a001 1836311903/228826127*24476^(3/7) 6099996716945841 a001 267084832/33281921*24476^(3/7) 6099996716945841 a001 12586269025/1568397607*24476^(3/7) 6099996716945841 a001 10983760033/1368706081*24476^(3/7) 6099996716945841 a001 43133785636/5374978561*24476^(3/7) 6099996716945841 a001 75283811239/9381251041*24476^(3/7) 6099996716945841 a001 591286729879/73681302247*24476^(3/7) 6099996716945841 a001 86000486440/10716675201*24476^(3/7) 6099996716945841 a001 4052739537881/505019158607*24476^(3/7) 6099996716945841 a001 3536736619241/440719107401*24476^(3/7) 6099996716945841 a001 3278735159921/408569081798*24476^(3/7) 6099996716945841 a001 2504730781961/312119004989*24476^(3/7) 6099996716945841 a001 956722026041/119218851371*24476^(3/7) 6099996716945841 a001 182717648081/22768774562*24476^(3/7) 6099996716945841 a001 139583862445/17393796001*24476^(3/7) 6099996716945841 a001 53316291173/6643838879*24476^(3/7) 6099996716945841 a001 10182505537/1268860318*24476^(3/7) 6099996716945841 a001 7778742049/969323029*24476^(3/7) 6099996716945841 a001 2971215073/370248451*24476^(3/7) 6099996716945842 a001 567451585/70711162*24476^(3/7) 6099996716945844 a001 433494437/54018521*24476^(3/7) 6099996716945856 a001 165580141/20633239*24476^(3/7) 6099996716945940 a001 31622993/3940598*24476^(3/7) 6099996716946517 a001 24157817/3010349*24476^(3/7) 6099996716950469 a001 9227465/1149851*24476^(3/7) 6099996716966497 a001 832040/39603*64079^(7/23) 6099996716977562 a001 1762289/219602*24476^(3/7) 6099996717007768 a001 28657/64079*24476^(5/7) 6099996717033523 a001 1346269/39603*64079^(6/23) 6099996717069059 a001 39088169/103682*9349^(1/19) 6099996717097184 a001 726103/13201*64079^(5/23) 6099996717160316 a001 15456/13201*103682^(13/24) 6099996717162130 a001 3524578/39603*64079^(4/23) 6099996717163259 a001 1346269/167761*24476^(3/7) 6099996717203651 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^32 6099996717226585 a001 5702887/39603*64079^(3/23) 6099996717254890 a001 17711/103682*103682^(17/24) 6099996717278622 a001 17711/439204*167761^(4/5) 6099996717291228 a001 9227465/39603*64079^(2/23) 6099996717337508 a001 24157207/39602 6099996717337573 a001 121393/39603*7881196^(1/3) 6099996717337606 a001 17711/271443*817138163596^(1/3) 6099996717337606 a001 17711/271443*(1/2+1/2*5^(1/2))^19 6099996717337606 a001 121393/39603*312119004989^(1/5) 6099996717337606 a001 121393/39603*(1/2+1/2*5^(1/2))^11 6099996717337606 a001 121393/39603*1568397607^(1/4) 6099996717337606 a001 17711/271443*87403803^(1/2) 6099996717347890 a001 46347/2206*24476^(1/3) 6099996717348025 a001 3524578/271443*24476^(8/21) 6099996717355799 a001 4976784/13201*64079^(1/23) 6099996717365320 a001 196418/39603*167761^(2/5) 6099996717376789 a001 726103/13201*167761^(1/5) 6099996717383721 a001 17711/710647*439204^(7/9) 6099996717388772 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^34 6099996717392959 a001 17711/3010349*439204^(8/9) 6099996717397775 a001 105937/13201*439204^(1/3) 6099996717408254 a001 17711/710647*7881196^(7/11) 6099996717408289 a001 105937/13201*7881196^(3/11) 6099996717408302 a001 432980817/709805 6099996717408308 a001 17711/710647*20633239^(3/5) 6099996717408316 a001 17711/710647*141422324^(7/13) 6099996717408316 a001 105937/13201*141422324^(3/13) 6099996717408316 a001 17711/710647*2537720636^(7/15) 6099996717408316 a001 17711/710647*17393796001^(3/7) 6099996717408316 a001 17711/710647*45537549124^(7/17) 6099996717408316 a001 17711/710647*14662949395604^(1/3) 6099996717408316 a001 17711/710647*(1/2+1/2*5^(1/2))^21 6099996717408316 a001 17711/710647*192900153618^(7/18) 6099996717408316 a001 17711/710647*10749957122^(7/16) 6099996717408316 a001 105937/13201*2537720636^(1/5) 6099996717408316 a001 105937/13201*45537549124^(3/17) 6099996717408316 a001 105937/13201*817138163596^(3/19) 6099996717408316 a001 105937/13201*14662949395604^(1/7) 6099996717408316 a001 105937/13201*(1/2+1/2*5^(1/2))^9 6099996717408316 a001 105937/13201*192900153618^(1/6) 6099996717408316 a001 105937/13201*10749957122^(3/16) 6099996717408316 a001 105937/13201*599074578^(3/14) 6099996717408316 a001 17711/710647*599074578^(1/2) 6099996717408317 a001 105937/13201*33385282^(1/4) 6099996717408319 a001 17711/710647*33385282^(7/12) 6099996717408845 a001 105937/13201*1860498^(3/10) 6099996717409550 a001 17711/710647*1860498^(7/10) 6099996717414041 a001 1346269/39603*439204^(2/9) 6099996717415781 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^36 6099996717416844 a001 5702887/39603*439204^(1/9) 6099996717417375 a001 17711/710647*710647^(3/4) 6099996717418630 a001 832040/39603*20633239^(1/5) 6099996717418630 a001 14736260440/24157817 6099996717418633 a001 17711/1860498*(1/2+1/2*5^(1/2))^23 6099996717418633 a001 17711/1860498*4106118243^(1/2) 6099996717418633 a001 832040/39603*17393796001^(1/7) 6099996717418633 a001 832040/39603*14662949395604^(1/9) 6099996717418633 a001 832040/39603*(1/2+1/2*5^(1/2))^7 6099996717418633 a001 832040/39603*599074578^(1/6) 6099996717418652 a001 9227465/710647*24476^(8/21) 6099996717419722 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^38 6099996717420128 a001 17711/4870847*20633239^(5/7) 6099996717420136 a001 726103/13201*20633239^(1/7) 6099996717420137 a001 38580030699/63245986 6099996717420138 a001 17711/4870847*2537720636^(5/9) 6099996717420138 a001 17711/4870847*312119004989^(5/11) 6099996717420138 a001 17711/4870847*(1/2+1/2*5^(1/2))^25 6099996717420138 a001 17711/4870847*3461452808002^(5/12) 6099996717420138 a001 17711/4870847*28143753123^(1/2) 6099996717420138 a001 726103/13201*2537720636^(1/9) 6099996717420138 a001 726103/13201*312119004989^(1/11) 6099996717420138 a001 726103/13201*(1/2+1/2*5^(1/2))^5 6099996717420138 a001 726103/13201*28143753123^(1/10) 6099996717420138 a001 726103/13201*228826127^(1/8) 6099996717420138 a001 17711/4870847*228826127^(5/8) 6099996717420277 a001 17711/12752043*7881196^(9/11) 6099996717420297 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^40 6099996717420308 a001 17711/54018521*7881196^(10/11) 6099996717420348 a001 5702887/39603*7881196^(1/11) 6099996717420357 a001 17711/12752043*141422324^(9/13) 6099996717420357 a001 101003831657/165580141 6099996717420357 a001 5702887/39603*141422324^(1/13) 6099996717420357 a001 17711/12752043*2537720636^(3/5) 6099996717420357 a001 17711/12752043*45537549124^(9/17) 6099996717420357 a001 17711/12752043*817138163596^(9/19) 6099996717420357 a001 17711/12752043*14662949395604^(3/7) 6099996717420357 a001 17711/12752043*(1/2+1/2*5^(1/2))^27 6099996717420357 a001 17711/12752043*192900153618^(1/2) 6099996717420357 a001 17711/12752043*10749957122^(9/16) 6099996717420357 a001 5702887/39603*2537720636^(1/15) 6099996717420357 a001 5702887/39603*45537549124^(1/17) 6099996717420357 a001 5702887/39603*14662949395604^(1/21) 6099996717420357 a001 5702887/39603*(1/2+1/2*5^(1/2))^3 6099996717420357 a001 5702887/39603*192900153618^(1/18) 6099996717420357 a001 5702887/39603*10749957122^(1/16) 6099996717420357 a001 5702887/39603*599074578^(1/14) 6099996717420357 a001 17711/12752043*599074578^(9/14) 6099996717420358 a001 5702887/39603*33385282^(1/12) 6099996717420361 a001 17711/12752043*33385282^(3/4) 6099996717420381 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^42 6099996717420385 a001 17711/54018521*20633239^(6/7) 6099996717420389 a001 264431464272/433494437 6099996717420389 a001 17711/33385282*(1/2+1/2*5^(1/2))^29 6099996717420389 a001 17711/33385282*1322157322203^(1/2) 6099996717420389 a001 2488392/13201+2488392/13201*5^(1/2) 6099996717420393 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^44 6099996717420394 a001 692290561159/1134903170 6099996717420394 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(38) 6099996717420394 a001 17711/87403803*9062201101803^(1/2) 6099996717420394 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2) 6099996717420394 a001 17711/228826127*141422324^(11/13) 6099996717420395 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^46 6099996717420395 a001 17711/969323029*141422324^(12/13) 6099996717420395 a001 17711/228826127*2537720636^(11/15) 6099996717420395 a001 1812440219205/2971215073 6099996717420395 a001 17711/228826127*45537549124^(11/17) 6099996717420395 a001 17711/228826127*312119004989^(3/5) 6099996717420395 a001 17711/228826127*817138163596^(11/19) 6099996717420395 a001 17711/228826127*14662949395604^(11/21) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(40) 6099996717420395 a001 17711/228826127*192900153618^(11/18) 6099996717420395 a001 17711/228826127*10749957122^(11/16) 6099996717420395 a001 17711/228826127*1568397607^(3/4) 6099996717420395 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^3 6099996717420395 a001 17711/228826127*599074578^(11/14) 6099996717420395 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^48 6099996717420395 a001 17711/599074578*2537720636^(7/9) 6099996717420395 a001 365002315112/598364773 6099996717420395 a001 17711/599074578*17393796001^(5/7) 6099996717420395 a001 17711/599074578*312119004989^(7/11) 6099996717420395 a001 17711/599074578*14662949395604^(5/9) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(42) 6099996717420395 a001 17711/599074578*505019158607^(5/8) 6099996717420395 a001 17711/599074578*28143753123^(7/10) 6099996717420395 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^5 6099996717420395 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^50 6099996717420395 a001 17711/599074578*599074578^(5/6) 6099996717420395 a001 12422650070163/20365011074 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(44) 6099996717420395 a001 17711/4106118243*2537720636^(13/15) 6099996717420395 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^52 6099996717420395 a001 17711/17393796001*2537720636^(14/15) 6099996717420395 a001 17711/6643838879*2537720636^(8/9) 6099996717420395 a001 17711/4106118243*45537549124^(13/17) 6099996717420395 a001 32522920114033/53316291173 6099996717420395 a001 17711/4106118243*14662949395604^(13/21) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(46) 6099996717420395 a001 17711/4106118243*192900153618^(13/18) 6099996717420395 a001 17711/4106118243*73681302247^(3/4) 6099996717420395 a001 17711/4106118243*10749957122^(13/16) 6099996717420395 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^54 6099996717420395 a001 956697868224/1568358005 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(48) 6099996717420395 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^56 6099996717420395 a001 222915410701775/365435296162 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(50) 6099996717420395 a001 17711/73681302247*45537549124^(15/17) 6099996717420395 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^58 6099996717420395 a001 89/1568437211*45537549124^(16/17) 6099996717420395 a001 17711/73681302247*312119004989^(9/11) 6099996717420395 a001 583600121833389/956722026041 6099996717420395 a001 17711/73681302247*14662949395604^(5/7) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(52) 6099996717420395 a001 17711/73681302247*192900153618^(5/6) 6099996717420395 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^60 6099996717420395 a001 1527884954798392/2504730781961 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(54) 6099996717420395 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^62 6099996717420395 a001 17711/505019158607*14662949395604^(7/9) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(56) 6099996717420395 a001 17711/1322157322203*817138163596^(17/19) 6099996717420395 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^64 6099996717420395 a001 17711/1322157322203*14662949395604^(17/21) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(58) 6099996717420395 a001 17711/505019158607*505019158607^(7/8) 6099996717420395 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^66 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(60) 6099996717420395 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^68 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(62) 6099996717420395 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^70 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(64) 6099996717420395 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^72 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(66) 6099996717420395 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^74 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(68) 6099996717420395 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^76 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(70) 6099996717420395 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^78 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(72) 6099996717420395 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^80 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(74) 6099996717420395 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^82 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(76) 6099996717420395 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^84 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(78) 6099996717420395 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^86 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(80) 6099996717420395 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^88 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(82) 6099996717420395 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^90 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(84) 6099996717420395 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^92 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(86) 6099996717420395 a004 Fibonacci(22)*Lucas(87)/(1/2+sqrt(5)/2)^94 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(88) 6099996717420395 a004 Fibonacci(22)*Lucas(89)/(1/2+sqrt(5)/2)^96 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(90) 6099996717420395 a004 Fibonacci(22)*Lucas(91)/(1/2+sqrt(5)/2)^98 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(92) 6099996717420395 a004 Fibonacci(22)*Lucas(93)/(1/2+sqrt(5)/2)^100 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^87/Lucas(94) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^89/Lucas(96) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^91/Lucas(98) 6099996717420395 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^7 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^92/Lucas(99) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^93/Lucas(100) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^90/Lucas(97) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^88/Lucas(95) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(93) 6099996717420395 a004 Fibonacci(22)*Lucas(92)/(1/2+sqrt(5)/2)^99 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(91) 6099996717420395 a004 Fibonacci(22)*Lucas(90)/(1/2+sqrt(5)/2)^97 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(89) 6099996717420395 a004 Fibonacci(22)*Lucas(88)/(1/2+sqrt(5)/2)^95 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(87) 6099996717420395 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^93 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(85) 6099996717420395 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^91 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(83) 6099996717420395 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^89 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(81) 6099996717420395 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^87 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(79) 6099996717420395 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^85 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(77) 6099996717420395 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^83 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(75) 6099996717420395 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^81 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(73) 6099996717420395 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^79 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(71) 6099996717420395 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^77 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(69) 6099996717420395 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^75 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(67) 6099996717420395 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^73 6099996717420395 a001 17711/14662949395604*14662949395604^(8/9) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(65) 6099996717420395 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^71 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(63) 6099996717420395 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^69 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(61) 6099996717420395 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^67 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(59) 6099996717420395 a001 17711/2139295485799*23725150497407^(13/16) 6099996717420395 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^65 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(57) 6099996717420395 a001 17711/2139295485799*505019158607^(13/14) 6099996717420395 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^63 6099996717420395 a001 89/1568437211*14662949395604^(16/21) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(55) 6099996717420395 a001 2472169787763395/4052739537881 6099996717420395 a001 17711/1322157322203*192900153618^(17/18) 6099996717420395 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^61 6099996717420395 a001 89/1568437211*192900153618^(8/9) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(53) 6099996717420395 a001 944284832965003/1548008755920 6099996717420395 a001 89/1568437211*73681302247^(12/13) 6099996717420395 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^59 6099996717420395 a001 17711/17393796001*17393796001^(6/7) 6099996717420395 a001 17711/45537549124*312119004989^(4/5) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(51) 6099996717420395 a001 17711/45537549124*23725150497407^(11/16) 6099996717420395 a001 360684711131614/591286729879 6099996717420395 a001 17711/45537549124*73681302247^(11/13) 6099996717420395 a001 17711/73681302247*28143753123^(9/10) 6099996717420395 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^57 6099996717420395 a001 17711/17393796001*45537549124^(14/17) 6099996717420395 a001 17711/17393796001*817138163596^(14/19) 6099996717420395 a001 17711/17393796001*14662949395604^(2/3) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(49) 6099996717420395 a001 10597638494603/17373187209 6099996717420395 a001 17711/17393796001*192900153618^(7/9) 6099996717420395 a001 17711/73681302247*10749957122^(15/16) 6099996717420395 a001 17711/119218851371*10749957122^(23/24) 6099996717420395 a001 17711/45537549124*10749957122^(11/12) 6099996717420395 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^55 6099996717420395 a001 17711/17393796001*10749957122^(7/8) 6099996717420395 a001 17711/6643838879*312119004989^(8/11) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(47) 6099996717420395 a001 17711/6643838879*23725150497407^(5/8) 6099996717420395 a001 52623190157903/86267571272 6099996717420395 a001 17711/6643838879*73681302247^(10/13) 6099996717420395 a001 17711/6643838879*28143753123^(4/5) 6099996717420395 a001 17711/6643838879*10749957122^(5/6) 6099996717420395 a001 17711/45537549124*4106118243^(22/23) 6099996717420395 a001 17711/17393796001*4106118243^(21/23) 6099996717420395 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^53 6099996717420395 a001 17711/6643838879*4106118243^(20/23) 6099996717420395 a001 17711/2537720636*817138163596^(2/3) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(45) 6099996717420395 a001 20100270043870/32951280099 6099996717420395 a001 17711/2537720636*10749957122^(19/24) 6099996717420395 a001 17711/2537720636*4106118243^(19/23) 6099996717420395 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^9 6099996717420395 a001 17711/17393796001*1568397607^(21/22) 6099996717420395 a001 17711/6643838879*1568397607^(10/11) 6099996717420395 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^11 6099996717420395 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^13 6099996717420395 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^15 6099996717420395 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^17 6099996717420395 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^19 6099996717420395 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^21 6099996717420395 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^23 6099996717420395 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^25 6099996717420395 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^27 6099996717420395 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^29 6099996717420395 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^31 6099996717420395 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^33 6099996717420395 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^35 6099996717420395 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^37 6099996717420395 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^39 6099996717420395 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^41 6099996717420395 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^43 6099996717420395 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^45 6099996717420395 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^47 6099996717420395 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^49 6099996717420395 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^51 6099996717420395 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^53 6099996717420395 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^55 6099996717420395 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^57 6099996717420395 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^59 6099996717420395 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^61 6099996717420395 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^63 6099996717420395 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^62 6099996717420395 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^60 6099996717420395 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^58 6099996717420395 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^56 6099996717420395 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^54 6099996717420395 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^52 6099996717420395 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^50 6099996717420395 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^48 6099996717420395 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^46 6099996717420395 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^44 6099996717420395 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^42 6099996717420395 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^40 6099996717420395 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^38 6099996717420395 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^36 6099996717420395 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^34 6099996717420395 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^32 6099996717420395 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^30 6099996717420395 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^28 6099996717420395 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^26 6099996717420395 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^24 6099996717420395 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^22 6099996717420395 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^20 6099996717420395 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^18 6099996717420395 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^16 6099996717420395 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^14 6099996717420395 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^12 6099996717420395 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^10 6099996717420395 a001 17711/2537720636*1568397607^(19/22) 6099996717420395 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^8 6099996717420395 a001 17711/969323029*2537720636^(4/5) 6099996717420395 a001 17711/969323029*45537549124^(12/17) 6099996717420395 a001 17711/969323029*14662949395604^(4/7) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(43) 6099996717420395 a001 17711/969323029*505019158607^(9/14) 6099996717420395 a001 17711/969323029*192900153618^(2/3) 6099996717420395 a001 17711/969323029*73681302247^(9/13) 6099996717420395 a001 7677619973707/12586269025 6099996717420395 a001 17711/969323029*10749957122^(3/4) 6099996717420395 a001 17711/969323029*4106118243^(18/23) 6099996717420395 a001 17711/969323029*1568397607^(9/11) 6099996717420395 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^6 6099996717420395 a001 17711/4106118243*599074578^(13/14) 6099996717420395 a001 17711/2537720636*599074578^(19/21) 6099996717420395 a001 17711/6643838879*599074578^(20/21) 6099996717420395 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^49 6099996717420395 a001 17711/969323029*599074578^(6/7) 6099996717420395 a001 17711/370248451*45537549124^(2/3) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(41) 6099996717420395 a001 17711/370248451*10749957122^(17/24) 6099996717420395 a001 2932589877251/4807526976 6099996717420395 a001 17711/370248451*4106118243^(17/23) 6099996717420395 a001 17711/370248451*1568397607^(17/22) 6099996717420395 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^4 6099996717420395 a001 17711/370248451*599074578^(17/21) 6099996717420395 a001 17711/599074578*228826127^(7/8) 6099996717420395 a001 17711/969323029*228826127^(9/10) 6099996717420395 a001 17711/2537720636*228826127^(19/20) 6099996717420395 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^47 6099996717420395 a001 17711/370248451*228826127^(17/20) 6099996717420395 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(39) 6099996717420395 a001 17711/141422324*23725150497407^(1/2) 6099996717420395 a001 17711/141422324*505019158607^(4/7) 6099996717420395 a001 17711/141422324*73681302247^(8/13) 6099996717420395 a001 17711/141422324*10749957122^(2/3) 6099996717420395 a001 17711/141422324*4106118243^(16/23) 6099996717420395 a001 1120149658046/1836311903 6099996717420395 a001 17711/141422324*1568397607^(8/11) 6099996717420395 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^2 6099996717420395 a001 17711/141422324*599074578^(16/21) 6099996717420395 a001 17711/141422324*228826127^(4/5) 6099996717420396 a001 17711/370248451*87403803^(17/19) 6099996717420396 a001 17711/969323029*87403803^(18/19) 6099996717420396 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^45 6099996717420396 a001 17711/141422324*87403803^(16/19) 6099996717420397 a001 17711/54018521*141422324^(10/13) 6099996717420397 a001 17711/54018521*2537720636^(2/3) 6099996717420397 a001 17711/54018521*45537549124^(10/17) 6099996717420397 a001 17711/54018521*312119004989^(6/11) 6099996717420397 a001 17711/54018521*14662949395604^(10/21) 6099996717420397 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(37) 6099996717420397 a001 17711/54018521*192900153618^(5/9) 6099996717420397 a001 17711/54018521*28143753123^(3/5) 6099996717420397 a001 17711/54018521*10749957122^(5/8) 6099996717420397 a001 17711/54018521*4106118243^(15/23) 6099996717420397 a001 17711/54018521*1568397607^(15/22) 6099996717420397 a001 24157817/39603 6099996717420397 a001 17711/54018521*599074578^(5/7) 6099996717420397 a001 17711/54018521*228826127^(3/4) 6099996717420398 a001 17711/54018521*87403803^(15/19) 6099996717420398 a001 17711/20633239*20633239^(4/5) 6099996717420400 a001 17711/228826127*33385282^(11/12) 6099996717420400 a001 17711/141422324*33385282^(8/9) 6099996717420400 a001 17711/370248451*33385282^(17/18) 6099996717420400 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^43 6099996717420402 a001 17711/54018521*33385282^(5/6) 6099996717420409 a001 17711/20633239*17393796001^(4/7) 6099996717420409 a001 17711/20633239*14662949395604^(4/9) 6099996717420409 a001 17711/20633239*(1/2+1/2*5^(1/2))^28 6099996717420409 a001 17711/20633239*505019158607^(1/2) 6099996717420409 a001 17711/20633239*73681302247^(7/13) 6099996717420409 a001 17711/20633239*10749957122^(7/12) 6099996717420409 a001 17711/20633239*4106118243^(14/23) 6099996717420409 a001 17711/20633239*1568397607^(7/11) 6099996717420409 a001 9227465/39603*(1/2+1/2*5^(1/2))^2 6099996717420409 a001 9227465/39603*10749957122^(1/24) 6099996717420409 a001 9227465/39603*4106118243^(1/23) 6099996717420409 a001 9227465/39603*1568397607^(1/22) 6099996717420409 a001 9227465/39603*599074578^(1/21) 6099996717420409 a001 9227465/39603*228826127^(1/20) 6099996717420409 a001 17711/20633239*599074578^(2/3) 6099996717420409 a001 12571356355/20608792 6099996717420409 a001 9227465/39603*87403803^(1/19) 6099996717420409 a001 17711/20633239*228826127^(7/10) 6099996717420409 a001 9227465/39603*33385282^(1/18) 6099996717420410 a001 17711/20633239*87403803^(14/19) 6099996717420411 a001 9227465/39603*12752043^(1/17) 6099996717420413 a001 17711/20633239*33385282^(7/9) 6099996717420425 a001 9227465/39603*4870847^(1/16) 6099996717420430 a001 17711/54018521*12752043^(15/17) 6099996717420430 a001 17711/141422324*12752043^(16/17) 6099996717420431 a001 726103/13201*1860498^(1/6) 6099996717420432 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^41 6099996717420440 a001 17711/20633239*12752043^(14/17) 6099996717420493 a001 89/39604*141422324^(2/3) 6099996717420493 a001 89/39604*(1/2+1/2*5^(1/2))^26 6099996717420493 a001 89/39604*73681302247^(1/2) 6099996717420493 a001 89/39604*10749957122^(13/24) 6099996717420493 a001 89/39604*4106118243^(13/23) 6099996717420493 a001 89/39604*1568397607^(13/22) 6099996717420493 a001 3524578/39603*(1/2+1/2*5^(1/2))^4 6099996717420493 a001 3524578/39603*23725150497407^(1/16) 6099996717420493 a001 3524578/39603*73681302247^(1/13) 6099996717420493 a001 3524578/39603*10749957122^(1/12) 6099996717420493 a001 3524578/39603*4106118243^(2/23) 6099996717420493 a001 3524578/39603*1568397607^(1/11) 6099996717420493 a001 3524578/39603*599074578^(2/21) 6099996717420493 a001 89/39604*599074578^(13/21) 6099996717420493 a001 3524578/39603*228826127^(1/10) 6099996717420493 a001 89/39604*228826127^(13/20) 6099996717420493 a001 3524578/39603*87403803^(2/19) 6099996717420493 a001 62423800958/102334155 6099996717420494 a001 89/39604*87403803^(13/19) 6099996717420494 a001 3524578/39603*33385282^(1/9) 6099996717420497 a001 89/39604*33385282^(13/18) 6099996717420497 a001 3524578/39603*12752043^(2/17) 6099996717420522 a001 89/39604*12752043^(13/17) 6099996717420525 a001 3524578/39603*4870847^(1/8) 6099996717420527 a001 9227465/39603*1860498^(1/15) 6099996717420534 a001 5702887/39603*1860498^(1/10) 6099996717420634 a001 17711/20633239*4870847^(7/8) 6099996717420638 a001 17711/54018521*4870847^(15/16) 6099996717420652 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^39 6099996717420702 a001 89/39604*4870847^(13/16) 6099996717420728 a001 3524578/39603*1860498^(2/15) 6099996717420997 a001 17711/3010349*7881196^(8/11) 6099996717421050 a001 1346269/39603*7881196^(2/11) 6099996717421068 a001 17711/3010349*141422324^(8/13) 6099996717421068 a001 1346269/39603*141422324^(2/13) 6099996717421068 a001 17711/3010349*2537720636^(8/15) 6099996717421068 a001 17711/3010349*45537549124^(8/17) 6099996717421068 a001 17711/3010349*14662949395604^(8/21) 6099996717421068 a001 17711/3010349*(1/2+1/2*5^(1/2))^24 6099996717421068 a001 17711/3010349*192900153618^(4/9) 6099996717421068 a001 17711/3010349*73681302247^(6/13) 6099996717421068 a001 17711/3010349*10749957122^(1/2) 6099996717421068 a001 17711/3010349*4106118243^(12/23) 6099996717421068 a001 17711/3010349*1568397607^(6/11) 6099996717421068 a001 1346269/39603*2537720636^(2/15) 6099996717421068 a001 1346269/39603*45537549124^(2/17) 6099996717421068 a001 1346269/39603*14662949395604^(2/21) 6099996717421068 a001 1346269/39603*(1/2+1/2*5^(1/2))^6 6099996717421068 a001 1346269/39603*10749957122^(1/8) 6099996717421068 a001 1346269/39603*4106118243^(3/23) 6099996717421068 a001 1346269/39603*1568397607^(3/22) 6099996717421068 a001 1346269/39603*599074578^(1/7) 6099996717421068 a001 17711/3010349*599074578^(4/7) 6099996717421068 a001 1346269/39603*228826127^(3/20) 6099996717421068 a001 17711/3010349*228826127^(3/5) 6099996717421068 a001 1346269/39603*87403803^(3/19) 6099996717421068 a001 17711/3010349*87403803^(12/19) 6099996717421069 a001 23843770259/39088169 6099996717421069 a001 1346269/39603*33385282^(1/6) 6099996717421072 a001 17711/3010349*33385282^(2/3) 6099996717421075 a001 1346269/39603*12752043^(3/17) 6099996717421094 a001 17711/3010349*12752043^(12/17) 6099996717421116 a001 1346269/39603*4870847^(3/16) 6099996717421261 a001 17711/3010349*4870847^(3/4) 6099996717421272 a001 9227465/39603*710647^(1/14) 6099996717421420 a001 1346269/39603*1860498^(1/5) 6099996717421606 a001 17711/4870847*1860498^(5/6) 6099996717421652 a001 832040/39603*710647^(1/4) 6099996717421943 a001 17711/12752043*1860498^(9/10) 6099996717422020 a001 89/39604*1860498^(13/15) 6099996717422054 a001 17711/20633239*1860498^(14/15) 6099996717422157 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^37 6099996717422219 a001 3524578/39603*710647^(1/7) 6099996717422478 a001 17711/3010349*1860498^(4/5) 6099996717423656 a001 1346269/39603*710647^(3/14) 6099996717424943 a001 17711/1149851*7881196^(2/3) 6099996717425009 a001 17711/1149851*312119004989^(2/5) 6099996717425009 a001 17711/1149851*(1/2+1/2*5^(1/2))^22 6099996717425009 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^22/Lucas(29) 6099996717425009 a001 17711/1149851*10749957122^(11/24) 6099996717425009 a001 17711/1149851*4106118243^(11/23) 6099996717425009 a001 17711/1149851*1568397607^(1/2) 6099996717425009 a001 514229/39603*(1/2+1/2*5^(1/2))^8 6099996717425009 a001 514229/39603*23725150497407^(1/8) 6099996717425009 a001 514229/39603*505019158607^(1/7) 6099996717425009 a001 514229/39603*73681302247^(2/13) 6099996717425009 a001 514229/39603*10749957122^(1/6) 6099996717425009 a001 514229/39603*4106118243^(4/23) 6099996717425009 a001 514229/39603*1568397607^(2/11) 6099996717425009 a001 514229/39603*599074578^(4/21) 6099996717425009 a001 17711/1149851*599074578^(11/21) 6099996717425009 a001 514229/39603*228826127^(1/5) 6099996717425009 a001 17711/1149851*228826127^(11/20) 6099996717425009 a001 514229/39603*87403803^(4/19) 6099996717425009 a001 17711/1149851*87403803^(11/19) 6099996717425010 a001 514229/39603*33385282^(2/9) 6099996717425012 a001 17711/1149851*33385282^(11/18) 6099996717425014 a001 9107509819/14930352 6099996717425017 a001 514229/39603*12752043^(4/17) 6099996717425033 a001 17711/1149851*12752043^(11/17) 6099996717425073 a001 514229/39603*4870847^(1/4) 6099996717425185 a001 17711/1149851*4870847^(11/16) 6099996717425478 a001 514229/39603*1860498^(4/15) 6099996717426301 a001 17711/1149851*1860498^(11/15) 6099996717426778 a001 9227465/39603*271443^(1/13) 6099996717428460 a001 514229/39603*710647^(2/7) 6099996717428956 a001 24157817/1860498*24476^(8/21) 6099996717430459 a001 63245986/4870847*24476^(8/21) 6099996717430679 a001 165580141/12752043*24476^(8/21) 6099996717430711 a001 433494437/33385282*24476^(8/21) 6099996717430715 a001 1134903170/87403803*24476^(8/21) 6099996717430716 a001 2971215073/228826127*24476^(8/21) 6099996717430716 a001 7778742049/599074578*24476^(8/21) 6099996717430716 a001 20365011074/1568397607*24476^(8/21) 6099996717430716 a001 53316291173/4106118243*24476^(8/21) 6099996717430716 a001 139583862445/10749957122*24476^(8/21) 6099996717430716 a001 365435296162/28143753123*24476^(8/21) 6099996717430716 a001 956722026041/73681302247*24476^(8/21) 6099996717430716 a001 2504730781961/192900153618*24476^(8/21) 6099996717430716 a001 10610209857723/817138163596*24476^(8/21) 6099996717430716 a001 4052739537881/312119004989*24476^(8/21) 6099996717430716 a001 1548008755920/119218851371*24476^(8/21) 6099996717430716 a001 591286729879/45537549124*24476^(8/21) 6099996717430716 a001 7787980473/599786069*24476^(8/21) 6099996717430716 a001 86267571272/6643838879*24476^(8/21) 6099996717430716 a001 32951280099/2537720636*24476^(8/21) 6099996717430716 a001 12586269025/969323029*24476^(8/21) 6099996717430716 a001 4807526976/370248451*24476^(8/21) 6099996717430716 a001 1836311903/141422324*24476^(8/21) 6099996717430718 a001 701408733/54018521*24476^(8/21) 6099996717430730 a001 9238424/711491*24476^(8/21) 6099996717430814 a001 102334155/7881196*24476^(8/21) 6099996717431388 a001 39088169/3010349*24476^(8/21) 6099996717431421 a001 17711/3010349*710647^(6/7) 6099996717431709 a001 89/39604*710647^(13/14) 6099996717432474 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^35 6099996717433230 a001 3524578/39603*271443^(2/13) 6099996717434499 a001 17711/1149851*710647^(11/14) 6099996717435324 a001 14930352/1149851*24476^(8/21) 6099996717440173 a001 1346269/39603*271443^(3/13) 6099996717444033 a001 4976784/13201*103682^(1/24) 6099996717450482 a001 514229/39603*271443^(4/13) 6099996717452009 a001 17711/439204*20633239^(4/7) 6099996717452013 a001 196418/39603*20633239^(2/7) 6099996717452017 a001 17711/439204*2537720636^(4/9) 6099996717452017 a001 17711/439204*(1/2+1/2*5^(1/2))^20 6099996717452017 a001 17711/439204*23725150497407^(5/16) 6099996717452017 a001 17711/439204*505019158607^(5/14) 6099996717452017 a001 17711/439204*73681302247^(5/13) 6099996717452017 a001 17711/439204*28143753123^(2/5) 6099996717452017 a001 17711/439204*10749957122^(5/12) 6099996717452017 a001 17711/439204*4106118243^(10/23) 6099996717452017 a001 17711/439204*1568397607^(5/11) 6099996717452017 a001 196418/39603*2537720636^(2/9) 6099996717452017 a001 196418/39603*312119004989^(2/11) 6099996717452017 a001 196418/39603*(1/2+1/2*5^(1/2))^10 6099996717452017 a001 196418/39603*28143753123^(1/5) 6099996717452017 a001 196418/39603*10749957122^(5/24) 6099996717452017 a001 196418/39603*4106118243^(5/23) 6099996717452017 a001 196418/39603*1568397607^(5/22) 6099996717452017 a001 196418/39603*599074578^(5/21) 6099996717452017 a001 17711/439204*599074578^(10/21) 6099996717452017 a001 196418/39603*228826127^(1/4) 6099996717452017 a001 17711/439204*228826127^(1/2) 6099996717452018 a001 196418/39603*87403803^(5/19) 6099996717452018 a001 17711/439204*87403803^(10/19) 6099996717452019 a001 196418/39603*33385282^(5/18) 6099996717452020 a001 17711/439204*33385282^(5/9) 6099996717452028 a001 196418/39603*12752043^(5/17) 6099996717452039 a001 17711/439204*12752043^(10/17) 6099996717452055 a001 3478759198/5702887 6099996717452098 a001 196418/39603*4870847^(5/16) 6099996717452178 a001 17711/439204*4870847^(5/8) 6099996717452605 a001 196418/39603*1860498^(1/3) 6099996717453192 a001 17711/439204*1860498^(2/3) 6099996717456331 a001 196418/39603*710647^(5/14) 6099996717460645 a001 17711/439204*710647^(5/7) 6099996717462301 a001 5702887/439204*24476^(8/21) 6099996717467696 a001 9227465/39603*103682^(1/12) 6099996717483859 a001 196418/39603*271443^(5/13) 6099996717491288 a001 5702887/39603*103682^(1/8) 6099996717493302 a001 196418/64079*24476^(11/21) 6099996717495061 a001 17711/1149851*271443^(11/13) 6099996717497489 a001 17711/3010349*271443^(12/13) 6099996717503184 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^33 6099996717515067 a001 3524578/39603*103682^(1/6) 6099996717515701 a001 17711/439204*271443^(10/13) 6099996717538355 a001 726103/13201*103682^(5/24) 6099996717553714 a001 34111385/90481*9349^(1/19) 6099996717562929 a001 1346269/39603*103682^(1/4) 6099996717584137 a001 832040/39603*103682^(7/24) 6099996717597177 a001 4976784/13201*39603^(1/22) 6099996717597684 a001 121393/39603*103682^(11/24) 6099996717614156 a001 514229/39603*103682^(1/3) 6099996717616057 a001 17711/167761*439204^(2/3) 6099996717621108 a001 105937/13201*103682^(3/8) 6099996717623085 a001 75025/39603*439204^(4/9) 6099996717624425 a001 267914296/710647*9349^(1/19) 6099996717634741 a001 233802911/620166*9349^(1/19) 6099996717636246 a001 1836311903/4870847*9349^(1/19) 6099996717636466 a001 1602508992/4250681*9349^(1/19) 6099996717636498 a001 12586269025/33385282*9349^(1/19) 6099996717636503 a001 10983760033/29134601*9349^(1/19) 6099996717636503 a001 86267571272/228826127*9349^(1/19) 6099996717636503 a001 267913919/710646*9349^(1/19) 6099996717636503 a001 591286729879/1568397607*9349^(1/19) 6099996717636503 a001 516002918640/1368706081*9349^(1/19) 6099996717636503 a001 4052739537881/10749957122*9349^(1/19) 6099996717636503 a001 3536736619241/9381251041*9349^(1/19) 6099996717636503 a001 6557470319842/17393796001*9349^(1/19) 6099996717636503 a001 2504730781961/6643838879*9349^(1/19) 6099996717636503 a001 956722026041/2537720636*9349^(1/19) 6099996717636503 a001 365435296162/969323029*9349^(1/19) 6099996717636503 a001 139583862445/370248451*9349^(1/19) 6099996717636504 a001 53316291173/141422324*9349^(1/19) 6099996717636505 a001 20365011074/54018521*9349^(1/19) 6099996717636518 a001 7778742049/20633239*9349^(1/19) 6099996717636602 a001 2971215073/7881196*9349^(1/19) 6099996717637086 a001 17711/167761*7881196^(6/11) 6099996717637103 a001 75025/39603*7881196^(4/11) 6099996717637139 a001 17711/167761*141422324^(6/13) 6099996717637139 a001 75025/39603*141422324^(4/13) 6099996717637139 a001 17711/167761*2537720636^(2/5) 6099996717637139 a001 17711/167761*45537549124^(6/17) 6099996717637139 a001 17711/167761*14662949395604^(2/7) 6099996717637139 a001 17711/167761*(1/2+1/2*5^(1/2))^18 6099996717637139 a001 17711/167761*192900153618^(1/3) 6099996717637139 a001 17711/167761*10749957122^(3/8) 6099996717637139 a001 17711/167761*4106118243^(9/23) 6099996717637139 a001 17711/167761*1568397607^(9/22) 6099996717637139 a001 75025/39603*2537720636^(4/15) 6099996717637139 a001 75025/39603*45537549124^(4/17) 6099996717637139 a001 75025/39603*817138163596^(4/19) 6099996717637139 a001 75025/39603*14662949395604^(4/21) 6099996717637139 a001 75025/39603*(1/2+1/2*5^(1/2))^12 6099996717637139 a001 75025/39603*192900153618^(2/9) 6099996717637139 a001 75025/39603*73681302247^(3/13) 6099996717637139 a001 75025/39603*10749957122^(1/4) 6099996717637139 a001 75025/39603*4106118243^(6/23) 6099996717637139 a001 75025/39603*1568397607^(3/11) 6099996717637139 a001 17711/167761*599074578^(3/7) 6099996717637139 a001 75025/39603*599074578^(2/7) 6099996717637139 a001 75025/39603*228826127^(3/10) 6099996717637139 a001 17711/167761*228826127^(9/20) 6099996717637139 a001 75025/39603*87403803^(6/19) 6099996717637139 a001 17711/167761*87403803^(9/19) 6099996717637141 a001 75025/39603*33385282^(1/3) 6099996717637142 a001 17711/167761*33385282^(1/2) 6099996717637152 a001 75025/39603*12752043^(6/17) 6099996717637159 a001 17711/167761*12752043^(9/17) 6099996717637176 a001 1134903170/3010349*9349^(1/19) 6099996717637236 a001 75025/39603*4870847^(3/8) 6099996717637284 a001 17711/167761*4870847^(9/16) 6099996717637396 a001 1328767775/2178309 6099996717637844 a001 75025/39603*1860498^(2/5) 6099996717638196 a001 17711/167761*1860498^(3/5) 6099996717641117 a001 433494437/1149851*9349^(1/19) 6099996717642316 a001 75025/39603*710647^(3/7) 6099996717644904 a001 17711/167761*710647^(9/14) 6099996717647203 a001 2178309/167761*24476^(8/21) 6099996717663123 a001 521/377*34^(8/19) 6099996717668126 a001 165580141/439204*9349^(1/19) 6099996717675349 a001 75025/39603*271443^(6/13) 6099996717688452 a001 196418/39603*103682^(5/12) 6099996717694455 a001 17711/167761*271443^(9/13) 6099996717773984 a001 9227465/39603*39603^(1/11) 6099996717786832 a001 17711/271443*103682^(19/24) 6099996717832764 a001 5702887/271443*24476^(1/3) 6099996717833120 a001 1762289/51841*24476^(2/7) 6099996717853248 a001 63245986/167761*9349^(1/19) 6099996717872530 a001 17711/64079*64079^(16/23) 6099996717903506 a001 14930352/710647*24476^(1/3) 6099996717904829 a001 17711/710647*103682^(7/8) 6099996717913828 a001 39088169/1860498*24476^(1/3) 6099996717915333 a001 102334155/4870847*24476^(1/3) 6099996717915553 a001 267914296/12752043*24476^(1/3) 6099996717915585 a001 701408733/33385282*24476^(1/3) 6099996717915590 a001 1836311903/87403803*24476^(1/3) 6099996717915590 a001 102287808/4868641*24476^(1/3) 6099996717915591 a001 12586269025/599074578*24476^(1/3) 6099996717915591 a001 32951280099/1568397607*24476^(1/3) 6099996717915591 a001 86267571272/4106118243*24476^(1/3) 6099996717915591 a001 225851433717/10749957122*24476^(1/3) 6099996717915591 a001 591286729879/28143753123*24476^(1/3) 6099996717915591 a001 1548008755920/73681302247*24476^(1/3) 6099996717915591 a001 4052739537881/192900153618*24476^(1/3) 6099996717915591 a001 225749145909/10745088481*24476^(1/3) 6099996717915591 a001 6557470319842/312119004989*24476^(1/3) 6099996717915591 a001 2504730781961/119218851371*24476^(1/3) 6099996717915591 a001 956722026041/45537549124*24476^(1/3) 6099996717915591 a001 365435296162/17393796001*24476^(1/3) 6099996717915591 a001 139583862445/6643838879*24476^(1/3) 6099996717915591 a001 53316291173/2537720636*24476^(1/3) 6099996717915591 a001 20365011074/969323029*24476^(1/3) 6099996717915591 a001 7778742049/370248451*24476^(1/3) 6099996717915591 a001 2971215073/141422324*24476^(1/3) 6099996717915593 a001 1134903170/54018521*24476^(1/3) 6099996717915605 a001 433494437/20633239*24476^(1/3) 6099996717915689 a001 165580141/7881196*24476^(1/3) 6099996717916264 a001 63245986/3010349*24476^(1/3) 6099996717920206 a001 24157817/1149851*24476^(1/3) 6099996717920861 a001 75025/39603*103682^(1/2) 6099996717924887 a001 17711/439204*103682^(5/6) 6099996717934475 a001 317811/64079*24476^(10/21) 6099996717945165 a001 17711/1149851*103682^(11/12) 6099996717947227 a001 9227465/439204*24476^(1/3) 6099996717950719 a001 5702887/39603*39603^(3/22) 6099996717962433 a001 17711/1860498*103682^(23/24) 6099996717987839 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^31 6099996718001712 a001 28657/39603*64079^(14/23) 6099996718062722 a001 17711/167761*103682^(3/4) 6099996718127642 a001 3524578/39603*39603^(2/11) 6099996718132433 a001 3524578/167761*24476^(1/3) 6099996718304074 a001 726103/13201*39603^(5/22) 6099996718317691 a001 9227465/271443*24476^(2/7) 6099996718317858 a001 5702887/103682*24476^(5/21) 6099996718388389 a001 24157817/710647*24476^(2/7) 6099996718398703 a001 31622993/930249*24476^(2/7) 6099996718400208 a001 165580141/4870847*24476^(2/7) 6099996718400428 a001 433494437/12752043*24476^(2/7) 6099996718400460 a001 567451585/16692641*24476^(2/7) 6099996718400464 a001 2971215073/87403803*24476^(2/7) 6099996718400465 a001 7778742049/228826127*24476^(2/7) 6099996718400465 a001 10182505537/299537289*24476^(2/7) 6099996718400465 a001 53316291173/1568397607*24476^(2/7) 6099996718400465 a001 139583862445/4106118243*24476^(2/7) 6099996718400465 a001 182717648081/5374978561*24476^(2/7) 6099996718400465 a001 956722026041/28143753123*24476^(2/7) 6099996718400465 a001 2504730781961/73681302247*24476^(2/7) 6099996718400465 a001 3278735159921/96450076809*24476^(2/7) 6099996718400465 a001 10610209857723/312119004989*24476^(2/7) 6099996718400465 a001 4052739537881/119218851371*24476^(2/7) 6099996718400465 a001 387002188980/11384387281*24476^(2/7) 6099996718400465 a001 591286729879/17393796001*24476^(2/7) 6099996718400465 a001 225851433717/6643838879*24476^(2/7) 6099996718400465 a001 1135099622/33391061*24476^(2/7) 6099996718400465 a001 32951280099/969323029*24476^(2/7) 6099996718400465 a001 12586269025/370248451*24476^(2/7) 6099996718400465 a001 1201881744/35355581*24476^(2/7) 6099996718400467 a001 1836311903/54018521*24476^(2/7) 6099996718400479 a001 701408733/20633239*24476^(2/7) 6099996718400563 a001 66978574/1970299*24476^(2/7) 6099996718401138 a001 102334155/3010349*24476^(2/7) 6099996718405078 a001 39088169/1149851*24476^(2/7) 6099996718432082 a001 196452/5779*24476^(2/7) 6099996718436042 a001 514229/64079*24476^(3/7) 6099996718481791 a001 1346269/39603*39603^(3/11) 6099996718617172 a001 5702887/167761*24476^(2/7) 6099996718656143 a001 832040/39603*39603^(7/22) 6099996718753278 a001 4976784/13201*15127^(1/20) 6099996718802545 a001 4976784/90481*24476^(5/21) 6099996718802785 a001 9227465/103682*24476^(4/21) 6099996718839306 a001 514229/39603*39603^(4/11) 6099996718873260 a001 39088169/710647*24476^(5/21) 6099996718883577 a001 831985/15126*24476^(5/21) 6099996718885083 a001 267914296/4870847*24476^(5/21) 6099996718885302 a001 233802911/4250681*24476^(5/21) 6099996718885334 a001 1836311903/33385282*24476^(5/21) 6099996718885339 a001 1602508992/29134601*24476^(5/21) 6099996718885340 a001 12586269025/228826127*24476^(5/21) 6099996718885340 a001 10983760033/199691526*24476^(5/21) 6099996718885340 a001 86267571272/1568397607*24476^(5/21) 6099996718885340 a001 75283811239/1368706081*24476^(5/21) 6099996718885340 a001 591286729879/10749957122*24476^(5/21) 6099996718885340 a001 12585437040/228811001*24476^(5/21) 6099996718885340 a001 4052739537881/73681302247*24476^(5/21) 6099996718885340 a001 3536736619241/64300051206*24476^(5/21) 6099996718885340 a001 6557470319842/119218851371*24476^(5/21) 6099996718885340 a001 2504730781961/45537549124*24476^(5/21) 6099996718885340 a001 956722026041/17393796001*24476^(5/21) 6099996718885340 a001 365435296162/6643838879*24476^(5/21) 6099996718885340 a001 139583862445/2537720636*24476^(5/21) 6099996718885340 a001 53316291173/969323029*24476^(5/21) 6099996718885340 a001 20365011074/370248451*24476^(5/21) 6099996718885340 a001 7778742049/141422324*24476^(5/21) 6099996718885342 a001 2971215073/54018521*24476^(5/21) 6099996718885354 a001 1134903170/20633239*24476^(5/21) 6099996718885438 a001 433494437/7881196*24476^(5/21) 6099996718886013 a001 165580141/3010349*24476^(5/21) 6099996718889954 a001 63245986/1149851*24476^(5/21) 6099996718905976 a001 28657/39603*20633239^(2/5) 6099996718905982 a001 17711/64079*(1/2+1/2*5^(1/2))^16 6099996718905982 a001 17711/64079*23725150497407^(1/4) 6099996718905982 a001 17711/64079*73681302247^(4/13) 6099996718905982 a001 17711/64079*10749957122^(1/3) 6099996718905982 a001 17711/64079*4106118243^(8/23) 6099996718905982 a001 17711/64079*1568397607^(4/11) 6099996718905982 a001 28657/39603*17393796001^(2/7) 6099996718905982 a001 28657/39603*14662949395604^(2/9) 6099996718905982 a001 28657/39603*(1/2+1/2*5^(1/2))^14 6099996718905982 a001 28657/39603*10749957122^(7/24) 6099996718905982 a001 28657/39603*4106118243^(7/23) 6099996718905982 a001 28657/39603*1568397607^(7/22) 6099996718905982 a001 17711/64079*599074578^(8/21) 6099996718905982 a001 28657/39603*599074578^(1/3) 6099996718905982 a001 28657/39603*228826127^(7/20) 6099996718905982 a001 17711/64079*228826127^(2/5) 6099996718905982 a001 28657/39603*87403803^(7/19) 6099996718905982 a001 17711/64079*87403803^(8/19) 6099996718905984 a001 28657/39603*33385282^(7/18) 6099996718905984 a001 17711/64079*33385282^(4/9) 6099996718905998 a001 28657/39603*12752043^(7/17) 6099996718906000 a001 17711/64079*12752043^(8/17) 6099996718906095 a001 28657/39603*4870847^(7/16) 6099996718906111 a001 17711/64079*4870847^(1/2) 6099996718906804 a001 28657/39603*1860498^(7/15) 6099996718906922 a001 17711/64079*1860498^(8/15) 6099996718907744 a001 507544127/832040 6099996718912021 a001 28657/39603*710647^(1/2) 6099996718912884 a001 17711/64079*710647^(4/7) 6099996718914541 a001 832040/64079*24476^(8/21) 6099996718916964 a001 24157817/439204*24476^(5/21) 6099996718950561 a001 28657/39603*271443^(7/13) 6099996718956929 a001 17711/64079*271443^(8/13) 6099996718999401 a001 105937/13201*39603^(9/22) 6099996719102098 a001 9227465/167761*24476^(5/21) 6099996719122093 a001 24157817/64079*9349^(1/19) 6099996719151184 a001 15456/13201*39603^(13/22) 6099996719205964 a001 23184/51841*64079^(15/23) 6099996719219889 a001 196418/39603*39603^(5/11) 6099996719236991 a001 28657/39603*103682^(7/12) 6099996719256682 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^32 6099996719282265 a001 121393/39603*39603^(1/2) 6099996719284278 a001 17711/64079*103682^(2/3) 6099996719287427 a001 24157817/271443*24476^(4/21) 6099996719287640 a001 7465176/51841*24476^(1/7) 6099996719321945 a001 46368/3010349*64079^(22/23) 6099996719358136 a001 63245986/710647*24476^(4/21) 6099996719368452 a001 165580141/1860498*24476^(4/21) 6099996719369957 a001 433494437/4870847*24476^(4/21) 6099996719370177 a001 1134903170/12752043*24476^(4/21) 6099996719370209 a001 2971215073/33385282*24476^(4/21) 6099996719370214 a001 7778742049/87403803*24476^(4/21) 6099996719370214 a001 20365011074/228826127*24476^(4/21) 6099996719370214 a001 53316291173/599074578*24476^(4/21) 6099996719370214 a001 139583862445/1568397607*24476^(4/21) 6099996719370214 a001 365435296162/4106118243*24476^(4/21) 6099996719370214 a001 956722026041/10749957122*24476^(4/21) 6099996719370214 a001 2504730781961/28143753123*24476^(4/21) 6099996719370214 a001 6557470319842/73681302247*24476^(4/21) 6099996719370214 a001 10610209857723/119218851371*24476^(4/21) 6099996719370214 a001 4052739537881/45537549124*24476^(4/21) 6099996719370214 a001 1548008755920/17393796001*24476^(4/21) 6099996719370214 a001 591286729879/6643838879*24476^(4/21) 6099996719370214 a001 225851433717/2537720636*24476^(4/21) 6099996719370214 a001 86267571272/969323029*24476^(4/21) 6099996719370214 a001 32951280099/370248451*24476^(4/21) 6099996719370215 a001 12586269025/141422324*24476^(4/21) 6099996719370216 a001 4807526976/54018521*24476^(4/21) 6099996719370229 a001 1836311903/20633239*24476^(4/21) 6099996719370313 a001 3524667/39604*24476^(4/21) 6099996719370887 a001 267914296/3010349*24476^(4/21) 6099996719374828 a001 102334155/1149851*24476^(4/21) 6099996719384101 a001 2576/103361*64079^(21/23) 6099996719401836 a001 39088169/439204*24476^(4/21) 6099996719401851 a001 1346269/64079*24476^(1/3) 6099996719409380 a001 6765/103682*15127^(19/20) 6099996719455068 a001 46368/1149851*64079^(20/23) 6099996719502966 a001 6624/101521*64079^(19/23) 6099996719561437 a001 15456/90481*64079^(17/23) 6099996719586953 a001 14930352/167761*24476^(4/21) 6099996719611258 a001 11592/109801*64079^(18/23) 6099996719741337 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^34 6099996719758585 a001 75025/39603*39603^(6/11) 6099996719772299 a001 39088169/271443*24476^(1/7) 6099996719772522 a001 24157817/103682*24476^(2/21) 6099996719806025 a001 121393/7881196*64079^(22/23) 6099996719812047 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^36 6099996719819800 a001 121393/103682*64079^(13/23) 6099996719822363 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^38 6099996719823868 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^40 6099996719824088 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^42 6099996719824120 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^44 6099996719824125 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^46 6099996719824125 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^48 6099996719824125 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^50 6099996719824125 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^52 6099996719824125 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^54 6099996719824125 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^56 6099996719824125 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^58 6099996719824125 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^60 6099996719824125 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^62 6099996719824125 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^64 6099996719824125 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^66 6099996719824125 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^68 6099996719824125 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^70 6099996719824125 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^72 6099996719824125 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^74 6099996719824125 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^76 6099996719824125 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^78 6099996719824125 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^80 6099996719824125 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^82 6099996719824125 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^84 6099996719824125 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^86 6099996719824125 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^88 6099996719824125 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^90 6099996719824125 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^92 6099996719824125 a004 Fibonacci(86)*Lucas(23)/(1/2+sqrt(5)/2)^94 6099996719824125 a004 Fibonacci(88)*Lucas(23)/(1/2+sqrt(5)/2)^96 6099996719824125 a004 Fibonacci(90)*Lucas(23)/(1/2+sqrt(5)/2)^98 6099996719824125 a004 Fibonacci(92)*Lucas(23)/(1/2+sqrt(5)/2)^100 6099996719824125 a004 Fibonacci(91)*Lucas(23)/(1/2+sqrt(5)/2)^99 6099996719824125 a004 Fibonacci(89)*Lucas(23)/(1/2+sqrt(5)/2)^97 6099996719824125 a004 Fibonacci(87)*Lucas(23)/(1/2+sqrt(5)/2)^95 6099996719824125 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^93 6099996719824125 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^91 6099996719824125 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^89 6099996719824125 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^87 6099996719824125 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^85 6099996719824125 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^83 6099996719824125 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^81 6099996719824125 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^79 6099996719824125 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^77 6099996719824125 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^75 6099996719824125 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^73 6099996719824125 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^71 6099996719824125 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^69 6099996719824125 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^67 6099996719824125 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^65 6099996719824125 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^63 6099996719824125 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^61 6099996719824125 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^59 6099996719824125 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^57 6099996719824125 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^55 6099996719824125 a001 2/28657*(1/2+1/2*5^(1/2))^38 6099996719824125 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^53 6099996719824125 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^51 6099996719824125 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^49 6099996719824126 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^47 6099996719824128 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^45 6099996719824140 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^43 6099996719824224 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^41 6099996719824799 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^39 6099996719828739 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^37 6099996719843010 a001 14619165/101521*24476^(1/7) 6099996719844768 a001 10946/39603*24476^(16/21) 6099996719853327 a001 133957148/930249*24476^(1/7) 6099996719854832 a001 701408733/4870847*24476^(1/7) 6099996719855051 a001 1836311903/12752043*24476^(1/7) 6099996719855083 a001 14930208/103681*24476^(1/7) 6099996719855088 a001 12586269025/87403803*24476^(1/7) 6099996719855089 a001 32951280099/228826127*24476^(1/7) 6099996719855089 a001 43133785636/299537289*24476^(1/7) 6099996719855089 a001 32264490531/224056801*24476^(1/7) 6099996719855089 a001 591286729879/4106118243*24476^(1/7) 6099996719855089 a001 774004377960/5374978561*24476^(1/7) 6099996719855089 a001 4052739537881/28143753123*24476^(1/7) 6099996719855089 a001 1515744265389/10525900321*24476^(1/7) 6099996719855089 a001 3278735159921/22768774562*24476^(1/7) 6099996719855089 a001 2504730781961/17393796001*24476^(1/7) 6099996719855089 a001 956722026041/6643838879*24476^(1/7) 6099996719855089 a001 182717648081/1268860318*24476^(1/7) 6099996719855089 a001 139583862445/969323029*24476^(1/7) 6099996719855089 a001 53316291173/370248451*24476^(1/7) 6099996719855089 a001 10182505537/70711162*24476^(1/7) 6099996719855091 a001 7778742049/54018521*24476^(1/7) 6099996719855103 a001 2971215073/20633239*24476^(1/7) 6099996719855187 a001 567451585/3940598*24476^(1/7) 6099996719855748 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^35 6099996719855762 a001 433494437/3010349*24476^(1/7) 6099996719858333 a001 17711/103682*39603^(17/22) 6099996719859703 a001 165580141/1149851*24476^(1/7) 6099996719870261 a001 121393/4870847*64079^(21/23) 6099996719876652 a001 10959/711491*64079^(22/23) 6099996719885795 a001 2178309/64079*24476^(2/7) 6099996719886712 a001 31622993/219602*24476^(1/7) 6099996719886956 a001 832040/54018521*64079^(22/23) 6099996719888459 a001 2178309/141422324*64079^(22/23) 6099996719888679 a001 5702887/370248451*64079^(22/23) 6099996719888711 a001 14930352/969323029*64079^(22/23) 6099996719888715 a001 39088169/2537720636*64079^(22/23) 6099996719888716 a001 102334155/6643838879*64079^(22/23) 6099996719888716 a001 9238424/599786069*64079^(22/23) 6099996719888716 a001 701408733/45537549124*64079^(22/23) 6099996719888716 a001 1836311903/119218851371*64079^(22/23) 6099996719888716 a001 4807526976/312119004989*64079^(22/23) 6099996719888716 a001 12586269025/817138163596*64079^(22/23) 6099996719888716 a001 32951280099/2139295485799*64079^(22/23) 6099996719888716 a001 86267571272/5600748293801*64079^(22/23) 6099996719888716 a001 7787980473/505618944676*64079^(22/23) 6099996719888716 a001 365435296162/23725150497407*64079^(22/23) 6099996719888716 a001 139583862445/9062201101803*64079^(22/23) 6099996719888716 a001 53316291173/3461452808002*64079^(22/23) 6099996719888716 a001 20365011074/1322157322203*64079^(22/23) 6099996719888716 a001 7778742049/505019158607*64079^(22/23) 6099996719888716 a001 2971215073/192900153618*64079^(22/23) 6099996719888716 a001 1134903170/73681302247*64079^(22/23) 6099996719888716 a001 433494437/28143753123*64079^(22/23) 6099996719888716 a001 165580141/10749957122*64079^(22/23) 6099996719888716 a001 63245986/4106118243*64079^(22/23) 6099996719888718 a001 24157817/1568397607*64079^(22/23) 6099996719888731 a001 9227465/599074578*64079^(22/23) 6099996719888814 a001 3524578/228826127*64079^(22/23) 6099996719889389 a001 1346269/87403803*64079^(22/23) 6099996719893324 a001 514229/33385282*64079^(22/23) 6099996719920301 a001 196418/12752043*64079^(22/23) 6099996719925561 a001 46368/167761*64079^(16/23) 6099996719935782 a001 121393/3010349*64079^(20/23) 6099996719941191 a001 105937/4250681*64079^(21/23) 6099996719951539 a001 416020/16692641*64079^(21/23) 6099996719953049 a001 726103/29134601*64079^(21/23) 6099996719953269 a001 5702887/228826127*64079^(21/23) 6099996719953301 a001 829464/33281921*64079^(21/23) 6099996719953306 a001 39088169/1568397607*64079^(21/23) 6099996719953307 a001 34111385/1368706081*64079^(21/23) 6099996719953307 a001 133957148/5374978561*64079^(21/23) 6099996719953307 a001 233802911/9381251041*64079^(21/23) 6099996719953307 a001 1836311903/73681302247*64079^(21/23) 6099996719953307 a001 267084832/10716675201*64079^(21/23) 6099996719953307 a001 12586269025/505019158607*64079^(21/23) 6099996719953307 a001 10983760033/440719107401*64079^(21/23) 6099996719953307 a001 43133785636/1730726404001*64079^(21/23) 6099996719953307 a001 75283811239/3020733700601*64079^(21/23) 6099996719953307 a001 182717648081/7331474697802*64079^(21/23) 6099996719953307 a001 139583862445/5600748293801*64079^(21/23) 6099996719953307 a001 53316291173/2139295485799*64079^(21/23) 6099996719953307 a001 10182505537/408569081798*64079^(21/23) 6099996719953307 a001 7778742049/312119004989*64079^(21/23) 6099996719953307 a001 2971215073/119218851371*64079^(21/23) 6099996719953307 a001 567451585/22768774562*64079^(21/23) 6099996719953307 a001 433494437/17393796001*64079^(21/23) 6099996719953307 a001 165580141/6643838879*64079^(21/23) 6099996719953307 a001 31622993/1268860318*64079^(21/23) 6099996719953309 a001 24157817/969323029*64079^(21/23) 6099996719953321 a001 9227465/370248451*64079^(21/23) 6099996719953405 a001 1762289/70711162*64079^(21/23) 6099996719953982 a001 1346269/54018521*64079^(21/23) 6099996719957935 a001 514229/20633239*64079^(21/23) 6099996719985028 a001 98209/3940598*64079^(21/23) 6099996719997937 a001 121393/1860498*64079^(19/23) 6099996719998802 a001 98209/51841*64079^(12/23) 6099996720005917 a001 317811/7881196*64079^(20/23) 6099996720016150 a001 75640/1875749*64079^(20/23) 6099996720017643 a001 2178309/54018521*64079^(20/23) 6099996720017860 a001 5702887/141422324*64079^(20/23) 6099996720017892 a001 14930352/370248451*64079^(20/23) 6099996720017897 a001 39088169/969323029*64079^(20/23) 6099996720017898 a001 9303105/230701876*64079^(20/23) 6099996720017898 a001 267914296/6643838879*64079^(20/23) 6099996720017898 a001 701408733/17393796001*64079^(20/23) 6099996720017898 a001 1836311903/45537549124*64079^(20/23) 6099996720017898 a001 4807526976/119218851371*64079^(20/23) 6099996720017898 a001 1144206275/28374454999*64079^(20/23) 6099996720017898 a001 32951280099/817138163596*64079^(20/23) 6099996720017898 a001 86267571272/2139295485799*64079^(20/23) 6099996720017898 a001 225851433717/5600748293801*64079^(20/23) 6099996720017898 a001 591286729879/14662949395604*64079^(20/23) 6099996720017898 a001 365435296162/9062201101803*64079^(20/23) 6099996720017898 a001 139583862445/3461452808002*64079^(20/23) 6099996720017898 a001 53316291173/1322157322203*64079^(20/23) 6099996720017898 a001 20365011074/505019158607*64079^(20/23) 6099996720017898 a001 7778742049/192900153618*64079^(20/23) 6099996720017898 a001 2971215073/73681302247*64079^(20/23) 6099996720017898 a001 1134903170/28143753123*64079^(20/23) 6099996720017898 a001 433494437/10749957122*64079^(20/23) 6099996720017898 a001 165580141/4106118243*64079^(20/23) 6099996720017898 a001 63245986/1568397607*64079^(20/23) 6099996720017900 a001 24157817/599074578*64079^(20/23) 6099996720017912 a001 9227465/228826127*64079^(20/23) 6099996720017995 a001 3524578/87403803*64079^(20/23) 6099996720018565 a001 1346269/33385282*64079^(20/23) 6099996720019692 a001 317811/103682*64079^(11/23) 6099996720022474 a001 514229/12752043*64079^(20/23) 6099996720040870 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^33 6099996720044778 a001 23184/51841*167761^(3/5) 6099996720049263 a001 196418/4870847*64079^(20/23) 6099996720054743 a001 75025/103682*64079^(14/23) 6099996720068904 a001 121393/1149851*64079^(18/23) 6099996720070153 a001 317811/4870847*64079^(19/23) 6099996720071835 a001 24157817/167761*24476^(1/7) 6099996720080689 a001 832040/12752043*64079^(19/23) 6099996720082226 a001 311187/4769326*64079^(19/23) 6099996720082450 a001 5702887/87403803*64079^(19/23) 6099996720082483 a001 14930352/228826127*64079^(19/23) 6099996720082488 a001 39088169/599074578*64079^(19/23) 6099996720082488 a001 14619165/224056801*64079^(19/23) 6099996720082488 a001 267914296/4106118243*64079^(19/23) 6099996720082488 a001 701408733/10749957122*64079^(19/23) 6099996720082488 a001 1836311903/28143753123*64079^(19/23) 6099996720082488 a001 686789568/10525900321*64079^(19/23) 6099996720082488 a001 12586269025/192900153618*64079^(19/23) 6099996720082488 a001 32951280099/505019158607*64079^(19/23) 6099996720082488 a001 86267571272/1322157322203*64079^(19/23) 6099996720082488 a001 32264490531/494493258286*64079^(19/23) 6099996720082488 a001 591286729879/9062201101803*64079^(19/23) 6099996720082488 a001 1548008755920/23725150497407*64079^(19/23) 6099996720082488 a001 365435296162/5600748293801*64079^(19/23) 6099996720082488 a001 139583862445/2139295485799*64079^(19/23) 6099996720082488 a001 53316291173/817138163596*64079^(19/23) 6099996720082488 a001 20365011074/312119004989*64079^(19/23) 6099996720082488 a001 7778742049/119218851371*64079^(19/23) 6099996720082488 a001 2971215073/45537549124*64079^(19/23) 6099996720082488 a001 1134903170/17393796001*64079^(19/23) 6099996720082488 a001 433494437/6643838879*64079^(19/23) 6099996720082488 a001 165580141/2537720636*64079^(19/23) 6099996720082489 a001 63245986/969323029*64079^(19/23) 6099996720082491 a001 24157817/370248451*64079^(19/23) 6099996720082503 a001 9227465/141422324*64079^(19/23) 6099996720082589 a001 3524578/54018521*64079^(19/23) 6099996720083176 a001 1346269/20633239*64079^(19/23) 6099996720086187 a001 9227465/39603*15127^(1/10) 6099996720087200 a001 514229/7881196*64079^(19/23) 6099996720100975 a001 514229/103682*64079^(10/23) 6099996720105203 a001 75025/4870847*64079^(22/23) 6099996720114784 a001 196418/3010349*64079^(19/23) 6099996720116802 a001 121393/710647*64079^(17/23) 6099996720129522 a001 6765/64079*15127^(9/10) 6099996720135674 a001 317811/3010349*64079^(18/23) 6099996720145415 a001 208010/1970299*64079^(18/23) 6099996720146836 a001 2178309/20633239*64079^(18/23) 6099996720147044 a001 5702887/54018521*64079^(18/23) 6099996720147074 a001 3732588/35355581*64079^(18/23) 6099996720147078 a001 39088169/370248451*64079^(18/23) 6099996720147079 a001 102334155/969323029*64079^(18/23) 6099996720147079 a001 66978574/634430159*64079^(18/23) 6099996720147079 a001 701408733/6643838879*64079^(18/23) 6099996720147079 a001 1836311903/17393796001*64079^(18/23) 6099996720147079 a001 1201881744/11384387281*64079^(18/23) 6099996720147079 a001 12586269025/119218851371*64079^(18/23) 6099996720147079 a001 32951280099/312119004989*64079^(18/23) 6099996720147079 a001 21566892818/204284540899*64079^(18/23) 6099996720147079 a001 225851433717/2139295485799*64079^(18/23) 6099996720147079 a001 182717648081/1730726404001*64079^(18/23) 6099996720147079 a001 139583862445/1322157322203*64079^(18/23) 6099996720147079 a001 53316291173/505019158607*64079^(18/23) 6099996720147079 a001 10182505537/96450076809*64079^(18/23) 6099996720147079 a001 7778742049/73681302247*64079^(18/23) 6099996720147079 a001 2971215073/28143753123*64079^(18/23) 6099996720147079 a001 567451585/5374978561*64079^(18/23) 6099996720147079 a001 433494437/4106118243*64079^(18/23) 6099996720147079 a001 165580141/1568397607*64079^(18/23) 6099996720147079 a001 31622993/299537289*64079^(18/23) 6099996720147081 a001 24157817/228826127*64079^(18/23) 6099996720147093 a001 9227465/87403803*64079^(18/23) 6099996720147172 a001 1762289/16692641*64079^(18/23) 6099996720147715 a001 1346269/12752043*64079^(18/23) 6099996720151436 a001 514229/4870847*64079^(18/23) 6099996720157257 a001 23184/51841*439204^(5/9) 6099996720159190 a001 416020/51841*64079^(9/23) 6099996720170724 a001 75025/3010349*64079^(21/23) 6099996720174727 a001 1074995712/1762289 6099996720174780 a001 23184/51841*7881196^(5/11) 6099996720174819 a001 23184/51841*20633239^(3/7) 6099996720174825 a001 23184/51841*141422324^(5/13) 6099996720174825 a001 23184/51841*2537720636^(1/3) 6099996720174825 a001 23184/51841*45537549124^(5/17) 6099996720174825 a001 23184/51841*312119004989^(3/11) 6099996720174825 a001 23184/51841*14662949395604^(5/21) 6099996720174825 a001 23184/51841*(1/2+1/2*5^(1/2))^15 6099996720174825 a001 23184/51841*192900153618^(5/18) 6099996720174825 a001 23184/51841*28143753123^(3/10) 6099996720174825 a001 23184/51841*10749957122^(5/16) 6099996720174825 a001 23184/51841*599074578^(5/14) 6099996720174825 a001 23184/51841*228826127^(3/8) 6099996720174827 a001 23184/51841*33385282^(5/12) 6099996720175274 a001 121393/271443*64079^(15/23) 6099996720175706 a001 23184/51841*1860498^(1/2) 6099996720176939 a001 98209/930249*64079^(18/23) 6099996720197829 a001 105937/620166*64079^(17/23) 6099996720209651 a001 832040/4870847*64079^(17/23) 6099996720211375 a001 726103/4250681*64079^(17/23) 6099996720211627 a001 5702887/33385282*64079^(17/23) 6099996720211664 a001 4976784/29134601*64079^(17/23) 6099996720211669 a001 39088169/228826127*64079^(17/23) 6099996720211670 a001 34111385/199691526*64079^(17/23) 6099996720211670 a001 267914296/1568397607*64079^(17/23) 6099996720211670 a001 233802911/1368706081*64079^(17/23) 6099996720211670 a001 1836311903/10749957122*64079^(17/23) 6099996720211670 a001 1602508992/9381251041*64079^(17/23) 6099996720211670 a001 12586269025/73681302247*64079^(17/23) 6099996720211670 a001 10983760033/64300051206*64079^(17/23) 6099996720211670 a001 86267571272/505019158607*64079^(17/23) 6099996720211670 a001 75283811239/440719107401*64079^(17/23) 6099996720211670 a001 2504730781961/14662949395604*64079^(17/23) 6099996720211670 a001 139583862445/817138163596*64079^(17/23) 6099996720211670 a001 53316291173/312119004989*64079^(17/23) 6099996720211670 a001 20365011074/119218851371*64079^(17/23) 6099996720211670 a001 7778742049/45537549124*64079^(17/23) 6099996720211670 a001 2971215073/17393796001*64079^(17/23) 6099996720211670 a001 1134903170/6643838879*64079^(17/23) 6099996720211670 a001 433494437/2537720636*64079^(17/23) 6099996720211670 a001 165580141/969323029*64079^(17/23) 6099996720211670 a001 63245986/370248451*64079^(17/23) 6099996720211672 a001 24157817/141422324*64079^(17/23) 6099996720211686 a001 9227465/54018521*64079^(17/23) 6099996720211782 a001 3524578/20633239*64079^(17/23) 6099996720212441 a001 1346269/7881196*64079^(17/23) 6099996720216957 a001 514229/3010349*64079^(17/23) 6099996720225094 a001 121393/439204*64079^(16/23) 6099996720226216 a001 1346269/103682*64079^(8/23) 6099996720232880 a001 75025/1860498*64079^(20/23) 6099996720247906 a001 196418/1149851*64079^(17/23) 6099996720257175 a001 63245986/271443*24476^(2/21) 6099996720257393 a001 39088169/103682*24476^(1/21) 6099996720268796 a001 317811/1149851*64079^(16/23) 6099996720275172 a001 832040/3010349*64079^(16/23) 6099996720276102 a001 2178309/7881196*64079^(16/23) 6099996720276237 a001 5702887/20633239*64079^(16/23) 6099996720276257 a001 14930352/54018521*64079^(16/23) 6099996720276260 a001 39088169/141422324*64079^(16/23) 6099996720276261 a001 102334155/370248451*64079^(16/23) 6099996720276261 a001 267914296/969323029*64079^(16/23) 6099996720276261 a001 701408733/2537720636*64079^(16/23) 6099996720276261 a001 1836311903/6643838879*64079^(16/23) 6099996720276261 a001 4807526976/17393796001*64079^(16/23) 6099996720276261 a001 12586269025/45537549124*64079^(16/23) 6099996720276261 a001 32951280099/119218851371*64079^(16/23) 6099996720276261 a001 86267571272/312119004989*64079^(16/23) 6099996720276261 a001 225851433717/817138163596*64079^(16/23) 6099996720276261 a001 1548008755920/5600748293801*64079^(16/23) 6099996720276261 a001 139583862445/505019158607*64079^(16/23) 6099996720276261 a001 53316291173/192900153618*64079^(16/23) 6099996720276261 a001 20365011074/73681302247*64079^(16/23) 6099996720276261 a001 7778742049/28143753123*64079^(16/23) 6099996720276261 a001 2971215073/10749957122*64079^(16/23) 6099996720276261 a001 1134903170/4106118243*64079^(16/23) 6099996720276261 a001 433494437/1568397607*64079^(16/23) 6099996720276261 a001 165580141/599074578*64079^(16/23) 6099996720276261 a001 63245986/228826127*64079^(16/23) 6099996720276262 a001 24157817/87403803*64079^(16/23) 6099996720276270 a001 9227465/33385282*64079^(16/23) 6099996720276321 a001 3524578/12752043*64079^(16/23) 6099996720276677 a001 1346269/4870847*64079^(16/23) 6099996720279112 a001 514229/1860498*64079^(16/23) 6099996720289876 a001 46347/2206*64079^(7/23) 6099996720295804 a001 196418/710647*64079^(16/23) 6099996720303846 a001 75025/1149851*64079^(19/23) 6099996720316694 a001 317811/710647*64079^(15/23) 6099996720327885 a001 165580141/710647*24476^(2/21) 6099996720337327 a001 416020/930249*64079^(15/23) 6099996720338201 a001 433494437/1860498*24476^(2/21) 6099996720339706 a001 1134903170/4870847*24476^(2/21) 6099996720339926 a001 2971215073/12752043*24476^(2/21) 6099996720339958 a001 7778742049/33385282*24476^(2/21) 6099996720339963 a001 20365011074/87403803*24476^(2/21) 6099996720339963 a001 53316291173/228826127*24476^(2/21) 6099996720339963 a001 139583862445/599074578*24476^(2/21) 6099996720339963 a001 365435296162/1568397607*24476^(2/21) 6099996720339963 a001 956722026041/4106118243*24476^(2/21) 6099996720339963 a001 2504730781961/10749957122*24476^(2/21) 6099996720339963 a001 6557470319842/28143753123*24476^(2/21) 6099996720339963 a001 10610209857723/45537549124*24476^(2/21) 6099996720339963 a001 4052739537881/17393796001*24476^(2/21) 6099996720339963 a001 1548008755920/6643838879*24476^(2/21) 6099996720339963 a001 591286729879/2537720636*24476^(2/21) 6099996720339963 a001 225851433717/969323029*24476^(2/21) 6099996720339964 a001 86267571272/370248451*24476^(2/21) 6099996720339964 a001 63246219/271444*24476^(2/21) 6099996720339966 a001 12586269025/54018521*24476^(2/21) 6099996720339978 a001 4807526976/20633239*24476^(2/21) 6099996720340062 a001 1836311903/7881196*24476^(2/21) 6099996720340337 a001 2178309/4870847*64079^(15/23) 6099996720340637 a001 701408733/3010349*24476^(2/21) 6099996720340776 a001 5702887/12752043*64079^(15/23) 6099996720340840 a001 7465176/16692641*64079^(15/23) 6099996720340850 a001 39088169/87403803*64079^(15/23) 6099996720340851 a001 102334155/228826127*64079^(15/23) 6099996720340851 a001 133957148/299537289*64079^(15/23) 6099996720340851 a001 701408733/1568397607*64079^(15/23) 6099996720340851 a001 1836311903/4106118243*64079^(15/23) 6099996720340851 a001 2403763488/5374978561*64079^(15/23) 6099996720340851 a001 12586269025/28143753123*64079^(15/23) 6099996720340851 a001 32951280099/73681302247*64079^(15/23) 6099996720340851 a001 43133785636/96450076809*64079^(15/23) 6099996720340851 a001 225851433717/505019158607*64079^(15/23) 6099996720340851 a001 591286729879/1322157322203*64079^(15/23) 6099996720340851 a001 10610209857723/23725150497407*64079^(15/23) 6099996720340851 a001 182717648081/408569081798*64079^(15/23) 6099996720340851 a001 139583862445/312119004989*64079^(15/23) 6099996720340851 a001 53316291173/119218851371*64079^(15/23) 6099996720340851 a001 10182505537/22768774562*64079^(15/23) 6099996720340851 a001 7778742049/17393796001*64079^(15/23) 6099996720340851 a001 2971215073/6643838879*64079^(15/23) 6099996720340851 a001 567451585/1268860318*64079^(15/23) 6099996720340851 a001 433494437/969323029*64079^(15/23) 6099996720340852 a001 165580141/370248451*64079^(15/23) 6099996720340852 a001 31622993/70711162*64079^(15/23) 6099996720340856 a001 24157817/54018521*64079^(15/23) 6099996720340880 a001 9227465/20633239*64079^(15/23) 6099996720341048 a001 1762289/3940598*64079^(15/23) 6099996720342198 a001 1346269/3010349*64079^(15/23) 6099996720344577 a001 267914296/1149851*24476^(2/21) 6099996720350079 a001 514229/1149851*64079^(15/23) 6099996720351745 a001 75025/710647*64079^(18/23) 6099996720354276 a001 196418/271443*64079^(14/23) 6099996720354823 a001 1762289/51841*64079^(6/23) 6099996720371025 a001 3524578/64079*24476^(5/21) 6099996720371586 a001 102334155/439204*24476^(2/21) 6099996720375165 a001 105937/90481*64079^(13/23) 6099996720397977 a001 514229/710647*64079^(14/23) 6099996720404097 a001 98209/219602*64079^(15/23) 6099996720404353 a001 1346269/1860498*64079^(14/23) 6099996720405283 a001 3524578/4870847*64079^(14/23) 6099996720405419 a001 9227465/12752043*64079^(14/23) 6099996720405439 a001 24157817/33385282*64079^(14/23) 6099996720405442 a001 63245986/87403803*64079^(14/23) 6099996720405442 a001 165580141/228826127*64079^(14/23) 6099996720405442 a001 433494437/599074578*64079^(14/23) 6099996720405442 a001 1134903170/1568397607*64079^(14/23) 6099996720405442 a001 2971215073/4106118243*64079^(14/23) 6099996720405442 a001 7778742049/10749957122*64079^(14/23) 6099996720405442 a001 20365011074/28143753123*64079^(14/23) 6099996720405442 a001 53316291173/73681302247*64079^(14/23) 6099996720405442 a001 139583862445/192900153618*64079^(14/23) 6099996720405442 a001 365435296162/505019158607*64079^(14/23) 6099996720405442 a001 10610209857723/14662949395604*64079^(14/23) 6099996720405442 a001 591286729879/817138163596*64079^(14/23) 6099996720405442 a001 225851433717/312119004989*64079^(14/23) 6099996720405442 a001 86267571272/119218851371*64079^(14/23) 6099996720405442 a001 32951280099/45537549124*64079^(14/23) 6099996720405442 a001 12586269025/17393796001*64079^(14/23) 6099996720405442 a001 4807526976/6643838879*64079^(14/23) 6099996720405442 a001 1836311903/2537720636*64079^(14/23) 6099996720405442 a001 701408733/969323029*64079^(14/23) 6099996720405442 a001 267914296/370248451*64079^(14/23) 6099996720405442 a001 102334155/141422324*64079^(14/23) 6099996720405443 a001 39088169/54018521*64079^(14/23) 6099996720405451 a001 14930352/20633239*64079^(14/23) 6099996720405503 a001 5702887/7881196*64079^(14/23) 6099996720405858 a001 2178309/3010349*64079^(14/23) 6099996720408294 a001 832040/1149851*64079^(14/23) 6099996720410216 a001 75025/271443*64079^(16/23) 6099996720419278 a001 5702887/103682*64079^(5/23) 6099996720424986 a001 317811/439204*64079^(14/23) 6099996720456192 a001 832040/710647*64079^(13/23) 6099996720456448 a001 514229/271443*64079^(12/23) 6099996720460037 a001 75025/439204*64079^(17/23) 6099996720468014 a001 726103/620166*64079^(13/23) 6099996720469738 a001 5702887/4870847*64079^(13/23) 6099996720469990 a001 4976784/4250681*64079^(13/23) 6099996720470027 a001 39088169/33385282*64079^(13/23) 6099996720470032 a001 34111385/29134601*64079^(13/23) 6099996720470033 a001 267914296/228826127*64079^(13/23) 6099996720470033 a001 233802911/199691526*64079^(13/23) 6099996720470033 a001 1836311903/1568397607*64079^(13/23) 6099996720470033 a001 1602508992/1368706081*64079^(13/23) 6099996720470033 a001 12586269025/10749957122*64079^(13/23) 6099996720470033 a001 10983760033/9381251041*64079^(13/23) 6099996720470033 a001 86267571272/73681302247*64079^(13/23) 6099996720470033 a001 75283811239/64300051206*64079^(13/23) 6099996720470033 a001 2504730781961/2139295485799*64079^(13/23) 6099996720470033 a001 365435296162/312119004989*64079^(13/23) 6099996720470033 a001 139583862445/119218851371*64079^(13/23) 6099996720470033 a001 53316291173/45537549124*64079^(13/23) 6099996720470033 a001 20365011074/17393796001*64079^(13/23) 6099996720470033 a001 7778742049/6643838879*64079^(13/23) 6099996720470033 a001 2971215073/2537720636*64079^(13/23) 6099996720470033 a001 1134903170/969323029*64079^(13/23) 6099996720470033 a001 433494437/370248451*64079^(13/23) 6099996720470033 a001 165580141/141422324*64079^(13/23) 6099996720470035 a001 63245986/54018521*64079^(13/23) 6099996720470049 a001 24157817/20633239*64079^(13/23) 6099996720470145 a001 9227465/7881196*64079^(13/23) 6099996720470804 a001 3524578/3010349*64079^(13/23) 6099996720472549 a001 1762289/12238*9349^(3/19) 6099996720475320 a001 1346269/1149851*64079^(13/23) 6099996720483920 a001 9227465/103682*64079^(4/23) 6099996720506269 a001 514229/439204*64079^(13/23) 6099996720514663 a001 832040/271443*64079^(11/23) 6099996720523218 a001 1346269/710647*64079^(12/23) 6099996720525525 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^34 6099996720529477 a001 23184/51841*103682^(5/8) 6099996720532960 a001 1762289/930249*64079^(12/23) 6099996720534381 a001 9227465/4870847*64079^(12/23) 6099996720534588 a001 24157817/12752043*64079^(12/23) 6099996720534619 a001 31622993/16692641*64079^(12/23) 6099996720534623 a001 165580141/87403803*64079^(12/23) 6099996720534624 a001 433494437/228826127*64079^(12/23) 6099996720534624 a001 567451585/299537289*64079^(12/23) 6099996720534624 a001 2971215073/1568397607*64079^(12/23) 6099996720534624 a001 7778742049/4106118243*64079^(12/23) 6099996720534624 a001 10182505537/5374978561*64079^(12/23) 6099996720534624 a001 53316291173/28143753123*64079^(12/23) 6099996720534624 a001 139583862445/73681302247*64079^(12/23) 6099996720534624 a001 182717648081/96450076809*64079^(12/23) 6099996720534624 a001 956722026041/505019158607*64079^(12/23) 6099996720534624 a001 10610209857723/5600748293801*64079^(12/23) 6099996720534624 a001 591286729879/312119004989*64079^(12/23) 6099996720534624 a001 225851433717/119218851371*64079^(12/23) 6099996720534624 a001 21566892818/11384387281*64079^(12/23) 6099996720534624 a001 32951280099/17393796001*64079^(12/23) 6099996720534624 a001 12586269025/6643838879*64079^(12/23) 6099996720534624 a001 1201881744/634430159*64079^(12/23) 6099996720534624 a001 1836311903/969323029*64079^(12/23) 6099996720534624 a001 701408733/370248451*64079^(12/23) 6099996720534624 a001 66978574/35355581*64079^(12/23) 6099996720534626 a001 102334155/54018521*64079^(12/23) 6099996720534637 a001 39088169/20633239*64079^(12/23) 6099996720534716 a001 3732588/1970299*64079^(12/23) 6099996720535259 a001 5702887/3010349*64079^(12/23) 6099996720538980 a001 2178309/1149851*64079^(12/23) 6099996720539397 a001 121393/167761*64079^(14/23) 6099996720548491 a001 7465176/51841*64079^(3/23) 6099996720556707 a001 39088169/167761*24476^(2/21) 6099996720564484 a001 208010/109801*64079^(12/23) 6099996720573487 a001 46368/1149851*167761^(4/5) 6099996720581689 a001 1346269/271443*64079^(10/23) 6099996720586879 a001 311187/101521*64079^(11/23) 6099996720597415 a001 5702887/1860498*64079^(11/23) 6099996720598952 a001 14930352/4870847*64079^(11/23) 6099996720599176 a001 39088169/12752043*64079^(11/23) 6099996720599209 a001 14619165/4769326*64079^(11/23) 6099996720599214 a001 267914296/87403803*64079^(11/23) 6099996720599214 a001 701408733/228826127*64079^(11/23) 6099996720599214 a001 1836311903/599074578*64079^(11/23) 6099996720599214 a001 686789568/224056801*64079^(11/23) 6099996720599214 a001 12586269025/4106118243*64079^(11/23) 6099996720599214 a001 32951280099/10749957122*64079^(11/23) 6099996720599214 a001 86267571272/28143753123*64079^(11/23) 6099996720599214 a001 32264490531/10525900321*64079^(11/23) 6099996720599214 a001 591286729879/192900153618*64079^(11/23) 6099996720599214 a001 1548008755920/505019158607*64079^(11/23) 6099996720599214 a001 1515744265389/494493258286*64079^(11/23) 6099996720599214 a001 2504730781961/817138163596*64079^(11/23) 6099996720599214 a001 956722026041/312119004989*64079^(11/23) 6099996720599214 a001 365435296162/119218851371*64079^(11/23) 6099996720599214 a001 139583862445/45537549124*64079^(11/23) 6099996720599214 a001 53316291173/17393796001*64079^(11/23) 6099996720599214 a001 20365011074/6643838879*64079^(11/23) 6099996720599214 a001 7778742049/2537720636*64079^(11/23) 6099996720599214 a001 2971215073/969323029*64079^(11/23) 6099996720599214 a001 1134903170/370248451*64079^(11/23) 6099996720599215 a001 433494437/141422324*64079^(11/23) 6099996720599217 a001 165580141/54018521*64079^(11/23) 6099996720599229 a001 63245986/20633239*64079^(11/23) 6099996720599315 a001 24157817/7881196*64079^(11/23) 6099996720599902 a001 9227465/3010349*64079^(11/23) 6099996720603926 a001 3524578/1149851*64079^(11/23) 6099996720613089 a001 24157817/103682*64079^(2/23) 6099996720631510 a001 1346269/439204*64079^(11/23) 6099996720645350 a001 726103/90481*64079^(9/23) 6099996720651825 a001 3524578/710647*64079^(10/23) 6099996720659466 a001 5628750624/9227465 6099996720659480 a001 121393/103682*141422324^(1/3) 6099996720659480 a001 15456/90481*45537549124^(1/3) 6099996720659480 a001 15456/90481*(1/2+1/2*5^(1/2))^17 6099996720659480 a001 121393/103682*(1/2+1/2*5^(1/2))^13 6099996720659480 a001 121393/103682*73681302247^(1/4) 6099996720659499 a001 15456/90481*12752043^(1/2) 6099996720660185 a001 514229/103682*167761^(2/5) 6099996720662057 a001 9227465/1860498*64079^(10/23) 6099996720663550 a001 24157817/4870847*64079^(10/23) 6099996720663768 a001 63245986/12752043*64079^(10/23) 6099996720663800 a001 165580141/33385282*64079^(10/23) 6099996720663804 a001 433494437/87403803*64079^(10/23) 6099996720663805 a001 1134903170/228826127*64079^(10/23) 6099996720663805 a001 2971215073/599074578*64079^(10/23) 6099996720663805 a001 7778742049/1568397607*64079^(10/23) 6099996720663805 a001 20365011074/4106118243*64079^(10/23) 6099996720663805 a001 53316291173/10749957122*64079^(10/23) 6099996720663805 a001 139583862445/28143753123*64079^(10/23) 6099996720663805 a001 365435296162/73681302247*64079^(10/23) 6099996720663805 a001 956722026041/192900153618*64079^(10/23) 6099996720663805 a001 2504730781961/505019158607*64079^(10/23) 6099996720663805 a001 10610209857723/2139295485799*64079^(10/23) 6099996720663805 a001 4052739537881/817138163596*64079^(10/23) 6099996720663805 a001 140728068720/28374454999*64079^(10/23) 6099996720663805 a001 591286729879/119218851371*64079^(10/23) 6099996720663805 a001 225851433717/45537549124*64079^(10/23) 6099996720663805 a001 86267571272/17393796001*64079^(10/23) 6099996720663805 a001 32951280099/6643838879*64079^(10/23) 6099996720663805 a001 1144206275/230701876*64079^(10/23) 6099996720663805 a001 4807526976/969323029*64079^(10/23) 6099996720663805 a001 1836311903/370248451*64079^(10/23) 6099996720663805 a001 701408733/141422324*64079^(10/23) 6099996720663807 a001 267914296/54018521*64079^(10/23) 6099996720663819 a001 9303105/1875749*64079^(10/23) 6099996720663903 a001 39088169/7881196*64079^(10/23) 6099996720664473 a001 14930352/3010349*64079^(10/23) 6099996720668381 a001 5702887/1149851*64079^(10/23) 6099996720677677 a001 39088169/103682*64079^(1/23) 6099996720695171 a001 2178309/439204*64079^(10/23) 6099996720696562 a001 17711/271443*39603^(19/22) 6099996720698882 a001 5702887/103682*167761^(1/5) 6099996720700874 a001 121393/103682*271443^(1/2) 6099996720710296 a001 3524578/271443*64079^(8/23) 6099996720710646 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^36 6099996720714258 a001 11592/1970299*439204^(8/9) 6099996720715911 a001 2576/103361*439204^(7/9) 6099996720716280 a001 5702887/710647*64079^(9/23) 6099996720718400 a001 196418/167761*64079^(13/23) 6099996720726628 a001 829464/103361*64079^(9/23) 6099996720728138 a001 39088169/4870847*64079^(9/23) 6099996720728358 a001 34111385/4250681*64079^(9/23) 6099996720728390 a001 133957148/16692641*64079^(9/23) 6099996720728395 a001 233802911/29134601*64079^(9/23) 6099996720728396 a001 1836311903/228826127*64079^(9/23) 6099996720728396 a001 267084832/33281921*64079^(9/23) 6099996720728396 a001 12586269025/1568397607*64079^(9/23) 6099996720728396 a001 10983760033/1368706081*64079^(9/23) 6099996720728396 a001 43133785636/5374978561*64079^(9/23) 6099996720728396 a001 75283811239/9381251041*64079^(9/23) 6099996720728396 a001 591286729879/73681302247*64079^(9/23) 6099996720728396 a001 86000486440/10716675201*64079^(9/23) 6099996720728396 a001 4052739537881/505019158607*64079^(9/23) 6099996720728396 a001 3536736619241/440719107401*64079^(9/23) 6099996720728396 a001 3278735159921/408569081798*64079^(9/23) 6099996720728396 a001 2504730781961/312119004989*64079^(9/23) 6099996720728396 a001 956722026041/119218851371*64079^(9/23) 6099996720728396 a001 182717648081/22768774562*64079^(9/23) 6099996720728396 a001 139583862445/17393796001*64079^(9/23) 6099996720728396 a001 53316291173/6643838879*64079^(9/23) 6099996720728396 a001 10182505537/1268860318*64079^(9/23) 6099996720728396 a001 7778742049/969323029*64079^(9/23) 6099996720728396 a001 2971215073/370248451*64079^(9/23) 6099996720728396 a001 567451585/70711162*64079^(9/23) 6099996720728398 a001 433494437/54018521*64079^(9/23) 6099996720728410 a001 165580141/20633239*64079^(9/23) 6099996720728494 a001 31622993/3940598*64079^(9/23) 6099996720729071 a001 24157817/3010349*64079^(9/23) 6099996720729966 a001 416020/51841*439204^(1/3) 6099996720730157 a001 317811/103682*7881196^(1/3) 6099996720730188 a001 14736260448/24157817 6099996720730190 a001 6624/101521*817138163596^(1/3) 6099996720730190 a001 6624/101521*(1/2+1/2*5^(1/2))^19 6099996720730190 a001 317811/103682*312119004989^(1/5) 6099996720730190 a001 317811/103682*(1/2+1/2*5^(1/2))^11 6099996720730190 a001 317811/103682*1568397607^(1/4) 6099996720730190 a001 6624/101521*87403803^(1/2) 6099996720733024 a001 9227465/1149851*64079^(9/23) 6099996720735340 a001 1762289/51841*439204^(2/9) 6099996720737655 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^38 6099996720738750 a001 7465176/51841*439204^(1/9) 6099996720739289 a001 317811/167761*64079^(12/23) 6099996720740444 a001 2576/103361*7881196^(7/11) 6099996720740480 a001 416020/51841*7881196^(3/11) 6099996720740498 a001 2576/103361*20633239^(3/5) 6099996720740506 a001 19290015360/31622993 6099996720740506 a001 2576/103361*141422324^(7/13) 6099996720740506 a001 416020/51841*141422324^(3/13) 6099996720740507 a001 2576/103361*2537720636^(7/15) 6099996720740507 a001 416020/51841*2537720636^(1/5) 6099996720740507 a001 2576/103361*17393796001^(3/7) 6099996720740507 a001 2576/103361*45537549124^(7/17) 6099996720740507 a001 2576/103361*14662949395604^(1/3) 6099996720740507 a001 2576/103361*(1/2+1/2*5^(1/2))^21 6099996720740507 a001 2576/103361*192900153618^(7/18) 6099996720740507 a001 2576/103361*10749957122^(7/16) 6099996720740507 a001 416020/51841*45537549124^(3/17) 6099996720740507 a001 416020/51841*817138163596^(3/19) 6099996720740507 a001 416020/51841*14662949395604^(1/7) 6099996720740507 a001 416020/51841*(1/2+1/2*5^(1/2))^9 6099996720740507 a001 416020/51841*192900153618^(1/6) 6099996720740507 a001 416020/51841*10749957122^(3/16) 6099996720740507 a001 416020/51841*599074578^(3/14) 6099996720740507 a001 2576/103361*599074578^(1/2) 6099996720740508 a001 416020/51841*33385282^(1/4) 6099996720740510 a001 2576/103361*33385282^(7/12) 6099996720741035 a001 416020/51841*1860498^(3/10) 6099996720741596 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^40 6099996720741740 a001 2576/103361*1860498^(7/10) 6099996720742009 a001 46347/2206*20633239^(1/5) 6099996720742012 a001 101003831712/165580141 6099996720742012 a001 46368/4870847*(1/2+1/2*5^(1/2))^23 6099996720742012 a001 46347/2206*17393796001^(1/7) 6099996720742012 a001 46347/2206*14662949395604^(1/9) 6099996720742012 a001 46347/2206*(1/2+1/2*5^(1/2))^7 6099996720742012 a001 46368/4870847*4106118243^(1/2) 6099996720742012 a001 46347/2206*599074578^(1/6) 6099996720742049 a001 34111385/90481*24476^(1/21) 6099996720742171 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^42 6099996720742180 a001 11592/35355581*7881196^(10/11) 6099996720742183 a001 144/103681*7881196^(9/11) 6099996720742221 a001 15456/4250681*20633239^(5/7) 6099996720742229 a001 5702887/103682*20633239^(1/7) 6099996720742231 a001 264431464416/433494437 6099996720742231 a001 15456/4250681*2537720636^(5/9) 6099996720742231 a001 5702887/103682*2537720636^(1/9) 6099996720742231 a001 15456/4250681*312119004989^(5/11) 6099996720742231 a001 15456/4250681*(1/2+1/2*5^(1/2))^25 6099996720742231 a001 15456/4250681*3461452808002^(5/12) 6099996720742231 a001 15456/4250681*28143753123^(1/2) 6099996720742231 a001 5702887/103682*312119004989^(1/11) 6099996720742231 a001 5702887/103682*(1/2+1/2*5^(1/2))^5 6099996720742231 a001 5702887/103682*28143753123^(1/10) 6099996720742231 a001 5702887/103682*228826127^(1/8) 6099996720742231 a001 15456/4250681*228826127^(5/8) 6099996720742254 a001 7465176/51841*7881196^(1/11) 6099996720742254 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^44 6099996720742257 a001 11592/35355581*20633239^(6/7) 6099996720742259 a001 46368/54018521*20633239^(4/5) 6099996720742263 a001 144/103681*141422324^(9/13) 6099996720742263 a001 7465176/51841*141422324^(1/13) 6099996720742263 a001 20361487104/33379505 6099996720742263 a001 144/103681*2537720636^(3/5) 6099996720742263 a001 7465176/51841*2537720636^(1/15) 6099996720742263 a001 144/103681*45537549124^(9/17) 6099996720742263 a001 144/103681*817138163596^(9/19) 6099996720742263 a001 144/103681*14662949395604^(3/7) 6099996720742263 a001 144/103681*(1/2+1/2*5^(1/2))^27 6099996720742263 a001 144/103681*192900153618^(1/2) 6099996720742263 a001 144/103681*10749957122^(9/16) 6099996720742263 a001 7465176/51841*45537549124^(1/17) 6099996720742263 a001 7465176/51841*14662949395604^(1/21) 6099996720742263 a001 7465176/51841*(1/2+1/2*5^(1/2))^3 6099996720742263 a001 7465176/51841*192900153618^(1/18) 6099996720742263 a001 7465176/51841*10749957122^(1/16) 6099996720742263 a001 7465176/51841*599074578^(1/14) 6099996720742263 a001 144/103681*599074578^(9/14) 6099996720742264 a001 7465176/51841*33385282^(1/12) 6099996720742267 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^46 6099996720742267 a001 144/103681*33385282^(3/4) 6099996720742268 a001 1812440220192/2971215073 6099996720742268 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(38) 6099996720742268 a001 15456/29134601*1322157322203^(1/2) 6099996720742268 a001 39088169/207364+39088169/207364*5^(1/2) 6099996720742269 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^48 6099996720742269 a001 11592/634430159*141422324^(12/13) 6099996720742269 a001 2576/33281921*141422324^(11/13) 6099996720742269 a001 4745030099040/7778742049 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(40) 6099996720742269 a001 46368/228826127*9062201101803^(1/2) 6099996720742269 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2) 6099996720742269 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^50 6099996720742269 a001 2576/33281921*2537720636^(11/15) 6099996720742269 a001 6211325038464/10182505537 6099996720742269 a001 2576/33281921*45537549124^(11/17) 6099996720742269 a001 2576/33281921*312119004989^(3/5) 6099996720742269 a001 2576/33281921*14662949395604^(11/21) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(42) 6099996720742269 a001 2576/33281921*192900153618^(11/18) 6099996720742269 a001 2576/33281921*10749957122^(11/16) 6099996720742269 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^3 6099996720742269 a001 2576/33281921*1568397607^(3/4) 6099996720742269 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^52 6099996720742269 a001 2576/33281921*599074578^(11/14) 6099996720742269 a001 6624/224056801*2537720636^(7/9) 6099996720742269 a001 6624/224056801*17393796001^(5/7) 6099996720742269 a001 32522920131744/53316291173 6099996720742269 a001 6624/224056801*312119004989^(7/11) 6099996720742269 a001 6624/224056801*14662949395604^(5/9) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(44) 6099996720742269 a001 6624/224056801*505019158607^(5/8) 6099996720742269 a001 6624/224056801*28143753123^(7/10) 6099996720742269 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^5 6099996720742269 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^54 6099996720742269 a001 11592/11384387281*2537720636^(14/15) 6099996720742269 a001 23184/5374978561*2537720636^(13/15) 6099996720742269 a001 46368/17393796001*2537720636^(8/9) 6099996720742269 a001 85146110318304/139583862445 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(46) 6099996720742269 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^7 6099996720742269 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^56 6099996720742269 a001 23184/5374978561*45537549124^(13/17) 6099996720742269 a001 111457705411584/182717648081 6099996720742269 a001 23184/5374978561*14662949395604^(13/21) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(48) 6099996720742269 a001 23184/5374978561*192900153618^(13/18) 6099996720742269 a001 23184/5374978561*73681302247^(3/4) 6099996720742269 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^58 6099996720742269 a001 11592/11384387281*17393796001^(6/7) 6099996720742269 a001 23184/5374978561*10749957122^(13/16) 6099996720742269 a001 583600122151200/956722026041 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(50) 6099996720742269 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^60 6099996720742269 a001 2576/10716675201*45537549124^(15/17) 6099996720742269 a001 11592/204284540899*45537549124^(16/17) 6099996720742269 a001 1527884955630432/2504730781961 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(52) 6099996720742269 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^62 6099996720742269 a001 2576/10716675201*312119004989^(9/11) 6099996720742269 a001 117648668962944/192866774113 6099996720742269 a001 2576/10716675201*14662949395604^(5/7) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(54) 6099996720742269 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^64 6099996720742269 a001 46368/2139295485799*312119004989^(10/11) 6099996720742269 a001 2576/10716675201*192900153618^(5/6) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(56) 6099996720742269 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^66 6099996720742269 a001 144/10749853441*817138163596^(17/19) 6099996720742269 a001 15456/440719107401*14662949395604^(7/9) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(58) 6099996720742269 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^68 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(60) 6099996720742269 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^70 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(62) 6099996720742269 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^72 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(64) 6099996720742269 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^74 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(66) 6099996720742269 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^76 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(68) 6099996720742269 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^78 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(70) 6099996720742269 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^80 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(72) 6099996720742269 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^82 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(74) 6099996720742269 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^84 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(76) 6099996720742269 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^86 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(78) 6099996720742269 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^88 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(80) 6099996720742269 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^90 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(82) 6099996720742269 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^92 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(84) 6099996720742269 a004 Fibonacci(24)*Lucas(85)/(1/2+sqrt(5)/2)^94 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(86) 6099996720742269 a004 Fibonacci(24)*Lucas(87)/(1/2+sqrt(5)/2)^96 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(88) 6099996720742269 a004 Fibonacci(24)*Lucas(89)/(1/2+sqrt(5)/2)^98 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(90) 6099996720742269 a004 Fibonacci(24)*Lucas(91)/(1/2+sqrt(5)/2)^100 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(92) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^85/Lucas(94) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^87/Lucas(96) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^89/Lucas(98) 6099996720742269 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^9 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^90/Lucas(99) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^91/Lucas(100) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^88/Lucas(97) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^86/Lucas(95) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(93) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(91) 6099996720742269 a004 Fibonacci(24)*Lucas(90)/(1/2+sqrt(5)/2)^99 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(89) 6099996720742269 a004 Fibonacci(24)*Lucas(88)/(1/2+sqrt(5)/2)^97 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(87) 6099996720742269 a004 Fibonacci(24)*Lucas(86)/(1/2+sqrt(5)/2)^95 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(85) 6099996720742269 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^93 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(83) 6099996720742269 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^91 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(81) 6099996720742269 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^89 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(79) 6099996720742269 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^87 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(77) 6099996720742269 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^85 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(75) 6099996720742269 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^83 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(73) 6099996720742269 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^81 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(71) 6099996720742269 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^79 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(69) 6099996720742269 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^77 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(67) 6099996720742269 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^75 6099996720742269 a001 11592/3665737348901*14662949395604^(6/7) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(65) 6099996720742269 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^73 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(63) 6099996720742269 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^71 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(61) 6099996720742269 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^69 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(59) 6099996720742269 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^67 6099996720742269 a001 11592/204284540899*14662949395604^(16/21) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(57) 6099996720742269 a001 15456/440719107401*505019158607^(7/8) 6099996720742269 a001 46368/5600748293801*505019158607^(13/14) 6099996720742269 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^65 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(55) 6099996720742269 a001 308201168278560/505248088463 6099996720742269 a001 144/10749853441*192900153618^(17/18) 6099996720742269 a001 11592/204284540899*192900153618^(8/9) 6099996720742269 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^63 6099996720742269 a001 46368/119218851371*312119004989^(4/5) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(53) 6099996720742269 a001 46368/119218851371*23725150497407^(11/16) 6099996720742269 a001 2472169789109664/4052739537881 6099996720742269 a001 11592/11384387281*45537549124^(14/17) 6099996720742269 a001 11592/204284540899*73681302247^(12/13) 6099996720742269 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^61 6099996720742269 a001 46368/119218851371*73681302247^(11/13) 6099996720742269 a001 11592/11384387281*817138163596^(14/19) 6099996720742269 a001 11592/11384387281*14662949395604^(2/3) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(51) 6099996720742269 a001 6557533565828/10750060805 6099996720742269 a001 11592/11384387281*505019158607^(3/4) 6099996720742269 a001 11592/11384387281*192900153618^(7/9) 6099996720742269 a001 2576/10716675201*28143753123^(9/10) 6099996720742269 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^59 6099996720742269 a001 46368/17393796001*312119004989^(8/11) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(49) 6099996720742269 a001 46368/17393796001*23725150497407^(5/8) 6099996720742269 a001 360684711328032/591286729879 6099996720742269 a001 46368/17393796001*73681302247^(10/13) 6099996720742269 a001 46368/17393796001*28143753123^(4/5) 6099996720742269 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^11 6099996720742269 a001 46368/119218851371*10749957122^(11/12) 6099996720742269 a001 11592/11384387281*10749957122^(7/8) 6099996720742269 a001 2576/10716675201*10749957122^(15/16) 6099996720742269 a001 46368/312119004989*10749957122^(23/24) 6099996720742269 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^13 6099996720742269 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^15 6099996720742269 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^17 6099996720742269 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^19 6099996720742269 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^21 6099996720742269 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^23 6099996720742269 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^25 6099996720742269 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^27 6099996720742269 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^29 6099996720742269 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^31 6099996720742269 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^33 6099996720742269 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^35 6099996720742269 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^37 6099996720742269 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^39 6099996720742269 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^41 6099996720742269 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^43 6099996720742269 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^45 6099996720742269 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^47 6099996720742269 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^49 6099996720742269 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^51 6099996720742269 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^53 6099996720742269 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^55 6099996720742269 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^57 6099996720742269 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^59 6099996720742269 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^61 6099996720742269 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^60 6099996720742269 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^58 6099996720742269 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^56 6099996720742269 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^54 6099996720742269 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^52 6099996720742269 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^50 6099996720742269 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^48 6099996720742269 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^46 6099996720742269 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^44 6099996720742269 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^42 6099996720742269 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^40 6099996720742269 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^38 6099996720742269 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^36 6099996720742269 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^34 6099996720742269 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^32 6099996720742269 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^30 6099996720742269 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^28 6099996720742269 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^26 6099996720742269 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^24 6099996720742269 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^22 6099996720742269 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^20 6099996720742269 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^18 6099996720742269 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^16 6099996720742269 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^14 6099996720742269 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^12 6099996720742269 a001 46368/17393796001*10749957122^(5/6) 6099996720742269 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^10 6099996720742269 a001 46368/6643838879*817138163596^(2/3) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(47) 6099996720742269 a001 6560442881184/10754830177 6099996720742269 a001 46368/6643838879*10749957122^(19/24) 6099996720742269 a001 11592/634430159*2537720636^(4/5) 6099996720742269 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^8 6099996720742269 a001 11592/11384387281*4106118243^(21/23) 6099996720742269 a001 46368/17393796001*4106118243^(20/23) 6099996720742269 a001 46368/119218851371*4106118243^(22/23) 6099996720742269 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^55 6099996720742269 a001 46368/6643838879*4106118243^(19/23) 6099996720742269 a001 11592/634430159*45537549124^(12/17) 6099996720742269 a001 11592/634430159*14662949395604^(4/7) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(45) 6099996720742269 a001 11592/634430159*505019158607^(9/14) 6099996720742269 a001 11592/634430159*192900153618^(2/3) 6099996720742269 a001 386935221960/634320377 6099996720742269 a001 11592/634430159*73681302247^(9/13) 6099996720742269 a001 11592/634430159*10749957122^(3/4) 6099996720742269 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^6 6099996720742269 a001 11592/634430159*4106118243^(18/23) 6099996720742269 a001 46368/17393796001*1568397607^(10/11) 6099996720742269 a001 46368/6643838879*1568397607^(19/22) 6099996720742269 a001 11592/11384387281*1568397607^(21/22) 6099996720742269 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^53 6099996720742269 a001 11592/634430159*1568397607^(9/11) 6099996720742269 a001 46368/969323029*45537549124^(2/3) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(43) 6099996720742269 a001 6700090018272/10983760033 6099996720742269 a001 46368/969323029*10749957122^(17/24) 6099996720742269 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^4 6099996720742269 a001 46368/969323029*4106118243^(17/23) 6099996720742269 a001 46368/969323029*1568397607^(17/22) 6099996720742269 a001 6624/224056801*599074578^(5/6) 6099996720742269 a001 11592/634430159*599074578^(6/7) 6099996720742269 a001 46368/6643838879*599074578^(19/21) 6099996720742269 a001 23184/5374978561*599074578^(13/14) 6099996720742269 a001 46368/17393796001*599074578^(20/21) 6099996720742269 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^51 6099996720742269 a001 46368/969323029*599074578^(17/21) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(41) 6099996720742269 a001 46368/370248451*23725150497407^(1/2) 6099996720742269 a001 46368/370248451*505019158607^(4/7) 6099996720742269 a001 46368/370248451*73681302247^(8/13) 6099996720742269 a001 7677619977888/12586269025 6099996720742269 a001 46368/370248451*10749957122^(2/3) 6099996720742269 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^2 6099996720742269 a001 46368/370248451*4106118243^(16/23) 6099996720742269 a001 46368/370248451*1568397607^(8/11) 6099996720742269 a001 46368/370248451*599074578^(16/21) 6099996720742269 a001 11592/35355581*141422324^(10/13) 6099996720742269 a001 6624/224056801*228826127^(7/8) 6099996720742269 a001 46368/969323029*228826127^(17/20) 6099996720742269 a001 11592/634430159*228826127^(9/10) 6099996720742269 a001 46368/6643838879*228826127^(19/20) 6099996720742269 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^49 6099996720742269 a001 46368/370248451*228826127^(4/5) 6099996720742269 a001 11592/35355581*2537720636^(2/3) 6099996720742269 a001 11592/35355581*45537549124^(10/17) 6099996720742269 a001 11592/35355581*312119004989^(6/11) 6099996720742269 a001 11592/35355581*14662949395604^(10/21) 6099996720742269 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(39) 6099996720742269 a001 11592/35355581*192900153618^(5/9) 6099996720742269 a001 11592/35355581*28143753123^(3/5) 6099996720742269 a001 11592/35355581*10749957122^(5/8) 6099996720742269 a001 31622993/51841 6099996720742269 a001 11592/35355581*4106118243^(15/23) 6099996720742269 a001 11592/35355581*1568397607^(15/22) 6099996720742269 a001 11592/35355581*599074578^(5/7) 6099996720742269 a001 11592/35355581*228826127^(3/4) 6099996720742270 a001 46368/370248451*87403803^(16/19) 6099996720742270 a001 46368/969323029*87403803^(17/19) 6099996720742270 a001 11592/634430159*87403803^(18/19) 6099996720742270 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^47 6099996720742270 a001 11592/35355581*87403803^(15/19) 6099996720742271 a001 46368/54018521*17393796001^(4/7) 6099996720742271 a001 46368/54018521*14662949395604^(4/9) 6099996720742271 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(37) 6099996720742271 a001 46368/54018521*505019158607^(1/2) 6099996720742271 a001 46368/54018521*73681302247^(7/13) 6099996720742271 a001 46368/54018521*10749957122^(7/12) 6099996720742271 a001 24157817/103682*(1/2+1/2*5^(1/2))^2 6099996720742271 a001 24157817/103682*10749957122^(1/24) 6099996720742271 a001 24157817/103682*4106118243^(1/23) 6099996720742271 a001 24157817/103682*1568397607^(1/22) 6099996720742271 a001 46368/54018521*4106118243^(14/23) 6099996720742271 a001 1120149658656/1836311903 6099996720742271 a001 24157817/103682*599074578^(1/21) 6099996720742271 a001 46368/54018521*1568397607^(7/11) 6099996720742271 a001 24157817/103682*228826127^(1/20) 6099996720742271 a001 46368/54018521*599074578^(2/3) 6099996720742271 a001 24157817/103682*87403803^(1/19) 6099996720742271 a001 46368/54018521*228826127^(7/10) 6099996720742271 a001 24157817/103682*33385282^(1/18) 6099996720742272 a001 46368/54018521*87403803^(14/19) 6099996720742273 a001 24157817/103682*12752043^(1/17) 6099996720742274 a001 11592/35355581*33385282^(5/6) 6099996720742274 a001 46368/370248451*33385282^(8/9) 6099996720742274 a001 2576/33281921*33385282^(11/12) 6099996720742274 a001 46368/969323029*33385282^(17/18) 6099996720742274 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^45 6099996720742275 a001 46368/54018521*33385282^(7/9) 6099996720742283 a001 46368/20633239*141422324^(2/3) 6099996720742283 a001 46368/20633239*(1/2+1/2*5^(1/2))^26 6099996720742283 a001 46368/20633239*73681302247^(1/2) 6099996720742283 a001 46368/20633239*10749957122^(13/24) 6099996720742283 a001 9227465/103682*(1/2+1/2*5^(1/2))^4 6099996720742283 a001 9227465/103682*23725150497407^(1/16) 6099996720742283 a001 9227465/103682*73681302247^(1/13) 6099996720742283 a001 9227465/103682*10749957122^(1/12) 6099996720742283 a001 9227465/103682*4106118243^(2/23) 6099996720742283 a001 46368/20633239*4106118243^(13/23) 6099996720742283 a001 9227465/103682*1568397607^(1/11) 6099996720742283 a001 46368/20633239*1568397607^(13/22) 6099996720742283 a001 9227465/103682*599074578^(2/21) 6099996720742283 a001 142619699040/233802911 6099996720742283 a001 46368/20633239*599074578^(13/21) 6099996720742283 a001 9227465/103682*228826127^(1/10) 6099996720742283 a001 46368/20633239*228826127^(13/20) 6099996720742283 a001 9227465/103682*87403803^(2/19) 6099996720742284 a001 46368/20633239*87403803^(13/19) 6099996720742284 a001 9227465/103682*33385282^(1/9) 6099996720742287 a001 24157817/103682*4870847^(1/16) 6099996720742287 a001 46368/20633239*33385282^(13/18) 6099996720742288 a001 9227465/103682*12752043^(2/17) 6099996720742296 a001 11592/1970299*7881196^(8/11) 6099996720742302 a001 46368/54018521*12752043^(14/17) 6099996720742302 a001 11592/35355581*12752043^(15/17) 6099996720742304 a001 46368/370248451*12752043^(16/17) 6099996720742306 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^43 6099996720742312 a001 46368/20633239*12752043^(13/17) 6099996720742315 a001 9227465/103682*4870847^(1/8) 6099996720742349 a001 1762289/51841*7881196^(2/11) 6099996720742367 a001 11592/1970299*141422324^(8/13) 6099996720742367 a001 1762289/51841*141422324^(2/13) 6099996720742367 a001 11592/1970299*2537720636^(8/15) 6099996720742367 a001 1762289/51841*2537720636^(2/15) 6099996720742367 a001 11592/1970299*45537549124^(8/17) 6099996720742367 a001 11592/1970299*14662949395604^(8/21) 6099996720742367 a001 11592/1970299*(1/2+1/2*5^(1/2))^24 6099996720742367 a001 11592/1970299*192900153618^(4/9) 6099996720742367 a001 11592/1970299*73681302247^(6/13) 6099996720742367 a001 11592/1970299*10749957122^(1/2) 6099996720742367 a001 1762289/51841*45537549124^(2/17) 6099996720742367 a001 1762289/51841*14662949395604^(2/21) 6099996720742367 a001 1762289/51841*(1/2+1/2*5^(1/2))^6 6099996720742367 a001 1762289/51841*10749957122^(1/8) 6099996720742367 a001 1762289/51841*4106118243^(3/23) 6099996720742367 a001 11592/1970299*4106118243^(12/23) 6099996720742367 a001 1762289/51841*1568397607^(3/22) 6099996720742367 a001 11592/1970299*1568397607^(6/11) 6099996720742367 a001 1762289/51841*599074578^(1/7) 6099996720742367 a001 11592/1970299*599074578^(4/7) 6099996720742367 a001 20428454088/33489287 6099996720742367 a001 1762289/51841*228826127^(3/20) 6099996720742367 a001 11592/1970299*228826127^(3/5) 6099996720742367 a001 1762289/51841*87403803^(3/19) 6099996720742368 a001 11592/1970299*87403803^(12/19) 6099996720742368 a001 1762289/51841*33385282^(1/6) 6099996720742371 a001 11592/1970299*33385282^(2/3) 6099996720742374 a001 1762289/51841*12752043^(3/17) 6099996720742388 a001 24157817/103682*1860498^(1/15) 6099996720742394 a001 11592/1970299*12752043^(12/17) 6099996720742415 a001 1762289/51841*4870847^(3/16) 6099996720742440 a001 7465176/51841*1860498^(1/10) 6099996720742492 a001 46368/20633239*4870847^(13/16) 6099996720742496 a001 46368/54018521*4870847^(7/8) 6099996720742510 a001 11592/35355581*4870847^(15/16) 6099996720742518 a001 9227465/103682*1860498^(2/15) 6099996720742525 a001 5702887/103682*1860498^(1/6) 6099996720742526 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^41 6099996720742560 a001 11592/1970299*4870847^(3/4) 6099996720742719 a001 1762289/51841*1860498^(1/5) 6099996720742876 a001 46368/3010349*7881196^(2/3) 6099996720742942 a001 46368/3010349*312119004989^(2/5) 6099996720742942 a001 46368/3010349*(1/2+1/2*5^(1/2))^22 6099996720742942 a001 46368/3010349*10749957122^(11/24) 6099996720742942 a001 1346269/103682*(1/2+1/2*5^(1/2))^8 6099996720742942 a001 1346269/103682*23725150497407^(1/8) 6099996720742942 a001 1346269/103682*505019158607^(1/7) 6099996720742942 a001 1346269/103682*73681302247^(2/13) 6099996720742942 a001 1346269/103682*10749957122^(1/6) 6099996720742942 a001 1346269/103682*4106118243^(4/23) 6099996720742942 a001 46368/3010349*4106118243^(11/23) 6099996720742942 a001 1346269/103682*1568397607^(2/11) 6099996720742942 a001 46368/3010349*1568397607^(1/2) 6099996720742942 a001 1346269/103682*599074578^(4/21) 6099996720742942 a001 46368/3010349*599074578^(11/21) 6099996720742942 a001 1346269/103682*228826127^(1/5) 6099996720742942 a001 46368/3010349*228826127^(11/20) 6099996720742942 a001 2972561952/4873055 6099996720742942 a001 1346269/103682*87403803^(4/19) 6099996720742942 a001 46368/3010349*87403803^(11/19) 6099996720742943 a001 1346269/103682*33385282^(2/9) 6099996720742945 a001 46368/3010349*33385282^(11/18) 6099996720742951 a001 1346269/103682*12752043^(4/17) 6099996720742966 a001 46368/3010349*12752043^(11/17) 6099996720743006 a001 1346269/103682*4870847^(1/4) 6099996720743119 a001 46368/3010349*4870847^(11/16) 6099996720743134 a001 24157817/103682*710647^(1/14) 6099996720743412 a001 1346269/103682*1860498^(4/15) 6099996720743700 a001 15456/4250681*1860498^(5/6) 6099996720743777 a001 11592/1970299*1860498^(4/5) 6099996720743810 a001 46368/20633239*1860498^(13/15) 6099996720743849 a001 144/103681*1860498^(9/10) 6099996720743916 a001 46368/54018521*1860498^(14/15) 6099996720744009 a001 9227465/103682*710647^(1/7) 6099996720744031 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^39 6099996720744234 a001 46368/3010349*1860498^(11/15) 6099996720744955 a001 1762289/51841*710647^(3/14) 6099996720745031 a001 46347/2206*710647^(1/4) 6099996720746393 a001 1346269/103682*710647^(2/7) 6099996720746874 a001 46368/1149851*20633239^(4/7) 6099996720746878 a001 514229/103682*20633239^(2/7) 6099996720746882 a001 46368/1149851*2537720636^(4/9) 6099996720746882 a001 514229/103682*2537720636^(2/9) 6099996720746882 a001 46368/1149851*(1/2+1/2*5^(1/2))^20 6099996720746882 a001 46368/1149851*23725150497407^(5/16) 6099996720746882 a001 46368/1149851*505019158607^(5/14) 6099996720746882 a001 46368/1149851*73681302247^(5/13) 6099996720746882 a001 46368/1149851*28143753123^(2/5) 6099996720746882 a001 46368/1149851*10749957122^(5/12) 6099996720746882 a001 514229/103682*312119004989^(2/11) 6099996720746882 a001 514229/103682*(1/2+1/2*5^(1/2))^10 6099996720746882 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^10/Lucas(24) 6099996720746882 a001 514229/103682*28143753123^(1/5) 6099996720746882 a001 514229/103682*10749957122^(5/24) 6099996720746882 a001 514229/103682*4106118243^(5/23) 6099996720746882 a001 46368/1149851*4106118243^(10/23) 6099996720746882 a001 514229/103682*1568397607^(5/22) 6099996720746882 a001 46368/1149851*1568397607^(5/11) 6099996720746883 a001 514229/103682*599074578^(5/21) 6099996720746883 a001 46368/1149851*599074578^(10/21) 6099996720746883 a001 514229/103682*228826127^(1/4) 6099996720746883 a001 46368/1149851*228826127^(1/2) 6099996720746883 a001 514229/103682*87403803^(5/19) 6099996720746883 a001 46368/1149851*87403803^(10/19) 6099996720746883 a001 23843770272/39088169 6099996720746884 a001 514229/103682*33385282^(5/18) 6099996720746886 a001 46368/1149851*33385282^(5/9) 6099996720746894 a001 514229/103682*12752043^(5/17) 6099996720746905 a001 46368/1149851*12752043^(10/17) 6099996720746963 a001 514229/103682*4870847^(5/16) 6099996720747043 a001 46368/1149851*4870847^(5/8) 6099996720747470 a001 514229/103682*1860498^(1/3) 6099996720748057 a001 46368/1149851*1860498^(2/3) 6099996720748639 a001 24157817/103682*271443^(1/13) 6099996720749566 a001 2576/103361*710647^(3/4) 6099996720751196 a001 514229/103682*710647^(5/14) 6099996720752432 a001 46368/3010349*710647^(11/14) 6099996720752720 a001 11592/1970299*710647^(6/7) 6099996720752810 a001 11592/109801*439204^(2/3) 6099996720753499 a001 46368/20633239*710647^(13/14) 6099996720754348 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^37 6099996720755020 a001 9227465/103682*271443^(2/13) 6099996720755510 a001 46368/1149851*710647^(5/7) 6099996720759837 a001 98209/51841*439204^(4/9) 6099996720760117 a001 1762289/219602*64079^(9/23) 6099996720761472 a001 1762289/51841*271443^(3/13) 6099996720765912 a001 39088169/103682*103682^(1/24) 6099996720768415 a001 1346269/103682*271443^(4/13) 6099996720773838 a001 11592/109801*7881196^(6/11) 6099996720773856 a001 98209/51841*7881196^(4/11) 6099996720773891 a001 11592/109801*141422324^(6/13) 6099996720773891 a001 98209/51841*141422324^(4/13) 6099996720773891 a001 11592/109801*2537720636^(2/5) 6099996720773891 a001 98209/51841*2537720636^(4/15) 6099996720773891 a001 11592/109801*45537549124^(6/17) 6099996720773891 a001 11592/109801*14662949395604^(2/7) 6099996720773891 a001 11592/109801*(1/2+1/2*5^(1/2))^18 6099996720773891 a001 11592/109801*192900153618^(1/3) 6099996720773891 a001 11592/109801*10749957122^(3/8) 6099996720773891 a001 98209/51841*45537549124^(4/17) 6099996720773891 a001 98209/51841*817138163596^(4/19) 6099996720773891 a001 98209/51841*14662949395604^(4/21) 6099996720773891 a001 98209/51841*(1/2+1/2*5^(1/2))^12 6099996720773891 a001 98209/51841*192900153618^(2/9) 6099996720773891 a001 98209/51841*73681302247^(3/13) 6099996720773891 a001 98209/51841*10749957122^(1/4) 6099996720773891 a001 11592/109801*4106118243^(9/23) 6099996720773891 a001 98209/51841*4106118243^(6/23) 6099996720773891 a001 98209/51841*1568397607^(3/11) 6099996720773891 a001 11592/109801*1568397607^(9/22) 6099996720773891 a001 98209/51841*599074578^(2/7) 6099996720773891 a001 11592/109801*599074578^(3/7) 6099996720773891 a001 98209/51841*228826127^(3/10) 6099996720773891 a001 11592/109801*228826127^(9/20) 6099996720773892 a001 98209/51841*87403803^(6/19) 6099996720773892 a001 11592/109801*87403803^(9/19) 6099996720773893 a001 98209/51841*33385282^(1/3) 6099996720773894 a001 11592/109801*33385282^(1/2) 6099996720773897 a001 3720388/6099 6099996720773905 a001 98209/51841*12752043^(6/17) 6099996720773911 a001 11592/109801*12752043^(9/17) 6099996720773988 a001 98209/51841*4870847^(3/8) 6099996720774036 a001 11592/109801*4870847^(9/16) 6099996720774340 a001 75025/167761*64079^(15/23) 6099996720774596 a001 98209/51841*1860498^(2/5) 6099996720774751 a001 5702887/271443*64079^(7/23) 6099996720774949 a001 11592/109801*1860498^(3/5) 6099996720778724 a001 514229/103682*271443^(5/13) 6099996720779068 a001 98209/51841*710647^(3/7) 6099996720780922 a001 9227465/710647*64079^(8/23) 6099996720781656 a001 11592/109801*710647^(9/14) 6099996720789558 a001 24157817/103682*103682^(1/12) 6099996720791226 a001 24157817/1860498*64079^(8/23) 6099996720792730 a001 63245986/4870847*64079^(8/23) 6099996720792949 a001 165580141/12752043*64079^(8/23) 6099996720792981 a001 433494437/33385282*64079^(8/23) 6099996720792986 a001 1134903170/87403803*64079^(8/23) 6099996720792987 a001 2971215073/228826127*64079^(8/23) 6099996720792987 a001 7778742049/599074578*64079^(8/23) 6099996720792987 a001 20365011074/1568397607*64079^(8/23) 6099996720792987 a001 53316291173/4106118243*64079^(8/23) 6099996720792987 a001 139583862445/10749957122*64079^(8/23) 6099996720792987 a001 365435296162/28143753123*64079^(8/23) 6099996720792987 a001 956722026041/73681302247*64079^(8/23) 6099996720792987 a001 2504730781961/192900153618*64079^(8/23) 6099996720792987 a001 10610209857723/817138163596*64079^(8/23) 6099996720792987 a001 4052739537881/312119004989*64079^(8/23) 6099996720792987 a001 1548008755920/119218851371*64079^(8/23) 6099996720792987 a001 591286729879/45537549124*64079^(8/23) 6099996720792987 a001 7787980473/599786069*64079^(8/23) 6099996720792987 a001 86267571272/6643838879*64079^(8/23) 6099996720792987 a001 32951280099/2537720636*64079^(8/23) 6099996720792987 a001 12586269025/969323029*64079^(8/23) 6099996720792987 a001 4807526976/370248451*64079^(8/23) 6099996720792987 a001 1836311903/141422324*64079^(8/23) 6099996720792989 a001 701408733/54018521*64079^(8/23) 6099996720793001 a001 9238424/711491*64079^(8/23) 6099996720793085 a001 102334155/7881196*64079^(8/23) 6099996720793659 a001 39088169/3010349*64079^(8/23) 6099996720797595 a001 14930352/1149851*64079^(8/23) 6099996720810566 a001 46368/1149851*271443^(10/13) 6099996720812102 a001 98209/51841*271443^(6/13) 6099996720812759 a001 267914296/710647*24476^(1/21) 6099996720812994 a001 46368/3010349*271443^(11/13) 6099996720813194 a001 7465176/51841*103682^(1/8) 6099996720814517 a001 17711/24476*24476^(2/3) 6099996720818788 a001 11592/1970299*271443^(12/13) 6099996720819308 a001 17711/167761*39603^(9/11) 6099996720820572 a001 514229/167761*64079^(11/23) 6099996720823076 a001 233802911/620166*24476^(1/21) 6099996720824572 a001 5702887/439204*64079^(8/23) 6099996720824581 a001 1836311903/4870847*24476^(1/21) 6099996720824801 a001 1602508992/4250681*24476^(1/21) 6099996720824833 a001 12586269025/33385282*24476^(1/21) 6099996720824837 a001 10983760033/29134601*24476^(1/21) 6099996720824838 a001 86267571272/228826127*24476^(1/21) 6099996720824838 a001 267913919/710646*24476^(1/21) 6099996720824838 a001 591286729879/1568397607*24476^(1/21) 6099996720824838 a001 516002918640/1368706081*24476^(1/21) 6099996720824838 a001 4052739537881/10749957122*24476^(1/21) 6099996720824838 a001 3536736619241/9381251041*24476^(1/21) 6099996720824838 a001 6557470319842/17393796001*24476^(1/21) 6099996720824838 a001 2504730781961/6643838879*24476^(1/21) 6099996720824838 a001 956722026041/2537720636*24476^(1/21) 6099996720824838 a001 365435296162/969323029*24476^(1/21) 6099996720824838 a001 139583862445/370248451*24476^(1/21) 6099996720824838 a001 53316291173/141422324*24476^(1/21) 6099996720824840 a001 20365011074/54018521*24476^(1/21) 6099996720824852 a001 7778742049/20633239*24476^(1/21) 6099996720824936 a001 2971215073/7881196*24476^(1/21) 6099996720825058 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^35 6099996720825511 a001 1134903170/3010349*24476^(1/21) 6099996720829452 a001 433494437/1149851*24476^(1/21) 6099996720831207 a001 11592/109801*271443^(9/13) 6099996720836857 a001 9227465/103682*103682^(1/6) 6099996720839394 a001 9227465/271443*64079^(6/23) 6099996720845493 a001 14930352/710647*64079^(7/23) 6099996720855764 a001 5702887/64079*24476^(4/21) 6099996720855814 a001 39088169/1860498*64079^(7/23) 6099996720856461 a001 165580141/439204*24476^(1/21) 6099996720857320 a001 102334155/4870847*64079^(7/23) 6099996720857540 a001 267914296/12752043*64079^(7/23) 6099996720857572 a001 701408733/33385282*64079^(7/23) 6099996720857577 a001 1836311903/87403803*64079^(7/23) 6099996720857577 a001 102287808/4868641*64079^(7/23) 6099996720857577 a001 12586269025/599074578*64079^(7/23) 6099996720857577 a001 32951280099/1568397607*64079^(7/23) 6099996720857577 a001 86267571272/4106118243*64079^(7/23) 6099996720857577 a001 225851433717/10749957122*64079^(7/23) 6099996720857577 a001 591286729879/28143753123*64079^(7/23) 6099996720857577 a001 1548008755920/73681302247*64079^(7/23) 6099996720857577 a001 4052739537881/192900153618*64079^(7/23) 6099996720857577 a001 225749145909/10745088481*64079^(7/23) 6099996720857577 a001 6557470319842/312119004989*64079^(7/23) 6099996720857577 a001 2504730781961/119218851371*64079^(7/23) 6099996720857577 a001 956722026041/45537549124*64079^(7/23) 6099996720857577 a001 365435296162/17393796001*64079^(7/23) 6099996720857577 a001 139583862445/6643838879*64079^(7/23) 6099996720857577 a001 53316291173/2537720636*64079^(7/23) 6099996720857577 a001 20365011074/969323029*64079^(7/23) 6099996720857577 a001 7778742049/370248451*64079^(7/23) 6099996720857578 a001 2971215073/141422324*64079^(7/23) 6099996720857580 a001 1134903170/54018521*64079^(7/23) 6099996720857592 a001 433494437/20633239*64079^(7/23) 6099996720857676 a001 165580141/7881196*64079^(7/23) 6099996720858251 a001 63245986/3010349*64079^(7/23) 6099996720860449 a001 5702887/103682*103682^(5/24) 6099996720862193 a001 24157817/1149851*64079^(7/23) 6099996720878787 a001 75640/15251*64079^(10/23) 6099996720884228 a001 1762289/51841*103682^(1/4) 6099996720889214 a001 9227465/439204*64079^(7/23) 6099996720903964 a001 4976784/90481*64079^(5/23) 6099996720907516 a001 46347/2206*103682^(7/24) 6099996720910092 a001 24157817/710647*64079^(6/23) 6099996720919055 a001 39088169/103682*39603^(1/22) 6099996720920406 a001 31622993/930249*64079^(6/23) 6099996720921911 a001 165580141/4870847*64079^(6/23) 6099996720922131 a001 433494437/12752043*64079^(6/23) 6099996720922163 a001 567451585/16692641*64079^(6/23) 6099996720922167 a001 2971215073/87403803*64079^(6/23) 6099996720922168 a001 7778742049/228826127*64079^(6/23) 6099996720922168 a001 10182505537/299537289*64079^(6/23) 6099996720922168 a001 53316291173/1568397607*64079^(6/23) 6099996720922168 a001 139583862445/4106118243*64079^(6/23) 6099996720922168 a001 182717648081/5374978561*64079^(6/23) 6099996720922168 a001 956722026041/28143753123*64079^(6/23) 6099996720922168 a001 2504730781961/73681302247*64079^(6/23) 6099996720922168 a001 3278735159921/96450076809*64079^(6/23) 6099996720922168 a001 10610209857723/312119004989*64079^(6/23) 6099996720922168 a001 4052739537881/119218851371*64079^(6/23) 6099996720922168 a001 387002188980/11384387281*64079^(6/23) 6099996720922168 a001 591286729879/17393796001*64079^(6/23) 6099996720922168 a001 225851433717/6643838879*64079^(6/23) 6099996720922168 a001 1135099622/33391061*64079^(6/23) 6099996720922168 a001 32951280099/969323029*64079^(6/23) 6099996720922168 a001 12586269025/370248451*64079^(6/23) 6099996720922168 a001 1201881744/35355581*64079^(6/23) 6099996720922170 a001 1836311903/54018521*64079^(6/23) 6099996720922182 a001 701408733/20633239*64079^(6/23) 6099996720922266 a001 66978574/1970299*64079^(6/23) 6099996720922841 a001 102334155/3010349*64079^(6/23) 6099996720926781 a001 39088169/1149851*64079^(6/23) 6099996720932090 a001 1346269/103682*103682^(1/3) 6099996720945813 a001 1346269/167761*64079^(9/23) 6099996720953298 a001 416020/51841*103682^(3/8) 6099996720953785 a001 196452/5779*64079^(6/23) 6099996720959007 a001 75025/103682*20633239^(2/5) 6099996720959013 a001 46368/167761*(1/2+1/2*5^(1/2))^16 6099996720959013 a001 46368/167761*23725150497407^(1/4) 6099996720959013 a001 46368/167761*73681302247^(4/13) 6099996720959013 a001 46368/167761*10749957122^(1/3) 6099996720959013 a001 75025/103682*17393796001^(2/7) 6099996720959013 a001 75025/103682*14662949395604^(2/9) 6099996720959013 a001 75025/103682*(1/2+1/2*5^(1/2))^14 6099996720959013 a001 75025/103682*10749957122^(7/24) 6099996720959013 a001 46368/167761*4106118243^(8/23) 6099996720959013 a001 75025/103682*4106118243^(7/23) 6099996720959013 a001 75025/103682*1568397607^(7/22) 6099996720959013 a001 46368/167761*1568397607^(4/11) 6099996720959013 a001 75025/103682*599074578^(1/3) 6099996720959013 a001 46368/167761*599074578^(8/21) 6099996720959013 a001 75025/103682*228826127^(7/20) 6099996720959013 a001 46368/167761*228826127^(2/5) 6099996720959013 a001 75025/103682*87403803^(7/19) 6099996720959013 a001 46368/167761*87403803^(8/19) 6099996720959015 a001 75025/103682*33385282^(7/18) 6099996720959016 a001 46368/167761*33385282^(4/9) 6099996720959029 a001 75025/103682*12752043^(7/17) 6099996720959031 a001 46368/167761*12752043^(8/17) 6099996720959051 a001 3478759200/5702887 6099996720959126 a001 75025/103682*4870847^(7/16) 6099996720959142 a001 46368/167761*4870847^(1/2) 6099996720959835 a001 75025/103682*1860498^(7/15) 6099996720959953 a001 46368/167761*1860498^(8/15) 6099996720965052 a001 75025/103682*710647^(1/2) 6099996720965915 a001 46368/167761*710647^(4/7) 6099996720966845 a001 121393/103682*103682^(13/24) 6099996720968563 a001 24157817/271443*64079^(4/23) 6099996720974679 a001 39088169/710647*64079^(5/23) 6099996720983317 a001 514229/103682*103682^(5/12) 6099996720984997 a001 831985/15126*64079^(5/23) 6099996720986502 a001 267914296/4870847*64079^(5/23) 6099996720986721 a001 233802911/4250681*64079^(5/23) 6099996720986753 a001 1836311903/33385282*64079^(5/23) 6099996720986758 a001 1602508992/29134601*64079^(5/23) 6099996720986759 a001 12586269025/228826127*64079^(5/23) 6099996720986759 a001 10983760033/199691526*64079^(5/23) 6099996720986759 a001 86267571272/1568397607*64079^(5/23) 6099996720986759 a001 75283811239/1368706081*64079^(5/23) 6099996720986759 a001 591286729879/10749957122*64079^(5/23) 6099996720986759 a001 12585437040/228811001*64079^(5/23) 6099996720986759 a001 4052739537881/73681302247*64079^(5/23) 6099996720986759 a001 3536736619241/64300051206*64079^(5/23) 6099996720986759 a001 6557470319842/119218851371*64079^(5/23) 6099996720986759 a001 2504730781961/45537549124*64079^(5/23) 6099996720986759 a001 956722026041/17393796001*64079^(5/23) 6099996720986759 a001 365435296162/6643838879*64079^(5/23) 6099996720986759 a001 139583862445/2537720636*64079^(5/23) 6099996720986759 a001 53316291173/969323029*64079^(5/23) 6099996720986759 a001 20365011074/370248451*64079^(5/23) 6099996720986759 a001 7778742049/141422324*64079^(5/23) 6099996720986761 a001 2971215073/54018521*64079^(5/23) 6099996720986773 a001 1134903170/20633239*64079^(5/23) 6099996720986857 a001 433494437/7881196*64079^(5/23) 6099996720987432 a001 165580141/3010349*64079^(5/23) 6099996720987761 a001 17711/439204*39603^(10/11) 6099996720990269 a001 317811/103682*103682^(11/24) 6099996720991373 a001 63245986/1149851*64079^(5/23) 6099996721003592 a001 75025/103682*271443^(7/13) 6099996721009474 a001 2178309/167761*64079^(8/23) 6099996721009960 a001 46368/167761*271443^(8/13) 6099996721010179 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^36 6099996721014088 a001 121393/271443*167761^(3/5) 6099996721018384 a001 24157817/439204*64079^(5/23) 6099996721033151 a001 39088169/271443*64079^(3/23) 6099996721039271 a001 63245986/710647*64079^(4/23) 6099996721041583 a001 63245986/167761*24476^(1/21) 6099996721049587 a001 165580141/1860498*64079^(4/23) 6099996721051093 a001 433494437/4870847*64079^(4/23) 6099996721051312 a001 1134903170/12752043*64079^(4/23) 6099996721051344 a001 2971215073/33385282*64079^(4/23) 6099996721051349 a001 7778742049/87403803*64079^(4/23) 6099996721051350 a001 20365011074/228826127*64079^(4/23) 6099996721051350 a001 53316291173/599074578*64079^(4/23) 6099996721051350 a001 139583862445/1568397607*64079^(4/23) 6099996721051350 a001 365435296162/4106118243*64079^(4/23) 6099996721051350 a001 956722026041/10749957122*64079^(4/23) 6099996721051350 a001 2504730781961/28143753123*64079^(4/23) 6099996721051350 a001 6557470319842/73681302247*64079^(4/23) 6099996721051350 a001 10610209857723/119218851371*64079^(4/23) 6099996721051350 a001 4052739537881/45537549124*64079^(4/23) 6099996721051350 a001 1548008755920/17393796001*64079^(4/23) 6099996721051350 a001 591286729879/6643838879*64079^(4/23) 6099996721051350 a001 225851433717/2537720636*64079^(4/23) 6099996721051350 a001 86267571272/969323029*64079^(4/23) 6099996721051350 a001 32951280099/370248451*64079^(4/23) 6099996721051350 a001 12586269025/141422324*64079^(4/23) 6099996721051352 a001 4807526976/54018521*64079^(4/23) 6099996721051364 a001 1836311903/20633239*64079^(4/23) 6099996721051448 a001 3524667/39604*64079^(4/23) 6099996721052023 a001 267914296/3010349*64079^(4/23) 6099996721054201 a001 121393/3010349*167761^(4/5) 6099996721055963 a001 102334155/1149851*64079^(4/23) 6099996721057613 a001 98209/51841*103682^(1/2) 6099996721061419 a001 15456/90481*103682^(17/24) 6099996721074420 a001 3524578/167761*64079^(7/23) 6099996721080890 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^38 6099996721082971 a001 39088169/439204*64079^(4/23) 6099996721091206 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^40 6099996721092711 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^42 6099996721092931 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^44 6099996721092963 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^46 6099996721092968 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^48 6099996721092968 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^50 6099996721092968 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^52 6099996721092968 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^54 6099996721092968 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^56 6099996721092968 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^58 6099996721092968 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^60 6099996721092968 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^62 6099996721092968 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^64 6099996721092968 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^66 6099996721092968 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^68 6099996721092968 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^70 6099996721092968 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^72 6099996721092968 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^74 6099996721092968 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^76 6099996721092968 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^78 6099996721092968 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^80 6099996721092968 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^82 6099996721092968 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^84 6099996721092968 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^86 6099996721092968 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^88 6099996721092968 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^90 6099996721092968 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^92 6099996721092968 a004 Fibonacci(84)*Lucas(25)/(1/2+sqrt(5)/2)^94 6099996721092968 a004 Fibonacci(86)*Lucas(25)/(1/2+sqrt(5)/2)^96 6099996721092968 a004 Fibonacci(88)*Lucas(25)/(1/2+sqrt(5)/2)^98 6099996721092968 a004 Fibonacci(90)*Lucas(25)/(1/2+sqrt(5)/2)^100 6099996721092968 a004 Fibonacci(89)*Lucas(25)/(1/2+sqrt(5)/2)^99 6099996721092968 a004 Fibonacci(87)*Lucas(25)/(1/2+sqrt(5)/2)^97 6099996721092968 a004 Fibonacci(85)*Lucas(25)/(1/2+sqrt(5)/2)^95 6099996721092968 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^93 6099996721092968 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^91 6099996721092968 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^89 6099996721092968 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^87 6099996721092968 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^85 6099996721092968 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^83 6099996721092968 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^81 6099996721092968 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^79 6099996721092968 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^77 6099996721092968 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^75 6099996721092968 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^73 6099996721092968 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^71 6099996721092968 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^69 6099996721092968 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^67 6099996721092968 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^65 6099996721092968 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^63 6099996721092968 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^61 6099996721092968 a001 2/75025*(1/2+1/2*5^(1/2))^40 6099996721092968 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^59 6099996721092968 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^57 6099996721092968 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^55 6099996721092968 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^53 6099996721092968 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^51 6099996721092969 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^49 6099996721092970 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^47 6099996721092983 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^45 6099996721093067 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^43 6099996721093603 a001 4181/39603*9349^(18/19) 6099996721093642 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^41 6099996721095845 a001 24157817/103682*39603^(1/11) 6099996721097582 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^39 6099996721097743 a001 63245986/271443*64079^(2/23) 6099996721103862 a001 14619165/101521*64079^(3/23) 6099996721114178 a001 133957148/930249*64079^(3/23) 6099996721115683 a001 701408733/4870847*64079^(3/23) 6099996721115903 a001 1836311903/12752043*64079^(3/23) 6099996721115935 a001 14930208/103681*64079^(3/23) 6099996721115940 a001 12586269025/87403803*64079^(3/23) 6099996721115940 a001 32951280099/228826127*64079^(3/23) 6099996721115940 a001 43133785636/299537289*64079^(3/23) 6099996721115940 a001 32264490531/224056801*64079^(3/23) 6099996721115940 a001 591286729879/4106118243*64079^(3/23) 6099996721115940 a001 774004377960/5374978561*64079^(3/23) 6099996721115940 a001 4052739537881/28143753123*64079^(3/23) 6099996721115940 a001 1515744265389/10525900321*64079^(3/23) 6099996721115940 a001 3278735159921/22768774562*64079^(3/23) 6099996721115940 a001 2504730781961/17393796001*64079^(3/23) 6099996721115940 a001 956722026041/6643838879*64079^(3/23) 6099996721115940 a001 182717648081/1268860318*64079^(3/23) 6099996721115940 a001 139583862445/969323029*64079^(3/23) 6099996721115940 a001 53316291173/370248451*64079^(3/23) 6099996721115941 a001 10182505537/70711162*64079^(3/23) 6099996721115942 a001 7778742049/54018521*64079^(3/23) 6099996721115955 a001 2971215073/20633239*64079^(3/23) 6099996721116039 a001 567451585/3940598*64079^(3/23) 6099996721116614 a001 433494437/3010349*64079^(3/23) 6099996721120554 a001 165580141/1149851*64079^(3/23) 6099996721120847 a001 17711/710647*39603^(21/22) 6099996721124337 a001 317811/7881196*167761^(4/5) 6099996721124591 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^37 6099996721126567 a001 121393/271443*439204^(5/9) 6099996721134569 a001 75640/1875749*167761^(4/5) 6099996721136062 a001 2178309/54018521*167761^(4/5) 6099996721136280 a001 5702887/141422324*167761^(4/5) 6099996721136312 a001 14930352/370248451*167761^(4/5) 6099996721136316 a001 39088169/969323029*167761^(4/5) 6099996721136317 a001 9303105/230701876*167761^(4/5) 6099996721136317 a001 267914296/6643838879*167761^(4/5) 6099996721136317 a001 701408733/17393796001*167761^(4/5) 6099996721136317 a001 1836311903/45537549124*167761^(4/5) 6099996721136317 a001 4807526976/119218851371*167761^(4/5) 6099996721136317 a001 1144206275/28374454999*167761^(4/5) 6099996721136317 a001 32951280099/817138163596*167761^(4/5) 6099996721136317 a001 86267571272/2139295485799*167761^(4/5) 6099996721136317 a001 225851433717/5600748293801*167761^(4/5) 6099996721136317 a001 591286729879/14662949395604*167761^(4/5) 6099996721136317 a001 365435296162/9062201101803*167761^(4/5) 6099996721136317 a001 139583862445/3461452808002*167761^(4/5) 6099996721136317 a001 53316291173/1322157322203*167761^(4/5) 6099996721136317 a001 20365011074/505019158607*167761^(4/5) 6099996721136317 a001 7778742049/192900153618*167761^(4/5) 6099996721136317 a001 2971215073/73681302247*167761^(4/5) 6099996721136317 a001 1134903170/28143753123*167761^(4/5) 6099996721136317 a001 433494437/10749957122*167761^(4/5) 6099996721136317 a001 165580141/4106118243*167761^(4/5) 6099996721136318 a001 63245986/1568397607*167761^(4/5) 6099996721136319 a001 24157817/599074578*167761^(4/5) 6099996721136331 a001 9227465/228826127*167761^(4/5) 6099996721136415 a001 3524578/87403803*167761^(4/5) 6099996721136985 a001 1346269/33385282*167761^(4/5) 6099996721138875 a001 5702887/167761*64079^(6/23) 6099996721140893 a001 514229/12752043*167761^(4/5) 6099996721140899 a001 1346269/271443*167761^(2/5) 6099996721144090 a001 121393/271443*7881196^(5/11) 6099996721144129 a001 121393/271443*20633239^(3/7) 6099996721144133 a001 14736260449/24157817 6099996721144135 a001 121393/271443*141422324^(5/13) 6099996721144135 a001 121393/271443*2537720636^(1/3) 6099996721144135 a001 121393/271443*45537549124^(5/17) 6099996721144135 a001 121393/271443*312119004989^(3/11) 6099996721144135 a001 121393/271443*14662949395604^(5/21) 6099996721144135 a001 121393/271443*(1/2+1/2*5^(1/2))^15 6099996721144135 a001 121393/271443*192900153618^(5/18) 6099996721144135 a001 121393/271443*28143753123^(3/10) 6099996721144135 a001 121393/271443*10749957122^(5/16) 6099996721144135 a001 121393/271443*599074578^(5/14) 6099996721144135 a001 121393/271443*228826127^(3/8) 6099996721144137 a001 121393/271443*33385282^(5/12) 6099996721145016 a001 121393/271443*1860498^(1/2) 6099996721147563 a001 31622993/219602*64079^(3/23) 6099996721155509 a001 317811/710647*167761^(3/5) 6099996721162333 a001 34111385/90481*64079^(1/23) 6099996721167683 a001 196418/4870847*167761^(4/5) 6099996721168452 a001 165580141/710647*64079^(2/23) 6099996721176142 a001 416020/930249*167761^(3/5) 6099996721178769 a001 433494437/1860498*64079^(2/23) 6099996721179152 a001 2178309/4870847*167761^(3/5) 6099996721179416 a001 6624/101521*103682^(19/24) 6099996721179591 a001 5702887/12752043*167761^(3/5) 6099996721179655 a001 7465176/16692641*167761^(3/5) 6099996721179664 a001 39088169/87403803*167761^(3/5) 6099996721179666 a001 102334155/228826127*167761^(3/5) 6099996721179666 a001 133957148/299537289*167761^(3/5) 6099996721179666 a001 701408733/1568397607*167761^(3/5) 6099996721179666 a001 1836311903/4106118243*167761^(3/5) 6099996721179666 a001 2403763488/5374978561*167761^(3/5) 6099996721179666 a001 12586269025/28143753123*167761^(3/5) 6099996721179666 a001 32951280099/73681302247*167761^(3/5) 6099996721179666 a001 43133785636/96450076809*167761^(3/5) 6099996721179666 a001 225851433717/505019158607*167761^(3/5) 6099996721179666 a001 591286729879/1322157322203*167761^(3/5) 6099996721179666 a001 10610209857723/23725150497407*167761^(3/5) 6099996721179666 a001 182717648081/408569081798*167761^(3/5) 6099996721179666 a001 139583862445/312119004989*167761^(3/5) 6099996721179666 a001 53316291173/119218851371*167761^(3/5) 6099996721179666 a001 10182505537/22768774562*167761^(3/5) 6099996721179666 a001 7778742049/17393796001*167761^(3/5) 6099996721179666 a001 2971215073/6643838879*167761^(3/5) 6099996721179666 a001 567451585/1268860318*167761^(3/5) 6099996721179666 a001 433494437/969323029*167761^(3/5) 6099996721179666 a001 165580141/370248451*167761^(3/5) 6099996721179667 a001 31622993/70711162*167761^(3/5) 6099996721179670 a001 24157817/54018521*167761^(3/5) 6099996721179695 a001 9227465/20633239*167761^(3/5) 6099996721179863 a001 1762289/3940598*167761^(3/5) 6099996721180274 a001 1134903170/4870847*64079^(2/23) 6099996721180494 a001 2971215073/12752043*64079^(2/23) 6099996721180526 a001 7778742049/33385282*64079^(2/23) 6099996721180530 a001 20365011074/87403803*64079^(2/23) 6099996721180531 a001 53316291173/228826127*64079^(2/23) 6099996721180531 a001 139583862445/599074578*64079^(2/23) 6099996721180531 a001 365435296162/1568397607*64079^(2/23) 6099996721180531 a001 956722026041/4106118243*64079^(2/23) 6099996721180531 a001 2504730781961/10749957122*64079^(2/23) 6099996721180531 a001 6557470319842/28143753123*64079^(2/23) 6099996721180531 a001 10610209857723/45537549124*64079^(2/23) 6099996721180531 a001 4052739537881/17393796001*64079^(2/23) 6099996721180531 a001 1548008755920/6643838879*64079^(2/23) 6099996721180531 a001 591286729879/2537720636*64079^(2/23) 6099996721180531 a001 225851433717/969323029*64079^(2/23) 6099996721180531 a001 86267571272/370248451*64079^(2/23) 6099996721180531 a001 63246219/271444*64079^(2/23) 6099996721180533 a001 12586269025/54018521*64079^(2/23) 6099996721180545 a001 4807526976/20633239*64079^(2/23) 6099996721180629 a001 1836311903/7881196*64079^(2/23) 6099996721181012 a001 1346269/3010349*167761^(3/5) 6099996721181204 a001 701408733/3010349*64079^(2/23) 6099996721183569 a001 4976784/90481*167761^(1/5) 6099996721185145 a001 267914296/1149851*64079^(2/23) 6099996721188893 a001 514229/1149851*167761^(3/5) 6099996721194404 a001 28657/103682*64079^(16/23) 6099996721195301 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^38 6099996721198829 a001 121393/20633239*439204^(8/9) 6099996721199474 a001 11592/109801*103682^(3/4) 6099996721202071 a001 121393/4870847*439204^(7/9) 6099996721203517 a001 9227465/167761*64079^(5/23) 6099996721210456 a001 121393/1149851*439204^(2/3) 6099996721211034 a001 3524578/710647*167761^(2/5) 6099996721212154 a001 102334155/439204*64079^(2/23) 6099996721214845 a001 165579531/271442 6099996721214845 a001 105937/90481*141422324^(1/3) 6099996721214845 a001 121393/710647*45537549124^(1/3) 6099996721214845 a001 121393/710647*(1/2+1/2*5^(1/2))^17 6099996721214845 a001 105937/90481*(1/2+1/2*5^(1/2))^13 6099996721214845 a001 105937/90481*73681302247^(1/4) 6099996721214864 a001 121393/710647*12752043^(1/2) 6099996721216126 a001 726103/90481*439204^(1/3) 6099996721217483 a001 514229/271443*439204^(4/9) 6099996721219752 a001 46368/1149851*103682^(5/6) 6099996721219911 a001 9227465/271443*439204^(2/9) 6099996721221267 a001 9227465/1860498*167761^(2/5) 6099996721222310 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^40 6099996721222760 a001 24157817/4870847*167761^(2/5) 6099996721222978 a001 63245986/12752043*167761^(2/5) 6099996721223010 a001 165580141/33385282*167761^(2/5) 6099996721223014 a001 433494437/87403803*167761^(2/5) 6099996721223015 a001 1134903170/228826127*167761^(2/5) 6099996721223015 a001 2971215073/599074578*167761^(2/5) 6099996721223015 a001 7778742049/1568397607*167761^(2/5) 6099996721223015 a001 20365011074/4106118243*167761^(2/5) 6099996721223015 a001 53316291173/10749957122*167761^(2/5) 6099996721223015 a001 139583862445/28143753123*167761^(2/5) 6099996721223015 a001 365435296162/73681302247*167761^(2/5) 6099996721223015 a001 956722026041/192900153618*167761^(2/5) 6099996721223015 a001 2504730781961/505019158607*167761^(2/5) 6099996721223015 a001 10610209857723/2139295485799*167761^(2/5) 6099996721223015 a001 4052739537881/817138163596*167761^(2/5) 6099996721223015 a001 140728068720/28374454999*167761^(2/5) 6099996721223015 a001 591286729879/119218851371*167761^(2/5) 6099996721223015 a001 225851433717/45537549124*167761^(2/5) 6099996721223015 a001 86267571272/17393796001*167761^(2/5) 6099996721223015 a001 32951280099/6643838879*167761^(2/5) 6099996721223015 a001 1144206275/230701876*167761^(2/5) 6099996721223015 a001 4807526976/969323029*167761^(2/5) 6099996721223015 a001 1836311903/370248451*167761^(2/5) 6099996721223015 a001 701408733/141422324*167761^(2/5) 6099996721223017 a001 267914296/54018521*167761^(2/5) 6099996721223029 a001 9303105/1875749*167761^(2/5) 6099996721223112 a001 39088169/7881196*167761^(2/5) 6099996721223409 a001 39088169/271443*439204^(1/9) 6099996721223683 a001 14930352/3010349*167761^(2/5) 6099996721225129 a001 832040/271443*7881196^(1/3) 6099996721225161 a001 101003831720/165580141 6099996721225161 a001 121393/1860498*817138163596^(1/3) 6099996721225161 a001 121393/1860498*(1/2+1/2*5^(1/2))^19 6099996721225161 a001 832040/271443*312119004989^(1/5) 6099996721225161 a001 832040/271443*(1/2+1/2*5^(1/2))^11 6099996721225161 a001 832040/271443*1568397607^(1/4) 6099996721225162 a001 121393/1860498*87403803^(1/2) 6099996721226251 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^42 6099996721226604 a001 121393/4870847*7881196^(7/11) 6099996721226640 a001 726103/90481*7881196^(3/11) 6099996721226658 a001 121393/4870847*20633239^(3/5) 6099996721226666 a001 121393/4870847*141422324^(7/13) 6099996721226667 a001 726103/90481*141422324^(3/13) 6099996721226667 a001 264431464437/433494437 6099996721226667 a001 121393/4870847*2537720636^(7/15) 6099996721226667 a001 726103/90481*2537720636^(1/5) 6099996721226667 a001 121393/4870847*17393796001^(3/7) 6099996721226667 a001 121393/4870847*45537549124^(7/17) 6099996721226667 a001 121393/4870847*14662949395604^(1/3) 6099996721226667 a001 121393/4870847*(1/2+1/2*5^(1/2))^21 6099996721226667 a001 121393/4870847*192900153618^(7/18) 6099996721226667 a001 726103/90481*45537549124^(3/17) 6099996721226667 a001 726103/90481*817138163596^(3/19) 6099996721226667 a001 726103/90481*14662949395604^(1/7) 6099996721226667 a001 726103/90481*(1/2+1/2*5^(1/2))^9 6099996721226667 a001 726103/90481*192900153618^(1/6) 6099996721226667 a001 726103/90481*10749957122^(3/16) 6099996721226667 a001 121393/4870847*10749957122^(7/16) 6099996721226667 a001 726103/90481*599074578^(3/14) 6099996721226667 a001 121393/4870847*599074578^(1/2) 6099996721226668 a001 726103/90481*33385282^(1/4) 6099996721226670 a001 121393/4870847*33385282^(7/12) 6099996721226826 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^44 6099996721226834 a001 121393/370248451*7881196^(10/11) 6099996721226843 a001 121393/87403803*7881196^(9/11) 6099996721226867 a001 121393/20633239*7881196^(8/11) 6099996721226883 a001 5702887/271443*20633239^(1/5) 6099996721226886 a001 692290561591/1134903170 6099996721226886 a001 5702887/271443*17393796001^(1/7) 6099996721226886 a001 121393/12752043*(1/2+1/2*5^(1/2))^23 6099996721226886 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^23/Lucas(34) 6099996721226886 a001 5702887/271443*14662949395604^(1/9) 6099996721226886 a001 5702887/271443*(1/2+1/2*5^(1/2))^7 6099996721226886 a001 121393/12752043*4106118243^(1/2) 6099996721226886 a001 5702887/271443*599074578^(1/6) 6099996721226908 a001 121393/33385282*20633239^(5/7) 6099996721226909 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^46 6099996721226911 a001 121393/370248451*20633239^(6/7) 6099996721226913 a001 233/271444*20633239^(4/5) 6099996721226914 a001 39088169/271443*7881196^(1/11) 6099996721226916 a001 4976784/90481*20633239^(1/7) 6099996721226918 a001 121393/33385282*2537720636^(5/9) 6099996721226918 a001 1812440220336/2971215073 6099996721226918 a001 4976784/90481*2537720636^(1/9) 6099996721226918 a001 121393/33385282*312119004989^(5/11) 6099996721226918 a001 121393/33385282*(1/2+1/2*5^(1/2))^25 6099996721226918 a001 121393/33385282*3461452808002^(5/12) 6099996721226918 a001 4976784/90481*312119004989^(1/11) 6099996721226918 a001 4976784/90481*(1/2+1/2*5^(1/2))^5 6099996721226918 a001 4976784/90481*28143753123^(1/10) 6099996721226918 a001 121393/33385282*28143753123^(1/2) 6099996721226918 a001 4976784/90481*228826127^(1/8) 6099996721226918 a001 121393/33385282*228826127^(5/8) 6099996721226920 a001 9227465/271443*7881196^(2/11) 6099996721226922 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^48 6099996721226923 a001 121393/87403803*141422324^(9/13) 6099996721226923 a001 39088169/271443*141422324^(1/13) 6099996721226923 a001 121393/87403803*2537720636^(3/5) 6099996721226923 a001 39088169/271443*2537720636^(1/15) 6099996721226923 a001 4745030099417/7778742049 6099996721226923 a001 121393/87403803*45537549124^(9/17) 6099996721226923 a001 121393/87403803*817138163596^(9/19) 6099996721226923 a001 121393/87403803*14662949395604^(3/7) 6099996721226923 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(38) 6099996721226923 a001 121393/87403803*192900153618^(1/2) 6099996721226923 a001 39088169/271443*45537549124^(1/17) 6099996721226923 a001 39088169/271443*14662949395604^(1/21) 6099996721226923 a001 39088169/271443*(1/2+1/2*5^(1/2))^3 6099996721226923 a001 39088169/271443*192900153618^(1/18) 6099996721226923 a001 39088169/271443*10749957122^(1/16) 6099996721226923 a001 121393/87403803*10749957122^(9/16) 6099996721226923 a001 39088169/271443*599074578^(1/14) 6099996721226923 a001 121393/87403803*599074578^(9/14) 6099996721226923 a001 39088169/271443*33385282^(1/12) 6099996721226923 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^50 6099996721226923 a001 121393/6643838879*141422324^(12/13) 6099996721226923 a001 121393/1568397607*141422324^(11/13) 6099996721226924 a001 121393/370248451*141422324^(10/13) 6099996721226924 a001 12422650077915/20365011074 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(40) 6099996721226924 a001 121393/228826127*1322157322203^(1/2) 6099996721226924 a001 34111385/180962+34111385/180962*5^(1/2) 6099996721226924 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^52 6099996721226924 a001 32522920134328/53316291173 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(42) 6099996721226924 a001 121393/599074578*9062201101803^(1/2) 6099996721226924 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2) 6099996721226924 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^54 6099996721226924 a001 121393/1568397607*2537720636^(11/15) 6099996721226924 a001 121393/1568397607*45537549124^(11/17) 6099996721226924 a001 956697868821/1568358005 6099996721226924 a001 121393/1568397607*312119004989^(3/5) 6099996721226924 a001 121393/1568397607*817138163596^(11/19) 6099996721226924 a001 121393/1568397607*14662949395604^(11/21) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(44) 6099996721226924 a001 121393/1568397607*192900153618^(11/18) 6099996721226924 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^3 6099996721226924 a001 121393/1568397607*10749957122^(11/16) 6099996721226924 a001 121393/4106118243*2537720636^(7/9) 6099996721226924 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^56 6099996721226924 a001 121393/119218851371*2537720636^(14/15) 6099996721226924 a001 121393/45537549124*2537720636^(8/9) 6099996721226924 a001 121393/28143753123*2537720636^(13/15) 6099996721226924 a001 121393/1568397607*1568397607^(3/4) 6099996721226924 a001 121393/6643838879*2537720636^(4/5) 6099996721226924 a001 121393/4106118243*17393796001^(5/7) 6099996721226924 a001 121393/4106118243*312119004989^(7/11) 6099996721226924 a001 121393/4106118243*14662949395604^(5/9) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(46) 6099996721226924 a001 121393/4106118243*505019158607^(5/8) 6099996721226924 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^5 6099996721226924 a001 121393/4106118243*28143753123^(7/10) 6099996721226924 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^58 6099996721226924 a001 583600122197568/956722026041 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(48) 6099996721226924 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^7 6099996721226924 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^60 6099996721226924 a001 121393/119218851371*17393796001^(6/7) 6099996721226924 a001 121393/28143753123*45537549124^(13/17) 6099996721226924 a001 1527884955751825/2504730781961 6099996721226924 a001 121393/28143753123*14662949395604^(13/21) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(50) 6099996721226924 a001 121393/28143753123*192900153618^(13/18) 6099996721226924 a001 121393/28143753123*73681302247^(3/4) 6099996721226924 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^9 6099996721226924 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^62 6099996721226924 a001 121393/2139295485799*45537549124^(16/17) 6099996721226924 a001 121393/505019158607*45537549124^(15/17) 6099996721226924 a001 121393/119218851371*45537549124^(14/17) 6099996721226924 a001 4000054745057907/6557470319842 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(52) 6099996721226924 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^64 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(54) 6099996721226924 a001 121393/505019158607*312119004989^(9/11) 6099996721226924 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^66 6099996721226924 a001 121393/5600748293801*312119004989^(10/11) 6099996721226924 a001 121393/505019158607*14662949395604^(5/7) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(56) 6099996721226924 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^68 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(58) 6099996721226924 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^70 6099996721226924 a001 121393/3461452808002*14662949395604^(7/9) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(60) 6099996721226924 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^72 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(62) 6099996721226924 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^74 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(64) 6099996721226924 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^76 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(66) 6099996721226924 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^78 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(68) 6099996721226924 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^80 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(70) 6099996721226924 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^82 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(72) 6099996721226924 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^84 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(74) 6099996721226924 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^86 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(76) 6099996721226924 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^88 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(78) 6099996721226924 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^90 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(80) 6099996721226924 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^92 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(82) 6099996721226924 a004 Fibonacci(26)*Lucas(83)/(1/2+sqrt(5)/2)^94 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(84) 6099996721226924 a004 Fibonacci(26)*Lucas(85)/(1/2+sqrt(5)/2)^96 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(86) 6099996721226924 a004 Fibonacci(26)*Lucas(87)/(1/2+sqrt(5)/2)^98 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(88) 6099996721226924 a004 Fibonacci(26)*Lucas(89)/(1/2+sqrt(5)/2)^100 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(90) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(92) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^83/Lucas(94) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^85/Lucas(96) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^87/Lucas(98) 6099996721226924 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^11 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^88/Lucas(99) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^89/Lucas(100) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^86/Lucas(97) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^84/Lucas(95) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(93) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(91) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(89) 6099996721226924 a004 Fibonacci(26)*Lucas(88)/(1/2+sqrt(5)/2)^99 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(87) 6099996721226924 a004 Fibonacci(26)*Lucas(86)/(1/2+sqrt(5)/2)^97 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(85) 6099996721226924 a004 Fibonacci(26)*Lucas(84)/(1/2+sqrt(5)/2)^95 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(83) 6099996721226924 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^93 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(81) 6099996721226924 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^91 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(79) 6099996721226924 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^89 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(77) 6099996721226924 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^87 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(75) 6099996721226924 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^85 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(73) 6099996721226924 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^83 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(71) 6099996721226924 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^81 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(69) 6099996721226924 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^79 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(67) 6099996721226924 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^77 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(65) 6099996721226924 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^75 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(63) 6099996721226924 a001 121393/14662949395604*23725150497407^(13/16) 6099996721226924 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^73 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(61) 6099996721226924 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^71 6099996721226924 a001 121393/2139295485799*14662949395604^(16/21) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(59) 6099996721226924 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^69 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(57) 6099996721226924 a001 121393/3461452808002*505019158607^(7/8) 6099996721226924 a001 121393/14662949395604*505019158607^(13/14) 6099996721226924 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^67 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(55) 6099996721226924 a001 121393/312119004989*23725150497407^(11/16) 6099996721226924 a001 121393/505019158607*192900153618^(5/6) 6099996721226924 a001 121393/2139295485799*192900153618^(8/9) 6099996721226924 a001 121393/9062201101803*192900153618^(17/18) 6099996721226924 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^65 6099996721226924 a001 121393/119218851371*817138163596^(14/19) 6099996721226924 a001 121393/119218851371*14662949395604^(2/3) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(53) 6099996721226924 a001 121393/119218851371*505019158607^(3/4) 6099996721226924 a001 121393/119218851371*192900153618^(7/9) 6099996721226924 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^13 6099996721226924 a001 121393/312119004989*73681302247^(11/13) 6099996721226924 a001 121393/2139295485799*73681302247^(12/13) 6099996721226924 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^15 6099996721226924 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^17 6099996721226924 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^19 6099996721226924 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^21 6099996721226924 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^23 6099996721226924 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^25 6099996721226924 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^27 6099996721226924 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^29 6099996721226924 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^31 6099996721226924 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^33 6099996721226924 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^35 6099996721226924 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^37 6099996721226924 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^39 6099996721226924 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^41 6099996721226924 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^43 6099996721226924 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^45 6099996721226924 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^47 6099996721226924 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^49 6099996721226924 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^51 6099996721226924 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^53 6099996721226924 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^55 6099996721226924 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^59 6099996721226924 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^63 6099996721226924 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^57 6099996721226924 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^58 6099996721226924 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^56 6099996721226924 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^54 6099996721226924 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^52 6099996721226924 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^50 6099996721226924 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^48 6099996721226924 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^46 6099996721226924 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^44 6099996721226924 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^42 6099996721226924 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^40 6099996721226924 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^38 6099996721226924 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^36 6099996721226924 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^34 6099996721226924 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^32 6099996721226924 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^30 6099996721226924 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^28 6099996721226924 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^26 6099996721226924 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^24 6099996721226924 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^22 6099996721226924 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^20 6099996721226924 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^18 6099996721226924 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^16 6099996721226924 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^14 6099996721226924 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^12 6099996721226924 a001 121393/45537549124*312119004989^(8/11) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(51) 6099996721226924 a001 121393/45537549124*23725150497407^(5/8) 6099996721226924 a001 2472169789306082/4052739537881 6099996721226924 a001 121393/45537549124*73681302247^(10/13) 6099996721226924 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^10 6099996721226924 a001 121393/505019158607*28143753123^(9/10) 6099996721226924 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^61 6099996721226924 a001 121393/45537549124*28143753123^(4/5) 6099996721226924 a001 121393/17393796001*817138163596^(2/3) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(49) 6099996721226924 a001 944284833554257/1548008755920 6099996721226924 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^8 6099996721226924 a001 121393/28143753123*10749957122^(13/16) 6099996721226924 a001 121393/119218851371*10749957122^(7/8) 6099996721226924 a001 121393/45537549124*10749957122^(5/6) 6099996721226924 a001 121393/312119004989*10749957122^(11/12) 6099996721226924 a001 121393/505019158607*10749957122^(15/16) 6099996721226924 a001 121393/817138163596*10749957122^(23/24) 6099996721226924 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^59 6099996721226924 a001 121393/17393796001*10749957122^(19/24) 6099996721226924 a001 121393/6643838879*45537549124^(12/17) 6099996721226924 a001 121393/6643838879*14662949395604^(4/7) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(47) 6099996721226924 a001 360684711356689/591286729879 6099996721226924 a001 121393/6643838879*505019158607^(9/14) 6099996721226924 a001 121393/6643838879*192900153618^(2/3) 6099996721226924 a001 121393/6643838879*73681302247^(9/13) 6099996721226924 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^6 6099996721226924 a001 121393/6643838879*10749957122^(3/4) 6099996721226924 a001 121393/45537549124*4106118243^(20/23) 6099996721226924 a001 121393/17393796001*4106118243^(19/23) 6099996721226924 a001 121393/119218851371*4106118243^(21/23) 6099996721226924 a001 121393/312119004989*4106118243^(22/23) 6099996721226924 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^57 6099996721226924 a001 121393/6643838879*4106118243^(18/23) 6099996721226924 a001 121393/2537720636*45537549124^(2/3) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(45) 6099996721226924 a001 137769300515810/225851433717 6099996721226924 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^4 6099996721226924 a001 121393/2537720636*10749957122^(17/24) 6099996721226924 a001 121393/2537720636*4106118243^(17/23) 6099996721226924 a001 121393/17393796001*1568397607^(19/22) 6099996721226924 a001 121393/6643838879*1568397607^(9/11) 6099996721226924 a001 121393/45537549124*1568397607^(10/11) 6099996721226924 a001 121393/119218851371*1568397607^(21/22) 6099996721226924 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^55 6099996721226924 a001 121393/2537720636*1568397607^(17/22) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(43) 6099996721226924 a001 121393/969323029*23725150497407^(1/2) 6099996721226924 a001 121393/969323029*505019158607^(4/7) 6099996721226924 a001 52623190190741/86267571272 6099996721226924 a001 121393/969323029*73681302247^(8/13) 6099996721226924 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^2 6099996721226924 a001 121393/969323029*10749957122^(2/3) 6099996721226924 a001 121393/969323029*4106118243^(16/23) 6099996721226924 a001 121393/969323029*1568397607^(8/11) 6099996721226924 a001 121393/1568397607*599074578^(11/14) 6099996721226924 a001 121393/4106118243*599074578^(5/6) 6099996721226924 a001 121393/2537720636*599074578^(17/21) 6099996721226924 a001 121393/6643838879*599074578^(6/7) 6099996721226924 a001 121393/17393796001*599074578^(19/21) 6099996721226924 a001 121393/28143753123*599074578^(13/14) 6099996721226924 a001 121393/45537549124*599074578^(20/21) 6099996721226924 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^53 6099996721226924 a001 121393/969323029*599074578^(16/21) 6099996721226924 a001 121393/370248451*2537720636^(2/3) 6099996721226924 a001 121393/370248451*45537549124^(10/17) 6099996721226924 a001 121393/370248451*312119004989^(6/11) 6099996721226924 a001 121393/370248451*14662949395604^(10/21) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(41) 6099996721226924 a001 121393/370248451*192900153618^(5/9) 6099996721226924 a001 165580141/271443 6099996721226924 a001 121393/370248451*28143753123^(3/5) 6099996721226924 a001 121393/370248451*10749957122^(5/8) 6099996721226924 a001 121393/370248451*4106118243^(15/23) 6099996721226924 a001 121393/370248451*1568397607^(15/22) 6099996721226924 a001 121393/370248451*599074578^(5/7) 6099996721226924 a001 121393/969323029*228826127^(4/5) 6099996721226924 a001 121393/2537720636*228826127^(17/20) 6099996721226924 a001 121393/4106118243*228826127^(7/8) 6099996721226924 a001 121393/6643838879*228826127^(9/10) 6099996721226924 a001 121393/17393796001*228826127^(19/20) 6099996721226924 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^51 6099996721226924 a001 121393/370248451*228826127^(3/4) 6099996721226924 a001 233/271444*17393796001^(4/7) 6099996721226924 a001 233/271444*14662949395604^(4/9) 6099996721226924 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(39) 6099996721226924 a001 233/271444*73681302247^(7/13) 6099996721226924 a001 63245986/271443*(1/2+1/2*5^(1/2))^2 6099996721226924 a001 63245986/271443*10749957122^(1/24) 6099996721226924 a001 7677619978498/12586269025 6099996721226924 a001 63245986/271443*4106118243^(1/23) 6099996721226924 a001 233/271444*10749957122^(7/12) 6099996721226924 a001 63245986/271443*1568397607^(1/22) 6099996721226924 a001 233/271444*4106118243^(14/23) 6099996721226924 a001 63245986/271443*599074578^(1/21) 6099996721226924 a001 233/271444*1568397607^(7/11) 6099996721226924 a001 63245986/271443*228826127^(1/20) 6099996721226924 a001 233/271444*599074578^(2/3) 6099996721226924 a001 63245986/271443*87403803^(1/19) 6099996721226924 a001 233/271444*228826127^(7/10) 6099996721226924 a001 63245986/271443*33385282^(1/18) 6099996721226924 a001 121393/370248451*87403803^(15/19) 6099996721226924 a001 121393/969323029*87403803^(16/19) 6099996721226924 a001 121393/2537720636*87403803^(17/19) 6099996721226924 a001 121393/6643838879*87403803^(18/19) 6099996721226925 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^49 6099996721226925 a001 233/271444*87403803^(14/19) 6099996721226926 a001 121393/54018521*141422324^(2/3) 6099996721226926 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(37) 6099996721226926 a001 121393/54018521*73681302247^(1/2) 6099996721226926 a001 24157817/271443*(1/2+1/2*5^(1/2))^4 6099996721226926 a001 24157817/271443*23725150497407^(1/16) 6099996721226926 a001 24157817/271443*73681302247^(1/13) 6099996721226926 a001 24157817/271443*10749957122^(1/12) 6099996721226926 a001 121393/54018521*10749957122^(13/24) 6099996721226926 a001 24157817/271443*4106118243^(2/23) 6099996721226926 a001 2932589879081/4807526976 6099996721226926 a001 121393/54018521*4106118243^(13/23) 6099996721226926 a001 24157817/271443*1568397607^(1/11) 6099996721226926 a001 121393/54018521*1568397607^(13/22) 6099996721226926 a001 24157817/271443*599074578^(2/21) 6099996721226926 a001 121393/54018521*599074578^(13/21) 6099996721226926 a001 24157817/271443*228826127^(1/10) 6099996721226926 a001 121393/54018521*228826127^(13/20) 6099996721226926 a001 24157817/271443*87403803^(2/19) 6099996721226926 a001 63245986/271443*12752043^(1/17) 6099996721226926 a001 121393/54018521*87403803^(13/19) 6099996721226926 a001 24157817/271443*33385282^(1/9) 6099996721226927 a001 121393/87403803*33385282^(3/4) 6099996721226928 a001 233/271444*33385282^(7/9) 6099996721226928 a001 121393/370248451*33385282^(5/6) 6099996721226929 a001 121393/969323029*33385282^(8/9) 6099996721226929 a001 121393/1568397607*33385282^(11/12) 6099996721226929 a001 121393/2537720636*33385282^(17/18) 6099996721226929 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^47 6099996721226930 a001 121393/54018521*33385282^(13/18) 6099996721226930 a001 24157817/271443*12752043^(2/17) 6099996721226938 a001 121393/20633239*141422324^(8/13) 6099996721226938 a001 9227465/271443*141422324^(2/13) 6099996721226938 a001 121393/20633239*2537720636^(8/15) 6099996721226938 a001 9227465/271443*2537720636^(2/15) 6099996721226938 a001 121393/20633239*45537549124^(8/17) 6099996721226938 a001 121393/20633239*14662949395604^(8/21) 6099996721226938 a001 121393/20633239*(1/2+1/2*5^(1/2))^24 6099996721226938 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^24/Lucas(35) 6099996721226938 a001 121393/20633239*192900153618^(4/9) 6099996721226938 a001 121393/20633239*73681302247^(6/13) 6099996721226938 a001 9227465/271443*45537549124^(2/17) 6099996721226938 a001 9227465/271443*14662949395604^(2/21) 6099996721226938 a001 9227465/271443*(1/2+1/2*5^(1/2))^6 6099996721226938 a001 9227465/271443*10749957122^(1/8) 6099996721226938 a001 121393/20633239*10749957122^(1/2) 6099996721226938 a001 9227465/271443*4106118243^(3/23) 6099996721226938 a001 121393/20633239*4106118243^(12/23) 6099996721226938 a001 9227465/271443*1568397607^(3/22) 6099996721226938 a001 1120149658745/1836311903 6099996721226938 a001 121393/20633239*1568397607^(6/11) 6099996721226938 a001 9227465/271443*599074578^(1/7) 6099996721226938 a001 121393/20633239*599074578^(4/7) 6099996721226938 a001 9227465/271443*228826127^(3/20) 6099996721226938 a001 121393/20633239*228826127^(3/5) 6099996721226938 a001 9227465/271443*87403803^(3/19) 6099996721226939 a001 121393/20633239*87403803^(12/19) 6099996721226939 a001 9227465/271443*33385282^(1/6) 6099996721226940 a001 63245986/271443*4870847^(1/16) 6099996721226942 a001 121393/20633239*33385282^(2/3) 6099996721226945 a001 9227465/271443*12752043^(3/17) 6099996721226954 a001 121393/54018521*12752043^(13/17) 6099996721226955 a001 233/271444*12752043^(14/17) 6099996721226956 a001 121393/7881196*7881196^(2/3) 6099996721226957 a001 121393/370248451*12752043^(15/17) 6099996721226958 a001 24157817/271443*4870847^(1/8) 6099996721226959 a001 121393/969323029*12752043^(16/17) 6099996721226961 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^45 6099996721226965 a001 121393/20633239*12752043^(12/17) 6099996721226986 a001 9227465/271443*4870847^(3/16) 6099996721227022 a001 121393/7881196*312119004989^(2/5) 6099996721227022 a001 121393/7881196*(1/2+1/2*5^(1/2))^22 6099996721227022 a001 3524578/271443*(1/2+1/2*5^(1/2))^8 6099996721227022 a001 3524578/271443*23725150497407^(1/8) 6099996721227022 a001 3524578/271443*505019158607^(1/7) 6099996721227022 a001 3524578/271443*73681302247^(2/13) 6099996721227022 a001 3524578/271443*10749957122^(1/6) 6099996721227022 a001 121393/7881196*10749957122^(11/24) 6099996721227022 a001 3524578/271443*4106118243^(4/23) 6099996721227022 a001 121393/7881196*4106118243^(11/23) 6099996721227022 a001 3524578/271443*1568397607^(2/11) 6099996721227022 a001 121393/7881196*1568397607^(1/2) 6099996721227022 a001 4807405586/7880997 6099996721227022 a001 3524578/271443*599074578^(4/21) 6099996721227022 a001 121393/7881196*599074578^(11/21) 6099996721227022 a001 3524578/271443*228826127^(1/5) 6099996721227022 a001 121393/7881196*228826127^(11/20) 6099996721227022 a001 3524578/271443*87403803^(4/19) 6099996721227022 a001 121393/7881196*87403803^(11/19) 6099996721227023 a001 3524578/271443*33385282^(2/9) 6099996721227025 a001 121393/7881196*33385282^(11/18) 6099996721227031 a001 3524578/271443*12752043^(4/17) 6099996721227041 a001 63245986/271443*1860498^(1/15) 6099996721227046 a001 121393/7881196*12752043^(11/17) 6099996721227086 a001 3524578/271443*4870847^(1/4) 6099996721227099 a001 39088169/271443*1860498^(1/10) 6099996721227131 a001 121393/20633239*4870847^(3/4) 6099996721227135 a001 121393/54018521*4870847^(13/16) 6099996721227149 a001 233/271444*4870847^(7/8) 6099996721227161 a001 24157817/271443*1860498^(2/15) 6099996721227165 a001 121393/370248451*4870847^(15/16) 6099996721227181 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^43 6099996721227195 a001 726103/90481*1860498^(3/10) 6099996721227199 a001 121393/7881196*4870847^(11/16) 6099996721227212 a001 4976784/90481*1860498^(1/6) 6099996721227290 a001 9227465/271443*1860498^(1/5) 6099996721227492 a001 3524578/271443*1860498^(4/15) 6099996721227589 a001 121393/3010349*20633239^(4/7) 6099996721227591 a001 5702887/1149851*167761^(2/5) 6099996721227593 a001 1346269/271443*20633239^(2/7) 6099996721227597 a001 121393/3010349*2537720636^(4/9) 6099996721227597 a001 1346269/271443*2537720636^(2/9) 6099996721227597 a001 121393/3010349*(1/2+1/2*5^(1/2))^20 6099996721227597 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^20/Lucas(31) 6099996721227597 a001 121393/3010349*23725150497407^(5/16) 6099996721227597 a001 121393/3010349*505019158607^(5/14) 6099996721227597 a001 121393/3010349*73681302247^(5/13) 6099996721227597 a001 1346269/271443*312119004989^(2/11) 6099996721227597 a001 1346269/271443*(1/2+1/2*5^(1/2))^10 6099996721227597 a001 1346269/271443*28143753123^(1/5) 6099996721227597 a001 121393/3010349*28143753123^(2/5) 6099996721227597 a001 1346269/271443*10749957122^(5/24) 6099996721227597 a001 121393/3010349*10749957122^(5/12) 6099996721227597 a001 1346269/271443*4106118243^(5/23) 6099996721227597 a001 121393/3010349*4106118243^(10/23) 6099996721227597 a001 1346269/271443*1568397607^(5/22) 6099996721227597 a001 121393/3010349*1568397607^(5/11) 6099996721227597 a001 1346269/271443*599074578^(5/21) 6099996721227597 a001 121393/3010349*599074578^(10/21) 6099996721227597 a001 163427632717/267914296 6099996721227597 a001 1346269/271443*228826127^(1/4) 6099996721227597 a001 121393/3010349*228826127^(1/2) 6099996721227597 a001 1346269/271443*87403803^(5/19) 6099996721227597 a001 121393/3010349*87403803^(10/19) 6099996721227598 a001 1346269/271443*33385282^(5/18) 6099996721227600 a001 121393/3010349*33385282^(5/9) 6099996721227608 a001 1346269/271443*12752043^(5/17) 6099996721227619 a001 121393/3010349*12752043^(10/17) 6099996721227677 a001 1346269/271443*4870847^(5/16) 6099996721227758 a001 121393/3010349*4870847^(5/8) 6099996721227787 a001 63245986/271443*710647^(1/14) 6099996721227900 a001 121393/4870847*1860498^(7/10) 6099996721228184 a001 1346269/271443*1860498^(1/3) 6099996721228314 a001 121393/7881196*1860498^(11/15) 6099996721228348 a001 121393/20633239*1860498^(4/5) 6099996721228387 a001 121393/33385282*1860498^(5/6) 6099996721228453 a001 121393/54018521*1860498^(13/15) 6099996721228509 a001 121393/87403803*1860498^(9/10) 6099996721228569 a001 233/271444*1860498^(14/15) 6099996721228651 a001 24157817/271443*710647^(1/7) 6099996721228686 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^41 6099996721228772 a001 121393/3010349*1860498^(2/3) 6099996721229526 a001 9227465/271443*710647^(3/14) 6099996721229906 a001 5702887/271443*710647^(1/4) 6099996721230473 a001 3524578/271443*710647^(2/7) 6099996721231484 a001 121393/1149851*7881196^(6/11) 6099996721231502 a001 514229/271443*7881196^(4/11) 6099996721231537 a001 121393/1149851*141422324^(6/13) 6099996721231537 a001 514229/271443*141422324^(4/13) 6099996721231537 a001 121393/1149851*2537720636^(2/5) 6099996721231537 a001 514229/271443*2537720636^(4/15) 6099996721231537 a001 121393/1149851*45537549124^(6/17) 6099996721231537 a001 121393/1149851*14662949395604^(2/7) 6099996721231537 a001 121393/1149851*(1/2+1/2*5^(1/2))^18 6099996721231537 a001 121393/1149851*192900153618^(1/3) 6099996721231537 a001 514229/271443*45537549124^(4/17) 6099996721231537 a001 514229/271443*817138163596^(4/19) 6099996721231537 a001 514229/271443*14662949395604^(4/21) 6099996721231537 a001 514229/271443*(1/2+1/2*5^(1/2))^12 6099996721231537 a001 514229/271443*192900153618^(2/9) 6099996721231537 a001 514229/271443*73681302247^(3/13) 6099996721231537 a001 514229/271443*10749957122^(1/4) 6099996721231537 a001 121393/1149851*10749957122^(3/8) 6099996721231537 a001 514229/271443*4106118243^(6/23) 6099996721231537 a001 121393/1149851*4106118243^(9/23) 6099996721231537 a001 514229/271443*1568397607^(3/11) 6099996721231537 a001 121393/1149851*1568397607^(9/22) 6099996721231537 a001 514229/271443*599074578^(2/7) 6099996721231537 a001 121393/1149851*599074578^(3/7) 6099996721231537 a001 514229/271443*228826127^(3/10) 6099996721231537 a001 121393/1149851*228826127^(9/20) 6099996721231537 a001 62423800997/102334155 6099996721231538 a001 514229/271443*87403803^(6/19) 6099996721231538 a001 121393/1149851*87403803^(9/19) 6099996721231539 a001 514229/271443*33385282^(1/3) 6099996721231540 a001 121393/1149851*33385282^(1/2) 6099996721231551 a001 514229/271443*12752043^(6/17) 6099996721231557 a001 121393/1149851*12752043^(9/17) 6099996721231634 a001 514229/271443*4870847^(3/8) 6099996721231682 a001 121393/1149851*4870847^(9/16) 6099996721231911 a001 1346269/271443*710647^(5/14) 6099996721232242 a001 514229/271443*1860498^(2/5) 6099996721232595 a001 121393/1149851*1860498^(3/5) 6099996721233043 a001 267914296/710647*64079^(1/23) 6099996721233292 a001 63245986/271443*271443^(1/13) 6099996721235726 a001 121393/4870847*710647^(3/4) 6099996721236225 a001 121393/3010349*710647^(5/7) 6099996721236512 a001 121393/7881196*710647^(11/14) 6099996721236714 a001 514229/271443*710647^(3/7) 6099996721237020 a001 2576/103361*103682^(7/8) 6099996721237291 a001 121393/20633239*710647^(6/7) 6099996721238142 a001 121393/54018521*710647^(13/14) 6099996721239002 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^39 6099996721239302 a001 121393/1149851*710647^(9/14) 6099996721239663 a001 24157817/271443*271443^(2/13) 6099996721242911 a001 98209/219602*167761^(3/5) 6099996721243360 a001 233802911/620166*64079^(1/23) 6099996721244865 a001 1836311903/4870847*64079^(1/23) 6099996721245084 a001 1602508992/4250681*64079^(1/23) 6099996721245116 a001 12586269025/33385282*64079^(1/23) 6099996721245121 a001 10983760033/29134601*64079^(1/23) 6099996721245122 a001 86267571272/228826127*64079^(1/23) 6099996721245122 a001 267913919/710646*64079^(1/23) 6099996721245122 a001 591286729879/1568397607*64079^(1/23) 6099996721245122 a001 516002918640/1368706081*64079^(1/23) 6099996721245122 a001 4052739537881/10749957122*64079^(1/23) 6099996721245122 a001 3536736619241/9381251041*64079^(1/23) 6099996721245122 a001 6557470319842/17393796001*64079^(1/23) 6099996721245122 a001 2504730781961/6643838879*64079^(1/23) 6099996721245122 a001 956722026041/2537720636*64079^(1/23) 6099996721245122 a001 365435296162/969323029*64079^(1/23) 6099996721245122 a001 139583862445/370248451*64079^(1/23) 6099996721245122 a001 53316291173/141422324*64079^(1/23) 6099996721245124 a001 20365011074/54018521*64079^(1/23) 6099996721245136 a001 7778742049/20633239*64079^(1/23) 6099996721245220 a001 2971215073/7881196*64079^(1/23) 6099996721245795 a001 1134903170/3010349*64079^(1/23) 6099996721246043 a001 9227465/271443*271443^(3/13) 6099996721249736 a001 433494437/1149851*64079^(1/23) 6099996721250567 a001 34111385/90481*103682^(1/24) 6099996721252495 a001 3524578/271443*271443^(4/13) 6099996721254284 a001 39088169/710647*167761^(1/5) 6099996721254380 a001 2178309/439204*167761^(2/5) 6099996721256239 a001 105937/90481*271443^(1/2) 6099996721258541 a001 196418/271443*20633239^(2/5) 6099996721258546 a001 196418/271443*17393796001^(2/7) 6099996721258546 a001 121393/439204*(1/2+1/2*5^(1/2))^16 6099996721258546 a001 121393/439204*23725150497407^(1/4) 6099996721258546 a001 121393/439204*73681302247^(4/13) 6099996721258546 a001 196418/271443*14662949395604^(2/9) 6099996721258546 a001 196418/271443*(1/2+1/2*5^(1/2))^14 6099996721258546 a001 196418/271443*505019158607^(1/4) 6099996721258546 a001 196418/271443*10749957122^(7/24) 6099996721258546 a001 121393/439204*10749957122^(1/3) 6099996721258546 a001 196418/271443*4106118243^(7/23) 6099996721258546 a001 121393/439204*4106118243^(8/23) 6099996721258546 a001 196418/271443*1568397607^(7/22) 6099996721258546 a001 121393/439204*1568397607^(4/11) 6099996721258546 a001 196418/271443*599074578^(1/3) 6099996721258546 a001 121393/439204*599074578^(8/21) 6099996721258546 a001 196418/271443*228826127^(7/20) 6099996721258546 a001 121393/439204*228826127^(2/5) 6099996721258547 a001 196418/271443*87403803^(7/19) 6099996721258547 a001 121393/439204*87403803^(8/19) 6099996721258547 a001 23843770274/39088169 6099996721258548 a001 196418/271443*33385282^(7/18) 6099996721258549 a001 121393/439204*33385282^(4/9) 6099996721258562 a001 196418/271443*12752043^(7/17) 6099996721258564 a001 121393/439204*12752043^(8/17) 6099996721258659 a001 196418/271443*4870847^(7/16) 6099996721258675 a001 121393/439204*4870847^(1/2) 6099996721259369 a001 196418/271443*1860498^(7/15) 6099996721259439 a001 1346269/271443*271443^(5/13) 6099996721259486 a001 121393/439204*1860498^(8/15) 6099996721263099 a001 46368/3010349*103682^(11/12) 6099996721264586 a001 196418/271443*710647^(1/2) 6099996721264601 a001 831985/15126*167761^(1/5) 6099996721265448 a001 121393/439204*710647^(4/7) 6099996721266011 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^40 6099996721266107 a001 267914296/4870847*167761^(1/5) 6099996721266326 a001 233802911/4250681*167761^(1/5) 6099996721266358 a001 1836311903/33385282*167761^(1/5) 6099996721266363 a001 1602508992/29134601*167761^(1/5) 6099996721266364 a001 12586269025/228826127*167761^(1/5) 6099996721266364 a001 10983760033/199691526*167761^(1/5) 6099996721266364 a001 86267571272/1568397607*167761^(1/5) 6099996721266364 a001 75283811239/1368706081*167761^(1/5) 6099996721266364 a001 591286729879/10749957122*167761^(1/5) 6099996721266364 a001 12585437040/228811001*167761^(1/5) 6099996721266364 a001 4052739537881/73681302247*167761^(1/5) 6099996721266364 a001 3536736619241/64300051206*167761^(1/5) 6099996721266364 a001 6557470319842/119218851371*167761^(1/5) 6099996721266364 a001 2504730781961/45537549124*167761^(1/5) 6099996721266364 a001 956722026041/17393796001*167761^(1/5) 6099996721266364 a001 365435296162/6643838879*167761^(1/5) 6099996721266364 a001 139583862445/2537720636*167761^(1/5) 6099996721266364 a001 53316291173/969323029*167761^(1/5) 6099996721266364 a001 20365011074/370248451*167761^(1/5) 6099996721266364 a001 7778742049/141422324*167761^(1/5) 6099996721266366 a001 2971215073/54018521*167761^(1/5) 6099996721266378 a001 1134903170/20633239*167761^(1/5) 6099996721266462 a001 433494437/7881196*167761^(1/5) 6099996721267037 a001 165580141/3010349*167761^(1/5) 6099996721267987 a001 317811/710647*439204^(5/9) 6099996721268088 a001 14930352/167761*64079^(4/23) 6099996721269527 a001 317811/54018521*439204^(8/9) 6099996721269748 a001 514229/271443*271443^(6/13) 6099996721270978 a001 63245986/1149851*167761^(1/5) 6099996721272625 a001 7465176/51841*39603^(3/22) 6099996721273001 a001 105937/4250681*439204^(7/9) 6099996721274211 a001 63245986/271443*103682^(1/12) 6099996721276328 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^42 6099996721276745 a001 165580141/439204*64079^(1/23) 6099996721277225 a001 317811/3010349*439204^(2/3) 6099996721277833 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^44 6099996721278053 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^46 6099996721278085 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^48 6099996721278089 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^50 6099996721278090 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^52 6099996721278090 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^54 6099996721278090 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^56 6099996721278090 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^58 6099996721278090 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^60 6099996721278090 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^62 6099996721278090 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^64 6099996721278090 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^66 6099996721278090 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^68 6099996721278090 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^70 6099996721278090 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^72 6099996721278090 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^74 6099996721278090 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^76 6099996721278090 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^78 6099996721278090 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^80 6099996721278090 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^82 6099996721278090 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^84 6099996721278090 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^86 6099996721278090 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^88 6099996721278090 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^90 6099996721278090 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^92 6099996721278090 a004 Fibonacci(82)*Lucas(27)/(1/2+sqrt(5)/2)^94 6099996721278090 a004 Fibonacci(84)*Lucas(27)/(1/2+sqrt(5)/2)^96 6099996721278090 a004 Fibonacci(86)*Lucas(27)/(1/2+sqrt(5)/2)^98 6099996721278090 a004 Fibonacci(88)*Lucas(27)/(1/2+sqrt(5)/2)^100 6099996721278090 a004 Fibonacci(87)*Lucas(27)/(1/2+sqrt(5)/2)^99 6099996721278090 a004 Fibonacci(85)*Lucas(27)/(1/2+sqrt(5)/2)^97 6099996721278090 a004 Fibonacci(83)*Lucas(27)/(1/2+sqrt(5)/2)^95 6099996721278090 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^93 6099996721278090 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^91 6099996721278090 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^89 6099996721278090 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^87 6099996721278090 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^85 6099996721278090 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^83 6099996721278090 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^81 6099996721278090 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^79 6099996721278090 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^77 6099996721278090 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^75 6099996721278090 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^73 6099996721278090 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^71 6099996721278090 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^69 6099996721278090 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^67 6099996721278090 a001 1/98209*(1/2+1/2*5^(1/2))^42 6099996721278090 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^65 6099996721278090 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^63 6099996721278090 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^61 6099996721278090 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^59 6099996721278090 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^57 6099996721278090 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^55 6099996721278090 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^53 6099996721278090 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^51 6099996721278092 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^49 6099996721278104 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^47 6099996721278188 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^45 6099996721278763 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^43 6099996721279842 a001 208010/35355581*439204^(8/9) 6099996721281347 a001 2178309/370248451*439204^(8/9) 6099996721281566 a001 5702887/969323029*439204^(8/9) 6099996721281598 a001 196452/33391061*439204^(8/9) 6099996721281603 a001 39088169/6643838879*439204^(8/9) 6099996721281604 a001 102334155/17393796001*439204^(8/9) 6099996721281604 a001 66978574/11384387281*439204^(8/9) 6099996721281604 a001 701408733/119218851371*439204^(8/9) 6099996721281604 a001 1836311903/312119004989*439204^(8/9) 6099996721281604 a001 1201881744/204284540899*439204^(8/9) 6099996721281604 a001 12586269025/2139295485799*439204^(8/9) 6099996721281604 a001 32951280099/5600748293801*439204^(8/9) 6099996721281604 a001 1135099622/192933544679*439204^(8/9) 6099996721281604 a001 139583862445/23725150497407*439204^(8/9) 6099996721281604 a001 53316291173/9062201101803*439204^(8/9) 6099996721281604 a001 10182505537/1730726404001*439204^(8/9) 6099996721281604 a001 7778742049/1322157322203*439204^(8/9) 6099996721281604 a001 2971215073/505019158607*439204^(8/9) 6099996721281604 a001 567451585/96450076809*439204^(8/9) 6099996721281604 a001 433494437/73681302247*439204^(8/9) 6099996721281604 a001 165580141/28143753123*439204^(8/9) 6099996721281604 a001 31622993/5374978561*439204^(8/9) 6099996721281606 a001 24157817/4106118243*439204^(8/9) 6099996721281618 a001 9227465/1568397607*439204^(8/9) 6099996721281702 a001 1762289/299537289*439204^(8/9) 6099996721282277 a001 1346269/228826127*439204^(8/9) 6099996721282704 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^41 6099996721283350 a001 416020/16692641*439204^(7/9) 6099996721284253 a001 1346269/710647*439204^(4/9) 6099996721284859 a001 726103/29134601*439204^(7/9) 6099996721285080 a001 5702887/228826127*439204^(7/9) 6099996721285112 a001 829464/33281921*439204^(7/9) 6099996721285117 a001 39088169/1568397607*439204^(7/9) 6099996721285117 a001 34111385/1368706081*439204^(7/9) 6099996721285117 a001 133957148/5374978561*439204^(7/9) 6099996721285117 a001 233802911/9381251041*439204^(7/9) 6099996721285117 a001 1836311903/73681302247*439204^(7/9) 6099996721285117 a001 267084832/10716675201*439204^(7/9) 6099996721285117 a001 12586269025/505019158607*439204^(7/9) 6099996721285117 a001 10983760033/440719107401*439204^(7/9) 6099996721285117 a001 43133785636/1730726404001*439204^(7/9) 6099996721285117 a001 75283811239/3020733700601*439204^(7/9) 6099996721285117 a001 182717648081/7331474697802*439204^(7/9) 6099996721285117 a001 139583862445/5600748293801*439204^(7/9) 6099996721285117 a001 53316291173/2139295485799*439204^(7/9) 6099996721285117 a001 10182505537/408569081798*439204^(7/9) 6099996721285117 a001 7778742049/312119004989*439204^(7/9) 6099996721285117 a001 2971215073/119218851371*439204^(7/9) 6099996721285117 a001 567451585/22768774562*439204^(7/9) 6099996721285117 a001 433494437/17393796001*439204^(7/9) 6099996721285117 a001 165580141/6643838879*439204^(7/9) 6099996721285118 a001 31622993/1268860318*439204^(7/9) 6099996721285119 a001 24157817/969323029*439204^(7/9) 6099996721285132 a001 9227465/370248451*439204^(7/9) 6099996721285216 a001 1762289/70711162*439204^(7/9) 6099996721285511 a001 317811/710647*7881196^(5/11) 6099996721285549 a001 317811/710647*20633239^(3/7) 6099996721285555 a001 317811/710647*141422324^(5/13) 6099996721285555 a001 101003831721/165580141 6099996721285555 a001 317811/710647*2537720636^(1/3) 6099996721285555 a001 317811/710647*45537549124^(5/17) 6099996721285555 a001 317811/710647*312119004989^(3/11) 6099996721285555 a001 317811/710647*14662949395604^(5/21) 6099996721285555 a001 317811/710647*(1/2+1/2*5^(1/2))^15 6099996721285555 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^15/Lucas(28) 6099996721285555 a001 317811/710647*192900153618^(5/18) 6099996721285555 a001 317811/710647*28143753123^(3/10) 6099996721285555 a001 317811/710647*10749957122^(5/16) 6099996721285555 a001 317811/710647*599074578^(5/14) 6099996721285555 a001 317811/710647*228826127^(3/8) 6099996721285557 a001 317811/710647*33385282^(5/12) 6099996721285793 a001 1346269/54018521*439204^(7/9) 6099996721285812 a001 46368/4870847*103682^(23/24) 6099996721286217 a001 514229/87403803*439204^(8/9) 6099996721286436 a001 317811/710647*1860498^(1/2) 6099996721286967 a001 208010/1970299*439204^(2/3) 6099996721287056 a001 5702887/710647*439204^(1/3) 6099996721288388 a001 2178309/20633239*439204^(2/3) 6099996721288596 a001 5702887/54018521*439204^(2/3) 6099996721288620 a001 416020/930249*439204^(5/9) 6099996721288626 a001 3732588/35355581*439204^(2/3) 6099996721288630 a001 39088169/370248451*439204^(2/3) 6099996721288631 a001 102334155/969323029*439204^(2/3) 6099996721288631 a001 66978574/634430159*439204^(2/3) 6099996721288631 a001 701408733/6643838879*439204^(2/3) 6099996721288631 a001 1836311903/17393796001*439204^(2/3) 6099996721288631 a001 1201881744/11384387281*439204^(2/3) 6099996721288631 a001 12586269025/119218851371*439204^(2/3) 6099996721288631 a001 32951280099/312119004989*439204^(2/3) 6099996721288631 a001 21566892818/204284540899*439204^(2/3) 6099996721288631 a001 225851433717/2139295485799*439204^(2/3) 6099996721288631 a001 182717648081/1730726404001*439204^(2/3) 6099996721288631 a001 139583862445/1322157322203*439204^(2/3) 6099996721288631 a001 53316291173/505019158607*439204^(2/3) 6099996721288631 a001 10182505537/96450076809*439204^(2/3) 6099996721288631 a001 7778742049/73681302247*439204^(2/3) 6099996721288631 a001 2971215073/28143753123*439204^(2/3) 6099996721288631 a001 567451585/5374978561*439204^(2/3) 6099996721288631 a001 433494437/4106118243*439204^(2/3) 6099996721288631 a001 165580141/1568397607*439204^(2/3) 6099996721288631 a001 31622993/299537289*439204^(2/3) 6099996721288633 a001 24157817/228826127*439204^(2/3) 6099996721288644 a001 9227465/87403803*439204^(2/3) 6099996721288724 a001 1762289/16692641*439204^(2/3) 6099996721288853 a001 121393/1149851*271443^(9/13) 6099996721289267 a001 1346269/12752043*439204^(2/3) 6099996721289745 a001 514229/20633239*439204^(7/9) 6099996721290022 a001 75025/103682*103682^(7/12) 6099996721290609 a001 24157817/710647*439204^(2/9) 6099996721291281 a001 121393/3010349*271443^(10/13) 6099996721291630 a001 2178309/4870847*439204^(5/9) 6099996721292070 a001 5702887/12752043*439204^(5/9) 6099996721292134 a001 7465176/16692641*439204^(5/9) 6099996721292143 a001 39088169/87403803*439204^(5/9) 6099996721292144 a001 102334155/228826127*439204^(5/9) 6099996721292145 a001 133957148/299537289*439204^(5/9) 6099996721292145 a001 701408733/1568397607*439204^(5/9) 6099996721292145 a001 1836311903/4106118243*439204^(5/9) 6099996721292145 a001 2403763488/5374978561*439204^(5/9) 6099996721292145 a001 12586269025/28143753123*439204^(5/9) 6099996721292145 a001 32951280099/73681302247*439204^(5/9) 6099996721292145 a001 43133785636/96450076809*439204^(5/9) 6099996721292145 a001 225851433717/505019158607*439204^(5/9) 6099996721292145 a001 591286729879/1322157322203*439204^(5/9) 6099996721292145 a001 10610209857723/23725150497407*439204^(5/9) 6099996721292145 a001 182717648081/408569081798*439204^(5/9) 6099996721292145 a001 139583862445/312119004989*439204^(5/9) 6099996721292145 a001 53316291173/119218851371*439204^(5/9) 6099996721292145 a001 10182505537/22768774562*439204^(5/9) 6099996721292145 a001 7778742049/17393796001*439204^(5/9) 6099996721292145 a001 2971215073/6643838879*439204^(5/9) 6099996721292145 a001 567451585/1268860318*439204^(5/9) 6099996721292145 a001 433494437/969323029*439204^(5/9) 6099996721292145 a001 165580141/370248451*439204^(5/9) 6099996721292145 a001 31622993/70711162*439204^(5/9) 6099996721292149 a001 24157817/54018521*439204^(5/9) 6099996721292173 a001 9227465/20633239*439204^(5/9) 6099996721292341 a001 1762289/3940598*439204^(5/9) 6099996721292987 a001 514229/4870847*439204^(2/3) 6099996721293020 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^42 6099996721293491 a001 1346269/3010349*439204^(5/9) 6099996721293994 a001 1762289/930249*439204^(4/9) 6099996721294120 a001 14619165/101521*439204^(1/9) 6099996721295415 a001 9227465/4870847*439204^(4/9) 6099996721295623 a001 24157817/12752043*439204^(4/9) 6099996721295653 a001 31622993/16692641*439204^(4/9) 6099996721295657 a001 165580141/87403803*439204^(4/9) 6099996721295658 a001 433494437/228826127*439204^(4/9) 6099996721295658 a001 567451585/299537289*439204^(4/9) 6099996721295658 a001 2971215073/1568397607*439204^(4/9) 6099996721295658 a001 7778742049/4106118243*439204^(4/9) 6099996721295658 a001 10182505537/5374978561*439204^(4/9) 6099996721295658 a001 53316291173/28143753123*439204^(4/9) 6099996721295658 a001 139583862445/73681302247*439204^(4/9) 6099996721295658 a001 182717648081/96450076809*439204^(4/9) 6099996721295658 a001 956722026041/505019158607*439204^(4/9) 6099996721295658 a001 10610209857723/5600748293801*439204^(4/9) 6099996721295658 a001 591286729879/312119004989*439204^(4/9) 6099996721295658 a001 225851433717/119218851371*439204^(4/9) 6099996721295658 a001 21566892818/11384387281*439204^(4/9) 6099996721295658 a001 32951280099/17393796001*439204^(4/9) 6099996721295658 a001 12586269025/6643838879*439204^(4/9) 6099996721295658 a001 1201881744/634430159*439204^(4/9) 6099996721295658 a001 1836311903/969323029*439204^(4/9) 6099996721295658 a001 701408733/370248451*439204^(4/9) 6099996721295658 a001 66978574/35355581*439204^(4/9) 6099996721295660 a001 102334155/54018521*439204^(4/9) 6099996721295672 a001 39088169/20633239*439204^(4/9) 6099996721295751 a001 3732588/1970299*439204^(4/9) 6099996721295872 a001 832040/710647*141422324^(1/3) 6099996721295872 a001 264431464440/433494437 6099996721295872 a001 105937/620166*45537549124^(1/3) 6099996721295872 a001 105937/620166*(1/2+1/2*5^(1/2))^17 6099996721295872 a001 832040/710647*(1/2+1/2*5^(1/2))^13 6099996721295872 a001 832040/710647*73681302247^(1/4) 6099996721295890 a001 105937/620166*12752043^(1/2) 6099996721296294 a001 5702887/3010349*439204^(4/9) 6099996721296961 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^44 6099996721297074 a001 121393/7881196*271443^(11/13) 6099996721297344 a001 311187/101521*7881196^(1/3) 6099996721297377 a001 692290561599/1134903170 6099996721297377 a001 317811/4870847*817138163596^(1/3) 6099996721297377 a001 317811/4870847*(1/2+1/2*5^(1/2))^19 6099996721297377 a001 311187/101521*312119004989^(1/5) 6099996721297377 a001 311187/101521*(1/2+1/2*5^(1/2))^11 6099996721297377 a001 311187/101521*1568397607^(1/4) 6099996721297377 a001 317811/4870847*87403803^(1/2) 6099996721297404 a001 829464/103361*439204^(1/3) 6099996721297534 a001 105937/4250681*7881196^(7/11) 6099996721297536 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^46 6099996721297545 a001 317811/969323029*7881196^(10/11) 6099996721297553 a001 317811/228826127*7881196^(9/11) 6099996721297565 a001 317811/54018521*7881196^(8/11) 6099996721297570 a001 5702887/710647*7881196^(3/11) 6099996721297583 a001 10959/711491*7881196^(2/3) 6099996721297588 a001 105937/4250681*20633239^(3/5) 6099996721297596 a001 105937/4250681*141422324^(7/13) 6099996721297596 a001 5702887/710647*141422324^(3/13) 6099996721297596 a001 105937/4250681*2537720636^(7/15) 6099996721297596 a001 5702887/710647*2537720636^(1/5) 6099996721297596 a001 1812440220357/2971215073 6099996721297596 a001 105937/4250681*17393796001^(3/7) 6099996721297596 a001 105937/4250681*45537549124^(7/17) 6099996721297596 a001 5702887/710647*45537549124^(3/17) 6099996721297596 a001 105937/4250681*14662949395604^(1/3) 6099996721297596 a001 105937/4250681*(1/2+1/2*5^(1/2))^21 6099996721297596 a001 5702887/710647*817138163596^(3/19) 6099996721297596 a001 5702887/710647*14662949395604^(1/7) 6099996721297596 a001 5702887/710647*(1/2+1/2*5^(1/2))^9 6099996721297596 a001 5702887/710647*192900153618^(1/6) 6099996721297596 a001 105937/4250681*192900153618^(7/18) 6099996721297596 a001 5702887/710647*10749957122^(3/16) 6099996721297596 a001 105937/4250681*10749957122^(7/16) 6099996721297596 a001 5702887/710647*599074578^(3/14) 6099996721297596 a001 105937/4250681*599074578^(1/2) 6099996721297598 a001 5702887/710647*33385282^(1/4) 6099996721297600 a001 105937/4250681*33385282^(7/12) 6099996721297618 a001 24157817/710647*7881196^(2/11) 6099996721297620 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^48 6099996721297622 a001 317811/969323029*20633239^(6/7) 6099996721297622 a001 317811/370248451*20633239^(4/5) 6099996721297623 a001 105937/29134601*20633239^(5/7) 6099996721297625 a001 14619165/101521*7881196^(1/11) 6099996721297626 a001 14930352/710647*20633239^(1/5) 6099996721297628 a001 365002315344/598364773 6099996721297628 a001 14930352/710647*17393796001^(1/7) 6099996721297628 a001 317811/33385282*(1/2+1/2*5^(1/2))^23 6099996721297628 a001 14930352/710647*14662949395604^(1/9) 6099996721297628 a001 14930352/710647*(1/2+1/2*5^(1/2))^7 6099996721297628 a001 317811/33385282*4106118243^(1/2) 6099996721297628 a001 14930352/710647*599074578^(1/6) 6099996721297631 a001 39088169/710647*20633239^(1/7) 6099996721297632 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^50 6099996721297633 a001 105937/29134601*2537720636^(5/9) 6099996721297633 a001 39088169/710647*2537720636^(1/9) 6099996721297633 a001 12422650078059/20365011074 6099996721297633 a001 105937/29134601*312119004989^(5/11) 6099996721297633 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(38) 6099996721297633 a001 105937/29134601*3461452808002^(5/12) 6099996721297633 a001 39088169/710647*312119004989^(1/11) 6099996721297633 a001 39088169/710647*(1/2+1/2*5^(1/2))^5 6099996721297633 a001 39088169/710647*28143753123^(1/10) 6099996721297633 a001 105937/29134601*28143753123^(1/2) 6099996721297633 a001 39088169/710647*228826127^(1/8) 6099996721297633 a001 105937/29134601*228826127^(5/8) 6099996721297634 a001 317811/228826127*141422324^(9/13) 6099996721297634 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^52 6099996721297634 a001 10959/599786069*141422324^(12/13) 6099996721297634 a001 105937/1368706081*141422324^(11/13) 6099996721297634 a001 317811/969323029*141422324^(10/13) 6099996721297634 a001 14619165/101521*141422324^(1/13) 6099996721297634 a001 317811/228826127*2537720636^(3/5) 6099996721297634 a001 14619165/101521*2537720636^(1/15) 6099996721297634 a001 317811/228826127*45537549124^(9/17) 6099996721297634 a001 32522920134705/53316291173 6099996721297634 a001 14619165/101521*45537549124^(1/17) 6099996721297634 a001 317811/228826127*817138163596^(9/19) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(40) 6099996721297634 a001 14619165/101521*14662949395604^(1/21) 6099996721297634 a001 14619165/101521*(1/2+1/2*5^(1/2))^3 6099996721297634 a001 14619165/101521*192900153618^(1/18) 6099996721297634 a001 317811/228826127*192900153618^(1/2) 6099996721297634 a001 14619165/101521*10749957122^(1/16) 6099996721297634 a001 317811/228826127*10749957122^(9/16) 6099996721297634 a001 14619165/101521*599074578^(1/14) 6099996721297634 a001 317811/228826127*599074578^(9/14) 6099996721297634 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^54 6099996721297634 a001 85146110326056/139583862445 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(42) 6099996721297634 a001 377/710646*1322157322203^(1/2) 6099996721297634 a001 133957148/710647+133957148/710647*5^(1/2) 6099996721297634 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^56 6099996721297634 a001 222915410843463/365435296162 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(44) 6099996721297634 a001 317811/1568397607*9062201101803^(1/2) 6099996721297634 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2) 6099996721297634 a001 105937/1368706081*2537720636^(11/15) 6099996721297634 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^58 6099996721297634 a001 317811/312119004989*2537720636^(14/15) 6099996721297634 a001 317811/119218851371*2537720636^(8/9) 6099996721297634 a001 317811/73681302247*2537720636^(13/15) 6099996721297634 a001 317811/10749957122*2537720636^(7/9) 6099996721297634 a001 10959/599786069*2537720636^(4/5) 6099996721297634 a001 105937/1368706081*45537549124^(11/17) 6099996721297634 a001 105937/1368706081*312119004989^(3/5) 6099996721297634 a001 105937/1368706081*14662949395604^(11/21) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(46) 6099996721297634 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^3 6099996721297634 a001 105937/1368706081*192900153618^(11/18) 6099996721297634 a001 105937/1368706081*10749957122^(11/16) 6099996721297634 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^60 6099996721297634 a001 317811/10749957122*17393796001^(5/7) 6099996721297634 a001 317811/10749957122*312119004989^(7/11) 6099996721297634 a001 1527884955769536/2504730781961 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(48) 6099996721297634 a001 317811/10749957122*505019158607^(5/8) 6099996721297634 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^5 6099996721297634 a001 317811/10749957122*28143753123^(7/10) 6099996721297634 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^62 6099996721297634 a001 317811/312119004989*17393796001^(6/7) 6099996721297634 a001 307696518854175/504420793834 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(50) 6099996721297634 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^7 6099996721297634 a001 317811/73681302247*45537549124^(13/17) 6099996721297634 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^64 6099996721297634 a001 317811/5600748293801*45537549124^(16/17) 6099996721297634 a001 105937/440719107401*45537549124^(15/17) 6099996721297634 a001 317811/312119004989*45537549124^(14/17) 6099996721297634 a001 317811/73681302247*14662949395604^(13/21) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(52) 6099996721297634 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^9 6099996721297634 a001 317811/73681302247*192900153618^(13/18) 6099996721297634 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^66 6099996721297634 a001 317811/73681302247*73681302247^(3/4) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(54) 6099996721297634 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^11 6099996721297634 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^68 6099996721297634 a001 10959/505618944676*312119004989^(10/11) 6099996721297634 a001 105937/440719107401*312119004989^(9/11) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(56) 6099996721297634 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^70 6099996721297634 a001 105937/440719107401*14662949395604^(5/7) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(58) 6099996721297634 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^72 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(60) 6099996721297634 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^74 6099996721297634 a001 105937/3020733700601*14662949395604^(7/9) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(62) 6099996721297634 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^76 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(64) 6099996721297634 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^78 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(66) 6099996721297634 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^80 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(68) 6099996721297634 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^82 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(70) 6099996721297634 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^84 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(72) 6099996721297634 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^86 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(74) 6099996721297634 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^88 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(76) 6099996721297634 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^90 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(78) 6099996721297634 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^92 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(80) 6099996721297634 a004 Fibonacci(28)*Lucas(81)/(1/2+sqrt(5)/2)^94 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(82) 6099996721297634 a004 Fibonacci(28)*Lucas(83)/(1/2+sqrt(5)/2)^96 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(84) 6099996721297634 a004 Fibonacci(28)*Lucas(85)/(1/2+sqrt(5)/2)^98 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(86) 6099996721297634 a004 Fibonacci(28)*Lucas(87)/(1/2+sqrt(5)/2)^100 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(88) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(90) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(92) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^81/Lucas(94) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^83/Lucas(96) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^85/Lucas(98) 6099996721297634 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^13 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^86/Lucas(99) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^87/Lucas(100) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^84/Lucas(97) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^82/Lucas(95) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(93) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(91) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(89) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(87) 6099996721297634 a004 Fibonacci(28)*Lucas(86)/(1/2+sqrt(5)/2)^99 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(85) 6099996721297634 a004 Fibonacci(28)*Lucas(84)/(1/2+sqrt(5)/2)^97 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(83) 6099996721297634 a004 Fibonacci(28)*Lucas(82)/(1/2+sqrt(5)/2)^95 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(81) 6099996721297634 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^93 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(79) 6099996721297634 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^91 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(77) 6099996721297634 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^89 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(75) 6099996721297634 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^87 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(73) 6099996721297634 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^85 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(71) 6099996721297634 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^83 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(69) 6099996721297634 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^81 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(67) 6099996721297634 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^79 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(65) 6099996721297634 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^77 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(63) 6099996721297634 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^75 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(61) 6099996721297634 a001 10959/505618944676*3461452808002^(5/6) 6099996721297634 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^73 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(59) 6099996721297634 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^71 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(57) 6099996721297634 a001 317811/817138163596*23725150497407^(11/16) 6099996721297634 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^15 6099996721297634 a001 105937/3020733700601*505019158607^(7/8) 6099996721297634 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^17 6099996721297634 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^19 6099996721297634 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^21 6099996721297634 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^23 6099996721297634 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^25 6099996721297634 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^27 6099996721297634 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^29 6099996721297634 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^31 6099996721297634 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^33 6099996721297634 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^35 6099996721297634 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^37 6099996721297634 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^39 6099996721297634 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^41 6099996721297634 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^43 6099996721297634 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^45 6099996721297634 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^47 6099996721297634 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^49 6099996721297634 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^51 6099996721297634 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^53 6099996721297634 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^55 6099996721297634 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^57 6099996721297634 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^69 6099996721297634 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^56 6099996721297634 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^54 6099996721297634 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^52 6099996721297634 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^50 6099996721297634 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^48 6099996721297634 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^46 6099996721297634 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^44 6099996721297634 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^42 6099996721297634 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^40 6099996721297634 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^38 6099996721297634 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^36 6099996721297634 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^34 6099996721297634 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^32 6099996721297634 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^30 6099996721297634 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^28 6099996721297634 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^26 6099996721297634 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^24 6099996721297634 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^22 6099996721297634 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^20 6099996721297634 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^18 6099996721297634 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^16 6099996721297634 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^14 6099996721297634 a001 317811/312119004989*817138163596^(14/19) 6099996721297634 a001 317811/312119004989*14662949395604^(2/3) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(55) 6099996721297634 a001 317811/312119004989*505019158607^(3/4) 6099996721297634 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^12 6099996721297634 a001 105937/440719107401*192900153618^(5/6) 6099996721297634 a001 317811/5600748293801*192900153618^(8/9) 6099996721297634 a001 317811/23725150497407*192900153618^(17/18) 6099996721297634 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^67 6099996721297634 a001 317811/312119004989*192900153618^(7/9) 6099996721297634 a001 317811/119218851371*312119004989^(8/11) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(53) 6099996721297634 a001 317811/119218851371*23725150497407^(5/8) 6099996721297634 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^10 6099996721297634 a001 317811/817138163596*73681302247^(11/13) 6099996721297634 a001 317811/5600748293801*73681302247^(12/13) 6099996721297634 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^65 6099996721297634 a001 317811/119218851371*73681302247^(10/13) 6099996721297634 a001 317811/45537549124*817138163596^(2/3) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(51) 6099996721297634 a001 2157408178146338/3536736619241 6099996721297634 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^8 6099996721297634 a001 317811/119218851371*28143753123^(4/5) 6099996721297634 a001 105937/440719107401*28143753123^(9/10) 6099996721297634 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^63 6099996721297634 a001 10959/599786069*45537549124^(12/17) 6099996721297634 a001 10959/599786069*14662949395604^(4/7) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(49) 6099996721297634 a001 10959/599786069*505019158607^(9/14) 6099996721297634 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^6 6099996721297634 a001 10959/599786069*192900153618^(2/3) 6099996721297634 a001 10959/599786069*73681302247^(9/13) 6099996721297634 a001 317811/73681302247*10749957122^(13/16) 6099996721297634 a001 317811/119218851371*10749957122^(5/6) 6099996721297634 a001 317811/45537549124*10749957122^(19/24) 6099996721297634 a001 317811/312119004989*10749957122^(7/8) 6099996721297634 a001 317811/817138163596*10749957122^(11/12) 6099996721297634 a001 105937/440719107401*10749957122^(15/16) 6099996721297634 a001 317811/2139295485799*10749957122^(23/24) 6099996721297634 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^61 6099996721297634 a001 10959/599786069*10749957122^(3/4) 6099996721297634 a001 317811/6643838879*45537549124^(2/3) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(47) 6099996721297634 a001 314761611188401/516002918640 6099996721297634 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^4 6099996721297634 a001 317811/6643838879*10749957122^(17/24) 6099996721297634 a001 317811/45537549124*4106118243^(19/23) 6099996721297634 a001 10959/599786069*4106118243^(18/23) 6099996721297634 a001 317811/119218851371*4106118243^(20/23) 6099996721297634 a001 317811/312119004989*4106118243^(21/23) 6099996721297634 a001 317811/817138163596*4106118243^(22/23) 6099996721297634 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^59 6099996721297634 a001 317811/6643838879*4106118243^(17/23) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(45) 6099996721297634 a001 317811/2537720636*23725150497407^(1/2) 6099996721297634 a001 360684711360870/591286729879 6099996721297634 a001 317811/2537720636*505019158607^(4/7) 6099996721297634 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^2 6099996721297634 a001 317811/2537720636*73681302247^(8/13) 6099996721297634 a001 317811/2537720636*10749957122^(2/3) 6099996721297634 a001 317811/2537720636*4106118243^(16/23) 6099996721297634 a001 105937/1368706081*1568397607^(3/4) 6099996721297634 a001 10959/599786069*1568397607^(9/11) 6099996721297634 a001 317811/6643838879*1568397607^(17/22) 6099996721297634 a001 317811/45537549124*1568397607^(19/22) 6099996721297634 a001 317811/119218851371*1568397607^(10/11) 6099996721297634 a001 317811/312119004989*1568397607^(21/22) 6099996721297634 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^57 6099996721297634 a001 317811/2537720636*1568397607^(8/11) 6099996721297634 a001 317811/969323029*2537720636^(2/3) 6099996721297634 a001 317811/969323029*45537549124^(10/17) 6099996721297634 a001 317811/969323029*312119004989^(6/11) 6099996721297634 a001 317811/969323029*14662949395604^(10/21) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(43) 6099996721297634 a001 433494437/710647 6099996721297634 a001 317811/969323029*192900153618^(5/9) 6099996721297634 a001 317811/969323029*28143753123^(3/5) 6099996721297634 a001 317811/969323029*10749957122^(5/8) 6099996721297634 a001 317811/969323029*4106118243^(15/23) 6099996721297634 a001 317811/969323029*1568397607^(15/22) 6099996721297634 a001 105937/1368706081*599074578^(11/14) 6099996721297634 a001 317811/2537720636*599074578^(16/21) 6099996721297634 a001 317811/6643838879*599074578^(17/21) 6099996721297634 a001 317811/10749957122*599074578^(5/6) 6099996721297634 a001 10959/599786069*599074578^(6/7) 6099996721297634 a001 317811/45537549124*599074578^(19/21) 6099996721297634 a001 317811/73681302247*599074578^(13/14) 6099996721297634 a001 317811/119218851371*599074578^(20/21) 6099996721297634 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^55 6099996721297634 a001 317811/969323029*599074578^(5/7) 6099996721297634 a001 317811/370248451*17393796001^(4/7) 6099996721297634 a001 317811/370248451*14662949395604^(4/9) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(41) 6099996721297634 a001 317811/370248451*505019158607^(1/2) 6099996721297634 a001 165580141/710647*(1/2+1/2*5^(1/2))^2 6099996721297634 a001 52623190191351/86267571272 6099996721297634 a001 317811/370248451*73681302247^(7/13) 6099996721297634 a001 165580141/710647*10749957122^(1/24) 6099996721297634 a001 165580141/710647*4106118243^(1/23) 6099996721297634 a001 317811/370248451*10749957122^(7/12) 6099996721297634 a001 165580141/710647*1568397607^(1/22) 6099996721297634 a001 317811/370248451*4106118243^(14/23) 6099996721297634 a001 165580141/710647*599074578^(1/21) 6099996721297634 a001 317811/370248451*1568397607^(7/11) 6099996721297634 a001 165580141/710647*228826127^(1/20) 6099996721297634 a001 317811/370248451*599074578^(2/3) 6099996721297634 a001 165580141/710647*87403803^(1/19) 6099996721297634 a001 317811/969323029*228826127^(3/4) 6099996721297634 a001 317811/2537720636*228826127^(4/5) 6099996721297634 a001 317811/6643838879*228826127^(17/20) 6099996721297634 a001 317811/141422324*141422324^(2/3) 6099996721297634 a001 317811/10749957122*228826127^(7/8) 6099996721297634 a001 10959/599786069*228826127^(9/10) 6099996721297634 a001 317811/45537549124*228826127^(19/20) 6099996721297634 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^53 6099996721297634 a001 317811/370248451*228826127^(7/10) 6099996721297634 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(39) 6099996721297634 a001 63245986/710647*(1/2+1/2*5^(1/2))^4 6099996721297634 a001 63245986/710647*23725150497407^(1/16) 6099996721297634 a001 63245986/710647*73681302247^(1/13) 6099996721297634 a001 317811/141422324*73681302247^(1/2) 6099996721297634 a001 28755751154/47140601 6099996721297634 a001 63245986/710647*10749957122^(1/12) 6099996721297634 a001 317811/141422324*10749957122^(13/24) 6099996721297634 a001 63245986/710647*4106118243^(2/23) 6099996721297634 a001 317811/141422324*4106118243^(13/23) 6099996721297634 a001 63245986/710647*1568397607^(1/11) 6099996721297634 a001 317811/141422324*1568397607^(13/22) 6099996721297634 a001 63245986/710647*599074578^(2/21) 6099996721297634 a001 317811/141422324*599074578^(13/21) 6099996721297634 a001 63245986/710647*228826127^(1/10) 6099996721297634 a001 14619165/101521*33385282^(1/12) 6099996721297634 a001 165580141/710647*33385282^(1/18) 6099996721297634 a001 317811/141422324*228826127^(13/20) 6099996721297634 a001 63245986/710647*87403803^(2/19) 6099996721297635 a001 317811/370248451*87403803^(14/19) 6099996721297635 a001 317811/969323029*87403803^(15/19) 6099996721297635 a001 317811/2537720636*87403803^(16/19) 6099996721297635 a001 317811/6643838879*87403803^(17/19) 6099996721297635 a001 10959/599786069*87403803^(18/19) 6099996721297635 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^51 6099996721297635 a001 317811/141422324*87403803^(13/19) 6099996721297635 a001 63245986/710647*33385282^(1/9) 6099996721297636 a001 317811/54018521*141422324^(8/13) 6099996721297636 a001 24157817/710647*141422324^(2/13) 6099996721297636 a001 317811/54018521*2537720636^(8/15) 6099996721297636 a001 24157817/710647*2537720636^(2/15) 6099996721297636 a001 317811/54018521*45537549124^(8/17) 6099996721297636 a001 24157817/710647*45537549124^(2/17) 6099996721297636 a001 317811/54018521*14662949395604^(8/21) 6099996721297636 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(37) 6099996721297636 a001 24157817/710647*14662949395604^(2/21) 6099996721297636 a001 24157817/710647*(1/2+1/2*5^(1/2))^6 6099996721297636 a001 317811/54018521*192900153618^(4/9) 6099996721297636 a001 317811/54018521*73681302247^(6/13) 6099996721297636 a001 24157817/710647*10749957122^(1/8) 6099996721297636 a001 7677619978587/12586269025 6099996721297636 a001 317811/54018521*10749957122^(1/2) 6099996721297636 a001 24157817/710647*4106118243^(3/23) 6099996721297636 a001 317811/54018521*4106118243^(12/23) 6099996721297636 a001 24157817/710647*1568397607^(3/22) 6099996721297636 a001 317811/54018521*1568397607^(6/11) 6099996721297636 a001 24157817/710647*599074578^(1/7) 6099996721297636 a001 317811/54018521*599074578^(4/7) 6099996721297636 a001 24157817/710647*228826127^(3/20) 6099996721297636 a001 317811/54018521*228826127^(3/5) 6099996721297636 a001 24157817/710647*87403803^(3/19) 6099996721297636 a001 165580141/710647*12752043^(1/17) 6099996721297636 a001 317811/54018521*87403803^(12/19) 6099996721297637 a001 24157817/710647*33385282^(1/6) 6099996721297638 a001 317811/228826127*33385282^(3/4) 6099996721297638 a001 317811/141422324*33385282^(13/18) 6099996721297638 a001 317811/370248451*33385282^(7/9) 6099996721297638 a001 317811/969323029*33385282^(5/6) 6099996721297639 a001 63245986/710647*12752043^(2/17) 6099996721297639 a001 317811/2537720636*33385282^(8/9) 6099996721297639 a001 105937/1368706081*33385282^(11/12) 6099996721297639 a001 317811/6643838879*33385282^(17/18) 6099996721297639 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^49 6099996721297640 a001 317811/54018521*33385282^(2/3) 6099996721297643 a001 24157817/710647*12752043^(3/17) 6099996721297648 a001 10959/711491*312119004989^(2/5) 6099996721297648 a001 10959/711491*(1/2+1/2*5^(1/2))^22 6099996721297648 a001 9227465/710647*(1/2+1/2*5^(1/2))^8 6099996721297648 a001 9227465/710647*23725150497407^(1/8) 6099996721297648 a001 9227465/710647*505019158607^(1/7) 6099996721297648 a001 9227465/710647*73681302247^(2/13) 6099996721297648 a001 9227465/710647*10749957122^(1/6) 6099996721297648 a001 10959/711491*10749957122^(11/24) 6099996721297648 a001 977529959705/1602508992 6099996721297648 a001 9227465/710647*4106118243^(4/23) 6099996721297648 a001 10959/711491*4106118243^(11/23) 6099996721297648 a001 9227465/710647*1568397607^(2/11) 6099996721297648 a001 10959/711491*1568397607^(1/2) 6099996721297648 a001 9227465/710647*599074578^(4/21) 6099996721297648 a001 10959/711491*599074578^(11/21) 6099996721297648 a001 9227465/710647*228826127^(1/5) 6099996721297648 a001 10959/711491*228826127^(11/20) 6099996721297648 a001 9227465/710647*87403803^(4/19) 6099996721297649 a001 10959/711491*87403803^(11/19) 6099996721297649 a001 9227465/710647*33385282^(2/9) 6099996721297650 a001 165580141/710647*4870847^(1/16) 6099996721297652 a001 10959/711491*33385282^(11/18) 6099996721297657 a001 9227465/710647*12752043^(4/17) 6099996721297662 a001 317811/54018521*12752043^(12/17) 6099996721297663 a001 317811/141422324*12752043^(13/17) 6099996721297665 a001 317811/370248451*12752043^(14/17) 6099996721297666 a001 63245986/710647*4870847^(1/8) 6099996721297667 a001 317811/969323029*12752043^(15/17) 6099996721297669 a001 317811/2537720636*12752043^(16/17) 6099996721297671 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^47 6099996721297673 a001 10959/711491*12752043^(11/17) 6099996721297684 a001 24157817/710647*4870847^(3/16) 6099996721297713 a001 9227465/710647*4870847^(1/4) 6099996721297724 a001 317811/7881196*20633239^(4/7) 6099996721297728 a001 3524578/710647*20633239^(2/7) 6099996721297732 a001 317811/7881196*2537720636^(4/9) 6099996721297732 a001 3524578/710647*2537720636^(2/9) 6099996721297732 a001 317811/7881196*(1/2+1/2*5^(1/2))^20 6099996721297732 a001 317811/7881196*23725150497407^(5/16) 6099996721297732 a001 317811/7881196*505019158607^(5/14) 6099996721297732 a001 3524578/710647*312119004989^(2/11) 6099996721297732 a001 3524578/710647*(1/2+1/2*5^(1/2))^10 6099996721297732 a001 317811/7881196*73681302247^(5/13) 6099996721297732 a001 3524578/710647*28143753123^(1/5) 6099996721297732 a001 317811/7881196*28143753123^(2/5) 6099996721297732 a001 3524578/710647*10749957122^(5/24) 6099996721297732 a001 317811/7881196*10749957122^(5/12) 6099996721297732 a001 3524578/710647*4106118243^(5/23) 6099996721297732 a001 317811/7881196*4106118243^(10/23) 6099996721297732 a001 1120149658758/1836311903 6099996721297732 a001 3524578/710647*1568397607^(5/22) 6099996721297732 a001 317811/7881196*1568397607^(5/11) 6099996721297732 a001 3524578/710647*599074578^(5/21) 6099996721297732 a001 317811/7881196*599074578^(10/21) 6099996721297732 a001 3524578/710647*228826127^(1/4) 6099996721297732 a001 317811/7881196*228826127^(1/2) 6099996721297732 a001 3524578/710647*87403803^(5/19) 6099996721297733 a001 317811/7881196*87403803^(10/19) 6099996721297734 a001 3524578/710647*33385282^(5/18) 6099996721297735 a001 317811/7881196*33385282^(5/9) 6099996721297743 a001 3524578/710647*12752043^(5/17) 6099996721297751 a001 165580141/710647*1860498^(1/15) 6099996721297754 a001 317811/7881196*12752043^(10/17) 6099996721297810 a001 14619165/101521*1860498^(1/10) 6099996721297812 a001 3524578/710647*4870847^(5/16) 6099996721297825 a001 10959/711491*4870847^(11/16) 6099996721297829 a001 317811/54018521*4870847^(3/4) 6099996721297843 a001 317811/141422324*4870847^(13/16) 6099996721297853 a001 39088169/271443*103682^(1/8) 6099996721297859 a001 317811/370248451*4870847^(7/8) 6099996721297869 a001 63245986/710647*1860498^(2/15) 6099996721297875 a001 317811/969323029*4870847^(15/16) 6099996721297891 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^45 6099996721297893 a001 317811/7881196*4870847^(5/8) 6099996721297927 a001 39088169/710647*1860498^(1/6) 6099996721297988 a001 24157817/439204*167761^(1/5) 6099996721297988 a001 24157817/710647*1860498^(1/5) 6099996721298118 a001 9227465/710647*1860498^(4/15) 6099996721298125 a001 5702887/710647*1860498^(3/10) 6099996721298253 a001 317811/3010349*7881196^(6/11) 6099996721298271 a001 1346269/710647*7881196^(4/11) 6099996721298307 a001 317811/3010349*141422324^(6/13) 6099996721298307 a001 1346269/710647*141422324^(4/13) 6099996721298307 a001 317811/3010349*2537720636^(2/5) 6099996721298307 a001 1346269/710647*2537720636^(4/15) 6099996721298307 a001 317811/3010349*45537549124^(6/17) 6099996721298307 a001 1346269/710647*45537549124^(4/17) 6099996721298307 a001 317811/3010349*(1/2+1/2*5^(1/2))^18 6099996721298307 a001 1346269/710647*817138163596^(4/19) 6099996721298307 a001 1346269/710647*14662949395604^(4/21) 6099996721298307 a001 1346269/710647*(1/2+1/2*5^(1/2))^12 6099996721298307 a001 317811/3010349*192900153618^(1/3) 6099996721298307 a001 1346269/710647*192900153618^(2/9) 6099996721298307 a001 1346269/710647*73681302247^(3/13) 6099996721298307 a001 1346269/710647*10749957122^(1/4) 6099996721298307 a001 317811/3010349*10749957122^(3/8) 6099996721298307 a001 1346269/710647*4106118243^(6/23) 6099996721298307 a001 317811/3010349*4106118243^(9/23) 6099996721298307 a001 1346269/710647*1568397607^(3/11) 6099996721298307 a001 317811/3010349*1568397607^(9/22) 6099996721298307 a001 142619699053/233802911 6099996721298307 a001 1346269/710647*599074578^(2/7) 6099996721298307 a001 317811/3010349*599074578^(3/7) 6099996721298307 a001 1346269/710647*228826127^(3/10) 6099996721298307 a001 317811/3010349*228826127^(9/20) 6099996721298307 a001 1346269/710647*87403803^(6/19) 6099996721298307 a001 317811/3010349*87403803^(9/19) 6099996721298309 a001 1346269/710647*33385282^(1/3) 6099996721298310 a001 317811/3010349*33385282^(1/2) 6099996721298320 a001 3524578/710647*1860498^(1/3) 6099996721298320 a001 1346269/710647*12752043^(6/17) 6099996721298327 a001 317811/3010349*12752043^(9/17) 6099996721298403 a001 1346269/710647*4870847^(3/8) 6099996721298452 a001 317811/3010349*4870847^(9/16) 6099996721298497 a001 165580141/710647*710647^(1/14) 6099996721298830 a001 105937/4250681*1860498^(7/10) 6099996721298907 a001 317811/7881196*1860498^(2/3) 6099996721298914 a001 39088169/4870847*439204^(1/3) 6099996721298941 a001 10959/711491*1860498^(11/15) 6099996721299012 a001 1346269/710647*1860498^(2/5) 6099996721299046 a001 317811/54018521*1860498^(4/5) 6099996721299102 a001 105937/29134601*1860498^(5/6) 6099996721299134 a001 34111385/4250681*439204^(1/3) 6099996721299162 a001 317811/141422324*1860498^(13/15) 6099996721299166 a001 133957148/16692641*439204^(1/3) 6099996721299171 a001 233802911/29134601*439204^(1/3) 6099996721299172 a001 1836311903/228826127*439204^(1/3) 6099996721299172 a001 267084832/33281921*439204^(1/3) 6099996721299172 a001 12586269025/1568397607*439204^(1/3) 6099996721299172 a001 10983760033/1368706081*439204^(1/3) 6099996721299172 a001 43133785636/5374978561*439204^(1/3) 6099996721299172 a001 75283811239/9381251041*439204^(1/3) 6099996721299172 a001 591286729879/73681302247*439204^(1/3) 6099996721299172 a001 86000486440/10716675201*439204^(1/3) 6099996721299172 a001 4052739537881/505019158607*439204^(1/3) 6099996721299172 a001 3536736619241/440719107401*439204^(1/3) 6099996721299172 a001 3278735159921/408569081798*439204^(1/3) 6099996721299172 a001 2504730781961/312119004989*439204^(1/3) 6099996721299172 a001 956722026041/119218851371*439204^(1/3) 6099996721299172 a001 182717648081/22768774562*439204^(1/3) 6099996721299172 a001 139583862445/17393796001*439204^(1/3) 6099996721299172 a001 53316291173/6643838879*439204^(1/3) 6099996721299172 a001 10182505537/1268860318*439204^(1/3) 6099996721299172 a001 7778742049/969323029*439204^(1/3) 6099996721299172 a001 2971215073/370248451*439204^(1/3) 6099996721299172 a001 567451585/70711162*439204^(1/3) 6099996721299174 a001 433494437/54018521*439204^(1/3) 6099996721299186 a001 165580141/20633239*439204^(1/3) 6099996721299220 a001 317811/228826127*1860498^(9/10) 6099996721299270 a001 31622993/3940598*439204^(1/3) 6099996721299279 a001 317811/370248451*1860498^(14/15) 6099996721299360 a001 63245986/710647*710647^(1/7) 6099996721299364 a001 317811/3010349*1860498^(3/5) 6099996721299396 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^43 6099996721299847 a001 24157817/3010349*439204^(1/3) 6099996721300015 a001 2178309/1149851*439204^(4/9) 6099996721300224 a001 24157817/710647*710647^(3/14) 6099996721300648 a001 14930352/710647*710647^(1/4) 6099996721300923 a001 31622993/930249*439204^(2/9) 6099996721301099 a001 9227465/710647*710647^(2/7) 6099996721301372 a001 514229/1149851*439204^(5/9) 6099996721302046 a001 3524578/710647*710647^(5/14) 6099996721302242 a001 514229/710647*20633239^(2/5) 6099996721302248 a001 514229/710647*17393796001^(2/7) 6099996721302248 a001 317811/1149851*(1/2+1/2*5^(1/2))^16 6099996721302248 a001 317811/1149851*23725150497407^(1/4) 6099996721302248 a001 514229/710647*14662949395604^(2/9) 6099996721302248 a001 514229/710647*(1/2+1/2*5^(1/2))^14 6099996721302248 a001 514229/710647*505019158607^(1/4) 6099996721302248 a001 317811/1149851*73681302247^(4/13) 6099996721302248 a001 514229/710647*10749957122^(7/24) 6099996721302248 a001 317811/1149851*10749957122^(1/3) 6099996721302248 a001 514229/710647*4106118243^(7/23) 6099996721302248 a001 317811/1149851*4106118243^(8/23) 6099996721302248 a001 514229/710647*1568397607^(7/22) 6099996721302248 a001 317811/1149851*1568397607^(4/11) 6099996721302248 a001 514229/710647*599074578^(1/3) 6099996721302248 a001 317811/1149851*599074578^(8/21) 6099996721302248 a001 433495047/710648 6099996721302248 a001 514229/710647*228826127^(7/20) 6099996721302248 a001 317811/1149851*228826127^(2/5) 6099996721302248 a001 514229/710647*87403803^(7/19) 6099996721302248 a001 317811/1149851*87403803^(8/19) 6099996721302250 a001 514229/710647*33385282^(7/18) 6099996721302250 a001 317811/1149851*33385282^(4/9) 6099996721302263 a001 514229/710647*12752043^(7/17) 6099996721302265 a001 317811/1149851*12752043^(8/17) 6099996721302360 a001 514229/710647*4870847^(7/16) 6099996721302376 a001 317811/1149851*4870847^(1/2) 6099996721302428 a001 165580141/4870847*439204^(2/9) 6099996721302648 a001 433494437/12752043*439204^(2/9) 6099996721302680 a001 567451585/16692641*439204^(2/9) 6099996721302685 a001 2971215073/87403803*439204^(2/9) 6099996721302685 a001 7778742049/228826127*439204^(2/9) 6099996721302685 a001 10182505537/299537289*439204^(2/9) 6099996721302685 a001 53316291173/1568397607*439204^(2/9) 6099996721302685 a001 139583862445/4106118243*439204^(2/9) 6099996721302685 a001 182717648081/5374978561*439204^(2/9) 6099996721302685 a001 956722026041/28143753123*439204^(2/9) 6099996721302685 a001 2504730781961/73681302247*439204^(2/9) 6099996721302685 a001 3278735159921/96450076809*439204^(2/9) 6099996721302685 a001 10610209857723/312119004989*439204^(2/9) 6099996721302685 a001 4052739537881/119218851371*439204^(2/9) 6099996721302685 a001 387002188980/11384387281*439204^(2/9) 6099996721302685 a001 591286729879/17393796001*439204^(2/9) 6099996721302685 a001 225851433717/6643838879*439204^(2/9) 6099996721302685 a001 1135099622/33391061*439204^(2/9) 6099996721302685 a001 32951280099/969323029*439204^(2/9) 6099996721302685 a001 12586269025/370248451*439204^(2/9) 6099996721302686 a001 1201881744/35355581*439204^(2/9) 6099996721302688 a001 1836311903/54018521*439204^(2/9) 6099996721302700 a001 701408733/20633239*439204^(2/9) 6099996721302784 a001 66978574/1970299*439204^(2/9) 6099996721303070 a001 514229/710647*1860498^(7/15) 6099996721303125 a001 196418/271443*271443^(7/13) 6099996721303187 a001 317811/1149851*1860498^(8/15) 6099996721303337 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^44 6099996721303358 a001 102334155/3010349*439204^(2/9) 6099996721303359 a001 121393/20633239*271443^(12/13) 6099996721303484 a001 1346269/710647*710647^(3/7) 6099996721303800 a001 9227465/1149851*439204^(1/3) 6099996721304002 a001 165580141/710647*271443^(1/13) 6099996721304437 a001 133957148/930249*439204^(1/9) 6099996721304842 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^46 6099996721305061 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^48 6099996721305094 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^50 6099996721305098 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^52 6099996721305099 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^54 6099996721305099 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^56 6099996721305099 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^58 6099996721305099 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^60 6099996721305099 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^62 6099996721305099 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^64 6099996721305099 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^66 6099996721305099 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^68 6099996721305099 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^70 6099996721305099 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^72 6099996721305099 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^74 6099996721305099 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^76 6099996721305099 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^78 6099996721305099 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^80 6099996721305099 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^82 6099996721305099 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^84 6099996721305099 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^86 6099996721305099 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^88 6099996721305099 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^90 6099996721305099 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^92 6099996721305099 a004 Fibonacci(80)*Lucas(29)/(1/2+sqrt(5)/2)^94 6099996721305099 a004 Fibonacci(82)*Lucas(29)/(1/2+sqrt(5)/2)^96 6099996721305099 a004 Fibonacci(84)*Lucas(29)/(1/2+sqrt(5)/2)^98 6099996721305099 a004 Fibonacci(86)*Lucas(29)/(1/2+sqrt(5)/2)^100 6099996721305099 a004 Fibonacci(85)*Lucas(29)/(1/2+sqrt(5)/2)^99 6099996721305099 a004 Fibonacci(83)*Lucas(29)/(1/2+sqrt(5)/2)^97 6099996721305099 a004 Fibonacci(81)*Lucas(29)/(1/2+sqrt(5)/2)^95 6099996721305099 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^93 6099996721305099 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^91 6099996721305099 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^89 6099996721305099 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^87 6099996721305099 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^85 6099996721305099 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^83 6099996721305099 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^81 6099996721305099 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^79 6099996721305099 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^77 6099996721305099 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^75 6099996721305099 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^73 6099996721305099 a001 2/514229*(1/2+1/2*5^(1/2))^44 6099996721305099 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^71 6099996721305099 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^69 6099996721305099 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^67 6099996721305099 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^65 6099996721305099 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^63 6099996721305099 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^61 6099996721305099 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^59 6099996721305099 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^57 6099996721305099 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^55 6099996721305099 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^53 6099996721305101 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^51 6099996721305113 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^49 6099996721305197 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^47 6099996721305772 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^45 6099996721305942 a001 701408733/4870847*439204^(1/9) 6099996721306072 a001 317811/3010349*710647^(9/14) 6099996721306143 a001 416020/930249*7881196^(5/11) 6099996721306162 a001 1836311903/12752043*439204^(1/9) 6099996721306182 a001 416020/930249*20633239^(3/7) 6099996721306188 a001 416020/930249*141422324^(5/13) 6099996721306188 a001 1134902560/1860497 6099996721306188 a001 416020/930249*2537720636^(1/3) 6099996721306188 a001 416020/930249*45537549124^(5/17) 6099996721306188 a001 416020/930249*312119004989^(3/11) 6099996721306188 a001 416020/930249*14662949395604^(5/21) 6099996721306188 a001 416020/930249*(1/2+1/2*5^(1/2))^15 6099996721306188 a001 416020/930249*192900153618^(5/18) 6099996721306188 a001 416020/930249*28143753123^(3/10) 6099996721306188 a001 416020/930249*10749957122^(5/16) 6099996721306188 a001 416020/930249*599074578^(5/14) 6099996721306188 a001 416020/930249*228826127^(3/8) 6099996721306190 a001 416020/930249*33385282^(5/12) 6099996721306194 a001 14930208/103681*439204^(1/9) 6099996721306198 a001 12586269025/87403803*439204^(1/9) 6099996721306199 a001 32951280099/228826127*439204^(1/9) 6099996721306199 a001 43133785636/299537289*439204^(1/9) 6099996721306199 a001 32264490531/224056801*439204^(1/9) 6099996721306199 a001 591286729879/4106118243*439204^(1/9) 6099996721306199 a001 774004377960/5374978561*439204^(1/9) 6099996721306199 a001 4052739537881/28143753123*439204^(1/9) 6099996721306199 a001 1515744265389/10525900321*439204^(1/9) 6099996721306199 a001 3278735159921/22768774562*439204^(1/9) 6099996721306199 a001 2504730781961/17393796001*439204^(1/9) 6099996721306199 a001 956722026041/6643838879*439204^(1/9) 6099996721306199 a001 182717648081/1268860318*439204^(1/9) 6099996721306199 a001 139583862445/969323029*439204^(1/9) 6099996721306199 a001 53316291173/370248451*439204^(1/9) 6099996721306199 a001 10182505537/70711162*439204^(1/9) 6099996721306201 a001 7778742049/54018521*439204^(1/9) 6099996721306213 a001 2971215073/20633239*439204^(1/9) 6099996721306297 a001 567451585/3940598*439204^(1/9) 6099996721306360 a001 317811/7881196*710647^(5/7) 6099996721306655 a001 105937/4250681*710647^(3/4) 6099996721306872 a001 433494437/3010349*439204^(1/9) 6099996721307069 a001 416020/930249*1860498^(1/2) 6099996721307139 a001 10959/711491*710647^(11/14) 6099996721307277 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^46 6099996721307298 a001 39088169/1149851*439204^(2/9) 6099996721307693 a001 726103/620166*141422324^(1/3) 6099996721307693 a001 1812440220360/2971215073 6099996721307693 a001 832040/4870847*45537549124^(1/3) 6099996721307693 a001 832040/4870847*(1/2+1/2*5^(1/2))^17 6099996721307693 a001 726103/620166*(1/2+1/2*5^(1/2))^13 6099996721307693 a001 726103/620166*73681302247^(1/4) 6099996721307712 a001 832040/4870847*12752043^(1/2) 6099996721307852 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^48 6099996721307861 a001 610/1860499*7881196^(10/11) 6099996721307870 a001 416020/299537289*7881196^(9/11) 6099996721307879 a001 208010/35355581*7881196^(8/11) 6099996721307880 a001 5702887/1860498*7881196^(1/3) 6099996721307882 a001 416020/16692641*7881196^(7/11) 6099996721307887 a001 832040/54018521*7881196^(2/3) 6099996721307913 a001 4745030099480/7778742049 6099996721307913 a001 5702887/1860498*312119004989^(1/5) 6099996721307913 a001 832040/12752043*817138163596^(1/3) 6099996721307913 a001 832040/12752043*(1/2+1/2*5^(1/2))^19 6099996721307913 a001 5702887/1860498*(1/2+1/2*5^(1/2))^11 6099996721307913 a001 5702887/1860498*1568397607^(1/4) 6099996721307913 a001 832040/12752043*87403803^(1/2) 6099996721307918 a001 829464/103361*7881196^(3/11) 6099996721307933 a001 31622993/930249*7881196^(2/11) 6099996721307936 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^50 6099996721307936 a001 416020/16692641*20633239^(3/5) 6099996721307938 a001 610/1860499*20633239^(6/7) 6099996721307939 a001 832040/969323029*20633239^(4/5) 6099996721307940 a001 832040/228826127*20633239^(5/7) 6099996721307941 a001 133957148/930249*7881196^(1/11) 6099996721307945 a001 416020/16692641*141422324^(7/13) 6099996721307945 a001 829464/103361*141422324^(3/13) 6099996721307945 a001 416020/16692641*2537720636^(7/15) 6099996721307945 a001 829464/103361*2537720636^(1/5) 6099996721307945 a001 416020/16692641*17393796001^(3/7) 6099996721307945 a001 6211325039040/10182505537 6099996721307945 a001 416020/16692641*45537549124^(7/17) 6099996721307945 a001 829464/103361*45537549124^(3/17) 6099996721307945 a001 416020/16692641*14662949395604^(1/3) 6099996721307945 a001 416020/16692641*(1/2+1/2*5^(1/2))^21 6099996721307945 a001 829464/103361*14662949395604^(1/7) 6099996721307945 a001 829464/103361*(1/2+1/2*5^(1/2))^9 6099996721307945 a001 829464/103361*192900153618^(1/6) 6099996721307945 a001 416020/16692641*192900153618^(7/18) 6099996721307945 a001 829464/103361*10749957122^(3/16) 6099996721307945 a001 416020/16692641*10749957122^(7/16) 6099996721307945 a001 829464/103361*599074578^(3/14) 6099996721307945 a001 416020/16692641*599074578^(1/2) 6099996721307946 a001 829464/103361*33385282^(1/4) 6099996721307947 a001 39088169/1860498*20633239^(1/5) 6099996721307948 a001 416020/16692641*33385282^(7/12) 6099996721307948 a001 831985/15126*20633239^(1/7) 6099996721307948 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^52 6099996721307950 a001 39088169/1860498*17393796001^(1/7) 6099996721307950 a001 32522920134760/53316291173 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(38) 6099996721307950 a001 39088169/1860498*14662949395604^(1/9) 6099996721307950 a001 39088169/1860498*(1/2+1/2*5^(1/2))^7 6099996721307950 a001 832040/87403803*4106118243^(1/2) 6099996721307950 a001 39088169/1860498*599074578^(1/6) 6099996721307950 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^54 6099996721307950 a001 208010/11384387281*141422324^(12/13) 6099996721307950 a001 416020/5374978561*141422324^(11/13) 6099996721307950 a001 610/1860499*141422324^(10/13) 6099996721307950 a001 416020/299537289*141422324^(9/13) 6099996721307950 a001 832040/370248451*141422324^(2/3) 6099996721307950 a001 832040/228826127*2537720636^(5/9) 6099996721307950 a001 831985/15126*2537720636^(1/9) 6099996721307950 a001 17029222065240/27916772489 6099996721307950 a001 832040/228826127*312119004989^(5/11) 6099996721307950 a001 831985/15126*312119004989^(1/11) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(40) 6099996721307950 a001 832040/228826127*3461452808002^(5/12) 6099996721307950 a001 831985/15126*(1/2+1/2*5^(1/2))^5 6099996721307950 a001 831985/15126*28143753123^(1/10) 6099996721307950 a001 832040/228826127*28143753123^(1/2) 6099996721307950 a001 831985/15126*228826127^(1/8) 6099996721307950 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^56 6099996721307950 a001 832040/228826127*228826127^(5/8) 6099996721307950 a001 133957148/930249*141422324^(1/13) 6099996721307950 a001 416020/299537289*2537720636^(3/5) 6099996721307950 a001 133957148/930249*2537720636^(1/15) 6099996721307950 a001 416020/299537289*45537549124^(9/17) 6099996721307950 a001 133957148/930249*45537549124^(1/17) 6099996721307950 a001 111457705421920/182717648081 6099996721307950 a001 416020/299537289*817138163596^(9/19) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(42) 6099996721307950 a001 133957148/930249*14662949395604^(1/21) 6099996721307950 a001 133957148/930249*(1/2+1/2*5^(1/2))^3 6099996721307950 a001 133957148/930249*192900153618^(1/18) 6099996721307950 a001 416020/299537289*192900153618^(1/2) 6099996721307950 a001 133957148/930249*10749957122^(1/16) 6099996721307950 a001 416020/299537289*10749957122^(9/16) 6099996721307950 a001 133957148/930249*599074578^(1/14) 6099996721307950 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^58 6099996721307950 a001 416020/299537289*599074578^(9/14) 6099996721307950 a001 583600122205320/956722026041 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(44) 6099996721307950 a001 233802911/1240332+233802911/1240332*5^(1/2) 6099996721307950 a001 832040/1568397607*1322157322203^(1/2) 6099996721307950 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^60 6099996721307950 a001 208010/204284540899*2537720636^(14/15) 6099996721307950 a001 75640/28374454999*2537720636^(8/9) 6099996721307950 a001 416020/96450076809*2537720636^(13/15) 6099996721307950 a001 208010/11384387281*2537720636^(4/5) 6099996721307950 a001 416020/5374978561*2537720636^(11/15) 6099996721307950 a001 832040/28143753123*2537720636^(7/9) 6099996721307950 a001 1527884955772120/2504730781961 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(46) 6099996721307950 a001 832040/4106118243*9062201101803^(1/2) 6099996721307950 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2) 6099996721307950 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^62 6099996721307950 a001 416020/5374978561*45537549124^(11/17) 6099996721307950 a001 416020/5374978561*312119004989^(3/5) 6099996721307950 a001 2000027372555520/3278735159921 6099996721307950 a001 416020/5374978561*14662949395604^(11/21) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(48) 6099996721307950 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^3 6099996721307950 a001 416020/5374978561*192900153618^(11/18) 6099996721307950 a001 832040/28143753123*17393796001^(5/7) 6099996721307950 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^64 6099996721307950 a001 208010/204284540899*17393796001^(6/7) 6099996721307950 a001 416020/5374978561*10749957122^(11/16) 6099996721307950 a001 832040/28143753123*312119004989^(7/11) 6099996721307950 a001 832040/28143753123*14662949395604^(5/9) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(50) 6099996721307950 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^5 6099996721307950 a001 832040/28143753123*505019158607^(5/8) 6099996721307950 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^66 6099996721307950 a001 208010/3665737348901*45537549124^(16/17) 6099996721307950 a001 416020/1730726404001*45537549124^(15/17) 6099996721307950 a001 416020/96450076809*45537549124^(13/17) 6099996721307950 a001 208010/204284540899*45537549124^(14/17) 6099996721307950 a001 832040/28143753123*28143753123^(7/10) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(52) 6099996721307950 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^7 6099996721307950 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^68 6099996721307950 a001 416020/96450076809*14662949395604^(13/21) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(54) 6099996721307950 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^9 6099996721307950 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^70 6099996721307950 a001 416020/1730726404001*312119004989^(9/11) 6099996721307950 a001 416020/96450076809*192900153618^(13/18) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(56) 6099996721307950 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^11 6099996721307950 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^72 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(58) 6099996721307950 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^13 6099996721307950 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^74 6099996721307950 a001 416020/1730726404001*14662949395604^(5/7) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(60) 6099996721307950 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^76 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(62) 6099996721307950 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^78 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(64) 6099996721307950 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^80 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(66) 6099996721307950 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^82 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(68) 6099996721307950 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^84 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(70) 6099996721307950 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^86 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(72) 6099996721307950 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^88 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(74) 6099996721307950 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^90 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(76) 6099996721307950 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^92 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(78) 6099996721307950 a004 Fibonacci(30)*Lucas(79)/(1/2+sqrt(5)/2)^94 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(80) 6099996721307950 a004 Fibonacci(30)*Lucas(81)/(1/2+sqrt(5)/2)^96 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(82) 6099996721307950 a004 Fibonacci(30)*Lucas(83)/(1/2+sqrt(5)/2)^98 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(84) 6099996721307950 a004 Fibonacci(30)*Lucas(85)/(1/2+sqrt(5)/2)^100 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(86) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(88) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(90) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(92) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^79/Lucas(94) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^81/Lucas(96) 6099996721307950 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^15 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^83/Lucas(98) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^85/Lucas(100) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^84/Lucas(99) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^82/Lucas(97) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^80/Lucas(95) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(93) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(91) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(89) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(87) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(85) 6099996721307950 a004 Fibonacci(30)*Lucas(84)/(1/2+sqrt(5)/2)^99 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(83) 6099996721307950 a004 Fibonacci(30)*Lucas(82)/(1/2+sqrt(5)/2)^97 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(81) 6099996721307950 a004 Fibonacci(30)*Lucas(80)/(1/2+sqrt(5)/2)^95 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(79) 6099996721307950 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^93 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(77) 6099996721307950 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^91 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(75) 6099996721307950 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^89 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(73) 6099996721307950 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^87 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(71) 6099996721307950 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^85 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(69) 6099996721307950 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^83 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(67) 6099996721307950 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^81 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(65) 6099996721307950 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^79 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(63) 6099996721307950 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^77 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(61) 6099996721307950 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^17 6099996721307950 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^19 6099996721307950 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^21 6099996721307950 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^23 6099996721307950 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^25 6099996721307950 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^27 6099996721307950 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^29 6099996721307950 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^31 6099996721307950 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^33 6099996721307950 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^35 6099996721307950 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^37 6099996721307950 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^39 6099996721307950 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^41 6099996721307950 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^43 6099996721307950 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^45 6099996721307950 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^47 6099996721307950 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^49 6099996721307950 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^51 6099996721307950 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^55 6099996721307950 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^75 6099996721307950 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^53 6099996721307950 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^54 6099996721307950 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^52 6099996721307950 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^50 6099996721307950 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^48 6099996721307950 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^46 6099996721307950 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^44 6099996721307950 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^42 6099996721307950 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^40 6099996721307950 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^38 6099996721307950 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^36 6099996721307950 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^34 6099996721307950 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^32 6099996721307950 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^30 6099996721307950 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^28 6099996721307950 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^26 6099996721307950 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^24 6099996721307950 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^22 6099996721307950 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^20 6099996721307950 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^18 6099996721307950 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^16 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(59) 6099996721307950 a001 832040/2139295485799*23725150497407^(11/16) 6099996721307950 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^14 6099996721307950 a001 208010/204284540899*817138163596^(14/19) 6099996721307950 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^73 6099996721307950 a001 208010/204284540899*14662949395604^(2/3) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(57) 6099996721307950 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^12 6099996721307950 a001 832040/23725150497407*505019158607^(7/8) 6099996721307950 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^71 6099996721307950 a001 208010/204284540899*505019158607^(3/4) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(55) 6099996721307950 a001 75640/28374454999*23725150497407^(5/8) 6099996721307950 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^10 6099996721307950 a001 416020/1730726404001*192900153618^(5/6) 6099996721307950 a001 208010/204284540899*192900153618^(7/9) 6099996721307950 a001 208010/3665737348901*192900153618^(8/9) 6099996721307950 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^69 6099996721307950 a001 832040/119218851371*817138163596^(2/3) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(53) 6099996721307950 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^8 6099996721307950 a001 416020/96450076809*73681302247^(3/4) 6099996721307950 a001 208010/11384387281*45537549124^(12/17) 6099996721307950 a001 75640/28374454999*73681302247^(10/13) 6099996721307950 a001 832040/2139295485799*73681302247^(11/13) 6099996721307950 a001 208010/3665737348901*73681302247^(12/13) 6099996721307950 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^67 6099996721307950 a001 208010/11384387281*14662949395604^(4/7) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(51) 6099996721307950 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^6 6099996721307950 a001 208010/11384387281*505019158607^(9/14) 6099996721307950 a001 208010/11384387281*192900153618^(2/3) 6099996721307950 a001 208010/11384387281*73681302247^(9/13) 6099996721307950 a001 75640/28374454999*28143753123^(4/5) 6099996721307950 a001 416020/1730726404001*28143753123^(9/10) 6099996721307950 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^65 6099996721307950 a001 832040/17393796001*45537549124^(2/3) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(49) 6099996721307950 a001 6472224534449960/10610209857723 6099996721307950 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^4 6099996721307950 a001 832040/119218851371*10749957122^(19/24) 6099996721307950 a001 208010/11384387281*10749957122^(3/4) 6099996721307950 a001 416020/96450076809*10749957122^(13/16) 6099996721307950 a001 75640/28374454999*10749957122^(5/6) 6099996721307950 a001 208010/204284540899*10749957122^(7/8) 6099996721307950 a001 832040/2139295485799*10749957122^(11/12) 6099996721307950 a001 416020/1730726404001*10749957122^(15/16) 6099996721307950 a001 832040/5600748293801*10749957122^(23/24) 6099996721307950 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^63 6099996721307950 a001 832040/17393796001*10749957122^(17/24) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(47) 6099996721307950 a001 2472169789338920/4052739537881 6099996721307950 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^2 6099996721307950 a001 832040/6643838879*505019158607^(4/7) 6099996721307950 a001 832040/6643838879*73681302247^(8/13) 6099996721307950 a001 832040/6643838879*10749957122^(2/3) 6099996721307950 a001 208010/11384387281*4106118243^(18/23) 6099996721307950 a001 832040/17393796001*4106118243^(17/23) 6099996721307950 a001 832040/119218851371*4106118243^(19/23) 6099996721307950 a001 75640/28374454999*4106118243^(20/23) 6099996721307950 a001 610/1860499*2537720636^(2/3) 6099996721307950 a001 208010/204284540899*4106118243^(21/23) 6099996721307950 a001 832040/2139295485799*4106118243^(22/23) 6099996721307950 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^61 6099996721307950 a001 832040/6643838879*4106118243^(16/23) 6099996721307950 a001 610/1860499*45537549124^(10/17) 6099996721307950 a001 610/1860499*312119004989^(6/11) 6099996721307950 a001 610/1860499*14662949395604^(10/21) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(45) 6099996721307950 a001 567451585/930249 6099996721307950 a001 610/1860499*192900153618^(5/9) 6099996721307950 a001 610/1860499*28143753123^(3/5) 6099996721307950 a001 610/1860499*10749957122^(5/8) 6099996721307950 a001 610/1860499*4106118243^(15/23) 6099996721307950 a001 416020/5374978561*1568397607^(3/4) 6099996721307950 a001 832040/17393796001*1568397607^(17/22) 6099996721307950 a001 832040/6643838879*1568397607^(8/11) 6099996721307950 a001 208010/11384387281*1568397607^(9/11) 6099996721307950 a001 832040/119218851371*1568397607^(19/22) 6099996721307950 a001 75640/28374454999*1568397607^(10/11) 6099996721307950 a001 208010/204284540899*1568397607^(21/22) 6099996721307950 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^59 6099996721307950 a001 610/1860499*1568397607^(15/22) 6099996721307950 a001 832040/969323029*17393796001^(4/7) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(43) 6099996721307950 a001 433494437/1860498*(1/2+1/2*5^(1/2))^2 6099996721307950 a001 360684711361480/591286729879 6099996721307950 a001 832040/969323029*505019158607^(1/2) 6099996721307950 a001 832040/969323029*73681302247^(7/13) 6099996721307950 a001 433494437/1860498*10749957122^(1/24) 6099996721307950 a001 433494437/1860498*4106118243^(1/23) 6099996721307950 a001 832040/969323029*10749957122^(7/12) 6099996721307950 a001 433494437/1860498*1568397607^(1/22) 6099996721307950 a001 832040/969323029*4106118243^(14/23) 6099996721307950 a001 433494437/1860498*599074578^(1/21) 6099996721307950 a001 832040/969323029*1568397607^(7/11) 6099996721307950 a001 433494437/1860498*228826127^(1/20) 6099996721307950 a001 610/1860499*599074578^(5/7) 6099996721307950 a001 832040/6643838879*599074578^(16/21) 6099996721307950 a001 416020/5374978561*599074578^(11/14) 6099996721307950 a001 832040/17393796001*599074578^(17/21) 6099996721307950 a001 832040/28143753123*599074578^(5/6) 6099996721307950 a001 208010/11384387281*599074578^(6/7) 6099996721307950 a001 832040/119218851371*599074578^(19/21) 6099996721307950 a001 416020/96450076809*599074578^(13/14) 6099996721307950 a001 75640/28374454999*599074578^(20/21) 6099996721307950 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^57 6099996721307950 a001 832040/969323029*599074578^(2/3) 6099996721307950 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(41) 6099996721307950 a001 165580141/1860498*(1/2+1/2*5^(1/2))^4 6099996721307950 a001 165580141/1860498*23725150497407^(1/16) 6099996721307950 a001 137769300517640/225851433717 6099996721307950 a001 165580141/1860498*73681302247^(1/13) 6099996721307950 a001 832040/370248451*73681302247^(1/2) 6099996721307950 a001 165580141/1860498*10749957122^(1/12) 6099996721307950 a001 832040/370248451*10749957122^(13/24) 6099996721307950 a001 165580141/1860498*4106118243^(2/23) 6099996721307950 a001 832040/370248451*4106118243^(13/23) 6099996721307950 a001 165580141/1860498*1568397607^(1/11) 6099996721307950 a001 832040/370248451*1568397607^(13/22) 6099996721307950 a001 165580141/1860498*599074578^(2/21) 6099996721307950 a001 433494437/1860498*87403803^(1/19) 6099996721307950 a001 832040/370248451*599074578^(13/21) 6099996721307950 a001 165580141/1860498*228826127^(1/10) 6099996721307950 a001 832040/969323029*228826127^(7/10) 6099996721307950 a001 610/1860499*228826127^(3/4) 6099996721307950 a001 832040/6643838879*228826127^(4/5) 6099996721307950 a001 832040/17393796001*228826127^(17/20) 6099996721307950 a001 832040/28143753123*228826127^(7/8) 6099996721307950 a001 208010/11384387281*228826127^(9/10) 6099996721307950 a001 832040/119218851371*228826127^(19/20) 6099996721307950 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^55 6099996721307950 a001 208010/35355581*141422324^(8/13) 6099996721307951 a001 832040/370248451*228826127^(13/20) 6099996721307951 a001 165580141/1860498*87403803^(2/19) 6099996721307951 a001 31622993/930249*141422324^(2/13) 6099996721307951 a001 208010/35355581*2537720636^(8/15) 6099996721307951 a001 31622993/930249*2537720636^(2/15) 6099996721307951 a001 208010/35355581*45537549124^(8/17) 6099996721307951 a001 31622993/930249*45537549124^(2/17) 6099996721307951 a001 208010/35355581*14662949395604^(8/21) 6099996721307951 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(39) 6099996721307951 a001 31622993/930249*14662949395604^(2/21) 6099996721307951 a001 31622993/930249*(1/2+1/2*5^(1/2))^6 6099996721307951 a001 208010/35355581*192900153618^(4/9) 6099996721307951 a001 6577898773930/10783446409 6099996721307951 a001 208010/35355581*73681302247^(6/13) 6099996721307951 a001 31622993/930249*10749957122^(1/8) 6099996721307951 a001 208010/35355581*10749957122^(1/2) 6099996721307951 a001 31622993/930249*4106118243^(3/23) 6099996721307951 a001 208010/35355581*4106118243^(12/23) 6099996721307951 a001 31622993/930249*1568397607^(3/22) 6099996721307951 a001 208010/35355581*1568397607^(6/11) 6099996721307951 a001 31622993/930249*599074578^(1/7) 6099996721307951 a001 433494437/1860498*33385282^(1/18) 6099996721307951 a001 208010/35355581*599074578^(4/7) 6099996721307951 a001 31622993/930249*228826127^(3/20) 6099996721307951 a001 208010/35355581*228826127^(3/5) 6099996721307951 a001 31622993/930249*87403803^(3/19) 6099996721307951 a001 133957148/930249*33385282^(1/12) 6099996721307951 a001 832040/370248451*87403803^(13/19) 6099996721307951 a001 832040/969323029*87403803^(14/19) 6099996721307951 a001 610/1860499*87403803^(15/19) 6099996721307951 a001 165580141/1860498*33385282^(1/9) 6099996721307951 a001 832040/6643838879*87403803^(16/19) 6099996721307951 a001 832040/17393796001*87403803^(17/19) 6099996721307951 a001 208010/11384387281*87403803^(18/19) 6099996721307951 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^53 6099996721307951 a001 208010/35355581*87403803^(12/19) 6099996721307952 a001 31622993/930249*33385282^(1/6) 6099996721307952 a001 832040/54018521*312119004989^(2/5) 6099996721307952 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(37) 6099996721307952 a001 24157817/1860498*(1/2+1/2*5^(1/2))^8 6099996721307952 a001 24157817/1860498*23725150497407^(1/8) 6099996721307952 a001 24157817/1860498*505019158607^(1/7) 6099996721307952 a001 24157817/1860498*73681302247^(2/13) 6099996721307952 a001 20100270056680/32951280099 6099996721307952 a001 24157817/1860498*10749957122^(1/6) 6099996721307952 a001 832040/54018521*10749957122^(11/24) 6099996721307952 a001 24157817/1860498*4106118243^(4/23) 6099996721307952 a001 832040/54018521*4106118243^(11/23) 6099996721307952 a001 24157817/1860498*1568397607^(2/11) 6099996721307952 a001 832040/54018521*1568397607^(1/2) 6099996721307952 a001 24157817/1860498*599074578^(4/21) 6099996721307952 a001 832040/54018521*599074578^(11/21) 6099996721307952 a001 24157817/1860498*228826127^(1/5) 6099996721307953 a001 832040/54018521*228826127^(11/20) 6099996721307953 a001 433494437/1860498*12752043^(1/17) 6099996721307953 a001 24157817/1860498*87403803^(4/19) 6099996721307953 a001 832040/54018521*87403803^(11/19) 6099996721307954 a001 24157817/1860498*33385282^(2/9) 6099996721307954 a001 208010/35355581*33385282^(2/3) 6099996721307954 a001 832040/370248451*33385282^(13/18) 6099996721307954 a001 416020/299537289*33385282^(3/4) 6099996721307955 a001 832040/969323029*33385282^(7/9) 6099996721307955 a001 165580141/1860498*12752043^(2/17) 6099996721307955 a001 610/1860499*33385282^(5/6) 6099996721307955 a001 832040/6643838879*33385282^(8/9) 6099996721307955 a001 416020/5374978561*33385282^(11/12) 6099996721307956 a001 832040/17393796001*33385282^(17/18) 6099996721307956 a001 832040/54018521*33385282^(11/18) 6099996721307956 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^51 6099996721307957 a001 75640/1875749*20633239^(4/7) 6099996721307957 a001 31622993/930249*12752043^(3/17) 6099996721307961 a001 9227465/1860498*20633239^(2/7) 6099996721307961 a001 24157817/1860498*12752043^(4/17) 6099996721307965 a001 75640/1875749*2537720636^(4/9) 6099996721307965 a001 9227465/1860498*2537720636^(2/9) 6099996721307965 a001 75640/1875749*(1/2+1/2*5^(1/2))^20 6099996721307965 a001 75640/1875749*23725150497407^(5/16) 6099996721307965 a001 9227465/1860498*(1/2+1/2*5^(1/2))^10 6099996721307965 a001 75640/1875749*505019158607^(5/14) 6099996721307965 a001 75640/1875749*73681302247^(5/13) 6099996721307965 a001 9227465/1860498*28143753123^(1/5) 6099996721307965 a001 75640/1875749*28143753123^(2/5) 6099996721307965 a001 27918618104/45768251 6099996721307965 a001 9227465/1860498*10749957122^(5/24) 6099996721307965 a001 75640/1875749*10749957122^(5/12) 6099996721307965 a001 9227465/1860498*4106118243^(5/23) 6099996721307965 a001 75640/1875749*4106118243^(10/23) 6099996721307965 a001 9227465/1860498*1568397607^(5/22) 6099996721307965 a001 75640/1875749*1568397607^(5/11) 6099996721307965 a001 9227465/1860498*599074578^(5/21) 6099996721307965 a001 75640/1875749*599074578^(10/21) 6099996721307965 a001 9227465/1860498*228826127^(1/4) 6099996721307965 a001 75640/1875749*228826127^(1/2) 6099996721307965 a001 9227465/1860498*87403803^(5/19) 6099996721307965 a001 75640/1875749*87403803^(10/19) 6099996721307966 a001 9227465/1860498*33385282^(5/18) 6099996721307966 a001 433494437/1860498*4870847^(1/16) 6099996721307968 a001 75640/1875749*33385282^(5/9) 6099996721307976 a001 9227465/1860498*12752043^(5/17) 6099996721307977 a001 832040/54018521*12752043^(11/17) 6099996721307977 a001 208010/35355581*12752043^(12/17) 6099996721307979 a001 832040/370248451*12752043^(13/17) 6099996721307981 a001 832040/969323029*12752043^(14/17) 6099996721307983 a001 165580141/1860498*4870847^(1/8) 6099996721307983 a001 610/1860499*12752043^(15/17) 6099996721307986 a001 832040/6643838879*12752043^(16/17) 6099996721307987 a001 75640/1875749*12752043^(10/17) 6099996721307988 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^49 6099996721307989 a001 317811/54018521*710647^(6/7) 6099996721307995 a001 208010/1970299*7881196^(6/11) 6099996721307999 a001 31622993/930249*4870847^(3/16) 6099996721308013 a001 1762289/930249*7881196^(4/11) 6099996721308017 a001 24157817/1860498*4870847^(1/4) 6099996721308045 a001 9227465/1860498*4870847^(5/16) 6099996721308048 a001 208010/1970299*141422324^(6/13) 6099996721308048 a001 1762289/930249*141422324^(4/13) 6099996721308049 a001 208010/1970299*2537720636^(2/5) 6099996721308049 a001 1762289/930249*2537720636^(4/15) 6099996721308049 a001 208010/1970299*45537549124^(6/17) 6099996721308049 a001 1762289/930249*45537549124^(4/17) 6099996721308049 a001 1762289/930249*817138163596^(4/19) 6099996721308049 a001 208010/1970299*14662949395604^(2/7) 6099996721308049 a001 208010/1970299*(1/2+1/2*5^(1/2))^18 6099996721308049 a001 1762289/930249*14662949395604^(4/21) 6099996721308049 a001 1762289/930249*(1/2+1/2*5^(1/2))^12 6099996721308049 a001 1762289/930249*192900153618^(2/9) 6099996721308049 a001 208010/1970299*192900153618^(1/3) 6099996721308049 a001 1762289/930249*73681302247^(3/13) 6099996721308049 a001 1762289/930249*10749957122^(1/4) 6099996721308049 a001 208010/1970299*10749957122^(3/8) 6099996721308049 a001 183286867445/300470436 6099996721308049 a001 1762289/930249*4106118243^(6/23) 6099996721308049 a001 208010/1970299*4106118243^(9/23) 6099996721308049 a001 1762289/930249*1568397607^(3/11) 6099996721308049 a001 208010/1970299*1568397607^(9/22) 6099996721308049 a001 1762289/930249*599074578^(2/7) 6099996721308049 a001 208010/1970299*599074578^(3/7) 6099996721308049 a001 1762289/930249*228826127^(3/10) 6099996721308049 a001 208010/1970299*228826127^(9/20) 6099996721308049 a001 1762289/930249*87403803^(6/19) 6099996721308049 a001 208010/1970299*87403803^(9/19) 6099996721308050 a001 1762289/930249*33385282^(1/3) 6099996721308051 a001 208010/1970299*33385282^(1/2) 6099996721308062 a001 1762289/930249*12752043^(6/17) 6099996721308068 a001 433494437/1860498*1860498^(1/15) 6099996721308068 a001 208010/1970299*12752043^(9/17) 6099996721308125 a001 75640/1875749*4870847^(5/8) 6099996721308127 a001 133957148/930249*1860498^(1/10) 6099996721308129 a001 832040/54018521*4870847^(11/16) 6099996721308144 a001 208010/35355581*4870847^(3/4) 6099996721308145 a001 1762289/930249*4870847^(3/8) 6099996721308159 a001 832040/370248451*4870847^(13/16) 6099996721308175 a001 832040/969323029*4870847^(7/8) 6099996721308185 a001 165580141/1860498*1860498^(2/15) 6099996721308191 a001 610/1860499*4870847^(15/16) 6099996721308193 a001 208010/1970299*4870847^(9/16) 6099996721308207 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^47 6099996721308244 a001 831985/15126*1860498^(1/6) 6099996721308287 a001 514229/710647*710647^(1/2) 6099996721308303 a001 31622993/930249*1860498^(1/5) 6099996721308422 a001 24157817/1860498*1860498^(4/15) 6099996721308474 a001 829464/103361*1860498^(3/10) 6099996721308552 a001 9227465/1860498*1860498^(1/3) 6099996721308618 a001 1346269/1860498*20633239^(2/5) 6099996721308624 a001 1346269/1860498*17393796001^(2/7) 6099996721308624 a001 832040/3010349*(1/2+1/2*5^(1/2))^16 6099996721308624 a001 832040/3010349*23725150497407^(1/4) 6099996721308624 a001 1346269/1860498*14662949395604^(2/9) 6099996721308624 a001 1346269/1860498*(1/2+1/2*5^(1/2))^14 6099996721308624 a001 832040/3010349*73681302247^(4/13) 6099996721308624 a001 1346269/1860498*10749957122^(7/24) 6099996721308624 a001 832040/3010349*10749957122^(1/3) 6099996721308624 a001 1346269/1860498*4106118243^(7/23) 6099996721308624 a001 832040/3010349*4106118243^(8/23) 6099996721308624 a001 1120149658760/1836311903 6099996721308624 a001 1346269/1860498*1568397607^(7/22) 6099996721308624 a001 832040/3010349*1568397607^(4/11) 6099996721308624 a001 1346269/1860498*599074578^(1/3) 6099996721308624 a001 832040/3010349*599074578^(8/21) 6099996721308624 a001 1346269/1860498*228826127^(7/20) 6099996721308624 a001 832040/3010349*228826127^(2/5) 6099996721308624 a001 1346269/1860498*87403803^(7/19) 6099996721308624 a001 832040/3010349*87403803^(8/19) 6099996721308626 a001 1346269/1860498*33385282^(7/18) 6099996721308626 a001 832040/3010349*33385282^(4/9) 6099996721308639 a001 1346269/1860498*12752043^(7/17) 6099996721308641 a001 832040/3010349*12752043^(8/17) 6099996721308736 a001 1346269/1860498*4870847^(7/16) 6099996721308752 a001 832040/3010349*4870847^(1/2) 6099996721308753 a001 1762289/930249*1860498^(2/5) 6099996721308782 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^48 6099996721308813 a001 433494437/1860498*710647^(1/14) 6099996721308850 a001 317811/141422324*710647^(13/14) 6099996721309002 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^50 6099996721309034 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^52 6099996721309039 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^54 6099996721309039 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^56 6099996721309040 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^58 6099996721309040 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^60 6099996721309040 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^62 6099996721309040 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^64 6099996721309040 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^66 6099996721309040 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^68 6099996721309040 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^70 6099996721309040 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^72 6099996721309040 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^74 6099996721309040 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^76 6099996721309040 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^78 6099996721309040 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^80 6099996721309040 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^82 6099996721309040 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^84 6099996721309040 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^86 6099996721309040 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^88 6099996721309040 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^90 6099996721309040 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^92 6099996721309040 a004 Fibonacci(78)*Lucas(31)/(1/2+sqrt(5)/2)^94 6099996721309040 a004 Fibonacci(80)*Lucas(31)/(1/2+sqrt(5)/2)^96 6099996721309040 a004 Fibonacci(82)*Lucas(31)/(1/2+sqrt(5)/2)^98 6099996721309040 a004 Fibonacci(84)*Lucas(31)/(1/2+sqrt(5)/2)^100 6099996721309040 a004 Fibonacci(83)*Lucas(31)/(1/2+sqrt(5)/2)^99 6099996721309040 a004 Fibonacci(81)*Lucas(31)/(1/2+sqrt(5)/2)^97 6099996721309040 a004 Fibonacci(79)*Lucas(31)/(1/2+sqrt(5)/2)^95 6099996721309040 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^93 6099996721309040 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^91 6099996721309040 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^89 6099996721309040 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^87 6099996721309040 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^85 6099996721309040 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^83 6099996721309040 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^81 6099996721309040 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^79 6099996721309040 a001 2/1346269*(1/2+1/2*5^(1/2))^46 6099996721309040 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^77 6099996721309040 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^75 6099996721309040 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^73 6099996721309040 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^71 6099996721309040 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^69 6099996721309040 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^67 6099996721309040 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^65 6099996721309040 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^63 6099996721309040 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^61 6099996721309040 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^59 6099996721309040 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^57 6099996721309040 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^55 6099996721309042 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^53 6099996721309054 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^51 6099996721309106 a001 208010/1970299*1860498^(3/5) 6099996721309138 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^49 6099996721309140 a001 75640/1875749*1860498^(2/3) 6099996721309150 a001 317811/1149851*710647^(4/7) 6099996721309154 a001 2178309/4870847*7881196^(5/11) 6099996721309178 a001 416020/16692641*1860498^(7/10) 6099996721309192 a001 2178309/4870847*20633239^(3/7) 6099996721309198 a001 2178309/4870847*141422324^(5/13) 6099996721309198 a001 2178309/4870847*2537720636^(1/3) 6099996721309198 a001 4745030099481/7778742049 6099996721309198 a001 2178309/4870847*45537549124^(5/17) 6099996721309198 a001 2178309/4870847*312119004989^(3/11) 6099996721309198 a001 2178309/4870847*14662949395604^(5/21) 6099996721309198 a001 2178309/4870847*(1/2+1/2*5^(1/2))^15 6099996721309198 a001 2178309/4870847*192900153618^(5/18) 6099996721309198 a001 2178309/4870847*28143753123^(3/10) 6099996721309198 a001 2178309/4870847*10749957122^(5/16) 6099996721309198 a001 2178309/4870847*599074578^(5/14) 6099996721309198 a001 2178309/4870847*228826127^(3/8) 6099996721309201 a001 2178309/4870847*33385282^(5/12) 6099996721309245 a001 832040/54018521*1860498^(11/15) 6099996721309357 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^50 6099996721309360 a001 208010/35355581*1860498^(4/5) 6099996721309366 a001 2178309/6643838879*7881196^(10/11) 6099996721309375 a001 311187/224056801*7881196^(9/11) 6099996721309384 a001 2178309/370248451*7881196^(8/11) 6099996721309390 a001 2178309/141422324*7881196^(2/3) 6099996721309392 a001 726103/29134601*7881196^(7/11) 6099996721309416 a001 2178309/20633239*7881196^(6/11) 6099996721309417 a001 14930352/4870847*7881196^(1/3) 6099996721309418 a001 5702887/4870847*141422324^(1/3) 6099996721309418 a001 7778741439/12752042 6099996721309418 a001 726103/4250681*45537549124^(1/3) 6099996721309418 a001 726103/4250681*(1/2+1/2*5^(1/2))^17 6099996721309418 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^17/Lucas(34) 6099996721309418 a001 5702887/4870847*(1/2+1/2*5^(1/2))^13 6099996721309418 a001 5702887/4870847*73681302247^(1/4) 6099996721309419 a001 832040/228826127*1860498^(5/6) 6099996721309428 a001 39088169/4870847*7881196^(3/11) 6099996721309434 a001 9227465/4870847*7881196^(4/11) 6099996721309437 a001 726103/4250681*12752043^(1/2) 6099996721309438 a001 165580141/4870847*7881196^(2/11) 6099996721309441 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^52 6099996721309443 a001 2178309/6643838879*20633239^(6/7) 6099996721309444 a001 2178309/2537720636*20633239^(4/5) 6099996721309445 a001 726103/199691526*20633239^(5/7) 6099996721309446 a001 1346269/1860498*1860498^(7/15) 6099996721309446 a001 726103/29134601*20633239^(3/5) 6099996721309447 a001 701408733/4870847*7881196^(1/11) 6099996721309449 a001 2178309/54018521*20633239^(4/7) 6099996721309450 a001 32522920134768/53316291173 6099996721309450 a001 14930352/4870847*312119004989^(1/5) 6099996721309450 a001 311187/4769326*(1/2+1/2*5^(1/2))^19 6099996721309450 a001 14930352/4870847*(1/2+1/2*5^(1/2))^11 6099996721309450 a001 14930352/4870847*1568397607^(1/4) 6099996721309450 a001 311187/4769326*87403803^(1/2) 6099996721309453 a001 102334155/4870847*20633239^(1/5) 6099996721309453 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^54 6099996721309453 a001 267914296/4870847*20633239^(1/7) 6099996721309454 a001 24157817/4870847*20633239^(2/7) 6099996721309455 a001 726103/29134601*141422324^(7/13) 6099996721309455 a001 39088169/4870847*141422324^(3/13) 6099996721309455 a001 726103/29134601*2537720636^(7/15) 6099996721309455 a001 39088169/4870847*2537720636^(1/5) 6099996721309455 a001 726103/29134601*17393796001^(3/7) 6099996721309455 a001 726103/29134601*45537549124^(7/17) 6099996721309455 a001 39088169/4870847*45537549124^(3/17) 6099996721309455 a001 85146110326221/139583862445 6099996721309455 a001 39088169/4870847*817138163596^(3/19) 6099996721309455 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(38) 6099996721309455 a001 39088169/4870847*14662949395604^(1/7) 6099996721309455 a001 39088169/4870847*(1/2+1/2*5^(1/2))^9 6099996721309455 a001 39088169/4870847*192900153618^(1/6) 6099996721309455 a001 726103/29134601*192900153618^(7/18) 6099996721309455 a001 39088169/4870847*10749957122^(3/16) 6099996721309455 a001 726103/29134601*10749957122^(7/16) 6099996721309455 a001 39088169/4870847*599074578^(3/14) 6099996721309455 a001 726103/29134601*599074578^(1/2) 6099996721309455 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^56 6099996721309455 a001 2178309/119218851371*141422324^(12/13) 6099996721309455 a001 726103/9381251041*141422324^(11/13) 6099996721309455 a001 2178309/6643838879*141422324^(10/13) 6099996721309455 a001 311187/224056801*141422324^(9/13) 6099996721309455 a001 2178309/969323029*141422324^(2/3) 6099996721309455 a001 2178309/370248451*141422324^(8/13) 6099996721309455 a001 102334155/4870847*17393796001^(1/7) 6099996721309455 a001 222915410843895/365435296162 6099996721309455 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(40) 6099996721309455 a001 102334155/4870847*14662949395604^(1/9) 6099996721309455 a001 102334155/4870847*(1/2+1/2*5^(1/2))^7 6099996721309455 a001 46347/4868641*4106118243^(1/2) 6099996721309455 a001 102334155/4870847*599074578^(1/6) 6099996721309455 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^58 6099996721309456 a001 701408733/4870847*141422324^(1/13) 6099996721309456 a001 726103/199691526*2537720636^(5/9) 6099996721309456 a001 267914296/4870847*2537720636^(1/9) 6099996721309456 a001 726103/199691526*312119004989^(5/11) 6099996721309456 a001 267914296/4870847*312119004989^(1/11) 6099996721309456 a001 583600122205464/956722026041 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(42) 6099996721309456 a001 267914296/4870847*(1/2+1/2*5^(1/2))^5 6099996721309456 a001 726103/199691526*3461452808002^(5/12) 6099996721309456 a001 267914296/4870847*28143753123^(1/10) 6099996721309456 a001 726103/199691526*28143753123^(1/2) 6099996721309456 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^60 6099996721309456 a001 311187/224056801*2537720636^(3/5) 6099996721309456 a001 701408733/4870847*2537720636^(1/15) 6099996721309456 a001 311187/224056801*45537549124^(9/17) 6099996721309456 a001 701408733/4870847*45537549124^(1/17) 6099996721309456 a001 311187/224056801*817138163596^(9/19) 6099996721309456 a001 1527884955772497/2504730781961 6099996721309456 a001 311187/224056801*14662949395604^(3/7) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(44) 6099996721309456 a001 701408733/4870847*(1/2+1/2*5^(1/2))^3 6099996721309456 a001 311187/224056801*192900153618^(1/2) 6099996721309456 a001 701408733/4870847*10749957122^(1/16) 6099996721309456 a001 311187/224056801*10749957122^(9/16) 6099996721309456 a001 267914296/4870847*228826127^(1/8) 6099996721309456 a001 165580141/4870847*141422324^(2/13) 6099996721309456 a001 701408733/4870847*599074578^(1/14) 6099996721309456 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^62 6099996721309456 a001 2178309/2139295485799*2537720636^(14/15) 6099996721309456 a001 2178309/817138163596*2537720636^(8/9) 6099996721309456 a001 46347/10745088481*2537720636^(13/15) 6099996721309456 a001 2178309/119218851371*2537720636^(4/5) 6099996721309456 a001 311187/10525900321*2537720636^(7/9) 6099996721309456 a001 726103/9381251041*2537720636^(11/15) 6099996721309456 a001 2178309/6643838879*2537720636^(2/3) 6099996721309456 a001 4000054745112027/6557470319842 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(46) 6099996721309456 a001 1836311903/9741694+1836311903/9741694*5^(1/2) 6099996721309456 a001 726103/1368706081*1322157322203^(1/2) 6099996721309456 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^64 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(48) 6099996721309456 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2) 6099996721309456 a001 987/4870846*9062201101803^(1/2) 6099996721309456 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^66 6099996721309456 a001 2178309/2139295485799*17393796001^(6/7) 6099996721309456 a001 311187/10525900321*17393796001^(5/7) 6099996721309456 a001 726103/9381251041*45537549124^(11/17) 6099996721309456 a001 726103/9381251041*312119004989^(3/5) 6099996721309456 a001 726103/9381251041*14662949395604^(11/21) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(50) 6099996721309456 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^3 6099996721309456 a001 726103/9381251041*192900153618^(11/18) 6099996721309456 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^68 6099996721309456 a001 726103/3020733700601*45537549124^(15/17) 6099996721309456 a001 2178309/2139295485799*45537549124^(14/17) 6099996721309456 a001 46347/10745088481*45537549124^(13/17) 6099996721309456 a001 2178309/119218851371*45537549124^(12/17) 6099996721309456 a001 311187/10525900321*312119004989^(7/11) 6099996721309456 a001 311187/10525900321*14662949395604^(5/9) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(52) 6099996721309456 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^5 6099996721309456 a001 311187/10525900321*505019158607^(5/8) 6099996721309456 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^70 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(54) 6099996721309456 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^7 6099996721309456 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^72 6099996721309456 a001 2178309/5600748293801*312119004989^(4/5) 6099996721309456 a001 2178309/817138163596*312119004989^(8/11) 6099996721309456 a001 46347/10745088481*14662949395604^(13/21) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(56) 6099996721309456 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^9 6099996721309456 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^74 6099996721309456 a001 2178309/2139295485799*817138163596^(14/19) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(58) 6099996721309456 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^11 6099996721309456 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^76 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(60) 6099996721309456 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^13 6099996721309456 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^78 6099996721309456 a001 726103/3020733700601*14662949395604^(5/7) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(62) 6099996721309456 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^15 6099996721309456 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^80 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(64) 6099996721309456 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^82 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(66) 6099996721309456 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^84 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(68) 6099996721309456 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^86 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(70) 6099996721309456 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^88 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(72) 6099996721309456 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^90 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(74) 6099996721309456 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^92 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(76) 6099996721309456 a004 Fibonacci(32)*Lucas(77)/(1/2+sqrt(5)/2)^94 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(78) 6099996721309456 a004 Fibonacci(32)*Lucas(79)/(1/2+sqrt(5)/2)^96 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(80) 6099996721309456 a004 Fibonacci(32)*Lucas(81)/(1/2+sqrt(5)/2)^98 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(82) 6099996721309456 a004 Fibonacci(32)*Lucas(83)/(1/2+sqrt(5)/2)^100 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(84) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(86) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(88) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(90) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(92) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^77/Lucas(94) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^79/Lucas(96) 6099996721309456 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^17 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^81/Lucas(98) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^83/Lucas(100) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^82/Lucas(99) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^80/Lucas(97) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^78/Lucas(95) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(93) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(91) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(89) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(87) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(85) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(83) 6099996721309456 a004 Fibonacci(32)*Lucas(82)/(1/2+sqrt(5)/2)^99 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(81) 6099996721309456 a004 Fibonacci(32)*Lucas(80)/(1/2+sqrt(5)/2)^97 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(79) 6099996721309456 a004 Fibonacci(32)*Lucas(78)/(1/2+sqrt(5)/2)^95 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(77) 6099996721309456 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^93 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(75) 6099996721309456 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^91 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(73) 6099996721309456 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^89 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(71) 6099996721309456 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^87 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(69) 6099996721309456 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^85 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(67) 6099996721309456 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^83 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(65) 6099996721309456 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^19 6099996721309456 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^21 6099996721309456 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^23 6099996721309456 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^25 6099996721309456 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^27 6099996721309456 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^29 6099996721309456 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^31 6099996721309456 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^33 6099996721309456 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^35 6099996721309456 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^37 6099996721309456 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^39 6099996721309456 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^41 6099996721309456 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^43 6099996721309456 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^45 6099996721309456 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^47 6099996721309456 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^49 6099996721309456 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^51 6099996721309456 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^53 6099996721309456 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^81 6099996721309456 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^52 6099996721309456 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^50 6099996721309456 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^48 6099996721309456 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^46 6099996721309456 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^44 6099996721309456 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^42 6099996721309456 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^40 6099996721309456 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^38 6099996721309456 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^36 6099996721309456 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^34 6099996721309456 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^32 6099996721309456 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^30 6099996721309456 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^28 6099996721309456 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^26 6099996721309456 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^24 6099996721309456 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^22 6099996721309456 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^20 6099996721309456 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^18 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(63) 6099996721309456 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^16 6099996721309456 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^79 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(61) 6099996721309456 a001 2178309/5600748293801*23725150497407^(11/16) 6099996721309456 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^14 6099996721309456 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^77 6099996721309456 a001 2178309/2139295485799*14662949395604^(2/3) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(59) 6099996721309456 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^12 6099996721309456 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^75 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(57) 6099996721309456 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^10 6099996721309456 a001 2178309/2139295485799*505019158607^(3/4) 6099996721309456 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^73 6099996721309456 a001 2178309/312119004989*817138163596^(2/3) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(55) 6099996721309456 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^8 6099996721309456 a001 46347/10745088481*192900153618^(13/18) 6099996721309456 a001 2178309/2139295485799*192900153618^(7/9) 6099996721309456 a001 726103/3020733700601*192900153618^(5/6) 6099996721309456 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^71 6099996721309456 a001 2178309/119218851371*14662949395604^(4/7) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(53) 6099996721309456 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^6 6099996721309456 a001 2178309/119218851371*505019158607^(9/14) 6099996721309456 a001 2178309/119218851371*192900153618^(2/3) 6099996721309456 a001 46347/10745088481*73681302247^(3/4) 6099996721309456 a001 2178309/817138163596*73681302247^(10/13) 6099996721309456 a001 2178309/5600748293801*73681302247^(11/13) 6099996721309456 a001 2178309/45537549124*45537549124^(2/3) 6099996721309456 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^69 6099996721309456 a001 2178309/119218851371*73681302247^(9/13) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(51) 6099996721309456 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^4 6099996721309456 a001 311187/10525900321*28143753123^(7/10) 6099996721309456 a001 2178309/817138163596*28143753123^(4/5) 6099996721309456 a001 726103/3020733700601*28143753123^(9/10) 6099996721309456 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^67 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(49) 6099996721309456 a001 2178309/17393796001*23725150497407^(1/2) 6099996721309456 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^2 6099996721309456 a001 2178309/17393796001*505019158607^(4/7) 6099996721309456 a001 2178309/17393796001*73681302247^(8/13) 6099996721309456 a001 726103/9381251041*10749957122^(11/16) 6099996721309456 a001 2178309/119218851371*10749957122^(3/4) 6099996721309456 a001 2178309/45537549124*10749957122^(17/24) 6099996721309456 a001 2178309/312119004989*10749957122^(19/24) 6099996721309456 a001 46347/10745088481*10749957122^(13/16) 6099996721309456 a001 2178309/817138163596*10749957122^(5/6) 6099996721309456 a001 2178309/2139295485799*10749957122^(7/8) 6099996721309456 a001 2178309/5600748293801*10749957122^(11/12) 6099996721309456 a001 726103/3020733700601*10749957122^(15/16) 6099996721309456 a001 2178309/14662949395604*10749957122^(23/24) 6099996721309456 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^65 6099996721309456 a001 2178309/17393796001*10749957122^(2/3) 6099996721309456 a001 2178309/6643838879*45537549124^(10/17) 6099996721309456 a001 2178309/6643838879*312119004989^(6/11) 6099996721309456 a001 2178309/6643838879*14662949395604^(10/21) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(47) 6099996721309456 a001 2971215073/4870847 6099996721309456 a001 2178309/6643838879*192900153618^(5/9) 6099996721309456 a001 2178309/6643838879*28143753123^(3/5) 6099996721309456 a001 2178309/6643838879*10749957122^(5/8) 6099996721309456 a001 2178309/45537549124*4106118243^(17/23) 6099996721309456 a001 2178309/17393796001*4106118243^(16/23) 6099996721309456 a001 2178309/119218851371*4106118243^(18/23) 6099996721309456 a001 2178309/312119004989*4106118243^(19/23) 6099996721309456 a001 2178309/817138163596*4106118243^(20/23) 6099996721309456 a001 2178309/2139295485799*4106118243^(21/23) 6099996721309456 a001 2178309/5600748293801*4106118243^(22/23) 6099996721309456 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^63 6099996721309456 a001 2178309/6643838879*4106118243^(15/23) 6099996721309456 a001 2178309/2537720636*17393796001^(4/7) 6099996721309456 a001 2178309/2537720636*14662949395604^(4/9) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(45) 6099996721309456 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^2 6099996721309456 a001 2178309/2537720636*73681302247^(7/13) 6099996721309456 a001 1134903170/4870847*10749957122^(1/24) 6099996721309456 a001 1134903170/4870847*4106118243^(1/23) 6099996721309456 a001 2178309/2537720636*10749957122^(7/12) 6099996721309456 a001 1134903170/4870847*1568397607^(1/22) 6099996721309456 a001 2178309/2537720636*4106118243^(14/23) 6099996721309456 a001 1134903170/4870847*599074578^(1/21) 6099996721309456 a001 2178309/17393796001*1568397607^(8/11) 6099996721309456 a001 2178309/6643838879*1568397607^(15/22) 6099996721309456 a001 726103/9381251041*1568397607^(3/4) 6099996721309456 a001 2178309/45537549124*1568397607^(17/22) 6099996721309456 a001 2178309/119218851371*1568397607^(9/11) 6099996721309456 a001 2178309/312119004989*1568397607^(19/22) 6099996721309456 a001 2178309/817138163596*1568397607^(10/11) 6099996721309456 a001 2178309/2139295485799*1568397607^(21/22) 6099996721309456 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^61 6099996721309456 a001 2178309/2537720636*1568397607^(7/11) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(43) 6099996721309456 a001 433494437/4870847*(1/2+1/2*5^(1/2))^4 6099996721309456 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^4/Lucas(32) 6099996721309456 a001 433494437/4870847*23725150497407^(1/16) 6099996721309456 a001 314761611189011/516002918640 6099996721309456 a001 433494437/4870847*73681302247^(1/13) 6099996721309456 a001 2178309/969323029*73681302247^(1/2) 6099996721309456 a001 433494437/4870847*10749957122^(1/12) 6099996721309456 a001 2178309/969323029*10749957122^(13/24) 6099996721309456 a001 433494437/4870847*4106118243^(2/23) 6099996721309456 a001 2178309/969323029*4106118243^(13/23) 6099996721309456 a001 433494437/4870847*1568397607^(1/11) 6099996721309456 a001 1134903170/4870847*228826127^(1/20) 6099996721309456 a001 2178309/969323029*1568397607^(13/22) 6099996721309456 a001 433494437/4870847*599074578^(2/21) 6099996721309456 a001 311187/224056801*599074578^(9/14) 6099996721309456 a001 2178309/2537720636*599074578^(2/3) 6099996721309456 a001 2178309/6643838879*599074578^(5/7) 6099996721309456 a001 2178309/17393796001*599074578^(16/21) 6099996721309456 a001 726103/9381251041*599074578^(11/14) 6099996721309456 a001 2178309/45537549124*599074578^(17/21) 6099996721309456 a001 311187/10525900321*599074578^(5/6) 6099996721309456 a001 2178309/119218851371*599074578^(6/7) 6099996721309456 a001 2178309/312119004989*599074578^(19/21) 6099996721309456 a001 46347/10745088481*599074578^(13/14) 6099996721309456 a001 2178309/817138163596*599074578^(20/21) 6099996721309456 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^59 6099996721309456 a001 2178309/969323029*599074578^(13/21) 6099996721309456 a001 433494437/4870847*228826127^(1/10) 6099996721309456 a001 1134903170/4870847*87403803^(1/19) 6099996721309456 a001 2178309/370248451*2537720636^(8/15) 6099996721309456 a001 165580141/4870847*2537720636^(2/15) 6099996721309456 a001 2178309/370248451*45537549124^(8/17) 6099996721309456 a001 165580141/4870847*45537549124^(2/17) 6099996721309456 a001 2178309/370248451*14662949395604^(8/21) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(41) 6099996721309456 a001 165580141/4870847*14662949395604^(2/21) 6099996721309456 a001 165580141/4870847*(1/2+1/2*5^(1/2))^6 6099996721309456 a001 360684711361569/591286729879 6099996721309456 a001 2178309/370248451*192900153618^(4/9) 6099996721309456 a001 2178309/370248451*73681302247^(6/13) 6099996721309456 a001 165580141/4870847*10749957122^(1/8) 6099996721309456 a001 2178309/370248451*10749957122^(1/2) 6099996721309456 a001 165580141/4870847*4106118243^(3/23) 6099996721309456 a001 2178309/370248451*4106118243^(12/23) 6099996721309456 a001 165580141/4870847*1568397607^(3/22) 6099996721309456 a001 2178309/370248451*1568397607^(6/11) 6099996721309456 a001 165580141/4870847*599074578^(1/7) 6099996721309456 a001 2178309/370248451*599074578^(4/7) 6099996721309456 a001 726103/199691526*228826127^(5/8) 6099996721309456 a001 165580141/4870847*228826127^(3/20) 6099996721309456 a001 2178309/969323029*228826127^(13/20) 6099996721309456 a001 2178309/2537720636*228826127^(7/10) 6099996721309456 a001 2178309/6643838879*228826127^(3/4) 6099996721309456 a001 433494437/4870847*87403803^(2/19) 6099996721309456 a001 2178309/17393796001*228826127^(4/5) 6099996721309456 a001 2178309/45537549124*228826127^(17/20) 6099996721309456 a001 311187/10525900321*228826127^(7/8) 6099996721309456 a001 2178309/119218851371*228826127^(9/10) 6099996721309456 a001 2178309/312119004989*228826127^(19/20) 6099996721309456 a001 2178309/370248451*228826127^(3/5) 6099996721309456 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^57 6099996721309456 a001 165580141/4870847*87403803^(3/19) 6099996721309456 a001 2178309/141422324*312119004989^(2/5) 6099996721309456 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(39) 6099996721309456 a001 63245986/4870847*(1/2+1/2*5^(1/2))^8 6099996721309456 a001 63245986/4870847*23725150497407^(1/8) 6099996721309456 a001 63245986/4870847*505019158607^(1/7) 6099996721309456 a001 6560442881794/10754830177 6099996721309456 a001 63245986/4870847*73681302247^(2/13) 6099996721309456 a001 1134903170/4870847*33385282^(1/18) 6099996721309456 a001 63245986/4870847*10749957122^(1/6) 6099996721309456 a001 2178309/141422324*10749957122^(11/24) 6099996721309456 a001 63245986/4870847*4106118243^(4/23) 6099996721309456 a001 2178309/141422324*4106118243^(11/23) 6099996721309456 a001 63245986/4870847*1568397607^(2/11) 6099996721309456 a001 2178309/141422324*1568397607^(1/2) 6099996721309456 a001 63245986/4870847*599074578^(4/21) 6099996721309456 a001 2178309/141422324*599074578^(11/21) 6099996721309456 a001 63245986/4870847*228826127^(1/5) 6099996721309456 a001 2178309/141422324*228826127^(11/20) 6099996721309456 a001 701408733/4870847*33385282^(1/12) 6099996721309456 a001 63245986/4870847*87403803^(4/19) 6099996721309456 a001 2178309/370248451*87403803^(12/19) 6099996721309456 a001 2178309/969323029*87403803^(13/19) 6099996721309456 a001 39088169/4870847*33385282^(1/4) 6099996721309456 a001 2178309/2537720636*87403803^(14/19) 6099996721309456 a001 433494437/4870847*33385282^(1/9) 6099996721309456 a001 2178309/6643838879*87403803^(15/19) 6099996721309456 a001 2178309/17393796001*87403803^(16/19) 6099996721309456 a001 2178309/45537549124*87403803^(17/19) 6099996721309456 a001 2178309/119218851371*87403803^(18/19) 6099996721309456 a001 2178309/141422324*87403803^(11/19) 6099996721309456 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^55 6099996721309456 a001 165580141/4870847*33385282^(1/6) 6099996721309457 a001 63245986/4870847*33385282^(2/9) 6099996721309458 a001 2178309/54018521*2537720636^(4/9) 6099996721309458 a001 24157817/4870847*2537720636^(2/9) 6099996721309458 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(37) 6099996721309458 a001 2178309/54018521*23725150497407^(5/16) 6099996721309458 a001 24157817/4870847*(1/2+1/2*5^(1/2))^10 6099996721309458 a001 2178309/54018521*505019158607^(5/14) 6099996721309458 a001 52623190191453/86267571272 6099996721309458 a001 2178309/54018521*73681302247^(5/13) 6099996721309458 a001 24157817/4870847*28143753123^(1/5) 6099996721309458 a001 2178309/54018521*28143753123^(2/5) 6099996721309458 a001 24157817/4870847*10749957122^(5/24) 6099996721309458 a001 2178309/54018521*10749957122^(5/12) 6099996721309458 a001 24157817/4870847*4106118243^(5/23) 6099996721309458 a001 2178309/54018521*4106118243^(10/23) 6099996721309458 a001 24157817/4870847*1568397607^(5/22) 6099996721309458 a001 2178309/54018521*1568397607^(5/11) 6099996721309458 a001 24157817/4870847*599074578^(5/21) 6099996721309458 a001 2178309/54018521*599074578^(10/21) 6099996721309458 a001 24157817/4870847*228826127^(1/4) 6099996721309458 a001 2178309/54018521*228826127^(1/2) 6099996721309458 a001 1134903170/4870847*12752043^(1/17) 6099996721309458 a001 24157817/4870847*87403803^(5/19) 6099996721309458 a001 726103/29134601*33385282^(7/12) 6099996721309458 a001 2178309/54018521*87403803^(10/19) 6099996721309459 a001 24157817/4870847*33385282^(5/18) 6099996721309459 a001 2178309/141422324*33385282^(11/18) 6099996721309459 a001 2178309/370248451*33385282^(2/3) 6099996721309459 a001 2178309/969323029*33385282^(13/18) 6099996721309460 a001 311187/224056801*33385282^(3/4) 6099996721309460 a001 2178309/2537720636*33385282^(7/9) 6099996721309460 a001 433494437/4870847*12752043^(2/17) 6099996721309460 a001 2178309/6643838879*33385282^(5/6) 6099996721309460 a001 2178309/17393796001*33385282^(8/9) 6099996721309461 a001 726103/9381251041*33385282^(11/12) 6099996721309461 a001 2178309/54018521*33385282^(5/9) 6099996721309461 a001 2178309/45537549124*33385282^(17/18) 6099996721309461 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^53 6099996721309462 a001 165580141/4870847*12752043^(3/17) 6099996721309465 a001 63245986/4870847*12752043^(4/17) 6099996721309469 a001 24157817/4870847*12752043^(5/17) 6099996721309470 a001 2178309/20633239*141422324^(6/13) 6099996721309470 a001 9227465/4870847*141422324^(4/13) 6099996721309470 a001 2178309/20633239*2537720636^(2/5) 6099996721309470 a001 9227465/4870847*2537720636^(4/15) 6099996721309470 a001 2178309/20633239*45537549124^(6/17) 6099996721309470 a001 9227465/4870847*45537549124^(4/17) 6099996721309470 a001 9227465/4870847*817138163596^(4/19) 6099996721309470 a001 2178309/20633239*14662949395604^(2/7) 6099996721309470 a001 2178309/20633239*(1/2+1/2*5^(1/2))^18 6099996721309470 a001 9227465/4870847*14662949395604^(4/21) 6099996721309470 a001 9227465/4870847*(1/2+1/2*5^(1/2))^12 6099996721309470 a001 9227465/4870847*192900153618^(2/9) 6099996721309470 a001 2178309/20633239*192900153618^(1/3) 6099996721309470 a001 9227465/4870847*73681302247^(3/13) 6099996721309470 a001 6700090018895/10983760033 6099996721309470 a001 9227465/4870847*10749957122^(1/4) 6099996721309470 a001 2178309/20633239*10749957122^(3/8) 6099996721309470 a001 9227465/4870847*4106118243^(6/23) 6099996721309470 a001 2178309/20633239*4106118243^(9/23) 6099996721309470 a001 9227465/4870847*1568397607^(3/11) 6099996721309470 a001 2178309/20633239*1568397607^(9/22) 6099996721309470 a001 9227465/4870847*599074578^(2/7) 6099996721309470 a001 2178309/20633239*599074578^(3/7) 6099996721309470 a001 9227465/4870847*228826127^(3/10) 6099996721309470 a001 2178309/20633239*228826127^(9/20) 6099996721309470 a001 9227465/4870847*87403803^(6/19) 6099996721309470 a001 2178309/20633239*87403803^(9/19) 6099996721309472 a001 1134903170/4870847*4870847^(1/16) 6099996721309472 a001 9227465/4870847*33385282^(1/3) 6099996721309473 a001 2178309/20633239*33385282^(1/2) 6099996721309478 a001 832040/370248451*1860498^(13/15) 6099996721309480 a001 2178309/54018521*12752043^(10/17) 6099996721309480 a001 2178309/141422324*12752043^(11/17) 6099996721309482 a001 2178309/370248451*12752043^(12/17) 6099996721309483 a001 9227465/4870847*12752043^(6/17) 6099996721309484 a001 2178309/969323029*12752043^(13/17) 6099996721309486 a001 2178309/2537720636*12752043^(14/17) 6099996721309488 a001 433494437/4870847*4870847^(1/8) 6099996721309489 a001 2178309/6643838879*12752043^(15/17) 6099996721309490 a001 2178309/20633239*12752043^(9/17) 6099996721309491 a001 2178309/17393796001*12752043^(16/17) 6099996721309493 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^51 6099996721309493 a001 121393/439204*271443^(8/13) 6099996721309504 a001 165580141/4870847*4870847^(3/16) 6099996721309520 a001 63245986/4870847*4870847^(1/4) 6099996721309536 a001 416020/299537289*1860498^(9/10) 6099996721309538 a001 24157817/4870847*4870847^(5/16) 6099996721309548 a001 3524578/4870847*20633239^(2/5) 6099996721309554 a001 3524578/4870847*17393796001^(2/7) 6099996721309554 a001 2178309/7881196*(1/2+1/2*5^(1/2))^16 6099996721309554 a001 2178309/7881196*23725150497407^(1/4) 6099996721309554 a001 3524578/4870847*14662949395604^(2/9) 6099996721309554 a001 3524578/4870847*(1/2+1/2*5^(1/2))^14 6099996721309554 a001 3524578/4870847*505019158607^(1/4) 6099996721309554 a001 2178309/7881196*73681302247^(4/13) 6099996721309554 a001 7677619978602/12586269025 6099996721309554 a001 3524578/4870847*10749957122^(7/24) 6099996721309554 a001 2178309/7881196*10749957122^(1/3) 6099996721309554 a001 3524578/4870847*4106118243^(7/23) 6099996721309554 a001 2178309/7881196*4106118243^(8/23) 6099996721309554 a001 3524578/4870847*1568397607^(7/22) 6099996721309554 a001 2178309/7881196*1568397607^(4/11) 6099996721309554 a001 3524578/4870847*599074578^(1/3) 6099996721309554 a001 2178309/7881196*599074578^(8/21) 6099996721309554 a001 3524578/4870847*228826127^(7/20) 6099996721309554 a001 2178309/7881196*228826127^(2/5) 6099996721309554 a001 3524578/4870847*87403803^(7/19) 6099996721309554 a001 2178309/7881196*87403803^(8/19) 6099996721309556 a001 3524578/4870847*33385282^(7/18) 6099996721309556 a001 2178309/7881196*33385282^(4/9) 6099996721309563 a001 832040/3010349*1860498^(8/15) 6099996721309566 a001 9227465/4870847*4870847^(3/8) 6099996721309569 a001 3524578/4870847*12752043^(7/17) 6099996721309571 a001 2178309/7881196*12752043^(8/17) 6099996721309573 a001 1134903170/4870847*1860498^(1/15) 6099996721309577 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^52 6099996721309586 a001 5702887/17393796001*7881196^(10/11) 6099996721309593 a001 5702887/12752043*7881196^(5/11) 6099996721309595 a001 5702887/4106118243*7881196^(9/11) 6099996721309595 a001 832040/969323029*1860498^(14/15) 6099996721309604 a001 5702887/969323029*7881196^(8/11) 6099996721309609 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^54 6099996721309610 a001 5702887/370248451*7881196^(2/3) 6099996721309613 a001 5702887/228826127*7881196^(7/11) 6099996721309614 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^56 6099996721309614 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^58 6099996721309614 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^60 6099996721309614 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^62 6099996721309614 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^64 6099996721309614 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^66 6099996721309614 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^68 6099996721309614 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^70 6099996721309614 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^72 6099996721309614 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^74 6099996721309614 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^76 6099996721309614 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^78 6099996721309614 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^80 6099996721309614 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^82 6099996721309614 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^84 6099996721309614 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^86 6099996721309614 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^88 6099996721309614 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^90 6099996721309614 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^92 6099996721309614 a004 Fibonacci(76)*Lucas(33)/(1/2+sqrt(5)/2)^94 6099996721309614 a004 Fibonacci(78)*Lucas(33)/(1/2+sqrt(5)/2)^96 6099996721309614 a004 Fibonacci(80)*Lucas(33)/(1/2+sqrt(5)/2)^98 6099996721309614 a004 Fibonacci(82)*Lucas(33)/(1/2+sqrt(5)/2)^100 6099996721309614 a004 Fibonacci(81)*Lucas(33)/(1/2+sqrt(5)/2)^99 6099996721309614 a004 Fibonacci(79)*Lucas(33)/(1/2+sqrt(5)/2)^97 6099996721309614 a004 Fibonacci(77)*Lucas(33)/(1/2+sqrt(5)/2)^95 6099996721309614 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^93 6099996721309614 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^91 6099996721309614 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^89 6099996721309614 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^87 6099996721309614 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^85 6099996721309614 a001 1/1762289*(1/2+1/2*5^(1/2))^48 6099996721309614 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^83 6099996721309614 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^81 6099996721309614 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^79 6099996721309614 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^77 6099996721309614 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^75 6099996721309614 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^73 6099996721309614 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^71 6099996721309614 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^69 6099996721309614 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^67 6099996721309614 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^65 6099996721309614 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^63 6099996721309614 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^61 6099996721309614 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^59 6099996721309614 a001 2178309/20633239*4870847^(9/16) 6099996721309615 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^57 6099996721309617 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^55 6099996721309618 a001 3732588/11384387281*7881196^(10/11) 6099996721309618 a001 2178309/54018521*4870847^(5/8) 6099996721309623 a001 39088169/119218851371*7881196^(10/11) 6099996721309623 a001 9303105/28374454999*7881196^(10/11) 6099996721309623 a001 66978574/204284540899*7881196^(10/11) 6099996721309623 a001 701408733/2139295485799*7881196^(10/11) 6099996721309623 a001 1836311903/5600748293801*7881196^(10/11) 6099996721309623 a001 1201881744/3665737348901*7881196^(10/11) 6099996721309623 a001 7778742049/23725150497407*7881196^(10/11) 6099996721309623 a001 2971215073/9062201101803*7881196^(10/11) 6099996721309623 a001 567451585/1730726404001*7881196^(10/11) 6099996721309623 a001 433494437/1322157322203*7881196^(10/11) 6099996721309623 a001 165580141/505019158607*7881196^(10/11) 6099996721309624 a001 5702887/54018521*7881196^(6/11) 6099996721309624 a001 31622993/96450076809*7881196^(10/11) 6099996721309625 a001 24157817/73681302247*7881196^(10/11) 6099996721309627 a001 7465176/5374978561*7881196^(9/11) 6099996721309629 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^53 6099996721309631 a001 5702887/12752043*20633239^(3/7) 6099996721309631 a001 39088169/28143753123*7881196^(9/11) 6099996721309632 a001 701408733/4870847*1860498^(1/10) 6099996721309632 a001 14619165/10525900321*7881196^(9/11) 6099996721309632 a001 133957148/96450076809*7881196^(9/11) 6099996721309632 a001 701408733/505019158607*7881196^(9/11) 6099996721309632 a001 1836311903/1322157322203*7881196^(9/11) 6099996721309632 a001 14930208/10749853441*7881196^(9/11) 6099996721309632 a001 12586269025/9062201101803*7881196^(9/11) 6099996721309632 a001 32951280099/23725150497407*7881196^(9/11) 6099996721309632 a001 10182505537/7331474697802*7881196^(9/11) 6099996721309632 a001 7778742049/5600748293801*7881196^(9/11) 6099996721309632 a001 2971215073/2139295485799*7881196^(9/11) 6099996721309632 a001 567451585/408569081798*7881196^(9/11) 6099996721309632 a001 433494437/312119004989*7881196^(9/11) 6099996721309632 a001 165580141/119218851371*7881196^(9/11) 6099996721309633 a001 31622993/22768774562*7881196^(9/11) 6099996721309633 a001 2178309/141422324*4870847^(11/16) 6099996721309634 a001 24157817/17393796001*7881196^(9/11) 6099996721309636 a001 196452/33391061*7881196^(8/11) 6099996721309638 a001 5702887/12752043*141422324^(5/13) 6099996721309638 a001 5702887/12752043*2537720636^(1/3) 6099996721309638 a001 5702887/12752043*45537549124^(5/17) 6099996721309638 a001 32522920134769/53316291173 6099996721309638 a001 5702887/12752043*312119004989^(3/11) 6099996721309638 a001 5702887/12752043*14662949395604^(5/21) 6099996721309638 a001 5702887/12752043*(1/2+1/2*5^(1/2))^15 6099996721309638 a001 5702887/12752043*192900153618^(5/18) 6099996721309638 a001 5702887/12752043*28143753123^(3/10) 6099996721309638 a001 5702887/12752043*10749957122^(5/16) 6099996721309638 a001 5702887/12752043*599074578^(5/14) 6099996721309638 a001 5702887/12752043*228826127^(3/8) 6099996721309638 a001 9227465/28143753123*7881196^(10/11) 6099996721309640 a001 5702887/12752043*33385282^(5/12) 6099996721309640 a001 39088169/6643838879*7881196^(8/11) 6099996721309641 a001 102334155/17393796001*7881196^(8/11) 6099996721309641 a001 66978574/11384387281*7881196^(8/11) 6099996721309641 a001 701408733/119218851371*7881196^(8/11) 6099996721309641 a001 1836311903/312119004989*7881196^(8/11) 6099996721309641 a001 1201881744/204284540899*7881196^(8/11) 6099996721309641 a001 12586269025/2139295485799*7881196^(8/11) 6099996721309641 a001 32951280099/5600748293801*7881196^(8/11) 6099996721309641 a001 1135099622/192933544679*7881196^(8/11) 6099996721309641 a001 139583862445/23725150497407*7881196^(8/11) 6099996721309641 a001 53316291173/9062201101803*7881196^(8/11) 6099996721309641 a001 10182505537/1730726404001*7881196^(8/11) 6099996721309641 a001 7778742049/1322157322203*7881196^(8/11) 6099996721309641 a001 2971215073/505019158607*7881196^(8/11) 6099996721309641 a001 567451585/96450076809*7881196^(8/11) 6099996721309641 a001 433494437/73681302247*7881196^(8/11) 6099996721309641 a001 165580141/28143753123*7881196^(8/11) 6099996721309642 a001 24157817/12752043*7881196^(4/11) 6099996721309642 a001 31622993/5374978561*7881196^(8/11) 6099996721309642 a001 39088169/12752043*7881196^(1/3) 6099996721309642 a001 14930352/969323029*7881196^(2/3) 6099996721309643 a001 24157817/4106118243*7881196^(8/11) 6099996721309645 a001 829464/33281921*7881196^(7/11) 6099996721309646 a001 39088169/2537720636*7881196^(2/3) 6099996721309647 a001 9227465/6643838879*7881196^(9/11) 6099996721309647 a001 102334155/6643838879*7881196^(2/3) 6099996721309647 a001 9238424/599786069*7881196^(2/3) 6099996721309647 a001 701408733/45537549124*7881196^(2/3) 6099996721309647 a001 1836311903/119218851371*7881196^(2/3) 6099996721309647 a001 4807526976/312119004989*7881196^(2/3) 6099996721309647 a001 12586269025/817138163596*7881196^(2/3) 6099996721309647 a001 32951280099/2139295485799*7881196^(2/3) 6099996721309647 a001 86267571272/5600748293801*7881196^(2/3) 6099996721309647 a001 7787980473/505618944676*7881196^(2/3) 6099996721309647 a001 365435296162/23725150497407*7881196^(2/3) 6099996721309647 a001 139583862445/9062201101803*7881196^(2/3) 6099996721309647 a001 53316291173/3461452808002*7881196^(2/3) 6099996721309647 a001 20365011074/1322157322203*7881196^(2/3) 6099996721309647 a001 7778742049/505019158607*7881196^(2/3) 6099996721309647 a001 2971215073/192900153618*7881196^(2/3) 6099996721309647 a001 1134903170/73681302247*7881196^(2/3) 6099996721309647 a001 433494437/28143753123*7881196^(2/3) 6099996721309647 a001 165580141/10749957122*7881196^(2/3) 6099996721309647 a001 63245986/4106118243*7881196^(2/3) 6099996721309648 a001 34111385/4250681*7881196^(3/11) 6099996721309648 a001 2178309/370248451*4870847^(3/4) 6099996721309649 a001 24157817/1568397607*7881196^(2/3) 6099996721309649 a001 39088169/1568397607*7881196^(7/11) 6099996721309650 a001 34111385/1368706081*7881196^(7/11) 6099996721309650 a001 133957148/5374978561*7881196^(7/11) 6099996721309650 a001 233802911/9381251041*7881196^(7/11) 6099996721309650 a001 1836311903/73681302247*7881196^(7/11) 6099996721309650 a001 267084832/10716675201*7881196^(7/11) 6099996721309650 a001 12586269025/505019158607*7881196^(7/11) 6099996721309650 a001 10983760033/440719107401*7881196^(7/11) 6099996721309650 a001 43133785636/1730726404001*7881196^(7/11) 6099996721309650 a001 75283811239/3020733700601*7881196^(7/11) 6099996721309650 a001 182717648081/7331474697802*7881196^(7/11) 6099996721309650 a001 139583862445/5600748293801*7881196^(7/11) 6099996721309650 a001 53316291173/2139295485799*7881196^(7/11) 6099996721309650 a001 10182505537/408569081798*7881196^(7/11) 6099996721309650 a001 7778742049/312119004989*7881196^(7/11) 6099996721309650 a001 2971215073/119218851371*7881196^(7/11) 6099996721309650 a001 567451585/22768774562*7881196^(7/11) 6099996721309650 a001 433494437/17393796001*7881196^(7/11) 6099996721309650 a001 165580141/6643838879*7881196^(7/11) 6099996721309650 a001 31622993/1268860318*7881196^(7/11) 6099996721309652 a001 24157817/969323029*7881196^(7/11) 6099996721309654 a001 3732588/35355581*7881196^(6/11) 6099996721309656 a001 9227465/1568397607*7881196^(8/11) 6099996721309657 a001 7465176/16692641*7881196^(5/11) 6099996721309657 a001 433494437/12752043*7881196^(2/11) 6099996721309658 a001 39088169/370248451*7881196^(6/11) 6099996721309659 a001 102334155/969323029*7881196^(6/11) 6099996721309659 a001 66978574/634430159*7881196^(6/11) 6099996721309659 a001 701408733/6643838879*7881196^(6/11) 6099996721309659 a001 1836311903/17393796001*7881196^(6/11) 6099996721309659 a001 1201881744/11384387281*7881196^(6/11) 6099996721309659 a001 12586269025/119218851371*7881196^(6/11) 6099996721309659 a001 32951280099/312119004989*7881196^(6/11) 6099996721309659 a001 21566892818/204284540899*7881196^(6/11) 6099996721309659 a001 225851433717/2139295485799*7881196^(6/11) 6099996721309659 a001 182717648081/1730726404001*7881196^(6/11) 6099996721309659 a001 139583862445/1322157322203*7881196^(6/11) 6099996721309659 a001 53316291173/505019158607*7881196^(6/11) 6099996721309659 a001 10182505537/96450076809*7881196^(6/11) 6099996721309659 a001 7778742049/73681302247*7881196^(6/11) 6099996721309659 a001 2971215073/28143753123*7881196^(6/11) 6099996721309659 a001 567451585/5374978561*7881196^(6/11) 6099996721309659 a001 433494437/4106118243*7881196^(6/11) 6099996721309659 a001 165580141/1568397607*7881196^(6/11) 6099996721309659 a001 31622993/299537289*7881196^(6/11) 6099996721309661 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^54 6099996721309661 a001 24157817/228826127*7881196^(6/11) 6099996721309661 a001 9227465/599074578*7881196^(2/3) 6099996721309663 a001 5702887/17393796001*20633239^(6/7) 6099996721309664 a001 5702887/6643838879*20633239^(4/5) 6099996721309664 a001 2178309/969323029*4870847^(13/16) 6099996721309665 a001 9227465/370248451*7881196^(7/11) 6099996721309665 a001 5702887/1568397607*20633239^(5/7) 6099996721309666 a001 1836311903/12752043*7881196^(1/11) 6099996721309666 a001 3524578/4870847*4870847^(7/16) 6099996721309666 a001 39088169/87403803*7881196^(5/11) 6099996721309666 a001 5702887/228826127*20633239^(3/5) 6099996721309667 a001 5702887/141422324*20633239^(4/7) 6099996721309668 a001 102334155/228826127*7881196^(5/11) 6099996721309668 a001 133957148/299537289*7881196^(5/11) 6099996721309668 a001 701408733/1568397607*7881196^(5/11) 6099996721309668 a001 1836311903/4106118243*7881196^(5/11) 6099996721309668 a001 2403763488/5374978561*7881196^(5/11) 6099996721309668 a001 12586269025/28143753123*7881196^(5/11) 6099996721309668 a001 32951280099/73681302247*7881196^(5/11) 6099996721309668 a001 43133785636/96450076809*7881196^(5/11) 6099996721309668 a001 225851433717/505019158607*7881196^(5/11) 6099996721309668 a001 591286729879/1322157322203*7881196^(5/11) 6099996721309668 a001 10610209857723/23725150497407*7881196^(5/11) 6099996721309668 a001 182717648081/408569081798*7881196^(5/11) 6099996721309668 a001 139583862445/312119004989*7881196^(5/11) 6099996721309668 a001 53316291173/119218851371*7881196^(5/11) 6099996721309668 a001 10182505537/22768774562*7881196^(5/11) 6099996721309668 a001 7778742049/17393796001*7881196^(5/11) 6099996721309668 a001 2971215073/6643838879*7881196^(5/11) 6099996721309668 a001 567451585/1268860318*7881196^(5/11) 6099996721309668 a001 433494437/969323029*7881196^(5/11) 6099996721309668 a001 165580141/370248451*7881196^(5/11) 6099996721309669 a001 31622993/70711162*7881196^(5/11) 6099996721309670 a001 4976784/4250681*141422324^(1/3) 6099996721309670 a001 5702887/33385282*45537549124^(1/3) 6099996721309670 a001 85146110326224/139583862445 6099996721309670 a001 5702887/33385282*(1/2+1/2*5^(1/2))^17 6099996721309670 a001 4976784/4250681*(1/2+1/2*5^(1/2))^13 6099996721309670 a001 4976784/4250681*73681302247^(1/4) 6099996721309671 a001 63245986/12752043*20633239^(2/7) 6099996721309672 a001 31622993/16692641*7881196^(4/11) 6099996721309672 a001 24157817/54018521*7881196^(5/11) 6099996721309672 a001 267914296/12752043*20633239^(1/5) 6099996721309673 a001 9227465/87403803*7881196^(6/11) 6099996721309673 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^56 6099996721309673 a001 233802911/4250681*20633239^(1/7) 6099996721309674 a001 14619165/4769326*7881196^(1/3) 6099996721309674 a001 39088169/12752043*312119004989^(1/5) 6099996721309674 a001 53316290563/87403802 6099996721309674 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(38) 6099996721309674 a001 39088169/12752043*(1/2+1/2*5^(1/2))^11 6099996721309674 a001 39088169/12752043*1568397607^(1/4) 6099996721309675 a001 5702887/87403803*87403803^(1/2) 6099996721309675 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^58 6099996721309675 a001 5702887/312119004989*141422324^(12/13) 6099996721309675 a001 5702887/228826127*141422324^(7/13) 6099996721309675 a001 5702887/73681302247*141422324^(11/13) 6099996721309675 a001 5702887/17393796001*141422324^(10/13) 6099996721309675 a001 5702887/4106118243*141422324^(9/13) 6099996721309675 a001 5702887/2537720636*141422324^(2/3) 6099996721309675 a001 34111385/4250681*141422324^(3/13) 6099996721309675 a001 5702887/969323029*141422324^(8/13) 6099996721309675 a001 5702887/228826127*2537720636^(7/15) 6099996721309675 a001 34111385/4250681*2537720636^(1/5) 6099996721309675 a001 5702887/228826127*17393796001^(3/7) 6099996721309675 a001 5702887/228826127*45537549124^(7/17) 6099996721309675 a001 34111385/4250681*45537549124^(3/17) 6099996721309675 a001 34111385/4250681*817138163596^(3/19) 6099996721309675 a001 5702887/228826127*14662949395604^(1/3) 6099996721309675 a001 34111385/4250681*14662949395604^(1/7) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(40) 6099996721309675 a001 34111385/4250681*(1/2+1/2*5^(1/2))^9 6099996721309675 a001 34111385/4250681*192900153618^(1/6) 6099996721309675 a001 5702887/228826127*192900153618^(7/18) 6099996721309675 a001 34111385/4250681*10749957122^(3/16) 6099996721309675 a001 5702887/228826127*10749957122^(7/16) 6099996721309675 a001 34111385/4250681*599074578^(3/14) 6099996721309675 a001 5702887/228826127*599074578^(1/2) 6099996721309675 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^60 6099996721309675 a001 433494437/12752043*141422324^(2/13) 6099996721309675 a001 1836311903/12752043*141422324^(1/13) 6099996721309675 a001 267914296/12752043*17393796001^(1/7) 6099996721309675 a001 1527884955772552/2504730781961 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(42) 6099996721309675 a001 267914296/12752043*(1/2+1/2*5^(1/2))^7 6099996721309675 a001 5702887/599074578*4106118243^(1/2) 6099996721309675 a001 267914296/12752043*599074578^(1/6) 6099996721309675 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^62 6099996721309675 a001 5702887/1568397607*2537720636^(5/9) 6099996721309675 a001 233802911/4250681*2537720636^(1/9) 6099996721309675 a001 5702887/1568397607*312119004989^(5/11) 6099996721309675 a001 233802911/4250681*312119004989^(1/11) 6099996721309675 a001 4000054745112171/6557470319842 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(44) 6099996721309675 a001 233802911/4250681*(1/2+1/2*5^(1/2))^5 6099996721309675 a001 5702887/1568397607*3461452808002^(5/12) 6099996721309675 a001 233802911/4250681*28143753123^(1/10) 6099996721309675 a001 5702887/1568397607*28143753123^(1/2) 6099996721309675 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^64 6099996721309675 a001 5702887/4106118243*2537720636^(3/5) 6099996721309675 a001 5702887/5600748293801*2537720636^(14/15) 6099996721309675 a001 5702887/2139295485799*2537720636^(8/9) 6099996721309675 a001 5702887/1322157322203*2537720636^(13/15) 6099996721309675 a001 5702887/312119004989*2537720636^(4/5) 6099996721309675 a001 5702887/192900153618*2537720636^(7/9) 6099996721309675 a001 5702887/73681302247*2537720636^(11/15) 6099996721309675 a001 5702887/17393796001*2537720636^(2/3) 6099996721309675 a001 1836311903/12752043*2537720636^(1/15) 6099996721309675 a001 5702887/4106118243*45537549124^(9/17) 6099996721309675 a001 1836311903/12752043*45537549124^(1/17) 6099996721309675 a001 5702887/4106118243*817138163596^(9/19) 6099996721309675 a001 1836311903/12752043*14662949395604^(1/21) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(46) 6099996721309675 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^3 6099996721309675 a001 1836311903/12752043*192900153618^(1/18) 6099996721309675 a001 5702887/4106118243*192900153618^(1/2) 6099996721309675 a001 1836311903/12752043*10749957122^(1/16) 6099996721309675 a001 5702887/4106118243*10749957122^(9/16) 6099996721309675 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^66 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(48) 6099996721309675 a001 801254496/4250681+801254496/4250681*5^(1/2) 6099996721309675 a001 5702887/10749957122*1322157322203^(1/2) 6099996721309675 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^68 6099996721309675 a001 5702887/5600748293801*17393796001^(6/7) 6099996721309675 a001 5702887/192900153618*17393796001^(5/7) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(50) 6099996721309675 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2) 6099996721309675 a001 5702887/28143753123*9062201101803^(1/2) 6099996721309675 a001 5702887/73681302247*45537549124^(11/17) 6099996721309675 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^70 6099996721309675 a001 5702887/23725150497407*45537549124^(15/17) 6099996721309675 a001 5702887/5600748293801*45537549124^(14/17) 6099996721309675 a001 5702887/1322157322203*45537549124^(13/17) 6099996721309675 a001 5702887/312119004989*45537549124^(12/17) 6099996721309675 a001 5702887/119218851371*45537549124^(2/3) 6099996721309675 a001 5702887/73681302247*312119004989^(3/5) 6099996721309675 a001 5702887/73681302247*817138163596^(11/19) 6099996721309675 a001 5702887/73681302247*14662949395604^(11/21) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(52) 6099996721309675 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^3 6099996721309675 a001 5702887/73681302247*192900153618^(11/18) 6099996721309675 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^72 6099996721309675 a001 5702887/192900153618*312119004989^(7/11) 6099996721309675 a001 5702887/192900153618*14662949395604^(5/9) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(54) 6099996721309675 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^5 6099996721309675 a001 5702887/192900153618*505019158607^(5/8) 6099996721309675 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^74 6099996721309675 a001 5702887/23725150497407*312119004989^(9/11) 6099996721309675 a001 5702887/14662949395604*312119004989^(4/5) 6099996721309675 a001 5702887/2139295485799*312119004989^(8/11) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(56) 6099996721309675 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^7 6099996721309675 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^76 6099996721309675 a001 5702887/5600748293801*817138163596^(14/19) 6099996721309675 a001 5702887/1322157322203*14662949395604^(13/21) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(58) 6099996721309675 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^9 6099996721309675 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^78 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(60) 6099996721309675 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^11 6099996721309675 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^80 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(62) 6099996721309675 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^13 6099996721309675 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^82 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(64) 6099996721309675 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^15 6099996721309675 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^84 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(66) 6099996721309675 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^17 6099996721309675 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^86 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(68) 6099996721309675 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^88 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(70) 6099996721309675 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^90 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(72) 6099996721309675 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^92 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(74) 6099996721309675 a004 Fibonacci(34)*Lucas(75)/(1/2+sqrt(5)/2)^94 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(76) 6099996721309675 a004 Fibonacci(34)*Lucas(77)/(1/2+sqrt(5)/2)^96 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(78) 6099996721309675 a004 Fibonacci(34)*Lucas(79)/(1/2+sqrt(5)/2)^98 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(80) 6099996721309675 a004 Fibonacci(34)*Lucas(81)/(1/2+sqrt(5)/2)^100 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(82) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(84) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(86) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(88) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(90) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(92) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^75/Lucas(94) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^77/Lucas(96) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^79/Lucas(98) 6099996721309675 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^19 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^80/Lucas(99) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^81/Lucas(100) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^78/Lucas(97) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^76/Lucas(95) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(93) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(91) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(89) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(87) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(85) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(83) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(81) 6099996721309675 a004 Fibonacci(34)*Lucas(80)/(1/2+sqrt(5)/2)^99 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(79) 6099996721309675 a004 Fibonacci(34)*Lucas(78)/(1/2+sqrt(5)/2)^97 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(77) 6099996721309675 a004 Fibonacci(34)*Lucas(76)/(1/2+sqrt(5)/2)^95 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(75) 6099996721309675 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^93 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(73) 6099996721309675 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^91 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(71) 6099996721309675 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^89 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(69) 6099996721309675 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^21 6099996721309675 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^23 6099996721309675 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^25 6099996721309675 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^27 6099996721309675 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^29 6099996721309675 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^31 6099996721309675 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^33 6099996721309675 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^35 6099996721309675 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^37 6099996721309675 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^39 6099996721309675 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^41 6099996721309675 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^43 6099996721309675 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^45 6099996721309675 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^47 6099996721309675 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^51 6099996721309675 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^49 6099996721309675 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^87 6099996721309675 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^50 6099996721309675 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^48 6099996721309675 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^46 6099996721309675 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^44 6099996721309675 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^42 6099996721309675 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^40 6099996721309675 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^38 6099996721309675 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^36 6099996721309675 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^34 6099996721309675 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^32 6099996721309675 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^30 6099996721309675 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^28 6099996721309675 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^26 6099996721309675 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^24 6099996721309675 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^22 6099996721309675 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^20 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(67) 6099996721309675 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^18 6099996721309675 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^85 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(65) 6099996721309675 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^16 6099996721309675 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^83 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(63) 6099996721309675 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^14 6099996721309675 a001 5702887/14662949395604*23725150497407^(11/16) 6099996721309675 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^81 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(61) 6099996721309675 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^12 6099996721309675 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^79 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(59) 6099996721309675 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^10 6099996721309675 a001 5702887/2139295485799*23725150497407^(5/8) 6099996721309675 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^77 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(57) 6099996721309675 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^8 6099996721309675 a001 5702887/5600748293801*505019158607^(3/4) 6099996721309675 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^75 6099996721309675 a001 5702887/312119004989*14662949395604^(4/7) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(55) 6099996721309675 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^6 6099996721309675 a001 5702887/312119004989*505019158607^(9/14) 6099996721309675 a001 5702887/1322157322203*192900153618^(13/18) 6099996721309675 a001 5702887/23725150497407*192900153618^(5/6) 6099996721309675 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^73 6099996721309675 a001 5702887/312119004989*192900153618^(2/3) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(53) 6099996721309675 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^4 6099996721309675 a001 5702887/1322157322203*73681302247^(3/4) 6099996721309675 a001 5702887/312119004989*73681302247^(9/13) 6099996721309675 a001 5702887/2139295485799*73681302247^(10/13) 6099996721309675 a001 5702887/14662949395604*73681302247^(11/13) 6099996721309675 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^71 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(51) 6099996721309675 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^2 6099996721309675 a001 1597/12752044*23725150497407^(1/2) 6099996721309675 a001 1597/12752044*505019158607^(4/7) 6099996721309675 a001 1597/12752044*73681302247^(8/13) 6099996721309675 a001 5702887/192900153618*28143753123^(7/10) 6099996721309675 a001 5702887/2139295485799*28143753123^(4/5) 6099996721309675 a001 5702887/23725150497407*28143753123^(9/10) 6099996721309675 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^69 6099996721309675 a001 5702887/17393796001*45537549124^(10/17) 6099996721309675 a001 5702887/17393796001*312119004989^(6/11) 6099996721309675 a001 5702887/17393796001*14662949395604^(10/21) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(49) 6099996721309675 a001 5702887/17393796001*192900153618^(5/9) 6099996721309675 a001 5702887/17393796001*28143753123^(3/5) 6099996721309675 a001 5702887/73681302247*10749957122^(11/16) 6099996721309675 a001 5702887/119218851371*10749957122^(17/24) 6099996721309675 a001 1597/12752044*10749957122^(2/3) 6099996721309675 a001 5702887/312119004989*10749957122^(3/4) 6099996721309675 a001 5702887/817138163596*10749957122^(19/24) 6099996721309675 a001 5702887/1322157322203*10749957122^(13/16) 6099996721309675 a001 5702887/2139295485799*10749957122^(5/6) 6099996721309675 a001 5702887/5600748293801*10749957122^(7/8) 6099996721309675 a001 5702887/14662949395604*10749957122^(11/12) 6099996721309675 a001 5702887/23725150497407*10749957122^(15/16) 6099996721309675 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^67 6099996721309675 a001 5702887/17393796001*10749957122^(5/8) 6099996721309675 a001 5702887/6643838879*17393796001^(4/7) 6099996721309675 a001 5702887/6643838879*14662949395604^(4/9) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(47) 6099996721309675 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^2 6099996721309675 a001 5702887/6643838879*73681302247^(7/13) 6099996721309675 a001 2971215073/12752043*10749957122^(1/24) 6099996721309675 a001 2971215073/12752043*4106118243^(1/23) 6099996721309675 a001 5702887/6643838879*10749957122^(7/12) 6099996721309675 a001 2971215073/12752043*1568397607^(1/22) 6099996721309675 a001 1597/12752044*4106118243^(16/23) 6099996721309675 a001 5702887/17393796001*4106118243^(15/23) 6099996721309675 a001 5702887/119218851371*4106118243^(17/23) 6099996721309675 a001 5702887/312119004989*4106118243^(18/23) 6099996721309675 a001 5702887/817138163596*4106118243^(19/23) 6099996721309675 a001 5702887/2139295485799*4106118243^(20/23) 6099996721309675 a001 5702887/5600748293801*4106118243^(21/23) 6099996721309675 a001 5702887/14662949395604*4106118243^(22/23) 6099996721309675 a001 5702887/6643838879*4106118243^(14/23) 6099996721309675 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^65 6099996721309675 a001 1836311903/12752043*599074578^(1/14) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(45) 6099996721309675 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^4 6099996721309675 a001 1134903170/12752043*23725150497407^(1/16) 6099996721309675 a001 1134903170/12752043*73681302247^(1/13) 6099996721309675 a001 2971215073/12752043*599074578^(1/21) 6099996721309675 a001 5702887/2537720636*73681302247^(1/2) 6099996721309675 a001 1134903170/12752043*10749957122^(1/12) 6099996721309675 a001 5702887/2537720636*10749957122^(13/24) 6099996721309675 a001 1134903170/12752043*4106118243^(2/23) 6099996721309675 a001 5702887/2537720636*4106118243^(13/23) 6099996721309675 a001 1134903170/12752043*1568397607^(1/11) 6099996721309675 a001 5702887/17393796001*1568397607^(15/22) 6099996721309675 a001 5702887/6643838879*1568397607^(7/11) 6099996721309675 a001 1597/12752044*1568397607^(8/11) 6099996721309675 a001 5702887/73681302247*1568397607^(3/4) 6099996721309675 a001 5702887/119218851371*1568397607^(17/22) 6099996721309675 a001 5702887/312119004989*1568397607^(9/11) 6099996721309675 a001 5702887/817138163596*1568397607^(19/22) 6099996721309675 a001 5702887/2139295485799*1568397607^(10/11) 6099996721309675 a001 5702887/5600748293801*1568397607^(21/22) 6099996721309675 a001 5702887/2537720636*1568397607^(13/22) 6099996721309675 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^63 6099996721309675 a001 1134903170/12752043*599074578^(2/21) 6099996721309675 a001 2971215073/12752043*228826127^(1/20) 6099996721309675 a001 5702887/969323029*2537720636^(8/15) 6099996721309675 a001 433494437/12752043*2537720636^(2/15) 6099996721309675 a001 5702887/969323029*45537549124^(8/17) 6099996721309675 a001 433494437/12752043*45537549124^(2/17) 6099996721309675 a001 5702887/969323029*14662949395604^(8/21) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(43) 6099996721309675 a001 433494437/12752043*(1/2+1/2*5^(1/2))^6 6099996721309675 a001 2472169789339619/4052739537881 6099996721309675 a001 5702887/969323029*192900153618^(4/9) 6099996721309675 a001 5702887/969323029*73681302247^(6/13) 6099996721309675 a001 433494437/12752043*10749957122^(1/8) 6099996721309675 a001 5702887/969323029*10749957122^(1/2) 6099996721309675 a001 433494437/12752043*4106118243^(3/23) 6099996721309675 a001 5702887/969323029*4106118243^(12/23) 6099996721309675 a001 433494437/12752043*1568397607^(3/22) 6099996721309675 a001 5702887/969323029*1568397607^(6/11) 6099996721309675 a001 433494437/12752043*599074578^(1/7) 6099996721309675 a001 5702887/4106118243*599074578^(9/14) 6099996721309675 a001 5702887/2537720636*599074578^(13/21) 6099996721309675 a001 5702887/6643838879*599074578^(2/3) 6099996721309675 a001 233802911/4250681*228826127^(1/8) 6099996721309675 a001 5702887/17393796001*599074578^(5/7) 6099996721309675 a001 1134903170/12752043*228826127^(1/10) 6099996721309675 a001 1597/12752044*599074578^(16/21) 6099996721309675 a001 5702887/73681302247*599074578^(11/14) 6099996721309675 a001 5702887/119218851371*599074578^(17/21) 6099996721309675 a001 5702887/192900153618*599074578^(5/6) 6099996721309675 a001 5702887/312119004989*599074578^(6/7) 6099996721309675 a001 5702887/817138163596*599074578^(19/21) 6099996721309675 a001 5702887/1322157322203*599074578^(13/14) 6099996721309675 a001 5702887/2139295485799*599074578^(20/21) 6099996721309675 a001 5702887/969323029*599074578^(4/7) 6099996721309675 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^61 6099996721309675 a001 433494437/12752043*228826127^(3/20) 6099996721309675 a001 2971215073/12752043*87403803^(1/19) 6099996721309675 a001 5702887/370248451*312119004989^(2/5) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(41) 6099996721309675 a001 165580141/12752043*(1/2+1/2*5^(1/2))^8 6099996721309675 a001 165580141/12752043*23725150497407^(1/8) 6099996721309675 a001 944284833567067/1548008755920 6099996721309675 a001 165580141/12752043*505019158607^(1/7) 6099996721309675 a001 165580141/12752043*73681302247^(2/13) 6099996721309675 a001 165580141/12752043*10749957122^(1/6) 6099996721309675 a001 5702887/370248451*10749957122^(11/24) 6099996721309675 a001 165580141/12752043*4106118243^(4/23) 6099996721309675 a001 5702887/370248451*4106118243^(11/23) 6099996721309675 a001 165580141/12752043*1568397607^(2/11) 6099996721309675 a001 5702887/370248451*1568397607^(1/2) 6099996721309675 a001 165580141/12752043*599074578^(4/21) 6099996721309675 a001 5702887/370248451*599074578^(11/21) 6099996721309675 a001 165580141/12752043*228826127^(1/5) 6099996721309675 a001 5702887/1568397607*228826127^(5/8) 6099996721309675 a001 5702887/969323029*228826127^(3/5) 6099996721309675 a001 5702887/2537720636*228826127^(13/20) 6099996721309675 a001 5702887/6643838879*228826127^(7/10) 6099996721309675 a001 1134903170/12752043*87403803^(2/19) 6099996721309675 a001 5702887/17393796001*228826127^(3/4) 6099996721309675 a001 1597/12752044*228826127^(4/5) 6099996721309675 a001 5702887/119218851371*228826127^(17/20) 6099996721309675 a001 5702887/192900153618*228826127^(7/8) 6099996721309675 a001 5702887/312119004989*228826127^(9/10) 6099996721309675 a001 5702887/370248451*228826127^(11/20) 6099996721309675 a001 5702887/817138163596*228826127^(19/20) 6099996721309675 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^59 6099996721309675 a001 433494437/12752043*87403803^(3/19) 6099996721309675 a001 165580141/12752043*87403803^(4/19) 6099996721309675 a001 2971215073/12752043*33385282^(1/18) 6099996721309675 a001 5702887/141422324*2537720636^(4/9) 6099996721309675 a001 63245986/12752043*2537720636^(2/9) 6099996721309675 a001 63245986/12752043*312119004989^(2/11) 6099996721309675 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(39) 6099996721309675 a001 63245986/12752043*(1/2+1/2*5^(1/2))^10 6099996721309675 a001 5702887/141422324*23725150497407^(5/16) 6099996721309675 a001 360684711361582/591286729879 6099996721309675 a001 5702887/141422324*505019158607^(5/14) 6099996721309675 a001 5702887/141422324*73681302247^(5/13) 6099996721309675 a001 63245986/12752043*28143753123^(1/5) 6099996721309675 a001 5702887/141422324*28143753123^(2/5) 6099996721309675 a001 63245986/12752043*10749957122^(5/24) 6099996721309675 a001 5702887/141422324*10749957122^(5/12) 6099996721309675 a001 63245986/12752043*4106118243^(5/23) 6099996721309675 a001 5702887/141422324*4106118243^(10/23) 6099996721309675 a001 63245986/12752043*1568397607^(5/22) 6099996721309675 a001 5702887/141422324*1568397607^(5/11) 6099996721309675 a001 63245986/12752043*599074578^(5/21) 6099996721309675 a001 5702887/141422324*599074578^(10/21) 6099996721309675 a001 63245986/12752043*228826127^(1/4) 6099996721309675 a001 5702887/141422324*228826127^(1/2) 6099996721309676 a001 1836311903/12752043*33385282^(1/12) 6099996721309676 a001 5702887/370248451*87403803^(11/19) 6099996721309676 a001 5702887/969323029*87403803^(12/19) 6099996721309676 a001 63245986/12752043*87403803^(5/19) 6099996721309676 a001 5702887/2537720636*87403803^(13/19) 6099996721309676 a001 5702887/6643838879*87403803^(14/19) 6099996721309676 a001 1134903170/12752043*33385282^(1/9) 6099996721309676 a001 5702887/17393796001*87403803^(15/19) 6099996721309676 a001 1597/12752044*87403803^(16/19) 6099996721309676 a001 5702887/119218851371*87403803^(17/19) 6099996721309676 a001 5702887/141422324*87403803^(10/19) 6099996721309676 a001 5702887/312119004989*87403803^(18/19) 6099996721309676 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^57 6099996721309676 a001 165580141/1860498*710647^(1/7) 6099996721309676 a001 433494437/12752043*33385282^(1/6) 6099996721309676 a001 165580141/87403803*7881196^(4/11) 6099996721309676 a001 34111385/4250681*33385282^(1/4) 6099996721309676 a001 165580141/12752043*33385282^(2/9) 6099996721309677 a001 433494437/228826127*7881196^(4/11) 6099996721309677 a001 567451585/299537289*7881196^(4/11) 6099996721309677 a001 2971215073/1568397607*7881196^(4/11) 6099996721309677 a001 7778742049/4106118243*7881196^(4/11) 6099996721309677 a001 10182505537/5374978561*7881196^(4/11) 6099996721309677 a001 53316291173/28143753123*7881196^(4/11) 6099996721309677 a001 139583862445/73681302247*7881196^(4/11) 6099996721309677 a001 182717648081/96450076809*7881196^(4/11) 6099996721309677 a001 956722026041/505019158607*7881196^(4/11) 6099996721309677 a001 10610209857723/5600748293801*7881196^(4/11) 6099996721309677 a001 591286729879/312119004989*7881196^(4/11) 6099996721309677 a001 225851433717/119218851371*7881196^(4/11) 6099996721309677 a001 21566892818/11384387281*7881196^(4/11) 6099996721309677 a001 32951280099/17393796001*7881196^(4/11) 6099996721309677 a001 12586269025/6643838879*7881196^(4/11) 6099996721309677 a001 1201881744/634430159*7881196^(4/11) 6099996721309677 a001 1836311903/969323029*7881196^(4/11) 6099996721309677 a001 63245986/12752043*33385282^(5/18) 6099996721309677 a001 701408733/370248451*7881196^(4/11) 6099996721309677 a001 5702887/54018521*141422324^(6/13) 6099996721309677 a001 24157817/12752043*141422324^(4/13) 6099996721309677 a001 66978574/35355581*7881196^(4/11) 6099996721309677 a001 5702887/54018521*2537720636^(2/5) 6099996721309677 a001 24157817/12752043*2537720636^(4/15) 6099996721309677 a001 5702887/54018521*45537549124^(6/17) 6099996721309677 a001 24157817/12752043*45537549124^(4/17) 6099996721309677 a001 24157817/12752043*817138163596^(4/19) 6099996721309677 a001 24157817/12752043*14662949395604^(4/21) 6099996721309677 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(37) 6099996721309677 a001 24157817/12752043*(1/2+1/2*5^(1/2))^12 6099996721309677 a001 137769300517679/225851433717 6099996721309677 a001 5702887/54018521*192900153618^(1/3) 6099996721309677 a001 24157817/12752043*73681302247^(3/13) 6099996721309677 a001 24157817/12752043*10749957122^(1/4) 6099996721309677 a001 5702887/54018521*10749957122^(3/8) 6099996721309677 a001 24157817/12752043*4106118243^(6/23) 6099996721309677 a001 5702887/54018521*4106118243^(9/23) 6099996721309677 a001 24157817/12752043*1568397607^(3/11) 6099996721309677 a001 5702887/54018521*1568397607^(9/22) 6099996721309677 a001 24157817/12752043*599074578^(2/7) 6099996721309677 a001 5702887/54018521*599074578^(3/7) 6099996721309677 a001 24157817/12752043*228826127^(3/10) 6099996721309677 a001 5702887/54018521*228826127^(9/20) 6099996721309677 a001 2971215073/12752043*12752043^(1/17) 6099996721309677 a001 24157817/12752043*87403803^(6/19) 6099996721309678 a001 5702887/54018521*87403803^(9/19) 6099996721309678 a001 5702887/228826127*33385282^(7/12) 6099996721309678 a001 5702887/141422324*33385282^(5/9) 6099996721309679 a001 5702887/370248451*33385282^(11/18) 6099996721309679 a001 5702887/969323029*33385282^(2/3) 6099996721309679 a001 102334155/54018521*7881196^(4/11) 6099996721309679 a001 24157817/12752043*33385282^(1/3) 6099996721309679 a001 5702887/2537720636*33385282^(13/18) 6099996721309679 a001 267914296/87403803*7881196^(1/3) 6099996721309679 a001 5702887/4106118243*33385282^(3/4) 6099996721309679 a001 5702887/6643838879*33385282^(7/9) 6099996721309680 a001 1134903170/12752043*12752043^(2/17) 6099996721309680 a001 5702887/17393796001*33385282^(5/6) 6099996721309680 a001 701408733/228826127*7881196^(1/3) 6099996721309680 a001 1836311903/599074578*7881196^(1/3) 6099996721309680 a001 686789568/224056801*7881196^(1/3) 6099996721309680 a001 12586269025/4106118243*7881196^(1/3) 6099996721309680 a001 32951280099/10749957122*7881196^(1/3) 6099996721309680 a001 86267571272/28143753123*7881196^(1/3) 6099996721309680 a001 32264490531/10525900321*7881196^(1/3) 6099996721309680 a001 591286729879/192900153618*7881196^(1/3) 6099996721309680 a001 1548008755920/505019158607*7881196^(1/3) 6099996721309680 a001 1515744265389/494493258286*7881196^(1/3) 6099996721309680 a001 2504730781961/817138163596*7881196^(1/3) 6099996721309680 a001 956722026041/312119004989*7881196^(1/3) 6099996721309680 a001 365435296162/119218851371*7881196^(1/3) 6099996721309680 a001 139583862445/45537549124*7881196^(1/3) 6099996721309680 a001 53316291173/17393796001*7881196^(1/3) 6099996721309680 a001 20365011074/6643838879*7881196^(1/3) 6099996721309680 a001 7778742049/2537720636*7881196^(1/3) 6099996721309680 a001 2971215073/969323029*7881196^(1/3) 6099996721309680 a001 1134903170/370248451*7881196^(1/3) 6099996721309680 a001 5702887/54018521*33385282^(1/2) 6099996721309680 a001 1597/12752044*33385282^(8/9) 6099996721309680 a001 5702887/73681302247*33385282^(11/12) 6099996721309680 a001 433494437/141422324*7881196^(1/3) 6099996721309680 a001 5702887/119218851371*33385282^(17/18) 6099996721309680 a001 133957148/16692641*7881196^(3/11) 6099996721309681 a001 2178309/2537720636*4870847^(7/8) 6099996721309681 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^55 6099996721309682 a001 433494437/12752043*12752043^(3/17) 6099996721309682 a001 165580141/54018521*7881196^(1/3) 6099996721309682 a001 2178309/7881196*4870847^(1/2) 6099996721309684 a001 9227465/12752043*20633239^(2/5) 6099996721309684 a001 165580141/12752043*12752043^(4/17) 6099996721309685 a001 233802911/29134601*7881196^(3/11) 6099996721309686 a001 1836311903/228826127*7881196^(3/11) 6099996721309686 a001 267084832/33281921*7881196^(3/11) 6099996721309686 a001 12586269025/1568397607*7881196^(3/11) 6099996721309686 a001 10983760033/1368706081*7881196^(3/11) 6099996721309686 a001 43133785636/5374978561*7881196^(3/11) 6099996721309686 a001 75283811239/9381251041*7881196^(3/11) 6099996721309686 a001 591286729879/73681302247*7881196^(3/11) 6099996721309686 a001 86000486440/10716675201*7881196^(3/11) 6099996721309686 a001 4052739537881/505019158607*7881196^(3/11) 6099996721309686 a001 3536736619241/440719107401*7881196^(3/11) 6099996721309686 a001 3278735159921/408569081798*7881196^(3/11) 6099996721309686 a001 2504730781961/312119004989*7881196^(3/11) 6099996721309686 a001 956722026041/119218851371*7881196^(3/11) 6099996721309686 a001 182717648081/22768774562*7881196^(3/11) 6099996721309686 a001 139583862445/17393796001*7881196^(3/11) 6099996721309686 a001 53316291173/6643838879*7881196^(3/11) 6099996721309686 a001 10182505537/1268860318*7881196^(3/11) 6099996721309686 a001 7778742049/969323029*7881196^(3/11) 6099996721309686 a001 2971215073/370248451*7881196^(3/11) 6099996721309686 a001 567451585/70711162*7881196^(3/11) 6099996721309686 a001 63245986/12752043*12752043^(5/17) 6099996721309688 a001 433494437/54018521*7881196^(3/11) 6099996721309688 a001 5702887/33385282*12752043^(1/2) 6099996721309689 a001 567451585/16692641*7881196^(2/11) 6099996721309689 a001 9227465/12752043*17393796001^(2/7) 6099996721309689 a001 9227465/12752043*14662949395604^(2/9) 6099996721309689 a001 5702887/20633239*(1/2+1/2*5^(1/2))^16 6099996721309689 a001 9227465/12752043*(1/2+1/2*5^(1/2))^14 6099996721309689 a001 5702887/20633239*23725150497407^(1/4) 6099996721309689 a001 9227465/12752043*505019158607^(1/4) 6099996721309689 a001 52623190191455/86267571272 6099996721309689 a001 5702887/20633239*73681302247^(4/13) 6099996721309689 a001 9227465/12752043*10749957122^(7/24) 6099996721309689 a001 5702887/20633239*10749957122^(1/3) 6099996721309689 a001 9227465/12752043*4106118243^(7/23) 6099996721309689 a001 5702887/20633239*4106118243^(8/23) 6099996721309689 a001 9227465/12752043*1568397607^(7/22) 6099996721309689 a001 5702887/20633239*1568397607^(4/11) 6099996721309689 a001 9227465/12752043*599074578^(1/3) 6099996721309689 a001 5702887/20633239*599074578^(8/21) 6099996721309690 a001 9227465/12752043*228826127^(7/20) 6099996721309690 a001 5702887/20633239*228826127^(2/5) 6099996721309690 a001 9227465/12752043*87403803^(7/19) 6099996721309690 a001 5702887/20633239*87403803^(8/19) 6099996721309690 a001 39088169/20633239*7881196^(4/11) 6099996721309690 a001 24157817/12752043*12752043^(6/17) 6099996721309691 a001 433494437/4870847*1860498^(2/15) 6099996721309691 a001 2971215073/12752043*4870847^(1/16) 6099996721309692 a001 9227465/12752043*33385282^(7/18) 6099996721309692 a001 5702887/20633239*33385282^(4/9) 6099996721309693 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^56 6099996721309694 a001 2971215073/87403803*7881196^(2/11) 6099996721309695 a001 63245986/20633239*7881196^(1/3) 6099996721309695 a001 7778742049/228826127*7881196^(2/11) 6099996721309695 a001 10182505537/299537289*7881196^(2/11) 6099996721309695 a001 53316291173/1568397607*7881196^(2/11) 6099996721309695 a001 139583862445/4106118243*7881196^(2/11) 6099996721309695 a001 182717648081/5374978561*7881196^(2/11) 6099996721309695 a001 956722026041/28143753123*7881196^(2/11) 6099996721309695 a001 2504730781961/73681302247*7881196^(2/11) 6099996721309695 a001 3278735159921/96450076809*7881196^(2/11) 6099996721309695 a001 10610209857723/312119004989*7881196^(2/11) 6099996721309695 a001 4052739537881/119218851371*7881196^(2/11) 6099996721309695 a001 387002188980/11384387281*7881196^(2/11) 6099996721309695 a001 591286729879/17393796001*7881196^(2/11) 6099996721309695 a001 225851433717/6643838879*7881196^(2/11) 6099996721309695 a001 1135099622/33391061*7881196^(2/11) 6099996721309695 a001 32951280099/969323029*7881196^(2/11) 6099996721309695 a001 12586269025/370248451*7881196^(2/11) 6099996721309695 a001 3732588/11384387281*20633239^(6/7) 6099996721309695 a001 1201881744/35355581*7881196^(2/11) 6099996721309696 a001 7465176/16692641*20633239^(3/7) 6099996721309696 a001 14930352/17393796001*20633239^(4/5) 6099996721309697 a001 2178309/6643838879*4870847^(15/16) 6099996721309697 a001 9227465/20633239*7881196^(5/11) 6099996721309697 a001 1836311903/54018521*7881196^(2/11) 6099996721309697 a001 4976784/1368706081*20633239^(5/7) 6099996721309697 a001 5702887/54018521*12752043^(9/17) 6099996721309698 a001 5702887/141422324*12752043^(10/17) 6099996721309698 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^58 6099996721309698 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^60 6099996721309698 a001 14930208/103681*7881196^(1/11) 6099996721309698 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^62 6099996721309698 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^64 6099996721309698 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^66 6099996721309698 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^68 6099996721309698 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^70 6099996721309698 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^72 6099996721309698 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^74 6099996721309698 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^76 6099996721309698 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^78 6099996721309698 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^80 6099996721309698 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^82 6099996721309698 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^84 6099996721309698 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^86 6099996721309698 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^88 6099996721309698 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^90 6099996721309698 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^92 6099996721309698 a004 Fibonacci(74)*Lucas(35)/(1/2+sqrt(5)/2)^94 6099996721309698 a004 Fibonacci(76)*Lucas(35)/(1/2+sqrt(5)/2)^96 6099996721309698 a004 Fibonacci(78)*Lucas(35)/(1/2+sqrt(5)/2)^98 6099996721309698 a004 Fibonacci(80)*Lucas(35)/(1/2+sqrt(5)/2)^100 6099996721309698 a004 Fibonacci(79)*Lucas(35)/(1/2+sqrt(5)/2)^99 6099996721309698 a004 Fibonacci(77)*Lucas(35)/(1/2+sqrt(5)/2)^97 6099996721309698 a004 Fibonacci(75)*Lucas(35)/(1/2+sqrt(5)/2)^95 6099996721309698 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^93 6099996721309698 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^91 6099996721309698 a001 2/9227465*(1/2+1/2*5^(1/2))^50 6099996721309698 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^89 6099996721309698 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^87 6099996721309698 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^85 6099996721309698 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^83 6099996721309698 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^81 6099996721309698 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^79 6099996721309698 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^77 6099996721309698 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^75 6099996721309698 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^73 6099996721309698 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^71 6099996721309698 a001 28143753123/9227465*8^(1/3) 6099996721309698 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^69 6099996721309698 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^67 6099996721309698 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^65 6099996721309698 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^63 6099996721309698 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^61 6099996721309699 a001 829464/33281921*20633239^(3/5) 6099996721309699 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^59 6099996721309699 a001 14930352/370248451*20633239^(4/7) 6099996721309699 a001 5702887/370248451*12752043^(11/17) 6099996721309700 a001 39088169/119218851371*20633239^(6/7) 6099996721309700 a001 165580141/20633239*7881196^(3/11) 6099996721309700 a001 9303105/28374454999*20633239^(6/7) 6099996721309700 a001 66978574/204284540899*20633239^(6/7) 6099996721309700 a001 701408733/2139295485799*20633239^(6/7) 6099996721309700 a001 1836311903/5600748293801*20633239^(6/7) 6099996721309700 a001 1201881744/3665737348901*20633239^(6/7) 6099996721309700 a001 7778742049/23725150497407*20633239^(6/7) 6099996721309700 a001 2971215073/9062201101803*20633239^(6/7) 6099996721309700 a001 567451585/1730726404001*20633239^(6/7) 6099996721309700 a001 433494437/1322157322203*20633239^(6/7) 6099996721309700 a001 39088169/45537549124*20633239^(4/5) 6099996721309700 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^57 6099996721309700 a001 165580141/505019158607*20633239^(6/7) 6099996721309701 a001 31622993/96450076809*20633239^(6/7) 6099996721309701 a001 102334155/119218851371*20633239^(4/5) 6099996721309701 a001 267914296/312119004989*20633239^(4/5) 6099996721309701 a001 701408733/817138163596*20633239^(4/5) 6099996721309701 a001 1836311903/2139295485799*20633239^(4/5) 6099996721309701 a001 4807526976/5600748293801*20633239^(4/5) 6099996721309701 a001 12586269025/14662949395604*20633239^(4/5) 6099996721309701 a001 20365011074/23725150497407*20633239^(4/5) 6099996721309701 a001 7778742049/9062201101803*20633239^(4/5) 6099996721309701 a001 2971215073/3461452808002*20633239^(4/5) 6099996721309701 a001 1134903170/1322157322203*20633239^(4/5) 6099996721309701 a001 433494437/505019158607*20633239^(4/5) 6099996721309701 a001 165580141/192900153618*20633239^(4/5) 6099996721309701 a001 63245986/73681302247*20633239^(4/5) 6099996721309702 a001 7465176/16692641*141422324^(5/13) 6099996721309702 a001 39088169/10749957122*20633239^(5/7) 6099996721309702 a001 5702887/969323029*12752043^(12/17) 6099996721309702 a001 7465176/16692641*2537720636^(1/3) 6099996721309702 a001 7465176/16692641*45537549124^(5/17) 6099996721309702 a001 7465176/16692641*312119004989^(3/11) 6099996721309702 a001 111457705421952/182717648081 6099996721309702 a001 7465176/16692641*14662949395604^(5/21) 6099996721309702 a001 7465176/16692641*(1/2+1/2*5^(1/2))^15 6099996721309702 a001 7465176/16692641*192900153618^(5/18) 6099996721309702 a001 7465176/16692641*28143753123^(3/10) 6099996721309702 a001 7465176/16692641*10749957122^(5/16) 6099996721309702 a001 7465176/16692641*599074578^(5/14) 6099996721309702 a001 7465176/16692641*228826127^(3/8) 6099996721309702 a001 831985/228811001*20633239^(5/7) 6099996721309702 a001 267914296/73681302247*20633239^(5/7) 6099996721309702 a001 233802911/64300051206*20633239^(5/7) 6099996721309702 a001 1836311903/505019158607*20633239^(5/7) 6099996721309702 a001 1602508992/440719107401*20633239^(5/7) 6099996721309702 a001 12586269025/3461452808002*20633239^(5/7) 6099996721309702 a001 10983760033/3020733700601*20633239^(5/7) 6099996721309702 a001 86267571272/23725150497407*20633239^(5/7) 6099996721309702 a001 53316291173/14662949395604*20633239^(5/7) 6099996721309702 a001 20365011074/5600748293801*20633239^(5/7) 6099996721309702 a001 7778742049/2139295485799*20633239^(5/7) 6099996721309702 a001 2971215073/817138163596*20633239^(5/7) 6099996721309702 a001 1134903170/312119004989*20633239^(5/7) 6099996721309702 a001 433494437/119218851371*20633239^(5/7) 6099996721309702 a001 24157817/73681302247*20633239^(6/7) 6099996721309702 a001 165580141/45537549124*20633239^(5/7) 6099996721309703 a001 63245986/17393796001*20633239^(5/7) 6099996721309703 a001 12586269025/87403803*7881196^(1/11) 6099996721309703 a001 165580141/33385282*20633239^(2/7) 6099996721309703 a001 39088169/1568397607*20633239^(3/5) 6099996721309703 a001 24157817/28143753123*20633239^(4/5) 6099996721309704 a001 24157817/33385282*20633239^(2/5) 6099996721309704 a001 32951280099/228826127*7881196^(1/11) 6099996721309704 a001 39088169/969323029*20633239^(4/7) 6099996721309704 a001 43133785636/299537289*7881196^(1/11) 6099996721309704 a001 32264490531/224056801*7881196^(1/11) 6099996721309704 a001 591286729879/4106118243*7881196^(1/11) 6099996721309704 a001 774004377960/5374978561*7881196^(1/11) 6099996721309704 a001 4052739537881/28143753123*7881196^(1/11) 6099996721309704 a001 1515744265389/10525900321*7881196^(1/11) 6099996721309704 a001 3278735159921/22768774562*7881196^(1/11) 6099996721309704 a001 2504730781961/17393796001*7881196^(1/11) 6099996721309704 a001 956722026041/6643838879*7881196^(1/11) 6099996721309704 a001 182717648081/1268860318*7881196^(1/11) 6099996721309704 a001 139583862445/969323029*7881196^(1/11) 6099996721309704 a001 53316291173/370248451*7881196^(1/11) 6099996721309704 a001 5702887/2537720636*12752043^(13/17) 6099996721309704 a001 34111385/1368706081*20633239^(3/5) 6099996721309704 a001 7465176/16692641*33385282^(5/12) 6099996721309704 a001 10182505537/70711162*7881196^(1/11) 6099996721309704 a001 133957148/5374978561*20633239^(3/5) 6099996721309704 a001 233802911/9381251041*20633239^(3/5) 6099996721309704 a001 1836311903/73681302247*20633239^(3/5) 6099996721309704 a001 267084832/10716675201*20633239^(3/5) 6099996721309704 a001 12586269025/505019158607*20633239^(3/5) 6099996721309704 a001 10983760033/440719107401*20633239^(3/5) 6099996721309704 a001 43133785636/1730726404001*20633239^(3/5) 6099996721309704 a001 75283811239/3020733700601*20633239^(3/5) 6099996721309704 a001 182717648081/7331474697802*20633239^(3/5) 6099996721309704 a001 139583862445/5600748293801*20633239^(3/5) 6099996721309704 a001 53316291173/2139295485799*20633239^(3/5) 6099996721309704 a001 10182505537/408569081798*20633239^(3/5) 6099996721309704 a001 7778742049/312119004989*20633239^(3/5) 6099996721309704 a001 2971215073/119218851371*20633239^(3/5) 6099996721309704 a001 567451585/22768774562*20633239^(3/5) 6099996721309704 a001 433494437/17393796001*20633239^(3/5) 6099996721309704 a001 165580141/6643838879*20633239^(3/5) 6099996721309704 a001 701408733/33385282*20633239^(1/5) 6099996721309704 a001 9303105/230701876*20633239^(4/7) 6099996721309704 a001 31622993/1268860318*20633239^(3/5) 6099996721309704 a001 267914296/6643838879*20633239^(4/7) 6099996721309704 a001 701408733/17393796001*20633239^(4/7) 6099996721309704 a001 1836311903/45537549124*20633239^(4/7) 6099996721309704 a001 4807526976/119218851371*20633239^(4/7) 6099996721309704 a001 1144206275/28374454999*20633239^(4/7) 6099996721309704 a001 32951280099/817138163596*20633239^(4/7) 6099996721309704 a001 86267571272/2139295485799*20633239^(4/7) 6099996721309704 a001 225851433717/5600748293801*20633239^(4/7) 6099996721309704 a001 591286729879/14662949395604*20633239^(4/7) 6099996721309704 a001 365435296162/9062201101803*20633239^(4/7) 6099996721309704 a001 139583862445/3461452808002*20633239^(4/7) 6099996721309704 a001 53316291173/1322157322203*20633239^(4/7) 6099996721309704 a001 20365011074/505019158607*20633239^(4/7) 6099996721309704 a001 7778742049/192900153618*20633239^(4/7) 6099996721309704 a001 2971215073/73681302247*20633239^(4/7) 6099996721309704 a001 1134903170/28143753123*20633239^(4/7) 6099996721309704 a001 433494437/10749957122*20633239^(4/7) 6099996721309705 a001 24157817/6643838879*20633239^(5/7) 6099996721309705 a001 165580141/4106118243*20633239^(4/7) 6099996721309705 a001 63245986/1568397607*20633239^(4/7) 6099996721309705 a001 39088169/87403803*20633239^(3/7) 6099996721309705 a001 9227465/12752043*12752043^(7/17) 6099996721309705 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^58 6099996721309705 a001 1836311903/33385282*20633239^(1/7) 6099996721309706 a001 7778742049/54018521*7881196^(1/11) 6099996721309706 a001 5702887/6643838879*12752043^(14/17) 6099996721309706 a001 24157817/969323029*20633239^(3/5) 6099996721309706 a001 102334155/228826127*20633239^(3/7) 6099996721309706 a001 39088169/33385282*141422324^(1/3) 6099996721309706 a001 4976784/29134601*45537549124^(1/3) 6099996721309706 a001 583600122205488/956722026041 6099996721309706 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(38) 6099996721309706 a001 39088169/33385282*(1/2+1/2*5^(1/2))^13 6099996721309706 a001 39088169/33385282*73681302247^(1/4) 6099996721309706 a001 63245986/87403803*20633239^(2/5) 6099996721309706 a001 133957148/299537289*20633239^(3/7) 6099996721309707 a001 701408733/1568397607*20633239^(3/7) 6099996721309707 a001 1836311903/4106118243*20633239^(3/7) 6099996721309707 a001 2403763488/5374978561*20633239^(3/7) 6099996721309707 a001 12586269025/28143753123*20633239^(3/7) 6099996721309707 a001 32951280099/73681302247*20633239^(3/7) 6099996721309707 a001 43133785636/96450076809*20633239^(3/7) 6099996721309707 a001 225851433717/505019158607*20633239^(3/7) 6099996721309707 a001 591286729879/1322157322203*20633239^(3/7) 6099996721309707 a001 10610209857723/23725150497407*20633239^(3/7) 6099996721309707 a001 182717648081/408569081798*20633239^(3/7) 6099996721309707 a001 139583862445/312119004989*20633239^(3/7) 6099996721309707 a001 53316291173/119218851371*20633239^(3/7) 6099996721309707 a001 10182505537/22768774562*20633239^(3/7) 6099996721309707 a001 7778742049/17393796001*20633239^(3/7) 6099996721309707 a001 2971215073/6643838879*20633239^(3/7) 6099996721309707 a001 567451585/1268860318*20633239^(3/7) 6099996721309707 a001 433494437/969323029*20633239^(3/7) 6099996721309707 a001 24157817/599074578*20633239^(4/7) 6099996721309707 a001 165580141/370248451*20633239^(3/7) 6099996721309707 a001 165580141/228826127*20633239^(2/5) 6099996721309707 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^60 6099996721309707 a001 3732588/204284540899*141422324^(12/13) 6099996721309707 a001 433494437/599074578*20633239^(2/5) 6099996721309707 a001 1134903170/1568397607*20633239^(2/5) 6099996721309707 a001 2971215073/4106118243*20633239^(2/5) 6099996721309707 a001 7778742049/10749957122*20633239^(2/5) 6099996721309707 a001 20365011074/28143753123*20633239^(2/5) 6099996721309707 a001 53316291173/73681302247*20633239^(2/5) 6099996721309707 a001 139583862445/192900153618*20633239^(2/5) 6099996721309707 a001 365435296162/505019158607*20633239^(2/5) 6099996721309707 a001 10610209857723/14662949395604*20633239^(2/5) 6099996721309707 a001 591286729879/817138163596*20633239^(2/5) 6099996721309707 a001 225851433717/312119004989*20633239^(2/5) 6099996721309707 a001 86267571272/119218851371*20633239^(2/5) 6099996721309707 a001 32951280099/45537549124*20633239^(2/5) 6099996721309707 a001 12586269025/17393796001*20633239^(2/5) 6099996721309707 a001 4807526976/6643838879*20633239^(2/5) 6099996721309707 a001 2584/33385281*141422324^(11/13) 6099996721309707 a001 1836311903/2537720636*20633239^(2/5) 6099996721309707 a001 701408733/969323029*20633239^(2/5) 6099996721309707 a001 3732588/11384387281*141422324^(10/13) 6099996721309707 a001 267914296/370248451*20633239^(2/5) 6099996721309707 a001 7465176/5374978561*141422324^(9/13) 6099996721309707 a001 14930352/6643838879*141422324^(2/3) 6099996721309707 a001 196452/33391061*141422324^(8/13) 6099996721309707 a001 829464/33281921*141422324^(7/13) 6099996721309707 a001 14619165/4769326*312119004989^(1/5) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(40) 6099996721309707 a001 14619165/4769326*(1/2+1/2*5^(1/2))^11 6099996721309707 a001 14619165/4769326*1568397607^(1/4) 6099996721309707 a001 133957148/16692641*141422324^(3/13) 6099996721309707 a001 102334155/141422324*20633239^(2/5) 6099996721309707 a001 5702887/20633239*12752043^(8/17) 6099996721309707 a001 31622993/70711162*20633239^(3/7) 6099996721309707 a001 567451585/16692641*141422324^(2/13) 6099996721309707 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^62 6099996721309707 a001 14930208/103681*141422324^(1/13) 6099996721309707 a001 829464/33281921*2537720636^(7/15) 6099996721309707 a001 133957148/16692641*2537720636^(1/5) 6099996721309707 a001 829464/33281921*17393796001^(3/7) 6099996721309707 a001 829464/33281921*45537549124^(7/17) 6099996721309707 a001 133957148/16692641*45537549124^(3/17) 6099996721309707 a001 133957148/16692641*817138163596^(3/19) 6099996721309707 a001 829464/33281921*14662949395604^(1/3) 6099996721309707 a001 133957148/16692641*14662949395604^(1/7) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(42) 6099996721309707 a001 133957148/16692641*(1/2+1/2*5^(1/2))^9 6099996721309707 a001 133957148/16692641*192900153618^(1/6) 6099996721309707 a001 829464/33281921*192900153618^(7/18) 6099996721309707 a001 133957148/16692641*10749957122^(3/16) 6099996721309707 a001 829464/33281921*10749957122^(7/16) 6099996721309707 a001 133957148/16692641*599074578^(3/14) 6099996721309707 a001 829464/33281921*599074578^(1/2) 6099996721309707 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^64 6099996721309707 a001 701408733/33385282*17393796001^(1/7) 6099996721309707 a001 701408733/33385282*14662949395604^(1/9) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(44) 6099996721309707 a001 701408733/33385282*(1/2+1/2*5^(1/2))^7 6099996721309707 a001 14930352/1568397607*4106118243^(1/2) 6099996721309707 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^66 6099996721309707 a001 4976784/1368706081*2537720636^(5/9) 6099996721309707 a001 196452/192933544679*2537720636^(14/15) 6099996721309707 a001 14930352/5600748293801*2537720636^(8/9) 6099996721309707 a001 7465176/1730726404001*2537720636^(13/15) 6099996721309707 a001 3732588/204284540899*2537720636^(4/5) 6099996721309707 a001 14930352/505019158607*2537720636^(7/9) 6099996721309707 a001 2584/33385281*2537720636^(11/15) 6099996721309707 a001 3732588/11384387281*2537720636^(2/3) 6099996721309707 a001 7465176/5374978561*2537720636^(3/5) 6099996721309707 a001 1836311903/33385282*2537720636^(1/9) 6099996721309707 a001 4976784/1368706081*312119004989^(5/11) 6099996721309707 a001 1836311903/33385282*312119004989^(1/11) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(46) 6099996721309707 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^5 6099996721309707 a001 4976784/1368706081*3461452808002^(5/12) 6099996721309707 a001 1836311903/33385282*28143753123^(1/10) 6099996721309707 a001 4976784/1368706081*28143753123^(1/2) 6099996721309707 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^68 6099996721309707 a001 14930208/103681*2537720636^(1/15) 6099996721309707 a001 7465176/5374978561*45537549124^(9/17) 6099996721309707 a001 14930208/103681*45537549124^(1/17) 6099996721309707 a001 7465176/5374978561*817138163596^(9/19) 6099996721309707 a001 7465176/5374978561*14662949395604^(3/7) 6099996721309707 a001 14930208/103681*14662949395604^(1/21) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(48) 6099996721309707 a001 14930208/103681*(1/2+1/2*5^(1/2))^3 6099996721309707 a001 14930208/103681*192900153618^(1/18) 6099996721309707 a001 7465176/5374978561*192900153618^(1/2) 6099996721309707 a001 14930208/103681*10749957122^(1/16) 6099996721309707 a001 7465176/5374978561*10749957122^(9/16) 6099996721309707 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^70 6099996721309707 a001 196452/192933544679*17393796001^(6/7) 6099996721309707 a001 14930352/505019158607*17393796001^(5/7) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(50) 6099996721309707 a001 4976784/9381251041*1322157322203^(1/2) 6099996721309707 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^72 6099996721309707 a001 196452/192933544679*45537549124^(14/17) 6099996721309707 a001 7465176/1730726404001*45537549124^(13/17) 6099996721309707 a001 2584/33385281*45537549124^(11/17) 6099996721309707 a001 3732588/204284540899*45537549124^(12/17) 6099996721309707 a001 14930352/312119004989*45537549124^(2/3) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(52) 6099996721309707 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2) 6099996721309707 a001 14930352/73681302247*9062201101803^(1/2) 6099996721309707 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^74 6099996721309707 a001 2584/33385281*312119004989^(3/5) 6099996721309707 a001 2584/33385281*14662949395604^(11/21) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(54) 6099996721309707 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^3 6099996721309707 a001 14930352/505019158607*312119004989^(7/11) 6099996721309707 a001 2584/33385281*192900153618^(11/18) 6099996721309707 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^76 6099996721309707 a001 14930352/5600748293801*312119004989^(8/11) 6099996721309707 a001 14930352/505019158607*14662949395604^(5/9) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(56) 6099996721309707 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^5 6099996721309707 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^78 6099996721309707 a001 196452/192933544679*817138163596^(14/19) 6099996721309707 a001 14930352/2139295485799*817138163596^(2/3) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(58) 6099996721309707 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^7 6099996721309707 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^80 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(60) 6099996721309707 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^9 6099996721309707 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^82 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(62) 6099996721309707 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^11 6099996721309707 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^84 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(64) 6099996721309707 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^13 6099996721309707 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^86 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(66) 6099996721309707 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^15 6099996721309707 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^88 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(68) 6099996721309707 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^17 6099996721309707 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^90 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(70) 6099996721309707 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^19 6099996721309707 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^92 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(72) 6099996721309707 a004 Fibonacci(36)*Lucas(73)/(1/2+sqrt(5)/2)^94 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(74) 6099996721309707 a004 Fibonacci(36)*Lucas(75)/(1/2+sqrt(5)/2)^96 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(76) 6099996721309707 a004 Fibonacci(36)*Lucas(77)/(1/2+sqrt(5)/2)^98 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(78) 6099996721309707 a004 Fibonacci(36)*Lucas(79)/(1/2+sqrt(5)/2)^100 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(80) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(82) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(84) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(86) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(88) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(90) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(92) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^73/Lucas(94) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^75/Lucas(96) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^77/Lucas(98) 6099996721309707 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^21 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^78/Lucas(99) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^79/Lucas(100) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^76/Lucas(97) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^74/Lucas(95) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(93) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(91) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(89) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(87) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(85) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(83) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(81) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(79) 6099996721309707 a004 Fibonacci(36)*Lucas(78)/(1/2+sqrt(5)/2)^99 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(77) 6099996721309707 a004 Fibonacci(36)*Lucas(76)/(1/2+sqrt(5)/2)^97 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(75) 6099996721309707 a004 Fibonacci(36)*Lucas(74)/(1/2+sqrt(5)/2)^95 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(73) 6099996721309707 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^23 6099996721309707 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^25 6099996721309707 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^27 6099996721309707 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^29 6099996721309707 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^31 6099996721309707 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^33 6099996721309707 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^35 6099996721309707 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^37 6099996721309707 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^39 6099996721309707 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^41 6099996721309707 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^43 6099996721309707 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^45 6099996721309707 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^47 6099996721309707 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^49 6099996721309707 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^93 6099996721309707 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^48 6099996721309707 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^46 6099996721309707 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^44 6099996721309707 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^42 6099996721309707 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^40 6099996721309707 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^38 6099996721309707 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^36 6099996721309707 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^34 6099996721309707 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^32 6099996721309707 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^30 6099996721309707 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^28 6099996721309707 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^26 6099996721309707 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^24 6099996721309707 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^22 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(71) 6099996721309707 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^20 6099996721309707 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^91 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(69) 6099996721309707 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^18 6099996721309707 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^89 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(67) 6099996721309707 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^16 6099996721309707 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^87 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(65) 6099996721309707 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^14 6099996721309707 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^85 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(63) 6099996721309707 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^12 6099996721309707 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^83 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(61) 6099996721309707 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^10 6099996721309707 a001 14930352/5600748293801*23725150497407^(5/8) 6099996721309707 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^81 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(59) 6099996721309707 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^8 6099996721309707 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^79 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(57) 6099996721309707 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^6 6099996721309707 a001 196452/192933544679*505019158607^(3/4) 6099996721309707 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^77 6099996721309707 a001 3732588/204284540899*505019158607^(9/14) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(55) 6099996721309707 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^4 6099996721309707 a001 196452/192933544679*192900153618^(7/9) 6099996721309707 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^75 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(53) 6099996721309707 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^2 6099996721309707 a001 14930352/119218851371*23725150497407^(1/2) 6099996721309707 a001 14930352/119218851371*505019158607^(4/7) 6099996721309707 a001 3732588/204284540899*73681302247^(9/13) 6099996721309707 a001 7465176/1730726404001*73681302247^(3/4) 6099996721309707 a001 14930352/5600748293801*73681302247^(10/13) 6099996721309707 a001 14930352/119218851371*73681302247^(8/13) 6099996721309707 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^73 6099996721309707 a001 3732588/11384387281*45537549124^(10/17) 6099996721309707 a001 3732588/11384387281*312119004989^(6/11) 6099996721309707 a001 3732588/11384387281*14662949395604^(10/21) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(51) 6099996721309707 a006 5^(1/2)*Fibonacci(51)/Lucas(36)/sqrt(5) 6099996721309707 a001 3732588/11384387281*192900153618^(5/9) 6099996721309707 a001 14930352/505019158607*28143753123^(7/10) 6099996721309707 a001 14930352/5600748293801*28143753123^(4/5) 6099996721309707 a001 3732588/11384387281*28143753123^(3/5) 6099996721309707 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^71 6099996721309707 a001 14930352/17393796001*17393796001^(4/7) 6099996721309707 a001 14930352/17393796001*14662949395604^(4/9) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(49) 6099996721309707 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^2 6099996721309707 a001 14930352/17393796001*505019158607^(1/2) 6099996721309707 a001 14930352/17393796001*73681302247^(7/13) 6099996721309707 a001 7778742049/33385282*10749957122^(1/24) 6099996721309707 a001 14930352/119218851371*10749957122^(2/3) 6099996721309707 a001 7778742049/33385282*4106118243^(1/23) 6099996721309707 a001 3732588/11384387281*10749957122^(5/8) 6099996721309707 a001 2584/33385281*10749957122^(11/16) 6099996721309707 a001 14930352/312119004989*10749957122^(17/24) 6099996721309707 a001 3732588/204284540899*10749957122^(3/4) 6099996721309707 a001 14930352/2139295485799*10749957122^(19/24) 6099996721309707 a001 7465176/1730726404001*10749957122^(13/16) 6099996721309707 a001 14930352/5600748293801*10749957122^(5/6) 6099996721309707 a001 196452/192933544679*10749957122^(7/8) 6099996721309707 a001 14930352/17393796001*10749957122^(7/12) 6099996721309707 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^69 6099996721309707 a001 7778742049/33385282*1568397607^(1/22) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(47) 6099996721309707 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^4 6099996721309707 a001 2971215073/33385282*23725150497407^(1/16) 6099996721309707 a001 2971215073/33385282*73681302247^(1/13) 6099996721309707 a001 14930352/6643838879*73681302247^(1/2) 6099996721309707 a001 2971215073/33385282*10749957122^(1/12) 6099996721309707 a001 14930352/6643838879*10749957122^(13/24) 6099996721309707 a001 2971215073/33385282*4106118243^(2/23) 6099996721309707 a001 3732588/11384387281*4106118243^(15/23) 6099996721309707 a001 14930352/17393796001*4106118243^(14/23) 6099996721309707 a001 14930352/119218851371*4106118243^(16/23) 6099996721309707 a001 14930352/312119004989*4106118243^(17/23) 6099996721309707 a001 3732588/204284540899*4106118243^(18/23) 6099996721309707 a001 14930352/2139295485799*4106118243^(19/23) 6099996721309707 a001 14930352/5600748293801*4106118243^(20/23) 6099996721309707 a001 196452/192933544679*4106118243^(21/23) 6099996721309707 a001 14930352/6643838879*4106118243^(13/23) 6099996721309707 a001 701408733/33385282*599074578^(1/6) 6099996721309707 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^67 6099996721309707 a001 2971215073/33385282*1568397607^(1/11) 6099996721309707 a001 196452/33391061*2537720636^(8/15) 6099996721309707 a001 567451585/16692641*2537720636^(2/15) 6099996721309707 a001 7778742049/33385282*599074578^(1/21) 6099996721309707 a001 196452/33391061*45537549124^(8/17) 6099996721309707 a001 567451585/16692641*45537549124^(2/17) 6099996721309707 a001 196452/33391061*14662949395604^(8/21) 6099996721309707 a001 567451585/16692641*14662949395604^(2/21) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(45) 6099996721309707 a001 567451585/16692641*(1/2+1/2*5^(1/2))^6 6099996721309707 a001 196452/33391061*192900153618^(4/9) 6099996721309707 a001 196452/33391061*73681302247^(6/13) 6099996721309707 a001 567451585/16692641*10749957122^(1/8) 6099996721309707 a001 196452/33391061*10749957122^(1/2) 6099996721309707 a001 567451585/16692641*4106118243^(3/23) 6099996721309707 a001 196452/33391061*4106118243^(12/23) 6099996721309707 a001 14930208/103681*599074578^(1/14) 6099996721309707 a001 567451585/16692641*1568397607^(3/22) 6099996721309707 a001 14930352/17393796001*1568397607^(7/11) 6099996721309707 a001 14930352/6643838879*1568397607^(13/22) 6099996721309707 a001 3732588/11384387281*1568397607^(15/22) 6099996721309707 a001 2971215073/33385282*599074578^(2/21) 6099996721309707 a001 14930352/119218851371*1568397607^(8/11) 6099996721309707 a001 2584/33385281*1568397607^(3/4) 6099996721309707 a001 14930352/312119004989*1568397607^(17/22) 6099996721309707 a001 3732588/204284540899*1568397607^(9/11) 6099996721309707 a001 14930352/2139295485799*1568397607^(19/22) 6099996721309707 a001 14930352/5600748293801*1568397607^(10/11) 6099996721309707 a001 196452/33391061*1568397607^(6/11) 6099996721309707 a001 196452/192933544679*1568397607^(21/22) 6099996721309707 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^65 6099996721309707 a001 567451585/16692641*599074578^(1/7) 6099996721309707 a001 7778742049/33385282*228826127^(1/20) 6099996721309707 a001 14930352/969323029*312119004989^(2/5) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(43) 6099996721309707 a001 433494437/33385282*(1/2+1/2*5^(1/2))^8 6099996721309707 a001 433494437/33385282*23725150497407^(1/8) 6099996721309707 a001 2157408178150608/3536736619241 6099996721309707 a001 433494437/33385282*505019158607^(1/7) 6099996721309707 a001 433494437/33385282*73681302247^(2/13) 6099996721309707 a001 433494437/33385282*10749957122^(1/6) 6099996721309707 a001 14930352/969323029*10749957122^(11/24) 6099996721309707 a001 433494437/33385282*4106118243^(4/23) 6099996721309707 a001 14930352/969323029*4106118243^(11/23) 6099996721309707 a001 433494437/33385282*1568397607^(2/11) 6099996721309707 a001 14930352/969323029*1568397607^(1/2) 6099996721309707 a001 433494437/33385282*599074578^(4/21) 6099996721309707 a001 196452/33391061*599074578^(4/7) 6099996721309707 a001 14930352/6643838879*599074578^(13/21) 6099996721309707 a001 7465176/5374978561*599074578^(9/14) 6099996721309707 a001 14930352/17393796001*599074578^(2/3) 6099996721309707 a001 2971215073/33385282*228826127^(1/10) 6099996721309707 a001 3732588/11384387281*599074578^(5/7) 6099996721309707 a001 14930352/119218851371*599074578^(16/21) 6099996721309707 a001 2584/33385281*599074578^(11/14) 6099996721309707 a001 14930352/312119004989*599074578^(17/21) 6099996721309707 a001 14930352/505019158607*599074578^(5/6) 6099996721309707 a001 1836311903/33385282*228826127^(1/8) 6099996721309707 a001 3732588/204284540899*599074578^(6/7) 6099996721309707 a001 14930352/2139295485799*599074578^(19/21) 6099996721309707 a001 14930352/969323029*599074578^(11/21) 6099996721309707 a001 7465176/1730726404001*599074578^(13/14) 6099996721309707 a001 14930352/5600748293801*599074578^(20/21) 6099996721309707 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^63 6099996721309707 a001 567451585/16692641*228826127^(3/20) 6099996721309707 a001 433494437/33385282*228826127^(1/5) 6099996721309707 a001 7778742049/33385282*87403803^(1/19) 6099996721309707 a001 14930352/370248451*2537720636^(4/9) 6099996721309707 a001 165580141/33385282*2537720636^(2/9) 6099996721309707 a001 165580141/33385282*312119004989^(2/11) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(41) 6099996721309707 a001 165580141/33385282*(1/2+1/2*5^(1/2))^10 6099996721309707 a001 14930352/370248451*23725150497407^(5/16) 6099996721309707 a001 14930352/370248451*505019158607^(5/14) 6099996721309707 a001 14930352/370248451*73681302247^(5/13) 6099996721309707 a001 165580141/33385282*28143753123^(1/5) 6099996721309707 a001 14930352/370248451*28143753123^(2/5) 6099996721309707 a001 165580141/33385282*10749957122^(5/24) 6099996721309707 a001 14930352/370248451*10749957122^(5/12) 6099996721309707 a001 165580141/33385282*4106118243^(5/23) 6099996721309707 a001 14930352/370248451*4106118243^(10/23) 6099996721309707 a001 165580141/33385282*1568397607^(5/22) 6099996721309707 a001 14930352/370248451*1568397607^(5/11) 6099996721309707 a001 165580141/33385282*599074578^(5/21) 6099996721309707 a001 14930352/370248451*599074578^(10/21) 6099996721309707 a001 14930352/969323029*228826127^(11/20) 6099996721309707 a001 196452/33391061*228826127^(3/5) 6099996721309707 a001 4976784/1368706081*228826127^(5/8) 6099996721309707 a001 165580141/33385282*228826127^(1/4) 6099996721309707 a001 14930352/6643838879*228826127^(13/20) 6099996721309707 a001 14930352/17393796001*228826127^(7/10) 6099996721309707 a001 2971215073/33385282*87403803^(2/19) 6099996721309707 a001 3732588/11384387281*228826127^(3/4) 6099996721309707 a001 14930352/119218851371*228826127^(4/5) 6099996721309707 a001 14930352/312119004989*228826127^(17/20) 6099996721309707 a001 1134903170/12752043*4870847^(1/8) 6099996721309707 a001 14930352/505019158607*228826127^(7/8) 6099996721309707 a001 14930352/370248451*228826127^(1/2) 6099996721309707 a001 3732588/204284540899*228826127^(9/10) 6099996721309707 a001 14930352/2139295485799*228826127^(19/20) 6099996721309707 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^61 6099996721309707 a001 567451585/16692641*87403803^(3/19) 6099996721309707 a001 3732588/35355581*141422324^(6/13) 6099996721309707 a001 433494437/33385282*87403803^(4/19) 6099996721309707 a001 31622993/16692641*141422324^(4/13) 6099996721309707 a001 165580141/33385282*87403803^(5/19) 6099996721309707 a001 14930352/228826127*87403803^(1/2) 6099996721309707 a001 7778742049/33385282*33385282^(1/18) 6099996721309707 a001 3732588/35355581*2537720636^(2/5) 6099996721309707 a001 31622993/16692641*2537720636^(4/15) 6099996721309707 a001 3732588/35355581*45537549124^(6/17) 6099996721309707 a001 31622993/16692641*45537549124^(4/17) 6099996721309707 a001 31622993/16692641*817138163596^(4/19) 6099996721309707 a001 3732588/35355581*14662949395604^(2/7) 6099996721309707 a001 31622993/16692641*14662949395604^(4/21) 6099996721309707 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(39) 6099996721309707 a001 31622993/16692641*(1/2+1/2*5^(1/2))^12 6099996721309707 a001 31622993/16692641*192900153618^(2/9) 6099996721309707 a001 3732588/35355581*192900153618^(1/3) 6099996721309707 a001 31622993/16692641*73681302247^(3/13) 6099996721309707 a001 31622993/16692641*10749957122^(1/4) 6099996721309707 a001 3732588/35355581*10749957122^(3/8) 6099996721309707 a001 31622993/16692641*4106118243^(6/23) 6099996721309707 a001 3732588/35355581*4106118243^(9/23) 6099996721309707 a001 31622993/16692641*1568397607^(3/11) 6099996721309707 a001 3732588/35355581*1568397607^(9/22) 6099996721309707 a001 31622993/16692641*599074578^(2/7) 6099996721309707 a001 3732588/35355581*599074578^(3/7) 6099996721309708 a001 31622993/16692641*228826127^(3/10) 6099996721309708 a001 3732588/35355581*228826127^(9/20) 6099996721309708 a001 14930208/103681*33385282^(1/12) 6099996721309708 a001 14930352/370248451*87403803^(10/19) 6099996721309708 a001 14930352/969323029*87403803^(11/19) 6099996721309708 a001 196452/33391061*87403803^(12/19) 6099996721309708 a001 14930352/6643838879*87403803^(13/19) 6099996721309708 a001 31622993/16692641*87403803^(6/19) 6099996721309708 a001 433494437/87403803*20633239^(2/7) 6099996721309708 a001 14930352/17393796001*87403803^(14/19) 6099996721309708 a001 2971215073/33385282*33385282^(1/9) 6099996721309708 a001 3732588/11384387281*87403803^(15/19) 6099996721309708 a001 14930352/119218851371*87403803^(16/19) 6099996721309708 a001 3732588/35355581*87403803^(9/19) 6099996721309708 a001 14930352/312119004989*87403803^(17/19) 6099996721309708 a001 3732588/204284540899*87403803^(18/19) 6099996721309708 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^59 6099996721309708 a001 567451585/16692641*33385282^(1/6) 6099996721309708 a001 39088169/54018521*20633239^(2/5) 6099996721309708 a001 5702887/17393796001*12752043^(15/17) 6099996721309708 a001 433494437/33385282*33385282^(2/9) 6099996721309708 a001 1134903170/228826127*20633239^(2/7) 6099996721309709 a001 133957148/16692641*33385282^(1/4) 6099996721309709 a001 2971215073/599074578*20633239^(2/7) 6099996721309709 a001 7778742049/1568397607*20633239^(2/7) 6099996721309709 a001 20365011074/4106118243*20633239^(2/7) 6099996721309709 a001 53316291173/10749957122*20633239^(2/7) 6099996721309709 a001 139583862445/28143753123*20633239^(2/7) 6099996721309709 a001 365435296162/73681302247*20633239^(2/7) 6099996721309709 a001 956722026041/192900153618*20633239^(2/7) 6099996721309709 a001 2504730781961/505019158607*20633239^(2/7) 6099996721309709 a001 10610209857723/2139295485799*20633239^(2/7) 6099996721309709 a001 4052739537881/817138163596*20633239^(2/7) 6099996721309709 a001 140728068720/28374454999*20633239^(2/7) 6099996721309709 a001 591286729879/119218851371*20633239^(2/7) 6099996721309709 a001 225851433717/45537549124*20633239^(2/7) 6099996721309709 a001 86267571272/17393796001*20633239^(2/7) 6099996721309709 a001 32951280099/6643838879*20633239^(2/7) 6099996721309709 a001 1144206275/230701876*20633239^(2/7) 6099996721309709 a001 4807526976/969323029*20633239^(2/7) 6099996721309709 a001 1836311903/370248451*20633239^(2/7) 6099996721309709 a001 165580141/33385282*33385282^(5/18) 6099996721309709 a001 701408733/141422324*20633239^(2/7) 6099996721309709 a001 1836311903/87403803*20633239^(1/5) 6099996721309709 a001 701408733/20633239*7881196^(2/11) 6099996721309709 a001 24157817/33385282*17393796001^(2/7) 6099996721309709 a001 24157817/33385282*14662949395604^(2/9) 6099996721309709 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(37) 6099996721309709 a001 24157817/33385282*(1/2+1/2*5^(1/2))^14 6099996721309709 a001 14930352/54018521*23725150497407^(1/4) 6099996721309709 a001 14930352/54018521*73681302247^(4/13) 6099996721309709 a001 24157817/33385282*10749957122^(7/24) 6099996721309709 a001 14930352/54018521*10749957122^(1/3) 6099996721309709 a001 24157817/33385282*4106118243^(7/23) 6099996721309709 a001 14930352/54018521*4106118243^(8/23) 6099996721309709 a001 24157817/33385282*1568397607^(7/22) 6099996721309709 a001 14930352/54018521*1568397607^(4/11) 6099996721309709 a001 24157817/33385282*599074578^(1/3) 6099996721309709 a001 14930352/54018521*599074578^(8/21) 6099996721309709 a001 31622993/16692641*33385282^(1/3) 6099996721309709 a001 24157817/33385282*228826127^(7/20) 6099996721309709 a001 14930352/54018521*228826127^(2/5) 6099996721309709 a001 7778742049/33385282*12752043^(1/17) 6099996721309710 a001 24157817/33385282*87403803^(7/19) 6099996721309710 a001 14930352/54018521*87403803^(8/19) 6099996721309710 a001 102287808/4868641*20633239^(1/5) 6099996721309710 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^60 6099996721309710 a001 12586269025/599074578*20633239^(1/5) 6099996721309710 a001 32951280099/1568397607*20633239^(1/5) 6099996721309710 a001 86267571272/4106118243*20633239^(1/5) 6099996721309710 a001 225851433717/10749957122*20633239^(1/5) 6099996721309710 a001 591286729879/28143753123*20633239^(1/5) 6099996721309710 a001 1548008755920/73681302247*20633239^(1/5) 6099996721309710 a001 4052739537881/192900153618*20633239^(1/5) 6099996721309710 a001 225749145909/10745088481*20633239^(1/5) 6099996721309710 a001 6557470319842/312119004989*20633239^(1/5) 6099996721309710 a001 2504730781961/119218851371*20633239^(1/5) 6099996721309710 a001 956722026041/45537549124*20633239^(1/5) 6099996721309710 a001 365435296162/17393796001*20633239^(1/5) 6099996721309710 a001 139583862445/6643838879*20633239^(1/5) 6099996721309710 a001 53316291173/2537720636*20633239^(1/5) 6099996721309710 a001 20365011074/969323029*20633239^(1/5) 6099996721309710 a001 1602508992/29134601*20633239^(1/7) 6099996721309710 a001 7778742049/370248451*20633239^(1/5) 6099996721309710 a001 2971215073/141422324*20633239^(1/5) 6099996721309710 a001 3732588/35355581*33385282^(1/2) 6099996721309710 a001 14930352/370248451*33385282^(5/9) 6099996721309710 a001 829464/33281921*33385282^(7/12) 6099996721309710 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^62 6099996721309710 a001 1597/12752044*12752043^(16/17) 6099996721309710 a001 12586269025/228826127*20633239^(1/7) 6099996721309711 a001 14930352/969323029*33385282^(11/18) 6099996721309711 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^64 6099996721309711 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^66 6099996721309711 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^68 6099996721309711 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^70 6099996721309711 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^72 6099996721309711 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^74 6099996721309711 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^76 6099996721309711 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^78 6099996721309711 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^80 6099996721309711 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^82 6099996721309711 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^84 6099996721309711 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^86 6099996721309711 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^88 6099996721309711 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^90 6099996721309711 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^92 6099996721309711 a004 Fibonacci(72)*Lucas(37)/(1/2+sqrt(5)/2)^94 6099996721309711 a004 Fibonacci(74)*Lucas(37)/(1/2+sqrt(5)/2)^96 6099996721309711 a004 Fibonacci(76)*Lucas(37)/(1/2+sqrt(5)/2)^98 6099996721309711 a004 Fibonacci(78)*Lucas(37)/(1/2+sqrt(5)/2)^100 6099996721309711 a004 Fibonacci(77)*Lucas(37)/(1/2+sqrt(5)/2)^99 6099996721309711 a004 Fibonacci(75)*Lucas(37)/(1/2+sqrt(5)/2)^97 6099996721309711 a001 2/24157817*(1/2+1/2*5^(1/2))^52 6099996721309711 a004 Fibonacci(73)*Lucas(37)/(1/2+sqrt(5)/2)^95 6099996721309711 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^93 6099996721309711 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^91 6099996721309711 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^89 6099996721309711 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^87 6099996721309711 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^85 6099996721309711 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^83 6099996721309711 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^81 6099996721309711 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^79 6099996721309711 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^77 6099996721309711 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^75 6099996721309711 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^73 6099996721309711 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^71 6099996721309711 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^69 6099996721309711 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^67 6099996721309711 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^65 6099996721309711 a001 10983760033/199691526*20633239^(1/7) 6099996721309711 a001 86267571272/1568397607*20633239^(1/7) 6099996721309711 a001 75283811239/1368706081*20633239^(1/7) 6099996721309711 a001 591286729879/10749957122*20633239^(1/7) 6099996721309711 a001 12585437040/228811001*20633239^(1/7) 6099996721309711 a001 4052739537881/73681302247*20633239^(1/7) 6099996721309711 a001 3536736619241/64300051206*20633239^(1/7) 6099996721309711 a001 6557470319842/119218851371*20633239^(1/7) 6099996721309711 a001 2504730781961/45537549124*20633239^(1/7) 6099996721309711 a001 956722026041/17393796001*20633239^(1/7) 6099996721309711 a001 365435296162/6643838879*20633239^(1/7) 6099996721309711 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^63 6099996721309711 a001 139583862445/2537720636*20633239^(1/7) 6099996721309711 a001 53316291173/969323029*20633239^(1/7) 6099996721309711 a001 267914296/54018521*20633239^(2/7) 6099996721309711 a001 20365011074/370248451*20633239^(1/7) 6099996721309711 a001 24157817/54018521*20633239^(3/7) 6099996721309711 a001 196452/33391061*33385282^(2/3) 6099996721309711 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^61 6099996721309711 a001 7778742049/141422324*20633239^(1/7) 6099996721309711 a001 39088169/87403803*141422324^(5/13) 6099996721309711 a001 39088169/87403803*2537720636^(1/3) 6099996721309711 a001 39088169/87403803*45537549124^(5/17) 6099996721309711 a001 39088169/87403803*312119004989^(3/11) 6099996721309711 a001 1527884955772561/2504730781961 6099996721309711 a001 39088169/87403803*14662949395604^(5/21) 6099996721309711 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(38) 6099996721309711 a001 39088169/87403803*192900153618^(5/18) 6099996721309711 a001 39088169/87403803*28143753123^(3/10) 6099996721309711 a001 39088169/87403803*10749957122^(5/16) 6099996721309711 a001 39088169/87403803*599074578^(5/14) 6099996721309711 a001 39088169/87403803*228826127^(3/8) 6099996721309711 a001 14930352/6643838879*33385282^(13/18) 6099996721309711 a001 7465176/5374978561*33385282^(3/4) 6099996721309711 a001 24157817/33385282*33385282^(7/18) 6099996721309711 a001 14930352/17393796001*33385282^(7/9) 6099996721309712 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^62 6099996721309712 a001 39088169/2139295485799*141422324^(12/13) 6099996721309712 a001 2971215073/33385282*12752043^(2/17) 6099996721309712 a001 39088169/505019158607*141422324^(11/13) 6099996721309712 a001 39088169/119218851371*141422324^(10/13) 6099996721309712 a001 34111385/29134601*141422324^(1/3) 6099996721309712 a001 39088169/28143753123*141422324^(9/13) 6099996721309712 a001 39088169/17393796001*141422324^(2/3) 6099996721309712 a001 39088169/6643838879*141422324^(8/13) 6099996721309712 a001 39088169/1568397607*141422324^(7/13) 6099996721309712 a001 14930352/54018521*33385282^(4/9) 6099996721309712 a001 39088169/228826127*45537549124^(1/3) 6099996721309712 a001 4000054745112195/6557470319842 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(40) 6099996721309712 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(38) 6099996721309712 a001 34111385/29134601*73681302247^(1/4) 6099996721309712 a001 3732588/11384387281*33385282^(5/6) 6099996721309712 a001 39088169/370248451*141422324^(6/13) 6099996721309712 a001 233802911/29134601*141422324^(3/13) 6099996721309712 a001 165580141/87403803*141422324^(4/13) 6099996721309712 a001 2971215073/87403803*141422324^(2/13) 6099996721309712 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^64 6099996721309712 a001 12586269025/87403803*141422324^(1/13) 6099996721309712 a001 267914296/87403803*312119004989^(1/5) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(42) 6099996721309712 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(38) 6099996721309712 a001 267914296/87403803*1568397607^(1/4) 6099996721309712 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^66 6099996721309712 a001 39088169/1568397607*2537720636^(7/15) 6099996721309712 a001 233802911/29134601*2537720636^(1/5) 6099996721309712 a001 39088169/1568397607*17393796001^(3/7) 6099996721309712 a001 39088169/1568397607*45537549124^(7/17) 6099996721309712 a001 233802911/29134601*45537549124^(3/17) 6099996721309712 a001 39088169/1568397607*14662949395604^(1/3) 6099996721309712 a001 233802911/29134601*14662949395604^(1/7) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(44) 6099996721309712 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(38) 6099996721309712 a001 233802911/29134601*192900153618^(1/6) 6099996721309712 a001 39088169/1568397607*192900153618^(7/18) 6099996721309712 a001 233802911/29134601*10749957122^(3/16) 6099996721309712 a001 39088169/1568397607*10749957122^(7/16) 6099996721309712 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^68 6099996721309712 a001 39088169/14662949395604*2537720636^(8/9) 6099996721309712 a001 39088169/9062201101803*2537720636^(13/15) 6099996721309712 a001 39088169/2139295485799*2537720636^(4/5) 6099996721309712 a001 39088169/1322157322203*2537720636^(7/9) 6099996721309712 a001 39088169/505019158607*2537720636^(11/15) 6099996721309712 a001 39088169/119218851371*2537720636^(2/3) 6099996721309712 a001 39088169/10749957122*2537720636^(5/9) 6099996721309712 a001 39088169/28143753123*2537720636^(3/5) 6099996721309712 a001 39088169/6643838879*2537720636^(8/15) 6099996721309712 a001 1836311903/87403803*17393796001^(1/7) 6099996721309712 a001 1836311903/87403803*14662949395604^(1/9) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(46) 6099996721309712 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(38) 6099996721309712 a001 39088169/4106118243*4106118243^(1/2) 6099996721309712 a001 1602508992/29134601*2537720636^(1/9) 6099996721309712 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^70 6099996721309712 a001 12586269025/87403803*2537720636^(1/15) 6099996721309712 a001 39088169/10749957122*312119004989^(5/11) 6099996721309712 a001 1602508992/29134601*312119004989^(1/11) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(48) 6099996721309712 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(38) 6099996721309712 a001 39088169/10749957122*3461452808002^(5/12) 6099996721309712 a001 1602508992/29134601*28143753123^(1/10) 6099996721309712 a001 39088169/10749957122*28143753123^(1/2) 6099996721309712 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^72 6099996721309712 a001 39088169/1322157322203*17393796001^(5/7) 6099996721309712 a001 39088169/28143753123*45537549124^(9/17) 6099996721309712 a001 39088169/45537549124*17393796001^(4/7) 6099996721309712 a001 12586269025/87403803*45537549124^(1/17) 6099996721309712 a001 39088169/28143753123*14662949395604^(3/7) 6099996721309712 a001 12586269025/87403803*14662949395604^(1/21) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(50) 6099996721309712 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(38) 6099996721309712 a001 12586269025/87403803*192900153618^(1/18) 6099996721309712 a001 39088169/28143753123*192900153618^(1/2) 6099996721309712 a001 12586269025/87403803*10749957122^(1/16) 6099996721309712 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^74 6099996721309712 a001 39088169/9062201101803*45537549124^(13/17) 6099996721309712 a001 39088169/2139295485799*45537549124^(12/17) 6099996721309712 a001 4181/87403804*45537549124^(2/3) 6099996721309712 a001 39088169/505019158607*45537549124^(11/17) 6099996721309712 a001 39088169/119218851371*45537549124^(10/17) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(52) 6099996721309712 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(38) 6099996721309712 a001 39088169/73681302247*1322157322203^(1/2) 6099996721309712 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^76 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(54) 6099996721309712 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2) 6099996721309712 a001 39088169/192900153618*9062201101803^(1/2) 6099996721309712 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^78 6099996721309712 a001 39088169/505019158607*312119004989^(3/5) 6099996721309712 a001 39088169/1322157322203*312119004989^(7/11) 6099996721309712 a001 39088169/505019158607*817138163596^(11/19) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(56) 6099996721309712 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^3 6099996721309712 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^80 6099996721309712 a001 39088169/5600748293801*817138163596^(2/3) 6099996721309712 a001 39088169/1322157322203*14662949395604^(5/9) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(58) 6099996721309712 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^5 6099996721309712 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^82 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(60) 6099996721309712 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^7 6099996721309712 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^84 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(62) 6099996721309712 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^9 6099996721309712 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^86 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(64) 6099996721309712 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^11 6099996721309712 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^88 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(66) 6099996721309712 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^13 6099996721309712 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^90 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(68) 6099996721309712 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^15 6099996721309712 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^92 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(70) 6099996721309712 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^17 6099996721309712 a004 Fibonacci(38)*Lucas(71)/(1/2+sqrt(5)/2)^94 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(72) 6099996721309712 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^19 6099996721309712 a004 Fibonacci(38)*Lucas(73)/(1/2+sqrt(5)/2)^96 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(74) 6099996721309712 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^21 6099996721309712 a004 Fibonacci(38)*Lucas(75)/(1/2+sqrt(5)/2)^98 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(76) 6099996721309712 a004 Fibonacci(38)*Lucas(77)/(1/2+sqrt(5)/2)^100 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(78) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(80) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(82) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(84) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(86) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(88) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(90) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(92) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^71/Lucas(94) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^73/Lucas(96) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^75/Lucas(98) 6099996721309712 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^23 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^76/Lucas(99) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^77/Lucas(100) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^74/Lucas(97) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^72/Lucas(95) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(93) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(91) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(89) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(87) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(85) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(83) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(81) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(79) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(77) 6099996721309712 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^25 6099996721309712 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^27 6099996721309712 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^29 6099996721309712 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^31 6099996721309712 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^33 6099996721309712 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^35 6099996721309712 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^37 6099996721309712 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^39 6099996721309712 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^41 6099996721309712 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^43 6099996721309712 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^47 6099996721309712 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^45 6099996721309712 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^46 6099996721309712 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^44 6099996721309712 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^42 6099996721309712 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^40 6099996721309712 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^38 6099996721309712 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^36 6099996721309712 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^34 6099996721309712 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^32 6099996721309712 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^30 6099996721309712 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^28 6099996721309712 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^26 6099996721309712 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^24 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(75) 6099996721309712 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^22 6099996721309712 a004 Fibonacci(38)*Lucas(74)/(1/2+sqrt(5)/2)^97 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(73) 6099996721309712 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^20 6099996721309712 a004 Fibonacci(38)*Lucas(72)/(1/2+sqrt(5)/2)^95 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(71) 6099996721309712 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^18 6099996721309712 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^93 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(69) 6099996721309712 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^16 6099996721309712 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^91 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(67) 6099996721309712 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^14 6099996721309712 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^89 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(65) 6099996721309712 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^12 6099996721309712 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^87 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(63) 6099996721309712 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^10 6099996721309712 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^85 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(61) 6099996721309712 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^8 6099996721309712 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^83 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(59) 6099996721309712 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^6 6099996721309712 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^81 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(57) 6099996721309712 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^4 6099996721309712 a001 39088169/1322157322203*505019158607^(5/8) 6099996721309712 a001 39088169/2139295485799*505019158607^(9/14) 6099996721309712 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^79 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(55) 6099996721309712 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^2 6099996721309712 a001 39088169/312119004989*23725150497407^(1/2) 6099996721309712 a001 39088169/505019158607*192900153618^(11/18) 6099996721309712 a001 39088169/312119004989*505019158607^(4/7) 6099996721309712 a001 39088169/2139295485799*192900153618^(2/3) 6099996721309712 a001 39088169/9062201101803*192900153618^(13/18) 6099996721309712 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^77 6099996721309712 a001 39088169/119218851371*312119004989^(6/11) 6099996721309712 a001 39088169/119218851371*14662949395604^(10/21) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(53) 6099996721309712 a006 5^(1/2)*Fibonacci(53)/Lucas(38)/sqrt(5) 6099996721309712 a001 39088169/119218851371*192900153618^(5/9) 6099996721309712 a001 39088169/312119004989*73681302247^(8/13) 6099996721309712 a001 39088169/2139295485799*73681302247^(9/13) 6099996721309712 a001 39088169/9062201101803*73681302247^(3/4) 6099996721309712 a001 39088169/14662949395604*73681302247^(10/13) 6099996721309712 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^75 6099996721309712 a001 39088169/45537549124*14662949395604^(4/9) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(51) 6099996721309712 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(38) 6099996721309712 a001 39088169/45537549124*73681302247^(7/13) 6099996721309712 a001 39088169/119218851371*28143753123^(3/5) 6099996721309712 a001 20365011074/87403803*10749957122^(1/24) 6099996721309712 a001 39088169/1322157322203*28143753123^(7/10) 6099996721309712 a001 39088169/14662949395604*28143753123^(4/5) 6099996721309712 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^73 6099996721309712 a001 2971215073/87403803*2537720636^(2/15) 6099996721309712 a001 20365011074/87403803*4106118243^(1/23) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(49) 6099996721309712 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(38) 6099996721309712 a001 7778742049/87403803*23725150497407^(1/16) 6099996721309712 a001 7778742049/87403803*73681302247^(1/13) 6099996721309712 a001 39088169/17393796001*73681302247^(1/2) 6099996721309712 a001 39088169/28143753123*10749957122^(9/16) 6099996721309712 a001 7778742049/87403803*10749957122^(1/12) 6099996721309712 a001 39088169/119218851371*10749957122^(5/8) 6099996721309712 a001 39088169/45537549124*10749957122^(7/12) 6099996721309712 a001 39088169/312119004989*10749957122^(2/3) 6099996721309712 a001 39088169/505019158607*10749957122^(11/16) 6099996721309712 a001 4181/87403804*10749957122^(17/24) 6099996721309712 a001 39088169/2139295485799*10749957122^(3/4) 6099996721309712 a001 39088169/5600748293801*10749957122^(19/24) 6099996721309712 a001 39088169/9062201101803*10749957122^(13/16) 6099996721309712 a001 39088169/14662949395604*10749957122^(5/6) 6099996721309712 a001 39088169/17393796001*10749957122^(13/24) 6099996721309712 a001 7778742049/87403803*4106118243^(2/23) 6099996721309712 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^71 6099996721309712 a001 20365011074/87403803*1568397607^(1/22) 6099996721309712 a001 39088169/6643838879*45537549124^(8/17) 6099996721309712 a001 2971215073/87403803*45537549124^(2/17) 6099996721309712 a001 39088169/6643838879*14662949395604^(8/21) 6099996721309712 a001 2971215073/87403803*14662949395604^(2/21) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(47) 6099996721309712 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(38) 6099996721309712 a001 39088169/6643838879*192900153618^(4/9) 6099996721309712 a001 39088169/6643838879*73681302247^(6/13) 6099996721309712 a001 2971215073/87403803*10749957122^(1/8) 6099996721309712 a001 39088169/6643838879*10749957122^(1/2) 6099996721309712 a001 2971215073/87403803*4106118243^(3/23) 6099996721309712 a001 39088169/45537549124*4106118243^(14/23) 6099996721309712 a001 39088169/17393796001*4106118243^(13/23) 6099996721309712 a001 39088169/119218851371*4106118243^(15/23) 6099996721309712 a001 7778742049/87403803*1568397607^(1/11) 6099996721309712 a001 39088169/312119004989*4106118243^(16/23) 6099996721309712 a001 4181/87403804*4106118243^(17/23) 6099996721309712 a001 39088169/2139295485799*4106118243^(18/23) 6099996721309712 a001 39088169/5600748293801*4106118243^(19/23) 6099996721309712 a001 39088169/14662949395604*4106118243^(20/23) 6099996721309712 a001 39088169/6643838879*4106118243^(12/23) 6099996721309712 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^69 6099996721309712 a001 2971215073/87403803*1568397607^(3/22) 6099996721309712 a001 20365011074/87403803*599074578^(1/21) 6099996721309712 a001 39088169/2537720636*312119004989^(2/5) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(45) 6099996721309712 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(38) 6099996721309712 a001 1134903170/87403803*23725150497407^(1/8) 6099996721309712 a001 1134903170/87403803*505019158607^(1/7) 6099996721309712 a001 1134903170/87403803*73681302247^(2/13) 6099996721309712 a001 1134903170/87403803*10749957122^(1/6) 6099996721309712 a001 39088169/2537720636*10749957122^(11/24) 6099996721309712 a001 1134903170/87403803*4106118243^(4/23) 6099996721309712 a001 39088169/2537720636*4106118243^(11/23) 6099996721309712 a001 233802911/29134601*599074578^(3/14) 6099996721309712 a001 12586269025/87403803*599074578^(1/14) 6099996721309712 a001 1134903170/87403803*1568397607^(2/11) 6099996721309712 a001 39088169/17393796001*1568397607^(13/22) 6099996721309712 a001 39088169/6643838879*1568397607^(6/11) 6099996721309712 a001 39088169/45537549124*1568397607^(7/11) 6099996721309712 a001 7778742049/87403803*599074578^(2/21) 6099996721309712 a001 39088169/119218851371*1568397607^(15/22) 6099996721309712 a001 39088169/312119004989*1568397607^(8/11) 6099996721309712 a001 39088169/505019158607*1568397607^(3/4) 6099996721309712 a001 4181/87403804*1568397607^(17/22) 6099996721309712 a001 39088169/2139295485799*1568397607^(9/11) 6099996721309712 a001 39088169/5600748293801*1568397607^(19/22) 6099996721309712 a001 39088169/2537720636*1568397607^(1/2) 6099996721309712 a001 39088169/14662949395604*1568397607^(10/11) 6099996721309712 a001 1836311903/87403803*599074578^(1/6) 6099996721309712 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^67 6099996721309712 a001 2971215073/87403803*599074578^(1/7) 6099996721309712 a001 1134903170/87403803*599074578^(4/21) 6099996721309712 a001 20365011074/87403803*228826127^(1/20) 6099996721309712 a001 39088169/1568397607*599074578^(1/2) 6099996721309712 a001 39088169/969323029*2537720636^(4/9) 6099996721309712 a001 433494437/87403803*2537720636^(2/9) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(43) 6099996721309712 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(38) 6099996721309712 a001 39088169/969323029*23725150497407^(5/16) 6099996721309712 a001 39088169/969323029*505019158607^(5/14) 6099996721309712 a001 39088169/969323029*73681302247^(5/13) 6099996721309712 a001 433494437/87403803*28143753123^(1/5) 6099996721309712 a001 39088169/969323029*28143753123^(2/5) 6099996721309712 a001 433494437/87403803*10749957122^(5/24) 6099996721309712 a001 39088169/969323029*10749957122^(5/12) 6099996721309712 a001 433494437/87403803*4106118243^(5/23) 6099996721309712 a001 39088169/969323029*4106118243^(10/23) 6099996721309712 a001 433494437/87403803*1568397607^(5/22) 6099996721309712 a001 39088169/969323029*1568397607^(5/11) 6099996721309712 a001 39088169/2537720636*599074578^(11/21) 6099996721309712 a001 39088169/6643838879*599074578^(4/7) 6099996721309712 a001 433494437/87403803*599074578^(5/21) 6099996721309712 a001 39088169/17393796001*599074578^(13/21) 6099996721309712 a001 39088169/28143753123*599074578^(9/14) 6099996721309712 a001 39088169/45537549124*599074578^(2/3) 6099996721309712 a001 7778742049/87403803*228826127^(1/10) 6099996721309712 a001 39088169/119218851371*599074578^(5/7) 6099996721309712 a001 39088169/312119004989*599074578^(16/21) 6099996721309712 a001 39088169/505019158607*599074578^(11/14) 6099996721309712 a001 4181/87403804*599074578^(17/21) 6099996721309712 a001 39088169/1322157322203*599074578^(5/6) 6099996721309712 a001 1602508992/29134601*228826127^(1/8) 6099996721309712 a001 39088169/2139295485799*599074578^(6/7) 6099996721309712 a001 39088169/969323029*599074578^(10/21) 6099996721309712 a001 39088169/5600748293801*599074578^(19/21) 6099996721309712 a001 39088169/9062201101803*599074578^(13/14) 6099996721309712 a001 39088169/14662949395604*599074578^(20/21) 6099996721309712 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^65 6099996721309712 a001 2971215073/87403803*228826127^(3/20) 6099996721309712 a001 1134903170/54018521*20633239^(1/5) 6099996721309712 a001 433494437/87403803*228826127^(1/4) 6099996721309712 a001 20365011074/87403803*87403803^(1/19) 6099996721309712 a001 39088169/370248451*2537720636^(2/5) 6099996721309712 a001 165580141/87403803*2537720636^(4/15) 6099996721309712 a001 39088169/370248451*45537549124^(6/17) 6099996721309712 a001 165580141/87403803*45537549124^(4/17) 6099996721309712 a001 165580141/87403803*817138163596^(4/19) 6099996721309712 a001 39088169/370248451*14662949395604^(2/7) 6099996721309712 a001 165580141/87403803*14662949395604^(4/21) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(41) 6099996721309712 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(38) 6099996721309712 a001 6472224534451829/10610209857723 6099996721309712 a001 165580141/87403803*192900153618^(2/9) 6099996721309712 a001 165580141/87403803*73681302247^(3/13) 6099996721309712 a001 165580141/87403803*10749957122^(1/4) 6099996721309712 a001 39088169/370248451*10749957122^(3/8) 6099996721309712 a001 165580141/87403803*4106118243^(6/23) 6099996721309712 a001 39088169/370248451*4106118243^(9/23) 6099996721309712 a001 165580141/87403803*1568397607^(3/11) 6099996721309712 a001 39088169/370248451*1568397607^(9/22) 6099996721309712 a001 165580141/87403803*599074578^(2/7) 6099996721309712 a001 39088169/370248451*599074578^(3/7) 6099996721309712 a001 39088169/969323029*228826127^(1/2) 6099996721309712 a001 39088169/2537720636*228826127^(11/20) 6099996721309712 a001 39088169/6643838879*228826127^(3/5) 6099996721309712 a001 39088169/10749957122*228826127^(5/8) 6099996721309712 a001 39088169/17393796001*228826127^(13/20) 6099996721309712 a001 165580141/87403803*228826127^(3/10) 6099996721309712 a001 39088169/45537549124*228826127^(7/10) 6099996721309712 a001 7778742049/87403803*87403803^(2/19) 6099996721309712 a001 39088169/119218851371*228826127^(3/4) 6099996721309712 a001 39088169/312119004989*228826127^(4/5) 6099996721309712 a001 39088169/370248451*228826127^(9/20) 6099996721309712 a001 4181/87403804*228826127^(17/20) 6099996721309712 a001 39088169/1322157322203*228826127^(7/8) 6099996721309712 a001 39088169/2139295485799*228826127^(9/10) 6099996721309712 a001 39088169/5600748293801*228826127^(19/20) 6099996721309712 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^63 6099996721309712 a001 2971215073/87403803*87403803^(3/19) 6099996721309712 a001 1134903170/87403803*87403803^(4/19) 6099996721309712 a001 14930352/119218851371*33385282^(8/9) 6099996721309712 a001 433494437/87403803*87403803^(5/19) 6099996721309712 a001 165580141/87403803*87403803^(6/19) 6099996721309712 a001 20365011074/87403803*33385282^(1/18) 6099996721309712 a001 63245986/87403803*17393796001^(2/7) 6099996721309712 a001 63245986/87403803*14662949395604^(2/9) 6099996721309712 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(39) 6099996721309712 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(38) 6099996721309712 a001 39088169/141422324*23725150497407^(1/4) 6099996721309712 a001 2472169789339634/4052739537881 6099996721309712 a001 39088169/141422324*73681302247^(4/13) 6099996721309712 a001 63245986/87403803*10749957122^(7/24) 6099996721309712 a001 39088169/141422324*10749957122^(1/3) 6099996721309712 a001 63245986/87403803*4106118243^(7/23) 6099996721309712 a001 39088169/141422324*4106118243^(8/23) 6099996721309712 a001 63245986/87403803*1568397607^(7/22) 6099996721309712 a001 39088169/141422324*1568397607^(4/11) 6099996721309712 a001 63245986/87403803*599074578^(1/3) 6099996721309712 a001 39088169/141422324*599074578^(8/21) 6099996721309712 a001 2584/33385281*33385282^(11/12) 6099996721309712 a001 63245986/87403803*228826127^(7/20) 6099996721309712 a001 39088169/141422324*228826127^(2/5) 6099996721309712 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^64 6099996721309712 a001 39088169/599074578*87403803^(1/2) 6099996721309712 a001 102334155/5600748293801*141422324^(12/13) 6099996721309712 a001 39088169/370248451*87403803^(9/19) 6099996721309712 a001 34111385/440719107401*141422324^(11/13) 6099996721309712 a001 39088169/969323029*87403803^(10/19) 6099996721309712 a001 9303105/28374454999*141422324^(10/13) 6099996721309712 a001 102334155/228826127*141422324^(5/13) 6099996721309712 a001 12586269025/87403803*33385282^(1/12) 6099996721309712 a001 39088169/2537720636*87403803^(11/19) 6099996721309712 a001 14619165/10525900321*141422324^(9/13) 6099996721309712 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^66 6099996721309712 a001 102334155/45537549124*141422324^(2/3) 6099996721309712 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^68 6099996721309712 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^70 6099996721309712 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^72 6099996721309712 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^74 6099996721309712 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^76 6099996721309712 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^78 6099996721309712 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^80 6099996721309712 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^82 6099996721309712 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^84 6099996721309712 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^86 6099996721309712 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^88 6099996721309712 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^90 6099996721309712 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^92 6099996721309712 a004 Fibonacci(70)*Lucas(39)/(1/2+sqrt(5)/2)^94 6099996721309712 a004 Fibonacci(72)*Lucas(39)/(1/2+sqrt(5)/2)^96 6099996721309712 a004 Fibonacci(74)*Lucas(39)/(1/2+sqrt(5)/2)^98 6099996721309712 a004 Fibonacci(76)*Lucas(39)/(1/2+sqrt(5)/2)^100 6099996721309712 a001 1/31622993*(1/2+1/2*5^(1/2))^54 6099996721309712 a004 Fibonacci(75)*Lucas(39)/(1/2+sqrt(5)/2)^99 6099996721309712 a004 Fibonacci(73)*Lucas(39)/(1/2+sqrt(5)/2)^97 6099996721309712 a004 Fibonacci(71)*Lucas(39)/(1/2+sqrt(5)/2)^95 6099996721309712 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^93 6099996721309712 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^91 6099996721309712 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^89 6099996721309712 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^87 6099996721309712 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^85 6099996721309712 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^83 6099996721309712 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^81 6099996721309712 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^79 6099996721309712 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^77 6099996721309712 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^75 6099996721309712 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^73 6099996721309712 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^71 6099996721309712 a001 102334155/17393796001*141422324^(8/13) 6099996721309712 a001 14930352/312119004989*33385282^(17/18) 6099996721309712 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^69 6099996721309712 a001 10946/599074579*141422324^(12/13) 6099996721309712 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^67 6099996721309712 a001 39088169/6643838879*87403803^(12/19) 6099996721309712 a001 34111385/1368706081*141422324^(7/13) 6099996721309712 a001 133957148/1730726404001*141422324^(11/13) 6099996721309712 a001 433494437/23725150497407*141422324^(12/13) 6099996721309712 a001 233802911/3020733700601*141422324^(11/13) 6099996721309712 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^65 6099996721309712 a001 1836311903/23725150497407*141422324^(11/13) 6099996721309712 a001 567451585/7331474697802*141422324^(11/13) 6099996721309712 a001 39088169/17393796001*87403803^(13/19) 6099996721309712 a001 66978574/204284540899*141422324^(10/13) 6099996721309712 a001 433494437/5600748293801*141422324^(11/13) 6099996721309712 a001 102334155/969323029*141422324^(6/13) 6099996721309712 a001 701408733/2139295485799*141422324^(10/13) 6099996721309712 a001 165580141/9062201101803*141422324^(12/13) 6099996721309712 a001 267914296/228826127*141422324^(1/3) 6099996721309712 a001 1836311903/5600748293801*141422324^(10/13) 6099996721309712 a001 1201881744/3665737348901*141422324^(10/13) 6099996721309712 a001 7778742049/23725150497407*141422324^(10/13) 6099996721309712 a001 2971215073/9062201101803*141422324^(10/13) 6099996721309712 a001 567451585/1730726404001*141422324^(10/13) 6099996721309712 a001 102334155/228826127*2537720636^(1/3) 6099996721309712 a001 102334155/228826127*45537549124^(5/17) 6099996721309712 a001 102334155/228826127*312119004989^(3/11) 6099996721309712 a001 102334155/228826127*14662949395604^(5/21) 6099996721309712 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(40) 6099996721309712 a001 102334155/228826127*192900153618^(5/18) 6099996721309712 a001 102334155/228826127*28143753123^(3/10) 6099996721309712 a001 102334155/228826127*10749957122^(5/16) 6099996721309712 a001 133957148/96450076809*141422324^(9/13) 6099996721309712 a001 433494437/1322157322203*141422324^(10/13) 6099996721309712 a001 102334155/228826127*599074578^(5/14) 6099996721309712 a001 267914296/119218851371*141422324^(2/3) 6099996721309712 a001 701408733/505019158607*141422324^(9/13) 6099996721309712 a001 165580141/2139295485799*141422324^(11/13) 6099996721309712 a001 1836311903/1322157322203*141422324^(9/13) 6099996721309712 a001 14930208/10749853441*141422324^(9/13) 6099996721309712 a001 12586269025/9062201101803*141422324^(9/13) 6099996721309712 a001 32951280099/23725150497407*141422324^(9/13) 6099996721309712 a001 10182505537/7331474697802*141422324^(9/13) 6099996721309712 a001 7778742049/5600748293801*141422324^(9/13) 6099996721309712 a001 2971215073/2139295485799*141422324^(9/13) 6099996721309712 a001 567451585/408569081798*141422324^(9/13) 6099996721309712 a001 39088169/45537549124*87403803^(14/19) 6099996721309712 a001 3524667/1568437211*141422324^(2/3) 6099996721309712 a001 66978574/11384387281*141422324^(8/13) 6099996721309712 a001 433494437/312119004989*141422324^(9/13) 6099996721309712 a001 433494437/228826127*141422324^(4/13) 6099996721309712 a001 1836311903/817138163596*141422324^(2/3) 6099996721309712 a001 4807526976/2139295485799*141422324^(2/3) 6099996721309712 a001 12586269025/5600748293801*141422324^(2/3) 6099996721309712 a001 32951280099/14662949395604*141422324^(2/3) 6099996721309712 a001 53316291173/23725150497407*141422324^(2/3) 6099996721309712 a001 20365011074/9062201101803*141422324^(2/3) 6099996721309712 a001 7778742049/3461452808002*141422324^(2/3) 6099996721309712 a001 2971215073/1322157322203*141422324^(2/3) 6099996721309712 a001 1134903170/505019158607*141422324^(2/3) 6099996721309712 a001 63245986/87403803*87403803^(7/19) 6099996721309712 a001 433494437/192900153618*141422324^(2/3) 6099996721309712 a001 7778742049/87403803*33385282^(1/9) 6099996721309712 a001 701408733/119218851371*141422324^(8/13) 6099996721309712 a001 165580141/505019158607*141422324^(10/13) 6099996721309712 a001 102334155/228826127*228826127^(3/8) 6099996721309712 a001 1836311903/312119004989*141422324^(8/13) 6099996721309712 a001 1201881744/204284540899*141422324^(8/13) 6099996721309712 a001 12586269025/2139295485799*141422324^(8/13) 6099996721309712 a001 32951280099/5600748293801*141422324^(8/13) 6099996721309712 a001 1135099622/192933544679*141422324^(8/13) 6099996721309712 a001 139583862445/23725150497407*141422324^(8/13) 6099996721309712 a001 53316291173/9062201101803*141422324^(8/13) 6099996721309712 a001 10182505537/1730726404001*141422324^(8/13) 6099996721309712 a001 7778742049/1322157322203*141422324^(8/13) 6099996721309712 a001 2971215073/505019158607*141422324^(8/13) 6099996721309712 a001 1836311903/228826127*141422324^(3/13) 6099996721309712 a001 567451585/96450076809*141422324^(8/13) 6099996721309712 a001 133957148/5374978561*141422324^(7/13) 6099996721309712 a001 433494437/73681302247*141422324^(8/13) 6099996721309712 a001 39088169/119218851371*87403803^(15/19) 6099996721309712 a001 233802911/9381251041*141422324^(7/13) 6099996721309712 a001 165580141/119218851371*141422324^(9/13) 6099996721309712 a001 1836311903/73681302247*141422324^(7/13) 6099996721309712 a001 267084832/10716675201*141422324^(7/13) 6099996721309712 a001 12586269025/505019158607*141422324^(7/13) 6099996721309712 a001 10983760033/440719107401*141422324^(7/13) 6099996721309712 a001 43133785636/1730726404001*141422324^(7/13) 6099996721309712 a001 75283811239/3020733700601*141422324^(7/13) 6099996721309712 a001 182717648081/7331474697802*141422324^(7/13) 6099996721309712 a001 139583862445/5600748293801*141422324^(7/13) 6099996721309712 a001 53316291173/2139295485799*141422324^(7/13) 6099996721309712 a001 10182505537/408569081798*141422324^(7/13) 6099996721309712 a001 7778742049/312119004989*141422324^(7/13) 6099996721309712 a001 2971215073/119218851371*141422324^(7/13) 6099996721309712 a001 7778742049/228826127*141422324^(2/13) 6099996721309712 a001 567451585/22768774562*141422324^(7/13) 6099996721309712 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^66 6099996721309712 a001 165580141/73681302247*141422324^(2/3) 6099996721309712 a001 433494437/17393796001*141422324^(7/13) 6099996721309712 a001 39088169/141422324*87403803^(8/19) 6099996721309712 a001 66978574/634430159*141422324^(6/13) 6099996721309712 a001 133957148/299537289*141422324^(5/13) 6099996721309713 a001 165580141/28143753123*141422324^(8/13) 6099996721309713 a001 701408733/6643838879*141422324^(6/13) 6099996721309713 a001 1836311903/17393796001*141422324^(6/13) 6099996721309713 a001 1201881744/11384387281*141422324^(6/13) 6099996721309713 a001 12586269025/119218851371*141422324^(6/13) 6099996721309713 a001 32951280099/312119004989*141422324^(6/13) 6099996721309713 a001 21566892818/204284540899*141422324^(6/13) 6099996721309713 a001 225851433717/2139295485799*141422324^(6/13) 6099996721309713 a001 182717648081/1730726404001*141422324^(6/13) 6099996721309713 a001 139583862445/1322157322203*141422324^(6/13) 6099996721309713 a001 53316291173/505019158607*141422324^(6/13) 6099996721309713 a001 10182505537/96450076809*141422324^(6/13) 6099996721309713 a001 7778742049/73681302247*141422324^(6/13) 6099996721309713 a001 2971215073/28143753123*141422324^(6/13) 6099996721309713 a001 32951280099/228826127*141422324^(1/13) 6099996721309713 a001 567451585/5374978561*141422324^(6/13) 6099996721309713 a001 433494437/4106118243*141422324^(6/13) 6099996721309713 a001 34111385/199691526*45537549124^(1/3) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(42) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(40) 6099996721309713 a001 267914296/228826127*73681302247^(1/4) 6099996721309713 a001 39088169/312119004989*87403803^(16/19) 6099996721309713 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^68 6099996721309713 a001 701408733/1568397607*141422324^(5/13) 6099996721309713 a001 233802911/199691526*141422324^(1/3) 6099996721309713 a001 165580141/6643838879*141422324^(7/13) 6099996721309713 a001 14619165/224056801*817138163596^(1/3) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(44) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(40) 6099996721309713 a001 701408733/228826127*1568397607^(1/4) 6099996721309713 a001 1836311903/4106118243*141422324^(5/13) 6099996721309713 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 2403763488/5374978561*141422324^(5/13) 6099996721309713 a001 12586269025/28143753123*141422324^(5/13) 6099996721309713 a001 102334155/23725150497407*2537720636^(13/15) 6099996721309713 a001 32951280099/73681302247*141422324^(5/13) 6099996721309713 a001 43133785636/96450076809*141422324^(5/13) 6099996721309713 a001 225851433717/505019158607*141422324^(5/13) 6099996721309713 a001 591286729879/1322157322203*141422324^(5/13) 6099996721309713 a001 10610209857723/23725150497407*141422324^(5/13) 6099996721309713 a001 182717648081/408569081798*141422324^(5/13) 6099996721309713 a001 139583862445/312119004989*141422324^(5/13) 6099996721309713 a001 53316291173/119218851371*141422324^(5/13) 6099996721309713 a001 34111385/1368706081*2537720636^(7/15) 6099996721309713 a001 10182505537/22768774562*141422324^(5/13) 6099996721309713 a001 7778742049/17393796001*141422324^(5/13) 6099996721309713 a001 102334155/5600748293801*2537720636^(4/5) 6099996721309713 a001 6765/228826126*2537720636^(7/9) 6099996721309713 a001 34111385/440719107401*2537720636^(11/15) 6099996721309713 a001 9303105/28374454999*2537720636^(2/3) 6099996721309713 a001 14619165/10525900321*2537720636^(3/5) 6099996721309713 a001 1836311903/228826127*2537720636^(1/5) 6099996721309713 a001 831985/228811001*2537720636^(5/9) 6099996721309713 a001 2971215073/6643838879*141422324^(5/13) 6099996721309713 a001 102334155/17393796001*2537720636^(8/15) 6099996721309713 a001 34111385/1368706081*17393796001^(3/7) 6099996721309713 a001 34111385/1368706081*45537549124^(7/17) 6099996721309713 a001 1836311903/228826127*45537549124^(3/17) 6099996721309713 a001 1836311903/228826127*817138163596^(3/19) 6099996721309713 a001 1836311903/228826127*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(40) 6099996721309713 a001 1836311903/228826127*192900153618^(1/6) 6099996721309713 a001 34111385/1368706081*192900153618^(7/18) 6099996721309713 a001 1836311903/228826127*10749957122^(3/16) 6099996721309713 a001 34111385/1368706081*10749957122^(7/16) 6099996721309713 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 12586269025/228826127*2537720636^(1/9) 6099996721309713 a001 7778742049/228826127*2537720636^(2/15) 6099996721309713 a001 32951280099/228826127*2537720636^(1/15) 6099996721309713 a001 102287808/4868641*17393796001^(1/7) 6099996721309713 a001 102287808/4868641*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(40) 6099996721309713 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 6765/228826126*17393796001^(5/7) 6099996721309713 a001 102334155/119218851371*17393796001^(4/7) 6099996721309713 a001 831985/228811001*312119004989^(5/11) 6099996721309713 a001 12586269025/228826127*312119004989^(1/11) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(40) 6099996721309713 a001 831985/228811001*3461452808002^(5/12) 6099996721309713 a001 12586269025/228826127*28143753123^(1/10) 6099996721309713 a001 831985/228811001*28143753123^(1/2) 6099996721309713 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 14619165/10525900321*45537549124^(9/17) 6099996721309713 a001 102334155/23725150497407*45537549124^(13/17) 6099996721309713 a001 102334155/5600748293801*45537549124^(12/17) 6099996721309713 a001 102334155/2139295485799*45537549124^(2/3) 6099996721309713 a001 34111385/440719107401*45537549124^(11/17) 6099996721309713 a001 9303105/28374454999*45537549124^(10/17) 6099996721309713 a001 32951280099/228826127*45537549124^(1/17) 6099996721309713 a001 14619165/10525900321*817138163596^(9/19) 6099996721309713 a001 14619165/10525900321*14662949395604^(3/7) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(40) 6099996721309713 a001 32951280099/228826127*192900153618^(1/18) 6099996721309713 a001 14619165/10525900321*192900153618^(1/2) 6099996721309713 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(40) 6099996721309713 a001 34111385/64300051206*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(56) 6099996721309713 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2) 6099996721309713 a001 102334155/505019158607*9062201101803^(1/2) 6099996721309713 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 102334155/14662949395604*817138163596^(2/3) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(58) 6099996721309713 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(60) 6099996721309713 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(40)*Lucas(69)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(40)*Lucas(71)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(40)*Lucas(73)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(40)*Lucas(75)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(80) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(82) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(84) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(86) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(88) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(90) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(92) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^69/Lucas(94) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^71/Lucas(96) 6099996721309713 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^73/Lucas(98) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^75/Lucas(100) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^74/Lucas(99) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^72/Lucas(97) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^70/Lucas(95) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(93) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(91) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(89) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(87) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(85) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(83) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(81) 6099996721309713 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^43 6099996721309713 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^45 6099996721309713 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^44 6099996721309713 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^42 6099996721309713 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(40)*Lucas(74)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(40)*Lucas(72)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(40)*Lucas(70)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 102334155/5600748293801*14662949395604^(4/7) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(59) 6099996721309713 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(57) 6099996721309713 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 102334155/817138163596*23725150497407^(1/2) 6099996721309713 a001 6765/228826126*505019158607^(5/8) 6099996721309713 a001 102334155/5600748293801*505019158607^(9/14) 6099996721309713 a001 102334155/817138163596*505019158607^(4/7) 6099996721309713 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 9303105/28374454999*312119004989^(6/11) 6099996721309713 a001 9303105/28374454999*14662949395604^(10/21) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(55) 6099996721309713 a006 5^(1/2)*Fibonacci(55)/Lucas(40)/sqrt(5) 6099996721309713 a001 102334155/5600748293801*192900153618^(2/3) 6099996721309713 a001 102334155/23725150497407*192900153618^(13/18) 6099996721309713 a001 9303105/28374454999*192900153618^(5/9) 6099996721309713 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 102334155/119218851371*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(40) 6099996721309713 a001 102334155/119218851371*505019158607^(1/2) 6099996721309713 a001 102334155/817138163596*73681302247^(8/13) 6099996721309713 a001 102334155/5600748293801*73681302247^(9/13) 6099996721309713 a001 102334155/23725150497407*73681302247^(3/4) 6099996721309713 a001 102334155/119218851371*73681302247^(7/13) 6099996721309713 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 32951280099/228826127*10749957122^(1/16) 6099996721309713 a001 53316291173/228826127*10749957122^(1/24) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(40) 6099996721309713 a001 20365011074/228826127*23725150497407^(1/16) 6099996721309713 a001 20365011074/228826127*73681302247^(1/13) 6099996721309713 a001 102334155/45537549124*73681302247^(1/2) 6099996721309713 a001 9303105/28374454999*28143753123^(3/5) 6099996721309713 a001 6765/228826126*28143753123^(7/10) 6099996721309713 a001 20365011074/228826127*10749957122^(1/12) 6099996721309713 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 53316291173/228826127*4106118243^(1/23) 6099996721309713 a001 102334155/17393796001*45537549124^(8/17) 6099996721309713 a001 7778742049/228826127*45537549124^(2/17) 6099996721309713 a001 102334155/17393796001*14662949395604^(8/21) 6099996721309713 a001 7778742049/228826127*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(40) 6099996721309713 a001 102334155/17393796001*192900153618^(4/9) 6099996721309713 a001 102334155/17393796001*73681302247^(6/13) 6099996721309713 a001 7778742049/228826127*10749957122^(1/8) 6099996721309713 a001 14619165/10525900321*10749957122^(9/16) 6099996721309713 a001 102334155/119218851371*10749957122^(7/12) 6099996721309713 a001 102334155/45537549124*10749957122^(13/24) 6099996721309713 a001 9303105/28374454999*10749957122^(5/8) 6099996721309713 a001 20365011074/228826127*4106118243^(2/23) 6099996721309713 a001 102334155/817138163596*10749957122^(2/3) 6099996721309713 a001 34111385/440719107401*10749957122^(11/16) 6099996721309713 a001 102334155/2139295485799*10749957122^(17/24) 6099996721309713 a001 102334155/5600748293801*10749957122^(3/4) 6099996721309713 a001 102334155/14662949395604*10749957122^(19/24) 6099996721309713 a001 102334155/23725150497407*10749957122^(13/16) 6099996721309713 a001 102334155/17393796001*10749957122^(1/2) 6099996721309713 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 7778742049/228826127*4106118243^(3/23) 6099996721309713 a001 53316291173/228826127*1568397607^(1/22) 6099996721309713 a001 102334155/10749957122*4106118243^(1/2) 6099996721309713 a001 102334155/6643838879*312119004989^(2/5) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(40) 6099996721309713 a001 2971215073/228826127*505019158607^(1/7) 6099996721309713 a001 2971215073/228826127*73681302247^(2/13) 6099996721309713 a001 2971215073/228826127*10749957122^(1/6) 6099996721309713 a001 102334155/6643838879*10749957122^(11/24) 6099996721309713 a001 2971215073/228826127*4106118243^(4/23) 6099996721309713 a001 102334155/45537549124*4106118243^(13/23) 6099996721309713 a001 102334155/17393796001*4106118243^(12/23) 6099996721309713 a001 102334155/119218851371*4106118243^(14/23) 6099996721309713 a001 20365011074/228826127*1568397607^(1/11) 6099996721309713 a001 9303105/28374454999*4106118243^(15/23) 6099996721309713 a001 102334155/817138163596*4106118243^(16/23) 6099996721309713 a001 102334155/2139295485799*4106118243^(17/23) 6099996721309713 a001 102334155/5600748293801*4106118243^(18/23) 6099996721309713 a001 102334155/14662949395604*4106118243^(19/23) 6099996721309713 a001 102334155/6643838879*4106118243^(11/23) 6099996721309713 a001 7778742049/228826127*1568397607^(3/22) 6099996721309713 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^71 6099996721309713 a001 9303105/230701876*2537720636^(4/9) 6099996721309713 a001 2971215073/228826127*1568397607^(2/11) 6099996721309713 a001 1134903170/228826127*2537720636^(2/9) 6099996721309713 a001 53316291173/228826127*599074578^(1/21) 6099996721309713 a001 1134903170/228826127*312119004989^(2/11) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(45) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(40) 6099996721309713 a001 9303105/230701876*23725150497407^(5/16) 6099996721309713 a001 9303105/230701876*505019158607^(5/14) 6099996721309713 a001 9303105/230701876*73681302247^(5/13) 6099996721309713 a001 1134903170/228826127*28143753123^(1/5) 6099996721309713 a001 9303105/230701876*28143753123^(2/5) 6099996721309713 a001 1134903170/228826127*10749957122^(5/24) 6099996721309713 a001 9303105/230701876*10749957122^(5/12) 6099996721309713 a001 1134903170/228826127*4106118243^(5/23) 6099996721309713 a001 567451585/1268860318*141422324^(5/13) 6099996721309713 a001 9303105/230701876*4106118243^(10/23) 6099996721309713 a001 32951280099/228826127*599074578^(1/14) 6099996721309713 a001 102334155/17393796001*1568397607^(6/11) 6099996721309713 a001 102334155/6643838879*1568397607^(1/2) 6099996721309713 a001 102334155/45537549124*1568397607^(13/22) 6099996721309713 a001 1134903170/228826127*1568397607^(5/22) 6099996721309713 a001 102334155/119218851371*1568397607^(7/11) 6099996721309713 a001 20365011074/228826127*599074578^(2/21) 6099996721309713 a001 9303105/28374454999*1568397607^(15/22) 6099996721309713 a001 102334155/817138163596*1568397607^(8/11) 6099996721309713 a001 34111385/440719107401*1568397607^(3/4) 6099996721309713 a001 102334155/2139295485799*1568397607^(17/22) 6099996721309713 a001 102334155/5600748293801*1568397607^(9/11) 6099996721309713 a001 9303105/230701876*1568397607^(5/11) 6099996721309713 a001 102334155/14662949395604*1568397607^(19/22) 6099996721309713 a001 7778742049/228826127*599074578^(1/7) 6099996721309713 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^69 6099996721309713 a001 102287808/4868641*599074578^(1/6) 6099996721309713 a001 1836311903/228826127*599074578^(3/14) 6099996721309713 a001 2971215073/228826127*599074578^(4/21) 6099996721309713 a001 1134903170/228826127*599074578^(5/21) 6099996721309713 a001 53316291173/228826127*228826127^(1/20) 6099996721309713 a001 102334155/969323029*2537720636^(2/5) 6099996721309713 a001 433494437/228826127*2537720636^(4/15) 6099996721309713 a001 102334155/969323029*45537549124^(6/17) 6099996721309713 a001 433494437/228826127*45537549124^(4/17) 6099996721309713 a001 433494437/228826127*817138163596^(4/19) 6099996721309713 a001 102334155/969323029*14662949395604^(2/7) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(43) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(40) 6099996721309713 a001 433494437/228826127*192900153618^(2/9) 6099996721309713 a001 102334155/969323029*192900153618^(1/3) 6099996721309713 a001 433494437/228826127*73681302247^(3/13) 6099996721309713 a001 433494437/228826127*10749957122^(1/4) 6099996721309713 a001 102334155/969323029*10749957122^(3/8) 6099996721309713 a001 433494437/228826127*4106118243^(6/23) 6099996721309713 a001 567451585/299537289*141422324^(4/13) 6099996721309713 a001 102334155/969323029*4106118243^(9/23) 6099996721309713 a001 433494437/228826127*1568397607^(3/11) 6099996721309713 a001 102334155/969323029*1568397607^(9/22) 6099996721309713 a001 34111385/1368706081*599074578^(1/2) 6099996721309713 a001 9303105/230701876*599074578^(10/21) 6099996721309713 a001 102334155/6643838879*599074578^(11/21) 6099996721309713 a001 102334155/17393796001*599074578^(4/7) 6099996721309713 a001 102334155/45537549124*599074578^(13/21) 6099996721309713 a001 14619165/10525900321*599074578^(9/14) 6099996721309713 a001 102334155/119218851371*599074578^(2/3) 6099996721309713 a001 433494437/228826127*599074578^(2/7) 6099996721309713 a001 20365011074/228826127*228826127^(1/10) 6099996721309713 a001 1836311903/1568397607*141422324^(1/3) 6099996721309713 a001 9303105/28374454999*599074578^(5/7) 6099996721309713 a001 433494437/969323029*141422324^(5/13) 6099996721309713 a001 102334155/817138163596*599074578^(16/21) 6099996721309713 a001 34111385/440719107401*599074578^(11/14) 6099996721309713 a001 102334155/2139295485799*599074578^(17/21) 6099996721309713 a001 102334155/969323029*599074578^(3/7) 6099996721309713 a001 6765/228826126*599074578^(5/6) 6099996721309713 a001 1602508992/1368706081*141422324^(1/3) 6099996721309713 a001 12586269025/228826127*228826127^(1/8) 6099996721309713 a001 102334155/5600748293801*599074578^(6/7) 6099996721309713 a001 12586269025/10749957122*141422324^(1/3) 6099996721309713 a001 10983760033/9381251041*141422324^(1/3) 6099996721309713 a001 86267571272/73681302247*141422324^(1/3) 6099996721309713 a001 75283811239/64300051206*141422324^(1/3) 6099996721309713 a001 2504730781961/2139295485799*141422324^(1/3) 6099996721309713 a001 365435296162/312119004989*141422324^(1/3) 6099996721309713 a001 139583862445/119218851371*141422324^(1/3) 6099996721309713 a001 53316291173/45537549124*141422324^(1/3) 6099996721309713 a001 20365011074/17393796001*141422324^(1/3) 6099996721309713 a001 7778742049/6643838879*141422324^(1/3) 6099996721309713 a001 102334155/14662949395604*599074578^(19/21) 6099996721309713 a001 102334155/23725150497407*599074578^(13/14) 6099996721309713 a001 2971215073/2537720636*141422324^(1/3) 6099996721309713 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^67 6099996721309713 a001 7778742049/228826127*228826127^(3/20) 6099996721309713 a001 165580141/1568397607*141422324^(6/13) 6099996721309713 a001 2971215073/1568397607*141422324^(4/13) 6099996721309713 a001 1134903170/969323029*141422324^(1/3) 6099996721309713 a001 7778742049/4106118243*141422324^(4/13) 6099996721309713 a001 10182505537/5374978561*141422324^(4/13) 6099996721309713 a001 53316291173/28143753123*141422324^(4/13) 6099996721309713 a001 139583862445/73681302247*141422324^(4/13) 6099996721309713 a001 182717648081/96450076809*141422324^(4/13) 6099996721309713 a001 956722026041/505019158607*141422324^(4/13) 6099996721309713 a001 10610209857723/5600748293801*141422324^(4/13) 6099996721309713 a001 591286729879/312119004989*141422324^(4/13) 6099996721309713 a001 225851433717/119218851371*141422324^(4/13) 6099996721309713 a001 21566892818/11384387281*141422324^(4/13) 6099996721309713 a001 32951280099/17393796001*141422324^(4/13) 6099996721309713 a001 12586269025/6643838879*141422324^(4/13) 6099996721309713 a001 2971215073/228826127*228826127^(1/5) 6099996721309713 a001 1201881744/634430159*141422324^(4/13) 6099996721309713 a001 1836311903/969323029*141422324^(4/13) 6099996721309713 a001 267084832/33281921*141422324^(3/13) 6099996721309713 a001 1134903170/228826127*228826127^(1/4) 6099996721309713 a001 4181/87403804*87403803^(17/19) 6099996721309713 a001 433494437/228826127*228826127^(3/10) 6099996721309713 a001 53316291173/228826127*87403803^(1/19) 6099996721309713 a001 12586269025/1568397607*141422324^(3/13) 6099996721309713 a001 165580141/228826127*17393796001^(2/7) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(41) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(40) 6099996721309713 a001 102334155/370248451*23725150497407^(1/4) 6099996721309713 a001 102334155/370248451*73681302247^(4/13) 6099996721309713 a001 165580141/228826127*10749957122^(7/24) 6099996721309713 a001 102334155/370248451*10749957122^(1/3) 6099996721309713 a001 165580141/228826127*4106118243^(7/23) 6099996721309713 a001 102334155/370248451*4106118243^(8/23) 6099996721309713 a001 165580141/228826127*1568397607^(7/22) 6099996721309713 a001 102334155/370248451*1568397607^(4/11) 6099996721309713 a001 10983760033/1368706081*141422324^(3/13) 6099996721309713 a001 43133785636/5374978561*141422324^(3/13) 6099996721309713 a001 75283811239/9381251041*141422324^(3/13) 6099996721309713 a001 591286729879/73681302247*141422324^(3/13) 6099996721309713 a001 86000486440/10716675201*141422324^(3/13) 6099996721309713 a001 4052739537881/505019158607*141422324^(3/13) 6099996721309713 a001 3536736619241/440719107401*141422324^(3/13) 6099996721309713 a001 3278735159921/408569081798*141422324^(3/13) 6099996721309713 a001 2504730781961/312119004989*141422324^(3/13) 6099996721309713 a001 956722026041/119218851371*141422324^(3/13) 6099996721309713 a001 182717648081/22768774562*141422324^(3/13) 6099996721309713 a001 139583862445/17393796001*141422324^(3/13) 6099996721309713 a001 53316291173/6643838879*141422324^(3/13) 6099996721309713 a001 10182505537/1268860318*141422324^(3/13) 6099996721309713 a001 165580141/228826127*599074578^(1/3) 6099996721309713 a001 102334155/370248451*599074578^(8/21) 6099996721309713 a001 10182505537/299537289*141422324^(2/13) 6099996721309713 a001 7778742049/969323029*141422324^(3/13) 6099996721309713 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^68 6099996721309713 a001 102334155/969323029*228826127^(9/20) 6099996721309713 a001 9303105/230701876*228826127^(1/2) 6099996721309713 a001 102334155/6643838879*228826127^(11/20) 6099996721309713 a001 701408733/370248451*141422324^(4/13) 6099996721309713 a001 433494437/370248451*141422324^(1/3) 6099996721309713 a001 53316291173/1568397607*141422324^(2/13) 6099996721309713 a001 139583862445/4106118243*141422324^(2/13) 6099996721309713 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 182717648081/5374978561*141422324^(2/13) 6099996721309713 a001 956722026041/28143753123*141422324^(2/13) 6099996721309713 a001 2504730781961/73681302247*141422324^(2/13) 6099996721309713 a001 3278735159921/96450076809*141422324^(2/13) 6099996721309713 a001 10610209857723/312119004989*141422324^(2/13) 6099996721309713 a001 4052739537881/119218851371*141422324^(2/13) 6099996721309713 a001 387002188980/11384387281*141422324^(2/13) 6099996721309713 a001 591286729879/17393796001*141422324^(2/13) 6099996721309713 a001 225851433717/6643838879*141422324^(2/13) 6099996721309713 a001 102334155/17393796001*228826127^(3/5) 6099996721309713 a001 1135099622/33391061*141422324^(2/13) 6099996721309713 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^72 6099996721309713 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^74 6099996721309713 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^76 6099996721309713 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(68)*Lucas(41)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(70)*Lucas(41)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(72)*Lucas(41)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(74)*Lucas(41)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 2/165580141*(1/2+1/2*5^(1/2))^56 6099996721309713 a004 Fibonacci(73)*Lucas(41)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(71)*Lucas(41)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(69)*Lucas(41)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^79 6099996721309713 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^77 6099996721309713 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^75 6099996721309713 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 831985/228811001*228826127^(5/8) 6099996721309713 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^71 6099996721309713 a001 39088169/2139295485799*87403803^(18/19) 6099996721309713 a001 102334155/45537549124*228826127^(13/20) 6099996721309713 a001 43133785636/299537289*141422324^(1/13) 6099996721309713 a001 32951280099/969323029*141422324^(2/13) 6099996721309713 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^69 6099996721309713 a001 102334155/119218851371*228826127^(7/10) 6099996721309713 a001 133957148/299537289*2537720636^(1/3) 6099996721309713 a001 133957148/299537289*45537549124^(5/17) 6099996721309713 a001 133957148/299537289*312119004989^(3/11) 6099996721309713 a001 133957148/299537289*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(42) 6099996721309713 a001 133957148/299537289*192900153618^(5/18) 6099996721309713 a001 133957148/299537289*28143753123^(3/10) 6099996721309713 a001 133957148/299537289*10749957122^(5/16) 6099996721309713 a001 20365011074/228826127*87403803^(2/19) 6099996721309713 a001 165580141/228826127*228826127^(7/20) 6099996721309713 a001 9303105/28374454999*228826127^(3/4) 6099996721309713 a001 165580141/370248451*141422324^(5/13) 6099996721309713 a001 133957148/299537289*599074578^(5/14) 6099996721309713 a001 32264490531/224056801*141422324^(1/13) 6099996721309713 a001 2971215073/370248451*141422324^(3/13) 6099996721309713 a001 102334155/370248451*228826127^(2/5) 6099996721309713 a001 591286729879/4106118243*141422324^(1/13) 6099996721309713 a001 774004377960/5374978561*141422324^(1/13) 6099996721309713 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 4052739537881/28143753123*141422324^(1/13) 6099996721309713 a001 1515744265389/10525900321*141422324^(1/13) 6099996721309713 a001 3278735159921/22768774562*141422324^(1/13) 6099996721309713 a001 2504730781961/17393796001*141422324^(1/13) 6099996721309713 a001 956722026041/6643838879*141422324^(1/13) 6099996721309713 a001 102334155/817138163596*228826127^(4/5) 6099996721309713 a001 182717648081/1268860318*141422324^(1/13) 6099996721309713 a001 267914296/1568397607*45537549124^(1/3) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(44) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(42) 6099996721309713 a001 233802911/199691526*73681302247^(1/4) 6099996721309713 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 10946/599074579*2537720636^(4/5) 6099996721309713 a001 267914296/9062201101803*2537720636^(7/9) 6099996721309713 a001 133957148/1730726404001*2537720636^(11/15) 6099996721309713 a001 66978574/204284540899*2537720636^(2/3) 6099996721309713 a001 133957148/96450076809*2537720636^(3/5) 6099996721309713 a001 267914296/73681302247*2537720636^(5/9) 6099996721309713 a001 66978574/11384387281*2537720636^(8/15) 6099996721309713 a001 133957148/5374978561*2537720636^(7/15) 6099996721309713 a001 102334155/2139295485799*228826127^(17/20) 6099996721309713 a001 1836311903/599074578*312119004989^(1/5) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(42) 6099996721309713 a001 267914296/6643838879*2537720636^(4/9) 6099996721309713 a001 267084832/33281921*2537720636^(1/5) 6099996721309713 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 10182505537/299537289*2537720636^(2/15) 6099996721309713 a001 10983760033/199691526*2537720636^(1/9) 6099996721309713 a001 2971215073/599074578*2537720636^(2/9) 6099996721309713 a001 43133785636/299537289*2537720636^(1/15) 6099996721309713 a001 133957148/5374978561*17393796001^(3/7) 6099996721309713 a001 133957148/5374978561*45537549124^(7/17) 6099996721309713 a001 267084832/33281921*45537549124^(3/17) 6099996721309713 a001 133957148/5374978561*14662949395604^(1/3) 6099996721309713 a001 267084832/33281921*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(42) 6099996721309713 a001 267084832/33281921*192900153618^(1/6) 6099996721309713 a001 133957148/5374978561*192900153618^(7/18) 6099996721309713 a001 267084832/33281921*10749957122^(3/16) 6099996721309713 a001 133957148/5374978561*10749957122^(7/16) 6099996721309713 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 267914296/9062201101803*17393796001^(5/7) 6099996721309713 a001 267914296/312119004989*17393796001^(4/7) 6099996721309713 a001 12586269025/599074578*17393796001^(1/7) 6099996721309713 a001 12586269025/599074578*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(42) 6099996721309713 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 10946/599074579*45537549124^(12/17) 6099996721309713 a001 267914296/5600748293801*45537549124^(2/3) 6099996721309713 a001 133957148/1730726404001*45537549124^(11/17) 6099996721309713 a001 133957148/96450076809*45537549124^(9/17) 6099996721309713 a001 66978574/204284540899*45537549124^(10/17) 6099996721309713 a001 267914296/73681302247*312119004989^(5/11) 6099996721309713 a001 10983760033/199691526*312119004989^(1/11) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(42) 6099996721309713 a001 267914296/73681302247*3461452808002^(5/12) 6099996721309713 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 10983760033/199691526*28143753123^(1/10) 6099996721309713 a001 43133785636/299537289*45537549124^(1/17) 6099996721309713 a001 133957148/96450076809*817138163596^(9/19) 6099996721309713 a001 133957148/96450076809*14662949395604^(3/7) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(42) 6099996721309713 a001 43133785636/299537289*192900153618^(1/18) 6099996721309713 a001 133957148/96450076809*192900153618^(1/2) 6099996721309713 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 267914296/9062201101803*312119004989^(7/11) 6099996721309713 a001 133957148/1730726404001*312119004989^(3/5) 6099996721309713 a001 66978574/204284540899*312119004989^(6/11) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(42) 6099996721309713 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(58) 6099996721309713 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 133957148/1730726404001*14662949395604^(11/21) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(60) 6099996721309713 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(42)*Lucas(67)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(42)*Lucas(69)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(42)*Lucas(71)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(42)*Lucas(73)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(84) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(86) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(88) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(90) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(92) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^67/Lucas(94) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^69/Lucas(96) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^71/Lucas(98) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^73/Lucas(100) 6099996721309713 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^72/Lucas(99) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^70/Lucas(97) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^68/Lucas(95) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(93) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(91) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(89) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(87) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(85) 6099996721309713 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^43 6099996721309713 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^42 6099996721309713 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(42)*Lucas(72)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(42)*Lucas(70)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(42)*Lucas(68)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 10946/599074579*14662949395604^(4/7) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(59) 6099996721309713 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(57) 6099996721309713 a006 5^(1/2)*Fibonacci(57)/Lucas(42)/sqrt(5) 6099996721309713 a001 267914296/2139295485799*505019158607^(4/7) 6099996721309713 a001 10946/599074579*505019158607^(9/14) 6099996721309713 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 267914296/312119004989*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(42) 6099996721309713 a001 267914296/312119004989*505019158607^(1/2) 6099996721309713 a001 66978574/204284540899*192900153618^(5/9) 6099996721309713 a001 10946/599074579*192900153618^(2/3) 6099996721309713 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(42) 6099996721309713 a001 53316291173/599074578*23725150497407^(1/16) 6099996721309713 a001 53316291173/599074578*73681302247^(1/13) 6099996721309713 a001 267914296/312119004989*73681302247^(7/13) 6099996721309713 a001 267914296/2139295485799*73681302247^(8/13) 6099996721309713 a001 10946/599074579*73681302247^(9/13) 6099996721309713 a001 267914296/119218851371*73681302247^(1/2) 6099996721309713 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 66978574/11384387281*45537549124^(8/17) 6099996721309713 a001 139583862445/599074578*10749957122^(1/24) 6099996721309713 a001 10182505537/299537289*45537549124^(2/17) 6099996721309713 a001 267914296/73681302247*28143753123^(1/2) 6099996721309713 a001 66978574/11384387281*14662949395604^(8/21) 6099996721309713 a001 10182505537/299537289*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(42) 6099996721309713 a001 66978574/11384387281*192900153618^(4/9) 6099996721309713 a001 43133785636/299537289*10749957122^(1/16) 6099996721309713 a001 66978574/11384387281*73681302247^(6/13) 6099996721309713 a001 66978574/204284540899*28143753123^(3/5) 6099996721309713 a001 53316291173/599074578*10749957122^(1/12) 6099996721309713 a001 267914296/9062201101803*28143753123^(7/10) 6099996721309713 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 10182505537/299537289*10749957122^(1/8) 6099996721309713 a001 139583862445/599074578*4106118243^(1/23) 6099996721309713 a001 9238424/599786069*312119004989^(2/5) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(42) 6099996721309713 a001 7778742049/599074578*23725150497407^(1/8) 6099996721309713 a001 7778742049/599074578*505019158607^(1/7) 6099996721309713 a001 7778742049/599074578*73681302247^(2/13) 6099996721309713 a001 139583862445/969323029*141422324^(1/13) 6099996721309713 a001 7778742049/599074578*10749957122^(1/6) 6099996721309713 a001 267914296/119218851371*10749957122^(13/24) 6099996721309713 a001 66978574/11384387281*10749957122^(1/2) 6099996721309713 a001 133957148/96450076809*10749957122^(9/16) 6099996721309713 a001 267914296/312119004989*10749957122^(7/12) 6099996721309713 a001 53316291173/599074578*4106118243^(2/23) 6099996721309713 a001 66978574/204284540899*10749957122^(5/8) 6099996721309713 a001 267914296/2139295485799*10749957122^(2/3) 6099996721309713 a001 133957148/1730726404001*10749957122^(11/16) 6099996721309713 a001 267914296/5600748293801*10749957122^(17/24) 6099996721309713 a001 10946/599074579*10749957122^(3/4) 6099996721309713 a001 9238424/599786069*10749957122^(11/24) 6099996721309713 a001 10182505537/299537289*4106118243^(3/23) 6099996721309713 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 7778742049/599074578*4106118243^(4/23) 6099996721309713 a001 139583862445/599074578*1568397607^(1/22) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(42) 6099996721309713 a001 267914296/6643838879*23725150497407^(5/16) 6099996721309713 a001 267914296/6643838879*505019158607^(5/14) 6099996721309713 a001 267914296/6643838879*73681302247^(5/13) 6099996721309713 a001 2971215073/599074578*28143753123^(1/5) 6099996721309713 a001 267914296/6643838879*28143753123^(2/5) 6099996721309713 a001 2971215073/599074578*10749957122^(5/24) 6099996721309713 a001 267914296/6643838879*10749957122^(5/12) 6099996721309713 a001 267914296/28143753123*4106118243^(1/2) 6099996721309713 a001 66978574/11384387281*4106118243^(12/23) 6099996721309713 a001 9238424/599786069*4106118243^(11/23) 6099996721309713 a001 267914296/119218851371*4106118243^(13/23) 6099996721309713 a001 2971215073/599074578*4106118243^(5/23) 6099996721309713 a001 267914296/312119004989*4106118243^(14/23) 6099996721309713 a001 53316291173/599074578*1568397607^(1/11) 6099996721309713 a001 66978574/204284540899*4106118243^(15/23) 6099996721309713 a001 267914296/2139295485799*4106118243^(16/23) 6099996721309713 a001 1836311903/599074578*1568397607^(1/4) 6099996721309713 a001 267914296/5600748293801*4106118243^(17/23) 6099996721309713 a001 10946/599074579*4106118243^(18/23) 6099996721309713 a001 267914296/6643838879*4106118243^(10/23) 6099996721309713 a001 10182505537/299537289*1568397607^(3/22) 6099996721309713 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 7778742049/599074578*1568397607^(2/11) 6099996721309713 a001 66978574/634430159*2537720636^(2/5) 6099996721309713 a001 567451585/299537289*2537720636^(4/15) 6099996721309713 a001 2971215073/599074578*1568397607^(5/22) 6099996721309713 a001 139583862445/599074578*599074578^(1/21) 6099996721309713 a001 66978574/634430159*45537549124^(6/17) 6099996721309713 a001 567451585/299537289*45537549124^(4/17) 6099996721309713 a001 567451585/299537289*817138163596^(4/19) 6099996721309713 a001 66978574/634430159*14662949395604^(2/7) 6099996721309713 a001 567451585/299537289*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(45) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(42) 6099996721309713 a001 567451585/299537289*192900153618^(2/9) 6099996721309713 a001 66978574/634430159*192900153618^(1/3) 6099996721309713 a001 567451585/299537289*73681302247^(3/13) 6099996721309713 a001 567451585/299537289*10749957122^(1/4) 6099996721309713 a001 66978574/634430159*10749957122^(3/8) 6099996721309713 a001 567451585/299537289*4106118243^(6/23) 6099996721309713 a001 66978574/634430159*4106118243^(9/23) 6099996721309713 a001 43133785636/299537289*599074578^(1/14) 6099996721309713 a001 9238424/599786069*1568397607^(1/2) 6099996721309713 a001 267914296/6643838879*1568397607^(5/11) 6099996721309713 a001 66978574/11384387281*1568397607^(6/11) 6099996721309713 a001 267914296/119218851371*1568397607^(13/22) 6099996721309713 a001 267914296/312119004989*1568397607^(7/11) 6099996721309713 a001 53316291173/599074578*599074578^(2/21) 6099996721309713 a001 567451585/299537289*1568397607^(3/11) 6099996721309713 a001 66978574/204284540899*1568397607^(15/22) 6099996721309713 a001 267914296/2139295485799*1568397607^(8/11) 6099996721309713 a001 133957148/1730726404001*1568397607^(3/4) 6099996721309713 a001 267914296/5600748293801*1568397607^(17/22) 6099996721309713 a001 66978574/634430159*1568397607^(9/22) 6099996721309713 a001 10946/599074579*1568397607^(9/11) 6099996721309713 a001 10182505537/299537289*599074578^(1/7) 6099996721309713 a001 6765/228826126*228826127^(7/8) 6099996721309713 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^71 6099996721309713 a001 12586269025/599074578*599074578^(1/6) 6099996721309713 a001 7778742049/599074578*599074578^(4/21) 6099996721309713 a001 267084832/33281921*599074578^(3/14) 6099996721309713 a001 2971215073/599074578*599074578^(5/21) 6099996721309713 a001 102334155/5600748293801*228826127^(9/10) 6099996721309713 a001 567451585/299537289*599074578^(2/7) 6099996721309713 a001 139583862445/599074578*228826127^(1/20) 6099996721309713 a001 433494437/599074578*17393796001^(2/7) 6099996721309713 a001 433494437/599074578*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(43) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(42) 6099996721309713 a001 267914296/969323029*23725150497407^(1/4) 6099996721309713 a001 267914296/969323029*73681302247^(4/13) 6099996721309713 a001 433494437/599074578*10749957122^(7/24) 6099996721309713 a001 267914296/969323029*10749957122^(1/3) 6099996721309713 a001 433494437/599074578*4106118243^(7/23) 6099996721309713 a001 267914296/969323029*4106118243^(8/23) 6099996721309713 a001 433494437/599074578*1568397607^(7/22) 6099996721309713 a001 267914296/969323029*1568397607^(4/11) 6099996721309713 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 66978574/634430159*599074578^(3/7) 6099996721309713 a001 267914296/6643838879*599074578^(10/21) 6099996721309713 a001 133957148/5374978561*599074578^(1/2) 6099996721309713 a001 9238424/599786069*599074578^(11/21) 6099996721309713 a001 66978574/11384387281*599074578^(4/7) 6099996721309713 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^74 6099996721309713 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^76 6099996721309713 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(66)*Lucas(43)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(68)*Lucas(43)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(70)*Lucas(43)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(72)*Lucas(43)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 2/433494437*(1/2+1/2*5^(1/2))^58 6099996721309713 a004 Fibonacci(71)*Lucas(43)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(69)*Lucas(43)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(67)*Lucas(43)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 267914296/119218851371*599074578^(13/21) 6099996721309713 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^77 6099996721309713 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 133957148/96450076809*599074578^(9/14) 6099996721309713 a001 102334155/14662949395604*228826127^(19/20) 6099996721309713 a001 267914296/312119004989*599074578^(2/3) 6099996721309713 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 53316291173/599074578*228826127^(1/10) 6099996721309713 a001 701408733/1568397607*2537720636^(1/3) 6099996721309713 a001 701408733/1568397607*45537549124^(5/17) 6099996721309713 a001 701408733/1568397607*312119004989^(3/11) 6099996721309713 a001 701408733/1568397607*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(44) 6099996721309713 a001 701408733/1568397607*192900153618^(5/18) 6099996721309713 a001 701408733/1568397607*28143753123^(3/10) 6099996721309713 a001 701408733/1568397607*10749957122^(5/16) 6099996721309713 a001 66978574/204284540899*599074578^(5/7) 6099996721309713 a001 433494437/599074578*599074578^(1/3) 6099996721309713 a001 267914296/2139295485799*599074578^(16/21) 6099996721309713 a001 267914296/969323029*599074578^(8/21) 6099996721309713 a001 133957148/1730726404001*599074578^(11/14) 6099996721309713 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 267914296/5600748293801*599074578^(17/21) 6099996721309713 a001 701408733/23725150497407*2537720636^(7/9) 6099996721309713 a001 233802911/3020733700601*2537720636^(11/15) 6099996721309713 a001 701408733/2139295485799*2537720636^(2/3) 6099996721309713 a001 701408733/505019158607*2537720636^(3/5) 6099996721309713 a001 233802911/64300051206*2537720636^(5/9) 6099996721309713 a001 701408733/119218851371*2537720636^(8/15) 6099996721309713 a001 233802911/9381251041*2537720636^(7/15) 6099996721309713 a001 701408733/17393796001*2537720636^(4/9) 6099996721309713 a001 233802911/1368706081*45537549124^(1/3) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(44) 6099996721309713 a001 1836311903/1568397607*73681302247^(1/4) 6099996721309713 a001 267914296/9062201101803*599074578^(5/6) 6099996721309713 a001 701408733/6643838879*2537720636^(2/5) 6099996721309713 a001 12586269025/1568397607*2537720636^(1/5) 6099996721309713 a001 7778742049/1568397607*2537720636^(2/9) 6099996721309713 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 53316291173/1568397607*2537720636^(2/15) 6099996721309713 a001 2971215073/1568397607*2537720636^(4/15) 6099996721309713 a001 86267571272/1568397607*2537720636^(1/9) 6099996721309713 a001 32264490531/224056801*2537720636^(1/15) 6099996721309713 a001 686789568/224056801*312119004989^(1/5) 6099996721309713 a001 701408733/10749957122*817138163596^(1/3) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(44) 6099996721309713 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 233802911/9381251041*17393796001^(3/7) 6099996721309713 a001 701408733/23725150497407*17393796001^(5/7) 6099996721309713 a001 701408733/817138163596*17393796001^(4/7) 6099996721309713 a001 233802911/9381251041*45537549124^(7/17) 6099996721309713 a001 12586269025/1568397607*45537549124^(3/17) 6099996721309713 a001 12586269025/1568397607*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(44) 6099996721309713 a001 12586269025/1568397607*192900153618^(1/6) 6099996721309713 a001 233802911/9381251041*192900153618^(7/18) 6099996721309713 a001 32951280099/1568397607*17393796001^(1/7) 6099996721309713 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 701408733/14662949395604*45537549124^(2/3) 6099996721309713 a001 233802911/3020733700601*45537549124^(11/17) 6099996721309713 a001 701408733/2139295485799*45537549124^(10/17) 6099996721309713 a001 701408733/505019158607*45537549124^(9/17) 6099996721309713 a001 32951280099/1568397607*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(44) 6099996721309713 a001 701408733/119218851371*45537549124^(8/17) 6099996721309713 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 32264490531/224056801*45537549124^(1/17) 6099996721309713 a001 233802911/64300051206*312119004989^(5/11) 6099996721309713 a001 86267571272/1568397607*312119004989^(1/11) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(44) 6099996721309713 a001 233802911/64300051206*3461452808002^(5/12) 6099996721309713 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 233802911/3020733700601*312119004989^(3/5) 6099996721309713 a001 701408733/2139295485799*312119004989^(6/11) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(44) 6099996721309713 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 233802911/3020733700601*817138163596^(11/19) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(44) 6099996721309713 a001 233802911/440719107401*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(60) 6099996721309713 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 233802911/3020733700601*14662949395604^(11/21) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(44)*Lucas(65)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(44)*Lucas(67)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(44)*Lucas(69)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(44)*Lucas(71)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(88) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(90) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(92) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^65/Lucas(94) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^67/Lucas(96) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^69/Lucas(98) 6099996721309713 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^70/Lucas(99) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^71/Lucas(100) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^68/Lucas(97) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^66/Lucas(95) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(93) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(91) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(89) 6099996721309713 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(44)*Lucas(70)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(44)*Lucas(68)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(44)*Lucas(66)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 701408733/5600748293801*23725150497407^(1/2) 6099996721309713 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(59) 6099996721309713 a006 5^(1/2)*Fibonacci(59)/Lucas(44)/sqrt(5) 6099996721309713 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(44) 6099996721309713 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 701408733/505019158607*192900153618^(1/2) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(44) 6099996721309713 a001 139583862445/1568397607*23725150497407^(1/16) 6099996721309713 a001 53316291173/1568397607*45537549124^(2/17) 6099996721309713 a001 233802911/3020733700601*192900153618^(11/18) 6099996721309713 a001 139583862445/1568397607*73681302247^(1/13) 6099996721309713 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 701408733/119218851371*14662949395604^(8/21) 6099996721309713 a001 53316291173/1568397607*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(44) 6099996721309713 a001 701408733/119218851371*192900153618^(4/9) 6099996721309713 a001 86267571272/1568397607*28143753123^(1/10) 6099996721309713 a001 3524667/1568437211*73681302247^(1/2) 6099996721309713 a001 701408733/5600748293801*73681302247^(8/13) 6099996721309713 a001 701408733/119218851371*73681302247^(6/13) 6099996721309713 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 12586269025/1568397607*10749957122^(3/16) 6099996721309713 a001 701408733/45537549124*312119004989^(2/5) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(44) 6099996721309713 a001 20365011074/1568397607*23725150497407^(1/8) 6099996721309713 a001 20365011074/1568397607*505019158607^(1/7) 6099996721309713 a001 20365011074/1568397607*73681302247^(2/13) 6099996721309713 a001 32264490531/224056801*10749957122^(1/16) 6099996721309713 a001 233802911/64300051206*28143753123^(1/2) 6099996721309713 a001 139583862445/1568397607*10749957122^(1/12) 6099996721309713 a001 701408733/2139295485799*28143753123^(3/5) 6099996721309713 a001 701408733/23725150497407*28143753123^(7/10) 6099996721309713 a001 53316291173/1568397607*10749957122^(1/8) 6099996721309713 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 20365011074/1568397607*10749957122^(1/6) 6099996721309713 a001 233802911/9381251041*10749957122^(7/16) 6099996721309713 a001 365435296162/1568397607*4106118243^(1/23) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(44) 6099996721309713 a001 701408733/17393796001*23725150497407^(5/16) 6099996721309713 a001 701408733/17393796001*505019158607^(5/14) 6099996721309713 a001 701408733/17393796001*73681302247^(5/13) 6099996721309713 a001 7778742049/1568397607*28143753123^(1/5) 6099996721309713 a001 701408733/17393796001*28143753123^(2/5) 6099996721309713 a001 701408733/119218851371*10749957122^(1/2) 6099996721309713 a001 701408733/45537549124*10749957122^(11/24) 6099996721309713 a001 3524667/1568437211*10749957122^(13/24) 6099996721309713 a001 701408733/505019158607*10749957122^(9/16) 6099996721309713 a001 701408733/817138163596*10749957122^(7/12) 6099996721309713 a001 7778742049/1568397607*10749957122^(5/24) 6099996721309713 a001 139583862445/1568397607*4106118243^(2/23) 6099996721309713 a001 701408733/2139295485799*10749957122^(5/8) 6099996721309713 a001 701408733/5600748293801*10749957122^(2/3) 6099996721309713 a001 233802911/3020733700601*10749957122^(11/16) 6099996721309713 a001 701408733/14662949395604*10749957122^(17/24) 6099996721309713 a001 701408733/17393796001*10749957122^(5/12) 6099996721309713 a001 10983760033/199691526*228826127^(1/8) 6099996721309713 a001 53316291173/1568397607*4106118243^(3/23) 6099996721309713 a001 12586269025/370248451*141422324^(2/13) 6099996721309713 a001 10946/599074579*599074578^(6/7) 6099996721309713 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 20365011074/1568397607*4106118243^(4/23) 6099996721309713 a001 7778742049/1568397607*4106118243^(5/23) 6099996721309713 a001 365435296162/1568397607*1568397607^(1/22) 6099996721309713 a001 701408733/6643838879*45537549124^(6/17) 6099996721309713 a001 2971215073/1568397607*45537549124^(4/17) 6099996721309713 a001 2971215073/1568397607*817138163596^(4/19) 6099996721309713 a001 701408733/6643838879*14662949395604^(2/7) 6099996721309713 a001 2971215073/1568397607*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(44) 6099996721309713 a001 2971215073/1568397607*192900153618^(2/9) 6099996721309713 a001 701408733/6643838879*192900153618^(1/3) 6099996721309713 a001 2971215073/1568397607*73681302247^(3/13) 6099996721309713 a001 2971215073/1568397607*10749957122^(1/4) 6099996721309713 a001 701408733/6643838879*10749957122^(3/8) 6099996721309713 a001 701408733/45537549124*4106118243^(11/23) 6099996721309713 a001 701408733/17393796001*4106118243^(10/23) 6099996721309713 a001 701408733/73681302247*4106118243^(1/2) 6099996721309713 a001 701408733/119218851371*4106118243^(12/23) 6099996721309713 a001 3524667/1568437211*4106118243^(13/23) 6099996721309713 a001 701408733/817138163596*4106118243^(14/23) 6099996721309713 a001 139583862445/1568397607*1568397607^(1/11) 6099996721309713 a001 2971215073/1568397607*4106118243^(6/23) 6099996721309713 a001 701408733/2139295485799*4106118243^(15/23) 6099996721309713 a001 701408733/5600748293801*4106118243^(16/23) 6099996721309713 a001 701408733/14662949395604*4106118243^(17/23) 6099996721309713 a001 701408733/6643838879*4106118243^(9/23) 6099996721309713 a001 53316291173/1568397607*1568397607^(3/22) 6099996721309713 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 20365011074/1568397607*1568397607^(2/11) 6099996721309713 a001 686789568/224056801*1568397607^(1/4) 6099996721309713 a001 7778742049/1568397607*1568397607^(5/22) 6099996721309713 a001 365435296162/1568397607*599074578^(1/21) 6099996721309713 a001 2971215073/1568397607*1568397607^(3/11) 6099996721309713 a001 1134903170/1568397607*17393796001^(2/7) 6099996721309713 a001 1134903170/1568397607*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(45) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(44) 6099996721309713 a001 1134903170/1568397607*505019158607^(1/4) 6099996721309713 a001 701408733/2537720636*73681302247^(4/13) 6099996721309713 a001 1134903170/1568397607*10749957122^(7/24) 6099996721309713 a001 701408733/2537720636*10749957122^(1/3) 6099996721309713 a001 1134903170/1568397607*4106118243^(7/23) 6099996721309713 a001 701408733/2537720636*4106118243^(8/23) 6099996721309713 a001 701408733/17393796001*1568397607^(5/11) 6099996721309713 a001 701408733/6643838879*1568397607^(9/22) 6099996721309713 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 32264490531/224056801*599074578^(1/14) 6099996721309713 a001 701408733/45537549124*1568397607^(1/2) 6099996721309713 a001 701408733/119218851371*1568397607^(6/11) 6099996721309713 a001 1836311903/23725150497407*2537720636^(11/15) 6099996721309713 a001 1836311903/4106118243*2537720636^(1/3) 6099996721309713 a001 3524667/1568437211*1568397607^(13/22) 6099996721309713 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 1836311903/5600748293801*2537720636^(2/3) 6099996721309713 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(64)*Lucas(45)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(66)*Lucas(45)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(68)*Lucas(45)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(70)*Lucas(45)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 1/567451585*(1/2+1/2*5^(1/2))^60 6099996721309713 a004 Fibonacci(69)*Lucas(45)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(67)*Lucas(45)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(65)*Lucas(45)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 1836311903/1322157322203*2537720636^(3/5) 6099996721309713 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 701408733/817138163596*1568397607^(7/11) 6099996721309713 a001 1836311903/505019158607*2537720636^(5/9) 6099996721309713 a001 1836311903/312119004989*2537720636^(8/15) 6099996721309713 a001 139583862445/1568397607*599074578^(2/21) 6099996721309713 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 1836311903/73681302247*2537720636^(7/15) 6099996721309713 a001 701408733/2139295485799*1568397607^(15/22) 6099996721309713 a001 1836311903/45537549124*2537720636^(4/9) 6099996721309713 a001 1134903170/1568397607*1568397607^(7/22) 6099996721309713 a001 1836311903/4106118243*45537549124^(5/17) 6099996721309713 a001 1836311903/4106118243*312119004989^(3/11) 6099996721309713 a001 1836311903/4106118243*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(46) 6099996721309713 a001 1836311903/4106118243*192900153618^(5/18) 6099996721309713 a001 1836311903/4106118243*28143753123^(3/10) 6099996721309713 a001 1836311903/17393796001*2537720636^(2/5) 6099996721309713 a001 1836311903/4106118243*10749957122^(5/16) 6099996721309713 a001 1201881744/3665737348901*2537720636^(2/3) 6099996721309713 a001 701408733/5600748293801*1568397607^(8/11) 6099996721309713 a001 701408733/2537720636*1568397607^(4/11) 6099996721309713 a001 14930208/10749853441*2537720636^(3/5) 6099996721309713 a001 233802911/3020733700601*1568397607^(3/4) 6099996721309713 a001 7778742049/23725150497407*2537720636^(2/3) 6099996721309713 a001 7778742049/4106118243*2537720636^(4/15) 6099996721309713 a001 1602508992/440719107401*2537720636^(5/9) 6099996721309713 a001 12586269025/9062201101803*2537720636^(3/5) 6099996721309713 a001 32951280099/23725150497407*2537720636^(3/5) 6099996721309713 a001 20365011074/4106118243*2537720636^(2/9) 6099996721309713 a001 10182505537/7331474697802*2537720636^(3/5) 6099996721309713 a001 701408733/14662949395604*1568397607^(17/22) 6099996721309713 a001 1201881744/204284540899*2537720636^(8/15) 6099996721309713 a001 10983760033/1368706081*2537720636^(1/5) 6099996721309713 a001 7778742049/5600748293801*2537720636^(3/5) 6099996721309713 a001 12586269025/3461452808002*2537720636^(5/9) 6099996721309713 a001 10983760033/3020733700601*2537720636^(5/9) 6099996721309713 a001 86267571272/23725150497407*2537720636^(5/9) 6099996721309713 a001 53316291173/14662949395604*2537720636^(5/9) 6099996721309713 a001 20365011074/5600748293801*2537720636^(5/9) 6099996721309713 a001 12586269025/2139295485799*2537720636^(8/15) 6099996721309713 a001 32951280099/5600748293801*2537720636^(8/15) 6099996721309713 a001 7778742049/2139295485799*2537720636^(5/9) 6099996721309713 a001 1135099622/192933544679*2537720636^(8/15) 6099996721309713 a001 139583862445/23725150497407*2537720636^(8/15) 6099996721309713 a001 53316291173/9062201101803*2537720636^(8/15) 6099996721309713 a001 10182505537/1730726404001*2537720636^(8/15) 6099996721309713 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 267084832/10716675201*2537720636^(7/15) 6099996721309713 a001 2971215073/9062201101803*2537720636^(2/3) 6099996721309713 a001 139583862445/4106118243*2537720636^(2/15) 6099996721309713 a001 7778742049/1322157322203*2537720636^(8/15) 6099996721309713 a001 4807526976/119218851371*2537720636^(4/9) 6099996721309713 a001 75283811239/1368706081*2537720636^(1/9) 6099996721309713 a001 12586269025/505019158607*2537720636^(7/15) 6099996721309713 a001 10983760033/440719107401*2537720636^(7/15) 6099996721309713 a001 43133785636/1730726404001*2537720636^(7/15) 6099996721309713 a001 75283811239/3020733700601*2537720636^(7/15) 6099996721309713 a001 182717648081/7331474697802*2537720636^(7/15) 6099996721309713 a001 139583862445/5600748293801*2537720636^(7/15) 6099996721309713 a001 53316291173/2139295485799*2537720636^(7/15) 6099996721309713 a001 10182505537/408569081798*2537720636^(7/15) 6099996721309713 a001 2971215073/2139295485799*2537720636^(3/5) 6099996721309713 a001 1201881744/11384387281*2537720636^(2/5) 6099996721309713 a001 1144206275/28374454999*2537720636^(4/9) 6099996721309713 a001 591286729879/4106118243*2537720636^(1/15) 6099996721309713 a001 32951280099/817138163596*2537720636^(4/9) 6099996721309713 a001 7778742049/312119004989*2537720636^(7/15) 6099996721309713 a001 2403763488/5374978561*2537720636^(1/3) 6099996721309713 a001 86267571272/2139295485799*2537720636^(4/9) 6099996721309713 a001 225851433717/5600748293801*2537720636^(4/9) 6099996721309713 a001 591286729879/14662949395604*2537720636^(4/9) 6099996721309713 a001 365435296162/9062201101803*2537720636^(4/9) 6099996721309713 a001 139583862445/3461452808002*2537720636^(4/9) 6099996721309713 a001 53316291173/1322157322203*2537720636^(4/9) 6099996721309713 a001 20365011074/505019158607*2537720636^(4/9) 6099996721309713 a001 1836311903/10749957122*45537549124^(1/3) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(46) 6099996721309713 a001 1602508992/1368706081*73681302247^(1/4) 6099996721309713 a001 7778742049/192900153618*2537720636^(4/9) 6099996721309713 a001 2971215073/817138163596*2537720636^(5/9) 6099996721309713 a001 12586269025/119218851371*2537720636^(2/5) 6099996721309713 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 32951280099/312119004989*2537720636^(2/5) 6099996721309713 a001 21566892818/204284540899*2537720636^(2/5) 6099996721309713 a001 225851433717/2139295485799*2537720636^(2/5) 6099996721309713 a001 182717648081/1730726404001*2537720636^(2/5) 6099996721309713 a001 139583862445/1322157322203*2537720636^(2/5) 6099996721309713 a001 53316291173/505019158607*2537720636^(2/5) 6099996721309713 a001 10182505537/96450076809*2537720636^(2/5) 6099996721309713 a001 1836311903/2139295485799*17393796001^(4/7) 6099996721309713 a001 1836311903/73681302247*17393796001^(3/7) 6099996721309713 a001 12586269025/4106118243*312119004989^(1/5) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(46) 6099996721309713 a001 2971215073/505019158607*2537720636^(8/15) 6099996721309713 a001 86267571272/4106118243*17393796001^(1/7) 6099996721309713 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 1836311903/73681302247*45537549124^(7/17) 6099996721309713 a001 1836311903/23725150497407*45537549124^(11/17) 6099996721309713 a001 1836311903/5600748293801*45537549124^(10/17) 6099996721309713 a001 10983760033/1368706081*45537549124^(3/17) 6099996721309713 a001 1836311903/1322157322203*45537549124^(9/17) 6099996721309713 a001 1836311903/312119004989*45537549124^(8/17) 6099996721309713 a001 10983760033/1368706081*817138163596^(3/19) 6099996721309713 a001 1836311903/73681302247*14662949395604^(1/3) 6099996721309713 a001 10983760033/1368706081*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(46) 6099996721309713 a001 10983760033/1368706081*192900153618^(1/6) 6099996721309713 a001 1836311903/73681302247*192900153618^(7/18) 6099996721309713 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 139583862445/4106118243*45537549124^(2/17) 6099996721309713 a001 591286729879/4106118243*45537549124^(1/17) 6099996721309713 a001 86267571272/4106118243*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(46) 6099996721309713 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 1836311903/505019158607*312119004989^(5/11) 6099996721309713 a001 1836311903/23725150497407*312119004989^(3/5) 6099996721309713 a001 1836311903/5600748293801*312119004989^(6/11) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(46) 6099996721309713 a001 1836311903/505019158607*3461452808002^(5/12) 6099996721309713 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 1836311903/1322157322203*817138163596^(9/19) 6099996721309713 a001 1836311903/1322157322203*14662949395604^(3/7) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(46) 6099996721309713 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(46) 6099996721309713 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(46)*Lucas(63)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(46)*Lucas(65)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(46)*Lucas(67)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(46)*Lucas(69)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(92) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^63/Lucas(94) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^65/Lucas(96) 6099996721309713 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^67/Lucas(98) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^69/Lucas(100) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^68/Lucas(99) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^66/Lucas(97) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^64/Lucas(95) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(93) 6099996721309713 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(46)*Lucas(68)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(46)*Lucas(66)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(46)*Lucas(64)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 1836311903/14662949395604*23725150497407^(1/2) 6099996721309713 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(61) 6099996721309713 a006 5^(1/2)*Fibonacci(61)/Lucas(46)/sqrt(5) 6099996721309713 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(46) 6099996721309713 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(46) 6099996721309713 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 1836311903/312119004989*14662949395604^(8/21) 6099996721309713 a001 139583862445/4106118243*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(46) 6099996721309713 a001 1836311903/1322157322203*192900153618^(1/2) 6099996721309713 a001 365435296162/4106118243*73681302247^(1/13) 6099996721309713 a001 1836311903/23725150497407*192900153618^(11/18) 6099996721309713 a001 1836311903/312119004989*192900153618^(4/9) 6099996721309713 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 1836311903/119218851371*312119004989^(2/5) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(46) 6099996721309713 a001 53316291173/4106118243*23725150497407^(1/8) 6099996721309713 a001 53316291173/4106118243*505019158607^(1/7) 6099996721309713 a001 1836311903/817138163596*73681302247^(1/2) 6099996721309713 a001 1836311903/312119004989*73681302247^(6/13) 6099996721309713 a001 53316291173/4106118243*73681302247^(2/13) 6099996721309713 a001 1836311903/2139295485799*73681302247^(7/13) 6099996721309713 a001 1836311903/14662949395604*73681302247^(8/13) 6099996721309713 a001 75283811239/1368706081*28143753123^(1/10) 6099996721309713 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 7778742049/73681302247*2537720636^(2/5) 6099996721309713 a001 956722026041/4106118243*10749957122^(1/24) 6099996721309713 a001 20365011074/4106118243*312119004989^(2/11) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(46) 6099996721309713 a001 1836311903/45537549124*23725150497407^(5/16) 6099996721309713 a001 1836311903/45537549124*505019158607^(5/14) 6099996721309713 a001 591286729879/4106118243*10749957122^(1/16) 6099996721309713 a001 1836311903/45537549124*73681302247^(5/13) 6099996721309713 a001 1836311903/505019158607*28143753123^(1/2) 6099996721309713 a001 365435296162/4106118243*10749957122^(1/12) 6099996721309713 a001 20365011074/4106118243*28143753123^(1/5) 6099996721309713 a001 1836311903/5600748293801*28143753123^(3/5) 6099996721309713 a001 1836311903/45537549124*28143753123^(2/5) 6099996721309713 a001 139583862445/4106118243*10749957122^(1/8) 6099996721309713 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 10983760033/1368706081*10749957122^(3/16) 6099996721309713 a001 53316291173/4106118243*10749957122^(1/6) 6099996721309713 a001 20365011074/4106118243*10749957122^(5/24) 6099996721309713 a001 956722026041/4106118243*4106118243^(1/23) 6099996721309713 a001 1836311903/17393796001*45537549124^(6/17) 6099996721309713 a001 7778742049/4106118243*45537549124^(4/17) 6099996721309713 a001 7778742049/4106118243*817138163596^(4/19) 6099996721309713 a001 1836311903/17393796001*14662949395604^(2/7) 6099996721309713 a001 7778742049/4106118243*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(46) 6099996721309713 a001 7778742049/4106118243*192900153618^(2/9) 6099996721309713 a001 1836311903/17393796001*192900153618^(1/3) 6099996721309713 a001 7778742049/4106118243*73681302247^(3/13) 6099996721309713 a001 1836311903/73681302247*10749957122^(7/16) 6099996721309713 a001 1836311903/119218851371*10749957122^(11/24) 6099996721309713 a001 1836311903/45537549124*10749957122^(5/12) 6099996721309713 a001 1836311903/312119004989*10749957122^(1/2) 6099996721309713 a001 1836311903/817138163596*10749957122^(13/24) 6099996721309713 a001 1836311903/1322157322203*10749957122^(9/16) 6099996721309713 a001 12586269025/28143753123*2537720636^(1/3) 6099996721309713 a001 1836311903/2139295485799*10749957122^(7/12) 6099996721309713 a001 365435296162/4106118243*4106118243^(2/23) 6099996721309713 a001 1836311903/5600748293801*10749957122^(5/8) 6099996721309713 a001 7778742049/4106118243*10749957122^(1/4) 6099996721309713 a001 1836311903/14662949395604*10749957122^(2/3) 6099996721309713 a001 1836311903/23725150497407*10749957122^(11/16) 6099996721309713 a001 1836311903/17393796001*10749957122^(3/8) 6099996721309713 a001 32951280099/73681302247*2537720636^(1/3) 6099996721309713 a001 43133785636/96450076809*2537720636^(1/3) 6099996721309713 a001 225851433717/505019158607*2537720636^(1/3) 6099996721309713 a001 591286729879/1322157322203*2537720636^(1/3) 6099996721309713 a001 10610209857723/23725150497407*2537720636^(1/3) 6099996721309713 a001 182717648081/408569081798*2537720636^(1/3) 6099996721309713 a001 139583862445/312119004989*2537720636^(1/3) 6099996721309713 a001 53316291173/119218851371*2537720636^(1/3) 6099996721309713 a001 139583862445/4106118243*4106118243^(3/23) 6099996721309713 a001 10182505537/22768774562*2537720636^(1/3) 6099996721309713 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 2971215073/119218851371*2537720636^(7/15) 6099996721309713 a001 10182505537/5374978561*2537720636^(4/15) 6099996721309713 a001 53316291173/4106118243*4106118243^(4/23) 6099996721309713 a001 2971215073/73681302247*2537720636^(4/9) 6099996721309713 a001 20365011074/4106118243*4106118243^(5/23) 6099996721309713 a001 7778742049/17393796001*2537720636^(1/3) 6099996721309713 a001 53316291173/10749957122*2537720636^(2/9) 6099996721309713 a001 53316291173/28143753123*2537720636^(4/15) 6099996721309713 a001 139583862445/73681302247*2537720636^(4/15) 6099996721309713 a001 182717648081/96450076809*2537720636^(4/15) 6099996721309713 a001 956722026041/505019158607*2537720636^(4/15) 6099996721309713 a001 10610209857723/5600748293801*2537720636^(4/15) 6099996721309713 a001 591286729879/312119004989*2537720636^(4/15) 6099996721309713 a001 225851433717/119218851371*2537720636^(4/15) 6099996721309713 a001 21566892818/11384387281*2537720636^(4/15) 6099996721309713 a001 956722026041/4106118243*1568397607^(1/22) 6099996721309713 a001 2971215073/28143753123*2537720636^(2/5) 6099996721309713 a001 7778742049/4106118243*4106118243^(6/23) 6099996721309713 a001 43133785636/5374978561*2537720636^(1/5) 6099996721309713 a001 32951280099/17393796001*2537720636^(4/15) 6099996721309713 a001 2971215073/4106118243*17393796001^(2/7) 6099996721309713 a001 2971215073/4106118243*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(46) 6099996721309713 a001 1836311903/6643838879*23725150497407^(1/4) 6099996721309713 a001 1836311903/6643838879*73681302247^(4/13) 6099996721309713 a001 139583862445/28143753123*2537720636^(2/9) 6099996721309713 a001 365435296162/73681302247*2537720636^(2/9) 6099996721309713 a001 956722026041/192900153618*2537720636^(2/9) 6099996721309713 a001 2504730781961/505019158607*2537720636^(2/9) 6099996721309713 a001 10610209857723/2139295485799*2537720636^(2/9) 6099996721309713 a001 4052739537881/817138163596*2537720636^(2/9) 6099996721309713 a001 140728068720/28374454999*2537720636^(2/9) 6099996721309713 a001 591286729879/119218851371*2537720636^(2/9) 6099996721309713 a001 2971215073/4106118243*10749957122^(7/24) 6099996721309713 a001 225851433717/45537549124*2537720636^(2/9) 6099996721309713 a001 1836311903/6643838879*10749957122^(1/3) 6099996721309713 a001 1836311903/45537549124*4106118243^(10/23) 6099996721309713 a001 1836311903/17393796001*4106118243^(9/23) 6099996721309713 a001 75283811239/9381251041*2537720636^(1/5) 6099996721309713 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 591286729879/73681302247*2537720636^(1/5) 6099996721309713 a001 86267571272/17393796001*2537720636^(2/9) 6099996721309713 a001 86000486440/10716675201*2537720636^(1/5) 6099996721309713 a001 4052739537881/505019158607*2537720636^(1/5) 6099996721309713 a001 3536736619241/440719107401*2537720636^(1/5) 6099996721309713 a001 3278735159921/408569081798*2537720636^(1/5) 6099996721309713 a001 2504730781961/312119004989*2537720636^(1/5) 6099996721309713 a001 956722026041/119218851371*2537720636^(1/5) 6099996721309713 a001 1836311903/119218851371*4106118243^(11/23) 6099996721309713 a001 182717648081/22768774562*2537720636^(1/5) 6099996721309713 a001 1836311903/192900153618*4106118243^(1/2) 6099996721309713 a001 182717648081/5374978561*2537720636^(2/15) 6099996721309713 a001 1836311903/312119004989*4106118243^(12/23) 6099996721309713 a001 139583862445/17393796001*2537720636^(1/5) 6099996721309713 a001 591286729879/10749957122*2537720636^(1/9) 6099996721309713 a001 1836311903/817138163596*4106118243^(13/23) 6099996721309713 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 1836311903/2139295485799*4106118243^(14/23) 6099996721309713 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(62)*Lucas(47)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(64)*Lucas(47)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(66)*Lucas(47)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(68)*Lucas(47)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 2/2971215073*(1/2+1/2*5^(1/2))^62 6099996721309713 a004 Fibonacci(67)*Lucas(47)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(65)*Lucas(47)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(63)*Lucas(47)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 365435296162/4106118243*1568397607^(1/11) 6099996721309713 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 956722026041/28143753123*2537720636^(2/15) 6099996721309713 a001 2504730781961/73681302247*2537720636^(2/15) 6099996721309713 a001 3278735159921/96450076809*2537720636^(2/15) 6099996721309713 a001 10610209857723/312119004989*2537720636^(2/15) 6099996721309713 a001 4052739537881/119218851371*2537720636^(2/15) 6099996721309713 a001 1836311903/5600748293801*4106118243^(15/23) 6099996721309713 a001 387002188980/11384387281*2537720636^(2/15) 6099996721309713 a001 12586269025/6643838879*2537720636^(4/15) 6099996721309713 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 774004377960/5374978561*2537720636^(1/15) 6099996721309713 a001 2971215073/4106118243*4106118243^(7/23) 6099996721309713 a001 12585437040/228811001*2537720636^(1/9) 6099996721309713 a001 1836311903/14662949395604*4106118243^(16/23) 6099996721309713 a001 2403763488/5374978561*45537549124^(5/17) 6099996721309713 a001 4052739537881/73681302247*2537720636^(1/9) 6099996721309713 a001 591286729879/17393796001*2537720636^(2/15) 6099996721309713 a001 2403763488/5374978561*312119004989^(3/11) 6099996721309713 a001 2403763488/5374978561*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(48) 6099996721309713 a001 2403763488/5374978561*192900153618^(5/18) 6099996721309713 a001 3536736619241/64300051206*2537720636^(1/9) 6099996721309713 a001 6557470319842/119218851371*2537720636^(1/9) 6099996721309713 a001 2403763488/5374978561*28143753123^(3/10) 6099996721309713 a001 2504730781961/45537549124*2537720636^(1/9) 6099996721309713 a001 1836311903/6643838879*4106118243^(8/23) 6099996721309713 a001 2403763488/5374978561*10749957122^(5/16) 6099996721309713 a001 956722026041/17393796001*2537720636^(1/9) 6099996721309713 a001 32951280099/6643838879*2537720636^(2/9) 6099996721309713 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 4052739537881/28143753123*2537720636^(1/15) 6099996721309713 a001 4807526976/5600748293801*17393796001^(4/7) 6099996721309713 a001 1515744265389/10525900321*2537720636^(1/15) 6099996721309713 a001 267084832/10716675201*17393796001^(3/7) 6099996721309713 a001 1602508992/9381251041*45537549124^(1/3) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(48) 6099996721309713 a001 12586269025/10749957122*73681302247^(1/4) 6099996721309713 a001 3278735159921/22768774562*2537720636^(1/15) 6099996721309713 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 225851433717/10749957122*17393796001^(1/7) 6099996721309713 a001 1201881744/3665737348901*45537549124^(10/17) 6099996721309713 a001 14930208/10749853441*45537549124^(9/17) 6099996721309713 a001 267084832/10716675201*45537549124^(7/17) 6099996721309713 a001 1201881744/204284540899*45537549124^(8/17) 6099996721309713 a001 32951280099/10749957122*312119004989^(1/5) 6099996721309713 a001 686789568/10525900321*817138163596^(1/3) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(48) 6099996721309713 a001 43133785636/5374978561*45537549124^(3/17) 6099996721309713 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 182717648081/5374978561*45537549124^(2/17) 6099996721309713 a001 774004377960/5374978561*45537549124^(1/17) 6099996721309713 a001 267084832/10716675201*14662949395604^(1/3) 6099996721309713 a001 43133785636/5374978561*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(48) 6099996721309713 a001 43133785636/5374978561*192900153618^(1/6) 6099996721309713 a001 267084832/10716675201*192900153618^(7/18) 6099996721309713 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 1201881744/3665737348901*312119004989^(6/11) 6099996721309713 a001 1602508992/440719107401*312119004989^(5/11) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(48) 6099996721309713 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 14930208/10749853441*817138163596^(9/19) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(48) 6099996721309713 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 14930208/10749853441*14662949395604^(3/7) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(48) 6099996721309713 a004 Fibonacci(48)*Lucas(61)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(48) 6099996721309713 a004 Fibonacci(48)*Lucas(63)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(48)*Lucas(65)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(48)*Lucas(67)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^61/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^63/Lucas(96) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^65/Lucas(98) 6099996721309713 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^66/Lucas(99) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^67/Lucas(100) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^64/Lucas(97) 6099996721309713 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^62/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(48)*Lucas(66)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(48)*Lucas(64)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(63) 6099996721309713 a004 Fibonacci(48)*Lucas(62)/(1/2+sqrt(5)/2)^95 6099996721309713 a001 4807526976/5600748293801*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(48) 6099996721309713 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(48) 6099996721309713 a001 1602508992/3020733700601*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 1201881744/204284540899*14662949395604^(8/21) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(48) 6099996721309713 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 4807526976/312119004989*312119004989^(2/5) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(48) 6099996721309713 a001 139583862445/10749957122*23725150497407^(1/8) 6099996721309713 a001 14930208/10749853441*192900153618^(1/2) 6099996721309713 a001 1201881744/204284540899*192900153618^(4/9) 6099996721309713 a001 1201881744/3665737348901*192900153618^(5/9) 6099996721309713 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 139583862445/10749957122*73681302247^(2/13) 6099996721309713 a001 53316291173/10749957122*312119004989^(2/11) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(48) 6099996721309713 a001 4807526976/119218851371*23725150497407^(5/16) 6099996721309713 a001 4807526976/119218851371*505019158607^(5/14) 6099996721309713 a001 1201881744/204284540899*73681302247^(6/13) 6099996721309713 a001 4807526976/2139295485799*73681302247^(1/2) 6099996721309713 a001 4807526976/5600748293801*73681302247^(7/13) 6099996721309713 a001 591286729879/10749957122*28143753123^(1/10) 6099996721309713 a001 4807526976/119218851371*73681302247^(5/13) 6099996721309713 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 53316291173/1568397607*599074578^(1/7) 6099996721309713 a001 1201881744/11384387281*45537549124^(6/17) 6099996721309713 a001 53316291173/6643838879*2537720636^(1/5) 6099996721309713 a001 53316291173/10749957122*28143753123^(1/5) 6099996721309713 a001 2504730781961/10749957122*10749957122^(1/24) 6099996721309713 a001 10182505537/5374978561*45537549124^(4/17) 6099996721309713 a001 10182505537/5374978561*817138163596^(4/19) 6099996721309713 a001 1201881744/11384387281*14662949395604^(2/7) 6099996721309713 a001 10182505537/5374978561*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(48) 6099996721309713 a001 10182505537/5374978561*192900153618^(2/9) 6099996721309713 a001 1201881744/11384387281*192900153618^(1/3) 6099996721309713 a001 10182505537/5374978561*73681302247^(3/13) 6099996721309713 a001 774004377960/5374978561*10749957122^(1/16) 6099996721309713 a001 4807526976/119218851371*28143753123^(2/5) 6099996721309713 a001 1602508992/440719107401*28143753123^(1/2) 6099996721309713 a001 956722026041/10749957122*10749957122^(1/12) 6099996721309713 a001 1201881744/3665737348901*28143753123^(3/5) 6099996721309713 a001 182717648081/5374978561*10749957122^(1/8) 6099996721309713 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 139583862445/10749957122*10749957122^(1/6) 6099996721309713 a001 43133785636/5374978561*10749957122^(3/16) 6099996721309713 a001 2504730781961/17393796001*2537720636^(1/15) 6099996721309713 a001 53316291173/10749957122*10749957122^(5/24) 6099996721309713 a001 2971215073/6643838879*2537720636^(1/3) 6099996721309713 a001 7778742049/10749957122*17393796001^(2/7) 6099996721309713 a001 2504730781961/10749957122*4106118243^(1/23) 6099996721309713 a001 10182505537/5374978561*10749957122^(1/4) 6099996721309713 a001 7778742049/10749957122*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(48) 6099996721309713 a001 4807526976/17393796001*23725150497407^(1/4) 6099996721309713 a001 4807526976/17393796001*73681302247^(4/13) 6099996721309713 a001 4807526976/119218851371*10749957122^(5/12) 6099996721309713 a001 1201881744/11384387281*10749957122^(3/8) 6099996721309713 a001 267084832/10716675201*10749957122^(7/16) 6099996721309713 a001 4807526976/312119004989*10749957122^(11/24) 6099996721309713 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 1201881744/204284540899*10749957122^(1/2) 6099996721309713 a001 4807526976/2139295485799*10749957122^(13/24) 6099996721309713 a001 139583862445/4106118243*1568397607^(3/22) 6099996721309713 a001 14930208/10749853441*10749957122^(9/16) 6099996721309713 a001 4807526976/5600748293801*10749957122^(7/12) 6099996721309713 a001 956722026041/10749957122*4106118243^(2/23) 6099996721309713 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(60)*Lucas(49)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(62)*Lucas(49)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(64)*Lucas(49)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(66)*Lucas(49)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 2/7778742049*(1/2+1/2*5^(1/2))^64 6099996721309713 a004 Fibonacci(65)*Lucas(49)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(63)*Lucas(49)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(61)*Lucas(49)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 1201881744/3665737348901*10749957122^(5/8) 6099996721309713 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 12586269025/14662949395604*17393796001^(4/7) 6099996721309713 a001 7778742049/10749957122*10749957122^(7/24) 6099996721309713 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 12586269025/505019158607*17393796001^(3/7) 6099996721309713 a001 12586269025/28143753123*45537549124^(5/17) 6099996721309713 a001 12586269025/28143753123*312119004989^(3/11) 6099996721309713 a001 12586269025/28143753123*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(50) 6099996721309713 a001 12586269025/28143753123*192900153618^(5/18) 6099996721309713 a001 4807526976/17393796001*10749957122^(1/3) 6099996721309713 a001 12586269025/28143753123*28143753123^(3/10) 6099996721309713 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 591286729879/28143753123*17393796001^(1/7) 6099996721309713 a001 20365011074/28143753123*17393796001^(2/7) 6099996721309713 a001 12586269025/73681302247*45537549124^(1/3) 6099996721309713 a001 10983760033/440719107401*17393796001^(3/7) 6099996721309713 a001 12586269025/9062201101803*45537549124^(9/17) 6099996721309713 a001 12586269025/2139295485799*45537549124^(8/17) 6099996721309713 a001 12586269025/505019158607*45537549124^(7/17) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(50) 6099996721309713 a001 43133785636/1730726404001*17393796001^(3/7) 6099996721309713 a001 75283811239/3020733700601*17393796001^(3/7) 6099996721309713 a001 182717648081/7331474697802*17393796001^(3/7) 6099996721309713 a001 139583862445/5600748293801*17393796001^(3/7) 6099996721309713 a001 10983760033/9381251041*73681302247^(1/4) 6099996721309713 a001 12586269025/119218851371*45537549124^(6/17) 6099996721309713 a001 75283811239/9381251041*45537549124^(3/17) 6099996721309713 a001 53316291173/2139295485799*17393796001^(3/7) 6099996721309713 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 956722026041/28143753123*45537549124^(2/17) 6099996721309713 a001 53316291173/28143753123*45537549124^(4/17) 6099996721309713 a001 4052739537881/28143753123*45537549124^(1/17) 6099996721309713 a001 12586269025/192900153618*817138163596^(1/3) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 12586269025/3461452808002*312119004989^(5/11) 6099996721309713 a001 12586269025/505019158607*14662949395604^(1/3) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 12585437040/228811001*312119004989^(1/11) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(59)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(61)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(63)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(65)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^59/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^61/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^63/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^64/Lucas(99) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^65/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^62/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^60/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(65) 6099996721309713 a004 Fibonacci(50)*Lucas(64)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(62)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(50) 6099996721309713 a004 Fibonacci(50)*Lucas(60)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(50) 6099996721309713 a001 12586269025/23725150497407*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^93 6099996721309713 a001 4052739537881/28143753123*192900153618^(1/18) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(50) 6099996721309713 a001 12586269025/14662949395604*505019158607^(1/2) 6099996721309713 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 12586269025/505019158607*192900153618^(7/18) 6099996721309713 a001 139583862445/28143753123*312119004989^(2/11) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(50) 6099996721309713 a001 1144206275/28374454999*23725150497407^(5/16) 6099996721309713 a001 1144206275/28374454999*505019158607^(5/14) 6099996721309713 a001 12586269025/9062201101803*192900153618^(1/2) 6099996721309713 a001 2504730781961/28143753123*73681302247^(1/13) 6099996721309713 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 365435296162/28143753123*73681302247^(2/13) 6099996721309713 a001 53316291173/28143753123*817138163596^(4/19) 6099996721309713 a001 12586269025/119218851371*14662949395604^(2/7) 6099996721309713 a001 53316291173/28143753123*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(50) 6099996721309713 a001 53316291173/28143753123*192900153618^(2/9) 6099996721309713 a001 1144206275/28374454999*73681302247^(5/13) 6099996721309713 a001 12586269025/2139295485799*73681302247^(6/13) 6099996721309713 a001 12586269025/5600748293801*73681302247^(1/2) 6099996721309713 a001 12586269025/14662949395604*73681302247^(7/13) 6099996721309713 a001 53316291173/28143753123*73681302247^(3/13) 6099996721309713 a001 12585437040/228811001*28143753123^(1/10) 6099996721309713 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 53316291173/73681302247*17393796001^(2/7) 6099996721309713 a001 139583862445/28143753123*28143753123^(1/5) 6099996721309713 a001 139583862445/192900153618*17393796001^(2/7) 6099996721309713 a001 365435296162/505019158607*17393796001^(2/7) 6099996721309713 a001 591286729879/817138163596*17393796001^(2/7) 6099996721309713 a001 225851433717/312119004989*17393796001^(2/7) 6099996721309713 a001 10182505537/408569081798*17393796001^(3/7) 6099996721309713 a001 182717648081/5374978561*4106118243^(3/23) 6099996721309713 a001 6557470319842/28143753123*10749957122^(1/24) 6099996721309713 a001 86267571272/119218851371*17393796001^(2/7) 6099996721309713 a001 20365011074/28143753123*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(50) 6099996721309713 a001 12586269025/45537549124*23725150497407^(1/4) 6099996721309713 a001 1144206275/28374454999*28143753123^(2/5) 6099996721309713 a001 12586269025/45537549124*73681302247^(4/13) 6099996721309713 a001 4052739537881/28143753123*10749957122^(1/16) 6099996721309713 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 1548008755920/73681302247*17393796001^(1/7) 6099996721309713 a001 32951280099/45537549124*17393796001^(2/7) 6099996721309713 a001 12586269025/3461452808002*28143753123^(1/2) 6099996721309713 a001 2504730781961/28143753123*10749957122^(1/12) 6099996721309713 a001 32951280099/73681302247*45537549124^(5/17) 6099996721309713 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 4052739537881/192900153618*17393796001^(1/7) 6099996721309713 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(58)*Lucas(51)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(60)*Lucas(51)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(62)*Lucas(51)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(64)*Lucas(51)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(63)*Lucas(51)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(61)*Lucas(51)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(59)*Lucas(51)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^93 6099996721309713 a001 225749145909/10745088481*17393796001^(1/7) 6099996721309713 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 6557470319842/312119004989*17393796001^(1/7) 6099996721309713 a001 32951280099/23725150497407*45537549124^(9/17) 6099996721309713 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 32951280099/5600748293801*45537549124^(8/17) 6099996721309713 a001 2504730781961/119218851371*17393796001^(1/7) 6099996721309713 a001 10983760033/440719107401*45537549124^(7/17) 6099996721309713 a001 10983760033/64300051206*45537549124^(1/3) 6099996721309713 a001 32951280099/73681302247*312119004989^(3/11) 6099996721309713 a001 32951280099/73681302247*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(52) 6099996721309713 a001 32951280099/73681302247*192900153618^(5/18) 6099996721309713 a001 32951280099/312119004989*45537549124^(6/17) 6099996721309713 a001 139583862445/73681302247*45537549124^(4/17) 6099996721309713 a001 591286729879/73681302247*45537549124^(3/17) 6099996721309713 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 1135099622/192933544679*45537549124^(8/17) 6099996721309713 a001 2504730781961/73681302247*45537549124^(2/17) 6099996721309713 a001 43133785636/1730726404001*45537549124^(7/17) 6099996721309713 a001 139583862445/23725150497407*45537549124^(8/17) 6099996721309713 a001 1515744265389/10525900321*45537549124^(1/17) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(52) 6099996721309713 a001 75283811239/3020733700601*45537549124^(7/17) 6099996721309713 a001 182717648081/7331474697802*45537549124^(7/17) 6099996721309713 a001 43133785636/96450076809*45537549124^(5/17) 6099996721309713 a001 21566892818/204284540899*45537549124^(6/17) 6099996721309713 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 32264490531/10525900321*312119004989^(1/5) 6099996721309713 a001 10983760033/3020733700601*312119004989^(5/11) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(57)/(1/2+sqrt(5)/2)^94 6099996721309713 a001 10983760033/440719107401*14662949395604^(1/3) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(59)/(1/2+sqrt(5)/2)^96 6099996721309713 a001 1548008755920/73681302247*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(61)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(63)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^57/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^59/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^61/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^62/Lucas(99) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^63/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^60/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^58/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(67) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(62)/(1/2+sqrt(5)/2)^99 6099996721309713 a001 10983760033/3020733700601*3461452808002^(5/12) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(60)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(52) 6099996721309713 a004 Fibonacci(52)*Lucas(58)/(1/2+sqrt(5)/2)^95 6099996721309713 a001 1515744265389/10525900321*192900153618^(1/18) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(52) 6099996721309713 a001 32951280099/817138163596*505019158607^(5/14) 6099996721309713 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^93 6099996721309713 a001 10983760033/440719107401*192900153618^(7/18) 6099996721309713 a001 139583862445/73681302247*817138163596^(4/19) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(52) 6099996721309713 a001 182717648081/1730726404001*45537549124^(6/17) 6099996721309713 a001 139583862445/73681302247*192900153618^(2/9) 6099996721309713 a001 32951280099/312119004989*192900153618^(1/3) 6099996721309713 a001 2504730781961/14662949395604*45537549124^(1/3) 6099996721309713 a001 139583862445/1322157322203*45537549124^(6/17) 6099996721309713 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 53316291173/9062201101803*45537549124^(8/17) 6099996721309713 a001 225851433717/505019158607*45537549124^(5/17) 6099996721309713 a001 139583862445/817138163596*45537549124^(1/3) 6099996721309713 a001 591286729879/1322157322203*45537549124^(5/17) 6099996721309713 a001 182717648081/96450076809*45537549124^(4/17) 6099996721309713 a001 182717648081/408569081798*45537549124^(5/17) 6099996721309713 a001 139583862445/73681302247*73681302247^(3/13) 6099996721309713 a001 53316291173/2139295485799*45537549124^(7/17) 6099996721309713 a001 139583862445/312119004989*45537549124^(5/17) 6099996721309713 a001 956722026041/505019158607*45537549124^(4/17) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(52) 6099996721309713 a001 32951280099/817138163596*73681302247^(5/13) 6099996721309713 a001 591286729879/312119004989*45537549124^(4/17) 6099996721309713 a001 53316291173/505019158607*45537549124^(6/17) 6099996721309713 a001 32951280099/5600748293801*73681302247^(6/13) 6099996721309713 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 32951280099/14662949395604*73681302247^(1/2) 6099996721309713 a001 4052739537881/505019158607*45537549124^(3/17) 6099996721309713 a001 3536736619241/440719107401*45537549124^(3/17) 6099996721309713 a001 3278735159921/96450076809*45537549124^(2/17) 6099996721309713 a001 3278735159921/408569081798*45537549124^(3/17) 6099996721309713 a001 53316291173/312119004989*45537549124^(1/3) 6099996721309713 a001 2504730781961/312119004989*45537549124^(3/17) 6099996721309713 a004 Fibonacci(56)*Lucas(53)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(58)*Lucas(53)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(60)*Lucas(53)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(62)*Lucas(53)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(61)*Lucas(53)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(59)*Lucas(53)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(57)*Lucas(53)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^93 6099996721309713 a001 4052739537881/73681302247*28143753123^(1/10) 6099996721309713 a001 32951280099/119218851371*73681302247^(4/13) 6099996721309713 a001 43133785636/96450076809*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(54) 6099996721309713 a001 10610209857723/312119004989*45537549124^(2/17) 6099996721309713 a004 Fibonacci(54)*Lucas(55)/(1/2+sqrt(5)/2)^94 6099996721309713 a001 86267571272/23725150497407*312119004989^(5/11) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(54) 6099996721309713 a004 Fibonacci(54)*Lucas(57)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(54) 6099996721309713 a004 Fibonacci(54)*Lucas(59)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(54) 6099996721309713 a004 Fibonacci(54)*Lucas(61)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^55/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^57/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^59/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^60/Lucas(99) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^61/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^58/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^56/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(69) 6099996721309713 a006 5^(1/2)*Fibonacci(69)/Lucas(54)/sqrt(5) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(54) 6099996721309713 a001 1135099622/192933544679*14662949395604^(8/21) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(54) 6099996721309713 a004 Fibonacci(54)*Lucas(60)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(54) 6099996721309713 a004 Fibonacci(54)*Lucas(58)/(1/2+sqrt(5)/2)^97 6099996721309713 a001 182717648081/96450076809*817138163596^(4/19) 6099996721309713 a001 182717648081/96450076809*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(54) 6099996721309713 a004 Fibonacci(54)*Lucas(56)/(1/2+sqrt(5)/2)^95 6099996721309713 a001 182717648081/96450076809*192900153618^(2/9) 6099996721309713 a001 139583862445/192900153618*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(54) 6099996721309713 a001 21566892818/204284540899*192900153618^(1/3) 6099996721309713 a001 1135099622/192933544679*192900153618^(4/9) 6099996721309713 a004 Fibonacci(56)*Lucas(55)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(58)*Lucas(55)/(1/2+sqrt(5)/2)^98 6099996721309713 a001 225851433717/505019158607*312119004989^(3/11) 6099996721309713 a004 Fibonacci(60)*Lucas(55)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(59)*Lucas(55)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(57)*Lucas(55)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(56) 6099996721309713 a004 Fibonacci(56)*Lucas(57)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(56) 6099996721309713 a004 Fibonacci(56)*Lucas(59)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(56) 6099996721309713 a001 225749145909/10745088481*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^53/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^55/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^57/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^58/Lucas(99) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^59/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^56/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^54/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(71) 6099996721309713 a006 5^(1/2)*Fibonacci(71)/Lucas(56)/sqrt(5) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(56) 6099996721309713 a004 Fibonacci(56)*Lucas(58)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(56) 6099996721309713 a004 Fibonacci(58)*Lucas(57)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^51/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^53/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^55/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^43 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^56/Lucas(99) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^57/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^54/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^52/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(73) 6099996721309713 a006 5^(1/2)*Fibonacci(73)/Lucas(58)/sqrt(5) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(58) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^49/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^51/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^53/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^45 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^54/Lucas(99) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^55/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^52/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^50/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(75) 6099996721309713 a006 5^(1/2)*Fibonacci(75)/Lucas(60)/sqrt(5) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(60) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^47/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^49/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^51/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^47 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^52/Lucas(99) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^53/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^50/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^48/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(77) 6099996721309713 a006 5^(1/2)*Fibonacci(77)/Lucas(62)/sqrt(5) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(62) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^45/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^47/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^49/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^49 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^50/Lucas(99) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^51/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^48/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^46/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(79) 6099996721309713 a006 5^(1/2)*Fibonacci(79)/Lucas(64)/sqrt(5) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(64) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^43/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^45/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^51 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^47/Lucas(98) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^49/Lucas(100) 6099996721309713 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^48/Lucas(99) 6099996721309713 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^46/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^44/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(81) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(66) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^41/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^43/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^45/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^53 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^46/Lucas(99) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^47/Lucas(100) 6099996721309713 a004 Fibonacci(68)*Lucas(1)/(1/2+sqrt(5)/2)^53 6099996721309713 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^44/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^42/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(83) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(68) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(84) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^39/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^41/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^55 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^43/Lucas(98) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^45/Lucas(100) 6099996721309713 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^44/Lucas(99) 6099996721309713 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^42/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^40/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(85) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(83) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(70) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(84) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(86) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^37/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^39/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^41/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^57 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^42/Lucas(99) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^43/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^40/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^38/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(87) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(85) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(83) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(72) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(76) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(78) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(80) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(82) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(84) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(86) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(88) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(90) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(92) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^35/Lucas(94) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^37/Lucas(96) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^39/Lucas(98) 6099996721309713 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^59 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^40/Lucas(99) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^41/Lucas(100) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^38/Lucas(97) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^36/Lucas(95) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(93) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(91) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(89) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(87) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(85) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(83) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(81) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(79) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(77) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(75) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(78) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(80) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(82) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(84) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(86) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(88) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(90) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(92) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^33/Lucas(94) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^35/Lucas(96) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^37/Lucas(98) 6099996721309713 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^61 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^38/Lucas(99) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^39/Lucas(100) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^36/Lucas(97) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^34/Lucas(95) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(93) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(91) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(89) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(87) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(85) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(83) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(81) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(79) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(77) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(80) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(82) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(84) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(86) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(88) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(90) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(92) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^31/Lucas(94) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^33/Lucas(96) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^35/Lucas(98) 6099996721309713 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^63 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^36/Lucas(99) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^37/Lucas(100) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^34/Lucas(97) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^32/Lucas(95) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(93) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(91) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(89) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(87) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(85) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(83) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(81) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(79) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^15/Lucas(80) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^13/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(84) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(86) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(88) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(90) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(92) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^29/Lucas(94) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^31/Lucas(96) 6099996721309713 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^65 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^33/Lucas(98) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^35/Lucas(100) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^34/Lucas(99) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^32/Lucas(97) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^30/Lucas(95) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(93) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(91) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(89) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(87) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(85) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^18/Lucas(83) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(80) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^15/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^17/Lucas(84) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(86) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(88) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(90) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(92) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^5/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^27/Lucas(94) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^29/Lucas(96) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^31/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(82)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^67 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^32/Lucas(99) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^33/Lucas(100) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^30/Lucas(97) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^28/Lucas(95) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(93) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(91) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(89) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(87) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(85) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(83) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^15/Lucas(84) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^17/Lucas(86) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(88) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(90) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(92) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^25/Lucas(94) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^27/Lucas(96) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^29/Lucas(98) 6099996721309713 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^69 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^30/Lucas(99) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^31/Lucas(100) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^28/Lucas(97) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^26/Lucas(95) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(93) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(91) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(89) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(87) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^16/Lucas(85) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^15/Lucas(86) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^17/Lucas(88) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(90) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(92) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^23/Lucas(94) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^25/Lucas(96) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^27/Lucas(98) 6099996721309713 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^71 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^28/Lucas(99) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^29/Lucas(100) 6099996721309713 a004 Fibonacci(86)*Lucas(1)/(1/2+sqrt(5)/2)^71 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^26/Lucas(97) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^24/Lucas(95) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(93) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(91) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(89) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^16/Lucas(87) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^15/Lucas(88) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^17/Lucas(90) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(92) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^21/Lucas(94) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^23/Lucas(96) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^25/Lucas(98) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^27/Lucas(100) 6099996721309713 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^73 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^26/Lucas(99) 6099996721309713 a004 Fibonacci(88)*Lucas(1)/(1/2+sqrt(5)/2)^73 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^24/Lucas(97) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^22/Lucas(95) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(93) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^18/Lucas(91) 6099996721309713 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^16/Lucas(89) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^15/Lucas(90) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^17/Lucas(92) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^19/Lucas(94) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^21/Lucas(96) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^23/Lucas(98) 6099996721309713 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^75 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^24/Lucas(99) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^25/Lucas(100) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^22/Lucas(97) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^20/Lucas(95) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^18/Lucas(93) 6099996721309713 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^16/Lucas(91) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^15/Lucas(92) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^13/Lucas(92) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^19/Lucas(96) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^21/Lucas(98) 6099996721309713 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^77 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^22/Lucas(99) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^23/Lucas(100) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^20/Lucas(97) 6099996721309713 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^18/Lucas(95) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^14/Lucas(92) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^15/Lucas(94) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^17/Lucas(96) 6099996721309713 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^79 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^19/Lucas(98) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^20/Lucas(99) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^21/Lucas(100) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^18/Lucas(97) 6099996721309713 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^16/Lucas(95) 6099996721309713 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^15/Lucas(96) 6099996721309713 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^13/Lucas(96) 6099996721309713 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^18/Lucas(99) 6099996721309713 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^19/Lucas(100) 6099996721309713 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^16/Lucas(97) 6099996721309713 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^15/Lucas(98) 6099996721309713 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^15/Lucas(100) 6099996721309713 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^16/Lucas(99) 6099996721309713 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^17/Lucas(100) 6099996721309713 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^14/Lucas(99) 6099996721309713 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(55)*Lucas(55)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(56)*Lucas(56)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(57)*Lucas(57)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^15/Lucas(99) 6099996721309713 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^18/Lucas(100) 6099996721309713 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^14/Lucas(97) 6099996721309713 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^17/Lucas(99) 6099996721309713 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^15/Lucas(97) 6099996721309713 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^16/Lucas(96) 6099996721309713 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^18/Lucas(98) 6099996721309713 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^20/Lucas(100) 6099996721309713 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^19/Lucas(99) 6099996721309713 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^17/Lucas(97) 6099996721309713 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^15/Lucas(95) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^16/Lucas(94) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^18/Lucas(96) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^20/Lucas(98) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^22/Lucas(100) 6099996721309713 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^10/Lucas(93) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^21/Lucas(99) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^19/Lucas(97) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^17/Lucas(95) 6099996721309713 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^15/Lucas(93) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^16/Lucas(92) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^18/Lucas(94) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^20/Lucas(96) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^22/Lucas(98) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^24/Lucas(100) 6099996721309713 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^76 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^23/Lucas(99) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^21/Lucas(97) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^19/Lucas(95) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^17/Lucas(93) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^15/Lucas(91) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^16/Lucas(90) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(92) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^20/Lucas(94) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^22/Lucas(96) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^24/Lucas(98) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^25/Lucas(99) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^26/Lucas(100) 6099996721309713 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^74 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^23/Lucas(97) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^21/Lucas(95) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(93) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^17/Lucas(91) 6099996721309713 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^15/Lucas(89) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^16/Lucas(88) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(90) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(92) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^22/Lucas(94) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^24/Lucas(96) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^26/Lucas(98) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^27/Lucas(99) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^28/Lucas(100) 6099996721309713 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^72 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^25/Lucas(97) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^23/Lucas(95) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(93) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(91) 6099996721309713 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^11/Lucas(87) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^17/Lucas(89) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^15/Lucas(87) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^16/Lucas(86) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(88) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(90) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(92) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^24/Lucas(94) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^26/Lucas(96) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^28/Lucas(98) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^30/Lucas(100) 6099996721309713 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^70 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^29/Lucas(99) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^27/Lucas(97) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^25/Lucas(95) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(93) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(91) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(89) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^13/Lucas(85) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^15/Lucas(85) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^16/Lucas(84) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(86) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(88) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(90) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(92) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^26/Lucas(94) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^28/Lucas(96) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^30/Lucas(98) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^32/Lucas(100) 6099996721309713 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^68 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^31/Lucas(99) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^29/Lucas(97) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^27/Lucas(95) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(93) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(91) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(89) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(87) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^17/Lucas(85) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^15/Lucas(83) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(84) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(86) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(88) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(90) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(92) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^28/Lucas(94) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^30/Lucas(96) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^32/Lucas(98) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^33/Lucas(99) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^34/Lucas(100) 6099996721309713 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^66 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^31/Lucas(97) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^29/Lucas(95) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(93) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(91) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(89) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(87) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(85) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(83) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(81) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(80) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(82) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(84) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(86) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^8/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(88) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(90) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(92) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^30/Lucas(94) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^32/Lucas(96) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^34/Lucas(98) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^36/Lucas(100) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^35/Lucas(99) 6099996721309713 a004 Fibonacci(79)*Lucas(1)/(1/2+sqrt(5)/2)^64 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^33/Lucas(97) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^31/Lucas(95) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(93) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(91) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(89) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(87) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(85) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(83) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(81) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(79) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(78) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(80) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(82) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(84) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(86) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(88) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(90) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(92) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^32/Lucas(94) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^34/Lucas(96) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^36/Lucas(98) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^37/Lucas(99) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^38/Lucas(100) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^35/Lucas(97) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^33/Lucas(95) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(93) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(91) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(89) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(87) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^5/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(85) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(83) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(81) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(79) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(77) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(76) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(78) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(80) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(82) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(84) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(86) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(88) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(90) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(75)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^34/Lucas(94) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^36/Lucas(96) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^38/Lucas(98) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^40/Lucas(100) 6099996721309713 a004 Fibonacci(98)/Lucas(75)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^39/Lucas(99) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^37/Lucas(97) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^35/Lucas(95) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(93) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(91) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(89) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(87) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(85) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(83) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(81) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(79) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(77) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(75) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(76) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(78) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(84) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(86) 6099996721309713 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(88) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(90) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(92) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^36/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^38/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(73)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^40/Lucas(98) 6099996721309713 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^41/Lucas(99) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^42/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(73)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^39/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(73)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^37/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(73)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(73)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(73)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(87) 6099996721309713 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(85) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(83) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(73) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(84) 6099996721309713 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(86) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^38/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^40/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^42/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^43/Lucas(99) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^44/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^41/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^39/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(85) 6099996721309713 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(83) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(71) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(82) 6099996721309713 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(84) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^40/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^42/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^44/Lucas(98) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^46/Lucas(100) 6099996721309713 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^45/Lucas(99) 6099996721309713 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^43/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^41/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(83) 6099996721309713 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(69) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(80) 6099996721309713 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(82) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^42/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^44/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^46/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^47/Lucas(99) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^48/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^45/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^43/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(81) 6099996721309713 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(67) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(78) 6099996721309713 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(80) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^44/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^46/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^48/Lucas(98) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^49/Lucas(99) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^50/Lucas(100) 6099996721309713 a004 Fibonacci(65)*Lucas(1)/(1/2+sqrt(5)/2)^50 6099996721309713 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^47/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^45/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(79) 6099996721309713 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(65) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(76) 6099996721309713 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(78) 6099996721309713 a006 5^(1/2)*Fibonacci(78)/Lucas(63)/sqrt(5) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^46/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^48/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^50/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^51/Lucas(99) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^52/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^49/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^47/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(77) 6099996721309713 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(63) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(74) 6099996721309713 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(76) 6099996721309713 a006 5^(1/2)*Fibonacci(76)/Lucas(61)/sqrt(5) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^48/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^50/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^52/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^53/Lucas(99) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^54/Lucas(100) 6099996721309713 a004 Fibonacci(61)*Lucas(1)/(1/2+sqrt(5)/2)^46 6099996721309713 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^51/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^49/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(75) 6099996721309713 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(61) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(59) 6099996721309713 a001 182717648081/408569081798*312119004989^(3/11) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(72) 6099996721309713 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(74) 6099996721309713 a006 5^(1/2)*Fibonacci(74)/Lucas(59)/sqrt(5) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^50/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^52/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^54/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^55/Lucas(99) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^56/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^53/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^51/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(73) 6099996721309713 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(59) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(70) 6099996721309713 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(72) 6099996721309713 a006 5^(1/2)*Fibonacci(72)/Lucas(57)/sqrt(5) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^52/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^54/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^56/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^57/Lucas(99) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^58/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^55/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^53/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(71) 6099996721309713 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(57) 6099996721309713 a004 Fibonacci(57)*Lucas(58)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(57) 6099996721309713 a004 Fibonacci(58)*Lucas(56)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(59)*Lucas(56)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(57)*Lucas(56)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(55) 6099996721309713 a001 139583862445/505019158607*23725150497407^(1/4) 6099996721309713 a004 Fibonacci(55)*Lucas(57)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(55) 6099996721309713 a004 Fibonacci(55)*Lucas(59)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(68) 6099996721309713 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(70) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^54/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^56/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^58/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^59/Lucas(99) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^60/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^57/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^55/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(69) 6099996721309713 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(55) 6099996721309713 a004 Fibonacci(55)*Lucas(60)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 182717648081/1730726404001*192900153618^(1/3) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(55) 6099996721309713 a004 Fibonacci(55)*Lucas(58)/(1/2+sqrt(5)/2)^98 6099996721309713 a001 139583862445/3461452808002*505019158607^(5/14) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(55) 6099996721309713 a004 Fibonacci(55)*Lucas(56)/(1/2+sqrt(5)/2)^96 6099996721309713 a001 75283811239/64300051206*73681302247^(1/4) 6099996721309713 a001 139583862445/1322157322203*192900153618^(1/3) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(55) 6099996721309713 a001 139583862445/5600748293801*192900153618^(7/18) 6099996721309713 a001 139583862445/23725150497407*192900153618^(4/9) 6099996721309713 a004 Fibonacci(56)*Lucas(54)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(58)*Lucas(54)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(60)*Lucas(54)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(61)*Lucas(54)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(59)*Lucas(54)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(57)*Lucas(54)/(1/2+sqrt(5)/2)^96 6099996721309713 a001 10610209857723/817138163596*73681302247^(2/13) 6099996721309713 a004 Fibonacci(55)*Lucas(54)/(1/2+sqrt(5)/2)^94 6099996721309713 a001 4052739537881/312119004989*73681302247^(2/13) 6099996721309713 a001 86267571272/312119004989*73681302247^(4/13) 6099996721309713 a001 86267571272/119218851371*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(53) 6099996721309713 a001 2504730781961/2139295485799*73681302247^(1/4) 6099996721309713 a001 591286729879/312119004989*73681302247^(3/13) 6099996721309713 a001 225851433717/817138163596*73681302247^(4/13) 6099996721309713 a001 365435296162/312119004989*73681302247^(1/4) 6099996721309713 a001 1135099622/192933544679*73681302247^(6/13) 6099996721309713 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^93 6099996721309713 a001 139583862445/505019158607*73681302247^(4/13) 6099996721309713 a001 53316291173/14662949395604*312119004989^(5/11) 6099996721309713 a001 225851433717/119218851371*817138163596^(4/19) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(53) 6099996721309713 a004 Fibonacci(53)*Lucas(57)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(53) 6099996721309713 a004 Fibonacci(53)*Lucas(59)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(53) 6099996721309713 a004 Fibonacci(53)*Lucas(61)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(66) 6099996721309713 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(68) 6099996721309713 a006 5^(1/2)*Fibonacci(68)/Lucas(53)/sqrt(5) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^56/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^58/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^60/Lucas(98) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^62/Lucas(100) 6099996721309713 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^61/Lucas(99) 6099996721309713 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^59/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^57/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(67) 6099996721309713 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(53) 6099996721309713 a004 Fibonacci(53)*Lucas(62)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(53) 6099996721309713 a004 Fibonacci(53)*Lucas(60)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(53) 6099996721309713 a004 Fibonacci(53)*Lucas(58)/(1/2+sqrt(5)/2)^96 6099996721309713 a001 53316291173/1322157322203*505019158607^(5/14) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(53) 6099996721309713 a001 365435296162/9062201101803*73681302247^(5/13) 6099996721309713 a001 225851433717/119218851371*192900153618^(2/9) 6099996721309713 a004 Fibonacci(53)*Lucas(56)/(1/2+sqrt(5)/2)^94 6099996721309713 a001 53316291173/505019158607*192900153618^(1/3) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(53) 6099996721309713 a001 139583862445/3461452808002*73681302247^(5/13) 6099996721309713 a001 53316291173/9062201101803*192900153618^(4/9) 6099996721309713 a001 10610209857723/119218851371*73681302247^(1/13) 6099996721309713 a001 139583862445/23725150497407*73681302247^(6/13) 6099996721309713 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 1548008755920/119218851371*73681302247^(2/13) 6099996721309713 a001 3536736619241/64300051206*28143753123^(1/10) 6099996721309713 a001 53316291173/192900153618*73681302247^(4/13) 6099996721309713 a001 225851433717/119218851371*73681302247^(3/13) 6099996721309713 a001 139583862445/119218851371*73681302247^(1/4) 6099996721309713 a001 53316291173/119218851371*312119004989^(3/11) 6099996721309713 a001 53316291173/1322157322203*73681302247^(5/13) 6099996721309713 a001 53316291173/119218851371*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(53) 6099996721309713 a001 53316291173/119218851371*192900153618^(5/18) 6099996721309713 a001 53316291173/9062201101803*73681302247^(6/13) 6099996721309713 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 53316291173/23725150497407*73681302247^(1/2) 6099996721309713 a001 12586269025/28143753123*10749957122^(5/16) 6099996721309713 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^93 6099996721309713 a001 365435296162/28143753123*10749957122^(1/6) 6099996721309713 a004 Fibonacci(58)*Lucas(52)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(60)*Lucas(52)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(62)*Lucas(52)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(63)*Lucas(52)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(61)*Lucas(52)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(59)*Lucas(52)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(57)*Lucas(52)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 6557470319842/119218851371*28143753123^(1/10) 6099996721309713 a001 10182505537/7331474697802*45537549124^(9/17) 6099996721309713 a001 2504730781961/505019158607*28143753123^(1/5) 6099996721309713 a001 10610209857723/2139295485799*28143753123^(1/5) 6099996721309713 a001 4052739537881/817138163596*28143753123^(1/5) 6099996721309713 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 10182505537/1730726404001*45537549124^(8/17) 6099996721309713 a001 140728068720/28374454999*28143753123^(1/5) 6099996721309713 a001 10182505537/96450076809*45537549124^(6/17) 6099996721309713 a001 10182505537/408569081798*45537549124^(7/17) 6099996721309713 a001 32951280099/45537549124*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(51) 6099996721309713 a001 20365011074/73681302247*23725150497407^(1/4) 6099996721309713 a001 591286729879/119218851371*28143753123^(1/5) 6099996721309713 a001 32951280099/817138163596*28143753123^(2/5) 6099996721309713 a001 43133785636/96450076809*28143753123^(3/10) 6099996721309713 a001 21566892818/11384387281*45537549124^(4/17) 6099996721309713 a001 20365011074/73681302247*73681302247^(4/13) 6099996721309713 a001 1515744265389/10525900321*10749957122^(1/16) 6099996721309713 a001 225851433717/505019158607*28143753123^(3/10) 6099996721309713 a001 591286729879/1322157322203*28143753123^(3/10) 6099996721309713 a001 182717648081/408569081798*28143753123^(3/10) 6099996721309713 a001 20365011074/119218851371*45537549124^(1/3) 6099996721309713 a001 182717648081/22768774562*45537549124^(3/17) 6099996721309713 a001 139583862445/312119004989*28143753123^(3/10) 6099996721309713 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 387002188980/11384387281*45537549124^(2/17) 6099996721309713 a001 10983760033/3020733700601*28143753123^(1/2) 6099996721309713 a001 3278735159921/22768774562*45537549124^(1/17) 6099996721309713 a001 21566892818/11384387281*817138163596^(4/19) 6099996721309713 a001 10182505537/96450076809*14662949395604^(2/7) 6099996721309713 a001 21566892818/11384387281*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(51) 6099996721309713 a001 10182505537/96450076809*192900153618^(1/3) 6099996721309713 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 225851433717/45537549124*312119004989^(2/11) 6099996721309713 a001 20365011074/1322157322203*312119004989^(2/5) 6099996721309713 a001 20365011074/5600748293801*312119004989^(5/11) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(59)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(61)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(51) 6099996721309713 a001 591286729879/45537549124*505019158607^(1/7) 6099996721309713 a004 Fibonacci(51)*Lucas(63)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(64) 6099996721309713 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(66) 6099996721309713 a006 5^(1/2)*Fibonacci(66)/Lucas(51)/sqrt(5) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^58/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^60/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^62/Lucas(98) 6099996721309713 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^63/Lucas(99) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^64/Lucas(100) 6099996721309713 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^61/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^59/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(65) 6099996721309713 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(64)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 10182505537/7331474697802*14662949395604^(3/7) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(62)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(60)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(58)/(1/2+sqrt(5)/2)^94 6099996721309713 a001 10182505537/408569081798*14662949395604^(1/3) 6099996721309713 a001 182717648081/22768774562*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(51) 6099996721309713 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 182717648081/22768774562*192900153618^(1/6) 6099996721309713 a001 139583862445/45537549124*312119004989^(1/5) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(51) 6099996721309713 a001 10182505537/1730726404001*192900153618^(4/9) 6099996721309713 a001 10182505537/7331474697802*192900153618^(1/2) 6099996721309713 a001 21566892818/11384387281*73681302247^(3/13) 6099996721309713 a001 225851433717/5600748293801*28143753123^(2/5) 6099996721309713 a001 591286729879/14662949395604*28143753123^(2/5) 6099996721309713 a001 365435296162/9062201101803*28143753123^(2/5) 6099996721309713 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 591286729879/45537549124*73681302247^(2/13) 6099996721309713 a001 139583862445/3461452808002*28143753123^(2/5) 6099996721309713 a001 6557470319842/73681302247*10749957122^(1/12) 6099996721309713 a001 139583862445/28143753123*10749957122^(5/24) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(51) 6099996721309713 a001 10182505537/1730726404001*73681302247^(6/13) 6099996721309713 a001 20365011074/9062201101803*73681302247^(1/2) 6099996721309713 a001 53316291173/1322157322203*28143753123^(2/5) 6099996721309713 a001 20365011074/23725150497407*73681302247^(7/13) 6099996721309713 a001 53316291173/45537549124*73681302247^(1/4) 6099996721309713 a001 86267571272/23725150497407*28143753123^(1/2) 6099996721309713 a001 2504730781961/45537549124*28143753123^(1/10) 6099996721309713 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 53316291173/14662949395604*28143753123^(1/2) 6099996721309713 a001 225851433717/45537549124*28143753123^(1/5) 6099996721309713 a001 10610209857723/119218851371*10749957122^(1/12) 6099996721309713 a001 10182505537/22768774562*45537549124^(5/17) 6099996721309713 a001 10610209857723/45537549124*10749957122^(1/24) 6099996721309713 a001 2504730781961/73681302247*10749957122^(1/8) 6099996721309713 a001 10182505537/22768774562*312119004989^(3/11) 6099996721309713 a001 10182505537/22768774562*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(51) 6099996721309713 a001 53316291173/28143753123*10749957122^(1/4) 6099996721309713 a001 10182505537/22768774562*192900153618^(5/18) 6099996721309713 a001 20365011074/505019158607*28143753123^(2/5) 6099996721309713 a001 3278735159921/22768774562*10749957122^(1/16) 6099996721309713 a001 3278735159921/96450076809*10749957122^(1/8) 6099996721309713 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 10610209857723/312119004989*10749957122^(1/8) 6099996721309713 a001 12586269025/17393796001*17393796001^(2/7) 6099996721309713 a001 20365011074/5600748293801*28143753123^(1/2) 6099996721309713 a001 4052739537881/119218851371*10749957122^(1/8) 6099996721309713 a001 4052739537881/45537549124*10749957122^(1/12) 6099996721309713 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 956722026041/73681302247*10749957122^(1/6) 6099996721309713 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(60)*Lucas(50)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(62)*Lucas(50)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(64)*Lucas(50)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(65)*Lucas(50)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(63)*Lucas(50)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(61)*Lucas(50)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(59)*Lucas(50)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 6557470319842/28143753123*4106118243^(1/23) 6099996721309713 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 10182505537/22768774562*28143753123^(3/10) 6099996721309713 a001 2504730781961/192900153618*10749957122^(1/6) 6099996721309713 a001 7778742049/9062201101803*17393796001^(4/7) 6099996721309713 a001 591286729879/73681302247*10749957122^(3/16) 6099996721309713 a001 10610209857723/817138163596*10749957122^(1/6) 6099996721309713 a001 4052739537881/312119004989*10749957122^(1/6) 6099996721309713 a001 1548008755920/119218851371*10749957122^(1/6) 6099996721309713 a001 387002188980/11384387281*10749957122^(1/8) 6099996721309713 a001 86000486440/10716675201*10749957122^(3/16) 6099996721309713 a001 365435296162/73681302247*10749957122^(5/24) 6099996721309713 a001 3536736619241/440719107401*10749957122^(3/16) 6099996721309713 a001 3278735159921/408569081798*10749957122^(3/16) 6099996721309713 a001 2504730781961/312119004989*10749957122^(3/16) 6099996721309713 a001 139583862445/10749957122*4106118243^(4/23) 6099996721309713 a001 956722026041/119218851371*10749957122^(3/16) 6099996721309713 a001 20365011074/28143753123*10749957122^(7/24) 6099996721309713 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 956722026041/192900153618*10749957122^(5/24) 6099996721309713 a001 2504730781961/505019158607*10749957122^(5/24) 6099996721309713 a001 4052739537881/817138163596*10749957122^(5/24) 6099996721309713 a001 140728068720/28374454999*10749957122^(5/24) 6099996721309713 a001 591286729879/119218851371*10749957122^(5/24) 6099996721309713 a001 7778742049/312119004989*17393796001^(3/7) 6099996721309713 a001 591286729879/45537549124*10749957122^(1/6) 6099996721309713 a001 225851433717/6643838879*2537720636^(2/15) 6099996721309713 a001 139583862445/73681302247*10749957122^(1/4) 6099996721309713 a001 12586269025/17393796001*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(49) 6099996721309713 a001 12586269025/119218851371*10749957122^(3/8) 6099996721309713 a001 7778742049/28143753123*73681302247^(4/13) 6099996721309713 a001 12586269025/45537549124*10749957122^(1/3) 6099996721309713 a001 182717648081/22768774562*10749957122^(3/16) 6099996721309713 a001 182717648081/96450076809*10749957122^(1/4) 6099996721309713 a001 956722026041/505019158607*10749957122^(1/4) 6099996721309713 a001 10610209857723/5600748293801*10749957122^(1/4) 6099996721309713 a001 591286729879/312119004989*10749957122^(1/4) 6099996721309713 a001 225851433717/119218851371*10749957122^(1/4) 6099996721309713 a001 225851433717/45537549124*10749957122^(5/24) 6099996721309713 a001 32951280099/73681302247*10749957122^(5/16) 6099996721309713 a001 1144206275/28374454999*10749957122^(5/12) 6099996721309713 a001 53316291173/73681302247*10749957122^(7/24) 6099996721309713 a001 139583862445/192900153618*10749957122^(7/24) 6099996721309713 a001 12586269025/505019158607*10749957122^(7/16) 6099996721309713 a001 365435296162/505019158607*10749957122^(7/24) 6099996721309713 a001 225851433717/312119004989*10749957122^(7/24) 6099996721309713 a001 86267571272/119218851371*10749957122^(7/24) 6099996721309713 a001 21566892818/11384387281*10749957122^(1/4) 6099996721309713 a001 43133785636/96450076809*10749957122^(5/16) 6099996721309713 a001 225851433717/505019158607*10749957122^(5/16) 6099996721309713 a001 591286729879/1322157322203*10749957122^(5/16) 6099996721309713 a001 12586269025/817138163596*10749957122^(11/24) 6099996721309713 a001 182717648081/408569081798*10749957122^(5/16) 6099996721309713 a001 139583862445/312119004989*10749957122^(5/16) 6099996721309713 a001 32951280099/119218851371*10749957122^(1/3) 6099996721309713 a001 32951280099/45537549124*10749957122^(7/24) 6099996721309713 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 365435296162/17393796001*17393796001^(1/7) 6099996721309713 a001 53316291173/119218851371*10749957122^(5/16) 6099996721309713 a001 86267571272/312119004989*10749957122^(1/3) 6099996721309713 a001 225851433717/817138163596*10749957122^(1/3) 6099996721309713 a001 1548008755920/5600748293801*10749957122^(1/3) 6099996721309713 a001 139583862445/505019158607*10749957122^(1/3) 6099996721309713 a001 53316291173/192900153618*10749957122^(1/3) 6099996721309713 a001 7778742049/73681302247*45537549124^(6/17) 6099996721309713 a001 32951280099/17393796001*45537549124^(4/17) 6099996721309713 a001 7778742049/23725150497407*45537549124^(10/17) 6099996721309713 a001 7778742049/5600748293801*45537549124^(9/17) 6099996721309713 a001 10610209857723/45537549124*4106118243^(1/23) 6099996721309713 a001 12586269025/2139295485799*10749957122^(1/2) 6099996721309713 a001 32951280099/312119004989*10749957122^(3/8) 6099996721309713 a001 7778742049/1322157322203*45537549124^(8/17) 6099996721309713 a001 7778742049/312119004989*45537549124^(7/17) 6099996721309713 a001 32951280099/17393796001*817138163596^(4/19) 6099996721309713 a001 32951280099/17393796001*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(49) 6099996721309713 a001 32951280099/17393796001*192900153618^(2/9) 6099996721309713 a001 7778742049/73681302247*192900153618^(1/3) 6099996721309713 a001 32951280099/17393796001*73681302247^(3/13) 6099996721309713 a001 20365011074/73681302247*10749957122^(1/3) 6099996721309713 a001 21566892818/204284540899*10749957122^(3/8) 6099996721309713 a001 139583862445/17393796001*45537549124^(3/17) 6099996721309713 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 225851433717/2139295485799*10749957122^(3/8) 6099996721309713 a001 182717648081/1730726404001*10749957122^(3/8) 6099996721309713 a001 591286729879/17393796001*45537549124^(2/17) 6099996721309713 a001 139583862445/1322157322203*10749957122^(3/8) 6099996721309713 a001 2504730781961/17393796001*45537549124^(1/17) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(49) 6099996721309713 a001 7778742049/192900153618*23725150497407^(5/16) 6099996721309713 a001 7778742049/192900153618*505019158607^(5/14) 6099996721309713 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^89 6099996721309713 a001 7778742049/2139295485799*312119004989^(5/11) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(61)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(62) 6099996721309713 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(63)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(64) 6099996721309713 a006 5^(1/2)*Fibonacci(64)/Lucas(49)/sqrt(5) 6099996721309713 a004 Fibonacci(49)*Lucas(65)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^60/Lucas(94) 6099996721309713 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^62/Lucas(96) 6099996721309713 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^64/Lucas(98) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^65/Lucas(99) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^66/Lucas(100) 6099996721309713 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^63/Lucas(97) 6099996721309713 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^61/Lucas(95) 6099996721309713 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(49)*Lucas(66)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(49)*Lucas(64)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(63) 6099996721309713 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(62)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(60)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(49) 6099996721309713 a001 7778742049/2139295485799*3461452808002^(5/12) 6099996721309713 a001 7778742049/14662949395604*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^92 6099996721309713 a001 365435296162/17393796001*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(49) 6099996721309713 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^90 6099996721309713 a001 139583862445/17393796001*817138163596^(3/19) 6099996721309713 a001 139583862445/17393796001*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(49) 6099996721309713 a001 1548008755920/17393796001*73681302247^(1/13) 6099996721309713 a001 139583862445/17393796001*192900153618^(1/6) 6099996721309713 a001 7778742049/312119004989*192900153618^(7/18) 6099996721309713 a001 7787980473/599786069*73681302247^(2/13) 6099996721309713 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 7778742049/192900153618*73681302247^(5/13) 6099996721309713 a001 53316291173/17393796001*312119004989^(1/5) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(49) 6099996721309713 a001 7778742049/1322157322203*73681302247^(6/13) 6099996721309713 a001 7778742049/3461452808002*73681302247^(1/2) 6099996721309713 a001 7778742049/9062201101803*73681302247^(7/13) 6099996721309713 a001 32951280099/817138163596*10749957122^(5/12) 6099996721309713 a001 12586269025/5600748293801*10749957122^(13/24) 6099996721309713 a001 956722026041/17393796001*28143753123^(1/10) 6099996721309713 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 86267571272/17393796001*28143753123^(1/5) 6099996721309713 a001 86267571272/2139295485799*10749957122^(5/12) 6099996721309713 a001 10983760033/440719107401*10749957122^(7/16) 6099996721309713 a001 12586269025/9062201101803*10749957122^(9/16) 6099996721309713 a001 591286729879/14662949395604*10749957122^(5/12) 6099996721309713 a001 365435296162/9062201101803*10749957122^(5/12) 6099996721309713 a001 139583862445/3461452808002*10749957122^(5/12) 6099996721309713 a001 7778742049/45537549124*45537549124^(1/3) 6099996721309713 a001 4052739537881/17393796001*10749957122^(1/24) 6099996721309713 a001 10182505537/22768774562*10749957122^(5/16) 6099996721309713 a001 53316291173/1322157322203*10749957122^(5/12) 6099996721309713 a001 10182505537/96450076809*10749957122^(3/8) 6099996721309713 a001 43133785636/1730726404001*10749957122^(7/16) 6099996721309713 a001 75283811239/3020733700601*10749957122^(7/16) 6099996721309713 a001 32951280099/2139295485799*10749957122^(11/24) 6099996721309713 a001 12586269025/14662949395604*10749957122^(7/12) 6099996721309713 a001 182717648081/7331474697802*10749957122^(7/16) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(49) 6099996721309713 a001 139583862445/5600748293801*10749957122^(7/16) 6099996721309713 a001 20365011074/17393796001*73681302247^(1/4) 6099996721309713 a001 2504730781961/17393796001*10749957122^(1/16) 6099996721309713 a001 53316291173/2139295485799*10749957122^(7/16) 6099996721309713 a001 2504730781961/28143753123*4106118243^(2/23) 6099996721309713 a001 7778742049/2139295485799*28143753123^(1/2) 6099996721309713 a001 7787980473/505618944676*10749957122^(11/24) 6099996721309713 a001 139583862445/9062201101803*10749957122^(11/24) 6099996721309713 a001 1548008755920/17393796001*10749957122^(1/12) 6099996721309713 a001 53316291173/3461452808002*10749957122^(11/24) 6099996721309713 a001 7778742049/23725150497407*28143753123^(3/5) 6099996721309713 a001 20365011074/505019158607*10749957122^(5/12) 6099996721309713 a001 32951280099/5600748293801*10749957122^(1/2) 6099996721309713 a001 10182505537/408569081798*10749957122^(7/16) 6099996721309713 a001 1135099622/192933544679*10749957122^(1/2) 6099996721309713 a001 53316291173/10749957122*4106118243^(5/23) 6099996721309713 a001 139583862445/23725150497407*10749957122^(1/2) 6099996721309713 a001 591286729879/17393796001*10749957122^(1/8) 6099996721309713 a001 53316291173/9062201101803*10749957122^(1/2) 6099996721309713 a001 20365011074/1322157322203*10749957122^(11/24) 6099996721309713 a001 32951280099/14662949395604*10749957122^(13/24) 6099996721309713 a001 12586269025/17393796001*10749957122^(7/24) 6099996721309713 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 32951280099/23725150497407*10749957122^(9/16) 6099996721309713 a001 7787980473/599786069*10749957122^(1/6) 6099996721309713 a001 53316291173/23725150497407*10749957122^(13/24) 6099996721309713 a001 10182505537/1730726404001*10749957122^(1/2) 6099996721309713 a001 7778742049/28143753123*10749957122^(1/3) 6099996721309713 a001 139583862445/17393796001*10749957122^(3/16) 6099996721309713 a001 6557470319842/73681302247*4106118243^(2/23) 6099996721309713 a001 86267571272/17393796001*10749957122^(5/24) 6099996721309713 a001 20365011074/9062201101803*10749957122^(13/24) 6099996721309713 a001 10610209857723/119218851371*4106118243^(2/23) 6099996721309713 a001 32951280099/17393796001*10749957122^(1/4) 6099996721309713 a001 10182505537/7331474697802*10749957122^(9/16) 6099996721309713 a001 365435296162/6643838879*2537720636^(1/9) 6099996721309713 a001 20365011074/23725150497407*10749957122^(7/12) 6099996721309713 a001 4052739537881/45537549124*4106118243^(2/23) 6099996721309713 a001 4052739537881/17393796001*4106118243^(1/23) 6099996721309713 a001 7778742049/73681302247*10749957122^(3/8) 6099996721309713 a001 7778742049/17393796001*45537549124^(5/17) 6099996721309713 a001 956722026041/28143753123*4106118243^(3/23) 6099996721309713 a001 7778742049/17393796001*312119004989^(3/11) 6099996721309713 a001 7778742049/17393796001*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(49) 6099996721309713 a001 7778742049/17393796001*192900153618^(5/18) 6099996721309713 a001 7778742049/192900153618*10749957122^(5/12) 6099996721309713 a001 7778742049/17393796001*28143753123^(3/10) 6099996721309713 a001 7778742049/312119004989*10749957122^(7/16) 6099996721309713 a001 7778742049/505019158607*10749957122^(11/24) 6099996721309713 a001 10182505537/5374978561*4106118243^(6/23) 6099996721309713 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 2504730781961/73681302247*4106118243^(3/23) 6099996721309713 a001 7778742049/1322157322203*10749957122^(1/2) 6099996721309713 a001 3278735159921/96450076809*4106118243^(3/23) 6099996721309713 a001 10610209857723/312119004989*4106118243^(3/23) 6099996721309713 a001 4052739537881/119218851371*4106118243^(3/23) 6099996721309713 a001 7778742049/3461452808002*10749957122^(13/24) 6099996721309713 a001 7778742049/5600748293801*10749957122^(9/16) 6099996721309713 a001 387002188980/11384387281*4106118243^(3/23) 6099996721309713 a001 7778742049/9062201101803*10749957122^(7/12) 6099996721309713 a001 1548008755920/17393796001*4106118243^(2/23) 6099996721309713 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(62)*Lucas(48)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(64)*Lucas(48)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(66)*Lucas(48)/(1/2+sqrt(5)/2)^99 6099996721309713 a001 1/2403763488*(1/2+1/2*5^(1/2))^63 6099996721309713 a004 Fibonacci(67)*Lucas(48)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(65)*Lucas(48)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(63)*Lucas(48)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(61)*Lucas(48)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 7778742049/23725150497407*10749957122^(5/8) 6099996721309713 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 365435296162/28143753123*4106118243^(4/23) 6099996721309713 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 7778742049/17393796001*10749957122^(5/16) 6099996721309713 a001 2504730781961/10749957122*1568397607^(1/22) 6099996721309713 a001 956722026041/73681302247*4106118243^(4/23) 6099996721309713 a001 2504730781961/192900153618*4106118243^(4/23) 6099996721309713 a001 10610209857723/817138163596*4106118243^(4/23) 6099996721309713 a001 4052739537881/312119004989*4106118243^(4/23) 6099996721309713 a001 1548008755920/119218851371*4106118243^(4/23) 6099996721309713 a001 591286729879/45537549124*4106118243^(4/23) 6099996721309713 a001 591286729879/17393796001*4106118243^(3/23) 6099996721309713 a001 139583862445/28143753123*4106118243^(5/23) 6099996721309713 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 956722026041/6643838879*2537720636^(1/15) 6099996721309713 a001 7778742049/10749957122*4106118243^(7/23) 6099996721309713 a001 365435296162/73681302247*4106118243^(5/23) 6099996721309713 a001 956722026041/192900153618*4106118243^(5/23) 6099996721309713 a001 2504730781961/505019158607*4106118243^(5/23) 6099996721309713 a001 10610209857723/2139295485799*4106118243^(5/23) 6099996721309713 a001 4052739537881/817138163596*4106118243^(5/23) 6099996721309713 a001 140728068720/28374454999*4106118243^(5/23) 6099996721309713 a001 591286729879/119218851371*4106118243^(5/23) 6099996721309713 a001 4807526976/6643838879*17393796001^(2/7) 6099996721309713 a001 225851433717/45537549124*4106118243^(5/23) 6099996721309713 a001 7787980473/599786069*4106118243^(4/23) 6099996721309713 a001 4807526976/6643838879*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(47) 6099996721309713 a001 2971215073/10749957122*23725150497407^(1/4) 6099996721309713 a001 4807526976/6643838879*505019158607^(1/4) 6099996721309713 a001 2971215073/10749957122*73681302247^(4/13) 6099996721309713 a001 53316291173/28143753123*4106118243^(6/23) 6099996721309713 a001 53316291173/4106118243*1568397607^(2/11) 6099996721309713 a001 1201881744/11384387281*4106118243^(9/23) 6099996721309713 a001 4807526976/17393796001*4106118243^(8/23) 6099996721309713 a001 139583862445/73681302247*4106118243^(6/23) 6099996721309713 a001 182717648081/96450076809*4106118243^(6/23) 6099996721309713 a001 956722026041/505019158607*4106118243^(6/23) 6099996721309713 a001 10610209857723/5600748293801*4106118243^(6/23) 6099996721309713 a001 591286729879/312119004989*4106118243^(6/23) 6099996721309713 a001 225851433717/119218851371*4106118243^(6/23) 6099996721309713 a001 21566892818/11384387281*4106118243^(6/23) 6099996721309713 a001 86267571272/17393796001*4106118243^(5/23) 6099996721309713 a001 4807526976/6643838879*10749957122^(7/24) 6099996721309713 a001 2971215073/10749957122*10749957122^(1/3) 6099996721309713 a001 4807526976/119218851371*4106118243^(10/23) 6099996721309713 a001 6557470319842/28143753123*1568397607^(1/22) 6099996721309713 a001 20365011074/28143753123*4106118243^(7/23) 6099996721309713 a001 53316291173/73681302247*4106118243^(7/23) 6099996721309713 a001 139583862445/192900153618*4106118243^(7/23) 6099996721309713 a001 365435296162/505019158607*4106118243^(7/23) 6099996721309713 a001 591286729879/817138163596*4106118243^(7/23) 6099996721309713 a001 225851433717/312119004989*4106118243^(7/23) 6099996721309713 a001 86267571272/119218851371*4106118243^(7/23) 6099996721309713 a001 32951280099/45537549124*4106118243^(7/23) 6099996721309713 a001 32951280099/17393796001*4106118243^(6/23) 6099996721309713 a001 10610209857723/45537549124*1568397607^(1/22) 6099996721309713 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 4807526976/312119004989*4106118243^(11/23) 6099996721309713 a001 12586269025/45537549124*4106118243^(8/23) 6099996721309713 a001 12586269025/17393796001*4106118243^(7/23) 6099996721309713 a001 32951280099/119218851371*4106118243^(8/23) 6099996721309713 a001 86267571272/312119004989*4106118243^(8/23) 6099996721309713 a001 225851433717/817138163596*4106118243^(8/23) 6099996721309713 a001 1548008755920/5600748293801*4106118243^(8/23) 6099996721309713 a001 139583862445/505019158607*4106118243^(8/23) 6099996721309713 a001 53316291173/192900153618*4106118243^(8/23) 6099996721309713 a001 2971215073/3461452808002*17393796001^(4/7) 6099996721309713 a001 20365011074/73681302247*4106118243^(8/23) 6099996721309713 a001 102287808/10745088481*4106118243^(1/2) 6099996721309713 a001 2971215073/28143753123*45537549124^(6/17) 6099996721309713 a001 12586269025/6643838879*45537549124^(4/17) 6099996721309713 a001 2971215073/119218851371*17393796001^(3/7) 6099996721309713 a001 12586269025/6643838879*817138163596^(4/19) 6099996721309713 a001 2971215073/28143753123*14662949395604^(2/7) 6099996721309713 a001 12586269025/6643838879*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(47) 6099996721309713 a001 12586269025/6643838879*192900153618^(2/9) 6099996721309713 a001 2971215073/28143753123*192900153618^(1/3) 6099996721309713 a001 12586269025/6643838879*73681302247^(3/13) 6099996721309713 a001 4052739537881/17393796001*1568397607^(1/22) 6099996721309713 a001 12586269025/119218851371*4106118243^(9/23) 6099996721309713 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 139583862445/6643838879*17393796001^(1/7) 6099996721309713 a001 1201881744/204284540899*4106118243^(12/23) 6099996721309713 a001 2971215073/9062201101803*45537549124^(10/17) 6099996721309713 a001 2971215073/2139295485799*45537549124^(9/17) 6099996721309713 a001 2971215073/505019158607*45537549124^(8/17) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(47) 6099996721309713 a001 2971215073/73681302247*23725150497407^(5/16) 6099996721309713 a001 2971215073/73681302247*505019158607^(5/14) 6099996721309713 a001 2971215073/119218851371*45537549124^(7/17) 6099996721309713 a001 2971215073/73681302247*73681302247^(5/13) 6099996721309713 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 225851433717/6643838879*45537549124^(2/17) 6099996721309713 a001 2971215073/192900153618*312119004989^(2/5) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(47) 6099996721309713 a001 86267571272/6643838879*23725150497407^(1/8) 6099996721309713 a001 86267571272/6643838879*505019158607^(1/7) 6099996721309713 a001 53316291173/6643838879*45537549124^(3/17) 6099996721309713 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 2971215073/9062201101803*312119004989^(6/11) 6099996721309713 a001 2971215073/505019158607*14662949395604^(8/21) 6099996721309713 a001 225851433717/6643838879*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(47) 6099996721309713 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(47) 6099996721309713 a001 2971215073/2139295485799*817138163596^(9/19) 6099996721309713 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(60) 6099996721309713 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(47) 6099996721309713 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(62) 6099996721309713 a004 Fibonacci(47)*Lucas(63)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 2971215073/23725150497407*23725150497407^(1/2) 6099996721309713 a004 Fibonacci(47)*Lucas(65)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(47)*Lucas(67)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(90) 6099996721309713 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(92) 6099996721309713 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^62/Lucas(94) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^64/Lucas(96) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^66/Lucas(98) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^67/Lucas(99) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^68/Lucas(100) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^65/Lucas(97) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^63/Lucas(95) 6099996721309713 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(93) 6099996721309713 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(91) 6099996721309713 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(47)*Lucas(68)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(47)*Lucas(66)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(47)*Lucas(64)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2) 6099996721309713 a001 2971215073/14662949395604*9062201101803^(1/2) 6099996721309713 a004 Fibonacci(47)*Lucas(62)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(61) 6099996721309713 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(47) 6099996721309713 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(47) 6099996721309713 a001 2971215073/5600748293801*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(47) 6099996721309713 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 2971215073/505019158607*192900153618^(4/9) 6099996721309713 a001 139583862445/6643838879*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(47) 6099996721309713 a001 2971215073/2139295485799*192900153618^(1/2) 6099996721309713 a001 7778742049/28143753123*4106118243^(8/23) 6099996721309713 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 32951280099/6643838879*28143753123^(1/5) 6099996721309713 a001 53316291173/6643838879*817138163596^(3/19) 6099996721309713 a001 2971215073/119218851371*14662949395604^(1/3) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(47) 6099996721309713 a001 53316291173/6643838879*192900153618^(1/6) 6099996721309713 a001 2971215073/119218851371*192900153618^(7/18) 6099996721309713 a001 2971215073/505019158607*73681302247^(6/13) 6099996721309713 a001 2971215073/1322157322203*73681302247^(1/2) 6099996721309713 a001 2971215073/3461452808002*73681302247^(7/13) 6099996721309713 a001 2971215073/23725150497407*73681302247^(8/13) 6099996721309713 a001 365435296162/6643838879*28143753123^(1/10) 6099996721309713 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 2971215073/73681302247*28143753123^(2/5) 6099996721309713 a001 1548008755920/6643838879*10749957122^(1/24) 6099996721309713 a001 32951280099/312119004989*4106118243^(9/23) 6099996721309713 a001 20365011074/6643838879*312119004989^(1/5) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(47) 6099996721309713 a001 21566892818/204284540899*4106118243^(9/23) 6099996721309713 a001 956722026041/6643838879*10749957122^(1/16) 6099996721309713 a001 225851433717/2139295485799*4106118243^(9/23) 6099996721309713 a001 182717648081/1730726404001*4106118243^(9/23) 6099996721309713 a001 139583862445/1322157322203*4106118243^(9/23) 6099996721309713 a001 53316291173/505019158607*4106118243^(9/23) 6099996721309713 a001 2971215073/817138163596*28143753123^(1/2) 6099996721309713 a001 591286729879/6643838879*10749957122^(1/12) 6099996721309713 a001 2971215073/9062201101803*28143753123^(3/5) 6099996721309713 a001 12586269025/6643838879*10749957122^(1/4) 6099996721309713 a001 10182505537/96450076809*4106118243^(9/23) 6099996721309713 a001 225851433717/6643838879*10749957122^(1/8) 6099996721309713 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 86267571272/6643838879*10749957122^(1/6) 6099996721309713 a001 32951280099/6643838879*10749957122^(5/24) 6099996721309713 a001 53316291173/6643838879*10749957122^(3/16) 6099996721309713 a001 1144206275/28374454999*4106118243^(10/23) 6099996721309713 a001 2971215073/28143753123*10749957122^(3/8) 6099996721309713 a001 4807526976/2139295485799*4106118243^(13/23) 6099996721309713 a001 1548008755920/6643838879*4106118243^(1/23) 6099996721309713 a001 32951280099/817138163596*4106118243^(10/23) 6099996721309713 a001 86267571272/2139295485799*4106118243^(10/23) 6099996721309713 a001 225851433717/5600748293801*4106118243^(10/23) 6099996721309713 a001 591286729879/14662949395604*4106118243^(10/23) 6099996721309713 a001 365435296162/9062201101803*4106118243^(10/23) 6099996721309713 a001 139583862445/3461452808002*4106118243^(10/23) 6099996721309713 a001 2971215073/17393796001*45537549124^(1/3) 6099996721309713 a001 53316291173/1322157322203*4106118243^(10/23) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(47) 6099996721309713 a001 7778742049/6643838879*73681302247^(1/4) 6099996721309713 a001 2971215073/73681302247*10749957122^(5/12) 6099996721309713 a001 20365011074/505019158607*4106118243^(10/23) 6099996721309713 a001 7778742049/73681302247*4106118243^(9/23) 6099996721309713 a001 2971215073/119218851371*10749957122^(7/16) 6099996721309713 a001 2971215073/192900153618*10749957122^(11/24) 6099996721309713 a001 2971215073/505019158607*10749957122^(1/2) 6099996721309713 a001 12586269025/817138163596*4106118243^(11/23) 6099996721309713 a001 2971215073/1322157322203*10749957122^(13/24) 6099996721309713 a001 4807526976/5600748293801*4106118243^(14/23) 6099996721309713 a001 2971215073/2139295485799*10749957122^(9/16) 6099996721309713 a001 2971215073/3461452808002*10749957122^(7/12) 6099996721309713 a001 591286729879/6643838879*4106118243^(2/23) 6099996721309713 a001 2971215073/9062201101803*10749957122^(5/8) 6099996721309713 a001 32951280099/2139295485799*4106118243^(11/23) 6099996721309713 a001 956722026041/10749957122*1568397607^(1/11) 6099996721309713 a001 86267571272/5600748293801*4106118243^(11/23) 6099996721309713 a001 7787980473/505618944676*4106118243^(11/23) 6099996721309713 a001 365435296162/23725150497407*4106118243^(11/23) 6099996721309713 a001 139583862445/9062201101803*4106118243^(11/23) 6099996721309713 a001 12586269025/1322157322203*4106118243^(1/2) 6099996721309713 a001 2971215073/23725150497407*10749957122^(2/3) 6099996721309713 a001 53316291173/3461452808002*4106118243^(11/23) 6099996721309713 a001 20365011074/1322157322203*4106118243^(11/23) 6099996721309713 a001 7778742049/192900153618*4106118243^(10/23) 6099996721309713 a001 32951280099/3461452808002*4106118243^(1/2) 6099996721309713 a001 86267571272/9062201101803*4106118243^(1/2) 6099996721309713 a001 225851433717/23725150497407*4106118243^(1/2) 6099996721309713 a001 139583862445/14662949395604*4106118243^(1/2) 6099996721309713 a001 12586269025/2139295485799*4106118243^(12/23) 6099996721309713 a001 53316291173/5600748293801*4106118243^(1/2) 6099996721309713 a001 1201881744/3665737348901*4106118243^(15/23) 6099996721309713 a001 20365011074/2139295485799*4106118243^(1/2) 6099996721309713 a001 225851433717/6643838879*4106118243^(3/23) 6099996721309713 a001 32951280099/5600748293801*4106118243^(12/23) 6099996721309713 a001 1135099622/192933544679*4106118243^(12/23) 6099996721309713 a001 139583862445/23725150497407*4106118243^(12/23) 6099996721309713 a001 53316291173/9062201101803*4106118243^(12/23) 6099996721309713 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 10182505537/1730726404001*4106118243^(12/23) 6099996721309713 a001 7778742049/505019158607*4106118243^(11/23) 6099996721309713 a001 4807526976/6643838879*4106118243^(7/23) 6099996721309713 a001 12586269025/5600748293801*4106118243^(13/23) 6099996721309713 a001 86267571272/6643838879*4106118243^(4/23) 6099996721309713 a001 7778742049/817138163596*4106118243^(1/2) 6099996721309713 a001 32951280099/14662949395604*4106118243^(13/23) 6099996721309713 a001 20365011074/4106118243*1568397607^(5/22) 6099996721309713 a001 53316291173/23725150497407*4106118243^(13/23) 6099996721309713 a001 20365011074/9062201101803*4106118243^(13/23) 6099996721309713 a001 7778742049/1322157322203*4106118243^(12/23) 6099996721309713 a001 2971215073/10749957122*4106118243^(8/23) 6099996721309713 a001 12586269025/14662949395604*4106118243^(14/23) 6099996721309713 a001 32951280099/6643838879*4106118243^(5/23) 6099996721309713 a001 2504730781961/28143753123*1568397607^(1/11) 6099996721309713 a001 20365011074/23725150497407*4106118243^(14/23) 6099996721309713 a001 6557470319842/73681302247*1568397607^(1/11) 6099996721309713 a001 7778742049/3461452808002*4106118243^(13/23) 6099996721309713 a001 12586269025/6643838879*4106118243^(6/23) 6099996721309713 a001 10610209857723/119218851371*1568397607^(1/11) 6099996721309713 a001 4052739537881/45537549124*1568397607^(1/11) 6099996721309713 a001 7778742049/9062201101803*4106118243^(14/23) 6099996721309713 a001 1548008755920/17393796001*1568397607^(1/11) 6099996721309713 a001 12586269025/4106118243*1568397607^(1/4) 6099996721309713 a001 1548008755920/6643838879*1568397607^(1/22) 6099996721309713 a001 567451585/7331474697802*2537720636^(11/15) 6099996721309713 a001 7778742049/23725150497407*4106118243^(15/23) 6099996721309713 a001 2971215073/28143753123*4106118243^(9/23) 6099996721309713 a001 2971215073/6643838879*45537549124^(5/17) 6099996721309713 a001 2971215073/6643838879*312119004989^(3/11) 6099996721309713 a001 2971215073/6643838879*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(47) 6099996721309713 a001 2971215073/6643838879*192900153618^(5/18) 6099996721309713 a001 2971215073/6643838879*28143753123^(3/10) 6099996721309713 a001 182717648081/5374978561*1568397607^(3/22) 6099996721309713 a001 2971215073/6643838879*10749957122^(5/16) 6099996721309713 a001 2971215073/73681302247*4106118243^(10/23) 6099996721309713 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 2971215073/192900153618*4106118243^(11/23) 6099996721309713 a001 567451585/1730726404001*2537720636^(2/3) 6099996721309713 a001 2971215073/312119004989*4106118243^(1/2) 6099996721309713 a001 2971215073/505019158607*4106118243^(12/23) 6099996721309713 a001 956722026041/28143753123*1568397607^(3/22) 6099996721309713 a001 7778742049/4106118243*1568397607^(3/11) 6099996721309713 a001 2504730781961/73681302247*1568397607^(3/22) 6099996721309713 a001 3278735159921/96450076809*1568397607^(3/22) 6099996721309713 a001 10610209857723/312119004989*1568397607^(3/22) 6099996721309713 a001 4052739537881/119218851371*1568397607^(3/22) 6099996721309713 a001 387002188980/11384387281*1568397607^(3/22) 6099996721309713 a001 2971215073/1322157322203*4106118243^(13/23) 6099996721309713 a001 32951280099/1568397607*599074578^(1/6) 6099996721309713 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 591286729879/17393796001*1568397607^(3/22) 6099996721309713 a001 2971215073/3461452808002*4106118243^(14/23) 6099996721309713 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(64)*Lucas(46)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(66)*Lucas(46)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(68)*Lucas(46)/(1/2+sqrt(5)/2)^99 6099996721309713 a001 2/1836311903*(1/2+1/2*5^(1/2))^61 6099996721309713 a004 Fibonacci(69)*Lucas(46)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(67)*Lucas(46)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(65)*Lucas(46)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(63)*Lucas(46)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 591286729879/6643838879*1568397607^(1/11) 6099996721309713 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 2971215073/9062201101803*4106118243^(15/23) 6099996721309713 a001 567451585/408569081798*2537720636^(3/5) 6099996721309713 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 2971215073/23725150497407*4106118243^(16/23) 6099996721309713 a001 139583862445/10749957122*1568397607^(2/11) 6099996721309713 a001 1134903170/312119004989*2537720636^(5/9) 6099996721309713 a001 567451585/96450076809*2537720636^(8/15) 6099996721309713 a001 365435296162/28143753123*1568397607^(2/11) 6099996721309713 a001 956722026041/4106118243*599074578^(1/21) 6099996721309713 a001 956722026041/73681302247*1568397607^(2/11) 6099996721309713 a001 2504730781961/192900153618*1568397607^(2/11) 6099996721309713 a001 10610209857723/817138163596*1568397607^(2/11) 6099996721309713 a001 4052739537881/312119004989*1568397607^(2/11) 6099996721309713 a001 1548008755920/119218851371*1568397607^(2/11) 6099996721309713 a001 591286729879/45537549124*1568397607^(2/11) 6099996721309713 a001 7787980473/599786069*1568397607^(2/11) 6099996721309713 a001 225851433717/6643838879*1568397607^(3/22) 6099996721309713 a001 10182505537/299537289*228826127^(3/20) 6099996721309713 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 567451585/22768774562*2537720636^(7/15) 6099996721309713 a001 53316291173/10749957122*1568397607^(5/22) 6099996721309713 a001 567451585/5374978561*2537720636^(2/5) 6099996721309713 a001 1134903170/28143753123*2537720636^(4/9) 6099996721309713 a001 139583862445/28143753123*1568397607^(5/22) 6099996721309713 a001 365435296162/73681302247*1568397607^(5/22) 6099996721309713 a001 956722026041/192900153618*1568397607^(5/22) 6099996721309713 a001 2504730781961/505019158607*1568397607^(5/22) 6099996721309713 a001 10610209857723/2139295485799*1568397607^(5/22) 6099996721309713 a001 4052739537881/817138163596*1568397607^(5/22) 6099996721309713 a001 140728068720/28374454999*1568397607^(5/22) 6099996721309713 a001 591286729879/119218851371*1568397607^(5/22) 6099996721309713 a001 2971215073/4106118243*1568397607^(7/22) 6099996721309713 a001 32951280099/10749957122*1568397607^(1/4) 6099996721309713 a001 225851433717/45537549124*1568397607^(5/22) 6099996721309713 a001 1836311903/2537720636*17393796001^(2/7) 6099996721309713 a001 86267571272/17393796001*1568397607^(5/22) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(45) 6099996721309713 a001 1134903170/4106118243*23725150497407^(1/4) 6099996721309713 a001 1836311903/2537720636*505019158607^(1/4) 6099996721309713 a001 1134903170/4106118243*73681302247^(4/13) 6099996721309713 a001 86267571272/6643838879*1568397607^(2/11) 6099996721309713 a001 1836311903/2537720636*10749957122^(7/24) 6099996721309713 a001 1134903170/4106118243*10749957122^(1/3) 6099996721309713 a001 86267571272/28143753123*1568397607^(1/4) 6099996721309713 a001 32264490531/10525900321*1568397607^(1/4) 6099996721309713 a001 591286729879/192900153618*1568397607^(1/4) 6099996721309713 a001 1548008755920/505019158607*1568397607^(1/4) 6099996721309713 a001 1515744265389/494493258286*1568397607^(1/4) 6099996721309713 a001 2504730781961/817138163596*1568397607^(1/4) 6099996721309713 a001 956722026041/312119004989*1568397607^(1/4) 6099996721309713 a001 365435296162/119218851371*1568397607^(1/4) 6099996721309713 a001 139583862445/45537549124*1568397607^(1/4) 6099996721309713 a001 10182505537/5374978561*1568397607^(3/11) 6099996721309713 a001 53316291173/17393796001*1568397607^(1/4) 6099996721309713 a001 1201881744/634430159*2537720636^(4/15) 6099996721309713 a001 53316291173/28143753123*1568397607^(3/11) 6099996721309713 a001 1836311903/17393796001*1568397607^(9/22) 6099996721309713 a001 139583862445/73681302247*1568397607^(3/11) 6099996721309713 a001 182717648081/96450076809*1568397607^(3/11) 6099996721309713 a001 956722026041/505019158607*1568397607^(3/11) 6099996721309713 a001 10610209857723/5600748293801*1568397607^(3/11) 6099996721309713 a001 591286729879/312119004989*1568397607^(3/11) 6099996721309713 a001 225851433717/119218851371*1568397607^(3/11) 6099996721309713 a001 1836311903/6643838879*1568397607^(4/11) 6099996721309713 a001 21566892818/11384387281*1568397607^(3/11) 6099996721309713 a001 32951280099/17393796001*1568397607^(3/11) 6099996721309713 a001 1836311903/2537720636*4106118243^(7/23) 6099996721309713 a001 32951280099/6643838879*1568397607^(5/22) 6099996721309713 a001 1134903170/4106118243*4106118243^(8/23) 6099996721309713 a001 1144206275/230701876*2537720636^(2/9) 6099996721309713 a001 7778742049/10749957122*1568397607^(7/22) 6099996721309713 a001 2504730781961/10749957122*599074578^(1/21) 6099996721309713 a001 20365011074/1568397607*599074578^(4/21) 6099996721309713 a001 10182505537/1268860318*2537720636^(1/5) 6099996721309713 a001 20365011074/6643838879*1568397607^(1/4) 6099996721309713 a001 1836311903/45537549124*1568397607^(5/11) 6099996721309713 a001 20365011074/28143753123*1568397607^(7/22) 6099996721309713 a001 53316291173/73681302247*1568397607^(7/22) 6099996721309713 a001 139583862445/192900153618*1568397607^(7/22) 6099996721309713 a001 365435296162/505019158607*1568397607^(7/22) 6099996721309713 a001 225851433717/312119004989*1568397607^(7/22) 6099996721309713 a001 86267571272/119218851371*1568397607^(7/22) 6099996721309713 a001 32951280099/45537549124*1568397607^(7/22) 6099996721309713 a001 12586269025/17393796001*1568397607^(7/22) 6099996721309713 a001 6557470319842/28143753123*599074578^(1/21) 6099996721309713 a001 12586269025/6643838879*1568397607^(3/11) 6099996721309713 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 10610209857723/45537549124*599074578^(1/21) 6099996721309713 a001 1135099622/33391061*2537720636^(2/15) 6099996721309713 a001 4052739537881/17393796001*599074578^(1/21) 6099996721309713 a001 139583862445/2537720636*2537720636^(1/9) 6099996721309713 a001 591286729879/4106118243*599074578^(1/14) 6099996721309713 a001 4807526976/17393796001*1568397607^(4/11) 6099996721309713 a001 4807526976/6643838879*1568397607^(7/22) 6099996721309713 a001 1836311903/119218851371*1568397607^(1/2) 6099996721309713 a001 182717648081/1268860318*2537720636^(1/15) 6099996721309713 a001 567451585/5374978561*45537549124^(6/17) 6099996721309713 a001 1201881744/634430159*45537549124^(4/17) 6099996721309713 a001 1201881744/634430159*817138163596^(4/19) 6099996721309713 a001 567451585/5374978561*14662949395604^(2/7) 6099996721309713 a001 1201881744/634430159*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(45) 6099996721309713 a001 1201881744/634430159*192900153618^(2/9) 6099996721309713 a001 567451585/5374978561*192900153618^(1/3) 6099996721309713 a001 1201881744/634430159*73681302247^(3/13) 6099996721309713 a001 12586269025/45537549124*1568397607^(4/11) 6099996721309713 a001 32951280099/119218851371*1568397607^(4/11) 6099996721309713 a001 86267571272/312119004989*1568397607^(4/11) 6099996721309713 a001 225851433717/817138163596*1568397607^(4/11) 6099996721309713 a001 1548008755920/5600748293801*1568397607^(4/11) 6099996721309713 a001 139583862445/505019158607*1568397607^(4/11) 6099996721309713 a001 53316291173/192900153618*1568397607^(4/11) 6099996721309713 a001 20365011074/73681302247*1568397607^(4/11) 6099996721309713 a001 1201881744/634430159*10749957122^(1/4) 6099996721309713 a001 567451585/5374978561*10749957122^(3/8) 6099996721309713 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 1134903170/1322157322203*17393796001^(4/7) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(45) 6099996721309713 a001 1134903170/28143753123*23725150497407^(5/16) 6099996721309713 a001 1134903170/28143753123*505019158607^(5/14) 6099996721309713 a001 1134903170/28143753123*73681302247^(5/13) 6099996721309713 a001 1144206275/230701876*28143753123^(1/5) 6099996721309713 a001 567451585/22768774562*17393796001^(3/7) 6099996721309713 a001 1134903170/28143753123*28143753123^(2/5) 6099996721309713 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 53316291173/2537720636*17393796001^(1/7) 6099996721309713 a001 1134903170/23725150497407*45537549124^(2/3) 6099996721309713 a001 567451585/7331474697802*45537549124^(11/17) 6099996721309713 a001 567451585/1730726404001*45537549124^(10/17) 6099996721309713 a001 567451585/96450076809*45537549124^(8/17) 6099996721309713 a001 567451585/408569081798*45537549124^(9/17) 6099996721309713 a001 1134903170/73681302247*312119004989^(2/5) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(45) 6099996721309713 a001 32951280099/2537720636*23725150497407^(1/8) 6099996721309713 a001 32951280099/2537720636*73681302247^(2/13) 6099996721309713 a001 1135099622/33391061*45537549124^(2/17) 6099996721309713 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 567451585/96450076809*14662949395604^(8/21) 6099996721309713 a001 1135099622/33391061*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(45) 6099996721309713 a001 182717648081/1268860318*45537549124^(1/17) 6099996721309713 a001 567451585/96450076809*192900153618^(4/9) 6099996721309713 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 567451585/7331474697802*312119004989^(3/5) 6099996721309713 a001 567451585/1730726404001*312119004989^(6/11) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(45) 6099996721309713 a001 225851433717/2537720636*23725150497407^(1/16) 6099996721309713 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^87 6099996721309713 a001 1134903170/1322157322203*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(58) 6099996721309713 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(45) 6099996721309713 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(60) 6099996721309713 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 1134903170/9062201101803*23725150497407^(1/2) 6099996721309713 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(45)*Lucas(65)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(45)*Lucas(67)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(45)*Lucas(69)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(86) 6099996721309713 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(88) 6099996721309713 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(90) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(92) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^64/Lucas(94) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^66/Lucas(96) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^68/Lucas(98) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^70/Lucas(100) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^69/Lucas(99) 6099996721309713 a004 Fibonacci(45)*Lucas(1)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^67/Lucas(97) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^65/Lucas(95) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(93) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(91) 6099996721309713 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(89) 6099996721309713 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(87) 6099996721309713 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(45)*Lucas(70)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(45)*Lucas(68)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(45)*Lucas(66)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(45)*Lucas(64)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2) 6099996721309713 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(59) 6099996721309713 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(45) 6099996721309713 a001 1134903170/2139295485799*1322157322203^(1/2) 6099996721309713 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 1134903170/1322157322203*505019158607^(1/2) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(45) 6099996721309713 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 1134903170/312119004989*312119004989^(5/11) 6099996721309713 a001 139583862445/2537720636*312119004989^(1/11) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(45) 6099996721309713 a001 1134903170/312119004989*3461452808002^(5/12) 6099996721309713 a001 567451585/1730726404001*192900153618^(5/9) 6099996721309713 a001 567451585/408569081798*192900153618^(1/2) 6099996721309713 a001 567451585/7331474697802*192900153618^(11/18) 6099996721309713 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 567451585/96450076809*73681302247^(6/13) 6099996721309713 a001 1548008755920/6643838879*599074578^(1/21) 6099996721309713 a001 53316291173/2537720636*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(45) 6099996721309713 a001 1134903170/505019158607*73681302247^(1/2) 6099996721309713 a001 1134903170/1322157322203*73681302247^(7/13) 6099996721309713 a001 1134903170/9062201101803*73681302247^(8/13) 6099996721309713 a001 139583862445/2537720636*28143753123^(1/10) 6099996721309713 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 567451585/22768774562*45537549124^(7/17) 6099996721309713 a001 591286729879/2537720636*10749957122^(1/24) 6099996721309713 a001 10182505537/1268860318*45537549124^(3/17) 6099996721309713 a001 10182505537/1268860318*817138163596^(3/19) 6099996721309713 a001 567451585/22768774562*14662949395604^(1/3) 6099996721309713 a001 10182505537/1268860318*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(45) 6099996721309713 a001 10182505537/1268860318*192900153618^(1/6) 6099996721309713 a001 567451585/22768774562*192900153618^(7/18) 6099996721309713 a001 1144206275/230701876*10749957122^(5/24) 6099996721309713 a001 182717648081/1268860318*10749957122^(1/16) 6099996721309713 a001 1134903170/312119004989*28143753123^(1/2) 6099996721309713 a001 225851433717/2537720636*10749957122^(1/12) 6099996721309713 a001 567451585/1730726404001*28143753123^(3/5) 6099996721309713 a001 1135099622/33391061*10749957122^(1/8) 6099996721309713 a001 32951280099/2537720636*10749957122^(1/6) 6099996721309713 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 10182505537/1268860318*10749957122^(3/16) 6099996721309713 a001 1134903170/28143753123*10749957122^(5/12) 6099996721309713 a001 591286729879/2537720636*4106118243^(1/23) 6099996721309713 a001 1201881744/11384387281*1568397607^(9/22) 6099996721309713 a001 1134903170/17393796001*817138163596^(1/3) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(45) 6099996721309713 a001 1134903170/73681302247*10749957122^(11/24) 6099996721309713 a001 567451585/22768774562*10749957122^(7/16) 6099996721309713 a001 567451585/96450076809*10749957122^(1/2) 6099996721309713 a001 1134903170/505019158607*10749957122^(13/24) 6099996721309713 a001 567451585/408569081798*10749957122^(9/16) 6099996721309713 a001 1134903170/1322157322203*10749957122^(7/12) 6099996721309713 a001 225851433717/2537720636*4106118243^(2/23) 6099996721309713 a001 567451585/1730726404001*10749957122^(5/8) 6099996721309713 a001 1134903170/9062201101803*10749957122^(2/3) 6099996721309713 a001 567451585/7331474697802*10749957122^(11/16) 6099996721309713 a001 1134903170/23725150497407*10749957122^(17/24) 6099996721309713 a001 2971215073/10749957122*1568397607^(4/11) 6099996721309713 a001 1201881744/634430159*4106118243^(6/23) 6099996721309713 a001 1836311903/312119004989*1568397607^(6/11) 6099996721309713 a001 1135099622/33391061*4106118243^(3/23) 6099996721309713 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 12586269025/119218851371*1568397607^(9/22) 6099996721309713 a001 32951280099/2537720636*4106118243^(4/23) 6099996721309713 a001 32951280099/312119004989*1568397607^(9/22) 6099996721309713 a001 21566892818/204284540899*1568397607^(9/22) 6099996721309713 a001 225851433717/2139295485799*1568397607^(9/22) 6099996721309713 a001 182717648081/1730726404001*1568397607^(9/22) 6099996721309713 a001 139583862445/1322157322203*1568397607^(9/22) 6099996721309713 a001 53316291173/505019158607*1568397607^(9/22) 6099996721309713 a001 10182505537/96450076809*1568397607^(9/22) 6099996721309713 a001 1144206275/230701876*4106118243^(5/23) 6099996721309713 a001 7778742049/73681302247*1568397607^(9/22) 6099996721309713 a001 567451585/5374978561*4106118243^(9/23) 6099996721309713 a001 591286729879/2537720636*1568397607^(1/22) 6099996721309713 a001 4807526976/119218851371*1568397607^(5/11) 6099996721309713 a001 1134903170/6643838879*45537549124^(1/3) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(45) 6099996721309713 a001 2971215073/2537720636*73681302247^(1/4) 6099996721309713 a001 1134903170/28143753123*4106118243^(10/23) 6099996721309713 a001 1836311903/817138163596*1568397607^(13/22) 6099996721309713 a001 701408733/1568397607*599074578^(5/14) 6099996721309713 a001 1134903170/73681302247*4106118243^(11/23) 6099996721309713 a001 1144206275/28374454999*1568397607^(5/11) 6099996721309713 a001 32951280099/817138163596*1568397607^(5/11) 6099996721309713 a001 86267571272/2139295485799*1568397607^(5/11) 6099996721309713 a001 225851433717/5600748293801*1568397607^(5/11) 6099996721309713 a001 591286729879/14662949395604*1568397607^(5/11) 6099996721309713 a001 365435296162/9062201101803*1568397607^(5/11) 6099996721309713 a001 139583862445/3461452808002*1568397607^(5/11) 6099996721309713 a001 53316291173/1322157322203*1568397607^(5/11) 6099996721309713 a001 1134903170/119218851371*4106118243^(1/2) 6099996721309713 a001 20365011074/505019158607*1568397607^(5/11) 6099996721309713 a001 567451585/96450076809*4106118243^(12/23) 6099996721309713 a001 2971215073/28143753123*1568397607^(9/22) 6099996721309713 a001 7778742049/192900153618*1568397607^(5/11) 6099996721309713 a001 1134903170/505019158607*4106118243^(13/23) 6099996721309713 a001 12586269025/1568397607*599074578^(3/14) 6099996721309713 a001 774004377960/5374978561*599074578^(1/14) 6099996721309713 a001 1134903170/1322157322203*4106118243^(14/23) 6099996721309713 a001 225851433717/2537720636*1568397607^(1/11) 6099996721309713 a001 567451585/1730726404001*4106118243^(15/23) 6099996721309713 a001 4807526976/312119004989*1568397607^(1/2) 6099996721309713 a001 1134903170/9062201101803*4106118243^(16/23) 6099996721309713 a001 4052739537881/28143753123*599074578^(1/14) 6099996721309713 a001 1515744265389/10525900321*599074578^(1/14) 6099996721309713 a001 1134903170/23725150497407*4106118243^(17/23) 6099996721309713 a001 1836311903/2139295485799*1568397607^(7/11) 6099996721309713 a001 3278735159921/22768774562*599074578^(1/14) 6099996721309713 a001 12586269025/817138163596*1568397607^(1/2) 6099996721309713 a001 2504730781961/17393796001*599074578^(1/14) 6099996721309713 a001 32951280099/2139295485799*1568397607^(1/2) 6099996721309713 a001 86267571272/5600748293801*1568397607^(1/2) 6099996721309713 a001 7787980473/505618944676*1568397607^(1/2) 6099996721309713 a001 365435296162/23725150497407*1568397607^(1/2) 6099996721309713 a001 139583862445/9062201101803*1568397607^(1/2) 6099996721309713 a001 53316291173/3461452808002*1568397607^(1/2) 6099996721309713 a001 20365011074/1322157322203*1568397607^(1/2) 6099996721309713 a001 365435296162/4106118243*599074578^(2/21) 6099996721309713 a001 7778742049/505019158607*1568397607^(1/2) 6099996721309713 a001 2971215073/73681302247*1568397607^(5/11) 6099996721309713 a001 1135099622/33391061*1568397607^(3/22) 6099996721309713 a001 1201881744/204284540899*1568397607^(6/11) 6099996721309713 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 1836311903/5600748293801*1568397607^(15/22) 6099996721309713 a001 12586269025/2139295485799*1568397607^(6/11) 6099996721309713 a001 32951280099/5600748293801*1568397607^(6/11) 6099996721309713 a001 956722026041/6643838879*599074578^(1/14) 6099996721309713 a001 1135099622/192933544679*1568397607^(6/11) 6099996721309713 a001 139583862445/23725150497407*1568397607^(6/11) 6099996721309713 a001 53316291173/9062201101803*1568397607^(6/11) 6099996721309713 a001 10182505537/1730726404001*1568397607^(6/11) 6099996721309713 a001 7778742049/1322157322203*1568397607^(6/11) 6099996721309713 a001 1836311903/2537720636*1568397607^(7/22) 6099996721309713 a001 2971215073/192900153618*1568397607^(1/2) 6099996721309713 a001 32951280099/2537720636*1568397607^(2/11) 6099996721309713 a001 4807526976/2139295485799*1568397607^(13/22) 6099996721309713 a001 1836311903/14662949395604*1568397607^(8/11) 6099996721309713 a001 12586269025/5600748293801*1568397607^(13/22) 6099996721309713 a001 32951280099/14662949395604*1568397607^(13/22) 6099996721309713 a001 53316291173/23725150497407*1568397607^(13/22) 6099996721309713 a001 20365011074/9062201101803*1568397607^(13/22) 6099996721309713 a001 7778742049/3461452808002*1568397607^(13/22) 6099996721309713 a001 1134903170/4106118243*1568397607^(4/11) 6099996721309713 a001 2971215073/505019158607*1568397607^(6/11) 6099996721309713 a001 1836311903/23725150497407*1568397607^(3/4) 6099996721309713 a001 1144206275/230701876*1568397607^(5/22) 6099996721309713 a001 4807526976/5600748293801*1568397607^(7/11) 6099996721309713 a001 956722026041/10749957122*599074578^(2/21) 6099996721309713 a001 12586269025/14662949395604*1568397607^(7/11) 6099996721309713 a001 1201881744/634430159*1568397607^(3/11) 6099996721309713 a001 567451585/1268860318*2537720636^(1/3) 6099996721309713 a001 20365011074/23725150497407*1568397607^(7/11) 6099996721309713 a001 7778742049/1568397607*599074578^(5/21) 6099996721309713 a001 7778742049/2537720636*1568397607^(1/4) 6099996721309713 a001 7778742049/9062201101803*1568397607^(7/11) 6099996721309713 a001 2971215073/1322157322203*1568397607^(13/22) 6099996721309713 a001 2504730781961/28143753123*599074578^(2/21) 6099996721309713 a001 6557470319842/73681302247*599074578^(2/21) 6099996721309713 a001 10610209857723/119218851371*599074578^(2/21) 6099996721309713 a001 4052739537881/45537549124*599074578^(2/21) 6099996721309713 a001 1201881744/3665737348901*1568397607^(15/22) 6099996721309713 a001 1548008755920/17393796001*599074578^(2/21) 6099996721309713 a001 7778742049/23725150497407*1568397607^(15/22) 6099996721309713 a001 2971215073/3461452808002*1568397607^(7/11) 6099996721309713 a001 591286729879/2537720636*599074578^(1/21) 6099996721309713 a001 591286729879/6643838879*599074578^(2/21) 6099996721309713 a001 2971215073/9062201101803*1568397607^(15/22) 6099996721309713 a001 567451585/1268860318*45537549124^(5/17) 6099996721309713 a001 567451585/1268860318*312119004989^(3/11) 6099996721309713 a001 567451585/1268860318*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(45) 6099996721309713 a001 567451585/1268860318*192900153618^(5/18) 6099996721309713 a001 567451585/1268860318*28143753123^(3/10) 6099996721309713 a001 567451585/5374978561*1568397607^(9/22) 6099996721309713 a001 567451585/1268860318*10749957122^(5/16) 6099996721309713 a001 2971215073/23725150497407*1568397607^(8/11) 6099996721309713 a001 139583862445/4106118243*599074578^(1/7) 6099996721309713 a001 1134903170/28143753123*1568397607^(5/11) 6099996721309713 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 182717648081/1268860318*599074578^(1/14) 6099996721309713 a001 1134903170/73681302247*1568397607^(1/2) 6099996721309713 a001 567451585/96450076809*1568397607^(6/11) 6099996721309713 a001 182717648081/5374978561*599074578^(1/7) 6099996721309713 a001 1134903170/505019158607*1568397607^(13/22) 6099996721309713 a001 956722026041/28143753123*599074578^(1/7) 6099996721309713 a001 2504730781961/73681302247*599074578^(1/7) 6099996721309713 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 3278735159921/96450076809*599074578^(1/7) 6099996721309713 a001 10610209857723/312119004989*599074578^(1/7) 6099996721309713 a001 4052739537881/119218851371*599074578^(1/7) 6099996721309713 a001 387002188980/11384387281*599074578^(1/7) 6099996721309713 a001 591286729879/17393796001*599074578^(1/7) 6099996721309713 a001 86267571272/4106118243*599074578^(1/6) 6099996721309713 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^79 6099996721309713 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(66)*Lucas(44)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(68)*Lucas(44)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(70)*Lucas(44)/(1/2+sqrt(5)/2)^99 6099996721309713 a001 2/701408733*(1/2+1/2*5^(1/2))^59 6099996721309713 a004 Fibonacci(71)*Lucas(44)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(69)*Lucas(44)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(67)*Lucas(44)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(65)*Lucas(44)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 2971215073/1568397607*599074578^(2/7) 6099996721309713 a001 1134903170/1322157322203*1568397607^(7/11) 6099996721309713 a001 225851433717/2537720636*599074578^(2/21) 6099996721309713 a001 225851433717/6643838879*599074578^(1/7) 6099996721309713 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 567451585/1730726404001*1568397607^(15/22) 6099996721309713 a001 1134903170/9062201101803*1568397607^(8/11) 6099996721309713 a001 225851433717/10749957122*599074578^(1/6) 6099996721309713 a001 567451585/7331474697802*1568397607^(3/4) 6099996721309713 a001 591286729879/28143753123*599074578^(1/6) 6099996721309713 a001 1548008755920/73681302247*599074578^(1/6) 6099996721309713 a001 4052739537881/192900153618*599074578^(1/6) 6099996721309713 a001 225749145909/10745088481*599074578^(1/6) 6099996721309713 a001 6557470319842/312119004989*599074578^(1/6) 6099996721309713 a001 2504730781961/119218851371*599074578^(1/6) 6099996721309713 a001 956722026041/45537549124*599074578^(1/6) 6099996721309713 a001 365435296162/17393796001*599074578^(1/6) 6099996721309713 a001 1134903170/23725150497407*1568397607^(17/22) 6099996721309713 a001 53316291173/4106118243*599074578^(4/21) 6099996721309713 a001 139583862445/6643838879*599074578^(1/6) 6099996721309713 a001 139583862445/10749957122*599074578^(4/21) 6099996721309713 a001 365435296162/28143753123*599074578^(4/21) 6099996721309713 a001 956722026041/73681302247*599074578^(4/21) 6099996721309713 a001 2504730781961/192900153618*599074578^(4/21) 6099996721309713 a001 10610209857723/817138163596*599074578^(4/21) 6099996721309713 a001 4052739537881/312119004989*599074578^(4/21) 6099996721309713 a001 1548008755920/119218851371*599074578^(4/21) 6099996721309713 a001 591286729879/45537549124*599074578^(4/21) 6099996721309713 a001 7787980473/599786069*599074578^(4/21) 6099996721309713 a001 10983760033/1368706081*599074578^(3/14) 6099996721309713 a001 365435296162/1568397607*228826127^(1/20) 6099996721309713 a001 1135099622/33391061*599074578^(1/7) 6099996721309713 a001 86267571272/6643838879*599074578^(4/21) 6099996721309713 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 43133785636/5374978561*599074578^(3/14) 6099996721309713 a001 75283811239/9381251041*599074578^(3/14) 6099996721309713 a001 591286729879/73681302247*599074578^(3/14) 6099996721309713 a001 86000486440/10716675201*599074578^(3/14) 6099996721309713 a001 4052739537881/505019158607*599074578^(3/14) 6099996721309713 a001 3536736619241/440719107401*599074578^(3/14) 6099996721309713 a001 3278735159921/408569081798*599074578^(3/14) 6099996721309713 a001 2504730781961/312119004989*599074578^(3/14) 6099996721309713 a001 956722026041/119218851371*599074578^(3/14) 6099996721309713 a001 182717648081/22768774562*599074578^(3/14) 6099996721309713 a001 139583862445/17393796001*599074578^(3/14) 6099996721309713 a001 20365011074/4106118243*599074578^(5/21) 6099996721309713 a001 53316291173/2537720636*599074578^(1/6) 6099996721309713 a001 53316291173/6643838879*599074578^(3/14) 6099996721309713 a001 53316291173/10749957122*599074578^(5/21) 6099996721309713 a001 701408733/969323029*17393796001^(2/7) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(44) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(43) 6099996721309713 a001 433494437/1568397607*23725150497407^(1/4) 6099996721309713 a001 701408733/969323029*505019158607^(1/4) 6099996721309713 a001 433494437/1568397607*73681302247^(4/13) 6099996721309713 a001 701408733/969323029*10749957122^(7/24) 6099996721309713 a001 433494437/1568397607*10749957122^(1/3) 6099996721309713 a001 139583862445/28143753123*599074578^(5/21) 6099996721309713 a001 365435296162/73681302247*599074578^(5/21) 6099996721309713 a001 956722026041/192900153618*599074578^(5/21) 6099996721309713 a001 2504730781961/505019158607*599074578^(5/21) 6099996721309713 a001 10610209857723/2139295485799*599074578^(5/21) 6099996721309713 a001 4052739537881/817138163596*599074578^(5/21) 6099996721309713 a001 140728068720/28374454999*599074578^(5/21) 6099996721309713 a001 591286729879/119218851371*599074578^(5/21) 6099996721309713 a001 225851433717/45537549124*599074578^(5/21) 6099996721309713 a001 86267571272/17393796001*599074578^(5/21) 6099996721309713 a001 701408733/969323029*4106118243^(7/23) 6099996721309713 a001 1134903170/1568397607*599074578^(1/3) 6099996721309713 a001 433494437/1568397607*4106118243^(8/23) 6099996721309713 a001 32951280099/2537720636*599074578^(4/21) 6099996721309713 a001 32951280099/6643838879*599074578^(5/21) 6099996721309713 a001 7778742049/4106118243*599074578^(2/7) 6099996721309713 a001 10182505537/1268860318*599074578^(3/14) 6099996721309713 a001 701408733/969323029*1568397607^(7/22) 6099996721309713 a001 10182505537/5374978561*599074578^(2/7) 6099996721309713 a001 53316291173/28143753123*599074578^(2/7) 6099996721309713 a001 139583862445/73681302247*599074578^(2/7) 6099996721309713 a001 182717648081/96450076809*599074578^(2/7) 6099996721309713 a001 956722026041/505019158607*599074578^(2/7) 6099996721309713 a001 10610209857723/5600748293801*599074578^(2/7) 6099996721309713 a001 591286729879/312119004989*599074578^(2/7) 6099996721309713 a001 225851433717/119218851371*599074578^(2/7) 6099996721309713 a001 21566892818/11384387281*599074578^(2/7) 6099996721309713 a001 32951280099/17393796001*599074578^(2/7) 6099996721309713 a001 433494437/1568397607*1568397607^(4/11) 6099996721309713 a001 701408733/2537720636*599074578^(8/21) 6099996721309713 a001 701408733/6643838879*599074578^(3/7) 6099996721309713 a001 1144206275/230701876*599074578^(5/21) 6099996721309713 a001 12586269025/6643838879*599074578^(2/7) 6099996721309713 a001 1836311903/4106118243*599074578^(5/14) 6099996721309713 a001 2971215073/4106118243*599074578^(1/3) 6099996721309713 a001 956722026041/4106118243*228826127^(1/20) 6099996721309713 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 7778742049/10749957122*599074578^(1/3) 6099996721309713 a001 701408733/17393796001*599074578^(10/21) 6099996721309713 a001 20365011074/28143753123*599074578^(1/3) 6099996721309713 a001 53316291173/73681302247*599074578^(1/3) 6099996721309713 a001 139583862445/192900153618*599074578^(1/3) 6099996721309713 a001 365435296162/505019158607*599074578^(1/3) 6099996721309713 a001 10610209857723/14662949395604*599074578^(1/3) 6099996721309713 a001 591286729879/817138163596*599074578^(1/3) 6099996721309713 a001 225851433717/312119004989*599074578^(1/3) 6099996721309713 a001 86267571272/119218851371*599074578^(1/3) 6099996721309713 a001 32951280099/45537549124*599074578^(1/3) 6099996721309713 a001 12586269025/17393796001*599074578^(1/3) 6099996721309713 a001 433494437/23725150497407*2537720636^(4/5) 6099996721309713 a001 1201881744/634430159*599074578^(2/7) 6099996721309713 a001 4807526976/6643838879*599074578^(1/3) 6099996721309713 a001 433494437/4106118243*2537720636^(2/5) 6099996721309713 a001 433494437/14662949395604*2537720636^(7/9) 6099996721309713 a001 2504730781961/10749957122*228826127^(1/20) 6099996721309713 a001 433494437/5600748293801*2537720636^(11/15) 6099996721309713 a001 6557470319842/28143753123*228826127^(1/20) 6099996721309713 a001 10610209857723/45537549124*228826127^(1/20) 6099996721309713 a001 4052739537881/17393796001*228826127^(1/20) 6099996721309713 a001 433494437/1322157322203*2537720636^(2/3) 6099996721309713 a001 1836311903/969323029*2537720636^(4/15) 6099996721309713 a001 433494437/312119004989*2537720636^(3/5) 6099996721309713 a001 1548008755920/6643838879*228826127^(1/20) 6099996721309713 a001 2403763488/5374978561*599074578^(5/14) 6099996721309713 a001 433494437/119218851371*2537720636^(5/9) 6099996721309713 a001 433494437/73681302247*2537720636^(8/15) 6099996721309713 a001 233802911/9381251041*599074578^(1/2) 6099996721309713 a001 433494437/10749957122*2537720636^(4/9) 6099996721309713 a001 12586269025/28143753123*599074578^(5/14) 6099996721309713 a001 32951280099/73681302247*599074578^(5/14) 6099996721309713 a001 43133785636/96450076809*599074578^(5/14) 6099996721309713 a001 225851433717/505019158607*599074578^(5/14) 6099996721309713 a001 591286729879/1322157322203*599074578^(5/14) 6099996721309713 a001 10610209857723/23725150497407*599074578^(5/14) 6099996721309713 a001 182717648081/408569081798*599074578^(5/14) 6099996721309713 a001 433494437/17393796001*2537720636^(7/15) 6099996721309713 a001 139583862445/312119004989*599074578^(5/14) 6099996721309713 a001 53316291173/119218851371*599074578^(5/14) 6099996721309713 a001 10182505537/22768774562*599074578^(5/14) 6099996721309713 a001 7778742049/17393796001*599074578^(5/14) 6099996721309713 a001 433494437/4106118243*45537549124^(6/17) 6099996721309713 a001 1836311903/969323029*45537549124^(4/17) 6099996721309713 a001 1836311903/969323029*817138163596^(4/19) 6099996721309713 a001 433494437/4106118243*14662949395604^(2/7) 6099996721309713 a001 1836311903/969323029*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(43) 6099996721309713 a001 1836311903/969323029*192900153618^(2/9) 6099996721309713 a001 433494437/4106118243*192900153618^(1/3) 6099996721309713 a001 1836311903/969323029*73681302247^(3/13) 6099996721309713 a001 1836311903/969323029*10749957122^(1/4) 6099996721309713 a001 433494437/4106118243*10749957122^(3/8) 6099996721309713 a001 1836311903/969323029*4106118243^(6/23) 6099996721309713 a001 4807526976/969323029*2537720636^(2/9) 6099996721309713 a001 1836311903/2537720636*599074578^(1/3) 6099996721309713 a001 1836311903/6643838879*599074578^(8/21) 6099996721309713 a001 433494437/4106118243*4106118243^(9/23) 6099996721309713 a001 7778742049/599074578*228826127^(1/5) 6099996721309713 a001 7778742049/969323029*2537720636^(1/5) 6099996721309713 a001 2971215073/6643838879*599074578^(5/14) 6099996721309713 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 32951280099/969323029*2537720636^(2/15) 6099996721309713 a001 53316291173/969323029*2537720636^(1/9) 6099996721309713 a001 701408733/45537549124*599074578^(11/21) 6099996721309713 a001 139583862445/969323029*2537720636^(1/15) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(43) 6099996721309713 a001 433494437/10749957122*23725150497407^(5/16) 6099996721309713 a001 433494437/10749957122*505019158607^(5/14) 6099996721309713 a001 433494437/10749957122*73681302247^(5/13) 6099996721309713 a001 4807526976/969323029*28143753123^(1/5) 6099996721309713 a001 4807526976/17393796001*599074578^(8/21) 6099996721309713 a001 433494437/10749957122*28143753123^(2/5) 6099996721309713 a001 4807526976/969323029*10749957122^(5/24) 6099996721309713 a001 433494437/10749957122*10749957122^(5/12) 6099996721309713 a001 12586269025/45537549124*599074578^(8/21) 6099996721309713 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 32951280099/119218851371*599074578^(8/21) 6099996721309713 a001 86267571272/312119004989*599074578^(8/21) 6099996721309713 a001 225851433717/817138163596*599074578^(8/21) 6099996721309713 a001 1548008755920/5600748293801*599074578^(8/21) 6099996721309713 a001 139583862445/505019158607*599074578^(8/21) 6099996721309713 a001 53316291173/192900153618*599074578^(8/21) 6099996721309713 a001 20365011074/73681302247*599074578^(8/21) 6099996721309713 a001 433494437/14662949395604*17393796001^(5/7) 6099996721309713 a001 433494437/505019158607*17393796001^(4/7) 6099996721309713 a001 433494437/28143753123*312119004989^(2/5) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(43) 6099996721309713 a001 12586269025/969323029*23725150497407^(1/8) 6099996721309713 a001 12586269025/969323029*505019158607^(1/7) 6099996721309713 a001 12586269025/969323029*73681302247^(2/13) 6099996721309713 a001 7778742049/28143753123*599074578^(8/21) 6099996721309713 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 433494437/73681302247*45537549124^(8/17) 6099996721309713 a001 433494437/23725150497407*45537549124^(12/17) 6099996721309713 a001 433494437/9062201101803*45537549124^(2/3) 6099996721309713 a001 433494437/5600748293801*45537549124^(11/17) 6099996721309713 a001 433494437/1322157322203*45537549124^(10/17) 6099996721309713 a001 433494437/312119004989*45537549124^(9/17) 6099996721309713 a001 32951280099/969323029*45537549124^(2/17) 6099996721309713 a001 433494437/73681302247*14662949395604^(8/21) 6099996721309713 a001 32951280099/969323029*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(43) 6099996721309713 a001 433494437/73681302247*192900153618^(4/9) 6099996721309713 a001 433494437/73681302247*73681302247^(6/13) 6099996721309713 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(43) 6099996721309713 a001 86267571272/969323029*23725150497407^(1/16) 6099996721309713 a001 139583862445/969323029*45537549124^(1/17) 6099996721309713 a001 86267571272/969323029*73681302247^(1/13) 6099996721309713 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 433494437/14662949395604*312119004989^(7/11) 6099996721309713 a001 433494437/1322157322203*312119004989^(6/11) 6099996721309713 a001 433494437/5600748293801*312119004989^(3/5) 6099996721309713 a001 433494437/505019158607*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(56) 6099996721309713 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(43) 6099996721309713 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^85 6099996721309713 a001 433494437/1322157322203*14662949395604^(10/21) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(58) 6099996721309713 a006 5^(1/2)*Fibonacci(58)/Lucas(43)/sqrt(5) 6099996721309713 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(60) 6099996721309713 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^2 6099996721309713 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^91 6099996721309713 a001 433494437/23725150497407*14662949395604^(4/7) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(43)*Lucas(67)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(43)*Lucas(69)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(43)*Lucas(71)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(82) 6099996721309713 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(84) 6099996721309713 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(86) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(88) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(90) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(92) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^66/Lucas(94) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^68/Lucas(96) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^70/Lucas(98) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^71/Lucas(99) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^72/Lucas(100) 6099996721309713 a004 Fibonacci(86)/Lucas(43)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^69/Lucas(97) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^67/Lucas(95) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(93) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(91) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(89) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(87) 6099996721309713 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^42 6099996721309713 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(85) 6099996721309713 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(83) 6099996721309713 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(43)*Lucas(72)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(43)*Lucas(70)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(43)*Lucas(68)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(43)*Lucas(66)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(59) 6099996721309713 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2) 6099996721309713 a001 433494437/2139295485799*9062201101803^(1/2) 6099996721309713 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(57) 6099996721309713 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(43) 6099996721309713 a001 433494437/14662949395604*505019158607^(5/8) 6099996721309713 a001 433494437/23725150497407*505019158607^(9/14) 6099996721309713 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 433494437/312119004989*817138163596^(9/19) 6099996721309713 a001 433494437/312119004989*14662949395604^(3/7) 6099996721309713 a001 139583862445/969323029*14662949395604^(1/21) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(43) 6099996721309713 a001 139583862445/969323029*192900153618^(1/18) 6099996721309713 a001 433494437/1322157322203*192900153618^(5/9) 6099996721309713 a001 433494437/5600748293801*192900153618^(11/18) 6099996721309713 a001 433494437/23725150497407*192900153618^(2/3) 6099996721309713 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 433494437/192900153618*73681302247^(1/2) 6099996721309713 a001 433494437/119218851371*312119004989^(5/11) 6099996721309713 a001 53316291173/969323029*312119004989^(1/11) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(43) 6099996721309713 a001 433494437/119218851371*3461452808002^(5/12) 6099996721309713 a001 433494437/505019158607*73681302247^(7/13) 6099996721309713 a001 433494437/3461452808002*73681302247^(8/13) 6099996721309713 a001 433494437/23725150497407*73681302247^(9/13) 6099996721309713 a001 12586269025/969323029*10749957122^(1/6) 6099996721309713 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 53316291173/969323029*28143753123^(1/10) 6099996721309713 a001 225851433717/969323029*10749957122^(1/24) 6099996721309713 a001 20365011074/969323029*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(43) 6099996721309713 a001 139583862445/969323029*10749957122^(1/16) 6099996721309713 a001 86267571272/969323029*10749957122^(1/12) 6099996721309713 a001 433494437/119218851371*28143753123^(1/2) 6099996721309713 a001 433494437/1322157322203*28143753123^(3/5) 6099996721309713 a001 433494437/14662949395604*28143753123^(7/10) 6099996721309713 a001 32951280099/969323029*10749957122^(1/8) 6099996721309713 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 433494437/17393796001*17393796001^(3/7) 6099996721309713 a001 225851433717/969323029*4106118243^(1/23) 6099996721309713 a001 433494437/28143753123*10749957122^(11/24) 6099996721309713 a001 433494437/17393796001*45537549124^(7/17) 6099996721309713 a001 7778742049/969323029*45537549124^(3/17) 6099996721309713 a001 7778742049/969323029*817138163596^(3/19) 6099996721309713 a001 433494437/17393796001*14662949395604^(1/3) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(43) 6099996721309713 a001 7778742049/969323029*192900153618^(1/6) 6099996721309713 a001 433494437/17393796001*192900153618^(7/18) 6099996721309713 a001 433494437/73681302247*10749957122^(1/2) 6099996721309713 a001 4807526976/969323029*4106118243^(5/23) 6099996721309713 a001 433494437/192900153618*10749957122^(13/24) 6099996721309713 a001 433494437/312119004989*10749957122^(9/16) 6099996721309713 a001 7778742049/969323029*10749957122^(3/16) 6099996721309713 a001 433494437/505019158607*10749957122^(7/12) 6099996721309713 a001 86267571272/969323029*4106118243^(2/23) 6099996721309713 a001 433494437/1322157322203*10749957122^(5/8) 6099996721309713 a001 433494437/3461452808002*10749957122^(2/3) 6099996721309713 a001 433494437/5600748293801*10749957122^(11/16) 6099996721309713 a001 433494437/9062201101803*10749957122^(17/24) 6099996721309713 a001 433494437/23725150497407*10749957122^(3/4) 6099996721309713 a001 433494437/17393796001*10749957122^(7/16) 6099996721309713 a001 32951280099/969323029*4106118243^(3/23) 6099996721309713 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 12586269025/969323029*4106118243^(4/23) 6099996721309713 a001 2971215073/10749957122*599074578^(8/21) 6099996721309713 a001 433494437/10749957122*4106118243^(10/23) 6099996721309713 a001 225851433717/969323029*1568397607^(1/22) 6099996721309713 a001 2971215073/969323029*312119004989^(1/5) 6099996721309713 a001 433494437/6643838879*817138163596^(1/3) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(43) 6099996721309713 a001 433494437/28143753123*4106118243^(11/23) 6099996721309713 a001 433494437/45537549124*4106118243^(1/2) 6099996721309713 a001 433494437/73681302247*4106118243^(12/23) 6099996721309713 a001 433494437/192900153618*4106118243^(13/23) 6099996721309713 a001 433494437/505019158607*4106118243^(14/23) 6099996721309713 a001 86267571272/969323029*1568397607^(1/11) 6099996721309713 a001 433494437/1322157322203*4106118243^(15/23) 6099996721309713 a001 433494437/3461452808002*4106118243^(16/23) 6099996721309713 a001 433494437/9062201101803*4106118243^(17/23) 6099996721309713 a001 591286729879/2537720636*228826127^(1/20) 6099996721309713 a001 433494437/23725150497407*4106118243^(18/23) 6099996721309713 a001 1836311903/969323029*1568397607^(3/11) 6099996721309713 a001 32951280099/969323029*1568397607^(3/22) 6099996721309713 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 12586269025/969323029*1568397607^(2/11) 6099996721309713 a001 1836311903/17393796001*599074578^(3/7) 6099996721309713 a001 4807526976/969323029*1568397607^(5/22) 6099996721309713 a001 1134903170/4106118243*599074578^(8/21) 6099996721309713 a001 433494437/4106118243*1568397607^(9/22) 6099996721309713 a001 701408733/119218851371*599074578^(4/7) 6099996721309713 a001 1201881744/11384387281*599074578^(3/7) 6099996721309713 a001 2971215073/969323029*1568397607^(1/4) 6099996721309713 a001 12586269025/119218851371*599074578^(3/7) 6099996721309713 a001 32951280099/312119004989*599074578^(3/7) 6099996721309713 a001 21566892818/204284540899*599074578^(3/7) 6099996721309713 a001 225851433717/2139295485799*599074578^(3/7) 6099996721309713 a001 182717648081/1730726404001*599074578^(3/7) 6099996721309713 a001 139583862445/1322157322203*599074578^(3/7) 6099996721309713 a001 53316291173/505019158607*599074578^(3/7) 6099996721309713 a001 10182505537/96450076809*599074578^(3/7) 6099996721309713 a001 225851433717/969323029*599074578^(1/21) 6099996721309713 a001 7778742049/73681302247*599074578^(3/7) 6099996721309713 a001 2971215073/28143753123*599074578^(3/7) 6099996721309713 a001 433494437/2537720636*45537549124^(1/3) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(45) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(43) 6099996721309713 a001 1134903170/969323029*73681302247^(1/4) 6099996721309713 a001 433494437/10749957122*1568397607^(5/11) 6099996721309713 a001 139583862445/969323029*599074578^(1/14) 6099996721309713 a001 433494437/28143753123*1568397607^(1/2) 6099996721309713 a001 1836311903/45537549124*599074578^(10/21) 6099996721309713 a001 433494437/73681302247*1568397607^(6/11) 6099996721309713 a001 433494437/192900153618*1568397607^(13/22) 6099996721309713 a001 567451585/1268860318*599074578^(5/14) 6099996721309713 a001 4807526976/119218851371*599074578^(10/21) 6099996721309713 a001 3524667/1568437211*599074578^(13/21) 6099996721309713 a001 433494437/505019158607*1568397607^(7/11) 6099996721309713 a001 1144206275/28374454999*599074578^(10/21) 6099996721309713 a001 32951280099/817138163596*599074578^(10/21) 6099996721309713 a001 86267571272/2139295485799*599074578^(10/21) 6099996721309713 a001 225851433717/5600748293801*599074578^(10/21) 6099996721309713 a001 591286729879/14662949395604*599074578^(10/21) 6099996721309713 a001 365435296162/9062201101803*599074578^(10/21) 6099996721309713 a001 139583862445/3461452808002*599074578^(10/21) 6099996721309713 a001 53316291173/1322157322203*599074578^(10/21) 6099996721309713 a001 20365011074/505019158607*599074578^(10/21) 6099996721309713 a001 86267571272/969323029*599074578^(2/21) 6099996721309713 a001 7778742049/192900153618*599074578^(10/21) 6099996721309713 a001 1836311903/73681302247*599074578^(1/2) 6099996721309713 a001 567451585/5374978561*599074578^(3/7) 6099996721309713 a001 433494437/1322157322203*1568397607^(15/22) 6099996721309713 a001 2971215073/73681302247*599074578^(10/21) 6099996721309713 a001 433494437/3461452808002*1568397607^(8/11) 6099996721309713 a001 433494437/5600748293801*1568397607^(3/4) 6099996721309713 a001 433494437/9062201101803*1568397607^(17/22) 6099996721309713 a001 267084832/10716675201*599074578^(1/2) 6099996721309713 a001 701408733/505019158607*599074578^(9/14) 6099996721309713 a001 12586269025/505019158607*599074578^(1/2) 6099996721309713 a001 10983760033/440719107401*599074578^(1/2) 6099996721309713 a001 43133785636/1730726404001*599074578^(1/2) 6099996721309713 a001 75283811239/3020733700601*599074578^(1/2) 6099996721309713 a001 182717648081/7331474697802*599074578^(1/2) 6099996721309713 a001 139583862445/5600748293801*599074578^(1/2) 6099996721309713 a001 53316291173/2139295485799*599074578^(1/2) 6099996721309713 a001 10182505537/408569081798*599074578^(1/2) 6099996721309713 a001 7778742049/312119004989*599074578^(1/2) 6099996721309713 a001 433494437/23725150497407*1568397607^(9/11) 6099996721309713 a001 1836311903/119218851371*599074578^(11/21) 6099996721309713 a001 2971215073/119218851371*599074578^(1/2) 6099996721309713 a001 4807526976/312119004989*599074578^(11/21) 6099996721309713 a001 701408733/817138163596*599074578^(2/3) 6099996721309713 a001 12586269025/817138163596*599074578^(11/21) 6099996721309713 a001 32951280099/2139295485799*599074578^(11/21) 6099996721309713 a001 86267571272/5600748293801*599074578^(11/21) 6099996721309713 a001 7787980473/505618944676*599074578^(11/21) 6099996721309713 a001 365435296162/23725150497407*599074578^(11/21) 6099996721309713 a001 139583862445/9062201101803*599074578^(11/21) 6099996721309713 a001 53316291173/3461452808002*599074578^(11/21) 6099996721309713 a001 20365011074/1322157322203*599074578^(11/21) 6099996721309713 a001 32951280099/969323029*599074578^(1/7) 6099996721309713 a001 7778742049/505019158607*599074578^(11/21) 6099996721309713 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 1134903170/28143753123*599074578^(10/21) 6099996721309713 a001 2971215073/192900153618*599074578^(11/21) 6099996721309713 a001 139583862445/1568397607*228826127^(1/10) 6099996721309713 a001 20365011074/969323029*599074578^(1/6) 6099996721309713 a001 1836311903/312119004989*599074578^(4/7) 6099996721309713 a001 567451585/22768774562*599074578^(1/2) 6099996721309713 a001 7778742049/228826127*87403803^(3/19) 6099996721309713 a001 1201881744/204284540899*599074578^(4/7) 6099996721309713 a001 701408733/2139295485799*599074578^(5/7) 6099996721309713 a001 701408733/969323029*599074578^(1/3) 6099996721309713 a001 133957148/299537289*228826127^(3/8) 6099996721309713 a001 12586269025/2139295485799*599074578^(4/7) 6099996721309713 a001 32951280099/5600748293801*599074578^(4/7) 6099996721309713 a001 1135099622/192933544679*599074578^(4/7) 6099996721309713 a001 139583862445/23725150497407*599074578^(4/7) 6099996721309713 a001 53316291173/9062201101803*599074578^(4/7) 6099996721309713 a001 10182505537/1730726404001*599074578^(4/7) 6099996721309713 a001 12586269025/969323029*599074578^(4/21) 6099996721309713 a001 7778742049/1322157322203*599074578^(4/7) 6099996721309713 a001 1134903170/73681302247*599074578^(11/21) 6099996721309713 a001 2971215073/505019158607*599074578^(4/7) 6099996721309713 a001 7778742049/969323029*599074578^(3/14) 6099996721309713 a001 1836311903/817138163596*599074578^(13/21) 6099996721309713 a001 4807526976/2139295485799*599074578^(13/21) 6099996721309713 a001 701408733/5600748293801*599074578^(16/21) 6099996721309713 a001 4807526976/969323029*599074578^(5/21) 6099996721309713 a001 433494437/1568397607*599074578^(8/21) 6099996721309713 a001 12586269025/5600748293801*599074578^(13/21) 6099996721309713 a001 32951280099/14662949395604*599074578^(13/21) 6099996721309713 a001 53316291173/23725150497407*599074578^(13/21) 6099996721309713 a001 20365011074/9062201101803*599074578^(13/21) 6099996721309713 a001 7778742049/3461452808002*599074578^(13/21) 6099996721309713 a001 1836311903/1322157322203*599074578^(9/14) 6099996721309713 a001 567451585/96450076809*599074578^(4/7) 6099996721309713 a001 2971215073/1322157322203*599074578^(13/21) 6099996721309713 a001 14930208/10749853441*599074578^(9/14) 6099996721309713 a001 233802911/3020733700601*599074578^(11/14) 6099996721309713 a001 12586269025/9062201101803*599074578^(9/14) 6099996721309713 a001 32951280099/23725150497407*599074578^(9/14) 6099996721309713 a001 10182505537/7331474697802*599074578^(9/14) 6099996721309713 a001 7778742049/5600748293801*599074578^(9/14) 6099996721309713 a001 1836311903/2139295485799*599074578^(2/3) 6099996721309713 a001 1836311903/969323029*599074578^(2/7) 6099996721309713 a001 2971215073/2139295485799*599074578^(9/14) 6099996721309713 a001 4807526976/5600748293801*599074578^(2/3) 6099996721309713 a001 701408733/14662949395604*599074578^(17/21) 6099996721309713 a001 365435296162/4106118243*228826127^(1/10) 6099996721309713 a001 12586269025/14662949395604*599074578^(2/3) 6099996721309713 a001 20365011074/23725150497407*599074578^(2/3) 6099996721309713 a001 7778742049/9062201101803*599074578^(2/3) 6099996721309713 a001 1134903170/505019158607*599074578^(13/21) 6099996721309713 a001 2971215073/3461452808002*599074578^(2/3) 6099996721309713 a001 956722026041/10749957122*228826127^(1/10) 6099996721309713 a001 2504730781961/28143753123*228826127^(1/10) 6099996721309713 a001 6557470319842/73681302247*228826127^(1/10) 6099996721309713 a001 10610209857723/119218851371*228826127^(1/10) 6099996721309713 a001 4052739537881/45537549124*228826127^(1/10) 6099996721309713 a001 1548008755920/17393796001*228826127^(1/10) 6099996721309713 a001 701408733/23725150497407*599074578^(5/6) 6099996721309713 a001 1836311903/5600748293801*599074578^(5/7) 6099996721309713 a001 591286729879/6643838879*228826127^(1/10) 6099996721309713 a001 567451585/408569081798*599074578^(9/14) 6099996721309713 a001 86267571272/1568397607*228826127^(1/8) 6099996721309713 a001 1201881744/3665737348901*599074578^(5/7) 6099996721309713 a001 7778742049/23725150497407*599074578^(5/7) 6099996721309713 a001 2971215073/599074578*228826127^(1/4) 6099996721309713 a001 1134903170/1322157322203*599074578^(2/3) 6099996721309713 a001 2971215073/9062201101803*599074578^(5/7) 6099996721309713 a001 225851433717/969323029*228826127^(1/20) 6099996721309713 a001 1836311903/14662949395604*599074578^(16/21) 6099996721309713 a001 225851433717/2537720636*228826127^(1/10) 6099996721309713 a001 433494437/969323029*2537720636^(1/3) 6099996721309713 a001 433494437/969323029*45537549124^(5/17) 6099996721309713 a001 433494437/969323029*312119004989^(3/11) 6099996721309713 a001 433494437/969323029*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(43) 6099996721309713 a001 433494437/969323029*192900153618^(5/18) 6099996721309713 a001 433494437/969323029*28143753123^(3/10) 6099996721309713 a001 1836311903/23725150497407*599074578^(11/14) 6099996721309713 a001 433494437/969323029*10749957122^(5/16) 6099996721309713 a001 567451585/1730726404001*599074578^(5/7) 6099996721309713 a001 2971215073/23725150497407*599074578^(16/21) 6099996721309713 a001 433494437/4106118243*599074578^(3/7) 6099996721309713 a001 1134903170/9062201101803*599074578^(16/21) 6099996721309713 a001 75283811239/1368706081*228826127^(1/8) 6099996721309713 a001 567451585/7331474697802*599074578^(11/14) 6099996721309713 a001 591286729879/10749957122*228826127^(1/8) 6099996721309713 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^71 6099996721309713 a001 433494437/10749957122*599074578^(10/21) 6099996721309713 a001 12585437040/228811001*228826127^(1/8) 6099996721309713 a001 4052739537881/73681302247*228826127^(1/8) 6099996721309713 a001 3536736619241/64300051206*228826127^(1/8) 6099996721309713 a001 6557470319842/119218851371*228826127^(1/8) 6099996721309713 a001 2504730781961/45537549124*228826127^(1/8) 6099996721309713 a001 956722026041/17393796001*228826127^(1/8) 6099996721309713 a001 365435296162/6643838879*228826127^(1/8) 6099996721309713 a001 1134903170/23725150497407*599074578^(17/21) 6099996721309713 a001 53316291173/1568397607*228826127^(3/20) 6099996721309713 a001 433494437/17393796001*599074578^(1/2) 6099996721309713 a001 433494437/28143753123*599074578^(11/21) 6099996721309713 a001 139583862445/2537720636*228826127^(1/8) 6099996721309713 a001 433494437/73681302247*599074578^(4/7) 6099996721309713 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^73 6099996721309713 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^75 6099996721309713 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^77 6099996721309713 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^79 6099996721309713 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(68)*Lucas(42)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(70)*Lucas(42)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(72)*Lucas(42)/(1/2+sqrt(5)/2)^99 6099996721309713 a001 1/133957148*(1/2+1/2*5^(1/2))^57 6099996721309713 a004 Fibonacci(73)*Lucas(42)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(71)*Lucas(42)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(69)*Lucas(42)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(67)*Lucas(42)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 433494437/192900153618*599074578^(13/21) 6099996721309713 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 139583862445/4106118243*228826127^(3/20) 6099996721309713 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 433494437/312119004989*599074578^(9/14) 6099996721309713 a001 182717648081/5374978561*228826127^(3/20) 6099996721309713 a001 956722026041/28143753123*228826127^(3/20) 6099996721309713 a001 2504730781961/73681302247*228826127^(3/20) 6099996721309713 a001 3278735159921/96450076809*228826127^(3/20) 6099996721309713 a001 10610209857723/312119004989*228826127^(3/20) 6099996721309713 a001 4052739537881/119218851371*228826127^(3/20) 6099996721309713 a001 387002188980/11384387281*228826127^(3/20) 6099996721309713 a001 591286729879/17393796001*228826127^(3/20) 6099996721309713 a001 225851433717/6643838879*228826127^(3/20) 6099996721309713 a001 433494437/505019158607*599074578^(2/3) 6099996721309713 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 86267571272/969323029*228826127^(1/10) 6099996721309713 a001 1135099622/33391061*228826127^(3/20) 6099996721309713 a001 433494437/1322157322203*599074578^(5/7) 6099996721309713 a001 567451585/299537289*228826127^(3/10) 6099996721309713 a001 433494437/969323029*599074578^(5/14) 6099996721309713 a001 433494437/3461452808002*599074578^(16/21) 6099996721309713 a001 433494437/5600748293801*599074578^(11/14) 6099996721309713 a001 433494437/9062201101803*599074578^(17/21) 6099996721309713 a001 433494437/14662949395604*599074578^(5/6) 6099996721309713 a001 20365011074/1568397607*228826127^(1/5) 6099996721309713 a001 53316291173/370248451*141422324^(1/13) 6099996721309713 a001 53316291173/969323029*228826127^(1/8) 6099996721309713 a001 433494437/23725150497407*599074578^(6/7) 6099996721309713 a001 53316291173/4106118243*228826127^(1/5) 6099996721309713 a001 139583862445/10749957122*228826127^(1/5) 6099996721309713 a001 365435296162/28143753123*228826127^(1/5) 6099996721309713 a001 956722026041/73681302247*228826127^(1/5) 6099996721309713 a001 2504730781961/192900153618*228826127^(1/5) 6099996721309713 a001 10610209857723/817138163596*228826127^(1/5) 6099996721309713 a001 4052739537881/312119004989*228826127^(1/5) 6099996721309713 a001 1548008755920/119218851371*228826127^(1/5) 6099996721309713 a001 591286729879/45537549124*228826127^(1/5) 6099996721309713 a001 7787980473/599786069*228826127^(1/5) 6099996721309713 a001 86267571272/6643838879*228826127^(1/5) 6099996721309713 a001 31622993/1730726404001*141422324^(12/13) 6099996721309713 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 32951280099/969323029*228826127^(3/20) 6099996721309713 a001 32951280099/2537720636*228826127^(1/5) 6099996721309713 a001 139583862445/599074578*87403803^(1/19) 6099996721309713 a001 7778742049/1568397607*228826127^(1/4) 6099996721309713 a001 267914296/370248451*17393796001^(2/7) 6099996721309713 a001 267914296/370248451*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(42) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(41) 6099996721309713 a001 165580141/599074578*23725150497407^(1/4) 6099996721309713 a001 267914296/370248451*505019158607^(1/4) 6099996721309713 a001 165580141/599074578*73681302247^(4/13) 6099996721309713 a001 267914296/370248451*10749957122^(7/24) 6099996721309713 a001 165580141/599074578*10749957122^(1/3) 6099996721309713 a001 267914296/370248451*4106118243^(7/23) 6099996721309713 a001 165580141/599074578*4106118243^(8/23) 6099996721309713 a001 267914296/370248451*1568397607^(7/22) 6099996721309713 a001 165580141/599074578*1568397607^(4/11) 6099996721309713 a001 20365011074/4106118243*228826127^(1/4) 6099996721309713 a001 53316291173/10749957122*228826127^(1/4) 6099996721309713 a001 139583862445/28143753123*228826127^(1/4) 6099996721309713 a001 365435296162/73681302247*228826127^(1/4) 6099996721309713 a001 956722026041/192900153618*228826127^(1/4) 6099996721309713 a001 2504730781961/505019158607*228826127^(1/4) 6099996721309713 a001 10610209857723/2139295485799*228826127^(1/4) 6099996721309713 a001 4052739537881/817138163596*228826127^(1/4) 6099996721309713 a001 140728068720/28374454999*228826127^(1/4) 6099996721309713 a001 591286729879/119218851371*228826127^(1/4) 6099996721309713 a001 225851433717/45537549124*228826127^(1/4) 6099996721309713 a001 86267571272/17393796001*228826127^(1/4) 6099996721309713 a001 32951280099/6643838879*228826127^(1/4) 6099996721309713 a001 12586269025/969323029*228826127^(1/5) 6099996721309713 a001 1144206275/230701876*228826127^(1/4) 6099996721309713 a001 433494437/599074578*228826127^(7/20) 6099996721309713 a001 2971215073/1568397607*228826127^(3/10) 6099996721309713 a001 267914296/370248451*599074578^(1/3) 6099996721309713 a001 165580141/599074578*599074578^(8/21) 6099996721309713 a001 7778742049/4106118243*228826127^(3/10) 6099996721309713 a001 10182505537/5374978561*228826127^(3/10) 6099996721309713 a001 53316291173/28143753123*228826127^(3/10) 6099996721309713 a001 139583862445/73681302247*228826127^(3/10) 6099996721309713 a001 182717648081/96450076809*228826127^(3/10) 6099996721309713 a001 956722026041/505019158607*228826127^(3/10) 6099996721309713 a001 10610209857723/5600748293801*228826127^(3/10) 6099996721309713 a001 591286729879/312119004989*228826127^(3/10) 6099996721309713 a001 225851433717/119218851371*228826127^(3/10) 6099996721309713 a001 21566892818/11384387281*228826127^(3/10) 6099996721309713 a001 32951280099/17393796001*228826127^(3/10) 6099996721309713 a001 12586269025/6643838879*228826127^(3/10) 6099996721309713 a001 4807526976/969323029*228826127^(1/4) 6099996721309713 a001 1201881744/634430159*228826127^(3/10) 6099996721309713 a001 267914296/969323029*228826127^(2/5) 6099996721309713 a001 66978574/634430159*228826127^(9/20) 6099996721309713 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^69 6099996721309713 a001 701408733/1568397607*228826127^(3/8) 6099996721309713 a001 1134903170/1568397607*228826127^(7/20) 6099996721309713 a001 365435296162/1568397607*87403803^(1/19) 6099996721309713 a001 2971215073/4106118243*228826127^(7/20) 6099996721309713 a001 7778742049/10749957122*228826127^(7/20) 6099996721309713 a001 20365011074/28143753123*228826127^(7/20) 6099996721309713 a001 53316291173/73681302247*228826127^(7/20) 6099996721309713 a001 139583862445/192900153618*228826127^(7/20) 6099996721309713 a001 365435296162/505019158607*228826127^(7/20) 6099996721309713 a001 10610209857723/14662949395604*228826127^(7/20) 6099996721309713 a001 591286729879/817138163596*228826127^(7/20) 6099996721309713 a001 225851433717/312119004989*228826127^(7/20) 6099996721309713 a001 86267571272/119218851371*228826127^(7/20) 6099996721309713 a001 32951280099/45537549124*228826127^(7/20) 6099996721309713 a001 12586269025/17393796001*228826127^(7/20) 6099996721309713 a001 4807526976/6643838879*228826127^(7/20) 6099996721309713 a001 1836311903/969323029*228826127^(3/10) 6099996721309713 a001 1836311903/2537720636*228826127^(7/20) 6099996721309713 a001 267914296/6643838879*228826127^(1/2) 6099996721309713 a001 165580141/1568397607*2537720636^(2/5) 6099996721309713 a001 956722026041/4106118243*87403803^(1/19) 6099996721309713 a001 701408733/370248451*2537720636^(4/15) 6099996721309713 a001 2504730781961/10749957122*87403803^(1/19) 6099996721309713 a001 165580141/1568397607*45537549124^(6/17) 6099996721309713 a001 701408733/370248451*45537549124^(4/17) 6099996721309713 a001 6557470319842/28143753123*87403803^(1/19) 6099996721309713 a001 701408733/370248451*817138163596^(4/19) 6099996721309713 a001 165580141/1568397607*14662949395604^(2/7) 6099996721309713 a001 701408733/370248451*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(44) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(41) 6099996721309713 a001 165580141/1568397607*192900153618^(1/3) 6099996721309713 a001 701408733/370248451*73681302247^(3/13) 6099996721309713 a001 10610209857723/45537549124*87403803^(1/19) 6099996721309713 a001 701408733/370248451*10749957122^(1/4) 6099996721309713 a001 165580141/1568397607*10749957122^(3/8) 6099996721309713 a001 4052739537881/17393796001*87403803^(1/19) 6099996721309713 a001 701408733/370248451*4106118243^(6/23) 6099996721309713 a001 165580141/1568397607*4106118243^(9/23) 6099996721309713 a001 1548008755920/6643838879*87403803^(1/19) 6099996721309713 a001 701408733/370248451*1568397607^(3/11) 6099996721309713 a001 1836311903/4106118243*228826127^(3/8) 6099996721309713 a001 591286729879/2537720636*87403803^(1/19) 6099996721309713 a001 165580141/1568397607*1568397607^(9/22) 6099996721309713 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^71 6099996721309713 a001 2403763488/5374978561*228826127^(3/8) 6099996721309713 a001 12586269025/28143753123*228826127^(3/8) 6099996721309713 a001 32951280099/73681302247*228826127^(3/8) 6099996721309713 a001 43133785636/96450076809*228826127^(3/8) 6099996721309713 a001 225851433717/505019158607*228826127^(3/8) 6099996721309713 a001 591286729879/1322157322203*228826127^(3/8) 6099996721309713 a001 10610209857723/23725150497407*228826127^(3/8) 6099996721309713 a001 182717648081/408569081798*228826127^(3/8) 6099996721309713 a001 139583862445/312119004989*228826127^(3/8) 6099996721309713 a001 53316291173/119218851371*228826127^(3/8) 6099996721309713 a001 10182505537/22768774562*228826127^(3/8) 6099996721309713 a001 2971215073/54018521*20633239^(1/7) 6099996721309713 a001 165580141/4106118243*2537720636^(4/9) 6099996721309713 a001 7778742049/17393796001*228826127^(3/8) 6099996721309713 a001 165580141/9062201101803*2537720636^(4/5) 6099996721309713 a001 165580141/5600748293801*2537720636^(7/9) 6099996721309713 a001 165580141/2139295485799*2537720636^(11/15) 6099996721309713 a001 165580141/505019158607*2537720636^(2/3) 6099996721309713 a001 1836311903/370248451*2537720636^(2/9) 6099996721309713 a001 165580141/119218851371*2537720636^(3/5) 6099996721309713 a001 2971215073/6643838879*228826127^(3/8) 6099996721309713 a001 165580141/45537549124*2537720636^(5/9) 6099996721309713 a001 165580141/28143753123*2537720636^(8/15) 6099996721309713 a001 1836311903/370248451*312119004989^(2/11) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(41) 6099996721309713 a001 165580141/4106118243*23725150497407^(5/16) 6099996721309713 a001 165580141/4106118243*505019158607^(5/14) 6099996721309713 a001 165580141/4106118243*73681302247^(5/13) 6099996721309713 a001 1836311903/370248451*28143753123^(1/5) 6099996721309713 a001 165580141/4106118243*28143753123^(2/5) 6099996721309713 a001 1836311903/370248451*10749957122^(5/24) 6099996721309713 a001 165580141/4106118243*10749957122^(5/12) 6099996721309713 a001 165580141/6643838879*2537720636^(7/15) 6099996721309713 a001 1836311903/370248451*4106118243^(5/23) 6099996721309713 a001 165580141/4106118243*4106118243^(10/23) 6099996721309713 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 12586269025/370248451*2537720636^(2/15) 6099996721309713 a001 20365011074/370248451*2537720636^(1/9) 6099996721309713 a001 53316291173/370248451*2537720636^(1/15) 6099996721309713 a001 165580141/10749957122*312119004989^(2/5) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(41) 6099996721309713 a001 4807526976/370248451*23725150497407^(1/8) 6099996721309713 a001 4807526976/370248451*505019158607^(1/7) 6099996721309713 a001 4807526976/370248451*73681302247^(2/13) 6099996721309713 a001 2971215073/370248451*2537720636^(1/5) 6099996721309713 a001 4807526976/370248451*10749957122^(1/6) 6099996721309713 a001 165580141/10749957122*10749957122^(11/24) 6099996721309713 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 165580141/5600748293801*17393796001^(5/7) 6099996721309713 a001 165580141/192900153618*17393796001^(4/7) 6099996721309713 a001 165580141/28143753123*45537549124^(8/17) 6099996721309713 a001 12586269025/370248451*45537549124^(2/17) 6099996721309713 a001 12586269025/370248451*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(41) 6099996721309713 a001 165580141/28143753123*192900153618^(4/9) 6099996721309713 a001 165580141/28143753123*73681302247^(6/13) 6099996721309713 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 165580141/9062201101803*45537549124^(12/17) 6099996721309713 a001 165580141/3461452808002*45537549124^(2/3) 6099996721309713 a001 165580141/2139295485799*45537549124^(11/17) 6099996721309713 a001 165580141/505019158607*45537549124^(10/17) 6099996721309713 a001 165580141/119218851371*45537549124^(9/17) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(41) 6099996721309713 a001 32951280099/370248451*23725150497407^(1/16) 6099996721309713 a001 12586269025/370248451*10749957122^(1/8) 6099996721309713 a001 32951280099/370248451*73681302247^(1/13) 6099996721309713 a001 165580141/73681302247*73681302247^(1/2) 6099996721309713 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 165580141/192900153618*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(54) 6099996721309713 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(41) 6099996721309713 a001 165580141/192900153618*505019158607^(1/2) 6099996721309713 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^81 6099996721309713 a001 165580141/505019158607*312119004989^(6/11) 6099996721309713 a001 165580141/5600748293801*312119004989^(7/11) 6099996721309713 a001 165580141/2139295485799*312119004989^(3/5) 6099996721309713 a001 165580141/505019158607*14662949395604^(10/21) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(56) 6099996721309713 a006 5^(1/2)*Fibonacci(56)/Lucas(41)/sqrt(5) 6099996721309713 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(58) 6099996721309713 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 165580141/1322157322203*23725150497407^(1/2) 6099996721309713 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(60) 6099996721309713 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(41)*Lucas(69)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(41)*Lucas(71)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(41)*Lucas(73)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(78) 6099996721309713 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(80) 6099996721309713 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^24 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(82) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(84) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(86) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(88) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(90) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(92) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^68/Lucas(94) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^70/Lucas(96) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^72/Lucas(98) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^73/Lucas(99) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^74/Lucas(100) 6099996721309713 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^71/Lucas(97) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^69/Lucas(95) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(93) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(91) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(89) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(87) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(85) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(83) 6099996721309713 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^42 6099996721309713 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^44 6099996721309713 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^43 6099996721309713 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(81) 6099996721309713 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(79) 6099996721309713 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(41)*Lucas(74)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(41)*Lucas(72)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(41)*Lucas(70)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(41)*Lucas(68)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^88 6099996721309713 a001 165580141/5600748293801*14662949395604^(5/9) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^86 6099996721309713 a001 165580141/2139295485799*14662949395604^(11/21) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(59) 6099996721309713 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^3 6099996721309713 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(57) 6099996721309713 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2) 6099996721309713 a001 165580141/817138163596*9062201101803^(1/2) 6099996721309713 a001 165580141/1322157322203*505019158607^(4/7) 6099996721309713 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(55) 6099996721309713 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(41) 6099996721309713 a001 165580141/312119004989*1322157322203^(1/2) 6099996721309713 a001 165580141/505019158607*192900153618^(5/9) 6099996721309713 a001 165580141/2139295485799*192900153618^(11/18) 6099996721309713 a001 165580141/9062201101803*192900153618^(2/3) 6099996721309713 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^80 6099996721309713 a001 53316291173/370248451*45537549124^(1/17) 6099996721309713 a001 165580141/119218851371*817138163596^(9/19) 6099996721309713 a001 165580141/119218851371*14662949395604^(3/7) 6099996721309713 a001 53316291173/370248451*14662949395604^(1/21) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(41) 6099996721309713 a001 165580141/192900153618*73681302247^(7/13) 6099996721309713 a001 165580141/119218851371*192900153618^(1/2) 6099996721309713 a001 165580141/1322157322203*73681302247^(8/13) 6099996721309713 a001 165580141/9062201101803*73681302247^(9/13) 6099996721309713 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^78 6099996721309713 a001 86267571272/370248451*10749957122^(1/24) 6099996721309713 a001 165580141/45537549124*312119004989^(5/11) 6099996721309713 a001 20365011074/370248451*312119004989^(1/11) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(41) 6099996721309713 a001 165580141/45537549124*3461452808002^(5/12) 6099996721309713 a001 32951280099/370248451*10749957122^(1/12) 6099996721309713 a001 20365011074/370248451*28143753123^(1/10) 6099996721309713 a001 53316291173/370248451*10749957122^(1/16) 6099996721309713 a001 165580141/505019158607*28143753123^(3/5) 6099996721309713 a001 165580141/5600748293801*28143753123^(7/10) 6099996721309713 a001 165580141/45537549124*28143753123^(1/2) 6099996721309713 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 4807526976/370248451*4106118243^(4/23) 6099996721309713 a001 86267571272/370248451*4106118243^(1/23) 6099996721309713 a001 7778742049/370248451*17393796001^(1/7) 6099996721309713 a001 165580141/28143753123*10749957122^(1/2) 6099996721309713 a001 7778742049/370248451*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(41) 6099996721309713 a001 165580141/73681302247*10749957122^(13/24) 6099996721309713 a001 165580141/119218851371*10749957122^(9/16) 6099996721309713 a001 32951280099/370248451*4106118243^(2/23) 6099996721309713 a001 165580141/192900153618*10749957122^(7/12) 6099996721309713 a001 165580141/505019158607*10749957122^(5/8) 6099996721309713 a001 165580141/1322157322203*10749957122^(2/3) 6099996721309713 a001 165580141/2139295485799*10749957122^(11/16) 6099996721309713 a001 165580141/3461452808002*10749957122^(17/24) 6099996721309713 a001 12586269025/370248451*4106118243^(3/23) 6099996721309713 a001 165580141/9062201101803*10749957122^(3/4) 6099996721309713 a001 165580141/23725150497407*10749957122^(19/24) 6099996721309713 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 86267571272/370248451*1568397607^(1/22) 6099996721309713 a001 165580141/10749957122*4106118243^(11/23) 6099996721309713 a001 165580141/6643838879*17393796001^(3/7) 6099996721309713 a001 165580141/6643838879*45537549124^(7/17) 6099996721309713 a001 2971215073/370248451*45537549124^(3/17) 6099996721309713 a001 2971215073/370248451*817138163596^(3/19) 6099996721309713 a001 165580141/6643838879*14662949395604^(1/3) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(41) 6099996721309713 a001 2971215073/370248451*192900153618^(1/6) 6099996721309713 a001 165580141/6643838879*192900153618^(7/18) 6099996721309713 a001 2971215073/370248451*10749957122^(3/16) 6099996721309713 a001 165580141/6643838879*10749957122^(7/16) 6099996721309713 a001 165580141/28143753123*4106118243^(12/23) 6099996721309713 a001 165580141/17393796001*4106118243^(1/2) 6099996721309713 a001 1836311903/370248451*1568397607^(5/22) 6099996721309713 a001 165580141/73681302247*4106118243^(13/23) 6099996721309713 a001 165580141/192900153618*4106118243^(14/23) 6099996721309713 a001 32951280099/370248451*1568397607^(1/11) 6099996721309713 a001 165580141/505019158607*4106118243^(15/23) 6099996721309713 a001 165580141/1322157322203*4106118243^(16/23) 6099996721309713 a001 165580141/3461452808002*4106118243^(17/23) 6099996721309713 a001 165580141/9062201101803*4106118243^(18/23) 6099996721309713 a001 701408733/969323029*228826127^(7/20) 6099996721309713 a001 165580141/23725150497407*4106118243^(19/23) 6099996721309713 a001 12586269025/370248451*1568397607^(3/22) 6099996721309713 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 4807526976/370248451*1568397607^(2/11) 6099996721309713 a001 701408733/2537720636*228826127^(2/5) 6099996721309713 a001 165580141/4106118243*1568397607^(5/11) 6099996721309713 a001 86267571272/370248451*599074578^(1/21) 6099996721309713 a001 1134903170/370248451*312119004989^(1/5) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(45) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(41) 6099996721309713 a001 567451585/1268860318*228826127^(3/8) 6099996721309713 a001 165580141/10749957122*1568397607^(1/2) 6099996721309713 a001 53316291173/370248451*599074578^(1/14) 6099996721309713 a001 165580141/28143753123*1568397607^(6/11) 6099996721309713 a001 165580141/73681302247*1568397607^(13/22) 6099996721309713 a001 1134903170/370248451*1568397607^(1/4) 6099996721309713 a001 165580141/192900153618*1568397607^(7/11) 6099996721309713 a001 32951280099/370248451*599074578^(2/21) 6099996721309713 a001 165580141/505019158607*1568397607^(15/22) 6099996721309713 a001 165580141/1322157322203*1568397607^(8/11) 6099996721309713 a001 165580141/2139295485799*1568397607^(3/4) 6099996721309713 a001 1836311903/6643838879*228826127^(2/5) 6099996721309713 a001 165580141/3461452808002*1568397607^(17/22) 6099996721309713 a001 165580141/9062201101803*1568397607^(9/11) 6099996721309713 a001 4807526976/17393796001*228826127^(2/5) 6099996721309713 a001 12586269025/45537549124*228826127^(2/5) 6099996721309713 a001 32951280099/119218851371*228826127^(2/5) 6099996721309713 a001 86267571272/312119004989*228826127^(2/5) 6099996721309713 a001 225851433717/817138163596*228826127^(2/5) 6099996721309713 a001 1548008755920/5600748293801*228826127^(2/5) 6099996721309713 a001 139583862445/505019158607*228826127^(2/5) 6099996721309713 a001 53316291173/192900153618*228826127^(2/5) 6099996721309713 a001 20365011074/73681302247*228826127^(2/5) 6099996721309713 a001 7778742049/28143753123*228826127^(2/5) 6099996721309713 a001 165580141/23725150497407*1568397607^(19/22) 6099996721309713 a001 2971215073/10749957122*228826127^(2/5) 6099996721309713 a001 701408733/370248451*599074578^(2/7) 6099996721309713 a001 12586269025/370248451*599074578^(1/7) 6099996721309713 a001 31622993/408569081798*141422324^(11/13) 6099996721309713 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 9238424/599786069*228826127^(11/20) 6099996721309713 a001 1134903170/4106118243*228826127^(2/5) 6099996721309713 a001 7778742049/370248451*599074578^(1/6) 6099996721309713 a001 4807526976/370248451*599074578^(4/21) 6099996721309713 a001 1836311903/370248451*599074578^(5/21) 6099996721309713 a001 2971215073/370248451*599074578^(3/14) 6099996721309713 a001 225851433717/969323029*87403803^(1/19) 6099996721309713 a001 165580141/1568397607*599074578^(3/7) 6099996721309713 a001 701408733/6643838879*228826127^(9/20) 6099996721309713 a001 86267571272/370248451*228826127^(1/20) 6099996721309713 a001 433494437/1568397607*228826127^(2/5) 6099996721309713 a001 165580141/969323029*45537549124^(1/3) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(43) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(41) 6099996721309713 a001 433494437/370248451*73681302247^(1/4) 6099996721309713 a001 2971215073/228826127*87403803^(4/19) 6099996721309713 a001 1836311903/17393796001*228826127^(9/20) 6099996721309713 a001 165580141/4106118243*599074578^(10/21) 6099996721309713 a001 1201881744/11384387281*228826127^(9/20) 6099996721309713 a001 12586269025/119218851371*228826127^(9/20) 6099996721309713 a001 32951280099/312119004989*228826127^(9/20) 6099996721309713 a001 21566892818/204284540899*228826127^(9/20) 6099996721309713 a001 225851433717/2139295485799*228826127^(9/20) 6099996721309713 a001 182717648081/1730726404001*228826127^(9/20) 6099996721309713 a001 139583862445/1322157322203*228826127^(9/20) 6099996721309713 a001 53316291173/505019158607*228826127^(9/20) 6099996721309713 a001 10182505537/96450076809*228826127^(9/20) 6099996721309713 a001 7778742049/73681302247*228826127^(9/20) 6099996721309713 a001 2971215073/28143753123*228826127^(9/20) 6099996721309713 a001 66978574/11384387281*228826127^(3/5) 6099996721309713 a001 165580141/6643838879*599074578^(1/2) 6099996721309713 a001 567451585/5374978561*228826127^(9/20) 6099996721309713 a001 165580141/10749957122*599074578^(11/21) 6099996721309713 a001 165580141/28143753123*599074578^(4/7) 6099996721309713 a001 165580141/73681302247*599074578^(13/21) 6099996721309713 a001 165580141/119218851371*599074578^(9/14) 6099996721309713 a001 701408733/17393796001*228826127^(1/2) 6099996721309713 a001 267914296/73681302247*228826127^(5/8) 6099996721309713 a001 165580141/192900153618*599074578^(2/3) 6099996721309713 a001 32951280099/370248451*228826127^(1/10) 6099996721309713 a001 165580141/505019158607*599074578^(5/7) 6099996721309713 a001 433494437/969323029*228826127^(3/8) 6099996721309713 a001 165580141/1322157322203*599074578^(16/21) 6099996721309713 a001 165580141/2139295485799*599074578^(11/14) 6099996721309713 a001 1836311903/45537549124*228826127^(1/2) 6099996721309713 a001 4807526976/119218851371*228826127^(1/2) 6099996721309713 a001 1144206275/28374454999*228826127^(1/2) 6099996721309713 a001 32951280099/817138163596*228826127^(1/2) 6099996721309713 a001 86267571272/2139295485799*228826127^(1/2) 6099996721309713 a001 225851433717/5600748293801*228826127^(1/2) 6099996721309713 a001 591286729879/14662949395604*228826127^(1/2) 6099996721309713 a001 365435296162/9062201101803*228826127^(1/2) 6099996721309713 a001 139583862445/3461452808002*228826127^(1/2) 6099996721309713 a001 53316291173/1322157322203*228826127^(1/2) 6099996721309713 a001 20365011074/505019158607*228826127^(1/2) 6099996721309713 a001 165580141/3461452808002*599074578^(17/21) 6099996721309713 a001 7778742049/192900153618*228826127^(1/2) 6099996721309713 a001 2971215073/73681302247*228826127^(1/2) 6099996721309713 a001 433494437/4106118243*228826127^(9/20) 6099996721309713 a001 165580141/5600748293801*599074578^(5/6) 6099996721309713 a001 267914296/119218851371*228826127^(13/20) 6099996721309713 a001 20365011074/370248451*228826127^(1/8) 6099996721309713 a001 165580141/9062201101803*599074578^(6/7) 6099996721309713 a001 1134903170/28143753123*228826127^(1/2) 6099996721309713 a001 165580141/23725150497407*599074578^(19/21) 6099996721309713 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^68 6099996721309713 a001 701408733/45537549124*228826127^(11/20) 6099996721309713 a001 12586269025/370248451*228826127^(3/20) 6099996721309713 a001 1836311903/119218851371*228826127^(11/20) 6099996721309713 a001 4807526976/312119004989*228826127^(11/20) 6099996721309713 a001 12586269025/817138163596*228826127^(11/20) 6099996721309713 a001 32951280099/2139295485799*228826127^(11/20) 6099996721309713 a001 86267571272/5600748293801*228826127^(11/20) 6099996721309713 a001 7787980473/505618944676*228826127^(11/20) 6099996721309713 a001 365435296162/23725150497407*228826127^(11/20) 6099996721309713 a001 139583862445/9062201101803*228826127^(11/20) 6099996721309713 a001 53316291173/3461452808002*228826127^(11/20) 6099996721309713 a001 20365011074/1322157322203*228826127^(11/20) 6099996721309713 a001 7778742049/505019158607*228826127^(11/20) 6099996721309713 a001 2971215073/192900153618*228826127^(11/20) 6099996721309713 a001 267914296/312119004989*228826127^(7/10) 6099996721309713 a001 433494437/10749957122*228826127^(1/2) 6099996721309713 a001 1134903170/73681302247*228826127^(11/20) 6099996721309713 a001 53316291173/599074578*87403803^(2/19) 6099996721309713 a001 701408733/119218851371*228826127^(3/5) 6099996721309713 a001 4807526976/370248451*228826127^(1/5) 6099996721309713 a001 267914296/370248451*228826127^(7/20) 6099996721309713 a001 1836311903/312119004989*228826127^(3/5) 6099996721309713 a001 1201881744/204284540899*228826127^(3/5) 6099996721309713 a001 12586269025/2139295485799*228826127^(3/5) 6099996721309713 a001 32951280099/5600748293801*228826127^(3/5) 6099996721309713 a001 1135099622/192933544679*228826127^(3/5) 6099996721309713 a001 139583862445/23725150497407*228826127^(3/5) 6099996721309713 a001 53316291173/9062201101803*228826127^(3/5) 6099996721309713 a001 10182505537/1730726404001*228826127^(3/5) 6099996721309713 a001 7778742049/1322157322203*228826127^(3/5) 6099996721309713 a001 2971215073/505019158607*228826127^(3/5) 6099996721309713 a001 233802911/64300051206*228826127^(5/8) 6099996721309713 a001 66978574/204284540899*228826127^(3/4) 6099996721309713 a001 31622993/96450076809*141422324^(10/13) 6099996721309713 a001 433494437/28143753123*228826127^(11/20) 6099996721309713 a001 567451585/96450076809*228826127^(3/5) 6099996721309713 a001 1836311903/505019158607*228826127^(5/8) 6099996721309713 a001 1602508992/440719107401*228826127^(5/8) 6099996721309713 a001 12586269025/3461452808002*228826127^(5/8) 6099996721309713 a001 10983760033/3020733700601*228826127^(5/8) 6099996721309713 a001 86267571272/23725150497407*228826127^(5/8) 6099996721309713 a001 53316291173/14662949395604*228826127^(5/8) 6099996721309713 a001 20365011074/5600748293801*228826127^(5/8) 6099996721309713 a001 7778742049/2139295485799*228826127^(5/8) 6099996721309713 a001 2971215073/817138163596*228826127^(5/8) 6099996721309713 a001 3524667/1568437211*228826127^(13/20) 6099996721309713 a001 1836311903/370248451*228826127^(1/4) 6099996721309713 a001 1134903170/312119004989*228826127^(5/8) 6099996721309713 a001 165580141/599074578*228826127^(2/5) 6099996721309713 a001 1836311903/817138163596*228826127^(13/20) 6099996721309713 a001 4807526976/2139295485799*228826127^(13/20) 6099996721309713 a001 12586269025/5600748293801*228826127^(13/20) 6099996721309713 a001 32951280099/14662949395604*228826127^(13/20) 6099996721309713 a001 53316291173/23725150497407*228826127^(13/20) 6099996721309713 a001 20365011074/9062201101803*228826127^(13/20) 6099996721309713 a001 7778742049/3461452808002*228826127^(13/20) 6099996721309713 a001 2971215073/1322157322203*228826127^(13/20) 6099996721309713 a001 267914296/2139295485799*228826127^(4/5) 6099996721309713 a001 433494437/73681302247*228826127^(3/5) 6099996721309713 a001 1134903170/505019158607*228826127^(13/20) 6099996721309713 a001 701408733/370248451*228826127^(3/10) 6099996721309713 a001 701408733/817138163596*228826127^(7/10) 6099996721309713 a001 433494437/119218851371*228826127^(5/8) 6099996721309713 a001 1836311903/2139295485799*228826127^(7/10) 6099996721309713 a001 4807526976/5600748293801*228826127^(7/10) 6099996721309713 a001 12586269025/14662949395604*228826127^(7/10) 6099996721309713 a001 20365011074/23725150497407*228826127^(7/10) 6099996721309713 a001 7778742049/9062201101803*228826127^(7/10) 6099996721309713 a001 139583862445/1568397607*87403803^(2/19) 6099996721309713 a001 2971215073/3461452808002*228826127^(7/10) 6099996721309713 a001 267914296/5600748293801*228826127^(17/20) 6099996721309713 a001 433494437/192900153618*228826127^(13/20) 6099996721309713 a001 1134903170/1322157322203*228826127^(7/10) 6099996721309713 a001 365435296162/4106118243*87403803^(2/19) 6099996721309713 a001 956722026041/10749957122*87403803^(2/19) 6099996721309713 a001 2504730781961/28143753123*87403803^(2/19) 6099996721309713 a001 6557470319842/73681302247*87403803^(2/19) 6099996721309713 a001 10610209857723/119218851371*87403803^(2/19) 6099996721309713 a001 4052739537881/45537549124*87403803^(2/19) 6099996721309713 a001 1548008755920/17393796001*87403803^(2/19) 6099996721309713 a001 591286729879/6643838879*87403803^(2/19) 6099996721309713 a001 701408733/2139295485799*228826127^(3/4) 6099996721309713 a001 267914296/9062201101803*228826127^(7/8) 6099996721309713 a001 225851433717/2537720636*87403803^(2/19) 6099996721309713 a001 86267571272/370248451*87403803^(1/19) 6099996721309713 a001 1836311903/5600748293801*228826127^(3/4) 6099996721309713 a001 1201881744/3665737348901*228826127^(3/4) 6099996721309713 a001 7778742049/23725150497407*228826127^(3/4) 6099996721309713 a001 2971215073/9062201101803*228826127^(3/4) 6099996721309713 a001 10946/599074579*228826127^(9/10) 6099996721309713 a001 433494437/505019158607*228826127^(7/10) 6099996721309713 a001 567451585/1730726404001*228826127^(3/4) 6099996721309713 a001 165580141/370248451*2537720636^(1/3) 6099996721309713 a001 165580141/370248451*45537549124^(5/17) 6099996721309713 a001 165580141/370248451*312119004989^(3/11) 6099996721309713 a001 165580141/370248451*14662949395604^(5/21) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(41) 6099996721309713 a001 165580141/370248451*192900153618^(5/18) 6099996721309713 a001 165580141/370248451*28143753123^(3/10) 6099996721309713 a001 165580141/370248451*10749957122^(5/16) 6099996721309713 a001 86267571272/969323029*87403803^(2/19) 6099996721309713 a001 701408733/5600748293801*228826127^(4/5) 6099996721309713 a001 1836311903/14662949395604*228826127^(4/5) 6099996721309713 a001 2971215073/23725150497407*228826127^(4/5) 6099996721309713 a001 31622993/22768774562*141422324^(9/13) 6099996721309713 a001 433494437/1322157322203*228826127^(3/4) 6099996721309713 a001 1134903170/9062201101803*228826127^(4/5) 6099996721309713 a001 165580141/1568397607*228826127^(9/20) 6099996721309713 a001 1134903170/228826127*87403803^(5/19) 6099996721309713 a001 165580141/370248451*599074578^(5/14) 6099996721309713 a001 701408733/14662949395604*228826127^(17/20) 6099996721309713 a001 701408733/23725150497407*228826127^(7/8) 6099996721309713 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^67 6099996721309713 a001 433494437/3461452808002*228826127^(4/5) 6099996721309713 a001 1134903170/23725150497407*228826127^(17/20) 6099996721309713 a001 63245986/28143753123*141422324^(2/3) 6099996721309713 a001 165580141/4106118243*228826127^(1/2) 6099996721309713 a001 433494437/9062201101803*228826127^(17/20) 6099996721309713 a001 433494437/14662949395604*228826127^(7/8) 6099996721309713 a001 165580141/10749957122*228826127^(11/20) 6099996721309713 a001 10182505537/299537289*87403803^(3/19) 6099996721309713 a001 433494437/23725150497407*228826127^(9/10) 6099996721309713 a001 2971215073/87403803*33385282^(1/6) 6099996721309713 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^69 6099996721309713 a001 165580141/28143753123*228826127^(3/5) 6099996721309713 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^71 6099996721309713 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^73 6099996721309713 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^75 6099996721309713 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^77 6099996721309713 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^79 6099996721309713 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(70)*Lucas(40)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(72)*Lucas(40)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(74)*Lucas(40)/(1/2+sqrt(5)/2)^99 6099996721309713 a001 2/102334155*(1/2+1/2*5^(1/2))^55 6099996721309713 a004 Fibonacci(75)*Lucas(40)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(73)*Lucas(40)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(71)*Lucas(40)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(69)*Lucas(40)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^76 6099996721309713 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^74 6099996721309713 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 31622993/5374978561*141422324^(8/13) 6099996721309713 a001 165580141/45537549124*228826127^(5/8) 6099996721309713 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 165580141/73681302247*228826127^(13/20) 6099996721309713 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^68 6099996721309713 a001 53316291173/1568397607*87403803^(3/19) 6099996721309713 a001 139583862445/4106118243*87403803^(3/19) 6099996721309713 a001 182717648081/5374978561*87403803^(3/19) 6099996721309713 a001 165580141/192900153618*228826127^(7/10) 6099996721309713 a001 956722026041/28143753123*87403803^(3/19) 6099996721309713 a001 2504730781961/73681302247*87403803^(3/19) 6099996721309713 a001 3278735159921/96450076809*87403803^(3/19) 6099996721309713 a001 10610209857723/312119004989*87403803^(3/19) 6099996721309713 a001 4052739537881/119218851371*87403803^(3/19) 6099996721309713 a001 387002188980/11384387281*87403803^(3/19) 6099996721309713 a001 591286729879/17393796001*87403803^(3/19) 6099996721309713 a001 225851433717/6643838879*87403803^(3/19) 6099996721309713 a001 1135099622/33391061*87403803^(3/19) 6099996721309713 a001 32951280099/370248451*87403803^(2/19) 6099996721309713 a001 165580141/505019158607*228826127^(3/4) 6099996721309713 a001 32951280099/969323029*87403803^(3/19) 6099996721309713 a001 165580141/370248451*228826127^(3/8) 6099996721309713 a001 165580141/1322157322203*228826127^(4/5) 6099996721309713 a001 31622993/1268860318*141422324^(7/13) 6099996721309713 a001 433494437/228826127*87403803^(6/19) 6099996721309713 a001 165580141/3461452808002*228826127^(17/20) 6099996721309713 a001 165580141/5600748293801*228826127^(7/8) 6099996721309713 a001 31622993/299537289*141422324^(6/13) 6099996721309713 a001 165580141/9062201101803*228826127^(9/10) 6099996721309713 a001 7778742049/599074578*87403803^(4/19) 6099996721309713 a001 165580141/23725150497407*228826127^(19/20) 6099996721309713 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^66 6099996721309713 a001 20365011074/1568397607*87403803^(4/19) 6099996721309713 a001 53316291173/4106118243*87403803^(4/19) 6099996721309713 a001 139583862445/10749957122*87403803^(4/19) 6099996721309713 a001 365435296162/28143753123*87403803^(4/19) 6099996721309713 a001 956722026041/73681302247*87403803^(4/19) 6099996721309713 a001 2504730781961/192900153618*87403803^(4/19) 6099996721309713 a001 10610209857723/817138163596*87403803^(4/19) 6099996721309713 a001 4052739537881/312119004989*87403803^(4/19) 6099996721309713 a001 1548008755920/119218851371*87403803^(4/19) 6099996721309713 a001 591286729879/45537549124*87403803^(4/19) 6099996721309713 a001 7787980473/599786069*87403803^(4/19) 6099996721309713 a001 86267571272/6643838879*87403803^(4/19) 6099996721309713 a001 32951280099/2537720636*87403803^(4/19) 6099996721309713 a001 12586269025/370248451*87403803^(3/19) 6099996721309713 a001 12586269025/969323029*87403803^(4/19) 6099996721309713 a001 53316291173/228826127*33385282^(1/18) 6099996721309713 a001 102334155/141422324*17393796001^(2/7) 6099996721309713 a001 102334155/141422324*14662949395604^(2/9) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(40) 6099996721309713 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(39) 6099996721309713 a001 63245986/228826127*73681302247^(4/13) 6099996721309713 a001 102334155/141422324*10749957122^(7/24) 6099996721309713 a001 63245986/228826127*10749957122^(1/3) 6099996721309713 a001 102334155/141422324*4106118243^(7/23) 6099996721309713 a001 63245986/228826127*4106118243^(8/23) 6099996721309713 a001 102334155/141422324*1568397607^(7/22) 6099996721309713 a001 63245986/228826127*1568397607^(4/11) 6099996721309713 a001 2971215073/599074578*87403803^(5/19) 6099996721309713 a001 66978574/35355581*141422324^(4/13) 6099996721309713 a001 102334155/141422324*599074578^(1/3) 6099996721309713 a001 63245986/228826127*599074578^(8/21) 6099996721309713 a001 7778742049/1568397607*87403803^(5/19) 6099996721309713 a001 20365011074/4106118243*87403803^(5/19) 6099996721309713 a001 53316291173/10749957122*87403803^(5/19) 6099996721309713 a001 139583862445/28143753123*87403803^(5/19) 6099996721309713 a001 365435296162/73681302247*87403803^(5/19) 6099996721309713 a001 956722026041/192900153618*87403803^(5/19) 6099996721309713 a001 2504730781961/505019158607*87403803^(5/19) 6099996721309713 a001 10610209857723/2139295485799*87403803^(5/19) 6099996721309713 a001 4052739537881/817138163596*87403803^(5/19) 6099996721309713 a001 140728068720/28374454999*87403803^(5/19) 6099996721309713 a001 591286729879/119218851371*87403803^(5/19) 6099996721309713 a001 225851433717/45537549124*87403803^(5/19) 6099996721309713 a001 86267571272/17393796001*87403803^(5/19) 6099996721309713 a001 32951280099/6643838879*87403803^(5/19) 6099996721309713 a001 1144206275/230701876*87403803^(5/19) 6099996721309713 a001 4807526976/370248451*87403803^(4/19) 6099996721309713 a001 4807526976/969323029*87403803^(5/19) 6099996721309713 a001 165580141/228826127*87403803^(7/19) 6099996721309713 a001 102334155/141422324*228826127^(7/20) 6099996721309713 a001 63245986/228826127*228826127^(2/5) 6099996721309713 a001 567451585/70711162*141422324^(3/13) 6099996721309713 a001 567451585/299537289*87403803^(6/19) 6099996721309713 a001 165580141/141422324*141422324^(1/3) 6099996721309713 a001 2971215073/1568397607*87403803^(6/19) 6099996721309713 a001 7778742049/4106118243*87403803^(6/19) 6099996721309713 a001 10182505537/5374978561*87403803^(6/19) 6099996721309713 a001 53316291173/28143753123*87403803^(6/19) 6099996721309713 a001 139583862445/73681302247*87403803^(6/19) 6099996721309713 a001 182717648081/96450076809*87403803^(6/19) 6099996721309713 a001 956722026041/505019158607*87403803^(6/19) 6099996721309713 a001 10610209857723/5600748293801*87403803^(6/19) 6099996721309713 a001 591286729879/312119004989*87403803^(6/19) 6099996721309713 a001 225851433717/119218851371*87403803^(6/19) 6099996721309713 a001 21566892818/11384387281*87403803^(6/19) 6099996721309713 a001 32951280099/17393796001*87403803^(6/19) 6099996721309713 a001 12586269025/6643838879*87403803^(6/19) 6099996721309713 a001 1201881744/634430159*87403803^(6/19) 6099996721309713 a001 1836311903/370248451*87403803^(5/19) 6099996721309713 a001 1201881744/35355581*141422324^(2/13) 6099996721309713 a001 1836311903/969323029*87403803^(6/19) 6099996721309713 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^65 6099996721309713 a001 102334155/370248451*87403803^(8/19) 6099996721309713 a001 102334155/969323029*87403803^(9/19) 6099996721309713 a001 14619165/224056801*87403803^(1/2) 6099996721309713 a001 10182505537/70711162*141422324^(1/13) 6099996721309713 a001 433494437/599074578*87403803^(7/19) 6099996721309713 a001 139583862445/599074578*33385282^(1/18) 6099996721309713 a001 31622993/299537289*2537720636^(2/5) 6099996721309713 a001 66978574/35355581*2537720636^(4/15) 6099996721309713 a001 31622993/299537289*45537549124^(6/17) 6099996721309713 a001 66978574/35355581*45537549124^(4/17) 6099996721309713 a001 31622993/299537289*14662949395604^(2/7) 6099996721309713 a001 66978574/35355581*14662949395604^(4/21) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(42) 6099996721309713 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(39) 6099996721309713 a001 66978574/35355581*192900153618^(2/9) 6099996721309713 a001 31622993/299537289*192900153618^(1/3) 6099996721309713 a001 66978574/35355581*73681302247^(3/13) 6099996721309713 a001 66978574/35355581*10749957122^(1/4) 6099996721309713 a001 31622993/299537289*10749957122^(3/8) 6099996721309713 a001 66978574/35355581*4106118243^(6/23) 6099996721309713 a001 31622993/299537289*4106118243^(9/23) 6099996721309713 a001 66978574/35355581*1568397607^(3/11) 6099996721309713 a001 31622993/299537289*1568397607^(9/22) 6099996721309713 a001 1134903170/1568397607*87403803^(7/19) 6099996721309713 a001 66978574/35355581*599074578^(2/7) 6099996721309713 a001 2971215073/4106118243*87403803^(7/19) 6099996721309713 a001 7778742049/10749957122*87403803^(7/19) 6099996721309713 a001 701408733/370248451*87403803^(6/19) 6099996721309713 a001 20365011074/28143753123*87403803^(7/19) 6099996721309713 a001 53316291173/73681302247*87403803^(7/19) 6099996721309713 a001 139583862445/192900153618*87403803^(7/19) 6099996721309713 a001 10610209857723/14662949395604*87403803^(7/19) 6099996721309713 a001 591286729879/817138163596*87403803^(7/19) 6099996721309713 a001 225851433717/312119004989*87403803^(7/19) 6099996721309713 a001 86267571272/119218851371*87403803^(7/19) 6099996721309713 a001 32951280099/45537549124*87403803^(7/19) 6099996721309713 a001 12586269025/17393796001*87403803^(7/19) 6099996721309713 a001 4807526976/6643838879*87403803^(7/19) 6099996721309713 a001 1836311903/2537720636*87403803^(7/19) 6099996721309713 a001 31622993/299537289*599074578^(3/7) 6099996721309713 a001 701408733/969323029*87403803^(7/19) 6099996721309713 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^67 6099996721309713 a001 365435296162/1568397607*33385282^(1/18) 6099996721309713 a001 63245986/1568397607*2537720636^(4/9) 6099996721309713 a001 701408733/141422324*2537720636^(2/9) 6099996721309713 a001 701408733/141422324*312119004989^(2/11) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(44) 6099996721309713 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(39) 6099996721309713 a001 63245986/1568397607*23725150497407^(5/16) 6099996721309713 a001 63245986/1568397607*505019158607^(5/14) 6099996721309713 a001 63245986/1568397607*73681302247^(5/13) 6099996721309713 a001 701408733/141422324*28143753123^(1/5) 6099996721309713 a001 63245986/1568397607*28143753123^(2/5) 6099996721309713 a001 701408733/141422324*10749957122^(5/24) 6099996721309713 a001 63245986/1568397607*10749957122^(5/12) 6099996721309713 a001 701408733/141422324*4106118243^(5/23) 6099996721309713 a001 63245986/1568397607*4106118243^(10/23) 6099996721309713 a001 701408733/141422324*1568397607^(5/22) 6099996721309713 a001 63245986/1568397607*1568397607^(5/11) 6099996721309713 a001 956722026041/4106118243*33385282^(1/18) 6099996721309713 a001 2504730781961/10749957122*33385282^(1/18) 6099996721309713 a001 6557470319842/28143753123*33385282^(1/18) 6099996721309713 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^69 6099996721309713 a001 10610209857723/45537549124*33385282^(1/18) 6099996721309713 a001 4052739537881/17393796001*33385282^(1/18) 6099996721309713 a001 63245986/23725150497407*2537720636^(8/9) 6099996721309713 a001 31622993/7331474697802*2537720636^(13/15) 6099996721309713 a001 1548008755920/6643838879*33385282^(1/18) 6099996721309713 a001 31622993/1730726404001*2537720636^(4/5) 6099996721309713 a001 63245986/2139295485799*2537720636^(7/9) 6099996721309713 a001 31622993/408569081798*2537720636^(11/15) 6099996721309713 a001 31622993/96450076809*2537720636^(2/3) 6099996721309713 a001 31622993/22768774562*2537720636^(3/5) 6099996721309713 a001 31622993/5374978561*2537720636^(8/15) 6099996721309713 a001 63245986/17393796001*2537720636^(5/9) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(46) 6099996721309713 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(39) 6099996721309713 a001 1836311903/141422324*23725150497407^(1/8) 6099996721309713 a001 1836311903/141422324*505019158607^(1/7) 6099996721309713 a001 1836311903/141422324*73681302247^(2/13) 6099996721309713 a001 1836311903/141422324*10749957122^(1/6) 6099996721309713 a001 63245986/4106118243*10749957122^(11/24) 6099996721309713 a001 1836311903/141422324*4106118243^(4/23) 6099996721309713 a001 9303105/230701876*87403803^(10/19) 6099996721309713 a001 63245986/4106118243*4106118243^(11/23) 6099996721309713 a001 1201881744/35355581*2537720636^(2/15) 6099996721309713 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^71 6099996721309713 a001 7778742049/141422324*2537720636^(1/9) 6099996721309713 a001 10182505537/70711162*2537720636^(1/15) 6099996721309713 a001 31622993/5374978561*45537549124^(8/17) 6099996721309713 a001 1201881744/35355581*45537549124^(2/17) 6099996721309713 a001 31622993/5374978561*14662949395604^(8/21) 6099996721309713 a001 1201881744/35355581*14662949395604^(2/21) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(48) 6099996721309713 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(39) 6099996721309713 a001 31622993/5374978561*192900153618^(4/9) 6099996721309713 a001 31622993/5374978561*73681302247^(6/13) 6099996721309713 a001 1201881744/35355581*10749957122^(1/8) 6099996721309713 a001 31622993/5374978561*10749957122^(1/2) 6099996721309713 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^73 6099996721309713 a001 63245986/2139295485799*17393796001^(5/7) 6099996721309713 a001 63245986/73681302247*17393796001^(4/7) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(50) 6099996721309713 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(39) 6099996721309713 a001 12586269025/141422324*23725150497407^(1/16) 6099996721309713 a001 12586269025/141422324*73681302247^(1/13) 6099996721309713 a001 63245986/28143753123*73681302247^(1/2) 6099996721309713 a001 1201881744/35355581*4106118243^(3/23) 6099996721309713 a001 12586269025/141422324*10749957122^(1/12) 6099996721309713 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^75 6099996721309713 a001 31622993/7331474697802*45537549124^(13/17) 6099996721309713 a001 31622993/1730726404001*45537549124^(12/17) 6099996721309713 a001 63245986/1322157322203*45537549124^(2/3) 6099996721309713 a001 31622993/96450076809*45537549124^(10/17) 6099996721309713 a001 31622993/408569081798*45537549124^(11/17) 6099996721309713 a001 63245986/73681302247*14662949395604^(4/9) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(52) 6099996721309713 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(39) 6099996721309713 a001 63245986/73681302247*505019158607^(1/2) 6099996721309713 a001 63245986/73681302247*73681302247^(7/13) 6099996721309713 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^77 6099996721309713 a001 31622993/96450076809*312119004989^(6/11) 6099996721309713 a001 31622993/96450076809*14662949395604^(10/21) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(54) 6099996721309713 a006 5^(1/2)*Fibonacci(54)/Lucas(39)/sqrt(5) 6099996721309713 a001 31622993/96450076809*192900153618^(5/9) 6099996721309713 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^79 6099996721309713 a001 63245986/2139295485799*312119004989^(7/11) 6099996721309713 a001 31622993/408569081798*312119004989^(3/5) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(56) 6099996721309713 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^2 6099996721309713 a001 63245986/505019158607*505019158607^(4/7) 6099996721309713 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(58) 6099996721309713 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^4 6099996721309713 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^83 6099996721309713 a001 31622993/1730726404001*14662949395604^(4/7) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(60) 6099996721309713 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^6 6099996721309713 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(62) 6099996721309713 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^8 6099996721309713 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(64) 6099996721309713 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^10 6099996721309713 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(66) 6099996721309713 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^12 6099996721309713 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(68) 6099996721309713 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^14 6099996721309713 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(70) 6099996721309713 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^16 6099996721309713 a004 Fibonacci(39)*Lucas(71)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(72) 6099996721309713 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^18 6099996721309713 a004 Fibonacci(39)*Lucas(73)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(74) 6099996721309713 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^20 6099996721309713 a004 Fibonacci(39)*Lucas(75)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(76) 6099996721309713 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^22 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(78) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(80) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(82) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(84) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(86) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(88) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(90) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(92) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^70/Lucas(94) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^72/Lucas(96) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^74/Lucas(98) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^75/Lucas(99) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^76/Lucas(100) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^73/Lucas(97) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^71/Lucas(95) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(93) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(91) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(89) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(87) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(85) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(83) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(81) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(79) 6099996721309713 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^26 6099996721309713 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^28 6099996721309713 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^30 6099996721309713 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^32 6099996721309713 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^34 6099996721309713 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^36 6099996721309713 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^38 6099996721309713 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^40 6099996721309713 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^42 6099996721309713 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^44 6099996721309713 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^46 6099996721309713 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^45 6099996721309713 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^43 6099996721309713 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^41 6099996721309713 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^39 6099996721309713 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^37 6099996721309713 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^35 6099996721309713 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^33 6099996721309713 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^31 6099996721309713 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^29 6099996721309713 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^27 6099996721309713 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^25 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(77) 6099996721309713 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^23 6099996721309713 a004 Fibonacci(39)*Lucas(76)/(1/2+sqrt(5)/2)^100 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(75) 6099996721309713 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^21 6099996721309713 a004 Fibonacci(39)*Lucas(74)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(73) 6099996721309713 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^19 6099996721309713 a004 Fibonacci(39)*Lucas(72)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(71) 6099996721309713 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^17 6099996721309713 a004 Fibonacci(39)*Lucas(70)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(69) 6099996721309713 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^15 6099996721309713 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(67) 6099996721309713 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^13 6099996721309713 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(65) 6099996721309713 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^11 6099996721309713 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(63) 6099996721309713 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^9 6099996721309713 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(61) 6099996721309713 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^7 6099996721309713 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^84 6099996721309713 a001 63245986/2139295485799*14662949395604^(5/9) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(59) 6099996721309713 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^5 6099996721309713 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^82 6099996721309713 a001 31622993/408569081798*14662949395604^(11/21) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(57) 6099996721309713 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^3 6099996721309713 a001 31622993/1730726404001*505019158607^(9/14) 6099996721309713 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(55) 6099996721309713 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2) 6099996721309713 a001 63245986/312119004989*9062201101803^(1/2) 6099996721309713 a001 31622993/1730726404001*192900153618^(2/3) 6099996721309713 a001 31622993/7331474697802*192900153618^(13/18) 6099996721309713 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(53) 6099996721309713 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(39) 6099996721309713 a001 63245986/119218851371*1322157322203^(1/2) 6099996721309713 a001 63245986/505019158607*73681302247^(8/13) 6099996721309713 a001 31622993/1730726404001*73681302247^(9/13) 6099996721309713 a001 31622993/7331474697802*73681302247^(3/4) 6099996721309713 a001 63245986/23725150497407*73681302247^(10/13) 6099996721309713 a001 63246219/271444*10749957122^(1/24) 6099996721309713 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^76 6099996721309713 a001 31622993/22768774562*45537549124^(9/17) 6099996721309713 a001 10182505537/70711162*45537549124^(1/17) 6099996721309713 a001 10182505537/70711162*14662949395604^(1/21) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(51) 6099996721309713 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(39) 6099996721309713 a001 10182505537/70711162*192900153618^(1/18) 6099996721309713 a001 31622993/22768774562*192900153618^(1/2) 6099996721309713 a001 31622993/96450076809*28143753123^(3/5) 6099996721309713 a001 63245986/2139295485799*28143753123^(7/10) 6099996721309713 a001 63245986/23725150497407*28143753123^(4/5) 6099996721309713 a001 10182505537/70711162*10749957122^(1/16) 6099996721309713 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^74 6099996721309713 a001 63246219/271444*4106118243^(1/23) 6099996721309713 a001 63245986/17393796001*312119004989^(5/11) 6099996721309713 a001 7778742049/141422324*312119004989^(1/11) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(49) 6099996721309713 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(39) 6099996721309713 a001 63245986/17393796001*3461452808002^(5/12) 6099996721309713 a001 63245986/28143753123*10749957122^(13/24) 6099996721309713 a001 7778742049/141422324*28143753123^(1/10) 6099996721309713 a001 12586269025/141422324*4106118243^(2/23) 6099996721309713 a001 63245986/17393796001*28143753123^(1/2) 6099996721309713 a001 63245986/73681302247*10749957122^(7/12) 6099996721309713 a001 31622993/22768774562*10749957122^(9/16) 6099996721309713 a001 31622993/96450076809*10749957122^(5/8) 6099996721309713 a001 63245986/505019158607*10749957122^(2/3) 6099996721309713 a001 31622993/408569081798*10749957122^(11/16) 6099996721309713 a001 63245986/1322157322203*10749957122^(17/24) 6099996721309713 a001 31622993/1730726404001*10749957122^(3/4) 6099996721309713 a001 63245986/9062201101803*10749957122^(19/24) 6099996721309713 a001 31622993/7331474697802*10749957122^(13/16) 6099996721309713 a001 63245986/23725150497407*10749957122^(5/6) 6099996721309713 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^72 6099996721309713 a001 1836311903/141422324*1568397607^(2/11) 6099996721309713 a001 63246219/271444*1568397607^(1/22) 6099996721309713 a001 2971215073/141422324*17393796001^(1/7) 6099996721309713 a001 31622993/5374978561*4106118243^(12/23) 6099996721309713 a001 2971215073/141422324*14662949395604^(1/9) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(47) 6099996721309713 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(39) 6099996721309713 a001 63245986/28143753123*4106118243^(13/23) 6099996721309713 a001 12586269025/141422324*1568397607^(1/11) 6099996721309713 a001 63245986/73681302247*4106118243^(14/23) 6099996721309713 a001 31622993/96450076809*4106118243^(15/23) 6099996721309713 a001 63245986/505019158607*4106118243^(16/23) 6099996721309713 a001 63245986/1322157322203*4106118243^(17/23) 6099996721309713 a001 31622993/1730726404001*4106118243^(18/23) 6099996721309713 a001 1201881744/35355581*1568397607^(3/22) 6099996721309713 a001 63245986/9062201101803*4106118243^(19/23) 6099996721309713 a001 63245986/23725150497407*4106118243^(20/23) 6099996721309713 a001 63245986/6643838879*4106118243^(1/2) 6099996721309713 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^70 6099996721309713 a001 31622993/1268860318*2537720636^(7/15) 6099996721309713 a001 567451585/70711162*2537720636^(1/5) 6099996721309713 a001 63246219/271444*599074578^(1/21) 6099996721309713 a001 63245986/4106118243*1568397607^(1/2) 6099996721309713 a001 31622993/1268860318*17393796001^(3/7) 6099996721309713 a001 31622993/1268860318*45537549124^(7/17) 6099996721309713 a001 567451585/70711162*45537549124^(3/17) 6099996721309713 a001 567451585/70711162*817138163596^(3/19) 6099996721309713 a001 31622993/1268860318*14662949395604^(1/3) 6099996721309713 a001 567451585/70711162*14662949395604^(1/7) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(45) 6099996721309713 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(39) 6099996721309713 a001 567451585/70711162*192900153618^(1/6) 6099996721309713 a001 31622993/1268860318*192900153618^(7/18) 6099996721309713 a001 567451585/70711162*10749957122^(3/16) 6099996721309713 a001 31622993/1268860318*10749957122^(7/16) 6099996721309713 a001 10182505537/70711162*599074578^(1/14) 6099996721309713 a001 31622993/5374978561*1568397607^(6/11) 6099996721309713 a001 63245986/28143753123*1568397607^(13/22) 6099996721309713 a001 701408733/141422324*599074578^(5/21) 6099996721309713 a001 63245986/73681302247*1568397607^(7/11) 6099996721309713 a001 12586269025/141422324*599074578^(2/21) 6099996721309713 a001 31622993/96450076809*1568397607^(15/22) 6099996721309713 a001 63245986/505019158607*1568397607^(8/11) 6099996721309713 a001 31622993/408569081798*1568397607^(3/4) 6099996721309713 a001 63245986/1322157322203*1568397607^(17/22) 6099996721309713 a001 31622993/1730726404001*1568397607^(9/11) 6099996721309713 a001 63245986/9062201101803*1568397607^(19/22) 6099996721309713 a001 63245986/23725150497407*1568397607^(10/11) 6099996721309713 a001 1201881744/35355581*599074578^(1/7) 6099996721309713 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^68 6099996721309713 a001 1836311903/141422324*599074578^(4/21) 6099996721309713 a001 2971215073/141422324*599074578^(1/6) 6099996721309713 a001 567451585/70711162*599074578^(3/14) 6099996721309713 a001 225851433717/969323029*33385282^(1/18) 6099996721309713 a001 63245986/1568397607*599074578^(10/21) 6099996721309713 a001 63246219/271444*228826127^(1/20) 6099996721309713 a001 433494437/141422324*312119004989^(1/5) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(43) 6099996721309713 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(39) 6099996721309713 a001 433494437/141422324*1568397607^(1/4) 6099996721309713 a001 63245986/4106118243*599074578^(11/21) 6099996721309713 a001 31622993/1268860318*599074578^(1/2) 6099996721309713 a001 31622993/5374978561*599074578^(4/7) 6099996721309713 a001 63245986/28143753123*599074578^(13/21) 6099996721309713 a001 31622993/22768774562*599074578^(9/14) 6099996721309713 a001 63245986/73681302247*599074578^(2/3) 6099996721309713 a001 12586269025/141422324*228826127^(1/10) 6099996721309713 a001 31622993/96450076809*599074578^(5/7) 6099996721309713 a001 63245986/505019158607*599074578^(16/21) 6099996721309713 a001 31622993/408569081798*599074578^(11/14) 6099996721309713 a001 63245986/1322157322203*599074578^(17/21) 6099996721309713 a001 63245986/2139295485799*599074578^(5/6) 6099996721309713 a001 31622993/1730726404001*599074578^(6/7) 6099996721309713 a001 7778742049/141422324*228826127^(1/8) 6099996721309713 a001 63245986/9062201101803*599074578^(19/21) 6099996721309713 a001 31622993/7331474697802*599074578^(13/14) 6099996721309713 a001 63245986/23725150497407*599074578^(20/21) 6099996721309713 a001 267914296/370248451*87403803^(7/19) 6099996721309713 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^66 6099996721309713 a001 1201881744/35355581*228826127^(3/20) 6099996721309713 a001 66978574/35355581*228826127^(3/10) 6099996721309713 a001 267914296/969323029*87403803^(8/19) 6099996721309713 a001 1836311903/141422324*228826127^(1/5) 6099996721309713 a001 701408733/141422324*228826127^(1/4) 6099996721309713 a001 701408733/2537720636*87403803^(8/19) 6099996721309713 a001 1836311903/6643838879*87403803^(8/19) 6099996721309713 a001 4807526976/17393796001*87403803^(8/19) 6099996721309713 a001 12586269025/45537549124*87403803^(8/19) 6099996721309713 a001 32951280099/119218851371*87403803^(8/19) 6099996721309713 a001 86267571272/312119004989*87403803^(8/19) 6099996721309713 a001 225851433717/817138163596*87403803^(8/19) 6099996721309713 a001 1548008755920/5600748293801*87403803^(8/19) 6099996721309713 a001 139583862445/505019158607*87403803^(8/19) 6099996721309713 a001 53316291173/192900153618*87403803^(8/19) 6099996721309713 a001 20365011074/73681302247*87403803^(8/19) 6099996721309713 a001 7778742049/28143753123*87403803^(8/19) 6099996721309713 a001 2971215073/10749957122*87403803^(8/19) 6099996721309713 a001 1134903170/4106118243*87403803^(8/19) 6099996721309713 a001 32951280099/228826127*33385282^(1/12) 6099996721309713 a001 433494437/1568397607*87403803^(8/19) 6099996721309713 a001 31622993/299537289*228826127^(9/20) 6099996721309713 a001 102334155/6643838879*87403803^(11/19) 6099996721309713 a001 63246219/271444*87403803^(1/19) 6099996721309713 a001 86267571272/370248451*33385282^(1/18) 6099996721309713 a001 63245986/370248451*45537549124^(1/3) 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(41) 6099996721309713 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(39) 6099996721309713 a001 165580141/141422324*73681302247^(1/4) 6099996721309713 a001 63245986/1568397607*228826127^(1/2) 6099996721309713 a001 66978574/634430159*87403803^(9/19) 6099996721309713 a001 165580141/599074578*87403803^(8/19) 6099996721309713 a001 63245986/4106118243*228826127^(11/20) 6099996721309713 a001 31622993/5374978561*228826127^(3/5) 6099996721309713 a001 701408733/6643838879*87403803^(9/19) 6099996721309713 a001 63245986/17393796001*228826127^(5/8) 6099996721309713 a001 1836311903/17393796001*87403803^(9/19) 6099996721309713 a001 1201881744/11384387281*87403803^(9/19) 6099996721309713 a001 12586269025/119218851371*87403803^(9/19) 6099996721309713 a001 32951280099/312119004989*87403803^(9/19) 6099996721309713 a001 21566892818/204284540899*87403803^(9/19) 6099996721309713 a001 225851433717/2139295485799*87403803^(9/19) 6099996721309713 a001 182717648081/1730726404001*87403803^(9/19) 6099996721309713 a001 139583862445/1322157322203*87403803^(9/19) 6099996721309713 a001 53316291173/505019158607*87403803^(9/19) 6099996721309713 a001 10182505537/96450076809*87403803^(9/19) 6099996721309713 a001 7778742049/73681302247*87403803^(9/19) 6099996721309713 a001 2971215073/28143753123*87403803^(9/19) 6099996721309713 a001 567451585/5374978561*87403803^(9/19) 6099996721309713 a001 63245986/28143753123*228826127^(13/20) 6099996721309713 a001 267914296/4106118243*87403803^(1/2) 6099996721309713 a001 433494437/4106118243*87403803^(9/19) 6099996721309713 a001 63245986/73681302247*228826127^(7/10) 6099996721309713 a001 102334155/17393796001*87403803^(12/19) 6099996721309713 a001 12586269025/141422324*87403803^(2/19) 6099996721309713 a001 31622993/96450076809*228826127^(3/4) 6099996721309713 a001 701408733/10749957122*87403803^(1/2) 6099996721309713 a001 63245986/505019158607*228826127^(4/5) 6099996721309713 a001 1836311903/28143753123*87403803^(1/2) 6099996721309713 a001 686789568/10525900321*87403803^(1/2) 6099996721309713 a001 12586269025/192900153618*87403803^(1/2) 6099996721309713 a001 32951280099/505019158607*87403803^(1/2) 6099996721309713 a001 86267571272/1322157322203*87403803^(1/2) 6099996721309713 a001 32264490531/494493258286*87403803^(1/2) 6099996721309713 a001 591286729879/9062201101803*87403803^(1/2) 6099996721309713 a001 1548008755920/23725150497407*87403803^(1/2) 6099996721309713 a001 365435296162/5600748293801*87403803^(1/2) 6099996721309713 a001 139583862445/2139295485799*87403803^(1/2) 6099996721309713 a001 53316291173/817138163596*87403803^(1/2) 6099996721309713 a001 20365011074/312119004989*87403803^(1/2) 6099996721309713 a001 7778742049/119218851371*87403803^(1/2) 6099996721309713 a001 2971215073/45537549124*87403803^(1/2) 6099996721309713 a001 1134903170/17393796001*87403803^(1/2) 6099996721309713 a001 267914296/6643838879*87403803^(10/19) 6099996721309713 a001 63245986/1322157322203*228826127^(17/20) 6099996721309713 a001 433494437/6643838879*87403803^(1/2) 6099996721309713 a001 63245986/2139295485799*228826127^(7/8) 6099996721309713 a001 31622993/1730726404001*228826127^(9/10) 6099996721309713 a001 63245986/9062201101803*228826127^(19/20) 6099996721309713 a001 701408733/17393796001*87403803^(10/19) 6099996721309713 a001 1134903170/87403803*33385282^(2/9) 6099996721309713 a001 1836311903/45537549124*87403803^(10/19) 6099996721309713 a001 4807526976/119218851371*87403803^(10/19) 6099996721309713 a001 1144206275/28374454999*87403803^(10/19) 6099996721309713 a001 165580141/1568397607*87403803^(9/19) 6099996721309713 a001 32951280099/817138163596*87403803^(10/19) 6099996721309713 a001 86267571272/2139295485799*87403803^(10/19) 6099996721309713 a001 225851433717/5600748293801*87403803^(10/19) 6099996721309713 a001 591286729879/14662949395604*87403803^(10/19) 6099996721309713 a001 365435296162/9062201101803*87403803^(10/19) 6099996721309713 a001 139583862445/3461452808002*87403803^(10/19) 6099996721309713 a001 53316291173/1322157322203*87403803^(10/19) 6099996721309713 a001 20365011074/505019158607*87403803^(10/19) 6099996721309713 a001 7778742049/192900153618*87403803^(10/19) 6099996721309713 a001 2971215073/73681302247*87403803^(10/19) 6099996721309713 a001 1134903170/28143753123*87403803^(10/19) 6099996721309713 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^64 6099996721309713 a001 433494437/10749957122*87403803^(10/19) 6099996721309713 a001 102334155/45537549124*87403803^(13/19) 6099996721309713 a001 1201881744/35355581*87403803^(3/19) 6099996721309713 a001 43133785636/299537289*33385282^(1/12) 6099996721309713 a001 165580141/2537720636*87403803^(1/2) 6099996721309713 a001 9238424/599786069*87403803^(11/19) 6099996721309713 a001 32264490531/224056801*33385282^(1/12) 6099996721309713 a001 591286729879/4106118243*33385282^(1/12) 6099996721309713 a001 774004377960/5374978561*33385282^(1/12) 6099996721309713 a001 4052739537881/28143753123*33385282^(1/12) 6099996721309713 a001 1515744265389/10525900321*33385282^(1/12) 6099996721309713 a001 3278735159921/22768774562*33385282^(1/12) 6099996721309713 a001 2504730781961/17393796001*33385282^(1/12) 6099996721309713 a001 956722026041/6643838879*33385282^(1/12) 6099996721309713 a001 182717648081/1268860318*33385282^(1/12) 6099996721309713 a001 701408733/45537549124*87403803^(11/19) 6099996721309713 a001 1836311903/119218851371*87403803^(11/19) 6099996721309713 a001 4807526976/312119004989*87403803^(11/19) 6099996721309713 a001 12586269025/817138163596*87403803^(11/19) 6099996721309713 a001 32951280099/2139295485799*87403803^(11/19) 6099996721309713 a001 86267571272/5600748293801*87403803^(11/19) 6099996721309713 a001 7787980473/505618944676*87403803^(11/19) 6099996721309713 a001 365435296162/23725150497407*87403803^(11/19) 6099996721309713 a001 139583862445/9062201101803*87403803^(11/19) 6099996721309713 a001 53316291173/3461452808002*87403803^(11/19) 6099996721309713 a001 20365011074/1322157322203*87403803^(11/19) 6099996721309713 a001 7778742049/505019158607*87403803^(11/19) 6099996721309713 a001 2971215073/192900153618*87403803^(11/19) 6099996721309713 a001 139583862445/969323029*33385282^(1/12) 6099996721309713 a001 1134903170/73681302247*87403803^(11/19) 6099996721309713 a001 165580141/4106118243*87403803^(10/19) 6099996721309713 a001 433494437/28143753123*87403803^(11/19) 6099996721309713 a001 102334155/119218851371*87403803^(14/19) 6099996721309713 a001 1836311903/141422324*87403803^(4/19) 6099996721309713 a001 102334155/141422324*87403803^(7/19) 6099996721309713 a001 66978574/11384387281*87403803^(12/19) 6099996721309713 a001 20365011074/228826127*33385282^(1/9) 6099996721309713 a001 31622993/70711162*141422324^(5/13) 6099996721309713 a001 53316291173/370248451*33385282^(1/12) 6099996721309713 a001 701408733/119218851371*87403803^(12/19) 6099996721309713 a001 1836311903/312119004989*87403803^(12/19) 6099996721309713 a001 1201881744/204284540899*87403803^(12/19) 6099996721309713 a001 12586269025/2139295485799*87403803^(12/19) 6099996721309713 a001 32951280099/5600748293801*87403803^(12/19) 6099996721309713 a001 1135099622/192933544679*87403803^(12/19) 6099996721309713 a001 139583862445/23725150497407*87403803^(12/19) 6099996721309713 a001 53316291173/9062201101803*87403803^(12/19) 6099996721309713 a001 10182505537/1730726404001*87403803^(12/19) 6099996721309713 a001 7778742049/1322157322203*87403803^(12/19) 6099996721309713 a001 2971215073/505019158607*87403803^(12/19) 6099996721309713 a001 567451585/96450076809*87403803^(12/19) 6099996721309713 a001 165580141/10749957122*87403803^(11/19) 6099996721309713 a001 433494437/73681302247*87403803^(12/19) 6099996721309713 a001 701408733/141422324*87403803^(5/19) 6099996721309713 a001 9303105/28374454999*87403803^(15/19) 6099996721309713 a001 63245986/228826127*87403803^(8/19) 6099996721309713 a001 267914296/119218851371*87403803^(13/19) 6099996721309713 a001 66978574/35355581*87403803^(6/19) 6099996721309713 a001 3524667/1568437211*87403803^(13/19) 6099996721309713 a001 1836311903/817138163596*87403803^(13/19) 6099996721309713 a001 4807526976/2139295485799*87403803^(13/19) 6099996721309713 a001 12586269025/5600748293801*87403803^(13/19) 6099996721309713 a001 32951280099/14662949395604*87403803^(13/19) 6099996721309713 a001 53316291173/23725150497407*87403803^(13/19) 6099996721309713 a001 20365011074/9062201101803*87403803^(13/19) 6099996721309713 a001 7778742049/3461452808002*87403803^(13/19) 6099996721309713 a001 2971215073/1322157322203*87403803^(13/19) 6099996721309713 a001 1134903170/505019158607*87403803^(13/19) 6099996721309713 a001 165580141/28143753123*87403803^(12/19) 6099996721309713 a001 433494437/192900153618*87403803^(13/19) 6099996721309713 a001 102334155/817138163596*87403803^(16/19) 6099996721309713 a001 233802911/29134601*33385282^(1/4) 6099996721309713 a001 267914296/312119004989*87403803^(14/19) 6099996721309713 a001 701408733/817138163596*87403803^(14/19) 6099996721309713 a001 1836311903/2139295485799*87403803^(14/19) 6099996721309713 a001 4807526976/5600748293801*87403803^(14/19) 6099996721309713 a001 12586269025/14662949395604*87403803^(14/19) 6099996721309713 a001 20365011074/23725150497407*87403803^(14/19) 6099996721309713 a001 7778742049/9062201101803*87403803^(14/19) 6099996721309713 a001 2971215073/3461452808002*87403803^(14/19) 6099996721309713 a001 1134903170/1322157322203*87403803^(14/19) 6099996721309713 a001 165580141/73681302247*87403803^(13/19) 6099996721309713 a001 53316291173/599074578*33385282^(1/9) 6099996721309713 a001 433494437/505019158607*87403803^(14/19) 6099996721309713 a001 102334155/2139295485799*87403803^(17/19) 6099996721309713 a001 139583862445/1568397607*33385282^(1/9) 6099996721309713 a001 365435296162/4106118243*33385282^(1/9) 6099996721309713 a001 956722026041/10749957122*33385282^(1/9) 6099996721309713 a001 2504730781961/28143753123*33385282^(1/9) 6099996721309713 a001 6557470319842/73681302247*33385282^(1/9) 6099996721309713 a001 10610209857723/119218851371*33385282^(1/9) 6099996721309713 a001 4052739537881/45537549124*33385282^(1/9) 6099996721309713 a001 1548008755920/17393796001*33385282^(1/9) 6099996721309713 a001 591286729879/6643838879*33385282^(1/9) 6099996721309713 a001 63246219/271444*33385282^(1/18) 6099996721309713 a001 225851433717/2537720636*33385282^(1/9) 6099996721309713 a001 31622993/70711162*2537720636^(1/3) 6099996721309713 a001 31622993/70711162*45537549124^(5/17) 6099996721309713 a001 31622993/70711162*312119004989^(3/11) 6099996721309713 a001 2000027372556098/3278735159921 6099996721309713 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(39) 6099996721309713 a001 31622993/70711162*192900153618^(5/18) 6099996721309713 a001 31622993/70711162*28143753123^(3/10) 6099996721309713 a001 31622993/70711162*10749957122^(5/16) 6099996721309713 a001 66978574/204284540899*87403803^(15/19) 6099996721309713 a001 86267571272/969323029*33385282^(1/9) 6099996721309713 a001 31622993/70711162*599074578^(5/14) 6099996721309713 a001 701408733/2139295485799*87403803^(15/19) 6099996721309713 a001 1836311903/5600748293801*87403803^(15/19) 6099996721309713 a001 1201881744/3665737348901*87403803^(15/19) 6099996721309713 a001 7778742049/23725150497407*87403803^(15/19) 6099996721309713 a001 2971215073/9062201101803*87403803^(15/19) 6099996721309713 a001 567451585/1730726404001*87403803^(15/19) 6099996721309713 a001 165580141/192900153618*87403803^(14/19) 6099996721309713 a001 433494437/1322157322203*87403803^(15/19) 6099996721309713 a001 102334155/5600748293801*87403803^(18/19) 6099996721309713 a001 32951280099/370248451*33385282^(1/9) 6099996721309713 a001 31622993/70711162*228826127^(3/8) 6099996721309713 a001 267914296/2139295485799*87403803^(16/19) 6099996721309713 a001 31622993/299537289*87403803^(9/19) 6099996721309713 a001 701408733/5600748293801*87403803^(16/19) 6099996721309713 a001 1836311903/14662949395604*87403803^(16/19) 6099996721309713 a001 2971215073/23725150497407*87403803^(16/19) 6099996721309713 a001 1134903170/9062201101803*87403803^(16/19) 6099996721309713 a001 165580141/505019158607*87403803^(15/19) 6099996721309713 a001 433494437/3461452808002*87403803^(16/19) 6099996721309713 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^63 6099996721309713 a001 39088169/87403803*33385282^(5/12) 6099996721309713 a001 267914296/5600748293801*87403803^(17/19) 6099996721309713 a001 63245986/969323029*87403803^(1/2) 6099996721309713 a001 701408733/14662949395604*87403803^(17/19) 6099996721309713 a001 1134903170/23725150497407*87403803^(17/19) 6099996721309713 a001 165580141/1322157322203*87403803^(16/19) 6099996721309713 a001 433494437/9062201101803*87403803^(17/19) 6099996721309713 a001 63245986/1568397607*87403803^(10/19) 6099996721309713 a001 433494437/87403803*33385282^(5/18) 6099996721309713 a001 10946/599074579*87403803^(18/19) 6099996721309713 a001 165580141/3461452808002*87403803^(17/19) 6099996721309713 a001 10182505537/70711162*33385282^(1/12) 6099996721309713 a001 433494437/23725150497407*87403803^(18/19) 6099996721309713 a001 63245986/4106118243*87403803^(11/19) 6099996721309713 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^65 6099996721309713 a001 7778742049/228826127*33385282^(1/6) 6099996721309713 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^67 6099996721309713 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^69 6099996721309713 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^71 6099996721309713 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^73 6099996721309713 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^75 6099996721309713 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^77 6099996721309713 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^79 6099996721309713 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^81 6099996721309713 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^83 6099996721309713 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^85 6099996721309713 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^87 6099996721309713 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^89 6099996721309713 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^91 6099996721309713 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^93 6099996721309713 a004 Fibonacci(72)*Lucas(38)/(1/2+sqrt(5)/2)^95 6099996721309713 a004 Fibonacci(74)*Lucas(38)/(1/2+sqrt(5)/2)^97 6099996721309713 a004 Fibonacci(76)*Lucas(38)/(1/2+sqrt(5)/2)^99 6099996721309713 a004 Fibonacci(77)*Lucas(38)/(1/2+sqrt(5)/2)^100 6099996721309713 a001 2/39088169*(1/2+1/2*5^(1/2))^53 6099996721309713 a004 Fibonacci(75)*Lucas(38)/(1/2+sqrt(5)/2)^98 6099996721309713 a004 Fibonacci(73)*Lucas(38)/(1/2+sqrt(5)/2)^96 6099996721309713 a004 Fibonacci(71)*Lucas(38)/(1/2+sqrt(5)/2)^94 6099996721309713 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^92 6099996721309713 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^90 6099996721309713 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^88 6099996721309713 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^86 6099996721309713 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^84 6099996721309713 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^82 6099996721309713 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^80 6099996721309713 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^78 6099996721309713 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^76 6099996721309713 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^74 6099996721309713 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^72 6099996721309713 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^70 6099996721309713 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^68 6099996721309713 a001 165580141/9062201101803*87403803^(18/19) 6099996721309713 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^66 6099996721309713 a001 31622993/5374978561*87403803^(12/19) 6099996721309713 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^64 6099996721309713 a001 63245986/28143753123*87403803^(13/19) 6099996721309714 a001 63245986/73681302247*87403803^(14/19) 6099996721309714 a001 10182505537/299537289*33385282^(1/6) 6099996721309714 a001 53316291173/1568397607*33385282^(1/6) 6099996721309714 a001 139583862445/4106118243*33385282^(1/6) 6099996721309714 a001 182717648081/5374978561*33385282^(1/6) 6099996721309714 a001 956722026041/28143753123*33385282^(1/6) 6099996721309714 a001 2504730781961/73681302247*33385282^(1/6) 6099996721309714 a001 3278735159921/96450076809*33385282^(1/6) 6099996721309714 a001 10610209857723/312119004989*33385282^(1/6) 6099996721309714 a001 4052739537881/119218851371*33385282^(1/6) 6099996721309714 a001 387002188980/11384387281*33385282^(1/6) 6099996721309714 a001 591286729879/17393796001*33385282^(1/6) 6099996721309714 a001 225851433717/6643838879*33385282^(1/6) 6099996721309714 a001 12586269025/141422324*33385282^(1/9) 6099996721309714 a001 1135099622/33391061*33385282^(1/6) 6099996721309714 a001 32951280099/969323029*33385282^(1/6) 6099996721309714 a001 31622993/96450076809*87403803^(15/19) 6099996721309714 a001 12586269025/370248451*33385282^(1/6) 6099996721309714 a001 63245986/505019158607*87403803^(16/19) 6099996721309714 a001 63245986/1322157322203*87403803^(17/19) 6099996721309714 a001 31622993/1730726404001*87403803^(18/19) 6099996721309714 a001 165580141/87403803*33385282^(1/3) 6099996721309714 a001 2971215073/228826127*33385282^(2/9) 6099996721309714 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^62 6099996721309714 a001 567451585/16692641*12752043^(3/17) 6099996721309714 a001 7778742049/599074578*33385282^(2/9) 6099996721309714 a001 20365011074/1568397607*33385282^(2/9) 6099996721309714 a001 53316291173/4106118243*33385282^(2/9) 6099996721309714 a001 139583862445/10749957122*33385282^(2/9) 6099996721309714 a001 365435296162/28143753123*33385282^(2/9) 6099996721309714 a001 956722026041/73681302247*33385282^(2/9) 6099996721309714 a001 2504730781961/192900153618*33385282^(2/9) 6099996721309714 a001 10610209857723/817138163596*33385282^(2/9) 6099996721309714 a001 4052739537881/312119004989*33385282^(2/9) 6099996721309714 a001 1548008755920/119218851371*33385282^(2/9) 6099996721309714 a001 591286729879/45537549124*33385282^(2/9) 6099996721309714 a001 7787980473/599786069*33385282^(2/9) 6099996721309714 a001 86267571272/6643838879*33385282^(2/9) 6099996721309714 a001 1201881744/35355581*33385282^(1/6) 6099996721309714 a001 32951280099/2537720636*33385282^(2/9) 6099996721309714 a001 12586269025/969323029*33385282^(2/9) 6099996721309714 a001 1836311903/228826127*33385282^(1/4) 6099996721309714 a001 4807526976/370248451*33385282^(2/9) 6099996721309714 a001 39088169/54018521*17393796001^(2/7) 6099996721309714 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(38) 6099996721309714 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(37) 6099996721309714 a001 24157817/87403803*23725150497407^(1/4) 6099996721309714 a001 24157817/87403803*73681302247^(4/13) 6099996721309714 a001 39088169/54018521*10749957122^(7/24) 6099996721309714 a001 24157817/87403803*10749957122^(1/3) 6099996721309714 a001 39088169/54018521*4106118243^(7/23) 6099996721309714 a001 24157817/87403803*4106118243^(8/23) 6099996721309714 a001 39088169/54018521*1568397607^(7/22) 6099996721309714 a001 24157817/87403803*1568397607^(4/11) 6099996721309714 a001 39088169/54018521*599074578^(1/3) 6099996721309714 a001 24157817/87403803*599074578^(8/21) 6099996721309714 a001 39088169/54018521*228826127^(7/20) 6099996721309714 a001 24157817/87403803*228826127^(2/5) 6099996721309714 a001 267084832/33281921*33385282^(1/4) 6099996721309714 a001 12586269025/1568397607*33385282^(1/4) 6099996721309714 a001 10983760033/1368706081*33385282^(1/4) 6099996721309714 a001 43133785636/5374978561*33385282^(1/4) 6099996721309714 a001 75283811239/9381251041*33385282^(1/4) 6099996721309714 a001 591286729879/73681302247*33385282^(1/4) 6099996721309714 a001 86000486440/10716675201*33385282^(1/4) 6099996721309714 a001 4052739537881/505019158607*33385282^(1/4) 6099996721309714 a001 3278735159921/408569081798*33385282^(1/4) 6099996721309714 a001 2504730781961/312119004989*33385282^(1/4) 6099996721309714 a001 956722026041/119218851371*33385282^(1/4) 6099996721309714 a001 182717648081/22768774562*33385282^(1/4) 6099996721309714 a001 139583862445/17393796001*33385282^(1/4) 6099996721309714 a001 53316291173/6643838879*33385282^(1/4) 6099996721309714 a001 10182505537/1268860318*33385282^(1/4) 6099996721309714 a001 7778742049/969323029*33385282^(1/4) 6099996721309714 a001 1134903170/228826127*33385282^(5/18) 6099996721309714 a001 20365011074/87403803*12752043^(1/17) 6099996721309714 a001 2971215073/370248451*33385282^(1/4) 6099996721309714 a001 2971215073/599074578*33385282^(5/18) 6099996721309714 a001 7778742049/1568397607*33385282^(5/18) 6099996721309714 a001 20365011074/4106118243*33385282^(5/18) 6099996721309714 a001 53316291173/10749957122*33385282^(5/18) 6099996721309714 a001 139583862445/28143753123*33385282^(5/18) 6099996721309714 a001 365435296162/73681302247*33385282^(5/18) 6099996721309714 a001 956722026041/192900153618*33385282^(5/18) 6099996721309714 a001 2504730781961/505019158607*33385282^(5/18) 6099996721309714 a001 10610209857723/2139295485799*33385282^(5/18) 6099996721309714 a001 4052739537881/817138163596*33385282^(5/18) 6099996721309714 a001 140728068720/28374454999*33385282^(5/18) 6099996721309714 a001 591286729879/119218851371*33385282^(5/18) 6099996721309714 a001 225851433717/45537549124*33385282^(5/18) 6099996721309714 a001 86267571272/17393796001*33385282^(5/18) 6099996721309714 a001 32951280099/6643838879*33385282^(5/18) 6099996721309714 a001 1836311903/141422324*33385282^(2/9) 6099996721309714 a001 1144206275/230701876*33385282^(5/18) 6099996721309714 a001 4807526976/969323029*33385282^(5/18) 6099996721309714 a001 1836311903/370248451*33385282^(5/18) 6099996721309714 a001 39088169/54018521*87403803^(7/19) 6099996721309714 a001 24157817/87403803*87403803^(8/19) 6099996721309714 a001 63245986/87403803*33385282^(7/18) 6099996721309714 a001 567451585/70711162*33385282^(1/4) 6099996721309714 a001 433494437/228826127*33385282^(1/3) 6099996721309714 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^61 6099996721309714 a001 567451585/299537289*33385282^(1/3) 6099996721309714 a001 24157817/1322157322203*141422324^(12/13) 6099996721309714 a001 2971215073/1568397607*33385282^(1/3) 6099996721309714 a001 701408733/141422324*33385282^(5/18) 6099996721309714 a001 7778742049/4106118243*33385282^(1/3) 6099996721309714 a001 10182505537/5374978561*33385282^(1/3) 6099996721309714 a001 53316291173/28143753123*33385282^(1/3) 6099996721309714 a001 139583862445/73681302247*33385282^(1/3) 6099996721309714 a001 182717648081/96450076809*33385282^(1/3) 6099996721309714 a001 956722026041/505019158607*33385282^(1/3) 6099996721309714 a001 10610209857723/5600748293801*33385282^(1/3) 6099996721309714 a001 591286729879/312119004989*33385282^(1/3) 6099996721309714 a001 225851433717/119218851371*33385282^(1/3) 6099996721309714 a001 21566892818/11384387281*33385282^(1/3) 6099996721309714 a001 32951280099/17393796001*33385282^(1/3) 6099996721309714 a001 12586269025/6643838879*33385282^(1/3) 6099996721309714 a001 1201881744/634430159*33385282^(1/3) 6099996721309714 a001 1836311903/969323029*33385282^(1/3) 6099996721309714 a001 24157817/312119004989*141422324^(11/13) 6099996721309714 a001 24157817/228826127*141422324^(6/13) 6099996721309715 a001 24157817/73681302247*141422324^(10/13) 6099996721309715 a001 701408733/370248451*33385282^(1/3) 6099996721309715 a001 24157817/17393796001*141422324^(9/13) 6099996721309715 a001 102334155/54018521*141422324^(4/13) 6099996721309715 a001 24157817/10749957122*141422324^(2/3) 6099996721309715 a001 24157817/4106118243*141422324^(8/13) 6099996721309715 a001 24157817/969323029*141422324^(7/13) 6099996721309715 a001 39088169/141422324*33385282^(4/9) 6099996721309715 a001 24157817/228826127*2537720636^(2/5) 6099996721309715 a001 102334155/54018521*2537720636^(4/15) 6099996721309715 a001 24157817/228826127*45537549124^(6/17) 6099996721309715 a001 102334155/54018521*45537549124^(4/17) 6099996721309715 a001 102334155/54018521*817138163596^(4/19) 6099996721309715 a001 102334155/54018521*14662949395604^(4/21) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(40) 6099996721309715 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(37) 6099996721309715 a001 102334155/54018521*192900153618^(2/9) 6099996721309715 a001 24157817/228826127*192900153618^(1/3) 6099996721309715 a001 102334155/54018521*73681302247^(3/13) 6099996721309715 a001 102334155/54018521*10749957122^(1/4) 6099996721309715 a001 24157817/228826127*10749957122^(3/8) 6099996721309715 a001 102334155/54018521*4106118243^(6/23) 6099996721309715 a001 24157817/228826127*4106118243^(9/23) 6099996721309715 a001 102334155/54018521*1568397607^(3/11) 6099996721309715 a001 24157817/228826127*1568397607^(9/22) 6099996721309715 a001 102334155/54018521*599074578^(2/7) 6099996721309715 a001 24157817/228826127*599074578^(3/7) 6099996721309715 a001 39088169/370248451*33385282^(1/2) 6099996721309715 a001 102334155/54018521*228826127^(3/10) 6099996721309715 a001 24157817/228826127*228826127^(9/20) 6099996721309715 a001 433494437/54018521*141422324^(3/13) 6099996721309715 a001 1836311903/54018521*141422324^(2/13) 6099996721309715 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^63 6099996721309715 a001 9227465/28143753123*20633239^(6/7) 6099996721309715 a001 102334155/228826127*33385282^(5/12) 6099996721309715 a001 165580141/228826127*33385282^(7/18) 6099996721309715 a001 7778742049/54018521*141422324^(1/13) 6099996721309715 a001 24157817/599074578*2537720636^(4/9) 6099996721309715 a001 267914296/54018521*2537720636^(2/9) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(42) 6099996721309715 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(37) 6099996721309715 a001 24157817/599074578*23725150497407^(5/16) 6099996721309715 a001 6472224534451832/10610209857723 6099996721309715 a001 24157817/599074578*505019158607^(5/14) 6099996721309715 a001 24157817/599074578*73681302247^(5/13) 6099996721309715 a001 267914296/54018521*28143753123^(1/5) 6099996721309715 a001 24157817/599074578*28143753123^(2/5) 6099996721309715 a001 267914296/54018521*10749957122^(5/24) 6099996721309715 a001 24157817/599074578*10749957122^(5/12) 6099996721309715 a001 267914296/54018521*4106118243^(5/23) 6099996721309715 a001 24157817/599074578*4106118243^(10/23) 6099996721309715 a001 267914296/54018521*1568397607^(5/22) 6099996721309715 a001 24157817/599074578*1568397607^(5/11) 6099996721309715 a001 267914296/54018521*599074578^(5/21) 6099996721309715 a001 24157817/599074578*599074578^(10/21) 6099996721309715 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^65 6099996721309715 a001 24157817/1568397607*312119004989^(2/5) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(44) 6099996721309715 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(37) 6099996721309715 a001 701408733/54018521*23725150497407^(1/8) 6099996721309715 a001 701408733/54018521*505019158607^(1/7) 6099996721309715 a001 701408733/54018521*73681302247^(2/13) 6099996721309715 a001 701408733/54018521*10749957122^(1/6) 6099996721309715 a001 24157817/1568397607*10749957122^(11/24) 6099996721309715 a001 701408733/54018521*4106118243^(4/23) 6099996721309715 a001 24157817/1568397607*4106118243^(11/23) 6099996721309715 a001 701408733/54018521*1568397607^(2/11) 6099996721309715 a001 24157817/1568397607*1568397607^(1/2) 6099996721309715 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^67 6099996721309715 a001 24157817/23725150497407*2537720636^(14/15) 6099996721309715 a001 24157817/4106118243*2537720636^(8/15) 6099996721309715 a001 24157817/9062201101803*2537720636^(8/9) 6099996721309715 a001 24157817/5600748293801*2537720636^(13/15) 6099996721309715 a001 24157817/1322157322203*2537720636^(4/5) 6099996721309715 a001 24157817/817138163596*2537720636^(7/9) 6099996721309715 a001 24157817/312119004989*2537720636^(11/15) 6099996721309715 a001 24157817/73681302247*2537720636^(2/3) 6099996721309715 a001 24157817/17393796001*2537720636^(3/5) 6099996721309715 a001 1836311903/54018521*2537720636^(2/15) 6099996721309715 a001 24157817/6643838879*2537720636^(5/9) 6099996721309715 a001 53316291173/228826127*12752043^(1/17) 6099996721309715 a001 24157817/4106118243*45537549124^(8/17) 6099996721309715 a001 1836311903/54018521*45537549124^(2/17) 6099996721309715 a001 24157817/4106118243*14662949395604^(8/21) 6099996721309715 a001 1836311903/54018521*14662949395604^(2/21) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(46) 6099996721309715 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(37) 6099996721309715 a001 24157817/4106118243*192900153618^(4/9) 6099996721309715 a001 24157817/4106118243*73681302247^(6/13) 6099996721309715 a001 1836311903/54018521*10749957122^(1/8) 6099996721309715 a001 24157817/4106118243*10749957122^(1/2) 6099996721309715 a001 1836311903/54018521*4106118243^(3/23) 6099996721309715 a001 24157817/4106118243*4106118243^(12/23) 6099996721309715 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^69 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(48) 6099996721309715 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(37) 6099996721309715 a001 4807526976/54018521*23725150497407^(1/16) 6099996721309715 a001 4807526976/54018521*73681302247^(1/13) 6099996721309715 a001 24157817/10749957122*73681302247^(1/2) 6099996721309715 a001 4807526976/54018521*10749957122^(1/12) 6099996721309715 a001 7778742049/54018521*2537720636^(1/15) 6099996721309715 a001 24157817/10749957122*10749957122^(13/24) 6099996721309715 a001 1836311903/54018521*1568397607^(3/22) 6099996721309715 a001 4807526976/54018521*4106118243^(2/23) 6099996721309715 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^71 6099996721309715 a001 24157817/28143753123*17393796001^(4/7) 6099996721309715 a001 24157817/23725150497407*17393796001^(6/7) 6099996721309715 a001 24157817/817138163596*17393796001^(5/7) 6099996721309715 a001 24157817/28143753123*14662949395604^(4/9) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(50) 6099996721309715 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(37) 6099996721309715 a001 24157817/28143753123*505019158607^(1/2) 6099996721309715 a001 24157817/28143753123*73681302247^(7/13) 6099996721309715 a001 12586269025/54018521*10749957122^(1/24) 6099996721309715 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^73 6099996721309715 a001 24157817/73681302247*45537549124^(10/17) 6099996721309715 a001 24157817/23725150497407*45537549124^(14/17) 6099996721309715 a001 24157817/5600748293801*45537549124^(13/17) 6099996721309715 a001 24157817/1322157322203*45537549124^(12/17) 6099996721309715 a001 24157817/505019158607*45537549124^(2/3) 6099996721309715 a001 24157817/312119004989*45537549124^(11/17) 6099996721309715 a001 24157817/73681302247*312119004989^(6/11) 6099996721309715 a001 24157817/73681302247*14662949395604^(10/21) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(52) 6099996721309715 a006 5^(1/2)*Fibonacci(52)/Lucas(37)/sqrt(5) 6099996721309715 a001 24157817/73681302247*192900153618^(5/9) 6099996721309715 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^75 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(54) 6099996721309715 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^2 6099996721309715 a001 24157817/192900153618*23725150497407^(1/2) 6099996721309715 a001 24157817/192900153618*505019158607^(4/7) 6099996721309715 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^77 6099996721309715 a001 24157817/9062201101803*312119004989^(8/11) 6099996721309715 a001 24157817/817138163596*312119004989^(7/11) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(56) 6099996721309715 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^4 6099996721309715 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^79 6099996721309715 a001 24157817/1322157322203*14662949395604^(4/7) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(58) 6099996721309715 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^6 6099996721309715 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^81 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(60) 6099996721309715 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^8 6099996721309715 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^83 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(62) 6099996721309715 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^10 6099996721309715 a001 24157817/23725150497407*14662949395604^(2/3) 6099996721309715 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^85 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(64) 6099996721309715 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^12 6099996721309715 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^87 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(66) 6099996721309715 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^14 6099996721309715 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^89 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(68) 6099996721309715 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^16 6099996721309715 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^91 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(70) 6099996721309715 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^18 6099996721309715 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^93 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(72) 6099996721309715 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^20 6099996721309715 a004 Fibonacci(37)*Lucas(73)/(1/2+sqrt(5)/2)^95 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(74) 6099996721309715 a004 Fibonacci(37)*Lucas(75)/(1/2+sqrt(5)/2)^97 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(76) 6099996721309715 a004 Fibonacci(37)*Lucas(77)/(1/2+sqrt(5)/2)^99 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(78) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(80) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(82) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(84) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(86) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(88) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(90) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(92) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^72/Lucas(94) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^74/Lucas(96) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^76/Lucas(98) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^78/Lucas(100) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^77/Lucas(99) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^75/Lucas(97) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^73/Lucas(95) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(93) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(91) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(89) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(87) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(85) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(83) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(81) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(79) 6099996721309715 a004 Fibonacci(37)*Lucas(78)/(1/2+sqrt(5)/2)^100 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(77) 6099996721309715 a004 Fibonacci(37)*Lucas(76)/(1/2+sqrt(5)/2)^98 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(75) 6099996721309715 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^24 6099996721309715 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^26 6099996721309715 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^28 6099996721309715 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^30 6099996721309715 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^32 6099996721309715 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^34 6099996721309715 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^36 6099996721309715 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^38 6099996721309715 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^40 6099996721309715 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^42 6099996721309715 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^44 6099996721309715 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^46 6099996721309715 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^48 6099996721309715 a004 Fibonacci(37)*Lucas(74)/(1/2+sqrt(5)/2)^96 6099996721309715 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^47 6099996721309715 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^45 6099996721309715 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^43 6099996721309715 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^41 6099996721309715 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^39 6099996721309715 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^37 6099996721309715 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^35 6099996721309715 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^33 6099996721309715 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^31 6099996721309715 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^29 6099996721309715 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^27 6099996721309715 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^25 6099996721309715 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^23 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(73) 6099996721309715 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^21 6099996721309715 a004 Fibonacci(37)*Lucas(72)/(1/2+sqrt(5)/2)^94 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(71) 6099996721309715 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^19 6099996721309715 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^92 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(69) 6099996721309715 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^17 6099996721309715 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^90 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(67) 6099996721309715 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^15 6099996721309715 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^88 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(65) 6099996721309715 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^13 6099996721309715 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^86 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(63) 6099996721309715 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^11 6099996721309715 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^84 6099996721309715 a001 24157817/5600748293801*14662949395604^(13/21) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(61) 6099996721309715 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^9 6099996721309715 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^82 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(59) 6099996721309715 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^7 6099996721309715 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^80 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(57) 6099996721309715 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^5 6099996721309715 a001 24157817/1322157322203*505019158607^(9/14) 6099996721309715 a001 24157817/23725150497407*505019158607^(3/4) 6099996721309715 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^78 6099996721309715 a001 24157817/817138163596*505019158607^(5/8) 6099996721309715 a001 24157817/312119004989*817138163596^(11/19) 6099996721309715 a001 24157817/312119004989*14662949395604^(11/21) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(55) 6099996721309715 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^3 6099996721309715 a001 24157817/1322157322203*192900153618^(2/3) 6099996721309715 a001 24157817/5600748293801*192900153618^(13/18) 6099996721309715 a001 24157817/23725150497407*192900153618^(7/9) 6099996721309715 a001 24157817/312119004989*192900153618^(11/18) 6099996721309715 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^76 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(53) 6099996721309715 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2) 6099996721309715 a001 24157817/119218851371*9062201101803^(1/2) 6099996721309715 a001 24157817/192900153618*73681302247^(8/13) 6099996721309715 a001 24157817/1322157322203*73681302247^(9/13) 6099996721309715 a001 24157817/5600748293801*73681302247^(3/4) 6099996721309715 a001 24157817/9062201101803*73681302247^(10/13) 6099996721309715 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^74 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(51) 6099996721309715 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(37) 6099996721309715 a001 24157817/45537549124*1322157322203^(1/2) 6099996721309715 a001 24157817/73681302247*28143753123^(3/5) 6099996721309715 a001 24157817/817138163596*28143753123^(7/10) 6099996721309715 a001 24157817/9062201101803*28143753123^(4/5) 6099996721309715 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^72 6099996721309715 a001 12586269025/54018521*4106118243^(1/23) 6099996721309715 a001 24157817/17393796001*45537549124^(9/17) 6099996721309715 a001 7778742049/54018521*45537549124^(1/17) 6099996721309715 a001 24157817/17393796001*817138163596^(9/19) 6099996721309715 a001 24157817/17393796001*14662949395604^(3/7) 6099996721309715 a001 7778742049/54018521*14662949395604^(1/21) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(49) 6099996721309715 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(37) 6099996721309715 a001 7778742049/54018521*192900153618^(1/18) 6099996721309715 a001 24157817/17393796001*192900153618^(1/2) 6099996721309715 a001 24157817/28143753123*10749957122^(7/12) 6099996721309715 a001 7778742049/54018521*10749957122^(1/16) 6099996721309715 a001 24157817/73681302247*10749957122^(5/8) 6099996721309715 a001 2971215073/54018521*2537720636^(1/9) 6099996721309715 a001 24157817/192900153618*10749957122^(2/3) 6099996721309715 a001 24157817/312119004989*10749957122^(11/16) 6099996721309715 a001 24157817/505019158607*10749957122^(17/24) 6099996721309715 a001 24157817/1322157322203*10749957122^(3/4) 6099996721309715 a001 24157817/3461452808002*10749957122^(19/24) 6099996721309715 a001 24157817/5600748293801*10749957122^(13/16) 6099996721309715 a001 24157817/9062201101803*10749957122^(5/6) 6099996721309715 a001 24157817/23725150497407*10749957122^(7/8) 6099996721309715 a001 24157817/17393796001*10749957122^(9/16) 6099996721309715 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^70 6099996721309715 a001 12586269025/54018521*1568397607^(1/22) 6099996721309715 a001 24157817/6643838879*312119004989^(5/11) 6099996721309715 a001 2971215073/54018521*312119004989^(1/11) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(47) 6099996721309715 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(37) 6099996721309715 a001 24157817/6643838879*3461452808002^(5/12) 6099996721309715 a001 2971215073/54018521*28143753123^(1/10) 6099996721309715 a001 24157817/6643838879*28143753123^(1/2) 6099996721309715 a001 24157817/10749957122*4106118243^(13/23) 6099996721309715 a001 4807526976/54018521*1568397607^(1/11) 6099996721309715 a001 24157817/28143753123*4106118243^(14/23) 6099996721309715 a001 24157817/73681302247*4106118243^(15/23) 6099996721309715 a001 24157817/192900153618*4106118243^(16/23) 6099996721309715 a001 24157817/505019158607*4106118243^(17/23) 6099996721309715 a001 24157817/1322157322203*4106118243^(18/23) 6099996721309715 a001 24157817/3461452808002*4106118243^(19/23) 6099996721309715 a001 24157817/9062201101803*4106118243^(20/23) 6099996721309715 a001 24157817/23725150497407*4106118243^(21/23) 6099996721309715 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^68 6099996721309715 a001 701408733/54018521*599074578^(4/21) 6099996721309715 a001 12586269025/54018521*599074578^(1/21) 6099996721309715 a001 1134903170/54018521*17393796001^(1/7) 6099996721309715 a001 1134903170/54018521*14662949395604^(1/9) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(45) 6099996721309715 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(37) 6099996721309715 a001 24157817/4106118243*1568397607^(6/11) 6099996721309715 a001 24157817/2537720636*4106118243^(1/2) 6099996721309715 a001 7778742049/54018521*599074578^(1/14) 6099996721309715 a001 24157817/10749957122*1568397607^(13/22) 6099996721309715 a001 4807526976/54018521*599074578^(2/21) 6099996721309715 a001 24157817/28143753123*1568397607^(7/11) 6099996721309715 a001 24157817/73681302247*1568397607^(15/22) 6099996721309715 a001 24157817/192900153618*1568397607^(8/11) 6099996721309715 a001 24157817/312119004989*1568397607^(3/4) 6099996721309715 a001 24157817/505019158607*1568397607^(17/22) 6099996721309715 a001 24157817/1322157322203*1568397607^(9/11) 6099996721309715 a001 1836311903/54018521*599074578^(1/7) 6099996721309715 a001 24157817/3461452808002*1568397607^(19/22) 6099996721309715 a001 24157817/9062201101803*1568397607^(10/11) 6099996721309715 a001 24157817/23725150497407*1568397607^(21/22) 6099996721309715 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^66 6099996721309715 a001 1134903170/54018521*599074578^(1/6) 6099996721309715 a001 12586269025/54018521*228826127^(1/20) 6099996721309715 a001 24157817/969323029*2537720636^(7/15) 6099996721309715 a001 433494437/54018521*2537720636^(1/5) 6099996721309715 a001 24157817/1568397607*599074578^(11/21) 6099996721309715 a001 24157817/969323029*17393796001^(3/7) 6099996721309715 a001 24157817/969323029*45537549124^(7/17) 6099996721309715 a001 433494437/54018521*45537549124^(3/17) 6099996721309715 a001 433494437/54018521*817138163596^(3/19) 6099996721309715 a001 24157817/969323029*14662949395604^(1/3) 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(43) 6099996721309715 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(37) 6099996721309715 a001 433494437/54018521*192900153618^(1/6) 6099996721309715 a001 24157817/969323029*192900153618^(7/18) 6099996721309715 a001 433494437/54018521*10749957122^(3/16) 6099996721309715 a001 24157817/969323029*10749957122^(7/16) 6099996721309715 a001 24157817/4106118243*599074578^(4/7) 6099996721309715 a001 433494437/54018521*599074578^(3/14) 6099996721309715 a001 24157817/10749957122*599074578^(13/21) 6099996721309715 a001 24157817/17393796001*599074578^(9/14) 6099996721309715 a001 24157817/28143753123*599074578^(2/3) 6099996721309715 a001 4807526976/54018521*228826127^(1/10) 6099996721309715 a001 267914296/54018521*228826127^(1/4) 6099996721309715 a001 24157817/73681302247*599074578^(5/7) 6099996721309715 a001 24157817/192900153618*599074578^(16/21) 6099996721309715 a001 24157817/312119004989*599074578^(11/14) 6099996721309715 a001 24157817/505019158607*599074578^(17/21) 6099996721309715 a001 24157817/817138163596*599074578^(5/6) 6099996721309715 a001 24157817/1322157322203*599074578^(6/7) 6099996721309715 a001 2971215073/54018521*228826127^(1/8) 6099996721309715 a001 24157817/969323029*599074578^(1/2) 6099996721309715 a001 24157817/3461452808002*599074578^(19/21) 6099996721309715 a001 24157817/5600748293801*599074578^(13/14) 6099996721309715 a001 24157817/9062201101803*599074578^(20/21) 6099996721309715 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^64 6099996721309715 a001 1836311903/54018521*228826127^(3/20) 6099996721309715 a001 701408733/54018521*228826127^(1/5) 6099996721309715 a001 66978574/35355581*33385282^(1/3) 6099996721309715 a001 433494437/599074578*33385282^(7/18) 6099996721309715 a001 1134903170/1568397607*33385282^(7/18) 6099996721309715 a001 2971215073/4106118243*33385282^(7/18) 6099996721309715 a001 7778742049/10749957122*33385282^(7/18) 6099996721309715 a001 20365011074/28143753123*33385282^(7/18) 6099996721309715 a001 53316291173/73681302247*33385282^(7/18) 6099996721309715 a001 139583862445/192900153618*33385282^(7/18) 6099996721309715 a001 365435296162/505019158607*33385282^(7/18) 6099996721309715 a001 10610209857723/14662949395604*33385282^(7/18) 6099996721309715 a001 591286729879/817138163596*33385282^(7/18) 6099996721309715 a001 225851433717/312119004989*33385282^(7/18) 6099996721309715 a001 86267571272/119218851371*33385282^(7/18) 6099996721309715 a001 32951280099/45537549124*33385282^(7/18) 6099996721309715 a001 12586269025/17393796001*33385282^(7/18) 6099996721309715 a001 4807526976/6643838879*33385282^(7/18) 6099996721309715 a001 1836311903/2537720636*33385282^(7/18) 6099996721309715 a001 24157817/599074578*228826127^(1/2) 6099996721309715 a001 701408733/969323029*33385282^(7/18) 6099996721309715 a001 12586269025/54018521*87403803^(1/19) 6099996721309715 a001 165580141/54018521*312119004989^(1/5) 6099996721309715 a001 24157817/370248451*817138163596^(1/3) 6099996721309715 a001 4000054745112197/6557470319842 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(41) 6099996721309715 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(37) 6099996721309715 a001 165580141/54018521*1568397607^(1/4) 6099996721309715 a001 24157817/1568397607*228826127^(11/20) 6099996721309715 a001 267914296/370248451*33385282^(7/18) 6099996721309715 a001 24157817/4106118243*228826127^(3/5) 6099996721309715 a001 24157817/6643838879*228826127^(5/8) 6099996721309715 a001 24157817/10749957122*228826127^(13/20) 6099996721309715 a001 24157817/28143753123*228826127^(7/10) 6099996721309715 a001 4807526976/54018521*87403803^(2/19) 6099996721309715 a001 24157817/73681302247*228826127^(3/4) 6099996721309715 a001 24157817/192900153618*228826127^(4/5) 6099996721309715 a001 24157817/505019158607*228826127^(17/20) 6099996721309715 a001 139583862445/599074578*12752043^(1/17) 6099996721309715 a001 24157817/817138163596*228826127^(7/8) 6099996721309715 a001 24157817/1322157322203*228826127^(9/10) 6099996721309715 a001 24157817/3461452808002*228826127^(19/20) 6099996721309715 a001 365435296162/1568397607*12752043^(1/17) 6099996721309715 a001 956722026041/4106118243*12752043^(1/17) 6099996721309715 a001 2504730781961/10749957122*12752043^(1/17) 6099996721309715 a001 6557470319842/28143753123*12752043^(1/17) 6099996721309715 a001 10610209857723/45537549124*12752043^(1/17) 6099996721309715 a001 4052739537881/17393796001*12752043^(1/17) 6099996721309715 a001 1548008755920/6643838879*12752043^(1/17) 6099996721309715 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^62 6099996721309715 a001 591286729879/2537720636*12752043^(1/17) 6099996721309715 a001 225851433717/969323029*12752043^(1/17) 6099996721309715 a001 1836311903/54018521*87403803^(3/19) 6099996721309715 a001 102334155/54018521*87403803^(6/19) 6099996721309715 a001 133957148/299537289*33385282^(5/12) 6099996721309715 a001 39088169/969323029*33385282^(5/9) 6099996721309715 a001 86267571272/370248451*12752043^(1/17) 6099996721309715 a001 701408733/54018521*87403803^(4/19) 6099996721309715 a001 701408733/1568397607*33385282^(5/12) 6099996721309715 a001 1836311903/4106118243*33385282^(5/12) 6099996721309715 a001 2403763488/5374978561*33385282^(5/12) 6099996721309715 a001 12586269025/28143753123*33385282^(5/12) 6099996721309715 a001 32951280099/73681302247*33385282^(5/12) 6099996721309715 a001 43133785636/96450076809*33385282^(5/12) 6099996721309715 a001 225851433717/505019158607*33385282^(5/12) 6099996721309715 a001 591286729879/1322157322203*33385282^(5/12) 6099996721309715 a001 10610209857723/23725150497407*33385282^(5/12) 6099996721309715 a001 182717648081/408569081798*33385282^(5/12) 6099996721309715 a001 139583862445/312119004989*33385282^(5/12) 6099996721309715 a001 53316291173/119218851371*33385282^(5/12) 6099996721309715 a001 10182505537/22768774562*33385282^(5/12) 6099996721309715 a001 7778742049/17393796001*33385282^(5/12) 6099996721309715 a001 2971215073/6643838879*33385282^(5/12) 6099996721309715 a001 567451585/1268860318*33385282^(5/12) 6099996721309715 a001 267914296/54018521*87403803^(5/19) 6099996721309715 a001 433494437/969323029*33385282^(5/12) 6099996721309715 a001 63245986/54018521*141422324^(1/3) 6099996721309715 a001 102334155/141422324*33385282^(7/18) 6099996721309715 a001 24157817/228826127*87403803^(9/19) 6099996721309715 a001 102334155/370248451*33385282^(4/9) 6099996721309715 a001 165580141/370248451*33385282^(5/12) 6099996721309715 a001 39088169/1568397607*33385282^(7/12) 6099996721309715 a001 12586269025/54018521*33385282^(1/18) 6099996721309715 a001 24157817/141422324*45537549124^(1/3) 6099996721309715 a001 1527884955772562/2504730781961 6099996721309715 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(39) 6099996721309715 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(37) 6099996721309715 a001 63245986/54018521*73681302247^(1/4) 6099996721309715 a001 267914296/969323029*33385282^(4/9) 6099996721309715 a001 701408733/2537720636*33385282^(4/9) 6099996721309715 a001 1836311903/6643838879*33385282^(4/9) 6099996721309715 a001 4807526976/17393796001*33385282^(4/9) 6099996721309715 a001 12586269025/45537549124*33385282^(4/9) 6099996721309715 a001 32951280099/119218851371*33385282^(4/9) 6099996721309715 a001 86267571272/312119004989*33385282^(4/9) 6099996721309715 a001 225851433717/817138163596*33385282^(4/9) 6099996721309715 a001 1548008755920/5600748293801*33385282^(4/9) 6099996721309715 a001 139583862445/505019158607*33385282^(4/9) 6099996721309715 a001 53316291173/192900153618*33385282^(4/9) 6099996721309715 a001 20365011074/73681302247*33385282^(4/9) 6099996721309715 a001 7778742049/28143753123*33385282^(4/9) 6099996721309715 a001 2971215073/10749957122*33385282^(4/9) 6099996721309715 a001 1134903170/4106118243*33385282^(4/9) 6099996721309715 a001 433494437/1568397607*33385282^(4/9) 6099996721309715 a001 165580141/599074578*33385282^(4/9) 6099996721309715 a001 24157817/599074578*87403803^(10/19) 6099996721309715 a001 63246219/271444*12752043^(1/17) 6099996721309715 a001 24157817/370248451*87403803^(1/2) 6099996721309715 a001 7778742049/54018521*33385282^(1/12) 6099996721309715 a001 39088169/2537720636*33385282^(11/18) 6099996721309715 a001 24157817/1568397607*87403803^(11/19) 6099996721309715 a001 24157817/4106118243*87403803^(12/19) 6099996721309715 a001 63245986/228826127*33385282^(4/9) 6099996721309715 a001 102334155/969323029*33385282^(1/2) 6099996721309715 a001 24157817/10749957122*87403803^(13/19) 6099996721309715 a001 24157817/28143753123*87403803^(14/19) 6099996721309715 a001 4807526976/54018521*33385282^(1/9) 6099996721309715 a001 66978574/634430159*33385282^(1/2) 6099996721309715 a001 24157817/73681302247*87403803^(15/19) 6099996721309715 a001 701408733/6643838879*33385282^(1/2) 6099996721309715 a001 1836311903/17393796001*33385282^(1/2) 6099996721309715 a001 1201881744/11384387281*33385282^(1/2) 6099996721309715 a001 12586269025/119218851371*33385282^(1/2) 6099996721309715 a001 32951280099/312119004989*33385282^(1/2) 6099996721309715 a001 21566892818/204284540899*33385282^(1/2) 6099996721309715 a001 225851433717/2139295485799*33385282^(1/2) 6099996721309715 a001 182717648081/1730726404001*33385282^(1/2) 6099996721309715 a001 139583862445/1322157322203*33385282^(1/2) 6099996721309715 a001 53316291173/505019158607*33385282^(1/2) 6099996721309715 a001 10182505537/96450076809*33385282^(1/2) 6099996721309715 a001 7778742049/73681302247*33385282^(1/2) 6099996721309715 a001 2971215073/28143753123*33385282^(1/2) 6099996721309715 a001 567451585/5374978561*33385282^(1/2) 6099996721309715 a001 433494437/4106118243*33385282^(1/2) 6099996721309715 a001 24157817/192900153618*87403803^(16/19) 6099996721309715 a001 165580141/1568397607*33385282^(1/2) 6099996721309715 a001 24157817/505019158607*87403803^(17/19) 6099996721309715 a001 24157817/1322157322203*87403803^(18/19) 6099996721309715 a001 39088169/6643838879*33385282^(2/3) 6099996721309716 a001 9227465/10749957122*20633239^(4/5) 6099996721309716 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^60 6099996721309716 a001 31622993/70711162*33385282^(5/12) 6099996721309716 a001 9303105/230701876*33385282^(5/9) 6099996721309716 a001 1836311903/54018521*33385282^(1/6) 6099996721309716 a001 267914296/6643838879*33385282^(5/9) 6099996721309716 a001 31622993/299537289*33385282^(1/2) 6099996721309716 a001 701408733/17393796001*33385282^(5/9) 6099996721309716 a001 1836311903/45537549124*33385282^(5/9) 6099996721309716 a001 4807526976/119218851371*33385282^(5/9) 6099996721309716 a001 1144206275/28374454999*33385282^(5/9) 6099996721309716 a001 32951280099/817138163596*33385282^(5/9) 6099996721309716 a001 86267571272/2139295485799*33385282^(5/9) 6099996721309716 a001 225851433717/5600748293801*33385282^(5/9) 6099996721309716 a001 591286729879/14662949395604*33385282^(5/9) 6099996721309716 a001 365435296162/9062201101803*33385282^(5/9) 6099996721309716 a001 139583862445/3461452808002*33385282^(5/9) 6099996721309716 a001 53316291173/1322157322203*33385282^(5/9) 6099996721309716 a001 20365011074/505019158607*33385282^(5/9) 6099996721309716 a001 7778742049/192900153618*33385282^(5/9) 6099996721309716 a001 2971215073/73681302247*33385282^(5/9) 6099996721309716 a001 1134903170/28143753123*33385282^(5/9) 6099996721309716 a001 433494437/10749957122*33385282^(5/9) 6099996721309716 a001 34111385/1368706081*33385282^(7/12) 6099996721309716 a001 165580141/4106118243*33385282^(5/9) 6099996721309716 a001 14930352/20633239*20633239^(2/5) 6099996721309716 a001 39088169/17393796001*33385282^(13/18) 6099996721309716 a001 133957148/5374978561*33385282^(7/12) 6099996721309716 a001 233802911/9381251041*33385282^(7/12) 6099996721309716 a001 1836311903/73681302247*33385282^(7/12) 6099996721309716 a001 267084832/10716675201*33385282^(7/12) 6099996721309716 a001 12586269025/505019158607*33385282^(7/12) 6099996721309716 a001 10983760033/440719107401*33385282^(7/12) 6099996721309716 a001 43133785636/1730726404001*33385282^(7/12) 6099996721309716 a001 75283811239/3020733700601*33385282^(7/12) 6099996721309716 a001 182717648081/7331474697802*33385282^(7/12) 6099996721309716 a001 139583862445/5600748293801*33385282^(7/12) 6099996721309716 a001 53316291173/2139295485799*33385282^(7/12) 6099996721309716 a001 10182505537/408569081798*33385282^(7/12) 6099996721309716 a001 7778742049/312119004989*33385282^(7/12) 6099996721309716 a001 2971215073/119218851371*33385282^(7/12) 6099996721309716 a001 567451585/22768774562*33385282^(7/12) 6099996721309716 a001 433494437/17393796001*33385282^(7/12) 6099996721309716 a001 102334155/6643838879*33385282^(11/18) 6099996721309716 a001 165580141/6643838879*33385282^(7/12) 6099996721309716 a001 701408733/54018521*33385282^(2/9) 6099996721309716 a001 39088169/28143753123*33385282^(3/4) 6099996721309716 a001 9238424/599786069*33385282^(11/18) 6099996721309716 a001 701408733/45537549124*33385282^(11/18) 6099996721309716 a001 63245986/1568397607*33385282^(5/9) 6099996721309716 a001 1836311903/119218851371*33385282^(11/18) 6099996721309716 a001 4807526976/312119004989*33385282^(11/18) 6099996721309716 a001 12586269025/817138163596*33385282^(11/18) 6099996721309716 a001 32951280099/2139295485799*33385282^(11/18) 6099996721309716 a001 86267571272/5600748293801*33385282^(11/18) 6099996721309716 a001 7787980473/505618944676*33385282^(11/18) 6099996721309716 a001 365435296162/23725150497407*33385282^(11/18) 6099996721309716 a001 139583862445/9062201101803*33385282^(11/18) 6099996721309716 a001 53316291173/3461452808002*33385282^(11/18) 6099996721309716 a001 20365011074/1322157322203*33385282^(11/18) 6099996721309716 a001 7778742049/505019158607*33385282^(11/18) 6099996721309716 a001 2971215073/192900153618*33385282^(11/18) 6099996721309716 a001 1134903170/73681302247*33385282^(11/18) 6099996721309716 a001 433494437/28143753123*33385282^(11/18) 6099996721309716 a001 433494437/33385282*12752043^(4/17) 6099996721309716 a001 165580141/10749957122*33385282^(11/18) 6099996721309716 a001 39088169/54018521*33385282^(7/18) 6099996721309716 a001 39088169/45537549124*33385282^(7/9) 6099996721309716 a001 433494437/54018521*33385282^(1/4) 6099996721309716 a001 31622993/1268860318*33385282^(7/12) 6099996721309716 a001 102334155/17393796001*33385282^(2/3) 6099996721309716 a001 267914296/54018521*33385282^(5/18) 6099996721309716 a001 7778742049/87403803*12752043^(2/17) 6099996721309716 a001 66978574/11384387281*33385282^(2/3) 6099996721309716 a001 701408733/119218851371*33385282^(2/3) 6099996721309716 a001 1836311903/312119004989*33385282^(2/3) 6099996721309716 a001 1201881744/204284540899*33385282^(2/3) 6099996721309716 a001 12586269025/2139295485799*33385282^(2/3) 6099996721309716 a001 32951280099/5600748293801*33385282^(2/3) 6099996721309716 a001 1135099622/192933544679*33385282^(2/3) 6099996721309716 a001 139583862445/23725150497407*33385282^(2/3) 6099996721309716 a001 53316291173/9062201101803*33385282^(2/3) 6099996721309716 a001 10182505537/1730726404001*33385282^(2/3) 6099996721309716 a001 7778742049/1322157322203*33385282^(2/3) 6099996721309716 a001 2971215073/505019158607*33385282^(2/3) 6099996721309716 a001 63245986/4106118243*33385282^(11/18) 6099996721309716 a001 567451585/96450076809*33385282^(2/3) 6099996721309716 a001 433494437/73681302247*33385282^(2/3) 6099996721309716 a001 165580141/28143753123*33385282^(2/3) 6099996721309716 a001 24157817/87403803*33385282^(4/9) 6099996721309716 a001 39088169/119218851371*33385282^(5/6) 6099996721309716 a001 102334155/54018521*33385282^(1/3) 6099996721309716 a001 102334155/45537549124*33385282^(13/18) 6099996721309717 a001 267914296/119218851371*33385282^(13/18) 6099996721309717 a001 3524667/1568437211*33385282^(13/18) 6099996721309717 a001 1836311903/817138163596*33385282^(13/18) 6099996721309717 a001 4807526976/2139295485799*33385282^(13/18) 6099996721309717 a001 12586269025/5600748293801*33385282^(13/18) 6099996721309717 a001 32951280099/14662949395604*33385282^(13/18) 6099996721309717 a001 53316291173/23725150497407*33385282^(13/18) 6099996721309717 a001 20365011074/9062201101803*33385282^(13/18) 6099996721309717 a001 7778742049/3461452808002*33385282^(13/18) 6099996721309717 a001 2971215073/1322157322203*33385282^(13/18) 6099996721309717 a001 31622993/5374978561*33385282^(2/3) 6099996721309717 a001 1134903170/505019158607*33385282^(13/18) 6099996721309717 a001 433494437/192900153618*33385282^(13/18) 6099996721309717 a001 14619165/10525900321*33385282^(3/4) 6099996721309717 a001 165580141/73681302247*33385282^(13/18) 6099996721309717 a001 24157817/54018521*141422324^(5/13) 6099996721309717 a001 39088169/312119004989*33385282^(8/9) 6099996721309717 a001 133957148/96450076809*33385282^(3/4) 6099996721309717 a001 9227465/2537720636*20633239^(5/7) 6099996721309717 a001 701408733/505019158607*33385282^(3/4) 6099996721309717 a001 1836311903/1322157322203*33385282^(3/4) 6099996721309717 a001 14930208/10749853441*33385282^(3/4) 6099996721309717 a001 12586269025/9062201101803*33385282^(3/4) 6099996721309717 a001 32951280099/23725150497407*33385282^(3/4) 6099996721309717 a001 10182505537/7331474697802*33385282^(3/4) 6099996721309717 a001 7778742049/5600748293801*33385282^(3/4) 6099996721309717 a001 2971215073/2139295485799*33385282^(3/4) 6099996721309717 a001 567451585/408569081798*33385282^(3/4) 6099996721309717 a001 433494437/312119004989*33385282^(3/4) 6099996721309717 a001 102334155/119218851371*33385282^(7/9) 6099996721309717 a001 165580141/119218851371*33385282^(3/4) 6099996721309717 a001 24157817/54018521*2537720636^(1/3) 6099996721309717 a001 24157817/54018521*45537549124^(5/17) 6099996721309717 a001 24157817/54018521*312119004989^(3/11) 6099996721309717 a001 583600122205489/956722026041 6099996721309717 a001 24157817/54018521*14662949395604^(5/21) 6099996721309717 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(37) 6099996721309717 a001 24157817/54018521*192900153618^(5/18) 6099996721309717 a001 24157817/54018521*28143753123^(3/10) 6099996721309717 a001 24157817/54018521*10749957122^(5/16) 6099996721309717 a001 24157817/54018521*599074578^(5/14) 6099996721309717 a001 39088169/505019158607*33385282^(11/12) 6099996721309717 a001 24157817/54018521*228826127^(3/8) 6099996721309717 a001 267914296/312119004989*33385282^(7/9) 6099996721309717 a001 701408733/817138163596*33385282^(7/9) 6099996721309717 a001 1836311903/2139295485799*33385282^(7/9) 6099996721309717 a001 4807526976/5600748293801*33385282^(7/9) 6099996721309717 a001 12586269025/14662949395604*33385282^(7/9) 6099996721309717 a001 20365011074/23725150497407*33385282^(7/9) 6099996721309717 a001 7778742049/9062201101803*33385282^(7/9) 6099996721309717 a001 2971215073/3461452808002*33385282^(7/9) 6099996721309717 a001 63245986/28143753123*33385282^(13/18) 6099996721309717 a001 1134903170/1322157322203*33385282^(7/9) 6099996721309717 a001 433494437/505019158607*33385282^(7/9) 6099996721309717 a001 20365011074/228826127*12752043^(2/17) 6099996721309717 a001 12586269025/54018521*12752043^(1/17) 6099996721309717 a001 165580141/192900153618*33385282^(7/9) 6099996721309717 a001 4181/87403804*33385282^(17/18) 6099996721309717 a001 53316291173/599074578*12752043^(2/17) 6099996721309717 a001 31622993/22768774562*33385282^(3/4) 6099996721309717 a001 139583862445/1568397607*12752043^(2/17) 6099996721309717 a001 365435296162/4106118243*12752043^(2/17) 6099996721309717 a001 956722026041/10749957122*12752043^(2/17) 6099996721309717 a001 2504730781961/28143753123*12752043^(2/17) 6099996721309717 a001 6557470319842/73681302247*12752043^(2/17) 6099996721309717 a001 10610209857723/119218851371*12752043^(2/17) 6099996721309717 a001 4052739537881/45537549124*12752043^(2/17) 6099996721309717 a001 1548008755920/17393796001*12752043^(2/17) 6099996721309717 a001 591286729879/6643838879*12752043^(2/17) 6099996721309717 a001 225851433717/2537720636*12752043^(2/17) 6099996721309717 a001 86267571272/969323029*12752043^(2/17) 6099996721309717 a001 9303105/28374454999*33385282^(5/6) 6099996721309717 a001 32951280099/370248451*12752043^(2/17) 6099996721309717 a001 66978574/204284540899*33385282^(5/6) 6099996721309717 a001 701408733/2139295485799*33385282^(5/6) 6099996721309717 a001 1836311903/5600748293801*33385282^(5/6) 6099996721309717 a001 1201881744/3665737348901*33385282^(5/6) 6099996721309717 a001 7778742049/23725150497407*33385282^(5/6) 6099996721309717 a001 2971215073/9062201101803*33385282^(5/6) 6099996721309717 a001 63245986/73681302247*33385282^(7/9) 6099996721309717 a001 567451585/1730726404001*33385282^(5/6) 6099996721309717 a001 433494437/1322157322203*33385282^(5/6) 6099996721309717 a001 165580141/505019158607*33385282^(5/6) 6099996721309717 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^59 6099996721309717 a001 24157817/228826127*33385282^(1/2) 6099996721309717 a001 12586269025/141422324*12752043^(2/17) 6099996721309717 a001 102334155/817138163596*33385282^(8/9) 6099996721309717 a001 267914296/2139295485799*33385282^(8/9) 6099996721309718 a001 701408733/5600748293801*33385282^(8/9) 6099996721309718 a001 1836311903/14662949395604*33385282^(8/9) 6099996721309718 a001 2971215073/23725150497407*33385282^(8/9) 6099996721309718 a001 31622993/96450076809*33385282^(5/6) 6099996721309718 a001 1134903170/9062201101803*33385282^(8/9) 6099996721309718 a001 433494437/3461452808002*33385282^(8/9) 6099996721309718 a001 34111385/440719107401*33385282^(11/12) 6099996721309718 a001 165580141/1322157322203*33385282^(8/9) 6099996721309718 a001 133957148/1730726404001*33385282^(11/12) 6099996721309718 a001 233802911/3020733700601*33385282^(11/12) 6099996721309718 a001 1836311903/23725150497407*33385282^(11/12) 6099996721309718 a001 567451585/7331474697802*33385282^(11/12) 6099996721309718 a001 433494437/5600748293801*33385282^(11/12) 6099996721309718 a001 102334155/2139295485799*33385282^(17/18) 6099996721309718 a001 165580141/2139295485799*33385282^(11/12) 6099996721309718 a001 24157817/599074578*33385282^(5/9) 6099996721309718 a001 267914296/5600748293801*33385282^(17/18) 6099996721309718 a001 701408733/14662949395604*33385282^(17/18) 6099996721309718 a001 63245986/505019158607*33385282^(8/9) 6099996721309718 a001 1134903170/23725150497407*33385282^(17/18) 6099996721309718 a001 433494437/9062201101803*33385282^(17/18) 6099996721309718 a001 165580141/3461452808002*33385282^(17/18) 6099996721309718 a001 24157817/969323029*33385282^(7/12) 6099996721309718 a001 31622993/408569081798*33385282^(11/12) 6099996721309718 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^61 6099996721309718 a001 2971215073/20633239*7881196^(1/11) 6099996721309718 a001 24157817/1568397607*33385282^(11/18) 6099996721309718 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^63 6099996721309718 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^65 6099996721309718 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^67 6099996721309718 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^69 6099996721309718 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^71 6099996721309718 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^73 6099996721309718 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^75 6099996721309718 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^77 6099996721309718 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^79 6099996721309718 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^81 6099996721309718 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^83 6099996721309718 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^85 6099996721309718 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^87 6099996721309718 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^89 6099996721309718 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^91 6099996721309718 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^93 6099996721309718 a004 Fibonacci(74)*Lucas(36)/(1/2+sqrt(5)/2)^95 6099996721309718 a004 Fibonacci(76)*Lucas(36)/(1/2+sqrt(5)/2)^97 6099996721309718 a004 Fibonacci(78)*Lucas(36)/(1/2+sqrt(5)/2)^99 6099996721309718 a004 Fibonacci(79)*Lucas(36)/(1/2+sqrt(5)/2)^100 6099996721309718 a004 Fibonacci(77)*Lucas(36)/(1/2+sqrt(5)/2)^98 6099996721309718 a004 Fibonacci(75)*Lucas(36)/(1/2+sqrt(5)/2)^96 6099996721309718 a004 Fibonacci(73)*Lucas(36)/(1/2+sqrt(5)/2)^94 6099996721309718 a001 1/7465176*(1/2+1/2*5^(1/2))^51 6099996721309718 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^92 6099996721309718 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^90 6099996721309718 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^88 6099996721309718 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^86 6099996721309718 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^84 6099996721309718 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^82 6099996721309718 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^80 6099996721309718 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^78 6099996721309718 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^76 6099996721309718 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^74 6099996721309718 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^72 6099996721309718 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^70 6099996721309718 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^68 6099996721309718 a001 63245986/1322157322203*33385282^(17/18) 6099996721309718 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^66 6099996721309718 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^64 6099996721309718 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^62 6099996721309718 a001 165580141/33385282*12752043^(5/17) 6099996721309718 a001 24157817/4106118243*33385282^(2/3) 6099996721309718 a001 9227465/370248451*20633239^(3/5) 6099996721309718 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^60 6099996721309718 a001 2971215073/87403803*12752043^(3/17) 6099996721309719 a001 9227465/228826127*20633239^(4/7) 6099996721309719 a001 24157817/10749957122*33385282^(13/18) 6099996721309719 a001 24157817/17393796001*33385282^(3/4) 6099996721309719 a001 24157817/28143753123*33385282^(7/9) 6099996721309719 a001 24157817/54018521*33385282^(5/12) 6099996721309719 a001 7778742049/228826127*12752043^(3/17) 6099996721309719 a001 4807526976/54018521*12752043^(2/17) 6099996721309719 a001 10182505537/299537289*12752043^(3/17) 6099996721309719 a001 53316291173/1568397607*12752043^(3/17) 6099996721309719 a001 139583862445/4106118243*12752043^(3/17) 6099996721309719 a001 182717648081/5374978561*12752043^(3/17) 6099996721309719 a001 956722026041/28143753123*12752043^(3/17) 6099996721309719 a001 2504730781961/73681302247*12752043^(3/17) 6099996721309719 a001 3278735159921/96450076809*12752043^(3/17) 6099996721309719 a001 10610209857723/312119004989*12752043^(3/17) 6099996721309719 a001 4052739537881/119218851371*12752043^(3/17) 6099996721309719 a001 387002188980/11384387281*12752043^(3/17) 6099996721309719 a001 591286729879/17393796001*12752043^(3/17) 6099996721309719 a001 225851433717/6643838879*12752043^(3/17) 6099996721309719 a001 1135099622/33391061*12752043^(3/17) 6099996721309719 a001 32951280099/969323029*12752043^(3/17) 6099996721309719 a001 24157817/73681302247*33385282^(5/6) 6099996721309719 a001 12586269025/370248451*12752043^(3/17) 6099996721309720 a001 1201881744/35355581*12752043^(3/17) 6099996721309720 a001 24157817/192900153618*33385282^(8/9) 6099996721309720 a001 24157817/312119004989*33385282^(11/12) 6099996721309720 a001 24157817/505019158607*33385282^(17/18) 6099996721309720 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^58 6099996721309721 a001 1134903170/87403803*12752043^(4/17) 6099996721309721 a001 31622993/16692641*12752043^(6/17) 6099996721309721 a001 1836311903/54018521*12752043^(3/17) 6099996721309721 a001 2971215073/228826127*12752043^(4/17) 6099996721309721 a001 7778742049/599074578*12752043^(4/17) 6099996721309721 a001 20365011074/1568397607*12752043^(4/17) 6099996721309721 a001 53316291173/4106118243*12752043^(4/17) 6099996721309721 a001 139583862445/10749957122*12752043^(4/17) 6099996721309721 a001 365435296162/28143753123*12752043^(4/17) 6099996721309721 a001 956722026041/73681302247*12752043^(4/17) 6099996721309721 a001 2504730781961/192900153618*12752043^(4/17) 6099996721309721 a001 10610209857723/817138163596*12752043^(4/17) 6099996721309721 a001 4052739537881/312119004989*12752043^(4/17) 6099996721309721 a001 1548008755920/119218851371*12752043^(4/17) 6099996721309721 a001 591286729879/45537549124*12752043^(4/17) 6099996721309721 a001 7787980473/599786069*12752043^(4/17) 6099996721309721 a001 86267571272/6643838879*12752043^(4/17) 6099996721309721 a001 32951280099/2537720636*12752043^(4/17) 6099996721309721 a001 12586269025/969323029*12752043^(4/17) 6099996721309722 a001 14930352/20633239*17393796001^(2/7) 6099996721309722 a001 14930352/20633239*14662949395604^(2/9) 6099996721309722 a001 9227465/33385282*(1/2+1/2*5^(1/2))^16 6099996721309722 a001 14930352/20633239*(1/2+1/2*5^(1/2))^14 6099996721309722 a001 14930352/20633239*505019158607^(1/4) 6099996721309722 a001 3532546167120/5791062403 6099996721309722 a001 9227465/33385282*73681302247^(4/13) 6099996721309722 a001 14930352/20633239*10749957122^(7/24) 6099996721309722 a001 9227465/33385282*10749957122^(1/3) 6099996721309722 a001 14930352/20633239*4106118243^(7/23) 6099996721309722 a001 9227465/33385282*4106118243^(8/23) 6099996721309722 a001 14930352/20633239*1568397607^(7/22) 6099996721309722 a001 9227465/33385282*1568397607^(4/11) 6099996721309722 a001 14930352/20633239*599074578^(1/3) 6099996721309722 a001 9227465/33385282*599074578^(8/21) 6099996721309722 a001 4807526976/370248451*12752043^(4/17) 6099996721309722 a001 14930352/20633239*228826127^(7/20) 6099996721309722 a001 9227465/33385282*228826127^(2/5) 6099996721309722 a001 1762289/5374978561*7881196^(10/11) 6099996721309722 a001 1836311903/141422324*12752043^(4/17) 6099996721309722 a001 14930352/20633239*87403803^(7/19) 6099996721309722 a001 9227465/33385282*87403803^(8/19) 6099996721309723 a001 9303105/1875749*20633239^(2/7) 6099996721309723 a001 433494437/87403803*12752043^(5/17) 6099996721309723 a001 7778742049/33385282*4870847^(1/16) 6099996721309723 a001 433494437/12752043*4870847^(3/16) 6099996721309724 a001 701408733/54018521*12752043^(4/17) 6099996721309724 a001 1134903170/228826127*12752043^(5/17) 6099996721309724 a001 14930352/20633239*33385282^(7/18) 6099996721309724 a001 2971215073/599074578*12752043^(5/17) 6099996721309724 a001 7778742049/1568397607*12752043^(5/17) 6099996721309724 a001 20365011074/4106118243*12752043^(5/17) 6099996721309724 a001 53316291173/10749957122*12752043^(5/17) 6099996721309724 a001 139583862445/28143753123*12752043^(5/17) 6099996721309724 a001 365435296162/73681302247*12752043^(5/17) 6099996721309724 a001 956722026041/192900153618*12752043^(5/17) 6099996721309724 a001 2504730781961/505019158607*12752043^(5/17) 6099996721309724 a001 10610209857723/2139295485799*12752043^(5/17) 6099996721309724 a001 4052739537881/817138163596*12752043^(5/17) 6099996721309724 a001 140728068720/28374454999*12752043^(5/17) 6099996721309724 a001 591286729879/119218851371*12752043^(5/17) 6099996721309724 a001 225851433717/45537549124*12752043^(5/17) 6099996721309724 a001 86267571272/17393796001*12752043^(5/17) 6099996721309724 a001 32951280099/6643838879*12752043^(5/17) 6099996721309724 a001 1144206275/230701876*12752043^(5/17) 6099996721309724 a001 4807526976/969323029*12752043^(5/17) 6099996721309724 a001 1836311903/370248451*12752043^(5/17) 6099996721309724 a001 9227465/33385282*33385282^(4/9) 6099996721309724 a001 701408733/141422324*12752043^(5/17) 6099996721309724 a001 433494437/20633239*20633239^(1/5) 6099996721309725 a001 24157817/33385282*12752043^(7/17) 6099996721309725 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^57 6099996721309725 a001 1134903170/20633239*20633239^(1/7) 6099996721309725 a001 4976784/29134601*12752043^(1/2) 6099996721309725 a001 165580141/87403803*12752043^(6/17) 6099996721309726 a001 267914296/54018521*12752043^(5/17) 6099996721309726 a001 433494437/228826127*12752043^(6/17) 6099996721309726 a001 567451585/299537289*12752043^(6/17) 6099996721309726 a001 2971215073/1568397607*12752043^(6/17) 6099996721309726 a001 7778742049/4106118243*12752043^(6/17) 6099996721309726 a001 10182505537/5374978561*12752043^(6/17) 6099996721309726 a001 53316291173/28143753123*12752043^(6/17) 6099996721309726 a001 139583862445/73681302247*12752043^(6/17) 6099996721309726 a001 182717648081/96450076809*12752043^(6/17) 6099996721309726 a001 956722026041/505019158607*12752043^(6/17) 6099996721309726 a001 10610209857723/5600748293801*12752043^(6/17) 6099996721309726 a001 591286729879/312119004989*12752043^(6/17) 6099996721309726 a001 225851433717/119218851371*12752043^(6/17) 6099996721309726 a001 21566892818/11384387281*12752043^(6/17) 6099996721309726 a001 32951280099/17393796001*12752043^(6/17) 6099996721309726 a001 12586269025/6643838879*12752043^(6/17) 6099996721309726 a001 1201881744/634430159*12752043^(6/17) 6099996721309726 a001 1836311903/969323029*12752043^(6/17) 6099996721309726 a001 701408733/370248451*12752043^(6/17) 6099996721309726 a001 9227465/87403803*141422324^(6/13) 6099996721309726 a001 39088169/20633239*141422324^(4/13) 6099996721309726 a001 66978574/35355581*12752043^(6/17) 6099996721309726 a001 9227465/87403803*2537720636^(2/5) 6099996721309726 a001 39088169/20633239*2537720636^(4/15) 6099996721309726 a001 9227465/87403803*45537549124^(6/17) 6099996721309726 a001 39088169/20633239*45537549124^(4/17) 6099996721309726 a001 39088169/20633239*817138163596^(4/19) 6099996721309726 a001 9227465/87403803*14662949395604^(2/7) 6099996721309726 a001 39088169/20633239*14662949395604^(4/21) 6099996721309726 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(38) 6099996721309726 a001 39088169/20633239*(1/2+1/2*5^(1/2))^12 6099996721309726 a001 360684711361585/591286729879 6099996721309726 a001 39088169/20633239*192900153618^(2/9) 6099996721309726 a001 39088169/20633239*73681302247^(3/13) 6099996721309726 a001 39088169/20633239*10749957122^(1/4) 6099996721309726 a001 9227465/87403803*10749957122^(3/8) 6099996721309726 a001 39088169/20633239*4106118243^(6/23) 6099996721309726 a001 9227465/87403803*4106118243^(9/23) 6099996721309726 a001 39088169/20633239*1568397607^(3/11) 6099996721309726 a001 9227465/87403803*1568397607^(9/22) 6099996721309726 a001 39088169/20633239*599074578^(2/7) 6099996721309726 a001 9227465/87403803*599074578^(3/7) 6099996721309726 a001 39088169/20633239*228826127^(3/10) 6099996721309726 a001 9227465/87403803*228826127^(9/20) 6099996721309726 a001 39088169/20633239*87403803^(6/19) 6099996721309727 a001 9227465/87403803*87403803^(9/19) 6099996721309727 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^59 6099996721309727 a001 9227465/505019158607*141422324^(12/13) 6099996721309727 a001 9227465/119218851371*141422324^(11/13) 6099996721309727 a001 9227465/28143753123*141422324^(10/13) 6099996721309727 a001 9227465/6643838879*141422324^(9/13) 6099996721309727 a001 9227465/4106118243*141422324^(2/3) 6099996721309727 a001 9227465/1568397607*141422324^(8/13) 6099996721309727 a001 9227465/370248451*141422324^(7/13) 6099996721309727 a001 9227465/228826127*2537720636^(4/9) 6099996721309727 a001 9303105/1875749*2537720636^(2/9) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(40) 6099996721309727 a001 9303105/1875749*(1/2+1/2*5^(1/2))^10 6099996721309727 a001 9227465/228826127*23725150497407^(5/16) 6099996721309727 a001 139583863055/228826128 6099996721309727 a001 9227465/228826127*505019158607^(5/14) 6099996721309727 a001 9227465/228826127*73681302247^(5/13) 6099996721309727 a001 9303105/1875749*28143753123^(1/5) 6099996721309727 a001 9227465/228826127*28143753123^(2/5) 6099996721309727 a001 9303105/1875749*10749957122^(5/24) 6099996721309727 a001 9227465/228826127*10749957122^(5/12) 6099996721309727 a001 9303105/1875749*4106118243^(5/23) 6099996721309727 a001 9227465/228826127*4106118243^(10/23) 6099996721309727 a001 9303105/1875749*1568397607^(5/22) 6099996721309727 a001 9227465/228826127*1568397607^(5/11) 6099996721309727 a001 9303105/1875749*599074578^(5/21) 6099996721309727 a001 9227465/228826127*599074578^(10/21) 6099996721309727 a001 9303105/1875749*228826127^(1/4) 6099996721309727 a001 9227465/228826127*228826127^(1/2) 6099996721309727 a001 14930352/54018521*12752043^(8/17) 6099996721309727 a001 701408733/20633239*141422324^(2/13) 6099996721309727 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^61 6099996721309727 a001 165580141/20633239*141422324^(3/13) 6099996721309727 a001 2971215073/20633239*141422324^(1/13) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(42) 6099996721309727 a001 9238424/711491*(1/2+1/2*5^(1/2))^8 6099996721309727 a001 9238424/711491*23725150497407^(1/8) 6099996721309727 a001 2472169789339640/4052739537881 6099996721309727 a001 9238424/711491*505019158607^(1/7) 6099996721309727 a001 9238424/711491*73681302247^(2/13) 6099996721309727 a001 9238424/711491*10749957122^(1/6) 6099996721309727 a001 9227465/599074578*10749957122^(11/24) 6099996721309727 a001 9238424/711491*4106118243^(4/23) 6099996721309727 a001 9227465/599074578*4106118243^(11/23) 6099996721309727 a001 9238424/711491*1568397607^(2/11) 6099996721309727 a001 9227465/599074578*1568397607^(1/2) 6099996721309727 a001 9238424/711491*599074578^(4/21) 6099996721309727 a001 9227465/599074578*599074578^(11/21) 6099996721309727 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^63 6099996721309727 a001 9227465/1568397607*2537720636^(8/15) 6099996721309727 a001 701408733/20633239*2537720636^(2/15) 6099996721309727 a001 9227465/1568397607*45537549124^(8/17) 6099996721309727 a001 701408733/20633239*45537549124^(2/17) 6099996721309727 a001 9227465/1568397607*14662949395604^(8/21) 6099996721309727 a001 701408733/20633239*14662949395604^(2/21) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(44) 6099996721309727 a001 701408733/20633239*(1/2+1/2*5^(1/2))^6 6099996721309727 a001 2157408178150615/3536736619241 6099996721309727 a001 9227465/1568397607*192900153618^(4/9) 6099996721309727 a001 9227465/1568397607*73681302247^(6/13) 6099996721309727 a001 701408733/20633239*10749957122^(1/8) 6099996721309727 a001 9227465/1568397607*10749957122^(1/2) 6099996721309727 a001 701408733/20633239*4106118243^(3/23) 6099996721309727 a001 9227465/1568397607*4106118243^(12/23) 6099996721309727 a001 701408733/20633239*1568397607^(3/22) 6099996721309727 a001 9227465/1568397607*1568397607^(6/11) 6099996721309727 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^65 6099996721309727 a001 9227465/9062201101803*2537720636^(14/15) 6099996721309727 a001 9227465/3461452808002*2537720636^(8/9) 6099996721309727 a001 9227465/2139295485799*2537720636^(13/15) 6099996721309727 a001 9227465/505019158607*2537720636^(4/5) 6099996721309727 a001 9227465/312119004989*2537720636^(7/9) 6099996721309727 a001 9227465/119218851371*2537720636^(11/15) 6099996721309727 a001 9227465/28143753123*2537720636^(2/3) 6099996721309727 a001 9227465/6643838879*2537720636^(3/5) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(46) 6099996721309727 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^4 6099996721309727 a001 1836311903/20633239*23725150497407^(1/16) 6099996721309727 a001 1836311903/20633239*73681302247^(1/13) 6099996721309727 a001 9227465/4106118243*73681302247^(1/2) 6099996721309727 a001 1836311903/20633239*10749957122^(1/12) 6099996721309727 a001 9227465/4106118243*10749957122^(13/24) 6099996721309727 a001 1836311903/20633239*4106118243^(2/23) 6099996721309727 a001 9227465/4106118243*4106118243^(13/23) 6099996721309727 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^67 6099996721309727 a001 1836311903/20633239*1568397607^(1/11) 6099996721309727 a001 9227465/10749957122*17393796001^(4/7) 6099996721309727 a001 9227465/10749957122*14662949395604^(4/9) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(48) 6099996721309727 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^2 6099996721309727 a001 9227465/10749957122*505019158607^(1/2) 6099996721309727 a001 9227465/10749957122*73681302247^(7/13) 6099996721309727 a001 701408733/20633239*599074578^(1/7) 6099996721309727 a001 4807526976/20633239*10749957122^(1/24) 6099996721309727 a001 4807526976/20633239*4106118243^(1/23) 6099996721309727 a001 9227465/10749957122*10749957122^(7/12) 6099996721309727 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^69 6099996721309727 a001 9227465/9062201101803*17393796001^(6/7) 6099996721309727 a001 9227465/312119004989*17393796001^(5/7) 6099996721309727 a001 9227465/28143753123*45537549124^(10/17) 6099996721309727 a001 9227465/28143753123*312119004989^(6/11) 6099996721309727 a001 9227465/28143753123*14662949395604^(10/21) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(50) 6099996721309727 a006 5^(1/2)*Fibonacci(50)/Lucas(35)/sqrt(5) 6099996721309727 a001 9227465/28143753123*192900153618^(5/9) 6099996721309727 a001 9227465/28143753123*28143753123^(3/5) 6099996721309727 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^71 6099996721309727 a001 9227465/9062201101803*45537549124^(14/17) 6099996721309727 a001 9227465/2139295485799*45537549124^(13/17) 6099996721309727 a001 9227465/192900153618*45537549124^(2/3) 6099996721309727 a001 9227465/505019158607*45537549124^(12/17) 6099996721309727 a001 9227465/119218851371*45537549124^(11/17) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(52) 6099996721309727 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^2 6099996721309727 a001 9227465/73681302247*23725150497407^(1/2) 6099996721309727 a001 9227465/73681302247*505019158607^(4/7) 6099996721309727 a001 9227465/73681302247*73681302247^(8/13) 6099996721309727 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^73 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(54) 6099996721309727 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^4 6099996721309727 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^75 6099996721309727 a001 9227465/23725150497407*312119004989^(4/5) 6099996721309727 a001 9227465/3461452808002*312119004989^(8/11) 6099996721309727 a001 9227465/505019158607*14662949395604^(4/7) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(56) 6099996721309727 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^6 6099996721309727 a001 9227465/1322157322203*817138163596^(2/3) 6099996721309727 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^77 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(58) 6099996721309727 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^8 6099996721309727 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^79 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(60) 6099996721309727 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^10 6099996721309727 a001 9227465/3461452808002*23725150497407^(5/8) 6099996721309727 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^81 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(62) 6099996721309727 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^12 6099996721309727 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^83 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(64) 6099996721309727 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^14 6099996721309727 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^85 6099996721309727 a001 9227465/23725150497407*23725150497407^(11/16) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(66) 6099996721309727 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^16 6099996721309727 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^87 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(68) 6099996721309727 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^18 6099996721309727 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^89 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(70) 6099996721309727 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^91 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(72) 6099996721309727 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^93 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(74) 6099996721309727 a004 Fibonacci(35)*Lucas(75)/(1/2+sqrt(5)/2)^95 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(76) 6099996721309727 a004 Fibonacci(35)*Lucas(77)/(1/2+sqrt(5)/2)^97 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(78) 6099996721309727 a004 Fibonacci(35)*Lucas(79)/(1/2+sqrt(5)/2)^99 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(80) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(82) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(84) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(86) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(88) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(90) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(92) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^74/Lucas(94) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^76/Lucas(96) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^78/Lucas(98) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^79/Lucas(99) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^80/Lucas(100) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^77/Lucas(97) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^75/Lucas(95) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(93) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(91) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(89) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(87) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(85) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(83) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(81) 6099996721309727 a004 Fibonacci(35)*Lucas(80)/(1/2+sqrt(5)/2)^100 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(79) 6099996721309727 a004 Fibonacci(35)*Lucas(78)/(1/2+sqrt(5)/2)^98 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(77) 6099996721309727 a004 Fibonacci(35)*Lucas(76)/(1/2+sqrt(5)/2)^96 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(75) 6099996721309727 a004 Fibonacci(35)*Lucas(74)/(1/2+sqrt(5)/2)^94 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(73) 6099996721309727 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^92 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(71) 6099996721309727 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^22 6099996721309727 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^24 6099996721309727 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^26 6099996721309727 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^28 6099996721309727 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^30 6099996721309727 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^32 6099996721309727 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^34 6099996721309727 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^36 6099996721309727 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^38 6099996721309727 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^40 6099996721309727 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^42 6099996721309727 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^44 6099996721309727 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^46 6099996721309727 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^50 6099996721309727 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^90 6099996721309727 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^48 6099996721309727 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^49 6099996721309727 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^47 6099996721309727 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^45 6099996721309727 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^43 6099996721309727 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^41 6099996721309727 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^39 6099996721309727 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^37 6099996721309727 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^35 6099996721309727 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^33 6099996721309727 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^31 6099996721309727 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^29 6099996721309727 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^27 6099996721309727 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^25 6099996721309727 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^23 6099996721309727 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^21 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(69) 6099996721309727 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^19 6099996721309727 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^88 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(67) 6099996721309727 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^17 6099996721309727 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^86 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(65) 6099996721309727 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^15 6099996721309727 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^84 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(63) 6099996721309727 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^13 6099996721309727 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^82 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(61) 6099996721309727 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^11 6099996721309727 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^80 6099996721309727 a001 9227465/2139295485799*14662949395604^(13/21) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(59) 6099996721309727 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^9 6099996721309727 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^78 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(57) 6099996721309727 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^7 6099996721309727 a001 9227465/9062201101803*505019158607^(3/4) 6099996721309727 a001 9227465/312119004989*312119004989^(7/11) 6099996721309727 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^76 6099996721309727 a001 9227465/312119004989*14662949395604^(5/9) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(55) 6099996721309727 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^5 6099996721309727 a001 9227465/312119004989*505019158607^(5/8) 6099996721309727 a001 9227465/505019158607*192900153618^(2/3) 6099996721309727 a001 9227465/2139295485799*192900153618^(13/18) 6099996721309727 a001 9227465/9062201101803*192900153618^(7/9) 6099996721309727 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^74 6099996721309727 a001 9227465/119218851371*312119004989^(3/5) 6099996721309727 a001 9227465/119218851371*817138163596^(11/19) 6099996721309727 a001 9227465/119218851371*14662949395604^(11/21) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(53) 6099996721309727 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^3 6099996721309727 a001 9227465/119218851371*192900153618^(11/18) 6099996721309727 a001 9227465/505019158607*73681302247^(9/13) 6099996721309727 a001 9227465/2139295485799*73681302247^(3/4) 6099996721309727 a001 9227465/23725150497407*73681302247^(11/13) 6099996721309727 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^72 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(51) 6099996721309727 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2) 6099996721309727 a001 9227465/45537549124*9062201101803^(1/2) 6099996721309727 a001 9227465/312119004989*28143753123^(7/10) 6099996721309727 a001 9227465/3461452808002*28143753123^(4/5) 6099996721309727 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^70 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(49) 6099996721309727 a001 9227465/17393796001*1322157322203^(1/2) 6099996721309727 a001 9227465/28143753123*10749957122^(5/8) 6099996721309727 a001 9227465/73681302247*10749957122^(2/3) 6099996721309727 a001 9227465/119218851371*10749957122^(11/16) 6099996721309727 a001 9227465/192900153618*10749957122^(17/24) 6099996721309727 a001 9227465/505019158607*10749957122^(3/4) 6099996721309727 a001 9227465/1322157322203*10749957122^(19/24) 6099996721309727 a001 9227465/2139295485799*10749957122^(13/16) 6099996721309727 a001 9227465/3461452808002*10749957122^(5/6) 6099996721309727 a001 9227465/9062201101803*10749957122^(7/8) 6099996721309727 a001 9227465/23725150497407*10749957122^(11/12) 6099996721309727 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^68 6099996721309727 a001 4807526976/20633239*1568397607^(1/22) 6099996721309727 a001 2971215073/20633239*2537720636^(1/15) 6099996721309727 a001 9227465/6643838879*45537549124^(9/17) 6099996721309727 a001 2971215073/20633239*45537549124^(1/17) 6099996721309727 a001 9227465/6643838879*817138163596^(9/19) 6099996721309727 a001 2971215073/20633239*14662949395604^(1/21) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(47) 6099996721309727 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^3 6099996721309727 a001 2971215073/20633239*192900153618^(1/18) 6099996721309727 a001 9227465/6643838879*192900153618^(1/2) 6099996721309727 a001 2971215073/20633239*10749957122^(1/16) 6099996721309727 a001 9227465/10749957122*4106118243^(14/23) 6099996721309727 a001 9227465/6643838879*10749957122^(9/16) 6099996721309727 a001 9227465/28143753123*4106118243^(15/23) 6099996721309727 a001 9227465/73681302247*4106118243^(16/23) 6099996721309727 a001 9227465/192900153618*4106118243^(17/23) 6099996721309727 a001 9227465/505019158607*4106118243^(18/23) 6099996721309727 a001 9227465/1322157322203*4106118243^(19/23) 6099996721309727 a001 9227465/3461452808002*4106118243^(20/23) 6099996721309727 a001 9227465/9062201101803*4106118243^(21/23) 6099996721309727 a001 9227465/23725150497407*4106118243^(22/23) 6099996721309727 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^66 6099996721309727 a001 9227465/2537720636*2537720636^(5/9) 6099996721309727 a001 4807526976/20633239*599074578^(1/21) 6099996721309727 a001 1134903170/20633239*2537720636^(1/9) 6099996721309727 a001 9227465/2537720636*312119004989^(5/11) 6099996721309727 a001 1134903170/20633239*312119004989^(1/11) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(45) 6099996721309727 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^5 6099996721309727 a001 9227465/2537720636*3461452808002^(5/12) 6099996721309727 a001 1134903170/20633239*28143753123^(1/10) 6099996721309727 a001 9227465/2537720636*28143753123^(1/2) 6099996721309727 a001 9227465/4106118243*1568397607^(13/22) 6099996721309727 a001 1836311903/20633239*599074578^(2/21) 6099996721309727 a001 2971215073/20633239*599074578^(1/14) 6099996721309727 a001 9227465/10749957122*1568397607^(7/11) 6099996721309727 a001 9227465/28143753123*1568397607^(15/22) 6099996721309727 a001 9227465/73681302247*1568397607^(8/11) 6099996721309727 a001 9227465/119218851371*1568397607^(3/4) 6099996721309727 a001 9227465/192900153618*1568397607^(17/22) 6099996721309727 a001 9227465/505019158607*1568397607^(9/11) 6099996721309727 a001 9227465/1322157322203*1568397607^(19/22) 6099996721309727 a001 9227465/3461452808002*1568397607^(10/11) 6099996721309727 a001 9227465/9062201101803*1568397607^(21/22) 6099996721309727 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^64 6099996721309727 a001 4807526976/20633239*228826127^(1/20) 6099996721309727 a001 9238424/711491*228826127^(1/5) 6099996721309727 a001 433494437/20633239*17393796001^(1/7) 6099996721309727 a001 307696518854785/504420793834 6099996721309727 a001 433494437/20633239*14662949395604^(1/9) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(43) 6099996721309727 a001 433494437/20633239*(1/2+1/2*5^(1/2))^7 6099996721309727 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^7/Lucas(35) 6099996721309727 a001 9227465/969323029*4106118243^(1/2) 6099996721309727 a001 9227465/1568397607*599074578^(4/7) 6099996721309727 a001 433494437/20633239*599074578^(1/6) 6099996721309727 a001 9227465/4106118243*599074578^(13/21) 6099996721309727 a001 9227465/6643838879*599074578^(9/14) 6099996721309727 a001 9227465/10749957122*599074578^(2/3) 6099996721309727 a001 1836311903/20633239*228826127^(1/10) 6099996721309727 a001 9227465/28143753123*599074578^(5/7) 6099996721309727 a001 9227465/73681302247*599074578^(16/21) 6099996721309727 a001 9227465/119218851371*599074578^(11/14) 6099996721309727 a001 9227465/192900153618*599074578^(17/21) 6099996721309727 a001 9227465/312119004989*599074578^(5/6) 6099996721309727 a001 9227465/505019158607*599074578^(6/7) 6099996721309727 a001 701408733/20633239*228826127^(3/20) 6099996721309727 a001 9227465/1322157322203*599074578^(19/21) 6099996721309727 a001 1134903170/20633239*228826127^(1/8) 6099996721309727 a001 9227465/2139295485799*599074578^(13/14) 6099996721309727 a001 9227465/3461452808002*599074578^(20/21) 6099996721309727 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^62 6099996721309727 a001 4807526976/20633239*87403803^(1/19) 6099996721309727 a001 9227465/370248451*2537720636^(7/15) 6099996721309727 a001 165580141/20633239*2537720636^(1/5) 6099996721309727 a001 9227465/370248451*17393796001^(3/7) 6099996721309727 a001 9227465/370248451*45537549124^(7/17) 6099996721309727 a001 165580141/20633239*45537549124^(3/17) 6099996721309727 a001 165580141/20633239*817138163596^(3/19) 6099996721309727 a001 1527884955772565/2504730781961 6099996721309727 a001 9227465/370248451*14662949395604^(1/3) 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(41) 6099996721309727 a001 165580141/20633239*(1/2+1/2*5^(1/2))^9 6099996721309727 a001 165580141/20633239*192900153618^(1/6) 6099996721309727 a001 9227465/370248451*192900153618^(7/18) 6099996721309727 a001 165580141/20633239*10749957122^(3/16) 6099996721309727 a001 9227465/370248451*10749957122^(7/16) 6099996721309727 a001 9227465/599074578*228826127^(11/20) 6099996721309727 a001 165580141/20633239*599074578^(3/14) 6099996721309727 a001 9227465/370248451*599074578^(1/2) 6099996721309727 a001 9227465/1568397607*228826127^(3/5) 6099996721309727 a001 9227465/2537720636*228826127^(5/8) 6099996721309727 a001 9227465/4106118243*228826127^(13/20) 6099996721309727 a001 9227465/10749957122*228826127^(7/10) 6099996721309727 a001 1836311903/20633239*87403803^(2/19) 6099996721309727 a001 9227465/28143753123*228826127^(3/4) 6099996721309727 a001 9227465/73681302247*228826127^(4/5) 6099996721309727 a001 9303105/1875749*87403803^(5/19) 6099996721309727 a001 9227465/192900153618*228826127^(17/20) 6099996721309727 a001 9227465/312119004989*228826127^(7/8) 6099996721309727 a001 9227465/505019158607*228826127^(9/10) 6099996721309727 a001 9227465/1322157322203*228826127^(19/20) 6099996721309727 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^60 6099996721309727 a001 701408733/20633239*87403803^(3/19) 6099996721309727 a001 9238424/711491*87403803^(4/19) 6099996721309727 a001 9227465/228826127*87403803^(10/19) 6099996721309727 a001 4807526976/20633239*33385282^(1/18) 6099996721309727 a001 583600122205490/956722026041 6099996721309727 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(39) 6099996721309727 a001 63245986/20633239*(1/2+1/2*5^(1/2))^11 6099996721309727 a001 63245986/20633239*1568397607^(1/4) 6099996721309727 a001 3732588/35355581*12752043^(9/17) 6099996721309727 a001 9227465/599074578*87403803^(11/19) 6099996721309727 a001 2971215073/20633239*33385282^(1/12) 6099996721309727 a001 9227465/1568397607*87403803^(12/19) 6099996721309728 a001 9227465/4106118243*87403803^(13/19) 6099996721309728 a001 9227465/10749957122*87403803^(14/19) 6099996721309728 a001 1836311903/20633239*33385282^(1/9) 6099996721309728 a001 63245986/87403803*12752043^(7/17) 6099996721309728 a001 9227465/28143753123*87403803^(15/19) 6099996721309728 a001 9227465/73681302247*87403803^(16/19) 6099996721309728 a001 9227465/141422324*87403803^(1/2) 6099996721309728 a001 9227465/192900153618*87403803^(17/19) 6099996721309728 a001 9227465/505019158607*87403803^(18/19) 6099996721309728 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^58 6099996721309728 a001 102334155/54018521*12752043^(6/17) 6099996721309728 a001 701408733/20633239*33385282^(1/6) 6099996721309728 a001 20365011074/87403803*4870847^(1/16) 6099996721309728 a001 39088169/20633239*33385282^(1/3) 6099996721309728 a001 165580141/228826127*12752043^(7/17) 6099996721309728 a001 433494437/599074578*12752043^(7/17) 6099996721309728 a001 1134903170/1568397607*12752043^(7/17) 6099996721309728 a001 2971215073/4106118243*12752043^(7/17) 6099996721309728 a001 7778742049/10749957122*12752043^(7/17) 6099996721309728 a001 20365011074/28143753123*12752043^(7/17) 6099996721309728 a001 53316291173/73681302247*12752043^(7/17) 6099996721309728 a001 139583862445/192900153618*12752043^(7/17) 6099996721309728 a001 365435296162/505019158607*12752043^(7/17) 6099996721309728 a001 10610209857723/14662949395604*12752043^(7/17) 6099996721309728 a001 591286729879/817138163596*12752043^(7/17) 6099996721309728 a001 225851433717/312119004989*12752043^(7/17) 6099996721309728 a001 86267571272/119218851371*12752043^(7/17) 6099996721309728 a001 32951280099/45537549124*12752043^(7/17) 6099996721309728 a001 12586269025/17393796001*12752043^(7/17) 6099996721309728 a001 4807526976/6643838879*12752043^(7/17) 6099996721309728 a001 1836311903/2537720636*12752043^(7/17) 6099996721309728 a001 701408733/969323029*12752043^(7/17) 6099996721309728 a001 267914296/370248451*12752043^(7/17) 6099996721309728 a001 9238424/711491*33385282^(2/9) 6099996721309728 a001 102334155/141422324*12752043^(7/17) 6099996721309728 a001 9303105/1875749*33385282^(5/18) 6099996721309728 a001 165580141/20633239*33385282^(1/4) 6099996721309729 a001 53316291173/228826127*4870847^(1/16) 6099996721309729 a001 139583862445/599074578*4870847^(1/16) 6099996721309729 a001 365435296162/1568397607*4870847^(1/16) 6099996721309729 a001 956722026041/4106118243*4870847^(1/16) 6099996721309729 a001 2504730781961/10749957122*4870847^(1/16) 6099996721309729 a001 6557470319842/28143753123*4870847^(1/16) 6099996721309729 a001 10610209857723/45537549124*4870847^(1/16) 6099996721309729 a001 4052739537881/17393796001*4870847^(1/16) 6099996721309729 a001 1548008755920/6643838879*4870847^(1/16) 6099996721309729 a001 591286729879/2537720636*4870847^(1/16) 6099996721309729 a001 225851433717/969323029*4870847^(1/16) 6099996721309729 a001 86267571272/370248451*4870847^(1/16) 6099996721309729 a001 9227465/87403803*33385282^(1/2) 6099996721309729 a001 24157817/20633239*141422324^(1/3) 6099996721309729 a001 63246219/271444*4870847^(1/16) 6099996721309729 a001 9227465/54018521*45537549124^(1/3) 6099996721309729 a001 222915410843905/365435296162 6099996721309729 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(37) 6099996721309729 a001 24157817/20633239*(1/2+1/2*5^(1/2))^13 6099996721309729 a001 24157817/20633239*73681302247^(1/4) 6099996721309729 a001 4807526976/20633239*12752043^(1/17) 6099996721309729 a001 14930352/370248451*12752043^(10/17) 6099996721309729 a001 39088169/54018521*12752043^(7/17) 6099996721309730 a001 39088169/141422324*12752043^(8/17) 6099996721309730 a001 9227465/228826127*33385282^(5/9) 6099996721309730 a001 9227465/370248451*33385282^(7/12) 6099996721309730 a001 102334155/370248451*12752043^(8/17) 6099996721309730 a001 267914296/969323029*12752043^(8/17) 6099996721309730 a001 701408733/2537720636*12752043^(8/17) 6099996721309730 a001 1836311903/6643838879*12752043^(8/17) 6099996721309730 a001 4807526976/17393796001*12752043^(8/17) 6099996721309730 a001 12586269025/45537549124*12752043^(8/17) 6099996721309730 a001 32951280099/119218851371*12752043^(8/17) 6099996721309730 a001 86267571272/312119004989*12752043^(8/17) 6099996721309730 a001 225851433717/817138163596*12752043^(8/17) 6099996721309730 a001 1548008755920/5600748293801*12752043^(8/17) 6099996721309730 a001 139583862445/505019158607*12752043^(8/17) 6099996721309730 a001 53316291173/192900153618*12752043^(8/17) 6099996721309730 a001 20365011074/73681302247*12752043^(8/17) 6099996721309730 a001 7778742049/28143753123*12752043^(8/17) 6099996721309730 a001 2971215073/10749957122*12752043^(8/17) 6099996721309730 a001 1134903170/4106118243*12752043^(8/17) 6099996721309730 a001 9227465/599074578*33385282^(11/18) 6099996721309730 a001 433494437/1568397607*12752043^(8/17) 6099996721309730 a001 165580141/599074578*12752043^(8/17) 6099996721309730 a001 39088169/228826127*12752043^(1/2) 6099996721309730 a001 63245986/228826127*12752043^(8/17) 6099996721309731 a001 1762289/1268860318*7881196^(9/11) 6099996721309731 a001 9227465/1568397607*33385282^(2/3) 6099996721309731 a001 12586269025/54018521*4870847^(1/16) 6099996721309731 a001 9227465/4106118243*33385282^(13/18) 6099996721309731 a001 9227465/6643838879*33385282^(3/4) 6099996721309731 a001 9227465/10749957122*33385282^(7/9) 6099996721309731 a001 34111385/199691526*12752043^(1/2) 6099996721309731 a001 267914296/1568397607*12752043^(1/2) 6099996721309731 a001 1836311903/20633239*12752043^(2/17) 6099996721309731 a001 233802911/1368706081*12752043^(1/2) 6099996721309731 a001 1836311903/10749957122*12752043^(1/2) 6099996721309731 a001 1602508992/9381251041*12752043^(1/2) 6099996721309731 a001 12586269025/73681302247*12752043^(1/2) 6099996721309731 a001 10983760033/64300051206*12752043^(1/2) 6099996721309731 a001 86267571272/505019158607*12752043^(1/2) 6099996721309731 a001 75283811239/440719107401*12752043^(1/2) 6099996721309731 a001 2504730781961/14662949395604*12752043^(1/2) 6099996721309731 a001 139583862445/817138163596*12752043^(1/2) 6099996721309731 a001 53316291173/312119004989*12752043^(1/2) 6099996721309731 a001 20365011074/119218851371*12752043^(1/2) 6099996721309731 a001 7778742049/45537549124*12752043^(1/2) 6099996721309731 a001 2971215073/17393796001*12752043^(1/2) 6099996721309731 a001 1134903170/6643838879*12752043^(1/2) 6099996721309731 a001 433494437/2537720636*12752043^(1/2) 6099996721309731 a001 14930352/969323029*12752043^(11/17) 6099996721309731 a001 165580141/969323029*12752043^(1/2) 6099996721309732 a001 9227465/28143753123*33385282^(5/6) 6099996721309732 a001 24157817/87403803*12752043^(8/17) 6099996721309732 a001 39088169/370248451*12752043^(9/17) 6099996721309732 a001 63245986/370248451*12752043^(1/2) 6099996721309732 a001 9227465/73681302247*33385282^(8/9) 6099996721309732 a001 9227465/119218851371*33385282^(11/12) 6099996721309732 a001 9227465/192900153618*33385282^(17/18) 6099996721309732 a001 102334155/969323029*12752043^(9/17) 6099996721309732 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^56 6099996721309732 a001 66978574/634430159*12752043^(9/17) 6099996721309733 a001 701408733/6643838879*12752043^(9/17) 6099996721309733 a001 1836311903/17393796001*12752043^(9/17) 6099996721309733 a001 1201881744/11384387281*12752043^(9/17) 6099996721309733 a001 12586269025/119218851371*12752043^(9/17) 6099996721309733 a001 32951280099/312119004989*12752043^(9/17) 6099996721309733 a001 21566892818/204284540899*12752043^(9/17) 6099996721309733 a001 225851433717/2139295485799*12752043^(9/17) 6099996721309733 a001 182717648081/1730726404001*12752043^(9/17) 6099996721309733 a001 139583862445/1322157322203*12752043^(9/17) 6099996721309733 a001 53316291173/505019158607*12752043^(9/17) 6099996721309733 a001 10182505537/96450076809*12752043^(9/17) 6099996721309733 a001 7778742049/73681302247*12752043^(9/17) 6099996721309733 a001 2971215073/28143753123*12752043^(9/17) 6099996721309733 a001 567451585/5374978561*12752043^(9/17) 6099996721309733 a001 433494437/4106118243*12752043^(9/17) 6099996721309733 a001 165580141/1568397607*12752043^(9/17) 6099996721309733 a001 31622993/299537289*12752043^(9/17) 6099996721309734 a001 701408733/20633239*12752043^(3/17) 6099996721309734 a001 196452/33391061*12752043^(12/17) 6099996721309734 a001 24157817/141422324*12752043^(1/2) 6099996721309734 a001 39088169/969323029*12752043^(10/17) 6099996721309734 a001 24157817/228826127*12752043^(9/17) 6099996721309735 a001 9303105/230701876*12752043^(10/17) 6099996721309735 a001 267914296/6643838879*12752043^(10/17) 6099996721309735 a001 701408733/17393796001*12752043^(10/17) 6099996721309735 a001 1836311903/45537549124*12752043^(10/17) 6099996721309735 a001 4807526976/119218851371*12752043^(10/17) 6099996721309735 a001 1144206275/28374454999*12752043^(10/17) 6099996721309735 a001 32951280099/817138163596*12752043^(10/17) 6099996721309735 a001 86267571272/2139295485799*12752043^(10/17) 6099996721309735 a001 225851433717/5600748293801*12752043^(10/17) 6099996721309735 a001 591286729879/14662949395604*12752043^(10/17) 6099996721309735 a001 365435296162/9062201101803*12752043^(10/17) 6099996721309735 a001 139583862445/3461452808002*12752043^(10/17) 6099996721309735 a001 53316291173/1322157322203*12752043^(10/17) 6099996721309735 a001 20365011074/505019158607*12752043^(10/17) 6099996721309735 a001 7778742049/192900153618*12752043^(10/17) 6099996721309735 a001 2971215073/73681302247*12752043^(10/17) 6099996721309735 a001 1134903170/28143753123*12752043^(10/17) 6099996721309735 a001 433494437/10749957122*12752043^(10/17) 6099996721309735 a001 165580141/4106118243*12752043^(10/17) 6099996721309735 a001 63245986/1568397607*12752043^(10/17) 6099996721309735 a001 9227465/20633239*20633239^(3/7) 6099996721309736 a001 9238424/711491*12752043^(4/17) 6099996721309736 a001 14930352/6643838879*12752043^(13/17) 6099996721309736 a001 39088169/2537720636*12752043^(11/17) 6099996721309737 a001 24157817/599074578*12752043^(10/17) 6099996721309737 a001 102334155/6643838879*12752043^(11/17) 6099996721309737 a001 9238424/599786069*12752043^(11/17) 6099996721309737 a001 701408733/45537549124*12752043^(11/17) 6099996721309737 a001 1836311903/119218851371*12752043^(11/17) 6099996721309737 a001 4807526976/312119004989*12752043^(11/17) 6099996721309737 a001 12586269025/817138163596*12752043^(11/17) 6099996721309737 a001 32951280099/2139295485799*12752043^(11/17) 6099996721309737 a001 86267571272/5600748293801*12752043^(11/17) 6099996721309737 a001 7787980473/505618944676*12752043^(11/17) 6099996721309737 a001 365435296162/23725150497407*12752043^(11/17) 6099996721309737 a001 139583862445/9062201101803*12752043^(11/17) 6099996721309737 a001 53316291173/3461452808002*12752043^(11/17) 6099996721309737 a001 20365011074/1322157322203*12752043^(11/17) 6099996721309737 a001 7778742049/505019158607*12752043^(11/17) 6099996721309737 a001 2971215073/192900153618*12752043^(11/17) 6099996721309737 a001 1134903170/73681302247*12752043^(11/17) 6099996721309737 a001 433494437/28143753123*12752043^(11/17) 6099996721309737 a001 14930352/20633239*12752043^(7/17) 6099996721309737 a001 165580141/10749957122*12752043^(11/17) 6099996721309737 a001 63245986/4106118243*12752043^(11/17) 6099996721309738 a001 9303105/1875749*12752043^(5/17) 6099996721309738 a001 14930352/17393796001*12752043^(14/17) 6099996721309738 a001 39088169/6643838879*12752043^(12/17) 6099996721309739 a001 24157817/1568397607*12752043^(11/17) 6099996721309739 a001 102334155/17393796001*12752043^(12/17) 6099996721309739 a001 66978574/11384387281*12752043^(12/17) 6099996721309739 a001 701408733/119218851371*12752043^(12/17) 6099996721309739 a001 1836311903/312119004989*12752043^(12/17) 6099996721309739 a001 1201881744/204284540899*12752043^(12/17) 6099996721309739 a001 12586269025/2139295485799*12752043^(12/17) 6099996721309739 a001 32951280099/5600748293801*12752043^(12/17) 6099996721309739 a001 1135099622/192933544679*12752043^(12/17) 6099996721309739 a001 139583862445/23725150497407*12752043^(12/17) 6099996721309739 a001 53316291173/9062201101803*12752043^(12/17) 6099996721309739 a001 10182505537/1730726404001*12752043^(12/17) 6099996721309739 a001 7778742049/1322157322203*12752043^(12/17) 6099996721309739 a001 2971215073/505019158607*12752043^(12/17) 6099996721309739 a001 567451585/96450076809*12752043^(12/17) 6099996721309739 a001 433494437/73681302247*12752043^(12/17) 6099996721309739 a001 9227465/33385282*12752043^(8/17) 6099996721309739 a001 165580141/28143753123*12752043^(12/17) 6099996721309739 a001 2971215073/33385282*4870847^(1/8) 6099996721309739 a001 1762289/299537289*7881196^(8/11) 6099996721309739 a001 39088169/20633239*12752043^(6/17) 6099996721309739 a001 31622993/5374978561*12752043^(12/17) 6099996721309739 a001 165580141/12752043*4870847^(1/4) 6099996721309740 a001 3732588/11384387281*12752043^(15/17) 6099996721309741 a001 39088169/17393796001*12752043^(13/17) 6099996721309741 a001 9227465/20633239*141422324^(5/13) 6099996721309741 a001 102334155/45537549124*12752043^(13/17) 6099996721309741 a001 24157817/4106118243*12752043^(12/17) 6099996721309741 a001 9227465/20633239*2537720636^(1/3) 6099996721309741 a001 9227465/20633239*45537549124^(5/17) 6099996721309741 a001 17029222065245/27916772489 6099996721309741 a001 9227465/20633239*312119004989^(3/11) 6099996721309741 a001 9227465/20633239*14662949395604^(5/21) 6099996721309741 a001 9227465/20633239*(1/2+1/2*5^(1/2))^15 6099996721309741 a001 9227465/20633239*192900153618^(5/18) 6099996721309741 a001 9227465/20633239*28143753123^(3/10) 6099996721309741 a001 9227465/20633239*10749957122^(5/16) 6099996721309741 a001 9227465/20633239*599074578^(5/14) 6099996721309741 a001 267914296/119218851371*12752043^(13/17) 6099996721309741 a001 3524667/1568437211*12752043^(13/17) 6099996721309741 a001 1836311903/817138163596*12752043^(13/17) 6099996721309741 a001 4807526976/2139295485799*12752043^(13/17) 6099996721309741 a001 12586269025/5600748293801*12752043^(13/17) 6099996721309741 a001 32951280099/14662949395604*12752043^(13/17) 6099996721309741 a001 53316291173/23725150497407*12752043^(13/17) 6099996721309741 a001 20365011074/9062201101803*12752043^(13/17) 6099996721309741 a001 7778742049/3461452808002*12752043^(13/17) 6099996721309741 a001 2971215073/1322157322203*12752043^(13/17) 6099996721309741 a001 1134903170/505019158607*12752043^(13/17) 6099996721309741 a001 433494437/192900153618*12752043^(13/17) 6099996721309741 a001 9227465/20633239*228826127^(3/8) 6099996721309741 a001 165580141/73681302247*12752043^(13/17) 6099996721309742 a001 63245986/28143753123*12752043^(13/17) 6099996721309742 a001 14930352/119218851371*12752043^(16/17) 6099996721309743 a001 39088169/45537549124*12752043^(14/17) 6099996721309743 a001 4807526976/20633239*4870847^(1/16) 6099996721309743 a001 102334155/119218851371*12752043^(14/17) 6099996721309743 a001 24157817/10749957122*12752043^(13/17) 6099996721309744 a001 267914296/312119004989*12752043^(14/17) 6099996721309744 a001 701408733/817138163596*12752043^(14/17) 6099996721309744 a001 1836311903/2139295485799*12752043^(14/17) 6099996721309744 a001 4807526976/5600748293801*12752043^(14/17) 6099996721309744 a001 12586269025/14662949395604*12752043^(14/17) 6099996721309744 a001 20365011074/23725150497407*12752043^(14/17) 6099996721309744 a001 7778742049/9062201101803*12752043^(14/17) 6099996721309744 a001 2971215073/3461452808002*12752043^(14/17) 6099996721309744 a001 1134903170/1322157322203*12752043^(14/17) 6099996721309744 a001 433494437/505019158607*12752043^(14/17) 6099996721309744 a001 165580141/192900153618*12752043^(14/17) 6099996721309744 a001 9227465/20633239*33385282^(5/12) 6099996721309744 a001 63245986/73681302247*12752043^(14/17) 6099996721309744 a001 7778742049/87403803*4870847^(1/8) 6099996721309745 a001 20365011074/228826127*4870847^(1/8) 6099996721309745 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^55 6099996721309745 a001 53316291173/599074578*4870847^(1/8) 6099996721309745 a001 139583862445/1568397607*4870847^(1/8) 6099996721309745 a001 365435296162/4106118243*4870847^(1/8) 6099996721309745 a001 956722026041/10749957122*4870847^(1/8) 6099996721309745 a001 2504730781961/28143753123*4870847^(1/8) 6099996721309745 a001 6557470319842/73681302247*4870847^(1/8) 6099996721309745 a001 10610209857723/119218851371*4870847^(1/8) 6099996721309745 a001 4052739537881/45537549124*4870847^(1/8) 6099996721309745 a001 1548008755920/17393796001*4870847^(1/8) 6099996721309745 a001 591286729879/6643838879*4870847^(1/8) 6099996721309745 a001 225851433717/2537720636*4870847^(1/8) 6099996721309745 a001 86267571272/969323029*4870847^(1/8) 6099996721309745 a001 32951280099/370248451*4870847^(1/8) 6099996721309745 a001 39088169/119218851371*12752043^(15/17) 6099996721309745 a001 12586269025/141422324*4870847^(1/8) 6099996721309745 a001 3524578/228826127*7881196^(2/3) 6099996721309746 a001 9303105/28374454999*12752043^(15/17) 6099996721309746 a001 24157817/28143753123*12752043^(14/17) 6099996721309746 a001 66978574/204284540899*12752043^(15/17) 6099996721309746 a001 701408733/2139295485799*12752043^(15/17) 6099996721309746 a001 1836311903/5600748293801*12752043^(15/17) 6099996721309746 a001 1201881744/3665737348901*12752043^(15/17) 6099996721309746 a001 7778742049/23725150497407*12752043^(15/17) 6099996721309746 a001 2971215073/9062201101803*12752043^(15/17) 6099996721309746 a001 567451585/1730726404001*12752043^(15/17) 6099996721309746 a001 433494437/1322157322203*12752043^(15/17) 6099996721309746 a001 165580141/505019158607*12752043^(15/17) 6099996721309746 a001 9227465/87403803*12752043^(9/17) 6099996721309746 a001 31622993/96450076809*12752043^(15/17) 6099996721309747 a001 4807526976/54018521*4870847^(1/8) 6099996721309747 a001 39088169/312119004989*12752043^(16/17) 6099996721309748 a001 9227465/54018521*12752043^(1/2) 6099996721309748 a001 102334155/817138163596*12752043^(16/17) 6099996721309748 a001 24157817/73681302247*12752043^(15/17) 6099996721309748 a001 267914296/2139295485799*12752043^(16/17) 6099996721309748 a001 701408733/5600748293801*12752043^(16/17) 6099996721309748 a001 1836311903/14662949395604*12752043^(16/17) 6099996721309748 a001 2971215073/23725150497407*12752043^(16/17) 6099996721309748 a001 1134903170/9062201101803*12752043^(16/17) 6099996721309748 a001 433494437/3461452808002*12752043^(16/17) 6099996721309748 a001 165580141/1322157322203*12752043^(16/17) 6099996721309748 a001 63245986/505019158607*12752043^(16/17) 6099996721309749 a001 1762289/70711162*7881196^(7/11) 6099996721309749 a001 9227465/228826127*12752043^(10/17) 6099996721309749 a001 267914296/4870847*1860498^(1/6) 6099996721309749 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^57 6099996721309750 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^59 6099996721309750 a001 24157817/192900153618*12752043^(16/17) 6099996721309750 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^61 6099996721309750 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^63 6099996721309750 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^65 6099996721309750 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^67 6099996721309750 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^69 6099996721309750 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^71 6099996721309750 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^73 6099996721309750 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^75 6099996721309750 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^77 6099996721309750 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^79 6099996721309750 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^81 6099996721309750 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^83 6099996721309750 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^85 6099996721309750 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^87 6099996721309750 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^89 6099996721309750 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^91 6099996721309750 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^93 6099996721309750 a004 Fibonacci(76)*Lucas(34)/(1/2+sqrt(5)/2)^95 6099996721309750 a004 Fibonacci(78)*Lucas(34)/(1/2+sqrt(5)/2)^97 6099996721309750 a004 Fibonacci(80)*Lucas(34)/(1/2+sqrt(5)/2)^99 6099996721309750 a004 Fibonacci(81)*Lucas(34)/(1/2+sqrt(5)/2)^100 6099996721309750 a004 Fibonacci(79)*Lucas(34)/(1/2+sqrt(5)/2)^98 6099996721309750 a004 Fibonacci(77)*Lucas(34)/(1/2+sqrt(5)/2)^96 6099996721309750 a004 Fibonacci(75)*Lucas(34)/(1/2+sqrt(5)/2)^94 6099996721309750 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^92 6099996721309750 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^90 6099996721309750 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^88 6099996721309750 a001 2/5702887*(1/2+1/2*5^(1/2))^49 6099996721309750 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^86 6099996721309750 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^84 6099996721309750 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^82 6099996721309750 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^80 6099996721309750 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^78 6099996721309750 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^76 6099996721309750 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^74 6099996721309750 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^72 6099996721309750 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^70 6099996721309750 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^68 6099996721309750 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^66 6099996721309750 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^64 6099996721309750 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^62 6099996721309750 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^60 6099996721309750 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^58 6099996721309751 a001 9227465/599074578*12752043^(11/17) 6099996721309752 a001 1762289/16692641*7881196^(6/11) 6099996721309752 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^56 6099996721309753 a001 9227465/1568397607*12752043^(12/17) 6099996721309755 a001 567451585/16692641*4870847^(3/16) 6099996721309756 a001 9227465/4106118243*12752043^(13/17) 6099996721309756 a001 63245986/12752043*4870847^(5/16) 6099996721309758 a001 9227465/10749957122*12752043^(14/17) 6099996721309759 a001 1836311903/20633239*4870847^(1/8) 6099996721309760 a001 2971215073/87403803*4870847^(3/16) 6099996721309760 a001 9227465/28143753123*12752043^(15/17) 6099996721309761 a001 7778742049/228826127*4870847^(3/16) 6099996721309761 a001 10182505537/299537289*4870847^(3/16) 6099996721309761 a001 53316291173/1568397607*4870847^(3/16) 6099996721309761 a001 139583862445/4106118243*4870847^(3/16) 6099996721309761 a001 182717648081/5374978561*4870847^(3/16) 6099996721309761 a001 956722026041/28143753123*4870847^(3/16) 6099996721309761 a001 2504730781961/73681302247*4870847^(3/16) 6099996721309761 a001 3278735159921/96450076809*4870847^(3/16) 6099996721309761 a001 10610209857723/312119004989*4870847^(3/16) 6099996721309761 a001 4052739537881/119218851371*4870847^(3/16) 6099996721309761 a001 387002188980/11384387281*4870847^(3/16) 6099996721309761 a001 591286729879/17393796001*4870847^(3/16) 6099996721309761 a001 225851433717/6643838879*4870847^(3/16) 6099996721309761 a001 1135099622/33391061*4870847^(3/16) 6099996721309761 a001 32951280099/969323029*4870847^(3/16) 6099996721309761 a001 12586269025/370248451*4870847^(3/16) 6099996721309761 a001 1201881744/35355581*4870847^(3/16) 6099996721309762 a001 9227465/73681302247*12752043^(16/17) 6099996721309763 a001 1836311903/54018521*4870847^(3/16) 6099996721309764 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^54 6099996721309768 a001 5702887/7881196*20633239^(2/5) 6099996721309770 a001 3732588/1970299*7881196^(4/11) 6099996721309771 a001 433494437/33385282*4870847^(1/4) 6099996721309773 a001 5702887/7881196*17393796001^(2/7) 6099996721309773 a001 5702887/7881196*14662949395604^(2/9) 6099996721309773 a001 3524578/12752043*(1/2+1/2*5^(1/2))^16 6099996721309773 a001 5702887/7881196*(1/2+1/2*5^(1/2))^14 6099996721309773 a001 3524578/12752043*23725150497407^(1/4) 6099996721309773 a001 5702887/7881196*505019158607^(1/4) 6099996721309773 a001 3524578/12752043*73681302247^(4/13) 6099996721309773 a001 20100270056686/32951280099 6099996721309773 a001 5702887/7881196*10749957122^(7/24) 6099996721309773 a001 3524578/12752043*10749957122^(1/3) 6099996721309773 a001 5702887/7881196*4106118243^(7/23) 6099996721309773 a001 3524578/12752043*4106118243^(8/23) 6099996721309773 a001 5702887/7881196*1568397607^(7/22) 6099996721309773 a001 3524578/12752043*1568397607^(4/11) 6099996721309773 a001 5702887/7881196*599074578^(1/3) 6099996721309773 a001 3524578/12752043*599074578^(8/21) 6099996721309773 a001 5702887/7881196*228826127^(7/20) 6099996721309773 a001 3524578/12752043*228826127^(2/5) 6099996721309774 a001 5702887/7881196*87403803^(7/19) 6099996721309774 a001 24157817/12752043*4870847^(3/8) 6099996721309774 a001 3524578/12752043*87403803^(8/19) 6099996721309775 a001 701408733/20633239*4870847^(3/16) 6099996721309775 a001 5702887/7881196*33385282^(7/18) 6099996721309776 a001 3524578/12752043*33385282^(4/9) 6099996721309776 a001 1134903170/87403803*4870847^(1/4) 6099996721309777 a001 2971215073/228826127*4870847^(1/4) 6099996721309777 a001 7778742049/599074578*4870847^(1/4) 6099996721309777 a001 20365011074/1568397607*4870847^(1/4) 6099996721309777 a001 53316291173/4106118243*4870847^(1/4) 6099996721309777 a001 139583862445/10749957122*4870847^(1/4) 6099996721309777 a001 365435296162/28143753123*4870847^(1/4) 6099996721309777 a001 956722026041/73681302247*4870847^(1/4) 6099996721309777 a001 2504730781961/192900153618*4870847^(1/4) 6099996721309777 a001 10610209857723/817138163596*4870847^(1/4) 6099996721309777 a001 4052739537881/312119004989*4870847^(1/4) 6099996721309777 a001 1548008755920/119218851371*4870847^(1/4) 6099996721309777 a001 591286729879/45537549124*4870847^(1/4) 6099996721309777 a001 7787980473/599786069*4870847^(1/4) 6099996721309777 a001 86267571272/6643838879*4870847^(1/4) 6099996721309777 a001 32951280099/2537720636*4870847^(1/4) 6099996721309777 a001 12586269025/969323029*4870847^(1/4) 6099996721309777 a001 4807526976/370248451*4870847^(1/4) 6099996721309777 a001 1836311903/141422324*4870847^(1/4) 6099996721309779 a001 701408733/54018521*4870847^(1/4) 6099996721309780 a001 24157817/7881196*7881196^(1/3) 6099996721309784 a001 31622993/3940598*7881196^(3/11) 6099996721309788 a001 165580141/33385282*4870847^(5/16) 6099996721309789 a001 5702887/7881196*12752043^(7/17) 6099996721309791 a001 3524578/12752043*12752043^(8/17) 6099996721309791 a001 9238424/711491*4870847^(1/4) 6099996721309792 a001 433494437/87403803*4870847^(5/16) 6099996721309793 a001 2971215073/12752043*1860498^(1/15) 6099996721309793 a001 1134903170/228826127*4870847^(5/16) 6099996721309793 a001 2971215073/599074578*4870847^(5/16) 6099996721309793 a001 66978574/1970299*7881196^(2/11) 6099996721309793 a001 7778742049/1568397607*4870847^(5/16) 6099996721309793 a001 20365011074/4106118243*4870847^(5/16) 6099996721309793 a001 53316291173/10749957122*4870847^(5/16) 6099996721309793 a001 139583862445/28143753123*4870847^(5/16) 6099996721309793 a001 365435296162/73681302247*4870847^(5/16) 6099996721309793 a001 956722026041/192900153618*4870847^(5/16) 6099996721309793 a001 2504730781961/505019158607*4870847^(5/16) 6099996721309793 a001 10610209857723/2139295485799*4870847^(5/16) 6099996721309793 a001 4052739537881/817138163596*4870847^(5/16) 6099996721309793 a001 140728068720/28374454999*4870847^(5/16) 6099996721309793 a001 591286729879/119218851371*4870847^(5/16) 6099996721309793 a001 225851433717/45537549124*4870847^(5/16) 6099996721309793 a001 86267571272/17393796001*4870847^(5/16) 6099996721309793 a001 32951280099/6643838879*4870847^(5/16) 6099996721309793 a001 1144206275/230701876*4870847^(5/16) 6099996721309793 a001 4807526976/969323029*4870847^(5/16) 6099996721309793 a001 1836311903/370248451*4870847^(5/16) 6099996721309793 a001 701408733/141422324*4870847^(5/16) 6099996721309795 a001 267914296/54018521*4870847^(5/16) 6099996721309797 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^53 6099996721309799 a001 1762289/5374978561*20633239^(6/7) 6099996721309799 a001 3524578/4106118243*20633239^(4/5) 6099996721309801 a001 3524578/969323029*20633239^(5/7) 6099996721309802 a001 3524578/87403803*20633239^(4/7) 6099996721309802 a001 567451585/3940598*7881196^(1/11) 6099996721309802 a001 9227465/12752043*4870847^(7/16) 6099996721309803 a001 1762289/70711162*20633239^(3/5) 6099996721309804 a001 31622993/16692641*4870847^(3/8) 6099996721309805 a001 1762289/16692641*141422324^(6/13) 6099996721309805 a001 3732588/1970299*141422324^(4/13) 6099996721309805 a001 1762289/16692641*2537720636^(2/5) 6099996721309805 a001 3732588/1970299*2537720636^(4/15) 6099996721309805 a001 1762289/16692641*45537549124^(6/17) 6099996721309805 a001 3732588/1970299*45537549124^(4/17) 6099996721309805 a001 3732588/1970299*817138163596^(4/19) 6099996721309805 a001 1762289/16692641*14662949395604^(2/7) 6099996721309805 a001 3732588/1970299*14662949395604^(4/21) 6099996721309805 a001 1762289/16692641*(1/2+1/2*5^(1/2))^18 6099996721309805 a001 3732588/1970299*(1/2+1/2*5^(1/2))^12 6099996721309805 a001 1762289/16692641*192900153618^(1/3) 6099996721309805 a001 20365011684/33385283 6099996721309805 a001 3732588/1970299*73681302247^(3/13) 6099996721309805 a001 3732588/1970299*10749957122^(1/4) 6099996721309805 a001 1762289/16692641*10749957122^(3/8) 6099996721309805 a001 3732588/1970299*4106118243^(6/23) 6099996721309805 a001 1762289/16692641*4106118243^(9/23) 6099996721309805 a001 3732588/1970299*1568397607^(3/11) 6099996721309805 a001 1762289/16692641*1568397607^(9/22) 6099996721309805 a001 3732588/1970299*599074578^(2/7) 6099996721309805 a001 1762289/16692641*599074578^(3/7) 6099996721309805 a001 3732588/1970299*228826127^(3/10) 6099996721309805 a001 1762289/16692641*228826127^(9/20) 6099996721309806 a001 3732588/1970299*87403803^(6/19) 6099996721309806 a001 1762289/16692641*87403803^(9/19) 6099996721309806 a001 39088169/7881196*20633239^(2/7) 6099996721309807 a001 9303105/1875749*4870847^(5/16) 6099996721309807 a001 3732588/1970299*33385282^(1/3) 6099996721309808 a001 165580141/4870847*1860498^(1/5) 6099996721309808 a001 165580141/7881196*20633239^(1/5) 6099996721309808 a001 1762289/16692641*33385282^(1/2) 6099996721309808 a001 165580141/87403803*4870847^(3/8) 6099996721309809 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^55 6099996721309809 a001 433494437/7881196*20633239^(1/7) 6099996721309809 a001 433494437/228826127*4870847^(3/8) 6099996721309809 a001 567451585/299537289*4870847^(3/8) 6099996721309809 a001 2971215073/1568397607*4870847^(3/8) 6099996721309809 a001 7778742049/4106118243*4870847^(3/8) 6099996721309809 a001 10182505537/5374978561*4870847^(3/8) 6099996721309809 a001 53316291173/28143753123*4870847^(3/8) 6099996721309809 a001 139583862445/73681302247*4870847^(3/8) 6099996721309809 a001 182717648081/96450076809*4870847^(3/8) 6099996721309809 a001 956722026041/505019158607*4870847^(3/8) 6099996721309809 a001 10610209857723/5600748293801*4870847^(3/8) 6099996721309809 a001 591286729879/312119004989*4870847^(3/8) 6099996721309809 a001 225851433717/119218851371*4870847^(3/8) 6099996721309809 a001 21566892818/11384387281*4870847^(3/8) 6099996721309809 a001 32951280099/17393796001*4870847^(3/8) 6099996721309809 a001 12586269025/6643838879*4870847^(3/8) 6099996721309809 a001 1201881744/634430159*4870847^(3/8) 6099996721309809 a001 1836311903/969323029*4870847^(3/8) 6099996721309809 a001 701408733/370248451*4870847^(3/8) 6099996721309809 a001 66978574/35355581*4870847^(3/8) 6099996721309810 a001 3524578/87403803*2537720636^(4/9) 6099996721309810 a001 39088169/7881196*2537720636^(2/9) 6099996721309810 a001 39088169/7881196*312119004989^(2/11) 6099996721309810 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(38) 6099996721309810 a001 39088169/7881196*(1/2+1/2*5^(1/2))^10 6099996721309810 a001 3524578/87403803*23725150497407^(5/16) 6099996721309810 a001 3524578/87403803*505019158607^(5/14) 6099996721309810 a001 137769300517682/225851433717 6099996721309810 a001 3524578/87403803*73681302247^(5/13) 6099996721309810 a001 39088169/7881196*28143753123^(1/5) 6099996721309810 a001 3524578/87403803*28143753123^(2/5) 6099996721309810 a001 39088169/7881196*10749957122^(5/24) 6099996721309810 a001 3524578/87403803*10749957122^(5/12) 6099996721309810 a001 39088169/7881196*4106118243^(5/23) 6099996721309810 a001 3524578/87403803*4106118243^(10/23) 6099996721309810 a001 39088169/7881196*1568397607^(5/22) 6099996721309810 a001 3524578/87403803*1568397607^(5/11) 6099996721309810 a001 39088169/7881196*599074578^(5/21) 6099996721309810 a001 3524578/87403803*599074578^(10/21) 6099996721309810 a001 39088169/7881196*228826127^(1/4) 6099996721309810 a001 3524578/87403803*228826127^(1/2) 6099996721309810 a001 39088169/7881196*87403803^(5/19) 6099996721309810 a001 3524578/87403803*87403803^(10/19) 6099996721309811 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^57 6099996721309811 a001 1762289/96450076809*141422324^(12/13) 6099996721309811 a001 1762289/22768774562*141422324^(11/13) 6099996721309811 a001 1762289/5374978561*141422324^(10/13) 6099996721309811 a001 1762289/1268860318*141422324^(9/13) 6099996721309811 a001 3524578/1568397607*141422324^(2/3) 6099996721309811 a001 1762289/299537289*141422324^(8/13) 6099996721309811 a001 3524578/228826127*312119004989^(2/5) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(40) 6099996721309811 a001 102334155/7881196*(1/2+1/2*5^(1/2))^8 6099996721309811 a001 102334155/7881196*23725150497407^(1/8) 6099996721309811 a001 102334155/7881196*505019158607^(1/7) 6099996721309811 a001 102334155/7881196*73681302247^(2/13) 6099996721309811 a001 102334155/7881196*10749957122^(1/6) 6099996721309811 a001 3524578/228826127*10749957122^(11/24) 6099996721309811 a001 102334155/7881196*4106118243^(4/23) 6099996721309811 a001 3524578/228826127*4106118243^(11/23) 6099996721309811 a001 102334155/7881196*1568397607^(2/11) 6099996721309811 a001 3524578/228826127*1568397607^(1/2) 6099996721309811 a001 102334155/7881196*599074578^(4/21) 6099996721309811 a001 3524578/228826127*599074578^(11/21) 6099996721309811 a001 102334155/7881196*228826127^(1/5) 6099996721309811 a001 66978574/1970299*141422324^(2/13) 6099996721309811 a001 3524578/228826127*228826127^(11/20) 6099996721309811 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^59 6099996721309811 a001 567451585/3940598*141422324^(1/13) 6099996721309811 a001 1762289/299537289*2537720636^(8/15) 6099996721309811 a001 66978574/1970299*2537720636^(2/15) 6099996721309811 a001 1762289/299537289*45537549124^(8/17) 6099996721309811 a001 66978574/1970299*45537549124^(2/17) 6099996721309811 a001 1762289/299537289*14662949395604^(8/21) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(42) 6099996721309811 a001 66978574/1970299*(1/2+1/2*5^(1/2))^6 6099996721309811 a001 59017802097943/96750547245 6099996721309811 a001 1762289/299537289*192900153618^(4/9) 6099996721309811 a001 1762289/299537289*73681302247^(6/13) 6099996721309811 a001 66978574/1970299*10749957122^(1/8) 6099996721309811 a001 1762289/299537289*10749957122^(1/2) 6099996721309811 a001 66978574/1970299*4106118243^(3/23) 6099996721309811 a001 1762289/299537289*4106118243^(12/23) 6099996721309811 a001 66978574/1970299*1568397607^(3/22) 6099996721309811 a001 1762289/299537289*1568397607^(6/11) 6099996721309811 a001 66978574/1970299*599074578^(1/7) 6099996721309811 a001 1762289/299537289*599074578^(4/7) 6099996721309811 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^61 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(44) 6099996721309811 a001 3524667/39604*(1/2+1/2*5^(1/2))^4 6099996721309811 a001 2472169789339674/4052739537881 6099996721309811 a001 3524667/39604*73681302247^(1/13) 6099996721309811 a001 3524578/1568397607*73681302247^(1/2) 6099996721309811 a001 3524667/39604*10749957122^(1/12) 6099996721309811 a001 3524578/1568397607*10749957122^(13/24) 6099996721309811 a001 3524667/39604*4106118243^(2/23) 6099996721309811 a001 3524578/1568397607*4106118243^(13/23) 6099996721309811 a001 3524667/39604*1568397607^(1/11) 6099996721309811 a001 3524578/1568397607*1568397607^(13/22) 6099996721309811 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^63 6099996721309811 a001 1762289/1730726404001*2537720636^(14/15) 6099996721309811 a001 3524667/39604*599074578^(2/21) 6099996721309811 a001 3524578/1322157322203*2537720636^(8/9) 6099996721309811 a001 1762289/408569081798*2537720636^(13/15) 6099996721309811 a001 1762289/96450076809*2537720636^(4/5) 6099996721309811 a001 3524578/119218851371*2537720636^(7/9) 6099996721309811 a001 1762289/22768774562*2537720636^(11/15) 6099996721309811 a001 1762289/5374978561*2537720636^(2/3) 6099996721309811 a001 3524578/4106118243*17393796001^(4/7) 6099996721309811 a001 3524578/4106118243*14662949395604^(4/9) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(46) 6099996721309811 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^2 6099996721309811 a001 3524578/4106118243*505019158607^(1/2) 6099996721309811 a001 3524578/4106118243*73681302247^(7/13) 6099996721309811 a001 1836311903/7881196*10749957122^(1/24) 6099996721309811 a001 1836311903/7881196*4106118243^(1/23) 6099996721309811 a001 3524578/4106118243*10749957122^(7/12) 6099996721309811 a001 1836311903/7881196*1568397607^(1/22) 6099996721309811 a001 3524578/4106118243*4106118243^(14/23) 6099996721309811 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^65 6099996721309811 a001 1762289/5374978561*45537549124^(10/17) 6099996721309811 a001 1762289/5374978561*312119004989^(6/11) 6099996721309811 a001 1762289/5374978561*14662949395604^(10/21) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(48) 6099996721309811 a006 5^(1/2)*Fibonacci(48)/Lucas(33)/sqrt(5) 6099996721309811 a001 1762289/5374978561*192900153618^(5/9) 6099996721309811 a001 1762289/5374978561*28143753123^(3/5) 6099996721309811 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^67 6099996721309811 a001 1762289/5374978561*10749957122^(5/8) 6099996721309811 a001 1762289/1730726404001*17393796001^(6/7) 6099996721309811 a001 3524578/119218851371*17393796001^(5/7) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(50) 6099996721309811 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^2 6099996721309811 a001 3524578/28143753123*23725150497407^(1/2) 6099996721309811 a001 3524578/28143753123*505019158607^(4/7) 6099996721309811 a001 3524578/28143753123*73681302247^(8/13) 6099996721309811 a001 3524578/73681302247*45537549124^(2/3) 6099996721309811 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^69 6099996721309811 a001 1762289/7331474697802*45537549124^(15/17) 6099996721309811 a001 1762289/1730726404001*45537549124^(14/17) 6099996721309811 a001 1762289/96450076809*45537549124^(12/17) 6099996721309811 a001 1762289/408569081798*45537549124^(13/17) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(52) 6099996721309811 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^4 6099996721309811 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^71 6099996721309811 a001 1762289/96450076809*14662949395604^(4/7) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(54) 6099996721309811 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^6 6099996721309811 a001 1762289/96450076809*505019158607^(9/14) 6099996721309811 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^73 6099996721309811 a001 1762289/96450076809*192900153618^(2/3) 6099996721309811 a001 1762289/7331474697802*312119004989^(9/11) 6099996721309811 a001 3524578/1322157322203*312119004989^(8/11) 6099996721309811 a001 3524578/505019158607*817138163596^(2/3) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(56) 6099996721309811 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^8 6099996721309811 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^75 6099996721309811 a001 1762289/1730726404001*817138163596^(14/19) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(58) 6099996721309811 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^10 6099996721309811 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^77 6099996721309811 a001 1762289/1730726404001*14662949395604^(2/3) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(60) 6099996721309811 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^12 6099996721309811 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^79 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(62) 6099996721309811 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^14 6099996721309811 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^81 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(64) 6099996721309811 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^16 6099996721309811 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^83 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(66) 6099996721309811 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^85 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(68) 6099996721309811 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^87 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(70) 6099996721309811 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^89 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(72) 6099996721309811 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^91 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(74) 6099996721309811 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^93 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(76) 6099996721309811 a004 Fibonacci(33)*Lucas(77)/(1/2+sqrt(5)/2)^95 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(78) 6099996721309811 a004 Fibonacci(33)*Lucas(79)/(1/2+sqrt(5)/2)^97 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(80) 6099996721309811 a004 Fibonacci(33)*Lucas(81)/(1/2+sqrt(5)/2)^99 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(82) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(84) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(86) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(88) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(90) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(92) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^76/Lucas(94) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^78/Lucas(96) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^80/Lucas(98) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^81/Lucas(99) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^82/Lucas(100) 6099996721309811 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^18 6099996721309811 a004 Fibonacci(66)/Lucas(33)/(1/2+sqrt(5)/2)^18 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^79/Lucas(97) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^77/Lucas(95) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(93) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(91) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(89) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(87) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(85) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(83) 6099996721309811 a004 Fibonacci(33)*Lucas(82)/(1/2+sqrt(5)/2)^100 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(81) 6099996721309811 a004 Fibonacci(33)*Lucas(80)/(1/2+sqrt(5)/2)^98 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(79) 6099996721309811 a004 Fibonacci(33)*Lucas(78)/(1/2+sqrt(5)/2)^96 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(77) 6099996721309811 a004 Fibonacci(33)*Lucas(76)/(1/2+sqrt(5)/2)^94 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(75) 6099996721309811 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^92 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(73) 6099996721309811 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^90 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(71) 6099996721309811 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^88 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(69) 6099996721309811 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^86 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(67) 6099996721309811 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^20 6099996721309811 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^22 6099996721309811 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^24 6099996721309811 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^26 6099996721309811 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^28 6099996721309811 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^30 6099996721309811 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^32 6099996721309811 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^34 6099996721309811 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^36 6099996721309811 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^38 6099996721309811 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^40 6099996721309811 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^42 6099996721309811 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^44 6099996721309811 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^46 6099996721309811 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^48 6099996721309811 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^52 6099996721309811 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^84 6099996721309811 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^50 6099996721309811 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^51 6099996721309811 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^49 6099996721309811 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^47 6099996721309811 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^45 6099996721309811 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^43 6099996721309811 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^41 6099996721309811 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^39 6099996721309811 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^37 6099996721309811 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^35 6099996721309811 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^33 6099996721309811 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^31 6099996721309811 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^29 6099996721309811 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^27 6099996721309811 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^25 6099996721309811 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^23 6099996721309811 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^21 6099996721309811 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^19 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(65) 6099996721309811 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^17 6099996721309811 a001 1762289/7331474697802*14662949395604^(5/7) 6099996721309811 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^82 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(63) 6099996721309811 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^15 6099996721309811 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^80 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(61) 6099996721309811 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^13 6099996721309811 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^78 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(59) 6099996721309811 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^11 6099996721309811 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^76 6099996721309811 a001 1762289/408569081798*14662949395604^(13/21) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(57) 6099996721309811 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^9 6099996721309811 a001 1762289/1730726404001*505019158607^(3/4) 6099996721309811 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^74 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(55) 6099996721309811 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^7 6099996721309811 a001 1762289/1730726404001*192900153618^(7/9) 6099996721309811 a001 1762289/408569081798*192900153618^(13/18) 6099996721309811 a001 1762289/7331474697802*192900153618^(5/6) 6099996721309811 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^72 6099996721309811 a001 3524578/119218851371*312119004989^(7/11) 6099996721309811 a001 3524578/119218851371*14662949395604^(5/9) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(53) 6099996721309811 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^5 6099996721309811 a001 3524578/119218851371*505019158607^(5/8) 6099996721309811 a001 1762289/96450076809*73681302247^(9/13) 6099996721309811 a001 1762289/408569081798*73681302247^(3/4) 6099996721309811 a001 3524578/1322157322203*73681302247^(10/13) 6099996721309811 a001 3524578/9062201101803*73681302247^(11/13) 6099996721309811 a001 1762289/22768774562*45537549124^(11/17) 6099996721309811 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^70 6099996721309811 a001 1762289/22768774562*312119004989^(3/5) 6099996721309811 a001 1762289/22768774562*14662949395604^(11/21) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(51) 6099996721309811 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^3 6099996721309811 a001 1762289/22768774562*192900153618^(11/18) 6099996721309811 a001 3524578/119218851371*28143753123^(7/10) 6099996721309811 a001 3524578/1322157322203*28143753123^(4/5) 6099996721309811 a001 1762289/7331474697802*28143753123^(9/10) 6099996721309811 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^68 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(49) 6099996721309811 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2) 6099996721309811 a001 3524578/17393796001*9062201101803^(1/2) 6099996721309811 a001 3524578/28143753123*10749957122^(2/3) 6099996721309811 a001 3524578/73681302247*10749957122^(17/24) 6099996721309811 a001 1762289/22768774562*10749957122^(11/16) 6099996721309811 a001 1762289/96450076809*10749957122^(3/4) 6099996721309811 a001 3524578/505019158607*10749957122^(19/24) 6099996721309811 a001 1762289/408569081798*10749957122^(13/16) 6099996721309811 a001 3524578/1322157322203*10749957122^(5/6) 6099996721309811 a001 1762289/1730726404001*10749957122^(7/8) 6099996721309811 a001 3524578/9062201101803*10749957122^(11/12) 6099996721309811 a001 1762289/7331474697802*10749957122^(15/16) 6099996721309811 a001 3524578/23725150497407*10749957122^(23/24) 6099996721309811 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^66 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(47) 6099996721309811 a001 3524578/6643838879*1322157322203^(1/2) 6099996721309811 a001 1762289/5374978561*4106118243^(15/23) 6099996721309811 a001 3524578/28143753123*4106118243^(16/23) 6099996721309811 a001 3524578/73681302247*4106118243^(17/23) 6099996721309811 a001 1762289/96450076809*4106118243^(18/23) 6099996721309811 a001 3524578/505019158607*4106118243^(19/23) 6099996721309811 a001 3524578/1322157322203*4106118243^(20/23) 6099996721309811 a001 1762289/1730726404001*4106118243^(21/23) 6099996721309811 a001 3524578/9062201101803*4106118243^(22/23) 6099996721309811 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^64 6099996721309811 a001 1762289/1268860318*2537720636^(3/5) 6099996721309811 a001 1836311903/7881196*599074578^(1/21) 6099996721309811 a001 66978574/1970299*228826127^(3/20) 6099996721309811 a001 567451585/3940598*2537720636^(1/15) 6099996721309811 a001 1762289/1268860318*45537549124^(9/17) 6099996721309811 a001 567451585/3940598*45537549124^(1/17) 6099996721309811 a001 1762289/1268860318*817138163596^(9/19) 6099996721309811 a001 117648668973890/192866774113 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(45) 6099996721309811 a001 567451585/3940598*(1/2+1/2*5^(1/2))^3 6099996721309811 a001 1762289/1268860318*192900153618^(1/2) 6099996721309811 a001 567451585/3940598*10749957122^(1/16) 6099996721309811 a001 1762289/1268860318*10749957122^(9/16) 6099996721309811 a001 3524578/4106118243*1568397607^(7/11) 6099996721309811 a001 1762289/5374978561*1568397607^(15/22) 6099996721309811 a001 3524578/28143753123*1568397607^(8/11) 6099996721309811 a001 1762289/22768774562*1568397607^(3/4) 6099996721309811 a001 3524578/73681302247*1568397607^(17/22) 6099996721309811 a001 1762289/96450076809*1568397607^(9/11) 6099996721309811 a001 3524578/505019158607*1568397607^(19/22) 6099996721309811 a001 567451585/3940598*599074578^(1/14) 6099996721309811 a001 3524578/1322157322203*1568397607^(10/11) 6099996721309811 a001 1762289/1730726404001*1568397607^(21/22) 6099996721309811 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^62 6099996721309811 a001 1836311903/7881196*228826127^(1/20) 6099996721309811 a001 3524578/969323029*2537720636^(5/9) 6099996721309811 a001 433494437/7881196*2537720636^(1/9) 6099996721309811 a001 3524578/969323029*312119004989^(5/11) 6099996721309811 a001 433494437/7881196*312119004989^(1/11) 6099996721309811 a001 1527884955772586/2504730781961 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(43) 6099996721309811 a001 433494437/7881196*(1/2+1/2*5^(1/2))^5 6099996721309811 a001 3524578/969323029*3461452808002^(5/12) 6099996721309811 a001 433494437/7881196*28143753123^(1/10) 6099996721309811 a001 3524578/969323029*28143753123^(1/2) 6099996721309811 a001 3524578/1568397607*599074578^(13/21) 6099996721309811 a001 3524667/39604*228826127^(1/10) 6099996721309811 a001 3524578/4106118243*599074578^(2/3) 6099996721309811 a001 1762289/1268860318*599074578^(9/14) 6099996721309811 a001 1762289/5374978561*599074578^(5/7) 6099996721309811 a001 3524578/28143753123*599074578^(16/21) 6099996721309811 a001 1762289/22768774562*599074578^(11/14) 6099996721309811 a001 3524578/73681302247*599074578^(17/21) 6099996721309811 a001 3524578/119218851371*599074578^(5/6) 6099996721309811 a001 1762289/96450076809*599074578^(6/7) 6099996721309811 a001 3524578/505019158607*599074578^(19/21) 6099996721309811 a001 1762289/408569081798*599074578^(13/14) 6099996721309811 a001 3524578/1322157322203*599074578^(20/21) 6099996721309811 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^60 6099996721309811 a001 433494437/7881196*228826127^(1/8) 6099996721309811 a001 1836311903/7881196*87403803^(1/19) 6099996721309811 a001 165580141/7881196*17393796001^(1/7) 6099996721309811 a001 583600122205498/956722026041 6099996721309811 a001 165580141/7881196*14662949395604^(1/9) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(41) 6099996721309811 a001 165580141/7881196*(1/2+1/2*5^(1/2))^7 6099996721309811 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^7/Lucas(33) 6099996721309811 a001 3524578/370248451*4106118243^(1/2) 6099996721309811 a001 165580141/7881196*599074578^(1/6) 6099996721309811 a001 102334155/7881196*87403803^(4/19) 6099996721309811 a001 1762289/299537289*228826127^(3/5) 6099996721309811 a001 3524578/1568397607*228826127^(13/20) 6099996721309811 a001 3524578/969323029*228826127^(5/8) 6099996721309811 a001 3524578/4106118243*228826127^(7/10) 6099996721309811 a001 3524667/39604*87403803^(2/19) 6099996721309811 a001 1762289/5374978561*228826127^(3/4) 6099996721309811 a001 3524578/28143753123*228826127^(4/5) 6099996721309811 a001 3524578/73681302247*228826127^(17/20) 6099996721309811 a001 3524578/119218851371*228826127^(7/8) 6099996721309811 a001 1762289/96450076809*228826127^(9/10) 6099996721309811 a001 66978574/1970299*87403803^(3/19) 6099996721309811 a001 3524578/505019158607*228826127^(19/20) 6099996721309811 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^58 6099996721309811 a001 1762289/70711162*141422324^(7/13) 6099996721309811 a001 102334155/54018521*4870847^(3/8) 6099996721309811 a001 31622993/3940598*141422324^(3/13) 6099996721309811 a001 1836311903/7881196*33385282^(1/18) 6099996721309811 a001 1762289/70711162*2537720636^(7/15) 6099996721309811 a001 31622993/3940598*2537720636^(1/5) 6099996721309811 a001 1762289/70711162*17393796001^(3/7) 6099996721309811 a001 1762289/70711162*45537549124^(7/17) 6099996721309811 a001 31622993/3940598*45537549124^(3/17) 6099996721309811 a001 111457705421954/182717648081 6099996721309811 a001 31622993/3940598*14662949395604^(1/7) 6099996721309811 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(39) 6099996721309811 a001 31622993/3940598*(1/2+1/2*5^(1/2))^9 6099996721309811 a001 31622993/3940598*192900153618^(1/6) 6099996721309811 a001 1762289/70711162*192900153618^(7/18) 6099996721309811 a001 31622993/3940598*10749957122^(3/16) 6099996721309811 a001 1762289/70711162*10749957122^(7/16) 6099996721309811 a001 31622993/3940598*599074578^(3/14) 6099996721309811 a001 1762289/70711162*599074578^(1/2) 6099996721309811 a001 3524578/228826127*87403803^(11/19) 6099996721309811 a001 567451585/3940598*33385282^(1/12) 6099996721309811 a001 1762289/299537289*87403803^(12/19) 6099996721309811 a001 3524578/1568397607*87403803^(13/19) 6099996721309811 a001 3524578/4106118243*87403803^(14/19) 6099996721309811 a001 3524667/39604*33385282^(1/9) 6099996721309811 a001 1762289/5374978561*87403803^(15/19) 6099996721309812 a001 3524578/28143753123*87403803^(16/19) 6099996721309812 a001 3524578/73681302247*87403803^(17/19) 6099996721309812 a001 39088169/7881196*33385282^(5/18) 6099996721309812 a001 1762289/96450076809*87403803^(18/19) 6099996721309812 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^56 6099996721309812 a001 66978574/1970299*33385282^(1/6) 6099996721309812 a001 102334155/7881196*33385282^(2/9) 6099996721309813 a001 31622993/3940598*33385282^(1/4) 6099996721309813 a001 956697868834/1568358005 6099996721309813 a001 24157817/7881196*312119004989^(1/5) 6099996721309813 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(37) 6099996721309813 a001 24157817/7881196*(1/2+1/2*5^(1/2))^11 6099996721309813 a001 24157817/7881196*1568397607^(1/4) 6099996721309813 a001 1836311903/7881196*12752043^(1/17) 6099996721309813 a001 3524578/87403803*33385282^(5/9) 6099996721309813 a001 3524578/54018521*87403803^(1/2) 6099996721309814 a001 3524578/228826127*33385282^(11/18) 6099996721309814 a001 1762289/70711162*33385282^(7/12) 6099996721309814 a001 1762289/299537289*33385282^(2/3) 6099996721309815 a001 3524578/1568397607*33385282^(13/18) 6099996721309815 a001 1762289/1268860318*33385282^(3/4) 6099996721309815 a001 3524578/4106118243*33385282^(7/9) 6099996721309815 a001 3524667/39604*12752043^(2/17) 6099996721309815 a001 1762289/5374978561*33385282^(5/6) 6099996721309816 a001 3524578/28143753123*33385282^(8/9) 6099996721309816 a001 1762289/22768774562*33385282^(11/12) 6099996721309816 a001 3524578/73681302247*33385282^(17/18) 6099996721309816 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^54 6099996721309817 a001 66978574/1970299*12752043^(3/17) 6099996721309818 a001 5702887/20633239*4870847^(1/2) 6099996721309819 a001 3732588/1970299*12752043^(6/17) 6099996721309820 a001 102334155/7881196*12752043^(4/17) 6099996721309821 a001 39088169/7881196*12752043^(5/17) 6099996721309822 a001 24157817/33385282*4870847^(7/16) 6099996721309822 a001 5702887/54018521*4870847^(9/16) 6099996721309823 a001 39088169/20633239*4870847^(3/8) 6099996721309825 a001 63245986/87403803*4870847^(7/16) 6099996721309825 a001 7778742049/33385282*1860498^(1/15) 6099996721309825 a001 165580141/228826127*4870847^(7/16) 6099996721309825 a001 9227465/7881196*141422324^(1/3) 6099996721309825 a001 433494437/599074578*4870847^(7/16) 6099996721309825 a001 1134903170/1568397607*4870847^(7/16) 6099996721309825 a001 2971215073/4106118243*4870847^(7/16) 6099996721309825 a001 7778742049/10749957122*4870847^(7/16) 6099996721309825 a001 20365011074/28143753123*4870847^(7/16) 6099996721309825 a001 53316291173/73681302247*4870847^(7/16) 6099996721309825 a001 139583862445/192900153618*4870847^(7/16) 6099996721309825 a001 365435296162/505019158607*4870847^(7/16) 6099996721309825 a001 10610209857723/14662949395604*4870847^(7/16) 6099996721309825 a001 591286729879/817138163596*4870847^(7/16) 6099996721309825 a001 225851433717/312119004989*4870847^(7/16) 6099996721309825 a001 86267571272/119218851371*4870847^(7/16) 6099996721309825 a001 32951280099/45537549124*4870847^(7/16) 6099996721309825 a001 12586269025/17393796001*4870847^(7/16) 6099996721309825 a001 4807526976/6643838879*4870847^(7/16) 6099996721309825 a001 1836311903/2537720636*4870847^(7/16) 6099996721309825 a001 701408733/969323029*4870847^(7/16) 6099996721309825 a001 267914296/370248451*4870847^(7/16) 6099996721309825 a001 3524578/20633239*45537549124^(1/3) 6099996721309825 a001 32522920134770/53316291173 6099996721309825 a001 3524578/20633239*(1/2+1/2*5^(1/2))^17 6099996721309825 a001 9227465/7881196*(1/2+1/2*5^(1/2))^13 6099996721309825 a001 9227465/7881196*73681302247^(1/4) 6099996721309825 a001 1762289/16692641*12752043^(9/17) 6099996721309825 a001 102334155/141422324*4870847^(7/16) 6099996721309826 a001 39088169/54018521*4870847^(7/16) 6099996721309827 a001 1836311903/7881196*4870847^(1/16) 6099996721309829 a001 20365011074/87403803*1860498^(1/15) 6099996721309830 a001 53316291173/228826127*1860498^(1/15) 6099996721309830 a001 139583862445/599074578*1860498^(1/15) 6099996721309830 a001 365435296162/1568397607*1860498^(1/15) 6099996721309830 a001 956722026041/4106118243*1860498^(1/15) 6099996721309830 a001 2504730781961/10749957122*1860498^(1/15) 6099996721309830 a001 6557470319842/28143753123*1860498^(1/15) 6099996721309830 a001 10610209857723/45537549124*1860498^(1/15) 6099996721309830 a001 4052739537881/17393796001*1860498^(1/15) 6099996721309830 a001 1548008755920/6643838879*1860498^(1/15) 6099996721309830 a001 591286729879/2537720636*1860498^(1/15) 6099996721309830 a001 225851433717/969323029*1860498^(1/15) 6099996721309830 a001 86267571272/370248451*1860498^(1/15) 6099996721309830 a001 63246219/271444*1860498^(1/15) 6099996721309832 a001 3524578/87403803*12752043^(10/17) 6099996721309832 a001 12586269025/54018521*1860498^(1/15) 6099996721309834 a001 14930352/20633239*4870847^(7/16) 6099996721309835 a001 3524578/228826127*12752043^(11/17) 6099996721309836 a001 5702887/141422324*4870847^(5/8) 6099996721309837 a001 1762289/299537289*12752043^(12/17) 6099996721309838 a001 14930352/54018521*4870847^(1/2) 6099996721309840 a001 3524578/1568397607*12752043^(13/17) 6099996721309841 a001 39088169/141422324*4870847^(1/2) 6099996721309841 a001 102334155/370248451*4870847^(1/2) 6099996721309841 a001 267914296/969323029*4870847^(1/2) 6099996721309841 a001 701408733/2537720636*4870847^(1/2) 6099996721309841 a001 1836311903/6643838879*4870847^(1/2) 6099996721309841 a001 4807526976/17393796001*4870847^(1/2) 6099996721309841 a001 12586269025/45537549124*4870847^(1/2) 6099996721309841 a001 32951280099/119218851371*4870847^(1/2) 6099996721309841 a001 86267571272/312119004989*4870847^(1/2) 6099996721309841 a001 225851433717/817138163596*4870847^(1/2) 6099996721309841 a001 1548008755920/5600748293801*4870847^(1/2) 6099996721309841 a001 139583862445/505019158607*4870847^(1/2) 6099996721309841 a001 53316291173/192900153618*4870847^(1/2) 6099996721309841 a001 20365011074/73681302247*4870847^(1/2) 6099996721309841 a001 7778742049/28143753123*4870847^(1/2) 6099996721309841 a001 2971215073/10749957122*4870847^(1/2) 6099996721309841 a001 1134903170/4106118243*4870847^(1/2) 6099996721309841 a001 433494437/1568397607*4870847^(1/2) 6099996721309841 a001 165580141/599074578*4870847^(1/2) 6099996721309841 a001 63245986/228826127*4870847^(1/2) 6099996721309842 a001 3524578/4106118243*12752043^(14/17) 6099996721309842 a001 24157817/87403803*4870847^(1/2) 6099996721309843 a001 3524667/39604*4870847^(1/8) 6099996721309844 a001 3524578/20633239*12752043^(1/2) 6099996721309844 a001 1762289/5374978561*12752043^(15/17) 6099996721309844 a001 4807526976/20633239*1860498^(1/15) 6099996721309846 a001 3524578/28143753123*12752043^(16/17) 6099996721309848 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^52 6099996721309850 a001 9227465/33385282*4870847^(1/2) 6099996721309851 a001 1836311903/12752043*1860498^(1/10) 6099996721309852 a001 5702887/370248451*4870847^(11/16) 6099996721309852 a001 3732588/35355581*4870847^(9/16) 6099996721309857 a001 39088169/370248451*4870847^(9/16) 6099996721309857 a001 102334155/969323029*4870847^(9/16) 6099996721309857 a001 66978574/634430159*4870847^(9/16) 6099996721309857 a001 701408733/6643838879*4870847^(9/16) 6099996721309857 a001 1836311903/17393796001*4870847^(9/16) 6099996721309857 a001 1201881744/11384387281*4870847^(9/16) 6099996721309857 a001 12586269025/119218851371*4870847^(9/16) 6099996721309857 a001 32951280099/312119004989*4870847^(9/16) 6099996721309857 a001 21566892818/204284540899*4870847^(9/16) 6099996721309857 a001 225851433717/2139295485799*4870847^(9/16) 6099996721309857 a001 182717648081/1730726404001*4870847^(9/16) 6099996721309857 a001 139583862445/1322157322203*4870847^(9/16) 6099996721309857 a001 53316291173/505019158607*4870847^(9/16) 6099996721309857 a001 10182505537/96450076809*4870847^(9/16) 6099996721309857 a001 7778742049/73681302247*4870847^(9/16) 6099996721309857 a001 2971215073/28143753123*4870847^(9/16) 6099996721309857 a001 567451585/5374978561*4870847^(9/16) 6099996721309857 a001 433494437/4106118243*4870847^(9/16) 6099996721309857 a001 165580141/1568397607*4870847^(9/16) 6099996721309858 a001 31622993/299537289*4870847^(9/16) 6099996721309859 a001 66978574/1970299*4870847^(3/16) 6099996721309859 a001 24157817/228826127*4870847^(9/16) 6099996721309864 a001 1762289/3940598*7881196^(5/11) 6099996721309868 a001 14930352/370248451*4870847^(5/8) 6099996721309868 a001 5702887/969323029*4870847^(3/4) 6099996721309871 a001 9227465/87403803*4870847^(9/16) 6099996721309873 a001 39088169/969323029*4870847^(5/8) 6099996721309873 a001 9303105/230701876*4870847^(5/8) 6099996721309873 a001 267914296/6643838879*4870847^(5/8) 6099996721309873 a001 701408733/17393796001*4870847^(5/8) 6099996721309873 a001 1836311903/45537549124*4870847^(5/8) 6099996721309873 a001 4807526976/119218851371*4870847^(5/8) 6099996721309873 a001 1144206275/28374454999*4870847^(5/8) 6099996721309873 a001 32951280099/817138163596*4870847^(5/8) 6099996721309873 a001 86267571272/2139295485799*4870847^(5/8) 6099996721309873 a001 225851433717/5600748293801*4870847^(5/8) 6099996721309873 a001 591286729879/14662949395604*4870847^(5/8) 6099996721309873 a001 365435296162/9062201101803*4870847^(5/8) 6099996721309873 a001 139583862445/3461452808002*4870847^(5/8) 6099996721309873 a001 53316291173/1322157322203*4870847^(5/8) 6099996721309873 a001 20365011074/505019158607*4870847^(5/8) 6099996721309873 a001 7778742049/192900153618*4870847^(5/8) 6099996721309873 a001 2971215073/73681302247*4870847^(5/8) 6099996721309873 a001 1134903170/28143753123*4870847^(5/8) 6099996721309873 a001 433494437/10749957122*4870847^(5/8) 6099996721309873 a001 165580141/4106118243*4870847^(5/8) 6099996721309874 a001 63245986/1568397607*4870847^(5/8) 6099996721309875 a001 102334155/7881196*4870847^(1/4) 6099996721309875 a001 24157817/599074578*4870847^(5/8) 6099996721309883 a001 14930208/103681*1860498^(1/10) 6099996721309884 a001 14930352/969323029*4870847^(11/16) 6099996721309884 a001 5702887/2537720636*4870847^(13/16) 6099996721309886 a001 5702887/7881196*4870847^(7/16) 6099996721309888 a001 9227465/228826127*4870847^(5/8) 6099996721309888 a001 12586269025/87403803*1860498^(1/10) 6099996721309889 a001 39088169/2537720636*4870847^(11/16) 6099996721309889 a001 32951280099/228826127*1860498^(1/10) 6099996721309889 a001 43133785636/299537289*1860498^(1/10) 6099996721309889 a001 32264490531/224056801*1860498^(1/10) 6099996721309889 a001 591286729879/4106118243*1860498^(1/10) 6099996721309889 a001 774004377960/5374978561*1860498^(1/10) 6099996721309889 a001 4052739537881/28143753123*1860498^(1/10) 6099996721309889 a001 1515744265389/10525900321*1860498^(1/10) 6099996721309889 a001 3278735159921/22768774562*1860498^(1/10) 6099996721309889 a001 2504730781961/17393796001*1860498^(1/10) 6099996721309889 a001 956722026041/6643838879*1860498^(1/10) 6099996721309889 a001 182717648081/1268860318*1860498^(1/10) 6099996721309889 a001 139583862445/969323029*1860498^(1/10) 6099996721309889 a001 53316291173/370248451*1860498^(1/10) 6099996721309889 a001 10182505537/70711162*1860498^(1/10) 6099996721309889 a001 102334155/6643838879*4870847^(11/16) 6099996721309889 a001 9238424/599786069*4870847^(11/16) 6099996721309889 a001 701408733/45537549124*4870847^(11/16) 6099996721309889 a001 1836311903/119218851371*4870847^(11/16) 6099996721309889 a001 4807526976/312119004989*4870847^(11/16) 6099996721309889 a001 12586269025/817138163596*4870847^(11/16) 6099996721309889 a001 32951280099/2139295485799*4870847^(11/16) 6099996721309889 a001 86267571272/5600748293801*4870847^(11/16) 6099996721309889 a001 7787980473/505618944676*4870847^(11/16) 6099996721309889 a001 365435296162/23725150497407*4870847^(11/16) 6099996721309889 a001 139583862445/9062201101803*4870847^(11/16) 6099996721309889 a001 53316291173/3461452808002*4870847^(11/16) 6099996721309889 a001 20365011074/1322157322203*4870847^(11/16) 6099996721309889 a001 7778742049/505019158607*4870847^(11/16) 6099996721309889 a001 2971215073/192900153618*4870847^(11/16) 6099996721309889 a001 1134903170/73681302247*4870847^(11/16) 6099996721309889 a001 433494437/28143753123*4870847^(11/16) 6099996721309889 a001 165580141/10749957122*4870847^(11/16) 6099996721309890 a001 63245986/4106118243*4870847^(11/16) 6099996721309890 a001 39088169/7881196*4870847^(5/16) 6099996721309891 a001 7778742049/54018521*1860498^(1/10) 6099996721309891 a001 24157817/1568397607*4870847^(11/16) 6099996721309900 a001 196452/33391061*4870847^(3/4) 6099996721309900 a001 5702887/6643838879*4870847^(7/8) 6099996721309902 a001 3732588/1970299*4870847^(3/8) 6099996721309902 a001 3524578/12752043*4870847^(1/2) 6099996721309903 a001 1762289/3940598*20633239^(3/7) 6099996721309903 a001 2971215073/20633239*1860498^(1/10) 6099996721309904 a001 9227465/599074578*4870847^(11/16) 6099996721309905 a001 39088169/6643838879*4870847^(3/4) 6099996721309905 a001 102334155/17393796001*4870847^(3/4) 6099996721309905 a001 66978574/11384387281*4870847^(3/4) 6099996721309905 a001 701408733/119218851371*4870847^(3/4) 6099996721309905 a001 1836311903/312119004989*4870847^(3/4) 6099996721309905 a001 1201881744/204284540899*4870847^(3/4) 6099996721309905 a001 12586269025/2139295485799*4870847^(3/4) 6099996721309905 a001 32951280099/5600748293801*4870847^(3/4) 6099996721309905 a001 1135099622/192933544679*4870847^(3/4) 6099996721309905 a001 139583862445/23725150497407*4870847^(3/4) 6099996721309905 a001 53316291173/9062201101803*4870847^(3/4) 6099996721309905 a001 10182505537/1730726404001*4870847^(3/4) 6099996721309905 a001 7778742049/1322157322203*4870847^(3/4) 6099996721309905 a001 2971215073/505019158607*4870847^(3/4) 6099996721309905 a001 567451585/96450076809*4870847^(3/4) 6099996721309905 a001 433494437/73681302247*4870847^(3/4) 6099996721309906 a001 165580141/28143753123*4870847^(3/4) 6099996721309906 a001 31622993/5374978561*4870847^(3/4) 6099996721309908 a001 24157817/4106118243*4870847^(3/4) 6099996721309909 a001 1762289/3940598*141422324^(5/13) 6099996721309909 a001 1762289/3940598*2537720636^(1/3) 6099996721309909 a001 6211325039042/10182505537 6099996721309909 a001 1762289/3940598*45537549124^(5/17) 6099996721309909 a001 1762289/3940598*312119004989^(3/11) 6099996721309909 a001 1762289/3940598*14662949395604^(5/21) 6099996721309909 a001 1762289/3940598*(1/2+1/2*5^(1/2))^15 6099996721309909 a001 1762289/3940598*192900153618^(5/18) 6099996721309909 a001 1762289/3940598*28143753123^(3/10) 6099996721309909 a001 1762289/3940598*10749957122^(5/16) 6099996721309909 a001 1762289/3940598*599074578^(5/14) 6099996721309909 a001 1762289/3940598*228826127^(3/8) 6099996721309910 a001 1134903170/12752043*1860498^(2/15) 6099996721309911 a001 1762289/3940598*33385282^(5/12) 6099996721309916 a001 14930352/6643838879*4870847^(13/16) 6099996721309916 a001 5702887/17393796001*4870847^(15/16) 6099996721309920 a001 9227465/1568397607*4870847^(3/4) 6099996721309921 a001 39088169/17393796001*4870847^(13/16) 6099996721309921 a001 102334155/45537549124*4870847^(13/16) 6099996721309922 a001 267914296/119218851371*4870847^(13/16) 6099996721309922 a001 3524667/1568437211*4870847^(13/16) 6099996721309922 a001 1836311903/817138163596*4870847^(13/16) 6099996721309922 a001 4807526976/2139295485799*4870847^(13/16) 6099996721309922 a001 12586269025/5600748293801*4870847^(13/16) 6099996721309922 a001 32951280099/14662949395604*4870847^(13/16) 6099996721309922 a001 53316291173/23725150497407*4870847^(13/16) 6099996721309922 a001 20365011074/9062201101803*4870847^(13/16) 6099996721309922 a001 7778742049/3461452808002*4870847^(13/16) 6099996721309922 a001 2971215073/1322157322203*4870847^(13/16) 6099996721309922 a001 1134903170/505019158607*4870847^(13/16) 6099996721309922 a001 433494437/192900153618*4870847^(13/16) 6099996721309922 a001 165580141/73681302247*4870847^(13/16) 6099996721309922 a001 63245986/28143753123*4870847^(13/16) 6099996721309924 a001 24157817/10749957122*4870847^(13/16) 6099996721309926 a001 63245986/4870847*1860498^(4/15) 6099996721309928 a001 1836311903/7881196*1860498^(1/15) 6099996721309932 a001 14930352/17393796001*4870847^(7/8) 6099996721309932 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^51 6099996721309936 a001 9227465/4106118243*4870847^(13/16) 6099996721309937 a001 39088169/45537549124*4870847^(7/8) 6099996721309938 a001 102334155/119218851371*4870847^(7/8) 6099996721309938 a001 267914296/312119004989*4870847^(7/8) 6099996721309938 a001 701408733/817138163596*4870847^(7/8) 6099996721309938 a001 1836311903/2139295485799*4870847^(7/8) 6099996721309938 a001 4807526976/5600748293801*4870847^(7/8) 6099996721309938 a001 12586269025/14662949395604*4870847^(7/8) 6099996721309938 a001 20365011074/23725150497407*4870847^(7/8) 6099996721309938 a001 7778742049/9062201101803*4870847^(7/8) 6099996721309938 a001 2971215073/3461452808002*4870847^(7/8) 6099996721309938 a001 1134903170/1322157322203*4870847^(7/8) 6099996721309938 a001 433494437/505019158607*4870847^(7/8) 6099996721309938 a001 165580141/192900153618*4870847^(7/8) 6099996721309938 a001 63245986/73681302247*4870847^(7/8) 6099996721309940 a001 24157817/28143753123*4870847^(7/8) 6099996721309942 a001 2971215073/33385282*1860498^(2/15) 6099996721309947 a001 7778742049/87403803*1860498^(2/15) 6099996721309947 a001 20365011074/228826127*1860498^(2/15) 6099996721309948 a001 53316291173/599074578*1860498^(2/15) 6099996721309948 a001 139583862445/1568397607*1860498^(2/15) 6099996721309948 a001 365435296162/4106118243*1860498^(2/15) 6099996721309948 a001 956722026041/10749957122*1860498^(2/15) 6099996721309948 a001 2504730781961/28143753123*1860498^(2/15) 6099996721309948 a001 6557470319842/73681302247*1860498^(2/15) 6099996721309948 a001 10610209857723/119218851371*1860498^(2/15) 6099996721309948 a001 4052739537881/45537549124*1860498^(2/15) 6099996721309948 a001 1548008755920/17393796001*1860498^(2/15) 6099996721309948 a001 591286729879/6643838879*1860498^(2/15) 6099996721309948 a001 225851433717/2537720636*1860498^(2/15) 6099996721309948 a001 86267571272/969323029*1860498^(2/15) 6099996721309948 a001 32951280099/370248451*1860498^(2/15) 6099996721309948 a001 12586269025/141422324*1860498^(2/15) 6099996721309948 a001 3732588/11384387281*4870847^(15/16) 6099996721309950 a001 4807526976/54018521*1860498^(2/15) 6099996721309950 a001 1762289/16692641*4870847^(9/16) 6099996721309952 a001 9227465/10749957122*4870847^(7/8) 6099996721309953 a001 39088169/119218851371*4870847^(15/16) 6099996721309954 a001 9303105/28374454999*4870847^(15/16) 6099996721309954 a001 66978574/204284540899*4870847^(15/16) 6099996721309954 a001 701408733/2139295485799*4870847^(15/16) 6099996721309954 a001 1836311903/5600748293801*4870847^(15/16) 6099996721309954 a001 1201881744/3665737348901*4870847^(15/16) 6099996721309954 a001 7778742049/23725150497407*4870847^(15/16) 6099996721309954 a001 2971215073/9062201101803*4870847^(15/16) 6099996721309954 a001 567451585/1730726404001*4870847^(15/16) 6099996721309954 a001 433494437/1322157322203*4870847^(15/16) 6099996721309954 a001 165580141/505019158607*4870847^(15/16) 6099996721309954 a001 31622993/96450076809*4870847^(15/16) 6099996721309956 a001 24157817/73681302247*4870847^(15/16) 6099996721309962 a001 1836311903/20633239*1860498^(2/15) 6099996721309964 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^53 6099996721309968 a001 9227465/28143753123*4870847^(15/16) 6099996721309969 a001 233802911/4250681*1860498^(1/6) 6099996721309969 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^55 6099996721309970 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^57 6099996721309970 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^59 6099996721309970 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^61 6099996721309970 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^63 6099996721309970 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^65 6099996721309970 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^67 6099996721309970 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^69 6099996721309970 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^71 6099996721309970 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^73 6099996721309970 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^75 6099996721309970 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^77 6099996721309970 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^79 6099996721309970 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^81 6099996721309970 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^83 6099996721309970 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^85 6099996721309970 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^87 6099996721309970 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^89 6099996721309970 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^91 6099996721309970 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^93 6099996721309970 a004 Fibonacci(78)*Lucas(32)/(1/2+sqrt(5)/2)^95 6099996721309970 a004 Fibonacci(80)*Lucas(32)/(1/2+sqrt(5)/2)^97 6099996721309970 a004 Fibonacci(82)*Lucas(32)/(1/2+sqrt(5)/2)^99 6099996721309970 a004 Fibonacci(83)*Lucas(32)/(1/2+sqrt(5)/2)^100 6099996721309970 a004 Fibonacci(81)*Lucas(32)/(1/2+sqrt(5)/2)^98 6099996721309970 a004 Fibonacci(79)*Lucas(32)/(1/2+sqrt(5)/2)^96 6099996721309970 a004 Fibonacci(77)*Lucas(32)/(1/2+sqrt(5)/2)^94 6099996721309970 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^92 6099996721309970 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^90 6099996721309970 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^88 6099996721309970 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^86 6099996721309970 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^84 6099996721309970 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^82 6099996721309970 a001 2/2178309*(1/2+1/2*5^(1/2))^47 6099996721309970 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^80 6099996721309970 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^78 6099996721309970 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^76 6099996721309970 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^74 6099996721309970 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^72 6099996721309970 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^70 6099996721309970 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^68 6099996721309970 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^66 6099996721309970 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^64 6099996721309970 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^62 6099996721309970 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^60 6099996721309970 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^58 6099996721309970 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^56 6099996721309971 a001 3524578/87403803*4870847^(5/8) 6099996721309972 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^54 6099996721309983 a001 39088169/4870847*1860498^(3/10) 6099996721309984 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^52 6099996721309987 a001 567451585/3940598*1860498^(1/10) 6099996721309988 a001 3524578/228826127*4870847^(11/16) 6099996721310001 a001 1836311903/33385282*1860498^(1/6) 6099996721310004 a001 1762289/299537289*4870847^(3/4) 6099996721310006 a001 1602508992/29134601*1860498^(1/6) 6099996721310006 a001 12586269025/228826127*1860498^(1/6) 6099996721310006 a001 10983760033/199691526*1860498^(1/6) 6099996721310006 a001 86267571272/1568397607*1860498^(1/6) 6099996721310006 a001 75283811239/1368706081*1860498^(1/6) 6099996721310006 a001 591286729879/10749957122*1860498^(1/6) 6099996721310006 a001 12585437040/228811001*1860498^(1/6) 6099996721310006 a001 4052739537881/73681302247*1860498^(1/6) 6099996721310006 a001 3536736619241/64300051206*1860498^(1/6) 6099996721310006 a001 6557470319842/119218851371*1860498^(1/6) 6099996721310006 a001 2504730781961/45537549124*1860498^(1/6) 6099996721310006 a001 956722026041/17393796001*1860498^(1/6) 6099996721310006 a001 365435296162/6643838879*1860498^(1/6) 6099996721310006 a001 139583862445/2537720636*1860498^(1/6) 6099996721310006 a001 53316291173/969323029*1860498^(1/6) 6099996721310006 a001 20365011074/370248451*1860498^(1/6) 6099996721310007 a001 7778742049/141422324*1860498^(1/6) 6099996721310008 a001 2971215073/54018521*1860498^(1/6) 6099996721310020 a001 3524578/1568397607*4870847^(13/16) 6099996721310021 a001 1134903170/20633239*1860498^(1/6) 6099996721310028 a001 433494437/12752043*1860498^(1/5) 6099996721310036 a001 3524578/4106118243*4870847^(7/8) 6099996721310045 a001 24157817/4870847*1860498^(1/3) 6099996721310046 a001 3524667/39604*1860498^(2/15) 6099996721310052 a001 1762289/5374978561*4870847^(15/16) 6099996721310060 a001 567451585/16692641*1860498^(1/5) 6099996721310064 a001 2971215073/87403803*1860498^(1/5) 6099996721310065 a001 7778742049/228826127*1860498^(1/5) 6099996721310065 a001 10182505537/299537289*1860498^(1/5) 6099996721310065 a001 53316291173/1568397607*1860498^(1/5) 6099996721310065 a001 139583862445/4106118243*1860498^(1/5) 6099996721310065 a001 182717648081/5374978561*1860498^(1/5) 6099996721310065 a001 956722026041/28143753123*1860498^(1/5) 6099996721310065 a001 2504730781961/73681302247*1860498^(1/5) 6099996721310065 a001 3278735159921/96450076809*1860498^(1/5) 6099996721310065 a001 10610209857723/312119004989*1860498^(1/5) 6099996721310065 a001 4052739537881/119218851371*1860498^(1/5) 6099996721310065 a001 387002188980/11384387281*1860498^(1/5) 6099996721310065 a001 591286729879/17393796001*1860498^(1/5) 6099996721310065 a001 225851433717/6643838879*1860498^(1/5) 6099996721310065 a001 1135099622/33391061*1860498^(1/5) 6099996721310065 a001 32951280099/969323029*1860498^(1/5) 6099996721310065 a001 12586269025/370248451*1860498^(1/5) 6099996721310065 a001 1201881744/35355581*1860498^(1/5) 6099996721310067 a001 1836311903/54018521*1860498^(1/5) 6099996721310068 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^50 6099996721310079 a001 701408733/20633239*1860498^(1/5) 6099996721310080 a001 2178309/4870847*1860498^(1/2) 6099996721310105 a001 433494437/7881196*1860498^(1/6) 6099996721310123 a001 2178309/3010349*20633239^(2/5) 6099996721310129 a001 2178309/3010349*17393796001^(2/7) 6099996721310129 a001 1346269/4870847*(1/2+1/2*5^(1/2))^16 6099996721310129 a001 1346269/4870847*23725150497407^(1/4) 6099996721310129 a001 2178309/3010349*14662949395604^(2/9) 6099996721310129 a001 2178309/3010349*(1/2+1/2*5^(1/2))^14 6099996721310129 a001 2178309/3010349*505019158607^(1/4) 6099996721310129 a001 1346269/4870847*73681302247^(4/13) 6099996721310129 a001 2178309/3010349*10749957122^(7/24) 6099996721310129 a001 1346269/4870847*10749957122^(1/3) 6099996721310129 a001 2971215683/4870848 6099996721310129 a001 2178309/3010349*4106118243^(7/23) 6099996721310129 a001 1346269/4870847*4106118243^(8/23) 6099996721310129 a001 2178309/3010349*1568397607^(7/22) 6099996721310129 a001 1346269/4870847*1568397607^(4/11) 6099996721310129 a001 2178309/3010349*599074578^(1/3) 6099996721310129 a001 1346269/4870847*599074578^(8/21) 6099996721310129 a001 2178309/3010349*228826127^(7/20) 6099996721310129 a001 1346269/4870847*228826127^(2/5) 6099996721310129 a001 2178309/3010349*87403803^(7/19) 6099996721310129 a001 1346269/4870847*87403803^(8/19) 6099996721310131 a001 2178309/3010349*33385282^(7/18) 6099996721310131 a001 1346269/4870847*33385282^(4/9) 6099996721310144 a001 2178309/3010349*12752043^(7/17) 6099996721310145 a001 165580141/12752043*1860498^(4/15) 6099996721310146 a001 1346269/4870847*12752043^(8/17) 6099996721310163 a001 66978574/1970299*1860498^(1/5) 6099996721310175 a001 9227465/4870847*1860498^(2/5) 6099996721310177 a001 433494437/33385282*1860498^(4/15) 6099996721310182 a001 1134903170/87403803*1860498^(4/15) 6099996721310182 a001 2971215073/228826127*1860498^(4/15) 6099996721310183 a001 7778742049/599074578*1860498^(4/15) 6099996721310183 a001 20365011074/1568397607*1860498^(4/15) 6099996721310183 a001 53316291173/4106118243*1860498^(4/15) 6099996721310183 a001 139583862445/10749957122*1860498^(4/15) 6099996721310183 a001 365435296162/28143753123*1860498^(4/15) 6099996721310183 a001 956722026041/73681302247*1860498^(4/15) 6099996721310183 a001 2504730781961/192900153618*1860498^(4/15) 6099996721310183 a001 10610209857723/817138163596*1860498^(4/15) 6099996721310183 a001 4052739537881/312119004989*1860498^(4/15) 6099996721310183 a001 1548008755920/119218851371*1860498^(4/15) 6099996721310183 a001 591286729879/45537549124*1860498^(4/15) 6099996721310183 a001 7787980473/599786069*1860498^(4/15) 6099996721310183 a001 86267571272/6643838879*1860498^(4/15) 6099996721310183 a001 32951280099/2537720636*1860498^(4/15) 6099996721310183 a001 12586269025/969323029*1860498^(4/15) 6099996721310183 a001 4807526976/370248451*1860498^(4/15) 6099996721310183 a001 1836311903/141422324*1860498^(4/15) 6099996721310185 a001 701408733/54018521*1860498^(4/15) 6099996721310197 a001 9238424/711491*1860498^(4/15) 6099996721310204 a001 34111385/4250681*1860498^(3/10) 6099996721310236 a001 133957148/16692641*1860498^(3/10) 6099996721310241 a001 233802911/29134601*1860498^(3/10) 6099996721310241 a001 2178309/3010349*4870847^(7/16) 6099996721310241 a001 1836311903/228826127*1860498^(3/10) 6099996721310241 a001 267084832/33281921*1860498^(3/10) 6099996721310241 a001 12586269025/1568397607*1860498^(3/10) 6099996721310241 a001 10983760033/1368706081*1860498^(3/10) 6099996721310241 a001 43133785636/5374978561*1860498^(3/10) 6099996721310241 a001 75283811239/9381251041*1860498^(3/10) 6099996721310241 a001 591286729879/73681302247*1860498^(3/10) 6099996721310241 a001 86000486440/10716675201*1860498^(3/10) 6099996721310241 a001 4052739537881/505019158607*1860498^(3/10) 6099996721310241 a001 3278735159921/408569081798*1860498^(3/10) 6099996721310241 a001 2504730781961/312119004989*1860498^(3/10) 6099996721310241 a001 956722026041/119218851371*1860498^(3/10) 6099996721310241 a001 182717648081/22768774562*1860498^(3/10) 6099996721310241 a001 139583862445/17393796001*1860498^(3/10) 6099996721310241 a001 53316291173/6643838879*1860498^(3/10) 6099996721310241 a001 10182505537/1268860318*1860498^(3/10) 6099996721310241 a001 7778742049/969323029*1860498^(3/10) 6099996721310241 a001 2971215073/370248451*1860498^(3/10) 6099996721310242 a001 567451585/70711162*1860498^(3/10) 6099996721310243 a001 433494437/54018521*1860498^(3/10) 6099996721310256 a001 165580141/20633239*1860498^(3/10) 6099996721310257 a001 1346269/4870847*4870847^(1/2) 6099996721310263 a001 63245986/12752043*1860498^(1/3) 6099996721310281 a001 102334155/7881196*1860498^(4/15) 6099996721310288 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^49 6099996721310295 a001 165580141/33385282*1860498^(1/3) 6099996721310295 a001 1346269/12752043*7881196^(6/11) 6099996721310296 a001 1346269/4106118243*7881196^(10/11) 6099996721310299 a001 433494437/87403803*1860498^(1/3) 6099996721310300 a001 1134903170/228826127*1860498^(1/3) 6099996721310300 a001 2971215073/599074578*1860498^(1/3) 6099996721310300 a001 7778742049/1568397607*1860498^(1/3) 6099996721310300 a001 20365011074/4106118243*1860498^(1/3) 6099996721310300 a001 53316291173/10749957122*1860498^(1/3) 6099996721310300 a001 139583862445/28143753123*1860498^(1/3) 6099996721310300 a001 365435296162/73681302247*1860498^(1/3) 6099996721310300 a001 956722026041/192900153618*1860498^(1/3) 6099996721310300 a001 2504730781961/505019158607*1860498^(1/3) 6099996721310300 a001 10610209857723/2139295485799*1860498^(1/3) 6099996721310300 a001 4052739537881/817138163596*1860498^(1/3) 6099996721310300 a001 140728068720/28374454999*1860498^(1/3) 6099996721310300 a001 591286729879/119218851371*1860498^(1/3) 6099996721310300 a001 225851433717/45537549124*1860498^(1/3) 6099996721310300 a001 86267571272/17393796001*1860498^(1/3) 6099996721310300 a001 32951280099/6643838879*1860498^(1/3) 6099996721310300 a001 1144206275/230701876*1860498^(1/3) 6099996721310300 a001 4807526976/969323029*1860498^(1/3) 6099996721310300 a001 1836311903/370248451*1860498^(1/3) 6099996721310300 a001 701408733/141422324*1860498^(1/3) 6099996721310302 a001 267914296/54018521*1860498^(1/3) 6099996721310305 a001 1346269/969323029*7881196^(9/11) 6099996721310313 a001 5702887/3010349*7881196^(4/11) 6099996721310314 a001 1346269/228826127*7881196^(8/11) 6099996721310314 a001 9303105/1875749*1860498^(1/3) 6099996721310318 a001 1134903170/4870847*710647^(1/14) 6099996721310320 a001 1346269/87403803*7881196^(2/3) 6099996721310325 a001 1346269/54018521*7881196^(7/11) 6099996721310340 a001 31622993/3940598*1860498^(3/10) 6099996721310348 a001 1346269/12752043*141422324^(6/13) 6099996721310348 a001 5702887/3010349*141422324^(4/13) 6099996721310348 a001 1346269/12752043*2537720636^(2/5) 6099996721310348 a001 5702887/3010349*2537720636^(4/15) 6099996721310348 a001 1346269/12752043*45537549124^(6/17) 6099996721310348 a001 5702887/3010349*45537549124^(4/17) 6099996721310348 a001 1346269/12752043*14662949395604^(2/7) 6099996721310348 a001 1346269/12752043*(1/2+1/2*5^(1/2))^18 6099996721310348 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^18/Lucas(34) 6099996721310348 a001 5702887/3010349*14662949395604^(4/21) 6099996721310348 a001 5702887/3010349*(1/2+1/2*5^(1/2))^12 6099996721310348 a001 5702887/3010349*192900153618^(2/9) 6099996721310348 a001 1346269/12752043*192900153618^(1/3) 6099996721310348 a001 5702887/3010349*73681302247^(3/13) 6099996721310348 a001 7677619978603/12586269025 6099996721310348 a001 5702887/3010349*10749957122^(1/4) 6099996721310348 a001 1346269/12752043*10749957122^(3/8) 6099996721310348 a001 5702887/3010349*4106118243^(6/23) 6099996721310348 a001 1346269/12752043*4106118243^(9/23) 6099996721310348 a001 5702887/3010349*1568397607^(3/11) 6099996721310348 a001 1346269/12752043*1568397607^(9/22) 6099996721310348 a001 5702887/3010349*599074578^(2/7) 6099996721310348 a001 1346269/12752043*599074578^(3/7) 6099996721310348 a001 5702887/3010349*228826127^(3/10) 6099996721310348 a001 1346269/12752043*228826127^(9/20) 6099996721310349 a001 5702887/3010349*87403803^(6/19) 6099996721310349 a001 1346269/12752043*87403803^(9/19) 6099996721310350 a001 5702887/3010349*33385282^(1/3) 6099996721310351 a001 1346269/12752043*33385282^(1/2) 6099996721310361 a001 24157817/3010349*7881196^(3/11) 6099996721310361 a001 5702887/3010349*12752043^(6/17) 6099996721310367 a001 9227465/3010349*7881196^(1/3) 6099996721310368 a001 102334155/3010349*7881196^(2/11) 6099996721310368 a001 1346269/12752043*12752043^(9/17) 6099996721310371 a001 63245986/710647*271443^(2/13) 6099996721310371 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^51 6099996721310372 a001 1346269/33385282*20633239^(4/7) 6099996721310373 a001 1346269/4106118243*20633239^(6/7) 6099996721310374 a001 1346269/1568397607*20633239^(4/5) 6099996721310376 a001 1346269/370248451*20633239^(5/7) 6099996721310376 a001 3524578/4870847*1860498^(7/15) 6099996721310376 a001 14930352/3010349*20633239^(2/7) 6099996721310377 a001 433494437/3010349*7881196^(1/11) 6099996721310379 a001 1346269/54018521*20633239^(3/5) 6099996721310380 a001 1346269/33385282*2537720636^(4/9) 6099996721310380 a001 14930352/3010349*2537720636^(2/9) 6099996721310380 a001 14930352/3010349*312119004989^(2/11) 6099996721310380 a001 1346269/33385282*(1/2+1/2*5^(1/2))^20 6099996721310380 a001 1346269/33385282*23725150497407^(5/16) 6099996721310380 a001 14930352/3010349*(1/2+1/2*5^(1/2))^10 6099996721310380 a001 1346269/33385282*505019158607^(5/14) 6099996721310380 a001 1346269/33385282*73681302247^(5/13) 6099996721310380 a001 6700090018896/10983760033 6099996721310380 a001 14930352/3010349*28143753123^(1/5) 6099996721310380 a001 1346269/33385282*28143753123^(2/5) 6099996721310380 a001 14930352/3010349*10749957122^(5/24) 6099996721310380 a001 1346269/33385282*10749957122^(5/12) 6099996721310380 a001 14930352/3010349*4106118243^(5/23) 6099996721310380 a001 1346269/33385282*4106118243^(10/23) 6099996721310380 a001 14930352/3010349*1568397607^(5/22) 6099996721310380 a001 1346269/33385282*1568397607^(5/11) 6099996721310380 a001 14930352/3010349*599074578^(5/21) 6099996721310380 a001 1346269/33385282*599074578^(10/21) 6099996721310380 a001 14930352/3010349*228826127^(1/4) 6099996721310380 a001 1346269/33385282*228826127^(1/2) 6099996721310381 a001 14930352/3010349*87403803^(5/19) 6099996721310381 a001 1346269/33385282*87403803^(10/19) 6099996721310382 a001 14930352/3010349*33385282^(5/18) 6099996721310382 a001 24157817/12752043*1860498^(2/5) 6099996721310383 a001 63245986/3010349*20633239^(1/5) 6099996721310383 a001 1346269/33385282*33385282^(5/9) 6099996721310384 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^53 6099996721310384 a001 165580141/3010349*20633239^(1/7) 6099996721310385 a001 1346269/87403803*312119004989^(2/5) 6099996721310385 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(38) 6099996721310385 a001 39088169/3010349*(1/2+1/2*5^(1/2))^8 6099996721310385 a001 39088169/3010349*23725150497407^(1/8) 6099996721310385 a001 39088169/3010349*505019158607^(1/7) 6099996721310385 a001 52623190191461/86267571272 6099996721310385 a001 39088169/3010349*73681302247^(2/13) 6099996721310385 a001 39088169/3010349*10749957122^(1/6) 6099996721310385 a001 1346269/87403803*10749957122^(11/24) 6099996721310385 a001 39088169/3010349*4106118243^(4/23) 6099996721310385 a001 1346269/87403803*4106118243^(11/23) 6099996721310385 a001 39088169/3010349*1568397607^(2/11) 6099996721310385 a001 1346269/87403803*1568397607^(1/2) 6099996721310385 a001 39088169/3010349*599074578^(4/21) 6099996721310385 a001 1346269/87403803*599074578^(11/21) 6099996721310385 a001 39088169/3010349*228826127^(1/5) 6099996721310385 a001 1346269/87403803*228826127^(11/20) 6099996721310385 a001 39088169/3010349*87403803^(4/19) 6099996721310385 a001 1346269/87403803*87403803^(11/19) 6099996721310385 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^55 6099996721310385 a001 1346269/228826127*141422324^(8/13) 6099996721310385 a001 1346269/73681302247*141422324^(12/13) 6099996721310386 a001 1346269/17393796001*141422324^(11/13) 6099996721310386 a001 1346269/4106118243*141422324^(10/13) 6099996721310386 a001 1346269/599074578*141422324^(2/3) 6099996721310386 a001 1346269/969323029*141422324^(9/13) 6099996721310386 a001 102334155/3010349*141422324^(2/13) 6099996721310386 a001 1346269/228826127*2537720636^(8/15) 6099996721310386 a001 102334155/3010349*2537720636^(2/15) 6099996721310386 a001 1346269/228826127*45537549124^(8/17) 6099996721310386 a001 102334155/3010349*45537549124^(2/17) 6099996721310386 a001 1346269/228826127*14662949395604^(8/21) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(40) 6099996721310386 a001 102334155/3010349*14662949395604^(2/21) 6099996721310386 a001 102334155/3010349*(1/2+1/2*5^(1/2))^6 6099996721310386 a001 6560442881795/10754830177 6099996721310386 a001 1346269/228826127*192900153618^(4/9) 6099996721310386 a001 1346269/228826127*73681302247^(6/13) 6099996721310386 a001 102334155/3010349*10749957122^(1/8) 6099996721310386 a001 1346269/228826127*10749957122^(1/2) 6099996721310386 a001 102334155/3010349*4106118243^(3/23) 6099996721310386 a001 1346269/228826127*4106118243^(12/23) 6099996721310386 a001 102334155/3010349*1568397607^(3/22) 6099996721310386 a001 1346269/228826127*1568397607^(6/11) 6099996721310386 a001 102334155/3010349*599074578^(1/7) 6099996721310386 a001 1346269/228826127*599074578^(4/7) 6099996721310386 a001 102334155/3010349*228826127^(3/20) 6099996721310386 a001 1346269/228826127*228826127^(3/5) 6099996721310386 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^57 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(42) 6099996721310386 a001 267914296/3010349*(1/2+1/2*5^(1/2))^4 6099996721310386 a001 267914296/3010349*23725150497407^(1/16) 6099996721310386 a001 360684711361624/591286729879 6099996721310386 a001 267914296/3010349*73681302247^(1/13) 6099996721310386 a001 1346269/599074578*73681302247^(1/2) 6099996721310386 a001 267914296/3010349*10749957122^(1/12) 6099996721310386 a001 433494437/3010349*141422324^(1/13) 6099996721310386 a001 1346269/599074578*10749957122^(13/24) 6099996721310386 a001 267914296/3010349*4106118243^(2/23) 6099996721310386 a001 1346269/599074578*4106118243^(13/23) 6099996721310386 a001 267914296/3010349*1568397607^(1/11) 6099996721310386 a001 1346269/599074578*1568397607^(13/22) 6099996721310386 a001 267914296/3010349*599074578^(2/21) 6099996721310386 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^59 6099996721310386 a001 1346269/599074578*599074578^(13/21) 6099996721310386 a001 267914296/3010349*228826127^(1/10) 6099996721310386 a001 1346269/1568397607*17393796001^(4/7) 6099996721310386 a001 1346269/1568397607*14662949395604^(4/9) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(44) 6099996721310386 a001 701408733/3010349*(1/2+1/2*5^(1/2))^2 6099996721310386 a001 1346269/1568397607*505019158607^(1/2) 6099996721310386 a001 1346269/1568397607*73681302247^(7/13) 6099996721310386 a001 701408733/3010349*10749957122^(1/24) 6099996721310386 a001 701408733/3010349*4106118243^(1/23) 6099996721310386 a001 1346269/1568397607*10749957122^(7/12) 6099996721310386 a001 701408733/3010349*1568397607^(1/22) 6099996721310386 a001 1346269/1568397607*4106118243^(14/23) 6099996721310386 a001 701408733/3010349*599074578^(1/21) 6099996721310386 a001 1346269/4106118243*2537720636^(2/3) 6099996721310386 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^61 6099996721310386 a001 1346269/1568397607*1568397607^(7/11) 6099996721310386 a001 1346269/1322157322203*2537720636^(14/15) 6099996721310386 a001 1346269/505019158607*2537720636^(8/9) 6099996721310386 a001 1346269/312119004989*2537720636^(13/15) 6099996721310386 a001 1346269/73681302247*2537720636^(4/5) 6099996721310386 a001 1346269/45537549124*2537720636^(7/9) 6099996721310386 a001 1346269/17393796001*2537720636^(11/15) 6099996721310386 a001 1346269/4106118243*45537549124^(10/17) 6099996721310386 a001 1346269/4106118243*312119004989^(6/11) 6099996721310386 a001 1346269/4106118243*14662949395604^(10/21) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(46) 6099996721310386 a001 1836311903/3010349 6099996721310386 a001 1346269/4106118243*192900153618^(5/9) 6099996721310386 a001 1346269/4106118243*28143753123^(3/5) 6099996721310386 a001 1346269/4106118243*10749957122^(5/8) 6099996721310386 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^63 6099996721310386 a001 1346269/4106118243*4106118243^(15/23) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(48) 6099996721310386 a001 1346269/10749957122*23725150497407^(1/2) 6099996721310386 a001 6557471666112/10749959329 6099996721310386 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^2 6099996721310386 a001 1346269/10749957122*505019158607^(4/7) 6099996721310386 a001 1346269/10749957122*73681302247^(8/13) 6099996721310386 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^65 6099996721310386 a001 1346269/10749957122*10749957122^(2/3) 6099996721310386 a001 1346269/1322157322203*17393796001^(6/7) 6099996721310386 a001 1346269/45537549124*17393796001^(5/7) 6099996721310386 a001 1346269/28143753123*45537549124^(2/3) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(50) 6099996721310386 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^4 6099996721310386 a001 1346269/73681302247*45537549124^(12/17) 6099996721310386 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^67 6099996721310386 a001 1346269/23725150497407*45537549124^(16/17) 6099996721310386 a001 1346269/5600748293801*45537549124^(15/17) 6099996721310386 a001 1346269/1322157322203*45537549124^(14/17) 6099996721310386 a001 1346269/312119004989*45537549124^(13/17) 6099996721310386 a001 1346269/73681302247*14662949395604^(4/7) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(52) 6099996721310386 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^6 6099996721310386 a001 1346269/73681302247*505019158607^(9/14) 6099996721310386 a001 1346269/73681302247*192900153618^(2/3) 6099996721310386 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^69 6099996721310386 a001 1346269/73681302247*73681302247^(9/13) 6099996721310386 a001 1346269/192900153618*817138163596^(2/3) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(54) 6099996721310386 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^8 6099996721310386 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^71 6099996721310386 a001 1346269/3461452808002*312119004989^(4/5) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(56) 6099996721310386 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^10 6099996721310386 a001 1346269/1322157322203*817138163596^(14/19) 6099996721310386 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^73 6099996721310386 a001 1346269/1322157322203*14662949395604^(2/3) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(58) 6099996721310386 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^12 6099996721310386 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^75 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(60) 6099996721310386 a001 1346269/3461452808002*23725150497407^(11/16) 6099996721310386 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^14 6099996721310386 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^77 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(62) 6099996721310386 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^79 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(64) 6099996721310386 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^81 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(66) 6099996721310386 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^83 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(68) 6099996721310386 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^85 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(70) 6099996721310386 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^87 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(72) 6099996721310386 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^89 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(74) 6099996721310386 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^91 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(76) 6099996721310386 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^93 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(78) 6099996721310386 a004 Fibonacci(31)*Lucas(79)/(1/2+sqrt(5)/2)^95 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(80) 6099996721310386 a004 Fibonacci(31)*Lucas(81)/(1/2+sqrt(5)/2)^97 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(82) 6099996721310386 a004 Fibonacci(31)*Lucas(83)/(1/2+sqrt(5)/2)^99 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(84) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(86) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(88) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(90) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(92) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^78/Lucas(94) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^80/Lucas(96) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^82/Lucas(98) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^83/Lucas(99) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^84/Lucas(100) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^81/Lucas(97) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^79/Lucas(95) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(93) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(91) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(89) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(87) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(85) 6099996721310386 a004 Fibonacci(31)*Lucas(84)/(1/2+sqrt(5)/2)^100 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(83) 6099996721310386 a004 Fibonacci(31)*Lucas(82)/(1/2+sqrt(5)/2)^98 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(81) 6099996721310386 a004 Fibonacci(31)*Lucas(80)/(1/2+sqrt(5)/2)^96 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(79) 6099996721310386 a004 Fibonacci(31)*Lucas(78)/(1/2+sqrt(5)/2)^94 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(77) 6099996721310386 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^92 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(75) 6099996721310386 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^90 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(73) 6099996721310386 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^88 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(71) 6099996721310386 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^86 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(69) 6099996721310386 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^84 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(67) 6099996721310386 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^82 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(65) 6099996721310386 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^80 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(63) 6099996721310386 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^18 6099996721310386 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^20 6099996721310386 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^22 6099996721310386 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^24 6099996721310386 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^26 6099996721310386 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^28 6099996721310386 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^30 6099996721310386 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^32 6099996721310386 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^34 6099996721310386 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^36 6099996721310386 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^38 6099996721310386 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^40 6099996721310386 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^42 6099996721310386 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^44 6099996721310386 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^46 6099996721310386 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^48 6099996721310386 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^50 6099996721310386 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^52 6099996721310386 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^54 6099996721310386 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^78 6099996721310386 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^53 6099996721310386 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^51 6099996721310386 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^49 6099996721310386 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^47 6099996721310386 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^45 6099996721310386 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^43 6099996721310386 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^41 6099996721310386 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^39 6099996721310386 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^37 6099996721310386 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^35 6099996721310386 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^33 6099996721310386 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^31 6099996721310386 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^29 6099996721310386 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^27 6099996721310386 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^25 6099996721310386 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^23 6099996721310386 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^21 6099996721310386 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^19 6099996721310386 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^17 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(61) 6099996721310386 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^15 6099996721310386 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^76 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(59) 6099996721310386 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^13 6099996721310386 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^74 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(57) 6099996721310386 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^11 6099996721310386 a001 1346269/1322157322203*505019158607^(3/4) 6099996721310386 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^72 6099996721310386 a001 1346269/312119004989*14662949395604^(13/21) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(55) 6099996721310386 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^9 6099996721310386 a001 1346269/1322157322203*192900153618^(7/9) 6099996721310386 a001 1346269/5600748293801*192900153618^(5/6) 6099996721310386 a001 1346269/23725150497407*192900153618^(8/9) 6099996721310386 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^70 6099996721310386 a001 1346269/312119004989*192900153618^(13/18) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(53) 6099996721310386 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^7 6099996721310386 a001 1346269/505019158607*73681302247^(10/13) 6099996721310386 a001 1346269/312119004989*73681302247^(3/4) 6099996721310386 a001 1346269/3461452808002*73681302247^(11/13) 6099996721310386 a001 1346269/23725150497407*73681302247^(12/13) 6099996721310386 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^68 6099996721310386 a001 1346269/45537549124*312119004989^(7/11) 6099996721310386 a001 1346269/45537549124*14662949395604^(5/9) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(51) 6099996721310386 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^5 6099996721310386 a001 1346269/45537549124*505019158607^(5/8) 6099996721310386 a001 1346269/505019158607*28143753123^(4/5) 6099996721310386 a001 1346269/5600748293801*28143753123^(9/10) 6099996721310386 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^66 6099996721310386 a001 1346269/45537549124*28143753123^(7/10) 6099996721310386 a001 1346269/17393796001*45537549124^(11/17) 6099996721310386 a001 1346269/17393796001*312119004989^(3/5) 6099996721310386 a001 1346269/17393796001*817138163596^(11/19) 6099996721310386 a001 1346269/17393796001*14662949395604^(11/21) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(49) 6099996721310386 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^3 6099996721310386 a001 1346269/17393796001*192900153618^(11/18) 6099996721310386 a001 1346269/28143753123*10749957122^(17/24) 6099996721310386 a001 1346269/73681302247*10749957122^(3/4) 6099996721310386 a001 1346269/192900153618*10749957122^(19/24) 6099996721310386 a001 1346269/312119004989*10749957122^(13/16) 6099996721310386 a001 1346269/505019158607*10749957122^(5/6) 6099996721310386 a001 1346269/1322157322203*10749957122^(7/8) 6099996721310386 a001 1346269/3461452808002*10749957122^(11/12) 6099996721310386 a001 1346269/5600748293801*10749957122^(15/16) 6099996721310386 a001 1346269/9062201101803*10749957122^(23/24) 6099996721310386 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^64 6099996721310386 a001 1346269/17393796001*10749957122^(11/16) 6099996721310386 a001 4000054745112637/6557470319842 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(47) 6099996721310386 a001 1346269/6643838879*9062201101803^(1/2) 6099996721310386 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2) 6099996721310386 a001 1346269/10749957122*4106118243^(16/23) 6099996721310386 a001 1346269/28143753123*4106118243^(17/23) 6099996721310386 a001 1346269/73681302247*4106118243^(18/23) 6099996721310386 a001 1346269/192900153618*4106118243^(19/23) 6099996721310386 a001 1346269/505019158607*4106118243^(20/23) 6099996721310386 a001 1346269/1322157322203*4106118243^(21/23) 6099996721310386 a001 1346269/3461452808002*4106118243^(22/23) 6099996721310386 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^62 6099996721310386 a001 1527884955772730/2504730781961 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(45) 6099996721310386 a001 567451585/3010349+567451585/3010349*5^(1/2) 6099996721310386 a001 1346269/2537720636*1322157322203^(1/2) 6099996721310386 a001 1346269/4106118243*1568397607^(15/22) 6099996721310386 a001 1346269/10749957122*1568397607^(8/11) 6099996721310386 a001 1346269/17393796001*1568397607^(3/4) 6099996721310386 a001 1346269/28143753123*1568397607^(17/22) 6099996721310386 a001 1346269/73681302247*1568397607^(9/11) 6099996721310386 a001 1346269/192900153618*1568397607^(19/22) 6099996721310386 a001 1346269/505019158607*1568397607^(10/11) 6099996721310386 a001 1346269/1322157322203*1568397607^(21/22) 6099996721310386 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^60 6099996721310386 a001 701408733/3010349*228826127^(1/20) 6099996721310386 a001 1346269/969323029*2537720636^(3/5) 6099996721310386 a001 433494437/3010349*2537720636^(1/15) 6099996721310386 a001 1346269/969323029*45537549124^(9/17) 6099996721310386 a001 433494437/3010349*45537549124^(1/17) 6099996721310386 a001 1346269/969323029*817138163596^(9/19) 6099996721310386 a001 1346269/969323029*14662949395604^(3/7) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(43) 6099996721310386 a001 433494437/3010349*14662949395604^(1/21) 6099996721310386 a001 433494437/3010349*(1/2+1/2*5^(1/2))^3 6099996721310386 a001 1346269/969323029*192900153618^(1/2) 6099996721310386 a001 433494437/3010349*10749957122^(1/16) 6099996721310386 a001 1346269/969323029*10749957122^(9/16) 6099996721310386 a001 433494437/3010349*599074578^(1/14) 6099996721310386 a001 1346269/1568397607*599074578^(2/3) 6099996721310386 a001 102334155/3010349*87403803^(3/19) 6099996721310386 a001 1346269/4106118243*599074578^(5/7) 6099996721310386 a001 1346269/10749957122*599074578^(16/21) 6099996721310386 a001 1346269/17393796001*599074578^(11/14) 6099996721310386 a001 1346269/28143753123*599074578^(17/21) 6099996721310386 a001 1346269/45537549124*599074578^(5/6) 6099996721310386 a001 1346269/73681302247*599074578^(6/7) 6099996721310386 a001 1346269/192900153618*599074578^(19/21) 6099996721310386 a001 1346269/312119004989*599074578^(13/14) 6099996721310386 a001 1346269/505019158607*599074578^(20/21) 6099996721310386 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^58 6099996721310386 a001 1346269/969323029*599074578^(9/14) 6099996721310386 a001 701408733/3010349*87403803^(1/19) 6099996721310386 a001 1346269/370248451*2537720636^(5/9) 6099996721310386 a001 165580141/3010349*2537720636^(1/9) 6099996721310386 a001 1346269/370248451*312119004989^(5/11) 6099996721310386 a001 165580141/3010349*312119004989^(1/11) 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(41) 6099996721310386 a001 165580141/3010349*(1/2+1/2*5^(1/2))^5 6099996721310386 a001 1346269/370248451*3461452808002^(5/12) 6099996721310386 a001 165580141/3010349*28143753123^(1/10) 6099996721310386 a001 1346269/370248451*28143753123^(1/2) 6099996721310386 a001 1346269/599074578*228826127^(13/20) 6099996721310386 a001 165580141/3010349*228826127^(1/8) 6099996721310386 a001 267914296/3010349*87403803^(2/19) 6099996721310386 a001 1346269/1568397607*228826127^(7/10) 6099996721310386 a001 1346269/4106118243*228826127^(3/4) 6099996721310386 a001 1346269/10749957122*228826127^(4/5) 6099996721310386 a001 1346269/28143753123*228826127^(17/20) 6099996721310386 a001 1346269/45537549124*228826127^(7/8) 6099996721310386 a001 1346269/73681302247*228826127^(9/10) 6099996721310386 a001 1346269/192900153618*228826127^(19/20) 6099996721310386 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^56 6099996721310386 a001 1346269/370248451*228826127^(5/8) 6099996721310386 a001 701408733/3010349*33385282^(1/18) 6099996721310386 a001 63245986/3010349*17393796001^(1/7) 6099996721310386 a001 85146110326234/139583862445 6099996721310386 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(39) 6099996721310386 a001 63245986/3010349*14662949395604^(1/9) 6099996721310386 a001 63245986/3010349*(1/2+1/2*5^(1/2))^7 6099996721310386 a001 1346269/141422324*4106118243^(1/2) 6099996721310386 a001 63245986/3010349*599074578^(1/6) 6099996721310386 a001 1346269/228826127*87403803^(12/19) 6099996721310386 a001 39088169/3010349*33385282^(2/9) 6099996721310386 a001 433494437/3010349*33385282^(1/12) 6099996721310386 a001 1346269/599074578*87403803^(13/19) 6099996721310386 a001 1346269/1568397607*87403803^(14/19) 6099996721310386 a001 267914296/3010349*33385282^(1/9) 6099996721310386 a001 1346269/4106118243*87403803^(15/19) 6099996721310386 a001 1346269/10749957122*87403803^(16/19) 6099996721310386 a001 1346269/28143753123*87403803^(17/19) 6099996721310387 a001 1346269/73681302247*87403803^(18/19) 6099996721310387 a001 102334155/3010349*33385282^(1/6) 6099996721310387 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^54 6099996721310388 a001 1346269/54018521*141422324^(7/13) 6099996721310388 a001 24157817/3010349*141422324^(3/13) 6099996721310388 a001 1346269/54018521*2537720636^(7/15) 6099996721310388 a001 24157817/3010349*2537720636^(1/5) 6099996721310388 a001 1346269/54018521*17393796001^(3/7) 6099996721310388 a001 1346269/54018521*45537549124^(7/17) 6099996721310388 a001 24157817/3010349*45537549124^(3/17) 6099996721310388 a001 32522920134773/53316291173 6099996721310388 a001 1346269/54018521*14662949395604^(1/3) 6099996721310388 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(37) 6099996721310388 a001 24157817/3010349*(1/2+1/2*5^(1/2))^9 6099996721310388 a001 24157817/3010349*192900153618^(1/6) 6099996721310388 a001 1346269/54018521*192900153618^(7/18) 6099996721310388 a001 24157817/3010349*10749957122^(3/16) 6099996721310388 a001 1346269/54018521*10749957122^(7/16) 6099996721310388 a001 24157817/3010349*599074578^(3/14) 6099996721310388 a001 1346269/54018521*599074578^(1/2) 6099996721310388 a001 701408733/3010349*12752043^(1/17) 6099996721310388 a001 1346269/87403803*33385282^(11/18) 6099996721310389 a001 24157817/3010349*33385282^(1/4) 6099996721310389 a001 1346269/228826127*33385282^(2/3) 6099996721310390 a001 1346269/599074578*33385282^(13/18) 6099996721310390 a001 1346269/969323029*33385282^(3/4) 6099996721310390 a001 1346269/1568397607*33385282^(7/9) 6099996721310390 a001 267914296/3010349*12752043^(2/17) 6099996721310390 a001 1346269/4106118243*33385282^(5/6) 6099996721310391 a001 1346269/10749957122*33385282^(8/9) 6099996721310391 a001 1346269/17393796001*33385282^(11/12) 6099996721310391 a001 1346269/28143753123*33385282^(17/18) 6099996721310391 a001 1346269/54018521*33385282^(7/12) 6099996721310391 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^52 6099996721310391 a001 14930352/3010349*12752043^(5/17) 6099996721310392 a001 102334155/3010349*12752043^(3/17) 6099996721310394 a001 39088169/3010349*12752043^(4/17) 6099996721310397 a001 39088169/7881196*1860498^(1/3) 6099996721310400 a001 12422650078085/20365011074 6099996721310400 a001 1346269/20633239*817138163596^(1/3) 6099996721310400 a001 1346269/20633239*(1/2+1/2*5^(1/2))^19 6099996721310400 a001 9227465/3010349*(1/2+1/2*5^(1/2))^11 6099996721310400 a001 9227465/3010349*1568397607^(1/4) 6099996721310400 a001 1346269/20633239*87403803^(1/2) 6099996721310402 a001 701408733/3010349*4870847^(1/16) 6099996721310402 a001 1346269/33385282*12752043^(10/17) 6099996721310409 a001 1346269/87403803*12752043^(11/17) 6099996721310412 a001 1346269/228826127*12752043^(12/17) 6099996721310412 a001 31622993/16692641*1860498^(2/5) 6099996721310414 a001 1346269/599074578*12752043^(13/17) 6099996721310417 a001 1346269/1568397607*12752043^(14/17) 6099996721310417 a001 165580141/87403803*1860498^(2/5) 6099996721310417 a001 433494437/228826127*1860498^(2/5) 6099996721310418 a001 567451585/299537289*1860498^(2/5) 6099996721310418 a001 2971215073/1568397607*1860498^(2/5) 6099996721310418 a001 7778742049/4106118243*1860498^(2/5) 6099996721310418 a001 10182505537/5374978561*1860498^(2/5) 6099996721310418 a001 53316291173/28143753123*1860498^(2/5) 6099996721310418 a001 139583862445/73681302247*1860498^(2/5) 6099996721310418 a001 182717648081/96450076809*1860498^(2/5) 6099996721310418 a001 956722026041/505019158607*1860498^(2/5) 6099996721310418 a001 10610209857723/5600748293801*1860498^(2/5) 6099996721310418 a001 591286729879/312119004989*1860498^(2/5) 6099996721310418 a001 225851433717/119218851371*1860498^(2/5) 6099996721310418 a001 21566892818/11384387281*1860498^(2/5) 6099996721310418 a001 32951280099/17393796001*1860498^(2/5) 6099996721310418 a001 12586269025/6643838879*1860498^(2/5) 6099996721310418 a001 1201881744/634430159*1860498^(2/5) 6099996721310418 a001 1836311903/969323029*1860498^(2/5) 6099996721310418 a001 701408733/370248451*1860498^(2/5) 6099996721310418 a001 66978574/35355581*1860498^(2/5) 6099996721310418 a001 267914296/3010349*4870847^(1/8) 6099996721310419 a001 1346269/4106118243*12752043^(15/17) 6099996721310420 a001 102334155/54018521*1860498^(2/5) 6099996721310421 a001 1346269/10749957122*12752043^(16/17) 6099996721310423 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^50 6099996721310431 a001 39088169/20633239*1860498^(2/5) 6099996721310434 a001 102334155/3010349*4870847^(3/16) 6099996721310445 a001 5702887/3010349*4870847^(3/8) 6099996721310449 a001 39088169/3010349*4870847^(1/4) 6099996721310461 a001 14930352/3010349*4870847^(5/16) 6099996721310484 a001 3524578/3010349*141422324^(1/3) 6099996721310484 a001 4745030099482/7778742049 6099996721310484 a001 1346269/7881196*45537549124^(1/3) 6099996721310484 a001 1346269/7881196*(1/2+1/2*5^(1/2))^17 6099996721310484 a001 3524578/3010349*(1/2+1/2*5^(1/2))^13 6099996721310484 a001 3524578/3010349*73681302247^(1/4) 6099996721310493 a001 1346269/12752043*4870847^(9/16) 6099996721310494 a001 2178309/7881196*1860498^(8/15) 6099996721310503 a001 1346269/7881196*12752043^(1/2) 6099996721310503 a001 701408733/3010349*1860498^(1/15) 6099996721310510 a001 3732588/1970299*1860498^(2/5) 6099996721310512 a001 9227465/12752043*1860498^(7/15) 6099996721310519 a001 5702887/12752043*1860498^(1/2) 6099996721310527 a001 2178309/20633239*1860498^(3/5) 6099996721310532 a001 24157817/33385282*1860498^(7/15) 6099996721310535 a001 63245986/87403803*1860498^(7/15) 6099996721310535 a001 165580141/228826127*1860498^(7/15) 6099996721310535 a001 433494437/599074578*1860498^(7/15) 6099996721310535 a001 1134903170/1568397607*1860498^(7/15) 6099996721310535 a001 2971215073/4106118243*1860498^(7/15) 6099996721310535 a001 7778742049/10749957122*1860498^(7/15) 6099996721310535 a001 20365011074/28143753123*1860498^(7/15) 6099996721310535 a001 53316291173/73681302247*1860498^(7/15) 6099996721310535 a001 139583862445/192900153618*1860498^(7/15) 6099996721310535 a001 365435296162/505019158607*1860498^(7/15) 6099996721310535 a001 10610209857723/14662949395604*1860498^(7/15) 6099996721310535 a001 591286729879/817138163596*1860498^(7/15) 6099996721310535 a001 225851433717/312119004989*1860498^(7/15) 6099996721310535 a001 86267571272/119218851371*1860498^(7/15) 6099996721310535 a001 32951280099/45537549124*1860498^(7/15) 6099996721310535 a001 12586269025/17393796001*1860498^(7/15) 6099996721310535 a001 4807526976/6643838879*1860498^(7/15) 6099996721310535 a001 1836311903/2537720636*1860498^(7/15) 6099996721310535 a001 701408733/969323029*1860498^(7/15) 6099996721310535 a001 267914296/370248451*1860498^(7/15) 6099996721310535 a001 102334155/141422324*1860498^(7/15) 6099996721310536 a001 39088169/54018521*1860498^(7/15) 6099996721310538 a001 2971215073/12752043*710647^(1/14) 6099996721310539 a001 31622993/930249*710647^(3/14) 6099996721310541 a001 1346269/33385282*4870847^(5/8) 6099996721310544 a001 14930352/20633239*1860498^(7/15) 6099996721310562 a001 1346269/87403803*4870847^(11/16) 6099996721310562 a001 433494437/3010349*1860498^(1/10) 6099996721310570 a001 7778742049/33385282*710647^(1/14) 6099996721310575 a001 20365011074/87403803*710647^(1/14) 6099996721310575 a001 53316291173/228826127*710647^(1/14) 6099996721310575 a001 139583862445/599074578*710647^(1/14) 6099996721310575 a001 365435296162/1568397607*710647^(1/14) 6099996721310575 a001 956722026041/4106118243*710647^(1/14) 6099996721310575 a001 2504730781961/10749957122*710647^(1/14) 6099996721310575 a001 6557470319842/28143753123*710647^(1/14) 6099996721310575 a001 10610209857723/45537549124*710647^(1/14) 6099996721310575 a001 4052739537881/17393796001*710647^(1/14) 6099996721310575 a001 1548008755920/6643838879*710647^(1/14) 6099996721310575 a001 591286729879/2537720636*710647^(1/14) 6099996721310575 a001 225851433717/969323029*710647^(1/14) 6099996721310575 a001 86267571272/370248451*710647^(1/14) 6099996721310576 a001 63246219/271444*710647^(1/14) 6099996721310578 a001 12586269025/54018521*710647^(1/14) 6099996721310578 a001 1346269/228826127*4870847^(3/4) 6099996721310583 a001 7465176/16692641*1860498^(1/2) 6099996721310590 a001 4807526976/20633239*710647^(1/14) 6099996721310592 a001 39088169/87403803*1860498^(1/2) 6099996721310594 a001 102334155/228826127*1860498^(1/2) 6099996721310594 a001 133957148/299537289*1860498^(1/2) 6099996721310594 a001 701408733/1568397607*1860498^(1/2) 6099996721310594 a001 1836311903/4106118243*1860498^(1/2) 6099996721310594 a001 2403763488/5374978561*1860498^(1/2) 6099996721310594 a001 12586269025/28143753123*1860498^(1/2) 6099996721310594 a001 32951280099/73681302247*1860498^(1/2) 6099996721310594 a001 43133785636/96450076809*1860498^(1/2) 6099996721310594 a001 225851433717/505019158607*1860498^(1/2) 6099996721310594 a001 591286729879/1322157322203*1860498^(1/2) 6099996721310594 a001 10610209857723/23725150497407*1860498^(1/2) 6099996721310594 a001 182717648081/408569081798*1860498^(1/2) 6099996721310594 a001 139583862445/312119004989*1860498^(1/2) 6099996721310594 a001 53316291173/119218851371*1860498^(1/2) 6099996721310594 a001 10182505537/22768774562*1860498^(1/2) 6099996721310594 a001 7778742049/17393796001*1860498^(1/2) 6099996721310594 a001 2971215073/6643838879*1860498^(1/2) 6099996721310594 a001 567451585/1268860318*1860498^(1/2) 6099996721310594 a001 433494437/969323029*1860498^(1/2) 6099996721310594 a001 165580141/370248451*1860498^(1/2) 6099996721310594 a001 31622993/70711162*1860498^(1/2) 6099996721310595 a001 1346269/599074578*4870847^(13/16) 6099996721310596 a001 5702887/7881196*1860498^(7/15) 6099996721310598 a001 24157817/54018521*1860498^(1/2) 6099996721310611 a001 1346269/1568397607*4870847^(7/8) 6099996721310621 a001 267914296/3010349*1860498^(2/15) 6099996721310622 a001 9227465/20633239*1860498^(1/2) 6099996721310627 a001 1346269/4106118243*4870847^(15/16) 6099996721310629 a001 5702887/20633239*1860498^(8/15) 6099996721310632 a001 2178309/54018521*1860498^(2/3) 6099996721310643 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^48 6099996721310649 a001 14930352/54018521*1860498^(8/15) 6099996721310652 a001 39088169/141422324*1860498^(8/15) 6099996721310652 a001 102334155/370248451*1860498^(8/15) 6099996721310653 a001 267914296/969323029*1860498^(8/15) 6099996721310653 a001 701408733/2537720636*1860498^(8/15) 6099996721310653 a001 1836311903/6643838879*1860498^(8/15) 6099996721310653 a001 4807526976/17393796001*1860498^(8/15) 6099996721310653 a001 12586269025/45537549124*1860498^(8/15) 6099996721310653 a001 32951280099/119218851371*1860498^(8/15) 6099996721310653 a001 86267571272/312119004989*1860498^(8/15) 6099996721310653 a001 225851433717/817138163596*1860498^(8/15) 6099996721310653 a001 1548008755920/5600748293801*1860498^(8/15) 6099996721310653 a001 139583862445/505019158607*1860498^(8/15) 6099996721310653 a001 53316291173/192900153618*1860498^(8/15) 6099996721310653 a001 20365011074/73681302247*1860498^(8/15) 6099996721310653 a001 7778742049/28143753123*1860498^(8/15) 6099996721310653 a001 2971215073/10749957122*1860498^(8/15) 6099996721310653 a001 1134903170/4106118243*1860498^(8/15) 6099996721310653 a001 433494437/1568397607*1860498^(8/15) 6099996721310653 a001 165580141/599074578*1860498^(8/15) 6099996721310653 a001 63245986/228826127*1860498^(8/15) 6099996721310654 a001 24157817/87403803*1860498^(8/15) 6099996721310661 a001 9227465/33385282*1860498^(8/15) 6099996721310674 a001 1836311903/7881196*710647^(1/14) 6099996721310680 a001 165580141/3010349*1860498^(1/6) 6099996721310688 a001 726103/29134601*1860498^(7/10) 6099996721310713 a001 3524578/12752043*1860498^(8/15) 6099996721310735 a001 5702887/54018521*1860498^(3/5) 6099996721310738 a001 102334155/3010349*1860498^(1/5) 6099996721310748 a001 2178309/141422324*1860498^(11/15) 6099996721310765 a001 3732588/35355581*1860498^(3/5) 6099996721310769 a001 39088169/370248451*1860498^(3/5) 6099996721310770 a001 102334155/969323029*1860498^(3/5) 6099996721310770 a001 66978574/634430159*1860498^(3/5) 6099996721310770 a001 701408733/6643838879*1860498^(3/5) 6099996721310770 a001 1836311903/17393796001*1860498^(3/5) 6099996721310770 a001 1201881744/11384387281*1860498^(3/5) 6099996721310770 a001 12586269025/119218851371*1860498^(3/5) 6099996721310770 a001 32951280099/312119004989*1860498^(3/5) 6099996721310770 a001 21566892818/204284540899*1860498^(3/5) 6099996721310770 a001 225851433717/2139295485799*1860498^(3/5) 6099996721310770 a001 182717648081/1730726404001*1860498^(3/5) 6099996721310770 a001 139583862445/1322157322203*1860498^(3/5) 6099996721310770 a001 53316291173/505019158607*1860498^(3/5) 6099996721310770 a001 10182505537/96450076809*1860498^(3/5) 6099996721310770 a001 7778742049/73681302247*1860498^(3/5) 6099996721310770 a001 2971215073/28143753123*1860498^(3/5) 6099996721310770 a001 567451585/5374978561*1860498^(3/5) 6099996721310770 a001 433494437/4106118243*1860498^(3/5) 6099996721310770 a001 165580141/1568397607*1860498^(3/5) 6099996721310770 a001 31622993/299537289*1860498^(3/5) 6099996721310772 a001 24157817/228826127*1860498^(3/5) 6099996721310784 a001 9227465/87403803*1860498^(3/5) 6099996721310790 a001 1762289/3940598*1860498^(1/2) 6099996721310813 a001 165580141/1149851*439204^(1/9) 6099996721310850 a001 5702887/141422324*1860498^(2/3) 6099996721310855 a001 39088169/3010349*1860498^(4/15) 6099996721310863 a001 1762289/16692641*1860498^(3/5) 6099996721310865 a001 2178309/370248451*1860498^(4/5) 6099996721310882 a001 14930352/370248451*1860498^(2/3) 6099996721310887 a001 39088169/969323029*1860498^(2/3) 6099996721310887 a001 9303105/230701876*1860498^(2/3) 6099996721310887 a001 267914296/6643838879*1860498^(2/3) 6099996721310887 a001 701408733/17393796001*1860498^(2/3) 6099996721310887 a001 1836311903/45537549124*1860498^(2/3) 6099996721310887 a001 4807526976/119218851371*1860498^(2/3) 6099996721310887 a001 1144206275/28374454999*1860498^(2/3) 6099996721310887 a001 32951280099/817138163596*1860498^(2/3) 6099996721310887 a001 86267571272/2139295485799*1860498^(2/3) 6099996721310887 a001 225851433717/5600748293801*1860498^(2/3) 6099996721310887 a001 591286729879/14662949395604*1860498^(2/3) 6099996721310887 a001 365435296162/9062201101803*1860498^(2/3) 6099996721310887 a001 139583862445/3461452808002*1860498^(2/3) 6099996721310887 a001 53316291173/1322157322203*1860498^(2/3) 6099996721310887 a001 20365011074/505019158607*1860498^(2/3) 6099996721310887 a001 7778742049/192900153618*1860498^(2/3) 6099996721310887 a001 2971215073/73681302247*1860498^(2/3) 6099996721310887 a001 1134903170/28143753123*1860498^(2/3) 6099996721310887 a001 433494437/10749957122*1860498^(2/3) 6099996721310888 a001 165580141/4106118243*1860498^(2/3) 6099996721310888 a001 63245986/1568397607*1860498^(2/3) 6099996721310890 a001 24157817/599074578*1860498^(2/3) 6099996721310902 a001 9227465/228826127*1860498^(2/3) 6099996721310909 a001 5702887/228826127*1860498^(7/10) 6099996721310917 a001 24157817/3010349*1860498^(3/10) 6099996721310924 a001 726103/199691526*1860498^(5/6) 6099996721310941 a001 829464/33281921*1860498^(7/10) 6099996721310945 a001 39088169/1568397607*1860498^(7/10) 6099996721310946 a001 34111385/1368706081*1860498^(7/10) 6099996721310946 a001 133957148/5374978561*1860498^(7/10) 6099996721310946 a001 233802911/9381251041*1860498^(7/10) 6099996721310946 a001 1836311903/73681302247*1860498^(7/10) 6099996721310946 a001 267084832/10716675201*1860498^(7/10) 6099996721310946 a001 12586269025/505019158607*1860498^(7/10) 6099996721310946 a001 10983760033/440719107401*1860498^(7/10) 6099996721310946 a001 43133785636/1730726404001*1860498^(7/10) 6099996721310946 a001 75283811239/3020733700601*1860498^(7/10) 6099996721310946 a001 182717648081/7331474697802*1860498^(7/10) 6099996721310946 a001 139583862445/5600748293801*1860498^(7/10) 6099996721310946 a001 53316291173/2139295485799*1860498^(7/10) 6099996721310946 a001 10182505537/408569081798*1860498^(7/10) 6099996721310946 a001 7778742049/312119004989*1860498^(7/10) 6099996721310946 a001 2971215073/119218851371*1860498^(7/10) 6099996721310946 a001 567451585/22768774562*1860498^(7/10) 6099996721310946 a001 433494437/17393796001*1860498^(7/10) 6099996721310946 a001 165580141/6643838879*1860498^(7/10) 6099996721310947 a001 31622993/1268860318*1860498^(7/10) 6099996721310948 a001 24157817/969323029*1860498^(7/10) 6099996721310951 a001 2178309/3010349*1860498^(7/15) 6099996721310961 a001 9227465/370248451*1860498^(7/10) 6099996721310968 a001 5702887/370248451*1860498^(11/15) 6099996721310968 a001 14930352/3010349*1860498^(1/3) 6099996721310969 a001 39088169/1860498*710647^(1/4) 6099996721310983 a001 2178309/969323029*1860498^(13/15) 6099996721310985 a001 3524578/87403803*1860498^(2/3) 6099996721311000 a001 14930352/969323029*1860498^(11/15) 6099996721311004 a001 39088169/2537720636*1860498^(11/15) 6099996721311005 a001 102334155/6643838879*1860498^(11/15) 6099996721311005 a001 9238424/599786069*1860498^(11/15) 6099996721311005 a001 701408733/45537549124*1860498^(11/15) 6099996721311005 a001 1836311903/119218851371*1860498^(11/15) 6099996721311005 a001 4807526976/312119004989*1860498^(11/15) 6099996721311005 a001 12586269025/817138163596*1860498^(11/15) 6099996721311005 a001 32951280099/2139295485799*1860498^(11/15) 6099996721311005 a001 86267571272/5600748293801*1860498^(11/15) 6099996721311005 a001 7787980473/505618944676*1860498^(11/15) 6099996721311005 a001 365435296162/23725150497407*1860498^(11/15) 6099996721311005 a001 139583862445/9062201101803*1860498^(11/15) 6099996721311005 a001 53316291173/3461452808002*1860498^(11/15) 6099996721311005 a001 20365011074/1322157322203*1860498^(11/15) 6099996721311005 a001 7778742049/505019158607*1860498^(11/15) 6099996721311005 a001 2971215073/192900153618*1860498^(11/15) 6099996721311005 a001 1134903170/73681302247*1860498^(11/15) 6099996721311005 a001 433494437/28143753123*1860498^(11/15) 6099996721311005 a001 165580141/10749957122*1860498^(11/15) 6099996721311005 a001 63245986/4106118243*1860498^(11/15) 6099996721311007 a001 24157817/1568397607*1860498^(11/15) 6099996721311014 a001 1346269/3010349*7881196^(5/11) 6099996721311019 a001 9227465/599074578*1860498^(11/15) 6099996721311042 a001 311187/224056801*1860498^(9/10) 6099996721311045 a001 1762289/70711162*1860498^(7/10) 6099996721311053 a001 1346269/3010349*20633239^(3/7) 6099996721311053 a001 5702887/3010349*1860498^(2/5) 6099996721311059 a001 1346269/3010349*141422324^(5/13) 6099996721311059 a001 1346269/3010349*2537720636^(1/3) 6099996721311059 a001 1812440220361/2971215073 6099996721311059 a001 1346269/3010349*45537549124^(5/17) 6099996721311059 a001 1346269/3010349*312119004989^(3/11) 6099996721311059 a001 1346269/3010349*14662949395604^(5/21) 6099996721311059 a001 1346269/3010349*(1/2+1/2*5^(1/2))^15 6099996721311059 a001 1346269/3010349*192900153618^(5/18) 6099996721311059 a001 1346269/3010349*28143753123^(3/10) 6099996721311059 a001 1346269/3010349*10749957122^(5/16) 6099996721311059 a001 1346269/3010349*599074578^(5/14) 6099996721311059 a001 1346269/3010349*228826127^(3/8) 6099996721311061 a001 1346269/3010349*33385282^(5/12) 6099996721311069 a001 1346269/4870847*1860498^(8/15) 6099996721311085 a001 5702887/969323029*1860498^(4/5) 6099996721311100 a001 2178309/2537720636*1860498^(14/15) 6099996721311103 a001 3524578/228826127*1860498^(11/15) 6099996721311117 a001 196452/33391061*1860498^(4/5) 6099996721311122 a001 39088169/6643838879*1860498^(4/5) 6099996721311122 a001 102334155/17393796001*1860498^(4/5) 6099996721311122 a001 66978574/11384387281*1860498^(4/5) 6099996721311122 a001 701408733/119218851371*1860498^(4/5) 6099996721311122 a001 1836311903/312119004989*1860498^(4/5) 6099996721311122 a001 1201881744/204284540899*1860498^(4/5) 6099996721311122 a001 12586269025/2139295485799*1860498^(4/5) 6099996721311122 a001 32951280099/5600748293801*1860498^(4/5) 6099996721311122 a001 1135099622/192933544679*1860498^(4/5) 6099996721311122 a001 139583862445/23725150497407*1860498^(4/5) 6099996721311122 a001 53316291173/9062201101803*1860498^(4/5) 6099996721311122 a001 10182505537/1730726404001*1860498^(4/5) 6099996721311122 a001 7778742049/1322157322203*1860498^(4/5) 6099996721311122 a001 2971215073/505019158607*1860498^(4/5) 6099996721311122 a001 567451585/96450076809*1860498^(4/5) 6099996721311122 a001 433494437/73681302247*1860498^(4/5) 6099996721311123 a001 165580141/28143753123*1860498^(4/5) 6099996721311123 a001 31622993/5374978561*1860498^(4/5) 6099996721311125 a001 24157817/4106118243*1860498^(4/5) 6099996721311137 a001 9227465/1568397607*1860498^(4/5) 6099996721311144 a001 5702887/1568397607*1860498^(5/6) 6099996721311176 a001 4976784/1368706081*1860498^(5/6) 6099996721311180 a001 39088169/10749957122*1860498^(5/6) 6099996721311181 a001 433494437/4870847*710647^(1/7) 6099996721311181 a001 831985/228811001*1860498^(5/6) 6099996721311181 a001 267914296/73681302247*1860498^(5/6) 6099996721311181 a001 233802911/64300051206*1860498^(5/6) 6099996721311181 a001 1836311903/505019158607*1860498^(5/6) 6099996721311181 a001 1602508992/440719107401*1860498^(5/6) 6099996721311181 a001 12586269025/3461452808002*1860498^(5/6) 6099996721311181 a001 10983760033/3020733700601*1860498^(5/6) 6099996721311181 a001 86267571272/23725150497407*1860498^(5/6) 6099996721311181 a001 53316291173/14662949395604*1860498^(5/6) 6099996721311181 a001 20365011074/5600748293801*1860498^(5/6) 6099996721311181 a001 7778742049/2139295485799*1860498^(5/6) 6099996721311181 a001 2971215073/817138163596*1860498^(5/6) 6099996721311181 a001 1134903170/312119004989*1860498^(5/6) 6099996721311181 a001 433494437/119218851371*1860498^(5/6) 6099996721311181 a001 165580141/45537549124*1860498^(5/6) 6099996721311182 a001 63245986/17393796001*1860498^(5/6) 6099996721311183 a001 24157817/6643838879*1860498^(5/6) 6099996721311196 a001 9227465/2537720636*1860498^(5/6) 6099996721311202 a001 5702887/2537720636*1860498^(13/15) 6099996721311218 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^47 6099996721311221 a001 1762289/299537289*1860498^(4/5) 6099996721311234 a001 14930352/6643838879*1860498^(13/15) 6099996721311239 a001 39088169/17393796001*1860498^(13/15) 6099996721311240 a001 102334155/45537549124*1860498^(13/15) 6099996721311240 a001 267914296/119218851371*1860498^(13/15) 6099996721311240 a001 3524667/1568437211*1860498^(13/15) 6099996721311240 a001 1836311903/817138163596*1860498^(13/15) 6099996721311240 a001 4807526976/2139295485799*1860498^(13/15) 6099996721311240 a001 12586269025/5600748293801*1860498^(13/15) 6099996721311240 a001 32951280099/14662949395604*1860498^(13/15) 6099996721311240 a001 53316291173/23725150497407*1860498^(13/15) 6099996721311240 a001 20365011074/9062201101803*1860498^(13/15) 6099996721311240 a001 7778742049/3461452808002*1860498^(13/15) 6099996721311240 a001 2971215073/1322157322203*1860498^(13/15) 6099996721311240 a001 1134903170/505019158607*1860498^(13/15) 6099996721311240 a001 433494437/192900153618*1860498^(13/15) 6099996721311240 a001 165580141/73681302247*1860498^(13/15) 6099996721311240 a001 63245986/28143753123*1860498^(13/15) 6099996721311242 a001 24157817/10749957122*1860498^(13/15) 6099996721311249 a001 701408733/3010349*710647^(1/14) 6099996721311254 a001 9227465/4106118243*1860498^(13/15) 6099996721311261 a001 5702887/4106118243*1860498^(9/10) 6099996721311279 a001 3524578/969323029*1860498^(5/6) 6099996721311293 a001 7465176/5374978561*1860498^(9/10) 6099996721311298 a001 39088169/28143753123*1860498^(9/10) 6099996721311299 a001 14619165/10525900321*1860498^(9/10) 6099996721311299 a001 133957148/96450076809*1860498^(9/10) 6099996721311299 a001 701408733/505019158607*1860498^(9/10) 6099996721311299 a001 1836311903/1322157322203*1860498^(9/10) 6099996721311299 a001 14930208/10749853441*1860498^(9/10) 6099996721311299 a001 12586269025/9062201101803*1860498^(9/10) 6099996721311299 a001 32951280099/23725150497407*1860498^(9/10) 6099996721311299 a001 10182505537/7331474697802*1860498^(9/10) 6099996721311299 a001 7778742049/5600748293801*1860498^(9/10) 6099996721311299 a001 2971215073/2139295485799*1860498^(9/10) 6099996721311299 a001 567451585/408569081798*1860498^(9/10) 6099996721311299 a001 433494437/312119004989*1860498^(9/10) 6099996721311299 a001 165580141/119218851371*1860498^(9/10) 6099996721311299 a001 31622993/22768774562*1860498^(9/10) 6099996721311301 a001 24157817/17393796001*1860498^(9/10) 6099996721311313 a001 9227465/6643838879*1860498^(9/10) 6099996721311320 a001 5702887/6643838879*1860498^(14/15) 6099996721311338 a001 3524578/1568397607*1860498^(13/15) 6099996721311352 a001 14930352/17393796001*1860498^(14/15) 6099996721311357 a001 39088169/45537549124*1860498^(14/15) 6099996721311357 a001 102334155/119218851371*1860498^(14/15) 6099996721311357 a001 267914296/312119004989*1860498^(14/15) 6099996721311357 a001 701408733/817138163596*1860498^(14/15) 6099996721311357 a001 1836311903/2139295485799*1860498^(14/15) 6099996721311357 a001 4807526976/5600748293801*1860498^(14/15) 6099996721311357 a001 12586269025/14662949395604*1860498^(14/15) 6099996721311357 a001 20365011074/23725150497407*1860498^(14/15) 6099996721311357 a001 7778742049/9062201101803*1860498^(14/15) 6099996721311357 a001 2971215073/3461452808002*1860498^(14/15) 6099996721311357 a001 1134903170/1322157322203*1860498^(14/15) 6099996721311357 a001 433494437/505019158607*1860498^(14/15) 6099996721311357 a001 165580141/192900153618*1860498^(14/15) 6099996721311358 a001 63245986/73681302247*1860498^(14/15) 6099996721311360 a001 24157817/28143753123*1860498^(14/15) 6099996721311372 a001 9227465/10749957122*1860498^(14/15) 6099996721311397 a001 1762289/1268860318*1860498^(9/10) 6099996721311401 a001 1134903170/12752043*710647^(1/7) 6099996721311404 a001 24157817/1860498*710647^(2/7) 6099996721311406 a001 1346269/12752043*1860498^(3/5) 6099996721311433 a001 2971215073/33385282*710647^(1/7) 6099996721311437 a001 7778742049/87403803*710647^(1/7) 6099996721311437 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^49 6099996721311438 a001 20365011074/228826127*710647^(1/7) 6099996721311438 a001 53316291173/599074578*710647^(1/7) 6099996721311438 a001 139583862445/1568397607*710647^(1/7) 6099996721311438 a001 365435296162/4106118243*710647^(1/7) 6099996721311438 a001 956722026041/10749957122*710647^(1/7) 6099996721311438 a001 2504730781961/28143753123*710647^(1/7) 6099996721311438 a001 6557470319842/73681302247*710647^(1/7) 6099996721311438 a001 10610209857723/119218851371*710647^(1/7) 6099996721311438 a001 4052739537881/45537549124*710647^(1/7) 6099996721311438 a001 1548008755920/17393796001*710647^(1/7) 6099996721311438 a001 591286729879/6643838879*710647^(1/7) 6099996721311438 a001 225851433717/2537720636*710647^(1/7) 6099996721311438 a001 86267571272/969323029*710647^(1/7) 6099996721311438 a001 32951280099/370248451*710647^(1/7) 6099996721311438 a001 12586269025/141422324*710647^(1/7) 6099996721311440 a001 4807526976/54018521*710647^(1/7) 6099996721311453 a001 1836311903/20633239*710647^(1/7) 6099996721311456 a001 3524578/4106118243*1860498^(14/15) 6099996721311469 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^51 6099996721311474 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^53 6099996721311475 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^55 6099996721311475 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^57 6099996721311475 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^59 6099996721311475 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^61 6099996721311475 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^63 6099996721311475 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^65 6099996721311475 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^67 6099996721311475 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^69 6099996721311475 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^71 6099996721311475 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^73 6099996721311475 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^75 6099996721311475 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^77 6099996721311475 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^79 6099996721311475 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^81 6099996721311475 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^83 6099996721311475 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^85 6099996721311475 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^87 6099996721311475 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^89 6099996721311475 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^91 6099996721311475 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^93 6099996721311475 a004 Fibonacci(80)*Lucas(30)/(1/2+sqrt(5)/2)^95 6099996721311475 a004 Fibonacci(82)*Lucas(30)/(1/2+sqrt(5)/2)^97 6099996721311475 a004 Fibonacci(84)*Lucas(30)/(1/2+sqrt(5)/2)^99 6099996721311475 a004 Fibonacci(85)*Lucas(30)/(1/2+sqrt(5)/2)^100 6099996721311475 a004 Fibonacci(83)*Lucas(30)/(1/2+sqrt(5)/2)^98 6099996721311475 a004 Fibonacci(81)*Lucas(30)/(1/2+sqrt(5)/2)^96 6099996721311475 a004 Fibonacci(79)*Lucas(30)/(1/2+sqrt(5)/2)^94 6099996721311475 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^92 6099996721311475 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^90 6099996721311475 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^88 6099996721311475 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^86 6099996721311475 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^84 6099996721311475 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^82 6099996721311475 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^80 6099996721311475 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^78 6099996721311475 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^76 6099996721311475 a001 1/416020*(1/2+1/2*5^(1/2))^45 6099996721311475 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^74 6099996721311475 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^72 6099996721311475 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^70 6099996721311475 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^68 6099996721311475 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^66 6099996721311475 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^64 6099996721311475 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^62 6099996721311475 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^60 6099996721311475 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^58 6099996721311475 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^56 6099996721311475 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^54 6099996721311477 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^52 6099996721311489 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^50 6099996721311536 a001 3524667/39604*710647^(1/7) 6099996721311555 a001 1346269/33385282*1860498^(2/3) 6099996721311573 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^48 6099996721311621 a001 1346269/54018521*1860498^(7/10) 6099996721311677 a001 1346269/87403803*1860498^(11/15) 6099996721311795 a001 1346269/228826127*1860498^(4/5) 6099996721311854 a001 1346269/370248451*1860498^(5/6) 6099996721311913 a001 1346269/599074578*1860498^(13/15) 6099996721311940 a001 1346269/3010349*1860498^(1/2) 6099996721311972 a001 1346269/969323029*1860498^(9/10) 6099996721312031 a001 1346269/1568397607*1860498^(14/15) 6099996721312044 a001 165580141/4870847*710647^(3/14) 6099996721312111 a001 267914296/3010349*710647^(1/7) 6099996721312148 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^46 6099996721312263 a001 433494437/12752043*710647^(3/14) 6099996721312279 a001 9227465/1860498*710647^(5/14) 6099996721312295 a001 567451585/16692641*710647^(3/14) 6099996721312300 a001 2971215073/87403803*710647^(3/14) 6099996721312301 a001 7778742049/228826127*710647^(3/14) 6099996721312301 a001 10182505537/299537289*710647^(3/14) 6099996721312301 a001 53316291173/1568397607*710647^(3/14) 6099996721312301 a001 139583862445/4106118243*710647^(3/14) 6099996721312301 a001 182717648081/5374978561*710647^(3/14) 6099996721312301 a001 956722026041/28143753123*710647^(3/14) 6099996721312301 a001 2504730781961/73681302247*710647^(3/14) 6099996721312301 a001 3278735159921/96450076809*710647^(3/14) 6099996721312301 a001 10610209857723/312119004989*710647^(3/14) 6099996721312301 a001 4052739537881/119218851371*710647^(3/14) 6099996721312301 a001 387002188980/11384387281*710647^(3/14) 6099996721312301 a001 591286729879/17393796001*710647^(3/14) 6099996721312301 a001 225851433717/6643838879*710647^(3/14) 6099996721312301 a001 1135099622/33391061*710647^(3/14) 6099996721312301 a001 32951280099/969323029*710647^(3/14) 6099996721312301 a001 12586269025/370248451*710647^(3/14) 6099996721312301 a001 1201881744/35355581*710647^(3/14) 6099996721312303 a001 1836311903/54018521*710647^(3/14) 6099996721312315 a001 701408733/20633239*710647^(3/14) 6099996721312399 a001 66978574/1970299*710647^(3/14) 6099996721312475 a001 102334155/4870847*710647^(1/4) 6099996721312558 a001 832040/1149851*20633239^(2/5) 6099996721312564 a001 832040/1149851*17393796001^(2/7) 6099996721312564 a001 514229/1860498*(1/2+1/2*5^(1/2))^16 6099996721312564 a001 514229/1860498*23725150497407^(1/4) 6099996721312564 a001 832040/1149851*14662949395604^(2/9) 6099996721312564 a001 832040/1149851*(1/2+1/2*5^(1/2))^14 6099996721312564 a001 514229/1860498*73681302247^(4/13) 6099996721312564 a001 832040/1149851*10749957122^(7/24) 6099996721312564 a001 514229/1860498*10749957122^(1/3) 6099996721312564 a001 832040/1149851*4106118243^(7/23) 6099996721312564 a001 514229/1860498*4106118243^(8/23) 6099996721312564 a001 832040/1149851*1568397607^(7/22) 6099996721312564 a001 514229/1860498*1568397607^(4/11) 6099996721312564 a001 427859097160/701408733 6099996721312564 a001 832040/1149851*599074578^(1/3) 6099996721312564 a001 514229/1860498*599074578^(8/21) 6099996721312564 a001 832040/1149851*228826127^(7/20) 6099996721312564 a001 514229/1860498*228826127^(2/5) 6099996721312564 a001 832040/1149851*87403803^(7/19) 6099996721312564 a001 514229/1860498*87403803^(8/19) 6099996721312566 a001 832040/1149851*33385282^(7/18) 6099996721312566 a001 514229/1860498*33385282^(4/9) 6099996721312579 a001 832040/1149851*12752043^(7/17) 6099996721312582 a001 514229/1860498*12752043^(8/17) 6099996721312677 a001 832040/1149851*4870847^(7/16) 6099996721312693 a001 514229/1860498*4870847^(1/2) 6099996721312695 a001 267914296/12752043*710647^(1/4) 6099996721312727 a001 701408733/33385282*710647^(1/4) 6099996721312732 a001 1836311903/87403803*710647^(1/4) 6099996721312732 a001 102287808/4868641*710647^(1/4) 6099996721312732 a001 12586269025/599074578*710647^(1/4) 6099996721312732 a001 32951280099/1568397607*710647^(1/4) 6099996721312732 a001 86267571272/4106118243*710647^(1/4) 6099996721312732 a001 225851433717/10749957122*710647^(1/4) 6099996721312732 a001 591286729879/28143753123*710647^(1/4) 6099996721312732 a001 1548008755920/73681302247*710647^(1/4) 6099996721312732 a001 4052739537881/192900153618*710647^(1/4) 6099996721312732 a001 225749145909/10745088481*710647^(1/4) 6099996721312732 a001 6557470319842/312119004989*710647^(1/4) 6099996721312732 a001 2504730781961/119218851371*710647^(1/4) 6099996721312732 a001 956722026041/45537549124*710647^(1/4) 6099996721312732 a001 365435296162/17393796001*710647^(1/4) 6099996721312732 a001 139583862445/6643838879*710647^(1/4) 6099996721312732 a001 53316291173/2537720636*710647^(1/4) 6099996721312732 a001 20365011074/969323029*710647^(1/4) 6099996721312732 a001 7778742049/370248451*710647^(1/4) 6099996721312733 a001 2971215073/141422324*710647^(1/4) 6099996721312734 a001 1134903170/54018521*710647^(1/4) 6099996721312747 a001 433494437/20633239*710647^(1/4) 6099996721312831 a001 165580141/7881196*710647^(1/4) 6099996721312907 a001 63245986/4870847*710647^(2/7) 6099996721312974 a001 102334155/3010349*710647^(3/14) 6099996721313126 a001 165580141/12752043*710647^(2/7) 6099996721313158 a001 433494437/33385282*710647^(2/7) 6099996721313163 a001 1134903170/87403803*710647^(2/7) 6099996721313164 a001 2971215073/228826127*710647^(2/7) 6099996721313164 a001 7778742049/599074578*710647^(2/7) 6099996721313164 a001 20365011074/1568397607*710647^(2/7) 6099996721313164 a001 53316291173/4106118243*710647^(2/7) 6099996721313164 a001 139583862445/10749957122*710647^(2/7) 6099996721313164 a001 365435296162/28143753123*710647^(2/7) 6099996721313164 a001 956722026041/73681302247*710647^(2/7) 6099996721313164 a001 2504730781961/192900153618*710647^(2/7) 6099996721313164 a001 10610209857723/817138163596*710647^(2/7) 6099996721313164 a001 4052739537881/312119004989*710647^(2/7) 6099996721313164 a001 1548008755920/119218851371*710647^(2/7) 6099996721313164 a001 591286729879/45537549124*710647^(2/7) 6099996721313164 a001 7787980473/599786069*710647^(2/7) 6099996721313164 a001 86267571272/6643838879*710647^(2/7) 6099996721313164 a001 32951280099/2537720636*710647^(2/7) 6099996721313164 a001 12586269025/969323029*710647^(2/7) 6099996721313164 a001 4807526976/370248451*710647^(2/7) 6099996721313164 a001 1836311903/141422324*710647^(2/7) 6099996721313166 a001 701408733/54018521*710647^(2/7) 6099996721313178 a001 9238424/711491*710647^(2/7) 6099996721313221 a001 98209/16692641*439204^(8/9) 6099996721313225 a001 1762289/930249*710647^(3/7) 6099996721313262 a001 102334155/7881196*710647^(2/7) 6099996721313386 a001 832040/1149851*1860498^(7/15) 6099996721313406 a001 63245986/3010349*710647^(1/4) 6099996721313504 a001 514229/1860498*1860498^(8/15) 6099996721313653 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^45 6099996721313771 a001 24157817/4870847*710647^(5/14) 6099996721313836 a001 39088169/3010349*710647^(2/7) 6099996721313989 a001 63245986/12752043*710647^(5/14) 6099996721314016 a001 514229/4870847*7881196^(6/11) 6099996721314021 a001 165580141/33385282*710647^(5/14) 6099996721314026 a001 433494437/87403803*710647^(5/14) 6099996721314026 a001 1134903170/228826127*710647^(5/14) 6099996721314026 a001 2971215073/599074578*710647^(5/14) 6099996721314026 a001 7778742049/1568397607*710647^(5/14) 6099996721314026 a001 20365011074/4106118243*710647^(5/14) 6099996721314026 a001 53316291173/10749957122*710647^(5/14) 6099996721314026 a001 139583862445/28143753123*710647^(5/14) 6099996721314026 a001 365435296162/73681302247*710647^(5/14) 6099996721314026 a001 956722026041/192900153618*710647^(5/14) 6099996721314026 a001 2504730781961/505019158607*710647^(5/14) 6099996721314026 a001 10610209857723/2139295485799*710647^(5/14) 6099996721314026 a001 4052739537881/817138163596*710647^(5/14) 6099996721314026 a001 140728068720/28374454999*710647^(5/14) 6099996721314026 a001 591286729879/119218851371*710647^(5/14) 6099996721314026 a001 225851433717/45537549124*710647^(5/14) 6099996721314026 a001 86267571272/17393796001*710647^(5/14) 6099996721314026 a001 32951280099/6643838879*710647^(5/14) 6099996721314026 a001 1144206275/230701876*710647^(5/14) 6099996721314026 a001 4807526976/969323029*710647^(5/14) 6099996721314027 a001 1836311903/370248451*710647^(5/14) 6099996721314027 a001 701408733/141422324*710647^(5/14) 6099996721314029 a001 267914296/54018521*710647^(5/14) 6099996721314033 a001 2178309/1149851*7881196^(4/11) 6099996721314041 a001 9303105/1875749*710647^(5/14) 6099996721314069 a001 514229/4870847*141422324^(6/13) 6099996721314069 a001 2178309/1149851*141422324^(4/13) 6099996721314069 a001 514229/4870847*2537720636^(2/5) 6099996721314069 a001 2178309/1149851*2537720636^(4/15) 6099996721314069 a001 514229/4870847*45537549124^(6/17) 6099996721314069 a001 2178309/1149851*45537549124^(4/17) 6099996721314069 a001 514229/4870847*14662949395604^(2/7) 6099996721314069 a001 514229/4870847*(1/2+1/2*5^(1/2))^18 6099996721314069 a001 2178309/1149851*817138163596^(4/19) 6099996721314069 a001 2178309/1149851*14662949395604^(4/21) 6099996721314069 a001 2178309/1149851*(1/2+1/2*5^(1/2))^12 6099996721314069 a001 2178309/1149851*192900153618^(2/9) 6099996721314069 a001 2178309/1149851*73681302247^(3/13) 6099996721314069 a001 2178309/1149851*10749957122^(1/4) 6099996721314069 a001 514229/4870847*10749957122^(3/8) 6099996721314069 a001 2178309/1149851*4106118243^(6/23) 6099996721314069 a001 514229/4870847*4106118243^(9/23) 6099996721314069 a001 1120149658761/1836311903 6099996721314069 a001 2178309/1149851*1568397607^(3/11) 6099996721314069 a001 514229/4870847*1568397607^(9/22) 6099996721314069 a001 2178309/1149851*599074578^(2/7) 6099996721314069 a001 514229/4870847*599074578^(3/7) 6099996721314069 a001 2178309/1149851*228826127^(3/10) 6099996721314069 a001 514229/4870847*228826127^(9/20) 6099996721314069 a001 2178309/1149851*87403803^(6/19) 6099996721314070 a001 514229/4870847*87403803^(9/19) 6099996721314071 a001 2178309/1149851*33385282^(1/3) 6099996721314072 a001 514229/4870847*33385282^(1/2) 6099996721314082 a001 2178309/1149851*12752043^(6/17) 6099996721314089 a001 514229/4870847*12752043^(9/17) 6099996721314124 a001 39088169/7881196*710647^(5/14) 6099996721314166 a001 2178309/1149851*4870847^(3/8) 6099996721314214 a001 514229/4870847*4870847^(9/16) 6099996721314228 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^47 6099996721314237 a001 514229/1568397607*7881196^(10/11) 6099996721314246 a001 514229/370248451*7881196^(9/11) 6099996721314254 a001 514229/87403803*7881196^(8/11) 6099996721314255 a001 514229/33385282*7881196^(2/3) 6099996721314278 a001 514229/20633239*7881196^(7/11) 6099996721314281 a001 514229/12752043*20633239^(4/7) 6099996721314285 a001 5702887/1149851*20633239^(2/7) 6099996721314289 a001 514229/12752043*2537720636^(4/9) 6099996721314289 a001 5702887/1149851*2537720636^(2/9) 6099996721314289 a001 5702887/1149851*312119004989^(2/11) 6099996721314289 a001 514229/12752043*(1/2+1/2*5^(1/2))^20 6099996721314289 a001 514229/12752043*23725150497407^(5/16) 6099996721314289 a001 5702887/1149851*(1/2+1/2*5^(1/2))^10 6099996721314289 a001 514229/12752043*505019158607^(5/14) 6099996721314289 a001 514229/12752043*73681302247^(5/13) 6099996721314289 a001 5702887/1149851*28143753123^(1/5) 6099996721314289 a001 514229/12752043*28143753123^(2/5) 6099996721314289 a001 5702887/1149851*10749957122^(5/24) 6099996721314289 a001 514229/12752043*10749957122^(5/12) 6099996721314289 a001 2932589879123/4807526976 6099996721314289 a001 5702887/1149851*4106118243^(5/23) 6099996721314289 a001 514229/12752043*4106118243^(10/23) 6099996721314289 a001 5702887/1149851*1568397607^(5/22) 6099996721314289 a001 514229/12752043*1568397607^(5/11) 6099996721314289 a001 5702887/1149851*599074578^(5/21) 6099996721314289 a001 514229/12752043*599074578^(10/21) 6099996721314289 a001 5702887/1149851*228826127^(1/4) 6099996721314289 a001 514229/12752043*228826127^(1/2) 6099996721314289 a001 5702887/1149851*87403803^(5/19) 6099996721314289 a001 514229/12752043*87403803^(10/19) 6099996721314290 a001 5702887/1149851*33385282^(5/18) 6099996721314292 a001 514229/12752043*33385282^(5/9) 6099996721314300 a001 5702887/1149851*12752043^(5/17) 6099996721314308 a001 39088169/1149851*7881196^(2/11) 6099996721314311 a001 514229/12752043*12752043^(10/17) 6099996721314312 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^49 6099996721314314 a001 9227465/1149851*7881196^(3/11) 6099996721314314 a001 514229/1568397607*20633239^(6/7) 6099996721314315 a001 514229/599074578*20633239^(4/5) 6099996721314316 a001 514229/141422324*20633239^(5/7) 6099996721314317 a001 165580141/1149851*7881196^(1/11) 6099996721314319 a001 433494437/1860498*271443^(1/13) 6099996721314321 a001 514229/33385282*312119004989^(2/5) 6099996721314321 a001 514229/33385282*(1/2+1/2*5^(1/2))^22 6099996721314321 a001 14930352/1149851*(1/2+1/2*5^(1/2))^8 6099996721314321 a001 14930352/1149851*23725150497407^(1/8) 6099996721314321 a001 14930352/1149851*505019158607^(1/7) 6099996721314321 a001 14930352/1149851*73681302247^(2/13) 6099996721314321 a001 7677619978608/12586269025 6099996721314321 a001 14930352/1149851*10749957122^(1/6) 6099996721314321 a001 514229/33385282*10749957122^(11/24) 6099996721314321 a001 14930352/1149851*4106118243^(4/23) 6099996721314321 a001 514229/33385282*4106118243^(11/23) 6099996721314321 a001 14930352/1149851*1568397607^(2/11) 6099996721314321 a001 514229/33385282*1568397607^(1/2) 6099996721314321 a001 14930352/1149851*599074578^(4/21) 6099996721314321 a001 514229/33385282*599074578^(11/21) 6099996721314321 a001 14930352/1149851*228826127^(1/5) 6099996721314321 a001 514229/33385282*228826127^(11/20) 6099996721314321 a001 14930352/1149851*87403803^(4/19) 6099996721314321 a001 514229/33385282*87403803^(11/19) 6099996721314322 a001 14930352/1149851*33385282^(2/9) 6099996721314324 a001 514229/33385282*33385282^(11/18) 6099996721314324 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^51 6099996721314325 a001 63245986/1149851*20633239^(1/7) 6099996721314325 a001 514229/87403803*141422324^(8/13) 6099996721314325 a001 39088169/1149851*141422324^(2/13) 6099996721314326 a001 514229/87403803*2537720636^(8/15) 6099996721314326 a001 39088169/1149851*2537720636^(2/15) 6099996721314326 a001 514229/87403803*45537549124^(8/17) 6099996721314326 a001 39088169/1149851*45537549124^(2/17) 6099996721314326 a001 514229/87403803*14662949395604^(8/21) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(38) 6099996721314326 a001 39088169/1149851*14662949395604^(2/21) 6099996721314326 a001 39088169/1149851*(1/2+1/2*5^(1/2))^6 6099996721314326 a001 514229/87403803*192900153618^(4/9) 6099996721314326 a001 514229/87403803*73681302247^(6/13) 6099996721314326 a001 20100270056701/32951280099 6099996721314326 a001 39088169/1149851*10749957122^(1/8) 6099996721314326 a001 514229/87403803*10749957122^(1/2) 6099996721314326 a001 39088169/1149851*4106118243^(3/23) 6099996721314326 a001 514229/87403803*4106118243^(12/23) 6099996721314326 a001 39088169/1149851*1568397607^(3/22) 6099996721314326 a001 514229/87403803*1568397607^(6/11) 6099996721314326 a001 39088169/1149851*599074578^(1/7) 6099996721314326 a001 514229/87403803*599074578^(4/7) 6099996721314326 a001 39088169/1149851*228826127^(3/20) 6099996721314326 a001 24157817/1149851*20633239^(1/5) 6099996721314326 a001 514229/87403803*228826127^(3/5) 6099996721314326 a001 39088169/1149851*87403803^(3/19) 6099996721314326 a001 514229/228826127*141422324^(2/3) 6099996721314326 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^53 6099996721314326 a001 514229/87403803*87403803^(12/19) 6099996721314326 a001 514229/28143753123*141422324^(12/13) 6099996721314326 a001 514229/6643838879*141422324^(11/13) 6099996721314326 a001 514229/1568397607*141422324^(10/13) 6099996721314326 a001 514229/370248451*141422324^(9/13) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(40) 6099996721314326 a001 102334155/1149851*(1/2+1/2*5^(1/2))^4 6099996721314326 a001 102334155/1149851*23725150497407^(1/16) 6099996721314326 a001 102334155/1149851*73681302247^(1/13) 6099996721314326 a001 52623190191495/86267571272 6099996721314326 a001 514229/228826127*73681302247^(1/2) 6099996721314326 a001 102334155/1149851*10749957122^(1/12) 6099996721314326 a001 514229/228826127*10749957122^(13/24) 6099996721314326 a001 102334155/1149851*4106118243^(2/23) 6099996721314326 a001 514229/228826127*4106118243^(13/23) 6099996721314326 a001 102334155/1149851*1568397607^(1/11) 6099996721314326 a001 514229/228826127*1568397607^(13/22) 6099996721314326 a001 102334155/1149851*599074578^(2/21) 6099996721314326 a001 514229/228826127*599074578^(13/21) 6099996721314326 a001 102334155/1149851*228826127^(1/10) 6099996721314326 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^55 6099996721314326 a001 514229/228826127*228826127^(13/20) 6099996721314326 a001 102334155/1149851*87403803^(2/19) 6099996721314326 a001 514229/599074578*17393796001^(4/7) 6099996721314326 a001 514229/599074578*14662949395604^(4/9) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(42) 6099996721314326 a001 267914296/1149851*(1/2+1/2*5^(1/2))^2 6099996721314326 a001 514229/599074578*505019158607^(1/2) 6099996721314326 a001 365435810392/599075421 6099996721314326 a001 514229/599074578*73681302247^(7/13) 6099996721314326 a001 267914296/1149851*10749957122^(1/24) 6099996721314326 a001 267914296/1149851*4106118243^(1/23) 6099996721314326 a001 514229/599074578*10749957122^(7/12) 6099996721314326 a001 267914296/1149851*1568397607^(1/22) 6099996721314326 a001 514229/599074578*4106118243^(14/23) 6099996721314326 a001 267914296/1149851*599074578^(1/21) 6099996721314326 a001 514229/599074578*1568397607^(7/11) 6099996721314326 a001 267914296/1149851*228826127^(1/20) 6099996721314326 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^57 6099996721314326 a001 514229/599074578*599074578^(2/3) 6099996721314326 a001 514229/1568397607*2537720636^(2/3) 6099996721314326 a001 514229/1568397607*45537549124^(10/17) 6099996721314326 a001 514229/1568397607*312119004989^(6/11) 6099996721314326 a001 514229/1568397607*14662949395604^(10/21) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(44) 6099996721314326 a001 701408733/1149851 6099996721314326 a001 514229/1568397607*192900153618^(5/9) 6099996721314326 a001 514229/1568397607*28143753123^(3/5) 6099996721314326 a001 514229/1568397607*10749957122^(5/8) 6099996721314326 a001 514229/1568397607*4106118243^(15/23) 6099996721314326 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^59 6099996721314326 a001 514229/505019158607*2537720636^(14/15) 6099996721314326 a001 514229/192900153618*2537720636^(8/9) 6099996721314326 a001 514229/119218851371*2537720636^(13/15) 6099996721314326 a001 514229/1568397607*1568397607^(15/22) 6099996721314326 a001 514229/28143753123*2537720636^(4/5) 6099996721314326 a001 514229/17393796001*2537720636^(7/9) 6099996721314326 a001 514229/6643838879*2537720636^(11/15) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(46) 6099996721314326 a001 514229/4106118243*23725150497407^(1/2) 6099996721314326 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^2 6099996721314326 a001 514229/4106118243*505019158607^(4/7) 6099996721314326 a001 514229/4106118243*73681302247^(8/13) 6099996721314326 a001 514229/4106118243*10749957122^(2/3) 6099996721314326 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^61 6099996721314326 a001 514229/4106118243*4106118243^(16/23) 6099996721314326 a001 514229/10749957122*45537549124^(2/3) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(48) 6099996721314326 a001 2472169789341504/4052739537881 6099996721314326 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^4 6099996721314326 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^63 6099996721314326 a001 514229/505019158607*17393796001^(6/7) 6099996721314326 a001 514229/10749957122*10749957122^(17/24) 6099996721314326 a001 514229/28143753123*45537549124^(12/17) 6099996721314326 a001 514229/28143753123*14662949395604^(4/7) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(50) 6099996721314326 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^6 6099996721314326 a001 514229/28143753123*505019158607^(9/14) 6099996721314326 a001 514229/28143753123*192900153618^(2/3) 6099996721314326 a001 514229/28143753123*73681302247^(9/13) 6099996721314326 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^65 6099996721314326 a001 514229/9062201101803*45537549124^(16/17) 6099996721314326 a001 514229/2139295485799*45537549124^(15/17) 6099996721314326 a001 514229/505019158607*45537549124^(14/17) 6099996721314326 a001 514229/119218851371*45537549124^(13/17) 6099996721314326 a001 514229/73681302247*817138163596^(2/3) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(52) 6099996721314326 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^8 6099996721314326 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^67 6099996721314326 a001 514229/192900153618*312119004989^(8/11) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(54) 6099996721314326 a001 514229/192900153618*23725150497407^(5/8) 6099996721314326 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^10 6099996721314326 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^69 6099996721314326 a001 514229/23725150497407*312119004989^(10/11) 6099996721314326 a001 514229/1322157322203*312119004989^(4/5) 6099996721314326 a001 514229/505019158607*817138163596^(14/19) 6099996721314326 a001 514229/505019158607*14662949395604^(2/3) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(56) 6099996721314326 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^12 6099996721314326 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^71 6099996721314326 a001 514229/505019158607*505019158607^(3/4) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(58) 6099996721314326 a001 514229/1322157322203*23725150497407^(11/16) 6099996721314326 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^73 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(60) 6099996721314326 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^75 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(62) 6099996721314326 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^77 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(64) 6099996721314326 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^79 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(66) 6099996721314326 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^81 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(68) 6099996721314326 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^83 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(70) 6099996721314326 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^85 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(72) 6099996721314326 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^87 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(74) 6099996721314326 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^89 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(76) 6099996721314326 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^91 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(78) 6099996721314326 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^93 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(80) 6099996721314326 a004 Fibonacci(29)*Lucas(81)/(1/2+sqrt(5)/2)^95 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(82) 6099996721314326 a004 Fibonacci(29)*Lucas(83)/(1/2+sqrt(5)/2)^97 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(84) 6099996721314326 a004 Fibonacci(29)*Lucas(85)/(1/2+sqrt(5)/2)^99 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(86) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(88) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(90) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(92) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^80/Lucas(94) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^82/Lucas(96) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^84/Lucas(98) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^85/Lucas(99) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^86/Lucas(100) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^83/Lucas(97) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^81/Lucas(95) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(93) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(91) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(89) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(87) 6099996721314326 a004 Fibonacci(29)*Lucas(86)/(1/2+sqrt(5)/2)^100 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(85) 6099996721314326 a004 Fibonacci(29)*Lucas(84)/(1/2+sqrt(5)/2)^98 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(83) 6099996721314326 a004 Fibonacci(29)*Lucas(82)/(1/2+sqrt(5)/2)^96 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(81) 6099996721314326 a004 Fibonacci(29)*Lucas(80)/(1/2+sqrt(5)/2)^94 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(79) 6099996721314326 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^92 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(77) 6099996721314326 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^90 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(75) 6099996721314326 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^88 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(73) 6099996721314326 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^86 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(71) 6099996721314326 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^84 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(69) 6099996721314326 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^82 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(67) 6099996721314326 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^80 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(65) 6099996721314326 a001 514229/14662949395604*14662949395604^(7/9) 6099996721314326 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^78 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(63) 6099996721314326 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^76 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(61) 6099996721314326 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^74 6099996721314326 a001 514229/2139295485799*14662949395604^(5/7) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(59) 6099996721314326 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^16 6099996721314326 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^18 6099996721314326 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^20 6099996721314326 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^22 6099996721314326 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^24 6099996721314326 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^26 6099996721314326 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^28 6099996721314326 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^30 6099996721314326 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^32 6099996721314326 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^34 6099996721314326 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^36 6099996721314326 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^38 6099996721314326 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^40 6099996721314326 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^42 6099996721314326 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^44 6099996721314326 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^46 6099996721314326 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^48 6099996721314326 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^50 6099996721314326 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^52 6099996721314326 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^54 6099996721314326 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^56 6099996721314326 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^72 6099996721314326 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^55 6099996721314326 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^53 6099996721314326 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^51 6099996721314326 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^49 6099996721314326 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^47 6099996721314326 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^45 6099996721314326 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^43 6099996721314326 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^41 6099996721314326 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^39 6099996721314326 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^37 6099996721314326 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^35 6099996721314326 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^33 6099996721314326 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^31 6099996721314326 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^29 6099996721314326 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^27 6099996721314326 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^25 6099996721314326 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^23 6099996721314326 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^21 6099996721314326 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^19 6099996721314326 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^17 6099996721314326 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^15 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(57) 6099996721314326 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^13 6099996721314326 a001 514229/14662949395604*505019158607^(7/8) 6099996721314326 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^70 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(55) 6099996721314326 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^11 6099996721314326 a001 514229/505019158607*192900153618^(7/9) 6099996721314326 a001 514229/2139295485799*192900153618^(5/6) 6099996721314326 a001 514229/9062201101803*192900153618^(8/9) 6099996721314326 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^68 6099996721314326 a001 514229/119218851371*14662949395604^(13/21) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(53) 6099996721314326 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^9 6099996721314326 a001 514229/119218851371*192900153618^(13/18) 6099996721314326 a001 514229/192900153618*73681302247^(10/13) 6099996721314326 a001 514229/1322157322203*73681302247^(11/13) 6099996721314326 a001 514229/9062201101803*73681302247^(12/13) 6099996721314326 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^66 6099996721314326 a001 514229/119218851371*73681302247^(3/4) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(51) 6099996721314326 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^7 6099996721314326 a001 514229/17393796001*17393796001^(5/7) 6099996721314326 a001 514229/192900153618*28143753123^(4/5) 6099996721314326 a001 514229/2139295485799*28143753123^(9/10) 6099996721314326 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^64 6099996721314326 a001 514229/17393796001*312119004989^(7/11) 6099996721314326 a001 307696518855017/504420793834 6099996721314326 a001 514229/17393796001*14662949395604^(5/9) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(49) 6099996721314326 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^5 6099996721314326 a001 514229/17393796001*505019158607^(5/8) 6099996721314326 a001 514229/17393796001*28143753123^(7/10) 6099996721314326 a001 514229/28143753123*10749957122^(3/4) 6099996721314326 a001 514229/73681302247*10749957122^(19/24) 6099996721314326 a001 514229/119218851371*10749957122^(13/16) 6099996721314326 a001 514229/192900153618*10749957122^(5/6) 6099996721314326 a001 514229/505019158607*10749957122^(7/8) 6099996721314326 a001 514229/1322157322203*10749957122^(11/12) 6099996721314326 a001 514229/2139295485799*10749957122^(15/16) 6099996721314326 a001 514229/3461452808002*10749957122^(23/24) 6099996721314326 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^62 6099996721314326 a001 514229/6643838879*45537549124^(11/17) 6099996721314326 a001 514229/6643838879*312119004989^(3/5) 6099996721314326 a001 514229/6643838879*817138163596^(11/19) 6099996721314326 a001 1527884955773717/2504730781961 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(47) 6099996721314326 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^3 6099996721314326 a001 514229/6643838879*192900153618^(11/18) 6099996721314326 a001 514229/6643838879*10749957122^(11/16) 6099996721314326 a001 514229/10749957122*4106118243^(17/23) 6099996721314326 a001 514229/28143753123*4106118243^(18/23) 6099996721314326 a001 514229/73681302247*4106118243^(19/23) 6099996721314326 a001 514229/192900153618*4106118243^(20/23) 6099996721314326 a001 514229/505019158607*4106118243^(21/23) 6099996721314326 a001 514229/1322157322203*4106118243^(22/23) 6099996721314326 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^60 6099996721314326 a001 583600122205930/956722026041 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(45) 6099996721314326 a001 514229/2537720636*9062201101803^(1/2) 6099996721314326 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2) 6099996721314326 a001 514229/4106118243*1568397607^(8/11) 6099996721314326 a001 514229/10749957122*1568397607^(17/22) 6099996721314326 a001 514229/6643838879*1568397607^(3/4) 6099996721314326 a001 514229/28143753123*1568397607^(9/11) 6099996721314326 a001 514229/73681302247*1568397607^(19/22) 6099996721314326 a001 514229/192900153618*1568397607^(10/11) 6099996721314326 a001 514229/505019158607*1568397607^(21/22) 6099996721314326 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^58 6099996721314326 a001 222915410844073/365435296162 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(43) 6099996721314326 a001 514229/969323029*1322157322203^(1/2) 6099996721314326 a001 433494437/2299702+433494437/2299702*5^(1/2) 6099996721314326 a001 514229/1568397607*599074578^(5/7) 6099996721314326 a001 514229/4106118243*599074578^(16/21) 6099996721314326 a001 514229/6643838879*599074578^(11/14) 6099996721314326 a001 514229/10749957122*599074578^(17/21) 6099996721314326 a001 514229/17393796001*599074578^(5/6) 6099996721314326 a001 514229/28143753123*599074578^(6/7) 6099996721314326 a001 514229/73681302247*599074578^(19/21) 6099996721314326 a001 514229/119218851371*599074578^(13/14) 6099996721314326 a001 514229/192900153618*599074578^(20/21) 6099996721314326 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^56 6099996721314326 a001 165580141/1149851*141422324^(1/13) 6099996721314326 a001 267914296/1149851*87403803^(1/19) 6099996721314326 a001 514229/370248451*2537720636^(3/5) 6099996721314326 a001 165580141/1149851*2537720636^(1/15) 6099996721314326 a001 514229/370248451*45537549124^(9/17) 6099996721314326 a001 165580141/1149851*45537549124^(1/17) 6099996721314326 a001 85146110326289/139583862445 6099996721314326 a001 514229/370248451*14662949395604^(3/7) 6099996721314326 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(41) 6099996721314326 a001 165580141/1149851*14662949395604^(1/21) 6099996721314326 a001 165580141/1149851*(1/2+1/2*5^(1/2))^3 6099996721314326 a001 165580141/1149851*192900153618^(1/18) 6099996721314326 a001 514229/370248451*192900153618^(1/2) 6099996721314326 a001 165580141/1149851*10749957122^(1/16) 6099996721314326 a001 514229/370248451*10749957122^(9/16) 6099996721314326 a001 165580141/1149851*599074578^(1/14) 6099996721314326 a001 514229/370248451*599074578^(9/14) 6099996721314326 a001 514229/599074578*228826127^(7/10) 6099996721314326 a001 514229/1568397607*228826127^(3/4) 6099996721314326 a001 514229/4106118243*228826127^(4/5) 6099996721314326 a001 514229/10749957122*228826127^(17/20) 6099996721314326 a001 514229/17393796001*228826127^(7/8) 6099996721314326 a001 514229/28143753123*228826127^(9/10) 6099996721314326 a001 514229/73681302247*228826127^(19/20) 6099996721314326 a001 39088169/1149851*33385282^(1/6) 6099996721314326 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^54 6099996721314327 a001 267914296/1149851*33385282^(1/18) 6099996721314327 a001 514229/141422324*2537720636^(5/9) 6099996721314327 a001 63245986/1149851*2537720636^(1/9) 6099996721314327 a001 32522920134794/53316291173 6099996721314327 a001 514229/141422324*312119004989^(5/11) 6099996721314327 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(39) 6099996721314327 a001 514229/141422324*3461452808002^(5/12) 6099996721314327 a001 63245986/1149851*(1/2+1/2*5^(1/2))^5 6099996721314327 a001 63245986/1149851*28143753123^(1/10) 6099996721314327 a001 514229/141422324*28143753123^(1/2) 6099996721314327 a001 63245986/1149851*228826127^(1/8) 6099996721314327 a001 514229/141422324*228826127^(5/8) 6099996721314327 a001 514229/228826127*87403803^(13/19) 6099996721314327 a001 102334155/1149851*33385282^(1/9) 6099996721314327 a001 165580141/1149851*33385282^(1/12) 6099996721314327 a001 514229/599074578*87403803^(14/19) 6099996721314327 a001 514229/1568397607*87403803^(15/19) 6099996721314327 a001 514229/4106118243*87403803^(16/19) 6099996721314327 a001 514229/10749957122*87403803^(17/19) 6099996721314327 a001 514229/28143753123*87403803^(18/19) 6099996721314327 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^52 6099996721314328 a001 12422650078093/20365011074 6099996721314328 a001 24157817/1149851*17393796001^(1/7) 6099996721314328 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(37) 6099996721314328 a001 24157817/1149851*14662949395604^(1/9) 6099996721314328 a001 24157817/1149851*(1/2+1/2*5^(1/2))^7 6099996721314328 a001 514229/54018521*4106118243^(1/2) 6099996721314328 a001 24157817/1149851*599074578^(1/6) 6099996721314329 a001 267914296/1149851*12752043^(1/17) 6099996721314329 a001 514229/87403803*33385282^(2/3) 6099996721314330 a001 14930352/1149851*12752043^(4/17) 6099996721314330 a001 514229/228826127*33385282^(13/18) 6099996721314330 a001 514229/370248451*33385282^(3/4) 6099996721314331 a001 514229/599074578*33385282^(7/9) 6099996721314331 a001 102334155/1149851*12752043^(2/17) 6099996721314331 a001 514229/1568397607*33385282^(5/6) 6099996721314331 a001 514229/4106118243*33385282^(8/9) 6099996721314331 a001 514229/6643838879*33385282^(11/12) 6099996721314331 a001 514229/10749957122*33385282^(17/18) 6099996721314332 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^50 6099996721314332 a001 514229/20633239*20633239^(3/5) 6099996721314332 a001 39088169/1149851*12752043^(3/17) 6099996721314340 a001 514229/20633239*141422324^(7/13) 6099996721314341 a001 9227465/1149851*141422324^(3/13) 6099996721314341 a001 514229/20633239*2537720636^(7/15) 6099996721314341 a001 9227465/1149851*2537720636^(1/5) 6099996721314341 a001 365002315345/598364773 6099996721314341 a001 514229/20633239*17393796001^(3/7) 6099996721314341 a001 514229/20633239*45537549124^(7/17) 6099996721314341 a001 9227465/1149851*45537549124^(3/17) 6099996721314341 a001 514229/20633239*14662949395604^(1/3) 6099996721314341 a001 514229/20633239*(1/2+1/2*5^(1/2))^21 6099996721314341 a001 9227465/1149851*14662949395604^(1/7) 6099996721314341 a001 9227465/1149851*(1/2+1/2*5^(1/2))^9 6099996721314341 a001 9227465/1149851*192900153618^(1/6) 6099996721314341 a001 514229/20633239*192900153618^(7/18) 6099996721314341 a001 9227465/1149851*10749957122^(3/16) 6099996721314341 a001 514229/20633239*10749957122^(7/16) 6099996721314341 a001 9227465/1149851*599074578^(3/14) 6099996721314341 a001 514229/20633239*599074578^(1/2) 6099996721314342 a001 9227465/1149851*33385282^(1/4) 6099996721314342 a001 267914296/1149851*4870847^(1/16) 6099996721314344 a001 514229/20633239*33385282^(7/12) 6099996721314345 a001 514229/33385282*12752043^(11/17) 6099996721314352 a001 514229/87403803*12752043^(12/17) 6099996721314355 a001 514229/228826127*12752043^(13/17) 6099996721314357 a001 514229/599074578*12752043^(14/17) 6099996721314358 a001 102334155/1149851*4870847^(1/8) 6099996721314359 a001 514229/1568397607*12752043^(15/17) 6099996721314362 a001 514229/4106118243*12752043^(16/17) 6099996721314364 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^48 6099996721314369 a001 5702887/1149851*4870847^(5/16) 6099996721314374 a001 39088169/1149851*4870847^(3/16) 6099996721314385 a001 14930352/1149851*4870847^(1/4) 6099996721314392 a001 3524578/1149851*7881196^(1/3) 6099996721314425 a001 1812440220362/2971215073 6099996721314425 a001 3524578/1149851*312119004989^(1/5) 6099996721314425 a001 514229/7881196*(1/2+1/2*5^(1/2))^19 6099996721314425 a001 3524578/1149851*(1/2+1/2*5^(1/2))^11 6099996721314425 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^11/Lucas(29) 6099996721314425 a001 3524578/1149851*1568397607^(1/4) 6099996721314425 a001 514229/7881196*87403803^(1/2) 6099996721314444 a001 267914296/1149851*1860498^(1/15) 6099996721314449 a001 514229/12752043*4870847^(5/8) 6099996721314498 a001 514229/33385282*4870847^(11/16) 6099996721314503 a001 165580141/1149851*1860498^(1/10) 6099996721314518 a001 514229/87403803*4870847^(3/4) 6099996721314535 a001 514229/228826127*4870847^(13/16) 6099996721314551 a001 514229/599074578*4870847^(7/8) 6099996721314561 a001 102334155/1149851*1860498^(2/15) 6099996721314567 a001 514229/1568397607*4870847^(15/16) 6099996721314583 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^46 6099996721314620 a001 63245986/1149851*1860498^(1/6) 6099996721314646 a001 9227465/4870847*710647^(3/7) 6099996721314663 a001 1346269/1860498*710647^(1/2) 6099996721314678 a001 39088169/1149851*1860498^(1/5) 6099996721314694 a001 14930352/3010349*710647^(5/14) 6099996721314774 a001 2178309/1149851*1860498^(2/5) 6099996721314791 a001 14930352/1149851*1860498^(4/15) 6099996721314854 a001 24157817/12752043*710647^(3/7) 6099996721314869 a001 9227465/1149851*1860498^(3/10) 6099996721314876 a001 5702887/1149851*1860498^(1/3) 6099996721314884 a001 31622993/16692641*710647^(3/7) 6099996721314888 a001 165580141/87403803*710647^(3/7) 6099996721314889 a001 433494437/228826127*710647^(3/7) 6099996721314889 a001 567451585/299537289*710647^(3/7) 6099996721314889 a001 2971215073/1568397607*710647^(3/7) 6099996721314889 a001 7778742049/4106118243*710647^(3/7) 6099996721314889 a001 10182505537/5374978561*710647^(3/7) 6099996721314889 a001 53316291173/28143753123*710647^(3/7) 6099996721314889 a001 139583862445/73681302247*710647^(3/7) 6099996721314889 a001 182717648081/96450076809*710647^(3/7) 6099996721314889 a001 956722026041/505019158607*710647^(3/7) 6099996721314889 a001 10610209857723/5600748293801*710647^(3/7) 6099996721314889 a001 591286729879/312119004989*710647^(3/7) 6099996721314889 a001 225851433717/119218851371*710647^(3/7) 6099996721314889 a001 21566892818/11384387281*710647^(3/7) 6099996721314889 a001 32951280099/17393796001*710647^(3/7) 6099996721314889 a001 12586269025/6643838879*710647^(3/7) 6099996721314889 a001 1201881744/634430159*710647^(3/7) 6099996721314889 a001 1836311903/969323029*710647^(3/7) 6099996721314889 a001 701408733/370248451*710647^(3/7) 6099996721314890 a001 66978574/35355581*710647^(3/7) 6099996721314891 a001 102334155/54018521*710647^(3/7) 6099996721314903 a001 39088169/20633239*710647^(3/7) 6099996721314982 a001 3732588/1970299*710647^(3/7) 6099996721314999 a001 1346269/1149851*141422324^(1/3) 6099996721314999 a001 692290561601/1134903170 6099996721314999 a001 514229/3010349*45537549124^(1/3) 6099996721314999 a001 514229/3010349*(1/2+1/2*5^(1/2))^17 6099996721314999 a001 1346269/1149851*(1/2+1/2*5^(1/2))^13 6099996721314999 a001 1346269/1149851*73681302247^(1/4) 6099996721315018 a001 514229/3010349*12752043^(1/2) 6099996721315127 a001 514229/4870847*1860498^(3/5) 6099996721315189 a001 267914296/1149851*710647^(1/14) 6099996721315464 a001 514229/12752043*1860498^(2/3) 6099996721315525 a001 5702887/3010349*710647^(3/7) 6099996721315526 a001 832040/3010349*710647^(4/7) 6099996721315574 a001 514229/20633239*1860498^(7/10) 6099996721315593 a001 3524578/4870847*710647^(1/2) 6099996721315613 a001 514229/33385282*1860498^(11/15) 6099996721315729 a001 9227465/12752043*710647^(1/2) 6099996721315735 a001 514229/87403803*1860498^(4/5) 6099996721315749 a001 24157817/33385282*710647^(1/2) 6099996721315752 a001 63245986/87403803*710647^(1/2) 6099996721315752 a001 165580141/228826127*710647^(1/2) 6099996721315752 a001 433494437/599074578*710647^(1/2) 6099996721315752 a001 1134903170/1568397607*710647^(1/2) 6099996721315752 a001 2971215073/4106118243*710647^(1/2) 6099996721315752 a001 7778742049/10749957122*710647^(1/2) 6099996721315752 a001 20365011074/28143753123*710647^(1/2) 6099996721315752 a001 53316291173/73681302247*710647^(1/2) 6099996721315752 a001 139583862445/192900153618*710647^(1/2) 6099996721315752 a001 365435296162/505019158607*710647^(1/2) 6099996721315752 a001 10610209857723/14662949395604*710647^(1/2) 6099996721315752 a001 591286729879/817138163596*710647^(1/2) 6099996721315752 a001 225851433717/312119004989*710647^(1/2) 6099996721315752 a001 86267571272/119218851371*710647^(1/2) 6099996721315752 a001 32951280099/45537549124*710647^(1/2) 6099996721315752 a001 12586269025/17393796001*710647^(1/2) 6099996721315752 a001 4807526976/6643838879*710647^(1/2) 6099996721315752 a001 1836311903/2537720636*710647^(1/2) 6099996721315752 a001 701408733/969323029*710647^(1/2) 6099996721315752 a001 267914296/370248451*710647^(1/2) 6099996721315752 a001 102334155/141422324*710647^(1/2) 6099996721315753 a001 39088169/54018521*710647^(1/2) 6099996721315761 a001 14930352/20633239*710647^(1/2) 6099996721315795 a001 514229/141422324*1860498^(5/6) 6099996721315813 a001 5702887/7881196*710647^(1/2) 6099996721315813 a001 208010/1970299*710647^(9/14) 6099996721315824 a001 1134903170/4870847*271443^(1/13) 6099996721315853 a001 514229/228826127*1860498^(13/15) 6099996721315912 a001 514229/370248451*1860498^(9/10) 6099996721315971 a001 514229/599074578*1860498^(14/15) 6099996721316044 a001 2971215073/12752043*271443^(1/13) 6099996721316052 a001 102334155/1149851*710647^(1/7) 6099996721316076 a001 7778742049/33385282*271443^(1/13) 6099996721316080 a001 20365011074/87403803*271443^(1/13) 6099996721316081 a001 53316291173/228826127*271443^(1/13) 6099996721316081 a001 139583862445/599074578*271443^(1/13) 6099996721316081 a001 365435296162/1568397607*271443^(1/13) 6099996721316081 a001 956722026041/4106118243*271443^(1/13) 6099996721316081 a001 2504730781961/10749957122*271443^(1/13) 6099996721316081 a001 6557470319842/28143753123*271443^(1/13) 6099996721316081 a001 10610209857723/45537549124*271443^(1/13) 6099996721316081 a001 4052739537881/17393796001*271443^(1/13) 6099996721316081 a001 1548008755920/6643838879*271443^(1/13) 6099996721316081 a001 591286729879/2537720636*271443^(1/13) 6099996721316081 a001 225851433717/969323029*271443^(1/13) 6099996721316081 a001 86267571272/370248451*271443^(1/13) 6099996721316081 a001 63246219/271444*271443^(1/13) 6099996721316083 a001 12586269025/54018521*271443^(1/13) 6099996721316089 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^44 6099996721316095 a001 4807526976/20633239*271443^(1/13) 6099996721316168 a001 2178309/3010349*710647^(1/2) 6099996721316179 a001 1836311903/7881196*271443^(1/13) 6099996721316456 a001 2178309/7881196*710647^(4/7) 6099996721316592 a001 5702887/20633239*710647^(4/7) 6099996721316592 a001 75640/1875749*710647^(5/7) 6099996721316611 a001 14930352/54018521*710647^(4/7) 6099996721316614 a001 39088169/141422324*710647^(4/7) 6099996721316615 a001 102334155/370248451*710647^(4/7) 6099996721316615 a001 267914296/969323029*710647^(4/7) 6099996721316615 a001 701408733/2537720636*710647^(4/7) 6099996721316615 a001 1836311903/6643838879*710647^(4/7) 6099996721316615 a001 4807526976/17393796001*710647^(4/7) 6099996721316615 a001 12586269025/45537549124*710647^(4/7) 6099996721316615 a001 32951280099/119218851371*710647^(4/7) 6099996721316615 a001 86267571272/312119004989*710647^(4/7) 6099996721316615 a001 225851433717/817138163596*710647^(4/7) 6099996721316615 a001 1548008755920/5600748293801*710647^(4/7) 6099996721316615 a001 139583862445/505019158607*710647^(4/7) 6099996721316615 a001 53316291173/192900153618*710647^(4/7) 6099996721316615 a001 20365011074/73681302247*710647^(4/7) 6099996721316615 a001 7778742049/28143753123*710647^(4/7) 6099996721316615 a001 2971215073/10749957122*710647^(4/7) 6099996721316615 a001 1134903170/4106118243*710647^(4/7) 6099996721316615 a001 433494437/1568397607*710647^(4/7) 6099996721316615 a001 165580141/599074578*710647^(4/7) 6099996721316615 a001 63245986/228826127*710647^(4/7) 6099996721316616 a001 24157817/87403803*710647^(4/7) 6099996721316624 a001 9227465/33385282*710647^(4/7) 6099996721316675 a001 3524578/12752043*710647^(4/7) 6099996721316741 a001 24157817/710647*271443^(3/13) 6099996721316754 a001 701408733/3010349*271443^(1/13) 6099996721316838 a001 98209/3940598*439204^(7/9) 6099996721316914 a001 39088169/1149851*710647^(3/14) 6099996721317004 a001 416020/16692641*710647^(3/4) 6099996721317031 a001 1346269/4870847*710647^(4/7) 6099996721317235 a001 2178309/20633239*710647^(9/14) 6099996721317348 a001 24157817/1149851*710647^(1/4) 6099996721317442 a001 5702887/54018521*710647^(9/14) 6099996721317443 a001 832040/54018521*710647^(11/14) 6099996721317472 a001 3732588/35355581*710647^(9/14) 6099996721317477 a001 39088169/370248451*710647^(9/14) 6099996721317477 a001 102334155/969323029*710647^(9/14) 6099996721317478 a001 66978574/634430159*710647^(9/14) 6099996721317478 a001 701408733/6643838879*710647^(9/14) 6099996721317478 a001 1836311903/17393796001*710647^(9/14) 6099996721317478 a001 1201881744/11384387281*710647^(9/14) 6099996721317478 a001 12586269025/119218851371*710647^(9/14) 6099996721317478 a001 32951280099/312119004989*710647^(9/14) 6099996721317478 a001 21566892818/204284540899*710647^(9/14) 6099996721317478 a001 225851433717/2139295485799*710647^(9/14) 6099996721317478 a001 182717648081/1730726404001*710647^(9/14) 6099996721317478 a001 139583862445/1322157322203*710647^(9/14) 6099996721317478 a001 53316291173/505019158607*710647^(9/14) 6099996721317478 a001 10182505537/96450076809*710647^(9/14) 6099996721317478 a001 7778742049/73681302247*710647^(9/14) 6099996721317478 a001 2971215073/28143753123*710647^(9/14) 6099996721317478 a001 567451585/5374978561*710647^(9/14) 6099996721317478 a001 433494437/4106118243*710647^(9/14) 6099996721317478 a001 165580141/1568397607*710647^(9/14) 6099996721317478 a001 31622993/299537289*710647^(9/14) 6099996721317480 a001 24157817/228826127*710647^(9/14) 6099996721317491 a001 9227465/87403803*710647^(9/14) 6099996721317570 a001 1762289/16692641*710647^(9/14) 6099996721317772 a001 14930352/1149851*710647^(2/7) 6099996721318085 a001 2178309/54018521*710647^(5/7) 6099996721318113 a001 1346269/12752043*710647^(9/14) 6099996721318303 a001 5702887/141422324*710647^(5/7) 6099996721318304 a001 208010/35355581*710647^(6/7) 6099996721318335 a001 14930352/370248451*710647^(5/7) 6099996721318340 a001 39088169/969323029*710647^(5/7) 6099996721318340 a001 9303105/230701876*710647^(5/7) 6099996721318340 a001 267914296/6643838879*710647^(5/7) 6099996721318340 a001 701408733/17393796001*710647^(5/7) 6099996721318340 a001 1836311903/45537549124*710647^(5/7) 6099996721318340 a001 4807526976/119218851371*710647^(5/7) 6099996721318340 a001 1144206275/28374454999*710647^(5/7) 6099996721318340 a001 32951280099/817138163596*710647^(5/7) 6099996721318340 a001 86267571272/2139295485799*710647^(5/7) 6099996721318340 a001 225851433717/5600748293801*710647^(5/7) 6099996721318340 a001 591286729879/14662949395604*710647^(5/7) 6099996721318340 a001 365435296162/9062201101803*710647^(5/7) 6099996721318340 a001 139583862445/3461452808002*710647^(5/7) 6099996721318340 a001 53316291173/1322157322203*710647^(5/7) 6099996721318340 a001 20365011074/505019158607*710647^(5/7) 6099996721318340 a001 7778742049/192900153618*710647^(5/7) 6099996721318340 a001 2971215073/73681302247*710647^(5/7) 6099996721318340 a001 1134903170/28143753123*710647^(5/7) 6099996721318340 a001 433494437/10749957122*710647^(5/7) 6099996721318340 a001 165580141/4106118243*710647^(5/7) 6099996721318341 a001 63245986/1568397607*710647^(5/7) 6099996721318342 a001 24157817/599074578*710647^(5/7) 6099996721318355 a001 9227465/228826127*710647^(5/7) 6099996721318438 a001 3524578/87403803*710647^(5/7) 6099996721318491 a001 98209/930249*439204^(2/3) 6099996721318514 a001 726103/29134601*710647^(3/4) 6099996721318603 a001 5702887/1149851*710647^(5/14) 6099996721318603 a001 832040/1149851*710647^(1/2) 6099996721318734 a001 5702887/228826127*710647^(3/4) 6099996721318766 a001 829464/33281921*710647^(3/4) 6099996721318771 a001 39088169/1568397607*710647^(3/4) 6099996721318772 a001 34111385/1368706081*710647^(3/4) 6099996721318772 a001 133957148/5374978561*710647^(3/4) 6099996721318772 a001 233802911/9381251041*710647^(3/4) 6099996721318772 a001 1836311903/73681302247*710647^(3/4) 6099996721318772 a001 267084832/10716675201*710647^(3/4) 6099996721318772 a001 12586269025/505019158607*710647^(3/4) 6099996721318772 a001 10983760033/440719107401*710647^(3/4) 6099996721318772 a001 43133785636/1730726404001*710647^(3/4) 6099996721318772 a001 75283811239/3020733700601*710647^(3/4) 6099996721318772 a001 182717648081/7331474697802*710647^(3/4) 6099996721318772 a001 139583862445/5600748293801*710647^(3/4) 6099996721318772 a001 53316291173/2139295485799*710647^(3/4) 6099996721318772 a001 10182505537/408569081798*710647^(3/4) 6099996721318772 a001 7778742049/312119004989*710647^(3/4) 6099996721318772 a001 2971215073/119218851371*710647^(3/4) 6099996721318772 a001 567451585/22768774562*710647^(3/4) 6099996721318772 a001 433494437/17393796001*710647^(3/4) 6099996721318772 a001 165580141/6643838879*710647^(3/4) 6099996721318772 a001 31622993/1268860318*710647^(3/4) 6099996721318774 a001 24157817/969323029*710647^(3/4) 6099996721318786 a001 9227465/370248451*710647^(3/4) 6099996721318870 a001 1762289/70711162*710647^(3/4) 6099996721318895 a001 514229/1149851*7881196^(5/11) 6099996721318934 a001 514229/1149851*20633239^(3/7) 6099996721318940 a001 514229/1149851*141422324^(5/13) 6099996721318940 a001 264431464441/433494437 6099996721318940 a001 514229/1149851*2537720636^(1/3) 6099996721318940 a001 514229/1149851*45537549124^(5/17) 6099996721318940 a001 514229/1149851*312119004989^(3/11) 6099996721318940 a001 514229/1149851*14662949395604^(5/21) 6099996721318940 a001 514229/1149851*(1/2+1/2*5^(1/2))^15 6099996721318940 a001 514229/1149851*192900153618^(5/18) 6099996721318940 a001 514229/1149851*28143753123^(3/10) 6099996721318940 a001 514229/1149851*10749957122^(5/16) 6099996721318940 a001 514229/1149851*599074578^(5/14) 6099996721318940 a001 514229/1149851*228826127^(3/8) 6099996721318942 a001 514229/1149851*33385282^(5/12) 6099996721318946 a001 2178309/141422324*710647^(11/14) 6099996721319008 a001 1346269/33385282*710647^(5/7) 6099996721319166 a001 5702887/370248451*710647^(11/14) 6099996721319166 a001 832040/370248451*710647^(13/14) 6099996721319198 a001 14930352/969323029*710647^(11/14) 6099996721319202 a001 39088169/2537720636*710647^(11/14) 6099996721319203 a001 102334155/6643838879*710647^(11/14) 6099996721319203 a001 9238424/599786069*710647^(11/14) 6099996721319203 a001 701408733/45537549124*710647^(11/14) 6099996721319203 a001 1836311903/119218851371*710647^(11/14) 6099996721319203 a001 4807526976/312119004989*710647^(11/14) 6099996721319203 a001 12586269025/817138163596*710647^(11/14) 6099996721319203 a001 32951280099/2139295485799*710647^(11/14) 6099996721319203 a001 86267571272/5600748293801*710647^(11/14) 6099996721319203 a001 7787980473/505618944676*710647^(11/14) 6099996721319203 a001 365435296162/23725150497407*710647^(11/14) 6099996721319203 a001 139583862445/9062201101803*710647^(11/14) 6099996721319203 a001 53316291173/3461452808002*710647^(11/14) 6099996721319203 a001 20365011074/1322157322203*710647^(11/14) 6099996721319203 a001 7778742049/505019158607*710647^(11/14) 6099996721319203 a001 2971215073/192900153618*710647^(11/14) 6099996721319203 a001 1134903170/73681302247*710647^(11/14) 6099996721319203 a001 433494437/28143753123*710647^(11/14) 6099996721319203 a001 165580141/10749957122*710647^(11/14) 6099996721319203 a001 63245986/4106118243*710647^(11/14) 6099996721319205 a001 24157817/1568397607*710647^(11/14) 6099996721319217 a001 9227465/599074578*710647^(11/14) 6099996721319246 a001 2178309/1149851*710647^(3/7) 6099996721319301 a001 3524578/228826127*710647^(11/14) 6099996721319447 a001 1346269/54018521*710647^(3/4) 6099996721319466 a001 514229/1860498*710647^(4/7) 6099996721319809 a001 2178309/370248451*710647^(6/7) 6099996721319821 a001 514229/1149851*1860498^(1/2) 6099996721319875 a001 1346269/87403803*710647^(11/14) 6099996721320028 a001 5702887/969323029*710647^(6/7) 6099996721320029 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^43 6099996721320060 a001 196452/33391061*710647^(6/7) 6099996721320065 a001 39088169/6643838879*710647^(6/7) 6099996721320066 a001 102334155/17393796001*710647^(6/7) 6099996721320066 a001 66978574/11384387281*710647^(6/7) 6099996721320066 a001 701408733/119218851371*710647^(6/7) 6099996721320066 a001 1836311903/312119004989*710647^(6/7) 6099996721320066 a001 1201881744/204284540899*710647^(6/7) 6099996721320066 a001 12586269025/2139295485799*710647^(6/7) 6099996721320066 a001 32951280099/5600748293801*710647^(6/7) 6099996721320066 a001 1135099622/192933544679*710647^(6/7) 6099996721320066 a001 139583862445/23725150497407*710647^(6/7) 6099996721320066 a001 53316291173/9062201101803*710647^(6/7) 6099996721320066 a001 10182505537/1730726404001*710647^(6/7) 6099996721320066 a001 7778742049/1322157322203*710647^(6/7) 6099996721320066 a001 2971215073/505019158607*710647^(6/7) 6099996721320066 a001 567451585/96450076809*710647^(6/7) 6099996721320066 a001 433494437/73681302247*710647^(6/7) 6099996721320066 a001 165580141/28143753123*710647^(6/7) 6099996721320066 a001 31622993/5374978561*710647^(6/7) 6099996721320068 a001 24157817/4106118243*710647^(6/7) 6099996721320080 a001 9227465/1568397607*710647^(6/7) 6099996721320164 a001 1762289/299537289*710647^(6/7) 6099996721320672 a001 2178309/969323029*710647^(13/14) 6099996721320687 a001 165580141/1860498*271443^(2/13) 6099996721320695 a001 267914296/1149851*271443^(1/13) 6099996721320739 a001 1346269/228826127*710647^(6/7) 6099996721320891 a001 5702887/2537720636*710647^(13/14) 6099996721320923 a001 14930352/6643838879*710647^(13/14) 6099996721320928 a001 39088169/17393796001*710647^(13/14) 6099996721320929 a001 102334155/45537549124*710647^(13/14) 6099996721320929 a001 267914296/119218851371*710647^(13/14) 6099996721320929 a001 3524667/1568437211*710647^(13/14) 6099996721320929 a001 1836311903/817138163596*710647^(13/14) 6099996721320929 a001 4807526976/2139295485799*710647^(13/14) 6099996721320929 a001 12586269025/5600748293801*710647^(13/14) 6099996721320929 a001 32951280099/14662949395604*710647^(13/14) 6099996721320929 a001 53316291173/23725150497407*710647^(13/14) 6099996721320929 a001 20365011074/9062201101803*710647^(13/14) 6099996721320929 a001 7778742049/3461452808002*710647^(13/14) 6099996721320929 a001 2971215073/1322157322203*710647^(13/14) 6099996721320929 a001 1134903170/505019158607*710647^(13/14) 6099996721320929 a001 433494437/192900153618*710647^(13/14) 6099996721320929 a001 165580141/73681302247*710647^(13/14) 6099996721320929 a001 63245986/28143753123*710647^(13/14) 6099996721320931 a001 24157817/10749957122*710647^(13/14) 6099996721320943 a001 9227465/4106118243*710647^(13/14) 6099996721321027 a001 3524578/1568397607*710647^(13/14) 6099996721321277 a001 267914296/710647*103682^(1/24) 6099996721321500 a001 24157817/271443*103682^(1/6) 6099996721321534 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^45 6099996721321602 a001 1346269/599074578*710647^(13/14) 6099996721321754 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^47 6099996721321786 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^49 6099996721321791 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^51 6099996721321791 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^53 6099996721321791 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^55 6099996721321791 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^57 6099996721321791 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^59 6099996721321791 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^61 6099996721321791 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^63 6099996721321791 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^65 6099996721321791 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^67 6099996721321791 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^69 6099996721321791 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^71 6099996721321791 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^73 6099996721321791 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^75 6099996721321791 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^77 6099996721321791 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^79 6099996721321791 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^81 6099996721321791 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^83 6099996721321791 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^85 6099996721321791 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^87 6099996721321791 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^89 6099996721321791 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^91 6099996721321791 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^93 6099996721321791 a004 Fibonacci(82)*Lucas(28)/(1/2+sqrt(5)/2)^95 6099996721321791 a004 Fibonacci(84)*Lucas(28)/(1/2+sqrt(5)/2)^97 6099996721321791 a004 Fibonacci(86)*Lucas(28)/(1/2+sqrt(5)/2)^99 6099996721321791 a004 Fibonacci(87)*Lucas(28)/(1/2+sqrt(5)/2)^100 6099996721321791 a004 Fibonacci(85)*Lucas(28)/(1/2+sqrt(5)/2)^98 6099996721321791 a004 Fibonacci(83)*Lucas(28)/(1/2+sqrt(5)/2)^96 6099996721321791 a004 Fibonacci(81)*Lucas(28)/(1/2+sqrt(5)/2)^94 6099996721321791 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^92 6099996721321791 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^90 6099996721321791 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^88 6099996721321791 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^86 6099996721321791 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^84 6099996721321791 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^82 6099996721321791 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^80 6099996721321791 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^78 6099996721321791 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^76 6099996721321791 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^74 6099996721321791 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^72 6099996721321791 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^70 6099996721321791 a001 2/317811*(1/2+1/2*5^(1/2))^43 6099996721321791 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^68 6099996721321791 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^66 6099996721321791 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^64 6099996721321791 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^62 6099996721321791 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^60 6099996721321791 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^58 6099996721321791 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^56 6099996721321791 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^54 6099996721321792 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^52 6099996721321793 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^50 6099996721321806 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^48 6099996721321834 a001 514229/4870847*710647^(9/14) 6099996721321890 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^46 6099996721322192 a001 433494437/4870847*271443^(2/13) 6099996721322412 a001 1134903170/12752043*271443^(2/13) 6099996721322444 a001 2971215073/33385282*271443^(2/13) 6099996721322449 a001 7778742049/87403803*271443^(2/13) 6099996721322449 a001 20365011074/228826127*271443^(2/13) 6099996721322449 a001 53316291173/599074578*271443^(2/13) 6099996721322449 a001 139583862445/1568397607*271443^(2/13) 6099996721322449 a001 365435296162/4106118243*271443^(2/13) 6099996721322449 a001 956722026041/10749957122*271443^(2/13) 6099996721322449 a001 2504730781961/28143753123*271443^(2/13) 6099996721322449 a001 6557470319842/73681302247*271443^(2/13) 6099996721322449 a001 10610209857723/119218851371*271443^(2/13) 6099996721322449 a001 4052739537881/45537549124*271443^(2/13) 6099996721322449 a001 1548008755920/17393796001*271443^(2/13) 6099996721322449 a001 591286729879/6643838879*271443^(2/13) 6099996721322449 a001 225851433717/2537720636*271443^(2/13) 6099996721322449 a001 86267571272/969323029*271443^(2/13) 6099996721322449 a001 32951280099/370248451*271443^(2/13) 6099996721322450 a001 12586269025/141422324*271443^(2/13) 6099996721322451 a001 4807526976/54018521*271443^(2/13) 6099996721322464 a001 1836311903/20633239*271443^(2/13) 6099996721322465 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^44 6099996721322548 a001 3524667/39604*271443^(2/13) 6099996721322916 a001 514229/12752043*710647^(5/7) 6099996721323122 a001 9227465/710647*271443^(4/13) 6099996721323123 a001 267914296/3010349*271443^(2/13) 6099996721323400 a001 514229/20633239*710647^(3/4) 6099996721323586 a001 46368/64079*64079^(14/23) 6099996721323811 a001 514229/33385282*710647^(11/14) 6099996721324679 a001 514229/87403803*710647^(6/7) 6099996721325518 a001 208010/109801*439204^(4/9) 6099996721325542 a001 514229/228826127*710647^(13/14) 6099996721326405 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^42 6099996721327056 a001 31622993/930249*271443^(3/13) 6099996721327063 a001 102334155/1149851*271443^(2/13) 6099996721328561 a001 165580141/4870847*271443^(3/13) 6099996721328780 a001 433494437/12752043*271443^(3/13) 6099996721328812 a001 567451585/16692641*271443^(3/13) 6099996721328817 a001 2971215073/87403803*271443^(3/13) 6099996721328818 a001 7778742049/228826127*271443^(3/13) 6099996721328818 a001 10182505537/299537289*271443^(3/13) 6099996721328818 a001 53316291173/1568397607*271443^(3/13) 6099996721328818 a001 139583862445/4106118243*271443^(3/13) 6099996721328818 a001 182717648081/5374978561*271443^(3/13) 6099996721328818 a001 956722026041/28143753123*271443^(3/13) 6099996721328818 a001 2504730781961/73681302247*271443^(3/13) 6099996721328818 a001 3278735159921/96450076809*271443^(3/13) 6099996721328818 a001 10610209857723/312119004989*271443^(3/13) 6099996721328818 a001 4052739537881/119218851371*271443^(3/13) 6099996721328818 a001 387002188980/11384387281*271443^(3/13) 6099996721328818 a001 591286729879/17393796001*271443^(3/13) 6099996721328818 a001 225851433717/6643838879*271443^(3/13) 6099996721328818 a001 1135099622/33391061*271443^(3/13) 6099996721328818 a001 32951280099/969323029*271443^(3/13) 6099996721328818 a001 12586269025/370248451*271443^(3/13) 6099996721328818 a001 1201881744/35355581*271443^(3/13) 6099996721328820 a001 1836311903/54018521*271443^(3/13) 6099996721328832 a001 701408733/20633239*271443^(3/13) 6099996721328916 a001 66978574/1970299*271443^(3/13) 6099996721329251 a001 317811/439204*20633239^(2/5) 6099996721329256 a001 317811/439204*17393796001^(2/7) 6099996721329256 a001 196418/710647*(1/2+1/2*5^(1/2))^16 6099996721329256 a001 196418/710647*23725150497407^(1/4) 6099996721329256 a001 317811/439204*14662949395604^(2/9) 6099996721329256 a001 317811/439204*(1/2+1/2*5^(1/2))^14 6099996721329256 a001 196418/710647*73681302247^(4/13) 6099996721329256 a001 317811/439204*10749957122^(7/24) 6099996721329256 a001 196418/710647*10749957122^(1/3) 6099996721329256 a001 317811/439204*4106118243^(7/23) 6099996721329256 a001 196418/710647*4106118243^(8/23) 6099996721329256 a001 317811/439204*1568397607^(7/22) 6099996721329256 a001 196418/710647*1568397607^(4/11) 6099996721329256 a001 317811/439204*599074578^(1/3) 6099996721329256 a001 196418/710647*599074578^(8/21) 6099996721329257 a001 317811/439204*228826127^(7/20) 6099996721329257 a001 196418/710647*228826127^(2/5) 6099996721329257 a001 20807933666/34111385 6099996721329257 a001 317811/439204*87403803^(7/19) 6099996721329257 a001 196418/710647*87403803^(8/19) 6099996721329259 a001 317811/439204*33385282^(7/18) 6099996721329259 a001 196418/710647*33385282^(4/9) 6099996721329272 a001 317811/439204*12752043^(7/17) 6099996721329274 a001 196418/710647*12752043^(8/17) 6099996721329369 a001 317811/439204*4870847^(7/16) 6099996721329385 a001 196418/710647*4870847^(1/2) 6099996721329491 a001 102334155/3010349*271443^(3/13) 6099996721329574 a001 3524578/710647*271443^(5/13) 6099996721330079 a001 317811/439204*1860498^(7/15) 6099996721330196 a001 196418/710647*1860498^(8/15) 6099996721330893 a001 1762289/219602*439204^(1/3) 6099996721331594 a001 233802911/620166*103682^(1/24) 6099996721332687 a001 24157817/167761*64079^(3/23) 6099996721333099 a001 1836311903/4870847*103682^(1/24) 6099996721333319 a001 1602508992/4250681*103682^(1/24) 6099996721333351 a001 12586269025/33385282*103682^(1/24) 6099996721333355 a001 10983760033/29134601*103682^(1/24) 6099996721333356 a001 86267571272/228826127*103682^(1/24) 6099996721333356 a001 267913919/710646*103682^(1/24) 6099996721333356 a001 591286729879/1568397607*103682^(1/24) 6099996721333356 a001 516002918640/1368706081*103682^(1/24) 6099996721333356 a001 4052739537881/10749957122*103682^(1/24) 6099996721333356 a001 3536736619241/9381251041*103682^(1/24) 6099996721333356 a001 6557470319842/17393796001*103682^(1/24) 6099996721333356 a001 2504730781961/6643838879*103682^(1/24) 6099996721333356 a001 956722026041/2537720636*103682^(1/24) 6099996721333356 a001 365435296162/969323029*103682^(1/24) 6099996721333356 a001 139583862445/370248451*103682^(1/24) 6099996721333356 a001 53316291173/141422324*103682^(1/24) 6099996721333358 a001 20365011074/54018521*103682^(1/24) 6099996721333370 a001 7778742049/20633239*103682^(1/24) 6099996721333426 a001 24157817/1860498*271443^(4/13) 6099996721333431 a001 39088169/1149851*271443^(3/13) 6099996721333454 a001 2971215073/7881196*103682^(1/24) 6099996721334029 a001 1134903170/3010349*103682^(1/24) 6099996721334302 a001 196452/5779*439204^(2/9) 6099996721334929 a001 63245986/4870847*271443^(4/13) 6099996721335149 a001 165580141/12752043*271443^(4/13) 6099996721335181 a001 433494437/33385282*271443^(4/13) 6099996721335185 a001 1134903170/87403803*271443^(4/13) 6099996721335186 a001 2971215073/228826127*271443^(4/13) 6099996721335186 a001 7778742049/599074578*271443^(4/13) 6099996721335186 a001 20365011074/1568397607*271443^(4/13) 6099996721335186 a001 53316291173/4106118243*271443^(4/13) 6099996721335186 a001 139583862445/10749957122*271443^(4/13) 6099996721335186 a001 365435296162/28143753123*271443^(4/13) 6099996721335186 a001 956722026041/73681302247*271443^(4/13) 6099996721335186 a001 2504730781961/192900153618*271443^(4/13) 6099996721335186 a001 10610209857723/817138163596*271443^(4/13) 6099996721335186 a001 4052739537881/312119004989*271443^(4/13) 6099996721335186 a001 1548008755920/119218851371*271443^(4/13) 6099996721335186 a001 591286729879/45537549124*271443^(4/13) 6099996721335186 a001 7787980473/599786069*271443^(4/13) 6099996721335186 a001 86267571272/6643838879*271443^(4/13) 6099996721335186 a001 32951280099/2537720636*271443^(4/13) 6099996721335186 a001 12586269025/969323029*271443^(4/13) 6099996721335186 a001 4807526976/370248451*271443^(4/13) 6099996721335186 a001 1836311903/141422324*271443^(4/13) 6099996721335188 a001 701408733/54018521*271443^(4/13) 6099996721335200 a001 9238424/711491*271443^(4/13) 6099996721335284 a001 102334155/7881196*271443^(4/13) 6099996721335296 a001 317811/439204*710647^(1/2) 6099996721335858 a001 39088169/3010349*271443^(4/13) 6099996721336159 a001 196418/710647*710647^(4/7) 6099996721336517 a001 1346269/710647*271443^(6/13) 6099996721336722 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^41 6099996721337266 a001 832040/710647*271443^(1/2) 6099996721337309 a001 46368/167761*103682^(2/3) 6099996721337822 a001 31622993/219602*439204^(1/9) 6099996721337970 a001 433494437/1149851*103682^(1/24) 6099996721339519 a001 98209/930249*7881196^(6/11) 6099996721339537 a001 208010/109801*7881196^(4/11) 6099996721339573 a001 98209/930249*141422324^(6/13) 6099996721339573 a001 208010/109801*141422324^(4/13) 6099996721339573 a001 98209/930249*2537720636^(2/5) 6099996721339573 a001 208010/109801*2537720636^(4/15) 6099996721339573 a001 98209/930249*45537549124^(6/17) 6099996721339573 a001 208010/109801*45537549124^(4/17) 6099996721339573 a001 98209/930249*14662949395604^(2/7) 6099996721339573 a001 98209/930249*(1/2+1/2*5^(1/2))^18 6099996721339573 a001 98209/930249*192900153618^(1/3) 6099996721339573 a001 208010/109801*817138163596^(4/19) 6099996721339573 a001 208010/109801*14662949395604^(4/21) 6099996721339573 a001 208010/109801*(1/2+1/2*5^(1/2))^12 6099996721339573 a001 208010/109801*192900153618^(2/9) 6099996721339573 a001 208010/109801*73681302247^(3/13) 6099996721339573 a001 208010/109801*10749957122^(1/4) 6099996721339573 a001 98209/930249*10749957122^(3/8) 6099996721339573 a001 208010/109801*4106118243^(6/23) 6099996721339573 a001 98209/930249*4106118243^(9/23) 6099996721339573 a001 208010/109801*1568397607^(3/11) 6099996721339573 a001 98209/930249*1568397607^(9/22) 6099996721339573 a001 208010/109801*599074578^(2/7) 6099996721339573 a001 98209/930249*599074578^(3/7) 6099996721339573 a001 20428454090/33489287 6099996721339573 a001 208010/109801*228826127^(3/10) 6099996721339573 a001 98209/930249*228826127^(9/20) 6099996721339573 a001 208010/109801*87403803^(6/19) 6099996721339573 a001 98209/930249*87403803^(9/19) 6099996721339575 a001 208010/109801*33385282^(1/3) 6099996721339576 a001 98209/930249*33385282^(1/2) 6099996721339586 a001 208010/109801*12752043^(6/17) 6099996721339593 a001 98209/930249*12752043^(9/17) 6099996721339669 a001 208010/109801*4870847^(3/8) 6099996721339718 a001 98209/930249*4870847^(9/16) 6099996721339794 a001 14930352/1149851*271443^(4/13) 6099996721339807 a001 9227465/1860498*271443^(5/13) 6099996721340278 a001 208010/109801*1860498^(2/5) 6099996721340630 a001 98209/930249*1860498^(3/5) 6099996721340662 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^43 6099996721340690 a001 9227465/64079*24476^(1/7) 6099996721341070 a001 196418/4870847*20633239^(4/7) 6099996721341074 a001 2178309/439204*20633239^(2/7) 6099996721341078 a001 196418/4870847*2537720636^(4/9) 6099996721341078 a001 2178309/439204*2537720636^(2/9) 6099996721341078 a001 196418/4870847*(1/2+1/2*5^(1/2))^20 6099996721341078 a001 196418/4870847*23725150497407^(5/16) 6099996721341078 a001 196418/4870847*505019158607^(5/14) 6099996721341078 a001 2178309/439204*312119004989^(2/11) 6099996721341078 a001 2178309/439204*(1/2+1/2*5^(1/2))^10 6099996721341078 a001 196418/4870847*73681302247^(5/13) 6099996721341078 a001 2178309/439204*28143753123^(1/5) 6099996721341078 a001 196418/4870847*28143753123^(2/5) 6099996721341078 a001 2178309/439204*10749957122^(5/24) 6099996721341078 a001 196418/4870847*10749957122^(5/12) 6099996721341078 a001 2178309/439204*4106118243^(5/23) 6099996721341078 a001 196418/4870847*4106118243^(10/23) 6099996721341078 a001 2178309/439204*1568397607^(5/22) 6099996721341078 a001 196418/4870847*1568397607^(5/11) 6099996721341078 a001 142619699054/233802911 6099996721341078 a001 2178309/439204*599074578^(5/21) 6099996721341078 a001 196418/4870847*599074578^(10/21) 6099996721341078 a001 2178309/439204*228826127^(1/4) 6099996721341078 a001 196418/4870847*228826127^(1/2) 6099996721341078 a001 2178309/439204*87403803^(5/19) 6099996721341079 a001 196418/4870847*87403803^(10/19) 6099996721341080 a001 2178309/439204*33385282^(5/18) 6099996721341081 a001 196418/4870847*33385282^(5/9) 6099996721341089 a001 2178309/439204*12752043^(5/17) 6099996721341100 a001 196418/4870847*12752043^(10/17) 6099996721341158 a001 2178309/439204*4870847^(5/16) 6099996721341232 a001 196418/12752043*7881196^(2/3) 6099996721341237 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^45 6099996721341239 a001 196418/4870847*4870847^(5/8) 6099996721341246 a001 98209/299537289*7881196^(10/11) 6099996721341255 a001 98209/70711162*7881196^(9/11) 6099996721341258 a001 98209/16692641*7881196^(8/11) 6099996721341298 a001 196418/12752043*312119004989^(2/5) 6099996721341298 a001 196418/12752043*(1/2+1/2*5^(1/2))^22 6099996721341298 a001 5702887/439204*(1/2+1/2*5^(1/2))^8 6099996721341298 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^8/Lucas(27) 6099996721341298 a001 5702887/439204*23725150497407^(1/8) 6099996721341298 a001 5702887/439204*505019158607^(1/7) 6099996721341298 a001 5702887/439204*73681302247^(2/13) 6099996721341298 a001 5702887/439204*10749957122^(1/6) 6099996721341298 a001 196418/12752043*10749957122^(11/24) 6099996721341298 a001 5702887/439204*4106118243^(4/23) 6099996721341298 a001 196418/12752043*4106118243^(11/23) 6099996721341298 a001 1120149658766/1836311903 6099996721341298 a001 5702887/439204*1568397607^(2/11) 6099996721341298 a001 196418/12752043*1568397607^(1/2) 6099996721341298 a001 5702887/439204*599074578^(4/21) 6099996721341298 a001 196418/12752043*599074578^(11/21) 6099996721341298 a001 5702887/439204*228826127^(1/5) 6099996721341298 a001 196418/12752043*228826127^(11/20) 6099996721341298 a001 5702887/439204*87403803^(4/19) 6099996721341298 a001 196418/12752043*87403803^(11/19) 6099996721341299 a001 5702887/439204*33385282^(2/9) 6099996721341300 a001 24157817/4870847*271443^(5/13) 6099996721341301 a001 196418/12752043*33385282^(11/18) 6099996721341307 a001 5702887/439204*12752043^(4/17) 6099996721341312 a001 196452/5779*7881196^(2/11) 6099996721341321 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^47 6099996721341322 a001 196418/12752043*12752043^(11/17) 6099996721341323 a001 98209/299537289*20633239^(6/7) 6099996721341324 a001 196418/228826127*20633239^(4/5) 6099996721341327 a001 31622993/219602*7881196^(1/11) 6099996721341327 a001 196418/54018521*20633239^(5/7) 6099996721341330 a001 98209/16692641*141422324^(8/13) 6099996721341330 a001 196452/5779*141422324^(2/13) 6099996721341330 a001 98209/16692641*2537720636^(8/15) 6099996721341330 a001 196452/5779*2537720636^(2/15) 6099996721341330 a001 98209/16692641*45537549124^(8/17) 6099996721341330 a001 196452/5779*45537549124^(2/17) 6099996721341330 a001 98209/16692641*14662949395604^(8/21) 6099996721341330 a001 98209/16692641*(1/2+1/2*5^(1/2))^24 6099996721341330 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(36) 6099996721341330 a001 98209/16692641*192900153618^(4/9) 6099996721341330 a001 196452/5779*14662949395604^(2/21) 6099996721341330 a001 196452/5779*(1/2+1/2*5^(1/2))^6 6099996721341330 a001 98209/16692641*73681302247^(6/13) 6099996721341330 a001 196452/5779*10749957122^(1/8) 6099996721341330 a001 98209/16692641*10749957122^(1/2) 6099996721341330 a001 196452/5779*4106118243^(3/23) 6099996721341330 a001 10182603747/16692802 6099996721341330 a001 98209/16692641*4106118243^(12/23) 6099996721341330 a001 196452/5779*1568397607^(3/22) 6099996721341330 a001 98209/16692641*1568397607^(6/11) 6099996721341330 a001 196452/5779*599074578^(1/7) 6099996721341330 a001 98209/16692641*599074578^(4/7) 6099996721341330 a001 196452/5779*228826127^(3/20) 6099996721341330 a001 98209/16692641*228826127^(3/5) 6099996721341330 a001 196452/5779*87403803^(3/19) 6099996721341330 a001 98209/16692641*87403803^(12/19) 6099996721341331 a001 196452/5779*33385282^(1/6) 6099996721341333 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^49 6099996721341333 a001 98209/16692641*33385282^(2/3) 6099996721341334 a001 196418/87403803*141422324^(2/3) 6099996721341334 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(38) 6099996721341334 a001 39088169/439204*(1/2+1/2*5^(1/2))^4 6099996721341334 a001 39088169/439204*23725150497407^(1/16) 6099996721341334 a001 39088169/439204*73681302247^(1/13) 6099996721341334 a001 196418/87403803*73681302247^(1/2) 6099996721341334 a001 39088169/439204*10749957122^(1/12) 6099996721341334 a001 7677619978642/12586269025 6099996721341334 a001 196418/87403803*10749957122^(13/24) 6099996721341334 a001 39088169/439204*4106118243^(2/23) 6099996721341334 a001 196418/87403803*4106118243^(13/23) 6099996721341334 a001 39088169/439204*1568397607^(1/11) 6099996721341334 a001 196418/87403803*1568397607^(13/22) 6099996721341334 a001 39088169/439204*599074578^(2/21) 6099996721341334 a001 196418/87403803*599074578^(13/21) 6099996721341334 a001 39088169/439204*228826127^(1/10) 6099996721341334 a001 196418/87403803*228826127^(13/20) 6099996721341334 a001 39088169/439204*87403803^(2/19) 6099996721341335 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^51 6099996721341335 a001 98209/5374978561*141422324^(12/13) 6099996721341335 a001 98209/1268860318*141422324^(11/13) 6099996721341335 a001 196418/87403803*87403803^(13/19) 6099996721341335 a001 98209/299537289*141422324^(10/13) 6099996721341335 a001 39088169/439204*33385282^(1/9) 6099996721341335 a001 196418/228826127*17393796001^(4/7) 6099996721341335 a001 196418/228826127*14662949395604^(4/9) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(40) 6099996721341335 a001 196418/228826127*505019158607^(1/2) 6099996721341335 a001 102334155/439204*(1/2+1/2*5^(1/2))^2 6099996721341335 a001 196418/228826127*73681302247^(7/13) 6099996721341335 a001 6700090018930/10983760033 6099996721341335 a001 102334155/439204*10749957122^(1/24) 6099996721341335 a001 102334155/439204*4106118243^(1/23) 6099996721341335 a001 196418/228826127*10749957122^(7/12) 6099996721341335 a001 102334155/439204*1568397607^(1/22) 6099996721341335 a001 196418/228826127*4106118243^(14/23) 6099996721341335 a001 102334155/439204*599074578^(1/21) 6099996721341335 a001 196418/228826127*1568397607^(7/11) 6099996721341335 a001 102334155/439204*228826127^(1/20) 6099996721341335 a001 196418/228826127*599074578^(2/3) 6099996721341335 a001 102334155/439204*87403803^(1/19) 6099996721341335 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^53 6099996721341335 a001 196418/228826127*228826127^(7/10) 6099996721341335 a001 98209/299537289*2537720636^(2/3) 6099996721341335 a001 98209/299537289*45537549124^(10/17) 6099996721341335 a001 98209/299537289*312119004989^(6/11) 6099996721341335 a001 98209/299537289*14662949395604^(10/21) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(42) 6099996721341335 a001 98209/299537289*192900153618^(5/9) 6099996721341335 a001 66978574/109801 6099996721341335 a001 98209/299537289*28143753123^(3/5) 6099996721341335 a001 98209/299537289*10749957122^(5/8) 6099996721341335 a001 98209/299537289*4106118243^(15/23) 6099996721341335 a001 98209/299537289*1568397607^(15/22) 6099996721341335 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^55 6099996721341335 a001 98209/299537289*599074578^(5/7) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(44) 6099996721341335 a001 196418/1568397607*23725150497407^(1/2) 6099996721341335 a001 196418/1568397607*505019158607^(4/7) 6099996721341335 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^2 6099996721341335 a001 196418/1568397607*73681302247^(8/13) 6099996721341335 a001 196418/1568397607*10749957122^(2/3) 6099996721341335 a001 196418/1568397607*4106118243^(16/23) 6099996721341335 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^57 6099996721341335 a001 98209/96450076809*2537720636^(14/15) 6099996721341335 a001 196418/73681302247*2537720636^(8/9) 6099996721341335 a001 98209/22768774562*2537720636^(13/15) 6099996721341335 a001 98209/5374978561*2537720636^(4/5) 6099996721341335 a001 196418/1568397607*1568397607^(8/11) 6099996721341335 a001 196418/6643838879*2537720636^(7/9) 6099996721341335 a001 196418/4106118243*45537549124^(2/3) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(46) 6099996721341335 a001 360684711363454/591286729879 6099996721341335 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^4 6099996721341335 a001 196418/4106118243*10749957122^(17/24) 6099996721341335 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^59 6099996721341335 a001 196418/4106118243*4106118243^(17/23) 6099996721341335 a001 98209/5374978561*45537549124^(12/17) 6099996721341335 a001 98209/5374978561*14662949395604^(4/7) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(48) 6099996721341335 a001 6557533566472/10750060805 6099996721341335 a001 98209/5374978561*505019158607^(9/14) 6099996721341335 a001 98209/5374978561*192900153618^(2/3) 6099996721341335 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^6 6099996721341335 a001 98209/5374978561*73681302247^(9/13) 6099996721341335 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^61 6099996721341335 a001 98209/96450076809*17393796001^(6/7) 6099996721341335 a001 98209/5374978561*10749957122^(3/4) 6099996721341335 a001 196418/28143753123*817138163596^(2/3) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(50) 6099996721341335 a001 2472169789352450/4052739537881 6099996721341335 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^8 6099996721341335 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^63 6099996721341335 a001 98209/1730726404001*45537549124^(16/17) 6099996721341335 a001 98209/96450076809*45537549124^(14/17) 6099996721341335 a001 98209/408569081798*45537549124^(15/17) 6099996721341335 a001 196418/73681302247*312119004989^(8/11) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(52) 6099996721341335 a001 196418/73681302247*23725150497407^(5/8) 6099996721341335 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^10 6099996721341335 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^65 6099996721341335 a001 196418/73681302247*73681302247^(10/13) 6099996721341335 a001 98209/96450076809*817138163596^(14/19) 6099996721341335 a001 98209/96450076809*14662949395604^(2/3) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(54) 6099996721341335 a001 98209/96450076809*505019158607^(3/4) 6099996721341335 a001 196418/505019158607*312119004989^(4/5) 6099996721341335 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^67 6099996721341335 a001 196418/9062201101803*312119004989^(10/11) 6099996721341335 a001 98209/408569081798*312119004989^(9/11) 6099996721341335 a001 98209/96450076809*192900153618^(7/9) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(56) 6099996721341335 a001 196418/505019158607*23725150497407^(11/16) 6099996721341335 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^69 6099996721341335 a001 98209/7331474697802*817138163596^(17/19) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(58) 6099996721341335 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^71 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(60) 6099996721341335 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^73 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(62) 6099996721341335 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^75 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(64) 6099996721341335 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^77 6099996721341335 a001 196418/23725150497407*23725150497407^(13/16) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(66) 6099996721341335 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^79 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(68) 6099996721341335 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^81 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(70) 6099996721341335 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^83 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(72) 6099996721341335 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^85 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(74) 6099996721341335 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^87 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(76) 6099996721341335 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^89 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(78) 6099996721341335 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^91 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(80) 6099996721341335 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^93 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(82) 6099996721341335 a004 Fibonacci(27)*Lucas(83)/(1/2+sqrt(5)/2)^95 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(84) 6099996721341335 a004 Fibonacci(27)*Lucas(85)/(1/2+sqrt(5)/2)^97 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(86) 6099996721341335 a004 Fibonacci(27)*Lucas(87)/(1/2+sqrt(5)/2)^99 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(88) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(90) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(92) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^82/Lucas(94) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^84/Lucas(96) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^86/Lucas(98) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^88/Lucas(100) 6099996721341335 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^12 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^87/Lucas(99) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^85/Lucas(97) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^83/Lucas(95) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(93) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(91) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(89) 6099996721341335 a004 Fibonacci(27)*Lucas(88)/(1/2+sqrt(5)/2)^100 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(87) 6099996721341335 a004 Fibonacci(27)*Lucas(86)/(1/2+sqrt(5)/2)^98 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(85) 6099996721341335 a004 Fibonacci(27)*Lucas(84)/(1/2+sqrt(5)/2)^96 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(83) 6099996721341335 a004 Fibonacci(27)*Lucas(82)/(1/2+sqrt(5)/2)^94 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(81) 6099996721341335 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^92 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(79) 6099996721341335 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^90 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(77) 6099996721341335 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^88 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(75) 6099996721341335 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^86 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(73) 6099996721341335 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^84 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(71) 6099996721341335 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^82 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(69) 6099996721341335 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^80 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(67) 6099996721341335 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^78 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(65) 6099996721341335 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^76 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(63) 6099996721341335 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^74 6099996721341335 a001 196418/5600748293801*14662949395604^(7/9) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(61) 6099996721341335 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^72 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(59) 6099996721341335 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^70 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(57) 6099996721341335 a001 196418/5600748293801*505019158607^(7/8) 6099996721341335 a001 196418/23725150497407*505019158607^(13/14) 6099996721341335 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^68 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(55) 6099996721341335 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^14 6099996721341335 a001 98209/1730726404001*192900153618^(8/9) 6099996721341335 a001 98209/408569081798*192900153618^(5/6) 6099996721341335 a001 98209/7331474697802*192900153618^(17/18) 6099996721341335 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^16 6099996721341335 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^18 6099996721341335 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^20 6099996721341335 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^22 6099996721341335 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^24 6099996721341335 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^26 6099996721341335 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^28 6099996721341335 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^30 6099996721341335 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^32 6099996721341335 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^34 6099996721341335 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^36 6099996721341335 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^38 6099996721341335 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^40 6099996721341335 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^42 6099996721341335 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^44 6099996721341335 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^46 6099996721341335 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^48 6099996721341335 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^50 6099996721341335 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^52 6099996721341335 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^54 6099996721341335 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^56 6099996721341335 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^58 6099996721341335 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^66 6099996721341335 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^57 6099996721341335 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^55 6099996721341335 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^53 6099996721341335 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^51 6099996721341335 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^49 6099996721341335 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^47 6099996721341335 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^45 6099996721341335 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^43 6099996721341335 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^41 6099996721341335 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^39 6099996721341335 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^37 6099996721341335 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^35 6099996721341335 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^33 6099996721341335 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^31 6099996721341335 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^29 6099996721341335 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^27 6099996721341335 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^25 6099996721341335 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^23 6099996721341335 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^21 6099996721341335 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^19 6099996721341335 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^17 6099996721341335 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^15 6099996721341335 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^13 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(53) 6099996721341335 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^11 6099996721341335 a001 98209/22768774562*45537549124^(13/17) 6099996721341335 a001 196418/505019158607*73681302247^(11/13) 6099996721341335 a001 98209/1730726404001*73681302247^(12/13) 6099996721341335 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^64 6099996721341335 a001 117648668974498/192866774113 6099996721341335 a001 98209/22768774562*14662949395604^(13/21) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(51) 6099996721341335 a001 98209/22768774562*192900153618^(13/18) 6099996721341335 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^9 6099996721341335 a001 98209/22768774562*73681302247^(3/4) 6099996721341335 a001 196418/73681302247*28143753123^(4/5) 6099996721341335 a001 98209/408569081798*28143753123^(9/10) 6099996721341335 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^62 6099996721341335 a001 1527884955780482/2504730781961 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(49) 6099996721341335 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^7 6099996721341335 a001 196418/28143753123*10749957122^(19/24) 6099996721341335 a001 196418/73681302247*10749957122^(5/6) 6099996721341335 a001 98209/22768774562*10749957122^(13/16) 6099996721341335 a001 98209/96450076809*10749957122^(7/8) 6099996721341335 a001 196418/505019158607*10749957122^(11/12) 6099996721341335 a001 98209/408569081798*10749957122^(15/16) 6099996721341335 a001 196418/1322157322203*10749957122^(23/24) 6099996721341335 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^60 6099996721341335 a001 196418/6643838879*17393796001^(5/7) 6099996721341335 a001 196418/6643838879*312119004989^(7/11) 6099996721341335 a001 583600122208514/956722026041 6099996721341335 a001 196418/6643838879*14662949395604^(5/9) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(47) 6099996721341335 a001 196418/6643838879*505019158607^(5/8) 6099996721341335 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^5 6099996721341335 a001 196418/6643838879*28143753123^(7/10) 6099996721341335 a001 98209/5374978561*4106118243^(18/23) 6099996721341335 a001 98209/1268860318*2537720636^(11/15) 6099996721341335 a001 196418/28143753123*4106118243^(19/23) 6099996721341335 a001 196418/73681302247*4106118243^(20/23) 6099996721341335 a001 98209/96450076809*4106118243^(21/23) 6099996721341335 a001 196418/505019158607*4106118243^(22/23) 6099996721341335 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^58 6099996721341335 a001 98209/1268860318*45537549124^(11/17) 6099996721341335 a001 98209/1268860318*312119004989^(3/5) 6099996721341335 a001 111457705422530/182717648081 6099996721341335 a001 98209/1268860318*14662949395604^(11/21) 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(45) 6099996721341335 a001 98209/1268860318*192900153618^(11/18) 6099996721341335 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^3 6099996721341335 a001 98209/1268860318*10749957122^(11/16) 6099996721341335 a001 196418/4106118243*1568397607^(17/22) 6099996721341335 a001 98209/5374978561*1568397607^(9/11) 6099996721341335 a001 196418/28143753123*1568397607^(19/22) 6099996721341335 a001 196418/73681302247*1568397607^(10/11) 6099996721341335 a001 98209/96450076809*1568397607^(21/22) 6099996721341335 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^56 6099996721341335 a001 98209/1268860318*1568397607^(3/4) 6099996721341335 a001 85146110326666/139583862445 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(43) 6099996721341335 a001 196418/969323029*9062201101803^(1/2) 6099996721341335 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2) 6099996721341335 a001 196418/1568397607*599074578^(16/21) 6099996721341335 a001 196418/4106118243*599074578^(17/21) 6099996721341335 a001 98209/1268860318*599074578^(11/14) 6099996721341335 a001 196418/6643838879*599074578^(5/6) 6099996721341335 a001 98209/5374978561*599074578^(6/7) 6099996721341335 a001 196418/28143753123*599074578^(19/21) 6099996721341335 a001 98209/22768774562*599074578^(13/14) 6099996721341335 a001 196418/73681302247*599074578^(20/21) 6099996721341335 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^54 6099996721341335 a001 24157817/439204*20633239^(1/7) 6099996721341335 a001 32522920134938/53316291173 6099996721341335 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(41) 6099996721341335 a001 196418/370248451*1322157322203^(1/2) 6099996721341335 a001 165580141/878408+165580141/878408*5^(1/2) 6099996721341335 a001 98209/299537289*228826127^(3/4) 6099996721341335 a001 196418/1568397607*228826127^(4/5) 6099996721341335 a001 98209/70711162*141422324^(9/13) 6099996721341335 a001 196418/4106118243*228826127^(17/20) 6099996721341335 a001 196418/6643838879*228826127^(7/8) 6099996721341335 a001 98209/5374978561*228826127^(9/10) 6099996721341335 a001 196418/28143753123*228826127^(19/20) 6099996721341335 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^52 6099996721341335 a001 102334155/439204*33385282^(1/18) 6099996721341335 a001 31622993/219602*141422324^(1/13) 6099996721341336 a001 98209/70711162*2537720636^(3/5) 6099996721341336 a001 31622993/219602*2537720636^(1/15) 6099996721341336 a001 6211325039074/10182505537 6099996721341336 a001 98209/70711162*45537549124^(9/17) 6099996721341336 a001 31622993/219602*45537549124^(1/17) 6099996721341336 a001 98209/70711162*817138163596^(9/19) 6099996721341336 a001 98209/70711162*14662949395604^(3/7) 6099996721341336 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(39) 6099996721341336 a001 98209/70711162*192900153618^(1/2) 6099996721341336 a001 31622993/219602*14662949395604^(1/21) 6099996721341336 a001 31622993/219602*(1/2+1/2*5^(1/2))^3 6099996721341336 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^3/Lucas(27) 6099996721341336 a001 31622993/219602*192900153618^(1/18) 6099996721341336 a001 31622993/219602*10749957122^(1/16) 6099996721341336 a001 98209/70711162*10749957122^(9/16) 6099996721341336 a001 31622993/219602*599074578^(1/14) 6099996721341336 a001 98209/70711162*599074578^(9/14) 6099996721341336 a001 196418/228826127*87403803^(14/19) 6099996721341336 a001 98209/299537289*87403803^(15/19) 6099996721341336 a001 196418/1568397607*87403803^(16/19) 6099996721341336 a001 196418/4106118243*87403803^(17/19) 6099996721341336 a001 98209/5374978561*87403803^(18/19) 6099996721341336 a001 31622993/219602*33385282^(1/12) 6099996721341336 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^50 6099996721341336 a001 196452/5779*12752043^(3/17) 6099996721341337 a001 196418/54018521*2537720636^(5/9) 6099996721341337 a001 102334155/439204*12752043^(1/17) 6099996721341337 a001 24157817/439204*2537720636^(1/9) 6099996721341337 a001 4745030099506/7778742049 6099996721341337 a001 196418/54018521*312119004989^(5/11) 6099996721341337 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(37) 6099996721341337 a001 196418/54018521*3461452808002^(5/12) 6099996721341337 a001 24157817/439204*312119004989^(1/11) 6099996721341337 a001 24157817/439204*(1/2+1/2*5^(1/2))^5 6099996721341337 a001 24157817/439204*28143753123^(1/10) 6099996721341337 a001 196418/54018521*28143753123^(1/2) 6099996721341337 a001 24157817/439204*228826127^(1/8) 6099996721341337 a001 196418/54018521*228826127^(5/8) 6099996721341338 a001 196418/87403803*33385282^(13/18) 6099996721341339 a001 39088169/439204*12752043^(2/17) 6099996721341339 a001 196418/228826127*33385282^(7/9) 6099996721341340 a001 98209/70711162*33385282^(3/4) 6099996721341340 a001 98209/299537289*33385282^(5/6) 6099996721341340 a001 196418/1568397607*33385282^(8/9) 6099996721341340 a001 98209/1268860318*33385282^(11/12) 6099996721341340 a001 196418/4106118243*33385282^(17/18) 6099996721341341 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^48 6099996721341347 a001 9227465/439204*20633239^(1/5) 6099996721341350 a001 1812440220370/2971215073 6099996721341350 a001 9227465/439204*17393796001^(1/7) 6099996721341350 a001 196418/20633239*(1/2+1/2*5^(1/2))^23 6099996721341350 a001 9227465/439204*14662949395604^(1/9) 6099996721341350 a001 9227465/439204*(1/2+1/2*5^(1/2))^7 6099996721341350 a001 196418/20633239*4106118243^(1/2) 6099996721341350 a001 9227465/439204*599074578^(1/6) 6099996721341351 a001 102334155/439204*4870847^(1/16) 6099996721341356 a001 98209/16692641*12752043^(12/17) 6099996721341362 a001 5702887/439204*4870847^(1/4) 6099996721341363 a001 196418/87403803*12752043^(13/17) 6099996721341366 a001 196418/228826127*12752043^(14/17) 6099996721341367 a001 39088169/439204*4870847^(1/8) 6099996721341368 a001 98209/299537289*12752043^(15/17) 6099996721341371 a001 196418/1568397607*12752043^(16/17) 6099996721341371 a001 98209/3940598*7881196^(7/11) 6099996721341373 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^46 6099996721341378 a001 196452/5779*4870847^(3/16) 6099996721341407 a001 1762289/219602*7881196^(3/11) 6099996721341425 a001 98209/3940598*20633239^(3/5) 6099996721341433 a001 98209/3940598*141422324^(7/13) 6099996721341433 a001 1762289/219602*141422324^(3/13) 6099996721341433 a001 20361487106/33379505 6099996721341433 a001 98209/3940598*2537720636^(7/15) 6099996721341433 a001 1762289/219602*2537720636^(1/5) 6099996721341433 a001 98209/3940598*17393796001^(3/7) 6099996721341433 a001 98209/3940598*45537549124^(7/17) 6099996721341433 a001 1762289/219602*45537549124^(3/17) 6099996721341433 a001 98209/3940598*14662949395604^(1/3) 6099996721341433 a001 98209/3940598*(1/2+1/2*5^(1/2))^21 6099996721341433 a001 98209/3940598*192900153618^(7/18) 6099996721341433 a001 1762289/219602*817138163596^(3/19) 6099996721341433 a001 1762289/219602*14662949395604^(1/7) 6099996721341433 a001 1762289/219602*(1/2+1/2*5^(1/2))^9 6099996721341433 a001 1762289/219602*192900153618^(1/6) 6099996721341433 a001 1762289/219602*10749957122^(3/16) 6099996721341433 a001 98209/3940598*10749957122^(7/16) 6099996721341433 a001 1762289/219602*599074578^(3/14) 6099996721341433 a001 98209/3940598*599074578^(1/2) 6099996721341435 a001 1762289/219602*33385282^(1/4) 6099996721341437 a001 98209/3940598*33385282^(7/12) 6099996721341453 a001 102334155/439204*1860498^(1/15) 6099996721341474 a001 196418/12752043*4870847^(11/16) 6099996721341512 a001 31622993/219602*1860498^(1/10) 6099996721341517 a001 63245986/12752043*271443^(5/13) 6099996721341523 a001 98209/16692641*4870847^(3/4) 6099996721341543 a001 196418/87403803*4870847^(13/16) 6099996721341549 a001 165580141/33385282*271443^(5/13) 6099996721341554 a001 433494437/87403803*271443^(5/13) 6099996721341554 a001 1134903170/228826127*271443^(5/13) 6099996721341555 a001 2971215073/599074578*271443^(5/13) 6099996721341555 a001 7778742049/1568397607*271443^(5/13) 6099996721341555 a001 20365011074/4106118243*271443^(5/13) 6099996721341555 a001 53316291173/10749957122*271443^(5/13) 6099996721341555 a001 139583862445/28143753123*271443^(5/13) 6099996721341555 a001 365435296162/73681302247*271443^(5/13) 6099996721341555 a001 956722026041/192900153618*271443^(5/13) 6099996721341555 a001 2504730781961/505019158607*271443^(5/13) 6099996721341555 a001 10610209857723/2139295485799*271443^(5/13) 6099996721341555 a001 4052739537881/817138163596*271443^(5/13) 6099996721341555 a001 140728068720/28374454999*271443^(5/13) 6099996721341555 a001 591286729879/119218851371*271443^(5/13) 6099996721341555 a001 225851433717/45537549124*271443^(5/13) 6099996721341555 a001 86267571272/17393796001*271443^(5/13) 6099996721341555 a001 32951280099/6643838879*271443^(5/13) 6099996721341555 a001 1144206275/230701876*271443^(5/13) 6099996721341555 a001 4807526976/969323029*271443^(5/13) 6099996721341555 a001 1836311903/370248451*271443^(5/13) 6099996721341555 a001 701408733/141422324*271443^(5/13) 6099996721341557 a001 267914296/54018521*271443^(5/13) 6099996721341560 a001 196418/228826127*4870847^(7/8) 6099996721341569 a001 9303105/1875749*271443^(5/13) 6099996721341569 a001 39088169/439204*1860498^(2/15) 6099996721341576 a001 98209/299537289*4870847^(15/16) 6099996721341592 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^44 6099996721341631 a001 24157817/439204*1860498^(1/6) 6099996721341652 a001 39088169/7881196*271443^(5/13) 6099996721341666 a001 2178309/439204*1860498^(1/3) 6099996721341682 a001 196452/5779*1860498^(1/5) 6099996721341768 a001 5702887/439204*1860498^(4/15) 6099996721341962 a001 1762289/219602*1860498^(3/10) 6099996721341976 a001 1346269/439204*7881196^(1/3) 6099996721342008 a001 264431464442/433494437 6099996721342008 a001 196418/3010349*817138163596^(1/3) 6099996721342008 a001 196418/3010349*(1/2+1/2*5^(1/2))^19 6099996721342008 a001 1346269/439204*312119004989^(1/5) 6099996721342008 a001 1346269/439204*(1/2+1/2*5^(1/2))^11 6099996721342008 a001 1346269/439204*1568397607^(1/4) 6099996721342009 a001 196418/3010349*87403803^(1/2) 6099996721342198 a001 102334155/439204*710647^(1/14) 6099996721342222 a001 14930352/3010349*271443^(5/13) 6099996721342253 a001 196418/4870847*1860498^(2/3) 6099996721342590 a001 196418/12752043*1860498^(11/15) 6099996721342667 a001 98209/3940598*1860498^(7/10) 6099996721342740 a001 98209/16692641*1860498^(4/5) 6099996721342806 a001 196418/54018521*1860498^(5/6) 6099996721342862 a001 196418/87403803*1860498^(13/15) 6099996721342922 a001 98209/70711162*1860498^(9/10) 6099996721342980 a001 196418/228826127*1860498^(14/15) 6099996721343060 a001 39088169/439204*710647^(1/7) 6099996721343097 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^42 6099996721343918 a001 196452/5779*710647^(3/14) 6099996721344369 a001 9227465/439204*710647^(1/4) 6099996721344749 a001 5702887/439204*710647^(2/7) 6099996721344750 a001 208010/109801*710647^(3/7) 6099996721344921 a001 165580141/710647*103682^(1/12) 6099996721345136 a001 4976784/90481*103682^(5/24) 6099996721345392 a001 2178309/439204*710647^(5/14) 6099996721345949 a001 514229/439204*141422324^(1/3) 6099996721345949 a001 101003831722/165580141 6099996721345949 a001 196418/1149851*45537549124^(1/3) 6099996721345949 a001 196418/1149851*(1/2+1/2*5^(1/2))^17 6099996721345949 a001 514229/439204*(1/2+1/2*5^(1/2))^13 6099996721345949 a001 514229/439204*73681302247^(1/4) 6099996721345968 a001 196418/1149851*12752043^(1/2) 6099996721346131 a001 5702887/1149851*271443^(5/13) 6099996721346259 a001 1762289/930249*271443^(6/13) 6099996721346826 a001 514229/710647*271443^(7/13) 6099996721347338 a001 98209/930249*710647^(9/14) 6099996721347680 a001 9227465/4870847*271443^(6/13) 6099996721347703 a001 102334155/439204*271443^(1/13) 6099996721347888 a001 24157817/12752043*271443^(6/13) 6099996721347918 a001 31622993/16692641*271443^(6/13) 6099996721347922 a001 165580141/87403803*271443^(6/13) 6099996721347923 a001 433494437/228826127*271443^(6/13) 6099996721347923 a001 567451585/299537289*271443^(6/13) 6099996721347923 a001 2971215073/1568397607*271443^(6/13) 6099996721347923 a001 7778742049/4106118243*271443^(6/13) 6099996721347923 a001 10182505537/5374978561*271443^(6/13) 6099996721347923 a001 53316291173/28143753123*271443^(6/13) 6099996721347923 a001 139583862445/73681302247*271443^(6/13) 6099996721347923 a001 182717648081/96450076809*271443^(6/13) 6099996721347923 a001 956722026041/505019158607*271443^(6/13) 6099996721347923 a001 10610209857723/5600748293801*271443^(6/13) 6099996721347923 a001 591286729879/312119004989*271443^(6/13) 6099996721347923 a001 225851433717/119218851371*271443^(6/13) 6099996721347923 a001 21566892818/11384387281*271443^(6/13) 6099996721347923 a001 32951280099/17393796001*271443^(6/13) 6099996721347923 a001 12586269025/6643838879*271443^(6/13) 6099996721347923 a001 1201881744/634430159*271443^(6/13) 6099996721347923 a001 1836311903/969323029*271443^(6/13) 6099996721347923 a001 701408733/370248451*271443^(6/13) 6099996721347923 a001 66978574/35355581*271443^(6/13) 6099996721347925 a001 102334155/54018521*271443^(6/13) 6099996721347936 a001 39088169/20633239*271443^(6/13) 6099996721348016 a001 3732588/1970299*271443^(6/13) 6099996721348559 a001 5702887/3010349*271443^(6/13) 6099996721349088 a001 726103/620166*271443^(1/2) 6099996721349706 a001 196418/4870847*710647^(5/7) 6099996721350492 a001 98209/3940598*710647^(3/4) 6099996721350788 a001 196418/12752043*710647^(11/14) 6099996721350812 a001 5702887/4870847*271443^(1/2) 6099996721351064 a001 4976784/4250681*271443^(1/2) 6099996721351101 a001 39088169/33385282*271443^(1/2) 6099996721351106 a001 34111385/29134601*271443^(1/2) 6099996721351107 a001 267914296/228826127*271443^(1/2) 6099996721351107 a001 233802911/199691526*271443^(1/2) 6099996721351107 a001 1836311903/1568397607*271443^(1/2) 6099996721351107 a001 1602508992/1368706081*271443^(1/2) 6099996721351107 a001 12586269025/10749957122*271443^(1/2) 6099996721351107 a001 10983760033/9381251041*271443^(1/2) 6099996721351107 a001 86267571272/73681302247*271443^(1/2) 6099996721351107 a001 75283811239/64300051206*271443^(1/2) 6099996721351107 a001 2504730781961/2139295485799*271443^(1/2) 6099996721351107 a001 365435296162/312119004989*271443^(1/2) 6099996721351107 a001 139583862445/119218851371*271443^(1/2) 6099996721351107 a001 53316291173/45537549124*271443^(1/2) 6099996721351107 a001 20365011074/17393796001*271443^(1/2) 6099996721351107 a001 7778742049/6643838879*271443^(1/2) 6099996721351107 a001 2971215073/2537720636*271443^(1/2) 6099996721351107 a001 1134903170/969323029*271443^(1/2) 6099996721351107 a001 433494437/370248451*271443^(1/2) 6099996721351107 a001 165580141/141422324*271443^(1/2) 6099996721351110 a001 63245986/54018521*271443^(1/2) 6099996721351124 a001 24157817/20633239*271443^(1/2) 6099996721351220 a001 9227465/7881196*271443^(1/2) 6099996721351299 a001 75025/1860498*167761^(4/5) 6099996721351683 a001 98209/16692641*710647^(6/7) 6099996721351878 a001 3524578/3010349*271443^(1/2) 6099996721352279 a001 2178309/1149851*271443^(6/13) 6099996721352550 a001 196418/87403803*710647^(13/14) 6099996721353195 a001 317811/1149851*271443^(8/13) 6099996721353202 a001 1346269/1860498*271443^(7/13) 6099996721353414 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^40 6099996721354071 a001 39088169/439204*271443^(2/13) 6099996721354132 a001 3524578/4870847*271443^(7/13) 6099996721354268 a001 9227465/12752043*271443^(7/13) 6099996721354288 a001 24157817/33385282*271443^(7/13) 6099996721354291 a001 63245986/87403803*271443^(7/13) 6099996721354291 a001 165580141/228826127*271443^(7/13) 6099996721354291 a001 433494437/599074578*271443^(7/13) 6099996721354291 a001 1134903170/1568397607*271443^(7/13) 6099996721354291 a001 2971215073/4106118243*271443^(7/13) 6099996721354291 a001 7778742049/10749957122*271443^(7/13) 6099996721354291 a001 20365011074/28143753123*271443^(7/13) 6099996721354291 a001 53316291173/73681302247*271443^(7/13) 6099996721354291 a001 139583862445/192900153618*271443^(7/13) 6099996721354291 a001 10610209857723/14662949395604*271443^(7/13) 6099996721354291 a001 591286729879/817138163596*271443^(7/13) 6099996721354291 a001 225851433717/312119004989*271443^(7/13) 6099996721354291 a001 86267571272/119218851371*271443^(7/13) 6099996721354291 a001 32951280099/45537549124*271443^(7/13) 6099996721354291 a001 12586269025/17393796001*271443^(7/13) 6099996721354291 a001 4807526976/6643838879*271443^(7/13) 6099996721354291 a001 1836311903/2537720636*271443^(7/13) 6099996721354291 a001 701408733/969323029*271443^(7/13) 6099996721354291 a001 267914296/370248451*271443^(7/13) 6099996721354291 a001 102334155/141422324*271443^(7/13) 6099996721354293 a001 39088169/54018521*271443^(7/13) 6099996721354300 a001 14930352/20633239*271443^(7/13) 6099996721354352 a001 5702887/7881196*271443^(7/13) 6099996721354707 a001 2178309/3010349*271443^(7/13) 6099996721355237 a001 433494437/1860498*103682^(1/12) 6099996721355390 a001 98209/219602*439204^(5/9) 6099996721355622 a001 317811/3010349*271443^(9/13) 6099996721356394 a001 1346269/1149851*271443^(1/2) 6099996721356743 a001 1134903170/4870847*103682^(1/12) 6099996721356962 a001 2971215073/12752043*103682^(1/12) 6099996721356994 a001 7778742049/33385282*103682^(1/12) 6099996721356999 a001 20365011074/87403803*103682^(1/12) 6099996721357000 a001 53316291173/228826127*103682^(1/12) 6099996721357000 a001 139583862445/599074578*103682^(1/12) 6099996721357000 a001 365435296162/1568397607*103682^(1/12) 6099996721357000 a001 956722026041/4106118243*103682^(1/12) 6099996721357000 a001 2504730781961/10749957122*103682^(1/12) 6099996721357000 a001 6557470319842/28143753123*103682^(1/12) 6099996721357000 a001 10610209857723/45537549124*103682^(1/12) 6099996721357000 a001 4052739537881/17393796001*103682^(1/12) 6099996721357000 a001 1548008755920/6643838879*103682^(1/12) 6099996721357000 a001 591286729879/2537720636*103682^(1/12) 6099996721357000 a001 225851433717/969323029*103682^(1/12) 6099996721357000 a001 86267571272/370248451*103682^(1/12) 6099996721357000 a001 63246219/271444*103682^(1/12) 6099996721357002 a001 12586269025/54018521*103682^(1/12) 6099996721357014 a001 4807526976/20633239*103682^(1/12) 6099996721357098 a001 1836311903/7881196*103682^(1/12) 6099996721357143 a001 832040/1149851*271443^(7/13) 6099996721357673 a001 701408733/3010349*103682^(1/12) 6099996721359571 a001 832040/3010349*271443^(8/13) 6099996721360435 a001 196452/5779*271443^(3/13) 6099996721360501 a001 2178309/7881196*271443^(8/13) 6099996721360637 a001 5702887/20633239*271443^(8/13) 6099996721360656 a001 14930352/54018521*271443^(8/13) 6099996721360659 a001 39088169/141422324*271443^(8/13) 6099996721360660 a001 102334155/370248451*271443^(8/13) 6099996721360660 a001 267914296/969323029*271443^(8/13) 6099996721360660 a001 701408733/2537720636*271443^(8/13) 6099996721360660 a001 1836311903/6643838879*271443^(8/13) 6099996721360660 a001 4807526976/17393796001*271443^(8/13) 6099996721360660 a001 12586269025/45537549124*271443^(8/13) 6099996721360660 a001 32951280099/119218851371*271443^(8/13) 6099996721360660 a001 86267571272/312119004989*271443^(8/13) 6099996721360660 a001 225851433717/817138163596*271443^(8/13) 6099996721360660 a001 1548008755920/5600748293801*271443^(8/13) 6099996721360660 a001 139583862445/505019158607*271443^(8/13) 6099996721360660 a001 53316291173/192900153618*271443^(8/13) 6099996721360660 a001 20365011074/73681302247*271443^(8/13) 6099996721360660 a001 7778742049/28143753123*271443^(8/13) 6099996721360660 a001 2971215073/10749957122*271443^(8/13) 6099996721360660 a001 1134903170/4106118243*271443^(8/13) 6099996721360660 a001 433494437/1568397607*271443^(8/13) 6099996721360660 a001 165580141/599074578*271443^(8/13) 6099996721360660 a001 63245986/228826127*271443^(8/13) 6099996721360661 a001 24157817/87403803*271443^(8/13) 6099996721360669 a001 9227465/33385282*271443^(8/13) 6099996721360720 a001 3524578/12752043*271443^(8/13) 6099996721361076 a001 1346269/4870847*271443^(8/13) 6099996721361416 a001 317811/7881196*271443^(10/13) 6099996721361613 a001 267914296/1149851*103682^(1/12) 6099996721363511 a001 514229/1860498*271443^(8/13) 6099996721364979 a001 165580141/439204*103682^(1/24) 6099996721365364 a001 208010/1970299*271443^(9/13) 6099996721366771 a001 5702887/439204*271443^(4/13) 6099996721366785 a001 2178309/20633239*271443^(9/13) 6099996721366993 a001 5702887/54018521*271443^(9/13) 6099996721367023 a001 3732588/35355581*271443^(9/13) 6099996721367027 a001 39088169/370248451*271443^(9/13) 6099996721367028 a001 102334155/969323029*271443^(9/13) 6099996721367028 a001 66978574/634430159*271443^(9/13) 6099996721367028 a001 701408733/6643838879*271443^(9/13) 6099996721367028 a001 1836311903/17393796001*271443^(9/13) 6099996721367028 a001 1201881744/11384387281*271443^(9/13) 6099996721367028 a001 12586269025/119218851371*271443^(9/13) 6099996721367028 a001 32951280099/312119004989*271443^(9/13) 6099996721367028 a001 21566892818/204284540899*271443^(9/13) 6099996721367028 a001 225851433717/2139295485799*271443^(9/13) 6099996721367028 a001 182717648081/1730726404001*271443^(9/13) 6099996721367028 a001 139583862445/1322157322203*271443^(9/13) 6099996721367028 a001 53316291173/505019158607*271443^(9/13) 6099996721367028 a001 10182505537/96450076809*271443^(9/13) 6099996721367028 a001 7778742049/73681302247*271443^(9/13) 6099996721367028 a001 2971215073/28143753123*271443^(9/13) 6099996721367028 a001 567451585/5374978561*271443^(9/13) 6099996721367028 a001 433494437/4106118243*271443^(9/13) 6099996721367028 a001 165580141/1568397607*271443^(9/13) 6099996721367028 a001 31622993/299537289*271443^(9/13) 6099996721367030 a001 24157817/228826127*271443^(9/13) 6099996721367042 a001 9227465/87403803*271443^(9/13) 6099996721367121 a001 1762289/16692641*271443^(9/13) 6099996721367664 a001 1346269/12752043*271443^(9/13) 6099996721367700 a001 10959/711491*271443^(11/13) 6099996721368564 a001 14619165/101521*103682^(1/8) 6099996721368799 a001 9227465/271443*103682^(1/4) 6099996721371385 a001 514229/4870847*271443^(9/13) 6099996721371649 a001 75640/1875749*271443^(10/13) 6099996721372541 a001 28657/1860498*64079^(22/23) 6099996721372913 a001 98209/219602*7881196^(5/11) 6099996721372920 a001 2178309/439204*271443^(5/13) 6099996721372952 a001 98209/219602*20633239^(3/7) 6099996721372957 a001 19290015362/31622993 6099996721372958 a001 98209/219602*141422324^(5/13) 6099996721372958 a001 98209/219602*2537720636^(1/3) 6099996721372958 a001 98209/219602*45537549124^(5/17) 6099996721372958 a001 98209/219602*312119004989^(3/11) 6099996721372958 a001 98209/219602*14662949395604^(5/21) 6099996721372958 a001 98209/219602*(1/2+1/2*5^(1/2))^15 6099996721372958 a001 98209/219602*192900153618^(5/18) 6099996721372958 a001 98209/219602*28143753123^(3/10) 6099996721372958 a001 98209/219602*10749957122^(5/16) 6099996721372958 a001 98209/219602*599074578^(5/14) 6099996721372958 a001 98209/219602*228826127^(3/8) 6099996721372960 a001 98209/219602*33385282^(5/12) 6099996721373141 a001 2178309/54018521*271443^(10/13) 6099996721373359 a001 5702887/141422324*271443^(10/13) 6099996721373391 a001 14930352/370248451*271443^(10/13) 6099996721373396 a001 39088169/969323029*271443^(10/13) 6099996721373396 a001 9303105/230701876*271443^(10/13) 6099996721373396 a001 267914296/6643838879*271443^(10/13) 6099996721373396 a001 701408733/17393796001*271443^(10/13) 6099996721373396 a001 1836311903/45537549124*271443^(10/13) 6099996721373396 a001 4807526976/119218851371*271443^(10/13) 6099996721373396 a001 1144206275/28374454999*271443^(10/13) 6099996721373396 a001 32951280099/817138163596*271443^(10/13) 6099996721373396 a001 86267571272/2139295485799*271443^(10/13) 6099996721373396 a001 225851433717/5600748293801*271443^(10/13) 6099996721373396 a001 591286729879/14662949395604*271443^(10/13) 6099996721373396 a001 365435296162/9062201101803*271443^(10/13) 6099996721373396 a001 139583862445/3461452808002*271443^(10/13) 6099996721373396 a001 53316291173/1322157322203*271443^(10/13) 6099996721373396 a001 20365011074/505019158607*271443^(10/13) 6099996721373396 a001 7778742049/192900153618*271443^(10/13) 6099996721373396 a001 2971215073/73681302247*271443^(10/13) 6099996721373396 a001 1134903170/28143753123*271443^(10/13) 6099996721373396 a001 433494437/10749957122*271443^(10/13) 6099996721373396 a001 165580141/4106118243*271443^(10/13) 6099996721373397 a001 63245986/1568397607*271443^(10/13) 6099996721373399 a001 24157817/599074578*271443^(10/13) 6099996721373411 a001 9227465/228826127*271443^(10/13) 6099996721373494 a001 3524578/87403803*271443^(10/13) 6099996721373835 a001 317811/439204*271443^(7/13) 6099996721373839 a001 98209/219602*1860498^(1/2) 6099996721374057 a001 317811/54018521*271443^(12/13) 6099996721374064 a001 1346269/33385282*271443^(10/13) 6099996721377783 a001 208010/109801*271443^(6/13) 6099996721377973 a001 514229/12752043*271443^(10/13) 6099996721378005 a001 832040/54018521*271443^(11/13) 6099996721378881 a001 133957148/930249*103682^(1/8) 6099996721379508 a001 2178309/141422324*271443^(11/13) 6099996721379727 a001 5702887/370248451*271443^(11/13) 6099996721379759 a001 14930352/969323029*271443^(11/13) 6099996721379764 a001 39088169/2537720636*271443^(11/13) 6099996721379765 a001 102334155/6643838879*271443^(11/13) 6099996721379765 a001 9238424/599786069*271443^(11/13) 6099996721379765 a001 701408733/45537549124*271443^(11/13) 6099996721379765 a001 1836311903/119218851371*271443^(11/13) 6099996721379765 a001 4807526976/312119004989*271443^(11/13) 6099996721379765 a001 12586269025/817138163596*271443^(11/13) 6099996721379765 a001 32951280099/2139295485799*271443^(11/13) 6099996721379765 a001 86267571272/5600748293801*271443^(11/13) 6099996721379765 a001 7787980473/505618944676*271443^(11/13) 6099996721379765 a001 365435296162/23725150497407*271443^(11/13) 6099996721379765 a001 139583862445/9062201101803*271443^(11/13) 6099996721379765 a001 53316291173/3461452808002*271443^(11/13) 6099996721379765 a001 20365011074/1322157322203*271443^(11/13) 6099996721379765 a001 7778742049/505019158607*271443^(11/13) 6099996721379765 a001 2971215073/192900153618*271443^(11/13) 6099996721379765 a001 1134903170/73681302247*271443^(11/13) 6099996721379765 a001 433494437/28143753123*271443^(11/13) 6099996721379765 a001 165580141/10749957122*271443^(11/13) 6099996721379765 a001 63245986/4106118243*271443^(11/13) 6099996721379767 a001 24157817/1568397607*271443^(11/13) 6099996721379779 a001 9227465/599074578*271443^(11/13) 6099996721379863 a001 3524578/228826127*271443^(11/13) 6099996721380204 a001 196418/710647*271443^(8/13) 6099996721380386 a001 701408733/4870847*103682^(1/8) 6099996721380423 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^39 6099996721380437 a001 1346269/87403803*271443^(11/13) 6099996721380606 a001 1836311903/12752043*103682^(1/8) 6099996721380638 a001 14930208/103681*103682^(1/8) 6099996721380642 a001 12586269025/87403803*103682^(1/8) 6099996721380643 a001 32951280099/228826127*103682^(1/8) 6099996721380643 a001 43133785636/299537289*103682^(1/8) 6099996721380643 a001 32264490531/224056801*103682^(1/8) 6099996721380643 a001 591286729879/4106118243*103682^(1/8) 6099996721380643 a001 774004377960/5374978561*103682^(1/8) 6099996721380643 a001 4052739537881/28143753123*103682^(1/8) 6099996721380643 a001 1515744265389/10525900321*103682^(1/8) 6099996721380643 a001 3278735159921/22768774562*103682^(1/8) 6099996721380643 a001 2504730781961/17393796001*103682^(1/8) 6099996721380643 a001 956722026041/6643838879*103682^(1/8) 6099996721380643 a001 182717648081/1268860318*103682^(1/8) 6099996721380643 a001 139583862445/969323029*103682^(1/8) 6099996721380643 a001 53316291173/370248451*103682^(1/8) 6099996721380643 a001 10182505537/70711162*103682^(1/8) 6099996721380645 a001 7778742049/54018521*103682^(1/8) 6099996721380657 a001 2971215073/20633239*103682^(1/8) 6099996721380741 a001 567451585/3940598*103682^(1/8) 6099996721381002 a001 28657/39603*39603^(7/11) 6099996721381316 a001 433494437/3010349*103682^(1/8) 6099996721384371 a001 208010/35355581*271443^(12/13) 6099996721384373 a001 514229/33385282*271443^(11/13) 6099996721385257 a001 165580141/1149851*103682^(1/8) 6099996721385876 a001 2178309/370248451*271443^(12/13) 6099996721386096 a001 5702887/969323029*271443^(12/13) 6099996721386128 a001 196452/33391061*271443^(12/13) 6099996721386132 a001 39088169/6643838879*271443^(12/13) 6099996721386133 a001 102334155/17393796001*271443^(12/13) 6099996721386133 a001 66978574/11384387281*271443^(12/13) 6099996721386133 a001 701408733/119218851371*271443^(12/13) 6099996721386133 a001 1836311903/312119004989*271443^(12/13) 6099996721386133 a001 1201881744/204284540899*271443^(12/13) 6099996721386133 a001 12586269025/2139295485799*271443^(12/13) 6099996721386133 a001 32951280099/5600748293801*271443^(12/13) 6099996721386133 a001 1135099622/192933544679*271443^(12/13) 6099996721386133 a001 139583862445/23725150497407*271443^(12/13) 6099996721386133 a001 53316291173/9062201101803*271443^(12/13) 6099996721386133 a001 10182505537/1730726404001*271443^(12/13) 6099996721386133 a001 7778742049/1322157322203*271443^(12/13) 6099996721386133 a001 2971215073/505019158607*271443^(12/13) 6099996721386133 a001 567451585/96450076809*271443^(12/13) 6099996721386133 a001 433494437/73681302247*271443^(12/13) 6099996721386133 a001 165580141/28143753123*271443^(12/13) 6099996721386134 a001 31622993/5374978561*271443^(12/13) 6099996721386135 a001 24157817/4106118243*271443^(12/13) 6099996721386148 a001 9227465/1568397607*271443^(12/13) 6099996721386231 a001 1762289/299537289*271443^(12/13) 6099996721386806 a001 1346269/228826127*271443^(12/13) 6099996721387343 a001 514229/439204*271443^(1/2) 6099996721388622 a001 102334155/439204*103682^(1/12) 6099996721390739 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^41 6099996721390746 a001 514229/87403803*271443^(12/13) 6099996721392208 a001 63245986/710647*103682^(1/6) 6099996721392244 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^43 6099996721392391 a001 5702887/271443*103682^(7/24) 6099996721392464 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^45 6099996721392496 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^47 6099996721392501 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^49 6099996721392501 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^51 6099996721392502 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^53 6099996721392502 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^55 6099996721392502 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^57 6099996721392502 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^59 6099996721392502 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^61 6099996721392502 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^63 6099996721392502 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^65 6099996721392502 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^67 6099996721392502 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^69 6099996721392502 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^71 6099996721392502 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^73 6099996721392502 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^75 6099996721392502 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^77 6099996721392502 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^79 6099996721392502 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^81 6099996721392502 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^83 6099996721392502 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^85 6099996721392502 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^87 6099996721392502 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^89 6099996721392502 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^91 6099996721392502 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^93 6099996721392502 a004 Fibonacci(84)*Lucas(26)/(1/2+sqrt(5)/2)^95 6099996721392502 a004 Fibonacci(86)*Lucas(26)/(1/2+sqrt(5)/2)^97 6099996721392502 a004 Fibonacci(88)*Lucas(26)/(1/2+sqrt(5)/2)^99 6099996721392502 a004 Fibonacci(89)*Lucas(26)/(1/2+sqrt(5)/2)^100 6099996721392502 a004 Fibonacci(87)*Lucas(26)/(1/2+sqrt(5)/2)^98 6099996721392502 a004 Fibonacci(85)*Lucas(26)/(1/2+sqrt(5)/2)^96 6099996721392502 a004 Fibonacci(83)*Lucas(26)/(1/2+sqrt(5)/2)^94 6099996721392502 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^92 6099996721392502 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^90 6099996721392502 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^88 6099996721392502 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^86 6099996721392502 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^84 6099996721392502 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^82 6099996721392502 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^80 6099996721392502 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^78 6099996721392502 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^76 6099996721392502 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^74 6099996721392502 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^72 6099996721392502 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^70 6099996721392502 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^68 6099996721392502 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^66 6099996721392502 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^64 6099996721392502 a001 2/121393*(1/2+1/2*5^(1/2))^41 6099996721392502 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^62 6099996721392502 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^60 6099996721392502 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^58 6099996721392502 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^56 6099996721392502 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^54 6099996721392502 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^52 6099996721392502 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^50 6099996721392504 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^48 6099996721392516 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^46 6099996721392600 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^44 6099996721393175 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^42 6099996721396888 a001 98209/930249*271443^(9/13) 6099996721397115 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^40 6099996721397275 a001 39088169/167761*64079^(2/23) 6099996721402524 a001 165580141/1860498*103682^(1/6) 6099996721403711 a001 34111385/90481*39603^(1/22) 6099996721404030 a001 433494437/4870847*103682^(1/6) 6099996721404249 a001 1134903170/12752043*103682^(1/6) 6099996721404281 a001 2971215073/33385282*103682^(1/6) 6099996721404286 a001 7778742049/87403803*103682^(1/6) 6099996721404286 a001 20365011074/228826127*103682^(1/6) 6099996721404287 a001 53316291173/599074578*103682^(1/6) 6099996721404287 a001 139583862445/1568397607*103682^(1/6) 6099996721404287 a001 365435296162/4106118243*103682^(1/6) 6099996721404287 a001 956722026041/10749957122*103682^(1/6) 6099996721404287 a001 2504730781961/28143753123*103682^(1/6) 6099996721404287 a001 6557470319842/73681302247*103682^(1/6) 6099996721404287 a001 10610209857723/119218851371*103682^(1/6) 6099996721404287 a001 4052739537881/45537549124*103682^(1/6) 6099996721404287 a001 1548008755920/17393796001*103682^(1/6) 6099996721404287 a001 591286729879/6643838879*103682^(1/6) 6099996721404287 a001 225851433717/2537720636*103682^(1/6) 6099996721404287 a001 86267571272/969323029*103682^(1/6) 6099996721404287 a001 32951280099/370248451*103682^(1/6) 6099996721404287 a001 12586269025/141422324*103682^(1/6) 6099996721404289 a001 4807526976/54018521*103682^(1/6) 6099996721404301 a001 1836311903/20633239*103682^(1/6) 6099996721404385 a001 3524667/39604*103682^(1/6) 6099996721404762 a001 196418/4870847*271443^(10/13) 6099996721404960 a001 267914296/3010349*103682^(1/6) 6099996721408900 a001 102334155/1149851*103682^(1/6) 6099996721411350 a001 196418/12752043*271443^(11/13) 6099996721412266 a001 31622993/219602*103682^(1/8) 6099996721415851 a001 39088169/710647*103682^(5/24) 6099996721416170 a001 3524578/271443*103682^(1/3) 6099996721417750 a001 98209/16692641*271443^(12/13) 6099996721419024 a001 5702887/39603*15127^(3/20) 6099996721424124 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^38 6099996721426168 a001 831985/15126*103682^(5/24) 6099996721427673 a001 267914296/4870847*103682^(5/24) 6099996721427893 a001 233802911/4250681*103682^(5/24) 6099996721427925 a001 1836311903/33385282*103682^(5/24) 6099996721427929 a001 1602508992/29134601*103682^(5/24) 6099996721427930 a001 12586269025/228826127*103682^(5/24) 6099996721427930 a001 10983760033/199691526*103682^(5/24) 6099996721427930 a001 86267571272/1568397607*103682^(5/24) 6099996721427930 a001 75283811239/1368706081*103682^(5/24) 6099996721427930 a001 591286729879/10749957122*103682^(5/24) 6099996721427930 a001 12585437040/228811001*103682^(5/24) 6099996721427930 a001 4052739537881/73681302247*103682^(5/24) 6099996721427930 a001 3536736619241/64300051206*103682^(5/24) 6099996721427930 a001 6557470319842/119218851371*103682^(5/24) 6099996721427930 a001 2504730781961/45537549124*103682^(5/24) 6099996721427930 a001 956722026041/17393796001*103682^(5/24) 6099996721427930 a001 365435296162/6643838879*103682^(5/24) 6099996721427930 a001 139583862445/2537720636*103682^(5/24) 6099996721427930 a001 53316291173/969323029*103682^(5/24) 6099996721427930 a001 20365011074/370248451*103682^(5/24) 6099996721427930 a001 7778742049/141422324*103682^(5/24) 6099996721427932 a001 2971215073/54018521*103682^(5/24) 6099996721427944 a001 1134903170/20633239*103682^(5/24) 6099996721428028 a001 433494437/7881196*103682^(5/24) 6099996721428603 a001 165580141/3010349*103682^(5/24) 6099996721432544 a001 63245986/1149851*103682^(5/24) 6099996721435908 a001 39088169/439204*103682^(1/6) 6099996721437997 a001 75640/15251*167761^(2/5) 6099996721439458 a001 726103/90481*103682^(3/8) 6099996721439497 a001 24157817/710647*103682^(1/4) 6099996721443508 a001 28657/1149851*64079^(21/23) 6099996721443662 a001 121393/167761*20633239^(2/5) 6099996721443668 a001 75025/271443*(1/2+1/2*5^(1/2))^16 6099996721443668 a001 75025/271443*23725150497407^(1/4) 6099996721443668 a001 75025/271443*73681302247^(4/13) 6099996721443668 a001 121393/167761*17393796001^(2/7) 6099996721443668 a001 121393/167761*14662949395604^(2/9) 6099996721443668 a001 121393/167761*(1/2+1/2*5^(1/2))^14 6099996721443668 a001 75025/271443*10749957122^(1/3) 6099996721443668 a001 121393/167761*10749957122^(7/24) 6099996721443668 a001 121393/167761*4106118243^(7/23) 6099996721443668 a001 75025/271443*4106118243^(8/23) 6099996721443668 a001 121393/167761*1568397607^(7/22) 6099996721443668 a001 75025/271443*1568397607^(4/11) 6099996721443668 a001 121393/167761*599074578^(1/3) 6099996721443668 a001 75025/271443*599074578^(8/21) 6099996721443668 a001 121393/167761*228826127^(7/20) 6099996721443668 a001 75025/271443*228826127^(2/5) 6099996721443668 a001 121393/167761*87403803^(7/19) 6099996721443668 a001 75025/271443*87403803^(8/19) 6099996721443670 a001 121393/167761*33385282^(7/18) 6099996721443670 a001 75025/271443*33385282^(4/9) 6099996721443673 a001 9107509825/14930352 6099996721443683 a001 121393/167761*12752043^(7/17) 6099996721443686 a001 75025/271443*12752043^(8/17) 6099996721443780 a001 121393/167761*4870847^(7/16) 6099996721443797 a001 75025/271443*4870847^(1/2) 6099996721444490 a001 121393/167761*1860498^(7/15) 6099996721444608 a001 75025/271443*1860498^(8/15) 6099996721449432 a001 9227465/103682*39603^(2/11) 6099996721449707 a001 121393/167761*710647^(1/2) 6099996721449812 a001 31622993/930249*103682^(1/4) 6099996721450570 a001 75025/271443*710647^(4/7) 6099996721451317 a001 165580141/4870847*103682^(1/4) 6099996721451536 a001 433494437/12752043*103682^(1/4) 6099996721451568 a001 567451585/16692641*103682^(1/4) 6099996721451573 a001 2971215073/87403803*103682^(1/4) 6099996721451573 a001 7778742049/228826127*103682^(1/4) 6099996721451574 a001 10182505537/299537289*103682^(1/4) 6099996721451574 a001 53316291173/1568397607*103682^(1/4) 6099996721451574 a001 139583862445/4106118243*103682^(1/4) 6099996721451574 a001 182717648081/5374978561*103682^(1/4) 6099996721451574 a001 956722026041/28143753123*103682^(1/4) 6099996721451574 a001 2504730781961/73681302247*103682^(1/4) 6099996721451574 a001 3278735159921/96450076809*103682^(1/4) 6099996721451574 a001 10610209857723/312119004989*103682^(1/4) 6099996721451574 a001 4052739537881/119218851371*103682^(1/4) 6099996721451574 a001 387002188980/11384387281*103682^(1/4) 6099996721451574 a001 591286729879/17393796001*103682^(1/4) 6099996721451574 a001 225851433717/6643838879*103682^(1/4) 6099996721451574 a001 1135099622/33391061*103682^(1/4) 6099996721451574 a001 32951280099/969323029*103682^(1/4) 6099996721451574 a001 12586269025/370248451*103682^(1/4) 6099996721451574 a001 1201881744/35355581*103682^(1/4) 6099996721451576 a001 1836311903/54018521*103682^(1/4) 6099996721451588 a001 701408733/20633239*103682^(1/4) 6099996721451672 a001 66978574/1970299*103682^(1/4) 6099996721452247 a001 102334155/3010349*103682^(1/4) 6099996721456186 a001 39088169/1149851*103682^(1/4) 6099996721459555 a001 24157817/439204*103682^(5/24) 6099996721461866 a001 63245986/167761*64079^(1/23) 6099996721463133 a001 14930352/710647*103682^(7/24) 6099996721464032 a001 1346269/271443*103682^(5/12) 6099996721473454 a001 39088169/1860498*103682^(7/24) 6099996721474421 a001 267914296/710647*39603^(1/22) 6099996721474960 a001 102334155/4870847*103682^(7/24) 6099996721475180 a001 267914296/12752043*103682^(7/24) 6099996721475212 a001 701408733/33385282*103682^(7/24) 6099996721475216 a001 1836311903/87403803*103682^(7/24) 6099996721475217 a001 102287808/4868641*103682^(7/24) 6099996721475217 a001 12586269025/599074578*103682^(7/24) 6099996721475217 a001 32951280099/1568397607*103682^(7/24) 6099996721475217 a001 86267571272/4106118243*103682^(7/24) 6099996721475217 a001 225851433717/10749957122*103682^(7/24) 6099996721475217 a001 591286729879/28143753123*103682^(7/24) 6099996721475217 a001 1548008755920/73681302247*103682^(7/24) 6099996721475217 a001 4052739537881/192900153618*103682^(7/24) 6099996721475217 a001 225749145909/10745088481*103682^(7/24) 6099996721475217 a001 6557470319842/312119004989*103682^(7/24) 6099996721475217 a001 2504730781961/119218851371*103682^(7/24) 6099996721475217 a001 956722026041/45537549124*103682^(7/24) 6099996721475217 a001 365435296162/17393796001*103682^(7/24) 6099996721475217 a001 139583862445/6643838879*103682^(7/24) 6099996721475217 a001 53316291173/2537720636*103682^(7/24) 6099996721475217 a001 20365011074/969323029*103682^(7/24) 6099996721475217 a001 7778742049/370248451*103682^(7/24) 6099996721475217 a001 2971215073/141422324*103682^(7/24) 6099996721475219 a001 1134903170/54018521*103682^(7/24) 6099996721475231 a001 433494437/20633239*103682^(7/24) 6099996721475315 a001 165580141/7881196*103682^(7/24) 6099996721475891 a001 63245986/3010349*103682^(7/24) 6099996721479833 a001 24157817/1149851*103682^(7/24) 6099996721483122 a001 9227465/167761*167761^(1/5) 6099996721483191 a001 196452/5779*103682^(1/4) 6099996721484738 a001 233802911/620166*39603^(1/22) 6099996721485240 a001 832040/271443*103682^(11/24) 6099996721486243 a001 1836311903/4870847*39603^(1/22) 6099996721486462 a001 1602508992/4250681*39603^(1/22) 6099996721486494 a001 12586269025/33385282*39603^(1/22) 6099996721486499 a001 10983760033/29134601*39603^(1/22) 6099996721486500 a001 86267571272/228826127*39603^(1/22) 6099996721486500 a001 267913919/710646*39603^(1/22) 6099996721486500 a001 591286729879/1568397607*39603^(1/22) 6099996721486500 a001 516002918640/1368706081*39603^(1/22) 6099996721486500 a001 4052739537881/10749957122*39603^(1/22) 6099996721486500 a001 3536736619241/9381251041*39603^(1/22) 6099996721486500 a001 6557470319842/17393796001*39603^(1/22) 6099996721486500 a001 2504730781961/6643838879*39603^(1/22) 6099996721486500 a001 956722026041/2537720636*39603^(1/22) 6099996721486500 a001 365435296162/969323029*39603^(1/22) 6099996721486500 a001 139583862445/370248451*39603^(1/22) 6099996721486500 a001 53316291173/141422324*39603^(1/22) 6099996721486502 a001 20365011074/54018521*39603^(1/22) 6099996721486514 a001 7778742049/20633239*39603^(1/22) 6099996721486598 a001 2971215073/7881196*39603^(1/22) 6099996721486796 a001 9227465/710647*103682^(1/3) 6099996721487173 a001 1134903170/3010349*39603^(1/22) 6099996721488247 a001 121393/167761*271443^(7/13) 6099996721491113 a001 433494437/1149851*39603^(1/22) 6099996721491406 a001 28657/710647*64079^(20/23) 6099996721493296 a001 75025/710647*439204^(2/3) 6099996721494615 a001 75025/271443*271443^(8/13) 6099996721494834 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^37 6099996721497100 a001 24157817/1860498*103682^(1/3) 6099996721498310 a001 75025/12752043*439204^(8/9) 6099996721498604 a001 63245986/4870847*103682^(1/3) 6099996721498787 a001 121393/271443*103682^(5/8) 6099996721498823 a001 165580141/12752043*103682^(1/3) 6099996721498855 a001 433494437/33385282*103682^(1/3) 6099996721498860 a001 1134903170/87403803*103682^(1/3) 6099996721498860 a001 2971215073/228826127*103682^(1/3) 6099996721498861 a001 7778742049/599074578*103682^(1/3) 6099996721498861 a001 20365011074/1568397607*103682^(1/3) 6099996721498861 a001 53316291173/4106118243*103682^(1/3) 6099996721498861 a001 139583862445/10749957122*103682^(1/3) 6099996721498861 a001 365435296162/28143753123*103682^(1/3) 6099996721498861 a001 956722026041/73681302247*103682^(1/3) 6099996721498861 a001 2504730781961/192900153618*103682^(1/3) 6099996721498861 a001 10610209857723/817138163596*103682^(1/3) 6099996721498861 a001 4052739537881/312119004989*103682^(1/3) 6099996721498861 a001 1548008755920/119218851371*103682^(1/3) 6099996721498861 a001 591286729879/45537549124*103682^(1/3) 6099996721498861 a001 7787980473/599786069*103682^(1/3) 6099996721498861 a001 86267571272/6643838879*103682^(1/3) 6099996721498861 a001 32951280099/2537720636*103682^(1/3) 6099996721498861 a001 12586269025/969323029*103682^(1/3) 6099996721498861 a001 4807526976/370248451*103682^(1/3) 6099996721498861 a001 1836311903/141422324*103682^(1/3) 6099996721498863 a001 701408733/54018521*103682^(1/3) 6099996721498875 a001 9238424/711491*103682^(1/3) 6099996721498959 a001 102334155/7881196*103682^(1/3) 6099996721499533 a001 39088169/3010349*103682^(1/3) 6099996721500324 a001 317811/167761*439204^(4/9) 6099996721502535 a001 75025/3010349*439204^(7/9) 6099996721503469 a001 14930352/1149851*103682^(1/3) 6099996721506854 a001 9227465/439204*103682^(7/24) 6099996721510388 a001 5702887/710647*103682^(3/8) 6099996721514325 a001 75025/710647*7881196^(6/11) 6099996721514342 a001 317811/167761*7881196^(4/11) 6099996721514378 a001 75025/710647*141422324^(6/13) 6099996721514378 a001 317811/167761*141422324^(4/13) 6099996721514378 a001 75025/710647*2537720636^(2/5) 6099996721514378 a001 317811/167761*2537720636^(4/15) 6099996721514378 a001 75025/710647*45537549124^(6/17) 6099996721514378 a001 75025/710647*14662949395604^(2/7) 6099996721514378 a001 75025/710647*(1/2+1/2*5^(1/2))^18 6099996721514378 a001 75025/710647*192900153618^(1/3) 6099996721514378 a001 317811/167761*45537549124^(4/17) 6099996721514378 a001 317811/167761*817138163596^(4/19) 6099996721514378 a001 317811/167761*14662949395604^(4/21) 6099996721514378 a001 317811/167761*(1/2+1/2*5^(1/2))^12 6099996721514378 a001 317811/167761*192900153618^(2/9) 6099996721514378 a001 317811/167761*73681302247^(3/13) 6099996721514378 a001 75025/710647*10749957122^(3/8) 6099996721514378 a001 317811/167761*10749957122^(1/4) 6099996721514378 a001 317811/167761*4106118243^(6/23) 6099996721514378 a001 75025/710647*4106118243^(9/23) 6099996721514378 a001 317811/167761*1568397607^(3/11) 6099996721514378 a001 75025/710647*1568397607^(9/22) 6099996721514378 a001 317811/167761*599074578^(2/7) 6099996721514378 a001 75025/710647*599074578^(3/7) 6099996721514378 a001 317811/167761*228826127^(3/10) 6099996721514378 a001 75025/710647*228826127^(9/20) 6099996721514378 a001 317811/167761*87403803^(6/19) 6099996721514379 a001 75025/710647*87403803^(9/19) 6099996721514379 a001 23843770275/39088169 6099996721514380 a001 317811/167761*33385282^(1/3) 6099996721514381 a001 75025/710647*33385282^(1/2) 6099996721514391 a001 317811/167761*12752043^(6/17) 6099996721514398 a001 75025/710647*12752043^(9/17) 6099996721514475 a001 317811/167761*4870847^(3/8) 6099996721514523 a001 75025/710647*4870847^(9/16) 6099996721515083 a001 317811/167761*1860498^(2/5) 6099996721515259 a001 514229/271443*103682^(1/2) 6099996721515436 a001 75025/710647*1860498^(3/5) 6099996721516589 a001 1346269/167761*439204^(1/3) 6099996721518122 a001 165580141/439204*39603^(1/22) 6099996721519392 a001 5702887/167761*439204^(2/9) 6099996721519555 a001 317811/167761*710647^(3/7) 6099996721520736 a001 829464/103361*103682^(3/8) 6099996721521843 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^39 6099996721522143 a001 75025/710647*710647^(9/14) 6099996721522210 a001 105937/90481*103682^(13/24) 6099996721522246 a001 39088169/4870847*103682^(3/8) 6099996721522466 a001 34111385/4250681*103682^(3/8) 6099996721522499 a001 133957148/16692641*103682^(3/8) 6099996721522503 a001 233802911/29134601*103682^(3/8) 6099996721522504 a001 1836311903/228826127*103682^(3/8) 6099996721522504 a001 267084832/33281921*103682^(3/8) 6099996721522504 a001 12586269025/1568397607*103682^(3/8) 6099996721522504 a001 10983760033/1368706081*103682^(3/8) 6099996721522504 a001 43133785636/5374978561*103682^(3/8) 6099996721522504 a001 75283811239/9381251041*103682^(3/8) 6099996721522504 a001 591286729879/73681302247*103682^(3/8) 6099996721522504 a001 86000486440/10716675201*103682^(3/8) 6099996721522504 a001 4052739537881/505019158607*103682^(3/8) 6099996721522504 a001 3278735159921/408569081798*103682^(3/8) 6099996721522504 a001 2504730781961/312119004989*103682^(3/8) 6099996721522504 a001 956722026041/119218851371*103682^(3/8) 6099996721522504 a001 182717648081/22768774562*103682^(3/8) 6099996721522504 a001 139583862445/17393796001*103682^(3/8) 6099996721522504 a001 53316291173/6643838879*103682^(3/8) 6099996721522504 a001 10182505537/1268860318*103682^(3/8) 6099996721522504 a001 7778742049/969323029*103682^(3/8) 6099996721522504 a001 2971215073/370248451*103682^(3/8) 6099996721522504 a001 567451585/70711162*103682^(3/8) 6099996721522506 a001 433494437/54018521*103682^(3/8) 6099996721522518 a001 165580141/20633239*103682^(3/8) 6099996721522603 a001 31622993/3940598*103682^(3/8) 6099996721522945 a001 24157817/167761*439204^(1/9) 6099996721523179 a001 24157817/3010349*103682^(3/8) 6099996721524686 a001 75025/1860498*20633239^(4/7) 6099996721524691 a001 75640/15251*20633239^(2/7) 6099996721524695 a001 75025/1860498*2537720636^(4/9) 6099996721524695 a001 75640/15251*2537720636^(2/9) 6099996721524695 a001 75025/1860498*(1/2+1/2*5^(1/2))^20 6099996721524695 a001 75025/1860498*23725150497407^(5/16) 6099996721524695 a001 75025/1860498*505019158607^(5/14) 6099996721524695 a001 75025/1860498*73681302247^(5/13) 6099996721524695 a001 75025/1860498*28143753123^(2/5) 6099996721524695 a001 75640/15251*312119004989^(2/11) 6099996721524695 a001 75640/15251*(1/2+1/2*5^(1/2))^10 6099996721524695 a001 75640/15251*28143753123^(1/5) 6099996721524695 a001 75640/15251*10749957122^(5/24) 6099996721524695 a001 75025/1860498*10749957122^(5/12) 6099996721524695 a001 75640/15251*4106118243^(5/23) 6099996721524695 a001 75025/1860498*4106118243^(10/23) 6099996721524695 a001 75640/15251*1568397607^(5/22) 6099996721524695 a001 75025/1860498*1568397607^(5/11) 6099996721524695 a001 75640/15251*599074578^(5/21) 6099996721524695 a001 75025/1860498*599074578^(10/21) 6099996721524695 a001 75640/15251*228826127^(1/4) 6099996721524695 a001 75025/1860498*228826127^(1/2) 6099996721524695 a001 1134978200/1860621 6099996721524695 a001 75640/15251*87403803^(5/19) 6099996721524695 a001 75025/1860498*87403803^(10/19) 6099996721524696 a001 75640/15251*33385282^(5/18) 6099996721524698 a001 75025/1860498*33385282^(5/9) 6099996721524706 a001 75640/15251*12752043^(5/17) 6099996721524717 a001 75025/1860498*12752043^(10/17) 6099996721524775 a001 75640/15251*4870847^(5/16) 6099996721524855 a001 75025/1860498*4870847^(5/8) 6099996721525282 a001 75640/15251*1860498^(1/3) 6099996721525784 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^41 6099996721525869 a001 75025/1860498*1860498^(2/3) 6099996721526134 a001 75025/4870847*7881196^(2/3) 6099996721526200 a001 75025/4870847*312119004989^(2/5) 6099996721526200 a001 75025/4870847*(1/2+1/2*5^(1/2))^22 6099996721526200 a001 2178309/167761*(1/2+1/2*5^(1/2))^8 6099996721526200 a001 2178309/167761*23725150497407^(1/8) 6099996721526200 a001 2178309/167761*505019158607^(1/7) 6099996721526200 a001 2178309/167761*73681302247^(2/13) 6099996721526200 a001 2178309/167761*10749957122^(1/6) 6099996721526200 a001 75025/4870847*10749957122^(11/24) 6099996721526200 a001 2178309/167761*4106118243^(4/23) 6099996721526200 a001 75025/4870847*4106118243^(11/23) 6099996721526200 a001 2178309/167761*1568397607^(2/11) 6099996721526200 a001 75025/4870847*1568397607^(1/2) 6099996721526200 a001 2178309/167761*599074578^(4/21) 6099996721526200 a001 75025/4870847*599074578^(11/21) 6099996721526200 a001 163427632725/267914296 6099996721526200 a001 2178309/167761*228826127^(1/5) 6099996721526200 a001 75025/4870847*228826127^(11/20) 6099996721526200 a001 2178309/167761*87403803^(4/19) 6099996721526200 a001 75025/4870847*87403803^(11/19) 6099996721526201 a001 2178309/167761*33385282^(2/9) 6099996721526203 a001 75025/4870847*33385282^(11/18) 6099996721526209 a001 2178309/167761*12752043^(4/17) 6099996721526224 a001 75025/4870847*12752043^(11/17) 6099996721526264 a001 2178309/167761*4870847^(1/4) 6099996721526348 a001 75025/12752043*7881196^(8/11) 6099996721526359 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^43 6099996721526368 a001 75025/228826127*7881196^(10/11) 6099996721526377 a001 75025/4870847*4870847^(11/16) 6099996721526379 a001 75025/54018521*7881196^(9/11) 6099996721526402 a001 5702887/167761*7881196^(2/11) 6099996721526419 a001 75025/12752043*141422324^(8/13) 6099996721526419 a001 5702887/167761*141422324^(2/13) 6099996721526419 a001 75025/12752043*2537720636^(8/15) 6099996721526419 a001 5702887/167761*2537720636^(2/15) 6099996721526419 a001 75025/12752043*45537549124^(8/17) 6099996721526419 a001 75025/12752043*14662949395604^(8/21) 6099996721526419 a001 75025/12752043*(1/2+1/2*5^(1/2))^24 6099996721526419 a001 75025/12752043*192900153618^(4/9) 6099996721526419 a001 75025/12752043*73681302247^(6/13) 6099996721526419 a001 5702887/167761*45537549124^(2/17) 6099996721526419 a001 5702887/167761*14662949395604^(2/21) 6099996721526419 a001 5702887/167761*(1/2+1/2*5^(1/2))^6 6099996721526419 a001 5702887/167761*10749957122^(1/8) 6099996721526419 a001 75025/12752043*10749957122^(1/2) 6099996721526419 a001 5702887/167761*4106118243^(3/23) 6099996721526419 a001 75025/12752043*4106118243^(12/23) 6099996721526419 a001 5702887/167761*1568397607^(3/22) 6099996721526419 a001 75025/12752043*1568397607^(6/11) 6099996721526419 a001 5702887/167761*599074578^(1/7) 6099996721526419 a001 427859097175/701408733 6099996721526419 a001 75025/12752043*599074578^(4/7) 6099996721526419 a001 5702887/167761*228826127^(3/20) 6099996721526419 a001 75025/12752043*228826127^(3/5) 6099996721526420 a001 5702887/167761*87403803^(3/19) 6099996721526420 a001 75025/12752043*87403803^(12/19) 6099996721526420 a001 5702887/167761*33385282^(1/6) 6099996721526423 a001 75025/12752043*33385282^(2/3) 6099996721526426 a001 5702887/167761*12752043^(3/17) 6099996721526443 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^45 6099996721526445 a001 75025/228826127*20633239^(6/7) 6099996721526445 a001 75025/87403803*20633239^(4/5) 6099996721526446 a001 75025/12752043*12752043^(12/17) 6099996721526450 a001 24157817/167761*7881196^(1/11) 6099996721526451 a001 75025/33385282*141422324^(2/3) 6099996721526451 a001 75025/33385282*(1/2+1/2*5^(1/2))^26 6099996721526451 a001 75025/33385282*73681302247^(1/2) 6099996721526451 a001 14930352/167761*(1/2+1/2*5^(1/2))^4 6099996721526451 a001 14930352/167761*23725150497407^(1/16) 6099996721526451 a001 14930352/167761*73681302247^(1/13) 6099996721526451 a001 14930352/167761*10749957122^(1/12) 6099996721526451 a001 75025/33385282*10749957122^(13/24) 6099996721526451 a001 14930352/167761*4106118243^(2/23) 6099996721526451 a001 75025/33385282*4106118243^(13/23) 6099996721526451 a001 14930352/167761*1568397607^(1/11) 6099996721526451 a001 1120149658800/1836311903 6099996721526451 a001 75025/33385282*1568397607^(13/22) 6099996721526451 a001 14930352/167761*599074578^(2/21) 6099996721526451 a001 75025/33385282*599074578^(13/21) 6099996721526451 a001 14930352/167761*228826127^(1/10) 6099996721526452 a001 75025/33385282*228826127^(13/20) 6099996721526452 a001 14930352/167761*87403803^(2/19) 6099996721526452 a001 75025/33385282*87403803^(13/19) 6099996721526452 a001 14930352/167761*33385282^(1/9) 6099996721526455 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^47 6099996721526455 a001 75025/33385282*33385282^(13/18) 6099996721526456 a001 14930352/167761*12752043^(2/17) 6099996721526456 a001 75025/87403803*17393796001^(4/7) 6099996721526456 a001 75025/87403803*14662949395604^(4/9) 6099996721526456 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(38) 6099996721526456 a001 75025/87403803*505019158607^(1/2) 6099996721526456 a001 75025/87403803*73681302247^(7/13) 6099996721526456 a001 39088169/167761*(1/2+1/2*5^(1/2))^2 6099996721526456 a001 39088169/167761*10749957122^(1/24) 6099996721526456 a001 39088169/167761*4106118243^(1/23) 6099996721526456 a001 75025/87403803*10749957122^(7/12) 6099996721526456 a001 2932589879225/4807526976 6099996721526456 a001 39088169/167761*1568397607^(1/22) 6099996721526456 a001 75025/87403803*4106118243^(14/23) 6099996721526456 a001 39088169/167761*599074578^(1/21) 6099996721526456 a001 75025/87403803*1568397607^(7/11) 6099996721526456 a001 39088169/167761*228826127^(1/20) 6099996721526456 a001 75025/87403803*599074578^(2/3) 6099996721526456 a001 39088169/167761*87403803^(1/19) 6099996721526456 a001 75025/87403803*228826127^(7/10) 6099996721526456 a001 39088169/167761*33385282^(1/18) 6099996721526457 a001 75025/228826127*141422324^(10/13) 6099996721526457 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^49 6099996721526457 a001 75025/4106118243*141422324^(12/13) 6099996721526457 a001 75025/969323029*141422324^(11/13) 6099996721526457 a001 75025/87403803*87403803^(14/19) 6099996721526457 a001 75025/228826127*2537720636^(2/3) 6099996721526457 a001 75025/228826127*45537549124^(10/17) 6099996721526457 a001 75025/228826127*312119004989^(6/11) 6099996721526457 a001 75025/228826127*14662949395604^(10/21) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(40) 6099996721526457 a001 75025/228826127*192900153618^(5/9) 6099996721526457 a001 75025/228826127*28143753123^(3/5) 6099996721526457 a001 9303105/15251 6099996721526457 a001 75025/228826127*10749957122^(5/8) 6099996721526457 a001 75025/228826127*4106118243^(15/23) 6099996721526457 a001 75025/228826127*1568397607^(15/22) 6099996721526457 a001 75025/228826127*599074578^(5/7) 6099996721526457 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^51 6099996721526457 a001 75025/228826127*228826127^(3/4) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(42) 6099996721526457 a001 75025/599074578*23725150497407^(1/2) 6099996721526457 a001 75025/599074578*505019158607^(4/7) 6099996721526457 a001 75025/599074578*73681302247^(8/13) 6099996721526457 a001 20100270057400/32951280099 6099996721526457 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^2 6099996721526457 a001 75025/599074578*10749957122^(2/3) 6099996721526457 a001 75025/599074578*4106118243^(16/23) 6099996721526457 a001 75025/599074578*1568397607^(8/11) 6099996721526457 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^53 6099996721526457 a001 75025/599074578*599074578^(16/21) 6099996721526457 a001 75025/1568397607*45537549124^(2/3) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(44) 6099996721526457 a001 52623190193325/86267571272 6099996721526457 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^4 6099996721526457 a001 75025/1568397607*10749957122^(17/24) 6099996721526457 a001 75025/1568397607*4106118243^(17/23) 6099996721526457 a001 75025/4106118243*2537720636^(4/5) 6099996721526457 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^55 6099996721526457 a001 75025/73681302247*2537720636^(14/15) 6099996721526457 a001 75025/28143753123*2537720636^(8/9) 6099996721526457 a001 75025/17393796001*2537720636^(13/15) 6099996721526457 a001 75025/1568397607*1568397607^(17/22) 6099996721526457 a001 75025/4106118243*45537549124^(12/17) 6099996721526457 a001 75025/4106118243*14662949395604^(4/7) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(46) 6099996721526457 a001 137769300522575/225851433717 6099996721526457 a001 75025/4106118243*192900153618^(2/3) 6099996721526457 a001 75025/4106118243*73681302247^(9/13) 6099996721526457 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^6 6099996721526457 a001 75025/4106118243*10749957122^(3/4) 6099996721526457 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^57 6099996721526457 a001 75025/4106118243*4106118243^(18/23) 6099996721526457 a001 75025/10749957122*817138163596^(2/3) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(48) 6099996721526457 a001 360684711374400/591286729879 6099996721526457 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^8 6099996721526457 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^59 6099996721526457 a001 75025/73681302247*17393796001^(6/7) 6099996721526457 a001 75025/10749957122*10749957122^(19/24) 6099996721526457 a001 75025/28143753123*312119004989^(8/11) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(50) 6099996721526457 a001 75025/28143753123*23725150497407^(5/8) 6099996721526457 a001 17168815156375/28145613744 6099996721526457 a001 75025/28143753123*73681302247^(10/13) 6099996721526457 a001 75025/73681302247*45537549124^(14/17) 6099996721526457 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^61 6099996721526457 a001 75025/1322157322203*45537549124^(16/17) 6099996721526457 a001 75025/312119004989*45537549124^(15/17) 6099996721526457 a001 75025/28143753123*28143753123^(4/5) 6099996721526457 a001 75025/73681302247*817138163596^(14/19) 6099996721526457 a001 75025/73681302247*14662949395604^(2/3) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(52) 6099996721526457 a001 2472169789427475/4052739537881 6099996721526457 a001 75025/73681302247*505019158607^(3/4) 6099996721526457 a001 75025/73681302247*192900153618^(7/9) 6099996721526457 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^63 6099996721526457 a001 75025/192900153618*312119004989^(4/5) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(54) 6099996721526457 a001 75025/192900153618*23725150497407^(11/16) 6099996721526457 a001 6472224534681800/10610209857723 6099996721526457 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^65 6099996721526457 a001 75025/3461452808002*312119004989^(10/11) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(56) 6099996721526457 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^67 6099996721526457 a001 75025/1322157322203*14662949395604^(16/21) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(58) 6099996721526457 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^69 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(60) 6099996721526457 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^71 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(62) 6099996721526457 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^73 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(64) 6099996721526457 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^75 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(66) 6099996721526457 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^77 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(68) 6099996721526457 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^79 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(70) 6099996721526457 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^81 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(72) 6099996721526457 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^83 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(74) 6099996721526457 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^85 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(76) 6099996721526457 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^87 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(78) 6099996721526457 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^89 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(80) 6099996721526457 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^91 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(82) 6099996721526457 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^93 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(84) 6099996721526457 a004 Fibonacci(25)*Lucas(85)/(1/2+sqrt(5)/2)^95 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(86) 6099996721526457 a004 Fibonacci(25)*Lucas(87)/(1/2+sqrt(5)/2)^97 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(88) 6099996721526457 a004 Fibonacci(25)*Lucas(89)/(1/2+sqrt(5)/2)^99 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(90) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(92) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^84/Lucas(94) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^86/Lucas(96) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^88/Lucas(98) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^90/Lucas(100) 6099996721526457 a004 Fibonacci(25)*Lucas(1)/(1/2+sqrt(5)/2)^10 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^89/Lucas(99) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^87/Lucas(97) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^85/Lucas(95) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(93) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(91) 6099996721526457 a004 Fibonacci(25)*Lucas(90)/(1/2+sqrt(5)/2)^100 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(89) 6099996721526457 a004 Fibonacci(25)*Lucas(88)/(1/2+sqrt(5)/2)^98 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(87) 6099996721526457 a004 Fibonacci(25)*Lucas(86)/(1/2+sqrt(5)/2)^96 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(85) 6099996721526457 a004 Fibonacci(25)*Lucas(84)/(1/2+sqrt(5)/2)^94 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(83) 6099996721526457 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^92 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(81) 6099996721526457 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^90 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(79) 6099996721526457 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^88 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(77) 6099996721526457 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^86 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(75) 6099996721526457 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^84 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(73) 6099996721526457 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^82 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(71) 6099996721526457 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^80 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(69) 6099996721526457 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^78 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(67) 6099996721526457 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^76 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(65) 6099996721526457 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^74 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(63) 6099996721526457 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^72 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(61) 6099996721526457 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^70 6099996721526457 a001 75025/2139295485799*14662949395604^(7/9) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(59) 6099996721526457 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^68 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(57) 6099996721526457 a001 75025/312119004989*312119004989^(9/11) 6099996721526457 a001 75025/2139295485799*505019158607^(7/8) 6099996721526457 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^66 6099996721526457 a001 75025/312119004989*14662949395604^(5/7) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(55) 6099996721526457 a001 75025/1322157322203*192900153618^(8/9) 6099996721526457 a001 75025/5600748293801*192900153618^(17/18) 6099996721526457 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^64 6099996721526457 a001 75025/312119004989*192900153618^(5/6) 6099996721526457 a001 4000054745254325/6557470319842 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(53) 6099996721526457 a001 75025/192900153618*73681302247^(11/13) 6099996721526457 a001 75025/1322157322203*73681302247^(12/13) 6099996721526457 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^62 6099996721526457 a001 1527884955826850/2504730781961 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(51) 6099996721526457 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^12 6099996721526457 a001 75025/312119004989*28143753123^(9/10) 6099996721526457 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^14 6099996721526457 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^16 6099996721526457 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^18 6099996721526457 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^20 6099996721526457 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^22 6099996721526457 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^24 6099996721526457 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^26 6099996721526457 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^28 6099996721526457 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^30 6099996721526457 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^32 6099996721526457 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^34 6099996721526457 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^36 6099996721526457 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^38 6099996721526457 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^40 6099996721526457 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^42 6099996721526457 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^44 6099996721526457 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^46 6099996721526457 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^48 6099996721526457 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^50 6099996721526457 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^52 6099996721526457 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^54 6099996721526457 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^56 6099996721526457 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^60 6099996721526457 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^58 6099996721526457 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^59 6099996721526457 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^57 6099996721526457 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^55 6099996721526457 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^53 6099996721526457 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^51 6099996721526457 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^49 6099996721526457 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^47 6099996721526457 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^45 6099996721526457 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^43 6099996721526457 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^41 6099996721526457 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^39 6099996721526457 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^37 6099996721526457 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^35 6099996721526457 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^33 6099996721526457 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^31 6099996721526457 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^29 6099996721526457 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^27 6099996721526457 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^25 6099996721526457 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^23 6099996721526457 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^21 6099996721526457 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^19 6099996721526457 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^17 6099996721526457 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^15 6099996721526457 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^13 6099996721526457 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^11 6099996721526457 a001 75025/17393796001*45537549124^(13/17) 6099996721526457 a001 583600122226225/956722026041 6099996721526457 a001 75025/17393796001*14662949395604^(13/21) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(49) 6099996721526457 a001 75025/17393796001*192900153618^(13/18) 6099996721526457 a001 75025/17393796001*73681302247^(3/4) 6099996721526457 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^9 6099996721526457 a001 75025/28143753123*10749957122^(5/6) 6099996721526457 a001 75025/73681302247*10749957122^(7/8) 6099996721526457 a001 75025/192900153618*10749957122^(11/12) 6099996721526457 a001 75025/312119004989*10749957122^(15/16) 6099996721526457 a001 75025/505019158607*10749957122^(23/24) 6099996721526457 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^58 6099996721526457 a001 75025/17393796001*10749957122^(13/16) 6099996721526457 a001 222915410851825/365435296162 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(47) 6099996721526457 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^7 6099996721526457 a001 75025/2537720636*2537720636^(7/9) 6099996721526457 a001 75025/10749957122*4106118243^(19/23) 6099996721526457 a001 75025/28143753123*4106118243^(20/23) 6099996721526457 a001 75025/73681302247*4106118243^(21/23) 6099996721526457 a001 75025/192900153618*4106118243^(22/23) 6099996721526457 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^56 6099996721526457 a001 75025/2537720636*17393796001^(5/7) 6099996721526457 a001 17029222065850/27916772489 6099996721526457 a001 75025/2537720636*312119004989^(7/11) 6099996721526457 a001 75025/2537720636*14662949395604^(5/9) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(45) 6099996721526457 a001 75025/2537720636*505019158607^(5/8) 6099996721526457 a001 75025/2537720636*28143753123^(7/10) 6099996721526457 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^5 6099996721526457 a001 75025/4106118243*1568397607^(9/11) 6099996721526457 a001 75025/10749957122*1568397607^(19/22) 6099996721526457 a001 75025/28143753123*1568397607^(10/11) 6099996721526457 a001 75025/73681302247*1568397607^(21/22) 6099996721526457 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^54 6099996721526457 a001 75025/969323029*2537720636^(11/15) 6099996721526457 a001 75025/969323029*45537549124^(11/17) 6099996721526457 a001 32522920135925/53316291173 6099996721526457 a001 75025/969323029*312119004989^(3/5) 6099996721526457 a001 75025/969323029*817138163596^(11/19) 6099996721526457 a001 75025/969323029*14662949395604^(11/21) 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(43) 6099996721526457 a001 75025/969323029*192900153618^(11/18) 6099996721526457 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^3 6099996721526457 a001 75025/969323029*10749957122^(11/16) 6099996721526457 a001 75025/969323029*1568397607^(3/4) 6099996721526457 a001 75025/1568397607*599074578^(17/21) 6099996721526457 a001 75025/4106118243*599074578^(6/7) 6099996721526457 a001 75025/2537720636*599074578^(5/6) 6099996721526457 a001 75025/10749957122*599074578^(19/21) 6099996721526457 a001 75025/17393796001*599074578^(13/14) 6099996721526457 a001 75025/28143753123*599074578^(20/21) 6099996721526457 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^52 6099996721526457 a001 75025/969323029*599074578^(11/14) 6099996721526457 a001 12422650078525/20365011074 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(41) 6099996721526457 a001 75025/370248451*9062201101803^(1/2) 6099996721526457 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2) 6099996721526457 a001 75025/599074578*228826127^(4/5) 6099996721526457 a001 75025/1568397607*228826127^(17/20) 6099996721526457 a001 75025/2537720636*228826127^(7/8) 6099996721526457 a001 75025/4106118243*228826127^(9/10) 6099996721526457 a001 75025/10749957122*228826127^(19/20) 6099996721526457 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^50 6099996721526457 a001 4745030099650/7778742049 6099996721526457 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(39) 6099996721526457 a001 75025/141422324*1322157322203^(1/2) 6099996721526457 a001 31622993/167761+31622993/167761*5^(1/2) 6099996721526457 a001 75025/228826127*87403803^(15/19) 6099996721526458 a001 75025/599074578*87403803^(16/19) 6099996721526458 a001 75025/1568397607*87403803^(17/19) 6099996721526458 a001 75025/4106118243*87403803^(18/19) 6099996721526458 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^48 6099996721526458 a001 39088169/167761*12752043^(1/17) 6099996721526459 a001 75025/54018521*141422324^(9/13) 6099996721526459 a001 24157817/167761*141422324^(1/13) 6099996721526459 a001 75025/54018521*2537720636^(3/5) 6099996721526459 a001 1812440220425/2971215073 6099996721526459 a001 24157817/167761*2537720636^(1/15) 6099996721526459 a001 75025/54018521*45537549124^(9/17) 6099996721526459 a001 75025/54018521*817138163596^(9/19) 6099996721526459 a001 75025/54018521*14662949395604^(3/7) 6099996721526459 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(37) 6099996721526459 a001 75025/54018521*192900153618^(1/2) 6099996721526459 a001 24157817/167761*45537549124^(1/17) 6099996721526459 a001 24157817/167761*14662949395604^(1/21) 6099996721526459 a001 24157817/167761*(1/2+1/2*5^(1/2))^3 6099996721526459 a001 24157817/167761*192900153618^(1/18) 6099996721526459 a001 24157817/167761*10749957122^(1/16) 6099996721526459 a001 75025/54018521*10749957122^(9/16) 6099996721526459 a001 24157817/167761*599074578^(1/14) 6099996721526459 a001 75025/54018521*599074578^(9/14) 6099996721526459 a001 24157817/167761*33385282^(1/12) 6099996721526460 a001 75025/87403803*33385282^(7/9) 6099996721526461 a001 75025/20633239*20633239^(5/7) 6099996721526461 a001 75025/228826127*33385282^(5/6) 6099996721526462 a001 75025/599074578*33385282^(8/9) 6099996721526462 a001 75025/969323029*33385282^(11/12) 6099996721526462 a001 75025/1568397607*33385282^(17/18) 6099996721526462 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^46 6099996721526463 a001 75025/54018521*33385282^(3/4) 6099996721526468 a001 5702887/167761*4870847^(3/16) 6099996721526469 a001 9227465/167761*20633239^(1/7) 6099996721526471 a001 138458112325/226980634 6099996721526471 a001 75025/20633239*2537720636^(5/9) 6099996721526471 a001 9227465/167761*2537720636^(1/9) 6099996721526471 a001 75025/20633239*312119004989^(5/11) 6099996721526471 a001 75025/20633239*(1/2+1/2*5^(1/2))^25 6099996721526471 a001 75025/20633239*3461452808002^(5/12) 6099996721526471 a001 75025/20633239*28143753123^(1/2) 6099996721526471 a001 9227465/167761*312119004989^(1/11) 6099996721526471 a001 9227465/167761*(1/2+1/2*5^(1/2))^5 6099996721526471 a001 9227465/167761*28143753123^(1/10) 6099996721526471 a001 9227465/167761*228826127^(1/8) 6099996721526471 a001 75025/20633239*228826127^(5/8) 6099996721526472 a001 39088169/167761*4870847^(1/16) 6099996721526480 a001 75025/33385282*12752043^(13/17) 6099996721526484 a001 14930352/167761*4870847^(1/8) 6099996721526487 a001 75025/87403803*12752043^(14/17) 6099996721526490 a001 75025/228826127*12752043^(15/17) 6099996721526492 a001 75025/599074578*12752043^(16/17) 6099996721526494 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^44 6099996721526552 a001 3524578/167761*20633239^(1/5) 6099996721526555 a001 264431464450/433494437 6099996721526555 a001 75025/7881196*(1/2+1/2*5^(1/2))^23 6099996721526555 a001 3524578/167761*17393796001^(1/7) 6099996721526555 a001 3524578/167761*14662949395604^(1/9) 6099996721526555 a001 3524578/167761*(1/2+1/2*5^(1/2))^7 6099996721526555 a001 75025/7881196*4106118243^(1/2) 6099996721526555 a001 3524578/167761*599074578^(1/6) 6099996721526574 a001 39088169/167761*1860498^(1/15) 6099996721526612 a001 75025/12752043*4870847^(3/4) 6099996721526635 a001 24157817/167761*1860498^(1/10) 6099996721526660 a001 75025/33385282*4870847^(13/16) 6099996721526670 a001 2178309/167761*1860498^(4/15) 6099996721526681 a001 75025/87403803*4870847^(7/8) 6099996721526686 a001 14930352/167761*1860498^(2/15) 6099996721526698 a001 75025/228826127*4870847^(15/16) 6099996721526714 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^42 6099996721526765 a001 9227465/167761*1860498^(1/6) 6099996721526772 a001 5702887/167761*1860498^(1/5) 6099996721527068 a001 75025/3010349*7881196^(7/11) 6099996721527103 a001 1346269/167761*7881196^(3/11) 6099996721527121 a001 75025/3010349*20633239^(3/5) 6099996721527130 a001 75025/3010349*141422324^(7/13) 6099996721527130 a001 1346269/167761*141422324^(3/13) 6099996721527130 a001 101003831725/165580141 6099996721527130 a001 75025/3010349*2537720636^(7/15) 6099996721527130 a001 1346269/167761*2537720636^(1/5) 6099996721527130 a001 75025/3010349*17393796001^(3/7) 6099996721527130 a001 75025/3010349*45537549124^(7/17) 6099996721527130 a001 75025/3010349*14662949395604^(1/3) 6099996721527130 a001 75025/3010349*(1/2+1/2*5^(1/2))^21 6099996721527130 a001 75025/3010349*192900153618^(7/18) 6099996721527130 a001 1346269/167761*45537549124^(3/17) 6099996721527130 a001 1346269/167761*14662949395604^(1/7) 6099996721527130 a001 1346269/167761*(1/2+1/2*5^(1/2))^9 6099996721527130 a001 1346269/167761*192900153618^(1/6) 6099996721527130 a001 1346269/167761*10749957122^(3/16) 6099996721527130 a001 75025/3010349*10749957122^(7/16) 6099996721527130 a001 1346269/167761*599074578^(3/14) 6099996721527130 a001 75025/3010349*599074578^(1/2) 6099996721527131 a001 1346269/167761*33385282^(1/4) 6099996721527132 a001 9227465/1149851*103682^(3/8) 6099996721527133 a001 75025/3010349*33385282^(7/12) 6099996721527319 a001 39088169/167761*710647^(1/14) 6099996721527492 a001 75025/4870847*1860498^(11/15) 6099996721527659 a001 1346269/167761*1860498^(3/10) 6099996721527829 a001 75025/12752043*1860498^(4/5) 6099996721527940 a001 75025/20633239*1860498^(5/6) 6099996721527979 a001 75025/33385282*1860498^(13/15) 6099996721528045 a001 75025/54018521*1860498^(9/10) 6099996721528101 a001 75025/87403803*1860498^(14/15) 6099996721528177 a001 14930352/167761*710647^(1/7) 6099996721528219 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^40 6099996721528364 a001 75025/3010349*1860498^(7/10) 6099996721529008 a001 5702887/167761*710647^(3/14) 6099996721529008 a001 75640/15251*710647^(5/14) 6099996721529575 a001 3524578/167761*710647^(1/4) 6099996721529651 a001 2178309/167761*710647^(2/7) 6099996721530446 a001 5702887/439204*103682^(1/3) 6099996721531038 a001 514229/167761*7881196^(1/3) 6099996721531070 a001 38580030725/63245986 6099996721531071 a001 75025/1149851*817138163596^(1/3) 6099996721531071 a001 75025/1149851*(1/2+1/2*5^(1/2))^19 6099996721531071 a001 514229/167761*312119004989^(1/5) 6099996721531071 a001 514229/167761*(1/2+1/2*5^(1/2))^11 6099996721531071 a001 514229/167761*1568397607^(1/4) 6099996721531071 a001 75025/1149851*87403803^(1/2) 6099996721532824 a001 39088169/167761*271443^(1/13) 6099996721533322 a001 75025/1860498*710647^(5/7) 6099996721534167 a001 3524578/710647*103682^(5/12) 6099996721535690 a001 75025/4870847*710647^(11/14) 6099996721536189 a001 75025/3010349*710647^(3/4) 6099996721536773 a001 75025/12752043*710647^(6/7) 6099996721537667 a001 75025/33385282*710647^(13/14) 6099996721538536 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^38 6099996721539188 a001 14930352/167761*271443^(2/13) 6099996721544400 a001 9227465/1860498*103682^(5/12) 6099996721545525 a001 5702887/167761*271443^(3/13) 6099996721545893 a001 24157817/4870847*103682^(5/12) 6099996721546110 a001 63245986/12752043*103682^(5/12) 6099996721546142 a001 165580141/33385282*103682^(5/12) 6099996721546147 a001 433494437/87403803*103682^(5/12) 6099996721546147 a001 1134903170/228826127*103682^(5/12) 6099996721546148 a001 2971215073/599074578*103682^(5/12) 6099996721546148 a001 7778742049/1568397607*103682^(5/12) 6099996721546148 a001 20365011074/4106118243*103682^(5/12) 6099996721546148 a001 53316291173/10749957122*103682^(5/12) 6099996721546148 a001 139583862445/28143753123*103682^(5/12) 6099996721546148 a001 365435296162/73681302247*103682^(5/12) 6099996721546148 a001 956722026041/192900153618*103682^(5/12) 6099996721546148 a001 2504730781961/505019158607*103682^(5/12) 6099996721546148 a001 10610209857723/2139295485799*103682^(5/12) 6099996721546148 a001 4052739537881/817138163596*103682^(5/12) 6099996721546148 a001 140728068720/28374454999*103682^(5/12) 6099996721546148 a001 591286729879/119218851371*103682^(5/12) 6099996721546148 a001 225851433717/45537549124*103682^(5/12) 6099996721546148 a001 86267571272/17393796001*103682^(5/12) 6099996721546148 a001 32951280099/6643838879*103682^(5/12) 6099996721546148 a001 1144206275/230701876*103682^(5/12) 6099996721546148 a001 4807526976/969323029*103682^(5/12) 6099996721546148 a001 1836311903/370248451*103682^(5/12) 6099996721546148 a001 701408733/141422324*103682^(5/12) 6099996721546150 a001 267914296/54018521*103682^(5/12) 6099996721546162 a001 9303105/1875749*103682^(5/12) 6099996721546245 a001 39088169/7881196*103682^(5/12) 6099996721546815 a001 14930352/3010349*103682^(5/12) 6099996721549877 a001 28657/271443*64079^(18/23) 6099996721550101 a001 63245986/167761*103682^(1/24) 6099996721550724 a001 5702887/1149851*103682^(5/12) 6099996721551673 a001 2178309/167761*271443^(4/13) 6099996721552588 a001 317811/167761*271443^(6/13) 6099996721554225 a001 1762289/219602*103682^(3/8) 6099996721556537 a001 75640/15251*271443^(5/13) 6099996721557455 a001 311187/101521*103682^(11/24) 6099996721558077 a001 14736260450/24157817 6099996721558079 a001 196418/167761*141422324^(1/3) 6099996721558079 a001 75025/439204*45537549124^(1/3) 6099996721558079 a001 75025/439204*(1/2+1/2*5^(1/2))^17 6099996721558079 a001 196418/167761*(1/2+1/2*5^(1/2))^13 6099996721558079 a001 196418/167761*73681302247^(1/4) 6099996721558098 a001 75025/439204*12752043^(1/2) 6099996721567991 a001 5702887/1860498*103682^(11/24) 6099996721569528 a001 14930352/4870847*103682^(11/24) 6099996721569753 a001 39088169/12752043*103682^(11/24) 6099996721569785 a001 14619165/4769326*103682^(11/24) 6099996721569790 a001 267914296/87403803*103682^(11/24) 6099996721569791 a001 701408733/228826127*103682^(11/24) 6099996721569791 a001 1836311903/599074578*103682^(11/24) 6099996721569791 a001 686789568/224056801*103682^(11/24) 6099996721569791 a001 12586269025/4106118243*103682^(11/24) 6099996721569791 a001 32951280099/10749957122*103682^(11/24) 6099996721569791 a001 86267571272/28143753123*103682^(11/24) 6099996721569791 a001 32264490531/10525900321*103682^(11/24) 6099996721569791 a001 591286729879/192900153618*103682^(11/24) 6099996721569791 a001 1548008755920/505019158607*103682^(11/24) 6099996721569791 a001 1515744265389/494493258286*103682^(11/24) 6099996721569791 a001 2504730781961/817138163596*103682^(11/24) 6099996721569791 a001 956722026041/312119004989*103682^(11/24) 6099996721569791 a001 365435296162/119218851371*103682^(11/24) 6099996721569791 a001 139583862445/45537549124*103682^(11/24) 6099996721569791 a001 53316291173/17393796001*103682^(11/24) 6099996721569791 a001 20365011074/6643838879*103682^(11/24) 6099996721569791 a001 7778742049/2537720636*103682^(11/24) 6099996721569791 a001 2971215073/969323029*103682^(11/24) 6099996721569791 a001 1134903170/370248451*103682^(11/24) 6099996721569791 a001 433494437/141422324*103682^(11/24) 6099996721569793 a001 165580141/54018521*103682^(11/24) 6099996721569806 a001 63245986/20633239*103682^(11/24) 6099996721569891 a001 24157817/7881196*103682^(11/24) 6099996721570479 a001 9227465/3010349*103682^(11/24) 6099996721571694 a001 75025/710647*271443^(9/13) 6099996721573743 a001 39088169/167761*103682^(1/12) 6099996721574503 a001 3524578/1149851*103682^(11/24) 6099996721577513 a001 2178309/439204*103682^(5/12) 6099996721580498 a001 63245986/271443*39603^(1/11) 6099996721582029 a001 1346269/710647*103682^(1/2) 6099996721588378 a001 75025/1860498*271443^(10/13) 6099996721589555 a001 196418/271443*103682^(7/12) 6099996721591770 a001 1762289/930249*103682^(1/2) 6099996721593192 a001 9227465/4870847*103682^(1/2) 6099996721593399 a001 24157817/12752043*103682^(1/2) 6099996721593429 a001 31622993/16692641*103682^(1/2) 6099996721593434 a001 165580141/87403803*103682^(1/2) 6099996721593434 a001 433494437/228826127*103682^(1/2) 6099996721593435 a001 567451585/299537289*103682^(1/2) 6099996721593435 a001 2971215073/1568397607*103682^(1/2) 6099996721593435 a001 7778742049/4106118243*103682^(1/2) 6099996721593435 a001 10182505537/5374978561*103682^(1/2) 6099996721593435 a001 53316291173/28143753123*103682^(1/2) 6099996721593435 a001 139583862445/73681302247*103682^(1/2) 6099996721593435 a001 182717648081/96450076809*103682^(1/2) 6099996721593435 a001 956722026041/505019158607*103682^(1/2) 6099996721593435 a001 10610209857723/5600748293801*103682^(1/2) 6099996721593435 a001 591286729879/312119004989*103682^(1/2) 6099996721593435 a001 225851433717/119218851371*103682^(1/2) 6099996721593435 a001 21566892818/11384387281*103682^(1/2) 6099996721593435 a001 32951280099/17393796001*103682^(1/2) 6099996721593435 a001 12586269025/6643838879*103682^(1/2) 6099996721593435 a001 1201881744/634430159*103682^(1/2) 6099996721593435 a001 1836311903/969323029*103682^(1/2) 6099996721593435 a001 701408733/370248451*103682^(1/2) 6099996721593435 a001 66978574/35355581*103682^(1/2) 6099996721593437 a001 102334155/54018521*103682^(1/2) 6099996721593448 a001 39088169/20633239*103682^(1/2) 6099996721593527 a001 3732588/1970299*103682^(1/2) 6099996721594070 a001 5702887/3010349*103682^(1/2) 6099996721596252 a001 75025/4870847*271443^(11/13) 6099996721597389 a001 24157817/167761*103682^(1/8) 6099996721597791 a001 2178309/1149851*103682^(1/2) 6099996721599474 a001 196418/167761*271443^(1/2) 6099996721599698 a001 28657/439204*64079^(19/23) 6099996721602087 a001 1346269/439204*103682^(11/24) 6099996721602840 a001 75025/12752043*271443^(12/13) 6099996721603237 a001 832040/710647*103682^(13/24) 6099996721609246 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^36 6099996721613155 a001 75025/167761*167761^(3/5) 6099996721615059 a001 726103/620166*103682^(13/24) 6099996721616783 a001 5702887/4870847*103682^(13/24) 6099996721616784 a001 121393/710647*103682^(17/24) 6099996721617035 a001 4976784/4250681*103682^(13/24) 6099996721617072 a001 39088169/33385282*103682^(13/24) 6099996721617077 a001 34111385/29134601*103682^(13/24) 6099996721617078 a001 267914296/228826127*103682^(13/24) 6099996721617078 a001 233802911/199691526*103682^(13/24) 6099996721617078 a001 1836311903/1568397607*103682^(13/24) 6099996721617078 a001 1602508992/1368706081*103682^(13/24) 6099996721617078 a001 12586269025/10749957122*103682^(13/24) 6099996721617078 a001 10983760033/9381251041*103682^(13/24) 6099996721617078 a001 86267571272/73681302247*103682^(13/24) 6099996721617078 a001 75283811239/64300051206*103682^(13/24) 6099996721617078 a001 2504730781961/2139295485799*103682^(13/24) 6099996721617078 a001 365435296162/312119004989*103682^(13/24) 6099996721617078 a001 139583862445/119218851371*103682^(13/24) 6099996721617078 a001 53316291173/45537549124*103682^(13/24) 6099996721617078 a001 20365011074/17393796001*103682^(13/24) 6099996721617078 a001 7778742049/6643838879*103682^(13/24) 6099996721617078 a001 2971215073/2537720636*103682^(13/24) 6099996721617078 a001 1134903170/969323029*103682^(13/24) 6099996721617078 a001 433494437/370248451*103682^(13/24) 6099996721617078 a001 165580141/141422324*103682^(13/24) 6099996721617080 a001 63245986/54018521*103682^(13/24) 6099996721617094 a001 24157817/20633239*103682^(13/24) 6099996721617191 a001 9227465/7881196*103682^(13/24) 6099996721617849 a001 3524578/3010349*103682^(13/24) 6099996721621025 a001 14930352/167761*103682^(1/6) 6099996721622365 a001 1346269/1149851*103682^(13/24) 6099996721623295 a001 208010/109801*103682^(1/2) 6099996721626167 a001 5702887/103682*39603^(5/22) 6099996721633256 a001 514229/710647*103682^(7/12) 6099996721636842 a001 121393/439204*103682^(2/3) 6099996721639632 a001 1346269/1860498*103682^(7/12) 6099996721640208 a001 317811/710647*103682^(5/8) 6099996721640563 a001 3524578/4870847*103682^(7/12) 6099996721640698 a001 9227465/12752043*103682^(7/12) 6099996721640718 a001 24157817/33385282*103682^(7/12) 6099996721640721 a001 63245986/87403803*103682^(7/12) 6099996721640721 a001 165580141/228826127*103682^(7/12) 6099996721640722 a001 433494437/599074578*103682^(7/12) 6099996721640722 a001 1134903170/1568397607*103682^(7/12) 6099996721640722 a001 2971215073/4106118243*103682^(7/12) 6099996721640722 a001 7778742049/10749957122*103682^(7/12) 6099996721640722 a001 20365011074/28143753123*103682^(7/12) 6099996721640722 a001 53316291173/73681302247*103682^(7/12) 6099996721640722 a001 139583862445/192900153618*103682^(7/12) 6099996721640722 a001 365435296162/505019158607*103682^(7/12) 6099996721640722 a001 10610209857723/14662949395604*103682^(7/12) 6099996721640722 a001 225851433717/312119004989*103682^(7/12) 6099996721640722 a001 86267571272/119218851371*103682^(7/12) 6099996721640722 a001 32951280099/45537549124*103682^(7/12) 6099996721640722 a001 12586269025/17393796001*103682^(7/12) 6099996721640722 a001 4807526976/6643838879*103682^(7/12) 6099996721640722 a001 1836311903/2537720636*103682^(7/12) 6099996721640722 a001 701408733/969323029*103682^(7/12) 6099996721640722 a001 267914296/370248451*103682^(7/12) 6099996721640722 a001 102334155/141422324*103682^(7/12) 6099996721640723 a001 39088169/54018521*103682^(7/12) 6099996721640730 a001 14930352/20633239*103682^(7/12) 6099996721640782 a001 5702887/7881196*103682^(7/12) 6099996721641138 a001 2178309/3010349*103682^(7/12) 6099996721643573 a001 832040/1149851*103682^(7/12) 6099996721644689 a001 9227465/167761*103682^(5/24) 6099996721651208 a001 165580141/710647*39603^(1/11) 6099996721653314 a001 514229/439204*103682^(13/24) 6099996721657120 a001 121393/1149851*103682^(3/4) 6099996721660265 a001 317811/439204*103682^(7/12) 6099996721660841 a001 416020/930249*103682^(5/8) 6099996721661525 a001 433494437/1860498*39603^(1/11) 6099996721663030 a001 1134903170/4870847*39603^(1/11) 6099996721663249 a001 2971215073/12752043*39603^(1/11) 6099996721663282 a001 7778742049/33385282*39603^(1/11) 6099996721663286 a001 20365011074/87403803*39603^(1/11) 6099996721663287 a001 53316291173/228826127*39603^(1/11) 6099996721663287 a001 139583862445/599074578*39603^(1/11) 6099996721663287 a001 365435296162/1568397607*39603^(1/11) 6099996721663287 a001 956722026041/4106118243*39603^(1/11) 6099996721663287 a001 2504730781961/10749957122*39603^(1/11) 6099996721663287 a001 6557470319842/28143753123*39603^(1/11) 6099996721663287 a001 10610209857723/45537549124*39603^(1/11) 6099996721663287 a001 4052739537881/17393796001*39603^(1/11) 6099996721663287 a001 1548008755920/6643838879*39603^(1/11) 6099996721663287 a001 591286729879/2537720636*39603^(1/11) 6099996721663287 a001 225851433717/969323029*39603^(1/11) 6099996721663287 a001 86267571272/370248451*39603^(1/11) 6099996721663287 a001 63246219/271444*39603^(1/11) 6099996721663289 a001 12586269025/54018521*39603^(1/11) 6099996721663301 a001 4807526976/20633239*39603^(1/11) 6099996721663385 a001 1836311903/7881196*39603^(1/11) 6099996721663851 a001 2178309/4870847*103682^(5/8) 6099996721663960 a001 701408733/3010349*39603^(1/11) 6099996721664290 a001 5702887/12752043*103682^(5/8) 6099996721664354 a001 7465176/16692641*103682^(5/8) 6099996721664363 a001 39088169/87403803*103682^(5/8) 6099996721664365 a001 102334155/228826127*103682^(5/8) 6099996721664365 a001 133957148/299537289*103682^(5/8) 6099996721664365 a001 701408733/1568397607*103682^(5/8) 6099996721664365 a001 1836311903/4106118243*103682^(5/8) 6099996721664365 a001 2403763488/5374978561*103682^(5/8) 6099996721664365 a001 12586269025/28143753123*103682^(5/8) 6099996721664365 a001 32951280099/73681302247*103682^(5/8) 6099996721664365 a001 43133785636/96450076809*103682^(5/8) 6099996721664365 a001 225851433717/505019158607*103682^(5/8) 6099996721664365 a001 591286729879/1322157322203*103682^(5/8) 6099996721664365 a001 10610209857723/23725150497407*103682^(5/8) 6099996721664365 a001 182717648081/408569081798*103682^(5/8) 6099996721664365 a001 139583862445/312119004989*103682^(5/8) 6099996721664365 a001 53316291173/119218851371*103682^(5/8) 6099996721664365 a001 10182505537/22768774562*103682^(5/8) 6099996721664365 a001 7778742049/17393796001*103682^(5/8) 6099996721664365 a001 2971215073/6643838879*103682^(5/8) 6099996721664365 a001 567451585/1268860318*103682^(5/8) 6099996721664365 a001 433494437/969323029*103682^(5/8) 6099996721664365 a001 165580141/370248451*103682^(5/8) 6099996721664366 a001 31622993/70711162*103682^(5/8) 6099996721664369 a001 24157817/54018521*103682^(5/8) 6099996721664394 a001 9227465/20633239*103682^(5/8) 6099996721664561 a001 1762289/3940598*103682^(5/8) 6099996721665711 a001 1346269/3010349*103682^(5/8) 6099996721667901 a001 267914296/1149851*39603^(1/11) 6099996721668280 a001 5702887/167761*103682^(1/4) 6099996721673592 a001 514229/1149851*103682^(5/8) 6099996721674388 a001 121393/1860498*103682^(19/24) 6099996721680543 a001 317811/1149851*103682^(2/3) 6099996721686919 a001 832040/3010349*103682^(2/3) 6099996721687850 a001 2178309/7881196*103682^(2/3) 6099996721687985 a001 5702887/20633239*103682^(2/3) 6099996721688005 a001 14930352/54018521*103682^(2/3) 6099996721688008 a001 39088169/141422324*103682^(2/3) 6099996721688008 a001 102334155/370248451*103682^(2/3) 6099996721688009 a001 267914296/969323029*103682^(2/3) 6099996721688009 a001 701408733/2537720636*103682^(2/3) 6099996721688009 a001 1836311903/6643838879*103682^(2/3) 6099996721688009 a001 4807526976/17393796001*103682^(2/3) 6099996721688009 a001 12586269025/45537549124*103682^(2/3) 6099996721688009 a001 32951280099/119218851371*103682^(2/3) 6099996721688009 a001 86267571272/312119004989*103682^(2/3) 6099996721688009 a001 225851433717/817138163596*103682^(2/3) 6099996721688009 a001 1548008755920/5600748293801*103682^(2/3) 6099996721688009 a001 139583862445/505019158607*103682^(2/3) 6099996721688009 a001 53316291173/192900153618*103682^(2/3) 6099996721688009 a001 20365011074/73681302247*103682^(2/3) 6099996721688009 a001 7778742049/28143753123*103682^(2/3) 6099996721688009 a001 2971215073/10749957122*103682^(2/3) 6099996721688009 a001 1134903170/4106118243*103682^(2/3) 6099996721688009 a001 433494437/1568397607*103682^(2/3) 6099996721688009 a001 165580141/599074578*103682^(2/3) 6099996721688009 a001 63245986/228826127*103682^(2/3) 6099996721688010 a001 24157817/87403803*103682^(2/3) 6099996721688017 a001 9227465/33385282*103682^(2/3) 6099996721688069 a001 3524578/12752043*103682^(2/3) 6099996721688425 a001 1346269/4870847*103682^(2/3) 6099996721690860 a001 514229/1860498*103682^(2/3) 6099996721692060 a001 3524578/167761*103682^(7/24) 6099996721694909 a001 102334155/439204*39603^(1/11) 6099996721697811 a001 105937/620166*103682^(17/24) 6099996721700467 a001 121393/3010349*103682^(5/6) 6099996721703244 a001 63245986/167761*39603^(1/22) 6099996721707552 a001 196418/710647*103682^(2/3) 6099996721709633 a001 832040/4870847*103682^(17/24) 6099996721711357 a001 726103/4250681*103682^(17/24) 6099996721711609 a001 5702887/33385282*103682^(17/24) 6099996721711646 a001 4976784/29134601*103682^(17/24) 6099996721711651 a001 39088169/228826127*103682^(17/24) 6099996721711652 a001 34111385/199691526*103682^(17/24) 6099996721711652 a001 267914296/1568397607*103682^(17/24) 6099996721711652 a001 233802911/1368706081*103682^(17/24) 6099996721711652 a001 1836311903/10749957122*103682^(17/24) 6099996721711652 a001 1602508992/9381251041*103682^(17/24) 6099996721711652 a001 12586269025/73681302247*103682^(17/24) 6099996721711652 a001 10983760033/64300051206*103682^(17/24) 6099996721711652 a001 86267571272/505019158607*103682^(17/24) 6099996721711652 a001 75283811239/440719107401*103682^(17/24) 6099996721711652 a001 2504730781961/14662949395604*103682^(17/24) 6099996721711652 a001 139583862445/817138163596*103682^(17/24) 6099996721711652 a001 53316291173/312119004989*103682^(17/24) 6099996721711652 a001 20365011074/119218851371*103682^(17/24) 6099996721711652 a001 7778742049/45537549124*103682^(17/24) 6099996721711652 a001 2971215073/17393796001*103682^(17/24) 6099996721711652 a001 1134903170/6643838879*103682^(17/24) 6099996721711652 a001 433494437/2537720636*103682^(17/24) 6099996721711652 a001 165580141/969323029*103682^(17/24) 6099996721711652 a001 63245986/370248451*103682^(17/24) 6099996721711654 a001 24157817/141422324*103682^(17/24) 6099996721711668 a001 9227465/54018521*103682^(17/24) 6099996721711765 a001 3524578/20633239*103682^(17/24) 6099996721711798 a001 10946/271443*24476^(20/21) 6099996721712423 a001 1346269/7881196*103682^(17/24) 6099996721715348 a001 2178309/167761*103682^(1/3) 6099996721716939 a001 514229/3010349*103682^(17/24) 6099996721723180 a001 121393/4870847*103682^(7/8) 6099996721723890 a001 317811/3010349*103682^(3/4) 6099996721725633 a001 75025/167761*439204^(5/9) 6099996721727610 a001 98209/219602*103682^(5/8) 6099996721733631 a001 208010/1970299*103682^(3/4) 6099996721734577 a001 17711/64079*39603^(8/11) 6099996721735053 a001 2178309/20633239*103682^(3/4) 6099996721735260 a001 5702887/54018521*103682^(3/4) 6099996721735290 a001 3732588/35355581*103682^(3/4) 6099996721735295 a001 39088169/370248451*103682^(3/4) 6099996721735295 a001 102334155/969323029*103682^(3/4) 6099996721735295 a001 66978574/634430159*103682^(3/4) 6099996721735296 a001 701408733/6643838879*103682^(3/4) 6099996721735296 a001 1836311903/17393796001*103682^(3/4) 6099996721735296 a001 1201881744/11384387281*103682^(3/4) 6099996721735296 a001 12586269025/119218851371*103682^(3/4) 6099996721735296 a001 32951280099/312119004989*103682^(3/4) 6099996721735296 a001 21566892818/204284540899*103682^(3/4) 6099996721735296 a001 225851433717/2139295485799*103682^(3/4) 6099996721735296 a001 182717648081/1730726404001*103682^(3/4) 6099996721735296 a001 139583862445/1322157322203*103682^(3/4) 6099996721735296 a001 53316291173/505019158607*103682^(3/4) 6099996721735296 a001 10182505537/96450076809*103682^(3/4) 6099996721735296 a001 7778742049/73681302247*103682^(3/4) 6099996721735296 a001 2971215073/28143753123*103682^(3/4) 6099996721735296 a001 567451585/5374978561*103682^(3/4) 6099996721735296 a001 433494437/4106118243*103682^(3/4) 6099996721735296 a001 165580141/1568397607*103682^(3/4) 6099996721735296 a001 31622993/299537289*103682^(3/4) 6099996721735297 a001 24157817/228826127*103682^(3/4) 6099996721735309 a001 9227465/87403803*103682^(3/4) 6099996721735388 a001 1762289/16692641*103682^(3/4) 6099996721735931 a001 1346269/12752043*103682^(3/4) 6099996721739652 a001 514229/4870847*103682^(3/4) 6099996721739921 a001 1346269/167761*103682^(3/8) 6099996721743157 a001 75025/167761*7881196^(5/11) 6099996721743187 a001 1125750125/1845493 6099996721743195 a001 75025/167761*20633239^(3/7) 6099996721743201 a001 75025/167761*141422324^(5/13) 6099996721743201 a001 75025/167761*2537720636^(1/3) 6099996721743201 a001 75025/167761*45537549124^(5/17) 6099996721743201 a001 75025/167761*312119004989^(3/11) 6099996721743201 a001 75025/167761*14662949395604^(5/21) 6099996721743201 a001 75025/167761*(1/2+1/2*5^(1/2))^15 6099996721743201 a001 75025/167761*192900153618^(5/18) 6099996721743201 a001 75025/167761*28143753123^(3/10) 6099996721743201 a001 75025/167761*10749957122^(5/16) 6099996721743201 a001 75025/167761*599074578^(5/14) 6099996721743201 a001 75025/167761*228826127^(3/8) 6099996721743203 a001 75025/167761*33385282^(5/12) 6099996721744082 a001 75025/167761*1860498^(1/2) 6099996721746603 a001 317811/4870847*103682^(19/24) 6099996721747179 a001 121393/7881196*103682^(11/12) 6099996721747888 a001 196418/1149851*103682^(17/24) 6099996721757139 a001 832040/12752043*103682^(19/24) 6099996721757284 a001 39088169/271443*39603^(3/22) 6099996721758676 a001 311187/4769326*103682^(19/24) 6099996721758901 a001 5702887/87403803*103682^(19/24) 6099996721758933 a001 14930352/228826127*103682^(19/24) 6099996721758938 a001 39088169/599074578*103682^(19/24) 6099996721758939 a001 14619165/224056801*103682^(19/24) 6099996721758939 a001 267914296/4106118243*103682^(19/24) 6099996721758939 a001 701408733/10749957122*103682^(19/24) 6099996721758939 a001 1836311903/28143753123*103682^(19/24) 6099996721758939 a001 686789568/10525900321*103682^(19/24) 6099996721758939 a001 12586269025/192900153618*103682^(19/24) 6099996721758939 a001 32951280099/505019158607*103682^(19/24) 6099996721758939 a001 86267571272/1322157322203*103682^(19/24) 6099996721758939 a001 32264490531/494493258286*103682^(19/24) 6099996721758939 a001 591286729879/9062201101803*103682^(19/24) 6099996721758939 a001 1548008755920/23725150497407*103682^(19/24) 6099996721758939 a001 365435296162/5600748293801*103682^(19/24) 6099996721758939 a001 139583862445/2139295485799*103682^(19/24) 6099996721758939 a001 53316291173/817138163596*103682^(19/24) 6099996721758939 a001 20365011074/312119004989*103682^(19/24) 6099996721758939 a001 7778742049/119218851371*103682^(19/24) 6099996721758939 a001 2971215073/45537549124*103682^(19/24) 6099996721758939 a001 1134903170/17393796001*103682^(19/24) 6099996721758939 a001 433494437/6643838879*103682^(19/24) 6099996721758939 a001 165580141/2537720636*103682^(19/24) 6099996721758939 a001 63245986/969323029*103682^(19/24) 6099996721758941 a001 24157817/370248451*103682^(19/24) 6099996721758954 a001 9227465/141422324*103682^(19/24) 6099996721759039 a001 3524578/54018521*103682^(19/24) 6099996721759626 a001 1346269/20633239*103682^(19/24) 6099996721761130 a001 75640/15251*103682^(5/12) 6099996721763651 a001 514229/7881196*103682^(19/24) 6099996721765156 a001 98209/930249*103682^(3/4) 6099996721770602 a001 317811/7881196*103682^(5/6) 6099996721770687 a001 121393/12752043*103682^(23/24) 6099996721774677 a001 121393/167761*103682^(7/12) 6099996721780835 a001 75640/1875749*103682^(5/6) 6099996721782327 a001 2178309/54018521*103682^(5/6) 6099996721782545 a001 5702887/141422324*103682^(5/6) 6099996721782577 a001 14930352/370248451*103682^(5/6) 6099996721782582 a001 39088169/969323029*103682^(5/6) 6099996721782582 a001 9303105/230701876*103682^(5/6) 6099996721782582 a001 267914296/6643838879*103682^(5/6) 6099996721782582 a001 701408733/17393796001*103682^(5/6) 6099996721782582 a001 1836311903/45537549124*103682^(5/6) 6099996721782582 a001 4807526976/119218851371*103682^(5/6) 6099996721782582 a001 1144206275/28374454999*103682^(5/6) 6099996721782582 a001 32951280099/817138163596*103682^(5/6) 6099996721782582 a001 86267571272/2139295485799*103682^(5/6) 6099996721782582 a001 225851433717/5600748293801*103682^(5/6) 6099996721782582 a001 591286729879/14662949395604*103682^(5/6) 6099996721782582 a001 365435296162/9062201101803*103682^(5/6) 6099996721782582 a001 139583862445/3461452808002*103682^(5/6) 6099996721782582 a001 53316291173/1322157322203*103682^(5/6) 6099996721782582 a001 20365011074/505019158607*103682^(5/6) 6099996721782582 a001 7778742049/192900153618*103682^(5/6) 6099996721782582 a001 2971215073/73681302247*103682^(5/6) 6099996721782582 a001 1134903170/28143753123*103682^(5/6) 6099996721782583 a001 433494437/10749957122*103682^(5/6) 6099996721782583 a001 165580141/4106118243*103682^(5/6) 6099996721782583 a001 63245986/1568397607*103682^(5/6) 6099996721782585 a001 24157817/599074578*103682^(5/6) 6099996721782597 a001 9227465/228826127*103682^(5/6) 6099996721782680 a001 3524578/87403803*103682^(5/6) 6099996721783250 a001 1346269/33385282*103682^(5/6) 6099996721787159 a001 514229/12752043*103682^(5/6) 6099996721791149 a001 514229/167761*103682^(11/24) 6099996721791235 a001 196418/3010349*103682^(19/24) 6099996721794110 a001 105937/4250681*103682^(7/8) 6099996721794368 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^35 6099996721798100 a001 317811/167761*103682^(1/2) 6099996721803090 a001 1762289/51841*39603^(3/11) 6099996721804458 a001 416020/16692641*103682^(7/8) 6099996721805968 a001 726103/29134601*103682^(7/8) 6099996721806188 a001 5702887/228826127*103682^(7/8) 6099996721806220 a001 829464/33281921*103682^(7/8) 6099996721806225 a001 39088169/1568397607*103682^(7/8) 6099996721806226 a001 34111385/1368706081*103682^(7/8) 6099996721806226 a001 133957148/5374978561*103682^(7/8) 6099996721806226 a001 233802911/9381251041*103682^(7/8) 6099996721806226 a001 1836311903/73681302247*103682^(7/8) 6099996721806226 a001 267084832/10716675201*103682^(7/8) 6099996721806226 a001 12586269025/505019158607*103682^(7/8) 6099996721806226 a001 10983760033/440719107401*103682^(7/8) 6099996721806226 a001 43133785636/1730726404001*103682^(7/8) 6099996721806226 a001 75283811239/3020733700601*103682^(7/8) 6099996721806226 a001 182717648081/7331474697802*103682^(7/8) 6099996721806226 a001 139583862445/5600748293801*103682^(7/8) 6099996721806226 a001 53316291173/2139295485799*103682^(7/8) 6099996721806226 a001 10182505537/408569081798*103682^(7/8) 6099996721806226 a001 7778742049/312119004989*103682^(7/8) 6099996721806226 a001 2971215073/119218851371*103682^(7/8) 6099996721806226 a001 567451585/22768774562*103682^(7/8) 6099996721806226 a001 433494437/17393796001*103682^(7/8) 6099996721806226 a001 165580141/6643838879*103682^(7/8) 6099996721806226 a001 31622993/1268860318*103682^(7/8) 6099996721806228 a001 24157817/969323029*103682^(7/8) 6099996721806240 a001 9227465/370248451*103682^(7/8) 6099996721806325 a001 1762289/70711162*103682^(7/8) 6099996721806901 a001 1346269/54018521*103682^(7/8) 6099996721810854 a001 514229/20633239*103682^(7/8) 6099996721813948 a001 196418/4870847*103682^(5/6) 6099996721817805 a001 10959/711491*103682^(11/12) 6099996721821964 a001 75025/271443*103682^(2/3) 6099996721825545 a001 14930352/64079*24476^(2/21) 6099996721827995 a001 14619165/101521*39603^(3/22) 6099996721828109 a001 832040/54018521*103682^(11/12) 6099996721829613 a001 2178309/141422324*103682^(11/12) 6099996721829832 a001 5702887/370248451*103682^(11/12) 6099996721829864 a001 14930352/969323029*103682^(11/12) 6099996721829869 a001 39088169/2537720636*103682^(11/12) 6099996721829869 a001 102334155/6643838879*103682^(11/12) 6099996721829869 a001 9238424/599786069*103682^(11/12) 6099996721829869 a001 701408733/45537549124*103682^(11/12) 6099996721829869 a001 1836311903/119218851371*103682^(11/12) 6099996721829869 a001 4807526976/312119004989*103682^(11/12) 6099996721829869 a001 12586269025/817138163596*103682^(11/12) 6099996721829869 a001 32951280099/2139295485799*103682^(11/12) 6099996721829869 a001 86267571272/5600748293801*103682^(11/12) 6099996721829869 a001 7787980473/505618944676*103682^(11/12) 6099996721829869 a001 365435296162/23725150497407*103682^(11/12) 6099996721829869 a001 139583862445/9062201101803*103682^(11/12) 6099996721829869 a001 53316291173/3461452808002*103682^(11/12) 6099996721829869 a001 20365011074/1322157322203*103682^(11/12) 6099996721829869 a001 7778742049/505019158607*103682^(11/12) 6099996721829869 a001 2971215073/192900153618*103682^(11/12) 6099996721829869 a001 1134903170/73681302247*103682^(11/12) 6099996721829869 a001 433494437/28143753123*103682^(11/12) 6099996721829870 a001 165580141/10749957122*103682^(11/12) 6099996721829870 a001 63245986/4106118243*103682^(11/12) 6099996721829872 a001 24157817/1568397607*103682^(11/12) 6099996721829884 a001 9227465/599074578*103682^(11/12) 6099996721829968 a001 3524578/228826127*103682^(11/12) 6099996721830542 a001 1346269/87403803*103682^(11/12) 6099996721834478 a001 514229/33385282*103682^(11/12) 6099996721837947 a001 98209/3940598*103682^(7/8) 6099996721838312 a001 133957148/930249*39603^(3/22) 6099996721839817 a001 701408733/4870847*39603^(3/22) 6099996721840037 a001 1836311903/12752043*39603^(3/22) 6099996721840069 a001 14930208/103681*39603^(3/22) 6099996721840073 a001 12586269025/87403803*39603^(3/22) 6099996721840074 a001 32951280099/228826127*39603^(3/22) 6099996721840074 a001 43133785636/299537289*39603^(3/22) 6099996721840074 a001 32264490531/224056801*39603^(3/22) 6099996721840074 a001 591286729879/4106118243*39603^(3/22) 6099996721840074 a001 774004377960/5374978561*39603^(3/22) 6099996721840074 a001 4052739537881/28143753123*39603^(3/22) 6099996721840074 a001 1515744265389/10525900321*39603^(3/22) 6099996721840074 a001 3278735159921/22768774562*39603^(3/22) 6099996721840074 a001 2504730781961/17393796001*39603^(3/22) 6099996721840074 a001 956722026041/6643838879*39603^(3/22) 6099996721840074 a001 182717648081/1268860318*39603^(3/22) 6099996721840074 a001 139583862445/969323029*39603^(3/22) 6099996721840074 a001 53316291173/370248451*39603^(3/22) 6099996721840074 a001 10182505537/70711162*39603^(3/22) 6099996721840076 a001 7778742049/54018521*39603^(3/22) 6099996721840088 a001 2971215073/20633239*39603^(3/22) 6099996721840172 a001 567451585/3940598*39603^(3/22) 6099996721840747 a001 433494437/3010349*39603^(3/22) 6099996721841429 a001 317811/33385282*103682^(23/24) 6099996721844688 a001 165580141/1149851*39603^(3/22) 6099996721851750 a001 832040/87403803*103682^(23/24) 6099996721853256 a001 46347/4868641*103682^(23/24) 6099996721853475 a001 5702887/599074578*103682^(23/24) 6099996721853507 a001 14930352/1568397607*103682^(23/24) 6099996721853512 a001 39088169/4106118243*103682^(23/24) 6099996721853513 a001 102334155/10749957122*103682^(23/24) 6099996721853513 a001 267914296/28143753123*103682^(23/24) 6099996721853513 a001 701408733/73681302247*103682^(23/24) 6099996721853513 a001 1836311903/192900153618*103682^(23/24) 6099996721853513 a001 102287808/10745088481*103682^(23/24) 6099996721853513 a001 12586269025/1322157322203*103682^(23/24) 6099996721853513 a001 32951280099/3461452808002*103682^(23/24) 6099996721853513 a001 86267571272/9062201101803*103682^(23/24) 6099996721853513 a001 225851433717/23725150497407*103682^(23/24) 6099996721853513 a001 139583862445/14662949395604*103682^(23/24) 6099996721853513 a001 53316291173/5600748293801*103682^(23/24) 6099996721853513 a001 20365011074/2139295485799*103682^(23/24) 6099996721853513 a001 7778742049/817138163596*103682^(23/24) 6099996721853513 a001 2971215073/312119004989*103682^(23/24) 6099996721853513 a001 1134903170/119218851371*103682^(23/24) 6099996721853513 a001 433494437/45537549124*103682^(23/24) 6099996721853513 a001 165580141/17393796001*103682^(23/24) 6099996721853513 a001 63245986/6643838879*103682^(23/24) 6099996721853515 a001 24157817/2537720636*103682^(23/24) 6099996721853527 a001 9227465/969323029*103682^(23/24) 6099996721853611 a001 3524578/370248451*103682^(23/24) 6099996721854186 a001 1346269/141422324*103682^(23/24) 6099996721858129 a001 514229/54018521*103682^(23/24) 6099996721861455 a001 196418/12752043*103682^(11/12) 6099996721865078 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^37 6099996721865445 a001 196418/167761*103682^(13/24) 6099996721871697 a001 31622993/219602*39603^(3/22) 6099996721875394 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^39 6099996721876899 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^41 6099996721877119 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^43 6099996721877151 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^45 6099996721877156 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^47 6099996721877156 a001 35355581/11592*8^(1/3) 6099996721877156 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^49 6099996721877156 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^51 6099996721877156 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^53 6099996721877156 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^55 6099996721877156 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^57 6099996721877156 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^59 6099996721877156 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^61 6099996721877156 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^63 6099996721877156 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^65 6099996721877156 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^67 6099996721877156 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^69 6099996721877156 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^71 6099996721877156 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^73 6099996721877156 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^75 6099996721877156 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^77 6099996721877156 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^79 6099996721877156 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^81 6099996721877156 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^83 6099996721877156 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^85 6099996721877156 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^87 6099996721877156 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^89 6099996721877156 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^91 6099996721877156 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^93 6099996721877156 a004 Fibonacci(86)*Lucas(24)/(1/2+sqrt(5)/2)^95 6099996721877156 a004 Fibonacci(88)*Lucas(24)/(1/2+sqrt(5)/2)^97 6099996721877156 a004 Fibonacci(90)*Lucas(24)/(1/2+sqrt(5)/2)^99 6099996721877156 a004 Fibonacci(91)*Lucas(24)/(1/2+sqrt(5)/2)^100 6099996721877156 a004 Fibonacci(89)*Lucas(24)/(1/2+sqrt(5)/2)^98 6099996721877156 a004 Fibonacci(87)*Lucas(24)/(1/2+sqrt(5)/2)^96 6099996721877156 a004 Fibonacci(85)*Lucas(24)/(1/2+sqrt(5)/2)^94 6099996721877156 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^92 6099996721877156 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^90 6099996721877156 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^88 6099996721877156 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^86 6099996721877156 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^84 6099996721877156 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^82 6099996721877156 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^80 6099996721877156 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^78 6099996721877156 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^76 6099996721877156 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^74 6099996721877156 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^72 6099996721877156 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^70 6099996721877156 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^68 6099996721877156 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^66 6099996721877156 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^64 6099996721877156 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^62 6099996721877156 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^60 6099996721877156 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^58 6099996721877156 a001 1/23184*(1/2+1/2*5^(1/2))^39 6099996721877156 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^56 6099996721877156 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^54 6099996721877156 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^52 6099996721877157 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^50 6099996721877157 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^48 6099996721877159 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^46 6099996721877171 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^44 6099996721877255 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^42 6099996721877830 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^40 6099996721880030 a001 39088169/167761*39603^(1/11) 6099996721881770 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^38 6099996721885150 a001 196418/20633239*103682^(23/24) 6099996721908779 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^36 6099996721914001 a001 28657/167761*64079^(17/23) 6099996721934074 a001 24157817/271443*39603^(2/11) 6099996721937422 a001 121393/64079*64079^(12/23) 6099996721939961 a001 75025/710647*103682^(3/4) 6099996721960019 a001 75025/439204*103682^(17/24) 6099996721979522 a001 46347/2206*39603^(7/22) 6099996721980297 a001 75025/1149851*103682^(19/24) 6099996721997564 a001 75025/1860498*103682^(5/6) 6099996722004783 a001 63245986/710647*39603^(2/11) 6099996722015099 a001 165580141/1860498*39603^(2/11) 6099996722016604 a001 433494437/4870847*39603^(2/11) 6099996722016824 a001 1134903170/12752043*39603^(2/11) 6099996722016856 a001 2971215073/33385282*39603^(2/11) 6099996722016861 a001 7778742049/87403803*39603^(2/11) 6099996722016861 a001 20365011074/228826127*39603^(2/11) 6099996722016861 a001 53316291173/599074578*39603^(2/11) 6099996722016861 a001 139583862445/1568397607*39603^(2/11) 6099996722016861 a001 365435296162/4106118243*39603^(2/11) 6099996722016861 a001 956722026041/10749957122*39603^(2/11) 6099996722016861 a001 2504730781961/28143753123*39603^(2/11) 6099996722016861 a001 6557470319842/73681302247*39603^(2/11) 6099996722016861 a001 10610209857723/119218851371*39603^(2/11) 6099996722016861 a001 4052739537881/45537549124*39603^(2/11) 6099996722016861 a001 1548008755920/17393796001*39603^(2/11) 6099996722016861 a001 591286729879/6643838879*39603^(2/11) 6099996722016861 a001 225851433717/2537720636*39603^(2/11) 6099996722016861 a001 86267571272/969323029*39603^(2/11) 6099996722016861 a001 32951280099/370248451*39603^(2/11) 6099996722016862 a001 12586269025/141422324*39603^(2/11) 6099996722016863 a001 4807526976/54018521*39603^(2/11) 6099996722016876 a001 1836311903/20633239*39603^(2/11) 6099996722016960 a001 3524667/39604*39603^(2/11) 6099996722017534 a001 267914296/3010349*39603^(2/11) 6099996722021475 a001 102334155/1149851*39603^(2/11) 6099996722023643 a001 75025/3010349*103682^(7/8) 6099996722046357 a001 75025/4870847*103682^(11/12) 6099996722048483 a001 39088169/439204*39603^(2/11) 6099996722056821 a001 24157817/167761*39603^(3/22) 6099996722070355 a001 75025/7881196*103682^(23/24) 6099996722075157 a001 39088169/103682*15127^(1/20) 6099996722093901 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^34 6099996722097854 a001 75025/167761*103682^(5/8) 6099996722110854 a001 4976784/90481*39603^(5/22) 6099996722116424 a001 196418/64079*64079^(11/23) 6099996722137314 a001 317811/64079*64079^(10/23) 6099996722157239 a001 1346269/103682*39603^(4/11) 6099996722172364 a001 75025/64079*64079^(13/23) 6099996722181569 a001 39088169/710647*39603^(5/22) 6099996722191886 a001 831985/15126*39603^(5/22) 6099996722193391 a001 267914296/4870847*39603^(5/22) 6099996722193611 a001 233802911/4250681*39603^(5/22) 6099996722193643 a001 1836311903/33385282*39603^(5/22) 6099996722193648 a001 1602508992/29134601*39603^(5/22) 6099996722193648 a001 12586269025/228826127*39603^(5/22) 6099996722193648 a001 10983760033/199691526*39603^(5/22) 6099996722193649 a001 86267571272/1568397607*39603^(5/22) 6099996722193649 a001 75283811239/1368706081*39603^(5/22) 6099996722193649 a001 591286729879/10749957122*39603^(5/22) 6099996722193649 a001 12585437040/228811001*39603^(5/22) 6099996722193649 a001 4052739537881/73681302247*39603^(5/22) 6099996722193649 a001 3536736619241/64300051206*39603^(5/22) 6099996722193649 a001 6557470319842/119218851371*39603^(5/22) 6099996722193649 a001 2504730781961/45537549124*39603^(5/22) 6099996722193649 a001 956722026041/17393796001*39603^(5/22) 6099996722193649 a001 365435296162/6643838879*39603^(5/22) 6099996722193649 a001 139583862445/2537720636*39603^(5/22) 6099996722193649 a001 53316291173/969323029*39603^(5/22) 6099996722193649 a001 20365011074/370248451*39603^(5/22) 6099996722193649 a001 7778742049/141422324*39603^(5/22) 6099996722193651 a001 2971215073/54018521*39603^(5/22) 6099996722193663 a001 1134903170/20633239*39603^(5/22) 6099996722193747 a001 433494437/7881196*39603^(5/22) 6099996722194322 a001 165580141/3010349*39603^(5/22) 6099996722196893 a001 5473/51841*24476^(6/7) 6099996722198262 a001 63245986/1149851*39603^(5/22) 6099996722218597 a001 514229/64079*64079^(9/23) 6099996722225273 a001 24157817/439204*39603^(5/22) 6099996722227850 a001 46368/64079*20633239^(2/5) 6099996722227856 a001 28657/103682*(1/2+1/2*5^(1/2))^16 6099996722227856 a001 28657/103682*23725150497407^(1/4) 6099996722227856 a001 28657/103682*73681302247^(4/13) 6099996722227856 a001 28657/103682*10749957122^(1/3) 6099996722227856 a001 28657/103682*4106118243^(8/23) 6099996722227856 a001 46368/64079*17393796001^(2/7) 6099996722227856 a001 46368/64079*14662949395604^(2/9) 6099996722227856 a001 46368/64079*(1/2+1/2*5^(1/2))^14 6099996722227856 a001 46368/64079*505019158607^(1/4) 6099996722227856 a001 46368/64079*10749957122^(7/24) 6099996722227856 a001 46368/64079*4106118243^(7/23) 6099996722227856 a001 28657/103682*1568397607^(4/11) 6099996722227856 a001 46368/64079*1568397607^(7/22) 6099996722227856 a001 46368/64079*599074578^(1/3) 6099996722227856 a001 28657/103682*599074578^(8/21) 6099996722227856 a001 46368/64079*228826127^(7/20) 6099996722227856 a001 28657/103682*228826127^(2/5) 6099996722227856 a001 46368/64079*87403803^(7/19) 6099996722227856 a001 28657/103682*87403803^(8/19) 6099996722227858 a001 46368/64079*33385282^(7/18) 6099996722227858 a001 28657/103682*33385282^(4/9) 6099996722227871 a001 46368/64079*12752043^(7/17) 6099996722227874 a001 28657/103682*12752043^(8/17) 6099996722227969 a001 46368/64079*4870847^(7/16) 6099996722227985 a001 28657/103682*4870847^(1/2) 6099996722228113 a001 63274656/103729 6099996722228678 a001 46368/64079*1860498^(7/15) 6099996722228796 a001 28657/103682*1860498^(8/15) 6099996722233600 a001 14930352/167761*39603^(2/11) 6099996722233895 a001 46368/64079*710647^(1/2) 6099996722234758 a001 28657/103682*710647^(4/7) 6099996722272435 a001 46368/64079*271443^(7/13) 6099996722276812 a001 832040/64079*64079^(8/23) 6099996722278803 a001 28657/103682*271443^(8/13) 6099996722287661 a001 9227465/271443*39603^(3/11) 6099996722310427 a001 24157817/64079*24476^(1/21) 6099996722331591 a001 416020/51841*39603^(9/22) 6099996722343838 a001 1346269/64079*64079^(7/23) 6099996722358359 a001 24157817/710647*39603^(3/11) 6099996722368674 a001 31622993/930249*39603^(3/11) 6099996722370179 a001 165580141/4870847*39603^(3/11) 6099996722370398 a001 433494437/12752043*39603^(3/11) 6099996722370430 a001 567451585/16692641*39603^(3/11) 6099996722370435 a001 2971215073/87403803*39603^(3/11) 6099996722370436 a001 7778742049/228826127*39603^(3/11) 6099996722370436 a001 10182505537/299537289*39603^(3/11) 6099996722370436 a001 53316291173/1568397607*39603^(3/11) 6099996722370436 a001 139583862445/4106118243*39603^(3/11) 6099996722370436 a001 182717648081/5374978561*39603^(3/11) 6099996722370436 a001 956722026041/28143753123*39603^(3/11) 6099996722370436 a001 2504730781961/73681302247*39603^(3/11) 6099996722370436 a001 3278735159921/96450076809*39603^(3/11) 6099996722370436 a001 10610209857723/312119004989*39603^(3/11) 6099996722370436 a001 4052739537881/119218851371*39603^(3/11) 6099996722370436 a001 387002188980/11384387281*39603^(3/11) 6099996722370436 a001 591286729879/17393796001*39603^(3/11) 6099996722370436 a001 225851433717/6643838879*39603^(3/11) 6099996722370436 a001 1135099622/33391061*39603^(3/11) 6099996722370436 a001 32951280099/969323029*39603^(3/11) 6099996722370436 a001 12586269025/370248451*39603^(3/11) 6099996722370436 a001 1201881744/35355581*39603^(3/11) 6099996722370438 a001 1836311903/54018521*39603^(3/11) 6099996722370450 a001 701408733/20633239*39603^(3/11) 6099996722370534 a001 66978574/1970299*39603^(3/11) 6099996722371109 a001 102334155/3010349*39603^(3/11) 6099996722375049 a001 39088169/1149851*39603^(3/11) 6099996722402053 a001 196452/5779*39603^(3/11) 6099996722407498 a001 2178309/64079*64079^(6/23) 6099996722410407 a001 9227465/167761*39603^(5/22) 6099996722464396 a001 5702887/271443*39603^(7/22) 6099996722472444 a001 3524578/64079*64079^(5/23) 6099996722496206 a001 10946/167761*24476^(19/21) 6099996722514754 a001 514229/103682*39603^(5/11) 6099996722535139 a001 14930352/710647*39603^(7/22) 6099996722536899 a001 5702887/64079*64079^(4/23) 6099996722545460 a001 39088169/1860498*39603^(7/22) 6099996722546966 a001 102334155/4870847*39603^(7/22) 6099996722547185 a001 267914296/12752043*39603^(7/22) 6099996722547217 a001 701408733/33385282*39603^(7/22) 6099996722547222 a001 1836311903/87403803*39603^(7/22) 6099996722547223 a001 102287808/4868641*39603^(7/22) 6099996722547223 a001 12586269025/599074578*39603^(7/22) 6099996722547223 a001 32951280099/1568397607*39603^(7/22) 6099996722547223 a001 86267571272/4106118243*39603^(7/22) 6099996722547223 a001 225851433717/10749957122*39603^(7/22) 6099996722547223 a001 591286729879/28143753123*39603^(7/22) 6099996722547223 a001 1548008755920/73681302247*39603^(7/22) 6099996722547223 a001 4052739537881/192900153618*39603^(7/22) 6099996722547223 a001 225749145909/10745088481*39603^(7/22) 6099996722547223 a001 6557470319842/312119004989*39603^(7/22) 6099996722547223 a001 2504730781961/119218851371*39603^(7/22) 6099996722547223 a001 956722026041/45537549124*39603^(7/22) 6099996722547223 a001 365435296162/17393796001*39603^(7/22) 6099996722547223 a001 139583862445/6643838879*39603^(7/22) 6099996722547223 a001 53316291173/2537720636*39603^(7/22) 6099996722547223 a001 20365011074/969323029*39603^(7/22) 6099996722547223 a001 7778742049/370248451*39603^(7/22) 6099996722547223 a001 2971215073/141422324*39603^(7/22) 6099996722547225 a001 1134903170/54018521*39603^(7/22) 6099996722547237 a001 433494437/20633239*39603^(7/22) 6099996722547321 a001 165580141/7881196*39603^(7/22) 6099996722547896 a001 63245986/3010349*39603^(7/22) 6099996722551839 a001 24157817/1149851*39603^(7/22) 6099996722558865 a001 46368/64079*103682^(7/12) 6099996722559813 a001 34111385/90481*15127^(1/20) 6099996722578556 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^33 6099996722578860 a001 9227465/439204*39603^(7/22) 6099996722587142 a001 5702887/167761*39603^(3/11) 6099996722601542 a001 9227465/64079*64079^(3/23) 6099996722606152 a001 28657/103682*103682^(2/3) 6099996722609826 a001 28657/710647*167761^(4/5) 6099996722630523 a001 267914296/710647*15127^(1/20) 6099996722640839 a001 233802911/620166*15127^(1/20) 6099996722641319 a001 3524578/271443*39603^(4/11) 6099996722642345 a001 1836311903/4870847*15127^(1/20) 6099996722642564 a001 1602508992/4250681*15127^(1/20) 6099996722642596 a001 12586269025/33385282*15127^(1/20) 6099996722642601 a001 10983760033/29134601*15127^(1/20) 6099996722642602 a001 86267571272/228826127*15127^(1/20) 6099996722642602 a001 267913919/710646*15127^(1/20) 6099996722642602 a001 591286729879/1568397607*15127^(1/20) 6099996722642602 a001 516002918640/1368706081*15127^(1/20) 6099996722642602 a001 4052739537881/10749957122*15127^(1/20) 6099996722642602 a001 3536736619241/9381251041*15127^(1/20) 6099996722642602 a001 6557470319842/17393796001*15127^(1/20) 6099996722642602 a001 2504730781961/6643838879*15127^(1/20) 6099996722642602 a001 956722026041/2537720636*15127^(1/20) 6099996722642602 a001 365435296162/969323029*15127^(1/20) 6099996722642602 a001 139583862445/370248451*15127^(1/20) 6099996722642602 a001 53316291173/141422324*15127^(1/20) 6099996722642604 a001 20365011074/54018521*15127^(1/20) 6099996722642616 a001 7778742049/20633239*15127^(1/20) 6099996722642700 a001 2971215073/7881196*15127^(1/20) 6099996722643275 a001 1134903170/3010349*15127^(1/20) 6099996722647215 a001 433494437/1149851*15127^(1/20) 6099996722666113 a001 14930352/64079*64079^(2/23) 6099996722674224 a001 165580141/439204*15127^(1/20) 6099996722674849 a001 317811/103682*39603^(1/2) 6099996722691429 a001 28657/271443*439204^(2/3) 6099996722696523 a001 317811/64079*167761^(2/5) 6099996722698456 a001 121393/64079*439204^(4/9) 6099996722711946 a001 9227465/710647*39603^(4/11) 6099996722712457 a001 28657/271443*7881196^(6/11) 6099996722712475 a001 121393/64079*7881196^(4/11) 6099996722712511 a001 28657/271443*141422324^(6/13) 6099996722712511 a001 121393/64079*141422324^(4/13) 6099996722712511 a001 28657/271443*2537720636^(2/5) 6099996722712511 a001 28657/271443*45537549124^(6/17) 6099996722712511 a001 28657/271443*14662949395604^(2/7) 6099996722712511 a001 28657/271443*(1/2+1/2*5^(1/2))^18 6099996722712511 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^18/Lucas(26) 6099996722712511 a001 28657/271443*192900153618^(1/3) 6099996722712511 a001 28657/271443*10749957122^(3/8) 6099996722712511 a001 121393/64079*2537720636^(4/15) 6099996722712511 a001 28657/271443*4106118243^(9/23) 6099996722712511 a001 121393/64079*45537549124^(4/17) 6099996722712511 a001 121393/64079*817138163596^(4/19) 6099996722712511 a001 121393/64079*14662949395604^(4/21) 6099996722712511 a001 121393/64079*(1/2+1/2*5^(1/2))^12 6099996722712511 a001 121393/64079*192900153618^(2/9) 6099996722712511 a001 121393/64079*73681302247^(3/13) 6099996722712511 a001 121393/64079*10749957122^(1/4) 6099996722712511 a001 121393/64079*4106118243^(6/23) 6099996722712511 a001 28657/271443*1568397607^(9/22) 6099996722712511 a001 121393/64079*1568397607^(3/11) 6099996722712511 a001 121393/64079*599074578^(2/7) 6099996722712511 a001 28657/271443*599074578^(3/7) 6099996722712511 a001 121393/64079*228826127^(3/10) 6099996722712511 a001 28657/271443*228826127^(9/20) 6099996722712511 a001 121393/64079*87403803^(6/19) 6099996722712511 a001 28657/271443*87403803^(9/19) 6099996722712513 a001 121393/64079*33385282^(1/3) 6099996722712514 a001 28657/271443*33385282^(1/2) 6099996722712524 a001 121393/64079*12752043^(6/17) 6099996722712531 a001 28657/271443*12752043^(9/17) 6099996722712548 a001 3478759201/5702887 6099996722712607 a001 121393/64079*4870847^(3/8) 6099996722712656 a001 28657/271443*4870847^(9/16) 6099996722713216 a001 121393/64079*1860498^(2/5) 6099996722713568 a001 28657/271443*1860498^(3/5) 6099996722717688 a001 121393/64079*710647^(3/7) 6099996722720276 a001 28657/271443*710647^(9/14) 6099996722722250 a001 24157817/1860498*39603^(4/11) 6099996722723753 a001 63245986/4870847*39603^(4/11) 6099996722723973 a001 165580141/12752043*39603^(4/11) 6099996722724005 a001 433494437/33385282*39603^(4/11) 6099996722724009 a001 1134903170/87403803*39603^(4/11) 6099996722724010 a001 2971215073/228826127*39603^(4/11) 6099996722724010 a001 7778742049/599074578*39603^(4/11) 6099996722724010 a001 20365011074/1568397607*39603^(4/11) 6099996722724010 a001 53316291173/4106118243*39603^(4/11) 6099996722724010 a001 139583862445/10749957122*39603^(4/11) 6099996722724010 a001 365435296162/28143753123*39603^(4/11) 6099996722724010 a001 956722026041/73681302247*39603^(4/11) 6099996722724010 a001 2504730781961/192900153618*39603^(4/11) 6099996722724010 a001 10610209857723/817138163596*39603^(4/11) 6099996722724010 a001 4052739537881/312119004989*39603^(4/11) 6099996722724010 a001 1548008755920/119218851371*39603^(4/11) 6099996722724010 a001 591286729879/45537549124*39603^(4/11) 6099996722724010 a001 7787980473/599786069*39603^(4/11) 6099996722724010 a001 86267571272/6643838879*39603^(4/11) 6099996722724010 a001 32951280099/2537720636*39603^(4/11) 6099996722724010 a001 12586269025/969323029*39603^(4/11) 6099996722724010 a001 4807526976/370248451*39603^(4/11) 6099996722724010 a001 1836311903/141422324*39603^(4/11) 6099996722724012 a001 701408733/54018521*39603^(4/11) 6099996722724024 a001 9238424/711491*39603^(4/11) 6099996722724108 a001 102334155/7881196*39603^(4/11) 6099996722724682 a001 39088169/3010349*39603^(4/11) 6099996722728618 a001 14930352/1149851*39603^(4/11) 6099996722730711 a001 24157817/64079*64079^(1/23) 6099996722750721 a001 121393/64079*271443^(6/13) 6099996722752049 a001 3524578/39603*15127^(1/5) 6099996722752049 a001 3524578/64079*167761^(1/5) 6099996722755595 a001 5702887/439204*39603^(4/11) 6099996722763677 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^35 6099996722764065 a001 3524578/167761*39603^(7/22) 6099996722766934 a001 28657/4870847*439204^(8/9) 6099996722769826 a001 28657/271443*271443^(9/13) 6099996722775318 a001 28657/1149851*439204^(7/9) 6099996722783213 a001 28657/710647*20633239^(4/7) 6099996722783217 a001 317811/64079*20633239^(2/7) 6099996722783221 a001 28657/710647*2537720636^(4/9) 6099996722783221 a001 28657/710647*(1/2+1/2*5^(1/2))^20 6099996722783221 a001 28657/710647*23725150497407^(5/16) 6099996722783221 a001 28657/710647*505019158607^(5/14) 6099996722783221 a001 28657/710647*73681302247^(5/13) 6099996722783221 a001 28657/710647*28143753123^(2/5) 6099996722783221 a001 28657/710647*10749957122^(5/12) 6099996722783221 a001 317811/64079*2537720636^(2/9) 6099996722783221 a001 28657/710647*4106118243^(10/23) 6099996722783221 a001 317811/64079*312119004989^(2/11) 6099996722783221 a001 317811/64079*(1/2+1/2*5^(1/2))^10 6099996722783221 a001 317811/64079*28143753123^(1/5) 6099996722783221 a001 317811/64079*10749957122^(5/24) 6099996722783221 a001 317811/64079*4106118243^(5/23) 6099996722783221 a001 317811/64079*1568397607^(5/22) 6099996722783221 a001 28657/710647*1568397607^(5/11) 6099996722783221 a001 317811/64079*599074578^(5/21) 6099996722783221 a001 28657/710647*599074578^(10/21) 6099996722783221 a001 317811/64079*228826127^(1/4) 6099996722783221 a001 28657/710647*228826127^(1/2) 6099996722783221 a001 317811/64079*87403803^(5/19) 6099996722783222 a001 28657/710647*87403803^(10/19) 6099996722783223 a001 317811/64079*33385282^(5/18) 6099996722783224 a001 28657/710647*33385282^(5/9) 6099996722783227 a001 3035836609/4976784 6099996722783232 a001 317811/64079*12752043^(5/17) 6099996722783243 a001 28657/710647*12752043^(10/17) 6099996722783301 a001 317811/64079*4870847^(5/16) 6099996722783382 a001 28657/710647*4870847^(5/8) 6099996722783809 a001 317811/64079*1860498^(1/3) 6099996722784396 a001 28657/710647*1860498^(2/3) 6099996722787535 a001 317811/64079*710647^(5/14) 6099996722788016 a001 2178309/64079*439204^(2/9) 6099996722789373 a001 514229/64079*439204^(1/3) 6099996722790686 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^37 6099996722791801 a001 9227465/64079*439204^(1/9) 6099996722791849 a001 28657/710647*710647^(5/7) 6099996722793472 a001 28657/1860498*7881196^(2/3) 6099996722793538 a001 28657/1860498*312119004989^(2/5) 6099996722793538 a001 28657/1860498*(1/2+1/2*5^(1/2))^22 6099996722793538 a001 28657/1860498*10749957122^(11/24) 6099996722793538 a001 28657/1860498*4106118243^(11/23) 6099996722793538 a001 832040/64079*(1/2+1/2*5^(1/2))^8 6099996722793538 a001 832040/64079*23725150497407^(1/8) 6099996722793538 a001 832040/64079*505019158607^(1/7) 6099996722793538 a001 832040/64079*73681302247^(2/13) 6099996722793538 a001 832040/64079*10749957122^(1/6) 6099996722793538 a001 832040/64079*4106118243^(4/23) 6099996722793538 a001 832040/64079*1568397607^(2/11) 6099996722793538 a001 28657/1860498*1568397607^(1/2) 6099996722793538 a001 832040/64079*599074578^(4/21) 6099996722793538 a001 28657/1860498*599074578^(11/21) 6099996722793538 a001 832040/64079*228826127^(1/5) 6099996722793538 a001 28657/1860498*228826127^(11/20) 6099996722793538 a001 832040/64079*87403803^(4/19) 6099996722793538 a001 28657/1860498*87403803^(11/19) 6099996722793538 a001 23843770280/39088169 6099996722793539 a001 832040/64079*33385282^(2/9) 6099996722793541 a001 28657/1860498*33385282^(11/18) 6099996722793546 a001 832040/64079*12752043^(4/17) 6099996722793562 a001 28657/1860498*12752043^(11/17) 6099996722793602 a001 832040/64079*4870847^(1/4) 6099996722793714 a001 28657/1860498*4870847^(11/16) 6099996722794008 a001 832040/64079*1860498^(4/15) 6099996722794627 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^39 6099996722794830 a001 28657/1860498*1860498^(11/15) 6099996722794971 a001 28657/4870847*7881196^(8/11) 6099996722795025 a001 2178309/64079*7881196^(2/11) 6099996722795043 a001 28657/4870847*141422324^(8/13) 6099996722795043 a001 2178309/64079*141422324^(2/13) 6099996722795043 a001 28657/4870847*2537720636^(8/15) 6099996722795043 a001 28657/4870847*45537549124^(8/17) 6099996722795043 a001 28657/4870847*14662949395604^(8/21) 6099996722795043 a001 28657/4870847*(1/2+1/2*5^(1/2))^24 6099996722795043 a001 28657/4870847*192900153618^(4/9) 6099996722795043 a001 28657/4870847*73681302247^(6/13) 6099996722795043 a001 28657/4870847*10749957122^(1/2) 6099996722795043 a001 28657/4870847*4106118243^(12/23) 6099996722795043 a001 2178309/64079*2537720636^(2/15) 6099996722795043 a001 2178309/64079*45537549124^(2/17) 6099996722795043 a001 2178309/64079*14662949395604^(2/21) 6099996722795043 a001 2178309/64079*(1/2+1/2*5^(1/2))^6 6099996722795043 a001 2178309/64079*10749957122^(1/8) 6099996722795043 a001 2178309/64079*4106118243^(3/23) 6099996722795043 a001 2178309/64079*1568397607^(3/22) 6099996722795043 a001 28657/4870847*1568397607^(6/11) 6099996722795043 a001 2178309/64079*599074578^(1/7) 6099996722795043 a001 28657/4870847*599074578^(4/7) 6099996722795043 a001 2178309/64079*228826127^(3/20) 6099996722795043 a001 28657/4870847*228826127^(3/5) 6099996722795043 a001 2972561953/4873055 6099996722795043 a001 2178309/64079*87403803^(3/19) 6099996722795043 a001 28657/4870847*87403803^(12/19) 6099996722795044 a001 2178309/64079*33385282^(1/6) 6099996722795046 a001 28657/4870847*33385282^(2/3) 6099996722795049 a001 2178309/64079*12752043^(3/17) 6099996722795069 a001 28657/4870847*12752043^(12/17) 6099996722795091 a001 2178309/64079*4870847^(3/16) 6099996722795202 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^41 6099996722795210 a001 28657/87403803*7881196^(10/11) 6099996722795234 a001 28657/20633239*7881196^(9/11) 6099996722795236 a001 28657/4870847*4870847^(3/4) 6099996722795262 a001 28657/12752043*141422324^(2/3) 6099996722795262 a001 28657/12752043*(1/2+1/2*5^(1/2))^26 6099996722795262 a001 28657/12752043*73681302247^(1/2) 6099996722795262 a001 28657/12752043*10749957122^(13/24) 6099996722795262 a001 28657/12752043*4106118243^(13/23) 6099996722795262 a001 5702887/64079*(1/2+1/2*5^(1/2))^4 6099996722795262 a001 5702887/64079*23725150497407^(1/16) 6099996722795262 a001 5702887/64079*73681302247^(1/13) 6099996722795262 a001 5702887/64079*10749957122^(1/12) 6099996722795262 a001 5702887/64079*4106118243^(2/23) 6099996722795262 a001 5702887/64079*1568397607^(1/11) 6099996722795262 a001 28657/12752043*1568397607^(13/22) 6099996722795262 a001 5702887/64079*599074578^(2/21) 6099996722795262 a001 28657/12752043*599074578^(13/21) 6099996722795262 a001 5702887/64079*228826127^(1/10) 6099996722795262 a001 163427632759/267914296 6099996722795262 a001 28657/12752043*228826127^(13/20) 6099996722795262 a001 5702887/64079*87403803^(2/19) 6099996722795263 a001 28657/12752043*87403803^(13/19) 6099996722795263 a001 5702887/64079*33385282^(1/9) 6099996722795266 a001 28657/12752043*33385282^(13/18) 6099996722795267 a001 5702887/64079*12752043^(2/17) 6099996722795283 a001 28657/33385282*20633239^(4/5) 6099996722795286 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^43 6099996722795287 a001 28657/87403803*20633239^(6/7) 6099996722795291 a001 28657/12752043*12752043^(13/17) 6099996722795294 a001 28657/33385282*17393796001^(4/7) 6099996722795294 a001 28657/33385282*14662949395604^(4/9) 6099996722795294 a001 28657/33385282*(1/2+1/2*5^(1/2))^28 6099996722795294 a001 28657/33385282*505019158607^(1/2) 6099996722795294 a001 28657/33385282*73681302247^(7/13) 6099996722795294 a001 28657/33385282*10749957122^(7/12) 6099996722795294 a001 28657/33385282*4106118243^(14/23) 6099996722795294 a001 14930352/64079*(1/2+1/2*5^(1/2))^2 6099996722795294 a001 14930352/64079*10749957122^(1/24) 6099996722795294 a001 14930352/64079*4106118243^(1/23) 6099996722795294 a001 14930352/64079*1568397607^(1/22) 6099996722795294 a001 14930352/64079*599074578^(1/21) 6099996722795294 a001 28657/33385282*1568397607^(7/11) 6099996722795294 a001 142619699088/233802911 6099996722795294 a001 14930352/64079*228826127^(1/20) 6099996722795294 a001 28657/33385282*599074578^(2/3) 6099996722795294 a001 14930352/64079*87403803^(1/19) 6099996722795294 a001 28657/33385282*228826127^(7/10) 6099996722795294 a001 5702887/64079*4870847^(1/8) 6099996722795295 a001 14930352/64079*33385282^(1/18) 6099996722795295 a001 28657/33385282*87403803^(14/19) 6099996722795297 a001 14930352/64079*12752043^(1/17) 6099996722795298 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^45 6099996722795299 a001 28657/33385282*33385282^(7/9) 6099996722795299 a001 28657/87403803*141422324^(10/13) 6099996722795299 a001 28657/87403803*2537720636^(2/3) 6099996722795299 a001 28657/87403803*45537549124^(10/17) 6099996722795299 a001 28657/87403803*312119004989^(6/11) 6099996722795299 a001 28657/87403803*14662949395604^(10/21) 6099996722795299 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(38) 6099996722795299 a001 28657/87403803*192900153618^(5/9) 6099996722795299 a001 28657/87403803*28143753123^(3/5) 6099996722795299 a001 28657/87403803*10749957122^(5/8) 6099996722795299 a001 28657/87403803*4106118243^(15/23) 6099996722795299 a001 39088169/64079 6099996722795299 a001 28657/87403803*1568397607^(15/22) 6099996722795299 a001 28657/87403803*599074578^(5/7) 6099996722795299 a001 28657/87403803*228826127^(3/4) 6099996722795300 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^47 6099996722795300 a001 28657/1568397607*141422324^(12/13) 6099996722795300 a001 28657/370248451*141422324^(11/13) 6099996722795300 a001 28657/87403803*87403803^(15/19) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(40) 6099996722795300 a001 28657/228826127*23725150497407^(1/2) 6099996722795300 a001 28657/228826127*505019158607^(4/7) 6099996722795300 a001 28657/228826127*73681302247^(8/13) 6099996722795300 a001 28657/228826127*10749957122^(2/3) 6099996722795300 a001 139647137135/228929856 6099996722795300 a001 28657/228826127*4106118243^(16/23) 6099996722795300 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^2 6099996722795300 a001 28657/228826127*1568397607^(8/11) 6099996722795300 a001 28657/228826127*599074578^(16/21) 6099996722795300 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^49 6099996722795300 a001 28657/228826127*228826127^(4/5) 6099996722795300 a001 28657/599074578*45537549124^(2/3) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(42) 6099996722795300 a001 7677619980472/12586269025 6099996722795300 a001 28657/599074578*10749957122^(17/24) 6099996722795300 a001 28657/599074578*4106118243^(17/23) 6099996722795300 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^4 6099996722795300 a001 28657/599074578*1568397607^(17/22) 6099996722795300 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^51 6099996722795300 a001 28657/1568397607*2537720636^(4/5) 6099996722795300 a001 28657/599074578*599074578^(17/21) 6099996722795300 a001 28657/1568397607*45537549124^(12/17) 6099996722795300 a001 28657/1568397607*14662949395604^(4/7) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(44) 6099996722795300 a001 28657/1568397607*505019158607^(9/14) 6099996722795300 a001 28657/1568397607*192900153618^(2/3) 6099996722795300 a001 28657/1568397607*73681302247^(9/13) 6099996722795300 a001 6700090020527/10983760033 6099996722795300 a001 28657/1568397607*10749957122^(3/4) 6099996722795300 a001 28657/1568397607*4106118243^(18/23) 6099996722795300 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^6 6099996722795300 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^53 6099996722795300 a001 28657/10749957122*2537720636^(8/9) 6099996722795300 a001 28657/28143753123*2537720636^(14/15) 6099996722795300 a001 28657/6643838879*2537720636^(13/15) 6099996722795300 a001 28657/1568397607*1568397607^(9/11) 6099996722795300 a001 28657/4106118243*817138163596^(2/3) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(46) 6099996722795300 a001 52623190204271/86267571272 6099996722795300 a001 28657/4106118243*10749957122^(19/24) 6099996722795300 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^55 6099996722795300 a001 28657/4106118243*4106118243^(19/23) 6099996722795300 a001 28657/10749957122*312119004989^(8/11) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(48) 6099996722795300 a001 28657/10749957122*23725150497407^(5/8) 6099996722795300 a001 6560442883392/10754830177 6099996722795300 a001 28657/10749957122*73681302247^(10/13) 6099996722795300 a001 28657/10749957122*28143753123^(4/5) 6099996722795300 a001 28657/28143753123*17393796001^(6/7) 6099996722795300 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^57 6099996722795300 a001 28657/28143753123*45537549124^(14/17) 6099996722795300 a001 28657/10749957122*10749957122^(5/6) 6099996722795300 a001 28657/28143753123*817138163596^(14/19) 6099996722795300 a001 28657/28143753123*14662949395604^(2/3) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(50) 6099996722795300 a001 28657/28143753123*505019158607^(3/4) 6099996722795300 a001 28657/28143753123*192900153618^(7/9) 6099996722795300 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^59 6099996722795300 a001 28657/505019158607*45537549124^(16/17) 6099996722795300 a001 28657/119218851371*45537549124^(15/17) 6099996722795300 a001 28657/73681302247*312119004989^(4/5) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(52) 6099996722795300 a001 28657/73681302247*23725150497407^(11/16) 6099996722795300 a001 314761611265681/516002918640 6099996722795300 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^61 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(54) 6099996722795300 a001 2472169789941704/4052739537881 6099996722795300 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^63 6099996722795300 a001 28657/1322157322203*312119004989^(10/11) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(56) 6099996722795300 a001 308201168382289/505248088463 6099996722795300 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^65 6099996722795300 a001 28657/2139295485799*817138163596^(17/19) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(58) 6099996722795300 a001 28657/1322157322203*3461452808002^(5/6) 6099996722795300 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^67 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(60) 6099996722795300 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^69 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(62) 6099996722795300 a001 28657/23725150497407*14662949395604^(8/9) 6099996722795300 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^71 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(64) 6099996722795300 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^73 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(66) 6099996722795300 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^75 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(68) 6099996722795300 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^77 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(70) 6099996722795300 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^79 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(72) 6099996722795300 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^81 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(74) 6099996722795300 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^83 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(76) 6099996722795300 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^85 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(78) 6099996722795300 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^87 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(80) 6099996722795300 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^89 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(82) 6099996722795300 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^91 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(84) 6099996722795300 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^93 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(86) 6099996722795300 a004 Fibonacci(23)*Lucas(87)/(1/2+sqrt(5)/2)^95 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(88) 6099996722795300 a004 Fibonacci(23)*Lucas(89)/(1/2+sqrt(5)/2)^97 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(90) 6099996722795300 a004 Fibonacci(23)*Lucas(91)/(1/2+sqrt(5)/2)^99 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(92) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^86/Lucas(94) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^88/Lucas(96) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^90/Lucas(98) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^91/Lucas(99) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^92/Lucas(100) 6099996722795300 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^8 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^89/Lucas(97) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^87/Lucas(95) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(93) 6099996722795300 a004 Fibonacci(23)*Lucas(92)/(1/2+sqrt(5)/2)^100 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(91) 6099996722795300 a004 Fibonacci(23)*Lucas(90)/(1/2+sqrt(5)/2)^98 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(89) 6099996722795300 a004 Fibonacci(23)*Lucas(88)/(1/2+sqrt(5)/2)^96 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(87) 6099996722795300 a004 Fibonacci(23)*Lucas(86)/(1/2+sqrt(5)/2)^94 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(85) 6099996722795300 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^92 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(83) 6099996722795300 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^90 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(81) 6099996722795300 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^88 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(79) 6099996722795300 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^86 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(77) 6099996722795300 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^84 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(75) 6099996722795300 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^82 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(73) 6099996722795300 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^80 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(71) 6099996722795300 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^78 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(69) 6099996722795300 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^76 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(67) 6099996722795300 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^74 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(65) 6099996722795300 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^72 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(63) 6099996722795300 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^70 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(61) 6099996722795300 a001 28657/14662949395604*3461452808002^(11/12) 6099996722795300 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^68 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(59) 6099996722795300 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^66 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(57) 6099996722795300 a001 28657/3461452808002*505019158607^(13/14) 6099996722795300 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^64 6099996722795300 a001 28657/817138163596*505019158607^(7/8) 6099996722795300 a001 4000054746086365/6557470319842 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(55) 6099996722795300 a001 28657/505019158607*192900153618^(8/9) 6099996722795300 a001 28657/2139295485799*192900153618^(17/18) 6099996722795300 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^62 6099996722795300 a001 28657/119218851371*312119004989^(9/11) 6099996722795300 a001 1527884956144661/2504730781961 6099996722795300 a001 28657/119218851371*14662949395604^(5/7) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(53) 6099996722795300 a001 28657/119218851371*192900153618^(5/6) 6099996722795300 a001 28657/505019158607*73681302247^(12/13) 6099996722795300 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^60 6099996722795300 a001 583600122347618/956722026041 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(51) 6099996722795300 a001 28657/119218851371*28143753123^(9/10) 6099996722795300 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^58 6099996722795300 a001 222915410898193/365435296162 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(49) 6099996722795300 a001 28657/28143753123*10749957122^(7/8) 6099996722795300 a001 28657/73681302247*10749957122^(11/12) 6099996722795300 a001 28657/119218851371*10749957122^(15/16) 6099996722795300 a001 28657/192900153618*10749957122^(23/24) 6099996722795300 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^56 6099996722795300 a001 28657/6643838879*45537549124^(13/17) 6099996722795300 a001 85146110346961/139583862445 6099996722795300 a001 28657/6643838879*14662949395604^(13/21) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(47) 6099996722795300 a001 28657/6643838879*192900153618^(13/18) 6099996722795300 a001 28657/6643838879*73681302247^(3/4) 6099996722795300 a001 28657/6643838879*10749957122^(13/16) 6099996722795300 a001 28657/10749957122*4106118243^(20/23) 6099996722795300 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^10 6099996722795300 a001 28657/28143753123*4106118243^(21/23) 6099996722795300 a001 28657/73681302247*4106118243^(22/23) 6099996722795300 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^12 6099996722795300 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^14 6099996722795300 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^16 6099996722795300 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^18 6099996722795300 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^20 6099996722795300 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^22 6099996722795300 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^24 6099996722795300 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^26 6099996722795300 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^28 6099996722795300 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^30 6099996722795300 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^32 6099996722795300 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^34 6099996722795300 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^36 6099996722795300 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^38 6099996722795300 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^40 6099996722795300 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^42 6099996722795300 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^44 6099996722795300 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^46 6099996722795300 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^48 6099996722795300 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^50 6099996722795300 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^52 6099996722795300 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^54 6099996722795300 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^56 6099996722795300 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^58 6099996722795300 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^60 6099996722795300 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^62 6099996722795300 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^61 6099996722795300 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^59 6099996722795300 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^57 6099996722795300 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^55 6099996722795300 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^53 6099996722795300 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^51 6099996722795300 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^49 6099996722795300 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^47 6099996722795300 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^45 6099996722795300 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^43 6099996722795300 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^41 6099996722795300 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^39 6099996722795300 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^37 6099996722795300 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^35 6099996722795300 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^33 6099996722795300 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^31 6099996722795300 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^29 6099996722795300 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^27 6099996722795300 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^25 6099996722795300 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^23 6099996722795300 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^21 6099996722795300 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^19 6099996722795300 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^17 6099996722795300 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^15 6099996722795300 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^13 6099996722795300 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^11 6099996722795300 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^9 6099996722795300 a001 32522920142690/53316291173 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(45) 6099996722795300 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^7 6099996722795300 a001 28657/4106118243*1568397607^(19/22) 6099996722795300 a001 28657/10749957122*1568397607^(10/11) 6099996722795300 a001 28657/28143753123*1568397607^(21/22) 6099996722795300 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^52 6099996722795300 a001 28657/969323029*2537720636^(7/9) 6099996722795300 a001 28657/969323029*17393796001^(5/7) 6099996722795300 a001 12422650081109/20365011074 6099996722795300 a001 28657/969323029*312119004989^(7/11) 6099996722795300 a001 28657/969323029*14662949395604^(5/9) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(43) 6099996722795300 a001 28657/969323029*505019158607^(5/8) 6099996722795300 a001 28657/969323029*28143753123^(7/10) 6099996722795300 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^5 6099996722795300 a001 28657/1568397607*599074578^(6/7) 6099996722795300 a001 28657/4106118243*599074578^(19/21) 6099996722795300 a001 28657/6643838879*599074578^(13/14) 6099996722795300 a001 28657/10749957122*599074578^(20/21) 6099996722795300 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^50 6099996722795300 a001 28657/969323029*599074578^(5/6) 6099996722795300 a001 28657/370248451*2537720636^(11/15) 6099996722795300 a001 4745030100637/7778742049 6099996722795300 a001 28657/370248451*45537549124^(11/17) 6099996722795300 a001 28657/370248451*312119004989^(3/5) 6099996722795300 a001 28657/370248451*817138163596^(11/19) 6099996722795300 a001 28657/370248451*14662949395604^(11/21) 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(41) 6099996722795300 a001 28657/370248451*192900153618^(11/18) 6099996722795300 a001 28657/370248451*10749957122^(11/16) 6099996722795300 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^3 6099996722795300 a001 28657/370248451*1568397607^(3/4) 6099996722795300 a001 28657/370248451*599074578^(11/14) 6099996722795300 a001 28657/599074578*228826127^(17/20) 6099996722795300 a001 28657/1568397607*228826127^(9/10) 6099996722795300 a001 28657/969323029*228826127^(7/8) 6099996722795300 a001 28657/4106118243*228826127^(19/20) 6099996722795300 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^48 6099996722795300 a001 1812440220802/2971215073 6099996722795300 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(39) 6099996722795300 a001 28657/141422324*9062201101803^(1/2) 6099996722795300 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2) 6099996722795300 a001 28657/228826127*87403803^(16/19) 6099996722795301 a001 28657/599074578*87403803^(17/19) 6099996722795301 a001 28657/1568397607*87403803^(18/19) 6099996722795301 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^46 6099996722795302 a001 692290561769/1134903170 6099996722795302 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(37) 6099996722795302 a001 28657/54018521*1322157322203^(1/2) 6099996722795302 a001 24157817/128158+24157817/128158*5^(1/2) 6099996722795304 a001 28657/87403803*33385282^(5/6) 6099996722795305 a001 28657/228826127*33385282^(8/9) 6099996722795305 a001 28657/370248451*33385282^(11/12) 6099996722795305 a001 28657/599074578*33385282^(17/18) 6099996722795305 a001 9227465/64079*7881196^(1/11) 6099996722795305 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^44 6099996722795310 a001 14930352/64079*4870847^(1/16) 6099996722795314 a001 28657/20633239*141422324^(9/13) 6099996722795314 a001 9227465/64079*141422324^(1/13) 6099996722795314 a001 264431464505/433494437 6099996722795314 a001 28657/20633239*2537720636^(3/5) 6099996722795314 a001 28657/20633239*45537549124^(9/17) 6099996722795314 a001 28657/20633239*817138163596^(9/19) 6099996722795314 a001 28657/20633239*14662949395604^(3/7) 6099996722795314 a001 28657/20633239*(1/2+1/2*5^(1/2))^27 6099996722795314 a001 28657/20633239*192900153618^(1/2) 6099996722795314 a001 28657/20633239*10749957122^(9/16) 6099996722795314 a001 9227465/64079*2537720636^(1/15) 6099996722795314 a001 9227465/64079*45537549124^(1/17) 6099996722795314 a001 9227465/64079*14662949395604^(1/21) 6099996722795314 a001 9227465/64079*(1/2+1/2*5^(1/2))^3 6099996722795314 a001 9227465/64079*192900153618^(1/18) 6099996722795314 a001 9227465/64079*10749957122^(1/16) 6099996722795314 a001 9227465/64079*599074578^(1/14) 6099996722795314 a001 28657/20633239*599074578^(9/14) 6099996722795315 a001 9227465/64079*33385282^(1/12) 6099996722795318 a001 28657/20633239*33385282^(3/4) 6099996722795325 a001 28657/33385282*12752043^(14/17) 6099996722795332 a001 28657/87403803*12752043^(15/17) 6099996722795335 a001 28657/228826127*12752043^(16/17) 6099996722795337 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^42 6099996722795388 a001 28657/7881196*20633239^(5/7) 6099996722795395 a001 2178309/64079*1860498^(1/5) 6099996722795396 a001 3524578/64079*20633239^(1/7) 6099996722795398 a001 101003831746/165580141 6099996722795398 a001 28657/7881196*2537720636^(5/9) 6099996722795398 a001 28657/7881196*312119004989^(5/11) 6099996722795398 a001 28657/7881196*(1/2+1/2*5^(1/2))^25 6099996722795398 a001 28657/7881196*3461452808002^(5/12) 6099996722795398 a001 28657/7881196*28143753123^(1/2) 6099996722795398 a001 3524578/64079*2537720636^(1/9) 6099996722795398 a001 3524578/64079*312119004989^(1/11) 6099996722795398 a001 3524578/64079*(1/2+1/2*5^(1/2))^5 6099996722795398 a001 3524578/64079*28143753123^(1/10) 6099996722795398 a001 3524578/64079*228826127^(1/8) 6099996722795398 a001 28657/7881196*228826127^(5/8) 6099996722795412 a001 14930352/64079*1860498^(1/15) 6099996722795471 a001 28657/12752043*4870847^(13/16) 6099996722795490 a001 9227465/64079*1860498^(1/10) 6099996722795497 a001 5702887/64079*1860498^(2/15) 6099996722795519 a001 28657/33385282*4870847^(7/8) 6099996722795540 a001 28657/87403803*4870847^(15/16) 6099996722795557 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^40 6099996722795692 a001 3524578/64079*1860498^(1/6) 6099996722795970 a001 1346269/64079*20633239^(1/5) 6099996722795973 a001 38580030733/63245986 6099996722795973 a001 28657/3010349*(1/2+1/2*5^(1/2))^23 6099996722795973 a001 28657/3010349*4106118243^(1/2) 6099996722795973 a001 1346269/64079*17393796001^(1/7) 6099996722795973 a001 1346269/64079*14662949395604^(1/9) 6099996722795973 a001 1346269/64079*(1/2+1/2*5^(1/2))^7 6099996722795973 a001 1346269/64079*599074578^(1/6) 6099996722796157 a001 14930352/64079*710647^(1/14) 6099996722796453 a001 28657/4870847*1860498^(4/5) 6099996722796790 a001 28657/12752043*1860498^(13/15) 6099996722796867 a001 28657/7881196*1860498^(5/6) 6099996722796900 a001 28657/20633239*1860498^(9/10) 6099996722796939 a001 28657/33385282*1860498^(14/15) 6099996722796988 a001 5702887/64079*710647^(1/7) 6099996722796989 a001 832040/64079*710647^(2/7) 6099996722797062 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^38 6099996722797631 a001 2178309/64079*710647^(3/14) 6099996722798993 a001 1346269/64079*710647^(1/4) 6099996722799851 a001 28657/1149851*7881196^(7/11) 6099996722799887 a001 514229/64079*7881196^(3/11) 6099996722799905 a001 28657/1149851*20633239^(3/5) 6099996722799911 a001 14736260453/24157817 6099996722799913 a001 28657/1149851*141422324^(7/13) 6099996722799913 a001 514229/64079*141422324^(3/13) 6099996722799914 a001 28657/1149851*2537720636^(7/15) 6099996722799914 a001 28657/1149851*17393796001^(3/7) 6099996722799914 a001 28657/1149851*45537549124^(7/17) 6099996722799914 a001 28657/1149851*14662949395604^(1/3) 6099996722799914 a001 28657/1149851*(1/2+1/2*5^(1/2))^21 6099996722799914 a001 28657/1149851*192900153618^(7/18) 6099996722799914 a001 28657/1149851*10749957122^(7/16) 6099996722799914 a001 514229/64079*2537720636^(1/5) 6099996722799914 a001 514229/64079*45537549124^(3/17) 6099996722799914 a001 514229/64079*817138163596^(3/19) 6099996722799914 a001 514229/64079*14662949395604^(1/7) 6099996722799914 a001 514229/64079*(1/2+1/2*5^(1/2))^9 6099996722799914 a001 514229/64079*192900153618^(1/6) 6099996722799914 a001 514229/64079*10749957122^(3/16) 6099996722799914 a001 514229/64079*599074578^(3/14) 6099996722799914 a001 28657/1149851*599074578^(1/2) 6099996722799915 a001 514229/64079*33385282^(1/4) 6099996722799917 a001 28657/1149851*33385282^(7/12) 6099996722800442 a001 514229/64079*1860498^(3/10) 6099996722801147 a001 28657/1149851*1860498^(7/10) 6099996722801663 a001 14930352/64079*271443^(1/13) 6099996722803028 a001 28657/1860498*710647^(11/14) 6099996722805396 a001 28657/4870847*710647^(6/7) 6099996722806478 a001 28657/12752043*710647^(13/14) 6099996722807379 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^36 6099996722807999 a001 5702887/64079*271443^(2/13) 6099996722808973 a001 28657/1149851*710647^(3/4) 6099996722814148 a001 2178309/64079*271443^(3/13) 6099996722815063 a001 317811/64079*271443^(5/13) 6099996722817751 a001 726103/90481*39603^(9/22) 6099996722818945 a001 24157817/64079*103682^(1/24) 6099996722819011 a001 832040/64079*271443^(4/13) 6099996722826633 a001 23184/51841*39603^(15/22) 6099996722826890 a001 196418/64079*7881196^(1/3) 6099996722826908 a001 5628750626/9227465 6099996722826922 a001 28657/439204*817138163596^(1/3) 6099996722826922 a001 28657/439204*(1/2+1/2*5^(1/2))^19 6099996722826922 a001 196418/64079*312119004989^(1/5) 6099996722826922 a001 196418/64079*(1/2+1/2*5^(1/2))^11 6099996722826922 a001 196418/64079*1568397607^(1/4) 6099996722826923 a001 28657/439204*87403803^(1/2) 6099996722842581 a001 14930352/64079*103682^(1/12) 6099996722846905 a001 28657/710647*271443^(10/13) 6099996722859346 a001 63245986/167761*15127^(1/20) 6099996722863590 a001 28657/1860498*271443^(11/13) 6099996722866245 a001 9227465/64079*103682^(1/8) 6099996722871463 a001 28657/4870847*271443^(12/13) 6099996722878089 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^34 6099996722888681 a001 5702887/710647*39603^(9/22) 6099996722889836 a001 5702887/64079*103682^(1/6) 6099996722895337 a001 98209/51841*39603^(6/11) 6099996722899029 a001 829464/103361*39603^(9/22) 6099996722900539 a001 39088169/4870847*39603^(9/22) 6099996722900760 a001 34111385/4250681*39603^(9/22) 6099996722900792 a001 133957148/16692641*39603^(9/22) 6099996722900796 a001 233802911/29134601*39603^(9/22) 6099996722900797 a001 1836311903/228826127*39603^(9/22) 6099996722900797 a001 267084832/33281921*39603^(9/22) 6099996722900797 a001 12586269025/1568397607*39603^(9/22) 6099996722900797 a001 10983760033/1368706081*39603^(9/22) 6099996722900797 a001 43133785636/5374978561*39603^(9/22) 6099996722900797 a001 75283811239/9381251041*39603^(9/22) 6099996722900797 a001 591286729879/73681302247*39603^(9/22) 6099996722900797 a001 86000486440/10716675201*39603^(9/22) 6099996722900797 a001 4052739537881/505019158607*39603^(9/22) 6099996722900797 a001 3536736619241/440719107401*39603^(9/22) 6099996722900797 a001 3278735159921/408569081798*39603^(9/22) 6099996722900797 a001 2504730781961/312119004989*39603^(9/22) 6099996722900797 a001 956722026041/119218851371*39603^(9/22) 6099996722900797 a001 182717648081/22768774562*39603^(9/22) 6099996722900797 a001 139583862445/17393796001*39603^(9/22) 6099996722900797 a001 53316291173/6643838879*39603^(9/22) 6099996722900797 a001 10182505537/1268860318*39603^(9/22) 6099996722900797 a001 7778742049/969323029*39603^(9/22) 6099996722900797 a001 2971215073/370248451*39603^(9/22) 6099996722900798 a001 567451585/70711162*39603^(9/22) 6099996722900799 a001 433494437/54018521*39603^(9/22) 6099996722900812 a001 165580141/20633239*39603^(9/22) 6099996722900896 a001 31622993/3940598*39603^(9/22) 6099996722901472 a001 24157817/3010349*39603^(9/22) 6099996722905425 a001 9227465/1149851*39603^(9/22) 6099996722913616 a001 3524578/64079*103682^(5/24) 6099996722932518 a001 1762289/219602*39603^(9/22) 6099996722936904 a001 2178309/64079*103682^(1/4) 6099996722940497 a001 2178309/167761*39603^(4/11) 6099996722957713 a001 121393/103682*39603^(13/22) 6099996722961477 a001 1346269/64079*103682^(7/24) 6099996722972089 a001 24157817/64079*39603^(1/22) 6099996722982686 a001 832040/64079*103682^(1/3) 6099996722995469 a001 1346269/271443*39603^(5/11) 6099996722996233 a001 121393/64079*103682^(1/2) 6099996723011946 a001 2149991425/3524578 6099996723012044 a001 75025/64079*141422324^(1/3) 6099996723012044 a001 28657/167761*45537549124^(1/3) 6099996723012044 a001 28657/167761*(1/2+1/2*5^(1/2))^17 6099996723012044 a001 75025/64079*(1/2+1/2*5^(1/2))^13 6099996723012044 a001 75025/64079*73681302247^(1/4) 6099996723012063 a001 28657/167761*12752043^(1/2) 6099996723012705 a001 514229/64079*103682^(3/8) 6099996723019656 a001 317811/64079*103682^(5/12) 6099996723053439 a001 75025/64079*271443^(1/2) 6099996723065604 a001 3524578/710647*39603^(5/11) 6099996723075836 a001 9227465/1860498*39603^(5/11) 6099996723077329 a001 24157817/4870847*39603^(5/11) 6099996723077547 a001 63245986/12752043*39603^(5/11) 6099996723077579 a001 165580141/33385282*39603^(5/11) 6099996723077584 a001 433494437/87403803*39603^(5/11) 6099996723077584 a001 1134903170/228826127*39603^(5/11) 6099996723077584 a001 2971215073/599074578*39603^(5/11) 6099996723077584 a001 7778742049/1568397607*39603^(5/11) 6099996723077584 a001 20365011074/4106118243*39603^(5/11) 6099996723077584 a001 53316291173/10749957122*39603^(5/11) 6099996723077584 a001 139583862445/28143753123*39603^(5/11) 6099996723077584 a001 365435296162/73681302247*39603^(5/11) 6099996723077584 a001 956722026041/192900153618*39603^(5/11) 6099996723077584 a001 2504730781961/505019158607*39603^(5/11) 6099996723077584 a001 10610209857723/2139295485799*39603^(5/11) 6099996723077584 a001 4052739537881/817138163596*39603^(5/11) 6099996723077584 a001 140728068720/28374454999*39603^(5/11) 6099996723077584 a001 591286729879/119218851371*39603^(5/11) 6099996723077584 a001 225851433717/45537549124*39603^(5/11) 6099996723077584 a001 86267571272/17393796001*39603^(5/11) 6099996723077584 a001 32951280099/6643838879*39603^(5/11) 6099996723077584 a001 1144206275/230701876*39603^(5/11) 6099996723077584 a001 4807526976/969323029*39603^(5/11) 6099996723077584 a001 1836311903/370248451*39603^(5/11) 6099996723077585 a001 701408733/141422324*39603^(5/11) 6099996723077586 a001 267914296/54018521*39603^(5/11) 6099996723077599 a001 9303105/1875749*39603^(5/11) 6099996723077682 a001 39088169/7881196*39603^(5/11) 6099996723078252 a001 14930352/3010349*39603^(5/11) 6099996723082161 a001 5702887/1149851*39603^(5/11) 6099996723087001 a001 196418/64079*103682^(11/24) 6099996723108950 a001 2178309/439204*39603^(5/11) 6099996723118215 a001 1346269/167761*39603^(9/22) 6099996723138094 a001 28657/271443*103682^(3/4) 6099996723148869 a001 14930352/64079*39603^(1/11) 6099996723169820 a001 832040/271443*39603^(1/2) 6099996723242036 a001 311187/101521*39603^(1/2) 6099996723252572 a001 5702887/1860498*39603^(1/2) 6099996723254109 a001 14930352/4870847*39603^(1/2) 6099996723254333 a001 39088169/12752043*39603^(1/2) 6099996723254366 a001 14619165/4769326*39603^(1/2) 6099996723254371 a001 267914296/87403803*39603^(1/2) 6099996723254371 a001 701408733/228826127*39603^(1/2) 6099996723254372 a001 1836311903/599074578*39603^(1/2) 6099996723254372 a001 686789568/224056801*39603^(1/2) 6099996723254372 a001 12586269025/4106118243*39603^(1/2) 6099996723254372 a001 32951280099/10749957122*39603^(1/2) 6099996723254372 a001 86267571272/28143753123*39603^(1/2) 6099996723254372 a001 32264490531/10525900321*39603^(1/2) 6099996723254372 a001 591286729879/192900153618*39603^(1/2) 6099996723254372 a001 1548008755920/505019158607*39603^(1/2) 6099996723254372 a001 1515744265389/494493258286*39603^(1/2) 6099996723254372 a001 2504730781961/817138163596*39603^(1/2) 6099996723254372 a001 956722026041/312119004989*39603^(1/2) 6099996723254372 a001 365435296162/119218851371*39603^(1/2) 6099996723254372 a001 139583862445/45537549124*39603^(1/2) 6099996723254372 a001 53316291173/17393796001*39603^(1/2) 6099996723254372 a001 20365011074/6643838879*39603^(1/2) 6099996723254372 a001 7778742049/2537720636*39603^(1/2) 6099996723254372 a001 2971215073/969323029*39603^(1/2) 6099996723254372 a001 1134903170/370248451*39603^(1/2) 6099996723254372 a001 433494437/141422324*39603^(1/2) 6099996723254374 a001 165580141/54018521*39603^(1/2) 6099996723254386 a001 63245986/20633239*39603^(1/2) 6099996723254472 a001 24157817/7881196*39603^(1/2) 6099996723255059 a001 9227465/3010349*39603^(1/2) 6099996723256091 a001 28657/710647*103682^(5/6) 6099996723259083 a001 3524578/1149851*39603^(1/2) 6099996723276149 a001 28657/439204*103682^(19/24) 6099996723286667 a001 1346269/439204*39603^(1/2) 6099996723292566 a001 75640/15251*39603^(5/11) 6099996723296427 a001 28657/1149851*103682^(7/8) 6099996723312026 a001 28657/64079*64079^(15/23) 6099996723313694 a001 28657/1860498*103682^(11/12) 6099996723319410 a001 75025/64079*103682^(13/24) 6099996723325676 a001 9227465/64079*39603^(3/22) 6099996723339773 a001 28657/3010349*103682^(23/24) 6099996723352983 a001 514229/271443*39603^(6/11) 6099996723362744 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^32 6099996723408049 a001 24157817/103682*15127^(1/10) 6099996723413983 a001 28657/167761*103682^(17/24) 6099996723419753 a001 1346269/710647*39603^(6/11) 6099996723429495 a001 1762289/930249*39603^(6/11) 6099996723430916 a001 9227465/4870847*39603^(6/11) 6099996723431123 a001 24157817/12752043*39603^(6/11) 6099996723431154 a001 31622993/16692641*39603^(6/11) 6099996723431158 a001 165580141/87403803*39603^(6/11) 6099996723431159 a001 433494437/228826127*39603^(6/11) 6099996723431159 a001 567451585/299537289*39603^(6/11) 6099996723431159 a001 2971215073/1568397607*39603^(6/11) 6099996723431159 a001 7778742049/4106118243*39603^(6/11) 6099996723431159 a001 10182505537/5374978561*39603^(6/11) 6099996723431159 a001 53316291173/28143753123*39603^(6/11) 6099996723431159 a001 139583862445/73681302247*39603^(6/11) 6099996723431159 a001 182717648081/96450076809*39603^(6/11) 6099996723431159 a001 956722026041/505019158607*39603^(6/11) 6099996723431159 a001 10610209857723/5600748293801*39603^(6/11) 6099996723431159 a001 591286729879/312119004989*39603^(6/11) 6099996723431159 a001 225851433717/119218851371*39603^(6/11) 6099996723431159 a001 21566892818/11384387281*39603^(6/11) 6099996723431159 a001 32951280099/17393796001*39603^(6/11) 6099996723431159 a001 12586269025/6643838879*39603^(6/11) 6099996723431159 a001 1201881744/634430159*39603^(6/11) 6099996723431159 a001 1836311903/969323029*39603^(6/11) 6099996723431159 a001 701408733/370248451*39603^(6/11) 6099996723431159 a001 66978574/35355581*39603^(6/11) 6099996723431161 a001 102334155/54018521*39603^(6/11) 6099996723431172 a001 39088169/20633239*39603^(6/11) 6099996723431251 a001 3732588/1970299*39603^(6/11) 6099996723431794 a001 5702887/3010349*39603^(6/11) 6099996723434033 a001 75025/103682*39603^(7/11) 6099996723435515 a001 2178309/1149851*39603^(6/11) 6099996723461019 a001 208010/109801*39603^(6/11) 6099996723475729 a001 514229/167761*39603^(1/2) 6099996723494745 a001 10946/15127*15127^(7/10) 6099996723502411 a001 5702887/64079*39603^(2/11) 6099996723513078 a001 105937/90481*39603^(13/22) 6099996723594105 a001 832040/710647*39603^(13/22) 6099996723605927 a001 726103/620166*39603^(13/22) 6099996723607651 a001 5702887/4870847*39603^(13/22) 6099996723607903 a001 4976784/4250681*39603^(13/22) 6099996723607940 a001 39088169/33385282*39603^(13/22) 6099996723607945 a001 34111385/29134601*39603^(13/22) 6099996723607946 a001 267914296/228826127*39603^(13/22) 6099996723607946 a001 233802911/199691526*39603^(13/22) 6099996723607946 a001 1836311903/1568397607*39603^(13/22) 6099996723607946 a001 1602508992/1368706081*39603^(13/22) 6099996723607946 a001 12586269025/10749957122*39603^(13/22) 6099996723607946 a001 10983760033/9381251041*39603^(13/22) 6099996723607946 a001 86267571272/73681302247*39603^(13/22) 6099996723607946 a001 75283811239/64300051206*39603^(13/22) 6099996723607946 a001 2504730781961/2139295485799*39603^(13/22) 6099996723607946 a001 365435296162/312119004989*39603^(13/22) 6099996723607946 a001 139583862445/119218851371*39603^(13/22) 6099996723607946 a001 53316291173/45537549124*39603^(13/22) 6099996723607946 a001 20365011074/17393796001*39603^(13/22) 6099996723607946 a001 7778742049/6643838879*39603^(13/22) 6099996723607946 a001 2971215073/2537720636*39603^(13/22) 6099996723607946 a001 1134903170/969323029*39603^(13/22) 6099996723607946 a001 433494437/370248451*39603^(13/22) 6099996723607946 a001 165580141/141422324*39603^(13/22) 6099996723607948 a001 63245986/54018521*39603^(13/22) 6099996723607962 a001 24157817/20633239*39603^(13/22) 6099996723608058 a001 9227465/7881196*39603^(13/22) 6099996723608717 a001 3524578/3010349*39603^(13/22) 6099996723613233 a001 1346269/1149851*39603^(13/22) 6099996723635824 a001 317811/167761*39603^(6/11) 6099996723644182 a001 514229/439204*39603^(13/22) 6099996723664862 a001 15456/90481*39603^(17/22) 6099996723679334 a001 3524578/64079*39603^(5/22) 6099996723733567 a001 196418/271443*39603^(7/11) 6099996723777268 a001 514229/710647*39603^(7/11) 6099996723783644 a001 1346269/1860498*39603^(7/11) 6099996723784574 a001 3524578/4870847*39603^(7/11) 6099996723784710 a001 9227465/12752043*39603^(7/11) 6099996723784730 a001 24157817/33385282*39603^(7/11) 6099996723784733 a001 63245986/87403803*39603^(7/11) 6099996723784733 a001 165580141/228826127*39603^(7/11) 6099996723784733 a001 433494437/599074578*39603^(7/11) 6099996723784733 a001 1134903170/1568397607*39603^(7/11) 6099996723784733 a001 2971215073/4106118243*39603^(7/11) 6099996723784733 a001 7778742049/10749957122*39603^(7/11) 6099996723784733 a001 20365011074/28143753123*39603^(7/11) 6099996723784733 a001 53316291173/73681302247*39603^(7/11) 6099996723784733 a001 139583862445/192900153618*39603^(7/11) 6099996723784733 a001 365435296162/505019158607*39603^(7/11) 6099996723784733 a001 10610209857723/14662949395604*39603^(7/11) 6099996723784733 a001 591286729879/817138163596*39603^(7/11) 6099996723784733 a001 225851433717/312119004989*39603^(7/11) 6099996723784733 a001 86267571272/119218851371*39603^(7/11) 6099996723784733 a001 32951280099/45537549124*39603^(7/11) 6099996723784733 a001 12586269025/17393796001*39603^(7/11) 6099996723784733 a001 4807526976/6643838879*39603^(7/11) 6099996723784733 a001 1836311903/2537720636*39603^(7/11) 6099996723784733 a001 701408733/969323029*39603^(7/11) 6099996723784733 a001 267914296/370248451*39603^(7/11) 6099996723784733 a001 102334155/141422324*39603^(7/11) 6099996723784734 a001 39088169/54018521*39603^(7/11) 6099996723784742 a001 14930352/20633239*39603^(7/11) 6099996723784794 a001 5702887/7881196*39603^(7/11) 6099996723785149 a001 2178309/3010349*39603^(7/11) 6099996723787584 a001 832040/1149851*39603^(7/11) 6099996723787608 a001 46368/167761*39603^(8/11) 6099996723795942 a001 121393/271443*39603^(15/22) 6099996723804277 a001 317811/439204*39603^(7/11) 6099996723855766 a001 2178309/64079*39603^(3/11) 6099996723856313 a001 196418/167761*39603^(13/22) 6099996723892702 a001 63245986/271443*15127^(1/10) 6099996723918688 a001 121393/167761*39603^(7/11) 6099996723937363 a001 317811/710647*39603^(15/22) 6099996723956060 a001 11592/109801*39603^(9/11) 6099996723957996 a001 416020/930249*39603^(15/22) 6099996723961006 a001 2178309/4870847*39603^(15/22) 6099996723961445 a001 5702887/12752043*39603^(15/22) 6099996723961509 a001 7465176/16692641*39603^(15/22) 6099996723961519 a001 39088169/87403803*39603^(15/22) 6099996723961520 a001 102334155/228826127*39603^(15/22) 6099996723961520 a001 133957148/299537289*39603^(15/22) 6099996723961520 a001 701408733/1568397607*39603^(15/22) 6099996723961520 a001 1836311903/4106118243*39603^(15/22) 6099996723961520 a001 2403763488/5374978561*39603^(15/22) 6099996723961520 a001 12586269025/28143753123*39603^(15/22) 6099996723961520 a001 32951280099/73681302247*39603^(15/22) 6099996723961520 a001 43133785636/96450076809*39603^(15/22) 6099996723961520 a001 225851433717/505019158607*39603^(15/22) 6099996723961520 a001 591286729879/1322157322203*39603^(15/22) 6099996723961520 a001 10610209857723/23725150497407*39603^(15/22) 6099996723961520 a001 182717648081/408569081798*39603^(15/22) 6099996723961520 a001 139583862445/312119004989*39603^(15/22) 6099996723961520 a001 53316291173/119218851371*39603^(15/22) 6099996723961520 a001 10182505537/22768774562*39603^(15/22) 6099996723961520 a001 7778742049/17393796001*39603^(15/22) 6099996723961520 a001 2971215073/6643838879*39603^(15/22) 6099996723961520 a001 567451585/1268860318*39603^(15/22) 6099996723961520 a001 433494437/969323029*39603^(15/22) 6099996723961520 a001 165580141/370248451*39603^(15/22) 6099996723961521 a001 31622993/70711162*39603^(15/22) 6099996723961524 a001 24157817/54018521*39603^(15/22) 6099996723961549 a001 9227465/20633239*39603^(15/22) 6099996723961717 a001 1762289/3940598*39603^(15/22) 6099996723962866 a001 1346269/3010349*39603^(15/22) 6099996723963412 a001 165580141/710647*15127^(1/10) 6099996723970748 a001 514229/1149851*39603^(15/22) 6099996723973728 a001 433494437/1860498*15127^(1/10) 6099996723975234 a001 1134903170/4870847*15127^(1/10) 6099996723975453 a001 2971215073/12752043*15127^(1/10) 6099996723975485 a001 7778742049/33385282*15127^(1/10) 6099996723975490 a001 20365011074/87403803*15127^(1/10) 6099996723975491 a001 53316291173/228826127*15127^(1/10) 6099996723975491 a001 139583862445/599074578*15127^(1/10) 6099996723975491 a001 365435296162/1568397607*15127^(1/10) 6099996723975491 a001 956722026041/4106118243*15127^(1/10) 6099996723975491 a001 2504730781961/10749957122*15127^(1/10) 6099996723975491 a001 6557470319842/28143753123*15127^(1/10) 6099996723975491 a001 10610209857723/45537549124*15127^(1/10) 6099996723975491 a001 4052739537881/17393796001*15127^(1/10) 6099996723975491 a001 1548008755920/6643838879*15127^(1/10) 6099996723975491 a001 591286729879/2537720636*15127^(1/10) 6099996723975491 a001 225851433717/969323029*15127^(1/10) 6099996723975491 a001 86267571272/370248451*15127^(1/10) 6099996723975491 a001 63246219/271444*15127^(1/10) 6099996723975493 a001 12586269025/54018521*15127^(1/10) 6099996723975505 a001 4807526976/20633239*15127^(1/10) 6099996723975589 a001 1836311903/7881196*15127^(1/10) 6099996723976164 a001 701408733/3010349*15127^(1/10) 6099996723980104 a001 267914296/1149851*15127^(1/10) 6099996724007113 a001 102334155/439204*15127^(1/10) 6099996724024765 a001 98209/219602*39603^(15/22) 6099996724033483 a001 1346269/64079*39603^(7/22) 6099996724084583 a001 726103/13201*15127^(1/4) 6099996724087141 a001 121393/439204*39603^(8/11) 6099996724089146 a001 6624/101521*39603^(19/22) 6099996724128191 a001 24157817/64079*15127^(1/20) 6099996724130842 a001 317811/1149851*39603^(8/11) 6099996724137218 a001 832040/3010349*39603^(8/11) 6099996724138149 a001 2178309/7881196*39603^(8/11) 6099996724138284 a001 5702887/20633239*39603^(8/11) 6099996724138304 a001 14930352/54018521*39603^(8/11) 6099996724138307 a001 39088169/141422324*39603^(8/11) 6099996724138307 a001 102334155/370248451*39603^(8/11) 6099996724138307 a001 267914296/969323029*39603^(8/11) 6099996724138307 a001 701408733/2537720636*39603^(8/11) 6099996724138307 a001 1836311903/6643838879*39603^(8/11) 6099996724138307 a001 4807526976/17393796001*39603^(8/11) 6099996724138307 a001 12586269025/45537549124*39603^(8/11) 6099996724138307 a001 32951280099/119218851371*39603^(8/11) 6099996724138307 a001 86267571272/312119004989*39603^(8/11) 6099996724138307 a001 225851433717/817138163596*39603^(8/11) 6099996724138307 a001 1548008755920/5600748293801*39603^(8/11) 6099996724138307 a001 139583862445/505019158607*39603^(8/11) 6099996724138307 a001 53316291173/192900153618*39603^(8/11) 6099996724138307 a001 20365011074/73681302247*39603^(8/11) 6099996724138307 a001 7778742049/28143753123*39603^(8/11) 6099996724138307 a001 2971215073/10749957122*39603^(8/11) 6099996724138307 a001 1134903170/4106118243*39603^(8/11) 6099996724138307 a001 433494437/1568397607*39603^(8/11) 6099996724138307 a001 165580141/599074578*39603^(8/11) 6099996724138308 a001 63245986/228826127*39603^(8/11) 6099996724138309 a001 24157817/87403803*39603^(8/11) 6099996724138316 a001 9227465/33385282*39603^(8/11) 6099996724138368 a001 3524578/12752043*39603^(8/11) 6099996724138723 a001 1346269/4870847*39603^(8/11) 6099996724141159 a001 514229/1860498*39603^(8/11) 6099996724145623 a001 5702887/24476*9349^(2/19) 6099996724150841 a001 28657/64079*167761^(3/5) 6099996724157851 a001 196418/710647*39603^(8/11) 6099996724192234 a001 39088169/167761*15127^(1/10) 6099996724207835 a001 832040/64079*39603^(4/11) 6099996724220227 a001 121393/710647*39603^(17/22) 6099996724263319 a001 28657/64079*439204^(5/9) 6099996724272263 a001 75025/271443*39603^(8/11) 6099996724280214 a001 821223649/1346269 6099996724280842 a001 28657/64079*7881196^(5/11) 6099996724280881 a001 28657/64079*20633239^(3/7) 6099996724280887 a001 28657/64079*141422324^(5/13) 6099996724280887 a001 28657/64079*2537720636^(1/3) 6099996724280887 a001 28657/64079*45537549124^(5/17) 6099996724280887 a001 28657/64079*312119004989^(3/11) 6099996724280887 a001 28657/64079*14662949395604^(5/21) 6099996724280887 a001 28657/64079*(1/2+1/2*5^(1/2))^15 6099996724280887 a001 28657/64079*192900153618^(5/18) 6099996724280887 a001 28657/64079*28143753123^(3/10) 6099996724280887 a001 28657/64079*10749957122^(5/16) 6099996724280887 a001 28657/64079*599074578^(5/14) 6099996724280887 a001 28657/64079*228826127^(3/8) 6099996724280889 a001 28657/64079*33385282^(5/12) 6099996724281768 a001 28657/64079*1860498^(1/2) 6099996724282626 a001 46368/1149851*39603^(10/11) 6099996724301254 a001 105937/620166*39603^(17/22) 6099996724313075 a001 832040/4870847*39603^(17/22) 6099996724314800 a001 726103/4250681*39603^(17/22) 6099996724315052 a001 5702887/33385282*39603^(17/22) 6099996724315088 a001 4976784/29134601*39603^(17/22) 6099996724315094 a001 39088169/228826127*39603^(17/22) 6099996724315094 a001 34111385/199691526*39603^(17/22) 6099996724315095 a001 267914296/1568397607*39603^(17/22) 6099996724315095 a001 233802911/1368706081*39603^(17/22) 6099996724315095 a001 1836311903/10749957122*39603^(17/22) 6099996724315095 a001 1602508992/9381251041*39603^(17/22) 6099996724315095 a001 12586269025/73681302247*39603^(17/22) 6099996724315095 a001 10983760033/64300051206*39603^(17/22) 6099996724315095 a001 86267571272/505019158607*39603^(17/22) 6099996724315095 a001 75283811239/440719107401*39603^(17/22) 6099996724315095 a001 2504730781961/14662949395604*39603^(17/22) 6099996724315095 a001 139583862445/817138163596*39603^(17/22) 6099996724315095 a001 53316291173/312119004989*39603^(17/22) 6099996724315095 a001 20365011074/119218851371*39603^(17/22) 6099996724315095 a001 7778742049/45537549124*39603^(17/22) 6099996724315095 a001 2971215073/17393796001*39603^(17/22) 6099996724315095 a001 1134903170/6643838879*39603^(17/22) 6099996724315095 a001 433494437/2537720636*39603^(17/22) 6099996724315095 a001 165580141/969323029*39603^(17/22) 6099996724315095 a001 63245986/370248451*39603^(17/22) 6099996724315097 a001 24157817/141422324*39603^(17/22) 6099996724315111 a001 9227465/54018521*39603^(17/22) 6099996724315207 a001 3524578/20633239*39603^(17/22) 6099996724315866 a001 1346269/7881196*39603^(17/22) 6099996724320381 a001 514229/3010349*39603^(17/22) 6099996724351331 a001 196418/1149851*39603^(17/22) 6099996724390998 a001 514229/64079*39603^(9/22) 6099996724395009 a001 75025/167761*39603^(15/22) 6099996724413706 a001 121393/1149851*39603^(9/11) 6099996724453037 a001 2576/103361*39603^(21/22) 6099996724480476 a001 317811/3010349*39603^(9/11) 6099996724490218 a001 208010/1970299*39603^(9/11) 6099996724491639 a001 2178309/20633239*39603^(9/11) 6099996724491846 a001 5702887/54018521*39603^(9/11) 6099996724491877 a001 3732588/35355581*39603^(9/11) 6099996724491881 a001 39088169/370248451*39603^(9/11) 6099996724491882 a001 102334155/969323029*39603^(9/11) 6099996724491882 a001 66978574/634430159*39603^(9/11) 6099996724491882 a001 701408733/6643838879*39603^(9/11) 6099996724491882 a001 1836311903/17393796001*39603^(9/11) 6099996724491882 a001 1201881744/11384387281*39603^(9/11) 6099996724491882 a001 12586269025/119218851371*39603^(9/11) 6099996724491882 a001 32951280099/312119004989*39603^(9/11) 6099996724491882 a001 21566892818/204284540899*39603^(9/11) 6099996724491882 a001 225851433717/2139295485799*39603^(9/11) 6099996724491882 a001 182717648081/1730726404001*39603^(9/11) 6099996724491882 a001 139583862445/1322157322203*39603^(9/11) 6099996724491882 a001 53316291173/505019158607*39603^(9/11) 6099996724491882 a001 10182505537/96450076809*39603^(9/11) 6099996724491882 a001 7778742049/73681302247*39603^(9/11) 6099996724491882 a001 2971215073/28143753123*39603^(9/11) 6099996724491882 a001 567451585/5374978561*39603^(9/11) 6099996724491882 a001 433494437/4106118243*39603^(9/11) 6099996724491882 a001 165580141/1568397607*39603^(9/11) 6099996724491882 a001 31622993/299537289*39603^(9/11) 6099996724491884 a001 24157817/228826127*39603^(9/11) 6099996724491895 a001 9227465/87403803*39603^(9/11) 6099996724491974 a001 1762289/16692641*39603^(9/11) 6099996724492517 a001 1346269/12752043*39603^(9/11) 6099996724496238 a001 514229/4870847*39603^(9/11) 6099996724521742 a001 98209/930249*39603^(9/11) 6099996724551093 a001 317811/64079*39603^(5/11) 6099996724563461 a001 75025/439204*39603^(17/22) 6099996724584118 a001 121393/1860498*39603^(19/22) 6099996724631587 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^31 6099996724635539 a001 28657/64079*103682^(5/8) 6099996724656333 a001 317811/4870847*39603^(19/22) 6099996724666869 a001 832040/12752043*39603^(19/22) 6099996724668406 a001 311187/4769326*39603^(19/22) 6099996724668631 a001 5702887/87403803*39603^(19/22) 6099996724668663 a001 14930352/228826127*39603^(19/22) 6099996724668668 a001 39088169/599074578*39603^(19/22) 6099996724668669 a001 14619165/224056801*39603^(19/22) 6099996724668669 a001 267914296/4106118243*39603^(19/22) 6099996724668669 a001 701408733/10749957122*39603^(19/22) 6099996724668669 a001 1836311903/28143753123*39603^(19/22) 6099996724668669 a001 686789568/10525900321*39603^(19/22) 6099996724668669 a001 12586269025/192900153618*39603^(19/22) 6099996724668669 a001 32951280099/505019158607*39603^(19/22) 6099996724668669 a001 86267571272/1322157322203*39603^(19/22) 6099996724668669 a001 32264490531/494493258286*39603^(19/22) 6099996724668669 a001 591286729879/9062201101803*39603^(19/22) 6099996724668669 a001 1548008755920/23725150497407*39603^(19/22) 6099996724668669 a001 365435296162/5600748293801*39603^(19/22) 6099996724668669 a001 139583862445/2139295485799*39603^(19/22) 6099996724668669 a001 53316291173/817138163596*39603^(19/22) 6099996724668669 a001 20365011074/312119004989*39603^(19/22) 6099996724668669 a001 7778742049/119218851371*39603^(19/22) 6099996724668669 a001 2971215073/45537549124*39603^(19/22) 6099996724668669 a001 1134903170/17393796001*39603^(19/22) 6099996724668669 a001 433494437/6643838879*39603^(19/22) 6099996724668669 a001 165580141/2537720636*39603^(19/22) 6099996724668669 a001 63245986/969323029*39603^(19/22) 6099996724668671 a001 24157817/370248451*39603^(19/22) 6099996724668684 a001 9227465/141422324*39603^(19/22) 6099996724668769 a001 3524578/54018521*39603^(19/22) 6099996724669356 a001 1346269/20633239*39603^(19/22) 6099996724673381 a001 514229/7881196*39603^(19/22) 6099996724696547 a001 75025/710647*39603^(9/11) 6099996724700965 a001 196418/3010349*39603^(19/22) 6099996724702876 a001 46368/64079*39603^(7/11) 6099996724734798 a001 10946/64079*24476^(17/21) 6099996724740930 a001 7465176/51841*15127^(3/20) 6099996724763340 a001 121393/3010349*39603^(10/11) 6099996724771581 a001 196418/64079*39603^(1/2) 6099996724833476 a001 317811/7881196*39603^(10/11) 6099996724833957 a001 121393/64079*39603^(6/11) 6099996724843708 a001 75640/1875749*39603^(10/11) 6099996724845201 a001 2178309/54018521*39603^(10/11) 6099996724845419 a001 5702887/141422324*39603^(10/11) 6099996724845451 a001 14930352/370248451*39603^(10/11) 6099996724845455 a001 39088169/969323029*39603^(10/11) 6099996724845456 a001 9303105/230701876*39603^(10/11) 6099996724845456 a001 267914296/6643838879*39603^(10/11) 6099996724845456 a001 701408733/17393796001*39603^(10/11) 6099996724845456 a001 1836311903/45537549124*39603^(10/11) 6099996724845456 a001 4807526976/119218851371*39603^(10/11) 6099996724845456 a001 1144206275/28374454999*39603^(10/11) 6099996724845456 a001 32951280099/817138163596*39603^(10/11) 6099996724845456 a001 86267571272/2139295485799*39603^(10/11) 6099996724845456 a001 225851433717/5600748293801*39603^(10/11) 6099996724845456 a001 591286729879/14662949395604*39603^(10/11) 6099996724845456 a001 365435296162/9062201101803*39603^(10/11) 6099996724845456 a001 139583862445/3461452808002*39603^(10/11) 6099996724845456 a001 53316291173/1322157322203*39603^(10/11) 6099996724845456 a001 20365011074/505019158607*39603^(10/11) 6099996724845456 a001 7778742049/192900153618*39603^(10/11) 6099996724845456 a001 2971215073/73681302247*39603^(10/11) 6099996724845456 a001 1134903170/28143753123*39603^(10/11) 6099996724845456 a001 433494437/10749957122*39603^(10/11) 6099996724845456 a001 165580141/4106118243*39603^(10/11) 6099996724845456 a001 63245986/1568397607*39603^(10/11) 6099996724845458 a001 24157817/599074578*39603^(10/11) 6099996724845470 a001 9227465/228826127*39603^(10/11) 6099996724845554 a001 3524578/87403803*39603^(10/11) 6099996724846124 a001 1346269/33385282*39603^(10/11) 6099996724850032 a001 514229/12752043*39603^(10/11) 6099996724876822 a001 196418/4870847*39603^(10/11) 6099996724890027 a001 75025/1149851*39603^(19/22) 6099996724939197 a001 121393/4870847*39603^(21/22) 6099996725010127 a001 105937/4250681*39603^(21/22) 6099996725020476 a001 416020/16692641*39603^(21/22) 6099996725021985 a001 726103/29134601*39603^(21/22) 6099996725022206 a001 5702887/228826127*39603^(21/22) 6099996725022238 a001 829464/33281921*39603^(21/22) 6099996725022242 a001 39088169/1568397607*39603^(21/22) 6099996725022243 a001 34111385/1368706081*39603^(21/22) 6099996725022243 a001 133957148/5374978561*39603^(21/22) 6099996725022243 a001 233802911/9381251041*39603^(21/22) 6099996725022243 a001 1836311903/73681302247*39603^(21/22) 6099996725022243 a001 267084832/10716675201*39603^(21/22) 6099996725022243 a001 12586269025/505019158607*39603^(21/22) 6099996725022243 a001 10983760033/440719107401*39603^(21/22) 6099996725022243 a001 43133785636/1730726404001*39603^(21/22) 6099996725022243 a001 75283811239/3020733700601*39603^(21/22) 6099996725022243 a001 182717648081/7331474697802*39603^(21/22) 6099996725022243 a001 139583862445/5600748293801*39603^(21/22) 6099996725022243 a001 53316291173/2139295485799*39603^(21/22) 6099996725022243 a001 10182505537/408569081798*39603^(21/22) 6099996725022243 a001 7778742049/312119004989*39603^(21/22) 6099996725022243 a001 2971215073/119218851371*39603^(21/22) 6099996725022243 a001 567451585/22768774562*39603^(21/22) 6099996725022243 a001 433494437/17393796001*39603^(21/22) 6099996725022243 a001 165580141/6643838879*39603^(21/22) 6099996725022244 a001 31622993/1268860318*39603^(21/22) 6099996725022245 a001 24157817/969323029*39603^(21/22) 6099996725022258 a001 9227465/370248451*39603^(21/22) 6099996725022342 a001 1762289/70711162*39603^(21/22) 6099996725022918 a001 1346269/54018521*39603^(21/22) 6099996725026871 a001 514229/20633239*39603^(21/22) 6099996725053964 a001 98209/3940598*39603^(21/22) 6099996725056451 a001 28657/103682*39603^(8/11) 6099996725060438 a001 75025/1860498*39603^(10/11) 6099996725104199 a001 311187/2161*5778^(1/6) 6099996725106140 a001 11592/6119*24476^(4/7) 6099996725116242 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^33 6099996725186952 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^35 6099996725197268 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^37 6099996725198773 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^39 6099996725198993 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^41 6099996725199025 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^43 6099996725199030 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^45 6099996725199030 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^47 6099996725199030 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^49 6099996725199030 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^51 6099996725199030 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^53 6099996725199030 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^55 6099996725199030 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^57 6099996725199030 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^59 6099996725199030 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^61 6099996725199030 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^63 6099996725199030 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^65 6099996725199030 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^67 6099996725199030 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^69 6099996725199030 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^71 6099996725199030 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^73 6099996725199030 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^75 6099996725199030 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^77 6099996725199030 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^79 6099996725199030 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^81 6099996725199030 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^83 6099996725199030 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^85 6099996725199030 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^87 6099996725199030 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^89 6099996725199030 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^91 6099996725199030 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^93 6099996725199030 a004 Fibonacci(88)*Lucas(22)/(1/2+sqrt(5)/2)^95 6099996725199030 a004 Fibonacci(90)*Lucas(22)/(1/2+sqrt(5)/2)^97 6099996725199030 a004 Fibonacci(92)*Lucas(22)/(1/2+sqrt(5)/2)^99 6099996725199030 a004 Fibonacci(93)*Lucas(22)/(1/2+sqrt(5)/2)^100 6099996725199030 a004 Fibonacci(91)*Lucas(22)/(1/2+sqrt(5)/2)^98 6099996725199030 a004 Fibonacci(89)*Lucas(22)/(1/2+sqrt(5)/2)^96 6099996725199030 a004 Fibonacci(87)*Lucas(22)/(1/2+sqrt(5)/2)^94 6099996725199030 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^92 6099996725199030 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^90 6099996725199030 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^88 6099996725199030 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^86 6099996725199030 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^84 6099996725199030 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^82 6099996725199030 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^80 6099996725199030 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^78 6099996725199030 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^76 6099996725199030 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^74 6099996725199030 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^72 6099996725199030 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^70 6099996725199030 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^68 6099996725199030 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^66 6099996725199030 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^64 6099996725199030 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^62 6099996725199030 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^60 6099996725199030 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^58 6099996725199030 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^56 6099996725199030 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^54 6099996725199030 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^52 6099996725199030 a001 2/17711*(1/2+1/2*5^(1/2))^37 6099996725199030 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^50 6099996725199030 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^48 6099996725199031 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^46 6099996725199033 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^44 6099996725199045 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^42 6099996725199129 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^40 6099996725199704 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^38 6099996725203644 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^36 6099996725225590 a001 39088169/271443*15127^(3/20) 6099996725230653 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^34 6099996725239661 a001 75025/3010349*39603^(21/22) 6099996725296301 a001 14619165/101521*15127^(3/20) 6099996725306617 a001 133957148/930249*15127^(3/20) 6099996725308123 a001 701408733/4870847*15127^(3/20) 6099996725308342 a001 1836311903/12752043*15127^(3/20) 6099996725308374 a001 14930208/103681*15127^(3/20) 6099996725308379 a001 12586269025/87403803*15127^(3/20) 6099996725308380 a001 32951280099/228826127*15127^(3/20) 6099996725308380 a001 43133785636/299537289*15127^(3/20) 6099996725308380 a001 32264490531/224056801*15127^(3/20) 6099996725308380 a001 591286729879/4106118243*15127^(3/20) 6099996725308380 a001 774004377960/5374978561*15127^(3/20) 6099996725308380 a001 4052739537881/28143753123*15127^(3/20) 6099996725308380 a001 1515744265389/10525900321*15127^(3/20) 6099996725308380 a001 3278735159921/22768774562*15127^(3/20) 6099996725308380 a001 2504730781961/17393796001*15127^(3/20) 6099996725308380 a001 956722026041/6643838879*15127^(3/20) 6099996725308380 a001 182717648081/1268860318*15127^(3/20) 6099996725308380 a001 139583862445/969323029*15127^(3/20) 6099996725308380 a001 53316291173/370248451*15127^(3/20) 6099996725308380 a001 10182505537/70711162*15127^(3/20) 6099996725308382 a001 7778742049/54018521*15127^(3/20) 6099996725308394 a001 2971215073/20633239*15127^(3/20) 6099996725308478 a001 567451585/3940598*15127^(3/20) 6099996725309053 a001 433494437/3010349*15127^(3/20) 6099996725310277 a001 75025/64079*39603^(13/22) 6099996725312993 a001 165580141/1149851*15127^(3/20) 6099996725340003 a001 31622993/219602*15127^(3/20) 6099996725415775 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^32 6099996725418402 a001 1346269/39603*15127^(3/10) 6099996725461072 a001 14930352/64079*15127^(1/10) 6099996725525126 a001 24157817/167761*15127^(3/20) 6099996725894680 a001 28657/271443*39603^(9/11) 6099996726017426 a001 28657/167761*39603^(17/22) 6099996726073839 a001 9227465/103682*15127^(1/5) 6099996726160523 a001 6765/24476*15127^(4/5) 6099996726185879 a001 28657/439204*39603^(19/22) 6099996726318965 a001 28657/710647*39603^(10/11) 6099996726375203 a001 75025/24476*24476^(11/21) 6099996726512444 a001 28657/1149851*39603^(21/22) 6099996726558482 a001 24157817/271443*15127^(1/5) 6099996726560544 a001 121393/24476*24476^(10/21) 6099996726569309 a001 10946/39603*64079^(16/23) 6099996726629190 a001 63245986/710647*15127^(1/5) 6099996726639507 a001 165580141/1860498*15127^(1/5) 6099996726641012 a001 433494437/4870847*15127^(1/5) 6099996726641231 a001 1134903170/12752043*15127^(1/5) 6099996726641263 a001 2971215073/33385282*15127^(1/5) 6099996726641268 a001 7778742049/87403803*15127^(1/5) 6099996726641269 a001 20365011074/228826127*15127^(1/5) 6099996726641269 a001 53316291173/599074578*15127^(1/5) 6099996726641269 a001 139583862445/1568397607*15127^(1/5) 6099996726641269 a001 365435296162/4106118243*15127^(1/5) 6099996726641269 a001 956722026041/10749957122*15127^(1/5) 6099996726641269 a001 2504730781961/28143753123*15127^(1/5) 6099996726641269 a001 6557470319842/73681302247*15127^(1/5) 6099996726641269 a001 10610209857723/119218851371*15127^(1/5) 6099996726641269 a001 4052739537881/45537549124*15127^(1/5) 6099996726641269 a001 1548008755920/17393796001*15127^(1/5) 6099996726641269 a001 591286729879/6643838879*15127^(1/5) 6099996726641269 a001 225851433717/2537720636*15127^(1/5) 6099996726641269 a001 86267571272/969323029*15127^(1/5) 6099996726641269 a001 32951280099/370248451*15127^(1/5) 6099996726641269 a001 12586269025/141422324*15127^(1/5) 6099996726641271 a001 4807526976/54018521*15127^(1/5) 6099996726641283 a001 1836311903/20633239*15127^(1/5) 6099996726641367 a001 3524667/39604*15127^(1/5) 6099996726641942 a001 267914296/3010349*15127^(1/5) 6099996726645882 a001 102334155/1149851*15127^(1/5) 6099996726672891 a001 39088169/439204*15127^(1/5) 6099996726674296 a001 28657/24476*24476^(13/21) 6099996726684618 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^30 6099996726698491 a001 17711/24476*64079^(14/23) 6099996726748856 a001 832040/39603*15127^(7/20) 6099996726793981 a001 9227465/64079*15127^(3/20) 6099996726858008 a001 14930352/167761*15127^(1/5) 6099996726932695 a001 28657/64079*39603^(15/22) 6099996727159830 a001 98209/12238*24476^(3/7) 6099996727406676 a001 5702887/103682*15127^(1/4) 6099996727571231 a001 4976784/13201*5778^(1/18) 6099996727601003 a001 10959/844*24476^(8/21) 6099996727602755 a001 17711/24476*20633239^(2/5) 6099996727602761 a001 10946/39603*(1/2+1/2*5^(1/2))^16 6099996727602761 a001 10946/39603*23725150497407^(1/4) 6099996727602761 a001 10946/39603*73681302247^(4/13) 6099996727602761 a001 10946/39603*10749957122^(1/3) 6099996727602761 a001 10946/39603*4106118243^(8/23) 6099996727602761 a001 10946/39603*1568397607^(4/11) 6099996727602761 a001 10946/39603*599074578^(8/21) 6099996727602761 a001 17711/24476*17393796001^(2/7) 6099996727602761 a001 17711/24476*14662949395604^(2/9) 6099996727602761 a001 17711/24476*(1/2+1/2*5^(1/2))^14 6099996727602761 a001 17711/24476*505019158607^(1/4) 6099996727602761 a001 17711/24476*10749957122^(7/24) 6099996727602761 a001 17711/24476*4106118243^(7/23) 6099996727602761 a001 17711/24476*1568397607^(7/22) 6099996727602761 a001 17711/24476*599074578^(1/3) 6099996727602761 a001 10946/39603*228826127^(2/5) 6099996727602761 a001 17711/24476*228826127^(7/20) 6099996727602761 a001 17711/24476*87403803^(7/19) 6099996727602761 a001 10946/39603*87403803^(8/19) 6099996727602763 a001 17711/24476*33385282^(7/18) 6099996727602763 a001 10946/39603*33385282^(4/9) 6099996727602776 a001 17711/24476*12752043^(7/17) 6099996727602779 a001 10946/39603*12752043^(8/17) 6099996727602874 a001 17711/24476*4870847^(7/16) 6099996727602890 a001 10946/39603*4870847^(1/2) 6099996727603583 a001 17711/24476*1860498^(7/15) 6099996727603701 a001 10946/39603*1860498^(8/15) 6099996727608800 a001 17711/24476*710647^(1/2) 6099996727609663 a001 10946/39603*710647^(4/7) 6099996727614840 a001 14912662/24447 6099996727647340 a001 17711/24476*271443^(7/13) 6099996727653708 a001 10946/39603*271443^(8/13) 6099996727818884 a001 9227465/24476*9349^(1/19) 6099996727891363 a001 4976784/90481*15127^(1/4) 6099996727933770 a001 17711/24476*103682^(7/12) 6099996727962078 a001 39088169/710647*15127^(1/4) 6099996727972395 a001 831985/15126*15127^(1/4) 6099996727973901 a001 267914296/4870847*15127^(1/4) 6099996727974120 a001 233802911/4250681*15127^(1/4) 6099996727974152 a001 1836311903/33385282*15127^(1/4) 6099996727974157 a001 1602508992/29134601*15127^(1/4) 6099996727974158 a001 12586269025/228826127*15127^(1/4) 6099996727974158 a001 10983760033/199691526*15127^(1/4) 6099996727974158 a001 86267571272/1568397607*15127^(1/4) 6099996727974158 a001 75283811239/1368706081*15127^(1/4) 6099996727974158 a001 591286729879/10749957122*15127^(1/4) 6099996727974158 a001 12585437040/228811001*15127^(1/4) 6099996727974158 a001 4052739537881/73681302247*15127^(1/4) 6099996727974158 a001 3536736619241/64300051206*15127^(1/4) 6099996727974158 a001 6557470319842/119218851371*15127^(1/4) 6099996727974158 a001 2504730781961/45537549124*15127^(1/4) 6099996727974158 a001 956722026041/17393796001*15127^(1/4) 6099996727974158 a001 365435296162/6643838879*15127^(1/4) 6099996727974158 a001 139583862445/2537720636*15127^(1/4) 6099996727974158 a001 53316291173/969323029*15127^(1/4) 6099996727974158 a001 20365011074/370248451*15127^(1/4) 6099996727974158 a001 7778742049/141422324*15127^(1/4) 6099996727974160 a001 2971215073/54018521*15127^(1/4) 6099996727974172 a001 1134903170/20633239*15127^(1/4) 6099996727974256 a001 433494437/7881196*15127^(1/4) 6099996727974831 a001 165580141/3010349*15127^(1/4) 6099996727978772 a001 63245986/1149851*15127^(1/4) 6099996727981057 a001 10946/39603*103682^(2/3) 6099996728005782 a001 24157817/439204*15127^(1/4) 6099996728088121 a001 514229/39603*15127^(2/5) 6099996728102570 a001 514229/24476*24476^(1/3) 6099996728126818 a001 5702887/64079*15127^(1/5) 6099996728190916 a001 9227465/167761*15127^(1/4) 6099996728581069 a001 208010/6119*24476^(2/7) 6099996728739701 a001 1762289/51841*15127^(3/10) 6099996729068379 a001 1346269/24476*24476^(5/21) 6099996729224272 a001 9227465/271443*15127^(3/10) 6099996729294970 a001 24157817/710647*15127^(3/10) 6099996729305285 a001 31622993/930249*15127^(3/10) 6099996729306790 a001 165580141/4870847*15127^(3/10) 6099996729307009 a001 433494437/12752043*15127^(3/10) 6099996729307041 a001 567451585/16692641*15127^(3/10) 6099996729307046 a001 2971215073/87403803*15127^(3/10) 6099996729307047 a001 7778742049/228826127*15127^(3/10) 6099996729307047 a001 10182505537/299537289*15127^(3/10) 6099996729307047 a001 53316291173/1568397607*15127^(3/10) 6099996729307047 a001 139583862445/4106118243*15127^(3/10) 6099996729307047 a001 182717648081/5374978561*15127^(3/10) 6099996729307047 a001 956722026041/28143753123*15127^(3/10) 6099996729307047 a001 2504730781961/73681302247*15127^(3/10) 6099996729307047 a001 3278735159921/96450076809*15127^(3/10) 6099996729307047 a001 10610209857723/312119004989*15127^(3/10) 6099996729307047 a001 4052739537881/119218851371*15127^(3/10) 6099996729307047 a001 387002188980/11384387281*15127^(3/10) 6099996729307047 a001 591286729879/17393796001*15127^(3/10) 6099996729307047 a001 225851433717/6643838879*15127^(3/10) 6099996729307047 a001 1135099622/33391061*15127^(3/10) 6099996729307047 a001 32951280099/969323029*15127^(3/10) 6099996729307047 a001 12586269025/370248451*15127^(3/10) 6099996729307047 a001 1201881744/35355581*15127^(3/10) 6099996729307049 a001 1836311903/54018521*15127^(3/10) 6099996729307061 a001 701408733/20633239*15127^(3/10) 6099996729307145 a001 66978574/1970299*15127^(3/10) 6099996729307720 a001 102334155/3010349*15127^(3/10) 6099996729311660 a001 39088169/1149851*15127^(3/10) 6099996729338664 a001 196452/5779*15127^(3/10) 6099996729404317 a001 105937/13201*15127^(9/20) 6099996729459843 a001 3524578/64079*15127^(1/4) 6099996729523754 a001 5702887/167761*15127^(3/10) 6099996729552323 a001 2178309/24476*24476^(4/21) 6099996729762002 a001 5473/51841*64079^(18/23) 6099996730006492 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^29 6099996730037553 a001 1762289/12238*24476^(1/7) 6099996730059004 a001 10946/710647*64079^(22/23) 6099996730072235 a001 46347/2206*15127^(7/20) 6099996730077781 a001 17711/24476*39603^(7/11) 6099996730117475 a001 10946/271443*64079^(20/23) 6099996730149546 a001 11592/6119*64079^(12/23) 6099996730167296 a001 5473/219602*64079^(21/23) 6099996730431356 a001 10946/39603*39603^(8/11) 6099996730481599 a001 10946/167761*64079^(19/23) 6099996730522292 a001 5702887/24476*24476^(2/21) 6099996730557109 a001 5702887/271443*15127^(7/20) 6099996730627852 a001 14930352/710647*15127^(7/20) 6099996730638173 a001 39088169/1860498*15127^(7/20) 6099996730639679 a001 102334155/4870847*15127^(7/20) 6099996730639898 a001 267914296/12752043*15127^(7/20) 6099996730639930 a001 701408733/33385282*15127^(7/20) 6099996730639935 a001 1836311903/87403803*15127^(7/20) 6099996730639936 a001 102287808/4868641*15127^(7/20) 6099996730639936 a001 12586269025/599074578*15127^(7/20) 6099996730639936 a001 32951280099/1568397607*15127^(7/20) 6099996730639936 a001 86267571272/4106118243*15127^(7/20) 6099996730639936 a001 225851433717/10749957122*15127^(7/20) 6099996730639936 a001 591286729879/28143753123*15127^(7/20) 6099996730639936 a001 1548008755920/73681302247*15127^(7/20) 6099996730639936 a001 4052739537881/192900153618*15127^(7/20) 6099996730639936 a001 225749145909/10745088481*15127^(7/20) 6099996730639936 a001 6557470319842/312119004989*15127^(7/20) 6099996730639936 a001 2504730781961/119218851371*15127^(7/20) 6099996730639936 a001 956722026041/45537549124*15127^(7/20) 6099996730639936 a001 365435296162/17393796001*15127^(7/20) 6099996730639936 a001 139583862445/6643838879*15127^(7/20) 6099996730639936 a001 53316291173/2537720636*15127^(7/20) 6099996730639936 a001 20365011074/969323029*15127^(7/20) 6099996730639936 a001 7778742049/370248451*15127^(7/20) 6099996730639936 a001 2971215073/141422324*15127^(7/20) 6099996730639938 a001 1134903170/54018521*15127^(7/20) 6099996730639950 a001 433494437/20633239*15127^(7/20) 6099996730640034 a001 165580141/7881196*15127^(7/20) 6099996730640609 a001 63245986/3010349*15127^(7/20) 6099996730644552 a001 24157817/1149851*15127^(7/20) 6099996730671573 a001 9227465/439204*15127^(7/20) 6099996730763382 a001 121393/24476*64079^(10/23) 6099996730780908 a001 196418/39603*15127^(1/2) 6099996730792377 a001 2178309/64079*15127^(3/10) 6099996730856778 a001 3524578/167761*15127^(7/20) 6099996730893109 a001 39088169/103682*5778^(1/18) 6099996730903553 a001 5473/51841*439204^(2/3) 6099996730910581 a001 11592/6119*439204^(4/9) 6099996730924581 a001 5473/51841*7881196^(6/11) 6099996730924599 a001 11592/6119*7881196^(4/11) 6099996730924635 a001 5473/51841*141422324^(6/13) 6099996730924635 a001 11592/6119*141422324^(4/13) 6099996730924635 a001 5473/51841*2537720636^(2/5) 6099996730924635 a001 5473/51841*45537549124^(6/17) 6099996730924635 a001 5473/51841*14662949395604^(2/7) 6099996730924635 a001 5473/51841*(1/2+1/2*5^(1/2))^18 6099996730924635 a001 5473/51841*192900153618^(1/3) 6099996730924635 a001 5473/51841*10749957122^(3/8) 6099996730924635 a001 5473/51841*4106118243^(9/23) 6099996730924635 a001 5473/51841*1568397607^(9/22) 6099996730924635 a001 5473/51841*599074578^(3/7) 6099996730924635 a001 11592/6119*2537720636^(4/15) 6099996730924635 a001 11592/6119*45537549124^(4/17) 6099996730924635 a001 11592/6119*817138163596^(4/19) 6099996730924635 a001 11592/6119*14662949395604^(4/21) 6099996730924635 a001 11592/6119*(1/2+1/2*5^(1/2))^12 6099996730924635 a001 11592/6119*192900153618^(2/9) 6099996730924635 a001 11592/6119*73681302247^(3/13) 6099996730924635 a001 11592/6119*10749957122^(1/4) 6099996730924635 a001 11592/6119*4106118243^(6/23) 6099996730924635 a001 11592/6119*1568397607^(3/11) 6099996730924635 a001 11592/6119*599074578^(2/7) 6099996730924635 a001 11592/6119*228826127^(3/10) 6099996730924635 a001 5473/51841*228826127^(9/20) 6099996730924635 a001 11592/6119*87403803^(6/19) 6099996730924635 a001 5473/51841*87403803^(9/19) 6099996730924637 a001 11592/6119*33385282^(1/3) 6099996730924638 a001 5473/51841*33385282^(1/2) 6099996730924648 a001 11592/6119*12752043^(6/17) 6099996730924655 a001 5473/51841*12752043^(9/17) 6099996730924731 a001 11592/6119*4870847^(3/8) 6099996730924780 a001 5473/51841*4870847^(9/16) 6099996730925340 a001 11592/6119*1860498^(2/5) 6099996730925692 a001 5473/51841*1860498^(3/5) 6099996730926397 a001 63443016/104005 6099996730929812 a001 11592/6119*710647^(3/7) 6099996730932400 a001 5473/51841*710647^(9/14) 6099996730942385 a001 98209/12238*64079^(9/23) 6099996730962845 a001 11592/6119*271443^(6/13) 6099996730963274 a001 10959/844*64079^(8/23) 6099996730981950 a001 5473/51841*271443^(9/13) 6099996730998325 a001 75025/24476*64079^(11/23) 6099996731007219 a001 9227465/24476*24476^(1/21) 6099996731044557 a001 514229/24476*64079^(7/23) 6099996731102772 a001 208010/6119*64079^(6/23) 6099996731169798 a001 1346269/24476*64079^(5/23) 6099996731208357 a001 11592/6119*103682^(1/2) 6099996731233459 a001 2178309/24476*64079^(4/23) 6099996731235894 a001 10946/271443*167761^(4/5) 6099996731275335 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^31 6099996731298405 a001 1762289/12238*64079^(3/23) 6099996731322592 a001 121393/24476*167761^(2/5) 6099996731350218 a001 5473/51841*103682^(3/4) 6099996731362860 a001 5702887/24476*64079^(2/23) 6099996731377765 a001 34111385/90481*5778^(1/18) 6099996731406054 a001 1346269/103682*15127^(2/5) 6099996731409282 a001 10946/271443*20633239^(4/7) 6099996731409286 a001 121393/24476*20633239^(2/7) 6099996731409290 a001 10946/271443*2537720636^(4/9) 6099996731409290 a001 10946/271443*(1/2+1/2*5^(1/2))^20 6099996731409290 a001 10946/271443*23725150497407^(5/16) 6099996731409290 a001 10946/271443*505019158607^(5/14) 6099996731409290 a001 10946/271443*73681302247^(5/13) 6099996731409290 a001 10946/271443*28143753123^(2/5) 6099996731409290 a001 10946/271443*10749957122^(5/12) 6099996731409290 a001 10946/271443*4106118243^(10/23) 6099996731409290 a001 10946/271443*1568397607^(5/11) 6099996731409290 a001 10946/271443*599074578^(10/21) 6099996731409290 a001 121393/24476*2537720636^(2/9) 6099996731409290 a001 121393/24476*312119004989^(2/11) 6099996731409290 a001 121393/24476*(1/2+1/2*5^(1/2))^10 6099996731409290 a001 121393/24476*28143753123^(1/5) 6099996731409290 a001 121393/24476*10749957122^(5/24) 6099996731409290 a001 121393/24476*4106118243^(5/23) 6099996731409290 a001 121393/24476*1568397607^(5/22) 6099996731409290 a001 121393/24476*599074578^(5/21) 6099996731409290 a001 121393/24476*228826127^(1/4) 6099996731409290 a001 10946/271443*228826127^(1/2) 6099996731409290 a001 121393/24476*87403803^(5/19) 6099996731409290 a001 10946/271443*87403803^(10/19) 6099996731409291 a001 121393/24476*33385282^(5/18) 6099996731409293 a001 10946/271443*33385282^(5/9) 6099996731409301 a001 121393/24476*12752043^(5/17) 6099996731409312 a001 10946/271443*12752043^(10/17) 6099996731409370 a001 121393/24476*4870847^(5/16) 6099996731409451 a001 10946/271443*4870847^(5/8) 6099996731409547 a001 1328767778/2178309 6099996731409877 a001 121393/24476*1860498^(1/3) 6099996731410465 a001 10946/271443*1860498^(2/3) 6099996731413604 a001 121393/24476*710647^(5/14) 6099996731417918 a001 10946/271443*710647^(5/7) 6099996731427502 a001 9227465/24476*64079^(1/23) 6099996731441132 a001 121393/24476*271443^(5/13) 6099996731448475 a001 267914296/710647*5778^(1/18) 6099996731449403 a001 1346269/24476*167761^(1/5) 6099996731458792 a001 233802911/620166*5778^(1/18) 6099996731460297 a001 1836311903/4870847*5778^(1/18) 6099996731460456 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^33 6099996731460517 a001 1602508992/4250681*5778^(1/18) 6099996731460549 a001 12586269025/33385282*5778^(1/18) 6099996731460553 a001 10983760033/29134601*5778^(1/18) 6099996731460554 a001 86267571272/228826127*5778^(1/18) 6099996731460554 a001 267913919/710646*5778^(1/18) 6099996731460554 a001 591286729879/1568397607*5778^(1/18) 6099996731460554 a001 516002918640/1368706081*5778^(1/18) 6099996731460554 a001 4052739537881/10749957122*5778^(1/18) 6099996731460554 a001 3536736619241/9381251041*5778^(1/18) 6099996731460554 a001 6557470319842/17393796001*5778^(1/18) 6099996731460554 a001 2504730781961/6643838879*5778^(1/18) 6099996731460554 a001 956722026041/2537720636*5778^(1/18) 6099996731460554 a001 365435296162/969323029*5778^(1/18) 6099996731460554 a001 139583862445/370248451*5778^(1/18) 6099996731460554 a001 53316291173/141422324*5778^(1/18) 6099996731460556 a001 20365011074/54018521*5778^(1/18) 6099996731460568 a001 7778742049/20633239*5778^(1/18) 6099996731460652 a001 2971215073/7881196*5778^(1/18) 6099996731461227 a001 1134903170/3010349*5778^(1/18) 6099996731462208 a001 5473/930249*439204^(8/9) 6099996731465168 a001 433494437/1149851*5778^(1/18) 6099996731472974 a001 10946/271443*271443^(10/13) 6099996731479935 a001 10946/710647*7881196^(2/3) 6099996731480000 a001 10946/710647*312119004989^(2/5) 6099996731480000 a001 10946/710647*(1/2+1/2*5^(1/2))^22 6099996731480000 a001 10946/710647*10749957122^(11/24) 6099996731480000 a001 10946/710647*4106118243^(11/23) 6099996731480000 a001 10946/710647*1568397607^(1/2) 6099996731480000 a001 10946/710647*599074578^(11/21) 6099996731480000 a001 10959/844*(1/2+1/2*5^(1/2))^8 6099996731480000 a001 10959/844*23725150497407^(1/8) 6099996731480000 a001 10959/844*505019158607^(1/7) 6099996731480000 a001 10959/844*73681302247^(2/13) 6099996731480000 a001 10959/844*10749957122^(1/6) 6099996731480000 a001 10959/844*4106118243^(4/23) 6099996731480000 a001 10959/844*1568397607^(2/11) 6099996731480000 a001 10959/844*599074578^(4/21) 6099996731480000 a001 10959/844*228826127^(1/5) 6099996731480000 a001 10946/710647*228826127^(11/20) 6099996731480000 a001 10959/844*87403803^(4/19) 6099996731480001 a001 10946/710647*87403803^(11/19) 6099996731480001 a001 10959/844*33385282^(2/9) 6099996731480003 a001 10946/710647*33385282^(11/18) 6099996731480009 a001 10959/844*12752043^(4/17) 6099996731480024 a001 10946/710647*12752043^(11/17) 6099996731480038 a001 3478759206/5702887 6099996731480064 a001 10959/844*4870847^(1/4) 6099996731480177 a001 10946/710647*4870847^(11/16) 6099996731480470 a001 10959/844*1860498^(4/15) 6099996731481292 a001 10946/710647*1860498^(11/15) 6099996731483289 a001 208010/6119*439204^(2/9) 6099996731483451 a001 10959/844*710647^(2/7) 6099996731487465 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^35 6099996731488663 a001 1762289/12238*439204^(1/9) 6099996731489491 a001 10946/710647*710647^(11/14) 6099996731490245 a001 5473/930249*7881196^(8/11) 6099996731490299 a001 208010/6119*7881196^(2/11) 6099996731490316 a001 5473/930249*141422324^(8/13) 6099996731490317 a001 208010/6119*141422324^(2/13) 6099996731490317 a001 5473/930249*2537720636^(8/15) 6099996731490317 a001 5473/930249*45537549124^(8/17) 6099996731490317 a001 5473/930249*14662949395604^(8/21) 6099996731490317 a001 5473/930249*(1/2+1/2*5^(1/2))^24 6099996731490317 a001 5473/930249*192900153618^(4/9) 6099996731490317 a001 5473/930249*73681302247^(6/13) 6099996731490317 a001 5473/930249*10749957122^(1/2) 6099996731490317 a001 5473/930249*4106118243^(12/23) 6099996731490317 a001 5473/930249*1568397607^(6/11) 6099996731490317 a001 5473/930249*599074578^(4/7) 6099996731490317 a001 208010/6119*2537720636^(2/15) 6099996731490317 a001 208010/6119*45537549124^(2/17) 6099996731490317 a001 208010/6119*14662949395604^(2/21) 6099996731490317 a001 208010/6119*(1/2+1/2*5^(1/2))^6 6099996731490317 a001 208010/6119*10749957122^(1/8) 6099996731490317 a001 208010/6119*4106118243^(3/23) 6099996731490317 a001 208010/6119*1568397607^(3/22) 6099996731490317 a001 208010/6119*599074578^(1/7) 6099996731490317 a001 208010/6119*228826127^(3/20) 6099996731490317 a001 5473/930249*228826127^(3/5) 6099996731490317 a001 208010/6119*87403803^(3/19) 6099996731490317 a001 5473/930249*87403803^(12/19) 6099996731490317 a001 208010/6119*33385282^(1/6) 6099996731490320 a001 5473/930249*33385282^(2/3) 6099996731490322 a001 569219365/933147 6099996731490323 a001 208010/6119*12752043^(3/17) 6099996731490343 a001 5473/930249*12752043^(12/17) 6099996731490365 a001 208010/6119*4870847^(3/16) 6099996731490509 a001 5473/930249*4870847^(3/4) 6099996731490669 a001 208010/6119*1860498^(1/5) 6099996731491406 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^37 6099996731491726 a001 5473/930249*1860498^(4/5) 6099996731491822 a001 10946/4870847*141422324^(2/3) 6099996731491822 a001 10946/4870847*(1/2+1/2*5^(1/2))^26 6099996731491822 a001 10946/4870847*73681302247^(1/2) 6099996731491822 a001 10946/4870847*10749957122^(13/24) 6099996731491822 a001 10946/4870847*4106118243^(13/23) 6099996731491822 a001 10946/4870847*1568397607^(13/22) 6099996731491822 a001 10946/4870847*599074578^(13/21) 6099996731491822 a001 2178309/24476*(1/2+1/2*5^(1/2))^4 6099996731491822 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^4/Lucas(21) 6099996731491822 a001 2178309/24476*23725150497407^(1/16) 6099996731491822 a001 2178309/24476*73681302247^(1/13) 6099996731491822 a001 2178309/24476*10749957122^(1/12) 6099996731491822 a001 2178309/24476*4106118243^(2/23) 6099996731491822 a001 2178309/24476*1568397607^(1/11) 6099996731491822 a001 2178309/24476*599074578^(2/21) 6099996731491822 a001 2178309/24476*228826127^(1/10) 6099996731491822 a001 10946/4870847*228826127^(13/20) 6099996731491822 a001 2178309/24476*87403803^(2/19) 6099996731491822 a001 10946/4870847*87403803^(13/19) 6099996731491822 a001 2178309/24476*33385282^(1/9) 6099996731491823 a001 23843770314/39088169 6099996731491826 a001 10946/4870847*33385282^(13/18) 6099996731491826 a001 2178309/24476*12752043^(2/17) 6099996731491850 a001 10946/4870847*12752043^(13/17) 6099996731491854 a001 2178309/24476*4870847^(1/8) 6099996731491981 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^39 6099996731491984 a001 5473/16692641*7881196^(10/11) 6099996731492030 a001 10946/12752043*20633239^(4/5) 6099996731492031 a001 10946/4870847*4870847^(13/16) 6099996731492041 a001 10946/12752043*17393796001^(4/7) 6099996731492041 a001 10946/12752043*14662949395604^(4/9) 6099996731492041 a001 10946/12752043*(1/2+1/2*5^(1/2))^28 6099996731492041 a001 10946/12752043*505019158607^(1/2) 6099996731492041 a001 10946/12752043*73681302247^(7/13) 6099996731492041 a001 10946/12752043*10749957122^(7/12) 6099996731492041 a001 10946/12752043*4106118243^(14/23) 6099996731492041 a001 10946/12752043*1568397607^(7/11) 6099996731492041 a001 10946/12752043*599074578^(2/3) 6099996731492041 a001 5702887/24476*(1/2+1/2*5^(1/2))^2 6099996731492041 a001 5702887/24476*10749957122^(1/24) 6099996731492041 a001 5702887/24476*4106118243^(1/23) 6099996731492041 a001 5702887/24476*1568397607^(1/22) 6099996731492041 a001 5702887/24476*599074578^(1/21) 6099996731492041 a001 5702887/24476*228826127^(1/20) 6099996731492041 a001 5702887/24476*87403803^(1/19) 6099996731492041 a001 10946/12752043*228826127^(7/10) 6099996731492041 a001 62423801102/102334155 6099996731492042 a001 5702887/24476*33385282^(1/18) 6099996731492042 a001 10946/12752043*87403803^(14/19) 6099996731492044 a001 5702887/24476*12752043^(1/17) 6099996731492046 a001 10946/12752043*33385282^(7/9) 6099996731492057 a001 2178309/24476*1860498^(2/15) 6099996731492057 a001 5702887/24476*4870847^(1/16) 6099996731492061 a001 5473/16692641*20633239^(6/7) 6099996731492064 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^41 6099996731492072 a001 10946/12752043*12752043^(14/17) 6099996731492073 a001 5473/16692641*141422324^(10/13) 6099996731492073 a001 5473/16692641*2537720636^(2/3) 6099996731492073 a001 5473/16692641*45537549124^(10/17) 6099996731492073 a001 5473/16692641*312119004989^(6/11) 6099996731492073 a001 5473/16692641*14662949395604^(10/21) 6099996731492073 a001 5473/16692641*(1/2+1/2*5^(1/2))^30 6099996731492073 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(36) 6099996731492073 a001 5473/16692641*192900153618^(5/9) 6099996731492073 a001 5473/16692641*28143753123^(3/5) 6099996731492073 a001 5473/16692641*10749957122^(5/8) 6099996731492073 a001 5473/16692641*4106118243^(15/23) 6099996731492073 a001 5473/16692641*1568397607^(15/22) 6099996731492073 a001 5473/16692641*599074578^(5/7) 6099996731492073 a001 3732588/6119 6099996731492073 a001 5473/16692641*228826127^(3/4) 6099996731492074 a001 5473/16692641*87403803^(15/19) 6099996731492077 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^43 6099996731492078 a001 5473/16692641*33385282^(5/6) 6099996731492078 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(38) 6099996731492078 a001 10946/87403803*23725150497407^(1/2) 6099996731492078 a001 10946/87403803*505019158607^(4/7) 6099996731492078 a001 10946/87403803*73681302247^(8/13) 6099996731492078 a001 10946/87403803*10749957122^(2/3) 6099996731492078 a001 10946/87403803*4106118243^(16/23) 6099996731492078 a001 10946/87403803*1568397607^(8/11) 6099996731492078 a001 427859097874/701408733 6099996731492078 a001 10946/87403803*599074578^(16/21) 6099996731492078 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^2 6099996731492078 a001 10946/87403803*228826127^(4/5) 6099996731492079 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^45 6099996731492079 a001 5473/299537289*141422324^(12/13) 6099996731492079 a001 10946/87403803*87403803^(16/19) 6099996731492079 a001 10946/228826127*45537549124^(2/3) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(40) 6099996731492079 a001 10946/228826127*10749957122^(17/24) 6099996731492079 a001 10946/228826127*4106118243^(17/23) 6099996731492079 a001 1120149660630/1836311903 6099996731492079 a001 10946/228826127*1568397607^(17/22) 6099996731492079 a001 10946/228826127*599074578^(17/21) 6099996731492079 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^4 6099996731492079 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^47 6099996731492079 a001 5473/299537289*2537720636^(4/5) 6099996731492079 a001 10946/228826127*228826127^(17/20) 6099996731492079 a001 5473/299537289*45537549124^(12/17) 6099996731492079 a001 5473/299537289*14662949395604^(4/7) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(42) 6099996731492079 a001 5473/299537289*505019158607^(9/14) 6099996731492079 a001 5473/299537289*192900153618^(2/3) 6099996731492079 a001 5473/299537289*73681302247^(9/13) 6099996731492079 a001 5473/299537289*10749957122^(3/4) 6099996731492079 a001 183286867751/300470436 6099996731492079 a001 5473/299537289*4106118243^(18/23) 6099996731492079 a001 5473/299537289*1568397607^(9/11) 6099996731492079 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^49 6099996731492079 a001 10946/1568397607*817138163596^(2/3) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(44) 6099996731492079 a001 7677619991418/12586269025 6099996731492079 a001 10946/1568397607*10749957122^(19/24) 6099996731492079 a001 5473/299537289*599074578^(6/7) 6099996731492079 a001 10946/1568397607*4106118243^(19/23) 6099996731492079 a001 10946/4106118243*2537720636^(8/9) 6099996731492079 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^51 6099996731492079 a001 5473/5374978561*2537720636^(14/15) 6099996731492079 a001 10946/4106118243*312119004989^(8/11) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(46) 6099996731492079 a001 10946/4106118243*23725150497407^(5/8) 6099996731492079 a001 10946/4106118243*73681302247^(10/13) 6099996731492079 a001 20100270090238/32951280099 6099996731492079 a001 10946/4106118243*28143753123^(4/5) 6099996731492079 a001 10946/1568397607*1568397607^(19/22) 6099996731492079 a001 10946/4106118243*10749957122^(5/6) 6099996731492079 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^53 6099996731492079 a001 5473/5374978561*17393796001^(6/7) 6099996731492079 a001 5473/5374978561*45537549124^(14/17) 6099996731492079 a001 5473/5374978561*817138163596^(14/19) 6099996731492079 a001 5473/5374978561*14662949395604^(2/3) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(48) 6099996731492079 a001 5473/5374978561*505019158607^(3/4) 6099996731492079 a001 5473/5374978561*192900153618^(7/9) 6099996731492079 a001 6577898784912/10783446409 6099996731492079 a001 10946/4106118243*4106118243^(20/23) 6099996731492079 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^55 6099996731492079 a001 10946/28143753123*312119004989^(4/5) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(50) 6099996731492079 a001 10597638519050/17373187209 6099996731492079 a001 10946/28143753123*73681302247^(11/13) 6099996731492079 a001 5473/5374978561*10749957122^(7/8) 6099996731492079 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^57 6099996731492079 a001 5473/96450076809*45537549124^(16/17) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(52) 6099996731492079 a001 360684711963654/591286729879 6099996731492079 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^59 6099996731492079 a001 5473/96450076809*14662949395604^(16/21) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(54) 6099996731492079 a001 59017802196457/96750547245 6099996731492079 a001 10946/505019158607*312119004989^(10/11) 6099996731492079 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^61 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(56) 6099996731492079 a001 2472169793466282/4052739537881 6099996731492079 a001 5473/96450076809*192900153618^(8/9) 6099996731492079 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^63 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(58) 6099996731492079 a001 10946/1322157322203*23725150497407^(13/16) 6099996731492079 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^65 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(60) 6099996731492079 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^67 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(62) 6099996731492079 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^69 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(64) 6099996731492079 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^71 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(66) 6099996731492079 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^73 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(68) 6099996731492079 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^75 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(70) 6099996731492079 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^77 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(72) 6099996731492079 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^79 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(74) 6099996731492079 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^81 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(76) 6099996731492079 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^83 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(78) 6099996731492079 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^85 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(80) 6099996731492079 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^87 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(82) 6099996731492079 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^89 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(84) 6099996731492079 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^91 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(86) 6099996731492079 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^93 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(88) 6099996731492079 a004 Fibonacci(21)*Lucas(89)/(1/2+sqrt(5)/2)^95 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(90) 6099996731492079 a004 Fibonacci(21)*Lucas(91)/(1/2+sqrt(5)/2)^97 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(92) 6099996731492079 a004 Fibonacci(21)*Lucas(93)/(1/2+sqrt(5)/2)^99 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^88/Lucas(94) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^90/Lucas(96) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^92/Lucas(98) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^93/Lucas(99) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^94/Lucas(100) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^91/Lucas(97) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^89/Lucas(95) 6099996731492079 a004 Fibonacci(21)*Lucas(94)/(1/2+sqrt(5)/2)^100 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(93) 6099996731492079 a004 Fibonacci(21)*Lucas(92)/(1/2+sqrt(5)/2)^98 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(91) 6099996731492079 a004 Fibonacci(21)*Lucas(90)/(1/2+sqrt(5)/2)^96 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(89) 6099996731492079 a004 Fibonacci(21)*Lucas(88)/(1/2+sqrt(5)/2)^94 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(87) 6099996731492079 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^92 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(85) 6099996731492079 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^90 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(83) 6099996731492079 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^88 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(81) 6099996731492079 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^86 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(79) 6099996731492079 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^84 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(77) 6099996731492079 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^82 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(75) 6099996731492079 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^80 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(73) 6099996731492079 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^78 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(71) 6099996731492079 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^76 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(69) 6099996731492079 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^74 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(67) 6099996731492079 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^72 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(65) 6099996731492079 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^70 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(63) 6099996731492079 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^68 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(61) 6099996731492079 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^66 6099996731492079 a001 10946/5600748293801*3461452808002^(11/12) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(59) 6099996731492079 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^64 6099996731492079 a001 365435296162/599074577 6099996731492079 a001 5473/408569081798*14662949395604^(17/21) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(57) 6099996731492079 a001 10946/1322157322203*505019158607^(13/14) 6099996731492079 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^62 6099996731492079 a001 1527884958322970/2504730781961 6099996731492079 a001 10946/312119004989*14662949395604^(7/9) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(55) 6099996731492079 a001 10946/312119004989*505019158607^(7/8) 6099996731492079 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^60 6099996731492079 a001 5473/408569081798*192900153618^(17/18) 6099996731492079 a001 5473/22768774562*45537549124^(15/17) 6099996731492079 a001 583600123179658/956722026041 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(53) 6099996731492079 a001 5473/96450076809*73681302247^(12/13) 6099996731492079 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^58 6099996731492079 a001 5473/22768774562*312119004989^(9/11) 6099996731492079 a001 111457705608002/182717648081 6099996731492079 a001 5473/22768774562*14662949395604^(5/7) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(51) 6099996731492079 a001 5473/22768774562*192900153618^(5/6) 6099996731492079 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^56 6099996731492079 a001 5473/22768774562*28143753123^(9/10) 6099996731492079 a001 85146110468354/139583862445 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(49) 6099996731492079 a001 10946/28143753123*10749957122^(11/12) 6099996731492079 a001 10946/73681302247*10749957122^(23/24) 6099996731492079 a001 5473/22768774562*10749957122^(15/16) 6099996731492079 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^54 6099996731492079 a001 5473/1268860318*2537720636^(13/15) 6099996731492079 a001 32522920189058/53316291173 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(47) 6099996731492079 a001 5473/5374978561*4106118243^(21/23) 6099996731492079 a001 10946/28143753123*4106118243^(22/23) 6099996731492079 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^52 6099996731492079 a001 6211325049410/10182505537 6099996731492079 a001 5473/1268860318*45537549124^(13/17) 6099996731492079 a001 5473/1268860318*14662949395604^(13/21) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(45) 6099996731492079 a001 5473/1268860318*192900153618^(13/18) 6099996731492079 a001 5473/1268860318*73681302247^(3/4) 6099996731492079 a001 5473/1268860318*10749957122^(13/16) 6099996731492079 a001 10946/4106118243*1568397607^(10/11) 6099996731492079 a001 5473/5374978561*1568397607^(21/22) 6099996731492079 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^50 6099996731492079 a001 365002315954/598364773 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(43) 6099996731492079 a001 10946/1568397607*599074578^(19/21) 6099996731492079 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^8 6099996731492079 a001 10946/4106118243*599074578^(20/21) 6099996731492079 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^10 6099996731492079 a001 5473/1268860318*599074578^(13/14) 6099996731492079 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^12 6099996731492079 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^14 6099996731492079 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^16 6099996731492079 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^18 6099996731492079 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^20 6099996731492079 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^22 6099996731492079 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^24 6099996731492079 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^26 6099996731492079 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^28 6099996731492079 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^30 6099996731492079 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^32 6099996731492079 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^34 6099996731492079 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^36 6099996731492079 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^38 6099996731492079 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^40 6099996731492079 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^42 6099996731492079 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^44 6099996731492079 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^46 6099996731492079 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^48 6099996731492079 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^50 6099996731492079 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^52 6099996731492079 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^54 6099996731492079 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^56 6099996731492079 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^58 6099996731492079 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^60 6099996731492079 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^62 6099996731492079 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^64 6099996731492079 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^63 6099996731492079 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^61 6099996731492079 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^59 6099996731492079 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^57 6099996731492079 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^55 6099996731492079 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^53 6099996731492079 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^51 6099996731492079 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^49 6099996731492079 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^47 6099996731492079 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^45 6099996731492079 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^43 6099996731492079 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^41 6099996731492079 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^39 6099996731492079 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^37 6099996731492079 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^35 6099996731492079 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^33 6099996731492079 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^31 6099996731492079 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^29 6099996731492079 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^27 6099996731492079 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^25 6099996731492079 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^23 6099996731492079 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^21 6099996731492079 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^19 6099996731492079 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^17 6099996731492079 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^15 6099996731492079 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^13 6099996731492079 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^11 6099996731492079 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^9 6099996731492079 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^7 6099996731492079 a001 10946/370248451*2537720636^(7/9) 6099996731492079 a001 1812440223386/2971215073 6099996731492079 a001 10946/370248451*17393796001^(5/7) 6099996731492079 a001 10946/370248451*312119004989^(7/11) 6099996731492079 a001 10946/370248451*14662949395604^(5/9) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(41) 6099996731492079 a001 10946/370248451*505019158607^(5/8) 6099996731492079 a001 10946/370248451*28143753123^(7/10) 6099996731492079 a001 5473/70711162*141422324^(11/13) 6099996731492079 a001 10946/370248451*599074578^(5/6) 6099996731492079 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^5 6099996731492079 a001 5473/299537289*228826127^(9/10) 6099996731492079 a001 10946/1568397607*228826127^(19/20) 6099996731492079 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^46 6099996731492079 a001 10946/370248451*228826127^(7/8) 6099996731492079 a001 346145281378/567451585 6099996731492079 a001 5473/70711162*2537720636^(11/15) 6099996731492079 a001 5473/70711162*45537549124^(11/17) 6099996731492079 a001 5473/70711162*312119004989^(3/5) 6099996731492079 a001 5473/70711162*817138163596^(11/19) 6099996731492079 a001 5473/70711162*14662949395604^(11/21) 6099996731492079 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(39) 6099996731492079 a001 5473/70711162*192900153618^(11/18) 6099996731492079 a001 5473/70711162*10749957122^(11/16) 6099996731492079 a001 5473/70711162*1568397607^(3/4) 6099996731492079 a001 5473/70711162*599074578^(11/14) 6099996731492079 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^3 6099996731492079 a001 10946/228826127*87403803^(17/19) 6099996731492080 a001 5473/299537289*87403803^(18/19) 6099996731492080 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^44 6099996731492081 a001 264431464882/433494437 6099996731492081 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(37) 6099996731492081 a001 10946/54018521*9062201101803^(1/2) 6099996731492081 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2) 6099996731492083 a001 10946/87403803*33385282^(8/9) 6099996731492084 a001 10946/228826127*33385282^(17/18) 6099996731492084 a001 5473/70711162*33385282^(11/12) 6099996731492084 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^42 6099996731492093 a001 101003831890/165580141 6099996731492093 a001 10946/20633239*(1/2+1/2*5^(1/2))^29 6099996731492093 a001 10946/20633239*1322157322203^(1/2) 6099996731492093 a001 9227465/48952+9227465/48952*5^(1/2) 6099996731492097 a001 5473/3940598*7881196^(9/11) 6099996731492106 a001 5473/16692641*12752043^(15/17) 6099996731492113 a001 10946/87403803*12752043^(16/17) 6099996731492116 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^40 6099996731492159 a001 5702887/24476*1860498^(1/15) 6099996731492168 a001 1762289/12238*7881196^(1/11) 6099996731492177 a001 165580141/439204*5778^(1/18) 6099996731492177 a001 19290015394/31622993 6099996731492177 a001 5473/3940598*141422324^(9/13) 6099996731492177 a001 1762289/12238*141422324^(1/13) 6099996731492177 a001 5473/3940598*2537720636^(3/5) 6099996731492177 a001 5473/3940598*45537549124^(9/17) 6099996731492177 a001 5473/3940598*817138163596^(9/19) 6099996731492177 a001 5473/3940598*14662949395604^(3/7) 6099996731492177 a001 5473/3940598*(1/2+1/2*5^(1/2))^27 6099996731492177 a001 5473/3940598*192900153618^(1/2) 6099996731492177 a001 5473/3940598*10749957122^(9/16) 6099996731492177 a001 5473/3940598*599074578^(9/14) 6099996731492177 a001 1762289/12238*2537720636^(1/15) 6099996731492177 a001 1762289/12238*45537549124^(1/17) 6099996731492177 a001 1762289/12238*14662949395604^(1/21) 6099996731492177 a001 1762289/12238*(1/2+1/2*5^(1/2))^3 6099996731492177 a001 1762289/12238*192900153618^(1/18) 6099996731492177 a001 1762289/12238*10749957122^(1/16) 6099996731492177 a001 1762289/12238*599074578^(1/14) 6099996731492178 a001 1762289/12238*33385282^(1/12) 6099996731492181 a001 5473/3940598*33385282^(3/4) 6099996731492266 a001 10946/12752043*4870847^(7/8) 6099996731492314 a001 5473/16692641*4870847^(15/16) 6099996731492336 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^38 6099996731492353 a001 1762289/12238*1860498^(1/10) 6099996731492742 a001 10946/3010349*20633239^(5/7) 6099996731492750 a001 14736260474/24157817 6099996731492750 a001 1346269/24476*20633239^(1/7) 6099996731492752 a001 10946/3010349*2537720636^(5/9) 6099996731492752 a001 10946/3010349*312119004989^(5/11) 6099996731492752 a001 10946/3010349*(1/2+1/2*5^(1/2))^25 6099996731492752 a001 10946/3010349*3461452808002^(5/12) 6099996731492752 a001 10946/3010349*28143753123^(1/2) 6099996731492752 a001 1346269/24476*2537720636^(1/9) 6099996731492752 a001 1346269/24476*312119004989^(1/11) 6099996731492752 a001 1346269/24476*(1/2+1/2*5^(1/2))^5 6099996731492752 a001 1346269/24476*28143753123^(1/10) 6099996731492752 a001 1346269/24476*228826127^(1/8) 6099996731492752 a001 10946/3010349*228826127^(5/8) 6099996731492904 a001 5702887/24476*710647^(1/14) 6099996731492905 a001 208010/6119*710647^(3/14) 6099996731493046 a001 1346269/24476*1860498^(1/6) 6099996731493349 a001 10946/4870847*1860498^(13/15) 6099996731493547 a001 2178309/24476*710647^(1/7) 6099996731493686 a001 10946/12752043*1860498^(14/15) 6099996731493763 a001 5473/3940598*1860498^(9/10) 6099996731493841 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^36 6099996731494221 a001 10946/3010349*1860498^(5/6) 6099996731496678 a001 432980818/709805 6099996731496690 a001 514229/24476*20633239^(1/5) 6099996731496692 a001 10946/1149851*(1/2+1/2*5^(1/2))^23 6099996731496692 a001 10946/1149851*4106118243^(1/2) 6099996731496693 a001 514229/24476*17393796001^(1/7) 6099996731496693 a001 514229/24476*14662949395604^(1/9) 6099996731496693 a001 514229/24476*(1/2+1/2*5^(1/2))^7 6099996731496693 a001 514229/24476*599074578^(1/6) 6099996731498410 a001 5702887/24476*271443^(1/13) 6099996731499106 a001 5473/219602*439204^(7/9) 6099996731499712 a001 514229/24476*710647^(1/4) 6099996731500670 a001 5473/930249*710647^(6/7) 6099996731503038 a001 10946/4870847*710647^(13/14) 6099996731504158 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^34 6099996731504558 a001 2178309/24476*271443^(2/13) 6099996731505474 a001 10959/844*271443^(4/13) 6099996731509422 a001 208010/6119*271443^(3/13) 6099996731513161 a001 98209/12238*439204^(1/3) 6099996731515737 a001 9227465/24476*103682^(1/24) 6099996731523603 a001 1074995714/1762289 6099996731523639 a001 5473/219602*7881196^(7/11) 6099996731523675 a001 98209/12238*7881196^(3/11) 6099996731523693 a001 5473/219602*20633239^(3/5) 6099996731523701 a001 5473/219602*141422324^(7/13) 6099996731523701 a001 98209/12238*141422324^(3/13) 6099996731523701 a001 5473/219602*2537720636^(7/15) 6099996731523701 a001 5473/219602*17393796001^(3/7) 6099996731523701 a001 5473/219602*45537549124^(7/17) 6099996731523701 a001 5473/219602*14662949395604^(1/3) 6099996731523701 a001 5473/219602*(1/2+1/2*5^(1/2))^21 6099996731523701 a001 5473/219602*192900153618^(7/18) 6099996731523701 a001 5473/219602*10749957122^(7/16) 6099996731523701 a001 5473/219602*599074578^(1/2) 6099996731523701 a001 98209/12238*2537720636^(1/5) 6099996731523701 a001 98209/12238*45537549124^(3/17) 6099996731523701 a001 98209/12238*14662949395604^(1/7) 6099996731523701 a001 98209/12238*(1/2+1/2*5^(1/2))^9 6099996731523701 a001 98209/12238*192900153618^(1/6) 6099996731523701 a001 98209/12238*10749957122^(3/16) 6099996731523701 a001 98209/12238*599074578^(3/14) 6099996731523703 a001 98209/12238*33385282^(1/4) 6099996731523705 a001 5473/219602*33385282^(7/12) 6099996731524230 a001 98209/12238*1860498^(3/10) 6099996731524935 a001 5473/219602*1860498^(7/10) 6099996731532760 a001 5473/219602*710647^(3/4) 6099996731539328 a001 5702887/24476*103682^(1/12) 6099996731550052 a001 10946/710647*271443^(11/13) 6099996731563108 a001 1762289/12238*103682^(1/8) 6099996731566737 a001 5473/930249*271443^(12/13) 6099996731574868 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^32 6099996731586396 a001 2178309/24476*103682^(1/6) 6099996731610969 a001 1346269/24476*103682^(5/24) 6099996731632178 a001 208010/6119*103682^(1/4) 6099996731645725 a001 121393/24476*103682^(5/12) 6099996731662197 a001 514229/24476*103682^(7/24) 6099996731668880 a001 9227465/24476*39603^(1/22) 6099996731669148 a001 10959/844*103682^(1/3) 6099996731677299 a001 63245986/167761*5778^(1/18) 6099996731708150 a001 821223650/1346269 6099996731708790 a001 75025/24476*7881196^(1/3) 6099996731708823 a001 10946/167761*817138163596^(1/3) 6099996731708823 a001 10946/167761*(1/2+1/2*5^(1/2))^19 6099996731708823 a001 75025/24476*312119004989^(1/5) 6099996731708823 a001 75025/24476*(1/2+1/2*5^(1/2))^11 6099996731708823 a001 75025/24476*1568397607^(1/4) 6099996731708823 a001 10946/167761*87403803^(1/2) 6099996731736493 a001 98209/12238*103682^(3/8) 6099996731845616 a001 5702887/24476*39603^(1/11) 6099996731879623 a001 10946/64079*64079^(17/23) 6099996731882160 a001 10946/271443*103682^(5/6) 6099996731890134 a001 3524578/271443*15127^(2/5) 6099996731960761 a001 9227465/710647*15127^(2/5) 6099996731968902 a001 75025/24476*103682^(11/24) 6099996731971065 a001 24157817/1860498*15127^(2/5) 6099996731972568 a001 63245986/4870847*15127^(2/5) 6099996731972787 a001 165580141/12752043*15127^(2/5) 6099996731972819 a001 433494437/33385282*15127^(2/5) 6099996731972824 a001 1134903170/87403803*15127^(2/5) 6099996731972825 a001 2971215073/228826127*15127^(2/5) 6099996731972825 a001 7778742049/599074578*15127^(2/5) 6099996731972825 a001 20365011074/1568397607*15127^(2/5) 6099996731972825 a001 53316291173/4106118243*15127^(2/5) 6099996731972825 a001 139583862445/10749957122*15127^(2/5) 6099996731972825 a001 365435296162/28143753123*15127^(2/5) 6099996731972825 a001 956722026041/73681302247*15127^(2/5) 6099996731972825 a001 2504730781961/192900153618*15127^(2/5) 6099996731972825 a001 10610209857723/817138163596*15127^(2/5) 6099996731972825 a001 4052739537881/312119004989*15127^(2/5) 6099996731972825 a001 1548008755920/119218851371*15127^(2/5) 6099996731972825 a001 591286729879/45537549124*15127^(2/5) 6099996731972825 a001 7787980473/599786069*15127^(2/5) 6099996731972825 a001 86267571272/6643838879*15127^(2/5) 6099996731972825 a001 32951280099/2537720636*15127^(2/5) 6099996731972825 a001 12586269025/969323029*15127^(2/5) 6099996731972825 a001 4807526976/370248451*15127^(2/5) 6099996731972825 a001 1836311903/141422324*15127^(2/5) 6099996731972827 a001 701408733/54018521*15127^(2/5) 6099996731972839 a001 9238424/711491*15127^(2/5) 6099996731972923 a001 102334155/7881196*15127^(2/5) 6099996731973497 a001 39088169/3010349*15127^(2/5) 6099996731977433 a001 14930352/1149851*15127^(2/5) 6099996731999385 a001 121393/39603*15127^(11/20) 6099996732000157 a001 10946/710647*103682^(11/12) 6099996732004410 a001 5702887/439204*15127^(2/5) 6099996732020215 a001 5473/219602*103682^(7/8) 6099996732022539 a001 1762289/12238*39603^(3/22) 6099996732040493 a001 10946/1149851*103682^(23/24) 6099996732059523 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^30 6099996732126196 a001 1346269/64079*15127^(7/20) 6099996732137986 a001 28657/24476*64079^(13/23) 6099996732158049 a001 10946/167761*103682^(19/24) 6099996732189312 a001 2178309/167761*15127^(2/5) 6099996732198970 a001 2178309/24476*39603^(2/11) 6099996732376688 a001 1346269/24476*39603^(5/22) 6099996732551040 a001 208010/6119*39603^(3/11) 6099996732734203 a001 514229/24476*39603^(7/22) 6099996732736508 a001 416020/51841*15127^(9/20) 6099996732824982 a001 9227465/24476*15127^(1/20) 6099996732894297 a001 10959/844*39603^(4/11) 6099996732946143 a001 24157817/64079*5778^(1/18) 6099996732973052 a001 313679522/514229 6099996732977666 a001 28657/24476*141422324^(1/3) 6099996732977666 a001 10946/64079*45537549124^(1/3) 6099996732977666 a001 10946/64079*(1/2+1/2*5^(1/2))^17 6099996732977666 a001 28657/24476*(1/2+1/2*5^(1/2))^13 6099996732977666 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^13/Lucas(21) 6099996732977666 a001 28657/24476*73681302247^(1/4) 6099996732977685 a001 10946/64079*12752043^(1/2) 6099996733019061 a001 28657/24476*271443^(1/2) 6099996733046081 a001 11592/6119*39603^(6/11) 6099996733114786 a001 98209/12238*39603^(9/22) 6099996733177162 a001 121393/24476*39603^(5/11) 6099996733222668 a001 726103/90481*15127^(9/20) 6099996733285031 a001 28657/24476*103682^(13/24) 6099996733293598 a001 5702887/710647*15127^(9/20) 6099996733303946 a001 829464/103361*15127^(9/20) 6099996733305456 a001 39088169/4870847*15127^(9/20) 6099996733305676 a001 34111385/4250681*15127^(9/20) 6099996733305708 a001 133957148/16692641*15127^(9/20) 6099996733305713 a001 233802911/29134601*15127^(9/20) 6099996733305714 a001 1836311903/228826127*15127^(9/20) 6099996733305714 a001 267084832/33281921*15127^(9/20) 6099996733305714 a001 12586269025/1568397607*15127^(9/20) 6099996733305714 a001 10983760033/1368706081*15127^(9/20) 6099996733305714 a001 43133785636/5374978561*15127^(9/20) 6099996733305714 a001 75283811239/9381251041*15127^(9/20) 6099996733305714 a001 591286729879/73681302247*15127^(9/20) 6099996733305714 a001 86000486440/10716675201*15127^(9/20) 6099996733305714 a001 4052739537881/505019158607*15127^(9/20) 6099996733305714 a001 3536736619241/440719107401*15127^(9/20) 6099996733305714 a001 3278735159921/408569081798*15127^(9/20) 6099996733305714 a001 2504730781961/312119004989*15127^(9/20) 6099996733305714 a001 956722026041/119218851371*15127^(9/20) 6099996733305714 a001 182717648081/22768774562*15127^(9/20) 6099996733305714 a001 139583862445/17393796001*15127^(9/20) 6099996733305714 a001 53316291173/6643838879*15127^(9/20) 6099996733305714 a001 10182505537/1268860318*15127^(9/20) 6099996733305714 a001 7778742049/969323029*15127^(9/20) 6099996733305714 a001 2971215073/370248451*15127^(9/20) 6099996733305714 a001 567451585/70711162*15127^(9/20) 6099996733305716 a001 433494437/54018521*15127^(9/20) 6099996733305728 a001 165580141/20633239*15127^(9/20) 6099996733305812 a001 31622993/3940598*15127^(9/20) 6099996733306389 a001 24157817/3010349*15127^(9/20) 6099996733310342 a001 9227465/1149851*15127^(9/20) 6099996733337435 a001 1762289/219602*15127^(9/20) 6099996733379605 a001 10946/64079*103682^(17/24) 6099996733456650 a001 832040/64079*15127^(2/5) 6099996733523131 a001 1346269/167761*15127^(9/20) 6099996733524413 a001 17711/39603*15127^(3/4) 6099996733631808 a001 75025/39603*15127^(3/5) 6099996733653482 a001 75025/24476*39603^(1/2) 6099996734075773 a001 514229/103682*15127^(1/2) 6099996734106804 a001 5473/51841*39603^(9/11) 6099996734157819 a001 5702887/24476*15127^(1/10) 6099996734180508 a001 15456/13201*15127^(13/20) 6099996734401326 a001 5473/12238*24476^(5/7) 6099996734556487 a001 1346269/271443*15127^(1/2) 6099996734626622 a001 3524578/710647*15127^(1/2) 6099996734636855 a001 9227465/1860498*15127^(1/2) 6099996734638348 a001 24157817/4870847*15127^(1/2) 6099996734638566 a001 63245986/12752043*15127^(1/2) 6099996734638598 a001 165580141/33385282*15127^(1/2) 6099996734638602 a001 433494437/87403803*15127^(1/2) 6099996734638603 a001 1134903170/228826127*15127^(1/2) 6099996734638603 a001 2971215073/599074578*15127^(1/2) 6099996734638603 a001 7778742049/1568397607*15127^(1/2) 6099996734638603 a001 20365011074/4106118243*15127^(1/2) 6099996734638603 a001 53316291173/10749957122*15127^(1/2) 6099996734638603 a001 139583862445/28143753123*15127^(1/2) 6099996734638603 a001 365435296162/73681302247*15127^(1/2) 6099996734638603 a001 956722026041/192900153618*15127^(1/2) 6099996734638603 a001 2504730781961/505019158607*15127^(1/2) 6099996734638603 a001 10610209857723/2139295485799*15127^(1/2) 6099996734638603 a001 4052739537881/817138163596*15127^(1/2) 6099996734638603 a001 140728068720/28374454999*15127^(1/2) 6099996734638603 a001 591286729879/119218851371*15127^(1/2) 6099996734638603 a001 225851433717/45537549124*15127^(1/2) 6099996734638603 a001 86267571272/17393796001*15127^(1/2) 6099996734638603 a001 32951280099/6643838879*15127^(1/2) 6099996734638603 a001 1144206275/230701876*15127^(1/2) 6099996734638603 a001 4807526976/969323029*15127^(1/2) 6099996734638603 a001 1836311903/370248451*15127^(1/2) 6099996734638603 a001 701408733/141422324*15127^(1/2) 6099996734638605 a001 267914296/54018521*15127^(1/2) 6099996734638617 a001 9303105/1875749*15127^(1/2) 6099996734638700 a001 39088169/7881196*15127^(1/2) 6099996734639271 a001 14930352/3010349*15127^(1/2) 6099996734643179 a001 5702887/1149851*15127^(1/2) 6099996734669968 a001 2178309/439204*15127^(1/2) 6099996734795915 a001 514229/64079*15127^(9/20) 6099996734823434 a001 2178309/9349*3571^(2/17) 6099996734853585 a001 75640/15251*15127^(1/2) 6099996734945033 a001 10946/271443*39603^(10/11) 6099996735067779 a001 10946/167761*39603^(19/22) 6099996735236232 a001 5473/219602*39603^(21/22) 6099996735255971 a001 1346269/15127*5778^(2/9) 6099996735275899 a001 28657/24476*39603^(13/22) 6099996735381397 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^28 6099996735391969 a001 317811/103682*15127^(11/20) 6099996735490844 a001 1762289/12238*15127^(3/20) 6099996735886941 a001 832040/271443*15127^(11/20) 6099996735959156 a001 311187/101521*15127^(11/20) 6099996735969692 a001 5702887/1860498*15127^(11/20) 6099996735971229 a001 14930352/4870847*15127^(11/20) 6099996735971454 a001 39088169/12752043*15127^(11/20) 6099996735971486 a001 14619165/4769326*15127^(11/20) 6099996735971491 a001 267914296/87403803*15127^(11/20) 6099996735971492 a001 701408733/228826127*15127^(11/20) 6099996735971492 a001 1836311903/599074578*15127^(11/20) 6099996735971492 a001 686789568/224056801*15127^(11/20) 6099996735971492 a001 12586269025/4106118243*15127^(11/20) 6099996735971492 a001 32951280099/10749957122*15127^(11/20) 6099996735971492 a001 86267571272/28143753123*15127^(11/20) 6099996735971492 a001 32264490531/10525900321*15127^(11/20) 6099996735971492 a001 591286729879/192900153618*15127^(11/20) 6099996735971492 a001 1548008755920/505019158607*15127^(11/20) 6099996735971492 a001 1515744265389/494493258286*15127^(11/20) 6099996735971492 a001 2504730781961/817138163596*15127^(11/20) 6099996735971492 a001 956722026041/312119004989*15127^(11/20) 6099996735971492 a001 365435296162/119218851371*15127^(11/20) 6099996735971492 a001 139583862445/45537549124*15127^(11/20) 6099996735971492 a001 53316291173/17393796001*15127^(11/20) 6099996735971492 a001 20365011074/6643838879*15127^(11/20) 6099996735971492 a001 7778742049/2537720636*15127^(11/20) 6099996735971492 a001 2971215073/969323029*15127^(11/20) 6099996735971492 a001 1134903170/370248451*15127^(11/20) 6099996735971492 a001 433494437/141422324*15127^(11/20) 6099996735971494 a001 165580141/54018521*15127^(11/20) 6099996735971507 a001 63245986/20633239*15127^(11/20) 6099996735971592 a001 24157817/7881196*15127^(11/20) 6099996735972179 a001 9227465/3010349*15127^(11/20) 6099996735976204 a001 3524578/1149851*15127^(11/20) 6099996735983048 a001 10946/64079*39603^(17/22) 6099996736003788 a001 1346269/439204*15127^(11/20) 6099996736112111 a001 317811/64079*15127^(1/2) 6099996736192850 a001 514229/167761*15127^(11/20) 6099996736768560 a001 98209/51841*15127^(3/5) 6099996736823378 a001 2178309/24476*15127^(1/5) 6099996737226206 a001 514229/271443*15127^(3/5) 6099996737292975 a001 1346269/710647*15127^(3/5) 6099996737302717 a001 1762289/930249*15127^(3/5) 6099996737304138 a001 9227465/4870847*15127^(3/5) 6099996737304346 a001 24157817/12752043*15127^(3/5) 6099996737304376 a001 31622993/16692641*15127^(3/5) 6099996737304380 a001 165580141/87403803*15127^(3/5) 6099996737304381 a001 433494437/228826127*15127^(3/5) 6099996737304381 a001 567451585/299537289*15127^(3/5) 6099996737304381 a001 2971215073/1568397607*15127^(3/5) 6099996737304381 a001 7778742049/4106118243*15127^(3/5) 6099996737304381 a001 10182505537/5374978561*15127^(3/5) 6099996737304381 a001 53316291173/28143753123*15127^(3/5) 6099996737304381 a001 139583862445/73681302247*15127^(3/5) 6099996737304381 a001 182717648081/96450076809*15127^(3/5) 6099996737304381 a001 956722026041/505019158607*15127^(3/5) 6099996737304381 a001 10610209857723/5600748293801*15127^(3/5) 6099996737304381 a001 591286729879/312119004989*15127^(3/5) 6099996737304381 a001 225851433717/119218851371*15127^(3/5) 6099996737304381 a001 21566892818/11384387281*15127^(3/5) 6099996737304381 a001 32951280099/17393796001*15127^(3/5) 6099996737304381 a001 12586269025/6643838879*15127^(3/5) 6099996737304381 a001 1201881744/634430159*15127^(3/5) 6099996737304381 a001 1836311903/969323029*15127^(3/5) 6099996737304381 a001 701408733/370248451*15127^(3/5) 6099996737304381 a001 66978574/35355581*15127^(3/5) 6099996737304383 a001 102334155/54018521*15127^(3/5) 6099996737304395 a001 39088169/20633239*15127^(3/5) 6099996737304474 a001 3732588/1970299*15127^(3/5) 6099996737305017 a001 5702887/3010349*15127^(3/5) 6099996737308738 a001 2178309/1149851*15127^(3/5) 6099996737334241 a001 208010/109801*15127^(3/5) 6099996737488702 a001 196418/64079*15127^(11/20) 6099996737509047 a001 317811/167761*15127^(3/5) 6099996737566429 a001 28657/39603*15127^(7/10) 6099996737722092 a001 9227465/39603*5778^(1/9) 6099996737987037 a001 121393/103682*15127^(13/20) 6099996738157197 a001 1346269/24476*15127^(1/4) 6099996738542402 a001 105937/90481*15127^(13/20) 6099996738623429 a001 832040/710647*15127^(13/20) 6099996738635251 a001 726103/620166*15127^(13/20) 6099996738636975 a001 5702887/4870847*15127^(13/20) 6099996738637227 a001 4976784/4250681*15127^(13/20) 6099996738637264 a001 39088169/33385282*15127^(13/20) 6099996738637269 a001 34111385/29134601*15127^(13/20) 6099996738637270 a001 267914296/228826127*15127^(13/20) 6099996738637270 a001 233802911/199691526*15127^(13/20) 6099996738637270 a001 1836311903/1568397607*15127^(13/20) 6099996738637270 a001 1602508992/1368706081*15127^(13/20) 6099996738637270 a001 12586269025/10749957122*15127^(13/20) 6099996738637270 a001 10983760033/9381251041*15127^(13/20) 6099996738637270 a001 86267571272/73681302247*15127^(13/20) 6099996738637270 a001 75283811239/64300051206*15127^(13/20) 6099996738637270 a001 2504730781961/2139295485799*15127^(13/20) 6099996738637270 a001 365435296162/312119004989*15127^(13/20) 6099996738637270 a001 139583862445/119218851371*15127^(13/20) 6099996738637270 a001 53316291173/45537549124*15127^(13/20) 6099996738637270 a001 20365011074/17393796001*15127^(13/20) 6099996738637270 a001 7778742049/6643838879*15127^(13/20) 6099996738637270 a001 2971215073/2537720636*15127^(13/20) 6099996738637270 a001 1134903170/969323029*15127^(13/20) 6099996738637270 a001 433494437/370248451*15127^(13/20) 6099996738637270 a001 165580141/141422324*15127^(13/20) 6099996738637273 a001 63245986/54018521*15127^(13/20) 6099996738637287 a001 24157817/20633239*15127^(13/20) 6099996738637383 a001 9227465/7881196*15127^(13/20) 6099996738638041 a001 3524578/3010349*15127^(13/20) 6099996738642557 a001 1346269/1149851*15127^(13/20) 6099996738673506 a001 514229/439204*15127^(13/20) 6099996738707179 a001 121393/64079*15127^(3/5) 6099996738838497 a001 4181/24476*9349^(17/19) 6099996738885637 a001 196418/167761*15127^(13/20) 6099996739487651 a001 208010/6119*15127^(3/10) 6099996739512065 a001 17711/103682*15127^(17/20) 6099996739619460 a001 75025/103682*15127^(7/10) 6099996739918993 a001 196418/271443*15127^(7/10) 6099996739962694 a001 514229/710647*15127^(7/10) 6099996739969070 a001 1346269/1860498*15127^(7/10) 6099996739970000 a001 3524578/4870847*15127^(7/10) 6099996739970136 a001 9227465/12752043*15127^(7/10) 6099996739970156 a001 24157817/33385282*15127^(7/10) 6099996739970159 a001 63245986/87403803*15127^(7/10) 6099996739970159 a001 165580141/228826127*15127^(7/10) 6099996739970159 a001 433494437/599074578*15127^(7/10) 6099996739970159 a001 1134903170/1568397607*15127^(7/10) 6099996739970159 a001 2971215073/4106118243*15127^(7/10) 6099996739970159 a001 7778742049/10749957122*15127^(7/10) 6099996739970159 a001 20365011074/28143753123*15127^(7/10) 6099996739970159 a001 53316291173/73681302247*15127^(7/10) 6099996739970159 a001 139583862445/192900153618*15127^(7/10) 6099996739970159 a001 10610209857723/14662949395604*15127^(7/10) 6099996739970159 a001 591286729879/817138163596*15127^(7/10) 6099996739970159 a001 225851433717/312119004989*15127^(7/10) 6099996739970159 a001 86267571272/119218851371*15127^(7/10) 6099996739970159 a001 32951280099/45537549124*15127^(7/10) 6099996739970159 a001 12586269025/17393796001*15127^(7/10) 6099996739970159 a001 4807526976/6643838879*15127^(7/10) 6099996739970159 a001 1836311903/2537720636*15127^(7/10) 6099996739970159 a001 701408733/969323029*15127^(7/10) 6099996739970159 a001 267914296/370248451*15127^(7/10) 6099996739970159 a001 102334155/141422324*15127^(7/10) 6099996739970160 a001 39088169/54018521*15127^(7/10) 6099996739970168 a001 14930352/20633239*15127^(7/10) 6099996739970220 a001 5702887/7881196*15127^(7/10) 6099996739970575 a001 2178309/3010349*15127^(7/10) 6099996739973011 a001 832040/1149851*15127^(7/10) 6099996739989703 a001 317811/439204*15127^(7/10) 6099996740104114 a001 121393/167761*15127^(7/10) 6099996740168161 a001 23184/51841*15127^(3/4) 6099996740232207 a001 17711/64079*15127^(4/5) 6099996740339602 a001 75025/64079*15127^(13/20) 6099996740705584 a001 5473/12238*64079^(15/23) 6099996740826916 a001 514229/24476*15127^(7/20) 6099996740888303 a001 46368/64079*15127^(7/10) 6099996741043954 a001 24157817/103682*5778^(1/9) 6099996741137470 a001 121393/271443*15127^(3/4) 6099996741278891 a001 317811/710647*15127^(3/4) 6099996741299524 a001 416020/930249*15127^(3/4) 6099996741302534 a001 2178309/4870847*15127^(3/4) 6099996741302973 a001 5702887/12752043*15127^(3/4) 6099996741303037 a001 7465176/16692641*15127^(3/4) 6099996741303047 a001 39088169/87403803*15127^(3/4) 6099996741303048 a001 102334155/228826127*15127^(3/4) 6099996741303048 a001 133957148/299537289*15127^(3/4) 6099996741303048 a001 701408733/1568397607*15127^(3/4) 6099996741303048 a001 1836311903/4106118243*15127^(3/4) 6099996741303048 a001 2403763488/5374978561*15127^(3/4) 6099996741303048 a001 12586269025/28143753123*15127^(3/4) 6099996741303048 a001 32951280099/73681302247*15127^(3/4) 6099996741303048 a001 43133785636/96450076809*15127^(3/4) 6099996741303048 a001 225851433717/505019158607*15127^(3/4) 6099996741303048 a001 591286729879/1322157322203*15127^(3/4) 6099996741303048 a001 10610209857723/23725150497407*15127^(3/4) 6099996741303048 a001 182717648081/408569081798*15127^(3/4) 6099996741303048 a001 139583862445/312119004989*15127^(3/4) 6099996741303048 a001 53316291173/119218851371*15127^(3/4) 6099996741303048 a001 10182505537/22768774562*15127^(3/4) 6099996741303048 a001 7778742049/17393796001*15127^(3/4) 6099996741303048 a001 2971215073/6643838879*15127^(3/4) 6099996741303048 a001 567451585/1268860318*15127^(3/4) 6099996741303048 a001 433494437/969323029*15127^(3/4) 6099996741303048 a001 165580141/370248451*15127^(3/4) 6099996741303049 a001 31622993/70711162*15127^(3/4) 6099996741303052 a001 24157817/54018521*15127^(3/4) 6099996741303077 a001 9227465/20633239*15127^(3/4) 6099996741303245 a001 1762289/3940598*15127^(3/4) 6099996741304394 a001 1346269/3010349*15127^(3/4) 6099996741312276 a001 514229/1149851*15127^(3/4) 6099996741366293 a001 98209/219602*15127^(3/4) 6099996741528607 a001 63245986/271443*5778^(1/9) 6099996741544398 a001 5473/12238*167761^(3/5) 6099996741599317 a001 165580141/710647*5778^(1/9) 6099996741609633 a001 433494437/1860498*5778^(1/9) 6099996741611138 a001 1134903170/4870847*5778^(1/9) 6099996741611358 a001 2971215073/12752043*5778^(1/9) 6099996741611390 a001 7778742049/33385282*5778^(1/9) 6099996741611395 a001 20365011074/87403803*5778^(1/9) 6099996741611395 a001 53316291173/228826127*5778^(1/9) 6099996741611395 a001 139583862445/599074578*5778^(1/9) 6099996741611395 a001 365435296162/1568397607*5778^(1/9) 6099996741611395 a001 956722026041/4106118243*5778^(1/9) 6099996741611395 a001 2504730781961/10749957122*5778^(1/9) 6099996741611395 a001 6557470319842/28143753123*5778^(1/9) 6099996741611395 a001 10610209857723/45537549124*5778^(1/9) 6099996741611395 a001 4052739537881/17393796001*5778^(1/9) 6099996741611395 a001 1548008755920/6643838879*5778^(1/9) 6099996741611395 a001 591286729879/2537720636*5778^(1/9) 6099996741611395 a001 225851433717/969323029*5778^(1/9) 6099996741611395 a001 86267571272/370248451*5778^(1/9) 6099996741611396 a001 63246219/271444*5778^(1/9) 6099996741611398 a001 12586269025/54018521*5778^(1/9) 6099996741611410 a001 4807526976/20633239*5778^(1/9) 6099996741611494 a001 1836311903/7881196*5778^(1/9) 6099996741612069 a001 701408733/3010349*5778^(1/9) 6099996741616009 a001 267914296/1149851*5778^(1/9) 6099996741629142 a001 17711/167761*15127^(9/10) 6099996741642822 a001 59907458/98209 6099996741642935 a001 9227465/24476*5778^(1/18) 6099996741643018 a001 102334155/439204*5778^(1/9) 6099996741656877 a001 5473/12238*439204^(5/9) 6099996741674400 a001 5473/12238*7881196^(5/11) 6099996741674439 a001 5473/12238*20633239^(3/7) 6099996741674445 a001 5473/12238*141422324^(5/13) 6099996741674445 a001 5473/12238*2537720636^(1/3) 6099996741674445 a001 5473/12238*45537549124^(5/17) 6099996741674445 a001 5473/12238*312119004989^(3/11) 6099996741674445 a001 5473/12238*14662949395604^(5/21) 6099996741674445 a001 5473/12238*(1/2+1/2*5^(1/2))^15 6099996741674445 a001 5473/12238*192900153618^(5/18) 6099996741674445 a001 5473/12238*28143753123^(3/10) 6099996741674445 a001 5473/12238*10749957122^(5/16) 6099996741674445 a001 5473/12238*599074578^(5/14) 6099996741674445 a001 5473/12238*228826127^(3/8) 6099996741674447 a001 5473/12238*33385282^(5/12) 6099996741675326 a001 5473/12238*1860498^(1/2) 6099996741736537 a001 75025/167761*15127^(3/4) 6099996741828139 a001 39088169/167761*5778^(1/9) 6099996742029097 a001 5473/12238*103682^(5/8) 6099996742143112 a001 10959/844*15127^(2/5) 6099996742285238 a001 46368/167761*15127^(4/5) 6099996742584771 a001 121393/439204*15127^(4/5) 6099996742628472 a001 317811/1149851*15127^(4/5) 6099996742634848 a001 832040/3010349*15127^(4/5) 6099996742635778 a001 2178309/7881196*15127^(4/5) 6099996742635914 a001 5702887/20633239*15127^(4/5) 6099996742635934 a001 14930352/54018521*15127^(4/5) 6099996742635937 a001 39088169/141422324*15127^(4/5) 6099996742635937 a001 102334155/370248451*15127^(4/5) 6099996742635937 a001 267914296/969323029*15127^(4/5) 6099996742635937 a001 701408733/2537720636*15127^(4/5) 6099996742635937 a001 1836311903/6643838879*15127^(4/5) 6099996742635937 a001 4807526976/17393796001*15127^(4/5) 6099996742635937 a001 12586269025/45537549124*15127^(4/5) 6099996742635937 a001 32951280099/119218851371*15127^(4/5) 6099996742635937 a001 86267571272/312119004989*15127^(4/5) 6099996742635937 a001 225851433717/817138163596*15127^(4/5) 6099996742635937 a001 1548008755920/5600748293801*15127^(4/5) 6099996742635937 a001 139583862445/505019158607*15127^(4/5) 6099996742635937 a001 53316291173/192900153618*15127^(4/5) 6099996742635937 a001 20365011074/73681302247*15127^(4/5) 6099996742635937 a001 7778742049/28143753123*15127^(4/5) 6099996742635937 a001 2971215073/10749957122*15127^(4/5) 6099996742635937 a001 1134903170/4106118243*15127^(4/5) 6099996742635937 a001 433494437/1568397607*15127^(4/5) 6099996742635937 a001 165580141/599074578*15127^(4/5) 6099996742635937 a001 63245986/228826127*15127^(4/5) 6099996742635939 a001 24157817/87403803*15127^(4/5) 6099996742635946 a001 9227465/33385282*15127^(4/5) 6099996742635998 a001 3524578/12752043*15127^(4/5) 6099996742636353 a001 1346269/4870847*15127^(4/5) 6099996742638789 a001 514229/1860498*15127^(4/5) 6099996742655481 a001 196418/710647*15127^(4/5) 6099996742662498 a001 17711/271443*15127^(19/20) 6099996742769893 a001 75025/271443*15127^(4/5) 6099996743096977 a001 14930352/64079*5778^(1/9) 6099996743132860 a001 17711/9349*9349^(12/19) 6099996743318594 a001 15456/90481*15127^(17/20) 6099996743519703 a001 98209/12238*15127^(9/20) 6099996743554081 a001 28657/103682*15127^(4/5) 6099996743873959 a001 121393/710647*15127^(17/20) 6099996743954985 a001 105937/620166*15127^(17/20) 6099996743966807 a001 832040/4870847*15127^(17/20) 6099996743968532 a001 726103/4250681*15127^(17/20) 6099996743968783 a001 5702887/33385282*15127^(17/20) 6099996743968820 a001 4976784/29134601*15127^(17/20) 6099996743968825 a001 39088169/228826127*15127^(17/20) 6099996743968826 a001 34111385/199691526*15127^(17/20) 6099996743968826 a001 267914296/1568397607*15127^(17/20) 6099996743968826 a001 233802911/1368706081*15127^(17/20) 6099996743968826 a001 1836311903/10749957122*15127^(17/20) 6099996743968826 a001 1602508992/9381251041*15127^(17/20) 6099996743968826 a001 12586269025/73681302247*15127^(17/20) 6099996743968826 a001 10983760033/64300051206*15127^(17/20) 6099996743968826 a001 86267571272/505019158607*15127^(17/20) 6099996743968826 a001 75283811239/440719107401*15127^(17/20) 6099996743968826 a001 2504730781961/14662949395604*15127^(17/20) 6099996743968826 a001 139583862445/817138163596*15127^(17/20) 6099996743968826 a001 53316291173/312119004989*15127^(17/20) 6099996743968826 a001 20365011074/119218851371*15127^(17/20) 6099996743968826 a001 7778742049/45537549124*15127^(17/20) 6099996743968826 a001 2971215073/17393796001*15127^(17/20) 6099996743968826 a001 1134903170/6643838879*15127^(17/20) 6099996743968826 a001 433494437/2537720636*15127^(17/20) 6099996743968826 a001 165580141/969323029*15127^(17/20) 6099996743968827 a001 63245986/370248451*15127^(17/20) 6099996743968829 a001 24157817/141422324*15127^(17/20) 6099996743968843 a001 9227465/54018521*15127^(17/20) 6099996743968939 a001 3524578/20633239*15127^(17/20) 6099996743969598 a001 1346269/7881196*15127^(17/20) 6099996743974113 a001 514229/3010349*15127^(17/20) 6099996744005062 a001 196418/1149851*15127^(17/20) 6099996744078176 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^27 6099996744217193 a001 75025/439204*15127^(17/20) 6099996744274223 a001 28657/64079*15127^(3/4) 6099996744326253 a001 5473/12238*39603^(15/22) 6099996744738180 a001 121393/24476*15127^(1/2) 6099996744765894 a001 11592/109801*15127^(9/10) 6099996745223540 a001 121393/1149851*15127^(9/10) 6099996745290310 a001 317811/3010349*15127^(9/10) 6099996745300051 a001 208010/1970299*15127^(9/10) 6099996745301473 a001 2178309/20633239*15127^(9/10) 6099996745301680 a001 5702887/54018521*15127^(9/10) 6099996745301710 a001 3732588/35355581*15127^(9/10) 6099996745301715 a001 39088169/370248451*15127^(9/10) 6099996745301715 a001 102334155/969323029*15127^(9/10) 6099996745301715 a001 66978574/634430159*15127^(9/10) 6099996745301715 a001 701408733/6643838879*15127^(9/10) 6099996745301715 a001 1836311903/17393796001*15127^(9/10) 6099996745301715 a001 1201881744/11384387281*15127^(9/10) 6099996745301715 a001 12586269025/119218851371*15127^(9/10) 6099996745301715 a001 32951280099/312119004989*15127^(9/10) 6099996745301715 a001 21566892818/204284540899*15127^(9/10) 6099996745301715 a001 225851433717/2139295485799*15127^(9/10) 6099996745301715 a001 182717648081/1730726404001*15127^(9/10) 6099996745301715 a001 139583862445/1322157322203*15127^(9/10) 6099996745301715 a001 53316291173/505019158607*15127^(9/10) 6099996745301715 a001 10182505537/96450076809*15127^(9/10) 6099996745301715 a001 7778742049/73681302247*15127^(9/10) 6099996745301715 a001 2971215073/28143753123*15127^(9/10) 6099996745301715 a001 567451585/5374978561*15127^(9/10) 6099996745301715 a001 433494437/4106118243*15127^(9/10) 6099996745301715 a001 165580141/1568397607*15127^(9/10) 6099996745301716 a001 31622993/299537289*15127^(9/10) 6099996745301717 a001 24157817/228826127*15127^(9/10) 6099996745301729 a001 9227465/87403803*15127^(9/10) 6099996745301808 a001 1762289/16692641*15127^(9/10) 6099996745302351 a001 1346269/12752043*15127^(9/10) 6099996745306072 a001 514229/4870847*15127^(9/10) 6099996745331576 a001 98209/930249*15127^(9/10) 6099996745404377 a001 832040/15127*5778^(5/18) 6099996745506381 a001 75025/710647*15127^(9/10) 6099996745671158 a001 28657/167761*15127^(17/20) 6099996746055082 a001 6624/101521*15127^(19/20) 6099996746263208 a001 17711/24476*15127^(7/10) 6099996746370603 a001 75025/24476*15127^(11/20) 6099996746550053 a001 121393/1860498*15127^(19/20) 6099996746622268 a001 317811/4870847*15127^(19/20) 6099996746632805 a001 832040/12752043*15127^(19/20) 6099996746634342 a001 311187/4769326*15127^(19/20) 6099996746634566 a001 5702887/87403803*15127^(19/20) 6099996746634599 a001 14930352/228826127*15127^(19/20) 6099996746634604 a001 39088169/599074578*15127^(19/20) 6099996746634604 a001 14619165/224056801*15127^(19/20) 6099996746634604 a001 267914296/4106118243*15127^(19/20) 6099996746634604 a001 701408733/10749957122*15127^(19/20) 6099996746634604 a001 1836311903/28143753123*15127^(19/20) 6099996746634604 a001 686789568/10525900321*15127^(19/20) 6099996746634604 a001 12586269025/192900153618*15127^(19/20) 6099996746634604 a001 32951280099/505019158607*15127^(19/20) 6099996746634604 a001 86267571272/1322157322203*15127^(19/20) 6099996746634604 a001 32264490531/494493258286*15127^(19/20) 6099996746634604 a001 1548008755920/23725150497407*15127^(19/20) 6099996746634604 a001 365435296162/5600748293801*15127^(19/20) 6099996746634604 a001 139583862445/2139295485799*15127^(19/20) 6099996746634604 a001 53316291173/817138163596*15127^(19/20) 6099996746634604 a001 20365011074/312119004989*15127^(19/20) 6099996746634604 a001 7778742049/119218851371*15127^(19/20) 6099996746634604 a001 2971215073/45537549124*15127^(19/20) 6099996746634604 a001 1134903170/17393796001*15127^(19/20) 6099996746634604 a001 433494437/6643838879*15127^(19/20) 6099996746634604 a001 165580141/2537720636*15127^(19/20) 6099996746634605 a001 63245986/969323029*15127^(19/20) 6099996746634606 a001 24157817/370248451*15127^(19/20) 6099996746634619 a001 9227465/141422324*15127^(19/20) 6099996746634705 a001 3524578/54018521*15127^(19/20) 6099996746635292 a001 1346269/20633239*15127^(19/20) 6099996746639316 a001 514229/7881196*15127^(19/20) 6099996746666900 a001 196418/3010349*15127^(19/20) 6099996746704514 a001 28657/271443*15127^(9/10) 6099996746855962 a001 75025/1149851*15127^(19/20) 6099996746919303 a001 11592/6119*15127^(3/5) 6099996747400050 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^29 6099996747872882 a001 5702887/39603*5778^(1/6) 6099996747884704 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^31 6099996747955415 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^33 6099996747965731 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^35 6099996747967236 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^37 6099996747967456 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^39 6099996747967488 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^41 6099996747967493 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^43 6099996747967493 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^45 6099996747967493 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^47 6099996747967493 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^49 6099996747967493 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^51 6099996747967493 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^53 6099996747967493 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^55 6099996747967493 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^57 6099996747967493 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^59 6099996747967493 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^61 6099996747967493 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^63 6099996747967493 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^65 6099996747967493 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^67 6099996747967493 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^69 6099996747967493 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^71 6099996747967493 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^73 6099996747967493 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^75 6099996747967493 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^77 6099996747967493 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^79 6099996747967493 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^81 6099996747967493 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^83 6099996747967493 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^85 6099996747967493 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^87 6099996747967493 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^89 6099996747967493 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^91 6099996747967493 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^93 6099996747967493 a004 Fibonacci(90)*Lucas(20)/(1/2+sqrt(5)/2)^95 6099996747967493 a004 Fibonacci(92)*Lucas(20)/(1/2+sqrt(5)/2)^97 6099996747967493 a004 Fibonacci(94)*Lucas(20)/(1/2+sqrt(5)/2)^99 6099996747967493 a004 Fibonacci(95)*Lucas(20)/(1/2+sqrt(5)/2)^100 6099996747967493 a004 Fibonacci(93)*Lucas(20)/(1/2+sqrt(5)/2)^98 6099996747967493 a004 Fibonacci(91)*Lucas(20)/(1/2+sqrt(5)/2)^96 6099996747967493 a004 Fibonacci(89)*Lucas(20)/(1/2+sqrt(5)/2)^94 6099996747967493 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^92 6099996747967493 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^90 6099996747967493 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^88 6099996747967493 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^86 6099996747967493 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^84 6099996747967493 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^82 6099996747967493 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^80 6099996747967493 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^78 6099996747967493 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^76 6099996747967493 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^74 6099996747967493 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^72 6099996747967493 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^70 6099996747967493 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^68 6099996747967493 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^66 6099996747967493 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^64 6099996747967493 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^62 6099996747967493 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^60 6099996747967493 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^58 6099996747967493 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^56 6099996747967493 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^54 6099996747967493 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^52 6099996747967493 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^50 6099996747967493 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^48 6099996747967493 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^46 6099996747967494 a001 2/6765*(1/2+1/2*5^(1/2))^35 6099996747967494 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^44 6099996747967495 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^42 6099996747967508 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^40 6099996747967592 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^38 6099996747968167 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^36 6099996747972107 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^34 6099996747999116 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^32 6099996748151814 a001 28657/439204*15127^(19/20) 6099996748184238 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^30 6099996748928986 a001 10946/39603*15127^(4/5) 6099996749453081 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^28 6099996750305224 a001 28657/24476*15127^(13/20) 6099996750497323 a001 4181/5778*5778^(7/9) 6099996751194788 a001 7465176/51841*5778^(1/6) 6099996751679447 a001 39088169/271443*5778^(1/6) 6099996751688507 r005 Im(z^2+c),c=41/102+20/59*I,n=52 6099996751750158 a001 14619165/101521*5778^(1/6) 6099996751760475 a001 133957148/930249*5778^(1/6) 6099996751761980 a001 701408733/4870847*5778^(1/6) 6099996751762199 a001 1836311903/12752043*5778^(1/6) 6099996751762231 a001 14930208/103681*5778^(1/6) 6099996751762236 a001 12586269025/87403803*5778^(1/6) 6099996751762237 a001 32951280099/228826127*5778^(1/6) 6099996751762237 a001 43133785636/299537289*5778^(1/6) 6099996751762237 a001 32264490531/224056801*5778^(1/6) 6099996751762237 a001 591286729879/4106118243*5778^(1/6) 6099996751762237 a001 774004377960/5374978561*5778^(1/6) 6099996751762237 a001 4052739537881/28143753123*5778^(1/6) 6099996751762237 a001 1515744265389/10525900321*5778^(1/6) 6099996751762237 a001 3278735159921/22768774562*5778^(1/6) 6099996751762237 a001 2504730781961/17393796001*5778^(1/6) 6099996751762237 a001 956722026041/6643838879*5778^(1/6) 6099996751762237 a001 182717648081/1268860318*5778^(1/6) 6099996751762237 a001 139583862445/969323029*5778^(1/6) 6099996751762237 a001 53316291173/370248451*5778^(1/6) 6099996751762237 a001 10182505537/70711162*5778^(1/6) 6099996751762239 a001 7778742049/54018521*5778^(1/6) 6099996751762251 a001 2971215073/20633239*5778^(1/6) 6099996751762335 a001 567451585/3940598*5778^(1/6) 6099996751762910 a001 433494437/3010349*5778^(1/6) 6099996751766851 a001 165580141/1149851*5778^(1/6) 6099996751793724 a001 5702887/24476*5778^(1/9) 6099996751793860 a001 31622993/219602*5778^(1/6) 6099996751978983 a001 24157817/167761*5778^(1/6) 6099996752180974 a001 28657/9349*9349^(11/19) 6099996753247838 a001 9227465/64079*5778^(1/6) 6099996753531335 a001 10946/9349*9349^(13/19) 6099996753801152 a001 46368/9349*9349^(10/19) 6099996754916638 a001 5473/51841*15127^(9/10) 6099996755561594 a001 514229/15127*5778^(1/3) 6099996755636780 a001 10946/64079*15127^(17/20) 6099996756684914 a001 4181/15127*24476^(16/21) 6099996757033715 a001 10946/167761*15127^(19/20) 6099996757222491 r005 Im(z^2+c),c=-1/86+40/61*I,n=54 6099996757654664 a001 6765/9349*24476^(2/3) 6099996758023859 a001 3524578/39603*5778^(2/9) 6099996758149860 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^26 6099996758258550 a001 75025/9349*9349^(9/19) 6099996761345649 a001 9227465/103682*5778^(2/9) 6099996761632226 a001 121393/9349*9349^(8/19) 6099996761667781 a001 5473/12238*15127^(3/4) 6099996761830291 a001 24157817/271443*5778^(2/9) 6099996761901000 a001 63245986/710647*5778^(2/9) 6099996761911316 a001 165580141/1860498*5778^(2/9) 6099996761912821 a001 433494437/4870847*5778^(2/9) 6099996761913041 a001 1134903170/12752043*5778^(2/9) 6099996761913073 a001 2971215073/33385282*5778^(2/9) 6099996761913077 a001 7778742049/87403803*5778^(2/9) 6099996761913078 a001 20365011074/228826127*5778^(2/9) 6099996761913078 a001 53316291173/599074578*5778^(2/9) 6099996761913078 a001 139583862445/1568397607*5778^(2/9) 6099996761913078 a001 365435296162/4106118243*5778^(2/9) 6099996761913078 a001 956722026041/10749957122*5778^(2/9) 6099996761913078 a001 2504730781961/28143753123*5778^(2/9) 6099996761913078 a001 6557470319842/73681302247*5778^(2/9) 6099996761913078 a001 10610209857723/119218851371*5778^(2/9) 6099996761913078 a001 4052739537881/45537549124*5778^(2/9) 6099996761913078 a001 1548008755920/17393796001*5778^(2/9) 6099996761913078 a001 591286729879/6643838879*5778^(2/9) 6099996761913078 a001 225851433717/2537720636*5778^(2/9) 6099996761913078 a001 86267571272/969323029*5778^(2/9) 6099996761913078 a001 32951280099/370248451*5778^(2/9) 6099996761913079 a001 12586269025/141422324*5778^(2/9) 6099996761913080 a001 4807526976/54018521*5778^(2/9) 6099996761913093 a001 1836311903/20633239*5778^(2/9) 6099996761913176 a001 3524667/39604*5778^(2/9) 6099996761913751 a001 267914296/3010349*5778^(2/9) 6099996761917692 a001 102334155/1149851*5778^(2/9) 6099996761944700 a001 39088169/439204*5778^(2/9) 6099996761944701 a001 1762289/12238*5778^(1/6) 6099996762129817 a001 14930352/167761*5778^(2/9) 6099996762503613 a001 832040/3571*1364^(2/15) 6099996762962288 a001 3524578/9349*3571^(1/17) 6099996763398628 a001 5702887/64079*5778^(2/9) 6099996763409456 a001 4181/15127*64079^(16/23) 6099996763538638 a001 6765/9349*64079^(14/23) 6099996764442903 a001 6765/9349*20633239^(2/5) 6099996764442908 a001 4181/15127*(1/2+1/2*5^(1/2))^16 6099996764442908 a001 4181/15127*23725150497407^(1/4) 6099996764442908 a001 4181/15127*73681302247^(4/13) 6099996764442908 a001 4181/15127*10749957122^(1/3) 6099996764442908 a001 4181/15127*4106118243^(8/23) 6099996764442908 a001 4181/15127*1568397607^(4/11) 6099996764442908 a001 4181/15127*599074578^(8/21) 6099996764442908 a001 4181/15127*228826127^(2/5) 6099996764442908 a001 4181/15127*87403803^(8/19) 6099996764442908 a001 6765/9349*17393796001^(2/7) 6099996764442908 a001 6765/9349*14662949395604^(2/9) 6099996764442908 a001 6765/9349*(1/2+1/2*5^(1/2))^14 6099996764442908 a001 6765/9349*10749957122^(7/24) 6099996764442908 a001 6765/9349*4106118243^(7/23) 6099996764442908 a001 6765/9349*1568397607^(7/22) 6099996764442908 a001 6765/9349*599074578^(1/3) 6099996764442908 a001 6765/9349*228826127^(7/20) 6099996764442909 a001 6765/9349*87403803^(7/19) 6099996764442910 a001 4181/15127*33385282^(4/9) 6099996764442911 a001 6765/9349*33385282^(7/18) 6099996764442924 a001 6765/9349*12752043^(7/17) 6099996764442925 a001 4181/15127*12752043^(8/17) 6099996764443021 a001 6765/9349*4870847^(7/16) 6099996764443036 a001 4181/15127*4870847^(1/2) 6099996764443731 a001 6765/9349*1860498^(7/15) 6099996764443848 a001 4181/15127*1860498^(8/15) 6099996764448948 a001 6765/9349*710647^(1/2) 6099996764449810 a001 4181/15127*710647^(4/7) 6099996764487487 a001 6765/9349*271443^(7/13) 6099996764493855 a001 4181/15127*271443^(8/13) 6099996764773917 a001 6765/9349*103682^(7/12) 6099996764821204 a001 4181/15127*103682^(2/3) 6099996765010351 a001 9428155/15456 6099996765419847 a001 196418/9349*9349^(7/19) 6099996765695743 a001 317811/15127*5778^(7/18) 6099996766917929 a001 6765/9349*39603^(7/11) 6099996767271503 a001 4181/15127*39603^(8/11) 6099996768174345 a001 726103/13201*5778^(5/18) 6099996769049355 a001 317811/9349*9349^(6/19) 6099996770799001 a001 2584/9349*5778^(8/9) 6099996770965219 a007 Real Root Of -319*x^4-923*x^3-836*x^2+866*x+674 6099996771496438 a001 5702887/103682*5778^(5/18) 6099996771981125 a001 4976784/90481*5778^(5/18) 6099996772051840 a001 39088169/710647*5778^(5/18) 6099996772062157 a001 831985/15126*5778^(5/18) 6099996772063663 a001 267914296/4870847*5778^(5/18) 6099996772063882 a001 233802911/4250681*5778^(5/18) 6099996772063914 a001 1836311903/33385282*5778^(5/18) 6099996772063919 a001 1602508992/29134601*5778^(5/18) 6099996772063920 a001 12586269025/228826127*5778^(5/18) 6099996772063920 a001 10983760033/199691526*5778^(5/18) 6099996772063920 a001 86267571272/1568397607*5778^(5/18) 6099996772063920 a001 75283811239/1368706081*5778^(5/18) 6099996772063920 a001 591286729879/10749957122*5778^(5/18) 6099996772063920 a001 12585437040/228811001*5778^(5/18) 6099996772063920 a001 4052739537881/73681302247*5778^(5/18) 6099996772063920 a001 3536736619241/64300051206*5778^(5/18) 6099996772063920 a001 6557470319842/119218851371*5778^(5/18) 6099996772063920 a001 2504730781961/45537549124*5778^(5/18) 6099996772063920 a001 956722026041/17393796001*5778^(5/18) 6099996772063920 a001 365435296162/6643838879*5778^(5/18) 6099996772063920 a001 139583862445/2537720636*5778^(5/18) 6099996772063920 a001 53316291173/969323029*5778^(5/18) 6099996772063920 a001 20365011074/370248451*5778^(5/18) 6099996772063920 a001 7778742049/141422324*5778^(5/18) 6099996772063922 a001 2971215073/54018521*5778^(5/18) 6099996772063934 a001 1134903170/20633239*5778^(5/18) 6099996772064018 a001 433494437/7881196*5778^(5/18) 6099996772064593 a001 165580141/3010349*5778^(5/18) 6099996772068534 a001 63245986/1149851*5778^(5/18) 6099996772095187 a001 2178309/24476*5778^(2/9) 6099996772095544 a001 24157817/439204*5778^(5/18) 6099996772280678 a001 9227465/167761*5778^(5/18) 6099996772739257 a001 514229/9349*9349^(5/19) 6099996772923652 a001 5702887/15127*2207^(1/16) 6099996773408079 a001 416020/2889*2207^(3/16) 6099996773549605 a001 3524578/64079*5778^(5/18) 6099996775360457 m001 (BesselI(0,1)+Ei(1,1))/(GAMMA(5/6)+Mills) 6099996775890286 a001 196418/15127*5778^(4/9) 6099996776406090 a001 832040/9349*9349^(4/19) 6099996778326116 a001 1346269/39603*5778^(1/3) 6099996778483628 a001 4181/39603*24476^(6/7) 6099996780081735 a001 1346269/9349*9349^(3/19) 6099996780835753 a001 4181/103682*24476^(20/21) 6099996780918322 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^25 6099996781392877 a001 17711/9349*24476^(4/7) 6099996781647416 a001 1762289/51841*5778^(1/3) 6099996782131987 a001 9227465/271443*5778^(1/3) 6099996782202685 a001 24157817/710647*5778^(1/3) 6099996782212999 a001 31622993/930249*5778^(1/3) 6099996782214504 a001 165580141/4870847*5778^(1/3) 6099996782214724 a001 433494437/12752043*5778^(1/3) 6099996782214756 a001 567451585/16692641*5778^(1/3) 6099996782214760 a001 2971215073/87403803*5778^(1/3) 6099996782214761 a001 7778742049/228826127*5778^(1/3) 6099996782214761 a001 10182505537/299537289*5778^(1/3) 6099996782214761 a001 53316291173/1568397607*5778^(1/3) 6099996782214761 a001 139583862445/4106118243*5778^(1/3) 6099996782214761 a001 182717648081/5374978561*5778^(1/3) 6099996782214761 a001 956722026041/28143753123*5778^(1/3) 6099996782214761 a001 2504730781961/73681302247*5778^(1/3) 6099996782214761 a001 3278735159921/96450076809*5778^(1/3) 6099996782214761 a001 10610209857723/312119004989*5778^(1/3) 6099996782214761 a001 4052739537881/119218851371*5778^(1/3) 6099996782214761 a001 387002188980/11384387281*5778^(1/3) 6099996782214761 a001 591286729879/17393796001*5778^(1/3) 6099996782214761 a001 225851433717/6643838879*5778^(1/3) 6099996782214761 a001 1135099622/33391061*5778^(1/3) 6099996782214761 a001 32951280099/969323029*5778^(1/3) 6099996782214761 a001 12586269025/370248451*5778^(1/3) 6099996782214761 a001 1201881744/35355581*5778^(1/3) 6099996782214763 a001 1836311903/54018521*5778^(1/3) 6099996782214775 a001 701408733/20633239*5778^(1/3) 6099996782214859 a001 66978574/1970299*5778^(1/3) 6099996782215434 a001 102334155/3010349*5778^(1/3) 6099996782219374 a001 39088169/1149851*5778^(1/3) 6099996782246378 a001 196452/5779*5778^(1/3) 6099996782246959 a001 1346269/24476*5778^(5/18) 6099996782431468 a001 5702887/167761*5778^(1/3) 6099996783103355 a001 6765/9349*15127^(7/10) 6099996783373659 a001 4181/64079*24476^(19/21) 6099996783700091 a001 2178309/64079*5778^(1/3) 6099996783754014 a001 2178309/9349*9349^(2/19) 6099996785684500 a001 46368/9349*24476^(10/21) 6099996785769132 a001 4181/15127*15127^(4/5) 6099996785926716 a001 121393/15127*5778^(1/2) 6099996786048737 a001 4181/39603*64079^(18/23) 6099996786436283 a001 17711/9349*64079^(12/23) 6099996786953562 a001 75025/9349*24476^(3/7) 6099996787138904 a001 121393/9349*24476^(8/21) 6099996787190289 a001 4181/39603*439204^(2/3) 6099996787197317 a001 17711/9349*439204^(4/9) 6099996787211317 a001 4181/39603*7881196^(6/11) 6099996787211336 a001 17711/9349*7881196^(4/11) 6099996787211371 a001 4181/39603*141422324^(6/13) 6099996787211371 a001 4181/39603*2537720636^(2/5) 6099996787211371 a001 4181/39603*45537549124^(6/17) 6099996787211371 a001 4181/39603*14662949395604^(2/7) 6099996787211371 a001 4181/39603*(1/2+1/2*5^(1/2))^18 6099996787211371 a001 4181/39603*192900153618^(1/3) 6099996787211371 a001 4181/39603*10749957122^(3/8) 6099996787211371 a001 4181/39603*4106118243^(9/23) 6099996787211371 a001 4181/39603*1568397607^(9/22) 6099996787211371 a001 4181/39603*599074578^(3/7) 6099996787211371 a001 4181/39603*228826127^(9/20) 6099996787211371 a001 4181/39603*87403803^(9/19) 6099996787211372 a001 17711/9349*141422324^(4/13) 6099996787211372 a001 17711/9349*2537720636^(4/15) 6099996787211372 a001 17711/9349*45537549124^(4/17) 6099996787211372 a001 17711/9349*817138163596^(4/19) 6099996787211372 a001 17711/9349*14662949395604^(4/21) 6099996787211372 a001 17711/9349*(1/2+1/2*5^(1/2))^12 6099996787211372 a001 17711/9349*192900153618^(2/9) 6099996787211372 a001 17711/9349*73681302247^(3/13) 6099996787211372 a001 17711/9349*10749957122^(1/4) 6099996787211372 a001 17711/9349*4106118243^(6/23) 6099996787211372 a001 17711/9349*1568397607^(3/11) 6099996787211372 a001 17711/9349*599074578^(2/7) 6099996787211372 a001 17711/9349*228826127^(3/10) 6099996787211372 a001 17711/9349*87403803^(6/19) 6099996787211373 a001 17711/9349*33385282^(1/3) 6099996787211374 a001 4181/39603*33385282^(1/2) 6099996787211385 a001 17711/9349*12752043^(6/17) 6099996787211391 a001 4181/39603*12752043^(9/17) 6099996787211468 a001 17711/9349*4870847^(3/8) 6099996787211515 a001 4181/39603*4870847^(9/16) 6099996787212077 a001 17711/9349*1860498^(2/5) 6099996787212428 a001 4181/39603*1860498^(3/5) 6099996787216548 a001 17711/9349*710647^(3/7) 6099996787219136 a001 4181/39603*710647^(9/14) 6099996787249582 a001 17711/9349*271443^(6/13) 6099996787252656 a001 28657/9349*24476^(11/21) 6099996787268686 a001 4181/39603*271443^(9/13) 6099996787294160 a001 74049691/121393 6099996787427578 a001 3524578/9349*9349^(1/19) 6099996787495094 a001 17711/9349*103682^(1/2) 6099996787636954 a001 4181/39603*103682^(3/4) 6099996787738190 a001 196418/9349*24476^(1/3) 6099996788179363 a001 317811/9349*24476^(2/7) 6099996788474523 a001 832040/39603*5778^(7/18) 6099996788680930 a001 514229/9349*24476^(5/21) 6099996789159429 a001 832040/9349*24476^(4/21) 6099996789241430 a001 4181/103682*64079^(20/23) 6099996789332818 a001 17711/9349*39603^(6/11) 6099996789596903 a001 4181/271443*64079^(22/23) 6099996789615101 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^27 6099996789646739 a001 1346269/9349*24476^(1/7) 6099996789887338 a001 46368/9349*64079^(10/23) 6099996789961027 a001 4181/167761*64079^(21/23) 6099996790130683 a001 2178309/9349*24476^(2/21) 6099996790359849 a001 4181/103682*167761^(4/5) 6099996790393540 a001 4181/39603*39603^(9/11) 6099996790446548 a001 46368/9349*167761^(2/5) 6099996790501175 a001 121393/9349*64079^(8/23) 6099996790533237 a001 4181/103682*20633239^(4/7) 6099996790533242 a001 46368/9349*20633239^(2/7) 6099996790533245 a001 4181/103682*2537720636^(4/9) 6099996790533245 a001 4181/103682*(1/2+1/2*5^(1/2))^20 6099996790533245 a001 4181/103682*23725150497407^(5/16) 6099996790533245 a001 4181/103682*505019158607^(5/14) 6099996790533245 a001 4181/103682*73681302247^(5/13) 6099996790533245 a001 4181/103682*28143753123^(2/5) 6099996790533245 a001 4181/103682*10749957122^(5/12) 6099996790533245 a001 4181/103682*4106118243^(10/23) 6099996790533245 a001 4181/103682*1568397607^(5/11) 6099996790533245 a001 4181/103682*599074578^(10/21) 6099996790533245 a001 4181/103682*228826127^(1/2) 6099996790533245 a001 4181/103682*87403803^(10/19) 6099996790533246 a001 46368/9349*2537720636^(2/9) 6099996790533246 a001 46368/9349*312119004989^(2/11) 6099996790533246 a001 46368/9349*(1/2+1/2*5^(1/2))^10 6099996790533246 a001 46368/9349*28143753123^(1/5) 6099996790533246 a001 46368/9349*10749957122^(5/24) 6099996790533246 a001 46368/9349*4106118243^(5/23) 6099996790533246 a001 46368/9349*1568397607^(5/22) 6099996790533246 a001 46368/9349*599074578^(5/21) 6099996790533246 a001 46368/9349*228826127^(1/4) 6099996790533246 a001 46368/9349*87403803^(5/19) 6099996790533247 a001 46368/9349*33385282^(5/18) 6099996790533248 a001 4181/103682*33385282^(5/9) 6099996790533257 a001 46368/9349*12752043^(5/17) 6099996790533267 a001 4181/103682*12752043^(10/17) 6099996790533326 a001 46368/9349*4870847^(5/16) 6099996790533406 a001 4181/103682*4870847^(5/8) 6099996790533833 a001 46368/9349*1860498^(1/3) 6099996790534420 a001 4181/103682*1860498^(2/3) 6099996790537559 a001 46368/9349*710647^(5/14) 6099996790541873 a001 4181/103682*710647^(5/7) 6099996790545324 a001 64621536/105937 6099996790565088 a001 46368/9349*271443^(5/13) 6099996790596929 a001 4181/103682*271443^(10/13) 6099996790615913 a001 3524578/9349*24476^(1/21) 6099996790680177 a001 196418/9349*64079^(7/23) 6099996790701066 a001 317811/9349*64079^(6/23) 6099996790736117 a001 75025/9349*64079^(9/23) 6099996790769681 a001 46368/9349*103682^(5/12) 6099996790782349 a001 514229/9349*64079^(5/23) 6099996790840564 a001 832040/9349*64079^(4/23) 6099996790883944 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^29 6099996790907590 a001 1346269/9349*64079^(3/23) 6099996790971251 a001 2178309/9349*64079^(2/23) 6099996791006115 a001 4181/103682*103682^(5/6) 6099996791017834 a001 4181/271443*7881196^(2/3) 6099996791017900 a001 4181/271443*312119004989^(2/5) 6099996791017900 a001 4181/271443*(1/2+1/2*5^(1/2))^22 6099996791017900 a001 4181/271443*10749957122^(11/24) 6099996791017900 a001 4181/271443*4106118243^(11/23) 6099996791017900 a001 4181/271443*1568397607^(1/2) 6099996791017900 a001 4181/271443*599074578^(11/21) 6099996791017900 a001 4181/271443*228826127^(11/20) 6099996791017900 a001 4181/271443*87403803^(11/19) 6099996791017901 a001 121393/9349*(1/2+1/2*5^(1/2))^8 6099996791017901 a001 121393/9349*23725150497407^(1/8) 6099996791017901 a001 121393/9349*505019158607^(1/7) 6099996791017901 a001 121393/9349*73681302247^(2/13) 6099996791017901 a001 121393/9349*10749957122^(1/6) 6099996791017901 a001 121393/9349*4106118243^(4/23) 6099996791017901 a001 121393/9349*1568397607^(2/11) 6099996791017901 a001 121393/9349*599074578^(4/21) 6099996791017901 a001 121393/9349*228826127^(1/5) 6099996791017901 a001 121393/9349*87403803^(4/19) 6099996791017902 a001 121393/9349*33385282^(2/9) 6099996791017903 a001 4181/271443*33385282^(11/18) 6099996791017909 a001 121393/9349*12752043^(4/17) 6099996791017924 a001 4181/271443*12752043^(11/17) 6099996791017965 a001 121393/9349*4870847^(1/4) 6099996791018077 a001 4181/271443*4870847^(11/16) 6099996791018370 a001 121393/9349*1860498^(4/15) 6099996791019192 a001 4181/271443*1860498^(11/15) 6099996791019662 a001 507544133/832040 6099996791021352 a001 121393/9349*710647^(2/7) 6099996791027390 a001 4181/271443*710647^(11/14) 6099996791036197 a001 3524578/9349*64079^(1/23) 6099996791043374 a001 121393/9349*271443^(4/13) 6099996791060501 a001 4181/710647*439204^(8/9) 6099996791061954 a001 514229/9349*167761^(1/5) 6099996791069066 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^31 6099996791081584 a001 317811/9349*439204^(2/9) 6099996791087952 a001 4181/271443*271443^(11/13) 6099996791088539 a001 4181/710647*7881196^(8/11) 6099996791088593 a001 317811/9349*7881196^(2/11) 6099996791088610 a001 4181/710647*141422324^(8/13) 6099996791088610 a001 4181/710647*2537720636^(8/15) 6099996791088610 a001 4181/710647*45537549124^(8/17) 6099996791088610 a001 4181/710647*14662949395604^(8/21) 6099996791088610 a001 4181/710647*(1/2+1/2*5^(1/2))^24 6099996791088610 a001 4181/710647*192900153618^(4/9) 6099996791088610 a001 4181/710647*73681302247^(6/13) 6099996791088610 a001 4181/710647*10749957122^(1/2) 6099996791088610 a001 4181/710647*4106118243^(12/23) 6099996791088610 a001 4181/710647*1568397607^(6/11) 6099996791088610 a001 4181/710647*599074578^(4/7) 6099996791088610 a001 4181/710647*228826127^(3/5) 6099996791088610 a001 4181/710647*87403803^(12/19) 6099996791088611 a001 317811/9349*141422324^(2/13) 6099996791088611 a001 317811/9349*2537720636^(2/15) 6099996791088611 a001 317811/9349*45537549124^(2/17) 6099996791088611 a001 317811/9349*14662949395604^(2/21) 6099996791088611 a001 317811/9349*(1/2+1/2*5^(1/2))^6 6099996791088611 a001 317811/9349*10749957122^(1/8) 6099996791088611 a001 317811/9349*4106118243^(3/23) 6099996791088611 a001 317811/9349*1568397607^(3/22) 6099996791088611 a001 317811/9349*599074578^(1/7) 6099996791088611 a001 317811/9349*228826127^(3/20) 6099996791088611 a001 317811/9349*87403803^(3/19) 6099996791088612 a001 317811/9349*33385282^(1/6) 6099996791088614 a001 4181/710647*33385282^(2/3) 6099996791088617 a001 317811/9349*12752043^(3/17) 6099996791088636 a001 4181/710647*12752043^(12/17) 6099996791088659 a001 317811/9349*4870847^(3/16) 6099996791088803 a001 4181/710647*4870847^(3/4) 6099996791088867 a001 442922597/726103 6099996791088963 a001 317811/9349*1860498^(1/5) 6099996791090020 a001 4181/710647*1860498^(4/5) 6099996791091199 a001 317811/9349*710647^(3/14) 6099996791096075 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^33 6099996791097849 a001 1346269/9349*439204^(1/9) 6099996791098926 a001 4181/1860498*141422324^(2/3) 6099996791098926 a001 4181/1860498*(1/2+1/2*5^(1/2))^26 6099996791098926 a001 4181/1860498*73681302247^(1/2) 6099996791098926 a001 4181/1860498*10749957122^(13/24) 6099996791098926 a001 4181/1860498*4106118243^(13/23) 6099996791098926 a001 4181/1860498*1568397607^(13/22) 6099996791098926 a001 4181/1860498*599074578^(13/21) 6099996791098927 a001 4181/1860498*228826127^(13/20) 6099996791098927 a001 4181/1860498*87403803^(13/19) 6099996791098927 a001 832040/9349*(1/2+1/2*5^(1/2))^4 6099996791098927 a001 832040/9349*23725150497407^(1/16) 6099996791098927 a001 832040/9349*73681302247^(1/13) 6099996791098927 a001 832040/9349*10749957122^(1/12) 6099996791098927 a001 832040/9349*4106118243^(2/23) 6099996791098927 a001 832040/9349*1568397607^(1/11) 6099996791098927 a001 832040/9349*599074578^(2/21) 6099996791098927 a001 832040/9349*228826127^(1/10) 6099996791098927 a001 832040/9349*87403803^(2/19) 6099996791098928 a001 832040/9349*33385282^(1/9) 6099996791098930 a001 4181/1860498*33385282^(13/18) 6099996791098932 a001 832040/9349*12752043^(2/17) 6099996791098955 a001 4181/1860498*12752043^(13/17) 6099996791098959 a001 832040/9349*4870847^(1/8) 6099996791098963 a001 4181/710647*710647^(6/7) 6099996791098964 a001 3478759240/5702887 6099996791099135 a001 4181/1860498*4870847^(13/16) 6099996791099162 a001 832040/9349*1860498^(2/15) 6099996791100016 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^35 6099996791100420 a001 4181/4870847*20633239^(4/5) 6099996791100432 a001 4181/4870847*17393796001^(4/7) 6099996791100432 a001 4181/4870847*14662949395604^(4/9) 6099996791100432 a001 4181/4870847*(1/2+1/2*5^(1/2))^28 6099996791100432 a001 4181/4870847*505019158607^(1/2) 6099996791100432 a001 4181/4870847*73681302247^(7/13) 6099996791100432 a001 4181/4870847*10749957122^(7/12) 6099996791100432 a001 4181/4870847*4106118243^(14/23) 6099996791100432 a001 4181/4870847*1568397607^(7/11) 6099996791100432 a001 4181/4870847*599074578^(2/3) 6099996791100432 a001 4181/4870847*228826127^(7/10) 6099996791100432 a001 4181/4870847*87403803^(14/19) 6099996791100432 a001 2178309/9349*(1/2+1/2*5^(1/2))^2 6099996791100432 a001 2178309/9349*10749957122^(1/24) 6099996791100432 a001 2178309/9349*4106118243^(1/23) 6099996791100432 a001 2178309/9349*1568397607^(1/22) 6099996791100432 a001 2178309/9349*599074578^(1/21) 6099996791100432 a001 2178309/9349*228826127^(1/20) 6099996791100432 a001 2178309/9349*87403803^(1/19) 6099996791100433 a001 2178309/9349*33385282^(1/18) 6099996791100435 a001 2178309/9349*12752043^(1/17) 6099996791100436 a001 4181/4870847*33385282^(7/9) 6099996791100437 a001 3035836643/4976784 6099996791100448 a001 2178309/9349*4870847^(1/16) 6099996791100454 a001 4181/1860498*1860498^(13/15) 6099996791100462 a001 4181/4870847*12752043^(14/17) 6099996791100550 a001 2178309/9349*1860498^(1/15) 6099996791100562 a001 4181/12752043*7881196^(10/11) 6099996791100590 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^37 6099996791100639 a001 4181/12752043*20633239^(6/7) 6099996791100651 a001 4181/12752043*141422324^(10/13) 6099996791100651 a001 4181/12752043*2537720636^(2/3) 6099996791100651 a001 4181/12752043*45537549124^(10/17) 6099996791100651 a001 4181/12752043*312119004989^(6/11) 6099996791100651 a001 4181/12752043*14662949395604^(10/21) 6099996791100651 a001 4181/12752043*(1/2+1/2*5^(1/2))^30 6099996791100651 a001 4181/12752043*192900153618^(5/9) 6099996791100651 a001 4181/12752043*28143753123^(3/5) 6099996791100651 a001 4181/12752043*10749957122^(5/8) 6099996791100651 a001 4181/12752043*4106118243^(15/23) 6099996791100651 a001 4181/12752043*1568397607^(15/22) 6099996791100651 a001 4181/12752043*599074578^(5/7) 6099996791100651 a001 4181/12752043*228826127^(3/4) 6099996791100652 a001 4181/12752043*87403803^(15/19) 6099996791100652 a001 5702887/9349 6099996791100653 a001 832040/9349*710647^(1/7) 6099996791100656 a001 4181/12752043*33385282^(5/6) 6099996791100657 a001 4181/4870847*4870847^(7/8) 6099996791100674 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^39 6099996791100683 a001 4181/33385282*(1/2+1/2*5^(1/2))^32 6099996791100683 a001 4181/33385282*23725150497407^(1/2) 6099996791100683 a001 4181/33385282*505019158607^(4/7) 6099996791100683 a001 4181/33385282*73681302247^(8/13) 6099996791100683 a001 4181/33385282*10749957122^(2/3) 6099996791100683 a001 4181/33385282*4106118243^(16/23) 6099996791100683 a001 4181/33385282*1568397607^(8/11) 6099996791100683 a001 4181/33385282*599074578^(16/21) 6099996791100683 a001 4181/33385282*228826127^(4/5) 6099996791100683 a001 20807933904/34111385 6099996791100684 a001 4181/33385282*87403803^(16/19) 6099996791100684 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^2 6099996791100684 a001 4181/12752043*12752043^(15/17) 6099996791100687 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^41 6099996791100688 a001 4181/87403803*45537549124^(2/3) 6099996791100688 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(38) 6099996791100688 a001 4181/87403803*10749957122^(17/24) 6099996791100688 a001 4181/87403803*4106118243^(17/23) 6099996791100688 a001 4181/87403803*1568397607^(17/22) 6099996791100688 a001 4181/87403803*599074578^(17/21) 6099996791100688 a001 163427634589/267914296 6099996791100688 a001 4181/87403803*228826127^(17/20) 6099996791100688 a001 4181/33385282*33385282^(8/9) 6099996791100688 a001 4181/228826127*141422324^(12/13) 6099996791100688 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^43 6099996791100689 a001 4181/228826127*2537720636^(4/5) 6099996791100689 a001 4181/228826127*45537549124^(12/17) 6099996791100689 a001 4181/228826127*14662949395604^(4/7) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(40) 6099996791100689 a001 4181/228826127*505019158607^(9/14) 6099996791100689 a001 4181/228826127*192900153618^(2/3) 6099996791100689 a001 4181/228826127*73681302247^(9/13) 6099996791100689 a001 4181/228826127*10749957122^(3/4) 6099996791100689 a001 4181/228826127*4106118243^(18/23) 6099996791100689 a001 4181/228826127*1568397607^(9/11) 6099996791100689 a001 142619700685/233802911 6099996791100689 a001 4181/228826127*599074578^(6/7) 6099996791100689 a001 4181/87403803*87403803^(17/19) 6099996791100689 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^45 6099996791100689 a001 4181/599074578*817138163596^(2/3) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(42) 6099996791100689 a001 4181/599074578*10749957122^(19/24) 6099996791100689 a001 4181/599074578*4106118243^(19/23) 6099996791100689 a001 1120149671576/1836311903 6099996791100689 a001 4181/599074578*1568397607^(19/22) 6099996791100689 a001 4181/228826127*228826127^(9/10) 6099996791100689 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^47 6099996791100689 a001 4181/1568397607*2537720636^(8/9) 6099996791100689 a001 4181/1568397607*312119004989^(8/11) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(44) 6099996791100689 a001 4181/1568397607*23725150497407^(5/8) 6099996791100689 a001 4181/1568397607*73681302247^(10/13) 6099996791100689 a001 4181/1568397607*28143753123^(4/5) 6099996791100689 a001 4181/1568397607*10749957122^(5/6) 6099996791100689 a001 977529970891/1602508992 6099996791100689 a001 4181/1568397607*4106118243^(20/23) 6099996791100689 a001 4181/599074578*599074578^(19/21) 6099996791100689 a001 4181/4106118243*2537720636^(14/15) 6099996791100689 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^49 6099996791100689 a001 4181/4106118243*17393796001^(6/7) 6099996791100689 a001 4181/4106118243*45537549124^(14/17) 6099996791100689 a001 4181/4106118243*817138163596^(14/19) 6099996791100689 a001 4181/4106118243*14662949395604^(2/3) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(46) 6099996791100689 a001 4181/4106118243*505019158607^(3/4) 6099996791100689 a001 4181/4106118243*192900153618^(7/9) 6099996791100689 a001 7677620066443/12586269025 6099996791100689 a001 4181/4106118243*10749957122^(7/8) 6099996791100689 a001 4181/1568397607*1568397607^(10/11) 6099996791100689 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^51 6099996791100689 a001 4181/10749957122*312119004989^(4/5) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(48) 6099996791100689 a001 4181/10749957122*23725150497407^(11/16) 6099996791100689 a001 4181/10749957122*73681302247^(11/13) 6099996791100689 a001 6700090095552/10983760033 6099996791100689 a001 4181/4106118243*4106118243^(21/23) 6099996791100689 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^53 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(50) 6099996791100689 a001 52623190793525/86267571272 6099996791100689 a001 4181/10749957122*10749957122^(11/12) 6099996791100689 a001 4181/73681302247*45537549124^(16/17) 6099996791100689 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^55 6099996791100689 a001 4181/73681302247*14662949395604^(16/21) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(52) 6099996791100689 a001 45923100697973/75283811239 6099996791100689 a001 4181/73681302247*192900153618^(8/9) 6099996791100689 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^57 6099996791100689 a001 4181/192900153618*312119004989^(10/11) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(54) 6099996791100689 a001 4181/192900153618*3461452808002^(5/6) 6099996791100689 a001 360684715488232/591286729879 6099996791100689 a001 4181/73681302247*73681302247^(12/13) 6099996791100689 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^59 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(56) 6099996791100689 a001 314761614790259/516002918640 6099996791100689 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^61 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(58) 6099996791100689 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^63 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(60) 6099996791100689 a001 2157408202833840/3536736619241 6099996791100689 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^65 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(62) 6099996791100689 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^67 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(64) 6099996791100689 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^69 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(66) 6099996791100689 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^71 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(68) 6099996791100689 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^73 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(70) 6099996791100689 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^75 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(72) 6099996791100689 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^77 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(74) 6099996791100689 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^79 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(76) 6099996791100689 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^81 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(78) 6099996791100689 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^83 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(80) 6099996791100689 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^85 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(82) 6099996791100689 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^87 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(84) 6099996791100689 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^89 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(86) 6099996791100689 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^91 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(88) 6099996791100689 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^93 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(90) 6099996791100689 a004 Fibonacci(19)*Lucas(91)/(1/2+sqrt(5)/2)^95 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(92) 6099996791100689 a004 Fibonacci(19)*Lucas(93)/(1/2+sqrt(5)/2)^97 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^90/Lucas(94) 6099996791100689 a004 Fibonacci(19)*Lucas(95)/(1/2+sqrt(5)/2)^99 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^92/Lucas(96) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^94/Lucas(98) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^95/Lucas(99) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^96/Lucas(100) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^93/Lucas(97) 6099996791100689 a004 Fibonacci(19)*Lucas(96)/(1/2+sqrt(5)/2)^100 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^91/Lucas(95) 6099996791100689 a004 Fibonacci(19)*Lucas(94)/(1/2+sqrt(5)/2)^98 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(93) 6099996791100689 a004 Fibonacci(19)*Lucas(92)/(1/2+sqrt(5)/2)^96 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(91) 6099996791100689 a004 Fibonacci(19)*Lucas(90)/(1/2+sqrt(5)/2)^94 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(89) 6099996791100689 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^92 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(87) 6099996791100689 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^90 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(85) 6099996791100689 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^88 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(83) 6099996791100689 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^86 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(81) 6099996791100689 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^84 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(79) 6099996791100689 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^82 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(77) 6099996791100689 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^80 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(75) 6099996791100689 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^78 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(73) 6099996791100689 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^76 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(71) 6099996791100689 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^74 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(69) 6099996791100689 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^72 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(67) 6099996791100689 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^70 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(65) 6099996791100689 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^68 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(63) 6099996791100689 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^66 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(61) 6099996791100689 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^64 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(59) 6099996791100689 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^62 6099996791100689 a001 1527884973253322/2504730781961 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(57) 6099996791100689 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^60 6099996791100689 a001 4181/312119004989*817138163596^(17/19) 6099996791100689 a001 583600128882545/956722026041 6099996791100689 a001 4181/312119004989*14662949395604^(17/21) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(55) 6099996791100689 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^58 6099996791100689 a001 4181/312119004989*192900153618^(17/18) 6099996791100689 a001 53316291173/87403802 6099996791100689 a001 4181/119218851371*14662949395604^(7/9) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(53) 6099996791100689 a001 4181/119218851371*505019158607^(7/8) 6099996791100689 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^56 6099996791100689 a001 85146111300394/139583862445 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(51) 6099996791100689 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^54 6099996791100689 a001 4181/17393796001*45537549124^(15/17) 6099996791100689 a001 32522920506869/53316291173 6099996791100689 a001 4181/17393796001*312119004989^(9/11) 6099996791100689 a001 4181/17393796001*14662949395604^(5/7) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(49) 6099996791100689 a001 4181/17393796001*192900153618^(5/6) 6099996791100689 a001 4181/17393796001*28143753123^(9/10) 6099996791100689 a001 4181/28143753123*10749957122^(23/24) 6099996791100689 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^52 6099996791100689 a001 4181/17393796001*10749957122^(15/16) 6099996791100689 a001 12422650220213/20365011074 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(47) 6099996791100689 a001 4181/10749957122*4106118243^(22/23) 6099996791100689 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^50 6099996791100689 a001 4745030153770/7778742049 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(45) 6099996791100689 a001 4181/4106118243*1568397607^(21/22) 6099996791100689 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^48 6099996791100689 a001 4181/969323029*2537720636^(13/15) 6099996791100689 a001 1812440241097/2971215073 6099996791100689 a001 4181/969323029*45537549124^(13/17) 6099996791100689 a001 4181/969323029*14662949395604^(13/21) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(43) 6099996791100689 a001 4181/969323029*192900153618^(13/18) 6099996791100689 a001 4181/969323029*73681302247^(3/4) 6099996791100689 a001 4181/969323029*10749957122^(13/16) 6099996791100689 a001 4181/1568397607*599074578^(20/21) 6099996791100689 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^46 6099996791100689 a001 4181/969323029*599074578^(13/14) 6099996791100689 a001 692290569521/1134903170 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(41) 6099996791100689 a001 4181/599074578*228826127^(19/20) 6099996791100689 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^44 6099996791100689 a001 264431467466/433494437 6099996791100689 a001 4181/141422324*2537720636^(7/9) 6099996791100689 a001 4181/141422324*17393796001^(5/7) 6099996791100689 a001 4181/141422324*312119004989^(7/11) 6099996791100689 a001 4181/141422324*14662949395604^(5/9) 6099996791100689 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(39) 6099996791100689 a001 4181/141422324*505019158607^(5/8) 6099996791100689 a001 4181/141422324*28143753123^(7/10) 6099996791100689 a001 4181/141422324*599074578^(5/6) 6099996791100689 a001 4181/141422324*228826127^(7/8) 6099996791100689 a001 4181/228826127*87403803^(18/19) 6099996791100689 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^6 6099996791100689 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^8 6099996791100689 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^10 6099996791100689 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^12 6099996791100689 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^14 6099996791100689 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^16 6099996791100689 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^18 6099996791100689 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^20 6099996791100689 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^22 6099996791100689 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^24 6099996791100689 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^26 6099996791100689 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^28 6099996791100689 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^30 6099996791100689 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^32 6099996791100689 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^34 6099996791100689 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^36 6099996791100689 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^38 6099996791100689 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^40 6099996791100689 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^42 6099996791100689 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^44 6099996791100689 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^46 6099996791100689 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^48 6099996791100689 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^50 6099996791100689 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^52 6099996791100689 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^54 6099996791100689 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^56 6099996791100689 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^58 6099996791100689 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^60 6099996791100689 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^62 6099996791100689 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^66 6099996791100689 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^64 6099996791100689 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^65 6099996791100689 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^63 6099996791100689 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^61 6099996791100689 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^59 6099996791100689 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^57 6099996791100689 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^55 6099996791100689 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^53 6099996791100689 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^51 6099996791100689 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^49 6099996791100689 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^47 6099996791100689 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^45 6099996791100689 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^43 6099996791100689 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^41 6099996791100689 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^39 6099996791100689 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^37 6099996791100689 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^35 6099996791100689 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^33 6099996791100689 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^31 6099996791100689 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^29 6099996791100689 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^27 6099996791100689 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^25 6099996791100689 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^23 6099996791100689 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^21 6099996791100689 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^19 6099996791100689 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^17 6099996791100689 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^15 6099996791100689 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^13 6099996791100689 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^11 6099996791100689 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^9 6099996791100690 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^7 6099996791100690 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^5 6099996791100691 a001 4181/54018521*141422324^(11/13) 6099996791100691 a001 101003832877/165580141 6099996791100691 a001 4181/54018521*2537720636^(11/15) 6099996791100691 a001 4181/54018521*45537549124^(11/17) 6099996791100691 a001 4181/54018521*312119004989^(3/5) 6099996791100691 a001 4181/54018521*817138163596^(11/19) 6099996791100691 a001 4181/54018521*14662949395604^(11/21) 6099996791100691 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(37) 6099996791100691 a001 4181/54018521*192900153618^(11/18) 6099996791100691 a001 4181/54018521*10749957122^(11/16) 6099996791100691 a001 4181/54018521*1568397607^(3/4) 6099996791100691 a001 4181/54018521*599074578^(11/14) 6099996791100692 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^3 6099996791100693 a001 4181/87403803*33385282^(17/18) 6099996791100694 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^40 6099996791100696 a001 4181/54018521*33385282^(11/12) 6099996791100703 a001 38580031165/63245986 6099996791100703 a001 4181/20633239*(1/2+1/2*5^(1/2))^31 6099996791100703 a001 4181/20633239*9062201101803^(1/2) 6099996791100704 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2) 6099996791100719 a001 4181/33385282*12752043^(16/17) 6099996791100726 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^38 6099996791100785 a001 14736260618/24157817 6099996791100787 a001 4181/7881196*(1/2+1/2*5^(1/2))^29 6099996791100787 a001 4181/7881196*1322157322203^(1/2) 6099996791100788 a001 1762289/9349+1762289/9349*5^(1/2) 6099996791100892 a001 4181/12752043*4870847^(15/16) 6099996791100946 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^36 6099996791101281 a001 4181/3010349*7881196^(9/11) 6099996791101295 a001 2178309/9349*710647^(1/14) 6099996791101347 a001 5628750689/9227465 6099996791101354 a001 1346269/9349*7881196^(1/11) 6099996791101362 a001 4181/3010349*141422324^(9/13) 6099996791101362 a001 4181/3010349*2537720636^(3/5) 6099996791101362 a001 4181/3010349*45537549124^(9/17) 6099996791101362 a001 4181/3010349*817138163596^(9/19) 6099996791101362 a001 4181/3010349*14662949395604^(3/7) 6099996791101362 a001 4181/3010349*(1/2+1/2*5^(1/2))^27 6099996791101362 a001 4181/3010349*192900153618^(1/2) 6099996791101362 a001 4181/3010349*10749957122^(9/16) 6099996791101362 a001 4181/3010349*599074578^(9/14) 6099996791101363 a001 1346269/9349*141422324^(1/13) 6099996791101363 a001 1346269/9349*2537720636^(1/15) 6099996791101363 a001 1346269/9349*45537549124^(1/17) 6099996791101363 a001 1346269/9349*14662949395604^(1/21) 6099996791101363 a001 1346269/9349*(1/2+1/2*5^(1/2))^3 6099996791101363 a001 1346269/9349*192900153618^(1/18) 6099996791101363 a001 1346269/9349*10749957122^(1/16) 6099996791101363 a001 1346269/9349*599074578^(1/14) 6099996791101363 a001 1346269/9349*33385282^(1/12) 6099996791101366 a001 4181/3010349*33385282^(3/4) 6099996791101539 a001 1346269/9349*1860498^(1/10) 6099996791102076 a001 4181/4870847*1860498^(14/15) 6099996791102451 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^34 6099996791102948 a001 4181/3010349*1860498^(9/10) 6099996791105204 a001 2149991449/3524578 6099996791105292 a001 4181/1149851*20633239^(5/7) 6099996791105301 a001 514229/9349*20633239^(1/7) 6099996791105302 a001 4181/1149851*2537720636^(5/9) 6099996791105302 a001 4181/1149851*312119004989^(5/11) 6099996791105302 a001 4181/1149851*(1/2+1/2*5^(1/2))^25 6099996791105302 a001 4181/1149851*3461452808002^(5/12) 6099996791105302 a001 4181/1149851*28143753123^(1/2) 6099996791105302 a001 4181/1149851*228826127^(5/8) 6099996791105303 a001 514229/9349*2537720636^(1/9) 6099996791105303 a001 514229/9349*312119004989^(1/11) 6099996791105303 a001 514229/9349*(1/2+1/2*5^(1/2))^5 6099996791105303 a001 514229/9349*28143753123^(1/10) 6099996791105303 a001 514229/9349*228826127^(1/8) 6099996791105597 a001 514229/9349*1860498^(1/6) 6099996791106771 a001 4181/1149851*1860498^(5/6) 6099996791106801 a001 2178309/9349*271443^(1/13) 6099996791107716 a001 317811/9349*271443^(3/13) 6099996791110142 a001 4181/1860498*710647^(13/14) 6099996791111664 a001 832040/9349*271443^(2/13) 6099996791112767 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^32 6099996791124431 a001 3524578/9349*103682^(1/24) 6099996791131638 a001 821223658/1346269 6099996791132309 a001 196418/9349*20633239^(1/5) 6099996791132311 a001 4181/439204*(1/2+1/2*5^(1/2))^23 6099996791132311 a001 4181/439204*4106118243^(1/2) 6099996791132312 a001 196418/9349*17393796001^(1/7) 6099996791132312 a001 196418/9349*14662949395604^(1/9) 6099996791132312 a001 196418/9349*(1/2+1/2*5^(1/2))^7 6099996791132312 a001 196418/9349*599074578^(1/6) 6099996791135332 a001 196418/9349*710647^(1/4) 6099996791147719 a001 2178309/9349*103682^(1/12) 6099996791165031 a001 4181/710647*271443^(12/13) 6099996791172293 a001 1346269/9349*103682^(1/8) 6099996791183478 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^30 6099996791193501 a001 832040/9349*103682^(1/6) 6099996791207048 a001 121393/9349*103682^(1/3) 6099996791223521 a001 514229/9349*103682^(5/24) 6099996791230472 a001 317811/9349*103682^(1/4) 6099996791277575 a001 3524578/9349*39603^(1/22) 6099996791292838 a001 4181/167761*439204^(7/9) 6099996791297816 a001 196418/9349*103682^(7/24) 6099996791306893 a001 75025/9349*439204^(1/3) 6099996791312819 a001 313679525/514229 6099996791317370 a001 4181/167761*7881196^(7/11) 6099996791317407 a001 75025/9349*7881196^(3/11) 6099996791317424 a001 4181/167761*20633239^(3/5) 6099996791317433 a001 4181/167761*141422324^(7/13) 6099996791317433 a001 4181/167761*2537720636^(7/15) 6099996791317433 a001 4181/167761*17393796001^(3/7) 6099996791317433 a001 4181/167761*45537549124^(7/17) 6099996791317433 a001 4181/167761*14662949395604^(1/3) 6099996791317433 a001 4181/167761*(1/2+1/2*5^(1/2))^21 6099996791317433 a001 4181/167761*192900153618^(7/18) 6099996791317433 a001 4181/167761*10749957122^(7/16) 6099996791317433 a001 4181/167761*599074578^(1/2) 6099996791317434 a001 75025/9349*141422324^(3/13) 6099996791317434 a001 75025/9349*2537720636^(1/5) 6099996791317434 a001 75025/9349*45537549124^(3/17) 6099996791317434 a001 75025/9349*817138163596^(3/19) 6099996791317434 a001 75025/9349*14662949395604^(1/7) 6099996791317434 a001 75025/9349*(1/2+1/2*5^(1/2))^9 6099996791317434 a001 75025/9349*192900153618^(1/6) 6099996791317434 a001 75025/9349*10749957122^(3/16) 6099996791317434 a001 75025/9349*599074578^(3/14) 6099996791317435 a001 75025/9349*33385282^(1/4) 6099996791317436 a001 4181/167761*33385282^(7/12) 6099996791317962 a001 75025/9349*1860498^(3/10) 6099996791318667 a001 4181/167761*1860498^(7/10) 6099996791326492 a001 4181/167761*710647^(3/4) 6099996791359052 a001 4181/64079*64079^(19/23) 6099996791454007 a001 2178309/9349*39603^(1/11) 6099996791530225 a001 75025/9349*103682^(3/8) 6099996791538057 a001 4181/271443*103682^(11/12) 6099996791631724 a001 1346269/9349*39603^(3/22) 6099996791668133 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^28 6099996791676112 a001 4181/439204*103682^(23/24) 6099996791797902 a001 46347/2206*5778^(7/18) 6099996791806076 a001 832040/9349*39603^(2/11) 6099996791813946 a001 4181/167761*103682^(7/8) 6099996791875778 a001 28657/9349*64079^(11/23) 6099996791989239 a001 514229/9349*39603^(5/22) 6099996792149334 a001 317811/9349*39603^(3/11) 6099996792282776 a001 5702887/271443*5778^(7/18) 6099996792301117 a001 46368/9349*39603^(5/11) 6099996792353518 a001 14930352/710647*5778^(7/18) 6099996792363840 a001 39088169/1860498*5778^(7/18) 6099996792365345 a001 102334155/4870847*5778^(7/18) 6099996792365565 a001 267914296/12752043*5778^(7/18) 6099996792365597 a001 701408733/33385282*5778^(7/18) 6099996792365602 a001 1836311903/87403803*5778^(7/18) 6099996792365603 a001 102287808/4868641*5778^(7/18) 6099996792365603 a001 12586269025/599074578*5778^(7/18) 6099996792365603 a001 32951280099/1568397607*5778^(7/18) 6099996792365603 a001 86267571272/4106118243*5778^(7/18) 6099996792365603 a001 225851433717/10749957122*5778^(7/18) 6099996792365603 a001 591286729879/28143753123*5778^(7/18) 6099996792365603 a001 1548008755920/73681302247*5778^(7/18) 6099996792365603 a001 4052739537881/192900153618*5778^(7/18) 6099996792365603 a001 225749145909/10745088481*5778^(7/18) 6099996792365603 a001 6557470319842/312119004989*5778^(7/18) 6099996792365603 a001 2504730781961/119218851371*5778^(7/18) 6099996792365603 a001 956722026041/45537549124*5778^(7/18) 6099996792365603 a001 365435296162/17393796001*5778^(7/18) 6099996792365603 a001 139583862445/6643838879*5778^(7/18) 6099996792365603 a001 53316291173/2537720636*5778^(7/18) 6099996792365603 a001 20365011074/969323029*5778^(7/18) 6099996792365603 a001 7778742049/370248451*5778^(7/18) 6099996792365603 a001 2971215073/141422324*5778^(7/18) 6099996792365605 a001 1134903170/54018521*5778^(7/18) 6099996792365617 a001 433494437/20633239*5778^(7/18) 6099996792365701 a001 165580141/7881196*5778^(7/18) 6099996792366276 a001 63245986/3010349*5778^(7/18) 6099996792369822 a001 196418/9349*39603^(7/22) 6099996792370218 a001 24157817/1149851*5778^(7/18) 6099996792395365 a001 208010/6119*5778^(1/3) 6099996792397240 a001 9227465/439204*5778^(7/18) 6099996792432198 a001 121393/9349*39603^(4/11) 6099996792433677 a001 3524578/9349*15127^(1/20) 6099996792554653 a001 119814917/196418 6099996792582445 a001 3524578/167761*5778^(7/18) 6099996792586244 a001 28657/9349*7881196^(1/3) 6099996792586276 a001 4181/64079*817138163596^(1/3) 6099996792586276 a001 4181/64079*(1/2+1/2*5^(1/2))^19 6099996792586276 a001 4181/64079*87403803^(1/2) 6099996792586277 a001 28657/9349*312119004989^(1/5) 6099996792586277 a001 28657/9349*(1/2+1/2*5^(1/2))^11 6099996792586277 a001 28657/9349*1568397607^(1/4) 6099996792846355 a001 28657/9349*103682^(11/24) 6099996792908518 a001 75025/9349*39603^(9/22) 6099996793035502 a001 4181/64079*103682^(19/24) 6099996793040187 a001 4181/24476*24476^(17/21) 6099996793766210 a001 2178309/9349*15127^(1/10) 6099996793851863 a001 1346269/64079*5778^(7/18) 6099996794068988 a001 4181/103682*39603^(10/11) 6099996794530936 a001 28657/9349*39603^(1/2) 6099996794979686 a001 10946/9349*24476^(13/21) 6099996794990007 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^26 6099996795029964 a001 4181/167761*39603^(21/22) 6099996795100030 a001 1346269/9349*15127^(3/20) 6099996795692147 a001 4976784/13201*2207^(1/16) 6099996795693611 a007 Real Root Of 361*x^4-240*x^3+353*x^2+321*x-40 6099996795945232 a001 4181/64079*39603^(19/22) 6099996796377090 a001 75025/15127*5778^(5/9) 6099996796430483 a001 832040/9349*15127^(1/5) 6099996797769748 a001 514229/9349*15127^(1/4) 6099996798631740 a001 514229/39603*5778^(4/9) 6099996799014026 a001 39088169/103682*2207^(1/16) 6099996799085945 a001 317811/9349*15127^(3/10) 6099996799498682 a001 34111385/90481*2207^(1/16) 6099996799569392 a001 267914296/710647*2207^(1/16) 6099996799579709 a001 233802911/620166*2207^(1/16) 6099996799581214 a001 1836311903/4870847*2207^(1/16) 6099996799581433 a001 1602508992/4250681*2207^(1/16) 6099996799581465 a001 12586269025/33385282*2207^(1/16) 6099996799581470 a001 10983760033/29134601*2207^(1/16) 6099996799581471 a001 86267571272/228826127*2207^(1/16) 6099996799581471 a001 267913919/710646*2207^(1/16) 6099996799581471 a001 591286729879/1568397607*2207^(1/16) 6099996799581471 a001 516002918640/1368706081*2207^(1/16) 6099996799581471 a001 4052739537881/10749957122*2207^(1/16) 6099996799581471 a001 3536736619241/9381251041*2207^(1/16) 6099996799581471 a001 6557470319842/17393796001*2207^(1/16) 6099996799581471 a001 2504730781961/6643838879*2207^(1/16) 6099996799581471 a001 956722026041/2537720636*2207^(1/16) 6099996799581471 a001 365435296162/969323029*2207^(1/16) 6099996799581471 a001 139583862445/370248451*2207^(1/16) 6099996799581471 a001 53316291173/141422324*2207^(1/16) 6099996799581473 a001 20365011074/54018521*2207^(1/16) 6099996799581485 a001 7778742049/20633239*2207^(1/16) 6099996799581569 a001 2971215073/7881196*2207^(1/16) 6099996799582144 a001 1134903170/3010349*2207^(1/16) 6099996799586084 a001 433494437/1149851*2207^(1/16) 6099996799613093 a001 165580141/439204*2207^(1/16) 6099996799798215 a001 63245986/167761*2207^(1/16) 6099996800185012 a001 4181/24476*64079^(17/23) 6099996800443376 a001 10946/9349*64079^(13/23) 6099996800462535 a001 196418/9349*15127^(7/20) 6099996801066311 a001 45765226/75025 6099996801067060 a001 24157817/64079*2207^(1/16) 6099996801251629 a001 3524578/9349*5778^(1/18) 6099996801283055 a001 4181/24476*45537549124^(1/3) 6099996801283055 a001 4181/24476*(1/2+1/2*5^(1/2))^17 6099996801283056 a001 10946/9349*141422324^(1/3) 6099996801283056 a001 10946/9349*(1/2+1/2*5^(1/2))^13 6099996801283056 a001 10946/9349*73681302247^(1/4) 6099996801283074 a001 4181/24476*12752043^(1/2) 6099996801324450 a001 10946/9349*271443^(1/2) 6099996801590421 a001 10946/9349*103682^(13/24) 6099996801681013 a001 121393/9349*15127^(2/5) 6099996801684994 a001 4181/24476*103682^(17/24) 6099996801949673 a001 1346269/103682*5778^(4/9) 6099996802433753 a001 3524578/271443*5778^(4/9) 6099996802504380 a001 9227465/710647*5778^(4/9) 6099996802514684 a001 24157817/1860498*5778^(4/9) 6099996802516187 a001 63245986/4870847*5778^(4/9) 6099996802516407 a001 165580141/12752043*5778^(4/9) 6099996802516439 a001 433494437/33385282*5778^(4/9) 6099996802516443 a001 1134903170/87403803*5778^(4/9) 6099996802516444 a001 2971215073/228826127*5778^(4/9) 6099996802516444 a001 7778742049/599074578*5778^(4/9) 6099996802516444 a001 20365011074/1568397607*5778^(4/9) 6099996802516444 a001 53316291173/4106118243*5778^(4/9) 6099996802516444 a001 139583862445/10749957122*5778^(4/9) 6099996802516444 a001 365435296162/28143753123*5778^(4/9) 6099996802516444 a001 956722026041/73681302247*5778^(4/9) 6099996802516444 a001 2504730781961/192900153618*5778^(4/9) 6099996802516444 a001 10610209857723/817138163596*5778^(4/9) 6099996802516444 a001 4052739537881/312119004989*5778^(4/9) 6099996802516444 a001 1548008755920/119218851371*5778^(4/9) 6099996802516444 a001 591286729879/45537549124*5778^(4/9) 6099996802516444 a001 7787980473/599786069*5778^(4/9) 6099996802516444 a001 86267571272/6643838879*5778^(4/9) 6099996802516444 a001 32951280099/2537720636*5778^(4/9) 6099996802516444 a001 12586269025/969323029*5778^(4/9) 6099996802516444 a001 4807526976/370248451*5778^(4/9) 6099996802516444 a001 1836311903/141422324*5778^(4/9) 6099996802516446 a001 701408733/54018521*5778^(4/9) 6099996802516458 a001 9238424/711491*5778^(4/9) 6099996802516542 a001 102334155/7881196*5778^(4/9) 6099996802517116 a001 39088169/3010349*5778^(4/9) 6099996802521052 a001 14930352/1149851*5778^(4/9) 6099996802548029 a001 5702887/439204*5778^(4/9) 6099996802552583 a001 514229/24476*5778^(7/18) 6099996802732931 a001 2178309/167761*5778^(4/9) 6099996803206040 a001 17711/9349*15127^(3/5) 6099996803313435 a001 75025/9349*15127^(9/20) 6099996803581289 a001 10946/9349*39603^(13/22) 6099996803862136 a001 46368/9349*15127^(1/2) 6099996804000269 a001 832040/64079*5778^(4/9) 6099996804288437 a001 4181/24476*39603^(17/22) 6099996805743744 a001 6624/2161*5778^(11/18) 6099996805793526 a001 4181/9349*9349^(15/19) 6099996807248056 a001 28657/9349*15127^(11/20) 6099996808765889 a001 105937/13201*5778^(1/2) 6099996809763851 a001 9227465/24476*2207^(1/16) 6099996811203374 a001 4181/39603*15127^(9/10) 6099996811402115 a001 2178309/9349*5778^(1/9) 6099996812098080 a001 416020/51841*5778^(1/2) 6099996812584240 a001 726103/90481*5778^(1/2) 6099996812655169 a001 5702887/710647*5778^(1/2) 6099996812665518 a001 829464/103361*5778^(1/2) 6099996812667028 a001 39088169/4870847*5778^(1/2) 6099996812667248 a001 34111385/4250681*5778^(1/2) 6099996812667280 a001 133957148/16692641*5778^(1/2) 6099996812667285 a001 233802911/29134601*5778^(1/2) 6099996812667286 a001 1836311903/228826127*5778^(1/2) 6099996812667286 a001 267084832/33281921*5778^(1/2) 6099996812667286 a001 12586269025/1568397607*5778^(1/2) 6099996812667286 a001 10983760033/1368706081*5778^(1/2) 6099996812667286 a001 43133785636/5374978561*5778^(1/2) 6099996812667286 a001 75283811239/9381251041*5778^(1/2) 6099996812667286 a001 591286729879/73681302247*5778^(1/2) 6099996812667286 a001 86000486440/10716675201*5778^(1/2) 6099996812667286 a001 4052739537881/505019158607*5778^(1/2) 6099996812667286 a001 3536736619241/440719107401*5778^(1/2) 6099996812667286 a001 3278735159921/408569081798*5778^(1/2) 6099996812667286 a001 2504730781961/312119004989*5778^(1/2) 6099996812667286 a001 956722026041/119218851371*5778^(1/2) 6099996812667286 a001 182717648081/22768774562*5778^(1/2) 6099996812667286 a001 139583862445/17393796001*5778^(1/2) 6099996812667286 a001 53316291173/6643838879*5778^(1/2) 6099996812667286 a001 10182505537/1268860318*5778^(1/2) 6099996812667286 a001 7778742049/969323029*5778^(1/2) 6099996812667286 a001 2971215073/370248451*5778^(1/2) 6099996812667286 a001 567451585/70711162*5778^(1/2) 6099996812667288 a001 433494437/54018521*5778^(1/2) 6099996812667300 a001 165580141/20633239*5778^(1/2) 6099996812667384 a001 31622993/3940598*5778^(1/2) 6099996812667961 a001 24157817/3010349*5778^(1/2) 6099996812671914 a001 9227465/1149851*5778^(1/2) 6099996812686732 a001 10959/844*5778^(4/9) 6099996812699006 a001 1762289/219602*5778^(1/2) 6099996812884703 a001 1346269/167761*5778^(1/2) 6099996814157487 a001 514229/64079*5778^(1/2) 6099996817758470 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^24 6099996817911168 a001 4181/64079*15127^(19/20) 6099996817947616 a001 28657/15127*5778^(2/3) 6099996818610613 a001 10946/9349*15127^(13/20) 6099996818960432 a001 196418/39603*5778^(5/9) 6099996820256773 a001 6765/15127*5778^(5/6) 6099996821553887 a001 1346269/9349*5778^(1/6) 6099996822255297 a001 514229/103682*5778^(5/9) 6099996822723553 a001 17711/15127*5778^(13/18) 6099996822736011 a001 1346269/271443*5778^(5/9) 6099996822806147 a001 3524578/710647*5778^(5/9) 6099996822816379 a001 9227465/1860498*5778^(5/9) 6099996822817872 a001 24157817/4870847*5778^(5/9) 6099996822818090 a001 63245986/12752043*5778^(5/9) 6099996822818122 a001 165580141/33385282*5778^(5/9) 6099996822818126 a001 433494437/87403803*5778^(5/9) 6099996822818127 a001 1134903170/228826127*5778^(5/9) 6099996822818127 a001 2971215073/599074578*5778^(5/9) 6099996822818127 a001 7778742049/1568397607*5778^(5/9) 6099996822818127 a001 20365011074/4106118243*5778^(5/9) 6099996822818127 a001 53316291173/10749957122*5778^(5/9) 6099996822818127 a001 139583862445/28143753123*5778^(5/9) 6099996822818127 a001 365435296162/73681302247*5778^(5/9) 6099996822818127 a001 956722026041/192900153618*5778^(5/9) 6099996822818127 a001 2504730781961/505019158607*5778^(5/9) 6099996822818127 a001 10610209857723/2139295485799*5778^(5/9) 6099996822818127 a001 4052739537881/817138163596*5778^(5/9) 6099996822818127 a001 140728068720/28374454999*5778^(5/9) 6099996822818127 a001 591286729879/119218851371*5778^(5/9) 6099996822818127 a001 225851433717/45537549124*5778^(5/9) 6099996822818127 a001 86267571272/17393796001*5778^(5/9) 6099996822818127 a001 32951280099/6643838879*5778^(5/9) 6099996822818127 a001 1144206275/230701876*5778^(5/9) 6099996822818127 a001 4807526976/969323029*5778^(5/9) 6099996822818127 a001 1836311903/370248451*5778^(5/9) 6099996822818127 a001 701408733/141422324*5778^(5/9) 6099996822818129 a001 267914296/54018521*5778^(5/9) 6099996822818141 a001 9303105/1875749*5778^(5/9) 6099996822818225 a001 39088169/7881196*5778^(5/9) 6099996822818795 a001 14930352/3010349*5778^(5/9) 6099996822822703 a001 5702887/1149851*5778^(5/9) 6099996822849493 a001 2178309/439204*5778^(5/9) 6099996822881275 a001 98209/12238*5778^(1/2) 6099996823033109 a001 75640/15251*5778^(5/9) 6099996823942169 a001 4181/24476*15127^(17/20) 6099996824291636 a001 317811/64079*5778^(5/9) 6099996828996862 a001 121393/39603*5778^(11/18) 6099996831702293 a001 832040/9349*5778^(2/9) 6099996832389446 a001 317811/103682*5778^(11/18) 6099996832884418 a001 832040/271443*5778^(11/18) 6099996832917705 a001 121393/24476*5778^(5/9) 6099996832956633 a001 311187/101521*5778^(11/18) 6099996832967169 a001 5702887/1860498*5778^(11/18) 6099996832968706 a001 14930352/4870847*5778^(11/18) 6099996832968930 a001 39088169/12752043*5778^(11/18) 6099996832968963 a001 14619165/4769326*5778^(11/18) 6099996832968968 a001 267914296/87403803*5778^(11/18) 6099996832968969 a001 701408733/228826127*5778^(11/18) 6099996832968969 a001 1836311903/599074578*5778^(11/18) 6099996832968969 a001 686789568/224056801*5778^(11/18) 6099996832968969 a001 12586269025/4106118243*5778^(11/18) 6099996832968969 a001 32951280099/10749957122*5778^(11/18) 6099996832968969 a001 86267571272/28143753123*5778^(11/18) 6099996832968969 a001 32264490531/10525900321*5778^(11/18) 6099996832968969 a001 591286729879/192900153618*5778^(11/18) 6099996832968969 a001 1548008755920/505019158607*5778^(11/18) 6099996832968969 a001 1515744265389/494493258286*5778^(11/18) 6099996832968969 a001 2504730781961/817138163596*5778^(11/18) 6099996832968969 a001 956722026041/312119004989*5778^(11/18) 6099996832968969 a001 365435296162/119218851371*5778^(11/18) 6099996832968969 a001 139583862445/45537549124*5778^(11/18) 6099996832968969 a001 53316291173/17393796001*5778^(11/18) 6099996832968969 a001 20365011074/6643838879*5778^(11/18) 6099996832968969 a001 7778742049/2537720636*5778^(11/18) 6099996832968969 a001 2971215073/969323029*5778^(11/18) 6099996832968969 a001 1134903170/370248451*5778^(11/18) 6099996832968969 a001 433494437/141422324*5778^(11/18) 6099996832968971 a001 165580141/54018521*5778^(11/18) 6099996832968983 a001 63245986/20633239*5778^(11/18) 6099996832969069 a001 24157817/7881196*5778^(11/18) 6099996832969656 a001 9227465/3010349*5778^(11/18) 6099996832973681 a001 3524578/1149851*5778^(11/18) 6099996833001264 a001 1346269/439204*5778^(11/18) 6099996833190327 a001 514229/167761*5778^(11/18) 6099996834486179 a001 196418/64079*5778^(11/18) 6099996835344428 a001 6765/3571*3571^(12/17) 6099996839447237 a001 75025/39603*5778^(2/3) 6099996841859511 a001 514229/9349*5778^(5/18) 6099996842583989 a001 98209/51841*5778^(2/3) 6099996843041635 a001 514229/271443*5778^(2/3) 6099996843108405 a001 1346269/710647*5778^(2/3) 6099996843118146 a001 1762289/930249*5778^(2/3) 6099996843119568 a001 9227465/4870847*5778^(2/3) 6099996843119775 a001 24157817/12752043*5778^(2/3) 6099996843119805 a001 31622993/16692641*5778^(2/3) 6099996843119810 a001 165580141/87403803*5778^(2/3) 6099996843119810 a001 433494437/228826127*5778^(2/3) 6099996843119810 a001 567451585/299537289*5778^(2/3) 6099996843119810 a001 2971215073/1568397607*5778^(2/3) 6099996843119810 a001 7778742049/4106118243*5778^(2/3) 6099996843119810 a001 10182505537/5374978561*5778^(2/3) 6099996843119810 a001 53316291173/28143753123*5778^(2/3) 6099996843119810 a001 139583862445/73681302247*5778^(2/3) 6099996843119810 a001 182717648081/96450076809*5778^(2/3) 6099996843119810 a001 956722026041/505019158607*5778^(2/3) 6099996843119810 a001 10610209857723/5600748293801*5778^(2/3) 6099996843119810 a001 591286729879/312119004989*5778^(2/3) 6099996843119810 a001 225851433717/119218851371*5778^(2/3) 6099996843119810 a001 21566892818/11384387281*5778^(2/3) 6099996843119810 a001 32951280099/17393796001*5778^(2/3) 6099996843119810 a001 12586269025/6643838879*5778^(2/3) 6099996843119810 a001 1201881744/634430159*5778^(2/3) 6099996843119810 a001 1836311903/969323029*5778^(2/3) 6099996843119810 a001 701408733/370248451*5778^(2/3) 6099996843119811 a001 66978574/35355581*5778^(2/3) 6099996843119812 a001 102334155/54018521*5778^(2/3) 6099996843119824 a001 39088169/20633239*5778^(2/3) 6099996843119903 a001 3732588/1970299*5778^(2/3) 6099996843120446 a001 5702887/3010349*5778^(2/3) 6099996843124167 a001 2178309/1149851*5778^(2/3) 6099996843149671 a001 208010/109801*5778^(2/3) 6099996843324476 a001 317811/167761*5778^(2/3) 6099996843368079 a001 75025/24476*5778^(11/18) 6099996844522609 a001 121393/64079*5778^(2/3) 6099996846946079 a001 10946/15127*5778^(7/9) 6099996848813890 a001 15456/13201*5778^(13/18) 6099996851195547 a001 3524578/15127*2207^(1/8) 6099996851686214 a001 514229/5778*2207^(1/4) 6099996851993660 a001 317811/9349*5778^(1/3) 6099996852620419 a001 121393/103682*5778^(13/18) 6099996852734733 a001 11592/6119*5778^(2/3) 6099996853175784 a001 105937/90481*5778^(13/18) 6099996853256811 a001 832040/710647*5778^(13/18) 6099996853268633 a001 726103/620166*5778^(13/18) 6099996853270357 a001 5702887/4870847*5778^(13/18) 6099996853270609 a001 4976784/4250681*5778^(13/18) 6099996853270646 a001 39088169/33385282*5778^(13/18) 6099996853270651 a001 34111385/29134601*5778^(13/18) 6099996853270652 a001 267914296/228826127*5778^(13/18) 6099996853270652 a001 233802911/199691526*5778^(13/18) 6099996853270652 a001 1836311903/1568397607*5778^(13/18) 6099996853270652 a001 1602508992/1368706081*5778^(13/18) 6099996853270652 a001 12586269025/10749957122*5778^(13/18) 6099996853270652 a001 10983760033/9381251041*5778^(13/18) 6099996853270652 a001 86267571272/73681302247*5778^(13/18) 6099996853270652 a001 75283811239/64300051206*5778^(13/18) 6099996853270652 a001 2504730781961/2139295485799*5778^(13/18) 6099996853270652 a001 365435296162/312119004989*5778^(13/18) 6099996853270652 a001 139583862445/119218851371*5778^(13/18) 6099996853270652 a001 53316291173/45537549124*5778^(13/18) 6099996853270652 a001 20365011074/17393796001*5778^(13/18) 6099996853270652 a001 7778742049/6643838879*5778^(13/18) 6099996853270652 a001 2971215073/2537720636*5778^(13/18) 6099996853270652 a001 1134903170/969323029*5778^(13/18) 6099996853270652 a001 433494437/370248451*5778^(13/18) 6099996853270652 a001 165580141/141422324*5778^(13/18) 6099996853270654 a001 63245986/54018521*5778^(13/18) 6099996853270668 a001 24157817/20633239*5778^(13/18) 6099996853270764 a001 9227465/7881196*5778^(13/18) 6099996853271423 a001 3524578/3010349*5778^(13/18) 6099996853275939 a001 1346269/1149851*5778^(13/18) 6099996853306888 a001 514229/439204*5778^(13/18) 6099996853519019 a001 196418/167761*5778^(13/18) 6099996853618547 a001 4181/9349*24476^(5/7) 6099996854972983 a001 75025/64079*5778^(13/18) 6099996859406078 a001 17480761/28657 6099996859922805 a001 4181/9349*64079^(15/23) 6099996860076501 m001 (sin(1/5*Pi)+Kac)/(Thue-TwinPrimes) 6099996860761620 a001 4181/9349*167761^(3/5) 6099996860874098 a001 4181/9349*439204^(5/9) 6099996860891622 a001 4181/9349*7881196^(5/11) 6099996860891660 a001 4181/9349*20633239^(3/7) 6099996860891666 a001 4181/9349*141422324^(5/13) 6099996860891666 a001 4181/9349*2537720636^(1/3) 6099996860891666 a001 4181/9349*45537549124^(5/17) 6099996860891666 a001 4181/9349*312119004989^(3/11) 6099996860891666 a001 4181/9349*14662949395604^(5/21) 6099996860891666 a001 4181/9349*(1/2+1/2*5^(1/2))^15 6099996860891666 a001 4181/9349*192900153618^(5/18) 6099996860891666 a001 4181/9349*28143753123^(3/10) 6099996860891666 a001 4181/9349*10749957122^(5/16) 6099996860891666 a001 4181/9349*599074578^(5/14) 6099996860891666 a001 4181/9349*228826127^(3/8) 6099996860891669 a001 4181/9349*33385282^(5/12) 6099996860892547 a001 4181/9349*1860498^(1/2) 6099996861017763 a001 28657/39603*5778^(7/9) 6099996861246319 a001 4181/9349*103682^(5/8) 6099996862188203 a001 196418/9349*5778^(7/18) 6099996863070794 a001 75025/103682*5778^(7/9) 6099996863326919 a001 2255/13201*5778^(17/18) 6099996863370327 a001 196418/271443*5778^(7/9) 6099996863414028 a001 514229/710647*5778^(7/9) 6099996863420404 a001 1346269/1860498*5778^(7/9) 6099996863421335 a001 3524578/4870847*5778^(7/9) 6099996863421470 a001 9227465/12752043*5778^(7/9) 6099996863421490 a001 24157817/33385282*5778^(7/9) 6099996863421493 a001 63245986/87403803*5778^(7/9) 6099996863421493 a001 165580141/228826127*5778^(7/9) 6099996863421493 a001 433494437/599074578*5778^(7/9) 6099996863421493 a001 1134903170/1568397607*5778^(7/9) 6099996863421493 a001 2971215073/4106118243*5778^(7/9) 6099996863421493 a001 7778742049/10749957122*5778^(7/9) 6099996863421493 a001 20365011074/28143753123*5778^(7/9) 6099996863421493 a001 53316291173/73681302247*5778^(7/9) 6099996863421493 a001 139583862445/192900153618*5778^(7/9) 6099996863421493 a001 365435296162/505019158607*5778^(7/9) 6099996863421493 a001 10610209857723/14662949395604*5778^(7/9) 6099996863421493 a001 591286729879/817138163596*5778^(7/9) 6099996863421493 a001 225851433717/312119004989*5778^(7/9) 6099996863421493 a001 86267571272/119218851371*5778^(7/9) 6099996863421493 a001 32951280099/45537549124*5778^(7/9) 6099996863421493 a001 12586269025/17393796001*5778^(7/9) 6099996863421493 a001 4807526976/6643838879*5778^(7/9) 6099996863421493 a001 1836311903/2537720636*5778^(7/9) 6099996863421493 a001 701408733/969323029*5778^(7/9) 6099996863421494 a001 267914296/370248451*5778^(7/9) 6099996863421494 a001 102334155/141422324*5778^(7/9) 6099996863421495 a001 39088169/54018521*5778^(7/9) 6099996863421502 a001 14930352/20633239*5778^(7/9) 6099996863421554 a001 5702887/7881196*5778^(7/9) 6099996863421909 a001 2178309/3010349*5778^(7/9) 6099996863424345 a001 832040/1149851*5778^(7/9) 6099996863441037 a001 317811/439204*5778^(7/9) 6099996863543474 a001 4181/9349*39603^(15/22) 6099996863555449 a001 121393/167761*5778^(7/9) 6099996864339637 a001 46368/64079*5778^(7/9) 6099996864938606 a001 28657/24476*5778^(13/18) 6099996865793699 a001 17711/39603*5778^(5/6) 6099996867247762 a001 6765/24476*5778^(8/9) 6099996869372547 a001 3524578/9349*2207^(1/16) 6099996869714542 a001 17711/24476*5778^(7/9) 6099996872224633 a001 121393/9349*5778^(4/9) 6099996872437447 a001 23184/51841*5778^(5/6) 6099996873406757 a001 121393/271443*5778^(5/6) 6099996873548178 a001 317811/710647*5778^(5/6) 6099996873568811 a001 416020/930249*5778^(5/6) 6099996873571821 a001 2178309/4870847*5778^(5/6) 6099996873572260 a001 5702887/12752043*5778^(5/6) 6099996873572324 a001 7465176/16692641*5778^(5/6) 6099996873572333 a001 39088169/87403803*5778^(5/6) 6099996873572335 a001 102334155/228826127*5778^(5/6) 6099996873572335 a001 133957148/299537289*5778^(5/6) 6099996873572335 a001 701408733/1568397607*5778^(5/6) 6099996873572335 a001 1836311903/4106118243*5778^(5/6) 6099996873572335 a001 2403763488/5374978561*5778^(5/6) 6099996873572335 a001 12586269025/28143753123*5778^(5/6) 6099996873572335 a001 32951280099/73681302247*5778^(5/6) 6099996873572335 a001 43133785636/96450076809*5778^(5/6) 6099996873572335 a001 225851433717/505019158607*5778^(5/6) 6099996873572335 a001 591286729879/1322157322203*5778^(5/6) 6099996873572335 a001 10610209857723/23725150497407*5778^(5/6) 6099996873572335 a001 182717648081/408569081798*5778^(5/6) 6099996873572335 a001 139583862445/312119004989*5778^(5/6) 6099996873572335 a001 53316291173/119218851371*5778^(5/6) 6099996873572335 a001 10182505537/22768774562*5778^(5/6) 6099996873572335 a001 7778742049/17393796001*5778^(5/6) 6099996873572335 a001 2971215073/6643838879*5778^(5/6) 6099996873572335 a001 567451585/1268860318*5778^(5/6) 6099996873572335 a001 433494437/969323029*5778^(5/6) 6099996873572335 a001 165580141/370248451*5778^(5/6) 6099996873572336 a001 31622993/70711162*5778^(5/6) 6099996873572339 a001 24157817/54018521*5778^(5/6) 6099996873572364 a001 9227465/20633239*5778^(5/6) 6099996873572532 a001 1762289/3940598*5778^(5/6) 6099996873573681 a001 1346269/3010349*5778^(5/6) 6099996873581562 a001 514229/1149851*5778^(5/6) 6099996873635580 a001 98209/219602*5778^(5/6) 6099996873963926 a001 9227465/39603*2207^(1/8) 6099996874005824 a001 75025/167761*5778^(5/6) 6099996876543510 a001 28657/64079*5778^(5/6) 6099996877285788 a001 24157817/103682*2207^(1/8) 6099996877367078 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^23 6099996877770441 a001 63245986/271443*2207^(1/8) 6099996877841151 a001 165580141/710647*2207^(1/8) 6099996877851468 a001 433494437/1860498*2207^(1/8) 6099996877852973 a001 1134903170/4870847*2207^(1/8) 6099996877853192 a001 2971215073/12752043*2207^(1/8) 6099996877853224 a001 7778742049/33385282*2207^(1/8) 6099996877853229 a001 20365011074/87403803*2207^(1/8) 6099996877853230 a001 53316291173/228826127*2207^(1/8) 6099996877853230 a001 139583862445/599074578*2207^(1/8) 6099996877853230 a001 365435296162/1568397607*2207^(1/8) 6099996877853230 a001 956722026041/4106118243*2207^(1/8) 6099996877853230 a001 2504730781961/10749957122*2207^(1/8) 6099996877853230 a001 6557470319842/28143753123*2207^(1/8) 6099996877853230 a001 10610209857723/45537549124*2207^(1/8) 6099996877853230 a001 4052739537881/17393796001*2207^(1/8) 6099996877853230 a001 1548008755920/6643838879*2207^(1/8) 6099996877853230 a001 591286729879/2537720636*2207^(1/8) 6099996877853230 a001 225851433717/969323029*2207^(1/8) 6099996877853230 a001 86267571272/370248451*2207^(1/8) 6099996877853230 a001 63246219/271444*2207^(1/8) 6099996877853232 a001 12586269025/54018521*2207^(1/8) 6099996877853244 a001 4807526976/20633239*2207^(1/8) 6099996877853328 a001 1836311903/7881196*2207^(1/8) 6099996877853903 a001 701408733/3010349*2207^(1/8) 6099996877857844 a001 267914296/1149851*2207^(1/8) 6099996877884852 a001 102334155/439204*2207^(1/8) 6099996878069973 a001 39088169/167761*2207^(1/8) 6099996878175102 r008 a(0)=6,K{-n^6,31+6*n^3-17*n^2-32*n} 6099996879338812 a001 14930352/64079*2207^(1/8) 6099996880885002 a001 4181/9349*15127^(3/4) 6099996881319446 a001 17711/64079*5778^(8/9) 6099996882675008 a001 75025/9349*5778^(1/2) 6099996883372477 a001 46368/167761*5778^(8/9) 6099996883672010 a001 121393/439204*5778^(8/9) 6099996883715712 a001 317811/1149851*5778^(8/9) 6099996883722088 a001 832040/3010349*5778^(8/9) 6099996883723018 a001 2178309/7881196*5778^(8/9) 6099996883723154 a001 5702887/20633239*5778^(8/9) 6099996883723173 a001 14930352/54018521*5778^(8/9) 6099996883723176 a001 39088169/141422324*5778^(8/9) 6099996883723177 a001 102334155/370248451*5778^(8/9) 6099996883723177 a001 267914296/969323029*5778^(8/9) 6099996883723177 a001 701408733/2537720636*5778^(8/9) 6099996883723177 a001 1836311903/6643838879*5778^(8/9) 6099996883723177 a001 4807526976/17393796001*5778^(8/9) 6099996883723177 a001 12586269025/45537549124*5778^(8/9) 6099996883723177 a001 32951280099/119218851371*5778^(8/9) 6099996883723177 a001 86267571272/312119004989*5778^(8/9) 6099996883723177 a001 225851433717/817138163596*5778^(8/9) 6099996883723177 a001 1548008755920/5600748293801*5778^(8/9) 6099996883723177 a001 139583862445/505019158607*5778^(8/9) 6099996883723177 a001 53316291173/192900153618*5778^(8/9) 6099996883723177 a001 20365011074/73681302247*5778^(8/9) 6099996883723177 a001 7778742049/28143753123*5778^(8/9) 6099996883723177 a001 2971215073/10749957122*5778^(8/9) 6099996883723177 a001 1134903170/4106118243*5778^(8/9) 6099996883723177 a001 433494437/1568397607*5778^(8/9) 6099996883723177 a001 165580141/599074578*5778^(8/9) 6099996883723177 a001 63245986/228826127*5778^(8/9) 6099996883723178 a001 24157817/87403803*5778^(8/9) 6099996883723186 a001 9227465/33385282*5778^(8/9) 6099996883723237 a001 3524578/12752043*5778^(8/9) 6099996883723593 a001 1346269/4870847*5778^(8/9) 6099996883726028 a001 514229/1860498*5778^(8/9) 6099996883742721 a001 196418/710647*5778^(8/9) 6099996883857132 a001 75025/271443*5778^(8/9) 6099996884641320 a001 28657/103682*5778^(8/9) 6099996888035559 a001 5702887/24476*2207^(1/8) 6099996889417257 a001 17711/103682*5778^(17/18) 6099996890016225 a001 10946/39603*5778^(8/9) 6099996892041661 a001 46368/9349*5778^(5/9) 6099996893223786 a001 15456/90481*5778^(17/18) 6099996893779151 a001 121393/710647*5778^(17/18) 6099996893860177 a001 105937/620166*5778^(17/18) 6099996893871999 a001 832040/4870847*5778^(17/18) 6099996893873724 a001 726103/4250681*5778^(17/18) 6099996893873975 a001 5702887/33385282*5778^(17/18) 6099996893874012 a001 4976784/29134601*5778^(17/18) 6099996893874017 a001 39088169/228826127*5778^(17/18) 6099996893874018 a001 34111385/199691526*5778^(17/18) 6099996893874018 a001 267914296/1568397607*5778^(17/18) 6099996893874018 a001 233802911/1368706081*5778^(17/18) 6099996893874018 a001 1836311903/10749957122*5778^(17/18) 6099996893874018 a001 1602508992/9381251041*5778^(17/18) 6099996893874018 a001 12586269025/73681302247*5778^(17/18) 6099996893874018 a001 10983760033/64300051206*5778^(17/18) 6099996893874018 a001 86267571272/505019158607*5778^(17/18) 6099996893874018 a001 75283811239/440719107401*5778^(17/18) 6099996893874018 a001 2504730781961/14662949395604*5778^(17/18) 6099996893874018 a001 139583862445/817138163596*5778^(17/18) 6099996893874018 a001 53316291173/312119004989*5778^(17/18) 6099996893874018 a001 20365011074/119218851371*5778^(17/18) 6099996893874018 a001 7778742049/45537549124*5778^(17/18) 6099996893874018 a001 2971215073/17393796001*5778^(17/18) 6099996893874018 a001 1134903170/6643838879*5778^(17/18) 6099996893874018 a001 433494437/2537720636*5778^(17/18) 6099996893874018 a001 165580141/969323029*5778^(17/18) 6099996893874019 a001 63245986/370248451*5778^(17/18) 6099996893874021 a001 24157817/141422324*5778^(17/18) 6099996893874035 a001 9227465/54018521*5778^(17/18) 6099996893874131 a001 3524578/20633239*5778^(17/18) 6099996893874790 a001 1346269/7881196*5778^(17/18) 6099996893879305 a001 514229/3010349*5778^(17/18) 6099996893910255 a001 196418/1149851*5778^(17/18) 6099996893937068 a001 5473/12238*5778^(5/6) 6099996894122385 a001 75025/439204*5778^(17/18) 6099996895079791 a005 (1/cos(77/201*Pi))^22 6099996895576350 a001 28657/167761*5778^(17/18) 6099996900135542 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^25 6099996900240675 m001 (Catalan+cos(1))/(Zeta(1,2)+Salem) 6099996900323076 a001 10946/3571*3571^(11/17) 6099996903457416 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^27 6099996903654687 a001 4181/3571*3571^(13/17) 6099996903942071 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^29 6099996904012781 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^31 6099996904023098 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^33 6099996904024603 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^35 6099996904024823 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^37 6099996904024855 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^39 6099996904024859 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^41 6099996904024860 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^43 6099996904024860 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^45 6099996904024860 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^47 6099996904024860 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^49 6099996904024860 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^51 6099996904024860 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^53 6099996904024860 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^55 6099996904024860 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^57 6099996904024860 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^59 6099996904024860 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^61 6099996904024860 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^63 6099996904024860 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^65 6099996904024860 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^67 6099996904024860 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^69 6099996904024860 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^71 6099996904024860 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^73 6099996904024860 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^75 6099996904024860 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^77 6099996904024860 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^79 6099996904024860 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^81 6099996904024860 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^83 6099996904024860 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^85 6099996904024860 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^87 6099996904024860 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^89 6099996904024860 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^91 6099996904024860 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^93 6099996904024860 a004 Fibonacci(92)*Lucas(18)/(1/2+sqrt(5)/2)^95 6099996904024860 a004 Fibonacci(94)*Lucas(18)/(1/2+sqrt(5)/2)^97 6099996904024860 a004 Fibonacci(96)*Lucas(18)/(1/2+sqrt(5)/2)^99 6099996904024860 a004 Fibonacci(97)*Lucas(18)/(1/2+sqrt(5)/2)^100 6099996904024860 a004 Fibonacci(95)*Lucas(18)/(1/2+sqrt(5)/2)^98 6099996904024860 a004 Fibonacci(93)*Lucas(18)/(1/2+sqrt(5)/2)^96 6099996904024860 a004 Fibonacci(91)*Lucas(18)/(1/2+sqrt(5)/2)^94 6099996904024860 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^92 6099996904024860 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^90 6099996904024860 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^88 6099996904024860 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^86 6099996904024860 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^84 6099996904024860 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^82 6099996904024860 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^80 6099996904024860 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^78 6099996904024860 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^76 6099996904024860 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^74 6099996904024860 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^72 6099996904024860 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^70 6099996904024860 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^68 6099996904024860 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^66 6099996904024860 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^64 6099996904024860 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^62 6099996904024860 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^60 6099996904024860 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^58 6099996904024860 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^56 6099996904024860 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^54 6099996904024860 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^52 6099996904024860 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^50 6099996904024860 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^48 6099996904024860 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^46 6099996904024860 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^44 6099996904024860 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^42 6099996904024862 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^40 6099996904024866 a001 1/1292*(1/2+1/2*5^(1/2))^33 6099996904024874 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^38 6099996904024958 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^36 6099996904025533 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^34 6099996904029474 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^32 6099996904056483 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^30 6099996904241604 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^28 6099996904245534 a001 28657/9349*5778^(11/18) 6099996905510447 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^26 6099996905541972 a001 10946/64079*5778^(17/18) 6099996906554690 a001 6765/9349*5778^(7/9) 6099996907955997 m001 OneNinth-ZetaP(4)^ln(2) 6099996909021471 a001 17711/9349*5778^(2/3) 6099996914207227 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^24 6099996914389892 a001 17711/3571*3571^(10/17) 6099996919149271 m001 sin(Pi/12)/exp(ErdosBorwein)*sinh(1) 6099996920458826 a007 Real Root Of -507*x^4+93*x^3-568*x^2+194*x+421 6099996921604637 r005 Re(z^2+c),c=-1/48+27/38*I,n=35 6099996923017105 m001 (Chi(1)-GAMMA(2/3)*ZetaQ(3))/GAMMA(2/3) 6099996926856373 a001 4181/15127*5778^(8/9) 6099996929466951 a001 311187/2161*2207^(3/16) 6099996929941281 a001 105937/1926*2207^(5/16) 6099996933243997 a001 10946/9349*5778^(13/18) 6099996941176369 b008 -62+Zeta[15] 6099996947643951 a001 2178309/9349*2207^(1/8) 6099996947903297 a001 28657/3571*3571^(9/17) 6099996952235635 a001 5702887/39603*2207^(3/16) 6099996955557541 a001 7465176/51841*2207^(3/16) 6099996956042200 a001 39088169/271443*2207^(3/16) 6099996956112911 a001 14619165/101521*2207^(3/16) 6099996956123228 a001 133957148/930249*2207^(3/16) 6099996956124733 a001 701408733/4870847*2207^(3/16) 6099996956124953 a001 1836311903/12752043*2207^(3/16) 6099996956124985 a001 14930208/103681*2207^(3/16) 6099996956124989 a001 12586269025/87403803*2207^(3/16) 6099996956124990 a001 32951280099/228826127*2207^(3/16) 6099996956124990 a001 43133785636/299537289*2207^(3/16) 6099996956124990 a001 32264490531/224056801*2207^(3/16) 6099996956124990 a001 591286729879/4106118243*2207^(3/16) 6099996956124990 a001 774004377960/5374978561*2207^(3/16) 6099996956124990 a001 4052739537881/28143753123*2207^(3/16) 6099996956124990 a001 1515744265389/10525900321*2207^(3/16) 6099996956124990 a001 3278735159921/22768774562*2207^(3/16) 6099996956124990 a001 2504730781961/17393796001*2207^(3/16) 6099996956124990 a001 956722026041/6643838879*2207^(3/16) 6099996956124990 a001 182717648081/1268860318*2207^(3/16) 6099996956124990 a001 139583862445/969323029*2207^(3/16) 6099996956124990 a001 53316291173/370248451*2207^(3/16) 6099996956124990 a001 10182505537/70711162*2207^(3/16) 6099996956124992 a001 7778742049/54018521*2207^(3/16) 6099996956125004 a001 2971215073/20633239*2207^(3/16) 6099996956125088 a001 567451585/3940598*2207^(3/16) 6099996956125663 a001 433494437/3010349*2207^(3/16) 6099996956129604 a001 165580141/1149851*2207^(3/16) 6099996956156613 a001 31622993/219602*2207^(3/16) 6099996956341736 a001 24157817/167761*2207^(3/16) 6099996957610592 a001 9227465/64079*2207^(3/16) 6099996958177671 a001 1597/5778*9349^(16/19) 6099996965524122 a001 2584/3571*9349^(14/19) 6099996966307455 a001 1762289/12238*2207^(3/16) 6099996966963007 a007 Real Root Of -884*x^4+642*x^3+960*x^2+786*x-860 6099996973815838 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^22 6099996973847363 a001 4181/24476*5778^(17/18) 6099996973988766 a001 46368/3571*3571^(8/17) 6099996981085465 a001 1346269/3571*1364^(1/15) 6099996986189869 m001 (gamma(3)+Cahen)/(sin(1/12*Pi)-ln(2+3^(1/2))) 6099996995041343 r009 Re(z^3+c),c=-19/42+1/36*I,n=21 6099997002911455 a001 75025/3571*3571^(7/17) 6099997007739642 a001 1346269/15127*2207^(1/4) 6099997008256743 a001 98209/2889*2207^(3/8) 6099997009191029 a001 1597/5778*24476^(16/21) 6099997009628065 m005 (1/2*gamma+5/9)/(Zeta(3)+2/11) 6099997010160810 a001 2584/3571*24476^(2/3) 6099997013154292 a001 4181/9349*5778^(5/6) 6099997014383820 a007 Real Root Of 144*x^4-384*x^3-156*x^2-493*x+426 6099997015915571 a001 1597/5778*64079^(16/23) 6099997016044784 a001 2584/3571*64079^(14/23) 6099997016949023 a001 1597/5778*(1/2+1/2*5^(1/2))^16 6099997016949023 a001 1597/5778*23725150497407^(1/4) 6099997016949023 a001 1597/5778*73681302247^(4/13) 6099997016949023 a001 1597/5778*10749957122^(1/3) 6099997016949023 a001 1597/5778*4106118243^(8/23) 6099997016949023 a001 1597/5778*1568397607^(4/11) 6099997016949023 a001 1597/5778*599074578^(8/21) 6099997016949023 a001 1597/5778*228826127^(2/5) 6099997016949023 a001 1597/5778*87403803^(8/19) 6099997016949025 a001 1597/5778*33385282^(4/9) 6099997016949040 a001 1597/5778*12752043^(8/17) 6099997016949049 a001 2584/3571*20633239^(2/5) 6099997016949055 a001 2584/3571*17393796001^(2/7) 6099997016949055 a001 2584/3571*14662949395604^(2/9) 6099997016949055 a001 2584/3571*(1/2+1/2*5^(1/2))^14 6099997016949055 a001 2584/3571*505019158607^(1/4) 6099997016949055 a001 2584/3571*10749957122^(7/24) 6099997016949055 a001 2584/3571*4106118243^(7/23) 6099997016949055 a001 2584/3571*1568397607^(7/22) 6099997016949055 a001 2584/3571*599074578^(1/3) 6099997016949055 a001 2584/3571*228826127^(7/20) 6099997016949055 a001 2584/3571*87403803^(7/19) 6099997016949057 a001 2584/3571*33385282^(7/18) 6099997016949070 a001 2584/3571*12752043^(7/17) 6099997016949151 a001 1597/5778*4870847^(1/2) 6099997016949167 a001 2584/3571*4870847^(7/16) 6099997016949877 a001 2584/3571*1860498^(7/15) 6099997016949962 a001 1597/5778*1860498^(8/15) 6099997016955094 a001 2584/3571*710647^(1/2) 6099997016955925 a001 1597/5778*710647^(4/7) 6099997016993633 a001 2584/3571*271443^(7/13) 6099997016999970 a001 1597/5778*271443^(8/13) 6099997017015920 r008 a(0)=6,K{-n^6,26+24*n^3-46*n^2-9*n} 6099997017280063 a001 2584/3571*103682^(7/12) 6099997017327318 a001 1597/5778*103682^(2/3) 6099997019424075 a001 2584/3571*39603^(7/11) 6099997019777617 a001 1597/5778*39603^(8/11) 6099997025916643 a001 1346269/9349*2207^(3/16) 6099997030507532 a001 3524578/39603*2207^(1/4) 6099997030750422 a001 121393/3571*3571^(6/17) 6099997031481594 a001 1292/161*18^(40/57) 6099997033829322 a001 9227465/103682*2207^(1/4) 6099997034313964 a001 24157817/271443*2207^(1/4) 6099997034384673 a001 63245986/710647*2207^(1/4) 6099997034394989 a001 165580141/1860498*2207^(1/4) 6099997034396494 a001 433494437/4870847*2207^(1/4) 6099997034396714 a001 1134903170/12752043*2207^(1/4) 6099997034396746 a001 2971215073/33385282*2207^(1/4) 6099997034396750 a001 7778742049/87403803*2207^(1/4) 6099997034396751 a001 20365011074/228826127*2207^(1/4) 6099997034396751 a001 53316291173/599074578*2207^(1/4) 6099997034396751 a001 139583862445/1568397607*2207^(1/4) 6099997034396751 a001 365435296162/4106118243*2207^(1/4) 6099997034396751 a001 956722026041/10749957122*2207^(1/4) 6099997034396751 a001 2504730781961/28143753123*2207^(1/4) 6099997034396751 a001 6557470319842/73681302247*2207^(1/4) 6099997034396751 a001 10610209857723/119218851371*2207^(1/4) 6099997034396751 a001 4052739537881/45537549124*2207^(1/4) 6099997034396751 a001 1548008755920/17393796001*2207^(1/4) 6099997034396751 a001 591286729879/6643838879*2207^(1/4) 6099997034396751 a001 225851433717/2537720636*2207^(1/4) 6099997034396751 a001 86267571272/969323029*2207^(1/4) 6099997034396751 a001 32951280099/370248451*2207^(1/4) 6099997034396752 a001 12586269025/141422324*2207^(1/4) 6099997034396753 a001 4807526976/54018521*2207^(1/4) 6099997034396766 a001 1836311903/20633239*2207^(1/4) 6099997034396849 a001 3524667/39604*2207^(1/4) 6099997034397424 a001 267914296/3010349*2207^(1/4) 6099997034401365 a001 102334155/1149851*2207^(1/4) 6099997034428373 a001 39088169/439204*2207^(1/4) 6099997034613490 a001 14930352/167761*2207^(1/4) 6099997035609502 a001 2584/3571*15127^(7/10) 6099997035882301 a001 5702887/64079*2207^(1/4) 6099997038275248 a001 1597/5778*15127^(4/5) 6099997043120653 a001 1597/2207*2207^(7/8) 6099997043606799 a001 4126648/6765 6099997044578861 a001 2178309/24476*2207^(1/4) 6099997050159237 a001 7881196*144^(7/17) 6099997059003334 a001 196418/3571*3571^(5/17) 6099997081889228 l006 ln(3992/7347) 6099997086008969 a001 832040/15127*2207^(5/16) 6099997086414094 a001 121393/5778*2207^(7/16) 6099997087098133 a001 317811/3571*3571^(4/17) 6099997104185969 a001 832040/9349*2207^(1/4) 6099997106888624 a001 1597/15127*9349^(18/19) 6099997107964999 m001 1/exp(GAMMA(1/3))^2*MinimumGamma/GAMMA(5/6) 6099997108778938 a001 726103/13201*2207^(5/16) 6099997112101032 a001 5702887/103682*2207^(5/16) 6099997112585719 a001 4976784/90481*2207^(5/16) 6099997112656434 a001 39088169/710647*2207^(5/16) 6099997112666751 a001 831985/15126*2207^(5/16) 6099997112668256 a001 267914296/4870847*2207^(5/16) 6099997112668476 a001 233802911/4250681*2207^(5/16) 6099997112668508 a001 1836311903/33385282*2207^(5/16) 6099997112668513 a001 1602508992/29134601*2207^(5/16) 6099997112668513 a001 12586269025/228826127*2207^(5/16) 6099997112668513 a001 10983760033/199691526*2207^(5/16) 6099997112668513 a001 86267571272/1568397607*2207^(5/16) 6099997112668513 a001 75283811239/1368706081*2207^(5/16) 6099997112668513 a001 591286729879/10749957122*2207^(5/16) 6099997112668513 a001 12585437040/228811001*2207^(5/16) 6099997112668513 a001 4052739537881/73681302247*2207^(5/16) 6099997112668513 a001 3536736619241/64300051206*2207^(5/16) 6099997112668513 a001 6557470319842/119218851371*2207^(5/16) 6099997112668513 a001 2504730781961/45537549124*2207^(5/16) 6099997112668513 a001 956722026041/17393796001*2207^(5/16) 6099997112668513 a001 365435296162/6643838879*2207^(5/16) 6099997112668513 a001 139583862445/2537720636*2207^(5/16) 6099997112668513 a001 53316291173/969323029*2207^(5/16) 6099997112668514 a001 20365011074/370248451*2207^(5/16) 6099997112668514 a001 7778742049/141422324*2207^(5/16) 6099997112668516 a001 2971215073/54018521*2207^(5/16) 6099997112668528 a001 1134903170/20633239*2207^(5/16) 6099997112668612 a001 433494437/7881196*2207^(5/16) 6099997112669187 a001 165580141/3010349*2207^(5/16) 6099997112673127 a001 63245986/1149851*2207^(5/16) 6099997112700138 a001 24157817/439204*2207^(5/16) 6099997112885272 a001 9227465/167761*2207^(5/16) 6099997114154199 a001 3524578/64079*2207^(5/16) 6099997115253327 a001 514229/3571*3571^(3/17) 6099997115476256 r009 Im(z^3+c),c=-27/52+3/47*I,n=6 6099997122851553 a001 1346269/24476*2207^(5/16) 6099997128927919 a001 6765/3571*9349^(12/19) 6099997129873197 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^21 6099997133123657 h001 (1/4*exp(1)+3/11)/(1/5*exp(2)+1/12) 6099997138673305 r005 Re(z^2+c),c=-59/78+1/47*I,n=45 6099997143385452 a001 832040/3571*3571^(2/17) 6099997151716938 a001 726103/1926*843^(1/14) 6099997155750016 r005 Re(z^2+c),c=-7/78+21/29*I,n=41 6099997159042803 a001 17711/3571*9349^(10/19) 6099997159060842 a001 2584/3571*5778^(7/9) 6099997164278653 a001 1597/15127*24476^(6/7) 6099997164287108 a001 514229/15127*2207^(3/8) 6099997164985390 a001 75025/5778*2207^(1/2) 6099997167187938 a001 6765/3571*24476^(4/7) 6099997168090918 a001 28657/3571*9349^(9/19) 6099997168368138 a007 Real Root Of 748*x^4+86*x^3+697*x^2+640*x+47 6099997169441278 a001 10946/3571*9349^(11/19) 6099997169711096 a001 46368/3571*9349^(8/19) 6099997171526388 a001 1346269/3571*3571^(1/17) 6099997171843763 a001 1597/15127*64079^(18/23) 6099997172231344 a001 6765/3571*64079^(12/23) 6099997172985314 a001 1597/15127*439204^(2/3) 6099997172992379 a001 6765/3571*439204^(4/9) 6099997173006342 a001 1597/15127*7881196^(6/11) 6099997173006396 a001 1597/15127*141422324^(6/13) 6099997173006396 a001 1597/15127*2537720636^(2/5) 6099997173006396 a001 1597/15127*45537549124^(6/17) 6099997173006396 a001 1597/15127*14662949395604^(2/7) 6099997173006396 a001 1597/15127*(1/2+1/2*5^(1/2))^18 6099997173006396 a001 1597/15127*192900153618^(1/3) 6099997173006396 a001 1597/15127*10749957122^(3/8) 6099997173006396 a001 1597/15127*4106118243^(9/23) 6099997173006396 a001 1597/15127*1568397607^(9/22) 6099997173006396 a001 1597/15127*599074578^(3/7) 6099997173006396 a001 1597/15127*228826127^(9/20) 6099997173006396 a001 1597/15127*87403803^(9/19) 6099997173006398 a001 6765/3571*7881196^(4/11) 6099997173006399 a001 1597/15127*33385282^(1/2) 6099997173006416 a001 1597/15127*12752043^(9/17) 6099997173006433 a001 6765/3571*141422324^(4/13) 6099997173006433 a001 6765/3571*2537720636^(4/15) 6099997173006433 a001 6765/3571*45537549124^(4/17) 6099997173006433 a001 6765/3571*817138163596^(4/19) 6099997173006433 a001 6765/3571*14662949395604^(4/21) 6099997173006433 a001 6765/3571*(1/2+1/2*5^(1/2))^12 6099997173006433 a001 6765/3571*192900153618^(2/9) 6099997173006433 a001 6765/3571*73681302247^(3/13) 6099997173006433 a001 6765/3571*10749957122^(1/4) 6099997173006433 a001 6765/3571*4106118243^(6/23) 6099997173006433 a001 6765/3571*1568397607^(3/11) 6099997173006433 a001 6765/3571*599074578^(2/7) 6099997173006433 a001 6765/3571*228826127^(3/10) 6099997173006434 a001 6765/3571*87403803^(6/19) 6099997173006435 a001 6765/3571*33385282^(1/3) 6099997173006447 a001 6765/3571*12752043^(6/17) 6099997173006530 a001 6765/3571*4870847^(3/8) 6099997173006541 a001 1597/15127*4870847^(9/16) 6099997173007138 a001 6765/3571*1860498^(2/5) 6099997173007453 a001 1597/15127*1860498^(3/5) 6099997173011610 a001 6765/3571*710647^(3/7) 6099997173014161 a001 1597/15127*710647^(9/14) 6099997173044644 a001 6765/3571*271443^(6/13) 6099997173063711 a001 1597/15127*271443^(9/13) 6099997173290155 a001 6765/3571*103682^(1/2) 6099997173431979 a001 1597/15127*103682^(3/4) 6099997174168494 a001 75025/3571*9349^(7/19) 6099997175127880 a001 6765/3571*39603^(6/11) 6099997176188565 a001 1597/15127*39603^(9/11) 6099997176895714 a001 10803705/17711 6099997177542170 a001 121393/3571*9349^(6/19) 6099997179362494 a001 1597/5778*5778^(8/9) 6099997181329791 a001 196418/3571*9349^(5/19) 6099997182464108 a001 514229/9349*2207^(5/16) 6099997184959299 a001 317811/3571*9349^(4/19) 6099997186077368 a001 1597/39603*24476^(20/21) 6099997187051632 a001 1346269/39603*2207^(3/8) 6099997188649201 a001 514229/3571*9349^(3/19) 6099997189001103 a001 6765/3571*15127^(3/5) 6099997189481812 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^23 6099997190372931 a001 1762289/51841*2207^(3/8) 6099997190857502 a001 9227465/271443*2207^(3/8) 6099997190926152 a001 17711/3571*24476^(10/21) 6099997190928200 a001 24157817/710647*2207^(3/8) 6099997190938515 a001 31622993/930249*2207^(3/8) 6099997190940020 a001 165580141/4870847*2207^(3/8) 6099997190940239 a001 433494437/12752043*2207^(3/8) 6099997190940271 a001 567451585/16692641*2207^(3/8) 6099997190940276 a001 2971215073/87403803*2207^(3/8) 6099997190940277 a001 7778742049/228826127*2207^(3/8) 6099997190940277 a001 10182505537/299537289*2207^(3/8) 6099997190940277 a001 53316291173/1568397607*2207^(3/8) 6099997190940277 a001 139583862445/4106118243*2207^(3/8) 6099997190940277 a001 182717648081/5374978561*2207^(3/8) 6099997190940277 a001 956722026041/28143753123*2207^(3/8) 6099997190940277 a001 2504730781961/73681302247*2207^(3/8) 6099997190940277 a001 3278735159921/96450076809*2207^(3/8) 6099997190940277 a001 10610209857723/312119004989*2207^(3/8) 6099997190940277 a001 4052739537881/119218851371*2207^(3/8) 6099997190940277 a001 387002188980/11384387281*2207^(3/8) 6099997190940277 a001 591286729879/17393796001*2207^(3/8) 6099997190940277 a001 225851433717/6643838879*2207^(3/8) 6099997190940277 a001 1135099622/33391061*2207^(3/8) 6099997190940277 a001 32951280099/969323029*2207^(3/8) 6099997190940277 a001 12586269025/370248451*2207^(3/8) 6099997190940277 a001 1201881744/35355581*2207^(3/8) 6099997190940279 a001 1836311903/54018521*2207^(3/8) 6099997190940291 a001 701408733/20633239*2207^(3/8) 6099997190940375 a001 66978574/1970299*2207^(3/8) 6099997190940950 a001 102334155/3010349*2207^(3/8) 6099997190944890 a001 39088169/1149851*2207^(3/8) 6099997190971894 a001 196452/5779*2207^(3/8) 6099997191156983 a001 5702887/167761*2207^(3/8) 6099997192316035 a001 832040/3571*9349^(2/19) 6099997192425607 a001 2178309/64079*2207^(3/8) 6099997192517232 a007 Real Root Of 31*x^4-739*x^3-878*x^2-85*x+542 6099997194332814 a001 646/341*1364^(4/5) 6099997194483046 a001 1597/39603*64079^(20/23) 6099997195128991 a001 17711/3571*64079^(10/23) 6099997195217775 a001 46368/3571*24476^(8/21) 6099997195601465 a001 1597/39603*167761^(4/5) 6099997195688200 a001 17711/3571*167761^(2/5) 6099997195774852 a001 1597/39603*20633239^(4/7) 6099997195774861 a001 1597/39603*2537720636^(4/9) 6099997195774861 a001 1597/39603*(1/2+1/2*5^(1/2))^20 6099997195774861 a001 1597/39603*23725150497407^(5/16) 6099997195774861 a001 1597/39603*505019158607^(5/14) 6099997195774861 a001 1597/39603*73681302247^(5/13) 6099997195774861 a001 1597/39603*28143753123^(2/5) 6099997195774861 a001 1597/39603*10749957122^(5/12) 6099997195774861 a001 1597/39603*4106118243^(10/23) 6099997195774861 a001 1597/39603*1568397607^(5/11) 6099997195774861 a001 1597/39603*599074578^(10/21) 6099997195774861 a001 1597/39603*228826127^(1/2) 6099997195774861 a001 1597/39603*87403803^(10/19) 6099997195774864 a001 1597/39603*33385282^(5/9) 6099997195774883 a001 1597/39603*12752043^(10/17) 6099997195774894 a001 17711/3571*20633239^(2/7) 6099997195774898 a001 17711/3571*2537720636^(2/9) 6099997195774898 a001 17711/3571*312119004989^(2/11) 6099997195774898 a001 17711/3571*(1/2+1/2*5^(1/2))^10 6099997195774898 a001 17711/3571*28143753123^(1/5) 6099997195774898 a001 17711/3571*10749957122^(5/24) 6099997195774898 a001 17711/3571*4106118243^(5/23) 6099997195774898 a001 17711/3571*1568397607^(5/22) 6099997195774898 a001 17711/3571*599074578^(5/21) 6099997195774898 a001 17711/3571*228826127^(1/4) 6099997195774898 a001 17711/3571*87403803^(5/19) 6099997195774900 a001 17711/3571*33385282^(5/18) 6099997195774909 a001 17711/3571*12752043^(5/17) 6099997195774979 a001 17711/3571*4870847^(5/16) 6099997195775021 a001 1597/39603*4870847^(5/8) 6099997195775486 a001 17711/3571*1860498^(1/3) 6099997195776036 a001 1597/39603*1860498^(2/3) 6099997195779212 a001 17711/3571*710647^(5/14) 6099997195783488 a001 1597/39603*710647^(5/7) 6099997195806740 a001 17711/3571*271443^(5/13) 6099997195838544 a001 1597/39603*271443^(10/13) 6099997195991680 a001 1346269/3571*9349^(1/19) 6099997196011333 a001 17711/3571*103682^(5/12) 6099997196247731 a001 1597/39603*103682^(5/6) 6099997196342305 a001 28284467/46368 6099997196486838 a001 75025/3571*24476^(1/3) 6099997196672180 a001 121393/3571*24476^(2/7) 6099997196785932 a001 28657/3571*24476^(3/7) 6099997196998400 a001 1597/15127*15127^(9/10) 6099997197271466 a001 196418/3571*24476^(5/21) 6099997197542770 a001 17711/3571*39603^(5/11) 6099997197616654 a001 987/521*521^(12/13) 6099997197675738 a001 1597/103682*64079^(22/23) 6099997197712639 a001 317811/3571*24476^(4/21) 6099997198178591 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^25 6099997198214206 a001 514229/3571*24476^(1/7) 6099997198580046 a001 46368/3571*64079^(8/23) 6099997198692705 a001 832040/3571*24476^(2/21) 6099997199096669 a001 1597/103682*7881196^(2/3) 6099997199096735 a001 1597/103682*312119004989^(2/5) 6099997199096735 a001 1597/103682*(1/2+1/2*5^(1/2))^22 6099997199096735 a001 1597/103682*10749957122^(11/24) 6099997199096735 a001 1597/103682*4106118243^(11/23) 6099997199096735 a001 1597/103682*1568397607^(1/2) 6099997199096735 a001 1597/103682*599074578^(11/21) 6099997199096735 a001 1597/103682*228826127^(11/20) 6099997199096735 a001 1597/103682*87403803^(11/19) 6099997199096738 a001 1597/103682*33385282^(11/18) 6099997199096759 a001 1597/103682*12752043^(11/17) 6099997199096772 a001 46368/3571*(1/2+1/2*5^(1/2))^8 6099997199096772 a001 46368/3571*23725150497407^(1/8) 6099997199096772 a001 46368/3571*505019158607^(1/7) 6099997199096772 a001 46368/3571*73681302247^(2/13) 6099997199096772 a001 46368/3571*10749957122^(1/6) 6099997199096772 a001 46368/3571*4106118243^(4/23) 6099997199096772 a001 46368/3571*1568397607^(2/11) 6099997199096772 a001 46368/3571*599074578^(4/21) 6099997199096772 a001 46368/3571*228826127^(1/5) 6099997199096773 a001 46368/3571*87403803^(4/19) 6099997199096774 a001 46368/3571*33385282^(2/9) 6099997199096781 a001 46368/3571*12752043^(4/17) 6099997199096837 a001 46368/3571*4870847^(1/4) 6099997199096912 a001 1597/103682*4870847^(11/16) 6099997199097242 a001 46368/3571*1860498^(4/15) 6099997199098027 a001 1597/103682*1860498^(11/15) 6099997199100223 a001 46368/3571*710647^(2/7) 6099997199106225 a001 1597/103682*710647^(11/14) 6099997199122246 a001 46368/3571*271443^(4/13) 6099997199166787 a001 1597/103682*271443^(11/13) 6099997199179524 a001 74049696/121393 6099997199180015 a001 1346269/3571*24476^(1/21) 6099997199193883 a001 121393/3571*64079^(6/23) 6099997199285920 a001 46368/3571*103682^(1/3) 6099997199310604 a001 1597/39603*39603^(10/11) 6099997199372885 a001 196418/3571*64079^(5/23) 6099997199393775 a001 317811/3571*64079^(4/23) 6099997199428825 a001 75025/3571*64079^(7/23) 6099997199447435 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^27 6099997199475058 a001 514229/3571*64079^(3/23) 6099997199533273 a001 832040/3571*64079^(2/23) 6099997199553281 a001 1597/271443*439204^(8/9) 6099997199574400 a001 121393/3571*439204^(2/9) 6099997199581318 a001 1597/271443*7881196^(8/11) 6099997199581390 a001 1597/271443*141422324^(8/13) 6099997199581390 a001 1597/271443*2537720636^(8/15) 6099997199581390 a001 1597/271443*45537549124^(8/17) 6099997199581390 a001 1597/271443*14662949395604^(8/21) 6099997199581390 a001 1597/271443*(1/2+1/2*5^(1/2))^24 6099997199581390 a001 1597/271443*192900153618^(4/9) 6099997199581390 a001 1597/271443*73681302247^(6/13) 6099997199581390 a001 1597/271443*10749957122^(1/2) 6099997199581390 a001 1597/271443*4106118243^(12/23) 6099997199581390 a001 1597/271443*1568397607^(6/11) 6099997199581390 a001 1597/271443*599074578^(4/7) 6099997199581390 a001 1597/271443*228826127^(3/5) 6099997199581390 a001 1597/271443*87403803^(12/19) 6099997199581393 a001 1597/271443*33385282^(2/3) 6099997199581409 a001 121393/3571*7881196^(2/11) 6099997199581416 a001 1597/271443*12752043^(12/17) 6099997199581427 a001 121393/3571*141422324^(2/13) 6099997199581427 a001 121393/3571*2537720636^(2/15) 6099997199581427 a001 121393/3571*45537549124^(2/17) 6099997199581427 a001 121393/3571*14662949395604^(2/21) 6099997199581427 a001 121393/3571*(1/2+1/2*5^(1/2))^6 6099997199581427 a001 121393/3571*10749957122^(1/8) 6099997199581427 a001 121393/3571*4106118243^(3/23) 6099997199581427 a001 121393/3571*1568397607^(3/22) 6099997199581427 a001 121393/3571*599074578^(1/7) 6099997199581427 a001 121393/3571*228826127^(3/20) 6099997199581427 a001 121393/3571*87403803^(3/19) 6099997199581428 a001 121393/3571*33385282^(1/6) 6099997199581434 a001 121393/3571*12752043^(3/17) 6099997199581476 a001 121393/3571*4870847^(3/16) 6099997199581583 a001 1597/271443*4870847^(3/4) 6099997199581780 a001 121393/3571*1860498^(1/5) 6099997199582800 a001 1597/271443*1860498^(4/5) 6099997199584016 a001 121393/3571*710647^(3/14) 6099997199591743 a001 1597/271443*710647^(6/7) 6099997199593469 a001 193864621/317811 6099997199600299 a001 1346269/3571*64079^(1/23) 6099997199600532 a001 121393/3571*271443^(3/13) 6099997199616892 a001 1597/103682*103682^(11/12) 6099997199632556 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^29 6099997199652100 a001 1597/710647*141422324^(2/3) 6099997199652100 a001 1597/710647*(1/2+1/2*5^(1/2))^26 6099997199652100 a001 1597/710647*73681302247^(1/2) 6099997199652100 a001 1597/710647*10749957122^(13/24) 6099997199652100 a001 1597/710647*4106118243^(13/23) 6099997199652100 a001 1597/710647*1568397607^(13/22) 6099997199652100 a001 1597/710647*599074578^(13/21) 6099997199652100 a001 1597/710647*228826127^(13/20) 6099997199652101 a001 1597/710647*87403803^(13/19) 6099997199652104 a001 1597/710647*33385282^(13/18) 6099997199652129 a001 1597/710647*12752043^(13/17) 6099997199652138 a001 317811/3571*(1/2+1/2*5^(1/2))^4 6099997199652138 a001 317811/3571*23725150497407^(1/16) 6099997199652138 a001 317811/3571*73681302247^(1/13) 6099997199652138 a001 317811/3571*10749957122^(1/12) 6099997199652138 a001 317811/3571*4106118243^(2/23) 6099997199652138 a001 317811/3571*1568397607^(1/11) 6099997199652138 a001 317811/3571*599074578^(2/21) 6099997199652138 a001 317811/3571*228826127^(1/10) 6099997199652138 a001 317811/3571*87403803^(2/19) 6099997199652138 a001 317811/3571*33385282^(1/9) 6099997199652142 a001 317811/3571*12752043^(2/17) 6099997199652170 a001 317811/3571*4870847^(1/8) 6099997199652309 a001 1597/710647*4870847^(13/16) 6099997199652373 a001 317811/3571*1860498^(2/15) 6099997199652490 a001 196418/3571*167761^(1/5) 6099997199653627 a001 1597/710647*1860498^(13/15) 6099997199653862 a001 507544167/832040 6099997199653863 a001 317811/3571*710647^(1/7) 6099997199657810 a001 1597/271443*271443^(12/13) 6099997199659565 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^31 6099997199662405 a001 1597/1860498*20633239^(4/5) 6099997199662417 a001 1597/1860498*17393796001^(4/7) 6099997199662417 a001 1597/1860498*14662949395604^(4/9) 6099997199662417 a001 1597/1860498*(1/2+1/2*5^(1/2))^28 6099997199662417 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^28/Lucas(30) 6099997199662417 a001 1597/1860498*505019158607^(1/2) 6099997199662417 a001 1597/1860498*73681302247^(7/13) 6099997199662417 a001 1597/1860498*10749957122^(7/12) 6099997199662417 a001 1597/1860498*4106118243^(14/23) 6099997199662417 a001 1597/1860498*1568397607^(7/11) 6099997199662417 a001 1597/1860498*599074578^(2/3) 6099997199662417 a001 1597/1860498*228826127^(7/10) 6099997199662417 a001 1597/1860498*87403803^(14/19) 6099997199662421 a001 1597/1860498*33385282^(7/9) 6099997199662447 a001 1597/1860498*12752043^(14/17) 6099997199662454 a001 832040/3571*(1/2+1/2*5^(1/2))^2 6099997199662454 a001 832040/3571*10749957122^(1/24) 6099997199662454 a001 832040/3571*4106118243^(1/23) 6099997199662454 a001 832040/3571*1568397607^(1/22) 6099997199662454 a001 832040/3571*599074578^(1/21) 6099997199662454 a001 832040/3571*228826127^(1/20) 6099997199662454 a001 832040/3571*87403803^(1/19) 6099997199662454 a001 832040/3571*33385282^(1/18) 6099997199662456 a001 832040/3571*12752043^(1/17) 6099997199662470 a001 832040/3571*4870847^(1/16) 6099997199662572 a001 832040/3571*1860498^(1/15) 6099997199662641 a001 1597/1860498*4870847^(7/8) 6099997199662674 a001 1328767880/2178309 6099997199663316 a001 1597/710647*710647^(13/14) 6099997199663317 a001 832040/3571*710647^(1/14) 6099997199663506 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^33 6099997199663832 a001 1597/4870847*7881196^(10/11) 6099997199663909 a001 1597/4870847*20633239^(6/7) 6099997199663921 a001 1597/4870847*141422324^(10/13) 6099997199663922 a001 1597/4870847*2537720636^(2/3) 6099997199663922 a001 1597/4870847*45537549124^(10/17) 6099997199663922 a001 1597/4870847*312119004989^(6/11) 6099997199663922 a001 1597/4870847*14662949395604^(10/21) 6099997199663922 a001 1597/4870847*(1/2+1/2*5^(1/2))^30 6099997199663922 a001 1597/4870847*192900153618^(5/9) 6099997199663922 a001 1597/4870847*28143753123^(3/5) 6099997199663922 a001 1597/4870847*10749957122^(5/8) 6099997199663922 a001 1597/4870847*4106118243^(15/23) 6099997199663922 a001 1597/4870847*1568397607^(15/22) 6099997199663922 a001 1597/4870847*599074578^(5/7) 6099997199663922 a001 1597/4870847*228826127^(3/4) 6099997199663922 a001 1597/4870847*87403803^(15/19) 6099997199663926 a001 1597/4870847*33385282^(5/6) 6099997199663955 a001 1597/4870847*12752043^(15/17) 6099997199663959 a001 2178309/3571 6099997199664061 a001 1597/1860498*1860498^(14/15) 6099997199664081 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^35 6099997199664141 a001 1597/12752043*(1/2+1/2*5^(1/2))^32 6099997199664141 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^32/Lucas(34) 6099997199664141 a001 1597/12752043*23725150497407^(1/2) 6099997199664141 a001 1597/12752043*505019158607^(4/7) 6099997199664141 a001 1597/12752043*73681302247^(8/13) 6099997199664141 a001 1597/12752043*10749957122^(2/3) 6099997199664141 a001 1597/12752043*4106118243^(16/23) 6099997199664141 a001 1597/12752043*1568397607^(8/11) 6099997199664141 a001 1597/12752043*599074578^(16/21) 6099997199664141 a001 1597/12752043*228826127^(4/5) 6099997199664142 a001 1597/12752043*87403803^(16/19) 6099997199664146 a001 1597/12752043*33385282^(8/9) 6099997199664147 a001 9107510539/14930352 6099997199664163 a001 1597/4870847*4870847^(15/16) 6099997199664164 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^37 6099997199664173 a001 1597/33385282*45537549124^(2/3) 6099997199664173 a001 1597/33385282*(1/2+1/2*5^(1/2))^34 6099997199664173 a001 1597/33385282*10749957122^(17/24) 6099997199664173 a001 1597/33385282*4106118243^(17/23) 6099997199664173 a001 1597/33385282*1568397607^(17/22) 6099997199664173 a001 1597/33385282*599074578^(17/21) 6099997199664173 a001 1597/33385282*228826127^(17/20) 6099997199664174 a001 1597/33385282*87403803^(17/19) 6099997199664174 a001 23843772144/39088169 6099997199664177 a001 1597/12752043*12752043^(16/17) 6099997199664177 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^39 6099997199664178 a001 1597/87403803*141422324^(12/13) 6099997199664178 a001 1597/87403803*2537720636^(4/5) 6099997199664178 a001 1597/87403803*45537549124^(12/17) 6099997199664178 a001 1597/87403803*14662949395604^(4/7) 6099997199664178 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(38) 6099997199664178 a001 1597/87403803*505019158607^(9/14) 6099997199664178 a001 1597/87403803*192900153618^(2/3) 6099997199664178 a001 1597/87403803*73681302247^(9/13) 6099997199664178 a001 1597/87403803*10749957122^(3/4) 6099997199664178 a001 1597/87403803*4106118243^(18/23) 6099997199664178 a001 1597/87403803*1568397607^(9/11) 6099997199664178 a001 1597/87403803*599074578^(6/7) 6099997199664178 a001 1597/87403803*228826127^(9/10) 6099997199664178 a001 62423805893/102334155 6099997199664178 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^41 6099997199664178 a001 1597/33385282*33385282^(17/18) 6099997199664179 a001 1597/228826127*817138163596^(2/3) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(40) 6099997199664179 a001 1597/228826127*10749957122^(19/24) 6099997199664179 a001 1597/228826127*4106118243^(19/23) 6099997199664179 a001 1597/228826127*1568397607^(19/22) 6099997199664179 a001 1597/228826127*599074578^(19/21) 6099997199664179 a001 163427645535/267914296 6099997199664179 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^43 6099997199664179 a001 1597/87403803*87403803^(18/19) 6099997199664179 a001 1597/599074578*2537720636^(8/9) 6099997199664179 a001 1597/599074578*312119004989^(8/11) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(42) 6099997199664179 a001 1597/599074578*23725150497407^(5/8) 6099997199664179 a001 1597/599074578*73681302247^(10/13) 6099997199664179 a001 1597/599074578*28143753123^(4/5) 6099997199664179 a001 1597/599074578*10749957122^(5/6) 6099997199664179 a001 1597/599074578*4106118243^(20/23) 6099997199664179 a001 1597/599074578*1568397607^(10/11) 6099997199664179 a001 427859130712/701408733 6099997199664179 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^45 6099997199664179 a001 1597/228826127*228826127^(19/20) 6099997199664179 a001 1597/1568397607*2537720636^(14/15) 6099997199664179 a001 1597/1568397607*17393796001^(6/7) 6099997199664179 a001 1597/1568397607*45537549124^(14/17) 6099997199664179 a001 1597/1568397607*817138163596^(14/19) 6099997199664179 a001 1597/1568397607*14662949395604^(2/3) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(44) 6099997199664179 a001 1597/1568397607*505019158607^(3/4) 6099997199664179 a001 1597/1568397607*192900153618^(7/9) 6099997199664179 a001 1597/1568397607*10749957122^(7/8) 6099997199664179 a001 1597/1568397607*4106118243^(21/23) 6099997199664179 a001 1120149746601/1836311903 6099997199664179 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^47 6099997199664179 a001 1597/599074578*599074578^(20/21) 6099997199664179 a001 1597/4106118243*312119004989^(4/5) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(46) 6099997199664179 a001 1597/4106118243*23725150497407^(11/16) 6099997199664179 a001 1597/4106118243*73681302247^(11/13) 6099997199664179 a001 1597/4106118243*10749957122^(11/12) 6099997199664179 a001 2932590109091/4807526976 6099997199664179 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^49 6099997199664179 a001 1597/1568397607*1568397607^(21/22) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(48) 6099997199664179 a001 7677620580672/12586269025 6099997199664179 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^51 6099997199664179 a001 1597/4106118243*4106118243^(22/23) 6099997199664179 a001 1597/28143753123*45537549124^(16/17) 6099997199664179 a001 1597/28143753123*14662949395604^(16/21) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(50) 6099997199664179 a001 1597/28143753123*192900153618^(8/9) 6099997199664179 a001 1597/28143753123*73681302247^(12/13) 6099997199664179 a001 20100271632925/32951280099 6099997199664179 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^53 6099997199664179 a001 1597/10749957122*10749957122^(23/24) 6099997199664179 a001 1597/73681302247*312119004989^(10/11) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(52) 6099997199664179 a001 1597/73681302247*3461452808002^(5/6) 6099997199664179 a001 52623194318103/86267571272 6099997199664179 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^55 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(54) 6099997199664179 a001 1597/192900153618*23725150497407^(13/16) 6099997199664179 a001 1597/192900153618*505019158607^(13/14) 6099997199664179 a001 137769311321384/225851433717 6099997199664179 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^57 6099997199664179 a001 1597/505019158607*14662949395604^(6/7) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(56) 6099997199664179 a001 360684739646049/591286729879 6099997199664179 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^59 6099997199664179 a001 1597/1322157322203*14662949395604^(8/9) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(58) 6099997199664179 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^61 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(60) 6099997199664179 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^63 6099997199664179 a001 1597/9062201101803*14662949395604^(20/21) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(62) 6099997199664179 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^65 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(64) 6099997199664179 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^67 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(66) 6099997199664179 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^69 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(68) 6099997199664179 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^71 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(70) 6099997199664179 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^73 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(72) 6099997199664179 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^75 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(74) 6099997199664179 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^77 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(76) 6099997199664179 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^79 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(78) 6099997199664179 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^81 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(80) 6099997199664179 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^83 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(82) 6099997199664179 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^85 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(84) 6099997199664179 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^87 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(86) 6099997199664179 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^89 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(88) 6099997199664179 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^91 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(90) 6099997199664179 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^93 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(92) 6099997199664179 a004 Fibonacci(17)*Lucas(93)/(1/2+sqrt(5)/2)^95 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^92/Lucas(94) 6099997199664179 a004 Fibonacci(17)*Lucas(95)/(1/2+sqrt(5)/2)^97 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^94/Lucas(96) 6099997199664179 a004 Fibonacci(17)*Lucas(97)/(1/2+sqrt(5)/2)^99 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^96/Lucas(98) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^97/Lucas(99) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^98/Lucas(100) 6099997199664179 a004 Fibonacci(17)*Lucas(1)/(1/2+sqrt(5)/2)^2 6099997199664179 a004 Fibonacci(17)*Lucas(98)/(1/2+sqrt(5)/2)^100 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^95/Lucas(97) 6099997199664179 a004 Fibonacci(17)*Lucas(96)/(1/2+sqrt(5)/2)^98 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^93/Lucas(95) 6099997199664179 a004 Fibonacci(17)*Lucas(94)/(1/2+sqrt(5)/2)^96 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(93) 6099997199664179 a004 Fibonacci(17)*Lucas(92)/(1/2+sqrt(5)/2)^94 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(91) 6099997199664179 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^92 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(89) 6099997199664179 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^90 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(87) 6099997199664179 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^88 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(85) 6099997199664179 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^86 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(83) 6099997199664179 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^84 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(81) 6099997199664179 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^82 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(79) 6099997199664179 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^80 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(77) 6099997199664179 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^78 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(75) 6099997199664179 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^76 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(73) 6099997199664179 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^74 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(71) 6099997199664179 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^72 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(69) 6099997199664179 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^70 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(67) 6099997199664179 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^68 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(65) 6099997199664179 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^66 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(63) 6099997199664179 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^64 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(61) 6099997199664179 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^62 6099997199664179 a001 1527885075587477/2504730781961 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(59) 6099997199664179 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^60 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(57) 6099997199664179 a001 1597/817138163596*3461452808002^(11/12) 6099997199664179 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^58 6099997199664179 a001 222915428324665/365435296162 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(55) 6099997199664179 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^56 6099997199664179 a001 85146117003281/139583862445 6099997199664179 a001 1597/119218851371*817138163596^(17/19) 6099997199664179 a001 1597/119218851371*14662949395604^(17/21) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(53) 6099997199664179 a001 1597/119218851371*192900153618^(17/18) 6099997199664179 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^54 6099997199664179 a001 32522922685178/53316291173 6099997199664179 a001 1597/45537549124*14662949395604^(7/9) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(51) 6099997199664179 a001 1597/45537549124*505019158607^(7/8) 6099997199664179 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^52 6099997199664179 a001 7778742049/12752042 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(49) 6099997199664179 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^50 6099997199664179 a001 4745030471581/7778742049 6099997199664179 a001 1597/6643838879*45537549124^(15/17) 6099997199664179 a001 1597/6643838879*312119004989^(9/11) 6099997199664179 a001 1597/6643838879*14662949395604^(5/7) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(47) 6099997199664179 a001 1597/6643838879*192900153618^(5/6) 6099997199664179 a001 1597/6643838879*28143753123^(9/10) 6099997199664179 a001 1597/6643838879*10749957122^(15/16) 6099997199664179 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^48 6099997199664179 a001 1812440362490/2971215073 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(45) 6099997199664179 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^46 6099997199664179 a001 692290615889/1134903170 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(43) 6099997199664179 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^44 6099997199664179 a001 264431485177/433494437 6099997199664179 a001 1597/370248451*2537720636^(13/15) 6099997199664179 a001 1597/370248451*45537549124^(13/17) 6099997199664179 a001 1597/370248451*14662949395604^(13/21) 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(41) 6099997199664179 a001 1597/370248451*192900153618^(13/18) 6099997199664179 a001 1597/370248451*73681302247^(3/4) 6099997199664179 a001 1597/370248451*10749957122^(13/16) 6099997199664179 a001 1597/370248451*599074578^(13/14) 6099997199664179 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^42 6099997199664179 a001 101003839642/165580141 6099997199664179 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(39) 6099997199664180 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^40 6099997199664181 a001 38580033749/63245986 6099997199664181 a001 1597/54018521*2537720636^(7/9) 6099997199664181 a001 1597/54018521*17393796001^(5/7) 6099997199664181 a001 1597/54018521*312119004989^(7/11) 6099997199664181 a001 1597/54018521*14662949395604^(5/9) 6099997199664181 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(37) 6099997199664181 a001 1597/54018521*505019158607^(5/8) 6099997199664181 a001 1597/54018521*28143753123^(7/10) 6099997199664181 a001 1597/54018521*599074578^(5/6) 6099997199664181 a001 1597/54018521*228826127^(7/8) 6099997199664184 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^38 6099997199664191 a001 14736261605/24157817 6099997199664193 a001 1597/20633239*141422324^(11/13) 6099997199664193 a001 1597/20633239*2537720636^(11/15) 6099997199664193 a001 1597/20633239*45537549124^(11/17) 6099997199664193 a001 1597/20633239*312119004989^(3/5) 6099997199664193 a001 1597/20633239*817138163596^(11/19) 6099997199664193 a001 1597/20633239*14662949395604^(11/21) 6099997199664193 a001 1597/20633239*(1/2+1/2*5^(1/2))^33 6099997199664193 a001 1597/20633239*192900153618^(11/18) 6099997199664193 a001 1597/20633239*10749957122^(11/16) 6099997199664193 a001 1597/20633239*1568397607^(3/4) 6099997199664193 a001 1597/20633239*599074578^(11/14) 6099997199664198 a001 1597/20633239*33385282^(11/12) 6099997199664211 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^4 6099997199664215 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^6 6099997199664216 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^8 6099997199664216 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^10 6099997199664216 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^12 6099997199664216 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^14 6099997199664216 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^16 6099997199664216 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^18 6099997199664216 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^20 6099997199664216 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^22 6099997199664216 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^24 6099997199664216 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^26 6099997199664216 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^28 6099997199664216 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^30 6099997199664216 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^32 6099997199664216 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^34 6099997199664216 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^36 6099997199664216 a004 Fibonacci(68)/Lucas(17)/(1/2+sqrt(5)/2)^36 6099997199664216 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^38 6099997199664216 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^40 6099997199664216 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^42 6099997199664216 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^44 6099997199664216 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^46 6099997199664216 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^48 6099997199664216 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^50 6099997199664216 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^52 6099997199664216 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^54 6099997199664216 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^56 6099997199664216 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^58 6099997199664216 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^60 6099997199664216 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^62 6099997199664216 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^64 6099997199664216 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^66 6099997199664216 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^68 6099997199664216 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^67 6099997199664216 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^65 6099997199664216 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^63 6099997199664216 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^61 6099997199664216 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^59 6099997199664216 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^57 6099997199664216 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^55 6099997199664216 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^53 6099997199664216 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^51 6099997199664216 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^49 6099997199664216 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^47 6099997199664216 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^45 6099997199664216 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^43 6099997199664216 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^41 6099997199664216 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^39 6099997199664216 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^37 6099997199664216 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^35 6099997199664216 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^33 6099997199664216 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^31 6099997199664216 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^29 6099997199664216 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^27 6099997199664216 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^25 6099997199664216 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^23 6099997199664216 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^21 6099997199664216 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^19 6099997199664216 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^17 6099997199664216 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^15 6099997199664216 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^13 6099997199664216 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^11 6099997199664216 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^9 6099997199664217 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^7 6099997199664218 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^5 6099997199664231 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^3 6099997199664263 a001 5628751066/9227465 6099997199664277 a001 1597/7881196*(1/2+1/2*5^(1/2))^31 6099997199664277 a001 1597/7881196*9062201101803^(1/2) 6099997199664314 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2) 6099997199664436 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^34 6099997199664754 a001 2149991593/3524578 6099997199664852 a001 1597/3010349*(1/2+1/2*5^(1/2))^29 6099997199664852 a001 1597/3010349*1322157322203^(1/2) 6099997199664874 a001 317811/3571*271443^(2/13) 6099997199664889 a001 1346269/7142+1346269/7142*5^(1/2) 6099997199665316 a001 514229/3571*439204^(1/9) 6099997199665941 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^32 6099997199668119 a001 821223713/1346269 6099997199668712 a001 1597/1149851*7881196^(9/11) 6099997199668792 a001 1597/1149851*141422324^(9/13) 6099997199668792 a001 1597/1149851*2537720636^(3/5) 6099997199668792 a001 1597/1149851*45537549124^(9/17) 6099997199668792 a001 1597/1149851*817138163596^(9/19) 6099997199668792 a001 1597/1149851*14662949395604^(3/7) 6099997199668792 a001 1597/1149851*(1/2+1/2*5^(1/2))^27 6099997199668792 a001 1597/1149851*192900153618^(1/2) 6099997199668792 a001 1597/1149851*10749957122^(9/16) 6099997199668792 a001 1597/1149851*599074578^(9/14) 6099997199668797 a001 1597/1149851*33385282^(3/4) 6099997199668821 a001 514229/3571*7881196^(1/11) 6099997199668822 a001 832040/3571*271443^(1/13) 6099997199668830 a001 514229/3571*141422324^(1/13) 6099997199668830 a001 514229/3571*2537720636^(1/15) 6099997199668830 a001 514229/3571*45537549124^(1/17) 6099997199668830 a001 514229/3571*14662949395604^(1/21) 6099997199668830 a001 514229/3571*(1/2+1/2*5^(1/2))^3 6099997199668830 a001 514229/3571*192900153618^(1/18) 6099997199668830 a001 514229/3571*10749957122^(1/16) 6099997199668830 a001 514229/3571*599074578^(1/14) 6099997199668830 a001 514229/3571*33385282^(1/12) 6099997199669006 a001 514229/3571*1860498^(1/10) 6099997199670378 a001 1597/1149851*1860498^(9/10) 6099997199676258 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^30 6099997199688533 a001 1346269/3571*103682^(1/24) 6099997199691188 a001 313679546/514229 6099997199695791 a001 1597/439204*20633239^(5/7) 6099997199695801 a001 1597/439204*2537720636^(5/9) 6099997199695801 a001 1597/439204*312119004989^(5/11) 6099997199695801 a001 1597/439204*(1/2+1/2*5^(1/2))^25 6099997199695801 a001 1597/439204*3461452808002^(5/12) 6099997199695801 a001 1597/439204*28143753123^(1/2) 6099997199695801 a001 1597/439204*228826127^(5/8) 6099997199695837 a001 196418/3571*20633239^(1/7) 6099997199695839 a001 196418/3571*2537720636^(1/9) 6099997199695839 a001 196418/3571*312119004989^(1/11) 6099997199695839 a001 196418/3571*(1/2+1/2*5^(1/2))^5 6099997199695839 a001 196418/3571*28143753123^(1/10) 6099997199695839 a001 196418/3571*228826127^(1/8) 6099997199696133 a001 196418/3571*1860498^(1/6) 6099997199697270 a001 1597/439204*1860498^(5/6) 6099997199709741 a001 832040/3571*103682^(1/12) 6099997199723288 a001 121393/3571*103682^(1/4) 6099997199739760 a001 514229/3571*103682^(1/8) 6099997199746712 a001 317811/3571*103682^(1/6) 6099997199746968 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^28 6099997199793360 a001 1597/64079*64079^(21/23) 6099997199814056 a001 196418/3571*103682^(5/24) 6099997199841677 a001 1346269/3571*39603^(1/22) 6099997199849300 a001 119814925/196418 6099997199880923 a001 1597/167761*(1/2+1/2*5^(1/2))^23 6099997199880923 a001 1597/167761*4106118243^(1/2) 6099997199880958 a001 75025/3571*20633239^(1/5) 6099997199880961 a001 75025/3571*17393796001^(1/7) 6099997199880961 a001 75025/3571*14662949395604^(1/9) 6099997199880961 a001 75025/3571*(1/2+1/2*5^(1/2))^7 6099997199880961 a001 75025/3571*599074578^(1/6) 6099997199883980 a001 75025/3571*710647^(1/4) 6099997200016028 a001 832040/3571*39603^(1/11) 6099997200025605 r005 Re(z^2+c),c=-7/10+46/217*I,n=44 6099997200046465 a001 75025/3571*103682^(7/24) 6099997200199192 a001 514229/3571*39603^(3/22) 6099997200231623 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^26 6099997200359286 a001 317811/3571*39603^(2/11) 6099997200424723 a001 1597/167761*103682^(23/24) 6099997200511070 a001 46368/3571*39603^(4/11) 6099997200568487 a001 28657/3571*64079^(9/23) 6099997200579775 a001 196418/3571*39603^(5/22) 6099997200633928 a001 1597/24476*24476^(19/21) 6099997200642150 a001 121393/3571*39603^(3/11) 6099997200933022 a001 45765229/75025 6099997200997779 a001 1346269/3571*15127^(1/20) 6099997201118471 a001 75025/3571*39603^(7/22) 6099997201120881 a001 208010/6119*2207^(3/8) 6099997201125171 a001 1597/64079*439204^(7/9) 6099997201139263 a001 28657/3571*439204^(1/3) 6099997201149704 a001 1597/64079*7881196^(7/11) 6099997201149757 a001 1597/64079*20633239^(3/5) 6099997201149766 a001 1597/64079*141422324^(7/13) 6099997201149766 a001 1597/64079*2537720636^(7/15) 6099997201149766 a001 1597/64079*17393796001^(3/7) 6099997201149766 a001 1597/64079*45537549124^(7/17) 6099997201149766 a001 1597/64079*14662949395604^(1/3) 6099997201149766 a001 1597/64079*(1/2+1/2*5^(1/2))^21 6099997201149766 a001 1597/64079*192900153618^(7/18) 6099997201149766 a001 1597/64079*10749957122^(7/16) 6099997201149766 a001 1597/64079*599074578^(1/2) 6099997201149769 a001 1597/64079*33385282^(7/12) 6099997201149777 a001 28657/3571*7881196^(3/11) 6099997201149804 a001 28657/3571*141422324^(3/13) 6099997201149804 a001 28657/3571*2537720636^(1/5) 6099997201149804 a001 28657/3571*45537549124^(3/17) 6099997201149804 a001 28657/3571*817138163596^(3/19) 6099997201149804 a001 28657/3571*14662949395604^(1/7) 6099997201149804 a001 28657/3571*(1/2+1/2*5^(1/2))^9 6099997201149804 a001 28657/3571*192900153618^(1/6) 6099997201149804 a001 28657/3571*10749957122^(3/16) 6099997201149804 a001 28657/3571*599074578^(3/14) 6099997201149805 a001 28657/3571*33385282^(1/4) 6099997201150332 a001 28657/3571*1860498^(3/10) 6099997201151000 a001 1597/64079*1860498^(7/10) 6099997201158825 a001 1597/64079*710647^(3/4) 6099997201362595 a001 28657/3571*103682^(3/8) 6099997201646279 a001 1597/64079*103682^(7/8) 6099997202328232 a001 832040/3571*15127^(1/10) 6099997202740888 a001 28657/3571*39603^(9/22) 6099997203553497 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^24 6099997203667497 a001 514229/3571*15127^(3/20) 6099997204512962 a001 10946/3571*24476^(11/21) 6099997204862297 a001 1597/64079*39603^(21/22) 6099997204983694 a001 317811/3571*15127^(1/5) 6099997206360285 a001 196418/3571*15127^(1/4) 6099997207010598 a001 1597/9349*9349^(17/19) 6099997207578762 a001 121393/3571*15127^(3/10) 6099997208360958 a001 17480762/28657 6099997208619321 a001 1597/24476*64079^(19/23) 6099997209103790 a001 17711/3571*15127^(1/2) 6099997209136085 a001 10946/3571*64079^(11/23) 6099997209197490 r005 Im(z^2+c),c=-59/82+9/32*I,n=40 6099997209211185 a001 75025/3571*15127^(7/20) 6099997209759886 a001 46368/3571*15127^(2/5) 6099997209815732 a001 1346269/3571*5778^(1/18) 6099997209846546 a001 1597/24476*817138163596^(1/3) 6099997209846546 a001 1597/24476*(1/2+1/2*5^(1/2))^19 6099997209846546 a001 1597/24476*87403803^(1/2) 6099997209846551 a001 10946/3571*7881196^(1/3) 6099997209846583 a001 10946/3571*312119004989^(1/5) 6099997209846583 a001 10946/3571*(1/2+1/2*5^(1/2))^11 6099997209846583 a001 10946/3571*1568397607^(1/4) 6099997210106662 a001 10946/3571*103682^(11/24) 6099997210295772 a001 1597/24476*103682^(19/24) 6099997211791242 a001 10946/3571*39603^(1/2) 6099997211954235 m001 (-Backhouse+Porter)/(Chi(1)+cos(1/12*Pi)) 6099997213145806 a001 28657/3571*15127^(9/20) 6099997213205502 a001 1597/24476*39603^(19/22) 6099997219265923 a001 1/322*(1/2*5^(1/2)+1/2)*3^(3/17) 6099997219964138 a001 832040/3571*5778^(1/9) 6099997221703473 a001 4181/3571*9349^(13/19) 6099997224508364 a001 10946/3571*15127^(11/20) 6099997226321962 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^22 6099997226811832 a007 Real Root Of -455*x^4+313*x^3-851*x^2+830*x+957 6099997230121357 a001 514229/3571*5778^(1/6) 6099997235171439 a001 1597/24476*15127^(19/20) 6099997238866712 r005 Im(z^2+c),c=-5/8+23/177*I,n=25 6099997240255506 a001 317811/3571*5778^(2/9) 6099997242472965 a001 2576/321*2207^(9/16) 6099997242542179 a001 317811/15127*2207^(7/16) 6099997250450050 a001 196418/3571*5778^(5/18) 6099997255941182 a001 1597/3571*3571^(15/17) 6099997259272793 a001 6677057/10946 6099997260486481 a001 121393/3571*5778^(1/3) 6099997260719180 a001 317811/9349*2207^(3/8) 6099997261212292 a001 1597/9349*24476^(17/21) 6099997261909388 r005 Im(z^2+c),c=-61/110+35/57*I,n=11 6099997263151828 a001 4181/3571*24476^(13/21) 6099997265320960 a001 832040/39603*2207^(7/16) 6099997267275584 r009 Im(z^3+c),c=-5/17+11/15*I,n=20 6099997268357118 a001 1597/9349*64079^(17/23) 6099997268615518 a001 4181/3571*64079^(13/23) 6099997268644340 a001 46347/2206*2207^(7/16) 6099997269129214 a001 5702887/271443*2207^(7/16) 6099997269199957 a001 14930352/710647*2207^(7/16) 6099997269210278 a001 39088169/1860498*2207^(7/16) 6099997269211784 a001 102334155/4870847*2207^(7/16) 6099997269212003 a001 267914296/12752043*2207^(7/16) 6099997269212035 a001 701408733/33385282*2207^(7/16) 6099997269212040 a001 1836311903/87403803*2207^(7/16) 6099997269212041 a001 102287808/4868641*2207^(7/16) 6099997269212041 a001 12586269025/599074578*2207^(7/16) 6099997269212041 a001 32951280099/1568397607*2207^(7/16) 6099997269212041 a001 86267571272/4106118243*2207^(7/16) 6099997269212041 a001 225851433717/10749957122*2207^(7/16) 6099997269212041 a001 591286729879/28143753123*2207^(7/16) 6099997269212041 a001 1548008755920/73681302247*2207^(7/16) 6099997269212041 a001 4052739537881/192900153618*2207^(7/16) 6099997269212041 a001 225749145909/10745088481*2207^(7/16) 6099997269212041 a001 6557470319842/312119004989*2207^(7/16) 6099997269212041 a001 2504730781961/119218851371*2207^(7/16) 6099997269212041 a001 956722026041/45537549124*2207^(7/16) 6099997269212041 a001 365435296162/17393796001*2207^(7/16) 6099997269212041 a001 139583862445/6643838879*2207^(7/16) 6099997269212041 a001 53316291173/2537720636*2207^(7/16) 6099997269212041 a001 20365011074/969323029*2207^(7/16) 6099997269212041 a001 7778742049/370248451*2207^(7/16) 6099997269212041 a001 2971215073/141422324*2207^(7/16) 6099997269212043 a001 1134903170/54018521*2207^(7/16) 6099997269212055 a001 433494437/20633239*2207^(7/16) 6099997269212139 a001 165580141/7881196*2207^(7/16) 6099997269212714 a001 63245986/3010349*2207^(7/16) 6099997269216657 a001 24157817/1149851*2207^(7/16) 6099997269243678 a001 9227465/439204*2207^(7/16) 6099997269428883 a001 3524578/167761*2207^(7/16) 6099997269455161 a001 1597/9349*45537549124^(1/3) 6099997269455161 a001 1597/9349*(1/2+1/2*5^(1/2))^17 6099997269455180 a001 1597/9349*12752043^(1/2) 6099997269455198 a001 4181/3571*141422324^(1/3) 6099997269455198 a001 4181/3571*(1/2+1/2*5^(1/2))^13 6099997269455198 a001 4181/3571*73681302247^(1/4) 6099997269496592 a001 4181/3571*271443^(1/2) 6099997269762563 a001 4181/3571*103682^(13/24) 6099997269857100 a001 1597/9349*103682^(17/24) 6099997270698301 a001 1346269/64079*2207^(7/16) 6099997270936856 a001 75025/3571*5778^(7/18) 6099997271753431 a001 4181/3571*39603^(13/22) 6099997272460543 a001 1597/9349*39603^(17/22) 6099997273963435 a001 5778/377*4181^(28/39) 6099997277936654 a001 1346269/3571*2207^(1/16) 6099997279399022 a001 514229/24476*2207^(7/16) 6099997280303510 a001 46368/3571*5778^(4/9) 6099997286782757 a001 4181/3571*15127^(13/20) 6099997292114277 a001 1597/9349*15127^(17/20) 6099997292507384 a001 28657/3571*5778^(1/2) 6099997294816540 a001 6765/3571*5778^(2/3) 6099997296476201 r009 Re(z^3+c),c=-1/11+22/47*I,n=17 6099997297283321 a001 17711/3571*5778^(5/9) 6099997303142280 a007 Real Root Of 883*x^4-915*x^3-498*x^2-976*x-740 6099997307774535 a001 5702887/15127*843^(1/14) 6099997308317376 a001 317811/2207*843^(3/14) 6099997316135276 a007 Real Root Of -22*x^4-161*x^3-50*x^2+816*x+755 6099997320857645 a001 196418/15127*2207^(1/2) 6099997321505848 a001 10946/3571*5778^(11/18) 6099997322797761 a001 28657/5778*2207^(5/8) 6099997325384801 m006 (1/2*ln(Pi)+4)/(4/5*Pi^2-2/5) 6099997327109219 m005 (1/2*3^(1/2)-9/10)/(1/4*gamma-1/5) 6099997330543032 a001 4976784/13201*843^(1/14) 6099997331998020 a007 Real Root Of 974*x^4-942*x^3-649*x^2-955*x+903 6099997333864911 a001 39088169/103682*843^(1/14) 6099997334349567 a001 34111385/90481*843^(1/14) 6099997334420277 a001 267914296/710647*843^(1/14) 6099997334430593 a001 233802911/620166*843^(1/14) 6099997334432099 a001 1836311903/4870847*843^(1/14) 6099997334432318 a001 1602508992/4250681*843^(1/14) 6099997334432350 a001 12586269025/33385282*843^(1/14) 6099997334432355 a001 10983760033/29134601*843^(1/14) 6099997334432355 a001 86267571272/228826127*843^(1/14) 6099997334432356 a001 267913919/710646*843^(1/14) 6099997334432356 a001 591286729879/1568397607*843^(1/14) 6099997334432356 a001 516002918640/1368706081*843^(1/14) 6099997334432356 a001 4052739537881/10749957122*843^(1/14) 6099997334432356 a001 3536736619241/9381251041*843^(1/14) 6099997334432356 a001 6557470319842/17393796001*843^(1/14) 6099997334432356 a001 2504730781961/6643838879*843^(1/14) 6099997334432356 a001 956722026041/2537720636*843^(1/14) 6099997334432356 a001 365435296162/969323029*843^(1/14) 6099997334432356 a001 139583862445/370248451*843^(1/14) 6099997334432356 a001 53316291173/141422324*843^(1/14) 6099997334432358 a001 20365011074/54018521*843^(1/14) 6099997334432370 a001 7778742049/20633239*843^(1/14) 6099997334432454 a001 2971215073/7881196*843^(1/14) 6099997334433029 a001 1134903170/3010349*843^(1/14) 6099997334436969 a001 433494437/1149851*843^(1/14) 6099997334463978 a001 165580141/439204*843^(1/14) 6099997334649100 a001 63245986/167761*843^(1/14) 6099997335917945 a001 24157817/64079*843^(1/14) 6099997339034646 a001 196418/9349*2207^(7/16) 6099997343599101 a001 514229/39603*2207^(1/2) 6099997344614737 a001 9227465/24476*843^(1/14) 6099997346917035 a001 1346269/103682*2207^(1/2) 6099997347401115 a001 3524578/271443*2207^(1/2) 6099997347471742 a001 9227465/710647*2207^(1/2) 6099997347482046 a001 24157817/1860498*2207^(1/2) 6099997347483549 a001 63245986/4870847*2207^(1/2) 6099997347483769 a001 165580141/12752043*2207^(1/2) 6099997347483801 a001 433494437/33385282*2207^(1/2) 6099997347483805 a001 1134903170/87403803*2207^(1/2) 6099997347483806 a001 2971215073/228826127*2207^(1/2) 6099997347483806 a001 7778742049/599074578*2207^(1/2) 6099997347483806 a001 20365011074/1568397607*2207^(1/2) 6099997347483806 a001 53316291173/4106118243*2207^(1/2) 6099997347483806 a001 139583862445/10749957122*2207^(1/2) 6099997347483806 a001 365435296162/28143753123*2207^(1/2) 6099997347483806 a001 956722026041/73681302247*2207^(1/2) 6099997347483806 a001 2504730781961/192900153618*2207^(1/2) 6099997347483806 a001 10610209857723/817138163596*2207^(1/2) 6099997347483806 a001 4052739537881/312119004989*2207^(1/2) 6099997347483806 a001 1548008755920/119218851371*2207^(1/2) 6099997347483806 a001 591286729879/45537549124*2207^(1/2) 6099997347483806 a001 7787980473/599786069*2207^(1/2) 6099997347483806 a001 86267571272/6643838879*2207^(1/2) 6099997347483806 a001 32951280099/2537720636*2207^(1/2) 6099997347483806 a001 12586269025/969323029*2207^(1/2) 6099997347483806 a001 4807526976/370248451*2207^(1/2) 6099997347483806 a001 1836311903/141422324*2207^(1/2) 6099997347483808 a001 701408733/54018521*2207^(1/2) 6099997347483820 a001 9238424/711491*2207^(1/2) 6099997347483904 a001 102334155/7881196*2207^(1/2) 6099997347484478 a001 39088169/3010349*2207^(1/2) 6099997347488414 a001 14930352/1149851*2207^(1/2) 6099997347515391 a001 5702887/439204*2207^(1/2) 6099997347700293 a001 2178309/167761*2207^(1/2) 6099997348967631 a001 832040/64079*2207^(1/2) 6099997356205984 a001 832040/3571*2207^(1/8) 6099997357654095 a001 10959/844*2207^(1/2) 6099997382379340 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^20 6099997395694622 a001 17711/5778*2207^(11/16) 6099997396149651 r005 Re(z^2+c),c=-7/78+21/29*I,n=38 6099997399015000 a001 121393/15127*2207^(9/16) 6099997401416149 a001 4181/3571*5778^(13/18) 6099997404223438 a001 3524578/9349*843^(1/14) 6099997414860516 m001 (Chi(1)-gamma(1))/(Kolakoski+Riemann1stZero) 6099997417192001 a001 121393/9349*2207^(1/2) 6099997421854175 a001 105937/13201*2207^(9/16) 6099997425186366 a001 416020/51841*2207^(9/16) 6099997425672526 a001 726103/90481*2207^(9/16) 6099997425743456 a001 5702887/710647*2207^(9/16) 6099997425753804 a001 829464/103361*2207^(9/16) 6099997425755314 a001 39088169/4870847*2207^(9/16) 6099997425755535 a001 34111385/4250681*2207^(9/16) 6099997425755567 a001 133957148/16692641*2207^(9/16) 6099997425755571 a001 233802911/29134601*2207^(9/16) 6099997425755572 a001 1836311903/228826127*2207^(9/16) 6099997425755572 a001 267084832/33281921*2207^(9/16) 6099997425755572 a001 12586269025/1568397607*2207^(9/16) 6099997425755572 a001 10983760033/1368706081*2207^(9/16) 6099997425755572 a001 43133785636/5374978561*2207^(9/16) 6099997425755572 a001 75283811239/9381251041*2207^(9/16) 6099997425755572 a001 591286729879/73681302247*2207^(9/16) 6099997425755572 a001 86000486440/10716675201*2207^(9/16) 6099997425755572 a001 4052739537881/505019158607*2207^(9/16) 6099997425755572 a001 3536736619241/440719107401*2207^(9/16) 6099997425755572 a001 3278735159921/408569081798*2207^(9/16) 6099997425755572 a001 2504730781961/312119004989*2207^(9/16) 6099997425755572 a001 956722026041/119218851371*2207^(9/16) 6099997425755572 a001 182717648081/22768774562*2207^(9/16) 6099997425755572 a001 139583862445/17393796001*2207^(9/16) 6099997425755572 a001 53316291173/6643838879*2207^(9/16) 6099997425755572 a001 10182505537/1268860318*2207^(9/16) 6099997425755572 a001 7778742049/969323029*2207^(9/16) 6099997425755572 a001 2971215073/370248451*2207^(9/16) 6099997425755572 a001 567451585/70711162*2207^(9/16) 6099997425755574 a001 433494437/54018521*2207^(9/16) 6099997425755587 a001 165580141/20633239*2207^(9/16) 6099997425755671 a001 31622993/3940598*2207^(9/16) 6099997425756247 a001 24157817/3010349*2207^(9/16) 6099997425760200 a001 9227465/1149851*2207^(9/16) 6099997425787293 a001 1762289/219602*2207^(9/16) 6099997425972990 a001 1346269/167761*2207^(9/16) 6099997427245773 a001 514229/64079*2207^(9/16) 6099997427250754 l003 KelvinHei(1,66/83) 6099997430393337 h001 (5/9*exp(2)+1/8)/(9/11*exp(2)+8/9) 6099997434484126 a001 514229/3571*2207^(3/16) 6099997434564832 r002 36th iterates of z^2 + 6099997435969562 a001 98209/12238*2207^(9/16) 6099997436456199 a001 843/5702887*89^(6/19) 6099997442019482 a001 1597/9349*5778^(17/18) 6099997448959064 r005 Re(z^2+c),c=-17/52+30/49*I,n=64 6099997477586300 a001 75025/15127*2207^(5/8) 6099997481995848 a007 Real Root Of -532*x^4+826*x^3+559*x^2+197*x-442 6099997487849762 m001 GaussAGM(1,1/sqrt(2))-exp(-1/2*Pi)^Catalan 6099997488038074 a001 5473/2889*2207^(3/4) 6099997495763301 a001 75025/9349*2207^(9/16) 6099997499914031 a007 Real Root Of -709*x^4-525*x^3-123*x^2+943*x+600 6099997500169644 a001 196418/39603*2207^(5/8) 6099997503464509 a001 514229/103682*2207^(5/8) 6099997503945224 a001 1346269/271443*2207^(5/8) 6099997504015359 a001 3524578/710647*2207^(5/8) 6099997504025591 a001 9227465/1860498*2207^(5/8) 6099997504027084 a001 24157817/4870847*2207^(5/8) 6099997504027302 a001 63245986/12752043*2207^(5/8) 6099997504027334 a001 165580141/33385282*2207^(5/8) 6099997504027339 a001 433494437/87403803*2207^(5/8) 6099997504027339 a001 1134903170/228826127*2207^(5/8) 6099997504027339 a001 2971215073/599074578*2207^(5/8) 6099997504027339 a001 7778742049/1568397607*2207^(5/8) 6099997504027339 a001 20365011074/4106118243*2207^(5/8) 6099997504027339 a001 53316291173/10749957122*2207^(5/8) 6099997504027339 a001 139583862445/28143753123*2207^(5/8) 6099997504027339 a001 365435296162/73681302247*2207^(5/8) 6099997504027339 a001 956722026041/192900153618*2207^(5/8) 6099997504027339 a001 2504730781961/505019158607*2207^(5/8) 6099997504027339 a001 10610209857723/2139295485799*2207^(5/8) 6099997504027339 a001 4052739537881/817138163596*2207^(5/8) 6099997504027339 a001 140728068720/28374454999*2207^(5/8) 6099997504027339 a001 591286729879/119218851371*2207^(5/8) 6099997504027339 a001 225851433717/45537549124*2207^(5/8) 6099997504027339 a001 86267571272/17393796001*2207^(5/8) 6099997504027339 a001 32951280099/6643838879*2207^(5/8) 6099997504027339 a001 1144206275/230701876*2207^(5/8) 6099997504027339 a001 4807526976/969323029*2207^(5/8) 6099997504027339 a001 1836311903/370248451*2207^(5/8) 6099997504027340 a001 701408733/141422324*2207^(5/8) 6099997504027341 a001 267914296/54018521*2207^(5/8) 6099997504027354 a001 9303105/1875749*2207^(5/8) 6099997504027437 a001 39088169/7881196*2207^(5/8) 6099997504028007 a001 14930352/3010349*2207^(5/8) 6099997504031916 a001 5702887/1149851*2207^(5/8) 6099997504058705 a001 2178309/439204*2207^(5/8) 6099997504242321 a001 75640/15251*2207^(5/8) 6099997505500848 a001 317811/64079*2207^(5/8) 6099997512739201 a001 317811/3571*2207^(1/4) 6099997514126918 a001 121393/24476*2207^(5/8) 6099997517638967 m001 1/cosh(1)*PrimesInBinary^2/ln(sin(Pi/12))^2 6099997518595510 r002 5th iterates of z^2 + 6099997529469690 a001 2255/1926*2207^(13/16) 6099997529955836 a001 1292/2889*2207^(15/16) 6099997532627085 b008 6+FresnelC[1/10] 6099997555073879 a001 6624/2161*2207^(11/16) 6099997560633673 a001 47/1346269*2584^(23/35) 6099997565065024 p004 log(32887/32687) 6099997573250881 a001 46368/9349*2207^(5/8) 6099997576853368 a007 Real Root Of 320*x^4-281*x^3+939*x^2+709*x-25 6099997578327000 a001 121393/39603*2207^(11/16) 6099997581719585 a001 317811/103682*2207^(11/16) 6099997582214556 a001 832040/271443*2207^(11/16) 6099997582286772 a001 311187/101521*2207^(11/16) 6099997582297308 a001 5702887/1860498*2207^(11/16) 6099997582298845 a001 14930352/4870847*2207^(11/16) 6099997582299069 a001 39088169/12752043*2207^(11/16) 6099997582299102 a001 14619165/4769326*2207^(11/16) 6099997582299107 a001 267914296/87403803*2207^(11/16) 6099997582299107 a001 701408733/228826127*2207^(11/16) 6099997582299108 a001 1836311903/599074578*2207^(11/16) 6099997582299108 a001 686789568/224056801*2207^(11/16) 6099997582299108 a001 12586269025/4106118243*2207^(11/16) 6099997582299108 a001 32951280099/10749957122*2207^(11/16) 6099997582299108 a001 86267571272/28143753123*2207^(11/16) 6099997582299108 a001 32264490531/10525900321*2207^(11/16) 6099997582299108 a001 591286729879/192900153618*2207^(11/16) 6099997582299108 a001 1548008755920/505019158607*2207^(11/16) 6099997582299108 a001 1515744265389/494493258286*2207^(11/16) 6099997582299108 a001 2504730781961/817138163596*2207^(11/16) 6099997582299108 a001 956722026041/312119004989*2207^(11/16) 6099997582299108 a001 365435296162/119218851371*2207^(11/16) 6099997582299108 a001 139583862445/45537549124*2207^(11/16) 6099997582299108 a001 53316291173/17393796001*2207^(11/16) 6099997582299108 a001 20365011074/6643838879*2207^(11/16) 6099997582299108 a001 7778742049/2537720636*2207^(11/16) 6099997582299108 a001 2971215073/969323029*2207^(11/16) 6099997582299108 a001 1134903170/370248451*2207^(11/16) 6099997582299108 a001 433494437/141422324*2207^(11/16) 6099997582299110 a001 165580141/54018521*2207^(11/16) 6099997582299122 a001 63245986/20633239*2207^(11/16) 6099997582299208 a001 24157817/7881196*2207^(11/16) 6099997582299795 a001 9227465/3010349*2207^(11/16) 6099997582303819 a001 3524578/1149851*2207^(11/16) 6099997582331403 a001 1346269/439204*2207^(11/16) 6099997582520466 a001 514229/167761*2207^(11/16) 6099997583816318 a001 196418/64079*2207^(11/16) 6099997591054670 a001 196418/3571*2207^(5/16) 6099997592698220 a001 75025/24476*2207^(11/16) 6099997598718249 m001 Zeta(1/2)/DuboisRaymond*StolarskyHarborth 6099997608227696 a001 2550409/4181 6099997619190918 m005 (1/2*Catalan+3/11)/(5/12*Pi-1/9) 6099997620964180 a007 Real Root Of -838*x^4-342*x^3-557*x^2+394*x+486 6099997622920572 a001 1597/3571*9349^(15/19) 6099997635398679 a001 28657/15127*2207^(3/4) 6099997636823051 a001 1597/1364*1364^(13/15) 6099997638343301 a007 Real Root Of -716*x^4+687*x^3-223*x^2+295*x+518 6099997649131846 a007 Real Root Of -67*x^4-277*x^3+755*x^2-408*x-689 6099997650297459 m005 (1/2*Catalan-5)/(3/10*gamma+4/7) 6099997653575682 a001 28657/9349*2207^(11/16) 6099997656898303 a001 75025/39603*2207^(3/4) 6099997660035055 a001 98209/51841*2207^(3/4) 6099997660492702 a001 514229/271443*2207^(3/4) 6099997660559471 a001 1346269/710647*2207^(3/4) 6099997660569213 a001 1762289/930249*2207^(3/4) 6099997660570634 a001 9227465/4870847*2207^(3/4) 6099997660570841 a001 24157817/12752043*2207^(3/4) 6099997660570872 a001 31622993/16692641*2207^(3/4) 6099997660570876 a001 165580141/87403803*2207^(3/4) 6099997660570877 a001 433494437/228826127*2207^(3/4) 6099997660570877 a001 567451585/299537289*2207^(3/4) 6099997660570877 a001 2971215073/1568397607*2207^(3/4) 6099997660570877 a001 7778742049/4106118243*2207^(3/4) 6099997660570877 a001 10182505537/5374978561*2207^(3/4) 6099997660570877 a001 53316291173/28143753123*2207^(3/4) 6099997660570877 a001 139583862445/73681302247*2207^(3/4) 6099997660570877 a001 182717648081/96450076809*2207^(3/4) 6099997660570877 a001 956722026041/505019158607*2207^(3/4) 6099997660570877 a001 10610209857723/5600748293801*2207^(3/4) 6099997660570877 a001 591286729879/312119004989*2207^(3/4) 6099997660570877 a001 225851433717/119218851371*2207^(3/4) 6099997660570877 a001 21566892818/11384387281*2207^(3/4) 6099997660570877 a001 32951280099/17393796001*2207^(3/4) 6099997660570877 a001 12586269025/6643838879*2207^(3/4) 6099997660570877 a001 1201881744/634430159*2207^(3/4) 6099997660570877 a001 1836311903/969323029*2207^(3/4) 6099997660570877 a001 701408733/370248451*2207^(3/4) 6099997660570877 a001 66978574/35355581*2207^(3/4) 6099997660570879 a001 102334155/54018521*2207^(3/4) 6099997660570890 a001 39088169/20633239*2207^(3/4) 6099997660570970 a001 3732588/1970299*2207^(3/4) 6099997660571512 a001 5702887/3010349*2207^(3/4) 6099997660575233 a001 2178309/1149851*2207^(3/4) 6099997660600737 a001 208010/109801*2207^(3/4) 6099997660775542 a001 317811/167761*2207^(3/4) 6099997661973675 a001 121393/64079*2207^(3/4) 6099997665418406 a001 4181/1364*1364^(11/15) 6099997668273483 r009 Im(z^3+c),c=-4/31+36/49*I,n=42 6099997669212028 a001 121393/3571*2207^(3/8) 6099997670185801 a001 11592/6119*2207^(3/4) 6099997670745600 a001 1597/3571*24476^(5/7) 6099997677049859 a001 1597/3571*64079^(15/23) 6099997677888673 a001 1597/3571*167761^(3/5) 6099997678001152 a001 1597/3571*439204^(5/9) 6099997678018675 a001 1597/3571*7881196^(5/11) 6099997678018714 a001 1597/3571*20633239^(3/7) 6099997678018720 a001 1597/3571*141422324^(5/13) 6099997678018720 a001 1597/3571*2537720636^(1/3) 6099997678018720 a001 1597/3571*45537549124^(5/17) 6099997678018720 a001 1597/3571*312119004989^(3/11) 6099997678018720 a001 1597/3571*14662949395604^(5/21) 6099997678018720 a001 1597/3571*(1/2+1/2*5^(1/2))^15 6099997678018720 a001 1597/3571*192900153618^(5/18) 6099997678018720 a001 1597/3571*28143753123^(3/10) 6099997678018720 a001 1597/3571*10749957122^(5/16) 6099997678018720 a001 1597/3571*599074578^(5/14) 6099997678018720 a001 1597/3571*228826127^(3/8) 6099997678018722 a001 1597/3571*33385282^(5/12) 6099997678019601 a001 1597/3571*1860498^(1/2) 6099997678373372 a001 1597/3571*103682^(5/8) 6099997680670528 a001 1597/3571*39603^(15/22) 6099997691051259 a008 Real Root of (-1-x+x^2-x^5-x^6+x^7+x^8-x^10-x^11) 6099997698012059 a001 1597/3571*15127^(3/4) 6099997704190230 a001 4181/5778*2207^(7/8) 6099997708295543 a001 17711/15127*2207^(13/16) 6099997708594424 m005 (3/5*Pi-2/3)/(2/5*Catalan-1/6) 6099997710152943 r005 Re(z^2+c),c=-35/74+25/43*I,n=7 6099997714084835 m005 (1/2*exp(1)-4)/(2*5^(1/2)-1/7) 6099997718610036 r005 Re(z^2+c),c=-37/28+19/59*I,n=5 6099997720689474 a001 1602508992*123^(5/18) 6099997726472546 a001 17711/9349*2207^(3/4) 6099997734248496 a007 Real Root Of 322*x^4+275*x^3-997*x^2-782*x+741 6099997734385885 a001 15456/13201*2207^(13/16) 6099997737657307 m005 (1/3*3^(1/2)+2/5)/(7/11*3^(1/2)+1/2) 6099997738192414 a001 121393/103682*2207^(13/16) 6099997738747779 a001 105937/90481*2207^(13/16) 6099997738828806 a001 832040/710647*2207^(13/16) 6099997738840628 a001 726103/620166*2207^(13/16) 6099997738842352 a001 5702887/4870847*2207^(13/16) 6099997738842604 a001 4976784/4250681*2207^(13/16) 6099997738842641 a001 39088169/33385282*2207^(13/16) 6099997738842646 a001 34111385/29134601*2207^(13/16) 6099997738842647 a001 267914296/228826127*2207^(13/16) 6099997738842647 a001 233802911/199691526*2207^(13/16) 6099997738842647 a001 1836311903/1568397607*2207^(13/16) 6099997738842647 a001 1602508992/1368706081*2207^(13/16) 6099997738842647 a001 12586269025/10749957122*2207^(13/16) 6099997738842647 a001 10983760033/9381251041*2207^(13/16) 6099997738842647 a001 86267571272/73681302247*2207^(13/16) 6099997738842647 a001 75283811239/64300051206*2207^(13/16) 6099997738842647 a001 2504730781961/2139295485799*2207^(13/16) 6099997738842647 a001 365435296162/312119004989*2207^(13/16) 6099997738842647 a001 139583862445/119218851371*2207^(13/16) 6099997738842647 a001 53316291173/45537549124*2207^(13/16) 6099997738842647 a001 20365011074/17393796001*2207^(13/16) 6099997738842647 a001 7778742049/6643838879*2207^(13/16) 6099997738842647 a001 2971215073/2537720636*2207^(13/16) 6099997738842647 a001 1134903170/969323029*2207^(13/16) 6099997738842647 a001 433494437/370248451*2207^(13/16) 6099997738842647 a001 165580141/141422324*2207^(13/16) 6099997738842649 a001 63245986/54018521*2207^(13/16) 6099997738842663 a001 24157817/20633239*2207^(13/16) 6099997738842760 a001 9227465/7881196*2207^(13/16) 6099997738843418 a001 3524578/3010349*2207^(13/16) 6099997738847934 a001 1346269/1149851*2207^(13/16) 6099997738878883 a001 514229/439204*2207^(13/16) 6099997739091014 a001 196418/167761*2207^(13/16) 6099997740544979 a001 75025/64079*2207^(13/16) 6099997747783332 a001 75025/3571*2207^(7/16) 6099997750510602 a001 28657/24476*2207^(13/16) 6099997764840555 a001 1346269/5778*843^(1/7) 6099997768394567 b008 BesselK[0,ExpIntegralEi[6]] 6099997772982081 m001 StronglyCareFree*(Champernowne+LaplaceLimit) 6099997776382394 a007 Real Root Of -595*x^4-695*x^3-552*x^2+277*x+299 6099997780202492 p003 LerchPhi(1/10,3,115/97) 6099997780247217 l006 ln(1949/3587) 6099997787549081 a001 615/124*1364^(2/3) 6099997789417385 p001 sum(1/(237*n+164)/(1024^n),n=0..infinity) 6099997790942779 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^19 6099997791629155 r009 Im(z^3+c),c=-21/38+22/63*I,n=3 6099997800639001 a001 10946/15127*2207^(7/8) 6099997804930426 m001 (KhinchinHarmonic+PlouffeB)/(Shi(1)-ln(2)) 6099997812787580 a001 1346269/3571*843^(1/14) 6099997814710687 a001 28657/39603*2207^(7/8) 6099997816763719 a001 75025/103682*2207^(7/8) 6099997817063252 a001 196418/271443*2207^(7/8) 6099997817106953 a001 514229/710647*2207^(7/8) 6099997817113329 a001 1346269/1860498*2207^(7/8) 6099997817114259 a001 3524578/4870847*2207^(7/8) 6099997817114395 a001 9227465/12752043*2207^(7/8) 6099997817114415 a001 24157817/33385282*2207^(7/8) 6099997817114418 a001 63245986/87403803*2207^(7/8) 6099997817114418 a001 165580141/228826127*2207^(7/8) 6099997817114418 a001 433494437/599074578*2207^(7/8) 6099997817114418 a001 1134903170/1568397607*2207^(7/8) 6099997817114418 a001 2971215073/4106118243*2207^(7/8) 6099997817114418 a001 7778742049/10749957122*2207^(7/8) 6099997817114418 a001 20365011074/28143753123*2207^(7/8) 6099997817114418 a001 53316291173/73681302247*2207^(7/8) 6099997817114418 a001 139583862445/192900153618*2207^(7/8) 6099997817114418 a001 365435296162/505019158607*2207^(7/8) 6099997817114418 a001 10610209857723/14662949395604*2207^(7/8) 6099997817114418 a001 591286729879/817138163596*2207^(7/8) 6099997817114418 a001 225851433717/312119004989*2207^(7/8) 6099997817114418 a001 86267571272/119218851371*2207^(7/8) 6099997817114418 a001 32951280099/45537549124*2207^(7/8) 6099997817114418 a001 12586269025/17393796001*2207^(7/8) 6099997817114418 a001 4807526976/6643838879*2207^(7/8) 6099997817114418 a001 1836311903/2537720636*2207^(7/8) 6099997817114418 a001 701408733/969323029*2207^(7/8) 6099997817114418 a001 267914296/370248451*2207^(7/8) 6099997817114418 a001 102334155/141422324*2207^(7/8) 6099997817114419 a001 39088169/54018521*2207^(7/8) 6099997817114427 a001 14930352/20633239*2207^(7/8) 6099997817114479 a001 5702887/7881196*2207^(7/8) 6099997817114834 a001 2178309/3010349*2207^(7/8) 6099997817117270 a001 832040/1149851*2207^(7/8) 6099997817133962 a001 317811/439204*2207^(7/8) 6099997817248374 a001 121393/167761*2207^(7/8) 6099997818032562 a001 46368/64079*2207^(7/8) 6099997818816003 a001 10946/9349*2207^(13/16) 6099997823407468 a001 17711/24476*2207^(7/8) 6099997825270915 a001 46368/3571*2207^(1/2) 6099997830281366 a001 1597/3571*5778^(5/6) 6099997842070619 a001 6765/15127*2207^(15/16) 6099997842683465 a007 Real Root Of -883*x^4+998*x^3+782*x^2+875*x-929 6099997860247622 a001 6765/9349*2207^(7/8) 6099997862188159 r005 Re(z^2+c),c=-7/78+21/29*I,n=44 6099997863877012 m001 ln(LaplaceLimit)/KhintchineHarmonic*sin(Pi/12) 6099997887607553 a001 17711/39603*2207^(15/16) 6099997894251303 a001 23184/51841*2207^(15/16) 6099997895220613 a001 121393/271443*2207^(15/16) 6099997895362033 a001 317811/710647*2207^(15/16) 6099997895382666 a001 416020/930249*2207^(15/16) 6099997895385676 a001 2178309/4870847*2207^(15/16) 6099997895386115 a001 5702887/12752043*2207^(15/16) 6099997895386179 a001 7465176/16692641*2207^(15/16) 6099997895386189 a001 39088169/87403803*2207^(15/16) 6099997895386190 a001 102334155/228826127*2207^(15/16) 6099997895386190 a001 133957148/299537289*2207^(15/16) 6099997895386190 a001 701408733/1568397607*2207^(15/16) 6099997895386190 a001 1836311903/4106118243*2207^(15/16) 6099997895386190 a001 2403763488/5374978561*2207^(15/16) 6099997895386190 a001 12586269025/28143753123*2207^(15/16) 6099997895386190 a001 32951280099/73681302247*2207^(15/16) 6099997895386190 a001 43133785636/96450076809*2207^(15/16) 6099997895386190 a001 225851433717/505019158607*2207^(15/16) 6099997895386190 a001 591286729879/1322157322203*2207^(15/16) 6099997895386190 a001 10610209857723/23725150497407*2207^(15/16) 6099997895386190 a001 182717648081/408569081798*2207^(15/16) 6099997895386190 a001 139583862445/312119004989*2207^(15/16) 6099997895386190 a001 53316291173/119218851371*2207^(15/16) 6099997895386190 a001 10182505537/22768774562*2207^(15/16) 6099997895386190 a001 7778742049/17393796001*2207^(15/16) 6099997895386190 a001 2971215073/6643838879*2207^(15/16) 6099997895386190 a001 567451585/1268860318*2207^(15/16) 6099997895386190 a001 433494437/969323029*2207^(15/16) 6099997895386191 a001 165580141/370248451*2207^(15/16) 6099997895386191 a001 31622993/70711162*2207^(15/16) 6099997895386195 a001 24157817/54018521*2207^(15/16) 6099997895386219 a001 9227465/20633239*2207^(15/16) 6099997895386387 a001 1762289/3940598*2207^(15/16) 6099997895387537 a001 1346269/3010349*2207^(15/16) 6099997895395418 a001 514229/1149851*2207^(15/16) 6099997895449436 a001 98209/219602*2207^(15/16) 6099997895819679 a001 75025/167761*2207^(15/16) 6099997898357365 a001 28657/64079*2207^(15/16) 6099997905595719 a001 28657/3571*2207^(9/16) 6099997910623575 m001 1/sinh(1)*exp(Bloch)/sqrt(5) 6099997915750927 a001 5473/12238*2207^(15/16) 6099997920897372 a001 3524578/15127*843^(1/7) 6099997921483779 a001 196418/2207*843^(2/7) 6099997943195937 a001 196418/843*322^(1/6) 6099997943665756 a001 9227465/39603*843^(1/7) 6099997946987618 a001 24157817/103682*843^(1/7) 6099997947000177 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^21 6099997947472272 a001 63245986/271443*843^(1/7) 6099997947542982 a001 165580141/710647*843^(1/7) 6099997947553298 a001 433494437/1860498*843^(1/7) 6099997947554803 a001 1134903170/4870847*843^(1/7) 6099997947555023 a001 2971215073/12752043*843^(1/7) 6099997947555055 a001 7778742049/33385282*843^(1/7) 6099997947555059 a001 20365011074/87403803*843^(1/7) 6099997947555060 a001 53316291173/228826127*843^(1/7) 6099997947555060 a001 139583862445/599074578*843^(1/7) 6099997947555060 a001 365435296162/1568397607*843^(1/7) 6099997947555060 a001 956722026041/4106118243*843^(1/7) 6099997947555060 a001 2504730781961/10749957122*843^(1/7) 6099997947555060 a001 6557470319842/28143753123*843^(1/7) 6099997947555060 a001 10610209857723/45537549124*843^(1/7) 6099997947555060 a001 4052739537881/17393796001*843^(1/7) 6099997947555060 a001 1548008755920/6643838879*843^(1/7) 6099997947555060 a001 591286729879/2537720636*843^(1/7) 6099997947555060 a001 225851433717/969323029*843^(1/7) 6099997947555060 a001 86267571272/370248451*843^(1/7) 6099997947555061 a001 63246219/271444*843^(1/7) 6099997947555062 a001 12586269025/54018521*843^(1/7) 6099997947555075 a001 4807526976/20633239*843^(1/7) 6099997947555158 a001 1836311903/7881196*843^(1/7) 6099997947555733 a001 701408733/3010349*843^(1/7) 6099997947559674 a001 267914296/1149851*843^(1/7) 6099997947586683 a001 102334155/439204*843^(1/7) 6099997947771804 a001 39088169/167761*843^(1/7) 6099997949040642 a001 14930352/64079*843^(1/7) 6099997957737391 a001 5702887/24476*843^(1/7) 6099997969768645 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^23 6099997973090520 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^25 6099997973575175 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^27 6099997973645885 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^29 6099997973656201 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^31 6099997973657707 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^33 6099997973657926 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^35 6099997973657958 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^37 6099997973657963 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^39 6099997973657964 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^41 6099997973657964 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^43 6099997973657964 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^45 6099997973657964 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^47 6099997973657964 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^49 6099997973657964 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^51 6099997973657964 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^53 6099997973657964 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^55 6099997973657964 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^57 6099997973657964 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^59 6099997973657964 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^61 6099997973657964 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^63 6099997973657964 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^65 6099997973657964 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^67 6099997973657964 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^69 6099997973657964 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^71 6099997973657964 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^73 6099997973657964 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^75 6099997973657964 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^77 6099997973657964 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^79 6099997973657964 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^81 6099997973657964 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^83 6099997973657964 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^85 6099997973657964 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^87 6099997973657964 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^89 6099997973657964 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^91 6099997973657964 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^93 6099997973657964 a004 Fibonacci(94)*Lucas(16)/(1/2+sqrt(5)/2)^95 6099997973657964 a004 Fibonacci(96)*Lucas(16)/(1/2+sqrt(5)/2)^97 6099997973657964 a004 Fibonacci(98)*Lucas(16)/(1/2+sqrt(5)/2)^99 6099997973657964 a004 Fibonacci(99)*Lucas(16)/(1/2+sqrt(5)/2)^100 6099997973657964 a004 Fibonacci(97)*Lucas(16)/(1/2+sqrt(5)/2)^98 6099997973657964 a004 Fibonacci(95)*Lucas(16)/(1/2+sqrt(5)/2)^96 6099997973657964 a004 Fibonacci(93)*Lucas(16)/(1/2+sqrt(5)/2)^94 6099997973657964 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^92 6099997973657964 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^90 6099997973657964 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^88 6099997973657964 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^86 6099997973657964 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^84 6099997973657964 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^82 6099997973657964 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^80 6099997973657964 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^78 6099997973657964 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^76 6099997973657964 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^74 6099997973657964 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^72 6099997973657964 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^70 6099997973657964 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^68 6099997973657964 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^66 6099997973657964 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^64 6099997973657964 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^62 6099997973657964 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^60 6099997973657964 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^58 6099997973657964 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^56 6099997973657964 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^54 6099997973657964 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^52 6099997973657964 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^50 6099997973657964 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^48 6099997973657964 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^46 6099997973657964 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^44 6099997973657964 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^42 6099997973657964 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^40 6099997973657966 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^38 6099997973657978 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^36 6099997973658062 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^34 6099997973658221 a001 2/987*(1/2+1/2*5^(1/2))^31 6099997973658637 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^32 6099997973662577 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^30 6099997973689586 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^28 6099997973874708 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^26 6099997975143551 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^24 6099997978492586 a001 17711/3571*2207^(5/8) 6099997983840332 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^22 6099997991227831 r005 Re(z^2+c),c=-71/106+11/63*I,n=3 6099997991441206 m001 (-BesselI(0,2)+5)/(-cos(1)+5) 6099998009552836 a007 Real Root Of -496*x^4+501*x^3-313*x^2-626*x-83 6099998017345794 a001 2178309/9349*843^(1/7) 6099998029557423 r005 Re(z^2+c),c=3/52+1/56*I,n=5 6099998034968171 a001 4181/9349*2207^(15/16) 6099998042968689 a001 5473/682*1364^(3/5) 6099998043448954 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^20 6099998044559043 m001 (MertensB1-MinimumGamma)/(exp(1/Pi)+Lehmer) 6099998063708372 a007 Real Root Of 762*x^4+99*x^3+522*x^2-793*x-761 6099998066433295 r005 Im(z^2+c),c=-23/25+3/59*I,n=17 6099998070214762 a005 (1/cos(6/65*Pi))^1662 6099998070836047 a001 10946/3571*2207^(11/16) 6099998087857729 r002 23th iterates of z^2 + 6099998092778826 b008 1/2+E^(-6/E) 6099998101458338 m001 1/Trott/ln(CopelandErdos)^2*sinh(1)^2 6099998104707554 m001 (ErdosBorwein-Sarnak)/(exp(1/Pi)-gamma(1)) 6099998112267667 a001 6765/3571*2207^(3/4) 6099998112753813 a001 2584/3571*2207^(7/8) 6099998130021800 r008 a(0)=0,K{-n^6,-7+78*n^3+87*n^2+6*n} 6099998131423455 m005 (1/2*Pi+2/7)/(7/9*Pi+3/5) 6099998133068409 r008 a(0)=0,K{-n^6,-3+75*n^3+98*n^2-6*n} 6099998135618787 r005 Re(z^2+c),c=-7/78+21/29*I,n=59 6099998136678928 r005 Re(z^2+c),c=-7/78+21/29*I,n=56 6099998139187884 r005 Re(z^2+c),c=-7/78+21/29*I,n=62 6099998160100553 r005 Re(z^2+c),c=-7/78+21/29*I,n=53 6099998164183628 m006 (1/6*Pi+2/3)/(4/5*exp(Pi)+1) 6099998164295203 h001 (-9*exp(2/3)+9)/(-8*exp(-3)-1) 6099998166103734 m001 (Otter-ZetaQ(2))/(cos(1/5*Pi)-2*Pi/GAMMA(5/6)) 6099998174352539 r002 21th iterates of z^2 + 6099998194318624 r005 Re(z^2+c),c=-7/78+21/29*I,n=47 6099998197044646 r009 Im(z^3+c),c=-31/90+27/38*I,n=22 6099998197170511 a007 Real Root Of 777*x^4-550*x^3+385*x^2+488*x-78 6099998204125658 m005 (1/2*gamma-1/7)/(2/3*Catalan-3) 6099998210315337 r005 Re(z^2+c),c=-7/78+21/29*I,n=50 6099998223191229 r009 Re(z^3+c),c=-29/54+11/61*I,n=55 6099998226385299 r005 Re(z^2+c),c=-65/106+14/33*I,n=43 6099998236319171 m005 (3/5*Catalan+3/5)/(1/5*gamma-2) 6099998247476464 a001 17711/1364*1364^(8/15) 6099998259212381 m004 5+(11*Tanh[Sqrt[5]*Pi])/10 6099998262902597 r004 Re(z^2+c),c=-1+3/23*I,z(0)=exp(1/24*I*Pi),n=9 6099998271350388 a001 514229/1364*521^(1/13) 6099998272450451 s002 sum(A033299[n]/((exp(n)-1)/n),n=1..infinity) 6099998286988224 a001 4181/3571*2207^(13/16) 6099998297435214 a001 610/2207*3571^(16/17) 6099998320110398 a007 Real Root Of -16*x^4-976*x^3+8*x^2+474*x-915 6099998323009590 m005 (2/5*Catalan-1)/(3/4*exp(1)-1) 6099998332839205 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Magata*ZetaR(2) 6099998333408328 b008 3/5+ArcCsch[100] 6099998349863110 m001 1/BesselJ(0,1)^2*exp((2^(1/3)))/Pi^2 6099998353713732 a001 987/1364*3571^(14/17) 6099998376395116 m001 TravellingSalesman^(Weierstrass/FellerTornier) 6099998377960867 a001 416020/2889*843^(3/14) 6099998392520285 a007 Real Root Of 825*x^4-568*x^3+108*x^2+294*x-104 6099998413024998 m001 Totient*GaussKuzminWirsing^TwinPrimes 6099998417465801 m004 51/10+Tanh[Sqrt[5]*Pi] 6099998420711505 m001 (-ln(5)+RenyiParking)/(Catalan-Shi(1)) 6099998425907898 a001 832040/3571*843^(1/7) 6099998429752627 a007 Real Root Of -439*x^4+997*x^3-227*x^2+295*x-261 6099998437527565 a007 Real Root Of -135*x^4-806*x^3+242*x^2+757*x-415 6099998443825329 r005 Im(z^2+c),c=-9/106+34/53*I,n=26 6099998445925528 p003 LerchPhi(1/64,3,249/211) 6099998452012528 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^18 6099998456176896 a007 Real Root Of -872*x^4+965*x^3-218*x^2-849*x-97 6099998459246606 a007 Real Root Of 683*x^4-418*x^3+450*x^2+649*x+39 6099998460302001 m001 GAMMA(1/4)^2*ln(Cahen)*GAMMA(23/24)^2 6099998461035124 m001 (-Magata+ZetaQ(4))/(CareFree-Psi(2,1/3)) 6099998471430841 a001 28657/1364*1364^(7/15) 6099998477596068 m005 (1/3*Zeta(3)+1/10)/(1/2*Pi-3/4) 6099998483131868 m001 (ln(Pi)+gamma(3))/(Niven+ZetaP(3)) 6099998513119166 l006 ln(3804/7001) 6099998516217138 p001 sum(1/(493*n+164)/(625^n),n=0..infinity) 6099998529454689 a007 Real Root Of -912*x^4-769*x^3-926*x^2+811*x+791 6099998534019781 a001 311187/2161*843^(3/14) 6099998534492132 a001 121393/2207*843^(5/14) 6099998547419505 a001 123/55*267914296^(10/19) 6099998556788470 a001 5702887/39603*843^(3/14) 6099998557129852 a007 Real Root Of -33*x^4+389*x^3-155*x^2+986*x+752 6099998560110377 a001 7465176/51841*843^(3/14) 6099998560595037 a001 39088169/271443*843^(3/14) 6099998560665748 a001 14619165/101521*843^(3/14) 6099998560676064 a001 133957148/930249*843^(3/14) 6099998560677569 a001 701408733/4870847*843^(3/14) 6099998560677789 a001 1836311903/12752043*843^(3/14) 6099998560677821 a001 14930208/103681*843^(3/14) 6099998560677826 a001 12586269025/87403803*843^(3/14) 6099998560677826 a001 32951280099/228826127*843^(3/14) 6099998560677826 a001 43133785636/299537289*843^(3/14) 6099998560677826 a001 32264490531/224056801*843^(3/14) 6099998560677826 a001 591286729879/4106118243*843^(3/14) 6099998560677826 a001 774004377960/5374978561*843^(3/14) 6099998560677826 a001 4052739537881/28143753123*843^(3/14) 6099998560677826 a001 1515744265389/10525900321*843^(3/14) 6099998560677826 a001 3278735159921/22768774562*843^(3/14) 6099998560677826 a001 2504730781961/17393796001*843^(3/14) 6099998560677826 a001 956722026041/6643838879*843^(3/14) 6099998560677826 a001 182717648081/1268860318*843^(3/14) 6099998560677826 a001 139583862445/969323029*843^(3/14) 6099998560677826 a001 53316291173/370248451*843^(3/14) 6099998560677827 a001 10182505537/70711162*843^(3/14) 6099998560677829 a001 7778742049/54018521*843^(3/14) 6099998560677841 a001 2971215073/20633239*843^(3/14) 6099998560677925 a001 567451585/3940598*843^(3/14) 6099998560678500 a001 433494437/3010349*843^(3/14) 6099998560682440 a001 165580141/1149851*843^(3/14) 6099998560709449 a001 31622993/219602*843^(3/14) 6099998560894573 a001 24157817/167761*843^(3/14) 6099998562008588 m001 Totient^FransenRobinson*FeigenbaumD 6099998562163428 a001 9227465/64079*843^(3/14) 6099998567644933 m005 (1/2*Catalan+8/11)/(2*Catalan+1/9) 6099998570860294 a001 1762289/12238*843^(3/14) 6099998593215466 l006 ln(7/3121) 6099998593215466 p004 log(3121/7) 6099998620122813 a001 4/3*6765^(5/29) 6099998625009807 m001 BesselK(1,1)^PlouffeB-HardHexagonsEntropy 6099998630469497 a001 1346269/9349*843^(3/14) 6099998656974783 r001 51i'th iterates of 2*x^2-1 of 6099998687957287 a001 11592/341*1364^(2/5) 6099998688879965 a001 610/2207*9349^(16/19) 6099998696227891 a001 987/1364*9349^(14/19) 6099998717568382 a007 Real Root Of 855*x^4-208*x^3-259*x^2+2*x-68 6099998721285106 r005 Re(z^2+c),c=-7/102+31/41*I,n=21 6099998726141054 m001 exp(GolombDickman)/Cahen*Riemann2ndZero 6099998739893337 a001 610/2207*24476^(16/21) 6099998740864591 a001 987/1364*24476^(2/3) 6099998746617880 a001 610/2207*64079^(16/23) 6099998746748567 a001 987/1364*64079^(14/23) 6099998747651332 a001 610/2207*(1/2+1/2*5^(1/2))^16 6099998747651332 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^16/Lucas(16) 6099998747651332 a001 610/2207*23725150497407^(1/4) 6099998747651332 a001 610/2207*73681302247^(4/13) 6099998747651332 a001 610/2207*10749957122^(1/3) 6099998747651332 a001 610/2207*4106118243^(8/23) 6099998747651332 a001 610/2207*1568397607^(4/11) 6099998747651332 a001 610/2207*599074578^(8/21) 6099998747651333 a001 610/2207*228826127^(2/5) 6099998747651333 a001 610/2207*87403803^(8/19) 6099998747651335 a001 610/2207*33385282^(4/9) 6099998747651350 a001 610/2207*12752043^(8/17) 6099998747651461 a001 610/2207*4870847^(1/2) 6099998747652272 a001 610/2207*1860498^(8/15) 6099998747652832 a001 987/1364*20633239^(2/5) 6099998747652838 a001 987/1364*17393796001^(2/7) 6099998747652838 a001 987/1364*14662949395604^(2/9) 6099998747652838 a001 987/1364*(1/2+1/2*5^(1/2))^14 6099998747652838 a001 987/1364*505019158607^(1/4) 6099998747652838 a001 987/1364*10749957122^(7/24) 6099998747652838 a001 987/1364*4106118243^(7/23) 6099998747652838 a001 987/1364*1568397607^(7/22) 6099998747652838 a001 987/1364*599074578^(1/3) 6099998747652838 a001 987/1364*228826127^(7/20) 6099998747652838 a001 987/1364*87403803^(7/19) 6099998747652840 a001 987/1364*33385282^(7/18) 6099998747652853 a001 987/1364*12752043^(7/17) 6099998747652950 a001 987/1364*4870847^(7/16) 6099998747653660 a001 987/1364*1860498^(7/15) 6099998747658235 a001 610/2207*710647^(4/7) 6099998747658877 a001 987/1364*710647^(1/2) 6099998747697416 a001 987/1364*271443^(7/13) 6099998747702280 a001 610/2207*271443^(8/13) 6099998747983847 a001 987/1364*103682^(7/12) 6099998748029628 a001 610/2207*103682^(2/3) 6099998750127859 a001 987/1364*39603^(7/11) 6099998750479928 a001 610/2207*39603^(8/11) 6099998759523638 a003 cos(Pi*31/115)-cos(Pi*29/60) 6099998766313290 a001 987/1364*15127^(7/10) 6099998768977564 a001 610/2207*15127^(4/5) 6099998772910434 m005 (1/3*gamma+1/12)/(1/7*2^(1/2)+1/4) 6099998792405381 a007 Real Root Of 128*x^4+811*x^3+186*x^2-38*x-298 6099998792692337 m001 (Shi(1)+ln(3))/(-ln(5)+ReciprocalLucas) 6099998793716956 m001 1/Robbin^2/ln(Niven)^2/GAMMA(1/4)^2 6099998818515590 m001 1/exp(BesselJ(0,1))/LandauRamanujan*Zeta(9) 6099998821739191 m001 1/ln(Champernowne)^2/Artin^2/GAMMA(1/3) 6099998823158414 a007 Real Root Of 155*x^4+944*x^3-13*x^2-73*x-302 6099998838715625 a007 Real Root Of 518*x^4-444*x^3-720*x^2-23*x+311 6099998845967302 a007 Real Root Of 909*x^4-529*x^3+747*x^2-651*x-921 6099998852095382 a001 1597/3571*2207^(15/16) 6099998889150651 a007 Real Root Of 149*x^4+799*x^3-677*x^2+110*x+917 6099998889405708 r002 4th iterates of z^2 + 6099998889764666 a001 987/1364*5778^(7/9) 6099998895191762 m001 Sarnak^(Cahen/BesselK(0,1)) 6099998907320961 a001 75025/1364*1364^(1/3) 6099998910064851 a001 610/2207*5778^(8/9) 6099998936728434 a007 Real Root Of -63*x^4-352*x^3+207*x^2-50*x-676 6099998938826225 r002 36th iterates of z^2 + 6099998956214322 m001 (Chi(1)-FeigenbaumC)/(-Niven+ZetaP(4)) 6099998990578525 r002 18th iterates of z^2 + 6099998990578525 r002 18th iterates of z^2 + 6099998991090053 a001 514229/5778*843^(2/7) 6099999018756340 m005 (1/2*Pi+4/5)/(1/3*Catalan+1/12) 6099999028828849 m001 (-arctan(1/3)+Mills)/(gamma+Zeta(5)) 6099999039037088 a001 514229/3571*843^(3/14) 6099999046152718 a001 322/39088169*832040^(6/19) 6099999046153273 a001 322/701408733*7778742049^(6/19) 6099999065274301 a007 Real Root Of -128*x^4-736*x^3+262*x^2-47*x+133 6099999105838802 a007 Real Root Of 410*x^4-373*x^3+423*x^2-497*x-602 6099999109264025 r009 Im(z^3+c),c=-3/118+3/4*I,n=23 6099999112182846 r009 Im(z^3+c),c=-15/38+36/61*I,n=34 6099999125600921 a001 121393/1364*1364^(4/15) 6099999126917661 m001 (ln(3)-arctan(1/3))/(Bloch-KhinchinHarmonic) 6099999133788651 a007 Real Root Of 303*x^4-76*x^3+246*x^2+34*x-130 6099999139689717 a003 cos(Pi*5/112)*sin(Pi*15/71) 6099999147143536 a001 1346269/15127*843^(2/7) 6099999147914490 a001 75025/2207*843^(3/7) 6099999147977393 m001 (BesselI(1,2)-Kolakoski)/(ZetaP(4)+ZetaQ(2)) 6099999169911433 a001 3524578/39603*843^(2/7) 6099999173233225 a001 9227465/103682*843^(2/7) 6099999173717867 a001 24157817/271443*843^(2/7) 6099999173788576 a001 63245986/710647*843^(2/7) 6099999173798892 a001 165580141/1860498*843^(2/7) 6099999173800397 a001 433494437/4870847*843^(2/7) 6099999173800617 a001 1134903170/12752043*843^(2/7) 6099999173800649 a001 2971215073/33385282*843^(2/7) 6099999173800653 a001 7778742049/87403803*843^(2/7) 6099999173800654 a001 20365011074/228826127*843^(2/7) 6099999173800654 a001 53316291173/599074578*843^(2/7) 6099999173800654 a001 139583862445/1568397607*843^(2/7) 6099999173800654 a001 365435296162/4106118243*843^(2/7) 6099999173800654 a001 956722026041/10749957122*843^(2/7) 6099999173800654 a001 2504730781961/28143753123*843^(2/7) 6099999173800654 a001 6557470319842/73681302247*843^(2/7) 6099999173800654 a001 10610209857723/119218851371*843^(2/7) 6099999173800654 a001 4052739537881/45537549124*843^(2/7) 6099999173800654 a001 1548008755920/17393796001*843^(2/7) 6099999173800654 a001 591286729879/6643838879*843^(2/7) 6099999173800654 a001 225851433717/2537720636*843^(2/7) 6099999173800654 a001 86267571272/969323029*843^(2/7) 6099999173800654 a001 32951280099/370248451*843^(2/7) 6099999173800655 a001 12586269025/141422324*843^(2/7) 6099999173800656 a001 4807526976/54018521*843^(2/7) 6099999173800669 a001 1836311903/20633239*843^(2/7) 6099999173800752 a001 3524667/39604*843^(2/7) 6099999173801327 a001 267914296/3010349*843^(2/7) 6099999173805268 a001 102334155/1149851*843^(2/7) 6099999173832276 a001 39088169/439204*843^(2/7) 6099999174017393 a001 14930352/167761*843^(2/7) 6099999175286205 a001 5702887/64079*843^(2/7) 6099999183982767 a001 2178309/24476*843^(2/7) 6099999192754884 p001 sum((-1)^n/(494*n+181)/n/(24^n),n=1..infinity) 6099999201992392 m008 (1/5*Pi^6+1/4)/(3/4*Pi+4/5) 6099999208732900 m004 -28/5-Tanh[Sqrt[5]*Pi]/2 6099999217311067 a007 Real Root Of -116*x^4-695*x^3+174*x^2+706*x+692 6099999236280236 b008 -62+Zeta[17] 6099999243589897 a001 832040/9349*843^(2/7) 6099999265242590 a007 Real Root Of -206*x^4+775*x^3+863*x^2+209*x-596 6099999283128504 l006 ln(1855/3414) 6099999286310772 m001 (GAMMA(5/6)-GAMMA(23/24))/(Kac-Kolakoski) 6099999287395723 a003 sin(Pi*16/73)*sin(Pi*34/83) 6099999288731191 m001 Sierpinski^2/exp(Kolakoski)^2/sqrt(5) 6099999294945474 a005 (1/cos(17/144*Pi))^974 6099999304245220 a007 Real Root Of -984*x^4-399*x^3-825*x^2+794*x+837 6099999304452974 m001 Catalan^cos(1/12*Pi)-GAMMA(7/12) 6099999304452974 m001 Catalan^cos(Pi/12)-GAMMA(7/12) 6099999313856227 s002 sum(A077262[n]/(2^n-1),n=1..infinity) 6099999330909175 m001 (ln(2)-gamma(3))/(MasserGramainDelta-Otter) 6099999332347921 r005 Im(z^2+c),c=-27/50+5/46*I,n=48 6099999344294834 a001 98209/682*1364^(1/5) 6099999347547312 a003 sin(Pi*17/89)-sin(Pi*17/79) 6099999414031180 a007 Real Root Of -652*x^4+768*x^3+322*x^2+502*x+451 6099999420966993 r005 Re(z^2+c),c=-5/56+29/36*I,n=3 6099999463205436 m001 (Kolakoski+ZetaP(2))/(sin(1/5*Pi)+Backhouse) 6099999479624365 a001 646/341*3571^(12/17) 6099999521645276 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^17 6099999525238989 m004 -64+3*Coth[Sqrt[5]*Pi] 6099999533310351 r002 21th iterates of z^2 + 6099999534911224 m001 GAMMA(23/24)^FellerTornier/(1+3^(1/2))^(1/2) 6099999558618151 a007 Real Root Of -295*x^4+968*x^3-232*x^2-749*x-110 6099999562830641 a001 317811/1364*1364^(2/15) 6099999565772565 m001 (Paris-cos(1))/(-Salem+ZetaP(2)) 6099999566054924 r009 Im(z^3+c),c=-5/27+35/46*I,n=9 6099999589409691 b008 LogGamma[-5+5^Pi] 6099999601755519 m001 BesselK(1,1)-exp(1/Pi)*QuadraticClass 6099999604196231 a001 105937/1926*843^(5/14) 6099999604366137 m004 -28/5-Sinh[Sqrt[5]*Pi]/E^(Sqrt[5]*Pi) 6099999609776796 m005 (1/2*Zeta(3)-8/11)/(7/10*3^(1/2)+6/7) 6099999626728093 m009 (1/4*Psi(1,3/4)+4/5)/(5/6*Psi(1,2/3)-1/5) 6099999652143271 a001 317811/3571*843^(2/7) 6099999683493410 m004 6+Tanh[Sqrt[5]*Pi]^2/10 6099999691958832 a001 615/124*3571^(10/17) 6099999698676934 m001 1/Magata/Champernowne*ln(GAMMA(19/24))^2 6099999751166959 a001 305/2889*9349^(18/19) 6099999756937510 a001 5473/682*3571^(9/17) 6099999757412044 a005 (1/sin(53/203*Pi))^72 6099999760253188 a001 46368/2207*843^(1/2) 6099999760263987 a001 832040/15127*843^(5/14) 6099999760269123 a001 4181/1364*3571^(11/17) 6099999763754181 r005 Im(z^2+c),c=9/26+7/19*I,n=59 6099999771004332 a001 17711/1364*3571^(8/17) 6099999771928285 m001 (GAMMA(23/24)-MertensB1)^Tribonacci 6099999773207983 a001 646/341*9349^(12/19) 6099999775397009 a007 Real Root Of 676*x^4-928*x^3+878*x^2+354*x-415 6099999781426851 a001 514229/1364*1364^(1/15) 6099999783033967 a001 726103/13201*843^(5/14) 6099999786356062 a001 5702887/103682*843^(5/14) 6099999786840749 a001 4976784/90481*843^(5/14) 6099999786911464 a001 39088169/710647*843^(5/14) 6099999786921781 a001 831985/15126*843^(5/14) 6099999786923287 a001 267914296/4870847*843^(5/14) 6099999786923506 a001 233802911/4250681*843^(5/14) 6099999786923538 a001 1836311903/33385282*843^(5/14) 6099999786923543 a001 1602508992/29134601*843^(5/14) 6099999786923544 a001 12586269025/228826127*843^(5/14) 6099999786923544 a001 10983760033/199691526*843^(5/14) 6099999786923544 a001 86267571272/1568397607*843^(5/14) 6099999786923544 a001 75283811239/1368706081*843^(5/14) 6099999786923544 a001 591286729879/10749957122*843^(5/14) 6099999786923544 a001 12585437040/228811001*843^(5/14) 6099999786923544 a001 4052739537881/73681302247*843^(5/14) 6099999786923544 a001 3536736619241/64300051206*843^(5/14) 6099999786923544 a001 6557470319842/119218851371*843^(5/14) 6099999786923544 a001 2504730781961/45537549124*843^(5/14) 6099999786923544 a001 956722026041/17393796001*843^(5/14) 6099999786923544 a001 365435296162/6643838879*843^(5/14) 6099999786923544 a001 139583862445/2537720636*843^(5/14) 6099999786923544 a001 53316291173/969323029*843^(5/14) 6099999786923544 a001 20365011074/370248451*843^(5/14) 6099999786923544 a001 7778742049/141422324*843^(5/14) 6099999786923546 a001 2971215073/54018521*843^(5/14) 6099999786923558 a001 1134903170/20633239*843^(5/14) 6099999786923642 a001 433494437/7881196*843^(5/14) 6099999786924217 a001 165580141/3010349*843^(5/14) 6099999786928158 a001 63245986/1149851*843^(5/14) 6099999786955168 a001 24157817/439204*843^(5/14) 6099999787140302 a001 9227465/167761*843^(5/14) 6099999788409230 a001 3524578/64079*843^(5/14) 6099999790027666 a007 Real Root Of -737*x^4+780*x^3+647*x^2+525*x-636 6099999790281565 h005 exp(cos(Pi*3/25)+sin(Pi*14/41)) 6099999797106588 a001 1346269/24476*843^(5/14) 6099999804517753 a001 28657/1364*3571^(7/17) 6099999808557013 a001 305/2889*24476^(6/7) 6099999809178728 b008 -62+Zeta[19] 6099999809654693 r002 4th iterates of z^2 + 6099999811468018 a001 646/341*24476^(4/7) 6099999815507745 a007 Real Root Of 873*x^4-887*x^3-3*x^2-331*x-523 6099999816122125 a001 305/2889*64079^(18/23) 6099999816511427 a001 646/341*64079^(12/23) 6099999817263678 a001 305/2889*439204^(2/3) 6099999817272462 a001 646/341*439204^(4/9) 6099999817284706 a001 305/2889*7881196^(6/11) 6099999817284759 a001 305/2889*141422324^(6/13) 6099999817284759 a001 305/2889*2537720636^(2/5) 6099999817284759 a001 305/2889*45537549124^(6/17) 6099999817284759 a001 305/2889*14662949395604^(2/7) 6099999817284759 a001 305/2889*(1/2+1/2*5^(1/2))^18 6099999817284759 a001 305/2889*192900153618^(1/3) 6099999817284759 a001 305/2889*10749957122^(3/8) 6099999817284759 a001 305/2889*4106118243^(9/23) 6099999817284759 a001 305/2889*1568397607^(9/22) 6099999817284759 a001 305/2889*599074578^(3/7) 6099999817284759 a001 305/2889*228826127^(9/20) 6099999817284760 a001 305/2889*87403803^(9/19) 6099999817284762 a001 305/2889*33385282^(1/2) 6099999817284779 a001 305/2889*12752043^(9/17) 6099999817284904 a001 305/2889*4870847^(9/16) 6099999817285817 a001 305/2889*1860498^(3/5) 6099999817286480 a001 646/341*7881196^(4/11) 6099999817286516 a001 646/341*141422324^(4/13) 6099999817286516 a001 646/341*2537720636^(4/15) 6099999817286516 a001 646/341*45537549124^(4/17) 6099999817286516 a001 646/341*817138163596^(4/19) 6099999817286516 a001 646/341*14662949395604^(4/21) 6099999817286516 a001 646/341*(1/2+1/2*5^(1/2))^12 6099999817286516 a001 646/341*192900153618^(2/9) 6099999817286516 a001 646/341*73681302247^(3/13) 6099999817286516 a001 646/341*10749957122^(1/4) 6099999817286516 a001 646/341*4106118243^(6/23) 6099999817286516 a001 646/341*1568397607^(3/11) 6099999817286516 a001 646/341*599074578^(2/7) 6099999817286516 a001 646/341*228826127^(3/10) 6099999817286516 a001 646/341*87403803^(6/19) 6099999817286518 a001 646/341*33385282^(1/3) 6099999817286529 a001 646/341*12752043^(6/17) 6099999817286613 a001 646/341*4870847^(3/8) 6099999817287221 a001 646/341*1860498^(2/5) 6099999817291693 a001 646/341*710647^(3/7) 6099999817292524 a001 305/2889*710647^(9/14) 6099999817324726 a001 646/341*271443^(6/13) 6099999817342075 a001 305/2889*271443^(9/13) 6099999817570238 a001 646/341*103682^(1/2) 6099999817710342 a001 305/2889*103682^(3/4) 6099999818517889 l006 ln(5471/10069) 6099999818517889 p004 log(10069/5471) 6099999819407963 a001 646/341*39603^(6/11) 6099999820466930 a001 305/2889*39603^(9/11) 6099999822429242 a003 sin(Pi*3/107)*sin(Pi*10/41) 6099999827328555 r005 Re(z^2+c),c=-1/21+23/30*I,n=37 6099999830603235 a001 11592/341*3571^(6/17) 6099999831832553 h001 (4/11*exp(1)+5/11)/(5/8*exp(1)+2/3) 6099999833281193 a001 646/341*15127^(3/5) 6099999841276774 a001 305/2889*15127^(9/10) 6099999841746580 m004 6+Tanh[Sqrt[5]*Pi]/10 6099999843457907 a001 987/1364*2207^(7/8) 6099999848082863 a007 Real Root Of -283*x^4+279*x^3-966*x^2+164*x+562 6099999856308517 r002 5th iterates of z^2 + 6099999856719169 a001 514229/9349*843^(5/14) 6099999859525937 a001 75025/1364*3571^(5/17) 6099999862382004 m001 1/Robbin^2*Lehmer^2/ln(Zeta(5))^2 6099999867414205 r008 a(0)=0,K{-n^6,92-17*n^3-n^2-58*n} 6099999869894124 r005 Im(z^2+c),c=-9/82+19/24*I,n=44 6099999886437055 r002 15th iterates of z^2 + 6099999887364917 a001 121393/1364*3571^(4/17) 6099999905014904 m001 (5^(1/2)+AlladiGrinstead)/(Bloch+Trott2nd) 6099999905346755 a007 Real Root Of -212*x^4+926*x^3+828*x^2+587*x-847 6099999915617842 a001 98209/682*3571^(3/17) 6099999920873227 m004 6+Sinh[Sqrt[5]*Pi]/(5*E^(Sqrt[5]*Pi)) 6099999920873290 m004 6+(E^(Sqrt[5]*Pi)*Sech[Sqrt[5]*Pi])/20 6099999921728100 m001 (exp(-1/2*Pi)+3)/(sin(Pi/12)+5) 6099999929866736 a007 Real Root Of -593*x^4+580*x^3-412*x^2+754*x+827 6099999930208986 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^19 6099999936611854 a001 615/124*9349^(10/19) 6099999939096676 a001 646/341*5778^(2/3) 6099999940404221 a003 cos(Pi*23/107)-cos(Pi*49/110) 6099999943712655 a001 317811/1364*3571^(2/17) 6099999963644708 a001 610/15127*24476^(20/21) 6099999964052701 r005 Re(z^2+c),c=-23/22+19/122*I,n=64 6099999966726752 a001 17711/1364*9349^(8/19) 6099999968495218 a001 615/124*24476^(10/21) 6099999971867861 a001 514229/1364*3571^(1/17) 6099999972050389 a001 610/15127*64079^(20/23) 6099999972698059 a001 615/124*64079^(10/23) 6099999973168809 a001 610/15127*167761^(4/5) 6099999973257269 a001 615/124*167761^(2/5) 6099999973342196 a001 610/15127*20633239^(4/7) 6099999973342205 a001 610/15127*2537720636^(4/9) 6099999973342205 a001 610/15127*(1/2+1/2*5^(1/2))^20 6099999973342205 a001 610/15127*23725150497407^(5/16) 6099999973342205 a001 610/15127*505019158607^(5/14) 6099999973342205 a001 610/15127*73681302247^(5/13) 6099999973342205 a001 610/15127*28143753123^(2/5) 6099999973342205 a001 610/15127*10749957122^(5/12) 6099999973342205 a001 610/15127*4106118243^(10/23) 6099999973342205 a001 610/15127*1568397607^(5/11) 6099999973342205 a001 610/15127*599074578^(10/21) 6099999973342205 a001 610/15127*228826127^(1/2) 6099999973342205 a001 610/15127*87403803^(10/19) 6099999973342208 a001 610/15127*33385282^(5/9) 6099999973342227 a001 610/15127*12752043^(10/17) 6099999973342365 a001 610/15127*4870847^(5/8) 6099999973343379 a001 610/15127*1860498^(2/3) 6099999973343963 a001 615/124*20633239^(2/7) 6099999973343967 a001 615/124*2537720636^(2/9) 6099999973343967 a001 615/124*312119004989^(2/11) 6099999973343967 a001 615/124*(1/2+1/2*5^(1/2))^10 6099999973343967 a001 615/124*28143753123^(1/5) 6099999973343967 a001 615/124*10749957122^(5/24) 6099999973343967 a001 615/124*4106118243^(5/23) 6099999973343967 a001 615/124*1568397607^(5/22) 6099999973343967 a001 615/124*599074578^(5/21) 6099999973343967 a001 615/124*228826127^(1/4) 6099999973343967 a001 615/124*87403803^(5/19) 6099999973343968 a001 615/124*33385282^(5/18) 6099999973343978 a001 615/124*12752043^(5/17) 6099999973344047 a001 615/124*4870847^(5/16) 6099999973344554 a001 615/124*1860498^(1/3) 6099999973348281 a001 615/124*710647^(5/14) 6099999973350832 a001 610/15127*710647^(5/7) 6099999973375809 a001 615/124*271443^(5/13) 6099999973405888 a001 610/15127*271443^(10/13) 6099999973580402 a001 615/124*103682^(5/12) 6099999973815075 a001 610/15127*103682^(5/6) 6099999975111839 a001 615/124*39603^(5/11) 6099999975774871 a001 28657/1364*9349^(7/19) 6099999976877950 a001 610/15127*39603^(10/11) 6099999977125232 a001 5473/682*9349^(9/19) 6099999977395050 a001 11592/341*9349^(6/19) 6099999981852450 a001 75025/1364*9349^(5/19) 6099999985226128 a001 121393/1364*9349^(4/19) 6099999986672864 a001 615/124*15127^(1/2) 6099999989013751 a001 98209/682*9349^(3/19) 6099999989817628 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^21 6099999992020046 r005 Im(z^2+c),c=-19/30+1/2*I,n=7 6099999992233443 a001 17711/1364*24476^(8/21) 6099999992643260 a001 317811/1364*9349^(2/19) 6099999994689682 a001 610/39603*64079^(22/23) 6099999995595716 a001 17711/1364*64079^(8/23) 6099999996110614 a001 610/39603*7881196^(2/3) 6099999996110680 a001 610/39603*312119004989^(2/5) 6099999996110680 a001 610/39603*(1/2+1/2*5^(1/2))^22 6099999996110680 a001 610/39603*10749957122^(11/24) 6099999996110680 a001 610/39603*4106118243^(11/23) 6099999996110680 a001 610/39603*1568397607^(1/2) 6099999996110680 a001 610/39603*599074578^(11/21) 6099999996110680 a001 610/39603*228826127^(11/20) 6099999996110680 a001 610/39603*87403803^(11/19) 6099999996110683 a001 610/39603*33385282^(11/18) 6099999996110704 a001 610/39603*12752043^(11/17) 6099999996110856 a001 610/39603*4870847^(11/16) 6099999996111972 a001 610/39603*1860498^(11/15) 6099999996112442 a001 17711/1364*(1/2+1/2*5^(1/2))^8 6099999996112442 a001 17711/1364*23725150497407^(1/8) 6099999996112442 a001 17711/1364*505019158607^(1/7) 6099999996112442 a001 17711/1364*73681302247^(2/13) 6099999996112442 a001 17711/1364*10749957122^(1/6) 6099999996112442 a001 17711/1364*4106118243^(4/23) 6099999996112442 a001 17711/1364*1568397607^(2/11) 6099999996112442 a001 17711/1364*599074578^(4/21) 6099999996112442 a001 17711/1364*228826127^(1/5) 6099999996112442 a001 17711/1364*87403803^(4/19) 6099999996112443 a001 17711/1364*33385282^(2/9) 6099999996112451 a001 17711/1364*12752043^(4/17) 6099999996112506 a001 17711/1364*4870847^(1/4) 6099999996112912 a001 17711/1364*1860498^(4/15) 6099999996115893 a001 17711/1364*710647^(2/7) 6099999996120170 a001 610/39603*710647^(11/14) 6099999996137915 a001 17711/1364*271443^(4/13) 6099999996180732 a001 610/39603*271443^(11/13) 6099999996301590 a001 17711/1364*103682^(1/3) 6099999996333164 a001 514229/1364*9349^(1/19) 6099999996525069 a001 11592/341*24476^(2/7) 6099999996630837 a001 610/39603*103682^(11/12) 6099999997526740 a001 17711/1364*39603^(4/11) 6099999997794132 a001 75025/1364*24476^(5/21) 6099999997979473 a001 121393/1364*24476^(4/21) 6099999998093226 a001 28657/1364*24476^(1/3) 6099999998514411 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^23 6099999998578760 a001 98209/682*24476^(1/7) 6099999999019933 a001 317811/1364*24476^(2/21) 6099999999046773 a001 11592/341*64079^(6/23) 6099999999404446 a001 305/51841*439204^(8/9) 6099999999427290 a001 11592/341*439204^(2/9) 6099999999432484 a001 305/51841*7881196^(8/11) 6099999999432555 a001 305/51841*141422324^(8/13) 6099999999432555 a001 305/51841*2537720636^(8/15) 6099999999432555 a001 305/51841*45537549124^(8/17) 6099999999432555 a001 305/51841*14662949395604^(8/21) 6099999999432555 a001 305/51841*(1/2+1/2*5^(1/2))^24 6099999999432555 a001 305/51841*192900153618^(4/9) 6099999999432555 a001 305/51841*73681302247^(6/13) 6099999999432555 a001 305/51841*10749957122^(1/2) 6099999999432555 a001 305/51841*4106118243^(12/23) 6099999999432555 a001 305/51841*1568397607^(6/11) 6099999999432555 a001 305/51841*599074578^(4/7) 6099999999432555 a001 305/51841*228826127^(3/5) 6099999999432556 a001 305/51841*87403803^(12/19) 6099999999432559 a001 305/51841*33385282^(2/3) 6099999999432582 a001 305/51841*12752043^(12/17) 6099999999432748 a001 305/51841*4870847^(3/4) 6099999999433965 a001 305/51841*1860498^(4/5) 6099999999434300 a001 11592/341*7881196^(2/11) 6099999999434318 a001 11592/341*141422324^(2/13) 6099999999434318 a001 11592/341*2537720636^(2/15) 6099999999434318 a001 11592/341*45537549124^(2/17) 6099999999434318 a001 11592/341*14662949395604^(2/21) 6099999999434318 a001 11592/341*(1/2+1/2*5^(1/2))^6 6099999999434318 a001 11592/341*10749957122^(1/8) 6099999999434318 a001 11592/341*4106118243^(3/23) 6099999999434318 a001 11592/341*1568397607^(3/22) 6099999999434318 a001 11592/341*599074578^(1/7) 6099999999434318 a001 11592/341*228826127^(3/20) 6099999999434318 a001 11592/341*87403803^(3/19) 6099999999434319 a001 11592/341*33385282^(1/6) 6099999999434324 a001 11592/341*12752043^(3/17) 6099999999434366 a001 11592/341*4870847^(3/16) 6099999999434670 a001 11592/341*1860498^(1/5) 6099999999436906 a001 11592/341*710647^(3/14) 6099999999442909 a001 305/51841*710647^(6/7) 6099999999453423 a001 11592/341*271443^(3/13) 6099999999508976 a001 305/51841*271443^(12/13) 6099999999521501 a001 514229/1364*24476^(1/21) 6099999999576179 a001 11592/341*103682^(1/4) 6099999999660610 a001 121393/1364*64079^(4/23) 6099999999783255 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^25 6099999999839612 a001 98209/682*64079^(3/23) 6099999999860501 a001 317811/1364*64079^(2/23) 6099999999895552 a001 75025/1364*64079^(5/23) 6099999999917210 a001 610/271443*141422324^(2/3) 6099999999917211 a001 610/271443*(1/2+1/2*5^(1/2))^26 6099999999917211 a001 610/271443*73681302247^(1/2) 6099999999917211 a001 610/271443*10749957122^(13/24) 6099999999917211 a001 610/271443*4106118243^(13/23) 6099999999917211 a001 610/271443*1568397607^(13/22) 6099999999917211 a001 610/271443*599074578^(13/21) 6099999999917211 a001 610/271443*228826127^(13/20) 6099999999917211 a001 610/271443*87403803^(13/19) 6099999999917214 a001 610/271443*33385282^(13/18) 6099999999917239 a001 610/271443*12752043^(13/17) 6099999999917419 a001 610/271443*4870847^(13/16) 6099999999918738 a001 610/271443*1860498^(13/15) 6099999999918973 a001 121393/1364*(1/2+1/2*5^(1/2))^4 6099999999918973 a001 121393/1364*23725150497407^(1/16) 6099999999918973 a001 121393/1364*73681302247^(1/13) 6099999999918973 a001 121393/1364*10749957122^(1/12) 6099999999918973 a001 121393/1364*4106118243^(2/23) 6099999999918973 a001 121393/1364*1568397607^(1/11) 6099999999918973 a001 121393/1364*599074578^(2/21) 6099999999918973 a001 121393/1364*228826127^(1/10) 6099999999918973 a001 121393/1364*87403803^(2/19) 6099999999918973 a001 121393/1364*33385282^(1/9) 6099999999918977 a001 121393/1364*12752043^(2/17) 6099999999919005 a001 121393/1364*4870847^(1/8) 6099999999919208 a001 121393/1364*1860498^(2/15) 6099999999920698 a001 121393/1364*710647^(1/7) 6099999999928426 a001 610/271443*710647^(13/14) 6099999999931710 a001 121393/1364*271443^(2/13) 6099999999941785 a001 514229/1364*64079^(1/23) 6099999999968377 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^27 6099999999987909 a001 610/710647*20633239^(4/5) 6099999999987921 a001 610/710647*17393796001^(4/7) 6099999999987921 a001 610/710647*14662949395604^(4/9) 6099999999987921 a001 610/710647*(1/2+1/2*5^(1/2))^28 6099999999987921 a001 610/710647*505019158607^(1/2) 6099999999987921 a001 610/710647*73681302247^(7/13) 6099999999987921 a001 610/710647*10749957122^(7/12) 6099999999987921 a001 610/710647*4106118243^(14/23) 6099999999987921 a001 610/710647*1568397607^(7/11) 6099999999987921 a001 610/710647*599074578^(2/3) 6099999999987921 a001 610/710647*228826127^(7/10) 6099999999987921 a001 610/710647*87403803^(14/19) 6099999999987925 a001 610/710647*33385282^(7/9) 6099999999987952 a001 610/710647*12752043^(14/17) 6099999999988146 a001 610/710647*4870847^(7/8) 6099999999989566 a001 610/710647*1860498^(14/15) 6099999999989683 a001 317811/1364*(1/2+1/2*5^(1/2))^2 6099999999989683 a001 317811/1364*10749957122^(1/24) 6099999999989683 a001 317811/1364*4106118243^(1/23) 6099999999989683 a001 317811/1364*1568397607^(1/22) 6099999999989683 a001 317811/1364*599074578^(1/21) 6099999999989683 a001 317811/1364*228826127^(1/20) 6099999999989683 a001 317811/1364*87403803^(1/19) 6099999999989683 a001 317811/1364*33385282^(1/18) 6099999999989685 a001 317811/1364*12752043^(1/17) 6099999999989699 a001 317811/1364*4870847^(1/16) 6099999999989801 a001 317811/1364*1860498^(1/15) 6099999999990546 a001 317811/1364*710647^(1/14) 6099999999995386 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^29 6099999999996051 a001 317811/1364*271443^(1/13) 6099999999998148 a001 305/930249*7881196^(10/11) 6099999999998225 a001 305/930249*20633239^(6/7) 6099999999998237 a001 305/930249*141422324^(10/13) 6099999999998237 a001 305/930249*2537720636^(2/3) 6099999999998237 a001 305/930249*45537549124^(10/17) 6099999999998237 a001 305/930249*312119004989^(6/11) 6099999999998237 a001 305/930249*14662949395604^(10/21) 6099999999998237 a001 305/930249*(1/2+1/2*5^(1/2))^30 6099999999998237 a001 305/930249*192900153618^(5/9) 6099999999998237 a001 305/930249*28143753123^(3/5) 6099999999998237 a001 305/930249*10749957122^(5/8) 6099999999998237 a001 305/930249*4106118243^(15/23) 6099999999998237 a001 305/930249*1568397607^(15/22) 6099999999998237 a001 305/930249*599074578^(5/7) 6099999999998237 a001 305/930249*228826127^(3/4) 6099999999998238 a001 305/930249*87403803^(15/19) 6099999999998242 a001 305/930249*33385282^(5/6) 6099999999998270 a001 305/930249*12752043^(15/17) 6099999999998478 a001 305/930249*4870847^(15/16) 6099999999999326 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^31 6099999999999742 a001 610/4870847*(1/2+1/2*5^(1/2))^32 6099999999999742 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^32/Lucas(32) 6099999999999742 a001 610/4870847*23725150497407^(1/2) 6099999999999742 a001 610/4870847*505019158607^(4/7) 6099999999999742 a001 610/4870847*73681302247^(8/13) 6099999999999742 a001 610/4870847*10749957122^(2/3) 6099999999999742 a001 610/4870847*4106118243^(16/23) 6099999999999742 a001 610/4870847*1568397607^(8/11) 6099999999999742 a001 610/4870847*599074578^(16/21) 6099999999999742 a001 610/4870847*228826127^(4/5) 6099999999999743 a001 610/4870847*87403803^(16/19) 6099999999999747 a001 610/4870847*33385282^(8/9) 6099999999999778 a001 610/4870847*12752043^(16/17) 6099999999999901 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^33 6099999999999962 a001 610/12752043*45537549124^(2/3) 6099999999999962 a001 610/12752043*(1/2+1/2*5^(1/2))^34 6099999999999962 a001 610/12752043*10749957122^(17/24) 6099999999999962 a001 610/12752043*4106118243^(17/23) 6099999999999962 a001 610/12752043*1568397607^(17/22) 6099999999999962 a001 610/12752043*599074578^(17/21) 6099999999999962 a001 610/12752043*228826127^(17/20) 6099999999999963 a001 610/12752043*87403803^(17/19) 6099999999999967 a001 610/12752043*33385282^(17/18) 6099999999999985 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^35 6099999999999994 a001 305/16692641*141422324^(12/13) 6099999999999994 a001 305/16692641*2537720636^(4/5) 6099999999999994 a001 305/16692641*45537549124^(12/17) 6099999999999994 a001 305/16692641*14662949395604^(4/7) 6099999999999994 a001 305/16692641*(1/2+1/2*5^(1/2))^36 6099999999999994 a001 305/16692641*505019158607^(9/14) 6099999999999994 a001 305/16692641*192900153618^(2/3) 6099999999999994 a001 305/16692641*73681302247^(9/13) 6099999999999994 a001 305/16692641*10749957122^(3/4) 6099999999999994 a001 305/16692641*4106118243^(18/23) 6099999999999994 a001 305/16692641*1568397607^(9/11) 6099999999999994 a001 305/16692641*599074578^(6/7) 6099999999999994 a001 305/16692641*228826127^(9/10) 6099999999999995 a001 305/16692641*87403803^(18/19) 6099999999999997 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^37 6099999999999999 a001 610/87403803*817138163596^(2/3) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(38) 6099999999999999 a001 610/87403803*10749957122^(19/24) 6099999999999999 a001 610/87403803*4106118243^(19/23) 6099999999999999 a001 610/87403803*1568397607^(19/22) 6099999999999999 a001 610/87403803*599074578^(19/21) 6099999999999999 a001 610/87403803*228826127^(19/20) 6099999999999999 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^39 6099999999999999 a001 610/228826127*2537720636^(8/9) 6099999999999999 a001 610/228826127*312119004989^(8/11) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(40) 6099999999999999 a001 610/228826127*23725150497407^(5/8) 6099999999999999 a001 610/228826127*73681302247^(10/13) 6099999999999999 a001 610/228826127*28143753123^(4/5) 6099999999999999 a001 610/228826127*10749957122^(5/6) 6099999999999999 a001 610/228826127*4106118243^(20/23) 6099999999999999 a001 610/228826127*1568397607^(10/11) 6099999999999999 a001 610/228826127*599074578^(20/21) 6099999999999999 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^41 6099999999999999 a001 305/299537289*2537720636^(14/15) 6099999999999999 a001 305/299537289*17393796001^(6/7) 6099999999999999 a001 305/299537289*45537549124^(14/17) 6099999999999999 a001 305/299537289*817138163596^(14/19) 6099999999999999 a001 305/299537289*14662949395604^(2/3) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(42) 6099999999999999 a001 305/299537289*505019158607^(3/4) 6099999999999999 a001 305/299537289*192900153618^(7/9) 6099999999999999 a001 305/299537289*10749957122^(7/8) 6099999999999999 a001 305/299537289*4106118243^(21/23) 6099999999999999 a001 305/299537289*1568397607^(21/22) 6099999999999999 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^43 6099999999999999 a001 610/1568397607*312119004989^(4/5) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(44) 6099999999999999 a001 610/1568397607*23725150497407^(11/16) 6099999999999999 a001 610/1568397607*73681302247^(11/13) 6099999999999999 a001 610/1568397607*10749957122^(11/12) 6099999999999999 a001 610/1568397607*4106118243^(22/23) 6099999999999999 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^45 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(46) 6099999999999999 a001 610/4106118243*10749957122^(23/24) 6099999999999999 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^47 6099999999999999 a001 305/5374978561*45537549124^(16/17) 6099999999999999 a001 305/5374978561*14662949395604^(16/21) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(48) 6099999999999999 a001 305/5374978561*192900153618^(8/9) 6099999999999999 a001 305/5374978561*73681302247^(12/13) 6099999999999999 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^49 6099999999999999 a001 610/28143753123*312119004989^(10/11) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(50) 6099999999999999 a001 610/28143753123*3461452808002^(5/6) 6099999999999999 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^51 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(52) 6099999999999999 a001 610/73681302247*23725150497407^(13/16) 6099999999999999 a001 610/73681302247*505019158607^(13/14) 6099999999999999 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^53 6099999999999999 a001 305/96450076809*14662949395604^(6/7) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(54) 6099999999999999 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^55 6099999999999999 a001 610/505019158607*14662949395604^(8/9) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(56) 6099999999999999 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^57 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(58) 6099999999999999 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^59 6099999999999999 a001 305/1730726404001*14662949395604^(20/21) 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(60) 6099999999999999 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^61 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(62) 6099999999999999 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^63 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(64) 6099999999999999 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^65 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(66) 6099999999999999 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^67 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(68) 6099999999999999 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^69 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(70) 6099999999999999 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^71 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(72) 6099999999999999 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^73 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(74) 6099999999999999 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^75 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(76) 6099999999999999 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^77 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(78) 6099999999999999 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^79 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(80) 6099999999999999 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^81 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(82) 6099999999999999 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^83 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(84) 6099999999999999 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^85 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(86) 6099999999999999 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^87 6099999999999999 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(88)