6308800011370712 r005 Re(z^2+c),c=-1/13+37/50*I,n=53 6308800029140747 r005 Re(z^2+c),c=-57/74+11/38*I,n=7 6308800063382210 r005 Re(z^2+c),c=-45/122+12/19*I,n=42 6308800069712309 a003 cos(Pi*20/89)*sin(Pi*14/45) 6308800110166022 a001 119218851371/3*2584^(1/17) 6308800110461912 r002 48th iterates of z^2 + 6308800110985735 a001 987/24476*1364^(7/10) 6308800121281875 a001 45537549124/3*32951280099^(1/17) 6308800121281876 a001 73681302247/3*9227465^(1/17) 6308800125798443 a001 1/47*3571^(43/44) 6308800133247979 a007 Real Root Of 164*x^4-103*x^3+648*x^2+128*x-229 6308800136535515 r005 Im(z^2+c),c=-4/11+24/43*I,n=5 6308800148223543 k002 Champernowne real with 95*n^2+17*n-106 6308800168703246 m005 (1/2*gamma-1/4)/(3/11*gamma+5/11) 6308800193503808 a007 Real Root Of 266*x^4-931*x^3+491*x^2-624*x-865 6308800214916885 a007 Real Root Of -828*x^4-435*x^3+896*x^2+627*x-43 6308800230244474 a003 sin(Pi*13/73)/cos(Pi*2/11) 6308800276279578 r005 Im(z^2+c),c=-7/22+5/44*I,n=4 6308800289150577 r005 Re(z^2+c),c=13/94+15/61*I,n=19 6308800298945952 a001 141/2161*1364^(19/30) 6308800302488786 a001 34/5779*1364^(29/30) 6308800320735197 p003 LerchPhi(1/10,6,14/41) 6308800354153112 r005 Re(z^2+c),c=-19/26+52/125*I,n=3 6308800356625463 l006 ln(1847/3471) 6308800361828943 m001 (Robbin+ZetaP(3))/(Rabbit-gamma) 6308800370392250 r005 Re(z^2+c),c=-1/13+37/50*I,n=50 6308800384684834 r009 Re(z^3+c),c=-23/102+23/32*I,n=41 6308800387515761 r002 2th iterates of z^2 + 6308800459179252 m001 1/exp(BesselJ(1,1))/MertensB1^2*sin(Pi/12)^2 6308800463860086 a001 6765/1149851*1364^(29/30) 6308800475336897 r002 3th iterates of z^2 + 6308800476989696 a007 Real Root Of -290*x^4+223*x^3+662*x^2+646*x+246 6308800487403841 a001 17711/3010349*1364^(29/30) 6308800492961768 a001 28657/4870847*1364^(29/30) 6308800501954682 a001 5473/930249*1364^(29/30) 6308800528431872 a001 2584/271443*1364^(9/10) 6308800532526641 m001 (BesselI(1,2)+Otter)/(Rabbit+Trott) 6308800562047339 r005 Im(z^2+c),c=-35/64+7/64*I,n=17 6308800563593034 a001 4181/710647*1364^(29/30) 6308800568840547 m001 (cos(1)+ln(5))/(exp(1/exp(1))+ReciprocalLucas) 6308800576853838 m001 (-Gompertz+Landau)/(BesselJ(0,1)-ErdosBorwein) 6308800585834690 r002 11th iterates of z^2 + 6308800589669552 a001 329/1926*1364^(1/2) 6308800610320814 r009 Im(z^3+c),c=-47/86+11/43*I,n=15 6308800616711495 h001 (4/9*exp(2)+4/7)/(5/7*exp(2)+5/6) 6308800616982045 a007 Real Root Of 720*x^4-600*x^3+823*x^2+132*x-509 6308800624757578 a001 987/9349*1364^(17/30) 6308800630595279 r005 Re(z^2+c),c=-11/90+49/59*I,n=48 6308800656921276 p003 LerchPhi(1/16,5,260/237) 6308800689904241 a001 6765/710647*1364^(9/10) 6308800690964694 a007 Real Root Of 32*x^4-613*x^3+190*x^2-576*x-598 6308800713462742 a001 17711/1860498*1364^(9/10) 6308800716899881 a001 46368/4870847*1364^(9/10) 6308800717401353 a001 121393/12752043*1364^(9/10) 6308800717474517 a001 317811/33385282*1364^(9/10) 6308800717485191 a001 832040/87403803*1364^(9/10) 6308800717486749 a001 46347/4868641*1364^(9/10) 6308800717486976 a001 5702887/599074578*1364^(9/10) 6308800717487009 a001 14930352/1568397607*1364^(9/10) 6308800717487014 a001 39088169/4106118243*1364^(9/10) 6308800717487015 a001 102334155/10749957122*1364^(9/10) 6308800717487015 a001 267914296/28143753123*1364^(9/10) 6308800717487015 a001 701408733/73681302247*1364^(9/10) 6308800717487015 a001 1836311903/192900153618*1364^(9/10) 6308800717487015 a001 102287808/10745088481*1364^(9/10) 6308800717487015 a001 12586269025/1322157322203*1364^(9/10) 6308800717487015 a001 32951280099/3461452808002*1364^(9/10) 6308800717487015 a001 86267571272/9062201101803*1364^(9/10) 6308800717487015 a001 225851433717/23725150497407*1364^(9/10) 6308800717487015 a001 139583862445/14662949395604*1364^(9/10) 6308800717487015 a001 53316291173/5600748293801*1364^(9/10) 6308800717487015 a001 20365011074/2139295485799*1364^(9/10) 6308800717487015 a001 7778742049/817138163596*1364^(9/10) 6308800717487015 a001 2971215073/312119004989*1364^(9/10) 6308800717487015 a001 1134903170/119218851371*1364^(9/10) 6308800717487015 a001 433494437/45537549124*1364^(9/10) 6308800717487015 a001 165580141/17393796001*1364^(9/10) 6308800717487015 a001 63245986/6643838879*1364^(9/10) 6308800717487017 a001 24157817/2537720636*1364^(9/10) 6308800717487029 a001 9227465/969323029*1364^(9/10) 6308800717487116 a001 3524578/370248451*1364^(9/10) 6308800717487711 a001 1346269/141422324*1364^(9/10) 6308800717491788 a001 514229/54018521*1364^(9/10) 6308800717519734 a001 196418/20633239*1364^(9/10) 6308800717629183 s001 sum(exp(-Pi/4)^n*A073580[n],n=1..infinity) 6308800717711280 a001 75025/7881196*1364^(9/10) 6308800718105960 a001 305/682*521^(11/26) 6308800719024150 a001 28657/3010349*1364^(9/10) 6308800720265658 m001 (sin(1/5*Pi)-ArtinRank2)/(CareFree+MertensB2) 6308800721910492 a007 Real Root Of 352*x^4-495*x^3+904*x^2-620*x-931 6308800726839634 a001 377/5778*843^(19/28) 6308800728022697 a001 10946/1149851*1364^(9/10) 6308800747035819 r005 Re(z^2+c),c=-1/13+37/50*I,n=62 6308800754803079 a001 2584/167761*1364^(5/6) 6308800760384756 m001 Thue^Magata/(Thue^Artin) 6308800776427887 a001 377/3571*843^(17/28) 6308800777551538 s002 sum(A002070[n]/(exp(n)+1),n=1..infinity) 6308800778187093 m001 GAMMA(2/3)*Cahen^2*ln(GAMMA(7/24)) 6308800789699654 a001 4181/439204*1364^(9/10) 6308800794063658 r005 Re(z^2+c),c=-1/13+37/50*I,n=56 6308800798126334 a001 1860498/1597*317811^(2/15) 6308800798138669 a001 710647/1597*433494437^(2/15) 6308800798211800 a001 271443/1597*591286729879^(2/15) 6308800822250715 m005 (1/2*3^(1/2)+1/5)/(4/7*3^(1/2)+7/10) 6308800826500962 a007 Real Root Of -220*x^4+676*x^3-112*x^2-135*x+164 6308800829024536 m001 ReciprocalLucas*(exp(1/Pi)+Tribonacci) 6308800835825546 r009 Re(z^3+c),c=-9/82+8/13*I,n=60 6308800843758000 r002 52th iterates of z^2 + 6308800871703202 a005 (1/cos(11/141*Pi))^1275 6308800894583044 a001 17711/5778*521^(3/26) 6308800901246776 m001 (-OneNinth+1/3)/(gamma+3) 6308800914810068 a007 Real Root Of 933*x^4-189*x^3-825*x^2-401*x+481 6308800916010865 a001 6765/439204*1364^(5/6) 6308800916430442 m001 (Trott+ZetaP(4))/(sin(1/12*Pi)-Riemann1stZero) 6308800924806342 a001 11/89*55^(24/59) 6308800927935205 r005 Re(z^2+c),c=-1/13+37/50*I,n=59 6308800937946504 a003 cos(Pi*23/63)*cos(Pi*23/51) 6308800939530764 a001 17711/1149851*1364^(5/6) 6308800942962272 a001 46368/3010349*1364^(5/6) 6308800943462922 a001 121393/7881196*1364^(5/6) 6308800943535965 a001 10959/711491*1364^(5/6) 6308800943546622 a001 832040/54018521*1364^(5/6) 6308800943548177 a001 2178309/141422324*1364^(5/6) 6308800943548404 a001 5702887/370248451*1364^(5/6) 6308800943548437 a001 14930352/969323029*1364^(5/6) 6308800943548442 a001 39088169/2537720636*1364^(5/6) 6308800943548443 a001 102334155/6643838879*1364^(5/6) 6308800943548443 a001 9238424/599786069*1364^(5/6) 6308800943548443 a001 701408733/45537549124*1364^(5/6) 6308800943548443 a001 1836311903/119218851371*1364^(5/6) 6308800943548443 a001 4807526976/312119004989*1364^(5/6) 6308800943548443 a001 12586269025/817138163596*1364^(5/6) 6308800943548443 a001 32951280099/2139295485799*1364^(5/6) 6308800943548443 a001 86267571272/5600748293801*1364^(5/6) 6308800943548443 a001 7787980473/505618944676*1364^(5/6) 6308800943548443 a001 365435296162/23725150497407*1364^(5/6) 6308800943548443 a001 139583862445/9062201101803*1364^(5/6) 6308800943548443 a001 53316291173/3461452808002*1364^(5/6) 6308800943548443 a001 20365011074/1322157322203*1364^(5/6) 6308800943548443 a001 7778742049/505019158607*1364^(5/6) 6308800943548443 a001 2971215073/192900153618*1364^(5/6) 6308800943548443 a001 1134903170/73681302247*1364^(5/6) 6308800943548443 a001 433494437/28143753123*1364^(5/6) 6308800943548443 a001 165580141/10749957122*1364^(5/6) 6308800943548443 a001 63245986/4106118243*1364^(5/6) 6308800943548445 a001 24157817/1568397607*1364^(5/6) 6308800943548458 a001 9227465/599074578*1364^(5/6) 6308800943548544 a001 3524578/228826127*1364^(5/6) 6308800943549138 a001 1346269/87403803*1364^(5/6) 6308800943553209 a001 514229/33385282*1364^(5/6) 6308800943581109 a001 196418/12752043*1364^(5/6) 6308800943772340 a001 75025/4870847*1364^(5/6) 6308800945083059 a001 28657/1860498*1364^(5/6) 6308800949538510 m001 (Pi^(1/2)-ArtinRank2)/(HeathBrownMoroz-Niven) 6308800954066861 a001 10946/710647*1364^(5/6) 6308800960990334 b008 255*Sin[1/4] 6308800963983326 a007 Real Root Of 353*x^4+10*x^3-282*x^2-479*x+356 6308800971949690 m001 (exp(Pi)+GAMMA(17/24))/(-FellerTornier+Rabbit) 6308800978284911 a007 Real Root Of -783*x^4+772*x^3-275*x^2+662*x-378 6308800980053478 a001 1292/51841*1364^(23/30) 6308800985238651 a007 Real Root Of -628*x^4+795*x^3-334*x^2-772*x-55 6308800986068580 a001 1597/271443*1364^(29/30) 6308800999670272 r009 Re(z^3+c),c=-49/106+2/55*I,n=11 6308801000826635 a001 930249/305*233^(2/15) 6308801015642756 a001 4181/271443*1364^(5/6) 6308801017965193 a007 Real Root Of 476*x^4+578*x^3-439*x^2-797*x+457 6308801018824262 a001 987/2207*3571^(11/34) 6308801035430784 m001 (-Conway+Paris)/(BesselJ(0,1)+ln(Pi)) 6308801039506273 m001 (BesselI(0,1)+Cahen)/(-FeigenbaumMu+Landau) 6308801040081122 a007 Real Root Of -93*x^4+706*x^3-73*x^2-967*x-389 6308801044455483 a001 8/321*322^(23/24) 6308801045322347 a007 Real Root Of -804*x^4+950*x^3+928*x^2+714*x+447 6308801059417869 a001 6624/2161*521^(3/26) 6308801063622767 l006 ln(4075/7658) 6308801073801613 a007 Real Root Of -512*x^4-281*x^3-824*x^2-703*x-105 6308801083466947 a001 121393/39603*521^(3/26) 6308801085430773 r009 Im(z^3+c),c=-29/82+28/47*I,n=7 6308801086975660 a001 317811/103682*521^(3/26) 6308801087487574 a001 832040/271443*521^(3/26) 6308801087562262 a001 311187/101521*521^(3/26) 6308801087608421 a001 1346269/439204*521^(3/26) 6308801087803955 a001 514229/167761*521^(3/26) 6308801088545060 m001 ln(Sierpinski)*Kolakoski^2*GAMMA(23/24)^2 6308801088759044 a001 2/521*47^(4/31) 6308801089144164 a001 196418/64079*521^(3/26) 6308801098330094 a001 75025/24476*521^(3/26) 6308801109598512 r005 Im(z^2+c),c=-79/122+29/61*I,n=46 6308801124039515 m001 1/Tribonacci/TreeGrowth2nd^2*exp(cos(Pi/5)) 6308801130138016 k001 Champernowne real with 250*n+380 6308801130138016 k005 Champernowne real with floor(exp(1)*(92*n+140)) 6308801136191644 a001 610/843*843^(9/28) 6308801138986839 a007 Real Root Of 935*x^4-749*x^3+789*x^2+143*x-560 6308801141953973 a001 2255/90481*1364^(23/30) 6308801148523603 k002 Champernowne real with 191/2*n^2+31/2*n-105 6308801151518222 r002 8th iterates of z^2 + 6308801157989346 a001 987/2207*9349^(11/38) 6308801161291398 a001 28657/9349*521^(3/26) 6308801165574937 a001 17711/710647*1364^(23/30) 6308801169021189 a001 2576/103361*1364^(23/30) 6308801169523990 a001 121393/4870847*1364^(23/30) 6308801169834739 a001 75025/3010349*1364^(23/30) 6308801171151090 a001 28657/1149851*1364^(23/30) 6308801176125444 a001 987/2207*24476^(11/42) 6308801178516130 a001 987/2207*64079^(11/46) 6308801178883522 a001 987/2207*7881196^(1/6) 6308801178883539 a001 987/2207*312119004989^(1/10) 6308801178883539 a001 987/2207*1568397607^(1/8) 6308801179889152 a001 987/2207*39603^(1/4) 6308801180173495 a001 5473/219602*1364^(23/30) 6308801183693032 a007 Real Root Of -513*x^4+95*x^3-334*x^2+756*x+715 6308801186465367 a001 987/2207*15127^(11/40) 6308801197716467 r009 Re(z^3+c),c=-9/82+8/13*I,n=63 6308801207796654 a008 Real Root of x^4-x^3+10*x^2+45*x+24 6308801208238222 a001 2584/64079*1364^(7/10) 6308801212439805 a001 1597/167761*1364^(9/10) 6308801213960546 q001 1663/2636 6308801218178900 a007 Real Root Of 202*x^4-862*x^3-270*x^2-547*x+637 6308801218819648 a007 Real Root Of -115*x^4-754*x^3-257*x^2-517*x-186 6308801220673470 a001 4870847/4181*317811^(2/15) 6308801220676692 a001 1860498/4181*433494437^(2/15) 6308801220687362 a001 710647/4181*591286729879^(2/15) 6308801236624230 a001 987/2207*5778^(11/36) 6308801242013982 a001 4181/167761*1364^(23/30) 6308801249406308 m001 Pi^(1/2)*(KomornikLoreti-MasserGramainDelta) 6308801282322271 a001 12752043/10946*317811^(2/15) 6308801282324164 a001 4870847/10946*433494437^(2/15) 6308801282325721 a001 930249/5473*591286729879^(2/15) 6308801289822658 r009 Re(z^3+c),c=-9/82+8/13*I,n=62 6308801290163675 m005 (1/2*exp(1)-5/11)/(4*gamma-7/8) 6308801291316710 a001 33385282/28657*317811^(2/15) 6308801291318409 a001 12752043/28657*433494437^(2/15) 6308801291318636 a001 4870847/28657*591286729879^(2/15) 6308801292628981 a001 87403803/75025*317811^(2/15) 6308801292630652 a001 33385282/75025*433494437^(2/15) 6308801292630685 a001 12752043/75025*591286729879^(2/15) 6308801292820439 a001 228826127/196418*317811^(2/15) 6308801292822105 a001 87403803/196418*433494437^(2/15) 6308801292822110 a001 16692641/98209*591286729879^(2/15) 6308801292848372 a001 599074578/514229*317811^(2/15) 6308801292850038 a001 228826127/514229*433494437^(2/15) 6308801292850039 a001 87403803/514229*591286729879^(2/15) 6308801292852448 a001 1568397607/1346269*317811^(2/15) 6308801292853042 a001 4106118243/3524578*317811^(2/15) 6308801292853129 a001 10749957122/9227465*317811^(2/15) 6308801292853142 a001 28143753123/24157817*317811^(2/15) 6308801292853144 a001 73681302247/63245986*317811^(2/15) 6308801292853144 a001 192900153618/165580141*317811^(2/15) 6308801292853144 a001 505019158607/433494437*317811^(2/15) 6308801292853144 a001 1322157322203/1134903170*317811^(2/15) 6308801292853144 a001 3461452808002/2971215073*317811^(2/15) 6308801292853144 a001 9062201101803/7778742049*317811^(2/15) 6308801292853144 a001 23725150497407/20365011074*317811^(2/15) 6308801292853144 a001 14662949395604/12586269025*317811^(2/15) 6308801292853144 a001 5600748293801/4807526976*317811^(2/15) 6308801292853144 a001 2139295485799/1836311903*317811^(2/15) 6308801292853144 a001 817138163596/701408733*317811^(2/15) 6308801292853144 a001 312119004989/267914296*317811^(2/15) 6308801292853144 a001 119218851371/102334155*317811^(2/15) 6308801292853145 a001 45537549124/39088169*317811^(2/15) 6308801292853150 a001 17393796001/14930352*317811^(2/15) 6308801292853183 a001 6643838879/5702887*317811^(2/15) 6308801292853410 a001 2537720636/2178309*317811^(2/15) 6308801292854113 a001 599074578/1346269*433494437^(2/15) 6308801292854113 a001 228826127/1346269*591286729879^(2/15) 6308801292854708 a001 1568397607/3524578*433494437^(2/15) 6308801292854708 a001 299537289/1762289*591286729879^(2/15) 6308801292854795 a001 4106118243/9227465*433494437^(2/15) 6308801292854795 a001 1568397607/9227465*591286729879^(2/15) 6308801292854807 a001 4106118243/24157817*591286729879^(2/15) 6308801292854807 a001 10749957122/24157817*433494437^(2/15) 6308801292854809 a001 5374978561/31622993*591286729879^(2/15) 6308801292854809 a001 28143753123/63245986*433494437^(2/15) 6308801292854809 a001 28143753123/165580141*591286729879^(2/15) 6308801292854809 a001 73681302247/165580141*433494437^(2/15) 6308801292854809 a001 73681302247/433494437*591286729879^(2/15) 6308801292854809 a001 192900153618/433494437*433494437^(2/15) 6308801292854809 a001 96450076809/567451585*591286729879^(2/15) 6308801292854809 a001 505019158607/2971215073*591286729879^(2/15) 6308801292854809 a001 505019158607/1134903170*433494437^(2/15) 6308801292854809 a001 1322157322203/7778742049*591286729879^(2/15) 6308801292854809 a001 1730726404001/10182505537*591286729879^(2/15) 6308801292854809 a001 9062201101803/53316291173*591286729879^(2/15) 6308801292854809 a001 192933544679/1135099622*591286729879^(2/15) 6308801292854809 a001 5600748293801/32951280099*591286729879^(2/15) 6308801292854809 a001 2139295485799/12586269025*591286729879^(2/15) 6308801292854809 a001 204284540899/1201881744*591286729879^(2/15) 6308801292854809 a001 312119004989/1836311903*591286729879^(2/15) 6308801292854809 a001 1322157322203/2971215073*433494437^(2/15) 6308801292854809 a001 3461452808002/7778742049*433494437^(2/15) 6308801292854809 a001 9062201101803/20365011074*433494437^(2/15) 6308801292854809 a001 23725150497407/53316291173*433494437^(2/15) 6308801292854809 a001 14662949395604/32951280099*433494437^(2/15) 6308801292854809 a001 5600748293801/12586269025*433494437^(2/15) 6308801292854809 a001 2139295485799/4807526976*433494437^(2/15) 6308801292854809 a001 817138163596/1836311903*433494437^(2/15) 6308801292854809 a001 119218851371/701408733*591286729879^(2/15) 6308801292854809 a001 1568437211/3524667*433494437^(2/15) 6308801292854809 a001 11384387281/66978574*591286729879^(2/15) 6308801292854809 a001 119218851371/267914296*433494437^(2/15) 6308801292854810 a001 17393796001/102334155*591286729879^(2/15) 6308801292854810 a001 45537549124/102334155*433494437^(2/15) 6308801292854810 a001 6643838879/39088169*591286729879^(2/15) 6308801292854810 a001 17393796001/39088169*433494437^(2/15) 6308801292854815 a001 33391061/196452*591286729879^(2/15) 6308801292854815 a001 6643838879/14930352*433494437^(2/15) 6308801292854848 a001 969323029/5702887*591286729879^(2/15) 6308801292854848 a001 2537720636/5702887*433494437^(2/15) 6308801292854966 a001 969323029/832040*317811^(2/15) 6308801292855075 a001 370248451/2178309*591286729879^(2/15) 6308801292855075 a001 969323029/2178309*433494437^(2/15) 6308801292856632 a001 35355581/208010*591286729879^(2/15) 6308801292856632 a001 370248451/832040*433494437^(2/15) 6308801292865636 a001 370248451/317811*317811^(2/15) 6308801292867300 a001 54018521/317811*591286729879^(2/15) 6308801292867301 a001 141422324/317811*433494437^(2/15) 6308801292938766 a001 271444/233*317811^(2/15) 6308801292940417 a001 20633239/121393*591286729879^(2/15) 6308801292940430 a001 54018521/121393*433494437^(2/15) 6308801293440009 a001 54018521/46368*317811^(2/15) 6308801293441575 a001 1970299/11592*591286729879^(2/15) 6308801293441662 a001 20633239/46368*433494437^(2/15) 6308801296875579 a001 20633239/17711*317811^(2/15) 6308801296876564 a001 3010349/17711*591286729879^(2/15) 6308801296877158 a001 39604/89*433494437^(2/15) 6308801297167501 r005 Im(z^2+c),c=31/86+35/58*I,n=20 6308801320420322 a001 1149851/6765*591286729879^(2/15) 6308801320423326 a001 7881196/6765*317811^(2/15) 6308801320424397 a001 3010349/6765*433494437^(2/15) 6308801323558336 m001 (HardyLittlewoodC5*Paris-LaplaceLimit)/Paris 6308801368325203 a001 615/15251*1364^(7/10) 6308801376202266 m003 6+(Csc[1/2+Sqrt[5]/2]^2*Tanh[1/2+Sqrt[5]/2])/3 6308801391681578 a001 17711/439204*1364^(7/10) 6308801395089228 a001 46368/1149851*1364^(7/10) 6308801395586397 a001 121393/3010349*1364^(7/10) 6308801395658933 a001 317811/7881196*1364^(7/10) 6308801395669516 a001 75640/1875749*1364^(7/10) 6308801395671060 a001 2178309/54018521*1364^(7/10) 6308801395671285 a001 5702887/141422324*1364^(7/10) 6308801395671318 a001 14930352/370248451*1364^(7/10) 6308801395671323 a001 39088169/969323029*1364^(7/10) 6308801395671323 a001 9303105/230701876*1364^(7/10) 6308801395671324 a001 267914296/6643838879*1364^(7/10) 6308801395671324 a001 701408733/17393796001*1364^(7/10) 6308801395671324 a001 1836311903/45537549124*1364^(7/10) 6308801395671324 a001 4807526976/119218851371*1364^(7/10) 6308801395671324 a001 1144206275/28374454999*1364^(7/10) 6308801395671324 a001 32951280099/817138163596*1364^(7/10) 6308801395671324 a001 86267571272/2139295485799*1364^(7/10) 6308801395671324 a001 225851433717/5600748293801*1364^(7/10) 6308801395671324 a001 591286729879/14662949395604*1364^(7/10) 6308801395671324 a001 365435296162/9062201101803*1364^(7/10) 6308801395671324 a001 139583862445/3461452808002*1364^(7/10) 6308801395671324 a001 53316291173/1322157322203*1364^(7/10) 6308801395671324 a001 20365011074/505019158607*1364^(7/10) 6308801395671324 a001 7778742049/192900153618*1364^(7/10) 6308801395671324 a001 2971215073/73681302247*1364^(7/10) 6308801395671324 a001 1134903170/28143753123*1364^(7/10) 6308801395671324 a001 433494437/10749957122*1364^(7/10) 6308801395671324 a001 165580141/4106118243*1364^(7/10) 6308801395671324 a001 63245986/1568397607*1364^(7/10) 6308801395671326 a001 24157817/599074578*1364^(7/10) 6308801395671338 a001 9227465/228826127*1364^(7/10) 6308801395671424 a001 3524578/87403803*1364^(7/10) 6308801395672014 a001 1346269/33385282*1364^(7/10) 6308801395676056 a001 514229/12752043*1364^(7/10) 6308801395703763 a001 196418/4870847*1364^(7/10) 6308801395893664 a001 75025/1860498*1364^(7/10) 6308801397195271 a001 28657/710647*1364^(7/10) 6308801397570039 a001 1597/1364*521^(7/26) 6308801406116612 a001 10946/271443*1364^(7/10) 6308801428740779 a001 2584/39603*1364^(19/30) 6308801437690219 a001 1597/103682*1364^(5/6) 6308801439440411 r009 Re(z^3+c),c=-9/82+8/13*I,n=64 6308801467264398 a001 4181/103682*1364^(7/10) 6308801477075837 r009 Re(z^3+c),c=-9/82+8/13*I,n=61 6308801481791647 a001 5779/34*591286729879^(2/15) 6308801481819581 a001 1149851/2584*433494437^(2/15) 6308801481821991 a001 3010349/2584*317811^(2/15) 6308801484055010 r005 Re(z^2+c),c=-93/110+5/22*I,n=13 6308801493915555 a001 2584/2207*1364^(7/30) 6308801495643900 a007 Real Root Of -17*x^4+750*x^3+208*x^2+971*x-881 6308801499429186 a001 987/3571*1364^(13/30) 6308801536127377 m001 (Zeta(1/2)-CareFree)/(Otter+PlouffeB) 6308801550072822 m009 (1/6*Psi(1,1/3)+2/5)/(3/8*Pi^2-2/5) 6308801555890725 m001 Landau/Champernowne/ArtinRank2 6308801587098881 a007 Real Root Of 956*x^4-51*x^3+80*x^2-729*x-656 6308801590717242 a001 10946/2207*521^(1/26) 6308801592834626 a001 10946/3571*521^(3/26) 6308801593575623 a001 6765/103682*1364^(19/30) 6308801601436139 m001 ReciprocalFibonacci*(GAMMA(17/24)+Lehmer) 6308801608457256 a001 29*63245986^(13/19) 6308801617624703 a001 17711/271443*1364^(19/30) 6308801621133416 a001 6624/101521*1364^(19/30) 6308801621645331 a001 121393/1860498*1364^(19/30) 6308801621720018 a001 317811/4870847*1364^(19/30) 6308801621766177 a001 196418/3010349*1364^(19/30) 6308801621961711 a001 75025/1149851*1364^(19/30) 6308801622099061 a001 377/9349*843^(3/4) 6308801623301920 a001 28657/439204*1364^(19/30) 6308801624114165 a001 987/2207*2207^(11/32) 6308801632487852 a001 10946/167761*1364^(19/30) 6308801636632447 m001 (-Rabbit+ReciprocalLucas)/(sin(1)+ln(Pi)) 6308801637285735 r005 Im(z^2+c),c=-1+11/173*I,n=11 6308801649719686 l006 ln(2228/4187) 6308801655819704 r005 Im(z^2+c),c=-5/6+36/169*I,n=50 6308801658989512 a001 18/5*34^(7/44) 6308801665874980 a001 1597/64079*1364^(23/30) 6308801668494597 m001 (Zeta(1,2)-ZetaP(4))/(3^(1/3)-Zeta(1,-1)) 6308801669355595 a001 646/6119*1364^(17/30) 6308801679062270 m005 (1/2*Catalan-1)/(3/10*Pi-1/12) 6308801691295834 m001 Lehmer/exp(GaussKuzminWirsing)*(3^(1/3)) 6308801695449160 a001 4181/64079*1364^(19/30) 6308801721025698 r005 Im(z^2+c),c=7/24+23/40*I,n=11 6308801755712569 m001 ln(log(1+sqrt(2)))^2*GAMMA(7/12)*sin(Pi/12) 6308801768181936 m005 (1/2*5^(1/2)-1/8)/(2/3*5^(1/2)+1/12) 6308801773556935 m001 ln(2^(1/2)+1)*(Conway-sin(1/5*Pi)) 6308801779575648 a007 Real Root Of -504*x^4+784*x^3+851*x^2+663*x-874 6308801787092384 a007 Real Root Of 789*x^4+347*x^3+985*x^2+450*x-146 6308801796560989 a007 Real Root Of 352*x^4+206*x^3-170*x^2-804*x-50 6308801819716654 a007 Real Root Of -242*x^4+226*x^3+443*x^2+869*x+467 6308801821760390 a001 6765/64079*1364^(17/30) 6308801832031457 m001 cos(1/12*Pi)-sin(1/12*Pi)^cos(1/5*Pi) 6308801832031457 m001 cos(Pi/12)-sin(Pi/12)^cos(Pi/5) 6308801843995950 a001 17711/167761*1364^(17/30) 6308801847240074 a001 11592/109801*1364^(17/30) 6308801847713385 a001 121393/1149851*1364^(17/30) 6308801847782441 a001 317811/3010349*1364^(17/30) 6308801847798742 a001 514229/4870847*1364^(17/30) 6308801847825119 a001 98209/930249*1364^(17/30) 6308801848005908 a001 75025/710647*1364^(17/30) 6308801849245053 a001 28657/271443*1364^(17/30) 6308801857315858 a001 2584/15127*1364^(1/2) 6308801857738281 a001 5473/51841*1364^(17/30) 6308801886377553 a001 1597/39603*1364^(7/10) 6308801895140161 m001 FransenRobinson/ln(Champernowne)/GAMMA(5/12) 6308801915951733 a001 4181/39603*1364^(17/30) 6308801951552334 a001 1597/2207*1364^(3/10) 6308801962885379 m001 gamma(1)*(5^(1/2))^FeigenbaumD 6308801967969554 a003 sin(Pi*13/60)/sin(Pi*32/67) 6308801977476512 m001 1/Khintchine^3*exp(FeigenbaumAlpha) 6308801981126514 a001 4181/2207*1364^(1/6) 6308801993954780 a001 987/439204*3571^(33/34) 6308801996835722 r005 Re(z^2+c),c=-10/29+7/11*I,n=2 6308801997770181 a007 Real Root Of -658*x^3+475*x^2-992*x+602 6308802002752142 m001 (Ei(1)-gamma(1))/(BesselI(1,2)+GAMMA(7/12)) 6308802022938143 a001 329/90481*3571^(31/34) 6308802035615797 r005 Im(z^2+c),c=37/98+20/57*I,n=59 6308802037866097 a003 cos(Pi*32/115)*sin(Pi*53/120) 6308802042262967 a001 2255/13201*1364^(1/2) 6308802052349620 a001 987/167761*3571^(29/34) 6308802066867738 a001 329/1926*3571^(15/34) 6308802069246387 a001 17711/103682*1364^(1/2) 6308802073183215 a001 15456/90481*1364^(1/2) 6308802073757590 a001 121393/710647*1364^(1/2) 6308802073841391 a001 105937/620166*1364^(1/2) 6308802073853617 a001 832040/4870847*1364^(1/2) 6308802073855401 a001 726103/4250681*1364^(1/2) 6308802073855661 a001 5702887/33385282*1364^(1/2) 6308802073855699 a001 4976784/29134601*1364^(1/2) 6308802073855705 a001 39088169/228826127*1364^(1/2) 6308802073855705 a001 34111385/199691526*1364^(1/2) 6308802073855705 a001 267914296/1568397607*1364^(1/2) 6308802073855705 a001 233802911/1368706081*1364^(1/2) 6308802073855705 a001 1836311903/10749957122*1364^(1/2) 6308802073855705 a001 1602508992/9381251041*1364^(1/2) 6308802073855705 a001 12586269025/73681302247*1364^(1/2) 6308802073855705 a001 10983760033/64300051206*1364^(1/2) 6308802073855705 a001 86267571272/505019158607*1364^(1/2) 6308802073855705 a001 75283811239/440719107401*1364^(1/2) 6308802073855705 a001 2504730781961/14662949395604*1364^(1/2) 6308802073855705 a001 139583862445/817138163596*1364^(1/2) 6308802073855705 a001 53316291173/312119004989*1364^(1/2) 6308802073855705 a001 20365011074/119218851371*1364^(1/2) 6308802073855705 a001 7778742049/45537549124*1364^(1/2) 6308802073855705 a001 2971215073/17393796001*1364^(1/2) 6308802073855705 a001 1134903170/6643838879*1364^(1/2) 6308802073855705 a001 433494437/2537720636*1364^(1/2) 6308802073855705 a001 165580141/969323029*1364^(1/2) 6308802073855706 a001 63245986/370248451*1364^(1/2) 6308802073855708 a001 24157817/141422324*1364^(1/2) 6308802073855722 a001 9227465/54018521*1364^(1/2) 6308802073855822 a001 3524578/20633239*1364^(1/2) 6308802073856503 a001 1346269/7881196*1364^(1/2) 6308802073861173 a001 514229/3010349*1364^(1/2) 6308802073893182 a001 196418/1149851*1364^(1/2) 6308802074112574 a001 75025/439204*1364^(1/2) 6308802075616308 a001 28657/167761*1364^(1/2) 6308802080640280 a001 21/2206*3571^(27/34) 6308802081580224 r008 a(0)=5,K{-n^6,46-5*n-7*n^2-35*n^3} 6308802085923058 a001 10946/64079*1364^(1/2) 6308802088274665 a001 3524578/47*18^(14/19) 6308802099191624 r001 10i'th iterates of 2*x^2-1 of 6308802107437750 a001 6765/2207*1364^(1/10) 6308802111865279 a001 987/64079*3571^(25/34) 6308802113497155 a001 87403803/233*2^(3/4) 6308802126992386 a001 1597/24476*1364^(19/30) 6308802135408080 a001 329/13201*3571^(23/34) 6308802143485413 l006 ln(4837/9090) 6308802148039530 a001 1292/2889*1364^(11/30) 6308802148823663 k002 Champernowne real with 96*n^2+14*n-104 6308802151468770 r009 Re(z^3+c),c=-9/82+8/13*I,n=59 6308802156458855 a001 377/15127*843^(23/28) 6308802156566568 a001 4181/24476*1364^(1/2) 6308802170063627 a001 141/2161*3571^(19/34) 6308802179063135 a001 987/24476*3571^(21/34) 6308802183127565 a001 2584/9349*1364^(13/30) 6308802183274764 a001 2584/2207*3571^(7/34) 6308802190068620 r002 8th iterates of z^2 + 6308802210878398 m005 (1/2*3^(1/2)-7/10)/(3*gamma+9/10) 6308802214160295 r005 Im(z^2+c),c=-55/94+7/62*I,n=24 6308802221818904 m001 (FeigenbaumC-Magata)/(3^(1/3)+GAMMA(11/12)) 6308802228506742 r005 Re(z^2+c),c=-41/34+20/67*I,n=10 6308802235013040 a007 Real Root Of -490*x^4+838*x^3-9*x^2+835*x-656 6308802239490209 m001 (Ei(1,1)-GAMMA(11/12))/(GAMMA(13/24)-Pi^(1/2)) 6308802242005384 a007 Real Root Of 132*x^4+962*x^3+897*x^2+357*x-998 6308802248830524 r009 Im(z^3+c),c=-45/118+26/41*I,n=14 6308802256638340 a001 329/1926*9349^(15/38) 6308802268528456 m001 1/Porter^2/CareFree^2*ln(BesselJ(1,1))^2 6308802269698326 r002 14th iterates of z^2 + 6308802271834380 a001 2584/2207*9349^(7/38) 6308802275556978 b008 LogGamma[Gamma[9/4]] 6308802281369386 a001 329/1926*24476^(5/14) 6308802282877807 a001 6765/24476*1364^(13/30) 6308802283375534 a001 2584/2207*24476^(1/6) 6308802284629413 a001 329/1926*64079^(15/46) 6308802285063177 a001 329/1926*167761^(3/10) 6308802285121341 a001 329/1926*439204^(5/18) 6308802285130403 a001 329/1926*7881196^(5/22) 6308802285130423 a001 329/1926*20633239^(3/14) 6308802285130426 a001 329/1926*2537720636^(1/6) 6308802285130426 a001 329/1926*312119004989^(3/22) 6308802285130426 a001 329/1926*28143753123^(3/20) 6308802285130426 a001 329/1926*228826127^(3/16) 6308802285130427 a001 329/1926*33385282^(5/24) 6308802285130685 a001 2584/2207*20633239^(1/10) 6308802285130686 a001 2584/2207*17393796001^(1/14) 6308802285130686 a001 2584/2207*14662949395604^(1/18) 6308802285130686 a001 2584/2207*505019158607^(1/16) 6308802285130686 a001 2584/2207*599074578^(1/12) 6308802285130882 a001 329/1926*1860498^(1/4) 6308802285132248 a001 2584/2207*710647^(1/8) 6308802285313822 a001 329/1926*103682^(5/16) 6308802285770622 a001 2584/2207*39603^(7/44) 6308802286501716 a001 329/1926*39603^(15/44) 6308802289955487 a001 2584/2207*15127^(7/40) 6308802290397617 b008 -47/60+Sqrt[2] 6308802295469284 a001 329/1926*15127^(3/8) 6308802297431171 a001 17711/64079*1364^(13/30) 6308802298915558 a001 987/9349*3571^(1/2) 6308802299554478 a001 46368/167761*1364^(13/30) 6308802299864264 a001 121393/439204*1364^(13/30) 6308802299909462 a001 317811/1149851*1364^(13/30) 6308802299916056 a001 832040/3010349*1364^(13/30) 6308802299917613 a001 1346269/4870847*1364^(13/30) 6308802299920131 a001 514229/1860498*1364^(13/30) 6308802299937395 a001 196418/710647*1364^(13/30) 6308802300055723 a001 75025/271443*1364^(13/30) 6308802300866754 a001 28657/103682*1364^(13/30) 6308802306425644 a001 10946/39603*1364^(13/30) 6308802308721317 a001 2584/843*322^(1/8) 6308802308802308 q001 2186/3465 6308802313350603 a007 Real Root Of -850*x^4+12*x^3+145*x^2+157*x+179 6308802314952663 a001 1597/15127*1364^(17/30) 6308802321874769 a001 2584/2207*5778^(7/36) 6308802328967368 m001 Riemann3rdZero/ln(2+3^(1/2))/ln(2)*ln(10) 6308802336868245 a008 Real Root of x^3-x^2+23*x+436 6308802344526846 a001 4181/15127*1364^(13/30) 6308802363867745 a001 329/1926*5778^(5/12) 6308802365035478 m005 (1/3*Pi+1/7)/(6/11*5^(1/2)+2/3) 6308802371412758 r005 Im(z^2+c),c=-59/90+13/31*I,n=32 6308802371600430 a001 10946/2207*1364^(1/30) 6308802371854560 a007 Real Root Of -812*x^4+835*x^3-510*x^2+101*x+605 6308802375373115 m001 FibonacciFactorial-Si(Pi)*arctan(1/3) 6308802402877431 a001 6765/2207*3571^(3/34) 6308802403824283 a001 987/1149851*9349^(37/38) 6308802404401007 a001 377/1364*843^(13/28) 6308802407605965 a001 141/101521*9349^(35/38) 6308802410439727 a001 141/2161*9349^(1/2) 6308802411450107 a001 987/439204*9349^(33/38) 6308802412159522 r009 Im(z^3+c),c=-33/58+31/49*I,n=61 6308802412674603 r002 16th iterates of z^2 + 6308802415130724 a001 329/90481*9349^(31/38) 6308802419239455 a001 987/167761*9349^(29/38) 6308802419496596 h002 exp(7*10^(2/3)*11^(1/2)) 6308802422227369 a001 21/2206*9349^(27/38) 6308802426389675 a001 329/13201*9349^(23/38) 6308802428149621 a001 987/64079*9349^(25/38) 6308802430943943 r005 Im(z^2+c),c=-33/50+10/33*I,n=64 6308802440831553 a001 6765/2207*9349^(3/38) 6308802441765720 a001 141/2161*24476^(19/42) 6308802442888698 m001 (Porter-TreeGrowth2nd)/(arctan(1/3)+Mills) 6308802444339901 r009 Re(z^3+c),c=-19/30+24/37*I,n=7 6308802444741985 a001 987/24476*9349^(21/38) 6308802445777762 a001 6765/2207*24476^(1/14) 6308802445895088 a001 141/2161*64079^(19/46) 6308802446528153 a001 6765/2207*439204^(1/18) 6308802446529704 a001 141/2161*817138163596^(1/6) 6308802446529704 a001 141/2161*87403803^(1/4) 6308802446529965 a001 6765/2207*7881196^(1/22) 6308802446529970 a001 6765/2207*33385282^(1/24) 6308802446530061 a001 6765/2207*1860498^(1/20) 6308802446566649 a001 6765/2207*103682^(1/16) 6308802446804228 a001 6765/2207*39603^(3/44) 6308802448266672 a001 141/2161*39603^(19/44) 6308802448597742 a001 6765/2207*15127^(3/40) 6308802454534091 r005 Im(z^2+c),c=-41/30+30/73*I,n=4 6308802459625592 a001 141/2161*15127^(19/40) 6308802462277434 a001 6765/2207*5778^(1/12) 6308802463820512 a001 987/3010349*24476^(41/42) 6308802464310614 a001 329/13201*24476^(23/42) 6308802464319465 a001 329/620166*24476^(13/14) 6308802464827532 a001 987/1149851*24476^(37/42) 6308802465311740 a001 141/101521*24476^(5/6) 6308802465858409 a001 987/439204*24476^(11/14) 6308802466241553 a001 329/90481*24476^(31/42) 6308802466743253 a001 21/2206*24476^(9/14) 6308802467052812 a001 987/167761*24476^(29/42) 6308802469309323 a001 329/13201*64079^(1/2) 6308802469368032 a001 987/64079*24476^(25/42) 6308802470077542 a001 329/13201*4106118243^(1/4) 6308802470080326 a001 10946/2207*3571^(1/34) 6308802470838089 a001 6765/15127*1364^(11/30) 6308802472180187 a001 329/13201*39603^(23/44) 6308802472611302 a001 21/2206*64079^(27/46) 6308802472663490 a001 987/4870847*64079^(43/46) 6308802472731254 a001 987/3010349*64079^(41/46) 6308802472795537 a001 329/620166*64079^(39/46) 6308802472868933 a001 987/1149851*64079^(37/46) 6308802472918471 a001 141/101521*64079^(35/46) 6308802472978944 a001 329/90481*64079^(31/46) 6308802473030470 a001 987/439204*64079^(33/46) 6308802473355532 a001 987/167761*64079^(29/46) 6308802473496773 a001 21/2206*439204^(1/2) 6308802473513084 a001 21/2206*7881196^(9/22) 6308802473513126 a001 21/2206*2537720636^(3/10) 6308802473513126 a001 21/2206*14662949395604^(3/14) 6308802473513126 a001 21/2206*192900153618^(1/4) 6308802473513128 a001 21/2206*33385282^(3/8) 6308802473513946 a001 21/2206*1860498^(9/20) 6308802473525980 a001 4181/2207*3571^(5/34) 6308802473843239 a001 21/2206*103682^(9/16) 6308802473898348 a001 987/7881196*167761^(9/10) 6308802473930587 a001 141/101521*167761^(7/10) 6308802474014022 a001 329/90481*3010349^(1/2) 6308802474014370 a001 329/90481*9062201101803^(1/4) 6308802474069100 a001 141/4769326*439204^(17/18) 6308802474072841 a001 987/7881196*439204^(5/6) 6308802474074550 a001 329/620166*439204^(13/18) 6308802474087494 a001 141/101521*20633239^(1/2) 6308802474087501 a001 141/101521*2537720636^(7/18) 6308802474087501 a001 141/101521*17393796001^(5/14) 6308802474087501 a001 141/101521*312119004989^(7/22) 6308802474087501 a001 141/101521*14662949395604^(5/18) 6308802474087501 a001 141/101521*505019158607^(5/16) 6308802474087501 a001 141/101521*28143753123^(7/20) 6308802474087501 a001 141/101521*599074578^(5/12) 6308802474087501 a001 141/101521*228826127^(7/16) 6308802474088564 a001 141/101521*1860498^(7/12) 6308802474095309 a001 141/101521*710647^(5/8) 6308802474098111 a001 329/620166*7881196^(13/22) 6308802474098171 a001 329/620166*141422324^(1/2) 6308802474098171 a001 329/620166*73681302247^(3/8) 6308802474098174 a001 329/620166*33385282^(13/24) 6308802474099355 a001 329/620166*1860498^(13/20) 6308802474099727 a001 987/4870847*969323029^(1/2) 6308802474099896 a001 329/199691526*7881196^(21/22) 6308802474099906 a001 987/141422324*7881196^(19/22) 6308802474099908 a001 329/29134601*7881196^(5/6) 6308802474099909 a001 141/4769326*7881196^(17/22) 6308802474099954 a001 329/4250681*6643838879^(1/2) 6308802474099980 a001 987/969323029*20633239^(13/14) 6308802474099980 a001 329/199691526*20633239^(9/10) 6308802474099981 a001 329/29134601*20633239^(11/14) 6308802474099988 a001 141/4769326*45537549124^(1/2) 6308802474099992 a001 141/4769326*33385282^(17/24) 6308802474099992 a001 329/29134601*2537720636^(11/18) 6308802474099992 a001 329/29134601*312119004989^(1/2) 6308802474099992 a001 329/29134601*3461452808002^(11/24) 6308802474099992 a001 329/29134601*28143753123^(11/20) 6308802474099992 a001 329/29134601*1568397607^(5/8) 6308802474099993 a001 329/29134601*228826127^(11/16) 6308802474099993 a001 987/969323029*141422324^(5/6) 6308802474099993 a001 21/4868641*2139295485799^(1/2) 6308802474099993 a001 329/199691526*2537720636^(7/10) 6308802474099993 a001 329/199691526*17393796001^(9/14) 6308802474099993 a001 329/199691526*14662949395604^(1/2) 6308802474099993 a001 329/199691526*505019158607^(9/16) 6308802474099993 a001 329/199691526*192900153618^(7/12) 6308802474099993 a001 329/199691526*599074578^(3/4) 6308802474099993 a001 987/119218851371*2537720636^(17/18) 6308802474099993 a001 987/45537549124*2537720636^(9/10) 6308802474099993 a001 987/10749957122*2537720636^(5/6) 6308802474099993 a001 987/10749957122*312119004989^(15/22) 6308802474099993 a001 987/10749957122*3461452808002^(5/8) 6308802474099993 a001 987/10749957122*28143753123^(3/4) 6308802474099993 a001 21/10745088481*17393796001^(13/14) 6308802474099993 a001 987/119218851371*45537549124^(5/6) 6308802474099993 a001 329/64300051206*1322157322203^(3/4) 6308802474099993 a001 329/440719107401*312119004989^(19/22) 6308802474099993 a001 141/494493258286*312119004989^(9/10) 6308802474099993 a001 21/10745088481*14662949395604^(13/18) 6308802474099993 a001 21/10745088481*505019158607^(13/16) 6308802474099993 a001 141/494493258286*14662949395604^(11/14) 6308802474099993 a001 987/14662949395604*14662949395604^(5/6) 6308802474099993 a001 987/817138163596*9062201101803^(3/4) 6308802474099993 a001 987/14662949395604*505019158607^(15/16) 6308802474099993 a001 141/494493258286*192900153618^(11/12) 6308802474099993 a001 987/119218851371*312119004989^(17/22) 6308802474099993 a001 987/119218851371*3461452808002^(17/24) 6308802474099993 a001 21/10745088481*73681302247^(7/8) 6308802474099993 a001 987/45537549124*14662949395604^(9/14) 6308802474099993 a001 987/45537549124*192900153618^(3/4) 6308802474099993 a001 987/17393796001*17393796001^(11/14) 6308802474099993 a001 987/119218851371*28143753123^(17/20) 6308802474099993 a001 329/440719107401*28143753123^(19/20) 6308802474099993 a001 987/17393796001*14662949395604^(11/18) 6308802474099993 a001 987/17393796001*505019158607^(11/16) 6308802474099993 a001 987/2537720636*4106118243^(3/4) 6308802474099993 a001 987/17393796001*1568397607^(7/8) 6308802474099993 a001 987/969323029*2537720636^(13/18) 6308802474099993 a001 987/969323029*312119004989^(13/22) 6308802474099993 a001 987/969323029*3461452808002^(13/24) 6308802474099993 a001 987/969323029*73681302247^(5/8) 6308802474099993 a001 987/969323029*28143753123^(13/20) 6308802474099993 a001 987/17393796001*599074578^(11/12) 6308802474099993 a001 987/370248451*5600748293801^(1/2) 6308802474099993 a001 987/969323029*228826127^(13/16) 6308802474099993 a001 987/10749957122*228826127^(15/16) 6308802474099994 a001 987/141422324*817138163596^(1/2) 6308802474099994 a001 987/141422324*87403803^(3/4) 6308802474099995 a001 987/54018521*119218851371^(1/2) 6308802474099998 a001 987/20633239*20633239^(7/10) 6308802474099998 a001 987/141422324*33385282^(19/24) 6308802474099998 a001 329/199691526*33385282^(7/8) 6308802474099999 a001 987/2537720636*33385282^(23/24) 6308802474100008 a001 987/20633239*17393796001^(1/2) 6308802474100008 a001 987/20633239*14662949395604^(7/18) 6308802474100008 a001 987/20633239*505019158607^(7/16) 6308802474100008 a001 987/20633239*599074578^(7/12) 6308802474100017 a001 141/4769326*12752043^(3/4) 6308802474100026 a001 987/7881196*7881196^(15/22) 6308802474100085 a001 987/7881196*20633239^(9/14) 6308802474100095 a001 987/7881196*2537720636^(1/2) 6308802474100095 a001 987/7881196*312119004989^(9/22) 6308802474100095 a001 987/7881196*14662949395604^(5/14) 6308802474100095 a001 987/7881196*192900153618^(5/12) 6308802474100095 a001 987/7881196*28143753123^(9/20) 6308802474100095 a001 987/7881196*228826127^(9/16) 6308802474100098 a001 987/7881196*33385282^(5/8) 6308802474100259 a006 5^(1/2)*Fibonacci(43/2)/Lucas(16)/sqrt(5) 6308802474100689 a001 987/3010349*370248451^(1/2) 6308802474101462 a001 987/7881196*1860498^(3/4) 6308802474101537 a001 141/4769326*1860498^(17/20) 6308802474101663 a001 329/29134601*1860498^(11/12) 6308802474101725 a001 987/141422324*1860498^(19/20) 6308802474104764 a001 987/1149851*54018521^(1/2) 6308802474110939 a001 987/20633239*710647^(7/8) 6308802474112712 a001 987/439204*439204^(11/18) 6308802474132647 a001 987/439204*7881196^(1/2) 6308802474132698 a001 987/439204*312119004989^(3/10) 6308802474132698 a001 987/439204*1568397607^(3/8) 6308802474132701 a001 987/439204*33385282^(11/24) 6308802474133701 a001 987/439204*1860498^(11/20) 6308802474162388 a001 329/620166*271443^(3/4) 6308802474321771 a001 987/167761*1149851^(1/2) 6308802474324157 a001 987/167761*1322157322203^(1/4) 6308802474536170 a001 987/439204*103682^(11/16) 6308802474575001 a001 329/620166*103682^(13/16) 6308802474650283 a001 987/7881196*103682^(15/16) 6308802474801411 a001 987/64079*64079^(25/46) 6308802475524351 a001 987/64079*167761^(1/2) 6308802475636428 a001 987/64079*20633239^(5/14) 6308802475636433 a001 987/64079*2537720636^(5/18) 6308802475636433 a001 987/64079*312119004989^(5/22) 6308802475636433 a001 987/64079*3461452808002^(5/24) 6308802475636433 a001 987/64079*28143753123^(1/4) 6308802475636433 a001 987/64079*228826127^(5/16) 6308802475637192 a001 987/64079*1860498^(5/12) 6308802475981448 a001 21/2206*39603^(27/44) 6308802476848370 a001 329/90481*39603^(31/44) 6308802476975318 a001 987/167761*39603^(29/44) 6308802477149537 a001 987/439204*39603^(3/4) 6308802477287178 a001 141/101521*39603^(35/44) 6308802477487280 a001 987/1149851*39603^(37/44) 6308802477663525 a001 329/620166*39603^(39/44) 6308802477848882 a001 987/3010349*39603^(41/44) 6308802477921916 a001 987/64079*39603^(25/44) 6308802478030759 a001 987/4870847*39603^(43/44) 6308802479365450 a001 987/24476*24476^(1/2) 6308802480608722 a006 5^(1/2)*fibonacci(43/2)/Lucas(16)/sqrt(5) 6308802482731700 a001 10946/2207*9349^(1/38) 6308802483862011 a008 Real Root of (2-5*x^2+2*x^3+5*x^4+3*x^5) 6308802483929489 a001 987/24476*64079^(21/46) 6308802484380436 a001 10946/2207*24476^(1/42) 6308802484618188 a001 987/24476*439204^(7/18) 6308802484630874 a001 987/24476*7881196^(7/22) 6308802484630902 a001 987/24476*20633239^(3/10) 6308802484630907 a001 987/24476*17393796001^(3/14) 6308802484630907 a001 987/24476*14662949395604^(1/6) 6308802484630907 a001 987/24476*599074578^(1/4) 6308802484630908 a001 987/24476*33385282^(7/24) 6308802484631545 a001 987/24476*1860498^(7/20) 6308802484635591 a001 987/24476*710647^(3/8) 6308802484722592 a001 10946/2207*39603^(1/44) 6308802484887661 a001 987/24476*103682^(7/16) 6308802485320430 a001 10946/2207*15127^(1/40) 6308802485930459 a001 329/13201*15127^(23/40) 6308802486550713 a001 987/24476*39603^(21/44) 6308802489880327 a001 10946/2207*5778^(1/36) 6308802492123071 a001 21/2206*15127^(27/40) 6308802492867863 a001 987/64079*15127^(5/8) 6308802494312616 a001 987/167761*15127^(29/40) 6308802495381344 a001 329/90481*15127^(31/40) 6308802496878187 a001 987/439204*15127^(33/40) 6308802498211504 a001 141/101521*15127^(7/8) 6308802499105308 a001 987/24476*15127^(21/40) 6308802499607282 a001 987/1149851*15127^(37/40) 6308802500979203 a001 329/620166*15127^(39/40) 6308802501699613 a001 646/341*521^(5/26) 6308802513988916 a001 987/9349*9349^(17/38) 6308802517933765 a001 17711/39603*1364^(11/30) 6308802524804932 a001 23184/51841*1364^(11/30) 6308802525106691 a001 10946/2207*2207^(1/32) 6308802525807421 a001 121393/271443*1364^(11/30) 6308802525953683 a001 317811/710647*1364^(11/30) 6308802525975022 a001 416020/930249*1364^(11/30) 6308802525978135 a001 2178309/4870847*1364^(11/30) 6308802525980060 a001 1346269/3010349*1364^(11/30) 6308802525988210 a001 514229/1149851*1364^(11/30) 6308802526044077 a001 98209/219602*1364^(11/30) 6308802526426994 a001 75025/167761*1364^(11/30) 6308802529051546 a001 28657/64079*1364^(11/30) 6308802536782851 a001 4181/2207*9349^(5/38) 6308802542017435 a001 987/9349*24476^(17/42) 6308802545026533 a001 4181/2207*24476^(5/42) 6308802545712133 a001 987/9349*64079^(17/46) 6308802546257797 a001 4181/2207*167761^(1/10) 6308802546263644 a001 141/2161*5778^(19/36) 6308802546279948 a001 987/9349*45537549124^(1/6) 6308802546279958 a001 987/9349*12752043^(1/4) 6308802546280212 a001 4181/2207*20633239^(1/14) 6308802546280213 a001 4181/2207*2537720636^(1/18) 6308802546280213 a001 4181/2207*312119004989^(1/22) 6308802546280213 a001 4181/2207*28143753123^(1/20) 6308802546280213 a001 4181/2207*228826127^(1/16) 6308802546280365 a001 4181/2207*1860498^(1/12) 6308802546737310 a001 4181/2207*39603^(5/44) 6308802547040494 a001 5473/12238*1364^(11/30) 6308802547834077 a001 987/9349*39603^(17/44) 6308802549726499 a001 4181/2207*15127^(1/8) 6308802554368953 m001 GAMMA(19/24)^MertensB1/(1+3^(1/2))^(1/2) 6308802557997321 a001 987/9349*15127^(17/40) 6308802559393394 m001 GAMMA(17/24)^BesselJ(1,1)-MadelungNaCl 6308802565145048 l006 ln(2609/4903) 6308802565145048 p004 log(4903/2609) 6308802567956526 a001 6765/2207*2207^(3/32) 6308802568459313 a001 2584/2207*2207^(7/32) 6308802572525987 a001 4181/2207*5778^(5/36) 6308802587847389 a001 167761/987*591286729879^(2/15) 6308802588038848 a001 439204/987*433494437^(2/15) 6308802588065115 a001 1149851/987*317811^(2/15) 6308802590808102 a001 329/13201*5778^(23/36) 6308802592241716 r005 Re(z^2+c),c=-65/114+17/30*I,n=23 6308802594863157 a001 987/24476*5778^(7/12) 6308802605676356 a001 1597/5778*1364^(13/30) 6308802606865302 a001 987/64079*5778^(25/36) 6308802615081249 r005 Re(z^2+c),c=9/106+8/57*I,n=13 6308802615240305 a001 21/2206*5778^(3/4) 6308802626459397 l006 ln(5390/5741) 6308802626549645 a001 987/167761*5778^(29/36) 6308802635250540 a001 4181/5778*1364^(3/10) 6308802635515580 a001 987/9349*5778^(17/36) 6308802636738169 a001 329/90481*5778^(31/36) 6308802640764394 a001 1597/9349*1364^(1/2) 6308802646700574 r002 5th iterates of z^2 + 6308802647354806 a001 987/439204*5778^(11/12) 6308802655621157 a007 Real Root Of -873*x^4+918*x^3-452*x^2-353*x+326 6308802657807919 a001 141/101521*5778^(35/36) 6308802670338578 a001 4181/9349*1364^(11/30) 6308802687969726 a001 28657/5778*521^(1/26) 6308802693045045 m001 Porter*(2*Pi/GAMMA(5/6)-BesselI(0,1)) 6308802722485593 m001 (-arctan(1/3)+MadelungNaCl)/(cos(1)-exp(Pi)) 6308802733097449 m008 (5/6*Pi^4-4)/(4*Pi^5-4/5) 6308802735000784 a001 10946/15127*1364^(3/10) 6308802748657810 a001 4181/2207*2207^(5/32) 6308802749554149 a001 28657/39603*1364^(3/10) 6308802751677456 a001 75025/103682*1364^(3/10) 6308802751987242 a001 196418/271443*1364^(3/10) 6308802752032440 a001 514229/710647*1364^(3/10) 6308802752039034 a001 1346269/1860498*1364^(3/10) 6308802752039996 a001 3524578/4870847*1364^(3/10) 6308802752040136 a001 9227465/12752043*1364^(3/10) 6308802752040157 a001 24157817/33385282*1364^(3/10) 6308802752040160 a001 63245986/87403803*1364^(3/10) 6308802752040160 a001 165580141/228826127*1364^(3/10) 6308802752040160 a001 433494437/599074578*1364^(3/10) 6308802752040160 a001 1134903170/1568397607*1364^(3/10) 6308802752040160 a001 2971215073/4106118243*1364^(3/10) 6308802752040160 a001 7778742049/10749957122*1364^(3/10) 6308802752040160 a001 20365011074/28143753123*1364^(3/10) 6308802752040160 a001 53316291173/73681302247*1364^(3/10) 6308802752040160 a001 139583862445/192900153618*1364^(3/10) 6308802752040160 a001 10610209857723/14662949395604*1364^(3/10) 6308802752040160 a001 591286729879/817138163596*1364^(3/10) 6308802752040160 a001 225851433717/312119004989*1364^(3/10) 6308802752040160 a001 86267571272/119218851371*1364^(3/10) 6308802752040160 a001 32951280099/45537549124*1364^(3/10) 6308802752040160 a001 12586269025/17393796001*1364^(3/10) 6308802752040160 a001 4807526976/6643838879*1364^(3/10) 6308802752040160 a001 1836311903/2537720636*1364^(3/10) 6308802752040160 a001 701408733/969323029*1364^(3/10) 6308802752040160 a001 267914296/370248451*1364^(3/10) 6308802752040160 a001 102334155/141422324*1364^(3/10) 6308802752040162 a001 39088169/54018521*1364^(3/10) 6308802752040169 a001 14930352/20633239*1364^(3/10) 6308802752040223 a001 5702887/7881196*1364^(3/10) 6308802752040590 a001 2178309/3010349*1364^(3/10) 6308802752043109 a001 832040/1149851*1364^(3/10) 6308802752060373 a001 317811/439204*1364^(3/10) 6308802752178701 a001 121393/167761*1364^(3/10) 6308802752989732 a001 46368/64079*1364^(3/10) 6308802758548623 a001 17711/24476*1364^(3/10) 6308802758975547 r009 Im(z^3+c),c=-49/90+14/57*I,n=7 6308802759062288 s002 sum(A268280[n]/(exp(2*pi*n)-1),n=1..infinity) 6308802759124369 r005 Im(z^2+c),c=-81/122+13/22*I,n=5 6308802761561789 a001 2255/1926*1364^(7/30) 6308802777303961 a007 Real Root Of 728*x^4-371*x^3+107*x^2-798*x+50 6308802779667779 a001 987/3571*3571^(13/34) 6308802782202922 r005 Re(z^2+c),c=-19/27+13/60*I,n=57 6308802793869172 r005 Im(z^2+c),c=11/106+29/47*I,n=15 6308802796649828 a001 6765/9349*1364^(3/10) 6308802801686225 a001 10946/2207*843^(1/28) 6308802814213814 m004 6+(5*Cos[Sqrt[5]*Pi])/(Pi*Log[Sqrt[5]*Pi]^2) 6308802828670146 a001 13/844*843^(25/28) 6308802837871395 a001 1597/2207*3571^(9/34) 6308802848056739 a001 75025/15127*521^(1/26) 6308802871413120 a001 196418/39603*521^(1/26) 6308802874820770 a001 514229/103682*521^(1/26) 6308802875317939 a001 1346269/271443*521^(1/26) 6308802875435305 a001 2178309/439204*521^(1/26) 6308802875625207 a001 75640/15251*521^(1/26) 6308802876926813 a001 317811/64079*521^(1/26) 6308802883290364 a007 Real Root Of -20*x^4+918*x^3-557*x^2+190*x-10 6308802885848157 a001 121393/24476*521^(1/26) 6308802887174473 m005 (1/2*gamma+4)/(5/9+1/18*5^(1/2)) 6308802892263212 a001 329/1926*2207^(15/32) 6308802907625893 m005 (1/2*5^(1/2)+6)/(2/9*gamma+1) 6308802912917328 r005 Im(z^2+c),c=-53/98+34/59*I,n=3 6308802939677621 r005 Re(z^2+c),c=-2/3+58/213*I,n=19 6308802944135652 a001 987/3571*9349^(13/38) 6308802946508919 a001 17711/15127*1364^(7/30) 6308802946995958 a001 46368/9349*521^(1/26) 6308802951733770 a001 1597/2207*9349^(9/38) 6308802965569228 a001 987/3571*24476^(13/42) 6308802966572399 a001 1597/2207*24476^(3/14) 6308802968394585 a001 987/3571*64079^(13/46) 6308802968528416 a001 1597/2207*64079^(9/46) 6308802968823573 a001 1597/2207*439204^(1/6) 6308802968828796 a001 987/3571*141422324^(1/6) 6308802968828796 a001 987/3571*73681302247^(1/8) 6308802968829010 a001 1597/2207*7881196^(3/22) 6308802968829023 a001 1597/2207*2537720636^(1/10) 6308802968829023 a001 1597/2207*14662949395604^(1/14) 6308802968829023 a001 1597/2207*192900153618^(1/12) 6308802968829024 a001 1597/2207*33385282^(1/8) 6308802968829297 a001 1597/2207*1860498^(3/20) 6308802968850202 a001 987/3571*271443^(1/4) 6308802968939061 a001 1597/2207*103682^(3/16) 6308802969651797 a001 1597/2207*39603^(9/44) 6308802970017248 a001 987/3571*39603^(13/44) 6308802972089765 m005 (1/2*Catalan+9/10)/(11/12*Pi-8/11) 6308802973492342 a001 15456/13201*1364^(7/30) 6308802975032339 a001 1597/2207*15127^(9/40) 6308802975482332 r005 Re(z^2+c),c=9/106+18/41*I,n=29 6308802977429171 a001 121393/103682*1364^(7/30) 6308802977789141 a001 987/3571*15127^(13/40) 6308802978003546 a001 105937/90481*1364^(7/30) 6308802978087347 a001 832040/710647*1364^(7/30) 6308802978099573 a001 726103/620166*1364^(7/30) 6308802978107129 a001 1346269/1149851*1364^(7/30) 6308802978139138 a001 514229/439204*1364^(7/30) 6308802978358530 a001 196418/167761*1364^(7/30) 6308802978610488 r005 Im(z^2+c),c=-47/70+17/36*I,n=35 6308802979862265 a001 75025/64079*1364^(7/30) 6308802981806935 p003 LerchPhi(1/8,3,97/38) 6308802982995690 a007 Real Root Of 778*x^4-661*x^3+477*x^2-477*x-780 6308802986186448 a007 Real Root Of -137*x^4-896*x^3-78*x^2+838*x+433 6308802990169015 a001 28657/24476*1364^(7/30) 6308802990810042 a005 (1/sin(110/233*Pi))^479 6308802990913354 a007 Real Root Of 145*x^4-25*x^3+964*x^2+328*x-206 6308803004066593 m001 KomornikLoreti^TreeGrowth2nd-TwinPrimes 6308803016071420 a001 1597/2207*5778^(1/4) 6308803025724496 a001 5473/2889*1364^(1/6) 6308803026301200 a007 Real Root Of 588*x^4-489*x^3-567*x^2-976*x-606 6308803037067813 a001 987/3571*5778^(13/36) 6308803046741023 r005 Re(z^2+c),c=-1/13+37/50*I,n=44 6308803057799389 a001 2584/3571*1364^(3/10) 6308803060812536 a001 10946/9349*1364^(7/30) 6308803062233974 a007 Real Root Of -734*x^4+414*x^3+430*x^2+200*x-285 6308803069019468 a007 Real Root Of -306*x^4+378*x^3-464*x^2+244*x+482 6308803096760902 a007 Real Root Of -695*x^4-30*x^3+287*x^2+557*x-348 6308803100174136 a001 2584/1149851*3571^(33/34) 6308803124073053 r002 54th iterates of z^2 + 6308803129258568 a001 2584/710647*3571^(31/34) 6308803149123723 k002 Champernowne real with 193/2*n^2+25/2*n-103 6308803158405462 a001 34/5779*3571^(29/34) 6308803168880530 a007 Real Root Of 145*x^4-967*x^3+404*x^2-290*x+242 6308803174865398 h001 (3/10*exp(1)+2/9)/(1/2*exp(1)+2/7) 6308803178129318 a001 28657/15127*1364^(1/6) 6308803182416171 r005 Re(z^2+c),c=-3/122+13/56*I,n=11 6308803187388830 a001 2584/271443*3571^(27/34) 6308803193705639 r009 Re(z^3+c),c=-51/70+5/14*I,n=3 6308803200364883 a001 75025/39603*1364^(1/6) 6308803203609008 a001 98209/51841*1364^(1/6) 6308803204082319 a001 514229/271443*1364^(1/6) 6308803204151374 a001 1346269/710647*1364^(1/6) 6308803204161450 a001 1762289/930249*1364^(1/6) 6308803204162919 a001 9227465/4870847*1364^(1/6) 6308803204163134 a001 24157817/12752043*1364^(1/6) 6308803204163165 a001 31622993/16692641*1364^(1/6) 6308803204163170 a001 165580141/87403803*1364^(1/6) 6308803204163170 a001 433494437/228826127*1364^(1/6) 6308803204163171 a001 567451585/299537289*1364^(1/6) 6308803204163171 a001 2971215073/1568397607*1364^(1/6) 6308803204163171 a001 7778742049/4106118243*1364^(1/6) 6308803204163171 a001 10182505537/5374978561*1364^(1/6) 6308803204163171 a001 53316291173/28143753123*1364^(1/6) 6308803204163171 a001 139583862445/73681302247*1364^(1/6) 6308803204163171 a001 182717648081/96450076809*1364^(1/6) 6308803204163171 a001 956722026041/505019158607*1364^(1/6) 6308803204163171 a001 10610209857723/5600748293801*1364^(1/6) 6308803204163171 a001 591286729879/312119004989*1364^(1/6) 6308803204163171 a001 225851433717/119218851371*1364^(1/6) 6308803204163171 a001 21566892818/11384387281*1364^(1/6) 6308803204163171 a001 32951280099/17393796001*1364^(1/6) 6308803204163171 a001 12586269025/6643838879*1364^(1/6) 6308803204163171 a001 1201881744/634430159*1364^(1/6) 6308803204163171 a001 1836311903/969323029*1364^(1/6) 6308803204163171 a001 701408733/370248451*1364^(1/6) 6308803204163171 a001 66978574/35355581*1364^(1/6) 6308803204163173 a001 102334155/54018521*1364^(1/6) 6308803204163185 a001 39088169/20633239*1364^(1/6) 6308803204163266 a001 3732588/1970299*1364^(1/6) 6308803204163828 a001 5702887/3010349*1364^(1/6) 6308803204167676 a001 2178309/1149851*1364^(1/6) 6308803204194053 a001 208010/109801*1364^(1/6) 6308803204374842 a001 317811/167761*1364^(1/6) 6308803205613987 a001 121393/64079*1364^(1/6) 6308803214107217 a001 11592/6119*1364^(1/6) 6308803215564596 a001 141/2161*2207^(19/32) 6308803216800313 a001 2584/167761*3571^(25/34) 6308803217688278 a007 Real Root Of 848*x^4-683*x^3+746*x^2+361*x-375 6308803231318434 a001 1292/2889*3571^(11/34) 6308803232383800 m005 (1/2*3^(1/2)+3/10)/(6/7*3^(1/2)+4/11) 6308803234363805 a001 987/9349*2207^(17/32) 6308803237232641 a001 17711/5778*1364^(1/10) 6308803245090979 a001 1292/51841*3571^(23/34) 6308803247274660 l006 ln(2990/5619) 6308803261569365 a001 6765/3010349*3571^(33/34) 6308803272320682 a001 17711/9349*1364^(1/6) 6308803273887701 r005 Im(z^2+c),c=-9/8+8/103*I,n=36 6308803276315983 a001 2584/64079*3571^(21/34) 6308803278740125 a007 Real Root Of 555*x^4-735*x^3+77*x^2-793*x+5 6308803290668543 a001 55/15126*3571^(31/34) 6308803299532546 m001 cosh(1)^2*KhintchineLevy^2/ln(sin(Pi/5)) 6308803299669610 a001 10946/4870847*3571^(33/34) 6308803299858789 a001 2584/39603*3571^(19/34) 6308803301178100 m001 (arctan(1/2)-GAMMA(23/24))/(Porter-Stephens) 6308803307631558 m001 1/exp(log(1+sqrt(2)))/Conway^2*sin(Pi/12) 6308803312300086 r005 Re(z^2+c),c=-5/8+73/177*I,n=22 6308803314217941 a001 17711/4870847*3571^(31/34) 6308803319776834 a001 6765/1149851*3571^(29/34) 6308803328772270 a001 10946/3010349*3571^(31/34) 6308803333108727 a001 1597/2207*2207^(9/32) 6308803334514342 a001 2584/15127*3571^(15/34) 6308803334616850 a001 987/24476*2207^(21/32) 6308803338893092 a007 Real Root Of 103*x^4-952*x^3+639*x^2-308*x-704 6308803339454784 b008 Pi^(-1)+Sinh[4/13] 6308803341308740 m002 4+Pi^4+E^(2*Pi)*Cosh[Pi] 6308803342018392 m005 (17/36+1/4*5^(1/2))/(1/4*3^(1/2)-5/12) 6308803343320600 a001 17711/3010349*3571^(29/34) 6308803343513852 a001 646/6119*3571^(1/2) 6308803348861268 a001 6765/710647*3571^(27/34) 6308803348878530 a001 28657/4870847*3571^(29/34) 6308803356361192 s002 sum(A109831[n]/(n^2*exp(n)-1),n=1..infinity) 6308803357871448 a001 5473/930249*3571^(29/34) 6308803361317102 a001 4181/1860498*3571^(33/34) 6308803362905753 r009 Re(z^3+c),c=-9/82+8/13*I,n=57 6308803366109249 a001 17711/3571*521^(1/26) 6308803370483567 a001 1292/2889*9349^(11/38) 6308803372419779 a001 17711/1860498*3571^(27/34) 6308803375856919 a001 46368/4870847*3571^(27/34) 6308803377981189 a001 28657/3010349*3571^(27/34) 6308803378008162 a001 6765/439204*3571^(25/34) 6308803378412702 m001 Mills-MinimumGamma-PlouffeB 6308803385608261 m001 (ln(5)+KomornikLoreti)/(OneNinth-ZetaQ(2)) 6308803386979739 a001 10946/1149851*3571^(27/34) 6308803388619671 a001 1292/2889*24476^(11/42) 6308803390425394 a001 4181/1149851*3571^(31/34) 6308803391149282 a007 Real Root Of 805*x^4-799*x^3+271*x^2-615*x-824 6308803391377750 a001 1292/2889*7881196^(1/6) 6308803391377767 a001 1292/2889*312119004989^(1/10) 6308803391377767 a001 1292/2889*1568397607^(1/8) 6308803392383380 a001 1292/2889*39603^(1/4) 6308803396446112 r005 Im(z^2+c),c=-153/118+16/57*I,n=5 6308803397506009 a001 17/161*76^(17/18) 6308803397695168 a001 6765/2207*843^(3/28) 6308803398959598 a001 1292/2889*15127^(11/40) 6308803401014532 a001 329/13201*2207^(23/32) 6308803401528070 a001 17711/1149851*3571^(25/34) 6308803402067527 a001 6624/2161*1364^(1/10) 6308803404959579 a001 46368/3010349*3571^(25/34) 6308803405769648 a001 75025/4870847*3571^(25/34) 6308803406991532 a001 2255/90481*3571^(23/34) 6308803407077947 r005 Im(z^2+c),c=-29/106+19/30*I,n=51 6308803407080368 a001 28657/1860498*3571^(25/34) 6308803416064173 a001 10946/710647*3571^(25/34) 6308803419509828 a001 4181/710647*3571^(29/34) 6308803426116613 a001 121393/39603*1364^(1/10) 6308803428289752 a001 2537720636/233*102334155^(2/21) 6308803428289752 a001 969323029/233*2504730781961^(2/21) 6308803429625328 a001 317811/103682*1364^(1/10) 6308803430137242 a001 832040/271443*1364^(1/10) 6308803430211930 a001 311187/101521*1364^(1/10) 6308803430222826 a001 5702887/1860498*1364^(1/10) 6308803430224416 a001 14930352/4870847*1364^(1/10) 6308803430224648 a001 39088169/12752043*1364^(1/10) 6308803430224682 a001 14619165/4769326*1364^(1/10) 6308803430224687 a001 267914296/87403803*1364^(1/10) 6308803430224688 a001 701408733/228826127*1364^(1/10) 6308803430224688 a001 1836311903/599074578*1364^(1/10) 6308803430224688 a001 686789568/224056801*1364^(1/10) 6308803430224688 a001 12586269025/4106118243*1364^(1/10) 6308803430224688 a001 32951280099/10749957122*1364^(1/10) 6308803430224688 a001 86267571272/28143753123*1364^(1/10) 6308803430224688 a001 32264490531/10525900321*1364^(1/10) 6308803430224688 a001 591286729879/192900153618*1364^(1/10) 6308803430224688 a001 1548008755920/505019158607*1364^(1/10) 6308803430224688 a001 1515744265389/494493258286*1364^(1/10) 6308803430224688 a001 2504730781961/817138163596*1364^(1/10) 6308803430224688 a001 956722026041/312119004989*1364^(1/10) 6308803430224688 a001 365435296162/119218851371*1364^(1/10) 6308803430224688 a001 139583862445/45537549124*1364^(1/10) 6308803430224688 a001 53316291173/17393796001*1364^(1/10) 6308803430224688 a001 20365011074/6643838879*1364^(1/10) 6308803430224688 a001 7778742049/2537720636*1364^(1/10) 6308803430224688 a001 2971215073/969323029*1364^(1/10) 6308803430224688 a001 1134903170/370248451*1364^(1/10) 6308803430224688 a001 433494437/141422324*1364^(1/10) 6308803430224690 a001 165580141/54018521*1364^(1/10) 6308803430224703 a001 63245986/20633239*1364^(1/10) 6308803430224792 a001 24157817/7881196*1364^(1/10) 6308803430225399 a001 9227465/3010349*1364^(1/10) 6308803430229561 a001 3524578/1149851*1364^(1/10) 6308803430258089 a001 1346269/439204*1364^(1/10) 6308803430453623 a001 514229/167761*1364^(1/10) 6308803430612504 a001 17711/710647*3571^(23/34) 6308803431793833 a001 196418/64079*1364^(1/10) 6308803434058758 a001 2576/103361*3571^(23/34) 6308803434561559 a001 121393/4870847*3571^(23/34) 6308803434872308 a001 75025/3010349*3571^(23/34) 6308803435164035 a001 6643838879/233*4181^(2/21) 6308803436188659 a001 28657/1149851*3571^(23/34) 6308803436403016 a001 615/15251*3571^(21/34) 6308803440979766 a001 75025/24476*1364^(1/10) 6308803445211068 a001 5473/219602*3571^(23/34) 6308803448226935 a001 377/39603*843^(27/28) 6308803448605620 s001 sum(exp(-Pi/2)^(n-1)*A108753[n],n=1..infinity) 6308803448656722 a001 4181/439204*3571^(27/34) 6308803449118478 a001 1292/2889*5778^(11/36) 6308803450921137 a001 2255/1926*3571^(7/34) 6308803459759399 a001 17711/439204*3571^(21/34) 6308803462675007 m001 (LambertW(1)-Si(Pi))/(exp(1/Pi)+Robbin) 6308803463167049 a001 46368/1149851*3571^(21/34) 6308803463366297 a001 2584/9349*3571^(13/34) 6308803463664219 a001 121393/3010349*3571^(21/34) 6308803463781585 a001 196418/4870847*3571^(21/34) 6308803463971487 a001 75025/1860498*3571^(21/34) 6308803464693682 a001 6765/103682*3571^(19/34) 6308803465273093 a001 28657/710647*3571^(21/34) 6308803468853051 a001 28657/5778*1364^(1/30) 6308803474194438 a001 10946/271443*3571^(21/34) 6308803477640092 a001 4181/271443*3571^(25/34) 6308803479755668 p003 LerchPhi(1/100,5,193/176) 6308803484911759 a007 Real Root Of -63*x^4+780*x^3-636*x^2-420*x+194 6308803487524473 a001 987/64079*2207^(25/32) 6308803488742769 a001 17711/271443*3571^(19/34) 6308803492251483 a001 6624/101521*3571^(19/34) 6308803492763398 a001 121393/1860498*3571^(19/34) 6308803492838085 a001 317811/4870847*3571^(19/34) 6308803492884245 a001 196418/3010349*3571^(19/34) 6308803493079779 a001 75025/1149851*3571^(19/34) 6308803494419988 a001 28657/439204*3571^(19/34) 6308803495010598 a001 987/3571*2207^(13/32) 6308803495918687 a001 6765/64079*3571^(1/2) 6308803500801835 a005 (1/sin(50/127*Pi))^235 6308803503605922 a001 10946/167761*3571^(19/34) 6308803503941093 a001 28657/9349*1364^(1/10) 6308803507051576 a001 4181/167761*3571^(23/34) 6308803510067570 a001 2584/3010349*9349^(37/38) 6308803512719755 r005 Re(z^2+c),c=-37/114+39/64*I,n=18 6308803513863997 a001 1292/930249*9349^(35/38) 6308803515436281 a001 1597/3571*1364^(11/30) 6308803517669536 a001 2584/1149851*9349^(33/38) 6308803518124043 a001 5473/2889*3571^(5/34) 6308803518154253 a001 17711/167761*3571^(1/2) 6308803519461494 a001 2255/13201*3571^(15/34) 6308803521398379 a001 11592/109801*3571^(1/2) 6308803521451218 a001 2584/710647*9349^(31/38) 6308803521569697 a001 4181/5778*3571^(9/34) 6308803521871690 a001 121393/1149851*3571^(1/2) 6308803521940745 a001 317811/3010349*3571^(1/2) 6308803521950820 a001 208010/1970299*3571^(1/2) 6308803521952290 a001 2178309/20633239*3571^(1/2) 6308803521952505 a001 5702887/54018521*3571^(1/2) 6308803521952536 a001 3732588/35355581*3571^(1/2) 6308803521952540 a001 39088169/370248451*3571^(1/2) 6308803521952541 a001 102334155/969323029*3571^(1/2) 6308803521952541 a001 66978574/634430159*3571^(1/2) 6308803521952541 a001 701408733/6643838879*3571^(1/2) 6308803521952541 a001 1836311903/17393796001*3571^(1/2) 6308803521952541 a001 1201881744/11384387281*3571^(1/2) 6308803521952541 a001 12586269025/119218851371*3571^(1/2) 6308803521952541 a001 32951280099/312119004989*3571^(1/2) 6308803521952541 a001 21566892818/204284540899*3571^(1/2) 6308803521952541 a001 225851433717/2139295485799*3571^(1/2) 6308803521952541 a001 182717648081/1730726404001*3571^(1/2) 6308803521952541 a001 139583862445/1322157322203*3571^(1/2) 6308803521952541 a001 53316291173/505019158607*3571^(1/2) 6308803521952541 a001 10182505537/96450076809*3571^(1/2) 6308803521952541 a001 7778742049/73681302247*3571^(1/2) 6308803521952541 a001 2971215073/28143753123*3571^(1/2) 6308803521952541 a001 567451585/5374978561*3571^(1/2) 6308803521952541 a001 433494437/4106118243*3571^(1/2) 6308803521952541 a001 165580141/1568397607*3571^(1/2) 6308803521952542 a001 31622993/299537289*3571^(1/2) 6308803521952543 a001 24157817/228826127*3571^(1/2) 6308803521952555 a001 9227465/87403803*3571^(1/2) 6308803521952637 a001 1762289/16692641*3571^(1/2) 6308803521953199 a001 1346269/12752043*3571^(1/2) 6308803521957047 a001 514229/4870847*3571^(1/2) 6308803521983424 a001 98209/930249*3571^(1/2) 6308803522164213 a001 75025/710647*3571^(1/2) 6308803523403358 a001 28657/271443*3571^(1/2) 6308803524284982 a001 2584/15127*9349^(15/38) 6308803525295361 a001 34/5779*9349^(29/38) 6308803528975979 a001 2584/271443*9349^(27/38) 6308803531896589 a001 5473/51841*3571^(1/2) 6308803532609638 r009 Im(z^3+c),c=-57/94+11/40*I,n=26 6308803532672374 a001 17711/5778*3571^(3/34) 6308803533084711 a001 2584/167761*9349^(25/38) 6308803535342243 a001 4181/103682*3571^(21/34) 6308803536072625 a001 1292/51841*9349^(23/38) 6308803539480770 a001 2255/1926*9349^(7/38) 6308803540234932 a001 2584/39603*9349^(1/2) 6308803541994878 a001 2584/64079*9349^(21/38) 6308803543742282 m001 TravellingSalesman/ReciprocalLucas/gamma 6308803545010469 a001 4181/3571*1364^(7/30) 6308803546444920 a001 17711/103682*3571^(15/34) 6308803549016033 a001 2584/15127*24476^(5/14) 6308803550381749 a001 15456/90481*3571^(15/34) 6308803550390074 m009 (1/6*Psi(1,2/3)-6)/(3/8*Pi^2+5) 6308803550956124 a001 121393/710647*3571^(15/34) 6308803551021927 a001 2255/1926*24476^(1/6) 6308803551039925 a001 105937/620166*3571^(15/34) 6308803551052151 a001 832040/4870847*3571^(15/34) 6308803551059707 a001 514229/3010349*3571^(15/34) 6308803551091716 a001 196418/1149851*3571^(15/34) 6308803551311108 a001 75025/439204*3571^(15/34) 6308803552709825 a001 2584/15127*167761^(3/10) 6308803552767989 a001 2584/15127*439204^(5/18) 6308803552777051 a001 2584/15127*7881196^(5/22) 6308803552777071 a001 2584/15127*20633239^(3/14) 6308803552777074 a001 2584/15127*2537720636^(1/6) 6308803552777074 a001 2584/15127*312119004989^(3/22) 6308803552777074 a001 2584/15127*28143753123^(3/20) 6308803552777074 a001 2584/15127*228826127^(3/16) 6308803552777075 a001 2584/15127*33385282^(5/24) 6308803552777078 a001 2255/1926*20633239^(1/10) 6308803552777079 a001 2255/1926*17393796001^(1/14) 6308803552777079 a001 2255/1926*14662949395604^(1/18) 6308803552777079 a001 2255/1926*505019158607^(1/16) 6308803552777079 a001 2255/1926*599074578^(1/12) 6308803552777529 a001 2584/15127*1860498^(1/4) 6308803552778641 a001 2255/1926*710647^(1/8) 6308803552814843 a001 28657/167761*3571^(15/34) 6308803552960470 a001 2584/15127*103682^(5/16) 6308803553417015 a001 2255/1926*39603^(7/44) 6308803554117048 a001 6765/15127*3571^(11/34) 6308803554148364 a001 2584/15127*39603^(15/44) 6308803557601881 a001 2255/1926*15127^(7/40) 6308803558587245 a001 646/6119*9349^(17/38) 6308803561615721 m001 GAMMA(11/24)/PrimesInBinary^2/exp(gamma) 6308803563115934 a001 2584/15127*15127^(3/8) 6308803563116559 a001 6765/24476*3571^(13/34) 6308803563121594 a001 10946/64079*3571^(15/34) 6308803566352215 a001 21/2206*2207^(27/32) 6308803566567249 a001 4181/64079*3571^(19/34) 6308803567332964 a001 28657/5778*3571^(1/34) 6308803570568395 a001 2584/4870847*24476^(13/14) 6308803570626503 a001 17711/5778*9349^(3/38) 6308803571070829 a001 2584/3010349*24476^(37/42) 6308803571560930 a001 2584/39603*24476^(19/42) 6308803571569782 a001 1292/930249*24476^(5/6) 6308803572077849 a001 2584/1149851*24476^(11/14) 6308803572562057 a001 2584/710647*24476^(31/42) 6308803573108726 a001 34/5779*24476^(29/42) 6308803573491871 a001 2584/271443*24476^(9/14) 6308803573993570 a001 1292/51841*24476^(23/42) 6308803574303129 a001 2584/167761*24476^(25/42) 6308803575572713 a001 17711/5778*24476^(1/14) 6308803576323105 a001 17711/5778*439204^(1/18) 6308803576324916 a001 2584/39603*817138163596^(1/6) 6308803576324916 a001 2584/39603*87403803^(1/4) 6308803576324917 a001 17711/5778*7881196^(1/22) 6308803576324922 a001 17711/5778*33385282^(1/24) 6308803576325013 a001 17711/5778*1860498^(1/20) 6308803576361601 a001 17711/5778*103682^(1/16) 6308803576599180 a001 17711/5778*39603^(3/44) 6308803576618350 a001 2584/64079*24476^(1/2) 6308803577669926 a001 17711/64079*3571^(13/34) 6308803578061884 a001 2584/39603*39603^(19/44) 6308803578392694 a001 17711/5778*15127^(3/40) 6308803578992280 a001 1292/51841*64079^(1/2) 6308803579760500 a001 1292/51841*4106118243^(1/4) 6308803579793233 a001 46368/167761*3571^(13/34) 6308803579984340 a001 28657/5778*9349^(1/38) 6308803580103020 a001 121393/439204*3571^(13/34) 6308803580145635 a001 2584/20633239*167761^(9/10) 6308803580148217 a001 317811/1149851*3571^(13/34) 6308803580154811 a001 832040/3010349*3571^(13/34) 6308803580156368 a001 1346269/4870847*3571^(13/34) 6308803580158887 a001 514229/1860498*3571^(13/34) 6308803580176150 a001 196418/710647*3571^(13/34) 6308803580188630 a001 1292/930249*167761^(7/10) 6308803580245392 a001 2584/271443*439204^(1/2) 6308803580261703 a001 2584/271443*7881196^(9/22) 6308803580261745 a001 2584/271443*2537720636^(3/10) 6308803580261745 a001 2584/271443*14662949395604^(3/14) 6308803580261745 a001 2584/271443*192900153618^(1/4) 6308803580261747 a001 2584/271443*33385282^(3/8) 6308803580262565 a001 2584/271443*1860498^(9/20) 6308803580294478 a001 75025/271443*3571^(13/34) 6308803580316479 a001 2584/87403803*439204^(17/18) 6308803580320128 a001 2584/20633239*439204^(5/6) 6308803580323481 a001 2584/4870847*439204^(13/18) 6308803580332153 a001 2584/1149851*439204^(11/18) 6308803580334527 a001 2584/710647*3010349^(1/2) 6308803580334875 a001 2584/710647*9062201101803^(1/4) 6308803580345538 a001 1292/930249*20633239^(1/2) 6308803580345545 a001 1292/930249*2537720636^(7/18) 6308803580345545 a001 1292/930249*17393796001^(5/14) 6308803580345545 a001 1292/930249*312119004989^(7/22) 6308803580345545 a001 1292/930249*14662949395604^(5/18) 6308803580345545 a001 1292/930249*505019158607^(5/16) 6308803580345545 a001 1292/930249*28143753123^(7/20) 6308803580345545 a001 1292/930249*599074578^(5/12) 6308803580345545 a001 1292/930249*228826127^(7/16) 6308803580346608 a001 1292/930249*1860498^(7/12) 6308803580347042 a001 2584/4870847*7881196^(13/22) 6308803580347101 a001 2584/4870847*141422324^(1/2) 6308803580347102 a001 2584/4870847*73681302247^(3/8) 6308803580347105 a001 2584/4870847*33385282^(13/24) 6308803580347271 a001 2584/1568397607*7881196^(21/22) 6308803580347280 a001 2584/370248451*7881196^(19/22) 6308803580347283 a001 2584/228826127*7881196^(5/6) 6308803580347288 a001 2584/87403803*7881196^(17/22) 6308803580347313 a001 2584/20633239*7881196^(15/22) 6308803580347329 a001 2584/12752043*969323029^(1/2) 6308803580347354 a001 34/33391061*20633239^(13/14) 6308803580347354 a001 2584/1568397607*20633239^(9/10) 6308803580347356 a001 2584/228826127*20633239^(11/14) 6308803580347359 a001 2584/54018521*20633239^(7/10) 6308803580347362 a001 1292/16692641*6643838879^(1/2) 6308803580347367 a001 2584/87403803*45537549124^(1/2) 6308803580347367 a001 34/33391061*141422324^(5/6) 6308803580347367 a001 2584/228826127*2537720636^(11/18) 6308803580347367 a001 2584/228826127*312119004989^(1/2) 6308803580347367 a001 2584/228826127*3461452808002^(11/24) 6308803580347367 a001 2584/228826127*28143753123^(11/20) 6308803580347367 a001 2584/228826127*1568397607^(5/8) 6308803580347367 a001 2584/228826127*228826127^(11/16) 6308803580347367 a001 1292/299537289*2139295485799^(1/2) 6308803580347367 a001 2584/1568397607*2537720636^(7/10) 6308803580347367 a001 2584/1568397607*17393796001^(9/14) 6308803580347367 a001 2584/1568397607*14662949395604^(1/2) 6308803580347367 a001 2584/1568397607*505019158607^(9/16) 6308803580347367 a001 2584/1568397607*192900153618^(7/12) 6308803580347368 a001 2584/312119004989*2537720636^(17/18) 6308803580347368 a001 2584/119218851371*2537720636^(9/10) 6308803580347368 a001 2584/28143753123*2537720636^(5/6) 6308803580347368 a001 2584/1322157322203*17393796001^(13/14) 6308803580347368 a001 646/11384387281*17393796001^(11/14) 6308803580347368 a001 2584/28143753123*312119004989^(15/22) 6308803580347368 a001 2584/28143753123*3461452808002^(5/8) 6308803580347368 a001 2584/312119004989*45537549124^(5/6) 6308803580347368 a001 2584/28143753123*28143753123^(3/4) 6308803580347368 a001 1292/1730726404001*312119004989^(19/22) 6308803580347368 a001 1292/1730726404001*817138163596^(5/6) 6308803580347368 a001 1292/1730726404001*3461452808002^(19/24) 6308803580347368 a001 2584/312119004989*312119004989^(17/22) 6308803580347368 a001 2584/1322157322203*505019158607^(13/16) 6308803580347368 a001 2584/312119004989*3461452808002^(17/24) 6308803580347368 a001 2584/9062201101803*192900153618^(11/12) 6308803580347368 a001 2584/119218851371*14662949395604^(9/14) 6308803580347368 a001 2584/119218851371*192900153618^(3/4) 6308803580347368 a001 2584/1322157322203*73681302247^(7/8) 6308803580347368 a001 646/11384387281*14662949395604^(11/18) 6308803580347368 a001 646/11384387281*505019158607^(11/16) 6308803580347368 a001 2584/312119004989*28143753123^(17/20) 6308803580347368 a001 1292/1730726404001*28143753123^(19/20) 6308803580347368 a001 34/33391061*2537720636^(13/18) 6308803580347368 a001 2584/6643838879*4106118243^(3/4) 6308803580347368 a001 34/33391061*312119004989^(13/22) 6308803580347368 a001 34/33391061*3461452808002^(13/24) 6308803580347368 a001 34/33391061*73681302247^(5/8) 6308803580347368 a001 34/33391061*28143753123^(13/20) 6308803580347368 a001 646/11384387281*1568397607^(7/8) 6308803580347368 a001 2584/969323029*5600748293801^(1/2) 6308803580347368 a001 2584/1568397607*599074578^(3/4) 6308803580347368 a001 646/11384387281*599074578^(11/12) 6308803580347368 a001 2584/370248451*817138163596^(1/2) 6308803580347368 a001 34/33391061*228826127^(13/16) 6308803580347368 a001 2584/28143753123*228826127^(15/16) 6308803580347368 a001 646/35355581*119218851371^(1/2) 6308803580347368 a001 2584/370248451*87403803^(3/4) 6308803580347370 a001 2584/54018521*17393796001^(1/2) 6308803580347370 a001 2584/54018521*14662949395604^(7/18) 6308803580347370 a001 2584/54018521*505019158607^(7/16) 6308803580347370 a001 2584/54018521*599074578^(7/12) 6308803580347371 a001 2584/87403803*33385282^(17/24) 6308803580347372 a001 2584/370248451*33385282^(19/24) 6308803580347372 a001 2584/1568397607*33385282^(7/8) 6308803580347373 a001 2584/20633239*20633239^(9/14) 6308803580347373 a001 2584/6643838879*33385282^(23/24) 6308803580347382 a001 2584/20633239*2537720636^(1/2) 6308803580347382 a001 2584/20633239*312119004989^(9/22) 6308803580347382 a001 2584/20633239*14662949395604^(5/14) 6308803580347382 a001 2584/20633239*192900153618^(5/12) 6308803580347382 a001 2584/20633239*28143753123^(9/20) 6308803580347382 a001 2584/20633239*228826127^(9/16) 6308803580347386 a001 2584/20633239*33385282^(5/8) 6308803580347396 a001 2584/87403803*12752043^(3/4) 6308803580347469 a001 646/1970299*370248451^(1/2) 6308803580348063 a001 2584/3010349*54018521^(1/2) 6308803580348286 a001 2584/4870847*1860498^(13/20) 6308803580348749 a001 2584/20633239*1860498^(3/4) 6308803580348916 a001 2584/87403803*1860498^(17/20) 6308803580349038 a001 2584/228826127*1860498^(11/12) 6308803580349099 a001 2584/370248451*1860498^(19/20) 6308803580352088 a001 2584/1149851*7881196^(1/2) 6308803580352139 a001 2584/1149851*312119004989^(3/10) 6308803580352139 a001 2584/1149851*1568397607^(3/8) 6308803580352142 a001 2584/1149851*33385282^(11/24) 6308803580353142 a001 2584/1149851*1860498^(11/20) 6308803580353353 a001 1292/930249*710647^(5/8) 6308803580358300 a001 2584/54018521*710647^(7/8) 6308803580377687 a001 34/5779*1149851^(1/2) 6308803580380073 a001 34/5779*1322157322203^(1/4) 6308803580411319 a001 2584/4870847*271443^(3/4) 6308803580459449 a001 2584/167761*167761^(1/2) 6308803580571526 a001 2584/167761*20633239^(5/14) 6308803580571531 a001 2584/167761*2537720636^(5/18) 6308803580571531 a001 2584/167761*312119004989^(5/22) 6308803580571531 a001 2584/167761*3461452808002^(5/24) 6308803580571531 a001 2584/167761*28143753123^(1/4) 6308803580571531 a001 2584/167761*228826127^(5/16) 6308803580572290 a001 2584/167761*1860498^(5/12) 6308803580591858 a001 2584/271443*103682^(9/16) 6308803580755611 a001 2584/1149851*103682^(11/16) 6308803580823932 a001 2584/4870847*103682^(13/16) 6308803580897571 a001 2584/20633239*103682^(15/16) 6308803581105510 a001 28657/103682*3571^(13/34) 6308803581380924 a001 5473/2889*9349^(5/38) 6308803581633077 a001 28657/5778*24476^(1/42) 6308803581863145 a001 1292/51841*39603^(23/44) 6308803581871089 a001 2584/64079*439204^(7/18) 6308803581883775 a001 2584/64079*7881196^(7/22) 6308803581883803 a001 2584/64079*20633239^(3/10) 6308803581883807 a001 2584/64079*17393796001^(3/14) 6308803581883807 a001 2584/64079*14662949395604^(1/6) 6308803581883807 a001 2584/64079*599074578^(1/4) 6308803581883809 a001 2584/64079*33385282^(7/24) 6308803581884445 a001 2584/64079*1860498^(7/20) 6308803581888492 a001 2584/64079*710647^(3/8) 6308803581975232 a001 28657/5778*39603^(1/44) 6308803582140562 a001 2584/64079*103682^(7/16) 6308803582573070 a001 28657/5778*15127^(1/40) 6308803582730067 a001 2584/271443*39603^(27/44) 6308803582857015 a001 2584/167761*39603^(25/44) 6308803583031234 a001 34/5779*39603^(29/44) 6308803583168875 a001 2584/710647*39603^(31/44) 6308803583368978 a001 2584/1149851*39603^(3/4) 6308803583545222 a001 1292/930249*39603^(35/44) 6308803583730580 a001 2584/3010349*39603^(37/44) 6308803583803614 a001 2584/64079*39603^(21/44) 6308803583912456 a001 2584/4870847*39603^(39/44) 6308803586615769 a001 646/6119*24476^(17/42) 6308803586664401 a001 10946/39603*3571^(13/34) 6308803587132969 a001 28657/5778*5778^(1/36) 6308803589420805 a001 2584/39603*15127^(19/40) 6308803589521169 a001 2255/1926*5778^(7/36) 6308803589624608 a001 5473/2889*24476^(5/42) 6308803590110056 a001 4181/39603*3571^(1/2) 6308803590855872 a001 5473/2889*167761^(1/10) 6308803590878283 a001 646/6119*45537549124^(1/6) 6308803590878287 a001 5473/2889*20633239^(1/14) 6308803590878288 a001 5473/2889*2537720636^(1/18) 6308803590878288 a001 5473/2889*312119004989^(1/22) 6308803590878288 a001 5473/2889*28143753123^(1/20) 6308803590878288 a001 5473/2889*228826127^(1/16) 6308803590878292 a001 646/6119*12752043^(1/4) 6308803590878440 a001 5473/2889*1860498^(1/12) 6308803591335385 a001 5473/2889*39603^(5/44) 6308803592072388 a001 17711/5778*5778^(1/12) 6308803592432412 a001 646/6119*39603^(17/44) 6308803594324575 a001 5473/2889*15127^(1/8) 6308803595613419 a001 1292/51841*15127^(23/40) 6308803596358212 a001 2584/64079*15127^(21/40) 6308803597802965 a001 2584/167761*15127^(5/8) 6308803598871693 a001 2584/271443*15127^(27/40) 6308803600368536 a001 34/5779*15127^(29/40) 6308803601212732 a001 17711/39603*3571^(11/34) 6308803601701853 a001 2584/710647*15127^(31/40) 6308803602595658 a001 646/6119*15127^(17/40) 6308803603097632 a001 2584/1149851*15127^(33/40) 6308803604469552 a001 1292/930249*15127^(7/8) 6308803605850586 a001 2584/3010349*15127^(37/40) 6308803607228138 a001 2584/4870847*15127^(39/40) 6308803608083900 a001 23184/51841*3571^(11/34) 6308803609086390 a001 121393/271443*3571^(11/34) 6308803609232651 a001 317811/710647*3571^(11/34) 6308803609253991 a001 416020/930249*3571^(11/34) 6308803609257104 a001 2178309/4870847*3571^(11/34) 6308803609259028 a001 1346269/3010349*3571^(11/34) 6308803609267179 a001 514229/1149851*3571^(11/34) 6308803609323046 a001 98209/219602*3571^(11/34) 6308803609540062 a007 Real Root Of -489*x^4+642*x^3-388*x^2+664*x+812 6308803609705963 a001 75025/167761*3571^(11/34) 6308803612232387 r005 Re(z^2+c),c=-9/118+53/55*I,n=7 6308803612330515 a001 28657/64079*3571^(11/34) 6308803617124067 a001 5473/2889*5778^(5/36) 6308803617535673 a007 Real Root Of 579*x^4-638*x^3+480*x^2-176*x-554 6308803617805806 r002 11th iterates of z^2 + 6308803621319955 a001 10946/15127*3571^(9/34) 6308803622359339 a001 28657/5778*2207^(1/32) 6308803624765610 a001 4181/15127*3571^(13/34) 6308803627834188 a001 2584/9349*9349^(13/38) 6308803628940083 a001 75025/15127*1364^(1/30) 6308803630319466 a001 5473/12238*3571^(11/34) 6308803631514408 a001 2584/15127*5778^(5/12) 6308803633765121 a001 4181/24476*3571^(15/34) 6308803635432084 a001 4181/5778*9349^(9/38) 6308803635868287 a001 17711/15127*3571^(7/34) 6308803635873322 a001 28657/39603*3571^(9/34) 6308803637996630 a001 75025/103682*3571^(9/34) 6308803638306416 a001 196418/271443*3571^(9/34) 6308803638351614 a001 514229/710647*3571^(9/34) 6308803638358208 a001 1346269/1860498*3571^(9/34) 6308803638359765 a001 2178309/3010349*3571^(9/34) 6308803638362283 a001 832040/1149851*3571^(9/34) 6308803638379547 a001 317811/439204*3571^(9/34) 6308803638497875 a001 121393/167761*3571^(9/34) 6308803639308906 a001 46368/64079*3571^(9/34) 6308803639321863 a003 sin(Pi*2/19)-sin(Pi*9/71) 6308803644867798 a001 17711/24476*3571^(9/34) 6308803648114298 a001 987/167761*2207^(29/32) 6308803649267766 a001 2584/9349*24476^(13/42) 6308803650270715 a001 4181/5778*24476^(3/14) 6308803652296467 a001 196418/39603*1364^(1/30) 6308803652521889 a001 4181/5778*439204^(1/6) 6308803652527326 a001 4181/5778*7881196^(3/22) 6308803652527335 a001 2584/9349*141422324^(1/6) 6308803652527335 a001 2584/9349*73681302247^(1/8) 6308803652527340 a001 4181/5778*2537720636^(1/10) 6308803652527340 a001 4181/5778*14662949395604^(1/14) 6308803652527340 a001 4181/5778*192900153618^(1/12) 6308803652527340 a001 4181/5778*33385282^(1/8) 6308803652527613 a001 4181/5778*1860498^(3/20) 6308803652548741 a001 2584/9349*271443^(1/4) 6308803652637377 a001 4181/5778*103682^(3/16) 6308803653350114 a001 4181/5778*39603^(9/44) 6308803653715787 a001 2584/9349*39603^(13/44) 6308803655704117 a001 514229/103682*1364^(1/30) 6308803656201287 a001 1346269/271443*1364^(1/30) 6308803656318652 a001 2178309/439204*1364^(1/30) 6308803656508554 a001 75640/15251*1364^(1/30) 6308803657810161 a001 317811/64079*1364^(1/30) 6308803658730656 a001 4181/5778*15127^(9/40) 6308803660718971 m001 1/GAMMA(19/24)^2*Ei(1)^2/ln(GAMMA(3/4))^2 6308803661487681 a001 2584/9349*15127^(13/40) 6308803662851713 a001 15456/13201*3571^(7/34) 6308803666218012 m001 (KhinchinLevy+PlouffeB)/(2^(1/3)+exp(1/Pi)) 6308803666731506 a001 121393/24476*1364^(1/30) 6308803666788542 a001 121393/103682*3571^(7/34) 6308803667362918 a001 105937/90481*3571^(7/34) 6308803667446718 a001 832040/710647*3571^(7/34) 6308803667458944 a001 726103/620166*3571^(7/34) 6308803667466501 a001 1346269/1149851*3571^(7/34) 6308803667498510 a001 514229/439204*3571^(7/34) 6308803667717901 a001 196418/167761*3571^(7/34) 6308803669221636 a001 75025/64079*3571^(7/34) 6308803670528877 a001 28657/15127*3571^(5/34) 6308803671321736 a001 6765/3571*1364^(1/6) 6308803675264868 a001 6765/4870847*9349^(35/38) 6308803676058874 a001 2584/39603*5778^(19/36) 6308803679064776 a001 6765/3010349*9349^(33/38) 6308803679528388 a001 28657/24476*3571^(7/34) 6308803680113929 a001 646/6119*5778^(17/36) 6308803682861203 a001 55/15126*9349^(31/38) 6308803682969008 a001 6765/9349*3571^(9/34) 6308803686666743 a001 6765/1149851*9349^(29/38) 6308803690448425 a001 6765/710647*9349^(27/38) 6308803692116077 a001 2584/64079*5778^(7/12) 6308803692764443 a001 75025/39603*3571^(5/34) 6308803693282188 a001 6765/15127*9349^(11/38) 6308803694292568 a001 6765/439204*9349^(25/38) 6308803696008569 a001 98209/51841*3571^(5/34) 6308803696481880 a001 514229/271443*3571^(5/34) 6308803696550936 a001 1346269/710647*3571^(5/34) 6308803696567237 a001 2178309/1149851*3571^(5/34) 6308803696593614 a001 208010/109801*3571^(5/34) 6308803696774403 a001 317811/167761*3571^(5/34) 6308803697507268 a001 6624/2161*3571^(3/34) 6308803697751499 a001 17711/5778*2207^(3/32) 6308803697973186 a001 2255/90481*9349^(23/38) 6308803698013549 a001 121393/64079*3571^(5/34) 6308803699769741 a001 4181/5778*5778^(1/4) 6308803700491081 a001 1292/51841*5778^(23/36) 6308803701878780 r005 Re(z^2+c),c=-1/13+37/50*I,n=47 6308803702081918 a001 615/15251*9349^(21/38) 6308803705069832 a001 6765/103682*9349^(1/2) 6308803706410603 a001 17711/4870847*9349^(31/38) 6308803706506779 a001 11592/6119*3571^(5/34) 6308803709232140 a001 2255/13201*9349^(15/38) 6308803710210510 a001 17711/3010349*9349^(29/38) 6308803710992085 a001 6765/64079*9349^(17/38) 6308803711418293 a001 6765/15127*24476^(11/42) 6308803711800423 a001 2584/167761*5778^(25/36) 6308803714006937 a001 17711/1860498*9349^(27/38) 6308803714176373 a001 6765/15127*7881196^(1/6) 6308803714176390 a001 6765/15127*312119004989^(1/10) 6308803714176390 a001 6765/15127*1568397607^(1/8) 6308803715182003 a001 6765/15127*39603^(1/4) 6308803715768440 a001 28657/4870847*9349^(29/38) 6308803717165024 a001 10946/4870847*9349^(33/38) 6308803717444078 a001 46368/4870847*9349^(27/38) 6308803717812477 a001 17711/1149851*9349^(25/38) 6308803719568348 a001 28657/3010349*9349^(27/38) 6308803720766359 a001 2584/9349*5778^(13/36) 6308803720964932 a001 10946/3010349*9349^(31/38) 6308803721243986 a001 46368/3010349*9349^(25/38) 6308803721556356 a001 121393/39603*3571^(3/34) 6308803721594159 a001 17711/710647*9349^(23/38) 6308803721758221 a001 6765/15127*15127^(11/40) 6308803721988948 a001 2584/271443*5778^(3/4) 6308803722054055 a001 75025/4870847*9349^(25/38) 6308803723364775 a001 28657/1860498*9349^(25/38) 6308803724427923 a001 17711/15127*9349^(7/38) 6308803724761359 a001 5473/930249*9349^(29/38) 6308803725040413 a001 2576/103361*9349^(23/38) 6308803725065070 a001 317811/103682*3571^(3/34) 6308803725438302 a001 17711/439204*9349^(21/38) 6308803725543214 a001 121393/4870847*9349^(23/38) 6308803725576985 a001 832040/271443*3571^(3/34) 6308803725651672 a001 311187/101521*3571^(3/34) 6308803725697832 a001 1346269/439204*3571^(3/34) 6308803725853963 a001 75025/3010349*9349^(23/38) 6308803725893366 a001 514229/167761*3571^(3/34) 6308803727170315 a001 28657/1149851*9349^(23/38) 6308803727233575 a001 196418/64079*3571^(3/34) 6308803727419998 a001 75025/15127*3571^(1/34) 6308803727557423 a007 Real Root Of 233*x^4-995*x^3+53*x^2-834*x-834 6308803727584453 a001 6765/24476*9349^(13/38) 6308803727879314 a001 46368/9349*1364^(1/30) 6308803728566899 a001 10946/1149851*9349^(27/38) 6308803728755564 a001 329/90481*2207^(31/32) 6308803728845953 a001 46368/1149851*9349^(21/38) 6308803729118920 a001 17711/271443*9349^(1/2) 6308803729343122 a001 121393/3010349*9349^(21/38) 6308803729460488 a001 196418/4870847*9349^(21/38) 6308803729650390 a001 75025/1860498*9349^(21/38) 6308803730951996 a001 28657/710647*9349^(21/38) 6308803731967938 a001 2255/4250681*24476^(13/14) 6308803732348581 a001 10946/710647*9349^(25/38) 6308803732605588 a001 34/5779*5778^(29/36) 6308803732627635 a001 6624/101521*9349^(1/2) 6308803732970655 a001 6765/4870847*24476^(5/6) 6308803733139549 a001 121393/1860498*9349^(1/2) 6308803733214236 a001 317811/4870847*9349^(1/2) 6308803733225133 a001 832040/12752043*9349^(1/2) 6308803733226723 a001 311187/4769326*9349^(1/2) 6308803733226955 a001 5702887/87403803*9349^(1/2) 6308803733226989 a001 14930352/228826127*9349^(1/2) 6308803733226994 a001 39088169/599074578*9349^(1/2) 6308803733226994 a001 14619165/224056801*9349^(1/2) 6308803733226995 a001 267914296/4106118243*9349^(1/2) 6308803733226995 a001 701408733/10749957122*9349^(1/2) 6308803733226995 a001 1836311903/28143753123*9349^(1/2) 6308803733226995 a001 686789568/10525900321*9349^(1/2) 6308803733226995 a001 12586269025/192900153618*9349^(1/2) 6308803733226995 a001 32951280099/505019158607*9349^(1/2) 6308803733226995 a001 86267571272/1322157322203*9349^(1/2) 6308803733226995 a001 32264490531/494493258286*9349^(1/2) 6308803733226995 a001 591286729879/9062201101803*9349^(1/2) 6308803733226995 a001 1548008755920/23725150497407*9349^(1/2) 6308803733226995 a001 365435296162/5600748293801*9349^(1/2) 6308803733226995 a001 139583862445/2139295485799*9349^(1/2) 6308803733226995 a001 53316291173/817138163596*9349^(1/2) 6308803733226995 a001 20365011074/312119004989*9349^(1/2) 6308803733226995 a001 7778742049/119218851371*9349^(1/2) 6308803733226995 a001 2971215073/45537549124*9349^(1/2) 6308803733226995 a001 1134903170/17393796001*9349^(1/2) 6308803733226995 a001 433494437/6643838879*9349^(1/2) 6308803733226995 a001 165580141/2537720636*9349^(1/2) 6308803733226995 a001 63245986/969323029*9349^(1/2) 6308803733226997 a001 24157817/370248451*9349^(1/2) 6308803733227010 a001 9227465/141422324*9349^(1/2) 6308803733227098 a001 3524578/54018521*9349^(1/2) 6308803733227652 a001 17711/167761*9349^(17/38) 6308803733227706 a001 1346269/20633239*9349^(1/2) 6308803733231868 a001 514229/7881196*9349^(1/2) 6308803733260396 a001 196418/3010349*9349^(1/2) 6308803733455930 a001 75025/1149851*9349^(1/2) 6308803733473090 a001 6765/3010349*24476^(11/14) 6308803733785760 a001 28657/15127*9349^(5/38) 6308803733963191 a001 2255/13201*24476^(5/14) 6308803733972043 a001 55/15126*24476^(31/42) 6308803734480109 a001 6765/1149851*24476^(29/42) 6308803734796139 a001 28657/439204*9349^(1/2) 6308803734964318 a001 6765/710647*24476^(9/14) 6308803735182344 a001 10946/15127*9349^(9/38) 6308803735461398 a001 6624/2161*9349^(3/38) 6308803735510987 a001 6765/439204*24476^(25/42) 6308803735894131 a001 2255/90481*24476^(23/42) 6308803735969080 a001 17711/15127*24476^(1/6) 6308803736192724 a001 5473/219602*9349^(23/38) 6308803736215566 a001 17711/103682*9349^(15/38) 6308803736395831 a001 6765/103682*24476^(19/42) 6308803736419509 a001 75025/24476*3571^(3/34) 6308803736471777 a001 11592/109801*9349^(17/38) 6308803736705390 a001 615/15251*24476^(1/2) 6308803736945089 a001 121393/1149851*9349^(17/38) 6308803737014144 a001 317811/3010349*9349^(17/38) 6308803737030446 a001 514229/4870847*9349^(17/38) 6308803737056823 a001 98209/930249*9349^(17/38) 6308803737237612 a001 75025/710647*9349^(17/38) 6308803737656983 a001 2255/13201*167761^(3/10) 6308803737715148 a001 2255/13201*439204^(5/18) 6308803737724209 a001 2255/13201*7881196^(5/22) 6308803737724229 a001 2255/13201*20633239^(3/14) 6308803737724231 a001 17711/15127*20633239^(1/10) 6308803737724232 a001 2255/13201*2537720636^(1/6) 6308803737724232 a001 2255/13201*312119004989^(3/22) 6308803737724232 a001 2255/13201*28143753123^(3/20) 6308803737724232 a001 2255/13201*228826127^(3/16) 6308803737724233 a001 17711/15127*17393796001^(1/14) 6308803737724233 a001 17711/15127*14662949395604^(1/18) 6308803737724233 a001 17711/15127*505019158607^(1/16) 6308803737724233 a001 17711/15127*599074578^(1/12) 6308803737724234 a001 2255/13201*33385282^(5/24) 6308803737724688 a001 2255/13201*1860498^(1/4) 6308803737725794 a001 17711/15127*710647^(1/8) 6308803737907629 a001 2255/13201*103682^(5/16) 6308803738364168 a001 17711/15127*39603^(7/44) 6308803738476757 a001 28657/271443*9349^(17/38) 6308803739020611 a001 6765/64079*24476^(17/42) 6308803739095523 a001 2255/13201*39603^(15/44) 6308803739873341 a001 10946/271443*9349^(21/38) 6308803740071375 a001 75025/15127*9349^(1/38) 6308803740152395 a001 15456/90481*9349^(15/38) 6308803740377874 a001 17711/39603*9349^(11/38) 6308803740407608 a001 6624/2161*24476^(1/14) 6308803740726771 a001 121393/710647*9349^(15/38) 6308803740810571 a001 105937/620166*9349^(15/38) 6308803740822797 a001 832040/4870847*9349^(15/38) 6308803740830354 a001 514229/3010349*9349^(15/38) 6308803740862363 a001 196418/1149851*9349^(15/38) 6308803740892841 a001 2255/90481*64079^(1/2) 6308803741081755 a001 75025/439204*9349^(15/38) 6308803741158000 a001 6624/2161*439204^(1/18) 6308803741159812 a001 6624/2161*7881196^(1/22) 6308803741159816 a001 6765/103682*817138163596^(1/6) 6308803741159817 a001 6765/103682*87403803^(1/4) 6308803741159817 a001 6624/2161*33385282^(1/24) 6308803741159908 a001 6624/2161*1860498^(1/20) 6308803741196496 a001 6624/2161*103682^(1/16) 6308803741434075 a001 6624/2161*39603^(3/44) 6308803741544939 a001 6765/54018521*167761^(9/10) 6308803741589504 a001 6765/4870847*167761^(7/10) 6308803741661061 a001 2255/90481*4106118243^(1/4) 6308803741667307 a001 6765/439204*167761^(1/2) 6308803741715796 a001 6765/228826127*439204^(17/18) 6308803741717840 a001 6765/710647*439204^(1/2) 6308803741719432 a001 6765/54018521*439204^(5/6) 6308803741720112 a001 75025/15127*24476^(1/42) 6308803741723025 a001 2255/4250681*439204^(13/18) 6308803741727394 a001 6765/3010349*439204^(11/18) 6308803741734150 a001 6765/710647*7881196^(9/22) 6308803741734192 a001 6765/710647*2537720636^(3/10) 6308803741734192 a001 6765/710647*14662949395604^(3/14) 6308803741734192 a001 6765/710647*192900153618^(1/4) 6308803741734194 a001 6765/710647*33385282^(3/8) 6308803741735012 a001 6765/710647*1860498^(9/20) 6308803741744514 a001 55/15126*3010349^(1/2) 6308803741744862 a001 55/15126*9062201101803^(1/4) 6308803741746411 a001 6765/4870847*20633239^(1/2) 6308803741746418 a001 6765/4870847*2537720636^(7/18) 6308803741746418 a001 6765/4870847*17393796001^(5/14) 6308803741746418 a001 6765/4870847*312119004989^(7/22) 6308803741746418 a001 6765/4870847*14662949395604^(5/18) 6308803741746418 a001 6765/4870847*505019158607^(5/16) 6308803741746418 a001 6765/4870847*28143753123^(7/20) 6308803741746418 a001 6765/4870847*599074578^(5/12) 6308803741746418 a001 6765/4870847*228826127^(7/16) 6308803741746585 a001 2255/4250681*7881196^(13/22) 6308803741746587 a001 2255/1368706081*7881196^(21/22) 6308803741746597 a001 6765/969323029*7881196^(19/22) 6308803741746600 a001 2255/199691526*7881196^(5/6) 6308803741746606 a001 6765/228826127*7881196^(17/22) 6308803741746617 a001 6765/54018521*7881196^(15/22) 6308803741746645 a001 2255/4250681*141422324^(1/2) 6308803741746645 a001 2255/4250681*73681302247^(3/8) 6308803741746649 a001 2255/4250681*33385282^(13/24) 6308803741746670 a001 6765/6643838879*20633239^(13/14) 6308803741746671 a001 2255/1368706081*20633239^(9/10) 6308803741746673 a001 2255/199691526*20633239^(11/14) 6308803741746674 a001 6765/141422324*20633239^(7/10) 6308803741746677 a001 6765/54018521*20633239^(9/14) 6308803741746679 a001 6765/33385282*969323029^(1/2) 6308803741746683 a001 2255/29134601*6643838879^(1/2) 6308803741746684 a001 6765/6643838879*141422324^(5/6) 6308803741746684 a001 6765/228826127*45537549124^(1/2) 6308803741746684 a001 2255/199691526*2537720636^(11/18) 6308803741746684 a001 2255/199691526*312119004989^(1/2) 6308803741746684 a001 2255/199691526*3461452808002^(11/24) 6308803741746684 a001 2255/199691526*28143753123^(11/20) 6308803741746684 a001 2255/199691526*1568397607^(5/8) 6308803741746684 a001 6765/1568397607*2139295485799^(1/2) 6308803741746684 a001 2255/1368706081*2537720636^(7/10) 6308803741746684 a001 6765/817138163596*2537720636^(17/18) 6308803741746684 a001 615/28374454999*2537720636^(9/10) 6308803741746684 a001 6765/73681302247*2537720636^(5/6) 6308803741746684 a001 6765/6643838879*2537720636^(13/18) 6308803741746684 a001 2255/1368706081*17393796001^(9/14) 6308803741746684 a001 2255/1368706081*14662949395604^(1/2) 6308803741746684 a001 2255/1368706081*505019158607^(9/16) 6308803741746684 a001 2255/1368706081*192900153618^(7/12) 6308803741746684 a001 6765/3461452808002*17393796001^(13/14) 6308803741746684 a001 6765/119218851371*17393796001^(11/14) 6308803741746684 a001 6765/817138163596*45537549124^(5/6) 6308803741746684 a001 6765/73681302247*312119004989^(15/22) 6308803741746684 a001 6765/73681302247*3461452808002^(5/8) 6308803741746684 a001 6765/23725150497407*312119004989^(9/10) 6308803741746684 a001 2255/3020733700601*312119004989^(19/22) 6308803741746684 a001 2255/3020733700601*817138163596^(5/6) 6308803741746684 a001 2255/440719107401*1322157322203^(3/4) 6308803741746684 a001 2255/3020733700601*3461452808002^(19/24) 6308803741746684 a001 6765/3461452808002*505019158607^(13/16) 6308803741746684 a001 615/28374454999*14662949395604^(9/14) 6308803741746684 a001 6765/23725150497407*192900153618^(11/12) 6308803741746684 a001 615/28374454999*192900153618^(3/4) 6308803741746684 a001 6765/119218851371*14662949395604^(11/18) 6308803741746684 a001 6765/119218851371*505019158607^(11/16) 6308803741746684 a001 6765/3461452808002*73681302247^(7/8) 6308803741746684 a001 6765/73681302247*28143753123^(3/4) 6308803741746684 a001 6765/817138163596*28143753123^(17/20) 6308803741746684 a001 2255/3020733700601*28143753123^(19/20) 6308803741746684 a001 6765/6643838879*312119004989^(13/22) 6308803741746684 a001 6765/6643838879*3461452808002^(13/24) 6308803741746684 a001 6765/6643838879*73681302247^(5/8) 6308803741746684 a001 6765/6643838879*28143753123^(13/20) 6308803741746684 a001 6765/17393796001*4106118243^(3/4) 6308803741746684 a001 615/230701876*5600748293801^(1/2) 6308803741746684 a001 6765/119218851371*1568397607^(7/8) 6308803741746684 a001 6765/969323029*817138163596^(1/2) 6308803741746684 a001 2255/1368706081*599074578^(3/4) 6308803741746684 a001 6765/119218851371*599074578^(11/12) 6308803741746684 a001 6765/370248451*119218851371^(1/2) 6308803741746684 a001 2255/199691526*228826127^(11/16) 6308803741746684 a001 6765/6643838879*228826127^(13/16) 6308803741746684 a001 6765/73681302247*228826127^(15/16) 6308803741746685 a001 6765/141422324*17393796001^(1/2) 6308803741746685 a001 6765/141422324*14662949395604^(7/18) 6308803741746685 a001 6765/141422324*505019158607^(7/16) 6308803741746685 a001 6765/141422324*599074578^(7/12) 6308803741746685 a001 6765/969323029*87403803^(3/4) 6308803741746686 a001 6765/54018521*2537720636^(1/2) 6308803741746686 a001 6765/54018521*312119004989^(9/22) 6308803741746686 a001 6765/54018521*14662949395604^(5/14) 6308803741746686 a001 6765/54018521*192900153618^(5/12) 6308803741746686 a001 6765/54018521*28143753123^(9/20) 6308803741746686 a001 6765/54018521*228826127^(9/16) 6308803741746688 a001 6765/228826127*33385282^(17/24) 6308803741746689 a001 6765/969323029*33385282^(19/24) 6308803741746689 a001 2255/1368706081*33385282^(7/8) 6308803741746690 a001 6765/17393796001*33385282^(23/24) 6308803741746690 a001 6765/54018521*33385282^(5/8) 6308803741746699 a001 615/1875749*370248451^(1/2) 6308803741746713 a001 6765/228826127*12752043^(3/4) 6308803741746785 a001 6765/7881196*54018521^(1/2) 6308803741747330 a001 6765/3010349*7881196^(1/2) 6308803741747380 a001 6765/3010349*312119004989^(3/10) 6308803741747380 a001 6765/3010349*1568397607^(3/8) 6308803741747383 a001 6765/3010349*33385282^(11/24) 6308803741747482 a001 6765/4870847*1860498^(7/12) 6308803741747830 a001 2255/4250681*1860498^(13/20) 6308803741748053 a001 6765/54018521*1860498^(3/4) 6308803741748233 a001 6765/228826127*1860498^(17/20) 6308803741748355 a001 2255/199691526*1860498^(11/12) 6308803741748383 a001 6765/3010349*1860498^(11/20) 6308803741748416 a001 6765/969323029*1860498^(19/20) 6308803741749070 a001 6765/1149851*1149851^(1/2) 6308803741751456 a001 6765/1149851*1322157322203^(1/4) 6308803741754226 a001 6765/4870847*710647^(5/8) 6308803741757615 a001 6765/141422324*710647^(7/8) 6308803741779384 a001 6765/439204*20633239^(5/14) 6308803741779389 a001 6765/439204*2537720636^(5/18) 6308803741779389 a001 6765/439204*312119004989^(5/22) 6308803741779389 a001 6765/439204*3461452808002^(5/24) 6308803741779389 a001 6765/439204*28143753123^(1/4) 6308803741779389 a001 6765/439204*228826127^(5/16) 6308803741780149 a001 6765/439204*1860498^(5/12) 6308803741810863 a001 2255/4250681*271443^(3/4) 6308803741958129 a001 615/15251*439204^(7/18) 6308803741970815 a001 615/15251*7881196^(7/22) 6308803741970843 a001 615/15251*20633239^(3/10) 6308803741970848 a001 615/15251*17393796001^(3/14) 6308803741970848 a001 615/15251*14662949395604^(1/6) 6308803741970848 a001 615/15251*599074578^(1/4) 6308803741970849 a001 615/15251*33385282^(7/24) 6308803741971486 a001 615/15251*1860498^(7/20) 6308803741975532 a001 615/15251*710647^(3/8) 6308803742029444 a001 28657/15127*24476^(5/42) 6308803742062267 a001 75025/15127*39603^(1/44) 6308803742064305 a001 6765/710647*103682^(9/16) 6308803742137820 a001 17711/64079*9349^(13/38) 6308803742150852 a001 6765/3010349*103682^(11/16) 6308803742223476 a001 2255/4250681*103682^(13/16) 6308803742227602 a001 615/15251*103682^(7/16) 6308803742296875 a001 6765/54018521*103682^(15/16) 6308803742549034 a001 17711/15127*15127^(7/40) 6308803742585489 a001 28657/167761*9349^(15/38) 6308803742660105 a001 75025/15127*15127^(1/40) 6308803742896784 a001 6765/103682*39603^(19/44) 6308803743058702 a001 2584/710647*5778^(31/36) 6308803743227589 a001 6624/2161*15127^(3/40) 6308803743260708 a001 28657/15127*167761^(1/10) 6308803743283123 a001 28657/15127*20633239^(1/14) 6308803743283124 a001 6765/64079*45537549124^(1/6) 6308803743283124 a001 28657/15127*2537720636^(1/18) 6308803743283124 a001 28657/15127*312119004989^(1/22) 6308803743283124 a001 28657/15127*28143753123^(1/20) 6308803743283124 a001 28657/15127*228826127^(1/16) 6308803743283134 a001 6765/64079*12752043^(1/4) 6308803743283276 a001 28657/15127*1860498^(1/12) 6308803743740221 a001 28657/15127*39603^(5/44) 6308803743763707 a001 2255/90481*39603^(23/44) 6308803743890654 a001 615/15251*39603^(21/44) 6308803743982074 a001 10946/167761*9349^(1/2) 6308803744064873 a001 6765/439204*39603^(25/44) 6308803744202515 a001 6765/710647*39603^(27/44) 6308803744261127 a001 46368/167761*9349^(13/38) 6308803744402617 a001 6765/1149851*39603^(29/44) 6308803744570914 a001 121393/439204*9349^(13/38) 6308803744578862 a001 55/15126*39603^(31/44) 6308803744616111 a001 317811/1149851*9349^(13/38) 6308803744622705 a001 832040/3010349*9349^(13/38) 6308803744624262 a001 1346269/4870847*9349^(13/38) 6308803744626781 a001 514229/1860498*9349^(13/38) 6308803744644045 a001 196418/710647*9349^(13/38) 6308803744762372 a001 75025/271443*9349^(13/38) 6308803744764219 a001 6765/3010349*39603^(3/4) 6308803744837253 a001 6765/64079*39603^(17/44) 6308803744946096 a001 6765/4870847*39603^(35/44) 6308803745573404 a001 28657/103682*9349^(13/38) 6308803746729411 a001 28657/15127*15127^(1/8) 6308803746969988 a001 5473/51841*9349^(17/38) 6308803747220004 a001 75025/15127*5778^(1/36) 6308803747249042 a001 23184/51841*9349^(11/38) 6308803748063093 a001 2255/13201*15127^(3/8) 6308803748251532 a001 121393/271443*9349^(11/38) 6308803748397793 a001 317811/710647*9349^(11/38) 6308803748419132 a001 416020/930249*9349^(11/38) 6308803748422246 a001 2178309/4870847*9349^(11/38) 6308803748424170 a001 1346269/3010349*9349^(11/38) 6308803748432321 a001 514229/1149851*9349^(11/38) 6308803748488187 a001 98209/219602*9349^(11/38) 6308803748871105 a001 75025/167761*9349^(11/38) 6308803749018031 a001 6765/24476*24476^(13/42) 6308803749735711 a001 28657/39603*9349^(9/38) 6308803750020975 a001 10946/15127*24476^(3/14) 6308803750171917 a001 10946/9349*3571^(7/34) 6308803750776383 a001 196418/39603*3571^(1/34) 6308803751132295 a001 10946/39603*9349^(13/38) 6308803751411349 a001 15456/13201*9349^(7/38) 6308803751495657 a001 28657/64079*9349^(11/38) 6308803751859019 a001 75025/103682*9349^(9/38) 6308803752168805 a001 196418/271443*9349^(9/38) 6308803752214003 a001 514229/710647*9349^(9/38) 6308803752220597 a001 1346269/1860498*9349^(9/38) 6308803752222153 a001 2178309/3010349*9349^(9/38) 6308803752224672 a001 832040/1149851*9349^(9/38) 6308803752241936 a001 317811/439204*9349^(9/38) 6308803752272149 a001 10946/15127*439204^(1/6) 6308803752277586 a001 10946/15127*7881196^(3/22) 6308803752277600 a001 6765/24476*141422324^(1/6) 6308803752277600 a001 6765/24476*73681302247^(1/8) 6308803752277600 a001 10946/15127*2537720636^(1/10) 6308803752277600 a001 10946/15127*14662949395604^(1/14) 6308803752277600 a001 10946/15127*192900153618^(1/12) 6308803752277601 a001 10946/15127*33385282^(1/8) 6308803752277873 a001 10946/15127*1860498^(3/20) 6308803752299005 a001 6765/24476*271443^(1/4) 6308803752360264 a001 121393/167761*9349^(9/38) 6308803752387638 a001 10946/15127*103682^(3/16) 6308803752892241 a001 10946/64079*9349^(15/38) 6308803753100374 a001 10946/15127*39603^(9/44) 6308803753171295 a001 46368/64079*9349^(9/38) 6308803753466051 a001 6765/24476*39603^(13/44) 6308803753574278 a001 2584/1149851*5778^(11/12) 6308803753617571 a001 4181/9349*3571^(11/34) 6308803754184033 a001 514229/103682*3571^(1/34) 6308803754255706 a001 6765/103682*15127^(19/40) 6308803754681203 a001 1346269/271443*3571^(1/34) 6308803754798569 a001 2178309/439204*3571^(1/34) 6308803754988470 a001 75640/15251*3571^(1/34) 6308803755000499 a001 6765/64079*15127^(17/40) 6308803755348178 a001 121393/103682*9349^(7/38) 6308803755515814 a001 17711/33385282*24476^(13/14) 6308803755922554 a001 105937/90481*9349^(7/38) 6308803756006354 a001 832040/710647*9349^(7/38) 6308803756018580 a001 726103/620166*9349^(7/38) 6308803756021326 a001 75025/39603*9349^(5/38) 6308803756026137 a001 1346269/1149851*9349^(7/38) 6308803756058146 a001 514229/439204*9349^(7/38) 6308803756277537 a001 196418/167761*9349^(7/38) 6308803756290077 a001 317811/64079*3571^(1/34) 6308803756445252 a001 615/15251*15127^(21/40) 6308803756518725 a001 17711/12752043*24476^(5/6) 6308803756907284 a001 6624/2161*5778^(1/12) 6308803757020338 a001 89/39604*24476^(11/14) 6308803757513981 a001 2255/90481*15127^(23/40) 6308803757521443 a001 17711/4870847*24476^(31/42) 6308803757781272 a001 75025/64079*9349^(7/38) 6308803758023877 a001 17711/3010349*24476^(29/42) 6308803758480916 a001 10946/15127*15127^(9/40) 6308803758513978 a001 17711/39603*24476^(11/42) 6308803758522830 a001 17711/1860498*24476^(9/14) 6308803758730187 a001 17711/24476*9349^(9/38) 6308803758951403 a001 15456/29134601*24476^(13/14) 6308803759010823 a001 6765/439204*15127^(5/8) 6308803759030897 a001 17711/1149851*24476^(25/42) 6308803759265452 a001 98209/51841*9349^(5/38) 6308803759452649 a001 121393/228826127*24476^(13/14) 6308803759510486 a001 121393/39603*9349^(3/38) 6308803759515105 a001 17711/710647*24476^(23/42) 6308803759525780 a001 377/710646*24476^(13/14) 6308803759536449 a001 832040/1568397607*24476^(13/14) 6308803759538006 a001 726103/1368706081*24476^(13/14) 6308803759538233 a001 5702887/10749957122*24476^(13/14) 6308803759538266 a001 4976784/9381251041*24476^(13/14) 6308803759538271 a001 39088169/73681302247*24476^(13/14) 6308803759538272 a001 34111385/64300051206*24476^(13/14) 6308803759538272 a001 267914296/505019158607*24476^(13/14) 6308803759538272 a001 233802911/440719107401*24476^(13/14) 6308803759538272 a001 1836311903/3461452808002*24476^(13/14) 6308803759538272 a001 1602508992/3020733700601*24476^(13/14) 6308803759538272 a001 12586269025/23725150497407*24476^(13/14) 6308803759538272 a001 7778742049/14662949395604*24476^(13/14) 6308803759538272 a001 2971215073/5600748293801*24476^(13/14) 6308803759538272 a001 1134903170/2139295485799*24476^(13/14) 6308803759538272 a001 433494437/817138163596*24476^(13/14) 6308803759538272 a001 165580141/312119004989*24476^(13/14) 6308803759538272 a001 63245986/119218851371*24476^(13/14) 6308803759538274 a001 24157817/45537549124*24476^(13/14) 6308803759538287 a001 9227465/17393796001*24476^(13/14) 6308803759538373 a001 3524578/6643838879*24476^(13/14) 6308803759538968 a001 1346269/2537720636*24476^(13/14) 6308803759543043 a001 514229/969323029*24476^(13/14) 6308803759570977 a001 196418/370248451*24476^(13/14) 6308803759738763 a001 514229/271443*9349^(5/38) 6308803759762436 a001 75025/141422324*24476^(13/14) 6308803759807819 a001 1346269/710647*9349^(5/38) 6308803759824120 a001 2178309/1149851*9349^(5/38) 6308803759850497 a001 208010/109801*9349^(5/38) 6308803759954343 a001 144/103681*24476^(5/6) 6308803760031286 a001 317811/167761*9349^(5/38) 6308803760061774 a001 17711/439204*24476^(1/2) 6308803760344141 a001 6765/710647*15127^(27/40) 6308803760444919 a001 17711/271443*24476^(19/42) 6308803760455592 a001 121393/87403803*24476^(5/6) 6308803760455835 a001 46368/20633239*24476^(11/14) 6308803760528724 a001 317811/228826127*24476^(5/6) 6308803760539393 a001 416020/299537289*24476^(5/6) 6308803760540950 a001 311187/224056801*24476^(5/6) 6308803760541177 a001 5702887/4106118243*24476^(5/6) 6308803760541210 a001 7465176/5374978561*24476^(5/6) 6308803760541215 a001 39088169/28143753123*24476^(5/6) 6308803760541216 a001 14619165/10525900321*24476^(5/6) 6308803760541216 a001 133957148/96450076809*24476^(5/6) 6308803760541216 a001 701408733/505019158607*24476^(5/6) 6308803760541216 a001 1836311903/1322157322203*24476^(5/6) 6308803760541216 a001 14930208/10749853441*24476^(5/6) 6308803760541216 a001 12586269025/9062201101803*24476^(5/6) 6308803760541216 a001 32951280099/23725150497407*24476^(5/6) 6308803760541216 a001 10182505537/7331474697802*24476^(5/6) 6308803760541216 a001 7778742049/5600748293801*24476^(5/6) 6308803760541216 a001 2971215073/2139295485799*24476^(5/6) 6308803760541216 a001 567451585/408569081798*24476^(5/6) 6308803760541216 a001 433494437/312119004989*24476^(5/6) 6308803760541216 a001 165580141/119218851371*24476^(5/6) 6308803760541216 a001 31622993/22768774562*24476^(5/6) 6308803760541218 a001 24157817/17393796001*24476^(5/6) 6308803760541231 a001 9227465/6643838879*24476^(5/6) 6308803760541318 a001 1762289/1268860318*24476^(5/6) 6308803760541912 a001 1346269/969323029*24476^(5/6) 6308803760545988 a001 514229/370248451*24476^(5/6) 6308803760573921 a001 98209/70711162*24476^(5/6) 6308803760765382 a001 75025/54018521*24476^(5/6) 6308803760946618 a001 17711/103682*24476^(5/14) 6308803760957068 a001 121393/54018521*24476^(11/14) 6308803761030196 a001 317811/141422324*24476^(11/14) 6308803761040866 a001 832040/370248451*24476^(11/14) 6308803761042422 a001 2178309/969323029*24476^(11/14) 6308803761042649 a001 5702887/2537720636*24476^(11/14) 6308803761042683 a001 14930352/6643838879*24476^(11/14) 6308803761042687 a001 39088169/17393796001*24476^(11/14) 6308803761042688 a001 102334155/45537549124*24476^(11/14) 6308803761042688 a001 267914296/119218851371*24476^(11/14) 6308803761042688 a001 3524667/1568437211*24476^(11/14) 6308803761042688 a001 1836311903/817138163596*24476^(11/14) 6308803761042688 a001 4807526976/2139295485799*24476^(11/14) 6308803761042688 a001 12586269025/5600748293801*24476^(11/14) 6308803761042688 a001 32951280099/14662949395604*24476^(11/14) 6308803761042688 a001 53316291173/23725150497407*24476^(11/14) 6308803761042688 a001 20365011074/9062201101803*24476^(11/14) 6308803761042688 a001 7778742049/3461452808002*24476^(11/14) 6308803761042688 a001 2971215073/1322157322203*24476^(11/14) 6308803761042688 a001 1134903170/505019158607*24476^(11/14) 6308803761042688 a001 433494437/192900153618*24476^(11/14) 6308803761042688 a001 165580141/73681302247*24476^(11/14) 6308803761042689 a001 63245986/28143753123*24476^(11/14) 6308803761042690 a001 24157817/10749957122*24476^(11/14) 6308803761042703 a001 9227465/4106118243*24476^(11/14) 6308803761042790 a001 3524578/1568397607*24476^(11/14) 6308803761043384 a001 1346269/599074578*24476^(11/14) 6308803761047460 a001 514229/228826127*24476^(11/14) 6308803761074714 a001 28657/54018521*24476^(13/14) 6308803761075392 a001 196418/87403803*24476^(11/14) 6308803761237945 a001 6765/24476*15127^(13/40) 6308803761256177 a001 17711/167761*24476^(17/42) 6308803761266846 a001 75025/33385282*24476^(11/14) 6308803761270432 a001 121393/64079*9349^(5/38) 6308803761272058 a001 17711/39603*7881196^(1/6) 6308803761272075 a001 17711/39603*312119004989^(1/10) 6308803761272075 a001 17711/39603*1568397607^(1/8) 6308803761739919 a001 6765/1149851*15127^(29/40) 6308803761959971 a001 46368/4870847*24476^(9/14) 6308803762077671 a001 28657/20633239*24476^(5/6) 6308803762277688 a001 17711/39603*39603^(1/4) 6308803762461443 a001 121393/12752043*24476^(9/14) 6308803762462405 a001 46368/3010349*24476^(25/42) 6308803762534607 a001 317811/33385282*24476^(9/14) 6308803762545281 a001 832040/87403803*24476^(9/14) 6308803762546839 a001 46347/4868641*24476^(9/14) 6308803762547066 a001 5702887/599074578*24476^(9/14) 6308803762547099 a001 14930352/1568397607*24476^(9/14) 6308803762547104 a001 39088169/4106118243*24476^(9/14) 6308803762547105 a001 102334155/10749957122*24476^(9/14) 6308803762547105 a001 267914296/28143753123*24476^(9/14) 6308803762547105 a001 701408733/73681302247*24476^(9/14) 6308803762547105 a001 1836311903/192900153618*24476^(9/14) 6308803762547105 a001 102287808/10745088481*24476^(9/14) 6308803762547105 a001 12586269025/1322157322203*24476^(9/14) 6308803762547105 a001 32951280099/3461452808002*24476^(9/14) 6308803762547105 a001 86267571272/9062201101803*24476^(9/14) 6308803762547105 a001 225851433717/23725150497407*24476^(9/14) 6308803762547105 a001 139583862445/14662949395604*24476^(9/14) 6308803762547105 a001 53316291173/5600748293801*24476^(9/14) 6308803762547105 a001 20365011074/2139295485799*24476^(9/14) 6308803762547105 a001 7778742049/817138163596*24476^(9/14) 6308803762547105 a001 2971215073/312119004989*24476^(9/14) 6308803762547105 a001 1134903170/119218851371*24476^(9/14) 6308803762547105 a001 433494437/45537549124*24476^(9/14) 6308803762547105 a001 165580141/17393796001*24476^(9/14) 6308803762547105 a001 63245986/6643838879*24476^(9/14) 6308803762547107 a001 24157817/2537720636*24476^(9/14) 6308803762547120 a001 9227465/969323029*24476^(9/14) 6308803762547206 a001 3524578/370248451*24476^(9/14) 6308803762547801 a001 1346269/141422324*24476^(9/14) 6308803762551878 a001 514229/54018521*24476^(9/14) 6308803762579089 a001 28657/12752043*24476^(11/14) 6308803762579825 a001 196418/20633239*24476^(9/14) 6308803762771370 a001 75025/7881196*24476^(9/14) 6308803762952507 a001 15456/13201*24476^(1/6) 6308803762961359 a001 2576/103361*24476^(23/42) 6308803763019200 a001 317811/103682*9349^(3/38) 6308803763111840 a001 55/15126*15127^(31/40) 6308803763272475 a001 75025/4870847*24476^(25/42) 6308803763427759 a001 196418/39603*9349^(1/38) 6308803763464160 a001 121393/4870847*24476^(23/42) 6308803763469425 a001 46368/1149851*24476^(1/2) 6308803763531115 a001 832040/271443*9349^(3/38) 6308803763571398 a001 17711/64079*24476^(13/42) 6308803763581807 a001 28657/4870847*24476^(29/42) 6308803763605802 a001 311187/101521*9349^(3/38) 6308803763651962 a001 1346269/439204*9349^(3/38) 6308803763774909 a001 75025/3010349*24476^(23/42) 6308803763847496 a001 514229/167761*9349^(3/38) 6308803763953633 a001 6624/101521*24476^(19/42) 6308803763966595 a001 121393/3010349*24476^(1/2) 6308803764039131 a001 317811/7881196*24476^(1/2) 6308803764049713 a001 75640/1875749*24476^(1/2) 6308803764051257 a001 2178309/54018521*24476^(1/2) 6308803764051483 a001 5702887/141422324*24476^(1/2) 6308803764051516 a001 14930352/370248451*24476^(1/2) 6308803764051520 a001 39088169/969323029*24476^(1/2) 6308803764051521 a001 9303105/230701876*24476^(1/2) 6308803764051521 a001 267914296/6643838879*24476^(1/2) 6308803764051521 a001 701408733/17393796001*24476^(1/2) 6308803764051521 a001 1836311903/45537549124*24476^(1/2) 6308803764051521 a001 4807526976/119218851371*24476^(1/2) 6308803764051521 a001 1144206275/28374454999*24476^(1/2) 6308803764051521 a001 32951280099/817138163596*24476^(1/2) 6308803764051521 a001 86267571272/2139295485799*24476^(1/2) 6308803764051521 a001 225851433717/5600748293801*24476^(1/2) 6308803764051521 a001 591286729879/14662949395604*24476^(1/2) 6308803764051521 a001 365435296162/9062201101803*24476^(1/2) 6308803764051521 a001 139583862445/3461452808002*24476^(1/2) 6308803764051521 a001 53316291173/1322157322203*24476^(1/2) 6308803764051521 a001 20365011074/505019158607*24476^(1/2) 6308803764051521 a001 7778742049/192900153618*24476^(1/2) 6308803764051521 a001 2971215073/73681302247*24476^(1/2) 6308803764051521 a001 1134903170/28143753123*24476^(1/2) 6308803764051521 a001 433494437/10749957122*24476^(1/2) 6308803764051521 a001 165580141/4106118243*24476^(1/2) 6308803764051522 a001 63245986/1568397607*24476^(1/2) 6308803764051523 a001 24157817/599074578*24476^(1/2) 6308803764051536 a001 9227465/228826127*24476^(1/2) 6308803764051622 a001 3524578/87403803*24476^(1/2) 6308803764052212 a001 1346269/33385282*24476^(1/2) 6308803764056254 a001 514229/12752043*24476^(1/2) 6308803764065995 a001 1292/930249*5778^(35/36) 6308803764083960 a001 196418/4870847*24476^(1/2) 6308803764084241 a001 28657/3010349*24476^(9/14) 6308803764265010 a001 75025/39603*24476^(5/42) 6308803764273862 a001 75025/1860498*24476^(1/2) 6308803764456696 a001 121393/39603*24476^(1/14) 6308803764465548 a001 121393/1860498*24476^(19/42) 6308803764492873 a001 6765/3010349*15127^(33/40) 6308803764500303 a001 11592/109801*24476^(17/42) 6308803764513815 a001 17711/710647*64079^(1/2) 6308803764540235 a001 317811/4870847*24476^(19/42) 6308803764574342 a001 28657/39603*24476^(3/14) 6308803764583194 a001 28657/1860498*24476^(25/42) 6308803764586395 a001 196418/3010349*24476^(19/42) 6308803764640410 a001 17711/103682*167761^(3/10) 6308803764698575 a001 17711/103682*439204^(5/18) 6308803764707636 a001 17711/103682*7881196^(5/22) 6308803764707656 a001 17711/103682*20633239^(3/14) 6308803764707658 a001 15456/13201*20633239^(1/10) 6308803764707659 a001 17711/103682*2537720636^(1/6) 6308803764707659 a001 17711/103682*312119004989^(3/22) 6308803764707659 a001 17711/103682*28143753123^(3/20) 6308803764707659 a001 15456/13201*17393796001^(1/14) 6308803764707659 a001 15456/13201*14662949395604^(1/18) 6308803764707659 a001 15456/13201*505019158607^(1/16) 6308803764707659 a001 15456/13201*599074578^(1/12) 6308803764707659 a001 17711/103682*228826127^(3/16) 6308803764707661 a001 17711/103682*33385282^(5/24) 6308803764708115 a001 17711/103682*1860498^(1/4) 6308803764709221 a001 15456/13201*710647^(1/8) 6308803764720249 a001 17711/9349*3571^(5/34) 6308803764781929 a001 75025/1149851*24476^(19/42) 6308803764883447 a001 15456/90481*24476^(5/14) 6308803764891056 a001 17711/103682*103682^(5/16) 6308803764973614 a001 121393/1149851*24476^(17/42) 6308803765042670 a001 317811/3010349*24476^(17/42) 6308803765058971 a001 514229/4870847*24476^(17/42) 6308803765076496 a001 196418/39603*24476^(1/42) 6308803765085348 a001 98209/930249*24476^(17/42) 6308803765091261 a001 28657/1149851*24476^(23/42) 6308803765092780 a001 17711/141422324*167761^(9/10) 6308803765137574 a001 17711/12752043*167761^(7/10) 6308803765187217 a001 17711/1149851*167761^(1/2) 6308803765187705 a001 196418/64079*9349^(3/38) 6308803765207087 a001 121393/39603*439204^(1/18) 6308803765208900 a001 121393/39603*7881196^(1/22) 6308803765208904 a001 17711/271443*817138163596^(1/6) 6308803765208905 a001 17711/271443*87403803^(1/4) 6308803765208905 a001 121393/39603*33385282^(1/24) 6308803765208995 a001 121393/39603*1860498^(1/20) 6308803765211422 a001 121393/24476*3571^(1/34) 6308803765245584 a001 121393/39603*103682^(1/16) 6308803765263639 a001 17711/599074578*439204^(17/18) 6308803765266137 a001 75025/710647*24476^(17/42) 6308803765267273 a001 17711/141422324*439204^(5/6) 6308803765270901 a001 17711/33385282*439204^(13/18) 6308803765274642 a001 89/39604*439204^(11/18) 6308803765276352 a001 17711/1860498*439204^(1/2) 6308803765282035 a001 17711/710647*4106118243^(1/4) 6308803765292663 a001 17711/1860498*7881196^(9/22) 6308803765292705 a001 17711/1860498*2537720636^(3/10) 6308803765292705 a001 17711/1860498*14662949395604^(3/14) 6308803765292705 a001 17711/1860498*192900153618^(1/4) 6308803765292707 a001 17711/1860498*33385282^(3/8) 6308803765292838 a001 17711/3010349*1149851^(1/2) 6308803765293525 a001 17711/1860498*1860498^(9/20) 6308803765293913 a001 17711/4870847*3010349^(1/2) 6308803765294261 a001 17711/4870847*9062201101803^(1/4) 6308803765294430 a001 17711/10749957122*7881196^(21/22) 6308803765294439 a001 17711/2537720636*7881196^(19/22) 6308803765294443 a001 17711/1568397607*7881196^(5/6) 6308803765294449 a001 17711/599074578*7881196^(17/22) 6308803765294458 a001 17711/141422324*7881196^(15/22) 6308803765294462 a001 17711/33385282*7881196^(13/22) 6308803765294481 a001 17711/12752043*20633239^(1/2) 6308803765294488 a001 17711/12752043*2537720636^(7/18) 6308803765294488 a001 17711/12752043*17393796001^(5/14) 6308803765294488 a001 17711/12752043*312119004989^(7/22) 6308803765294488 a001 17711/12752043*14662949395604^(5/18) 6308803765294488 a001 17711/12752043*505019158607^(5/16) 6308803765294488 a001 17711/12752043*28143753123^(7/20) 6308803765294488 a001 17711/12752043*599074578^(5/12) 6308803765294488 a001 17711/12752043*228826127^(7/16) 6308803765294513 a001 17711/17393796001*20633239^(13/14) 6308803765294514 a001 17711/10749957122*20633239^(9/10) 6308803765294516 a001 17711/1568397607*20633239^(11/14) 6308803765294517 a001 17711/370248451*20633239^(7/10) 6308803765294518 a001 17711/141422324*20633239^(9/14) 6308803765294521 a001 17711/33385282*141422324^(1/2) 6308803765294522 a001 17711/33385282*73681302247^(3/8) 6308803765294525 a001 17711/33385282*33385282^(13/24) 6308803765294526 a001 17711/87403803*969323029^(1/2) 6308803765294527 a001 17711/17393796001*141422324^(5/6) 6308803765294527 a001 17711/228826127*6643838879^(1/2) 6308803765294527 a001 17711/599074578*45537549124^(1/2) 6308803765294527 a001 17711/1568397607*2537720636^(11/18) 6308803765294527 a001 17711/1568397607*312119004989^(1/2) 6308803765294527 a001 17711/1568397607*3461452808002^(11/24) 6308803765294527 a001 17711/1568397607*28143753123^(11/20) 6308803765294527 a001 17711/1568397607*1568397607^(5/8) 6308803765294527 a001 17711/2139295485799*2537720636^(17/18) 6308803765294527 a001 17711/817138163596*2537720636^(9/10) 6308803765294527 a001 17711/192900153618*2537720636^(5/6) 6308803765294527 a001 17711/10749957122*2537720636^(7/10) 6308803765294527 a001 17711/17393796001*2537720636^(13/18) 6308803765294527 a001 17711/4106118243*2139295485799^(1/2) 6308803765294527 a001 17711/10749957122*17393796001^(9/14) 6308803765294527 a001 17711/10749957122*14662949395604^(1/2) 6308803765294527 a001 17711/10749957122*505019158607^(9/16) 6308803765294527 a001 17711/10749957122*192900153618^(7/12) 6308803765294527 a001 17711/9062201101803*17393796001^(13/14) 6308803765294527 a001 89/1568437211*17393796001^(11/14) 6308803765294527 a001 17711/2139295485799*45537549124^(5/6) 6308803765294527 a001 17711/192900153618*312119004989^(15/22) 6308803765294527 a001 17711/192900153618*3461452808002^(5/8) 6308803765294527 a001 17711/23725150497407*312119004989^(19/22) 6308803765294527 a001 17711/2139295485799*312119004989^(17/22) 6308803765294527 a001 17711/23725150497407*817138163596^(5/6) 6308803765294527 a001 17711/14662949395604*9062201101803^(3/4) 6308803765294527 a001 17711/23725150497407*3461452808002^(19/24) 6308803765294527 a001 17711/2139295485799*3461452808002^(17/24) 6308803765294527 a001 17711/817138163596*14662949395604^(9/14) 6308803765294527 a001 89/1568437211*14662949395604^(11/18) 6308803765294527 a001 89/1568437211*505019158607^(11/16) 6308803765294527 a001 17711/817138163596*192900153618^(3/4) 6308803765294527 a001 17711/9062201101803*73681302247^(7/8) 6308803765294527 a001 17711/192900153618*28143753123^(3/4) 6308803765294527 a001 17711/2139295485799*28143753123^(17/20) 6308803765294527 a001 17711/23725150497407*28143753123^(19/20) 6308803765294527 a001 17711/17393796001*312119004989^(13/22) 6308803765294527 a001 17711/17393796001*3461452808002^(13/24) 6308803765294527 a001 17711/17393796001*73681302247^(5/8) 6308803765294527 a001 17711/17393796001*28143753123^(13/20) 6308803765294527 a001 17711/6643838879*5600748293801^(1/2) 6308803765294527 a001 17711/45537549124*4106118243^(3/4) 6308803765294527 a001 17711/2537720636*817138163596^(1/2) 6308803765294527 a001 89/1568437211*1568397607^(7/8) 6308803765294527 a006 5^(1/2)*Fibonacci(55/2)/Lucas(22)/sqrt(5) 6308803765294527 a001 17711/969323029*119218851371^(1/2) 6308803765294527 a001 17711/10749957122*599074578^(3/4) 6308803765294527 a001 89/1568437211*599074578^(11/12) 6308803765294527 a001 17711/370248451*17393796001^(1/2) 6308803765294527 a001 17711/370248451*14662949395604^(7/18) 6308803765294527 a001 17711/370248451*505019158607^(7/16) 6308803765294527 a001 17711/370248451*599074578^(7/12) 6308803765294527 a001 17711/1568397607*228826127^(11/16) 6308803765294527 a001 17711/17393796001*228826127^(13/16) 6308803765294527 a001 17711/192900153618*228826127^(15/16) 6308803765294528 a001 17711/141422324*2537720636^(1/2) 6308803765294528 a001 17711/141422324*312119004989^(9/22) 6308803765294528 a001 17711/141422324*14662949395604^(5/14) 6308803765294528 a001 17711/141422324*192900153618^(5/12) 6308803765294528 a001 17711/141422324*28143753123^(9/20) 6308803765294528 a001 17711/141422324*228826127^(9/16) 6308803765294528 a001 17711/2537720636*87403803^(3/4) 6308803765294529 a001 17711/54018521*370248451^(1/2) 6308803765294531 a001 17711/141422324*33385282^(5/8) 6308803765294531 a001 17711/599074578*33385282^(17/24) 6308803765294532 a001 17711/2537720636*33385282^(19/24) 6308803765294532 a001 17711/10749957122*33385282^(7/8) 6308803765294533 a001 17711/45537549124*33385282^(23/24) 6308803765294541 a001 17711/20633239*54018521^(1/2) 6308803765294556 a001 17711/599074578*12752043^(3/4) 6308803765294578 a001 89/39604*7881196^(1/2) 6308803765294629 a001 89/39604*312119004989^(3/10) 6308803765294629 a001 89/39604*1568397607^(3/8) 6308803765294631 a001 89/39604*33385282^(11/24) 6308803765295223 a001 17711/3010349*1322157322203^(1/4) 6308803765295552 a001 17711/12752043*1860498^(7/12) 6308803765295631 a001 89/39604*1860498^(11/20) 6308803765295706 a001 17711/33385282*1860498^(13/20) 6308803765295894 a001 17711/141422324*1860498^(3/4) 6308803765296076 a001 17711/599074578*1860498^(17/20) 6308803765296198 a001 17711/1568397607*1860498^(11/12) 6308803765296259 a001 17711/2537720636*1860498^(19/20) 6308803765299294 a001 17711/1149851*20633239^(5/14) 6308803765299299 a001 17711/1149851*2537720636^(5/18) 6308803765299299 a001 17711/1149851*312119004989^(5/22) 6308803765299299 a001 17711/1149851*3461452808002^(5/24) 6308803765299299 a001 17711/1149851*28143753123^(1/4) 6308803765299299 a001 17711/1149851*228826127^(5/16) 6308803765300058 a001 17711/1149851*1860498^(5/12) 6308803765302296 a001 17711/12752043*710647^(5/8) 6308803765305458 a001 17711/370248451*710647^(7/8) 6308803765314514 a001 17711/439204*439204^(7/18) 6308803765314740 a006 5^(1/2)*fibonacci(55/2)/Lucas(22)/sqrt(5) 6308803765327200 a001 17711/439204*7881196^(7/22) 6308803765327228 a001 17711/439204*20633239^(3/10) 6308803765327232 a001 17711/439204*17393796001^(3/14) 6308803765327232 a001 17711/439204*14662949395604^(1/6) 6308803765327232 a001 17711/439204*599074578^(1/4) 6308803765327234 a001 17711/439204*33385282^(7/24) 6308803765327870 a001 17711/439204*1860498^(7/20) 6308803765331917 a001 17711/439204*710647^(3/8) 6308803765347595 a001 15456/13201*39603^(7/44) 6308803765358739 a001 17711/33385282*271443^(3/4) 6308803765385146 a001 23184/51841*24476^(11/42) 6308803765418652 a001 196418/39603*39603^(1/44) 6308803765457823 a001 121393/710647*24476^(5/14) 6308803765483162 a001 121393/39603*39603^(3/44) 6308803765496274 a001 75025/39603*167761^(1/10) 6308803765518690 a001 75025/39603*20633239^(1/14) 6308803765518691 a001 17711/167761*45537549124^(1/6) 6308803765518691 a001 75025/39603*2537720636^(1/18) 6308803765518691 a001 75025/39603*312119004989^(1/22) 6308803765518691 a001 75025/39603*28143753123^(1/20) 6308803765518691 a001 75025/39603*228826127^(1/16) 6308803765518700 a001 17711/167761*12752043^(1/4) 6308803765518843 a001 75025/39603*1860498^(1/12) 6308803765541623 a001 105937/620166*24476^(5/14) 6308803765553849 a001 832040/4870847*24476^(5/14) 6308803765555633 a001 726103/4250681*24476^(5/14) 6308803765555893 a001 5702887/33385282*24476^(5/14) 6308803765555931 a001 4976784/29134601*24476^(5/14) 6308803765555937 a001 39088169/228826127*24476^(5/14) 6308803765555938 a001 34111385/199691526*24476^(5/14) 6308803765555938 a001 267914296/1568397607*24476^(5/14) 6308803765555938 a001 233802911/1368706081*24476^(5/14) 6308803765555938 a001 1836311903/10749957122*24476^(5/14) 6308803765555938 a001 1602508992/9381251041*24476^(5/14) 6308803765555938 a001 12586269025/73681302247*24476^(5/14) 6308803765555938 a001 10983760033/64300051206*24476^(5/14) 6308803765555938 a001 86267571272/505019158607*24476^(5/14) 6308803765555938 a001 75283811239/440719107401*24476^(5/14) 6308803765555938 a001 2504730781961/14662949395604*24476^(5/14) 6308803765555938 a001 139583862445/817138163596*24476^(5/14) 6308803765555938 a001 53316291173/312119004989*24476^(5/14) 6308803765555938 a001 20365011074/119218851371*24476^(5/14) 6308803765555938 a001 7778742049/45537549124*24476^(5/14) 6308803765555938 a001 2971215073/17393796001*24476^(5/14) 6308803765555938 a001 1134903170/6643838879*24476^(5/14) 6308803765555938 a001 433494437/2537720636*24476^(5/14) 6308803765555938 a001 165580141/969323029*24476^(5/14) 6308803765555938 a001 63245986/370248451*24476^(5/14) 6308803765555940 a001 24157817/141422324*24476^(5/14) 6308803765555955 a001 9227465/54018521*24476^(5/14) 6308803765556054 a001 3524578/20633239*24476^(5/14) 6308803765556735 a001 1346269/7881196*24476^(5/14) 6308803765561406 a001 514229/3010349*24476^(5/14) 6308803765575469 a001 28657/710647*24476^(1/2) 6308803765583987 a001 17711/439204*103682^(7/16) 6308803765593414 a001 196418/1149851*24476^(5/14) 6308803765622818 a001 17711/1860498*103682^(9/16) 6308803765694706 a001 46368/167761*24476^(13/42) 6308803765698100 a001 89/39604*103682^(11/16) 6308803765771352 a001 17711/33385282*103682^(13/16) 6308803765812806 a001 75025/439204*24476^(5/14) 6308803765844716 a001 17711/141422324*103682^(15/16) 6308803765870426 a001 6765/4870847*15127^(7/8) 6308803765975788 a001 75025/39603*39603^(5/44) 6308803766004492 a001 121393/439204*24476^(13/42) 6308803766016490 a001 196418/39603*15127^(1/40) 6308803766049689 a001 317811/1149851*24476^(13/42) 6308803766056283 a001 832040/3010349*24476^(13/42) 6308803766057840 a001 1346269/4870847*24476^(13/42) 6308803766060359 a001 514229/1860498*24476^(13/42) 6308803766077623 a001 196418/710647*24476^(13/42) 6308803766078950 a001 17711/103682*39603^(15/44) 6308803766122138 a001 28657/439204*24476^(19/42) 6308803766195951 a001 75025/271443*24476^(13/42) 6308803766387636 a001 121393/271443*24476^(11/42) 6308803766505283 a001 28657/271443*24476^(17/42) 6308803766533898 a001 317811/710647*24476^(11/42) 6308803766555237 a001 416020/930249*24476^(11/42) 6308803766558350 a001 2178309/4870847*24476^(11/42) 6308803766560274 a001 1346269/3010349*24476^(11/42) 6308803766568425 a001 514229/1149851*24476^(11/42) 6308803766624292 a001 98209/219602*24476^(11/42) 6308803766697650 a001 75025/103682*24476^(3/14) 6308803766825516 a001 28657/39603*439204^(1/6) 6308803766830953 a001 28657/39603*7881196^(3/22) 6308803766830967 a001 17711/64079*141422324^(1/6) 6308803766830967 a001 17711/64079*73681302247^(1/8) 6308803766830967 a001 28657/39603*2537720636^(1/10) 6308803766830967 a001 28657/39603*14662949395604^(1/14) 6308803766830967 a001 28657/39603*192900153618^(1/12) 6308803766830968 a001 28657/39603*33385282^(1/8) 6308803766831240 a001 28657/39603*1860498^(3/20) 6308803766835410 a001 514229/103682*9349^(1/38) 6308803766852373 a001 17711/64079*271443^(1/4) 6308803766889336 a001 121393/103682*24476^(1/6) 6308803766941005 a001 28657/39603*103682^(3/16) 6308803766945872 a001 17711/271443*39603^(19/44) 6308803767006982 a001 28657/103682*24476^(13/42) 6308803767007209 a001 75025/167761*24476^(11/42) 6308803767007436 a001 196418/271443*24476^(3/14) 6308803767052634 a001 514229/710647*24476^(3/14) 6308803767059228 a001 1346269/1860498*24476^(3/14) 6308803767060190 a001 3524578/4870847*24476^(3/14) 6308803767060330 a001 9227465/12752043*24476^(3/14) 6308803767060351 a001 24157817/33385282*24476^(3/14) 6308803767060354 a001 63245986/87403803*24476^(3/14) 6308803767060354 a001 165580141/228826127*24476^(3/14) 6308803767060354 a001 433494437/599074578*24476^(3/14) 6308803767060354 a001 1134903170/1568397607*24476^(3/14) 6308803767060354 a001 2971215073/4106118243*24476^(3/14) 6308803767060354 a001 7778742049/10749957122*24476^(3/14) 6308803767060354 a001 20365011074/28143753123*24476^(3/14) 6308803767060354 a001 53316291173/73681302247*24476^(3/14) 6308803767060354 a001 139583862445/192900153618*24476^(3/14) 6308803767060354 a001 365435296162/505019158607*24476^(3/14) 6308803767060354 a001 10610209857723/14662949395604*24476^(3/14) 6308803767060354 a001 591286729879/817138163596*24476^(3/14) 6308803767060354 a001 225851433717/312119004989*24476^(3/14) 6308803767060354 a001 86267571272/119218851371*24476^(3/14) 6308803767060354 a001 32951280099/45537549124*24476^(3/14) 6308803767060354 a001 12586269025/17393796001*24476^(3/14) 6308803767060354 a001 4807526976/6643838879*24476^(3/14) 6308803767060354 a001 1836311903/2537720636*24476^(3/14) 6308803767060354 a001 701408733/969323029*24476^(3/14) 6308803767060354 a001 267914296/370248451*24476^(3/14) 6308803767060354 a001 102334155/141422324*24476^(3/14) 6308803767060356 a001 39088169/54018521*24476^(3/14) 6308803767060363 a001 14930352/20633239*24476^(3/14) 6308803767060417 a001 5702887/7881196*24476^(3/14) 6308803767060785 a001 2178309/3010349*24476^(3/14) 6308803767063303 a001 832040/1149851*24476^(3/14) 6308803767072820 a001 17711/167761*39603^(17/44) 6308803767080567 a001 317811/439204*24476^(3/14) 6308803767198895 a001 121393/167761*24476^(3/14) 6308803767247039 a001 17711/439204*39603^(21/44) 6308803767276676 a001 121393/39603*15127^(3/40) 6308803767316541 a001 28657/167761*24476^(5/14) 6308803767332579 a001 1346269/271443*9349^(1/38) 6308803767384680 a001 17711/710647*39603^(23/44) 6308803767449945 a001 2178309/439204*9349^(1/38) 6308803767463711 a001 105937/90481*24476^(1/6) 6308803767509136 a001 98209/51841*24476^(5/42) 6308803767547512 a001 832040/710647*24476^(1/6) 6308803767559738 a001 726103/620166*24476^(1/6) 6308803767561522 a001 5702887/4870847*24476^(1/6) 6308803767561782 a001 4976784/4250681*24476^(1/6) 6308803767561820 a001 39088169/33385282*24476^(1/6) 6308803767561825 a001 34111385/29134601*24476^(1/6) 6308803767561826 a001 267914296/228826127*24476^(1/6) 6308803767561826 a001 233802911/199691526*24476^(1/6) 6308803767561826 a001 1836311903/1568397607*24476^(1/6) 6308803767561826 a001 1602508992/1368706081*24476^(1/6) 6308803767561826 a001 12586269025/10749957122*24476^(1/6) 6308803767561826 a001 10983760033/9381251041*24476^(1/6) 6308803767561826 a001 86267571272/73681302247*24476^(1/6) 6308803767561826 a001 75283811239/64300051206*24476^(1/6) 6308803767561826 a001 2504730781961/2139295485799*24476^(1/6) 6308803767561826 a001 365435296162/312119004989*24476^(1/6) 6308803767561826 a001 139583862445/119218851371*24476^(1/6) 6308803767561826 a001 53316291173/45537549124*24476^(1/6) 6308803767561826 a001 20365011074/17393796001*24476^(1/6) 6308803767561826 a001 7778742049/6643838879*24476^(1/6) 6308803767561826 a001 2971215073/2537720636*24476^(1/6) 6308803767561826 a001 1134903170/969323029*24476^(1/6) 6308803767561826 a001 433494437/370248451*24476^(1/6) 6308803767561827 a001 165580141/141422324*24476^(1/6) 6308803767561829 a001 63245986/54018521*24476^(1/6) 6308803767561843 a001 24157817/20633239*24476^(1/6) 6308803767561943 a001 9227465/7881196*24476^(1/6) 6308803767562624 a001 3524578/3010349*24476^(1/6) 6308803767567294 a001 1346269/1149851*24476^(1/6) 6308803767584783 a001 17711/1149851*39603^(25/44) 6308803767599303 a001 514229/439204*24476^(1/6) 6308803767639847 a001 75640/15251*9349^(1/38) 6308803767653741 a001 28657/39603*39603^(9/44) 6308803767761027 a001 17711/1860498*39603^(27/44) 6308803767818695 a001 196418/167761*24476^(1/6) 6308803767946385 a001 17711/3010349*39603^(29/44) 6308803767960069 a001 2576/103361*64079^(1/2) 6308803767965411 a001 317811/103682*24476^(1/14) 6308803767982447 a001 514229/271443*24476^(5/42) 6308803768009926 a001 46368/64079*24476^(3/14) 6308803768019419 a001 17711/64079*39603^(13/44) 6308803768051503 a001 1346269/710647*24476^(5/42) 6308803768067804 a001 2178309/1149851*24476^(5/42) 6308803768088024 a001 28657/24476*9349^(7/38) 6308803768094181 a001 208010/109801*24476^(5/42) 6308803768128261 a001 17711/4870847*39603^(31/44) 6308803768143226 a001 23184/51841*7881196^(1/6) 6308803768143243 a001 23184/51841*312119004989^(1/10) 6308803768143243 a001 23184/51841*1568397607^(1/8) 6308803768274970 a001 317811/167761*24476^(5/42) 6308803768311468 a001 89/39604*39603^(3/4) 6308803768462870 a001 121393/4870847*64079^(1/2) 6308803768477325 a001 832040/271443*24476^(1/14) 6308803768484147 a001 514229/103682*24476^(1/42) 6308803768528364 a001 46368/370248451*167761^(9/10) 6308803768536228 a001 105937/4250681*64079^(1/2) 6308803768546931 a001 416020/16692641*64079^(1/2) 6308803768548492 a001 726103/29134601*64079^(1/2) 6308803768548720 a001 5702887/228826127*64079^(1/2) 6308803768548753 a001 829464/33281921*64079^(1/2) 6308803768548758 a001 39088169/1568397607*64079^(1/2) 6308803768548759 a001 34111385/1368706081*64079^(1/2) 6308803768548759 a001 133957148/5374978561*64079^(1/2) 6308803768548759 a001 233802911/9381251041*64079^(1/2) 6308803768548759 a001 1836311903/73681302247*64079^(1/2) 6308803768548759 a001 267084832/10716675201*64079^(1/2) 6308803768548759 a001 12586269025/505019158607*64079^(1/2) 6308803768548759 a001 10983760033/440719107401*64079^(1/2) 6308803768548759 a001 43133785636/1730726404001*64079^(1/2) 6308803768548759 a001 75283811239/3020733700601*64079^(1/2) 6308803768548759 a001 182717648081/7331474697802*64079^(1/2) 6308803768548759 a001 139583862445/5600748293801*64079^(1/2) 6308803768548759 a001 53316291173/2139295485799*64079^(1/2) 6308803768548759 a001 10182505537/408569081798*64079^(1/2) 6308803768548759 a001 7778742049/312119004989*64079^(1/2) 6308803768548759 a001 2971215073/119218851371*64079^(1/2) 6308803768548759 a001 567451585/22768774562*64079^(1/2) 6308803768548759 a001 433494437/17393796001*64079^(1/2) 6308803768548759 a001 165580141/6643838879*64079^(1/2) 6308803768548759 a001 31622993/1268860318*64079^(1/2) 6308803768548761 a001 24157817/969323029*64079^(1/2) 6308803768548774 a001 9227465/370248451*64079^(1/2) 6308803768548861 a001 1762289/70711162*64079^(1/2) 6308803768549457 a001 1346269/54018521*64079^(1/2) 6308803768552013 a001 311187/101521*24476^(1/14) 6308803768553545 a001 514229/20633239*64079^(1/2) 6308803768562909 a001 5702887/1860498*24476^(1/14) 6308803768564499 a001 14930352/4870847*24476^(1/14) 6308803768564731 a001 39088169/12752043*24476^(1/14) 6308803768564765 a001 14619165/4769326*24476^(1/14) 6308803768564770 a001 267914296/87403803*24476^(1/14) 6308803768564771 a001 701408733/228826127*24476^(1/14) 6308803768564771 a001 1836311903/599074578*24476^(1/14) 6308803768564771 a001 686789568/224056801*24476^(1/14) 6308803768564771 a001 12586269025/4106118243*24476^(1/14) 6308803768564771 a001 32951280099/10749957122*24476^(1/14) 6308803768564771 a001 86267571272/28143753123*24476^(1/14) 6308803768564771 a001 32264490531/10525900321*24476^(1/14) 6308803768564771 a001 591286729879/192900153618*24476^(1/14) 6308803768564771 a001 1548008755920/505019158607*24476^(1/14) 6308803768564771 a001 1515744265389/494493258286*24476^(1/14) 6308803768564771 a001 2504730781961/817138163596*24476^(1/14) 6308803768564771 a001 956722026041/312119004989*24476^(1/14) 6308803768564771 a001 365435296162/119218851371*24476^(1/14) 6308803768564771 a001 139583862445/45537549124*24476^(1/14) 6308803768564771 a001 53316291173/17393796001*24476^(1/14) 6308803768564771 a001 20365011074/6643838879*24476^(1/14) 6308803768564771 a001 7778742049/2537720636*24476^(1/14) 6308803768564771 a001 2971215073/969323029*24476^(1/14) 6308803768564771 a001 1134903170/370248451*24476^(1/14) 6308803768564771 a001 433494437/141422324*24476^(1/14) 6308803768564773 a001 165580141/54018521*24476^(1/14) 6308803768564786 a001 63245986/20633239*24476^(1/14) 6308803768564874 a001 24157817/7881196*24476^(1/14) 6308803768565482 a001 9227465/3010349*24476^(1/14) 6308803768569644 a001 3524578/1149851*24476^(1/14) 6308803768573191 a001 144/103681*167761^(7/10) 6308803768577239 a001 15456/90481*167761^(3/10) 6308803768581566 a001 98209/3940598*64079^(1/2) 6308803768598172 a001 1346269/439204*24476^(1/14) 6308803768618726 a001 46368/3010349*167761^(1/2) 6308803768635404 a001 15456/90481*439204^(5/18) 6308803768644465 a001 15456/90481*7881196^(5/22) 6308803768644485 a001 15456/90481*20633239^(3/14) 6308803768644487 a001 121393/103682*20633239^(1/10) 6308803768644488 a001 15456/90481*2537720636^(1/6) 6308803768644488 a001 15456/90481*312119004989^(3/22) 6308803768644488 a001 15456/90481*28143753123^(3/20) 6308803768644488 a001 121393/103682*17393796001^(1/14) 6308803768644488 a001 121393/103682*14662949395604^(1/18) 6308803768644488 a001 121393/103682*505019158607^(1/16) 6308803768644488 a001 121393/103682*599074578^(1/12) 6308803768644488 a001 15456/90481*228826127^(3/16) 6308803768644490 a001 15456/90481*33385282^(5/24) 6308803768644944 a001 15456/90481*1860498^(1/4) 6308803768646050 a001 121393/103682*710647^(1/8) 6308803768699223 a001 6624/224056801*439204^(17/18) 6308803768702857 a001 46368/370248451*439204^(5/6) 6308803768706490 a001 15456/29134601*439204^(13/18) 6308803768710140 a001 46368/20633239*439204^(11/18) 6308803768713493 a001 46368/4870847*439204^(1/2) 6308803768715802 a001 317811/103682*439204^(1/18) 6308803768717614 a001 317811/103682*7881196^(1/22) 6308803768717619 a001 6624/101521*817138163596^(1/6) 6308803768717619 a001 6624/101521*87403803^(1/4) 6308803768717619 a001 317811/103682*33385282^(1/24) 6308803768717710 a001 317811/103682*1860498^(1/20) 6308803768722164 a001 46368/1149851*439204^(7/18) 6308803768727827 a001 11592/1970299*1149851^(1/2) 6308803768728289 a001 2576/103361*4106118243^(1/4) 6308803768729724 a001 15456/4250681*3010349^(1/2) 6308803768729804 a001 46368/4870847*7881196^(9/22) 6308803768729845 a001 46368/4870847*2537720636^(3/10) 6308803768729845 a001 46368/4870847*14662949395604^(3/14) 6308803768729845 a001 46368/4870847*192900153618^(1/4) 6308803768729847 a001 46368/4870847*33385282^(3/8) 6308803768730014 a001 15456/9381251041*7881196^(21/22) 6308803768730023 a001 46368/6643838879*7881196^(19/22) 6308803768730027 a001 15456/1368706081*7881196^(5/6) 6308803768730033 a001 6624/224056801*7881196^(17/22) 6308803768730042 a001 46368/370248451*7881196^(15/22) 6308803768730050 a001 15456/29134601*7881196^(13/22) 6308803768730072 a001 15456/4250681*9062201101803^(1/4) 6308803768730075 a001 46368/20633239*7881196^(1/2) 6308803768730097 a001 11592/11384387281*20633239^(13/14) 6308803768730098 a001 15456/9381251041*20633239^(9/10) 6308803768730098 a001 144/103681*20633239^(1/2) 6308803768730100 a001 15456/1368706081*20633239^(11/14) 6308803768730101 a001 46368/969323029*20633239^(7/10) 6308803768730102 a001 46368/370248451*20633239^(9/14) 6308803768730106 a001 144/103681*2537720636^(7/18) 6308803768730106 a001 144/103681*17393796001^(5/14) 6308803768730106 a001 144/103681*312119004989^(7/22) 6308803768730106 a001 144/103681*14662949395604^(5/18) 6308803768730106 a001 144/103681*505019158607^(5/16) 6308803768730106 a001 144/103681*28143753123^(7/20) 6308803768730106 a001 144/103681*599074578^(5/12) 6308803768730106 a001 144/103681*228826127^(7/16) 6308803768730110 a001 15456/29134601*141422324^(1/2) 6308803768730110 a001 15456/29134601*73681302247^(3/8) 6308803768730111 a001 11592/11384387281*141422324^(5/6) 6308803768730111 a001 46368/228826127*969323029^(1/2) 6308803768730111 a001 2576/33281921*6643838879^(1/2) 6308803768730111 a001 6624/224056801*45537549124^(1/2) 6308803768730111 a001 15456/1368706081*2537720636^(11/18) 6308803768730111 a001 46368/5600748293801*2537720636^(17/18) 6308803768730111 a001 46368/2139295485799*2537720636^(9/10) 6308803768730111 a001 46368/505019158607*2537720636^(5/6) 6308803768730111 a001 11592/11384387281*2537720636^(13/18) 6308803768730111 a001 15456/9381251041*2537720636^(7/10) 6308803768730111 a001 15456/1368706081*312119004989^(1/2) 6308803768730111 a001 15456/1368706081*3461452808002^(11/24) 6308803768730111 a001 15456/1368706081*28143753123^(11/20) 6308803768730111 a001 23184/5374978561*2139295485799^(1/2) 6308803768730111 a001 15456/9381251041*17393796001^(9/14) 6308803768730111 a001 46368/23725150497407*17393796001^(13/14) 6308803768730111 a001 11592/204284540899*17393796001^(11/14) 6308803768730111 a001 15456/9381251041*14662949395604^(1/2) 6308803768730111 a001 15456/9381251041*505019158607^(9/16) 6308803768730111 a001 15456/9381251041*192900153618^(7/12) 6308803768730111 a001 46368/5600748293801*45537549124^(5/6) 6308803768730111 a001 46368/505019158607*312119004989^(15/22) 6308803768730111 a001 46368/5600748293801*312119004989^(17/22) 6308803768730111 a001 46368/505019158607*3461452808002^(5/8) 6308803768730111 a001 46368/5600748293801*3461452808002^(17/24) 6308803768730111 a001 46368/2139295485799*14662949395604^(9/14) 6308803768730111 a001 15456/3020733700601*1322157322203^(3/4) 6308803768730111 a001 11592/204284540899*14662949395604^(11/18) 6308803768730111 a001 46368/23725150497407*505019158607^(13/16) 6308803768730111 a001 11592/204284540899*505019158607^(11/16) 6308803768730111 a001 46368/2139295485799*192900153618^(3/4) 6308803768730111 a001 46368/23725150497407*73681302247^(7/8) 6308803768730111 a001 11592/11384387281*312119004989^(13/22) 6308803768730111 a001 11592/11384387281*3461452808002^(13/24) 6308803768730111 a001 11592/11384387281*73681302247^(5/8) 6308803768730111 a001 46368/505019158607*28143753123^(3/4) 6308803768730111 a001 46368/5600748293801*28143753123^(17/20) 6308803768730111 a001 11592/11384387281*28143753123^(13/20) 6308803768730111 a001 46368/17393796001*5600748293801^(1/2) 6308803768730111 a006 5^(1/2)*Fibonacci(59/2)/Lucas(24)/sqrt(5) 6308803768730111 a001 46368/6643838879*817138163596^(1/2) 6308803768730111 a001 46368/119218851371*4106118243^(3/4) 6308803768730111 a001 11592/634430159*119218851371^(1/2) 6308803768730111 a001 15456/1368706081*1568397607^(5/8) 6308803768730111 a001 11592/204284540899*1568397607^(7/8) 6308803768730111 a001 46368/969323029*17393796001^(1/2) 6308803768730111 a001 46368/969323029*14662949395604^(7/18) 6308803768730111 a001 46368/969323029*505019158607^(7/16) 6308803768730111 a001 15456/9381251041*599074578^(3/4) 6308803768730111 a001 11592/204284540899*599074578^(11/12) 6308803768730111 a001 46368/969323029*599074578^(7/12) 6308803768730111 a001 46368/370248451*2537720636^(1/2) 6308803768730111 a001 46368/370248451*312119004989^(9/22) 6308803768730111 a001 46368/370248451*14662949395604^(5/14) 6308803768730111 a001 46368/370248451*192900153618^(5/12) 6308803768730111 a001 46368/370248451*28143753123^(9/20) 6308803768730111 a001 15456/1368706081*228826127^(11/16) 6308803768730111 a001 11592/11384387281*228826127^(13/16) 6308803768730111 a001 46368/505019158607*228826127^(15/16) 6308803768730111 a001 46368/370248451*228826127^(9/16) 6308803768730111 a001 11592/35355581*370248451^(1/2) 6308803768730112 a001 46368/6643838879*87403803^(3/4) 6308803768730112 a001 46368/54018521*54018521^(1/2) 6308803768730113 a001 15456/29134601*33385282^(13/24) 6308803768730115 a001 46368/370248451*33385282^(5/8) 6308803768730115 a001 6624/224056801*33385282^(17/24) 6308803768730116 a001 46368/6643838879*33385282^(19/24) 6308803768730116 a001 15456/9381251041*33385282^(7/8) 6308803768730117 a001 46368/119218851371*33385282^(23/24) 6308803768730126 a001 46368/20633239*312119004989^(3/10) 6308803768730126 a001 46368/20633239*1568397607^(3/8) 6308803768730129 a001 46368/20633239*33385282^(11/24) 6308803768730140 a001 6624/224056801*12752043^(3/4) 6308803768730213 a001 11592/1970299*1322157322203^(1/4) 6308803768730665 a001 46368/4870847*1860498^(9/20) 6308803768730802 a001 46368/3010349*20633239^(5/14) 6308803768730807 a001 46368/3010349*2537720636^(5/18) 6308803768730807 a001 46368/3010349*312119004989^(5/22) 6308803768730807 a001 46368/3010349*3461452808002^(5/24) 6308803768730807 a001 46368/3010349*28143753123^(1/4) 6308803768730807 a001 46368/3010349*228826127^(5/16) 6308803768731128 a001 46368/20633239*1860498^(11/20) 6308803768731169 a001 144/103681*1860498^(7/12) 6308803768731295 a001 15456/29134601*1860498^(13/20) 6308803768731478 a001 46368/370248451*1860498^(3/4) 6308803768731567 a001 46368/3010349*1860498^(5/12) 6308803768731660 a001 6624/224056801*1860498^(17/20) 6308803768731782 a001 15456/1368706081*1860498^(11/12) 6308803768731843 a001 46368/6643838879*1860498^(19/20) 6308803768733060 a006 5^(1/2)*fibonacci(59/2)/Lucas(24)/sqrt(5) 6308803768734850 a001 46368/1149851*7881196^(7/22) 6308803768734878 a001 46368/1149851*20633239^(3/10) 6308803768734883 a001 46368/1149851*17393796001^(3/14) 6308803768734883 a001 46368/1149851*14662949395604^(1/6) 6308803768734883 a001 46368/1149851*599074578^(1/4) 6308803768734884 a001 46368/1149851*33385282^(7/24) 6308803768735521 a001 46368/1149851*1860498^(7/20) 6308803768737913 a001 144/103681*710647^(5/8) 6308803768739567 a001 46368/1149851*710647^(3/8) 6308803768740400 a001 98209/51841*167761^(1/10) 6308803768741042 a001 46368/969323029*710647^(7/8) 6308803768754298 a001 317811/103682*103682^(1/16) 6308803768762815 a001 98209/51841*20633239^(1/14) 6308803768762816 a001 11592/109801*45537549124^(1/6) 6308803768762816 a001 98209/51841*2537720636^(1/18) 6308803768762816 a001 98209/51841*312119004989^(1/22) 6308803768762816 a001 98209/51841*28143753123^(1/20) 6308803768762816 a001 98209/51841*228826127^(1/16) 6308803768762826 a001 11592/109801*12752043^(1/4) 6308803768762968 a001 98209/51841*1860498^(1/12) 6308803768773619 a001 75025/3010349*64079^(1/2) 6308803768793706 a001 514229/167761*24476^(1/14) 6308803768794328 a001 15456/29134601*271443^(3/4) 6308803768826302 a001 514229/103682*39603^(1/44) 6308803768827885 a001 15456/90481*103682^(5/16) 6308803768853906 a001 17711/39603*15127^(11/40) 6308803768941454 a001 317811/64079*9349^(1/38) 6308803768948824 a001 75025/103682*439204^(1/6) 6308803768954261 a001 75025/103682*7881196^(3/22) 6308803768954275 a001 46368/167761*141422324^(1/6) 6308803768954275 a001 75025/103682*2537720636^(1/10) 6308803768954275 a001 46368/167761*73681302247^(1/8) 6308803768954275 a001 75025/103682*14662949395604^(1/14) 6308803768954275 a001 75025/103682*192900153618^(1/12) 6308803768954275 a001 75025/103682*33385282^(1/8) 6308803768954548 a001 75025/103682*1860498^(3/20) 6308803768964978 a001 75025/39603*15127^(1/8) 6308803768975680 a001 46368/167761*271443^(1/4) 6308803768981316 a001 1346269/271443*24476^(1/42) 6308803768991637 a001 46368/1149851*103682^(7/16) 6308803768991877 a001 317811/103682*39603^(3/44) 6308803769029609 a001 121393/969323029*167761^(9/10) 6308803769059958 a001 46368/4870847*103682^(9/16) 6308803769064312 a001 75025/103682*103682^(3/16) 6308803769074441 a001 121393/87403803*167761^(7/10) 6308803769098682 a001 2178309/439204*24476^(1/42) 6308803769102740 a001 317811/2537720636*167761^(9/10) 6308803769113409 a001 832040/6643838879*167761^(9/10) 6308803769114966 a001 2178309/17393796001*167761^(9/10) 6308803769115193 a001 1597/12752044*167761^(9/10) 6308803769115226 a001 14930352/119218851371*167761^(9/10) 6308803769115231 a001 39088169/312119004989*167761^(9/10) 6308803769115232 a001 102334155/817138163596*167761^(9/10) 6308803769115232 a001 267914296/2139295485799*167761^(9/10) 6308803769115232 a001 701408733/5600748293801*167761^(9/10) 6308803769115232 a001 1836311903/14662949395604*167761^(9/10) 6308803769115232 a001 2971215073/23725150497407*167761^(9/10) 6308803769115232 a001 1134903170/9062201101803*167761^(9/10) 6308803769115232 a001 433494437/3461452808002*167761^(9/10) 6308803769115232 a001 165580141/1322157322203*167761^(9/10) 6308803769115232 a001 63245986/505019158607*167761^(9/10) 6308803769115234 a001 24157817/192900153618*167761^(9/10) 6308803769115247 a001 9227465/73681302247*167761^(9/10) 6308803769115333 a001 3524578/28143753123*167761^(9/10) 6308803769115928 a001 1346269/10749957122*167761^(9/10) 6308803769119376 a001 121393/7881196*167761^(1/2) 6308803769120003 a001 514229/4106118243*167761^(9/10) 6308803769133598 a001 46368/20633239*103682^(11/16) 6308803769145716 a001 121393/271443*7881196^(1/6) 6308803769145733 a001 121393/271443*312119004989^(1/10) 6308803769145733 a001 121393/271443*1568397607^(1/8) 6308803769147572 a001 317811/228826127*167761^(7/10) 6308803769147937 a001 196418/1568397607*167761^(9/10) 6308803769148856 a001 23184/51841*39603^(1/4) 6308803769151615 a001 121393/710647*167761^(3/10) 6308803769158242 a001 416020/299537289*167761^(7/10) 6308803769159799 a001 311187/224056801*167761^(7/10) 6308803769160026 a001 5702887/4106118243*167761^(7/10) 6308803769160059 a001 7465176/5374978561*167761^(7/10) 6308803769160064 a001 39088169/28143753123*167761^(7/10) 6308803769160064 a001 14619165/10525900321*167761^(7/10) 6308803769160064 a001 133957148/96450076809*167761^(7/10) 6308803769160065 a001 701408733/505019158607*167761^(7/10) 6308803769160065 a001 1836311903/1322157322203*167761^(7/10) 6308803769160065 a001 14930208/10749853441*167761^(7/10) 6308803769160065 a001 12586269025/9062201101803*167761^(7/10) 6308803769160065 a001 32951280099/23725150497407*167761^(7/10) 6308803769160065 a001 10182505537/7331474697802*167761^(7/10) 6308803769160065 a001 7778742049/5600748293801*167761^(7/10) 6308803769160065 a001 2971215073/2139295485799*167761^(7/10) 6308803769160065 a001 567451585/408569081798*167761^(7/10) 6308803769160065 a001 433494437/312119004989*167761^(7/10) 6308803769160065 a001 165580141/119218851371*167761^(7/10) 6308803769160065 a001 31622993/22768774562*167761^(7/10) 6308803769160067 a001 24157817/17393796001*167761^(7/10) 6308803769160079 a001 9227465/6643838879*167761^(7/10) 6308803769160166 a001 1762289/1268860318*167761^(7/10) 6308803769160761 a001 1346269/969323029*167761^(7/10) 6308803769164836 a001 514229/370248451*167761^(7/10) 6308803769192420 a001 10959/711491*167761^(1/2) 6308803769192770 a001 98209/70711162*167761^(7/10) 6308803769200468 a001 121393/4106118243*439204^(17/18) 6308803769203077 a001 832040/54018521*167761^(1/2) 6308803769204102 a001 121393/969323029*439204^(5/6) 6308803769204632 a001 2178309/141422324*167761^(1/2) 6308803769204858 a001 5702887/370248451*167761^(1/2) 6308803769204892 a001 14930352/969323029*167761^(1/2) 6308803769204896 a001 39088169/2537720636*167761^(1/2) 6308803769204897 a001 102334155/6643838879*167761^(1/2) 6308803769204897 a001 9238424/599786069*167761^(1/2) 6308803769204897 a001 701408733/45537549124*167761^(1/2) 6308803769204897 a001 1836311903/119218851371*167761^(1/2) 6308803769204897 a001 4807526976/312119004989*167761^(1/2) 6308803769204897 a001 12586269025/817138163596*167761^(1/2) 6308803769204897 a001 32951280099/2139295485799*167761^(1/2) 6308803769204897 a001 86267571272/5600748293801*167761^(1/2) 6308803769204897 a001 7787980473/505618944676*167761^(1/2) 6308803769204897 a001 365435296162/23725150497407*167761^(1/2) 6308803769204897 a001 139583862445/9062201101803*167761^(1/2) 6308803769204897 a001 53316291173/3461452808002*167761^(1/2) 6308803769204897 a001 20365011074/1322157322203*167761^(1/2) 6308803769204897 a001 7778742049/505019158607*167761^(1/2) 6308803769204897 a001 2971215073/192900153618*167761^(1/2) 6308803769204897 a001 1134903170/73681302247*167761^(1/2) 6308803769204897 a001 433494437/28143753123*167761^(1/2) 6308803769204897 a001 165580141/10749957122*167761^(1/2) 6308803769204898 a001 63245986/4106118243*167761^(1/2) 6308803769204899 a001 24157817/1568397607*167761^(1/2) 6308803769204912 a001 9227465/599074578*167761^(1/2) 6308803769204999 a001 3524578/228826127*167761^(1/2) 6308803769205593 a001 1346269/87403803*167761^(1/2) 6308803769206940 a001 15456/29134601*103682^(13/16) 6308803769207736 a001 121393/228826127*439204^(13/18) 6308803769209663 a001 514229/33385282*167761^(1/2) 6308803769209779 a001 121393/710647*439204^(5/18) 6308803769211372 a001 121393/54018521*439204^(11/18) 6308803769213711 a001 514229/271443*167761^(1/10) 6308803769214965 a001 121393/12752043*439204^(1/2) 6308803769218841 a001 121393/710647*7881196^(5/22) 6308803769218861 a001 121393/710647*20633239^(3/14) 6308803769218862 a001 105937/90481*20633239^(1/10) 6308803769218864 a001 121393/710647*2537720636^(1/6) 6308803769218864 a001 105937/90481*17393796001^(1/14) 6308803769218864 a001 121393/710647*312119004989^(3/22) 6308803769218864 a001 105937/90481*14662949395604^(1/18) 6308803769218864 a001 105937/90481*505019158607^(1/16) 6308803769218864 a001 121393/710647*28143753123^(3/20) 6308803769218864 a001 105937/90481*599074578^(1/12) 6308803769218864 a001 121393/710647*228826127^(3/16) 6308803769218865 a001 121393/710647*33385282^(5/24) 6308803769219320 a001 121393/710647*1860498^(1/4) 6308803769219334 a001 121393/3010349*439204^(7/18) 6308803769219913 a001 98209/51841*39603^(5/44) 6308803769220425 a001 105937/90481*710647^(1/8) 6308803769227717 a001 832040/271443*439204^(1/18) 6308803769228985 a001 121393/20633239*1149851^(1/2) 6308803769229529 a001 832040/271443*7881196^(1/22) 6308803769229534 a001 121393/1860498*817138163596^(1/6) 6308803769229534 a001 121393/1860498*87403803^(1/4) 6308803769229534 a001 832040/271443*33385282^(1/24) 6308803769229625 a001 832040/271443*1860498^(1/20) 6308803769231002 a001 121393/33385282*3010349^(1/2) 6308803769231090 a001 121393/4870847*4106118243^(1/4) 6308803769231259 a001 121393/73681302247*7881196^(21/22) 6308803769231268 a001 121393/17393796001*7881196^(19/22) 6308803769231272 a001 121393/10749957122*7881196^(5/6) 6308803769231276 a001 121393/12752043*7881196^(9/22) 6308803769231278 a001 121393/4106118243*7881196^(17/22) 6308803769231287 a001 121393/969323029*7881196^(15/22) 6308803769231296 a001 121393/228826127*7881196^(13/22) 6308803769231308 a001 121393/54018521*7881196^(1/2) 6308803769231317 a001 121393/12752043*2537720636^(3/10) 6308803769231317 a001 121393/12752043*14662949395604^(3/14) 6308803769231317 a001 121393/12752043*192900153618^(1/4) 6308803769231319 a001 121393/12752043*33385282^(3/8) 6308803769231342 a001 121393/119218851371*20633239^(13/14) 6308803769231343 a001 121393/73681302247*20633239^(9/10) 6308803769231344 a001 121393/10749957122*20633239^(11/14) 6308803769231346 a001 121393/2537720636*20633239^(7/10) 6308803769231347 a001 121393/969323029*20633239^(9/14) 6308803769231348 a001 121393/87403803*20633239^(1/2) 6308803769231350 a001 121393/33385282*9062201101803^(1/4) 6308803769231355 a001 121393/87403803*2537720636^(7/18) 6308803769231355 a001 121393/87403803*17393796001^(5/14) 6308803769231355 a001 121393/87403803*312119004989^(7/22) 6308803769231355 a001 121393/87403803*14662949395604^(5/18) 6308803769231355 a001 121393/87403803*505019158607^(5/16) 6308803769231355 a001 121393/87403803*28143753123^(7/20) 6308803769231355 a001 121393/87403803*599074578^(5/12) 6308803769231355 a001 121393/87403803*228826127^(7/16) 6308803769231355 a001 233/271444*54018521^(1/2) 6308803769231356 a001 121393/228826127*141422324^(1/2) 6308803769231356 a001 121393/119218851371*141422324^(5/6) 6308803769231356 a001 121393/228826127*73681302247^(3/8) 6308803769231356 a001 121393/599074578*969323029^(1/2) 6308803769231356 a001 121393/1568397607*6643838879^(1/2) 6308803769231356 a001 121393/14662949395604*2537720636^(17/18) 6308803769231356 a001 121393/5600748293801*2537720636^(9/10) 6308803769231356 a001 121393/1322157322203*2537720636^(5/6) 6308803769231356 a001 121393/119218851371*2537720636^(13/18) 6308803769231356 a001 121393/73681302247*2537720636^(7/10) 6308803769231356 a001 121393/10749957122*2537720636^(11/18) 6308803769231356 a001 121393/4106118243*45537549124^(1/2) 6308803769231356 a001 121393/10749957122*312119004989^(1/2) 6308803769231356 a001 121393/10749957122*3461452808002^(11/24) 6308803769231356 a001 121393/10749957122*28143753123^(11/20) 6308803769231356 a001 121393/2139295485799*17393796001^(11/14) 6308803769231356 a001 121393/73681302247*17393796001^(9/14) 6308803769231356 a001 121393/28143753123*2139295485799^(1/2) 6308803769231356 a001 121393/14662949395604*45537549124^(5/6) 6308803769231356 a001 121393/73681302247*14662949395604^(1/2) 6308803769231356 a001 121393/73681302247*505019158607^(9/16) 6308803769231356 a001 121393/73681302247*192900153618^(7/12) 6308803769231356 a001 121393/14662949395604*312119004989^(17/22) 6308803769231356 a001 121393/1322157322203*312119004989^(15/22) 6308803769231356 a001 121393/1322157322203*3461452808002^(5/8) 6308803769231356 a001 121393/2139295485799*14662949395604^(11/18) 6308803769231356 a001 121393/23725150497407*1322157322203^(3/4) 6308803769231356 a001 121393/2139295485799*505019158607^(11/16) 6308803769231356 a001 121393/5600748293801*192900153618^(3/4) 6308803769231356 a001 121393/119218851371*312119004989^(13/22) 6308803769231356 a001 121393/119218851371*3461452808002^(13/24) 6308803769231356 a001 121393/119218851371*73681302247^(5/8) 6308803769231356 a001 121393/45537549124*5600748293801^(1/2) 6308803769231356 a001 121393/119218851371*28143753123^(13/20) 6308803769231356 a001 121393/1322157322203*28143753123^(3/4) 6308803769231356 a001 121393/14662949395604*28143753123^(17/20) 6308803769231356 a001 121393/17393796001*817138163596^(1/2) 6308803769231356 a001 121393/6643838879*119218851371^(1/2) 6308803769231356 a001 121393/312119004989*4106118243^(3/4) 6308803769231356 a001 121393/2537720636*17393796001^(1/2) 6308803769231356 a001 121393/2537720636*14662949395604^(7/18) 6308803769231356 a001 121393/2537720636*505019158607^(7/16) 6308803769231356 a001 121393/10749957122*1568397607^(5/8) 6308803769231356 a001 121393/2139295485799*1568397607^(7/8) 6308803769231356 a001 121393/969323029*2537720636^(1/2) 6308803769231356 a001 121393/969323029*312119004989^(9/22) 6308803769231356 a001 121393/969323029*14662949395604^(5/14) 6308803769231356 a001 121393/969323029*192900153618^(5/12) 6308803769231356 a001 121393/969323029*28143753123^(9/20) 6308803769231356 a001 121393/2537720636*599074578^(7/12) 6308803769231356 a001 121393/73681302247*599074578^(3/4) 6308803769231356 a001 121393/2139295485799*599074578^(11/12) 6308803769231356 a001 121393/370248451*370248451^(1/2) 6308803769231356 a001 121393/969323029*228826127^(9/16) 6308803769231356 a001 121393/10749957122*228826127^(11/16) 6308803769231356 a001 121393/119218851371*228826127^(13/16) 6308803769231356 a001 121393/1322157322203*228826127^(15/16) 6308803769231357 a001 121393/17393796001*87403803^(3/4) 6308803769231358 a001 121393/54018521*312119004989^(3/10) 6308803769231358 a001 121393/54018521*1568397607^(3/8) 6308803769231359 a001 121393/228826127*33385282^(13/24) 6308803769231360 a001 121393/969323029*33385282^(5/8) 6308803769231360 a001 121393/4106118243*33385282^(17/24) 6308803769231361 a001 121393/17393796001*33385282^(19/24) 6308803769231361 a001 121393/54018521*33385282^(11/24) 6308803769231361 a001 121393/73681302247*33385282^(7/8) 6308803769231362 a001 121393/312119004989*33385282^(23/24) 6308803769231371 a001 121393/20633239*1322157322203^(1/4) 6308803769231385 a001 121393/4106118243*12752043^(3/4) 6308803769231452 a001 121393/7881196*20633239^(5/14) 6308803769231458 a001 121393/7881196*2537720636^(5/18) 6308803769231458 a001 121393/7881196*312119004989^(5/22) 6308803769231458 a001 121393/7881196*3461452808002^(5/24) 6308803769231458 a001 121393/7881196*28143753123^(1/4) 6308803769231458 a001 121393/7881196*228826127^(5/16) 6308803769232020 a001 121393/3010349*7881196^(7/22) 6308803769232048 a001 121393/3010349*20633239^(3/10) 6308803769232052 a001 121393/3010349*17393796001^(3/14) 6308803769232052 a001 121393/3010349*14662949395604^(1/6) 6308803769232052 a001 121393/3010349*599074578^(1/4) 6308803769232054 a001 121393/3010349*33385282^(7/24) 6308803769232138 a001 121393/12752043*1860498^(9/20) 6308803769232217 a001 121393/7881196*1860498^(5/12) 6308803769232361 a001 121393/54018521*1860498^(11/20) 6308803769232418 a001 121393/87403803*1860498^(7/12) 6308803769232541 a001 121393/228826127*1860498^(13/20) 6308803769232690 a001 121393/3010349*1860498^(7/20) 6308803769232723 a001 121393/969323029*1860498^(3/4) 6308803769232905 a001 121393/4106118243*1860498^(17/20) 6308803769233027 a001 121393/10749957122*1860498^(11/12) 6308803769233088 a001 121393/17393796001*1860498^(19/20) 6308803769235415 a001 105937/620166*167761^(3/10) 6308803769236127 a001 514229/271443*20633239^(1/14) 6308803769236128 a001 514229/271443*2537720636^(1/18) 6308803769236128 a001 121393/1149851*45537549124^(1/6) 6308803769236128 a001 514229/271443*312119004989^(1/22) 6308803769236128 a001 514229/271443*28143753123^(1/20) 6308803769236128 a001 514229/271443*228826127^(1/16) 6308803769236137 a001 121393/1149851*12752043^(1/4) 6308803769236280 a001 514229/271443*1860498^(1/12) 6308803769236737 a001 121393/3010349*710647^(3/8) 6308803769237563 a001 196418/12752043*167761^(1/2) 6308803769239163 a001 121393/87403803*710647^(5/8) 6308803769242287 a001 121393/2537720636*710647^(7/8) 6308803769247641 a001 832040/4870847*167761^(3/10) 6308803769249425 a001 726103/4250681*167761^(3/10) 6308803769249685 a001 5702887/33385282*167761^(3/10) 6308803769249723 a001 4976784/29134601*167761^(3/10) 6308803769249729 a001 39088169/228826127*167761^(3/10) 6308803769249730 a001 34111385/199691526*167761^(3/10) 6308803769249730 a001 267914296/1568397607*167761^(3/10) 6308803769249730 a001 233802911/1368706081*167761^(3/10) 6308803769249730 a001 1836311903/10749957122*167761^(3/10) 6308803769249730 a001 1602508992/9381251041*167761^(3/10) 6308803769249730 a001 12586269025/73681302247*167761^(3/10) 6308803769249730 a001 10983760033/64300051206*167761^(3/10) 6308803769249730 a001 86267571272/505019158607*167761^(3/10) 6308803769249730 a001 75283811239/440719107401*167761^(3/10) 6308803769249730 a001 2504730781961/14662949395604*167761^(3/10) 6308803769249730 a001 139583862445/817138163596*167761^(3/10) 6308803769249730 a001 53316291173/312119004989*167761^(3/10) 6308803769249730 a001 20365011074/119218851371*167761^(3/10) 6308803769249730 a001 7778742049/45537549124*167761^(3/10) 6308803769249730 a001 2971215073/17393796001*167761^(3/10) 6308803769249730 a001 1134903170/6643838879*167761^(3/10) 6308803769249730 a001 433494437/2537720636*167761^(3/10) 6308803769249730 a001 165580141/969323029*167761^(3/10) 6308803769249730 a001 63245986/370248451*167761^(3/10) 6308803769249732 a001 24157817/141422324*167761^(3/10) 6308803769249747 a001 9227465/54018521*167761^(3/10) 6308803769249846 a001 3524578/20633239*167761^(3/10) 6308803769250528 a001 1346269/7881196*167761^(3/10) 6308803769255198 a001 514229/3010349*167761^(3/10) 6308803769258610 a001 196418/271443*439204^(1/6) 6308803769264047 a001 196418/271443*7881196^(3/22) 6308803769264061 a001 121393/439204*141422324^(1/6) 6308803769264061 a001 196418/271443*2537720636^(1/10) 6308803769264061 a001 121393/439204*73681302247^(1/8) 6308803769264061 a001 196418/271443*14662949395604^(1/14) 6308803769264061 a001 196418/271443*192900153618^(1/12) 6308803769264062 a001 196418/271443*33385282^(1/8) 6308803769264335 a001 196418/271443*1860498^(3/20) 6308803769266213 a001 832040/271443*103682^(1/16) 6308803769273599 a001 317811/10749957122*439204^(17/18) 6308803769277233 a001 317811/2537720636*439204^(5/6) 6308803769280300 a001 46368/370248451*103682^(15/16) 6308803769280866 a001 377/710646*439204^(13/18) 6308803769282767 a001 1346269/710647*167761^(1/10) 6308803769284268 a001 832040/28143753123*439204^(17/18) 6308803769284424 a001 121393/103682*39603^(7/44) 6308803769284501 a001 317811/141422324*439204^(11/18) 6308803769285467 a001 121393/439204*271443^(1/4) 6308803769285825 a001 311187/10525900321*439204^(17/18) 6308803769286052 a001 5702887/192900153618*439204^(17/18) 6308803769286085 a001 14930352/505019158607*439204^(17/18) 6308803769286090 a001 39088169/1322157322203*439204^(17/18) 6308803769286091 a001 6765/228826126*439204^(17/18) 6308803769286091 a001 267914296/9062201101803*439204^(17/18) 6308803769286091 a001 701408733/23725150497407*439204^(17/18) 6308803769286091 a001 433494437/14662949395604*439204^(17/18) 6308803769286091 a001 165580141/5600748293801*439204^(17/18) 6308803769286091 a001 63245986/2139295485799*439204^(17/18) 6308803769286093 a001 24157817/817138163596*439204^(17/18) 6308803769286106 a001 9227465/312119004989*439204^(17/18) 6308803769286192 a001 3524578/119218851371*439204^(17/18) 6308803769286787 a001 1346269/45537549124*439204^(17/18) 6308803769287207 a001 196418/1149851*167761^(3/10) 6308803769287902 a001 832040/6643838879*439204^(5/6) 6308803769288129 a001 317811/33385282*439204^(1/2) 6308803769288584 a001 75640/15251*24476^(1/42) 6308803769289459 a001 2178309/17393796001*439204^(5/6) 6308803769289686 a001 1597/12752044*439204^(5/6) 6308803769289719 a001 14930352/119218851371*439204^(5/6) 6308803769289724 a001 39088169/312119004989*439204^(5/6) 6308803769289725 a001 102334155/817138163596*439204^(5/6) 6308803769289725 a001 267914296/2139295485799*439204^(5/6) 6308803769289725 a001 701408733/5600748293801*439204^(5/6) 6308803769289725 a001 1836311903/14662949395604*439204^(5/6) 6308803769289725 a001 2971215073/23725150497407*439204^(5/6) 6308803769289725 a001 1134903170/9062201101803*439204^(5/6) 6308803769289725 a001 433494437/3461452808002*439204^(5/6) 6308803769289725 a001 165580141/1322157322203*439204^(5/6) 6308803769289725 a001 63245986/505019158607*439204^(5/6) 6308803769289727 a001 24157817/192900153618*439204^(5/6) 6308803769289740 a001 9227465/73681302247*439204^(5/6) 6308803769289826 a001 3524578/28143753123*439204^(5/6) 6308803769290421 a001 1346269/10749957122*439204^(5/6) 6308803769290863 a001 514229/17393796001*439204^(17/18) 6308803769291536 a001 832040/1568397607*439204^(13/18) 6308803769291870 a001 317811/7881196*439204^(7/18) 6308803769291978 a001 317811/710647*7881196^(1/6) 6308803769291995 a001 317811/710647*312119004989^(1/10) 6308803769291995 a001 317811/710647*1568397607^(1/8) 6308803769292842 a001 1762289/930249*167761^(1/10) 6308803769293093 a001 726103/1368706081*439204^(13/18) 6308803769293320 a001 5702887/10749957122*439204^(13/18) 6308803769293353 a001 4976784/9381251041*439204^(13/18) 6308803769293358 a001 39088169/73681302247*439204^(13/18) 6308803769293359 a001 34111385/64300051206*439204^(13/18) 6308803769293359 a001 267914296/505019158607*439204^(13/18) 6308803769293359 a001 233802911/440719107401*439204^(13/18) 6308803769293359 a001 1836311903/3461452808002*439204^(13/18) 6308803769293359 a001 1602508992/3020733700601*439204^(13/18) 6308803769293359 a001 12586269025/23725150497407*439204^(13/18) 6308803769293359 a001 7778742049/14662949395604*439204^(13/18) 6308803769293359 a001 2971215073/5600748293801*439204^(13/18) 6308803769293359 a001 1134903170/2139295485799*439204^(13/18) 6308803769293359 a001 433494437/817138163596*439204^(13/18) 6308803769293359 a001 165580141/312119004989*439204^(13/18) 6308803769293359 a001 63245986/119218851371*439204^(13/18) 6308803769293361 a001 24157817/45537549124*439204^(13/18) 6308803769293374 a001 9227465/17393796001*439204^(13/18) 6308803769293460 a001 3524578/6643838879*439204^(13/18) 6308803769293579 a001 105937/620166*439204^(5/18) 6308803769294055 a001 1346269/2537720636*439204^(13/18) 6308803769294312 a001 9227465/4870847*167761^(1/10) 6308803769294496 a001 514229/4106118243*439204^(5/6) 6308803769294526 a001 24157817/12752043*167761^(1/10) 6308803769294557 a001 31622993/16692641*167761^(1/10) 6308803769294562 a001 165580141/87403803*167761^(1/10) 6308803769294563 a001 433494437/228826127*167761^(1/10) 6308803769294563 a001 567451585/299537289*167761^(1/10) 6308803769294563 a001 2971215073/1568397607*167761^(1/10) 6308803769294563 a001 7778742049/4106118243*167761^(1/10) 6308803769294563 a001 10182505537/5374978561*167761^(1/10) 6308803769294563 a001 53316291173/28143753123*167761^(1/10) 6308803769294563 a001 139583862445/73681302247*167761^(1/10) 6308803769294563 a001 182717648081/96450076809*167761^(1/10) 6308803769294563 a001 956722026041/505019158607*167761^(1/10) 6308803769294563 a001 10610209857723/5600748293801*167761^(1/10) 6308803769294563 a001 591286729879/312119004989*167761^(1/10) 6308803769294563 a001 225851433717/119218851371*167761^(1/10) 6308803769294563 a001 21566892818/11384387281*167761^(1/10) 6308803769294563 a001 32951280099/17393796001*167761^(1/10) 6308803769294563 a001 12586269025/6643838879*167761^(1/10) 6308803769294563 a001 1201881744/634430159*167761^(1/10) 6308803769294563 a001 1836311903/969323029*167761^(1/10) 6308803769294563 a001 701408733/370248451*167761^(1/10) 6308803769294563 a001 66978574/35355581*167761^(1/10) 6308803769294565 a001 102334155/54018521*167761^(1/10) 6308803769294577 a001 39088169/20633239*167761^(1/10) 6308803769294659 a001 3732588/1970299*167761^(1/10) 6308803769295170 a001 832040/370248451*439204^(11/18) 6308803769295220 a001 5702887/3010349*167761^(1/10) 6308803769295573 a001 121393/228826127*271443^(3/4) 6308803769296727 a001 2178309/969323029*439204^(11/18) 6308803769296954 a001 5702887/2537720636*439204^(11/18) 6308803769296987 a001 14930352/6643838879*439204^(11/18) 6308803769296992 a001 39088169/17393796001*439204^(11/18) 6308803769296992 a001 102334155/45537549124*439204^(11/18) 6308803769296993 a001 267914296/119218851371*439204^(11/18) 6308803769296993 a001 3524667/1568437211*439204^(11/18) 6308803769296993 a001 1836311903/817138163596*439204^(11/18) 6308803769296993 a001 4807526976/2139295485799*439204^(11/18) 6308803769296993 a001 12586269025/5600748293801*439204^(11/18) 6308803769296993 a001 32951280099/14662949395604*439204^(11/18) 6308803769296993 a001 53316291173/23725150497407*439204^(11/18) 6308803769296993 a001 20365011074/9062201101803*439204^(11/18) 6308803769296993 a001 7778742049/3461452808002*439204^(11/18) 6308803769296993 a001 2971215073/1322157322203*439204^(11/18) 6308803769296993 a001 1134903170/505019158607*439204^(11/18) 6308803769296993 a001 433494437/192900153618*439204^(11/18) 6308803769296993 a001 165580141/73681302247*439204^(11/18) 6308803769296993 a001 63245986/28143753123*439204^(11/18) 6308803769296995 a001 24157817/10749957122*439204^(11/18) 6308803769297007 a001 9227465/4106118243*439204^(11/18) 6308803769297094 a001 3524578/1568397607*439204^(11/18) 6308803769297689 a001 1346269/599074578*439204^(11/18) 6308803769298130 a001 514229/969323029*439204^(13/18) 6308803769298803 a001 832040/87403803*439204^(1/2) 6308803769299068 a001 2178309/1149851*167761^(1/10) 6308803769300360 a001 46347/4868641*439204^(1/2) 6308803769300588 a001 5702887/599074578*439204^(1/2) 6308803769300621 a001 14930352/1568397607*439204^(1/2) 6308803769300626 a001 39088169/4106118243*439204^(1/2) 6308803769300626 a001 102334155/10749957122*439204^(1/2) 6308803769300626 a001 267914296/28143753123*439204^(1/2) 6308803769300626 a001 701408733/73681302247*439204^(1/2) 6308803769300626 a001 1836311903/192900153618*439204^(1/2) 6308803769300626 a001 102287808/10745088481*439204^(1/2) 6308803769300626 a001 12586269025/1322157322203*439204^(1/2) 6308803769300626 a001 32951280099/3461452808002*439204^(1/2) 6308803769300626 a001 86267571272/9062201101803*439204^(1/2) 6308803769300626 a001 225851433717/23725150497407*439204^(1/2) 6308803769300626 a001 139583862445/14662949395604*439204^(1/2) 6308803769300626 a001 53316291173/5600748293801*439204^(1/2) 6308803769300626 a001 20365011074/2139295485799*439204^(1/2) 6308803769300626 a001 7778742049/817138163596*439204^(1/2) 6308803769300626 a001 2971215073/312119004989*439204^(1/2) 6308803769300626 a001 1134903170/119218851371*439204^(1/2) 6308803769300626 a001 433494437/45537549124*439204^(1/2) 6308803769300627 a001 165580141/17393796001*439204^(1/2) 6308803769300627 a001 63245986/6643838879*439204^(1/2) 6308803769300629 a001 24157817/2537720636*439204^(1/2) 6308803769300641 a001 9227465/969323029*439204^(1/2) 6308803769300728 a001 3524578/370248451*439204^(1/2) 6308803769301323 a001 1346269/141422324*439204^(1/2) 6308803769301764 a001 514229/228826127*439204^(11/18) 6308803769302103 a001 317811/54018521*1149851^(1/2) 6308803769302404 a001 311187/101521*439204^(1/18) 6308803769302453 a001 75640/1875749*439204^(7/18) 6308803769302641 a001 105937/620166*7881196^(5/22) 6308803769302661 a001 105937/620166*20633239^(3/14) 6308803769302663 a001 832040/710647*20633239^(1/10) 6308803769302664 a001 105937/620166*2537720636^(1/6) 6308803769302664 a001 832040/710647*17393796001^(1/14) 6308803769302664 a001 105937/620166*312119004989^(3/22) 6308803769302664 a001 832040/710647*14662949395604^(1/18) 6308803769302664 a001 832040/710647*505019158607^(1/16) 6308803769302664 a001 105937/620166*28143753123^(3/20) 6308803769302664 a001 832040/710647*599074578^(1/12) 6308803769302664 a001 105937/620166*228826127^(3/16) 6308803769302665 a001 105937/620166*33385282^(5/24) 6308803769303120 a001 105937/620166*1860498^(1/4) 6308803769303808 a001 514229/710647*439204^(1/6) 6308803769303997 a001 2178309/54018521*439204^(7/18) 6308803769304138 a001 105937/29134601*3010349^(1/2) 6308803769304216 a001 311187/101521*7881196^(1/22) 6308803769304221 a001 317811/4870847*817138163596^(1/6) 6308803769304221 a001 317811/4870847*87403803^(1/4) 6308803769304221 a001 311187/101521*33385282^(1/24) 6308803769304222 a001 5702887/141422324*439204^(7/18) 6308803769304226 a001 832040/710647*710647^(1/8) 6308803769304255 a001 14930352/370248451*439204^(7/18) 6308803769304260 a001 39088169/969323029*439204^(7/18) 6308803769304260 a001 9303105/230701876*439204^(7/18) 6308803769304260 a001 267914296/6643838879*439204^(7/18) 6308803769304260 a001 701408733/17393796001*439204^(7/18) 6308803769304260 a001 1836311903/45537549124*439204^(7/18) 6308803769304260 a001 4807526976/119218851371*439204^(7/18) 6308803769304260 a001 1144206275/28374454999*439204^(7/18) 6308803769304260 a001 32951280099/817138163596*439204^(7/18) 6308803769304260 a001 86267571272/2139295485799*439204^(7/18) 6308803769304260 a001 225851433717/5600748293801*439204^(7/18) 6308803769304260 a001 591286729879/14662949395604*439204^(7/18) 6308803769304260 a001 365435296162/9062201101803*439204^(7/18) 6308803769304260 a001 139583862445/3461452808002*439204^(7/18) 6308803769304260 a001 53316291173/1322157322203*439204^(7/18) 6308803769304260 a001 20365011074/505019158607*439204^(7/18) 6308803769304260 a001 7778742049/192900153618*439204^(7/18) 6308803769304260 a001 2971215073/73681302247*439204^(7/18) 6308803769304260 a001 1134903170/28143753123*439204^(7/18) 6308803769304260 a001 433494437/10749957122*439204^(7/18) 6308803769304260 a001 165580141/4106118243*439204^(7/18) 6308803769304261 a001 63245986/1568397607*439204^(7/18) 6308803769304263 a001 24157817/599074578*439204^(7/18) 6308803769304275 a001 9227465/228826127*439204^(7/18) 6308803769304312 a001 311187/101521*1860498^(1/20) 6308803769304361 a001 3524578/87403803*439204^(7/18) 6308803769304390 a001 105937/64300051206*7881196^(21/22) 6308803769304399 a001 317811/45537549124*7881196^(19/22) 6308803769304402 a001 105937/9381251041*7881196^(5/6) 6308803769304408 a001 317811/10749957122*7881196^(17/22) 6308803769304418 a001 317811/2537720636*7881196^(15/22) 6308803769304427 a001 377/710646*7881196^(13/22) 6308803769304436 a001 317811/141422324*7881196^(1/2) 6308803769304440 a001 317811/33385282*7881196^(9/22) 6308803769304448 a001 105937/4250681*4106118243^(1/4) 6308803769304473 a001 317811/312119004989*20633239^(13/14) 6308803769304473 a001 105937/64300051206*20633239^(9/10) 6308803769304475 a001 105937/9381251041*20633239^(11/14) 6308803769304476 a001 317811/6643838879*20633239^(7/10) 6308803769304477 a001 317811/2537720636*20633239^(9/14) 6308803769304479 a001 317811/228826127*20633239^(1/2) 6308803769304481 a001 317811/33385282*2537720636^(3/10) 6308803769304481 a001 317811/33385282*14662949395604^(3/14) 6308803769304481 a001 317811/33385282*192900153618^(1/4) 6308803769304483 a001 317811/33385282*33385282^(3/8) 6308803769304486 a001 317811/370248451*54018521^(1/2) 6308803769304486 a001 105937/29134601*9062201101803^(1/4) 6308803769304487 a001 317811/312119004989*141422324^(5/6) 6308803769304487 a001 377/710646*141422324^(1/2) 6308803769304487 a001 317811/228826127*2537720636^(7/18) 6308803769304487 a001 317811/228826127*17393796001^(5/14) 6308803769304487 a001 317811/228826127*312119004989^(7/22) 6308803769304487 a001 317811/228826127*14662949395604^(5/18) 6308803769304487 a001 317811/228826127*505019158607^(5/16) 6308803769304487 a001 317811/228826127*28143753123^(7/20) 6308803769304487 a001 317811/228826127*599074578^(5/12) 6308803769304487 a001 317811/228826127*228826127^(7/16) 6308803769304487 a001 377/710646*73681302247^(3/8) 6308803769304487 a001 317811/969323029*370248451^(1/2) 6308803769304487 a001 317811/1568397607*969323029^(1/2) 6308803769304487 a001 10959/505618944676*2537720636^(9/10) 6308803769304487 a001 317811/3461452808002*2537720636^(5/6) 6308803769304487 a001 317811/312119004989*2537720636^(13/18) 6308803769304487 a001 105937/64300051206*2537720636^(7/10) 6308803769304487 a001 105937/9381251041*2537720636^(11/18) 6308803769304487 a001 105937/1368706081*6643838879^(1/2) 6308803769304487 a001 317811/10749957122*45537549124^(1/2) 6308803769304487 a001 317811/5600748293801*17393796001^(11/14) 6308803769304487 a001 105937/64300051206*17393796001^(9/14) 6308803769304487 a001 105937/9381251041*312119004989^(1/2) 6308803769304487 a001 105937/9381251041*3461452808002^(11/24) 6308803769304487 a001 105937/9381251041*28143753123^(11/20) 6308803769304487 a001 317811/73681302247*2139295485799^(1/2) 6308803769304487 a001 105937/64300051206*14662949395604^(1/2) 6308803769304487 a001 105937/64300051206*505019158607^(9/16) 6308803769304487 a001 105937/64300051206*192900153618^(7/12) 6308803769304487 a001 317811/3461452808002*312119004989^(15/22) 6308803769304487 a001 10959/505618944676*14662949395604^(9/14) 6308803769304487 a001 317811/5600748293801*14662949395604^(11/18) 6308803769304487 a001 317811/312119004989*312119004989^(13/22) 6308803769304487 a001 317811/312119004989*3461452808002^(13/24) 6308803769304487 a001 10959/505618944676*192900153618^(3/4) 6308803769304487 a001 317811/119218851371*5600748293801^(1/2) 6308803769304487 a001 317811/312119004989*73681302247^(5/8) 6308803769304487 a001 317811/45537549124*817138163596^(1/2) 6308803769304487 a001 317811/312119004989*28143753123^(13/20) 6308803769304487 a001 317811/3461452808002*28143753123^(3/4) 6308803769304487 a001 10959/599786069*119218851371^(1/2) 6308803769304487 a001 317811/6643838879*17393796001^(1/2) 6308803769304487 a001 317811/6643838879*14662949395604^(7/18) 6308803769304487 a001 317811/6643838879*505019158607^(7/16) 6308803769304487 a001 317811/817138163596*4106118243^(3/4) 6308803769304487 a001 317811/2537720636*2537720636^(1/2) 6308803769304487 a001 317811/2537720636*312119004989^(9/22) 6308803769304487 a001 317811/2537720636*14662949395604^(5/14) 6308803769304487 a001 317811/2537720636*192900153618^(5/12) 6308803769304487 a001 317811/2537720636*28143753123^(9/20) 6308803769304487 a001 105937/9381251041*1568397607^(5/8) 6308803769304487 a001 317811/5600748293801*1568397607^(7/8) 6308803769304487 a001 317811/6643838879*599074578^(7/12) 6308803769304487 a001 105937/64300051206*599074578^(3/4) 6308803769304487 a001 317811/5600748293801*599074578^(11/12) 6308803769304487 a001 317811/2537720636*228826127^(9/16) 6308803769304487 a001 105937/9381251041*228826127^(11/16) 6308803769304487 a001 317811/312119004989*228826127^(13/16) 6308803769304487 a001 317811/3461452808002*228826127^(15/16) 6308803769304487 a001 317811/141422324*312119004989^(3/10) 6308803769304487 a001 317811/141422324*1568397607^(3/8) 6308803769304487 a001 317811/45537549124*87403803^(3/4) 6308803769304489 a001 317811/54018521*1322157322203^(1/4) 6308803769304490 a001 317811/141422324*33385282^(11/24) 6308803769304490 a001 377/710646*33385282^(13/24) 6308803769304490 a001 317811/2537720636*33385282^(5/8) 6308803769304491 a001 317811/10749957122*33385282^(17/24) 6308803769304491 a001 317811/45537549124*33385282^(19/24) 6308803769304492 a001 105937/64300051206*33385282^(7/8) 6308803769304492 a001 317811/817138163596*33385282^(23/24) 6308803769304496 a001 10959/711491*20633239^(5/14) 6308803769304502 a001 10959/711491*2537720636^(5/18) 6308803769304502 a001 10959/711491*312119004989^(5/22) 6308803769304502 a001 10959/711491*3461452808002^(5/24) 6308803769304502 a001 10959/711491*28143753123^(1/4) 6308803769304502 a001 10959/711491*228826127^(5/16) 6308803769304516 a001 317811/10749957122*12752043^(3/4) 6308803769304556 a001 317811/7881196*7881196^(7/22) 6308803769304584 a001 317811/7881196*20633239^(3/10) 6308803769304588 a001 317811/7881196*17393796001^(3/14) 6308803769304588 a001 317811/7881196*14662949395604^(1/6) 6308803769304588 a001 317811/7881196*599074578^(1/4) 6308803769304590 a001 317811/7881196*33385282^(7/24) 6308803769304951 a001 1346269/33385282*439204^(7/18) 6308803769305182 a001 1346269/710647*20633239^(1/14) 6308803769305183 a001 1346269/710647*2537720636^(1/18) 6308803769305183 a001 317811/3010349*45537549124^(1/6) 6308803769305183 a001 1346269/710647*312119004989^(1/22) 6308803769305183 a001 1346269/710647*28143753123^(1/20) 6308803769305183 a001 1346269/710647*228826127^(1/16) 6308803769305193 a001 317811/3010349*12752043^(1/4) 6308803769305226 a001 317811/7881196*1860498^(7/20) 6308803769305261 a001 10959/711491*1860498^(5/12) 6308803769305301 a001 317811/33385282*1860498^(9/20) 6308803769305335 a001 1346269/710647*1860498^(1/12) 6308803769305400 a001 514229/54018521*439204^(1/2) 6308803769305490 a001 317811/141422324*1860498^(11/20) 6308803769305550 a001 317811/228826127*1860498^(7/12) 6308803769305671 a001 377/710646*1860498^(13/20) 6308803769305806 a001 832040/4870847*439204^(5/18) 6308803769305854 a001 317811/2537720636*1860498^(3/4) 6308803769306036 a001 317811/10749957122*1860498^(17/20) 6308803769306157 a001 105937/9381251041*1860498^(11/12) 6308803769306218 a001 317811/45537549124*1860498^(19/20) 6308803769307590 a001 726103/4250681*439204^(5/18) 6308803769307850 a001 5702887/33385282*439204^(5/18) 6308803769307888 a001 4976784/29134601*439204^(5/18) 6308803769307893 a001 39088169/228826127*439204^(5/18) 6308803769307894 a001 34111385/199691526*439204^(5/18) 6308803769307894 a001 267914296/1568397607*439204^(5/18) 6308803769307894 a001 233802911/1368706081*439204^(5/18) 6308803769307894 a001 1836311903/10749957122*439204^(5/18) 6308803769307894 a001 1602508992/9381251041*439204^(5/18) 6308803769307894 a001 12586269025/73681302247*439204^(5/18) 6308803769307894 a001 10983760033/64300051206*439204^(5/18) 6308803769307894 a001 86267571272/505019158607*439204^(5/18) 6308803769307894 a001 75283811239/440719107401*439204^(5/18) 6308803769307894 a001 2504730781961/14662949395604*439204^(5/18) 6308803769307894 a001 139583862445/817138163596*439204^(5/18) 6308803769307894 a001 53316291173/312119004989*439204^(5/18) 6308803769307894 a001 20365011074/119218851371*439204^(5/18) 6308803769307894 a001 7778742049/45537549124*439204^(5/18) 6308803769307894 a001 2971215073/17393796001*439204^(5/18) 6308803769307894 a001 1134903170/6643838879*439204^(5/18) 6308803769307894 a001 433494437/2537720636*439204^(5/18) 6308803769307894 a001 165580141/969323029*439204^(5/18) 6308803769307895 a001 63245986/370248451*439204^(5/18) 6308803769307897 a001 24157817/141422324*439204^(5/18) 6308803769307911 a001 9227465/54018521*439204^(5/18) 6308803769308011 a001 3524578/20633239*439204^(5/18) 6308803769308692 a001 1346269/7881196*439204^(5/18) 6308803769308993 a001 514229/12752043*439204^(7/18) 6308803769309245 a001 514229/710647*7881196^(3/22) 6308803769309258 a001 317811/1149851*141422324^(1/6) 6308803769309258 a001 514229/710647*2537720636^(1/10) 6308803769309258 a001 514229/710647*14662949395604^(1/14) 6308803769309258 a001 514229/710647*192900153618^(1/12) 6308803769309258 a001 317811/1149851*73681302247^(1/8) 6308803769309259 a001 514229/710647*33385282^(1/8) 6308803769309273 a001 317811/7881196*710647^(3/8) 6308803769309532 a001 514229/710647*1860498^(3/20) 6308803769310402 a001 1346269/1860498*439204^(1/6) 6308803769311364 a001 3524578/4870847*439204^(1/6) 6308803769311504 a001 9227465/12752043*439204^(1/6) 6308803769311525 a001 24157817/33385282*439204^(1/6) 6308803769311528 a001 63245986/87403803*439204^(1/6) 6308803769311528 a001 165580141/228826127*439204^(1/6) 6308803769311528 a001 433494437/599074578*439204^(1/6) 6308803769311528 a001 1134903170/1568397607*439204^(1/6) 6308803769311528 a001 2971215073/4106118243*439204^(1/6) 6308803769311528 a001 7778742049/10749957122*439204^(1/6) 6308803769311528 a001 20365011074/28143753123*439204^(1/6) 6308803769311528 a001 53316291173/73681302247*439204^(1/6) 6308803769311528 a001 139583862445/192900153618*439204^(1/6) 6308803769311528 a001 365435296162/505019158607*439204^(1/6) 6308803769311528 a001 10610209857723/14662949395604*439204^(1/6) 6308803769311528 a001 591286729879/817138163596*439204^(1/6) 6308803769311528 a001 225851433717/312119004989*439204^(1/6) 6308803769311528 a001 86267571272/119218851371*439204^(1/6) 6308803769311528 a001 32951280099/45537549124*439204^(1/6) 6308803769311528 a001 12586269025/17393796001*439204^(1/6) 6308803769311528 a001 4807526976/6643838879*439204^(1/6) 6308803769311528 a001 1836311903/2537720636*439204^(1/6) 6308803769311528 a001 701408733/969323029*439204^(1/6) 6308803769311528 a001 267914296/370248451*439204^(1/6) 6308803769311528 a001 102334155/141422324*439204^(1/6) 6308803769311529 a001 39088169/54018521*439204^(1/6) 6308803769311537 a001 14930352/20633239*439204^(1/6) 6308803769311591 a001 5702887/7881196*439204^(1/6) 6308803769311958 a001 2178309/3010349*439204^(1/6) 6308803769312294 a001 317811/228826127*710647^(5/8) 6308803769312771 a001 208010/35355581*1149851^(1/2) 6308803769313301 a001 5702887/1860498*439204^(1/18) 6308803769313317 a001 416020/930249*7881196^(1/6) 6308803769313334 a001 416020/930249*312119004989^(1/10) 6308803769313334 a001 416020/930249*1568397607^(1/8) 6308803769313362 a001 514229/3010349*439204^(5/18) 6308803769314327 a001 2178309/370248451*1149851^(1/2) 6308803769314477 a001 832040/1149851*439204^(1/6) 6308803769314554 a001 5702887/969323029*1149851^(1/2) 6308803769314588 a001 196452/33391061*1149851^(1/2) 6308803769314592 a001 39088169/6643838879*1149851^(1/2) 6308803769314593 a001 102334155/17393796001*1149851^(1/2) 6308803769314593 a001 66978574/11384387281*1149851^(1/2) 6308803769314593 a001 701408733/119218851371*1149851^(1/2) 6308803769314593 a001 1836311903/312119004989*1149851^(1/2) 6308803769314593 a001 1201881744/204284540899*1149851^(1/2) 6308803769314593 a001 12586269025/2139295485799*1149851^(1/2) 6308803769314593 a001 32951280099/5600748293801*1149851^(1/2) 6308803769314593 a001 1135099622/192933544679*1149851^(1/2) 6308803769314593 a001 139583862445/23725150497407*1149851^(1/2) 6308803769314593 a001 53316291173/9062201101803*1149851^(1/2) 6308803769314593 a001 10182505537/1730726404001*1149851^(1/2) 6308803769314593 a001 7778742049/1322157322203*1149851^(1/2) 6308803769314593 a001 2971215073/505019158607*1149851^(1/2) 6308803769314593 a001 567451585/96450076809*1149851^(1/2) 6308803769314593 a001 433494437/73681302247*1149851^(1/2) 6308803769314593 a001 165580141/28143753123*1149851^(1/2) 6308803769314594 a001 31622993/5374978561*1149851^(1/2) 6308803769314595 a001 24157817/4106118243*1149851^(1/2) 6308803769314608 a001 9227465/1568397607*1149851^(1/2) 6308803769314695 a001 1762289/299537289*1149851^(1/2) 6308803769314808 a001 832040/228826127*3010349^(1/2) 6308803769314867 a001 832040/4870847*7881196^(5/22) 6308803769314887 a001 832040/4870847*20633239^(3/14) 6308803769314889 a001 726103/620166*20633239^(1/10) 6308803769314890 a001 14930352/4870847*439204^(1/18) 6308803769314891 a001 832040/4870847*2537720636^(1/6) 6308803769314891 a001 726103/620166*17393796001^(1/14) 6308803769314891 a001 726103/620166*14662949395604^(1/18) 6308803769314891 a001 726103/620166*505019158607^(1/16) 6308803769314891 a001 832040/4870847*28143753123^(3/20) 6308803769314891 a001 726103/620166*599074578^(1/12) 6308803769314891 a001 832040/4870847*228826127^(3/16) 6308803769314892 a001 832040/4870847*33385282^(5/24) 6308803769315059 a001 832040/505019158607*7881196^(21/22) 6308803769315069 a001 832040/119218851371*7881196^(19/22) 6308803769315072 a001 832040/73681302247*7881196^(5/6) 6308803769315078 a001 832040/28143753123*7881196^(17/22) 6308803769315087 a001 832040/6643838879*7881196^(15/22) 6308803769315096 a001 832040/1568397607*7881196^(13/22) 6308803769315106 a001 832040/370248451*7881196^(1/2) 6308803769315113 a001 5702887/1860498*7881196^(1/22) 6308803769315114 a001 832040/87403803*7881196^(9/22) 6308803769315118 a001 832040/12752043*817138163596^(1/6) 6308803769315118 a001 832040/12752043*87403803^(1/4) 6308803769315118 a001 5702887/1860498*33385282^(1/24) 6308803769315122 a001 39088169/12752043*439204^(1/18) 6308803769315139 a001 75640/1875749*7881196^(7/22) 6308803769315143 a001 208010/204284540899*20633239^(13/14) 6308803769315143 a001 832040/505019158607*20633239^(9/10) 6308803769315145 a001 832040/73681302247*20633239^(11/14) 6308803769315146 a001 832040/17393796001*20633239^(7/10) 6308803769315147 a001 832040/6643838879*20633239^(9/14) 6308803769315149 a001 416020/299537289*20633239^(1/2) 6308803769315151 a001 416020/16692641*4106118243^(1/4) 6308803769315153 a001 832040/54018521*20633239^(5/14) 6308803769315155 a001 832040/969323029*54018521^(1/2) 6308803769315156 a001 832040/87403803*2537720636^(3/10) 6308803769315156 a001 832040/87403803*14662949395604^(3/14) 6308803769315156 a001 832040/87403803*192900153618^(1/4) 6308803769315156 a001 208010/204284540899*141422324^(5/6) 6308803769315156 a001 832040/1568397607*141422324^(1/2) 6308803769315156 a001 14619165/4769326*439204^(1/18) 6308803769315156 a001 832040/228826127*9062201101803^(1/4) 6308803769315156 a001 610/1860499*370248451^(1/2) 6308803769315156 a001 416020/299537289*2537720636^(7/18) 6308803769315156 a001 416020/299537289*17393796001^(5/14) 6308803769315156 a001 416020/299537289*312119004989^(7/22) 6308803769315156 a001 416020/299537289*14662949395604^(5/18) 6308803769315156 a001 416020/299537289*505019158607^(5/16) 6308803769315156 a001 416020/299537289*28143753123^(7/20) 6308803769315156 a001 416020/299537289*599074578^(5/12) 6308803769315156 a001 832040/4106118243*969323029^(1/2) 6308803769315156 a001 832040/1568397607*73681302247^(3/8) 6308803769315156 a001 832040/9062201101803*2537720636^(5/6) 6308803769315156 a001 208010/204284540899*2537720636^(13/18) 6308803769315156 a001 832040/505019158607*2537720636^(7/10) 6308803769315156 a001 832040/73681302247*2537720636^(11/18) 6308803769315156 a001 832040/6643838879*2537720636^(1/2) 6308803769315156 a001 416020/5374978561*6643838879^(1/2) 6308803769315156 a001 208010/3665737348901*17393796001^(11/14) 6308803769315156 a001 832040/505019158607*17393796001^(9/14) 6308803769315156 a001 832040/28143753123*45537549124^(1/2) 6308803769315156 a001 832040/73681302247*312119004989^(1/2) 6308803769315156 a001 832040/73681302247*3461452808002^(11/24) 6308803769315156 a001 416020/96450076809*2139295485799^(1/2) 6308803769315156 a001 832040/9062201101803*312119004989^(15/22) 6308803769315156 a001 208010/204284540899*312119004989^(13/22) 6308803769315156 a001 832040/505019158607*14662949395604^(1/2) 6308803769315156 a001 832040/505019158607*505019158607^(9/16) 6308803769315156 a001 208010/3665737348901*14662949395604^(11/18) 6308803769315156 a001 208010/204284540899*3461452808002^(13/24) 6308803769315156 a001 208010/3665737348901*505019158607^(11/16) 6308803769315156 a001 75640/28374454999*5600748293801^(1/2) 6308803769315156 a001 832040/505019158607*192900153618^(7/12) 6308803769315156 a001 832040/119218851371*817138163596^(1/2) 6308803769315156 a001 208010/204284540899*73681302247^(5/8) 6308803769315156 a001 208010/11384387281*119218851371^(1/2) 6308803769315156 a001 832040/73681302247*28143753123^(11/20) 6308803769315156 a001 208010/204284540899*28143753123^(13/20) 6308803769315156 a001 832040/9062201101803*28143753123^(3/4) 6308803769315156 a001 832040/17393796001*17393796001^(1/2) 6308803769315156 a001 832040/17393796001*14662949395604^(7/18) 6308803769315156 a001 832040/17393796001*505019158607^(7/16) 6308803769315156 a001 832040/6643838879*312119004989^(9/22) 6308803769315156 a001 832040/6643838879*14662949395604^(5/14) 6308803769315156 a001 832040/6643838879*192900153618^(5/12) 6308803769315156 a001 832040/6643838879*28143753123^(9/20) 6308803769315156 a001 832040/2139295485799*4106118243^(3/4) 6308803769315156 a001 832040/73681302247*1568397607^(5/8) 6308803769315156 a001 208010/3665737348901*1568397607^(7/8) 6308803769315156 a001 832040/17393796001*599074578^(7/12) 6308803769315156 a001 832040/505019158607*599074578^(3/4) 6308803769315156 a001 208010/3665737348901*599074578^(11/12) 6308803769315156 a001 416020/299537289*228826127^(7/16) 6308803769315156 a001 832040/370248451*312119004989^(3/10) 6308803769315156 a001 832040/370248451*1568397607^(3/8) 6308803769315156 a001 832040/6643838879*228826127^(9/16) 6308803769315156 a001 832040/73681302247*228826127^(11/16) 6308803769315157 a001 208010/204284540899*228826127^(13/16) 6308803769315157 a001 832040/9062201101803*228826127^(15/16) 6308803769315157 a001 208010/35355581*1322157322203^(1/4) 6308803769315157 a001 832040/119218851371*87403803^(3/4) 6308803769315158 a001 832040/87403803*33385282^(3/8) 6308803769315159 a001 832040/54018521*2537720636^(5/18) 6308803769315159 a001 832040/54018521*312119004989^(5/22) 6308803769315159 a001 832040/54018521*3461452808002^(5/24) 6308803769315159 a001 832040/54018521*28143753123^(1/4) 6308803769315159 a001 832040/54018521*228826127^(5/16) 6308803769315159 a001 832040/370248451*33385282^(11/24) 6308803769315159 a001 832040/1568397607*33385282^(13/24) 6308803769315160 a001 832040/6643838879*33385282^(5/8) 6308803769315160 a001 832040/28143753123*33385282^(17/24) 6308803769315161 a001 832040/119218851371*33385282^(19/24) 6308803769315161 a001 267914296/87403803*439204^(1/18) 6308803769315161 a001 832040/505019158607*33385282^(7/8) 6308803769315162 a001 832040/2139295485799*33385282^(23/24) 6308803769315162 a001 701408733/228826127*439204^(1/18) 6308803769315162 a001 1836311903/599074578*439204^(1/18) 6308803769315162 a001 686789568/224056801*439204^(1/18) 6308803769315162 a001 12586269025/4106118243*439204^(1/18) 6308803769315162 a001 32951280099/10749957122*439204^(1/18) 6308803769315162 a001 86267571272/28143753123*439204^(1/18) 6308803769315162 a001 32264490531/10525900321*439204^(1/18) 6308803769315162 a001 591286729879/192900153618*439204^(1/18) 6308803769315162 a001 1548008755920/505019158607*439204^(1/18) 6308803769315162 a001 1515744265389/494493258286*439204^(1/18) 6308803769315162 a001 2504730781961/817138163596*439204^(1/18) 6308803769315162 a001 956722026041/312119004989*439204^(1/18) 6308803769315162 a001 365435296162/119218851371*439204^(1/18) 6308803769315162 a001 139583862445/45537549124*439204^(1/18) 6308803769315162 a001 53316291173/17393796001*439204^(1/18) 6308803769315162 a001 20365011074/6643838879*439204^(1/18) 6308803769315162 a001 7778742049/2537720636*439204^(1/18) 6308803769315162 a001 2971215073/969323029*439204^(1/18) 6308803769315162 a001 1134903170/370248451*439204^(1/18) 6308803769315162 a001 433494437/141422324*439204^(1/18) 6308803769315164 a001 165580141/54018521*439204^(1/18) 6308803769315167 a001 75640/1875749*20633239^(3/10) 6308803769315171 a001 75640/1875749*17393796001^(3/14) 6308803769315171 a001 75640/1875749*14662949395604^(1/6) 6308803769315171 a001 75640/1875749*599074578^(1/4) 6308803769315173 a001 75640/1875749*33385282^(7/24) 6308803769315177 a001 63245986/20633239*439204^(1/18) 6308803769315186 a001 832040/28143753123*12752043^(3/4) 6308803769315209 a001 5702887/1860498*1860498^(1/20) 6308803769315257 a001 1762289/930249*20633239^(1/14) 6308803769315258 a001 1762289/930249*2537720636^(1/18) 6308803769315258 a001 208010/1970299*45537549124^(1/6) 6308803769315258 a001 1762289/930249*312119004989^(1/22) 6308803769315258 a001 1762289/930249*28143753123^(1/20) 6308803769315258 a001 1762289/930249*228826127^(1/16) 6308803769315266 a001 24157817/7881196*439204^(1/18) 6308803769315268 a001 208010/1970299*12752043^(1/4) 6308803769315289 a001 1346269/228826127*1149851^(1/2) 6308803769315346 a001 832040/4870847*1860498^(1/4) 6308803769315410 a001 1762289/930249*1860498^(1/12) 6308803769315417 a001 317811/6643838879*710647^(7/8) 6308803769315809 a001 75640/1875749*1860498^(7/20) 6308803769315839 a001 1346269/1860498*7881196^(3/22) 6308803769315853 a001 832040/3010349*141422324^(1/6) 6308803769315853 a001 1346269/1860498*2537720636^(1/10) 6308803769315853 a001 1346269/1860498*14662949395604^(1/14) 6308803769315853 a001 1346269/1860498*192900153618^(1/12) 6308803769315853 a001 832040/3010349*73681302247^(1/8) 6308803769315853 a001 1346269/1860498*33385282^(1/8) 6308803769315873 a001 9227465/3010349*439204^(1/18) 6308803769315918 a001 832040/54018521*1860498^(5/12) 6308803769315976 a001 832040/87403803*1860498^(9/20) 6308803769316126 a001 1346269/1860498*1860498^(3/20) 6308803769316159 a001 832040/370248451*1860498^(11/20) 6308803769316220 a001 416020/299537289*1860498^(7/12) 6308803769316341 a001 832040/1568397607*1860498^(13/20) 6308803769316365 a001 726103/199691526*3010349^(1/2) 6308803769316430 a001 2178309/4870847*7881196^(1/6) 6308803769316447 a001 2178309/4870847*312119004989^(1/10) 6308803769316447 a001 2178309/4870847*1568397607^(1/8) 6308803769316452 a001 726103/620166*710647^(1/8) 6308803769316523 a001 832040/6643838879*1860498^(3/4) 6308803769316592 a001 5702887/1568397607*3010349^(1/2) 6308803769316616 a001 726103/440719107401*7881196^(21/22) 6308803769316625 a001 4976784/1368706081*3010349^(1/2) 6308803769316625 a001 2178309/312119004989*7881196^(19/22) 6308803769316628 a001 726103/64300051206*7881196^(5/6) 6308803769316630 a001 39088169/10749957122*3010349^(1/2) 6308803769316631 a001 831985/228811001*3010349^(1/2) 6308803769316631 a001 267914296/73681302247*3010349^(1/2) 6308803769316631 a001 233802911/64300051206*3010349^(1/2) 6308803769316631 a001 1836311903/505019158607*3010349^(1/2) 6308803769316631 a001 1602508992/440719107401*3010349^(1/2) 6308803769316631 a001 12586269025/3461452808002*3010349^(1/2) 6308803769316631 a001 10983760033/3020733700601*3010349^(1/2) 6308803769316631 a001 86267571272/23725150497407*3010349^(1/2) 6308803769316631 a001 53316291173/14662949395604*3010349^(1/2) 6308803769316631 a001 20365011074/5600748293801*3010349^(1/2) 6308803769316631 a001 7778742049/2139295485799*3010349^(1/2) 6308803769316631 a001 2971215073/817138163596*3010349^(1/2) 6308803769316631 a001 1134903170/312119004989*3010349^(1/2) 6308803769316631 a001 433494437/119218851371*3010349^(1/2) 6308803769316631 a001 165580141/45537549124*3010349^(1/2) 6308803769316631 a001 63245986/17393796001*3010349^(1/2) 6308803769316633 a001 24157817/6643838879*3010349^(1/2) 6308803769316635 a001 311187/10525900321*7881196^(17/22) 6308803769316644 a001 2178309/17393796001*7881196^(15/22) 6308803769316646 a001 9227465/2537720636*3010349^(1/2) 6308803769316651 a001 726103/4250681*7881196^(5/22) 6308803769316653 a001 726103/1368706081*7881196^(13/22) 6308803769316662 a001 2178309/969323029*7881196^(1/2) 6308803769316671 a001 726103/4250681*20633239^(3/14) 6308803769316671 a001 46347/4868641*7881196^(9/22) 6308803769316673 a001 5702887/4870847*20633239^(1/10) 6308803769316674 a001 726103/4250681*2537720636^(1/6) 6308803769316674 a001 5702887/4870847*17393796001^(1/14) 6308803769316674 a001 726103/4250681*312119004989^(3/22) 6308803769316674 a001 5702887/4870847*14662949395604^(1/18) 6308803769316674 a001 5702887/4870847*505019158607^(1/16) 6308803769316674 a001 726103/4250681*28143753123^(3/20) 6308803769316674 a001 5702887/4870847*599074578^(1/12) 6308803769316674 a001 726103/4250681*228826127^(3/16) 6308803769316675 a001 726103/4250681*33385282^(5/24) 6308803769316683 a001 2178309/54018521*7881196^(7/22) 6308803769316699 a001 2178309/2139295485799*20633239^(13/14) 6308803769316700 a001 726103/440719107401*20633239^(9/10) 6308803769316701 a001 726103/64300051206*20633239^(11/14) 6308803769316703 a001 2178309/45537549124*20633239^(7/10) 6308803769316703 a001 14930352/4870847*7881196^(1/22) 6308803769316704 a001 2178309/17393796001*20633239^(9/14) 6308803769316706 a001 832040/28143753123*1860498^(17/20) 6308803769316706 a001 311187/224056801*20633239^(1/2) 6308803769316707 a001 311187/4769326*817138163596^(1/6) 6308803769316708 a001 311187/4769326*87403803^(1/4) 6308803769316708 a001 14930352/4870847*33385282^(1/24) 6308803769316708 a001 2178309/141422324*20633239^(5/14) 6308803769316711 a001 2178309/54018521*20633239^(3/10) 6308803769316712 a001 2178309/2537720636*54018521^(1/2) 6308803769316712 a001 726103/29134601*4106118243^(1/4) 6308803769316713 a001 2178309/2139295485799*141422324^(5/6) 6308803769316713 a001 726103/1368706081*141422324^(1/2) 6308803769316713 a001 46347/4868641*2537720636^(3/10) 6308803769316713 a001 46347/4868641*14662949395604^(3/14) 6308803769316713 a001 46347/4868641*192900153618^(1/4) 6308803769316713 a001 2178309/6643838879*370248451^(1/2) 6308803769316713 a001 726103/199691526*9062201101803^(1/4) 6308803769316713 a001 987/4870846*969323029^(1/2) 6308803769316713 a001 311187/224056801*2537720636^(7/18) 6308803769316713 a001 311187/224056801*17393796001^(5/14) 6308803769316713 a001 311187/224056801*312119004989^(7/22) 6308803769316713 a001 311187/224056801*14662949395604^(5/18) 6308803769316713 a001 311187/224056801*505019158607^(5/16) 6308803769316713 a001 311187/224056801*28143753123^(7/20) 6308803769316713 a001 2178309/23725150497407*2537720636^(5/6) 6308803769316713 a001 2178309/2139295485799*2537720636^(13/18) 6308803769316713 a001 726103/440719107401*2537720636^(7/10) 6308803769316713 a001 726103/64300051206*2537720636^(11/18) 6308803769316713 a001 2178309/17393796001*2537720636^(1/2) 6308803769316713 a001 726103/1368706081*73681302247^(3/8) 6308803769316713 a001 726103/9381251041*6643838879^(1/2) 6308803769316713 a001 726103/440719107401*17393796001^(9/14) 6308803769316713 a001 2178309/45537549124*17393796001^(1/2) 6308803769316713 a001 311187/10525900321*45537549124^(1/2) 6308803769316713 a001 726103/64300051206*312119004989^(1/2) 6308803769316713 a001 726103/64300051206*3461452808002^(11/24) 6308803769316713 a001 2178309/23725150497407*312119004989^(15/22) 6308803769316713 a001 2178309/2139295485799*312119004989^(13/22) 6308803769316713 a001 46347/10745088481*2139295485799^(1/2) 6308803769316713 a006 5^(1/2)*Fibonacci(75/2)/Lucas(32)/sqrt(5) 6308803769316713 a001 2178309/23725150497407*3461452808002^(5/8) 6308803769316713 a001 2178309/2139295485799*3461452808002^(13/24) 6308803769316713 a001 2178309/312119004989*817138163596^(1/2) 6308803769316713 a001 726103/440719107401*192900153618^(7/12) 6308803769316713 a001 2178309/119218851371*119218851371^(1/2) 6308803769316713 a001 2178309/2139295485799*73681302247^(5/8) 6308803769316713 a001 2178309/45537549124*14662949395604^(7/18) 6308803769316713 a001 2178309/45537549124*505019158607^(7/16) 6308803769316713 a001 726103/64300051206*28143753123^(11/20) 6308803769316713 a001 2178309/2139295485799*28143753123^(13/20) 6308803769316713 a001 2178309/23725150497407*28143753123^(3/4) 6308803769316713 a001 2178309/17393796001*312119004989^(9/22) 6308803769316713 a001 2178309/17393796001*14662949395604^(5/14) 6308803769316713 a001 2178309/17393796001*192900153618^(5/12) 6308803769316713 a001 2178309/17393796001*28143753123^(9/20) 6308803769316713 a001 2178309/5600748293801*4106118243^(3/4) 6308803769316713 a001 726103/64300051206*1568397607^(5/8) 6308803769316713 a001 311187/224056801*599074578^(5/12) 6308803769316713 a001 2178309/969323029*312119004989^(3/10) 6308803769316713 a001 2178309/969323029*1568397607^(3/8) 6308803769316713 a001 2178309/45537549124*599074578^(7/12) 6308803769316713 a001 726103/440719107401*599074578^(3/4) 6308803769316713 a001 2178309/370248451*1322157322203^(1/4) 6308803769316713 a001 311187/224056801*228826127^(7/16) 6308803769316713 a001 2178309/17393796001*228826127^(9/16) 6308803769316713 a001 726103/64300051206*228826127^(11/16) 6308803769316713 a001 2178309/2139295485799*228826127^(13/16) 6308803769316713 a001 2178309/23725150497407*228826127^(15/16) 6308803769316713 a001 2178309/141422324*2537720636^(5/18) 6308803769316713 a001 2178309/141422324*312119004989^(5/22) 6308803769316713 a001 2178309/141422324*3461452808002^(5/24) 6308803769316713 a001 2178309/141422324*28143753123^(1/4) 6308803769316713 a001 2178309/141422324*228826127^(5/16) 6308803769316714 a001 2178309/312119004989*87403803^(3/4) 6308803769316714 a006 5^(1/2)*fibonacci(75/2)/Lucas(32)/sqrt(5) 6308803769316715 a001 46347/4868641*33385282^(3/8) 6308803769316715 a001 2178309/54018521*17393796001^(3/14) 6308803769316715 a001 2178309/54018521*14662949395604^(1/6) 6308803769316715 a001 2178309/54018521*599074578^(1/4) 6308803769316716 a001 2178309/969323029*33385282^(11/24) 6308803769316716 a001 726103/1368706081*33385282^(13/24) 6308803769316717 a001 2178309/17393796001*33385282^(5/8) 6308803769316717 a001 2178309/54018521*33385282^(7/24) 6308803769316717 a001 311187/10525900321*33385282^(17/24) 6308803769316718 a001 2178309/312119004989*33385282^(19/24) 6308803769316718 a001 726103/440719107401*33385282^(7/8) 6308803769316719 a001 2178309/5600748293801*33385282^(23/24) 6308803769316727 a001 9227465/4870847*20633239^(1/14) 6308803769316728 a001 9227465/4870847*2537720636^(1/18) 6308803769316728 a001 2178309/20633239*45537549124^(1/6) 6308803769316728 a001 9227465/4870847*312119004989^(1/22) 6308803769316728 a001 9227465/4870847*28143753123^(1/20) 6308803769316728 a001 9227465/4870847*228826127^(1/16) 6308803769316732 a001 3524578/969323029*3010349^(1/2) 6308803769316738 a001 2178309/20633239*12752043^(1/4) 6308803769316742 a001 311187/10525900321*12752043^(3/4) 6308803769316799 a001 14930352/4870847*1860498^(1/20) 6308803769316801 a001 3524578/4870847*7881196^(3/22) 6308803769316815 a001 2178309/7881196*141422324^(1/6) 6308803769316815 a001 3524578/4870847*2537720636^(1/10) 6308803769316815 a001 3524578/4870847*14662949395604^(1/14) 6308803769316815 a001 3524578/4870847*192900153618^(1/12) 6308803769316815 a001 2178309/7881196*73681302247^(1/8) 6308803769316815 a001 3524578/4870847*33385282^(1/8) 6308803769316827 a001 832040/73681302247*1860498^(11/12) 6308803769316843 a001 5702887/3461452808002*7881196^(21/22) 6308803769316852 a001 5702887/817138163596*7881196^(19/22) 6308803769316856 a001 5702887/505019158607*7881196^(5/6) 6308803769316862 a001 5702887/192900153618*7881196^(17/22) 6308803769316871 a001 1597/12752044*7881196^(15/22) 6308803769316876 a001 4976784/3020733700601*7881196^(21/22) 6308803769316880 a001 9227465/4870847*1860498^(1/12) 6308803769316880 a001 5702887/10749957122*7881196^(13/22) 6308803769316881 a001 39088169/23725150497407*7881196^(21/22) 6308803769316884 a001 24157817/14662949395604*7881196^(21/22) 6308803769316884 a001 5702887/12752043*7881196^(1/6) 6308803769316886 a001 14930352/2139295485799*7881196^(19/22) 6308803769316888 a001 832040/119218851371*1860498^(19/20) 6308803769316889 a001 4976784/440719107401*7881196^(5/6) 6308803769316889 a001 5702887/2537720636*7881196^(1/2) 6308803769316890 a001 39088169/5600748293801*7881196^(19/22) 6308803769316891 a001 102334155/14662949395604*7881196^(19/22) 6308803769316891 a001 165580141/23725150497407*7881196^(19/22) 6308803769316892 a001 63245986/9062201101803*7881196^(19/22) 6308803769316893 a001 24157817/3461452808002*7881196^(19/22) 6308803769316894 a001 39088169/3461452808002*7881196^(5/6) 6308803769316894 a001 34111385/3020733700601*7881196^(5/6) 6308803769316894 a001 267914296/23725150497407*7881196^(5/6) 6308803769316894 a001 165580141/14662949395604*7881196^(5/6) 6308803769316895 a001 63245986/5600748293801*7881196^(5/6) 6308803769316895 a001 14930352/505019158607*7881196^(17/22) 6308803769316897 a001 24157817/2139295485799*7881196^(5/6) 6308803769316897 a001 9227465/5600748293801*7881196^(21/22) 6308803769316899 a001 5702887/599074578*7881196^(9/22) 6308803769316900 a001 39088169/1322157322203*7881196^(17/22) 6308803769316900 a001 6765/228826126*7881196^(17/22) 6308803769316900 a001 267914296/9062201101803*7881196^(17/22) 6308803769316901 a001 701408733/23725150497407*7881196^(17/22) 6308803769316901 a001 433494437/14662949395604*7881196^(17/22) 6308803769316901 a001 165580141/5600748293801*7881196^(17/22) 6308803769316901 a001 63245986/2139295485799*7881196^(17/22) 6308803769316901 a001 5702887/12752043*312119004989^(1/10) 6308803769316901 a001 5702887/12752043*1568397607^(1/8) 6308803769316903 a001 24157817/817138163596*7881196^(17/22) 6308803769316904 a001 14930352/119218851371*7881196^(15/22) 6308803769316906 a001 9227465/1322157322203*7881196^(19/22) 6308803769316908 a001 5702887/141422324*7881196^(7/22) 6308803769316909 a001 39088169/312119004989*7881196^(15/22) 6308803769316909 a001 9227465/817138163596*7881196^(5/6) 6308803769316910 a001 102334155/817138163596*7881196^(15/22) 6308803769316910 a001 267914296/2139295485799*7881196^(15/22) 6308803769316910 a001 701408733/5600748293801*7881196^(15/22) 6308803769316910 a001 1836311903/14662949395604*7881196^(15/22) 6308803769316910 a001 2971215073/23725150497407*7881196^(15/22) 6308803769316910 a001 1134903170/9062201101803*7881196^(15/22) 6308803769316910 a001 433494437/3461452808002*7881196^(15/22) 6308803769316910 a001 165580141/1322157322203*7881196^(15/22) 6308803769316910 a001 63245986/505019158607*7881196^(15/22) 6308803769316911 a001 5702887/33385282*7881196^(5/22) 6308803769316912 a001 24157817/192900153618*7881196^(15/22) 6308803769316913 a001 4976784/9381251041*7881196^(13/22) 6308803769316915 a001 9227465/312119004989*7881196^(17/22) 6308803769316918 a001 39088169/73681302247*7881196^(13/22) 6308803769316919 a001 34111385/64300051206*7881196^(13/22) 6308803769316919 a001 267914296/505019158607*7881196^(13/22) 6308803769316919 a001 233802911/440719107401*7881196^(13/22) 6308803769316919 a001 1836311903/3461452808002*7881196^(13/22) 6308803769316919 a001 1602508992/3020733700601*7881196^(13/22) 6308803769316919 a001 12586269025/23725150497407*7881196^(13/22) 6308803769316919 a001 7778742049/14662949395604*7881196^(13/22) 6308803769316919 a001 2971215073/5600748293801*7881196^(13/22) 6308803769316919 a001 1134903170/2139295485799*7881196^(13/22) 6308803769316919 a001 433494437/817138163596*7881196^(13/22) 6308803769316919 a001 165580141/312119004989*7881196^(13/22) 6308803769316919 a001 63245986/119218851371*7881196^(13/22) 6308803769316921 a001 24157817/45537549124*7881196^(13/22) 6308803769316923 a001 14930352/6643838879*7881196^(1/2) 6308803769316925 a001 9227465/73681302247*7881196^(15/22) 6308803769316926 a001 5702887/5600748293801*20633239^(13/14) 6308803769316927 a001 5702887/3461452808002*20633239^(9/10) 6308803769316927 a001 39088169/17393796001*7881196^(1/2) 6308803769316928 a001 102334155/45537549124*7881196^(1/2) 6308803769316928 a001 267914296/119218851371*7881196^(1/2) 6308803769316928 a001 3524667/1568437211*7881196^(1/2) 6308803769316928 a001 1836311903/817138163596*7881196^(1/2) 6308803769316928 a001 4807526976/2139295485799*7881196^(1/2) 6308803769316928 a001 12586269025/5600748293801*7881196^(1/2) 6308803769316928 a001 32951280099/14662949395604*7881196^(1/2) 6308803769316928 a001 53316291173/23725150497407*7881196^(1/2) 6308803769316928 a001 20365011074/9062201101803*7881196^(1/2) 6308803769316928 a001 7778742049/3461452808002*7881196^(1/2) 6308803769316928 a001 2971215073/1322157322203*7881196^(1/2) 6308803769316928 a001 1134903170/505019158607*7881196^(1/2) 6308803769316928 a001 433494437/192900153618*7881196^(1/2) 6308803769316928 a001 165580141/73681302247*7881196^(1/2) 6308803769316929 a001 63245986/28143753123*7881196^(1/2) 6308803769316929 a001 5702887/505019158607*20633239^(11/14) 6308803769316930 a001 5702887/119218851371*20633239^(7/10) 6308803769316930 a001 24157817/10749957122*7881196^(1/2) 6308803769316931 a001 1597/12752044*20633239^(9/14) 6308803769316931 a001 5702887/33385282*20633239^(3/14) 6308803769316932 a001 14930352/1568397607*7881196^(9/22) 6308803769316933 a001 5702887/4106118243*20633239^(1/2) 6308803769316933 a001 4976784/4250681*20633239^(1/10) 6308803769316934 a001 9227465/17393796001*7881196^(13/22) 6308803769316935 a001 5702887/33385282*2537720636^(1/6) 6308803769316935 a001 4976784/4250681*17393796001^(1/14) 6308803769316935 a001 5702887/33385282*312119004989^(3/22) 6308803769316935 a001 4976784/4250681*14662949395604^(1/18) 6308803769316935 a001 4976784/4250681*505019158607^(1/16) 6308803769316935 a001 5702887/33385282*28143753123^(3/20) 6308803769316935 a001 4976784/4250681*599074578^(1/12) 6308803769316935 a001 5702887/33385282*228826127^(3/16) 6308803769316935 a001 39088169/12752043*7881196^(1/22) 6308803769316935 a001 5702887/370248451*20633239^(5/14) 6308803769316936 a001 5702887/33385282*33385282^(5/24) 6308803769316936 a001 5702887/141422324*20633239^(3/10) 6308803769316937 a001 39088169/4106118243*7881196^(9/22) 6308803769316937 a001 102334155/10749957122*7881196^(9/22) 6308803769316937 a001 267914296/28143753123*7881196^(9/22) 6308803769316937 a001 701408733/73681302247*7881196^(9/22) 6308803769316937 a001 1836311903/192900153618*7881196^(9/22) 6308803769316937 a001 102287808/10745088481*7881196^(9/22) 6308803769316937 a001 12586269025/1322157322203*7881196^(9/22) 6308803769316937 a001 32951280099/3461452808002*7881196^(9/22) 6308803769316937 a001 86267571272/9062201101803*7881196^(9/22) 6308803769316937 a001 225851433717/23725150497407*7881196^(9/22) 6308803769316937 a001 139583862445/14662949395604*7881196^(9/22) 6308803769316937 a001 53316291173/5600748293801*7881196^(9/22) 6308803769316937 a001 20365011074/2139295485799*7881196^(9/22) 6308803769316937 a001 7778742049/817138163596*7881196^(9/22) 6308803769316937 a001 2971215073/312119004989*7881196^(9/22) 6308803769316937 a001 1134903170/119218851371*7881196^(9/22) 6308803769316937 a001 433494437/45537549124*7881196^(9/22) 6308803769316937 a001 165580141/17393796001*7881196^(9/22) 6308803769316938 a001 63245986/6643838879*7881196^(9/22) 6308803769316939 a001 5702887/6643838879*54018521^(1/2) 6308803769316939 a001 5702887/87403803*817138163596^(1/6) 6308803769316940 a001 5702887/87403803*87403803^(1/4) 6308803769316940 a001 24157817/2537720636*7881196^(9/22) 6308803769316940 a001 39088169/12752043*33385282^(1/24) 6308803769316940 a001 5702887/5600748293801*141422324^(5/6) 6308803769316940 a001 5702887/10749957122*141422324^(1/2) 6308803769316940 a001 5702887/228826127*4106118243^(1/4) 6308803769316940 a001 5702887/17393796001*370248451^(1/2) 6308803769316940 a001 5702887/599074578*2537720636^(3/10) 6308803769316940 a001 5702887/599074578*14662949395604^(3/14) 6308803769316940 a001 5702887/599074578*192900153618^(1/4) 6308803769316940 a001 5702887/28143753123*969323029^(1/2) 6308803769316940 a001 5702887/1568397607*9062201101803^(1/4) 6308803769316940 a001 5702887/4106118243*2537720636^(7/18) 6308803769316940 a001 5702887/5600748293801*2537720636^(13/18) 6308803769316940 a001 5702887/3461452808002*2537720636^(7/10) 6308803769316940 a001 5702887/505019158607*2537720636^(11/18) 6308803769316940 a001 1597/12752044*2537720636^(1/2) 6308803769316940 a001 5702887/4106118243*17393796001^(5/14) 6308803769316940 a001 5702887/4106118243*312119004989^(7/22) 6308803769316940 a001 5702887/4106118243*14662949395604^(5/18) 6308803769316940 a001 5702887/4106118243*505019158607^(5/16) 6308803769316940 a001 5702887/4106118243*28143753123^(7/20) 6308803769316940 a001 5702887/73681302247*6643838879^(1/2) 6308803769316940 a001 5702887/10749957122*73681302247^(3/8) 6308803769316940 a001 5702887/3461452808002*17393796001^(9/14) 6308803769316940 a001 5702887/119218851371*17393796001^(1/2) 6308803769316940 a001 5702887/192900153618*45537549124^(1/2) 6308803769316940 a001 5702887/312119004989*119218851371^(1/2) 6308803769316940 a001 5702887/505019158607*312119004989^(1/2) 6308803769316940 a001 5702887/5600748293801*312119004989^(13/22) 6308803769316940 a001 5702887/505019158607*3461452808002^(11/24) 6308803769316940 a001 5702887/1322157322203*2139295485799^(1/2) 6308803769316940 a001 5702887/2139295485799*5600748293801^(1/2) 6308803769316940 a001 5702887/3461452808002*505019158607^(9/16) 6308803769316940 a001 5702887/3461452808002*192900153618^(7/12) 6308803769316940 a001 5702887/119218851371*14662949395604^(7/18) 6308803769316940 a001 5702887/119218851371*505019158607^(7/16) 6308803769316940 a001 5702887/5600748293801*73681302247^(5/8) 6308803769316940 a001 1597/12752044*312119004989^(9/22) 6308803769316940 a001 1597/12752044*14662949395604^(5/14) 6308803769316940 a001 1597/12752044*192900153618^(5/12) 6308803769316940 a001 5702887/505019158607*28143753123^(11/20) 6308803769316940 a001 5702887/5600748293801*28143753123^(13/20) 6308803769316940 a001 1597/12752044*28143753123^(9/20) 6308803769316940 a001 5702887/14662949395604*4106118243^(3/4) 6308803769316940 a001 5702887/2537720636*312119004989^(3/10) 6308803769316940 a001 5702887/505019158607*1568397607^(5/8) 6308803769316940 a001 5702887/2537720636*1568397607^(3/8) 6308803769316940 a001 5702887/969323029*1322157322203^(1/4) 6308803769316940 a001 5702887/4106118243*599074578^(5/12) 6308803769316940 a001 5702887/119218851371*599074578^(7/12) 6308803769316940 a001 5702887/3461452808002*599074578^(3/4) 6308803769316940 a001 5702887/370248451*2537720636^(5/18) 6308803769316940 a001 5702887/370248451*312119004989^(5/22) 6308803769316940 a001 5702887/370248451*3461452808002^(5/24) 6308803769316940 a001 5702887/370248451*28143753123^(1/4) 6308803769316940 a001 5702887/4106118243*228826127^(7/16) 6308803769316940 a001 1597/12752044*228826127^(9/16) 6308803769316940 a001 5702887/505019158607*228826127^(11/16) 6308803769316940 a001 5702887/370248451*228826127^(5/16) 6308803769316940 a001 5702887/5600748293801*228826127^(13/16) 6308803769316941 a001 5702887/141422324*17393796001^(3/14) 6308803769316941 a001 5702887/141422324*14662949395604^(1/6) 6308803769316941 a001 5702887/141422324*599074578^(1/4) 6308803769316941 a001 5702887/817138163596*87403803^(3/4) 6308803769316941 a001 14930352/370248451*7881196^(7/22) 6308803769316941 a001 9227465/12752043*7881196^(3/22) 6308803769316941 a001 24157817/12752043*20633239^(1/14) 6308803769316942 a001 5702887/141422324*33385282^(7/24) 6308803769316942 a001 5702887/599074578*33385282^(3/8) 6308803769316942 a001 24157817/12752043*2537720636^(1/18) 6308803769316942 a001 5702887/54018521*45537549124^(1/6) 6308803769316942 a001 24157817/12752043*312119004989^(1/22) 6308803769316942 a001 24157817/12752043*28143753123^(1/20) 6308803769316942 a001 24157817/12752043*228826127^(1/16) 6308803769316943 a001 5702887/2537720636*33385282^(11/24) 6308803769316943 a001 9227465/4106118243*7881196^(1/2) 6308803769316943 a001 5702887/10749957122*33385282^(13/24) 6308803769316944 a001 1597/12752044*33385282^(5/8) 6308803769316944 a001 5702887/192900153618*33385282^(17/24) 6308803769316945 a001 5702887/817138163596*33385282^(19/24) 6308803769316945 a001 5702887/3461452808002*33385282^(7/8) 6308803769316946 a001 5702887/14662949395604*33385282^(23/24) 6308803769316946 a001 39088169/969323029*7881196^(7/22) 6308803769316947 a001 9303105/230701876*7881196^(7/22) 6308803769316947 a001 267914296/6643838879*7881196^(7/22) 6308803769316947 a001 701408733/17393796001*7881196^(7/22) 6308803769316947 a001 1836311903/45537549124*7881196^(7/22) 6308803769316947 a001 4807526976/119218851371*7881196^(7/22) 6308803769316947 a001 1144206275/28374454999*7881196^(7/22) 6308803769316947 a001 32951280099/817138163596*7881196^(7/22) 6308803769316947 a001 86267571272/2139295485799*7881196^(7/22) 6308803769316947 a001 225851433717/5600748293801*7881196^(7/22) 6308803769316947 a001 591286729879/14662949395604*7881196^(7/22) 6308803769316947 a001 365435296162/9062201101803*7881196^(7/22) 6308803769316947 a001 139583862445/3461452808002*7881196^(7/22) 6308803769316947 a001 53316291173/1322157322203*7881196^(7/22) 6308803769316947 a001 20365011074/505019158607*7881196^(7/22) 6308803769316947 a001 7778742049/192900153618*7881196^(7/22) 6308803769316947 a001 2971215073/73681302247*7881196^(7/22) 6308803769316947 a001 1134903170/28143753123*7881196^(7/22) 6308803769316947 a001 433494437/10749957122*7881196^(7/22) 6308803769316947 a001 165580141/4106118243*7881196^(7/22) 6308803769316947 a001 63245986/1568397607*7881196^(7/22) 6308803769316949 a001 24157817/599074578*7881196^(7/22) 6308803769316949 a001 4976784/29134601*7881196^(5/22) 6308803769316951 a001 7465176/16692641*7881196^(1/6) 6308803769316952 a001 5702887/54018521*12752043^(1/4) 6308803769316952 a001 9227465/969323029*7881196^(9/22) 6308803769316955 a001 39088169/228826127*7881196^(5/22) 6308803769316955 a001 5702887/20633239*141422324^(1/6) 6308803769316955 a001 9227465/12752043*2537720636^(1/10) 6308803769316955 a001 9227465/12752043*14662949395604^(1/14) 6308803769316955 a001 9227465/12752043*192900153618^(1/12) 6308803769316955 a001 5702887/20633239*73681302247^(1/8) 6308803769316956 a001 9227465/12752043*33385282^(1/8) 6308803769316956 a001 34111385/199691526*7881196^(5/22) 6308803769316956 a001 267914296/1568397607*7881196^(5/22) 6308803769316956 a001 233802911/1368706081*7881196^(5/22) 6308803769316956 a001 1836311903/10749957122*7881196^(5/22) 6308803769316956 a001 1602508992/9381251041*7881196^(5/22) 6308803769316956 a001 12586269025/73681302247*7881196^(5/22) 6308803769316956 a001 10983760033/64300051206*7881196^(5/22) 6308803769316956 a001 86267571272/505019158607*7881196^(5/22) 6308803769316956 a001 75283811239/440719107401*7881196^(5/22) 6308803769316956 a001 2504730781961/14662949395604*7881196^(5/22) 6308803769316956 a001 139583862445/817138163596*7881196^(5/22) 6308803769316956 a001 53316291173/312119004989*7881196^(5/22) 6308803769316956 a001 20365011074/119218851371*7881196^(5/22) 6308803769316956 a001 7778742049/45537549124*7881196^(5/22) 6308803769316956 a001 2971215073/17393796001*7881196^(5/22) 6308803769316956 a001 1134903170/6643838879*7881196^(5/22) 6308803769316956 a001 433494437/2537720636*7881196^(5/22) 6308803769316956 a001 165580141/969323029*7881196^(5/22) 6308803769316956 a001 63245986/370248451*7881196^(5/22) 6308803769316958 a001 24157817/141422324*7881196^(5/22) 6308803769316960 a001 196452/192933544679*20633239^(13/14) 6308803769316960 a001 4976784/3020733700601*20633239^(9/10) 6308803769316960 a001 39088169/87403803*7881196^(1/6) 6308803769316961 a001 9227465/228826127*7881196^(7/22) 6308803769316962 a001 24157817/33385282*7881196^(3/22) 6308803769316962 a001 4976784/440719107401*20633239^(11/14) 6308803769316962 a001 102334155/228826127*7881196^(1/6) 6308803769316962 a001 133957148/299537289*7881196^(1/6) 6308803769316962 a001 701408733/1568397607*7881196^(1/6) 6308803769316962 a001 1836311903/4106118243*7881196^(1/6) 6308803769316962 a001 2403763488/5374978561*7881196^(1/6) 6308803769316962 a001 12586269025/28143753123*7881196^(1/6) 6308803769316962 a001 32951280099/73681302247*7881196^(1/6) 6308803769316962 a001 43133785636/96450076809*7881196^(1/6) 6308803769316962 a001 225851433717/505019158607*7881196^(1/6) 6308803769316962 a001 591286729879/1322157322203*7881196^(1/6) 6308803769316962 a001 10610209857723/23725150497407*7881196^(1/6) 6308803769316962 a001 182717648081/408569081798*7881196^(1/6) 6308803769316962 a001 139583862445/312119004989*7881196^(1/6) 6308803769316962 a001 53316291173/119218851371*7881196^(1/6) 6308803769316962 a001 10182505537/22768774562*7881196^(1/6) 6308803769316962 a001 7778742049/17393796001*7881196^(1/6) 6308803769316962 a001 2971215073/6643838879*7881196^(1/6) 6308803769316962 a001 567451585/1268860318*7881196^(1/6) 6308803769316962 a001 433494437/969323029*7881196^(1/6) 6308803769316962 a001 165580141/370248451*7881196^(1/6) 6308803769316963 a001 31622993/70711162*7881196^(1/6) 6308803769316963 a001 14930352/312119004989*20633239^(7/10) 6308803769316964 a001 14930352/119218851371*20633239^(9/14) 6308803769316965 a001 63245986/87403803*7881196^(3/22) 6308803769316965 a001 39088169/23725150497407*20633239^(9/10) 6308803769316965 a001 165580141/228826127*7881196^(3/22) 6308803769316965 a001 433494437/599074578*7881196^(3/22) 6308803769316965 a001 1134903170/1568397607*7881196^(3/22) 6308803769316965 a001 2971215073/4106118243*7881196^(3/22) 6308803769316965 a001 7778742049/10749957122*7881196^(3/22) 6308803769316965 a001 20365011074/28143753123*7881196^(3/22) 6308803769316965 a001 53316291173/73681302247*7881196^(3/22) 6308803769316965 a001 139583862445/192900153618*7881196^(3/22) 6308803769316965 a001 365435296162/505019158607*7881196^(3/22) 6308803769316965 a001 10610209857723/14662949395604*7881196^(3/22) 6308803769316965 a001 591286729879/817138163596*7881196^(3/22) 6308803769316965 a001 225851433717/312119004989*7881196^(3/22) 6308803769316965 a001 86267571272/119218851371*7881196^(3/22) 6308803769316965 a001 32951280099/45537549124*7881196^(3/22) 6308803769316965 a001 12586269025/17393796001*7881196^(3/22) 6308803769316965 a001 4807526976/6643838879*7881196^(3/22) 6308803769316965 a001 1836311903/2537720636*7881196^(3/22) 6308803769316965 a001 701408733/969323029*7881196^(3/22) 6308803769316965 a001 267914296/370248451*7881196^(3/22) 6308803769316965 a001 102334155/141422324*7881196^(3/22) 6308803769316966 a001 7465176/5374978561*20633239^(1/2) 6308803769316966 a001 24157817/54018521*7881196^(1/6) 6308803769316966 a001 39088169/54018521*7881196^(3/22) 6308803769316967 a001 39088169/3461452808002*20633239^(11/14) 6308803769316967 a001 34111385/3020733700601*20633239^(11/14) 6308803769316967 a001 267914296/23725150497407*20633239^(11/14) 6308803769316967 a001 24157817/23725150497407*20633239^(13/14) 6308803769316967 a001 165580141/14662949395604*20633239^(11/14) 6308803769316968 a001 63245986/5600748293801*20633239^(11/14) 6308803769316968 a001 7465176/16692641*312119004989^(1/10) 6308803769316968 a001 7465176/16692641*1568397607^(1/8) 6308803769316968 a001 4181/87403804*20633239^(7/10) 6308803769316968 a001 24157817/14662949395604*20633239^(9/10) 6308803769316968 a001 14930352/969323029*20633239^(5/14) 6308803769316969 a001 102334155/2139295485799*20633239^(7/10) 6308803769316969 a001 14619165/4769326*7881196^(1/22) 6308803769316969 a001 267914296/5600748293801*20633239^(7/10) 6308803769316969 a001 701408733/14662949395604*20633239^(7/10) 6308803769316969 a001 1134903170/23725150497407*20633239^(7/10) 6308803769316969 a001 433494437/9062201101803*20633239^(7/10) 6308803769316969 a001 39088169/312119004989*20633239^(9/14) 6308803769316969 a001 165580141/3461452808002*20633239^(7/10) 6308803769316969 a001 14930352/370248451*20633239^(3/10) 6308803769316969 a001 63245986/1322157322203*20633239^(7/10) 6308803769316969 a001 5702887/192900153618*12752043^(3/4) 6308803769316969 a001 4976784/29134601*20633239^(3/14) 6308803769316969 a001 102334155/817138163596*20633239^(9/14) 6308803769316969 a001 267914296/2139295485799*20633239^(9/14) 6308803769316969 a001 701408733/5600748293801*20633239^(9/14) 6308803769316969 a001 1836311903/14662949395604*20633239^(9/14) 6308803769316969 a001 2971215073/23725150497407*20633239^(9/14) 6308803769316969 a001 1134903170/9062201101803*20633239^(9/14) 6308803769316969 a001 433494437/3461452808002*20633239^(9/14) 6308803769316970 a001 24157817/2139295485799*20633239^(11/14) 6308803769316970 a001 165580141/1322157322203*20633239^(9/14) 6308803769316970 a001 63245986/505019158607*20633239^(9/14) 6308803769316971 a001 39088169/28143753123*20633239^(1/2) 6308803769316971 a001 24157817/505019158607*20633239^(7/10) 6308803769316971 a001 39088169/33385282*20633239^(1/10) 6308803769316971 a001 14619165/10525900321*20633239^(1/2) 6308803769316972 a001 133957148/96450076809*20633239^(1/2) 6308803769316972 a001 701408733/505019158607*20633239^(1/2) 6308803769316972 a001 1836311903/1322157322203*20633239^(1/2) 6308803769316972 a001 14930208/10749853441*20633239^(1/2) 6308803769316972 a001 12586269025/9062201101803*20633239^(1/2) 6308803769316972 a001 32951280099/23725150497407*20633239^(1/2) 6308803769316972 a001 10182505537/7331474697802*20633239^(1/2) 6308803769316972 a001 7778742049/5600748293801*20633239^(1/2) 6308803769316972 a001 2971215073/2139295485799*20633239^(1/2) 6308803769316972 a001 567451585/408569081798*20633239^(1/2) 6308803769316972 a001 433494437/312119004989*20633239^(1/2) 6308803769316972 a001 24157817/192900153618*20633239^(9/14) 6308803769316972 a001 165580141/119218851371*20633239^(1/2) 6308803769316972 a001 31622993/22768774562*20633239^(1/2) 6308803769316972 a001 14930352/17393796001*54018521^(1/2) 6308803769316973 a001 4976784/29134601*2537720636^(1/6) 6308803769316973 a001 39088169/33385282*17393796001^(1/14) 6308803769316973 a001 4976784/29134601*312119004989^(3/22) 6308803769316973 a001 39088169/33385282*14662949395604^(1/18) 6308803769316973 a001 39088169/33385282*505019158607^(1/16) 6308803769316973 a001 4976784/29134601*28143753123^(3/20) 6308803769316973 a001 39088169/33385282*599074578^(1/12) 6308803769316973 a001 4976784/29134601*228826127^(3/16) 6308803769316973 a001 31622993/16692641*20633239^(1/14) 6308803769316973 a001 39088169/2537720636*20633239^(5/14) 6308803769316973 a001 9227465/54018521*7881196^(5/22) 6308803769316973 a001 196452/192933544679*141422324^(5/6) 6308803769316973 a001 4976784/9381251041*141422324^(1/2) 6308803769316973 a001 14930352/228826127*817138163596^(1/6) 6308803769316973 a001 3732588/11384387281*370248451^(1/2) 6308803769316973 a001 829464/33281921*4106118243^(1/4) 6308803769316973 a001 14930352/73681302247*969323029^(1/2) 6308803769316973 a001 14930352/1568397607*2537720636^(3/10) 6308803769316973 a001 14930352/1568397607*14662949395604^(3/14) 6308803769316973 a001 14930352/1568397607*192900153618^(1/4) 6308803769316973 a001 196452/192933544679*2537720636^(13/18) 6308803769316973 a001 4976784/3020733700601*2537720636^(7/10) 6308803769316973 a001 4976784/440719107401*2537720636^(11/18) 6308803769316973 a001 14930352/119218851371*2537720636^(1/2) 6308803769316973 a001 7465176/5374978561*2537720636^(7/18) 6308803769316973 a001 4976784/1368706081*9062201101803^(1/4) 6308803769316973 a001 2584/33385281*6643838879^(1/2) 6308803769316973 a001 7465176/5374978561*17393796001^(5/14) 6308803769316973 a001 7465176/5374978561*312119004989^(7/22) 6308803769316973 a001 7465176/5374978561*14662949395604^(5/18) 6308803769316973 a001 7465176/5374978561*505019158607^(5/16) 6308803769316973 a001 7465176/5374978561*28143753123^(7/20) 6308803769316973 a001 4976784/3020733700601*17393796001^(9/14) 6308803769316973 a001 14930352/312119004989*17393796001^(1/2) 6308803769316973 a001 4976784/9381251041*73681302247^(3/8) 6308803769316973 a001 14930352/505019158607*45537549124^(1/2) 6308803769316973 a001 3732588/204284540899*119218851371^(1/2) 6308803769316973 a001 196452/192933544679*312119004989^(13/22) 6308803769316973 a001 4976784/440719107401*312119004989^(1/2) 6308803769316973 a001 14930352/2139295485799*817138163596^(1/2) 6308803769316973 a001 4976784/3020733700601*14662949395604^(1/2) 6308803769316973 a006 5^(1/2)*Fibonacci(83/2)/Lucas(36)/sqrt(5) 6308803769316973 a001 4976784/3020733700601*505019158607^(9/16) 6308803769316973 a001 14930352/312119004989*14662949395604^(7/18) 6308803769316973 a001 14930352/312119004989*505019158607^(7/16) 6308803769316973 a001 14930352/119218851371*312119004989^(9/22) 6308803769316973 a001 14930352/119218851371*14662949395604^(5/14) 6308803769316973 a001 14930352/119218851371*192900153618^(5/12) 6308803769316973 a001 196452/192933544679*73681302247^(5/8) 6308803769316973 a001 14930352/119218851371*28143753123^(9/20) 6308803769316973 a001 4976784/440719107401*28143753123^(11/20) 6308803769316973 a001 196452/192933544679*28143753123^(13/20) 6308803769316973 a001 14930352/6643838879*312119004989^(3/10) 6308803769316973 a001 196452/33391061*1322157322203^(1/4) 6308803769316973 a001 14930352/6643838879*1568397607^(3/8) 6308803769316973 a001 4976784/440719107401*1568397607^(5/8) 6308803769316973 a001 14930352/969323029*2537720636^(5/18) 6308803769316973 a001 14930352/969323029*312119004989^(5/22) 6308803769316973 a001 14930352/969323029*3461452808002^(5/24) 6308803769316973 a001 14930352/969323029*28143753123^(1/4) 6308803769316973 a001 7465176/5374978561*599074578^(5/12) 6308803769316973 a001 14930352/312119004989*599074578^(7/12) 6308803769316973 a001 4976784/3020733700601*599074578^(3/4) 6308803769316973 a006 5^(1/2)*fibonacci(83/2)/Lucas(36)/sqrt(5) 6308803769316973 a001 14930352/969323029*228826127^(5/16) 6308803769316973 a001 14930352/370248451*17393796001^(3/14) 6308803769316973 a001 14930352/370248451*14662949395604^(1/6) 6308803769316973 a001 14930352/370248451*599074578^(1/4) 6308803769316973 a001 7465176/5374978561*228826127^(7/16) 6308803769316973 a001 14930352/119218851371*228826127^(9/16) 6308803769316973 a001 4976784/440719107401*228826127^(11/16) 6308803769316973 a001 14930352/228826127*87403803^(1/4) 6308803769316973 a001 196452/192933544679*228826127^(13/16) 6308803769316973 a001 14619165/4769326*33385282^(1/24) 6308803769316974 a001 267914296/87403803*7881196^(1/22) 6308803769316974 a001 102334155/6643838879*20633239^(5/14) 6308803769316974 a001 31622993/16692641*2537720636^(1/18) 6308803769316974 a001 3732588/35355581*45537549124^(1/6) 6308803769316974 a001 31622993/16692641*312119004989^(1/22) 6308803769316974 a001 31622993/16692641*28143753123^(1/20) 6308803769316974 a001 31622993/16692641*228826127^(1/16) 6308803769316974 a001 9238424/599786069*20633239^(5/14) 6308803769316974 a001 4976784/29134601*33385282^(5/24) 6308803769316974 a001 701408733/45537549124*20633239^(5/14) 6308803769316974 a001 1836311903/119218851371*20633239^(5/14) 6308803769316974 a001 4807526976/312119004989*20633239^(5/14) 6308803769316974 a001 12586269025/817138163596*20633239^(5/14) 6308803769316974 a001 32951280099/2139295485799*20633239^(5/14) 6308803769316974 a001 86267571272/5600748293801*20633239^(5/14) 6308803769316974 a001 7787980473/505618944676*20633239^(5/14) 6308803769316974 a001 365435296162/23725150497407*20633239^(5/14) 6308803769316974 a001 139583862445/9062201101803*20633239^(5/14) 6308803769316974 a001 53316291173/3461452808002*20633239^(5/14) 6308803769316974 a001 20365011074/1322157322203*20633239^(5/14) 6308803769316974 a001 7778742049/505019158607*20633239^(5/14) 6308803769316974 a001 2971215073/192900153618*20633239^(5/14) 6308803769316974 a001 1134903170/73681302247*20633239^(5/14) 6308803769316974 a001 433494437/28143753123*20633239^(5/14) 6308803769316974 a001 39088169/969323029*20633239^(3/10) 6308803769316974 a001 24157817/17393796001*20633239^(1/2) 6308803769316974 a001 165580141/10749957122*20633239^(5/14) 6308803769316974 a001 14930352/2139295485799*87403803^(3/4) 6308803769316974 a001 63245986/4106118243*20633239^(5/14) 6308803769316974 a001 701408733/228826127*7881196^(1/22) 6308803769316974 a001 14930352/20633239*7881196^(3/22) 6308803769316974 a001 1836311903/599074578*7881196^(1/22) 6308803769316974 a001 686789568/224056801*7881196^(1/22) 6308803769316974 a001 12586269025/4106118243*7881196^(1/22) 6308803769316974 a001 32951280099/10749957122*7881196^(1/22) 6308803769316974 a001 86267571272/28143753123*7881196^(1/22) 6308803769316974 a001 32264490531/10525900321*7881196^(1/22) 6308803769316974 a001 591286729879/192900153618*7881196^(1/22) 6308803769316974 a001 1548008755920/505019158607*7881196^(1/22) 6308803769316974 a001 1515744265389/494493258286*7881196^(1/22) 6308803769316974 a001 2504730781961/817138163596*7881196^(1/22) 6308803769316974 a001 956722026041/312119004989*7881196^(1/22) 6308803769316974 a001 365435296162/119218851371*7881196^(1/22) 6308803769316974 a001 139583862445/45537549124*7881196^(1/22) 6308803769316974 a001 53316291173/17393796001*7881196^(1/22) 6308803769316974 a001 20365011074/6643838879*7881196^(1/22) 6308803769316974 a001 7778742049/2537720636*7881196^(1/22) 6308803769316974 a001 2971215073/969323029*7881196^(1/22) 6308803769316974 a001 1134903170/370248451*7881196^(1/22) 6308803769316974 a001 9303105/230701876*20633239^(3/10) 6308803769316975 a001 267914296/6643838879*20633239^(3/10) 6308803769316975 a001 701408733/17393796001*20633239^(3/10) 6308803769316975 a001 1836311903/45537549124*20633239^(3/10) 6308803769316975 a001 4807526976/119218851371*20633239^(3/10) 6308803769316975 a001 1144206275/28374454999*20633239^(3/10) 6308803769316975 a001 32951280099/817138163596*20633239^(3/10) 6308803769316975 a001 86267571272/2139295485799*20633239^(3/10) 6308803769316975 a001 225851433717/5600748293801*20633239^(3/10) 6308803769316975 a001 591286729879/14662949395604*20633239^(3/10) 6308803769316975 a001 365435296162/9062201101803*20633239^(3/10) 6308803769316975 a001 139583862445/3461452808002*20633239^(3/10) 6308803769316975 a001 53316291173/1322157322203*20633239^(3/10) 6308803769316975 a001 20365011074/505019158607*20633239^(3/10) 6308803769316975 a001 7778742049/192900153618*20633239^(3/10) 6308803769316975 a001 2971215073/73681302247*20633239^(3/10) 6308803769316975 a001 1134903170/28143753123*20633239^(3/10) 6308803769316975 a001 433494437/10749957122*20633239^(3/10) 6308803769316975 a001 165580141/4106118243*20633239^(3/10) 6308803769316975 a001 433494437/141422324*7881196^(1/22) 6308803769316975 a001 63245986/1568397607*20633239^(3/10) 6308803769316975 a001 39088169/228826127*20633239^(3/14) 6308803769316975 a001 14930352/370248451*33385282^(7/24) 6308803769316975 a001 14930352/54018521*141422324^(1/6) 6308803769316975 a001 14930352/1568397607*33385282^(3/8) 6308803769316976 a001 24157817/33385282*2537720636^(1/10) 6308803769316976 a001 24157817/33385282*14662949395604^(1/14) 6308803769316976 a001 24157817/33385282*192900153618^(1/12) 6308803769316976 a001 14930352/54018521*73681302247^(1/8) 6308803769316976 a001 34111385/199691526*20633239^(3/14) 6308803769316976 a001 267914296/1568397607*20633239^(3/14) 6308803769316976 a001 233802911/1368706081*20633239^(3/14) 6308803769316976 a001 1836311903/10749957122*20633239^(3/14) 6308803769316976 a001 1602508992/9381251041*20633239^(3/14) 6308803769316976 a001 12586269025/73681302247*20633239^(3/14) 6308803769316976 a001 10983760033/64300051206*20633239^(3/14) 6308803769316976 a001 86267571272/505019158607*20633239^(3/14) 6308803769316976 a001 75283811239/440719107401*20633239^(3/14) 6308803769316976 a001 2504730781961/14662949395604*20633239^(3/14) 6308803769316976 a001 139583862445/817138163596*20633239^(3/14) 6308803769316976 a001 53316291173/312119004989*20633239^(3/14) 6308803769316976 a001 20365011074/119218851371*20633239^(3/14) 6308803769316976 a001 7778742049/45537549124*20633239^(3/14) 6308803769316976 a001 2971215073/17393796001*20633239^(3/14) 6308803769316976 a001 1134903170/6643838879*20633239^(3/14) 6308803769316976 a001 433494437/2537720636*20633239^(3/14) 6308803769316976 a001 24157817/1568397607*20633239^(5/14) 6308803769316976 a001 165580141/969323029*20633239^(3/14) 6308803769316976 a001 14930352/6643838879*33385282^(11/24) 6308803769316976 a001 63245986/370248451*20633239^(3/14) 6308803769316976 a001 24157817/33385282*33385282^(1/8) 6308803769316976 a001 4976784/9381251041*33385282^(13/24) 6308803769316977 a001 34111385/29134601*20633239^(1/10) 6308803769316977 a001 165580141/54018521*7881196^(1/22) 6308803769316977 a001 24157817/599074578*20633239^(3/10) 6308803769316977 a001 14930352/119218851371*33385282^(5/8) 6308803769316977 a001 39088169/45537549124*54018521^(1/2) 6308803769316977 a001 165580141/87403803*20633239^(1/14) 6308803769316977 a001 39088169/87403803*312119004989^(1/10) 6308803769316977 a001 39088169/87403803*1568397607^(1/8) 6308803769316977 a001 14930352/505019158607*33385282^(17/24) 6308803769316977 a001 267914296/228826127*20633239^(1/10) 6308803769316977 a001 233802911/199691526*20633239^(1/10) 6308803769316978 a001 1836311903/1568397607*20633239^(1/10) 6308803769316978 a001 1602508992/1368706081*20633239^(1/10) 6308803769316978 a001 12586269025/10749957122*20633239^(1/10) 6308803769316978 a001 10983760033/9381251041*20633239^(1/10) 6308803769316978 a001 86267571272/73681302247*20633239^(1/10) 6308803769316978 a001 75283811239/64300051206*20633239^(1/10) 6308803769316978 a001 2504730781961/2139295485799*20633239^(1/10) 6308803769316978 a001 365435296162/312119004989*20633239^(1/10) 6308803769316978 a001 139583862445/119218851371*20633239^(1/10) 6308803769316978 a001 53316291173/45537549124*20633239^(1/10) 6308803769316978 a001 20365011074/17393796001*20633239^(1/10) 6308803769316978 a001 7778742049/6643838879*20633239^(1/10) 6308803769316978 a001 2971215073/2537720636*20633239^(1/10) 6308803769316978 a001 1134903170/969323029*20633239^(1/10) 6308803769316978 a001 433494437/370248451*20633239^(1/10) 6308803769316978 a001 102334155/119218851371*54018521^(1/2) 6308803769316978 a001 14930352/2139295485799*33385282^(19/24) 6308803769316978 a001 433494437/228826127*20633239^(1/14) 6308803769316978 a001 165580141/141422324*20633239^(1/10) 6308803769316978 a001 267914296/312119004989*54018521^(1/2) 6308803769316978 a001 701408733/817138163596*54018521^(1/2) 6308803769316978 a001 1836311903/2139295485799*54018521^(1/2) 6308803769316978 a001 4807526976/5600748293801*54018521^(1/2) 6308803769316978 a001 12586269025/14662949395604*54018521^(1/2) 6308803769316978 a001 20365011074/23725150497407*54018521^(1/2) 6308803769316978 a001 7778742049/9062201101803*54018521^(1/2) 6308803769316978 a001 2971215073/3461452808002*54018521^(1/2) 6308803769316978 a001 1134903170/1322157322203*54018521^(1/2) 6308803769316978 a001 567451585/299537289*20633239^(1/14) 6308803769316978 a001 433494437/505019158607*54018521^(1/2) 6308803769316978 a001 2971215073/1568397607*20633239^(1/14) 6308803769316978 a001 7778742049/4106118243*20633239^(1/14) 6308803769316978 a001 10182505537/5374978561*20633239^(1/14) 6308803769316978 a001 53316291173/28143753123*20633239^(1/14) 6308803769316978 a001 139583862445/73681302247*20633239^(1/14) 6308803769316978 a001 182717648081/96450076809*20633239^(1/14) 6308803769316978 a001 956722026041/505019158607*20633239^(1/14) 6308803769316978 a001 10610209857723/5600748293801*20633239^(1/14) 6308803769316978 a001 591286729879/312119004989*20633239^(1/14) 6308803769316978 a001 225851433717/119218851371*20633239^(1/14) 6308803769316978 a001 21566892818/11384387281*20633239^(1/14) 6308803769316978 a001 32951280099/17393796001*20633239^(1/14) 6308803769316978 a001 12586269025/6643838879*20633239^(1/14) 6308803769316978 a001 1201881744/634430159*20633239^(1/14) 6308803769316978 a001 1836311903/969323029*20633239^(1/14) 6308803769316978 a001 165580141/192900153618*54018521^(1/2) 6308803769316978 a001 701408733/370248451*20633239^(1/14) 6308803769316978 a001 39088169/73681302247*141422324^(1/2) 6308803769316978 a001 39088169/228826127*2537720636^(1/6) 6308803769316978 a001 34111385/29134601*17393796001^(1/14) 6308803769316978 a001 39088169/228826127*312119004989^(3/22) 6308803769316978 a001 34111385/29134601*14662949395604^(1/18) 6308803769316978 a001 34111385/29134601*505019158607^(1/16) 6308803769316978 a001 39088169/228826127*28143753123^(3/20) 6308803769316978 a001 34111385/29134601*599074578^(1/12) 6308803769316978 a001 39088169/228826127*228826127^(3/16) 6308803769316978 a001 39088169/119218851371*370248451^(1/2) 6308803769316978 a001 39088169/599074578*817138163596^(1/6) 6308803769316978 a001 39088169/192900153618*969323029^(1/2) 6308803769316978 a001 39088169/1568397607*4106118243^(1/4) 6308803769316978 a001 39088169/23725150497407*2537720636^(7/10) 6308803769316978 a001 39088169/4106118243*2537720636^(3/10) 6308803769316978 a001 39088169/3461452808002*2537720636^(11/18) 6308803769316978 a001 39088169/312119004989*2537720636^(1/2) 6308803769316978 a001 39088169/28143753123*2537720636^(7/18) 6308803769316978 a001 39088169/4106118243*14662949395604^(3/14) 6308803769316978 a001 39088169/4106118243*192900153618^(1/4) 6308803769316978 a001 39088169/505019158607*6643838879^(1/2) 6308803769316978 a001 39088169/10749957122*9062201101803^(1/4) 6308803769316978 a001 39088169/28143753123*17393796001^(5/14) 6308803769316978 a001 39088169/23725150497407*17393796001^(9/14) 6308803769316978 a001 4181/87403804*17393796001^(1/2) 6308803769316978 a001 39088169/28143753123*312119004989^(7/22) 6308803769316978 a001 39088169/28143753123*14662949395604^(5/18) 6308803769316978 a001 39088169/28143753123*505019158607^(5/16) 6308803769316978 a001 39088169/28143753123*28143753123^(7/20) 6308803769316978 a001 39088169/1322157322203*45537549124^(1/2) 6308803769316978 a001 39088169/73681302247*73681302247^(3/8) 6308803769316978 a001 39088169/2139295485799*119218851371^(1/2) 6308803769316978 a001 39088169/3461452808002*312119004989^(1/2) 6308803769316978 a001 39088169/9062201101803*2139295485799^(1/2) 6308803769316978 a001 39088169/14662949395604*5600748293801^(1/2) 6308803769316978 a001 39088169/23725150497407*14662949395604^(1/2) 6308803769316978 a006 5^(1/2)*Fibonacci(87/2)/Lucas(38)/sqrt(5) 6308803769316978 a001 39088169/23725150497407*505019158607^(9/16) 6308803769316978 a001 39088169/312119004989*312119004989^(9/22) 6308803769316978 a001 39088169/312119004989*14662949395604^(5/14) 6308803769316978 a001 39088169/23725150497407*192900153618^(7/12) 6308803769316978 a001 39088169/312119004989*192900153618^(5/12) 6308803769316978 a001 39088169/312119004989*28143753123^(9/20) 6308803769316978 a001 39088169/3461452808002*28143753123^(11/20) 6308803769316978 a001 39088169/17393796001*312119004989^(3/10) 6308803769316978 a001 39088169/6643838879*1322157322203^(1/4) 6308803769316978 a001 39088169/2537720636*2537720636^(5/18) 6308803769316978 a001 39088169/2537720636*312119004989^(5/22) 6308803769316978 a001 39088169/2537720636*3461452808002^(5/24) 6308803769316978 a001 39088169/2537720636*28143753123^(1/4) 6308803769316978 a001 39088169/17393796001*1568397607^(3/8) 6308803769316978 a001 39088169/3461452808002*1568397607^(5/8) 6308803769316978 a006 5^(1/2)*fibonacci(87/2)/Lucas(38)/sqrt(5) 6308803769316978 a001 39088169/969323029*17393796001^(3/14) 6308803769316978 a001 39088169/969323029*14662949395604^(1/6) 6308803769316978 a001 39088169/28143753123*599074578^(5/12) 6308803769316978 a001 4181/87403804*599074578^(7/12) 6308803769316978 a001 39088169/969323029*599074578^(1/4) 6308803769316978 a001 39088169/23725150497407*599074578^(3/4) 6308803769316978 a001 39088169/2537720636*228826127^(5/16) 6308803769316978 a001 165580141/87403803*2537720636^(1/18) 6308803769316978 a001 39088169/370248451*45537549124^(1/6) 6308803769316978 a001 165580141/87403803*312119004989^(1/22) 6308803769316978 a001 165580141/87403803*28143753123^(1/20) 6308803769316978 a001 39088169/28143753123*228826127^(7/16) 6308803769316978 a001 165580141/87403803*228826127^(1/16) 6308803769316978 a001 63245986/73681302247*54018521^(1/2) 6308803769316978 a001 66978574/35355581*20633239^(1/14) 6308803769316978 a001 39088169/312119004989*228826127^(9/16) 6308803769316978 a001 39088169/3461452808002*228826127^(11/16) 6308803769316978 a001 4976784/3020733700601*33385282^(7/8) 6308803769316978 a001 24157817/141422324*20633239^(3/14) 6308803769316978 a001 39088169/599074578*87403803^(1/4) 6308803769316978 a001 267914296/87403803*33385282^(1/24) 6308803769316978 a001 39088169/141422324*141422324^(1/6) 6308803769316978 a001 63245986/87403803*2537720636^(1/10) 6308803769316978 a001 63245986/87403803*14662949395604^(1/14) 6308803769316978 a001 63245986/87403803*192900153618^(1/12) 6308803769316978 a001 39088169/141422324*73681302247^(1/8) 6308803769316979 a001 34111385/64300051206*141422324^(1/2) 6308803769316979 a001 102334155/228826127*312119004989^(1/10) 6308803769316979 a001 102334155/228826127*1568397607^(1/8) 6308803769316979 a001 39088169/5600748293801*87403803^(3/4) 6308803769316979 a001 267914296/505019158607*141422324^(1/2) 6308803769316979 a001 233802911/440719107401*141422324^(1/2) 6308803769316979 a001 1836311903/3461452808002*141422324^(1/2) 6308803769316979 a001 1602508992/3020733700601*141422324^(1/2) 6308803769316979 a001 12586269025/23725150497407*141422324^(1/2) 6308803769316979 a001 7778742049/14662949395604*141422324^(1/2) 6308803769316979 a001 2971215073/5600748293801*141422324^(1/2) 6308803769316979 a001 1134903170/2139295485799*141422324^(1/2) 6308803769316979 a001 433494437/817138163596*141422324^(1/2) 6308803769316979 a001 9303105/28374454999*370248451^(1/2) 6308803769316979 a001 34111385/199691526*2537720636^(1/6) 6308803769316979 a001 267914296/228826127*17393796001^(1/14) 6308803769316979 a001 34111385/199691526*312119004989^(3/22) 6308803769316979 a001 267914296/228826127*14662949395604^(1/18) 6308803769316979 a001 267914296/228826127*505019158607^(1/16) 6308803769316979 a001 34111385/199691526*28143753123^(3/20) 6308803769316979 a001 267914296/228826127*599074578^(1/12) 6308803769316979 a001 102334155/370248451*141422324^(1/6) 6308803769316979 a001 102334155/505019158607*969323029^(1/2) 6308803769316979 a001 14619165/224056801*817138163596^(1/6) 6308803769316979 a001 34111385/3020733700601*2537720636^(11/18) 6308803769316979 a001 102334155/817138163596*2537720636^(1/2) 6308803769316979 a001 14619165/10525900321*2537720636^(7/18) 6308803769316979 a001 102334155/10749957122*2537720636^(3/10) 6308803769316979 a001 34111385/1368706081*4106118243^(1/4) 6308803769316979 a001 102334155/6643838879*2537720636^(5/18) 6308803769316979 a001 34111385/440719107401*6643838879^(1/2) 6308803769316979 a001 102334155/10749957122*14662949395604^(3/14) 6308803769316979 a001 102334155/10749957122*192900153618^(1/4) 6308803769316979 a001 102334155/2139295485799*17393796001^(1/2) 6308803769316979 a001 14619165/10525900321*17393796001^(5/14) 6308803769316979 a001 831985/228811001*9062201101803^(1/4) 6308803769316979 a001 6765/228826126*45537549124^(1/2) 6308803769316979 a001 14619165/10525900321*312119004989^(7/22) 6308803769316979 a001 14619165/10525900321*14662949395604^(5/18) 6308803769316979 a001 14619165/10525900321*505019158607^(5/16) 6308803769316979 a001 102334155/5600748293801*119218851371^(1/2) 6308803769316979 a001 34111385/3020733700601*312119004989^(1/2) 6308803769316979 a001 102334155/14662949395604*817138163596^(1/2) 6308803769316979 a006 5^(1/2)*Fibonacci(91/2)/Lucas(40)/sqrt(5) 6308803769316979 a001 34111385/3020733700601*3461452808002^(11/24) 6308803769316979 a001 102334155/2139295485799*14662949395604^(7/18) 6308803769316979 a001 102334155/817138163596*14662949395604^(5/14) 6308803769316979 a001 102334155/2139295485799*505019158607^(7/16) 6308803769316979 a001 102334155/817138163596*192900153618^(5/12) 6308803769316979 a001 34111385/64300051206*73681302247^(3/8) 6308803769316979 a001 14619165/10525900321*28143753123^(7/20) 6308803769316979 a001 102334155/45537549124*312119004989^(3/10) 6308803769316979 a001 102334155/817138163596*28143753123^(9/20) 6308803769316979 a001 34111385/3020733700601*28143753123^(11/20) 6308803769316979 a001 102334155/17393796001*1322157322203^(1/4) 6308803769316979 a001 102334155/6643838879*312119004989^(5/22) 6308803769316979 a001 102334155/6643838879*3461452808002^(5/24) 6308803769316979 a001 102334155/6643838879*28143753123^(1/4) 6308803769316979 a006 5^(1/2)*fibonacci(91/2)/Lucas(40)/sqrt(5) 6308803769316979 a001 102334155/45537549124*1568397607^(3/8) 6308803769316979 a001 9303105/230701876*17393796001^(3/14) 6308803769316979 a001 9303105/230701876*14662949395604^(1/6) 6308803769316979 a001 34111385/3020733700601*1568397607^(5/8) 6308803769316979 a001 34111385/199691526*228826127^(3/16) 6308803769316979 a001 9303105/230701876*599074578^(1/4) 6308803769316979 a001 433494437/228826127*2537720636^(1/18) 6308803769316979 a001 102334155/969323029*45537549124^(1/6) 6308803769316979 a001 433494437/228826127*312119004989^(1/22) 6308803769316979 a001 433494437/228826127*28143753123^(1/20) 6308803769316979 a001 14619165/10525900321*599074578^(5/12) 6308803769316979 a001 165580141/312119004989*141422324^(1/2) 6308803769316979 a001 102334155/2139295485799*599074578^(7/12) 6308803769316979 a001 433494437/228826127*228826127^(1/16) 6308803769316979 a001 102334155/6643838879*228826127^(5/16) 6308803769316979 a001 165580141/228826127*2537720636^(1/10) 6308803769316979 a001 165580141/228826127*14662949395604^(1/14) 6308803769316979 a001 165580141/228826127*192900153618^(1/12) 6308803769316979 a001 102334155/370248451*73681302247^(1/8) 6308803769316979 a001 14619165/10525900321*228826127^(7/16) 6308803769316979 a001 267914296/969323029*141422324^(1/6) 6308803769316979 a001 701408733/2537720636*141422324^(1/6) 6308803769316979 a001 1836311903/6643838879*141422324^(1/6) 6308803769316979 a001 102334155/817138163596*228826127^(9/16) 6308803769316979 a001 4807526976/17393796001*141422324^(1/6) 6308803769316979 a001 12586269025/45537549124*141422324^(1/6) 6308803769316979 a001 32951280099/119218851371*141422324^(1/6) 6308803769316979 a001 86267571272/312119004989*141422324^(1/6) 6308803769316979 a001 225851433717/817138163596*141422324^(1/6) 6308803769316979 a001 1548008755920/5600748293801*141422324^(1/6) 6308803769316979 a001 139583862445/505019158607*141422324^(1/6) 6308803769316979 a001 53316291173/192900153618*141422324^(1/6) 6308803769316979 a001 20365011074/73681302247*141422324^(1/6) 6308803769316979 a001 7778742049/28143753123*141422324^(1/6) 6308803769316979 a001 2971215073/10749957122*141422324^(1/6) 6308803769316979 a001 1134903170/4106118243*141422324^(1/6) 6308803769316979 a001 433494437/1568397607*141422324^(1/6) 6308803769316979 a001 66978574/204284540899*370248451^(1/2) 6308803769316979 a001 34111385/3020733700601*228826127^(11/16) 6308803769316979 a001 133957148/299537289*312119004989^(1/10) 6308803769316979 a001 133957148/299537289*1568397607^(1/8) 6308803769316979 a001 701408733/2139295485799*370248451^(1/2) 6308803769316979 a001 165580141/599074578*141422324^(1/6) 6308803769316979 a001 1836311903/5600748293801*370248451^(1/2) 6308803769316979 a001 1201881744/3665737348901*370248451^(1/2) 6308803769316979 a001 7778742049/23725150497407*370248451^(1/2) 6308803769316979 a001 2971215073/9062201101803*370248451^(1/2) 6308803769316979 a001 567451585/1730726404001*370248451^(1/2) 6308803769316979 a001 267914296/1322157322203*969323029^(1/2) 6308803769316979 a001 267914296/1568397607*2537720636^(1/6) 6308803769316979 a001 233802911/199691526*17393796001^(1/14) 6308803769316979 a001 267914296/1568397607*312119004989^(3/22) 6308803769316979 a001 233802911/199691526*14662949395604^(1/18) 6308803769316979 a001 233802911/199691526*505019158607^(1/16) 6308803769316979 a001 267914296/1568397607*28143753123^(3/20) 6308803769316979 a001 233802911/199691526*599074578^(1/12) 6308803769316979 a001 267914296/23725150497407*2537720636^(11/18) 6308803769316979 a001 267914296/2139295485799*2537720636^(1/2) 6308803769316979 a001 133957148/96450076809*2537720636^(7/18) 6308803769316979 a001 267914296/4106118243*817138163596^(1/6) 6308803769316979 a001 267914296/28143753123*2537720636^(3/10) 6308803769316979 a001 9238424/599786069*2537720636^(5/18) 6308803769316979 a001 133957148/1730726404001*6643838879^(1/2) 6308803769316979 a001 267914296/5600748293801*17393796001^(1/2) 6308803769316979 a001 267914296/28143753123*14662949395604^(3/14) 6308803769316979 a001 267914296/28143753123*192900153618^(1/4) 6308803769316979 a001 133957148/96450076809*17393796001^(5/14) 6308803769316979 a001 267914296/9062201101803*45537549124^(1/2) 6308803769316979 a001 267914296/73681302247*9062201101803^(1/4) 6308803769316979 a001 10946/599074579*119218851371^(1/2) 6308803769316979 a001 133957148/96450076809*312119004989^(7/22) 6308803769316979 a001 133957148/96450076809*14662949395604^(5/18) 6308803769316979 a001 133957148/96450076809*505019158607^(5/16) 6308803769316979 a001 267914296/23725150497407*312119004989^(1/2) 6308803769316979 a001 267914296/2139295485799*312119004989^(9/22) 6308803769316979 a006 5^(1/2)*Fibonacci(95/2)/Lucas(42)/sqrt(5) 6308803769316979 a001 267914296/23725150497407*3461452808002^(11/24) 6308803769316979 a001 267914296/2139295485799*14662949395604^(5/14) 6308803769316979 a001 267914296/5600748293801*505019158607^(7/16) 6308803769316979 a001 267914296/2139295485799*192900153618^(5/12) 6308803769316979 a001 267914296/505019158607*73681302247^(3/8) 6308803769316979 a001 267914296/119218851371*312119004989^(3/10) 6308803769316979 a001 133957148/96450076809*28143753123^(7/20) 6308803769316979 a001 66978574/11384387281*1322157322203^(1/4) 6308803769316979 a001 267914296/2139295485799*28143753123^(9/20) 6308803769316979 a001 267914296/23725150497407*28143753123^(11/20) 6308803769316979 a001 9238424/599786069*312119004989^(5/22) 6308803769316979 a001 9238424/599786069*3461452808002^(5/24) 6308803769316979 a001 9238424/599786069*28143753123^(1/4) 6308803769316979 a001 133957148/5374978561*4106118243^(1/4) 6308803769316979 a006 5^(1/2)*fibonacci(95/2)/Lucas(42)/sqrt(5) 6308803769316979 a001 267914296/6643838879*17393796001^(3/14) 6308803769316979 a001 267914296/6643838879*14662949395604^(1/6) 6308803769316979 a001 567451585/299537289*2537720636^(1/18) 6308803769316979 a001 267914296/119218851371*1568397607^(3/8) 6308803769316979 a001 66978574/634430159*45537549124^(1/6) 6308803769316979 a001 567451585/299537289*312119004989^(1/22) 6308803769316979 a001 567451585/299537289*28143753123^(1/20) 6308803769316979 a001 433494437/1322157322203*370248451^(1/2) 6308803769316979 a001 267914296/23725150497407*1568397607^(5/8) 6308803769316979 a001 267914296/6643838879*599074578^(1/4) 6308803769316979 a001 433494437/599074578*2537720636^(1/10) 6308803769316979 a001 433494437/599074578*14662949395604^(1/14) 6308803769316979 a001 433494437/599074578*192900153618^(1/12) 6308803769316979 a001 267914296/969323029*73681302247^(1/8) 6308803769316979 a001 133957148/96450076809*599074578^(5/12) 6308803769316979 a001 567451585/299537289*228826127^(1/16) 6308803769316979 a001 267914296/5600748293801*599074578^(7/12) 6308803769316979 a001 701408733/3461452808002*969323029^(1/2) 6308803769316979 a001 701408733/1568397607*312119004989^(1/10) 6308803769316979 a001 701408733/1568397607*1568397607^(1/8) 6308803769316979 a001 1836311903/9062201101803*969323029^(1/2) 6308803769316979 a001 4807526976/23725150497407*969323029^(1/2) 6308803769316979 a001 2971215073/14662949395604*969323029^(1/2) 6308803769316979 a001 233802911/1368706081*2537720636^(1/6) 6308803769316979 a001 701408733/5600748293801*2537720636^(1/2) 6308803769316979 a001 701408733/505019158607*2537720636^(7/18) 6308803769316979 a001 1836311903/1568397607*17393796001^(1/14) 6308803769316979 a001 1836311903/1568397607*14662949395604^(1/18) 6308803769316979 a001 1836311903/1568397607*505019158607^(1/16) 6308803769316979 a001 233802911/1368706081*28143753123^(3/20) 6308803769316979 a001 701408733/73681302247*2537720636^(3/10) 6308803769316979 a001 701408733/45537549124*2537720636^(5/18) 6308803769316979 a001 233802911/3020733700601*6643838879^(1/2) 6308803769316979 a001 701408733/10749957122*817138163596^(1/6) 6308803769316979 a001 701408733/14662949395604*17393796001^(1/2) 6308803769316979 a001 701408733/505019158607*17393796001^(5/14) 6308803769316979 a001 701408733/23725150497407*45537549124^(1/2) 6308803769316979 a001 701408733/73681302247*14662949395604^(3/14) 6308803769316979 a001 701408733/73681302247*192900153618^(1/4) 6308803769316979 a001 233802911/64300051206*9062201101803^(1/4) 6308803769316979 a001 701408733/505019158607*312119004989^(7/22) 6308803769316979 a001 701408733/5600748293801*312119004989^(9/22) 6308803769316979 a001 701408733/505019158607*14662949395604^(5/18) 6308803769316979 a001 701408733/505019158607*505019158607^(5/16) 6308803769316979 a001 701408733/14662949395604*14662949395604^(7/18) 6308803769316979 a001 701408733/5600748293801*14662949395604^(5/14) 6308803769316979 a001 3524667/1568437211*312119004989^(3/10) 6308803769316979 a001 701408733/5600748293801*192900153618^(5/12) 6308803769316979 a001 233802911/440719107401*73681302247^(3/8) 6308803769316979 a001 701408733/119218851371*1322157322203^(1/4) 6308803769316979 a001 701408733/505019158607*28143753123^(7/20) 6308803769316979 a001 701408733/45537549124*312119004989^(5/22) 6308803769316979 a001 701408733/45537549124*3461452808002^(5/24) 6308803769316979 a001 701408733/5600748293801*28143753123^(9/20) 6308803769316979 a001 701408733/45537549124*28143753123^(1/4) 6308803769316979 a001 701408733/17393796001*17393796001^(3/14) 6308803769316979 a001 701408733/17393796001*14662949395604^(1/6) 6308803769316979 a001 233802911/9381251041*4106118243^(1/4) 6308803769316979 a001 2971215073/1568397607*2537720636^(1/18) 6308803769316979 a001 701408733/6643838879*45537549124^(1/6) 6308803769316979 a001 2971215073/1568397607*312119004989^(1/22) 6308803769316979 a001 2971215073/1568397607*28143753123^(1/20) 6308803769316979 a001 1134903170/5600748293801*969323029^(1/2) 6308803769316979 a001 1134903170/1568397607*2537720636^(1/10) 6308803769316979 a001 3524667/1568437211*1568397607^(3/8) 6308803769316979 a001 1134903170/1568397607*14662949395604^(1/14) 6308803769316979 a001 1134903170/1568397607*192900153618^(1/12) 6308803769316979 a001 701408733/2537720636*73681302247^(1/8) 6308803769316979 a001 1836311903/1568397607*599074578^(1/12) 6308803769316979 a001 1836311903/14662949395604*2537720636^(1/2) 6308803769316979 a001 1836311903/1322157322203*2537720636^(7/18) 6308803769316979 a001 1836311903/4106118243*312119004989^(1/10) 6308803769316979 a001 1836311903/192900153618*2537720636^(3/10) 6308803769316979 a001 1836311903/119218851371*2537720636^(5/18) 6308803769316979 a001 1836311903/10749957122*2537720636^(1/6) 6308803769316979 a001 1836311903/23725150497407*6643838879^(1/2) 6308803769316979 a001 14930208/10749853441*2537720636^(7/18) 6308803769316979 a001 1602508992/1368706081*17393796001^(1/14) 6308803769316979 a001 1836311903/10749957122*312119004989^(3/22) 6308803769316979 a001 1602508992/1368706081*14662949395604^(1/18) 6308803769316979 a001 1602508992/1368706081*505019158607^(1/16) 6308803769316979 a001 1836311903/4106118243*1568397607^(1/8) 6308803769316979 a001 1836311903/10749957122*28143753123^(3/20) 6308803769316979 a001 7778742049/4106118243*2537720636^(1/18) 6308803769316979 a001 12586269025/9062201101803*2537720636^(7/18) 6308803769316979 a001 1836311903/28143753123*817138163596^(1/6) 6308803769316979 a001 32951280099/23725150497407*2537720636^(7/18) 6308803769316979 a001 1836311903/1322157322203*17393796001^(5/14) 6308803769316979 a001 10182505537/7331474697802*2537720636^(7/18) 6308803769316979 a001 1836311903/45537549124*17393796001^(3/14) 6308803769316979 a001 1836311903/192900153618*14662949395604^(3/14) 6308803769316979 a001 1836311903/192900153618*192900153618^(1/4) 6308803769316979 a001 1836311903/14662949395604*312119004989^(9/22) 6308803769316979 a001 1836311903/505019158607*9062201101803^(1/4) 6308803769316979 a001 1836311903/1322157322203*312119004989^(7/22) 6308803769316979 a001 1836311903/1322157322203*14662949395604^(5/18) 6308803769316979 a006 5^(1/2)*Fibonacci(103/2)/Lucas(46)/sqrt(5) 6308803769316979 a001 1836311903/1322157322203*505019158607^(5/16) 6308803769316979 a001 1836311903/14662949395604*192900153618^(5/12) 6308803769316979 a001 1836311903/119218851371*312119004989^(5/22) 6308803769316979 a001 1836311903/3461452808002*73681302247^(3/8) 6308803769316979 a001 1836311903/119218851371*3461452808002^(5/24) 6308803769316979 a006 5^(1/2)*fibonacci(103/2)/Lucas(46)/sqrt(5) 6308803769316979 a001 1836311903/119218851371*28143753123^(1/4) 6308803769316979 a001 1836311903/1322157322203*28143753123^(7/20) 6308803769316979 a001 1836311903/45537549124*14662949395604^(1/6) 6308803769316979 a001 1836311903/14662949395604*28143753123^(9/20) 6308803769316979 a001 7778742049/5600748293801*2537720636^(7/18) 6308803769316979 a001 1836311903/17393796001*45537549124^(1/6) 6308803769316979 a001 7778742049/4106118243*312119004989^(1/22) 6308803769316979 a001 7778742049/4106118243*28143753123^(1/20) 6308803769316979 a001 102287808/10745088481*2537720636^(3/10) 6308803769316979 a001 2971215073/23725150497407*2537720636^(1/2) 6308803769316979 a001 2971215073/4106118243*2537720636^(1/10) 6308803769316979 a001 4807526976/312119004989*2537720636^(5/18) 6308803769316979 a001 12586269025/1322157322203*2537720636^(3/10) 6308803769316979 a001 32951280099/3461452808002*2537720636^(3/10) 6308803769316979 a001 86267571272/9062201101803*2537720636^(3/10) 6308803769316979 a001 225851433717/23725150497407*2537720636^(3/10) 6308803769316979 a001 139583862445/14662949395604*2537720636^(3/10) 6308803769316979 a001 53316291173/5600748293801*2537720636^(3/10) 6308803769316979 a001 20365011074/2139295485799*2537720636^(3/10) 6308803769316979 a001 1836311903/73681302247*4106118243^(1/4) 6308803769316979 a001 12586269025/817138163596*2537720636^(5/18) 6308803769316979 a001 32951280099/2139295485799*2537720636^(5/18) 6308803769316979 a001 7778742049/817138163596*2537720636^(3/10) 6308803769316979 a001 86267571272/5600748293801*2537720636^(5/18) 6308803769316979 a001 7787980473/505618944676*2537720636^(5/18) 6308803769316979 a001 365435296162/23725150497407*2537720636^(5/18) 6308803769316979 a001 139583862445/9062201101803*2537720636^(5/18) 6308803769316979 a001 53316291173/3461452808002*2537720636^(5/18) 6308803769316979 a001 20365011074/1322157322203*2537720636^(5/18) 6308803769316979 a001 7778742049/505019158607*2537720636^(5/18) 6308803769316979 a001 2971215073/2139295485799*2537720636^(7/18) 6308803769316979 a001 2971215073/4106118243*14662949395604^(1/14) 6308803769316979 a001 2971215073/4106118243*192900153618^(1/12) 6308803769316979 a001 1836311903/6643838879*73681302247^(1/8) 6308803769316979 a001 1602508992/9381251041*2537720636^(1/6) 6308803769316979 a001 12586269025/73681302247*2537720636^(1/6) 6308803769316979 a001 10983760033/64300051206*2537720636^(1/6) 6308803769316979 a001 86267571272/505019158607*2537720636^(1/6) 6308803769316979 a001 75283811239/440719107401*2537720636^(1/6) 6308803769316979 a001 2504730781961/14662949395604*2537720636^(1/6) 6308803769316979 a001 139583862445/817138163596*2537720636^(1/6) 6308803769316979 a001 53316291173/312119004989*2537720636^(1/6) 6308803769316979 a001 20365011074/119218851371*2537720636^(1/6) 6308803769316979 a001 2971215073/312119004989*2537720636^(3/10) 6308803769316979 a001 7778742049/45537549124*2537720636^(1/6) 6308803769316979 a001 7778742049/10749957122*2537720636^(1/10) 6308803769316979 a001 2971215073/192900153618*2537720636^(5/18) 6308803769316979 a001 2403763488/5374978561*312119004989^(1/10) 6308803769316979 a001 10182505537/5374978561*2537720636^(1/18) 6308803769316979 a001 20365011074/28143753123*2537720636^(1/10) 6308803769316979 a001 53316291173/73681302247*2537720636^(1/10) 6308803769316979 a001 139583862445/192900153618*2537720636^(1/10) 6308803769316979 a001 365435296162/505019158607*2537720636^(1/10) 6308803769316979 a001 225851433717/312119004989*2537720636^(1/10) 6308803769316979 a001 86267571272/119218851371*2537720636^(1/10) 6308803769316979 a001 32951280099/45537549124*2537720636^(1/10) 6308803769316979 a001 12586269025/17393796001*2537720636^(1/10) 6308803769316979 a001 12586269025/10749957122*17393796001^(1/14) 6308803769316979 a001 1602508992/9381251041*312119004989^(3/22) 6308803769316979 a001 12586269025/10749957122*14662949395604^(1/18) 6308803769316979 a001 12586269025/10749957122*505019158607^(1/16) 6308803769316979 a001 14930208/10749853441*17393796001^(5/14) 6308803769316979 a001 53316291173/28143753123*2537720636^(1/18) 6308803769316979 a001 1602508992/9381251041*28143753123^(3/20) 6308803769316979 a001 4807526976/119218851371*17393796001^(3/14) 6308803769316979 a001 686789568/10525900321*817138163596^(1/6) 6308803769316979 a001 139583862445/73681302247*2537720636^(1/18) 6308803769316979 a001 102287808/10745088481*14662949395604^(3/14) 6308803769316979 a001 14930208/10749853441*312119004989^(7/22) 6308803769316979 a001 1602508992/440719107401*9062201101803^(1/4) 6308803769316979 a006 5^(1/2)*Fibonacci(107/2)/Lucas(48)/sqrt(5) 6308803769316979 a001 14930208/10749853441*505019158607^(5/16) 6308803769316979 a001 182717648081/96450076809*2537720636^(1/18) 6308803769316979 a001 1201881744/204284540899*1322157322203^(1/4) 6308803769316979 a001 102287808/10745088481*192900153618^(1/4) 6308803769316979 a001 4807526976/312119004989*312119004989^(5/22) 6308803769316979 a001 4807526976/312119004989*3461452808002^(5/24) 6308803769316979 a001 956722026041/505019158607*2537720636^(1/18) 6308803769316979 a001 10610209857723/5600748293801*2537720636^(1/18) 6308803769316979 a001 591286729879/312119004989*2537720636^(1/18) 6308803769316979 a006 5^(1/2)*fibonacci(107/2)/Lucas(48)/sqrt(5) 6308803769316979 a001 1602508992/3020733700601*73681302247^(3/8) 6308803769316979 a001 225851433717/119218851371*2537720636^(1/18) 6308803769316979 a001 4807526976/312119004989*28143753123^(1/4) 6308803769316979 a001 1201881744/11384387281*45537549124^(1/6) 6308803769316979 a001 14930208/10749853441*28143753123^(7/20) 6308803769316979 a001 10182505537/5374978561*312119004989^(1/22) 6308803769316979 a001 21566892818/11384387281*2537720636^(1/18) 6308803769316979 a001 10182505537/5374978561*28143753123^(1/20) 6308803769316979 a001 32951280099/17393796001*2537720636^(1/18) 6308803769316979 a001 7778742049/10749957122*14662949395604^(1/14) 6308803769316979 a001 7778742049/10749957122*192900153618^(1/12) 6308803769316979 a001 4807526976/17393796001*73681302247^(1/8) 6308803769316979 a001 12586269025/28143753123*312119004989^(1/10) 6308803769316979 a001 12586269025/9062201101803*17393796001^(5/14) 6308803769316979 a001 1144206275/28374454999*17393796001^(3/14) 6308803769316979 a001 10983760033/9381251041*17393796001^(1/14) 6308803769316979 a001 4807526976/6643838879*2537720636^(1/10) 6308803769316979 a001 12586269025/73681302247*312119004989^(3/22) 6308803769316979 a001 10983760033/9381251041*14662949395604^(1/18) 6308803769316979 a001 10983760033/9381251041*505019158607^(1/16) 6308803769316979 a001 32951280099/23725150497407*17393796001^(5/14) 6308803769316979 a001 12586269025/192900153618*817138163596^(1/6) 6308803769316979 a001 12586269025/119218851371*45537549124^(1/6) 6308803769316979 a001 12586269025/3461452808002*9062201101803^(1/4) 6308803769316979 a001 12586269025/9062201101803*505019158607^(5/16) 6308803769316979 a001 12586269025/73681302247*28143753123^(3/20) 6308803769316979 a001 12586269025/1322157322203*192900153618^(1/4) 6308803769316979 a001 1144206275/28374454999*14662949395604^(1/6) 6308803769316979 a001 12586269025/23725150497407*73681302247^(3/8) 6308803769316979 a001 53316291173/28143753123*312119004989^(1/22) 6308803769316979 a001 53316291173/28143753123*28143753123^(1/20) 6308803769316979 a001 12586269025/817138163596*28143753123^(1/4) 6308803769316979 a001 32951280099/817138163596*17393796001^(3/14) 6308803769316979 a001 12586269025/9062201101803*28143753123^(7/20) 6308803769316979 a001 20365011074/28143753123*14662949395604^(1/14) 6308803769316979 a001 20365011074/28143753123*192900153618^(1/12) 6308803769316979 a001 12586269025/45537549124*73681302247^(1/8) 6308803769316979 a001 86267571272/2139295485799*17393796001^(3/14) 6308803769316979 a001 225851433717/5600748293801*17393796001^(3/14) 6308803769316979 a001 591286729879/14662949395604*17393796001^(3/14) 6308803769316979 a001 365435296162/9062201101803*17393796001^(3/14) 6308803769316979 a001 10182505537/7331474697802*17393796001^(5/14) 6308803769316979 a001 139583862445/3461452808002*17393796001^(3/14) 6308803769316979 a001 53316291173/1322157322203*17393796001^(3/14) 6308803769316979 a001 86267571272/73681302247*17393796001^(1/14) 6308803769316979 a001 32951280099/73681302247*312119004989^(1/10) 6308803769316979 a001 75283811239/64300051206*17393796001^(1/14) 6308803769316979 a001 32951280099/312119004989*45537549124^(1/6) 6308803769316979 a001 2504730781961/2139295485799*17393796001^(1/14) 6308803769316979 a001 20365011074/505019158607*17393796001^(3/14) 6308803769316979 a001 365435296162/312119004989*17393796001^(1/14) 6308803769316979 a001 10983760033/64300051206*312119004989^(3/22) 6308803769316979 a001 86267571272/73681302247*14662949395604^(1/18) 6308803769316979 a001 86267571272/73681302247*505019158607^(1/16) 6308803769316979 a001 32951280099/14662949395604*312119004989^(3/10) 6308803769316979 a001 10983760033/3020733700601*9062201101803^(1/4) 6308803769316979 a001 32951280099/2139295485799*3461452808002^(5/24) 6308803769316979 a001 32951280099/23725150497407*505019158607^(5/16) 6308803769316979 a001 32951280099/3461452808002*192900153618^(1/4) 6308803769316979 a001 139583862445/73681302247*312119004989^(1/22) 6308803769316979 a001 139583862445/119218851371*17393796001^(1/14) 6308803769316979 a001 53316291173/73681302247*14662949395604^(1/14) 6308803769316979 a001 53316291173/73681302247*192900153618^(1/12) 6308803769316979 a001 139583862445/73681302247*28143753123^(1/20) 6308803769316979 a001 21566892818/204284540899*45537549124^(1/6) 6308803769316979 a001 32951280099/119218851371*73681302247^(1/8) 6308803769316979 a001 225851433717/2139295485799*45537549124^(1/6) 6308803769316979 a001 182717648081/1730726404001*45537549124^(1/6) 6308803769316979 a001 139583862445/1322157322203*45537549124^(1/6) 6308803769316979 a001 43133785636/96450076809*312119004989^(1/10) 6308803769316979 a001 86267571272/505019158607*312119004989^(3/22) 6308803769316979 a001 86267571272/5600748293801*312119004989^(5/22) 6308803769316979 a001 1135099622/192933544679*1322157322203^(1/4) 6308803769316979 a001 182717648081/96450076809*312119004989^(1/22) 6308803769316979 a001 10983760033/64300051206*28143753123^(3/20) 6308803769316979 a001 86267571272/9062201101803*192900153618^(1/4) 6308803769316979 a001 139583862445/192900153618*192900153618^(1/12) 6308803769316979 a001 53316291173/505019158607*45537549124^(1/6) 6308803769316979 a001 225851433717/505019158607*312119004989^(1/10) 6308803769316979 a001 75283811239/440719107401*312119004989^(3/22) 6308803769316979 a006 5^(1/2)*Fibonacci(127/2)/Lucas(58)/sqrt(5) 6308803769316979 a006 5^(1/2)*fibonacci(127/2)/Lucas(58)/sqrt(5) 6308803769316979 a006 5^(1/2)*Fibonacci(131/2)/Lucas(60)/sqrt(5) 6308803769316979 a006 5^(1/2)*fibonacci(131/2)/Lucas(60)/sqrt(5) 6308803769316979 a006 5^(1/2)*Fibonacci(135/2)/Lucas(62)/sqrt(5) 6308803769316979 a006 5^(1/2)*fibonacci(135/2)/Lucas(62)/sqrt(5) 6308803769316979 a006 5^(1/2)*fibonacci(133/2)/Lucas(61)/sqrt(5) 6308803769316979 a006 5^(1/2)*Fibonacci(133/2)/Lucas(61)/sqrt(5) 6308803769316979 a001 182717648081/408569081798*312119004989^(1/10) 6308803769316979 a001 139583862445/9062201101803*312119004989^(5/22) 6308803769316979 a006 5^(1/2)*fibonacci(121/2)/Lucas(55)/sqrt(5) 6308803769316979 a001 139583862445/2139295485799*817138163596^(1/6) 6308803769316979 a006 5^(1/2)*Fibonacci(121/2)/Lucas(55)/sqrt(5) 6308803769316979 a001 365435296162/312119004989*505019158607^(1/16) 6308803769316979 a001 139583862445/14662949395604*192900153618^(1/4) 6308803769316979 a001 139583862445/312119004989*312119004989^(1/10) 6308803769316979 a001 225851433717/817138163596*73681302247^(1/8) 6308803769316979 a001 1548008755920/5600748293801*73681302247^(1/8) 6308803769316979 a001 139583862445/505019158607*73681302247^(1/8) 6308803769316979 a001 182717648081/96450076809*28143753123^(1/20) 6308803769316979 a001 86267571272/119218851371*14662949395604^(1/14) 6308803769316979 a001 86267571272/119218851371*192900153618^(1/12) 6308803769316979 a001 956722026041/505019158607*28143753123^(1/20) 6308803769316979 a001 225851433717/119218851371*312119004989^(1/22) 6308803769316979 a001 53316291173/23725150497407*312119004989^(3/10) 6308803769316979 a006 5^(1/2)*fibonacci(117/2)/Lucas(53)/sqrt(5) 6308803769316979 a006 5^(1/2)*Fibonacci(117/2)/Lucas(53)/sqrt(5) 6308803769316979 a001 53316291173/14662949395604*9062201101803^(1/4) 6308803769316979 a001 53316291173/817138163596*817138163596^(1/6) 6308803769316979 a001 53316291173/5600748293801*192900153618^(1/4) 6308803769316979 a001 53316291173/312119004989*312119004989^(3/22) 6308803769316979 a001 139583862445/119218851371*505019158607^(1/16) 6308803769316979 a001 225851433717/119218851371*28143753123^(1/20) 6308803769316979 a001 32951280099/2139295485799*28143753123^(1/4) 6308803769316979 a001 53316291173/119218851371*312119004989^(1/10) 6308803769316979 a001 86267571272/505019158607*28143753123^(3/20) 6308803769316979 a001 75283811239/440719107401*28143753123^(3/20) 6308803769316979 a001 139583862445/817138163596*28143753123^(3/20) 6308803769316979 a001 32951280099/23725150497407*28143753123^(7/20) 6308803769316979 a001 53316291173/312119004989*28143753123^(3/20) 6308803769316979 a001 86267571272/5600748293801*28143753123^(1/4) 6308803769316979 a001 32951280099/45537549124*14662949395604^(1/14) 6308803769316979 a001 32951280099/45537549124*192900153618^(1/12) 6308803769316979 a001 7787980473/505618944676*28143753123^(1/4) 6308803769316979 a001 365435296162/23725150497407*28143753123^(1/4) 6308803769316979 a001 20365011074/73681302247*73681302247^(1/8) 6308803769316979 a001 139583862445/9062201101803*28143753123^(1/4) 6308803769316979 a001 10182505537/96450076809*45537549124^(1/6) 6308803769316979 a001 53316291173/3461452808002*28143753123^(1/4) 6308803769316979 a001 21566892818/11384387281*312119004989^(1/22) 6308803769316979 a001 10182505537/7331474697802*312119004989^(7/22) 6308803769316979 a006 5^(1/2)*fibonacci(113/2)/Lucas(51)/sqrt(5) 6308803769316979 a001 20365011074/1322157322203*3461452808002^(5/24) 6308803769316979 a006 5^(1/2)*Fibonacci(113/2)/Lucas(51)/sqrt(5) 6308803769316979 a001 10182505537/1730726404001*1322157322203^(1/4) 6308803769316979 a001 10182505537/7331474697802*505019158607^(5/16) 6308803769316979 a001 20365011074/2139295485799*192900153618^(1/4) 6308803769316979 a001 20365011074/312119004989*817138163596^(1/6) 6308803769316979 a001 21566892818/11384387281*28143753123^(1/20) 6308803769316979 a001 20365011074/119218851371*312119004989^(3/22) 6308803769316979 a001 53316291173/45537549124*14662949395604^(1/18) 6308803769316979 a001 53316291173/45537549124*505019158607^(1/16) 6308803769316979 a001 20365011074/119218851371*28143753123^(3/20) 6308803769316979 a001 20365011074/1322157322203*28143753123^(1/4) 6308803769316979 a001 10182505537/7331474697802*28143753123^(7/20) 6308803769316979 a001 10182505537/22768774562*312119004989^(1/10) 6308803769316979 a001 12586269025/17393796001*14662949395604^(1/14) 6308803769316979 a001 12586269025/17393796001*192900153618^(1/12) 6308803769316979 a001 7778742049/28143753123*73681302247^(1/8) 6308803769316979 a001 7778742049/5600748293801*17393796001^(5/14) 6308803769316979 a001 7778742049/192900153618*17393796001^(3/14) 6308803769316979 a001 7778742049/73681302247*45537549124^(1/6) 6308803769316979 a001 32951280099/17393796001*312119004989^(1/22) 6308803769316979 a001 32951280099/17393796001*28143753123^(1/20) 6308803769316979 a001 7778742049/192900153618*14662949395604^(1/6) 6308803769316979 a006 5^(1/2)*fibonacci(109/2)/Lucas(49)/sqrt(5) 6308803769316979 a001 7778742049/505019158607*312119004989^(5/22) 6308803769316979 a001 7778742049/3461452808002*312119004989^(3/10) 6308803769316979 a001 7778742049/1322157322203*1322157322203^(1/4) 6308803769316979 a006 5^(1/2)*Fibonacci(109/2)/Lucas(49)/sqrt(5) 6308803769316979 a001 7778742049/5600748293801*14662949395604^(5/18) 6308803769316979 a001 7778742049/817138163596*14662949395604^(3/14) 6308803769316979 a001 7778742049/817138163596*192900153618^(1/4) 6308803769316979 a001 7778742049/14662949395604*73681302247^(3/8) 6308803769316979 a001 7778742049/119218851371*817138163596^(1/6) 6308803769316979 a001 20365011074/17393796001*17393796001^(1/14) 6308803769316979 a001 7778742049/505019158607*28143753123^(1/4) 6308803769316979 a001 7778742049/5600748293801*28143753123^(7/20) 6308803769316979 a001 7778742049/45537549124*312119004989^(3/22) 6308803769316979 a001 20365011074/17393796001*14662949395604^(1/18) 6308803769316979 a001 20365011074/17393796001*505019158607^(1/16) 6308803769316979 a001 7778742049/45537549124*28143753123^(3/20) 6308803769316979 a001 267084832/10716675201*4106118243^(1/4) 6308803769316979 a001 7778742049/17393796001*312119004989^(1/10) 6308803769316979 a001 12586269025/6643838879*2537720636^(1/18) 6308803769316979 a001 12586269025/505019158607*4106118243^(1/4) 6308803769316979 a001 4807526976/6643838879*14662949395604^(1/14) 6308803769316979 a001 4807526976/6643838879*192900153618^(1/12) 6308803769316979 a001 2971215073/10749957122*73681302247^(1/8) 6308803769316979 a001 10983760033/440719107401*4106118243^(1/4) 6308803769316979 a001 43133785636/1730726404001*4106118243^(1/4) 6308803769316979 a001 75283811239/3020733700601*4106118243^(1/4) 6308803769316979 a001 182717648081/7331474697802*4106118243^(1/4) 6308803769316979 a001 139583862445/5600748293801*4106118243^(1/4) 6308803769316979 a001 53316291173/2139295485799*4106118243^(1/4) 6308803769316979 a001 10182505537/408569081798*4106118243^(1/4) 6308803769316979 a001 7778742049/312119004989*4106118243^(1/4) 6308803769316979 a001 2971215073/28143753123*45537549124^(1/6) 6308803769316979 a001 12586269025/6643838879*312119004989^(1/22) 6308803769316979 a001 12586269025/6643838879*28143753123^(1/20) 6308803769316979 a001 2971215073/2139295485799*17393796001^(5/14) 6308803769316979 a001 2971215073/73681302247*17393796001^(3/14) 6308803769316979 a001 2971215073/73681302247*14662949395604^(1/6) 6308803769316979 a001 2971215073/192900153618*312119004989^(5/22) 6308803769316979 a001 2971215073/192900153618*3461452808002^(5/24) 6308803769316979 a001 2971215073/23725150497407*312119004989^(9/22) 6308803769316979 a001 2971215073/1322157322203*312119004989^(3/10) 6308803769316979 a001 2971215073/2139295485799*312119004989^(7/22) 6308803769316979 a001 2971215073/2139295485799*14662949395604^(5/18) 6308803769316979 a001 2971215073/2139295485799*505019158607^(5/16) 6308803769316979 a001 2971215073/312119004989*14662949395604^(3/14) 6308803769316979 a001 2971215073/23725150497407*192900153618^(5/12) 6308803769316979 a001 2971215073/312119004989*192900153618^(1/4) 6308803769316979 a001 2971215073/5600748293801*73681302247^(3/8) 6308803769316979 a001 2971215073/192900153618*28143753123^(1/4) 6308803769316979 a001 2971215073/2139295485799*28143753123^(7/20) 6308803769316979 a001 2971215073/45537549124*817138163596^(1/6) 6308803769316979 a001 2971215073/23725150497407*28143753123^(9/20) 6308803769316979 a001 7778742049/6643838879*17393796001^(1/14) 6308803769316979 a001 2971215073/17393796001*312119004989^(3/22) 6308803769316979 a001 7778742049/6643838879*505019158607^(1/16) 6308803769316979 a001 2971215073/17393796001*28143753123^(3/20) 6308803769316979 a001 2403763488/5374978561*1568397607^(1/8) 6308803769316979 a001 2971215073/119218851371*4106118243^(1/4) 6308803769316979 a001 2971215073/6643838879*312119004989^(1/10) 6308803769316979 a001 12586269025/28143753123*1568397607^(1/8) 6308803769316979 a001 32951280099/73681302247*1568397607^(1/8) 6308803769316979 a001 43133785636/96450076809*1568397607^(1/8) 6308803769316979 a001 225851433717/505019158607*1568397607^(1/8) 6308803769316979 a001 591286729879/1322157322203*1568397607^(1/8) 6308803769316979 a001 10610209857723/23725150497407*1568397607^(1/8) 6308803769316979 a001 182717648081/408569081798*1568397607^(1/8) 6308803769316979 a001 139583862445/312119004989*1568397607^(1/8) 6308803769316979 a001 53316291173/119218851371*1568397607^(1/8) 6308803769316979 a001 10182505537/22768774562*1568397607^(1/8) 6308803769316979 a001 7778742049/17393796001*1568397607^(1/8) 6308803769316979 a001 1134903170/9062201101803*2537720636^(1/2) 6308803769316979 a001 1836311903/2537720636*2537720636^(1/10) 6308803769316979 a001 1836311903/817138163596*1568397607^(3/8) 6308803769316979 a001 567451585/408569081798*2537720636^(7/18) 6308803769316979 a001 1836311903/2537720636*14662949395604^(1/14) 6308803769316979 a001 1836311903/2537720636*192900153618^(1/12) 6308803769316979 a001 1134903170/4106118243*73681302247^(1/8) 6308803769316979 a001 2971215073/6643838879*1568397607^(1/8) 6308803769316979 a001 1134903170/119218851371*2537720636^(3/10) 6308803769316979 a001 1134903170/73681302247*2537720636^(5/18) 6308803769316979 a001 1201881744/634430159*2537720636^(1/18) 6308803769316979 a001 4807526976/2139295485799*1568397607^(3/8) 6308803769316979 a001 567451585/7331474697802*6643838879^(1/2) 6308803769316979 a001 567451585/5374978561*45537549124^(1/6) 6308803769316979 a001 1201881744/634430159*312119004989^(1/22) 6308803769316979 a001 1201881744/634430159*28143753123^(1/20) 6308803769316979 a001 12586269025/5600748293801*1568397607^(3/8) 6308803769316979 a001 1134903170/6643838879*2537720636^(1/6) 6308803769316979 a001 32951280099/14662949395604*1568397607^(3/8) 6308803769316979 a001 53316291173/23725150497407*1568397607^(3/8) 6308803769316979 a001 20365011074/9062201101803*1568397607^(3/8) 6308803769316979 a001 1134903170/28143753123*17393796001^(3/14) 6308803769316979 a001 1134903170/23725150497407*17393796001^(1/2) 6308803769316979 a001 1134903170/28143753123*14662949395604^(1/6) 6308803769316979 a001 567451585/408569081798*17393796001^(5/14) 6308803769316979 a006 5^(1/2)*fibonacci(101/2)/Lucas(45)/sqrt(5) 6308803769316979 a001 1134903170/73681302247*312119004989^(5/22) 6308803769316979 a001 1134903170/73681302247*3461452808002^(5/24) 6308803769316979 a001 567451585/96450076809*1322157322203^(1/4) 6308803769316979 a001 1134903170/505019158607*312119004989^(3/10) 6308803769316979 a001 1134903170/9062201101803*312119004989^(9/22) 6308803769316979 a001 567451585/408569081798*312119004989^(7/22) 6308803769316979 a001 1134903170/9062201101803*14662949395604^(5/14) 6308803769316979 a006 5^(1/2)*Fibonacci(101/2)/Lucas(45)/sqrt(5) 6308803769316979 a001 567451585/408569081798*14662949395604^(5/18) 6308803769316979 a001 1134903170/23725150497407*505019158607^(7/16) 6308803769316979 a001 567451585/408569081798*505019158607^(5/16) 6308803769316979 a001 1134903170/312119004989*9062201101803^(1/4) 6308803769316979 a001 1134903170/9062201101803*192900153618^(5/12) 6308803769316979 a001 1134903170/2139295485799*73681302247^(3/8) 6308803769316979 a001 1134903170/119218851371*14662949395604^(3/14) 6308803769316979 a001 1134903170/119218851371*192900153618^(1/4) 6308803769316979 a001 1134903170/73681302247*28143753123^(1/4) 6308803769316979 a001 567451585/408569081798*28143753123^(7/20) 6308803769316979 a001 7778742049/3461452808002*1568397607^(3/8) 6308803769316979 a001 1134903170/9062201101803*28143753123^(9/20) 6308803769316979 a001 1134903170/17393796001*817138163596^(1/6) 6308803769316979 a001 1602508992/1368706081*599074578^(1/12) 6308803769316979 a001 567451585/22768774562*4106118243^(1/4) 6308803769316979 a001 2971215073/1322157322203*1568397607^(3/8) 6308803769316979 a001 2971215073/2537720636*17393796001^(1/14) 6308803769316979 a001 1134903170/6643838879*312119004989^(3/22) 6308803769316979 a001 2971215073/2537720636*14662949395604^(1/18) 6308803769316979 a001 1134903170/6643838879*28143753123^(3/20) 6308803769316979 a001 12586269025/10749957122*599074578^(1/12) 6308803769316979 a001 10983760033/9381251041*599074578^(1/12) 6308803769316979 a001 86267571272/73681302247*599074578^(1/12) 6308803769316979 a001 75283811239/64300051206*599074578^(1/12) 6308803769316979 a001 2504730781961/2139295485799*599074578^(1/12) 6308803769316979 a001 365435296162/312119004989*599074578^(1/12) 6308803769316979 a001 139583862445/119218851371*599074578^(1/12) 6308803769316979 a001 53316291173/45537549124*599074578^(1/12) 6308803769316979 a001 20365011074/17393796001*599074578^(1/12) 6308803769316979 a001 7778742049/6643838879*599074578^(1/12) 6308803769316979 a001 701408733/17393796001*599074578^(1/4) 6308803769316979 a001 1134903170/505019158607*1568397607^(3/8) 6308803769316979 a001 567451585/1268860318*312119004989^(1/10) 6308803769316979 a001 567451585/1268860318*1568397607^(1/8) 6308803769316979 a001 267914296/1568397607*228826127^(3/16) 6308803769316979 a001 2971215073/2537720636*599074578^(1/12) 6308803769316979 a001 433494437/2139295485799*969323029^(1/2) 6308803769316979 a001 1836311903/45537549124*599074578^(1/4) 6308803769316979 a001 701408733/969323029*2537720636^(1/10) 6308803769316979 a001 701408733/969323029*14662949395604^(1/14) 6308803769316979 a001 701408733/969323029*192900153618^(1/12) 6308803769316979 a001 433494437/1568397607*73681302247^(1/8) 6308803769316979 a001 4807526976/119218851371*599074578^(1/4) 6308803769316979 a001 1144206275/28374454999*599074578^(1/4) 6308803769316979 a001 32951280099/817138163596*599074578^(1/4) 6308803769316979 a001 86267571272/2139295485799*599074578^(1/4) 6308803769316979 a001 225851433717/5600748293801*599074578^(1/4) 6308803769316979 a001 591286729879/14662949395604*599074578^(1/4) 6308803769316979 a001 365435296162/9062201101803*599074578^(1/4) 6308803769316979 a001 139583862445/3461452808002*599074578^(1/4) 6308803769316979 a001 53316291173/1322157322203*599074578^(1/4) 6308803769316979 a001 20365011074/505019158607*599074578^(1/4) 6308803769316979 a001 7778742049/192900153618*599074578^(1/4) 6308803769316979 a001 2971215073/73681302247*599074578^(1/4) 6308803769316979 a001 701408733/505019158607*599074578^(5/12) 6308803769316979 a001 2971215073/1568397607*228826127^(1/16) 6308803769316979 a001 1134903170/28143753123*599074578^(1/4) 6308803769316979 a001 433494437/3461452808002*2537720636^(1/2) 6308803769316979 a001 1836311903/969323029*2537720636^(1/18) 6308803769316979 a001 433494437/312119004989*2537720636^(7/18) 6308803769316979 a001 433494437/4106118243*45537549124^(1/6) 6308803769316979 a001 1836311903/969323029*312119004989^(1/22) 6308803769316979 a001 1836311903/969323029*28143753123^(1/20) 6308803769316979 a001 433494437/45537549124*2537720636^(3/10) 6308803769316979 a001 433494437/28143753123*2537720636^(5/18) 6308803769316979 a001 433494437/5600748293801*6643838879^(1/2) 6308803769316979 a001 433494437/10749957122*17393796001^(3/14) 6308803769316979 a001 433494437/10749957122*14662949395604^(1/6) 6308803769316979 a006 5^(1/2)*fibonacci(97/2)/Lucas(43)/sqrt(5) 6308803769316979 a001 433494437/9062201101803*17393796001^(1/2) 6308803769316979 a001 433494437/28143753123*312119004989^(5/22) 6308803769316979 a001 433494437/28143753123*3461452808002^(5/24) 6308803769316979 a001 433494437/312119004989*17393796001^(5/14) 6308803769316979 a001 433494437/28143753123*28143753123^(1/4) 6308803769316979 a001 433494437/14662949395604*45537549124^(1/2) 6308803769316979 a001 433494437/73681302247*1322157322203^(1/4) 6308803769316979 a001 433494437/192900153618*312119004989^(3/10) 6308803769316979 a001 433494437/3461452808002*312119004989^(9/22) 6308803769316979 a001 433494437/3461452808002*14662949395604^(5/14) 6308803769316979 a006 5^(1/2)*Fibonacci(97/2)/Lucas(43)/sqrt(5) 6308803769316979 a001 433494437/312119004989*312119004989^(7/22) 6308803769316979 a001 433494437/312119004989*14662949395604^(5/18) 6308803769316979 a001 433494437/3461452808002*192900153618^(5/12) 6308803769316979 a001 433494437/312119004989*505019158607^(5/16) 6308803769316979 a001 433494437/119218851371*9062201101803^(1/4) 6308803769316979 a001 433494437/817138163596*73681302247^(3/8) 6308803769316979 a001 433494437/312119004989*28143753123^(7/20) 6308803769316979 a001 433494437/45537549124*14662949395604^(3/14) 6308803769316979 a001 433494437/45537549124*192900153618^(1/4) 6308803769316979 a001 433494437/3461452808002*28143753123^(9/20) 6308803769316979 a001 433494437/17393796001*4106118243^(1/4) 6308803769316979 a001 433494437/6643838879*817138163596^(1/6) 6308803769316979 a001 1836311903/1322157322203*599074578^(5/12) 6308803769316979 a001 7778742049/4106118243*228826127^(1/16) 6308803769316979 a001 14930208/10749853441*599074578^(5/12) 6308803769316979 a001 12586269025/9062201101803*599074578^(5/12) 6308803769316979 a001 32951280099/23725150497407*599074578^(5/12) 6308803769316979 a001 10182505537/7331474697802*599074578^(5/12) 6308803769316979 a001 7778742049/5600748293801*599074578^(5/12) 6308803769316979 a001 2971215073/2139295485799*599074578^(5/12) 6308803769316979 a001 10182505537/5374978561*228826127^(1/16) 6308803769316979 a001 53316291173/28143753123*228826127^(1/16) 6308803769316979 a001 139583862445/73681302247*228826127^(1/16) 6308803769316979 a001 182717648081/96450076809*228826127^(1/16) 6308803769316979 a001 956722026041/505019158607*228826127^(1/16) 6308803769316979 a001 10610209857723/5600748293801*228826127^(1/16) 6308803769316979 a001 591286729879/312119004989*228826127^(1/16) 6308803769316979 a001 225851433717/119218851371*228826127^(1/16) 6308803769316979 a001 433494437/2537720636*2537720636^(1/6) 6308803769316979 a001 21566892818/11384387281*228826127^(1/16) 6308803769316979 a001 32951280099/17393796001*228826127^(1/16) 6308803769316979 a001 12586269025/6643838879*228826127^(1/16) 6308803769316979 a001 433494437/192900153618*1568397607^(3/8) 6308803769316979 a001 701408733/14662949395604*599074578^(7/12) 6308803769316979 a001 1134903170/969323029*17393796001^(1/14) 6308803769316979 a001 1134903170/969323029*14662949395604^(1/18) 6308803769316979 a001 1134903170/969323029*505019158607^(1/16) 6308803769316979 a001 433494437/2537720636*28143753123^(3/20) 6308803769316979 a001 567451585/408569081798*599074578^(5/12) 6308803769316979 a001 1201881744/634430159*228826127^(1/16) 6308803769316979 a001 1134903170/969323029*599074578^(1/12) 6308803769316979 a001 433494437/10749957122*599074578^(1/4) 6308803769316979 a001 1134903170/23725150497407*599074578^(7/12) 6308803769316979 a001 433494437/969323029*312119004989^(1/10) 6308803769316979 a001 433494437/969323029*1568397607^(1/8) 6308803769316979 a001 1836311903/969323029*228826127^(1/16) 6308803769316979 a001 433494437/312119004989*599074578^(5/12) 6308803769316979 a001 433494437/9062201101803*599074578^(7/12) 6308803769316979 a001 233802911/1368706081*228826127^(3/16) 6308803769316979 a001 9238424/599786069*228826127^(5/16) 6308803769316979 a001 1836311903/10749957122*228826127^(3/16) 6308803769316979 a001 1602508992/9381251041*228826127^(3/16) 6308803769316979 a001 12586269025/73681302247*228826127^(3/16) 6308803769316979 a001 10983760033/64300051206*228826127^(3/16) 6308803769316979 a001 86267571272/505019158607*228826127^(3/16) 6308803769316979 a001 75283811239/440719107401*228826127^(3/16) 6308803769316979 a001 2504730781961/14662949395604*228826127^(3/16) 6308803769316979 a001 139583862445/817138163596*228826127^(3/16) 6308803769316979 a001 53316291173/312119004989*228826127^(3/16) 6308803769316979 a001 20365011074/119218851371*228826127^(3/16) 6308803769316979 a001 7778742049/45537549124*228826127^(3/16) 6308803769316979 a001 2971215073/17393796001*228826127^(3/16) 6308803769316979 a001 165580141/505019158607*370248451^(1/2) 6308803769316979 a001 1134903170/6643838879*228826127^(3/16) 6308803769316979 a001 267914296/370248451*2537720636^(1/10) 6308803769316979 a001 267914296/370248451*14662949395604^(1/14) 6308803769316979 a001 267914296/370248451*192900153618^(1/12) 6308803769316979 a001 165580141/599074578*73681302247^(1/8) 6308803769316979 a001 433494437/2537720636*228826127^(3/16) 6308803769316979 a001 701408733/45537549124*228826127^(5/16) 6308803769316979 a001 133957148/96450076809*228826127^(7/16) 6308803769316979 a001 1836311903/119218851371*228826127^(5/16) 6308803769316979 a001 4807526976/312119004989*228826127^(5/16) 6308803769316979 a001 12586269025/817138163596*228826127^(5/16) 6308803769316979 a001 32951280099/2139295485799*228826127^(5/16) 6308803769316979 a001 86267571272/5600748293801*228826127^(5/16) 6308803769316979 a001 7787980473/505618944676*228826127^(5/16) 6308803769316979 a001 365435296162/23725150497407*228826127^(5/16) 6308803769316979 a001 139583862445/9062201101803*228826127^(5/16) 6308803769316979 a001 53316291173/3461452808002*228826127^(5/16) 6308803769316979 a001 20365011074/1322157322203*228826127^(5/16) 6308803769316979 a001 7778742049/505019158607*228826127^(5/16) 6308803769316979 a001 2971215073/192900153618*228826127^(5/16) 6308803769316979 a001 1134903170/73681302247*228826127^(5/16) 6308803769316979 a001 165580141/817138163596*969323029^(1/2) 6308803769316979 a001 701408733/370248451*2537720636^(1/18) 6308803769316979 a001 165580141/1568397607*45537549124^(1/6) 6308803769316979 a001 701408733/370248451*312119004989^(1/22) 6308803769316979 a001 701408733/370248451*28143753123^(1/20) 6308803769316979 a001 433494437/28143753123*228826127^(5/16) 6308803769316979 a001 165580141/14662949395604*2537720636^(11/18) 6308803769316979 a001 165580141/1322157322203*2537720636^(1/2) 6308803769316979 a001 165580141/119218851371*2537720636^(7/18) 6308803769316979 a001 165580141/4106118243*17393796001^(3/14) 6308803769316979 a001 165580141/4106118243*14662949395604^(1/6) 6308803769316979 a001 165580141/10749957122*2537720636^(5/18) 6308803769316979 a001 165580141/17393796001*2537720636^(3/10) 6308803769316979 a006 5^(1/2)*fibonacci(93/2)/Lucas(41)/sqrt(5) 6308803769316979 a001 165580141/2139295485799*6643838879^(1/2) 6308803769316979 a001 165580141/10749957122*312119004989^(5/22) 6308803769316979 a001 165580141/10749957122*3461452808002^(5/24) 6308803769316979 a001 165580141/10749957122*28143753123^(1/4) 6308803769316979 a001 165580141/3461452808002*17393796001^(1/2) 6308803769316979 a001 165580141/28143753123*1322157322203^(1/4) 6308803769316979 a001 165580141/119218851371*17393796001^(5/14) 6308803769316979 a001 165580141/5600748293801*45537549124^(1/2) 6308803769316979 a001 165580141/73681302247*312119004989^(3/10) 6308803769316979 a001 165580141/9062201101803*119218851371^(1/2) 6308803769316979 a001 165580141/1322157322203*312119004989^(9/22) 6308803769316979 a001 165580141/23725150497407*817138163596^(1/2) 6308803769316979 a001 165580141/1322157322203*14662949395604^(5/14) 6308803769316979 a001 165580141/3461452808002*14662949395604^(7/18) 6308803769316979 a006 5^(1/2)*Fibonacci(93/2)/Lucas(41)/sqrt(5) 6308803769316979 a001 165580141/3461452808002*505019158607^(7/16) 6308803769316979 a001 165580141/1322157322203*192900153618^(5/12) 6308803769316979 a001 165580141/119218851371*312119004989^(7/22) 6308803769316979 a001 165580141/119218851371*14662949395604^(5/18) 6308803769316979 a001 165580141/119218851371*505019158607^(5/16) 6308803769316979 a001 165580141/312119004989*73681302247^(3/8) 6308803769316979 a001 165580141/45537549124*9062201101803^(1/4) 6308803769316979 a001 165580141/119218851371*28143753123^(7/20) 6308803769316979 a001 165580141/1322157322203*28143753123^(9/20) 6308803769316979 a001 165580141/14662949395604*28143753123^(11/20) 6308803769316979 a001 165580141/17393796001*14662949395604^(3/14) 6308803769316979 a001 165580141/17393796001*192900153618^(1/4) 6308803769316979 a001 165580141/6643838879*4106118243^(1/4) 6308803769316979 a001 165580141/73681302247*1568397607^(3/8) 6308803769316979 a001 165580141/2537720636*817138163596^(1/6) 6308803769316979 a001 165580141/14662949395604*1568397607^(5/8) 6308803769316979 a001 165580141/4106118243*599074578^(1/4) 6308803769316979 a001 701408733/505019158607*228826127^(7/16) 6308803769316979 a001 267914296/2139295485799*228826127^(9/16) 6308803769316979 a001 701408733/370248451*228826127^(1/16) 6308803769316979 a001 1836311903/1322157322203*228826127^(7/16) 6308803769316979 a001 165580141/969323029*2537720636^(1/6) 6308803769316979 a001 14930208/10749853441*228826127^(7/16) 6308803769316979 a001 12586269025/9062201101803*228826127^(7/16) 6308803769316979 a001 32951280099/23725150497407*228826127^(7/16) 6308803769316979 a001 10182505537/7331474697802*228826127^(7/16) 6308803769316979 a001 7778742049/5600748293801*228826127^(7/16) 6308803769316979 a001 433494437/370248451*17393796001^(1/14) 6308803769316979 a001 165580141/969323029*312119004989^(3/22) 6308803769316979 a001 433494437/370248451*14662949395604^(1/18) 6308803769316979 a001 433494437/370248451*505019158607^(1/16) 6308803769316979 a001 165580141/969323029*28143753123^(3/20) 6308803769316979 a001 2971215073/2139295485799*228826127^(7/16) 6308803769316979 a001 165580141/119218851371*599074578^(5/12) 6308803769316979 a001 567451585/408569081798*228826127^(7/16) 6308803769316979 a001 433494437/370248451*599074578^(1/12) 6308803769316979 a001 165580141/3461452808002*599074578^(7/12) 6308803769316979 a001 433494437/312119004989*228826127^(7/16) 6308803769316979 a001 701408733/5600748293801*228826127^(9/16) 6308803769316979 a001 267914296/23725150497407*228826127^(11/16) 6308803769316979 a001 1836311903/14662949395604*228826127^(9/16) 6308803769316979 a001 2971215073/23725150497407*228826127^(9/16) 6308803769316979 a001 1134903170/9062201101803*228826127^(9/16) 6308803769316979 a001 433494437/3461452808002*228826127^(9/16) 6308803769316979 a001 165580141/969323029*228826127^(3/16) 6308803769316979 a001 14619165/224056801*87403803^(1/4) 6308803769316979 a001 165580141/10749957122*228826127^(5/16) 6308803769316979 a001 165580141/370248451*312119004989^(1/10) 6308803769316979 a001 165580141/370248451*1568397607^(1/8) 6308803769316979 a001 165580141/119218851371*228826127^(7/16) 6308803769316979 a001 701408733/228826127*33385282^(1/24) 6308803769316979 a001 165580141/1322157322203*228826127^(9/16) 6308803769316979 a001 165580141/14662949395604*228826127^(11/16) 6308803769316979 a001 63245986/228826127*141422324^(1/6) 6308803769316979 a001 63245986/119218851371*141422324^(1/2) 6308803769316979 a001 267914296/4106118243*87403803^(1/4) 6308803769316979 a001 102334155/141422324*2537720636^(1/10) 6308803769316979 a001 102334155/141422324*14662949395604^(1/14) 6308803769316979 a001 102334155/141422324*192900153618^(1/12) 6308803769316979 a001 63245986/228826127*73681302247^(1/8) 6308803769316979 a001 63245986/87403803*33385282^(1/8) 6308803769316979 a001 701408733/10749957122*87403803^(1/4) 6308803769316979 a001 1836311903/28143753123*87403803^(1/4) 6308803769316979 a001 686789568/10525900321*87403803^(1/4) 6308803769316979 a001 12586269025/192900153618*87403803^(1/4) 6308803769316979 a001 32951280099/505019158607*87403803^(1/4) 6308803769316979 a001 86267571272/1322157322203*87403803^(1/4) 6308803769316979 a001 32264490531/494493258286*87403803^(1/4) 6308803769316979 a001 591286729879/9062201101803*87403803^(1/4) 6308803769316979 a001 1548008755920/23725150497407*87403803^(1/4) 6308803769316979 a001 365435296162/5600748293801*87403803^(1/4) 6308803769316979 a001 139583862445/2139295485799*87403803^(1/4) 6308803769316979 a001 53316291173/817138163596*87403803^(1/4) 6308803769316979 a001 20365011074/312119004989*87403803^(1/4) 6308803769316979 a001 7778742049/119218851371*87403803^(1/4) 6308803769316979 a001 2971215073/45537549124*87403803^(1/4) 6308803769316979 a001 1134903170/17393796001*87403803^(1/4) 6308803769316979 a001 433494437/6643838879*87403803^(1/4) 6308803769316979 a001 1836311903/599074578*33385282^(1/24) 6308803769316979 a001 39088169/228826127*33385282^(5/24) 6308803769316979 a001 686789568/224056801*33385282^(1/24) 6308803769316979 a001 12586269025/4106118243*33385282^(1/24) 6308803769316979 a001 32951280099/10749957122*33385282^(1/24) 6308803769316979 a001 86267571272/28143753123*33385282^(1/24) 6308803769316979 a001 32264490531/10525900321*33385282^(1/24) 6308803769316979 a001 591286729879/192900153618*33385282^(1/24) 6308803769316979 a001 1548008755920/505019158607*33385282^(1/24) 6308803769316979 a001 1515744265389/494493258286*33385282^(1/24) 6308803769316979 a001 2504730781961/817138163596*33385282^(1/24) 6308803769316979 a001 956722026041/312119004989*33385282^(1/24) 6308803769316979 a001 365435296162/119218851371*33385282^(1/24) 6308803769316979 a001 139583862445/45537549124*33385282^(1/24) 6308803769316979 a001 53316291173/17393796001*33385282^(1/24) 6308803769316979 a001 20365011074/6643838879*33385282^(1/24) 6308803769316979 a001 7778742049/2537720636*33385282^(1/24) 6308803769316979 a001 2971215073/969323029*33385282^(1/24) 6308803769316979 a001 165580141/2537720636*87403803^(1/4) 6308803769316979 a001 1134903170/370248451*33385282^(1/24) 6308803769316979 a001 31622993/96450076809*370248451^(1/2) 6308803769316979 a001 66978574/35355581*2537720636^(1/18) 6308803769316979 a001 31622993/299537289*45537549124^(1/6) 6308803769316979 a001 66978574/35355581*312119004989^(1/22) 6308803769316979 a001 66978574/35355581*28143753123^(1/20) 6308803769316979 a001 66978574/35355581*228826127^(1/16) 6308803769316979 a001 63245986/312119004989*969323029^(1/2) 6308803769316979 a001 63245986/1568397607*17393796001^(3/14) 6308803769316979 a001 63245986/1568397607*14662949395604^(1/6) 6308803769316979 a001 63245986/4106118243*2537720636^(5/18) 6308803769316979 a001 63245986/5600748293801*2537720636^(11/18) 6308803769316979 a001 63245986/505019158607*2537720636^(1/2) 6308803769316979 a001 31622993/22768774562*2537720636^(7/18) 6308803769316979 a001 63245986/4106118243*312119004989^(5/22) 6308803769316979 a001 63245986/4106118243*3461452808002^(5/24) 6308803769316979 a001 63245986/4106118243*28143753123^(1/4) 6308803769316979 a001 63245986/6643838879*2537720636^(3/10) 6308803769316979 a001 31622993/408569081798*6643838879^(1/2) 6308803769316979 a001 31622993/5374978561*1322157322203^(1/4) 6308803769316979 a001 63245986/1322157322203*17393796001^(1/2) 6308803769316979 a001 63245986/28143753123*312119004989^(3/10) 6308803769316979 a001 31622993/22768774562*17393796001^(5/14) 6308803769316979 a001 63245986/2139295485799*45537549124^(1/2) 6308803769316979 a001 31622993/1730726404001*119218851371^(1/2) 6308803769316979 a001 63245986/505019158607*312119004989^(9/22) 6308803769316979 a001 63245986/5600748293801*312119004989^(1/2) 6308803769316979 a001 63245986/505019158607*14662949395604^(5/14) 6308803769316979 a001 63245986/1322157322203*14662949395604^(7/18) 6308803769316979 a001 31622993/7331474697802*2139295485799^(1/2) 6308803769316979 a001 63245986/23725150497407*5600748293801^(1/2) 6308803769316979 a001 63245986/1322157322203*505019158607^(7/16) 6308803769316979 a001 63245986/505019158607*192900153618^(5/12) 6308803769316979 a001 63245986/119218851371*73681302247^(3/8) 6308803769316979 a001 31622993/22768774562*312119004989^(7/22) 6308803769316979 a001 31622993/22768774562*14662949395604^(5/18) 6308803769316979 a001 31622993/22768774562*505019158607^(5/16) 6308803769316979 a001 63245986/505019158607*28143753123^(9/20) 6308803769316979 a001 63245986/5600748293801*28143753123^(11/20) 6308803769316979 a001 31622993/22768774562*28143753123^(7/20) 6308803769316979 a001 63245986/17393796001*9062201101803^(1/4) 6308803769316979 a001 63245986/6643838879*14662949395604^(3/14) 6308803769316979 a001 63245986/6643838879*192900153618^(1/4) 6308803769316979 a001 63245986/28143753123*1568397607^(3/8) 6308803769316979 a001 31622993/1268860318*4106118243^(1/4) 6308803769316979 a001 63245986/5600748293801*1568397607^(5/8) 6308803769316979 a001 63245986/1568397607*599074578^(1/4) 6308803769316979 a001 63245986/969323029*817138163596^(1/6) 6308803769316979 a001 31622993/22768774562*599074578^(5/12) 6308803769316979 a001 63245986/1322157322203*599074578^(7/12) 6308803769316979 a001 63245986/4106118243*228826127^(5/16) 6308803769316979 a001 63245986/370248451*2537720636^(1/6) 6308803769316979 a001 165580141/141422324*17393796001^(1/14) 6308803769316979 a001 63245986/370248451*312119004989^(3/22) 6308803769316979 a001 165580141/141422324*14662949395604^(1/18) 6308803769316979 a001 165580141/141422324*505019158607^(1/16) 6308803769316979 a001 63245986/370248451*28143753123^(3/20) 6308803769316979 a001 165580141/141422324*599074578^(1/12) 6308803769316979 a001 31622993/22768774562*228826127^(7/16) 6308803769316979 a001 63245986/505019158607*228826127^(9/16) 6308803769316979 a001 63245986/370248451*228826127^(3/16) 6308803769316979 a001 63245986/5600748293801*228826127^(11/16) 6308803769316979 a001 102334155/14662949395604*87403803^(3/4) 6308803769316980 a001 63245986/969323029*87403803^(1/4) 6308803769316980 a001 433494437/141422324*33385282^(1/24) 6308803769316980 a001 31622993/70711162*312119004989^(1/10) 6308803769316980 a001 31622993/70711162*1568397607^(1/8) 6308803769316980 a001 165580141/228826127*33385282^(1/8) 6308803769316980 a001 165580141/23725150497407*87403803^(3/4) 6308803769316980 a001 433494437/599074578*33385282^(1/8) 6308803769316980 a001 1134903170/1568397607*33385282^(1/8) 6308803769316980 a001 2971215073/4106118243*33385282^(1/8) 6308803769316980 a001 7778742049/10749957122*33385282^(1/8) 6308803769316980 a001 20365011074/28143753123*33385282^(1/8) 6308803769316980 a001 53316291173/73681302247*33385282^(1/8) 6308803769316980 a001 139583862445/192900153618*33385282^(1/8) 6308803769316980 a001 365435296162/505019158607*33385282^(1/8) 6308803769316980 a001 10610209857723/14662949395604*33385282^(1/8) 6308803769316980 a001 225851433717/312119004989*33385282^(1/8) 6308803769316980 a001 86267571272/119218851371*33385282^(1/8) 6308803769316980 a001 32951280099/45537549124*33385282^(1/8) 6308803769316980 a001 12586269025/17393796001*33385282^(1/8) 6308803769316980 a001 4807526976/6643838879*33385282^(1/8) 6308803769316980 a001 1836311903/2537720636*33385282^(1/8) 6308803769316980 a001 701408733/969323029*33385282^(1/8) 6308803769316980 a001 267914296/370248451*33385282^(1/8) 6308803769316980 a001 39088169/969323029*33385282^(7/24) 6308803769316980 a001 102334155/141422324*33385282^(1/8) 6308803769316980 a001 63245986/9062201101803*87403803^(3/4) 6308803769316980 a001 102334155/54018521*20633239^(1/14) 6308803769316980 a001 63245986/54018521*20633239^(1/10) 6308803769316980 a001 34111385/199691526*33385282^(5/24) 6308803769316980 a001 9227465/9062201101803*20633239^(13/14) 6308803769316980 a001 24157817/28143753123*54018521^(1/2) 6308803769316980 a001 267914296/1568397607*33385282^(5/24) 6308803769316980 a001 233802911/1368706081*33385282^(5/24) 6308803769316980 a001 1836311903/10749957122*33385282^(5/24) 6308803769316980 a001 1602508992/9381251041*33385282^(5/24) 6308803769316980 a001 12586269025/73681302247*33385282^(5/24) 6308803769316980 a001 10983760033/64300051206*33385282^(5/24) 6308803769316980 a001 86267571272/505019158607*33385282^(5/24) 6308803769316980 a001 75283811239/440719107401*33385282^(5/24) 6308803769316980 a001 2504730781961/14662949395604*33385282^(5/24) 6308803769316980 a001 139583862445/817138163596*33385282^(5/24) 6308803769316980 a001 53316291173/312119004989*33385282^(5/24) 6308803769316980 a001 20365011074/119218851371*33385282^(5/24) 6308803769316980 a001 7778742049/45537549124*33385282^(5/24) 6308803769316980 a001 2971215073/17393796001*33385282^(5/24) 6308803769316980 a001 1134903170/6643838879*33385282^(5/24) 6308803769316980 a001 433494437/2537720636*33385282^(5/24) 6308803769316980 a001 165580141/969323029*33385282^(5/24) 6308803769316980 a001 24157817/87403803*141422324^(1/6) 6308803769316980 a001 39088169/4106118243*33385282^(3/8) 6308803769316980 a001 39088169/54018521*2537720636^(1/10) 6308803769316980 a001 39088169/54018521*14662949395604^(1/14) 6308803769316980 a001 39088169/54018521*192900153618^(1/12) 6308803769316980 a001 24157817/87403803*73681302247^(1/8) 6308803769316980 a001 9227465/5600748293801*20633239^(9/10) 6308803769316981 a001 9303105/230701876*33385282^(7/24) 6308803769316981 a001 63245986/370248451*33385282^(5/24) 6308803769316981 a001 267914296/6643838879*33385282^(7/24) 6308803769316981 a001 701408733/17393796001*33385282^(7/24) 6308803769316981 a001 1836311903/45537549124*33385282^(7/24) 6308803769316981 a001 4807526976/119218851371*33385282^(7/24) 6308803769316981 a001 1144206275/28374454999*33385282^(7/24) 6308803769316981 a001 32951280099/817138163596*33385282^(7/24) 6308803769316981 a001 86267571272/2139295485799*33385282^(7/24) 6308803769316981 a001 225851433717/5600748293801*33385282^(7/24) 6308803769316981 a001 591286729879/14662949395604*33385282^(7/24) 6308803769316981 a001 365435296162/9062201101803*33385282^(7/24) 6308803769316981 a001 139583862445/3461452808002*33385282^(7/24) 6308803769316981 a001 53316291173/1322157322203*33385282^(7/24) 6308803769316981 a001 20365011074/505019158607*33385282^(7/24) 6308803769316981 a001 7778742049/192900153618*33385282^(7/24) 6308803769316981 a001 2971215073/73681302247*33385282^(7/24) 6308803769316981 a001 1134903170/28143753123*33385282^(7/24) 6308803769316981 a001 433494437/10749957122*33385282^(7/24) 6308803769316981 a001 165580141/4106118243*33385282^(7/24) 6308803769316981 a001 39088169/17393796001*33385282^(11/24) 6308803769316981 a001 24157817/23725150497407*141422324^(5/6) 6308803769316981 a001 63245986/1568397607*33385282^(7/24) 6308803769316981 a001 102334155/10749957122*33385282^(3/8) 6308803769316981 a001 24157817/45537549124*141422324^(1/2) 6308803769316981 a001 102334155/54018521*2537720636^(1/18) 6308803769316981 a001 24157817/228826127*45537549124^(1/6) 6308803769316981 a001 102334155/54018521*312119004989^(1/22) 6308803769316981 a001 102334155/54018521*28143753123^(1/20) 6308803769316981 a001 39088169/54018521*33385282^(1/8) 6308803769316981 a001 102334155/54018521*228826127^(1/16) 6308803769316981 a001 267914296/28143753123*33385282^(3/8) 6308803769316981 a001 701408733/73681302247*33385282^(3/8) 6308803769316981 a001 1836311903/192900153618*33385282^(3/8) 6308803769316981 a001 102287808/10745088481*33385282^(3/8) 6308803769316981 a001 12586269025/1322157322203*33385282^(3/8) 6308803769316981 a001 32951280099/3461452808002*33385282^(3/8) 6308803769316981 a001 86267571272/9062201101803*33385282^(3/8) 6308803769316981 a001 225851433717/23725150497407*33385282^(3/8) 6308803769316981 a001 139583862445/14662949395604*33385282^(3/8) 6308803769316981 a001 53316291173/5600748293801*33385282^(3/8) 6308803769316981 a001 20365011074/2139295485799*33385282^(3/8) 6308803769316981 a001 7778742049/817138163596*33385282^(3/8) 6308803769316981 a001 2971215073/312119004989*33385282^(3/8) 6308803769316981 a001 1134903170/119218851371*33385282^(3/8) 6308803769316981 a001 433494437/45537549124*33385282^(3/8) 6308803769316981 a001 24157817/73681302247*370248451^(1/2) 6308803769316981 a001 24157817/599074578*17393796001^(3/14) 6308803769316981 a001 24157817/599074578*14662949395604^(1/6) 6308803769316981 a001 24157817/599074578*599074578^(1/4) 6308803769316981 a006 5^(1/2)*fibonacci(85/2)/Lucas(37)/sqrt(5) 6308803769316981 a001 24157817/119218851371*969323029^(1/2) 6308803769316981 a001 24157817/1568397607*2537720636^(5/18) 6308803769316981 a001 24157817/1568397607*312119004989^(5/22) 6308803769316981 a001 24157817/1568397607*3461452808002^(5/24) 6308803769316981 a001 24157817/1568397607*28143753123^(1/4) 6308803769316981 a001 24157817/23725150497407*2537720636^(13/18) 6308803769316981 a001 24157817/14662949395604*2537720636^(7/10) 6308803769316981 a001 24157817/2139295485799*2537720636^(11/18) 6308803769316981 a001 24157817/192900153618*2537720636^(1/2) 6308803769316981 a001 24157817/4106118243*1322157322203^(1/4) 6308803769316981 a001 24157817/17393796001*2537720636^(7/18) 6308803769316981 a001 24157817/312119004989*6643838879^(1/2) 6308803769316981 a001 24157817/10749957122*312119004989^(3/10) 6308803769316981 a001 24157817/14662949395604*17393796001^(9/14) 6308803769316981 a001 24157817/505019158607*17393796001^(1/2) 6308803769316981 a001 24157817/817138163596*45537549124^(1/2) 6308803769316981 a001 24157817/1322157322203*119218851371^(1/2) 6308803769316981 a001 24157817/192900153618*14662949395604^(5/14) 6308803769316981 a001 24157817/192900153618*192900153618^(5/12) 6308803769316981 a001 24157817/23725150497407*312119004989^(13/22) 6308803769316981 a001 24157817/2139295485799*312119004989^(1/2) 6308803769316981 a006 5^(1/2)*Fibonacci(85/2)/Lucas(37)/sqrt(5) 6308803769316981 a001 24157817/14662949395604*14662949395604^(1/2) 6308803769316981 a001 24157817/23725150497407*3461452808002^(13/24) 6308803769316981 a001 24157817/2139295485799*3461452808002^(11/24) 6308803769316981 a001 24157817/14662949395604*505019158607^(9/16) 6308803769316981 a001 24157817/14662949395604*192900153618^(7/12) 6308803769316981 a001 24157817/23725150497407*73681302247^(5/8) 6308803769316981 a001 24157817/192900153618*28143753123^(9/20) 6308803769316981 a001 24157817/45537549124*73681302247^(3/8) 6308803769316981 a001 24157817/2139295485799*28143753123^(11/20) 6308803769316981 a001 24157817/23725150497407*28143753123^(13/20) 6308803769316981 a001 24157817/17393796001*17393796001^(5/14) 6308803769316981 a001 24157817/17393796001*312119004989^(7/22) 6308803769316981 a001 24157817/17393796001*14662949395604^(5/18) 6308803769316981 a001 24157817/17393796001*505019158607^(5/16) 6308803769316981 a001 24157817/17393796001*28143753123^(7/20) 6308803769316981 a001 24157817/6643838879*9062201101803^(1/4) 6308803769316981 a001 24157817/2537720636*2537720636^(3/10) 6308803769316981 a001 24157817/10749957122*1568397607^(3/8) 6308803769316981 a001 24157817/2537720636*14662949395604^(3/14) 6308803769316981 a001 24157817/2537720636*192900153618^(1/4) 6308803769316981 a001 24157817/2139295485799*1568397607^(5/8) 6308803769316981 a001 165580141/17393796001*33385282^(3/8) 6308803769316981 a001 24157817/969323029*4106118243^(1/4) 6308803769316981 a001 24157817/17393796001*599074578^(5/12) 6308803769316981 a001 24157817/505019158607*599074578^(7/12) 6308803769316981 a001 24157817/14662949395604*599074578^(3/4) 6308803769316981 a001 24157817/1568397607*228826127^(5/16) 6308803769316981 a001 24157817/370248451*817138163596^(1/6) 6308803769316981 a001 24157817/17393796001*228826127^(7/16) 6308803769316981 a001 24157817/192900153618*228826127^(9/16) 6308803769316981 a001 39088169/73681302247*33385282^(13/24) 6308803769316981 a001 24157817/2139295485799*228826127^(11/16) 6308803769316981 a001 24157817/23725150497407*228826127^(13/16) 6308803769316981 a001 24157817/370248451*87403803^(1/4) 6308803769316981 a001 63245986/6643838879*33385282^(3/8) 6308803769316981 a001 165580141/54018521*33385282^(1/24) 6308803769316981 a001 102334155/45537549124*33385282^(11/24) 6308803769316981 a001 24157817/141422324*2537720636^(1/6) 6308803769316981 a001 63245986/54018521*17393796001^(1/14) 6308803769316981 a001 24157817/141422324*312119004989^(3/22) 6308803769316981 a001 63245986/54018521*14662949395604^(1/18) 6308803769316981 a001 63245986/54018521*505019158607^(1/16) 6308803769316981 a001 24157817/141422324*28143753123^(3/20) 6308803769316981 a001 63245986/54018521*599074578^(1/12) 6308803769316982 a001 24157817/141422324*228826127^(3/16) 6308803769316982 a001 267914296/119218851371*33385282^(11/24) 6308803769316982 a001 3524667/1568437211*33385282^(11/24) 6308803769316982 a001 1836311903/817138163596*33385282^(11/24) 6308803769316982 a001 4807526976/2139295485799*33385282^(11/24) 6308803769316982 a001 12586269025/5600748293801*33385282^(11/24) 6308803769316982 a001 32951280099/14662949395604*33385282^(11/24) 6308803769316982 a001 53316291173/23725150497407*33385282^(11/24) 6308803769316982 a001 20365011074/9062201101803*33385282^(11/24) 6308803769316982 a001 7778742049/3461452808002*33385282^(11/24) 6308803769316982 a001 2971215073/1322157322203*33385282^(11/24) 6308803769316982 a001 1134903170/505019158607*33385282^(11/24) 6308803769316982 a001 433494437/192900153618*33385282^(11/24) 6308803769316982 a001 165580141/73681302247*33385282^(11/24) 6308803769316982 a001 39088169/312119004989*33385282^(5/8) 6308803769316982 a001 24157817/3461452808002*87403803^(3/4) 6308803769316982 a001 63245986/28143753123*33385282^(11/24) 6308803769316982 a001 34111385/64300051206*33385282^(13/24) 6308803769316982 a001 267914296/505019158607*33385282^(13/24) 6308803769316982 a001 233802911/440719107401*33385282^(13/24) 6308803769316982 a001 1836311903/3461452808002*33385282^(13/24) 6308803769316982 a001 1602508992/3020733700601*33385282^(13/24) 6308803769316982 a001 12586269025/23725150497407*33385282^(13/24) 6308803769316982 a001 7778742049/14662949395604*33385282^(13/24) 6308803769316982 a001 2971215073/5600748293801*33385282^(13/24) 6308803769316982 a001 1134903170/2139295485799*33385282^(13/24) 6308803769316982 a001 433494437/817138163596*33385282^(13/24) 6308803769316982 a001 165580141/312119004989*33385282^(13/24) 6308803769316982 a001 9227465/817138163596*20633239^(11/14) 6308803769316982 a001 39088169/1322157322203*33385282^(17/24) 6308803769316982 a001 63245986/119218851371*33385282^(13/24) 6308803769316982 a001 102334155/817138163596*33385282^(5/8) 6308803769316983 a001 267914296/2139295485799*33385282^(5/8) 6308803769316983 a001 701408733/5600748293801*33385282^(5/8) 6308803769316983 a001 1836311903/14662949395604*33385282^(5/8) 6308803769316983 a001 2971215073/23725150497407*33385282^(5/8) 6308803769316983 a001 1134903170/9062201101803*33385282^(5/8) 6308803769316983 a001 433494437/3461452808002*33385282^(5/8) 6308803769316983 a001 165580141/1322157322203*33385282^(5/8) 6308803769316983 a001 39088169/5600748293801*33385282^(19/24) 6308803769316983 a001 24157817/141422324*33385282^(5/24) 6308803769316983 a001 24157817/599074578*33385282^(7/24) 6308803769316983 a001 63245986/505019158607*33385282^(5/8) 6308803769316983 a001 6765/228826126*33385282^(17/24) 6308803769316983 a001 267914296/9062201101803*33385282^(17/24) 6308803769316983 a001 701408733/23725150497407*33385282^(17/24) 6308803769316983 a001 433494437/14662949395604*33385282^(17/24) 6308803769316983 a001 165580141/5600748293801*33385282^(17/24) 6308803769316983 a001 39088169/23725150497407*33385282^(7/8) 6308803769316983 a001 24157817/2537720636*33385282^(3/8) 6308803769316983 a001 24157817/54018521*312119004989^(1/10) 6308803769316983 a001 24157817/54018521*1568397607^(1/8) 6308803769316983 a001 63245986/2139295485799*33385282^(17/24) 6308803769316983 a001 3732588/35355581*12752043^(1/4) 6308803769316983 a001 102334155/14662949395604*33385282^(19/24) 6308803769316983 a001 9227465/192900153618*20633239^(7/10) 6308803769316984 a001 165580141/23725150497407*33385282^(19/24) 6308803769316984 a001 3524578/2139295485799*7881196^(21/22) 6308803769316984 a001 24157817/10749957122*33385282^(11/24) 6308803769316984 a001 63245986/9062201101803*33385282^(19/24) 6308803769316984 a001 24157817/45537549124*33385282^(13/24) 6308803769316984 a001 9227465/73681302247*20633239^(9/14) 6308803769316985 a001 24157817/192900153618*33385282^(5/8) 6308803769316985 a001 24157817/817138163596*33385282^(17/24) 6308803769316986 a001 24157817/3461452808002*33385282^(19/24) 6308803769316986 a001 24157817/14662949395604*33385282^(7/8) 6308803769316986 a001 9227465/6643838879*20633239^(1/2) 6308803769316988 a001 39088169/370248451*12752043^(1/4) 6308803769316988 a001 9227465/33385282*141422324^(1/6) 6308803769316988 a001 14930352/20633239*2537720636^(1/10) 6308803769316988 a001 14930352/20633239*14662949395604^(1/14) 6308803769316988 a001 14930352/20633239*192900153618^(1/12) 6308803769316988 a001 9227465/33385282*73681302247^(1/8) 6308803769316989 a001 9227465/599074578*20633239^(5/14) 6308803769316989 a001 102334155/969323029*12752043^(1/4) 6308803769316989 a001 66978574/634430159*12752043^(1/4) 6308803769316989 a001 701408733/6643838879*12752043^(1/4) 6308803769316989 a001 1836311903/17393796001*12752043^(1/4) 6308803769316989 a001 1201881744/11384387281*12752043^(1/4) 6308803769316989 a001 12586269025/119218851371*12752043^(1/4) 6308803769316989 a001 32951280099/312119004989*12752043^(1/4) 6308803769316989 a001 21566892818/204284540899*12752043^(1/4) 6308803769316989 a001 225851433717/2139295485799*12752043^(1/4) 6308803769316989 a001 182717648081/1730726404001*12752043^(1/4) 6308803769316989 a001 139583862445/1322157322203*12752043^(1/4) 6308803769316989 a001 53316291173/505019158607*12752043^(1/4) 6308803769316989 a001 10182505537/96450076809*12752043^(1/4) 6308803769316989 a001 7778742049/73681302247*12752043^(1/4) 6308803769316989 a001 2971215073/28143753123*12752043^(1/4) 6308803769316989 a001 567451585/5374978561*12752043^(1/4) 6308803769316989 a001 433494437/4106118243*12752043^(1/4) 6308803769316989 a001 165580141/1568397607*12752043^(1/4) 6308803769316989 a001 14930352/20633239*33385282^(1/8) 6308803769316989 a001 31622993/299537289*12752043^(1/4) 6308803769316989 a001 9227465/228826127*20633239^(3/10) 6308803769316990 a001 63245986/20633239*7881196^(1/22) 6308803769316991 a001 24157817/228826127*12752043^(1/4) 6308803769316992 a001 9227465/20633239*7881196^(1/6) 6308803769316992 a001 39088169/20633239*20633239^(1/14) 6308803769316993 a001 9227465/10749957122*54018521^(1/2) 6308803769316993 a001 9227465/54018521*20633239^(3/14) 6308803769316993 a001 3524578/505019158607*7881196^(19/22) 6308803769316993 a001 39088169/20633239*2537720636^(1/18) 6308803769316993 a001 9227465/87403803*45537549124^(1/6) 6308803769316993 a001 39088169/20633239*312119004989^(1/22) 6308803769316993 a001 39088169/20633239*28143753123^(1/20) 6308803769316993 a001 39088169/20633239*228826127^(1/16) 6308803769316994 a001 9227465/9062201101803*141422324^(5/6) 6308803769316994 a001 9227465/17393796001*141422324^(1/2) 6308803769316994 a001 9227465/228826127*17393796001^(3/14) 6308803769316994 a001 9227465/228826127*14662949395604^(1/6) 6308803769316994 a001 9227465/228826127*599074578^(1/4) 6308803769316994 a006 5^(1/2)*fibonacci(81/2)/Lucas(35)/sqrt(5) 6308803769316994 a001 9227465/28143753123*370248451^(1/2) 6308803769316994 a001 9227465/599074578*2537720636^(5/18) 6308803769316994 a001 9227465/599074578*312119004989^(5/22) 6308803769316994 a001 9227465/599074578*3461452808002^(5/24) 6308803769316994 a001 9227465/599074578*28143753123^(1/4) 6308803769316994 a001 9227465/45537549124*969323029^(1/2) 6308803769316994 a001 9227465/1568397607*1322157322203^(1/4) 6308803769316994 a001 9227465/9062201101803*2537720636^(13/18) 6308803769316994 a001 9227465/5600748293801*2537720636^(7/10) 6308803769316994 a001 9227465/817138163596*2537720636^(11/18) 6308803769316994 a001 9227465/73681302247*2537720636^(1/2) 6308803769316994 a001 9227465/4106118243*312119004989^(3/10) 6308803769316994 a001 9227465/6643838879*2537720636^(7/18) 6308803769316994 a001 9227465/119218851371*6643838879^(1/2) 6308803769316994 a001 9227465/5600748293801*17393796001^(9/14) 6308803769316994 a001 9227465/192900153618*17393796001^(1/2) 6308803769316994 a001 9227465/312119004989*45537549124^(1/2) 6308803769316994 a001 9227465/73681302247*312119004989^(9/22) 6308803769316994 a001 9227465/73681302247*14662949395604^(5/14) 6308803769316994 a001 9227465/73681302247*192900153618^(5/12) 6308803769316994 a001 9227465/505019158607*119218851371^(1/2) 6308803769316994 a001 9227465/192900153618*14662949395604^(7/18) 6308803769316994 a001 9227465/192900153618*505019158607^(7/16) 6308803769316994 a001 9227465/9062201101803*312119004989^(13/22) 6308803769316994 a001 9227465/1322157322203*817138163596^(1/2) 6308803769316994 a006 5^(1/2)*Fibonacci(81/2)/Lucas(35)/sqrt(5) 6308803769316994 a001 9227465/5600748293801*14662949395604^(1/2) 6308803769316994 a001 9227465/2139295485799*2139295485799^(1/2) 6308803769316994 a001 9227465/817138163596*3461452808002^(11/24) 6308803769316994 a001 9227465/5600748293801*192900153618^(7/12) 6308803769316994 a001 9227465/9062201101803*73681302247^(5/8) 6308803769316994 a001 9227465/73681302247*28143753123^(9/20) 6308803769316994 a001 9227465/817138163596*28143753123^(11/20) 6308803769316994 a001 9227465/9062201101803*28143753123^(13/20) 6308803769316994 a001 9227465/17393796001*73681302247^(3/8) 6308803769316994 a001 9227465/6643838879*17393796001^(5/14) 6308803769316994 a001 9227465/6643838879*312119004989^(7/22) 6308803769316994 a001 9227465/6643838879*14662949395604^(5/18) 6308803769316994 a001 9227465/6643838879*505019158607^(5/16) 6308803769316994 a001 9227465/6643838879*28143753123^(7/20) 6308803769316994 a001 9227465/23725150497407*4106118243^(3/4) 6308803769316994 a001 9227465/4106118243*1568397607^(3/8) 6308803769316994 a001 9227465/2537720636*9062201101803^(1/4) 6308803769316994 a001 9227465/817138163596*1568397607^(5/8) 6308803769316994 a001 9227465/969323029*2537720636^(3/10) 6308803769316994 a001 9227465/969323029*14662949395604^(3/14) 6308803769316994 a001 9227465/969323029*192900153618^(1/4) 6308803769316994 a001 9227465/6643838879*599074578^(5/12) 6308803769316994 a001 9227465/192900153618*599074578^(7/12) 6308803769316994 a001 9227465/5600748293801*599074578^(3/4) 6308803769316994 a001 9227465/599074578*228826127^(5/16) 6308803769316994 a001 9227465/370248451*4106118243^(1/4) 6308803769316994 a001 9227465/6643838879*228826127^(7/16) 6308803769316994 a001 9227465/73681302247*228826127^(9/16) 6308803769316994 a001 9227465/817138163596*228826127^(11/16) 6308803769316994 a001 9227465/9062201101803*228826127^(13/16) 6308803769316994 a001 9227465/141422324*817138163596^(1/6) 6308803769316994 a001 9227465/141422324*87403803^(1/4) 6308803769316994 a001 63245986/20633239*33385282^(1/24) 6308803769316994 a001 9227465/1322157322203*87403803^(3/4) 6308803769316994 a001 24157817/20633239*20633239^(1/10) 6308803769316995 a001 9227465/228826127*33385282^(7/24) 6308803769316996 a001 3524578/312119004989*7881196^(5/6) 6308803769316996 a001 9227465/969323029*33385282^(3/8) 6308803769316996 a001 9227465/54018521*2537720636^(1/6) 6308803769316996 a001 24157817/20633239*17393796001^(1/14) 6308803769316996 a001 9227465/54018521*312119004989^(3/22) 6308803769316996 a001 24157817/20633239*14662949395604^(1/18) 6308803769316996 a001 24157817/20633239*505019158607^(1/16) 6308803769316996 a001 9227465/54018521*28143753123^(3/20) 6308803769316996 a001 24157817/20633239*599074578^(1/12) 6308803769316996 a001 9227465/54018521*228826127^(3/16) 6308803769316996 a001 9227465/4106118243*33385282^(11/24) 6308803769316997 a001 9227465/17393796001*33385282^(13/24) 6308803769316997 a001 9227465/54018521*33385282^(5/24) 6308803769316997 a001 9227465/73681302247*33385282^(5/8) 6308803769316998 a001 9227465/312119004989*33385282^(17/24) 6308803769316998 a001 9227465/1322157322203*33385282^(19/24) 6308803769316999 a001 9227465/5600748293801*33385282^(7/8) 6308803769316999 a001 9227465/23725150497407*33385282^(23/24) 6308803769317002 a001 3524578/119218851371*7881196^(17/22) 6308803769317002 a001 14930352/505019158607*12752043^(3/4) 6308803769317003 a001 9227465/87403803*12752043^(1/4) 6308803769317007 a001 39088169/1322157322203*12752043^(3/4) 6308803769317008 a001 6765/228826126*12752043^(3/4) 6308803769317008 a001 267914296/9062201101803*12752043^(3/4) 6308803769317008 a001 701408733/23725150497407*12752043^(3/4) 6308803769317008 a001 433494437/14662949395604*12752043^(3/4) 6308803769317008 a001 165580141/5600748293801*12752043^(3/4) 6308803769317008 a001 63245986/2139295485799*12752043^(3/4) 6308803769317009 a001 9227465/20633239*312119004989^(1/10) 6308803769317009 a001 9227465/20633239*1568397607^(1/8) 6308803769317010 a001 24157817/817138163596*12752043^(3/4) 6308803769317011 a001 3524578/28143753123*7881196^(15/22) 6308803769317021 a001 3524578/6643838879*7881196^(13/22) 6308803769317023 a001 9227465/312119004989*12752043^(3/4) 6308803769317028 a001 5702887/7881196*7881196^(3/22) 6308803769317030 a001 3524578/1568397607*7881196^(1/2) 6308803769317031 a001 39088169/12752043*1860498^(1/20) 6308803769317039 a001 3524578/370248451*7881196^(9/22) 6308803769317042 a001 3524578/12752043*141422324^(1/6) 6308803769317042 a001 5702887/7881196*2537720636^(1/10) 6308803769317042 a001 5702887/7881196*14662949395604^(1/14) 6308803769317042 a001 5702887/7881196*192900153618^(1/12) 6308803769317042 a001 3524578/12752043*73681302247^(1/8) 6308803769317042 a001 5702887/7881196*33385282^(1/8) 6308803769317047 a001 3524578/87403803*7881196^(7/22) 6308803769317064 a001 14619165/4769326*1860498^(1/20) 6308803769317067 a001 1762289/1730726404001*20633239^(13/14) 6308803769317067 a001 3524578/2139295485799*20633239^(9/10) 6308803769317069 a001 3524578/312119004989*20633239^(11/14) 6308803769317069 a001 267914296/87403803*1860498^(1/20) 6308803769317070 a001 701408733/228826127*1860498^(1/20) 6308803769317070 a001 1836311903/599074578*1860498^(1/20) 6308803769317070 a001 686789568/224056801*1860498^(1/20) 6308803769317070 a001 12586269025/4106118243*1860498^(1/20) 6308803769317070 a001 32951280099/10749957122*1860498^(1/20) 6308803769317070 a001 86267571272/28143753123*1860498^(1/20) 6308803769317070 a001 32264490531/10525900321*1860498^(1/20) 6308803769317070 a001 591286729879/192900153618*1860498^(1/20) 6308803769317070 a001 1548008755920/505019158607*1860498^(1/20) 6308803769317070 a001 1515744265389/494493258286*1860498^(1/20) 6308803769317070 a001 2504730781961/817138163596*1860498^(1/20) 6308803769317070 a001 956722026041/312119004989*1860498^(1/20) 6308803769317070 a001 365435296162/119218851371*1860498^(1/20) 6308803769317070 a001 139583862445/45537549124*1860498^(1/20) 6308803769317070 a001 53316291173/17393796001*1860498^(1/20) 6308803769317070 a001 20365011074/6643838879*1860498^(1/20) 6308803769317070 a001 7778742049/2537720636*1860498^(1/20) 6308803769317070 a001 2971215073/969323029*1860498^(1/20) 6308803769317070 a001 1134903170/370248451*1860498^(1/20) 6308803769317070 a001 3524578/73681302247*20633239^(7/10) 6308803769317070 a001 433494437/141422324*1860498^(1/20) 6308803769317071 a001 3524578/28143753123*20633239^(9/14) 6308803769317072 a001 3524578/20633239*7881196^(5/22) 6308803769317072 a001 165580141/54018521*1860498^(1/20) 6308803769317073 a001 1762289/1268860318*20633239^(1/2) 6308803769317074 a001 3732588/1970299*20633239^(1/14) 6308803769317075 a001 3732588/1970299*2537720636^(1/18) 6308803769317075 a001 1762289/16692641*45537549124^(1/6) 6308803769317075 a001 3732588/1970299*312119004989^(1/22) 6308803769317075 a001 3732588/1970299*28143753123^(1/20) 6308803769317075 a001 3732588/1970299*228826127^(1/16) 6308803769317075 a001 3524578/228826127*20633239^(5/14) 6308803769317075 a001 3524578/87403803*20633239^(3/10) 6308803769317078 a001 24157817/7881196*7881196^(1/22) 6308803769317079 a001 3524578/4106118243*54018521^(1/2) 6308803769317080 a001 3524578/87403803*17393796001^(3/14) 6308803769317080 a001 3524578/87403803*14662949395604^(1/6) 6308803769317080 a001 3524578/87403803*599074578^(1/4) 6308803769317080 a001 1762289/1730726404001*141422324^(5/6) 6308803769317080 a001 3524578/6643838879*141422324^(1/2) 6308803769317080 a001 3524578/228826127*2537720636^(5/18) 6308803769317080 a001 3524578/228826127*312119004989^(5/22) 6308803769317080 a001 3524578/228826127*3461452808002^(5/24) 6308803769317080 a001 3524578/228826127*28143753123^(1/4) 6308803769317080 a001 3524578/228826127*228826127^(5/16) 6308803769317081 a001 1762289/5374978561*370248451^(1/2) 6308803769317081 a001 1762289/299537289*1322157322203^(1/4) 6308803769317081 a001 3524578/17393796001*969323029^(1/2) 6308803769317081 a001 3524578/1568397607*312119004989^(3/10) 6308803769317081 a001 3524578/1568397607*1568397607^(3/8) 6308803769317081 a001 1762289/1730726404001*2537720636^(13/18) 6308803769317081 a001 3524578/2139295485799*2537720636^(7/10) 6308803769317081 a001 3524578/312119004989*2537720636^(11/18) 6308803769317081 a001 3524578/28143753123*2537720636^(1/2) 6308803769317081 a001 1762289/22768774562*6643838879^(1/2) 6308803769317081 a001 3524578/2139295485799*17393796001^(9/14) 6308803769317081 a001 3524578/73681302247*17393796001^(1/2) 6308803769317081 a001 3524578/28143753123*312119004989^(9/22) 6308803769317081 a001 3524578/28143753123*14662949395604^(5/14) 6308803769317081 a001 3524578/28143753123*192900153618^(5/12) 6308803769317081 a001 3524578/28143753123*28143753123^(9/20) 6308803769317081 a001 3524578/73681302247*14662949395604^(7/18) 6308803769317081 a001 3524578/73681302247*505019158607^(7/16) 6308803769317081 a001 3524578/119218851371*45537549124^(1/2) 6308803769317081 a001 1762289/96450076809*119218851371^(1/2) 6308803769317081 a001 1762289/1730726404001*312119004989^(13/22) 6308803769317081 a001 1762289/1730726404001*3461452808002^(13/24) 6308803769317081 a001 1762289/408569081798*2139295485799^(1/2) 6308803769317081 a001 3524578/312119004989*3461452808002^(11/24) 6308803769317081 a001 3524578/2139295485799*192900153618^(7/12) 6308803769317081 a001 1762289/1730726404001*73681302247^(5/8) 6308803769317081 a001 3524578/312119004989*28143753123^(11/20) 6308803769317081 a001 1762289/1730726404001*28143753123^(13/20) 6308803769317081 a001 3524578/6643838879*73681302247^(3/8) 6308803769317081 a001 3524578/9062201101803*4106118243^(3/4) 6308803769317081 a001 1762289/1268860318*2537720636^(7/18) 6308803769317081 a001 1762289/1268860318*17393796001^(5/14) 6308803769317081 a001 1762289/1268860318*312119004989^(7/22) 6308803769317081 a001 1762289/1268860318*14662949395604^(5/18) 6308803769317081 a001 1762289/1268860318*505019158607^(5/16) 6308803769317081 a001 1762289/1268860318*28143753123^(7/20) 6308803769317081 a001 3524578/312119004989*1568397607^(5/8) 6308803769317081 a001 3524578/969323029*9062201101803^(1/4) 6308803769317081 a001 1762289/1268860318*599074578^(5/12) 6308803769317081 a001 3524578/73681302247*599074578^(7/12) 6308803769317081 a001 3524578/2139295485799*599074578^(3/4) 6308803769317081 a001 3524578/370248451*2537720636^(3/10) 6308803769317081 a001 3524578/370248451*14662949395604^(3/14) 6308803769317081 a001 3524578/370248451*192900153618^(1/4) 6308803769317081 a001 1762289/1268860318*228826127^(7/16) 6308803769317081 a001 3524578/28143753123*228826127^(9/16) 6308803769317081 a001 3524578/312119004989*228826127^(11/16) 6308803769317081 a001 1762289/1730726404001*228826127^(13/16) 6308803769317081 a001 1762289/70711162*4106118243^(1/4) 6308803769317081 a001 3524578/505019158607*87403803^(3/4) 6308803769317081 a001 3524578/87403803*33385282^(7/24) 6308803769317083 a001 3524578/54018521*817138163596^(1/6) 6308803769317083 a001 3524578/370248451*33385282^(3/8) 6308803769317083 a001 3524578/54018521*87403803^(1/4) 6308803769317083 a001 24157817/7881196*33385282^(1/24) 6308803769317083 a001 3524578/1568397607*33385282^(11/24) 6308803769317084 a001 3524578/6643838879*33385282^(13/24) 6308803769317084 a001 3524578/28143753123*33385282^(5/8) 6308803769317085 a001 3524578/119218851371*33385282^(17/24) 6308803769317085 a001 1762289/16692641*12752043^(1/4) 6308803769317085 a001 3524578/505019158607*33385282^(19/24) 6308803769317085 a001 63245986/20633239*1860498^(1/20) 6308803769317086 a001 3524578/2139295485799*33385282^(7/8) 6308803769317086 a001 3524578/9062201101803*33385282^(23/24) 6308803769317088 a001 3524578/4870847*1860498^(3/20) 6308803769317092 a001 3524578/20633239*20633239^(3/14) 6308803769317094 a001 9227465/7881196*20633239^(1/10) 6308803769317094 a001 24157817/12752043*1860498^(1/12) 6308803769317095 a001 3524578/20633239*2537720636^(1/6) 6308803769317095 a001 9227465/7881196*17393796001^(1/14) 6308803769317095 a001 3524578/20633239*312119004989^(3/22) 6308803769317095 a001 9227465/7881196*14662949395604^(1/18) 6308803769317095 a001 9227465/7881196*505019158607^(1/16) 6308803769317095 a001 3524578/20633239*28143753123^(3/20) 6308803769317095 a001 9227465/7881196*599074578^(1/12) 6308803769317095 a001 3524578/20633239*228826127^(3/16) 6308803769317097 a001 3524578/20633239*33385282^(5/24) 6308803769317110 a001 3524578/119218851371*12752043^(3/4) 6308803769317126 a001 31622993/16692641*1860498^(1/12) 6308803769317130 a001 726103/4250681*1860498^(1/4) 6308803769317130 a001 165580141/87403803*1860498^(1/12) 6308803769317131 a001 433494437/228826127*1860498^(1/12) 6308803769317131 a001 567451585/299537289*1860498^(1/12) 6308803769317131 a001 2971215073/1568397607*1860498^(1/12) 6308803769317131 a001 7778742049/4106118243*1860498^(1/12) 6308803769317131 a001 10182505537/5374978561*1860498^(1/12) 6308803769317131 a001 53316291173/28143753123*1860498^(1/12) 6308803769317131 a001 139583862445/73681302247*1860498^(1/12) 6308803769317131 a001 182717648081/96450076809*1860498^(1/12) 6308803769317131 a001 956722026041/505019158607*1860498^(1/12) 6308803769317131 a001 10610209857723/5600748293801*1860498^(1/12) 6308803769317131 a001 591286729879/312119004989*1860498^(1/12) 6308803769317131 a001 225851433717/119218851371*1860498^(1/12) 6308803769317131 a001 21566892818/11384387281*1860498^(1/12) 6308803769317131 a001 32951280099/17393796001*1860498^(1/12) 6308803769317131 a001 12586269025/6643838879*1860498^(1/12) 6308803769317131 a001 1201881744/634430159*1860498^(1/12) 6308803769317131 a001 1836311903/969323029*1860498^(1/12) 6308803769317131 a001 701408733/370248451*1860498^(1/12) 6308803769317131 a001 66978574/35355581*1860498^(1/12) 6308803769317133 a001 102334155/54018521*1860498^(1/12) 6308803769317145 a001 39088169/20633239*1860498^(1/12) 6308803769317165 a001 1762289/3940598*7881196^(1/6) 6308803769317174 a001 24157817/7881196*1860498^(1/20) 6308803769317182 a001 1762289/3940598*312119004989^(1/10) 6308803769317182 a001 1762289/3940598*1568397607^(1/8) 6308803769317227 a001 3732588/1970299*1860498^(1/12) 6308803769317228 a001 9227465/12752043*1860498^(3/20) 6308803769317249 a001 24157817/33385282*1860498^(3/20) 6308803769317252 a001 63245986/87403803*1860498^(3/20) 6308803769317252 a001 165580141/228826127*1860498^(3/20) 6308803769317252 a001 433494437/599074578*1860498^(3/20) 6308803769317252 a001 1134903170/1568397607*1860498^(3/20) 6308803769317252 a001 2971215073/4106118243*1860498^(3/20) 6308803769317252 a001 7778742049/10749957122*1860498^(3/20) 6308803769317252 a001 20365011074/28143753123*1860498^(3/20) 6308803769317252 a001 53316291173/73681302247*1860498^(3/20) 6308803769317252 a001 139583862445/192900153618*1860498^(3/20) 6308803769317252 a001 365435296162/505019158607*1860498^(3/20) 6308803769317252 a001 10610209857723/14662949395604*1860498^(3/20) 6308803769317252 a001 225851433717/312119004989*1860498^(3/20) 6308803769317252 a001 86267571272/119218851371*1860498^(3/20) 6308803769317252 a001 32951280099/45537549124*1860498^(3/20) 6308803769317252 a001 12586269025/17393796001*1860498^(3/20) 6308803769317252 a001 4807526976/6643838879*1860498^(3/20) 6308803769317252 a001 1836311903/2537720636*1860498^(3/20) 6308803769317252 a001 701408733/969323029*1860498^(3/20) 6308803769317252 a001 267914296/370248451*1860498^(3/20) 6308803769317253 a001 102334155/141422324*1860498^(3/20) 6308803769317254 a001 39088169/54018521*1860498^(3/20) 6308803769317262 a001 14930352/20633239*1860498^(3/20) 6308803769317315 a001 5702887/7881196*1860498^(3/20) 6308803769317327 a001 1346269/370248451*3010349^(1/2) 6308803769317353 a001 2178309/54018521*1860498^(7/20) 6308803769317390 a001 5702887/33385282*1860498^(1/4) 6308803769317395 a001 2178309/3010349*7881196^(3/22) 6308803769317409 a001 1346269/4870847*141422324^(1/6) 6308803769317409 a001 2178309/3010349*2537720636^(1/10) 6308803769317409 a001 2178309/3010349*14662949395604^(1/14) 6308803769317409 a001 2178309/3010349*192900153618^(1/12) 6308803769317409 a001 1346269/4870847*73681302247^(1/8) 6308803769317410 a001 2178309/3010349*33385282^(1/8) 6308803769317428 a001 4976784/29134601*1860498^(1/4) 6308803769317434 a001 39088169/228826127*1860498^(1/4) 6308803769317435 a001 34111385/199691526*1860498^(1/4) 6308803769317435 a001 267914296/1568397607*1860498^(1/4) 6308803769317435 a001 233802911/1368706081*1860498^(1/4) 6308803769317435 a001 1836311903/10749957122*1860498^(1/4) 6308803769317435 a001 1602508992/9381251041*1860498^(1/4) 6308803769317435 a001 12586269025/73681302247*1860498^(1/4) 6308803769317435 a001 10983760033/64300051206*1860498^(1/4) 6308803769317435 a001 86267571272/505019158607*1860498^(1/4) 6308803769317435 a001 75283811239/440719107401*1860498^(1/4) 6308803769317435 a001 2504730781961/14662949395604*1860498^(1/4) 6308803769317435 a001 139583862445/817138163596*1860498^(1/4) 6308803769317435 a001 53316291173/312119004989*1860498^(1/4) 6308803769317435 a001 20365011074/119218851371*1860498^(1/4) 6308803769317435 a001 7778742049/45537549124*1860498^(1/4) 6308803769317435 a001 2971215073/17393796001*1860498^(1/4) 6308803769317435 a001 1134903170/6643838879*1860498^(1/4) 6308803769317435 a001 433494437/2537720636*1860498^(1/4) 6308803769317435 a001 165580141/969323029*1860498^(1/4) 6308803769317435 a001 63245986/370248451*1860498^(1/4) 6308803769317437 a001 24157817/141422324*1860498^(1/4) 6308803769317452 a001 9227465/54018521*1860498^(1/4) 6308803769317473 a001 2178309/141422324*1860498^(5/12) 6308803769317533 a001 46347/4868641*1860498^(9/20) 6308803769317551 a001 3524578/20633239*1860498^(1/4) 6308803769317578 a001 1346269/817138163596*7881196^(21/22) 6308803769317578 a001 5702887/141422324*1860498^(7/20) 6308803769317587 a001 1346269/192900153618*7881196^(19/22) 6308803769317591 a001 1346269/119218851371*7881196^(5/6) 6308803769317597 a001 1346269/45537549124*7881196^(17/22) 6308803769317606 a001 1346269/10749957122*7881196^(15/22) 6308803769317611 a001 14930352/370248451*1860498^(7/20) 6308803769317615 a001 1346269/2537720636*7881196^(13/22) 6308803769317616 a001 39088169/969323029*1860498^(7/20) 6308803769317617 a001 9303105/230701876*1860498^(7/20) 6308803769317617 a001 267914296/6643838879*1860498^(7/20) 6308803769317617 a001 701408733/17393796001*1860498^(7/20) 6308803769317617 a001 1836311903/45537549124*1860498^(7/20) 6308803769317617 a001 4807526976/119218851371*1860498^(7/20) 6308803769317617 a001 1144206275/28374454999*1860498^(7/20) 6308803769317617 a001 32951280099/817138163596*1860498^(7/20) 6308803769317617 a001 86267571272/2139295485799*1860498^(7/20) 6308803769317617 a001 225851433717/5600748293801*1860498^(7/20) 6308803769317617 a001 591286729879/14662949395604*1860498^(7/20) 6308803769317617 a001 365435296162/9062201101803*1860498^(7/20) 6308803769317617 a001 139583862445/3461452808002*1860498^(7/20) 6308803769317617 a001 53316291173/1322157322203*1860498^(7/20) 6308803769317617 a001 20365011074/505019158607*1860498^(7/20) 6308803769317617 a001 7778742049/192900153618*1860498^(7/20) 6308803769317617 a001 2971215073/73681302247*1860498^(7/20) 6308803769317617 a001 1134903170/28143753123*1860498^(7/20) 6308803769317617 a001 433494437/10749957122*1860498^(7/20) 6308803769317617 a001 165580141/4106118243*1860498^(7/20) 6308803769317617 a001 63245986/1568397607*1860498^(7/20) 6308803769317619 a001 24157817/599074578*1860498^(7/20) 6308803769317624 a001 1346269/599074578*7881196^(1/2) 6308803769317632 a001 9227465/228826127*1860498^(7/20) 6308803769317634 a001 1346269/141422324*7881196^(9/22) 6308803769317635 a001 5702887/3010349*20633239^(1/14) 6308803769317636 a001 5702887/3010349*2537720636^(1/18) 6308803769317636 a001 1346269/12752043*45537549124^(1/6) 6308803769317636 a001 5702887/3010349*312119004989^(1/22) 6308803769317636 a001 5702887/3010349*28143753123^(1/20) 6308803769317636 a001 5702887/3010349*228826127^(1/16) 6308803769317637 a001 1346269/33385282*7881196^(7/22) 6308803769317646 a001 1346269/12752043*12752043^(1/4) 6308803769317661 a001 1346269/1322157322203*20633239^(13/14) 6308803769317662 a001 1346269/817138163596*20633239^(9/10) 6308803769317664 a001 1346269/119218851371*20633239^(11/14) 6308803769317665 a001 1346269/28143753123*20633239^(7/10) 6308803769317665 a001 1346269/33385282*20633239^(3/10) 6308803769317666 a001 1346269/10749957122*20633239^(9/14) 6308803769317668 a001 1346269/969323029*20633239^(1/2) 6308803769317669 a001 1346269/87403803*20633239^(5/14) 6308803769317670 a001 1346269/33385282*17393796001^(3/14) 6308803769317670 a001 1346269/33385282*14662949395604^(1/6) 6308803769317670 a001 1346269/33385282*599074578^(1/4) 6308803769317671 a001 1346269/33385282*33385282^(7/24) 6308803769317674 a001 1346269/1568397607*54018521^(1/2) 6308803769317674 a001 1346269/87403803*2537720636^(5/18) 6308803769317674 a001 1346269/87403803*312119004989^(5/22) 6308803769317674 a001 1346269/87403803*3461452808002^(5/24) 6308803769317674 a001 1346269/87403803*28143753123^(1/4) 6308803769317674 a001 1346269/87403803*228826127^(5/16) 6308803769317675 a001 1346269/1322157322203*141422324^(5/6) 6308803769317675 a001 1346269/2537720636*141422324^(1/2) 6308803769317675 a001 1346269/228826127*1322157322203^(1/4) 6308803769317675 a001 1346269/4106118243*370248451^(1/2) 6308803769317675 a001 1346269/599074578*312119004989^(3/10) 6308803769317675 a001 1346269/599074578*1568397607^(3/8) 6308803769317675 a001 1346269/6643838879*969323029^(1/2) 6308803769317675 a001 1346269/14662949395604*2537720636^(5/6) 6308803769317675 a001 1346269/1322157322203*2537720636^(13/18) 6308803769317675 a001 1346269/817138163596*2537720636^(7/10) 6308803769317675 a001 1346269/119218851371*2537720636^(11/18) 6308803769317675 a001 1346269/10749957122*2537720636^(1/2) 6308803769317675 a001 1346269/10749957122*312119004989^(9/22) 6308803769317675 a001 1346269/10749957122*14662949395604^(5/14) 6308803769317675 a001 1346269/10749957122*192900153618^(5/12) 6308803769317675 a001 1346269/10749957122*28143753123^(9/20) 6308803769317675 a001 1346269/17393796001*6643838879^(1/2) 6308803769317675 a001 1346269/28143753123*17393796001^(1/2) 6308803769317675 a001 1346269/23725150497407*17393796001^(11/14) 6308803769317675 a001 1346269/817138163596*17393796001^(9/14) 6308803769317675 a001 1346269/28143753123*14662949395604^(7/18) 6308803769317675 a001 1346269/28143753123*505019158607^(7/16) 6308803769317675 a001 1346269/73681302247*119218851371^(1/2) 6308803769317675 a001 1346269/192900153618*817138163596^(1/2) 6308803769317675 a001 1346269/14662949395604*312119004989^(15/22) 6308803769317675 a001 1346269/1322157322203*312119004989^(13/22) 6308803769317675 a001 1346269/505019158607*5600748293801^(1/2) 6308803769317675 a001 1346269/1322157322203*3461452808002^(13/24) 6308803769317675 a001 1346269/23725150497407*14662949395604^(11/18) 6308803769317675 a001 1346269/14662949395604*3461452808002^(5/8) 6308803769317675 a001 1346269/817138163596*14662949395604^(1/2) 6308803769317675 a001 1346269/23725150497407*505019158607^(11/16) 6308803769317675 a001 1346269/817138163596*505019158607^(9/16) 6308803769317675 a001 1346269/312119004989*2139295485799^(1/2) 6308803769317675 a001 1346269/817138163596*192900153618^(7/12) 6308803769317675 a001 1346269/119218851371*312119004989^(1/2) 6308803769317675 a001 1346269/119218851371*3461452808002^(11/24) 6308803769317675 a001 1346269/1322157322203*73681302247^(5/8) 6308803769317675 a001 1346269/45537549124*45537549124^(1/2) 6308803769317675 a001 1346269/119218851371*28143753123^(11/20) 6308803769317675 a001 1346269/1322157322203*28143753123^(13/20) 6308803769317675 a001 1346269/14662949395604*28143753123^(3/4) 6308803769317675 a001 1346269/3461452808002*4106118243^(3/4) 6308803769317675 a001 1346269/2537720636*73681302247^(3/8) 6308803769317675 a001 1346269/119218851371*1568397607^(5/8) 6308803769317675 a001 1346269/23725150497407*1568397607^(7/8) 6308803769317675 a001 1346269/969323029*2537720636^(7/18) 6308803769317675 a001 1346269/969323029*17393796001^(5/14) 6308803769317675 a001 1346269/969323029*312119004989^(7/22) 6308803769317675 a001 1346269/969323029*14662949395604^(5/18) 6308803769317675 a001 1346269/969323029*505019158607^(5/16) 6308803769317675 a001 1346269/969323029*28143753123^(7/20) 6308803769317675 a001 1346269/28143753123*599074578^(7/12) 6308803769317675 a001 1346269/817138163596*599074578^(3/4) 6308803769317675 a001 1346269/969323029*599074578^(5/12) 6308803769317675 a001 1346269/23725150497407*599074578^(11/12) 6308803769317675 a001 1346269/370248451*9062201101803^(1/4) 6308803769317675 a001 1346269/969323029*228826127^(7/16) 6308803769317675 a001 1346269/10749957122*228826127^(9/16) 6308803769317675 a001 1346269/119218851371*228826127^(11/16) 6308803769317675 a001 1346269/1322157322203*228826127^(13/16) 6308803769317675 a001 1346269/14662949395604*228826127^(15/16) 6308803769317675 a001 1346269/141422324*2537720636^(3/10) 6308803769317675 a001 1346269/141422324*14662949395604^(3/14) 6308803769317675 a001 1346269/141422324*192900153618^(1/4) 6308803769317676 a001 1346269/192900153618*87403803^(3/4) 6308803769317677 a001 1346269/54018521*4106118243^(1/4) 6308803769317678 a001 1346269/141422324*33385282^(3/8) 6308803769317678 a001 1346269/599074578*33385282^(11/24) 6308803769317678 a001 1346269/2537720636*33385282^(13/24) 6308803769317679 a001 1346269/10749957122*33385282^(5/8) 6308803769317679 a001 1346269/45537549124*33385282^(17/24) 6308803769317680 a001 1346269/192900153618*33385282^(19/24) 6308803769317680 a001 1346269/817138163596*33385282^(7/8) 6308803769317681 a001 1346269/3461452808002*33385282^(23/24) 6308803769317683 a001 2178309/3010349*1860498^(3/20) 6308803769317685 a001 9227465/3010349*7881196^(1/22) 6308803769317690 a001 1346269/20633239*817138163596^(1/6) 6308803769317690 a001 1346269/20633239*87403803^(1/4) 6308803769317690 a001 9227465/3010349*33385282^(1/24) 6308803769317700 a001 5702887/370248451*1860498^(5/12) 6308803769317704 a001 1346269/45537549124*12752043^(3/4) 6308803769317716 a001 2178309/969323029*1860498^(11/20) 6308803769317718 a001 3524578/87403803*1860498^(7/20) 6308803769317733 a001 14930352/969323029*1860498^(5/12) 6308803769317738 a001 39088169/2537720636*1860498^(5/12) 6308803769317738 a001 102334155/6643838879*1860498^(5/12) 6308803769317738 a001 9238424/599786069*1860498^(5/12) 6308803769317738 a001 701408733/45537549124*1860498^(5/12) 6308803769317738 a001 1836311903/119218851371*1860498^(5/12) 6308803769317738 a001 4807526976/312119004989*1860498^(5/12) 6308803769317738 a001 12586269025/817138163596*1860498^(5/12) 6308803769317738 a001 32951280099/2139295485799*1860498^(5/12) 6308803769317738 a001 86267571272/5600748293801*1860498^(5/12) 6308803769317738 a001 7787980473/505618944676*1860498^(5/12) 6308803769317738 a001 365435296162/23725150497407*1860498^(5/12) 6308803769317738 a001 139583862445/9062201101803*1860498^(5/12) 6308803769317738 a001 53316291173/3461452808002*1860498^(5/12) 6308803769317738 a001 20365011074/1322157322203*1860498^(5/12) 6308803769317738 a001 7778742049/505019158607*1860498^(5/12) 6308803769317738 a001 2971215073/192900153618*1860498^(5/12) 6308803769317738 a001 1134903170/73681302247*1860498^(5/12) 6308803769317738 a001 433494437/28143753123*1860498^(5/12) 6308803769317738 a001 165580141/10749957122*1860498^(5/12) 6308803769317739 a001 63245986/4106118243*1860498^(5/12) 6308803769317741 a001 24157817/1568397607*1860498^(5/12) 6308803769317753 a001 9227465/599074578*1860498^(5/12) 6308803769317754 a001 1346269/7881196*7881196^(5/22) 6308803769317760 a001 5702887/599074578*1860498^(9/20) 6308803769317774 a001 1346269/7881196*20633239^(3/14) 6308803769317775 a001 3524578/3010349*20633239^(1/10) 6308803769317776 a001 311187/224056801*1860498^(7/12) 6308803769317777 a001 1346269/7881196*2537720636^(1/6) 6308803769317777 a001 3524578/3010349*17393796001^(1/14) 6308803769317777 a001 1346269/7881196*312119004989^(3/22) 6308803769317777 a001 3524578/3010349*14662949395604^(1/18) 6308803769317777 a001 3524578/3010349*505019158607^(1/16) 6308803769317777 a001 1346269/7881196*28143753123^(3/20) 6308803769317777 a001 3524578/3010349*599074578^(1/12) 6308803769317777 a001 1346269/7881196*228826127^(3/16) 6308803769317778 a001 1346269/7881196*33385282^(5/24) 6308803769317781 a001 9227465/3010349*1860498^(1/20) 6308803769317788 a001 5702887/3010349*1860498^(1/12) 6308803769317794 a001 14930352/1568397607*1860498^(9/20) 6308803769317798 a001 39088169/4106118243*1860498^(9/20) 6308803769317799 a001 102334155/10749957122*1860498^(9/20) 6308803769317799 a001 267914296/28143753123*1860498^(9/20) 6308803769317799 a001 701408733/73681302247*1860498^(9/20) 6308803769317799 a001 1836311903/192900153618*1860498^(9/20) 6308803769317799 a001 102287808/10745088481*1860498^(9/20) 6308803769317799 a001 12586269025/1322157322203*1860498^(9/20) 6308803769317799 a001 32951280099/3461452808002*1860498^(9/20) 6308803769317799 a001 86267571272/9062201101803*1860498^(9/20) 6308803769317799 a001 225851433717/23725150497407*1860498^(9/20) 6308803769317799 a001 139583862445/14662949395604*1860498^(9/20) 6308803769317799 a001 53316291173/5600748293801*1860498^(9/20) 6308803769317799 a001 20365011074/2139295485799*1860498^(9/20) 6308803769317799 a001 7778742049/817138163596*1860498^(9/20) 6308803769317799 a001 2971215073/312119004989*1860498^(9/20) 6308803769317799 a001 1134903170/119218851371*1860498^(9/20) 6308803769317799 a001 433494437/45537549124*1860498^(9/20) 6308803769317799 a001 165580141/17393796001*1860498^(9/20) 6308803769317799 a001 63245986/6643838879*1860498^(9/20) 6308803769317801 a001 24157817/2537720636*1860498^(9/20) 6308803769317814 a001 9227465/969323029*1860498^(9/20) 6308803769317840 a001 3524578/228826127*1860498^(5/12) 6308803769317898 a001 726103/1368706081*1860498^(13/20) 6308803769317901 a001 3524578/370248451*1860498^(9/20) 6308803769317943 a001 5702887/2537720636*1860498^(11/20) 6308803769317976 a001 14930352/6643838879*1860498^(11/20) 6308803769317981 a001 39088169/17393796001*1860498^(11/20) 6308803769317981 a001 102334155/45537549124*1860498^(11/20) 6308803769317981 a001 267914296/119218851371*1860498^(11/20) 6308803769317981 a001 3524667/1568437211*1860498^(11/20) 6308803769317981 a001 1836311903/817138163596*1860498^(11/20) 6308803769317981 a001 4807526976/2139295485799*1860498^(11/20) 6308803769317981 a001 12586269025/5600748293801*1860498^(11/20) 6308803769317981 a001 32951280099/14662949395604*1860498^(11/20) 6308803769317981 a001 53316291173/23725150497407*1860498^(11/20) 6308803769317981 a001 20365011074/9062201101803*1860498^(11/20) 6308803769317981 a001 7778742049/3461452808002*1860498^(11/20) 6308803769317981 a001 2971215073/1322157322203*1860498^(11/20) 6308803769317981 a001 1134903170/505019158607*1860498^(11/20) 6308803769317981 a001 433494437/192900153618*1860498^(11/20) 6308803769317981 a001 165580141/73681302247*1860498^(11/20) 6308803769317982 a001 63245986/28143753123*1860498^(11/20) 6308803769317984 a001 24157817/10749957122*1860498^(11/20) 6308803769317996 a001 9227465/4106118243*1860498^(11/20) 6308803769318003 a001 5702887/4106118243*1860498^(7/12) 6308803769318037 a001 7465176/5374978561*1860498^(7/12) 6308803769318041 a001 39088169/28143753123*1860498^(7/12) 6308803769318042 a001 14619165/10525900321*1860498^(7/12) 6308803769318042 a001 133957148/96450076809*1860498^(7/12) 6308803769318042 a001 701408733/505019158607*1860498^(7/12) 6308803769318042 a001 1836311903/1322157322203*1860498^(7/12) 6308803769318042 a001 14930208/10749853441*1860498^(7/12) 6308803769318042 a001 12586269025/9062201101803*1860498^(7/12) 6308803769318042 a001 32951280099/23725150497407*1860498^(7/12) 6308803769318042 a001 10182505537/7331474697802*1860498^(7/12) 6308803769318042 a001 7778742049/5600748293801*1860498^(7/12) 6308803769318042 a001 2971215073/2139295485799*1860498^(7/12) 6308803769318042 a001 567451585/408569081798*1860498^(7/12) 6308803769318042 a001 433494437/312119004989*1860498^(7/12) 6308803769318042 a001 165580141/119218851371*1860498^(7/12) 6308803769318042 a001 31622993/22768774562*1860498^(7/12) 6308803769318044 a001 24157817/17393796001*1860498^(7/12) 6308803769318057 a001 9227465/6643838879*1860498^(7/12) 6308803769318080 a001 2178309/17393796001*1860498^(3/4) 6308803769318083 a001 3524578/1568397607*1860498^(11/20) 6308803769318125 a001 5702887/10749957122*1860498^(13/20) 6308803769318144 a001 1762289/1268860318*1860498^(7/12) 6308803769318158 a001 4976784/9381251041*1860498^(13/20) 6308803769318163 a001 39088169/73681302247*1860498^(13/20) 6308803769318164 a001 34111385/64300051206*1860498^(13/20) 6308803769318164 a001 267914296/505019158607*1860498^(13/20) 6308803769318164 a001 233802911/440719107401*1860498^(13/20) 6308803769318164 a001 1836311903/3461452808002*1860498^(13/20) 6308803769318164 a001 1602508992/3020733700601*1860498^(13/20) 6308803769318164 a001 12586269025/23725150497407*1860498^(13/20) 6308803769318164 a001 7778742049/14662949395604*1860498^(13/20) 6308803769318164 a001 2971215073/5600748293801*1860498^(13/20) 6308803769318164 a001 1134903170/2139295485799*1860498^(13/20) 6308803769318164 a001 433494437/817138163596*1860498^(13/20) 6308803769318164 a001 165580141/312119004989*1860498^(13/20) 6308803769318164 a001 63245986/119218851371*1860498^(13/20) 6308803769318166 a001 24157817/45537549124*1860498^(13/20) 6308803769318179 a001 9227465/17393796001*1860498^(13/20) 6308803769318232 a001 1346269/7881196*1860498^(1/4) 6308803769318236 a001 5702887/4870847*710647^(1/8) 6308803769318262 a001 311187/10525900321*1860498^(17/20) 6308803769318265 a001 3524578/6643838879*1860498^(13/20) 6308803769318307 a001 1597/12752044*1860498^(3/4) 6308803769318307 a001 1346269/33385282*1860498^(7/20) 6308803769318340 a001 14930352/119218851371*1860498^(3/4) 6308803769318345 a001 39088169/312119004989*1860498^(3/4) 6308803769318346 a001 102334155/817138163596*1860498^(3/4) 6308803769318346 a001 267914296/2139295485799*1860498^(3/4) 6308803769318346 a001 701408733/5600748293801*1860498^(3/4) 6308803769318346 a001 1836311903/14662949395604*1860498^(3/4) 6308803769318346 a001 2971215073/23725150497407*1860498^(3/4) 6308803769318346 a001 1134903170/9062201101803*1860498^(3/4) 6308803769318346 a001 433494437/3461452808002*1860498^(3/4) 6308803769318346 a001 165580141/1322157322203*1860498^(3/4) 6308803769318346 a001 63245986/505019158607*1860498^(3/4) 6308803769318348 a001 24157817/192900153618*1860498^(3/4) 6308803769318354 a001 1346269/3010349*7881196^(1/6) 6308803769318361 a001 9227465/73681302247*1860498^(3/4) 6308803769318371 a001 1346269/3010349*312119004989^(1/10) 6308803769318371 a001 1346269/3010349*1568397607^(1/8) 6308803769318384 a001 726103/64300051206*1860498^(11/12) 6308803769318434 a001 1346269/87403803*1860498^(5/12) 6308803769318445 a001 2178309/312119004989*1860498^(19/20) 6308803769318448 a001 3524578/28143753123*1860498^(3/4) 6308803769318489 a001 5702887/192900153618*1860498^(17/20) 6308803769318496 a001 1346269/141422324*1860498^(9/20) 6308803769318496 a001 4976784/4250681*710647^(1/8) 6308803769318523 a001 14930352/505019158607*1860498^(17/20) 6308803769318527 a001 39088169/1322157322203*1860498^(17/20) 6308803769318528 a001 6765/228826126*1860498^(17/20) 6308803769318528 a001 267914296/9062201101803*1860498^(17/20) 6308803769318528 a001 701408733/23725150497407*1860498^(17/20) 6308803769318528 a001 433494437/14662949395604*1860498^(17/20) 6308803769318528 a001 165580141/5600748293801*1860498^(17/20) 6308803769318529 a001 63245986/2139295485799*1860498^(17/20) 6308803769318530 a001 24157817/817138163596*1860498^(17/20) 6308803769318534 a001 39088169/33385282*710647^(1/8) 6308803769318540 a001 34111385/29134601*710647^(1/8) 6308803769318540 a001 267914296/228826127*710647^(1/8) 6308803769318541 a001 233802911/199691526*710647^(1/8) 6308803769318541 a001 1836311903/1568397607*710647^(1/8) 6308803769318541 a001 1602508992/1368706081*710647^(1/8) 6308803769318541 a001 12586269025/10749957122*710647^(1/8) 6308803769318541 a001 10983760033/9381251041*710647^(1/8) 6308803769318541 a001 86267571272/73681302247*710647^(1/8) 6308803769318541 a001 75283811239/64300051206*710647^(1/8) 6308803769318541 a001 2504730781961/2139295485799*710647^(1/8) 6308803769318541 a001 365435296162/312119004989*710647^(1/8) 6308803769318541 a001 139583862445/119218851371*710647^(1/8) 6308803769318541 a001 53316291173/45537549124*710647^(1/8) 6308803769318541 a001 20365011074/17393796001*710647^(1/8) 6308803769318541 a001 7778742049/6643838879*710647^(1/8) 6308803769318541 a001 2971215073/2537720636*710647^(1/8) 6308803769318541 a001 1134903170/969323029*710647^(1/8) 6308803769318541 a001 433494437/370248451*710647^(1/8) 6308803769318541 a001 165580141/141422324*710647^(1/8) 6308803769318543 a001 63245986/54018521*710647^(1/8) 6308803769318543 a001 9227465/312119004989*1860498^(17/20) 6308803769318558 a001 24157817/20633239*710647^(1/8) 6308803769318611 a001 5702887/505019158607*1860498^(11/12) 6308803769318630 a001 3524578/119218851371*1860498^(17/20) 6308803769318644 a001 4976784/440719107401*1860498^(11/12) 6308803769318649 a001 39088169/3461452808002*1860498^(11/12) 6308803769318650 a001 34111385/3020733700601*1860498^(11/12) 6308803769318650 a001 267914296/23725150497407*1860498^(11/12) 6308803769318650 a001 165580141/14662949395604*1860498^(11/12) 6308803769318650 a001 63245986/5600748293801*1860498^(11/12) 6308803769318652 a001 24157817/2139295485799*1860498^(11/12) 6308803769318657 a001 9227465/7881196*710647^(1/8) 6308803769318665 a001 9227465/817138163596*1860498^(11/12) 6308803769318672 a001 5702887/817138163596*1860498^(19/20) 6308803769318678 a001 1346269/599074578*1860498^(11/20) 6308803769318705 a001 14930352/2139295485799*1860498^(19/20) 6308803769318710 a001 39088169/5600748293801*1860498^(19/20) 6308803769318710 a001 102334155/14662949395604*1860498^(19/20) 6308803769318711 a001 165580141/23725150497407*1860498^(19/20) 6308803769318711 a001 63245986/9062201101803*1860498^(19/20) 6308803769318713 a001 24157817/3461452808002*1860498^(19/20) 6308803769318725 a001 9227465/1322157322203*1860498^(19/20) 6308803769318738 a001 1346269/969323029*1860498^(7/12) 6308803769318751 a001 3524578/312119004989*1860498^(11/12) 6308803769318796 a001 196418/6643838879*439204^(17/18) 6308803769318812 a001 3524578/505019158607*1860498^(19/20) 6308803769318860 a001 1346269/2537720636*1860498^(13/20) 6308803769319042 a001 1346269/10749957122*1860498^(3/4) 6308803769319224 a001 1346269/45537549124*1860498^(17/20) 6308803769319338 a001 3524578/3010349*710647^(1/8) 6308803769319346 a001 1346269/119218851371*1860498^(11/12) 6308803769319364 a001 514229/87403803*1149851^(1/2) 6308803769319407 a001 1346269/192900153618*1860498^(19/20) 6308803769319856 a001 75640/1875749*710647^(3/8) 6308803769319914 a001 832040/1149851*7881196^(3/22) 6308803769319928 a001 514229/1860498*141422324^(1/6) 6308803769319928 a001 832040/1149851*2537720636^(1/10) 6308803769319928 a001 832040/1149851*14662949395604^(1/14) 6308803769319928 a001 832040/1149851*192900153618^(1/12) 6308803769319928 a001 514229/1860498*73681302247^(1/8) 6308803769319929 a001 832040/1149851*33385282^(1/8) 6308803769320035 a001 3524578/1149851*439204^(1/18) 6308803769320201 a001 832040/1149851*1860498^(3/20) 6308803769321400 a001 2178309/54018521*710647^(3/8) 6308803769321403 a001 514229/141422324*3010349^(1/2) 6308803769321484 a001 2178309/1149851*20633239^(1/14) 6308803769321485 a001 2178309/1149851*2537720636^(1/18) 6308803769321485 a001 514229/4870847*45537549124^(1/6) 6308803769321485 a001 2178309/1149851*312119004989^(1/22) 6308803769321485 a001 2178309/1149851*28143753123^(1/20) 6308803769321485 a001 2178309/1149851*228826127^(1/16) 6308803769321494 a001 514229/4870847*12752043^(1/4) 6308803769321625 a001 5702887/141422324*710647^(3/8) 6308803769321637 a001 2178309/1149851*1860498^(1/12) 6308803769321654 a001 514229/312119004989*7881196^(21/22) 6308803769321658 a001 14930352/370248451*710647^(3/8) 6308803769321663 a001 39088169/969323029*710647^(3/8) 6308803769321663 a001 514229/73681302247*7881196^(19/22) 6308803769321663 a001 9303105/230701876*710647^(3/8) 6308803769321664 a001 267914296/6643838879*710647^(3/8) 6308803769321664 a001 701408733/17393796001*710647^(3/8) 6308803769321664 a001 1836311903/45537549124*710647^(3/8) 6308803769321664 a001 4807526976/119218851371*710647^(3/8) 6308803769321664 a001 1144206275/28374454999*710647^(3/8) 6308803769321664 a001 32951280099/817138163596*710647^(3/8) 6308803769321664 a001 86267571272/2139295485799*710647^(3/8) 6308803769321664 a001 225851433717/5600748293801*710647^(3/8) 6308803769321664 a001 591286729879/14662949395604*710647^(3/8) 6308803769321664 a001 365435296162/9062201101803*710647^(3/8) 6308803769321664 a001 139583862445/3461452808002*710647^(3/8) 6308803769321664 a001 53316291173/1322157322203*710647^(3/8) 6308803769321664 a001 20365011074/505019158607*710647^(3/8) 6308803769321664 a001 7778742049/192900153618*710647^(3/8) 6308803769321664 a001 2971215073/73681302247*710647^(3/8) 6308803769321664 a001 1134903170/28143753123*710647^(3/8) 6308803769321664 a001 433494437/10749957122*710647^(3/8) 6308803769321664 a001 165580141/4106118243*710647^(3/8) 6308803769321664 a001 63245986/1568397607*710647^(3/8) 6308803769321666 a001 24157817/599074578*710647^(3/8) 6308803769321666 a001 514229/45537549124*7881196^(5/6) 6308803769321672 a001 514229/17393796001*7881196^(17/22) 6308803769321678 a001 9227465/228826127*710647^(3/8) 6308803769321679 a001 514229/12752043*7881196^(7/22) 6308803769321681 a001 514229/4106118243*7881196^(15/22) 6308803769321691 a001 514229/969323029*7881196^(13/22) 6308803769321700 a001 514229/228826127*7881196^(1/2) 6308803769321707 a001 514229/12752043*20633239^(3/10) 6308803769321711 a001 514229/54018521*7881196^(9/22) 6308803769321712 a001 514229/12752043*17393796001^(3/14) 6308803769321712 a001 514229/12752043*14662949395604^(1/6) 6308803769321712 a001 514229/12752043*599074578^(1/4) 6308803769321713 a001 514229/12752043*33385282^(7/24) 6308803769321727 a006 5^(1/2)*fibonacci(69/2)/Lucas(29)/sqrt(5) 6308803769321737 a001 514229/505019158607*20633239^(13/14) 6308803769321737 a001 514229/312119004989*20633239^(9/10) 6308803769321739 a001 514229/45537549124*20633239^(11/14) 6308803769321740 a001 514229/33385282*20633239^(5/14) 6308803769321740 a001 514229/10749957122*20633239^(7/10) 6308803769321741 a001 514229/4106118243*20633239^(9/14) 6308803769321743 a001 514229/370248451*20633239^(1/2) 6308803769321745 a001 514229/33385282*2537720636^(5/18) 6308803769321745 a001 514229/33385282*312119004989^(5/22) 6308803769321745 a001 514229/33385282*3461452808002^(5/24) 6308803769321745 a001 514229/33385282*28143753123^(1/4) 6308803769321745 a001 514229/33385282*228826127^(5/16) 6308803769321750 a001 514229/599074578*54018521^(1/2) 6308803769321750 a001 514229/87403803*1322157322203^(1/4) 6308803769321750 a001 514229/505019158607*141422324^(5/6) 6308803769321750 a001 514229/969323029*141422324^(1/2) 6308803769321750 a001 514229/228826127*312119004989^(3/10) 6308803769321750 a001 514229/228826127*1568397607^(3/8) 6308803769321751 a001 514229/1568397607*370248451^(1/2) 6308803769321751 a001 514229/2537720636*969323029^(1/2) 6308803769321751 a001 514229/23725150497407*2537720636^(9/10) 6308803769321751 a001 514229/4106118243*2537720636^(1/2) 6308803769321751 a001 514229/5600748293801*2537720636^(5/6) 6308803769321751 a001 514229/505019158607*2537720636^(13/18) 6308803769321751 a001 514229/312119004989*2537720636^(7/10) 6308803769321751 a001 514229/45537549124*2537720636^(11/18) 6308803769321751 a001 514229/4106118243*312119004989^(9/22) 6308803769321751 a001 514229/4106118243*14662949395604^(5/14) 6308803769321751 a001 514229/4106118243*192900153618^(5/12) 6308803769321751 a001 514229/4106118243*28143753123^(9/20) 6308803769321751 a001 514229/10749957122*17393796001^(1/2) 6308803769321751 a001 514229/10749957122*14662949395604^(7/18) 6308803769321751 a001 514229/10749957122*505019158607^(7/16) 6308803769321751 a001 514229/9062201101803*17393796001^(11/14) 6308803769321751 a001 514229/312119004989*17393796001^(9/14) 6308803769321751 a001 514229/28143753123*119218851371^(1/2) 6308803769321751 a001 514229/73681302247*817138163596^(1/2) 6308803769321751 a001 514229/192900153618*5600748293801^(1/2) 6308803769321751 a001 514229/505019158607*312119004989^(13/22) 6308803769321751 a001 514229/5600748293801*312119004989^(15/22) 6308803769321751 a001 514229/505019158607*3461452808002^(13/24) 6308803769321751 a001 514229/23725150497407*14662949395604^(9/14) 6308803769321751 a006 5^(1/2)*Fibonacci(69/2)/Lucas(29)/sqrt(5) 6308803769321751 a001 514229/9062201101803*505019158607^(11/16) 6308803769321751 a001 514229/312119004989*14662949395604^(1/2) 6308803769321751 a001 514229/312119004989*505019158607^(9/16) 6308803769321751 a001 514229/23725150497407*192900153618^(3/4) 6308803769321751 a001 514229/312119004989*192900153618^(7/12) 6308803769321751 a001 514229/119218851371*2139295485799^(1/2) 6308803769321751 a001 514229/505019158607*73681302247^(5/8) 6308803769321751 a001 514229/45537549124*312119004989^(1/2) 6308803769321751 a001 514229/45537549124*3461452808002^(11/24) 6308803769321751 a001 514229/505019158607*28143753123^(13/20) 6308803769321751 a001 514229/5600748293801*28143753123^(3/4) 6308803769321751 a001 514229/45537549124*28143753123^(11/20) 6308803769321751 a001 514229/17393796001*45537549124^(1/2) 6308803769321751 a001 514229/6643838879*6643838879^(1/2) 6308803769321751 a001 514229/1322157322203*4106118243^(3/4) 6308803769321751 a001 514229/45537549124*1568397607^(5/8) 6308803769321751 a001 514229/9062201101803*1568397607^(7/8) 6308803769321751 a001 514229/969323029*73681302247^(3/8) 6308803769321751 a001 514229/10749957122*599074578^(7/12) 6308803769321751 a001 514229/312119004989*599074578^(3/4) 6308803769321751 a001 514229/9062201101803*599074578^(11/12) 6308803769321751 a001 514229/370248451*2537720636^(7/18) 6308803769321751 a001 514229/370248451*17393796001^(5/14) 6308803769321751 a001 514229/370248451*312119004989^(7/22) 6308803769321751 a001 514229/370248451*14662949395604^(5/18) 6308803769321751 a001 514229/370248451*505019158607^(5/16) 6308803769321751 a001 514229/370248451*28143753123^(7/20) 6308803769321751 a001 514229/370248451*599074578^(5/12) 6308803769321751 a001 514229/4106118243*228826127^(9/16) 6308803769321751 a001 514229/45537549124*228826127^(11/16) 6308803769321751 a001 514229/505019158607*228826127^(13/16) 6308803769321751 a001 514229/370248451*228826127^(7/16) 6308803769321751 a001 514229/5600748293801*228826127^(15/16) 6308803769321751 a001 514229/141422324*9062201101803^(1/4) 6308803769321751 a001 514229/73681302247*87403803^(3/4) 6308803769321753 a001 514229/54018521*2537720636^(3/10) 6308803769321753 a001 514229/54018521*14662949395604^(3/14) 6308803769321753 a001 514229/54018521*192900153618^(1/4) 6308803769321753 a001 514229/228826127*33385282^(11/24) 6308803769321754 a001 514229/969323029*33385282^(13/24) 6308803769321754 a001 514229/4106118243*33385282^(5/8) 6308803769321755 a001 514229/17393796001*33385282^(17/24) 6308803769321755 a001 514229/54018521*33385282^(3/8) 6308803769321755 a001 514229/73681302247*33385282^(19/24) 6308803769321756 a001 514229/312119004989*33385282^(7/8) 6308803769321756 a001 514229/1322157322203*33385282^(23/24) 6308803769321764 a001 3524578/87403803*710647^(3/8) 6308803769321765 a001 514229/20633239*4106118243^(1/4) 6308803769321780 a001 514229/17393796001*12752043^(3/4) 6308803769321848 a001 3524578/1149851*7881196^(1/22) 6308803769321852 a001 514229/7881196*817138163596^(1/6) 6308803769321852 a001 514229/7881196*87403803^(1/4) 6308803769321852 a001 3524578/1149851*33385282^(1/24) 6308803769321943 a001 3524578/1149851*1860498^(1/20) 6308803769322350 a001 514229/12752043*1860498^(7/20) 6308803769322354 a001 1346269/33385282*710647^(3/8) 6308803769322424 a001 514229/3010349*7881196^(5/22) 6308803769322430 a001 196418/1568397607*439204^(5/6) 6308803769322430 a001 75025/64079*24476^(1/6) 6308803769322444 a001 514229/3010349*20633239^(3/14) 6308803769322445 a001 1346269/1149851*20633239^(1/10) 6308803769322447 a001 514229/3010349*2537720636^(1/6) 6308803769322447 a001 1346269/1149851*17393796001^(1/14) 6308803769322447 a001 514229/3010349*312119004989^(3/22) 6308803769322447 a001 1346269/1149851*14662949395604^(1/18) 6308803769322447 a001 1346269/1149851*505019158607^(1/16) 6308803769322447 a001 514229/3010349*28143753123^(3/20) 6308803769322447 a001 1346269/1149851*599074578^(1/12) 6308803769322447 a001 514229/3010349*228826127^(3/16) 6308803769322448 a001 514229/3010349*33385282^(5/24) 6308803769322504 a001 514229/33385282*1860498^(5/12) 6308803769322573 a001 514229/54018521*1860498^(9/20) 6308803769322753 a001 514229/228826127*1860498^(11/20) 6308803769322814 a001 514229/370248451*1860498^(7/12) 6308803769322902 a001 514229/3010349*1860498^(1/4) 6308803769322935 a001 514229/969323029*1860498^(13/20) 6308803769322964 a001 416020/299537289*710647^(5/8) 6308803769323118 a001 514229/4106118243*1860498^(3/4) 6308803769323300 a001 514229/17393796001*1860498^(17/20) 6308803769323421 a001 514229/45537549124*1860498^(11/12) 6308803769323472 a001 1346269/271443*39603^(1/44) 6308803769323482 a001 514229/73681302247*1860498^(19/20) 6308803769324008 a001 1346269/1149851*710647^(1/8) 6308803769324521 a001 311187/224056801*710647^(5/8) 6308803769324748 a001 5702887/4106118243*710647^(5/8) 6308803769324781 a001 7465176/5374978561*710647^(5/8) 6308803769324786 a001 39088169/28143753123*710647^(5/8) 6308803769324787 a001 14619165/10525900321*710647^(5/8) 6308803769324787 a001 133957148/96450076809*710647^(5/8) 6308803769324787 a001 701408733/505019158607*710647^(5/8) 6308803769324787 a001 1836311903/1322157322203*710647^(5/8) 6308803769324787 a001 14930208/10749853441*710647^(5/8) 6308803769324787 a001 12586269025/9062201101803*710647^(5/8) 6308803769324787 a001 32951280099/23725150497407*710647^(5/8) 6308803769324787 a001 10182505537/7331474697802*710647^(5/8) 6308803769324787 a001 7778742049/5600748293801*710647^(5/8) 6308803769324787 a001 2971215073/2139295485799*710647^(5/8) 6308803769324787 a001 567451585/408569081798*710647^(5/8) 6308803769324787 a001 433494437/312119004989*710647^(5/8) 6308803769324787 a001 165580141/119218851371*710647^(5/8) 6308803769324787 a001 31622993/22768774562*710647^(5/8) 6308803769324789 a001 24157817/17393796001*710647^(5/8) 6308803769324801 a001 9227465/6643838879*710647^(5/8) 6308803769324888 a001 1762289/1268860318*710647^(5/8) 6308803769325445 a001 208010/109801*167761^(1/10) 6308803769325483 a001 1346269/969323029*710647^(5/8) 6308803769326064 a001 196418/370248451*439204^(13/18) 6308803769326087 a001 832040/17393796001*710647^(7/8) 6308803769326396 a001 514229/12752043*710647^(3/8) 6308803769326505 a001 514229/1149851*7881196^(1/6) 6308803769326522 a001 514229/1149851*312119004989^(1/10) 6308803769326522 a001 514229/1149851*1568397607^(1/8) 6308803769327644 a001 2178309/45537549124*710647^(7/8) 6308803769327871 a001 5702887/119218851371*710647^(7/8) 6308803769327904 a001 14930352/312119004989*710647^(7/8) 6308803769327909 a001 4181/87403804*710647^(7/8) 6308803769327910 a001 102334155/2139295485799*710647^(7/8) 6308803769327910 a001 267914296/5600748293801*710647^(7/8) 6308803769327910 a001 701408733/14662949395604*710647^(7/8) 6308803769327910 a001 1134903170/23725150497407*710647^(7/8) 6308803769327910 a001 433494437/9062201101803*710647^(7/8) 6308803769327910 a001 165580141/3461452808002*710647^(7/8) 6308803769327910 a001 63245986/1322157322203*710647^(7/8) 6308803769327912 a001 24157817/505019158607*710647^(7/8) 6308803769327925 a001 9227465/192900153618*710647^(7/8) 6308803769328011 a001 3524578/73681302247*710647^(7/8) 6308803769328606 a001 1346269/28143753123*710647^(7/8) 6308803769329558 a001 514229/370248451*710647^(5/8) 6308803769329697 a001 196418/87403803*439204^(11/18) 6308803769330664 a001 317811/1149851*271443^(1/4) 6308803769331741 a001 317811/439204*439204^(1/6) 6308803769332681 a001 514229/10749957122*710647^(7/8) 6308803769333346 a001 196418/20633239*439204^(1/2) 6308803769336699 a001 196418/4870847*439204^(7/18) 6308803769337178 a001 317811/439204*7881196^(3/22) 6308803769337192 a001 196418/710647*141422324^(1/6) 6308803769337192 a001 317811/439204*2537720636^(1/10) 6308803769337192 a001 317811/439204*14662949395604^(1/14) 6308803769337192 a001 196418/710647*73681302247^(1/8) 6308803769337193 a001 317811/439204*33385282^(1/8) 6308803769337258 a001 832040/3010349*271443^(1/4) 6308803769337465 a001 317811/439204*1860498^(3/20) 6308803769338220 a001 2178309/7881196*271443^(1/4) 6308803769338361 a001 5702887/20633239*271443^(1/4) 6308803769338381 a001 14930352/54018521*271443^(1/4) 6308803769338384 a001 39088169/141422324*271443^(1/4) 6308803769338385 a001 102334155/370248451*271443^(1/4) 6308803769338385 a001 267914296/969323029*271443^(1/4) 6308803769338385 a001 701408733/2537720636*271443^(1/4) 6308803769338385 a001 1836311903/6643838879*271443^(1/4) 6308803769338385 a001 4807526976/17393796001*271443^(1/4) 6308803769338385 a001 12586269025/45537549124*271443^(1/4) 6308803769338385 a001 32951280099/119218851371*271443^(1/4) 6308803769338385 a001 86267571272/312119004989*271443^(1/4) 6308803769338385 a001 225851433717/817138163596*271443^(1/4) 6308803769338385 a001 1548008755920/5600748293801*271443^(1/4) 6308803769338385 a001 139583862445/505019158607*271443^(1/4) 6308803769338385 a001 53316291173/192900153618*271443^(1/4) 6308803769338385 a001 20365011074/73681302247*271443^(1/4) 6308803769338385 a001 7778742049/28143753123*271443^(1/4) 6308803769338385 a001 2971215073/10749957122*271443^(1/4) 6308803769338385 a001 1134903170/4106118243*271443^(1/4) 6308803769338385 a001 433494437/1568397607*271443^(1/4) 6308803769338385 a001 165580141/599074578*271443^(1/4) 6308803769338385 a001 63245986/228826127*271443^(1/4) 6308803769338386 a001 24157817/87403803*271443^(1/4) 6308803769338394 a001 9227465/33385282*271443^(1/4) 6308803769338447 a001 3524578/12752043*271443^(1/4) 6308803769338815 a001 1346269/4870847*271443^(1/4) 6308803769339395 a001 75025/599074578*167761^(9/10) 6308803769340900 a001 311187/101521*103682^(1/16) 6308803769341334 a001 514229/1860498*271443^(1/4) 6308803769345371 a001 196418/1149851*439204^(5/18) 6308803769347293 a001 98209/16692641*1149851^(1/2) 6308803769347860 a001 208010/109801*20633239^(1/14) 6308803769347861 a001 208010/109801*2537720636^(1/18) 6308803769347861 a001 98209/930249*45537549124^(1/6) 6308803769347861 a001 208010/109801*312119004989^(1/22) 6308803769347861 a001 208010/109801*28143753123^(1/20) 6308803769347861 a001 208010/109801*228826127^(1/16) 6308803769347871 a001 98209/930249*12752043^(1/4) 6308803769348013 a001 208010/109801*1860498^(1/12) 6308803769348563 a001 1346269/439204*439204^(1/18) 6308803769349338 a001 196418/54018521*3010349^(1/2) 6308803769349386 a001 196418/4870847*7881196^(7/22) 6308803769349414 a001 196418/4870847*20633239^(3/10) 6308803769349418 a001 196418/4870847*17393796001^(3/14) 6308803769349418 a001 196418/4870847*14662949395604^(1/6) 6308803769349418 a001 196418/4870847*599074578^(1/4) 6308803769349420 a001 196418/4870847*33385282^(7/24) 6308803769349587 a001 196418/119218851371*7881196^(21/22) 6308803769349596 a001 196418/28143753123*7881196^(19/22) 6308803769349599 a001 196418/17393796001*7881196^(5/6) 6308803769349606 a001 196418/6643838879*7881196^(17/22) 6308803769349615 a001 196418/1568397607*7881196^(15/22) 6308803769349624 a001 196418/370248451*7881196^(13/22) 6308803769349632 a001 196418/87403803*7881196^(1/2) 6308803769349640 a001 196418/12752043*20633239^(5/14) 6308803769349645 a001 196418/12752043*2537720636^(5/18) 6308803769349645 a001 196418/12752043*312119004989^(5/22) 6308803769349645 a001 196418/12752043*3461452808002^(5/24) 6308803769349645 a001 196418/12752043*28143753123^(1/4) 6308803769349645 a001 196418/12752043*228826127^(5/16) 6308803769349657 a001 196418/20633239*7881196^(9/22) 6308803769349670 a001 98209/96450076809*20633239^(13/14) 6308803769349671 a001 196418/119218851371*20633239^(9/10) 6308803769349672 a001 196418/17393796001*20633239^(11/14) 6308803769349674 a001 196418/4106118243*20633239^(7/10) 6308803769349674 a001 196418/1568397607*20633239^(9/14) 6308803769349677 a001 98209/70711162*20633239^(1/2) 6308803769349678 a001 98209/16692641*1322157322203^(1/4) 6308803769349683 a001 196418/228826127*54018521^(1/2) 6308803769349683 a001 196418/87403803*312119004989^(3/10) 6308803769349683 a001 196418/87403803*1568397607^(3/8) 6308803769349684 a001 98209/96450076809*141422324^(5/6) 6308803769349684 a001 196418/370248451*141422324^(1/2) 6308803769349684 a001 98209/299537289*370248451^(1/2) 6308803769349684 a001 196418/1568397607*2537720636^(1/2) 6308803769349684 a001 196418/1568397607*312119004989^(9/22) 6308803769349684 a001 196418/1568397607*14662949395604^(5/14) 6308803769349684 a001 196418/1568397607*192900153618^(5/12) 6308803769349684 a001 196418/1568397607*28143753123^(9/20) 6308803769349684 a001 196418/23725150497407*2537720636^(17/18) 6308803769349684 a001 196418/9062201101803*2537720636^(9/10) 6308803769349684 a001 196418/2139295485799*2537720636^(5/6) 6308803769349684 a001 98209/96450076809*2537720636^(13/18) 6308803769349684 a001 196418/119218851371*2537720636^(7/10) 6308803769349684 a001 196418/17393796001*2537720636^(11/18) 6308803769349684 a001 196418/4106118243*17393796001^(1/2) 6308803769349684 a001 196418/4106118243*14662949395604^(7/18) 6308803769349684 a001 196418/4106118243*505019158607^(7/16) 6308803769349684 a001 98209/5374978561*119218851371^(1/2) 6308803769349684 a001 98209/1730726404001*17393796001^(11/14) 6308803769349684 a001 196418/119218851371*17393796001^(9/14) 6308803769349684 a001 196418/28143753123*817138163596^(1/2) 6308803769349684 a001 196418/23725150497407*45537549124^(5/6) 6308803769349684 a001 196418/73681302247*5600748293801^(1/2) 6308803769349684 a001 98209/96450076809*312119004989^(13/22) 6308803769349684 a001 98209/96450076809*3461452808002^(13/24) 6308803769349684 a001 196418/23725150497407*312119004989^(17/22) 6308803769349684 a001 196418/2139295485799*312119004989^(15/22) 6308803769349684 a001 98209/1730726404001*14662949395604^(11/18) 6308803769349684 a001 196418/23725150497407*3461452808002^(17/24) 6308803769349684 a001 196418/2139295485799*3461452808002^(5/8) 6308803769349684 a001 98209/1730726404001*505019158607^(11/16) 6308803769349684 a001 196418/9062201101803*192900153618^(3/4) 6308803769349684 a001 196418/119218851371*14662949395604^(1/2) 6308803769349684 a001 196418/119218851371*505019158607^(9/16) 6308803769349684 a001 196418/119218851371*192900153618^(7/12) 6308803769349684 a001 98209/96450076809*73681302247^(5/8) 6308803769349684 a001 98209/22768774562*2139295485799^(1/2) 6308803769349684 a001 98209/96450076809*28143753123^(13/20) 6308803769349684 a001 196418/2139295485799*28143753123^(3/4) 6308803769349684 a001 196418/23725150497407*28143753123^(17/20) 6308803769349684 a001 196418/17393796001*312119004989^(1/2) 6308803769349684 a001 196418/17393796001*3461452808002^(11/24) 6308803769349684 a001 196418/17393796001*28143753123^(11/20) 6308803769349684 a001 196418/6643838879*45537549124^(1/2) 6308803769349684 a001 196418/505019158607*4106118243^(3/4) 6308803769349684 a001 98209/1268860318*6643838879^(1/2) 6308803769349684 a001 196418/17393796001*1568397607^(5/8) 6308803769349684 a001 98209/1730726404001*1568397607^(7/8) 6308803769349684 a001 196418/969323029*969323029^(1/2) 6308803769349684 a001 196418/4106118243*599074578^(7/12) 6308803769349684 a001 196418/119218851371*599074578^(3/4) 6308803769349684 a001 98209/1730726404001*599074578^(11/12) 6308803769349684 a001 196418/370248451*73681302247^(3/8) 6308803769349684 a001 196418/1568397607*228826127^(9/16) 6308803769349684 a001 196418/17393796001*228826127^(11/16) 6308803769349684 a001 98209/96450076809*228826127^(13/16) 6308803769349684 a001 196418/2139295485799*228826127^(15/16) 6308803769349684 a001 98209/70711162*2537720636^(7/18) 6308803769349684 a001 98209/70711162*17393796001^(5/14) 6308803769349684 a001 98209/70711162*312119004989^(7/22) 6308803769349684 a001 98209/70711162*14662949395604^(5/18) 6308803769349684 a001 98209/70711162*505019158607^(5/16) 6308803769349684 a001 98209/70711162*28143753123^(7/20) 6308803769349684 a001 98209/70711162*599074578^(5/12) 6308803769349684 a001 98209/70711162*228826127^(7/16) 6308803769349685 a001 196418/28143753123*87403803^(3/4) 6308803769349686 a001 196418/87403803*33385282^(11/24) 6308803769349686 a001 196418/54018521*9062201101803^(1/4) 6308803769349687 a001 196418/370248451*33385282^(13/24) 6308803769349688 a001 196418/1568397607*33385282^(5/8) 6308803769349688 a001 196418/6643838879*33385282^(17/24) 6308803769349689 a001 196418/28143753123*33385282^(19/24) 6308803769349689 a001 196418/119218851371*33385282^(7/8) 6308803769349689 a001 196418/505019158607*33385282^(23/24) 6308803769349699 a001 196418/20633239*2537720636^(3/10) 6308803769349699 a001 196418/20633239*14662949395604^(3/14) 6308803769349699 a001 196418/20633239*192900153618^(1/4) 6308803769349701 a001 196418/20633239*33385282^(3/8) 6308803769349713 a001 196418/6643838879*12752043^(3/4) 6308803769349786 a001 98209/3940598*4106118243^(1/4) 6308803769350056 a001 196418/4870847*1860498^(7/20) 6308803769350376 a001 1346269/439204*7881196^(1/22) 6308803769350380 a001 196418/3010349*817138163596^(1/6) 6308803769350380 a001 196418/3010349*87403803^(1/4) 6308803769350380 a001 1346269/439204*33385282^(1/24) 6308803769350405 a001 196418/12752043*1860498^(5/12) 6308803769350471 a001 1346269/439204*1860498^(1/20) 6308803769350519 a001 196418/20633239*1860498^(9/20) 6308803769350686 a001 196418/87403803*1860498^(11/20) 6308803769350748 a001 98209/70711162*1860498^(7/12) 6308803769350869 a001 196418/370248451*1860498^(13/20) 6308803769351051 a001 196418/1568397607*1860498^(3/4) 6308803769351233 a001 196418/6643838879*1860498^(17/20) 6308803769351355 a001 196418/17393796001*1860498^(11/12) 6308803769351415 a001 196418/28143753123*1860498^(19/20) 6308803769351797 a001 5702887/1860498*103682^(1/16) 6308803769353387 a001 14930352/4870847*103682^(1/16) 6308803769353619 a001 39088169/12752043*103682^(1/16) 6308803769353652 a001 14619165/4769326*103682^(1/16) 6308803769353657 a001 267914296/87403803*103682^(1/16) 6308803769353658 a001 701408733/228826127*103682^(1/16) 6308803769353658 a001 1836311903/599074578*103682^(1/16) 6308803769353658 a001 686789568/224056801*103682^(1/16) 6308803769353658 a001 12586269025/4106118243*103682^(1/16) 6308803769353658 a001 32951280099/10749957122*103682^(1/16) 6308803769353658 a001 86267571272/28143753123*103682^(1/16) 6308803769353658 a001 32264490531/10525900321*103682^(1/16) 6308803769353658 a001 591286729879/192900153618*103682^(1/16) 6308803769353658 a001 1548008755920/505019158607*103682^(1/16) 6308803769353658 a001 1515744265389/494493258286*103682^(1/16) 6308803769353658 a001 2504730781961/817138163596*103682^(1/16) 6308803769353658 a001 956722026041/312119004989*103682^(1/16) 6308803769353658 a001 365435296162/119218851371*103682^(1/16) 6308803769353658 a001 139583862445/45537549124*103682^(1/16) 6308803769353658 a001 53316291173/17393796001*103682^(1/16) 6308803769353658 a001 20365011074/6643838879*103682^(1/16) 6308803769353658 a001 7778742049/2537720636*103682^(1/16) 6308803769353658 a001 2971215073/969323029*103682^(1/16) 6308803769353658 a001 1134903170/370248451*103682^(1/16) 6308803769353659 a001 433494437/141422324*103682^(1/16) 6308803769353660 a001 165580141/54018521*103682^(1/16) 6308803769353673 a001 63245986/20633239*103682^(1/16) 6308803769353762 a001 24157817/7881196*103682^(1/16) 6308803769354103 a001 196418/4870847*710647^(3/8) 6308803769354369 a001 9227465/3010349*103682^(1/16) 6308803769354433 a001 196418/1149851*7881196^(5/22) 6308803769354452 a001 196418/1149851*20633239^(3/14) 6308803769354454 a001 514229/439204*20633239^(1/10) 6308803769354456 a001 196418/1149851*2537720636^(1/6) 6308803769354456 a001 514229/439204*17393796001^(1/14) 6308803769354456 a001 196418/1149851*312119004989^(3/22) 6308803769354456 a001 514229/439204*14662949395604^(1/18) 6308803769354456 a001 514229/439204*505019158607^(1/16) 6308803769354456 a001 196418/1149851*28143753123^(3/20) 6308803769354456 a001 514229/439204*599074578^(1/12) 6308803769354456 a001 196418/1149851*228826127^(3/16) 6308803769354457 a001 196418/1149851*33385282^(5/24) 6308803769354911 a001 196418/1149851*1860498^(1/4) 6308803769356017 a001 514229/439204*710647^(1/8) 6308803769357492 a001 98209/70711162*710647^(5/8) 6308803769358531 a001 3524578/1149851*103682^(1/16) 6308803769358598 a001 196418/710647*271443^(1/4) 6308803769360615 a001 196418/4106118243*710647^(7/8) 6308803769368704 a001 377/710646*271443^(3/4) 6308803769374099 a001 196418/271443*103682^(3/16) 6308803769379374 a001 832040/1568397607*271443^(3/4) 6308803769380930 a001 726103/1368706081*271443^(3/4) 6308803769381157 a001 5702887/10749957122*271443^(3/4) 6308803769381190 a001 4976784/9381251041*271443^(3/4) 6308803769381195 a001 39088169/73681302247*271443^(3/4) 6308803769381196 a001 34111385/64300051206*271443^(3/4) 6308803769381196 a001 267914296/505019158607*271443^(3/4) 6308803769381196 a001 233802911/440719107401*271443^(3/4) 6308803769381196 a001 1836311903/3461452808002*271443^(3/4) 6308803769381196 a001 1602508992/3020733700601*271443^(3/4) 6308803769381196 a001 12586269025/23725150497407*271443^(3/4) 6308803769381196 a001 7778742049/14662949395604*271443^(3/4) 6308803769381196 a001 2971215073/5600748293801*271443^(3/4) 6308803769381196 a001 1134903170/2139295485799*271443^(3/4) 6308803769381196 a001 433494437/817138163596*271443^(3/4) 6308803769381196 a001 165580141/312119004989*271443^(3/4) 6308803769381196 a001 63245986/119218851371*271443^(3/4) 6308803769381198 a001 24157817/45537549124*271443^(3/4) 6308803769381211 a001 9227465/17393796001*271443^(3/4) 6308803769381298 a001 3524578/6643838879*271443^(3/4) 6308803769381892 a001 1346269/2537720636*271443^(3/4) 6308803769382372 a001 98209/219602*7881196^(1/6) 6308803769382389 a001 98209/219602*312119004989^(1/10) 6308803769382389 a001 98209/219602*1568397607^(1/8) 6308803769384230 a001 75025/54018521*167761^(7/10) 6308803769385968 a001 514229/969323029*271443^(3/4) 6308803769387059 a001 1346269/439204*103682^(1/16) 6308803769402260 a001 121393/710647*103682^(5/16) 6308803769413901 a001 196418/370248451*271443^(3/4) 6308803769419296 a001 514229/710647*103682^(3/16) 6308803769424140 a001 514229/103682*15127^(1/40) 6308803769425890 a001 1346269/1860498*103682^(3/16) 6308803769426852 a001 3524578/4870847*103682^(3/16) 6308803769426993 a001 9227465/12752043*103682^(3/16) 6308803769427013 a001 24157817/33385282*103682^(3/16) 6308803769427016 a001 63245986/87403803*103682^(3/16) 6308803769427017 a001 165580141/228826127*103682^(3/16) 6308803769427017 a001 433494437/599074578*103682^(3/16) 6308803769427017 a001 1134903170/1568397607*103682^(3/16) 6308803769427017 a001 2971215073/4106118243*103682^(3/16) 6308803769427017 a001 7778742049/10749957122*103682^(3/16) 6308803769427017 a001 20365011074/28143753123*103682^(3/16) 6308803769427017 a001 53316291173/73681302247*103682^(3/16) 6308803769427017 a001 139583862445/192900153618*103682^(3/16) 6308803769427017 a001 365435296162/505019158607*103682^(3/16) 6308803769427017 a001 10610209857723/14662949395604*103682^(3/16) 6308803769427017 a001 591286729879/817138163596*103682^(3/16) 6308803769427017 a001 225851433717/312119004989*103682^(3/16) 6308803769427017 a001 86267571272/119218851371*103682^(3/16) 6308803769427017 a001 32951280099/45537549124*103682^(3/16) 6308803769427017 a001 12586269025/17393796001*103682^(3/16) 6308803769427017 a001 4807526976/6643838879*103682^(3/16) 6308803769427017 a001 1836311903/2537720636*103682^(3/16) 6308803769427017 a001 701408733/969323029*103682^(3/16) 6308803769427017 a001 267914296/370248451*103682^(3/16) 6308803769427017 a001 102334155/141422324*103682^(3/16) 6308803769427018 a001 39088169/54018521*103682^(3/16) 6308803769427026 a001 14930352/20633239*103682^(3/16) 6308803769427079 a001 5702887/7881196*103682^(3/16) 6308803769427447 a001 2178309/3010349*103682^(3/16) 6308803769428795 a001 75025/4870847*167761^(1/2) 6308803769429966 a001 832040/1149851*103682^(3/16) 6308803769440837 a001 2178309/439204*39603^(1/44) 6308803769447230 a001 317811/439204*103682^(3/16) 6308803769450069 a001 121393/167761*439204^(1/6) 6308803769455506 a001 121393/167761*7881196^(3/22) 6308803769455520 a001 75025/271443*141422324^(1/6) 6308803769455520 a001 121393/167761*2537720636^(1/10) 6308803769455520 a001 75025/271443*73681302247^(1/8) 6308803769455520 a001 121393/167761*14662949395604^(1/14) 6308803769455520 a001 121393/167761*192900153618^(1/12) 6308803769455520 a001 121393/167761*33385282^(1/8) 6308803769455793 a001 121393/167761*1860498^(3/20) 6308803769476925 a001 75025/271443*271443^(1/4) 6308803769484608 a001 5473/12238*9349^(11/38) 6308803769486060 a001 105937/620166*103682^(5/16) 6308803769488807 a001 121393/3010349*103682^(7/16) 6308803769498287 a001 832040/4870847*103682^(5/16) 6308803769500070 a001 726103/4250681*103682^(5/16) 6308803769500331 a001 5702887/33385282*103682^(5/16) 6308803769500369 a001 4976784/29134601*103682^(5/16) 6308803769500374 a001 39088169/228826127*103682^(5/16) 6308803769500375 a001 34111385/199691526*103682^(5/16) 6308803769500375 a001 267914296/1568397607*103682^(5/16) 6308803769500375 a001 233802911/1368706081*103682^(5/16) 6308803769500375 a001 1836311903/10749957122*103682^(5/16) 6308803769500375 a001 1602508992/9381251041*103682^(5/16) 6308803769500375 a001 12586269025/73681302247*103682^(5/16) 6308803769500375 a001 10983760033/64300051206*103682^(5/16) 6308803769500375 a001 86267571272/505019158607*103682^(5/16) 6308803769500375 a001 75283811239/440719107401*103682^(5/16) 6308803769500375 a001 2504730781961/14662949395604*103682^(5/16) 6308803769500375 a001 139583862445/817138163596*103682^(5/16) 6308803769500375 a001 53316291173/312119004989*103682^(5/16) 6308803769500375 a001 20365011074/119218851371*103682^(5/16) 6308803769500375 a001 7778742049/45537549124*103682^(5/16) 6308803769500375 a001 2971215073/17393796001*103682^(5/16) 6308803769500375 a001 1134903170/6643838879*103682^(5/16) 6308803769500375 a001 433494437/2537720636*103682^(5/16) 6308803769500375 a001 165580141/969323029*103682^(5/16) 6308803769500376 a001 63245986/370248451*103682^(5/16) 6308803769500378 a001 24157817/141422324*103682^(5/16) 6308803769500392 a001 9227465/54018521*103682^(5/16) 6308803769500492 a001 3524578/20633239*103682^(5/16) 6308803769501173 a001 1346269/7881196*103682^(5/16) 6308803769503792 a001 832040/271443*39603^(3/44) 6308803769505843 a001 514229/3010349*103682^(5/16) 6308803769506234 a001 317811/167761*167761^(1/10) 6308803769506599 a001 75025/439204*167761^(3/10) 6308803769510254 a001 75025/2537720636*439204^(17/18) 6308803769513888 a001 75025/599074578*439204^(5/6) 6308803769514116 a001 121393/64079*24476^(5/42) 6308803769517523 a001 75025/141422324*439204^(13/18) 6308803769521150 a001 75025/33385282*439204^(11/18) 6308803769524892 a001 75025/7881196*439204^(1/2) 6308803769526601 a001 75025/1860498*439204^(7/18) 6308803769528649 a001 317811/167761*20633239^(1/14) 6308803769528650 a001 317811/167761*2537720636^(1/18) 6308803769528650 a001 75025/710647*45537549124^(1/6) 6308803769528650 a001 317811/167761*312119004989^(1/22) 6308803769528650 a001 317811/167761*28143753123^(1/20) 6308803769528650 a001 317811/167761*228826127^(1/16) 6308803769528660 a001 75025/710647*12752043^(1/4) 6308803769528802 a001 317811/167761*1860498^(1/12) 6308803769528903 a001 28657/15127*5778^(5/36) 6308803769532461 a001 15456/13201*15127^(7/40) 6308803769537852 a001 196418/1149851*103682^(5/16) 6308803769538718 a001 75025/12752043*1149851^(1/2) 6308803769539288 a001 75025/1860498*7881196^(7/22) 6308803769539316 a001 75025/1860498*20633239^(3/10) 6308803769539320 a001 75025/1860498*17393796001^(3/14) 6308803769539320 a001 75025/1860498*14662949395604^(1/6) 6308803769539320 a001 75025/1860498*599074578^(1/4) 6308803769539322 a001 75025/1860498*33385282^(7/24) 6308803769539958 a001 75025/1860498*1860498^(7/20) 6308803769540016 a006 5^(1/2)*fibonacci(61/2)/Lucas(25)/sqrt(5) 6308803769540809 a001 75025/20633239*3010349^(1/2) 6308803769540871 a001 75025/4870847*20633239^(5/14) 6308803769540877 a001 75025/4870847*2537720636^(5/18) 6308803769540877 a001 75025/4870847*312119004989^(5/22) 6308803769540877 a001 75025/4870847*3461452808002^(5/24) 6308803769540877 a001 75025/4870847*28143753123^(1/4) 6308803769540877 a001 75025/4870847*228826127^(5/16) 6308803769541046 a001 75025/45537549124*7881196^(21/22) 6308803769541055 a001 75025/10749957122*7881196^(19/22) 6308803769541058 a001 75025/6643838879*7881196^(5/6) 6308803769541064 a001 75025/2537720636*7881196^(17/22) 6308803769541073 a001 75025/599074578*7881196^(15/22) 6308803769541083 a001 75025/141422324*7881196^(13/22) 6308803769541086 a001 75025/33385282*7881196^(1/2) 6308803769541104 a001 75025/12752043*1322157322203^(1/4) 6308803769541129 a001 75025/73681302247*20633239^(13/14) 6308803769541129 a001 75025/45537549124*20633239^(9/10) 6308803769541131 a001 75025/6643838879*20633239^(11/14) 6308803769541132 a001 75025/1568397607*20633239^(7/10) 6308803769541133 a001 75025/599074578*20633239^(9/14) 6308803769541137 a001 75025/33385282*312119004989^(3/10) 6308803769541137 a001 75025/33385282*1568397607^(3/8) 6308803769541137 a001 75025/54018521*20633239^(1/2) 6308803769541139 a001 75025/33385282*33385282^(11/24) 6308803769541141 a001 75025/87403803*54018521^(1/2) 6308803769541142 a001 75025/73681302247*141422324^(5/6) 6308803769541142 a001 75025/228826127*370248451^(1/2) 6308803769541143 a001 75025/599074578*2537720636^(1/2) 6308803769541143 a001 75025/599074578*312119004989^(9/22) 6308803769541143 a001 75025/599074578*14662949395604^(5/14) 6308803769541143 a001 75025/599074578*192900153618^(5/12) 6308803769541143 a001 75025/599074578*28143753123^(9/20) 6308803769541143 a001 75025/1568397607*17393796001^(1/2) 6308803769541143 a001 75025/1568397607*14662949395604^(7/18) 6308803769541143 a001 75025/1568397607*505019158607^(7/16) 6308803769541143 a001 75025/9062201101803*2537720636^(17/18) 6308803769541143 a001 75025/3461452808002*2537720636^(9/10) 6308803769541143 a001 75025/817138163596*2537720636^(5/6) 6308803769541143 a001 75025/73681302247*2537720636^(13/18) 6308803769541143 a001 75025/45537549124*2537720636^(7/10) 6308803769541143 a001 75025/6643838879*2537720636^(11/18) 6308803769541143 a001 75025/4106118243*119218851371^(1/2) 6308803769541143 a001 75025/10749957122*817138163596^(1/2) 6308803769541143 a001 75025/1322157322203*17393796001^(11/14) 6308803769541143 a001 75025/45537549124*17393796001^(9/14) 6308803769541143 a001 75025/28143753123*5600748293801^(1/2) 6308803769541143 a001 75025/9062201101803*45537549124^(5/6) 6308803769541143 a001 75025/73681302247*312119004989^(13/22) 6308803769541143 a001 75025/73681302247*3461452808002^(13/24) 6308803769541143 a001 75025/73681302247*73681302247^(5/8) 6308803769541143 a001 75025/9062201101803*312119004989^(17/22) 6308803769541143 a001 75025/1322157322203*14662949395604^(11/18) 6308803769541143 a001 75025/3461452808002*14662949395604^(9/14) 6308803769541143 a001 75025/14662949395604*1322157322203^(3/4) 6308803769541143 a001 75025/817138163596*3461452808002^(5/8) 6308803769541143 a001 75025/1322157322203*505019158607^(11/16) 6308803769541143 a001 75025/3461452808002*192900153618^(3/4) 6308803769541143 a001 75025/45537549124*14662949395604^(1/2) 6308803769541143 a001 75025/45537549124*505019158607^(9/16) 6308803769541143 a001 75025/45537549124*192900153618^(7/12) 6308803769541143 a001 75025/73681302247*28143753123^(13/20) 6308803769541143 a001 75025/817138163596*28143753123^(3/4) 6308803769541143 a001 75025/9062201101803*28143753123^(17/20) 6308803769541143 a006 5^(1/2)*Fibonacci(61/2)/Lucas(25)/sqrt(5) 6308803769541143 a001 75025/17393796001*2139295485799^(1/2) 6308803769541143 a001 75025/6643838879*312119004989^(1/2) 6308803769541143 a001 75025/6643838879*3461452808002^(11/24) 6308803769541143 a001 75025/6643838879*28143753123^(11/20) 6308803769541143 a001 75025/192900153618*4106118243^(3/4) 6308803769541143 a001 75025/2537720636*45537549124^(1/2) 6308803769541143 a001 75025/6643838879*1568397607^(5/8) 6308803769541143 a001 75025/1322157322203*1568397607^(7/8) 6308803769541143 a001 75025/969323029*6643838879^(1/2) 6308803769541143 a001 75025/1568397607*599074578^(7/12) 6308803769541143 a001 75025/45537549124*599074578^(3/4) 6308803769541143 a001 75025/1322157322203*599074578^(11/12) 6308803769541143 a001 75025/370248451*969323029^(1/2) 6308803769541143 a001 75025/599074578*228826127^(9/16) 6308803769541143 a001 75025/6643838879*228826127^(11/16) 6308803769541143 a001 75025/73681302247*228826127^(13/16) 6308803769541143 a001 75025/817138163596*228826127^(15/16) 6308803769541143 a001 75025/141422324*141422324^(1/2) 6308803769541143 a001 75025/141422324*73681302247^(3/8) 6308803769541143 a001 75025/10749957122*87403803^(3/4) 6308803769541145 a001 75025/54018521*2537720636^(7/18) 6308803769541145 a001 75025/54018521*17393796001^(5/14) 6308803769541145 a001 75025/54018521*312119004989^(7/22) 6308803769541145 a001 75025/54018521*14662949395604^(5/18) 6308803769541145 a001 75025/54018521*505019158607^(5/16) 6308803769541145 a001 75025/54018521*28143753123^(7/20) 6308803769541145 a001 75025/54018521*599074578^(5/12) 6308803769541145 a001 75025/54018521*228826127^(7/16) 6308803769541146 a001 75025/141422324*33385282^(13/24) 6308803769541146 a001 75025/599074578*33385282^(5/8) 6308803769541147 a001 75025/2537720636*33385282^(17/24) 6308803769541147 a001 75025/10749957122*33385282^(19/24) 6308803769541148 a001 75025/45537549124*33385282^(7/8) 6308803769541148 a001 75025/192900153618*33385282^(23/24) 6308803769541157 a001 75025/20633239*9062201101803^(1/4) 6308803769541172 a001 75025/2537720636*12752043^(3/4) 6308803769541203 a001 75025/7881196*7881196^(9/22) 6308803769541244 a001 75025/7881196*2537720636^(3/10) 6308803769541244 a001 75025/7881196*14662949395604^(3/14) 6308803769541244 a001 75025/7881196*192900153618^(1/4) 6308803769541246 a001 75025/7881196*33385282^(3/8) 6308803769541636 a001 75025/4870847*1860498^(5/12) 6308803769541839 a001 75025/3010349*4106118243^(1/4) 6308803769542064 a001 75025/7881196*1860498^(9/20) 6308803769542139 a001 75025/33385282*1860498^(11/20) 6308803769542208 a001 75025/54018521*1860498^(7/12) 6308803769542328 a001 75025/141422324*1860498^(13/20) 6308803769542509 a001 75025/599074578*1860498^(3/4) 6308803769542692 a001 75025/2537720636*1860498^(17/20) 6308803769542813 a001 75025/6643838879*1860498^(11/12) 6308803769542874 a001 75025/10749957122*1860498^(19/20) 6308803769544005 a001 75025/1860498*710647^(3/8) 6308803769544097 a001 514229/167761*439204^(1/18) 6308803769545910 a001 514229/167761*7881196^(1/22) 6308803769545914 a001 75025/1149851*817138163596^(1/6) 6308803769545914 a001 75025/1149851*87403803^(1/4) 6308803769545914 a001 514229/167761*33385282^(1/24) 6308803769546005 a001 514229/167761*1860498^(1/20) 6308803769548952 a001 75025/54018521*710647^(5/8) 6308803769552073 a001 75025/1568397607*710647^(7/8) 6308803769561343 a001 317811/7881196*103682^(7/16) 6308803769561430 a001 121393/12752043*103682^(9/16) 6308803769564763 a001 75025/439204*439204^(5/18) 6308803769565557 a001 121393/167761*103682^(3/16) 6308803769571926 a001 75640/1875749*103682^(7/16) 6308803769573470 a001 2178309/54018521*103682^(7/16) 6308803769573695 a001 5702887/141422324*103682^(7/16) 6308803769573728 a001 14930352/370248451*103682^(7/16) 6308803769573733 a001 39088169/969323029*103682^(7/16) 6308803769573734 a001 9303105/230701876*103682^(7/16) 6308803769573734 a001 267914296/6643838879*103682^(7/16) 6308803769573734 a001 701408733/17393796001*103682^(7/16) 6308803769573734 a001 1836311903/45537549124*103682^(7/16) 6308803769573734 a001 4807526976/119218851371*103682^(7/16) 6308803769573734 a001 1144206275/28374454999*103682^(7/16) 6308803769573734 a001 32951280099/817138163596*103682^(7/16) 6308803769573734 a001 86267571272/2139295485799*103682^(7/16) 6308803769573734 a001 225851433717/5600748293801*103682^(7/16) 6308803769573734 a001 591286729879/14662949395604*103682^(7/16) 6308803769573734 a001 365435296162/9062201101803*103682^(7/16) 6308803769573734 a001 139583862445/3461452808002*103682^(7/16) 6308803769573734 a001 53316291173/1322157322203*103682^(7/16) 6308803769573734 a001 20365011074/505019158607*103682^(7/16) 6308803769573734 a001 7778742049/192900153618*103682^(7/16) 6308803769573734 a001 2971215073/73681302247*103682^(7/16) 6308803769573734 a001 1134903170/28143753123*103682^(7/16) 6308803769573734 a001 433494437/10749957122*103682^(7/16) 6308803769573734 a001 165580141/4106118243*103682^(7/16) 6308803769573734 a001 63245986/1568397607*103682^(7/16) 6308803769573736 a001 24157817/599074578*103682^(7/16) 6308803769573748 a001 9227465/228826127*103682^(7/16) 6308803769573824 a001 75025/439204*7881196^(5/22) 6308803769573834 a001 3524578/87403803*103682^(7/16) 6308803769573844 a001 75025/439204*20633239^(3/14) 6308803769573846 a001 196418/167761*20633239^(1/10) 6308803769573848 a001 75025/439204*2537720636^(1/6) 6308803769573848 a001 75025/439204*312119004989^(3/22) 6308803769573848 a001 75025/439204*28143753123^(3/20) 6308803769573848 a001 196418/167761*17393796001^(1/14) 6308803769573848 a001 196418/167761*14662949395604^(1/18) 6308803769573848 a001 196418/167761*505019158607^(1/16) 6308803769573848 a001 196418/167761*599074578^(1/12) 6308803769573848 a001 75025/439204*228826127^(3/16) 6308803769573849 a001 75025/439204*33385282^(5/24) 6308803769574303 a001 75025/439204*1860498^(1/4) 6308803769574424 a001 1346269/33385282*103682^(7/16) 6308803769575409 a001 196418/167761*710647^(1/8) 6308803769578466 a001 514229/12752043*103682^(7/16) 6308803769578479 a001 311187/101521*39603^(3/44) 6308803769582593 a001 514229/167761*103682^(1/16) 6308803769605360 a001 75025/141422324*271443^(3/4) 6308803769606173 a001 196418/4870847*103682^(7/16) 6308803769624638 a001 1346269/439204*39603^(3/44) 6308803769630739 a001 75640/15251*39603^(1/44) 6308803769631762 a001 28657/64079*24476^(11/42) 6308803769634594 a001 317811/33385282*103682^(9/16) 6308803769634830 a001 121393/54018521*103682^(11/16) 6308803769645269 a001 832040/87403803*103682^(9/16) 6308803769646826 a001 46347/4868641*103682^(9/16) 6308803769647053 a001 5702887/599074578*103682^(9/16) 6308803769647086 a001 14930352/1568397607*103682^(9/16) 6308803769647091 a001 39088169/4106118243*103682^(9/16) 6308803769647092 a001 102334155/10749957122*103682^(9/16) 6308803769647092 a001 267914296/28143753123*103682^(9/16) 6308803769647092 a001 701408733/73681302247*103682^(9/16) 6308803769647092 a001 1836311903/192900153618*103682^(9/16) 6308803769647092 a001 102287808/10745088481*103682^(9/16) 6308803769647092 a001 12586269025/1322157322203*103682^(9/16) 6308803769647092 a001 32951280099/3461452808002*103682^(9/16) 6308803769647092 a001 86267571272/9062201101803*103682^(9/16) 6308803769647092 a001 225851433717/23725150497407*103682^(9/16) 6308803769647092 a001 139583862445/14662949395604*103682^(9/16) 6308803769647092 a001 53316291173/5600748293801*103682^(9/16) 6308803769647092 a001 20365011074/2139295485799*103682^(9/16) 6308803769647092 a001 7778742049/817138163596*103682^(9/16) 6308803769647092 a001 2971215073/312119004989*103682^(9/16) 6308803769647092 a001 1134903170/119218851371*103682^(9/16) 6308803769647092 a001 433494437/45537549124*103682^(9/16) 6308803769647092 a001 165580141/17393796001*103682^(9/16) 6308803769647092 a001 63245986/6643838879*103682^(9/16) 6308803769647094 a001 24157817/2537720636*103682^(9/16) 6308803769647107 a001 9227465/969323029*103682^(9/16) 6308803769647194 a001 3524578/370248451*103682^(9/16) 6308803769647789 a001 1346269/141422324*103682^(9/16) 6308803769651866 a001 514229/54018521*103682^(9/16) 6308803769679812 a001 196418/20633239*103682^(9/16) 6308803769693225 a001 514229/271443*39603^(5/44) 6308803769707959 a001 317811/141422324*103682^(11/16) 6308803769708186 a001 121393/228826127*103682^(13/16) 6308803769718628 a001 832040/370248451*103682^(11/16) 6308803769720185 a001 2178309/969323029*103682^(11/16) 6308803769720412 a001 5702887/2537720636*103682^(11/16) 6308803769720445 a001 14930352/6643838879*103682^(11/16) 6308803769720450 a001 39088169/17393796001*103682^(11/16) 6308803769720450 a001 102334155/45537549124*103682^(11/16) 6308803769720451 a001 267914296/119218851371*103682^(11/16) 6308803769720451 a001 3524667/1568437211*103682^(11/16) 6308803769720451 a001 1836311903/817138163596*103682^(11/16) 6308803769720451 a001 4807526976/2139295485799*103682^(11/16) 6308803769720451 a001 12586269025/5600748293801*103682^(11/16) 6308803769720451 a001 32951280099/14662949395604*103682^(11/16) 6308803769720451 a001 53316291173/23725150497407*103682^(11/16) 6308803769720451 a001 20365011074/9062201101803*103682^(11/16) 6308803769720451 a001 7778742049/3461452808002*103682^(11/16) 6308803769720451 a001 2971215073/1322157322203*103682^(11/16) 6308803769720451 a001 1134903170/505019158607*103682^(11/16) 6308803769720451 a001 433494437/192900153618*103682^(11/16) 6308803769720451 a001 165580141/73681302247*103682^(11/16) 6308803769720451 a001 63245986/28143753123*103682^(11/16) 6308803769720453 a001 24157817/10749957122*103682^(11/16) 6308803769720465 a001 9227465/4106118243*103682^(11/16) 6308803769720552 a001 3524578/1568397607*103682^(11/16) 6308803769721147 a001 1346269/599074578*103682^(11/16) 6308803769725222 a001 514229/228826127*103682^(11/16) 6308803769753155 a001 196418/87403803*103682^(11/16) 6308803769757244 a001 75025/439204*103682^(5/16) 6308803769762280 a001 1346269/710647*39603^(5/44) 6308803769763662 a001 11592/6119*9349^(5/38) 6308803769765289 a001 75025/167761*7881196^(1/6) 6308803769765306 a001 75025/167761*312119004989^(1/10) 6308803769765306 a001 75025/167761*1568397607^(1/8) 6308803769777049 a001 75025/103682*39603^(9/44) 6308803769778581 a001 2178309/1149851*39603^(5/44) 6308803769781317 a001 377/710646*103682^(13/16) 6308803769781545 a001 121393/969323029*103682^(15/16) 6308803769791987 a001 832040/1568397607*103682^(13/16) 6308803769793543 a001 726103/1368706081*103682^(13/16) 6308803769793770 a001 5702887/10749957122*103682^(13/16) 6308803769793803 a001 4976784/9381251041*103682^(13/16) 6308803769793808 a001 39088169/73681302247*103682^(13/16) 6308803769793809 a001 34111385/64300051206*103682^(13/16) 6308803769793809 a001 267914296/505019158607*103682^(13/16) 6308803769793809 a001 233802911/440719107401*103682^(13/16) 6308803769793809 a001 1836311903/3461452808002*103682^(13/16) 6308803769793809 a001 1602508992/3020733700601*103682^(13/16) 6308803769793809 a001 12586269025/23725150497407*103682^(13/16) 6308803769793809 a001 7778742049/14662949395604*103682^(13/16) 6308803769793809 a001 2971215073/5600748293801*103682^(13/16) 6308803769793809 a001 1134903170/2139295485799*103682^(13/16) 6308803769793809 a001 433494437/817138163596*103682^(13/16) 6308803769793809 a001 165580141/312119004989*103682^(13/16) 6308803769793809 a001 63245986/119218851371*103682^(13/16) 6308803769793811 a001 24157817/45537549124*103682^(13/16) 6308803769793824 a001 9227465/17393796001*103682^(13/16) 6308803769793911 a001 3524578/6643838879*103682^(13/16) 6308803769794505 a001 1346269/2537720636*103682^(13/16) 6308803769796075 a001 75025/1860498*103682^(7/16) 6308803769798581 a001 514229/969323029*103682^(13/16) 6308803769804958 a001 208010/109801*39603^(5/44) 6308803769820172 a001 514229/167761*39603^(3/44) 6308803769826514 a001 196418/370248451*103682^(13/16) 6308803769854675 a001 317811/2537720636*103682^(15/16) 6308803769858799 a001 105937/90481*39603^(7/44) 6308803769865345 a001 832040/6643838879*103682^(15/16) 6308803769866902 a001 2178309/17393796001*103682^(15/16) 6308803769867129 a001 1597/12752044*103682^(15/16) 6308803769867162 a001 14930352/119218851371*103682^(15/16) 6308803769867167 a001 39088169/312119004989*103682^(15/16) 6308803769867167 a001 102334155/817138163596*103682^(15/16) 6308803769867168 a001 267914296/2139295485799*103682^(15/16) 6308803769867168 a001 701408733/5600748293801*103682^(15/16) 6308803769867168 a001 1836311903/14662949395604*103682^(15/16) 6308803769867168 a001 2971215073/23725150497407*103682^(15/16) 6308803769867168 a001 1134903170/9062201101803*103682^(15/16) 6308803769867168 a001 433494437/3461452808002*103682^(15/16) 6308803769867168 a001 165580141/1322157322203*103682^(15/16) 6308803769867168 a001 63245986/505019158607*103682^(15/16) 6308803769867170 a001 24157817/192900153618*103682^(15/16) 6308803769867182 a001 9227465/73681302247*103682^(15/16) 6308803769867269 a001 3524578/28143753123*103682^(15/16) 6308803769867864 a001 1346269/10749957122*103682^(15/16) 6308803769871357 a001 75025/7881196*103682^(9/16) 6308803769871939 a001 514229/4106118243*103682^(15/16) 6308803769899873 a001 196418/1568397607*103682^(15/16) 6308803769921310 a001 1346269/271443*15127^(1/40) 6308803769942600 a001 832040/710647*39603^(7/44) 6308803769944609 a001 75025/33385282*103682^(11/16) 6308803769954826 a001 726103/620166*39603^(7/44) 6308803769962382 a001 1346269/1149851*39603^(7/44) 6308803769985747 a001 317811/167761*39603^(5/44) 6308803769994391 a001 514229/439204*39603^(7/44) 6308803770015779 a001 15456/90481*39603^(15/44) 6308803770017973 a001 75025/141422324*103682^(13/16) 6308803770038675 a001 2178309/439204*15127^(1/40) 6308803770069202 a001 10946/20633239*24476^(13/14) 6308803770086835 a001 196418/271443*39603^(9/44) 6308803770089971 a001 28657/1149851*64079^(1/2) 6308803770091331 a001 75025/599074578*103682^(15/16) 6308803770132033 a001 514229/710647*39603^(9/44) 6308803770133916 a001 196418/64079*24476^(1/14) 6308803770138627 a001 1346269/1860498*39603^(9/44) 6308803770140183 a001 2178309/3010349*39603^(9/44) 6308803770142702 a001 832040/1149851*39603^(9/44) 6308803770142726 a001 46368/167761*39603^(13/44) 6308803770151346 a001 121393/271443*39603^(1/4) 6308803770159966 a001 317811/439204*39603^(9/44) 6308803770213783 a001 196418/167761*39603^(7/44) 6308803770228577 a001 75640/15251*15127^(1/40) 6308803770261100 a001 46368/64079*439204^(1/6) 6308803770266537 a001 46368/64079*7881196^(3/22) 6308803770266551 a001 28657/103682*141422324^(1/6) 6308803770266551 a001 28657/103682*73681302247^(1/8) 6308803770266551 a001 46368/64079*2537720636^(1/10) 6308803770266551 a001 46368/64079*14662949395604^(1/14) 6308803770266551 a001 46368/64079*192900153618^(1/12) 6308803770266552 a001 46368/64079*33385282^(1/8) 6308803770266824 a001 46368/64079*1860498^(3/20) 6308803770278294 a001 121393/167761*39603^(9/44) 6308803770287957 a001 28657/103682*271443^(1/4) 6308803770297608 a001 317811/710647*39603^(1/4) 6308803770316945 a001 11592/109801*39603^(17/44) 6308803770318947 a001 416020/930249*39603^(1/4) 6308803770322060 a001 2178309/4870847*39603^(1/4) 6308803770322514 a001 5702887/12752043*39603^(1/4) 6308803770322581 a001 7465176/16692641*39603^(1/4) 6308803770322590 a001 39088169/87403803*39603^(1/4) 6308803770322592 a001 102334155/228826127*39603^(1/4) 6308803770322592 a001 133957148/299537289*39603^(1/4) 6308803770322592 a001 701408733/1568397607*39603^(1/4) 6308803770322592 a001 1836311903/4106118243*39603^(1/4) 6308803770322592 a001 2403763488/5374978561*39603^(1/4) 6308803770322592 a001 12586269025/28143753123*39603^(1/4) 6308803770322592 a001 32951280099/73681302247*39603^(1/4) 6308803770322592 a001 43133785636/96450076809*39603^(1/4) 6308803770322592 a001 225851433717/505019158607*39603^(1/4) 6308803770322592 a001 591286729879/1322157322203*39603^(1/4) 6308803770322592 a001 10610209857723/23725150497407*39603^(1/4) 6308803770322592 a001 182717648081/408569081798*39603^(1/4) 6308803770322592 a001 139583862445/312119004989*39603^(1/4) 6308803770322592 a001 53316291173/119218851371*39603^(1/4) 6308803770322592 a001 10182505537/22768774562*39603^(1/4) 6308803770322592 a001 7778742049/17393796001*39603^(1/4) 6308803770322592 a001 2971215073/6643838879*39603^(1/4) 6308803770322592 a001 567451585/1268860318*39603^(1/4) 6308803770322592 a001 433494437/969323029*39603^(1/4) 6308803770322592 a001 165580141/370248451*39603^(1/4) 6308803770322593 a001 31622993/70711162*39603^(1/4) 6308803770322596 a001 24157817/54018521*39603^(1/4) 6308803770322622 a001 9227465/20633239*39603^(1/4) 6308803770322795 a001 1762289/3940598*39603^(1/4) 6308803770323984 a001 1346269/3010349*39603^(1/4) 6308803770332135 a001 514229/1149851*39603^(1/4) 6308803770376589 a001 46368/64079*103682^(3/16) 6308803770388002 a001 98209/219602*39603^(1/4) 6308803770452513 a001 121393/439204*39603^(13/44) 6308803770454587 a001 6624/101521*39603^(19/44) 6308803770497710 a001 317811/1149851*39603^(13/44) 6308803770504304 a001 832040/3010349*39603^(13/44) 6308803770505861 a001 1346269/4870847*39603^(13/44) 6308803770508380 a001 514229/1860498*39603^(13/44) 6308803770525643 a001 196418/710647*39603^(13/44) 6308803770576388 a001 196418/39603*5778^(1/36) 6308803770590154 a001 121393/710647*39603^(15/44) 6308803770590191 a001 317811/64079*24476^(1/42) 6308803770643971 a001 75025/271443*39603^(13/44) 6308803770651672 a001 28657/228826127*167761^(9/10) 6308803770654689 a001 46368/1149851*39603^(21/44) 6308803770673955 a001 105937/620166*39603^(15/44) 6308803770686181 a001 832040/4870847*39603^(15/44) 6308803770693737 a001 514229/3010349*39603^(15/44) 6308803770696519 a001 28657/20633239*167761^(7/10) 6308803770725746 a001 196418/1149851*39603^(15/44) 6308803770739515 a001 28657/1860498*167761^(1/2) 6308803770745380 a001 121393/64079*167761^(1/10) 6308803770767795 a001 121393/64079*20633239^(1/14) 6308803770767796 a001 28657/271443*45537549124^(1/6) 6308803770767796 a001 121393/64079*2537720636^(1/18) 6308803770767796 a001 121393/64079*312119004989^(1/22) 6308803770767796 a001 121393/64079*28143753123^(1/20) 6308803770767796 a001 121393/64079*228826127^(1/16) 6308803770767806 a001 28657/271443*12752043^(1/4) 6308803770767948 a001 121393/64079*1860498^(1/12) 6308803770770919 a001 75025/167761*39603^(1/4) 6308803770785391 a001 317811/103682*15127^(3/40) 6308803770790257 a001 121393/1149851*39603^(17/44) 6308803770822531 a001 28657/969323029*439204^(17/18) 6308803770826165 a001 28657/228826127*439204^(5/6) 6308803770828208 a001 28657/710647*439204^(7/18) 6308803770829801 a001 28657/54018521*439204^(13/18) 6308803770830934 a001 2576/103361*39603^(23/44) 6308803770833394 a001 28657/12752043*439204^(11/18) 6308803770837763 a001 28657/3010349*439204^(1/2) 6308803770840894 a001 28657/710647*7881196^(7/22) 6308803770840922 a001 28657/710647*20633239^(3/10) 6308803770840927 a001 28657/710647*17393796001^(3/14) 6308803770840927 a001 28657/710647*14662949395604^(1/6) 6308803770840927 a001 28657/710647*599074578^(1/4) 6308803770840928 a001 28657/710647*33385282^(7/24) 6308803770841565 a001 28657/710647*1860498^(7/20) 6308803770845611 a001 28657/710647*710647^(3/8) 6308803770845698 a006 5^(1/2)*fibonacci(57/2)/Lucas(23)/sqrt(5) 6308803770850767 a001 28657/4870847*1149851^(1/2) 6308803770851591 a001 28657/1860498*20633239^(5/14) 6308803770851596 a001 28657/1860498*2537720636^(5/18) 6308803770851596 a001 28657/1860498*312119004989^(5/22) 6308803770851596 a001 28657/1860498*3461452808002^(5/24) 6308803770851596 a001 28657/1860498*28143753123^(1/4) 6308803770851596 a001 28657/1860498*228826127^(5/16) 6308803770852356 a001 28657/1860498*1860498^(5/12) 6308803770853153 a001 28657/4870847*1322157322203^(1/4) 6308803770853172 a001 28657/7881196*3010349^(1/2) 6308803770853322 a001 28657/17393796001*7881196^(21/22) 6308803770853329 a001 28657/12752043*7881196^(1/2) 6308803770853331 a001 28657/4106118243*7881196^(19/22) 6308803770853334 a001 28657/2537720636*7881196^(5/6) 6308803770853340 a001 28657/969323029*7881196^(17/22) 6308803770853349 a001 28657/228826127*7881196^(15/22) 6308803770853361 a001 28657/54018521*7881196^(13/22) 6308803770853380 a001 28657/12752043*312119004989^(3/10) 6308803770853380 a001 28657/12752043*1568397607^(3/8) 6308803770853383 a001 28657/12752043*33385282^(11/24) 6308803770853405 a001 28657/28143753123*20633239^(13/14) 6308803770853406 a001 28657/17393796001*20633239^(9/10) 6308803770853407 a001 28657/2537720636*20633239^(11/14) 6308803770853408 a001 28657/599074578*20633239^(7/10) 6308803770853409 a001 28657/228826127*20633239^(9/14) 6308803770853412 a001 28657/33385282*54018521^(1/2) 6308803770853418 a001 28657/87403803*370248451^(1/2) 6308803770853419 a001 28657/28143753123*141422324^(5/6) 6308803770853419 a001 28657/228826127*2537720636^(1/2) 6308803770853419 a001 28657/228826127*312119004989^(9/22) 6308803770853419 a001 28657/228826127*14662949395604^(5/14) 6308803770853419 a001 28657/228826127*192900153618^(5/12) 6308803770853419 a001 28657/228826127*28143753123^(9/20) 6308803770853419 a001 28657/228826127*228826127^(9/16) 6308803770853419 a001 28657/599074578*17393796001^(1/2) 6308803770853419 a001 28657/599074578*14662949395604^(7/18) 6308803770853419 a001 28657/599074578*505019158607^(7/16) 6308803770853419 a001 28657/599074578*599074578^(7/12) 6308803770853419 a001 28657/1568397607*119218851371^(1/2) 6308803770853419 a001 28657/3461452808002*2537720636^(17/18) 6308803770853419 a001 28657/1322157322203*2537720636^(9/10) 6308803770853419 a001 28657/312119004989*2537720636^(5/6) 6308803770853419 a001 28657/28143753123*2537720636^(13/18) 6308803770853419 a001 28657/17393796001*2537720636^(7/10) 6308803770853419 a001 28657/4106118243*817138163596^(1/2) 6308803770853419 a001 28657/10749957122*5600748293801^(1/2) 6308803770853419 a001 28657/14662949395604*17393796001^(13/14) 6308803770853419 a001 28657/505019158607*17393796001^(11/14) 6308803770853419 a001 28657/28143753123*312119004989^(13/22) 6308803770853419 a001 28657/28143753123*3461452808002^(13/24) 6308803770853419 a001 28657/28143753123*73681302247^(5/8) 6308803770853419 a001 28657/28143753123*28143753123^(13/20) 6308803770853419 a001 28657/3461452808002*45537549124^(5/6) 6308803770853419 a001 28657/3461452808002*312119004989^(17/22) 6308803770853419 a001 28657/505019158607*14662949395604^(11/18) 6308803770853419 a001 28657/1322157322203*14662949395604^(9/14) 6308803770853419 a001 28657/14662949395604*14662949395604^(13/18) 6308803770853419 a001 28657/23725150497407*9062201101803^(3/4) 6308803770853419 a001 28657/14662949395604*505019158607^(13/16) 6308803770853419 a001 28657/312119004989*3461452808002^(5/8) 6308803770853419 a001 28657/1322157322203*192900153618^(3/4) 6308803770853419 a001 28657/14662949395604*73681302247^(7/8) 6308803770853419 a001 28657/312119004989*28143753123^(3/4) 6308803770853419 a001 28657/3461452808002*28143753123^(17/20) 6308803770853419 a001 28657/17393796001*17393796001^(9/14) 6308803770853419 a001 28657/17393796001*14662949395604^(1/2) 6308803770853419 a001 28657/17393796001*505019158607^(9/16) 6308803770853419 a001 28657/17393796001*192900153618^(7/12) 6308803770853419 a001 28657/6643838879*2139295485799^(1/2) 6308803770853419 a001 28657/73681302247*4106118243^(3/4) 6308803770853419 a006 5^(1/2)*Fibonacci(57/2)/Lucas(23)/sqrt(5) 6308803770853419 a001 28657/2537720636*2537720636^(11/18) 6308803770853419 a001 28657/2537720636*312119004989^(1/2) 6308803770853419 a001 28657/2537720636*3461452808002^(11/24) 6308803770853419 a001 28657/2537720636*28143753123^(11/20) 6308803770853419 a001 28657/505019158607*1568397607^(7/8) 6308803770853419 a001 28657/2537720636*1568397607^(5/8) 6308803770853419 a001 28657/969323029*45537549124^(1/2) 6308803770853419 a001 28657/17393796001*599074578^(3/4) 6308803770853419 a001 28657/505019158607*599074578^(11/12) 6308803770853419 a001 28657/370248451*6643838879^(1/2) 6308803770853419 a001 28657/2537720636*228826127^(11/16) 6308803770853419 a001 28657/28143753123*228826127^(13/16) 6308803770853419 a001 28657/312119004989*228826127^(15/16) 6308803770853419 a001 28657/141422324*969323029^(1/2) 6308803770853419 a001 28657/4106118243*87403803^(3/4) 6308803770853421 a001 28657/54018521*141422324^(1/2) 6308803770853421 a001 28657/54018521*73681302247^(3/8) 6308803770853422 a001 28657/228826127*33385282^(5/8) 6308803770853423 a001 28657/969323029*33385282^(17/24) 6308803770853423 a001 28657/4106118243*33385282^(19/24) 6308803770853424 a001 28657/17393796001*33385282^(7/8) 6308803770853424 a001 28657/54018521*33385282^(13/24) 6308803770853424 a001 28657/73681302247*33385282^(23/24) 6308803770853426 a001 28657/20633239*20633239^(1/2) 6308803770853434 a001 28657/20633239*2537720636^(7/18) 6308803770853434 a001 28657/20633239*17393796001^(5/14) 6308803770853434 a001 28657/20633239*312119004989^(7/22) 6308803770853434 a001 28657/20633239*14662949395604^(5/18) 6308803770853434 a001 28657/20633239*505019158607^(5/16) 6308803770853434 a001 28657/20633239*28143753123^(7/20) 6308803770853434 a001 28657/20633239*599074578^(5/12) 6308803770853434 a001 28657/20633239*228826127^(7/16) 6308803770853448 a001 28657/969323029*12752043^(3/4) 6308803770853520 a001 28657/7881196*9062201101803^(1/4) 6308803770854073 a001 28657/3010349*7881196^(9/22) 6308803770854115 a001 28657/3010349*2537720636^(3/10) 6308803770854115 a001 28657/3010349*14662949395604^(3/14) 6308803770854115 a001 28657/3010349*192900153618^(1/4) 6308803770854117 a001 28657/3010349*33385282^(3/8) 6308803770854382 a001 28657/12752043*1860498^(11/20) 6308803770854497 a001 28657/20633239*1860498^(7/12) 6308803770854606 a001 28657/54018521*1860498^(13/20) 6308803770854786 a001 28657/228826127*1860498^(3/4) 6308803770854935 a001 28657/3010349*1860498^(9/20) 6308803770854968 a001 28657/969323029*1860498^(17/20) 6308803770855090 a001 28657/2537720636*1860498^(11/12) 6308803770855150 a001 28657/4106118243*1860498^(19/20) 6308803770858190 a001 28657/1149851*4106118243^(1/4) 6308803770859312 a001 317811/3010349*39603^(17/44) 6308803770861241 a001 28657/20633239*710647^(5/8) 6308803770864350 a001 28657/599074578*710647^(7/8) 6308803770875614 a001 514229/4870847*39603^(17/44) 6308803770884307 a001 196418/64079*439204^(1/18) 6308803770886119 a001 196418/64079*7881196^(1/22) 6308803770886124 a001 28657/439204*817138163596^(1/6) 6308803770886124 a001 28657/439204*87403803^(1/4) 6308803770886124 a001 196418/64079*33385282^(1/24) 6308803770886215 a001 196418/64079*1860498^(1/20) 6308803770901991 a001 98209/930249*39603^(17/44) 6308803770917638 a001 28657/54018521*271443^(3/4) 6308803770922803 a001 196418/64079*103682^(1/16) 6308803770932346 a001 317811/64079*39603^(1/44) 6308803770945138 a001 75025/439204*39603^(15/44) 6308803770966501 a001 121393/1860498*39603^(19/44) 6308803771010333 a001 28657/167761*167761^(3/10) 6308803771016291 a001 46368/3010349*39603^(25/44) 6308803771041189 a001 317811/4870847*39603^(19/44) 6308803771068498 a001 28657/167761*439204^(5/18) 6308803771072233 a001 5473/3940598*24476^(5/6) 6308803771077559 a001 28657/167761*7881196^(5/22) 6308803771077579 a001 28657/167761*20633239^(3/14) 6308803771077581 a001 75025/64079*20633239^(1/10) 6308803771077582 a001 28657/167761*2537720636^(1/6) 6308803771077582 a001 28657/167761*312119004989^(3/22) 6308803771077582 a001 28657/167761*28143753123^(3/20) 6308803771077582 a001 75025/64079*17393796001^(1/14) 6308803771077582 a001 75025/64079*14662949395604^(1/18) 6308803771077582 a001 75025/64079*505019158607^(1/16) 6308803771077582 a001 75025/64079*599074578^(1/12) 6308803771077582 a001 28657/167761*228826127^(3/16) 6308803771077584 a001 28657/167761*33385282^(5/24) 6308803771078038 a001 28657/167761*1860498^(1/4) 6308803771079144 a001 75025/64079*710647^(1/8) 6308803771082779 a001 75025/710647*39603^(17/44) 6308803771087348 a001 196418/3010349*39603^(19/44) 6308803771089325 a001 46368/64079*39603^(9/44) 6308803771097681 a001 28657/710647*103682^(7/16) 6308803771151859 a001 121393/3010349*39603^(21/44) 6308803771160382 a001 196418/64079*39603^(3/44) 6308803771184228 a001 28657/3010349*103682^(9/16) 6308803771198168 a001 46368/4870847*39603^(27/44) 6308803771216185 a001 4181/4870847*9349^(37/38) 6308803771224893 a001 121393/64079*39603^(5/44) 6308803771256852 a001 28657/12752043*103682^(11/16) 6308803771260979 a001 28657/167761*103682^(5/16) 6308803771269225 a001 196418/4870847*39603^(21/44) 6308803771282882 a001 75025/1149851*39603^(19/44) 6308803771297306 a001 832040/271443*15127^(3/40) 6308803771330251 a001 28657/54018521*103682^(13/16) 6308803771333735 a001 121393/4870847*39603^(23/44) 6308803771371993 a001 311187/101521*15127^(3/40) 6308803771403607 a001 28657/228826127*103682^(15/16) 6308803771418152 a001 1346269/439204*15127^(3/40) 6308803771455003 a001 28657/103682*39603^(13/44) 6308803771459127 a001 75025/1860498*39603^(21/44) 6308803771530184 a001 317811/64079*15127^(1/40) 6308803771573338 a001 10946/4870847*24476^(11/14) 6308803771613686 a001 514229/167761*15127^(3/40) 6308803771644484 a001 75025/3010349*39603^(23/44) 6308803771717518 a001 75025/64079*39603^(7/44) 6308803771746965 a001 46368/20633239*39603^(3/4) 6308803771826361 a001 75025/4870847*39603^(25/44) 6308803771917103 a001 6765/15127*5778^(11/36) 6308803772075772 a001 10946/3010349*24476^(31/42) 6308803772209103 a001 98209/51841*15127^(1/8) 6308803772248197 a001 121393/54018521*39603^(3/4) 6308803772321326 a001 317811/141422324*39603^(3/4) 6308803772321925 a001 28657/271443*39603^(17/44) 6308803772331995 a001 832040/370248451*39603^(3/4) 6308803772333552 a001 2178309/969323029*39603^(3/4) 6308803772333779 a001 5702887/2537720636*39603^(3/4) 6308803772333812 a001 14930352/6643838879*39603^(3/4) 6308803772333817 a001 39088169/17393796001*39603^(3/4) 6308803772333818 a001 102334155/45537549124*39603^(3/4) 6308803772333818 a001 267914296/119218851371*39603^(3/4) 6308803772333818 a001 3524667/1568437211*39603^(3/4) 6308803772333818 a001 1836311903/817138163596*39603^(3/4) 6308803772333818 a001 4807526976/2139295485799*39603^(3/4) 6308803772333818 a001 12586269025/5600748293801*39603^(3/4) 6308803772333818 a001 32951280099/14662949395604*39603^(3/4) 6308803772333818 a001 53316291173/23725150497407*39603^(3/4) 6308803772333818 a001 20365011074/9062201101803*39603^(3/4) 6308803772333818 a001 7778742049/3461452808002*39603^(3/4) 6308803772333818 a001 2971215073/1322157322203*39603^(3/4) 6308803772333818 a001 1134903170/505019158607*39603^(3/4) 6308803772333818 a001 433494437/192900153618*39603^(3/4) 6308803772333818 a001 165580141/73681302247*39603^(3/4) 6308803772333818 a001 63245986/28143753123*39603^(3/4) 6308803772333820 a001 24157817/10749957122*39603^(3/4) 6308803772333833 a001 9227465/4106118243*39603^(3/4) 6308803772333919 a001 3524578/1568397607*39603^(3/4) 6308803772334514 a001 1346269/599074578*39603^(3/4) 6308803772338589 a001 514229/228826127*39603^(3/4) 6308803772366522 a001 196418/87403803*39603^(3/4) 6308803772389842 a001 28657/64079*7881196^(1/6) 6308803772389859 a001 28657/64079*312119004989^(1/10) 6308803772389859 a001 28657/64079*1568397607^(1/8) 6308803772448873 a001 28657/167761*39603^(15/44) 6308803772557976 a001 75025/33385282*39603^(3/4) 6308803772565874 a001 10946/39603*24476^(13/42) 6308803772574725 a001 5473/930249*24476^(29/42) 6308803772623092 a001 28657/439204*39603^(19/44) 6308803772682415 a001 514229/271443*15127^(1/8) 6308803772751470 a001 1346269/710647*15127^(1/8) 6308803772760733 a001 28657/710647*39603^(21/44) 6308803772761545 a001 1762289/930249*15127^(1/8) 6308803772763015 a001 9227465/4870847*15127^(1/8) 6308803772763229 a001 24157817/12752043*15127^(1/8) 6308803772763260 a001 31622993/16692641*15127^(1/8) 6308803772763265 a001 165580141/87403803*15127^(1/8) 6308803772763266 a001 433494437/228826127*15127^(1/8) 6308803772763266 a001 567451585/299537289*15127^(1/8) 6308803772763266 a001 2971215073/1568397607*15127^(1/8) 6308803772763266 a001 7778742049/4106118243*15127^(1/8) 6308803772763266 a001 10182505537/5374978561*15127^(1/8) 6308803772763266 a001 53316291173/28143753123*15127^(1/8) 6308803772763266 a001 139583862445/73681302247*15127^(1/8) 6308803772763266 a001 182717648081/96450076809*15127^(1/8) 6308803772763266 a001 956722026041/505019158607*15127^(1/8) 6308803772763266 a001 10610209857723/5600748293801*15127^(1/8) 6308803772763266 a001 591286729879/312119004989*15127^(1/8) 6308803772763266 a001 225851433717/119218851371*15127^(1/8) 6308803772763266 a001 21566892818/11384387281*15127^(1/8) 6308803772763266 a001 32951280099/17393796001*15127^(1/8) 6308803772763266 a001 12586269025/6643838879*15127^(1/8) 6308803772763266 a001 1201881744/634430159*15127^(1/8) 6308803772763266 a001 1836311903/969323029*15127^(1/8) 6308803772763266 a001 701408733/370248451*15127^(1/8) 6308803772763266 a001 66978574/35355581*15127^(1/8) 6308803772763268 a001 102334155/54018521*15127^(1/8) 6308803772763280 a001 39088169/20633239*15127^(1/8) 6308803772763362 a001 3732588/1970299*15127^(1/8) 6308803772763923 a001 5702887/3010349*15127^(1/8) 6308803772767772 a001 2178309/1149851*15127^(1/8) 6308803772794148 a001 208010/109801*15127^(1/8) 6308803772953896 a001 196418/64079*15127^(3/40) 6308803772960836 a001 28657/1149851*39603^(23/44) 6308803772974937 a001 317811/167761*15127^(1/8) 6308803773034283 a001 28657/39603*15127^(9/40) 6308803773082792 a001 10946/1149851*24476^(9/14) 6308803773137080 a001 28657/1860498*39603^(25/44) 6308803773322438 a001 28657/3010349*39603^(27/44) 6308803773395472 a001 28657/64079*39603^(1/4) 6308803773469290 a001 121393/103682*15127^(7/40) 6308803773504314 a001 28657/4870847*39603^(29/44) 6308803773567000 a001 10946/710647*24476^(25/42) 6308803773568818 a001 17711/24476*24476^(3/14) 6308803773870219 a001 28657/12752043*39603^(3/4) 6308803773984039 a001 514229/103682*5778^(1/36) 6308803773988911 a007 Real Root Of 825*x^4-483*x^3+321*x^2+762*x+101 6308803774043666 a001 105937/90481*15127^(7/40) 6308803774113670 a001 5473/219602*24476^(23/42) 6308803774127466 a001 832040/710647*15127^(7/40) 6308803774139692 a001 726103/620166*15127^(7/40) 6308803774147248 a001 1346269/1149851*15127^(7/40) 6308803774179257 a001 514229/439204*15127^(7/40) 6308803774214083 a001 121393/64079*15127^(1/8) 6308803774373639 a001 75025/24476*9349^(3/38) 6308803774398649 a001 196418/167761*15127^(7/40) 6308803774468323 a001 17711/15127*5778^(7/36) 6308803774481208 a001 1346269/271443*5778^(1/36) 6308803774496814 a001 10946/271443*24476^(1/2) 6308803774598574 a001 2178309/439204*5778^(1/36) 6308803774788476 a001 75640/15251*5778^(1/36) 6308803774998513 a001 5473/51841*24476^(17/42) 6308803775016093 a001 4181/3010349*9349^(35/38) 6308803775046520 a001 17711/103682*15127^(3/8) 6308803775157591 a001 75025/103682*15127^(9/40) 6308803775211787 l006 ln(3371/6335) 6308803775308072 a001 10946/167761*24476^(19/42) 6308803775467377 a001 196418/271443*15127^(9/40) 6308803775512575 a001 514229/710647*15127^(9/40) 6308803775519169 a001 1346269/1860498*15127^(9/40) 6308803775520726 a001 2178309/3010349*15127^(9/40) 6308803775523244 a001 832040/1149851*15127^(9/40) 6308803775540508 a001 317811/439204*15127^(9/40) 6308803775658836 a001 121393/167761*15127^(9/40) 6308803775725074 a001 23184/51841*15127^(11/40) 6308803775791313 a001 17711/64079*15127^(13/40) 6308803775819992 a001 17711/24476*439204^(1/6) 6308803775825429 a001 17711/24476*7881196^(3/22) 6308803775825443 a001 10946/39603*141422324^(1/6) 6308803775825443 a001 10946/39603*73681302247^(1/8) 6308803775825443 a001 17711/24476*2537720636^(1/10) 6308803775825443 a001 17711/24476*14662949395604^(1/14) 6308803775825443 a001 17711/24476*192900153618^(1/12) 6308803775825443 a001 17711/24476*33385282^(1/8) 6308803775825716 a001 17711/24476*1860498^(3/20) 6308803775846848 a001 10946/39603*271443^(1/4) 6308803775902384 a001 75025/64079*15127^(7/40) 6308803775935480 a001 17711/24476*103682^(3/16) 6308803776090082 a001 317811/64079*5778^(1/36) 6308803776469867 a001 46368/64079*15127^(9/40) 6308803776648217 a001 17711/24476*39603^(9/44) 6308803776727564 a001 121393/271443*15127^(11/40) 6308803776873826 a001 317811/710647*15127^(11/40) 6308803776895165 a001 416020/930249*15127^(11/40) 6308803776898278 a001 2178309/4870847*15127^(11/40) 6308803776900202 a001 1346269/3010349*15127^(11/40) 6308803776908353 a001 514229/1149851*15127^(11/40) 6308803776964220 a001 98209/219602*15127^(11/40) 6308803777013894 a001 10946/39603*39603^(13/44) 6308803777236066 a001 17711/167761*15127^(17/40) 6308803777347137 a001 75025/167761*15127^(11/40) 6308803777623293 a001 10946/64079*24476^(5/14) 6308803777862799 a001 121393/24476*9349^(1/38) 6308803777914621 a001 46368/167761*15127^(13/40) 6308803778007346 a001 11592/6119*24476^(5/42) 6308803778224407 a001 121393/439204*15127^(13/40) 6308803778269604 a001 317811/1149851*15127^(13/40) 6308803778276198 a001 832040/3010349*15127^(13/40) 6308803778277755 a001 1346269/4870847*15127^(13/40) 6308803778280274 a001 514229/1860498*15127^(13/40) 6308803778297538 a001 196418/710647*15127^(13/40) 6308803778304794 a001 17711/271443*15127^(19/40) 6308803778415865 a001 75025/271443*15127^(13/40) 6308803778812520 a001 4181/1860498*9349^(33/38) 6308803778983349 a001 15456/90481*15127^(3/8) 6308803779112380 a001 5473/219602*64079^(1/2) 6308803779226897 a001 28657/103682*15127^(13/40) 6308803779238610 a001 11592/6119*167761^(1/10) 6308803779261026 a001 11592/6119*20633239^(1/14) 6308803779261027 a001 5473/51841*45537549124^(1/6) 6308803779261027 a001 11592/6119*2537720636^(1/18) 6308803779261027 a001 11592/6119*312119004989^(1/22) 6308803779261027 a001 11592/6119*28143753123^(1/20) 6308803779261027 a001 11592/6119*228826127^(1/16) 6308803779261036 a001 5473/51841*12752043^(1/4) 6308803779261179 a001 11592/6119*1860498^(1/12) 6308803779319850 a001 75025/24476*24476^(1/14) 6308803779511536 a001 121393/24476*24476^(1/42) 6308803779557724 a001 121393/710647*15127^(3/8) 6308803779629182 a001 28657/24476*24476^(1/6) 6308803779641525 a001 105937/620166*15127^(3/8) 6308803779646146 a001 10946/87403803*167761^(9/10) 6308803779653751 a001 832040/4870847*15127^(3/8) 6308803779655535 a001 726103/4250681*15127^(3/8) 6308803779655795 a001 5702887/33385282*15127^(3/8) 6308803779655833 a001 4976784/29134601*15127^(3/8) 6308803779655839 a001 39088169/228826127*15127^(3/8) 6308803779655839 a001 34111385/199691526*15127^(3/8) 6308803779655839 a001 267914296/1568397607*15127^(3/8) 6308803779655840 a001 233802911/1368706081*15127^(3/8) 6308803779655840 a001 1836311903/10749957122*15127^(3/8) 6308803779655840 a001 1602508992/9381251041*15127^(3/8) 6308803779655840 a001 12586269025/73681302247*15127^(3/8) 6308803779655840 a001 10983760033/64300051206*15127^(3/8) 6308803779655840 a001 86267571272/505019158607*15127^(3/8) 6308803779655840 a001 75283811239/440719107401*15127^(3/8) 6308803779655840 a001 2504730781961/14662949395604*15127^(3/8) 6308803779655840 a001 139583862445/817138163596*15127^(3/8) 6308803779655840 a001 53316291173/312119004989*15127^(3/8) 6308803779655840 a001 20365011074/119218851371*15127^(3/8) 6308803779655840 a001 7778742049/45537549124*15127^(3/8) 6308803779655840 a001 2971215073/17393796001*15127^(3/8) 6308803779655840 a001 1134903170/6643838879*15127^(3/8) 6308803779655840 a001 433494437/2537720636*15127^(3/8) 6308803779655840 a001 165580141/969323029*15127^(3/8) 6308803779655840 a001 63245986/370248451*15127^(3/8) 6308803779655842 a001 24157817/141422324*15127^(3/8) 6308803779655857 a001 9227465/54018521*15127^(3/8) 6308803779655956 a001 3524578/20633239*15127^(3/8) 6308803779656637 a001 1346269/7881196*15127^(3/8) 6308803779661307 a001 514229/3010349*15127^(3/8) 6308803779691082 a001 5473/3940598*167761^(7/10) 6308803779693316 a001 196418/1149851*15127^(3/8) 6308803779718124 a001 11592/6119*39603^(5/44) 6308803779723321 a001 10946/710647*167761^(1/2) 6308803779749553 a001 10946/271443*439204^(7/18) 6308803779762239 a001 10946/271443*7881196^(7/22) 6308803779762267 a001 10946/271443*20633239^(3/10) 6308803779762272 a001 10946/271443*17393796001^(3/14) 6308803779762272 a001 10946/271443*14662949395604^(1/6) 6308803779762272 a001 10946/271443*599074578^(1/4) 6308803779762273 a001 10946/271443*33385282^(7/24) 6308803779762910 a001 10946/271443*1860498^(7/20) 6308803779766956 a001 10946/271443*710647^(3/8) 6308803779794977 a006 5^(1/2)*fibonacci(53/2)/Lucas(21)/sqrt(5) 6308803779801637 a001 17711/439204*15127^(21/40) 6308803779817006 a001 10946/370248451*439204^(17/18) 6308803779820640 a001 10946/87403803*439204^(5/6) 6308803779824289 a001 10946/20633239*439204^(13/18) 6308803779827642 a001 10946/4870847*439204^(11/18) 6308803779835397 a001 10946/710647*20633239^(5/14) 6308803779835402 a001 10946/710647*2537720636^(5/18) 6308803779835402 a001 10946/710647*312119004989^(5/22) 6308803779835402 a001 10946/710647*3461452808002^(5/24) 6308803779835402 a001 10946/710647*28143753123^(1/4) 6308803779835402 a001 10946/710647*228826127^(5/16) 6308803779836162 a001 10946/710647*1860498^(5/12) 6308803779836314 a001 10946/1149851*439204^(1/2) 6308803779843686 a001 5473/930249*1149851^(1/2) 6308803779846072 a001 5473/930249*1322157322203^(1/4) 6308803779847578 a001 10946/4870847*7881196^(1/2) 6308803779847629 a001 10946/4870847*312119004989^(3/10) 6308803779847629 a001 10946/4870847*1568397607^(3/8) 6308803779847631 a001 10946/4870847*33385282^(11/24) 6308803779847798 a001 10946/6643838879*7881196^(21/22) 6308803779847807 a001 10946/1568397607*7881196^(19/22) 6308803779847810 a001 10946/969323029*7881196^(5/6) 6308803779847816 a001 10946/370248451*7881196^(17/22) 6308803779847824 a001 10946/87403803*7881196^(15/22) 6308803779847849 a001 10946/20633239*7881196^(13/22) 6308803779847855 a001 10946/12752043*54018521^(1/2) 6308803779847881 a001 5473/5374978561*20633239^(13/14) 6308803779847881 a001 10946/6643838879*20633239^(9/10) 6308803779847883 a001 10946/969323029*20633239^(11/14) 6308803779847884 a001 10946/228826127*20633239^(7/10) 6308803779847884 a001 10946/87403803*20633239^(9/14) 6308803779847889 a001 5473/16692641*370248451^(1/2) 6308803779847894 a001 10946/87403803*2537720636^(1/2) 6308803779847894 a001 10946/87403803*312119004989^(9/22) 6308803779847894 a001 10946/87403803*14662949395604^(5/14) 6308803779847894 a001 10946/87403803*192900153618^(5/12) 6308803779847894 a001 10946/87403803*28143753123^(9/20) 6308803779847894 a001 10946/87403803*228826127^(9/16) 6308803779847894 a001 5473/5374978561*141422324^(5/6) 6308803779847894 a001 10946/228826127*17393796001^(1/2) 6308803779847894 a001 10946/228826127*14662949395604^(7/18) 6308803779847894 a001 10946/228826127*505019158607^(7/16) 6308803779847894 a001 10946/228826127*599074578^(7/12) 6308803779847895 a001 5473/299537289*119218851371^(1/2) 6308803779847895 a001 10946/1568397607*817138163596^(1/2) 6308803779847895 a001 10946/1322157322203*2537720636^(17/18) 6308803779847895 a001 10946/505019158607*2537720636^(9/10) 6308803779847895 a001 10946/119218851371*2537720636^(5/6) 6308803779847895 a001 5473/5374978561*2537720636^(13/18) 6308803779847895 a001 10946/6643838879*2537720636^(7/10) 6308803779847895 a001 10946/4106118243*5600748293801^(1/2) 6308803779847895 a001 5473/5374978561*312119004989^(13/22) 6308803779847895 a001 5473/5374978561*3461452808002^(13/24) 6308803779847895 a001 5473/5374978561*73681302247^(5/8) 6308803779847895 a001 5473/5374978561*28143753123^(13/20) 6308803779847895 a001 10946/5600748293801*17393796001^(13/14) 6308803779847895 a001 5473/96450076809*17393796001^(11/14) 6308803779847895 a001 10946/1322157322203*45537549124^(5/6) 6308803779847895 a001 5473/96450076809*14662949395604^(11/18) 6308803779847895 a001 5473/96450076809*505019158607^(11/16) 6308803779847895 a001 10946/1322157322203*312119004989^(17/22) 6308803779847895 a001 10946/1322157322203*3461452808002^(17/24) 6308803779847895 a001 10946/9062201101803*9062201101803^(3/4) 6308803779847895 a001 10946/2139295485799*1322157322203^(3/4) 6308803779847895 a001 10946/5600748293801*505019158607^(13/16) 6308803779847895 a001 10946/505019158607*192900153618^(3/4) 6308803779847895 a001 10946/119218851371*312119004989^(15/22) 6308803779847895 a001 10946/119218851371*3461452808002^(5/8) 6308803779847895 a001 10946/5600748293801*73681302247^(7/8) 6308803779847895 a001 10946/119218851371*28143753123^(3/4) 6308803779847895 a001 10946/1322157322203*28143753123^(17/20) 6308803779847895 a001 5473/7331474697802*28143753123^(19/20) 6308803779847895 a001 10946/6643838879*17393796001^(9/14) 6308803779847895 a001 10946/6643838879*14662949395604^(1/2) 6308803779847895 a001 10946/6643838879*505019158607^(9/16) 6308803779847895 a001 10946/6643838879*192900153618^(7/12) 6308803779847895 a001 10946/28143753123*4106118243^(3/4) 6308803779847895 a001 5473/1268860318*2139295485799^(1/2) 6308803779847895 a001 5473/96450076809*1568397607^(7/8) 6308803779847895 a001 10946/969323029*2537720636^(11/18) 6308803779847895 a001 10946/969323029*312119004989^(1/2) 6308803779847895 a001 10946/969323029*3461452808002^(11/24) 6308803779847895 a001 10946/969323029*28143753123^(11/20) 6308803779847895 a001 10946/969323029*1568397607^(5/8) 6308803779847895 a001 10946/6643838879*599074578^(3/4) 6308803779847895 a001 5473/96450076809*599074578^(11/12) 6308803779847895 a006 5^(1/2)*Fibonacci(53/2)/Lucas(21)/sqrt(5) 6308803779847895 a001 10946/370248451*45537549124^(1/2) 6308803779847895 a001 10946/969323029*228826127^(11/16) 6308803779847895 a001 5473/5374978561*228826127^(13/16) 6308803779847895 a001 10946/119218851371*228826127^(15/16) 6308803779847895 a001 5473/70711162*6643838879^(1/2) 6308803779847895 a001 10946/1568397607*87403803^(3/4) 6308803779847897 a001 10946/54018521*969323029^(1/2) 6308803779847897 a001 10946/87403803*33385282^(5/8) 6308803779847899 a001 10946/370248451*33385282^(17/24) 6308803779847899 a001 10946/1568397607*33385282^(19/24) 6308803779847899 a001 10946/6643838879*33385282^(7/8) 6308803779847900 a001 10946/28143753123*33385282^(23/24) 6308803779847909 a001 10946/20633239*141422324^(1/2) 6308803779847909 a001 10946/20633239*73681302247^(3/8) 6308803779847912 a001 10946/20633239*33385282^(13/24) 6308803779847924 a001 10946/370248451*12752043^(3/4) 6308803779847989 a001 5473/3940598*20633239^(1/2) 6308803779847996 a001 5473/3940598*2537720636^(7/18) 6308803779847996 a001 5473/3940598*17393796001^(5/14) 6308803779847996 a001 5473/3940598*312119004989^(7/22) 6308803779847996 a001 5473/3940598*14662949395604^(5/18) 6308803779847996 a001 5473/3940598*505019158607^(5/16) 6308803779847996 a001 5473/3940598*28143753123^(7/20) 6308803779847996 a001 5473/3940598*599074578^(5/12) 6308803779847996 a001 5473/3940598*228826127^(7/16) 6308803779848243 a001 10946/3010349*3010349^(1/2) 6308803779848591 a001 10946/3010349*9062201101803^(1/4) 6308803779848631 a001 10946/4870847*1860498^(11/20) 6308803779849059 a001 5473/3940598*1860498^(7/12) 6308803779849094 a001 10946/20633239*1860498^(13/20) 6308803779849261 a001 10946/87403803*1860498^(3/4) 6308803779849444 a001 10946/370248451*1860498^(17/20) 6308803779849565 a001 10946/969323029*1860498^(11/12) 6308803779849626 a001 10946/1568397607*1860498^(19/20) 6308803779852625 a001 10946/1149851*7881196^(9/22) 6308803779852666 a001 10946/1149851*2537720636^(3/10) 6308803779852666 a001 10946/1149851*14662949395604^(3/14) 6308803779852666 a001 10946/1149851*192900153618^(1/4) 6308803779852668 a001 10946/1149851*33385282^(3/8) 6308803779853486 a001 10946/1149851*1860498^(9/20) 6308803779853691 a001 121393/24476*39603^(1/44) 6308803779855804 a001 5473/3940598*710647^(5/8) 6308803779858825 a001 10946/228826127*710647^(7/8) 6308803779880600 a001 5473/219602*4106118243^(1/4) 6308803779912126 a001 10946/20633239*271443^(3/4) 6308803779912708 a001 75025/439204*15127^(3/8) 6308803779971690 a001 28657/64079*15127^(11/40) 6308803780019026 a001 10946/271443*103682^(7/16) 6308803780070241 a001 75025/24476*439204^(1/18) 6308803780072053 a001 75025/24476*7881196^(1/22) 6308803780072058 a001 10946/167761*817138163596^(1/6) 6308803780072058 a001 10946/167761*87403803^(1/4) 6308803780072058 a001 75025/24476*33385282^(1/24) 6308803780072149 a001 75025/24476*1860498^(1/20) 6308803780108737 a001 75025/24476*103682^(1/16) 6308803780182779 a001 10946/1149851*103682^(9/16) 6308803780251100 a001 10946/4870847*103682^(11/16) 6308803780324739 a001 10946/20633239*103682^(13/16) 6308803780346316 a001 75025/24476*39603^(3/44) 6308803780398082 a001 10946/87403803*103682^(15/16) 6308803780451529 a001 121393/24476*15127^(1/40) 6308803780480191 a001 11592/109801*15127^(17/40) 6308803780815156 a001 5473/51841*39603^(17/44) 6308803780953503 a001 121393/1149851*15127^(17/40) 6308803780956372 a001 121393/39603*5778^(1/12) 6308803781022558 a001 317811/3010349*15127^(17/40) 6308803781038860 a001 514229/4870847*15127^(17/40) 6308803781065237 a001 98209/930249*15127^(17/40) 6308803781134954 a001 17711/710647*15127^(23/40) 6308803781246026 a001 75025/710647*15127^(17/40) 6308803781317085 a001 10946/64079*167761^(3/10) 6308803781375250 a001 10946/64079*439204^(5/18) 6308803781384311 a001 10946/64079*7881196^(5/22) 6308803781384331 a001 10946/64079*20633239^(3/14) 6308803781384333 a001 28657/24476*20633239^(1/10) 6308803781384334 a001 10946/64079*2537720636^(1/6) 6308803781384334 a001 10946/64079*312119004989^(3/22) 6308803781384334 a001 10946/64079*28143753123^(3/20) 6308803781384334 a001 28657/24476*17393796001^(1/14) 6308803781384334 a001 28657/24476*14662949395604^(1/18) 6308803781384334 a001 28657/24476*505019158607^(1/16) 6308803781384334 a001 28657/24476*599074578^(1/12) 6308803781384334 a001 10946/64079*228826127^(3/16) 6308803781384336 a001 10946/64079*33385282^(5/24) 6308803781384790 a001 10946/64079*1860498^(1/4) 6308803781385896 a001 28657/24476*710647^(1/8) 6308803781416443 a001 28657/167761*15127^(3/8) 6308803781567731 a001 10946/64079*103682^(5/16) 6308803781682078 a001 10946/271443*39603^(21/44) 6308803781809026 a001 10946/167761*39603^(19/44) 6308803781813509 a001 6624/101521*15127^(19/40) 6308803781983245 a001 5473/219602*39603^(23/44) 6308803782024270 a001 28657/24476*39603^(7/44) 6308803782028759 a001 17711/24476*15127^(9/40) 6308803782120886 a001 10946/710647*39603^(25/44) 6308803782139830 a001 75025/24476*15127^(3/40) 6308803782320989 a001 10946/1149851*39603^(27/44) 6308803782325424 a001 121393/1860498*15127^(19/40) 6308803782400111 a001 317811/4870847*15127^(19/40) 6308803782446270 a001 196418/3010349*15127^(19/40) 6308803782446375 a001 75025/15127*2207^(1/32) 6308803782485171 a001 28657/271443*15127^(17/40) 6308803782497233 a001 5473/930249*39603^(29/44) 6308803782530733 a001 17711/1149851*15127^(5/8) 6308803782618060 a001 4181/1149851*9349^(31/38) 6308803782641804 a001 75025/1149851*15127^(19/40) 6308803782682591 a001 10946/3010349*39603^(31/44) 6308803782707314 a001 11592/6119*15127^(1/8) 6308803782755625 a001 10946/64079*39603^(15/44) 6308803782864467 a001 10946/4870847*39603^(3/4) 6308803783209288 a001 46368/1149851*15127^(21/40) 6308803783706457 a001 121393/3010349*15127^(21/40) 6308803783823823 a001 196418/4870847*15127^(21/40) 6308803783855298 a001 1597/710647*3571^(33/34) 6308803783902654 a001 17711/1860498*15127^(27/40) 6308803783982014 a001 28657/439204*15127^(19/40) 6308803784013725 a001 75025/1860498*15127^(21/40) 6308803784465086 a001 317811/103682*5778^(1/12) 6308803784581208 a001 2576/103361*15127^(23/40) 6308803784785789 a001 10946/39603*15127^(13/40) 6308803784977001 a001 832040/271443*5778^(1/12) 6308803785011427 a001 121393/24476*5778^(1/36) 6308803785051688 a001 311187/101521*5778^(1/12) 6308803785062585 a001 5702887/1860498*5778^(1/12) 6308803785064175 a001 14930352/4870847*5778^(1/12) 6308803785064407 a001 39088169/12752043*5778^(1/12) 6308803785064441 a001 14619165/4769326*5778^(1/12) 6308803785064446 a001 267914296/87403803*5778^(1/12) 6308803785064446 a001 701408733/228826127*5778^(1/12) 6308803785064446 a001 1836311903/599074578*5778^(1/12) 6308803785064446 a001 686789568/224056801*5778^(1/12) 6308803785064446 a001 12586269025/4106118243*5778^(1/12) 6308803785064446 a001 32951280099/10749957122*5778^(1/12) 6308803785064446 a001 86267571272/28143753123*5778^(1/12) 6308803785064446 a001 32264490531/10525900321*5778^(1/12) 6308803785064446 a001 591286729879/192900153618*5778^(1/12) 6308803785064446 a001 1548008755920/505019158607*5778^(1/12) 6308803785064446 a001 1515744265389/494493258286*5778^(1/12) 6308803785064446 a001 2504730781961/817138163596*5778^(1/12) 6308803785064446 a001 956722026041/312119004989*5778^(1/12) 6308803785064446 a001 365435296162/119218851371*5778^(1/12) 6308803785064446 a001 139583862445/45537549124*5778^(1/12) 6308803785064446 a001 53316291173/17393796001*5778^(1/12) 6308803785064446 a001 20365011074/6643838879*5778^(1/12) 6308803785064446 a001 7778742049/2537720636*5778^(1/12) 6308803785064446 a001 2971215073/969323029*5778^(1/12) 6308803785064446 a001 1134903170/370248451*5778^(1/12) 6308803785064447 a001 433494437/141422324*5778^(1/12) 6308803785064449 a001 165580141/54018521*5778^(1/12) 6308803785064462 a001 63245986/20633239*5778^(1/12) 6308803785064550 a001 24157817/7881196*5778^(1/12) 6308803785065157 a001 9227465/3010349*5778^(1/12) 6308803785069320 a001 3524578/1149851*5778^(1/12) 6308803785084010 a001 121393/4870847*15127^(23/40) 6308803785097848 a001 1346269/439204*5778^(1/12) 6308803785283687 a001 17711/3010349*15127^(29/40) 6308803785293382 a001 514229/167761*5778^(1/12) 6308803785315331 a001 28657/710647*15127^(21/40) 6308803785394758 a001 75025/3010349*15127^(23/40) 6308803785962242 a001 46368/3010349*15127^(5/8) 6308803786209136 a001 28657/24476*15127^(7/40) 6308803786399742 a001 4181/710647*9349^(29/38) 6308803786462892 a001 121393/7881196*15127^(5/8) 6308803786535936 a001 10959/711491*15127^(5/8) 6308803786546593 a001 832040/54018521*15127^(5/8) 6308803786548148 a001 2178309/141422324*15127^(5/8) 6308803786548374 a001 5702887/370248451*15127^(5/8) 6308803786548408 a001 14930352/969323029*15127^(5/8) 6308803786548412 a001 39088169/2537720636*15127^(5/8) 6308803786548413 a001 102334155/6643838879*15127^(5/8) 6308803786548413 a001 9238424/599786069*15127^(5/8) 6308803786548413 a001 701408733/45537549124*15127^(5/8) 6308803786548413 a001 1836311903/119218851371*15127^(5/8) 6308803786548413 a001 4807526976/312119004989*15127^(5/8) 6308803786548413 a001 12586269025/817138163596*15127^(5/8) 6308803786548413 a001 32951280099/2139295485799*15127^(5/8) 6308803786548413 a001 86267571272/5600748293801*15127^(5/8) 6308803786548413 a001 7787980473/505618944676*15127^(5/8) 6308803786548413 a001 365435296162/23725150497407*15127^(5/8) 6308803786548413 a001 139583862445/9062201101803*15127^(5/8) 6308803786548413 a001 53316291173/3461452808002*15127^(5/8) 6308803786548413 a001 20365011074/1322157322203*15127^(5/8) 6308803786548413 a001 7778742049/505019158607*15127^(5/8) 6308803786548413 a001 2971215073/192900153618*15127^(5/8) 6308803786548413 a001 1134903170/73681302247*15127^(5/8) 6308803786548413 a001 433494437/28143753123*15127^(5/8) 6308803786548413 a001 165580141/10749957122*15127^(5/8) 6308803786548414 a001 63245986/4106118243*15127^(5/8) 6308803786548415 a001 24157817/1568397607*15127^(5/8) 6308803786548428 a001 9227465/599074578*15127^(5/8) 6308803786548515 a001 3524578/228826127*15127^(5/8) 6308803786549109 a001 1346269/87403803*15127^(5/8) 6308803786553179 a001 514229/33385282*15127^(5/8) 6308803786581079 a001 196418/12752043*15127^(5/8) 6308803786633591 a001 196418/64079*5778^(1/12) 6308803786661240 a001 17711/4870847*15127^(31/40) 6308803786711110 a001 28657/1149851*15127^(23/40) 6308803786772311 a001 75025/4870847*15127^(5/8) 6308803787339794 a001 46368/4870847*15127^(27/40) 6308803787620713 a001 5473/12238*24476^(11/42) 6308803788083030 a001 28657/1860498*15127^(5/8) 6308803789233505 a001 4181/15127*9349^(13/38) 6308803789418496 a001 17711/12752043*15127^(7/8) 6308803789464064 a001 28657/3010349*15127^(27/40) 6308803790243885 a001 4181/439204*9349^(27/38) 6308803790378793 a001 5473/12238*7881196^(1/6) 6308803790378810 a001 5473/12238*312119004989^(1/10) 6308803790378810 a001 5473/12238*1568397607^(1/8) 6308803790841617 a001 28657/4870847*15127^(29/40) 6308803790978402 a001 5473/51841*15127^(17/40) 6308803791384423 a001 5473/12238*39603^(1/4) 6308803791723195 a001 10946/64079*15127^(3/8) 6308803791764470 a001 75025/39603*5778^(5/36) 6308803792854113 a001 144/103681*15127^(7/8) 6308803793167948 a001 10946/167761*15127^(19/40) 6308803793255919 a001 5473/2889*2207^(5/32) 6308803793355363 a001 121393/87403803*15127^(7/8) 6308803793428495 a001 317811/228826127*15127^(7/8) 6308803793439164 a001 416020/299537289*15127^(7/8) 6308803793440721 a001 311187/224056801*15127^(7/8) 6308803793440948 a001 5702887/4106118243*15127^(7/8) 6308803793440981 a001 7465176/5374978561*15127^(7/8) 6308803793440986 a001 39088169/28143753123*15127^(7/8) 6308803793440987 a001 14619165/10525900321*15127^(7/8) 6308803793440987 a001 133957148/96450076809*15127^(7/8) 6308803793440987 a001 701408733/505019158607*15127^(7/8) 6308803793440987 a001 1836311903/1322157322203*15127^(7/8) 6308803793440987 a001 14930208/10749853441*15127^(7/8) 6308803793440987 a001 12586269025/9062201101803*15127^(7/8) 6308803793440987 a001 32951280099/23725150497407*15127^(7/8) 6308803793440987 a001 10182505537/7331474697802*15127^(7/8) 6308803793440987 a001 7778742049/5600748293801*15127^(7/8) 6308803793440987 a001 2971215073/2139295485799*15127^(7/8) 6308803793440987 a001 567451585/408569081798*15127^(7/8) 6308803793440987 a001 433494437/312119004989*15127^(7/8) 6308803793440987 a001 165580141/119218851371*15127^(7/8) 6308803793440987 a001 31622993/22768774562*15127^(7/8) 6308803793440989 a001 24157817/17393796001*15127^(7/8) 6308803793441002 a001 9227465/6643838879*15127^(7/8) 6308803793441088 a001 1762289/1268860318*15127^(7/8) 6308803793441683 a001 1346269/969323029*15127^(7/8) 6308803793445759 a001 514229/370248451*15127^(7/8) 6308803793473692 a001 98209/70711162*15127^(7/8) 6308803793665153 a001 75025/54018521*15127^(7/8) 6308803793924503 a001 4181/271443*9349^(25/38) 6308803794236676 a001 10946/271443*15127^(21/40) 6308803794977442 a001 28657/20633239*15127^(7/8) 6308803795008595 a001 98209/51841*5778^(5/36) 6308803795481907 a001 514229/271443*5778^(5/36) 6308803795550962 a001 1346269/710647*5778^(5/36) 6308803795567264 a001 2178309/1149851*5778^(5/36) 6308803795593640 a001 208010/109801*5778^(5/36) 6308803795733519 a001 5473/219602*15127^(23/40) 6308803795774429 a001 317811/167761*5778^(5/36) 6308803795819526 a001 75025/24476*5778^(1/12) 6308803796831398 a001 6765/9349*9349^(9/38) 6308803797013575 a001 121393/64079*5778^(5/36) 6308803797066837 a001 10946/710647*15127^(5/8) 6308803797960641 a001 5473/12238*15127^(11/40) 6308803798033235 a001 4181/167761*9349^(23/38) 6308803798462615 a001 10946/1149851*15127^(27/40) 6308803799348205 a003 cos(Pi*43/110)-sin(Pi*28/67) 6308803799380839 a001 28657/9349*3571^(3/34) 6308803799520002 a001 10946/15127*5778^(1/4) 6308803799834536 a001 5473/930249*15127^(29/40) 6308803801021149 a001 4181/103682*9349^(21/38) 6308803801215569 a001 10946/3010349*15127^(31/40) 6308803801451750 a001 15456/13201*5778^(7/36) 6308803802593122 a001 10946/4870847*15127^(33/40) 6308803803972004 a001 5473/3940598*15127^(7/8) 6308803805183457 a001 4181/39603*9349^(17/38) 6308803805388579 a001 121393/103682*5778^(7/36) 6308803805506806 a001 11592/6119*5778^(5/36) 6308803805588922 m001 1/Sierpinski^2/Conway*ln(gamma) 6308803805802759 a001 196418/39603*2207^(1/32) 6308803805802990 r009 Re(z^3+c),c=-25/52+5/56*I,n=4 6308803805962955 a001 105937/90481*5778^(7/36) 6308803806046755 a001 832040/710647*5778^(7/36) 6308803806058981 a001 726103/620166*5778^(7/36) 6308803806066537 a001 1346269/1149851*5778^(7/36) 6308803806098546 a001 514229/439204*5778^(7/36) 6308803806317938 a001 196418/167761*5778^(7/36) 6308803806943403 a001 4181/64079*9349^(1/2) 6308803807821673 a001 75025/64079*5778^(7/36) 6308803809210410 a001 514229/103682*2207^(1/32) 6308803809707579 a001 1346269/271443*2207^(1/32) 6308803809824945 a001 2178309/439204*2207^(1/32) 6308803810014847 a001 75640/15251*2207^(1/32) 6308803810667084 a001 4181/15127*24476^(13/42) 6308803811032635 a007 Real Root Of -601*x^4+677*x^3-750*x^2-120*x+488 6308803811316453 a001 317811/64079*2207^(1/32) 6308803811346242 p001 sum(1/(430*n+239)/n/(24^n),n=1..infinity) 6308803811670029 a001 6765/9349*24476^(3/14) 6308803813002194 a001 1597/439204*3571^(31/34) 6308803813921203 a001 6765/9349*439204^(1/6) 6308803813926640 a001 6765/9349*7881196^(3/22) 6308803813926653 a001 4181/15127*141422324^(1/6) 6308803813926653 a001 4181/15127*73681302247^(1/8) 6308803813926654 a001 6765/9349*2537720636^(1/10) 6308803813926654 a001 6765/9349*14662949395604^(1/14) 6308803813926654 a001 6765/9349*192900153618^(1/12) 6308803813926654 a001 6765/9349*33385282^(1/8) 6308803813926927 a001 6765/9349*1860498^(3/20) 6308803813948059 a001 4181/15127*271443^(1/4) 6308803814036691 a001 6765/9349*103682^(3/16) 6308803814073369 a001 28657/39603*5778^(1/4) 6308803814749428 a001 6765/9349*39603^(9/44) 6308803815115104 a001 4181/15127*39603^(13/44) 6308803816196677 a001 75025/103682*5778^(1/4) 6308803816461570 a001 2255/13201*5778^(5/12) 6308803816506464 a001 196418/271443*5778^(1/4) 6308803816551661 a001 514229/710647*5778^(1/4) 6308803816558255 a001 1346269/1860498*5778^(1/4) 6308803816559217 a001 3524578/4870847*5778^(1/4) 6308803816559357 a001 9227465/12752043*5778^(1/4) 6308803816559378 a001 24157817/33385282*5778^(1/4) 6308803816559381 a001 63245986/87403803*5778^(1/4) 6308803816559381 a001 165580141/228826127*5778^(1/4) 6308803816559381 a001 433494437/599074578*5778^(1/4) 6308803816559381 a001 1134903170/1568397607*5778^(1/4) 6308803816559381 a001 2971215073/4106118243*5778^(1/4) 6308803816559381 a001 7778742049/10749957122*5778^(1/4) 6308803816559381 a001 20365011074/28143753123*5778^(1/4) 6308803816559381 a001 53316291173/73681302247*5778^(1/4) 6308803816559381 a001 139583862445/192900153618*5778^(1/4) 6308803816559381 a001 10610209857723/14662949395604*5778^(1/4) 6308803816559381 a001 591286729879/817138163596*5778^(1/4) 6308803816559381 a001 225851433717/312119004989*5778^(1/4) 6308803816559381 a001 86267571272/119218851371*5778^(1/4) 6308803816559381 a001 32951280099/45537549124*5778^(1/4) 6308803816559381 a001 12586269025/17393796001*5778^(1/4) 6308803816559381 a001 4807526976/6643838879*5778^(1/4) 6308803816559381 a001 1836311903/2537720636*5778^(1/4) 6308803816559381 a001 701408733/969323029*5778^(1/4) 6308803816559381 a001 267914296/370248451*5778^(1/4) 6308803816559382 a001 102334155/141422324*5778^(1/4) 6308803816559383 a001 39088169/54018521*5778^(1/4) 6308803816559391 a001 14930352/20633239*5778^(1/4) 6308803816559444 a001 5702887/7881196*5778^(1/4) 6308803816559812 a001 2178309/3010349*5778^(1/4) 6308803816562330 a001 832040/1149851*5778^(1/4) 6308803816579594 a001 317811/439204*5778^(1/4) 6308803816697922 a001 121393/167761*5778^(1/4) 6308803817508953 a001 46368/64079*5778^(1/4) 6308803818128425 a001 28657/24476*5778^(7/36) 6308803819012789 a001 17711/39603*5778^(11/36) 6308803820129970 a001 6765/9349*15127^(9/40) 6308803820237799 a001 121393/24476*2207^(1/32) 6308803820516625 a001 6765/24476*5778^(13/36) 6308803822771824 m005 (1/2*Pi-2/9)/(37/33+5/11*5^(1/2)) 6308803822886999 a001 4181/15127*15127^(13/40) 6308803823067845 a001 17711/24476*5778^(1/4) 6308803823535770 a001 4181/24476*9349^(15/38) 6308803825883957 a001 23184/51841*5778^(11/36) 6308803826359231 a001 46368/9349*3571^(1/34) 6308803826886447 a001 121393/271443*5778^(11/36) 6308803827032709 a001 317811/710647*5778^(11/36) 6308803827054048 a001 416020/930249*5778^(11/36) 6308803827057161 a001 2178309/4870847*5778^(11/36) 6308803827059085 a001 1346269/3010349*5778^(11/36) 6308803827067236 a001 514229/1149851*5778^(11/36) 6308803827123103 a001 98209/219602*5778^(11/36) 6308803827506020 a001 75025/167761*5778^(11/36) 6308803827977132 a001 17711/9349*9349^(5/38) 6308803828744183 m006 (1/5*exp(2*Pi)+2/5)/(5/6*ln(Pi)+3/4) 6308803830130573 a001 28657/64079*5778^(11/36) 6308803830886148 a001 521/8*17711^(13/56) 6308803831718342 a001 4181/7881196*24476^(13/14) 6308803832219447 a001 4181/4870847*24476^(37/42) 6308803832518773 a001 6765/64079*5778^(17/36) 6308803832721881 a001 4181/3010349*24476^(5/6) 6308803833211982 a001 4181/39603*24476^(17/42) 6308803833220834 a001 4181/1860498*24476^(11/14) 6308803833728901 a001 4181/1149851*24476^(31/42) 6308803834213109 a001 4181/710647*24476^(29/42) 6308803834759778 a001 4181/439204*24476^(9/14) 6308803835069993 a001 17711/64079*5778^(13/36) 6308803835142923 a001 4181/271443*24476^(25/42) 6308803835644622 a001 4181/103682*24476^(1/2) 6308803835954181 a001 4181/167761*24476^(23/42) 6308803836105762 a001 2255/1926*2207^(7/32) 6308803836220816 a001 17711/9349*24476^(5/42) 6308803836608550 a001 1292/2889*2207^(11/32) 6308803837193300 a001 46368/167761*5778^(13/36) 6308803837334970 a001 28657/9349*9349^(3/38) 6308803837452080 a001 17711/9349*167761^(1/10) 6308803837474496 a001 17711/9349*20633239^(1/14) 6308803837474496 a001 4181/39603*45537549124^(1/6) 6308803837474497 a001 17711/9349*2537720636^(1/18) 6308803837474497 a001 17711/9349*312119004989^(1/22) 6308803837474497 a001 17711/9349*28143753123^(1/20) 6308803837474497 a001 17711/9349*228826127^(1/16) 6308803837474506 a001 4181/39603*12752043^(1/4) 6308803837474649 a001 17711/9349*1860498^(1/12) 6308803837503087 a001 121393/439204*5778^(13/36) 6308803837548284 a001 317811/1149851*5778^(13/36) 6308803837554878 a001 832040/3010349*5778^(13/36) 6308803837556435 a001 1346269/4870847*5778^(13/36) 6308803837558954 a001 514229/1860498*5778^(13/36) 6308803837576218 a001 196418/710647*5778^(13/36) 6308803837694545 a001 75025/271443*5778^(13/36) 6308803837931594 a001 17711/9349*39603^(5/44) 6308803838269402 a001 4181/64079*24476^(19/42) 6308803838505577 a001 28657/103682*5778^(13/36) 6308803838731554 a001 10946/9349*9349^(7/38) 6308803839010608 a001 46368/9349*9349^(1/38) 6308803839028625 a001 4181/39603*39603^(17/44) 6308803840659345 a001 46368/9349*24476^(1/42) 6308803840893777 a001 6765/103682*5778^(19/36) 6308803840897361 a001 4181/103682*439204^(7/18) 6308803840910048 a001 4181/103682*7881196^(7/22) 6308803840910075 a001 4181/103682*20633239^(3/10) 6308803840910080 a001 4181/103682*17393796001^(3/14) 6308803840910080 a001 4181/103682*14662949395604^(1/6) 6308803840910080 a001 4181/103682*599074578^(1/4) 6308803840910082 a001 4181/103682*33385282^(7/24) 6308803840910718 a001 4181/103682*1860498^(7/20) 6308803840914765 a001 4181/103682*710647^(3/8) 6308803840920784 a001 17711/9349*15127^(1/8) 6308803840952891 a001 4181/167761*64079^(1/2) 6308803841001500 a001 46368/9349*39603^(1/44) 6308803841166835 a001 4181/103682*103682^(7/16) 6308803841295195 a001 4181/33385282*167761^(9/10) 6308803841299243 a001 4181/271443*167761^(1/2) 6308803841340729 a001 4181/3010349*167761^(7/10) 6308803841411320 a001 4181/271443*20633239^(5/14) 6308803841411325 a001 4181/271443*2537720636^(5/18) 6308803841411325 a001 4181/271443*312119004989^(5/22) 6308803841411325 a001 4181/271443*3461452808002^(5/24) 6308803841411325 a001 4181/271443*28143753123^(1/4) 6308803841411325 a001 4181/271443*228826127^(5/16) 6308803841412084 a001 4181/271443*1860498^(5/12) 6308803841466060 a001 4181/141422324*439204^(17/18) 6308803841469688 a001 4181/33385282*439204^(5/6) 6308803841473429 a001 4181/7881196*439204^(13/18) 6308803841475139 a001 4181/1860498*439204^(11/18) 6308803841482070 a001 4181/710647*1149851^(1/2) 6308803841484456 a001 4181/710647*1322157322203^(1/4) 6308803841495074 a001 4181/1860498*7881196^(1/2) 6308803841495125 a001 4181/1860498*312119004989^(3/10) 6308803841495125 a001 4181/1860498*1568397607^(3/8) 6308803841495128 a001 4181/1860498*33385282^(11/24) 6308803841496128 a001 4181/1860498*1860498^(11/20) 6308803841496681 a001 4181/4870847*54018521^(1/2) 6308803841496851 a001 4181/2537720636*7881196^(21/22) 6308803841496860 a001 4181/599074578*7881196^(19/22) 6308803841496863 a001 4181/370248451*7881196^(5/6) 6308803841496870 a001 4181/141422324*7881196^(17/22) 6308803841496873 a001 4181/33385282*7881196^(15/22) 6308803841496909 a001 4181/12752043*370248451^(1/2) 6308803841496933 a001 4181/33385282*20633239^(9/14) 6308803841496934 a001 4181/4106118243*20633239^(13/14) 6308803841496934 a001 4181/2537720636*20633239^(9/10) 6308803841496936 a001 4181/370248451*20633239^(11/14) 6308803841496937 a001 4181/87403803*20633239^(7/10) 6308803841496942 a001 4181/33385282*2537720636^(1/2) 6308803841496942 a001 4181/33385282*312119004989^(9/22) 6308803841496942 a001 4181/33385282*14662949395604^(5/14) 6308803841496942 a001 4181/33385282*192900153618^(5/12) 6308803841496942 a001 4181/33385282*28143753123^(9/20) 6308803841496942 a001 4181/33385282*228826127^(9/16) 6308803841496946 a001 4181/33385282*33385282^(5/8) 6308803841496947 a001 4181/87403803*17393796001^(1/2) 6308803841496947 a001 4181/87403803*14662949395604^(7/18) 6308803841496947 a001 4181/87403803*505019158607^(7/16) 6308803841496947 a001 4181/87403803*599074578^(7/12) 6308803841496947 a001 4181/4106118243*141422324^(5/6) 6308803841496948 a001 4181/228826127*119218851371^(1/2) 6308803841496948 a001 4181/599074578*817138163596^(1/2) 6308803841496948 a001 4181/1568397607*5600748293801^(1/2) 6308803841496948 a001 4181/4106118243*2537720636^(13/18) 6308803841496948 a001 4181/505019158607*2537720636^(17/18) 6308803841496948 a001 4181/192900153618*2537720636^(9/10) 6308803841496948 a001 4181/45537549124*2537720636^(5/6) 6308803841496948 a001 4181/4106118243*312119004989^(13/22) 6308803841496948 a001 4181/4106118243*3461452808002^(13/24) 6308803841496948 a001 4181/4106118243*73681302247^(5/8) 6308803841496948 a001 4181/4106118243*28143753123^(13/20) 6308803841496948 a001 4181/2139295485799*17393796001^(13/14) 6308803841496948 a001 4181/73681302247*17393796001^(11/14) 6308803841496948 a001 4181/505019158607*45537549124^(5/6) 6308803841496948 a001 4181/73681302247*14662949395604^(11/18) 6308803841496948 a001 4181/73681302247*505019158607^(11/16) 6308803841496948 a001 4181/192900153618*14662949395604^(9/14) 6308803841496948 a001 4181/14662949395604*312119004989^(9/10) 6308803841496948 a001 4181/5600748293801*312119004989^(19/22) 6308803841496948 a001 4181/192900153618*192900153618^(3/4) 6308803841496948 a001 4181/5600748293801*817138163596^(5/6) 6308803841496948 a001 4181/3461452808002*9062201101803^(3/4) 6308803841496948 a001 4181/14662949395604*14662949395604^(11/14) 6308803841496948 a001 4181/817138163596*1322157322203^(3/4) 6308803841496948 a001 4181/2139295485799*505019158607^(13/16) 6308803841496948 a001 4181/14662949395604*192900153618^(11/12) 6308803841496948 a001 4181/2139295485799*73681302247^(7/8) 6308803841496948 a001 4181/45537549124*312119004989^(15/22) 6308803841496948 a001 4181/45537549124*3461452808002^(5/8) 6308803841496948 a001 4181/505019158607*28143753123^(17/20) 6308803841496948 a001 4181/5600748293801*28143753123^(19/20) 6308803841496948 a001 4181/45537549124*28143753123^(3/4) 6308803841496948 a001 4181/10749957122*4106118243^(3/4) 6308803841496948 a001 4181/2537720636*2537720636^(7/10) 6308803841496948 a001 4181/2537720636*17393796001^(9/14) 6308803841496948 a001 4181/2537720636*14662949395604^(1/2) 6308803841496948 a001 4181/2537720636*505019158607^(9/16) 6308803841496948 a001 4181/2537720636*192900153618^(7/12) 6308803841496948 a001 4181/73681302247*1568397607^(7/8) 6308803841496948 a001 4181/969323029*2139295485799^(1/2) 6308803841496948 a001 4181/2537720636*599074578^(3/4) 6308803841496948 a001 4181/73681302247*599074578^(11/12) 6308803841496948 a001 4181/370248451*2537720636^(11/18) 6308803841496948 a001 4181/370248451*312119004989^(1/2) 6308803841496948 a001 4181/370248451*3461452808002^(11/24) 6308803841496948 a001 4181/370248451*28143753123^(11/20) 6308803841496948 a001 4181/370248451*1568397607^(5/8) 6308803841496948 a001 4181/4106118243*228826127^(13/16) 6308803841496948 a001 4181/45537549124*228826127^(15/16) 6308803841496948 a001 4181/370248451*228826127^(11/16) 6308803841496948 a001 4181/141422324*45537549124^(1/2) 6308803841496948 a001 4181/599074578*87403803^(3/4) 6308803841496950 a001 4181/54018521*6643838879^(1/2) 6308803841496952 a001 4181/141422324*33385282^(17/24) 6308803841496952 a001 4181/599074578*33385282^(19/24) 6308803841496953 a001 4181/2537720636*33385282^(7/8) 6308803841496953 a001 4181/10749957122*33385282^(23/24) 6308803841496963 a001 4181/20633239*969323029^(1/2) 6308803841496977 a001 4181/141422324*12752043^(3/4) 6308803841496989 a001 4181/7881196*7881196^(13/22) 6308803841497049 a001 4181/7881196*141422324^(1/2) 6308803841497049 a001 4181/7881196*73681302247^(3/8) 6308803841497052 a001 4181/7881196*33385282^(13/24) 6308803841497637 a001 4181/3010349*20633239^(1/2) 6308803841497644 a001 4181/3010349*2537720636^(7/18) 6308803841497644 a001 4181/3010349*17393796001^(5/14) 6308803841497644 a001 4181/3010349*312119004989^(7/22) 6308803841497644 a001 4181/3010349*14662949395604^(5/18) 6308803841497644 a001 4181/3010349*505019158607^(5/16) 6308803841497644 a001 4181/3010349*28143753123^(7/20) 6308803841497644 a001 4181/3010349*599074578^(5/12) 6308803841497644 a001 4181/3010349*228826127^(7/16) 6308803841498234 a001 4181/7881196*1860498^(13/20) 6308803841498309 a001 4181/33385282*1860498^(3/4) 6308803841498497 a001 4181/141422324*1860498^(17/20) 6308803841498619 a001 4181/370248451*1860498^(11/12) 6308803841498679 a001 4181/599074578*1860498^(19/20) 6308803841498707 a001 4181/3010349*1860498^(7/12) 6308803841501371 a001 4181/1149851*3010349^(1/2) 6308803841501719 a001 4181/1149851*9062201101803^(1/4) 6308803841505452 a001 4181/3010349*710647^(5/8) 6308803841507878 a001 4181/87403803*710647^(7/8) 6308803841513300 a001 4181/439204*439204^(1/2) 6308803841529611 a001 4181/439204*7881196^(9/22) 6308803841529653 a001 4181/439204*2537720636^(3/10) 6308803841529653 a001 4181/439204*14662949395604^(3/14) 6308803841529653 a001 4181/439204*192900153618^(1/4) 6308803841529655 a001 4181/439204*33385282^(3/8) 6308803841530473 a001 4181/439204*1860498^(9/20) 6308803841561266 a001 4181/7881196*271443^(3/4) 6308803841599338 a001 46368/9349*15127^(1/40) 6308803841721111 a001 4181/167761*4106118243^(1/4) 6308803841859766 a001 4181/439204*103682^(9/16) 6308803841898597 a001 4181/1860498*103682^(11/16) 6308803841973879 a001 4181/7881196*103682^(13/16) 6308803841985566 a001 1597/271443*3571^(29/34) 6308803842047131 a001 4181/33385282*103682^(15/16) 6308803842281180 a001 28657/9349*24476^(1/14) 6308803842829886 a001 4181/103682*39603^(21/44) 6308803843031572 a001 28657/9349*439204^(1/18) 6308803843033384 a001 28657/9349*7881196^(1/22) 6308803843033388 a001 4181/64079*817138163596^(1/6) 6308803843033388 a001 4181/64079*87403803^(1/4) 6308803843033389 a001 28657/9349*33385282^(1/24) 6308803843033480 a001 28657/9349*1860498^(1/20) 6308803843070068 a001 28657/9349*103682^(1/16) 6308803843307647 a001 28657/9349*39603^(3/44) 6308803843444997 a001 17711/103682*5778^(5/12) 6308803843696809 a001 4181/271443*39603^(25/44) 6308803843823757 a001 4181/167761*39603^(23/44) 6308803843997975 a001 4181/439204*39603^(27/44) 6308803844064469 a001 10946/39603*5778^(13/36) 6308803844135617 a001 4181/710647*39603^(29/44) 6308803844335720 a001 4181/1149851*39603^(31/44) 6308803844511964 a001 4181/1860498*39603^(3/4) 6308803844697322 a001 4181/3010349*39603^(35/44) 6308803844770355 a001 4181/64079*39603^(19/44) 6308803844879198 a001 4181/4870847*39603^(37/44) 6308803845101161 a001 28657/9349*15127^(3/40) 6308803846159237 a001 46368/9349*5778^(1/36) 6308803847381826 a001 15456/90481*5778^(5/12) 6308803847956201 a001 121393/710647*5778^(5/12) 6308803848040002 a001 105937/620166*5778^(5/12) 6308803848052228 a001 832040/4870847*5778^(5/12) 6308803848054012 a001 726103/4250681*5778^(5/12) 6308803848054272 a001 5702887/33385282*5778^(5/12) 6308803848054310 a001 4976784/29134601*5778^(5/12) 6308803848054315 a001 39088169/228826127*5778^(5/12) 6308803848054316 a001 34111385/199691526*5778^(5/12) 6308803848054316 a001 267914296/1568397607*5778^(5/12) 6308803848054316 a001 233802911/1368706081*5778^(5/12) 6308803848054316 a001 1836311903/10749957122*5778^(5/12) 6308803848054316 a001 1602508992/9381251041*5778^(5/12) 6308803848054316 a001 12586269025/73681302247*5778^(5/12) 6308803848054316 a001 10983760033/64300051206*5778^(5/12) 6308803848054316 a001 86267571272/505019158607*5778^(5/12) 6308803848054316 a001 75283811239/440719107401*5778^(5/12) 6308803848054316 a001 2504730781961/14662949395604*5778^(5/12) 6308803848054316 a001 139583862445/817138163596*5778^(5/12) 6308803848054316 a001 53316291173/312119004989*5778^(5/12) 6308803848054316 a001 20365011074/119218851371*5778^(5/12) 6308803848054316 a001 7778742049/45537549124*5778^(5/12) 6308803848054316 a001 2971215073/17393796001*5778^(5/12) 6308803848054316 a001 1134903170/6643838879*5778^(5/12) 6308803848054316 a001 433494437/2537720636*5778^(5/12) 6308803848054316 a001 165580141/969323029*5778^(5/12) 6308803848054317 a001 63245986/370248451*5778^(5/12) 6308803848054319 a001 24157817/141422324*5778^(5/12) 6308803848054333 a001 9227465/54018521*5778^(5/12) 6308803848054433 a001 3524578/20633239*5778^(5/12) 6308803848055114 a001 1346269/7881196*5778^(5/12) 6308803848059784 a001 514229/3010349*5778^(5/12) 6308803848091793 a001 196418/1149851*5778^(5/12) 6308803848119524 a001 5473/12238*5778^(11/36) 6308803848266822 a001 4181/24476*24476^(5/14) 6308803848311185 a001 75025/439204*5778^(5/12) 6308803849191871 a001 4181/39603*15127^(17/40) 6308803849814920 a001 28657/167761*5778^(5/12) 6308803850272712 a001 10946/9349*24476^(1/6) 6308803851960614 a001 4181/24476*167761^(3/10) 6308803852018779 a001 4181/24476*439204^(5/18) 6308803852027840 a001 4181/24476*7881196^(5/22) 6308803852027860 a001 4181/24476*20633239^(3/14) 6308803852027863 a001 10946/9349*20633239^(1/10) 6308803852027863 a001 4181/24476*2537720636^(1/6) 6308803852027863 a001 4181/24476*312119004989^(3/22) 6308803852027863 a001 4181/24476*28143753123^(3/20) 6308803852027863 a001 4181/24476*228826127^(3/16) 6308803852027864 a001 10946/9349*17393796001^(1/14) 6308803852027864 a001 10946/9349*14662949395604^(1/18) 6308803852027864 a001 10946/9349*505019158607^(1/16) 6308803852027864 a001 10946/9349*599074578^(1/12) 6308803852027865 a001 4181/24476*33385282^(5/24) 6308803852028319 a001 4181/24476*1860498^(1/4) 6308803852029426 a001 10946/9349*710647^(1/8) 6308803852203120 a001 615/15251*5778^(7/12) 6308803852211260 a001 4181/24476*103682^(5/16) 6308803852667800 a001 10946/9349*39603^(7/44) 6308803853399154 a001 4181/24476*39603^(15/44) 6308803854754340 a001 17711/167761*5778^(17/36) 6308803855384485 a001 4181/103682*15127^(21/40) 6308803856129278 a001 4181/64079*15127^(19/40) 6308803856852666 a001 10946/9349*15127^(7/40) 6308803857574031 a001 4181/167761*15127^(23/40) 6308803857998465 a001 11592/109801*5778^(17/36) 6308803858471777 a001 121393/1149851*5778^(17/36) 6308803858540832 a001 317811/3010349*5778^(17/36) 6308803858557134 a001 514229/4870847*5778^(17/36) 6308803858583511 a001 98209/930249*5778^(17/36) 6308803858642759 a001 4181/271443*15127^(5/8) 6308803858764300 a001 75025/710647*5778^(17/36) 6308803858780856 a001 28657/9349*5778^(1/12) 6308803860003445 a001 28657/271443*5778^(17/36) 6308803860121672 a001 10946/64079*5778^(5/12) 6308803860139602 a001 4181/439204*15127^(27/40) 6308803861169056 a001 6765/9349*5778^(1/4) 6308803861472919 a001 4181/710647*15127^(29/40) 6308803862366724 a001 4181/24476*15127^(3/8) 6308803862391645 a001 2255/90481*5778^(23/36) 6308803862586397 a001 6624/2161*2207^(3/32) 6308803862868698 a001 4181/1149851*15127^(31/40) 6308803863720276 a001 17711/9349*5778^(5/36) 6308803864240619 a001 4181/1860498*15127^(33/40) 6308803864942865 a001 17711/271443*5778^(19/36) 6308803865621652 a001 4181/3010349*15127^(7/8) 6308803866999205 a001 4181/4870847*15127^(37/40) 6308803868451580 a001 6624/101521*5778^(19/36) 6308803868496676 a001 5473/51841*5778^(17/36) 6308803868963494 a001 121393/1860498*5778^(19/36) 6308803869038182 a001 317811/4870847*5778^(19/36) 6308803869084341 a001 196418/3010349*5778^(19/36) 6308803869279875 a001 75025/1149851*5778^(19/36) 6308803870620085 a001 28657/439204*5778^(19/36) 6308803871397052 a001 1597/167761*3571^(27/34) 6308803873008285 a001 6765/439204*5778^(25/36) 6308803874746997 r005 Im(z^2+c),c=9/25+16/31*I,n=5 6308803875559505 a001 17711/439204*5778^(7/12) 6308803878967155 a001 46368/1149851*5778^(7/12) 6308803879464325 a001 121393/3010349*5778^(7/12) 6308803879536861 a001 317811/7881196*5778^(7/12) 6308803879547444 a001 75640/1875749*5778^(7/12) 6308803879548988 a001 2178309/54018521*5778^(7/12) 6308803879549213 a001 5702887/141422324*5778^(7/12) 6308803879549246 a001 14930352/370248451*5778^(7/12) 6308803879549251 a001 39088169/969323029*5778^(7/12) 6308803879549252 a001 9303105/230701876*5778^(7/12) 6308803879549252 a001 267914296/6643838879*5778^(7/12) 6308803879549252 a001 701408733/17393796001*5778^(7/12) 6308803879549252 a001 1836311903/45537549124*5778^(7/12) 6308803879549252 a001 4807526976/119218851371*5778^(7/12) 6308803879549252 a001 1144206275/28374454999*5778^(7/12) 6308803879549252 a001 32951280099/817138163596*5778^(7/12) 6308803879549252 a001 86267571272/2139295485799*5778^(7/12) 6308803879549252 a001 225851433717/5600748293801*5778^(7/12) 6308803879549252 a001 591286729879/14662949395604*5778^(7/12) 6308803879549252 a001 365435296162/9062201101803*5778^(7/12) 6308803879549252 a001 139583862445/3461452808002*5778^(7/12) 6308803879549252 a001 53316291173/1322157322203*5778^(7/12) 6308803879549252 a001 20365011074/505019158607*5778^(7/12) 6308803879549252 a001 7778742049/192900153618*5778^(7/12) 6308803879549252 a001 2971215073/73681302247*5778^(7/12) 6308803879549252 a001 1134903170/28143753123*5778^(7/12) 6308803879549252 a001 433494437/10749957122*5778^(7/12) 6308803879549252 a001 165580141/4106118243*5778^(7/12) 6308803879549252 a001 63245986/1568397607*5778^(7/12) 6308803879549254 a001 24157817/599074578*5778^(7/12) 6308803879549266 a001 9227465/228826127*5778^(7/12) 6308803879549352 a001 3524578/87403803*5778^(7/12) 6308803879549942 a001 1346269/33385282*5778^(7/12) 6308803879553984 a001 514229/12752043*5778^(7/12) 6308803879581691 a001 196418/4870847*5778^(7/12) 6308803879771593 a001 75025/1860498*5778^(7/12) 6308803879806019 a001 10946/167761*5778^(19/36) 6308803881073199 a001 28657/710647*5778^(7/12) 6308803881385608 a001 46368/9349*2207^(1/32) 6308803881759056 a001 305/51841*1364^(29/30) 6308803882165679 a001 4181/15127*5778^(13/36) 6308803883461400 a001 6765/710647*5778^(3/4) 6308803885915173 a001 1597/5778*3571^(13/34) 6308803886012619 a001 17711/710647*5778^(23/36) 6308803886635485 a001 121393/39603*2207^(3/32) 6308803888771955 a001 10946/9349*5778^(7/36) 6308803889458873 a001 2576/103361*5778^(23/36) 6308803889961675 a001 121393/4870847*5778^(23/36) 6308803889994545 a001 10946/271443*5778^(7/12) 6308803890144200 a001 317811/103682*2207^(3/32) 6308803890272423 a001 75025/3010349*5778^(23/36) 6308803890656115 a001 832040/271443*2207^(3/32) 6308803890730802 a001 311187/101521*2207^(3/32) 6308803890776961 a001 1346269/439204*2207^(3/32) 6308803890972495 a001 514229/167761*2207^(3/32) 6308803891588775 a001 28657/1149851*5778^(23/36) 6308803892312705 a001 196418/64079*2207^(3/32) 6308803892782716 a001 4181/9349*9349^(11/38) 6308803893976975 a001 6765/1149851*5778^(29/36) 6308803894345990 m001 (Pi^(1/2))^(Pi*2^(1/2)/GAMMA(3/4))-Psi(2,1/3) 6308803896528195 a001 17711/1149851*5778^(25/36) 6308803897016806 a001 4870847/1597*233^(2/15) 6308803898938920 a001 28657/5778*843^(1/28) 6308803899687720 a001 1597/103682*3571^(25/34) 6308803899959704 a001 46368/3010349*5778^(25/36) 6308803900611184 a001 5473/219602*5778^(23/36) 6308803900769773 a001 75025/4870847*5778^(25/36) 6308803901498639 a001 75025/24476*2207^(3/32) 6308803902080493 a001 28657/1860498*5778^(25/36) 6308803904468693 a001 55/15126*5778^(31/36) 6308803907019913 a001 17711/1860498*5778^(3/4) 6308803910457053 a001 46368/4870847*5778^(3/4) 6308803910918821 a001 4181/9349*24476^(11/42) 6308803910958525 a001 121393/12752043*5778^(3/4) 6308803911031689 a001 317811/33385282*5778^(3/4) 6308803911042364 a001 832040/87403803*5778^(3/4) 6308803911043921 a001 46347/4868641*5778^(3/4) 6308803911044148 a001 5702887/599074578*5778^(3/4) 6308803911044181 a001 14930352/1568397607*5778^(3/4) 6308803911044186 a001 39088169/4106118243*5778^(3/4) 6308803911044187 a001 102334155/10749957122*5778^(3/4) 6308803911044187 a001 267914296/28143753123*5778^(3/4) 6308803911044187 a001 701408733/73681302247*5778^(3/4) 6308803911044187 a001 1836311903/192900153618*5778^(3/4) 6308803911044187 a001 102287808/10745088481*5778^(3/4) 6308803911044187 a001 12586269025/1322157322203*5778^(3/4) 6308803911044187 a001 32951280099/3461452808002*5778^(3/4) 6308803911044187 a001 86267571272/9062201101803*5778^(3/4) 6308803911044187 a001 225851433717/23725150497407*5778^(3/4) 6308803911044187 a001 139583862445/14662949395604*5778^(3/4) 6308803911044187 a001 53316291173/5600748293801*5778^(3/4) 6308803911044187 a001 20365011074/2139295485799*5778^(3/4) 6308803911044187 a001 7778742049/817138163596*5778^(3/4) 6308803911044187 a001 2971215073/312119004989*5778^(3/4) 6308803911044187 a001 1134903170/119218851371*5778^(3/4) 6308803911044187 a001 433494437/45537549124*5778^(3/4) 6308803911044187 a001 165580141/17393796001*5778^(3/4) 6308803911044187 a001 63245986/6643838879*5778^(3/4) 6308803911044189 a001 24157817/2537720636*5778^(3/4) 6308803911044202 a001 9227465/969323029*5778^(3/4) 6308803911044289 a001 3524578/370248451*5778^(3/4) 6308803911044884 a001 1346269/141422324*5778^(3/4) 6308803911048961 a001 514229/54018521*5778^(3/4) 6308803911064299 a001 10946/710647*5778^(25/36) 6308803911076907 a001 196418/20633239*5778^(3/4) 6308803911268452 a001 75025/7881196*5778^(3/4) 6308803912581323 a001 28657/3010349*5778^(3/4) 6308803913676901 a001 4181/9349*7881196^(1/6) 6308803913676918 a001 4181/9349*312119004989^(1/10) 6308803913676918 a001 4181/9349*1568397607^(1/8) 6308803914682531 a001 4181/9349*39603^(1/4) 6308803914969523 a001 6765/3010349*5778^(11/12) 6308803917520743 a001 17711/3010349*5778^(29/36) 6308803921258749 a001 4181/9349*15127^(11/40) 6308803921579874 a001 10946/1149851*5778^(3/4) 6308803923078673 a001 28657/4870847*5778^(29/36) 6308803925466873 a001 6765/4870847*5778^(35/36) 6308803926460748 a003 cos(Pi*25/69)+cos(Pi*35/81) 6308803926710146 a001 4181/39603*5778^(17/36) 6308803928018093 a001 17711/4870847*5778^(31/36) 6308803930765202 a001 4181/24476*5778^(5/12) 6308803930912727 a001 1597/64079*3571^(23/34) 6308803932071592 a001 5473/930249*5778^(29/36) 6308803935484482 a001 10946/3571*1364^(1/10) 6308803938516772 a001 89/39604*5778^(11/12) 6308803941952270 a001 46368/20633239*5778^(11/12) 6308803942453502 a001 121393/54018521*5778^(11/12) 6308803942526631 a001 317811/141422324*5778^(11/12) 6308803942537300 a001 832040/370248451*5778^(11/12) 6308803942538857 a001 2178309/969323029*5778^(11/12) 6308803942539084 a001 5702887/2537720636*5778^(11/12) 6308803942539117 a001 14930352/6643838879*5778^(11/12) 6308803942539122 a001 39088169/17393796001*5778^(11/12) 6308803942539123 a001 102334155/45537549124*5778^(11/12) 6308803942539123 a001 267914296/119218851371*5778^(11/12) 6308803942539123 a001 3524667/1568437211*5778^(11/12) 6308803942539123 a001 1836311903/817138163596*5778^(11/12) 6308803942539123 a001 4807526976/2139295485799*5778^(11/12) 6308803942539123 a001 12586269025/5600748293801*5778^(11/12) 6308803942539123 a001 32951280099/14662949395604*5778^(11/12) 6308803942539123 a001 53316291173/23725150497407*5778^(11/12) 6308803942539123 a001 20365011074/9062201101803*5778^(11/12) 6308803942539123 a001 7778742049/3461452808002*5778^(11/12) 6308803942539123 a001 2971215073/1322157322203*5778^(11/12) 6308803942539123 a001 1134903170/505019158607*5778^(11/12) 6308803942539123 a001 433494437/192900153618*5778^(11/12) 6308803942539123 a001 165580141/73681302247*5778^(11/12) 6308803942539123 a001 63245986/28143753123*5778^(11/12) 6308803942539125 a001 24157817/10749957122*5778^(11/12) 6308803942539137 a001 9227465/4106118243*5778^(11/12) 6308803942539224 a001 3524578/1568397607*5778^(11/12) 6308803942539819 a001 1346269/599074578*5778^(11/12) 6308803942543894 a001 514229/228826127*5778^(11/12) 6308803942571827 a001 196418/87403803*5778^(11/12) 6308803942572423 a001 10946/3010349*5778^(31/36) 6308803942763281 a001 75025/33385282*5778^(11/12) 6308803942767350 a001 4181/64079*5778^(19/36) 6308803944075524 a001 28657/12752043*5778^(11/12) 6308803944118606 a001 2584/3571*3571^(9/34) 6308803945160918 m001 (sin(1)+Backhouse)/(-FeigenbaumC+Porter) 6308803945660760 a001 28657/15127*2207^(5/32) 6308803949634969 r005 Re(z^2+c),c=-10/19+23/49*I,n=16 6308803951142354 a001 4181/103682*5778^(7/12) 6308803953069773 a001 10946/4870847*5778^(11/12) 6308803954455535 a001 1597/39603*3571^(21/34) 6308803962451697 a001 4181/167761*5778^(23/36) 6308803964459971 a001 28657/9349*2207^(3/32) 6308803967896327 a001 75025/39603*2207^(5/32) 6308803969797143 p001 sum((-1)^n/(530*n+123)/n/(24^n),n=1..infinity) 6308803971140453 a001 98209/51841*2207^(5/32) 6308803971417634 a001 4181/9349*5778^(11/36) 6308803971521258 r005 Re(z^2+c),c=-16/15+1/45*I,n=12 6308803971613764 a001 514229/271443*2207^(5/32) 6308803971682819 a001 1346269/710647*2207^(5/32) 6308803971699121 a001 2178309/1149851*2207^(5/32) 6308803971725498 a001 208010/109801*2207^(5/32) 6308803971906287 a001 317811/167761*2207^(5/32) 6308803972640223 a001 4181/271443*5778^(25/36) 6308803973145433 a001 121393/64079*2207^(5/32) 6308803981638664 a001 11592/6119*2207^(5/32) 6308803983256862 a001 4181/439204*5778^(3/4) 6308803989111092 a001 1597/15127*3571^(1/2) 6308803993329936 a007 Real Root Of 44*x^4-883*x^3-430*x^2+3*x+384 6308803993709977 a001 4181/710647*5778^(29/36) 6308803998110603 a001 1597/24476*3571^(19/34) 6308804000161031 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=20 6308804004225553 a001 4181/1149851*5778^(31/36) 6308804006179834 r002 14th iterates of z^2 + 6308804014717271 a001 4181/1860498*5778^(11/12) 6308804016807083 a001 4181/5778*2207^(9/32) 6308804021052924 a001 17711/15127*2207^(7/32) 6308804025218102 a001 4181/3010349*5778^(35/36) 6308804034674883 m001 (MertensB1+ZetaP(2))/(Zeta(1,-1)-cos(1/12*Pi)) 6308804035325718 m006 (5/6/Pi-3)/(1/2*Pi^2-3/5) 6308804039852135 a001 17711/9349*2207^(5/32) 6308804048036352 a001 15456/13201*2207^(7/32) 6308804050383076 a001 1597/5778*9349^(13/38) 6308804051973181 a001 121393/103682*2207^(7/32) 6308804052547557 a001 105937/90481*2207^(7/32) 6308804052631357 a001 832040/710647*2207^(7/32) 6308804052643583 a001 726103/620166*2207^(7/32) 6308804052651140 a001 1346269/1149851*2207^(7/32) 6308804052683149 a001 514229/439204*2207^(7/32) 6308804052902540 a001 196418/167761*2207^(7/32) 6308804054406275 a001 75025/64079*2207^(7/32) 6308804057981001 a001 2584/3571*9349^(9/38) 6308804059025963 a001 75025/15127*843^(1/28) 6308804064713028 a001 28657/24476*2207^(7/32) 6308804066401366 a003 sin(Pi*2/79)*sin(Pi*33/113) 6308804071816655 a001 1597/5778*24476^(13/42) 6308804072819632 a001 2584/3571*24476^(3/14) 6308804074642013 a001 1597/5778*64079^(13/46) 6308804075070806 a001 2584/3571*439204^(1/6) 6308804075076224 a001 1597/5778*141422324^(1/6) 6308804075076224 a001 1597/5778*73681302247^(1/8) 6308804075076243 a001 2584/3571*7881196^(3/22) 6308804075076257 a001 2584/3571*2537720636^(1/10) 6308804075076257 a001 2584/3571*14662949395604^(1/14) 6308804075076257 a001 2584/3571*192900153618^(1/12) 6308804075076258 a001 2584/3571*33385282^(1/8) 6308804075076531 a001 2584/3571*1860498^(3/20) 6308804075097630 a001 1597/5778*271443^(1/4) 6308804075186295 a001 2584/3571*103682^(3/16) 6308804075899031 a001 2584/3571*39603^(9/44) 6308804076264676 a001 1597/5778*39603^(13/44) 6308804076975729 a003 cos(Pi*1/32)-sin(Pi*34/89) 6308804081279574 a001 2584/3571*15127^(9/40) 6308804082382349 a001 196418/39603*843^(1/28) 6308804084036570 a001 1597/5778*15127^(13/40) 6308804085789999 a001 514229/103682*843^(1/28) 6308804086287169 a001 1346269/271443*843^(1/28) 6308804086404535 a001 2178309/439204*843^(1/28) 6308804086594437 a001 75640/15251*843^(1/28) 6308804087896043 a001 317811/64079*843^(1/28) 6308804091060129 a007 Real Root Of -202*x^4+837*x^3-619*x^2-665*x+69 6308804095693499 a007 Real Root Of -905*x^4+256*x^3-232*x^2+577*x+664 6308804096817389 a001 121393/24476*843^(1/28) 6308804109124937 r005 Re(z^2+c),c=-9/19+3/5*I,n=17 6308804109943906 a001 610/64079*1364^(9/10) 6308804116557349 a001 10946/15127*2207^(9/32) 6308804116912741 r005 Im(z^2+c),c=-79/78+25/62*I,n=6 6308804117963061 a001 1597/9349*3571^(15/34) 6308804122318662 a001 2584/3571*5778^(1/4) 6308804131110717 a001 28657/39603*2207^(9/32) 6308804131555648 a001 4181/2207*843^(5/28) 6308804133234025 a001 75025/103682*2207^(9/32) 6308804133543812 a001 196418/271443*2207^(9/32) 6308804133589009 a001 514229/710647*2207^(9/32) 6308804133595603 a001 1346269/1860498*2207^(9/32) 6308804133597160 a001 2178309/3010349*2207^(9/32) 6308804133599678 a001 832040/1149851*2207^(9/32) 6308804133616942 a001 317811/439204*2207^(9/32) 6308804133735270 a001 121393/167761*2207^(9/32) 6308804134546301 a001 46368/64079*2207^(9/32) 6308804135356561 a001 10946/9349*2207^(7/32) 6308804140105193 a001 17711/24476*2207^(9/32) 6308804143315253 a001 1597/5778*5778^(13/36) 6308804146992657 a001 17711/3571*1364^(1/30) 6308804149423783 k002 Champernowne real with 97*n^2+11*n-102 6308804157093112 h001 (9/10*exp(2)+1/4)/(1/9*exp(2)+3/11) 6308804157965201 a001 46368/9349*843^(1/28) 6308804159407195 a001 6765/15127*2207^(11/32) 6308804159909982 a001 2584/15127*2207^(15/32) 6308804163721334 a001 6765/3571*3571^(5/34) 6308804164559061 r005 Im(z^2+c),c=-18/29+7/60*I,n=40 6308804165921988 a007 Real Root Of -511*x^4+452*x^3-329*x^2-45*x+297 6308804178206406 a001 6765/9349*2207^(9/32) 6308804178709194 a001 2584/9349*2207^(13/32) 6308804183074633 a001 141/46*123^(3/20) 6308804193763521 a001 1597/1860498*9349^(37/38) 6308804195929252 l006 ln(3752/7051) 6308804197569061 a001 1597/1149851*9349^(35/38) 6308804201350743 a001 1597/710647*9349^(33/38) 6308804204184507 a001 1597/15127*9349^(17/38) 6308804205194886 a001 1597/439204*9349^(31/38) 6308804206030612 m001 FransenRobinson*(5^(1/2)+Trott) 6308804206502884 a001 17711/39603*2207^(11/32) 6308804208875504 a001 1597/271443*9349^(29/38) 6308804212984237 a001 1597/167761*9349^(27/38) 6308804213374052 a001 23184/51841*2207^(11/32) 6308804214376542 a001 121393/271443*2207^(11/32) 6308804214522803 a001 317811/710647*2207^(11/32) 6308804214544143 a001 416020/930249*2207^(11/32) 6308804214547256 a001 2178309/4870847*2207^(11/32) 6308804214549180 a001 1346269/3010349*2207^(11/32) 6308804214557331 a001 514229/1149851*2207^(11/32) 6308804214613198 a001 98209/219602*2207^(11/32) 6308804214996115 a001 75025/167761*2207^(11/32) 6308804215972152 a001 1597/103682*9349^(25/38) 6308804217620668 a001 28657/64079*2207^(11/32) 6308804218943338 a003 cos(Pi*12/91)-cos(Pi*20/49) 6308804220134459 a001 1597/39603*9349^(21/38) 6308804221894405 a001 1597/64079*9349^(23/38) 6308804226978222 a001 6765/3571*9349^(5/38) 6308804230924248 a001 10946/3571*3571^(3/34) 6308804232213034 a001 1597/15127*24476^(17/42) 6308804234369903 a001 4181/3571*3571^(7/34) 6308804235221906 a001 6765/3571*24476^(5/42) 6308804235609620 a001 5473/12238*2207^(11/32) 6308804235907733 a001 1597/15127*64079^(17/46) 6308804236453170 a001 6765/3571*167761^(1/10) 6308804236475548 a001 1597/15127*45537549124^(1/6) 6308804236475558 a001 1597/15127*12752043^(1/4) 6308804236475586 a001 6765/3571*20633239^(1/14) 6308804236475587 a001 6765/3571*2537720636^(1/18) 6308804236475587 a001 6765/3571*312119004989^(1/22) 6308804236475587 a001 6765/3571*28143753123^(1/20) 6308804236475587 a001 6765/3571*228826127^(1/16) 6308804236475739 a001 6765/3571*1860498^(1/12) 6308804236932683 a001 6765/3571*39603^(5/44) 6308804238029677 a001 1597/15127*39603^(17/44) 6308804238486774 a001 1597/24476*9349^(1/2) 6308804239921874 a001 6765/3571*15127^(1/8) 6308804242547412 m001 (GAMMA(2/3)-ln(Pi))/(GAMMA(11/12)-Sarnak) 6308804245472581 a001 17711/3571*3571^(1/34) 6308804248192924 a001 1597/15127*15127^(17/40) 6308804251830841 a007 Real Root Of 289*x^4-29*x^3-68*x^2-598*x+38 6308804253067627 a007 Real Root Of -733*x^4+529*x^3+232*x^2-486*x-150 6308804253765399 a001 1597/4870847*24476^(41/42) 6308804254267833 a001 1597/3010349*24476^(13/14) 6308804254682421 m001 (Robbin+Thue)/(sin(1/5*Pi)+MasserGramainDelta) 6308804254757934 a001 1597/39603*24476^(1/2) 6308804254766786 a001 1597/1860498*24476^(37/42) 6308804255274853 a001 1597/1149851*24476^(5/6) 6308804255759061 a001 1597/710647*24476^(11/14) 6308804256305731 a001 1597/439204*24476^(31/42) 6308804256688875 a001 1597/271443*24476^(29/42) 6308804257190574 a001 1597/103682*24476^(25/42) 6308804257500134 a001 1597/167761*24476^(9/14) 6308804258123958 a001 17711/3571*9349^(1/38) 6308804259321974 a001 1597/39603*64079^(21/46) 6308804259772695 a001 17711/3571*24476^(1/42) 6308804259815354 a001 1597/64079*24476^(23/42) 6308804260010674 a001 1597/39603*439204^(7/18) 6308804260023360 a001 1597/39603*7881196^(7/22) 6308804260023388 a001 1597/39603*20633239^(3/10) 6308804260023393 a001 1597/39603*17393796001^(3/14) 6308804260023393 a001 1597/39603*14662949395604^(1/6) 6308804260023393 a001 1597/39603*599074578^(1/4) 6308804260023394 a001 1597/39603*33385282^(7/24) 6308804260024031 a001 1597/39603*1860498^(7/20) 6308804260028077 a001 1597/39603*710647^(3/8) 6308804260114851 a001 17711/3571*39603^(1/44) 6308804260280147 a001 1597/39603*103682^(7/16) 6308804260712689 a001 17711/3571*15127^(1/40) 6308804261943199 a001 1597/39603*39603^(21/44) 6308804262505272 m002 -Pi-Pi^3+Pi^4-2*Csch[Pi] 6308804262623955 a001 1597/103682*64079^(25/46) 6308804262721368 a001 6765/3571*5778^(5/36) 6308804262881586 a001 1597/1149851*64079^(35/46) 6308804262931124 a001 1597/710647*64079^(33/46) 6308804262991597 a001 1597/271443*64079^(29/46) 6308804263043123 a001 1597/439204*64079^(31/46) 6308804263346895 a001 1597/103682*167761^(1/2) 6308804263368185 a001 1597/167761*64079^(27/46) 6308804263458972 a001 1597/103682*20633239^(5/14) 6308804263458977 a001 1597/103682*2537720636^(5/18) 6308804263458977 a001 1597/103682*312119004989^(5/22) 6308804263458977 a001 1597/103682*3461452808002^(5/24) 6308804263458977 a001 1597/103682*28143753123^(1/4) 6308804263458977 a001 1597/103682*228826127^(5/16) 6308804263459736 a001 1597/103682*1860498^(5/12) 6308804263844059 a001 1597/12752043*167761^(9/10) 6308804263893702 a001 1597/1149851*167761^(7/10) 6308804263957836 a001 1597/271443*1149851^(1/2) 6308804263960222 a001 1597/271443*1322157322203^(1/4) 6308804264013366 a001 1597/710647*439204^(11/18) 6308804264014959 a001 1597/54018521*439204^(17/18) 6308804264018552 a001 1597/12752043*439204^(5/6) 6308804264022921 a001 1597/3010349*439204^(13/18) 6308804264033302 a001 1597/710647*7881196^(1/2) 6308804264033353 a001 1597/710647*312119004989^(3/10) 6308804264033353 a001 1597/710647*1568397607^(3/8) 6308804264033355 a001 1597/710647*33385282^(11/24) 6308804264034355 a001 1597/710647*1860498^(11/20) 6308804264044021 a001 1597/1860498*54018521^(1/2) 6308804264045579 a001 1597/4870847*370248451^(1/2) 6308804264045737 a001 1597/12752043*7881196^(15/22) 6308804264045748 a001 1597/969323029*7881196^(21/22) 6308804264045757 a001 1597/228826127*7881196^(19/22) 6308804264045760 a001 1597/141422324*7881196^(5/6) 6308804264045768 a001 1597/54018521*7881196^(17/22) 6308804264045796 a001 1597/12752043*20633239^(9/14) 6308804264045806 a001 1597/12752043*2537720636^(1/2) 6308804264045806 a001 1597/12752043*312119004989^(9/22) 6308804264045806 a001 1597/12752043*14662949395604^(5/14) 6308804264045806 a001 1597/12752043*192900153618^(5/12) 6308804264045806 a001 1597/12752043*28143753123^(9/20) 6308804264045806 a001 1597/12752043*228826127^(9/16) 6308804264045809 a001 1597/12752043*33385282^(5/8) 6308804264045829 a001 1597/33385282*20633239^(7/10) 6308804264045831 a001 1597/1568397607*20633239^(13/14) 6308804264045831 a001 1597/969323029*20633239^(9/10) 6308804264045833 a001 1597/141422324*20633239^(11/14) 6308804264045839 a001 1597/33385282*17393796001^(1/2) 6308804264045839 a001 1597/33385282*14662949395604^(7/18) 6308804264045839 a001 1597/33385282*505019158607^(7/16) 6308804264045839 a001 1597/33385282*599074578^(7/12) 6308804264045844 a001 1597/87403803*119218851371^(1/2) 6308804264045844 a001 1597/1568397607*141422324^(5/6) 6308804264045845 a001 1597/228826127*817138163596^(1/2) 6308804264045845 a001 1597/599074578*5600748293801^(1/2) 6308804264045845 a001 1597/1568397607*2537720636^(13/18) 6308804264045845 a001 1597/1568397607*312119004989^(13/22) 6308804264045845 a001 1597/1568397607*3461452808002^(13/24) 6308804264045845 a001 1597/1568397607*73681302247^(5/8) 6308804264045845 a001 1597/1568397607*28143753123^(13/20) 6308804264045845 a001 1597/192900153618*2537720636^(17/18) 6308804264045845 a001 1597/73681302247*2537720636^(9/10) 6308804264045845 a001 1597/17393796001*2537720636^(5/6) 6308804264045845 a001 1597/4106118243*4106118243^(3/4) 6308804264045845 a001 1597/28143753123*17393796001^(11/14) 6308804264045845 a001 1597/817138163596*17393796001^(13/14) 6308804264045845 a001 1597/28143753123*14662949395604^(11/18) 6308804264045845 a001 1597/28143753123*505019158607^(11/16) 6308804264045845 a001 1597/192900153618*45537549124^(5/6) 6308804264045845 a001 1597/73681302247*14662949395604^(9/14) 6308804264045845 a001 1597/73681302247*192900153618^(3/4) 6308804264045845 a001 1597/192900153618*312119004989^(17/22) 6308804264045845 a001 1597/192900153618*3461452808002^(17/24) 6308804264045845 a001 1597/5600748293801*312119004989^(9/10) 6308804264045845 a001 1597/2139295485799*312119004989^(19/22) 6308804264045845 a001 1597/1322157322203*9062201101803^(3/4) 6308804264045845 a001 1597/23725150497407*14662949395604^(5/6) 6308804264045845 a001 1597/2139295485799*3461452808002^(19/24) 6308804264045845 a001 1597/817138163596*14662949395604^(13/18) 6308804264045845 a001 1597/23725150497407*505019158607^(15/16) 6308804264045845 a001 1597/312119004989*1322157322203^(3/4) 6308804264045845 a001 1597/5600748293801*192900153618^(11/12) 6308804264045845 a001 1597/817138163596*73681302247^(7/8) 6308804264045845 a001 1597/192900153618*28143753123^(17/20) 6308804264045845 a001 1597/2139295485799*28143753123^(19/20) 6308804264045845 a001 1597/17393796001*312119004989^(15/22) 6308804264045845 a001 1597/17393796001*3461452808002^(5/8) 6308804264045845 a001 1597/17393796001*28143753123^(3/4) 6308804264045845 a001 1597/28143753123*1568397607^(7/8) 6308804264045845 a001 1597/969323029*2537720636^(7/10) 6308804264045845 a001 1597/969323029*17393796001^(9/14) 6308804264045845 a001 1597/969323029*14662949395604^(1/2) 6308804264045845 a001 1597/969323029*505019158607^(9/16) 6308804264045845 a001 1597/969323029*192900153618^(7/12) 6308804264045845 a001 1597/28143753123*599074578^(11/12) 6308804264045845 a001 1597/969323029*599074578^(3/4) 6308804264045845 a001 1597/370248451*2139295485799^(1/2) 6308804264045845 a001 1597/1568397607*228826127^(13/16) 6308804264045845 a001 1597/17393796001*228826127^(15/16) 6308804264045845 a001 1597/141422324*2537720636^(11/18) 6308804264045845 a001 1597/141422324*312119004989^(1/2) 6308804264045845 a001 1597/141422324*3461452808002^(11/24) 6308804264045845 a001 1597/141422324*28143753123^(11/20) 6308804264045845 a001 1597/141422324*1568397607^(5/8) 6308804264045845 a001 1597/141422324*228826127^(11/16) 6308804264045845 a001 1597/228826127*87403803^(3/4) 6308804264045847 a001 1597/54018521*45537549124^(1/2) 6308804264045849 a001 1597/228826127*33385282^(19/24) 6308804264045850 a001 1597/969323029*33385282^(7/8) 6308804264045850 a001 1597/4106118243*33385282^(23/24) 6308804264045851 a001 1597/54018521*33385282^(17/24) 6308804264045860 a001 1597/20633239*6643838879^(1/2) 6308804264045876 a001 1597/54018521*12752043^(3/4) 6308804264045946 a001 1597/7881196*969323029^(1/2) 6308804264046481 a001 1597/3010349*7881196^(13/22) 6308804264046541 a001 1597/3010349*141422324^(1/2) 6308804264046541 a001 1597/3010349*73681302247^(3/8) 6308804264046544 a001 1597/3010349*33385282^(13/24) 6308804264047173 a001 1597/12752043*1860498^(3/4) 6308804264047396 a001 1597/54018521*1860498^(17/20) 6308804264047516 a001 1597/141422324*1860498^(11/12) 6308804264047576 a001 1597/228826127*1860498^(19/20) 6308804264047726 a001 1597/3010349*1860498^(13/20) 6308804264050609 a001 1597/1149851*20633239^(1/2) 6308804264050616 a001 1597/1149851*2537720636^(7/18) 6308804264050616 a001 1597/1149851*17393796001^(5/14) 6308804264050616 a001 1597/1149851*312119004989^(7/22) 6308804264050616 a001 1597/1149851*14662949395604^(5/18) 6308804264050616 a001 1597/1149851*505019158607^(5/16) 6308804264050616 a001 1597/1149851*28143753123^(7/20) 6308804264050616 a001 1597/1149851*599074578^(5/12) 6308804264050616 a001 1597/1149851*228826127^(7/16) 6308804264051680 a001 1597/1149851*1860498^(7/12) 6308804264056770 a001 1597/33385282*710647^(7/8) 6308804264058424 a001 1597/1149851*710647^(5/8) 6308804264078202 a001 1597/439204*3010349^(1/2) 6308804264078550 a001 1597/439204*9062201101803^(1/4) 6308804264110758 a001 1597/3010349*271443^(3/4) 6308804264253656 a001 1597/167761*439204^(1/2) 6308804264269967 a001 1597/167761*7881196^(9/22) 6308804264270008 a001 1597/167761*2537720636^(3/10) 6308804264270008 a001 1597/167761*14662949395604^(3/14) 6308804264270008 a001 1597/167761*192900153618^(1/4) 6308804264270010 a001 1597/167761*33385282^(3/8) 6308804264270828 a001 1597/167761*1860498^(9/20) 6308804264436824 a001 1597/710647*103682^(11/16) 6308804264523371 a001 1597/3010349*103682^(13/16) 6308804264595995 a001 1597/12752043*103682^(15/16) 6308804264600121 a001 1597/167761*103682^(9/16) 6308804264814065 a001 1597/64079*64079^(1/2) 6308804265272588 a001 17711/3571*5778^(1/36) 6308804265582285 a001 1597/64079*4106118243^(1/4) 6308804265744461 a001 1597/103682*39603^(25/44) 6308804266611383 a001 1597/271443*39603^(29/44) 6308804266738331 a001 1597/167761*39603^(27/44) 6308804266912550 a001 1597/439204*39603^(31/44) 6308804267050192 a001 1597/710647*39603^(3/4) 6308804267250294 a001 1597/1149851*39603^(35/44) 6308804267426539 a001 1597/1860498*39603^(37/44) 6308804267611896 a001 1597/3010349*39603^(39/44) 6308804267684930 a001 1597/64079*39603^(23/44) 6308804267793773 a001 1597/4870847*39603^(41/44) 6308804268878381 a001 10946/3571*9349^(3/38) 6308804269812775 a001 1597/24476*24476^(19/42) 6308804273824592 a001 10946/3571*24476^(1/14) 6308804273942145 a001 1597/24476*64079^(19/46) 6308804274497798 a001 1597/39603*15127^(21/40) 6308804274574983 a001 10946/3571*439204^(1/18) 6308804274576761 a001 1597/24476*817138163596^(1/6) 6308804274576761 a001 1597/24476*87403803^(1/4) 6308804274576795 a001 10946/3571*7881196^(1/22) 6308804274576800 a001 10946/3571*33385282^(1/24) 6308804274576891 a001 10946/3571*1860498^(1/20) 6308804274613479 a001 10946/3571*103682^(1/16) 6308804274851058 a001 10946/3571*39603^(3/44) 6308804276313729 a001 1597/24476*39603^(19/44) 6308804276644572 a001 10946/3571*15127^(3/40) 6308804278459467 a001 6765/24476*2207^(13/32) 6308804278962254 a001 646/6119*2207^(17/32) 6308804280690412 a001 1597/103682*15127^(5/8) 6308804281435205 a001 1597/64079*15127^(23/40) 6308804282879959 a001 1597/167761*15127^(27/40) 6308804283948687 a001 1597/271443*15127^(29/40) 6308804285445530 a001 1597/439204*15127^(31/40) 6308804286778847 a001 1597/710647*15127^(33/40) 6308804287672652 a001 1597/24476*15127^(19/40) 6308804288174626 a001 1597/1149851*15127^(7/8) 6308804289546547 a001 1597/1860498*15127^(37/40) 6308804290324269 a001 10946/3571*5778^(1/12) 6308804290927580 a001 1597/3010349*15127^(39/40) 6308804293002272 a007 Real Root Of -832*x^4+747*x^3+220*x^2+777*x+722 6308804293012835 a001 17711/64079*2207^(13/32) 6308804295136143 a001 46368/167761*2207^(13/32) 6308804295445930 a001 121393/439204*2207^(13/32) 6308804295491127 a001 317811/1149851*2207^(13/32) 6308804295497721 a001 832040/3010349*2207^(13/32) 6308804295499278 a001 1346269/4870847*2207^(13/32) 6308804295501796 a001 514229/1860498*2207^(13/32) 6308804295519060 a001 196418/710647*2207^(13/32) 6308804295637388 a001 75025/271443*2207^(13/32) 6308804296448420 a001 28657/103682*2207^(13/32) 6308804300498961 a001 17711/3571*2207^(1/32) 6308804302007312 a001 10946/39603*2207^(13/32) 6308804307733724 a001 1597/9349*9349^(15/38) 6308804308604711 m001 Grothendieck+FeigenbaumMu^KhinchinLevy 6308804315030937 a007 Real Root Of 668*x^4-346*x^3-360*x^2-971*x-662 6308804319565480 a001 12752043/4181*233^(2/15) 6308804322929547 a001 4181/3571*9349^(7/38) 6308804323823162 a007 Real Root Of 826*x^4-815*x^3-846*x^2-357*x-224 6308804325711204 a001 1597/15127*5778^(17/36) 6308804328001899 r009 Im(z^3+c),c=-23/122+18/25*I,n=37 6308804330446563 a001 610/39603*1364^(5/6) 6308804332464778 a001 1597/9349*24476^(5/14) 6308804334470705 a001 4181/3571*24476^(1/6) 6308804335724807 a001 1597/9349*64079^(15/46) 6308804336158571 a001 1597/9349*167761^(3/10) 6308804336216735 a001 1597/9349*439204^(5/18) 6308804336225797 a001 1597/9349*7881196^(5/22) 6308804336225817 a001 1597/9349*20633239^(3/14) 6308804336225820 a001 1597/9349*2537720636^(1/6) 6308804336225820 a001 1597/9349*312119004989^(3/22) 6308804336225820 a001 1597/9349*28143753123^(3/20) 6308804336225820 a001 1597/9349*228826127^(3/16) 6308804336225821 a001 1597/9349*33385282^(5/24) 6308804336225856 a001 4181/3571*20633239^(1/10) 6308804336225858 a001 4181/3571*17393796001^(1/14) 6308804336225858 a001 4181/3571*14662949395604^(1/18) 6308804336225858 a001 4181/3571*505019158607^(1/16) 6308804336225858 a001 4181/3571*599074578^(1/12) 6308804336226276 a001 1597/9349*1860498^(1/4) 6308804336227419 a001 4181/3571*710647^(1/8) 6308804336409216 a001 1597/9349*103682^(5/16) 6308804336865794 a001 4181/3571*39603^(7/44) 6308804337597110 a001 1597/9349*39603^(15/44) 6308804338058882 a001 76/1346269*4181^(11/38) 6308804340108525 a001 4181/15127*2207^(13/32) 6308804341050660 a001 4181/3571*15127^(7/40) 6308804344857158 a001 2255/13201*2207^(15/32) 6308804345359946 a001 2584/39603*2207^(19/32) 6308804346564681 a001 1597/9349*15127^(3/8) 6308804350053893 a007 Real Root Of 422*x^4+836*x^3+631*x^2-645*x-43 6308804352689033 a007 Real Root Of -466*x^4+660*x^3+488*x^2+903*x+615 6308804356378853 r005 Re(z^2+c),c=-67/122+20/43*I,n=52 6308804358907737 a001 4181/9349*2207^(11/32) 6308804362121049 a001 48*322^(49/58) 6308804365083162 m005 (1/2*3^(1/2)+5)/(7/11*exp(1)-4/5) 6308804369881476 r002 57i'th iterates of 2*x/(1-x^2) of 6308804370255674 a001 1597/39603*5778^(7/12) 6308804371840588 a001 17711/103682*2207^(15/32) 6308804372969952 a001 4181/3571*5778^(7/36) 6308804374310730 a001 1597/24476*5778^(19/36) 6308804375777417 a001 15456/90481*2207^(15/32) 6308804376351793 a001 121393/710647*2207^(15/32) 6308804376435593 a001 105937/620166*2207^(15/32) 6308804376447819 a001 832040/4870847*2207^(15/32) 6308804376455376 a001 514229/3010349*2207^(15/32) 6308804376487385 a001 196418/1149851*2207^(15/32) 6308804376706777 a001 75025/439204*2207^(15/32) 6308804378210512 a001 28657/167761*2207^(15/32) 6308804381214505 a001 16692641/5473*233^(2/15) 6308804386312879 a001 1597/64079*5778^(23/36) 6308804388517265 a001 10946/64079*2207^(15/32) 6308804389484307 r009 Im(z^3+c),c=-7/94+34/45*I,n=55 6308804390208977 a001 87403803/28657*233^(2/15) 6308804391521252 a001 228826127/75025*233^(2/15) 6308804391712711 a001 299537289/98209*233^(2/15) 6308804391740644 a001 1568397607/514229*233^(2/15) 6308804391744720 a001 4106118243/1346269*233^(2/15) 6308804391745314 a001 5374978561/1762289*233^(2/15) 6308804391745401 a001 28143753123/9227465*233^(2/15) 6308804391745414 a001 73681302247/24157817*233^(2/15) 6308804391745416 a001 96450076809/31622993*233^(2/15) 6308804391745416 a001 505019158607/165580141*233^(2/15) 6308804391745416 a001 1322157322203/433494437*233^(2/15) 6308804391745416 a001 1730726404001/567451585*233^(2/15) 6308804391745416 a001 9062201101803/2971215073*233^(2/15) 6308804391745416 a001 23725150497407/7778742049*233^(2/15) 6308804391745416 a001 3665737348901/1201881744*233^(2/15) 6308804391745416 a001 5600748293801/1836311903*233^(2/15) 6308804391745416 a001 2139295485799/701408733*233^(2/15) 6308804391745416 a001 204284540899/66978574*233^(2/15) 6308804391745416 a001 28374454999/9303105*233^(2/15) 6308804391745417 a001 119218851371/39088169*233^(2/15) 6308804391745422 a001 11384387281/3732588*233^(2/15) 6308804391745455 a001 17393796001/5702887*233^(2/15) 6308804391745682 a001 6643838879/2178309*233^(2/15) 6308804391747238 a001 1860499/610*233^(2/15) 6308804391757908 a001 969323029/317811*233^(2/15) 6308804391831039 a001 370248451/121393*233^(2/15) 6308804392332283 a001 35355581/11592*233^(2/15) 6308804394687883 a001 1597/103682*5778^(25/36) 6308804395621370 a001 610/2207*1364^(13/30) 6308804395767866 a001 54018521/17711*233^(2/15) 6308804396003391 a001 10946/3571*2207^(3/32) 6308804405997228 a001 1597/167761*5778^(3/4) 6308804414963164 a001 1597/9349*5778^(5/12) 6308804416185754 a001 1597/271443*5778^(29/36) 6308804419315699 a001 1875749/615*233^(2/15) 6308804426802394 a001 1597/439204*5778^(31/36) 6308804431367112 a001 6765/64079*2207^(17/32) 6308804431869899 a001 2584/64079*2207^(21/32) 6308804436422513 r009 Re(z^3+c),c=-14/23+12/41*I,n=17 6308804437255510 a001 1597/710647*5778^(11/12) 6308804438853238 a001 6765/3571*2207^(5/32) 6308804439356025 a001 2584/3571*2207^(9/32) 6308804442989875 m001 BesselK(1,1)/gamma/(1+3^(1/2))^(1/2) 6308804442989875 m001 BesselK(1,1)/gamma/sqrt(1+sqrt(3)) 6308804447771086 a001 1597/1149851*5778^(35/36) 6308804453602681 a001 17711/167761*2207^(17/32) 6308804454291454 m001 1/sin(1)^2*Khintchine^2/ln(sinh(1)) 6308804456846807 a001 11592/109801*2207^(17/32) 6308804457320118 a001 121393/1149851*2207^(17/32) 6308804457389174 a001 317811/3010349*2207^(17/32) 6308804457405475 a001 514229/4870847*2207^(17/32) 6308804457431852 a001 98209/930249*2207^(17/32) 6308804457612641 a001 75025/710647*2207^(17/32) 6308804458851787 a001 28657/271443*2207^(17/32) 6308804459160800 a001 4181/24476*2207^(15/32) 6308804467345018 a001 5473/51841*2207^(17/32) 6308804470618239 m008 (4*Pi^5+1/5)/(2*Pi^2-1/3) 6308804490061271 r005 Im(z^2+c),c=13/70+34/57*I,n=13 6308804494110046 m001 (FeigenbaumMu-Niven)/Otter 6308804504516315 a001 2584/2207*843^(1/4) 6308804510194866 a001 6765/103682*2207^(19/32) 6308804510697653 a001 1292/51841*2207^(23/32) 6308804525558494 a001 4181/39603*2207^(17/32) 6308804527490290 a001 17711/5778*843^(3/28) 6308804528939613 a007 Real Root Of -845*x^4+633*x^3-932*x^2+468*x+959 6308804534243957 a001 17711/271443*2207^(19/32) 6308804537752672 a001 6624/101521*2207^(19/32) 6308804538264587 a001 121393/1860498*2207^(19/32) 6308804538339274 a001 317811/4870847*2207^(19/32) 6308804538385433 a001 196418/3010349*2207^(19/32) 6308804538580967 a001 75025/1149851*2207^(19/32) 6308804539079149 l006 ln(4133/7767) 6308804539921177 a001 28657/439204*2207^(19/32) 6308804546364722 r005 Im(z^2+c),c=11/42+14/29*I,n=7 6308804549107113 a001 10946/167761*2207^(19/32) 6308804550677469 a001 4181/1364*521^(3/26) 6308804553316828 a007 Real Root Of 958*x^4-151*x^3-908*x^2-930*x-415 6308804571061490 a001 305/12238*1364^(23/30) 6308804575541083 m001 (cos(1/5*Pi)+ZetaP(4))/OrthogonalArrays 6308804577078573 a001 17711/3571*843^(1/28) 6308804580714950 a001 1970299/646*233^(2/15) 6308804585327308 a007 Real Root Of -166*x^4-903*x^3+875*x^2-174*x+300 6308804586170838 r005 Re(z^2+c),c=29/90+1/31*I,n=5 6308804591956961 a001 615/15251*2207^(21/32) 6308804592459748 a001 2584/167761*2207^(25/32) 6308804598715420 a001 1597/3571*3571^(11/34) 6308804601258118 a001 1597/5778*2207^(13/32) 6308804601841812 a007 Real Root Of 289*x^4+562*x^3+584*x^2-599*x-515 6308804612068450 a001 4181/64079*2207^(19/32) 6308804615313349 a001 17711/439204*2207^(21/32) 6308804618721000 a001 46368/1149851*2207^(21/32) 6308804619218169 a001 121393/3010349*2207^(21/32) 6308804619335535 a001 196418/4870847*2207^(21/32) 6308804619525437 a001 75025/1860498*2207^(21/32) 6308804619554576 a001 4181/3571*2207^(7/32) 6308804620827044 a001 28657/710647*2207^(21/32) 6308804626740955 r002 64th iterates of z^2 + 6308804629748390 a001 10946/271443*2207^(21/32) 6308804635575297 a001 233/15127*521^(25/26) 6308804666489267 a001 987/2207*843^(11/28) 6308804672338332 r005 Re(z^2+c),c=-97/106+8/57*I,n=56 6308804672598239 a001 2255/90481*2207^(23/32) 6308804673101026 a001 2584/271443*2207^(27/32) 6308804690896206 a001 4181/103682*2207^(21/32) 6308804692325210 a001 6624/2161*843^(3/28) 6308804693641070 a007 Real Root Of 84*x^4+617*x^3+530*x^2-256*x-849 6308804696219216 a001 17711/710647*2207^(23/32) 6308804699593019 a007 Real Root Of -323*x^4+247*x^3-664*x^2-462*x+86 6308804699665470 a001 2576/103361*2207^(23/32) 6308804700168272 a001 121393/4870847*2207^(23/32) 6308804700479020 a001 75025/3010349*2207^(23/32) 6308804700990282 r005 Re(z^2+c),c=-121/94+25/38*I,n=2 6308804701795372 a001 28657/1149851*2207^(23/32) 6308804710817783 a001 5473/219602*2207^(23/32) 6308804716374301 a001 121393/39603*843^(3/28) 6308804719883017 a001 317811/103682*843^(3/28) 6308804720394931 a001 832040/271443*843^(3/28) 6308804720469619 a001 311187/101521*843^(3/28) 6308804720515778 a001 1346269/439204*843^(3/28) 6308804720711312 a001 514229/167761*843^(3/28) 6308804722051522 a001 196418/64079*843^(3/28) 6308804731237457 a001 75025/24476*843^(3/28) 6308804735725308 r005 Re(z^2+c),c=1/6+17/24*I,n=3 6308804737880583 a001 1597/3571*9349^(11/38) 6308804753667632 a001 6765/439204*2207^(25/32) 6308804754170419 a001 34/5779*2207^(29/32) 6308804756016691 a001 1597/3571*24476^(11/42) 6308804758407378 a001 1597/3571*64079^(11/46) 6308804758774771 a001 1597/3571*7881196^(1/6) 6308804758774788 a001 1597/3571*312119004989^(1/10) 6308804758774788 a001 1597/3571*1568397607^(1/8) 6308804759021840 a001 610/15127*1364^(7/10) 6308804759780401 a001 1597/3571*39603^(1/4) 6308804763315124 a008 Real Root of x^4-x^3+48*x^2+128*x-4051 6308804766356620 a001 1597/3571*15127^(11/40) 6308804772658304 a001 4181/167761*2207^(23/32) 6308804777187546 a001 17711/1149851*2207^(25/32) 6308804780619055 a001 46368/3010349*2207^(25/32) 6308804781429124 a001 75025/4870847*2207^(25/32) 6308804782739844 a001 28657/1860498*2207^(25/32) 6308804789267009 r005 Re(z^2+c),c=3/118+51/59*I,n=7 6308804791723651 a001 10946/710647*2207^(25/32) 6308804794198797 a001 28657/9349*843^(3/28) 6308804811741767 m001 Psi(1,1/3)^(Zeta(3)*LaplaceLimit) 6308804816515511 a001 1597/3571*5778^(11/36) 6308804824302537 l006 ln(4514/8483) 6308804824956927 a007 Real Root Of -275*x^4+897*x^3-805*x^2-97*x+528 6308804834573501 a001 6765/710647*2207^(27/32) 6308804835076289 a001 2584/710647*2207^(31/32) 6308804847746054 a001 987/1364*1364^(3/10) 6308804853299584 a001 4181/271443*2207^(25/32) 6308804857294136 a003 cos(Pi*14/69)*sin(Pi*25/87) 6308804858132018 a001 17711/1860498*2207^(27/32) 6308804860149791 a007 Real Root Of 890*x^4+435*x^3+883*x^2+162*x-281 6308804861569159 a001 46368/4870847*2207^(27/32) 6308804863693429 a001 28657/3010349*2207^(27/32) 6308804872691982 a001 10946/1149851*2207^(27/32) 6308804915541833 a001 6765/1149851*2207^(29/32) 6308804924559589 a001 1597/15127*2207^(17/32) 6308804934368979 a001 4181/439204*2207^(27/32) 6308804939085605 a001 17711/3010349*2207^(29/32) 6308804943358803 a001 1597/9349*2207^(15/32) 6308804944643535 a001 28657/4870847*2207^(29/32) 6308804953636456 a001 5473/930249*2207^(29/32) 6308804957707480 m003 -5/2+Sqrt[5]/32+25*Cosh[1/2+Sqrt[5]/2] 6308804966682294 m001 (Gompertz-exp(1/Pi))^Tribonacci 6308804966827692 m001 (gamma(3)-Champernowne)/(ln(gamma)-exp(1/Pi)) 6308804972941320 m001 Riemann3rdZero/Si(Pi)/exp(FeigenbaumD)^2 6308804977217005 r005 Re(z^2+c),c=-19/86+16/19*I,n=9 6308804996486307 a001 55/15126*2207^(31/32) 6308805009780929 r009 Re(z^3+c),c=-9/82+8/13*I,n=55 6308805009793609 r005 Re(z^2+c),c=-31/44+11/47*I,n=55 6308805011934746 s002 sum(A205348[n]/(n*2^n+1),n=1..infinity) 6308805015274851 a001 4181/710647*2207^(29/32) 6308805019936774 a001 10946/2207*322^(1/24) 6308805020035711 a001 17711/4870847*2207^(31/32) 6308805034590044 a001 10946/3010349*2207^(31/32) 6308805036785067 r005 Re(z^2+c),c=-129/122+11/59*I,n=14 6308805038375722 m001 (Kolakoski-ReciprocalLucas)/Si(Pi) 6308805040082249 p004 log(36809/67) 6308805043611876 a001 1597/24476*2207^(19/32) 6308805049745646 a001 305/2889*1364^(17/30) 6308805062388070 a001 832040/47*7^(32/49) 6308805065125465 l006 ln(4895/9199) 6308805068534564 r005 Im(z^2+c),c=-69/122+17/38*I,n=59 6308805084769474 a001 23725150497407/3*39088169^(10/11) 6308805084769475 a001 64300051206*7778742049^(10/11) 6308805084769475 a001 1568397607/3*1548008755920^(10/11) 6308805084833697 a001 610/9349*1364^(19/30) 6308805091299017 r005 Re(z^2+c),c=-1+69/208*I,n=6 6308805096243185 a001 4181/1149851*2207^(31/32) 6308805110009576 a001 1597/39603*2207^(21/32) 6308805138429173 a007 Real Root Of -832*x^4-748*x^3-643*x^2+834*x+55 6308805138436723 r005 Re(z^2+c),c=-1/24+7/39*I,n=12 6308805138786290 m001 (-Ei(1)+Riemann1stZero)/(sin(1)+ln(3)) 6308805149723843 k002 Champernowne real with 195/2*n^2+19/2*n-101 6308805151756136 m005 (1/2*3^(1/2)+11/12)/(6/7*5^(1/2)+10/11) 6308805155425639 r009 Im(z^3+c),c=-55/102+5/21*I,n=3 6308805155529114 m008 (3/4*Pi^6-5/6)/(Pi-2) 6308805159275001 m001 1/exp(Bloch)^2*FransenRobinson/sqrt(3) 6308805176153986 a001 5473/2889*843^(5/28) 6308805196519540 a001 1597/64079*2207^(23/32) 6308805203704182 m008 (1/5*Pi^6-3/4)/(3*Pi^2+3/4) 6308805203717690 m005 (1/2*exp(1)-4/7)/(3/5*Pi-7/11) 6308805204005667 a001 1597/3571*2207^(11/32) 6308805225742274 a001 10946/3571*843^(3/28) 6308805237532213 m001 (Ei(1)-GAMMA(23/24))/(GaussAGM+Landau) 6308805266898923 a007 Real Root Of -908*x^4-722*x^3-764*x^2+595*x+642 6308805271166911 l006 ln(5276/9915) 6308805275347304 a001 1597/103682*2207^(25/32) 6308805308128629 m001 (exp(1/Pi)-ZetaQ(2))/(GAMMA(2/3)-ln(Pi)) 6308805315160811 r005 Re(z^2+c),c=15/64+15/41*I,n=55 6308805328558860 a001 28657/15127*843^(5/28) 6308805336945559 m001 (FeigenbaumB+Trott)/(ln(2)+Cahen) 6308805338379149 r001 34i'th iterates of 2*x^2-1 of 6308805341690235 m005 (1/5*2^(1/2)-3/4)/(3*exp(1)-3/4) 6308805344360632 a007 Real Root Of 484*x^4-318*x^3-256*x^2-148*x-148 6308805349814899 m001 (Riemann3rdZero+Sarnak)/(Pi-Zeta(1,2)) 6308805350794432 a001 75025/39603*843^(5/28) 6308805354038559 a001 98209/51841*843^(5/28) 6308805354511870 a001 514229/271443*843^(5/28) 6308805354580925 a001 1346269/710647*843^(5/28) 6308805354597227 a001 2178309/1149851*843^(5/28) 6308805354623604 a001 208010/109801*843^(5/28) 6308805354804393 a001 317811/167761*843^(5/28) 6308805356043539 a001 121393/64079*843^(5/28) 6308805357109408 a001 1597/167761*2207^(27/32) 6308805360577008 p001 sum((-1)^n/(343*n+283)/n/(25^n),n=1..infinity) 6308805364536772 a001 11592/6119*843^(5/28) 6308805377503312 m001 (-Porter+ZetaP(2))/(3^(1/2)-Champernowne) 6308805380033070 a007 Real Root Of -691*x^4+781*x^3-487*x^2+272*x+671 6308805388620682 r009 Re(z^3+c),c=-9/82+8/13*I,n=51 6308805389037534 r005 Re(z^2+c),c=-7/10+63/229*I,n=25 6308805390881277 m001 GAMMA(1/12)^2*FransenRobinson/exp(sqrt(Pi)) 6308805393927165 r002 19th iterates of z^2 + 6308805399672424 a007 Real Root Of 676*x^4+229*x^3+915*x^2-869*x-962 6308805413067968 m005 (1/2*exp(1)-1/11)/(4/7*3^(1/2)-3) 6308805418030727 m001 1/Pi/ln(Lehmer)*Zeta(5) 6308805422750256 a001 17711/9349*843^(5/28) 6308805425169944 a001 233/439204*2^(1/4) 6308805435064004 a007 Real Root Of -151*x^4+674*x^3-389*x^2+959*x+953 6308805437750696 a001 1597/271443*2207^(29/32) 6308805444253315 r005 Re(z^2+c),c=-101/102+12/49*I,n=62 6308805446860521 a007 Real Root Of -871*x^4+101*x^3-465*x^2+440*x+626 6308805449454494 p004 log(10631/5657) 6308805480964821 b005 Number DB table 6308805485173080 a007 Real Root Of 280*x^4-426*x^3-672*x^2+119*x+255 6308805518820099 a001 1597/439204*2207^(31/32) 6308805523457986 r009 Re(z^3+c),c=-37/70+17/42*I,n=16 6308805561836958 r002 25th iterates of z^2 + 6308805569657713 p001 sum((-1)^n/(87*n+71)/n/(100^n),n=0..infinity) 6308805643742187 m001 Ei(1,1)+Stephens^ln(5) 6308805668064226 m001 ln(Ei(1))^2*FeigenbaumDelta^2*sin(1)^2 6308805669582738 m001 (Kolakoski-Landau)/(Weierstrass-ZetaP(4)) 6308805672696665 a007 Real Root Of 462*x^4-730*x^3-366*x^2-414*x-372 6308805675860550 a001 610/2207*3571^(13/34) 6308805686962099 a001 3010349/987*233^(2/15) 6308805734065523 a001 987/1364*3571^(9/34) 6308805743067525 m001 (Niven-QuadraticClass)/(gamma(3)+Conway) 6308805751095584 a007 Real Root Of -860*x^4+550*x^3-82*x^2-187*x+189 6308805765871751 m001 Stephens^(Bloch/BesselI(1,1)) 6308805766489422 r005 Re(z^2+c),c=-12/19+23/55*I,n=29 6308805768196348 r005 Im(z^2+c),c=-77/118+11/41*I,n=13 6308805772163154 a001 2255/1926*843^(1/4) 6308805782655243 a001 1597/521*199^(3/22) 6308805786769900 a007 Real Root Of -436*x^4+532*x^3-949*x^2-83*x+528 6308805790108564 q001 523/829 6308805796864532 r009 Re(z^3+c),c=-11/98+16/25*I,n=33 6308805800536949 r005 Re(z^2+c),c=3/13+25/39*I,n=3 6308805815962175 r005 Re(z^2+c),c=-15/14+8/69*I,n=2 6308805821751446 a001 6765/3571*843^(5/28) 6308805822325285 a001 1597/2207*843^(9/28) 6308805823219575 p003 LerchPhi(1/32,6,65/41) 6308805830879395 s001 sum(exp(-Pi)^(n-1)*A076282[n],n=1..infinity) 6308805840328499 a001 610/2207*9349^(13/38) 6308805845652536 a005 (1/sin(110/229*Pi))^966 6308805847927950 a001 987/1364*9349^(9/38) 6308805853057870 m001 (Psi(2,1/3)-gamma)/(Zeta(1,2)+GAMMA(23/24)) 6308805861762084 a001 610/2207*24476^(13/42) 6308805862766586 a001 987/1364*24476^(3/14) 6308805862893949 r005 Im(z^2+c),c=-115/122+18/41*I,n=3 6308805864565742 m001 1/ln(BesselJ(1,1))^2/CopelandErdos*Zeta(9) 6308805864587443 a001 610/2207*64079^(13/46) 6308805864722603 a001 987/1364*64079^(9/46) 6308805865017760 a001 987/1364*439204^(1/6) 6308805865021654 a001 610/2207*141422324^(1/6) 6308805865021654 a001 610/2207*73681302247^(1/8) 6308805865023197 a001 987/1364*7881196^(3/22) 6308805865023211 a001 987/1364*2537720636^(1/10) 6308805865023211 a001 987/1364*14662949395604^(1/14) 6308805865023211 a001 987/1364*192900153618^(1/12) 6308805865023212 a001 987/1364*33385282^(1/8) 6308805865023485 a001 987/1364*1860498^(3/20) 6308805865043060 a001 610/2207*271443^(1/4) 6308805865133249 a001 987/1364*103682^(3/16) 6308805865845986 a001 987/1364*39603^(9/44) 6308805866210107 a001 610/2207*39603^(13/44) 6308805867053949 a007 Real Root Of -811*x^4+533*x^3+637*x^2+506*x+328 6308805871226530 a001 987/1364*15127^(9/40) 6308805873982003 a001 610/2207*15127^(13/40) 6308805912265629 a001 987/1364*5778^(1/4) 6308805913497260 m001 (GAMMA(5/6)+Stephens)/(2^(1/3)+3^(1/3)) 6308805933260703 a001 610/2207*5778^(13/36) 6308805935219997 r005 Im(z^2+c),c=-3/44+24/35*I,n=23 6308805949935216 m001 2^(1/3)/(UniversalParabolic^FeigenbaumB) 6308805957110372 a001 17711/15127*843^(1/4) 6308805959505923 a001 610/3571*1364^(1/2) 6308805984093809 a001 15456/13201*843^(1/4) 6308805988030639 a001 121393/103682*843^(1/4) 6308805988605015 a001 105937/90481*843^(1/4) 6308805988688815 a001 832040/710647*843^(1/4) 6308805988701042 a001 726103/620166*843^(1/4) 6308805988702825 a001 5702887/4870847*843^(1/4) 6308805988703086 a001 4976784/4250681*843^(1/4) 6308805988703124 a001 39088169/33385282*843^(1/4) 6308805988703129 a001 34111385/29134601*843^(1/4) 6308805988703130 a001 267914296/228826127*843^(1/4) 6308805988703130 a001 233802911/199691526*843^(1/4) 6308805988703130 a001 1836311903/1568397607*843^(1/4) 6308805988703130 a001 1602508992/1368706081*843^(1/4) 6308805988703130 a001 12586269025/10749957122*843^(1/4) 6308805988703130 a001 10983760033/9381251041*843^(1/4) 6308805988703130 a001 86267571272/73681302247*843^(1/4) 6308805988703130 a001 75283811239/64300051206*843^(1/4) 6308805988703130 a001 2504730781961/2139295485799*843^(1/4) 6308805988703130 a001 365435296162/312119004989*843^(1/4) 6308805988703130 a001 139583862445/119218851371*843^(1/4) 6308805988703130 a001 53316291173/45537549124*843^(1/4) 6308805988703130 a001 20365011074/17393796001*843^(1/4) 6308805988703130 a001 7778742049/6643838879*843^(1/4) 6308805988703130 a001 2971215073/2537720636*843^(1/4) 6308805988703130 a001 1134903170/969323029*843^(1/4) 6308805988703130 a001 433494437/370248451*843^(1/4) 6308805988703130 a001 165580141/141422324*843^(1/4) 6308805988703132 a001 63245986/54018521*843^(1/4) 6308805988703147 a001 24157817/20633239*843^(1/4) 6308805988703246 a001 9227465/7881196*843^(1/4) 6308805988703928 a001 3524578/3010349*843^(1/4) 6308805988708598 a001 1346269/1149851*843^(1/4) 6308805988740607 a001 514229/439204*843^(1/4) 6308805988959999 a001 196418/167761*843^(1/4) 6308805990463734 a001 75025/64079*843^(1/4) 6308806000770490 a001 28657/24476*843^(1/4) 6308806008629572 a001 1597/199*123^(39/43) 6308806071414044 a001 10946/9349*843^(1/4) 6308806117189856 a001 28657/5778*322^(1/24) 6308806118299070 a007 Real Root Of -935*x^4+329*x^3+543*x^2+492*x+325 6308806122973323 m001 GolombDickman/ln(Conway)*GAMMA(1/3) 6308806147767817 r005 Re(z^2+c),c=-1/60+33/40*I,n=14 6308806150023903 k002 Champernowne real with 98*n^2+8*n-100 6308806191061262 r005 Re(z^2+c),c=-39/34+34/111*I,n=14 6308806204937604 s002 sum(A241136[n]/(exp(n)+1),n=1..infinity) 6308806229303083 a001 987/1364*2207^(9/32) 6308806238755994 a001 615/124*521^(1/26) 6308806240505332 p003 LerchPhi(1/125,5,119/172) 6308806243301583 a007 Real Root Of 710*x^4-167*x^3+50*x^2+541*x+167 6308806268261832 a005 (1/cos(12/151*Pi))^1740 6308806277276955 a001 75025/15127*322^(1/24) 6308806300633349 a001 196418/39603*322^(1/24) 6308806303105001 r005 Re(z^2+c),c=-37/52+5/26*I,n=61 6308806304041000 a001 514229/103682*322^(1/24) 6308806304538170 a001 1346269/271443*322^(1/24) 6308806304610706 a001 3524578/710647*322^(1/24) 6308806304621289 a001 9227465/1860498*322^(1/24) 6308806304622833 a001 24157817/4870847*322^(1/24) 6308806304623058 a001 63245986/12752043*322^(1/24) 6308806304623091 a001 165580141/33385282*322^(1/24) 6308806304623096 a001 433494437/87403803*322^(1/24) 6308806304623097 a001 1134903170/228826127*322^(1/24) 6308806304623097 a001 2971215073/599074578*322^(1/24) 6308806304623097 a001 7778742049/1568397607*322^(1/24) 6308806304623097 a001 20365011074/4106118243*322^(1/24) 6308806304623097 a001 53316291173/10749957122*322^(1/24) 6308806304623097 a001 139583862445/28143753123*322^(1/24) 6308806304623097 a001 365435296162/73681302247*322^(1/24) 6308806304623097 a001 956722026041/192900153618*322^(1/24) 6308806304623097 a001 2504730781961/505019158607*322^(1/24) 6308806304623097 a001 10610209857723/2139295485799*322^(1/24) 6308806304623097 a001 4052739537881/817138163596*322^(1/24) 6308806304623097 a001 140728068720/28374454999*322^(1/24) 6308806304623097 a001 591286729879/119218851371*322^(1/24) 6308806304623097 a001 225851433717/45537549124*322^(1/24) 6308806304623097 a001 86267571272/17393796001*322^(1/24) 6308806304623097 a001 32951280099/6643838879*322^(1/24) 6308806304623097 a001 1144206275/230701876*322^(1/24) 6308806304623097 a001 4807526976/969323029*322^(1/24) 6308806304623097 a001 1836311903/370248451*322^(1/24) 6308806304623097 a001 701408733/141422324*322^(1/24) 6308806304623099 a001 267914296/54018521*322^(1/24) 6308806304623112 a001 9303105/1875749*322^(1/24) 6308806304623198 a001 39088169/7881196*322^(1/24) 6308806304623787 a001 14930352/3010349*322^(1/24) 6308806304627830 a001 5702887/1149851*322^(1/24) 6308806304655536 a001 2178309/439204*322^(1/24) 6308806304845438 a001 75640/15251*322^(1/24) 6308806306147045 a001 317811/64079*322^(1/24) 6308806311994598 m001 (ln(gamma)-Backhouse)/(Totient+Tribonacci) 6308806315068394 a001 121393/24476*322^(1/24) 6308806339318796 m001 Si(Pi)^2/ErdosBorwein^2*exp(GAMMA(7/24))^2 6308806343167131 m001 (sin(1)+BesselI(0,1))/(-Mills+Totient) 6308806344938924 r009 Re(z^3+c),c=-9/82+8/13*I,n=53 6308806346930510 r005 Re(z^2+c),c=-9/10+33/160*I,n=12 6308806376216227 a001 46368/9349*322^(1/24) 6308806391203698 a001 610/2207*2207^(13/32) 6308806403181179 a007 Real Root Of 365*x^4-705*x^3+541*x^2-807*x+413 6308806406117085 a001 646/341*1364^(1/6) 6308806418724649 m001 (Zeta(5)+Backhouse)/(Bloch-ZetaP(4)) 6308806434648578 r005 Re(z^2+c),c=-7/8+37/172*I,n=60 6308806443058842 p004 log(17791/9467) 6308806451721504 r005 Im(z^2+c),c=15/58+26/49*I,n=60 6308806496119847 a007 Real Root Of -559*x^4-180*x^3-937*x^2-262*x+251 6308806502060560 m005 (1/2*gamma-2/7)/(5/11*Catalan-7/8) 6308806504240829 r005 Re(z^2+c),c=9/106+8/57*I,n=11 6308806506023910 a001 4181/5778*843^(9/28) 6308806512573203 a001 233/843*521^(1/2) 6308806523154455 a001 233/9349*521^(23/26) 6308806532307048 m001 (Stephens+Totient)/(BesselI(1,1)-MertensB1) 6308806549373826 l006 ln(18/9889) 6308806554213507 r005 Re(z^2+c),c=21/110+21/41*I,n=36 6308806555612208 a001 4181/3571*843^(1/4) 6308806581170361 r005 Im(z^2+c),c=41/106+9/29*I,n=19 6308806583930631 a007 Real Root Of -956*x^4-70*x^3-758*x^2+798*x+939 6308806599188109 r005 Re(z^2+c),c=9/106+18/41*I,n=47 6308806605774215 a001 10946/15127*843^(9/28) 6308806620327589 a001 28657/39603*843^(9/28) 6308806622450898 a001 75025/103682*843^(9/28) 6308806622760684 a001 196418/271443*843^(9/28) 6308806622805882 a001 514229/710647*843^(9/28) 6308806622812476 a001 1346269/1860498*843^(9/28) 6308806622814033 a001 2178309/3010349*843^(9/28) 6308806622816551 a001 832040/1149851*843^(9/28) 6308806622833815 a001 317811/439204*843^(9/28) 6308806622952143 a001 121393/167761*843^(9/28) 6308806623763175 a001 46368/64079*843^(9/28) 6308806629322069 a001 17711/24476*843^(9/28) 6308806658209210 r005 Re(z^2+c),c=-11/18+47/117*I,n=29 6308806667423297 a001 6765/9349*843^(9/28) 6308806677843332 m001 Magata/(FeigenbaumAlpha-ReciprocalLucas) 6308806679975172 a001 610/271443*3571^(33/34) 6308806695609881 m001 (ln(3)+gamma(3))/(GaussAGM-TwinPrimes) 6308806706704849 l006 ln(4269/4547) 6308806709386671 a001 610/167761*3571^(31/34) 6308806711484204 m006 (5*exp(2*Pi)+1)/(4*ln(Pi)-1/3) 6308806718787234 m001 (-OneNinth+Riemann3rdZero)/(cos(1)+Magata) 6308806723904800 a001 305/2889*3571^(1/2) 6308806725107131 a007 Real Root Of -341*x^4+480*x^3-506*x^2+138*x+463 6308806731502038 a007 Real Root Of 172*x^4+990*x^3-623*x^2-217*x-456 6308806734628920 m001 (MadelungNaCl+Paris)/(ln(5)+ln(2+3^(1/2))) 6308806737677352 a001 305/51841*3571^(29/34) 6308806739858935 r002 35th iterates of z^2 + 6308806748500368 r005 Im(z^2+c),c=43/106+24/55*I,n=5 6308806753911130 m006 (exp(Pi)+4/5)/(1/5*exp(Pi)-5/6) 6308806768902374 a001 610/64079*3571^(27/34) 6308806770667138 m005 (1/2*5^(1/2)-1)/(47/55+5/11*5^(1/2)) 6308806792445193 a001 610/39603*3571^(25/34) 6308806795329747 a001 17711/3571*322^(1/24) 6308806810674188 m001 Otter^Salem/LambertW(1) 6308806816395099 a007 Real Root Of -53*x^4+65*x^3-983*x^2-206*x+286 6308806824065093 m005 (1/3*Zeta(3)-2/9)/(5/7*2^(1/2)-8/11) 6308806827100765 a001 610/15127*3571^(21/34) 6308806831391478 a007 Real Root Of 369*x^4-244*x^3+354*x^2-809*x-771 6308806836100280 a001 305/12238*3571^(23/34) 6308806839573832 r005 Re(z^2+c),c=-97/106+8/57*I,n=64 6308806848270324 a007 Real Root Of 987*x^4-947*x^3+51*x^2-423*x+328 6308806852463829 r005 Re(z^2+c),c=-22/31+13/37*I,n=31 6308806863754220 a001 1597/1364*1364^(7/30) 6308806875657438 a007 Real Root Of 594*x^4+526*x^3+658*x^2-249*x-381 6308806878316020 m001 GolombDickman^2*DuboisRaymond/ln(cos(Pi/12))^2 6308806878984718 a001 1292/2889*843^(11/28) 6308806890000331 m005 (3/4*exp(1)-1)/(1/4*2^(1/2)-2) 6308806890849880 m001 sin(Pi/12)^2*exp(CopelandErdos)^2*sin(Pi/5) 6308806893328423 a001 4181/1364*1364^(1/10) 6308806898516896 a001 646/341*3571^(5/34) 6308806928573019 a001 2584/3571*843^(9/28) 6308806938978308 a001 305/2889*9349^(17/38) 6308806940358837 r005 Re(z^2+c),c=-23/82+22/35*I,n=47 6308806945554510 a001 6119/2*4807526976^(15/23) 6308806945969070 a001 5778*3^(2/25) 6308806955952791 a001 610/9349*3571^(19/34) 6308806956231630 a001 16692641/4*75025^(15/23) 6308806959304344 g002 Psi(6/11)+Psi(2/11)+Psi(3/10)-Psi(2/9) 6308806961773811 a001 646/341*9349^(5/38) 6308806965654220 m001 (Kac+PolyaRandomWalk3D)/(5^(1/2)-CareFree) 6308806967006847 a001 305/2889*24476^(17/42) 6308806970017499 a001 646/341*24476^(5/42) 6308806970701548 a001 305/2889*64079^(17/46) 6308806971248764 a001 646/341*167761^(1/10) 6308806971269363 a001 305/2889*45537549124^(1/6) 6308806971269373 a001 305/2889*12752043^(1/4) 6308806971271179 a001 646/341*20633239^(1/14) 6308806971271180 a001 646/341*2537720636^(1/18) 6308806971271180 a001 646/341*312119004989^(1/22) 6308806971271180 a001 646/341*28143753123^(1/20) 6308806971271180 a001 646/341*228826127^(1/16) 6308806971271332 a001 646/341*1860498^(1/12) 6308806971728277 a001 646/341*39603^(5/44) 6308806972823493 a001 305/2889*39603^(17/44) 6308806974717469 a001 646/341*15127^(1/8) 6308806979274955 r002 13th iterates of z^2 + 6308806982986744 a001 305/2889*15127^(17/40) 6308806997516972 a001 646/341*5778^(5/36) 6308807009722812 m001 (1+arctan(1/3))/(Pi^(1/2)+FellerTornier) 6308807019639757 a001 615/124*1364^(1/30) 6308807024386246 r002 28th iterates of z^2 + 6308807035427958 m001 exp(Pi)/(Salem-cosh(1)) 6308807038690144 r009 Re(z^3+c),c=-59/102+17/58*I,n=6 6308807040957730 a001 329/1926*843^(15/28) 6308807043484272 a007 Real Root Of 580*x^4-945*x^3+699*x^2+744*x-138 6308807058339496 g002 -Psi(11/12)-Psi(8/11)-Psi(9/10)-Psi(2/7) 6308807060505058 a001 305/2889*5778^(17/36) 6308807065662445 m001 1/DuboisRaymond*ln(Artin)^2/FransenRobinson^2 6308807085143054 m004 -11/4-(5*Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 6308807089946045 a001 610/710647*9349^(37/38) 6308807090546032 a001 987/3571*843^(13/28) 6308807092779810 a001 610/15127*9349^(21/38) 6308807093790190 a001 305/219602*9349^(35/38) 6308807097470809 a001 610/271443*9349^(33/38) 6308807100524055 r005 Im(z^2+c),c=-71/56+1/42*I,n=56 6308807100893435 r002 4th iterates of z^2 + 6308807101579544 a001 610/167761*9349^(31/38) 6308807104567460 a001 305/51841*9349^(29/38) 6308807108729769 a001 610/39603*9349^(25/38) 6308807110489716 a001 610/64079*9349^(27/38) 6308807118119726 a001 615/124*3571^(1/34) 6308807120995799 s002 sum(A241136[n]/(exp(n)),n=1..infinity) 6308807127082092 a001 305/12238*9349^(23/38) 6308807127403300 a001 610/15127*24476^(1/2) 6308807130771110 a001 615/124*9349^(1/38) 6308807131967342 a001 610/15127*64079^(21/46) 6308807132419847 a001 615/124*24476^(1/42) 6308807132656042 a001 610/15127*439204^(7/18) 6308807132668729 a001 610/15127*7881196^(7/22) 6308807132668757 a001 610/15127*20633239^(3/10) 6308807132668761 a001 610/15127*17393796001^(3/14) 6308807132668761 a001 610/15127*14662949395604^(1/6) 6308807132668761 a001 610/15127*599074578^(1/4) 6308807132668763 a001 610/15127*33385282^(7/24) 6308807132669399 a001 610/15127*1860498^(7/20) 6308807132673446 a001 610/15127*710647^(3/8) 6308807132762003 a001 615/124*39603^(1/44) 6308807132925516 a001 610/15127*103682^(7/16) 6308807133359841 a001 615/124*15127^(1/40) 6308807134588569 a001 610/15127*39603^(21/44) 6308807137919742 a001 615/124*5778^(1/36) 6308807138612281 a007 Real Root Of -423*x^4+975*x^3+333*x^2+567*x+537 6308807140337780 r002 4th iterates of z^2 + 6308807143201505 a006 5^(1/2)*fibonacci(41/2)/Lucas(15)/sqrt(5) 6308807147143173 a001 610/15127*15127^(21/40) 6308807149948211 a001 610/39603*24476^(25/42) 6308807149957063 a001 305/930249*24476^(41/42) 6308807150323963 k002 Champernowne real with 197/2*n^2+13/2*n-99 6308807150465130 a001 610/1149851*24476^(13/14) 6308807150949338 a001 610/710647*24476^(37/42) 6308807151496008 a001 305/219602*24476^(5/6) 6308807151879152 a001 610/271443*24476^(11/14) 6308807152380852 a001 305/51841*24476^(29/42) 6308807152690411 a001 610/167761*24476^(31/42) 6308807155005633 a001 610/64079*24476^(9/14) 6308807155381594 a001 610/39603*64079^(25/46) 6308807156104535 a001 610/39603*167761^(1/2) 6308807156216611 a001 610/39603*20633239^(5/14) 6308807156216617 a001 610/39603*2537720636^(5/18) 6308807156216617 a001 610/39603*312119004989^(5/22) 6308807156216617 a001 610/39603*3461452808002^(5/24) 6308807156216617 a001 610/39603*28143753123^(1/4) 6308807156216617 a001 610/39603*228826127^(5/16) 6308807156217376 a001 610/39603*1860498^(5/12) 6308807158502102 a001 610/39603*39603^(25/44) 6308807158683577 a001 305/51841*64079^(29/46) 6308807158735765 a001 610/4870847*64079^(45/46) 6308807158803529 a001 610/3010349*64079^(43/46) 6308807158867812 a001 305/930249*64079^(41/46) 6308807158941208 a001 610/1149851*64079^(39/46) 6308807158990746 a001 610/710647*64079^(37/46) 6308807159051218 a001 610/271443*64079^(33/46) 6308807159102745 a001 305/219602*64079^(35/46) 6308807159427807 a001 610/167761*64079^(31/46) 6308807159649817 a001 305/51841*1149851^(1/2) 6308807159652202 a001 305/51841*1322157322203^(1/4) 6308807160037057 a001 610/4870847*167761^(9/10) 6308807160114861 a001 305/219602*167761^(7/10) 6308807160133461 a001 610/271443*439204^(11/18) 6308807160153397 a001 610/271443*7881196^(1/2) 6308807160153448 a001 610/271443*312119004989^(3/10) 6308807160153448 a001 610/271443*1568397607^(3/8) 6308807160153450 a001 610/271443*33385282^(11/24) 6308807160154450 a001 610/271443*1860498^(11/20) 6308807160208197 a001 610/20633239*439204^(17/18) 6308807160211550 a001 610/4870847*439204^(5/6) 6308807160220222 a001 610/1149851*439204^(13/18) 6308807160226577 a001 610/710647*54018521^(1/2) 6308807160237248 a001 305/930249*370248451^(1/2) 6308807160238735 a001 610/4870847*7881196^(15/22) 6308807160238795 a001 610/4870847*20633239^(9/14) 6308807160238805 a001 610/4870847*2537720636^(1/2) 6308807160238805 a001 610/4870847*312119004989^(9/22) 6308807160238805 a001 610/4870847*14662949395604^(5/14) 6308807160238805 a001 610/4870847*192900153618^(5/12) 6308807160238805 a001 610/4870847*28143753123^(9/20) 6308807160238805 a001 610/4870847*228826127^(9/16) 6308807160238808 a001 610/4870847*33385282^(5/8) 6308807160238974 a001 610/370248451*7881196^(21/22) 6308807160238982 a001 610/87403803*7881196^(19/22) 6308807160238988 a001 610/54018521*7881196^(5/6) 6308807160239007 a001 610/20633239*7881196^(17/22) 6308807160239021 a001 610/12752043*20633239^(7/10) 6308807160239032 a001 610/12752043*17393796001^(1/2) 6308807160239032 a001 610/12752043*14662949395604^(7/18) 6308807160239032 a001 610/12752043*505019158607^(7/16) 6308807160239032 a001 610/12752043*599074578^(7/12) 6308807160239057 a001 305/299537289*20633239^(13/14) 6308807160239057 a001 610/370248451*20633239^(9/10) 6308807160239061 a001 610/54018521*20633239^(11/14) 6308807160239065 a001 305/16692641*119218851371^(1/2) 6308807160239070 a001 610/87403803*817138163596^(1/2) 6308807160239070 a001 305/299537289*141422324^(5/6) 6308807160239070 a001 610/87403803*87403803^(3/4) 6308807160239070 a001 610/228826127*5600748293801^(1/2) 6308807160239070 a001 305/299537289*2537720636^(13/18) 6308807160239070 a001 305/299537289*312119004989^(13/22) 6308807160239070 a001 305/299537289*3461452808002^(13/24) 6308807160239070 a001 305/299537289*73681302247^(5/8) 6308807160239070 a001 305/299537289*28143753123^(13/20) 6308807160239070 a001 610/1568397607*4106118243^(3/4) 6308807160239070 a001 610/73681302247*2537720636^(17/18) 6308807160239070 a001 610/28143753123*2537720636^(9/10) 6308807160239070 a001 610/6643838879*2537720636^(5/6) 6308807160239070 a001 305/5374978561*17393796001^(11/14) 6308807160239070 a001 305/5374978561*14662949395604^(11/18) 6308807160239070 a001 305/5374978561*505019158607^(11/16) 6308807160239070 a001 610/312119004989*17393796001^(13/14) 6308807160239070 a001 610/28143753123*14662949395604^(9/14) 6308807160239070 a001 610/28143753123*192900153618^(3/4) 6308807160239070 a001 610/73681302247*45537549124^(5/6) 6308807160239070 a001 610/73681302247*312119004989^(17/22) 6308807160239070 a001 610/73681302247*3461452808002^(17/24) 6308807160239070 a001 610/2139295485799*312119004989^(9/10) 6308807160239070 a001 305/408569081798*312119004989^(19/22) 6308807160239070 a001 305/408569081798*817138163596^(5/6) 6308807160239070 a001 305/408569081798*3461452808002^(19/24) 6308807160239070 a001 610/9062201101803*505019158607^(15/16) 6308807160239070 a001 610/312119004989*14662949395604^(13/18) 6308807160239070 a001 610/312119004989*505019158607^(13/16) 6308807160239070 a001 610/2139295485799*192900153618^(11/12) 6308807160239070 a001 610/119218851371*1322157322203^(3/4) 6308807160239070 a001 610/312119004989*73681302247^(7/8) 6308807160239070 a001 610/73681302247*28143753123^(17/20) 6308807160239070 a001 305/408569081798*28143753123^(19/20) 6308807160239070 a001 610/6643838879*312119004989^(15/22) 6308807160239070 a001 610/6643838879*3461452808002^(5/8) 6308807160239070 a001 610/6643838879*28143753123^(3/4) 6308807160239070 a001 305/5374978561*1568397607^(7/8) 6308807160239070 a001 305/5374978561*599074578^(11/12) 6308807160239071 a001 610/370248451*2537720636^(7/10) 6308807160239071 a001 610/370248451*17393796001^(9/14) 6308807160239071 a001 610/370248451*14662949395604^(1/2) 6308807160239071 a001 610/370248451*505019158607^(9/16) 6308807160239071 a001 610/370248451*192900153618^(7/12) 6308807160239071 a001 610/370248451*599074578^(3/4) 6308807160239071 a001 305/299537289*228826127^(13/16) 6308807160239071 a001 610/6643838879*228826127^(15/16) 6308807160239071 a001 305/70711162*2139295485799^(1/2) 6308807160239073 a001 610/54018521*2537720636^(11/18) 6308807160239073 a001 610/54018521*312119004989^(1/2) 6308807160239073 a001 610/54018521*3461452808002^(11/24) 6308807160239073 a001 610/54018521*28143753123^(11/20) 6308807160239073 a001 610/54018521*1568397607^(5/8) 6308807160239073 a001 610/54018521*228826127^(11/16) 6308807160239074 a001 610/87403803*33385282^(19/24) 6308807160239075 a001 610/370248451*33385282^(7/8) 6308807160239076 a001 610/1568397607*33385282^(23/24) 6308807160239085 a001 610/20633239*45537549124^(1/2) 6308807160239089 a001 610/20633239*33385282^(17/24) 6308807160239114 a001 610/20633239*12752043^(3/4) 6308807160239172 a001 305/3940598*6643838879^(1/2) 6308807160239767 a001 610/3010349*969323029^(1/2) 6308807160240171 a001 610/4870847*1860498^(3/4) 6308807160240634 a001 610/20633239*1860498^(17/20) 6308807160240743 a001 610/54018521*1860498^(11/12) 6308807160240801 a001 610/87403803*1860498^(19/20) 6308807160240893 a006 5^(1/2)*Fibonacci(41/2)/Lucas(15)/sqrt(5) 6308807160243782 a001 610/1149851*7881196^(13/22) 6308807160243842 a001 610/1149851*141422324^(1/2) 6308807160243842 a001 610/1149851*73681302247^(3/8) 6308807160243845 a001 610/1149851*33385282^(13/24) 6308807160245027 a001 610/1149851*1860498^(13/20) 6308807160249962 a001 610/12752043*710647^(7/8) 6308807160271768 a001 305/219602*20633239^(1/2) 6308807160271776 a001 305/219602*2537720636^(7/18) 6308807160271776 a001 305/219602*17393796001^(5/14) 6308807160271776 a001 305/219602*312119004989^(7/22) 6308807160271776 a001 305/219602*14662949395604^(5/18) 6308807160271776 a001 305/219602*505019158607^(5/16) 6308807160271776 a001 305/219602*28143753123^(7/20) 6308807160271776 a001 305/219602*599074578^(5/12) 6308807160271776 a001 305/219602*228826127^(7/16) 6308807160272839 a001 305/219602*1860498^(7/12) 6308807160279583 a001 305/219602*710647^(5/8) 6308807160308059 a001 610/1149851*271443^(3/4) 6308807160462886 a001 610/167761*3010349^(1/2) 6308807160463234 a001 610/167761*9062201101803^(1/4) 6308807160556919 a001 610/271443*103682^(11/16) 6308807160720672 a001 610/1149851*103682^(13/16) 6308807160788993 a001 610/4870847*103682^(15/16) 6308807160873687 a001 610/64079*64079^(27/46) 6308807161759159 a001 610/64079*439204^(1/2) 6308807161775470 a001 610/64079*7881196^(9/22) 6308807161775511 a001 610/64079*2537720636^(3/10) 6308807161775511 a001 610/64079*14662949395604^(3/14) 6308807161775511 a001 610/64079*192900153618^(1/4) 6308807161775513 a001 610/64079*33385282^(3/8) 6308807161776331 a001 610/64079*1860498^(9/20) 6308807162105624 a001 610/64079*103682^(9/16) 6308807162303365 a001 305/51841*39603^(29/44) 6308807163170288 a001 610/271443*39603^(3/4) 6308807163297236 a001 610/167761*39603^(31/44) 6308807163471455 a001 305/219602*39603^(35/44) 6308807163609096 a001 610/710647*39603^(37/44) 6308807163809199 a001 610/1149851*39603^(39/44) 6308807163985444 a001 305/930249*39603^(41/44) 6308807164170801 a001 610/3010349*39603^(43/44) 6308807164243835 a001 610/64079*39603^(27/44) 6308807165003059 a001 305/12238*24476^(23/42) 6308807165251827 a007 Real Root Of 267*x^4+845*x^3+446*x^2-736*x-48 6308807169922257 r005 Im(z^2+c),c=-127/98+3/7*I,n=6 6308807170001771 a001 305/12238*64079^(1/2) 6308807170769992 a001 305/12238*4106118243^(1/4) 6308807172872638 a001 305/12238*39603^(23/44) 6308807173146132 a001 615/124*2207^(1/32) 6308807173448060 a001 610/39603*15127^(5/8) 6308807173648919 a001 646/341*2207^(5/32) 6308807179640677 a001 305/51841*15127^(29/40) 6308807180385470 a001 610/64079*15127^(27/40) 6308807181830224 a001 610/167761*15127^(31/40) 6308807182898953 a001 610/271443*15127^(33/40) 6308807184395796 a001 305/219602*15127^(7/8) 6308807185616228 s002 sum(A170768[n]/(64^n-1),n=1..infinity) 6308807185729115 a001 610/710647*15127^(37/40) 6308807186622920 a001 305/12238*15127^(23/40) 6308807187124894 a001 610/1149851*15127^(39/40) 6308807188768328 a001 4181/1364*3571^(3/34) 6308807196329075 a001 610/9349*9349^(1/2) 6308807201783519 a001 6765/15127*843^(11/28) 6308807213225183 r005 Re(z^2+c),c=-11/10+67/183*I,n=6 6308807213541066 a008 Real Root of (-7+4*x+8*x^2+8*x^4+x^8) 6308807226722479 a001 4181/1364*9349^(3/38) 6308807226817066 a007 Real Root Of -955*x^4-756*x^3+309*x^2+898*x+405 6308807227655091 a001 610/9349*24476^(19/42) 6308807231668692 a001 4181/1364*24476^(1/14) 6308807231784462 a001 610/9349*64079^(19/46) 6308807232419079 a001 610/9349*817138163596^(1/6) 6308807232419079 a001 610/9349*87403803^(1/4) 6308807232419084 a001 4181/1364*439204^(1/18) 6308807232420896 a001 4181/1364*7881196^(1/22) 6308807232420901 a001 4181/1364*33385282^(1/24) 6308807232420992 a001 4181/1364*1860498^(1/20) 6308807232457580 a001 4181/1364*103682^(1/16) 6308807232695159 a001 4181/1364*39603^(3/44) 6308807234156048 a001 610/9349*39603^(19/44) 6308807234488674 a001 4181/1364*15127^(3/40) 6308807239181880 m002 -6+Pi^3+Cosh[Pi]+E^Pi*Log[Pi] 6308807242901092 a001 610/15127*5778^(7/12) 6308807245000327 r002 26th iterates of z^2 + 6308807245514976 a001 610/9349*15127^(19/40) 6308807246410600 a003 sin(Pi*10/93)/cos(Pi*23/71) 6308807248168377 a001 4181/1364*5778^(1/12) 6308807248879230 a001 17711/39603*843^(11/28) 6308807255750402 a001 23184/51841*843^(11/28) 6308807256752892 a001 121393/271443*843^(11/28) 6308807256899154 a001 317811/710647*843^(11/28) 6308807256920493 a001 416020/930249*843^(11/28) 6308807256923606 a001 2178309/4870847*843^(11/28) 6308807256925531 a001 1346269/3010349*843^(11/28) 6308807256933681 a001 514229/1149851*843^(11/28) 6308807256989548 a001 98209/219602*843^(11/28) 6308807257372466 a001 75025/167761*843^(11/28) 6308807259769191 a007 Real Root Of -777*x^4+536*x^3-753*x^2-64*x+517 6308807259997020 a001 28657/64079*843^(11/28) 6308807263067845 m001 (3^(1/2)-exp(1/Pi))/(gamma(2)+Stephens) 6308807276317717 s002 sum(A047170[n]/(2^n+1),n=1..infinity) 6308807277985981 a001 5473/12238*843^(11/28) 6308807278417819 a007 Real Root Of 704*x^4-592*x^3+557*x^2-257*x-644 6308807285764340 a007 Real Root Of 875*x^4+89*x^3-238*x^2-844*x-554 6308807287024953 a007 Real Root Of -899*x^4+633*x^3-590*x^2-265*x+369 6308807287445583 a001 610/39603*5778^(25/36) 6308807291500641 a001 305/12238*5778^(23/36) 6308807293035124 a007 Real Root Of 153*x^4-930*x^3+426*x^2-670*x-850 6308807303502795 a001 610/64079*5778^(3/4) 6308807311877804 a001 305/51841*5778^(29/36) 6308807323187153 a001 610/167761*5778^(31/36) 6308807332153095 a001 610/9349*5778^(19/36) 6308807333375684 a001 610/271443*5778^(11/12) 6308807338884442 m001 (BesselJ(0,1)-Ei(1)*MertensB2)/Ei(1) 6308807341436811 r002 32th iterates of z^2 + 6308807343992330 a001 305/219602*5778^(35/36) 6308807349878315 a007 Real Root Of -657*x^4+523*x^3-996*x^2-862*x+88 6308807353847548 a001 4181/1364*2207^(3/32) 6308807358505156 a007 Real Root Of 383*x^4-779*x^3-454*x^2-977*x+932 6308807370197478 a007 Real Root Of -827*x^4-718*x^3+337*x^2+920*x+397 6308807401284157 a001 4181/9349*843^(11/28) 6308807404323294 m001 1/arctan(1/2)^2/GAMMA(5/12)/ln(sqrt(2)) 6308807421453170 a007 Real Root Of -163*x^4+778*x^3+962*x^2+524*x-883 6308807428460141 a007 Real Root Of -287*x^4-9*x^3+996*x^2+998*x+59 6308807432861499 a005 (1/cos(39/155*Pi))^110 6308807436705367 a001 610/3571*3571^(15/34) 6308807449725869 a001 615/124*843^(1/28) 6308807468472824 r002 4th iterates of z^2 + 6308807478357942 p001 sum(1/(503*n+161)/(16^n),n=0..infinity) 6308807498298725 b008 -1/23+E^(-3) 6308807501059966 a007 Real Root Of -44*x^4+630*x^3-281*x^2+531*x+612 6308807502672692 a007 Real Root Of 253*x^4+295*x^3-895*x^2-775*x+731 6308807538129023 m001 (BesselK(0,1)-MasserGramain)/FeigenbaumMu 6308807552171485 r005 Im(z^2+c),c=-17/66+49/64*I,n=8 6308807553114016 a001 1597/1364*3571^(7/34) 6308807561450781 a001 3/4*1364^(35/57) 6308807579659558 r009 Im(z^3+c),c=-31/64+25/54*I,n=8 6308807596020101 a007 Real Root Of 140*x^4+977*x^3+681*x^2+534*x-191 6308807613133908 r009 Im(z^3+c),c=-5/48+16/21*I,n=28 6308807626476130 a001 610/3571*9349^(15/38) 6308807628740016 a007 Real Root Of -882*x^4+182*x^3-13*x^2-356*x-34 6308807641673706 a001 1597/1364*9349^(7/38) 6308807647783463 h001 (5/8*exp(2)+3/10)/(1/4*exp(1)+1/10) 6308807651207197 a001 610/3571*24476^(5/14) 6308807653214871 a001 1597/1364*24476^(1/6) 6308807654467228 a001 610/3571*64079^(15/46) 6308807654736218 a001 1597/1364*64079^(7/46) 6308807654900992 a001 610/3571*167761^(3/10) 6308807654959156 a001 610/3571*439204^(5/18) 6308807654968218 a001 610/3571*7881196^(5/22) 6308807654968238 a001 610/3571*20633239^(3/14) 6308807654968241 a001 610/3571*2537720636^(1/6) 6308807654968241 a001 610/3571*312119004989^(3/22) 6308807654968241 a001 610/3571*28143753123^(3/20) 6308807654968241 a001 610/3571*228826127^(3/16) 6308807654968242 a001 610/3571*33385282^(5/24) 6308807654968697 a001 610/3571*1860498^(1/4) 6308807654970023 a001 1597/1364*20633239^(1/10) 6308807654970025 a001 1597/1364*17393796001^(1/14) 6308807654970025 a001 1597/1364*14662949395604^(1/18) 6308807654970025 a001 1597/1364*505019158607^(1/16) 6308807654970025 a001 1597/1364*599074578^(1/12) 6308807654971586 a001 1597/1364*710647^(1/8) 6308807655151637 a001 610/3571*103682^(5/16) 6308807655230113 a001 55/39603*199^(31/43) 6308807655609961 a001 1597/1364*39603^(7/44) 6308807656339532 a001 610/3571*39603^(15/44) 6308807659353703 a001 305/2889*2207^(17/32) 6308807659794829 a001 1597/1364*15127^(7/40) 6308807665307108 a001 610/3571*15127^(3/8) 6308807691714138 a001 1597/1364*5778^(7/36) 6308807696681863 r009 Re(z^3+c),c=-35/58+35/58*I,n=6 6308807733705627 a001 610/3571*5778^(5/12) 6308807748621197 a003 sin(Pi*3/53)+sin(Pi*3/20) 6308807751858571 b008 1/5+LogIntegral[Pi^2] 6308807774245018 a001 2584/9349*843^(13/28) 6308807774789065 a007 Real Root Of 24*x^4-740*x^3+564*x^2+547*x-69 6308807785591902 r005 Im(z^2+c),c=-53/82+5/46*I,n=23 6308807814248834 r002 35th iterates of z^2 + 6308807830855550 r002 12th iterates of z^2 + 6308807858111070 r005 Re(z^2+c),c=11/29+8/59*I,n=52 6308807869918820 r008 a(0)=0,K{-n^6,70-4*n^3+23*n^2-73*n} 6308807873995348 a001 6765/24476*843^(13/28) 6308807888548724 a001 17711/64079*843^(13/28) 6308807890073358 m005 (39/44+1/4*5^(1/2))/(4/5*Pi-2/9) 6308807890672034 a001 46368/167761*843^(13/28) 6308807890981820 a001 121393/439204*843^(13/28) 6308807891027017 a001 317811/1149851*843^(13/28) 6308807891033612 a001 832040/3010349*843^(13/28) 6308807891035168 a001 1346269/4870847*843^(13/28) 6308807891037687 a001 514229/1860498*843^(13/28) 6308807891054951 a001 196418/710647*843^(13/28) 6308807891173279 a001 75025/271443*843^(13/28) 6308807891984311 a001 28657/103682*843^(13/28) 6308807897543206 a001 10946/39603*843^(13/28) 6308807905339675 s002 sum(A029782[n]/(n^3*10^n+1),n=1..infinity) 6308807918339446 l006 ln(381/716) 6308807926447187 a007 Real Root Of 857*x^4-614*x^3+29*x^2-872*x+557 6308807935644441 a001 4181/15127*843^(13/28) 6308807936218053 a001 987/9349*843^(17/28) 6308807938298892 a001 1597/1364*2207^(7/32) 6308807942938900 a003 sin(Pi*1/50)/cos(Pi*3/97) 6308807954843075 m008 (3/4*Pi^3+3/5)/(2/5*Pi^2-1/6) 6308807968147521 s002 sum(A082197[n]/((2*n)!),n=1..infinity) 6308807982655331 a001 610/15127*2207^(21/32) 6308808001454554 a001 610/9349*2207^(19/32) 6308808010437084 r005 Re(z^2+c),c=-47/52+14/43*I,n=9 6308808037054935 s002 sum(A241136[n]/(exp(n)-1),n=1..infinity) 6308808049834082 a001 233/5778*521^(21/26) 6308808055112119 r009 Im(z^3+c),c=-23/110+51/56*I,n=16 6308808063032286 a001 1597/843*322^(5/24) 6308808071177796 a007 Real Root Of -701*x^4+393*x^3+505*x^2+977*x-805 6308808087439871 a001 89/322*199^(13/22) 6308808101707675 a001 305/12238*2207^(23/32) 6308808108456352 a003 cos(Pi*17/73)-cos(Pi*17/65) 6308808150624023 k002 Champernowne real with 99*n^2+5*n-98 6308808151604799 a007 Real Root Of 616*x^4-351*x^3-26*x^2-830*x-699 6308808154219264 m005 (1/3*3^(1/2)+1/6)/(5/8*Catalan-5/11) 6308808162295446 m001 1/exp((3^(1/3)))/Artin/Zeta(9) 6308808168105407 a001 610/39603*2207^(25/32) 6308808173622984 m001 (exp(1/Pi)+GaussAGM)/(5^(1/2)+BesselI(0,1)) 6308808180680549 m005 (1/2*5^(1/2)+4/11)/(1/2*Pi+7/9) 6308808183586820 a001 4181/1364*843^(3/28) 6308808196794183 a001 1597/5778*843^(13/28) 6308808214890579 a007 Real Root Of 4*x^4+256*x^3+223*x^2-450*x-33 6308808242125291 a007 Real Root Of 940*x^4-665*x^3+482*x^2-365*x-738 6308808246382494 a001 1597/3571*843^(11/28) 6308808254615413 a001 610/64079*2207^(27/32) 6308808262101544 a001 610/3571*2207^(15/32) 6308808266635171 a001 4181/3*521^(7/29) 6308808272487986 a007 Real Root Of 303*x^4-411*x^3-286*x^2-830*x-561 6308808288352104 a007 Real Root Of 959*x^4-348*x^3+183*x^2+937*x+279 6308808308605333 a001 2584/15127*843^(15/28) 6308808330635225 a007 Real Root Of -502*x^4+675*x^3-964*x^2+243*x+786 6308808333443215 a001 305/51841*2207^(29/32) 6308808337971233 r005 Re(z^2+c),c=-10/31+5/8*I,n=51 6308808349289964 m005 (1/2*5^(1/2)-3/5)/(3/7*Catalan+3/7) 6308808359957043 m001 Salem^2*exp(FeigenbaumB)^2/OneNinth^2 6308808366089600 m001 (Landau+Totient)/(GAMMA(7/12)+Backhouse) 6308808369928799 a007 Real Root Of 368*x^4-26*x^3-917*x^2-751*x+787 6308808415205359 a001 610/167761*2207^(31/32) 6308808438401064 m005 (1/2*gamma+2/3)/(8/9*Catalan+7/10) 6308808438609342 m005 (1/2*2^(1/2)-9/10)/(3/10*Pi-4) 6308808460784909 a003 sin(Pi*1/80)-sin(Pi*18/77) 6308808470578382 a001 141/2161*843^(19/28) 6308808480555897 a001 17393796001/8*2178309^(3/13) 6308808480555959 a001 969323029/8*591286729879^(3/13) 6308808480555959 a001 4106118243/8*1134903170^(3/13) 6308808493552631 a001 2255/13201*843^(15/28) 6308808493781989 a007 Real Root Of -730*x^4+810*x^3+935*x^2+593*x-834 6308808494161226 m001 (BesselI(0,2)+Pi^(1/2))/(ArtinRank2-Totient) 6308808497212887 a001 73681302247/8*4181^(3/13) 6308808497276115 h001 (10/11*exp(1)+8/11)/(3/5*exp(2)+7/11) 6308808511671634 m005 (1/2*Pi-5/7)/(2/3*exp(1)-5/11) 6308808520536078 a001 17711/103682*843^(15/28) 6308808524472910 a001 15456/90481*843^(15/28) 6308808525047286 a001 121393/710647*843^(15/28) 6308808525082796 r002 4th iterates of z^2 + 6308808525131087 a001 105937/620166*843^(15/28) 6308808525143313 a001 832040/4870847*843^(15/28) 6308808525150869 a001 514229/3010349*843^(15/28) 6308808525182878 a001 196418/1149851*843^(15/28) 6308808525402270 a001 75025/439204*843^(15/28) 6308808526906006 a001 28657/167761*843^(15/28) 6308808527791466 a007 Real Root Of -599*x^4+450*x^3-205*x^2+508*x-257 6308808537212766 a001 10946/64079*843^(15/28) 6308808556547727 a001 646/341*843^(5/28) 6308808576607848 a003 cos(Pi*15/94)/cos(Pi*56/113) 6308808583682249 m009 (1/6*Psi(1,3/4)+2/5)/(4*Psi(1,2/3)+4/5) 6308808584299690 a007 Real Root Of -174*x^4+910*x^3-262*x^2+941*x+954 6308808601393796 m001 Stephens^BesselI(0,2)/(Stephens^exp(1/exp(1))) 6308808607856348 a001 4181/24476*843^(15/28) 6308808616645518 s002 sum(A022610[n]/(n^2*exp(n)+1),n=1..infinity) 6308808617567332 r002 17th iterates of z^2 + 6308808632212118 h001 (3/4*exp(2)+3/4)/(3/10*exp(1)+2/11) 6308808663152268 m001 1/ln(Paris)/Kolakoski^2/Trott 6308808672298118 m001 1/ln(Porter)*MadelungNaCl*Salem^2 6308808684271071 a007 Real Root Of 870*x^4-748*x^3-784*x^2+241*x+210 6308808695702748 m001 Robbin^2/FeigenbaumC/ln(cos(1))^2 6308808718520782 a001 987/1364*843^(9/28) 6308808732920044 r009 Re(z^3+c),c=-35/66+5/33*I,n=57 6308808743864462 m001 (Lehmer-Mills)/(Zeta(1,-1)-cos(1/12*Pi)) 6308808761692086 m001 (BesselI(1,2)+Bloch)/(Mills+ReciprocalLucas) 6308808788466660 p003 LerchPhi(1/12,5,387/140) 6308808808808808 q001 2521/3996 6308808829738963 a003 cos(Pi*16/99)*sin(Pi*19/74) 6308808834671098 a007 Real Root Of -768*x^4+918*x^3-111*x^2+196*x+520 6308808836521151 h001 (1/3*exp(2)+3/7)/(1/2*exp(2)+8/9) 6308808839658157 p003 LerchPhi(1/32,2,291/230) 6308808842287280 m001 gamma(1)^Trott2nd*gamma(1)^ZetaR(2) 6308808858455415 r009 Re(z^3+c),c=-13/36+40/51*I,n=3 6308808887351151 a007 Real Root Of -938*x^4+508*x^3-486*x^2-524*x+139 6308808897791813 s002 sum(A273599[n]/(n^3*2^n-1),n=1..infinity) 6308808898655979 m001 LaplaceLimit^(Sarnak/MasserGramain) 6308808902175110 a007 Real Root Of -133*x^4+406*x^3+751*x^2+683*x+255 6308808932918104 a007 Real Root Of -515*x^4+540*x^3-478*x^2+487*x-171 6308808946464265 a008 Real Root of (-6+5*x+3*x^2+9*x^4+9*x^8) 6308808968891765 m001 (ln(gamma)+ln(2))/(GAMMA(7/12)+RenyiParking) 6308808969560159 a007 Real Root Of -863*x^4-145*x^3-88*x^2-438*x-141 6308808977460052 r005 Im(z^2+c),c=-75/106+14/41*I,n=7 6308808980817280 a001 646/6119*843^(17/28) 6308808983809290 a007 Real Root Of 591*x^4-803*x^3-204*x^2-989*x-838 6308809018066572 m001 (Niven+Salem)/(1-Landau) 6308809040947501 m001 GAMMA(2/3)/ErdosBorwein^2/ln(Zeta(7)) 6308809092054670 a001 1597/9349*843^(15/28) 6308809097024296 r005 Re(z^2+c),c=7/102+24/37*I,n=35 6308809119952803 p003 LerchPhi(1/32,5,34/31) 6308809132066877 m005 (1/2*exp(1)+5/6)/(10/11*gamma-4) 6308809132483353 r009 Re(z^3+c),c=-25/54+38/41*I,n=2 6308809133025262 a007 Real Root Of -398*x^4-575*x^3-756*x^2+53*x+253 6308809133222252 a001 6765/64079*843^(17/28) 6308809135120691 a007 Real Root Of 623*x^4-622*x^3+517*x^2-698*x-901 6308809142790346 a001 987/24476*843^(3/4) 6308809150924083 k002 Champernowne real with 199/2*n^2+7/2*n-97 6308809155457837 a001 17711/167761*843^(17/28) 6308809158701965 a001 11592/109801*843^(17/28) 6308809159175277 a001 121393/1149851*843^(17/28) 6308809159244333 a001 317811/3010349*843^(17/28) 6308809159260634 a001 514229/4870847*843^(17/28) 6308809159287011 a001 98209/930249*843^(17/28) 6308809159467800 a001 75025/710647*843^(17/28) 6308809160706947 a001 28657/271443*843^(17/28) 6308809163611330 s002 sum(A168199[n]/(n^2*pi^n+1),n=1..infinity) 6308809167515529 m005 (1/2*gamma-3)/(8/11*Zeta(3)-4/9) 6308809169200185 a001 5473/51841*843^(17/28) 6308809185106144 h001 (-8*exp(3/2)-6)/(-7*exp(2/3)+7) 6308809189162789 m001 (BesselJ(1,1)-KomornikLoreti)/(ln(2)+3^(1/3)) 6308809223021998 a007 Real Root Of -377*x^4+413*x^3+506*x^2+85*x-299 6308809225700068 m001 (-Grothendieck+ZetaQ(3))/(Catalan+Ei(1)) 6308809227413704 a001 4181/39603*843^(17/28) 6308809227483308 r009 Im(z^3+c),c=-15/122+35/47*I,n=7 6308809231833502 a007 Real Root Of -34*x^4+22*x^3-867*x^2+130*x+438 6308809239251637 a007 Real Root Of 660*x^4+180*x^3+797*x^2-137*x-463 6308809249169098 r005 Re(z^2+c),c=23/66+21/55*I,n=56 6308809258939796 g002 Psi(11/12)+Psi(7/11)-Psi(2/9)-Psi(2/7) 6308809265708772 a007 Real Root Of -12*x^4-753*x^3+246*x^2-633*x-311 6308809274167434 a001 11/28657*121393^(11/46) 6308809294811788 a005 (1/sin(58/139*Pi))^1604 6308809307825159 a001 305/682*1364^(11/30) 6308809312623409 h001 (-5*exp(3)-1)/(-4*exp(6)+6) 6308809315102692 m001 Paris^2/FransenRobinson/ln(sqrt(3)) 6308809316718412 r005 Re(z^2+c),c=3/16+32/47*I,n=3 6308809330098180 a007 Real Root Of 129*x^4-967*x^3+84*x^2-159*x+1 6308809330225788 m001 TwinPrimes^2/exp(Si(Pi))^2*sin(Pi/5) 6308809330899598 a007 Real Root Of -648*x^4+387*x^3-366*x^2+638*x+748 6308809342209094 m001 exp(Salem)*Cahen^2/GAMMA(5/12) 6308809342862108 a001 13/4*3571^(3/37) 6308809349604936 r005 Re(z^2+c),c=-93/122+1/46*I,n=41 6308809418101799 m001 exp(sqrt(1+sqrt(3)))*ArtinRank2*sqrt(3) 6308809429484679 r009 Re(z^3+c),c=-47/114+37/39*I,n=2 6308809438419788 a007 Real Root Of -472*x^4-266*x^3-722*x^2-37*x+272 6308809483471636 a007 Real Root Of 475*x^4-627*x^3+813*x^2+598*x-179 6308809504232236 m001 (exp(1/exp(1))+Cahen)/(GolombDickman+Khinchin) 6308809520096472 a007 Real Root Of -957*x^4+260*x^3-283*x^2+825*x+850 6308809547249377 a005 (1/sin(103/219*Pi))^952 6308809577076806 r005 Im(z^2+c),c=23/126+53/58*I,n=3 6308809583097877 a008 Real Root of x^4-35*x^2-10*x-128 6308809595870980 m009 (1/3*Psi(1,1/3)+1/4)/(2/3*Psi(1,1/3)-1) 6308809598989580 q001 1998/3167 6308809600374672 a001 2584/39603*843^(19/28) 6308809609155997 m001 ln(Riemann1stZero)/ArtinRank2/BesselK(1,1) 6308809610082848 a003 cos(Pi*7/31)-cos(Pi*45/98) 6308809613148879 r005 Re(z^2+c),c=-3/4+74/153*I,n=3 6308809626415097 a001 1597/15127*843^(17/28) 6308809635213432 r002 24th iterates of z^2 + 6308809638979252 a001 3/4*24476^(25/57) 6308809643515493 a001 3/4*167761^(7/19) 6308809643598075 a001 3/4*20633239^(5/19) 6308809664826222 b008 EulerGamma^(13/2+E) 6308809667978053 a001 615/124*322^(1/24) 6308809671855479 l006 ln(7417/7900) 6308809678040311 m001 (Kolakoski-Tribonacci)/(cos(1/5*Pi)-Cahen) 6308809684466511 a007 Real Root Of -258*x^4+733*x^3+410*x^2+533*x+398 6308809708766981 m001 (GAMMA(2/3)+GAMMA(11/12))/(Magata+ThueMorse) 6308809711133636 a001 89/2207*199^(21/22) 6308809725430522 a007 Real Root Of -56*x^4-178*x^3+978*x^2-778*x+182 6308809735534457 m001 (1+BesselI(0,1))/(-Artin+HardyLittlewoodC5) 6308809741982809 r002 6th iterates of z^2 + 6308809751266278 a007 Real Root Of 731*x^4-667*x^3+722*x^2+131*x-488 6308809757048988 a007 Real Root Of -96*x^4+897*x^3-560*x^2+93*x+522 6308809762347754 a001 329/13201*843^(23/28) 6308809762378325 a001 1/521*76^(25/31) 6308809764005889 r005 Re(z^2+c),c=-65/118+7/16*I,n=6 6308809765209730 a001 6765/103682*843^(19/28) 6308809784191420 r005 Im(z^2+c),c=-47/82+7/61*I,n=62 6308809784371429 r002 50th iterates of z^2 + 6308809787969858 m001 (Psi(2,1/3)+GAMMA(23/24))/(-Robbin+Stephens) 6308809789258841 a001 17711/271443*843^(19/28) 6308809792767559 a001 6624/101521*843^(19/28) 6308809793279474 a001 121393/1860498*843^(19/28) 6308809793354162 a001 317811/4870847*843^(19/28) 6308809793400321 a001 196418/3010349*843^(19/28) 6308809793595855 a001 75025/1149851*843^(19/28) 6308809794936066 a001 28657/439204*843^(19/28) 6308809804122009 a001 10946/167761*843^(19/28) 6308809828257439 r002 13th iterates of z^2 + 6308809836104307 r009 Im(z^3+c),c=-53/122+21/37*I,n=58 6308809849720023 m001 (-GAMMA(23/24)+2/3)/(ln(2)+5) 6308809860545498 m005 (1/2*2^(1/2)-3/11)/(5*Zeta(3)+7/8) 6308809861221164 r005 Re(z^2+c),c=-27/62+29/50*I,n=9 6308809867083399 a001 4181/64079*843^(19/28) 6308809874357543 a001 1597/1364*843^(1/4) 6308809883840664 m001 1/GAMMA(1/24)*ln(FeigenbaumB)^2*GAMMA(5/24) 6308809899003164 a001 281/726103*55^(5/41) 6308809935074632 r005 Im(z^2+c),c=-37/90+10/17*I,n=63 6308809940419920 m001 FeigenbaumAlpha^ErdosBorwein*exp(1/exp(1)) 6308809986740783 a001 610/2207*843^(13/28) 6308809999032696 r005 Im(z^2+c),c=7/114+36/61*I,n=12 6308810015907000 m001 1/GAMMA(1/12)^2*ln(BesselK(0,1))/Zeta(5) 6308810031984320 b008 4+Pi*ArcCosh[Glaisher] 6308810048788195 m001 (MertensB1+OrthogonalArrays)/(ln(3)-GaussAGM) 6308810052449786 a001 6765/2207*322^(1/8) 6308810083606876 m001 (Chi(1)+BesselI(1,1))/(-Artin+Gompertz) 6308810084745285 m001 1/KhintchineLevy^2/ArtinRank2^2/exp(Pi) 6308810088305607 a001 377/521*521^(9/26) 6308810091011814 r005 Re(z^2+c),c=-45/86+20/37*I,n=60 6308810110532397 r005 Re(z^2+c),c=-1/11+43/64*I,n=16 6308810151224143 k002 Champernowne real with 100*n^2+2*n-96 6308810168876664 a001 64079/377*591286729879^(2/15) 6308810170188942 a001 167761/377*433494437^(2/15) 6308810170311286 r009 Im(z^3+c),c=-10/27+9/14*I,n=37 6308810170378735 a001 439204/377*317811^(2/15) 6308810170464797 m001 GAMMA(19/24)^ArtinRank2/Pi^(1/2) 6308810192555150 m001 Zeta(1,2)+ln(gamma)^ZetaQ(3) 6308810195458342 a007 Real Root Of 609*x^4+81*x^3+906*x^2+82*x-385 6308810206221545 a001 1364*4181^(9/49) 6308810215275887 a001 6/329*89^(15/19) 6308810220610673 a007 Real Root Of 263*x^4-304*x^3+231*x^2-896*x+508 6308810223466254 a007 Real Root Of 971*x^4-755*x^3+781*x^2+254*x-494 6308810237655412 m005 (1/2*Pi-3)/(1/7*2^(1/2)-3/7) 6308810240044405 a001 2584/64079*843^(3/4) 6308810244176207 r005 Re(z^2+c),c=-95/126+5/57*I,n=17 6308810270310160 p003 LerchPhi(1/125,1,180/113) 6308810288277444 m006 (1/Pi+1/4)/(1/6*exp(2*Pi)+5/6) 6308810296955608 g006 Psi(1,1/6)+2*Psi(1,1/4)-Psi(1,4/11) 6308810298627184 a001 1597/24476*843^(19/28) 6308810311384664 a007 Real Root Of -432*x^4+164*x^3+11*x^2+640*x+509 6308810316034790 a007 Real Root Of -748*x^4+440*x^3+897*x^2+84*x-402 6308810318779105 a007 Real Root Of 380*x^4+357*x^3+274*x^2-874*x-631 6308810335475296 r009 Im(z^3+c),c=-5/126+30/41*I,n=9 6308810349524710 m001 1/RenyiParking/exp(Cahen)/GAMMA(11/12)^2 6308810388765596 r005 Im(z^2+c),c=-45/34+5/103*I,n=38 6308810389352872 m005 (1/6*Catalan-3)/(4/5*Pi+2) 6308810391105292 a001 305/682*3571^(11/34) 6308810400131614 a001 615/15251*843^(3/4) 6308810402017503 a001 987/64079*843^(25/28) 6308810412398707 m001 (-gamma(2)+Kolakoski)/(Si(Pi)-gamma) 6308810421534131 r002 9th iterates of z^2 + 6308810421534131 r002 9th iterates of z^2 + 6308810423488023 a001 17711/439204*843^(3/4) 6308810426895678 a001 46368/1149851*843^(3/4) 6308810427392848 a001 121393/3010349*843^(3/4) 6308810427465384 a001 317811/7881196*843^(3/4) 6308810427475967 a001 75640/1875749*843^(3/4) 6308810427477511 a001 2178309/54018521*843^(3/4) 6308810427477736 a001 5702887/141422324*843^(3/4) 6308810427477769 a001 14930352/370248451*843^(3/4) 6308810427477774 a001 39088169/969323029*843^(3/4) 6308810427477774 a001 9303105/230701876*843^(3/4) 6308810427477774 a001 267914296/6643838879*843^(3/4) 6308810427477774 a001 701408733/17393796001*843^(3/4) 6308810427477774 a001 1836311903/45537549124*843^(3/4) 6308810427477774 a001 4807526976/119218851371*843^(3/4) 6308810427477774 a001 1144206275/28374454999*843^(3/4) 6308810427477774 a001 32951280099/817138163596*843^(3/4) 6308810427477774 a001 86267571272/2139295485799*843^(3/4) 6308810427477774 a001 225851433717/5600748293801*843^(3/4) 6308810427477774 a001 591286729879/14662949395604*843^(3/4) 6308810427477774 a001 365435296162/9062201101803*843^(3/4) 6308810427477774 a001 139583862445/3461452808002*843^(3/4) 6308810427477774 a001 53316291173/1322157322203*843^(3/4) 6308810427477774 a001 20365011074/505019158607*843^(3/4) 6308810427477774 a001 7778742049/192900153618*843^(3/4) 6308810427477774 a001 2971215073/73681302247*843^(3/4) 6308810427477774 a001 1134903170/28143753123*843^(3/4) 6308810427477774 a001 433494437/10749957122*843^(3/4) 6308810427477774 a001 165580141/4106118243*843^(3/4) 6308810427477775 a001 63245986/1568397607*843^(3/4) 6308810427477776 a001 24157817/599074578*843^(3/4) 6308810427477789 a001 9227465/228826127*843^(3/4) 6308810427477875 a001 3524578/87403803*843^(3/4) 6308810427478465 a001 1346269/33385282*843^(3/4) 6308810427482507 a001 514229/12752043*843^(3/4) 6308810427510213 a001 196418/4870847*843^(3/4) 6308810427700116 a001 75025/1860498*843^(3/4) 6308810429001724 a001 28657/710647*843^(3/4) 6308810437579267 p001 sum((-1)^n/(511*n+460)/n/(16^n),n=1..infinity) 6308810437923078 a001 10946/271443*843^(3/4) 6308810439068145 m001 (5^(1/2)-Catalan)/(Zeta(5)+GAMMA(11/12)) 6308810443023509 m001 LambertW(1)/(CareFree+DuboisRaymond) 6308810445296259 r005 Re(z^2+c),c=-21/44+33/53*I,n=19 6308810475297896 a007 Real Root Of -210*x^4+921*x^3-582*x^2+545*x+840 6308810475788408 a007 Real Root Of -932*x^4-748*x^3-793*x^2+860*x+818 6308810488397816 m005 (13/20+1/4*5^(1/2))/(5/11*5^(1/2)+9/10) 6308810499070951 a001 4181/103682*843^(3/4) 6308810500396743 h001 (1/6*exp(2)+3/8)/(9/10*exp(1)+1/10) 6308810509782788 a003 sin(Pi*1/69)/cos(Pi*28/115) 6308810519245702 a001 233/2207*521^(17/26) 6308810520654754 r005 Im(z^2+c),c=-13/62+39/61*I,n=7 6308810521363089 a001 233/3571*521^(19/26) 6308810530270583 a001 305/682*9349^(11/38) 6308810548406707 a001 305/682*24476^(11/42) 6308810550797397 a001 305/682*64079^(11/46) 6308810551164790 a001 305/682*7881196^(1/6) 6308810551164807 a001 305/682*312119004989^(1/10) 6308810551164807 a001 305/682*1568397607^(1/8) 6308810552170421 a001 305/682*39603^(1/4) 6308810558746646 a001 305/682*15127^(11/40) 6308810567378815 a001 124/5*987^(23/49) 6308810573115462 a007 Real Root Of 982*x^4-873*x^3-516*x^2+46*x+240 6308810583728019 a007 Real Root Of 415*x^4-140*x^3+569*x^2+83*x-275 6308810585081175 m009 (1/2*Psi(1,1/3)-5)/(4/5*Psi(1,1/3)-1/2) 6308810594870735 r009 Re(z^3+c),c=-13/24+5/14*I,n=19 6308810595511482 a007 Real Root Of 783*x^4+827*x^3+748*x^2-796*x-53 6308810600632770 m001 (BesselJ(0,1)+ln(2^(1/2)+1))/(Conway+Mills) 6308810608905583 a001 305/682*5778^(11/36) 6308810626280881 m001 exp(GAMMA(13/24))^2*Riemann1stZero^2/sin(1) 6308810662388244 m001 (cos(1)+Zeta(1/2))/(2^(1/3)-exp(1)) 6308810665735895 r005 Im(z^2+c),c=7/66+31/50*I,n=57 6308810675210268 a007 Real Root Of 63*x^4+437*x^3+126*x^2-692*x+549 6308810676374700 m001 (1-ln(gamma))/(GAMMA(19/24)+GlaisherKinkelin) 6308810694106234 a007 Real Root Of 105*x^4-751*x^3+305*x^2+421*x-61 6308810705503385 l006 ln(5011/9417) 6308810715547461 m001 1/KhintchineHarmonic/ln(Conway)*cos(1)^2 6308810722222399 m001 Si(Pi)*FeigenbaumD+Totient 6308810734105219 a007 Real Root Of 426*x^4+193*x^3+871*x^2-988*x-989 6308810743943743 m005 (1/2*Catalan-1/2)/(7/8*2^(1/2)-4/7) 6308810744670411 h001 (7/8*exp(1)+1/11)/(5/11*exp(2)+5/9) 6308810773861051 r005 Re(z^2+c),c=27/110+20/53*I,n=42 6308810818965158 r002 3th iterates of z^2 + 6308810854849336 m001 1/exp(Bloch)/Artin^2*sqrt(2) 6308810869307016 a007 Real Root Of 129*x^4-406*x^3-59*x^2-910*x-673 6308810872031994 a001 1292/51841*843^(23/28) 6308810918184706 a001 1597/39603*843^(3/4) 6308810919604240 m001 (ln(gamma)+FeigenbaumB)/(MertensB1-Rabbit) 6308810921499476 r005 Im(z^2+c),c=-25/118+21/23*I,n=6 6308810926182280 m009 (1/10*Pi^2+3/4)/(5/6*Psi(1,2/3)+1/5) 6308810934857446 l006 ln(4630/8701) 6308810942425570 a001 5473/38*322^(36/55) 6308810949529512 q001 1475/2338 6308810949534289 a007 Real Root Of -916*x^4+655*x^3+738*x^2+664*x-732 6308810975686691 a007 Real Root Of -744*x^4+897*x^3-517*x^2-721*x+94 6308810992284247 r005 Re(z^2+c),c=-53/74+2/7*I,n=56 6308810994324300 m001 Shi(1)/(ln(2)/ln(10)+exp(1/Pi)) 6308810996396095 a001 305/682*2207^(11/32) 6308811025655031 m005 (1/3*Catalan+1/2)/(3/11*5^(1/2)+2/3) 6308811026450084 a007 Real Root Of -157*x^4-816*x^3+972*x^2-951*x-874 6308811033932743 a001 2255/90481*843^(23/28) 6308811034005109 a001 21/2206*843^(27/28) 6308811046537732 r005 Im(z^2+c),c=-13/22+9/77*I,n=21 6308811049604361 h001 (1/7*exp(2)+3/8)/(4/7*exp(1)+5/7) 6308811057553744 a001 17711/710647*843^(23/28) 6308811061000002 a001 2576/103361*843^(23/28) 6308811061502804 a001 121393/4870847*843^(23/28) 6308811061813553 a001 75025/3010349*843^(23/28) 6308811063129906 a001 28657/1149851*843^(23/28) 6308811072152326 a001 5473/219602*843^(23/28) 6308811097369318 b008 ArcCsch[22*EulerGamma+Pi] 6308811106197921 a005 (1/cos(7/192*Pi))^1331 6308811115345920 a003 cos(Pi*8/29)-cos(Pi*22/73) 6308811125540178 a007 Real Root Of 413*x^4-413*x^3-826*x^2-504*x+685 6308811132138316 k001 Champernowne real with 251*n+379 6308811132138316 k005 Champernowne real with floor(sqrt(3)*(145*n+219)) 6308811133992909 a001 4181/167761*843^(23/28) 6308811151524203 k002 Champernowne real with 201/2*n^2+1/2*n-95 6308811154349137 h001 (2/5*exp(1)+7/10)/(7/8*exp(1)+5/11) 6308811182246099 a001 17711/5778*322^(1/8) 6308811187025586 r002 38th iterates of z^2 + 6308811194214037 m001 ln(2^(1/2)+1)^(GAMMA(19/24)/arctan(1/3)) 6308811205343012 l006 ln(4249/7985) 6308811210604512 m001 ln(Paris)*FransenRobinson^2*sin(Pi/5)^2 6308811230391759 r005 Im(z^2+c),c=17/56+18/43*I,n=24 6308811236410959 r005 Im(z^2+c),c=-2/27+31/42*I,n=11 6308811264182311 r005 Re(z^2+c),c=1/44+26/45*I,n=17 6308811272204772 m001 1/exp(GAMMA(1/6))^2*MadelungNaCl^2/sin(1)^2 6308811282352871 m001 (ArtinRank2+LandauRamanujan)/(1+ln(2+3^(1/2))) 6308811290068396 a007 Real Root Of -293*x^4+605*x^3-831*x^2-268*x+360 6308811298428930 r009 Re(z^3+c),c=-5/44+25/39*I,n=23 6308811322301486 a007 Real Root Of -700*x^4-176*x^3-679*x^2+902*x+906 6308811343700624 a001 329/281*322^(7/24) 6308811347081193 a001 6624/2161*322^(1/8) 6308811359976297 m001 (Pi*ln(Pi)+GAMMA(1/4))/ln(Pi) 6308811359976297 m001 (Pi*ln(Pi)+Pi*2^(1/2)/GAMMA(3/4))/ln(Pi) 6308811364492786 m001 (Artin+MertensB1)/(BesselI(0,1)-sin(1/12*Pi)) 6308811371130310 a001 121393/39603*322^(1/8) 6308811374639028 a001 317811/103682*322^(1/8) 6308811375150944 a001 832040/271443*322^(1/8) 6308811375225631 a001 311187/101521*322^(1/8) 6308811375236528 a001 5702887/1860498*322^(1/8) 6308811375238118 a001 14930352/4870847*322^(1/8) 6308811375238350 a001 39088169/12752043*322^(1/8) 6308811375238383 a001 14619165/4769326*322^(1/8) 6308811375238388 a001 267914296/87403803*322^(1/8) 6308811375238389 a001 701408733/228826127*322^(1/8) 6308811375238389 a001 1836311903/599074578*322^(1/8) 6308811375238389 a001 686789568/224056801*322^(1/8) 6308811375238389 a001 12586269025/4106118243*322^(1/8) 6308811375238389 a001 32951280099/10749957122*322^(1/8) 6308811375238389 a001 86267571272/28143753123*322^(1/8) 6308811375238389 a001 32264490531/10525900321*322^(1/8) 6308811375238389 a001 591286729879/192900153618*322^(1/8) 6308811375238389 a001 1548008755920/505019158607*322^(1/8) 6308811375238389 a001 1515744265389/494493258286*322^(1/8) 6308811375238389 a001 2504730781961/817138163596*322^(1/8) 6308811375238389 a001 956722026041/312119004989*322^(1/8) 6308811375238389 a001 365435296162/119218851371*322^(1/8) 6308811375238389 a001 139583862445/45537549124*322^(1/8) 6308811375238389 a001 53316291173/17393796001*322^(1/8) 6308811375238389 a001 20365011074/6643838879*322^(1/8) 6308811375238389 a001 7778742049/2537720636*322^(1/8) 6308811375238389 a001 2971215073/969323029*322^(1/8) 6308811375238389 a001 1134903170/370248451*322^(1/8) 6308811375238390 a001 433494437/141422324*322^(1/8) 6308811375238391 a001 165580141/54018521*322^(1/8) 6308811375238404 a001 63245986/20633239*322^(1/8) 6308811375238493 a001 24157817/7881196*322^(1/8) 6308811375239100 a001 9227465/3010349*322^(1/8) 6308811375243262 a001 3524578/1149851*322^(1/8) 6308811375271790 a001 1346269/439204*322^(1/8) 6308811375467325 a001 514229/167761*322^(1/8) 6308811375741286 m005 (1/2*Pi-2/3)/(4/7*2^(1/2)+5/8) 6308811376807536 a001 196418/64079*322^(1/8) 6308811385993481 a001 75025/24476*322^(1/8) 6308811402554737 a007 Real Root Of -744*x^4-749*x^3-362*x^2+639*x+477 6308811410165135 a007 Real Root Of -668*x^4+427*x^3+515*x^2+914*x-783 6308811413055909 m006 (3*ln(Pi)-3/5)/(5/6*exp(2*Pi)+3) 6308811421313378 m001 (2^(1/3)-polylog(4,1/2))/(-Lehmer+Weierstrass) 6308811431050911 m005 (1/2+1/4*5^(1/2))/(1/12*2^(1/2)-2/7) 6308811448954888 a001 28657/9349*322^(1/8) 6308811455365760 r005 Re(z^2+c),c=-57/86+15/49*I,n=48 6308811503443301 m001 Sarnak^ln(2+3^(1/2))*cos(1/12*Pi) 6308811506953990 a001 2584/167761*843^(25/28) 6308811516210285 m001 Pi/Psi(1,1/3)+arctan(1/3)-gamma(3) 6308811529114504 l006 ln(3868/7269) 6308811531289426 m008 (2/5*Pi^4-2/3)/(1/5*Pi^5-1/2) 6308811542174467 m001 (FeigenbaumMu-ZetaP(4))/(Zeta(5)-BesselI(1,2)) 6308811553516016 r005 Re(z^2+c),c=-33/70+29/56*I,n=9 6308811557854572 a001 1597/64079*843^(23/28) 6308811575587942 a001 18/4181*3^(8/23) 6308811579651366 a003 sin(Pi*23/108)/sin(Pi*49/111) 6308811606015103 a007 Real Root Of 480*x^4-884*x^3+124*x^2-66*x-389 6308811612595807 a001 2/11*4^(35/39) 6308811639566810 r009 Im(z^3+c),c=-23/118+18/25*I,n=12 6308811658476385 a007 Real Root Of -412*x^4+988*x^3+725*x^2-71*x-20 6308811668162051 a001 6765/439204*843^(25/28) 6308811691681990 a001 17711/1149851*843^(25/28) 6308811695113503 a001 46368/3010349*843^(25/28) 6308811695923573 a001 75025/4870847*843^(25/28) 6308811697234294 a001 28657/1860498*843^(25/28) 6308811706218111 a001 10946/710647*843^(25/28) 6308811708705594 r009 Re(z^3+c),c=-9/82+8/13*I,n=48 6308811723423159 m001 GAMMA(5/24)/Bloch^2*exp(sqrt(3))^2 6308811749381722 m001 exp(GAMMA(23/24))^2/Trott*Zeta(1,2)^2 6308811764374292 a007 Real Root Of -777*x^4-411*x^3-479*x^2+462*x+502 6308811767229323 v002 sum(1/(3^n+(5*n^2+19*n+3)),n=1..infinity) 6308811767794111 a001 4181/271443*843^(25/28) 6308811788895275 a007 Real Root Of 550*x^4-954*x^3+823*x^2-491*x-964 6308811835409381 r005 Im(z^2+c),c=-20/31+26/55*I,n=39 6308811874130678 a007 Real Root Of -736*x^4+977*x^3-537*x^2+549*x+922 6308811875347702 a007 Real Root Of -170*x^4-973*x^3+471*x^2-840*x+938 6308811879649479 m001 (2^(1/2)-Otter)/(-Riemann3rdZero+Stephens) 6308811880498819 a001 10946/3571*322^(1/8) 6308811900824683 m001 (Artin+Bloch)/(FransenRobinson-Porter) 6308811923638457 l006 ln(3487/6553) 6308811924508591 a007 Real Root Of 897*x^4+366*x^3+482*x^2-504*x-560 6308811930316491 a007 Real Root Of 823*x^4+97*x^3+892*x^2-439*x-738 6308811934654979 r005 Im(z^2+c),c=-49/46+1/14*I,n=5 6308811937457036 r002 40i'th iterates of 2*x/(1-x^2) of 6308811950292225 a007 Real Root Of -406*x^4+800*x^3+615*x^2+673*x+445 6308811990717478 m001 1/PrimesInBinary/exp(Cahen)^2/GAMMA(11/12) 6308812029044354 h001 (-2*exp(-1)+3)/(-6*exp(3/2)-9) 6308812046825551 r005 Re(z^2+c),c=31/118+18/29*I,n=3 6308812046897133 h005 exp(cos(Pi*1/39)+cos(Pi*7/39)) 6308812049766027 m005 (7/20+1/4*5^(1/2))/(6/11*Pi-3/11) 6308812061346503 q001 2427/3847 6308812068032571 m001 Porter^2*FeigenbaumAlpha^2*exp(cosh(1)) 6308812072900410 m005 (1/3*2^(1/2)+1/4)/(3/8*Catalan+4/5) 6308812073642984 a007 Real Root Of 170*x^4-858*x^3-132*x^2-523*x+571 6308812085791443 a007 Real Root Of -346*x^4+339*x^3+864*x^2+201*x-501 6308812092581059 m005 (27/28+1/4*5^(1/2))/(3*Catalan-1/3) 6308812103965097 p001 sum((-1)^n/(605*n+158)/(64^n),n=0..infinity) 6308812106691129 p004 log(31333/16673) 6308812140755230 a001 2584/271443*843^(27/28) 6308812149519867 r001 44i'th iterates of 2*x^2-1 of 6308812151824263 k002 Champernowne real with 101*n^2-n-94 6308812156868732 h001 (1/12*exp(2)+3/10)/(1/3*exp(1)+6/11) 6308812164255052 r002 11th iterates of z^2 + 6308812176569193 a001 1/387002188980*3^(13/16) 6308812185450390 a001 3/2584*28657^(27/44) 6308812189842294 a001 1597/103682*843^(25/28) 6308812194266573 r005 Re(z^2+c),c=-11/18+14/41*I,n=8 6308812205571740 m001 MasserGramain^(5^(1/2)*Bloch) 6308812216118316 a001 55*24476^(37/40) 6308812234268843 a007 Real Root Of 481*x^4-414*x^3+463*x^2-692*x-801 6308812257684837 m005 (1/2*Pi-5/12)/(exp(1)-8/9) 6308812268613528 a007 Real Root Of -54*x^4-277*x^3+320*x^2-455*x+382 6308812274784430 r002 58th iterates of z^2 + 6308812274984077 m001 (Zeta(3)*ln(5)-Salem)/Zeta(3) 6308812277722740 a007 Real Root Of -909*x^4+529*x^3+29*x^2+334*x+476 6308812284411303 a007 Real Root Of -187*x^4+522*x^3+151*x^2+863*x-706 6308812302227896 a001 6765/710647*843^(27/28) 6308812307601152 r009 Im(z^3+c),c=-13/34+31/50*I,n=44 6308812325786441 a001 17711/1860498*843^(27/28) 6308812329223586 a001 46368/4870847*843^(27/28) 6308812331347859 a001 28657/3010349*843^(27/28) 6308812340346422 a001 10946/1149851*843^(27/28) 6308812361134944 a007 Real Root Of 118*x^4+597*x^3-945*x^2-72*x+136 6308812361211248 a001 305/2889*843^(17/28) 6308812375965116 r005 Re(z^2+c),c=-29/38+1/43*I,n=63 6308812386962487 a007 Real Root Of -950*x^4+297*x^3-494*x^2-903*x-148 6308812402023493 a001 4181/439204*843^(27/28) 6308812410179366 a007 Real Root Of 87*x^4+467*x^3-429*x^2+495*x-359 6308812410799593 a001 610/3571*843^(15/28) 6308812414951586 l006 ln(3106/5837) 6308812432348571 a007 Real Root Of 16*x^4-356*x^3+537*x^2-37*x-329 6308812435223361 r005 Re(z^2+c),c=-1/26+4/21*I,n=14 6308812468334339 m001 (-ln(Pi)+Grothendieck)/(Si(Pi)-sin(1)) 6308812486209820 a001 64079/377*55^(18/55) 6308812512902901 a001 1/29*(1/2*5^(1/2)+1/2)^26*123^(7/8) 6308812554436957 a007 Real Root Of 987*x^4+94*x^3+397*x^2-628*x+38 6308812586403423 m001 1/GAMMA(1/12)*ln(Bloch)*cos(Pi/12) 6308812609444053 a007 Real Root Of -788*x^4+475*x^3+511*x^2+731*x-659 6308812617628197 m001 (-Tribonacci+ZetaQ(4))/(exp(1)+DuboisRaymond) 6308812625545198 s002 sum(A184070[n]/(n^3*pi^n+1),n=1..infinity) 6308812632703933 a007 Real Root Of 631*x^4-353*x^3-205*x^2-582*x-36 6308812649589679 a005 (1/sin(98/215*Pi))^667 6308812650795767 m001 BesselK(0,1)-Zeta(5)^HardHexagonsEntropy 6308812658084852 a007 Real Root Of -326*x^4+983*x^3-169*x^2+300*x+555 6308812669242376 r005 Re(z^2+c),c=-69/94+4/45*I,n=9 6308812673821079 m001 (Bloch*ZetaP(4)+MertensB1)/Bloch 6308812677138005 s002 sum(A038541[n]/(n^2*exp(n)-1),n=1..infinity) 6308812680145316 a001 2584/3*1364^(8/29) 6308812721885515 a007 Real Root Of -204*x^4-28*x^3+447*x^2+733*x-601 6308812726579653 r009 Re(z^3+c),c=-7/62+41/64*I,n=28 6308812734357605 a007 Real Root Of -679*x^4+744*x^3-716*x^2-698*x+139 6308812746661258 a001 1597/123*64079^(39/40) 6308812759984970 m001 (-Kolakoski+KomornikLoreti)/(exp(1)-ln(Pi)) 6308812774104745 a003 cos(Pi*19/118)*sin(Pi*10/39) 6308812789152718 m001 cos(1/5*Pi)*FeigenbaumB^FeigenbaumKappa 6308812795004863 m001 (1-Ei(1))/(GolombDickman+Kolakoski) 6308812824764422 a001 1597/167761*843^(27/28) 6308812824796470 r002 3th iterates of z^2 + 6308812857993959 a007 Real Root Of -555*x^4+922*x^3-795*x^2+238*x+786 6308812878203060 m005 (1/2*Zeta(3)-1/10)/(5/11*5^(1/2)-2/9) 6308812884883236 a003 sin(Pi*4/19)/sin(Pi*32/75) 6308812955972976 m001 ln(GAMMA(1/12))/LaplaceLimit^2/log(1+sqrt(2)) 6308812972542155 m001 (GAMMA(23/24)+ZetaQ(3))/GAMMA(13/24) 6308812983559181 a001 4181/7*2^(3/38) 6308812994950382 a007 Real Root Of 507*x^4-661*x^3+222*x^2-931*x-922 6308812999117711 r005 Im(z^2+c),c=-53/98+4/7*I,n=18 6308813008311167 p001 sum(1/(277*n+161)/(24^n),n=0..infinity) 6308813043652058 l006 ln(2725/5121) 6308813044748849 g007 -Psi(2,1/12)-Psi(2,1/11)-Psi(2,8/9)-Psi(2,2/9) 6308813073827927 r009 Re(z^3+c),c=-29/50+18/61*I,n=22 6308813112719434 m004 -3-(5*Sqrt[5])/Pi+Tanh[Sqrt[5]*Pi]/4 6308813126683610 m005 (5*Catalan+2/5)/(5/12+1/6*5^(1/2)) 6308813152124323 k002 Champernowne real with 203/2*n^2-5/2*n-93 6308813167800669 m001 (sin(1)*Trott2nd+Niven)/Trott2nd 6308813169271316 b008 -5*E^(2/Pi)+Pi 6308813174405692 a007 Real Root Of 497*x^4-143*x^3-776*x^2-122*x+343 6308813177862928 r005 Im(z^2+c),c=-13/114+43/52*I,n=32 6308813223703261 r009 Re(z^3+c),c=-7/19+38/39*I,n=2 6308813239385143 m001 GAMMA(1/12)^2/ln(Champernowne)/Zeta(9) 6308813239986148 a005 (1/sin(43/104*Pi))^1526 6308813250544863 m001 1/ln(FeigenbaumKappa)^2/Conway/GAMMA(1/4)^2 6308813256472326 a001 610/9349*843^(19/28) 6308813265553314 a007 Real Root Of 585*x^4-84*x^3-71*x^2-573*x-447 6308813269303301 a001 1149851/377*233^(2/15) 6308813279619896 m005 (1/2*exp(1)-5/8)/(1/6*3^(1/2)+7/8) 6308813281875501 a007 Real Root Of 900*x^4-370*x^3+257*x^2-571*x-698 6308813296923070 r002 59th iterates of z^2 + 6308813324615433 a007 Real Root Of 745*x^4-810*x^3-324*x^2+183*x-77 6308813332528295 m001 (ArtinRank2+ZetaP(2))/(Shi(1)+BesselJ(0,1)) 6308813359643845 m001 ln(Rabbit)^2/Cahen*sin(Pi/5)^2 6308813362025855 m004 6-Cos[Sqrt[5]*Pi]/5+Sin[Sqrt[5]*Pi]^2 6308813362116155 a003 sin(Pi*28/107)*sin(Pi*36/109) 6308813369722553 a007 Real Root Of 947*x^4+641*x^3+141*x^2-564*x-401 6308813396253888 r005 Im(z^2+c),c=-31/58+9/40*I,n=6 6308813399181560 m008 (1/6*Pi^6-4)/(1/6*Pi-3) 6308813428884563 l006 ln(5069/9526) 6308813464183273 a007 Real Root Of -156*x^4-855*x^3+966*x^2+856*x-612 6308813466739328 a007 Real Root Of 499*x^4+843*x^3+544*x^2-975*x-699 6308813479266714 r002 13th iterates of z^2 + 6308813479919565 a007 Real Root Of 941*x^4-612*x^3+198*x^2-630*x-779 6308813488696457 p004 log(32983/17551) 6308813499739667 m005 (1/2*Pi-1/6)/(5/12*Pi+11/12) 6308813533411698 m001 (PlouffeB+RenyiParking)/(FeigenbaumC+OneNinth) 6308813547541875 a007 Real Root Of -611*x^4-327*x^3-499*x^2+716*x+665 6308813568035529 m001 (LambertW(1)-Shi(1))/(-ln(3)+arctan(1/3)) 6308813581283954 a007 Real Root Of 979*x^4+739*x^3+362*x^2-641*x-518 6308813584169524 m001 Tribonacci/(FransenRobinson+OneNinth) 6308813599354286 a007 Real Root Of -655*x^4+675*x^3+153*x^2-18*x+201 6308813621277949 a001 2584/3*15127^(6/29) 6308813623405336 m001 (MertensB2+Mills)/(GaussKuzminWirsing+Magata) 6308813646681254 a007 Real Root Of -341*x^4-945*x^3-757*x^2+867*x+665 6308813684894483 r009 Im(z^3+c),c=-31/66+27/53*I,n=14 6308813689133768 p004 log(22741/12101) 6308813692893469 l006 ln(3148/3353) 6308813693759817 m001 Kolakoski^2*Cahen^2*exp(log(1+sqrt(2))) 6308813706921845 m005 (1/2*Pi+4)/(7/12*Zeta(3)+2/11) 6308813714696649 r005 Im(z^2+c),c=-7/6+5/63*I,n=19 6308813717576630 a007 Real Root Of -550*x^4+574*x^3+640*x^2+896*x-877 6308813718148662 a007 Real Root Of 735*x^4+258*x^3+956*x^2+918*x+147 6308813727226540 r005 Re(z^2+c),c=-1/26+4/21*I,n=13 6308813770136419 r009 Im(z^3+c),c=-15/62+9/13*I,n=11 6308813783962889 q001 952/1509 6308813790833106 a001 610/15127*843^(3/4) 6308813803736463 a007 Real Root Of 120*x^4+816*x^3+322*x^2-231*x+527 6308813815282644 a001 10946/3*39603^(3/58) 6308813876733766 l006 ln(2344/4405) 6308813894935623 m001 OneNinth^(Pi*csc(11/24*Pi)/GAMMA(13/24)*Salem) 6308813902588233 a001 377/843*322^(11/24) 6308813920310311 a007 Real Root Of 273*x^4-989*x^3+175*x^2+720*x+93 6308813950216153 a007 Real Root Of 891*x^4-153*x^3+80*x^2-505*x-530 6308813950544149 a001 2584/3*2207^(15/58) 6308813953224727 r009 Re(z^3+c),c=-53/90+10/33*I,n=2 6308813963528430 r002 4th iterates of z^2 + 6308814020559959 g002 Psi(7/8)+Psi(1/5)-Psi(1/11)-Psi(4/5) 6308814031860401 m001 ln(FibonacciFactorial)/Backhouse^2*cos(Pi/5)^2 6308814038518521 m001 (gamma(2)*Totient+GolombDickman)/gamma(2) 6308814038775716 a001 305/682*843^(11/28) 6308814039279797 m005 (1/2*Pi-1/5)/(exp(1)-6/11) 6308814048773855 a007 Real Root Of 853*x^4-271*x^3+642*x^2-94*x-518 6308814055723120 a007 Real Root Of -88*x^4-268*x^3-883*x^2+431*x+570 6308814098902650 a007 Real Root Of 909*x^4-481*x^3+374*x^2-948*x+426 6308814140748835 a001 1/1926*47^(24/37) 6308814148944541 a007 Real Root Of 212*x^4-509*x^3-209*x^2-751*x-552 6308814152044990 a007 Real Root Of 951*x^4-567*x^3+921*x^2+887*x-100 6308814152424383 k002 Champernowne real with 102*n^2-4*n-92 6308814188369400 m001 (-Cahen+Kolakoski)/(exp(Pi)+AlladiGrinstead) 6308814211175529 m001 BesselJ(0,1)^(cos(Pi/5)*GAMMA(5/12)) 6308814225095013 a007 Real Root Of -269*x^4+899*x^3+600*x^2+779*x+521 6308814266927077 m005 (5*gamma-2)/(9/8+1/8*5^(1/2)) 6308814307619381 m001 (Pi+2*Pi/GAMMA(5/6))/(Conway+ZetaP(4)) 6308814317338384 r005 Re(z^2+c),c=-5/6+148/211*I,n=2 6308814322443063 a001 1/311187*3^(35/57) 6308814325838967 b008 (13*(1/24+Sqrt[2]))/3 6308814348462311 m001 1/cos(1)/ln(Lehmer)^2*cos(Pi/12)^2 6308814366393614 a007 Real Root Of -898*x^4+919*x^3+359*x^2-43*x+203 6308814393884399 h001 (3/8*exp(2)+2/7)/(7/11*exp(2)+1/7) 6308814400306610 a001 9349/13*4181^(22/41) 6308814400580839 a007 Real Root Of -773*x^4+772*x^3-916*x^2-22*x+667 6308814403817003 l006 ln(4307/8094) 6308814408228893 r002 3th iterates of z^2 + 6308814419372048 r009 Im(z^3+c),c=-7/106+19/25*I,n=15 6308814422245096 a007 Real Root Of -930*x^4-126*x^3-18*x^2+332*x+21 6308814429330922 a007 Real Root Of 297*x^4-669*x^3-32*x^2-348*x-22 6308814450638711 m001 (GlaisherKinkelin+PlouffeB)/(Tetranacci+Thue) 6308814463045637 a001 305/12238*843^(23/28) 6308814470774477 m005 (1/2*2^(1/2)+8/9)/(9/10*exp(1)+1/12) 6308814497745898 m001 (GaussAGM-Khinchin)/(Pi-exp(-1/2*Pi)) 6308814534203637 m005 (1/3*Zeta(3)+3/7)/(117/220+7/20*5^(1/2)) 6308814540247392 a007 Real Root Of 23*x^4-146*x^3-565*x^2-677*x+685 6308814560424765 r005 Re(z^2+c),c=9/56+31/57*I,n=46 6308814560435602 a007 Real Root Of -601*x^4+544*x^3+198*x^2+298*x+341 6308814590561788 m001 1/GAMMA(5/6)*ln(PrimesInBinary)*cos(Pi/5) 6308814616901869 m001 Niven*ln(Cahen)*Catalan^2 6308814618029252 r005 Re(z^2+c),c=-79/110+1/43*I,n=7 6308814623309821 a007 Real Root Of 127*x^4+876*x^3+454*x^2-128*x-100 6308814638661928 a007 Real Root Of -983*x^4+106*x^3-588*x^2-530*x+82 6308814639161166 r002 3th iterates of z^2 + 6308814662888752 m001 sin(Pi/12)/Ei(1)^2*exp(sqrt(5))^2 6308814663543914 a007 Real Root Of 583*x^4+392*x^3+172*x^2-20*x-75 6308814669535041 m005 (1/3*3^(1/2)-1/4)/(3/7*Catalan-4/9) 6308814706447847 m001 1/GAMMA(5/6)*ln(Conway)^2/Pi^2 6308814707805421 m001 1/exp(Robbin)^2/ArtinRank2*sqrt(1+sqrt(3)) 6308814711639129 a007 Real Root Of 978*x^4+284*x^3-160*x^2-585*x-389 6308814733438779 a007 Real Root Of -307*x^4+126*x^3+600*x^2+712*x-671 6308814788535068 r005 Re(z^2+c),c=-1/24+35/48*I,n=8 6308814838346486 a001 4181/1364*322^(1/8) 6308814865456372 a007 Real Root Of 654*x^4-263*x^3+340*x^2-176*x-416 6308814871973646 r005 Im(z^2+c),c=-5/78+28/43*I,n=11 6308814882940608 a007 Real Root Of 604*x^4-535*x^3-661*x^2-384*x+544 6308814968192727 m008 (1/4*Pi^6+1)/(2/5*Pi^6-2) 6308814994359283 a007 Real Root Of -261*x^4-145*x^3-615*x^2+495*x+562 6308814999892169 r002 36th iterates of z^2 + 6308815014621597 m001 (Si(Pi)+Robbin)/(-ZetaP(2)+ZetaQ(2)) 6308815033202145 l006 ln(1963/3689) 6308815033994185 a001 1/686789568*2584^(17/22) 6308815035687453 r005 Im(z^2+c),c=-17/40+3/44*I,n=3 6308815036724308 r005 Re(z^2+c),c=-25/52+13/20*I,n=6 6308815037211962 a007 Real Root Of 535*x^4+200*x^3+397*x^2-928*x-778 6308815040755085 a007 Real Root Of 133*x^4+834*x^3-76*x^2-399*x-766 6308815053491166 r005 Im(z^2+c),c=-7/48+40/43*I,n=4 6308815074800468 m005 (21/20+1/4*5^(1/2))/(-5/33+2/11*5^(1/2)) 6308815080246629 a008 Real Root of (-3-4*x-2*x^2-5*x^3+2*x^4+3*x^5) 6308815082603568 a001 610/39603*843^(25/28) 6308815088723450 r005 Im(z^2+c),c=-5/44+37/55*I,n=31 6308815111448021 m001 (1-arctan(1/3))/(-GAMMA(19/24)+Paris) 6308815112992994 h001 (3/7*exp(2)+5/8)/(8/11*exp(2)+7/11) 6308815118540000 a007 Real Root Of 134*x^4-362*x^3+455*x^2+590*x+79 6308815122465322 r009 Im(z^3+c),c=-23/126+19/22*I,n=42 6308815123880200 m001 (Bloch-Sierpinski)/(Pi+exp(-1/2*Pi)) 6308815152724443 k002 Champernowne real with 205/2*n^2-11/2*n-91 6308815162237756 m002 -Pi^3+Pi^4-Cosh[Pi]/5-Tanh[Pi] 6308815168826940 r005 Im(z^2+c),c=8/23+23/36*I,n=9 6308815186943416 b008 (1+Erf[2])^(-4) 6308815209335528 m005 (1/2*Zeta(3)+1/7)/(3/10*exp(1)+4/11) 6308815213471996 a007 Real Root Of -934*x^4+290*x^3+418*x^2+207*x+185 6308815216982783 r005 Re(z^2+c),c=-7/10+32/133*I,n=53 6308815222818534 a001 4181/2207*322^(5/24) 6308815234027827 a007 Real Root Of 572*x^4-824*x^3+967*x^2-188*x-801 6308815235283636 a007 Real Root Of -266*x^4+304*x^3-993*x^2+94*x+573 6308815244731966 m001 (-GaussAGM+Rabbit)/(BesselI(0,2)-ln(2)/ln(10)) 6308815251416386 r005 Re(z^2+c),c=-37/52+9/41*I,n=18 6308815255919997 a007 Real Root Of 372*x^4-884*x^3-158*x^2+130*x-136 6308815260642192 a007 Real Root Of -305*x^4+246*x^3+862*x^2+397*x-607 6308815308086696 a007 Real Root Of -980*x^4-158*x^3+189*x^2+196*x+164 6308815316179809 b008 LogGamma[248/9] 6308815343816074 m005 (1/2*3^(1/2)+1/2)/(2*Catalan+1/3) 6308815396108321 m001 Zeta(1,-1)/(HeathBrownMoroz^BesselI(1,2)) 6308815404402226 a007 Real Root Of -760*x^4+318*x^3+314*x^2+906*x+56 6308815423447235 a007 Real Root Of 648*x^4-47*x^3-927*x^2-832*x+803 6308815438402841 a003 sin(Pi*10/109)+sin(Pi*8/71) 6308815445820560 r009 Im(z^3+c),c=-61/102+31/45*I,n=43 6308815450917172 p004 log(24391/12979) 6308815469765824 a007 Real Root Of 529*x^4-159*x^3-139*x^2-123*x-146 6308815473911485 a007 Real Root Of -614*x^4+903*x^3-137*x^2-516*x+53 6308815484095065 a001 3/4*843^(25/38) 6308815500462502 r005 Im(z^2+c),c=-1/38+41/53*I,n=36 6308815526454840 r005 Im(z^2+c),c=-63/106+16/37*I,n=46 6308815529626469 r002 27th iterates of z^2 + 6308815537463604 m001 ln(GAMMA(5/12))*Catalan^2/Zeta(9)^2 6308815569561991 p001 sum((-1)^n/(225*n+158)/(128^n),n=0..infinity) 6308815575987020 q001 2333/3698 6308815575987020 r002 2th iterates of z^2 + 6308815605578409 m001 Catalan+FeigenbaumDelta+Sarnak 6308815607040634 a007 Real Root Of 612*x^4-867*x^3-531*x^2-366*x+563 6308815609825211 p003 LerchPhi(1/16,10,89/107) 6308815629126264 r005 Im(z^2+c),c=-21/23+24/55*I,n=3 6308815659064469 a003 cos(Pi*9/119)-cos(Pi*10/73) 6308815688227741 r005 Re(z^2+c),c=-3/4+72/173*I,n=4 6308815689784668 r005 Re(z^2+c),c=-3/4+12/113*I,n=13 6308815699651811 a001 11/4181*121393^(22/47) 6308815702170566 m005 (1/3*5^(1/2)-1/8)/(4*5^(1/2)+8/9) 6308815704575733 a007 Real Root Of -683*x^4+284*x^3-489*x^2+572*x+735 6308815722273856 a001 610/64079*843^(27/28) 6308815729673274 a007 Real Root Of 610*x^4+160*x^3+69*x^2-35*x-106 6308815730994093 a007 Real Root Of -85*x^4+570*x^3-406*x^2+626*x-363 6308815739127998 m001 1/exp(Porter)/DuboisRaymond^2/cos(Pi/12) 6308815745534828 m005 (1/3*3^(1/2)-1/5)/(2/9*Pi-1/10) 6308815777581502 r002 17th iterates of z^2 + 6308815797873970 l006 ln(3545/6662) 6308815816068527 a001 4181/843*123^(1/20) 6308815841273420 a007 Real Root Of -409*x^4+518*x^3+902*x^2+620*x+227 6308815866521369 a001 4181/3*843^(13/58) 6308815868662324 a001 1/439204*47^(9/34) 6308815903791712 m005 (1/2*Pi-8/9)/(2^(1/2)-1/3) 6308815904044470 r009 Im(z^3+c),c=-12/25+32/57*I,n=63 6308815906834633 r002 9th iterates of z^2 + 6308815928128568 a007 Real Root Of -343*x^4+624*x^3-343*x^2-963*x-260 6308815962295252 m001 1/GAMMA(7/12)^2/LaplaceLimit^2*ln(sqrt(5))^2 6308816058674801 m001 (2^(1/3))/Zeta(3)*BesselK(1,1) 6308816058674801 m001 2^(1/3)/Zeta(3)*BesselK(1,1) 6308816067582255 a007 Real Root Of 295*x^4-668*x^3-891*x^2-828*x+998 6308816090647661 l006 ln(5127/9635) 6308816129222978 m001 (2^(1/3)+GAMMA(7/12))/(-Lehmer+MertensB2) 6308816150457891 a007 Real Root Of -952*x^4-54*x^3-802*x^2-630*x+59 6308816153024503 k002 Champernowne real with 103*n^2-7*n-90 6308816158470833 a007 Real Root Of 328*x^4-304*x^3-290*x^2-842*x+671 6308816208594591 r005 Im(z^2+c),c=-79/74+1/14*I,n=12 6308816219539698 m001 2*Pi/GAMMA(5/6)+Gompertz^Stephens 6308816224290695 a007 Real Root Of 576*x^4-4*x^3+262*x^2-80*x-247 6308816235540381 a003 sin(Pi*21/83)-sin(Pi*32/113) 6308816252929544 m003 2+Sin[1/2+Sqrt[5]/2]^2/Log[1/2+Sqrt[5]/2]^2 6308816265694472 b008 SinIntegral[E^(-7/16)] 6308816267418708 a001 5473/2889*322^(5/24) 6308816270992943 r002 59th iterates of z^2 + 6308816280233662 h001 (7/9*exp(1)+6/11)/(5/11*exp(2)+6/7) 6308816294097949 a003 cos(Pi*31/110)-cos(Pi*31/109) 6308816331105715 m006 (2/3*exp(Pi)+1/4)/(3/5*Pi+3/5) 6308816338809715 m001 (Kolakoski+ZetaQ(4))/(2^(1/3)+gamma(3)) 6308816341011358 p004 log(15581/8291) 6308816353277317 a007 Real Root Of -471*x^4+366*x^3-540*x^2+429*x-25 6308816360168326 a007 Real Root Of 964*x^4-715*x^3+203*x^2+921*x+168 6308816367144736 a007 Real Root Of 49*x^4-485*x^3-717*x^2-868*x+947 6308816368119157 m005 (1/2*Catalan+4/7)/(1/9*exp(1)-2/7) 6308816368839037 m001 1/(3^(1/3))/ArtinRank2^2*exp(Ei(1))^2 6308816384400183 a007 Real Root Of -993*x^4+138*x^3-535*x^2-683*x-26 6308816395401946 a007 Real Root Of 256*x^4+229*x^3+370*x^2-605*x-512 6308816419823850 a001 28657/15127*322^(5/24) 6308816430681827 a007 Real Root Of -314*x^4+891*x^3-99*x^2-106*x+246 6308816442059461 a001 75025/39603*322^(5/24) 6308816445303593 a001 98209/51841*322^(5/24) 6308816445320341 a007 Real Root Of -614*x^4+989*x^3-652*x^2-528*x+272 6308816445776906 a001 514229/271443*322^(5/24) 6308816445845961 a001 1346269/710647*322^(5/24) 6308816445856036 a001 1762289/930249*322^(5/24) 6308816445857506 a001 9227465/4870847*322^(5/24) 6308816445857720 a001 24157817/12752043*322^(5/24) 6308816445857752 a001 31622993/16692641*322^(5/24) 6308816445857756 a001 165580141/87403803*322^(5/24) 6308816445857757 a001 433494437/228826127*322^(5/24) 6308816445857757 a001 567451585/299537289*322^(5/24) 6308816445857757 a001 2971215073/1568397607*322^(5/24) 6308816445857757 a001 7778742049/4106118243*322^(5/24) 6308816445857757 a001 10182505537/5374978561*322^(5/24) 6308816445857757 a001 53316291173/28143753123*322^(5/24) 6308816445857757 a001 139583862445/73681302247*322^(5/24) 6308816445857757 a001 182717648081/96450076809*322^(5/24) 6308816445857757 a001 956722026041/505019158607*322^(5/24) 6308816445857757 a001 10610209857723/5600748293801*322^(5/24) 6308816445857757 a001 591286729879/312119004989*322^(5/24) 6308816445857757 a001 225851433717/119218851371*322^(5/24) 6308816445857757 a001 21566892818/11384387281*322^(5/24) 6308816445857757 a001 32951280099/17393796001*322^(5/24) 6308816445857757 a001 12586269025/6643838879*322^(5/24) 6308816445857757 a001 1201881744/634430159*322^(5/24) 6308816445857757 a001 1836311903/969323029*322^(5/24) 6308816445857757 a001 701408733/370248451*322^(5/24) 6308816445857757 a001 66978574/35355581*322^(5/24) 6308816445857759 a001 102334155/54018521*322^(5/24) 6308816445857771 a001 39088169/20633239*322^(5/24) 6308816445857853 a001 3732588/1970299*322^(5/24) 6308816445858414 a001 5702887/3010349*322^(5/24) 6308816445862263 a001 2178309/1149851*322^(5/24) 6308816445888639 a001 208010/109801*322^(5/24) 6308816446069429 a001 317811/167761*322^(5/24) 6308816447308577 a001 121393/64079*322^(5/24) 6308816455801825 a001 11592/6119*322^(5/24) 6308816460504113 m001 (-Kac+Mills)/(Psi(1,1/3)+ln(2)) 6308816466590105 m008 (2/3*Pi^3-1)/(5/6*Pi+1/2) 6308816482906456 m001 (HardyLittlewoodC3-sin(1))/(-Landau+Stephens) 6308816504830378 a007 Real Root Of -291*x^4+612*x^3-988*x^2+696*x+48 6308816509357050 a007 Real Root Of -813*x^4+432*x^3-21*x^2+893*x+809 6308816514015412 a001 17711/9349*322^(5/24) 6308816533206656 m001 Artin^(GaussAGM/Grothendieck) 6308816571158193 q001 6/95105 6308816576356098 a007 Real Root Of 883*x^4-87*x^3+853*x^2-705*x-946 6308816602532425 r005 Re(z^2+c),c=-22/31+9/50*I,n=35 6308816650845726 a007 Real Root Of 497*x^4+134*x^3+51*x^2-700*x-507 6308816664070110 a001 233/843*1364^(13/30) 6308816664169678 m001 ln(2)*BesselI(1,2)/ZetaP(3) 6308816695069524 h001 (2/5*exp(2)+2/9)/(2/3*exp(2)+1/9) 6308816699293364 a007 Real Root Of 184*x^4+182*x^3+828*x^2-531*x-648 6308816699724833 r009 Im(z^3+c),c=-73/110+27/52*I,n=23 6308816699736560 m001 MinimumGamma/(exp(Pi)+Trott2nd) 6308816705518025 a001 36/6119*29^(31/44) 6308816746704984 l006 ln(1582/2973) 6308816763618749 r005 Re(z^2+c),c=-51/56+5/33*I,n=32 6308816803934688 a007 Real Root Of 696*x^4-167*x^3-769*x^2-319*x+439 6308816810313598 m001 3^(1/2)*(FransenRobinson+GaussAGM) 6308816811329374 q001 1381/2189 6308816821605319 r002 11th iterates of z^2 + 6308816832188289 r005 Im(z^2+c),c=-11/86+51/59*I,n=41 6308816833967455 r002 6th iterates of z^2 + 6308816843369200 m005 (1/2*gamma+7/11)/(8/11*Catalan+4/5) 6308816847344839 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=23 6308816870095653 a007 Real Root Of 167*x^4-681*x^3+430*x^2+803*x+138 6308816876880907 m001 (ln(Pi)+CopelandErdos)/(Riemann2ndZero+Thue) 6308816899558076 m001 Weierstrass*(ln(2)+HardyLittlewoodC3) 6308816908326708 a007 Real Root Of -452*x^4-716*x^3-718*x^2+920*x+758 6308816913017303 a001 6765/3571*322^(5/24) 6308816924500180 r009 Re(z^3+c),c=-41/114+50/51*I,n=2 6308816935802659 a007 Real Root Of 58*x^4-926*x^3+419*x^2+229*x-264 6308816941209494 a008 Real Root of (11+11*x-2*x^2+13*x^3) 6308816950297491 m001 (LandauRamanujan+Robbin)/(Pi-ln(2^(1/2)+1)) 6308816955120905 a007 Real Root Of 24*x^4+97*x^3+408*x^2-517*x-468 6308816973467628 m005 (1/2*exp(1)-7/10)/(8/11*gamma+5/8) 6308816993120922 m001 GAMMA(23/24)+Zeta(1,2)^Kolakoski 6308816993224158 a001 233/1364*521^(15/26) 6308817000566610 a003 sin(Pi*17/78)*sin(Pi*32/67) 6308817010257293 b008 Tanh[3/8+E^(-1)] 6308817022495640 a007 Real Root Of -565*x^4+312*x^3+695*x^2-99*x-203 6308817027066790 a005 (1/cos(18/173*Pi))^1092 6308817053347814 m001 (Zeta(3)-Cahen)/(HardyLittlewoodC5+PlouffeB) 6308817055704382 a007 Real Root Of 194*x^4-976*x^3+669*x^2-710*x-990 6308817074866958 m001 (ArtinRank2+Landau)/(MertensB1+Niven) 6308817075966092 a007 Real Root Of 439*x^4-954*x^3+421*x^2+345*x-259 6308817078186975 m005 (1/3*5^(1/2)+2/5)/(3/10*exp(1)+1) 6308817080208471 a001 55/199*123^(13/20) 6308817080637560 m005 (1/2*Pi+3)/(7/10*Catalan+1/12) 6308817108677549 r005 Im(z^2+c),c=-61/98+26/53*I,n=8 6308817108984647 a007 Real Root Of -359*x^4+983*x^3+353*x^2+667*x+584 6308817116267248 a001 377/521*1364^(3/10) 6308817135690691 r005 Re(z^2+c),c=-67/102+18/43*I,n=8 6308817149929765 a007 Real Root Of 207*x^4-659*x^3+18*x^2-592*x+499 6308817153324563 k002 Champernowne real with 207/2*n^2-17/2*n-89 6308817161970395 a007 Real Root Of 476*x^4+30*x^3+931*x^2-226*x-581 6308817167466010 m002 1+E^Pi/Pi^5+2*Pi^3 6308817189913792 m001 (Bloch-Catalan)/(-TravellingSalesman+Trott) 6308817193458300 p004 log(14149/7529) 6308817194994312 a001 610/3*64079^(9/29) 6308817216929828 a007 Real Root Of -211*x^4+59*x^3-99*x^2+847*x+622 6308817219124612 r005 Re(z^2+c),c=-1/26+4/21*I,n=17 6308817221979666 h001 (7/11*exp(1)+1/3)/(4/11*exp(2)+7/12) 6308817270407523 a001 610/3*5778^(23/58) 6308817276221312 l006 ln(8323/8865) 6308817318194753 a003 cos(Pi*29/118)-cos(Pi*26/55) 6308817326453629 m005 (1/3*2^(1/2)-1/7)/(1/12*Catalan+4/9) 6308817336511195 r005 Re(z^2+c),c=-17/48+26/43*I,n=63 6308817413619885 m001 (2^(1/3))^2*exp(LandauRamanujan)/cos(1) 6308817416683698 r005 Im(z^2+c),c=3/11+23/56*I,n=7 6308817420010882 m001 Artin/(ZetaQ(3)^Gompertz) 6308817434354977 a007 Real Root Of 11*x^4+687*x^3-443*x^2-218*x-696 6308817447682443 a007 Real Root Of -919*x^4+91*x^3-180*x^2+710*x+688 6308817478949959 h001 (9/11*exp(1)+6/7)/(7/11*exp(2)+2/11) 6308817479608142 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=26 6308817484825477 m009 (Psi(1,1/3)+1/5)/(5*Psi(1,2/3)+1) 6308817491640151 r005 Re(z^2+c),c=-1/26+4/21*I,n=20 6308817496431714 a001 7/317811*5^(17/26) 6308817500279601 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=27 6308817503387408 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=29 6308817503549993 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=30 6308817503558009 r005 Re(z^2+c),c=-1/26+4/21*I,n=23 6308817503657277 r005 Re(z^2+c),c=-1/26+4/21*I,n=21 6308817503822474 r005 Re(z^2+c),c=-1/26+4/21*I,n=24 6308817503919221 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=33 6308817503934250 r005 Re(z^2+c),c=-1/26+4/21*I,n=27 6308817503939016 r005 Re(z^2+c),c=-1/26+4/21*I,n=26 6308817503942480 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=36 6308817503943118 r005 Re(z^2+c),c=-1/26+4/21*I,n=30 6308817503943584 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=39 6308817503943603 r005 Re(z^2+c),c=-1/26+4/21*I,n=33 6308817503943616 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=40 6308817503943623 r005 Re(z^2+c),c=-1/26+4/21*I,n=34 6308817503943623 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=42 6308817503943623 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=43 6308817503943623 r005 Re(z^2+c),c=-1/26+4/21*I,n=36 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=37 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=46 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=40 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=39 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=49 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=43 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=52 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=46 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=53 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=47 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=56 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=55 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=49 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=50 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=59 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=53 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=62 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=56 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=52 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=59 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=63 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=60 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=62 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=63 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=64 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=61 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=57 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=58 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=64 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=55 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=61 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=54 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=60 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=58 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=51 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=57 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=48 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=54 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=50 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=45 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=44 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=51 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=42 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=48 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=41 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=47 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=45 6308817503943624 r005 Re(z^2+c),c=-1/26+4/21*I,n=38 6308817503943624 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=44 6308817503943627 r005 Re(z^2+c),c=-1/26+4/21*I,n=35 6308817503943631 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=41 6308817503943667 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=37 6308817503943673 r005 Re(z^2+c),c=-1/26+4/21*I,n=32 6308817503943690 r005 Re(z^2+c),c=-1/26+4/21*I,n=31 6308817503943762 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=38 6308817503944097 r005 Re(z^2+c),c=-1/26+4/21*I,n=29 6308817503945512 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=35 6308817503946590 r005 Re(z^2+c),c=-1/26+4/21*I,n=28 6308817503948747 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=34 6308817503951570 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=32 6308817504024461 r005 Re(z^2+c),c=-1/26+4/21*I,n=25 6308817504115459 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=31 6308817505619611 r005 Re(z^2+c),c=-1/26+4/21*I,n=22 6308817508040319 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=28 6308817508064224 a007 Real Root Of 232*x^4-776*x^3+314*x^2-953*x+6 6308817514278380 m005 (1/2*Pi+7/9)/(5*Catalan-6/7) 6308817517290473 l006 ln(4365/8203) 6308817528663263 a003 cos(Pi*23/91)*sin(Pi*36/101) 6308817529959942 r005 Re(z^2+c),c=-1/26+4/21*I,n=19 6308817545008625 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=24 6308817545215030 a007 Real Root Of -10*x^4-620*x^3+675*x^2-718*x+514 6308817547965841 r005 Re(z^2+c),c=-1/26+4/21*I,n=18 6308817579166763 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=25 6308817590868135 m001 (Chi(1)+ln(gamma)*Rabbit)/Rabbit 6308817637398714 r009 Re(z^3+c),c=-9/82+8/13*I,n=37 6308817641569099 r009 Re(z^3+c),c=-47/60+44/49*I,n=2 6308817647944370 p004 log(35069/18661) 6308817657573958 r005 Im(z^2+c),c=-3/4+53/117*I,n=3 6308817666802233 m001 RenyiParking*ln(Conway)/Pi 6308817677392226 a007 Real Root Of 567*x^4-688*x^3-820*x^2-900*x-504 6308817679269332 m001 FeigenbaumDelta^2/Conway^2/exp(Rabbit) 6308817680532603 a007 Real Root Of -289*x^4+579*x^3+55*x^2+548*x+515 6308817684489454 m001 Pi/(1-GAMMA(13/24))*GAMMA(17/24) 6308817692198740 a003 sin(Pi*6/115)-sin(Pi*33/113) 6308817717623466 r005 Re(z^2+c),c=-1/26+4/21*I,n=16 6308817725572220 r002 5th iterates of z^2 + 6308817786589294 m001 (MertensB2*Salem-Weierstrass)/Salem 6308817813829985 m001 (Catalan-Zeta(5))/(Lehmer+PisotVijayaraghavan) 6308817831472175 a007 Real Root Of -437*x^4+337*x^3+498*x^2+790*x-712 6308817831949097 p004 log(29123/15497) 6308817839729307 m001 (Magata+TwinPrimes)/(FeigenbaumC-KhinchinLevy) 6308817847422357 r009 Re(z^3+c),c=-17/26+33/53*I,n=3 6308817849692011 r005 Re(z^2+c),c=-3/118+42/55*I,n=61 6308817853375509 a005 (1/sin(80/171*Pi))^1711 6308817894325167 m001 1/GAMMA(19/24)^2*ln(CareFree)^2*sin(1)^2 6308817903245916 a007 Real Root Of -95*x^4-698*x^3-563*x^2+236*x-877 6308817919107706 a007 Real Root Of 918*x^4-196*x^3+757*x^2+95*x-436 6308817924050880 m001 (Trott2nd-ZetaP(3))/(Bloch-FransenRobinson) 6308817940479854 a007 Real Root Of -34*x^4+838*x^3+882*x^2-35*x-534 6308817942866212 a007 Real Root Of 354*x^4-414*x^3-511*x^2-931*x-544 6308817944311780 a001 233/843*3571^(13/34) 6308817955330778 l006 ln(2783/5230) 6308818002588440 a001 377/521*3571^(9/34) 6308818017870290 r002 30th iterates of z^2 + 6308818024006835 m001 Riemann3rdZero^GAMMA(17/24)+Weierstrass 6308818030646666 k002 Champernowne real with 17*n^2-27*n+16 6308818041938059 a007 Real Root Of -119*x^4-108*x^3-824*x^2+392*x+567 6308818043736879 r005 Im(z^2+c),c=-111/98+4/51*I,n=29 6308818044739222 r005 Im(z^2+c),c=-3/29+31/38*I,n=38 6308818047040665 a007 Real Root Of -536*x^4+197*x^3-362*x^2+730*x+739 6308818094544679 r005 Im(z^2+c),c=-31/86+26/41*I,n=60 6308818108780049 a001 233/843*9349^(13/38) 6308818116451088 a001 377/521*9349^(9/38) 6308818124237976 a007 Real Root Of -213*x^4+460*x^3-959*x^2-840*x+1 6308818130213676 a001 233/843*24476^(13/42) 6308818131047668 k003 Champernowne real with 1/6*n^3+16*n^2-151/6*n+15 6308818131289753 a001 377/521*24476^(3/14) 6308818133039040 a001 233/843*64079^(13/46) 6308818133245774 a001 377/521*64079^(9/46) 6308818133473252 a001 233/843*141422324^(1/6) 6308818133473252 a001 233/843*73681302247^(1/8) 6308818133494658 a001 233/843*271443^(1/4) 6308818133540932 a001 377/521*439204^(1/6) 6308818133546369 a001 377/521*7881196^(3/22) 6308818133546383 a001 377/521*2537720636^(1/10) 6308818133546383 a001 377/521*14662949395604^(1/14) 6308818133546383 a001 377/521*192900153618^(1/12) 6308818133546384 a001 377/521*33385282^(1/8) 6308818133546656 a001 377/521*1860498^(3/20) 6308818133656421 a001 377/521*103682^(3/16) 6308818134369159 a001 377/521*39603^(9/44) 6308818134661706 a001 233/843*39603^(13/44) 6308818139749713 a001 377/521*15127^(9/40) 6308818142316377 m005 (1/3*exp(1)+1/7)/(3/4*3^(1/2)+4/11) 6308818142433618 a001 233/843*15127^(13/40) 6308818153624623 k002 Champernowne real with 104*n^2-10*n-88 6308818172993595 m001 (gamma(2)-gamma(3)*BesselI(1,2))/gamma(3) 6308818180788893 a001 377/521*5778^(1/4) 6308818189216634 r005 Im(z^2+c),c=15/106+38/59*I,n=15 6308818197748346 r009 Re(z^3+c),c=-5/18+31/45*I,n=14 6308818201712433 a001 233/843*5778^(13/36) 6308818208514919 a007 Real Root Of 851*x^4-14*x^3-696*x^2-939*x+62 6308818208668158 m001 (ln(Pi)+GAMMA(5/6))/(Pi^(1/2)+FeigenbaumC) 6308818215222850 m001 (FeigenbaumB-exp(Pi))/(-Paris+ZetaP(2)) 6308818231448670 k003 Champernowne real with 1/3*n^3+15*n^2-70/3*n+14 6308818254834728 m001 (Salem-ZetaQ(2))/(Conway+PlouffeB) 6308818276157114 m001 (Zeta(1,2)-Tribonacci)/(Pi+2^(1/3)) 6308818279173721 r009 Re(z^3+c),c=-25/46+15/41*I,n=42 6308818279918084 r002 55th iterates of z^2 + 6308818284395529 a007 Real Root Of 869*x^4-321*x^3-249*x^2-228*x-263 6308818319004551 a007 Real Root Of -577*x^4+880*x^3-87*x^2-531*x+12 6308818326476551 r009 Re(z^3+c),c=-13/110+20/29*I,n=41 6308818331849672 k003 Champernowne real with 1/2*n^3+14*n^2-43/2*n+13 6308818343482073 m001 (Otter-ZetaQ(3))/(gamma(3)+FeigenbaumDelta) 6308818355326350 r005 Re(z^2+c),c=13/90+10/39*I,n=10 6308818366647491 r005 Im(z^2+c),c=-95/86+7/30*I,n=24 6308818403624956 q001 181/2869 6308818404429113 r002 18th iterates of z^2 + 6308818410627076 m008 (5/6*Pi-1/6)/(2/5*Pi^6+4) 6308818432250674 k003 Champernowne real with 2/3*n^3+13*n^2-59/3*n+12 6308818435261963 l006 ln(3984/7487) 6308818449803473 m005 (1/2*exp(1)+4/9)/(-17/36+1/12*5^(1/2)) 6308818458778222 a007 Real Root Of -54*x^4+804*x^3+306*x^2+549*x+435 6308818460076225 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=22 6308818464123262 r005 Im(z^2+c),c=-37/46+29/55*I,n=4 6308818470086265 a007 Real Root Of 990*x^4+412*x^3-753*x^2-906*x+611 6308818473843159 a007 Real Root Of -14*x^4+479*x^3+239*x^2+x+28 6308818491820003 a007 Real Root Of 633*x^4-773*x^3+430*x^2-671*x+346 6308818497826963 a001 377/521*2207^(9/32) 6308818499235359 m001 1/GAMMA(13/24)/Sierpinski^2*ln(Zeta(7))^2 6308818502826808 a007 Real Root Of -558*x^4+517*x^3+849*x^2+28*x-397 6308818514558811 a007 Real Root Of -144*x^4-783*x^3+964*x^2+936*x-958 6308818531481360 m001 (Backhouse-FeigenbaumC)/(Gompertz-ZetaQ(4)) 6308818532651676 k003 Champernowne real with 5/6*n^3+12*n^2-107/6*n+11 6308818535217643 m001 (Zeta(1,2)+BesselI(0,2))/(Porter+TwinPrimes) 6308818545159077 m005 (1/2*3^(1/2)+1/5)/(7/12*Pi-1/7) 6308818553907170 m001 (ln(2+3^(1/2))-Pi^(1/2))/(Sarnak-ZetaQ(4)) 6308818557726130 r005 Im(z^2+c),c=-15/28+30/49*I,n=10 6308818569941979 m005 (1/2*3^(1/2)-9/10)/(3/8*5^(1/2)-3/10) 6308818580067947 r002 37th iterates of z^2 + 6308818586882990 a007 Real Root Of 723*x^4-342*x^3-716*x^2-307*x+450 6308818588032429 a007 Real Root Of -807*x^4+677*x^3-67*x^2+340*x+539 6308818609395150 g002 Psi(4/11)+Psi(2/9)+Psi(4/5)-Psi(4/9) 6308818619973469 a007 Real Root Of 52*x^4-212*x^3-971*x^2-516*x+757 6308818633052678 k003 Champernowne real with n^3+11*n^2-16*n+10 6308818656555885 a007 Real Root Of -523*x^4-598*x^3-475*x^2+999*x+752 6308818659656318 a001 233/843*2207^(13/32) 6308818661631394 r005 Im(z^2+c),c=-5/8+12/103*I,n=40 6308818676192102 r005 Im(z^2+c),c=27/74+18/55*I,n=4 6308818677910553 a007 Real Root Of 919*x^4-545*x^3+633*x^2-383*x-776 6308818686091957 m001 5^(1/2)-sin(1)*Magata 6308818692860505 l006 ln(5185/9744) 6308818710770473 r005 Im(z^2+c),c=-63/110+7/61*I,n=42 6308818711040414 a008 Real Root of (-5+3*x+6*x^2+3*x^3-4*x^4+6*x^5) 6308818712065452 a007 Real Root Of -369*x^4+437*x^3-835*x^2-833*x-25 6308818729517153 r005 Im(z^2+c),c=-39/70+5/44*I,n=57 6308818733453680 k003 Champernowne real with 7/6*n^3+10*n^2-85/6*n+9 6308818733966771 r005 Re(z^2+c),c=19/58+21/46*I,n=10 6308818751199783 r005 Im(z^2+c),c=-3/50+47/58*I,n=29 6308818795746891 a007 Real Root Of -114*x^4-835*x^3-777*x^2-245*x+304 6308818825085890 s002 sum(A109474[n]/((2*n)!),n=1..infinity) 6308818826617169 a007 Real Root Of 725*x^4-989*x^3-999*x^2-519*x-293 6308818833854682 k003 Champernowne real with 4/3*n^3+9*n^2-37/3*n+8 6308818844410276 h001 (-5*exp(4)-4)/(-4*exp(7)-4) 6308818871600428 r005 Re(z^2+c),c=-23/36+27/62*I,n=64 6308818873678930 m001 1/MertensB1^2/exp(CopelandErdos)/FeigenbaumC 6308818894097802 a003 cos(Pi*5/97)/cos(Pi*9/20) 6308818903200457 a007 Real Root Of -337*x^4+915*x^3+703*x^2-270*x-167 6308818905162741 h005 exp(sin(Pi*16/45)+sin(Pi*20/51)) 6308818928101042 a007 Real Root Of -57*x^4+876*x^3+319*x^2+81*x-389 6308818934255684 k003 Champernowne real with 3/2*n^3+8*n^2-21/2*n+7 6308818959503103 r005 Im(z^2+c),c=-7/10+23/247*I,n=8 6308819019630262 s002 sum(A053910[n]/((2*n)!),n=1..infinity) 6308819034656686 k003 Champernowne real with 5/3*n^3+7*n^2-26/3*n+6 6308819040920616 s002 sum(A249404[n]/(n*2^n-1),n=1..infinity) 6308819051079623 m001 Catalan^ln(2^(1/2)+1)/Porter 6308819055933223 m001 1/cosh(1)/KhintchineHarmonic/exp(sqrt(Pi)) 6308819079497622 m005 (1/3*Catalan+1/11)/(1/2*gamma-11/12) 6308819090373096 r005 Im(z^2+c),c=-3/40+14/19*I,n=32 6308819135057688 k003 Champernowne real with 11/6*n^3+6*n^2-41/6*n+5 6308819141740376 a007 Real Root Of -405*x^4+454*x^3+54*x^2+801*x+662 6308819150932233 a007 Real Root Of 565*x^4-959*x^3+804*x^2+10*x-644 6308819153924683 k002 Champernowne real with 209/2*n^2-23/2*n-87 6308819160807155 a007 Real Root Of -981*x^4-738*x^3+408*x^2+393*x+23 6308819165499322 a007 Real Root Of 381*x^4+304*x^3+436*x^2-947*x-755 6308819177791891 r009 Im(z^3+c),c=-17/70+43/60*I,n=10 6308819203204932 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=19 6308819204946750 a007 Real Root Of 58*x^4-921*x^3+99*x^2-56*x+218 6308819206598708 a003 sin(Pi*11/74)/cos(Pi*21/85) 6308819218281536 m001 (Riemann1stZero+Sierpinski)/(Zeta(3)-Porter) 6308819231251217 a003 cos(Pi*21/115)*cos(Pi*14/61) 6308819235458690 k003 Champernowne real with 2*n^3+5*n^2-5*n+4 6308819240666826 a007 Real Root Of 924*x^4-749*x^3-700*x^2-750*x-529 6308819275334214 r005 Re(z^2+c),c=-1/26+4/21*I,n=15 6308819298363730 r005 Im(z^2+c),c=-7/6+34/191*I,n=4 6308819303485335 r005 Im(z^2+c),c=-103/74+7/62*I,n=9 6308819309255445 a007 Real Root Of 423*x^4-568*x^3+106*x^2-349*x-472 6308819326169775 a007 Real Root Of 331*x^4-212*x^3+202*x^2-95*x-246 6308819335859692 k003 Champernowne real with 13/6*n^3+4*n^2-19/6*n+3 6308819360139197 r009 Im(z^3+c),c=-13/38+26/41*I,n=12 6308819366893710 m005 (1/2*3^(1/2)-1/10)/(2^(1/2)-1/5) 6308819385742462 q001 2239/3549 6308819402150683 m005 (1/2*exp(1)-2/7)/(7/8*Catalan+9/10) 6308819436260694 k003 Champernowne real with 7/3*n^3+3*n^2-4/3*n+2 6308819443507444 r009 Im(z^3+c),c=-47/122+1/46*I,n=6 6308819443718093 m001 (Chi(1)-cos(1/12*Pi))/(-Riemann2ndZero+Sarnak) 6308819455992467 l006 ln(5175/5512) 6308819457844811 a007 Real Root Of 521*x^4-906*x^3+216*x^2-214*x+194 6308819464850687 m001 ZetaR(2)/(FeigenbaumC^(2^(1/2))) 6308819466126053 m009 (2/5*Psi(1,1/3)+5)/(1/4*Psi(1,2/3)+2/3) 6308819491289071 m001 (Pi-Pi*2^(1/2)/GAMMA(3/4))/(ln(2)+Zeta(1/2)) 6308819496776525 s002 sum(A051558[n]/((10^n-1)/n),n=1..infinity) 6308819536661696 k003 Champernowne real with 5/2*n^3+2*n^2+1/2*n+1 6308819540008514 m001 (Pi+gamma)/(GAMMA(3/4)+FeigenbaumDelta) 6308819547375521 l006 ln(1201/2257) 6308819560447185 a007 Real Root Of 186*x^4+288*x^3+668*x^2+46*x-194 6308819562892412 r005 Im(z^2+c),c=15/64+1/56*I,n=15 6308819573144248 h001 (2/7*exp(1)+2/5)/(2/5*exp(1)+7/9) 6308819581082602 a001 2584/521*199^(1/22) 6308819628664893 a007 Real Root Of -106*x^4-628*x^3+179*x^2-528*x-227 6308819637062698 k003 Champernowne real with 8/3*n^3+n^2+7/3*n 6308819643163045 r005 Im(z^2+c),c=-51/56+13/36*I,n=5 6308819647818392 a001 646/341*322^(5/24) 6308819678050030 a003 sin(Pi*17/82)/sin(Pi*23/56) 6308819678572399 a001 21/9349*3^(47/50) 6308819712206823 m001 (Lehmer-Robbin)/(ln(gamma)+BesselJ(1,1)) 6308819713721092 r009 Im(z^3+c),c=-43/90+22/43*I,n=35 6308819723790327 a007 Real Root Of -892*x^4+299*x^3-371*x^2+821*x+882 6308819730512804 m002 20*Pi^3+Sinh[Pi]/ProductLog[Pi] 6308819732987383 a003 cos(Pi*11/58)-sin(Pi*27/86) 6308819737463610 k003 Champernowne real with 17/6*n^3+25/6*n-1 6308819744806532 a007 Real Root Of 969*x^4-122*x^3+836*x^2+255*x-356 6308819763662330 r005 Im(z^2+c),c=-15/34+35/44*I,n=3 6308819771075599 r005 Im(z^2+c),c=-19/31+18/41*I,n=28 6308819781982864 r005 Im(z^2+c),c=-4/3+5/116*I,n=47 6308819784436185 r002 22th iterates of z^2 + 6308819792316128 h001 (3/4*exp(1)+5/7)/(6/11*exp(2)+1/3) 6308819804102357 m005 (1/3*3^(1/2)+2/5)/(13/12+5/24*5^(1/2)) 6308819823120090 m001 StronglyCareFree^exp(1/exp(1))/ln(3) 6308819837864610 k003 Champernowne real with 3*n^3-n^2+6*n-2 6308819847767596 a001 34/3010349*11^(33/46) 6308819856677930 a003 sin(Pi*13/84)/sin(Pi*30/113) 6308819857728664 a003 cos(Pi*23/119)*sin(Pi*29/104) 6308819863482262 r005 Im(z^2+c),c=-19/42+35/47*I,n=3 6308819881858276 a003 sin(Pi*1/38)-sin(Pi*22/87) 6308819886136877 b008 6+InverseGudermannian[(3*Pi)/31] 6308819899797990 a007 Real Root Of 154*x^4-505*x^3-5*x^2-453*x-435 6308819900803475 m001 (ln(Pi)+2/3)/(-GAMMA(5/6)+4) 6308819912417534 m001 LambertW(1)-ln(gamma)-MadelungNaCl 6308819912417534 m001 LambertW(1)-log(gamma)-MadelungNaCl 6308819938265610 k003 Champernowne real with 19/6*n^3-2*n^2+47/6*n-3 6308819971973710 m005 (1/2*Catalan+2/7)/(1/3*exp(1)+3/11) 6308819999679756 m001 (HeathBrownMoroz-OneNinth)/(Pi-Backhouse) 6308820026949512 a007 Real Root Of -526*x^4+871*x^3-660*x^2-250*x+407 6308820032290733 a001 2584/2207*322^(7/24) 6308820037336837 m005 (1/2*5^(1/2)-1/10)/(6/7*Zeta(3)+7/12) 6308820038666610 k003 Champernowne real with 10/3*n^3-3*n^2+29/3*n-4 6308820039360648 p004 log(18127/18013) 6308820043847319 r002 22th iterates of z^2 + 6308820050901688 p003 LerchPhi(1/100,6,257/238) 6308820051184782 r004 Im(z^2+c),c=-7/11+2/17*I,z(0)=-1,n=52 6308820071609353 r009 Im(z^3+c),c=-31/110+19/24*I,n=5 6308820076803298 m001 GAMMA(7/12)/PlouffeB*ReciprocalLucas 6308820081100781 r005 Re(z^2+c),c=-11/12+17/125*I,n=46 6308820103438534 a007 Real Root Of -268*x^4+991*x^3-565*x^2-284*x+337 6308820139067610 k003 Champernowne real with 7/2*n^3-4*n^2+23/2*n-5 6308820143742530 m005 (1/2*Pi-6)/(5/8*2^(1/2)-2/11) 6308820154224743 k002 Champernowne real with 105*n^2-13*n-86 6308820158059195 m008 (Pi^6-1/4)/(1/6*Pi^4-1) 6308820171278594 r009 Re(z^3+c),c=-1/102+29/57*I,n=18 6308820188618976 a007 Real Root Of 517*x^4-615*x^3+291*x^2-60*x-390 6308820220253509 a007 Real Root Of -551*x^4+508*x^3-287*x^2+30*x+348 6308820233119662 m001 (Gompertz+Stephens)/(GAMMA(23/24)+FeigenbaumB) 6308820239468611 k003 Champernowne real with 11/3*n^3-5*n^2+40/3*n-6 6308820268717883 m001 (FeigenbaumC+Otter)^Salem 6308820305697195 r005 Re(z^2+c),c=13/50+13/29*I,n=51 6308820314242704 m001 (5^(1/2)-Si(Pi)*FeigenbaumC)/FeigenbaumC 6308820339869611 k003 Champernowne real with 23/6*n^3-6*n^2+91/6*n-7 6308820350288737 r005 Im(z^2+c),c=-37/30+12/101*I,n=4 6308820353505760 m001 (ln(3)-Conway)/(KomornikLoreti+MinimumGamma) 6308820364966380 a007 Real Root Of -332*x^4+516*x^3+236*x^2+165*x-275 6308820387216058 m001 (Niven-ZetaP(2))/(FeigenbaumD-FeigenbaumDelta) 6308820392707987 a007 Real Root Of -771*x^4+26*x^3+70*x^2+777*x+591 6308820400677531 a001 1/416020*4807526976^(20/23) 6308820405351882 a007 Real Root Of -412*x^4+967*x^3+428*x^2+896*x+703 6308820406681842 a007 Real Root Of 600*x^4-486*x^3-686*x^2-821*x-462 6308820410659582 r005 Im(z^2+c),c=-23/34+19/113*I,n=38 6308820429142595 a007 Real Root Of -682*x^4+923*x^3-974*x^2-313*x+530 6308820440270611 k003 Champernowne real with 4*n^3-7*n^2+17*n-8 6308820441043953 s002 sum(A091879[n]/(n^2*exp(n)-1),n=1..infinity) 6308820455233207 m001 (Chi(1)*Porter-GaussKuzminWirsing)/Porter 6308820463562946 a007 Real Root Of 886*x^4-476*x^3+295*x^2+262*x-212 6308820480700488 p003 LerchPhi(1/32,6,419/180) 6308820493210799 m001 Tribonacci^2/ln(Champernowne)^2/GAMMA(3/4) 6308820495672533 m005 (1/2*Catalan+1/8)/(1/6*exp(1)-6/11) 6308820523715806 m001 MinimumGamma/(Backhouse^(5^(1/2))) 6308820527018417 r005 Im(z^2+c),c=-53/82+5/41*I,n=54 6308820540671611 k003 Champernowne real with 25/6*n^3-8*n^2+113/6*n-9 6308820549107365 l006 ln(4423/8312) 6308820564478774 a007 Real Root Of -461*x^4+941*x^3-181*x^2-400*x+129 6308820573761989 a007 Real Root Of 38*x^4+114*x^3-922*x^2-893*x-509 6308820573790196 m001 (2*Pi/GAMMA(5/6)-PlouffeB)/(Porter-TwinPrimes) 6308820609490834 m005 (1/2*3^(1/2)-2/5)/(45/7+3/7*5^(1/2)) 6308820625537166 m001 Rabbit-Bloch-ln(2)/ln(10) 6308820627158009 m001 GAMMA(5/6)*RenyiParking^2 6308820631703272 a007 Real Root Of 274*x^4+396*x^3-109*x^2-779*x+392 6308820641072611 k003 Champernowne real with 13/3*n^3-9*n^2+62/3*n-10 6308820656851134 a003 -1/2-cos(1/5*Pi)+cos(7/15*Pi)+2*cos(11/27*Pi) 6308820666946766 a007 Real Root Of 676*x^4-257*x^3-368*x^2-293*x-210 6308820690165943 r004 Re(z^2+c),c=-1/26+4/21*I,z(0)=I,n=21 6308820691710477 g005 GAMMA(1/11)*GAMMA(4/5)/GAMMA(6/11)/GAMMA(7/9) 6308820700057348 a007 Real Root Of -810*x^4+679*x^3+146*x^2-353*x+18 6308820701545753 r005 Re(z^2+c),c=-9/20+26/45*I,n=7 6308820711214798 r005 Re(z^2+c),c=-21/31+12/41*I,n=63 6308820715701263 b008 2*Pi+ArcCot[39] 6308820719508925 g006 Psi(1,7/9)+Psi(1,1/8)-Psi(1,5/6)-Psi(1,3/4) 6308820729424978 r005 Re(z^2+c),c=-11/14+24/163*I,n=44 6308820741473612 k003 Champernowne real with 9/2*n^3-10*n^2+45/2*n-11 6308820742750326 m005 (1/2*Zeta(3)-7/9)/(3/5*Pi+11/12) 6308820750515794 r005 Im(z^2+c),c=-43/64+1/60*I,n=50 6308820751140273 m003 5+Sqrt[5]/2+Sech[1/2+Sqrt[5]/2]/2 6308820755386860 a007 Real Root Of -933*x^4+302*x^3-326*x^2-129*x+272 6308820759635931 r009 Re(z^3+c),c=-83/126+22/43*I,n=26 6308820765213879 h001 (-2*exp(-3)-8)/(-9*exp(1/2)+2) 6308820768508451 a007 Real Root Of -734*x^4-570*x^3+499*x^2+900*x-507 6308820771990032 r005 Re(z^2+c),c=-43/62+3/13*I,n=3 6308820795253851 r009 Re(z^3+c),c=-47/74+6/19*I,n=20 6308820825980140 m001 (ln(Pi)+BesselI(1,1))/(Mills+OrthogonalArrays) 6308820841874612 k003 Champernowne real with 14/3*n^3-11*n^2+73/3*n-12 6308820844399299 a007 Real Root Of 701*x^4+180*x^3+916*x^2-12*x-438 6308820848903462 r005 Re(z^2+c),c=-53/70+1/25*I,n=25 6308820859553475 r004 Re(z^2+c),c=2/9+12/13*I,z(0)=I,n=7 6308820879113667 m001 (-GlaisherKinkelin+OneNinth)/(5^(1/2)-Artin) 6308820909074762 a005 (1/cos(30/223*Pi))^670 6308820921794761 p004 log(13183/12377) 6308820922502729 l006 ln(3222/6055) 6308820923361421 r002 9th iterates of z^2 + 6308820942275612 k003 Champernowne real with 29/6*n^3-12*n^2+157/6*n-13 6308820951152948 a007 Real Root Of -304*x^4+904*x^3-397*x^2+610*x+818 6308820977719518 r002 39i'th iterates of 2*x/(1-x^2) of 6308820987049503 a001 377/521*843^(9/28) 6308821013755795 m001 ln(OneNinth)/Magata/Zeta(5) 6308821032803129 m001 1/exp(GAMMA(17/24))*Rabbit^2*GAMMA(5/12)^2 6308821042676612 k003 Champernowne real with 5*n^3-13*n^2+28*n-14 6308821052380438 r002 33th iterates of z^2 + 6308821061491760 a007 Real Root Of -744*x^4+625*x^3-630*x^2+630*x+923 6308821070755803 m005 (9/20+1/4*5^(1/2))/(8/11*Zeta(3)-5/7) 6308821097597617 m001 (Champernowne+Riemann1stZero)/(cos(1)-exp(Pi)) 6308821100469398 a001 610/843*322^(3/8) 6308821108000059 r005 Re(z^2+c),c=-1+4/159*I,n=4 6308821109289286 a007 Real Root Of 879*x^4-549*x^3-8*x^2-482*x-578 6308821110729610 a007 Real Root Of 302*x^4+81*x^3-448*x^2-488*x+418 6308821126801873 a007 Real Root Of 754*x^4-986*x^3-610*x^2-873*x-675 6308821134138616 k001 Champernowne real with 252*n+378 6308821143077612 k003 Champernowne real with 31/6*n^3-14*n^2+179/6*n-15 6308821147542571 a007 Real Root Of 48*x^4-265*x^3+733*x^2+916*x+212 6308821154524803 k002 Champernowne real with 211/2*n^2-29/2*n-85 6308821154560906 a007 Real Root Of -635*x^4-232*x^3-795*x^2+785*x+854 6308821164210929 m001 Cahen/(MertensB2^gamma) 6308821168948896 h001 (7/11*exp(1)+4/7)/(4/9*exp(2)+4/11) 6308821223680034 r005 Im(z^2+c),c=23/70+26/61*I,n=41 6308821237499417 l006 ln(5243/9853) 6308821240557534 r002 11th iterates of z^2 + 6308821243478613 k003 Champernowne real with 16/3*n^3-15*n^2+95/3*n-16 6308821246321772 a001 987/521*521^(5/26) 6308821273878160 m001 (GlaisherKinkelin-Niven)/(ln(5)-BesselI(0,2)) 6308821283979890 r002 9th iterates of z^2 + 6308821284082111 m001 1/GAMMA(1/24)/Magata*exp(cos(Pi/5))^2 6308821289798992 m001 cos(1)^2*ln(Paris)*cos(Pi/12)^2 6308821299940691 a001 2255/1926*322^(7/24) 6308821304571344 m001 (Gompertz-MertensB2)/(gamma(2)+CareFree) 6308821310120679 m005 (1/2*Catalan+4/5)/(2/3*exp(1)+2/11) 6308821334973935 m001 Tribonacci^CareFree*Tribonacci^Zeta(1/2) 6308821343879613 k003 Champernowne real with 11/2*n^3-16*n^2+67/2*n-17 6308821377180973 r009 Im(z^3+c),c=-17/78+31/45*I,n=15 6308821390316431 m001 (arctan(1/3)-ReciprocalLucas)/(Pi-cos(1)) 6308821444280613 k003 Champernowne real with 17/3*n^3-17*n^2+106/3*n-18 6308821467282882 r005 Re(z^2+c),c=-13/27+30/47*I,n=7 6308821468206827 a007 Real Root Of -231*x^4+93*x^3+713*x^2+928*x-856 6308821470500838 m003 3/4+Sqrt[5]/64-Tanh[1/2+Sqrt[5]/2]/6 6308821476995447 m005 (1/2*3^(1/2)+4/11)/(7/10*Pi-1/4) 6308821481180591 m001 1/GAMMA(1/4)^2*exp(GAMMA(1/12))^2/GAMMA(19/24) 6308821482510063 m001 1/OneNinth^2/TreeGrowth2nd*ln(LambertW(1))^2 6308821484888365 a001 17711/15127*322^(7/24) 6308821496180899 m009 (5/6*Psi(1,3/4)+4/5)/(3*Psi(1,3/4)-3) 6308821506255543 r005 Re(z^2+c),c=9/106+8/57*I,n=12 6308821511871868 a001 15456/13201*322^(7/24) 6308821515808708 a001 121393/103682*322^(7/24) 6308821516383085 a001 105937/90481*322^(7/24) 6308821516466885 a001 832040/710647*322^(7/24) 6308821516479112 a001 726103/620166*322^(7/24) 6308821516480895 a001 5702887/4870847*322^(7/24) 6308821516481156 a001 4976784/4250681*322^(7/24) 6308821516481194 a001 39088169/33385282*322^(7/24) 6308821516481199 a001 34111385/29134601*322^(7/24) 6308821516481200 a001 267914296/228826127*322^(7/24) 6308821516481200 a001 233802911/199691526*322^(7/24) 6308821516481200 a001 1836311903/1568397607*322^(7/24) 6308821516481200 a001 1602508992/1368706081*322^(7/24) 6308821516481200 a001 12586269025/10749957122*322^(7/24) 6308821516481200 a001 10983760033/9381251041*322^(7/24) 6308821516481200 a001 86267571272/73681302247*322^(7/24) 6308821516481200 a001 75283811239/64300051206*322^(7/24) 6308821516481200 a001 2504730781961/2139295485799*322^(7/24) 6308821516481200 a001 365435296162/312119004989*322^(7/24) 6308821516481200 a001 139583862445/119218851371*322^(7/24) 6308821516481200 a001 53316291173/45537549124*322^(7/24) 6308821516481200 a001 20365011074/17393796001*322^(7/24) 6308821516481200 a001 7778742049/6643838879*322^(7/24) 6308821516481200 a001 2971215073/2537720636*322^(7/24) 6308821516481200 a001 1134903170/969323029*322^(7/24) 6308821516481200 a001 433494437/370248451*322^(7/24) 6308821516481201 a001 165580141/141422324*322^(7/24) 6308821516481203 a001 63245986/54018521*322^(7/24) 6308821516481217 a001 24157817/20633239*322^(7/24) 6308821516481317 a001 9227465/7881196*322^(7/24) 6308821516481998 a001 3524578/3010349*322^(7/24) 6308821516486668 a001 1346269/1149851*322^(7/24) 6308821516518677 a001 514229/439204*322^(7/24) 6308821516738069 a001 196418/167761*322^(7/24) 6308821518241809 a001 75025/64079*322^(7/24) 6308821525292464 a003 cos(Pi*23/93)*sin(Pi*28/81) 6308821528548590 a001 28657/24476*322^(7/24) 6308821532502103 a001 521/34*13^(16/29) 6308821537453400 a005 (1/sin(65/197*Pi))^89 6308821539422816 s002 sum(A278426[n]/((2*n)!),n=1..infinity) 6308821544681613 k003 Champernowne real with 35/6*n^3-18*n^2+223/6*n-19 6308821563384500 a007 Real Root Of -160*x^4+262*x^3+618*x^2+291*x-470 6308821572533790 m001 ln(KhintchineLevy)/MertensB1/Zeta(5) 6308821599192318 a001 10946/9349*322^(7/24) 6308821620475702 r002 8th iterates of z^2 + 6308821621980591 m001 (MasserGramain+Paris)/(Shi(1)+Champernowne) 6308821645082613 k003 Champernowne real with 6*n^3-19*n^2+39*n-20 6308821650296469 r005 Re(z^2+c),c=-25/34+1/107*I,n=11 6308821662468396 a007 Real Root Of -489*x^4+859*x^3+717*x^2-39*x-399 6308821690367565 r002 14th iterates of z^2 + 6308821693697069 m001 (ln(3)+gamma(1))/(GAMMA(19/24)+ZetaP(2)) 6308821726264168 r005 Re(z^2+c),c=-35/54+11/42*I,n=10 6308821735836378 a007 Real Root Of -929*x^4-285*x^3-885*x^2+154*x+525 6308821739686101 l006 ln(2021/3798) 6308821745483614 k003 Champernowne real with 37/6*n^3-20*n^2+245/6*n-21 6308821765595356 m001 (3^(1/2)+exp(-1/2*Pi))/HardyLittlewoodC4 6308821772754790 a007 Real Root Of 913*x^4+303*x^3+683*x^2-486*x-647 6308821782973616 m001 Pi/(Psi(2,1/3)*Catalan+ln(2)) 6308821803448129 r005 Im(z^2+c),c=49/122+7/34*I,n=21 6308821824056825 b008 Pi*(1-2*ArcSec[15]) 6308821824153651 a007 Real Root Of 191*x^4-601*x^3+378*x^2-925*x+57 6308821845884614 k003 Champernowne real with 19/3*n^3-21*n^2+128/3*n-22 6308821860099810 a007 Real Root Of -51*x^4+598*x^3+563*x^2+908*x-939 6308821863782255 r005 Im(z^2+c),c=-25/34+3/70*I,n=24 6308821933537225 r005 Re(z^2+c),c=-16/23+12/35*I,n=10 6308821946285614 k003 Champernowne real with 13/2*n^3-22*n^2+89/2*n-23 6308821954010628 a007 Real Root Of 355*x^4-471*x^3-557*x^2-132*x+367 6308821964284958 a001 228826127/610*2^(3/4) 6308821967543470 m001 (3^(1/3))^gamma(3)/((3^(1/3))^(2^(1/3))) 6308821971413619 a007 Real Root Of -128*x^4-877*x^3-559*x^2-890*x-810 6308821971742890 m003 -5/8+(5*Sqrt[5])/8+3*Cos[1/2+Sqrt[5]/2] 6308821975047576 l006 ln(7202/7671) 6308821997107444 r002 26th iterates of z^2 + 6308822012694688 a007 Real Root Of -663*x^4+857*x^3-565*x^2+366*x+776 6308822041685908 a007 Real Root Of -8*x^4+584*x^3-100*x^2+113*x+259 6308822042321591 r005 Re(z^2+c),c=-23/38*I,n=23 6308822046686614 k003 Champernowne real with 20/3*n^3-23*n^2+139/3*n-24 6308822049226406 m001 (Chi(1)-Shi(1))^GaussKuzminWirsing 6308822049226406 m001 Ei(1,1)^GaussKuzminWirsing 6308822065087479 r002 18th iterates of z^2 + 6308822066547909 m001 (2^(1/2)+GAMMA(7/12))/(-Rabbit+Salem) 6308822083391674 a001 4181/3571*322^(7/24) 6308822096295776 m005 (2/3+1/4*5^(1/2))/(2/3*2^(1/2)+1) 6308822098214269 m001 GAMMA(2/3)*Cahen^(3^(1/2)) 6308822098214269 m001 GAMMA(2/3)*Cahen^sqrt(3) 6308822124108855 a001 1364/233*89^(1/60) 6308822127229520 l005 sech(524/65) 6308822147087614 k003 Champernowne real with 41/6*n^3-24*n^2+289/6*n-25 6308822154824863 k002 Champernowne real with 106*n^2-16*n-84 6308822170404310 r005 Re(z^2+c),c=13/46+27/56*I,n=60 6308822222511299 a007 Real Root Of -817*x^4-99*x^3+892*x^2+86*x-255 6308822228818282 a007 Real Root Of 697*x^4-575*x^3+684*x^2-355*x-751 6308822245784635 r004 Im(z^2+c),c=-1/18+18/23*I,z(0)=I,n=6 6308822246835647 m001 (Trott+ZetaP(3))/(sin(1/12*Pi)+FeigenbaumD) 6308822247488615 k003 Champernowne real with 7*n^3-25*n^2+50*n-26 6308822255200396 a001 233/843*843^(13/28) 6308822281225519 l006 ln(4862/9137) 6308822316415893 a007 Real Root Of -635*x^4+630*x^3-58*x^2+890*x-596 6308822347889615 k003 Champernowne real with 43/6*n^3-26*n^2+311/6*n-27 6308822363741839 r005 Re(z^2+c),c=-19/30+51/121*I,n=43 6308822373115398 a007 Real Root Of -87*x^4+462*x^3+260*x^2+942*x-800 6308822421669290 a007 Real Root Of 42*x^4-761*x^3+290*x^2-461*x-604 6308822448290615 k003 Champernowne real with 22/3*n^3-27*n^2+161/3*n-28 6308822453630952 r005 Re(z^2+c),c=-21/34+50/127*I,n=8 6308822453685526 p001 sum(1/(253*n+159)/(125^n),n=0..infinity) 6308822469242792 m001 exp(Pi)^Grothendieck*ln(5)^Grothendieck 6308822548488548 m001 (ThueMorse*ZetaP(4)+ZetaP(2))/ZetaP(4) 6308822548691615 k003 Champernowne real with 15/2*n^3-28*n^2+111/2*n-29 6308822599017082 m002 -36-Pi^2+Pi^4+Sinh[Pi] 6308822606595412 a007 Real Root Of -888*x^4+112*x^3-72*x^2+497*x+511 6308822625531605 a007 Real Root Of -822*x^4+204*x^3+434*x^2+858*x+550 6308822636791590 r002 8th iterates of z^2 + 6308822649092615 k003 Champernowne real with 23/3*n^3-29*n^2+172/3*n-30 6308822658361374 m009 (Pi^2-4/5)/(1/2*Psi(1,3/4)+1/6) 6308822666459982 l006 ln(2841/5339) 6308822669534702 m001 (Chi(1)-Si(Pi))/(-ln(5)+gamma(3)) 6308822675381758 a007 Real Root Of -510*x^4+906*x^3+219*x^2-127*x+141 6308822685820721 m002 -Pi^6+4*Pi^6*Sech[Pi]*Tanh[Pi] 6308822696619983 a007 Real Root Of -428*x^4-782*x^3-959*x^2+846*x+57 6308822727684457 m001 (LandauRamanujan-Porter)^Mills 6308822729247532 r009 Re(z^3+c),c=-17/122+41/55*I,n=45 6308822743453528 m001 (Catalan-Kolakoski)/(Lehmer+MertensB3) 6308822749493616 k003 Champernowne real with 47/6*n^3-30*n^2+355/6*n-31 6308822769106043 a007 Real Root Of 415*x^4-652*x^3-442*x^2-695*x-492 6308822780608955 r005 Re(z^2+c),c=5/86+22/31*I,n=7 6308822780686486 a007 Real Root Of 468*x^4-942*x^3+53*x^2+258*x-169 6308822782463154 m001 (-Gompertz+Grothendieck)/(Chi(1)-GAMMA(23/24)) 6308822835107442 r005 Im(z^2+c),c=-37/62+5/8*I,n=9 6308822846973535 a003 cos(Pi*10/41)-cos(Pi*33/70) 6308822849894616 k003 Champernowne real with 8*n^3-31*n^2+61*n-32 6308822878278397 r005 Re(z^2+c),c=-18/25+22/59*I,n=3 6308822904540758 m001 ln(3)/(2/3*Pi*3^(1/2)/GAMMA(2/3)+Zeta(1,2)) 6308822904540758 m001 ln(3)/(GAMMA(1/3)+Zeta(1,2)) 6308822907104798 m001 (GAMMA(5/6)+TravellingSalesman)/(Pi-Ei(1,1)) 6308822924035290 h001 (2/5*exp(1)+7/11)/(9/10*exp(1)+2/7) 6308822950295616 k003 Champernowne real with 49/6*n^3-32*n^2+377/6*n-33 6308822950707621 a007 Real Root Of 438*x^4+244*x^3+989*x^2-21*x-415 6308822957205332 a007 Real Root Of 205*x^4+457*x^3+607*x^2+75*x-112 6308822958508952 r005 Im(z^2+c),c=-25/118+23/36*I,n=7 6308822968732891 a007 Real Root Of 715*x^4+302*x^3-866*x^2-985*x+777 6308822975747774 a001 21/3010349*76^(30/59) 6308822976528577 m001 (Zeta(3)+Backhouse)/(Cahen+FeigenbaumMu) 6308823003155355 a008 Real Root of x^4-2*x^3-25*x^2-113*x-62 6308823015609524 a007 Real Root Of -624*x^4+780*x^3-319*x^2-242*x+269 6308823050696616 k003 Champernowne real with 25/3*n^3-33*n^2+194/3*n-34 6308823051332868 r005 Re(z^2+c),c=-8/25+37/60*I,n=38 6308823061147404 a007 Real Root Of -90*x^4+477*x^3-701*x^2+206*x+543 6308823061790185 a007 Real Root Of -88*x^4+558*x^3+10*x^2+710*x+598 6308823073339811 r005 Re(z^2+c),c=-4/23+36/53*I,n=59 6308823087589051 r009 Re(z^3+c),c=-13/29+2/63*I,n=43 6308823099277218 m001 (3^(1/3))^2/exp(MinimumGamma)^2/sqrt(Pi) 6308823104749085 r005 Re(z^2+c),c=-41/86+26/29*I,n=3 6308823115515761 r005 Re(z^2+c),c=-1/118+21/26*I,n=52 6308823120682237 a007 Real Root Of 72*x^4-388*x^3-808*x^2-278*x+583 6308823142767701 m005 (1/3*gamma-3/5)/(5/11*2^(1/2)-7/11) 6308823151097616 k003 Champernowne real with 17/2*n^3-34*n^2+133/2*n-35 6308823152743749 r005 Im(z^2+c),c=-67/60+1/13*I,n=17 6308823155124923 k002 Champernowne real with 213/2*n^2-35/2*n-83 6308823156815417 m001 (BesselI(0,1)-ln(Pi))/(-Robbin+Sierpinski) 6308823178071531 l006 ln(3661/6880) 6308823180612153 a007 Real Root Of 668*x^4-575*x^3+753*x^2-16*x-560 6308823185785283 m001 1/sin(Pi/5)*ln(GAMMA(1/24))*sinh(1) 6308823191244338 r005 Re(z^2+c),c=-65/102+5/11*I,n=15 6308823225963023 a007 Real Root Of -854*x^4-10*x^3-827*x^2-477*x+161 6308823240070397 g005 GAMMA(7/11)*GAMMA(6/11)/GAMMA(4/11)/GAMMA(3/5) 6308823251498617 k003 Champernowne real with 26/3*n^3-35*n^2+205/3*n-36 6308823260602863 r009 Im(z^3+c),c=-15/26+22/35*I,n=31 6308823279081693 a001 6643838879/610*102334155^(2/21) 6308823279081693 a001 1268860318/305*2504730781961^(2/21) 6308823285955997 a001 17393796001/610*4181^(2/21) 6308823287298996 a007 Real Root Of 126*x^4+710*x^3-438*x^2+681*x+408 6308823293650616 a007 Real Root Of 674*x^4-567*x^3-714*x^2-325*x-170 6308823312455612 b008 12+7*Sinh[Khinchin] 6308823322570053 a007 Real Root Of -352*x^4-781*x^3-749*x^2+720*x+612 6308823325903444 m001 (GAMMA(19/24)-gamma)/(CopelandErdos+Rabbit) 6308823333541858 r002 37th iterates of z^2 + 6308823336340501 m001 exp(-1/2*Pi)^Lehmer/(ZetaP(2)^Lehmer) 6308823336764508 a001 10946/2207*123^(1/20) 6308823351899617 k003 Champernowne real with 53/6*n^3-36*n^2+421/6*n-37 6308823352622809 a007 Real Root Of 877*x^4-156*x^3+55*x^2-894*x-764 6308823359089888 m001 GAMMA(13/24)^2*BesselJ(1,1)^2*ln(GAMMA(5/6)) 6308823364409069 m001 (1/3)^ln(1+sqrt(2))/BesselK(1,1) 6308823369610099 a007 Real Root Of -128*x^4-722*x^3+414*x^2-831*x-244 6308823387563551 l006 ln(9229/9830) 6308823393964873 a007 Real Root Of 73*x^4-476*x^3+482*x^2-352*x-545 6308823394290024 r005 Im(z^2+c),c=-13/32+4/39*I,n=19 6308823395482046 m005 (1/3*Zeta(3)+1/3)/(5/11*Catalan-3/10) 6308823396143729 r009 Im(z^3+c),c=-3/5+25/34*I,n=3 6308823405216022 m005 (1/3*2^(1/2)-1/12)/(9/11*gamma+1/7) 6308823450440725 r005 Im(z^2+c),c=-71/60+1/12*I,n=41 6308823452051423 m004 -9*Sqrt[5]*Pi+Sin[Sqrt[5]*Pi]/5 6308823452210061 k003 Champernowne real with 9*n^3-37*n^2+72*n-38 6308823467340002 a001 3020733700601/7*6765^(13/23) 6308823478070621 m001 1/KhintchineHarmonic^2*ln(Bloch)^2*Magata 6308823482923260 a001 17393796001/21*433494437^(13/23) 6308823502438491 l006 ln(4481/8421) 6308823523984045 b008 2*Pi+ArcCsch[39] 6308823525192091 m001 1/exp(Catalan)^2/GlaisherKinkelin^2/cosh(1) 6308823529411764 q001 429/680 6308823529411764 r002 2th iterates of z^2 + 6308823532558568 r002 24th iterates of z^2 + 6308823542588449 h001 (-3*exp(1/2)+9)/(-3*exp(3)-4) 6308823544456659 a007 Real Root Of 808*x^4-983*x^3+753*x^2+898*x-108 6308823552610161 k003 Champernowne real with 55/6*n^3-38*n^2+443/6*n-39 6308823552906191 a007 Real Root Of 5*x^4+331*x^3+967*x^2-905*x+930 6308823634462005 m001 (Salem-ZetaQ(2))/(KhinchinLevy+Lehmer) 6308823635718868 m001 1/GAMMA(3/4)^2/exp(GAMMA(11/24))/GAMMA(7/12) 6308823651157571 r009 Im(z^3+c),c=-1/16+22/29*I,n=15 6308823653010261 k003 Champernowne real with 28/3*n^3-39*n^2+227/3*n-40 6308823655712582 m001 (-PrimesInBinary+Stephens)/(Si(Pi)+CareFree) 6308823683928880 a007 Real Root Of 643*x^4-453*x^3-781*x^2-487*x-212 6308823691806744 r005 Re(z^2+c),c=1/126+37/58*I,n=63 6308823693987715 m005 (1/2*2^(1/2)+7/11)/(9/11*5^(1/2)+3/10) 6308823706526387 r002 8th iterates of z^2 + 6308823708118863 a007 Real Root Of -190*x^4+647*x^3-562*x^2+522*x-238 6308823726454226 l006 ln(5301/9962) 6308823728295724 a007 Real Root Of -586*x^4+758*x^3+827*x^2+615*x+342 6308823729116829 a001 233/39603*1364^(29/30) 6308823730249988 r002 12th iterates of z^2 + 6308823738073296 r002 10th iterates of z^2 + 6308823748415698 m001 Artin^Zeta(5)*Artin^exp(sqrt(2)) 6308823753410361 k003 Champernowne real with 19/2*n^3-40*n^2+155/2*n-41 6308823761936232 a007 Real Root Of -853*x^4+573*x^3-352*x^2-677*x-8 6308823771713721 a001 11/2*4052739537881^(22/23) 6308823784611072 m006 (5/6*ln(Pi)+1/6)/(4/5*exp(Pi)-3/4) 6308823792783006 a007 Real Root Of 64*x^4-175*x^3+993*x^2-819*x-966 6308823794291835 a001 233/2207*1364^(17/30) 6308823801628045 r009 Re(z^3+c),c=-7/62+29/45*I,n=40 6308823807927962 b008 ExpIntegralEi[Sqrt[Tanh[Pi^(-1)]]] 6308823812886340 a007 Real Root Of -994*x^4+946*x^3+930*x^2+25*x-466 6308823821935846 a007 Real Root Of -715*x^4+707*x^3+784*x^2+586*x-746 6308823836707356 a007 Real Root Of -965*x^4-60*x^3-815*x^2-265*x+295 6308823853810461 k003 Champernowne real with 29/3*n^3-41*n^2+238/3*n-42 6308823890449404 p004 log(11503/6121) 6308823916010269 r005 Im(z^2+c),c=-79/78+3/46*I,n=7 6308823920925347 p003 LerchPhi(1/64,5,261/238) 6308823929201739 m001 Bloch*MinimumGamma^BesselJ(0,1) 6308823954210561 k003 Champernowne real with 59/6*n^3-42*n^2+487/6*n-43 6308823959020178 r009 Re(z^3+c),c=-31/56+5/11*I,n=55 6308823961963872 a007 Real Root Of 993*x^4-14*x^3-350*x^2-890*x+547 6308823963751847 r005 Re(z^2+c),c=23/106+30/61*I,n=25 6308823969732495 a001 233/24476*1364^(9/10) 6308823980609682 m001 (MadelungNaCl+ThueMorse)/(Cahen-ln(2)/ln(10)) 6308823984201513 a007 Real Root Of -132*x^4-740*x^3+530*x^2-429*x-508 6308823986534242 a007 Real Root Of 816*x^4-783*x^3+902*x^2+469*x-389 6308824018181077 r005 Re(z^2+c),c=-2/3+9/34*I,n=12 6308824018812639 a007 Real Root Of -140*x^4-856*x^3+86*x^2-631*x-565 6308824034593041 a007 Real Root Of -134*x^4-848*x^3-104*x^2-664*x-707 6308824034895030 m004 -5+2000/Pi-Cos[Sqrt[5]*Pi] 6308824036991029 r009 Re(z^3+c),c=-61/110+11/43*I,n=22 6308824047053598 r002 13th iterates of z^2 + 6308824054610661 k003 Champernowne real with 10*n^3-43*n^2+83*n-44 6308824059496440 h002 exp(10^(12/5)+3^(5/3)) 6308824059496440 h007 exp(10^(12/5)+3^(5/3)) 6308824067590399 m005 (1/2*5^(1/2)+4/11)/(5/6*exp(1)+1/12) 6308824068097783 m002 3+ProductLog[Pi]/6+Pi*Tanh[Pi] 6308824082888555 a007 Real Root Of -923*x^4+595*x^3+485*x^2+633*x-42 6308824085956306 m005 (1/3*Catalan+2/11)/(gamma-1/2) 6308824144640413 a001 610/521*521^(7/26) 6308824155010761 k003 Champernowne real with 61/6*n^3-44*n^2+509/6*n-45 6308824155424983 k002 Champernowne real with 107*n^2-19*n-82 6308824157038766 a007 Real Root Of -290*x^4+907*x^3-331*x^2+244*x-204 6308824157693423 a001 233/15127*1364^(5/6) 6308824164212465 m001 (-KomornikLoreti+Trott2nd)/(Si(Pi)-Zeta(1,2)) 6308824170389888 a007 Real Root Of -298*x^4+269*x^3-669*x^2+336*x+593 6308824187018142 m005 (1/3*gamma-1/10)/(5/7*2^(1/2)+5/11) 6308824189550093 a003 cos(Pi*31/77)*cos(Pi*37/75) 6308824204369829 m001 ln(Khintchine)/FeigenbaumDelta/FeigenbaumC^2 6308824225251560 m005 (1/2*gamma-4/5)/(40/99+2/11*5^(1/2)) 6308824228133024 m006 (exp(2*Pi)-2)/(2/5*exp(Pi)-4/5) 6308824230368003 a007 Real Root Of 84*x^4-437*x^3+106*x^2-174*x-275 6308824238656140 m001 (-FeigenbaumD+MertensB2)/(BesselI(1,2)-Si(Pi)) 6308824247853088 m005 (1/2*3^(1/2)-3/10)/(3/5*5^(1/2)-4/9) 6308824255410861 k003 Champernowne real with 31/3*n^3-45*n^2+260/3*n-46 6308824266735901 a007 Real Root Of 137*x^4+941*x^3+602*x^2+804*x+369 6308824301224239 a001 39603/89*21^(27/31) 6308824302576977 a007 Real Root Of 354*x^4-223*x^3+134*x^2+473*x+133 6308824318689505 m005 (1/2*Pi-6)/(1/4*Pi-1/12) 6308824355810961 k003 Champernowne real with 21/2*n^3-46*n^2+177/2*n-47 6308824373169702 a007 Real Root Of -865*x^4+916*x^3+470*x^2+409*x+438 6308824384263340 r005 Im(z^2+c),c=9/122+25/42*I,n=19 6308824388256268 r009 Im(z^3+c),c=-3/29+43/59*I,n=18 6308824393997873 a007 Real Root Of 454*x^4-954*x^3+278*x^2-469*x-718 6308824434020775 a001 28657/5778*123^(1/20) 6308824443674361 a001 47/196418*987^(28/59) 6308824445005141 a008 Real Root of x^5-13*x^3-5*x^2+5*x+2 6308824448418123 a001 233/5778*1364^(7/10) 6308824456211061 k003 Champernowne real with 32/3*n^3-47*n^2+271/3*n-48 6308824466876432 a003 cos(Pi*14/97)*sin(Pi*26/105) 6308824474949327 a007 Real Root Of 102*x^4-400*x^3+400*x^2+434*x-2 6308824477708335 m001 (Grothendieck-Trott)/FransenRobinson 6308824483506282 a001 233/9349*1364^(23/30) 6308824483740348 g001 Psi(4/7,33/52) 6308824514194164 a007 Real Root Of -872*x^4-119*x^3-718*x^2+420*x+659 6308824522479240 a003 cos(Pi*41/106)-sin(Pi*10/23) 6308824534930916 a007 Real Root Of 947*x^4-63*x^3-765*x^2-781*x+663 6308824547127568 s002 sum(A083072[n]/(exp(pi*n)+1),n=1..infinity) 6308824556611161 k003 Champernowne real with 65/6*n^3-48*n^2+553/6*n-49 6308824558239155 a007 Real Root Of 213*x^4-932*x^3+100*x^2-922*x+58 6308824559910165 a003 cos(Pi*23/89)*sin(Pi*24/65) 6308824594108339 a001 75025/15127*123^(1/20) 6308824595601010 r002 25th iterates of z^2 + 6308824617464800 a001 196418/39603*123^(1/20) 6308824620872462 a001 514229/103682*123^(1/20) 6308824621369633 a001 1346269/271443*123^(1/20) 6308824621442170 a001 3524578/710647*123^(1/20) 6308824621452753 a001 9227465/1860498*123^(1/20) 6308824621454297 a001 24157817/4870847*123^(1/20) 6308824621454522 a001 63245986/12752043*123^(1/20) 6308824621454555 a001 165580141/33385282*123^(1/20) 6308824621454560 a001 433494437/87403803*123^(1/20) 6308824621454560 a001 1134903170/228826127*123^(1/20) 6308824621454560 a001 2971215073/599074578*123^(1/20) 6308824621454560 a001 7778742049/1568397607*123^(1/20) 6308824621454560 a001 20365011074/4106118243*123^(1/20) 6308824621454560 a001 53316291173/10749957122*123^(1/20) 6308824621454560 a001 139583862445/28143753123*123^(1/20) 6308824621454560 a001 365435296162/73681302247*123^(1/20) 6308824621454560 a001 956722026041/192900153618*123^(1/20) 6308824621454560 a001 2504730781961/505019158607*123^(1/20) 6308824621454560 a001 10610209857723/2139295485799*123^(1/20) 6308824621454560 a001 4052739537881/817138163596*123^(1/20) 6308824621454560 a001 140728068720/28374454999*123^(1/20) 6308824621454560 a001 591286729879/119218851371*123^(1/20) 6308824621454560 a001 225851433717/45537549124*123^(1/20) 6308824621454560 a001 86267571272/17393796001*123^(1/20) 6308824621454560 a001 32951280099/6643838879*123^(1/20) 6308824621454560 a001 1144206275/230701876*123^(1/20) 6308824621454560 a001 4807526976/969323029*123^(1/20) 6308824621454560 a001 1836311903/370248451*123^(1/20) 6308824621454561 a001 701408733/141422324*123^(1/20) 6308824621454563 a001 267914296/54018521*123^(1/20) 6308824621454575 a001 9303105/1875749*123^(1/20) 6308824621454661 a001 39088169/7881196*123^(1/20) 6308824621455251 a001 14930352/3010349*123^(1/20) 6308824621459293 a001 5702887/1149851*123^(1/20) 6308824621487000 a001 2178309/439204*123^(1/20) 6308824621676902 a001 75640/15251*123^(1/20) 6308824622364846 m001 Magata^(1/5*5^(1/2)*ReciprocalFibonacci) 6308824622978513 a001 317811/64079*123^(1/20) 6308824631899888 a001 121393/24476*123^(1/20) 6308824639261250 m006 (3*Pi-1)/(1/4*exp(2*Pi)-1/3) 6308824657011261 k003 Champernowne real with 11*n^3-49*n^2+94*n-50 6308824665973542 r002 15th iterates of z^2 + 6308824678316668 r005 Re(z^2+c),c=-41/44+1/12*I,n=18 6308824693047899 a001 46368/9349*123^(1/20) 6308824714511019 a007 Real Root Of 102*x^4-605*x^3+125*x^2-909*x+57 6308824726041621 m001 (Riemann2ndZero-Thue)/(Artin-FeigenbaumMu) 6308824757411362 k003 Champernowne real with 67/6*n^3-50*n^2+575/6*n-51 6308824764232450 a001 322/5*1346269^(28/43) 6308824787306624 r009 Im(z^3+c),c=-7/60+41/55*I,n=10 6308824788102106 a001 18/75025*6765^(25/28) 6308824824107016 a001 1597/521*521^(3/26) 6308824853706520 a003 sin(Pi*2/21)-sin(Pi*32/85) 6308824857811462 k003 Champernowne real with 34/3*n^3-51*n^2+293/3*n-52 6308824859620365 a007 Real Root Of 645*x^4-833*x^3-139*x^2-783*x-750 6308824860486309 a001 599074578/1597*2^(3/4) 6308824885432515 m001 (GAMMA(5/6)-GaussAGM)/(ThueMorse+ZetaQ(2)) 6308824950618169 l006 ln(820/1541) 6308824958211562 k003 Champernowne real with 23/2*n^3-52*n^2+199/2*n-53 6308824972588265 m008 (5*Pi^4-1/6)/(5/6*Pi^4-4) 6308824974266583 a007 Real Root Of 397*x^4-335*x^3-871*x^2-910*x+942 6308824985722942 m001 exp(GAMMA(5/24))*LandauRamanujan*Zeta(7)^2 6308824990809756 m001 1/sinh(1)^2*Robbin^2/ln(sqrt(1+sqrt(3))) 6308825023422872 m001 (ln(2)+gamma(2))/(Cahen+TreeGrowth2nd) 6308825049697548 r002 44th iterates of z^2 + 6308825056502397 m005 (11/10+3/2*5^(1/2))/(1/3+1/6*5^(1/2)) 6308825058611662 k003 Champernowne real with 35/3*n^3-53*n^2+304/3*n-54 6308825061692150 r005 Re(z^2+c),c=-31/24+4/15*I,n=6 6308825080150621 a007 Real Root Of 450*x^4+146*x^3+557*x^2-987*x-879 6308825090354388 r005 Im(z^2+c),c=-5/29+29/31*I,n=4 6308825112162635 a001 17711/3571*123^(1/20) 6308825129189227 m006 (3/5*exp(2*Pi)-5/6)/(1/4/Pi+5) 6308825150750845 a001 987/521*1364^(1/6) 6308825155725043 k002 Champernowne real with 215/2*n^2-41/2*n-81 6308825159011762 k003 Champernowne real with 71/6*n^3-54*n^2+619/6*n-55 6308825185397873 a007 Real Root Of 837*x^4+89*x^3+360*x^2-80*x-304 6308825194787325 m005 (1/6*Pi-2/5)/(1/2*exp(1)+3/5) 6308825194946970 r005 Im(z^2+c),c=-11/32+4/41*I,n=17 6308825204261025 a001 21/521*76^(3/29) 6308825205411345 g002 Psi(6/11)+2*Psi(4/11)-Psi(8/11) 6308825235977956 r009 Im(z^3+c),c=-5/27+37/50*I,n=64 6308825250386613 a007 Real Root Of -999*x^4+981*x^3-175*x^2+906*x-590 6308825259411862 k003 Champernowne real with 12*n^3-55*n^2+105*n-56 6308825283036614 a001 1568397607/4181*2^(3/4) 6308825286745955 m001 ((1+3^(1/2))^(1/2)-GAMMA(3/4)*Ei(1,1))/Ei(1,1) 6308825288688730 m001 (Zeta(3)-GaussAGM)/(MertensB2-ZetaP(2)) 6308825294758185 m001 (CopelandErdos+Salem)/(5^(1/2)+gamma(3)) 6308825318095873 m001 (-exp(1/Pi)+Cahen)/(gamma-ln(2)) 6308825331152950 m001 (TwinPrimes+Zeta(1,2))/GAMMA(5/24) 6308825336224474 h001 (-8*exp(1/3)+7)/(-8*exp(-3)+7) 6308825344685877 a001 4106118243/10946*2^(3/4) 6308825346862766 r009 Re(z^3+c),c=-11/50+25/33*I,n=7 6308825353680383 a001 10749957122/28657*2^(3/4) 6308825354992664 a001 28143753123/75025*2^(3/4) 6308825355184123 a001 73681302247/196418*2^(3/4) 6308825355212057 a001 192900153618/514229*2^(3/4) 6308825355216132 a001 505019158607/1346269*2^(3/4) 6308825355216727 a001 1322157322203/3524578*2^(3/4) 6308825355216814 a001 3461452808002/9227465*2^(3/4) 6308825355216826 a001 9062201101803/24157817*2^(3/4) 6308825355216828 a001 23725150497407/63245986*2^(3/4) 6308825355216829 a001 14662949395604/39088169*2^(3/4) 6308825355216834 a001 5600748293801/14930352*2^(3/4) 6308825355216867 a001 2139295485799/5702887*2^(3/4) 6308825355217094 a001 817138163596/2178309*2^(3/4) 6308825355218651 a001 28374454999/75640*2^(3/4) 6308825355229321 a001 119218851371/317811*2^(3/4) 6308825355302452 a001 45537549124/121393*2^(3/4) 6308825355440993 a001 75025/2*2^(3/4) 6308825355803698 a001 17393796001/46368*2^(3/4) 6308825358181198 a001 233/3571*1364^(19/30) 6308825359239294 a001 6643838879/17711*2^(3/4) 6308825370524496 m001 (GAMMA(5/6)-Cahen)/(OneNinth+Robbin) 6308825382787218 a001 230701876/615*2^(3/4) 6308825402145177 a001 1597/1364*322^(7/24) 6308825406842258 a007 Real Root Of 465*x^4-684*x^3+469*x^2+864*x+113 6308825412428440 r009 Im(z^3+c),c=-53/122+24/43*I,n=58 6308825413280952 m005 (1/2*Catalan+7/12)/(3/8*Zeta(3)-2/7) 6308825431700478 a007 Real Root Of 12*x^4+46*x^3+260*x^2-517*x-420 6308825440210736 s002 sum(A104573[n]/(pi^n-1),n=1..infinity) 6308825468455964 a001 233/2207*3571^(1/2) 6308825479175468 m005 (1/2*gamma-7/9)/(1/12*gamma+8/11) 6308825479206680 m001 1/exp(FeigenbaumB)*Backhouse/Zeta(9)^2 6308825483160881 m001 (Riemann1stZero+Thue)/(exp(Pi)+Kac) 6308825495751137 a001 4/121393*317811^(24/25) 6308825496935567 a007 Real Root Of -312*x^4+715*x^3+340*x^2+776*x-755 6308825518536449 m001 BesselI(1,2)/(ln(1+sqrt(2))+GAMMA(13/24)) 6308825518536449 m001 BesselI(1,2)/(ln(2^(1/2)+1)+GAMMA(13/24)) 6308825536778006 m001 (-MertensB3+ZetaP(3))/(2^(1/2)+BesselK(0,1)) 6308825544187092 a001 969323029/2584*2^(3/4) 6308825556361176 a008 Real Root of x^4-28*x^2-80*x+35 6308825564803440 a007 Real Root Of -139*x^4-946*x^3-371*x^2+314*x-597 6308825576952611 m001 (Zeta(1/2)+GAMMA(23/24))/(ArtinRank2-ZetaQ(3)) 6308825580448000 a005 (1/sin(86/231*Pi))^885 6308825619849066 r005 Im(z^2+c),c=-1/11+37/47*I,n=17 6308825636226667 r005 Im(z^2+c),c=41/114+11/39*I,n=30 6308825641469550 a007 Real Root Of 555*x^4-937*x^3+555*x^2-665*x+346 6308825643152119 a001 987/521*3571^(5/34) 6308825647168083 m001 (Psi(1,1/3)+Ei(1,1))/(-Conway+Porter) 6308825682910107 a007 Real Root Of -406*x^4-27*x^3-785*x^2-336*x+158 6308825683530111 a001 233/2207*9349^(17/38) 6308825696421567 b008 63+BesselY[0,1] 6308825706409222 a001 987/521*9349^(5/38) 6308825711558734 a001 233/2207*24476^(17/42) 6308825714652935 a001 987/521*24476^(5/42) 6308825715253445 a001 233/2207*64079^(17/46) 6308825715739614 a001 987/521*64079^(5/46) 6308825715821262 a001 233/2207*45537549124^(1/6) 6308825715821272 a001 233/2207*12752043^(1/4) 6308825715884203 a001 987/521*167761^(1/10) 6308825715906618 a001 987/521*20633239^(1/14) 6308825715906619 a001 987/521*2537720636^(1/18) 6308825715906619 a001 987/521*312119004989^(1/22) 6308825715906619 a001 987/521*28143753123^(1/20) 6308825715906619 a001 987/521*228826127^(1/16) 6308825715906771 a001 987/521*1860498^(1/12) 6308825716363718 a001 987/521*39603^(5/44) 6308825717375397 a001 233/2207*39603^(17/44) 6308825719352918 a001 987/521*15127^(1/8) 6308825727538678 a001 233/2207*15127^(17/40) 6308825741900836 m001 ArtinRank2-Ei(1,1)*GaussKuzminWirsing 6308825742152490 a001 987/521*5778^(5/36) 6308825752235437 r009 Im(z^3+c),c=-2/31+25/33*I,n=63 6308825755331397 g006 Psi(1,9/10)+Psi(1,1/9)-Psi(1,1/12)-Psi(1,8/9) 6308825760864165 a007 Real Root Of 709*x^4-202*x^3-955*x^2-806*x+827 6308825783341396 a007 Real Root Of -138*x^4-891*x^3-161*x^2-282*x-489 6308825786617868 a001 1597/2207*322^(3/8) 6308825798227806 a007 Real Root Of 219*x^4-572*x^3-910*x^2-637*x+873 6308825804161281 a007 Real Root Of 400*x^4-589*x^3-407*x^2-315*x-248 6308825805057222 a001 233/2207*5778^(17/36) 6308825812051271 r005 Im(z^2+c),c=-9/40+7/11*I,n=4 6308825831664642 a007 Real Root Of 576*x^4-852*x^3-986*x^2-235*x-61 6308825863916741 m001 cosh(1)^2*exp(Bloch)*sqrt(1+sqrt(3)) 6308825872328800 r005 Re(z^2+c),c=-3/86+38/55*I,n=45 6308825875574959 r005 Re(z^2+c),c=3/110+34/55*I,n=21 6308825879560851 r009 Re(z^3+c),c=-13/114+36/55*I,n=54 6308825918284960 a001 987/521*2207^(5/32) 6308825924934602 m001 exp(Zeta(1/2))^2/GaussAGM(1,1/sqrt(2))/Zeta(7) 6308825928240690 a001 2584/521*521^(1/26) 6308825931413833 m001 1/Porter/ln(Magata)/log(1+sqrt(2)) 6308825956013321 m001 ZetaR(2)^(ReciprocalFibonacci/LaplaceLimit) 6308825994874113 r002 35th iterates of z^2 + 6308825995525800 m005 (1/3*Pi+1/2)/(9/10*Pi-3/8) 6308826022759880 h002 exp(14^(5/12)-6^(1/12)) 6308826022759880 h007 exp(14^(5/12)-6^(1/12)) 6308826041520989 r005 Im(z^2+c),c=19/126+22/41*I,n=6 6308826045097709 m005 (1/3*Zeta(3)+2/5)/(6/11*Pi-4/9) 6308826055088825 m005 (47/44+1/4*5^(1/2))/(-8/21+2/7*5^(1/2)) 6308826068607536 r005 Im(z^2+c),c=-12/19+7/61*I,n=24 6308826096294807 m006 (4/5/Pi-3/4)/(1/4*exp(Pi)-5) 6308826110034010 m001 (1-gamma)/(-ln(5)+BesselI(0,2)) 6308826113205232 m001 (cos(1/5*Pi)-Zeta(1/2))/(Kac-Robbin) 6308826115053642 m001 sin(1)^KomornikLoreti*sin(1)^QuadraticClass 6308826152825506 a007 Real Root Of -702*x^4+959*x^3-403*x^2-91*x+455 6308826156025103 k002 Champernowne real with 108*n^2-22*n-80 6308826160196471 a007 Real Root Of 568*x^4-944*x^3+366*x^2+521*x-144 6308826161532943 l006 ln(5359/10071) 6308826169613594 m001 (ln(gamma)+Sierpinski)/FellerTornier 6308826175283648 a001 17393796001/1597*102334155^(2/21) 6308826175283648 a001 6643838879/1597*2504730781961^(2/21) 6308826178694294 p003 LerchPhi(1/256,4,147/131) 6308826182157955 a001 45537549124/1597*4181^(2/21) 6308826222400315 a007 Real Root Of -860*x^4+431*x^3+251*x^2-180*x+31 6308826237237354 m001 gamma^2/GAMMA(5/24)/ln(sqrt(2))^2 6308826240884271 m005 (1/2*2^(1/2)+7/9)/(2/9*gamma-4/11) 6308826241529821 m005 (1/3*2^(1/2)+1/5)/(6*3^(1/2)+1/4) 6308826244799425 r005 Im(z^2+c),c=-49/82+21/52*I,n=51 6308826247069051 r005 Re(z^2+c),c=-7/10+38/139*I,n=3 6308826250052065 a007 Real Root Of -205*x^4+601*x^3-374*x^2+575*x+695 6308826250325527 s001 sum(exp(-Pi)^(n-1)*A018248[n],n=1..infinity) 6308826253955514 m001 (Champernowne+Robbin)/(cos(1/12*Pi)-sin(1)) 6308826280303020 a007 Real Root Of -503*x^4+65*x^3+516*x^2+828*x+413 6308826280729700 a007 Real Root Of -106*x^4-581*x^3+556*x^2+143*x+803 6308826281452016 r009 Re(z^3+c),c=-51/98+3/31*I,n=8 6308826380292591 l006 ln(4539/8530) 6308826395415591 m001 (Gompertz+Landau)/(cos(1)+BesselI(0,1)) 6308826396290942 a007 Real Root Of 48*x^4+149*x^3-876*x^2+703*x+676 6308826403907646 a001 233/2207*2207^(17/32) 6308826406576414 m001 TwinPrimes/(Trott-Shi(1)) 6308826409234826 a003 cos(Pi*3/104)/cos(Pi*49/109) 6308826450257195 a007 Real Root Of -44*x^4+90*x^3-832*x^2+877*x+914 6308826470318657 a001 4181/5778*322^(3/8) 6308826485325587 a007 Real Root Of 113*x^4+733*x^3+253*x^2+926*x+820 6308826506142605 p001 sum(1/(410*n+167)/(6^n),n=0..infinity) 6308826508112808 m001 Trott^2*exp(ErdosBorwein)*OneNinth 6308826516503501 a001 233/5778*3571^(21/34) 6308826519267604 a007 Real Root Of 194*x^4-431*x^3+617*x^2-736*x-49 6308826527142228 a003 sin(Pi*17/105)/cos(Pi*25/114) 6308826527149804 r002 43th iterates of z^2 + 6308826530276097 a001 233/103682*3571^(33/34) 6308826538862224 r005 Re(z^2+c),c=-77/102+5/31*I,n=11 6308826561501217 a001 233/64079*3571^(31/34) 6308826566879237 a007 Real Root Of 215*x^4+368*x^3+140*x^2-616*x-386 6308826570069278 a001 10946/15127*322^(3/8) 6308826571880116 m001 (MertensB3-Salem)/(FeigenbaumC+MasserGramain) 6308826576278089 r002 9th iterates of z^2 + 6308826577686643 a001 2207/21*2178309^(7/57) 6308826584622698 a001 28657/39603*322^(3/8) 6308826585044109 a001 233/39603*3571^(29/34) 6308826586707513 a007 Real Root Of -425*x^4+349*x^3-364*x^2+899*x+867 6308826586746013 a001 75025/103682*322^(3/8) 6308826587055801 a001 196418/271443*322^(3/8) 6308826587100998 a001 514229/710647*322^(3/8) 6308826587107592 a001 1346269/1860498*322^(3/8) 6308826587108554 a001 3524578/4870847*322^(3/8) 6308826587108695 a001 9227465/12752043*322^(3/8) 6308826587108715 a001 24157817/33385282*322^(3/8) 6308826587108718 a001 63245986/87403803*322^(3/8) 6308826587108719 a001 165580141/228826127*322^(3/8) 6308826587108719 a001 433494437/599074578*322^(3/8) 6308826587108719 a001 1134903170/1568397607*322^(3/8) 6308826587108719 a001 2971215073/4106118243*322^(3/8) 6308826587108719 a001 7778742049/10749957122*322^(3/8) 6308826587108719 a001 20365011074/28143753123*322^(3/8) 6308826587108719 a001 53316291173/73681302247*322^(3/8) 6308826587108719 a001 139583862445/192900153618*322^(3/8) 6308826587108719 a001 365435296162/505019158607*322^(3/8) 6308826587108719 a001 10610209857723/14662949395604*322^(3/8) 6308826587108719 a001 591286729879/817138163596*322^(3/8) 6308826587108719 a001 225851433717/312119004989*322^(3/8) 6308826587108719 a001 86267571272/119218851371*322^(3/8) 6308826587108719 a001 32951280099/45537549124*322^(3/8) 6308826587108719 a001 12586269025/17393796001*322^(3/8) 6308826587108719 a001 4807526976/6643838879*322^(3/8) 6308826587108719 a001 1836311903/2537720636*322^(3/8) 6308826587108719 a001 701408733/969323029*322^(3/8) 6308826587108719 a001 267914296/370248451*322^(3/8) 6308826587108719 a001 102334155/141422324*322^(3/8) 6308826587108720 a001 39088169/54018521*322^(3/8) 6308826587108728 a001 14930352/20633239*322^(3/8) 6308826587108782 a001 5702887/7881196*322^(3/8) 6308826587109149 a001 2178309/3010349*322^(3/8) 6308826587111668 a001 832040/1149851*322^(3/8) 6308826587128932 a001 317811/439204*322^(3/8) 6308826587247260 a001 121393/167761*322^(3/8) 6308826588058294 a001 46368/64079*322^(3/8) 6308826592126684 a003 cos(Pi*1/111)-sin(Pi*22/57) 6308826593617206 a001 17711/24476*322^(3/8) 6308826597834040 a001 45537549124/4181*102334155^(2/21) 6308826597834040 a001 17393796001/4181*2504730781961^(2/21) 6308826604708348 a001 119218851371/4181*4181^(2/21) 6308826608521303 b008 64+Cos[E] 6308826614123192 r002 6th iterates of z^2 + 6308826619699790 a001 233/15127*3571^(25/34) 6308826627314982 r005 Re(z^2+c),c=7/19+4/29*I,n=32 6308826628699334 a001 233/24476*3571^(27/34) 6308826631718555 a001 6765/9349*322^(3/8) 6308826638115310 a001 1/34*317811^(25/59) 6308826650438512 a001 370248451/987*2^(3/4) 6308826659483317 a001 119218851371/10946*102334155^(2/21) 6308826659483317 a001 22768774562/5473*2504730781961^(2/21) 6308826666357624 a001 312119004989/10946*4181^(2/21) 6308826668477825 a001 312119004989/28657*102334155^(2/21) 6308826668477825 a001 119218851371/28657*2504730781961^(2/21) 6308826669790106 a001 817138163596/75025*102334155^(2/21) 6308826669790106 a001 312119004989/75025*2504730781961^(2/21) 6308826669981565 a001 2139295485799/196418*102334155^(2/21) 6308826669981565 a001 408569081798/98209*2504730781961^(2/21) 6308826670009499 a001 5600748293801/514229*102334155^(2/21) 6308826670009499 a001 2139295485799/514229*2504730781961^(2/21) 6308826670013574 a001 14662949395604/1346269*102334155^(2/21) 6308826670013574 a001 5600748293801/1346269*2504730781961^(2/21) 6308826670014169 a001 7331474697802/1762289*2504730781961^(2/21) 6308826670014309 a001 23725150497407/5702887*2504730781961^(2/21) 6308826670014536 a001 23725150497407/2178309*102334155^(2/21) 6308826670014536 a001 3020733700601/726103*2504730781961^(2/21) 6308826670016093 a001 9062201101803/832040*102334155^(2/21) 6308826670016093 a001 1730726404001/416020*2504730781961^(2/21) 6308826670026763 a001 3461452808002/317811*102334155^(2/21) 6308826670026763 a001 440719107401/105937*2504730781961^(2/21) 6308826670099893 a001 1322157322203/121393*102334155^(2/21) 6308826670099893 a001 505019158607/121393*2504730781961^(2/21) 6308826670601140 a001 505019158607/46368*102334155^(2/21) 6308826670601140 a001 10716675201/2576*2504730781961^(2/21) 6308826674036737 a001 192900153618/17711*102334155^(2/21) 6308826674036737 a001 73681302247/17711*2504730781961^(2/21) 6308826675352133 a001 817138163596/28657*4181^(2/21) 6308826676664414 a001 2139295485799/75025*4181^(2/21) 6308826676855873 a001 5600748293801/196418*4181^(2/21) 6308826676883806 a001 14662949395604/514229*4181^(2/21) 6308826676890401 a001 23725150497407/832040*4181^(2/21) 6308826676901070 a001 3020733700601/105937*4181^(2/21) 6308826676974201 a001 3461452808002/121393*4181^(2/21) 6308826677475448 a001 440719107401/15456*4181^(2/21) 6308826680911044 a001 505019158607/17711*4181^(2/21) 6308826695520589 l006 ln(3719/6989) 6308826697584665 a001 73681302247/6765*102334155^(2/21) 6308826697584665 a001 228811001/55*2504730781961^(2/21) 6308826701751019 m001 (Pi-ln(3))/(Backhouse+Grothendieck) 6308826704458973 a001 64300051206/2255*4181^(2/21) 6308826709126890 a001 2584/521*1364^(1/30) 6308826715098703 a007 Real Root Of 862*x^4-799*x^3-212*x^2-246*x-408 6308826738509109 m001 (Psi(2,1/3)+GaussAGM*Otter)/GaussAGM 6308826741434832 r009 Im(z^3+c),c=-53/122+22/39*I,n=60 6308826748552221 a001 233/9349*3571^(23/34) 6308826754284677 r002 22th iterates of z^2 + 6308826756412473 r002 33th iterates of z^2 + 6308826756423838 a007 Real Root Of -596*x^4-221*x^3-883*x^2+830*x+914 6308826768115018 a007 Real Root Of -495*x^4+987*x^3+631*x^2+981*x+694 6308826773661173 l006 ln(5/2747) 6308826775412227 a007 Real Root Of -864*x^4-873*x^3-535*x^2+26*x+147 6308826776642147 a007 Real Root Of 821*x^4-355*x^3+8*x^2+660*x+194 6308826778801404 r002 45i'th iterates of 2*x/(1-x^2) of 6308826782183376 a001 233/5778*9349^(21/38) 6308826795876475 a007 Real Root Of -981*x^4+783*x^3-750*x^2-153*x+554 6308826807607166 a001 2584/521*3571^(1/34) 6308826814499272 a007 Real Root Of -466*x^4+760*x^3-59*x^2+805*x+796 6308826816806974 a001 233/5778*24476^(1/2) 6308826816976591 m002 5+E^(2*Pi)+6*Pi^6 6308826820258589 a001 2584/521*9349^(1/38) 6308826821371031 a001 233/5778*64079^(21/46) 6308826821907332 a001 2584/521*24476^(1/42) 6308826822059733 a001 233/5778*439204^(7/18) 6308826822072419 a001 233/5778*7881196^(7/22) 6308826822072447 a001 233/5778*20633239^(3/10) 6308826822072451 a001 233/5778*17393796001^(3/14) 6308826822072451 a001 233/5778*14662949395604^(1/6) 6308826822072451 a001 233/5778*599074578^(1/4) 6308826822072453 a001 233/5778*33385282^(7/24) 6308826822073089 a001 233/5778*1860498^(7/20) 6308826822077136 a001 233/5778*710647^(3/8) 6308826822249489 a001 2584/521*39603^(1/44) 6308826822329207 a001 233/5778*103682^(7/16) 6308826822847329 a001 2584/521*15127^(1/40) 6308826822924836 m001 (Pi*2^(1/2)/GAMMA(3/4)-exp(1/Pi)*Bloch)/Bloch 6308826823992265 a001 233/5778*39603^(21/44) 6308826827407244 a001 2584/521*5778^(1/36) 6308826830255803 m001 1/Tribonacci^2/Riemann2ndZero/ln(OneNinth) 6308826831197319 r005 Re(z^2+c),c=19/66+16/53*I,n=9 6308826836546909 a001 233/5778*15127^(21/40) 6308826840507842 a007 Real Root Of 140*x^4+777*x^3-667*x^2+43*x+143 6308826844794124 b008 Cos[Sinh[4/5]] 6308826858984573 a001 28143753123/2584*102334155^(2/21) 6308826858984573 a001 5374978561/1292*2504730781961^(2/21) 6308826862633744 a001 2584/521*2207^(1/32) 6308826864496796 m005 (1/2*Zeta(3)+4/7)/(2/5*Zeta(3)-2/3) 6308826865858881 a001 73681302247/2584*4181^(2/21) 6308826875759212 a003 sin(Pi*13/61)/sin(Pi*50/113) 6308826880751377 m005 (1/2*Pi-3/4)/(1/2*Zeta(3)+7/10) 6308826892869103 a001 2584/3571*322^(3/8) 6308826894338304 a006 5^(1/2)*fibonacci(37/2)/Lucas(13)/sqrt(5) 6308826924587362 a007 Real Root Of 448*x^4-362*x^3+123*x^2-880*x-766 6308826932305127 a001 233/5778*5778^(7/12) 6308826935985361 a001 233/15127*9349^(25/38) 6308826940676375 a001 233/271443*9349^(37/38) 6308826940934133 r005 Im(z^2+c),c=-3/32+32/49*I,n=35 6308826944785123 a001 233/167761*9349^(35/38) 6308826946298816 r005 Re(z^2+c),c=13/102+26/55*I,n=11 6308826947773048 a001 233/103682*9349^(33/38) 6308826951935371 a001 233/39603*9349^(29/38) 6308826953695323 a001 233/64079*9349^(31/38) 6308826957754879 g002 Psi(2/5)+Psi(1/5)-Psi(10/11)-Psi(7/8) 6308826970287751 a001 233/24476*9349^(27/38) 6308826977203932 a001 233/15127*24476^(25/42) 6308826982637333 a001 233/15127*64079^(25/46) 6308826983360275 a001 233/15127*167761^(1/2) 6308826983472352 a001 233/15127*20633239^(5/14) 6308826983472357 a001 233/15127*2537720636^(5/18) 6308826983472357 a001 233/15127*312119004989^(5/22) 6308826983472357 a001 233/15127*3461452808002^(5/24) 6308826983472357 a001 233/15127*28143753123^(1/4) 6308826983472357 a001 233/15127*228826127^(5/16) 6308826983473117 a001 233/15127*1860498^(5/12) 6308826985757850 a001 233/15127*39603^(25/44) 6308826992985298 a007 Real Root Of -98*x^4-512*x^3+583*x^2-628*x-483 6308826999748914 a001 233/39603*24476^(29/42) 6308827000703855 a001 233/15127*15127^(5/8) 6308827000750044 a001 233/710647*24476^(41/42) 6308827001296715 a001 233/439204*24476^(13/14) 6308827001679861 a001 233/271443*24476^(37/42) 6308827002181562 a001 233/103682*24476^(11/14) 6308827002491123 a001 233/167761*24476^(5/6) 6308827004806352 a001 233/64079*24476^(31/42) 6308827006051658 a001 233/39603*64079^(29/46) 6308827007017901 a001 233/39603*1149851^(1/2) 6308827007020287 a001 233/39603*1322157322203^(1/4) 6308827009353651 a001 233/103682*64079^(33/46) 6308827009537886 a001 233/1860498*64079^(45/46) 6308827009611283 a001 233/1149851*64079^(43/46) 6308827009660821 a001 233/710647*64079^(41/46) 6308827009671458 a001 233/39603*39603^(29/44) 6308827009721294 a001 233/271443*64079^(37/46) 6308827009772820 a001 233/439204*64079^(39/46) 6308827010097883 a001 233/167761*64079^(35/46) 6308827010435897 a001 233/103682*439204^(11/18) 6308827010455833 a001 233/103682*7881196^(1/2) 6308827010455884 a001 233/103682*312119004989^(3/10) 6308827010455884 a001 233/103682*1568397607^(3/8) 6308827010455886 a001 233/103682*33385282^(11/24) 6308827010456886 a001 233/103682*1860498^(11/20) 6308827010839183 a001 233/1860498*167761^(9/10) 6308827010859357 a001 233/103682*103682^(11/16) 6308827010957129 a001 233/271443*54018521^(1/2) 6308827011011967 a001 233/7881196*439204^(17/18) 6308827011013677 a001 233/1860498*439204^(5/6) 6308827011030261 a001 233/710647*370248451^(1/2) 6308827011040862 a001 233/1860498*7881196^(15/22) 6308827011040921 a001 233/1860498*20633239^(9/14) 6308827011040931 a001 233/1860498*2537720636^(1/2) 6308827011040931 a001 233/1860498*312119004989^(9/22) 6308827011040931 a001 233/1860498*14662949395604^(5/14) 6308827011040931 a001 233/1860498*192900153618^(5/12) 6308827011040931 a001 233/1860498*28143753123^(9/20) 6308827011040931 a001 233/1860498*228826127^(9/16) 6308827011040934 a001 233/1860498*33385282^(5/8) 6308827011042298 a001 233/1860498*1860498^(3/4) 6308827011042477 a001 233/4870847*20633239^(7/10) 6308827011042488 a001 233/4870847*17393796001^(1/2) 6308827011042488 a001 233/4870847*14662949395604^(7/18) 6308827011042488 a001 233/4870847*505019158607^(7/16) 6308827011042488 a001 233/4870847*599074578^(7/12) 6308827011042657 a001 233/141422324*7881196^(21/22) 6308827011042660 a001 233/33385282*7881196^(19/22) 6308827011042684 a001 233/20633239*7881196^(5/6) 6308827011042715 a001 233/12752043*119218851371^(1/2) 6308827011042740 a001 233/228826127*20633239^(13/14) 6308827011042740 a001 233/141422324*20633239^(9/10) 6308827011042748 a001 233/33385282*817138163596^(1/2) 6308827011042748 a001 233/33385282*87403803^(3/4) 6308827011042752 a001 233/33385282*33385282^(19/24) 6308827011042753 a001 233/87403803*5600748293801^(1/2) 6308827011042753 a001 233/228826127*141422324^(5/6) 6308827011042753 a001 233/228826127*2537720636^(13/18) 6308827011042753 a001 233/228826127*312119004989^(13/22) 6308827011042753 a001 233/228826127*3461452808002^(13/24) 6308827011042753 a001 233/228826127*73681302247^(5/8) 6308827011042753 a001 233/228826127*28143753123^(13/20) 6308827011042753 a001 233/228826127*228826127^(13/16) 6308827011042753 a001 233/599074578*4106118243^(3/4) 6308827011042753 a001 233/10749957122*2537720636^(9/10) 6308827011042753 a001 233/28143753123*2537720636^(17/18) 6308827011042753 a001 233/4106118243*17393796001^(11/14) 6308827011042753 a001 233/4106118243*14662949395604^(11/18) 6308827011042753 a001 233/4106118243*505019158607^(11/16) 6308827011042753 a001 233/10749957122*14662949395604^(9/14) 6308827011042753 a001 233/10749957122*192900153618^(3/4) 6308827011042753 a001 233/119218851371*17393796001^(13/14) 6308827011042753 a001 233/28143753123*45537549124^(5/6) 6308827011042753 a001 233/28143753123*312119004989^(17/22) 6308827011042753 a001 233/28143753123*3461452808002^(17/24) 6308827011042753 a001 233/28143753123*28143753123^(17/20) 6308827011042753 a001 233/192900153618*9062201101803^(3/4) 6308827011042753 a001 233/3461452808002*312119004989^(21/22) 6308827011042753 a001 233/817138163596*312119004989^(9/10) 6308827011042753 a001 233/3461452808002*14662949395604^(5/6) 6308827011042753 a001 233/312119004989*312119004989^(19/22) 6308827011042753 a001 233/817138163596*14662949395604^(11/14) 6308827011042753 a001 233/3461452808002*505019158607^(15/16) 6308827011042753 a001 233/312119004989*817138163596^(5/6) 6308827011042753 a001 233/312119004989*3461452808002^(19/24) 6308827011042753 a001 233/817138163596*192900153618^(11/12) 6308827011042753 a001 233/119218851371*14662949395604^(13/18) 6308827011042753 a001 233/119218851371*505019158607^(13/16) 6308827011042753 a001 233/119218851371*73681302247^(7/8) 6308827011042753 a001 233/45537549124*1322157322203^(3/4) 6308827011042753 a001 233/312119004989*28143753123^(19/20) 6308827011042753 a001 233/2537720636*2537720636^(5/6) 6308827011042753 a001 233/2537720636*312119004989^(15/22) 6308827011042753 a001 233/2537720636*3461452808002^(5/8) 6308827011042753 a001 233/2537720636*28143753123^(3/4) 6308827011042753 a001 233/4106118243*1568397607^(7/8) 6308827011042753 a001 233/4106118243*599074578^(11/12) 6308827011042754 a001 233/2537720636*228826127^(15/16) 6308827011042754 a001 233/141422324*2537720636^(7/10) 6308827011042754 a001 233/141422324*17393796001^(9/14) 6308827011042754 a001 233/141422324*14662949395604^(1/2) 6308827011042754 a001 233/141422324*505019158607^(9/16) 6308827011042754 a001 233/141422324*192900153618^(7/12) 6308827011042754 a001 233/141422324*599074578^(3/4) 6308827011042756 a001 233/54018521*2139295485799^(1/2) 6308827011042757 a001 233/20633239*20633239^(11/14) 6308827011042759 a001 233/141422324*33385282^(7/8) 6308827011042759 a001 233/599074578*33385282^(23/24) 6308827011042768 a001 233/20633239*2537720636^(11/18) 6308827011042768 a001 233/20633239*312119004989^(1/2) 6308827011042768 a001 233/20633239*3461452808002^(11/24) 6308827011042768 a001 233/20633239*28143753123^(11/20) 6308827011042768 a001 233/20633239*1568397607^(5/8) 6308827011042768 a001 233/20633239*228826127^(11/16) 6308827011042777 a001 233/7881196*7881196^(17/22) 6308827011042855 a001 233/7881196*45537549124^(1/2) 6308827011042859 a001 233/7881196*33385282^(17/24) 6308827011042884 a001 233/7881196*12752043^(3/4) 6308827011043450 a001 233/3010349*6643838879^(1/2) 6308827011044404 a001 233/7881196*1860498^(17/20) 6308827011044439 a001 233/20633239*1860498^(11/12) 6308827011044479 a001 233/33385282*1860498^(19/20) 6308827011047525 a001 233/1149851*969323029^(1/2) 6308827011051838 a001 233/439204*439204^(13/18) 6308827011053418 a001 233/4870847*710647^(7/8) 6308827011075399 a001 233/439204*7881196^(13/22) 6308827011075458 a001 233/439204*141422324^(1/2) 6308827011075459 a001 233/439204*73681302247^(3/8) 6308827011075462 a001 233/439204*33385282^(13/24) 6308827011076643 a001 233/439204*1860498^(13/20) 6308827011110003 a001 233/167761*167761^(7/10) 6308827011128378 a006 5^(1/2)*Fibonacci(37/2)/Lucas(13)/sqrt(5) 6308827011139676 a001 233/439204*271443^(3/4) 6308827011266910 a001 233/167761*20633239^(1/2) 6308827011266918 a001 233/167761*2537720636^(7/18) 6308827011266918 a001 233/167761*17393796001^(5/14) 6308827011266918 a001 233/167761*312119004989^(7/22) 6308827011266918 a001 233/167761*14662949395604^(5/18) 6308827011266918 a001 233/167761*505019158607^(5/16) 6308827011266918 a001 233/167761*28143753123^(7/20) 6308827011266918 a001 233/167761*599074578^(5/12) 6308827011266918 a001 233/167761*228826127^(7/16) 6308827011267981 a001 233/167761*1860498^(7/12) 6308827011274726 a001 233/167761*710647^(5/8) 6308827011543768 a001 233/64079*64079^(31/46) 6308827011552290 a001 233/439204*103682^(13/16) 6308827011591121 a001 233/1860498*103682^(15/16) 6308827012578851 a001 233/64079*3010349^(1/2) 6308827012579199 a001 233/64079*9062201101803^(1/4) 6308827013472733 a001 233/103682*39603^(3/4) 6308827014339659 a001 233/271443*39603^(37/44) 6308827014466607 a001 233/167761*39603^(35/44) 6308827014640827 a001 233/439204*39603^(39/44) 6308827014778469 a001 233/710647*39603^(41/44) 6308827014803809 a001 233/24476*24476^(9/14) 6308827014978572 a001 233/1149851*39603^(43/44) 6308827015413210 a001 233/64079*39603^(31/44) 6308827020671881 a001 233/24476*64079^(27/46) 6308827021557355 a001 233/24476*439204^(1/2) 6308827021573666 a001 233/24476*7881196^(9/22) 6308827021573708 a001 233/24476*2537720636^(3/10) 6308827021573708 a001 233/24476*14662949395604^(3/14) 6308827021573708 a001 233/24476*192900153618^(1/4) 6308827021573710 a001 233/24476*33385282^(3/8) 6308827021574528 a001 233/24476*1860498^(9/20) 6308827021903822 a001 233/24476*103682^(9/16) 6308827024042040 a001 233/24476*39603^(27/44) 6308827027008824 a001 233/39603*15127^(29/40) 6308827033201460 a001 233/103682*15127^(33/40) 6308827033946256 a001 233/64079*15127^(31/40) 6308827035391015 a001 233/167761*15127^(7/8) 6308827036459747 a001 233/271443*15127^(37/40) 6308827037956595 a001 233/439204*15127^(39/40) 6308827039534952 a001 233/9349*9349^(23/38) 6308827040183725 a001 233/24476*15127^(27/40) 6308827043758570 m001 polylog(4,1/2)/sin(1/5*Pi)/HardHexagonsEntropy 6308827045065543 a005 (1/cos(39/197*Pi))^231 6308827067383037 m001 Shi(1)/(gamma+ln(3)) 6308827074506506 h001 (2/11*exp(1)+9/10)/(6/11*exp(1)+8/11) 6308827077144935 m001 TwinPrimes^(Grothendieck/ErdosBorwein) 6308827077302111 m006 (3*ln(Pi)-1/4)/(1/3*Pi+4) 6308827077456038 a001 233/9349*24476^(23/42) 6308827081015328 a007 Real Root Of -705*x^4+30*x^3-892*x^2-105*x+408 6308827082454766 a001 233/9349*64079^(1/2) 6308827083222989 a001 233/9349*4106118243^(1/4) 6308827085325642 a001 233/9349*39603^(23/44) 6308827099075967 a001 233/9349*15127^(23/40) 6308827114701736 a001 233/15127*5778^(25/36) 6308827124034110 r009 Im(z^3+c),c=-13/31+20/29*I,n=15 6308827139214344 a001 2584/521*843^(1/28) 6308827148490159 m001 FeigenbaumMu^(2^(1/3)*Sierpinski) 6308827156325163 k002 Champernowne real with 217/2*n^2-47/2*n-79 6308827159246368 a001 233/39603*5778^(29/36) 6308827163301438 a001 233/24476*5778^(3/4) 6308827166765498 a001 1597/521*1364^(1/10) 6308827175303630 a001 233/64079*5778^(31/36) 6308827177677452 m001 BesselI(0,2)^PlouffeB/(BesselI(0,2)^MertensB2) 6308827183678665 a001 233/103682*5778^(11/12) 6308827189076927 l006 ln(2899/5448) 6308827194988050 a001 233/167761*5778^(35/36) 6308827203954020 a001 233/9349*5778^(23/36) 6308827211662921 r005 Re(z^2+c),c=13/122+23/52*I,n=14 6308827227557454 r009 Im(z^3+c),c=-13/29+22/41*I,n=42 6308827228272623 m001 Zeta(7)/Cahen*ln(Zeta(9))^2 6308827229306305 a001 233/3571*3571^(19/34) 6308827230360901 r009 Im(z^3+c),c=-21/38+13/60*I,n=7 6308827235738808 a001 47/89*17711^(1/55) 6308827244406164 r005 Re(z^2+c),c=-67/106+7/16*I,n=57 6308827246074728 m001 (PrimesInBinary-Stephens)/(ln(2^(1/2)+1)-Kac) 6308827270414652 q001 248/3931 6308827272662511 a007 Real Root Of -806*x^4+273*x^3-902*x^2-487*x+248 6308827275521283 m001 Pi/(2^(1/3)+ln(2+3^(1/2)))*polylog(4,1/2) 6308827290810099 r005 Im(z^2+c),c=-8/7+8/101*I,n=26 6308827296766052 r009 Re(z^3+c),c=-12/19+5/21*I,n=51 6308827301187877 a001 987/521*843^(5/28) 6308827308709816 m001 1/Zeta(9)^2/Pi/ln(sqrt(1+sqrt(3))) 6308827312521118 m005 (1/2*gamma+10/11)/(6/11*gamma-1/8) 6308827313305540 r009 Im(z^3+c),c=-59/126+24/43*I,n=13 6308827320037703 a007 Real Root Of 851*x^4-397*x^3+524*x^2+222*x-303 6308827323709308 r005 Re(z^2+c),c=-14/19+6/53*I,n=49 6308827357608758 h001 (-8*exp(3)-3)/(-5*exp(2)+11) 6308827386768814 a007 Real Root Of 310*x^4-600*x^3-806*x^2-578*x+787 6308827424217944 m005 (1/2*3^(1/2)+4/7)/(1/8*gamma-3/10) 6308827429381244 r005 Im(z^2+c),c=-11/10+15/179*I,n=3 6308827450897868 a007 Real Root Of -72*x^4-400*x^3+428*x^2+581*x+249 6308827455017821 a003 sin(Pi*5/27)/sin(Pi*35/104) 6308827462206352 a001 1597/521*3571^(3/34) 6308827469109338 m001 BesselJ(1,1)/(LambertW(1)^HardyLittlewoodC3) 6308827469683360 a001 233/3571*9349^(1/2) 6308827500160625 a001 1597/521*9349^(3/38) 6308827501009477 a001 233/3571*24476^(19/42) 6308827505106854 a001 1597/521*24476^(1/14) 6308827505138862 a001 233/3571*64079^(19/46) 6308827505758862 a001 1597/521*64079^(3/46) 6308827505773481 a001 233/3571*817138163596^(1/6) 6308827505773481 a001 233/3571*87403803^(1/4) 6308827505857248 a001 1597/521*439204^(1/18) 6308827505859060 a001 1597/521*7881196^(1/22) 6308827505859065 a001 1597/521*33385282^(1/24) 6308827505859156 a001 1597/521*1860498^(1/20) 6308827505895744 a001 1597/521*103682^(1/16) 6308827506133324 a001 1597/521*39603^(3/44) 6308827507510455 a001 233/3571*39603^(19/44) 6308827507926845 a001 1597/521*15127^(3/40) 6308827518869420 a001 233/3571*15127^(19/40) 6308827521606592 a001 1597/521*5778^(1/12) 6308827524519986 m005 (1/2*5^(1/2)-4/11)/(11/12*gamma+2/3) 6308827526210922 a007 Real Root Of 837*x^4-565*x^3+147*x^2-111*x-403 6308827554996248 m004 -29/5-ProductLog[Sqrt[5]*Pi]/3 6308827556965604 m001 BesselK(1,1)-Lehmer+ZetaQ(2) 6308827557806526 l006 ln(4978/9355) 6308827563293253 r005 Re(z^2+c),c=-45/64+17/47*I,n=25 6308827568694383 a007 Real Root Of -512*x^4+595*x^3+21*x^2+675*x+648 6308827575289924 r009 Re(z^3+c),c=-9/118+37/56*I,n=11 6308827604584407 a007 Real Root Of -446*x^4-574*x^3-518*x^2+541*x+474 6308827605507817 a001 233/3571*5778^(19/36) 6308827607180123 a007 Real Root Of 224*x^4-620*x^3+764*x^2+21*x-482 6308827627286103 a001 1597/521*2207^(3/32) 6308827644227870 a007 Real Root Of 773*x^4-881*x^3-472*x^2+234*x+139 6308827658297484 m005 (1/2*3^(1/2)+10/11)/(7/8*5^(1/2)+6/7) 6308827672061674 a001 233/5778*2207^(21/32) 6308827679983633 m001 (GaussAGM+Lehmer)/(exp(Pi)-polylog(4,1/2)) 6308827683191708 r005 Im(z^2+c),c=-25/48+27/43*I,n=20 6308827694016302 m001 exp(Trott)*HardHexagonsEntropy/sqrt(5) 6308827706712125 a007 Real Root Of 888*x^4-477*x^3-7*x^2+261*x-93 6308827718295661 r002 32th iterates of z^2 + 6308827736337890 m001 (-Catalan+2)/(-exp(1)+1) 6308827736337890 m005 (1/6*Catalan-1/3)/(1/6*exp(1)-1/6) 6308827755845261 p004 log(30431/16193) 6308827784306145 m001 ln(Niven)^2/FibonacciFactorial^2/sqrt(3)^2 6308827794492478 r005 Re(z^2+c),c=17/50+22/59*I,n=41 6308827799983098 m001 exp(Rabbit)^2*PrimesInBinary/exp(1) 6308827813356016 a007 Real Root Of -959*x^4-336*x^3-670*x^2+919*x+914 6308827821280195 m005 (1/2*exp(1)-9/10)/(4/7*5^(1/2)+6) 6308827859333443 m001 (GAMMA(5/6)+Cahen)/(QuadraticClass+Tetranacci) 6308827863925168 a007 Real Root Of 646*x^4-813*x^3-144*x^2-843*x-781 6308827869327074 m001 (FeigenbaumB+TreeGrowth2nd)/(5^(1/2)-Ei(1,1)) 6308827871503087 m004 -6-ProductLog[Sqrt[5]*Pi]/3+Tanh[Sqrt[5]*Pi]/5 6308827887787295 a001 1/17*13^(37/40) 6308827931648319 m005 (1/2*Zeta(3)-4/11)/(5/8*Zeta(3)-3/8) 6308827959174565 m001 (Khinchin+OrthogonalArrays)/(GAMMA(3/4)-gamma) 6308827965236224 a001 10749957122/987*102334155^(2/21) 6308827965236224 a001 1368706081/329*2504730781961^(2/21) 6308827965586730 r009 Re(z^3+c),c=-6/13+2/59*I,n=19 6308827972110533 a001 9381251041/329*4181^(2/21) 6308827984819282 a001 615/124*123^(1/20) 6308827988669345 m001 (CareFree*Trott2nd-MadelungNaCl)/Trott2nd 6308827990094476 r009 Im(z^3+c),c=-33/64+5/48*I,n=24 6308827995364328 a001 233/15127*2207^(25/32) 6308828003800449 r002 33th iterates of z^2 + 6308828014163611 a001 233/9349*2207^(23/32) 6308828016163809 m008 (2*Pi^2+5)/(2/5*Pi^4+1/4) 6308828048177616 a001 76/21*13^(13/60) 6308828052906797 q001 2051/3251 6308828071970576 l006 ln(2079/3907) 6308828114417050 a001 233/24476*2207^(27/32) 6308828146610458 m001 1/MadelungNaCl^2/ln(CopelandErdos)/Ei(1)^2 6308828153025924 s001 sum(exp(-2*Pi/5)^n*A070859[n],n=1..infinity) 6308828153025924 s002 sum(A070859[n]/(exp(2/5*pi*n)),n=1..infinity) 6308828156625223 k002 Champernowne real with 109*n^2-25*n-78 6308828174376741 r002 26th iterates of z^2 + 6308828180814992 a001 233/39603*2207^(29/32) 6308828184026854 m001 (Si(Pi)+LandauRamanujan)/PrimesInBinary 6308828203297839 a007 Real Root Of -654*x^4+102*x^3-567*x^2-916*x-223 6308828254031497 m001 exp(sqrt(2))^(exp(1/Pi)/GAMMA(11/12)) 6308828267325273 a001 233/64079*2207^(31/32) 6308828274811427 a001 233/3571*2207^(19/32) 6308828281415715 m005 (1/3*Pi+1/3)/(43/36+4/9*5^(1/2)) 6308828282684649 m001 (Pi+gamma)/(LandauRamanujan-ZetaP(3)) 6308828283425577 h001 (3/10*exp(1)+9/10)/(9/10*exp(1)+3/11) 6308828306894173 r005 Im(z^2+c),c=1/122+31/49*I,n=27 6308828347460553 m001 1/TwinPrimes/exp(Trott)*BesselK(0,1) 6308828352325663 m003 -6+Sqrt[5]/16+6*Coth[1/2+Sqrt[5]/2] 6308828353270079 r002 2th iterates of z^2 + 6308828359244949 m005 (1/2*gamma-1/7)/(8/11*exp(1)+1/3) 6308828374932986 m001 (ln(gamma)-GAMMA(17/24))/(Porter-Salem) 6308828382831792 a003 sin(Pi*1/33)+sin(Pi*9/50) 6308828386937765 m002 -6/Pi^6+6/Log[Pi]+ProductLog[Pi] 6308828406280731 l006 ln(2027/2159) 6308828433779561 a007 Real Root Of -687*x^4+825*x^3+17*x^2+621*x+701 6308828437428602 r002 52th iterates of z^2 + 6308828457028041 a001 1597/521*843^(3/28) 6308828493876308 r005 Re(z^2+c),c=-3/52+22/29*I,n=43 6308828496595851 m001 ln(Pi)^2/HardHexagonsEntropy^2*Zeta(1,2) 6308828503242379 r005 Im(z^2+c),c=-31/27+2/25*I,n=39 6308828503921258 a007 Real Root Of -829*x^4+734*x^3-391*x^2-86*x+417 6308828505238401 a007 Real Root Of -805*x^4+485*x^3-153*x^2-162*x+208 6308828512555035 r005 Im(z^2+c),c=-16/15+1/14*I,n=14 6308828534738450 r002 34th iterates of z^2 + 6308828552807133 r002 9th iterates of z^2 + 6308828559404279 m001 1/exp(GAMMA(19/24))*BesselJ(1,1)*arctan(1/2) 6308828572992082 a007 Real Root Of -790*x^4+541*x^3+252*x^2-819*x-356 6308828602350725 a007 Real Root Of -825*x^4-609*x^3+716*x^2+750*x-50 6308828653191786 a007 Real Root Of 794*x^4+319*x^3+31*x^2-783*x-552 6308828682822531 a001 987/1364*322^(3/8) 6308828697398469 m005 (1/2*3^(1/2)+5/11)/(5^(1/2)-1/7) 6308828701052759 r009 Re(z^3+c),c=-69/118+9/52*I,n=4 6308828706510729 a001 233/1364*1364^(1/2) 6308828750107279 r005 Im(z^2+c),c=-11/9+21/68*I,n=11 6308828762217143 a001 123/55*5702887^(1/15) 6308828763891339 a007 Real Root Of -21*x^4+469*x^3+59*x^2+417*x-401 6308828770422140 a007 Real Root Of 178*x^4-964*x^3+96*x^2-898*x-875 6308828792384658 a007 Real Root Of -345*x^4+113*x^3-808*x^2+213*x+539 6308828825350429 a007 Real Root Of -284*x^4-731*x^3-526*x^2+758*x+549 6308828832933689 a007 Real Root Of 456*x^4-390*x^3-262*x^2-593*x-440 6308828838749628 l006 ln(3338/6273) 6308828839357483 h001 (1/3*exp(1)+3/4)/(1/4*exp(2)+7/9) 6308828840523041 m001 GAMMA(1/24)^2/BesselJ(1,1)*exp(cos(Pi/5))^2 6308828850802132 a007 Real Root Of 805*x^4-52*x^3+752*x^2+87*x-385 6308828867560093 a001 18/13*701408733^(3/16) 6308828879426991 a001 89/1364*199^(19/22) 6308828879981226 r009 Re(z^3+c),c=-7/78+26/61*I,n=12 6308828887547811 a007 Real Root Of -119*x^4-810*x^3-478*x^2-672*x-92 6308828888902948 m001 (Ei(1,1)+Mills)/(cos(1/5*Pi)+ln(5)) 6308828892433848 a003 cos(Pi*9/77)*cos(Pi*24/91) 6308828910594141 m001 arctan(1/3)*(2^(1/2)-Riemann2ndZero) 6308828915539076 a007 Real Root Of -921*x^4-595*x^3-131*x^2+232*x+195 6308828957032082 b008 ArcCoth[Sqrt[1/16+Pi]] 6308828964082437 m005 (1/2*Catalan-10/11)/(4*3^(1/2)+2/9) 6308828980704131 a007 Real Root Of 484*x^4+603*x^3+979*x^2-482*x-619 6308829007746730 m001 (Kac-LandauRamanujan)/(exp(1/Pi)-FeigenbaumMu) 6308829036897657 m005 (1/2*exp(1)-3/8)/(4/5*2^(1/2)+3/7) 6308829067295422 a001 987/2207*322^(11/24) 6308829077066469 b008 EulerGamma-201*Pi 6308829083100669 m001 (ln(Pi)-BesselK(1,1))/(HeathBrownMoroz+Thue) 6308829122857506 r005 Im(z^2+c),c=-89/114+1/42*I,n=51 6308829142700239 m001 DuboisRaymond^(Pi^(1/2))+Stephens 6308829143319704 b008 2*Pi+ArcCsc[39] 6308829156925283 k002 Champernowne real with 219/2*n^2-53/2*n-77 6308829160887154 b008 JacobiSC[8/11,3] 6308829185526561 l006 ln(4597/8639) 6308829187834238 m002 2/Pi^6+2*Pi^3+ProductLog[Pi] 6308829188226010 m005 (1/2*exp(1)-9/11)/(4/9*2^(1/2)-5/7) 6308829198509828 a007 Real Root Of 765*x^4-749*x^3-776*x^2-654*x-413 6308829219375017 a007 Real Root Of -389*x^4+676*x^3-154*x^2+582*x-414 6308829220044045 r009 Re(z^3+c),c=-3/31+31/49*I,n=11 6308829220084660 a007 Real Root Of 551*x^4-468*x^3+994*x^2-310*x-796 6308829241766488 m001 FibonacciFactorial-exp(1/exp(1))*ThueMorse 6308829249319330 q001 1622/2571 6308829264946793 r005 Re(z^2+c),c=-13/14+11/113*I,n=16 6308829266074341 r009 Re(z^3+c),c=-9/110+25/34*I,n=12 6308829279718123 a003 cos(Pi*41/118)*cos(Pi*47/103) 6308829291243283 m005 (1/3*exp(1)-1/9)/(2/7*Zeta(3)+11/12) 6308829332418879 r009 Im(z^3+c),c=-1/62+28/37*I,n=23 6308829357473451 a001 2584/521*322^(1/24) 6308829388733423 m001 (BesselJ(1,1)+Niven)/(Pi+sin(1/12*Pi)) 6308829405355693 a007 Real Root Of -865*x^4-780*x^3-883*x^2-551*x-55 6308829441827171 m001 Si(Pi)^gamma/(Si(Pi)^PisotVijayaraghavan) 6308829452947723 r005 Im(z^2+c),c=-57/86+3/62*I,n=9 6308829457606885 m004 5/Pi+5*Pi+Cot[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 6308829480240796 m001 BesselJ(0,1)-FeigenbaumDelta-BesselJZeros(0,1) 6308829517938844 r009 Im(z^3+c),c=-3/25+31/43*I,n=5 6308829533365948 r004 Im(z^2+c),c=-5/4-7/17*I,z(0)=-1,n=7 6308829534811457 r005 Im(z^2+c),c=-37/90+1/9*I,n=8 6308829541186418 r002 58th iterates of z^2 + 6308829555620901 s002 sum(A205901[n]/((2*n)!),n=1..infinity) 6308829567488800 a007 Real Root Of 674*x^4-907*x^3-131*x^2-318*x-483 6308829595475658 m001 (5^(1/2)+3^(1/3))^(2^(1/2)) 6308829595475658 m001 (sqrt(5)+(3^(1/3)))^sqrt(2) 6308829609496161 h001 (6/7*exp(1)+8/9)/(7/11*exp(2)+2/5) 6308829610844303 a001 610/521*1364^(7/30) 6308829613668566 a005 (1/cos(20/237*Pi))^1800 6308829618788381 m001 (OneNinth-ZetaP(2))/(GAMMA(17/24)-FeigenbaumC) 6308829622357770 m001 Zeta(1,-1)/Pi/GaussAGM 6308829647055333 a001 1/15124*(1/2*5^(1/2)+1/2)^3*76^(3/16) 6308829654310703 r005 Re(z^2+c),c=-141/98+1/49*I,n=2 6308829655197969 a003 cos(Pi*17/110)*cos(Pi*22/89) 6308829677431745 b008 (1+Pi/3)*ArcCot[Pi] 6308829684369410 g006 Psi(1,11/12)+Psi(1,5/6)-Psi(1,2/5)-Psi(1,2/3) 6308829737875628 a007 Real Root Of -190*x^4-317*x^3-613*x^2+88*x+250 6308829753789732 m001 (BesselJZeros(0,1)+5)/GAMMA(19/24) 6308829765959758 r002 3th iterates of z^2 + 6308829778433573 m001 exp(1/2)-GAMMA(23/24)^ln(2) 6308829793793500 a007 Real Root Of -225*x^4+522*x^3+439*x^2+228*x-414 6308829815335150 m002 -2/Pi^3+(5*Csch[Pi])/Pi^5 6308829823304991 a008 Real Root of (-3-3*x+x^2-x^3+x^4-3*x^5) 6308829823752988 m001 Cahen^((1+3^(1/2))^(1/2))+ZetaR(2) 6308829825618986 a007 Real Root Of 77*x^4+433*x^3-276*x^2+414*x+344 6308829833284761 r005 Im(z^2+c),c=15/38+19/51*I,n=7 6308829833490588 a007 Real Root Of 859*x^4+180*x^3+951*x^2-486*x-776 6308829838241602 q001 5/79254 6308829848343095 m001 (BesselJ(1,1)-sin(1))/(Magata+Otter) 6308829860161270 a007 Real Root Of 280*x^4-525*x^3+695*x^2-246*x-608 6308829871206559 m001 Zeta(1,2)^sin(1)/(Riemann3rdZero^sin(1)) 6308829883854572 r005 Re(z^2+c),c=11/48+9/25*I,n=39 6308829890671355 m002 -5+6*Csch[Pi]+Sinh[Pi]/3 6308829924545905 a003 sin(Pi*25/116)/sin(Pi*37/80) 6308829945574148 r002 7th iterates of z^2 + 6308829945631417 a007 Real Root Of -69*x^4-459*x^3-55*x^2+721*x+789 6308829958236129 a007 Real Root Of -32*x^4+914*x^3-366*x^2+189*x-198 6308829958418191 h001 (1/6*exp(2)+6/11)/(5/7*exp(1)+7/8) 6308829961005579 r009 Im(z^3+c),c=-31/118+9/13*I,n=51 6308830006793823 r009 Im(z^3+c),c=-37/64+29/62*I,n=51 6308830021408713 a007 Real Root Of -276*x^4+576*x^3-362*x^2-53*x+299 6308830028323171 a007 Real Root Of 507*x^4+478*x^3+934*x^2-504*x-650 6308830047746228 r002 3th iterates of z^2 + 6308830083038001 r002 4th iterates of z^2 + 6308830088765280 r005 Im(z^2+c),c=3/8+19/53*I,n=39 6308830104939849 l006 ln(1259/2366) 6308830111171244 a007 Real Root Of -45*x^4+864*x^3-735*x^2+511*x+839 6308830116437442 m002 4*Pi^4+(Pi^6*Coth[Pi])/4 6308830150209074 a007 Real Root Of 122*x^4+769*x^3-5*x^2-152*x-930 6308830150864219 m008 (1/5*Pi^3+4)/(1/2*Pi^3+2/3) 6308830154410292 m005 (1/2*3^(1/2)+1/12)/(3/8*3^(1/2)-4/5) 6308830157225343 k002 Champernowne real with 110*n^2-28*n-76 6308830173755499 r005 Re(z^2+c),c=-5/8+53/129*I,n=29 6308830178759807 m001 (cos(1)-cos(1/5*Pi))/(Conway+Otter) 6308830183715499 a001 233/1364*3571^(15/34) 6308830184241572 r002 6th iterates of z^2 + 6308830210695574 a007 Real Root Of -264*x^4+246*x^3+939*x^2+986*x-66 6308830240897365 m001 Riemann2ndZero*ln(Kolakoski)^2*LambertW(1) 6308830253796171 m005 (1/2*exp(1)+4/9)/(3/8*3^(1/2)-4/11) 6308830259307732 a007 Real Root Of -121*x^4-698*x^3+403*x^2-65*x-36 6308830282257982 g002 Psi(9/11)+Psi(4/11)+Psi(3/7)-Psi(1/12) 6308830293211750 s002 sum(A241536[n]/(2^n-1),n=1..infinity) 6308830293839120 a007 Real Root Of 348*x^4-446*x^3+442*x^2-588*x-714 6308830300206584 a001 610/521*3571^(7/34) 6308830337258352 r005 Re(z^2+c),c=-31/42+2/33*I,n=50 6308830368915530 a007 Real Root Of 765*x^4+190*x^3-362*x^2-946*x+572 6308830373486946 a001 233/1364*9349^(15/38) 6308830373997681 m001 (polylog(4,1/2)+Backhouse)/(Landau+Sierpinski) 6308830388766594 a001 610/521*9349^(7/38) 6308830392065753 s002 sum(A009227[n]/(n^3*exp(n)+1),n=1..infinity) 6308830393355813 r009 Im(z^3+c),c=-41/114+24/37*I,n=6 6308830397719526 m005 (1/2*2^(1/2)-1/10)/(2/5*exp(1)-1/8) 6308830398218103 a001 233/1364*24476^(5/14) 6308830399086100 a007 Real Root Of 21*x^4-918*x^3-231*x^2-379*x-381 6308830400307800 a001 610/521*24476^(1/6) 6308830401478145 a001 233/1364*64079^(15/46) 6308830401829153 a001 610/521*64079^(7/46) 6308830401911910 a001 233/1364*167761^(3/10) 6308830401970075 a001 233/1364*439204^(5/18) 6308830401979137 a001 233/1364*7881196^(5/22) 6308830401979157 a001 233/1364*20633239^(3/14) 6308830401979160 a001 233/1364*2537720636^(1/6) 6308830401979160 a001 233/1364*312119004989^(3/22) 6308830401979160 a001 233/1364*28143753123^(3/20) 6308830401979160 a001 233/1364*228826127^(3/16) 6308830401979161 a001 233/1364*33385282^(5/24) 6308830401979615 a001 233/1364*1860498^(1/4) 6308830402062959 a001 610/521*20633239^(1/10) 6308830402062960 a001 610/521*17393796001^(1/14) 6308830402062960 a001 610/521*14662949395604^(1/18) 6308830402062960 a001 610/521*505019158607^(1/16) 6308830402062960 a001 610/521*599074578^(1/12) 6308830402064522 a001 610/521*710647^(1/8) 6308830402162557 a001 233/1364*103682^(5/16) 6308830402702899 a001 610/521*39603^(7/44) 6308830403350456 a001 233/1364*39603^(15/44) 6308830406887782 a001 610/521*15127^(7/40) 6308830412318064 a001 233/1364*15127^(3/8) 6308830438807206 a001 610/521*5778^(7/36) 6308830444094148 a007 Real Root Of 797*x^4+507*x^3+808*x^2-630*x-718 6308830447678413 m001 MinimumGamma^2*Bloch^2*exp(Sierpinski) 6308830479375363 a007 Real Root Of 691*x^4-171*x^3+758*x^2-366*x-685 6308830480716830 a001 233/1364*5778^(5/12) 6308830482754296 m003 31/2+(5*Sqrt[5])/8+Sec[1/2+Sqrt[5]/2]/2 6308830484310550 r009 Re(z^3+c),c=-17/60+41/61*I,n=21 6308830521853337 a007 Real Root Of -120*x^4-697*x^3+404*x^2+132*x-166 6308830549709292 a001 322/3*4181^(13/17) 6308830560658594 m001 (BesselK(0,1)-ln(gamma))/(-ln(Pi)+FeigenbaumD) 6308830567597404 r005 Im(z^2+c),c=-1/25+38/61*I,n=11 6308830571162544 a007 Real Root Of 833*x^4-546*x^3-299*x^2-607*x-533 6308830578521722 m001 (-GAMMA(17/24)+OneNinth)/(Shi(1)+cos(1/5*Pi)) 6308830597180679 a007 Real Root Of 753*x^4+159*x^3-288*x^2-449*x-248 6308830615218135 s001 sum(exp(-Pi)^(n-1)*A146485[n],n=1..infinity) 6308830617510936 r005 Re(z^2+c),c=-41/106+41/54*I,n=6 6308830620004784 m001 1/(2^(1/3))/exp(Si(Pi))^2/GAMMA(1/6)^2 6308830622845881 a007 Real Root Of -572*x^4+338*x^3-780*x^2-244*x+332 6308830646719603 m005 (1/3*Pi-2/3)/(1/10*exp(1)-7/8) 6308830659884625 a007 Real Root Of 316*x^4-17*x^3-242*x^2-466*x-252 6308830665085426 r005 Re(z^2+c),c=1/9+49/52*I,n=3 6308830670981824 m005 (1/2*2^(1/2)+2/11)/(17/20+1/4*5^(1/2)) 6308830680904125 r005 Im(z^2+c),c=-79/90+27/62*I,n=3 6308830685392849 a001 610/521*2207^(7/32) 6308830697507138 m001 TreeGrowth2nd^2/Cahen/exp(GAMMA(11/24))^2 6308830704274714 m001 (Conway+ErdosBorwein)/(Khinchin+Tetranacci) 6308830722218541 a007 Real Root Of -412*x^4-3*x^3-149*x^2+116*x+197 6308830730315826 a007 Real Root Of 253*x^4-406*x^3+556*x^2-472*x-3 6308830754055270 a007 Real Root Of -877*x^4+881*x^3-873*x^2+278*x+883 6308830782170115 a003 sin(Pi*2/73)*sin(Pi*16/61) 6308830784143818 a007 Real Root Of -827*x^4-567*x^3-604*x^2-176*x+118 6308830805420646 m001 1/2*Sarnak^Rabbit*2^(2/3) 6308830809469678 a003 sin(Pi*21/107)/sin(Pi*31/84) 6308830809622430 m001 (3^(1/3)-Conway)/(QuadraticClass-Robbin) 6308830847372514 h001 (2/5*exp(1)+3/7)/(7/10*exp(1)+1/2) 6308830852673109 a007 Real Root Of -403*x^4-243*x^3-701*x^2-545*x-62 6308830884455437 m008 (3/5*Pi^6-4/5)/(3*Pi^5-5) 6308830908261207 m002 -6/E^Pi-E^Pi*Pi+Pi^2 6308830911015388 s002 sum(A046437[n]/((pi^n-1)/n),n=1..infinity) 6308830911936016 m001 (exp(1/Pi)+Porter)/(1+ln(gamma)) 6308830928348840 a007 Real Root Of -911*x^4-715*x^3-866*x^2-248*x+153 6308830932742753 m001 GaussKuzminWirsing*Si(Pi)^KhinchinLevy 6308830940645446 r002 7th iterates of z^2 + 6308830943903150 r002 19th iterates of z^2 + 6308830955208918 a007 Real Root Of 284*x^4-397*x^3+856*x^2-616*x-874 6308830972442291 a007 Real Root Of -809*x^4+777*x^3+528*x^2+916*x+691 6308830976350499 r002 5th iterates of z^2 + 6308830981310604 p003 LerchPhi(1/64,3,599/238) 6308830983586429 a007 Real Root Of -910*x^4+958*x^3-165*x^2+551*x+798 6308830985349954 r005 Re(z^2+c),c=-17/27+17/41*I,n=64 6308830993190473 r009 Im(z^3+c),c=-25/86+17/25*I,n=38 6308830998723200 r002 11th iterates of z^2 + 6308831009114652 a001 233/1364*2207^(15/32) 6308831012097664 r002 14th iterates of z^2 + 6308831070576946 a007 Real Root Of 518*x^4+275*x^3+732*x^2-960*x-910 6308831085292382 a007 Real Root Of -955*x^4-284*x^3-326*x^2+514*x+534 6308831093076471 a001 89/843*199^(17/22) 6308831105779162 a001 233/2207*843^(17/28) 6308831107440436 l006 ln(4216/7923) 6308831109874712 m005 (1/2*gamma+1/10)/(-131/180+1/20*5^(1/2)) 6308831116715633 m001 Niven^2*exp(CopelandErdos)^2*GAMMA(2/3) 6308831135219340 m001 (2^(1/3)-Shi(1))/(KhinchinHarmonic+Porter) 6308831136138916 k005 Champernowne real with floor(exp(1)*(93*n+139)) 6308831136138916 k005 Champernowne real with floor(sqrt(3)*(146*n+218)) 6308831136138916 k001 Champernowne real with 253*n+377 6308831153452623 a007 Real Root Of -429*x^4-225*x^3+979*x^2+965*x-874 6308831157525403 k002 Champernowne real with 221/2*n^2-59/2*n-75 6308831181863141 m009 (5/6*Psi(1,1/3)-1/2)/(5*Psi(1,3/4)-1/6) 6308831190715888 m001 (ArtinRank2+Conway)/(MertensB3+Tribonacci) 6308831192587331 r005 Im(z^2+c),c=13/48+6/11*I,n=31 6308831202650082 r005 Im(z^2+c),c=-37/54+4/43*I,n=42 6308831203850406 b008 Tan[Coth[Sqrt[2]]/2] 6308831209048892 m001 (2^(1/2)+ln(3))/(Magata+Stephens) 6308831234025351 g005 GAMMA(2/7)^2/GAMMA(11/12)/GAMMA(3/5) 6308831234837182 r005 Re(z^2+c),c=-39/62+12/29*I,n=50 6308831241717173 a001 377/1364*322^(13/24) 6308831242856273 s002 sum(A215236[n]/(n*exp(pi*n)+1),n=1..infinity) 6308831244663355 a007 Real Root Of -883*x^4+407*x^3+346*x^2+951*x-700 6308831247121229 a007 Real Root Of -999*x^4-516*x^3+257*x^2+952*x+527 6308831252956342 a007 Real Root Of 695*x^4-502*x^3-540*x^2-472*x-319 6308831279799431 a001 1292/2889*322^(11/24) 6308831306187202 q001 1193/1891 6308831343621332 r009 Im(z^3+c),c=-10/21+13/31*I,n=2 6308831358975166 a007 Real Root Of -269*x^4+87*x^3-209*x^2+18*x+159 6308831376687439 m001 BesselK(0,1)^Si(Pi)-FeigenbaumB 6308831419695385 a007 Real Root Of 169*x^4+57*x^3+364*x^2-559*x-510 6308831425735069 r005 Im(z^2+c),c=-1/36+31/45*I,n=35 6308831439792775 a007 Real Root Of 448*x^4-875*x^3-35*x^2-438*x+439 6308831449905425 a003 sin(Pi*3/94)/cos(Pi*49/99) 6308831473074197 r005 Im(z^2+c),c=-17/30+4/35*I,n=51 6308831491708519 m001 GAMMA(3/4)^(3^(1/3))-Rabbit 6308831515431016 a007 Real Root Of 544*x^4-687*x^3+357*x^2+854*x+138 6308831534274440 l006 ln(2957/5557) 6308831534274440 p004 log(5557/2957) 6308831550011916 a007 Real Root Of -835*x^4+935*x^3-614*x^2+96*x+672 6308831595759456 m001 (ln(gamma)-sin(1/12*Pi))/(Backhouse-ZetaP(3)) 6308831602599480 a001 6765/15127*322^(11/24) 6308831626190220 a001 377/2207*322^(5/8) 6308831634379472 a007 Real Root Of -148*x^4-943*x^3-169*x^2-790*x-591 6308831636176903 m001 (OneNinth*ZetaP(4)+PlouffeB)/ZetaP(4) 6308831649695374 a001 17711/39603*322^(11/24) 6308831654785795 r005 Im(z^2+c),c=-11/40+37/58*I,n=63 6308831656566572 a001 23184/51841*322^(11/24) 6308831657569066 a001 121393/271443*322^(11/24) 6308831657715328 a001 317811/710647*322^(11/24) 6308831657736668 a001 416020/930249*322^(11/24) 6308831657739781 a001 2178309/4870847*322^(11/24) 6308831657740235 a001 5702887/12752043*322^(11/24) 6308831657740302 a001 7465176/16692641*322^(11/24) 6308831657740311 a001 39088169/87403803*322^(11/24) 6308831657740313 a001 102334155/228826127*322^(11/24) 6308831657740313 a001 133957148/299537289*322^(11/24) 6308831657740313 a001 701408733/1568397607*322^(11/24) 6308831657740313 a001 1836311903/4106118243*322^(11/24) 6308831657740313 a001 2403763488/5374978561*322^(11/24) 6308831657740313 a001 12586269025/28143753123*322^(11/24) 6308831657740313 a001 32951280099/73681302247*322^(11/24) 6308831657740313 a001 43133785636/96450076809*322^(11/24) 6308831657740313 a001 225851433717/505019158607*322^(11/24) 6308831657740313 a001 591286729879/1322157322203*322^(11/24) 6308831657740313 a001 10610209857723/23725150497407*322^(11/24) 6308831657740313 a001 182717648081/408569081798*322^(11/24) 6308831657740313 a001 139583862445/312119004989*322^(11/24) 6308831657740313 a001 53316291173/119218851371*322^(11/24) 6308831657740313 a001 10182505537/22768774562*322^(11/24) 6308831657740313 a001 7778742049/17393796001*322^(11/24) 6308831657740313 a001 2971215073/6643838879*322^(11/24) 6308831657740313 a001 567451585/1268860318*322^(11/24) 6308831657740313 a001 433494437/969323029*322^(11/24) 6308831657740313 a001 165580141/370248451*322^(11/24) 6308831657740314 a001 31622993/70711162*322^(11/24) 6308831657740317 a001 24157817/54018521*322^(11/24) 6308831657740343 a001 9227465/20633239*322^(11/24) 6308831657740516 a001 1762289/3940598*322^(11/24) 6308831657741705 a001 1346269/3010349*322^(11/24) 6308831657749856 a001 514229/1149851*322^(11/24) 6308831657805723 a001 98209/219602*322^(11/24) 6308831658188642 a001 75025/167761*322^(11/24) 6308831660813206 a001 28657/64079*322^(11/24) 6308831670356271 m001 ln(GAMMA(7/24))/Champernowne/Zeta(3)^2 6308831670666095 m001 (1-MadelungNaCl)/(OneNinth+Trott) 6308831678802237 a001 5473/12238*322^(11/24) 6308831694101669 b008 -11+Sinh[9/4] 6308831716799717 m001 (-Bloch+Lehmer)/(5^(1/2)-arctan(1/3)) 6308831723021689 m001 MasserGramain^(AlladiGrinstead*Conway) 6308831731845114 r005 Im(z^2+c),c=-65/98+13/63*I,n=32 6308831735120364 a007 Real Root Of 884*x^4+155*x^3+641*x^2+934*x+233 6308831756277944 r009 Re(z^3+c),c=-17/30+37/55*I,n=3 6308831757324749 m001 Zeta(1,2)*ln(gamma)^Robbin 6308831784602953 m001 (ln(2)-Porter)/FibonacciFactorial 6308831788005097 m002 5*Csch[Pi]*ProductLog[Pi]+Tanh[Pi]/6 6308831793139921 a007 Real Root Of 914*x^4-917*x^3-894*x^2-854*x-558 6308831800700014 m001 TreeGrowth2nd^2*exp(MertensB1)^2*GAMMA(11/24) 6308831802100890 a001 4181/9349*322^(11/24) 6308831861980896 p003 LerchPhi(1/2,5,142/205) 6308831876121946 m001 FeigenbaumC*LandauRamanujan2nd-GAMMA(5/6) 6308831891159917 a007 Real Root Of -421*x^4+978*x^3-356*x^2+474*x+753 6308831906230554 r009 Re(z^3+c),c=-43/60+17/37*I,n=2 6308831918795293 r002 63i'th iterates of 2*x/(1-x^2) of 6308831920854910 l006 ln(4655/8748) 6308831930458201 r005 Im(z^2+c),c=5/38+33/52*I,n=15 6308831934043923 m001 (polylog(4,1/2)+Landau)/(Zeta(5)-exp(1)) 6308831945804900 a007 Real Root Of 36*x^4-77*x^3-687*x^2-626*x+682 6308831954373361 b008 2*Pi+ArcCoth[39] 6308831972821548 a007 Real Root Of 866*x^4-884*x^3+761*x^2-523*x-992 6308831985945802 m005 (1/2*Pi-1/11)/(5/7*Catalan-3) 6308832001604107 m001 1/exp(GAMMA(5/6))^2*BesselK(1,1)*Zeta(9) 6308832004297151 a007 Real Root Of -829*x^4+735*x^3-91*x^2-910*x-222 6308832006229672 a007 Real Root Of -503*x^4+792*x^3-664*x^2+368*x+775 6308832006396225 a007 Real Root Of -362*x^4+248*x^3-392*x^2+996*x+904 6308832010328175 a007 Real Root Of 837*x^4-956*x^3+156*x^2-300*x-624 6308832013068954 a001 29/76*(1/2*5^(1/2)+1/2)^10*76^(3/5) 6308832018340485 r002 42th iterates of z^2 + 6308832036651406 a001 7/377*46368^(28/37) 6308832059653969 m004 -36-25*Pi+(25*Pi)/ProductLog[Sqrt[5]*Pi] 6308832063862944 m001 CareFree*Rabbit^arctan(1/3) 6308832098411068 m005 (1/3*Catalan-3/5)/(3/4*gamma-9/10) 6308832100788550 p004 log(11939/6353) 6308832125641580 a007 Real Root Of 635*x^4+57*x^3+788*x^2+878*x+154 6308832155499360 a001 199/4181*89^(19/33) 6308832157825463 k002 Champernowne real with 111*n^2-31*n-74 6308832161205920 a007 Real Root Of -704*x^4-236*x^3+663*x^2+748*x-565 6308832175059342 a007 Real Root Of -153*x^4-948*x^3+128*x^2+64*x-359 6308832185356680 a007 Real Root Of 137*x^4+916*x^3+226*x^2-561*x+445 6308832195830687 a007 Real Root Of -432*x^4-703*x^3-703*x^2+877*x+725 6308832204709473 m005 (2*gamma-1/6)/(2/5*2^(1/2)+1) 6308832206904802 h001 (5/6*exp(1)+2/11)/(5/12*exp(2)+4/5) 6308832212155622 m001 OneNinth/FransenRobinson^2*exp(BesselJ(0,1))^2 6308832232275520 r005 Re(z^2+c),c=-27/26+31/95*I,n=6 6308832248641576 p004 log(25679/24109) 6308832270761746 a008 Real Root of x^4-x^3+x^2+201*x+126 6308832279066690 r005 Im(z^2+c),c=-51/62+18/41*I,n=3 6308832283315966 m002 2*Pi^7+E^Pi*Cosh[Pi] 6308832303772185 a007 Real Root Of 225*x^4+186*x^3-441*x^2-480*x+396 6308832319656837 a007 Real Root Of -358*x^4+765*x^3+536*x^2+346*x-567 6308832331202216 a007 Real Root Of -570*x^4+742*x^3+236*x^2+904*x+753 6308832356907009 r005 Im(z^2+c),c=-11/106+40/49*I,n=59 6308832366109762 r002 34th iterates of z^2 + 6308832370129817 r005 Re(z^2+c),c=-25/27+19/59*I,n=9 6308832381448603 a007 Real Root Of -911*x^4+611*x^3-721*x^2-120*x+509 6308832389604754 p001 sum(1/(611*n+163)/(8^n),n=0..infinity) 6308832391309674 a007 Real Root Of -521*x^4+874*x^3-934*x^2-827*x+152 6308832400392790 h001 (2/3*exp(1)+2/7)/(8/9*exp(1)+10/11) 6308832400392790 m005 (1/3*exp(1)+1/7)/(4/9*exp(1)+5/11) 6308832401416434 m001 (-FeigenbaumC+OneNinth)/(1+3^(1/2)) 6308832413276114 r005 Im(z^2+c),c=-5/94+28/41*I,n=47 6308832415530528 m001 1/Niven/exp(Kolakoski)*cosh(1)^2 6308832434054702 m001 (Psi(1,1/3)-exp(1))/(ArtinRank2+Bloch) 6308832465813835 m001 Zeta(1,-1)^(LandauRamanujan2nd*TreeGrowth2nd) 6308832502188101 r009 Re(z^3+c),c=-5/46+20/33*I,n=29 6308832508047511 m001 (Zeta(3)-FeigenbaumB)/(Pi+exp(1)) 6308832556088060 a007 Real Root Of 877*x^4-692*x^3+39*x^2+525*x+3 6308832560866313 m005 (1/2*Pi-2)/(1/3*Catalan+3/8) 6308832570625416 b008 -29/8+ExpIntegralEi[3] 6308832594069508 l006 ln(1698/3191) 6308832621458481 a001 610/521*843^(1/4) 6308832647202496 a001 1597/3571*322^(11/24) 6308832651758488 m005 (1/2*gamma+3)/(5/11*3^(1/2)-6) 6308832662653295 r005 Re(z^2+c),c=-33/46+6/41*I,n=16 6308832677744777 m001 1/GAMMA(11/24)^2/exp(Trott)*cosh(1)^2 6308832688779910 m001 Ei(1,1)^BesselI(1,1)/(Ei(1,1)^MertensB1) 6308832704936289 m001 Rabbit^(3^(1/2)*StronglyCareFree) 6308832720778317 r005 Re(z^2+c),c=-25/46+7/12*I,n=32 6308832742625276 m005 (1/3*exp(1)-1/12)/(6*5^(1/2)-3/8) 6308832750842769 a007 Real Root Of 6*x^4-967*x^3-421*x^2-841*x+940 6308832754976374 r005 Im(z^2+c),c=-9/98+15/19*I,n=17 6308832766565297 a007 Real Root Of -927*x^4-487*x^3-144*x^2+658*x+497 6308832801753051 r002 4th iterates of z^2 + 6308832810428223 m001 (Zeta(5)-GlaisherKinkelin)/(Mills+Sierpinski) 6308832824073237 m005 (1/2*3^(1/2)+1/8)/(5/11*Pi+1/7) 6308832838201051 a007 Real Root Of -134*x^4-988*x^3-907*x^2+75*x+762 6308832859777399 a003 cos(Pi*21/103)*sin(Pi*32/111) 6308832874247694 r005 Re(z^2+c),c=7/18+2/11*I,n=9 6308832972099452 m001 (GaussAGM+Paris)/(2^(1/3)+Ei(1,1)) 6308833010960670 q001 1957/3102 6308833015550340 m001 exp(sqrt(2))/(2^(1/3))/polylog(4,1/2) 6308833016840169 h001 (1/7*exp(2)+7/11)/(3/11*exp(2)+2/3) 6308833018410336 a001 2/6765*7778742049^(16/19) 6308833039718854 a007 Real Root Of -89*x^4-466*x^3+537*x^2-357*x+351 6308833043231519 a007 Real Root Of -420*x^4+318*x^3-715*x^2+540*x+37 6308833057373897 r005 Re(z^2+c),c=37/94+8/55*I,n=21 6308833062586199 a007 Real Root Of 517*x^4+336*x^3+132*x^2-477*x-351 6308833065590090 m001 exp(GAMMA(7/12))*GlaisherKinkelin/Zeta(1,2) 6308833093565669 a007 Real Root Of -735*x^4+816*x^3-712*x^2+579*x+970 6308833143048265 a007 Real Root Of -383*x^4-234*x^3-683*x^2-44*x+246 6308833158125523 k002 Champernowne real with 223/2*n^2-65/2*n-73 6308833180161725 h005 exp(cos(Pi*7/47)/cos(Pi*20/59)) 6308833198266234 m001 (BesselI(0,1)-Chi(1))/(sin(1/12*Pi)+Zeta(1,2)) 6308833212895284 a007 Real Root Of -294*x^4+489*x^3+379*x^2+542*x-569 6308833255219221 a003 cos(Pi*11/118)-sin(Pi*9/85) 6308833255395462 m001 (ln(2)/ln(10))^GaussAGM/LandauRamanujan2nd 6308833273356242 r005 Im(z^2+c),c=-17/98+35/54*I,n=7 6308833299450803 r009 Im(z^3+c),c=-5/11+9/16*I,n=14 6308833356858356 m005 (1/2*Catalan-5/9)/(1/2*5^(1/2)+3/7) 6308833383647711 m005 (1/3*exp(1)-1/11)/(9/11*3^(1/2)-1/8) 6308833395037461 r005 Im(z^2+c),c=31/118+17/38*I,n=6 6308833402646121 a003 cos(Pi*19/62)+cos(Pi*38/79) 6308833403452686 h001 (-5*exp(1/2)+1)/(-exp(3/2)-7) 6308833411230844 l006 ln(3835/7207) 6308833422266432 g007 Psi(2,7/9)+Psi(2,1/3)-Psi(2,10/11)-Psi(2,1/7) 6308833441507777 a003 sin(Pi*19/83)*sin(Pi*46/113) 6308833442244036 a007 Real Root Of -308*x^4-103*x^3-596*x^2+889*x+821 6308833480021236 r005 Re(z^2+c),c=-29/42+6/29*I,n=3 6308833480257576 a001 233/5778*843^(3/4) 6308833501220103 r005 Re(z^2+c),c=-9/52+13/19*I,n=32 6308833504565157 m001 MadelungNaCl^Khinchin+FeigenbaumC 6308833509030903 a007 Real Root Of 126*x^4-341*x^3+208*x^2+297*x-1 6308833515876874 h001 (-9*exp(-2)+7)/(-8*exp(1/3)+2) 6308833519510703 m001 (ln(2)-MasserGramain)/(Porter-Sarnak) 6308833528191599 a001 76*(1/2*5^(1/2)+1/2)^16*18^(11/24) 6308833529846086 a001 233/3571*843^(19/28) 6308833531366556 r005 Re(z^2+c),c=-41/60+13/54*I,n=14 6308833541590441 m004 -20*Pi-Tanh[Sqrt[5]*Pi]/(2*Log[Sqrt[5]*Pi]) 6308833544703019 l006 ln(9014/9601) 6308833546561395 m001 Sarnak/(Psi(1,1/3)+exp(1/Pi)) 6308833557991281 h001 (-4*exp(2)+2)/(-exp(-1)-4) 6308833563817954 m001 1/RenyiParking/Paris/exp(BesselJ(0,1)) 6308833570778205 m001 (Kac-Kolakoski)/(RenyiParking+Tetranacci) 6308833572689750 a007 Real Root Of -194*x^4+93*x^3+279*x^2+503*x-421 6308833582179713 m004 -20*Pi-1/(2*Log[Sqrt[5]*Pi]) 6308833585287067 a007 Real Root Of 95*x^4+562*x^3-253*x^2-19*x+574 6308833588488666 a007 Real Root Of 21*x^4-245*x^3+928*x^2+162*x-332 6308833595526493 a007 Real Root Of 954*x^4+25*x^3+739*x^2+252*x-280 6308833596284862 m001 Zeta(5)*BesselI(1,1)*OneNinth 6308833605677051 b008 ProductLog[Sqrt[ArcTan[6]]] 6308833626946112 a007 Real Root Of -798*x^4-599*x^3-814*x^2+363*x+529 6308833634116503 a007 Real Root Of 249*x^4-762*x^3-84*x^2-388*x+25 6308833652676820 r009 Re(z^3+c),c=-11/106+17/30*I,n=14 6308833677135078 m001 Zeta(1,-1)-Robbin^Si(Pi) 6308833691105154 a007 Real Root Of 345*x^4-143*x^3+883*x^2-615*x-830 6308833722942774 m001 Pi/ln(2)*ln(10)/Zeta(1,-1) 6308833740595112 m001 (Bloch-Niven)/(Tetranacci+Trott2nd) 6308833766552713 b008 Sqrt[Pi]+7*Sech[1] 6308833797784747 a007 Real Root Of -303*x^4+27*x^3-166*x^2+238*x+271 6308833833219279 r005 Re(z^2+c),c=-115/122+13/43*I,n=8 6308833837657804 r009 Im(z^3+c),c=-11/20+17/56*I,n=7 6308833862966129 m001 (1+ln(Pi))/(-arctan(1/3)+Robbin) 6308833873530420 r005 Im(z^2+c),c=-31/58+7/62*I,n=21 6308833875986184 b008 5+3^ArcCot[4] 6308833884609305 p003 LerchPhi(1/2,2,95/68) 6308833898392681 m001 (exp(1)+GaussAGM(1,1/sqrt(2)))/BesselI(1,1) 6308833915414546 m002 3+E^Pi/Pi^2+5*Sinh[Pi] 6308833934014101 m001 (2/3)^(Lehmer*GAMMA(1/12)) 6308833959828710 m001 Ei(1)*Cahen-GlaisherKinkelin 6308834002414787 m001 (Pi-HeathBrownMoroz)/(Kac-Stephens) 6308834004556700 m001 (Conway-Kolakoski)/(Porter-TwinPrimes) 6308834010836301 a007 Real Root Of 999*x^4-957*x^3+704*x^2-338*x-892 6308834024393884 a007 Real Root Of 94*x^4-740*x^3+969*x^2-169*x-693 6308834046741491 a007 Real Root Of 416*x^4-673*x^3-712*x^2-684*x+818 6308834049448760 p001 sum((-1)^n/(439*n+156)/(16^n),n=0..infinity) 6308834060524175 l006 ln(2137/4016) 6308834061433463 a007 Real Root Of -389*x^4-459*x^3-8*x^2+416*x+212 6308834081368621 s002 sum(A161180[n]/(n^2*pi^n+1),n=1..infinity) 6308834095485028 a007 Real Root Of 770*x^4+843*x^3+679*x^2-947*x-778 6308834097425322 a007 Real Root Of 647*x^4-737*x^3-945*x^2-159*x+559 6308834100171224 m001 (MinimumGamma+ZetaP(4))/(Ei(1)+Landau) 6308834113999432 a007 Real Root Of -743*x^4-38*x^3-51*x^2+963*x+736 6308834120952937 a001 4106118243/2*2178309^(1/13) 6308834120952958 a001 1268860318*1134903170^(1/13) 6308834120952958 a001 1568397607/2*591286729879^(1/13) 6308834126505290 a001 6643838879/2*4181^(1/13) 6308834133547396 r002 20th iterates of z^2 + 6308834140780419 m005 (1/2*gamma+4/5)/(4*gamma-7/12) 6308834158425583 k002 Champernowne real with 112*n^2-34*n-72 6308834191163353 r005 Im(z^2+c),c=-5/54+50/63*I,n=26 6308834210782626 a007 Real Root Of -316*x^4+662*x^3-45*x^2+285*x+414 6308834211390628 a003 sin(Pi*9/46)/sin(Pi*29/79) 6308834232808984 a001 141422324/377*2^(3/4) 6308834268715806 r009 Re(z^3+c),c=-1/64+8/11*I,n=58 6308834284102426 m005 (1/3*gamma+3/7)/(7/10*Zeta(3)+1/7) 6308834291000293 a007 Real Root Of 141*x^4-606*x^3-659*x^2-553*x+741 6308834292438028 a007 Real Root Of -868*x^4+603*x^3-902*x^2+416*x+30 6308834310118472 m001 (ln(gamma)-Zeta(1/2))/(MertensB1-Niven) 6308834312050934 r002 10th iterates of z^2 + 6308834339207169 m001 (-Artin+OneNinth)/(ln(2)/ln(10)-sin(1/12*Pi)) 6308834375521651 a001 233/9349*843^(23/28) 6308834395011525 a003 cos(Pi*9/85)-cos(Pi*45/113) 6308834399934160 b008 ArcCot[3]/51 6308834413884636 a007 Real Root Of -766*x^4+873*x^3+397*x^2+481*x+486 6308834416964894 a007 Real Root Of 100*x^4-494*x^3-319*x^2-545*x+579 6308834428643320 a007 Real Root Of 767*x^4-430*x^3+51*x^2-208*x-381 6308834442490318 a007 Real Root Of 370*x^4-882*x^3-738*x^2+58*x+420 6308834466222288 p004 log(34603/18413) 6308834489008933 a005 (1/sin(88/199*Pi))^528 6308834517155917 m001 (BesselI(0,1)-polylog(4,1/2))/KhinchinLevy 6308834532936114 a007 Real Root Of 463*x^4-916*x^3+147*x^2-937*x-953 6308834548087051 r002 4th iterates of z^2 + 6308834550698322 m005 (1/2*2^(1/2)+5)/(1/9*Pi+5/9) 6308834571521929 a003 cos(Pi*34/111)+cos(Pi*51/106) 6308834577444592 m001 cos(1/12*Pi)^LambertW(1)*Cahen 6308834577444592 m001 cos(Pi/12)^LambertW(1)*Cahen 6308834584202546 a007 Real Root Of -886*x^4+895*x^3+604*x^2-90*x-268 6308834588858521 l006 ln(4713/8857) 6308834597480897 a001 2584/3*322^(10/29) 6308834617657003 m001 gamma(1)/(GAMMA(11/12)+Paris) 6308834619278803 a003 sin(Pi*1/92)-sin(Pi*22/95) 6308834637814057 a007 Real Root Of -785*x^4+634*x^3+141*x^2+245*x+382 6308834643530070 a007 Real Root Of 228*x^4-299*x^3+836*x^2-818*x-960 6308834699146241 r005 Re(z^2+c),c=-27/26+13/88*I,n=6 6308834715627298 p001 sum(1/(573*n+95)/n/(24^n),n=1..infinity) 6308834763011453 h001 (7/8*exp(1)+2/5)/(4/7*exp(2)+2/11) 6308834764714748 r005 Im(z^2+c),c=-1/8+7/8*I,n=17 6308834767020271 r005 Im(z^2+c),c=-37/60+7/55*I,n=29 6308834809244407 m005 (1/3*2^(1/2)+3/4)/(3/8*exp(1)+11/12) 6308834813198537 b008 Sqrt[5]+23*Sqrt[7] 6308834821637967 m008 (2/5*Pi^5-2/5)/(2*Pi^2-2/5) 6308834826660525 m001 Artin^Stephens/(Artin^OneNinth) 6308834837652264 a003 sin(Pi*15/77)/sin(Pi*43/118) 6308834846381037 m005 (1/2*2^(1/2)-2/11)/(1/20+7/20*5^(1/2)) 6308834846453799 m001 (Pi+BesselI(1,1))/(GAMMA(17/24)-ArtinRank2) 6308834868539085 m005 (1/2*gamma-8/11)/(1/7*gamma-7/9) 6308834876989657 a007 Real Root Of 698*x^4-967*x^3-451*x^2-211*x-307 6308834880291599 m001 (-GAMMA(1/6)+2)/(sqrt(1+sqrt(3))+4) 6308834889937150 a003 sin(Pi*3/14)/sin(Pi*37/82) 6308834896009064 a007 Real Root Of -699*x^4+955*x^3+291*x^2+644*x+641 6308834909884219 a001 233/15127*843^(25/28) 6308834915004624 m001 (Conway+MertensB3)/(Pi+Zeta(5)) 6308834934796210 r009 Re(z^3+c),c=-13/102+12/17*I,n=45 6308834960331609 a007 Real Root Of -919*x^4+870*x^3-302*x^2+44*x+512 6308834973064994 a001 3/55*2584^(1/54) 6308834975082095 a003 sin(Pi*1/91)+sin(Pi*12/59) 6308834987654535 r005 Im(z^2+c),c=-117/98+19/62*I,n=8 6308834994261367 b008 2+3*ArcTan[E^2] 6308835014258604 a007 Real Root Of 118*x^4-138*x^3-40*x^2+22*x+18 6308835027154501 l006 ln(2576/4841) 6308835035411711 l006 ln(6987/7442) 6308835040843804 a007 Real Root Of -394*x^4+807*x^3+92*x^2-79*x-127 6308835095159923 r005 Re(z^2+c),c=-15/26+32/77*I,n=4 6308835100795422 m005 (1/2*3^(1/2)+8/9)/(5/8*Pi+9/11) 6308835111809092 a001 1597/521*322^(1/8) 6308835137548498 r005 Im(z^2+c),c=3/8+17/55*I,n=22 6308835154733916 m001 (ln(Pi)+Gompertz)/(Sierpinski+ZetaP(3)) 6308835157827659 a001 233/1364*843^(15/28) 6308835158725643 k002 Champernowne real with 225/2*n^2-71/2*n-71 6308835161619075 a003 cos(Pi*7/24)+cos(Pi*35/71) 6308835182386388 a007 Real Root Of 399*x^4-288*x^3-550*x^2-660*x-333 6308835229460547 r005 Im(z^2+c),c=-83/102+5/18*I,n=7 6308835250779330 r005 Im(z^2+c),c=-79/94+14/31*I,n=4 6308835258378780 m001 (ln(2^(1/2)+1)-Kac)/(Porter+Sierpinski) 6308835286763714 b008 1/2+Zeta[6,Sqrt[2]] 6308835322440209 r005 Im(z^2+c),c=-71/102+17/50*I,n=25 6308835349195191 a007 Real Root Of -33*x^4+952*x^3-295*x^2+159*x+462 6308835349306336 a001 123/121393*377^(39/56) 6308835355623276 a001 38/17*3^(17/18) 6308835396644310 m001 GAMMA(13/24)*Otter+MinimumGamma 6308835401431601 m005 (1/2*Zeta(3)+3/4)/(2^(1/2)+8/11) 6308835422622070 a007 Real Root Of -77*x^4+601*x^3+516*x^2+980*x+576 6308835443401479 m001 1/GAMMA(23/24)/Niven^2/ln(sin(Pi/5)) 6308835450899093 a007 Real Root Of 173*x^4-241*x^3+676*x^2-726*x-815 6308835471396299 m001 (BesselK(0,1)+1)/(-MadelungNaCl+4) 6308835485618303 r005 Im(z^2+c),c=-71/106+16/51*I,n=35 6308835501505566 a007 Real Root Of -653*x^4+404*x^3+877*x^2+840*x-877 6308835509694698 a007 Real Root Of 122*x^4+903*x^3+879*x^2+305*x+416 6308835518355466 s002 sum(A193448[n]/(n*10^n+1),n=1..infinity) 6308835523155291 m005 (1/3*exp(1)-2/11)/(5*5^(1/2)+3/10) 6308835528948417 r005 Re(z^2+c),c=-5/122+17/22*I,n=55 6308835547608276 a001 4106118243/377*102334155^(2/21) 6308835547608276 a001 1568397607/377*2504730781961^(2/21) 6308835554482594 a001 10749957122/377*4181^(2/21) 6308835554908653 r005 Im(z^2+c),c=-25/42+5/43*I,n=62 6308835556055097 s002 sum(A205348[n]/(n*2^n-1),n=1..infinity) 6308835556402811 r002 7th iterates of z^2 + 6308835560418984 p004 log(21839/11621) 6308835582099001 a001 233/24476*843^(27/28) 6308835598778853 r005 Re(z^2+c),c=29/90+21/61*I,n=33 6308835608993285 a007 Real Root Of -963*x^4-197*x^3-884*x^2+734*x+918 6308835632693048 r005 Re(z^2+c),c=-59/94+25/57*I,n=22 6308835636951829 m006 (5/6*exp(2*Pi)-5/6)/(2/5/Pi-5/6) 6308835672997522 q001 764/1211 6308835700266067 a007 Real Root Of -568*x^4+593*x^3+271*x^2-46*x+102 6308835712291760 l006 ln(3015/5666) 6308835722334361 m005 (11/28+1/4*5^(1/2))/(5^(1/2)-8/11) 6308835735363993 a007 Real Root Of -942*x^4+570*x^3+832*x^2+367*x+20 6308835742353590 a007 Real Root Of -35*x^4-107*x^3+727*x^2-16*x-459 6308835743397584 m001 1/Sierpinski^2/RenyiParking^2/ln(GAMMA(7/12)) 6308835779571593 m008 (1/2*Pi^6+1/3)/(5/6*Pi^2-3/5) 6308835813421941 a007 Real Root Of -83*x^4-563*x^3-97*x^2+820*x-851 6308835816505129 r005 Re(z^2+c),c=-15/82+32/51*I,n=9 6308835820424889 m005 (1/2*3^(1/2)+2/9)/(7/12*2^(1/2)+9/10) 6308835845542674 a007 Real Root Of 144*x^4+938*x^3+91*x^2-620*x-119 6308835851780910 m001 FeigenbaumD^sin(1/12*Pi)-TwinPrimes 6308835866530998 m001 1/Zeta(1,2)^2*Trott^2/ln(cos(Pi/5)) 6308835885644317 a007 Real Root Of 777*x^4-749*x^3-548*x^2-897*x+849 6308835894015472 a007 Real Root Of -667*x^4+799*x^3+201*x^2+949*x+825 6308835902021240 m001 (-Artin+4)/(MadelungNaCl+4) 6308835910541820 s002 sum(A288215[n]/((exp(n)-1)/n),n=1..infinity) 6308835917901828 r005 Re(z^2+c),c=-49/46+4/43*I,n=6 6308835927883618 a001 987/3571*322^(13/24) 6308835928109956 a001 46/311187*10946^(28/43) 6308835939467158 a007 Real Root Of 977*x^4+170*x^3+500*x^2-813*x-824 6308835944055710 m005 (1/2*gamma+6)/(1/4*3^(1/2)-1/3) 6308835949853008 m005 (1/2*3^(1/2)-4/11)/(1/6*Pi+3/11) 6308835985118085 p004 log(12157/6469) 6308836048384748 a007 Real Root Of -155*x^4-870*x^3+826*x^2+945*x+172 6308836062353041 r009 Im(z^3+c),c=-7/16+29/43*I,n=5 6308836089925720 m005 (11/12+1/6*5^(1/2))/(-11/21+1/7*5^(1/2)) 6308836111537118 m001 Zeta(3)*BesselI(1,2)+GAMMA(5/24) 6308836140078194 r009 Im(z^3+c),c=-1/86+41/55*I,n=15 6308836159025703 k002 Champernowne real with 113*n^2-37*n-70 6308836162564826 m001 1/GAMMA(3/4)^2/exp(FeigenbaumAlpha)^2*sqrt(2) 6308836165345928 r005 Im(z^2+c),c=3/38+27/43*I,n=39 6308836220270845 m005 (1/2*gamma+7/12)/(5/9*Zeta(3)+5/7) 6308836223268446 l006 ln(3454/6491) 6308836265835996 a007 Real Root Of -887*x^4-34*x^3-434*x^2+877*x+858 6308836292196783 a007 Real Root Of -266*x^4+544*x^3-371*x^2+803*x+833 6308836305715333 a003 sin(Pi*39/103)-sin(Pi*49/107) 6308836306122589 m001 (Chi(1)+ln(gamma))/(exp(1)+Si(Pi)) 6308836306445219 r009 Re(z^3+c),c=-18/31+11/37*I,n=10 6308836313102210 a007 Real Root Of 943*x^4-458*x^3+182*x^2+247*x-181 6308836321338793 a007 Real Root Of -994*x^4+42*x^3-690*x^2+316*x+642 6308836334808759 r008 a(0)=6,K{-n^6,24-49*n+45*n^2-24*n^3} 6308836343532645 a007 Real Root Of -762*x^4+526*x^3+802*x^2+901*x-899 6308836356610186 m001 Pi*(Pi^(1/2)+CopelandErdos) 6308836373198488 a003 cos(Pi*37/98)+cos(Pi*33/79) 6308836426389281 m001 1/ln(GAMMA(23/24))/OneNinth/gamma 6308836427316149 m001 (FeigenbaumMu+ZetaQ(3))^exp(1/exp(1)) 6308836427489277 r005 Re(z^2+c),c=-41/62+26/57*I,n=15 6308836437634314 r002 4th iterates of z^2 + 6308836467359669 a007 Real Root Of 445*x^4-746*x^3+419*x^2-7*x-429 6308836487108850 h001 (-exp(5)-2)/(-8*exp(8)+6) 6308836514939957 r005 Im(z^2+c),c=-29/28+17/37*I,n=3 6308836515843646 a007 Real Root Of -563*x^4+322*x^3+896*x^2+716*x-800 6308836519607738 a001 2/233*591286729879^(12/13) 6308836523876384 m001 (Gompertz+MertensB3)/(Pi^(1/2)+GAMMA(17/24)) 6308836527898455 m001 (MertensB2+Salem)/(3^(1/2)+Pi^(1/2)) 6308836556398968 a007 Real Root Of 249*x^4-944*x^3-79*x^2+92*x-187 6308836564523774 r009 Re(z^3+c),c=-13/114+36/55*I,n=58 6308836577706046 m005 (1/2*gamma-10/11)/(7/9*3^(1/2)-4/11) 6308836582741291 a007 Real Root Of 748*x^4-522*x^3+256*x^2+397*x-101 6308836602705773 m002 -4/E^Pi-Pi-Pi^3+Pi^4 6308836607448704 m001 (-Artin+Backhouse)/(ln(2)/ln(10)+2^(1/2)) 6308836611585728 a001 2584/9349*322^(13/24) 6308836611652459 r002 18th iterates of z^2 + 6308836619003005 l006 ln(3893/7316) 6308836619769042 m001 FeigenbaumD/Si(Pi)/exp(exp(1))^2 6308836633824683 m001 (cos(1/12*Pi)+Conway)/(FeigenbaumMu+Trott2nd) 6308836662765115 a007 Real Root Of 552*x^4-968*x^3-437*x^2-416*x+592 6308836711336514 a001 6765/24476*322^(13/24) 6308836716498250 a005 (1/cos(16/227*Pi))^1006 6308836722454133 a001 6/10983760033*2178309^(22/23) 6308836724202420 m005 (1/2*Zeta(3)-7/9)/(exp(1)+1/12) 6308836725889958 a001 17711/64079*322^(13/24) 6308836726681989 m001 (BesselK(1,1)+Cahen)/(Robbin-Thue) 6308836728013276 a001 46368/167761*322^(13/24) 6308836728323064 a001 121393/439204*322^(13/24) 6308836728368262 a001 317811/1149851*322^(13/24) 6308836728374856 a001 832040/3010349*322^(13/24) 6308836728375818 a001 2178309/7881196*322^(13/24) 6308836728375959 a001 5702887/20633239*322^(13/24) 6308836728375979 a001 14930352/54018521*322^(13/24) 6308836728375982 a001 39088169/141422324*322^(13/24) 6308836728375982 a001 102334155/370248451*322^(13/24) 6308836728375982 a001 267914296/969323029*322^(13/24) 6308836728375982 a001 701408733/2537720636*322^(13/24) 6308836728375982 a001 1836311903/6643838879*322^(13/24) 6308836728375982 a001 4807526976/17393796001*322^(13/24) 6308836728375982 a001 12586269025/45537549124*322^(13/24) 6308836728375982 a001 32951280099/119218851371*322^(13/24) 6308836728375982 a001 86267571272/312119004989*322^(13/24) 6308836728375982 a001 225851433717/817138163596*322^(13/24) 6308836728375982 a001 1548008755920/5600748293801*322^(13/24) 6308836728375982 a001 139583862445/505019158607*322^(13/24) 6308836728375982 a001 53316291173/192900153618*322^(13/24) 6308836728375982 a001 20365011074/73681302247*322^(13/24) 6308836728375982 a001 7778742049/28143753123*322^(13/24) 6308836728375982 a001 2971215073/10749957122*322^(13/24) 6308836728375982 a001 1134903170/4106118243*322^(13/24) 6308836728375982 a001 433494437/1568397607*322^(13/24) 6308836728375983 a001 165580141/599074578*322^(13/24) 6308836728375983 a001 63245986/228826127*322^(13/24) 6308836728375984 a001 24157817/87403803*322^(13/24) 6308836728375992 a001 9227465/33385282*322^(13/24) 6308836728376045 a001 3524578/12752043*322^(13/24) 6308836728376413 a001 1346269/4870847*322^(13/24) 6308836728378932 a001 514229/1860498*322^(13/24) 6308836728396195 a001 196418/710647*322^(13/24) 6308836728514524 a001 75025/271443*322^(13/24) 6308836729325560 a001 28657/103682*322^(13/24) 6308836734884480 a001 10946/39603*322^(13/24) 6308836754846915 a007 Real Root Of 418*x^4-604*x^3-275*x^2-692*x-545 6308836772985889 a001 4181/15127*322^(13/24) 6308836799301358 a007 Real Root Of 932*x^4+314*x^3+174*x^2-756*x-615 6308836826518954 m002 -4+Pi^3/6-ProductLog[Pi]/2 6308836848555951 a007 Real Root Of 538*x^4-420*x^3+250*x^2+479*x+12 6308836892035015 v003 sum((5*n-1)/(n!+2),n=1..infinity) 6308836918024244 a007 Real Root Of x^4+632*x^3+703*x^2-796*x-432 6308836934530964 l006 ln(4332/8141) 6308836978822652 m001 (Chi(1)+GAMMA(23/24))/(-Otter+ZetaQ(4)) 6308836982543213 m005 (1/3*2^(1/2)-2/11)/(1/4*5^(1/2)-1/10) 6308836989476256 m005 (1/2*Pi+7/9)/(9/11*gamma-1/10) 6308837005920698 r005 Im(z^2+c),c=-5/66+20/27*I,n=35 6308837009404556 a007 Real Root Of -57*x^4-286*x^3+577*x^2+620*x-572 6308837015755852 m001 (Pi*2^(1/2)/GAMMA(3/4)+GAMMA(13/24))/GaussAGM 6308837034136825 a001 1597/5778*322^(13/24) 6308837055174439 a001 144/199*199^(9/22) 6308837056230190 r002 3th iterates of z^2 + 6308837061206429 a007 Real Root Of 87*x^4+589*x^3+190*x^2-339*x+376 6308837069470030 p004 log(17107/9103) 6308837101858930 m001 GolombDickman*ln(Backhouse)*GAMMA(13/24)^2 6308837113247946 r005 Im(z^2+c),c=-73/64+4/51*I,n=20 6308837114734064 m001 1/exp(cosh(1))^2*Trott^2*sinh(1) 6308837159325763 k002 Champernowne real with 227/2*n^2-77/2*n-69 6308837182795136 a007 Real Root Of 716*x^4-348*x^3-393*x^2-635*x-445 6308837191992777 l006 ln(4771/8966) 6308837198497742 m001 (Ei(1)-LambertW(1))/(Riemann2ndZero+Trott2nd) 6308837199171662 a007 Real Root Of -630*x^4+871*x^3+764*x^2+894*x-987 6308837213337548 a007 Real Root Of -917*x^4+772*x^3-496*x^2+462*x+828 6308837228924451 r005 Re(z^2+c),c=29/78+11/41*I,n=48 6308837238599143 r002 2th iterates of z^2 + 6308837263029434 a003 sin(Pi*11/53)/sin(Pi*7/17) 6308837265594565 h001 (1/4*exp(1)+8/9)/(7/10*exp(1)+7/12) 6308837298638888 m001 GAMMA(1/12)/BesselJ(1,1)*exp(log(1+sqrt(2))) 6308837331186763 r005 Re(z^2+c),c=9/58+13/48*I,n=26 6308837353779246 a007 Real Root Of -625*x^4+714*x^3+225*x^2+235*x+337 6308837393705956 m005 (1/2*3^(1/2)+1/4)/(217/220+7/20*5^(1/2)) 6308837406066587 l006 ln(5210/9791) 6308837423208915 m007 (-5*gamma+2)/(-1/3*gamma-2/3*ln(2)-3/4) 6308837429111531 r002 2th iterates of z^2 + 6308837460076345 p003 LerchPhi(1/256,1,143/90) 6308837472344438 r009 Im(z^3+c),c=-5/48+45/59*I,n=45 6308837500121853 p004 log(20407/10859) 6308837510259359 a007 Real Root Of -500*x^4+657*x^3-684*x^2+608*x+900 6308837512522317 a007 Real Root Of -616*x^4+771*x^3-874*x^2-8*x+634 6308837527481211 m005 (3*2^(1/2)-4/5)/(4*2^(1/2)-1/5) 6308837529880320 m001 (BesselJ(0,1)-StolarskyHarborth)/Trott 6308837549452857 r009 Im(z^3+c),c=-31/54+29/46*I,n=13 6308837551823167 r002 2th iterates of z^2 + 6308837553070285 a007 Real Root Of -954*x^4-342*x^3+430*x^2+152*x-10 6308837582617783 m001 (ln(2)*Zeta(1,-1)-FellerTornier)/ln(2) 6308837617805053 m001 (-Salem+ZetaQ(3))/(HeathBrownMoroz-Si(Pi)) 6308837619551873 m001 (-Lehmer+ZetaP(3))/(Shi(1)+2*Pi/GAMMA(5/6)) 6308837622267220 r005 Im(z^2+c),c=-81/94+17/39*I,n=3 6308837635042301 m001 (ln(2+3^(1/2))+Trott)/(Pi-Zeta(5)) 6308837641304613 r005 Re(z^2+c),c=-7/15+11/21*I,n=9 6308837664797411 r009 Re(z^3+c),c=-29/64+2/45*I,n=21 6308837672769947 a001 416020/161*3^(13/16) 6308837676489066 m006 (1/6*exp(2*Pi)+4)/(ln(Pi)+1/3) 6308837677410367 b008 -7*2^(1/5)+Sqrt[3] 6308837723478541 b008 -67+ArcCosh[25] 6308837729604477 a007 Real Root Of 183*x^4-450*x^3-141*x^2-786*x+636 6308837736357650 r009 Im(z^3+c),c=-19/98+29/33*I,n=62 6308837744534266 l006 ln(4960/5283) 6308837751392903 a007 Real Root Of 162*x^4-761*x^3-109*x^2-150*x-268 6308837780043907 v002 sum(1/(3^n+(39/2*n^2-1/2*n+2)),n=1..infinity) 6308837792280354 a007 Real Root Of -852*x^4-914*x^3-846*x^2+946*x+839 6308837800281157 r005 Re(z^2+c),c=-19/27+12/49*I,n=16 6308837864645823 m002 -(Csch[Pi]*ProductLog[Pi])+4*Csch[Pi]*Sech[Pi] 6308837904939127 r009 Im(z^3+c),c=-1/62+23/32*I,n=7 6308837917935146 a007 Real Root Of 225*x^4-542*x^3+166*x^2-579*x+36 6308837928116369 r005 Re(z^2+c),c=2/13+11/29*I,n=56 6308837936211632 a007 Real Root Of 144*x^4-750*x^3-32*x^2+170*x+71 6308837950016118 a003 sin(Pi*1/116)+sin(Pi*13/63) 6308837954043272 m001 exp(Zeta(1/2))^2*Trott^2/Zeta(9)^2 6308837965851471 m001 1/LandauRamanujan^2/Backhouse*ln(Paris)^2 6308837979731189 r005 Im(z^2+c),c=-43/44+1/4*I,n=42 6308837994639428 m001 ln(BesselJ(0,1))/OneNinth^2*sqrt(1+sqrt(3))^2 6308838025712449 m001 1/GAMMA(5/24)^2/Conway*exp(arctan(1/2)) 6308838034274644 r005 Re(z^2+c),c=9/29+9/23*I,n=30 6308838041473527 m001 exp(1)*ln(LaplaceLimit)/sqrt(Pi) 6308838043632488 m001 (Catalan+BesselI(1,1))/(-GolombDickman+Thue) 6308838046290058 r002 32th iterates of z^2 + 6308838046290058 r002 32th iterates of z^2 + 6308838063800641 m001 1/exp(GAMMA(2/3))*GAMMA(11/24)^2*cos(Pi/5)^2 6308838066774766 m001 (Zeta(5)-exp(1))/(GAMMA(13/24)+Riemann3rdZero) 6308838096350446 s002 sum(A202676[n]/((exp(n)+1)*n),n=1..infinity) 6308838115907713 g001 Pi^(1/2)*erfc(7/115*115^(1/2)) 6308838128101201 m006 (5/6*Pi+1)/(1/2*Pi^2+4/5) 6308838128101201 m008 (5/6*Pi+1)/(1/2*Pi^2+4/5) 6308838131775842 a007 Real Root Of -867*x^4+515*x^3-273*x^2+689*x+810 6308838152652290 a007 Real Root Of -422*x^4+610*x^3-834*x^2+558*x+904 6308838152740602 r002 27th iterates of z^2 + 6308838158492258 m001 1/ln(GAMMA(1/6))*Rabbit^2*arctan(1/2)^2 6308838159625823 k002 Champernowne real with 114*n^2-40*n-68 6308838178665855 a003 cos(Pi*19/81)*sin(Pi*37/114) 6308838192045797 h001 (4/7*exp(2)+5/9)/(11/12*exp(2)+4/5) 6308838201721921 a007 Real Root Of 580*x^4+8*x^3-138*x^2-604*x-416 6308838208429200 m001 GAMMA(17/24)/(FeigenbaumD-MasserGramain) 6308838213141668 r005 Re(z^2+c),c=-3/4+25/183*I,n=11 6308838219635309 m001 (gamma+3^(1/3))/(-arctan(1/3)+ZetaQ(4)) 6308838229375274 p004 log(30307/16127) 6308838237007811 a007 Real Root Of 426*x^4-454*x^3+308*x^2-898*x-58 6308838242733110 r009 Re(z^3+c),c=-73/126+7/24*I,n=14 6308838267650803 m001 (CopelandErdos+MadelungNaCl)/(Pi+gamma(3)) 6308838268410640 r002 22th iterates of z^2 + 6308838268410640 r002 22th iterates of z^2 + 6308838271992816 r005 Im(z^2+c),c=-83/66+1/38*I,n=20 6308838280150286 m001 (Bloch-FellerTornier)/(Niven+TwinPrimes) 6308838301067000 r009 Re(z^3+c),c=-9/82+8/13*I,n=46 6308838304873149 m001 1/exp(Zeta(7))*Champernowne^2/log(1+sqrt(2)) 6308838305370543 a007 Real Root Of 922*x^4-38*x^3-857*x^2-836*x+732 6308838308146584 a007 Real Root Of -556*x^4+804*x^3+106*x^2+978*x-773 6308838320391254 m001 BesselJ(0,1)/(Zeta(3)+Trott) 6308838328542329 a007 Real Root Of 39*x^4+112*x^3-878*x^2-71*x+839 6308838331185062 r009 Im(z^3+c),c=-27/62+25/46*I,n=19 6308838355289348 r002 40th iterates of z^2 + 6308838363703681 h003 exp(Pi*(7^(9/10)-18^(1/7))) 6308838363703681 h008 exp(Pi*(7^(9/10)-18^(1/7))) 6308838373520584 a007 Real Root Of 182*x^4-50*x^3-950*x^2-750*x+835 6308838377841126 r005 Im(z^2+c),c=15/86+35/64*I,n=21 6308838380994490 g001 Psi(1/2,111/116) 6308838381657417 m001 (Ei(1,1)-Si(Pi))/(Tetranacci+TwinPrimes) 6308838392491495 a001 987/521*322^(5/24) 6308838439618121 a001 305/682*322^(11/24) 6308838469353200 q001 1863/2953 6308838486304682 p003 LerchPhi(1/32,3,98/181) 6308838486781198 a001 377/3571*322^(17/24) 6308838498658252 h001 (7/8*exp(2)+9/10)/(1/10*exp(2)+3/7) 6308838502408868 s001 sum(exp(-3*Pi/5)^n*A245594[n],n=1..infinity) 6308838547029089 r009 Re(z^3+c),c=-1/98+28/43*I,n=21 6308838549813484 a007 Real Root Of 389*x^4-964*x^3-135*x^2-8*x-255 6308838568685373 a007 Real Root Of -670*x^4+992*x^3+373*x^2+655*x+620 6308838588692210 m008 (3*Pi^4-2)/(1/6*Pi^5-5) 6308838619780856 a007 Real Root Of 50*x^4-480*x^3+450*x^2-118*x-382 6308838709547477 r009 Im(z^3+c),c=-51/118+31/50*I,n=25 6308838733145656 m001 LambertW(1)/(gamma+arctan(1/3)) 6308838741120393 m005 (1/2*3^(1/2)-1/2)/(-15/22+1/22*5^(1/2)) 6308838748148785 r005 Im(z^2+c),c=-25/114+33/43*I,n=55 6308838748857702 m002 -E^Pi-Pi^2+Pi^4-Log[Pi]^2 6308838812047445 r002 41th iterates of z^2 + 6308838812756500 a007 Real Root Of -676*x^4-334*x^3+549*x^2+479*x+3 6308838824091607 a001 610/2207*322^(13/24) 6308838824515610 a003 cos(Pi*20/117)-cos(Pi*32/75) 6308838827778822 r005 Im(z^2+c),c=1/32+37/60*I,n=25 6308838845377322 r005 Im(z^2+c),c=-55/94+7/62*I,n=28 6308838848747529 m001 (Si(Pi)+CareFree)/(Porter+Sierpinski) 6308838863888278 a007 Real Root Of 484*x^4+768*x^3+983*x^2-412*x-535 6308838865576073 a007 Real Root Of 134*x^4+909*x^3+457*x^2+286*x-411 6308838870468698 a007 Real Root Of 213*x^4-904*x^3+396*x^2-465*x+329 6308838870521402 r005 Im(z^2+c),c=-9/10+5/101*I,n=19 6308838883932991 a007 Real Root Of 146*x^4+926*x^3-18*x^2-386*x-486 6308838891916812 a007 Real Root Of 600*x^4-285*x^3+622*x^2-862*x-958 6308838946196622 r005 Im(z^2+c),c=-1/106+25/38*I,n=28 6308838949517427 m001 FeigenbaumAlpha^Gompertz/Trott2nd 6308838958763840 a007 Real Root Of 490*x^4+407*x^3+574*x^2-593*x-578 6308838971177818 m001 (ArtinRank2+GaussAGM)/(exp(Pi)+ln(Pi)) 6308838978689778 m005 (1/3*Zeta(3)+3/4)/(5/8*exp(1)+1/8) 6308838987669135 r002 33i'th iterates of 2*x/(1-x^2) of 6308839070092765 m001 (sin(1/5*Pi)+Grothendieck)/(Catalan-cos(1)) 6308839071273146 a005 (1/sin(64/157*Pi))^1661 6308839077047837 r002 8th iterates of z^2 + 6308839111270732 a001 34/11*1364^(14/19) 6308839137480768 a007 Real Root Of 623*x^4-208*x^3-783*x^2-564*x+621 6308839144070489 m001 (Trott-ZetaQ(3))/(Porter+Tribonacci) 6308839149595490 v003 sum((5+9*n^2-7*n)*n!/n^n,n=1..infinity) 6308839159925883 k002 Champernowne real with 229/2*n^2-83/2*n-67 6308839167789916 m004 5/Pi+5*Pi+Cosh[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi] 6308839167966794 r005 Im(z^2+c),c=1/102+26/41*I,n=40 6308839180594233 r002 17th iterates of z^2 + 6308839207874540 a007 Real Root Of -694*x^4+936*x^3+258*x^2+59*x-265 6308839219605019 m001 (-PolyaRandomWalk3D+ZetaQ(3))/(Si(Pi)+Magata) 6308839285937204 a007 Real Root Of -947*x^4+309*x^3+150*x^2-133*x+84 6308839303017224 m001 sin(1)+GAMMA(2/3)+exp(sqrt(2)) 6308839363054647 r009 Re(z^3+c),c=-25/44+13/49*I,n=6 6308839367173694 s002 sum(A232594[n]/((10^n+1)/n),n=1..infinity) 6308839375210559 r002 35th iterates of z^2 + 6308839404225015 r005 Re(z^2+c),c=-67/94+13/32*I,n=4 6308839411655791 r002 4th iterates of z^2 + 6308839432760099 r009 Im(z^3+c),c=-1/23+32/47*I,n=3 6308839433105965 m005 (1/2*exp(1)-7/11)/(1/4*Catalan+11/12) 6308839440479429 r005 Im(z^2+c),c=7/22+14/33*I,n=36 6308839445324547 m001 (CopelandErdos+Totient)/(Zeta(5)-Zeta(1/2)) 6308839491794512 a005 (1/cos(1/18*Pi))^1474 6308839503280483 a007 Real Root Of -491*x^4+815*x^3-516*x^2+628*x+884 6308839506171939 r005 Im(z^2+c),c=-13/23+6/53*I,n=30 6308839523551064 m001 1/2*BesselK(1,1)^ZetaP(2)*2^(2/3) 6308839548239411 m001 BesselK(1,1)*ln(FeigenbaumC)/gamma 6308839579304310 m001 (cos(1/12*Pi)-gamma)/(-Sarnak+Totient) 6308839587470887 r005 Im(z^2+c),c=-47/110+5/48*I,n=23 6308839606139671 m001 QuadraticClass*Trott*TwinPrimes 6308839624126973 a007 Real Root Of -853*x^4+330*x^3-461*x^2+345*x-20 6308839629533952 a007 Real Root Of 998*x^4-262*x^3+297*x^2+314*x-144 6308839662538176 g006 Psi(1,1/7)+Psi(1,1/3)+1/2*Pi^2-Psi(1,4/5) 6308839686631625 a007 Real Root Of -945*x^4+917*x^3+164*x^2+666*x-566 6308839699152750 a003 sin(Pi*2/81)+sin(Pi*14/75) 6308839702230772 r005 Im(z^2+c),c=-53/122+53/63*I,n=3 6308839706239030 a007 Real Root Of -568*x^4-7*x^3-131*x^2+597*x+517 6308839713365878 r005 Im(z^2+c),c=-3/28+33/40*I,n=59 6308839729216730 h001 (1/8*exp(1)+4/5)/(4/11*exp(1)+9/11) 6308839729409456 a007 Real Root Of 337*x^4-326*x^3-704*x^2-820*x+826 6308839732595096 l006 ln(439/825) 6308839740767983 m001 cos(1)^(2/3*Pi*3^(1/2)/GAMMA(2/3)/ZetaQ(4)) 6308839744422255 a007 Real Root Of 187*x^4-414*x^3+628*x^2+218*x-246 6308839797292699 a007 Real Root Of -975*x^4+386*x^3-731*x^2-587*x+172 6308839821950832 m001 (Bloch+MertensB1)/(Psi(1,1/3)+GAMMA(7/12)) 6308839824560534 a001 322/3*701408733^(2/23) 6308839840858476 m005 (1/2*Catalan+8/9)/(4/7*5^(1/2)+6/7) 6308839906971208 b008 Sech[3^(1/32)] 6308839915991270 a007 Real Root Of -523*x^4+82*x^3-989*x^2+794*x+998 6308839946305279 m001 (1+sin(1/12*Pi))/(LaplaceLimit+MertensB3) 6308839983615508 r002 18th iterates of z^2 + 6308839985957630 r002 62th iterates of z^2 + 6308839991398830 m009 (3/4*Psi(1,1/3)+1/4)/(6*Catalan+3/4*Pi^2-1/2) 6308840010976569 m001 1/MadelungNaCl*FeigenbaumB/ln(GAMMA(5/12)) 6308840041975800 r002 9th iterates of z^2 + 6308840042994755 a001 29/2178309*5^(29/30) 6308840045309544 m001 Weierstrass^GAMMA(23/24)*GAMMA(2/3) 6308840058551855 r005 Im(z^2+c),c=-87/106+1/29*I,n=49 6308840094286628 m001 (GAMMA(17/24)+Landau)/(3^(1/2)-3^(1/3)) 6308840109550605 r005 Im(z^2+c),c=-47/82+7/61*I,n=64 6308840113400520 r005 Re(z^2+c),c=-5/98+42/53*I,n=21 6308840142689442 l006 ln(7893/8407) 6308840146398648 a007 Real Root Of -139*x^4-866*x^3-77*x^2-887*x+213 6308840147539679 m001 (Catalan+Zeta(5))/(gamma(3)+HardyLittlewoodC4) 6308840160225943 k002 Champernowne real with 115*n^2-43*n-66 6308840160227082 r005 Re(z^2+c),c=-12/11+13/57*I,n=58 6308840198289223 m001 1/KhintchineLevy^2*Conway/ln(GAMMA(5/6))^2 6308840198728984 b008 -2+(18+E)*Pi 6308840198894764 m001 (-FeigenbaumD+MertensB3)/(GAMMA(11/12)-sin(1)) 6308840224726448 a007 Real Root Of -871*x^4+263*x^3-20*x^2+577*x+576 6308840232771788 m001 (Stephens+ZetaQ(2))/(gamma+BesselK(0,1)) 6308840241552069 r002 13th iterates of z^2 + 6308840249498797 m005 (1/2*2^(1/2)-4/11)/(-7/20+2/5*5^(1/2)) 6308840257119883 r005 Im(z^2+c),c=-9/17+29/49*I,n=13 6308840259139405 r002 59th iterates of z^2 + 6308840275263827 r009 Re(z^3+c),c=-7/66+25/43*I,n=29 6308840279948260 a007 Real Root Of -273*x^4+586*x^3+583*x^2-102*x-106 6308840292621511 m001 (Landau+Rabbit)/(sin(1)+ln(Pi)) 6308840293596117 a007 Real Root Of 351*x^4-789*x^3-785*x^2+290*x+272 6308840302932920 h001 (-7*exp(2/3)-7)/(-2*exp(-2)-3) 6308840306037225 a007 Real Root Of 729*x^4+51*x^3+212*x^2+371*x+47 6308840314820228 a001 329/1926*322^(5/8) 6308840321106523 a007 Real Root Of 579*x^4-992*x^3-974*x^2+89*x+103 6308840336664049 m001 (Psi(1,1/3)+arctan(1/3))/(Salem+Weierstrass) 6308840344055059 r005 Re(z^2+c),c=7/22+9/28*I,n=19 6308840344423788 a007 Real Root Of 638*x^4-852*x^3+838*x^2+581*x-282 6308840379689810 a007 Real Root Of 716*x^4-652*x^3-506*x^2-308*x+446 6308840380594805 r005 Re(z^2+c),c=15/34+9/43*I,n=29 6308840385836449 a007 Real Root Of -86*x^4-612*x^3-545*x^2-623*x+325 6308840386635670 m001 Si(Pi)/exp(Bloch)/FeigenbaumC 6308840391374167 m005 (1/3*Catalan+1/8)/(3/4*Zeta(3)-5/6) 6308840413318025 q001 1099/1742 6308840419819047 a001 233/521*521^(11/26) 6308840439032101 a003 sin(Pi*29/107)*sin(Pi*19/60) 6308840560391724 a007 Real Root Of 146*x^4-817*x^3-590*x^2-238*x+567 6308840583730252 m001 (Cahen+Kolakoski)/(TreeGrowth2nd+Tribonacci) 6308840596809245 m001 (2^(1/3)+ln(2+3^(1/2)))/(GAMMA(5/6)+Otter) 6308840596872795 m001 HardyLittlewoodC4/(GAMMA(17/24)-Pi^(1/2)) 6308840656860253 r002 43th iterates of z^2 + 6308840702718473 m001 (cos(Pi/12)+2/3)/(sin(Pi/5)+2) 6308840704732707 m005 (1/3*3^(1/2)-1/10)/(2/5*Pi-1/2) 6308840728065710 a007 Real Root Of -355*x^4-124*x^3-726*x^2-520*x-14 6308840756128826 m001 (Rabbit+Trott2nd)/(FeigenbaumC-LaplaceLimit) 6308840768482548 m001 (FransenRobinson+Trott)/(gamma(1)-Artin) 6308840791203999 r009 Im(z^3+c),c=-47/126+35/61*I,n=4 6308840794140762 m001 (LambertW(1)+KhinchinHarmonic)/(Otter+Rabbit) 6308840818169904 m008 (5*Pi^4+4/5)/(4/5*Pi^4-3/5) 6308840826127946 a007 Real Root Of -685*x^4-498*x^3-818*x^2+970*x+921 6308840828276482 a007 Real Root Of -163*x^4+482*x^3+18*x^2+839*x+669 6308840828690663 a007 Real Root Of -812*x^4+799*x^3-627*x^2-564*x+223 6308840860611897 m006 (3*ln(Pi)-3/4)/(4/5/Pi+4) 6308840882758698 p001 sum(1/(351*n+244)/n/(3^n),n=1..infinity) 6308840893710106 a001 3/1134903170*55^(19/24) 6308840901821216 a008 Real Root of (-1-x+x^2-x^4-x^5+x^6+x^7-x^11) 6308840915767330 a007 Real Root Of -851*x^4+495*x^3-693*x^2+734*x+998 6308840942883609 r002 19th iterates of z^2 + 6308840951390075 a001 377/521*322^(3/8) 6308840965605833 m001 (Si(Pi)+ArtinRank2)/(Backhouse+Sierpinski) 6308840993064020 a005 (1/cos(14/219*Pi))^1565 6308840995200146 l005 923521/14161/(exp(961/119)^2-1) 6308841057103683 r005 Re(z^2+c),c=-1/15+45/61*I,n=8 6308841061280895 m005 (1/2*Zeta(3)+7/8)/(7/11*5^(1/2)+11/12) 6308841081269916 a001 5/64079*29^(18/29) 6308841083973386 h001 (2/9*exp(2)+2/9)/(6/7*exp(1)+5/8) 6308841110978216 m005 (1/2*exp(1)-1/11)/(2*2^(1/2)-9/11) 6308841138139216 k001 Champernowne real with 254*n+376 6308841153611875 b008 5+EulerGamma*Sqrt[2+Pi] 6308841155488379 a007 Real Root Of -596*x^4+119*x^3-696*x^2+605*x+783 6308841160526003 k002 Champernowne real with 231/2*n^2-89/2*n-65 6308841162783273 m001 GAMMA(1/24)^exp(1/2)*GAMMA(5/12)^exp(1/2) 6308841209809084 s002 sum(A124791[n]/(n^2*exp(n)-1),n=1..infinity) 6308841230671035 m001 Rabbit*(ln(2)/ln(10)+sin(1/5*Pi)) 6308841231128441 a007 Real Root Of 854*x^4-464*x^3+816*x^2+77*x-528 6308841234226624 m005 (1/3*Pi-1/2)/(37/12+5/2*5^(1/2)) 6308841259866904 m001 cos(1/5*Pi)^KomornikLoreti-ZetaQ(2) 6308841283756412 p001 sum(1/(356*n+159)/(100^n),n=0..infinity) 6308841300601268 a007 Real Root Of 274*x^4+401*x^3+783*x^2-215*x-390 6308841324270896 m009 (3/4*Psi(1,3/4)+4/5)/(1/3*Pi^2+1) 6308841340472829 m001 (FeigenbaumC-GlaisherKinkelin)/(Trott+Thue) 6308841349329490 m001 1/exp(GAMMA(5/6))/FeigenbaumC^2/GAMMA(7/12) 6308841379409428 a007 Real Root Of -234*x^4+349*x^3-747*x^2-46*x+393 6308841382271259 r005 Re(z^2+c),c=-13/10+11/166*I,n=12 6308841386542639 m005 (1/2*2^(1/2)-2/3)/(7/10*3^(1/2)-4/7) 6308841396259427 a007 Real Root Of 759*x^4-146*x^3+480*x^2-73*x-394 6308841398645605 r005 Re(z^2+c),c=9/58+32/61*I,n=59 6308841424112255 r005 Im(z^2+c),c=2/15+29/46*I,n=57 6308841446275912 a007 Real Root Of -804*x^4+162*x^3-872*x^2+618*x+905 6308841539196422 a007 Real Root Of 252*x^4-885*x^3+722*x^2+172*x-441 6308841552665130 r005 Re(z^2+c),c=-29/122+13/20*I,n=42 6308841570853929 m001 (Catalan+BesselJ(1,1))/(Bloch+Riemann2ndZero) 6308841582474517 a001 2584/15127*322^(5/8) 6308841587195587 a003 cos(Pi*3/62)*sin(Pi*13/59) 6308841604317447 a001 34/11*24476^(10/19) 6308841609860063 a001 34/11*20633239^(6/19) 6308841609860068 a001 34/11*599074578^(5/19) 6308841609860739 a001 34/11*1860498^(7/19) 6308841613427415 a001 3/75025*13^(8/45) 6308841616122797 m001 (PlouffeB-Riemann3rdZero)/(ln(5)+BesselI(0,2)) 6308841625096374 a001 34/11*15127^(21/38) 6308841628863413 a007 Real Root Of 849*x^4-851*x^3-83*x^2-60*x-353 6308841631210475 r005 Im(z^2+c),c=-127/110+5/62*I,n=53 6308841633663879 m001 (gamma(1)+exp(-1/2*Pi))/(3^(1/2)-exp(Pi)) 6308841664047520 m001 Tribonacci*Paris^2*exp((2^(1/3))) 6308841709984153 m001 ln(5)/(exp(1/Pi)+Salem) 6308841725894735 a001 34/11*5778^(35/57) 6308841730051414 m001 (Salem-ZetaQ(4))/(Zeta(5)-GAMMA(11/12)) 6308841738576125 a001 1/18*(1/2*5^(1/2)+1/2)^7*123^(16/21) 6308841742328563 p003 LerchPhi(1/100,4,257/229) 6308841753617968 m001 2^(1/3)/GAMMA(7/12)/Mills 6308841767422791 a001 2255/13201*322^(5/8) 6308841777162977 b008 ArcCosh[8*(E+Pi)^2] 6308841786006441 r002 62th iterates of z^2 + 6308841789627236 r009 Re(z^3+c),c=-1/86+43/64*I,n=44 6308841791404532 a007 Real Root Of 52*x^4+220*x^3-633*x^2+193*x-722 6308841791903131 h001 (2/3*exp(2)+7/8)/(2/7*exp(1)+1/7) 6308841794406380 a001 17711/103682*322^(5/8) 6308841798343233 a001 15456/90481*322^(5/8) 6308841798917612 a001 121393/710647*322^(5/8) 6308841799001413 a001 105937/620166*322^(5/8) 6308841799013639 a001 832040/4870847*322^(5/8) 6308841799015423 a001 726103/4250681*322^(5/8) 6308841799015683 a001 5702887/33385282*322^(5/8) 6308841799015721 a001 4976784/29134601*322^(5/8) 6308841799015727 a001 39088169/228826127*322^(5/8) 6308841799015727 a001 34111385/199691526*322^(5/8) 6308841799015727 a001 267914296/1568397607*322^(5/8) 6308841799015727 a001 233802911/1368706081*322^(5/8) 6308841799015727 a001 1836311903/10749957122*322^(5/8) 6308841799015727 a001 1602508992/9381251041*322^(5/8) 6308841799015727 a001 12586269025/73681302247*322^(5/8) 6308841799015727 a001 10983760033/64300051206*322^(5/8) 6308841799015727 a001 86267571272/505019158607*322^(5/8) 6308841799015727 a001 75283811239/440719107401*322^(5/8) 6308841799015727 a001 2504730781961/14662949395604*322^(5/8) 6308841799015727 a001 139583862445/817138163596*322^(5/8) 6308841799015727 a001 53316291173/312119004989*322^(5/8) 6308841799015727 a001 20365011074/119218851371*322^(5/8) 6308841799015727 a001 7778742049/45537549124*322^(5/8) 6308841799015727 a001 2971215073/17393796001*322^(5/8) 6308841799015727 a001 1134903170/6643838879*322^(5/8) 6308841799015727 a001 433494437/2537720636*322^(5/8) 6308841799015728 a001 165580141/969323029*322^(5/8) 6308841799015728 a001 63245986/370248451*322^(5/8) 6308841799015730 a001 24157817/141422324*322^(5/8) 6308841799015744 a001 9227465/54018521*322^(5/8) 6308841799015844 a001 3524578/20633239*322^(5/8) 6308841799016525 a001 1346269/7881196*322^(5/8) 6308841799021195 a001 514229/3010349*322^(5/8) 6308841799053204 a001 196418/1149851*322^(5/8) 6308841799272598 a001 75025/439204*322^(5/8) 6308841800776342 a001 28657/167761*322^(5/8) 6308841806214836 r002 15th iterates of z^2 + 6308841811083156 a001 10946/64079*322^(5/8) 6308841838333087 r005 Im(z^2+c),c=-19/27+4/63*I,n=37 6308841843088418 q001 2533/4015 6308841847586949 a007 Real Root Of 793*x^4-328*x^3+518*x^2-377*x-652 6308841860387642 r005 Re(z^2+c),c=-19/28+1/52*I,n=3 6308841881727110 a001 4181/24476*322^(5/8) 6308841882866988 m001 (Magata+Trott2nd)/(Catalan+Zeta(1/2)) 6308841944297968 a007 Real Root Of 84*x^4-955*x^3+564*x^2+440*x-200 6308841950333141 m008 (1/3*Pi^5-2/3)/(1/6*Pi^6+2/5) 6308841951594191 a007 Real Root Of 166*x^4+311*x^3+737*x^2-985*x-65 6308841968187704 m001 Zeta(1,2)*Conway^2/ln(sqrt(1+sqrt(3)))^2 6308842008011069 a007 Real Root Of 355*x^4-878*x^3-265*x^2-938*x-763 6308842008451412 l006 ln(5326/10009) 6308842014195493 r002 22th iterates of z^2 + 6308842026130380 m005 (1/2*3^(1/2)+5/8)/(5/6*5^(1/2)+1/2) 6308842048944967 m001 (Pi-gamma(2))/(Totient-Tribonacci) 6308842056045410 r005 Re(z^2+c),c=-83/126+8/25*I,n=15 6308842088635797 m001 1/Conway*ln(ErdosBorwein)*log(2+sqrt(3))^2 6308842109546555 m001 GAMMA(5/12)^2*exp(GAMMA(17/24))^2/Zeta(1,2) 6308842139624083 r005 Re(z^2+c),c=27/74+25/41*I,n=19 6308842154209751 r005 Re(z^2+c),c=-65/126+33/56*I,n=40 6308842160826063 k002 Champernowne real with 116*n^2-46*n-64 6308842161321955 s002 sum(A187775[n]/((2*n)!),n=1..infinity) 6308842212891928 l006 ln(4887/9184) 6308842214113446 m001 1/exp(LambertW(1))^2*GolombDickman*Pi 6308842226905848 m001 1/(3^(1/3))/ln(FeigenbaumC)*GAMMA(1/24)^2 6308842232004348 s002 sum(A089671[n]/((10^n+1)/n),n=1..infinity) 6308842266674400 r009 Re(z^3+c),c=-1/110+26/59*I,n=11 6308842270860704 a007 Real Root Of 630*x^4-970*x^3-781*x^2-129*x+536 6308842282826736 m005 (1/2*Zeta(3)+1/4)/(7/9*gamma+9/10) 6308842289642408 r005 Re(z^2+c),c=-61/60+33/41*I,n=2 6308842296957601 m001 (Shi(1)+gamma)^Zeta(1,2) 6308842302739707 m001 GAMMA(7/24)^2/exp(CareFree)^2*exp(1) 6308842336738216 r005 Im(z^2+c),c=5/48+39/64*I,n=57 6308842354266372 r005 Im(z^2+c),c=-35/64+7/62*I,n=45 6308842365927986 a001 1597/9349*322^(5/8) 6308842417973378 m005 (1/2*Pi+5/8)/(9/10*gamma-4) 6308842448131999 r009 Im(z^3+c),c=-9/110+37/52*I,n=5 6308842457687378 l006 ln(4448/8359) 6308842471634939 a005 (1/sin(68/145*Pi))^1838 6308842483497855 m001 (Psi(1,1/3)+Artin)/(-MadelungNaCl+Magata) 6308842491650004 m009 (32/5*Catalan+4/5*Pi^2-4/5)/(2*Pi^2+4/5) 6308842508420616 m001 1/exp(log(2+sqrt(3)))/GAMMA(5/6)^2*sqrt(3)^2 6308842513271524 a007 Real Root Of 968*x^4-340*x^3+567*x^2-39*x-489 6308842519953227 m001 ArtinRank2/exp(GaussKuzminWirsing)*GAMMA(3/4) 6308842543610273 m001 Backhouse+(5^(1/2))^ReciprocalLucas 6308842550160930 m001 (Zeta(3)+Pi^(1/2))/(MasserGramain-ZetaP(3)) 6308842558050648 r002 14th iterates of z^2 + 6308842559632825 r005 Re(z^2+c),c=-93/122+5/29*I,n=15 6308842584226924 a003 sin(Pi*25/76)/cos(Pi*21/46) 6308842617455788 a007 Real Root Of 9*x^4+576*x^3+502*x^2-971*x+783 6308842649283527 r005 Re(z^2+c),c=-41/30+4/101*I,n=57 6308842665035127 a007 Real Root Of 170*x^4-681*x^3-91*x^2+567*x+196 6308842676394804 m008 (5*Pi^3-5/6)/(4/5*Pi^5-2/5) 6308842680101013 r002 8th iterates of z^2 + 6308842688544738 r002 6th iterates of z^2 + 6308842701582994 m001 LandauRamanujan^2*exp(FeigenbaumDelta)/Pi^2 6308842724646167 r002 8th iterates of z^2 + 6308842727256109 m001 (BesselI(0,2)-gamma)/(Tribonacci+Thue) 6308842743010524 a007 Real Root Of -791*x^4+472*x^3-947*x^2-743*x+152 6308842756094794 l006 ln(4009/7534) 6308842855000701 h001 (-5*exp(3/2)+8)/(-9*exp(1/2)-8) 6308842873719588 a001 377/5778*322^(19/24) 6308842924175502 b008 ArcCsch[(6*Sqrt[3])/7] 6308842937891027 r009 Re(z^3+c),c=-3/26+25/37*I,n=37 6308842938847338 q001 1434/2273 6308842956487732 m002 (Cosh[Pi]*ProductLog[Pi])/2+Sech[Pi]*Tanh[Pi] 6308842957125147 a003 cos(Pi*17/95)*sin(Pi*15/56) 6308842969248880 a008 Real Root of (-5+9*x+x^2-6*x^4-5*x^8) 6308842980617965 m005 (1/2*2^(1/2)-1/12)/(-27/16+5/16*5^(1/2)) 6308842992796357 a007 Real Root Of -242*x^4+767*x^3+775*x^2+430*x-734 6308842996845185 m001 FeigenbaumD*(MasserGramain-ln(2^(1/2)+1)) 6308843007961582 a003 sin(Pi*11/92)/sin(Pi*16/81) 6308843012332395 m001 (gamma(2)-FeigenbaumB)/(PlouffeB+Thue) 6308843030996452 a001 322/121393*8^(5/12) 6308843059403804 r002 22th iterates of z^2 + 6308843060081777 a003 cos(Pi*8/71)-cos(Pi*14/87) 6308843071358204 a007 Real Root Of -974*x^4+242*x^3-105*x^2+322*x+460 6308843107139112 m005 (1/2*Pi-4/7)/(8/11*2^(1/2)+5/9) 6308843108430842 m002 5-Cosh[Pi]+3/(Pi^2*ProductLog[Pi]) 6308843127892032 l006 ln(3570/6709) 6308843158646644 s001 sum(exp(-3*Pi/5)^n*A221111[n],n=1..infinity) 6308843161126123 k002 Champernowne real with 233/2*n^2-95/2*n-63 6308843167409907 m006 (5*exp(Pi)+5/6)/(1/3*Pi+4/5) 6308843177803708 r009 Im(z^3+c),c=-13/24+21/58*I,n=9 6308843213628869 a007 Real Root Of -677*x^4+769*x^3-453*x^2-662*x+63 6308843220647900 a007 Real Root Of 441*x^4+61*x^3+119*x^2-398*x-353 6308843221067819 a003 sin(Pi*17/62)*sin(Pi*5/16) 6308843234251548 a007 Real Root Of 693*x^4-554*x^3+111*x^2-710*x-741 6308843239173367 a007 Real Root Of -372*x^4-51*x^3+247*x^2+370*x-260 6308843342808761 r005 Im(z^2+c),c=-47/64+4/63*I,n=42 6308843385274676 s002 sum(A243028[n]/(exp(pi*n)+1),n=1..infinity) 6308843386535686 a007 Real Root Of -380*x^4+108*x^3-63*x^2+337*x+325 6308843387601239 m005 (1/3*Catalan+2/9)/(5/12*Catalan+5/11) 6308843401846555 r008 a(0)=7,K{-n^6,-8+7*n^3-5*n^2+9*n} 6308843427390955 a007 Real Root Of 137*x^4+910*x^3+264*x^2-61*x+580 6308843427715349 a007 Real Root Of 822*x^4+461*x^3-32*x^2-663*x-420 6308843435901998 a007 Real Root Of -163*x^4+646*x^3-779*x^2+580*x+864 6308843460858312 a007 Real Root Of -599*x^4+815*x^3+501*x^2-490*x-209 6308843463350595 r005 Re(z^2+c),c=7/36+9/28*I,n=25 6308843570116071 p003 LerchPhi(1/8,6,14/41) 6308843582563449 a007 Real Root Of -442*x^4-58*x^3+11*x^2+794*x+552 6308843585283689 m001 PrimesInBinary*(exp(1/exp(1))+ZetaP(4)) 6308843603949224 l006 ln(3131/5884) 6308843616557338 a007 Real Root Of -97*x^4-737*x^3-850*x^2-340*x+288 6308843616597425 m001 (Ei(1,1)+gamma(1))/(GAMMA(7/12)+Kolakoski) 6308843623717537 m001 Pi*csc(1/12*Pi)/GAMMA(11/12)*Artin*Porter 6308843628569738 m008 (3/4*Pi^3+1)/(4*Pi^6-1) 6308843646009711 p001 sum((-1)^n/(402*n+155)/(12^n),n=0..infinity) 6308843647701642 m001 (-Cahen+Sierpinski)/(5^(1/2)+sin(1)) 6308843699597894 r002 45th iterates of z^2 + 6308843712296584 a007 Real Root Of 245*x^4-572*x^3-936*x^2-746*x+948 6308843715512626 m008 (1/2*Pi^6+4)/(4/5*Pi^6-5/6) 6308843728603398 m005 (2/3*Pi-3/4)/(3/5*exp(1)+1/2) 6308843779112563 p003 LerchPhi(1/10,4,199/177) 6308843784404334 h001 (5/8*exp(2)+5/11)/(2/9*exp(1)+1/5) 6308843789558466 m005 (1/3*gamma+1/4)/(9/10*5^(1/2)+5) 6308843796023308 s002 sum(A154631[n]/(exp(n)),n=1..infinity) 6308843800603469 m001 HardyLittlewoodC3^LambertW(1)-OrthogonalArrays 6308843816112337 a007 Real Root Of -3*x^4+131*x^3+783*x^2-972*x+350 6308843845087188 a007 Real Root Of 714*x^4-44*x^3-640*x^2-736*x+617 6308843885708420 m001 MertensB3/GolombDickman*Otter 6308843908395279 r002 12th iterates of z^2 + 6308843948624634 a007 Real Root Of -130*x^4-720*x^3+614*x^2-2*x+697 6308843951664520 a007 Real Root Of -772*x^4+609*x^3-721*x^2+648*x+971 6308843982799161 r005 Im(z^2+c),c=-2/3+81/245*I,n=33 6308843996994740 r005 Im(z^2+c),c=-2/25+4/55*I,n=3 6308843997379027 r005 Im(z^2+c),c=-97/118+14/29*I,n=4 6308844007017714 a001 21/3571*199^(13/29) 6308844015539685 m001 (KhinchinLevy+Riemann1stZero)/(exp(Pi)+ln(Pi)) 6308844025391787 m001 (KhinchinLevy-Kolakoski)/(Backhouse-GaussAGM) 6308844034893942 r005 Re(z^2+c),c=19/56+16/51*I,n=24 6308844052988914 a007 Real Root Of -565*x^4+28*x^3-241*x^2-99*x+130 6308844085356855 a001 121393/843*18^(23/45) 6308844093804487 a007 Real Root Of 895*x^4+12*x^3+703*x^2+841*x+112 6308844106285668 r009 Re(z^3+c),c=-17/30+37/54*I,n=4 6308844121904120 m001 1/ln((3^(1/3)))^2*Artin^2/sqrt(1+sqrt(3)) 6308844126672604 r005 Re(z^2+c),c=13/38+1/25*I,n=4 6308844134980599 r001 16i'th iterates of 2*x^2-1 of 6308844137666217 m001 ln(Pi)/TreeGrowth2nd/ThueMorse 6308844148383634 h001 (7/10*exp(2)+7/11)/(1/10*exp(2)+2/11) 6308844149863427 m001 Riemann1stZero^2*ln(ErdosBorwein)/GAMMA(3/4)^2 6308844161426183 k002 Champernowne real with 117*n^2-49*n-62 6308844183777043 m001 (cos(1)+BesselI(1,1))/(Salem+Stephens) 6308844186534202 r009 Im(z^3+c),c=-9/28+5/7*I,n=30 6308844198163377 a001 29*1836311903^(9/10) 6308844198212554 l006 ln(2933/3124) 6308844200638726 m001 Sierpinski^2*exp(LandauRamanujan)*GAMMA(5/24) 6308844200664399 r005 Im(z^2+c),c=-14/15+3/55*I,n=12 6308844200853509 p001 sum((-1)^n/(515*n+157)/(24^n),n=0..infinity) 6308844225295159 a007 Real Root Of 839*x^4-814*x^3+74*x^2-653*x+454 6308844235273176 l006 ln(2692/5059) 6308844238115064 a007 Real Root Of -681*x^4+763*x^3-320*x^2+750*x+900 6308844247523713 m001 GAMMA(3/4)/(FeigenbaumAlpha^Sarnak) 6308844253939067 m005 (1/2*2^(1/2)+1/5)/(7/8*Catalan+7/11) 6308844284314294 m006 (1/6*Pi+3)/(1/4*exp(Pi)-1/5) 6308844306497154 m005 (1/2*3^(1/2)-2/7)/(3/11*exp(1)-5/6) 6308844312846033 r005 Re(z^2+c),c=-59/74+6/35*I,n=40 6308844315908908 a007 Real Root Of 339*x^4+746*x^3+577*x^2-355*x-320 6308844324359765 m006 (3/5/Pi-3/5)/(2*Pi+1/5) 6308844332880505 a007 Real Root Of 721*x^4-547*x^3+324*x^2-229*x-525 6308844416863576 r005 Im(z^2+c),c=5/29+27/46*I,n=22 6308844423057592 r005 Im(z^2+c),c=-19/86+2/23*I,n=9 6308844474711791 r005 Im(z^2+c),c=-7/30+23/36*I,n=49 6308844479034351 a007 Real Root Of -676*x^4+737*x^3+284*x^2-62*x+140 6308844493145983 r002 35th iterates of z^2 + 6308844493322227 r005 Re(z^2+c),c=-25/34+1/108*I,n=11 6308844507845934 q001 1769/2804 6308844519182260 h001 (4/7*exp(2)+7/12)/(10/11*exp(2)+9/10) 6308844524635042 r005 Im(z^2+c),c=1/8+23/38*I,n=13 6308844532121852 m001 TwinPrimes-exp(1)*Weierstrass 6308844534455959 a001 1/76*(1/2*5^(1/2)+1/2)^5*29^(10/23) 6308844559612139 r002 58th iterates of z^2 + 6308844583348289 a007 Real Root Of 843*x^4-639*x^3-830*x^2+2*x+356 6308844604695551 a007 Real Root Of 689*x^4+592*x^3+597*x^2-767*x-682 6308844616565390 r009 Im(z^3+c),c=-27/74+35/57*I,n=25 6308844635005268 l006 ln(4945/9293) 6308844648132721 a007 Real Root Of 119*x^4-293*x^3+528*x^2-72*x-348 6308844668067801 r009 Re(z^3+c),c=-41/114+31/42*I,n=6 6308844668585108 r005 Im(z^2+c),c=-1/14+58/61*I,n=3 6308844679236762 m001 BesselI(1,1)+gamma(3)^TreeGrowth2nd 6308844720486126 m001 (arctan(1/2)-sin(1/12*Pi))/(Robbin+Sierpinski) 6308844748424618 m001 (Catalan+Bloch)/(MadelungNaCl+ZetaP(2)) 6308844751948244 m001 1/Zeta(1/2)/GAMMA(5/24)^2*exp(gamma) 6308844752711649 m001 ZetaP(4)^Tribonacci*Rabbit 6308844757412805 a007 Real Root Of 459*x^4-969*x^3+621*x^2-285*x-743 6308844759220348 m005 (1/2*5^(1/2)+6/7)/(8/9*gamma-1/5) 6308844804452498 r002 4th iterates of z^2 + 6308844807758416 m005 (3/20+1/4*5^(1/2))/(23/110+9/22*5^(1/2)) 6308844844609297 m001 (Zeta(1/2)+FeigenbaumB)/(Niven-Rabbit) 6308844850222077 a007 Real Root Of -74*x^4-552*x^3-460*x^2+607*x+758 6308844856826700 v002 sum(1/(2^n+(30*n^2-47*n+43)),n=1..infinity) 6308844871171944 a001 3571/610*89^(1/60) 6308844877650757 m001 MadelungNaCl/exp(MertensB1)/Zeta(1/2)^2 6308844903620988 m001 (cos(1)+Magata)/(ZetaQ(2)+ZetaQ(3)) 6308844929217233 a007 Real Root Of 2*x^4-312*x^3+12*x^2-361*x+301 6308844937515013 a005 (1/cos(7/157*Pi))^889 6308844943896516 r005 Im(z^2+c),c=-35/64+7/62*I,n=38 6308844988444108 m006 (1/6*exp(2*Pi)-4)/(4/5*exp(Pi)-5) 6308844991922598 a007 Real Root Of 840*x^4-876*x^3+865*x^2-338*x-25 6308844993116043 r005 Re(z^2+c),c=-49/64+20/57*I,n=5 6308845002808786 a007 Real Root Of -574*x^4+130*x^3+789*x^2+999*x-886 6308845016742133 a007 Real Root Of 458*x^4-572*x^3+950*x^2+327*x-388 6308845017896776 a007 Real Root Of -556*x^4-98*x^3-895*x^2+243*x+573 6308845046396623 a007 Real Root Of -430*x^4+449*x^3-386*x^2+489*x+643 6308845060664106 a008 Real Root of (-4+6*x+3*x^2-6*x^3-x^4) 6308845076651382 a005 (1/sin(88/191*Pi))^1147 6308845077178812 m005 (1/3*Zeta(3)+3/7)/(5/12*exp(1)+2/11) 6308845088131475 r002 58th iterates of z^2 + 6308845089886677 r009 Im(z^3+c),c=-21/118+31/43*I,n=30 6308845100559795 a007 Real Root Of 772*x^4-451*x^3+983*x^2-460*x-917 6308845108763722 h001 (1/3*exp(2)+1/8)/(4/9*exp(2)+9/11) 6308845112625660 l006 ln(2253/4234) 6308845121387664 a007 Real Root Of -425*x^4+819*x^3-16*x^2+772*x-619 6308845132774398 a003 sin(Pi*2/89)*sin(Pi*37/105) 6308845138406632 a007 Real Root Of 580*x^4-466*x^3-55*x^2-233*x-334 6308845142212548 r002 32th iterates of z^2 + 6308845151920390 a007 Real Root Of -915*x^4+469*x^3-754*x^2-182*x+448 6308845161726243 k002 Champernowne real with 235/2*n^2-101/2*n-61 6308845164218510 m002 -Pi^6+25*Log[Pi]*Sinh[Pi] 6308845167040127 h001 (4/9*exp(1)+3/11)/(1/4*exp(2)+1/2) 6308845167840307 a005 (1/sin(78/197*Pi))^1134 6308845224629004 a007 Real Root Of -963*x^4+586*x^3-783*x^2-335*x+400 6308845256707330 m001 (ln(2)/ln(10)+BesselK(1,1))/(MertensB3+Paris) 6308845279105459 a007 Real Root Of -26*x^4+691*x^3+704*x^2+175*x-560 6308845282939071 a007 Real Root Of -904*x^4+986*x^3-728*x^2-497*x+367 6308845302713137 m001 (ln(2)/ln(10)+ArtinRank2)/(Sarnak+Thue) 6308845304089995 m007 (-1/3*gamma-ln(2)+1/6*Pi+1/5)/(-3/4*gamma+3) 6308845335219668 a007 Real Root Of 775*x^4+118*x^3+957*x^2+241*x-322 6308845363540692 a007 Real Root Of -903*x^4+174*x^3+39*x^2+770*x+657 6308845368746451 a007 Real Root Of -750*x^4-264*x^3-634*x^2+788*x+802 6308845370027394 s002 sum(A133559[n]/((3*n)!),n=1..infinity) 6308845388122306 p004 log(16111/8573) 6308845394813656 r009 Im(z^3+c),c=-11/23+30/59*I,n=29 6308845399811132 a007 Real Root Of 249*x^4-676*x^3-93*x^2-74*x+214 6308845438548478 a003 sin(Pi*4/63)/sin(Pi*6/59) 6308845440046950 m005 (1/2*2^(1/2)-2/11)/(7/10*gamma+3/7) 6308845442461118 a007 Real Root Of 768*x^4-488*x^3-528*x^2-374*x-270 6308845445449770 m001 1/(sinh(1)+HardyLittlewoodC5) 6308845452881877 r002 18th iterates of z^2 + 6308845452957554 m001 GAMMA(23/24)*exp(GAMMA(17/24))/sin(Pi/5) 6308845502694554 m001 GAMMA(19/24)^(Pi^(1/2))*Weierstrass 6308845510774618 m001 (Si(Pi)+Zeta(1,-1))/(-FeigenbaumB+Thue) 6308845528390549 a007 Real Root Of 356*x^4+645*x^3+909*x^2+273*x-84 6308845535241587 a007 Real Root Of -664*x^4+557*x^3+854*x^2+60*x-57 6308845547547542 r005 Im(z^2+c),c=-2/23+43/55*I,n=14 6308845556602798 m006 (1/6*exp(Pi)+5/6)/(3*ln(Pi)+4) 6308845577211394 q001 2104/3335 6308845580219191 a003 sin(Pi*7/47)/sin(Pi*18/71) 6308845581129533 m005 (1/2*exp(1)+1/12)/(5/8*5^(1/2)+8/9) 6308845589195724 m001 GaussAGM/((3^(1/3))^LandauRamanujan) 6308845597922951 h001 (3/8*exp(2)+8/9)/(2/3*exp(2)+7/8) 6308845620241176 m001 1/MinimumGamma*Champernowne^2*ln(FeigenbaumC) 6308845624606966 b008 1+85*Cosh[5] 6308845627830498 a007 Real Root Of 506*x^4-463*x^3+20*x^2-849*x-740 6308845629760184 a007 Real Root Of 202*x^4-446*x^3-126*x^2+24*x+115 6308845637419766 a007 Real Root Of -281*x^4+841*x^3+904*x^2+749*x-999 6308845638490052 m002 -6+2*Pi^5+E^Pi*ProductLog[Pi] 6308845640867274 r009 Re(z^3+c),c=-1/8+31/47*I,n=13 6308845646614161 a001 987/9349*322^(17/24) 6308845676408229 m001 (PisotVijayaraghavan-Zeta(3))^Psi(1,1/3) 6308845684690412 a001 610/3571*322^(5/8) 6308845693356595 l006 ln(4067/7643) 6308845696536513 r002 8th iterates of z^2 + 6308845703466795 a007 Real Root Of 123*x^4-707*x^3+897*x^2+27*x-537 6308845721121971 r005 Re(z^2+c),c=-1/29+23/30*I,n=53 6308845729489871 r009 Re(z^3+c),c=-43/78+13/60*I,n=7 6308845742277107 r009 Im(z^3+c),c=-73/102+13/29*I,n=3 6308845751562028 a007 Real Root Of -703*x^4-263*x^3+189*x^2+450*x+254 6308845769599959 a003 sin(Pi*4/77)+sin(Pi*9/58) 6308845774255970 m001 Ei(1)^exp(1)+GolombDickman 6308845784531264 r005 Im(z^2+c),c=-7/30+28/43*I,n=49 6308845794844611 r005 Re(z^2+c),c=-43/82+40/63*I,n=12 6308845797088681 m001 (Catalan-Shi(1))/(KomornikLoreti+ZetaP(2)) 6308845822620657 a007 Real Root Of 832*x^4+70*x^3+879*x^2+566*x-107 6308845852227450 m005 (1/3*gamma-1/8)/(3/7*Catalan-2/7) 6308845876568344 a005 (1/sin(100/233*Pi))^1827 6308845906850816 m001 MertensB3*ThueMorse+StolarskyHarborth 6308845916999058 r005 Im(z^2+c),c=37/102+1/10*I,n=23 6308845950360966 r005 Re(z^2+c),c=-1/13+37/50*I,n=35 6308845966886120 a007 Real Root Of -486*x^4-849*x^3-883*x^2+212*x+349 6308845970769422 r005 Re(z^2+c),c=-1/17+43/58*I,n=20 6308845981883282 a007 Real Root Of -567*x^4+473*x^3-844*x^2+443*x+824 6308845984718703 m005 (1/2*Zeta(3)-11/12)/(6/11*3^(1/2)-4/9) 6308846067969385 a007 Real Root Of 401*x^4-342*x^3-772*x^2-362*x+558 6308846069905767 m005 (1/2*exp(1)+9/11)/(11/12*Pi+4/7) 6308846075328478 h001 (2/11*exp(2)+7/10)/(6/7*exp(1)+10/11) 6308846097413697 a007 Real Root Of -491*x^4+252*x^3-668*x^2+436*x+682 6308846097800624 m005 (1/2+1/4*5^(1/2))/(11/12*3^(1/2)+1/11) 6308846118784107 m001 arctan(1/2)^Conway/(TwinPrimes^Conway) 6308846121882742 a007 Real Root Of 869*x^4-130*x^3+355*x^2+421*x-46 6308846134585364 m001 (arctan(1/2)+Niven)/(Zeta(5)-ln(2)) 6308846146219127 a003 cos(Pi*13/115)*cos(Pi*22/83) 6308846160289371 a007 Real Root Of 630*x^4+x^3+920*x^2-514*x-790 6308846162026303 k002 Champernowne real with 118*n^2-52*n-60 6308846162666676 r009 Im(z^3+c),c=-1/15+33/43*I,n=46 6308846195841594 a007 Real Root Of 297*x^4-632*x^3-70*x^2+469*x+118 6308846218426513 p004 log(28097/14951) 6308846220322818 r002 19th iterates of z^2 + 6308846279014467 r002 42th iterates of z^2 + 6308846312908268 a008 Real Root of x^5-x^4-11*x^3+13*x^2+9*x-2 6308846352819451 q001 2439/3866 6308846370507004 m001 arctan(1/2)/exp(DuboisRaymond)*sqrt(1+sqrt(3)) 6308846386767657 m001 GAMMA(23/24)^2/GaussKuzminWirsing/ln(sqrt(3)) 6308846414628211 l006 ln(1814/3409) 6308846454978103 g005 GAMMA(5/11)/GAMMA(9/11)/GAMMA(4/9)/GAMMA(2/3) 6308846468181618 m006 (2/5*exp(Pi)+3)/(2/3*exp(Pi)+4) 6308846474423558 r005 Im(z^2+c),c=-87/98+27/62*I,n=3 6308846482459363 r002 48th iterates of z^2 + 6308846493344423 r009 Im(z^3+c),c=-11/19+34/55*I,n=19 6308846500402776 a007 Real Root Of -693*x^4-149*x^3-77*x^2+932*x+691 6308846529381960 m001 (Porter+Tribonacci)/(Zeta(1,2)+MinimumGamma) 6308846535946797 a003 sin(Pi*11/109)-sin(Pi*47/120) 6308846552165119 r009 Im(z^3+c),c=-49/106+14/27*I,n=40 6308846558219090 a007 Real Root Of -580*x^4+696*x^3+685*x^2+466*x+288 6308846563186133 a007 Real Root Of -655*x^4+844*x^3-344*x^2-486*x+146 6308846567123681 m001 cos(1/12*Pi)*Bloch^LambertW(1) 6308846581675523 p001 sum(1/(381*n+160)/(32^n),n=0..infinity) 6308846584804034 a007 Real Root Of 643*x^4+346*x^3+975*x^2-672*x-827 6308846617512718 a007 Real Root Of -780*x^4+148*x^3-513*x^2+249*x+522 6308846634668782 a007 Real Root Of 690*x^4-103*x^3-586*x^2-991*x+775 6308846648534428 m004 3+(3*Sqrt[5])/Pi+(5*Cos[Sqrt[5]*Pi])/Pi 6308846691219633 a001 646/6119*322^(17/24) 6308846728311748 a007 Real Root Of -584*x^4+981*x^3+177*x^2-110*x+199 6308846733538646 m001 ln(Robbin)^2*CopelandErdos^2/GAMMA(3/4)^2 6308846756041422 a007 Real Root Of 871*x^4-477*x^3+270*x^2-90*x-422 6308846765812936 a007 Real Root Of -181*x^4+952*x^3-215*x^2-29*x+335 6308846778219324 a007 Real Root Of 843*x^4-591*x^3+253*x^2-18*x-394 6308846778544887 m005 (1/2*Catalan+4/7)/(5/12*5^(1/2)+7/10) 6308846788116296 m001 GAMMA(1/12)*(2^(1/3))/exp(exp(1))^2 6308846803570320 r002 58i'th iterates of 2*x/(1-x^2) of 6308846843625515 a001 6765/64079*322^(17/24) 6308846856056551 m001 (Zeta(5)-GAMMA(5/6))/(Champernowne+MertensB3) 6308846857537165 m005 (1/2*Pi-2)/(4*3^(1/2)-1/8) 6308846864271073 p001 sum((-1)^n/(515*n+152)/(5^n),n=0..infinity) 6308846865861234 a001 17711/167761*322^(17/24) 6308846869105381 a001 11592/109801*322^(17/24) 6308846869578696 a001 121393/1149851*322^(17/24) 6308846869647752 a001 317811/3010349*322^(17/24) 6308846869657827 a001 208010/1970299*322^(17/24) 6308846869659297 a001 2178309/20633239*322^(17/24) 6308846869659511 a001 5702887/54018521*322^(17/24) 6308846869659543 a001 3732588/35355581*322^(17/24) 6308846869659547 a001 39088169/370248451*322^(17/24) 6308846869659548 a001 102334155/969323029*322^(17/24) 6308846869659548 a001 66978574/634430159*322^(17/24) 6308846869659548 a001 701408733/6643838879*322^(17/24) 6308846869659548 a001 1836311903/17393796001*322^(17/24) 6308846869659548 a001 1201881744/11384387281*322^(17/24) 6308846869659548 a001 12586269025/119218851371*322^(17/24) 6308846869659548 a001 32951280099/312119004989*322^(17/24) 6308846869659548 a001 21566892818/204284540899*322^(17/24) 6308846869659548 a001 225851433717/2139295485799*322^(17/24) 6308846869659548 a001 182717648081/1730726404001*322^(17/24) 6308846869659548 a001 139583862445/1322157322203*322^(17/24) 6308846869659548 a001 53316291173/505019158607*322^(17/24) 6308846869659548 a001 10182505537/96450076809*322^(17/24) 6308846869659548 a001 7778742049/73681302247*322^(17/24) 6308846869659548 a001 2971215073/28143753123*322^(17/24) 6308846869659548 a001 567451585/5374978561*322^(17/24) 6308846869659548 a001 433494437/4106118243*322^(17/24) 6308846869659548 a001 165580141/1568397607*322^(17/24) 6308846869659548 a001 31622993/299537289*322^(17/24) 6308846869659550 a001 24157817/228826127*322^(17/24) 6308846869659562 a001 9227465/87403803*322^(17/24) 6308846869659644 a001 1762289/16692641*322^(17/24) 6308846869660205 a001 1346269/12752043*322^(17/24) 6308846869664054 a001 514229/4870847*322^(17/24) 6308846869690431 a001 98209/930249*322^(17/24) 6308846869871221 a001 75025/710647*322^(17/24) 6308846869982234 m005 (1/2*exp(1)+2/5)/(-43/66+1/6*5^(1/2)) 6308846871110375 a001 28657/271443*322^(17/24) 6308846873251797 m005 (1/2*Pi+9/11)/(3/7*3^(1/2)-4/11) 6308846874520536 m001 (Rabbit-Stephens)/(Artin+MadelungNaCl) 6308846879380987 a007 Real Root Of -635*x^4+232*x^3-574*x^2+372*x+622 6308846879603664 a001 5473/51841*322^(17/24) 6308846893312753 m005 (1/6*exp(1)-1/6)/(25/6+1/6*5^(1/2)) 6308846918494852 a007 Real Root Of 854*x^4+722*x^3+111*x^2-778*x-489 6308846924912691 a007 Real Root Of -939*x^4+417*x^3-374*x^2+158*x+502 6308846931279655 m001 ((1+3^(1/2))^(1/2)-TwinPrimes)/(exp(1)-ln(Pi)) 6308846937817530 a001 4181/39603*322^(17/24) 6308846951171580 b008 7^(3+ArcCsch[Pi]) 6308846954133521 r002 8th iterates of z^2 + 6308846960435336 a007 Real Root Of 937*x^4-583*x^3+41*x^2-591*x-684 6308846960937051 a007 Real Root Of 523*x^4-449*x^3+974*x^2+151*x-488 6308846979504260 h001 (2/7*exp(2)+7/11)/(5/9*exp(2)+1/4) 6308846982442729 m001 (-RenyiParking+Stephens)/(2^(1/2)+Mills) 6308847000958707 l006 ln(5003/9402) 6308847022876105 m001 (Pi+GAMMA(2/3))^GAMMA(3/4) 6308847034204711 m001 Paris^(Totient*ZetaR(2)) 6308847048157233 r005 Im(z^2+c),c=5/56+22/29*I,n=6 6308847050395896 s002 sum(A211178[n]/(n^2*exp(n)-1),n=1..infinity) 6308847068246106 m001 ln(BesselJ(0,1))*FeigenbaumC/log(1+sqrt(2))^2 6308847077733682 m003 -Log[1/2+Sqrt[5]/2]^(-1)+Tan[1/2+Sqrt[5]/2]/5 6308847091453941 r005 Im(z^2+c),c=-5/8+29/221*I,n=18 6308847098145164 a007 Real Root Of 43*x^4+138*x^3-760*x^2+417*x-587 6308847100179266 m001 (2^(1/3)-LambertW(1)*BesselI(1,2))/LambertW(1) 6308847104948489 m005 (1/2*Catalan+1/9)/(Zeta(3)-3/10) 6308847119146913 r005 Im(z^2+c),c=-7/15+9/16*I,n=45 6308847147905551 m001 (Porter+Trott)/(FeigenbaumD-PolyaRandomWalk3D) 6308847152023916 m001 2*Pi/GAMMA(5/6)*(ln(2)/ln(10)+FeigenbaumB) 6308847154741290 a007 Real Root Of -263*x^4+2*x^3-517*x^2-11*x+241 6308847160349550 a003 sin(Pi*1/88)/sin(Pi*2/111) 6308847162326363 k002 Champernowne real with 237/2*n^2-107/2*n-59 6308847168244518 m001 FeigenbaumD+FeigenbaumAlpha^OrthogonalArrays 6308847180569514 m006 (3/5*ln(Pi)+5)/(3/5/Pi-1/5) 6308847206336582 m005 (1/2*Pi-6)/(5/11*Catalan+2/7) 6308847248643401 a007 Real Root Of 12*x^4+753*x^3-269*x^2-799*x+361 6308847329485181 m008 (1/3*Pi^6-5)/(1/6*Pi^5-1) 6308847333586119 m002 -Pi^2-Pi^6+(4*Pi^4)/Log[Pi] 6308847334481276 l006 ln(3189/5993) 6308847336821308 a001 1597/15127*322^(17/24) 6308847382060890 a007 Real Root Of 116*x^4+753*x^3+25*x^2-556*x+814 6308847430353614 r005 Im(z^2+c),c=27/62+17/43*I,n=4 6308847430454279 h001 (1/5*exp(2)+1/4)/(3/4*exp(1)+7/10) 6308847446752561 r005 Re(z^2+c),c=7/58+21/43*I,n=42 6308847446960704 a001 7/10946*1346269^(22/27) 6308847455845426 m001 ln(BesselK(0,1))*CareFree/cos(Pi/12) 6308847470707465 r005 Im(z^2+c),c=3/110+33/38*I,n=5 6308847476365143 m001 1/KhintchineHarmonic/ErdosBorwein/exp(sqrt(3)) 6308847478961703 m005 (41/36+1/4*5^(1/2))/(2/5*exp(1)-9/11) 6308847487336399 m001 GAMMA(17/24)*GAMMA(11/24)^2*ln(Zeta(5))^2 6308847512292128 m005 (1/2*5^(1/2)-9/11)/(1/11*exp(1)-5) 6308847529901429 r005 Re(z^2+c),c=-59/82+3/59*I,n=7 6308847532254879 r002 13th iterates of z^2 + 6308847568059456 a007 Real Root Of 401*x^4-859*x^3-892*x^2+13*x+499 6308847578131366 a007 Real Root Of -67*x^4+511*x^3-225*x^2+768*x+713 6308847636011064 a007 Real Root Of 201*x^4-458*x^3+955*x^2-688*x-961 6308847667921629 a001 7778742049/18*76^(13/21) 6308847673544111 m001 1/Zeta(1/2)*FeigenbaumB*exp(Zeta(3))^2 6308847674371846 a001 2584/521*123^(1/20) 6308847677139693 a007 Real Root Of -230*x^4+710*x^3-672*x^2+266*x+650 6308847681161114 m001 (5^(1/2)-Si(Pi))/(-ArtinRank2+Mills) 6308847700084552 l006 ln(4564/8577) 6308847701436542 a007 Real Root Of -969*x^4-393*x^3+663*x^2+669*x+213 6308847709011444 a007 Real Root Of 849*x^4-731*x^3+433*x^2-337*x-703 6308847713621253 m001 MasserGramain/FeigenbaumDelta/Ei(1,1) 6308847730438908 a008 Real Root of x^3-x^2-60*x+38 6308847740720028 a007 Real Root Of 374*x^4-575*x^3-448*x^2-689*x-460 6308847792848678 r005 Re(z^2+c),c=-19/26+16/95*I,n=45 6308847796414666 r005 Im(z^2+c),c=-57/82+6/61*I,n=29 6308847801509884 r005 Re(z^2+c),c=-21/122+13/19*I,n=44 6308847816991253 m001 (-Kolakoski+Porter)/(Psi(1,1/3)+BesselI(1,1)) 6308847829248393 m001 (GAMMA(11/24)-GAMMA(17/24))/GAMMA(23/24) 6308847832638704 a003 sin(Pi*3/119)+sin(Pi*8/43) 6308847839918929 a007 Real Root Of 829*x^4-538*x^3+886*x^2+669*x-197 6308847872552788 s002 sum(A071838[n]/(n^3*2^n-1),n=1..infinity) 6308847878219750 a007 Real Root Of 53*x^4+264*x^3-507*x^2-329*x+434 6308847883727956 a007 Real Root Of 145*x^4+835*x^3-364*x^2+835*x-278 6308847886559137 a007 Real Root Of 582*x^4-846*x^3+506*x^2-569*x-865 6308847896398547 p004 log(11161/5939) 6308847903831914 a007 Real Root Of -610*x^4+760*x^3+829*x^2+759*x-903 6308847907875359 m005 (4*gamma+3/4)/(3/5*2^(1/2)+4) 6308847918838483 a007 Real Root Of 529*x^4+309*x^3+559*x^2-178*x-341 6308847934073684 r002 11th iterates of z^2 + 6308847944541018 a007 Real Root Of 456*x^4+845*x^2+329*x-201 6308847950805157 s001 sum(1/10^(n-1)*A154056[n]/n!,n=1..infinity) 6308847963985894 a007 Real Root Of -79*x^4-448*x^3+251*x^2-282*x+886 6308847969356580 p003 LerchPhi(1/6,5,308/111) 6308848001877879 a007 Real Root Of -648*x^4+249*x^3-117*x^2+999*x+842 6308848020003671 m001 BesselJ(0,1)^(3^(1/2))/(BesselJ(0,1)^Trott) 6308848034783849 m006 (1/5*ln(Pi)-2)/(1/5*Pi^2+5/6) 6308848035177967 r005 Im(z^2+c),c=-23/30+5/86*I,n=8 6308848043779343 m005 (21/20+1/4*5^(1/2))/(1/4*Zeta(3)-5/9) 6308848054601604 p001 sum(1/(547*n+94)/n/(25^n),n=1..infinity) 6308848055728552 a003 cos(Pi*23/59)+cos(Pi*28/69) 6308848076939961 a007 Real Root Of 244*x^4-149*x^3+306*x^2+125*x-119 6308848084383857 s002 sum(A195780[n]/(n^2*2^n+1),n=1..infinity) 6308848108566553 r009 Im(z^3+c),c=-17/36+13/25*I,n=29 6308848122711590 r005 Re(z^2+c),c=9/38+7/20*I,n=17 6308848124200713 m005 (1/2*gamma+1/8)/(3/7*gamma-2/11) 6308848130974017 a007 Real Root Of -144*x^4-992*x^3-594*x^2-465*x-265 6308848133967656 r005 Im(z^2+c),c=-109/90+3/47*I,n=28 6308848149302102 a001 610/521*322^(7/24) 6308848157328636 r005 Re(z^2+c),c=19/90+25/56*I,n=63 6308848162626423 k002 Champernowne real with 119*n^2-55*n-58 6308848166418608 a007 Real Root Of 355*x^4-930*x^3+846*x^2+61*x-588 6308848187166672 l006 ln(17/9340) 6308848189935688 a001 9349/1597*89^(1/60) 6308848204904630 a007 Real Root Of -725*x^4+871*x^3+140*x^2+305*x-352 6308848205515684 a001 377/9349*322^(7/8) 6308848215709845 r005 Im(z^2+c),c=-47/52+17/39*I,n=3 6308848230506068 r005 Im(z^2+c),c=21/106+28/43*I,n=7 6308848235835358 m001 (arctan(1/3)+BesselI(1,1))/(GolombDickman-Kac) 6308848240149678 a007 Real Root Of -356*x^4+868*x^3-848*x^2+192*x+733 6308848260637418 m001 (Robbin+Thue)/(cos(1/12*Pi)+exp(1/exp(1))) 6308848277820818 m005 (1/2*2^(1/2)-1/3)/(37/7+2/7*5^(1/2)) 6308848281937740 m001 exp(ArtinRank2)^2*Champernowne^2*GAMMA(23/24) 6308848314529924 r005 Re(z^2+c),c=-33/46+13/53*I,n=62 6308848318587480 r002 34th iterates of z^2 + 6308848328276289 a007 Real Root Of 830*x^4+729*x^3+726*x^2+194*x-115 6308848355725715 a007 Real Root Of -595*x^4+879*x^3+818*x^2+206*x-582 6308848386542509 m001 1/GAMMA(19/24)^2/OneNinth*exp(sqrt(5)) 6308848402939383 b008 ArcSinh[8*(E+Pi)^2] 6308848412728830 m009 (2*Psi(1,1/3)+1/6)/(1/6*Psi(1,2/3)-5/6) 6308848419199679 h001 (1/4*exp(1)+1/6)/(3/11*exp(1)+3/5) 6308848419199679 m005 (1/3*exp(1)+2/9)/(4/11*exp(1)+4/5) 6308848506026631 m001 (Chi(1)+exp(-1/2*Pi))/(-Pi^(1/2)+ErdosBorwein) 6308848548018208 l006 ln(1375/2584) 6308848557449099 a007 Real Root Of 225*x^4+70*x^3+204*x^2+2*x-98 6308848562317692 m001 Champernowne/Cahen/ln(FeigenbaumKappa) 6308848606492264 m001 Gompertz^HardyLittlewoodC5/GlaisherKinkelin 6308848618492611 a001 34/11*843^(15/19) 6308848655202821 s002 sum(A151521[n]/((2*n)!),n=1..infinity) 6308848662888681 r009 Re(z^3+c),c=-2/17+11/16*I,n=54 6308848674137047 a001 24476/4181*89^(1/60) 6308848681783188 m001 Pi-Psi(1,1/3)/(5^(1/2)+BesselJ(1,1)) 6308848687035238 r002 61th iterates of z^2 + 6308848689066804 r005 Im(z^2+c),c=-3/122+25/39*I,n=21 6308848694907161 a007 Real Root Of 104*x^4-947*x^3+693*x^2-256*x+107 6308848709455581 m001 LandauRamanujan2nd/(FeigenbaumB^BesselJ(1,1)) 6308848729817141 r005 Im(z^2+c),c=-5/74+51/59*I,n=14 6308848731218096 m001 AlladiGrinstead-Zeta(1/2)^FeigenbaumDelta 6308848744781079 a001 64079/10946*89^(1/60) 6308848748891160 r005 Im(z^2+c),c=17/70+35/64*I,n=64 6308848754612728 m001 (Si(Pi)+Ei(1))/(-KhinchinLevy+Lehmer) 6308848762701210 a007 Real Root Of -585*x^4+144*x^3-771*x^2+178*x+548 6308848772231967 r005 Re(z^2+c),c=-19/28+16/57*I,n=54 6308848788441493 a001 13201/2255*89^(1/60) 6308848814239304 a007 Real Root Of -671*x^4+511*x^3+750*x^2+760*x-800 6308848845462550 m001 (ln(3)+Cahen)/(DuboisRaymond-Otter) 6308848855532706 r002 47th iterates of z^2 + 6308848860678266 a007 Real Root Of -996*x^4+444*x^3-567*x^2-607*x+112 6308848874184288 r005 Re(z^2+c),c=9/118+23/30*I,n=5 6308848891594091 m001 (QuadraticClass+Totient)/(BesselI(1,1)+Otter) 6308848893309294 m005 (1/3*Pi-1/12)/(7/10*exp(1)-3/8) 6308848900068805 h001 (-4*exp(2/3)+3)/(-3*exp(-2)+8) 6308848902984714 r009 Im(z^3+c),c=-29/126+39/55*I,n=10 6308848916107189 r002 24th iterates of z^2 + 6308848925064669 l006 ln(6772/7213) 6308848925585963 m001 1/MertensB1/Conway*exp(Khintchine)^2 6308848925902338 s002 sum(A184070[n]/(n^3*pi^n-1),n=1..infinity) 6308848935514206 a007 Real Root Of 863*x^4-423*x^3-702*x^2-780*x+741 6308848962926554 m001 (Trott+TwinPrimes)/(Psi(1,1/3)+cos(1)) 6308848973389977 a001 15127/2584*89^(1/60) 6308848987153973 a005 (1/cos(30/223*Pi))^645 6308849007871845 a007 Real Root Of -590*x^4+497*x^3-892*x^2-942*x-21 6308849008198566 r005 Im(z^2+c),c=-17/30+16/37*I,n=4 6308849009592302 a001 233/521*1364^(11/30) 6308849010676944 a007 Real Root Of 623*x^4+158*x^3+894*x^2+526*x-83 6308849018877380 a007 Real Root Of -190*x^4-212*x^3-645*x^2-142*x+144 6308849029296488 a007 Real Root Of 986*x^4-17*x^3-181*x^2-813*x+52 6308849067359120 a003 cos(Pi*43/111)-sin(Pi*35/81) 6308849071111247 r009 Im(z^3+c),c=-31/60+40/63*I,n=23 6308849090671974 a007 Real Root Of 47*x^4-999*x^3+44*x^2-528*x+559 6308849148477477 m001 (2^(1/3)-GAMMA(19/24))/(-Bloch+Riemann1stZero) 6308849158519638 m005 (1/2*3^(1/2)-2)/(1/5*3^(1/2)-1/6) 6308849162926483 k002 Champernowne real with 239/2*n^2-113/2*n-57 6308849165323610 a007 Real Root Of 498*x^4-707*x^3-694*x^2-406*x+631 6308849174865591 m005 (9/20+1/4*5^(1/2))/(5*Pi+2/7) 6308849206558668 a007 Real Root Of -393*x^4+923*x^3-698*x^2+452*x+857 6308849214020111 a007 Real Root Of -781*x^4+224*x^3-245*x^2+470*x+574 6308849218742736 a007 Real Root Of 517*x^4+703*x^3+367*x^2-646*x-459 6308849221631181 r005 Re(z^2+c),c=9/58+13/48*I,n=27 6308849224545153 a007 Real Root Of 668*x^4+71*x^3+373*x^2-199*x-362 6308849253152699 m001 (Artin+Weierstrass)/(ln(gamma)+Ei(1)) 6308849280732104 r005 Re(z^2+c),c=-1/30+41/53*I,n=32 6308849305296081 m001 1/Zeta(7)^2/Champernowne/ln(log(1+sqrt(2))) 6308849312683075 l006 ln(5061/9511) 6308849312830359 a007 Real Root Of 926*x^4-651*x^3+131*x^2-55*x-397 6308849345543876 m001 (FeigenbaumB*TreeGrowth2nd-Pi)/TreeGrowth2nd 6308849368192439 m001 (FeigenbaumB-GaussAGM)/(Pi+BesselJ(1,1)) 6308849391591025 r005 Im(z^2+c),c=-31/54+24/53*I,n=48 6308849398928651 r005 Re(z^2+c),c=10/27+14/57*I,n=27 6308849427411535 m001 Zeta(3)/Conway/MinimumGamma 6308849434734028 a007 Real Root Of 268*x^4-166*x^3+307*x^2+587*x+164 6308849478195403 m001 (Trott+ZetaQ(4))/(GAMMA(2/3)+Kac) 6308849507296763 m001 1/FibonacciFactorial*ln(Conway)*cos(1)^2 6308849511347315 s002 sum(A014095[n]/(exp(n)),n=1..infinity) 6308849523092204 r005 Re(z^2+c),c=9/40+21/59*I,n=50 6308849531091151 a007 Real Root Of 868*x^4-730*x^3-493*x^2-485*x+548 6308849533260321 m001 (MertensB2-Totient)/(Conway-KomornikLoreti) 6308849534751222 a007 Real Root Of -171*x^4+433*x^3+526*x^2-84*x-238 6308849550294305 p003 LerchPhi(1/2,1,484/191) 6308849568704401 m001 CopelandErdos+FeigenbaumDelta+OrthogonalArrays 6308849574552586 a007 Real Root Of 536*x^4-868*x^3+875*x^2-190*x-771 6308849587122559 r005 Re(z^2+c),c=-11/16+11/61*I,n=3 6308849597928364 l006 ln(3686/6927) 6308849624954247 m005 (-47/10+3/10*5^(1/2))/(1/3*Catalan+1/3) 6308849626662608 m001 Catalan/exp(Salem)^2/sinh(1)^2 6308849638954484 a007 Real Root Of 701*x^4+698*x^3-342*x^2-950*x-399 6308849688471178 a007 Real Root Of 888*x^4-398*x^3-980*x^2-689*x+784 6308849706293097 m001 1/ln(GAMMA(5/24))/Magata/Pi 6308849732541483 m005 (1/2*exp(1)-6/7)/(1/4*exp(1)-3/5) 6308849734379811 m001 GAMMA(1/6)/exp(Cahen)/arctan(1/2) 6308849738249826 r005 Im(z^2+c),c=-4/5+13/76*I,n=54 6308849738971342 q001 4/63403 6308849739705094 m001 CareFree/Zeta(3)*OneNinth 6308849766013792 r005 Re(z^2+c),c=-59/94+8/25*I,n=6 6308849785314721 a007 Real Root Of -436*x^4+704*x^3+358*x^2+965*x-859 6308849829239234 m001 Stephens^(Pi^(1/2))*Stephens^Zeta(1,2) 6308849844844703 m005 (1/2*2^(1/2)-8/11)/(9/10*exp(1)+3/4) 6308849858782890 r005 Re(z^2+c),c=-125/118+35/61*I,n=4 6308849877307331 m001 (TravellingSalesman-ZetaP(3))^RenyiParking 6308849944422550 r005 Im(z^2+c),c=10/27+5/33*I,n=53 6308849967668041 a007 Real Root Of 577*x^4-405*x^3-436*x^2-582*x+551 6308849972240835 m001 (-HardyLittlewoodC5+Mills)/(1+BesselK(0,1)) 6308849983480042 a007 Real Root Of 77*x^4+533*x^3+367*x^2+497*x+385 6308849994574932 s002 sum(A263968[n]/(n^2*pi^n+1),n=1..infinity) 6308849995257007 s002 sum(A263968[n]/(n^2*pi^n-1),n=1..infinity) 6308850007342387 a007 Real Root Of 543*x^4-374*x^3+424*x^2-541*x-690 6308850045021132 r008 a(0)=7,K{-n^6,7+n^3+3*n^2-5*n} 6308850045302706 a007 Real Root Of -980*x^4+820*x^3-855*x^2+50*x+733 6308850050469226 m001 Otter/(Mills-Chi(1)) 6308850052406403 a007 Real Root Of -653*x^4-532*x^3-498*x^2+179*x+281 6308850054805972 a007 Real Root Of -103*x^4+956*x^3-777*x^2+148*x+659 6308850057567598 s002 sum(A236728[n]/(pi^n),n=1..infinity) 6308850071633807 a001 305/2889*322^(17/24) 6308850079691218 r002 13th iterates of z^2 + 6308850086178593 s002 sum(A140331[n]/(64^n),n=1..infinity) 6308850092879252 a001 233/521*3571^(11/34) 6308850094851672 r005 Re(z^2+c),c=7/19+4/37*I,n=16 6308850116342812 m006 (3/5*Pi^2+5/6)/(2*exp(2*Pi)-1/4) 6308850121005338 m001 (Shi(1)+Zeta(5))/(-HeathBrownMoroz+ZetaQ(4)) 6308850121008530 a007 Real Root Of 235*x^4-907*x^3+43*x^2-664*x-701 6308850135355437 m001 (2^(1/3)+FeigenbaumD)/(-Paris+Sarnak) 6308850155264360 a007 Real Root Of 416*x^4-820*x^3-634*x^2+186*x+275 6308850163226543 k002 Champernowne real with 120*n^2-58*n-56 6308850169282879 r005 Im(z^2+c),c=-5/114+39/61*I,n=64 6308850171479153 m008 (1/3*Pi^6-5/6)/(2/5*Pi-3/4) 6308850197019288 a007 Real Root Of -432*x^4-821*x^3-519*x^2+620*x+460 6308850200470073 a007 Real Root Of -15*x^4-29*x^3+498*x^2+436*x-590 6308850222604411 l006 ln(2311/4343) 6308850232045419 a001 233/521*9349^(11/38) 6308850234071509 m005 (3/4*gamma-4)/(23/10+3/2*5^(1/2)) 6308850241046006 a001 1926/329*89^(1/60) 6308850250181657 a001 233/521*24476^(11/42) 6308850252572362 a001 233/521*64079^(11/46) 6308850252939757 a001 233/521*7881196^(1/6) 6308850252939774 a001 233/521*312119004989^(1/10) 6308850252939774 a001 233/521*1568397607^(1/8) 6308850253945395 a001 233/521*39603^(1/4) 6308850260521661 a001 233/521*15127^(11/40) 6308850262816297 m002 1/(4*Pi^4)+Pi/5 6308850286450318 r005 Im(z^2+c),c=9/62+8/13*I,n=20 6308850309416826 r002 25th iterates of z^2 + 6308850310680914 a001 233/521*5778^(11/36) 6308850313711767 m001 (Cahen-LaplaceLimit)/(Zeta(1,-1)+Bloch) 6308850326529114 r009 Im(z^3+c),c=-37/62+13/19*I,n=11 6308850368158554 a007 Real Root Of 688*x^4-736*x^3-835*x^2-843*x+940 6308850397316285 m001 (LambertW(1)-ln(gamma))/(arctan(1/2)+Mills) 6308850398819831 a001 199/2584*987^(36/37) 6308850399127470 b008 -5+PolyLog[2,-Sqrt[Pi]] 6308850400923244 r005 Re(z^2+c),c=-19/18+29/240*I,n=36 6308850436995818 m001 1/exp(GAMMA(17/24))/MinimumGamma/sqrt(3)^2 6308850456021105 s002 sum(A089671[n]/((10^n-1)/n),n=1..infinity) 6308850465992495 a007 Real Root Of 165*x^4-541*x^3+199*x^2-881*x-797 6308850468333845 r002 7th iterates of z^2 + 6308850473909644 r009 Re(z^3+c),c=-19/36+7/46*I,n=48 6308850500990419 a007 Real Root Of 686*x^4-871*x^3-516*x^2-822*x+834 6308850505187471 m005 (1/3*exp(1)+3/7)/(7/8*3^(1/2)+3/5) 6308850520842259 m005 (1/3*gamma+1/7)/(1/10*Pi+5) 6308850533131158 g006 Psi(1,1/7)-Psi(1,2/11)-Psi(1,2/9)-Psi(1,3/5) 6308850573592777 a001 305/161*123^(1/4) 6308850575695895 r005 Re(z^2+c),c=-21/62+13/21*I,n=10 6308850584705708 a007 Real Root Of -167*x^4-948*x^3+632*x^2-179*x+227 6308850595887451 a007 Real Root Of 968*x^4-933*x^3+611*x^2-414*x-892 6308850617510069 a001 141/2161*322^(19/24) 6308850624794677 r005 Re(z^2+c),c=1/10+29/63*I,n=63 6308850638587441 r005 Im(z^2+c),c=-55/82+17/61*I,n=50 6308850640429495 r009 Im(z^3+c),c=-15/64+12/17*I,n=50 6308850688790690 m005 (1/2*3^(1/2)+3/5)/(3/8*Catalan-1/9) 6308850698173864 a001 233/521*2207^(11/32) 6308850705598764 a001 7/4*(1/2*5^(1/2)+1/2)^2*4^(3/13) 6308850711837796 m001 (Landau-Rabbit)/(ln(3)-GaussAGM) 6308850766986377 a003 sin(Pi*21/97)/sin(Pi*47/99) 6308850784119134 r005 Re(z^2+c),c=-1/26+4/21*I,n=8 6308850790254313 m001 (Magata+Niven)/(cos(1/5*Pi)+HeathBrownMoroz) 6308850800268358 a001 3571/13*196418^(9/35) 6308850808550798 h001 (3/7*exp(2)+1/11)/(5/8*exp(2)+6/11) 6308850811902474 r005 Re(z^2+c),c=-17/90+14/15*I,n=5 6308850820974302 r005 Im(z^2+c),c=-41/74+26/51*I,n=8 6308850822253512 r005 Re(z^2+c),c=29/118+23/61*I,n=47 6308850824619122 p004 log(28751/15299) 6308850824908736 r009 Im(z^3+c),c=-3/74+47/63*I,n=13 6308850829546830 a007 Real Root Of 139*x^4-950*x^3-482*x^2-383*x+650 6308850857954101 a007 Real Root Of -591*x^4+106*x^3+231*x^2+204*x+157 6308850885611291 m001 (ln(Pi)-gamma(1))/(FeigenbaumC+Paris) 6308850895460224 r002 2th iterates of z^2 + 6308850895694727 m001 (1+3^(1/2))^(1/2)/(exp(Pi)^(Pi^(1/2))) 6308850895694727 m001 sqrt(1+sqrt(3))*exp(-Pi)^sqrt(Pi) 6308850895694727 m001 sqrt(1+sqrt(3))/(exp(Pi)^sqrt(Pi)) 6308850898960046 m001 KhinchinHarmonic/CopelandErdos/GAMMA(19/24) 6308850904222626 r005 Im(z^2+c),c=21/58+37/58*I,n=6 6308850905293335 r005 Re(z^2+c),c=-45/47*I,n=4 6308850917567972 a007 Real Root Of 512*x^4-174*x^3+374*x^2-950*x-873 6308850931737689 l006 ln(3247/6102) 6308850940974410 a007 Real Root Of -648*x^4-108*x^3-779*x^2+91*x+443 6308850954444504 m001 2*Pi/GAMMA(5/6)+LaplaceLimit^Sarnak 6308850959719957 a007 Real Root Of -97*x^4-655*x^3-280*x^2-151*x-616 6308851036047096 m001 1/exp(1)^2*exp(Cahen)^2/log(1+sqrt(2))^2 6308851036066926 m001 (LaplaceLimit-Porter)/(Ei(1,1)+GAMMA(11/12)) 6308851037646921 m001 (Ei(1,1)+PlouffeB)^BesselI(0,1) 6308851043704599 r005 Re(z^2+c),c=-31/42+5/19*I,n=5 6308851055898059 a007 Real Root Of 79*x^4+466*x^3-216*x^2-138*x-409 6308851058050740 r005 Re(z^2+c),c=-47/62+2/33*I,n=31 6308851059818503 a007 Real Root Of 729*x^4+74*x^3+242*x^2-323*x-397 6308851064798947 m001 (ln(Pi)-FeigenbaumD)/(Kac-Riemann3rdZero) 6308851086714934 m001 (BesselJ(1,1)+2*Pi/GAMMA(5/6)*Lehmer)/Lehmer 6308851086714934 m001 (BesselJ(1,1)+Lehmer*GAMMA(1/6))/Lehmer 6308851092607298 a001 233/843*322^(13/24) 6308851110378675 a007 Real Root Of 754*x^4-886*x^3+854*x^2-284*x-861 6308851121765602 a007 Real Root Of -828*x^4-784*x^3-214*x^2+768*x+504 6308851128077765 a007 Real Root Of 666*x^4-220*x^3-321*x^2-661*x-450 6308851139139416 k005 Champernowne real with floor(sqrt(3)*(147*n+217)) 6308851140139516 k001 Champernowne real with 255*n+375 6308851144626154 s002 sum(A135494[n]/((pi^n+1)/n),n=1..infinity) 6308851144828199 m001 (Zeta(5)+sin(1/5*Pi))/(gamma(2)+Sierpinski) 6308851182720032 m005 (1/2*exp(1)-2/7)/(8/11*Pi-7/12) 6308851198283261 m005 (1/2+1/6*5^(1/2))/(1/7*exp(1)-1/4) 6308851199647552 a003 cos(Pi*15/104)*cos(Pi*26/103) 6308851205238107 r005 Im(z^2+c),c=-7/66+47/58*I,n=14 6308851215892012 r002 4th iterates of z^2 + 6308851218674127 m005 (1/2*exp(1)+3/4)/(2/5*2^(1/2)-9/10) 6308851224105461 q001 335/531 6308851224105461 r002 2th iterates of z^2 + 6308851224105461 r002 2th iterates of z^2 + 6308851224105461 r005 Im(z^2+c),c=-4/3+67/177*I,n=2 6308851261660467 a007 Real Root Of -319*x^4+706*x^3-771*x^2+606*x+917 6308851264902220 a007 Real Root Of 766*x^4-93*x^3-748*x^2-812*x+712 6308851289627440 a007 Real Root Of 252*x^4+414*x^3+767*x^2+105*x-175 6308851323515580 l006 ln(4183/7861) 6308851354545164 m005 (1/2*3^(1/2)+2/7)/(5/9*5^(1/2)+7/12) 6308851376566492 r005 Im(z^2+c),c=-45/62+3/53*I,n=16 6308851384210380 r002 29th iterates of z^2 + 6308851386474199 r005 Re(z^2+c),c=9/110+20/41*I,n=15 6308851412448802 a007 Real Root Of -765*x^4+256*x^3+237*x^2-555*x-259 6308851418036719 a007 Real Root Of -227*x^4-225*x^3+521*x^2+398*x-366 6308851466996649 m001 Khinchin-Totient-TravellingSalesman 6308851488516514 a007 Real Root Of -121*x^4-892*x^3-840*x^2-328*x-935 6308851511506833 m001 (GAMMA(13/24)-FeigenbaumD)/(Kolakoski+Thue) 6308851572021689 l006 ln(5119/9620) 6308851595120596 m009 (20/3*Catalan+5/6*Pi^2-3/4)/(1/3*Psi(1,3/4)-3) 6308851607934299 r005 Re(z^2+c),c=11/106+27/58*I,n=49 6308851647701471 r005 Re(z^2+c),c=-19/30+46/95*I,n=12 6308851651843343 a007 Real Root Of -599*x^4+949*x^3-800*x^2-272*x+480 6308851667809187 a001 317811/2207*18^(23/45) 6308851673409353 r005 Re(z^2+c),c=3/8+23/43*I,n=6 6308851680293075 m001 ZetaQ(2)^KhinchinHarmonic/cos(1/12*Pi) 6308851688738659 m001 exp(GolombDickman)/Si(Pi)^2*OneNinth^2 6308851708872733 a007 Real Root Of -907*x^4+414*x^3-473*x^2-217*x+299 6308851712280651 r005 Im(z^2+c),c=-31/54+19/52*I,n=11 6308851713146451 h001 (-7*exp(2)+5)/(-3*exp(-2)-7) 6308851747313907 a001 2584/39603*322^(19/24) 6308851747895684 m005 (1/2*Pi-1/7)/(5/6*5^(1/2)+2/5) 6308851758161468 a007 Real Root Of -645*x^4+795*x^3-636*x^2-840*x+25 6308851765357443 h001 (5/8*exp(1)+2/9)/(7/8*exp(1)+2/3) 6308851776363381 m005 (1/2*Zeta(3)-2/3)/(7/10*gamma+7/11) 6308851795264610 m001 GAMMA(1/3)*ln(FeigenbaumDelta)^2/Zeta(7) 6308851806416081 r004 Im(z^2+c),c=-9/34+2/3*I,z(0)=exp(7/8*I*Pi),n=2 6308851822938231 r005 Re(z^2+c),c=-39/82+5/8*I,n=39 6308851833015111 r005 Im(z^2+c),c=-45/58+12/59*I,n=11 6308851836558749 h001 (1/4*exp(1)+5/8)/(8/11*exp(1)+1/11) 6308851842697665 m001 1/ln(Porter)*CopelandErdos*GAMMA(23/24) 6308851853721300 a007 Real Root Of -289*x^4-564*x^3-100*x^2+856*x+484 6308851854826865 h001 (11/12*exp(2)+7/8)/(2/5*exp(1)+1/8) 6308851912150066 a001 6765/103682*322^(19/24) 6308851936199338 a001 17711/271443*322^(19/24) 6308851939708079 a001 6624/101521*322^(19/24) 6308851940219998 a001 121393/1860498*322^(19/24) 6308851940294686 a001 317811/4870847*322^(19/24) 6308851940305582 a001 832040/12752043*322^(19/24) 6308851940307172 a001 311187/4769326*322^(19/24) 6308851940307404 a001 5702887/87403803*322^(19/24) 6308851940307438 a001 14930352/228826127*322^(19/24) 6308851940307443 a001 39088169/599074578*322^(19/24) 6308851940307444 a001 14619165/224056801*322^(19/24) 6308851940307444 a001 267914296/4106118243*322^(19/24) 6308851940307444 a001 701408733/10749957122*322^(19/24) 6308851940307444 a001 1836311903/28143753123*322^(19/24) 6308851940307444 a001 686789568/10525900321*322^(19/24) 6308851940307444 a001 12586269025/192900153618*322^(19/24) 6308851940307444 a001 32951280099/505019158607*322^(19/24) 6308851940307444 a001 86267571272/1322157322203*322^(19/24) 6308851940307444 a001 32264490531/494493258286*322^(19/24) 6308851940307444 a001 591286729879/9062201101803*322^(19/24) 6308851940307444 a001 1548008755920/23725150497407*322^(19/24) 6308851940307444 a001 365435296162/5600748293801*322^(19/24) 6308851940307444 a001 139583862445/2139295485799*322^(19/24) 6308851940307444 a001 53316291173/817138163596*322^(19/24) 6308851940307444 a001 20365011074/312119004989*322^(19/24) 6308851940307444 a001 7778742049/119218851371*322^(19/24) 6308851940307444 a001 2971215073/45537549124*322^(19/24) 6308851940307444 a001 1134903170/17393796001*322^(19/24) 6308851940307444 a001 433494437/6643838879*322^(19/24) 6308851940307444 a001 165580141/2537720636*322^(19/24) 6308851940307444 a001 63245986/969323029*322^(19/24) 6308851940307446 a001 24157817/370248451*322^(19/24) 6308851940307459 a001 9227465/141422324*322^(19/24) 6308851940307548 a001 3524578/54018521*322^(19/24) 6308851940308155 a001 1346269/20633239*322^(19/24) 6308851940312317 a001 514229/7881196*322^(19/24) 6308851940340845 a001 196418/3010349*322^(19/24) 6308851940536381 a001 75025/1149851*322^(19/24) 6308851941876601 a001 28657/439204*322^(19/24) 6308851951062605 a001 10946/167761*322^(19/24) 6308851965424370 p004 log(14897/7927) 6308851991568032 r005 Im(z^2+c),c=11/98+32/55*I,n=30 6308852014024415 a001 4181/64079*322^(19/24) 6308852034311559 m001 1/exp(GAMMA(7/24))*Conway^2*cos(Pi/5) 6308852063751118 m001 1/exp(TwinPrimes)^2*Rabbit^2/Zeta(1/2)^2 6308852078396946 r005 Im(z^2+c),c=5/56+29/50*I,n=9 6308852079900088 a007 Real Root Of 85*x^4+379*x^3-907*x^2+555*x+115 6308852092386878 m001 (exp(1)-ln(2))/(GlaisherKinkelin+Tetranacci) 6308852094270890 a007 Real Root Of -132*x^4-724*x^3+633*x^2-397*x-387 6308852094536523 r002 3th iterates of z^2 + 6308852103356498 r009 Im(z^3+c),c=-17/60+38/55*I,n=20 6308852127681274 a007 Real Root Of -174*x^4-958*x^3+969*x^2+546*x-34 6308852151927320 m001 (-ln(5)+Zeta(1,-1))/(5^(1/2)+gamma) 6308852161868275 r005 Im(z^2+c),c=27/82+25/49*I,n=48 6308852181212720 h001 (1/6*exp(1)+6/11)/(6/11*exp(1)+1/10) 6308852211555549 r009 Im(z^3+c),c=-65/114+17/54*I,n=56 6308852225821798 p001 sum((-1)^n/(389*n+263)/n/(24^n),n=1..infinity) 6308852247756400 r005 Im(z^2+c),c=-57/106+25/43*I,n=28 6308852267076877 a007 Real Root Of 264*x^4-498*x^3+108*x^2-173*x-319 6308852279108426 m001 Ei(1)*Zeta(1/2)*BesselI(0,2) 6308852281412485 a001 11/8*196418^(1/8) 6308852295613512 a007 Real Root Of 30*x^4+295*x^3+764*x^2+616*x+28 6308852297005915 a007 Real Root Of 295*x^4-990*x^3+553*x^2-692*x-952 6308852304830059 m001 (BesselJ(1,1)+PrimesInBinary)/(Ei(1)-cos(1)) 6308852331385736 a007 Real Root Of -440*x^4+546*x^3+129*x^2+665*x+575 6308852360477212 a007 Real Root Of 963*x^4-666*x^3-578*x^2+380*x+150 6308852390730001 m001 (Pi^(1/2)-Gompertz)/(Paris-ReciprocalLucas) 6308852419979116 a007 Real Root Of 26*x^4-541*x^3+154*x^2-678*x-629 6308852438865447 m001 (exp(1/exp(1))+Otter)/ArtinRank2 6308852443997650 a007 Real Root Of 187*x^4+163*x^3+878*x^2-675*x-764 6308852445571084 a001 1597/24476*322^(19/24) 6308852480101346 r005 Re(z^2+c),c=-79/126+9/20*I,n=22 6308852496069676 s002 sum(A219718[n]/((2*n)!),n=1..infinity) 6308852536384459 l006 ln(3839/4089) 6308852537689942 r005 Im(z^2+c),c=-9/16+13/114*I,n=39 6308852547539992 r005 Re(z^2+c),c=-31/46+19/59*I,n=37 6308852581242578 v003 sum((13+7/2*n^2+5/2*n)*n!/n^n,n=1..infinity) 6308852588089581 m004 -25*Pi+5*Log[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi] 6308852655447735 r005 Im(z^2+c),c=-11/8+48/199*I,n=4 6308852679544948 r002 14th iterates of z^2 + 6308852682599661 l006 ln(936/1759) 6308852732094067 a007 Real Root Of -344*x^4-379*x^3-805*x^2+598*x+657 6308852774075597 a001 416020/2889*18^(23/45) 6308852785960978 r005 Im(z^2+c),c=-7/10+35/244*I,n=25 6308852791638080 r002 14th iterates of z^2 + 6308852797947561 r005 Re(z^2+c),c=5/114+11/26*I,n=8 6308852805270127 m001 1/exp(cosh(1))/Zeta(7)^2/gamma^2 6308852814457552 m001 (FeigenbaumD+Lehmer)/(2*Pi/GAMMA(5/6)-Artin) 6308852831900988 a007 Real Root Of -796*x^4-324*x^3-371*x^2+738*x+658 6308852865669365 a005 (1/cos(21/208*Pi))^531 6308852885470058 a003 cos(Pi*9/76)-cos(Pi*29/72) 6308852897502742 a001 46347*3^(16/57) 6308852935477723 a001 311187/2161*18^(23/45) 6308852945605824 r005 Re(z^2+c),c=-19/30+32/73*I,n=57 6308852949029028 a007 Real Root Of -473*x^4+738*x^3-427*x^2-777*x-60 6308852971564657 s002 sum(A104731[n]/(n^2*exp(n)-1),n=1..infinity) 6308853000544192 a007 Real Root Of -299*x^4-151*x^3-193*x^2+613*x+473 6308853014961983 a005 (1/sin(81/199*Pi))^149 6308853015776956 m005 (1/2*exp(1)+8/9)/(6*gamma+1/10) 6308853035229727 a001 1346269/9349*18^(23/45) 6308853040056321 m001 MertensB2/(Zeta(1/2)^Mills) 6308853067415005 r002 13th iterates of z^2 + 6308853168595285 a001 76/21*46368^(3/58) 6308853176413608 a001 377/15127*322^(23/24) 6308853186095704 a003 cos(Pi*19/91)*sin(Pi*17/58) 6308853202667999 m001 GAMMA(11/12)*ln(FeigenbaumD)/GAMMA(17/24)^2 6308853214591017 m001 (-CopelandErdos+Paris)/(2^(1/2)-exp(Pi)) 6308853242716394 a001 41/726103*2^(4/25) 6308853248449700 r002 56th iterates of z^2 + 6308853251298485 m008 (1/2*Pi^4-1/6)/(4/5*Pi^6+1/4) 6308853274512376 h001 (-5*exp(4)+5)/(-8*exp(4)+12) 6308853275443866 r009 Im(z^3+c),c=-29/106+35/48*I,n=45 6308853291465735 r002 53th iterates of z^2 + 6308853306942014 m001 (ln(2)+GaussAGM)/(Kolakoski-Riemann3rdZero) 6308853318745991 a007 Real Root Of 430*x^4-408*x^3-379*x^2-713*x+635 6308853357436111 r004 Re(z^2+c),c=-7/24*I,z(0)=exp(7/24*I*Pi),n=21 6308853358999046 r005 Re(z^2+c),c=-111/106+4/21*I,n=22 6308853363535437 m001 (ln(3)-ZetaP(2))^GAMMA(11/12) 6308853388205562 a007 Real Root Of 900*x^4-299*x^3-917*x^2-820*x-370 6308853388417312 r009 Im(z^3+c),c=-57/106+13/34*I,n=23 6308853389722315 a007 Real Root Of 102*x^4-97*x^3-916*x^2-823*x+892 6308853394019871 a007 Real Root Of -127*x^4+163*x^3+956*x^2+605*x-783 6308853407895794 s002 sum(A142860[n]/((2*n)!),n=1..infinity) 6308853447116368 m001 (Zeta(1/2)+ReciprocalLucas)/(ln(3)-Ei(1)) 6308853457786033 a001 514229/3571*18^(23/45) 6308853480107698 r002 30th iterates of z^2 + 6308853486934808 a007 Real Root Of -556*x^4+786*x^3+622*x^2+471*x-654 6308853508630640 m001 Khinchin*(CopelandErdos-Sierpinski) 6308853544722617 m001 (cos(1)+BesselI(1,1))/(Totient+ThueMorse) 6308853570487076 m001 (Gompertz-MertensB1)^BesselK(0,1) 6308853603049516 r005 Im(z^2+c),c=-13/25+38/63*I,n=28 6308853619342311 m001 1/OneNinth/exp(Khintchine)/Zeta(9)^2 6308853652796263 r005 Im(z^2+c),c=-14/27+35/58*I,n=3 6308853669552640 r005 Im(z^2+c),c=-17/14+32/245*I,n=62 6308853675016876 r005 Im(z^2+c),c=41/110+39/58*I,n=18 6308853683119525 a007 Real Root Of 948*x^4-138*x^3+844*x^2+957*x+83 6308853685748130 a007 Real Root Of 540*x^4-652*x^3-472*x^2-737*x+731 6308853697413996 a007 Real Root Of -55*x^4-298*x^3+380*x^2+414*x-212 6308853718281262 m001 (GAMMA(3/4)-gamma(1))/(QuadraticClass+Salem) 6308853737596912 m001 GAMMA(5/6)^2*ln(KhintchineLevy)/sin(Pi/5)^2 6308853739980346 m001 Si(Pi)^2*FeigenbaumAlpha^2/exp(GAMMA(3/4)) 6308853740572630 a001 233/521*843^(11/28) 6308853757116511 m001 (-gamma(1)+BesselK(1,1))/(Catalan-cos(1/5*Pi)) 6308853775913927 r009 Re(z^3+c),c=-45/74+39/58*I,n=5 6308853780735263 l006 ln(5177/9729) 6308853784544297 r009 Re(z^3+c),c=-77/122+13/46*I,n=9 6308853834992501 m005 (1/2*Zeta(3)-1/6)/(3/5*Pi+5) 6308853839829149 a001 161/4*233^(51/55) 6308853842642589 r005 Re(z^2+c),c=2/7+14/25*I,n=38 6308853893908842 h001 (-exp(-2)+9)/(-4*exp(1/2)+8) 6308853901793943 a007 Real Root Of 983*x^4-331*x^3+818*x^2+538*x-225 6308853916462577 m006 (2/5/Pi+5/6)/(2/3*exp(Pi)-1/5) 6308853916870232 r005 Re(z^2+c),c=-4/17+31/43*I,n=20 6308854023096700 l006 ln(4241/7970) 6308854048900084 m005 (1/2*exp(1)+11/12)/(1/4*2^(1/2)-5/7) 6308854055941551 r002 14th iterates of z^2 + 6308854075180561 a007 Real Root Of 454*x^4-61*x^3+436*x^2-888*x-821 6308854075757775 r005 Im(z^2+c),c=-19/110+29/45*I,n=4 6308854091890340 a007 Real Root Of 963*x^4-609*x^3+824*x^2+500*x-318 6308854131235350 r002 4th iterates of z^2 + 6308854158355938 m008 (5*Pi+1/3)/(5/6*Pi^5-3/4) 6308854180177911 m006 (4/5*exp(2*Pi)+5)/(Pi^2-3) 6308854192873534 r005 Im(z^2+c),c=-113/82+23/52*I,n=3 6308854210972026 r005 Im(z^2+c),c=7/19+13/50*I,n=21 6308854221194358 a007 Real Root Of 601*x^4-443*x^3+930*x^2-641*x-981 6308854229829391 m001 (Artin+Paris)/(ln(2)-3^(1/3)) 6308854294241575 m002 -E^Pi-2*Pi^5+4*ProductLog[Pi] 6308854303223899 m001 (Paris-Riemann2ndZero)/(Zeta(5)+BesselI(0,2)) 6308854344290173 m001 1/GAMMA(17/24)^2/ln(Trott)^2*Zeta(1/2)^2 6308854359612546 r005 Re(z^2+c),c=13/126+10/57*I,n=4 6308854388179212 r002 63th iterates of z^2 + 6308854398404069 r002 42th iterates of z^2 + 6308854402735163 l006 ln(3305/6211) 6308854464416778 a007 Real Root Of 153*x^4-926*x^3+551*x^2+436*x-201 6308854468342775 r005 Re(z^2+c),c=7/30+11/30*I,n=32 6308854508135307 m001 1/ln(Salem)^2/FeigenbaumDelta^2*GAMMA(1/4) 6308854526564256 r005 Im(z^2+c),c=-7/78+37/47*I,n=20 6308854530975152 m001 1/exp(Robbin)/HardHexagonsEntropy^2*cosh(1)^2 6308854531524512 a007 Real Root Of -264*x^4+674*x^3+488*x^2+866*x-868 6308854554903235 a007 Real Root Of 299*x^4-451*x^3+588*x^2-251*x-553 6308854560767748 a007 Real Root Of -581*x^4+825*x^3+589*x^2-258*x-98 6308854587163946 m001 Otter^CopelandErdos-TwinPrimes 6308854613371207 r002 57th iterates of z^2 + 6308854618994683 m001 MadelungNaCl^Gompertz*ZetaP(2) 6308854620978348 m005 (1/2*Zeta(3)-3/5)/(4/9*5^(1/2)+7/11) 6308854642166817 m001 Pi+1/3*2^(5/6)*Pi/GAMMA(3/4)*3^(2/3) 6308854643168569 a003 cos(Pi*23/95)*sin(Pi*36/107) 6308854647795850 m001 (GAMMA(11/12)+ZetaQ(4))/(Ei(1)-Ei(1,1)) 6308854655818356 r009 Im(z^3+c),c=-13/31+21/34*I,n=58 6308854659410576 m004 6+ProductLog[Sqrt[5]*Pi]/5+2*Sech[Sqrt[5]*Pi] 6308854662226006 m004 6+4/E^(Sqrt[5]*Pi)+ProductLog[Sqrt[5]*Pi]/5 6308854665041441 m004 6+2*Csch[Sqrt[5]*Pi]+ProductLog[Sqrt[5]*Pi]/5 6308854670635114 a007 Real Root Of -125*x^4-647*x^3+931*x^2+131*x-671 6308854695562958 r004 Re(z^2+c),c=-3/38-17/24*I,z(0)=I,n=39 6308854711881631 a007 Real Root Of 101*x^4-517*x^3+68*x^2-785*x+582 6308854764446711 a007 Real Root Of -961*x^4+613*x^3-405*x^2+66*x+509 6308854770499658 m001 exp(FeigenbaumC)^2/Artin/GAMMA(17/24)^2 6308854770820803 a007 Real Root Of -656*x^4+997*x^3-537*x^2-978*x-49 6308854772307714 h001 (3/4*exp(2)+5/12)/(1/11*exp(2)+3/11) 6308854783126366 h001 (3/8*exp(1)+3/8)/(5/9*exp(1)+7/10) 6308854810145619 a007 Real Root Of -336*x^4+748*x^3+361*x^2+x+98 6308854813984069 m005 1/6*5^(1/2)/(1/11*Zeta(3)-7/10) 6308854828822411 m005 (13/36+1/4*5^(1/2))/(53/90+7/18*5^(1/2)) 6308854843481531 s002 sum(A056089[n]/((3*n)!),n=1..infinity) 6308854906622699 p004 log(24019/12781) 6308854912743108 a008 Real Root of (-6+3*x-2*x^3-6*x^4+x^5) 6308854935414058 m002 Pi-Sinh[Pi]/2-Sinh[Pi]/Pi 6308854946724155 m001 exp(Si(Pi))^2*Conway/Catalan^2 6308854967116468 r005 Im(z^2+c),c=-151/114+11/45*I,n=5 6308854985352284 a007 Real Root Of -33*x^4+868*x^3+521*x^2-165*x-316 6308855020317730 a001 11/21*102334155^(5/13) 6308855036860141 r009 Im(z^3+c),c=-1/62+40/53*I,n=21 6308855058660962 a007 Real Root Of -373*x^4+912*x^3-794*x^2+22*x+618 6308855082366499 l006 ln(2369/4452) 6308855088544909 r005 Re(z^2+c),c=-7/16+14/23*I,n=3 6308855097831416 m001 (AlladiGrinstead+ZetaP(4))/(2^(1/2)+gamma(2)) 6308855105539175 a001 76/55*144^(11/36) 6308855107962117 r005 Re(z^2+c),c=-87/122+8/61*I,n=20 6308855154112767 a007 Real Root Of -188*x^4-266*x^3-645*x^2+644*x+626 6308855233638326 r005 Re(z^2+c),c=-61/94+13/29*I,n=36 6308855241518581 r005 Im(z^2+c),c=-115/94+10/31*I,n=7 6308855287640910 r005 Re(z^2+c),c=-1/19+32/43*I,n=62 6308855290935787 a001 123/28657*987^(23/59) 6308855295511442 a007 Real Root Of 877*x^4-407*x^3+198*x^2+393*x-72 6308855295719265 p001 sum((-1)^n/(122*n+69)/n/(8^n),n=0..infinity) 6308855308825718 a007 Real Root Of -902*x^4-164*x^3+666*x^2+912*x+412 6308855311583919 r005 Im(z^2+c),c=19/70+19/47*I,n=3 6308855313123003 m005 (1/2*Pi-1/9)/(4/5*2^(1/2)-9/10) 6308855321561258 r005 Re(z^2+c),c=-12/17+12/59*I,n=18 6308855339580115 m005 (1/2*Zeta(3)+6)/(5/12*Zeta(3)+6/11) 6308855350667559 m001 (GAMMA(19/24)+Backhouse)/(BesselK(0,1)-Chi(1)) 6308855384822587 a007 Real Root Of -276*x^4-38*x^3-939*x^2+566*x+765 6308855385389216 l006 ln(8584/9143) 6308855403435986 a001 610/9349*322^(19/24) 6308855410823722 a005 (1/sin(83/187*Pi))^265 6308855426577104 a007 Real Root Of 264*x^4-282*x^3-625*x^2-701*x+720 6308855427798530 r002 14i'th iterates of 2*x/(1-x^2) of 6308855460314699 r005 Re(z^2+c),c=-125/126+20/63*I,n=16 6308855500136868 b008 6+BesselJ[9,11] 6308855507700436 a007 Real Root Of -917*x^4+128*x^3-814*x^2+570*x+861 6308855517408029 m001 Chi(1)^Conway*Kolakoski 6308855525138419 a007 Real Root Of 462*x^4-612*x^3+933*x^2+907*x-26 6308855561919948 r005 Im(z^2+c),c=17/56+18/55*I,n=3 6308855584804395 a007 Real Root Of -249*x^4-223*x^3+320*x^2+805*x-52 6308855590214542 m001 (-cos(1/12*Pi)+ZetaQ(4))/(cos(1)-ln(2)) 6308855596743405 r002 4th iterates of z^2 + 6308855598082075 r005 Re(z^2+c),c=-67/110+41/61*I,n=19 6308855611769808 m001 1/LandauRamanujan/ln(Cahen)^2*Zeta(1,2) 6308855613400792 a007 Real Root Of 527*x^4-203*x^3-495*x^2-806*x+673 6308855617505172 r005 Im(z^2+c),c=-9/16+13/114*I,n=48 6308855634099412 r002 3th iterates of z^2 + 6308855651425652 a007 Real Root Of -817*x^4-463*x^3-946*x^2+893*x+60 6308855673155933 l006 ln(3802/7145) 6308855673824447 a007 Real Root Of 579*x^4-303*x^3+851*x^2+237*x-357 6308855682396146 r005 Re(z^2+c),c=-85/122+3/8*I,n=12 6308855726262501 a001 987/24476*322^(7/8) 6308855794109210 m001 (FeigenbaumAlpha+ThueMorse)/(Conway-sin(1)) 6308855800356212 s002 sum(A269831[n]/(n^3*exp(n)-1),n=1..infinity) 6308855801312310 r002 22th iterates of z^2 + 6308855817332052 m001 1/ln(Porter)^2*FeigenbaumDelta/Rabbit^2 6308855858742662 a007 Real Root Of -605*x^4+175*x^3-922*x^2+636*x+908 6308855877497413 a007 Real Root Of -330*x^4+90*x^3-675*x^2+928*x+929 6308855885033699 m001 ln(Salem)^2/CopelandErdos/BesselK(0,1)^2 6308855905475143 a007 Real Root Of -990*x^4+502*x^3-226*x^2-992*x-253 6308855924663541 p001 sum((-1)^n/(373*n+118)/n/(32^n),n=1..infinity) 6308855930259173 m001 Ei(1)*arctan(1/3)*MertensB2 6308855940506478 l006 ln(5235/9838) 6308855954933100 a003 cos(Pi*3/119)-sin(Pi*13/109) 6308855963575296 a007 Real Root Of -139*x^4-791*x^3+483*x^2-341*x+202 6308855996517092 a001 2/1597*377^(37/56) 6308856014770701 a007 Real Root Of -747*x^4+292*x^3-899*x^2-527*x+217 6308856025902325 p004 log(22369/11903) 6308856025995214 r002 22th iterates of z^2 + 6308856029016814 a007 Real Root Of -766*x^4+662*x^3+441*x^2+607*x+495 6308856040565726 a007 Real Root Of 32*x^4-992*x^3-928*x^2+129*x+532 6308856078645196 r005 Im(z^2+c),c=9/23+17/42*I,n=9 6308856092591468 m001 Bloch*(OneNinth-exp(1/exp(1))) 6308856115982310 m001 (gamma(3)+Thue)^(Pi*csc(7/24*Pi)/GAMMA(17/24)) 6308856140039508 b008 3^Pi/5 6308856140039508 m001 2*exp(Pi)^ln(3) 6308856141063688 a003 cos(Pi*16/101)-cos(Pi*29/69) 6308856146362511 a007 Real Root Of 213*x^4-909*x^3+135*x^2-590*x+513 6308856155123814 a007 Real Root Of 804*x^4-550*x^3+618*x^2+416*x-249 6308856156086470 m006 (3/4/Pi-5/6)/(1/6*exp(2*Pi)+5) 6308856174929412 r009 Re(z^3+c),c=-2/27+12/53*I,n=2 6308856215764603 a007 Real Root Of -400*x^4+78*x^3+431*x^2+571*x-488 6308856259370777 m001 (Psi(2,1/3)+ErdosBorwein)/(-Trott+Thue) 6308856263140015 r009 Re(z^3+c),c=-29/78+35/46*I,n=5 6308856267217035 r005 Im(z^2+c),c=3/50+31/51*I,n=35 6308856273638528 s001 sum(exp(-Pi/4)^n*A050079[n],n=1..infinity) 6308856301984672 r005 Re(z^2+c),c=-9/14+68/161*I,n=8 6308856331440936 m001 (BesselI(1,1)+GolombDickman)/(Ei(1)+gamma(2)) 6308856333799217 a007 Real Root Of 8*x^4-731*x^3+423*x^2+265*x-186 6308856336877633 a007 Real Root Of 739*x^4-366*x^3+806*x^2-739*x-996 6308856338631603 m001 (GAMMA(5/6)+KhinchinHarmonic)/(Pi+2^(1/2)) 6308856354031559 a001 98209/682*18^(23/45) 6308856394444823 r002 45th iterates of z^2 + 6308856426470737 r002 41th iterates of z^2 + 6308856429802260 a003 cos(Pi*1/33)*sin(Pi*26/119) 6308856439448762 a007 Real Root Of 903*x^4+721*x^3-57*x^2-244*x-15 6308856444562091 m001 exp(Pi)^ln(2+3^(1/2))+ZetaP(2) 6308856457892668 r005 Im(z^2+c),c=-117/106+4/53*I,n=30 6308856466743986 m001 Thue-gamma(1)-ln(2)/ln(10) 6308856481795444 a007 Real Root Of -543*x^4+947*x^3+643*x^2+677*x+495 6308856502242152 q001 2251/3568 6308856513480851 r005 Im(z^2+c),c=-19/17+1/13*I,n=34 6308856519254799 m001 (BesselJ(1,1)-GlaisherKinkelin)^Khinchin 6308856520397480 a007 Real Root Of -302*x^4+616*x^3-666*x^2+259*x+631 6308856526844335 m001 GAMMA(2/3)^2/Paris/exp(cos(1))^2 6308856542892136 m001 1/GAMMA(19/24)^2/Lehmer^2/ln(sqrt(Pi))^2 6308856553304808 m001 (FeigenbaumC+Magata)/(gamma(3)-FeigenbaumB) 6308856567848647 r005 Im(z^2+c),c=-45/82+31/50*I,n=59 6308856602494873 r005 Im(z^2+c),c=-9/8+23/104*I,n=24 6308856604422832 r005 Re(z^2+c),c=-1/21+38/51*I,n=59 6308856608125030 h001 (-5*exp(5)+9)/(-2*exp(4)-7) 6308856647249590 b008 (9*Pi)/E^(3/2) 6308856649834270 l006 ln(1433/2693) 6308856649834270 p004 log(2693/1433) 6308856675682930 m001 (Zeta(5)-gamma(1))/(Niven+ZetaQ(2)) 6308856697893062 m001 ErdosBorwein^Magata/(Tribonacci^Magata) 6308856706999269 a007 Real Root Of -290*x^4-327*x^3+505*x^2+986*x-695 6308856716344357 b008 9/(1+Pi)^(1/4) 6308856739930089 a007 Real Root Of 126*x^4+789*x^3+115*x^2+870*x-574 6308856756069467 a007 Real Root Of -34*x^4+948*x^3-882*x^2-974*x-20 6308856768477479 a007 Real Root Of -965*x^4-691*x^3+593*x^2+941*x+337 6308856782083079 a007 Real Root Of 946*x^4-114*x^3-284*x^2-348*x-285 6308856812789417 a003 cos(Pi*15/71)*sin(Pi*34/115) 6308856813424760 r009 Im(z^3+c),c=-41/64+22/53*I,n=3 6308856819706824 a007 Real Root Of -353*x^4+921*x^3-380*x^2-817*x-77 6308856819758039 m001 1/cos(1)/ln(Zeta(5))/cos(Pi/5) 6308856819758926 m005 (1/2*Zeta(3)+6)/(3/11*gamma+8/9) 6308856823524662 a001 2584/64079*322^(7/8) 6308856837761525 h001 (1/8*exp(2)+5/12)/(5/11*exp(1)+8/9) 6308856846184038 a007 Real Root Of 903*x^4-195*x^3-832*x^2-490*x-170 6308856847081521 m005 (1/2*5^(1/2)-1/3)/(4/9*5^(1/2)+1/4) 6308856857913360 m005 (1/2*Pi+6/11)/(3/8*gamma-1/4) 6308856858279197 m001 GAMMA(13/24)/(ln(2+3^(1/2))+GlaisherKinkelin) 6308856878961188 a007 Real Root Of -761*x^4-125*x^3-812*x^2+895*x+977 6308856886374511 r005 Im(z^2+c),c=13/32+5/23*I,n=39 6308856926537063 m001 ZetaR(2)^ln(2^(1/2)+1)*ZetaR(2)^LambertW(1) 6308856941135786 h001 (8/9*exp(1)+7/10)/(6/11*exp(2)+10/11) 6308856972170263 h001 (-12*exp(3)+10)/(-12*exp(1)-4) 6308856983613053 a001 615/15251*322^(7/8) 6308857006707428 a007 Real Root Of 170*x^4+983*x^3-549*x^2+162*x+398 6308857006969635 a001 17711/439204*322^(7/8) 6308857010377314 a001 46368/1149851*322^(7/8) 6308857010874488 a001 121393/3010349*322^(7/8) 6308857010947024 a001 317811/7881196*322^(7/8) 6308857010957607 a001 75640/1875749*322^(7/8) 6308857010959151 a001 2178309/54018521*322^(7/8) 6308857010959377 a001 5702887/141422324*322^(7/8) 6308857010959410 a001 14930352/370248451*322^(7/8) 6308857010959414 a001 39088169/969323029*322^(7/8) 6308857010959415 a001 9303105/230701876*322^(7/8) 6308857010959415 a001 267914296/6643838879*322^(7/8) 6308857010959415 a001 701408733/17393796001*322^(7/8) 6308857010959415 a001 1836311903/45537549124*322^(7/8) 6308857010959415 a001 4807526976/119218851371*322^(7/8) 6308857010959415 a001 1144206275/28374454999*322^(7/8) 6308857010959415 a001 32951280099/817138163596*322^(7/8) 6308857010959415 a001 86267571272/2139295485799*322^(7/8) 6308857010959415 a001 225851433717/5600748293801*322^(7/8) 6308857010959415 a001 591286729879/14662949395604*322^(7/8) 6308857010959415 a001 365435296162/9062201101803*322^(7/8) 6308857010959415 a001 139583862445/3461452808002*322^(7/8) 6308857010959415 a001 53316291173/1322157322203*322^(7/8) 6308857010959415 a001 20365011074/505019158607*322^(7/8) 6308857010959415 a001 7778742049/192900153618*322^(7/8) 6308857010959415 a001 2971215073/73681302247*322^(7/8) 6308857010959415 a001 1134903170/28143753123*322^(7/8) 6308857010959415 a001 433494437/10749957122*322^(7/8) 6308857010959415 a001 165580141/4106118243*322^(7/8) 6308857010959416 a001 63245986/1568397607*322^(7/8) 6308857010959417 a001 24157817/599074578*322^(7/8) 6308857010959430 a001 9227465/228826127*322^(7/8) 6308857010959516 a001 3524578/87403803*322^(7/8) 6308857010960106 a001 1346269/33385282*322^(7/8) 6308857010964148 a001 514229/12752043*322^(7/8) 6308857010991855 a001 196418/4870847*322^(7/8) 6308857011181758 a001 75025/1860498*322^(7/8) 6308857012483376 a001 28657/710647*322^(7/8) 6308857021404796 a001 10946/271443*322^(7/8) 6308857035751116 m004 -E^(Sqrt[5]*Pi)/2-25*Pi+5*Log[Sqrt[5]*Pi] 6308857082553120 a001 4181/103682*322^(7/8) 6308857109325299 l006 ln(12/6593) 6308857109432868 m005 (1/2*Catalan+4/5)/(5/7*Pi-1/4) 6308857110602682 r005 Im(z^2+c),c=13/114+37/64*I,n=19 6308857134788839 a007 Real Root Of 508*x^4-568*x^3+168*x^2-791*x-789 6308857156350609 a003 cos(Pi*20/61)+cos(Pi*25/54) 6308857167882325 m005 (1/3*Pi-3/4)/(5/12*2^(1/2)-7/11) 6308857204362150 r002 23th iterates of z^2 + 6308857212331435 a007 Real Root Of -767*x^4+905*x^3-234*x^2+677*x+869 6308857224716433 a007 Real Root Of -167*x^4+154*x^3-782*x^2+85*x+430 6308857236971943 m001 (BesselK(1,1)+GAMMA(5/6))/(LambertW(1)-sin(1)) 6308857259340444 a001 2584/843*123^(3/20) 6308857283439584 r005 Re(z^2+c),c=2/13+11/29*I,n=55 6308857329675617 m001 (sqrt(5)*arctan(1/2)+Artin)/sqrt(5) 6308857329675617 m001 1/5*(5^(1/2)*arctan(1/2)+Artin)*5^(1/2) 6308857332258608 a007 Real Root Of -408*x^4+520*x^3-46*x^2+530*x-382 6308857340101304 r005 Re(z^2+c),c=11/82+30/61*I,n=22 6308857342381578 r002 32th iterates of z^2 + 6308857358347973 a007 Real Root Of 594*x^4-870*x^3-492*x^2-797*x+823 6308857399007282 m001 1/ln(GAMMA(3/4))/TreeGrowth2nd/sqrt(Pi) 6308857405465679 a007 Real Root Of 153*x^4+927*x^3-75*x^2+945*x-659 6308857406692207 a001 1/208010*377^(23/53) 6308857411849023 g001 Psi(2/9,25/112) 6308857423434932 m008 (Pi^4-5/6)/(5*Pi-2/5) 6308857424090049 l006 ln(4796/9013) 6308857425090549 q001 1916/3037 6308857460121172 a001 76/377*34^(11/34) 6308857494607822 m005 (1/2*2^(1/2)-1/6)/(2/5*Pi-2/5) 6308857498142420 r009 Im(z^3+c),c=-61/110+12/19*I,n=19 6308857501669970 a001 1597/39603*322^(7/8) 6308857513949860 a007 Real Root Of -839*x^4+384*x^3-919*x^2-444*x+315 6308857537425527 m001 (2^(1/2)+1)/(5^(1/2)+BesselI(1,2)) 6308857559407672 m005 (1/3*gamma+1/7)/(2/11*gamma-7/11) 6308857575963949 a007 Real Root Of 673*x^4-343*x^3+365*x^2+959*x+267 6308857582475938 a007 Real Root Of 577*x^4-763*x^3+613*x^2-279*x-703 6308857607436291 m001 (Ei(1)-exp(-1/2*Pi))/(FeigenbaumD-ZetaQ(3)) 6308857646231147 a007 Real Root Of -172*x^4-982*x^3+798*x^2+881*x-309 6308857690411129 l006 ln(4745/5054) 6308857690654403 m008 (3/5*Pi^6-1/6)/(3*Pi^5-4) 6308857695405003 a007 Real Root Of -367*x^4+946*x^3-151*x^2+143*x+446 6308857698787102 m009 (3*Psi(1,1/3)-1/3)/(2/5*Pi^2+4/5) 6308857717272883 m005 (1/2*3^(1/2)-1/8)/(3/5*Catalan+5/8) 6308857718269676 g006 Psi(1,9/10)+Psi(1,5/7)+Psi(1,3/5)-Psi(1,3/11) 6308857754006335 l006 ln(3363/6320) 6308857762814746 s001 sum(exp(-Pi/2)^(n-1)*A232614[n],n=1..infinity) 6308857790993507 a007 Real Root Of 530*x^4+619*x^3+744*x^2-866*x-771 6308857804321886 r002 23th iterates of z^2 + 6308857811335847 r005 Im(z^2+c),c=5/17+21/61*I,n=3 6308857812114884 m001 (Zeta(1,-1)-MertensB1)/(PlouffeB-Weierstrass) 6308857812257574 h001 (4/11*exp(1)+7/9)/(4/5*exp(1)+5/8) 6308857822404795 m001 (GAMMA(3/4)+2*Pi/GAMMA(5/6))/OneNinth 6308857822404795 m001 (GAMMA(3/4)+GAMMA(1/6))/OneNinth 6308857827165373 a007 Real Root Of 323*x^4-768*x^3-316*x^2-348*x+487 6308857844367652 r005 Im(z^2+c),c=-9/122+27/37*I,n=38 6308857846610187 a001 47/8*13^(1/36) 6308857847435975 a007 Real Root Of 44*x^4-436*x^3+198*x^2-810*x-52 6308857873114976 m001 1/Pi/MadelungNaCl*exp(sqrt(Pi))^2 6308857881264548 p001 sum(1/(98*n+61)/n/(100^n),n=0..infinity) 6308857890151022 r005 Im(z^2+c),c=1/94+40/61*I,n=63 6308857899119922 m001 (GolombDickman-ln(Pi)*Salem)/ln(Pi) 6308857903611595 m001 BesselK(1,1)^2/exp(Artin)^2/exp(1) 6308857912691271 r005 Re(z^2+c),c=7/122+15/38*I,n=14 6308857948095415 r005 Im(z^2+c),c=31/110+28/61*I,n=31 6308857996388007 l004 sinh(661/70) 6308857996410247 r005 Re(z^2+c),c=-19/60+35/57*I,n=10 6308858000487926 m008 (1/2*Pi^6+5)/(4/5*Pi^6+3/4) 6308858025520713 a007 Real Root Of -164*x^4+393*x^3-695*x^2+716*x+853 6308858031942868 r005 Re(z^2+c),c=-5/8+77/206*I,n=52 6308858052944263 l006 ln(5293/9947) 6308858057568237 m001 (Kac-Salem)/(BesselI(1,1)+HardyLittlewoodC4) 6308858075641653 l004 cosh(661/70) 6308858123519954 a001 7/144*3^(14/59) 6308858151743527 a007 Real Root Of -823*x^4+792*x^3-279*x^2-709*x-7 6308858152383666 r009 Re(z^3+c),c=-43/70+13/60*I,n=4 6308858152902920 s002 sum(A070215[n]/(n^2*exp(n)-1),n=1..infinity) 6308858160715868 m009 (5/6*Psi(1,1/3)+1/2)/(1/5*Psi(1,2/3)+4/5) 6308858186761185 m005 (1/2*Pi-4/7)/(3/11*Pi+8/11) 6308858195192152 a007 Real Root Of 21*x^4-50*x^3+994*x^2+554*x-62 6308858197187748 m001 1/GAMMA(23/24)*DuboisRaymond*exp(Zeta(3)) 6308858219638542 m005 (8/5+2*5^(1/2))/(3*Pi+1/5) 6308858350716994 m008 (3*Pi+1/6)/(5*Pi^3-3) 6308858383008147 r005 Im(z^2+c),c=-7/94+28/39*I,n=11 6308858386595767 a007 Real Root Of -4*x^4+98*x^3+893*x^2+609*x-756 6308858428126636 m001 (GAMMA(11/24)+1/2)/(-ln(Pi)+5) 6308858439479560 a007 Real Root Of 942*x^4+388*x^3+990*x^2-70*x-490 6308858479350603 m001 (1+gamma)/(-Riemann3rdZero+Trott) 6308858484247735 r005 Re(z^2+c),c=-15/22+63/80*I,n=3 6308858490831157 m001 (1-Psi(1,1/3))/(-Chi(1)+BesselI(0,2)) 6308858493764311 h001 (1/5*exp(2)+1/3)/(8/9*exp(1)+5/11) 6308858500489440 m001 (Kac+MinimumGamma)/(Sarnak+Sierpinski) 6308858573839711 l006 ln(1930/3627) 6308858575269837 a007 Real Root Of 387*x^4-10*x^3+67*x^2-546*x+259 6308858585180085 r002 4th iterates of z^2 + 6308858586949870 a007 Real Root Of 247*x^4-798*x^3-514*x^2-517*x+692 6308858642362079 m001 (Salem+Tribonacci)/(Zeta(1,-1)+Cahen) 6308858656667767 m001 (exp(Pi)+BesselJ(1,1))/(-GolombDickman+Robbin) 6308858675239452 a007 Real Root Of -94*x^4-701*x^3-633*x^2+267*x-232 6308858739026336 q001 1581/2506 6308858744940140 r009 Im(z^3+c),c=-59/102+4/25*I,n=3 6308858747276995 r005 Re(z^2+c),c=-19/66+39/59*I,n=24 6308858749065114 s002 sum(A179662[n]/(n^2*exp(n)-1),n=1..infinity) 6308858775506874 r005 Re(z^2+c),c=-5/14+35/52*I,n=14 6308858778077573 a007 Real Root Of 798*x^4-927*x^3-350*x-580 6308858794325644 r005 Re(z^2+c),c=-49/118+38/61*I,n=2 6308858804228606 m002 -Pi/2+(3*E^Pi)/ProductLog[Pi] 6308858834618334 m001 (2^(1/3)+ln(gamma))/(ln(3)+Trott2nd) 6308858837766117 r005 Im(z^2+c),c=-1/8+55/63*I,n=23 6308858862870050 m001 1/GAMMA(23/24)/ln((2^(1/3)))^2*sin(Pi/5)^2 6308858874170485 r005 Im(z^2+c),c=1/122+31/49*I,n=40 6308858894489862 r009 Im(z^3+c),c=-29/46+18/59*I,n=11 6308858895158260 a007 Real Root Of -349*x^4+956*x^3-321*x^2+233*x-204 6308858911247474 m005 (1/2*3^(1/2)-3/10)/(5/7*5^(1/2)-7/10) 6308858911468874 m001 (cos(1/5*Pi)+ln(2))/(ln(3)+GlaisherKinkelin) 6308858912958351 m001 1/MinimumGamma*FeigenbaumB^2/exp(Zeta(7))^2 6308858916987587 r002 9th iterates of z^2 + 6308858929701651 a001 2207/377*89^(1/60) 6308858933698374 m001 1/GAMMA(1/12)/BesselJ(0,1)/ln(GAMMA(7/12))^2 6308858992718208 r002 8th iterates of z^2 + 6308858996421832 m001 Catalan*FibonacciFactorial/exp(gamma) 6308859011208710 p001 sum((-1)^n/(235*n+158)/(125^n),n=0..infinity) 6308859034579750 a007 Real Root Of -903*x^4+714*x^3+353*x^2-992*x-444 6308859037304180 r009 Im(z^3+c),c=-59/61*I,n=8 6308859060660145 a007 Real Root Of 454*x^4-117*x^3-317*x^2-870*x-524 6308859083440528 a001 41/48*121393^(35/46) 6308859139547325 m001 (Zeta(1,2)+MadelungNaCl)/(OneNinth+Salem) 6308859163248275 a007 Real Root Of 415*x^4-937*x^3-305*x^2-287*x+472 6308859178751067 r005 Re(z^2+c),c=4/29+10/41*I,n=9 6308859182483499 a007 Real Root Of -518*x^4-354*x^3-814*x^2+908*x+890 6308859206637380 l006 ln(4357/8188) 6308859230181738 a007 Real Root Of 617*x^4-252*x^3+192*x^2+351*x-16 6308859243136835 a007 Real Root Of 491*x^4-254*x^3-320*x^2-979*x+731 6308859292616172 r005 Re(z^2+c),c=-57/86+18/59*I,n=39 6308859299450731 m001 (-HeathBrownMoroz+Totient)/(2^(1/2)-Zeta(3)) 6308859299968431 m001 (2^(1/3)-Champernowne)/(MadelungNaCl+ZetaQ(2)) 6308859309931813 m005 (2*gamma-4/5)/(5/6*Pi+3) 6308859334085974 r005 Im(z^2+c),c=2/29+23/41*I,n=5 6308859377582607 m001 (-Kac+Robbin)/(Ei(1)-Psi(2,1/3)) 6308859391847446 m005 (1/3*Pi-1/7)/(6/11*Zeta(3)+7/9) 6308859394040858 m001 MertensB1^BesselJ(1,1)+ZetaP(4) 6308859394253006 a007 Real Root Of -94*x^4+990*x^3-181*x^2+909*x+909 6308859398017301 m005 (1/3*2^(1/2)+2/3)/(185/198+7/18*5^(1/2)) 6308859407276268 a007 Real Root Of 71*x^4-160*x^3+710*x^2-783*x-828 6308859418433130 m001 (Porter+Tetranacci)/(Kolakoski-MertensB3) 6308859424820214 m001 (Artin-Backhouse)/(Landau-TravellingSalesman) 6308859430809035 a007 Real Root Of -24*x^4-89*x^3+327*x^2-278*x+903 6308859432007839 m001 (ln(3)-ErdosBorwein)/(Kolakoski+Trott) 6308859438133110 m001 2^(1/2)-KhinchinLevy*TwinPrimes 6308859456109084 m001 (ln(2)-BesselI(0,2))/(ZetaP(3)+ZetaP(4)) 6308859457565176 a007 Real Root Of 274*x^4-607*x^3+686*x^2-490*x-778 6308859485765033 a007 Real Root Of 111*x^4-673*x^3-225*x^2-325*x+446 6308859487493553 a007 Real Root Of 683*x^4-708*x^3-428*x^2-967*x+850 6308859501358731 p002 log(7^(10/3)-7^(12/5)) 6308859511560153 m001 (MinimumGamma+PlouffeB)/(5^(1/2)+GaussAGM) 6308859520323367 a007 Real Root Of 856*x^4+752*x^3+859*x^2+93*x-230 6308859556061704 r009 Im(z^3+c),c=-27/122+3/56*I,n=3 6308859567505930 a008 Real Root of (3-6*x^2+3*x^3-x^4-3*x^5) 6308859569270081 r002 29th iterates of z^2 + 6308859615958860 r002 14th iterates of z^2 + 6308859618452846 a007 Real Root Of -760*x^4-188*x^3-93*x^2-311*x-86 6308859663998252 r005 Re(z^2+c),c=-15/118+17/19*I,n=5 6308859668257645 r002 52th iterates of z^2 + 6308859668685016 a007 Real Root Of 388*x^4-63*x^3+133*x^2-472*x-428 6308859674853256 a007 Real Root Of -748*x^4+388*x^3-397*x^2+669*x+796 6308859675447759 a007 Real Root Of 620*x^4+414*x^3+613*x^2-128*x-319 6308859682469414 m001 (5^(1/2)+Kac)/(ReciprocalFibonacci+Salem) 6308859683993615 m001 (Magata-Rabbit)/(Pi^(1/2)+FeigenbaumAlpha) 6308859691657485 m001 (-HardyLittlewoodC3+Otter)/(5^(1/2)+3^(1/3)) 6308859709850990 l006 ln(2427/4561) 6308859713788422 s001 sum(exp(-2*Pi/5)^n*A218810[n],n=1..infinity) 6308859713788422 s002 sum(A218810[n]/(exp(2/5*pi*n)),n=1..infinity) 6308859757313532 m001 (2^(1/3)-exp(1/exp(1)))/(-Otter+Trott2nd) 6308859802975493 r005 Re(z^2+c),c=-11/28+29/42*I,n=5 6308859807553157 r009 Im(z^3+c),c=-31/86+44/63*I,n=12 6308859828367684 a007 Real Root Of -328*x^4+721*x^3-621*x^2-51*x+448 6308859850011260 p001 sum((-1)^n/(359*n+141)/(2^n),n=0..infinity) 6308859899215063 p003 LerchPhi(1/512,4,193/172) 6308859913217473 m001 Si(Pi)^Psi(1,1/3)/(cosh(1)^Psi(1,1/3)) 6308859918934636 a007 Real Root Of 734*x^4-416*x^3-317*x^2-817*x-610 6308859919991107 m005 (1/2*Pi+11/12)/(2/3*2^(1/2)+3) 6308859925421737 a007 Real Root Of 756*x^4-611*x^3-525*x^2-938*x-656 6308859934872278 m001 ln(Pi)^2*OneNinth/sqrt(5) 6308859948680850 a007 Real Root Of 664*x^4-217*x^3-911*x^2-910*x+886 6308859959284978 h001 (5/12*exp(2)+5/12)/(8/11*exp(2)+1/6) 6308860007325908 m001 (Cahen+FransenRobinson)/(GAMMA(3/4)-Pi^(1/2)) 6308860012407086 m005 (5/8+1/4*5^(1/2))/(1/4*Catalan-5/12) 6308860040009937 a007 Real Root Of 961*x^4+153*x^3+756*x^2+250*x-257 6308860065291977 a007 Real Root Of 784*x^4-293*x^3+416*x^2-578*x-728 6308860074294469 b008 63+Sech[2]/3 6308860088646270 m005 (1/2*3^(1/2)+1/4)/(5/12*exp(1)+7/11) 6308860089105908 a007 Real Root Of -572*x^4+418*x^3-14*x^2+442*x+480 6308860089181142 h001 (2/11*exp(1)+1/12)/(3/10*exp(1)+1/10) 6308860119587787 l006 ln(5351/10056) 6308860125870334 a003 sin(Pi*24/91)*sin(Pi*35/107) 6308860138734418 m005 (1/3*3^(1/2)+1/10)/(1/8*3^(1/2)+6/7) 6308860140686597 g006 2*Psi(1,1/6)+Psi(1,2/3)-Psi(1,3/11) 6308860157760562 a007 Real Root Of 950*x^4-763*x^3+580*x^2+924*x+10 6308860172195261 a007 Real Root Of -167*x^4+715*x^3-733*x^2+766*x+981 6308860180616103 a003 cos(Pi*25/89)*sin(Pi*31/67) 6308860182840818 m001 FeigenbaumDelta/exp(Champernowne)*GAMMA(7/12) 6308860207320074 m001 Ei(1)^(2^(1/2))*Ei(1)^Porter 6308860209671339 r002 16th iterates of z^2 + 6308860227306269 a007 Real Root Of 924*x^4-841*x^3-428*x^2-751*x-661 6308860232947221 m001 (PlouffeB+Salem)/(exp(1/exp(1))+GAMMA(19/24)) 6308860236769733 m001 (Zeta(1,2)-Pi^(1/2))/(Otter+Totient) 6308860260327589 m001 ln(GAMMA(2/3))*GolombDickman/sqrt(3)^2 6308860267849864 a007 Real Root Of -139*x^4+865*x^3-578*x^2+250*x+627 6308860274354146 r005 Im(z^2+c),c=-19/32+5/43*I,n=44 6308860287599211 m001 Kolakoski/GaussAGM*LaplaceLimit 6308860300158168 a007 Real Root Of 43*x^4-239*x^3+421*x^2-868*x-782 6308860304256736 a007 Real Root Of -162*x^4-944*x^3+628*x^2+714*x-896 6308860317021145 a001 1/34*233^(7/50) 6308860325605202 m005 (1/2*2^(1/2)-5/9)/(5/9*2^(1/2)-6/11) 6308860338180343 m005 (1/2*Zeta(3)-1/6)/(1/10*exp(1)+5/12) 6308860362907383 m001 Niven*Lehmer/ln(GAMMA(19/24)) 6308860370722363 a007 Real Root Of 380*x^4-778*x^3-613*x^2-740*x+846 6308860374339581 a001 610/15127*322^(7/8) 6308860382251335 r009 Re(z^3+c),c=-5/11+2/47*I,n=38 6308860392837381 a007 Real Root Of -126*x^4+845*x^3+245*x^2+148*x+228 6308860459680526 l006 ln(2924/5495) 6308860462345403 m001 ln(2+3^(1/2))^BesselI(1,1)/Si(Pi) 6308860462345403 m001 ln(2+sqrt(3))^BesselI(1,1)/Si(Pi) 6308860529925610 r002 17th iterates of z^2 + 6308860546371780 m001 (2^(1/2)-arctan(1/3))/(-OneNinth+Tribonacci) 6308860557501737 a007 Real Root Of -17*x^4+26*x^3+863*x^2+224*x+524 6308860559050138 m001 (FransenRobinson+Paris)/(Zeta(5)+FeigenbaumMu) 6308860577802701 a007 Real Root Of 63*x^4+273*x^3-867*x^2-564*x-302 6308860600782871 m005 (1/2*Zeta(3)+5/12)/(9/10*exp(1)-5/6) 6308860605621020 m001 (ZetaP(4)+ZetaQ(3))/(Sarnak-Thue) 6308860611998543 m001 exp(FeigenbaumB)/MertensB1*GAMMA(1/3)^2 6308860619161338 r008 a(0)=9,K{-n^6,-34-13*n^3+23*n^2+16*n} 6308860621120198 a007 Real Root Of -613*x^4+710*x^3-568*x^2-313*x+304 6308860631599728 a007 Real Root Of -526*x^4+645*x^3-384*x^2-43*x+371 6308860660702704 a007 Real Root Of -600*x^4+707*x^3+644*x^2+296*x+203 6308860706638027 m005 (1/3*Zeta(3)+1/2)/(8/11*Pi-6/7) 6308860715015024 r009 Im(z^3+c),c=-9/58+11/15*I,n=43 6308860722421628 r009 Im(z^3+c),c=-65/118+3/11*I,n=27 6308860722738174 m001 1/exp(BesselK(1,1))*Bloch^2/GAMMA(5/24)^2 6308860723563732 r005 Re(z^2+c),c=5/19+19/48*I,n=53 6308860733780609 m001 (sin(1)+gamma(1))/(-Khinchin+Porter) 6308860736138191 s002 sum(A127615[n]/(pi^n+1),n=1..infinity) 6308860736252018 s002 sum(A127615[n]/(pi^n),n=1..infinity) 6308860736439866 s002 sum(A127615[n]/(pi^n-1),n=1..infinity) 6308860743634547 r005 Im(z^2+c),c=13/102+27/46*I,n=33 6308860759493670 q001 1246/1975 6308860782364016 a001 329/13201*322^(23/24) 6308860804365923 m001 ln(Niven)*Cahen*FeigenbaumKappa^2 6308860850003217 m001 (1+Pi^(1/2))/(MertensB2+ReciprocalFibonacci) 6308860853834079 h001 (1/11*exp(2)+7/11)/(1/2*exp(1)+5/7) 6308860876517282 r005 Im(z^2+c),c=-7/90+25/33*I,n=8 6308860891571717 a001 7331474697802*832040^(3/19) 6308860891572005 a001 1730726404001*7778742049^(3/19) 6308860937410176 m001 (ln(Pi)+BesselJ(1,1))/((1+3^(1/2))^(1/2)+Thue) 6308860938695072 m001 BesselJ(0,1)^2/ln((3^(1/3)))^2*Zeta(3)^2 6308860952997981 a007 Real Root Of 74*x^4+277*x^3+972*x^2+474*x-30 6308860954552975 a007 Real Root Of 9*x^4+574*x^3+401*x^2+608*x-218 6308860974092724 m005 (1/2*2^(1/2)-3/11)/(-8/35+1/14*5^(1/2)) 6308860991640820 l006 ln(3421/6429) 6308860993811014 r009 Im(z^3+c),c=-37/106+28/43*I,n=45 6308861007793196 a001 610/3*123^(4/17) 6308861013306307 r005 Im(z^2+c),c=-85/126+3/40*I,n=27 6308861016468994 m001 ln(2+3^(1/2))/GaussAGM/Riemann3rdZero 6308861028339116 m001 (GAMMA(3/4)-Psi(2,1/3))/(Kolakoski+Paris) 6308861035792311 a001 123/63245986*6765^(11/12) 6308861037643757 a007 Real Root Of -304*x^4+901*x^3-291*x^2-357*x+165 6308861042964214 m005 (1/2*Zeta(3)+4/11)/(5/8*Zeta(3)+7/9) 6308861059904698 h001 (1/2*exp(1)+7/11)/(1/3*exp(2)+7/10) 6308861061065068 a001 123/12586269025*2178309^(11/12) 6308861061065311 a001 123/2504730781961*701408733^(11/12) 6308861141139716 k005 Champernowne real with floor(exp(1)*(94*n+138)) 6308861142139816 k001 Champernowne real with 256*n+374 6308861143139916 k005 Champernowne real with floor(sqrt(3)*(148*n+216)) 6308861145347589 s002 sum(A127044[n]/((10^n+1)/n),n=1..infinity) 6308861145360207 s002 sum(A127044[n]/((10^n-1)/n),n=1..infinity) 6308861169143581 m003 -5/2+Sqrt[5]/4-(5*Cosh[1/2+Sqrt[5]/2])/3 6308861174171140 m005 (1/2*exp(1)-2/5)/(3/4*Catalan+5/6) 6308861181009845 r005 Re(z^2+c),c=17/126+26/51*I,n=42 6308861191792748 l006 ln(5651/6019) 6308861218598023 a007 Real Root Of -987*x^4+96*x^3-702*x^2-488*x+152 6308861219366333 r002 25th iterates of z^2 + 6308861240614591 a001 1/1860498*3^(7/48) 6308861242143268 a007 Real Root Of 722*x^4-620*x^3-882*x^2-699*x-360 6308861245864041 r002 40th iterates of z^2 + 6308861269909033 a003 sin(Pi*1/78)/cos(Pi*33/118) 6308861269973510 m001 1/exp(cos(Pi/5))*GAMMA(23/24)*sinh(1)^2 6308861285488641 a001 377/843*18^(5/42) 6308861315441546 a007 Real Root Of -617*x^4+898*x^3+746*x^2+605*x+408 6308861326053978 m005 (1/2*exp(1)-9/11)/(1/11*3^(1/2)+7/10) 6308861374649551 a007 Real Root Of 119*x^4+608*x^3-746*x^2+923*x-331 6308861375143273 m005 (1/6*gamma+3/4)/(4/5*exp(1)-5/6) 6308861388642307 l006 ln(3918/7363) 6308861409150185 a007 Real Root Of 182*x^4-213*x^3+459*x^2-466*x-559 6308861445189870 a007 Real Root Of 110*x^4-798*x^3+306*x^2-790*x-838 6308861471604717 m009 (4*Psi(1,1/3)+3/4)/(1/2*Pi^2-5) 6308861483412652 m004 -25*Pi-Cosh[Sqrt[5]*Pi]+5*Log[Sqrt[5]*Pi] 6308861503979582 p001 sum(1/(256*n+167)/(8^n),n=0..infinity) 6308861508879761 m001 (FeigenbaumDelta-Magata)/(GAMMA(7/12)+Bloch) 6308861550044432 a007 Real Root Of -810*x^4+908*x^3+203*x^2+527*x+608 6308861566482329 r009 Im(z^3+c),c=-59/61*I,n=10 6308861569956663 m001 (exp(1/exp(1))-ZetaP(4))/(GAMMA(3/4)-3^(1/3)) 6308861579337408 a007 Real Root Of 3*x^4-230*x^3+897*x^2+170*x-308 6308861580887573 r009 Im(z^3+c),c=-19/118+30/41*I,n=41 6308861596864914 m001 (Lehmer+Thue)/(FeigenbaumD-Khinchin) 6308861600836475 r005 Im(z^2+c),c=-2/3+13/237*I,n=3 6308861601381557 m006 (3/5*ln(Pi)+1/4)/(3/5*Pi-2/5) 6308861649830030 h001 (2/9*exp(1)+5/6)/(2/9*exp(2)+7/11) 6308861651193869 r009 Im(z^3+c),c=-59/61*I,n=12 6308861653662562 h001 (-5*exp(5)+7)/(-6*exp(3)+4) 6308861654031173 r009 Im(z^3+c),c=-59/61*I,n=14 6308861654126205 r009 Im(z^3+c),c=-59/61*I,n=16 6308861654129388 r009 Im(z^3+c),c=-59/61*I,n=18 6308861654129495 r009 Im(z^3+c),c=-59/61*I,n=20 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=22 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=24 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=26 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=28 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=30 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=32 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=34 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=36 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=38 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=40 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=42 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=44 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=46 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=48 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=50 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=52 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=54 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=56 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=58 6308861654129498 r009 Im(z^3+c),c=-59/61*I,n=60 6308861690237781 m001 (sqrt(2)+GAMMA(7/24))^GAMMA(3/4) 6308861691503778 m005 (13/42+1/6*5^(1/2))/(1/9*3^(1/2)+8/9) 6308861696262249 l006 ln(4415/8297) 6308861699547722 r002 3th iterates of z^2 + 6308861701266066 a007 Real Root Of 324*x^4-276*x^3-426*x^2-313*x+385 6308861708425109 m001 (Cahen+MertensB2)/(exp(1/Pi)+GAMMA(17/24)) 6308861722818266 a005 (1/cos(4/211*Pi))^1038 6308861724646897 m001 (5^(1/2)-BesselJ(0,1))/(-GolombDickman+Otter) 6308861731753581 m001 ln(Magata)^2*ArtinRank2*BesselK(1,1) 6308861734418207 a007 Real Root Of -56*x^4-232*x^3+797*x^2+175*x-160 6308861736897109 r005 Re(z^2+c),c=-5/8+64/145*I,n=29 6308861742500039 a007 Real Root Of -714*x^4+725*x^3+831*x^2+589*x+336 6308861750040599 a007 Real Root Of -45*x^4+956*x^3+100*x^2+747*x-744 6308861770563442 r005 Im(z^2+c),c=-29/25+7/26*I,n=53 6308861790016065 r005 Im(z^2+c),c=10/27+5/28*I,n=63 6308861799537721 m001 (Gompertz+Sarnak)/(2^(1/3)+FeigenbaumB) 6308861826173249 a007 Real Root Of 136*x^4-66*x^3-553*x^2-190*x+335 6308861837581255 m001 (Salem+ZetaQ(2))/(Cahen+Mills) 6308861837794861 r005 Im(z^2+c),c=-8/31+23/30*I,n=39 6308861840250357 a007 Real Root Of 250*x^4-244*x^3+870*x^2+89*x-391 6308861868830399 r005 Re(z^2+c),c=25/62+6/47*I,n=7 6308861869060831 a001 161/416020*55^(5/41) 6308861892057231 a001 1292/51841*322^(23/24) 6308861906591978 r005 Im(z^2+c),c=-3/4+41/241*I,n=18 6308861911323397 m001 FeigenbaumB^(Ei(1)*PisotVijayaraghavan) 6308861911655049 a001 24476/13*196418^(17/59) 6308861941294922 r002 20th iterates of z^2 + 6308861941631731 l006 ln(4912/9231) 6308861942859519 m005 (1/2*Pi+4)/(13/154+5/14*5^(1/2)) 6308861946572423 m001 FransenRobinson/(Sarnak^FeigenbaumAlpha) 6308861982601003 m004 3+(30*Sin[Sqrt[5]*Pi])/(Pi*Log[Sqrt[5]*Pi]) 6308861991018918 a001 4/5*4181^(11/21) 6308861997351095 a007 Real Root Of -751*x^4+262*x^3+24*x^2+453*x+461 6308862011470070 a008 Real Root of x^4-2*x^3+15*x^2+x-6 6308862012747483 p004 log(28627/15233) 6308862013329420 r002 49th iterates of z^2 + 6308862019311216 r009 Im(z^3+c),c=-41/118+37/57*I,n=6 6308862030872525 m001 LambertW(1)/BesselI(1,1)/BesselI(1,2) 6308862036898964 m001 (MadelungNaCl+Tribonacci)/(3^(1/2)-Psi(2,1/3)) 6308862053959289 a001 2255/90481*322^(23/24) 6308862058763510 a007 Real Root Of -249*x^4+940*x^3-841*x^2+388*x+855 6308862072408392 h001 (-exp(8)+5)/(-2*exp(3)-7) 6308862077580481 a001 17711/710647*322^(23/24) 6308862081026766 a001 2576/103361*322^(23/24) 6308862081529573 a001 121393/4870847*322^(23/24) 6308862081602931 a001 105937/4250681*322^(23/24) 6308862081613634 a001 416020/16692641*322^(23/24) 6308862081615195 a001 726103/29134601*322^(23/24) 6308862081615423 a001 5702887/228826127*322^(23/24) 6308862081615456 a001 829464/33281921*322^(23/24) 6308862081615461 a001 39088169/1568397607*322^(23/24) 6308862081615462 a001 34111385/1368706081*322^(23/24) 6308862081615462 a001 133957148/5374978561*322^(23/24) 6308862081615462 a001 233802911/9381251041*322^(23/24) 6308862081615462 a001 1836311903/73681302247*322^(23/24) 6308862081615462 a001 267084832/10716675201*322^(23/24) 6308862081615462 a001 12586269025/505019158607*322^(23/24) 6308862081615462 a001 10983760033/440719107401*322^(23/24) 6308862081615462 a001 43133785636/1730726404001*322^(23/24) 6308862081615462 a001 75283811239/3020733700601*322^(23/24) 6308862081615462 a001 182717648081/7331474697802*322^(23/24) 6308862081615462 a001 139583862445/5600748293801*322^(23/24) 6308862081615462 a001 53316291173/2139295485799*322^(23/24) 6308862081615462 a001 10182505537/408569081798*322^(23/24) 6308862081615462 a001 7778742049/312119004989*322^(23/24) 6308862081615462 a001 2971215073/119218851371*322^(23/24) 6308862081615462 a001 567451585/22768774562*322^(23/24) 6308862081615462 a001 433494437/17393796001*322^(23/24) 6308862081615462 a001 165580141/6643838879*322^(23/24) 6308862081615462 a001 31622993/1268860318*322^(23/24) 6308862081615464 a001 24157817/969323029*322^(23/24) 6308862081615477 a001 9227465/370248451*322^(23/24) 6308862081615564 a001 1762289/70711162*322^(23/24) 6308862081616160 a001 1346269/54018521*322^(23/24) 6308862081620249 a001 514229/20633239*322^(23/24) 6308862081648269 a001 98209/3940598*322^(23/24) 6308862081840324 a001 75025/3010349*322^(23/24) 6308862083156688 a001 28657/1149851*322^(23/24) 6308862092179180 a001 5473/219602*322^(23/24) 6308862099024881 m001 1/MertensB1*Champernowne/ln(BesselK(0,1))^2 6308862130514819 a001 6119/36*591286729879^(2/15) 6308862139509378 a001 64079/144*433494437^(2/15) 6308862140820001 a001 167761/144*317811^(2/15) 6308862154020264 a001 4181/167761*322^(23/24) 6308862166477747 r002 52th iterates of z^2 + 6308862224657051 r009 Im(z^3+c),c=-1/110+13/17*I,n=39 6308862228598068 m001 1/ArtinRank2*Champernowne^2/exp(sqrt(Pi))^2 6308862231118133 m005 (1/3*2^(1/2)-1/7)/(1/9*2^(1/2)+4/11) 6308862240421175 q001 2157/3419 6308862240701632 m002 5*Log[Pi]+Pi/(5*ProductLog[Pi]) 6308862244161435 m001 (sin(1/12*Pi)-exp(1/Pi))/(Lehmer+Salem) 6308862264618425 a007 Real Root Of 848*x^4-504*x^3+688*x^2-67*x-577 6308862265169268 m005 (1/3*3^(1/2)-3/4)/(5/11*Zeta(3)-3/11) 6308862265889201 a007 Real Root Of -325*x^4+535*x^3-578*x^2+891*x+978 6308862314097838 g005 GAMMA(1/7)*GAMMA(3/4)^2/GAMMA(4/7) 6308862317044738 m001 (-Artin+TravellingSalesman)/(Psi(2,1/3)+ln(3)) 6308862329901831 m005 (5/8+1/4*5^(1/2))/(117/110+4/11*5^(1/2)) 6308862343461538 h001 (5/9*exp(1)+2/11)/(5/6*exp(1)+5/12) 6308862351142394 r005 Im(z^2+c),c=-5/66+20/27*I,n=38 6308862362149554 a001 89/24476*29^(9/55) 6308862366057843 a007 Real Root Of 741*x^4-850*x^3+827*x^2-512*x-983 6308862403757324 a001 5/9349*123^(20/39) 6308862404889998 a007 Real Root Of 550*x^4-199*x^3-5*x^2-427*x+27 6308862412559835 m001 (Zeta(1/2)*GaussAGM+KhinchinHarmonic)/GaussAGM 6308862412712108 m005 (1/3*Catalan+2/11)/(1/8*gamma+7/10) 6308862418219711 m001 (Shi(1)+Zeta(1,2))/(GAMMA(19/24)+Sarnak) 6308862422604747 m005 (1/3*Catalan-1/5)/(31/40+2/5*5^(1/2)) 6308862430790115 m001 ((1+3^(1/2))^(1/2)-Si(Pi))/(Bloch+FeigenbaumD) 6308862459941969 a007 Real Root Of 171*x^4+971*x^3-534*x^2+828*x-595 6308862514152363 a007 Real Root Of -581*x^4+623*x^3-711*x^2+69*x+575 6308862516421932 a007 Real Root Of 439*x^4-675*x^3-43*x^2+943*x+373 6308862520398474 a007 Real Root Of 996*x^4-846*x^3+955*x^2+671*x-327 6308862577885355 a001 1597/64079*322^(23/24) 6308862591505532 m001 GAMMA(5/6)*MasserGramain^MertensB3 6308862603079056 m005 (2/5*Catalan+2/3)/(5*Pi+2/3) 6308862616985646 m001 (Gompertz+Rabbit)/(arctan(1/2)+ErdosBorwein) 6308862622352070 m005 (-2/3+1/4*5^(1/2))/(4/7*5^(1/2)+3/7) 6308862639965945 m001 (-exp(-1/2*Pi)+Tribonacci)/(exp(Pi)+exp(1)) 6308862659606131 b008 (1+EulerGamma)/25 6308862663871952 m001 ZetaR(2)^Trott2nd/(ZetaR(2)^Magata) 6308862675876644 a001 521/196418*55^(8/37) 6308862677615671 a007 Real Root Of -414*x^4+641*x^3-325*x^2+81*x+407 6308862781499546 b008 7*(32*E+Pi) 6308862788798349 r005 Im(z^2+c),c=-15/26+13/113*I,n=52 6308862812994280 m001 1/ln(GAMMA(2/3))^2/MadelungNaCl/Pi^2 6308862827883412 a007 Real Root Of 852*x^4-707*x^3+661*x^2+589*x-204 6308862849044999 r005 Im(z^2+c),c=-35/26+8/117*I,n=13 6308862853624282 m001 Backhouse^3*ln(FibonacciFactorial) 6308862854835764 a007 Real Root Of 226*x^4+891*x^3+931*x^2-64*x-223 6308862876565444 a001 6/726103*46368^(7/37) 6308862886182944 m005 (1/2*Zeta(3)-1/12)/(5/12*5^(1/2)-1/9) 6308862899317315 a001 4/2178309*28657^(33/58) 6308862905318007 r002 38th iterates of z^2 + 6308862911112448 r002 12th iterates of z^2 + 6308862937099692 h001 (-8*exp(5)+9)/(-9*exp(3)-6) 6308862943616210 a001 3/4*39603^(35/41) 6308862951274729 b008 (7*Pi)/5+ArcSec[-3] 6308862973420071 r005 Im(z^2+c),c=-49/90+31/50*I,n=18 6308862989542096 m001 (-GolombDickman+Rabbit)/(Ei(1)-cos(1)) 6308863003030532 b008 7*Gamma[ArcCosh[E]] 6308863017019772 r005 Im(z^2+c),c=-67/74+3/56*I,n=6 6308863023452846 a007 Real Root Of 965*x^4-738*x^3-692*x^2-869*x-611 6308863032296376 m001 KhintchineLevy*exp(Khintchine)*GAMMA(1/4) 6308863043004302 r002 56th iterates of z^2 + 6308863074858998 a001 17711/3*47^(1/58) 6308863099653900 m001 GAMMA(1/12)^exp(1/exp(1))*Si(Pi) 6308863113466443 a007 Real Root Of 739*x^4-181*x^3-50*x^2+169*x-36 6308863133730858 r005 Re(z^2+c),c=-9/10+139/189*I,n=2 6308863139103179 r005 Im(z^2+c),c=-5/19+12/19*I,n=4 6308863147044597 a007 Real Root Of 313*x^4-810*x^3+573*x^2-290*x-664 6308863153739999 a007 Real Root Of 641*x^4-997*x^3+938*x^2-342*x-941 6308863159538442 a007 Real Root Of 113*x^4-632*x^3-567*x^2-302*x+557 6308863159547705 a007 Real Root Of 269*x^4-749*x^3-988*x^2-560*x+892 6308863182341403 a007 Real Root Of 486*x^4+466*x^3+919*x^2-254*x-486 6308863198886664 r008 a(0)=6,K{-n^6,7+23*n-33*n^2-n^3} 6308863208348924 r005 Re(z^2+c),c=-1/94+47/49*I,n=4 6308863246797349 m001 Magata*CopelandErdos^2*exp(BesselK(1,1))^2 6308863247905258 a007 Real Root Of 506*x^4-870*x^3+872*x^2-10*x-652 6308863260553404 h001 (1/8*exp(2)+1/5)/(5/11*exp(1)+6/11) 6308863261157834 a007 Real Root Of 94*x^4+573*x^3-194*x^2-580*x-968 6308863305504706 r005 Im(z^2+c),c=29/110+6/13*I,n=3 6308863321837812 m005 (7/44+1/4*5^(1/2))/(13/90+4/9*5^(1/2)) 6308863334626482 r008 a(0)=6,K{-n^6,-56+23*n-10*n^2+40*n^3} 6308863345970137 m001 (Kac+MasserGramain)/(Mills+Rabbit) 6308863348972678 m001 Zeta(1/2)^2/GAMMA(7/12)^2*ln(Zeta(7))^2 6308863369584693 a001 6557470319842/123*29^(1/20) 6308863378942518 r009 Im(z^3+c),c=-2/13+44/59*I,n=40 6308863385397058 p003 LerchPhi(1/4,7,26/47) 6308863390681631 r002 9th iterates of z^2 + 6308863406066892 m005 (-5/28+1/4*5^(1/2))/(6/7*Zeta(3)+5) 6308863427144855 h001 (1/2*exp(1)+10/11)/(3/7*exp(2)+3/7) 6308863431017368 r005 Im(z^2+c),c=-91/74+19/63*I,n=9 6308863479708781 a008 Real Root of x^3-23*x-106 6308863523565368 m001 Stephens/(MadelungNaCl-GaussAGM) 6308863532511582 a007 Real Root Of 547*x^4-601*x^3-997*x^2-999*x-471 6308863533040518 r005 Re(z^2+c),c=-1/13+37/50*I,n=32 6308863567399859 m001 1/Ei(1)/ln(KhintchineHarmonic)/GAMMA(3/4)^2 6308863568993089 a007 Real Root Of 478*x^4+562*x^3+340*x^2-734*x-533 6308863586496454 m001 GAMMA(23/24)*ln(Si(Pi))/Zeta(9) 6308863595337123 h001 (-6*exp(-3)+3)/(-exp(1)+7) 6308863600123643 a007 Real Root Of 349*x^4-989*x^3+488*x^2-257*x-660 6308863654391962 m003 -1+3*Log[1/2+Sqrt[5]/2]+3*Sec[1/2+Sqrt[5]/2] 6308863655918352 r009 Re(z^3+c),c=-61/98+29/57*I,n=43 6308863675952691 r005 Im(z^2+c),c=-13/23+3/5*I,n=15 6308863701864787 r005 Re(z^2+c),c=-1/26+4/21*I,n=12 6308863712612726 a007 Real Root Of 593*x^4+74*x^3-613*x^2-998*x-461 6308863719586821 p003 LerchPhi(1/1024,1,295/186) 6308863725581871 l006 ln(6557/6984) 6308863735517308 m001 (Weierstrass-ZetaP(4))/(gamma(1)-gamma(2)) 6308863752268350 m001 (ln(5)-GaussAGM)/(StronglyCareFree+ZetaP(2)) 6308863757340940 m005 (1/2*exp(1)+8/11)/(3/7*gamma+1/12) 6308863765890700 a003 cos(Pi*3/58)*sin(Pi*17/77) 6308863782907763 r002 8th iterates of z^2 + 6308863833772259 r005 Im(z^2+c),c=-41/114+29/47*I,n=6 6308863849394892 r005 Re(z^2+c),c=-73/110+11/19*I,n=5 6308863884954167 r005 Im(z^2+c),c=-9/118+23/31*I,n=17 6308863888755871 r005 Im(z^2+c),c=-15/74+13/19*I,n=60 6308863900325962 a001 29/10946*17711^(31/39) 6308863901009475 r005 Re(z^2+c),c=15/82+35/51*I,n=3 6308863958679502 a007 Real Root Of 110*x^4+559*x^3-754*x^2+590*x-160 6308863968530097 a007 Real Root Of 798*x^4-785*x^3+437*x^2-953*x+498 6308863974723801 a008 Real Root of x^4-x^3-29*x^2+94*x-88 6308863979869050 r005 Im(z^2+c),c=43/114+22/63*I,n=64 6308864011607883 a007 Real Root Of -287*x^4+246*x^3+926*x^2+543*x-38 6308864023382699 m001 (-BesselJ(0,1)+ln(2^(1/2)+1))/(1+sin(1)) 6308864045870959 a005 (1/cos(7/188*Pi))^1276 6308864054289061 a007 Real Root Of 932*x^4-897*x^3-285*x^2+565*x+97 6308864054350267 r005 Im(z^2+c),c=27/70+8/21*I,n=32 6308864058612231 a007 Real Root Of -291*x^4-382*x^3-156*x^2+464*x+305 6308864061342216 a007 Real Root Of -939*x^4+793*x^3-475*x^2-393*x+289 6308864066859189 m001 (-Otter+Trott2nd)/(BesselJ(0,1)-ln(2)/ln(10)) 6308864083756089 m008 (2/5*Pi^5-5/6)/(3/5*Pi^3+2/3) 6308864090715005 m001 (Conway-Psi(1,1/3))/(Totient+ZetaQ(2)) 6308864110232317 h001 (-3*exp(8)+5)/(-3*exp(2)+8) 6308864117740179 m001 1/ln(Pi)*PrimesInBinary^2/cosh(1)^2 6308864121322138 l006 ln(497/934) 6308864127377337 a007 Real Root Of 457*x^4-265*x^3+704*x^2+704*x+25 6308864174784916 a007 Real Root Of 777*x^4+911*x^3+777*x^2-175*x-314 6308864187658090 r009 Im(z^3+c),c=-39/94+29/53*I,n=10 6308864190822076 r005 Im(z^2+c),c=5/114+26/41*I,n=31 6308864208301023 r005 Im(z^2+c),c=-43/122+18/29*I,n=22 6308864253075784 r005 Im(z^2+c),c=-4/3+21/88*I,n=5 6308864264228110 m005 (1/2*exp(1)-5/7)/(7/11*3^(1/2)-1) 6308864265927977 q001 911/1444 6308864270236113 a007 Real Root Of 476*x^4-983*x^3-104*x^2-731*x+674 6308864277742240 r005 Re(z^2+c),c=-21/20+5/34*I,n=26 6308864288102107 m001 1/arctan(1/2)/GAMMA(11/12)/exp(sinh(1)) 6308864291742419 a001 9062201101803/5*144^(5/7) 6308864306391289 a007 Real Root Of 155*x^4-428*x^3-835*x^2-911*x+990 6308864333976044 r005 Re(z^2+c),c=-79/106+1/46*I,n=15 6308864346076168 p001 sum((-1)^n/(531*n+122)/n/(24^n),n=1..infinity) 6308864371079117 a007 Real Root Of -208*x^4+905*x^3-693*x^2+38*x+560 6308864375720772 r005 Re(z^2+c),c=-7/86+19/27*I,n=16 6308864380506809 a007 Real Root Of 148*x^4-672*x^3-535*x^2+40*x+333 6308864388922865 m005 (1/2*3^(1/2)+1/10)/(5/12*Pi+2/9) 6308864396245558 r005 Re(z^2+c),c=-39/50+7/44*I,n=18 6308864419060829 r008 a(0)=6,K{-n^6,-32+39*n^3+5*n^2-15*n} 6308864420114670 m001 Conway/(BesselI(1,2)+PlouffeB) 6308864425226881 a001 121393/3*3^(19/47) 6308864447867062 a001 6119/36*55^(18/55) 6308864450496601 a007 Real Root Of -480*x^4+812*x^3+197*x^2+231*x-352 6308864461102413 h001 (5/12*exp(1)+1/2)/(5/8*exp(1)+8/9) 6308864468891861 r002 10th iterates of z^2 + 6308864480458584 m001 BesselI(1,1)^ln(2+3^(1/2))/RenyiParking 6308864480458584 m001 BesselI(1,1)^ln(2+sqrt(3))/RenyiParking 6308864502353034 r005 Im(z^2+c),c=-1/34+31/50*I,n=14 6308864506815248 a007 Real Root Of -795*x^4+456*x^3-685*x^2+431*x+785 6308864538350201 m005 (1/3*5^(1/2)-2/7)/(1/11*2^(1/2)+3/5) 6308864539829084 m005 (1/3*Zeta(3)+1/3)/(3/11*2^(1/2)+7/9) 6308864540809878 m001 MasserGramain-ZetaQ(3)^ln(2^(1/2)+1) 6308864563731739 a007 Real Root Of -833*x^4+862*x^3-749*x^2+916*x+61 6308864573822243 v005 sum(1/(n^3+5*n+8)/cosh(Pi*n),n=1..infinity) 6308864583444153 a001 47/4181*832040^(13/44) 6308864589921135 a007 Real Root Of 599*x^4-77*x^3-787*x^2-894*x-365 6308864595610566 r005 Re(z^2+c),c=-17/30+36/79*I,n=43 6308864601223582 a007 Real Root Of 39*x^4-519*x^3+107*x^2-500*x+397 6308864629332273 a007 Real Root Of -118*x^4-858*x^3-655*x^2+462*x+471 6308864637107188 a007 Real Root Of -319*x^4+518*x^3-796*x^2+12*x+505 6308864641464208 a007 Real Root Of -341*x^4+860*x^3-540*x^2+531*x-282 6308864693908416 m005 (1/2*3^(1/2)+1/2)/(7/10*5^(1/2)+3/5) 6308864696957141 a007 Real Root Of 416*x^4-581*x^3-773*x^2-37*x+411 6308864705240235 m001 Kolakoski^Gompertz*Sarnak 6308864710481935 a007 Real Root Of -670*x^4+247*x^3+962*x^2+208*x-470 6308864718472225 r009 Re(z^3+c),c=-1/78+27/38*I,n=54 6308864722505284 a007 Real Root Of -421*x^4-232*x^3-912*x^2-519*x+44 6308864727418631 a008 Real Root of x^4-35*x^2-36*x+36 6308864729632157 r005 Im(z^2+c),c=-61/94+3/26*I,n=23 6308864741326108 a007 Real Root Of -76*x^4-599*x^3-754*x^2+123*x+773 6308864803225093 m005 (1/2*gamma-4/11)/(5/12*2^(1/2)+3/5) 6308864803918614 m006 (2/3*ln(Pi)+3)/(2/3*ln(Pi)-1/6) 6308864815943756 a007 Real Root Of 376*x^4-625*x^3-828*x^2-436*x+702 6308864875195632 a007 Real Root Of 143*x^4+886*x^3-60*x^2+368*x+650 6308864882799219 r002 59th iterates of z^2 + 6308864883562140 a007 Real Root Of 63*x^4-533*x^3+672*x^2+346*x-193 6308864897695876 m001 (-Ei(1)+(1+3^(1/2))^(1/2))/(GAMMA(3/4)-sin(1)) 6308864910633596 a007 Real Root Of -699*x^4+553*x^3+770*x^2+935*x+533 6308864922444770 m001 (BesselI(1,1)+BesselK(1,1))/(Si(Pi)-gamma(3)) 6308864926315338 a001 1/271443*18^(57/58) 6308864945968684 a007 Real Root Of 290*x^4-737*x^3-64*x^2-844*x-738 6308865003136362 a001 6765/2207*123^(3/20) 6308865022604286 m001 (-Kac+MasserGramainDelta)/(3^(1/2)-Zeta(1,-1)) 6308865076713602 m002 -E^Pi-Pi^2-Pi^3+Tanh[Pi]/ProductLog[Pi] 6308865110348269 s002 sum(A051255[n]/(n^3*exp(n)+1),n=1..infinity) 6308865110394205 m001 (Otter+PrimesInBinary)/(Pi^(1/2)+FeigenbaumMu) 6308865114172053 s002 sum(A051255[n]/(n^3*exp(n)-1),n=1..infinity) 6308865114542182 m001 (-MertensB2+ThueMorse)/(3^(1/2)-exp(1)) 6308865127684044 p001 sum((-1)^n/(607*n+158)/(64^n),n=0..infinity) 6308865135993618 m001 FeigenbaumMu*(Zeta(3)+BesselI(1,1)) 6308865139642900 m001 (Cahen+GaussAGM)/(ln(2+3^(1/2))+GAMMA(23/24)) 6308865173177735 a007 Real Root Of 43*x^4-231*x^3+815*x^2+13*x-381 6308865174182309 a007 Real Root Of 117*x^4+325*x^3+863*x^2-524*x-611 6308865176209443 m001 GAMMA(13/24)*(exp(1)+GAMMA(5/6)) 6308865188878501 a007 Real Root Of -842*x^4+518*x^3+79*x^2+252*x+391 6308865209354763 r009 Im(z^3+c),c=-37/62+1/31*I,n=4 6308865221176575 r005 Im(z^2+c),c=-6/7+40/93*I,n=4 6308865239933622 a001 109801/36*233^(2/15) 6308865244862409 m001 (Chi(1)-Niven)/exp(1/Pi) 6308865264183029 a007 Real Root Of -105*x^4-560*x^3+641*x^2+117*x+946 6308865273235172 b008 (13*Csc[9])/5 6308865273647667 m009 (40*Catalan+5*Pi^2+1/3)/(5/6*Psi(1,3/4)-3/4) 6308865288142356 r005 Re(z^2+c),c=3/50+1/38*I,n=3 6308865314844058 m001 (-sin(1/5*Pi)+Zeta(1,2))/(exp(Pi)+Zeta(5)) 6308865335637883 r009 Re(z^3+c),c=-13/114+36/55*I,n=51 6308865359225288 a001 3*(1/2*5^(1/2)+1/2)^26*18^(17/24) 6308865375142490 a007 Real Root Of -774*x^4+887*x^3-801*x^2-685*x+232 6308865382158096 r005 Im(z^2+c),c=-13/98+13/15*I,n=59 6308865429071745 m001 ln(GaussKuzminWirsing)^2*Conway*Magata 6308865483099914 a001 305/12238*322^(23/24) 6308865490165792 p003 LerchPhi(1/3,1,324/157) 6308865536081416 a007 Real Root Of 880*x^4+166*x^3+654*x^2+111*x-288 6308865538827300 a007 Real Root Of -998*x^4-845*x^3-840*x^2+594*x+655 6308865539167005 r009 Im(z^3+c),c=-57/94+17/54*I,n=2 6308865540507292 a007 Real Root Of 484*x^4-501*x^3-427*x^2-347*x+438 6308865542483859 m001 1/ln(Ei(1))^2*Kolakoski/GAMMA(7/24) 6308865555935900 a001 3/233*39088169^(1/11) 6308865559353309 a007 Real Root Of -930*x^4+784*x^3+839*x^2+296*x+197 6308865597658932 r005 Re(z^2+c),c=-1/15+46/61*I,n=2 6308865617754425 r005 Im(z^2+c),c=17/64+32/63*I,n=39 6308865619862065 m002 4+Pi^3+Pi^3/Log[Pi]+Tanh[Pi] 6308865636218781 a007 Real Root Of 120*x^4+593*x^3-978*x^2+301*x-372 6308865637619612 r009 Re(z^3+c),c=-7/29+45/64*I,n=60 6308865644172520 l006 ln(7463/7949) 6308865713445381 r005 Re(z^2+c),c=-7/10+63/229*I,n=47 6308865749907284 a007 Real Root Of 662*x^4-683*x^3+947*x^2+327*x-447 6308865762924024 m001 (Zeta(1,2)+Backhouse)/(Kolakoski+Trott2nd) 6308865795578146 r002 2th iterates of z^2 + 6308865822660431 m001 (MadelungNaCl-ZetaP(3))/(Zeta(5)+Backhouse) 6308865827613029 a001 28657/3*76^(17/39) 6308865831340574 m001 PlouffeB^FeigenbaumMu*PlouffeB^ZetaR(2) 6308865907232788 a007 Real Root Of -780*x^4+212*x^3+75*x^2+793*x+5 6308865914119584 r005 Re(z^2+c),c=33/122+17/47*I,n=12 6308865926294302 a007 Real Root Of 687*x^4-977*x^3+389*x^2+317*x-309 6308865930748633 g006 Psi(1,1/8)-Psi(1,4/5) 6308865934772061 a007 Real Root Of -353*x^4-221*x^3-921*x^2-149*x+273 6308865939658994 a007 Real Root Of -601*x^4-241*x^3+37*x^2+940*x+613 6308865943439074 m005 (1/2*5^(1/2)-6)/(3/5*exp(1)-6/7) 6308865949621340 m005 (1/3*Zeta(3)+1/9)/(6*Zeta(3)+9/10) 6308865951700438 r002 2th iterates of z^2 + 6308865967647832 m005 (1/2*exp(1)-3/8)/(7/9*Zeta(3)+5/8) 6308866005411952 m001 (Catalan-exp(1))/(-ln(5)+Ei(1)) 6308866006143713 r002 18th iterates of z^2 + 6308866032724707 m005 (1/2*5^(1/2)-9/10)/(10/11*Pi+3/5) 6308866040105175 a007 Real Root Of -449*x^4+554*x^3-358*x^2+449*x+636 6308866058364624 a007 Real Root Of -385*x^4-519*x^3-888*x^2+916*x+862 6308866068652135 a007 Real Root Of -5*x^4+570*x^3-967*x^2-434*x+255 6308866080636325 m001 (FeigenbaumDelta+Gompertz)/GaussAGM 6308866087871612 q001 2398/3801 6308866097324973 r005 Im(z^2+c),c=-49/110+41/53*I,n=3 6308866106169586 a007 Real Root Of 119*x^4+858*x^3+776*x^2+591*x-228 6308866112809437 m001 (cos(1)+exp(1/exp(1)))/(Cahen+FeigenbaumAlpha) 6308866130848261 a007 Real Root Of 636*x^4-619*x^3+346*x^2-558*x+269 6308866132942516 a001 17711/5778*123^(3/20) 6308866142001819 m001 (1+sin(1))/(CopelandErdos+FeigenbaumD) 6308866142934941 a007 Real Root Of 292*x^4-622*x^3+905*x^2+960*x+43 6308866152831346 a007 Real Root Of 733*x^4-130*x^3+825*x^2+574*x-115 6308866178360679 m001 ln(BesselK(1,1))^2/Porter*Ei(1)^2 6308866219789282 s002 sum(A227286[n]/(n*exp(pi*n)+1),n=1..infinity) 6308866247307986 m001 (exp(1/Pi)+Champernowne)/(Grothendieck+Lehmer) 6308866250724878 l006 ln(5028/9449) 6308866265079792 m005 (3/5*exp(1)+5/6)/(1/3*exp(1)+3) 6308866267679583 r009 Re(z^3+c),c=-55/106+2/15*I,n=2 6308866268566402 m001 (GAMMA(11/12)-Backhouse)/(Sarnak-TwinPrimes) 6308866279041339 m001 (-FeigenbaumC+Gompertz)/(2^(1/3)+ArtinRank2) 6308866296549225 s001 sum(exp(-Pi/2)^(n-1)*A192974[n],n=1..infinity) 6308866297779046 a001 6624/2161*123^(3/20) 6308866321828372 a001 121393/39603*123^(3/20) 6308866325337122 a001 317811/103682*123^(3/20) 6308866325849041 a001 832040/271443*123^(3/20) 6308866325923729 a001 311187/101521*123^(3/20) 6308866325934626 a001 5702887/1860498*123^(3/20) 6308866325936216 a001 14930352/4870847*123^(3/20) 6308866325936448 a001 39088169/12752043*123^(3/20) 6308866325936482 a001 14619165/4769326*123^(3/20) 6308866325936487 a001 267914296/87403803*123^(3/20) 6308866325936487 a001 701408733/228826127*123^(3/20) 6308866325936488 a001 1836311903/599074578*123^(3/20) 6308866325936488 a001 686789568/224056801*123^(3/20) 6308866325936488 a001 12586269025/4106118243*123^(3/20) 6308866325936488 a001 32951280099/10749957122*123^(3/20) 6308866325936488 a001 86267571272/28143753123*123^(3/20) 6308866325936488 a001 32264490531/10525900321*123^(3/20) 6308866325936488 a001 591286729879/192900153618*123^(3/20) 6308866325936488 a001 1548008755920/505019158607*123^(3/20) 6308866325936488 a001 1515744265389/494493258286*123^(3/20) 6308866325936488 a001 2504730781961/817138163596*123^(3/20) 6308866325936488 a001 956722026041/312119004989*123^(3/20) 6308866325936488 a001 365435296162/119218851371*123^(3/20) 6308866325936488 a001 139583862445/45537549124*123^(3/20) 6308866325936488 a001 53316291173/17393796001*123^(3/20) 6308866325936488 a001 20365011074/6643838879*123^(3/20) 6308866325936488 a001 7778742049/2537720636*123^(3/20) 6308866325936488 a001 2971215073/969323029*123^(3/20) 6308866325936488 a001 1134903170/370248451*123^(3/20) 6308866325936488 a001 433494437/141422324*123^(3/20) 6308866325936490 a001 165580141/54018521*123^(3/20) 6308866325936503 a001 63245986/20633239*123^(3/20) 6308866325936591 a001 24157817/7881196*123^(3/20) 6308866325937199 a001 9227465/3010349*123^(3/20) 6308866325941361 a001 3524578/1149851*123^(3/20) 6308866325969889 a001 1346269/439204*123^(3/20) 6308866326165425 a001 514229/167761*123^(3/20) 6308866327505648 a001 196418/64079*123^(3/20) 6308866329137903 m009 (2/5*Psi(1,2/3)+6)/(1/4*Psi(1,3/4)-3/4) 6308866336691673 a001 75025/24476*123^(3/20) 6308866339649750 a007 Real Root Of 188*x^4-487*x^3+452*x^2+569*x+27 6308866383114611 m001 (Trott-ZetaQ(4))/(BesselK(1,1)-RenyiParking) 6308866399653628 a001 28657/9349*123^(3/20) 6308866409704750 m001 (3^(1/3)-Zeta(1,-1))/(Bloch+Riemann3rdZero) 6308866426445980 a001 76/28657*5^(7/13) 6308866459869585 a007 Real Root Of -224*x^4-256*x^3-402*x^2+602*x+511 6308866484296504 l006 ln(4531/8515) 6308866486044859 a007 Real Root Of -244*x^4+465*x^3+493*x^2+708*x-721 6308866519372977 a007 Real Root Of -138*x^4-755*x^3+809*x^2+596*x+594 6308866525358067 a003 sin(Pi*1/92)+sin(Pi*23/113) 6308866529923726 m003 127/2+Sqrt[5]/32-Log[1/2+Sqrt[5]/2] 6308866537185747 a007 Real Root Of -265*x^4+687*x^3-945*x^2-402*x+337 6308866538229424 m005 (1/2*2^(1/2)-1/2)/(1/11*5^(1/2)+1/8) 6308866562513037 r002 16th iterates of z^2 + 6308866572156565 m001 1/exp(BesselK(0,1))^2/MadelungNaCl^2/sqrt(5) 6308866582633639 m002 -(Pi^4/E^Pi)+Cosh[Pi]-ProductLog[Pi] 6308866590878666 a007 Real Root Of 100*x^4+524*x^3-616*x^2+472*x+656 6308866592762544 m001 1/3*Paris*3^(2/3)/Trott 6308866596393749 m001 (arctan(1/2)+HardyLittlewoodC4)^(Pi^(1/2)) 6308866607904383 r002 3th iterates of z^2 + 6308866614174541 m001 OneNinth^Gompertz*OneNinth^Cahen 6308866664444354 a007 Real Root Of 380*x^4-817*x^3-548*x^2-477*x+664 6308866709160579 r005 Re(z^2+c),c=-25/34+1/109*I,n=11 6308866717698094 a001 3571*102334155^(19/21) 6308866729853928 m001 exp(PisotVijayaraghavan)^2/Paris*TreeGrowth2nd 6308866734305441 a007 Real Root Of 157*x^4-692*x^3+828*x^2+479*x-226 6308866734426758 r005 Re(z^2+c),c=25/98+23/61*I,n=25 6308866736168026 a005 (1/sin(79/225*Pi))^77 6308866754798254 g001 Re(GAMMA(269/60+I*107/60)) 6308866769432727 a007 Real Root Of -302*x^4-516*x^3-394*x^2+627*x+41 6308866775421468 l006 ln(4034/7581) 6308866787735706 a007 Real Root Of 268*x^4-779*x^3+667*x^2+50*x-472 6308866790312842 r009 Re(z^3+c),c=-31/64+21/31*I,n=3 6308866823842819 a007 Real Root Of -410*x^4+655*x^3+438*x^2+853*x-812 6308866831201319 a001 10946/3571*123^(3/20) 6308866853588064 m001 ln(Khintchine)^2/Conway/KhintchineLevy 6308866855398823 r002 2th iterates of z^2 + 6308866857576891 r002 14th iterates of z^2 + 6308866868647899 r002 18th iterates of z^2 + 6308866883395640 a007 Real Root Of -140*x^4+676*x^3-706*x^2+501*x+789 6308866899243435 r005 Im(z^2+c),c=59/122+4/53*I,n=4 6308866913501569 r009 Re(z^3+c),c=-5/126+37/51*I,n=30 6308866942382428 s002 sum(A143897[n]/(n^2*exp(n)-1),n=1..infinity) 6308866973507851 m001 BesselI(1,1)/(AlladiGrinstead-Niven) 6308867066059944 a007 Real Root Of 456*x^4+180*x^3+924*x^2-712*x-844 6308867071147126 m001 (GAMMA(3/4)-FellerTornier)/(GaussAGM+Gompertz) 6308867089729359 a007 Real Root Of -147*x^4-846*x^3+485*x^2-32*x+935 6308867105068286 a007 Real Root Of -555*x^4+669*x^3+662*x^2+649*x-753 6308867121747762 r002 19th iterates of z^2 + 6308867131205789 m001 1/GAMMA(1/24)^2*ln(Rabbit)/Pi^2 6308867131318512 m001 (Pi-Zeta(5))/(BesselI(1,2)+KhinchinHarmonic) 6308867132677553 r008 a(0)=6,K{-n^6,-20-21*n-7*n^2+45*n^3} 6308867136639069 m002 -6-Pi/6+ProductLog[Pi]/5 6308867144974491 b008 LogGamma[153+Pi] 6308867147362707 l006 ln(8369/8914) 6308867148361012 l006 ln(3537/6647) 6308867151677712 r005 Im(z^2+c),c=-13/50+31/49*I,n=26 6308867154906595 m003 9/2+Sqrt[5]-Tanh[1/2+Sqrt[5]/2]^2/2 6308867159028517 a008 Real Root of x^3-x^2-192*x+1000 6308867180032056 r005 Re(z^2+c),c=-31/34+23/114*I,n=24 6308867191866109 r005 Im(z^2+c),c=-15/122+23/27*I,n=47 6308867195068929 a001 123/2584*3^(10/39) 6308867204072974 q001 1487/2357 6308867206630642 m001 GAMMA(5/6)^2/exp(Riemann1stZero)^2*Zeta(1,2) 6308867218596721 a007 Real Root Of 2*x^4-434*x^3+65*x^2-991*x+708 6308867227542425 r005 Re(z^2+c),c=25/122+16/31*I,n=6 6308867234740129 a007 Real Root Of 388*x^4-361*x^3+661*x^2-220*x-554 6308867257379932 m001 (-GaussKuzminWirsing+Robbin)/(gamma+gamma(2)) 6308867257979024 m001 (Zeta(1,-1)+Niven)/(exp(Pi)+BesselI(0,1)) 6308867268477848 a001 1/2*10946^(1/40) 6308867277738283 a001 33385282*4181^(19/21) 6308867278042645 a007 Real Root Of 832*x^4-595*x^3+150*x^2-864*x-886 6308867286185684 m001 (5^(1/2)-gamma(2))/(Pi^(1/2)+KomornikLoreti) 6308867351191517 a007 Real Root Of -845*x^4-61*x^3-386*x^2+946*x+869 6308867354897558 l005 43/50/(exp(43/50)-1) 6308867357313003 r005 Im(z^2+c),c=-1/98+37/58*I,n=18 6308867435484174 m001 (-Zeta(1,2)+Bloch)/(5^(1/2)-gamma(3)) 6308867475797691 r009 Re(z^3+c),c=-5/31+14/19*I,n=21 6308867479464646 m001 GAMMA(2/3)/ln(ErdosBorwein)/GAMMA(5/12)^2 6308867479902889 m001 Ei(1)/GAMMA(7/24)*GAMMA(23/24) 6308867484551665 r002 19i'th iterates of 2*x/(1-x^2) of 6308867508532190 s002 sum(A036672[n]/((2*n)!),n=1..infinity) 6308867550722551 r005 Re(z^2+c),c=-77/122+5/13*I,n=47 6308867560287833 a007 Real Root Of 113*x^4+681*x^3-352*x^2-947*x+25 6308867573826936 m001 (OrthogonalArrays-ZetaP(4))/(Zeta(1/2)-Cahen) 6308867585041965 a007 Real Root Of -22*x^4+907*x^3-604*x^2+316*x+671 6308867592285127 a007 Real Root Of -85*x^4-598*x^3-346*x^2+409*x+847 6308867643241951 l006 ln(3040/5713) 6308867696465344 r005 Re(z^2+c),c=-1/12+39/56*I,n=34 6308867713836710 m001 GAMMA(13/24)^Trott2nd/ErdosBorwein 6308867714828320 a003 cos(Pi*14/107)-sin(Pi*17/39) 6308867715341460 a007 Real Root Of -282*x^4+518*x^3-665*x^2-370*x+206 6308867774239115 r005 Im(z^2+c),c=-19/90+13/20*I,n=59 6308867826848709 p001 sum((-1)^n/(333*n+158)/(100^n),n=0..infinity) 6308867834368907 m001 1/GAMMA(5/6)*(2^(1/3))*exp(sqrt(3)) 6308867873915997 a001 47/89*832040^(20/57) 6308867908599205 a007 Real Root Of 653*x^4-485*x^3-698*x^2+7*x+57 6308867917299889 r005 Re(z^2+c),c=-30/29+9/44*I,n=36 6308867943773740 m001 Zeta(1/2)+Backhouse+HardyLittlewoodC3 6308867956349826 m001 (Zeta(1,2)-ErdosBorwein)/(Kac+Magata) 6308867965298406 m008 (1/6*Pi^4-1/3)/(4/5*Pi^3+2/5) 6308867988621233 g006 Psi(1,11/12)+2*Psi(1,3/5)-Psi(1,7/10) 6308868026288228 p004 log(25763/13709) 6308868074424732 r005 Im(z^2+c),c=-55/98+35/53*I,n=12 6308868077934711 a001 29/11*(1/2*5^(1/2)+1/2)^9*11^(11/23) 6308868114484491 a007 Real Root Of -115*x^4-852*x^3-645*x^2+931*x-214 6308868169458857 m001 BesselI(1,1)^GAMMA(5/24)-log(gamma) 6308868183987429 a005 (1/cos(6/203*Pi))^960 6308868203846318 a007 Real Root Of -382*x^4+625*x^3+12*x^2+518*x-428 6308868221797028 a007 Real Root Of -126*x^4+597*x^3-739*x^2+84*x+517 6308868259094127 a007 Real Root Of -11*x^4-697*x^3-194*x^2-215*x-872 6308868270704683 r002 5th iterates of z^2 + 6308868301201719 m001 (Salem+Trott)/(Pi-2^(1/3)) 6308868331560385 l006 ln(2543/4779) 6308868336050112 a007 Real Root Of 534*x^4-993*x^3-49*x^2-63*x+224 6308868356883808 l006 ln(9275/9879) 6308868378757811 a001 8/710647*7^(31/35) 6308868431838451 a001 233/1364*322^(5/8) 6308868453008890 a001 (5+5^(1/2))^(810/59) 6308868501529051 q001 2063/3270 6308868503253691 r008 a(0)=6,K{-n^6,-48+39*n-48*n^2+54*n^3} 6308868519069089 a007 Real Root Of 846*x^4+313*x^3+450*x^2-164*x-338 6308868527238100 a001 10610209857723/2*2^(1/4) 6308868527870232 r005 Re(z^2+c),c=-3/4+43/138*I,n=6 6308868553064176 a007 Real Root Of 509*x^4-363*x^3+943*x^2+211*x-414 6308868577336670 r002 4th iterates of z^2 + 6308868590357058 m001 1/Tribonacci^2*ln(Rabbit)^2/GAMMA(1/24)^2 6308868608316285 r005 Re(z^2+c),c=-11/18+20/51*I,n=34 6308868613011051 a007 Real Root Of 412*x^4-368*x^3+287*x^2-929*x-858 6308868650144691 m001 (exp(1/Pi)-Bloch)/(MertensB3+Paris) 6308868667210018 a001 377/64079*29^(31/44) 6308868704386742 m001 BesselK(1,1)*exp(Cahen)^2/sin(Pi/5)^2 6308868707580909 h001 (1/2*exp(1)+3/11)/(3/11*exp(2)+4/7) 6308868707811621 m001 Trott*ln(ErdosBorwein)^2*sin(Pi/12) 6308868722900998 m009 (1/5*Psi(1,2/3)+1/6)/(1/4*Psi(1,3/4)+3/5) 6308868787539448 l006 ln(4589/8624) 6308868794850773 a007 Real Root Of 488*x^4-580*x^3+110*x^2-980*x-885 6308868794855876 s002 sum(A064035[n]/(n^2*exp(n)-1),n=1..infinity) 6308868809885875 m001 (-Gompertz+Robbin)/(sin(1)+DuboisRaymond) 6308868816313765 a001 233/2207*322^(17/24) 6308868822344471 m002 -Pi-Pi^3+Pi^4-2*Sech[Pi] 6308868824254464 m001 sin(1/12*Pi)*OrthogonalArrays/Stephens 6308868846590546 m001 1/ln(Khintchine)^2*Conway^2*BesselK(1,1)^2 6308868884833897 r009 Re(z^3+c),c=-23/36+42/47*I,n=2 6308868887615156 m005 (1/2*Pi+5/9)/(4/5*Pi+6/7) 6308868902717924 m005 (1/2*exp(1)-7/8)/(4/11*Pi-3/8) 6308868907879631 a007 Real Root Of -580*x^4+767*x^3+855*x^2+480*x+247 6308868908926576 a007 Real Root Of 132*x^4-42*x^3-812*x^2-433*x+586 6308868917543915 a007 Real Root Of 626*x^4-801*x^3+309*x^2+262*x-258 6308868926161793 a007 Real Root Of 111*x^4+553*x^3-918*x^2+148*x+488 6308868938425560 m005 (1/3*gamma+2/9)/(21/10+2*5^(1/2)) 6308868945723805 a007 Real Root Of -907*x^4-294*x^3-906*x^2-164*x+327 6308868956196487 a007 Real Root Of 820*x^4-658*x^3+856*x^2-368*x-868 6308868960434234 r005 Re(z^2+c),c=-9/28+32/51*I,n=7 6308868970554980 m001 Paris/(ReciprocalLucas^LaplaceLimit) 6308868970941254 a008 Real Root of (-4+2*x+5*x^2-2*x^3+6*x^4+3*x^5) 6308868971131659 a007 Real Root Of 728*x^4-139*x^3-952*x^2-637*x+44 6308868983820119 a007 Real Root Of -939*x^4+324*x^3-69*x^2+72*x+303 6308868993668426 s002 sum(A217298[n]/(n^2*exp(n)-1),n=1..infinity) 6308869011431304 m005 (1/2*exp(1)+6)/(3/11*Catalan+11/12) 6308869026285302 m001 exp(1/exp(1))*(exp(1)+exp(1/2)) 6308869038184575 a007 Real Root Of -704*x^4+720*x^3+161*x^2+44*x+256 6308869076727935 m001 1/KhintchineLevy^2/ln(Kolakoski)^2/GAMMA(5/12) 6308869098262417 m001 (Artin-exp(Pi))/(-PrimesInBinary+ZetaQ(2)) 6308869103270348 r005 Re(z^2+c),c=-3/31+17/22*I,n=21 6308869133945605 a007 Real Root Of 243*x^4-534*x^3+674*x^2+293*x-256 6308869144227449 a007 Real Root Of -913*x^4+71*x^3-59*x^2+837*x+714 6308869149547313 a007 Real Root Of -351*x^4+242*x^3-592*x^2+531*x+687 6308869169766267 a007 Real Root Of -22*x^4+970*x^3+73*x^2+889*x-830 6308869189122297 a007 Real Root Of -747*x^4+774*x^3+612*x^2+534*x+406 6308869218310045 r009 Re(z^3+c),c=-23/40+5/16*I,n=54 6308869230773428 a007 Real Root Of 716*x^4+551*x^3+895*x^2+942*x+263 6308869240023952 a007 Real Root Of -154*x^4+793*x^3+786*x^2+370*x-721 6308869267487716 r005 Im(z^2+c),c=-59/78+7/20*I,n=5 6308869309535721 r002 34th iterates of z^2 + 6308869314202184 r008 a(0)=6,K{-n^6,-56+58*n^3-64*n^2+59*n} 6308869341982547 r005 Im(z^2+c),c=1/7+4/7*I,n=56 6308869354281725 l006 ln(2046/3845) 6308869367980033 a007 Real Root Of 787*x^4-840*x^3-759*x^2-47*x+418 6308869378902176 r002 2th iterates of z^2 + 6308869395335079 m001 (Otter+Riemann3rdZero)/(GAMMA(23/24)+Magata) 6308869409677323 a007 Real Root Of 488*x^4-563*x^3+504*x^2+430*x-148 6308869413091944 r008 a(0)=6,K{-n^6,-24+n-33*n^2+53*n^3} 6308869417195026 a007 Real Root Of 990*x^4-794*x^3-401*x^2-442*x+481 6308869444102276 a007 Real Root Of 944*x^4-391*x^3-296*x^2+198*x-5 6308869473958619 a007 Real Root Of -848*x^4+744*x^3-62*x^2+70*x+390 6308869480986665 m001 (ThueMorse-ZetaQ(4))/(exp(1/Pi)-Sarnak) 6308869496142680 m001 1/ln(Ei(1))^2/Champernowne/Pi 6308869511923266 r008 a(0)=6,K{-n^6,-4+50*n^3-14*n^2-35*n} 6308869526895856 m001 GaussKuzminWirsing/GAMMA(13/24)*Magata 6308869528869458 a007 Real Root Of -449*x^4+860*x^3+143*x^2+312*x+427 6308869532247880 m001 1/CopelandErdos^2*ln(Artin)^2*BesselK(1,1)^2 6308869587053729 a001 521/987*196418^(25/43) 6308869595976901 r005 Im(z^2+c),c=-6/5+5/59*I,n=59 6308869604810331 m003 1+(9*Sqrt[5])/64+5*Sin[1/2+Sqrt[5]/2] 6308869627033270 m001 (2^(1/3)+arctan(1/2))/(Ei(1,1)+ZetaQ(2)) 6308869639826632 q001 1/158507 6308869643810547 r009 Im(z^3+c),c=-53/122+34/59*I,n=45 6308869674036340 r005 Im(z^2+c),c=-93/86+16/53*I,n=5 6308869712818992 b008 Pi*(2+FresnelS[1/4]) 6308869715275838 a007 Real Root Of 790*x^4-735*x^3+254*x^2+732*x+51 6308869730266629 a007 Real Root Of 247*x^4-366*x^3-168*x^2-545*x-408 6308869783099465 m001 (BesselK(1,1)+ZetaP(2))/(5^(1/2)-BesselI(1,1)) 6308869789074749 a001 4181/1364*123^(3/20) 6308869812184349 m005 (-23/36+1/4*5^(1/2))/(1/2*3^(1/2)+2/5) 6308869815331215 p004 log(10601/5641) 6308869815992567 r005 Im(z^2+c),c=11/54+25/47*I,n=32 6308869831062245 m001 (gamma(3)+ArtinRank2)/(exp(1)-ln(5)) 6308869832791202 a007 Real Root Of -335*x^4+304*x^3-19*x^2+791*x+636 6308869832809330 m001 1/GAMMA(1/24)/FeigenbaumKappa*ln(Zeta(9)) 6308869836568113 m005 (1/2*Zeta(3)-7/8)/(3*2^(1/2)+1/10) 6308869856418787 r005 Im(z^2+c),c=-34/29+3/37*I,n=30 6308869883867315 m001 (Conway-exp(Pi))/(Khinchin+StronglyCareFree) 6308869883938561 r002 60th iterates of z^2 + 6308869885300896 a007 Real Root Of 161*x^4-565*x^3-96*x^2-836*x+682 6308869889853914 a007 Real Root Of -805*x^4+840*x^3-795*x^2-22*x+641 6308869901033833 a007 Real Root Of -866*x^4-254*x^3+571*x^2+889*x+407 6308869928772282 m001 StolarskyHarborth/(MertensB3^ln(2^(1/2)+1)) 6308869928978357 r005 Re(z^2+c),c=1/9+10/21*I,n=38 6308870009921736 a007 Real Root Of -126*x^4+991*x^3+807*x^2-39*x-77 6308870013972439 r005 Re(z^2+c),c=-5/34+43/50*I,n=22 6308870027312935 m001 ln(GAMMA(3/4))^2*DuboisRaymond/GAMMA(5/6)^2 6308870053960908 a001 2/4181*21^(1/11) 6308870068371342 a003 cos(Pi*4/105)*sin(Pi*16/73) 6308870072131005 h001 (-5*exp(5)-1)/(-2*exp(2)+3) 6308870077725436 l006 ln(3595/6756) 6308870100636882 r008 a(0)=6,K{-n^6,-10+53*n^3-26*n^2-20*n} 6308870115566367 r005 Im(z^2+c),c=-7/31+23/36*I,n=21 6308870121829494 m001 Riemann2ndZero/exp(Niven)*GAMMA(17/24)^2 6308870137695840 m001 (Artin+MertensB1)/(LambertW(1)-gamma) 6308870145042539 a007 Real Root Of -108*x^4-670*x^3+65*x^2-194*x-959 6308870221223998 v005 sum(1/(14+6*n^2-6*n)/cosh(Pi*n),n=1..infinity) 6308870260475460 a007 Real Root Of 204*x^4-929*x^3+870*x^2-192*x-733 6308870297835055 r009 Im(z^3+c),c=-7/64+35/48*I,n=18 6308870303178901 a007 Real Root Of -846*x^4+196*x^3-640*x^2+642*x+843 6308870331839334 m001 (MadelungNaCl-Salem)/(Pi-5^(1/2)) 6308870337322400 m001 ln(Rabbit)/MadelungNaCl*LambertW(1)^2 6308870337395965 a001 34/199*4^(49/52) 6308870365471501 l006 ln(5144/9667) 6308870373368042 a005 (1/cos(49/225*Pi))^233 6308870383275999 m005 (1/2*5^(1/2)+1/3)/(5/6*3^(1/2)+6/7) 6308870402720178 a007 Real Root Of 771*x^4-168*x^3-637*x^2-227*x-54 6308870408401495 m001 ln(GAMMA(19/24))^2*TwinPrimes^2/sqrt(Pi) 6308870436421960 m001 (Khinchin-MasserGramain)^Sierpinski 6308870456103791 r008 a(0)=8,K{-n^6,-12-37*n+39*n^2+11*n^3} 6308870481647726 a001 610/29*47^(53/60) 6308870499272352 a007 Real Root Of 609*x^4-693*x^3-620*x^2-372*x+559 6308870502373216 m005 (1/2*5^(1/2)+5)/(3/4*2^(1/2)-1/11) 6308870517695890 m001 (gamma+gamma(3))/(-GAMMA(23/24)+OneNinth) 6308870527316172 r009 Im(z^3+c),c=-49/102+28/55*I,n=59 6308870527975252 m001 1/cos(Pi/5)^2/exp((3^(1/3)))^2*exp(1)^2 6308870557937426 r002 56th iterates of z^2 + 6308870566604553 m005 (1/2*Catalan+4/9)/(3/5*Pi-5/11) 6308870566836303 m001 (ln(3)-cos(1/12*Pi))/(gamma(2)-Riemann2ndZero) 6308870602484553 a007 Real Root Of -588*x^4+615*x^3-10*x^2+733*x+714 6308870621387555 a007 Real Root Of 266*x^4-86*x^3-118*x^2-990*x+651 6308870627640339 a007 Real Root Of -93*x^4+686*x^3+542*x^2+743*x-842 6308870638905611 r002 3th iterates of z^2 + 6308870674940759 r005 Re(z^2+c),c=-55/106+43/63*I,n=8 6308870675264316 a007 Real Root Of 265*x^4-740*x^3-202*x^2-272*x-319 6308870690042081 r009 Im(z^3+c),c=-41/90+32/61*I,n=22 6308870697059723 r009 Re(z^3+c),c=-5/48+24/43*I,n=13 6308870707664211 r005 Im(z^2+c),c=-73/98+1/35*I,n=42 6308870711795941 m005 (1/2*5^(1/2)-3/10)/(5*exp(1)-5/8) 6308870754141847 p002 log(15^(7/3)-17^(3/5)) 6308870773741234 m001 exp(FeigenbaumKappa)^2/Sierpinski*Trott 6308870800260433 a007 Real Root Of 286*x^4-124*x^3+601*x^2+196*x-192 6308870805168584 m006 (3/5*Pi^2+1/4)/(1/6*Pi^2-2/3) 6308870805168584 m008 (3/5*Pi^2+1/4)/(1/6*Pi^2-2/3) 6308870816509939 m005 (5/6*2^(1/2)+4/5)/(5*gamma+1/4) 6308870823469459 r005 Im(z^2+c),c=-11/86+45/52*I,n=23 6308870849250177 m001 (CareFree+Sierpinski)/(gamma-ln(3)) 6308870856802102 r001 17i'th iterates of 2*x^2-1 of 6308870886974603 a001 11/317811*121393^(2/39) 6308870892584599 m001 Lehmer^2/Conway^2/ln(sqrt(Pi))^2 6308870983492911 m001 GAMMA(2/3)/(AlladiGrinstead-Otter) 6308870993532818 r005 Re(z^2+c),c=11/40+20/49*I,n=46 6308871003166284 a001 76/233*32951280099^(5/23) 6308871007065221 p003 LerchPhi(1/25,2,261/206) 6308871030609832 m002 -Pi^5/24+6*ProductLog[Pi] 6308871033287545 l006 ln(1549/2911) 6308871035823409 a001 3/5702887*317811^(12/13) 6308871035834901 a001 3/591286729879*86267571272^(12/13) 6308871035834901 a001 3/1836311903*165580141^(12/13) 6308871042428304 a007 Real Root Of 36*x^4-923*x^3+625*x^2+422*x-220 6308871064516775 m005 (1/2*exp(1)+5/6)/(8/11*gamma-5/11) 6308871067098624 a007 Real Root Of 229*x^4-482*x^3-921*x^2+56*x+416 6308871104630406 r009 Im(z^3+c),c=-4/11+19/30*I,n=20 6308871141660554 a007 Real Root Of 822*x^4+234*x^3+697*x^2-360*x-576 6308871144140116 k001 Champernowne real with 257*n+373 6308871144773196 s002 sum(A253679[n]/(n!^2),n=1..infinity) 6308871166196038 m001 Niven/CareFree*ln(sinh(1))^2 6308871183702316 r005 Im(z^2+c),c=-5/9+27/56*I,n=39 6308871194630136 m001 HardyLittlewoodC3-gamma(3)^ln(2^(1/2)+1) 6308871221264036 a007 Real Root Of -122*x^4-641*x^3+898*x^2+409*x-849 6308871229930137 r005 Im(z^2+c),c=-57/62+1/19*I,n=7 6308871232050690 m001 (Conway+FeigenbaumAlpha)/(Stephens+Trott2nd) 6308871243542860 a007 Real Root Of 104*x^4-371*x^3+166*x^2-793*x-676 6308871249900906 m005 (1/2*Zeta(3)-1/2)/(2/3*Zeta(3)+4/5) 6308871258301704 m005 (1/3*Pi+1/10)/(2/7*2^(1/2)-2/9) 6308871261495039 a007 Real Root Of 317*x^4-301*x^3-276*x^2-770*x+621 6308871261650809 m001 ZetaP(3)^(FransenRobinson/Pi^(1/2)) 6308871308426806 a007 Real Root Of 737*x^4-980*x^3-656*x^2-533*x-438 6308871308866553 m005 (1/2*Zeta(3)-2/3)/(1/5*Zeta(3)+4/5) 6308871331434048 a003 cos(Pi*22/81)*sin(Pi*9/22) 6308871333270947 m005 (1/3*5^(1/2)-1/5)/(4*5^(1/2)-3/10) 6308871352658705 r005 Re(z^2+c),c=13/64+22/47*I,n=19 6308871370994456 m005 (1/2*Zeta(3)-5/8)/(1/6*Zeta(3)-4) 6308871401381427 m005 (1/2*exp(1)+1/8)/(5/6*3^(1/2)+10/11) 6308871406518876 a007 Real Root Of 153*x^4+822*x^3-975*x^2-373*x+481 6308871411734441 m001 (cos(1/12*Pi)+FeigenbaumD)/(Psi(2,1/3)-exp(1)) 6308871414791364 a007 Real Root Of -206*x^4+650*x^3+62*x^2-51*x+139 6308871418292998 h001 (1/6*exp(1)+9/10)/(5/11*exp(1)+10/11) 6308871423082713 r002 33th iterates of z^2 + 6308871446115923 a007 Real Root Of 789*x^4-854*x^3-440*x^2+392*x+83 6308871453766359 s001 sum(exp(-3*Pi/4)^n*A231918[n],n=1..infinity) 6308871463985657 m001 (FeigenbaumD-ReciprocalLucas)^OrthogonalArrays 6308871479104081 a001 1926/7*13^(11/34) 6308871485587025 a007 Real Root Of 957*x^4-869*x^3-796*x^2-692*x+820 6308871540992281 m001 GAMMA(1/24)^Si(Pi)/(FeigenbaumAlpha^Si(Pi)) 6308871551491044 a003 cos(Pi*27/118)*sin(Pi*25/79) 6308871555456491 m001 (Zeta(3)-cos(1))/(Zeta(1/2)+FeigenbaumKappa) 6308871571526626 a007 Real Root Of -77*x^4+744*x^3+894*x^2+730*x-991 6308871589889239 m002 -Pi^2+(Pi^3*Cosh[Pi])/5+ProductLog[Pi] 6308871610633910 m005 (1/2*Catalan+6)/(11/12*2^(1/2)-3/11) 6308871617675952 a007 Real Root Of 80*x^4+571*x^3+284*x^2-719*x+806 6308871631886046 r005 Re(z^2+c),c=-19/34+11/26*I,n=4 6308871635851724 a007 Real Root Of 806*x^4-562*x^3+168*x^2-289*x-518 6308871636763179 a007 Real Root Of 164*x^4+874*x^3-885*x^2+889*x+492 6308871641863819 r005 Re(z^2+c),c=1/36+17/47*I,n=8 6308871670360988 m006 (2*ln(Pi)-2)/(2*exp(Pi)-2/5) 6308871680794010 m001 1/(2^(1/3))^2*TwinPrimes/exp(GAMMA(5/24))^2 6308871697435434 a007 Real Root Of 859*x^4-790*x^3-261*x^2+543*x+112 6308871703367891 r002 54th iterates of z^2 + 6308871714646895 a007 Real Root Of 577*x^4-669*x^3+920*x^2-221*x-765 6308871736555211 a007 Real Root Of -713*x^4+451*x^3-692*x^2+530*x+836 6308871792727875 r008 a(0)=6,K{-n^6,-4-19*n-38*n^2+58*n^3} 6308871793680119 a001 199/121393*13^(31/59) 6308871814324989 a007 Real Root Of -139*x^4+697*x^3+921*x^2+603*x-900 6308871816566999 r002 5th iterates of z^2 + 6308871823425567 a007 Real Root Of 777*x^4-785*x^3+221*x^2-247*x-564 6308871826832598 a007 Real Root Of 179*x^4+999*x^3-955*x^2-757*x+519 6308871828446382 r005 Re(z^2+c),c=-2/25+29/44*I,n=46 6308871844392792 r005 Re(z^2+c),c=-11/12+17/125*I,n=48 6308871851040525 q001 576/913 6308871851040525 r005 Im(z^2+c),c=-29/22+32/83*I,n=2 6308871851589529 a007 Real Root Of 176*x^4-854*x^3-908*x^2+206*x+418 6308871861057540 l006 ln(4150/7799) 6308871879398843 r005 Im(z^2+c),c=-23/62+16/29*I,n=5 6308871885014837 a007 Real Root Of 433*x^4-798*x^3-18*x^2-414*x-523 6308871904929462 m005 (2/3+1/4*5^(1/2))/(6/7*Pi-3/4) 6308871908047809 r005 Re(z^2+c),c=43/122+36/49*I,n=2 6308871910967545 m006 (1/4/Pi-2/5)/(4*ln(Pi)+1/2) 6308871915531325 a007 Real Root Of 478*x^4-650*x^3+600*x^2+128*x-397 6308871925704213 a007 Real Root Of -111*x^4-791*x^3-688*x^2-682*x+302 6308871939884405 m001 (ln(gamma)-ln(5))/(GAMMA(13/24)+Grothendieck) 6308871941998518 b008 -63+LogGamma[Sqrt[3]] 6308871962186156 m005 (1/3*2^(1/2)+1/9)/(6/7*gamma+3/7) 6308871970594176 h001 (-9*exp(3/2)-1)/(-9*exp(-3)+7) 6308871992443174 m001 1/GAMMA(1/24)*exp(Sierpinski)^2*sin(1) 6308872046528776 r005 Re(z^2+c),c=-57/82+15/62*I,n=3 6308872069667955 r002 10th iterates of z^2 + 6308872093045571 s002 sum(A018331[n]/(n*pi^n-1),n=1..infinity) 6308872099887507 m001 (Champernowne+ZetaP(2))/(ln(2)+Ei(1,1)) 6308872116492266 r005 Re(z^2+c),c=-15/106+9/10*I,n=5 6308872134490501 r002 8th iterates of z^2 + 6308872136873993 m001 (exp(1/Pi)+Artin)/(HardyLittlewoodC3-Magata) 6308872146307704 a007 Real Root Of -983*x^4+279*x^3-361*x^2+982*x+989 6308872161629486 h001 (2/9*exp(2)+2/11)/(9/10*exp(1)+4/9) 6308872173700288 a007 Real Root Of 740*x^4-704*x^3+910*x^2-220*x-795 6308872197622310 r002 2th iterates of z^2 + 6308872197622310 r002 2th iterates of z^2 + 6308872212824915 a001 281/7*34^(5/39) 6308872230955900 m001 StronglyCareFree-exp(-1/2*Pi)*ArtinRank2 6308872270703559 m005 (1/2*Catalan+7/11)/(6/7*3^(1/2)+1/4) 6308872271806129 a007 Real Root Of 483*x^4+91*x^3-125*x^2-864*x-549 6308872274126646 m001 1/GAMMA(5/24)^2*exp(DuboisRaymond)*Zeta(9)^2 6308872278033883 a007 Real Root Of 489*x^4-269*x^3-194*x^2-926*x-652 6308872312092958 r005 Im(z^2+c),c=-3/32+32/39*I,n=17 6308872354027797 l006 ln(2601/4888) 6308872422388582 m001 (Grothendieck-HeathBrownMoroz)^exp(Pi) 6308872424149084 a007 Real Root Of -31*x^4+809*x^3+8*x^2+574*x+567 6308872435055633 r005 Im(z^2+c),c=17/62+21/46*I,n=32 6308872457305935 a007 Real Root Of 891*x^4-995*x^3+400*x^2+460*x-260 6308872459097192 r005 Re(z^2+c),c=8/27+1/61*I,n=27 6308872461000526 m001 ln(Pi)^(GAMMA(1/24)/BesselJ(0,1)) 6308872463719028 m001 Figure8HypebolicComplement/arctan(1/3) 6308872473112360 m001 (-Pi^(1/2)+MertensB1)/(exp(Pi)+cos(1/5*Pi)) 6308872480036736 a007 Real Root Of -163*x^4+975*x^3-138*x^2-841*x-205 6308872483759052 r005 Re(z^2+c),c=-21/122+37/54*I,n=32 6308872497454192 m001 (GAMMA(3/4)-LambertW(1))/(MertensB2+ZetaQ(3)) 6308872498269623 m001 (Bloch-LambertW(1))/(MertensB2+PlouffeB) 6308872499565714 p004 log(26417/14057) 6308872507187853 a003 cos(Pi*5/118)*cos(Pi*30/107) 6308872527822168 m005 (1/3*Catalan+1/3)/(4*exp(1)-3/4) 6308872542100194 m005 (1/2*gamma+5/8)/(2/9*Pi+3/4) 6308872563669363 m001 (Backhouse-ThueMorse)/Zeta(1,-1) 6308872587813814 m001 Psi(2,1/3)*GAMMA(19/24)+ln(5) 6308872599585999 r005 Im(z^2+c),c=-11/118+32/47*I,n=27 6308872607974090 r005 Re(z^2+c),c=-53/58+7/31*I,n=62 6308872609932857 h001 (2/9*exp(1)+1/6)/(1/7*exp(1)+5/6) 6308872668405914 r005 Re(z^2+c),c=29/94+23/47*I,n=28 6308872707220470 r005 Im(z^2+c),c=-21/50+28/47*I,n=53 6308872712350497 r005 Im(z^2+c),c=-7/8+5/108*I,n=9 6308872721578411 m001 (BesselI(1,2)-Grothendieck)/GaussKuzminWirsing 6308872734463171 m004 -6+(6*Sqrt[5])/Pi-3*ProductLog[Sqrt[5]*Pi] 6308872742171768 r005 Im(z^2+c),c=-55/114+18/29*I,n=32 6308872744730206 r005 Re(z^2+c),c=15/44+23/39*I,n=3 6308872759948041 m001 ZetaP(2)/Gompertz/Zeta(3) 6308872805367439 r009 Im(z^3+c),c=-9/110+41/55*I,n=16 6308872816617632 m001 ln(Kac)/ln(PlouffeB) 6308872821760380 a007 Real Root Of -554*x^4+456*x^3-612*x^2-209*x+314 6308872831197563 a007 Real Root Of 361*x^4+477*x^3+536*x^2-552*x-499 6308872832326871 m001 1/Riemann2ndZero^2*ln(Magata)/GAMMA(5/24) 6308872854355021 m001 (Pi+exp(sqrt(2)))/GAMMA(1/12) 6308872862856800 r008 a(0)=6,K{-n^6,26+57*n^3-20*n^2-66*n} 6308872896666287 a007 Real Root Of -46*x^4+284*x^3+912*x^2+485*x-733 6308872912487726 m001 (GaussAGM+ThueMorse)/(exp(1/Pi)+BesselK(1,1)) 6308872914067889 l006 ln(3653/6865) 6308872920168856 r005 Im(z^2+c),c=-73/110+19/63*I,n=60 6308872922943977 r002 8th iterates of z^2 + 6308872971343321 r005 Re(z^2+c),c=-99/70+1/63*I,n=14 6308872974675252 r005 Im(z^2+c),c=-2/5+5/49*I,n=25 6308872985813403 h001 (6/11*exp(2)+1/3)/(6/7*exp(2)+7/12) 6308872986923159 r005 Im(z^2+c),c=-7/82+24/31*I,n=20 6308872997053335 m001 (gamma(3)+FeigenbaumD)/(cos(1)-cos(1/12*Pi)) 6308873007238518 m001 (ArtinRank2+Trott2nd)/(Zeta(3)-ln(2+3^(1/2))) 6308873015413665 a001 3571/89*1597^(24/35) 6308873021131090 m001 (GAMMA(7/12)+Bloch)/(FeigenbaumC+Totient) 6308873021315381 m001 ln(3)^(1/2)*BesselK(1,1) 6308873034897463 m006 (1/2*exp(2*Pi)+4/5)/(2/5*Pi+3) 6308873063562444 a007 Real Root Of 751*x^4+688*x^3-992*x^2-832*x+628 6308873065425865 r005 Re(z^2+c),c=11/42+19/43*I,n=17 6308873071410992 m009 (1/4*Pi^2+4)/(6*Psi(1,3/4)-5) 6308873083583393 a007 Real Root Of -90*x^4-463*x^3+605*x^2-328*x+166 6308873104359056 h001 (10/11*exp(2)+8/11)/(1/5*exp(1)+7/11) 6308873111513507 m001 1/sqrt(1+sqrt(3))/Pi*ln(sqrt(Pi))^2 6308873126514534 r002 35th iterates of z^2 + 6308873158757574 a007 Real Root Of -520*x^4+749*x^3+974*x^2+907*x+455 6308873180764282 a007 Real Root Of -180*x^4+83*x^3+41*x^2+400*x-261 6308873223667085 l006 ln(4705/8842) 6308873230035837 r005 Im(z^2+c),c=-6/5+1/11*I,n=40 6308873244188012 g001 Psi(1/10,22/109) 6308873271885827 r005 Im(z^2+c),c=6/23+26/55*I,n=7 6308873302824873 m001 (Chi(1)-HardyLittlewoodC4)/(-Kac+Rabbit) 6308873313484096 a007 Real Root Of 15*x^4+939*x^3-459*x^2+235*x+882 6308873332891543 a007 Real Root Of 797*x^4+839*x^3+61*x^2-257*x-102 6308873337316759 r002 22th iterates of z^2 + 6308873339855279 a007 Real Root Of 649*x^4+460*x^3+759*x^2-505*x-608 6308873388516574 a007 Real Root Of -192*x^4+674*x^3-502*x^2-695*x-39 6308873388863301 r002 4th iterates of z^2 + 6308873392043666 m001 (BesselI(0,1)+Kolakoski)/(2^(1/2)+Si(Pi)) 6308873466281505 a007 Real Root Of -422*x^4+567*x^3+533*x^2+580*x+363 6308873468844999 r009 Re(z^3+c),c=-11/118+23/50*I,n=13 6308873546314349 r004 Re(z^2+c),c=-7/24*I,z(0)=I,n=23 6308873555847626 m001 Si(Pi)^GAMMA(7/12)/(Si(Pi)^Zeta(1/2)) 6308873575367681 b008 -4+(E+E^2)/3 6308873576619834 r002 16th iterates of z^2 + 6308873593297265 m001 MertensB1*(Ei(1)+polylog(4,1/2)) 6308873596964870 r009 Im(z^3+c),c=-1/118+29/38*I,n=35 6308873638096673 l005 477/68/(exp(477/68)-1) 6308873641469239 m005 (1/2*3^(1/2)+5/9)/(4/7*exp(1)+7/10) 6308873664583206 h001 (1/2*exp(1)+3/8)/(1/3*exp(2)+2/7) 6308873691912955 r009 Re(z^3+c),c=-11/60+18/25*I,n=60 6308873726445331 b008 Zeta[10/81] 6308873734924019 a007 Real Root Of -572*x^4-107*x^3-832*x^2+463*x+687 6308873749987346 a003 sin(Pi*7/89)-sin(Pi*37/109) 6308873751221999 m001 exp(BesselK(1,1))^2*FibonacciFactorial*cosh(1) 6308873762010622 r005 Im(z^2+c),c=15/74+1/35*I,n=19 6308873765202808 m001 (gamma(1)+HeathBrownMoroz)/(MertensB2+Paris) 6308873776760643 b008 5+2^(E/7) 6308873840736033 m005 (1/3*5^(1/2)-1/9)/(1/3*Catalan+7/10) 6308873843835592 r005 Im(z^2+c),c=5/56+39/64*I,n=47 6308873855990099 m001 (GAMMA(2/3)-BesselI(1,1))/(Niven-Otter) 6308873873619260 a007 Real Root Of -190*x^4+412*x^3-410*x^2-296*x+110 6308873898596864 a007 Real Root Of 857*x^4+74*x^3-42*x^2-218*x-238 6308873906881363 r002 22th iterates of z^2 + 6308873938257166 m001 (GAMMA(7/12)+HeathBrownMoroz)/(3^(1/2)+ln(2)) 6308873942184925 a007 Real Root Of -690*x^4-115*x^3-786*x^2+17*x+404 6308873946679128 a003 cos(Pi*35/89)-sin(Pi*34/83) 6308873950153540 r009 Re(z^3+c),c=-5/14+43/54*I,n=3 6308873981453787 a001 161/4*3^(9/22) 6308874007435396 r009 Re(z^3+c),c=-6/13+2/55*I,n=43 6308874010236035 r002 5th iterates of z^2 + 6308874030911621 a007 Real Root Of -379*x^4+478*x^3+757*x^2+655*x+292 6308874053570446 a007 Real Root Of -769*x^4+727*x^3-949*x^2-696*x+243 6308874067017948 m005 (1/3*3^(1/2)+3/5)/(2/3*gamma-4/7) 6308874079033998 r005 Im(z^2+c),c=-2/19+44/53*I,n=53 6308874080977549 m001 Gompertz^(Pi^(1/2))/(Gompertz^ln(2^(1/2)+1)) 6308874090370581 r002 16th iterates of z^2 + 6308874090855575 m001 1/ln(Niven)*ArtinRank2^2/Zeta(3)^2 6308874128554606 a007 Real Root Of 779*x^4-11*x^3+21*x^2-80*x-185 6308874129417613 m005 (1/2*5^(1/2)+5)/(3*Pi+3/11) 6308874138509827 a001 6/726103*2584^(49/58) 6308874160272613 a007 Real Root Of 168*x^4-693*x^3-47*x^2-385*x+409 6308874166284898 a007 Real Root Of 507*x^4-574*x^3+201*x^2+332*x-95 6308874169972638 a001 3/17711*610^(12/13) 6308874172267170 a007 Real Root Of -53*x^4+365*x^3-960*x^2+442*x+761 6308874190212211 r002 7th iterates of z^2 + 6308874202279747 a007 Real Root Of -736*x^4+40*x^3-943*x^2+493*x+813 6308874242304386 m001 (Pi-Psi(2,1/3)-Chi(1))*ln(3) 6308874248734389 a007 Real Root Of 596*x^4-790*x^3+823*x^2+316*x-421 6308874260110570 r005 Re(z^2+c),c=23/48+12/43*I,n=2 6308874266067878 b008 5*Gamma[5/2,EulerGamma] 6308874298729617 l006 ln(1052/1977) 6308874301312536 m001 (-BesselJ(0,1)+2/3)/(-Ei(1)+1/3) 6308874308830914 m005 (5*2^(1/2)-1/6)/(2/3*Pi-1) 6308874309954076 a007 Real Root Of 427*x^4-306*x^3+273*x^2-358*x-479 6308874334021297 m001 1/Magata^2*GlaisherKinkelin^2/exp(cos(Pi/5)) 6308874336171672 m001 Pi*2^(1/2)/GAMMA(3/4)*ZetaP(2)+FeigenbaumDelta 6308874355216074 a007 Real Root Of -758*x^4+566*x^3+118*x^2+44*x+243 6308874365599500 h001 (1/10*exp(2)+10/11)/(2/3*exp(1)+4/5) 6308874375631881 m002 -5*Sech[Pi]+(Log[Pi]*Tanh[Pi])/ProductLog[Pi] 6308874404813519 m001 ZetaQ(4)/(Sarnak-ArtinRank2) 6308874414295619 m005 (5*Pi+2/3)/(-23/8+1/8*5^(1/2)) 6308874414949195 a007 Real Root Of -672*x^4+235*x^3+741*x^2-61*x-209 6308874419569806 a007 Real Root Of -114*x^4-816*x^3-652*x^2-213*x+303 6308874428439063 a008 Real Root of x^4-24*x^2-84*x-99 6308874435791580 h001 (5/7*exp(1)+8/11)/(6/11*exp(2)+1/5) 6308874438666754 a007 Real Root Of 682*x^4+372*x^3+251*x^2+218*x+23 6308874439996375 a001 8/103361*11^(7/8) 6308874448259431 r009 Re(z^3+c),c=-11/18+15/64*I,n=13 6308874451834449 a007 Real Root Of 483*x^4-945*x^3+421*x^2+64*x-441 6308874456500447 b008 1/3-3*(-2+E^Pi) 6308874456500447 m002 -19/3+3*E^Pi 6308874467644137 m001 (-MasserGramain+ZetaQ(3))/(Si(Pi)-sin(1)) 6308874475947518 m001 (Shi(1)+cos(1))/(-ln(2)+TreeGrowth2nd) 6308874515825253 r005 Re(z^2+c),c=7/66+23/54*I,n=10 6308874529705419 a001 7/610*2178309^(48/53) 6308874533256187 b008 E^(1/4)+5*Coth[3] 6308874566187407 q001 2545/4034 6308874596001975 m001 5^(1/2)*Artin-Porter 6308874605600263 a007 Real Root Of -680*x^4-523*x^3-603*x^2+693*x+46 6308874628519254 a003 sin(Pi*17/80)/sin(Pi*32/73) 6308874629863736 m001 (Zeta(5)-GAMMA(11/12))/(PrimesInBinary-Rabbit) 6308874739146011 m008 (1/4*Pi^2+2/3)/(1/6*Pi^3-1/5) 6308874764193974 r008 a(0)=0,K{-n^6,36-59*n^3+100*n^2+82*n} 6308874772715077 r005 Re(z^2+c),c=11/58+22/49*I,n=53 6308874773733028 p003 LerchPhi(1/32,1,375/232) 6308874778362736 r009 Re(z^3+c),c=-1/106+9/19*I,n=15 6308874790811623 m005 (1/2*Zeta(3)+4/11)/(-28/11+5/11*5^(1/2)) 6308874840072611 a007 Real Root Of -589*x^4-449*x^3+71*x^2+793*x+5 6308874842414898 r005 Re(z^2+c),c=-1/94+20/31*I,n=31 6308874883238391 r009 Re(z^3+c),c=-10/17+23/54*I,n=5 6308874898792655 a007 Real Root Of 408*x^4-838*x^3-827*x^2-8*x+480 6308874911044064 a005 (1/cos(16/177*Pi))^721 6308874928870313 a008 Real Root of x^4-x^3-18*x^2-96*x-11 6308874951862418 a001 1/15456*10946^(37/50) 6308874974848768 a001 76/2178309*1346269^(8/39) 6308875000307618 a007 Real Root Of 252*x^4-764*x^3+558*x^2-788*x-951 6308875006495433 r005 Im(z^2+c),c=-5/36+39/59*I,n=64 6308875011916251 r002 25th iterates of z^2 + 6308875013097381 r002 27th iterates of z^2 + 6308875025547546 m001 LambertW(1)/gamma(1)/Champernowne 6308875041796036 r005 Re(z^2+c),c=-9/10+37/209*I,n=64 6308875057245651 m001 (BesselI(1,1)-GAMMA(13/24))/(Niven-ZetaQ(4)) 6308875060146120 r002 22th iterates of z^2 + 6308875099232523 r005 Im(z^2+c),c=-137/114+1/61*I,n=24 6308875103332164 p001 sum(1/(473*n+192)/(2^n),n=0..infinity) 6308875118479535 a001 1/710524*(1/2*5^(1/2)+1/2)^2*9349^(9/16) 6308875133785928 m001 ln(2)/(Totient^arctan(1/3)) 6308875155754358 a007 Real Root Of -464*x^4-152*x^3-720*x^2+482*x+626 6308875174764344 a001 4/3*(1/2*5^(1/2)+1/2)^21*3^(3/5) 6308875206247870 m002 2+E^Pi+Pi^5*Sech[Pi]+Sinh[Pi] 6308875248859031 a003 sin(Pi*1/118)/cos(Pi*43/119) 6308875258700461 m001 (KhinchinHarmonic+ReciprocalLucas)/sin(1/5*Pi) 6308875263822509 h001 (-8*exp(4)-8)/(-9*exp(2)-4) 6308875305727005 a007 Real Root Of 567*x^4-523*x^3-744*x^2-912*x+913 6308875328114417 a007 Real Root Of 127*x^4+651*x^3-942*x^2-86*x-772 6308875328627848 a007 Real Root Of -110*x^4-724*x^3-296*x^2-603*x+438 6308875348931654 b008 1+E^(4+Sqrt[2]/11) 6308875354814304 a007 Real Root Of 909*x^4-245*x^3+906*x^2-339*x-780 6308875356355703 m001 1/GAMMA(19/24)*FeigenbaumB^2/exp(sqrt(5)) 6308875358188195 m005 (1/2*Catalan-5)/(30/11+2*5^(1/2)) 6308875360461390 q001 1969/3121 6308875360700785 l006 ln(4763/8951) 6308875380732249 a007 Real Root Of -75*x^4-424*x^3+164*x^2-985*x-396 6308875391110237 a007 Real Root Of -990*x^4-40*x^3-680*x^2-500*x+102 6308875403364439 m001 (-Sarnak+Thue)/(cos(1)+ErdosBorwein) 6308875457878357 m001 GAMMA(13/24)*((3^(1/3))+BesselJZeros(0,1)) 6308875463381518 r009 Re(z^3+c),c=-2/27+12/47*I,n=5 6308875472413399 m001 (Kac-ZetaQ(2))/(ln(gamma)+Backhouse) 6308875497500743 a007 Real Root Of 450*x^4-791*x^3+339*x^2+610*x-20 6308875516549930 m001 (Bloch+Kolakoski)/(BesselJ(0,1)-cos(1/12*Pi)) 6308875520201297 a007 Real Root Of -516*x^4-321*x^3-269*x^2+984*x+729 6308875527367239 m001 1/ln(Porter)/FeigenbaumAlpha^2/TwinPrimes 6308875601139217 r005 Re(z^2+c),c=-13/60+53/56*I,n=3 6308875610850482 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Otter-ln(5) 6308875618456766 r005 Re(z^2+c),c=-55/98+21/53*I,n=6 6308875639540175 m001 exp(GAMMA(2/3))*GAMMA(11/12)*cosh(1) 6308875646774149 a001 5/123*3571^(37/60) 6308875661749988 l006 ln(3711/6974) 6308875672720665 a001 55/103682*29^(25/34) 6308875673781064 a007 Real Root Of -472*x^4+645*x^3+191*x^2+197*x+285 6308875674339649 a007 Real Root Of -608*x^4+2*x^3-213*x^2-123*x+104 6308875676945186 a001 233/3571*322^(19/24) 6308875677268439 a007 Real Root Of -87*x^4-485*x^3+229*x^2-981*x+735 6308875693282785 a007 Real Root Of 565*x^4-769*x^3+640*x^2-638*x-43 6308875701325250 m001 (Backhouse+ZetaP(4))/(3^(1/2)+ArtinRank2) 6308875719778798 r002 6th iterates of z^2 + 6308875773366633 b008 E+ArcCosh[15+Pi] 6308875774068627 s002 sum(A047583[n]/(n^3*exp(n)-1),n=1..infinity) 6308875777491323 r005 Re(z^2+c),c=21/118+9/22*I,n=48 6308875781632785 r002 15th iterates of z^2 + 6308875791390094 r005 Re(z^2+c),c=-15/22+17/50*I,n=63 6308875793041865 m005 (1/2*exp(1)-5/11)/(9/10*3^(1/2)-1/8) 6308875799745104 a003 sin(Pi*17/93)/sin(Pi*35/106) 6308875861859825 m001 DuboisRaymond^Ei(1,1)-HardyLittlewoodC3 6308875862530963 r005 Re(z^2+c),c=-9/94+25/34*I,n=17 6308875862885630 m001 Conway*Gompertz^OrthogonalArrays 6308875875614247 r002 64i'th iterates of 2*x/(1-x^2) of 6308875878751899 r005 Re(z^2+c),c=-7/10+76/227*I,n=10 6308875904514473 a008 Real Root of (-1-x+x^2+x^3+x^4+x^6-x^8-x^9+x^10) 6308875917889753 m003 43/12+(3*Sqrt[5])/64+Cosh[1/2+Sqrt[5]/2] 6308875926987488 a007 Real Root Of -269*x^4+657*x^3-415*x^2+304*x+21 6308875961014077 a007 Real Root Of 569*x^4-124*x^3+512*x^2-244*x-479 6308875961718896 r005 Re(z^2+c),c=-2/3+140/219*I,n=2 6308875973388605 m005 (1/2*exp(1)+3/4)/(7/12*Catalan-1/5) 6308875986572588 r009 Im(z^3+c),c=-23/118+29/40*I,n=21 6308876006821730 r005 Im(z^2+c),c=11/40+9/23*I,n=3 6308876028785939 s002 sum(A275317[n]/(n^3*2^n+1),n=1..infinity) 6308876029798905 m005 (1/3*Pi+1/4)/(-65/24+7/24*5^(1/2)) 6308876038315582 m005 (1/2*Catalan-6/7)/(10/11*Catalan-1/5) 6308876049710908 a007 Real Root Of 756*x^4-997*x^3+532*x^2+274*x-409 6308876068341131 s002 sum(A210890[n]/(n^2*exp(n)-1),n=1..infinity) 6308876068341133 s002 sum(A210892[n]/(n^2*exp(n)-1),n=1..infinity) 6308876071689991 r005 Re(z^2+c),c=-103/106+4/27*I,n=20 6308876089251339 a007 Real Root Of 788*x^4-821*x^3-883*x^2-739*x+899 6308876090088216 m001 (cos(1/5*Pi)+ln(2))/(Cahen-QuadraticClass) 6308876101533370 r009 Re(z^3+c),c=-11/94+36/53*I,n=49 6308876106537020 a007 Real Root Of 118*x^4+784*x^3+383*x^2+739*x-650 6308876108727294 r002 5th iterates of z^2 + 6308876145800760 m005 (1/3*3^(1/2)+2/5)/(6/11*2^(1/2)+7/9) 6308876149037245 m005 (1/2*5^(1/2)-1/10)/(5*Pi+3/7) 6308876201011851 l006 ln(2659/4997) 6308876205265294 a001 75025/521*18^(23/45) 6308876205403315 m001 (Cahen+Lehmer)/(BesselI(0,1)+ln(2)) 6308876248318698 a001 987/167761*29^(31/44) 6308876266522406 r005 Im(z^2+c),c=-143/126+5/39*I,n=4 6308876267643014 m001 1/GAMMA(13/24)^2*MadelungNaCl^2/exp(sin(Pi/5)) 6308876276534787 m001 ln(gamma)^(GAMMA(5/6)/Porter) 6308876281321054 m001 (-Zeta(1,-1)+RenyiParking)/(Chi(1)-ln(2)) 6308876295018172 m005 (1/2*gamma+3/5)/(3/10*3^(1/2)+8/9) 6308876295753069 a007 Real Root Of -536*x^4-158*x^3-522*x^2+615*x+641 6308876299361389 m001 Kolakoski-Sarnak^Weierstrass 6308876309984689 r009 Im(z^3+c),c=-3/106+40/53*I,n=19 6308876321694002 a007 Real Root Of -747*x^4+391*x^3+39*x^2+531*x+536 6308876336345477 a007 Real Root Of 778*x^4-43*x^3+780*x^2-42*x-471 6308876347035351 a007 Real Root Of -959*x^4+418*x^3+434*x^2-322*x-119 6308876347610563 r005 Re(z^2+c),c=-5/8+81/197*I,n=50 6308876373868416 a007 Real Root Of 513*x^4-690*x^3+831*x^2-185*x-702 6308876373962495 m002 5+4*Sech[Pi]+5*Sinh[Pi] 6308876375731515 s002 sum(A166064[n]/(16^n),n=1..infinity) 6308876419974016 m001 (MertensB1-ZetaP(3))/exp(1/Pi) 6308876446003727 a007 Real Root Of -134*x^4-683*x^3+966*x^2-373*x-25 6308876446925861 m001 (3^(1/3))^2*Champernowne^2/ln(sqrt(1+sqrt(3))) 6308876450309726 a001 987/2207*18^(5/42) 6308876459085554 p001 sum(1/(254*n+83)/n/(5^n),n=1..infinity) 6308876471220072 a007 Real Root Of 122*x^4-824*x^3+504*x^2-834*x-953 6308876504938998 m001 (FransenRobinson-Mills)/(Tetranacci+ZetaP(2)) 6308876514464563 r005 Re(z^2+c),c=-41/78+13/23*I,n=15 6308876526205956 m001 Catalan^ThueMorse/GAMMA(7/12) 6308876533345630 m001 (exp(1/Pi)+1)/(LandauRamanujan+3) 6308876545837774 a003 sin(Pi*17/79)/sin(Pi*45/98) 6308876559503345 m001 (-cos(1/12*Pi)+ZetaQ(2))/(ln(2)/ln(10)+ln(Pi)) 6308876581452861 s002 sum(A263288[n]/((exp(n)+1)*n),n=1..infinity) 6308876591494869 a007 Real Root Of 731*x^4+704*x^3+709*x^2-854*x-760 6308876618195116 r005 Im(z^2+c),c=-13/20+7/60*I,n=23 6308876642885493 m001 (Cahen-Kac)/(arctan(1/3)-BesselK(1,1)) 6308876646576003 a007 Real Root Of -533*x^4+864*x^3+929*x^2+763*x+413 6308876650645229 m005 (-3/4+1/4*5^(1/2))/(3/7*2^(1/2)-7/11) 6308876656974383 m001 (ln(gamma)+Pi^(1/2))/(Tetranacci+Trott) 6308876659131788 a007 Real Root Of -979*x^4+912*x^3-209*x^2+567*x+825 6308876661870792 r002 38th iterates of z^2 + 6308876670116557 l006 ln(4266/8017) 6308876677793681 m001 1/2*HardyLittlewoodC4*2^(2/3)*Sierpinski 6308876694444422 a007 Real Root Of 271*x^4+8*x^3-60*x^2-371*x+213 6308876720826100 r002 40th iterates of z^2 + 6308876786998723 m001 1/PrimesInBinary/Bloch^2/ln(GAMMA(1/6)) 6308876796253333 m008 (3/5*Pi^5-4)/(1/3*Pi^4-4) 6308876807076611 m001 ln(gamma)^MertensB1-TwinPrimes 6308876811594202 q001 1393/2208 6308876825136063 m001 (Sarnak-Tetranacci)/(BesselK(1,1)+Mills) 6308876865737375 r002 8th iterates of z^2 + 6308876886488881 m008 (5*Pi^4-3/5)/(1/4*Pi^5+3/5) 6308876897439188 h001 (6/11*exp(2)+1/11)/(5/6*exp(2)+3/8) 6308876905085767 m001 KhinchinLevy/(gamma+Conway) 6308876921411253 m005 (1/2*Catalan-1/4)/(2/11*Zeta(3)+1/9) 6308876927168150 a007 Real Root Of -162*x^4-946*x^3+620*x^2+915*x+189 6308876933871989 a001 3571/8*21^(5/44) 6308876966300221 m005 (1/2*Catalan-7/10)/(2/5*Catalan-3/4) 6308876970029419 r002 20th iterates of z^2 + 6308876993609737 r005 Im(z^2+c),c=3/8+4/43*I,n=15 6308876995124583 m001 (1-Thue)^Sierpinski 6308876999612628 m001 FeigenbaumKappa/Khintchine^2/ln(sin(1))^2 6308877005828054 m001 Rabbit/(ReciprocalLucas^ZetaP(3)) 6308877014339680 a007 Real Root Of 717*x^4-737*x^3-430*x^2-297*x+430 6308877041846235 a007 Real Root Of -155*x^4-863*x^3+721*x^2-145*x-766 6308877049351638 a007 Real Root Of -762*x^4-406*x^3-640*x^2+722*x+729 6308877050464233 a007 Real Root Of -14*x^4+763*x^3+602*x^2+661*x-846 6308877064761719 r009 Re(z^3+c),c=-1/86+21/31*I,n=56 6308877065358149 a005 (1/cos(30/223*Pi))^620 6308877071943279 m005 (1/2*Catalan-9/11)/(-49/110+5/11*5^(1/2)) 6308877074738807 a007 Real Root Of -32*x^4+751*x^3+997*x^2+410*x-839 6308877083734015 a007 Real Root Of -579*x^4-681*x^3-543*x^2+387*x+381 6308877113454047 a007 Real Root Of -203*x^4+281*x^3-619*x^2+897*x+915 6308877125315290 m001 FeigenbaumKappa/BesselJ(0,1)/FransenRobinson 6308877130987155 a007 Real Root Of -109*x^4+947*x^3-771*x^2+138*x+649 6308877135146265 m001 GAMMA(3/4)^2*Khintchine^2/exp(cos(1)) 6308877160301329 m005 (1/2*5^(1/2)-3/7)/(1/6*2^(1/2)+6/7) 6308877164581600 a007 Real Root Of -116*x^4-617*x^3+887*x^2+916*x-691 6308877177127918 p004 log(23117/12301) 6308877186700103 m003 9/2+(19*Sqrt[5])/32+Log[1/2+Sqrt[5]/2] 6308877191488785 m001 2^(1/2)+FeigenbaumMu+PisotVijayaraghavan 6308877191911834 a001 1/4870847*7^(15/26) 6308877194898461 a003 cos(Pi*11/95)-cos(Pi*45/112) 6308877197943477 a007 Real Root Of -142*x^4-957*x^3-454*x^2-465*x-216 6308877251534040 m002 5+4/Pi^3+5*Cosh[Pi] 6308877278472012 m005 (-3/20+1/4*5^(1/2))/(131/24+11/24*5^(1/2)) 6308877309257179 r009 Im(z^3+c),c=-15/94+36/49*I,n=36 6308877325763163 a007 Real Root Of 998*x^4+97*x^3-411*x^2-992*x-596 6308877354387548 a001 34/5779*29^(31/44) 6308877364392052 a007 Real Root Of 742*x^4+206*x^3+804*x^2+98*x-324 6308877389797631 m001 (gamma(1)*MertensB2+FeigenbaumDelta)/gamma(1) 6308877418186790 a001 1/103664*(1/2*5^(1/2)+1/2)^4*1364^(5/16) 6308877423192272 a007 Real Root Of -141*x^4+103*x^3-649*x^2+738*x-44 6308877433435671 m001 (1/3)^GAMMA(3/4)/ThueMorse 6308877442190317 a007 Real Root Of -637*x^4+822*x^3+140*x^2-123*x+174 6308877446314027 l006 ln(1607/3020) 6308877451424114 a007 Real Root Of 793*x^4-140*x^3+561*x^2+203*x-256 6308877453307576 a003 sin(Pi*25/112)/cos(Pi*43/92) 6308877456433215 m005 (1/2*5^(1/2)+2/3)/(7/11*Catalan-3/10) 6308877460454762 m001 (Tribonacci+ZetaP(3))/(3^(1/2)-Zeta(1/2)) 6308877501382945 a007 Real Root Of 568*x^4-382*x^3+838*x^2+118*x-445 6308877515760818 a001 6765/1149851*29^(31/44) 6308877517938146 m001 (3^(1/2)-Si(Pi))/(-Zeta(1/2)+TreeGrowth2nd) 6308877519750320 a007 Real Root Of 889*x^4+911*x^3+953*x^2-698*x+40 6308877520315530 r005 Re(z^2+c),c=-5/7+23/127*I,n=12 6308877530419126 a007 Real Root Of 37*x^4+77*x^3+596*x^2+63*x-184 6308877534226872 r005 Re(z^2+c),c=-45/64+1/42*I,n=5 6308877539304861 a001 17711/3010349*29^(31/44) 6308877543112082 m001 GAMMA(5/12)*exp(Ei(1))^2*sin(Pi/12)^2 6308877544862856 a001 28657/4870847*29^(31/44) 6308877549383051 m001 polylog(4,1/2)^Tribonacci/Bloch 6308877551731534 p001 sum((-1)^n/(417*n+70)/n/(3^n),n=1..infinity) 6308877553855880 a001 5473/930249*29^(31/44) 6308877564783887 s002 sum(A246471[n]/(n^2*pi^n+1),n=1..infinity) 6308877569409894 r009 Re(z^3+c),c=-9/38+15/17*I,n=11 6308877596378730 r002 24th iterates of z^2 + 6308877602238611 a007 Real Root Of 438*x^4-656*x^3+124*x^2-600*x-662 6308877615494984 a001 4181/710647*29^(31/44) 6308877619325466 a007 Real Root Of 129*x^4+668*x^3-927*x^2-6*x+236 6308877626177534 a007 Real Root Of -114*x^4-521*x^3-955*x^2+876*x+820 6308877631440094 a003 cos(Pi*25/91)*sin(Pi*49/116) 6308877639281922 a007 Real Root Of -370*x^4+451*x^3-845*x^2+732*x+970 6308877644184879 r005 Re(z^2+c),c=1/26+15/41*I,n=26 6308877664789601 r002 36th iterates of z^2 + 6308877673768307 r009 Re(z^3+c),c=-49/74+24/47*I,n=8 6308877694550800 a007 Real Root Of 673*x^4-725*x^3+690*x^2-55*x-598 6308877694868376 a001 89/521*199^(15/22) 6308877702597115 a007 Real Root Of 727*x^4+16*x^3+856*x^2+358*x-226 6308877727679339 r005 Re(z^2+c),c=-39/98+22/37*I,n=17 6308877770255809 r005 Im(z^2+c),c=5/28+27/49*I,n=47 6308877784117573 a007 Real Root Of -14*x^4+879*x^3+858*x^2-298*x-372 6308877792678649 a007 Real Root Of 814*x^4-648*x^3+300*x^2+119*x-336 6308877792707504 m001 Khintchine*exp(Conway)^2/gamma 6308877803087966 a001 103682/3*89^(11/17) 6308877805040452 r005 Im(z^2+c),c=-5/98+51/62*I,n=26 6308877809076546 a007 Real Root Of -38*x^4-207*x^3+86*x^2-672*x+558 6308877816981011 r002 23th iterates of z^2 + 6308877817746336 m001 ln(KhintchineHarmonic)/Cahen^2/Zeta(1/2)^2 6308877834742086 m004 750/Pi+125*Pi-Cos[Sqrt[5]*Pi]^2 6308877838958711 m005 (1/2*2^(1/2)-1)/(5/12*2^(1/2)-1/8) 6308877840060193 a007 Real Root Of -96*x^4+351*x^3+798*x^2+947*x-988 6308877841307659 m001 (-arctan(1/2)+Artin)/(cos(1)+ln(2^(1/2)+1)) 6308877866509018 g005 GAMMA(1/11)*GAMMA(7/8)/GAMMA(4/7)/GAMMA(4/5) 6308877875657687 m005 (1/3*exp(1)-2/3)/(1/8*5^(1/2)+1/10) 6308877880311944 m001 1/LambertW(1)/MertensB1*exp(sqrt(5)) 6308877914784130 a007 Real Root Of 815*x^4-310*x^3+393*x^2-848*x+52 6308877956194335 r005 Im(z^2+c),c=7/19+17/23*I,n=3 6308877974542740 a007 Real Root Of -621*x^4+788*x^3-519*x^2+799*x-397 6308877991036855 a007 Real Root Of -625*x^4-718*x^3-804*x^2+365*x+469 6308878002596734 a007 Real Root Of 699*x^4+569*x^3+378*x^2-521*x-447 6308878014284233 a007 Real Root Of 72*x^4+352*x^3-720*x^2-536*x-397 6308878020523878 a007 Real Root Of 471*x^4-478*x^3+515*x^2-446*x-681 6308878037975691 a001 1597/271443*29^(31/44) 6308878053296552 m005 (1/3*gamma+2/11)/(5/12*5^(1/2)+5) 6308878065421570 m001 (Pi+GAMMA(3/4))*exp(1/exp(1)) 6308878065421570 m001 exp(1/exp(1))*(Pi+GAMMA(3/4)) 6308878066982596 h003 exp(Pi*(15^(10/7)-3^(1/10))) 6308878066982596 h008 exp(Pi*(15^(10/7)-3^(1/10))) 6308878074599072 m001 (Cahen+HardyLittlewoodC4)/(Kac+QuadraticClass) 6308878104481872 q001 221/3503 6308878105023005 b008 -3/7+Coth[Sqrt[Pi]] 6308878111525788 m001 (BesselI(1,1)-Si(Pi))/(-Kac+Riemann2ndZero) 6308878113623819 a007 Real Root Of 222*x^4-533*x^3-883*x^2-404*x+705 6308878119233434 a003 cos(Pi*3/115)*sin(Pi*12/55) 6308878124937603 m001 (-Si(Pi)+4)/(BesselJZeros(0,1)+1) 6308878129746915 a007 Real Root Of 927*x^4-587*x^3+522*x^2+428*x-232 6308878141568592 a001 233/521*322^(11/24) 6308878142159725 a007 Real Root Of 717*x^4+838*x^3-219*x^2-829*x-339 6308878156087356 r009 Im(z^3+c),c=-11/40+35/48*I,n=45 6308878195142330 m001 ln(2+3^(1/2))/((3^(1/2))^Totient) 6308878204156813 a007 Real Root Of -317*x^4+433*x^3-615*x^2-315*x+205 6308878221575210 r009 Im(z^3+c),c=-13/62+34/47*I,n=28 6308878232153224 m001 (MertensB1-Totient)/(ln(3)-FransenRobinson) 6308878237363501 r005 Im(z^2+c),c=-13/12+8/109*I,n=14 6308878240579059 m001 1/ln(GAMMA(1/4))*Kolakoski^2/log(1+sqrt(2))^2 6308878274151415 m006 (3/5*ln(Pi)+1/5)/(1/2*ln(Pi)+5/6) 6308878286634500 m005 (1/2*exp(1)-5)/(1/4*Catalan-6) 6308878320830567 m001 1/Porter^2/Lehmer*ln(sqrt(5)) 6308878322140032 m001 (exp(Pi)+ln(2))/(exp(-1/2*Pi)+FeigenbaumMu) 6308878324864871 l006 ln(3769/7083) 6308878353625516 m001 (TreeGrowth2nd-ThueMorse)/(ln(2)-ArtinRank2) 6308878383438109 a007 Real Root Of 82*x^4+554*x^3+330*x^2+541*x-513 6308878410005776 r005 Re(z^2+c),c=11/94+37/61*I,n=63 6308878434808368 r002 23th iterates of z^2 + 6308878458146945 a007 Real Root Of -959*x^4-269*x^3-880*x^2+232*x+581 6308878465020658 m001 Paris/(CareFree+Thue) 6308878485371756 r005 Im(z^2+c),c=-3/98+41/49*I,n=5 6308878505536751 r002 4th iterates of z^2 + 6308878506380833 m001 (LandauRamanujan2nd+PlouffeB)/(1-FeigenbaumB) 6308878528245110 m001 (GaussAGM+Robbin)/(exp(Pi)+gamma) 6308878534585874 m005 (1/3*Pi+1/5)/(7/10*Pi-2/9) 6308878550675802 a001 1/21*144^(3/53) 6308878554987880 r005 Re(z^2+c),c=-3/44+23/31*I,n=17 6308878560448118 a007 Real Root Of 404*x^4-897*x^3+159*x^2-993*x-979 6308878567747914 m001 Bloch-GAMMA(2/3)^FellerTornier 6308878608412257 v002 sum(1/(5^n+(2*n^3-n^2+5*n+14)),n=1..infinity) 6308878628474445 a007 Real Root Of 263*x^4-955*x^3+910*x^2-205*x-773 6308878633467518 h001 (-4*exp(2)-8)/(-2*exp(8)+9) 6308878639288457 m005 (1/2*5^(1/2)+1/7)/(2*Catalan+1/6) 6308878662830352 a001 1292/2889*18^(5/42) 6308878667860366 r009 Re(z^3+c),c=-4/7+16/59*I,n=6 6308878668112474 r005 Re(z^2+c),c=-1/23+29/39*I,n=56 6308878670907407 m001 (-QuadraticClass+Trott)/(Bloch-Si(Pi)) 6308878703185501 p001 sum((-1)^n/(489*n+157)/(25^n),n=0..infinity) 6308878707169714 m001 (sin(1/5*Pi)+Riemann3rdZero)/(Pi+Catalan) 6308878717743583 s002 sum(A199005[n]/(n^2*exp(n)-1),n=1..infinity) 6308878747548069 a007 Real Root Of 338*x^4-559*x^3-120*x^2-389*x+380 6308878777093411 l006 ln(7/3846) 6308878784263873 a007 Real Root Of x^4-144*x^3+814*x^2+263*x+517 6308878798408686 m001 (OneNinth-Porter)/(ln(2)+MinimumGamma) 6308878863531396 g001 abs(GAMMA(91/60+I*29/6)) 6308878900846670 a007 Real Root Of -684*x^4+155*x^3+317*x^2+385*x+264 6308878907056717 m005 (1/3*Zeta(3)+2/5)/(5*exp(1)-9/10) 6308878920189874 m005 (1/2*Zeta(3)+5/12)/(4/11*5^(1/2)+4/5) 6308878932711716 r002 16th iterates of z^2 + 6308878933266161 r002 42th iterates of z^2 + 6308878945519012 r005 Re(z^2+c),c=-12/17+19/62*I,n=3 6308878972689359 r005 Im(z^2+c),c=-2/27+30/41*I,n=41 6308878977885731 l006 ln(2162/4063) 6308878985632826 a001 6765/15127*18^(5/42) 6308879032729073 a001 17711/39603*18^(5/42) 6308879039600323 a001 23184/51841*18^(5/42) 6308879040602825 a001 121393/271443*18^(5/42) 6308879040749088 a001 317811/710647*18^(5/42) 6308879040770428 a001 416020/930249*18^(5/42) 6308879040773541 a001 2178309/4870847*18^(5/42) 6308879040775465 a001 1346269/3010349*18^(5/42) 6308879040783616 a001 514229/1149851*18^(5/42) 6308879040839484 a001 98209/219602*18^(5/42) 6308879041222405 a001 75025/167761*18^(5/42) 6308879043846989 a001 28657/64079*18^(5/42) 6308879061836155 a001 5473/12238*18^(5/42) 6308879079982332 m005 (1/2*Catalan-5/12)/(-89/112+1/16*5^(1/2)) 6308879085684934 r002 13th iterates of z^2 + 6308879099242025 h001 (-4*exp(2)+5)/(-6*exp(1/2)+6) 6308879102381192 m001 (ln(2)-Otter)/(ThueMorse-ZetaQ(2)) 6308879115762350 p004 log(33547/17851) 6308879141859617 a007 Real Root Of -153*x^4+156*x^3+430*x^2+729*x-646 6308879176769596 a001 3/1346269*165580141^(13/24) 6308879185135734 a001 4181/9349*18^(5/42) 6308879192110227 a007 Real Root Of 490*x^4-973*x^3-641*x^2-731*x-528 6308879199483367 a007 Real Root Of -618*x^4+879*x^3-754*x^2-464*x+326 6308879211727021 a005 (1/sin(43/100*Pi))^1209 6308879250961779 r009 Re(z^3+c),c=-49/106+1/27*I,n=3 6308879259357774 r005 Im(z^2+c),c=-9/14+17/155*I,n=28 6308879266220960 r002 6th iterates of z^2 + 6308879297713135 m001 1/ln(GAMMA(3/4))*GAMMA(17/24)/Zeta(9) 6308879304515180 b008 62+Pi*ArcCoth[3] 6308879327196269 p001 sum(1/(355*n+159)/(100^n),n=0..infinity) 6308879376763898 r005 Im(z^2+c),c=-17/14+16/131*I,n=55 6308879377251070 m005 (1/3*gamma+3/4)/(3/5*3^(1/2)+5/11) 6308879378693089 s002 sum(A084315[n]/((2*n)!),n=1..infinity) 6308879398483268 m005 (1/3*3^(1/2)+1/3)/(8/9*Zeta(3)+3/8) 6308879407981539 p003 LerchPhi(1/10,5,86/197) 6308879418561958 m002 -(E^Pi*Pi)+Pi^2-3*Csch[Pi] 6308879419369593 r005 Im(z^2+c),c=-19/16+7/87*I,n=34 6308879434865904 m001 1/log(1+sqrt(2))*exp(cosh(1))/sin(1) 6308879467651603 a007 Real Root Of 935*x^4-859*x^3+717*x^2+926*x-65 6308879482340635 l006 ln(4879/9169) 6308879496257001 m001 (ln(3)+Salem)/(Zeta(3)-sin(1)) 6308879500031698 a007 Real Root Of 907*x^4-731*x^3+80*x^2-653*x+420 6308879503374790 a007 Real Root Of -14*x^4-886*x^3-188*x^2-901*x-832 6308879515644884 r005 Re(z^2+c),c=19/60+16/45*I,n=27 6308879529600659 l006 ln(906/965) 6308879561159094 a007 Real Root Of 769*x^4+682*x^3-27*x^2-964*x-548 6308879570769574 r002 19th iterates of z^2 + 6308879597259374 m001 FeigenbaumC*KhintchineLevy^2/ln(Ei(1))^2 6308879601495396 r005 Im(z^2+c),c=-43/50+2/47*I,n=24 6308879633723510 a001 3/2584*1597^(13/24) 6308879641704668 r009 Im(z^3+c),c=-10/23+4/7*I,n=44 6308879660312249 r002 44th iterates of z^2 + 6308879661218463 a005 (1/sin(67/179*Pi))^23 6308879679036724 r002 31th iterates of z^2 + 6308879693846786 p004 log(19381/10313) 6308879713926867 h001 (1/9*exp(2)+3/11)/(3/8*exp(1)+5/7) 6308879724091707 a007 Real Root Of -965*x^4+464*x^3-332*x^2+844*x+934 6308879726552258 m001 GaussAGM/Pi^(1/2)*Totient 6308879730881809 r002 9th iterates of z^2 + 6308879735223815 r009 Im(z^3+c),c=-25/48+31/52*I,n=42 6308879742218897 a001 55/54018521*29^(13/24) 6308879743941472 r005 Im(z^2+c),c=-41/90+11/15*I,n=3 6308879746731297 m001 (Kolakoski+MertensB1)/(sin(1)+FeigenbaumB) 6308879781224676 r005 Re(z^2+c),c=-83/126+23/54*I,n=17 6308879793323968 r009 Im(z^3+c),c=-7/17+26/47*I,n=7 6308879805650549 r005 Im(z^2+c),c=-29/118+34/53*I,n=46 6308879848845955 r005 Im(z^2+c),c=5/114+5/8*I,n=21 6308879867071042 s001 sum(exp(-Pi/2)^(n-1)*A155487[n],n=1..infinity) 6308879875262229 a007 Real Root Of -78*x^4+127*x^3-99*x^2+721*x-435 6308879883750813 l006 ln(2717/5106) 6308879912021838 a008 Real Root of x^4-21*x^2-40*x-496 6308879918521079 h001 (9/10*exp(1)+2/9)/(5/9*exp(2)+1/8) 6308879969074158 a007 Real Root Of 16*x^4-484*x^3-22*x^2+308*x+79 6308879976470932 r005 Re(z^2+c),c=-15/82+19/28*I,n=38 6308879988493967 m001 (gamma(3)-Rabbit)^MertensB3 6308879997763007 r005 Im(z^2+c),c=-17/26+7/111*I,n=19 6308880001212254 r005 Im(z^2+c),c=-1/13+47/63*I,n=32 6308880009609355 a001 377/322*123^(7/20) 6308880015752185 a007 Real Root Of -297*x^4+964*x^3-916*x^2-735*x+190 6308880030243687 a001 1597/3571*18^(5/42) 6308880040934375 m008 (3/5*Pi^3+4/5)/(Pi^3-1/4) 6308880045831107 m005 (1/2*gamma+3/4)/(4/9*Pi+1/4) 6308880051238379 a007 Real Root Of 36*x^4+87*x^3-925*x^2-411*x-961 6308880055201413 p004 log(21467/11423) 6308880063909436 a001 233/5778*322^(7/8) 6308880096457946 a007 Real Root Of 97*x^4+747*x^3+926*x^2+533*x+415 6308880113025342 r005 Im(z^2+c),c=-25/48+1/9*I,n=33 6308880113504199 a007 Real Root Of -565*x^4+571*x^3+509*x^2+353*x+253 6308880151295207 r002 11th iterates of z^2 + 6308880161155739 a007 Real Root Of -199*x^4-197*x^3-646*x^2+182*x+354 6308880193531497 r005 Im(z^2+c),c=-19/14+19/127*I,n=7 6308880194908426 a007 Real Root Of 672*x^4-863*x^3+194*x^2-643*x+40 6308880215862597 r002 43th iterates of z^2 + 6308880236884021 m001 PlouffeB/(MasserGramain+OneNinth) 6308880274572146 h001 (-6*exp(2)-5)/(-9*exp(-2)+2) 6308880305560717 a007 Real Root Of 862*x^4+479*x^3-588*x^2-808*x-292 6308880308880308 q001 817/1295 6308880308995078 a007 Real Root Of -801*x^4-50*x^3-269*x^2+207*x+352 6308880333409607 m001 (-GAMMA(11/12)+ZetaQ(3))/(3^(1/2)+gamma(1)) 6308880348663909 r005 Im(z^2+c),c=-11/16+11/80*I,n=41 6308880367365269 a008 Real Root of (-4+2*x+x^2+6*x^3+4*x^4+2*x^5) 6308880385006499 a007 Real Root Of 6*x^4-888*x^3-788*x^2-438*x+812 6308880386773214 m001 (2^(1/3)-Pi^(1/2))/(Bloch+PolyaRandomWalk3D) 6308880390152377 r002 33th iterates of z^2 + 6308880400932480 m001 Riemann3rdZero/(Riemann2ndZero^ZetaP(2)) 6308880419800039 m001 exp(BesselJ(1,1))/BesselJ(0,1)/LambertW(1)^2 6308880482308320 l006 ln(3272/6149) 6308880503201399 m001 (Riemann2ndZero+Weierstrass)/(1-cos(1/12*Pi)) 6308880511577924 r002 6th iterates of z^2 + 6308880538008976 r005 Re(z^2+c),c=-5/7+7/46*I,n=5 6308880545694620 a007 Real Root Of 138*x^4+844*x^3-151*x^2+93*x-89 6308880554364696 h001 (3/10*exp(1)+4/5)/(3/11*exp(2)+6/11) 6308880575895083 a001 18/28657*377^(7/18) 6308880592760359 a007 Real Root Of -340*x^4+186*x^3+973*x^2+889*x-60 6308880608564874 a007 Real Root Of 738*x^4-297*x^3+580*x^2+950*x+177 6308880615335188 m001 (ln(Pi)+Artin)/(FeigenbaumC+Stephens) 6308880640142858 m001 (Otter+Sierpinski)/(ln(2)/ln(10)+gamma) 6308880645665251 m005 (1/2*Pi+1/4)/(4*Catalan-7/9) 6308880645780489 r002 6th iterates of z^2 + 6308880652356129 m008 (2*Pi^5+2/5)/(Pi^4-1/3) 6308880665452681 r002 16i'th iterates of 2*x/(1-x^2) of 6308880677524543 a007 Real Root Of -685*x^4-126*x^3-695*x^2+955*x+956 6308880689310788 r009 Im(z^3+c),c=-19/106+15/22*I,n=8 6308880690908719 s001 sum(exp(-Pi/3)^(n-1)*A146897[n],n=1..infinity) 6308880700609221 a001 2/1346269*21^(19/40) 6308880723703415 r005 Re(z^2+c),c=-7/10+41/183*I,n=42 6308880730747317 m008 (1/2*Pi^2-4/5)/(2/3*Pi^4+3/5) 6308880782223463 m008 (Pi^6-4/5)/(1/2*Pi^5-3/4) 6308880795053338 r002 61i'th iterates of 2*x/(1-x^2) of 6308880802570589 a003 sin(Pi*28/99)*sin(Pi*29/96) 6308880815726886 m001 (3^(1/2)-exp(1))/(-BesselI(1,2)+Trott2nd) 6308880874012394 r005 Re(z^2+c),c=-23/42+33/52*I,n=24 6308880881648049 a007 Real Root Of -486*x^4+688*x^3-39*x^2+399*x+517 6308880889100391 m001 1/OneNinth^2*exp(DuboisRaymond)*BesselK(1,1) 6308880896515472 a001 3/4181*17711^(27/59) 6308880905501202 m005 (1/2*exp(1)+5/12)/(-59/154+1/22*5^(1/2)) 6308880907257539 l006 ln(3827/7192) 6308880930099013 r005 Re(z^2+c),c=-19/23+40/57*I,n=3 6308880933701533 a001 305/51841*29^(31/44) 6308880939100098 s001 sum(exp(-2*Pi/5)^n*A009448[n],n=1..infinity) 6308880939100098 s002 sum(A009448[n]/(exp(2/5*pi*n)),n=1..infinity) 6308880942448965 r005 Im(z^2+c),c=5/48+36/59*I,n=35 6308880968272808 a007 Real Root Of 574*x^4-404*x^3-598*x^2-462*x+540 6308880983041635 a007 Real Root Of 428*x^4-936*x^3-198*x^2+260*x-60 6308880986708808 m005 (1/3*3^(1/2)+1/9)/(19/42+2/7*5^(1/2)) 6308880987333498 r005 Im(z^2+c),c=9/50+31/59*I,n=13 6308880995741549 m001 KhintchineHarmonic^2*Artin^2*ln(GAMMA(5/24)) 6308881009696765 m002 -Pi^4+Cosh[Pi]/Pi^3+Pi^4/ProductLog[Pi] 6308881012664485 a003 cos(Pi*3/118)/sin(Pi*5/99) 6308881055930831 a007 Real Root Of 19*x^4+214*x^3+532*x^2-548*x-995 6308881076636733 p004 log(15427/8209) 6308881078774061 m001 FeigenbaumKappa-GaussAGM^Grothendieck 6308881081185541 a007 Real Root Of -964*x^4-432*x^3-68*x^2+288*x+253 6308881101390067 a008 Real Root of x^4-x^3+13*x^2-7*x-10 6308881122712442 a007 Real Root Of 943*x^4+525*x^3+796*x^2-402*x-588 6308881146140416 k001 Champernowne real with 258*n+372 6308881146140416 k005 Champernowne real with floor(sqrt(3)*(149*n+215)) 6308881147140516 k005 Champernowne real with floor(exp(1)*(95*n+137)) 6308881171116549 m001 (3^(1/2)+ln(3))/(TreeGrowth2nd+ZetaQ(3)) 6308881189157895 l003 Shi(21/34) 6308881189157895 l004 Shi(21/34) 6308881217975080 m001 Trott*exp(ArtinRank2)^2*(3^(1/3)) 6308881219984298 r005 Re(z^2+c),c=-17/82+25/38*I,n=17 6308881223810594 m008 (5/6*Pi^2-1/2)/(4*Pi^5+1/3) 6308881224563288 l006 ln(4382/8235) 6308881229884215 m001 (-BesselK(1,1)+2/3)/(ln(2)+1/3) 6308881242793689 a007 Real Root Of 331*x^4+427*x^3+941*x^2-21*x-333 6308881248857114 r005 Re(z^2+c),c=-83/102+10/21*I,n=5 6308881270006637 m001 BesselK(1,1)*FeigenbaumC*ln(sqrt(Pi)) 6308881279013281 a007 Real Root Of -716*x^4+29*x^3-681*x^2+189*x+511 6308881291692236 l004 Ssi(418/91) 6308881310468733 r001 28i'th iterates of 2*x^2-1 of 6308881362243882 a007 Real Root Of 666*x^4-634*x^3+999*x^2+969*x-51 6308881371214796 m001 1/ln(GAMMA(5/6))*GAMMA(11/12)/sinh(1)^2 6308881378558978 m001 (-FeigenbaumAlpha+Kolakoski)/(5^(1/2)+Bloch) 6308881389402112 a001 47/75025*701408733^(19/24) 6308881396417730 r005 Re(z^2+c),c=23/58+5/18*I,n=13 6308881429618696 r005 Re(z^2+c),c=-21/34+13/35*I,n=29 6308881430926000 m001 ArtinRank2^2/ln(ErdosBorwein)^2/Si(Pi)^2 6308881470528260 l006 ln(4937/9278) 6308881475329285 m001 BesselJ(0,1)^2/exp(ErdosBorwein)^2*GAMMA(1/3) 6308881490974691 a007 Real Root Of 88*x^4+570*x^3+122*x^2+129*x-321 6308881495510544 m001 OrthogonalArrays*(GAMMA(19/24)-GAMMA(5/6)) 6308881531587393 m001 1/Riemann1stZero^2*Paris^2*exp(sin(Pi/12)) 6308881535258780 a007 Real Root Of 280*x^4-991*x^3-415*x^2-951*x-728 6308881539089755 r005 Re(z^2+c),c=-3/56+26/35*I,n=32 6308881563260577 m005 (3*gamma-4)/(-31/8+1/8*5^(1/2)) 6308881571432949 r005 Im(z^2+c),c=9/64+10/17*I,n=62 6308881585989542 a001 47/1346269*17711^(23/30) 6308881633927142 a007 Real Root Of -810*x^4+489*x^3-983*x^2+299*x+831 6308881638246562 a007 Real Root Of -661*x^4-615*x^3-669*x^2+202*x+344 6308881639931216 a007 Real Root Of -805*x^4+837*x^3+595*x^2-171*x-7 6308881670757478 m005 (1/3*gamma+3/5)/(7/8*Catalan+5/11) 6308881684809419 h001 (1/11*exp(2)+3/8)/(1/2*exp(1)+3/10) 6308881691979961 r005 Im(z^2+c),c=25/86+29/50*I,n=23 6308881693804920 m001 KhinchinHarmonic^Trott2nd/ln(5) 6308881698118919 a007 Real Root Of 741*x^4-767*x^3+122*x^2-714*x-809 6308881702933235 m001 (gamma(1)+AlladiGrinstead)/(Salem-ZetaQ(3)) 6308881714115022 m001 1/Zeta(1/2)*ln(FeigenbaumKappa)^2/Zeta(9)^2 6308881735936896 h001 (3/8*exp(2)+1/5)/(5/8*exp(2)+1/11) 6308881746646748 r005 Re(z^2+c),c=-23/18+5/239*I,n=20 6308881766602254 r009 Im(z^3+c),c=-35/64+8/31*I,n=63 6308881798471774 a007 Real Root Of 859*x^4-53*x^3+685*x^2+940*x+171 6308881839063644 a001 15456/41*29^(41/49) 6308881844730831 m001 (2^(1/2)-Chi(1))/(-ln(2)+ErdosBorwein) 6308881850493516 r005 Im(z^2+c),c=-51/82+7/59*I,n=52 6308881850892004 r005 Re(z^2+c),c=-9/56+19/29*I,n=53 6308881890814283 m001 1/Riemann3rdZero^2*Cahen^2/exp(sinh(1))^2 6308881907157040 a008 Real Root of x^4-2*x^3-9*x^2-64*x-320 6308881908727571 r005 Im(z^2+c),c=-13/22+2/17*I,n=33 6308881915918973 r005 Re(z^2+c),c=-47/74+8/19*I,n=35 6308881927165887 r005 Im(z^2+c),c=-10/19+17/31*I,n=25 6308881927357333 a007 Real Root Of -165*x^4-648*x^3-855*x^2+980*x+822 6308881936238587 m001 exp(1)/HardHexagonsEntropy*exp(sinh(1)) 6308881950641945 m009 (1/4*Psi(1,3/4)-4/5)/(1/5*Pi^2-2) 6308881982868423 r005 Im(z^2+c),c=-37/26+13/83*I,n=8 6308881984613994 m001 Chi(1)^AlladiGrinstead-CopelandErdos 6308881985856250 r002 25th iterates of z^2 + 6308881996051865 r009 Im(z^3+c),c=-13/21+7/29*I,n=7 6308882007874176 a007 Real Root Of -704*x^4+496*x^3+892*x^2+290*x+64 6308882035644602 r005 Re(z^2+c),c=-3/4+12/155*I,n=15 6308882045805133 m001 1/MertensB1^2/ErdosBorwein^2*exp(OneNinth) 6308882053644759 a007 Real Root Of 367*x^4-460*x^3+952*x^2+860*x-10 6308882054173364 m001 (BesselK(1,1)+KhinchinLevy)/(GAMMA(3/4)+ln(5)) 6308882065702747 r005 Im(z^2+c),c=-5/11+14/19*I,n=3 6308882067428142 m005 (1/2*3^(1/2)-1/7)/(5/7*3^(1/2)-1/11) 6308882069392372 m001 Robbin^2/Cahen^2*ln(GAMMA(1/12))^2 6308882086515748 a001 817138163596/21*2971215073^(13/15) 6308882086515748 a001 224056801/3*4052739537881^(13/15) 6308882092233894 m004 5+Log[Sqrt[5]*Pi]^2/6+Sin[Sqrt[5]*Pi] 6308882109913852 a001 7/2504730781961*55^(7/9) 6308882122916864 p004 log(27943/14869) 6308882132383100 m001 BesselJ(0,1)/exp(FeigenbaumDelta)*Zeta(1,2)^2 6308882151049096 a003 cos(Pi*30/113)*sin(Pi*33/85) 6308882158987980 r009 Im(z^3+c),c=-27/86+2/41*I,n=2 6308882163083957 m001 (GAMMA(17/24)+Niven)/(PlouffeB-ZetaQ(4)) 6308882185460423 a007 Real Root Of -731*x^4-518*x^3-281*x^2+654*x-40 6308882187350484 m005 (1/2*5^(1/2)+1/3)/(1/4*Zeta(3)+2) 6308882190625649 a007 Real Root Of 440*x^4-988*x^3+700*x^2-291*x-780 6308882203606501 a003 sin(Pi*11/95)/cos(Pi*30/97) 6308882240496904 a007 Real Root Of -116*x^4-641*x^3+636*x^2+531*x+844 6308882253056702 r005 Im(z^2+c),c=-37/62+38/53*I,n=4 6308882253326362 a007 Real Root Of -994*x^4+591*x^3-765*x^2-167*x+505 6308882254960736 m001 (Kac+Sierpinski)/(BesselI(0,1)-ln(2+3^(1/2))) 6308882255604793 a003 cos(Pi*11/87)-cos(Pi*13/76) 6308882290745672 a005 (1/cos(7/106*Pi))^1997 6308882295833650 a001 2207/3*75025^(23/58) 6308882309768570 m001 (GAMMA(2/3)+polylog(4,1/2))/(Otter+Trott) 6308882317199900 r005 Re(z^2+c),c=-12/13+7/60*I,n=30 6308882323007133 h003 exp(Pi*(13*11^(1/4)*19^(1/2))) 6308882324651963 m005 (1/2*Catalan-5/12)/(1/6*Zeta(3)+5/11) 6308882333488980 m001 Zeta(5)*ln(LandauRamanujan)^2*sin(1) 6308882353362403 m002 -5/3-Cosh[Pi]/Pi^5+ProductLog[Pi] 6308882380432369 m001 Thue/(Totient^GAMMA(11/12)) 6308882417273980 m001 FeigenbaumDelta/(RenyiParking^MertensB2) 6308882485409664 r005 Re(z^2+c),c=-9/14+56/205*I,n=8 6308882494650833 m005 (1/2*exp(1)+1/11)/(1/4*Pi-5/9) 6308882499745672 a001 47/123*(1/2*5^(1/2)+1/2)^17*123^(7/22) 6308882501540716 r002 8th iterates of z^2 + 6308882512092545 m001 (-Khinchin+MasserGramain)/(GAMMA(7/12)-Si(Pi)) 6308882526966744 a001 1364/514229*55^(8/37) 6308882527750091 m001 (BesselJ(0,1)+ln(2))/(-Ei(1)+Riemann3rdZero) 6308882528127875 r002 3i'th iterates of 2*x/(1-x^2) of 6308882542938401 r009 Re(z^3+c),c=-79/126+15/22*I,n=3 6308882569199535 r005 Re(z^2+c),c=-83/122+13/58*I,n=14 6308882591722850 r009 Im(z^3+c),c=-51/122+31/63*I,n=2 6308882598912463 a007 Real Root Of -879*x^4+448*x^3+159*x^2+462*x-328 6308882610191761 a007 Real Root Of 116*x^4-988*x^3+196*x^2-29*x+170 6308882613568505 a003 cos(Pi*10/57)-sin(Pi*32/87) 6308882615879852 m001 FeigenbaumB/LandauRamanujan^2*exp(Ei(1))^2 6308882638508893 a007 Real Root Of -111*x^4-676*x^3+49*x^2-502*x+981 6308882668383282 a007 Real Root Of -528*x^4-869*x^3-914*x^2-208*x+98 6308882710815385 b008 -2*Sqrt[3]+Log[17] 6308882727864335 p004 log(34511/32401) 6308882737553818 m001 (GAMMA(3/4)+Cahen)/(MertensB2+Tetranacci) 6308882751335784 m001 (Grothendieck-Riemann3rdZero)/(Pi+cos(1)) 6308882754190640 a003 sin(Pi*25/67)/cos(Pi*34/75) 6308882770033712 r002 62th iterates of z^2 + 6308882772010645 a007 Real Root Of -850*x^4+371*x^3-297*x^2+271*x+517 6308882781893331 r005 Im(z^2+c),c=-5/17+34/53*I,n=62 6308882787617110 a007 Real Root Of -406*x^4+898*x^3-589*x^2-254*x+364 6308882802050169 m001 log(2+sqrt(3))^2/ln(Bloch)*sqrt(1+sqrt(3))^2 6308882829906917 a005 (1/cos(19/234*Pi))^266 6308882830698947 r005 Im(z^2+c),c=-29/44+1/8*I,n=56 6308882839414434 a007 Real Root Of -120*x^4+278*x^3+391*x^2+841*x-737 6308882846356511 r009 Re(z^3+c),c=-9/82+8/13*I,n=44 6308882856051896 a007 Real Root Of 965*x^4-460*x^3-657*x^2-62*x-46 6308882867657532 m001 (Kolakoski-MertensB2)/(Conway+FeigenbaumAlpha) 6308882889165804 a007 Real Root Of -971*x^4+656*x^3+156*x^2-248*x+100 6308882891908928 m005 (1/3*Pi-1/10)/(2/3*Zeta(3)+7/10) 6308882893507959 a007 Real Root Of -606*x^4+523*x^3-258*x^2-428*x+60 6308882907133243 q001 1875/2972 6308882907133243 q001 3/47552 6308882920798378 m001 (BesselI(1,1)+Lehmer)/(ZetaP(3)+ZetaQ(3)) 6308882930873474 a007 Real Root Of -10*x^4+394*x^3+735*x^2+612*x-776 6308882943510818 a001 377/3*29^(23/48) 6308882945379706 m001 ReciprocalLucas^(3^(1/2))-Sierpinski 6308882965789346 m002 3+Pi+Coth[Pi]/6 6308882974029232 r002 3th iterates of z^2 + 6308882991991766 r009 Re(z^3+c),c=-16/31+5/51*I,n=14 6308883025195230 m001 Zeta(1,2)*exp(CopelandErdos)^2/cosh(1)^2 6308883064088352 m005 (1/2*2^(1/2)-2/11)/(5/12*exp(1)-3/10) 6308883080620142 m001 (Backhouse-Salem)/(ZetaP(2)-ZetaQ(3)) 6308883118201899 a007 Real Root Of -68*x^4-354*x^3-667*x^2+979*x+805 6308883126835981 a007 Real Root Of 551*x^4-264*x^3-438*x^2+21*x+34 6308883140459898 m001 Ei(1)*exp((2^(1/3)))^2*GAMMA(1/3) 6308883154318240 p003 LerchPhi(1/1024,4,435/218) 6308883154759864 m002 -4+3*Coth[Pi]+ProductLog[Pi]/3 6308883155174953 m001 (-Rabbit+TravellingSalesman)/(Catalan-Niven) 6308883178661683 r005 Re(z^2+c),c=-11/10+47/217*I,n=2 6308883179163092 m005 (1/2*3^(1/2)-7/9)/(6*5^(1/2)+4/7) 6308883202696115 r005 Im(z^2+c),c=-11/24+21/29*I,n=3 6308883240492329 r005 Im(z^2+c),c=-57/46+5/47*I,n=59 6308883267533290 a007 Real Root Of 536*x^4+42*x^3+9*x^2-688*x-512 6308883268460565 m001 (Zeta(5)+GaussAGM)/(HardyLittlewoodC4-Trott) 6308883272034274 m001 (Zeta(5)+Champernowne)/Tribonacci 6308883315171656 p003 LerchPhi(1/8,1,305/177) 6308883333274986 m001 1/ln(Paris)^2*FeigenbaumAlpha^2*cos(1) 6308883360593041 m009 (4*Psi(1,2/3)-1/2)/(6*Psi(1,2/3)+1/4) 6308883403243985 a007 Real Root Of 14*x^4+892*x^3+537*x^2-963*x+645 6308883412543379 l006 ln(555/1043) 6308883413518907 m001 Chi(1)/(Salem^MadelungNaCl) 6308883444984256 m008 (1/3*Pi^3-1/3)/(1/4*Pi+4/5) 6308883449238966 a003 -1/2+cos(1/18*Pi)-2*cos(1/7*Pi)+cos(7/27*Pi) 6308883473667109 a007 Real Root Of -667*x^4-586*x^3-39*x^2+821*x+492 6308883473961813 m001 Salem*ln(Cahen)^2/GAMMA(1/4) 6308883502926358 a001 5600748293801/233*4807526976^(20/23) 6308883523317043 m008 (5/6*Pi^3+2/3)/(1/5*Pi^3-2) 6308883530987975 a007 Real Root Of 101*x^4+616*x^3-131*x^2+67*x+314 6308883550269333 r002 8th iterates of z^2 + 6308883558660200 a007 Real Root Of 413*x^4-999*x^3+69*x^2-558*x+510 6308883563689246 a005 (1/cos(8/219*Pi))^628 6308883581504503 m008 (Pi^4-2/3)/(1/2*Pi^5+1/3) 6308883610246123 a007 Real Root Of 952*x^4+761*x^3+592*x^2-662*x-613 6308883619513692 r005 Im(z^2+c),c=37/110+17/45*I,n=27 6308883632436444 r009 Im(z^3+c),c=-3/16+38/51*I,n=62 6308883636549167 r005 Re(z^2+c),c=21/94+11/31*I,n=32 6308883658038620 b008 -8+Sqrt[-3+E+Pi] 6308883666027367 a007 Real Root Of 368*x^4-977*x^3+149*x^2+95*x-303 6308883692917891 m001 HardHexagonsEntropy^3*exp(Zeta(1/2)) 6308883703200476 a007 Real Root Of -364*x^4+978*x^3-211*x^2+789*x+885 6308883711510017 a001 12238/17*987^(57/58) 6308883729026836 m001 GaussKuzminWirsing*ln(Conway)^2/Tribonacci^2 6308883735949427 r005 Im(z^2+c),c=-19/30+5/41*I,n=39 6308883743621940 m001 Cahen^exp(1/Pi)-Salem 6308883744015729 r005 Im(z^2+c),c=-3/20+46/55*I,n=53 6308883752165409 m001 exp(Trott)/GaussKuzminWirsing*Ei(1) 6308883804460574 r005 Re(z^2+c),c=7/110+11/27*I,n=23 6308883809262796 m005 (1/2*3^(1/2)+3/5)/(5/7*2^(1/2)-7/9) 6308883824656539 r002 29th iterates of z^2 + 6308883832512113 a001 6119/36*10946^(38/43) 6308883857331050 a008 Real Root of x^4-40*x^2-36*x+235 6308883887929961 a007 Real Root Of -959*x^4-486*x^3-403*x^2+800*x+695 6308883888014841 m001 (-Zeta(1,-1)+BesselI(0,2))/(Chi(1)-GAMMA(3/4)) 6308883959642799 a007 Real Root Of -480*x^4+672*x^3+809*x^2+709*x-862 6308883963510713 a007 Real Root Of 334*x^4+340*x^3-750*x^2-938*x+752 6308884008227924 m005 (1/2*exp(1)-2/9)/(2/5*Pi+6/11) 6308884010158770 m002 6*Pi^2+(E^Pi*Coth[Pi])/6 6308884010584349 r005 Re(z^2+c),c=9/106+18/41*I,n=50 6308884015293530 a007 Real Root Of -841*x^4+987*x^3+917*x^2+557*x-831 6308884029857224 a001 18/24157817*12586269025^(7/18) 6308884029858946 a001 9/416020*2178309^(7/18) 6308884046099650 m001 (BesselJ(1,1)+BesselK(1,1))/(GAMMA(23/24)+Kac) 6308884093350619 s002 sum(A059575[n]/(n^2*exp(n)-1),n=1..infinity) 6308884110331885 m001 Bloch/(GaussAGM^ErdosBorwein) 6308884146614161 m001 1/2*exp(1)*sin(1)/Pi*2^(1/2)*GAMMA(3/4) 6308884146614161 m001 exp(1)*sin(1)/GAMMA(1/4) 6308884157341660 a007 Real Root Of -221*x^4+297*x^3-295*x^2+84*x+280 6308884171200011 m005 (1/2*3^(1/2)-1/11)/(6/11*2^(1/2)-2) 6308884172978985 m001 (Salem-Trott)/(ln(2^(1/2)+1)+cos(1/12*Pi)) 6308884173208533 r002 16th iterates of z^2 + 6308884180936616 r002 4th iterates of z^2 + 6308884205942505 a007 Real Root Of -613*x^4+645*x^3-419*x^2+5*x+429 6308884225711540 a007 Real Root Of 808*x^4-885*x^3+717*x^2-278*x-811 6308884250714584 s002 sum(A140725[n]/(n^2*pi^n-1),n=1..infinity) 6308884296495459 a007 Real Root Of -687*x^4+566*x^3+709*x^2+40*x-6 6308884297520661 r002 2th iterates of z^2 + 6308884310549212 a007 Real Root Of 174*x^4+990*x^3-719*x^2-178*x+439 6308884334411167 r005 Re(z^2+c),c=7/36+19/59*I,n=20 6308884334945778 m001 (2^(1/2)-Zeta(3))/(-FeigenbaumDelta+Mills) 6308884349077972 a001 3*(1/2*5^(1/2)+1/2)^28*4^(18/23) 6308884359266839 m001 (GAMMA(3/4)+ln(2))/(ln(3)-Kolakoski) 6308884378008022 m001 (Thue-ZetaQ(3))/(Cahen+CareFree) 6308884379759061 v002 sum(1/(2^n+(7/2*n^2+75/2*n-8)),n=1..infinity) 6308884391227832 m005 (1/2*Zeta(3)-7/10)/(7/9*exp(1)-6/11) 6308884406722642 r005 Im(z^2+c),c=-2/3+35/176*I,n=36 6308884426935936 m005 (1/2*exp(1)-8/9)/(41/22+5/2*5^(1/2)) 6308884441283596 a007 Real Root Of -589*x^4+77*x^3-950*x^2-342*x+275 6308884449656467 r005 Im(z^2+c),c=-157/114+1/37*I,n=17 6308884463040865 a007 Real Root Of 310*x^4-420*x^3+775*x^2-821*x-981 6308884491792526 a001 (2+3^(1/2))^(107/34) 6308884494173486 m001 (Psi(1,1/3)+Catalan)/KhinchinHarmonic 6308884514936179 m005 (3*Pi+1/6)/(3/4*Catalan+5/6) 6308884545733257 m001 Rabbit/exp(Bloch)^2/Robbin^2 6308884550921644 r005 Re(z^2+c),c=-11/70+40/57*I,n=17 6308884583500289 r005 Im(z^2+c),c=-15/82+31/48*I,n=10 6308884590790722 m005 (1/2*Catalan+1/11)/(3*exp(1)+6/11) 6308884597693065 m001 (ln(gamma)+Sarnak)/(Sierpinski+ZetaP(3)) 6308884609410991 m001 (Landau+ZetaP(3))/(ln(2)-FeigenbaumC) 6308884620514351 r009 Re(z^3+c),c=-67/106+26/53*I,n=31 6308884626185909 m001 (Chi(1)+CareFree)/(CopelandErdos+ZetaQ(3)) 6308884631464623 r005 Re(z^2+c),c=-19/28+1/53*I,n=3 6308884632405755 m001 exp(sqrt(2))*Si(Pi)^2/sqrt(5) 6308884647547551 m001 (Khinchin+LaplaceLimit*PlouffeB)/PlouffeB 6308884656068719 a007 Real Root Of -927*x^4+337*x^3-654*x^2+525*x+823 6308884665611485 m001 1/Ei(1)/BesselK(0,1)^2*ln(cos(Pi/5)) 6308884671715005 b008 LogBarnesG[190*E] 6308884682607836 m001 (HardyLittlewoodC5-Si(Pi))/(ZetaP(3)+ZetaQ(2)) 6308884690608771 r005 Im(z^2+c),c=9/56+27/49*I,n=5 6308884696029987 a001 76/28657*233^(25/43) 6308884704358214 a007 Real Root Of -710*x^4-677*x^3-809*x^2+768*x+749 6308884709996555 a007 Real Root Of -995*x^4-284*x^3-262*x^2+557*x+542 6308884722281306 s001 sum(exp(-Pi/3)^n*A115609[n],n=1..infinity) 6308884737729800 s002 sum(A236856[n]/(n*10^n-1),n=1..infinity) 6308884755729474 r005 Im(z^2+c),c=-85/122+4/45*I,n=31 6308884785316046 p004 log(21001/19717) 6308884792269920 a007 Real Root Of -97*x^4-461*x^3+940*x^2-31*x+298 6308884803369205 m001 ln(Pi)*(Psi(2,1/3)-gamma(2)) 6308884822851388 m001 (Zeta(3)+cos(1/5*Pi))/(Ei(1,1)-Magata) 6308884851794152 m005 (1/2*exp(1)-5)/(7/12*5^(1/2)-8/11) 6308884853384157 m001 (3^(1/2))^(Ei(1)/BesselI(1,1)) 6308884853384157 m001 sqrt(3)^(Ei(1)/BesselI(1,1)) 6308884897647654 r005 Im(z^2+c),c=-11/122+41/52*I,n=20 6308884913536076 q001 1058/1677 6308884913536076 r005 Im(z^2+c),c=3/86+23/39*I,n=2 6308884925220273 m002 Pi^5/6+ProductLog[Pi]/2+Sinh[Pi] 6308884929755611 r005 Re(z^2+c),c=-85/86+8/59*I,n=24 6308884963285474 r009 Re(z^3+c),c=-65/118+15/59*I,n=62 6308884971621722 m001 (Niven+Trott2nd)/(Zeta(1,-1)+BesselJ(1,1)) 6308884976662835 a007 Real Root Of 984*x^4+346*x^3+595*x^2-51*x-338 6308884977543456 m001 (GlaisherKinkelin-Robbin)^cos(1/12*Pi) 6308885003203504 a007 Real Root Of -528*x^4-183*x^3-265*x^2+778*x+634 6308885011860505 a001 6/7*987^(45/47) 6308885041906801 a007 Real Root Of 43*x^4-849*x^3+139*x^2-76*x+199 6308885071459628 r005 Im(z^2+c),c=-5/52+22/27*I,n=17 6308885076840919 a001 1/329*10946^(15/46) 6308885120563368 r009 Re(z^3+c),c=-11/114+31/63*I,n=14 6308885128392763 m001 Paris^2/ln(ArtinRank2)^2*sin(1) 6308885170741602 h001 (10/11*exp(1)+1/4)/(4/7*exp(2)+1/11) 6308885178322878 r005 Re(z^2+c),c=-23/34+25/83*I,n=32 6308885186102884 m001 (StronglyCareFree+ThueMorse)/(gamma+Mills) 6308885202662994 p003 LerchPhi(1/3,4,254/125) 6308885211574599 m001 (cos(1)*Zeta(5)-Ei(1,1))/cos(1) 6308885231602113 r008 a(0)=0,K{-n^6,-9-65*n^3-8*n^2+66*n} 6308885233335499 r005 Re(z^2+c),c=2/13+11/29*I,n=60 6308885234610025 a007 Real Root Of -363*x^4+752*x^3+48*x^2+776*x-640 6308885245346919 a007 Real Root Of -466*x^4-414*x^3-921*x^2+31*x+356 6308885258700865 r005 Re(z^2+c),c=-25/34+4/47*I,n=42 6308885265295508 a007 Real Root Of 695*x^4+454*x^3-13*x^2-883*x-548 6308885274150420 r005 Im(z^2+c),c=-1/18+28/39*I,n=45 6308885294113784 a007 Real Root Of -560*x^4-75*x^3-513*x^2+859*x+816 6308885309975953 l006 ln(5053/9496) 6308885352584740 m001 (-GAMMA(11/12)+ArtinRank2)/(gamma+gamma(2)) 6308885372772950 r002 41th iterates of z^2 + 6308885390562254 r005 Re(z^2+c),c=-4/5+26/77*I,n=6 6308885395736963 a001 233/9349*322^(23/24) 6308885401550770 a001 17393796001/55*2584^(8/21) 6308885406923326 a001 3/610*1548008755920^(1/11) 6308885415788092 a007 Real Root Of 74*x^4+439*x^3-276*x^2-648*x-98 6308885423201757 a001 3571/1346269*55^(8/37) 6308885441009241 m005 (1/2*Pi-4/5)/(7/11*2^(1/2)-7/9) 6308885442664463 m001 ln(gamma)^(ZetaP(2)/sin(1/5*Pi)) 6308885473540025 a001 7881196/55*1548008755920^(8/21) 6308885473540126 a001 370248451/55*63245986^(8/21) 6308885494477771 m008 (3/4*Pi-5/6)/(4/5*Pi^3-2/3) 6308885519062113 r002 3th iterates of z^2 + 6308885544096666 l006 ln(4498/8453) 6308885547660966 g001 GAMMA(1/5,27/62) 6308885566067174 r005 Re(z^2+c),c=-49/34+4/57*I,n=2 6308885576973985 a005 (1/cos(16/141*Pi))^773 6308885614536504 a003 cos(Pi*26/111)*sin(Pi*35/108) 6308885620282674 a007 Real Root Of -599*x^4+968*x^3+777*x^2+942*x+623 6308885630286296 a003 cos(Pi*5/32)/cos(Pi*51/112) 6308885636980549 m001 1/Magata/exp(ErdosBorwein)/cos(Pi/12)^2 6308885650653274 a007 Real Root Of 488*x^4-279*x^3-672*x^2-765*x+51 6308885662527325 a001 11/4807526976*2178309^(5/22) 6308885662527385 a001 11/53316291173*86267571272^(5/22) 6308885663267748 r005 Re(z^2+c),c=-17/24+15/37*I,n=4 6308885664954939 r009 Im(z^3+c),c=-41/118+41/63*I,n=50 6308885679752545 m001 (Psi(2,1/3)+LambertW(1))/(-gamma(1)+Zeta(1,2)) 6308885683039884 a007 Real Root Of 43*x^4+107*x^3-994*x^2+256*x-74 6308885693681642 m001 PlouffeB+Riemann3rdZero^GAMMA(17/24) 6308885709857848 r002 36th iterates of z^2 + 6308885724495604 m001 (2^(1/2)-Zeta(1,-1))/(Riemann3rdZero+Trott2nd) 6308885730064771 m005 (1/3*gamma-1/5)/(4/5*3^(1/2)-2/11) 6308885733154974 m005 (1/2*2^(1/2)+1/9)/(6/11*Pi-5/12) 6308885764915935 r009 Re(z^3+c),c=-17/32+9/52*I,n=31 6308885765651760 m001 (GAMMA(3/4)-BesselJ(1,1))/(Bloch-Gompertz) 6308885810182893 m006 (3/5*ln(Pi)-1/6)/(4/5*ln(Pi)-5/6) 6308885811336180 r002 20th iterates of z^2 + 6308885822702816 a001 305/682*18^(5/42) 6308885830313160 a007 Real Root Of 521*x^4-805*x^3+507*x^2-153*x-583 6308885830773521 a007 Real Root Of 213*x^4+512*x^3+700*x^2-460*x-474 6308885844125053 l006 ln(3943/7410) 6308885847056980 a007 Real Root Of -829*x^4+760*x^3-872*x^2-636*x+268 6308885847585903 r009 Im(z^3+c),c=-23/42+15/64*I,n=21 6308885863362734 m005 (1/2*5^(1/2)+10/11)/(11/12*Pi+1/3) 6308885863827551 s002 sum(A132081[n]/(n^2*exp(n)-1),n=1..infinity) 6308885865419021 a007 Real Root Of 885*x^4+987*x^3+899*x^2+349*x-30 6308885916956099 r005 Re(z^2+c),c=-5/31+31/42*I,n=15 6308885923309868 a007 Real Root Of 259*x^4-746*x^3+859*x^2+468*x-275 6308885932810580 p004 log(28597/15217) 6308885937405313 m005 (1/2*gamma+7/8)/(2/3*Pi-1/4) 6308885956143254 a007 Real Root Of -51*x^4-169*x^3+966*x^2+118*x+653 6308885983773263 a008 Real Root of x^4-21*x^2-108*x-67 6308886032910618 a008 Real Root of x^4-2*x^3-197*x^2+24*x+5906 6308886035297505 a007 Real Root Of -195*x^4+614*x^3-802*x^2+716*x+956 6308886039982300 m001 Ei(1)*RenyiParking/exp(cos(Pi/5)) 6308886048370800 a007 Real Root Of 852*x^4-903*x^3-23*x^2-519*x-680 6308886054007495 m001 (Salem+ZetaQ(3))/(GAMMA(7/12)-Magata) 6308886106910099 a001 1926/726103*55^(8/37) 6308886139689549 r005 Re(z^2+c),c=-16/25+26/59*I,n=8 6308886150507302 r005 Im(z^2+c),c=-5/66+20/27*I,n=47 6308886150958195 r008 a(0)=0,K{-n^6,57-72*n^3+46*n^2-47*n} 6308886166547407 m001 ln(PisotVijayaraghavan)/Artin*Catalan^2 6308886184349973 p001 sum(1/(242*n+159)/(128^n),n=0..infinity) 6308886189096640 a007 Real Root Of 307*x^4+384*x^3+936*x^2-487*x-632 6308886189809587 m001 BesselJ(1,1)^TravellingSalesman/QuadraticClass 6308886203639930 a001 54018521/144*2^(3/4) 6308886242450803 l006 ln(3388/6367) 6308886244201360 m001 (Backhouse-DuboisRaymond*Salem)/DuboisRaymond 6308886259223904 r002 16th iterates of z^2 + 6308886266373236 m005 (1/2*Zeta(3)-4/11)/(5/7*3^(1/2)-5) 6308886267736858 r005 Im(z^2+c),c=-1/14+18/25*I,n=17 6308886328508605 m001 1/Zeta(9)/exp(GAMMA(1/6))*sqrt(1+sqrt(3)) 6308886338066838 a005 (1/sin(100/207*Pi))^1305 6308886339479904 a007 Real Root Of -709*x^4-142*x^3-142*x^2+797*x+636 6308886339958529 r005 Im(z^2+c),c=-43/78+3/50*I,n=3 6308886351140122 r002 48th iterates of z^2 + 6308886363437129 m001 (cos(1/5*Pi)-MertensB1)/(Thue+ZetaQ(3)) 6308886367713219 m005 (1/2*Zeta(3)+5/12)/(-18/7+3/7*5^(1/2)) 6308886394191078 m001 (Lehmer-OrthogonalArrays)/(Totient-ZetaQ(2)) 6308886401938167 a007 Real Root Of -956*x^4+632*x^3+286*x^2+838*x+725 6308886414000115 a007 Real Root Of 184*x^4-980*x^3+339*x^2-312*x-607 6308886424328811 m001 exp(FeigenbaumC)/LaplaceLimit*sin(Pi/12)^2 6308886429028403 m002 E^Pi+(6*Pi^3*ProductLog[Pi])/5 6308886443825628 m001 1/Paris/ln(LaplaceLimit)^2/GAMMA(7/24)^2 6308886444504091 r005 Re(z^2+c),c=-9/14+77/216*I,n=38 6308886474399094 r005 Im(z^2+c),c=-25/32+13/38*I,n=5 6308886483628123 r002 30th iterates of z^2 + 6308886500541092 a007 Real Root Of -102*x^4+783*x^3-287*x^2-447*x+45 6308886509635974 q001 2357/3736 6308886522037449 m001 (Conway+GaussAGM)/(MinimumGamma+Tetranacci) 6308886538637755 m001 (Gompertz-Paris)^TwinPrimes 6308886560269270 a007 Real Root Of 717*x^4+561*x^3+209*x^2+217*x+81 6308886567348292 m005 (1/2*exp(1)-1/8)/(3/4*Pi-2/5) 6308886576798926 h001 (4/9*exp(1)+9/11)/(7/8*exp(1)+5/6) 6308886587281200 s001 sum(exp(-Pi/2)^n*A081565[n],n=1..infinity) 6308886589881769 r005 Re(z^2+c),c=-3/4+19/231*I,n=32 6308886660845215 m001 (arctan(1/2)-Zeta(1,2))/(Champernowne+Paris) 6308886675485367 m005 (1/2*Pi+7/11)/(1/9*gamma+2/7) 6308886707338462 m001 (Ei(1)+AlladiGrinstead)/(RenyiParking-Salem) 6308886717142558 a007 Real Root Of -455*x^4+283*x^3-743*x^2-488*x+131 6308886717598833 a007 Real Root Of 398*x^4-960*x^3+931*x^2-438*x-951 6308886748285143 a007 Real Root Of -852*x^4+485*x^3-310*x^2+442*x+659 6308886764053388 m001 ln(PrimesInBinary)^2/Conway^2*Salem^2 6308886766641780 m006 (1/6*exp(2*Pi)-5)/(1/4*exp(2*Pi)-1/3) 6308886780554960 m001 (-Zeta(1/2)+gamma(3))/(cos(1/5*Pi)-gamma) 6308886781603296 m005 (1/2*5^(1/2)+1/8)/(9/10*Pi-6/7) 6308886792712811 m001 (Shi(1)+ln(gamma))/(Landau+MertensB1) 6308886796844856 l006 ln(2833/5324) 6308886831704216 s002 sum(A093956[n]/(2^n+1),n=1..infinity) 6308886837658272 m001 Tribonacci^2*KhintchineLevy^2/ln(GAMMA(5/12)) 6308886839242087 m001 (Pi+1+sin(1))*BesselI(0,1) 6308886871593579 r005 Im(z^2+c),c=-5/34+37/57*I,n=61 6308886922649624 r005 Im(z^2+c),c=-5/66+20/27*I,n=50 6308886925544155 m005 (1/3*3^(1/2)+1/5)/(3/10*exp(1)+5/12) 6308886929638430 a007 Real Root Of -845*x^4+885*x^3+745*x^2+901*x+628 6308886957841516 m005 (1/2*Zeta(3)-1/10)/(5/7*exp(1)+6) 6308886959039146 a001 1/9*(1/2*5^(1/2)+1/2)^3*3^(4/15) 6308886969527782 m001 1/ln(cos(1))^2/Zeta(3)^2*sin(Pi/5)^2 6308886973811532 b008 64+Cos[9] 6308886993243510 b008 -1+Zeta[2*E,1/5] 6308887038331009 a003 cos(Pi*46/119)-sin(Pi*17/39) 6308887048338016 a001 199/55*5^(19/55) 6308887068521856 m006 (4/5*exp(2*Pi)+3/4)/(3/4*Pi^2-3/5) 6308887103182297 m002 -Pi^6/15+Coth[Pi] 6308887129189988 r005 Re(z^2+c),c=-3/4+37/166*I,n=7 6308887131546674 m001 (Pi*2^(1/2)/GAMMA(3/4))^Champernowne*ZetaQ(2) 6308887132271247 m005 (1/2*3^(1/2)+2/9)/(7/9*2^(1/2)+5/8) 6308887132274503 a007 Real Root Of 896*x^4-667*x^3-622*x^2-108*x-130 6308887137991852 a007 Real Root Of -661*x^4+966*x^3-148*x^2+837*x-607 6308887140666651 m008 (Pi^3+3/5)/(5*Pi^2+3/4) 6308887144348685 m001 Zeta(5)/Backhouse/GAMMA(5/6) 6308887144348685 m001 Zeta(5)/GAMMA(5/6)/Backhouse 6308887164343774 l006 ln(5111/9605) 6308887168827343 a007 Real Root Of 585*x^4-428*x^3-514*x^2-551*x+567 6308887176212216 r005 Re(z^2+c),c=29/90+9/23*I,n=58 6308887178965911 r008 a(0)=0,K{-n^6,71-70*n^3+47*n^2-64*n} 6308887197332525 m001 FransenRobinson-Porter-Rabbit 6308887213173435 a001 2207/832040*55^(8/37) 6308887247518506 a001 4/1346269*144^(5/33) 6308887267421633 a007 Real Root Of 994*x^4+914*x^3+692*x^2-868*x-751 6308887273764268 a007 Real Root Of 943*x^4-444*x^3+361*x^2+627*x-9 6308887284277889 a007 Real Root Of 693*x^4-472*x^3-657*x^2-724*x+727 6308887284988619 m001 (2^(1/3))^2/Sierpinski/exp(GAMMA(1/12))^2 6308887295885727 m005 (1/2*3^(1/2)+1/7)/(2/3*3^(1/2)+4/9) 6308887317766470 m001 (FransenRobinson-Mills)/(Otter-Stephens) 6308887318284547 m001 (Ei(1,1)-Si(Pi))/(-MertensB2+StronglyCareFree) 6308887325613998 a007 Real Root Of 682*x^4-831*x^3-465*x^2+532*x+204 6308887332973753 a007 Real Root Of -462*x^4+282*x^3-52*x^2+327*x+371 6308887348927606 m001 (HardyLittlewoodC4-Porter)/(Pi-Conway) 6308887352024209 a007 Real Root Of -127*x^4-743*x^3+470*x^2+681*x+211 6308887372954436 m001 (5^(1/2)-sin(1/5*Pi))/(gamma(1)+Khinchin) 6308887390003727 m001 1/Salem*LandauRamanujan*ln(GAMMA(1/3))^2 6308887411137958 r005 Im(z^2+c),c=-15/122+43/49*I,n=35 6308887411889233 a007 Real Root Of -617*x^4+836*x^3-765*x^2-536*x+274 6308887414790729 m001 (ln(2+3^(1/2))+Sierpinski)/(Chi(1)-Ei(1,1)) 6308887432018541 m001 Riemann1stZero^Kolakoski/(ZetaP(4)^Kolakoski) 6308887434683662 m001 (Sarnak-Zeta(5)*Grothendieck)/Grothendieck 6308887481426310 a007 Real Root Of -799*x^4+835*x^3+343*x^2+449*x+483 6308887496919358 r005 Re(z^2+c),c=-9/82+25/28*I,n=29 6308887517119492 r005 Re(z^2+c),c=-67/70+7/30*I,n=10 6308887518450055 a001 1568397607/144*102334155^(2/21) 6308887518450055 a001 33281921/8*2504730781961^(2/21) 6308887525324429 a001 1368706081/48*4181^(2/21) 6308887534561093 a007 Real Root Of -601*x^4+699*x^3-557*x^2-137*x+406 6308887535923138 r005 Re(z^2+c),c=-81/110+2/55*I,n=11 6308887565871366 a007 Real Root Of -319*x^4+995*x^3+79*x^2+986*x+891 6308887593247812 r002 2th iterates of z^2 + 6308887595381510 m003 -21/2+Sqrt[5]/64+2/Log[1/2+Sqrt[5]/2] 6308887597892580 m001 (FibonacciFactorial+Magata)/(Sarnak+Trott) 6308887603990200 r005 Im(z^2+c),c=31/98+23/63*I,n=12 6308887607834741 m001 (arctan(1/3)+Bloch)/(exp(1)+Zeta(1/2)) 6308887621378186 l006 ln(2278/4281) 6308887624549289 a007 Real Root Of 155*x^4+923*x^3-498*x^2-956*x+10 6308887627882559 s002 sum(A093005[n]/(n^3*exp(n)-1),n=1..infinity) 6308887637338244 a003 cos(Pi*27/71)+cos(Pi*22/53) 6308887646440650 r009 Re(z^3+c),c=-73/110+29/42*I,n=3 6308887648262907 a007 Real Root Of -306*x^4+802*x^3-388*x^2+353*x+627 6308887670394833 r005 Im(z^2+c),c=-5/48+19/23*I,n=41 6308887688410158 g001 GAMMA(5/8,29/68) 6308887708891362 a007 Real Root Of 98*x^4+627*x^3-38*x^2-584*x+20 6308887739657973 m001 (Shi(1)*ln(Pi)-Landau)/Shi(1) 6308887739673883 a001 8/321*47^(47/56) 6308887745459019 s002 sum(A049908[n]/(n*pi^n-1),n=1..infinity) 6308887746829835 r008 a(0)=0,K{-n^6,61-66*n^3+30*n^2-41*n} 6308887798015654 a001 89/18*18^(37/42) 6308887809616318 q001 1299/2059 6308887842134597 h001 (1/5*exp(1)+4/7)/(7/12*exp(1)+2/11) 6308887845651560 a007 Real Root Of -671*x^4+251*x^3+29*x^2+920*x+58 6308887851052803 m005 (1/2*Catalan+7/10)/(7/10*Pi-4/11) 6308887864175473 m001 2^(1/2)*Paris*ZetaP(2) 6308887865439195 r005 Im(z^2+c),c=-65/94+26/55*I,n=3 6308887910564331 m001 (Ei(1,1)+GAMMA(19/24))/(Otter-RenyiParking) 6308887920815035 a007 Real Root Of 344*x^4-891*x^3+393*x^2-498*x+327 6308887923298061 a007 Real Root Of 513*x^4-120*x^3+559*x^2-612*x-720 6308887936971812 a001 6765/4*11^(28/51) 6308887937830624 m001 (cos(1/5*Pi)-BesselI(0,2))/(Kac+Niven) 6308887939044380 m009 (5*Psi(1,2/3)+2/5)/(1/5*Psi(1,3/4)-3) 6308887974441350 a007 Real Root Of -444*x^4+312*x^3+359*x^2+612*x-537 6308887993112960 m005 (1/3*Pi-1/11)/(43/80+7/16*5^(1/2)) 6308887994726083 m001 Trott2nd/(FeigenbaumAlpha+Tribonacci) 6308888001038347 m001 FransenRobinson^Weierstrass/sin(1/12*Pi) 6308888022722933 a008 Real Root of x^4-2*x^3-441*x^2-1134*x+23625 6308888054128080 m001 (Zeta(1,-1)+ArtinRank2)/(GaussAGM+ZetaQ(3)) 6308888055563682 s002 sum(A186694[n]/(n^3*exp(n)+1),n=1..infinity) 6308888071371460 m001 cos(1/5*Pi)*Gompertz+ZetaR(2) 6308888076240644 r008 a(0)=0,K{-n^6,27-59*n^3-8*n^2+24*n} 6308888079092291 s001 sum(exp(-2*Pi/5)^n*A021456[n],n=1..infinity) 6308888079092291 s002 sum(A021456[n]/(exp(2/5*pi*n)),n=1..infinity) 6308888090776564 a008 Real Root of x^4-27*x^2-73*x-49 6308888135378675 m005 (1/2*2^(1/2)-1/5)/(1/6*gamma-9/10) 6308888150860151 a007 Real Root Of -154*x^4-999*x^3-21*x^2+914*x-286 6308888158187942 m001 exp(Paris)*FeigenbaumAlpha/Robbin^2 6308888159288792 r008 a(0)=0,K{-n^6,-5+55*n^3+31*n^2-65*n} 6308888160556606 a001 1/39596*(1/2*5^(1/2)+1/2)*521^(7/16) 6308888161738279 r005 Re(z^2+c),c=-97/106+8/57*I,n=54 6308888197591613 a007 Real Root Of -619*x^4-354*x^3-751*x^2+198*x+433 6308888199779806 r002 14th iterates of z^2 + 6308888205207918 l006 ln(4001/7519) 6308888218421849 m005 (1/3*3^(1/2)-3/7)/(3/5*exp(1)+8/11) 6308888245052601 a007 Real Root Of 285*x^4-274*x^3+43*x^2+54*x-97 6308888260916356 m001 GolombDickman^Ei(1)/(FeigenbaumD^Ei(1)) 6308888282378452 m008 (4*Pi^5-1/4)/(2*Pi^4-5/6) 6308888289428361 h005 exp(cos(Pi*6/43)+sin(Pi*22/57)) 6308888290657853 a007 Real Root Of -719*x^4+938*x^3-823*x^2+401*x+930 6308888305916006 m001 (LambertW(1)+Cahen)/(-Tetranacci+ZetaQ(3)) 6308888311669186 r005 Re(z^2+c),c=13/32+6/53*I,n=5 6308888315988550 r002 6th iterates of z^2 + 6308888320575567 r005 Re(z^2+c),c=-25/34+1/110*I,n=11 6308888328149637 r009 Re(z^3+c),c=-7/60+40/59*I,n=58 6308888331875211 a001 341/646*196418^(25/43) 6308888333773431 r005 Im(z^2+c),c=-11/94+46/55*I,n=62 6308888362943066 r005 Re(z^2+c),c=-5/31+30/43*I,n=35 6308888382535355 b008 5*(7*Sqrt[2]+E) 6308888412369145 m001 (GAMMA(19/24)-Conway)/(gamma(3)-exp(-1/2*Pi)) 6308888470366708 m001 (BesselI(1,1)+polylog(4,1/2))/(Niven+Trott) 6308888477877283 a003 sin(Pi*2/61)+sin(Pi*17/96) 6308888498124104 m002 -2+Pi^6/15+Tanh[Pi] 6308888499132420 h001 (-6*exp(7)-6)/(-7*exp(5)-5) 6308888524368769 a007 Real Root Of -979*x^4+817*x^3+711*x^2+840*x-863 6308888537831722 a007 Real Root Of -73*x^4+115*x^3-665*x^2+106*x+372 6308888566011929 m001 1/arctan(1/2)^2/TwinPrimes^2/exp(sqrt(2))^2 6308888573894777 p003 LerchPhi(1/10,5,256/147) 6308888587256033 m001 (Paris-ThueMorse)/(Artin+Champernowne) 6308888626088817 m001 (-BesselI(1,1)+Backhouse)/(2^(1/2)-gamma(3)) 6308888638835478 v002 sum(1/(3^n+(6*n^2+19*n+1)),n=1..infinity) 6308888668714212 a007 Real Root Of 895*x^4+22*x^3-386*x^2-297*x-170 6308888676088437 m001 (sin(1)+gamma(1))/(Kac+Lehmer) 6308888677060853 m001 (Trott+TwinPrimes)/(KomornikLoreti-Sarnak) 6308888693851489 m001 (GAMMA(17/24)-Backhouse)/(FeigenbaumMu-Thue) 6308888726600043 a001 3/89*21^(7/34) 6308888734847963 r005 Im(z^2+c),c=-5/66+20/27*I,n=62 6308888735714937 m001 Zeta(9)*ln(Paris)*exp(1) 6308888741470578 r005 Im(z^2+c),c=-5/66+20/27*I,n=59 6308888751237981 m001 (-FeigenbaumKappa+PlouffeB)/(5^(1/2)-sin(1)) 6308888757023114 r009 Re(z^3+c),c=-19/36+8/51*I,n=3 6308888777638081 r005 Re(z^2+c),c=-1/21+22/29*I,n=11 6308888796397547 p003 LerchPhi(1/100,5,405/233) 6308888808304647 r002 9th iterates of z^2 + 6308888847774498 g007 Psi(2,7/11)+Psi(2,9/10)+Psi(2,1/3)-Psi(2,6/7) 6308888861120832 r005 Im(z^2+c),c=-3/44+33/50*I,n=11 6308888874225147 m001 Pi*(ln(2)/ln(10)+BesselI(0,2))/GAMMA(17/24) 6308888875746780 r005 Im(z^2+c),c=5/82+22/39*I,n=5 6308888880059126 m001 (-Cahen+Stephens)/(cos(1)-ln(5)) 6308888881628781 a007 Real Root Of -665*x^4+57*x^3+154*x^2+914*x+635 6308888890747720 m001 FeigenbaumB*TreeGrowth2nd^Pi 6308888894145265 m005 (1/2*Pi+5/6)/(4/11*Zeta(3)-9/11) 6308888894701885 m001 (BesselI(0,2)+ZetaQ(3))/(3^(1/2)+Ei(1)) 6308888908254613 h001 (-12*exp(1)+5)/(-8*exp(4)-1) 6308888915523896 a007 Real Root Of -628*x^4+473*x^3+59*x^2+823*x+714 6308888920017319 a007 Real Root Of 804*x^4-224*x^3+50*x^2-676*x-630 6308888927317348 m001 (BesselI(1,2)-exp(Pi))/(Magata+ZetaQ(3)) 6308888931085968 a005 (1/cos(82/207*Pi))^34 6308888951371017 m001 1/FeigenbaumD^2/Cahen*ln(GAMMA(11/12))^2 6308888962392089 a007 Real Root Of -480*x^4+770*x^3+607*x^2-220*x-111 6308888968523223 m001 (GAMMA(23/24)+FeigenbaumC)/(Ei(1)-3^(1/3)) 6308888977096508 l006 ln(1723/3238) 6308888984250880 m005 (23/44+1/4*5^(1/2))/(11/12*Catalan+7/8) 6308889001743836 m001 Sierpinski/(2^(1/2)+FeigenbaumD) 6308889007729903 a007 Real Root Of -660*x^4+888*x^3-8*x^2-399*x+79 6308889008687084 r002 47th iterates of z^2 + 6308889021116037 a007 Real Root Of -137*x^4-723*x^3+883*x^2-83*x-183 6308889036762272 a007 Real Root Of -762*x^4+305*x^3-754*x^2+673*x+922 6308889046281684 m001 GAMMA(1/24)^GAMMA(19/24)/Cahen 6308889078952424 m001 (Ei(1,1)-LambertW(1))/Psi(2,1/3) 6308889134511173 m002 -E^Pi-Pi^3/E^Pi-Pi^5+Pi^6 6308889136032299 b008 1+EulerGamma+Cosh[Sqrt[5]] 6308889137777533 m001 Weierstrass/(StronglyCareFree-GAMMA(7/12)) 6308889168297357 m005 5^(1/2)/(2*gamma-4/5) 6308889200549739 m001 CareFree^2/ln(CopelandErdos)*FeigenbaumKappa^2 6308889215595219 a007 Real Root Of -118*x^4-738*x^3+100*x^2+443*x+434 6308889217890381 a008 Real Root of (-1+3*x-4*x^2-x^3+6*x^4) 6308889221714373 r002 6th iterates of z^2 + 6308889239499234 m001 Zeta(1,-1)-Grothendieck^Pi 6308889244360768 m001 (Zeta(5)+GAMMA(3/4))/(BesselI(0,2)+Mills) 6308889253089608 r005 Re(z^2+c),c=-35/114+41/64*I,n=14 6308889253438321 p004 log(11351/10657) 6308889254921016 m002 -6*Pi-2*Pi^5 6308889304488017 m001 (LaplaceLimit-Riemann1stZero)/(ln(2)+3^(1/3)) 6308889319065489 r001 40i'th iterates of 2*x^2-1 of 6308889326588104 h001 (4/11*exp(2)+2/9)/(1/2*exp(2)+11/12) 6308889328989621 a007 Real Root Of 50*x^4+409*x^3+566*x^2-131*x+138 6308889331451064 a007 Real Root Of -506*x^4-723*x^3-891*x^2+892*x+816 6308889337271514 a007 Real Root Of 845*x^4+764*x^3+754*x^2-938*x-62 6308889359959165 a007 Real Root Of 485*x^4-465*x^3-57*x^2-482*x-475 6308889362851073 a007 Real Root Of 628*x^4-506*x^3-737*x^2-71*x+22 6308889389128957 m004 2+E^(Sqrt[5]*Pi)/3+25*Pi+25*Sqrt[5]*Pi 6308889391901762 r005 Im(z^2+c),c=-5/66+20/27*I,n=56 6308889406666748 a007 Real Root Of 732*x^4-814*x^3+881*x^2-336*x-883 6308889438669944 a001 55/3571*47^(27/28) 6308889454470021 a007 Real Root Of -937*x^4+982*x^3+412*x^2+572*x-623 6308889457810117 m005 (-3/10+1/2*5^(1/2))/(4*Pi+2/5) 6308889459502186 a007 Real Root Of -68*x^4-284*x^3+981*x^2+305*x-710 6308889461422400 m005 (1/2*gamma-1/11)/(25/144+1/16*5^(1/2)) 6308889464444788 p004 log(11909/6337) 6308889464809784 a007 Real Root Of 918*x^4-661*x^3+381*x^2-160*x-564 6308889476893809 r005 Im(z^2+c),c=-5/66+20/27*I,n=53 6308889492054926 a003 cos(Pi*3/34)*sin(Pi*23/101) 6308889503815191 r005 Im(z^2+c),c=-9/8+31/103*I,n=15 6308889505799704 a007 Real Root Of -663*x^4+377*x^3-288*x^2+326*x+520 6308889525979182 m001 Chi(1)^KhinchinHarmonic*Thue 6308889537153958 m005 (1/2*Zeta(3)+3/5)/(5/6*Pi-5/7) 6308889559959978 m001 1/exp(Porter)/FeigenbaumAlpha/Zeta(1/2) 6308889572904985 a007 Real Root Of 206*x^4-763*x^3+505*x^2+506*x-106 6308889574128784 a007 Real Root Of 759*x^4-752*x^3+589*x^2-126*x-623 6308889643056406 a001 726103/281*3^(13/16) 6308889646434614 l006 ln(4614/8671) 6308889664913158 m005 (23/20+1/4*5^(1/2))/(5/6*Pi+1/11) 6308889701014565 m005 (1/2*gamma-5/12)/(7/11*exp(1)+3/10) 6308889716427536 r005 Im(z^2+c),c=-31/118+19/30*I,n=35 6308889719690999 m001 (ReciprocalLucas*Robbin-ln(2^(1/2)+1))/Robbin 6308889737045964 m001 1/GAMMA(5/12)^2/ln(Salem)*arctan(1/2) 6308889740120521 m001 gamma(3)^DuboisRaymond/PlouffeB 6308889742235993 a007 Real Root Of 819*x^4+403*x^3-43*x^2-860*x-554 6308889743498577 r005 Re(z^2+c),c=-25/36+11/43*I,n=38 6308889760310031 a007 Real Root Of -802*x^4+534*x^3-881*x^2-136*x+526 6308889770366119 r002 3th iterates of z^2 + 6308889799262597 q001 154/2441 6308889823160667 v002 sum(1/(5^n+(23*n^2-16*n+9)),n=1..infinity) 6308889827213151 a007 Real Root Of 617*x^4+140*x^3+470*x^2-652*x-661 6308889829810572 m006 (3/5*exp(2*Pi)-2)/(1/3/Pi+2/5) 6308889830454667 a007 Real Root Of -73*x^4+339*x^3+531*x^2+726*x-48 6308889835920893 m001 cos(Pi/12)^2*ln(GlaisherKinkelin)*exp(1) 6308889845056311 h001 (3/10*exp(2)+7/11)/(4/7*exp(2)+3/10) 6308889875806482 m001 (-CareFree+Riemann1stZero)/(1+GAMMA(5/6)) 6308889899539820 a007 Real Root Of 147*x^4+997*x^3+433*x^2-26*x+77 6308889906780174 a007 Real Root Of 54*x^4+222*x^3-644*x^2+579*x-516 6308889941204544 a001 6/2255*610^(7/52) 6308889957000717 m001 MadelungNaCl*GAMMA(5/24)-exp(1/Pi) 6308889957943894 a007 Real Root Of -271*x^4+806*x^3+282*x^2+560*x-625 6308889967321051 m005 (1/2*Zeta(3)-1/7)/(8/11*5^(1/2)-9/10) 6308889970168504 m001 (gamma+FeigenbaumKappa)/(OneNinth+Otter) 6308889970175330 a001 3571/8*28657^(8/31) 6308889974827739 a007 Real Root Of -655*x^4+190*x^3-983*x^2+67*x+585 6308890004831280 r005 Re(z^2+c),c=-3/20+27/38*I,n=5 6308890010839966 b008 ArcCosh[272+E] 6308890017528719 r005 Re(z^2+c),c=-5/118+31/42*I,n=11 6308890024987922 r005 Im(z^2+c),c=5/21+13/27*I,n=14 6308890036798575 a007 Real Root Of 301*x^4-305*x^3+823*x^2-536*x-790 6308890040090038 a003 sin(Pi*7/54)/cos(Pi*23/81) 6308890045351770 l006 ln(2891/5433) 6308890062713940 a001 1597/521*123^(3/20) 6308890081829531 p004 log(12637/23) 6308890101053639 a007 Real Root Of 272*x^4-740*x^3-926*x^2-353*x+734 6308890103580681 a001 10610209857723/2*24476^(13/14) 6308890112772646 a001 23184*14662949395604^(17/18) 6308890113157772 a001 2504730781961/2*167761^(9/10) 6308890113273898 a001 121393/2*3461452808002^(23/24) 6308890113328633 a001 591286729879/2*439204^(17/18) 6308890113332267 a001 2504730781961/2*439204^(5/6) 6308890113335901 a001 10610209857723/2*439204^(13/18) 6308890113359425 a001 32951280099/2*7881196^(21/22) 6308890113359434 a001 139583862445/2*7881196^(19/22) 6308890113359437 a001 225851433717/2*7881196^(5/6) 6308890113359443 a001 591286729879/2*7881196^(17/22) 6308890113359453 a001 2504730781961/2*7881196^(15/22) 6308890113359462 a001 10610209857723/2*7881196^(13/22) 6308890113359483 a001 5702887/2*312119004989^(9/10) 6308890113359483 a001 5702887/2*14662949395604^(11/14) 6308890113359483 a001 5702887/2*192900153618^(11/12) 6308890113359508 a001 10182505537*20633239^(13/14) 6308890113359508 a001 32951280099/2*20633239^(9/10) 6308890113359510 a001 225851433717/2*20633239^(11/14) 6308890113359511 a001 956722026041/2*20633239^(7/10) 6308890113359512 a001 2504730781961/2*20633239^(9/14) 6308890113359516 a001 7465176*312119004989^(19/22) 6308890113359516 a001 7465176*817138163596^(5/6) 6308890113359516 a001 7465176*3461452808002^(19/24) 6308890113359516 a001 7465176*28143753123^(19/20) 6308890113359521 a001 39088169/2*17393796001^(13/14) 6308890113359521 a001 39088169/2*14662949395604^(13/18) 6308890113359521 a001 39088169/2*505019158607^(13/16) 6308890113359521 a001 39088169/2*73681302247^(7/8) 6308890113359522 a001 10182505537*141422324^(5/6) 6308890113359522 a001 10610209857723/2*141422324^(1/2) 6308890113359522 a001 102334155/2*1322157322203^(3/4) 6308890113359522 a001 3278735159921*370248451^(1/2) 6308890113359522 a001 4052739537881/2*969323029^(1/2) 6308890113359522 a001 1836311903/2*2537720636^(5/6) 6308890113359522 a001 10182505537*2537720636^(13/18) 6308890113359522 a001 32951280099/2*2537720636^(7/10) 6308890113359522 a001 225851433717/2*2537720636^(11/18) 6308890113359522 a001 2504730781961/2*2537720636^(1/2) 6308890113359522 a001 1836311903/2*312119004989^(15/22) 6308890113359522 a001 1836311903/2*3461452808002^(5/8) 6308890113359522 a001 1836311903/2*28143753123^(3/4) 6308890113359522 a001 774004377960*6643838879^(1/2) 6308890113359522 a001 32951280099/2*17393796001^(9/14) 6308890113359522 a001 956722026041/2*17393796001^(1/2) 6308890113359522 a001 591286729879/2*45537549124^(1/2) 6308890113359522 a001 32951280099/2*14662949395604^(1/2) 6308890113359522 a001 32951280099/2*505019158607^(9/16) 6308890113359522 a001 32951280099/2*192900153618^(7/12) 6308890113359522 a001 182717648081*119218851371^(1/2) 6308890113359522 a001 43133785636*2139295485799^(1/2) 6308890113359522 a001 225851433717/2*312119004989^(1/2) 6308890113359522 a001 225851433717/2*3461452808002^(11/24) 6308890113359522 a001 2504730781961/2*14662949395604^(5/14) 6308890113359522 a001 956722026041/2*14662949395604^(7/18) 6308890113359522 a001 956722026041/2*505019158607^(7/16) 6308890113359522 a001 139583862445/2*817138163596^(1/2) 6308890113359522 a001 2504730781961/2*192900153618^(5/12) 6308890113359522 a001 10610209857723/2*73681302247^(3/8) 6308890113359522 a001 10182505537*312119004989^(13/22) 6308890113359522 a001 10182505537*3461452808002^(13/24) 6308890113359522 a001 2504730781961/2*28143753123^(9/20) 6308890113359522 a001 10182505537*73681302247^(5/8) 6308890113359522 a001 225851433717/2*28143753123^(11/20) 6308890113359522 a001 10182505537*28143753123^(13/20) 6308890113359522 a001 7778742049/2*4106118243^(3/4) 6308890113359522 a001 567451585*17393796001^(11/14) 6308890113359522 a001 567451585*14662949395604^(11/18) 6308890113359522 a001 567451585*505019158607^(11/16) 6308890113359522 a001 225851433717/2*1568397607^(5/8) 6308890113359522 a001 567451585*1568397607^(7/8) 6308890113359522 a001 433494437/2*2537720636^(9/10) 6308890113359522 a001 433494437/2*14662949395604^(9/14) 6308890113359522 a001 433494437/2*192900153618^(3/4) 6308890113359522 a001 956722026041/2*599074578^(7/12) 6308890113359522 a001 32951280099/2*599074578^(3/4) 6308890113359522 a001 567451585*599074578^(11/12) 6308890113359522 a001 165580141/2*2537720636^(17/18) 6308890113359522 a001 165580141/2*45537549124^(5/6) 6308890113359522 a001 165580141/2*312119004989^(17/22) 6308890113359522 a001 165580141/2*3461452808002^(17/24) 6308890113359522 a001 165580141/2*28143753123^(17/20) 6308890113359522 a001 2504730781961/2*228826127^(9/16) 6308890113359522 a001 225851433717/2*228826127^(11/16) 6308890113359522 a001 10182505537*228826127^(13/16) 6308890113359522 a001 1836311903/2*228826127^(15/16) 6308890113359522 a001 139583862445/2*87403803^(3/4) 6308890113359524 a001 24157817/2*9062201101803^(3/4) 6308890113359525 a001 10610209857723/2*33385282^(13/24) 6308890113359525 a001 2504730781961/2*33385282^(5/8) 6308890113359526 a001 591286729879/2*33385282^(17/24) 6308890113359526 a001 139583862445/2*33385282^(19/24) 6308890113359527 a001 32951280099/2*33385282^(7/8) 6308890113359527 a001 7778742049/2*33385282^(23/24) 6308890113359551 a001 591286729879/2*12752043^(3/4) 6308890113360218 a001 1346269/2*312119004989^(21/22) 6308890113360218 a001 1346269/2*14662949395604^(5/6) 6308890113360218 a001 1346269/2*505019158607^(15/16) 6308890113360707 a001 10610209857723/2*1860498^(13/20) 6308890113360889 a001 2504730781961/2*1860498^(3/4) 6308890113361071 a001 591286729879/2*1860498^(17/20) 6308890113361193 a001 225851433717/2*1860498^(11/12) 6308890113361253 a001 139583862445/2*1860498^(19/20) 6308890113370453 a001 956722026041/2*710647^(7/8) 6308890113423740 a001 10610209857723/2*271443^(3/4) 6308890113583688 a001 75025/2*14662949395604^(13/14) 6308890113836358 a001 10610209857723/2*103682^(13/16) 6308890113909718 a001 2504730781961/2*103682^(15/16) 6308890114221828 a007 Real Root Of 43*x^4+191*x^3-537*x^2-234*x-262 6308890154140650 m001 FeigenbaumD/(Weierstrass-polylog(4,1/2)) 6308890161115741 m001 (GAMMA(13/24)-exp(Pi))/(Otter+ZetaP(2)) 6308890173113632 a008 Real Root of 1/46*x^3-21/46*x^2-3/46*x+5/23 6308890178637429 m006 (2*Pi^2+5/6)/(3*Pi^2+3) 6308890178637429 m008 (2*Pi^2+5/6)/(3*Pi^2+3) 6308890178637429 m009 (2*Pi^2+5/6)/(3*Pi^2+3) 6308890192915464 m001 Champernowne*Rabbit+Landau 6308890202258838 r009 Re(z^3+c),c=-29/48+11/35*I,n=14 6308890204366076 r005 Im(z^2+c),c=-9/8+72/253*I,n=44 6308890206344366 m001 (Zeta(1/2)+RenyiParking)/(Psi(1,1/3)+Zeta(3)) 6308890257240925 a007 Real Root Of 97*x^4-541*x^3+403*x^2-362*x-540 6308890260955632 s002 sum(A005780[n]/(n*exp(n)+1),n=1..infinity) 6308890273452419 r009 Re(z^3+c),c=-1/70+29/45*I,n=16 6308890278508491 r005 Im(z^2+c),c=-24/31+17/61*I,n=7 6308890289480580 a007 Real Root Of -942*x^4+640*x^3+282*x^2-55*x+163 6308890292985862 m005 (1/2*Catalan+9/10)/(4/5*5^(1/2)+4/11) 6308890299929255 r008 a(0)=0,K{-n^6,37+23*n-24*n^2-52*n^3} 6308890301444880 m001 (-MertensB3+MinimumGamma)/(Khinchin-exp(Pi)) 6308890306686956 a007 Real Root Of -537*x^4+448*x^3+597*x^2+672*x-689 6308890337272450 m003 -1/2+Sqrt[5]/16-30*E^(-1/2-Sqrt[5]/2) 6308890338895136 m001 (3^(1/2)-Kolakoski)/(-MadelungNaCl+MertensB1) 6308890339535888 a007 Real Root Of 339*x^4-643*x^3-50*x^2-995*x-823 6308890345903881 a007 Real Root Of 210*x^4-707*x^3+753*x^2-359*x-737 6308890373927807 a007 Real Root Of -903*x^4+628*x^3-568*x^2+433*x+800 6308890385200991 a007 Real Root Of -228*x^4-42*x^3-633*x^2-237*x+128 6308890400523150 m001 (FeigenbaumC-ReciprocalLucas)/(Trott-ZetaQ(3)) 6308890403073337 m005 (1/2*Zeta(3)+7/8)/(8/9*3^(1/2)+4/5) 6308890423832268 r009 Im(z^3+c),c=-33/106+16/27*I,n=4 6308890455016892 r002 14th iterates of z^2 + 6308890494997795 a007 Real Root Of -928*x^4-602*x^3+134*x^2+819*x+51 6308890498814119 l006 ln(4059/7628) 6308890511315507 a003 cos(Pi*1/50)*sin(Pi*22/101) 6308890550593969 m001 FeigenbaumDelta/GaussAGM(1,1/sqrt(2))*ln(Pi) 6308890550593969 m001 ln(Pi)*FeigenbaumDelta/GaussAGM(1,1/sqrt(2)) 6308890562182915 a003 sin(Pi*1/61)/sin(Pi*24/79) 6308890577507598 r002 2th iterates of z^2 + 6308890583841120 a003 sin(Pi*17/65)*sin(Pi*39/118) 6308890600842771 a001 89/322*521^(1/2) 6308890639143538 a007 Real Root Of -649*x^4+489*x^3+779*x^2+947*x+513 6308890646335231 a001 3/7*76^(5/56) 6308890685976043 m005 (1/2*gamma+1)/(8/9*Pi-3/4) 6308890722544528 m001 (KhinchinLevy+ZetaP(3))/(Shi(1)-sin(1)) 6308890727723439 a007 Real Root Of -125*x^4-695*x^3+522*x^2-391*x+263 6308890739943597 a007 Real Root Of 27*x^4-887*x^3+146*x^2-22*x-299 6308890742101393 a007 Real Root Of -207*x^4+710*x^3+493*x^2+48*x-372 6308890749619477 l006 ln(5227/9823) 6308890770631109 m005 (1/3*2^(1/2)+1/5)/(2/5*gamma+5/6) 6308890796203180 a007 Real Root Of 667*x^4+514*x^3+297*x^2-945*x-691 6308890810871263 m001 (Pi+exp(Pi))/(cos(1)+Pi*2^(1/2)/GAMMA(3/4)) 6308890812088947 r005 Re(z^2+c),c=-87/86+13/57*I,n=52 6308890835275574 r008 a(0)=0,K{-n^6,25+49*n-42*n^2-48*n^3} 6308890895383062 a007 Real Root Of -80*x^4-464*x^3+217*x^2-375*x-780 6308890915695186 m001 RenyiParking^2/exp(Champernowne)^2*Zeta(3)^2 6308890925570977 m001 (DuboisRaymond+Tribonacci)/(2^(1/3)+Zeta(1,2)) 6308890940077819 m008 (5*Pi^2-1/2)/(4/5*Pi^4-1/2) 6308890943618722 m001 LaplaceLimit^Zeta(5)/MertensB2 6308890955875800 a007 Real Root Of 52*x^4+240*x^3-570*x^2-36*x+347 6308890958921464 a007 Real Root Of 820*x^4+353*x^3-399*x^2-963*x-490 6308891000353704 a001 15127/233*4181^(33/40) 6308891015164805 r008 a(0)=0,K{-n^6,-53+52*n^3+16*n^2+n} 6308891066707259 a001 3571/6765*196418^(25/43) 6308891098536419 r005 Re(z^2+c),c=-16/15+1/44*I,n=14 6308891101163127 r002 13th iterates of z^2 + 6308891106924744 r005 Re(z^2+c),c=-59/98+26/63*I,n=11 6308891121738320 r005 Im(z^2+c),c=-31/56+1/15*I,n=7 6308891131552479 r002 35th iterates of z^2 + 6308891137645470 m001 (LambertW(1)+ln(gamma))/(Zeta(1,-1)+Otter) 6308891138243644 m001 FibonacciFactorial/Rabbit/Trott2nd 6308891148140716 k001 Champernowne real with 259*n+371 6308891166150177 m001 1/Ei(1)/ErdosBorwein^2/exp(sin(Pi/5))^2 6308891201861927 r002 30th iterates of z^2 + 6308891203240344 r005 Im(z^2+c),c=13/102+40/63*I,n=27 6308891206036664 m005 (1/3*5^(1/2)+1/8)/(1/4*exp(1)+7/10) 6308891207115308 m001 (CareFree+ReciprocalLucas)/(1-gamma) 6308891207743570 m001 (BesselJ(0,1)-Sarnak)/(-Trott+ZetaP(4)) 6308891213711000 m005 (1/2*Zeta(3)-3/10)/(5/12*5^(1/2)-5/11) 6308891245478210 l006 ln(8845/9421) 6308891250442791 q001 1781/2823 6308891290084561 r005 Im(z^2+c),c=-5/6+12/179*I,n=4 6308891317512762 m008 (1/5*Pi^3+1/4)/(1/3*Pi^5+1/4) 6308891329253233 a007 Real Root Of 92*x^4-755*x^3-703*x^2-731*x+916 6308891352175419 a003 cos(Pi*2/85)-sin(Pi*8/67) 6308891376917394 m005 (1/2*Pi+5/12)/(1/8*Zeta(3)+3) 6308891439249662 m001 1/GAMMA(23/24)/TwinPrimes^2*exp(Zeta(5)) 6308891450288815 a007 Real Root Of -914*x^4+541*x^3-576*x^2+16*x+520 6308891454566057 m001 (-PlouffeB+ThueMorse)/(1+HeathBrownMoroz) 6308891465713866 a001 9349/17711*196418^(25/43) 6308891492628433 h001 (1/2*exp(1)+9/10)/(5/11*exp(2)+2/9) 6308891512478569 a007 Real Root Of 492*x^4-662*x^3-184*x^2-371*x-405 6308891517828191 b008 25/4+ArcCoth[17] 6308891523928145 a001 6119/11592*196418^(25/43) 6308891537670672 a001 39603/75025*196418^(25/43) 6308891557609862 a007 Real Root Of 722*x^4-709*x^3+285*x^2-89*x-462 6308891559906548 a001 15127/28657*196418^(25/43) 6308891576339794 a007 Real Root Of -109*x^4+846*x^3-6*x^2+674*x-618 6308891584881332 m005 (1/2*Zeta(3)-3/5)/(5/8*Pi-1/3) 6308891595916063 m001 (polylog(4,1/2)+GAMMA(5/6))/(1+ln(5)) 6308891621210993 l006 ln(1168/2195) 6308891638055855 m001 (-3^(1/3)+gamma(1))/(Si(Pi)-ln(gamma)) 6308891647341290 r005 Re(z^2+c),c=2/27+5/46*I,n=3 6308891655757246 a007 Real Root Of 131*x^4-419*x^3-727*x^2-200*x+500 6308891668559738 m001 (Grothendieck+Khinchin)/(Rabbit-ZetaQ(4)) 6308891673607706 m005 (1/2*gamma+3/7)/(-39/70+3/10*5^(1/2)) 6308891687490364 m001 (MertensB1-Thue)/(gamma(2)+Zeta(1,2)) 6308891688193901 r005 Im(z^2+c),c=29/94+13/35*I,n=7 6308891694433487 a007 Real Root Of 126*x^4+496*x^3+672*x^2+171*x-55 6308891696601246 m001 1/FeigenbaumC^2*ln(Kolakoski)^2/Riemann3rdZero 6308891701403022 a007 Real Root Of 31*x^4+143*x^3-173*x^2+940*x-386 6308891701979911 a007 Real Root Of 358*x^4+164*x^3+220*x^2-981*x-722 6308891712313509 a001 2889/5473*196418^(25/43) 6308891730251071 m001 exp(FransenRobinson)/Conway*CareFree^2 6308891731772382 m001 gamma/(Trott2nd^Sierpinski) 6308891738925524 a007 Real Root Of 555*x^4-228*x^3+409*x^2-791*x-807 6308891741621130 m001 (LambertW(1)+Stephens)/(-Tribonacci+Trott2nd) 6308891745909044 r008 a(0)=0,K{-n^6,-69+52*n^3+8*n^2+25*n} 6308891746663265 r002 26th iterates of z^2 + 6308891777877725 a007 Real Root Of 232*x^4-229*x^3+901*x^2+106*x-386 6308891784431815 r002 8th iterates of z^2 + 6308891790187121 r005 Re(z^2+c),c=-3/4+1/22*I,n=17 6308891809833287 m009 (4*Psi(1,3/4)-1)/(20/3*Catalan+5/6*Pi^2+1/5) 6308891816913359 a007 Real Root Of 9*x^4+565*x^3-175*x^2+106*x+58 6308891819006563 a007 Real Root Of -239*x^4+446*x^3-19*x^2+901*x-635 6308891822084446 a007 Real Root Of 897*x^4-864*x^3-6*x^2+857*x+184 6308891841731006 r009 Re(z^3+c),c=-1/90+22/37*I,n=16 6308891847612362 h001 (6/7*exp(2)+3/7)/(1/10*exp(1)+4/5) 6308891862399341 a007 Real Root Of 2*x^4-886*x^3-594*x^2+291*x+275 6308891914896212 m001 (arctan(1/2)-cos(1/12*Pi))/(ArtinRank2+Paris) 6308891940358255 m005 (1/2*2^(1/2)-1/2)/(1/7*Zeta(3)-1/2) 6308891944938283 a007 Real Root Of -284*x^4-187*x^3-75*x^2+476*x-3 6308891958334389 m001 (Pi*Psi(2,1/3)-Chi(1))*Pi*2^(1/2)/GAMMA(3/4) 6308891967692742 m001 1/ln(TwinPrimes)^2*Riemann2ndZero/GAMMA(11/24) 6308891970766289 m005 (1/2*Pi-3/8)/(6/11*Pi+2/11) 6308891971365876 m001 ln(RenyiParking)^2/FransenRobinson^2*sin(Pi/5) 6308891980960491 m001 LambertW(1)*(HardyLittlewoodC3-MadelungNaCl) 6308891982406777 a001 7/53316291173*53316291173^(1/4) 6308891982406777 a001 7/139583862445*2504730781961^(1/4) 6308891982406777 a001 7/86267571272*365435296162^(1/4) 6308891982406777 a001 7/32951280099*7778742049^(1/4) 6308891982406777 a001 7/20365011074*1134903170^(1/4) 6308891982406777 a001 7/12586269025*165580141^(1/4) 6308891982406777 a001 7/7778742049*24157817^(1/4) 6308891982406802 a001 1/686789568*3524578^(1/4) 6308891982407970 a001 7/2971215073*514229^(1/4) 6308891982462818 a001 7/1836311903*75025^(1/4) 6308891985039543 a001 7/1134903170*10946^(1/4) 6308892024566753 a007 Real Root Of -827*x^4+504*x^3-332*x^2+579*x+755 6308892040127945 a007 Real Root Of -430*x^4-299*x^3-432*x^2+894*x+729 6308892046119590 m001 FeigenbaumKappa^CopelandErdos-Niven 6308892106090719 a001 7/701408733*1597^(1/4) 6308892123876288 m005 (1/2*exp(1)-5/12)/(gamma+11/12) 6308892128337678 m001 GaussAGM*MasserGramainDelta*PrimesInBinary 6308892187736920 r005 Re(z^2+c),c=-25/122+39/47*I,n=22 6308892206770937 m001 (Pi-Backhouse)/(FeigenbaumB+Tribonacci) 6308892209528323 r009 Im(z^3+c),c=-3/25+33/46*I,n=14 6308892248751236 r009 Im(z^3+c),c=-11/94+47/63*I,n=59 6308892260082560 r005 Im(z^2+c),c=-65/118+6/53*I,n=48 6308892271719870 m001 1/Riemann1stZero/Khintchine*exp(GAMMA(1/24))^2 6308892355694227 q001 2022/3205 6308892361016064 a007 Real Root Of -841*x^4+81*x^3+954*x^2+731*x-728 6308892363670603 r005 Re(z^2+c),c=-29/94+23/35*I,n=22 6308892376933176 r005 Re(z^2+c),c=-67/90+3/46*I,n=13 6308892387510706 m001 (FeigenbaumB-Sarnak)/(ln(gamma)-GAMMA(19/24)) 6308892391242563 a003 cos(Pi*29/120)-cos(Pi*39/83) 6308892401545820 a007 Real Root Of -630*x^4+287*x^3-757*x^2-433*x+200 6308892414362758 a005 (1/sin(82/179*Pi))^212 6308892421596896 m001 (2^(1/2)+exp(1/Pi))/(PrimesInBinary+Trott2nd) 6308892439313576 m005 (1/2*3^(1/2)-1/3)/(-15/112+7/16*5^(1/2)) 6308892441491344 r005 Im(z^2+c),c=-71/110+5/19*I,n=24 6308892467585874 m005 (-19/4+1/4*5^(1/2))/(1/6*2^(1/2)-9/10) 6308892478119393 a007 Real Root Of -370*x^4+402*x^3+713*x^2+935*x-916 6308892482456187 r005 Im(z^2+c),c=29/66+18/55*I,n=37 6308892483237192 l006 ln(5285/9932) 6308892501308644 s002 sum(A252683[n]/(n^3*exp(n)-1),n=1..infinity) 6308892501855826 m001 ln(GAMMA(7/12))*Porter/Pi^2 6308892519202753 r005 Im(z^2+c),c=9/58+31/55*I,n=60 6308892549635802 m005 (1/2*5^(1/2)+5/8)/(5/7*3^(1/2)-4) 6308892562154961 p001 sum((-1)^n/(229*n+156)/(25^n),n=0..infinity) 6308892582496017 l006 ln(7939/8456) 6308892589845730 a001 10749957122*317811^(13/15) 6308892589856542 a001 20633239*433494437^(13/15) 6308892593879065 a001 39603*591286729879^(13/15) 6308892597410198 m001 (-MertensB2+Otter)/(5^(1/2)+cos(1/5*Pi)) 6308892634205533 a007 Real Root Of 138*x^4-120*x^3-857*x^2-849*x+885 6308892637967435 a007 Real Root Of 66*x^4-661*x^3+699*x^2-186*x-572 6308892661367451 a007 Real Root Of 297*x^4-498*x^3-247*x^2-600*x-37 6308892670646688 r005 Re(z^2+c),c=11/58+27/64*I,n=9 6308892675915342 b008 (11*Pi)/6+ArcCoth[2] 6308892684891660 m001 (Chi(1)+Zeta(1/2))/(-MinimumGamma+Weierstrass) 6308892698005918 r009 Im(z^3+c),c=-61/110+12/19*I,n=31 6308892718184053 a007 Real Root Of -849*x^4-6*x^3-198*x^2-136*x+126 6308892727795497 l006 ln(4117/7737) 6308892739979425 m001 (Robbin-ZetaQ(2))/(BesselI(1,1)-GAMMA(7/12)) 6308892748889936 m001 (Riemann1stZero+Totient)/(Niven+RenyiParking) 6308892756926348 a001 2207/4181*196418^(25/43) 6308892770930330 h001 (-2*exp(-2)-4)/(-7*exp(1/3)+3) 6308892771474380 a007 Real Root Of -34*x^4+987*x^3+470*x^2+611*x-815 6308892777732940 r009 Re(z^3+c),c=-47/102+1/37*I,n=3 6308892778069991 r008 a(0)=0,K{-n^6,25+63*n-63*n^2-41*n^3} 6308892805387911 a007 Real Root Of -915*x^4+268*x^3+898*x^2+422*x-546 6308892807093792 a007 Real Root Of -921*x^4+608*x^3+428*x^2+938*x+720 6308892807423482 r009 Re(z^3+c),c=-1/98+19/35*I,n=16 6308892808835781 a007 Real Root Of -840*x^4+142*x^3-899*x^2-497*x+213 6308892838760499 m001 (-exp(1/exp(1))+Mills)/(Chi(1)+GAMMA(2/3)) 6308892843498737 m005 (1/2*exp(1)-1/5)/(2/5*exp(1)+3/4) 6308892877352626 a001 39603/34*1346269^(29/31) 6308892896658669 r005 Im(z^2+c),c=-14/13+14/39*I,n=4 6308892905330558 a007 Real Root Of -600*x^4+234*x^3-133*x^2-212*x+73 6308892935874047 a008 Real Root of x^4-2*x^3-10*x^2-42*x-419 6308892943291799 a003 sin(Pi*27/113)/cos(Pi*27/58) 6308892968432626 m005 (3/4*Catalan-2)/(3*Catalan-2/3) 6308892978904469 m001 (ln(2)+Zeta(1/2))/(FeigenbaumD-Porter) 6308892997459352 a007 Real Root Of 64*x^4-32*x^3-36*x^2-174*x+122 6308893014749740 s002 sum(A260744[n]/(n^3*exp(n)-1),n=1..infinity) 6308893039323015 m001 (Chi(1)*CareFree-MertensB2)/CareFree 6308893042512969 m001 (3^(1/3))/(BesselK(1,1)-GAMMA(1/24)) 6308893064006487 m001 Ei(1)/Salem*exp(Zeta(1,2)) 6308893082221419 m005 (1/2*exp(1)+11/12)/(1/8*Pi-4) 6308893125416281 r005 Re(z^2+c),c=-107/110+12/59*I,n=18 6308893128100524 r002 17th iterates of z^2 + 6308893131445312 v002 sum(1/(2^n*(9*n^2+8*n-8)),n=1..infinity) 6308893132781021 a007 Real Root Of -953*x^4+86*x^3-639*x^2+398*x+678 6308893134490368 r002 33th iterates of z^2 + 6308893164077789 a007 Real Root Of -194*x^4-265*x^3-374*x^2+607*x+496 6308893166076474 l006 ln(2949/5542) 6308893171571637 m001 Zeta(7)/BesselJ(1,1)*ln(log(2+sqrt(3))) 6308893188841756 m005 (1/3*5^(1/2)-3/4)/(1/7*5^(1/2)+5/12) 6308893188867657 a001 2889/17*2584^(23/50) 6308893197144315 a007 Real Root Of 630*x^4-84*x^3+995*x^2-203*x-645 6308893201121112 a007 Real Root Of 271*x^4-566*x^3+710*x^2+578*x-103 6308893225536660 q001 2263/3587 6308893228749080 m001 (5^(1/2)+ln(gamma))/(-FeigenbaumB+Thue) 6308893267861478 m001 (GAMMA(17/24)+Totient)/(exp(1)+3^(1/3)) 6308893286278927 a007 Real Root Of -582*x^4-37*x^3-818*x^2-890*x-153 6308893309738399 m005 (1/2*Pi+1/7)/(8/9*exp(1)+3/10) 6308893355113353 m005 (1/2*Catalan-7/12)/(36/35+3/7*5^(1/2)) 6308893367510304 a007 Real Root Of 599*x^4-110*x^3+114*x^2-528*x-501 6308893395276122 m006 (3/4/Pi-2/5)/(3/4*Pi+1/5) 6308893413533050 r005 Im(z^2+c),c=-19/70+27/32*I,n=19 6308893503621694 a007 Real Root Of -13*x^4-831*x^3-698*x^2-878*x-173 6308893518499186 a007 Real Root Of 434*x^4-774*x^3-545*x^2-760*x+822 6308893531471159 s002 sum(A042438[n]/(pi^n+1),n=1..infinity) 6308893547556962 l006 ln(4730/8889) 6308893580693357 m001 (Catalan+Artin)/(-Riemann2ndZero+Stephens) 6308893613040146 m003 -13/2+Sqrt[5]/16+Tanh[1/2+Sqrt[5]/2]/18 6308893621010587 a007 Real Root Of -169*x^4+823*x^3+44*x^2+268*x+385 6308893648613482 a007 Real Root Of 18*x^4-297*x^3+213*x^2-995*x+62 6308893650258682 m001 (ln(1+sqrt(2))+5)/(-GAMMA(11/24)+1) 6308893681753520 a007 Real Root Of 770*x^4-837*x^3-891*x^2-760*x-457 6308893700952827 a007 Real Root Of 81*x^4+585*x^3+423*x^2-183*x+586 6308893729157533 r002 44i'th iterates of 2*x/(1-x^2) of 6308893763438997 a001 3/377*1597^(16/57) 6308893788139521 r005 Re(z^2+c),c=-75/122+24/59*I,n=29 6308893789442045 r005 Im(z^2+c),c=-13/21*I,n=21 6308893800298538 r005 Re(z^2+c),c=11/78+33/64*I,n=64 6308893806324436 a007 Real Root Of 966*x^4+410*x^3+281*x^2-883*x-719 6308893809955255 r009 Im(z^3+c),c=-31/82+35/61*I,n=2 6308893850539861 m005 (1/2*3^(1/2)+5/6)/(6/7*exp(1)+4/11) 6308893850556649 r009 Re(z^3+c),c=-1/86+25/38*I,n=32 6308893864622211 s002 sum(A042438[n]/(pi^n),n=1..infinity) 6308893875716838 r009 Re(z^3+c),c=-5/82+37/50*I,n=41 6308893887542988 r002 8th iterates of z^2 + 6308893890011143 m001 (ln(5)-Artin)/(Kac+MertensB3) 6308893894873574 m001 Psi(1,1/3)^Catalan/HeathBrownMoroz 6308893897569790 r009 Re(z^3+c),c=-47/106+57/61*I,n=2 6308893906510367 r009 Im(z^3+c),c=-27/122+23/32*I,n=20 6308893906668563 r005 Re(z^2+c),c=-19/26+3/23*I,n=18 6308893927941546 q001 2504/3969 6308893986731952 m001 (Backhouse+ZetaP(3))/Sierpinski 6308893990756772 m001 (MasserGramainDelta-PlouffeB)/(ln(2)+3^(1/3)) 6308894012764325 m001 (exp(1)+Conway)/(-MasserGramain+ZetaQ(3)) 6308894028879416 r002 21i'th iterates of 2*x/(1-x^2) of 6308894045994781 a007 Real Root Of -72*x^4-347*x^3+544*x^2-989*x-963 6308894056971553 r005 Re(z^2+c),c=2/23+7/48*I,n=8 6308894096940045 a001 14662949395604/5*987^(1/9) 6308894097261211 a007 Real Root Of -720*x^4+524*x^3-483*x^2+677*x+865 6308894110848407 r005 Im(z^2+c),c=-17/14+13/165*I,n=56 6308894126200385 m005 (1/3*5^(1/2)+1/12)/(19/40+3/8*5^(1/2)) 6308894158738038 r008 a(0)=6,K{-n^6,-34-10*n^3+5*n^2+33*n} 6308894172856963 a007 Real Root Of -116*x^4-601*x^3+942*x^2+786*x+318 6308894173400111 r009 Re(z^3+c),c=-1/90+18/25*I,n=63 6308894178607900 m001 (Kac-ThueMorse)/(ArtinRank2+FeigenbaumD) 6308894179216649 l006 ln(1781/3347) 6308894179985336 a001 144/199*521^(9/26) 6308894184697885 a008 Real Root of x^4-x^3-18*x^2-41*x-358 6308894191042928 m001 1/sin(1)*Riemann2ndZero*ln(sqrt(1+sqrt(3)))^2 6308894200279325 s002 sum(A042438[n]/(pi^n-1),n=1..infinity) 6308894206265388 r005 Im(z^2+c),c=-11/19+5/54*I,n=15 6308894208862356 a007 Real Root Of -125*x^4+498*x^3-381*x^2+573*x+658 6308894213674728 m001 (Catalan+1)/(Zeta(5)+2) 6308894237149155 m005 (1/3*5^(1/2)-2/11)/(1/7*Pi+4/9) 6308894240357343 r009 Im(z^3+c),c=-3/5+29/43*I,n=12 6308894240855116 a001 5600748293801/5*5702887^(1/9) 6308894240855121 a001 2139295485799/5*32951280099^(1/9) 6308894240855121 a001 1322157322203/5*2504730781961^(1/9) 6308894240855121 a001 3461452808002/5*433494437^(1/9) 6308894240880028 a001 9062201101803/5*75025^(1/9) 6308894246771924 m001 (2*Pi/GAMMA(5/6)+Conway)/(ln(3)+gamma(2)) 6308894263986465 l006 ln(7033/7491) 6308894278205213 r002 43th iterates of z^2 + 6308894279487070 r009 Im(z^3+c),c=-1/8+41/56*I,n=27 6308894280655522 a007 Real Root Of -947*x^4-317*x^3-956*x^2+436*x+726 6308894290123456 r005 Re(z^2+c),c=-41/60+2/15*I,n=3 6308894304810690 a007 Real Root Of 444*x^4-45*x^3+908*x^2-672*x-867 6308894312328441 a007 Real Root Of 70*x^4+315*x^3-744*x^2+269*x-486 6308894348693256 m005 (1/2*3^(1/2)+3/8)/(10/11*Pi-8/9) 6308894361366668 b008 (1/2+Pi)/EulerGamma 6308894361366668 m001 (Pi+1/2)/gamma 6308894365035628 r002 7th iterates of z^2 + 6308894368752518 a001 1/1149652*(1/2*5^(1/2)+1/2)^2*76^(4/17) 6308894374664365 m001 (Catalan+Zeta(5))/(-OneNinth+ZetaP(4)) 6308894387170147 a003 cos(Pi*24/67)+cos(Pi*17/39) 6308894388835268 m005 (1/2*3^(1/2)-6/11)/(4/9*exp(1)-7/10) 6308894392300699 a001 1/3009828*(1/2*5^(1/2)+1/2)^4*76^(4/17) 6308894397859670 a001 1/4870004*(1/2*5^(1/2)+1/2)^5*76^(4/17) 6308894403322475 m001 1/FeigenbaumD^2/exp(Artin)*TwinPrimes 6308894406854275 a001 1/1860176*(1/2*5^(1/2)+1/2)^3*76^(4/17) 6308894423704148 m001 log(2+sqrt(3))^2*(2^(1/3))/exp(sqrt(Pi))^2 6308894432355745 a001 521/8*55^(17/30) 6308894444889587 r005 Im(z^2+c),c=-71/62+3/35*I,n=14 6308894450902267 m001 ln(GAMMA(1/6))^2*MinimumGamma^2*Zeta(9) 6308894465779591 b008 1-19*Sin[6] 6308894468504215 a001 1/710524*(1/2*5^(1/2)+1/2)*76^(4/17) 6308894470048465 r005 Im(z^2+c),c=-31/90+39/64*I,n=41 6308894472743412 m005 (11/28+1/4*5^(1/2))/(-41/168+1/24*5^(1/2)) 6308894486798151 a007 Real Root Of 55*x^4-913*x^3+31*x^2+78*x+159 6308894492387475 a007 Real Root Of -997*x^4+564*x^3-769*x^2-280*x+429 6308894508240614 r002 3th iterates of z^2 + 6308894512013554 m005 (1/3*Pi-2/11)/(1/5*Pi-2) 6308894523076704 m005 (1/2*3^(1/2)+1/11)/(-61/24+11/24*5^(1/2)) 6308894526846298 m001 BesselK(0,1)^2/Artin/exp(Zeta(7))^2 6308894530874913 r005 Im(z^2+c),c=-4/25+43/48*I,n=12 6308894532860200 a007 Real Root Of 595*x^4-49*x^3+118*x^2+69*x-110 6308894539748233 h001 (-5*exp(3)-7)/(-7*exp(1)+2) 6308894543448627 r005 Re(z^2+c),c=-65/74+16/63*I,n=13 6308894598182581 a001 9/1292*89^(27/55) 6308894615607529 p004 log(25733/13693) 6308894651056556 b008 6+(1/6+E^2)^2 6308894658309064 m001 (ArtinRank2-ZetaQ(4))/(Zeta(1,-1)+Zeta(1,2)) 6308894669550775 m001 (Khinchin-Robbin)/(Cahen-FellerTornier) 6308894678470582 a001 18/5*55^(7/50) 6308894686674701 m001 (sin(1)+Zeta(1,-1))/(HardyLittlewoodC5+Robbin) 6308894706065356 m001 GAMMA(13/24)^2*OneNinth*exp(GAMMA(7/24)) 6308894714865141 m002 6+Cosh[Pi]/Pi^5+Pi*Sech[Pi] 6308894717666598 m001 (BesselI(1,1)+4)/(5+5^(1/2)) 6308894728225671 a007 Real Root Of -632*x^4+165*x^3+22*x^2+13*x+141 6308894731361932 r002 3th iterates of z^2 + 6308894769079078 p003 LerchPhi(1/125,6,233/147) 6308894769721072 r004 Im(z^2+c),c=3/20+15/22*I,z(0)=I,n=7 6308894770679410 r005 Im(z^2+c),c=-25/44+28/51*I,n=3 6308894774895187 m001 (FransenRobinson-Niven)/ZetaP(3) 6308894783340207 r005 Im(z^2+c),c=-47/82+7/61*I,n=59 6308894794770532 r005 Re(z^2+c),c=1/27+21/38*I,n=14 6308894795615139 a001 1/377*55^(8/37) 6308894856064728 r002 6th iterates of z^2 + 6308894868304011 m001 (Zeta(1/2)+MinimumGamma)/(exp(1)-ln(2)) 6308894874881028 m001 (Mills+Salem)/(Zeta(5)-Cahen) 6308894877343378 a001 620166/7*1836311903^(11/21) 6308894877458976 a001 370248451/21*75025^(11/21) 6308894894845420 l006 ln(4175/7846) 6308894912902512 r002 54th iterates of z^2 + 6308894925693137 m003 -1+(3*Sqrt[5])/8+7*Tanh[1/2+Sqrt[5]/2] 6308894935819201 a007 Real Root Of -720*x^4+379*x^3-542*x^2-57*x+389 6308894943584835 m005 (1/2*5^(1/2)-4/7)/(2/5*gamma-2/9) 6308894948594569 m001 ln(Rabbit)^2/MadelungNaCl^2*GAMMA(13/24) 6308894960246101 a007 Real Root Of -282*x^4-736*x^3-886*x^2+898*x+60 6308894960670373 a007 Real Root Of -366*x^4+756*x^3-297*x^2+886*x+925 6308894965468220 m001 (exp(-1/2*Pi)-FeigenbaumMu)/(Mills-Tribonacci) 6308894986372573 s002 sum(A195201[n]/(pi^n+1),n=1..infinity) 6308894999361281 m001 (2^(1/2)-BesselJ(1,1))/(Mills+Riemann1stZero) 6308895002020070 m001 RenyiParking^Thue/Champernowne 6308895013608724 a007 Real Root Of 672*x^4+499*x^3+847*x^2-865*x-864 6308895027611397 l006 ln(16/8791) 6308895038446917 r008 a(0)=0,K{-n^6,-59+39*n^3+52*n^2-16*n} 6308895063241418 r009 Im(z^3+c),c=-5/21+47/61*I,n=5 6308895079105129 v002 sum(1/(2^n+(20*n^2-38*n+53)),n=1..infinity) 6308895082644582 r005 Re(z^2+c),c=2/13+11/29*I,n=59 6308895095206758 r001 42i'th iterates of 2*x^2-1 of 6308895097083245 r005 Im(z^2+c),c=-13/14+5/93*I,n=10 6308895104307151 a007 Real Root Of -779*x^4+77*x^3+379*x^2-152*x-104 6308895136010951 a007 Real Root Of -214*x^4+642*x^3-720*x^2+541*x+823 6308895142276270 r009 Re(z^3+c),c=-6/17+41/62*I,n=17 6308895147076828 r002 13th iterates of z^2 + 6308895153296693 a007 Real Root Of 119*x^4+626*x^3-912*x^2-815*x-170 6308895179638223 m001 1/MertensB1/exp(Si(Pi))^2*sin(Pi/12)^2 6308895192772957 m005 (1/3*gamma+1/11)/(2/3*5^(1/2)+3) 6308895206017000 r005 Im(z^2+c),c=-17/22+1/40*I,n=33 6308895215951906 a007 Real Root Of 438*x^4-621*x^3+687*x^2-273*x-671 6308895221029132 a007 Real Root Of -408*x^4+933*x^3-452*x^2+815*x+993 6308895235461548 a007 Real Root Of 563*x^4-842*x^3-605*x^2-141*x+452 6308895256851772 a007 Real Root Of -806*x^4-439*x^3-401*x^2+542*x+519 6308895314642733 s001 sum(1/10^(n-1)*A005825[n]/n!,n=1..infinity) 6308895336158967 r005 Re(z^2+c),c=23/90+22/57*I,n=52 6308895340489059 m005 (1/2*3^(1/2)+1/8)/(9/11*2^(1/2)-1) 6308895362537613 r002 33th iterates of z^2 + 6308895364582149 r005 Im(z^2+c),c=5/13+7/46*I,n=11 6308895368546079 m001 GolombDickman^PrimesInBinary*ZetaP(4) 6308895375235368 m008 (5*Pi^6-5/6)/(5/6*Pi+5) 6308895385378212 p001 sum((-1)^n/(512*n+459)/n/(16^n),n=1..infinity) 6308895392517941 r005 Re(z^2+c),c=-49/118+11/14*I,n=4 6308895413127679 m001 (BesselK(1,1)+CareFree)/(5^(1/2)+Zeta(1,-1)) 6308895420246622 a007 Real Root Of -357*x^4-356*x^3-953*x^2+386*x+590 6308895427232538 l006 ln(2394/4499) 6308895461356059 m001 Robbin^ArtinRank2*sin(1) 6308895492785627 m001 ln(gamma)/(Champernowne+RenyiParking) 6308895500372899 m001 ErdosBorwein*(AlladiGrinstead-Zeta(3)) 6308895502010428 m001 BesselK(1,1)^2*KhintchineLevy*ln(GAMMA(5/6))^2 6308895506808598 m001 (Shi(1)+Lehmer)/(StronglyCareFree+Tribonacci) 6308895514111499 m001 (ln(2)-BesselI(0,2))/(AlladiGrinstead+Niven) 6308895549729238 m001 FeigenbaumAlpha-Zeta(3)^Magata 6308895551121241 a007 Real Root Of -152*x^4-896*x^3+465*x^2+522*x+593 6308895551445407 m005 (1/2*Pi-6)/(Zeta(3)-1/2) 6308895569559780 a001 3/139583862445*34^(23/24) 6308895576916257 a007 Real Root Of 837*x^4-443*x^3+979*x^2+340*x-419 6308895580851315 r002 2th iterates of z^2 + 6308895581624073 r009 Im(z^3+c),c=-1/78+43/56*I,n=49 6308895619638714 a007 Real Root Of 921*x^4-810*x^3+928*x^2+559*x-366 6308895626136857 r009 Re(z^3+c),c=-7/58+16/23*I,n=43 6308895642964716 r009 Im(z^3+c),c=-1/5+43/61*I,n=3 6308895662324891 b008 6+(5*E)/44 6308895668080484 s002 sum(A170856[n]/(n*10^n-1),n=1..infinity) 6308895671328560 r005 Re(z^2+c),c=-5/22+32/39*I,n=28 6308895687759713 a007 Real Root Of -899*x^4+58*x^3+318*x^2+906*x+602 6308895690948941 m001 (-Ei(1)+GaussAGM)/(2^(1/3)+BesselK(0,1)) 6308895697648190 m001 GAMMA(1/3)^sqrt(2)+BesselI(0,2) 6308895718893661 a007 Real Root Of -785*x^4-132*x^3-318*x^2-6*x+214 6308895723287267 a007 Real Root Of 478*x^4+890*x^3+873*x^2-728*x-659 6308895732332656 m001 (3^(1/3)+HardyLittlewoodC4)/(Mills+Porter) 6308895736901942 m001 (arctan(1/3)+GAMMA(5/6))/(3^(1/2)+LambertW(1)) 6308895741492222 r009 Re(z^3+c),c=-11/23+47/51*I,n=2 6308895750297580 m001 exp(gamma)^GAMMA(1/4)/GAMMA(17/24) 6308895782481023 r005 Im(z^2+c),c=-5/8+31/251*I,n=35 6308895847009923 a007 Real Root Of -13*x^4-820*x^3-x^2-692*x-389 6308895867111423 m001 (ln(gamma)+Mills)/(PolyaRandomWalk3D+Thue) 6308895875747245 a008 Real Root of x^4-2*x^3-21*x^2-62*x+145 6308895890715234 m001 GaussKuzminWirsing*exp(Conway)/sqrt(Pi) 6308895909727512 a007 Real Root Of 125*x^4+95*x^3-169*x^2-958*x+628 6308895920027230 r005 Re(z^2+c),c=-17/98+37/44*I,n=14 6308895930859147 r005 Re(z^2+c),c=-41/58+15/53*I,n=58 6308895940666820 m005 (1/3*3^(1/2)-1/11)/(3*exp(1)-4/9) 6308895954123478 a007 Real Root Of 716*x^4+231*x^3-576*x^2-815*x+572 6308895965492344 a007 Real Root Of 43*x^4+160*x^3+867*x^2+483*x-7 6308895972844848 r005 Im(z^2+c),c=-9/10+78/179*I,n=3 6308895981964032 a007 Real Root Of -707*x^4+540*x^3-42*x^2-988*x-359 6308895982439581 r009 Re(z^3+c),c=-2/27+4/15*I,n=3 6308895990412001 r005 Re(z^2+c),c=-19/30+45/107*I,n=57 6308896039475126 a001 41*86267571272^(1/5) 6308896041932355 a007 Real Root Of -725*x^4+134*x^3-531*x^2-60*x+322 6308896050616700 m005 (1/2*gamma+4/5)/(9/10*3^(1/2)+1/6) 6308896067957888 a007 Real Root Of -890*x^4+450*x^3-240*x^2+676*x+776 6308896073531878 r002 39th iterates of z^2 + 6308896091768979 a007 Real Root Of -969*x^4+531*x^3-655*x^2+649*x+957 6308896106154976 r005 Im(z^2+c),c=-5/66+20/27*I,n=44 6308896109666878 m002 5+6*E^Pi+5*Pi^4 6308896131306030 a003 sin(Pi*1/50)/sin(Pi*53/113) 6308896144827405 m001 Zeta(1/2)*FeigenbaumAlpha*ln(sin(1)) 6308896166413142 l006 ln(3007/5651) 6308896166921686 m001 (ln(5)+gamma(2))/(CareFree+FeigenbaumC) 6308896201998774 m001 (CareFree+Paris)/(Porter-Totient) 6308896223245237 h005 exp(cos(Pi*3/49)+cos(Pi*8/47)) 6308896248448712 s002 sum(A072365[n]/(n^3*2^n-1),n=1..infinity) 6308896258937755 a005 (1/sin(51/160*Pi))^118 6308896266332977 a007 Real Root Of 655*x^4+256*x^3+785*x^2-203*x-480 6308896282239886 a007 Real Root Of 731*x^4-948*x^3+337*x^2+168*x-382 6308896284129411 m001 (GAMMA(23/24)-LandauRamanujan2nd)^LambertW(1) 6308896285009911 r005 Im(z^2+c),c=-13/10+7/187*I,n=58 6308896306689807 m008 (Pi^5+2/5)/(1/2*Pi^6+5) 6308896323281115 a007 Real Root Of 988*x^4+739*x^3+577*x^2-427*x-470 6308896380087228 m005 (1/2*3^(1/2)-6/7)/(5/8*Pi-5/9) 6308896381678350 m001 gamma(1)^(FeigenbaumC*Stephens) 6308896382262372 r005 Re(z^2+c),c=-93/98+13/60*I,n=60 6308896383970195 r005 Re(z^2+c),c=9/86+7/15*I,n=61 6308896410140667 r005 Im(z^2+c),c=-4/3+1/141*I,n=21 6308896420084820 m001 (1-5^(1/2))/(-Kac+Sierpinski) 6308896423541566 h001 (-5*exp(1)+6)/(-3*exp(6)+7) 6308896430965401 r005 Im(z^2+c),c=-9/110+43/57*I,n=5 6308896436839933 a007 Real Root Of -433*x^4+972*x^3-220*x^2-571*x+40 6308896442371439 a007 Real Root Of 899*x^4-494*x^3+838*x^2+596*x-224 6308896442761136 l006 ln(6127/6526) 6308896444137468 r005 Re(z^2+c),c=-19/26+5/83*I,n=9 6308896448737339 m001 (Riemann2ndZero-Zeta(3))/Pi 6308896450262707 a007 Real Root Of -348*x^4+482*x^3+789*x^2+222*x-520 6308896491282947 a007 Real Root Of -907*x^4+740*x^3+126*x+409 6308896500251239 r002 37th iterates of z^2 + 6308896536178208 a007 Real Root Of 131*x^4+705*x^3-593*x^2+959*x-848 6308896536990957 r009 Im(z^3+c),c=-41/122+11/16*I,n=45 6308896537423581 m001 ln(3)/(Zeta(5)+CareFree) 6308896561863046 m001 1/TreeGrowth2nd/Champernowne^2*exp((3^(1/3))) 6308896592297185 m001 1/Robbin/Bloch/ln(BesselK(1,1)) 6308896597251434 r005 Re(z^2+c),c=-7/12+49/103*I,n=35 6308896603619645 h001 (-exp(2)-1)/(-9*exp(5)+6) 6308896606007629 r005 Im(z^2+c),c=-17/98+37/50*I,n=6 6308896608955425 r005 Re(z^2+c),c=-7/20+37/61*I,n=47 6308896635977237 b008 ArcSinh[272+E] 6308896655252440 l006 ln(3620/6803) 6308896675685674 a007 Real Root Of 19*x^4-255*x^3+403*x^2-646*x-635 6308896691017635 m001 exp((3^(1/3)))/FeigenbaumAlpha/GAMMA(1/3) 6308896691334619 m001 (HardyLittlewoodC5-Porter)/(Ei(1)-Ei(1,1)) 6308896700905896 m001 (-GAMMA(1/12)+3)/(GaussAGM(1,1/sqrt(2))+1/2) 6308896728970059 m005 (1/2*Pi-5/7)/(8/11*gamma-5/9) 6308896730689214 a001 4/4181*46368^(29/48) 6308896744601384 m001 (3^(1/3)+gamma(2))/(FeigenbaumD-ThueMorse) 6308896762352674 a007 Real Root Of 408*x^4+21*x^3+713*x^2-908*x-916 6308896766715240 r002 60th iterates of z^2 + 6308896785073429 a007 Real Root Of -11*x^4-684*x^3+627*x^2-154*x+404 6308896804564072 m001 FeigenbaumMu*(arctan(1/2)+Conway) 6308896812609700 m001 (Pi^(1/2)+Lehmer)/(cos(1)+Zeta(1,-1)) 6308896859793552 r008 a(0)=1,K{-n^6,-31-33*n+64*n^2+n^3} 6308896867251809 a007 Real Root Of 868*x^4-800*x^3+466*x^2+488*x-216 6308896879973853 m001 (OneNinth+Paris)/(Ei(1)+exp(1/Pi)) 6308896885641290 r005 Im(z^2+c),c=-17/52+5/52*I,n=14 6308896903735718 m005 (-1/4+1/4*5^(1/2))/(11/12*Zeta(3)-6) 6308896915189999 s002 sum(A099440[n]/(n!^2),n=1..infinity) 6308896939125446 r005 Re(z^2+c),c=-29/48+11/27*I,n=4 6308896943363981 a007 Real Root Of -445*x^4+387*x^3-624*x^2-92*x+358 6308896952216460 p003 LerchPhi(1/6,4,12/19) 6308896961099687 s002 sum(A132876[n]/(n^3*exp(n)+1),n=1..infinity) 6308896964956147 s002 sum(A132876[n]/(n^3*exp(n)-1),n=1..infinity) 6308896966005315 m001 (-BesselI(1,1)+Magata)/(1+ln(gamma)) 6308896981431984 m005 (1/2*2^(1/2)+5/11)/(4/5*exp(1)-1/3) 6308896983671862 r002 3th iterates of z^2 + 6308896990484460 b008 60+ArcCosh[11] 6308897002509635 l006 ln(4233/7955) 6308897021312148 m001 (MinimumGamma+Paris)/(exp(Pi)+BesselI(1,2)) 6308897059735346 m001 (Paris-QuadraticClass)/(3^(1/3)-FeigenbaumD) 6308897080784465 a001 370248451/34*2971215073^(7/24) 6308897081232600 a001 5374978561/17*28657^(7/24) 6308897094327526 r008 a(0)=0,K{-n^6,-36+56*n-3*n^3} 6308897117668298 m001 (3^(1/3)+Ei(1,1))/(Kolakoski+Tribonacci) 6308897136384852 r005 Im(z^2+c),c=-5/48+9/11*I,n=50 6308897140867174 r005 Re(z^2+c),c=9/86+7/15*I,n=58 6308897148218595 a007 Real Root Of -689*x^4+71*x^3-594*x^2+589*x+735 6308897158999812 m001 arctan(1/2)*ArtinRank2+HardyLittlewoodC4 6308897171975042 a007 Real Root Of 658*x^4-449*x^3-601*x^2-48*x+278 6308897202498310 a007 Real Root Of -756*x^4+174*x^3-938*x^2+479*x+839 6308897215125790 r005 Im(z^2+c),c=29/78+34/57*I,n=11 6308897225490588 a001 5702887/2207*3^(13/16) 6308897252960304 m001 (Landau+ZetaP(4))/(Zeta(3)-Ei(1,1)) 6308897261913475 l006 ln(4846/9107) 6308897269906084 r005 Re(z^2+c),c=1/29+14/39*I,n=18 6308897272970334 m001 HardyLittlewoodC3/(Psi(2,1/3)^Stephens) 6308897279734950 a007 Real Root Of 900*x^4-223*x^3-326*x^2-480*x+346 6308897302152125 m001 (polylog(4,1/2)+GAMMA(17/24))/(Otter-Paris) 6308897331352246 r002 56th iterates of z^2 + 6308897335171211 m001 (Bloch+FeigenbaumB)/(Magata-Totient) 6308897337489101 a007 Real Root Of -83*x^4+652*x^3-792*x^2-230*x+347 6308897338875557 r002 20th iterates of z^2 + 6308897385948648 a005 (1/sin(41/128*Pi))^407 6308897404483867 a007 Real Root Of -98*x^4+113*x^3+754*x^2+856*x-853 6308897444409408 a003 sin(Pi*4/103)*sin(Pi*17/98) 6308897447354905 b008 Pi+25*Log[11] 6308897458687307 r005 Re(z^2+c),c=-23/70+8/13*I,n=7 6308897483236702 r009 Im(z^3+c),c=-19/64+31/45*I,n=25 6308897507851074 a007 Real Root Of -272*x^4+550*x^3-354*x^2+832*x+847 6308897527152772 a007 Real Root Of -170*x^4-931*x^3+803*x^2-514*x+331 6308897528747383 r005 Re(z^2+c),c=7/82+15/34*I,n=22 6308897530091315 m005 (5/6*Pi+1/6)/(4*Catalan+3/4) 6308897549266230 a005 (1/cos(4/167*Pi))^650 6308897578191885 m001 (2^(1/3)-GAMMA(5/6))/(Bloch+ErdosBorwein) 6308897600007166 m001 ln(Salem)/Rabbit/GAMMA(1/4) 6308897601899804 m006 (2/5*Pi-3/4)/(1/6/Pi+3/4) 6308897603362269 a007 Real Root Of 498*x^4-413*x^3-826*x^2-983*x-474 6308897638124112 a007 Real Root Of 705*x^4-124*x^3-21*x^2-218*x-272 6308897652046575 r002 2th iterates of z^2 + 6308897654042811 a001 34/11*322^(35/38) 6308897669578308 a007 Real Root Of -834*x^4+155*x^3+926*x^2+150*x-370 6308897675570728 a001 3/377*7778742049^(1/11) 6308897692004007 r005 Re(z^2+c),c=-21/26+49/111*I,n=4 6308897694802924 a005 (1/cos(59/183*Pi))^21 6308897709254028 m001 (sin(1/5*Pi)+Zeta(1/2))/(Mills+ZetaP(4)) 6308897739822226 m001 (-Robbin+StolarskyHarborth)/(cos(1)+Zeta(1/2)) 6308897782162531 a007 Real Root Of -963*x^4-158*x^3-498*x^2+832*x+836 6308897792911438 a001 7/433494437*233^(1/4) 6308897794088717 m001 (BesselK(1,1)+Rabbit)/(TwinPrimes-ZetaP(2)) 6308897833760295 a001 199/89*514229^(29/48) 6308897840470105 r005 Re(z^2+c),c=-13/20+13/28*I,n=5 6308897844584063 a007 Real Root Of 441*x^4-783*x^3+902*x^2+806*x-117 6308897858487373 r005 Re(z^2+c),c=-39/40+5/37*I,n=40 6308897858537743 m002 -1+9/ProductLog[Pi]-ProductLog[Pi] 6308897860542926 r002 3th iterates of z^2 + 6308897866147534 m006 (3/5/Pi-2)/(1/4*Pi^2+2/5) 6308897869853821 a007 Real Root Of 995*x^4-433*x^3+268*x^2-653*x-785 6308897887109194 r002 5th iterates of z^2 + 6308897903274447 r005 Im(z^2+c),c=1/118+53/60*I,n=7 6308897908471677 m001 (5^(1/2)-exp(1))/(-GAMMA(23/24)+MertensB1) 6308897909720026 a007 Real Root Of -213*x^4+364*x^3+543*x^2+376*x-511 6308897940413474 r005 Re(z^2+c),c=-15/22+23/65*I,n=47 6308897941786048 m001 (gamma+Ei(1,1))/(BesselI(1,1)+ArtinRank2) 6308897944011952 m001 (Totient+ThueMorse)/(GAMMA(23/24)-Conway) 6308897950626252 r009 Im(z^3+c),c=-1/10+47/63*I,n=39 6308897977662244 m005 (1/2*Pi+1/9)/(7/12*Pi+5/6) 6308898041528863 m001 ln(Pi)*FransenRobinson*ReciprocalLucas 6308898055404236 m001 ZetaQ(3)^GAMMA(11/12)*Zeta(1,2) 6308898059289402 m005 (1/3*Zeta(3)+2/5)/(4*Pi+1/8) 6308898061463721 m001 (Pi+arctan(1/3))/(2*Pi/GAMMA(5/6)-ZetaP(4)) 6308898086247384 r005 Re(z^2+c),c=-13/19+38/59*I,n=2 6308898086600625 a007 Real Root Of 964*x^4+547*x^3+554*x^2+423*x+31 6308898102185621 r002 47i'th iterates of 2*x/(1-x^2) of 6308898114500098 m005 (1/3*3^(1/2)-2/11)/(4/9*3^(1/2)-1/7) 6308898116166627 a007 Real Root Of 700*x^4-866*x^3-482*x^2-508*x-457 6308898120222315 r002 5th iterates of z^2 + 6308898127926505 a007 Real Root Of 796*x^4-886*x^3-79*x^2-358*x-543 6308898166041538 m001 (ArtinRank2+Bloch)/(Catalan-Zeta(1,2)) 6308898167128381 a007 Real Root Of -729*x^4+429*x^3-970*x^2+353*x+832 6308898176619251 m006 (4/5*exp(2*Pi)-2/3)/(2/3*Pi^2+1/5) 6308898180155503 m005 (1/2*exp(1)-4/5)/(6/11*gamma+4/7) 6308898183722593 m001 1/GAMMA(11/24)^2/exp(GAMMA(1/3))^2*sqrt(5)^2 6308898188669953 m001 (cos(1/12*Pi)+Magata)/ln(2) 6308898192979755 g002 gamma+2*ln(2)+Psi(5/11)+Psi(8/9)+Psi(1/5) 6308898206566679 r005 Im(z^2+c),c=-31/26+10/81*I,n=18 6308898216465336 a007 Real Root Of 695*x^4-559*x^3+868*x^2+523*x-266 6308898222583936 a001 8/1149851*76^(28/55) 6308898232936883 r002 4th iterates of z^2 + 6308898233428650 a007 Real Root Of -584*x^4+176*x^3-711*x^2-120*x+344 6308898244007663 r005 Re(z^2+c),c=-14/23+22/53*I,n=53 6308898246057980 b008 1/(Sqrt[E]*Pi^6) 6308898277529154 a007 Real Root Of 287*x^4-32*x^3-313*x^2-675*x+513 6308898278106810 a007 Real Root Of 60*x^4+288*x^3-503*x^2+425*x-32 6308898278341380 a007 Real Root Of 700*x^4-860*x^3+633*x^2-162*x-681 6308898305141652 r009 Im(z^3+c),c=-5/21+2/37*I,n=2 6308898306194120 m006 (exp(Pi)-1/4)/(1/5*Pi+3) 6308898311583741 a001 89/23725150497407*2^(3/4) 6308898331754350 a001 2584*3^(13/16) 6308898364756413 a001 9349*21^(37/59) 6308898377657589 a001 13/24476*76^(4/7) 6308898393901660 m001 (BesselK(1,1)-Si(Pi))/(Tetranacci+ZetaQ(2)) 6308898411627404 r002 10th iterates of z^2 + 6308898440262678 b008 7*BarnesG[Sqrt[6]]^2 6308898443187702 r005 Im(z^2+c),c=-6/5+1/14*I,n=28 6308898454385591 r002 16th iterates of z^2 + 6308898454942752 b008 6+7^(1/6+Pi) 6308898493156090 a001 39088169/15127*3^(13/16) 6308898509832073 a003 cos(Pi*1/85)/sin(Pi*4/79) 6308898510387683 m001 1/(2^(1/3))^2*ln(MertensB1)^2*GAMMA(1/6) 6308898516704287 a001 34111385/13201*3^(13/16) 6308898520139923 a001 133957148/51841*3^(13/16) 6308898520641175 a001 233802911/90481*3^(13/16) 6308898520714307 a001 1836311903/710647*3^(13/16) 6308898520724977 a001 267084832/103361*3^(13/16) 6308898520726534 a001 12586269025/4870847*3^(13/16) 6308898520726761 a001 10983760033/4250681*3^(13/16) 6308898520726794 a001 43133785636/16692641*3^(13/16) 6308898520726799 a001 75283811239/29134601*3^(13/16) 6308898520726799 a001 591286729879/228826127*3^(13/16) 6308898520726799 a001 86000486440/33281921*3^(13/16) 6308898520726799 a001 4052739537881/1568397607*3^(13/16) 6308898520726799 a001 3536736619241/1368706081*3^(13/16) 6308898520726799 a001 3278735159921/1268860318*3^(13/16) 6308898520726799 a001 2504730781961/969323029*3^(13/16) 6308898520726800 a001 956722026041/370248451*3^(13/16) 6308898520726800 a001 182717648081/70711162*3^(13/16) 6308898520726802 a001 139583862445/54018521*3^(13/16) 6308898520726814 a001 53316291173/20633239*3^(13/16) 6308898520726901 a001 10182505537/3940598*3^(13/16) 6308898520727496 a001 7778742049/3010349*3^(13/16) 6308898520731571 a001 2971215073/1149851*3^(13/16) 6308898520759505 a001 567451585/219602*3^(13/16) 6308898520950966 a001 433494437/167761*3^(13/16) 6308898521127495 p001 sum(1/(271*n+186)/(3^n),n=0..infinity) 6308898522263262 a001 165580141/64079*3^(13/16) 6308898531257873 a001 31622993/12238*3^(13/16) 6308898551238123 h001 (4/9*exp(1)+3/7)/(3/4*exp(1)+5/9) 6308898592907855 a001 24157817/9349*3^(13/16) 6308898600550421 m001 (BesselJ(1,1)+FeigenbaumAlpha)/(Rabbit-Salem) 6308898624873558 a007 Real Root Of -781*x^4+262*x^3-181*x^2+708*x-44 6308898635003639 m008 (Pi^5+1)/(5*Pi^4-2/5) 6308898717524930 a007 Real Root Of 428*x^4-912*x^3+376*x^2-302*x-637 6308898736348621 m001 gamma(1)*FellerTornier*Khinchin 6308898750353042 a001 1597/47*11^(8/31) 6308898777358889 r005 Im(z^2+c),c=-157/126+2/47*I,n=33 6308898781394011 a007 Real Root Of 223*x^4-603*x^3+833*x^2-586*x-888 6308898812234501 a007 Real Root Of 459*x^4-12*x^3-188*x^2-696*x-440 6308898830688123 m001 arctan(1/3)*(ReciprocalLucas-gamma(3)) 6308898847956484 a007 Real Root Of 49*x^4-493*x^3-26*x^2-20*x+139 6308898902203662 m001 (ln(Pi)-sin(1))/(-Totient+Thue) 6308898918535424 m005 (1/2*5^(1/2)+1/11)/(8/9*exp(1)-1/2) 6308898954822943 m001 3^(1/3)*OneNinth+PlouffeB 6308898963219322 a007 Real Root Of -846*x^4+776*x^3+922*x^2+414*x-689 6308898980755626 a007 Real Root Of -111*x^4-571*x^3+890*x^2+433*x-227 6308898987967173 a003 sin(Pi*1/29)-sin(Pi*9/34) 6308898993471954 m001 1/exp(GAMMA(3/4))*Niven^2*exp(1)^2 6308899015463149 a001 9227465/3571*3^(13/16) 6308899033329359 m001 (Trott-TwinPrimes)/(Zeta(1,2)+GaussAGM) 6308899053196251 l006 ln(613/1152) 6308899084868109 r005 Re(z^2+c),c=-25/36+7/37*I,n=12 6308899089097894 r009 Re(z^3+c),c=-5/44+11/17*I,n=32 6308899092784231 r005 Im(z^2+c),c=-13/25+33/49*I,n=5 6308899095458132 m001 (Otter+Porter)/(Rabbit-ZetaQ(3)) 6308899107364710 m001 (polylog(4,1/2)-Khinchin)/(ln(3)-3^(1/3)) 6308899108777337 r005 Im(z^2+c),c=15/58+26/49*I,n=64 6308899125050829 m001 (-Ei(1)+ZetaQ(4))/(5^(1/2)+BesselJ(0,1)) 6308899145855738 a003 cos(Pi*2/39)*cos(Pi*31/111) 6308899167023113 a007 Real Root Of -120*x^4-858*x^3-672*x^2-305*x-522 6308899171270373 a007 Real Root Of 918*x^4+458*x^3-85*x^2+58*x+40 6308899239407822 a001 1/646*377^(9/38) 6308899244063477 a007 Real Root Of -832*x^4+246*x^3-961*x^2+496*x+889 6308899270174821 r005 Re(z^2+c),c=-41/56+5/24*I,n=55 6308899306220525 a007 Real Root Of 954*x^4+598*x^3+830*x^2-326*x-537 6308899307076219 a001 13/3*47^(4/41) 6308899309713680 a007 Real Root Of -973*x^4+879*x^3-502*x^2-242*x+422 6308899315280144 a007 Real Root Of -772*x^4+953*x^3+x^2+686*x+794 6308899377701161 l006 ln(5221/5561) 6308899383020119 r002 31th iterates of z^2 + 6308899388538383 a007 Real Root Of -865*x^4+669*x^3-204*x^2+323*x+590 6308899398845334 a007 Real Root Of -881*x^4-155*x^3+31*x^2+754*x+564 6308899400498269 r005 Im(z^2+c),c=7/44+18/29*I,n=11 6308899431380609 a005 (1/cos(17/125*Pi))^44 6308899434222153 v002 sum(1/(5^n+(8*n^2+18*n-9)),n=1..infinity) 6308899437970744 v002 sum(1/(3^n+(2*n^2+56*n-36)),n=1..infinity) 6308899455054281 m001 Pi+1+2/3*Pi*3^(1/2)/GAMMA(2/3)*cos(1/5*Pi) 6308899506706386 r005 Im(z^2+c),c=-5/8+101/249*I,n=46 6308899525497316 r005 Re(z^2+c),c=-5/8+104/255*I,n=18 6308899552980794 m001 sin(1)*OneNinth+cos(1) 6308899558499653 r005 Im(z^2+c),c=-31/50+7/59*I,n=41 6308899599483538 r009 Im(z^3+c),c=-19/122+23/33*I,n=10 6308899617491597 p004 log(28909/15383) 6308899627265967 a003 cos(Pi*7/89)-cos(Pi*39/100) 6308899647746938 a001 1597/843*123^(1/4) 6308899650833061 a007 Real Root Of -157*x^4+880*x^3-142*x^2+532*x+638 6308899665323406 r005 Re(z^2+c),c=-7/10+157/242*I,n=2 6308899710473376 m001 (Psi(2,1/3)-ln(gamma))/(arctan(1/3)+Landau) 6308899722679755 a003 cos(Pi*8/65)*sin(Pi*26/109) 6308899727502491 r005 Re(z^2+c),c=-19/30+51/118*I,n=64 6308899756426376 r005 Re(z^2+c),c=-19/27+4/19*I,n=31 6308899756543221 m005 (1/3*gamma+1/10)/(1/11*3^(1/2)-1/9) 6308899758344984 a007 Real Root Of 636*x^4-875*x^3+433*x^2-731*x-954 6308899775386404 m001 (Zeta(5)+BesselI(0,2))/(GolombDickman-Paris) 6308899780955342 a003 sin(Pi*6/83)/cos(Pi*38/99) 6308899783015994 m001 ln((2^(1/3)))*Riemann3rdZero/Catalan 6308899803740130 a007 Real Root Of 867*x^4-689*x^3+507*x^2-694*x-950 6308899816143516 r005 Im(z^2+c),c=-57/50+2/25*I,n=17 6308899829349161 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*Bloch^Sierpinski 6308899862691486 m001 GAMMA(13/24)/Champernowne*Weierstrass 6308899863575879 r005 Im(z^2+c),c=-3/31+17/21*I,n=17 6308899870551282 m001 Lehmer+ReciprocalLucas^Sierpinski 6308899894447200 m005 (1/2*5^(1/2)+2)/(1/10*gamma-5) 6308899916808714 a001 843/1597*196418^(25/43) 6308899917118088 a007 Real Root Of -928*x^4+715*x^3-292*x^2+674*x+868