6524700012695755 p004 log(12983/6761) 6524700019754038 m009 (1/8*Pi^2+4)/(1/4*Psi(1,3/4)+1/6) 6524700034101465 m004 Sqrt[5]/(3*Pi)+Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 6524700051483958 a001 5/124*47^(1/8) 6524700063416046 r002 14th iterates of z^2 + 6524700079984440 r009 Im(z^3+c),c=-7/82+20/27*I,n=20 6524700081208694 a001 844/13*196418^(31/41) 6524700086761492 a001 144/64079*843^(1/2) 6524700090356032 h001 (1/6*exp(2)+1/9)/(2/11*exp(2)+5/7) 6524700093950980 a007 Real Root Of -556*x^4+255*x^3+409*x^2+412*x-413 6524700097036952 a007 Real Root Of -23*x^4-86*x^3+447*x^2+304*x+750 6524700123514094 r005 Im(z^2+c),c=-65/64+25/54*I,n=3 6524700133971522 a003 sin(Pi*2/35)/cos(Pi*7/17) 6524700168743876 m005 (1/3*3^(1/2)-1/12)/(1/12*2^(1/2)-7/8) 6524700191198187 l006 ln(4315/8286) 6524700217951402 m001 GolombDickman/exp(Si(Pi))/GAMMA(3/4)^2 6524700226228781 r005 Im(z^2+c),c=-5/4+2/21*I,n=7 6524700247419314 a001 13*18^(24/43) 6524700250078210 m008 (2*Pi^6+3/5)/(2/5*Pi^2-1) 6524700258698970 r005 Im(z^2+c),c=37/114+21/52*I,n=20 6524700259069678 m009 (2/5*Psi(1,2/3)+3/5)/(3/4*Psi(1,2/3)+1/2) 6524700295114386 m001 TwinPrimes^2*ln(Robbin)*GAMMA(1/4) 6524700298390420 m001 GAMMA(1/4)/Porter^2*exp(GAMMA(2/3)) 6524700300787896 r005 Re(z^2+c),c=23/126+44/63*I,n=3 6524700306147700 p004 log(20161/10499) 6524700313134875 r005 Im(z^2+c),c=-4/11+39/61*I,n=4 6524700338914156 r005 Im(z^2+c),c=-33/26+5/111*I,n=55 6524700375218452 m005 (1/2*Pi+2/3)/(1/5*Zeta(3)-7/12) 6524700378543448 r002 10th iterates of z^2 + 6524700382611055 m006 (1/3*exp(Pi)-1)/(1/5*ln(Pi)+4/5) 6524700419824117 m001 (1+HardyLittlewoodC3)/(Landau+ReciprocalLucas) 6524700425594225 a007 Real Root Of 515*x^4-610*x^3+505*x^2-218*x-620 6524700461412037 m001 (arctan(1/3)-Otter)/(ThueMorse-ZetaQ(3)) 6524700475163599 a007 Real Root Of 809*x^4-527*x^3+602*x^2-67*x-593 6524700486791731 r005 Im(z^2+c),c=7/26+30/47*I,n=4 6524700491655959 a007 Real Root Of -721*x^4-568*x^3-696*x^2-80*x+217 6524700493059365 a007 Real Root Of -135*x^4-877*x^3+18*x^2-74*x-184 6524700506687431 r002 3th iterates of z^2 + 6524700507933687 r009 Im(z^3+c),c=-9/28+18/25*I,n=45 6524700513427095 b008 -1+Sqrt[2/3]+3*Sqrt[5] 6524700526725846 m001 (Porter-ZetaP(3))/(Artin+ErdosBorwein) 6524700541746662 m009 (1/5*Psi(1,2/3)-5)/(3/5*Psi(1,1/3)+2/3) 6524700544759804 m001 ln(Magata)^2*Backhouse/FeigenbaumC^2 6524700597343662 a007 Real Root Of 106*x^4-859*x^3+793*x^2+347*x-369 6524700605878585 r002 11th iterates of z^2 + 6524700610941971 a003 cos(Pi*4/71)-sin(Pi*7/65) 6524700638181441 s002 sum(A056764[n]/(n^3*exp(n)-1),n=1..infinity) 6524700639028370 m005 (1/2*exp(1)-1/5)/(3/4*Zeta(3)+7/8) 6524700646340403 m005 (1/2*5^(1/2)-1/7)/(1/5*Pi-7/9) 6524700648085106 a007 Real Root Of 227*x^4+19*x^3+860*x^2-69*x-447 6524700656527002 b005 Number DB table 6524700684579333 m001 1/arctan(1/2)^2*ln(Riemann3rdZero)^2/exp(1)^2 6524700686999267 a007 Real Root Of 676*x^4-641*x^3+645*x^2-222*x-720 6524700700881486 a007 Real Root Of 858*x^4-511*x^3-474*x^2-304*x-294 6524700702756934 m001 (cos(1)-ln(5))/(-GAMMA(13/24)+HeathBrownMoroz) 6524700708115801 a007 Real Root Of -830*x^4-800*x^3-719*x^2+890*x+815 6524700712020928 a007 Real Root Of 621*x^4-734*x^3-303*x^2-876*x-759 6524700737301232 m001 (1+sin(1/12*Pi))/(Conway+Kac) 6524700740375933 a001 72/51841*843^(4/7) 6524700743775581 m001 Artin^exp(-Pi)+GAMMA(1/6) 6524700747379304 b008 Sinh[165/23] 6524700747379304 l004 sinh(165/23) 6524700748394576 a007 Real Root Of -68*x^4+474*x^3-247*x^2+694*x-467 6524700832093528 r002 15th iterates of z^2 + 6524700836920444 l006 ln(1869/3589) 6524700853780770 a007 Real Root Of 937*x^4-441*x^3-417*x^2-713*x-580 6524700857040481 m005 (1/2*3^(1/2)+1/4)/(2/3*Zeta(3)+10/11) 6524700871402288 r005 Re(z^2+c),c=-29/34+10/21*I,n=4 6524700876774352 a007 Real Root Of 386*x^3+434*x^2+656*x-720 6524700890267947 a007 Real Root Of -424*x^4+794*x^3+598*x^2-74*x-350 6524700916141582 l006 ln(8113/8660) 6524700983269793 m001 (Lehmer+Rabbit)/(2^(1/2)+LandauRamanujan2nd) 6524701001770975 h001 (-exp(5)-9)/(-6*exp(6)+8) 6524701002959487 r005 Im(z^2+c),c=-53/90+7/59*I,n=34 6524701011372885 a007 Real Root Of 911*x^4+561*x^3-80*x^2-789*x-51 6524701012940108 p003 LerchPhi(1/256,2,275/222) 6524701027238772 r005 Im(z^2+c),c=-19/24+3/62*I,n=5 6524701055699309 a001 199/1597*610^(41/42) 6524701069600293 a003 sin(Pi*4/85)*sin(Pi*13/89) 6524701112777953 a007 Real Root Of -519*x^4-480*x^3+801*x^2+583*x-494 6524701120938336 a001 11/2*75025^(13/59) 6524701125330689 r009 Re(z^3+c),c=-13/122+19/34*I,n=14 6524701176715333 a007 Real Root Of 587*x^4-997*x^3+63*x^2-409*x-677 6524701180369113 a007 Real Root Of 964*x^4-906*x^3+300*x^2-452*x-849 6524701189191918 m001 (BesselK(1,1)-Salem)/(Zeta(3)-arctan(1/3)) 6524701200379274 a007 Real Root Of 363*x^4+61*x^3+12*x^2-827*x-54 6524701211416530 a007 Real Root Of 608*x^4-119*x^3-327*x^2-613*x-404 6524701235317346 r009 Re(z^3+c),c=-41/74+3/14*I,n=27 6524701247814288 a003 cos(Pi*11/69)*cos(Pi*24/103) 6524701248593538 a007 Real Root Of -653*x^4+600*x^3+219*x^2+759*x+687 6524701250293951 a001 144/3571*322^(1/12) 6524701293481568 r002 12th iterates of z^2 + 6524701299976054 m001 (2^(1/2)-Paris)/(-Riemann2ndZero+Thue) 6524701329920046 m001 (Zeta(1/2)-OneNinth)/(PlouffeB+Tetranacci) 6524701331031013 a007 Real Root Of 862*x^4-881*x^3-378*x^2-236*x-394 6524701356560296 m001 Bloch*(BesselI(1,2)-exp(-1/2*Pi)) 6524701364130178 a007 Real Root Of -198*x^4+757*x^3+367*x^2+722*x+561 6524701384502508 r002 42th iterates of z^2 + 6524701390855110 l006 ln(5030/9659) 6524701397025197 a001 144/167761*843^(9/14) 6524701402667003 m001 1/ln((3^(1/3)))^2/RenyiParking/GAMMA(7/12) 6524701405327043 m001 GAMMA(1/3)^2*Artin/exp(sqrt(2)) 6524701420025208 a001 2255*322^(53/54) 6524701421161765 a007 Real Root Of 447*x^4-714*x^3+141*x^2-936*x+668 6524701425430208 a001 76/5*17711^(7/47) 6524701441906068 r002 50th iterates of z^2 + 6524701446721986 r002 8th iterates of z^2 + 6524701454950917 m001 (Pi+cos(1/12*Pi)*BesselI(1,1))/BesselI(1,1) 6524701454950917 m001 (Pi+cos(Pi/12)*BesselI(1,1))/BesselI(1,1) 6524701503586064 m001 (GAMMA(11/12)-GaussAGM*Rabbit)/Rabbit 6524701522373668 a007 Real Root Of -193*x^4+998*x^3-673*x^2-890*x+18 6524701566158311 r005 Re(z^2+c),c=-23/30+1/50*I,n=27 6524701583176404 m001 1/sin(1)/Kolakoski^2*ln(sqrt(2)) 6524701597988064 m005 (1/2*Zeta(3)-3/10)/(5/8*Catalan-1/9) 6524701616438563 r009 Im(z^3+c),c=-5/28+47/63*I,n=6 6524701621624677 m001 1/Catalan*exp(Backhouse)/GAMMA(1/3)^2 6524701645984079 m001 (Bloch*HeathBrownMoroz+Thue)/HeathBrownMoroz 6524701646289375 r002 3th iterates of z^2 + 6524701668294536 a007 Real Root Of 63*x^4+330*x^3-597*x^2-365*x+519 6524701682789285 m001 (MertensB3-Otter)/(Ei(1)+Lehmer) 6524701697947028 m001 1/Trott^2/TreeGrowth2nd^2/ln(BesselJ(1,1))^2 6524701705313498 a007 Real Root Of -58*x^4-331*x^3+265*x^2-436*x-951 6524701716804052 m005 (1/3*Pi-1/6)/(5/11*2^(1/2)-7/9) 6524701718379262 l006 ln(3161/6070) 6524701741137321 m001 (-2^(1/2)+4)/(-Zeta(5)+5) 6524701748607677 a003 cos(Pi*6/35)-cos(Pi*23/53) 6524701751536711 m001 cos(1)+ln(gamma)+Robbin 6524701754938926 m001 (-GAMMA(5/24)+4)/(GAMMA(7/24)+3) 6524701789424274 a007 Real Root Of 942*x^4-144*x^3+769*x^2+40*x-512 6524701836614055 r009 Re(z^3+c),c=-31/52+24/53*I,n=23 6524701847042240 a003 cos(Pi*14/107)*sin(Pi*30/119) 6524701873935264 q001 383/587 6524701878194318 m003 13/2+Sqrt[5]/2048-Cos[1/2+Sqrt[5]/2]/2 6524701879087067 m001 (-gamma(3)+GaussAGM)/(3^(1/3)-exp(1)) 6524701894364721 a007 Real Root Of -249*x^4+519*x^3-257*x^2-303*x+101 6524701953380720 a008 Real Root of (-3-5*x-2*x^2-3*x^3-2*x^4-x^5) 6524701997906944 a003 cos(Pi*7/52)-sin(Pi*19/44) 6524702022458009 a001 610/64079*199^(4/11) 6524702023129277 m001 exp(Zeta(1/2))/GaussAGM(1,1/sqrt(2))*cosh(1)^2 6524702030629390 r002 13th iterates of z^2 + 6524702032478037 m005 (1/2*Zeta(3)-4/9)/(11/8+11/24*5^(1/2)) 6524702047039451 a007 Real Root Of -663*x^4-862*x^3-880*x^2-22*x+241 6524702050321246 m005 (1/2*Catalan+9/11)/(3/5*3^(1/2)+11/12) 6524702052515353 a001 48/90481*843^(5/7) 6524702081532155 m005 (1/2*Pi+5/11)/(2*Zeta(3)+7/10) 6524702081930567 a007 Real Root Of 126*x^4-834*x^3-943*x^2-395*x+868 6524702088342529 l006 ln(4453/8551) 6524702090159168 m001 (LandauRamanujan+MinimumGamma)/(exp(1)+ln(2)) 6524702090653168 m001 (-ln(Pi)+ln(2+3^(1/2)))/(2^(1/2)+GAMMA(3/4)) 6524702173374623 a007 Real Root Of 232*x^4-765*x^3+726*x^2-583*x-944 6524702183857352 a007 Real Root Of 384*x^4-973*x^3+667*x^2+553*x-263 6524702189650617 m004 10/Pi+(Sqrt[5]*Pi)/3+Tanh[Sqrt[5]*Pi] 6524702190523755 m005 (1/2*gamma-1/5)/(7/9*gamma+10/11) 6524702201122260 a007 Real Root Of 320*x^4+661*x^3+937*x^2-349*x-501 6524702241784601 a007 Real Root Of 843*x^4-313*x^3-808*x^2-996*x+928 6524702297878737 m009 (1/3*Psi(1,2/3)+1)/(3/4*Psi(1,2/3)+4/5) 6524702301549890 a007 Real Root Of -154*x^4+471*x^3+964*x^2+421*x-788 6524702314646052 m005 (1/2*Pi-3/4)/(1/2*Catalan+4/5) 6524702324301129 m001 (Ei(1,1)+Zeta(1,2))/(Kac+Weierstrass) 6524702330530838 r005 Im(z^2+c),c=-13/10+3/176*I,n=23 6524702330829967 m001 (Porter-exp(-1/2*Pi)*Niven)/Niven 6524702332341840 r005 Im(z^2+c),c=-15/14+17/230*I,n=7 6524702349599197 r002 48th iterates of z^2 + 6524702354474929 r002 3th iterates of z^2 + 6524702364531885 a007 Real Root Of -132*x^4-846*x^3+137*x^2+279*x+227 6524702373398812 m001 TreeGrowth2nd^sin(1/5*Pi)*Shi(1) 6524702379518877 r002 54i'th iterates of 2*x/(1-x^2) of 6524702390866001 r002 7th iterates of z^2 + 6524702395585836 m001 (1-cos(1/5*Pi))^exp(1/2) 6524702402933944 m001 (gamma+FeigenbaumB)/(-Magata+Riemann3rdZero) 6524702411124228 m001 LaplaceLimit^(FeigenbaumD/Sierpinski) 6524702414943097 m001 Zeta(1,-1)^HardyLittlewoodC4/ln(2^(1/2)+1) 6524702448074986 a008 Real Root of (-7+7*x+8*x^2-7*x^4+9*x^8) 6524702464706882 m001 (Pi-exp(-1/2*Pi))/(Grothendieck-MertensB3) 6524702469894749 s002 sum(A199807[n]/((pi^n+1)/n),n=1..infinity) 6524702469894749 s002 sum(A199810[n]/((pi^n+1)/n),n=1..infinity) 6524702475635628 p002 log(1/5*(6+14^(1/2))^(1/2)*5^(1/3)) 6524702479971599 r002 56th iterates of z^2 + 6524702532177798 m001 1/sin(1)/OneNinth/exp(sqrt(2))^2 6524702536322386 a007 Real Root Of -352*x^4+792*x^3-164*x^2+747*x+841 6524702543012297 a001 2207/377*233^(23/52) 6524702548689329 m006 (1/6*exp(2*Pi)-5)/(2/5*ln(Pi)+5/6) 6524702576118438 a007 Real Root Of -621*x^4+823*x^3+807*x^2+629*x+408 6524702592400786 m001 FeigenbaumC/((5^(1/2))^GlaisherKinkelin) 6524702623197122 m009 (3/2*Pi^2-1/5)/(6*Psi(1,2/3)+4) 6524702638536916 m001 (GAMMA(19/24)+KhinchinLevy)/(Otter+Robbin) 6524702669479831 a007 Real Root Of -439*x^4+115*x^3+50*x^2-8*x+85 6524702676427010 a007 Real Root Of -708*x^4+932*x^3-162*x^2+298*x-19 6524702708448339 a001 36/109801*843^(11/14) 6524702727631230 m005 (1/3*Catalan+3/7)/(4/9*exp(1)-1/12) 6524702775245533 a007 Real Root Of -711*x^4+586*x^3-973*x^2+201*x+837 6524702808789859 a007 Real Root Of -514*x^4+141*x^3-347*x^2+731*x+757 6524702811884490 r009 Im(z^3+c),c=-29/122+43/44*I,n=11 6524702837150553 a003 cos(Pi*3/49)-cos(Pi*35/89) 6524702837688037 r005 Im(z^2+c),c=5/64+35/47*I,n=3 6524702852700075 a007 Real Root Of 109*x^4-691*x^3+110*x^2-295*x-451 6524702860188452 a005 (1/cos(3/137*Pi))^792 6524702865524247 s002 sum(A203719[n]/(n*exp(n)-1),n=1..infinity) 6524702867887087 a007 Real Root Of -868*x^4+485*x^3+981*x^2+472*x-703 6524702873139300 r002 26th iterates of z^2 + 6524702891316140 m005 (2/5*Pi-1/4)/(2/3*2^(1/2)+3/5) 6524702895993119 a003 -1+2*cos(2/27*Pi)+cos(10/21*Pi)-cos(2/21*Pi) 6524702914408132 a007 Real Root Of -723*x^4+345*x^3-515*x^2+768*x-48 6524702918171917 a007 Real Root Of 969*x^4+240*x^3-344*x^2-200*x-93 6524702920909376 m005 (1/2*Catalan+3/5)/(7/8*exp(1)-4) 6524702926155058 m001 (Shi(1)-Zeta(5))/(Grothendieck+MertensB3) 6524702936317839 a007 Real Root Of 69*x^4-439*x^3+553*x^2+432*x-88 6524702936476696 a007 Real Root Of 651*x^4+236*x^3+578*x^2-528*x-643 6524702993492538 l006 ln(1292/2481) 6524702999381842 m005 (1/2*5^(1/2)+7/11)/(4/5*5^(1/2)+9/10) 6524703018732446 s001 sum(exp(-3*Pi/5)^n*A290145[n],n=1..infinity) 6524703023789170 r005 Im(z^2+c),c=-7/10+11/208*I,n=33 6524703047648931 a007 Real Root Of -451*x^4+607*x^3-443*x^2+512*x+773 6524703069655240 m001 (ln(3)-GaussKuzminWirsing)/(Kac+Lehmer) 6524703075821445 m001 Tribonacci/(FellerTornier-Pi) 6524703083568305 a007 Real Root Of -457*x^4+613*x^3+476*x^2+79*x+102 6524703099447177 a007 Real Root Of 231*x^4-717*x^3+931*x^2+655*x-210 6524703103423667 m005 (1/2*2^(1/2)+5/8)/(5/7*5^(1/2)+4/9) 6524703110555811 m001 (cos(1)+GAMMA(7/12))/(FeigenbaumC+Totient) 6524703116455445 a007 Real Root Of 516*x^4+511*x^3+119*x^2-956*x-626 6524703124307651 m001 1/Ei(1)^2*Robbin/ln(sin(Pi/5))^2 6524703146636054 m001 1/FransenRobinson/ln(Artin)^2*sqrt(Pi) 6524703155921414 m005 (1/3*3^(1/2)+1/2)/(1/9*5^(1/2)-1/12) 6524703157017823 m005 (1/2*3^(1/2)-3/10)/(109/154+1/14*5^(1/2)) 6524703181229822 m001 Bloch^(ln(3)*polylog(4,1/2)) 6524703188509551 a003 sin(Pi*7/61)/cos(Pi*7/22) 6524703207853691 p004 log(36107/18803) 6524703243298353 m001 Trott^2/TreeGrowth2nd*ln(GAMMA(1/12)) 6524703271988651 m001 Lehmer/FeigenbaumDelta/DuboisRaymond 6524703275949414 a005 (1/cos(51/224*Pi))^64 6524703283875822 g001 GAMMA(5/8,27/67) 6524703284971458 a007 Real Root Of 709*x^4-419*x^3-981*x^2-600*x+797 6524703297037247 l006 ln(4850/5177) 6524703321171480 m009 (5/6*Psi(1,1/3)-1/2)/(2*Psi(1,2/3)+6) 6524703329790076 m001 1/ln(TwinPrimes)*Cahen^2*cos(Pi/5)^2 6524703331755300 m001 HeathBrownMoroz/(gamma+3^(1/3)) 6524703332042970 r005 Re(z^2+c),c=11/94+33/37*I,n=3 6524703334352978 h001 (-7*exp(-2)+5)/(-8*exp(2)-3) 6524703351929158 r002 22th iterates of z^2 + 6524703355507832 r002 41i'th iterates of 2*x/(1-x^2) of 6524703364212271 a001 144/710647*843^(6/7) 6524703371841068 r005 Re(z^2+c),c=-91/102+11/57*I,n=64 6524703378186340 a007 Real Root Of -88*x^4-664*x^3-731*x^2-997*x-336 6524703426023042 m001 (ln(gamma)+BesselJ(1,1))/(Cahen+MertensB2) 6524703433922996 r009 Re(z^3+c),c=-3/5+28/31*I,n=2 6524703448682765 a007 Real Root Of -121*x^4-692*x^3+492*x^2-974*x-221 6524703465080345 a007 Real Root Of -913*x^4+528*x^3-174*x^2+484*x+702 6524703482414850 m001 exp(OneNinth)^2*GaussKuzminWirsing/gamma 6524703492141721 r009 Im(z^3+c),c=-41/110+18/29*I,n=46 6524703532142473 g002 -Psi(6/11)-Psi(9/10)-Psi(4/7)-Psi(3/7) 6524703579169532 a007 Real Root Of -782*x^4+628*x^3+495*x^2+735*x+585 6524703593804802 a007 Real Root Of -141*x^4-912*x^3+139*x^2+526*x-268 6524703598966898 m004 -5+Csch[Sqrt[5]*Pi]-ProductLog[Sqrt[5]*Pi] 6524703599622163 m005 (1/2*2^(1/2)+9/11)/(11/12*3^(1/2)+3/4) 6524703600374615 m004 -5+2/E^(Sqrt[5]*Pi)-ProductLog[Sqrt[5]*Pi] 6524703600699926 m005 (1/2*Pi-1/2)/(3^(1/2)-1/11) 6524703601782331 m004 -5-ProductLog[Sqrt[5]*Pi]+Sech[Sqrt[5]*Pi] 6524703613260270 r005 Re(z^2+c),c=-7/9+43/117*I,n=5 6524703613319445 v002 sum(1/(2^n+(6*n^2+21*n+6)),n=1..infinity) 6524703626446993 a007 Real Root Of -639*x^4+576*x^3-442*x^2-49*x+432 6524703649735787 m005 (1/2*exp(1)-11/12)/(1/10*5^(1/2)+5/11) 6524703683723081 p003 LerchPhi(1/256,4,37/187) 6524703692713120 a007 Real Root Of 747*x^4-244*x^3+973*x^2-473*x-926 6524703745774711 r005 Im(z^2+c),c=-4/17+17/20*I,n=12 6524703765710872 l006 ln(9/6136) 6524703798447591 a001 6/726103*1346269^(26/55) 6524703800590483 a007 Real Root Of -845*x^4-308*x^3-859*x^2-74*x+385 6524703813239371 a007 Real Root Of -126*x^4+786*x^3-667*x^2+977*x-549 6524703818823841 m001 (-ln(2+3^(1/2))+Stephens)/(arctan(1/2)-gamma) 6524703827089500 m001 exp(GAMMA(1/6))^2/BesselJ(1,1)/cosh(1)^2 6524703863158518 r009 Im(z^3+c),c=-2/9+17/24*I,n=29 6524703871434736 l006 ln(4591/8816) 6524703887197180 m001 exp(Kolakoski)/GaussKuzminWirsing^2*exp(1) 6524703888375753 m001 BesselI(0,1)*GaussKuzminWirsing-Zeta(5) 6524703912855604 r005 Im(z^2+c),c=35/122+5/13*I,n=3 6524703950962001 a007 Real Root Of 192*x^4-357*x^3-147*x^2+255*x+95 6524703953273097 m005 (1/3*2^(1/2)-1/12)/(5/11*gamma-6/7) 6524703955604348 m001 (GlaisherKinkelin+Gompertz)/(5^(1/2)+Cahen) 6524703965188749 m005 (1/3*5^(1/2)-2/9)/(1/9*Catalan+7/10) 6524704001357492 a007 Real Root Of -61*x^4-534*x^3-930*x^2-170*x+708 6524704020040867 a001 144/1149851*843^(13/14) 6524704020103079 r005 Im(z^2+c),c=-79/70+2/25*I,n=15 6524704024449440 r005 Im(z^2+c),c=-11/10+8/103*I,n=34 6524704040905085 m001 ln(5)^(5^(1/2))*ln(5)^Niven 6524704042259792 r005 Re(z^2+c),c=-5/29+40/57*I,n=27 6524704049793339 p004 log(36637/19079) 6524704080887671 m001 1/GAMMA(7/24)/ln(RenyiParking)^2/sin(Pi/5) 6524704097727271 r005 Im(z^2+c),c=-15/26+7/57*I,n=23 6524704105781480 m006 (Pi+5/6)/(1/6*ln(Pi)-4/5) 6524704117984671 r005 Re(z^2+c),c=7/110+19/46*I,n=22 6524704129527076 a007 Real Root Of 171*x^4+11*x^3-362*x^2-880*x-448 6524704184261977 g006 Psi(1,1/10)+Psi(1,1/7)-Psi(1,5/9)-Psi(1,1/9) 6524704215266580 l006 ln(3299/6335) 6524704219817660 a007 Real Root Of -49*x^4+567*x^3+672*x^2+772*x+384 6524704222239017 s001 sum(1/10^(n-1)*A274071[n]/n!^2,n=1..infinity) 6524704226915555 m005 (1/2*Catalan-4/7)/(3/4*exp(1)-3/10) 6524704271526435 r005 Im(z^2+c),c=9/25+13/36*I,n=7 6524704287930520 a007 Real Root Of 699*x^4+994*x^3+865*x^2-434*x-502 6524704309353771 m001 1/exp(Zeta(3))^2*PrimesInBinary^2/cosh(1)^2 6524704316867297 a007 Real Root Of 729*x^4+736*x^3+247*x^2-280*x+17 6524704319475236 s002 sum(A222465[n]/(n*2^n-1),n=1..infinity) 6524704321144569 a001 13/844*199^(3/11) 6524704324166509 m001 (DuboisRaymond+MertensB3)/(Zeta(5)+Conway) 6524704331233395 a003 sin(Pi*4/87)+sin(Pi*9/53) 6524704359284205 m001 exp(Khintchine)^2*ErdosBorwein^2*Trott^2 6524704364963375 r005 Re(z^2+c),c=-13/18+10/119*I,n=5 6524704366401038 r005 Im(z^2+c),c=-11/17+2/31*I,n=17 6524704391583134 a007 Real Root Of -31*x^4-104*x^3+655*x^2+56*x-224 6524704397098093 m005 (1/2*Pi-11/12)/(7/11*exp(1)-8/11) 6524704422215652 m005 (1/3*2^(1/2)+1/7)/(7/10*Zeta(3)+1/10) 6524704426098952 s002 sum(A119580[n]/(n*exp(pi*n)-1),n=1..infinity) 6524704448971844 r005 Im(z^2+c),c=-53/48+5/64*I,n=40 6524704453020689 r005 Re(z^2+c),c=-3/74+23/28*I,n=17 6524704454162042 m001 ln(Sierpinski)^2/MadelungNaCl^2/GAMMA(5/12)^2 6524704482288979 r009 Re(z^3+c),c=-31/52+17/59*I,n=6 6524704482759225 a001 141*64079^(33/34) 6524704508832205 a007 Real Root Of -29*x^4+677*x^3-164*x^2+173*x+376 6524704521166276 a007 Real Root Of 151*x^4-853*x^3-689*x^2-227*x+651 6524704522560154 m002 -3-Pi^5+Pi^6+Tanh[Pi]/Pi^2 6524704528184086 a001 9/4*1597^(21/46) 6524704529640529 a007 Real Root Of 881*x^4-390*x^3+75*x^2+780*x+209 6524704546152080 s002 sum(A122767[n]/(n^2*pi^n+1),n=1..infinity) 6524704549855751 s002 sum(A122767[n]/(n^2*pi^n-1),n=1..infinity) 6524704558039437 h001 (5/11*exp(1)+5/6)/(3/8*exp(2)+2/5) 6524704565270940 m005 (1/2*Pi-5/6)/(6/11*Pi-7/12) 6524704578704788 a007 Real Root Of 522*x^4-828*x^3+189*x^2-981*x+695 6524704580628684 r005 Re(z^2+c),c=-53/66+29/47*I,n=3 6524704581069717 m005 (1/3*3^(1/2)+1/10)/(19/154+9/22*5^(1/2)) 6524704594243561 a001 377/817138163596*2^(1/2) 6524704620599203 a007 Real Root Of -744*x^4+737*x^3-988*x^2+35*x+783 6524704651708364 m001 ln(GAMMA(5/12))^2/(3^(1/3))^2*cosh(1)^2 6524704652013518 m005 (1/4*5^(1/2)+3/4)/(5/6*5^(1/2)+1/7) 6524704675846739 a004 Fibonacci(12)*Lucas(14)/(1/2+sqrt(5)/2)^30 6524704690483790 a007 Real Root Of -256*x^4+456*x^3-34*x^2+695*x+641 6524704703466288 r005 Re(z^2+c),c=-13/31+31/54*I,n=38 6524704712675775 r009 Im(z^3+c),c=-25/118+33/35*I,n=40 6524704719832526 b008 3-(18*Sqrt[7])/5 6524704727157346 m001 Ei(1)/exp(MadelungNaCl)^2/log(1+sqrt(2)) 6524704746040525 a007 Real Root Of -701*x^4+55*x^3-86*x^2+512*x+513 6524704752940362 m005 (1/3*Catalan-2/7)/(-70/99+2/11*5^(1/2)) 6524704764459548 m005 (1/2*Pi-1/7)/(7/10*exp(1)+2/7) 6524704764948498 r005 Re(z^2+c),c=-33/74+11/18*I,n=3 6524704765478033 a007 Real Root Of 125*x^4+667*x^3-832*x^2+965*x+443 6524704777706579 m001 (Ei(1)-3^(1/3))/(GAMMA(7/12)-GaussAGM) 6524704784764037 a007 Real Root Of 846*x^4+983*x^3+722*x^2-163*x-294 6524704813444452 a007 Real Root Of -678*x^4+123*x^3-447*x^2-117*x+271 6524704908937863 r005 Im(z^2+c),c=3/11+11/24*I,n=3 6524704912364882 a003 cos(Pi*9/80)-cos(Pi*42/103) 6524704914798280 m005 (-17/28+1/4*5^(1/2))/(5/7*Catalan+1/12) 6524704915277408 r005 Im(z^2+c),c=-39/46+1/24*I,n=29 6524704970225079 a007 Real Root Of -552*x^4+383*x^3-605*x^2-541*x+111 6524704983149765 r009 Re(z^3+c),c=-13/23+19/56*I,n=5 6524704985564718 a001 24476*75025^(26/37) 6524704985637229 a007 Real Root Of 43*x^4-870*x^3-162*x^2-856*x-739 6524705001779735 l006 ln(2007/3854) 6524705002733232 r002 5th iterates of z^2 + 6524705022020742 r005 Re(z^2+c),c=-19/48+19/29*I,n=9 6524705023200170 r005 Im(z^2+c),c=-2/31+11/15*I,n=8 6524705025323232 m001 Ei(1,1)^exp(1/exp(1))-LandauRamanujan 6524705030636228 m005 (1/3*Pi+1/6)/(9/11*exp(1)-4/11) 6524705044191649 r004 Im(z^2+c),c=9/20+7/17*I,z(0)=exp(3/8*I*Pi),n=3 6524705065061634 a007 Real Root Of -534*x^4+354*x^3+274*x^2+784*x+590 6524705072270407 a003 sin(Pi*5/39)/cos(Pi*23/78) 6524705091971352 a007 Real Root Of -954*x^4+685*x^3-28*x^2+429*x+655 6524705102864924 a007 Real Root Of 116*x^4-251*x^3+322*x^2-739*x-710 6524705141148127 m006 (4/5*Pi+2)/(3*exp(Pi)-1/4) 6524705157860788 a007 Real Root Of -299*x^4-662*x^3-400*x^2+917*x+6 6524705177184057 b008 60+ArcSinh[95] 6524705222094137 a007 Real Root Of -28*x^4-258*x^3-577*x^2-695*x-889 6524705253198888 r005 Re(z^2+c),c=-1/94+25/32*I,n=25 6524705298838200 a003 cos(Pi*22/111)*sin(Pi*19/64) 6524705301872940 a007 Real Root Of -699*x^4+840*x^3-80*x^2+229*x-222 6524705304900512 m001 (-ln(2)+Zeta(1,2))/(exp(Pi)+Si(Pi)) 6524705311866514 m001 (Robbin+Thue)/(Zeta(3)+GAMMA(5/6)) 6524705344699187 a007 Real Root Of 381*x^4-441*x^3-824*x^2-815*x+936 6524705348569023 a007 Real Root Of -19*x^4-16*x^3+597*x^2-673*x+184 6524705364660184 a007 Real Root Of 678*x^4-825*x^3+999*x^2-211*x-915 6524705377077021 b008 -7+Sech[11/8] 6524705400237535 a007 Real Root Of -387*x^4+770*x^3+400*x^2-418*x-159 6524705400981931 b008 6+5*ArcCsc[Pi]^2 6524705418410575 m001 KhintchineLevy*FeigenbaumAlpha^2*ln(Catalan) 6524705462550959 m001 (gamma(2)-Riemann3rdZero)/(Pi+ln(2)) 6524705463172852 a003 cos(Pi*1/77)*cos(Pi*32/117) 6524705491778147 m001 (Zeta(5)-HardHexagonsEntropy)/ln(gamma) 6524705512682678 m004 (-125*Pi)/4-Cosh[Sqrt[5]*Pi]+4*Log[Sqrt[5]*Pi] 6524705515187759 a007 Real Root Of -533*x^4-604*x^3-746*x^2+663*x+679 6524705528838325 a007 Real Root Of 941*x^4+439*x^3+674*x^2-977*x-973 6524705537164408 a007 Real Root Of 983*x^4-845*x^3-578*x^2-221*x-311 6524705550459525 l006 ln(4729/9081) 6524705565287518 r005 Im(z^2+c),c=-23/18+7/249*I,n=60 6524705590931792 r005 Im(z^2+c),c=-19/18+31/110*I,n=12 6524705620737020 m001 (gamma(3)-gamma)/QuadraticClass 6524705626684053 a007 Real Root Of 402*x^4-862*x^3+170*x^2-766*x+594 6524705645431084 m008 (2*Pi^3+4)/(1/3*Pi^5-5/6) 6524705682295717 r005 Re(z^2+c),c=-35/64+28/47*I,n=22 6524705694494692 m001 1/FeigenbaumB/ln(LandauRamanujan)*Zeta(1/2) 6524705694837098 m001 1/2*(2^(1/3)*TwinPrimes+gamma(2))*2^(2/3) 6524705733037207 a007 Real Root Of -109*x^4+701*x^3-376*x^2-502*x+47 6524705766671804 a001 10946/7*9349^(31/34) 6524705780346003 m001 1/ln(cos(Pi/12))^2*GAMMA(5/12)^2/gamma 6524705785835904 m001 MinimumGamma^exp(Pi)+OrthogonalArrays 6524705787335509 a001 8/321*322^(1/6) 6524705805471417 r002 23th iterates of z^2 + 6524705828896170 a007 Real Root Of -76*x^4+615*x^3+260*x^2-6*x+70 6524705838261835 r005 Re(z^2+c),c=-65/62+4/39*I,n=4 6524705850683317 m001 ln(2+3^(1/2))/(Chi(1)-Riemann2ndZero) 6524705861034102 r005 Re(z^2+c),c=-89/122+19/54*I,n=3 6524705863199301 m001 (ln(2^(1/2)+1)+Lehmer)/(exp(Pi)+ln(gamma)) 6524705876331782 a007 Real Root Of -516*x^4-629*x^3-902*x^2+385*x+554 6524705924183589 m001 (Zeta(5)-GAMMA(3/4))/(arctan(1/2)-ZetaP(3)) 6524705925108935 a007 Real Root Of 350*x^4-560*x^3-415*x^2-421*x-317 6524705933484688 a007 Real Root Of -437*x^4+563*x^3-866*x^2+605*x+999 6524705934060675 m004 -Cos[Sqrt[5]*Pi]^2+(15*Csc[Sqrt[5]*Pi])/Pi 6524705946063188 a007 Real Root Of 602*x^4-495*x^3-589*x^2-996*x+929 6524705953641195 a007 Real Root Of 428*x^4-499*x^3+352*x^2-764*x-5 6524705955015104 l006 ln(2722/5227) 6524705989698868 m001 (-Ei(1)+TreeGrowth2nd)/(Chi(1)-exp(Pi)) 6524705990978973 r009 Re(z^3+c),c=-6/25+42/55*I,n=19 6524705993750020 a007 Real Root Of 293*x^4+544*x^3+968*x^2-556*x+32 6524706014431302 m001 (MertensB3-Robbin)/(Stephens+ZetaP(2)) 6524706017231013 m001 (LambertW(1)-Si(Pi))/(LaplaceLimit+Mills) 6524706065410332 r005 Im(z^2+c),c=-12/17+6/37*I,n=19 6524706069350190 m001 -OneNinth/(GAMMA(1/12)+5) 6524706072130174 m001 (Weierstrass+ZetaP(2))/(GAMMA(7/12)-OneNinth) 6524706084838839 r009 Im(z^3+c),c=-1/118+57/59*I,n=20 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=22 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=24 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=26 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=28 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=30 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=32 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=48 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=50 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=52 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=54 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=56 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=58 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=60 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=64 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=46 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=44 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=42 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=40 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=38 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=36 6524706084838840 r009 Im(z^3+c),c=-1/118+57/59*I,n=34 6524706084838966 r009 Im(z^3+c),c=-1/118+57/59*I,n=18 6524706084845667 r009 Im(z^3+c),c=-1/118+57/59*I,n=16 6524706085074445 r009 Im(z^3+c),c=-1/118+57/59*I,n=14 6524706091245364 r009 Im(z^3+c),c=-1/118+57/59*I,n=12 6524706100384229 r005 Re(z^2+c),c=-19/56+32/51*I,n=10 6524706108132273 r005 Re(z^2+c),c=1/5+12/37*I,n=28 6524706110609851 a007 Real Root Of 196*x^4-213*x^3-533*x^2-344*x+475 6524706123807256 a003 sin(Pi*23/104)/sin(Pi*39/89) 6524706138913196 m008 (1/6*Pi^6-1/3)/(4/5*Pi^5+1/4) 6524706157186771 m001 (Zeta(1,-1)-GAMMA(19/24))/(Backhouse+Gompertz) 6524706160579318 a007 Real Root Of -881*x^4+858*x^3-892*x^2-277*x+597 6524706165526254 m001 (GAMMA(19/24)+3)/(GAMMA(5/24)+2) 6524706195225121 a007 Real Root Of -903*x^4-741*x^3+134*x^2+877*x+473 6524706224143332 r009 Im(z^3+c),c=-1/118+57/59*I,n=10 6524706225397288 r005 Im(z^2+c),c=-1/38+14/15*I,n=3 6524706230548233 m001 (Paris-ZetaQ(3))/(Ei(1)-polylog(4,1/2)) 6524706231028905 m005 (1/2*gamma-2/11)/(4/9*exp(1)+3/7) 6524706231187784 m002 -Pi^3+Pi^4-Log[Pi]-ProductLog[Pi]/Pi^4 6524706239980286 r004 Im(z^2+c),c=1/11+1/7*I,z(0)=exp(7/24*I*Pi),n=3 6524706253277795 m001 FeigenbaumD^Totient/(Robbin^Totient) 6524706259239695 r002 23th iterates of z^2 + 6524706261856472 m001 (2^(1/3)+Zeta(5))/(-BesselI(0,2)+Tetranacci) 6524706273568628 r009 Re(z^3+c),c=-13/118+24/41*I,n=35 6524706284504008 r005 Re(z^2+c),c=-111/122+7/47*I,n=26 6524706297846010 l006 ln(6437/6871) 6524706303811087 a001 3/11*29^(33/35) 6524706314075122 r009 Re(z^3+c),c=-13/118+24/41*I,n=41 6524706343733691 m001 Zeta(1,2)^2*GAMMA(5/6)^2/exp(cos(1)) 6524706358288739 r005 Im(z^2+c),c=-11/56+24/37*I,n=53 6524706376402985 a007 Real Root Of -55*x^4-413*x^3-315*x^2+125*x-813 6524706403656895 h001 (-8*exp(1/3)+8)/(-3*exp(-3)+5) 6524706406232662 m001 (GaussAGM+Porter)/(exp(1)+AlladiGrinstead) 6524706471600972 r002 18th iterates of z^2 + 6524706472613734 a007 Real Root Of -780*x^4+547*x^3-581*x^2+609*x+938 6524706481677093 m005 (1/2*3^(1/2)-1/10)/(3/4*3^(1/2)-1/8) 6524706495308469 r005 Im(z^2+c),c=-45/56+29/53*I,n=4 6524706504214543 p003 LerchPhi(1/2,1,463/190) 6524706511262716 a007 Real Root Of 46*x^4+166*x^3-872*x^2+52*x+203 6524706511646830 l006 ln(3437/6600) 6524706524706524 k006 concat of cont frac of 6524706524706524 q001 239/3663 6524706532789551 a007 Real Root Of -588*x^4+923*x^3+745*x^2-15*x+36 6524706534299039 a007 Real Root Of 544*x^4+755*x^3+638*x^2-856*x-719 6524706548394278 r005 Re(z^2+c),c=-25/34+23/117*I,n=5 6524706559282298 r005 Re(z^2+c),c=-6/7+23/87*I,n=13 6524706575955718 a003 cos(Pi*46/117)-sin(Pi*47/107) 6524706580096538 r005 Re(z^2+c),c=-11/12+9/32*I,n=61 6524706688905123 a007 Real Root Of -933*x^4+151*x^3-79*x^2+94*x+306 6524706690008352 a007 Real Root Of -471*x^4+867*x^3+134*x^2+550*x+628 6524706700311274 a007 Real Root Of -96*x^4+921*x^3+158*x^2+753*x-797 6524706733389163 a007 Real Root Of -531*x^4+852*x^3-491*x^2+427*x-210 6524706811369959 a001 47*(1/2*5^(1/2)+1/2)^25*322^(13/17) 6524706811787233 m001 Lehmer-arctan(1/2)*Khinchin 6524706820860375 r009 Re(z^3+c),c=-61/114+5/34*I,n=37 6524706849953628 a001 2207*121393^(5/54) 6524706865615785 r005 Re(z^2+c),c=-15/16+4/51*I,n=4 6524706869172508 m001 Zeta(1,-1)+LandauRamanujan^RenyiParking 6524706876567708 l006 ln(4152/7973) 6524706902882870 m005 (1/2*3^(1/2)-1/2)/(3/11*5^(1/2)+5) 6524706912348717 m001 (exp(1/Pi)+FeigenbaumKappa)/(2^(1/3)-sin(1)) 6524706934474483 a007 Real Root Of -394*x^4+456*x^3+551*x^2+810*x+492 6524706958349239 r009 Re(z^3+c),c=-65/94+5/22*I,n=3 6524706960612913 r005 Im(z^2+c),c=23/62+15/58*I,n=42 6524706986321839 a001 47*34^(4/43) 6524707064340972 a007 Real Root Of 944*x^4-399*x^3-220*x^2-444*x+30 6524707079059813 m001 ln(sin(1))*Salem^2*sqrt(1+sqrt(3))^2 6524707132307755 m001 (Shi(1)+MertensB1)/(Mills+TravellingSalesman) 6524707134269171 l006 ln(4867/9346) 6524707136588816 r002 50th iterates of z^2 + 6524707146042042 r005 Im(z^2+c),c=-3/46+24/35*I,n=35 6524707162073885 m005 (1/2*Catalan-2/9)/(5*gamma+8/11) 6524707163162244 a001 843/956722026041*832040^(6/19) 6524707176143703 a007 Real Root Of -82*x^4-658*x^3-792*x^2+18*x-324 6524707203409096 a007 Real Root Of -118*x^4-795*x^3-272*x^2-661*x+299 6524707257074103 a007 Real Root Of -390*x^4+265*x^3+408*x^2+842*x-726 6524707264329212 m001 (Backhouse-Chi(1))/(Bloch+PlouffeB) 6524707278458533 r002 4th iterates of z^2 + 6524707286505480 p001 sum((-1)^n/(539*n+153)/(128^n),n=0..infinity) 6524707287936903 r005 Im(z^2+c),c=-43/36+8/57*I,n=54 6524707311986770 p003 LerchPhi(1/1024,6,109/149) 6524707332054433 a007 Real Root Of -148*x^4+935*x^3+781*x^2+708*x+416 6524707378150143 m005 (1/2*5^(1/2)-3/7)/(5/12*5^(1/2)+1/8) 6524707386384181 m001 Landau^HardyLittlewoodC5*Chi(1) 6524707400947504 a007 Real Root Of -135*x^4-863*x^3+117*x^2+51*x+306 6524707403485707 r005 Re(z^2+c),c=11/32+13/20*I,n=9 6524707412223667 q001 2007/3076 6524707441859965 r005 Re(z^2+c),c=-15/32+35/64*I,n=47 6524707448656665 m001 (1+BesselI(1,2))/(GAMMA(17/24)+Khinchin) 6524707467225238 r005 Im(z^2+c),c=-2/3+22/161*I,n=52 6524707478672333 m001 (arctan(1/2)+Landau)/(QuadraticClass+Robbin) 6524707498231208 r005 Re(z^2+c),c=47/122+6/41*I,n=14 6524707524951029 m001 exp(Trott)^2/ErdosBorwein*GAMMA(23/24) 6524707534821162 a007 Real Root Of 996*x^4+247*x^3+808*x^2-250*x-619 6524707535140433 a007 Real Root Of 79*x^4-910*x^3+590*x^2+146*x-423 6524707548634529 h001 (3/5*exp(2)+1/7)/(9/10*exp(2)+4/11) 6524707549170775 m001 Pi/(ln(2)/ln(10)+Zeta(1,-1)*GAMMA(7/12)) 6524707568805120 m001 (GAMMA(19/24)*Robbin-Trott)/GAMMA(19/24) 6524707569091437 a001 233/39603*199^(5/11) 6524707575043335 r002 24th iterates of z^2 + 6524707598158368 r005 Re(z^2+c),c=-1/17+17/22*I,n=2 6524707604433129 m001 LaplaceLimit^TravellingSalesman*ZetaQ(3) 6524707612109926 a003 cos(Pi*31/77)-sin(Pi*29/72) 6524707613326314 a007 Real Root Of -117*x^4-639*x^3+858*x^2+152*x-983 6524707634942544 a003 cos(Pi*7/113)*sin(Pi*22/95) 6524707648577040 a001 514229/521*7^(33/34) 6524707648995785 r005 Re(z^2+c),c=5/36+17/44*I,n=50 6524707671013575 a007 Real Root Of -49*x^4+454*x^3+571*x^2+562*x-727 6524707678034297 m001 (Lehmer+MadelungNaCl)/(2^(1/2)-GAMMA(11/12)) 6524707699320365 s001 sum(exp(-2*Pi/3)^n*A080169[n],n=1..infinity) 6524707711557881 m001 (BesselI(0,2)-Niven)/(Zeta(3)-arctan(1/3)) 6524707711565637 r002 8th iterates of z^2 + 6524707711582173 m006 (1/6*ln(Pi)+3)/(5*ln(Pi)-5/6) 6524707740644938 p004 log(27953/41) 6524707763963753 p003 LerchPhi(1/12,5,83/48) 6524707770066355 m001 (MasserGramain+ZetaP(3))/(ln(2)+BesselI(1,1)) 6524707781553303 r005 Im(z^2+c),c=-19/18+17/234*I,n=12 6524707790477965 m001 (1-3^(1/3))/(-GAMMA(17/24)+ReciprocalLucas) 6524707799165999 a001 2/317811*144^(8/17) 6524707805292100 r005 Im(z^2+c),c=5/16+25/59*I,n=15 6524707823807752 s002 sum(A230098[n]/((exp(n)+1)/n),n=1..infinity) 6524707827279300 m001 1/GAMMA(1/12)^2/exp(BesselK(0,1))*GAMMA(1/4)^2 6524707839584545 m001 (-Bloch+Conway)/(gamma+ArtinRank2) 6524707840195223 a007 Real Root Of -198*x^4+891*x^3-703*x^2-893*x 6524707844474476 a007 Real Root Of -703*x^4-249*x^3-845*x^2-213*x+279 6524707845176054 h001 (-4*exp(1/3)-4)/(-6*exp(2/3)-3) 6524707846275708 m001 (gamma(1)+ZetaQ(3))^FeigenbaumC 6524707866847669 a007 Real Root Of 585*x^4-948*x^3+726*x^2-53*x-713 6524707887788330 a005 (1/cos(1/21*Pi))^1602 6524707905089732 r005 Im(z^2+c),c=-61/102+7/58*I,n=48 6524707910624373 a005 (1/sin(83/225*Pi))^496 6524707915423395 a007 Real Root Of 767*x^4-437*x^3-109*x^2-328*x-428 6524707924783290 a007 Real Root Of 95*x^4-466*x^3+572*x^2-458*x-689 6524707925073565 a007 Real Root Of -938*x^4+419*x^3-247*x^2-197*x+263 6524707936495699 m001 LandauRamanujan*AlladiGrinstead^RenyiParking 6524707941043084 m001 (MertensB2+Sarnak)/(2^(1/2)-ln(Pi)) 6524707981163647 a007 Real Root Of -510*x^4+793*x^3+348*x^2+433*x+27 6524707987951048 a007 Real Root Of 725*x^4-490*x^3-317*x^2-344*x-357 6524707990028798 a007 Real Root Of -491*x^4+465*x^3+312*x^2+587*x-556 6524708035898630 a007 Real Root Of 228*x^4-596*x^3+426*x^2-697*x-843 6524708046877207 m001 QuadraticClass/(GolombDickman-Riemann1stZero) 6524708047563716 r005 Im(z^2+c),c=7/110+37/58*I,n=58 6524708062299012 a007 Real Root Of -456*x^4+229*x^3+908*x^2+600*x-759 6524708066389103 r002 24th iterates of z^2 + 6524708068450571 a007 Real Root Of 422*x^4+169*x^3-623*x^2-593*x-36 6524708102372447 a007 Real Root Of 879*x^4-333*x^3-300*x^2-463*x+363 6524708111644882 l006 ln(8024/8565) 6524708114206188 m001 1/Zeta(5)^2/ln(GAMMA(7/24))^3 6524708125295882 r009 Re(z^3+c),c=-21/58+18/25*I,n=10 6524708137244097 m001 exp(sin(1))*Zeta(1,2)*sqrt(3)^2 6524708145188469 m005 (1/2*3^(1/2)+1/8)/(7/11*3^(1/2)+5/12) 6524708151542086 a007 Real Root Of -651*x^4+67*x^3+237*x^2+425*x+313 6524708162516149 a007 Real Root Of 399*x^4-938*x^3-155*x^2-132*x-353 6524708217633005 r009 Im(z^3+c),c=-1/118+57/59*I,n=8 6524708267174386 r005 Im(z^2+c),c=5/44+34/59*I,n=12 6524708268099482 s002 sum(A182039[n]/(pi^n+1),n=1..infinity) 6524708288590290 a007 Real Root Of -118*x^4-695*x^3+362*x^2-757*x+459 6524708289485987 a003 sin(Pi*19/108)/cos(Pi*17/84) 6524708298200984 a005 (1/cos(17/191*Pi))^1268 6524708299736653 m002 -3+Pi^(-2)-Pi^5+Pi^6 6524708319852894 r005 Im(z^2+c),c=-5/78+35/51*I,n=41 6524708384867639 a007 Real Root Of 340*x^4-384*x^3+951*x^2+37*x-549 6524708410561506 b008 Cosh[165/23] 6524708410561506 l001 cosh(165/23) 6524708410561506 l004 cosh(165/23) 6524708443832542 m006 (3/4*Pi+1/3)/(2/3/Pi+1/5) 6524708458413260 a007 Real Root Of -778*x^4+455*x^3-598*x^2+115*x+597 6524708474762479 m001 1/BesselK(0,1)^2/ln(Paris)*GAMMA(1/3) 6524708485553665 g007 Psi(2,7/10)+Psi(2,1/3)-Psi(2,3/7)-Psi(2,1/7) 6524708604253238 m001 exp(Porter)*LaplaceLimit^2/cos(1)^2 6524708626822591 a001 29/2*4181^(21/46) 6524708630739633 l006 ln(715/1373) 6524708631318862 m005 (1/2*gamma-2/7)/(7/10*5^(1/2)-6) 6524708677855927 r005 Im(z^2+c),c=-65/64+4/59*I,n=14 6524708679012886 m001 MadelungNaCl/(exp(1/Pi)+Conway) 6524708718360787 q001 1624/2489 6524708750666714 a007 Real Root Of -741*x^4+522*x^3+579*x^2+526*x+376 6524708754796338 a007 Real Root Of 441*x^4-592*x^3+404*x^2+22*x-402 6524708755454404 a007 Real Root Of 239*x^4-570*x^3+85*x^2+12*x-230 6524708805901012 a007 Real Root Of 567*x^4+440*x^3+892*x^2+661*x+71 6524708840636597 r002 13th iterates of z^2 + 6524708845776155 r002 28th iterates of z^2 + 6524708863623119 a007 Real Root Of -278*x^4-85*x^3+636*x^2+823*x+293 6524708886578792 m005 (1/3*Zeta(3)-3/4)/(1/4*2^(1/2)+2/11) 6524708932337911 l003 KelvinKei(0,64/115) 6524708938291753 a007 Real Root Of -987*x^4-270*x^3+451*x^2+978*x+550 6524708952029302 p003 LerchPhi(1/10,3,571/227) 6524708955774055 m005 (1/2*Catalan-6/7)/(gamma-7/12) 6524708965192764 a007 Real Root Of -60*x^4+787*x^3-512*x^2+548*x+805 6524708968823354 m001 1/exp(Salem)^2*LandauRamanujan/GAMMA(11/12)^2 6524708971601747 r005 Im(z^2+c),c=-49/66+17/57*I,n=7 6524709045338368 m001 1/Riemann2ndZero*FransenRobinson/ln(Trott)^2 6524709052296679 a007 Real Root Of 911*x^4-945*x^3+933*x^2+766*x-325 6524709057176589 r002 2th iterates of z^2 + 6524709065782135 r002 26th iterates of z^2 + 6524709080089165 r005 Re(z^2+c),c=-7/10+41/155*I,n=14 6524709098174313 m001 ln(Pi)^Totient*HardyLittlewoodC3^Totient 6524709112600430 m001 (-Pi^(1/2)+Robbin)/(BesselI(0,2)-gamma) 6524709138911558 m001 (Artin-Grothendieck)/(exp(1/Pi)-BesselI(1,2)) 6524709142357097 r005 Im(z^2+c),c=-31/52+7/59*I,n=34 6524709187927916 a007 Real Root Of 625*x^4-540*x^3+117*x^2+112*x-240 6524709205772980 m001 3^(1/2)+Champernowne+FeigenbaumDelta 6524709237990781 a007 Real Root Of -948*x^4+816*x^3-699*x^2-748*x+208 6524709242266589 a003 cos(Pi*15/83)*sin(Pi*20/71) 6524709244420543 r008 a(0)=0,K{-n^6,-49-13*n^3-18*n^2+64*n} 6524709270881809 r005 Im(z^2+c),c=-4/5+39/86*I,n=3 6524709290092590 m001 (ln(3)-cos(1/12*Pi))/(BesselJ(1,1)-Cahen) 6524709324266069 r005 Im(z^2+c),c=-129/118+1/13*I,n=25 6524709339720271 r005 Im(z^2+c),c=-17/15+24/47*I,n=3 6524709345663534 a007 Real Root Of 814*x^4-585*x^3-85*x^2+176*x-159 6524709346216367 a008 Real Root of (-8+5*x+9*x^2+5*x^4) 6524709403599520 m001 Paris/(LandauRamanujan+RenyiParking) 6524709406711436 m001 (-Ei(1,1)+Artin)/(exp(Pi)-ln(gamma)) 6524709470619563 h001 (2/7*exp(1)+6/11)/(4/9*exp(1)+9/11) 6524709481268909 a001 4/21*2178309^(29/52) 6524709484586021 m005 (1/2*Pi+8/9)/(4/9*3^(1/2)+3) 6524709490252358 m001 (2^(1/3))^2*exp(Lehmer)/BesselJ(1,1) 6524709505231682 a007 Real Root Of -648*x^4+980*x^3-101*x^2+586*x+815 6524709534830619 m001 (3^(1/3)+gamma(3))/(Bloch-Khinchin) 6524709547531742 v002 sum(1/(5^n+(20*n^2-31*n+28)),n=1..infinity) 6524709551012515 r005 Im(z^2+c),c=-67/118+37/57*I,n=21 6524709552437755 a007 Real Root Of -788*x^4+919*x^3+124*x^2+933*x-774 6524709594216906 m001 (Otter-QuadraticClass)/(Totient+Tribonacci) 6524709613545376 a007 Real Root Of 73*x^4+344*x^3-840*x^2+224*x+472 6524709614811693 m001 (3^(1/3)+Zeta(1,-1))/(GolombDickman+MertensB3) 6524709617416590 m001 cos(1/12*Pi)^(2^(1/2))/(Mills^(2^(1/2))) 6524709618899589 a007 Real Root Of 53*x^4-48*x^3+976*x^2+16*x-428 6524709631058247 r005 Im(z^2+c),c=-5/48+5/64*I,n=9 6524709641476556 m005 (1/2*5^(1/2)-7/9)/(6/7*Catalan-6) 6524709655056403 h001 (-9*exp(1)+7)/(-5*exp(-2)-2) 6524709662402968 m001 1/cos(Pi/5)/exp(BesselJ(0,1))/log(1+sqrt(2)) 6524709690648562 m001 GAMMA(7/12)^Totient*PlouffeB^Totient 6524709695640998 m001 BesselI(1,1)^(StronglyCareFree/Zeta(5)) 6524709710143336 r005 Im(z^2+c),c=-13/58+9/14*I,n=10 6524709724450164 m005 (1/2*gamma-7/11)/(5*Catalan+3/4) 6524709735483752 m006 (5/6*exp(Pi)-2/5)/(3*Pi^2-2/3) 6524709784592458 a007 Real Root Of 860*x^4+572*x^3+777*x^2-946*x-945 6524709788104349 r009 Re(z^3+c),c=-7/34+47/64*I,n=49 6524709788959370 h001 (5/11*exp(2)+3/8)/(5/7*exp(2)+4/9) 6524709793995808 r002 2th iterates of z^2 + 6524709802054472 h002 exp(19^(7/10)-5^(10/9)) 6524709802054472 h007 exp(19^(7/10)-5^(10/9)) 6524709811567313 m001 (BesselJ(0,1)-FeigenbaumDelta)/(-Kac+Trott2nd) 6524709823146594 r005 Im(z^2+c),c=-11/42+3/32*I,n=14 6524709827683218 m001 ln(sin(1))^2*Porter/sin(Pi/12)^2 6524709840962784 a007 Real Root Of -196*x^4+447*x^3-796*x^2+321*x+708 6524709844117142 m001 Thue^FeigenbaumKappa*Thue^Backhouse 6524709859376381 r005 Re(z^2+c),c=-55/58+7/55*I,n=2 6524709860137045 m001 (2^(1/3))^MinimumGamma*Lehmer^MinimumGamma 6524709880200381 a003 sin(Pi*3/79)-sin(Pi*23/82) 6524709891228030 m001 Niven/ln(Conway)^2*GAMMA(13/24)^2 6524709916443081 s002 sum(A021866[n]/(exp(2*pi*n)+1),n=1..infinity) 6524709926925954 a007 Real Root Of 36*x^4-574*x^3+512*x^2-230*x-534 6524709931190785 r002 57th iterates of z^2 + 6524709939072995 r005 Im(z^2+c),c=-19/29+5/39*I,n=46 6524709957302896 r009 Im(z^3+c),c=-1/118+57/59*I,n=6 6524709958854741 s001 sum(exp(-2*Pi)^n*A021866[n],n=1..infinity) 6524709959170657 s002 sum(A021865[n]/(exp(2*pi*n)+1),n=1..infinity) 6524709974152186 a007 Real Root Of -773*x^4+812*x^3-891*x^2+138*x+835 6524709982547801 m001 cos(1/5*Pi)^GAMMA(11/12)/GAMMA(3/4) 6524709982547801 m001 cos(Pi/5)^GAMMA(11/12)/GAMMA(3/4) 6524710001266401 s002 sum(A021866[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710001582317 s001 sum(exp(-2*Pi)^n*A021865[n],n=1..infinity) 6524710009459157 m001 PlouffeB^Totient/(PlouffeB^BesselJ(0,1)) 6524710025837807 m001 FeigenbaumB^2/exp(Backhouse)^2/gamma 6524710034508213 a007 Real Root Of -98*x^4-727*x^3-623*x^2-190*x+956 6524710043993977 s002 sum(A021865[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710044786881 s002 sum(A049784[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710046901539 l006 ln(5143/9876) 6524710053172439 a007 Real Root Of -523*x^4+452*x^3+949*x^2-110*x-363 6524710064607745 m001 (-ln(gamma)+OneNinth)/(LambertW(1)-gamma) 6524710081153869 m001 (-Porter+ZetaP(4))/(FeigenbaumC-exp(Pi)) 6524710086167591 s002 sum(A021863[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710087198540 s001 sum(exp(-2*Pi)^n*A049784[n],n=1..infinity) 6524710126465932 a007 Real Root Of 545*x^4-364*x^3+437*x^2+757*x+108 6524710128579250 s001 sum(exp(-2*Pi)^n*A021863[n],n=1..infinity) 6524710128895314 s002 sum(A021862[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710128963234 m001 (GAMMA(7/12)-sin(1))/(Cahen+HardyLittlewoodC5) 6524710129610200 s002 sum(A049784[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710129927010 s002 sum(A188067[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710131380335 r009 Im(z^3+c),c=-11/20+7/19*I,n=9 6524710132840391 r009 Re(z^3+c),c=-37/58+23/45*I,n=24 6524710154102481 r002 30th iterates of z^2 + 6524710162280347 a001 7/1597*4181^(3/5) 6524710170990910 s002 sum(A021863[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710171306974 s001 sum(exp(-2*Pi)^n*A021862[n],n=1..infinity) 6524710171545317 s002 sum(A021861[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710172338669 s001 sum(exp(-2*Pi)^n*A188067[n],n=1..infinity) 6524710192697646 m001 (PrimesInBinary+Thue)/(2^(1/2)-ln(5)) 6524710207503021 a001 377/199*322^(19/31) 6524710213718634 s002 sum(A021862[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710213798871 s002 sum(A115096[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710213832574 a001 317811/47*39603^(37/57) 6524710213956976 s001 sum(exp(-2*Pi)^n*A021861[n],n=1..infinity) 6524710214750329 s002 sum(A188067[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710214751808 s001 sum(exp(-2*Pi)^(n-1)*A161787[n],n=1..infinity) 6524710223092885 m002 -Pi^2+Pi^5*Sech[Pi]-E^Pi*Tanh[Pi] 6524710228651680 a001 832040/47*15127^(35/57) 6524710255892543 s002 sum(A021860[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710256210530 s001 sum(exp(-2*Pi)^n*A115096[n],n=1..infinity) 6524710256368636 s002 sum(A021861[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710268642919 a001 1364/591286729879*8^(1/2) 6524710268930790 r008 a(0)=0,K{-n^6,-61-11*n^3-30*n^2+86*n} 6524710273703990 a007 Real Root Of -509*x^4+981*x^3+531*x^2+917*x+737 6524710275572650 l006 ln(4428/8503) 6524710287532501 m001 Zeta(5)/ln(Rabbit)/arctan(1/2) 6524710298304203 s001 sum(exp(-2*Pi)^n*A021860[n],n=1..infinity) 6524710298542692 s002 sum(A021859[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710298622190 s002 sum(A115096[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710299256249 s002 sum(A267369[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710300449026 s001 sum(exp(-2*Pi)^(n-1)*A000773[n],n=1..infinity) 6524710305160702 a007 Real Root Of 120*x^4-164*x^3-566*x^2-946*x+882 6524710319139188 a007 Real Root Of 181*x^4-563*x^3-647*x^2-518*x+737 6524710324301936 r009 Im(z^3+c),c=-3/8+32/47*I,n=2 6524710328971544 r002 23th iterates of z^2 + 6524710330607991 r005 Im(z^2+c),c=-75/62+2/23*I,n=59 6524710340715863 s002 sum(A021860[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710340954352 s001 sum(exp(-2*Pi)^n*A021859[n],n=1..infinity) 6524710341667909 s001 sum(exp(-2*Pi)^n*A267369[n],n=1..infinity) 6524710343260706 s002 sum(A192774[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710349300047 a007 Real Root Of -537*x^4+712*x^3-414*x^2-422*x+196 6524710365853550 r002 57th iterates of z^2 + 6524710372831849 r005 Re(z^2+c),c=-31/110+37/55*I,n=5 6524710383366012 s002 sum(A021859[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710384079569 s002 sum(A267369[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710385672366 s001 sum(exp(-2*Pi)^n*A192774[n],n=1..infinity) 6524710386948121 s002 sum(A099437[n]/(exp(2*pi*n)+1),n=1..infinity) 6524710399755088 a007 Real Root Of 833*x^4-973*x^3-732*x^2-278*x-291 6524710419705344 m008 (1/3*Pi+5/6)/(3*Pi^6-2) 6524710420131609 m001 1/ln(Sierpinski)^2*Khintchine^2/GAMMA(3/4) 6524710428084026 s002 sum(A192774[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710429359780 s001 sum(exp(-2*Pi)^n*A099437[n],n=1..infinity) 6524710438301308 a007 Real Root Of -365*x^4+17*x^3+233*x^2+635*x+386 6524710444324536 m001 Weierstrass/(QuadraticClass-ln(5)) 6524710462386936 r005 Im(z^2+c),c=41/122+9/16*I,n=7 6524710471133911 s001 sum(exp(-2*Pi)^(n-1)*A129113[n],n=1..infinity) 6524710471771440 s002 sum(A099437[n]/(exp(2*pi*n)-1),n=1..infinity) 6524710487449901 m001 (Otter-Salem)/(3^(1/3)+GAMMA(17/24)) 6524710522013550 m001 (Salem-Tribonacci)/(gamma(2)+GAMMA(23/24)) 6524710555398047 s001 sum(exp(-2*Pi)^(n-1)*A036387[n],n=1..infinity) 6524710556776543 a007 Real Root Of 161*x^4+917*x^3-794*x^2+389*x-736 6524710581073513 m001 (MasserGramain-PlouffeB)/MertensB1 6524710592312615 l006 ln(3713/7130) 6524710592658651 r005 Im(z^2+c),c=1/90+38/51*I,n=36 6524710601141375 a007 Real Root Of -60*x^4+994*x^3-333*x^2+287*x+616 6524710626847910 r005 Im(z^2+c),c=-3/56+41/59*I,n=5 6524710627564159 a001 7/28657*514229^(3/5) 6524710629145285 a001 7/514229*63245986^(3/5) 6524710629150205 a001 7/9227465*7778742049^(3/5) 6524710629150220 a001 7/165580141*956722026041^(3/5) 6524710629150220 a001 7/701408733*10610209857723^(3/5) 6524710629150221 a001 7/39088169*86267571272^(3/5) 6524710629150495 a001 1/311187*701408733^(3/5) 6524710629238749 a001 7/121393*5702887^(3/5) 6524710640991359 m001 1/gamma^2/ln(CopelandErdos)*sqrt(Pi)^2 6524710657299885 a001 7/6765*46368^(3/5) 6524710671897471 r005 Re(z^2+c),c=-17/18+43/184*I,n=20 6524710684133177 m001 (Bloch-FransenRobinson)/(GolombDickman+Otter) 6524710685349601 s001 sum(exp(-2*Pi)^(n-1)*A128243[n],n=1..infinity) 6524710717038035 r005 Im(z^2+c),c=-53/48+5/64*I,n=39 6524710720804311 a007 Real Root Of -721*x^4+827*x^3+142*x^2-803*x-224 6524710746285246 s001 sum(exp(-Pi/4)^(n-1)*A138382[n],n=1..infinity) 6524710804234537 r005 Im(z^2+c),c=-19/32+5/43*I,n=24 6524710808371171 r005 Im(z^2+c),c=-31/122+35/54*I,n=21 6524710812407184 a007 Real Root Of -182*x^4+826*x^3+261*x^2+421*x+426 6524710816552050 m001 GAMMA(19/24)^Salem*Lehmer^Salem 6524710820853582 m001 (sin(1)+arctan(1/2))/(-GaussAGM+MertensB2) 6524710826893938 a007 Real Root Of 234*x^4-189*x^3+788*x^2+819*x+104 6524710830704521 q001 1241/1902 6524710899992330 r005 Im(z^2+c),c=-9/8+9/112*I,n=29 6524710941005943 a007 Real Root Of 46*x^4-587*x^3+708*x^2+484*x-157 6524710954350453 r005 Im(z^2+c),c=-1/70+30/37*I,n=17 6524710985433760 s001 sum(exp(-2*Pi)^(n-1)*A038380[n],n=1..infinity) 6524710988585805 r009 Im(z^3+c),c=-7/118+31/41*I,n=36 6524710992010268 a007 Real Root Of -345*x^4-41*x^3+775*x^2+236*x-410 6524711006806855 r005 Re(z^2+c),c=-61/98+21/55*I,n=38 6524711023540695 m005 (1/2*5^(1/2)+1/12)/(101/84+2/7*5^(1/2)) 6524711037932882 r004 Im(z^2+c),c=9/46-1/7*I,z(0)=exp(3/8*I*Pi),n=4 6524711047762005 a007 Real Root Of 392*x^4-436*x^3+928*x^2+736*x-107 6524711060132665 l006 ln(2998/5757) 6524711091150453 a007 Real Root Of 451*x^4-82*x^3+744*x^2+546*x-65 6524711092586501 a003 cos(Pi*13/113)-cos(Pi*47/115) 6524711147657985 m005 (1/3*gamma+3/7)/(6*3^(1/2)-7/8) 6524711152979088 r005 Im(z^2+c),c=-163/126+3/62*I,n=20 6524711155418690 p001 sum((-1)^n/(481*n+194)/n/(2^n),n=1..infinity) 6524711155907840 r002 4th iterates of z^2 + 6524711159166484 s002 sum(A134462[n]/(n^2*2^n+1),n=1..infinity) 6524711159231432 a003 sin(Pi*25/118)/sin(Pi*17/43) 6524711163038458 a007 Real Root Of -575*x^4+917*x^3-743*x^2-641*x+257 6524711170214231 h003 exp(Pi*(10^(7/3)+17^(7/3))) 6524711170214231 h008 exp(Pi*(10^(7/3)+17^(7/3))) 6524711170842401 a007 Real Root Of -355*x^4-237*x^3+771*x^2+826*x-737 6524711175134482 a007 Real Root Of -125*x^4-953*x^3-787*x^2+769*x+353 6524711184397500 r009 Re(z^3+c),c=-15/106+4/5*I,n=10 6524711185398727 r005 Im(z^2+c),c=-31/50+4/35*I,n=28 6524711189493765 m001 exp(Pi)*(ReciprocalFibonacci-cos(1)) 6524711190155785 m007 (-1/4*gamma-1/2*ln(2)+3)/(-2*gamma+5) 6524711190636207 a007 Real Root Of -323*x^4+776*x^3-21*x^2+498*x-473 6524711195428909 a007 Real Root Of 927*x^4-733*x^3-319*x^2+812*x+294 6524711207585086 s002 sum(A126751[n]/(exp(2*pi*n)+1),n=1..infinity) 6524711215900912 a007 Real Root Of 81*x^4+587*x^3+457*x^2+538*x+304 6524711218484462 a007 Real Root Of 102*x^4+555*x^3-858*x^2-990*x-632 6524711236220297 m005 (1/2*2^(1/2)-2/9)/(1/7*Zeta(3)+4/7) 6524711249996745 s001 sum(exp(-2*Pi)^n*A126751[n],n=1..infinity) 6524711292408405 s002 sum(A126751[n]/(exp(2*pi*n)-1),n=1..infinity) 6524711301563956 a001 144/9349*322^(1/4) 6524711309936393 a003 sin(Pi*13/84)/cos(Pi*15/61) 6524711313667204 r002 61th iterates of z^2 + 6524711314237132 m008 (3*Pi+4/5)/(2/3*Pi^3-5) 6524711325612172 a007 Real Root Of 422*x^4-852*x^3-984*x^2-593*x+966 6524711334974330 a007 Real Root Of 748*x^4+357*x^3+731*x^2+122*x-268 6524711343192685 a003 cos(Pi*7/106)*sin(Pi*23/99) 6524711358074217 m002 Pi+2*Pi^3+Csch[Pi]*ProductLog[Pi] 6524711361675293 a007 Real Root Of -795*x^4+388*x^3+944*x^2+862*x-928 6524711365051827 m001 ln(3)*Bloch/Kolakoski 6524711373493169 m001 (-2*Pi/GAMMA(5/6)+FransenRobinson)/(1-gamma) 6524711373972874 m001 Robbin/ln(GaussKuzminWirsing)*sinh(1) 6524711389050631 p004 log(10141/5281) 6524711405446159 a003 cos(Pi*2/55)*sin(Pi*13/57) 6524711412151800 g005 Pi^2*csc(1/10*Pi)^2/GAMMA(9/10)^3/GAMMA(7/10) 6524711435534030 r005 Re(z^2+c),c=-15/22+23/83*I,n=63 6524711437753230 h001 (5/9*exp(1)+3/7)/(7/9*exp(1)+6/7) 6524711441243022 r005 Im(z^2+c),c=-17/14+40/253*I,n=19 6524711445535271 a007 Real Root Of -321*x^4+868*x^3-704*x^2+46*x+629 6524711455372512 r005 Im(z^2+c),c=5/18+23/41*I,n=55 6524711480256648 r005 Im(z^2+c),c=-18/25+2/13*I,n=48 6524711489864933 m005 (-1/12+1/6*5^(1/2))/(4/9*gamma-7/10) 6524711490035201 r005 Im(z^2+c),c=11/40+33/58*I,n=59 6524711510025448 r005 Im(z^2+c),c=13/98+34/55*I,n=34 6524711511545007 a007 Real Root Of -593*x^4+979*x^3-110*x^2+369*x+667 6524711517034914 m001 1/exp(1)^2*cos(Pi/5)/exp(sin(Pi/12))^2 6524711527948890 m001 (MertensB2+Otter)/(ln(gamma)-2*Pi/GAMMA(5/6)) 6524711547805035 r005 Re(z^2+c),c=-49/90+6/13*I,n=16 6524711553189770 a007 Real Root Of -560*x^4+312*x^3-37*x^2+781*x-479 6524711566581556 m002 -10*Pi^3+Pi^6+Log[Pi] 6524711639541159 a007 Real Root Of -132*x^4+739*x^3+747*x^2+536*x+32 6524711649365628 r002 2th iterates of z^2 + 6524711661070568 m001 (Pi+2^(1/3))*(Zeta(1,-1)-ln(2+3^(1/2))) 6524711673485944 r002 13th iterates of z^2 + 6524711687316407 a007 Real Root Of 232*x^4-548*x^3-751*x^2-532*x+777 6524711703525382 r009 Re(z^3+c),c=-9/122+25/43*I,n=5 6524711710845527 m001 (Pi^(1/2)+Artin)/(sin(1/5*Pi)-sin(1/12*Pi)) 6524711721026646 r005 Re(z^2+c),c=19/118+11/40*I,n=29 6524711724696376 m001 Riemann2ndZero^2/ArtinRank2/ln(GAMMA(1/3))^2 6524711731834375 m003 5/12+(5*Sqrt[5])/16+5*Coth[1/2+Sqrt[5]/2] 6524711735271950 a007 Real Root Of 529*x^4-485*x^3+470*x^2+93*x-370 6524711749057602 a007 Real Root Of 692*x^4-436*x^3+691*x^2-589*x-925 6524711796210576 a001 281/7*55^(4/33) 6524711820980559 l006 ln(2283/4384) 6524711827077625 r009 Im(z^3+c),c=-43/118+27/41*I,n=26 6524711850773869 a007 Real Root Of -977*x^4+604*x^3+400*x^2+626*x+583 6524711856244578 a007 Real Root Of -446*x^4+904*x^3-28*x^2+342*x+567 6524711888777780 s001 sum(exp(-4*Pi/5)^n*A112390[n],n=1..infinity) 6524711901929344 a007 Real Root Of 672*x^4-347*x^3+269*x^2-2*x-334 6524711959576465 r002 54th iterates of z^2 + 6524711983611010 r005 Im(z^2+c),c=-13/29+7/64*I,n=30 6524711988492962 m001 Si(Pi)^GAMMA(3/4)+GAMMA(5/24) 6524711988492962 m001 Si(Pi)^GAMMA(3/4)+Pi*csc(5/24*Pi)/GAMMA(19/24) 6524712007393233 r002 49th iterates of z^2 + 6524712011613865 a007 Real Root Of 89*x^4-503*x^3-121*x^2-688*x+624 6524712034414077 a007 Real Root Of 678*x^4+247*x^3+979*x^2+161*x-366 6524712037240586 g006 Psi(1,6/11)-Psi(1,8/9)-Psi(1,1/8)-Psi(1,5/6) 6524712080754224 m001 (FeigenbaumD+Kac)/(BesselI(0,2)-Pi^(1/2)) 6524712084929023 r005 Im(z^2+c),c=5/64+17/28*I,n=8 6524712104819004 m005 (1/2*2^(1/2)-1/6)/(1/5*2^(1/2)+6/11) 6524712108598808 m001 (Sarnak-Trott2nd)/(ln(2)+Artin) 6524712110643725 m001 (2^(1/3))/exp(-1/2*Pi)*OneNinth 6524712110643725 m001 2^(1/3)/exp(-1/2*Pi)*OneNinth 6524712135121114 k007 concat of cont frac of 6524712153668990 a001 987/64079*199^(3/11) 6524712194592240 a007 Real Root Of 112*x^4+567*x^3-934*x^2+992*x+745 6524712201225076 h001 (6/7*exp(1)+2/5)/(4/9*exp(2)+9/10) 6524712201447170 m003 16*Csch[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2]/6 6524712219084251 r005 Re(z^2+c),c=-3/82+8/39*I,n=10 6524712225170534 m005 (5/6+1/6*5^(1/2))/(3/10*Zeta(3)-6/11) 6524712259679408 m001 arctan(1/2)/Cahen^2/exp(cos(1)) 6524712265860350 m001 1/ln(Zeta(5))^2/Trott^2*Zeta(7) 6524712286734626 r009 Re(z^3+c),c=-13/64+31/46*I,n=2 6524712299005449 m006 (3*exp(Pi)+1/2)/(2*exp(2*Pi)+2/3) 6524712328106680 a001 18/75025*5^(23/37) 6524712331664126 a007 Real Root Of -909*x^4+887*x^3+452*x^2-162*x+113 6524712337829699 s002 sum(A092655[n]/(exp(2*pi*n)+1),n=1..infinity) 6524712338201303 r002 4th iterates of z^2 + 6524712340620876 m009 (6*Psi(1,1/3)+3/4)/(4*Catalan+1/2*Pi^2+4/5) 6524712358459034 m001 (cos(1)-exp(1/Pi))/(-Mills+Trott2nd) 6524712379091485 a007 Real Root Of 756*x^4+450*x^3+881*x^2+112*x-314 6524712380241359 s001 sum(exp(-2*Pi)^n*A092655[n],n=1..infinity) 6524712413299912 l006 ln(3851/7395) 6524712422653019 s002 sum(A092655[n]/(exp(2*pi*n)-1),n=1..infinity) 6524712423794790 r002 7th iterates of z^2 + 6524712436070608 a001 987/2139295485799*2^(1/2) 6524712436918212 a007 Real Root Of 162*x^4+323*x^3+587*x^2-760*x-52 6524712444034374 m005 (-13/8+3/8*5^(1/2))/(3/4*exp(1)-5/6) 6524712447281050 r005 Im(z^2+c),c=-53/48+5/64*I,n=44 6524712465029530 q001 2099/3217 6524712469043047 r009 Im(z^3+c),c=-11/25+16/33*I,n=2 6524712489497843 m001 exp(1)/(Ei(1,1)^gamma) 6524712495426747 a007 Real Root Of 411*x^4+459*x^3+630*x^2-953*x-837 6524712499531434 r005 Im(z^2+c),c=-1/54+24/37*I,n=33 6524712501331730 m001 (FeigenbaumD+Stephens)/(Totient-Tribonacci) 6524712518151517 r005 Im(z^2+c),c=35/94+9/25*I,n=10 6524712522295790 a001 123/233*377^(1/28) 6524712556233949 h001 (2/9*exp(1)+4/7)/(2/5*exp(1)+5/7) 6524712574882745 r005 Im(z^2+c),c=-7/36+37/55*I,n=42 6524712575034131 a003 cos(Pi*18/59)+cos(Pi*48/101) 6524712577730182 p003 LerchPhi(1/6,5,576/209) 6524712581929825 a007 Real Root Of 797*x^4-241*x^3+600*x^2-316*x-673 6524712590212659 a007 Real Root Of 241*x^4-257*x^3+266*x^2-726*x-702 6524712592654464 a007 Real Root Of -462*x^4+941*x^3+434*x^2+663*x-795 6524712627192840 m001 (Gompertz+PrimesInBinary)/(1-ln(gamma)) 6524712627343042 a007 Real Root Of 859*x^4-563*x^3+901*x^2-45*x-725 6524712668233735 a007 Real Root Of 139*x^4+933*x^3+164*x^2+91*x+852 6524712692042830 r005 Re(z^2+c),c=-1/60+47/59*I,n=38 6524712706662897 r005 Im(z^2+c),c=-75/118+5/44*I,n=34 6524712715804436 r005 Re(z^2+c),c=11/32+30/53*I,n=28 6524712721321338 r002 52th iterates of z^2 + 6524712734712804 m001 (ln(Pi)-sin(1))/(-PlouffeB+Trott) 6524712735615286 a007 Real Root Of 330*x^4-68*x^3+692*x^2-913*x-969 6524712773835997 r005 Im(z^2+c),c=-65/66+3/47*I,n=9 6524712779085915 m001 (Khinchin+LandauRamanujan)/(1-GAMMA(7/12)) 6524712802880894 a007 Real Root Of 625*x^4-73*x^3-99*x^2+42*x-64 6524712831748859 r005 Im(z^2+c),c=-9/70+19/28*I,n=49 6524712832020366 a007 Real Root Of -946*x^4+969*x^3+588*x^2+918*x-947 6524712837729278 a007 Real Root Of 520*x^4-61*x^3+582*x^2-443*x-648 6524712842645569 a007 Real Root Of 900*x^4+472*x^3+137*x^2+376*x+155 6524712869502054 a007 Real Root Of 867*x^4-11*x^3-220*x^2-413*x-336 6524712884537296 m001 Lehmer/KhinchinLevy*Mills 6524712944364849 a001 11/121393*377^(31/43) 6524712956701775 a005 (1/cos(21/191*Pi))^1052 6524712959194865 r002 35th iterates of z^2 + 6524712969064629 a007 Real Root Of 586*x^4-161*x^3-730*x^2-809*x-368 6524712971584340 m001 (FeigenbaumD+Thue)/(Psi(2,1/3)+FeigenbaumB) 6524712977198823 a007 Real Root Of -655*x^4+416*x^3+98*x^2+226*x+340 6524712978229485 m001 ln(Zeta(7))^2/GolombDickman^2/exp(1) 6524712980419244 m001 (Grothendieck-Thue)/(ln(2)-GaussAGM) 6524712981025809 m001 BesselI(0,1)*arctan(1/3)/GolombDickman 6524712981452247 s002 sum(A248437[n]/(n^3*pi^n+1),n=1..infinity) 6524712988221535 a001 1364/701408733*102334155^(4/21) 6524712988221535 a001 341/1201881744*2504730781961^(4/21) 6524712993821777 r009 Im(z^3+c),c=-3/70+39/53*I,n=7 6524712997386437 a007 Real Root Of -134*x^4-993*x^3-790*x^2-173*x-465 6524713002440624 a001 124/9303105*4181^(4/21) 6524713037217771 m001 (ln(5)-arctan(1/3))/(polylog(4,1/2)+Backhouse) 6524713055290990 b008 10/3+E^(-3)+Pi 6524713074990522 r009 Re(z^3+c),c=-13/118+24/41*I,n=43 6524713098886155 m007 (-1/2*gamma-ln(2)-2/5)/(-4/5*gamma+1/4) 6524713104296431 r009 Re(z^3+c),c=-3/22+17/23*I,n=64 6524713105425777 a007 Real Root Of 969*x^4+208*x^3+932*x^2+450*x-221 6524713124699399 a001 6765/76*199^(43/53) 6524713128274505 m001 MasserGramain/(FeigenbaumB-MasserGramainDelta) 6524713131213311 k007 concat of cont frac of 6524713151118321 a007 Real Root Of 934*x^4-686*x^3+726*x^2+383*x-419 6524713152539786 m005 (1/2*gamma-4/7)/(2/11*Catalan-3/5) 6524713194970485 m001 Cahen^(ln(3)*ln(1+sqrt(2))) 6524713194970485 m001 Cahen^(ln(3)*ln(2^(1/2)+1)) 6524713206671927 a003 cos(Pi*24/65)*cos(Pi*30/67) 6524713238447522 r005 Im(z^2+c),c=-11/46+35/54*I,n=4 6524713263954316 a001 3571/1548008755920*8^(1/2) 6524713275713806 l006 ln(1568/3011) 6524713285668544 r002 43th iterates of z^2 + 6524713290818939 m001 Otter^ln(2)-Porter 6524713296418900 a001 2584/167761*199^(3/11) 6524713302272472 r005 Im(z^2+c),c=-5/38+40/47*I,n=17 6524713304574116 a007 Real Root Of 274*x^4+918*x^3+959*x^2-817*x-736 6524713307385856 r005 Im(z^2+c),c=-11/9+3/19*I,n=53 6524713345270685 p003 LerchPhi(1/3,5,85/196) 6524713409047213 r002 37th iterates of z^2 + 6524713441311126 r002 2th iterates of z^2 + 6524713444486231 a007 Real Root Of 369*x^4-954*x^3-217*x^2-669*x+727 6524713454907718 a003 cos(Pi*12/61)-sin(Pi*17/63) 6524713458828337 a007 Real Root Of -688*x^4-460*x^3-849*x^2+424*x+635 6524713463143865 a001 6765/439204*199^(3/11) 6524713487468710 a001 17711/1149851*199^(3/11) 6524713491017657 a001 46368/3010349*199^(3/11) 6524713491535441 a001 121393/7881196*199^(3/11) 6524713491610985 a001 10959/711491*199^(3/11) 6524713491622007 a001 832040/54018521*199^(3/11) 6524713491623615 a001 2178309/141422324*199^(3/11) 6524713491623849 a001 5702887/370248451*199^(3/11) 6524713491623884 a001 14930352/969323029*199^(3/11) 6524713491623889 a001 39088169/2537720636*199^(3/11) 6524713491623889 a001 102334155/6643838879*199^(3/11) 6524713491623890 a001 9238424/599786069*199^(3/11) 6524713491623890 a001 701408733/45537549124*199^(3/11) 6524713491623890 a001 1836311903/119218851371*199^(3/11) 6524713491623890 a001 4807526976/312119004989*199^(3/11) 6524713491623890 a001 12586269025/817138163596*199^(3/11) 6524713491623890 a001 32951280099/2139295485799*199^(3/11) 6524713491623890 a001 86267571272/5600748293801*199^(3/11) 6524713491623890 a001 7787980473/505618944676*199^(3/11) 6524713491623890 a001 365435296162/23725150497407*199^(3/11) 6524713491623890 a001 139583862445/9062201101803*199^(3/11) 6524713491623890 a001 53316291173/3461452808002*199^(3/11) 6524713491623890 a001 20365011074/1322157322203*199^(3/11) 6524713491623890 a001 7778742049/505019158607*199^(3/11) 6524713491623890 a001 2971215073/192900153618*199^(3/11) 6524713491623890 a001 1134903170/73681302247*199^(3/11) 6524713491623890 a001 433494437/28143753123*199^(3/11) 6524713491623890 a001 165580141/10749957122*199^(3/11) 6524713491623890 a001 63245986/4106118243*199^(3/11) 6524713491623892 a001 24157817/1568397607*199^(3/11) 6524713491623905 a001 9227465/599074578*199^(3/11) 6524713491623994 a001 3524578/228826127*199^(3/11) 6524713491624609 a001 1346269/87403803*199^(3/11) 6524713491628819 a001 514229/33385282*199^(3/11) 6524713491657674 a001 196418/12752043*199^(3/11) 6524713491855450 a001 75025/4870847*199^(3/11) 6524713493211027 a001 28657/1860498*199^(3/11) 6524713497967078 r009 Im(z^3+c),c=-8/15+31/53*I,n=36 6524713502502291 a001 10946/710647*199^(3/11) 6524713504809650 r005 Re(z^2+c),c=-39/58+1/4*I,n=12 6524713518444565 p001 sum(1/(422*n+61)/n/(32^n),n=1..infinity) 6524713555190466 m001 (Rabbit+Tribonacci)/(Zeta(5)-MasserGramain) 6524713561060972 m001 (GaussAGM-Kac)/(KomornikLoreti-Porter) 6524713566185561 a001 4181/271443*199^(3/11) 6524713580177755 a001 2584/5600748293801*2^(1/2) 6524713582585421 m001 (ErdosBorwein-Thue)/(ln(5)-arctan(1/2)) 6524713585721989 m005 (4/5*Catalan+1/6)/(5/6*2^(1/2)+1/5) 6524713599369747 m005 (1/2*Catalan+2/3)/(2/5*exp(1)+7/11) 6524713609069263 a007 Real Root Of 155*x^4+991*x^3-35*x^2+595*x-275 6524713621474922 m001 1/OneNinth^2*exp(Rabbit)/GAMMA(13/24)^2 6524713625386779 a005 (1/cos(5/89*Pi))^561 6524713628760566 a007 Real Root Of 99*x^4+612*x^3-183*x^2+230*x-138 6524713633423711 r002 23th iterates of z^2 + 6524713639941249 a007 Real Root Of 936*x^4+469*x^3+741*x^2+130*x-270 6524713657763237 p004 log(16693/8693) 6524713675865748 r005 Im(z^2+c),c=-31/66+41/57*I,n=3 6524713676537565 a007 Real Root Of 921*x^4-732*x^3-934*x^2-777*x+941 6524713678948459 m001 GAMMA(1/12)^2/RenyiParking^2/ln(Zeta(5)) 6524713700964360 a001 9349/4052739537881*8^(1/2) 6524713702024557 a007 Real Root Of 754*x^4-481*x^3-651*x^2-924*x-596 6524713714548232 a007 Real Root Of 291*x^4-898*x^3+487*x^2-942*x+604 6524713731967688 p003 LerchPhi(1/6,5,29/168) 6524713732014966 a007 Real Root Of 594*x^4-996*x^3+425*x^2-205*x-699 6524713732445132 m001 (Backhouse+Bloch)/(Magata-ZetaP(2)) 6524713745894457 h001 (11/12*exp(2)+3/4)/(1/6*exp(1)+7/10) 6524713747100738 a001 6765/14662949395604*2^(1/2) 6524713761903308 a007 Real Root Of 370*x^4+312*x^3+893*x^2-16*x-371 6524713764723266 a001 24476/10610209857723*8^(1/2) 6524713775388052 m001 (Ei(1)+Conway)/(MasserGramainDelta-MertensB3) 6524713775614587 a001 2/433494437*2^(1/2) 6524713783799405 a007 Real Root Of 851*x^4-498*x^3-402*x^2-815*x+687 6524713786505909 a001 10946/23725150497407*2^(1/2) 6524713803018158 m005 (1/2*5^(1/2)-2/7)/(1/7*3^(1/2)-3/8) 6524713803636068 m001 (gamma(2)-ErdosBorwein)/(OneNinth-Sierpinski) 6524713804128437 a001 15127/6557470319842*8^(1/2) 6524713817646959 r005 Re(z^2+c),c=-49/66+1/34*I,n=9 6524713818434548 a007 Real Root Of -143*x^4+897*x^3-996*x^2-17*x+688 6524713825956592 r005 Re(z^2+c),c=-23/30+1/30*I,n=51 6524713843279056 r005 Im(z^2+c),c=-3/46+29/38*I,n=53 6524713850264815 a001 4181/9062201101803*2^(1/2) 6524713858341136 r002 53th iterates of z^2 + 6524713872133438 r005 Im(z^2+c),c=-2/25+37/45*I,n=62 6524713886164696 a007 Real Root Of 326*x^4+153*x^3+498*x^2-347*x-455 6524713921217066 m001 BesselK(1,1)^2*exp(Lehmer)^2*GAMMA(1/24)^2 6524713927039142 m001 Riemann3rdZero^Paris*Weierstrass 6524713930835128 a001 1/199*(1/2*5^(1/2)+1/2)^17*47^(14/15) 6524713955229461 a007 Real Root Of -888*x^4+22*x^3+836*x^2+921*x-802 6524713968294109 a007 Real Root Of -292*x^4+27*x^3-225*x^2+179*x+273 6524713971051420 a001 5778/2504730781961*8^(1/2) 6524713981322372 a007 Real Root Of 713*x^4-503*x^3-727*x^2-751*x+810 6524713998205048 a007 Real Root Of -42*x^4+556*x^3-518*x^2-30*x+363 6524714002677186 a001 1597/103682*199^(3/11) 6524714008701792 a007 Real Root Of 613*x^4+653*x^3-806*x^2-891*x+632 6524714010414531 r009 Im(z^3+c),c=-15/29+23/58*I,n=2 6524714055226807 r005 Im(z^2+c),c=-53/48+5/64*I,n=43 6524714057067003 r005 Re(z^2+c),c=-28/31+8/49*I,n=36 6524714068829859 s002 sum(A216982[n]/(n^3*2^n-1),n=1..infinity) 6524714084626938 m006 (3/5*exp(2*Pi)+2)/(3/Pi+4) 6524714099078450 m001 (Thue+ZetaP(4))/(MinimumGamma-Trott2nd) 6524714108292303 l006 ln(3989/7660) 6524714123123121 k007 concat of cont frac of 6524714123346148 a003 sin(Pi*1/37)-sin(Pi*19/72) 6524714154247861 r005 Im(z^2+c),c=9/25+19/63*I,n=13 6524714155835840 r009 Re(z^3+c),c=-17/31+1/8*I,n=50 6524714159616816 m001 Chi(1)^sin(1/5*Pi)*gamma^sin(1/5*Pi) 6524714162860317 m005 (17/20+1/4*5^(1/2))/(5/12*exp(1)-11/12) 6524714173866003 r002 46th iterates of z^2 + 6524714174885229 a007 Real Root Of 823*x^4+456*x^3+583*x^2-753*x-762 6524714191860239 m001 Riemann3rdZero*(Khinchin-ZetaP(4)) 6524714205158480 m005 (1/2*3^(1/2)+4/9)/(41/36+7/18*5^(1/2)) 6524714219128010 a007 Real Root Of 736*x^4-923*x^3-288*x^2-763*x-765 6524714222779002 m001 ln(GAMMA(1/3))/Trott^2/GAMMA(17/24) 6524714242816546 a007 Real Root Of 370*x^4-998*x^3-485*x^2-972*x-772 6524714249768638 m002 5-Sinh[Pi]+(2*Sinh[Pi])/Pi^6 6524714278706792 m005 (1/3+1/4*5^(1/2))/(7/12*Catalan+5/6) 6524714287114765 r005 Re(z^2+c),c=7/66+23/49*I,n=28 6524714287274858 a001 1597/3461452808002*2^(1/2) 6524714289265439 m001 (Mills-ZetaQ(2))/(arctan(1/2)+Backhouse) 6524714301700477 a001 7/377*377^(3/5) 6524714302970071 a007 Real Root Of -722*x^4-319*x^3+466*x^2+765*x+343 6524714325952475 a007 Real Root Of 199*x^4-493*x^3+537*x^2-701*x-859 6524714333866826 a007 Real Root Of 886*x^4+782*x^3+882*x^2+645*x+102 6524714345642978 a008 Real Root of (-3-2*x-3*x^2+3*x^3-6*x^4-x^5) 6524714379698994 m001 (MertensB1+ReciprocalLucas)/(gamma(3)+Magata) 6524714392101108 h001 (7/10*exp(1)+1/11)/(2/5*exp(2)+1/10) 6524714392394639 a007 Real Root Of -414*x^4+799*x^3-592*x^2-423*x+273 6524714398501032 a001 521/5*28657^(32/51) 6524714409088546 m001 (ln(5)+MertensB3)/(2^(1/3)-cos(1/5*Pi)) 6524714420454483 m001 (-ln(Pi)+CareFree)/(3^(1/2)-Shi(1)) 6524714454103823 a007 Real Root Of -7*x^4+724*x^3+14*x^2+217*x+338 6524714476726438 r005 Re(z^2+c),c=-5/8+47/121*I,n=57 6524714500480539 a007 Real Root Of -838*x^4+906*x^3-413*x^2+260*x+749 6524714527967219 p001 sum((-1)^n/(556*n+153)/(125^n),n=0..infinity) 6524714544960088 m001 ln(2)^sin(1/5*Pi)*ln(2)^gamma 6524714544960088 m001 ln(2)^sin(Pi/5)*ln(2)^gamma 6524714545134946 a001 3020733700601/48*6557470319842^(15/16) 6524714551199925 m009 (1/4*Psi(1,1/3)-1/6)/(1/5*Psi(1,2/3)+3) 6524714562353303 r002 14th iterates of z^2 + 6524714567888091 m002 2-E^Pi+Pi+Pi^6*Csch[Pi] 6524714586323593 a007 Real Root Of -375*x^4+416*x^3-186*x^2-890*x-318 6524714647525262 l006 ln(2421/4649) 6524714652252360 a001 199*(1/2*5^(1/2)+1/2)*3^(9/14) 6524714661575523 r005 Re(z^2+c),c=-1/90+16/25*I,n=16 6524714662960118 m001 exp(1/Pi)+HeathBrownMoroz-Sarnak 6524714678196772 r005 Re(z^2+c),c=-101/110+7/25*I,n=12 6524714769230343 a007 Real Root Of 516*x^4-679*x^3-629*x^2-601*x+755 6524714776776260 r002 47th iterates of z^2 + 6524714802102319 r005 Im(z^2+c),c=-9/86+32/47*I,n=34 6524714808380916 m001 (BesselI(1,1)-Rabbit)/(Ei(1)+arctan(1/3)) 6524714815993688 m005 (1/2*Pi+4/9)/(4*gamma-2) 6524714820882549 m005 (1/3*gamma+3/4)/(163/198+5/18*5^(1/2)) 6524714823177857 m001 FeigenbaumB^3*exp(Champernowne) 6524714828897338 q001 858/1315 6524714848117367 p001 sum((-1)^n/(269*n+15)/(2^n),n=0..infinity) 6524714879291447 m001 (3^(1/3))/(2^(1/3))*ln(GAMMA(5/12))^2 6524714898906036 a007 Real Root Of -119*x^4-939*x^3-965*x^2+770*x+952 6524714899882226 r005 Re(z^2+c),c=-47/44+1/23*I,n=10 6524714910046518 m001 ReciprocalFibonacci*(LambertW(1)+exp(1/Pi)) 6524714913096077 m001 Zeta(1,2)^2/Trott*ln(sqrt(5)) 6524714935696969 r002 42th iterates of z^2 + 6524714948263574 r005 Im(z^2+c),c=-5/48+5/64*I,n=10 6524714971068188 r002 62th iterates of z^2 + 6524714987799198 r005 Im(z^2+c),c=-43/98+1/11*I,n=7 6524715014587929 a007 Real Root Of 198*x^4+335*x^3+770*x^2+237*x-116 6524715018348915 b008 9*E^(Sqrt[3]*Pi)*Pi 6524715018430480 m001 1/GAMMA(5/24)*ln(ErdosBorwein)/sqrt(1+sqrt(3)) 6524715021364968 m001 Riemann2ndZero/exp(Paris)/cos(1)^2 6524715037967025 m001 (3^(1/3)+gamma(2))/(sin(1)+GAMMA(2/3)) 6524715052492583 r005 Im(z^2+c),c=-53/48+5/64*I,n=50 6524715060726742 a001 124/5*4181^(20/51) 6524715063895423 m001 (-FeigenbaumC+MertensB3)/(1-CopelandErdos) 6524715068377353 m001 (BesselI(1,1)-Pi*FeigenbaumB)/Pi 6524715077713862 a007 Real Root Of -906*x^4-434*x^3-868*x^2-434*x+130 6524715081694637 m005 (1/3*Pi+1/3)/(9/11*Pi-5/11) 6524715087532006 m002 4+E^(-Pi)+Pi^5/5 6524715094625814 m001 TwinPrimes^(GAMMA(2/3)/ln(2+sqrt(3))) 6524715115158567 a001 2207/956722026041*8^(1/2) 6524715137860957 m001 (exp(1/Pi)-BesselK(1,1))/(GAMMA(19/24)+Trott) 6524715138619721 m005 (1/3*3^(1/2)-3/5)/(9/11*Zeta(3)-7/11) 6524715143117596 a007 Real Root Of -688*x^4+893*x^3-697*x^2+655*x-254 6524715147479530 r002 60th iterates of z^2 + 6524715153853003 a001 10946/7*11^(28/47) 6524715158000530 a007 Real Root Of -975*x^4-195*x^3-491*x^2+134*x+419 6524715164464739 b008 5-7*SinIntegral[(2*Pi)/3] 6524715170535755 m005 (1/2*exp(1)+5/12)/(3/11*Zeta(3)-3/5) 6524715170806353 r002 27th iterates of z^2 + 6524715190476333 m005 (1/2*2^(1/2)-3)/(-13/33+1/3*5^(1/2)) 6524715204711426 m002 -Pi^5+Pi^6-Cosh[Pi]/4 6524715206014700 r005 Re(z^2+c),c=-23/42+19/43*I,n=4 6524715209633090 h001 (-exp(4)-5)/(-4*exp(3)-11) 6524715259530766 a007 Real Root Of 663*x^4-525*x^3-423*x^2-992*x+853 6524715266433342 a001 55/64079*123^(9/10) 6524715273226463 r002 4th iterates of z^2 + 6524715304519808 l006 ln(3274/6287) 6524715304663968 r005 Im(z^2+c),c=-53/48+5/64*I,n=49 6524715314774487 r005 Im(z^2+c),c=-5/48+5/64*I,n=12 6524715325626948 a007 Real Root Of -733*x^4-272*x^3-377*x^2+854*x+775 6524715336509175 r005 Im(z^2+c),c=3/20+37/59*I,n=15 6524715350684226 r002 59th iterates of z^2 + 6524715355344738 a005 (1/sin(77/185*Pi))^382 6524715356264295 a001 76/233*2178309^(25/48) 6524715357753353 m001 (3^(1/2))^(ln(3)/arctan(1/3)) 6524715366019766 m001 (LambertW(1)-HardyLittlewoodC4)/(Pi+Chi(1)) 6524715368081773 r002 64th iterates of z^2 + 6524715379800743 m005 (-9/20+1/4*5^(1/2))/(5/9*5^(1/2)+3/7) 6524715389340599 r005 Im(z^2+c),c=-53/48+5/64*I,n=54 6524715390323466 r005 Re(z^2+c),c=-15/28+41/62*I,n=13 6524715404762835 r005 Im(z^2+c),c=-7/10+38/165*I,n=10 6524715406544589 l006 ln(14/9545) 6524715408265289 a007 Real Root Of -235*x^4+371*x^3+331*x^2-91*x-142 6524715417350195 m005 (9/20+1/4*5^(1/2))/(9/10*exp(1)-9/10) 6524715438253479 r002 63th iterates of z^2 + 6524715444139227 a007 Real Root Of -430*x^4+526*x^3-785*x^2+110*x+630 6524715447004312 r005 Im(z^2+c),c=-53/48+5/64*I,n=53 6524715468559062 l006 ln(1587/1694) 6524715475700426 a007 Real Root Of -217*x^4+97*x^3+140*x^2+297*x-241 6524715481561379 r005 Im(z^2+c),c=-53/48+5/64*I,n=60 6524715491628104 r005 Im(z^2+c),c=-53/48+5/64*I,n=59 6524715493121606 r005 Im(z^2+c),c=-5/48+5/64*I,n=14 6524715495400199 r002 48th iterates of z^2 + 6524715495558525 r005 Im(z^2+c),c=-53/48+5/64*I,n=64 6524715497603951 r005 Im(z^2+c),c=-53/48+5/64*I,n=63 6524715499368029 r005 Im(z^2+c),c=-5/48+5/64*I,n=17 6524715499488377 r005 Im(z^2+c),c=-5/48+5/64*I,n=19 6524715499494291 r005 Im(z^2+c),c=-5/48+5/64*I,n=22 6524715499494367 r005 Im(z^2+c),c=-5/48+5/64*I,n=24 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=27 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=29 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=31 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=32 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=34 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=36 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=37 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=39 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=41 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=44 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=42 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=46 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=49 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=51 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=54 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=56 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=59 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=58 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=61 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=63 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=64 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=62 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=60 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=57 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=55 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=53 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=52 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=50 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=48 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=47 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=45 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=43 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=40 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=38 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=35 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=33 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=30 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=28 6524715499494372 r005 Im(z^2+c),c=-5/48+5/64*I,n=26 6524715499494373 r005 Im(z^2+c),c=-5/48+5/64*I,n=25 6524715499494397 r005 Im(z^2+c),c=-5/48+5/64*I,n=23 6524715499494505 r005 Im(z^2+c),c=-5/48+5/64*I,n=21 6524715499494885 r005 Im(z^2+c),c=-5/48+5/64*I,n=20 6524715499527479 r005 Im(z^2+c),c=-5/48+5/64*I,n=18 6524715499639498 r005 Im(z^2+c),c=-5/48+5/64*I,n=15 6524715499793856 r005 Im(z^2+c),c=-5/48+5/64*I,n=16 6524715500863588 r005 Re(z^2+c),c=-43/56+14/61*I,n=9 6524715504323512 r005 Im(z^2+c),c=-53/48+5/64*I,n=61 6524715505857408 r005 Im(z^2+c),c=-53/48+5/64*I,n=57 6524715507156856 r002 57th iterates of z^2 + 6524715508945337 r005 Im(z^2+c),c=-53/48+5/64*I,n=55 6524715510054951 r005 Im(z^2+c),c=-53/48+5/64*I,n=62 6524715514944679 m005 (1/2*exp(1)-5/11)/(5*exp(1)+3/11) 6524715515654008 r005 Im(z^2+c),c=-53/48+5/64*I,n=58 6524715515960158 r005 Im(z^2+c),c=-53/48+5/64*I,n=56 6524715529980730 a001 47/144*34^(11/56) 6524715541836325 r005 Im(z^2+c),c=-5/48+5/64*I,n=13 6524715553488014 m002 6+Pi/6+ProductLog[Pi]/Pi^6 6524715577138879 r002 58th iterates of z^2 + 6524715587829664 m001 (Si(Pi)+BesselJ(0,1))/(-ln(3)+ArtinRank2) 6524715598720695 b008 Pi+11*KelvinBei[1,1] 6524715621424245 r002 61th iterates of z^2 + 6524715622664484 s002 sum(A286631[n]/((2^n-1)/n),n=1..infinity) 6524715625903798 r005 Im(z^2+c),c=-53/48+5/64*I,n=51 6524715632017654 r005 Im(z^2+c),c=-53/48+5/64*I,n=47 6524715655757707 g007 Psi(2,3/10)-Psi(2,5/12)-Psi(2,4/7)-Psi(2,1/7) 6524715658312009 a007 Real Root Of 81*x^4+502*x^3-119*x^2+319*x-214 6524715686961520 a008 Real Root of x^3-x^2-8*x-183 6524715689928995 l006 ln(4127/7925) 6524715694798359 r005 Im(z^2+c),c=-3/62+11/15*I,n=11 6524715702093589 m006 (4/5*ln(Pi)-1/5)/(1/2*exp(Pi)-3/5) 6524715722930666 r002 24th iterates of z^2 + 6524715729163468 a007 Real Root Of -149*x^4+208*x^3+541*x^2+734*x-740 6524715758109152 a007 Real Root Of 847*x^4-285*x^3-651*x^2-526*x+546 6524715759236104 r005 Re(z^2+c),c=-23/44+27/56*I,n=16 6524715771777652 r002 62th iterates of z^2 + 6524715777187291 r005 Im(z^2+c),c=-53/48+5/64*I,n=52 6524715789715203 a007 Real Root Of 62*x^4+386*x^3-52*x^2+465*x+100 6524715810605697 r005 Im(z^2+c),c=-53/48+5/64*I,n=45 6524715820030616 m001 (Salem+ZetaQ(4))/(Zeta(1,-1)-GAMMA(13/24)) 6524715825473605 p001 sum((-1)^n/(599*n+152)/(24^n),n=0..infinity) 6524715835748630 a007 Real Root Of -925*x^4-370*x^3-653*x^2-127*x+260 6524715844702386 r002 17th iterates of z^2 + 6524715848996666 r005 Im(z^2+c),c=-53/48+5/64*I,n=48 6524715867828349 r005 Re(z^2+c),c=-11/32+19/31*I,n=34 6524715908654640 v003 sum((3/2*n^3+3/2*n^2+4)*n!/n^n,n=1..infinity) 6524715943308440 l006 ln(4980/9563) 6524715963064922 m005 (1/2*gamma+6/11)/(5/12*3^(1/2)-2) 6524715965999997 a007 Real Root Of -872*x^4+293*x^3-736*x^2+241*x+710 6524715983534181 a001 3571/1836311903*102334155^(4/21) 6524715983534181 a001 3571/12586269025*2504730781961^(4/21) 6524715997753277 a001 3571/267914296*4181^(4/21) 6524716022201663 r005 Im(z^2+c),c=-19/18+17/234*I,n=16 6524716024529013 r002 55th iterates of z^2 + 6524716042769336 a007 Real Root Of 15*x^4+63*x^3-113*x^2+765*x+116 6524716045625058 r005 Im(z^2+c),c=-5/48+5/64*I,n=11 6524716062570395 m001 2^(1/2)+MinimumGamma^exp(Pi) 6524716073650815 r005 Im(z^2+c),c=-53/48+5/64*I,n=46 6524716078059692 a001 76/1597*5^(10/51) 6524716089089968 r002 3th iterates of z^2 + 6524716101201128 a007 Real Root Of -78*x^4+824*x^3+939*x^2+559*x+208 6524716120511521 a007 Real Root Of 133*x^4-882*x^3+324*x^2-190*x-531 6524716126085925 s002 sum(A212849[n]/(n^3*exp(n)-1),n=1..infinity) 6524716172555362 r005 Re(z^2+c),c=-89/118+1/20*I,n=13 6524716182586554 a003 cos(Pi*21/83)*sin(Pi*29/76) 6524716185862969 a007 Real Root Of -674*x^4-385*x^3-197*x^2+757*x+593 6524716215777469 r009 Im(z^3+c),c=-5/78+35/36*I,n=2 6524716280779769 a003 sin(Pi*13/107)/cos(Pi*53/110) 6524716289236292 r005 Im(z^2+c),c=35/94+18/55*I,n=45 6524716309482900 m001 exp(FeigenbaumD)^2*PrimesInBinary^2*sqrt(Pi) 6524716326013405 r009 Re(z^3+c),c=-5/52+27/59*I,n=17 6524716328439304 m001 (Landau-LaplaceLimit)/FeigenbaumC 6524716328744432 r005 Im(z^2+c),c=-29/48+4/33*I,n=48 6524716362318900 a001 832040/3*123^(8/45) 6524716366556543 s002 sum(A248460[n]/((2^n-1)/n),n=1..infinity) 6524716370719055 a001 17/161*15127^(39/43) 6524716392452759 m001 (ln(Pi)+LandauRamanujan2nd)/(Zeta(5)+ln(5)) 6524716401578405 r009 Re(z^3+c),c=-13/118+24/41*I,n=45 6524716405375620 m005 (1/3*Catalan+3/5)/(1/2*3^(1/2)-8/11) 6524716420544406 a001 9349/4807526976*102334155^(4/21) 6524716420544406 a001 9349/32951280099*2504730781961^(4/21) 6524716421622050 m001 GAMMA(7/24)*CareFree/exp(Zeta(3)) 6524716434763503 a001 9349/701408733*4181^(4/21) 6524716442545766 a001 144/15127*322^(1/3) 6524716471524410 r005 Re(z^2+c),c=7/17+9/61*I,n=3 6524716484303339 a001 24476/12586269025*102334155^(4/21) 6524716484303339 a001 6119/21566892818*2504730781961^(4/21) 6524716493605642 a001 64079/32951280099*102334155^(4/21) 6524716493605642 a001 64079/225851433717*2504730781961^(4/21) 6524716494962830 a001 167761/86267571272*102334155^(4/21) 6524716494962830 a001 167761/591286729879*2504730781961^(4/21) 6524716495160841 a001 439204/225851433717*102334155^(4/21) 6524716495160841 a001 109801/387002188980*2504730781961^(4/21) 6524716495189730 a001 1/514229*102334155^(4/21) 6524716495189730 a001 1149851/4052739537881*2504730781961^(4/21) 6524716495193945 a001 3010349/1548008755920*102334155^(4/21) 6524716495193945 a001 3010349/10610209857723*2504730781961^(4/21) 6524716495194560 a001 7881196/4052739537881*102334155^(4/21) 6524716495194650 a001 20633239/10610209857723*102334155^(4/21) 6524716495194705 a001 12752043/6557470319842*102334155^(4/21) 6524716495194940 a001 4870847/2504730781961*102334155^(4/21) 6524716495196550 a001 1860498/956722026041*102334155^(4/21) 6524716495196550 a001 930249/3278735159921*2504730781961^(4/21) 6524716495207585 a001 710647/365435296162*102334155^(4/21) 6524716495207585 a001 710647/2504730781961*2504730781961^(4/21) 6524716495283218 a001 271443/139583862445*102334155^(4/21) 6524716495283218 a001 271443/956722026041*2504730781961^(4/21) 6524716495801618 a001 103682/53316291173*102334155^(4/21) 6524716495801618 a001 51841/182717648081*2504730781961^(4/21) 6524716498522436 a001 24476/1836311903*4181^(4/21) 6524716499354781 a001 39603/20365011074*102334155^(4/21) 6524716499354781 a001 39603/139583862445*2504730781961^(4/21) 6524716507824739 a001 64079/4807526976*4181^(4/21) 6524716509181926 a001 1/75025*4181^(4/21) 6524716509379937 a001 439204/32951280099*4181^(4/21) 6524716509408827 a001 1149851/86267571272*4181^(4/21) 6524716509413042 a001 3010349/225851433717*4181^(4/21) 6524716509413657 a001 7881196/591286729879*4181^(4/21) 6524716509413746 a001 1875749/140728068720*4181^(4/21) 6524716509413760 a001 54018521/4052739537881*4181^(4/21) 6524716509413761 a001 141422324/10610209857723*4181^(4/21) 6524716509413763 a001 87403803/6557470319842*4181^(4/21) 6524716509413768 a001 33385282/2504730781961*4181^(4/21) 6524716509413802 a001 12752043/956722026041*4181^(4/21) 6524716509414037 a001 4870847/365435296162*4181^(4/21) 6524716509415647 a001 1860498/139583862445*4181^(4/21) 6524716509426682 a001 710647/53316291173*4181^(4/21) 6524716509502315 a001 271443/20365011074*4181^(4/21) 6524716510020715 a001 103682/7778742049*4181^(4/21) 6524716513573878 a001 39603/2971215073*4181^(4/21) 6524716514501749 r005 Re(z^2+c),c=-7/10+12/107*I,n=3 6524716523708526 a001 15127/7778742049*102334155^(4/21) 6524716523708526 a001 15127/53316291173*2504730781961^(4/21) 6524716531625773 a007 Real Root Of 629*x^4-643*x^3-37*x^2-788*x-791 6524716537927623 a001 15127/1134903170*4181^(4/21) 6524716553287981 r002 2th iterates of z^2 + 6524716555229118 m001 (Zeta(1/2)+4)/(-OneNinth+4) 6524716558638103 r002 56th iterates of z^2 + 6524716592082312 r005 Im(z^2+c),c=-7/118+8/11*I,n=50 6524716604372365 a007 Real Root Of -870*x^4+899*x^3+473*x^2-233*x+54 6524716620751860 r009 Im(z^3+c),c=-1/74+37/48*I,n=35 6524716626044097 v002 sum(1/(3^n+(18*n^2-22*n+28)),n=1..infinity) 6524716632263354 m001 (BesselJ(0,1)-exp(1/2))/GAMMA(2/3) 6524716654154028 m001 (ln(2)/ln(10)-sinh(1))/Totient 6524716654642710 r005 Im(z^2+c),c=-7/118+42/59*I,n=29 6524716658670868 m001 Porter^KhinchinLevy*PlouffeB^KhinchinLevy 6524716670631000 m005 (-1/28+1/4*5^(1/2))/(1/9*exp(1)+1/2) 6524716671493901 a001 36/19*5778^(29/43) 6524716685529351 m005 (9/5+2*5^(1/2))/(3/4*exp(1)-3) 6524716690631579 a001 5778/2971215073*102334155^(4/21) 6524716690631579 a001 2889/10182505537*2504730781961^(4/21) 6524716704850676 a001 5778/433494437*4181^(4/21) 6524716740789157 m006 (1/6*ln(Pi)+1/3)/(2/Pi+1/6) 6524716757439453 r002 3th iterates of z^2 + 6524716784769018 r002 24th iterates of z^2 + 6524716785034030 r005 Im(z^2+c),c=-75/122+3/22*I,n=25 6524716804039623 a007 Real Root Of 875*x^4+379*x^3+662*x^2-573*x-709 6524716813793817 r009 Re(z^3+c),c=-13/118+24/41*I,n=48 6524716822813036 a003 cos(Pi*10/61)-cos(Pi*40/93) 6524716828187638 m001 1/ln(Pi)*LambertW(1)*log(2+sqrt(3)) 6524716828187638 m001 LambertW(1)/ln(Pi)*ln(2+3^(1/2)) 6524716828187638 m001 LambertW(1)/ln(Pi)*ln(2+sqrt(3)) 6524716855992626 r009 Re(z^3+c),c=-13/118+24/41*I,n=50 6524716862438875 a005 (1/cos(5/46*Pi))^651 6524716895985012 m001 1/sin(Pi/12)^2/TwinPrimes/ln(sqrt(2)) 6524716918180748 m005 (1/6*Catalan+3/5)/(1/4*2^(1/2)+4/5) 6524716940189570 a007 Real Root Of 639*x^4-733*x^3-615*x^2-911*x-652 6524716945432935 r002 2th iterates of z^2 + 6524716960784672 r005 Re(z^2+c),c=-53/42+3/8*I,n=10 6524716972958155 r002 2th iterates of z^2 + 6524716992349799 m001 (Artin+MinimumGamma)/(5^(1/2)+gamma) 6524716994435289 a001 610/39603*199^(3/11) 6524717007878962 a007 Real Root Of 437*x^4-335*x^3+962*x^2-103*x-649 6524717027440295 a007 Real Root Of 102*x^4-341*x^3+639*x^2+77*x-335 6524717028929217 r009 Re(z^3+c),c=-13/118+24/41*I,n=52 6524717058907641 a001 4181/29*7^(45/58) 6524717064696726 r005 Re(z^2+c),c=-25/31+31/44*I,n=2 6524717093508040 q001 2191/3358 6524717095098671 m001 cos(1/12*Pi)^FeigenbaumC/(Paris^FeigenbaumC) 6524717110637363 a007 Real Root Of 320*x^4+237*x^3-633*x^2-727*x+620 6524717112541984 m001 ln(sin(1))^2/log(1+sqrt(2))^2/sin(Pi/5) 6524717116834974 s002 sum(A175841[n]/(n*pi^n-1),n=1..infinity) 6524717146276547 a007 Real Root Of -943*x^4+378*x^3-904*x^2-487*x+343 6524717150270858 a001 21/4870847*199^(55/58) 6524717158636088 a007 Real Root Of -656*x^4-757*x^3+992*x^2+809*x-621 6524717166155600 r009 Re(z^3+c),c=-13/118+24/41*I,n=54 6524717169213356 l006 ln(853/1638) 6524717193065276 m002 4*Pi^2+E^(2*Pi)*Log[Pi] 6524717197386788 m005 (1/2*3^(1/2)+2/7)/(3/5*2^(1/2)+11/12) 6524717214502162 r005 Im(z^2+c),c=-39/32+1/8*I,n=23 6524717221947169 a001 1364*4181^(37/50) 6524717237412906 m001 1/exp(GAMMA(5/6))^2/Magata^2/sinh(1)^2 6524717238753575 a007 Real Root Of 849*x^4-215*x^3+853*x^2+113*x-503 6524717240494044 r009 Re(z^3+c),c=-13/118+24/41*I,n=56 6524717260743940 r009 Re(z^3+c),c=-13/118+24/41*I,n=61 6524717261834042 a007 Real Root Of -121*x^4-767*x^3+281*x^2+969*x+607 6524717262089803 r009 Re(z^3+c),c=-13/118+24/41*I,n=59 6524717263499483 r009 Re(z^3+c),c=-13/118+24/41*I,n=63 6524717269976202 r009 Re(z^3+c),c=-13/118+24/41*I,n=58 6524717272216602 r009 Re(z^3+c),c=-13/118+24/41*I,n=64 6524717275200666 r009 Re(z^3+c),c=-13/118+24/41*I,n=62 6524717276734257 r009 Re(z^3+c),c=-13/118+24/41*I,n=60 6524717277849958 r009 Re(z^3+c),c=-13/118+24/41*I,n=57 6524717279838608 a003 cos(Pi*20/101)*sin(Pi*27/91) 6524717282586256 a001 610/1322157322203*2^(1/2) 6524717284604456 m001 (-ln(Pi)+GolombDickman)/(ln(2)/ln(10)-ln(3)) 6524717301039028 m001 (Pi*2^(1/2)/GAMMA(3/4))^(2^(1/2))*GAMMA(11/12) 6524717301039028 m001 GAMMA(1/4)^sqrt(2)*GAMMA(11/12) 6524717303762236 r005 Im(z^2+c),c=-9/14+17/135*I,n=52 6524717307873262 r005 Re(z^2+c),c=1/12+15/34*I,n=28 6524717326737485 r009 Re(z^3+c),c=-13/118+24/41*I,n=55 6524717355631014 m001 MasserGramainDelta/PrimesInBinary*ZetaR(2) 6524717366327732 r009 Re(z^3+c),c=-13/118+24/41*I,n=46 6524717366479388 a005 (1/cos(27/197*Pi))^188 6524717384862131 g005 GAMMA(9/11)*GAMMA(3/11)*GAMMA(5/6)/GAMMA(1/7) 6524717407892990 m001 (Ei(1)+Artin)/(FeigenbaumD+Kolakoski) 6524717415951153 a007 Real Root Of 712*x^4+210*x^3+578*x^2-172*x-429 6524717417193664 a007 Real Root Of -973*x^4+646*x^3+76*x^2-416*x+52 6524717431626341 r009 Re(z^3+c),c=-13/118+24/41*I,n=53 6524717436050340 r002 3th iterates of z^2 + 6524717437691618 r005 Im(z^2+c),c=-27/44+3/26*I,n=30 6524717444044138 a007 Real Root Of 481*x^4+421*x^3+77*x^2-682*x-448 6524717445478520 a007 Real Root Of -386*x^4+319*x^3-582*x^2-540*x+54 6524717453375624 m001 (Sarnak+ZetaP(4))/(Ei(1)-Pi^(1/2)) 6524717521405590 m001 (BesselJ(0,1)-Chi(1))/(gamma(1)+KhinchinLevy) 6524717567231232 r009 Re(z^3+c),c=-13/118+24/41*I,n=47 6524717570891914 m001 (LambertW(1)-Psi(1,1/3))/(GaussAGM+Kac) 6524717574680856 m005 (1/2*Catalan+5/12)/(8/11*5^(1/2)-2/7) 6524717586250447 p004 log(28111/14639) 6524717595828079 r009 Re(z^3+c),c=-13/118+24/41*I,n=51 6524717632538239 r002 20th iterates of z^2 + 6524717657134270 r005 Im(z^2+c),c=-5/24+41/63*I,n=53 6524717676431647 r002 20th iterates of z^2 + 6524717720231536 a007 Real Root Of 890*x^4+12*x^3-722*x^2-451*x+437 6524717738436362 r009 Re(z^3+c),c=-13/118+24/41*I,n=49 6524717775414491 r009 Re(z^3+c),c=-9/98+5/12*I,n=12 6524717778695442 b008 -1/50+Sech[5] 6524717778695442 b008 1/5-10*Sech[5] 6524717805954892 q001 3/45979 6524717808654391 a007 Real Root Of -98*x^4-516*x^3+814*x^2-79*x-886 6524717816848544 a007 Real Root Of 494*x^4-372*x^3+235*x^2-463*x-595 6524717834739203 a001 2207/1134903170*102334155^(4/21) 6524717834739203 a001 2207/7778742049*2504730781961^(4/21) 6524717848958303 a001 2207/165580141*4181^(4/21) 6524717868464047 a005 (1/cos(59/210*Pi))^65 6524717883245684 a003 cos(Pi*4/93)-sin(Pi*10/91) 6524717919719776 a007 Real Root Of -469*x^4+923*x^3-933*x^2-335*x+520 6524717923726773 a003 sin(Pi*5/29)/cos(Pi*21/100) 6524717933750711 h001 (7/11*exp(1)+2/9)/(11/12*exp(1)+1/2) 6524717939894100 a007 Real Root Of 207*x^4-609*x^3-946*x^2-50*x+567 6524717945236134 b008 E^(-1)+Sech[EulerGamma]/3 6524717973239268 a007 Real Root Of -224*x^4+999*x^3-946*x^2-271*x+544 6524717981470037 r002 16th iterates of z^2 + 6524717987668796 a003 3^(1/2)-cos(1/5*Pi)-cos(1/9*Pi)+cos(4/15*Pi) 6524718015100418 m005 (1/2*Zeta(3)+5/12)/(2/11*2^(1/2)-3/11) 6524718015878913 b008 QPochhammer[-1+Sqrt[2],-5/8] 6524718044979640 m006 (2/5*exp(2*Pi)-1)/(3*ln(Pi)-1/6) 6524718060968939 a007 Real Root Of -922*x^4-561*x^3-972*x^2-676*x-16 6524718063049635 r009 Im(z^3+c),c=-37/114+41/62*I,n=26 6524718063273418 r005 Im(z^2+c),c=-53/48+5/64*I,n=37 6524718066268947 a008 Real Root of (-2+5*x+2*x^2-5*x^3-4*x^4) 6524718073376658 m008 (5/6*Pi^3-3/4)/(4*Pi^6-2/5) 6524718090437264 a007 Real Root Of 256*x^4-628*x^3-375*x^2-671*x-499 6524718107504874 r005 Im(z^2+c),c=31/78+19/54*I,n=39 6524718109027396 h001 (5/6*exp(1)+6/7)/(7/11*exp(2)+1/12) 6524718142645999 m001 QuadraticClass^Niven*cos(1/5*Pi) 6524718154538808 b008 (17*Csch[1/2])/5 6524718165166383 a001 2889/305*317811^(51/58) 6524718169402903 a007 Real Root Of 849*x^4+167*x^3+804*x^2-218*x-592 6524718199023482 r002 11th iterates of z^2 + 6524718202187835 a007 Real Root Of 661*x^4+969*x^3+806*x^2-923*x-796 6524718216242236 m001 (HeathBrownMoroz+Trott2nd)/BesselJ(1,1) 6524718230213992 r005 Re(z^2+c),c=19/86+9/26*I,n=26 6524718256460773 m001 (gamma(2)+BesselI(1,1))/(Conway-ZetaP(2)) 6524718264972323 a001 832040/47*843^(50/57) 6524718265041158 m001 Zeta(9)^2/RenyiParking^2/ln(log(2+sqrt(3))) 6524718280488146 a007 Real Root Of 545*x^4-406*x^3-697*x^2-333*x+528 6524718285219719 a007 Real Root Of 169*x^4+964*x^3-931*x^2-286*x-752 6524718293905800 a007 Real Root Of 282*x^4+188*x^3+970*x^2+763*x+86 6524718305613553 m004 -125*Pi+149*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 6524718330744130 l006 ln(5256/10093) 6524718355870241 r005 Re(z^2+c),c=9/56+23/38*I,n=10 6524718367136649 m001 (1+3^(1/2))^(1/2)-FibonacciFactorial^gamma(3) 6524718427608433 a007 Real Root Of -416*x^4-312*x^3-977*x^2+563*x+772 6524718428225578 a001 322/55*514229^(38/43) 6524718465159897 a007 Real Root Of 253*x^4-898*x^3+370*x^2-503*x-781 6524718551150269 q001 1333/2043 6524718555769268 l006 ln(4403/8455) 6524718596802021 a007 Real Root Of -141*x^4-812*x^3+783*x^2+516*x+28 6524718605628803 r002 51th iterates of z^2 + 6524718615523143 m001 Rabbit^2*ln(FeigenbaumDelta)^2/GAMMA(2/3)^2 6524718631748110 p001 sum((-1)^n/(194*n+153)/(256^n),n=0..infinity) 6524718642835211 g006 Psi(1,1/8)+Psi(1,4/7)-Psi(1,9/10)-Psi(1,5/6) 6524718646160902 m005 (1/2*Zeta(3)-8/11)/(9/11*2^(1/2)+7/9) 6524718652723477 a008 Real Root of x^4-x^3-45*x^2+77*x+328 6524718664698251 a001 55/47*39603^(22/27) 6524718666767007 m001 (Thue+Weierstrass)/(Riemann2ndZero-Stephens) 6524718672040367 m001 (-CareFree+Magata)/(1-2^(1/2)) 6524718737470182 r002 16th iterates of z^2 + 6524718772958206 a007 Real Root Of 522*x^4-311*x^3+993*x^2+559*x-239 6524718780044885 r005 Im(z^2+c),c=-5/17+41/63*I,n=58 6524718789403435 r005 Im(z^2+c),c=-53/48+5/64*I,n=41 6524718791500815 a007 Real Root Of -545*x^4+189*x^3+995*x^2+776*x+234 6524718795601103 m001 ThueMorse^(HardyLittlewoodC5*Salem) 6524718804078688 r008 a(0)=1,K{-n^6,9-8*n^3+8*n^2-8*n} 6524718835925677 m001 (2^(1/3)-cos(1/12*Pi))/(-ZetaQ(2)+ZetaQ(3)) 6524718843833144 a007 Real Root Of -472*x^4+674*x^3+828*x^2-129*x-370 6524718863178574 a001 161/305*1597^(15/44) 6524718885845728 r005 Re(z^2+c),c=-57/74+1/55*I,n=45 6524718888933237 l006 ln(3550/6817) 6524718905982506 b008 Csch[1+Csch[1]/4] 6524718947944046 m001 (Pi+Zeta(1/2))/(Grothendieck+Kolakoski) 6524718992694457 r005 Re(z^2+c),c=25/64+16/39*I,n=7 6524719016653933 a007 Real Root Of -93*x^4+870*x^3-393*x^2+11*x+433 6524719023002441 a007 Real Root Of 142*x^4+205*x^3+470*x^2-837*x-715 6524719054991082 m001 (OrthogonalArrays-Paris)/(exp(1/Pi)+Kac) 6524719073478721 m001 (Pi+Psi(1,1/3))/(LambertW(1)+MinimumGamma) 6524719136729839 m001 (5^(1/2)+exp(1/exp(1)))/(Khinchin+Otter) 6524719206997084 r005 Im(z^2+c),c=29/70+11/50*I,n=3 6524719225019949 q001 1/1532633 6524719248878939 m001 FeigenbaumD^AlladiGrinstead/Magata 6524719259471061 a001 377/15127*199^(2/11) 6524719269881243 m001 ln(log(1+sqrt(2)))*GAMMA(5/24)*sinh(1) 6524719287849620 a007 Real Root Of -798*x^4-825*x^3+271*x^2+829*x-55 6524719290390415 m006 (4/5*Pi^2+4/5)/(1/4*exp(2*Pi)-3/5) 6524719307892499 a007 Real Root Of 341*x^4+575*x^3+486*x^2-492*x-430 6524719307936040 a005 (1/cos(17/208*Pi))^1576 6524719308733718 r009 Im(z^3+c),c=-13/54+45/62*I,n=46 6524719350051551 h001 (1/6*exp(2)+3/10)/(7/10*exp(1)+4/9) 6524719367781878 a007 Real Root Of 669*x^4-141*x^3+233*x^2-301*x-456 6524719376279277 m001 GAMMA(5/6)*GAMMA(2/3)^2/exp(gamma)^2 6524719414070985 r005 Re(z^2+c),c=-49/64+1/28*I,n=51 6524719432841614 l006 ln(2697/5179) 6524719434629701 a007 Real Root Of -68*x^4+761*x^3-513*x^2-486*x+125 6524719441025119 r009 Re(z^3+c),c=-13/118+24/41*I,n=44 6524719441959609 a007 Real Root Of -832*x^4+556*x^3+420*x^2+171*x+238 6524719467335435 a007 Real Root Of 702*x^4-987*x^3+439*x^2+497*x-264 6524719486180968 r005 Im(z^2+c),c=-19/26+7/20*I,n=10 6524719500568360 m001 (-Zeta(5)+Totient)/(BesselJ(0,1)-ln(2)/ln(10)) 6524719516065319 a005 (1/cos(57/199*Pi))^96 6524719520783363 m001 (3^(1/2)-5^(1/2))/(-sin(1)+LandauRamanujan) 6524719526371194 a007 Real Root Of 408*x^4-451*x^3+693*x^2+523*x-153 6524719531570564 a001 33552/514229 6524719531664053 a004 Fibonacci(12)/Lucas(13)/(1/2+sqrt(5)/2)^3 6524719532182452 a004 Fibonacci(13)/Lucas(12)/(1/2+sqrt(5)/2)^5 6524719544399831 m001 (sin(1/12*Pi)+exp(1/Pi))/(Artin-GolombDickman) 6524719547206357 a007 Real Root Of 860*x^4+210*x^3+221*x^2+755*x+301 6524719564467199 p003 LerchPhi(1/10,1,260/159) 6524719569033279 r009 Im(z^3+c),c=-43/90+16/31*I,n=26 6524719581832638 a001 2/89*1346269^(41/46) 6524719584326292 r005 Re(z^2+c),c=-107/90+12/37*I,n=4 6524719602863877 r009 Re(z^3+c),c=-61/114+11/60*I,n=30 6524719616467046 m001 2*Pi/GAMMA(5/6)-3^(1/3)*Magata 6524719621916156 r005 Im(z^2+c),c=37/90+7/55*I,n=4 6524719678532230 r005 Re(z^2+c),c=-9/10+6/35*I,n=58 6524719678707063 a007 Real Root Of -351*x^4+781*x^3+249*x^2+211*x-397 6524719679772689 m001 GAMMA(23/24)*LaplaceLimit-Trott2nd 6524719688074505 r005 Re(z^2+c),c=-9/14+98/213*I,n=22 6524719716102073 m001 Bloch^Catalan*Bloch^exp(1) 6524719720534969 r005 Im(z^2+c),c=39/110+17/55*I,n=24 6524719736967202 a007 Real Root Of -209*x^4+955*x^3+505*x^2-255*x-276 6524719740565758 a007 Real Root Of -892*x^4+549*x^3+810*x^2+540*x-688 6524719745918555 a003 sin(Pi*17/83)/sin(Pi*13/35) 6524719760691968 p004 log(22619/11779) 6524719765225291 a007 Real Root Of -902*x^4+952*x^3-77*x^2-139*x+370 6524719777873059 m001 Totient^HardyLittlewoodC4*Gompertz 6524719784916607 h003 exp(Pi*(13^(1/2)*(15^(1/2)+9^(3/4))^(1/2))) 6524719791824648 r002 14th iterates of z^2 + 6524719793530267 a007 Real Root Of 65*x^4+182*x^3+774*x^2-695*x+42 6524719804515157 h001 (5/9*exp(2)+2/9)/(7/8*exp(2)+1/6) 6524719816135786 r005 Im(z^2+c),c=-6/23+45/53*I,n=5 6524719856479485 a003 cos(Pi*22/81)*sin(Pi*35/76) 6524719858050741 l006 ln(4541/8720) 6524719889534758 h001 (5/8*exp(1)+5/6)/(3/7*exp(2)+5/7) 6524719898271666 a007 Real Root Of -232*x^4+318*x^3+951*x^2+832*x-994 6524719912030364 r009 Re(z^3+c),c=-61/114+5/34*I,n=22 6524719925256691 a007 Real Root Of -73*x^4-350*x^3+696*x^2-811*x+162 6524719945694049 r002 62i'th iterates of 2*x/(1-x^2) of 6524719949103925 m001 1/ArtinRank2/Backhouse^2/ln(Riemann3rdZero)^2 6524719964360996 a007 Real Root Of -506*x^4+772*x^3-105*x^2+811*x+880 6524719976397288 m001 (Kac+Niven)/(3^(1/2)-exp(1/Pi)) 6524719980534964 m001 exp(GaussKuzminWirsing)/Bloch/BesselJ(1,1) 6524719986150890 m004 (-625*Pi)/3+3*Sin[Sqrt[5]*Pi] 6524719998539597 m005 (1/2*Pi+1/5)/(11/12*exp(1)+2/9) 6524720006727893 a007 Real Root Of -272*x^4+908*x^3-4*x^2+884*x+880 6524720010612730 a007 Real Root Of 90*x^4-30*x^3+961*x^2-218*x-576 6524720043767600 r002 10th iterates of z^2 + 6524720049795125 a007 Real Root Of -149*x^4+453*x^3+918*x^2+491*x-810 6524720057119057 r009 Re(z^3+c),c=-37/70+6/49*I,n=2 6524720070171554 r009 Im(z^3+c),c=-13/98+44/61*I,n=10 6524720082519121 r005 Im(z^2+c),c=-39/64+1/8*I,n=33 6524720107258432 r009 Re(z^3+c),c=-13/110+19/29*I,n=36 6524720183242663 m001 1/ln(LaplaceLimit)*LandauRamanujan*Lehmer^2 6524720183831892 a003 sin(Pi*4/93)-sin(Pi*15/52) 6524720185669139 m001 Catalan/Otter/Weierstrass 6524720196153616 m001 (Trott+TwinPrimes)/(cos(1/5*Pi)+Ei(1,1)) 6524720197232220 m001 MertensB1/(GaussKuzminWirsing-CareFree) 6524720223006901 s002 sum(A218346[n]/(n^3*2^n-1),n=1..infinity) 6524720228624038 m001 (ln(2)/ln(10)+Chi(1))/(-gamma(3)+MadelungNaCl) 6524720229209674 m008 (1/6*Pi^4+3/5)/(5/6*Pi^5+3) 6524720233286530 a007 Real Root Of 53*x^4-348*x^3-36*x^2-43*x-119 6524720246413804 r005 Im(z^2+c),c=-49/82+13/21*I,n=8 6524720248193582 r009 Re(z^3+c),c=-7/90+16/23*I,n=15 6524720251202296 m001 (-Bloch+ErdosBorwein)/(BesselI(0,2)-cos(1)) 6524720259636001 m005 (1/3*Zeta(3)+1/3)/(3/7*5^(1/2)+1/6) 6524720277450961 r002 47th iterates of z^2 + 6524720278879280 r009 Im(z^3+c),c=-37/106+24/37*I,n=34 6524720300242690 m005 (1/2*gamma+1/3)/(6/11*2^(1/2)+2/11) 6524720307163821 m001 1/Porter^2*ln(MinimumGamma)^2/GAMMA(23/24) 6524720317574882 q001 1808/2771 6524720346935338 a007 Real Root Of 737*x^4-475*x^3+411*x^2-128*x-524 6524720369263779 a007 Real Root Of -843*x^4+770*x^3+675*x^2+726*x+553 6524720370296090 p003 LerchPhi(1/5,3,190/163) 6524720374118754 a007 Real Root Of -102*x^4+592*x^3+27*x^2+830*x-699 6524720401430222 r005 Im(z^2+c),c=43/122+11/39*I,n=4 6524720416971637 a007 Real Root Of 49*x^4+385*x^3+378*x^2-265*x+314 6524720448905455 a007 Real Root Of -225*x^4+220*x^3-503*x^2+354*x+547 6524720459734422 a001 2/17711*144^(6/17) 6524720479953645 l006 ln(1844/3541) 6524720500916305 a001 199/21*75025^(37/47) 6524720501909536 a007 Real Root Of -888*x^4-988*x^3-951*x^2-45*x+262 6524720516821172 a001 1364/701408733*4807526976^(6/23) 6524720516881652 a001 1364/39088169*75025^(6/23) 6524720572575681 a007 Real Root Of 732*x^4-155*x^3+646*x^2-451*x-745 6524720626780586 a007 Real Root Of 668*x^4+486*x^3+38*x^2-628*x-412 6524720634561952 a007 Real Root Of -923*x^4+549*x^3+143*x^2+627*x+668 6524720650469520 a001 123/10946*233^(38/51) 6524720661679398 r005 Re(z^2+c),c=-47/86+13/24*I,n=31 6524720661939829 a007 Real Root Of 825*x^4-389*x^3+899*x^2-467*x-945 6524720720571747 h001 (11/12*exp(2)+1/11)/(1/9*exp(1)+3/4) 6524720722546653 r005 Re(z^2+c),c=-3/31+50/57*I,n=23 6524720731408580 m001 (Pi+ln(5))/gamma(1) 6524720747385521 a007 Real Root Of -319*x^4+834*x^3+982*x^2+181*x-710 6524720766496826 m001 (Psi(1,1/3)-exp(Pi))/(Backhouse+Landau) 6524720768718757 m001 ln(Zeta(3))^2/Sierpinski^2/log(1+sqrt(2))^2 6524720775158198 m001 (-Bloch+ZetaP(3))/(BesselK(1,1)-Shi(1)) 6524720795081827 m005 (1/3*gamma+2/11)/(115/22+5/22*5^(1/2)) 6524720810547335 a007 Real Root Of -70*x^4-468*x^3-71*x^2-31*x-310 6524720815319681 h001 (6/11*exp(2)+1/10)/(7/9*exp(2)+7/12) 6524720831533382 m006 (5*exp(Pi)+1/2)/(1/3*exp(2*Pi)-2/5) 6524720837668258 a003 cos(Pi*4/93)-sin(Pi*32/85) 6524720851763428 r001 13i'th iterates of 2*x^2-1 of 6524720866634097 m001 (-GAMMA(7/12)+ErdosBorwein)/(Pi^(1/2)-gamma) 6524720965433881 m005 (1/2*gamma+3/4)/(13/18+7/18*5^(1/2)) 6524720993556394 a001 15127/1597*317811^(51/58) 6524721001613403 a007 Real Root Of -840*x^4+434*x^3+327*x^2+675*x+574 6524721001750371 m002 -4/Pi^2+Pi^3+3*Sinh[Pi] 6524721019540917 m001 1/Magata^2*ln(KhintchineLevy)^2*sin(Pi/12) 6524721075985457 r002 4th iterates of z^2 + 6524721083514431 l006 ln(4679/8985) 6524721095840610 r005 Im(z^2+c),c=11/54+25/44*I,n=29 6524721127908745 r009 Im(z^3+c),c=-69/98+10/37*I,n=2 6524721155260340 r009 Im(z^3+c),c=-29/56+5/38*I,n=47 6524721179173080 r005 Re(z^2+c),c=11/114+29/63*I,n=36 6524721198076081 a007 Real Root Of 267*x^4-886*x^3-316*x^2-984*x-802 6524721221762530 m001 (-MasserGramain+Otter)/(5^(1/2)+Conway) 6524721235298086 g005 GAMMA(5/11)*GAMMA(8/9)*GAMMA(5/7)/GAMMA(2/9) 6524721308052300 m001 HardyLittlewoodC4*Porter^ReciprocalLucas 6524721324254523 r009 Re(z^3+c),c=-11/21+5/51*I,n=20 6524721336862656 a007 Real Root Of 103*x^4-386*x^3-574*x^2-722*x+804 6524721346574577 m005 (1/2*5^(1/2)+1/6)/(4/5*3^(1/2)+7/12) 6524721348956844 q001 2283/3499 6524721364742891 r002 52th iterates of z^2 + 6524721388268289 m001 (RenyiParking+Totient)/(exp(-1/2*Pi)-Magata) 6524721406213152 a001 39603/4181*317811^(51/58) 6524721408373679 a007 Real Root Of 135*x^4+928*x^3+236*x^2-319*x+972 6524721438012747 a007 Real Root Of 225*x^4+411*x^3+493*x^2-528*x-481 6524721441069232 m001 (1+3^(1/2))^(1/2)-exp(1/Pi)^HeathBrownMoroz 6524721441809965 r002 14th iterates of z^2 + 6524721444798696 m001 (KhinchinHarmonic-Mills)/(ln(Pi)-Bloch) 6524721454416315 m006 (4*ln(Pi)+1/6)/(2/5/Pi+3/5) 6524721476095042 l006 ln(2835/5444) 6524721517674264 a007 Real Root Of 62*x^4-13*x^3+870*x^2-415*x-656 6524721520038653 r002 23th iterates of z^2 + 6524721546003366 m001 BesselJ(1,1)/(BesselK(1,1)^StronglyCareFree) 6524721558856843 r005 Re(z^2+c),c=-11/9+31/101*I,n=6 6524721560921347 m001 GAMMA(7/12)*(FransenRobinson-Zeta(1/2)) 6524721566737327 a007 Real Root Of -640*x^4+290*x^3-816*x^2+371*x+786 6524721567522834 m001 1/ln(Zeta(5))*Rabbit/sqrt(3)^2 6524721591541979 a007 Real Root Of 15*x^4+978*x^3-45*x^2+76*x-195 6524721604011095 r005 Re(z^2+c),c=1/36+5/17*I,n=3 6524721611944164 m001 (ln(5)+GAMMA(7/12))/(Rabbit-Robbin) 6524721625200944 m001 ln(Robbin)^2/Bloch^2/GAMMA(19/24) 6524721626923124 r002 43th iterates of z^2 + 6524721632690322 a007 Real Root Of 284*x^4-591*x^3-341*x^2-925*x-674 6524721637157587 r005 Re(z^2+c),c=-99/106+19/62*I,n=15 6524721654897160 a001 1/774004377960*514229^(14/17) 6524721661249082 a001 6119/646*317811^(51/58) 6524721699742007 a007 Real Root Of 347*x^4-426*x^3+592*x^2+241*x-276 6524721726101046 a001 36/6119*322^(5/12) 6524721726576169 l006 ln(9433/10069) 6524721726576169 p004 log(10069/9433) 6524721727241847 a007 Real Root Of -525*x^4-113*x^3+610*x^2+950*x-753 6524721733363268 m001 1/ln(ArtinRank2)/Artin*Zeta(1,2)^2 6524721749505964 a007 Real Root Of 698*x^4-241*x^3-54*x^2-361*x-406 6524721751862137 p004 log(12791/6661) 6524721753417729 r005 Re(z^2+c),c=-8/11+16/47*I,n=3 6524721758162037 r005 Im(z^2+c),c=-11/114+33/40*I,n=26 6524721760362532 a007 Real Root Of 881*x^4-582*x^3-886*x^2-271*x+556 6524721761171860 m005 (1/2*exp(1)-5/7)/(1/7*exp(1)+3/5) 6524721761641481 a007 Real Root Of -472*x^4+602*x^3+47*x^2+828*x+773 6524721793099834 m001 1/ln(GAMMA(7/12))/GAMMA(1/4)*Zeta(9)^2 6524721795863947 a007 Real Root Of -321*x^4+981*x^3-681*x^2+370*x+862 6524721805311447 a007 Real Root Of 151*x^4+908*x^3-579*x^2-471*x+123 6524721842667282 m001 Kolakoski^2*ln(KhintchineHarmonic)^2*gamma^2 6524721845620863 b008 Cosh[(2*Sqrt[2]*E)/3] 6524721853335698 a007 Real Root Of -732*x^4+201*x^3+897*x^2+278*x-22 6524721857991402 m005 (1/3*Catalan-1/7)/(-29/126+3/14*5^(1/2)) 6524721872537954 a007 Real Root Of 196*x^4-504*x^3+733*x^2-416*x-759 6524721903939428 g006 -Psi(1,7/9)-Psi(1,4/9)-Psi(1,3/7)-Psi(1,1/7) 6524721910321146 a007 Real Root Of 930*x^4-714*x^3-157*x^2+866*x+265 6524721912892464 b008 64+Sqrt[14]/3 6524721950337558 m001 GAMMA(5/6)^2/Artin/exp(sqrt(1+sqrt(3))) 6524721951273296 a007 Real Root Of -871*x^4+847*x^3-571*x^2-431*x+355 6524721952403077 a005 (1/sin(43/125*Pi))^254 6524721956200792 l006 ln(3826/7347) 6524721969950724 a007 Real Root Of 617*x^4-803*x^3-519*x^2-253*x-279 6524721989125908 a001 1/21*21^(3/29) 6524721993471782 a007 Real Root Of -769*x^4+778*x^3+24*x^2+441*x+633 6524722090330641 a007 Real Root Of 566*x^4-306*x^3-613*x^2-483*x-29 6524722114041232 k007 concat of cont frac of 6524722128077233 r002 26th iterates of z^2 + 6524722141648812 s001 sum(exp(-4*Pi/5)^n*A191940[n],n=1..infinity) 6524722146682332 a007 Real Root Of -960*x^4+952*x^3-894*x^2-210*x+682 6524722147200352 a001 47/29*(1/2*5^(1/2)+1/2)^30*29^(21/23) 6524722147326598 m001 1/Pi^2/ArtinRank2*ln(cos(Pi/5))^2 6524722163853403 a001 47/55*144^(41/47) 6524722182496018 r002 8th iterates of z^2 + 6524722188982861 a001 47/1346269*4181^(3/40) 6524722195849546 m001 1/ln(Catalan)*PrimesInBinary*sinh(1)^2 6524722212807813 m005 (1/2*2^(1/2)+5/8)/(5/7*exp(1)+1/10) 6524722217472358 m001 ln(Ei(1))/Conway^2*log(2+sqrt(3))^2 6524722226488547 m005 (1/2*3^(1/2)+3/7)/(1/2*exp(1)+5/8) 6524722238762500 l006 ln(4817/9250) 6524722250212551 m001 (GAMMA(2/3)+Grothendieck)/(Totient-Thue) 6524722257190859 a001 1/6624*21^(25/52) 6524722287904334 m001 (polylog(4,1/2)+2*Pi/GAMMA(5/6))/(Artin-Mills) 6524722302712366 a007 Real Root Of 823*x^4-339*x^3-81*x^2-247*x-370 6524722313160524 r005 Re(z^2+c),c=11/106+8/17*I,n=60 6524722314317885 r005 Re(z^2+c),c=45/94+34/59*I,n=3 6524722314883853 a007 Real Root Of -749*x^4-512*x^3-257*x^2+935*x+713 6524722335247824 m001 (-2*Pi/GAMMA(5/6)+Magata)/(2^(1/2)+Ei(1)) 6524722347304202 m001 (3^(1/2)+Khinchin)/(-LaplaceLimit+Totient) 6524722361093468 r005 Re(z^2+c),c=11/90+31/63*I,n=35 6524722382842797 r009 Re(z^3+c),c=-3/25+39/58*I,n=62 6524722392846182 m005 (1/2*5^(1/2)-9/11)/(19/90+1/9*5^(1/2)) 6524722419393886 a007 Real Root Of 646*x^4-616*x^3+585*x^2-533*x-885 6524722423825106 r005 Im(z^2+c),c=-10/27+21/34*I,n=30 6524722434812631 a001 141422324/233*144^(16/17) 6524722463888528 a007 Real Root Of 256*x^4-581*x^3+528*x^2+571*x-60 6524722465009415 r005 Im(z^2+c),c=-69/106+12/49*I,n=26 6524722465484778 m001 1/Riemann1stZero^2*Conway 6524722469693486 r002 52th iterates of z^2 + 6524722477747521 r005 Re(z^2+c),c=-3/58+41/54*I,n=29 6524722479460898 a007 Real Root Of -716*x^4+467*x^3-39*x^2+288*x+464 6524722493365819 m001 1/ln(GAMMA(13/24))/FeigenbaumB^2*sqrt(5) 6524722519368950 a005 (1/cos(21/218*Pi))^1080 6524722522943038 m001 (Trott-ZetaQ(3))/(arctan(1/3)-gamma(3)) 6524722532373728 m001 (Mills-Sarnak)/(cos(1/12*Pi)+gamma(1)) 6524722533508513 m001 Chi(1)^(FeigenbaumAlpha/Zeta(5)) 6524722540445555 m001 (Chi(1)+sin(1))/(MasserGramain+Tetranacci) 6524722542982397 a007 Real Root Of -404*x^4-628*x^3+371*x^2+977*x+62 6524722552722039 r005 Re(z^2+c),c=-101/118+11/23*I,n=4 6524722561882046 a001 233/24476*199^(4/11) 6524722585006132 r005 Re(z^2+c),c=-57/82+21/62*I,n=45 6524722604473588 a001 2/121393*13^(22/41) 6524722604512044 m005 (27/5+2/5*5^(1/2))/(4/5*2^(1/2)-1/6) 6524722670749534 a003 cos(Pi*34/87)-sin(Pi*19/42) 6524722684053608 r005 Im(z^2+c),c=-53/48+5/64*I,n=38 6524722709954097 a007 Real Root Of -529*x^4+11*x^3-700*x^2+512*x+731 6524722730695458 m001 cos(1/12*Pi)^GAMMA(3/4)+2*Pi/GAMMA(5/6) 6524722730695458 m001 cos(Pi/12)^GAMMA(3/4)+GAMMA(1/6) 6524722739172770 r005 Im(z^2+c),c=41/102+25/64*I,n=7 6524722741598852 a001 9349/987*317811^(51/58) 6524722752603745 r002 7th iterates of z^2 + 6524722759323191 r005 Im(z^2+c),c=-53/48+5/64*I,n=42 6524722759570336 m001 (LaplaceLimit-Salem)/(CareFree-Kac) 6524722788636228 m001 (-BesselJ(1,1)+3)/(-OneNinth+1/2) 6524722788719855 m005 (1/2*3^(1/2)-3/8)/(5*2^(1/2)+5/11) 6524722795955733 m005 (1/2*2^(1/2)+5/8)/(6/7*5^(1/2)+1/8) 6524722800434221 r005 Im(z^2+c),c=-5/114+41/51*I,n=14 6524722804393195 r009 Im(z^3+c),c=-19/46+37/59*I,n=9 6524722822481608 h001 (1/2*exp(2)+5/6)/(10/11*exp(2)+2/9) 6524722839929799 a007 Real Root Of -969*x^4+777*x^3+324*x^2-410*x-14 6524722863190196 r005 Re(z^2+c),c=-13/54+31/37*I,n=23 6524722870863068 m001 1/Niven^2*ln(MinimumGamma)^2*log(2+sqrt(3)) 6524722910758675 a007 Real Root Of 751*x^4-942*x^3+768*x^2+818*x-191 6524722916191286 r005 Re(z^2+c),c=-27/22+22/69*I,n=7 6524722924420233 h001 (8/9*exp(1)+1/6)/(5/11*exp(2)+3/5) 6524722954210229 m001 (-Porter+ZetaP(4))/(cos(1)+BesselI(1,2)) 6524722956985614 a001 843/365435296162*8^(1/2) 6524722960939427 m001 (MertensB1-Salem)/(AlladiGrinstead+Lehmer) 6524722992376931 l006 ln(7846/8375) 6524722997920920 a007 Real Root Of -473*x^4+157*x^3-809*x^2-887*x-105 6524723022544698 a007 Real Root Of 609*x^4-839*x^3+397*x^2-148*x-609 6524723032811066 a007 Real Root Of -65*x^4-521*x^3-546*x^2+514*x-316 6524723041505644 m001 Otter^Backhouse*FibonacciFactorial^Backhouse 6524723078841069 a007 Real Root Of 291*x^4-604*x^3-345*x^2-604*x+656 6524723100978614 a007 Real Root Of 761*x^4-691*x^3+395*x^2-659*x-928 6524723178026709 r005 Im(z^2+c),c=31/86+13/36*I,n=7 6524723184262278 m001 (Thue-ZetaP(3))/(exp(1/exp(1))-Totient) 6524723188656863 p001 sum((-1)^n/(439*n+233)/n/(2^n),n=1..infinity) 6524723222456562 m005 (-1/28+1/4*5^(1/2))/(1/7*2^(1/2)+3/5) 6524723329661615 l006 ln(991/1903) 6524723331612936 h001 (2/11*exp(1)+7/8)/(3/11*exp(2)+1/12) 6524723346524148 r005 Re(z^2+c),c=-10/13+23/45*I,n=3 6524723355390213 a005 (1/cos(2/115*Pi))^1256 6524723363431388 h001 (1/6*exp(1)+5/8)/(5/11*exp(1)+5/12) 6524723373646168 m001 (5^(1/2)-Pi^(1/2))/(-ZetaQ(3)+ZetaQ(4)) 6524723390992442 m001 AlladiGrinstead^(Lehmer*Magata) 6524723406350477 h001 (9/11*exp(2)+11/12)/(1/8*exp(1)+8/11) 6524723412492101 a007 Real Root Of 75*x^4-342*x^3-271*x^2-900*x+784 6524723424823401 m005 (1/2*exp(1)-2/3)/(113/176+3/16*5^(1/2)) 6524723428013136 a007 Real Root Of 415*x^4+966*x^3+459*x^2-913*x-598 6524723446467852 a003 cos(Pi*7/61)*sin(Pi*14/57) 6524723474778913 m001 exp(Rabbit)/GlaisherKinkelin^2/Ei(1) 6524723487712906 r005 Im(z^2+c),c=-19/32+3/46*I,n=10 6524723502078149 m001 (-Khinchin+Riemann1stZero)/(Shi(1)+ArtinRank2) 6524723512137275 a001 3571/1836311903*4807526976^(6/23) 6524723512197754 a001 3571/102334155*75025^(6/23) 6524723532894304 m001 FeigenbaumD*exp(FeigenbaumC)^3 6524723542030794 a007 Real Root Of -78*x^4+846*x^3-422*x^2+431*x+710 6524723574436348 m005 (1/2*gamma+3)/(1/10*Pi-9/11) 6524723577066857 a003 sin(Pi*11/113)-sin(Pi*31/77) 6524723582482596 m001 1/ln(GAMMA(5/6))*MadelungNaCl^2*sin(Pi/12) 6524723586913999 r004 Im(z^2+c),c=1/22-5/18*I,z(0)=exp(3/8*I*Pi),n=6 6524723587827492 m001 Lehmer^(Weierstrass/LandauRamanujan2nd) 6524723588284264 p003 LerchPhi(1/125,4,37/187) 6524723590302196 r005 Im(z^2+c),c=-33/70+1/9*I,n=26 6524723631562716 a007 Real Root Of 449*x^4-4*x^3+969*x^2-259*x-664 6524723635536548 r005 Im(z^2+c),c=-77/122+7/61*I,n=34 6524723639134123 a007 Real Root Of 53*x^4-7*x^3+997*x^2+705*x+24 6524723652323396 r005 Im(z^2+c),c=-11/118+33/40*I,n=53 6524723662773659 a001 76/4052739537881*89^(5/18) 6524723708091050 m006 (3*exp(2*Pi)+1/5)/(1/4/Pi+1/6) 6524723720861154 m001 (Bloch-MasserGramain)/(Rabbit+ReciprocalLucas) 6524723741139429 m001 1/GAMMA(13/24)^2*GAMMA(1/6)/exp(gamma)^2 6524723749621965 a007 Real Root Of 151*x^4-344*x^3+86*x^2-698*x+487 6524723767585578 a007 Real Root Of 145*x^4+987*x^3+282*x^2-28*x-823 6524723779248150 a001 24476/55*17711^(14/51) 6524723824120669 m001 Robbin*ln(Cahen)*sqrt(5) 6524723824375119 a007 Real Root Of -107*x^4+101*x^3-470*x^2+390*x+502 6524723835769791 a007 Real Root Of 833*x^4-812*x^3-343*x^2-951*x-851 6524723838975018 r002 35th iterates of z^2 + 6524723851767300 b008 6+ArcCsch[SinIntegral[E]] 6524723865073755 m001 (Kolakoski+Lehmer)/(cos(1/5*Pi)+ln(2+3^(1/2))) 6524723949148004 a001 9349/4807526976*4807526976^(6/23) 6524723949208483 a001 9349/267914296*75025^(6/23) 6524723961208198 a007 Real Root Of -653*x^4+283*x^3-421*x^2+835*x+921 6524723961600998 b008 6+(1+E)*Sin[3] 6524723982447056 m001 -LandauRamanujan/(ln(gamma)+2/3) 6524723982447056 m001 LandauRamanujan/(2/3+log(gamma)) 6524723990890421 a007 Real Root Of -918*x^4+632*x^3+995*x^2+54*x-468 6524724012907011 a001 24476/12586269025*4807526976^(6/23) 6524724012967490 a001 24476/701408733*75025^(6/23) 6524724017622771 r005 Im(z^2+c),c=-11/10+8/103*I,n=33 6524724022209324 a001 64079/32951280099*4807526976^(6/23) 6524724022269803 a001 1/28657*75025^(6/23) 6524724023566514 a001 167761/86267571272*4807526976^(6/23) 6524724023626992 a001 167761/4807526976*75025^(6/23) 6524724023764525 a001 439204/225851433717*4807526976^(6/23) 6524724023793414 a001 1/514229*4807526976^(6/23) 6524724023797629 a001 3010349/1548008755920*4807526976^(6/23) 6524724023798244 a001 7881196/4052739537881*4807526976^(6/23) 6524724023798334 a001 20633239/10610209857723*4807526976^(6/23) 6524724023798389 a001 12752043/6557470319842*4807526976^(6/23) 6524724023798624 a001 4870847/2504730781961*4807526976^(6/23) 6524724023800234 a001 1860498/956722026041*4807526976^(6/23) 6524724023811269 a001 710647/365435296162*4807526976^(6/23) 6524724023825004 a001 439204/12586269025*75025^(6/23) 6524724023853893 a001 1149851/32951280099*75025^(6/23) 6524724023858108 a001 3010349/86267571272*75025^(6/23) 6524724023858723 a001 7881196/225851433717*75025^(6/23) 6524724023858813 a001 20633239/591286729879*75025^(6/23) 6524724023858826 a001 54018521/1548008755920*75025^(6/23) 6524724023858828 a001 141422324/4052739537881*75025^(6/23) 6524724023858828 a001 370248451/10610209857723*75025^(6/23) 6524724023858828 a001 228826127/6557470319842*75025^(6/23) 6524724023858829 a001 87403803/2504730781961*75025^(6/23) 6524724023858834 a001 33385282/956722026041*75025^(6/23) 6524724023858868 a001 12752043/365435296162*75025^(6/23) 6524724023859103 a001 4870847/139583862445*75025^(6/23) 6524724023860713 a001 1860498/53316291173*75025^(6/23) 6524724023871748 a001 710647/20365011074*75025^(6/23) 6524724023886903 a001 271443/139583862445*4807526976^(6/23) 6524724023947381 a001 271443/7778742049*75025^(6/23) 6524724024405303 a001 103682/53316291173*4807526976^(6/23) 6524724024465782 a001 103682/2971215073*75025^(6/23) 6524724027958470 a001 39603/20365011074*4807526976^(6/23) 6524724028018949 a001 39603/1134903170*75025^(6/23) 6524724031597544 p004 log(36793/34469) 6524724052312244 a001 15127/7778742049*4807526976^(6/23) 6524724052372722 a001 15127/433494437*75025^(6/23) 6524724120071854 r002 40th iterates of z^2 + 6524724122501001 a007 Real Root Of 967*x^4-508*x^3+929*x^2-37*x-736 6524724128864024 m005 (1/2*exp(1)-2/9)/(3/10*Pi+4/5) 6524724129440373 h001 (6/7*exp(1)+4/5)/(3/5*exp(2)+4/11) 6524724152973076 r002 7th iterates of z^2 + 6524724164410928 h001 (2/5*exp(1)+6/11)/(3/10*exp(2)+2/7) 6524724192278962 m001 (GAMMA(3/4)+BesselK(1,1))/(Conway-Mills) 6524724195467468 a007 Real Root Of 500*x^4-43*x^3-658*x^2-243*x+360 6524724211111152 k007 concat of cont frac of 6524724219235489 a001 5778/2971215073*4807526976^(6/23) 6524724219295968 a001 5778/165580141*75025^(6/23) 6524724230974232 m005 (1/3*5^(1/2)-1/7)/(4/7*Catalan+2/5) 6524724235978413 r005 Re(z^2+c),c=-7/17+3/4*I,n=4 6524724240195809 m005 (-7/30+1/6*5^(1/2))/(4/5*3^(1/2)+3/4) 6524724242079733 m005 (1/2*gamma-1/11)/(3/7*2^(1/2)-10/11) 6524724255291266 a001 47*(1/2*5^(1/2)+1/2)^4*199^(2/15) 6524724258849038 a003 cos(Pi*19/107)*sin(Pi*31/111) 6524724270109859 a007 Real Root Of -404*x^4+184*x^3+461*x^2+193*x+54 6524724278723598 a001 8*1364^(25/41) 6524724291704333 a007 Real Root Of -519*x^4+812*x^3+368*x^2+363*x-525 6524724293904141 r004 Re(z^2+c),c=-10/7-13/24*I,z(0)=-1,n=4 6524724302750632 r002 44th iterates of z^2 + 6524724308588876 r009 Im(z^3+c),c=-41/118+1/31*I,n=10 6524724317399072 a007 Real Root Of -447*x^4+941*x^3-555*x^2-352*x+349 6524724354301860 a007 Real Root Of -502*x^4+982*x^3-709*x^2-76*x+616 6524724361442584 l006 ln(5093/9780) 6524724361700320 r009 Re(z^3+c),c=-13/118+24/41*I,n=42 6524724381842972 m005 (1/2*Zeta(3)-3/4)/(1/5*Pi-2/5) 6524724414200175 p004 log(37217/19381) 6524724433783716 a003 cos(Pi*50/119)-cos(Pi*49/111) 6524724457744892 a007 Real Root Of 646*x^4+571*x^3-873*x^2-984*x+738 6524724476080131 a007 Real Root Of 89*x^4-757*x^3-907*x^2-113*x+654 6524724486718980 m001 (1-2^(1/3))/(5^(1/2)+MadelungNaCl) 6524724494715955 r002 3th iterates of z^2 + 6524724518928442 a007 Real Root Of 65*x^4-551*x^3+100*x^2-425*x+376 6524724582816674 m001 Zeta(3)*ZetaQ(2)+sin(1/5*Pi) 6524724595253918 a007 Real Root Of -475*x^4+694*x^3+855*x^2+212*x-609 6524724596511600 r005 Re(z^2+c),c=-19/30+46/125*I,n=40 6524724598436269 s002 sum(A051432[n]/((10^n+1)/n),n=1..infinity) 6524724610709984 l006 ln(4102/7877) 6524724617293177 a001 123/514229*377^(52/55) 6524724622254848 r005 Re(z^2+c),c=7/36+30/61*I,n=30 6524724639052954 a003 cos(Pi*9/97)/cos(Pi*53/107) 6524724668821825 m001 (3^(1/3)*gamma(2)+MasserGramain)/gamma(2) 6524724670729670 a007 Real Root Of -734*x^4+962*x^3-432*x^2-83*x+530 6524724671456105 a007 Real Root Of -5*x^4-338*x^3-776*x^2-538*x+856 6524724681837621 m001 1/Salem*PisotVijayaraghavan/ln(sin(1)) 6524724683237551 r005 Im(z^2+c),c=-27/106+19/29*I,n=54 6524724689438112 m001 Pi*2^(1/2)/GAMMA(3/4)*MinimumGamma+GAMMA(3/4) 6524724693487133 r009 Im(z^3+c),c=-15/106+41/42*I,n=22 6524724725469833 a007 Real Root Of 732*x^4-897*x^3+379*x^2-435*x-827 6524724738358777 m001 exp(BesselJ(1,1))^2/Salem/Pi 6524724739460304 m005 (1/2*Pi+1/4)/(2/7*2^(1/2)-1/8) 6524724777584073 a007 Real Root Of -680*x^4+244*x^3-264*x^2-347*x+77 6524724790311361 a007 Real Root Of -401*x^4+580*x^3-732*x^2-65*x+503 6524724835886868 m001 Shi(1)*ArtinRank2^Totient 6524724868840247 m005 (1/3*gamma+2/3)/(6*5^(1/2)-1/4) 6524724869703053 m001 exp(GAMMA(5/24))^2*Salem*sin(1) 6524724875304353 a007 Real Root Of 478*x^4-979*x^3-446*x^2-717*x+843 6524724875389083 m008 (5/6*Pi-5/6)/(1/4*Pi^4+3) 6524724878485973 m001 (Ei(1,1)-arctan(1/3))/(Rabbit+Thue) 6524724885917586 a007 Real Root Of -785*x^4+629*x^3-992*x^2+760*x+54 6524724896529828 m001 ThueMorse^KhinchinLevy/(ThueMorse^CareFree) 6524724900077585 l006 ln(6259/6681) 6524724901179570 r005 Re(z^2+c),c=11/50+8/15*I,n=25 6524724913363338 a007 Real Root Of 65*x^4-533*x^3+896*x^2-516*x+30 6524724916537086 a003 cos(Pi*9/92)*sin(Pi*6/25) 6524724918529656 m001 (-Kac+Sierpinski)/(FeigenbaumMu-LambertW(1)) 6524724920158803 a007 Real Root Of -704*x^4+888*x^3+577*x^2+137*x+218 6524724921759133 r005 Re(z^2+c),c=-43/66+7/17*I,n=4 6524724936069611 a003 cos(Pi*1/52)-sin(Pi*10/89) 6524724941508757 r002 3th iterates of z^2 + 6524724950369970 m001 GAMMA(17/24)^Rabbit/FeigenbaumC 6524725018784180 l006 ln(3111/5974) 6524725023980165 a003 cos(Pi*34/99)*cos(Pi*31/68) 6524725027828672 m001 Trott*ln(FeigenbaumD)/GAMMA(13/24) 6524725030779916 a007 Real Root Of 602*x^4-728*x^3+922*x^2+763*x-206 6524725069735041 a007 Real Root Of -914*x^4-400*x^3-878*x^2-799*x-93 6524725072283686 a007 Real Root Of -925*x^4-501*x^3-870*x^2+765*x+898 6524725111387273 a007 Real Root Of -602*x^4+826*x^3+35*x^2+581*x+38 6524725114653038 a003 cos(Pi*20/113)*sin(Pi*29/104) 6524725120251497 r008 a(0)=4,K{-n^6,-7-59*n+60*n^2+6*n^3} 6524725126612553 r002 18th iterates of z^2 + 6524725158206820 r002 9th iterates of z^2 + 6524725206279349 a004 Fibonacci(14)*Lucas(13)/(1/2+sqrt(5)/2)^31 6524725221410758 m001 (1+Zeta(5))/(Ei(1)+FibonacciFactorial) 6524725245163587 r009 Re(z^3+c),c=-31/52+19/64*I,n=14 6524725253649254 r005 Im(z^2+c),c=-53/48+5/64*I,n=35 6524725270091990 s002 sum(A040541[n]/(exp(n)+1),n=1..infinity) 6524725274725274 q001 19/2912 6524725274725274 q001 475/728 6524725274725274 r002 2th iterates of z^2 + 6524725274725274 r002 2th iterates of z^2 + 6524725274725274 r002 2th iterates of z^2 + 6524725274725274 r002 2th iterates of z^2 + 6524725274725274 r002 2th iterates of z^2 + 6524725274725274 r005 Im(z^2+c),c=-17/14+95/208*I,n=2 6524725276273685 m001 cos(1)-exp(Pi)^MertensB3 6524725319423097 r005 Re(z^2+c),c=-79/60+1/11*I,n=16 6524725338784237 l006 ln(5231/10045) 6524725346025671 a007 Real Root Of -931*x^4+297*x^3-23*x^2+800*x+783 6524725350535620 m001 GAMMA(3/4)/exp(Robbin)^2*sqrt(2)^2 6524725363344433 a001 2207/1134903170*4807526976^(6/23) 6524725363404912 a001 2207/63245986*75025^(6/23) 6524725369827123 a007 Real Root Of 82*x^4-312*x^3-239*x^2-595*x-388 6524725371685241 r002 6th iterates of z^2 + 6524725372554297 a003 sin(Pi*8/91)-sin(Pi*44/117) 6524725385694420 m001 Zeta(1/2)^2*Ei(1)*ln(sinh(1)) 6524725424462807 m008 (2/3*Pi^5-4/5)/(2/5*Pi^2-5/6) 6524725426997976 a007 Real Root Of -117*x^4-871*x^3-573*x^2+742*x-655 6524725448311412 r002 11th iterates of z^2 + 6524725481277563 r005 Re(z^2+c),c=-17/26+41/94*I,n=36 6524725514390054 m005 (1/2*2^(1/2)+3/10)/(5*Pi-3/11) 6524725522045341 r009 Im(z^3+c),c=-7/122+23/30*I,n=17 6524725532677744 m001 exp(Pi)/Psi(2,1/3)/Cahen 6524725556703647 m001 (Catalan+GAMMA(2/3))/(GAMMA(13/24)+Tribonacci) 6524725567165412 a007 Real Root Of 952*x^4-631*x^3-52*x^2-71*x-372 6524725577361921 a007 Real Root Of 956*x^4+268*x^3+908*x^2-637*x-901 6524725599055342 p001 sum(1/(429*n+155)/(24^n),n=0..infinity) 6524725601988788 a001 521/317811*4181^(28/39) 6524725617977380 m001 Khinchin/(exp(-1/2*Pi)^BesselI(1,1)) 6524725676569518 a001 843/433494437*102334155^(4/21) 6524725676569518 a001 843/2971215073*2504730781961^(4/21) 6524725688965468 m001 (gamma(3)+exp(-1/2*Pi))/arctan(1/3) 6524725690788635 a001 843/63245986*4181^(4/21) 6524725698241586 m001 (5^(1/2)-BesselK(0,1))/(FeigenbaumD+Paris) 6524725709471753 m001 (-Bloch+OneNinth)/(ArtinRank2-Psi(2,1/3)) 6524725735494655 m001 (Zeta(1,2)-BesselK(1,1))/(Gompertz-Otter) 6524725777584297 v002 sum(1/(5^n+(7/6*n^3+89/6*n+2)),n=1..infinity) 6524725808369206 l006 ln(2120/4071) 6524725843217576 m005 (1/2*2^(1/2)+3/8)/(71/90+7/18*5^(1/2)) 6524725875061251 r009 Im(z^3+c),c=-15/44+12/19*I,n=14 6524725878096833 g001 Psi(2/9,12/55) 6524725882242731 a007 Real Root Of 13*x^4-99*x^3-375*x^2-854*x+742 6524725890527369 a003 cos(Pi*1/96)*sin(Pi*12/53) 6524725893974600 m001 CareFree/(GAMMA(23/24)+ZetaQ(2)) 6524725897695158 m001 ln(GAMMA(1/12))/Niven^2*log(1+sqrt(2))^2 6524725940186279 m005 (1/2*Zeta(3)-4/9)/(2*2^(1/2)-3/7) 6524725942627993 m005 (1/3*2^(1/2)-1/3)/(10/11*5^(1/2)+1/12) 6524725966927723 a001 29/28657*514229^(16/19) 6524725968512593 a001 29/63245986*4807526976^(16/19) 6524725968848585 m001 1/(3^(1/3))^2/Conway/exp(sqrt(3)) 6524725971232689 a001 1/63246219*89^(6/19) 6524725975072522 m005 (1/2*3^(1/2)-3/11)/(3/10*2^(1/2)-1/3) 6524725996617380 a007 Real Root Of 689*x^4-279*x^3-903*x^2-849*x+891 6524726003757275 m001 (BesselK(1,1)-Lehmer)/(Zeta(3)+Ei(1,1)) 6524726008131081 m001 GAMMA(11/12)^2*ln(RenyiParking)^2/Zeta(3)^2 6524726036348450 a007 Real Root Of 406*x^4-633*x^3-971*x^2-895*x-420 6524726042485996 g005 GAMMA(2/11)*GAMMA(1/11)^2*GAMMA(4/5) 6524726091438007 m001 Zeta(7)^2/MertensB1*exp(sin(Pi/12))^2 6524726097313186 m001 (Sierpinski+TwinPrimes)/(cos(1/5*Pi)-Mills) 6524726116313237 b008 3*2^(Sqrt[2]*Pi) 6524726127624946 a007 Real Root Of -942*x^4+818*x^3+221*x^2-691*x-147 6524726134483490 r005 Re(z^2+c),c=-19/30+43/104*I,n=4 6524726138792325 r002 29th iterates of z^2 + 6524726147648832 r005 Im(z^2+c),c=9/94+20/33*I,n=15 6524726156500373 a007 Real Root Of -834*x^4+248*x^3-462*x^2-90*x+358 6524726179870623 a007 Real Root Of 875*x^4-423*x^3-524*x^2+446*x+238 6524726225245650 a007 Real Root Of 17*x^4+119*x^3-99*x^2-907*x+541 6524726267203073 a007 Real Root Of 95*x^4-242*x^3-758*x^2-425*x+650 6524726278240110 a007 Real Root Of 57*x^4-636*x^3-81*x^2-623*x-559 6524726286934214 m001 (BesselI(1,1)+Otter)/(Ei(1,1)+Zeta(1,-1)) 6524726301066381 a001 4/13*10946^(14/17) 6524726301449820 r005 Im(z^2+c),c=1/12+37/62*I,n=29 6524726316103214 m001 RenyiParking*(QuadraticClass-ZetaQ(3)) 6524726328876625 a007 Real Root Of 262*x^4-774*x^3+368*x^2-601*x-41 6524726336946055 a001 1/116*(1/2*5^(1/2)+1/2)^28*4^(1/22) 6524726347284658 m001 (1-Psi(1,1/3))/(-DuboisRaymond+Riemann1stZero) 6524726377400398 r005 Im(z^2+c),c=1/16+2/35*I,n=6 6524726391808710 a007 Real Root Of 612*x^4-183*x^3+752*x^2+947*x+136 6524726403519292 a007 Real Root Of -69*x^4+452*x^3+720*x^2+580*x-798 6524726417573200 s002 sum(A135848[n]/(n^3*pi^n+1),n=1..infinity) 6524726452404152 a007 Real Root Of -214*x^4-170*x^3-484*x^2+278*x+379 6524726459836368 m001 (GaussAGM+Lehmer)/(BesselI(0,1)-exp(Pi)) 6524726467907331 m001 (GAMMA(7/12)+CareFree)/(Kolakoski-ZetaP(2)) 6524726491734485 s002 sum(A122710[n]/((pi^n-1)/n),n=1..infinity) 6524726540236032 a007 Real Root Of 629*x^4-899*x^3+496*x^2+9*x-569 6524726549548418 m001 1/CareFree/ln(Si(Pi))^2*KhintchineHarmonic 6524726564416860 l006 ln(3249/6239) 6524726583912053 m001 Psi(2,1/3)^Zeta(3)/(Niven^Zeta(3)) 6524726611409495 a007 Real Root Of -225*x^4+423*x^3-130*x^2+983*x+855 6524726612096571 a005 (1/cos(70/197*Pi))^75 6524726640495812 m001 GAMMA(19/24)^2/Si(Pi)^2/ln(cos(1)) 6524726670234572 a007 Real Root Of -541*x^4+874*x^3+130*x^2+292*x+476 6524726696317640 m001 1/Porter*exp(CopelandErdos)/GAMMA(1/12)^2 6524726726432566 m001 (-polylog(4,1/2)+Totient)/(LambertW(1)+ln(2)) 6524726728581498 r005 Im(z^2+c),c=-29/52+19/32*I,n=29 6524726737666706 p004 log(35531/18503) 6524726740763148 a001 440719107401*3^(5/14) 6524726745132598 a007 Real Root Of 470*x^4-31*x^3+744*x^2+315*x-205 6524726748497894 a007 Real Root Of -431*x^4-141*x^3-771*x^2+858*x+927 6524726756170568 r002 43i'th iterates of 2*x/(1-x^2) of 6524726773953852 m001 Catalan/(3^(1/3))/exp(GAMMA(1/12))^2 6524726790230697 r002 3th iterates of z^2 + 6524726806696589 s002 sum(A004792[n]/(pi^n+1),n=1..infinity) 6524726808103494 m006 (2/3*Pi^2+5/6)/(1/6/Pi-1/6) 6524726824969099 a007 Real Root Of -438*x^4+948*x^3+220*x^2+849*x+803 6524726834499273 r001 40i'th iterates of 2*x^2-1 of 6524726848043859 s002 sum(A137036[n]/((2*n)!),n=1..infinity) 6524726857480378 a007 Real Root Of -50*x^4-221*x^3+777*x^2+440*x-976 6524726860324258 a007 Real Root Of -95*x^4-584*x^3+221*x^2-77*x+47 6524726892905769 r009 Re(z^3+c),c=-10/19+32/49*I,n=4 6524726905791971 a007 Real Root Of -872*x^4+230*x^3-449*x^2+475*x+723 6524726907750721 a001 2/10610209857723*1836311903^(12/17) 6524726907754204 a001 2/32951280099*514229^(12/17) 6524726914495429 m001 1/GAMMA(1/6)*exp(Tribonacci)*gamma 6524726930524885 l006 ln(4378/8407) 6524726936459561 a007 Real Root Of 311*x^4-702*x^3-821*x^2-527*x+832 6524726953627436 m001 (-PlouffeB+Robbin)/(1+Si(Pi)) 6524726955203888 a001 48/13201*322^(1/2) 6524726978162888 m002 3+Pi^5/(4*Log[Pi]*ProductLog[Pi]) 6524726981895302 m008 (3/5*Pi^3-5)/(3/5*Pi+1/5) 6524726987309654 m005 (1/2*5^(1/2)+5/12)/(1/4*gamma+1/11) 6524727008420243 r002 12th iterates of z^2 + 6524727052221377 s002 sum(A161411[n]/((10^n+1)/n),n=1..infinity) 6524727055295249 a001 377/1860498*521^(12/13) 6524727055815824 m001 (exp(-1/2*Pi)+Paris)/(LambertW(1)-Zeta(5)) 6524727068072024 a007 Real Root Of -314*x^4+881*x^3-188*x^2+845*x+933 6524727094260399 a007 Real Root Of 293*x^4-832*x^3+752*x^2-283*x-789 6524727094643496 a007 Real Root Of -239*x^4+750*x^3+505*x^2+141*x-472 6524727121358783 r005 Re(z^2+c),c=-17/26+23/84*I,n=8 6524727125669517 a001 329/13201*199^(2/11) 6524727128586541 r005 Re(z^2+c),c=-25/36+10/51*I,n=12 6524727131134012 a007 Real Root Of -124*x^4+931*x^3+117*x^2+700*x+688 6524727144878112 m003 21/40+(5*Sqrt[5])/64+Cos[1/2+Sqrt[5]/2] 6524727154002114 a007 Real Root Of -428*x^4+431*x^3-526*x^2+579*x+799 6524727157581765 a003 sin(Pi*11/57)/sin(Pi*24/71) 6524727174281316 a007 Real Root Of 965*x^4-306*x^3+701*x^2+353*x-328 6524727178720848 r005 Im(z^2+c),c=-17/22+11/46*I,n=10 6524727211618686 m001 (sin(1/5*Pi)-Ei(1))/(GAMMA(7/12)+Weierstrass) 6524727212684033 a007 Real Root Of 485*x^4+698*x^3+317*x^2-538*x-380 6524727214303841 r005 Im(z^2+c),c=-23/50+25/46*I,n=63 6524727235903542 a007 Real Root Of 817*x^4-601*x^3+382*x^2-632*x-890 6524727249179804 m001 (BesselK(1,1)-MinimumGamma)/HeathBrownMoroz 6524727253326895 a007 Real Root Of 99*x^4+687*x^3+184*x^2-457*x+588 6524727264200243 m001 (-Grothendieck+ZetaP(4))/(sin(1)+Pi^(1/2)) 6524727269784526 a007 Real Root Of 415*x^4-917*x^3+425*x^2-319*x-719 6524727270087089 a007 Real Root Of -412*x^4+513*x^3-297*x^2+301*x+540 6524727271819417 m001 1/Riemann1stZero/exp(Kolakoski)^3 6524727305040085 a007 Real Root Of 627*x^4-285*x^3+349*x^2-919*x-941 6524727333041090 a008 Real Root of (-6+6*x+5*x^2+2*x^3-2*x^4-2*x^5) 6524727364246670 a007 Real Root Of 579*x^4-570*x^3+505*x^2-746*x-965 6524727400747676 r005 Im(z^2+c),c=-1/17+35/51*I,n=29 6524727422490887 r002 4th iterates of z^2 + 6524727423578636 m001 (Otter+ZetaP(3))/(GAMMA(3/4)-Niven) 6524727451128022 m001 (-GAMMA(17/24)+Trott)/(Catalan+Zeta(5)) 6524727493127360 m001 (Conway-exp(1))/(Riemann2ndZero+TwinPrimes) 6524727516101545 a008 Real Root of x^3-3798*x-29962 6524727534575732 m001 GAMMA(5/12)/(sqrt(3)+GAMMA(7/12)) 6524727548689255 a007 Real Root Of 380*x^4-974*x^3-427*x^2-784*x+895 6524727562326266 m009 (1/3*Psi(1,1/3)+3)/(2/5*Psi(1,2/3)-1/4) 6524727599269268 a007 Real Root Of 144*x^4-461*x^3+263*x^2-196*x-394 6524727600054397 m001 (ln(2)/ln(10)*2^(1/2))^(1/2) 6524727624526329 m001 (Shi(1)+BesselK(0,1))/(GAMMA(13/24)+Kac) 6524727664181852 a007 Real Root Of 529*x^4-42*x^3+226*x^2+487*x+114 6524727669700586 a007 Real Root Of 941*x^4-914*x^3+34*x^2-181*x-557 6524727682465900 a007 Real Root Of -365*x^4+68*x^3-628*x^2-442*x+64 6524727711829254 a007 Real Root Of 154*x^4+848*x^3-964*x^2+517*x+856 6524727743078646 m001 (ln(2)/ln(10)+ln(3))/(Niven+TreeGrowth2nd) 6524727765170396 a007 Real Root Of -541*x^4+589*x^3+26*x^2+960*x-703 6524727769005037 g006 Psi(1,5/8)-Psi(1,3/10)-Psi(1,4/9)-Psi(1,1/7) 6524727771782060 r005 Re(z^2+c),c=-85/86+13/42*I,n=42 6524727815117429 m002 -E^Pi/6+Pi^5+Pi^5*Log[Pi] 6524727821398575 r005 Im(z^2+c),c=9/118+26/43*I,n=9 6524727848041794 m001 1/exp(BesselK(0,1))^2/Lehmer/GAMMA(11/12)^2 6524727854338387 m001 (Pi*ln(2)/ln(10)-Chi(1))/(1+3^(1/2))^(1/2) 6524727856955874 r009 Im(z^3+c),c=-25/106+3/56*I,n=4 6524727859177650 r005 Im(z^2+c),c=-47/46+23/64*I,n=4 6524727868288744 a001 39603/34*514229^(15/49) 6524727879938125 a007 Real Root Of -78*x^4-526*x^3-48*x^2+422*x+55 6524727886816486 r002 17th iterates of z^2 + 6524727892287055 r009 Re(z^3+c),c=-59/106+29/45*I,n=12 6524727898227496 a007 Real Root Of 434*x^4-799*x^3+230*x^2-177*x-514 6524727965107782 m005 (19/44+1/4*5^(1/2))/(11/12*2^(1/2)+2/9) 6524727967824444 a007 Real Root Of 465*x^4-716*x^3+978*x^2-684*x-49 6524727980361718 r005 Im(z^2+c),c=-13/19+3/50*I,n=27 6524727984098748 l006 ln(1129/2168) 6524727998839534 a001 1/1860498*29^(43/58) 6524728046430442 m001 (Psi(1,1/3)-ln(gamma))/(GAMMA(11/12)+Stephens) 6524728052894870 l006 ln(8402/8457) 6524728072185344 m001 (CopelandErdos-Si(Pi))/(-ThueMorse+TwinPrimes) 6524728103805956 l006 ln(4672/4987) 6524728114271326 r009 Im(z^3+c),c=-41/70+10/63*I,n=3 6524728114870889 m004 -5+(750*Csch[Sqrt[5]*Pi])/Pi-Log[Sqrt[5]*Pi] 6524728120640658 a007 Real Root Of -121*x^4-271*x^3-454*x^2+958*x+765 6524728128425151 m001 1/exp(Robbin)^2*Conway^2*(3^(1/3)) 6524728149213459 a007 Real Root Of -83*x^4-531*x^3-65*x^2-742*x+857 6524728165429760 m001 (cos(1)+ln(3))/(OneNinth+Riemann3rdZero) 6524728197602622 a007 Real Root Of -722*x^4-863*x^3-187*x^2+264*x+143 6524728210634437 a007 Real Root Of -185*x^4+853*x^3-635*x^2+667*x+976 6524728213783871 r005 Re(z^2+c),c=-17/30+37/81*I,n=28 6524728221032293 a007 Real Root Of 8*x^4-901*x^3+486*x^2-537*x-809 6524728232472986 r002 32th iterates of z^2 + 6524728245197667 p001 sum((-1)^n/(453*n+178)/n/(24^n),n=1..infinity) 6524728261146814 r009 Im(z^3+c),c=-5/32+32/45*I,n=8 6524728268207493 m001 (ln(3)+BesselK(1,1))/(Cahen+ReciprocalLucas) 6524728273332410 a001 1292/51841*199^(2/11) 6524728274597409 m001 LaplaceLimit*ln(ErdosBorwein)^2*Robbin^2 6524728283565006 a001 10946/47*7^(9/17) 6524728301194130 r002 21th iterates of z^2 + 6524728313470311 s002 sum(A169723[n]/(n^3*pi^n-1),n=1..infinity) 6524728324676844 r002 15th iterates of z^2 + 6524728344704275 m001 GAMMA(11/12)/CareFree/exp(exp(1))^2 6524728352545961 a007 Real Root Of 704*x^4-978*x^3-89*x^2+632*x+51 6524728363964755 a007 Real Root Of 522*x^4-939*x^3+301*x^2-111*x-556 6524728400818725 h001 (4/7*exp(1)+3/8)/(3/4*exp(1)+11/12) 6524728402385046 m001 (Pi-GAMMA(13/24))/(Artin+Tetranacci) 6524728427726208 a007 Real Root Of -588*x^4+673*x^3-228*x^2+917*x+61 6524728439902095 a007 Real Root Of -164*x^4-950*x^3+669*x^2-879*x-868 6524728440774170 a001 2255/90481*199^(2/11) 6524728465203593 a001 17711/710647*199^(2/11) 6524728468767798 a001 2576/103361*199^(2/11) 6524728469287809 a001 121393/4870847*199^(2/11) 6524728469363677 a001 105937/4250681*199^(2/11) 6524728469374746 a001 416020/16692641*199^(2/11) 6524728469376361 a001 726103/29134601*199^(2/11) 6524728469376597 a001 5702887/228826127*199^(2/11) 6524728469376631 a001 829464/33281921*199^(2/11) 6524728469376636 a001 39088169/1568397607*199^(2/11) 6524728469376637 a001 34111385/1368706081*199^(2/11) 6524728469376637 a001 133957148/5374978561*199^(2/11) 6524728469376637 a001 233802911/9381251041*199^(2/11) 6524728469376637 a001 1836311903/73681302247*199^(2/11) 6524728469376637 a001 267084832/10716675201*199^(2/11) 6524728469376637 a001 12586269025/505019158607*199^(2/11) 6524728469376637 a001 10983760033/440719107401*199^(2/11) 6524728469376637 a001 43133785636/1730726404001*199^(2/11) 6524728469376637 a001 75283811239/3020733700601*199^(2/11) 6524728469376637 a001 182717648081/7331474697802*199^(2/11) 6524728469376637 a001 139583862445/5600748293801*199^(2/11) 6524728469376637 a001 53316291173/2139295485799*199^(2/11) 6524728469376637 a001 10182505537/408569081798*199^(2/11) 6524728469376637 a001 7778742049/312119004989*199^(2/11) 6524728469376637 a001 2971215073/119218851371*199^(2/11) 6524728469376637 a001 567451585/22768774562*199^(2/11) 6524728469376637 a001 433494437/17393796001*199^(2/11) 6524728469376637 a001 165580141/6643838879*199^(2/11) 6524728469376637 a001 31622993/1268860318*199^(2/11) 6524728469376639 a001 24157817/969323029*199^(2/11) 6524728469376652 a001 9227465/370248451*199^(2/11) 6524728469376742 a001 1762289/70711162*199^(2/11) 6524728469377359 a001 1346269/54018521*199^(2/11) 6524728469381587 a001 514229/20633239*199^(2/11) 6524728469410566 a001 98209/3940598*199^(2/11) 6524728469609193 a001 75025/3010349*199^(2/11) 6524728470970598 a001 28657/1149851*199^(2/11) 6524728471622223 m001 Pi^GAMMA(13/24)-Trott 6524728480301807 a001 5473/219602*199^(2/11) 6524728481159174 a007 Real Root Of -733*x^4+695*x^3-280*x^2-627*x+36 6524728484795342 m001 ln(arctan(1/2))^2/GAMMA(3/4)/exp(1)^2 6524728488853219 a001 7/4*(1/2*5^(1/2)+1/2)^10*4^(4/5) 6524728506701785 b008 1/3+(E^3+EulerGamma)*Pi 6524728509021722 m001 (Psi(1,1/3)-ln(2))/(LandauRamanujan2nd+Thue) 6524728530531130 m001 (cos(1/5*Pi)+Totient)/(5^(1/2)+Shi(1)) 6524728544258868 a001 4181/167761*199^(2/11) 6524728550167242 m006 (3/5*exp(2*Pi)-2/5)/(5*Pi^2-1/6) 6524728573010402 b008 E*(-2+Pi)^24 6524728589867361 a007 Real Root Of -624*x^4+952*x^3+314*x^2+72*x-332 6524728591199798 a007 Real Root Of 710*x^4-880*x^3+460*x^2+849*x-15 6524728614944555 a007 Real Root Of -980*x^4+563*x^3+824*x^2+580*x-708 6524728626600671 a007 Real Root Of 542*x^4-193*x^3+577*x^2-715*x-864 6524728689189481 r009 Im(z^3+c),c=-39/70+20/63*I,n=7 6524728697894464 m009 (1/3*Pi^2+3/4)/(3*Psi(1,2/3)-3) 6524728712020863 r005 Re(z^2+c),c=-103/110+10/33*I,n=13 6524728715739114 r005 Im(z^2+c),c=-83/70+2/23*I,n=49 6524728716055779 m001 TreeGrowth2nd^(Pi^(1/2)/ZetaQ(4)) 6524728728760252 a007 Real Root Of 886*x^4+780*x^3+393*x^2-415*x-382 6524728745664499 a007 Real Root Of 135*x^4+731*x^3-946*x^2+146*x-395 6524728770626521 r009 Re(z^3+c),c=-13/126+21/40*I,n=12 6524728787005965 m004 -5-Log[Sqrt[5]*Pi]+(750*Sech[Sqrt[5]*Pi])/Pi 6524728807286911 m001 (LaplaceLimit+Paris)/(exp(1/Pi)-exp(-1/2*Pi)) 6524728808486018 m001 (Zeta(1/2)+arctan(1/3))/(Pi^(1/2)-Trott2nd) 6524728814098411 m009 (1/3*Psi(1,1/3)-1/4)/(2/5*Psi(1,2/3)-6) 6524728817123062 a007 Real Root Of 697*x^4-732*x^3+286*x^2-381*x-700 6524728838932268 a007 Real Root Of -398*x^4+744*x^3-709*x^2-801*x+58 6524728874532614 r002 3th iterates of z^2 + 6524728884013343 m001 1/GAMMA(5/12)^2*ln(Niven)^2*Zeta(5) 6524728901045122 p004 log(28979/15091) 6524728904320377 a001 377/1149851*521^(11/13) 6524728907696376 q001 2467/3781 6524728911764203 a007 Real Root Of 669*x^4+569*x^3+707*x^2-412*x-533 6524728924555885 r002 4th iterates of z^2 + 6524728926368844 a007 Real Root Of -490*x^4+471*x^3+997*x^2+953*x+417 6524728954210604 a007 Real Root Of -824*x^4-469*x^3-124*x^2+700*x-45 6524728964905079 m001 (GAMMA(11/12)*LaplaceLimit-Trott)/GAMMA(11/12) 6524728975191549 l006 ln(4654/8937) 6524728982627086 a001 1597/64079*199^(2/11) 6524728996229177 m001 (-3^(1/3)+PlouffeB)/(2^(1/2)-BesselI(0,1)) 6524729005896418 p001 sum((-1)^n/(413*n+62)/n/(32^n),n=1..infinity) 6524729030322402 p003 LerchPhi(1/5,5,29/168) 6524729033037571 r005 Im(z^2+c),c=-115/86+1/33*I,n=4 6524729035282336 m001 1/GAMMA(1/6)^2*ln(BesselK(0,1))*GAMMA(7/12)^2 6524729065255769 m006 (4/5*exp(2*Pi)+1/3)/(1/2*Pi+5) 6524729077736380 m001 (2^(1/2)-ln(3))/(-GolombDickman+Stephens) 6524729082886792 m001 FeigenbaumKappa^2*exp(Conway)/Zeta(5) 6524729101187447 m001 gamma(1)*Mills+RenyiParking 6524729122381444 a007 Real Root Of 41*x^4-515*x^3+831*x^2+569*x-133 6524729125875930 a007 Real Root Of 983*x^4-532*x^3+4*x^2-350*x-556 6524729138254132 a003 cos(Pi*2/91)*cos(Pi*23/48) 6524729144277590 p003 LerchPhi(1/3,1,360/181) 6524729148721730 m009 (8/3*Catalan+1/3*Pi^2+4)/(1/5*Psi(1,3/4)-2) 6524729152673198 m001 Zeta(7)/ln(DuboisRaymond)^2*log(2+sqrt(3))^2 6524729165696415 a001 123/39088169*317811^(8/19) 6524729165701854 a001 123/1836311903*2971215073^(8/19) 6524729193739195 r005 Re(z^2+c),c=-25/26+23/111*I,n=28 6524729214010724 b008 Csch[ArcTan[Sqrt[4+Pi]]] 6524729268355747 m001 Pi/(Stephens^PisotVijayaraghavan) 6524729276733969 r005 Re(z^2+c),c=-9/106+17/23*I,n=24 6524729285268938 a001 199/46368*28657^(2/49) 6524729292622386 l006 ln(3525/6769) 6524729294752373 a007 Real Root Of 52*x^4-373*x^3+522*x^2-441*x-623 6524729301756791 a007 Real Root Of 12*x^4+773*x^3-663*x^2-829*x-251 6524729304737565 m001 ln(arctan(1/2))*CopelandErdos^2/cos(Pi/5)^2 6524729336957754 a007 Real Root Of -857*x^4+954*x^3+328*x^2-234*x+128 6524729349560797 g007 Psi(2,4/11)+Psi(2,2/11)-Psi(2,1/8)-Psi(2,6/7) 6524729357962099 m001 (ln(Pi)+ln(2+3^(1/2)))/(2^(1/2)-Zeta(5)) 6524729364787027 m001 cos(1)*exp(1/Pi)^Lehmer 6524729376272484 m001 (ln(2)/ln(10))^(CopelandErdos/LaplaceLimit) 6524729404252361 m005 (1/2*5^(1/2)+2/7)/(5/12*Zeta(3)-2/7) 6524729410841521 r002 11th iterates of z^2 + 6524729410841521 r002 11th iterates of z^2 + 6524729413981637 a007 Real Root Of 156*x^4-610*x^3-653*x^2-763*x+917 6524729478862637 m001 1/FeigenbaumKappa*exp(Backhouse)^2/(3^(1/3))^2 6524729493969121 a007 Real Root Of 503*x^4-71*x^3+985*x^2+8*x-525 6524729532293679 m001 (Zeta(1,-1)+cos(1/12*Pi))/(Conway-ZetaP(4)) 6524729534986393 a007 Real Root Of -157*x^4+899*x^3-788*x^2-683*x+168 6524729543139024 h001 (1/11*exp(2)+1/8)/(2/7*exp(1)+4/9) 6524729544082029 a001 18/28657*17711^(52/55) 6524729581388780 m001 (-ZetaQ(3)+ZetaQ(4))/(Psi(1,1/3)+Kolakoski) 6524729593064900 a001 1/17*3^(5/53) 6524729602344933 r009 Im(z^3+c),c=-1/29+34/45*I,n=13 6524729619993580 a007 Real Root Of -594*x^4-828*x^3-933*x^2+37*x+299 6524729621716753 r005 Im(z^2+c),c=5/38+19/34*I,n=5 6524729632693434 a007 Real Root Of 356*x^4+548*x^3+735*x^2-907*x-817 6524729645654678 m001 1/Riemann2ndZero^2*ln(MertensB1)*arctan(1/2)^2 6524729647876218 p004 log(15971/8317) 6524729699922693 a007 Real Root Of 889*x^4+358*x^3+121*x^2+57*x-76 6524729700245040 r005 Im(z^2+c),c=-9/20+49/62*I,n=3 6524729708557331 m001 1/ln(Riemann2ndZero)^2/Champernowne^2/Trott 6524729710834919 m008 (1/5*Pi^4-2/3)/(3*Pi^6-1/2) 6524729715667117 a007 Real Root Of 967*x^4+795*x^3+801*x^2+862*x+267 6524729718822869 r005 Re(z^2+c),c=-75/122+18/53*I,n=6 6524729747018482 r009 Re(z^3+c),c=-35/114+37/55*I,n=4 6524729747901149 m006 (3/4*Pi^2-5)/(1/Pi-4) 6524729765914481 a007 Real Root Of 647*x^4-414*x^3+765*x^2-653*x-984 6524729770405902 m001 (Lehmer+ZetaQ(4))/(ln(gamma)-Zeta(1/2)) 6524729773992793 q001 1992/3053 6524729789384465 m001 (gamma(1)-KhinchinHarmonic)/(Tetranacci+Thue) 6524729810037047 h001 (3/8*exp(1)+4/9)/(2/11*exp(2)+9/10) 6524729813889671 r002 5th iterates of z^2 + 6524729815728800 m005 (1/2*2^(1/2)-7/9)/(4/9*exp(1)-1/8) 6524729818889983 m001 (MertensB3+Trott2nd)/(Pi-Shi(1)) 6524729862197011 r005 Im(z^2+c),c=-43/102+34/57*I,n=18 6524729864800352 m005 (1/3*gamma-2/5)/(3/7*Zeta(3)-5/6) 6524729866471747 m005 (1/2*3^(1/2)-2)/(2/11*2^(1/2)-1/12) 6524729888743985 m001 (cos(1/12*Pi)-Porter*Sarnak)/Porter 6524729909201286 l006 ln(2396/4601) 6524729923285283 a007 Real Root Of -794*x^4+803*x^3+260*x^2+418*x+529 6524729975562198 m005 (1/2*Catalan-2/3)/(5/12*2^(1/2)-10/11) 6524729997904823 m001 Pi+2^(1/2)*(Si(Pi)+cos(1)) 6524730015376901 a007 Real Root Of 181*x^4-871*x^3+945*x^2+20*x-664 6524730039721130 b008 Pi-21*ArcCosh[13] 6524730049452299 a007 Real Root Of 133*x^4+723*x^3-802*x^2+908*x-151 6524730059184097 r005 Re(z^2+c),c=-125/102+4/25*I,n=62 6524730061886518 m002 -Pi+(3*Pi^2*Sinh[Pi])/5 6524730073581175 a007 Real Root Of 117*x^4+727*x^3-248*x^2-175*x-693 6524730081543261 r005 Im(z^2+c),c=-47/62+13/45*I,n=7 6524730115269790 a007 Real Root Of -139*x^4-809*x^3+578*x^2-407*x-58 6524730117337157 s002 sum(A175987[n]/(n*pi^n+1),n=1..infinity) 6524730125733264 m001 (Cahen+Gompertz)/(Backhouse-BesselI(0,1)) 6524730146436535 a001 3571/377*317811^(51/58) 6524730182596965 h001 (5/9*exp(2)+5/7)/(8/9*exp(2)+9/11) 6524730185691850 r005 Re(z^2+c),c=-11/16+20/83*I,n=25 6524730193348834 m001 (GAMMA(19/24)-exp(1))/(MertensB2+MertensB3) 6524730210192893 g001 GAMMA(3/11,17/41) 6524730239157293 a007 Real Root Of 112*x^4+668*x^3-382*x^2+227*x+308 6524730252471325 m001 (3^(1/2)-Gompertz)/(QuadraticClass+Thue) 6524730269004650 r005 Re(z^2+c),c=-19/26+23/109*I,n=46 6524730278349176 a007 Real Root Of 777*x^4-908*x^3-723*x^2-671*x+857 6524730280044048 m009 (Psi(1,3/4)-3)/(1/3*Psi(1,2/3)+6) 6524730289564227 s002 sum(A224590[n]/(n^2*2^n-1),n=1..infinity) 6524730308946910 r005 Re(z^2+c),c=9/106+4/9*I,n=33 6524730340814839 p001 sum((-1)^n/(557*n+153)/(125^n),n=0..infinity) 6524730341901093 r002 2th iterates of z^2 + 6524730349915322 r005 Im(z^2+c),c=-1/29+41/61*I,n=6 6524730383379110 a007 Real Root Of 11*x^4+725*x^3+475*x^2+14*x+820 6524730411424913 a007 Real Root Of -307*x^4-759*x^3+136*x^2+960*x-63 6524730420615012 m005 (1/2*2^(1/2)-3/8)/(5/12*Pi-4/5) 6524730463937223 m003 5/4+E^(1/2+Sqrt[5]/2)+Log[1/2+Sqrt[5]/2]^2 6524730478420999 m001 (Rabbit-Thue)/(CareFree-PlouffeB) 6524730502551133 l006 ln(3663/7034) 6524730526039151 m001 BesselK(1,1)/exp(FransenRobinson)/GAMMA(1/6) 6524730540050774 m005 (1/2*Pi+2/3)/(1/2*Pi-5) 6524730540050774 m006 (1/2*Pi+2/3)/(1/2*Pi-5) 6524730540050774 m008 (1/2*Pi+2/3)/(1/2*Pi-5) 6524730557986950 p003 LerchPhi(1/1024,4,19/54) 6524730586001598 r005 Re(z^2+c),c=21/58+25/48*I,n=25 6524730588622332 m001 1/GAMMA(3/4)^2*exp(Kolakoski)^2*sqrt(2)^2 6524730593015401 r002 45th iterates of z^2 + 6524730604468837 a003 cos(Pi*21/115)*cos(Pi*48/101) 6524730618971388 m001 PrimesInBinary^(Ei(1,1)*Riemann1stZero) 6524730630952209 a007 Real Root Of -482*x^4+230*x^3+793*x^2+737*x-795 6524730670656934 a001 322*(1/2*5^(1/2)+1/2)^28*7^(7/13) 6524730687020342 a007 Real Root Of 100*x^4+568*x^3-643*x^2-552*x+308 6524730688843379 l006 ln(7757/8280) 6524730692885535 m001 (TreeGrowth2nd+Trott2nd)/(gamma(1)-Cahen) 6524730711959048 m003 6+(Cosh[1/2+Sqrt[5]/2]*Csc[1/2+Sqrt[5]/2])/5 6524730723608278 m001 (ln(3)+Lehmer)/(Pi+ln(gamma)) 6524730748781239 a007 Real Root Of 883*x^4+642*x^3+465*x^2-540*x-532 6524730753321355 a001 377/710647*521^(10/13) 6524730779392583 m005 (-19/36+1/4*5^(1/2))/(6/7*2^(1/2)-6) 6524730785032425 r005 Im(z^2+c),c=-7/118+39/53*I,n=26 6524730785445790 m001 (ln(2)/ln(10)+gamma)/(-exp(1/exp(1))+Paris) 6524730790921554 l006 ln(4930/9467) 6524730821996181 r002 7th iterates of z^2 + 6524730869976728 m006 (5/6*Pi-3)/(3/4*ln(Pi)-4/5) 6524730887800041 r009 Im(z^3+c),c=-13/74+49/50*I,n=42 6524730902699655 m005 (1/2*Catalan+2/5)/(4*Pi+7/12) 6524730920412016 m005 (1/2*3^(1/2)-2/3)/(2/7*5^(1/2)-1/3) 6524730924384121 r005 Im(z^2+c),c=-41/94+20/37*I,n=15 6524730943475982 r002 4th iterates of z^2 + 6524730989586338 m001 ArtinRank2*ln(GaussAGM(1,1/sqrt(2)))/sqrt(Pi) 6524730997316037 r002 14th iterates of z^2 + 6524731027062171 r002 36th iterates of z^2 + 6524731029491184 m005 (1/2*5^(1/2)+1/6)/(5/8*5^(1/2)+4/7) 6524731034831424 r002 11th iterates of z^2 + 6524731047766966 a007 Real Root Of -621*x^4+634*x^3+754*x^2+626*x-793 6524731084485474 a007 Real Root Of 62*x^4-924*x^3-122*x^2-824*x+835 6524731107194902 r005 Im(z^2+c),c=-51/106+5/36*I,n=8 6524731131220272 r002 46th iterates of z^2 + 6524731182795698 q001 1517/2325 6524731192233440 a007 Real Root Of -835*x^4-204*x^3+26*x^2+465*x+387 6524731211524295 m005 (1/2*Pi-5/6)/(3/4*Catalan-4/5) 6524731234205313 r002 3th iterates of z^2 + 6524731305290750 a007 Real Root Of -137*x^4-811*x^3+434*x^2-695*x+13 6524731311977622 m001 (Pi+exp(Pi))/(gamma(1)+PlouffeB) 6524731325044988 a007 Real Root Of -460*x^4+472*x^3+333*x^2+787*x-703 6524731345334370 r009 Re(z^3+c),c=-11/20+19/30*I,n=24 6524731351523882 h001 (1/9*exp(2)+1/12)/(1/11*exp(2)+5/7) 6524731363353816 m005 (1/2*exp(1)+3/4)/(4/7*Zeta(3)-4/11) 6524731365348686 r005 Re(z^2+c),c=-39/58+25/57*I,n=21 6524731368612369 a007 Real Root Of -826*x^4-178*x^3-836*x^2-834*x-88 6524731413953052 m001 1/Kolakoski/FransenRobinson^2*ln(Ei(1))^2 6524731424712885 a007 Real Root Of 887*x^4-546*x^3+171*x^2+736*x+95 6524731443121897 m002 3+E^(2*Pi)+Pi^2*Sinh[Pi] 6524731450745142 a007 Real Root Of -152*x^4-915*x^3+638*x^2+788*x-698 6524731465116237 m001 GAMMA(1/6)*ln(GaussKuzminWirsing)/Zeta(7)^2 6524731472714653 m001 (FeigenbaumB+Riemann2ndZero)/(Pi+exp(-1/2*Pi)) 6524731474354244 r005 Im(z^2+c),c=-17/30+13/110*I,n=43 6524731498219689 a007 Real Root Of 284*x^4+464*x^3+912*x^2+58*x-273 6524731509594326 a003 sin(Pi*20/89)/sin(Pi*55/118) 6524731520804598 m001 (ln(5)-QuadraticClass)/(Sarnak-Tribonacci) 6524731521589051 a007 Real Root Of -199*x^4-745*x^3-567*x^2+764*x+569 6524731528764144 r005 Im(z^2+c),c=9/29+21/47*I,n=26 6524731529504757 m001 Trott^2*Cahen^2*ln((3^(1/3)))^2 6524731544958907 a001 4/13*1346269^(12/17) 6524731557531029 r005 Im(z^2+c),c=-45/58+11/64*I,n=14 6524731557603099 r002 30th iterates of z^2 + 6524731558403526 s002 sum(A137737[n]/(n^2*10^n+1),n=1..infinity) 6524731558403526 s002 sum(A137737[n]/(n^2*10^n-1),n=1..infinity) 6524731574676279 m001 (-MertensB1+PlouffeB)/(Catalan-sin(1/5*Pi)) 6524731596675524 b008 (1+E^(2/27))*Pi 6524731599284064 a007 Real Root Of 117*x^4+774*x^3-13*x^2-388*x+968 6524731624623835 l006 ln(1267/2433) 6524731626650322 a007 Real Root Of -621*x^4-51*x^3+479*x^2+925*x+498 6524731636792840 a003 cos(Pi*4/81)-sin(Pi*11/101) 6524731650997530 m005 (4/5*2^(1/2)-4/5)/(13/3+1/3*5^(1/2)) 6524731660043650 m004 -5*Pi+Sqrt[5]*Pi+(5*Sec[Sqrt[5]*Pi])/Pi 6524731714211959 h001 (4/5*exp(2)+3/7)/(1/7*exp(1)+7/12) 6524731733698886 m001 exp(-1/2*Pi)^(Landau/Trott) 6524731734467471 a007 Real Root Of -117*x^4+948*x^3-458*x^2+832*x-590 6524731746168959 m005 (1/2*3^(1/2)+2)/(3/7*Catalan+4) 6524731767269706 r005 Re(z^2+c),c=-49/74+13/29*I,n=22 6524731770050623 r005 Re(z^2+c),c=-9/10+61/119*I,n=4 6524731777689112 m008 (5*Pi^5+1)/(4/5*Pi-1/6) 6524731792154158 r005 Re(z^2+c),c=-123/118+15/44*I,n=23 6524731798138196 r009 Im(z^3+c),c=-5/102+37/48*I,n=27 6524731808488793 m001 (GlaisherKinkelin+Weierstrass)/(Si(Pi)+sin(1)) 6524731843885481 m001 (LambertW(1)*Zeta(1/2)+exp(gamma))/Zeta(1/2) 6524731865914159 m001 1/GAMMA(7/24)/exp(FeigenbaumAlpha)^2/gamma^2 6524731878417694 m001 1/GAMMA(11/12)/exp(FeigenbaumAlpha)*sin(1) 6524731885807260 m005 (1/2*Pi+6/11)/(11/12*Pi+4/11) 6524731901211894 m001 1/ln(BesselK(0,1))*LaplaceLimit^2*GAMMA(17/24) 6524731960692018 h001 (-8*exp(3)+3)/(-3*exp(2)-2) 6524731987247555 a001 305/12238*199^(2/11) 6524731990378489 a007 Real Root Of -105*x^4-555*x^3+713*x^2-740*x+955 6524732024063465 a007 Real Root Of 438*x^4-876*x^3-166*x^2-590*x-637 6524732026237815 a007 Real Root Of -484*x^4+7*x^3-538*x^2-21*x+305 6524732032573248 m005 (1/2*exp(1)+7/11)/(5/7*exp(1)-5) 6524732046381203 m001 (-Ei(1)+TravellingSalesman)/(1+cos(1/5*Pi)) 6524732055583983 a007 Real Root Of -911*x^4+238*x^3+551*x^2+801*x+50 6524732068997844 a007 Real Root Of -92*x^4+20*x^3-578*x^2+608*x+665 6524732078549541 a007 Real Root Of -817*x^4+211*x^3+746*x^2+596*x-617 6524732101284048 a007 Real Root Of -325*x^4+965*x^3-834*x^2+423*x+958 6524732102977949 m001 Niven^2/exp(FibonacciFactorial)*BesselJ(0,1) 6524732109708453 a007 Real Root Of -74*x^4-563*x^3-358*x^2+974*x-673 6524732114658310 m001 cos(1/12*Pi)^FeigenbaumDelta/Conway 6524732115476164 p004 log(32159/16747) 6524732121122328 a007 Real Root Of 116*x^4+641*x^3-736*x^2+183*x+342 6524732135901841 a007 Real Root Of -411*x^4+451*x^3-467*x^2-617*x-4 6524732147399015 a007 Real Root Of -322*x^4+915*x^3+899*x^2+244*x+89 6524732160612575 a001 1/43133785636*1836311903^(10/17) 6524732160612575 a001 2/10610209857723*6557470319842^(10/17) 6524732160615478 a001 2/701408733*514229^(10/17) 6524732205111552 a001 144/64079*322^(7/12) 6524732206862419 r005 Im(z^2+c),c=37/94+10/27*I,n=27 6524732207562753 a007 Real Root Of 81*x^4+71*x^3+892*x^2+21*x-361 6524732213066699 p003 LerchPhi(1/125,1,288/187) 6524732236935340 a007 Real Root Of -62*x^4-332*x^3+577*x^2+784*x+699 6524732249821841 b008 1/4+2^(-Coth[1]) 6524732279449260 q001 2559/3922 6524732285999424 r002 57th iterates of z^2 + 6524732333115590 a007 Real Root Of 62*x^4-707*x^3+571*x^2-684*x-897 6524732414126700 l006 ln(5206/9997) 6524732429989198 h001 (7/12*exp(2)+5/6)/(1/7*exp(1)+2/5) 6524732441950782 r009 Im(z^3+c),c=-5/24+48/49*I,n=36 6524732463968285 a001 1/233802911*14930352^(7/23) 6524732463968287 a001 3/20365011074*956722026041^(7/23) 6524732476822566 a001 47/1597*6765^(13/37) 6524732480196724 a007 Real Root Of 97*x^4-223*x^3-784*x^2-878*x+951 6524732481013269 a007 Real Root Of -237*x^4+63*x^3+560*x^2+748*x-701 6524732481558009 r005 Re(z^2+c),c=-23/110+37/53*I,n=20 6524732524946283 m001 (Thue-TwinPrimes)/(Conway+KhinchinHarmonic) 6524732585155456 b008 (7*E^(1/40))/11 6524732602387456 a001 377/439204*521^(9/13) 6524732608203762 a007 Real Root Of -418*x^4-414*x^3-984*x^2+376*x+625 6524732628166130 s002 sum(A021858[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732628641636 s002 sum(A097604[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732668074422 l006 ln(3939/7564) 6524732670260101 s002 sum(A181722[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732670577789 s001 sum(exp(-2*Pi)^n*A021858[n],n=1..infinity) 6524732671053296 s001 sum(exp(-2*Pi)^n*A097604[n],n=1..infinity) 6524732708715343 a007 Real Root Of 326*x^4-114*x^3-631*x^2-743*x+726 6524732712513504 s002 sum(A021857[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732712671761 s001 sum(exp(-2*Pi)^n*A181722[n],n=1..infinity) 6524732712989449 s002 sum(A021858[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732713464956 s002 sum(A097604[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732740346079 s002 sum(A184281[n]/((10^n+1)/n),n=1..infinity) 6524732754925163 s001 sum(exp(-2*Pi)^n*A021857[n],n=1..infinity) 6524732755083421 s002 sum(A181722[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732755241378 s002 sum(A021856[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732756510824 s002 sum(A209313[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732759319630 p004 log(27823/14489) 6524732766346203 m001 (3^(1/2)-Conway)/(-GlaisherKinkelin+Kac) 6524732767818261 a007 Real Root Of 6*x^4+398*x^3+411*x^2-933*x-620 6524732776432875 m001 1/sqrt(1+sqrt(3))^2/GAMMA(7/24)*ln(sqrt(3)) 6524732785992953 m005 (1/3*exp(1)-2/3)/(5/6*Catalan-4/5) 6524732788565369 r002 34th iterates of z^2 + 6524732797336823 s002 sum(A021857[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732797653037 s001 sum(exp(-2*Pi)^n*A021856[n],n=1..infinity) 6524732798922483 s001 sum(exp(-2*Pi)^n*A209313[n],n=1..infinity) 6524732805203864 m001 DuboisRaymond^(Zeta(1/2)*MadelungNaCl) 6524732811719879 m001 (-Grothendieck+Porter)/(2^(1/3)+FeigenbaumMu) 6524732821011152 k009 concat of cont frac of 6524732839511177 s002 sum(A021855[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732840064697 s002 sum(A021856[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732841334143 s002 sum(A209313[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732862619574 m001 (-LaplaceLimit+Sierpinski)/(Chi(1)-Landau) 6524732881922837 s001 sum(exp(-2*Pi)^n*A021855[n],n=1..infinity) 6524732884303926 s002 sum(A163260[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732899651927 r005 Re(z^2+c),c=-23/34+29/126*I,n=10 6524732923713012 m005 (1/2*Pi-8/11)/(5/9*Zeta(3)+5/8) 6524732924334497 s002 sum(A021855[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732924967365 s002 sum(A021853[n]/(exp(2*pi*n)+1),n=1..infinity) 6524732926715586 s001 sum(exp(-2*Pi)^n*A163260[n],n=1..infinity) 6524732929301321 a007 Real Root Of -595*x^4+311*x^3+916*x^2+828*x-58 6524732929579780 m005 (23/28+1/4*5^(1/2))/(2/3*5^(1/2)+5/8) 6524732947913355 r009 Re(z^3+c),c=-13/118+24/41*I,n=40 6524732967379025 s001 sum(exp(-2*Pi)^n*A021853[n],n=1..infinity) 6524732968023053 m001 1/GAMMA(1/4)^2/exp(Magata)*sin(Pi/12) 6524732968485958 r005 Re(z^2+c),c=31/110+21/52*I,n=51 6524732969127246 s002 sum(A163260[n]/(exp(2*pi*n)-1),n=1..infinity) 6524732969522084 s001 sum(exp(-2*Pi)^(n-1)*A121210[n],n=1..infinity) 6524732994472503 b008 2+Sqrt[Pi]*Sinh[5/3] 6524732996141804 m001 Bloch^FellerTornier/((Pi^(1/2))^FellerTornier) 6524732998786257 m001 1/Tribonacci/FeigenbaumB^2*ln(Zeta(7)) 6524733009315034 s002 sum(A021852[n]/(exp(2*pi*n)+1),n=1..infinity) 6524733009790685 s002 sum(A021853[n]/(exp(2*pi*n)-1),n=1..infinity) 6524733034987096 r005 Re(z^2+c),c=-93/122+3/61*I,n=41 6524733048131168 a004 Fibonacci(16)*Lucas(13)/(1/2+sqrt(5)/2)^33 6524733050538455 a007 Real Root Of -370*x^4-146*x^3-962*x^2+567*x+806 6524733051726694 s001 sum(exp(-2*Pi)^n*A021852[n],n=1..infinity) 6524733052188561 m001 AlladiGrinstead^Backhouse*ZetaQ(4)^Backhouse 6524733054746007 s002 sum(A099579[n]/(exp(2*pi*n)+1),n=1..infinity) 6524733060088352 a007 Real Root Of 359*x^4-756*x^3-215*x^2-784*x+748 6524733062501556 a007 Real Root Of -111*x^4+735*x^3-161*x^2+598*x+683 6524733074845713 r009 Re(z^3+c),c=-63/118+21/32*I,n=4 6524733077410160 m001 (GAMMA(2/3)+ln(2))/(Khinchin+ZetaP(2)) 6524733088708993 m001 (GaussKuzminWirsing-MertensB1)/MasserGramain 6524733094138354 s002 sum(A021852[n]/(exp(2*pi*n)-1),n=1..infinity) 6524733094772326 m001 1/OneNinth^2*GolombDickman^2/exp(GAMMA(13/24)) 6524733097157667 s001 sum(exp(-2*Pi)^n*A099579[n],n=1..infinity) 6524733111330738 a003 cos(Pi*19/115)*cos(Pi*25/109) 6524733118603408 m001 GAMMA(13/24)^2/ln(Riemann2ndZero)*exp(1)^2 6524733125835652 a007 Real Root Of 214*x^4-486*x^3-745*x^2-637*x+829 6524733132913441 a008 Real Root of x^4-2*x^3-27*x^2-16*x-3 6524733139569327 s002 sum(A099579[n]/(exp(2*pi*n)-1),n=1..infinity) 6524733140128944 s002 sum(A192779[n]/(exp(2*pi*n)+1),n=1..infinity) 6524733148505544 m005 (1/2*Catalan-5/9)/(2/9*Zeta(3)-5/12) 6524733157050265 a007 Real Root Of 127*x^4+905*x^3+485*x^2+46*x+863 6524733162854284 l006 ln(2672/5131) 6524733182540604 s001 sum(exp(-2*Pi)^n*A192779[n],n=1..infinity) 6524733196972786 m001 GAMMA(7/24)/exp(GAMMA(19/24))/Zeta(1/2) 6524733205183796 a001 843/433494437*4807526976^(6/23) 6524733205244273 a001 843/24157817*75025^(6/23) 6524733219636099 a007 Real Root Of -750*x^4+766*x^3+720*x^2+609*x-43 6524733220564878 m001 sin(1)^(GAMMA(23/24)/PrimesInBinary) 6524733224952264 s002 sum(A192779[n]/(exp(2*pi*n)-1),n=1..infinity) 6524733227206726 s002 sum(A086225[n]/(n^2*2^n+1),n=1..infinity) 6524733247506976 m001 ZetaP(4)^FeigenbaumKappa/Bloch 6524733260794973 a007 Real Root Of -194*x^4-328*x^3-371*x^2+892*x+684 6524733264942547 m005 (-9/28+1/4*5^(1/2))/(1/9*gamma+3/10) 6524733269158274 a007 Real Root Of 152*x^4-923*x^3-747*x^2+222*x+402 6524733270249162 a007 Real Root Of -42*x^4+746*x^3+687*x^2+616*x-894 6524733297415099 m001 Salem^2/Riemann1stZero/exp(GAMMA(2/3))^2 6524733306559188 m001 ln(2+3^(1/2))-sin(1/5*Pi)-ZetaP(4) 6524733317898617 p003 LerchPhi(1/100,4,37/187) 6524733345694999 m003 -7/4+Sqrt[5]/64+3*Sec[1/2+Sqrt[5]/2] 6524733385198687 a007 Real Root Of 514*x^4-509*x^3+62*x^2+662*x+171 6524733395492420 a007 Real Root Of -90*x^4-454*x^3+879*x^2-x-421 6524733402149389 a007 Real Root Of 503*x^4-884*x^3+532*x^2-648*x-986 6524733425678166 r005 Im(z^2+c),c=-13/19+8/57*I,n=58 6524733427274344 a003 cos(Pi*7/81)*sin(Pi*9/38) 6524733427786114 r009 Re(z^3+c),c=-25/42+16/55*I,n=30 6524733441095831 m005 (1/2*Catalan-6/7)/(1/5*Catalan+3/7) 6524733441362271 b008 118/31+E 6524733466924644 a007 Real Root Of -153*x^4+843*x^3-186*x^2+769*x-629 6524733509463079 g001 GAMMA(4/9,24/59) 6524733528723119 m001 (FeigenbaumAlpha+Kac)/(Otter+Tribonacci) 6524733551697371 r005 Im(z^2+c),c=-3/56+41/61*I,n=13 6524733554185125 a007 Real Root Of 594*x^4-789*x^3+482*x^2+633*x-119 6524733567895344 a003 1/2+2*cos(3/8*Pi)-cos(1/9*Pi)-cos(1/15*Pi) 6524733577692546 m005 (1/2*Zeta(3)+7/10)/(5/7*Pi-1/4) 6524733611076419 b008 3*WeberE[1/2,Pi/2] 6524733614672364 a007 Real Root Of 420*x^4-100*x^3+784*x^2-399*x-698 6524733617841168 m001 (-Pi^(1/2)+3)/(ln(1+sqrt(2))+1) 6524733634197077 a007 Real Root Of 673*x^4-913*x^3+272*x^2-778*x-999 6524733640886607 l006 ln(4077/7829) 6524733657370525 h001 (-3*exp(3/2)+2)/(-7*exp(1/2)-6) 6524733660864287 m003 1/2+Sqrt[5]/16+Sech[1/2+Sqrt[5]/2]/30 6524733672010982 a003 sin(Pi*10/103)-sin(Pi*45/112) 6524733676981427 a007 Real Root Of 527*x^4-511*x^3-615*x^2+100*x+243 6524733679260013 m001 (1-BesselI(0,1))/(-MadelungNaCl+Totient) 6524733707055337 m001 Trott*(2*Pi/GAMMA(5/6)+ZetaP(2)) 6524733735207642 p001 sum((-1)^n/(313*n+140)/(3^n),n=0..infinity) 6524733736883167 r002 62th iterates of z^2 + 6524733753260017 a001 64079/3*34^(19/60) 6524733754899715 m005 (1/2*exp(1)+1/4)/(5/7*Pi+2/9) 6524733757852780 a007 Real Root Of -116*x^4-854*x^3-602*x^2+93*x-745 6524733782315357 r005 Im(z^2+c),c=-12/19+1/51*I,n=26 6524733796409000 r005 Im(z^2+c),c=-9/14+5/92*I,n=5 6524733818306460 a007 Real Root Of 856*x^4-27*x^3+387*x^2+301*x-131 6524733828228253 a007 Real Root Of 441*x^4-352*x^3+979*x^2-128*x-678 6524733835763240 s002 sum(A185360[n]/(exp(2*pi*n)+1),n=1..infinity) 6524733844056037 m001 (exp(1)+Zeta(1/2))/(Backhouse+Bloch) 6524733848711315 a007 Real Root Of -511*x^4+744*x^3-104*x^2+485*x+660 6524733876017532 a001 521/1597*8^(1/3) 6524733876017532 q001 1042/1597 6524733878174899 s001 sum(exp(-2*Pi)^n*A185360[n],n=1..infinity) 6524733883599213 m001 (GAMMA(3/4)-3^(1/3))/(gamma(2)-FellerTornier) 6524733889926270 m001 (-GAMMA(5/6)+4)/BesselJ(1,1) 6524733914063714 a007 Real Root Of -79*x^4-476*x^3+358*x^2+672*x+103 6524733915173939 a007 Real Root Of 128*x^4+673*x^3-923*x^2+730*x-988 6524733920586559 s002 sum(A185360[n]/(exp(2*pi*n)-1),n=1..infinity) 6524733983588447 a007 Real Root Of 921*x^4-163*x^3+716*x^2+774*x-12 6524734012533601 r005 Re(z^2+c),c=-77/118+9/25*I,n=56 6524734020531522 a007 Real Root Of 483*x^4-911*x^3+750*x^2+760*x-164 6524734052597186 m005 (1/2*3^(1/2)+5/8)/(8/11*2^(1/2)-4/5) 6524734053434886 m001 1/exp(Lehmer)/Cahen/log(2+sqrt(3)) 6524734080537279 s001 sum(exp(-2*Pi)^(n-1)*A278027[n],n=1..infinity) 6524734095685383 m005 (1/2*2^(1/2)+7/8)/(3/4*2^(1/2)-9/11) 6524734096948944 m005 (1/2*3^(1/2)+6)/(4/5*3^(1/2)-1/3) 6524734098530610 m001 gamma(1)/(Zeta(3)^Gompertz) 6524734118911989 a007 Real Root Of 236*x^4-713*x^3+54*x^2-480*x-577 6524734126203701 a007 Real Root Of -5*x^4-317*x^3+607*x^2+285*x+164 6524734153039527 a007 Real Root Of 172*x^4-683*x^3-242*x^2-275*x+441 6524734156752605 a007 Real Root Of -708*x^4+419*x^3-5*x^2+270*x+423 6524734159771131 m006 (2/3*Pi^2-4/5)/(1/6*exp(2*Pi)-2/3) 6524734165250860 r005 Im(z^2+c),c=-53/48+5/64*I,n=36 6524734192241929 a004 Fibonacci(18)*Lucas(13)/(1/2+sqrt(5)/2)^35 6524734244915731 r005 Im(z^2+c),c=-89/118+2/55*I,n=13 6524734271957955 a007 Real Root Of 197*x^4+279*x^3+591*x^2-644*x-630 6524734281036705 a007 Real Root Of -567*x^4+902*x^3+590*x^2+702*x-857 6524734317112572 m002 Cosh[Pi]/2+(2*Log[Pi])/Pi 6524734319770455 a007 Real Root Of 380*x^4-107*x^3+824*x^2-450*x-743 6524734321165854 a007 Real Root Of 660*x^4+751*x^3+248*x^2-934*x-626 6524734324886592 h001 (-7*exp(-2)-4)/(-4*exp(1/3)-2) 6524734338958954 h001 (1/12*exp(1)+5/8)/(3/8*exp(1)+2/7) 6524734340401450 a001 377/9349*199^(1/11) 6524734343100978 m001 (Kac+Lehmer)/(sin(1)+GAMMA(23/24)) 6524734347228102 m001 (GAMMA(3/4)-BesselJ(1,1))/(Salem+Trott2nd) 6524734352334261 m001 (Artin+Conway)/(3^(1/3)+GAMMA(5/6)) 6524734359165440 a004 Fibonacci(20)*Lucas(13)/(1/2+sqrt(5)/2)^37 6524734370696446 m001 Bloch*(HardyLittlewoodC3+RenyiParking) 6524734383519252 a004 Fibonacci(22)*Lucas(13)/(1/2+sqrt(5)/2)^39 6524734387072425 a004 Fibonacci(24)*Lucas(13)/(1/2+sqrt(5)/2)^41 6524734387590826 a004 Fibonacci(26)*Lucas(13)/(1/2+sqrt(5)/2)^43 6524734387666460 a004 Fibonacci(28)*Lucas(13)/(1/2+sqrt(5)/2)^45 6524734387677495 a004 Fibonacci(30)*Lucas(13)/(1/2+sqrt(5)/2)^47 6524734387679104 a004 Fibonacci(32)*Lucas(13)/(1/2+sqrt(5)/2)^49 6524734387679339 a004 Fibonacci(34)*Lucas(13)/(1/2+sqrt(5)/2)^51 6524734387679374 a004 Fibonacci(36)*Lucas(13)/(1/2+sqrt(5)/2)^53 6524734387679379 a004 Fibonacci(38)*Lucas(13)/(1/2+sqrt(5)/2)^55 6524734387679379 a004 Fibonacci(40)*Lucas(13)/(1/2+sqrt(5)/2)^57 6524734387679379 a004 Fibonacci(42)*Lucas(13)/(1/2+sqrt(5)/2)^59 6524734387679379 a004 Fibonacci(44)*Lucas(13)/(1/2+sqrt(5)/2)^61 6524734387679380 a004 Fibonacci(46)*Lucas(13)/(1/2+sqrt(5)/2)^63 6524734387679380 a004 Fibonacci(48)*Lucas(13)/(1/2+sqrt(5)/2)^65 6524734387679380 a004 Fibonacci(50)*Lucas(13)/(1/2+sqrt(5)/2)^67 6524734387679380 a004 Fibonacci(52)*Lucas(13)/(1/2+sqrt(5)/2)^69 6524734387679380 a004 Fibonacci(54)*Lucas(13)/(1/2+sqrt(5)/2)^71 6524734387679380 a004 Fibonacci(56)*Lucas(13)/(1/2+sqrt(5)/2)^73 6524734387679380 a004 Fibonacci(58)*Lucas(13)/(1/2+sqrt(5)/2)^75 6524734387679380 a004 Fibonacci(60)*Lucas(13)/(1/2+sqrt(5)/2)^77 6524734387679380 a004 Fibonacci(62)*Lucas(13)/(1/2+sqrt(5)/2)^79 6524734387679380 a004 Fibonacci(64)*Lucas(13)/(1/2+sqrt(5)/2)^81 6524734387679380 a004 Fibonacci(66)*Lucas(13)/(1/2+sqrt(5)/2)^83 6524734387679380 a004 Fibonacci(68)*Lucas(13)/(1/2+sqrt(5)/2)^85 6524734387679380 a004 Fibonacci(70)*Lucas(13)/(1/2+sqrt(5)/2)^87 6524734387679380 a004 Fibonacci(72)*Lucas(13)/(1/2+sqrt(5)/2)^89 6524734387679380 a004 Fibonacci(74)*Lucas(13)/(1/2+sqrt(5)/2)^91 6524734387679380 a004 Fibonacci(76)*Lucas(13)/(1/2+sqrt(5)/2)^93 6524734387679380 a004 Fibonacci(78)*Lucas(13)/(1/2+sqrt(5)/2)^95 6524734387679380 a004 Fibonacci(80)*Lucas(13)/(1/2+sqrt(5)/2)^97 6524734387679380 a004 Fibonacci(82)*Lucas(13)/(1/2+sqrt(5)/2)^99 6524734387679380 a004 Fibonacci(83)*Lucas(13)/(1/2+sqrt(5)/2)^100 6524734387679380 a004 Fibonacci(81)*Lucas(13)/(1/2+sqrt(5)/2)^98 6524734387679380 a004 Fibonacci(79)*Lucas(13)/(1/2+sqrt(5)/2)^96 6524734387679380 a004 Fibonacci(77)*Lucas(13)/(1/2+sqrt(5)/2)^94 6524734387679380 a004 Fibonacci(75)*Lucas(13)/(1/2+sqrt(5)/2)^92 6524734387679380 a004 Fibonacci(73)*Lucas(13)/(1/2+sqrt(5)/2)^90 6524734387679380 a004 Fibonacci(71)*Lucas(13)/(1/2+sqrt(5)/2)^88 6524734387679380 a004 Fibonacci(69)*Lucas(13)/(1/2+sqrt(5)/2)^86 6524734387679380 a004 Fibonacci(67)*Lucas(13)/(1/2+sqrt(5)/2)^84 6524734387679380 a004 Fibonacci(65)*Lucas(13)/(1/2+sqrt(5)/2)^82 6524734387679380 a004 Fibonacci(63)*Lucas(13)/(1/2+sqrt(5)/2)^80 6524734387679380 a004 Fibonacci(61)*Lucas(13)/(1/2+sqrt(5)/2)^78 6524734387679380 a004 Fibonacci(59)*Lucas(13)/(1/2+sqrt(5)/2)^76 6524734387679380 a004 Fibonacci(57)*Lucas(13)/(1/2+sqrt(5)/2)^74 6524734387679380 a004 Fibonacci(55)*Lucas(13)/(1/2+sqrt(5)/2)^72 6524734387679380 a004 Fibonacci(53)*Lucas(13)/(1/2+sqrt(5)/2)^70 6524734387679380 a004 Fibonacci(51)*Lucas(13)/(1/2+sqrt(5)/2)^68 6524734387679380 a004 Fibonacci(49)*Lucas(13)/(1/2+sqrt(5)/2)^66 6524734387679380 a004 Fibonacci(47)*Lucas(13)/(1/2+sqrt(5)/2)^64 6524734387679380 a004 Fibonacci(45)*Lucas(13)/(1/2+sqrt(5)/2)^62 6524734387679380 a004 Fibonacci(43)*Lucas(13)/(1/2+sqrt(5)/2)^60 6524734387679380 a004 Fibonacci(41)*Lucas(13)/(1/2+sqrt(5)/2)^58 6524734387679380 a004 Fibonacci(39)*Lucas(13)/(1/2+sqrt(5)/2)^56 6524734387679382 a004 Fibonacci(37)*Lucas(13)/(1/2+sqrt(5)/2)^54 6524734387679395 a004 Fibonacci(35)*Lucas(13)/(1/2+sqrt(5)/2)^52 6524734387679485 a004 Fibonacci(33)*Lucas(13)/(1/2+sqrt(5)/2)^50 6524734387680099 a004 Fibonacci(31)*Lucas(13)/(1/2+sqrt(5)/2)^48 6524734387684314 a004 Fibonacci(29)*Lucas(13)/(1/2+sqrt(5)/2)^46 6524734387713204 a004 Fibonacci(27)*Lucas(13)/(1/2+sqrt(5)/2)^44 6524734387767933 a001 2/233*(1/2+1/2*5^(1/2))^9 6524734387911215 a004 Fibonacci(25)*Lucas(13)/(1/2+sqrt(5)/2)^42 6524734389268407 a004 Fibonacci(23)*Lucas(13)/(1/2+sqrt(5)/2)^40 6524734398570735 a004 Fibonacci(21)*Lucas(13)/(1/2+sqrt(5)/2)^38 6524734408437808 m003 -3/5+Sqrt[5]/2+6*Csc[1/2+Sqrt[5]/2] 6524734429281351 a007 Real Root Of -153*x^4-921*x^3+489*x^2-188*x-577 6524734450762865 a007 Real Root Of 332*x^4-381*x^3+570*x^2+329*x-194 6524734451284959 a001 377/271443*521^(8/13) 6524734451568303 a001 2/987*144^(4/17) 6524734462329843 a004 Fibonacci(19)*Lucas(13)/(1/2+sqrt(5)/2)^36 6524734472233481 a001 199/233*4181^(13/25) 6524734500878363 r002 22th iterates of z^2 + 6524734534151463 m001 1/GAMMA(23/24)^2*GAMMA(19/24)^2/ln(Zeta(9)) 6524734549998550 l006 ln(1405/2698) 6524734558245737 r005 Im(z^2+c),c=-9/16+1/88*I,n=27 6524734572883515 a007 Real Root Of 337*x^4+397*x^3+301*x^2-912*x-674 6524734574378976 a007 Real Root Of 104*x^4-121*x^3+757*x^2-570*x+34 6524734590105288 a001 38/17*8^(17/33) 6524734603687609 l006 ln(3085/3293) 6524734630203463 a007 Real Root Of -970*x^4-116*x^3+713*x^2+590*x+225 6524734676423141 m001 HeathBrownMoroz^ln(gamma)*Niven 6524734678561270 a007 Real Root Of -144*x^4+59*x^3-992*x^2-648*x+42 6524734704055947 r009 Im(z^3+c),c=-31/56+11/30*I,n=58 6524734721742577 m005 (1/2*2^(1/2)-9/11)/(67/63+2/7*5^(1/2)) 6524734724105834 r005 Im(z^2+c),c=-129/118+1/13*I,n=36 6524734724954461 a007 Real Root Of -545*x^4-362*x^3-931*x^2+134*x+482 6524734730637425 a007 Real Root Of 488*x^4+232*x^3+371*x^2-912*x-777 6524734733874646 a007 Real Root Of -681*x^4+850*x^3+396*x^2+912*x+786 6524734747744075 m005 (1/2*Catalan-1)/(3/7*gamma+7/12) 6524734752730703 m005 (1/2*Pi-7/10)/(2/11*Catalan-3/10) 6524734772349040 a007 Real Root Of 363*x^4-853*x^3+55*x^2-245*x-486 6524734802311050 a007 Real Root Of -331*x^4-191*x^3-466*x^2-494*x-117 6524734812556396 a008 Real Root of x^3-11*x-206 6524734817285199 a007 Real Root Of 490*x^4-517*x^3+653*x^2+793*x+7 6524734836009997 m005 (1/2*5^(1/2)-3/4)/(3*3^(1/2)+4/9) 6524734847127398 a007 Real Root Of 949*x^4-244*x^3+246*x^2-364*x-582 6524734888366014 m001 (FeigenbaumC+Niven)/(Artin-Catalan) 6524734897150900 a001 987/4870847*521^(12/13) 6524734899341267 a004 Fibonacci(17)*Lucas(13)/(1/2+sqrt(5)/2)^34 6524734994215261 m005 (1/2*3^(1/2)+2/3)/(9/11*exp(1)+1/8) 6524735013631393 m001 1/exp(MadelungNaCl)*Artin^2/GAMMA(11/24)^2 6524735023655622 m005 (1/2*Zeta(3)+1)/(1/5*Catalan-3/7) 6524735033378282 r005 Re(z^2+c),c=-23/114+37/45*I,n=24 6524735033961309 m005 (1/2*5^(1/2)+6)/(3/10*2^(1/2)+2/3) 6524735056900195 r005 Re(z^2+c),c=-2/31+22/29*I,n=23 6524735083797002 m001 exp(FeigenbaumD)^2*FeigenbaumB^2*TreeGrowth2nd 6524735091262245 a001 2537720636/233*144^(14/17) 6524735097634464 a003 cos(Pi*11/51)-sin(Pi*8/25) 6524735132439180 a001 8/271443*3^(34/47) 6524735141264353 m001 1/cos(Pi/5)/exp(KhintchineHarmonic)^2*sqrt(3) 6524735145284558 p004 log(35869/18679) 6524735156083719 m001 1/exp(1)^2/GAMMA(11/24)^2*exp(sin(Pi/5)) 6524735186121733 s002 sum(A084496[n]/(n^3*exp(n)-1),n=1..infinity) 6524735186121733 s002 sum(A084530[n]/(n^3*exp(n)-1),n=1..infinity) 6524735214554712 m001 (GAMMA(3/4)-Landau)/(MertensB2+Trott) 6524735220204388 r005 Re(z^2+c),c=-4/21+29/42*I,n=26 6524735226965791 m001 (MertensB3+ZetaP(2))/(GAMMA(5/6)+ErdosBorwein) 6524735240239728 a007 Real Root Of -52*x^4+836*x^3+633*x^2-192*x-367 6524735247716471 r002 44th iterates of z^2 + 6524735300555752 m005 (1/2*exp(1)-10/11)/(2/7*Pi+6) 6524735303103437 a007 Real Root Of 393*x^4+804*x^3+796*x^2-759*x-682 6524735318117518 a003 sin(Pi*6/115)/sin(Pi*7/87) 6524735333608600 m001 (BesselI(1,2)+Magata)/(ln(2)-gamma(1)) 6524735337498179 r005 Im(z^2+c),c=-7/27+16/25*I,n=21 6524735360328785 m001 Pi/(1-BesselK(0,1))+ln(3) 6524735364275198 r005 Im(z^2+c),c=-9/106+37/57*I,n=47 6524735399450947 m001 (exp(1/exp(1))+Riemann3rdZero)/(ln(2)-ln(3)) 6524735401468585 l006 ln(4353/8359) 6524735402898285 a007 Real Root Of 112*x^4+742*x^3+116*x^2+408*x+843 6524735417179424 q001 2651/4063 6524735422630493 a007 Real Root Of -799*x^4+905*x^3+723*x^2+214*x-554 6524735450106693 p001 sum(1/(526*n+157)/(10^n),n=0..infinity) 6524735464874605 m001 (-GAMMA(2/3)+5)/(sin(Pi/5)+5) 6524735481707830 a007 Real Root Of 310*x^4-517*x^3-821*x^2-630*x+848 6524735482882227 m001 (-ln(5)+Grothendieck)/(3^(1/2)+Catalan) 6524735493326047 r002 8th iterates of z^2 + 6524735494079233 a007 Real Root Of 231*x^4-73*x^3+712*x^2+569*x+6 6524735497806217 p001 sum(1/(351*n+154)/(64^n),n=0..infinity) 6524735531159956 b008 Pi*Gamma[1/12,E] 6524735543070824 r005 Im(z^2+c),c=-11/10+8/103*I,n=40 6524735567714497 a007 Real Root Of -253*x^4+263*x^3-167*x^2+665*x-390 6524735568272588 m001 (Zeta(1/2)-MertensB1)/(MertensB3+Mills) 6524735575627343 m001 1/exp(cos(Pi/5))*GAMMA(7/24)^2*cosh(1) 6524735609446140 h001 (-2*exp(1/2)+8)/(-6*exp(-1)-5) 6524735651702188 a001 5/7*370248451^(16/23) 6524735659274858 m001 (PlouffeB+Tetranacci)/(Si(Pi)+FeigenbaumC) 6524735667650042 a003 cos(Pi*27/86)+cos(Pi*51/109) 6524735722172397 r005 Im(z^2+c),c=47/114+13/58*I,n=29 6524735734315524 a007 Real Root Of 509*x^4-841*x^3-836*x^2-441*x+785 6524735743622159 a007 Real Root Of 289*x^4-716*x^3+149*x^2-871*x-883 6524735743760893 m001 (3^(1/2)-arctan(1/3))/(Lehmer+Riemann2ndZero) 6524735744269482 a003 cos(Pi*2/45)*cos(Pi*29/107) 6524735767454374 a007 Real Root Of -141*x^4+766*x^3-337*x^2+244*x+541 6524735773176291 m001 Champernowne^Bloch/(Champernowne^FeigenbaumMu) 6524735798836788 a007 Real Root Of -790*x^4-741*x^3-542*x^2-158*x+65 6524735807274326 l006 ln(2948/5661) 6524735810003576 r002 46th iterates of z^2 + 6524735811219245 m001 (arctan(1/3)+RenyiParking)/(cos(1)+ln(3)) 6524735823090720 a007 Real Root Of 336*x^4-727*x^3+590*x^2+187*x-392 6524735834691729 m005 (1/3*5^(1/2)+3/7)/(7/11*Pi-1/5) 6524735861349759 r009 Re(z^3+c),c=-1/98+21/41*I,n=14 6524735870867333 a007 Real Root Of 195*x^4-259*x^3+993*x^2+233*x-378 6524735877345691 r002 18th iterates of z^2 + 6524735883822990 b008 5+ArcSec[19+E] 6524735899129786 p004 log(36929/19231) 6524735934565391 r005 Im(z^2+c),c=33/98+17/31*I,n=7 6524735947222422 r005 Re(z^2+c),c=-33/32+3/14*I,n=56 6524735958161562 m001 Niven^2/exp(GlaisherKinkelin)*cos(Pi/5) 6524735966199727 m001 RenyiParking/(arctan(1/2)-ln(5)) 6524735981521274 r005 Im(z^2+c),c=-22/21+26/55*I,n=3 6524735987356200 m005 (1/2*Zeta(3)-4/7)/(2*exp(1)-9/10) 6524735999605182 r002 15th iterates of z^2 + 6524736008879284 a001 3571/13*377^(7/48) 6524736009774684 m001 GAMMA(3/4)^(Riemann2ndZero/Paris) 6524736022323748 r005 Re(z^2+c),c=9/38+13/35*I,n=18 6524736034173540 r002 32th iterates of z^2 + 6524736041262221 a001 2584/12752043*521^(12/13) 6524736045628174 r002 25th iterates of z^2 + 6524736058040019 a007 Real Root Of 96*x^4+753*x^3+948*x^2+765*x-194 6524736090909403 r005 Im(z^2+c),c=5/36+19/34*I,n=5 6524736094608716 a007 Real Root Of -810*x^4-148*x^3-352*x^2-666*x-179 6524736117706063 a007 Real Root Of -78*x^4+639*x^3-672*x^2+215*x+618 6524736122016871 a007 Real Root Of -951*x^4-99*x^3-330*x^2-868*x-281 6524736141747443 m008 (5/6*Pi^5-5/6)/(4/5*Pi^2-4) 6524736143632112 a001 121393/123*47^(26/53) 6524736144249815 m001 ln(Pi)^cos(Pi/12)/(exp(gamma)^cos(Pi/12)) 6524736190741783 a005 (1/sin(64/161*Pi))^603 6524736191637365 a007 Real Root Of 12*x^4+783*x^3-5*x^2-463*x-130 6524736200610403 l006 ln(4491/8624) 6524736200995381 m001 1/cos(Pi/5)^2*Salem^2/exp(sin(Pi/5))^2 6524736207317100 m001 1/3*3^(1/2)*LaplaceLimit*Niven 6524736208185813 a001 6765/33385282*521^(12/13) 6524736208758538 a007 Real Root Of -596*x^4+213*x^3-816*x^2-171*x+403 6524736225515749 m001 1/MadelungNaCl^2/exp(MertensB1)*sin(Pi/12) 6524736228442873 m001 1/Magata*MadelungNaCl^2*exp(Riemann3rdZero) 6524736232539636 a001 17711/87403803*521^(12/13) 6524736236092811 a001 46368/228826127*521^(12/13) 6524736236611213 a001 121393/599074578*521^(12/13) 6524736236686846 a001 317811/1568397607*521^(12/13) 6524736236697881 a001 832040/4106118243*521^(12/13) 6524736236699491 a001 987/4870846*521^(12/13) 6524736236699726 a001 5702887/28143753123*521^(12/13) 6524736236699760 a001 14930352/73681302247*521^(12/13) 6524736236699765 a001 39088169/192900153618*521^(12/13) 6524736236699766 a001 102334155/505019158607*521^(12/13) 6524736236699766 a001 267914296/1322157322203*521^(12/13) 6524736236699766 a001 701408733/3461452808002*521^(12/13) 6524736236699766 a001 1836311903/9062201101803*521^(12/13) 6524736236699766 a001 4807526976/23725150497407*521^(12/13) 6524736236699766 a001 2971215073/14662949395604*521^(12/13) 6524736236699766 a001 1134903170/5600748293801*521^(12/13) 6524736236699766 a001 433494437/2139295485799*521^(12/13) 6524736236699766 a001 165580141/817138163596*521^(12/13) 6524736236699767 a001 63245986/312119004989*521^(12/13) 6524736236699768 a001 24157817/119218851371*521^(12/13) 6524736236699782 a001 9227465/45537549124*521^(12/13) 6524736236699871 a001 3524578/17393796001*521^(12/13) 6524736236700486 a001 1346269/6643838879*521^(12/13) 6524736236704701 a001 514229/2537720636*521^(12/13) 6524736236733591 a001 196418/969323029*521^(12/13) 6524736236931602 a001 75025/370248451*521^(12/13) 6524736238288794 a001 28657/141422324*521^(12/13) 6524736247051272 m005 (1/2*5^(1/2)+1/7)/(2/3*3^(1/2)+7/9) 6524736247591127 a001 10946/54018521*521^(12/13) 6524736250898971 a007 Real Root Of 719*x^4-307*x^3+503*x^2-192*x-555 6524736256180920 m001 (ln(3)*GAMMA(23/24)+GAMMA(1/6))/GAMMA(23/24) 6524736256600316 m001 1/ln(GAMMA(11/12))^2*GAMMA(1/6)/cos(1)^2 6524736283977334 r009 Re(z^3+c),c=-5/48+17/32*I,n=19 6524736296978561 m005 (1/2*exp(1)-6/11)/(4/7*gamma-5/11) 6524736300625754 a001 377/167761*521^(7/13) 6524736311350266 a001 4181/20633239*521^(12/13) 6524736314452175 a007 Real Root Of 908*x^4-243*x^3-852*x^2-142*x+38 6524736330379516 m005 (1/3*Zeta(3)+2/7)/(4/9*3^(1/2)-7/8) 6524736331130932 r005 Im(z^2+c),c=-4/7+12/83*I,n=6 6524736333365624 r005 Im(z^2+c),c=-129/118+1/13*I,n=34 6524736340095109 a007 Real Root Of -422*x^4+888*x^3-28*x^2+944*x+951 6524736344623824 r002 50th iterates of z^2 + 6524736346499831 m001 1/ln(Kolakoski)*Khintchine*RenyiParking^2 6524736358810119 h001 (9/11*exp(1)+2/3)/(6/11*exp(2)+2/5) 6524736359703802 l006 ln(5/3409) 6524736381011642 m001 (Zeta(1,-1)+Bloch)/(FeigenbaumDelta+Trott2nd) 6524736394946991 m001 ln(GAMMA(1/12))*GolombDickman/GAMMA(7/12)^2 6524736415247364 q001 1609/2466 6524736415781262 m001 (ln(2)*GaussKuzminWirsing-LaplaceLimit)/ln(2) 6524736434590936 m001 (1/3)^Zeta(1/2)-GAMMA(1/12) 6524736498652266 a007 Real Root Of 605*x^4-87*x^3+794*x^2-247*x-633 6524736522578270 r008 a(0)=0,K{-n^6,-57+47*n+36*n^2-10*n^3} 6524736522752906 a007 Real Root Of 536*x^4-349*x^3-478*x^2-347*x-217 6524736544526477 r002 4th iterates of z^2 + 6524736555462589 m001 MinimumGamma*ln(CareFree)*GAMMA(5/6)^2 6524736567386599 m001 (ln(2^(1/2)+1)-Paris)/(PolyaRandomWalk3D+Thue) 6524736573154469 m005 (1/3*exp(1)-1/6)/(2/9*5^(1/2)+7/11) 6524736580209786 m002 -5+3/Pi+6*Sinh[Pi] 6524736605140812 r009 Im(z^3+c),c=-19/122+47/64*I,n=25 6524736619829798 m001 (-Lehmer+Totient)/(Psi(1,1/3)+FeigenbaumKappa) 6524736649905258 r005 Re(z^2+c),c=53/110+13/51*I,n=3 6524736665979202 m001 1/GAMMA(17/24)*ln(Riemann3rdZero)^2*cos(Pi/5) 6524736683778830 a007 Real Root Of 105*x^4+771*x^3+525*x^2-80*x+989 6524736702335990 r005 Im(z^2+c),c=-99/98+6/13*I,n=3 6524736711032513 m001 (exp(-1/2*Pi)+PlouffeB)/(Shi(1)+gamma(2)) 6524736713131799 m004 7-(5*Sqrt[5]*Log[Sqrt[5]*Pi]^2)/Pi 6524736722359469 m001 (Cahen+FeigenbaumAlpha)/(5^(1/2)-exp(1)) 6524736730113453 r005 Im(z^2+c),c=5/19+17/35*I,n=34 6524736746172426 a001 987/3010349*521^(11/13) 6524736748361904 a001 1597/7881196*521^(12/13) 6524736764797878 m005 (1/3*gamma+2/9)/(7/55+5/22*5^(1/2)) 6524736766019013 m001 exp(GAMMA(7/12))*Riemann1stZero^2*sin(1)^2 6524736767902960 a007 Real Root Of -803*x^4+163*x^3-160*x^2-193*x+133 6524736797823986 a001 4/13*1134903170^(10/17) 6524736833460337 m001 (-GAMMA(19/24)+Totient)/(Si(Pi)+ln(2)) 6524736848140354 a001 46/141*832040^(3/59) 6524736892141693 m001 GAMMA(1/6)*KhintchineLevy^2/ln(sqrt(2))^2 6524736908276131 m001 1/Trott/Tribonacci/ln(arctan(1/2)) 6524736916344257 r009 Re(z^3+c),c=-47/52+29/48*I,n=2 6524736923237892 m004 1/4+(25*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi])/4 6524736952104044 l006 ln(1543/2963) 6524736952104044 p004 log(2963/1543) 6524736958604022 r008 a(0)=0,K{-n^6,-51+38*n-47*n^2+45*n^3} 6524736959581406 m001 exp(BesselJ(0,1))^2*ErdosBorwein*Zeta(1,2)^2 6524736961641864 a007 Real Root Of -984*x^4+768*x^3+44*x^2+66*x+416 6524736963585358 a003 cos(Pi*10/39)-sin(Pi*23/84) 6524736987185095 a007 Real Root Of -854*x^4+802*x^3-910*x^2+138*x+855 6524737007676419 a001 1/305*13^(11/41) 6524737009913688 a001 47/75025*3^(1/27) 6524737016319404 a007 Real Root Of 238*x^4-771*x^3+980*x^2+669*x-238 6524737046123956 a003 sin(Pi*9/43)/sin(Pi*39/101) 6524737047203138 m005 (1/3*5^(1/2)+1/6)/(9/10*2^(1/2)+1/8) 6524737053750881 r002 48th iterates of z^2 + 6524737066031253 m006 (1/3*exp(2*Pi)+1/2)/(2/5*Pi-4) 6524737098588368 m005 (1/2*3^(1/2)-6/11)/(5*Catalan+1/3) 6524737107370989 a007 Real Root Of 692*x^4-800*x^3+160*x^2-471*x+336 6524737107912592 m005 (1/2*Zeta(3)-2/7)/(7/12*Pi+3) 6524737134437776 m001 GAMMA(7/24)/ln(ErdosBorwein)*Zeta(9)^2 6524737142729805 a007 Real Root Of -974*x^4+99*x^3+471*x^2+950*x-64 6524737154960481 h001 (5/9*exp(1)+5/11)/(2/7*exp(2)+9/10) 6524737160211845 a007 Real Root Of -876*x^4+306*x^3-582*x^2+249*x+654 6524737165888468 m001 ln(GAMMA(1/3))^2/(2^(1/3))^2/Zeta(1,2) 6524737170661819 m005 (1/2*3^(1/2)+5/8)/(9/10*5^(1/2)+3/11) 6524737181238099 r002 34th iterates of z^2 + 6524737184868871 m005 (1/3*3^(1/2)+2/3)/(7/10*2^(1/2)+11/12) 6524737213815192 a007 Real Root Of -540*x^4+681*x^3-415*x^2+543*x+818 6524737229495055 a007 Real Root Of -398*x^4+713*x^3-896*x^2+68*x+696 6524737232801495 m001 (MertensB3-ZetaP(3))/(gamma(3)+Pi^(1/2)) 6524737257018925 a007 Real Root Of 816*x^4+395*x^3-389*x^2-580*x-251 6524737297088879 r005 Re(z^2+c),c=-1/54+43/54*I,n=20 6524737316798998 m005 (1/2*3^(1/2)+4/11)/(6/7*3^(1/2)+2/5) 6524737340495238 r005 Im(z^2+c),c=-9/13+11/63*I,n=48 6524737358798442 m005 (1/2*Pi-5/12)/(-27/14+1/14*5^(1/2)) 6524737372922067 m001 Lehmer/Champernowne^2*exp(sin(Pi/12))^2 6524737387620471 a007 Real Root Of -899*x^4+819*x^3-810*x^2-592*x+349 6524737393186930 a007 Real Root Of 487*x^4-305*x^3-803*x^2+25*x+322 6524737413478658 a001 2/32951280099*6557470319842^(8/17) 6524737413478658 a001 2/701408733*1836311903^(8/17) 6524737413480986 a001 1/7465176*514229^(8/17) 6524737419323923 m001 gamma(3)^Weierstrass/(Cahen^Weierstrass) 6524737442555017 a003 cos(Pi*10/83)*sin(Pi*28/113) 6524737447078300 a001 72/51841*322^(2/3) 6524737447365173 a008 Real Root of (1+4*x-5*x^2-4*x^3-4*x^4+3*x^5) 6524737472518417 a007 Real Root Of 936*x^4+610*x^3+943*x^2+588*x-18 6524737474053763 r005 Im(z^2+c),c=-7/10+41/151*I,n=33 6524737481106024 r005 Re(z^2+c),c=11/52+7/16*I,n=13 6524737500250300 a001 233/15127*199^(3/11) 6524737501636332 a007 Real Root Of 663*x^4-295*x^3+527*x^2+954*x+196 6524737532952731 m005 (1/2*Catalan-7/12)/(8/11*Pi-4/11) 6524737540641386 r005 Im(z^2+c),c=-59/102+23/57*I,n=7 6524737544197396 r005 Re(z^2+c),c=-75/74+7/33*I,n=12 6524737579729922 a007 Real Root Of 233*x^4-47*x^3+98*x^2-564*x-465 6524737590570533 a003 cos(Pi*16/119)*sin(Pi*17/67) 6524737594303513 a001 7/6557470319842*433494437^(11/14) 6524737594307390 a001 7/32951280099*514229^(11/14) 6524737596149055 r005 Re(z^2+c),c=-19/90+38/55*I,n=5 6524737601294767 a007 Real Root Of -3*x^4+969*x^3+98*x^2+611*x-709 6524737631184407 q001 2176/3335 6524737660087617 l006 ln(4767/9154) 6524737661888183 r002 43th iterates of z^2 + 6524737667845599 b008 -1+BesselK[0,2/9] 6524737677335005 r005 Re(z^2+c),c=-47/82+31/55*I,n=23 6524737684789096 a007 Real Root Of 516*x^4-844*x^3+749*x^2-293*x-838 6524737694655365 a007 Real Root Of 906*x^4-976*x^3-270*x^2-237*x-475 6524737698584455 m001 (ln(5)+Zeta(1/2))/(GAMMA(17/24)-FeigenbaumMu) 6524737716921328 m001 GAMMA(5/6)/ln(2^(1/2)+1)/ReciprocalLucas 6524737731074139 a003 cos(Pi*7/32)-cos(Pi*6/13) 6524737767484177 m005 (1/2*5^(1/2)+5/8)/(5/12*3^(1/2)-5/11) 6524737785664248 r001 12i'th iterates of 2*x^2-1 of 6524737797069699 a001 18/39088169*55^(2/23) 6524737809413390 r005 Re(z^2+c),c=-47/66+11/36*I,n=18 6524737812755997 a001 233/505019158607*2^(1/2) 6524737857290620 a007 Real Root Of 486*x^4-757*x^3+237*x^2-464*x-702 6524737876510045 m001 Zeta(1,-1)/(FeigenbaumMu-MertensB2) 6524737890283221 a001 646/1970299*521^(11/13) 6524737894662127 a004 Fibonacci(15)*Lucas(13)/(1/2+sqrt(5)/2)^32 6524737905905691 p001 sum(1/(190*n+79)/n/(6^n),n=1..infinity) 6524737916173856 r002 29th iterates of z^2 + 6524737924711324 m001 (Zeta(5)+Zeta(1/2))/(Paris-RenyiParking) 6524737925277520 a007 Real Root Of -248*x^4-60*x^3-844*x^2+206*x+522 6524737946706596 r005 Im(z^2+c),c=-11/36+20/31*I,n=28 6524737961061526 a007 Real Root Of -121*x^4-802*x^3-154*x^2-570*x-637 6524737990044841 r005 Im(z^2+c),c=35/94+12/47*I,n=3 6524737993430234 r005 Re(z^2+c),c=15/118+23/61*I,n=4 6524737998927132 l006 ln(3224/6191) 6524738032546760 m002 6+5/Pi^6+6*Csch[Pi] 6524738033004925 m001 1/CopelandErdos^2*Champernowne/exp(GAMMA(3/4)) 6524738057206736 a001 615/1875749*521^(11/13) 6524738081560549 a001 17711/54018521*521^(11/13) 6524738085113723 a001 11592/35355581*521^(11/13) 6524738085632124 a001 121393/370248451*521^(11/13) 6524738085707757 a001 317811/969323029*521^(11/13) 6524738085718792 a001 610/1860499*521^(11/13) 6524738085720402 a001 2178309/6643838879*521^(11/13) 6524738085720637 a001 5702887/17393796001*521^(11/13) 6524738085720671 a001 3732588/11384387281*521^(11/13) 6524738085720676 a001 39088169/119218851371*521^(11/13) 6524738085720677 a001 9303105/28374454999*521^(11/13) 6524738085720677 a001 66978574/204284540899*521^(11/13) 6524738085720677 a001 701408733/2139295485799*521^(11/13) 6524738085720677 a001 1836311903/5600748293801*521^(11/13) 6524738085720677 a001 1201881744/3665737348901*521^(11/13) 6524738085720677 a001 7778742049/23725150497407*521^(11/13) 6524738085720677 a001 2971215073/9062201101803*521^(11/13) 6524738085720677 a001 567451585/1730726404001*521^(11/13) 6524738085720677 a001 433494437/1322157322203*521^(11/13) 6524738085720677 a001 165580141/505019158607*521^(11/13) 6524738085720677 a001 31622993/96450076809*521^(11/13) 6524738085720679 a001 24157817/73681302247*521^(11/13) 6524738085720692 a001 9227465/28143753123*521^(11/13) 6524738085720782 a001 1762289/5374978561*521^(11/13) 6524738085721397 a001 1346269/4106118243*521^(11/13) 6524738085725612 a001 514229/1568397607*521^(11/13) 6524738085754501 a001 98209/299537289*521^(11/13) 6524738085952513 a001 75025/228826127*521^(11/13) 6524738087309704 a001 28657/87403803*521^(11/13) 6524738096612033 a001 5473/16692641*521^(11/13) 6524738097466240 r005 Im(z^2+c),c=-129/118+1/13*I,n=40 6524738097731438 r005 Im(z^2+c),c=-129/118+1/13*I,n=33 6524738098249727 a003 sin(Pi*25/102)*sin(Pi*29/75) 6524738110415556 a007 Real Root Of 190*x^4-911*x^3+957*x^2-181*x-813 6524738121154556 r009 Re(z^3+c),c=-3/32+20/31*I,n=11 6524738123941154 r005 Im(z^2+c),c=-9/16+67/122*I,n=19 6524738127101693 h001 (2/5*exp(1)+1/3)/(1/2*exp(1)+9/11) 6524738144294466 m008 (4/5*Pi^3+2/3)/(4*Pi^4+3/4) 6524738148807892 a001 377/103682*521^(6/13) 6524738150030532 r005 Re(z^2+c),c=13/70+4/9*I,n=56 6524738157442285 a003 sin(Pi*2/105)-sin(Pi*27/107) 6524738160371142 a001 4181/12752043*521^(11/13) 6524738192433870 m001 1/exp(GAMMA(7/24))/ArtinRank2/Zeta(7) 6524738195521737 r009 Im(z^3+c),c=-21/64+35/54*I,n=24 6524738213519178 a005 (1/cos(51/133*Pi))^22 6524738221927988 m001 (Catalan-FeigenbaumKappa)/(LaplaceLimit+Trott) 6524738224826939 m005 (1/2*Catalan-3)/(9/10*gamma-10/11) 6524738228407908 r005 Re(z^2+c),c=-19/16+29/31*I,n=2 6524738244816115 a007 Real Root Of 121*x^4+677*x^3-739*x^2+28*x+396 6524738258386561 r002 50th iterates of z^2 + 6524738297153796 m001 1/Zeta(3)^2/exp(Backhouse)^2*log(2+sqrt(3))^2 6524738301424698 a007 Real Root Of 758*x^4-77*x^3-567*x^2-896*x-502 6524738301872228 m006 (1/2*exp(2*Pi)+1/6)/(1/3/Pi+4) 6524738328233536 l006 ln(4905/9419) 6524738357745171 r005 Im(z^2+c),c=-129/118+1/13*I,n=35 6524738367187531 a001 105937/41*199^(7/40) 6524738377706063 r005 Im(z^2+c),c=-25/18+3/206*I,n=52 6524738388554404 a007 Real Root Of -11*x^4-716*x^3+122*x^2+645*x+812 6524738414031930 r002 14th iterates of z^2 + 6524738415454916 a007 Real Root Of 214*x^4-951*x^3-612*x^2-417*x+758 6524738454254833 r005 Re(z^2+c),c=-1/62+34/45*I,n=5 6524738462832185 m001 (exp(1/2)*GAMMA(7/12)-exp(1/exp(1)))/exp(1/2) 6524738468686378 m001 (-gamma(2)+CareFree)/(2^(1/3)+Zeta(1,-1)) 6524738475459829 r005 Re(z^2+c),c=5/21+15/41*I,n=47 6524738499961400 a007 Real Root Of -959*x^4+687*x^3-879*x^2-363*x+502 6524738508816612 r005 Im(z^2+c),c=4/11+2/7*I,n=20 6524738543828241 g006 Psi(1,1/9)+2*Psi(1,5/6)-Psi(1,2/9) 6524738546931272 r005 Im(z^2+c),c=-13/21+7/57*I,n=21 6524738563970016 l006 ln(7668/8185) 6524738567374758 m008 (1/3*Pi^4-4/5)/(1/2*Pi^4-1/6) 6524738595190876 a001 329/620166*521^(10/13) 6524738597382579 a001 1597/4870847*521^(11/13) 6524738608409811 m005 (1/2*5^(1/2)-2/11)/(3/8*Catalan-1/5) 6524738614727207 m001 1/exp(OneNinth)*Rabbit^2*(3^(1/3)) 6524738620340106 m001 (1-Conway*FeigenbaumB)/Conway 6524738631491791 r009 Im(z^3+c),c=-47/74+9/28*I,n=54 6524738638114427 r005 Im(z^2+c),c=-35/122+7/11*I,n=15 6524738711591130 a007 Real Root Of 723*x^4+151*x^3-229*x^2-747*x-479 6524738713545112 r005 Im(z^2+c),c=-33/106+5/52*I,n=7 6524738714118867 a007 Real Root Of -691*x^4+477*x^3-588*x^2-630*x+97 6524738761129674 a001 7/13*832040^(25/48) 6524738774379517 a007 Real Root Of -946*x^4-134*x^3+931*x^2+799*x-709 6524738797182693 m001 (1+Ei(1,1))/(Champernowne+KhinchinHarmonic) 6524738813283927 m005 (1/2*exp(1)-6)/(1/80+5/16*5^(1/2)) 6524738826139748 m005 (1/2*3^(1/2)-11/12)/(2/3*2^(1/2)-1/6) 6524738826761563 m001 GAMMA(7/12)^Ei(1,1)/(GAMMA(7/12)^GAMMA(3/4)) 6524738839186631 m001 1/GAMMA(17/24)^2/ln((3^(1/3)))^2*Zeta(3)^2 6524738840867488 r002 45th iterates of z^2 + 6524738861148410 r005 Re(z^2+c),c=-1/8+39/44*I,n=5 6524738878765799 m001 (OrthogonalArrays+Trott)/(GAMMA(3/4)-3^(1/3)) 6524738893781776 r005 Im(z^2+c),c=-27/38+27/53*I,n=6 6524738914366418 a007 Real Root Of 96*x^4-654*x^3-645*x^2-483*x+754 6524738917197061 m001 (ln(2^(1/2)+1)+MertensB1)/(Zeta(3)-ln(gamma)) 6524738919044070 m001 1/PrimesInBinary/exp(ArtinRank2)^2/Catalan 6524738938326554 a007 Real Root Of 60*x^4-265*x^3+581*x^2-716*x-799 6524738959812238 l006 ln(1681/3228) 6524738960982942 a007 Real Root Of -637*x^4+355*x^3-357*x^2+731*x+843 6524738971640352 a007 Real Root Of -58*x^4-298*x^3+547*x^2+279*x+876 6524738981350133 h001 (3/8*exp(1)+8/11)/(8/11*exp(1)+7/10) 6524738994742933 a007 Real Root Of -261*x^4+768*x^3+342*x^2+895*x+699 6524739005256793 a007 Real Root Of 163*x^4+979*x^3-483*x^2+401*x-302 6524739011578283 r002 8th iterates of z^2 + 6524739023649295 a007 Real Root Of -413*x^4+696*x^3-332*x^2+436*x+694 6524739067085616 m009 (32/5*Catalan+4/5*Pi^2-1/2)/(5*Psi(1,2/3)+5) 6524739090283568 r005 Re(z^2+c),c=25/62+26/47*I,n=8 6524739101711297 m001 (sin(1/5*Pi)-3^(1/3))/(GaussAGM+Weierstrass) 6524739104788052 a007 Real Root Of 424*x^4-251*x^3+911*x^2-263*x-706 6524739117223739 m001 (-Otter+Sierpinski)/(Niven-Psi(2,1/3)) 6524739126716824 a008 Real Root of x^4+30*x^2-90*x-6 6524739131600614 m003 37/12+Sqrt[5]/2+Sqrt[5]/(2*Log[1/2+Sqrt[5]/2]) 6524739137659920 a001 144/3571*123^(1/10) 6524739146204262 a007 Real Root Of -921*x^4+797*x^3-128*x^2+526*x+786 6524739168585455 m001 1/Magata/FransenRobinson*exp(FeigenbaumC) 6524739177570795 r005 Re(z^2+c),c=5/44+21/43*I,n=34 6524739215070231 r002 20i'th iterates of 2*x/(1-x^2) of 6524739224093116 r002 39i'th iterates of 2*x/(1-x^2) of 6524739233418781 a007 Real Root Of 840*x^4-967*x^3-671*x^2-389*x-389 6524739267028083 b008 6+ProductLog[Sech[1/2]] 6524739271798323 a003 sin(Pi*1/50)/sin(Pi*40/97) 6524739281936226 a007 Real Root Of 142*x^4+969*x^3+374*x^2+658*x+173 6524739302594932 m001 gamma(3)^polylog(4,1/2)-ln(2) 6524739331423045 a001 199/144*21^(26/51) 6524739338455179 r005 Im(z^2+c),c=-83/122+1/63*I,n=62 6524739354437417 m009 (16/3*Catalan+2/3*Pi^2-6)/(3*Psi(1,3/4)+3/4) 6524739358412822 m001 (KomornikLoreti-TwinPrimes)/(Pi-2^(1/2)) 6524739364019874 a007 Real Root Of -466*x^4+669*x^3+685*x^2+751*x-883 6524739397253920 r005 Re(z^2+c),c=-19/34+55/122*I,n=18 6524739419618981 m001 Kolakoski^OrthogonalArrays*Kolakoski^ZetaP(2) 6524739428517327 a001 408569081798/17*3^(10/11) 6524739435023686 m005 (1/2*exp(1)+8/9)/(9/11*Pi+7/8) 6524739446329661 m001 (Lehmer-ZetaP(2))/(ln(2+3^(1/2))+GaussAGM) 6524739471868902 a001 322*377^(5/42) 6524739483454436 h001 (1/11*exp(1)+10/11)/(2/11*exp(2)+3/7) 6524739485530221 a007 Real Root Of 607*x^4+479*x^3+471*x^2-998*x-67 6524739500696659 h001 (3/4*exp(1)+1/10)/(3/7*exp(2)+1/9) 6524739504090024 a007 Real Root Of -23*x^4+446*x^3-228*x^2+760*x+721 6524739519966446 m001 (KhinchinLevy+Otter)/(Sarnak-TwinPrimes) 6524739522637266 a007 Real Root Of -703*x^4+844*x^3-356*x^2+522*x+854 6524739537018922 a007 Real Root Of 923*x^4-956*x^3+959*x^2+486*x-524 6524739538799660 a001 11/75025*9227465^(11/21) 6524739539031494 a001 11/14930352*225851433717^(11/21) 6524739557745714 l006 ln(5181/9949) 6524739576645758 r005 Im(z^2+c),c=-129/118+1/13*I,n=39 6524739618569759 a007 Real Root Of -843*x^4+886*x^3-628*x^2-382*x+417 6524739637564404 m001 (MertensB1-PlouffeB)/(Gompertz+Khinchin) 6524739640378674 a003 cos(Pi*28/101)/sin(Pi*22/49) 6524739645627145 r005 Im(z^2+c),c=-11/10+8/103*I,n=39 6524739648688847 r005 Re(z^2+c),c=-3/16+32/47*I,n=62 6524739656461445 r002 49th iterates of z^2 + 6524739658738955 a007 Real Root Of -796*x^4-903*x^3-940*x^2-27*x+276 6524739662094799 p001 sum((-1)^n/(541*n+153)/(128^n),n=0..infinity) 6524739667648772 r009 Im(z^3+c),c=-53/86+25/48*I,n=30 6524739670336447 m005 (1/3*Zeta(3)+3/5)/(5/9*3^(1/2)+4/7) 6524739686224356 m005 (1/2*Pi-2/3)/(3/11*2^(1/2)+1) 6524739690094780 a007 Real Root Of 408*x^4-16*x^3+697*x^2+250*x-212 6524739693730435 m001 (gamma(3)*Paris+Cahen)/Paris 6524739695902082 m001 FibonacciFactorial-Paris-PlouffeB 6524739708607083 m001 1/ln(GAMMA(11/12))^2*Porter^2/GAMMA(5/6) 6524739712618401 m001 (2^(1/2)+GAMMA(3/4))/(FeigenbaumMu+PlouffeB) 6524739713349487 a001 233/76*3^(11/16) 6524739739304220 a001 2584/4870847*521^(10/13) 6524739743684228 a001 610/3010349*521^(12/13) 6524739744061202 b008 Sin[Tanh[8/9]] 6524739767354417 p004 log(36833/19181) 6524739779631598 a001 3/24157817*233^(7/23) 6524739789363170 r008 a(0)=0,K{-n^6,-47+32*n-45*n^2+45*n^3} 6524739808446546 a007 Real Root Of 761*x^4+937*x^3+929*x^2-527*x-617 6524739811007543 p003 LerchPhi(1/3,6,215/136) 6524739812765057 a001 47*(1/2*5^(1/2)+1/2)^2*521^(4/15) 6524739815360111 a007 Real Root Of -950*x^4+428*x^3-588*x^2-137*x+452 6524739816790314 a007 Real Root Of 927*x^4-227*x^3+508*x^2-493*x-769 6524739844924608 l006 ln(3500/6721) 6524739854881064 r005 Im(z^2+c),c=-11/118+1/13*I,n=10 6524739862717257 m001 GAMMA(2/3)*MertensB1^2*exp(GAMMA(5/12))^2 6524739869815135 a003 cos(Pi*22/83)-cos(Pi*38/77) 6524739873635374 r009 Im(z^3+c),c=-13/114+33/43*I,n=16 6524739906228108 a001 2255/4250681*521^(10/13) 6524739915707284 a007 Real Root Of 827*x^4-786*x^3+960*x^2+852*x-221 6524739930581975 a001 17711/33385282*521^(10/13) 6524739934135156 a001 15456/29134601*521^(10/13) 6524739934653558 a001 121393/228826127*521^(10/13) 6524739934729192 a001 377/710646*521^(10/13) 6524739934740227 a001 832040/1568397607*521^(10/13) 6524739934741837 a001 726103/1368706081*521^(10/13) 6524739934742072 a001 5702887/10749957122*521^(10/13) 6524739934742106 a001 4976784/9381251041*521^(10/13) 6524739934742111 a001 39088169/73681302247*521^(10/13) 6524739934742112 a001 34111385/64300051206*521^(10/13) 6524739934742112 a001 267914296/505019158607*521^(10/13) 6524739934742112 a001 233802911/440719107401*521^(10/13) 6524739934742112 a001 1836311903/3461452808002*521^(10/13) 6524739934742112 a001 1602508992/3020733700601*521^(10/13) 6524739934742112 a001 12586269025/23725150497407*521^(10/13) 6524739934742112 a001 7778742049/14662949395604*521^(10/13) 6524739934742112 a001 2971215073/5600748293801*521^(10/13) 6524739934742112 a001 1134903170/2139295485799*521^(10/13) 6524739934742112 a001 433494437/817138163596*521^(10/13) 6524739934742112 a001 165580141/312119004989*521^(10/13) 6524739934742112 a001 63245986/119218851371*521^(10/13) 6524739934742114 a001 24157817/45537549124*521^(10/13) 6524739934742127 a001 9227465/17393796001*521^(10/13) 6524739934742217 a001 3524578/6643838879*521^(10/13) 6524739934742832 a001 1346269/2537720636*521^(10/13) 6524739934747047 a001 514229/969323029*521^(10/13) 6524739934775936 a001 196418/370248451*521^(10/13) 6524739934973948 a001 75025/141422324*521^(10/13) 6524739936331143 a001 28657/54018521*521^(10/13) 6524739945633492 a001 10946/20633239*521^(10/13) 6524739947195082 h001 (-7*exp(7)+9)/(-6*exp(3)+3) 6524739947925550 a007 Real Root Of 924*x^4-437*x^3+833*x^2+436*x-359 6524739987039356 m001 TwinPrimes^Stephens*TwinPrimes^ZetaP(2) 6524740000025328 a001 377/64079*521^(5/13) 6524740009392744 a001 4181/7881196*521^(10/13) 6524740018369891 m001 (BesselK(0,1)+ln(5))/(-Sarnak+ThueMorse) 6524740030983947 r005 Im(z^2+c),c=7/38+28/55*I,n=6 6524740042020448 r002 49th iterates of z^2 + 6524740061812910 r005 Im(z^2+c),c=15/38+11/50*I,n=53 6524740062130762 a001 142129/2178309 6524740062143407 a004 Fibonacci(14)/Lucas(14)/(1/2+sqrt(5)/2)^4 6524740074334148 p004 log(37363/19457) 6524740079615276 a008 Real Root of (-3-3*x+2*x^2+3*x^3+5*x^4-x^5) 6524740089174942 a007 Real Root Of 211*x^4-44*x^3-90*x^2-809*x-540 6524740114671057 m001 (ArtinRank2-gamma)/(OneNinth+ZetaP(4)) 6524740140918539 r005 Im(z^2+c),c=-67/70+3/50*I,n=15 6524740147828639 b008 FresnelC[ArcCsc[Pi/2]] 6524740169913296 s002 sum(A250095[n]/(n^2*2^n-1),n=1..infinity) 6524740196887153 s002 sum(A130274[n]/((pi^n+1)/n),n=1..infinity) 6524740197689159 r009 Im(z^3+c),c=-21/46+31/59*I,n=25 6524740222451283 r005 Im(z^2+c),c=-10/19+26/51*I,n=18 6524740238464020 m001 LandauRamanujan2nd^StolarskyHarborth-ln(5) 6524740249062364 a007 Real Root Of 15*x^4+971*x^3-502*x^2+77*x+234 6524740251904062 a003 cos(Pi*5/36)*cos(Pi*52/109) 6524740260341285 b008 ExpIntegralEi[68/3+Pi] 6524740290860891 a007 Real Root Of 104*x^4+550*x^3-991*x^2-930*x+407 6524740299735595 m001 (-Conway+Sarnak)/(ln(2)/ln(10)+sin(1/5*Pi)) 6524740322913493 r005 Re(z^2+c),c=-37/110+19/29*I,n=2 6524740324122161 h001 (3/5*exp(1)+2/7)/(3/8*exp(2)+1/6) 6524740348606903 r002 26th iterates of z^2 + 6524740349791153 a001 7/165580141*610^(11/14) 6524740370952976 r005 Re(z^2+c),c=-7/122+41/54*I,n=38 6524740376664227 a007 Real Root Of 507*x^4-345*x^3+607*x^2-714*x-912 6524740395925452 b008 65+Sin[1/4] 6524740421716517 m001 Ei(1)/(2^(1/3))*ln(cosh(1)) 6524740444219275 a001 987/1149851*521^(9/13) 6524740446405154 a001 1597/3010349*521^(10/13) 6524740483068217 a007 Real Root Of -474*x^4+172*x^3-123*x^2-161*x+81 6524740503689184 a007 Real Root Of -281*x^4+147*x^3-618*x^2+765*x+854 6524740504336521 a007 Real Root Of 856*x^4-843*x^3+757*x^2-111*x-784 6524740515909633 r008 a(0)=6,K{-n^6,65-95*n^3-20*n^2+48*n} 6524740518594677 a007 Real Root Of 684*x^4-492*x^3+90*x^2-466*x-603 6524740539183588 m001 (LambertW(1)-sin(1/5*Pi))/(exp(-1/2*Pi)+Otter) 6524740541237493 m001 1/(3^(1/3))^2*ln(OneNinth)^2*sqrt(1+sqrt(3))^2 6524740543590745 r005 Re(z^2+c),c=-22/31+2/11*I,n=31 6524740546226099 m005 (1/2*exp(1)+1/6)/(5/8*Pi+3/8) 6524740576985115 m001 GAMMA(3/4)^gamma(3)-(1+3^(1/2))^(1/2) 6524740607494424 m001 1/Bloch/Conway^2*ln(Lehmer) 6524740608975926 a007 Real Root Of -429*x^4+390*x^3+755*x^2+869*x-919 6524740627097371 a007 Real Root Of 690*x^4+241*x^3+431*x^2-324*x-453 6524740627981901 r005 Im(z^2+c),c=-129/118+1/13*I,n=46 6524740634605230 g007 Psi(2,4/11)+Psi(2,7/10)+Psi(2,1/3)-Psi(2,3/8) 6524740647124979 a007 Real Root Of 820*x^4-345*x^3-952*x^2-787*x+866 6524740653100743 r002 19th iterates of z^2 + 6524740659240633 r002 56th iterates of z^2 + 6524740662887097 l006 ln(1819/3493) 6524740666879495 a007 Real Root Of 620*x^4-67*x^3-222*x^2-859*x+57 6524740696853989 a007 Real Root Of 514*x^4-632*x^3-8*x^2+143*x-172 6524740700539633 s002 sum(A062033[n]/(n^2*exp(n)-1),n=1..infinity) 6524740702626993 r002 39th iterates of z^2 + 6524740729763249 m008 (5/6*Pi^6-3)/(4*Pi^5-4/5) 6524740731423850 a007 Real Root Of -514*x^4+913*x^3+261*x^2+586*x+618 6524740739365989 m001 (Lehmer-MasserGramainDelta)/(Ei(1)+gamma(2)) 6524740757738455 m001 exp(GAMMA(13/24))^2/FeigenbaumB^2/sin(Pi/5) 6524740765390981 r005 Im(z^2+c),c=-129/118+1/13*I,n=45 6524740779584925 r002 55th iterates of z^2 + 6524740794648368 r005 Im(z^2+c),c=-11/118+1/13*I,n=12 6524740807477165 r005 Im(z^2+c),c=-129/118+1/13*I,n=50 6524740809706872 r002 60th iterates of z^2 + 6524740809771672 a001 23725150497407/144*53316291173^(17/19) 6524740814534522 m001 Niven^2/GaussKuzminWirsing/ln(GAMMA(5/6))^2 6524740840066583 r005 Im(z^2+c),c=-129/118+1/13*I,n=49 6524740841278201 r002 59th iterates of z^2 + 6524740845428184 r005 Im(z^2+c),c=-42/31+1/29*I,n=56 6524740861938004 r005 Im(z^2+c),c=-129/118+1/13*I,n=56 6524740862006095 m003 101/20+Sqrt[5]/(2*ProductLog[1/2+Sqrt[5]/2]) 6524740866319925 r005 Im(z^2+c),c=-129/118+1/13*I,n=55 6524740868619602 r005 Im(z^2+c),c=-129/118+1/13*I,n=60 6524740869228348 r005 Im(z^2+c),c=-129/118+1/13*I,n=59 6524740869277447 r005 Im(z^2+c),c=-11/118+1/13*I,n=15 6524740869767523 r005 Im(z^2+c),c=-129/118+1/13*I,n=62 6524740869784355 r005 Im(z^2+c),c=-11/118+1/13*I,n=17 6524740869823983 r005 Im(z^2+c),c=-11/118+1/13*I,n=20 6524740869824257 r005 Im(z^2+c),c=-11/118+1/13*I,n=22 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=25 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=27 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=30 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=32 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=35 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=37 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=40 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=42 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=45 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=47 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=50 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=52 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=55 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=57 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=60 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=62 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=63 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=64 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=61 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=59 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=58 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=56 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=54 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=53 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=51 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=49 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=48 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=46 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=44 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=43 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=41 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=39 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=38 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=36 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=34 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=33 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=31 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=29 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=28 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=26 6524740869824278 r005 Im(z^2+c),c=-11/118+1/13*I,n=24 6524740869824280 r005 Im(z^2+c),c=-11/118+1/13*I,n=23 6524740869824377 r005 Im(z^2+c),c=-11/118+1/13*I,n=21 6524740869824396 r005 Im(z^2+c),c=-11/118+1/13*I,n=19 6524740869825268 r005 Im(z^2+c),c=-129/118+1/13*I,n=61 6524740869829418 r005 Im(z^2+c),c=-11/118+1/13*I,n=18 6524740869962817 r005 Im(z^2+c),c=-129/118+1/13*I,n=63 6524740870010773 r005 Im(z^2+c),c=-11/118+1/13*I,n=16 6524740870012024 r005 Im(z^2+c),c=-11/118+1/13*I,n=14 6524740870148154 r005 Im(z^2+c),c=-129/118+1/13*I,n=64 6524740871721597 r005 Im(z^2+c),c=-129/118+1/13*I,n=57 6524740872220450 r002 63th iterates of z^2 + 6524740872888253 r005 Im(z^2+c),c=-129/118+1/13*I,n=53 6524740872987455 r002 53th iterates of z^2 + 6524740873911123 r005 Im(z^2+c),c=-129/118+1/13*I,n=58 6524740875041549 r005 Im(z^2+c),c=-129/118+1/13*I,n=51 6524740875557302 r002 61th iterates of z^2 + 6524740875992600 r002 64th iterates of z^2 + 6524740877502191 r005 Im(z^2+c),c=-129/118+1/13*I,n=54 6524740879067897 r005 Im(z^2+c),c=-129/118+1/13*I,n=52 6524740879602825 r005 Im(z^2+c),c=-11/118+1/13*I,n=13 6524740880393352 r002 62th iterates of z^2 + 6524740883554844 s002 sum(A117387[n]/(n*pi^n+1),n=1..infinity) 6524740888505873 m005 (1/2*Zeta(3)+3/7)/(5/7*exp(1)-4/11) 6524740892294700 r005 Im(z^2+c),c=-129/118+1/13*I,n=43 6524740914487679 r002 54th iterates of z^2 + 6524740933342765 m001 (-GAMMA(7/12)+Conway)/(2^(1/3)-GAMMA(3/4)) 6524740936382140 r002 57th iterates of z^2 + 6524740942455060 r005 Im(z^2+c),c=-129/118+1/13*I,n=47 6524740959523577 r005 Im(z^2+c),c=-129/118+1/13*I,n=44 6524740963656068 m001 GAMMA(1/12)*(OneNinth+GAMMA(1/6)) 6524740969765147 r005 Re(z^2+c),c=-75/94+26/61*I,n=5 6524740977067011 r005 Re(z^2+c),c=-3/4+19/154*I,n=9 6524740985045035 m005 (1/2*Pi-2/5)/(2/3*Pi-3/10) 6524741005210780 a008 Real Root of x^4-54*x^2-20*x+617 6524741016431198 r002 58th iterates of z^2 + 6524741029217227 r005 Im(z^2+c),c=-129/118+1/13*I,n=48 6524741068749836 a007 Real Root Of 486*x^4-497*x^3+971*x^2-177*x-755 6524741073075204 m008 (2*Pi^3+2/3)/(Pi^6-3/4) 6524741081703107 q001 567/869 6524741081703107 r002 2th iterates of z^2 + 6524741105467464 p003 LerchPhi(1/64,3,550/221) 6524741136470823 m001 (Salem+ZetaP(3))/(5^(1/2)+Zeta(1,-1)) 6524741156913294 r005 Im(z^2+c),c=-11/118+1/13*I,n=9 6524741166764145 r008 a(0)=0,K{-n^6,-3-37*n^3-4*n^2+59*n} 6524741218979699 r005 Im(z^2+c),c=-11/118+1/13*I,n=11 6524741222688240 m005 (1/3*exp(1)-2/7)/(3*Pi+1/12) 6524741229793891 l006 ln(4583/4892) 6524741238212618 m005 (1/3*2^(1/2)-3/8)/(1/3*exp(1)+4/7) 6524741244963566 r005 Im(z^2+c),c=-129/118+1/13*I,n=41 6524741245839328 r002 51th iterates of z^2 + 6524741263031945 a007 Real Root Of -934*x^4+175*x^3-758*x^2+511*x+874 6524741277742005 m001 FeigenbaumB^(3^(1/3))/Salem 6524741300709117 a007 Real Root Of 311*x^4-697*x^3+292*x^2-936*x-985 6524741303524943 a007 Real Root Of -917*x^4+566*x^3-672*x^2-223*x+464 6524741316713068 m001 (GAMMA(2/3)+Landau)/(Porter-Salem) 6524741320917435 m005 (1/2*5^(1/2)+6/7)/(3/7*2^(1/2)-7/11) 6524741338810808 m006 (1/6*ln(Pi)-1)/(3/4*Pi^2+5) 6524741346199071 r002 3th iterates of z^2 + 6524741347392859 r009 Im(z^3+c),c=-23/64+41/57*I,n=11 6524741386616023 m001 (Salem-ln(2)/ln(10))/(Totient+ZetaQ(4)) 6524741397383897 r008 a(0)=6,K{-n^6,97-69*n^3-82*n^2+52*n} 6524741401621508 r005 Im(z^2+c),c=-1/18+25/31*I,n=47 6524741419687253 r005 Re(z^2+c),c=-9/14+63/178*I,n=47 6524741421062013 l006 ln(3776/7251) 6524741422735757 r002 61th iterates of z^2 + 6524741436767114 r005 Im(z^2+c),c=-16/13+16/49*I,n=12 6524741449209153 a007 Real Root Of 64*x^4+398*x^3-159*x^2-252*x-315 6524741505920062 m001 1/(2^(1/3))^2*Si(Pi)^2*ln(gamma)^2 6524741545849243 a007 Real Root Of 153*x^4-345*x^3+463*x^2-517*x-658 6524741575067342 r009 Re(z^3+c),c=-13/118+24/41*I,n=36 6524741587004039 a005 (1/sin(85/181*Pi))^411 6524741588327119 a001 2584/3010349*521^(9/13) 6524741590395651 r005 Im(z^2+c),c=-7/94+31/39*I,n=44 6524741592703527 a001 305/930249*521^(11/13) 6524741618376813 r005 Im(z^2+c),c=-129/118+1/13*I,n=42 6524741628334917 r002 52th iterates of z^2 + 6524741658384799 r005 Im(z^2+c),c=-3/20+36/43*I,n=38 6524741673428083 a007 Real Root Of 981*x^4-830*x^3+937*x^2-182*x-926 6524741675425680 r002 54th iterates of z^2 + 6524741676517190 a007 Real Root Of 9*x^4+594*x^3+439*x^2-192*x-24 6524741677548626 m001 (exp(Pi)+BesselI(1,2))/(GaussAGM+Otter) 6524741681315806 s002 sum(A110760[n]/(n*pi^n+1),n=1..infinity) 6524741697662656 a007 Real Root Of 517*x^4-582*x^3-570*x^2-960*x+937 6524741711283193 r005 Im(z^2+c),c=19/66+29/60*I,n=60 6524741726439100 r005 Im(z^2+c),c=-7/110+21/31*I,n=35 6524741732072470 m001 (1+arctan(1/2))/(-FeigenbaumD+TreeGrowth2nd) 6524741734566711 a007 Real Root Of 573*x^4-256*x^3+519*x^2-299*x-591 6524741755250203 a001 6765/7881196*521^(9/13) 6524741779603953 a001 17711/20633239*521^(9/13) 6524741783157118 a001 46368/54018521*521^(9/13) 6524741783675517 a001 233/271444*521^(9/13) 6524741783751151 a001 317811/370248451*521^(9/13) 6524741783762185 a001 832040/969323029*521^(9/13) 6524741783763795 a001 2178309/2537720636*521^(9/13) 6524741783764030 a001 5702887/6643838879*521^(9/13) 6524741783764065 a001 14930352/17393796001*521^(9/13) 6524741783764070 a001 39088169/45537549124*521^(9/13) 6524741783764070 a001 102334155/119218851371*521^(9/13) 6524741783764070 a001 267914296/312119004989*521^(9/13) 6524741783764070 a001 701408733/817138163596*521^(9/13) 6524741783764070 a001 1836311903/2139295485799*521^(9/13) 6524741783764070 a001 4807526976/5600748293801*521^(9/13) 6524741783764070 a001 12586269025/14662949395604*521^(9/13) 6524741783764070 a001 20365011074/23725150497407*521^(9/13) 6524741783764070 a001 7778742049/9062201101803*521^(9/13) 6524741783764070 a001 2971215073/3461452808002*521^(9/13) 6524741783764070 a001 1134903170/1322157322203*521^(9/13) 6524741783764070 a001 433494437/505019158607*521^(9/13) 6524741783764070 a001 165580141/192900153618*521^(9/13) 6524741783764071 a001 63245986/73681302247*521^(9/13) 6524741783764073 a001 24157817/28143753123*521^(9/13) 6524741783764086 a001 9227465/10749957122*521^(9/13) 6524741783764175 a001 3524578/4106118243*521^(9/13) 6524741783764790 a001 1346269/1568397607*521^(9/13) 6524741783769005 a001 514229/599074578*521^(9/13) 6524741783797895 a001 196418/228826127*521^(9/13) 6524741783995906 a001 75025/87403803*521^(9/13) 6524741785353094 a001 28657/33385282*521^(9/13) 6524741791642439 m001 (Psi(1,1/3)-Trott2nd)/cosh(1) 6524741794655398 a001 10946/12752043*521^(9/13) 6524741808830334 a007 Real Root Of -473*x^4+597*x^3+936*x^2+311*x+56 6524741817413779 s002 sum(A222355[n]/((2^n+1)/n),n=1..infinity) 6524741823733369 r005 Re(z^2+c),c=-32/27+20/61*I,n=4 6524741839855780 s001 sum(exp(-Pi/4)^(n-1)*A201742[n],n=1..infinity) 6524741843298144 a001 377/39603*521^(4/13) 6524741853970291 m009 (1/2*Pi^2+4/5)/(16/5*Catalan+2/5*Pi^2-6) 6524741858414343 a001 4181/4870847*521^(9/13) 6524741862585941 m005 (1/3*Catalan+1/5)/(1/3*Pi-3/11) 6524741875370253 r002 6th iterates of z^2 + 6524741906963713 m005 (1/2*2^(1/2)+7/9)/(83/63+3/7*5^(1/2)) 6524741907627649 r005 Im(z^2+c),c=-17/14+37/196*I,n=14 6524741915677376 r005 Im(z^2+c),c=-11/10+8/103*I,n=44 6524741938053269 a001 47/843*(1/2*5^(1/2)+1/2)^12*843^(8/15) 6524741952950942 m005 (1/2*Catalan-2/7)/(5/6*exp(1)+3/8) 6524741960156161 a007 Real Root Of -715*x^4-464*x^3-45*x^2+765*x+519 6524742025155562 a007 Real Root Of -571*x^4+890*x^3-626*x^2+979*x-516 6524742029378259 a007 Real Root Of 11*x^4+721*x^3+207*x^2-460*x-615 6524742101677362 a007 Real Root Of 395*x^4-963*x^3-384*x^2-27*x+377 6524742112801701 a007 Real Root Of 12*x^4-60*x^3-968*x^2-295*x+870 6524742118505064 a001 987/24476*199^(1/11) 6524742125773343 l006 ln(1957/3758) 6524742127481142 k006 concat of cont frac of 6524742157869719 a007 Real Root Of 582*x^4-918*x^3+227*x^2-337*x-677 6524742173549355 r002 4th iterates of z^2 + 6524742193993149 a007 Real Root Of -927*x^4+989*x^3+539*x^2+864*x+777 6524742195605471 a007 Real Root Of -956*x^4+61*x^3-955*x^2+172*x+709 6524742245937642 a007 Real Root Of -379*x^4-393*x^3-897*x^2-747*x-146 6524742290687360 m001 BesselJ(1,1)/(Khinchin-ReciprocalFibonacci) 6524742293223524 a001 141/101521*521^(8/13) 6524742295424653 a001 1597/1860498*521^(9/13) 6524742297042426 r009 Im(z^3+c),c=-13/38+45/62*I,n=26 6524742330101688 m009 (24*Catalan+3*Pi^2-1/5)/(4/5*Psi(1,1/3)-1/5) 6524742334709877 r002 53th iterates of z^2 + 6524742356845020 g007 Psi(2,5/9)-2*Psi(2,8/11)-Psi(2,2/3) 6524742368680282 r002 56th iterates of z^2 + 6524742371743781 a007 Real Root Of 153*x^4-970*x^3+792*x^2+704*x-175 6524742374416052 r005 Re(z^2+c),c=-5/62+46/61*I,n=20 6524742377102157 a007 Real Root Of 122*x^4+917*x^3+653*x^2-998*x-706 6524742381091365 m001 Catalan/Si(Pi)/ln(log(2+sqrt(3)))^2 6524742384916141 m001 1/GAMMA(19/24)^2/Artin^2/exp(Zeta(5))^2 6524742400232874 m001 (GAMMA(19/24)-Paris)/(ln(5)-exp(1/exp(1))) 6524742401092988 a001 55/103682*7^(5/47) 6524742401624107 m001 (-cos(1)+TravellingSalesman)/(2^(1/3)+2^(1/2)) 6524742415054746 r005 Im(z^2+c),c=-89/82+2/27*I,n=6 6524742436591735 r005 Im(z^2+c),c=-11/10+8/103*I,n=43 6524742478561056 a007 Real Root Of 74*x^4+534*x^3+394*x^2+246*x-955 6524742499016480 m001 (BesselI(0,1)+5)/(Zeta(1/2)+1/2) 6524742526567392 a007 Real Root Of 168*x^4+993*x^3-831*x^2-925*x+688 6524742535781638 r005 Im(z^2+c),c=-59/106+4/63*I,n=5 6524742538708169 r002 6th iterates of z^2 + 6524742541031356 r009 Re(z^3+c),c=-3/25+41/61*I,n=58 6524742545066537 a007 Real Root Of 498*x^4-985*x^3-836*x^2+264*x+367 6524742587690954 a003 sin(Pi*8/109)-sin(Pi*35/102) 6524742622798378 r005 Im(z^2+c),c=-18/29+23/50*I,n=12 6524742623093266 m001 (Magata-ZetaQ(3))/(FeigenbaumKappa-GaussAGM) 6524742666348969 a001 2/102334155*6557470319842^(6/17) 6524742666349009 a001 2/5702887*1836311903^(6/17) 6524742666363631 a001 2/317811*514229^(6/17) 6524742681429003 r009 Re(z^3+c),c=-13/118+24/41*I,n=38 6524742686376102 m001 sin(1/5*Pi)^Khinchin+ThueMorse 6524742686376102 m001 sin(Pi/5)^Khinchin+ThueMorse 6524742692084035 a001 144/167761*322^(3/4) 6524742699656931 r005 Im(z^2+c),c=-11/10+8/103*I,n=50 6524742719799176 r002 60th iterates of z^2 + 6524742724168411 a007 Real Root Of 131*x^4-136*x^3+858*x^2-817*x-57 6524742742560632 r002 3th iterates of z^2 + 6524742744825991 r002 2th iterates of z^2 + 6524742747820662 m005 (1/2*Zeta(3)+5)/(4/11*5^(1/2)-8/11) 6524742748996908 a007 Real Root Of 520*x^4-114*x^3+33*x^2-279*x-322 6524742765057637 r002 9th iterates of z^2 + 6524742766623810 r005 Re(z^2+c),c=-23/18+1/91*I,n=44 6524742770759755 a007 Real Root Of 747*x^4-112*x^3+697*x^2-697*x-918 6524742782483561 l006 ln(4052/7781) 6524742815219369 a007 Real Root Of 626*x^4+139*x^3+809*x^2-887*x-998 6524742840209296 r005 Im(z^2+c),c=-11/10+8/103*I,n=49 6524742844550267 r005 Im(z^2+c),c=-11/10+8/103*I,n=46 6524742850532546 r002 59th iterates of z^2 + 6524742867625712 r005 Im(z^2+c),c=35/122+17/37*I,n=59 6524742873970595 m001 (Zeta(1,-1)-FeigenbaumKappa)/(Kac+Niven) 6524742885582703 m001 TwinPrimes/(BesselK(1,1)+HardyLittlewoodC5) 6524742911586340 r002 6th iterates of z^2 + 6524742919531127 r009 Re(z^3+c),c=-59/114+2/41*I,n=2 6524742921173933 r002 64th iterates of z^2 + 6524742926424977 a003 cos(Pi*30/109)/sin(Pi*7/15) 6524742930533439 r005 Im(z^2+c),c=-11/10+8/103*I,n=54 6524742932303965 r005 Im(z^2+c),c=-11/10+8/103*I,n=45 6524742935030555 m002 -5+Pi^5+Log[Pi]+Pi^5*Log[Pi] 6524742938554405 r002 63th iterates of z^2 + 6524742939674567 m005 (1/2*Zeta(3)+1/9)/(3/10*Pi-5/6) 6524742942234925 r005 Im(z^2+c),c=1/13+37/61*I,n=8 6524742942602959 r005 Im(z^2+c),c=-11/10+8/103*I,n=53 6524742946741129 r005 Im(z^2+c),c=-11/10+8/103*I,n=56 6524742947111109 r005 Im(z^2+c),c=-11/10+8/103*I,n=60 6524742948374129 m001 (-MertensB1+Porter)/(2^(1/3)+sin(1/5*Pi)) 6524742951802778 r005 Im(z^2+c),c=-11/10+8/103*I,n=59 6524742952516669 r005 Im(z^2+c),c=-11/10+8/103*I,n=55 6524742955224807 r005 Im(z^2+c),c=-11/10+8/103*I,n=64 6524742955440394 r005 Im(z^2+c),c=-11/10+8/103*I,n=63 6524742957344522 r005 Im(z^2+c),c=-11/10+8/103*I,n=61 6524742959118400 r005 Im(z^2+c),c=-11/10+8/103*I,n=62 6524742961662631 r005 Im(z^2+c),c=-11/10+8/103*I,n=57 6524742964998584 a001 370248451/610*144^(16/17) 6524742969379158 r005 Im(z^2+c),c=-11/10+8/103*I,n=58 6524742973908953 a007 Real Root Of -149*x^4+876*x^3-940*x^2-551*x+311 6524742979798300 r005 Im(z^2+c),c=-61/44+1/45*I,n=14 6524742989055401 m001 (-Backhouse+Tribonacci)/(3^(1/2)-ln(Pi)) 6524742996596830 r005 Re(z^2+c),c=-1/8+13/16*I,n=30 6524743004382297 a007 Real Root Of -416*x^4+686*x^3-554*x^2+526*x+845 6524743009174020 r005 Im(z^2+c),c=-11/10+8/103*I,n=51 6524743010924539 r002 61th iterates of z^2 + 6524743013745846 r002 55th iterates of z^2 + 6524743017295697 m001 (-Cahen+Totient)/(Psi(1,1/3)+gamma) 6524743024048300 r002 8th iterates of z^2 + 6524743025645535 r002 56th iterates of z^2 + 6524743040538648 b008 13/2+Erfc[1]^2 6524743047587289 r009 Im(z^3+c),c=-41/114+29/44*I,n=42 6524743050434461 p004 log(27631/14389) 6524743061479998 k002 Champernowne real with 1/2*n^2+361/2*n-116 6524743067317333 r009 Re(z^3+c),c=-13/42+32/43*I,n=5 6524743068617147 r002 57th iterates of z^2 + 6524743069329356 r005 Im(z^2+c),c=-11/10+8/103*I,n=52 6524743071950353 r002 24th iterates of z^2 + 6524743074570081 r002 62th iterates of z^2 + 6524743075696581 l005 ln(tanh(361/68*Pi)) 6524743101395210 m005 (2/5*gamma-2)/(1/2*gamma-3) 6524743101395210 m007 (-2/5*gamma+2)/(-1/2*gamma+3) 6524743107635733 r005 Im(z^2+c),c=-11/10+8/103*I,n=47 6524743110472031 a007 Real Root Of -569*x^4+454*x^3+88*x^2+618*x+595 6524743131259788 a001 144/7*39603^(16/49) 6524743132689084 r002 47th iterates of z^2 + 6524743161780599 k002 Champernowne real with n^2+179*n-115 6524743186647142 m001 (Artin+Kac)/(Pi-ln(5)) 6524743193339764 a007 Real Root Of -641*x^4+990*x^3-527*x^2-738*x+134 6524743228218199 r002 58th iterates of z^2 + 6524743231408780 r005 Re(z^2+c),c=-5/8+25/62*I,n=64 6524743240515716 r005 Re(z^2+c),c=-29/42+7/23*I,n=62 6524743253315075 a001 2584/64079*199^(1/11) 6524743262081110 k002 Champernowne real with 3/2*n^2+355/2*n-114 6524743262314213 r005 Re(z^2+c),c=25/126+10/21*I,n=28 6524743272438548 m001 ln(GAMMA(1/4))/GAMMA(1/12)^2*sin(Pi/12)^2 6524743278134615 r005 Im(z^2+c),c=1/22+17/23*I,n=3 6524743311464610 r005 Im(z^2+c),c=-11/10+8/103*I,n=48 6524743313860361 r005 Re(z^2+c),c=-7/10+25/223*I,n=3 6524743328043069 a003 cos(Pi*26/95)*sin(Pi*42/85) 6524743328762231 m005 (1/2*gamma+1)/(6*Pi+9/10) 6524743362381710 k002 Champernowne real with 2*n^2+176*n-113 6524743363642541 a007 Real Root Of 891*x^4+243*x^3-109*x^2-957*x-672 6524743381355928 a007 Real Root Of 78*x^4-264*x^3+882*x^2+144*x-369 6524743389642910 m001 (TreeGrowth2nd+ThueMorse)/Mills 6524743391120513 r005 Im(z^2+c),c=-129/118+1/13*I,n=37 6524743395935501 l006 ln(2095/4023) 6524743418881624 a001 615/15251*199^(1/11) 6524743437346941 a001 1292/930249*521^(8/13) 6524743441732776 a001 610/1149851*521^(10/13) 6524743443037458 a001 17711/439204*199^(1/11) 6524743446561746 a001 46368/1149851*199^(1/11) 6524743447075933 a001 121393/3010349*199^(1/11) 6524743447150952 a001 317811/7881196*199^(1/11) 6524743447161897 a001 75640/1875749*199^(1/11) 6524743447163494 a001 2178309/54018521*199^(1/11) 6524743447163727 a001 5702887/141422324*199^(1/11) 6524743447163761 a001 14930352/370248451*199^(1/11) 6524743447163766 a001 39088169/969323029*199^(1/11) 6524743447163766 a001 9303105/230701876*199^(1/11) 6524743447163767 a001 267914296/6643838879*199^(1/11) 6524743447163767 a001 701408733/17393796001*199^(1/11) 6524743447163767 a001 1836311903/45537549124*199^(1/11) 6524743447163767 a001 4807526976/119218851371*199^(1/11) 6524743447163767 a001 1144206275/28374454999*199^(1/11) 6524743447163767 a001 32951280099/817138163596*199^(1/11) 6524743447163767 a001 86267571272/2139295485799*199^(1/11) 6524743447163767 a001 225851433717/5600748293801*199^(1/11) 6524743447163767 a001 591286729879/14662949395604*199^(1/11) 6524743447163767 a001 365435296162/9062201101803*199^(1/11) 6524743447163767 a001 139583862445/3461452808002*199^(1/11) 6524743447163767 a001 53316291173/1322157322203*199^(1/11) 6524743447163767 a001 20365011074/505019158607*199^(1/11) 6524743447163767 a001 7778742049/192900153618*199^(1/11) 6524743447163767 a001 2971215073/73681302247*199^(1/11) 6524743447163767 a001 1134903170/28143753123*199^(1/11) 6524743447163767 a001 433494437/10749957122*199^(1/11) 6524743447163767 a001 165580141/4106118243*199^(1/11) 6524743447163767 a001 63245986/1568397607*199^(1/11) 6524743447163769 a001 24157817/599074578*199^(1/11) 6524743447163782 a001 9227465/228826127*199^(1/11) 6524743447163871 a001 3524578/87403803*199^(1/11) 6524743447164481 a001 1346269/33385282*199^(1/11) 6524743447168661 a001 514229/12752043*199^(1/11) 6524743447197316 a001 196418/4870847*199^(1/11) 6524743447393718 a001 75025/1860498*199^(1/11) 6524743448739876 a001 28657/710647*199^(1/11) 6524743457966584 a001 10946/271443*199^(1/11) 6524743461860353 a007 Real Root Of 758*x^4-327*x^3+41*x^2+47*x-215 6524743462682310 k002 Champernowne real with 5/2*n^2+349/2*n-112 6524743466470864 r002 6th iterates of z^2 + 6524743472191653 a007 Real Root Of -139*x^4+456*x^3+946*x^2+38*x-529 6524743492655858 m004 -25*Pi+(625*Sqrt[5]*Pi)/6-Cos[Sqrt[5]*Pi] 6524743521207378 a001 4181/103682*199^(1/11) 6524743534365327 m001 (-GAMMA(3/4)+4)/(-RenyiParking+5) 6524743541198063 m005 (1/3*Catalan-1/5)/(8/9*Catalan+4/5) 6524743546225301 a007 Real Root Of -366*x^4+396*x^3-883*x^2-382*x+303 6524743551470063 p003 LerchPhi(1/512,6,109/149) 6524743556335697 a007 Real Root Of -682*x^4+583*x^3+689*x^2+845*x-883 6524743560647410 p003 LerchPhi(1/512,6,145/92) 6524743562982910 k002 Champernowne real with 3*n^2+173*n-111 6524743579778175 m001 1/ErdosBorwein/Artin/ln(GAMMA(23/24)) 6524743582965269 b008 65+Sqrt[3]/7 6524743596823775 b008 1/4+Csch[1/65] 6524743604177951 r005 Re(z^2+c),c=-65/102+17/50*I,n=24 6524743604272298 a001 6765/4870847*521^(8/13) 6524743608008650 m001 (Zeta(1,-1)-gamma(1))/(Cahen+StronglyCareFree) 6524743608329691 b008 ArcCoth[75/43] 6524743628626379 a001 17711/12752043*521^(8/13) 6524743632179592 a001 144/103681*521^(8/13) 6524743632697999 a001 121393/87403803*521^(8/13) 6524743632773633 a001 317811/228826127*521^(8/13) 6524743632784668 a001 416020/299537289*521^(8/13) 6524743632786278 a001 311187/224056801*521^(8/13) 6524743632786513 a001 5702887/4106118243*521^(8/13) 6524743632786547 a001 7465176/5374978561*521^(8/13) 6524743632786552 a001 39088169/28143753123*521^(8/13) 6524743632786553 a001 14619165/10525900321*521^(8/13) 6524743632786553 a001 133957148/96450076809*521^(8/13) 6524743632786553 a001 701408733/505019158607*521^(8/13) 6524743632786553 a001 1836311903/1322157322203*521^(8/13) 6524743632786553 a001 14930208/10749853441*521^(8/13) 6524743632786553 a001 12586269025/9062201101803*521^(8/13) 6524743632786553 a001 32951280099/23725150497407*521^(8/13) 6524743632786553 a001 10182505537/7331474697802*521^(8/13) 6524743632786553 a001 7778742049/5600748293801*521^(8/13) 6524743632786553 a001 2971215073/2139295485799*521^(8/13) 6524743632786553 a001 567451585/408569081798*521^(8/13) 6524743632786553 a001 433494437/312119004989*521^(8/13) 6524743632786553 a001 165580141/119218851371*521^(8/13) 6524743632786553 a001 31622993/22768774562*521^(8/13) 6524743632786555 a001 24157817/17393796001*521^(8/13) 6524743632786568 a001 9227465/6643838879*521^(8/13) 6524743632786658 a001 1762289/1268860318*521^(8/13) 6524743632787273 a001 1346269/969323029*521^(8/13) 6524743632791488 a001 514229/370248451*521^(8/13) 6524743632820378 a001 98209/70711162*521^(8/13) 6524743633018392 a001 75025/54018521*521^(8/13) 6524743634375598 a001 28657/20633239*521^(8/13) 6524743643678029 a001 5473/3940598*521^(8/13) 6524743663283510 k002 Champernowne real with 7/2*n^2+343/2*n-110 6524743681334385 p003 LerchPhi(1/16,1,279/175) 6524743700367044 m001 1/2*arctan(1/3)/Pi*3^(1/2)*GAMMA(2/3)*Landau 6524743700367044 m001 1/2*arctan(1/3)/Pi*GAMMA(5/6)^2 6524743707372148 a001 13/844*521^(3/13) 6524743707437842 a001 4181/3010349*521^(8/13) 6524743731331958 a001 144/7*2207^(22/49) 6524743748939519 r002 14th iterates of z^2 + 6524743763584110 k002 Champernowne real with 4*n^2+170*n-109 6524743799784047 m001 (Lehmer+ZetaP(4))/GAMMA(23/24) 6524743805263605 a007 Real Root Of 244*x^4-424*x^3+76*x^2+163*x-88 6524743818386726 r002 10th iterates of z^2 + 6524743818724147 m002 -2-E^Pi+(Pi^4*Tanh[Pi])/ProductLog[Pi] 6524743823112099 m001 Pi^sinh(1)+Khinchin 6524743848206546 m001 1/Catalan*Bloch*ln(GAMMA(7/24))^2 6524743863884710 k002 Champernowne real with 9/2*n^2+337/2*n-108 6524743867872263 a007 Real Root Of -915*x^4-288*x^3-350*x^2+247*x+396 6524743869951217 m007 (-1/2*gamma-2)/(-3*gamma-9*ln(2)+3/2*Pi-1/4) 6524743875198760 h001 (1/8*exp(2)+3/5)/(9/11*exp(1)+1/9) 6524743911134733 a001 11/377*377^(11/21) 6524743934616407 b008 -1+Pi^2*ExpIntegralEi[-1/2] 6524743934822011 a007 Real Root Of 72*x^4+430*x^3-304*x^2-312*x-144 6524743943040240 a007 Real Root Of 345*x^4-538*x^3-995*x^2-623*x+917 6524743948543370 m005 (1/3*Zeta(3)-1/10)/(5/11*5^(1/2)-5/9) 6524743954666230 a001 1597/39603*199^(1/11) 6524743959637291 m005 (1/2*gamma+7/10)/(3/7*Zeta(3)+1) 6524743964185310 k002 Champernowne real with 5*n^2+167*n-107 6524743970267088 l006 ln(4328/8311) 6524743972435278 a007 Real Root Of x^4-478*x^3+99*x^2-524*x-517 6524743984353988 r005 Im(z^2+c),c=1/26+2/33*I,n=4 6524743996181055 v002 sum(1/(3^n*(7*n^2+31*n+25)),n=1..infinity) 6524744012362530 m001 1/(2^(1/3))^2/PrimesInBinary^2*exp(gamma) 6524744015204776 m001 gamma/exp(FeigenbaumAlpha)*sinh(1)^2 6524744016094049 a007 Real Root Of -110*x^4-799*x^3-600*x^2-403*x+337 6524744028246244 a007 Real Root Of -227*x^4+652*x^3+751*x^2+471*x-767 6524744049338169 p004 log(29221/15217) 6524744056379892 a007 Real Root Of 111*x^4+764*x^3+287*x^2+53*x-830 6524744064485910 k002 Champernowne real with 11/2*n^2+331/2*n-106 6524744072957841 m001 (ln(3)+GAMMA(17/24))/(ArtinRank2+Otter) 6524744073555795 m005 (1/3*2^(1/2)-1/3)/(5/8*2^(1/2)-3) 6524744095882090 m008 (2*Pi+1/3)/(1/3*Pi^5-3/5) 6524744098578330 m001 3^(1/3)+MinimumGamma^exp(Pi) 6524744100158868 m001 (GAMMA(7/24)+GAMMA(17/24))^GAMMA(5/24) 6524744100587297 a007 Real Root Of -27*x^4+535*x^3+336*x^2+805*x-812 6524744102976389 a007 Real Root Of -889*x^4+899*x^3+637*x^2+149*x-457 6524744142292895 a001 987/439204*521^(7/13) 6524744142560976 m005 (1/2*exp(1)-3/5)/(5/11*Catalan-3/10) 6524744144454100 a001 1597/1149851*521^(8/13) 6524744148260915 a007 Real Root Of 761*x^4-966*x^3+883*x^2+552*x-422 6524744154221212 a007 Real Root Of -90*x^4+945*x^3-274*x^2+531*x-476 6524744164786510 k002 Champernowne real with 6*n^2+164*n-105 6524744182940570 r005 Im(z^2+c),c=-27/34+2/59*I,n=22 6524744207136516 a007 Real Root Of 715*x^4-742*x^3+458*x^2-212*x-669 6524744215915092 m003 1/16+(Sqrt[5]*E^(-1-Sqrt[5]))/32 6524744222102844 a007 Real Root Of -601*x^4+553*x^3-280*x^2+733*x+860 6524744232961741 r009 Im(z^3+c),c=-41/74+16/47*I,n=45 6524744237146322 a003 sin(Pi*3/49)-sin(Pi*31/97) 6524744263201548 q001 236/3617 6524744264031447 m005 (1/3*gamma+1/9)/(1/9*3^(1/2)+3/11) 6524744265087111 k002 Champernowne real with 13/2*n^2+325/2*n-104 6524744270563811 m001 exp(Salem)/Bloch*GAMMA(7/24)^2 6524744290743762 r005 Im(z^2+c),c=11/82+33/46*I,n=4 6524744298805663 a007 Real Root Of 933*x^4+87*x^3-218*x^2-314*x-257 6524744299268924 r005 Re(z^2+c),c=-7/8+48/59*I,n=3 6524744339192260 a007 Real Root Of 3*x^4-365*x^3-880*x^2-574*x+850 6524744340580998 m001 (-BesselJ(1,1)+4)/(Backhouse+4) 6524744353264826 a007 Real Root Of -364*x^4+320*x^3+434*x^2+776*x-714 6524744355008462 a007 Real Root Of -13*x^4+554*x^3-276*x^2+569*x+645 6524744363716693 h001 (9/11*exp(1)+6/7)/(4/7*exp(2)+1/2) 6524744365387711 k002 Champernowne real with 7*n^2+161*n-103 6524744370734202 a007 Real Root Of -135*x^4+202*x^3+381*x^2+811*x-723 6524744398642690 m006 (3/5*exp(2*Pi)-1/4)/(1/4/Pi-5) 6524744423196296 a007 Real Root Of -632*x^4+493*x^3-540*x^2+50*x+514 6524744433816457 m001 (-Kac+ZetaQ(2))/(1-Champernowne) 6524744458661395 r005 Im(z^2+c),c=-11/10+8/103*I,n=35 6524744459720222 r005 Im(z^2+c),c=-11/10+8/103*I,n=36 6524744465688311 k002 Champernowne real with 15/2*n^2+319/2*n-102 6524744476345408 r005 Im(z^2+c),c=-7/12+31/72*I,n=42 6524744509104800 l006 ln(2233/4288) 6524744514475592 r005 Im(z^2+c),c=1/8+13/22*I,n=47 6524744516389864 m001 Pi*2^(1/3)*Zeta(1/2)*GAMMA(5/6) 6524744520534062 a007 Real Root Of 768*x^4-979*x^3+467*x^2+685*x-163 6524744565988911 k002 Champernowne real with 8*n^2+158*n-101 6524744569885014 a007 Real Root Of -969*x^4+415*x^3-850*x^2-510*x+320 6524744579157481 b008 Csch[4/261] 6524744590462749 b008 Cot[Sqrt[LogGamma[1/3]]] 6524744591335884 l006 ln(6081/6491) 6524744597317868 m001 (exp(Pi)+4)/(-Catalan+1/2) 6524744597772283 a001 7/75025*5702887^(8/19) 6524744598004031 a001 7/3524578*53316291173^(8/19) 6524744607056904 m001 (3^(1/3))^(2^(1/3))*exp(sqrt(2)) 6524744636078140 m001 (-Robbin+Tetranacci)/(sin(1)+ln(3)) 6524744637281679 m005 (1/2*Catalan+3/8)/(2/7*exp(1)+1/2) 6524744652050936 r005 Im(z^2+c),c=-21/38+13/25*I,n=11 6524744666037850 r005 Im(z^2+c),c=-11/10+8/103*I,n=41 6524744666285697 r002 51th iterates of z^2 + 6524744666289511 k002 Champernowne real with 17/2*n^2+313/2*n-100 6524744680306933 m005 (1/2*3^(1/2)-3/10)/(7/12*3^(1/2)-1/7) 6524744725083609 m001 (HardyLittlewoodC3-Tribonacci)/(Zeta(3)+Cahen) 6524744731200239 a007 Real Root Of 972*x^4+564*x^3+573*x^2-994*x-912 6524744733507570 a007 Real Root Of -998*x^4+272*x^3-925*x^2-172*x+538 6524744748993020 m001 (cos(1/12*Pi)*Cahen+ZetaQ(3))/cos(1/12*Pi) 6524744749757302 a007 Real Root Of 531*x^4-679*x^3+206*x^2+79*x-321 6524744753176481 a008 Real Root of x^3-x^2-115*x-430 6524744759006327 m005 (1/2*Zeta(3)+7/12)/(1/3*exp(1)+10/11) 6524744766590111 k002 Champernowne real with 9*n^2+155*n-99 6524744768296526 q001 1/1532627 6524744779199055 r005 Re(z^2+c),c=-3/4+9/161*I,n=11 6524744782455276 a007 Real Root Of -155*x^4-927*x^3+664*x^2+823*x+528 6524744791163111 a007 Real Root Of -481*x^4+845*x^3-508*x^2+677*x-373 6524744814395569 m001 (-Gompertz+ZetaP(2))/(GAMMA(11/12)-exp(Pi)) 6524744866890711 k002 Champernowne real with 19/2*n^2+307/2*n-98 6524744869295767 g006 Psi(1,4/9)-Psi(1,10/11)-Psi(1,5/8)-Psi(1,2/5) 6524744871391589 b008 53+5*Sqrt[6] 6524744885392857 m005 (11/5+1/5*5^(1/2))/(2/3*2^(1/2)-5) 6524744889497045 r005 Re(z^2+c),c=1/7+8/15*I,n=55 6524744896554983 a007 Real Root Of -15*x^4-992*x^3-874*x^2-446*x+592 6524744967191311 k002 Champernowne real with 10*n^2+152*n-97 6524745004871095 a007 Real Root Of -125*x^4-828*x^3-64*x^2+108*x-17 6524745004972898 a008 Real Root of (-4+x+5*x^2-5*x^3+3*x^4-5*x^5) 6524745008041037 a007 Real Root Of 410*x^4-304*x^3+328*x^2-732*x-776 6524745015640311 l006 ln(4604/8841) 6524745015674153 a007 Real Root Of -135*x^4+880*x^3+956*x^2-26*x-610 6524745058211040 r005 Im(z^2+c),c=-5/6+78/227*I,n=5 6524745067491911 k002 Champernowne real with 21/2*n^2+301/2*n-96 6524745078944864 r005 Re(z^2+c),c=-43/60+14/57*I,n=42 6524745105523388 a007 Real Root Of 627*x^4-422*x^3-93*x^2-418*x-464 6524745125266521 a005 (1/sin(58/121*Pi))^1982 6524745137333278 a007 Real Root Of 77*x^4-304*x^3+480*x^2-123*x-383 6524745152385548 m001 Robbin/(MertensB2^ThueMorse) 6524745167792511 k002 Champernowne real with 11*n^2+149*n-95 6524745173970195 r005 Im(z^2+c),c=-37/27+1/63*I,n=24 6524745205753248 b008 31*Sqrt[443] 6524745238096449 m001 Catalan/exp(Niven)^2/arctan(1/2) 6524745241995043 m005 (1/3*Zeta(3)-1/3)/(5/8*exp(1)-2/3) 6524745244814906 m003 -1/2+Sqrt[5]/16+3/ProductLog[1/2+Sqrt[5]/2]^3 6524745252269499 a001 4/225851433717*55^(9/10) 6524745268093112 k002 Champernowne real with 23/2*n^2+295/2*n-94 6524745269286754 q001 1793/2748 6524745280508453 m001 TreeGrowth2nd/exp(CareFree)*sqrt(3)^2 6524745281774199 r005 Im(z^2+c),c=-7/94+49/61*I,n=29 6524745286376712 a001 2584/1149851*521^(7/13) 6524745287085792 r002 63th iterates of z^2 + 6524745290737873 a001 610/710647*521^(9/13) 6524745297321982 r009 Re(z^3+c),c=-71/118+10/41*I,n=27 6524745359369422 a007 Real Root Of -991*x^4+793*x^3-947*x^2+425*x+32 6524745361377693 r005 Im(z^2+c),c=-45/52+25/56*I,n=3 6524745368393712 k002 Champernowne real with 12*n^2+146*n-93 6524745374260394 r002 47th iterates of z^2 + 6524745405644464 r005 Im(z^2+c),c=-17/40+7/12*I,n=14 6524745416797797 m001 1/Pi^2/ln(Paris)^2*sin(Pi/5)^2 6524745431063030 a007 Real Root Of 581*x^4-610*x^3-772*x^2-667*x+828 6524745453296292 a001 6765/3010349*521^(7/13) 6524745468694312 k002 Champernowne real with 25/2*n^2+289/2*n-92 6524745470973222 a007 Real Root Of 112*x^4+681*x^3-282*x^2+356*x+503 6524745477649530 a001 89/39604*521^(7/13) 6524745481202620 a001 46368/20633239*521^(7/13) 6524745481721008 a001 121393/54018521*521^(7/13) 6524745481796640 a001 317811/141422324*521^(7/13) 6524745481807675 a001 832040/370248451*521^(7/13) 6524745481809285 a001 2178309/969323029*521^(7/13) 6524745481809520 a001 5702887/2537720636*521^(7/13) 6524745481809554 a001 14930352/6643838879*521^(7/13) 6524745481809559 a001 39088169/17393796001*521^(7/13) 6524745481809560 a001 102334155/45537549124*521^(7/13) 6524745481809560 a001 267914296/119218851371*521^(7/13) 6524745481809560 a001 3524667/1568437211*521^(7/13) 6524745481809560 a001 1836311903/817138163596*521^(7/13) 6524745481809560 a001 4807526976/2139295485799*521^(7/13) 6524745481809560 a001 12586269025/5600748293801*521^(7/13) 6524745481809560 a001 32951280099/14662949395604*521^(7/13) 6524745481809560 a001 53316291173/23725150497407*521^(7/13) 6524745481809560 a001 20365011074/9062201101803*521^(7/13) 6524745481809560 a001 7778742049/3461452808002*521^(7/13) 6524745481809560 a001 2971215073/1322157322203*521^(7/13) 6524745481809560 a001 1134903170/505019158607*521^(7/13) 6524745481809560 a001 433494437/192900153618*521^(7/13) 6524745481809560 a001 165580141/73681302247*521^(7/13) 6524745481809560 a001 63245986/28143753123*521^(7/13) 6524745481809562 a001 24157817/10749957122*521^(7/13) 6524745481809575 a001 9227465/4106118243*521^(7/13) 6524745481809665 a001 3524578/1568397607*521^(7/13) 6524745481810280 a001 1346269/599074578*521^(7/13) 6524745481814495 a001 514229/228826127*521^(7/13) 6524745481843383 a001 196418/87403803*521^(7/13) 6524745482041390 a001 75025/33385282*521^(7/13) 6524745483398550 a001 28657/12752043*521^(7/13) 6524745487745151 a003 cos(Pi*27/67)*cos(Pi*37/86) 6524745489277932 b008 7*Sqrt[2/3]*(-2+Pi) 6524745492693766 l006 ln(2371/4553) 6524745492700659 a001 10946/4870847*521^(7/13) 6524745495816698 r005 Im(z^2+c),c=-85/62+14/53*I,n=4 6524745508283071 a001 47/2207*(1/2*5^(1/2)+1/2)^14*2207^(7/15) 6524745508714657 r002 37th iterates of z^2 + 6524745514215038 m005 (1/2*Catalan+7/12)/(7/10*gamma-2) 6524745516989813 a001 377/15127*521^(2/13) 6524745527518074 m001 1/PrimesInBinary^2*exp(Cahen)^2*GAMMA(1/6)^2 6524745556458265 a001 4181/1860498*521^(7/13) 6524745562967768 a001 7/1597*610^(8/19) 6524745568994912 k002 Champernowne real with 13*n^2+143*n-91 6524745579456341 r005 Re(z^2+c),c=-1/23+19/30*I,n=41 6524745616272520 a001 2/6765*34^(11/49) 6524745628587740 a007 Real Root Of 546*x^4-641*x^3-113*x^2-322*x-439 6524745635394422 m001 Catalan/(FransenRobinson-OrthogonalArrays) 6524745637911668 a007 Real Root Of 134*x^4+937*x^3+304*x^2-808*x-802 6524745638044811 m001 GAMMA(1/12)^2/ln(FibonacciFactorial)*Zeta(7) 6524745650430428 m001 1/Si(Pi)*GaussKuzminWirsing^2*ln(Pi)^2 6524745661861040 a007 Real Root Of 275*x^4-241*x^3+271*x^2+83*x-178 6524745663104750 a007 Real Root Of 733*x^4-992*x^3-44*x^2-235*x-543 6524745669295512 k002 Champernowne real with 27/2*n^2+283/2*n-90 6524745704699747 a007 Real Root Of -719*x^4-247*x^3-x^2+878*x+635 6524745710779370 m001 ln(Pi)^Zeta(5)*LambertW(1) 6524745731642483 a008 Real Root of (-1+2*x+7*x^2-3*x^4-4*x^8) 6524745736560691 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^33 6524745744092574 r005 Im(z^2+c),c=3/16+28/53*I,n=17 6524745755319580 a007 Real Root Of -928*x^4-573*x^3-135*x^2+364*x+304 6524745769596112 k002 Champernowne real with 14*n^2+140*n-89 6524745818832140 a007 Real Root Of -935*x^4+183*x^3-387*x^2+567*x+755 6524745829805212 a008 Real Root of (1+12*x+18*x^2+3*x^3) 6524745834852802 a007 Real Root Of 662*x^4-803*x^3-496*x^2-273*x-310 6524745841197550 h001 (3/7*exp(1)+10/11)/(5/12*exp(2)+1/10) 6524745855613897 a007 Real Root Of -592*x^4+525*x^3-957*x^2-502*x+333 6524745869896712 k002 Champernowne real with 29/2*n^2+277/2*n-88 6524745873257932 a007 Real Root Of -264*x^4-258*x^3+739*x^2+547*x-552 6524745915017075 b008 1/3-37*Sqrt[Pi] 6524745928203778 m001 (Khinchin-Trott2nd)/(Zeta(3)-ln(5)) 6524745933688535 h001 (7/11*exp(1)+1/9)/(9/10*exp(1)+3/8) 6524745942766307 l006 ln(4880/9371) 6524745957224222 r002 48th iterates of z^2 + 6524745960323147 a001 969323029/1597*144^(16/17) 6524745963728930 r008 a(0)=7,K{-n^6,3+n^3+3*n^2-2*n} 6524745965954755 a007 Real Root Of 549*x^4+503*x^3+634*x^2-166*x-338 6524745970197312 k002 Champernowne real with 15*n^2+137*n-87 6524745970359739 a001 377/4870847*1364^(14/15) 6524745977725738 m001 (ln(5)+Cahen)/(MadelungNaCl+Niven) 6524745991193668 a001 329/90481*521^(6/13) 6524745993459397 a001 1597/710647*521^(7/13) 6524745997857054 r005 Im(z^2+c),c=-16/17+3/52*I,n=16 6524746007831669 a007 Real Root Of 625*x^4-205*x^3+317*x^2+575*x+70 6524746014688431 a007 Real Root Of -611*x^4-875*x^3-975*x^2+923*x+885 6524746026837204 r009 Re(z^3+c),c=-1/106+23/52*I,n=12 6524746051523082 a007 Real Root Of -514*x^4-43*x^3+192*x^2+773*x-481 6524746070497912 k002 Champernowne real with 31/2*n^2+271/2*n-86 6524746086319182 m005 (1/3*Zeta(3)+2/3)/(1/11*gamma+1/9) 6524746087970408 a007 Real Root Of 712*x^4-341*x^3-709*x^2-535*x-271 6524746093288271 r005 Re(z^2+c),c=-31/44+19/55*I,n=17 6524746102092475 m005 (1/3*2^(1/2)+1/9)/(10/11*Zeta(3)-1/5) 6524746102902356 a007 Real Root Of 528*x^4+960*x^3+866*x^2-825*x-736 6524746110479360 r005 Im(z^2+c),c=25/98+27/55*I,n=34 6524746126831955 a007 Real Root Of -959*x^4+828*x^3-773*x^2-501*x+406 6524746132260340 a001 1/610*4181^(28/39) 6524746151632377 a007 Real Root Of 124*x^4-810*x^3+73*x^2-689*x+621 6524746170798512 k002 Champernowne real with 16*n^2+134*n-85 6524746171837999 m005 (1/3*Catalan+2/9)/(6*2^(1/2)-2/5) 6524746175942984 a007 Real Root Of -730*x^4-177*x^3-514*x^2-449*x+9 6524746185298981 a007 Real Root Of -871*x^4+924*x^3+627*x^2+770*x+650 6524746204160066 a001 377/3010349*1364^(13/15) 6524746205549312 m001 (Khinchin+OrthogonalArrays)/(ln(3)-Bloch) 6524746218827175 a001 47/39603*(1/2*5^(1/2)+1/2)^26*39603^(1/15) 6524746222815903 a001 47/64079*(1/2*5^(1/2)+1/2)^7*64079^(14/15) 6524746222987310 a001 47*(1/2*5^(1/2)+1/2)^4*39603^(1/15) 6524746232663381 a001 47/9349*(1/2*5^(1/2)+1/2)^8*9349^(13/15) 6524746257661847 s002 sum(A112135[n]/(n*exp(n)-1),n=1..infinity) 6524746266456044 g004 abs(GAMMA(-289/60+I*(-47/30))) 6524746271099113 k002 Champernowne real with 33/2*n^2+265/2*n-84 6524746271570439 a007 Real Root Of 38*x^4-975*x^3+47*x^2+677*x+144 6524746280122934 m001 (3^(1/3)-GAMMA(17/24))/(MadelungNaCl+Robbin) 6524746308889771 a007 Real Root Of -253*x^4-136*x^3+279*x^2+948*x-63 6524746309865810 m001 (Paris-Trott2nd)/(ln(5)-polylog(4,1/2)) 6524746315869402 r002 25th iterates of z^2 + 6524746341189302 r002 46th iterates of z^2 + 6524746343565894 p001 sum((-1)^n/(236*n+55)/n/(5^n),n=1..infinity) 6524746359153392 a001 47/3571*(1/2*5^(1/2)+1/2)^10*3571^(11/15) 6524746368083943 l006 ln(2509/4818) 6524746371399713 k002 Champernowne real with 17*n^2+131*n-83 6524746393149156 m001 RenyiParking^exp(-1/2*Pi)*ln(2) 6524746393149156 m001 ln(2)*RenyiParking^exp(-1/2*Pi) 6524746397335341 a001 2537720636/4181*144^(16/17) 6524746403016008 a007 Real Root Of 602*x^4-749*x^3-202*x^2-904*x-821 6524746436570277 m005 (1/2*Pi-3/11)/(7/9*gamma-1/4) 6524746437956801 a001 377/1860498*1364^(4/5) 6524746447196100 m008 (1/4*Pi^4+1)/(2/5*Pi^6+4) 6524746461094566 a001 6643838879/10946*144^(16/17) 6524746470396912 a001 17393796001/28657*144^(16/17) 6524746471610031 k002 Champernowne real with 35/2*n^2+259/2*n-82 6524746471754106 a001 45537549124/75025*144^(16/17) 6524746471922175 p001 sum(1/(356*n+265)/n/(25^n),n=1..infinity) 6524746471952118 a001 119218851371/196418*144^(16/17) 6524746471981007 a001 312119004989/514229*144^(16/17) 6524746471985222 a001 817138163596/1346269*144^(16/17) 6524746471985837 a001 2139295485799/3524578*144^(16/17) 6524746471985927 a001 5600748293801/9227465*144^(16/17) 6524746471985940 a001 14662949395604/24157817*144^(16/17) 6524746471985943 a001 23725150497407/39088169*144^(16/17) 6524746471985948 a001 3020733700601/4976784*144^(16/17) 6524746471985982 a001 3461452808002/5702887*144^(16/17) 6524746471986217 a001 440719107401/726103*144^(16/17) 6524746471987827 a001 505019158607/832040*144^(16/17) 6524746471998862 a001 64300051206/105937*144^(16/17) 6524746472074496 a001 73681302247/121393*144^(16/17) 6524746472592898 a001 9381251041/15456*144^(16/17) 6524746476146077 a001 10749957122/17711*144^(16/17) 6524746497602656 m005 (1/2*3^(1/2)+5)/(3/8*Catalan+5/9) 6524746498934995 a001 28374454999/5*7778742049^(5/24) 6524746498983294 a001 3461452808002/55*75025^(5/24) 6524746500427885 a001 17/22768774562*18^(3/4) 6524746500499935 a001 1368706081/2255*144^(16/17) 6524746501516438 a001 341/21566892818*89^(6/19) 6524746504735568 m002 -5+Pi^5*Coth[Pi]+Pi^5*Log[Pi] 6524746513313590 r005 Im(z^2+c),c=-129/118+1/13*I,n=38 6524746516869032 m001 exp(1/exp(1))+MinimumGamma^exp(Pi) 6524746521023423 m001 (BesselI(1,1)-GAMMA(7/12))^GAMMA(1/12) 6524746535022138 a007 Real Root Of 669*x^4-795*x^3+949*x^2+158*x-643 6524746540690214 r005 Im(z^2+c),c=3/19+37/59*I,n=10 6524746555277058 b008 7/27+Cos[E] 6524746564923129 r005 Im(z^2+c),c=-15/52+39/46*I,n=6 6524746566444257 a007 Real Root Of 450*x^4-43*x^3+361*x^2-530*x-593 6524746571910091 k002 Champernowne real with 18*n^2+128*n-81 6524746580741117 b008 LogGamma[2^(E*Sqrt[Pi])] 6524746611434608 r005 Im(z^2+c),c=-11/10+8/103*I,n=37 6524746617497041 m001 (ln(Pi)+Mills)/(Catalan-cos(1)) 6524746622603010 m001 Robbin*ln(DuboisRaymond)^2/exp(1) 6524746624050825 l006 ln(7579/8090) 6524746632142229 m001 (Ei(1,1)-Conway)/(KhinchinHarmonic-Magata) 6524746632674571 r005 Im(z^2+c),c=-11/10+8/103*I,n=42 6524746639318317 m001 (Bloch+Salem)/(2^(1/3)+BesselI(0,1)) 6524746646154726 b008 65+ArcCsch[4] 6524746654469451 r002 26th iterates of z^2 + 6524746659917980 r005 Im(z^2+c),c=-37/30+7/122*I,n=58 6524746661905647 a003 cos(Pi*39/97)-sin(Pi*36/89) 6524746667423760 a001 1568397607/2584*144^(16/17) 6524746671762970 a001 377/1149851*1364^(11/15) 6524746672210151 k002 Champernowne real with 37/2*n^2+253/2*n-80 6524746675969270 r002 52th iterates of z^2 + 6524746694985940 a007 Real Root Of 181*x^4-454*x^3-140*x^2-985*x-742 6524746770634366 l006 ln(5156/9901) 6524746771709774 r002 45th iterates of z^2 + 6524746772510211 k002 Champernowne real with 19*n^2+125*n-79 6524746820297459 a007 Real Root Of -270*x^4+452*x^3+455*x^2+572*x+354 6524746840205182 a007 Real Root Of -723*x^4+48*x^3+289*x^2+329*x+236 6524746854302366 a007 Real Root Of -817*x^4+690*x^3+69*x^2+115*x-148 6524746858659821 a007 Real Root Of 148*x^4+117*x^3-352*x^2-943*x-60 6524746872524218 a007 Real Root Of 61*x^4+401*x^3+191*x^2+996*x-802 6524746872810271 k002 Champernowne real with 39/2*n^2+247/2*n-78 6524746876840917 m001 exp(Zeta(9))/(3^(1/3))*sin(Pi/5)^2 6524746883879128 h001 (1/3*exp(2)+1/11)/(5/11*exp(2)+5/9) 6524746884848572 m004 -9+5*Pi-Tan[Sqrt[5]*Pi]/5 6524746903782200 m002 -(E^Pi*Pi)+8/ProductLog[Pi] 6524746905544472 a001 377/710647*1364^(2/3) 6524746909257647 a003 cos(Pi*25/93)*sin(Pi*48/109) 6524746912320687 r005 Im(z^2+c),c=29/86+33/59*I,n=31 6524746925637389 a001 610/15127*199^(1/11) 6524746933123506 r005 Im(z^2+c),c=13/34+5/14*I,n=59 6524746936634308 p004 log(35051/18253) 6524746964658986 a007 Real Root Of 804*x^4-260*x^3+425*x^2-719*x-868 6524746971616943 m001 (1+ln(Pi))/(gamma(1)+ReciprocalFibonacci) 6524746971977356 m009 (4/5*Psi(1,1/3)-1)/(Psi(1,1/3)+3/4) 6524746973110331 k002 Champernowne real with 20*n^2+122*n-77 6524747013340057 a007 Real Root Of -753*x^4+328*x^3-950*x^2-69*x+587 6524747027383755 a007 Real Root Of 332*x^4-898*x^3-591*x^2-770*x+53 6524747052947968 a007 Real Root Of 903*x^4+192*x^3+140*x^2+52*x-136 6524747053882478 m005 (5/4+2*5^(1/2))/(1/5*exp(1)+1/3) 6524747056359301 a007 Real Root Of 503*x^4+202*x^3+510*x^2-294*x-444 6524747073410391 k002 Champernowne real with 41/2*n^2+241/2*n-76 6524747082952690 r002 31th iterates of z^2 + 6524747087293258 a007 Real Root Of -376*x^4+573*x^3+617*x^2+166*x-462 6524747089617168 r005 Im(z^2+c),c=-41/34+6/83*I,n=20 6524747101065199 h001 (-3*exp(1)-6)/(-11*exp(3)+4) 6524747131765047 b008 Cos[Sinh[E^(-1/4)]] 6524747135382333 a001 2584/710647*521^(6/13) 6524747139375282 m005 (-23/4+1/4*5^(1/2))/(5/9*3^(1/2)-1/6) 6524747139390582 a001 377/439204*1364^(3/5) 6524747139808094 a001 305/219602*521^(8/13) 6524747152198012 l006 ln(2647/5083) 6524747173710451 k002 Champernowne real with 21*n^2+119*n-75 6524747193401636 m001 (3^(1/2))^(Rabbit/exp(-1/2*Pi)) 6524747201907672 a007 Real Root Of 191*x^4+200*x^3+588*x^2-591*x-615 6524747205960617 q001 1226/1879 6524747229254581 r008 a(0)=7,K{-n^6,-7-4*n^3+8*n} 6524747232650210 r002 7th iterates of z^2 + 6524747266945275 m005 (1/2*Catalan+3/10)/(2/7*Catalan+9/10) 6524747268215745 a007 Real Root Of -871*x^4+897*x^3+231*x^2+48*x+340 6524747274010511 k002 Champernowne real with 43/2*n^2+235/2*n-74 6524747302317209 a001 55/15126*521^(6/13) 6524747326672679 a001 17711/4870847*521^(6/13) 6524747330226095 a001 15456/4250681*521^(6/13) 6524747330744531 a001 121393/33385282*521^(6/13) 6524747330820170 a001 105937/29134601*521^(6/13) 6524747330831205 a001 832040/228826127*521^(6/13) 6524747330832815 a001 726103/199691526*521^(6/13) 6524747330833050 a001 5702887/1568397607*521^(6/13) 6524747330833085 a001 4976784/1368706081*521^(6/13) 6524747330833090 a001 39088169/10749957122*521^(6/13) 6524747330833090 a001 831985/228811001*521^(6/13) 6524747330833090 a001 267914296/73681302247*521^(6/13) 6524747330833090 a001 233802911/64300051206*521^(6/13) 6524747330833090 a001 1836311903/505019158607*521^(6/13) 6524747330833090 a001 1602508992/440719107401*521^(6/13) 6524747330833090 a001 12586269025/3461452808002*521^(6/13) 6524747330833090 a001 10983760033/3020733700601*521^(6/13) 6524747330833090 a001 86267571272/23725150497407*521^(6/13) 6524747330833090 a001 53316291173/14662949395604*521^(6/13) 6524747330833090 a001 20365011074/5600748293801*521^(6/13) 6524747330833090 a001 7778742049/2139295485799*521^(6/13) 6524747330833090 a001 2971215073/817138163596*521^(6/13) 6524747330833090 a001 1134903170/312119004989*521^(6/13) 6524747330833090 a001 433494437/119218851371*521^(6/13) 6524747330833091 a001 165580141/45537549124*521^(6/13) 6524747330833091 a001 63245986/17393796001*521^(6/13) 6524747330833093 a001 24157817/6643838879*521^(6/13) 6524747330833106 a001 9227465/2537720636*521^(6/13) 6524747330833196 a001 3524578/969323029*521^(6/13) 6524747330833811 a001 1346269/370248451*521^(6/13) 6524747330838026 a001 514229/141422324*521^(6/13) 6524747330866917 a001 196418/54018521*521^(6/13) 6524747331064942 a001 75025/20633239*521^(6/13) 6524747332422226 a001 28657/7881196*521^(6/13) 6524747339618428 r005 Re(z^2+c),c=-5/102+13/17*I,n=32 6524747340778381 r002 3th iterates of z^2 + 6524747341725188 a001 10946/3010349*521^(6/13) 6524747373067577 a001 377/271443*1364^(8/15) 6524747374310571 k002 Champernowne real with 22*n^2+116*n-73 6524747389579874 r005 Im(z^2+c),c=-9/8+17/215*I,n=16 6524747405488637 a001 4181/1149851*521^(6/13) 6524747411286731 a007 Real Root Of -431*x^4-241*x^3-554*x^2+72*x+294 6524747436047929 m001 exp(gamma)/(exp(1/exp(1))+GAMMA(17/24)) 6524747440298386 r005 Re(z^2+c),c=-19/30+28/81*I,n=24 6524747452356471 a007 Real Root Of 298*x^4-715*x^3-178*x^2-191*x+345 6524747469177963 a001 377/9349*521^(1/13) 6524747470279003 a007 Real Root Of 981*x^4-884*x^3-406*x^2-200*x-381 6524747474610631 k002 Champernowne real with 45/2*n^2+229/2*n-72 6524747515353424 m001 (exp(-1/2*Pi)+Conway)/(ErdosBorwein+Rabbit) 6524747523959155 m001 (Backhouse-Gompertz)/HeathBrownMoroz 6524747535925596 m001 (-Rabbit+ZetaP(2))/(cos(1)+Magata) 6524747570256022 m001 Riemann2ndZero*ln(CareFree)/GAMMA(5/6) 6524747574910691 k002 Champernowne real with 23*n^2+113*n-71 6524747597091567 m005 (1/2*gamma+1/4)/(3*exp(1)+1/10) 6524747607187350 a001 377/167761*1364^(7/15) 6524747628447980 m001 1/LandauRamanujan*Champernowne^2*exp(Lehmer)^2 6524747631303592 r005 Re(z^2+c),c=-25/34+4/45*I,n=30 6524747671489777 r005 Im(z^2+c),c=-109/126+10/33*I,n=6 6524747675210751 k002 Champernowne real with 47/2*n^2+223/2*n-70 6524747677537803 m001 LaplaceLimit/polylog(4,1/2)/ReciprocalLucas 6524747692798827 r005 Re(z^2+c),c=1/29+33/58*I,n=7 6524747709035042 r002 6th iterates of z^2 + 6524747747736409 a001 45537549124/233*144^(12/17) 6524747767724712 v002 sum(1/(3^n+(9*n^2+37*n-26)),n=1..infinity) 6524747775456541 r005 Im(z^2+c),c=-3/5+10/83*I,n=40 6524747775510811 k002 Champernowne real with 24*n^2+110*n-69 6524747781695416 r005 Im(z^2+c),c=-131/98+1/27*I,n=35 6524747799454786 r002 35th iterates of z^2 + 6524747811536910 a001 199691526/329*144^(16/17) 6524747829282923 a007 Real Root Of -396*x^4+599*x^3+162*x^2+812*x+699 6524747840147948 a001 377/103682*1364^(2/5) 6524747840537733 a001 987/167761*521^(5/13) 6524747842529817 a001 1597/439204*521^(6/13) 6524747858554389 a007 Real Root Of -902*x^4+148*x^3+700*x^2+914*x-772 6524747858604494 l006 ln(2785/5348) 6524747866702532 m005 (1/2*exp(1)-10/11)/(1/4*gamma+6/11) 6524747875810871 k002 Champernowne real with 49/2*n^2+217/2*n-68 6524747896208184 a007 Real Root Of -452*x^4+141*x^3-667*x^2-725*x-68 6524747902185839 a007 Real Root Of 632*x^4-728*x^3+13*x^2-832*x+625 6524747904000202 a001 372099/5702887 6524747904000436 a004 Fibonacci(14)/Lucas(16)/(1/2+sqrt(5)/2)^2 6524747904013081 a004 Fibonacci(16)/Lucas(14)/(1/2+sqrt(5)/2)^6 6524747919236430 a001 2/317811*6557470319842^(4/17) 6524747919830466 a001 1/23184*1836311903^(4/17) 6524747929298076 m001 Paris/GolombDickman^2/exp(FeigenbaumKappa) 6524747935934805 a001 48/90481*322^(5/6) 6524747936480638 a007 Real Root Of -84*x^4-457*x^3+665*x^2+416*x-297 6524747944218099 r002 2th iterates of z^2 + 6524747947738670 a001 2/6765*514229^(4/17) 6524747970260047 r002 15th iterates of z^2 + 6524747976110931 k002 Champernowne real with 25*n^2+107*n-67 6524747977792243 a007 Real Root Of 134*x^4-504*x^3-60*x^2-428*x-418 6524747985837688 l006 ln(9077/9689) 6524747987920202 m001 (gamma(1)+ZetaP(4))/(ln(gamma)+ln(Pi)) 6524748015859565 a007 Real Root Of -789*x^4+990*x^3+745*x^2-247*x-288 6524748023001119 m001 OrthogonalArrays-ThueMorse^FellerTornier 6524748024182769 m001 1/Magata*LandauRamanujan^2/exp(cos(Pi/12)) 6524748047511949 m001 (PisotVijayaraghavan+ZetaP(4))/(sin(1)+Mills) 6524748075998206 m001 (ln(3)-gamma(1))/(Gompertz-StronglyCareFree) 6524748076143333 a001 377/64079*1364^(1/3) 6524748076410991 k002 Champernowne real with 51/2*n^2+211/2*n-66 6524748081813442 a007 Real Root Of -565*x^4+122*x^3-722*x^2+258*x+612 6524748124910535 a007 Real Root Of 716*x^4-560*x^3+621*x^2+867*x+16 6524748127094619 r008 a(0)=0,K{-n^6,-41+46*n^3-45*n^2+25*n} 6524748138268561 m005 (1/2*5^(1/2)-1/10)/(8/11*exp(1)-5/12) 6524748141558254 a007 Real Root Of -618*x^4+584*x^3-555*x^2-82*x+457 6524748171777829 m001 GAMMA(2/3)^2*exp(GlaisherKinkelin)*Pi^2 6524748171996547 r005 Im(z^2+c),c=-9/29+5/51*I,n=11 6524748176711051 k002 Champernowne real with 26*n^2+104*n-65 6524748180140451 m005 (1/2*Zeta(3)+3/11)/(5*exp(1)-1/5) 6524748218962584 r002 3th iterates of z^2 + 6524748238712191 m001 (2*Pi/GAMMA(5/6)*Bloch+ZetaP(2))/Bloch 6524748277011111 k002 Champernowne real with 53/2*n^2+205/2*n-64 6524748304193573 a001 377/39603*1364^(4/15) 6524748335608161 m001 1/Robbin^2/Magata*exp(GAMMA(1/12))^2 6524748336551435 m001 Riemann2ndZero/exp(Niven)/BesselJ(0,1)^2 6524748356532623 r009 Im(z^3+c),c=-11/29+17/25*I,n=47 6524748377311171 k002 Champernowne real with 27*n^2+101*n-63 6524748389950197 m001 KhinchinHarmonic^HardyLittlewoodC4-Tribonacci 6524748422445158 l006 ln(5805/5843) 6524748433108698 a007 Real Root Of 340*x^4+99*x^3+938*x^2-525*x-776 6524748444219536 m001 (-ZetaQ(2)+ZetaQ(4))/(Totient-cos(1)) 6524748444977642 a007 Real Root Of 860*x^4-405*x^3+306*x^2+237*x-244 6524748446846202 a007 Real Root Of -628*x^4-301*x^3-835*x^2+25*x+402 6524748477611231 k002 Champernowne real with 55/2*n^2+199/2*n-62 6524748488915142 g007 Psi(2,1/7)-Psi(2,3/7)-2*Psi(2,4/5) 6524748498309533 l006 ln(2923/5613) 6524748500801229 r002 57th iterates of z^2 + 6524748520567934 r005 Re(z^2+c),c=-19/27+23/49*I,n=8 6524748545400278 a007 Real Root Of 298*x^4-950*x^3+142*x^2-x-379 6524748548178875 a007 Real Root Of -741*x^4-689*x^3-937*x^2+34*x+364 6524748549359475 h001 (3/8*exp(1)+8/9)/(4/5*exp(1)+3/4) 6524748553044505 a001 13/844*1364^(1/5) 6524748564510940 m001 CopelandErdos-FeigenbaumB^MasserGramain 6524748577911291 k002 Champernowne real with 28*n^2+98*n-61 6524748622754732 m001 (3^(1/2)-Lehmer)/(Mills+TreeGrowth2nd) 6524748624666731 m001 Artin^Gompertz/(BesselJ(0,1)^Gompertz) 6524748641263795 m001 (-ErdosBorwein+Riemann2ndZero)/(Chi(1)-cos(1)) 6524748648600922 m005 (1/2*3^(1/2)+11/12)/(1/6*5^(1/2)-2/5) 6524748666324317 a003 cos(Pi*2/71)-cos(Pi*40/103) 6524748666734349 s002 sum(A222355[n]/((2^n-1)/n),n=1..infinity) 6524748667254688 r009 Im(z^3+c),c=-29/56+39/62*I,n=7 6524748678211351 k002 Champernowne real with 57/2*n^2+193/2*n-60 6524748684074607 m002 (-2*Pi^6)/3-Sinh[Pi] 6524748685190766 m002 -(Pi^3/E^Pi)+6*Log[Pi]+Tanh[Pi] 6524748701009556 m001 1/exp((2^(1/3)))^2/Trott*Zeta(1,2)^2 6524748708243405 a007 Real Root Of -127*x^4+947*x^3+54*x^2+311*x+466 6524748731888371 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^35 6524748738641691 r005 Re(z^2+c),c=-87/74+38/41*I,n=2 6524748747438547 a001 377/15127*1364^(2/15) 6524748747561599 a008 Real Root of x^4-2*x^3+34*x^2-33*x-2489 6524748761986156 a001 377/12752043*3571^(16/17) 6524748778511411 k002 Champernowne real with 29*n^2+95*n-59 6524748780689218 r005 Re(z^2+c),c=-63/110+29/60*I,n=16 6524748789959375 a005 (1/cos(11/226*Pi))^356 6524748792084127 a001 377/7881196*3571^(15/17) 6524748822181573 a001 377/4870847*3571^(14/17) 6524748826753769 m002 -6/Pi+Pi^4*Csch[Pi] 6524748827428386 a007 Real Root Of 41*x^4-818*x^3-878*x^2-883*x-437 6524748833616967 m001 (Champernowne+KomornikLoreti)/(Otter-Trott2nd) 6524748834780616 a001 6119/2*987^(7/9) 6524748852280393 a001 377/3010349*3571^(13/17) 6524748878811471 k002 Champernowne real with 59/2*n^2+187/2*n-58 6524748882375615 a001 377/1860498*3571^(12/17) 6524748912480261 a001 377/1149851*3571^(11/17) 6524748913993111 a007 Real Root Of -169*x^4+859*x^3+336*x^2+986*x-66 6524748928001802 r009 Re(z^3+c),c=-3/29+11/21*I,n=10 6524748941429306 r009 Re(z^3+c),c=-25/46+8/45*I,n=2 6524748942560232 a001 377/710647*3571^(10/17) 6524748962866319 a007 Real Root Of 402*x^4-664*x^3-504*x^2-733*x-521 6524748963316096 m005 (4*gamma-1/6)/(2*Pi-3) 6524748969946071 r002 23th iterates of z^2 + 6524748972704803 a001 377/439204*3571^(9/17) 6524748979111531 k002 Champernowne real with 30*n^2+92*n-57 6524748984453076 a001 34/5779*521^(5/13) 6524748988709717 a001 610/271443*521^(7/13) 6524748999373721 s002 sum(A172357[n]/(n^3*2^n-1),n=1..infinity) 6524749002680251 a001 377/271443*3571^(8/17) 6524749016076904 m001 (cos(Pi/12)-cos(Pi/5))/BesselJZeros(0,1) 6524749019952128 m001 (-sin(1/12*Pi)+Pi^(1/2))/(3^(1/2)+sin(1/5*Pi)) 6524749020081795 m008 (2/3*Pi^5-2/5)/(Pi^3+1/5) 6524749033098468 a001 377/167761*3571^(7/17) 6524749048113534 a001 377/5778 6524749048113534 q001 1885/2889 6524749048126448 a004 Fibonacci(18)/Lucas(14)/(1/2+sqrt(5)/2)^8 6524749062357503 a001 377/103682*3571^(6/17) 6524749070760442 r002 48th iterates of z^2 + 6524749079411591 k002 Champernowne real with 61/2*n^2+181/2*n-56 6524749080334501 l006 ln(3061/5878) 6524749084402614 a001 377/9349*1364^(1/15) 6524749091305659 r005 Im(z^2+c),c=-17/13+1/27*I,n=6 6524749094651317 a001 377/64079*3571^(5/17) 6524749097787685 m005 (1/2*2^(1/2)+7/8)/(3/10*Pi-7/10) 6524749099780190 r002 3th iterates of z^2 + 6524749118999976 a001 377/39603*3571^(4/17) 6524749127586592 a001 3571/2178309*4181^(28/39) 6524749135513073 a001 167761/34*701408733^(11/19) 6524749135879136 a001 16692641/17*75025^(11/19) 6524749151348076 a001 6765/1149851*521^(5/13) 6524749154841763 a001 377/15127*3571^(2/17) 6524749159642088 a007 Real Root Of -318*x^4+548*x^3-329*x^2-593*x-37 6524749164149321 a001 13/844*3571^(3/17) 6524749168900790 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^37 6524749172829764 a001 377/33385282*9349^(18/19) 6524749175697728 a001 17711/3010349*521^(5/13) 6524749176758766 a001 13/711491*9349^(17/19) 6524749179250294 a001 11592/1970299*521^(5/13) 6524749179711651 k002 Champernowne real with 31*n^2+89*n-55 6524749179768607 a001 121393/20633239*521^(5/13) 6524749179844228 a001 317811/54018521*521^(5/13) 6524749179855260 a001 208010/35355581*521^(5/13) 6524749179856870 a001 2178309/370248451*521^(5/13) 6524749179857105 a001 5702887/969323029*521^(5/13) 6524749179857139 a001 196452/33391061*521^(5/13) 6524749179857144 a001 39088169/6643838879*521^(5/13) 6524749179857145 a001 102334155/17393796001*521^(5/13) 6524749179857145 a001 66978574/11384387281*521^(5/13) 6524749179857145 a001 701408733/119218851371*521^(5/13) 6524749179857145 a001 1836311903/312119004989*521^(5/13) 6524749179857145 a001 1201881744/204284540899*521^(5/13) 6524749179857145 a001 12586269025/2139295485799*521^(5/13) 6524749179857145 a001 32951280099/5600748293801*521^(5/13) 6524749179857145 a001 1135099622/192933544679*521^(5/13) 6524749179857145 a001 139583862445/23725150497407*521^(5/13) 6524749179857145 a001 53316291173/9062201101803*521^(5/13) 6524749179857145 a001 10182505537/1730726404001*521^(5/13) 6524749179857145 a001 7778742049/1322157322203*521^(5/13) 6524749179857145 a001 2971215073/505019158607*521^(5/13) 6524749179857145 a001 567451585/96450076809*521^(5/13) 6524749179857145 a001 433494437/73681302247*521^(5/13) 6524749179857145 a001 165580141/28143753123*521^(5/13) 6524749179857145 a001 31622993/5374978561*521^(5/13) 6524749179857147 a001 24157817/4106118243*521^(5/13) 6524749179857160 a001 9227465/1568397607*521^(5/13) 6524749179857250 a001 1762289/299537289*521^(5/13) 6524749179857865 a001 1346269/228826127*521^(5/13) 6524749179862079 a001 514229/87403803*521^(5/13) 6524749179890964 a001 98209/16692641*521^(5/13) 6524749180088941 a001 75025/12752043*521^(5/13) 6524749180687692 a001 377/12752043*9349^(16/19) 6524749181445901 a001 28657/4870847*521^(5/13) 6524749184616817 a001 377/7881196*9349^(15/19) 6524749188545418 a001 377/4870847*9349^(14/19) 6524749190746641 a001 5473/930249*521^(5/13) 6524749192475394 a001 377/3010349*9349^(13/19) 6524749196401769 a001 377/1860498*9349^(12/19) 6524749197620354 h001 (5/12*exp(1)+3/7)/(1/4*exp(2)+6/11) 6524749200337570 a001 377/1149851*9349^(11/19) 6524749204248696 a001 377/710647*9349^(10/19) 6524749207179457 a001 377/15127*9349^(2/19) 6524749208224421 a001 377/439204*9349^(9/19) 6524749212031024 a001 377/271443*9349^(8/19) 6524749214000144 a001 377/15127*24476^(2/21) 6524749214899242 a001 377/15127*64079^(2/23) 6524749215037418 a001 377/15127*(1/2+1/2*5^(1/2))^2 6524749215037418 a001 377/15127*10749957122^(1/24) 6524749215037418 a001 377/15127*4106118243^(1/23) 6524749215037418 a001 377/15127*1568397607^(1/22) 6524749215037418 a001 377/15127*599074578^(1/21) 6524749215037418 a001 377/15127*228826127^(1/20) 6524749215037418 a001 377/15127*87403803^(1/19) 6524749215037419 a001 377/15127*33385282^(1/18) 6524749215037419 a001 2550405/39088169 6524749215037421 a001 377/15127*12752043^(1/17) 6524749215037436 a001 377/15127*4870847^(1/16) 6524749215037544 a001 377/15127*1860498^(1/15) 6524749215038341 a001 377/15127*710647^(1/14) 6524749215044230 a001 377/15127*271443^(1/13) 6524749215050338 a004 Fibonacci(20)/Lucas(14)/(1/2+sqrt(5)/2)^10 6524749215087998 a001 377/15127*103682^(1/12) 6524749215415613 a001 377/15127*39603^(1/11) 6524749216280394 a001 377/167761*9349^(7/19) 6524749217888819 a001 377/15127*15127^(1/10) 6524749219370583 a001 377/103682*9349^(6/19) 6524749223675363 a001 377/39603*9349^(4/19) 6524749225495550 a001 377/64079*9349^(5/19) 6524749232660042 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^39 6524749233178679 a001 377/87403803*24476^(20/21) 6524749233697319 a001 377/54018521*24476^(19/21) 6524749234215948 a001 377/33385282*24476^(6/7) 6524749234734606 a001 13/711491*24476^(17/21) 6524749235253188 a001 377/12752043*24476^(16/21) 6524749235771970 a001 377/7881196*24476^(5/7) 6524749236290227 a001 377/4870847*24476^(2/3) 6524749236752740 a001 377/15127*5778^(1/9) 6524749236809860 a001 377/3010349*24476^(13/21) 6524749237316737 a001 377/39603*24476^(4/21) 6524749237325892 a001 377/1860498*24476^(4/7) 6524749237851349 a001 377/1149851*24476^(11/21) 6524749238352131 a001 377/710647*24476^(10/21) 6524749238917513 a001 377/439204*24476^(3/7) 6524749239114932 a001 377/39603*64079^(4/23) 6524749239313772 a001 377/271443*24476^(8/21) 6524749239391286 a001 377/39603*(1/2+1/2*5^(1/2))^4 6524749239391286 a001 377/39603*23725150497407^(1/16) 6524749239391286 a001 377/39603*73681302247^(1/13) 6524749239391286 a001 377/39603*10749957122^(1/12) 6524749239391286 a001 377/39603*4106118243^(2/23) 6524749239391286 a001 377/39603*1568397607^(1/11) 6524749239391286 a001 377/39603*599074578^(2/21) 6524749239391286 a001 377/39603*228826127^(1/10) 6524749239391286 a001 377/39603*87403803^(2/19) 6524749239391286 a001 6677047/102334155 6524749239391286 a001 377/39603*33385282^(1/9) 6524749239391290 a001 377/39603*12752043^(2/17) 6524749239391320 a001 377/39603*4870847^(1/8) 6524749239391537 a001 377/39603*1860498^(2/15) 6524749239393131 a001 377/39603*710647^(1/7) 6524749239404206 a004 Fibonacci(22)/Lucas(14)/(1/2+sqrt(5)/2)^12 6524749239404909 a001 377/39603*271443^(2/13) 6524749239492445 a001 377/39603*103682^(1/6) 6524749239650811 a001 521/3524578*34^(8/19) 6524749239832644 a001 377/103682*24476^(2/7) 6524749240147674 a001 377/39603*39603^(2/11) 6524749240152799 a001 377/167761*24476^(1/3) 6524749241962392 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^41 6524749242031480 a001 377/228826127*64079^(22/23) 6524749242100569 a001 377/141422324*64079^(21/23) 6524749242169656 a001 377/87403803*64079^(20/23) 6524749242238747 a001 377/54018521*64079^(19/23) 6524749242307828 a001 377/33385282*64079^(18/23) 6524749242376937 a001 13/711491*64079^(17/23) 6524749242445970 a001 377/12752043*64079^(16/23) 6524749242515203 a001 377/7881196*64079^(15/23) 6524749242529937 a001 377/103682*64079^(6/23) 6524749242547268 a001 377/64079*24476^(5/21) 6524749242583912 a001 377/4870847*64079^(14/23) 6524749242653995 a001 377/3010349*64079^(13/23) 6524749242655861 a001 13/844*9349^(3/19) 6524749242720478 a001 377/1860498*64079^(12/23) 6524749242796386 a001 377/1149851*64079^(11/23) 6524749242847620 a001 377/710647*64079^(10/23) 6524749242910163 a001 377/271443*64079^(8/23) 6524749242936951 a001 377/103682*439204^(2/9) 6524749242944448 a001 377/103682*7881196^(2/11) 6524749242944467 a001 377/103682*141422324^(2/13) 6524749242944467 a001 377/103682*2537720636^(2/15) 6524749242944467 a001 377/103682*45537549124^(2/17) 6524749242944467 a001 377/103682*14662949395604^(2/21) 6524749242944467 a001 377/103682*(1/2+1/2*5^(1/2))^6 6524749242944467 a001 377/103682*10749957122^(1/8) 6524749242944467 a001 377/103682*4106118243^(3/23) 6524749242944467 a001 377/103682*1568397607^(3/22) 6524749242944467 a001 377/103682*599074578^(1/7) 6524749242944467 a001 5796/88831 6524749242944467 a001 377/103682*228826127^(3/20) 6524749242944467 a001 377/103682*87403803^(3/19) 6524749242944468 a001 377/103682*33385282^(1/6) 6524749242944474 a001 377/103682*12752043^(3/17) 6524749242944519 a001 377/103682*4870847^(3/16) 6524749242944844 a001 377/103682*1860498^(1/5) 6524749242947236 a001 377/103682*710647^(3/14) 6524749242957387 a004 Fibonacci(24)/Lucas(14)/(1/2+sqrt(5)/2)^14 6524749242963453 a001 377/439204*64079^(9/23) 6524749242964903 a001 377/103682*271443^(3/13) 6524749243096206 a001 377/103682*103682^(1/4) 6524749243299641 a001 377/167761*64079^(7/23) 6524749243319586 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^43 6524749243365953 a001 377/87403803*167761^(4/5) 6524749243412426 a001 377/7881196*167761^(3/5) 6524749243445768 a001 377/710647*167761^(2/5) 6524749243462869 a001 377/271443*(1/2+1/2*5^(1/2))^8 6524749243462869 a001 377/271443*23725150497407^(1/8) 6524749243462869 a001 377/271443*505019158607^(1/7) 6524749243462869 a001 377/271443*73681302247^(2/13) 6524749243462869 a001 377/271443*10749957122^(1/6) 6524749243462869 a001 377/271443*4106118243^(4/23) 6524749243462869 a001 377/271443*1568397607^(2/11) 6524749243462869 a001 45765161/701408733 6524749243462869 a001 377/271443*599074578^(4/21) 6524749243462869 a001 377/271443*228826127^(1/5) 6524749243462869 a001 377/271443*87403803^(4/19) 6524749243462871 a001 377/271443*33385282^(2/9) 6524749243462879 a001 377/271443*12752043^(4/17) 6524749243462938 a001 377/271443*4870847^(1/4) 6524749243463372 a001 377/271443*1860498^(4/15) 6524749243466561 a001 377/271443*710647^(2/7) 6524749243475789 a004 Fibonacci(26)/Lucas(14)/(1/2+sqrt(5)/2)^16 6524749243490117 a001 377/271443*271443^(4/13) 6524749243517598 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^45 6524749243521357 a001 377/599074578*439204^(8/9) 6524749243525115 a001 377/141422324*439204^(7/9) 6524749243528867 a001 377/33385282*439204^(2/3) 6524749243532737 a001 377/7881196*439204^(5/9) 6524749243534505 a001 377/1860498*439204^(4/9) 6524749243538499 a001 377/710647*20633239^(2/7) 6524749243538503 a001 377/710647*2537720636^(2/9) 6524749243538503 a001 377/710647*312119004989^(2/11) 6524749243538503 a001 377/710647*(1/2+1/2*5^(1/2))^10 6524749243538503 a001 377/710647*28143753123^(1/5) 6524749243538503 a001 377/710647*10749957122^(5/24) 6524749243538503 a001 377/710647*4106118243^(5/23) 6524749243538503 a001 119814747/1836311903 6524749243538503 a001 377/710647*1568397607^(5/22) 6524749243538503 a001 377/710647*599074578^(5/21) 6524749243538503 a001 377/710647*228826127^(1/4) 6524749243538503 a001 377/710647*87403803^(5/19) 6524749243538505 a001 377/710647*33385282^(5/18) 6524749243538515 a001 377/710647*12752043^(5/17) 6524749243538589 a001 377/710647*4870847^(5/16) 6524749243539131 a001 377/710647*1860498^(1/3) 6524749243543117 a001 377/710647*710647^(5/14) 6524749243546488 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^47 6524749243549500 a001 377/1860498*7881196^(4/11) 6524749243549538 a001 377/1860498*141422324^(4/13) 6524749243549538 a001 377/1860498*2537720636^(4/15) 6524749243549538 a001 377/1860498*45537549124^(4/17) 6524749243549538 a001 377/1860498*817138163596^(4/19) 6524749243549538 a001 377/1860498*14662949395604^(4/21) 6524749243549538 a001 377/1860498*(1/2+1/2*5^(1/2))^12 6524749243549538 a001 377/1860498*192900153618^(2/9) 6524749243549538 a001 377/1860498*73681302247^(3/13) 6524749243549538 a001 377/1860498*10749957122^(1/4) 6524749243549538 a001 39209885/600940872 6524749243549538 a001 377/1860498*4106118243^(6/23) 6524749243549538 a001 377/1860498*1568397607^(3/11) 6524749243549538 a001 377/1860498*599074578^(2/7) 6524749243549538 a001 377/1860498*228826127^(3/10) 6524749243549538 a001 377/1860498*87403803^(6/19) 6524749243549540 a001 377/1860498*33385282^(1/3) 6524749243549552 a001 377/1860498*12752043^(6/17) 6524749243549641 a001 377/1860498*4870847^(3/8) 6524749243550292 a001 377/1860498*1860498^(2/5) 6524749243550703 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^49 6524749243551142 a001 377/4870847*20633239^(2/5) 6524749243551148 a001 377/4870847*17393796001^(2/7) 6524749243551148 a001 377/4870847*14662949395604^(2/9) 6524749243551148 a001 377/4870847*(1/2+1/2*5^(1/2))^14 6524749243551148 a001 821222493/12586269025 6524749243551148 a001 377/4870847*10749957122^(7/24) 6524749243551148 a001 377/4870847*4106118243^(7/23) 6524749243551148 a001 377/4870847*1568397607^(7/22) 6524749243551148 a001 377/4870847*599074578^(1/3) 6524749243551148 a001 377/4870847*228826127^(7/20) 6524749243551148 a001 377/4870847*87403803^(7/19) 6524749243551150 a001 377/4870847*33385282^(7/18) 6524749243551164 a001 377/4870847*12752043^(7/17) 6524749243551268 a001 377/4870847*4870847^(7/16) 6524749243551318 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^51 6524749243551327 a001 377/10749957122*7881196^(10/11) 6524749243551337 a001 377/2537720636*7881196^(9/11) 6524749243551346 a001 377/599074578*7881196^(8/11) 6524749243551353 a001 377/228826127*7881196^(2/3) 6524749243551356 a001 377/141422324*7881196^(7/11) 6524749243551360 a001 377/33385282*7881196^(6/11) 6524749243551383 a001 377/12752043*(1/2+1/2*5^(1/2))^16 6524749243551383 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^16/Lucas(34) 6524749243551383 a001 377/12752043*23725150497407^(1/4) 6524749243551383 a001 377/12752043*73681302247^(4/13) 6524749243551383 a001 2149988399/32951280099 6524749243551383 a001 377/12752043*10749957122^(1/3) 6524749243551383 a001 377/12752043*4106118243^(8/23) 6524749243551383 a001 377/12752043*1568397607^(4/11) 6524749243551383 a001 377/12752043*599074578^(8/21) 6524749243551383 a001 377/12752043*228826127^(2/5) 6524749243551383 a001 377/12752043*87403803^(8/19) 6524749243551385 a001 377/12752043*33385282^(4/9) 6524749243551402 a001 377/12752043*12752043^(8/17) 6524749243551408 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^53 6524749243551410 a001 377/10749957122*20633239^(6/7) 6524749243551411 a001 377/4106118243*20633239^(4/5) 6524749243551412 a001 377/969323029*20633239^(5/7) 6524749243551413 a001 377/87403803*20633239^(4/7) 6524749243551414 a001 377/141422324*20633239^(3/5) 6524749243551417 a001 377/33385282*141422324^(6/13) 6524749243551417 a001 377/33385282*2537720636^(2/5) 6524749243551417 a001 377/33385282*45537549124^(6/17) 6524749243551417 a001 377/33385282*14662949395604^(2/7) 6524749243551417 a001 377/33385282*(1/2+1/2*5^(1/2))^18 6524749243551417 a001 377/33385282*192900153618^(1/3) 6524749243551417 a001 2178306/33385283 6524749243551417 a001 377/33385282*10749957122^(3/8) 6524749243551417 a001 377/33385282*4106118243^(9/23) 6524749243551417 a001 377/33385282*1568397607^(9/22) 6524749243551417 a001 377/33385282*599074578^(3/7) 6524749243551417 a001 377/33385282*228826127^(9/20) 6524749243551417 a001 377/33385282*87403803^(9/19) 6524749243551420 a001 377/33385282*33385282^(1/2) 6524749243551421 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^55 6524749243551422 a001 377/87403803*2537720636^(4/9) 6524749243551422 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^20/Lucas(38) 6524749243551422 a001 377/87403803*23725150497407^(5/16) 6524749243551422 a001 377/87403803*505019158607^(5/14) 6524749243551422 a001 39088169/599075421 6524749243551422 a001 377/87403803*73681302247^(5/13) 6524749243551422 a001 377/87403803*28143753123^(2/5) 6524749243551422 a001 377/87403803*10749957122^(5/12) 6524749243551422 a001 377/87403803*4106118243^(10/23) 6524749243551422 a001 377/87403803*1568397607^(5/11) 6524749243551422 a001 377/87403803*599074578^(10/21) 6524749243551422 a001 377/87403803*228826127^(1/2) 6524749243551423 a001 377/87403803*87403803^(10/19) 6524749243551423 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^57 6524749243551423 a001 377/192900153618*141422324^(12/13) 6524749243551423 a001 377/45537549124*141422324^(11/13) 6524749243551423 a001 377/10749957122*141422324^(10/13) 6524749243551423 a001 377/2537720636*141422324^(9/13) 6524749243551423 a001 377/1568397607*141422324^(2/3) 6524749243551423 a001 377/599074578*141422324^(8/13) 6524749243551423 a001 377/228826127*312119004989^(2/5) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^22/Lucas(40) 6524749243551423 a001 38579976435/591286729879 6524749243551423 a001 377/228826127*10749957122^(11/24) 6524749243551423 a001 377/228826127*4106118243^(11/23) 6524749243551423 a001 377/228826127*1568397607^(1/2) 6524749243551423 a001 377/228826127*599074578^(11/21) 6524749243551423 a001 377/228826127*228826127^(11/20) 6524749243551423 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^59 6524749243551423 a001 377/599074578*2537720636^(8/15) 6524749243551423 a001 377/599074578*45537549124^(8/17) 6524749243551423 a001 377/599074578*14662949395604^(8/21) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^24/Lucas(42) 6524749243551423 a001 12625461199/193501094490 6524749243551423 a001 377/599074578*192900153618^(4/9) 6524749243551423 a001 377/599074578*73681302247^(6/13) 6524749243551423 a001 377/599074578*10749957122^(1/2) 6524749243551423 a001 377/599074578*4106118243^(12/23) 6524749243551423 a001 377/599074578*1568397607^(6/11) 6524749243551423 a001 377/599074578*599074578^(4/7) 6524749243551423 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^61 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^26/Lucas(44) 6524749243551423 a001 264431092341/4052739537881 6524749243551423 a001 377/1568397607*73681302247^(1/2) 6524749243551423 a001 377/1568397607*10749957122^(13/24) 6524749243551423 a001 377/1568397607*4106118243^(13/23) 6524749243551423 a001 377/1568397607*1568397607^(13/22) 6524749243551423 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^63 6524749243551423 a001 377/3461452808002*2537720636^(14/15) 6524749243551423 a001 377/1322157322203*2537720636^(8/9) 6524749243551423 a001 377/817138163596*2537720636^(13/15) 6524749243551423 a001 377/192900153618*2537720636^(4/5) 6524749243551423 a001 377/119218851371*2537720636^(7/9) 6524749243551423 a001 377/45537549124*2537720636^(11/15) 6524749243551423 a001 377/10749957122*2537720636^(2/3) 6524749243551423 a001 377/4106118243*17393796001^(4/7) 6524749243551423 a001 377/4106118243*14662949395604^(4/9) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^28/Lucas(46) 6524749243551423 a001 377/4106118243*505019158607^(1/2) 6524749243551423 a001 377/4106118243*73681302247^(7/13) 6524749243551423 a001 377/4106118243*10749957122^(7/12) 6524749243551423 a001 377/4106118243*4106118243^(14/23) 6524749243551423 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^65 6524749243551423 a001 377/10749957122*45537549124^(10/17) 6524749243551423 a001 377/10749957122*312119004989^(6/11) 6524749243551423 a001 377/10749957122*14662949395604^(10/21) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^30/Lucas(48) 6524749243551423 a001 377/10749957122*192900153618^(5/9) 6524749243551423 a001 377/10749957122*28143753123^(3/5) 6524749243551423 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^67 6524749243551423 a001 377/10749957122*10749957122^(5/8) 6524749243551423 a001 377/3461452808002*17393796001^(6/7) 6524749243551423 a001 377/119218851371*17393796001^(5/7) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^32/Lucas(50) 6524749243551423 a001 377/28143753123*23725150497407^(1/2) 6524749243551423 a001 377/28143753123*505019158607^(4/7) 6524749243551423 a001 377/28143753123*73681302247^(8/13) 6524749243551423 a001 377/73681302247*45537549124^(2/3) 6524749243551423 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^69 6524749243551423 a001 13/505618944676*45537549124^(15/17) 6524749243551423 a001 377/3461452808002*45537549124^(14/17) 6524749243551423 a001 377/192900153618*45537549124^(12/17) 6524749243551423 a001 377/817138163596*45537549124^(13/17) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^34/Lucas(52) 6524749243551423 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^71 6524749243551423 a001 377/192900153618*14662949395604^(4/7) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^36/Lucas(54) 6524749243551423 a001 377/192900153618*505019158607^(9/14) 6524749243551423 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^73 6524749243551423 a001 13/505618944676*312119004989^(9/11) 6524749243551423 a001 377/1322157322203*312119004989^(8/11) 6524749243551423 a001 377/505019158607*817138163596^(2/3) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^38/Lucas(56) 6524749243551423 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^75 6524749243551423 a001 377/3461452808002*817138163596^(14/19) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^40/Lucas(58) 6524749243551423 a001 377/1322157322203*23725150497407^(5/8) 6524749243551423 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^77 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(60) 6524749243551423 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^79 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(62) 6524749243551423 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^81 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(64) 6524749243551423 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^83 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(66) 6524749243551423 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^85 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(68) 6524749243551423 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^87 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(70) 6524749243551423 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^89 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(72) 6524749243551423 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^91 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(74) 6524749243551423 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^93 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(76) 6524749243551423 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^95 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(78) 6524749243551423 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^97 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(80) 6524749243551423 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^99 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(82) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(84) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(86) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(88) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(90) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(92) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(94) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(96) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(98) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^82/Lucas(100) 6524749243551423 a004 Fibonacci(7)*Lucas(7)/(1/2+sqrt(5)/2)^18 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(99) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(97) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(95) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(93) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(91) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(89) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(87) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(85) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(83) 6524749243551423 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^100 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(81) 6524749243551423 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^98 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(79) 6524749243551423 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^96 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(77) 6524749243551423 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^94 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(75) 6524749243551423 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^92 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(73) 6524749243551423 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^90 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(71) 6524749243551423 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^88 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(69) 6524749243551423 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^86 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(67) 6524749243551423 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^84 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(65) 6524749243551423 a001 13/505618944676*14662949395604^(5/7) 6524749243551423 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^82 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(63) 6524749243551423 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^80 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(61) 6524749243551423 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^78 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(59) 6524749243551423 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^76 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(57) 6524749243551423 a001 377/3461452808002*505019158607^(3/4) 6524749243551423 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^74 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^37/Lucas(55) 6524749243551423 a001 377/3461452808002*192900153618^(7/9) 6524749243551423 a001 377/817138163596*192900153618^(13/18) 6524749243551423 a001 13/505618944676*192900153618^(5/6) 6524749243551423 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^72 6524749243551423 a001 377/119218851371*312119004989^(7/11) 6524749243551423 a001 377/119218851371*14662949395604^(5/9) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^35/Lucas(53) 6524749243551423 a001 377/119218851371*505019158607^(5/8) 6524749243551423 a001 377/192900153618*73681302247^(9/13) 6524749243551423 a001 377/1322157322203*73681302247^(10/13) 6524749243551423 a001 377/9062201101803*73681302247^(11/13) 6524749243551423 a001 377/45537549124*45537549124^(11/17) 6524749243551423 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^70 6524749243551423 a001 377/45537549124*312119004989^(3/5) 6524749243551423 a001 377/45537549124*817138163596^(11/19) 6524749243551423 a001 377/45537549124*14662949395604^(11/21) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^33/Lucas(51) 6524749243551423 a001 377/45537549124*192900153618^(11/18) 6524749243551423 a001 377/119218851371*28143753123^(7/10) 6524749243551423 a001 377/1322157322203*28143753123^(4/5) 6524749243551423 a001 13/505618944676*28143753123^(9/10) 6524749243551423 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^68 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^31/Lucas(49) 6524749243551423 a001 13/599786069*9062201101803^(1/2) 6524749243551423 a001 377/28143753123*10749957122^(2/3) 6524749243551423 a001 377/73681302247*10749957122^(17/24) 6524749243551423 a001 377/45537549124*10749957122^(11/16) 6524749243551423 a001 377/192900153618*10749957122^(3/4) 6524749243551423 a001 377/505019158607*10749957122^(19/24) 6524749243551423 a001 377/817138163596*10749957122^(13/16) 6524749243551423 a001 377/1322157322203*10749957122^(5/6) 6524749243551423 a001 377/3461452808002*10749957122^(7/8) 6524749243551423 a001 377/9062201101803*10749957122^(11/12) 6524749243551423 a001 13/505618944676*10749957122^(15/16) 6524749243551423 a001 377/23725150497407*10749957122^(23/24) 6524749243551423 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^66 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^29/Lucas(47) 6524749243551423 a001 377/6643838879*1322157322203^(1/2) 6524749243551423 a001 377/10749957122*4106118243^(15/23) 6524749243551423 a001 377/28143753123*4106118243^(16/23) 6524749243551423 a001 377/73681302247*4106118243^(17/23) 6524749243551423 a001 377/192900153618*4106118243^(18/23) 6524749243551423 a001 377/505019158607*4106118243^(19/23) 6524749243551423 a001 377/1322157322203*4106118243^(20/23) 6524749243551423 a001 377/3461452808002*4106118243^(21/23) 6524749243551423 a001 377/9062201101803*4106118243^(22/23) 6524749243551423 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^64 6524749243551423 a001 377/2537720636*2537720636^(3/5) 6524749243551423 a001 377/2537720636*45537549124^(9/17) 6524749243551423 a001 377/2537720636*817138163596^(9/19) 6524749243551423 a001 377/2537720636*14662949395604^(3/7) 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^27/Lucas(45) 6524749243551423 a001 377/2537720636*192900153618^(1/2) 6524749243551423 a001 377/2537720636*10749957122^(9/16) 6524749243551423 a001 377/4106118243*1568397607^(7/11) 6524749243551423 a001 377/10749957122*1568397607^(15/22) 6524749243551423 a001 377/28143753123*1568397607^(8/11) 6524749243551423 a001 377/45537549124*1568397607^(3/4) 6524749243551423 a001 377/73681302247*1568397607^(17/22) 6524749243551423 a001 377/192900153618*1568397607^(9/11) 6524749243551423 a001 377/505019158607*1568397607^(19/22) 6524749243551423 a001 377/1322157322203*1568397607^(10/11) 6524749243551423 a001 377/3461452808002*1568397607^(21/22) 6524749243551423 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^62 6524749243551423 a001 377/969323029*2537720636^(5/9) 6524749243551423 a001 377/969323029*312119004989^(5/11) 6524749243551423 a001 163427402749/2504730781961 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^25/Lucas(43) 6524749243551423 a001 377/969323029*28143753123^(1/2) 6524749243551423 a001 377/1568397607*599074578^(13/21) 6524749243551423 a001 377/4106118243*599074578^(2/3) 6524749243551423 a001 377/2537720636*599074578^(9/14) 6524749243551423 a001 377/10749957122*599074578^(5/7) 6524749243551423 a001 377/28143753123*599074578^(16/21) 6524749243551423 a001 377/45537549124*599074578^(11/14) 6524749243551423 a001 377/73681302247*599074578^(17/21) 6524749243551423 a001 377/119218851371*599074578^(5/6) 6524749243551423 a001 377/192900153618*599074578^(6/7) 6524749243551423 a001 377/505019158607*599074578^(19/21) 6524749243551423 a001 377/817138163596*599074578^(13/14) 6524749243551423 a001 377/1322157322203*599074578^(20/21) 6524749243551423 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^60 6524749243551423 a001 62423713157/956722026041 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^23/Lucas(41) 6524749243551423 a001 377/370248451*4106118243^(1/2) 6524749243551423 a001 377/599074578*228826127^(3/5) 6524749243551423 a001 377/1568397607*228826127^(13/20) 6524749243551423 a001 377/969323029*228826127^(5/8) 6524749243551423 a001 377/4106118243*228826127^(7/10) 6524749243551423 a001 377/10749957122*228826127^(3/4) 6524749243551423 a001 377/28143753123*228826127^(4/5) 6524749243551423 a001 377/73681302247*228826127^(17/20) 6524749243551423 a001 377/119218851371*228826127^(7/8) 6524749243551423 a001 377/192900153618*228826127^(9/10) 6524749243551423 a001 377/505019158607*228826127^(19/20) 6524749243551423 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^58 6524749243551423 a001 377/141422324*141422324^(7/13) 6524749243551423 a001 377/141422324*2537720636^(7/15) 6524749243551423 a001 377/141422324*17393796001^(3/7) 6524749243551423 a001 377/141422324*45537549124^(7/17) 6524749243551423 a001 11921868361/182717648081 6524749243551423 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^21/Lucas(39) 6524749243551423 a001 377/141422324*192900153618^(7/18) 6524749243551423 a001 377/141422324*10749957122^(7/16) 6524749243551423 a001 377/141422324*599074578^(1/2) 6524749243551423 a001 377/228826127*87403803^(11/19) 6524749243551423 a001 377/599074578*87403803^(12/19) 6524749243551423 a001 377/1568397607*87403803^(13/19) 6524749243551424 a001 377/4106118243*87403803^(14/19) 6524749243551424 a001 377/10749957122*87403803^(15/19) 6524749243551424 a001 377/28143753123*87403803^(16/19) 6524749243551424 a001 377/73681302247*87403803^(17/19) 6524749243551424 a001 377/192900153618*87403803^(18/19) 6524749243551424 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^56 6524749243551425 a001 9107497009/139583862445 6524749243551425 a001 377/54018521*817138163596^(1/3) 6524749243551425 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^19/Lucas(37) 6524749243551425 a001 377/87403803*33385282^(5/9) 6524749243551426 a001 377/54018521*87403803^(1/2) 6524749243551426 a001 377/228826127*33385282^(11/18) 6524749243551427 a001 377/141422324*33385282^(7/12) 6524749243551427 a001 377/599074578*33385282^(2/3) 6524749243551427 a001 377/1568397607*33385282^(13/18) 6524749243551427 a001 377/2537720636*33385282^(3/4) 6524749243551427 a001 377/4106118243*33385282^(7/9) 6524749243551428 a001 377/10749957122*33385282^(5/6) 6524749243551428 a001 377/28143753123*33385282^(8/9) 6524749243551428 a001 377/45537549124*33385282^(11/12) 6524749243551428 a001 377/73681302247*33385282^(17/18) 6524749243551429 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^54 6524749243551438 a001 13/711491*45537549124^(1/3) 6524749243551438 a001 3478754305/53316291173 6524749243551438 a001 13/711491*(1/2+1/2*5^(1/2))^17 6524749243551438 a001 377/33385282*12752043^(9/17) 6524749243551446 a001 377/87403803*12752043^(10/17) 6524749243551449 a001 377/228826127*12752043^(11/17) 6524749243551451 a001 377/599074578*12752043^(12/17) 6524749243551454 a001 377/1568397607*12752043^(13/17) 6524749243551456 a001 377/4106118243*12752043^(14/17) 6524749243551458 a001 13/711491*12752043^(1/2) 6524749243551458 a001 377/10749957122*12752043^(15/17) 6524749243551461 a001 377/28143753123*12752043^(16/17) 6524749243551463 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^52 6524749243551480 a001 377/7881196*7881196^(5/11) 6524749243551520 a001 377/12752043*4870847^(1/2) 6524749243551521 a001 377/7881196*20633239^(3/7) 6524749243551528 a001 377/7881196*141422324^(5/13) 6524749243551528 a001 377/7881196*2537720636^(1/3) 6524749243551528 a001 664382953/10182505537 6524749243551528 a001 377/7881196*45537549124^(5/17) 6524749243551528 a001 377/7881196*312119004989^(3/11) 6524749243551528 a001 377/7881196*14662949395604^(5/21) 6524749243551528 a001 377/7881196*(1/2+1/2*5^(1/2))^15 6524749243551528 a001 377/7881196*192900153618^(5/18) 6524749243551528 a001 377/7881196*28143753123^(3/10) 6524749243551528 a001 377/7881196*10749957122^(5/16) 6524749243551528 a001 377/7881196*599074578^(5/14) 6524749243551528 a001 377/7881196*228826127^(3/8) 6524749243551530 a001 377/7881196*33385282^(5/12) 6524749243551572 a001 377/33385282*4870847^(9/16) 6524749243551594 a001 377/87403803*4870847^(5/8) 6524749243551612 a001 377/228826127*4870847^(11/16) 6524749243551629 a001 377/599074578*4870847^(3/4) 6524749243551646 a001 377/1568397607*4870847^(13/16) 6524749243551664 a001 377/4106118243*4870847^(7/8) 6524749243551681 a001 377/10749957122*4870847^(15/16) 6524749243551698 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^50 6524749243552028 a001 377/4870847*1860498^(7/15) 6524749243552143 a001 377/3010349*141422324^(1/3) 6524749243552143 a001 39041801/598364773 6524749243552143 a001 377/3010349*(1/2+1/2*5^(1/2))^13 6524749243552143 a001 377/3010349*73681302247^(1/4) 6524749243552388 a001 377/12752043*1860498^(8/15) 6524749243552470 a001 377/7881196*1860498^(1/2) 6524749243552548 a001 377/33385282*1860498^(3/5) 6524749243552679 a001 377/87403803*1860498^(2/3) 6524749243552743 a001 377/141422324*1860498^(7/10) 6524749243552805 a001 377/228826127*1860498^(11/15) 6524749243552931 a001 377/599074578*1860498^(4/5) 6524749243552994 a001 377/969323029*1860498^(5/6) 6524749243553057 a001 377/1568397607*1860498^(13/15) 6524749243553119 a001 377/2537720636*1860498^(9/10) 6524749243553182 a001 377/4106118243*1860498^(14/15) 6524749243553308 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^48 6524749243555075 a001 377/1860498*710647^(3/7) 6524749243556323 a001 377/1149851*7881196^(1/3) 6524749243556358 a001 193864333/2971215073 6524749243556358 a001 377/1149851*312119004989^(1/5) 6524749243556358 a001 377/1149851*(1/2+1/2*5^(1/2))^11 6524749243556358 a001 377/1149851*1568397607^(1/4) 6524749243557608 a001 377/4870847*710647^(1/2) 6524749243558766 a001 377/12752043*710647^(4/7) 6524749243559723 a001 377/33385282*710647^(9/14) 6524749243560650 a001 377/87403803*710647^(5/7) 6524749243561113 a001 377/141422324*710647^(3/4) 6524749243561574 a001 377/228826127*710647^(11/14) 6524749243562458 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2)^20 6524749243562497 a001 377/599074578*710647^(6/7) 6524749243563420 a001 377/1568397607*710647^(13/14) 6524749243564068 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^22 6524749243564303 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^24 6524749243564337 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^26 6524749243564342 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^28 6524749243564343 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^30 6524749243564343 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^32 6524749243564343 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^34 6524749243564343 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^36 6524749243564343 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^38 6524749243564343 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^40 6524749243564343 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^42 6524749243564343 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^44 6524749243564343 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^46 6524749243564343 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^48 6524749243564343 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^50 6524749243564343 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^52 6524749243564343 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^54 6524749243564343 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^56 6524749243564343 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^58 6524749243564343 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^60 6524749243564343 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^62 6524749243564343 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^64 6524749243564343 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^66 6524749243564343 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^68 6524749243564343 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^70 6524749243564343 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^72 6524749243564343 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^74 6524749243564343 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^76 6524749243564343 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^78 6524749243564343 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^80 6524749243564343 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^82 6524749243564343 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^84 6524749243564343 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^86 6524749243564343 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^90 6524749243564343 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^88 6524749243564343 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^89 6524749243564343 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^87 6524749243564343 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^85 6524749243564343 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^83 6524749243564343 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^81 6524749243564343 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^79 6524749243564343 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^77 6524749243564343 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^75 6524749243564343 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^73 6524749243564343 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^71 6524749243564343 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^69 6524749243564343 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^67 6524749243564343 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^65 6524749243564343 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^63 6524749243564343 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^61 6524749243564343 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^59 6524749243564343 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^57 6524749243564343 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^55 6524749243564343 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^53 6524749243564343 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^51 6524749243564343 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^49 6524749243564343 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^47 6524749243564343 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^45 6524749243564343 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^43 6524749243564343 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^41 6524749243564343 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^39 6524749243564343 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^37 6524749243564343 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^35 6524749243564343 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^33 6524749243564343 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^31 6524749243564343 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^29 6524749243564345 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^27 6524749243564358 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^25 6524749243564448 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^23 6524749243565063 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^21 6524749243569278 a004 Fibonacci(29)/Lucas(14)/(1/2+sqrt(5)/2)^19 6524749243572562 a001 377/710647*271443^(5/13) 6524749243573973 a001 377/439204*439204^(1/3) 6524749243585219 a001 377/439204*7881196^(3/11) 6524749243585247 a001 377/439204*141422324^(3/13) 6524749243585247 a001 2177929/33379505 6524749243585247 a001 377/439204*2537720636^(1/5) 6524749243585247 a001 377/439204*45537549124^(3/17) 6524749243585247 a001 377/439204*817138163596^(3/19) 6524749243585247 a001 377/439204*14662949395604^(1/7) 6524749243585247 a001 377/439204*(1/2+1/2*5^(1/2))^9 6524749243585247 a001 377/439204*192900153618^(1/6) 6524749243585247 a001 377/439204*10749957122^(3/16) 6524749243585247 a001 377/439204*599074578^(3/14) 6524749243585249 a001 377/439204*33385282^(1/4) 6524749243585813 a001 377/439204*1860498^(3/10) 6524749243590409 a001 377/1860498*271443^(6/13) 6524749243596420 a001 377/3010349*271443^(1/2) 6524749243598167 a004 Fibonacci(27)/Lucas(14)/(1/2+sqrt(5)/2)^17 6524749243598831 a001 377/4870847*271443^(7/13) 6524749243605877 a001 377/12752043*271443^(8/13) 6524749243612723 a001 377/33385282*271443^(9/13) 6524749243619540 a001 377/87403803*271443^(10/13) 6524749243626353 a001 377/228826127*271443^(11/13) 6524749243633165 a001 377/599074578*271443^(12/13) 6524749243639977 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^44 6524749243665188 a001 377/271443*103682^(1/3) 6524749243783256 a001 377/167761*20633239^(1/5) 6524749243783259 a001 28284425/433494437 6524749243783259 a001 377/167761*17393796001^(1/7) 6524749243783259 a001 377/167761*14662949395604^(1/9) 6524749243783259 a001 377/167761*(1/2+1/2*5^(1/2))^7 6524749243783259 a001 377/167761*599074578^(1/6) 6524749243786489 a001 377/167761*710647^(1/4) 6524749243791401 a001 377/710647*103682^(5/12) 6524749243796179 a004 Fibonacci(25)/Lucas(14)/(1/2+sqrt(5)/2)^15 6524749243812856 a001 377/439204*103682^(3/8) 6524749243834546 a001 377/1149851*103682^(11/24) 6524749243853016 a001 377/1860498*103682^(1/2) 6524749243880911 a001 377/3010349*103682^(13/24) 6524749243905205 a001 377/4870847*103682^(7/12) 6524749243930875 a001 377/7881196*103682^(5/8) 6524749243956020 a001 377/12752043*103682^(2/3) 6524749243960288 a001 377/167761*103682^(7/24) 6524749243981365 a001 13/711491*103682^(17/24) 6524749244006634 a001 377/33385282*103682^(3/4) 6524749244031932 a001 377/54018521*103682^(19/24) 6524749244057219 a001 377/87403803*103682^(5/6) 6524749244079050 a001 377/103682*39603^(3/11) 6524749244082510 a001 377/141422324*103682^(7/8) 6524749244107799 a001 377/228826127*103682^(11/12) 6524749244133089 a001 377/370248451*103682^(23/24) 6524749244158379 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^42 6524749244795012 a001 377/64079*64079^(5/23) 6524749244975646 a001 377/271443*39603^(4/11) 6524749245094087 a001 377/39603*15127^(1/5) 6524749245094087 a001 377/64079*167761^(1/5) 6524749245106939 a001 377/167761*39603^(7/22) 6524749245140452 a001 377/64079*20633239^(1/7) 6524749245140454 a001 10803689/165580141 6524749245140454 a001 377/64079*2537720636^(1/9) 6524749245140454 a001 377/64079*312119004989^(1/11) 6524749245140454 a001 377/64079*(1/2+1/2*5^(1/2))^5 6524749245140454 a001 377/64079*28143753123^(1/10) 6524749245140454 a001 377/64079*228826127^(1/8) 6524749245140768 a001 377/64079*1860498^(1/6) 6524749245153374 a004 Fibonacci(23)/Lucas(14)/(1/2+sqrt(5)/2)^13 6524749245266903 a001 377/64079*103682^(5/24) 6524749245287122 a001 377/439204*39603^(9/22) 6524749245429475 a001 377/710647*39603^(5/11) 6524749245636426 a001 377/1149851*39603^(1/2) 6524749245818704 a001 377/1860498*39603^(6/11) 6524749246010406 a001 377/3010349*39603^(13/22) 6524749246085940 a001 377/64079*39603^(5/22) 6524749246198508 a001 377/4870847*39603^(7/11) 6524749246387985 a001 377/7881196*39603^(15/22) 6524749246462028 m001 1/FeigenbaumC/ln(Artin)*Trott^2 6524749246576937 a001 377/12752043*39603^(8/11) 6524749246766090 a001 13/711491*39603^(17/22) 6524749246955166 a001 377/33385282*39603^(9/11) 6524749247144271 a001 377/54018521*39603^(19/22) 6524749247333365 a001 377/87403803*39603^(10/11) 6524749247522463 a001 377/141422324*39603^(21/22) 6524749247711560 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^40 6524749248519237 r002 11i'th iterates of 2*x/(1-x^2) of 6524749251498668 a001 377/103682*15127^(3/10) 6524749252268955 a001 377/64079*15127^(1/4) 6524749252886892 a001 13/844*24476^(1/7) 6524749253763161 a001 377/167761*15127^(7/20) 6524749254235539 a001 13/844*64079^(3/23) 6524749254439045 a001 13/844*439204^(1/9) 6524749254442794 a001 13/844*7881196^(1/11) 6524749254442803 a001 2063321/31622993 6524749254442804 a001 13/844*141422324^(1/13) 6524749254442804 a001 13/844*2537720636^(1/15) 6524749254442804 a001 13/844*45537549124^(1/17) 6524749254442804 a001 13/844*14662949395604^(1/21) 6524749254442804 a001 13/844*(1/2+1/2*5^(1/2))^3 6524749254442804 a001 13/844*192900153618^(1/18) 6524749254442804 a001 13/844*10749957122^(1/16) 6524749254442804 a001 13/844*599074578^(1/14) 6524749254442804 a001 13/844*33385282^(1/12) 6524749254442992 a001 13/844*1860498^(1/10) 6524749254455723 a004 Fibonacci(21)/Lucas(14)/(1/2+sqrt(5)/2)^11 6524749254494858 a001 4181/710647*521^(5/13) 6524749254518673 a001 13/844*103682^(1/8) 6524749254868471 a001 377/271443*15127^(2/5) 6524749255010095 a001 13/844*39603^(3/22) 6524749256416549 a001 377/439204*15127^(9/20) 6524749256449889 a007 Real Root Of -137*x^4-938*x^3-390*x^2-739*x-471 6524749257795505 a001 377/710647*15127^(1/2) 6524749258719904 a001 13/844*15127^(3/20) 6524749259239060 a001 377/1149851*15127^(11/20) 6524749260657941 a001 377/1860498*15127^(3/5) 6524749262086246 a001 377/3010349*15127^(13/20) 6524749263510951 a001 377/4870847*15127^(7/10) 6524749264937031 a001 377/7881196*15127^(3/4) 6524749266362586 a001 377/12752043*15127^(4/5) 6524749267788342 a001 13/711491*15127^(17/20) 6524749269214021 a001 377/33385282*15127^(9/10) 6524749270639730 a001 377/54018521*15127^(19/20) 6524749272065428 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^38 6524749273615179 m001 FeigenbaumKappa/(3^(1/3)+HardyLittlewoodC3) 6524749280011711 k002 Champernowne real with 63/2*n^2+175/2*n-54 6524749282821929 a001 377/39603*5778^(2/9) 6524749287015786 a001 13/844*5778^(1/6) 6524749288104229 a001 377/9349*3571^(1/17) 6524749292092115 a001 3/2584*8^(44/53) 6524749299428758 a001 377/64079*5778^(5/18) 6524749308090431 a001 377/103682*5778^(1/3) 6524749314273076 a001 377/9349*9349^(1/19) 6524749317683420 a001 377/9349*24476^(1/21) 6524749318132969 a001 377/9349*64079^(1/23) 6524749318202054 a001 1576237/24157817 6524749318202057 a001 377/18698+377/18698*5^(1/2) 6524749318214976 a004 Fibonacci(19)/Lucas(14)/(1/2+sqrt(5)/2)^9 6524749318227347 a001 377/9349*103682^(1/24) 6524749318391154 a001 377/9349*39603^(1/22) 6524749319627757 a001 377/9349*15127^(1/20) 6524749319786885 a001 377/167761*5778^(7/18) 6524749322173638 a007 Real Root Of 197*x^4-982*x^3-156*x^2-997*x+954 6524749329059718 a001 377/9349*5778^(1/18) 6524749330324155 a001 377/271443*5778^(4/9) 6524749341304194 a001 377/439204*5778^(1/2) 6524749345186430 r005 Re(z^2+c),c=33/86+19/42*I,n=5 6524749345342640 h001 (-3*exp(-3)+5)/(-4*exp(3)+6) 6524749352115111 a001 377/710647*5778^(5/9) 6524749360165886 a007 Real Root Of -645*x^4-21*x^3-700*x^2+334*x+627 6524749362990626 a001 377/1149851*5778^(11/18) 6524749373841467 a001 377/1860498*5778^(2/3) 6524749374247259 a007 Real Root Of 850*x^4-479*x^3-41*x^2-140*x-361 6524749380311771 k002 Champernowne real with 32*n^2+86*n-53 6524749382481310 a001 377/15127*2207^(1/8) 6524749384701733 a001 377/3010349*5778^(13/18) 6524749388566742 m001 (Pi^(1/2))^(Shi(1)/FellerTornier) 6524749393911872 m008 (1/4*Pi^2-4/5)/(4/5*Pi^3+3/4) 6524749395558399 a001 377/4870847*5778^(7/9) 6524749399541686 a007 Real Root Of -833*x^4-724*x^3-179*x^2+780*x+535 6524749401924004 a001 377/9349*2207^(1/16) 6524749404949264 s002 sum(A032785[n]/(n*10^n-1),n=1..infinity) 6524749406416440 a001 377/7881196*5778^(5/6) 6524749417273956 a001 377/12752043*5778^(8/9) 6524749417946028 m005 (1/2*3^(1/2)+5/9)/(1/4*2^(1/2)-4/7) 6524749423250682 r005 Re(z^2+c),c=1/38+15/43*I,n=13 6524749428131672 a001 13/711491*5778^(17/18) 6524749431898318 r005 Im(z^2+c),c=-53/114+16/29*I,n=41 6524749438989318 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^36 6524749442397071 m001 (Sarnak+StronglyCareFree)/(Chi(1)-Zeta(1/2)) 6524749452806354 m001 GAMMA(1/12)*ln(TreeGrowth2nd)^2*sin(1) 6524749453443393 a007 Real Root Of 858*x^4-869*x^3+403*x^2-361*x-804 6524749460542050 a007 Real Root Of 690*x^4-768*x^3-447*x^2+581*x+231 6524749476622607 m005 (1/2*2^(1/2)+1/3)/(6*exp(1)-4/11) 6524749480611831 k002 Champernowne real with 65/2*n^2+169/2*n-52 6524749496844469 a001 3571/225851433717*89^(6/19) 6524749505464859 m001 Riemann2ndZero^2/exp(Conway)/Tribonacci 6524749505608645 a001 13/844*2207^(3/16) 6524749523267432 r009 Re(z^3+c),c=-35/64+8/41*I,n=11 6524749523714269 m001 Khinchin*Porter+Sierpinski 6524749535396213 m005 (2^(1/2)-1/6)/(7/6+1/3*5^(1/2)) 6524749537184117 r005 Re(z^2+c),c=27/118+21/59*I,n=39 6524749574279075 a001 377/39603*2207^(1/4) 6524749580911891 k002 Champernowne real with 33*n^2+83*n-51 6524749612144094 l006 ln(3199/6143) 6524749613805567 a007 Real Root Of -722*x^4-524*x^3-944*x^2+107*x+457 6524749657230025 r002 46th iterates of z^2 + 6524749661032915 a007 Real Root Of 106*x^4+716*x^3+120*x^2-262*x-47 6524749663750194 a001 377/64079*2207^(5/16) 6524749679921959 m001 (KomornikLoreti+MertensB3)/(Pi+GAMMA(13/24)) 6524749680772024 a007 Real Root Of 632*x^4+254*x^3+374*x^2-602*x-596 6524749681211951 k002 Champernowne real with 67/2*n^2+163/2*n-50 6524749688723140 a001 21/2206*521^(4/13) 6524749691431639 a001 1597/271443*521^(5/13) 6524749703764668 m001 (-Robbin+Trott2nd)/(Artin-Psi(1,1/3)) 6524749706068565 a007 Real Root Of 172*x^4+986*x^3-859*x^2+181*x-98 6524749722923585 a007 Real Root Of 564*x^4-631*x^3+359*x^2-493*x-752 6524749732275173 m001 (Sarnak-Tetranacci)/(ln(5)+CopelandErdos) 6524749734878603 a007 Real Root Of -975*x^4+454*x^3-415*x^2+669*x+916 6524749745276158 a001 377/103682*2207^(3/8) 6524749748369926 p003 LerchPhi(1/1024,5,632/231) 6524749751045434 a007 Real Root Of -85*x^4-574*x^3-37*x^2+590*x+37 6524749755214460 a001 46313/709805 6524749755214515 a004 Fibonacci(14)/Lucas(17)/(1/2+sqrt(5)/2) 6524749755227395 a004 Fibonacci(17)/Lucas(14)/(1/2+sqrt(5)/2)^7 6524749765457972 a007 Real Root Of -437*x^4+916*x^3-226*x^2+765*x+929 6524749781512011 k002 Champernowne real with 34*n^2+80*n-49 6524749794595587 m005 (1/3*Zeta(3)-3/4)/(4*Zeta(3)+6/11) 6524749796414821 b008 ExpIntegralEi[LogIntegral[Coth[1]]] 6524749803315562 a007 Real Root Of -90*x^4-545*x^3+417*x^2+989*x+430 6524749829836903 a001 377/167761*2207^(7/16) 6524749837851662 r002 16th iterates of z^2 + 6524749840700255 a007 Real Root Of 760*x^4-603*x^3-697*x^2-269*x+502 6524749843929328 r005 Im(z^2+c),c=-11/8+3/172*I,n=26 6524749881812071 k002 Champernowne real with 69/2*n^2+157/2*n-48 6524749887545326 a001 1/8*433494437^(7/9) 6524749893225623 a008 Real Root of x^4-x^3-168*x^2+x+5611 6524749913238466 a001 377/271443*2207^(1/2) 6524749933856940 a001 9349/591286729879*89^(6/19) 6524749935880995 q001 2544/3899 6524749946895587 r009 Im(z^3+c),c=-19/32+35/54*I,n=18 6524749955977705 a008 Real Root of (-4+6*x-x^2+3*x^4-x^8) 6524749964198881 m005 (1/2*exp(1)+3/8)/(10/11*5^(1/2)+5/8) 6524749968734377 a007 Real Root Of 99*x^4+696*x^3+426*x^2+679*x+197 6524749969742010 a007 Real Root Of 153*x^4-830*x^3+941*x^2-227*x-807 6524749974017417 a001 377/9349*843^(1/14) 6524749982112131 k002 Champernowne real with 35*n^2+77*n-47 6524749997082798 a001 377/439204*2207^(9/16) 6524749997616200 a001 6119/387002188980*89^(6/19) 6524749999999999 r004 Re(z^2+c),c=3/20+7/20*I,z(0)=I,n=3 6524750006918550 a001 64079/4052739537881*89^(6/19) 6524750008275745 a001 167761/10610209857723*89^(6/19) 6524750009114537 a001 51841/3278735159921*89^(6/19) 6524750012667719 a001 39603/2504730781961*89^(6/19) 6524750035371846 a003 cos(Pi*36/119)/sin(Pi*7/20) 6524750037021590 a001 15127/956722026041*89^(6/19) 6524750042001792 a007 Real Root Of -94*x^4+803*x^3+264*x^2+425*x+405 6524750080758009 a001 377/710647*2207^(5/8) 6524750082412191 k002 Champernowne real with 71/2*n^2+151/2*n-46 6524750083550535 m001 (Artin+KomornikLoreti)/(Si(Pi)-Zeta(1/2)) 6524750086561354 a001 6/329*514229^(28/45) 6524750092242006 m001 TwinPrimes/Porter^2*exp(GAMMA(7/12))^2 6524750099968211 l006 ln(3337/6408) 6524750120375100 b008 2-23*Csc[Pi/9] 6524750124042205 s002 sum(A184281[n]/((10^n-1)/n),n=1..infinity) 6524750159905562 a007 Real Root Of 111*x^4-909*x^3-815*x^2-447*x+871 6524750164497821 a001 377/1149851*2207^(11/16) 6524750182712251 k002 Champernowne real with 36*n^2+74*n-45 6524750201721979 m001 GolombDickman^Landau/KhinchinLevy 6524750203945500 a001 2889/182717648081*89^(6/19) 6524750214332845 a007 Real Root Of -838*x^4+781*x^3-597*x^2-72*x+576 6524750248212958 a001 377/1860498*2207^(3/4) 6524750272531852 a007 Real Root Of -54*x^4-385*x^3-120*x^2+561*x-304 6524750283012311 k002 Champernowne real with 73/2*n^2+145/2*n-44 6524750318712506 a007 Real Root Of 815*x^4+307*x^3+883*x^2-955*x-66 6524750324490706 m001 1/ln(GAMMA(1/4))^2/Rabbit^2/GAMMA(2/3)^2 6524750331937522 a001 377/3010349*2207^(13/16) 6524750333002921 a001 514229/47*11^(35/47) 6524750343095027 m005 (1/2*gamma+6)/(5/9*Zeta(3)-4/7) 6524750383312371 k002 Champernowne real with 37*n^2+71*n-43 6524750415658487 a001 377/4870847*2207^(7/8) 6524750444537395 m001 (-Magata+Riemann2ndZero)/(5^(1/2)+arctan(1/2)) 6524750483612431 k002 Champernowne real with 75/2*n^2+139/2*n-42 6524750499380828 a001 377/7881196*2207^(15/16) 6524750509975601 a007 Real Root Of -778*x^4-314*x^3-805*x^2+943*x-58 6524750517594400 a007 Real Root Of -533*x^4+939*x^3-388*x^2+278*x+704 6524750526487282 m003 6+Sqrt[5]/32+(3*ProductLog[1/2+Sqrt[5]/2])/5 6524750526668184 a001 377/15127*843^(1/7) 6524750537411950 m001 (Magata-Shi(1))/(MertensB1+Paris) 6524750548722048 r005 Re(z^2+c),c=1/34+16/45*I,n=25 6524750549047140 l006 ln(3475/6673) 6524750551375318 a007 Real Root Of -343*x^4+404*x^3-313*x^2+914*x+904 6524750562536880 p003 LerchPhi(1/256,6,131/122) 6524750578031924 r002 11th iterates of z^2 + 6524750578955782 m001 1/GAMMA(1/12)*exp(GlaisherKinkelin)^2*gamma 6524750582054028 r005 Re(z^2+c),c=-55/48+15/49*I,n=12 6524750582906338 a007 Real Root Of 99*x^4-385*x^3+455*x^2-206*x-453 6524750583102684 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^34 6524750583912491 k002 Champernowne real with 38*n^2+68*n-41 6524750584904054 a003 cos(Pi*11/95)-sin(Pi*40/81) 6524750655336491 m001 Riemann2ndZero^2*exp(MinimumGamma)^2/(2^(1/3)) 6524750670207699 a007 Real Root Of 589*x^4-800*x^3+875*x^2-433*x-984 6524750684212551 k002 Champernowne real with 77/2*n^2+133/2*n-40 6524750728344561 a007 Real Root Of -172*x^4+622*x^3+742*x^2-36*x-434 6524750746226055 a003 sin(Pi*11/37)*sin(Pi*22/73) 6524750761938518 r002 23th iterates of z^2 + 6524750766318680 a007 Real Root Of 640*x^4-415*x^3-213*x^2-347*x-367 6524750782320401 a003 cos(Pi*27/118)-cos(Pi*22/47) 6524750784512611 k002 Champernowne real with 39*n^2+65*n-39 6524750827473407 r002 10th iterates of z^2 + 6524750828367907 a007 Real Root Of -283*x^4-132*x^3+685*x^2+540*x-556 6524750828897486 a007 Real Root Of 930*x^4-69*x^3+809*x^2-432*x-814 6524750833355221 a001 2584/271443*521^(4/13) 6524750834446238 r008 a(0)=0,K{-n^6,1+47*n+7*n^2-40*n^3} 6524750838054631 a001 610/167761*521^(6/13) 6524750884812671 k002 Champernowne real with 79/2*n^2+127/2*n-38 6524750888225614 r009 Im(z^3+c),c=-3/46+34/45*I,n=22 6524750889799587 a007 Real Root Of 649*x^4-852*x^3-354*x^2+18*x+258 6524750905794997 r009 Im(z^3+c),c=-19/48+7/12*I,n=10 6524750921914120 a007 Real Root Of 100*x^4-596*x^3+63*x^2-223*x-356 6524750934290548 r005 Im(z^2+c),c=-19/16+5/57*I,n=40 6524750960054513 a001 41/48*8^(44/45) 6524750963820547 l006 ln(3613/6938) 6524750968686995 a007 Real Root Of 299*x^4-507*x^3-758*x^2-657*x-301 6524750970188457 r005 Re(z^2+c),c=13/32+17/49*I,n=35 6524750978800023 a001 2207/1346269*4181^(28/39) 6524750981540339 a007 Real Root Of -268*x^4+807*x^3+797*x^2-78*x-464 6524750985112731 k002 Champernowne real with 40*n^2+62*n-37 6524751000354792 a001 6765/710647*521^(4/13) 6524751024719700 a001 17711/1860498*521^(4/13) 6524751028274493 a001 46368/4870847*521^(4/13) 6524751028793130 a001 121393/12752043*521^(4/13) 6524751028868798 a001 317811/33385282*521^(4/13) 6524751028879838 a001 832040/87403803*521^(4/13) 6524751028881449 a001 46347/4868641*521^(4/13) 6524751028881684 a001 5702887/599074578*521^(4/13) 6524751028881718 a001 14930352/1568397607*521^(4/13) 6524751028881723 a001 39088169/4106118243*521^(4/13) 6524751028881724 a001 102334155/10749957122*521^(4/13) 6524751028881724 a001 267914296/28143753123*521^(4/13) 6524751028881724 a001 701408733/73681302247*521^(4/13) 6524751028881724 a001 1836311903/192900153618*521^(4/13) 6524751028881724 a001 102287808/10745088481*521^(4/13) 6524751028881724 a001 12586269025/1322157322203*521^(4/13) 6524751028881724 a001 32951280099/3461452808002*521^(4/13) 6524751028881724 a001 86267571272/9062201101803*521^(4/13) 6524751028881724 a001 225851433717/23725150497407*521^(4/13) 6524751028881724 a001 139583862445/14662949395604*521^(4/13) 6524751028881724 a001 53316291173/5600748293801*521^(4/13) 6524751028881724 a001 20365011074/2139295485799*521^(4/13) 6524751028881724 a001 7778742049/817138163596*521^(4/13) 6524751028881724 a001 2971215073/312119004989*521^(4/13) 6524751028881724 a001 1134903170/119218851371*521^(4/13) 6524751028881724 a001 433494437/45537549124*521^(4/13) 6524751028881724 a001 165580141/17393796001*521^(4/13) 6524751028881724 a001 63245986/6643838879*521^(4/13) 6524751028881726 a001 24157817/2537720636*521^(4/13) 6524751028881739 a001 9227465/969323029*521^(4/13) 6524751028881829 a001 3524578/370248451*521^(4/13) 6524751028882444 a001 1346269/141422324*521^(4/13) 6524751028886661 a001 514229/54018521*521^(4/13) 6524751028915564 a001 196418/20633239*521^(4/13) 6524751029113665 a001 75025/7881196*521^(4/13) 6524751030471475 a001 28657/3010349*521^(4/13) 6524751035827871 m001 (Magata+PrimesInBinary)/(sin(1/5*Pi)-gamma(3)) 6524751037033723 a007 Real Root Of 263*x^4-199*x^3+466*x^2+376*x-56 6524751039778042 a001 10946/1149851*521^(4/13) 6524751072557287 r005 Re(z^2+c),c=1/38+4/25*I,n=9 6524751085412791 k002 Champernowne real with 81/2*n^2+121/2*n-36 6524751103566202 a001 4181/439204*521^(4/13) 6524751110708229 m008 (1/5*Pi^3-1)/(5/6*Pi^6-4) 6524751115980375 a007 Real Root Of -753*x^4+76*x^3+536*x^2+991*x+576 6524751137684397 a007 Real Root Of 14*x^4-752*x^3+880*x^2-521*x-926 6524751140098375 a007 Real Root Of -790*x^4+826*x^3+854*x^2+544*x+364 6524751181375620 m001 Lehmer/Shi(1)/Thue 6524751185712851 k002 Champernowne real with 41*n^2+59*n-35 6524751189491006 m001 GAMMA(7/12)^2/exp(BesselK(0,1))^2/cosh(1) 6524751206834284 m001 1/exp(Magata)/LandauRamanujan^2*GAMMA(1/12) 6524751216382136 a007 Real Root Of -575*x^4-378*x^3-834*x^2+841*x+903 6524751221889063 a001 13/844*843^(3/14) 6524751235049187 m005 (13/12+1/4*5^(1/2))/(5/8*exp(1)+9/11) 6524751255409182 m001 GolombDickman^(HardyLittlewoodC4/ZetaQ(3)) 6524751262412597 a007 Real Root Of 346*x^4-951*x^3-150*x^2-964*x-892 6524751263429141 r002 3th iterates of z^2 + 6524751286012911 k002 Champernowne real with 83/2*n^2+115/2*n-34 6524751313169914 m001 1/exp(RenyiParking)*Kolakoski*log(2+sqrt(3))^2 6524751316782579 a007 Real Root Of -816*x^4+772*x^3+399*x^2+315*x+398 6524751325861221 r005 Re(z^2+c),c=-73/110+8/27*I,n=17 6524751327356606 a007 Real Root Of 132*x^4+898*x^3+314*x^2+416*x-450 6524751329616884 a007 Real Root Of 216*x^4-244*x^3+799*x^2-29*x-466 6524751333782122 s002 sum(A132200[n]/(n^2*2^n+1),n=1..infinity) 6524751344845122 m006 (2/3*Pi^2-3/4)/(1/2*Pi^2+4) 6524751344845122 m008 (2/3*Pi^2-3/4)/(1/2*Pi^2+4) 6524751348059000 a001 2207/139583862445*89^(6/19) 6524751348074755 l006 ln(3751/7203) 6524751354487788 h001 (-3*exp(1/3)+3)/(-8*exp(1/2)-5) 6524751381801226 r005 Im(z^2+c),c=-17/14+37/234*I,n=19 6524751386312971 k002 Champernowne real with 42*n^2+56*n-33 6524751389535311 a007 Real Root Of 902*x^4+897*x^3+305*x^2-763*x-542 6524751400684947 m001 Thue^ln(5)*Thue^Zeta(3) 6524751410579531 m001 (gamma(2)+MertensB3)/(LambertW(1)-Zeta(1/2)) 6524751438675233 a007 Real Root Of 718*x^4-581*x^3+28*x^2-329*x+234 6524751443118123 a007 Real Root Of -370*x^4-175*x^3-954*x^2+65*x+467 6524751483438693 m001 1/sin(1)^2*exp(BesselJ(0,1))^2 6524751486309356 m001 ln(3)+Pi*csc(1/12*Pi)/GAMMA(11/12)*Bloch 6524751486613031 k002 Champernowne real with 85/2*n^2+109/2*n-32 6524751507696098 a007 Real Root Of 37*x^4-242*x^3-450*x^2-852*x+808 6524751529173630 m001 (FeigenbaumMu+MertensB1)/(ThueMorse+ZetaP(3)) 6524751532778415 a007 Real Root Of 43*x^4-245*x^3+400*x^2+601*x+146 6524751533139302 m001 BesselJ(1,1)/exp(MinimumGamma)^2/GAMMA(1/4) 6524751539943850 a001 987/64079*521^(3/13) 6524751540776753 a001 1597/167761*521^(4/13) 6524751554681324 a007 Real Root Of -616*x^4+502*x^3+276*x^2+793*x+651 6524751586913091 k002 Champernowne real with 43*n^2+53*n-31 6524751587796415 r005 Im(z^2+c),c=-17/14+12/77*I,n=59 6524751610427123 b008 Erfc[E^(-2)]/13 6524751658354457 a008 Real Root of (-3+8*x-8*x^2+6*x^4+3*x^8) 6524751687213151 k002 Champernowne real with 87/2*n^2+103/2*n-30 6524751702372005 r005 Im(z^2+c),c=-3/14+9/14*I,n=18 6524751705058659 l006 ln(3889/7468) 6524751717740409 m005 (1/2*2^(1/2)+6/11)/(5/7*2^(1/2)-9/11) 6524751739291581 r005 Im(z^2+c),c=-11/10+8/103*I,n=38 6524751758149261 r005 Re(z^2+c),c=2/9+19/54*I,n=23 6524751769007021 r009 Re(z^3+c),c=-47/78+13/28*I,n=4 6524751787513211 k002 Champernowne real with 44*n^2+50*n-29 6524751816376637 r005 Im(z^2+c),c=-11/98+37/44*I,n=50 6524751821258627 b008 3*Gamma[11,Pi^2] 6524751856699076 m001 ln(BesselJ(0,1))*Backhouse^2*GAMMA(1/12) 6524751858854572 a007 Real Root Of -458*x^4+38*x^3+718*x^2+579*x-611 6524751862653090 a001 377/39603*843^(2/7) 6524751874402987 r005 Re(z^2+c),c=-95/126+7/46*I,n=9 6524751875191607 a007 Real Root Of 919*x^4+796*x^3+448*x^2-858*x-696 6524751878308459 m005 (1/2*Zeta(3)+9/10)/(1/4*Zeta(3)+2) 6524751887129565 m001 Zeta(3)^2/Sierpinski^2*ln(sqrt(3))^2 6524751887813271 k002 Champernowne real with 89/2*n^2+97/2*n-28 6524751898701180 r005 Im(z^2+c),c=1/114+38/61*I,n=18 6524751898860104 r005 Re(z^2+c),c=11/54+19/58*I,n=18 6524751906252618 p004 log(22481/21061) 6524751927952994 a007 Real Root Of -406*x^4+932*x^3+792*x^2+749*x+484 6524751933628745 a007 Real Root Of 996*x^4-77*x^3-292*x^2-629*x-488 6524751936769218 a007 Real Root Of 693*x^4+252*x^3+516*x^2-677*x-717 6524751940922689 m001 (Gompertz*Totient-HardyLittlewoodC5)/Gompertz 6524751958401828 m001 (-CareFree+Otter)/(2^(1/3)-GAMMA(3/4)) 6524751965293037 r005 Re(z^2+c),c=-2/3+43/135*I,n=48 6524751976670504 m001 gamma^(exp(1/Pi)*BesselI(1,1)) 6524751988113331 k002 Champernowne real with 45*n^2+47*n-27 6524751997531324 a007 Real Root Of -939*x^4+269*x^3-662*x^2-277*x+346 6524752001410656 m001 (FeigenbaumC-FeigenbaumD)/(gamma(3)+Conway) 6524752008616606 r002 17th iterates of z^2 + 6524752037575812 l006 ln(4027/7733) 6524752068538069 m001 (Rabbit-RenyiParking)/(ln(gamma)+GAMMA(5/6)) 6524752079315449 r005 Im(z^2+c),c=-61/118+7/61*I,n=29 6524752088413391 k002 Champernowne real with 91/2*n^2+91/2*n-26 6524752127217325 a007 Real Root Of 794*x^4-154*x^3+917*x^2-52*x-611 6524752159851379 a001 1548008755920/47*7881196^(21/23) 6524752159851475 a001 6557470319842/47*141422324^(16/23) 6524752159851475 a001 7778742049/47*969323029^(22/23) 6524752159851475 a001 20365011074/47*2537720636^(20/23) 6524752159851475 a001 102287808*45537549124^(19/23) 6524752159851475 a001 102287808*817138163596^(17/23) 6524752159851475 a001 1548008755920/47*14662949395604^(11/23) 6524752159851475 a001 53316291173/47*5600748293801^(14/23) 6524752159851475 a001 6557470319842/47*73681302247^(12/23) 6524752159851475 a001 20365011074/47*3461452808002^(15/23) 6524752159851475 a001 20365011074/47*28143753123^(18/23) 6524752159851475 a001 6557470319842/47*10749957122^(13/23) 6524752159851475 a001 2971215073/47*9062201101803^(16/23) 6524752159851475 a001 63245986/47*505019158607^(21/23) 6524752188713451 k002 Champernowne real with 46*n^2+44*n-25 6524752200394310 a007 Real Root Of -97*x^4-364*x^3-966*x^2+497*x+652 6524752272038234 a007 Real Root Of -807*x^4+842*x^3+487*x^2-412*x-96 6524752289013511 k002 Champernowne real with 93/2*n^2+85/2*n-24 6524752343440772 m005 (1/3*Catalan+3/4)/(11/12*Catalan+7/9) 6524752347009920 r005 Re(z^2+c),c=-7/78+41/60*I,n=46 6524752348058206 l006 ln(4165/7998) 6524752367234709 a007 Real Root Of -74*x^4-401*x^3+475*x^2-398*x-88 6524752374683130 r005 Im(z^2+c),c=-15/38+1/9*I,n=8 6524752389313571 k002 Champernowne real with 47*n^2+41*n-23 6524752393292522 m004 -7+5*Pi-2*Cot[Sqrt[5]*Pi] 6524752404613509 r005 Im(z^2+c),c=-63/110+2/17*I,n=19 6524752415684786 a007 Real Root Of 676*x^4+144*x^3-135*x^2-515*x-33 6524752434392094 m005 (1/2*Zeta(3)-6/11)/(5*3^(1/2)-1/7) 6524752461004526 a001 29/6765*1346269^(27/52) 6524752475247524 q001 659/1010 6524752488012121 m001 (MertensB3+Porter)/(TreeGrowth2nd-Trott) 6524752489613631 k002 Champernowne real with 95/2*n^2+79/2*n-22 6524752503512657 m005 (1/2*5^(1/2)+5/7)/(Pi-1/3) 6524752524217877 a001 377/64079*843^(5/14) 6524752530289725 a001 199/86267571272*514229^(21/22) 6524752581222850 a001 233/9349*199^(2/11) 6524752589913691 k002 Champernowne real with 48*n^2+38*n-21 6524752597811637 m001 (Stephens-TwinPrimes)/(MertensB3-MinimumGamma) 6524752602247565 m005 1/4*5^(1/2)/(3*Pi-6/7) 6524752606691281 a007 Real Root Of 887*x^4-470*x^3+520*x^2-448*x-805 6524752613197512 r005 Re(z^2+c),c=1/34+16/45*I,n=26 6524752615572765 a007 Real Root Of 143*x^4+895*x^3-252*x^2+48*x+475 6524752638625847 l006 ln(4303/8263) 6524752643287100 r005 Im(z^2+c),c=-55/114+1/9*I,n=15 6524752646538618 a001 199/233*2971215073^(7/23) 6524752665034772 r005 Re(z^2+c),c=-55/78+11/52*I,n=25 6524752682700659 a001 2584/167761*521^(3/13) 6524752686240887 a001 305/51841*521^(5/13) 6524752690213751 k002 Champernowne real with 97/2*n^2+73/2*n-20 6524752696748688 r009 Re(z^3+c),c=-67/126+4/23*I,n=22 6524752714510732 a007 Real Root Of 203*x^4-499*x^3-249*x^2+160*x+35 6524752729450471 a007 Real Root Of -369*x^4+750*x^3+438*x^2+569*x+460 6524752750542050 a001 114985/1762289 6524752750544040 a004 Fibonacci(14)/Lucas(15)/(1/2+sqrt(5)/2)^3 6524752750555075 a004 Fibonacci(15)/Lucas(14)/(1/2+sqrt(5)/2)^5 6524752751617464 m001 ArtinRank2/DuboisRaymond/ln(gamma) 6524752751617464 m001 ArtinRank2/ln(gamma)/DuboisRaymond 6524752790513811 k002 Champernowne real with 49*n^2+35*n-19 6524752791292339 a007 Real Root Of -682*x^4+922*x^3-16*x^2+307*x-326 6524752799316696 r009 Im(z^3+c),c=-15/46+29/44*I,n=6 6524752810291202 r005 Re(z^2+c),c=-1/110+37/46*I,n=11 6524752820629034 r005 Im(z^2+c),c=-43/94+3/44*I,n=3 6524752824221313 r005 Im(z^2+c),c=-5/54+25/27*I,n=14 6524752834467120 r005 Re(z^2+c),c=-37/42+37/50*I,n=2 6524752849426630 a001 6765/439204*521^(3/13) 6524752857557682 r005 Im(z^2+c),c=-11/31+35/57*I,n=24 6524752862906152 a007 Real Root Of -62*x^4-435*x^3-154*x^2+256*x-236 6524752872385411 a007 Real Root Of -17*x^4-60*x^3+246*x^2-573*x-67 6524752873751622 a001 17711/1149851*521^(3/13) 6524752875036991 m001 (Paris-ZetaP(3))/(BesselJ(1,1)-ErdosBorwein) 6524752877300590 a001 46368/3010349*521^(3/13) 6524752877818378 a001 121393/7881196*521^(3/13) 6524752877893922 a001 10959/711491*521^(3/13) 6524752877904944 a001 832040/54018521*521^(3/13) 6524752877906552 a001 2178309/141422324*521^(3/13) 6524752877906786 a001 5702887/370248451*521^(3/13) 6524752877906821 a001 14930352/969323029*521^(3/13) 6524752877906826 a001 39088169/2537720636*521^(3/13) 6524752877906826 a001 102334155/6643838879*521^(3/13) 6524752877906826 a001 9238424/599786069*521^(3/13) 6524752877906826 a001 701408733/45537549124*521^(3/13) 6524752877906826 a001 1836311903/119218851371*521^(3/13) 6524752877906826 a001 4807526976/312119004989*521^(3/13) 6524752877906826 a001 12586269025/817138163596*521^(3/13) 6524752877906826 a001 32951280099/2139295485799*521^(3/13) 6524752877906826 a001 86267571272/5600748293801*521^(3/13) 6524752877906826 a001 7787980473/505618944676*521^(3/13) 6524752877906826 a001 365435296162/23725150497407*521^(3/13) 6524752877906826 a001 139583862445/9062201101803*521^(3/13) 6524752877906826 a001 53316291173/3461452808002*521^(3/13) 6524752877906826 a001 20365011074/1322157322203*521^(3/13) 6524752877906826 a001 7778742049/505019158607*521^(3/13) 6524752877906826 a001 2971215073/192900153618*521^(3/13) 6524752877906826 a001 1134903170/73681302247*521^(3/13) 6524752877906826 a001 433494437/28143753123*521^(3/13) 6524752877906826 a001 165580141/10749957122*521^(3/13) 6524752877906827 a001 63245986/4106118243*521^(3/13) 6524752877906829 a001 24157817/1568397607*521^(3/13) 6524752877906842 a001 9227465/599074578*521^(3/13) 6524752877906931 a001 3524578/228826127*521^(3/13) 6524752877907546 a001 1346269/87403803*521^(3/13) 6524752877911755 a001 514229/33385282*521^(3/13) 6524752877940611 a001 196418/12752043*521^(3/13) 6524752878138388 a001 75025/4870847*521^(3/13) 6524752879493973 a001 28657/1860498*521^(3/13) 6524752881768789 m005 (1/2*Catalan+6)/(29/140+7/20*5^(1/2)) 6524752888785293 a001 10946/710647*521^(3/13) 6524752890813871 k002 Champernowne real with 99/2*n^2+67/2*n-18 6524752911135235 l006 ln(4441/8528) 6524752920001290 m001 GaussAGM(1,1/sqrt(2))^(exp(1)/GAMMA(11/12)) 6524752928580579 r009 Re(z^3+c),c=-31/110+19/27*I,n=33 6524752952468948 a001 4181/271443*521^(3/13) 6524752974993535 m001 1/exp(GAMMA(7/24))^2/GAMMA(7/12)^2/sinh(1)^2 6524752978490127 a007 Real Root Of 650*x^4-937*x^3+748*x^2+292*x-506 6524752991113931 k002 Champernowne real with 50*n^2+32*n-17 6524753009040368 r005 Im(z^2+c),c=-177/122+1/43*I,n=10 6524753033610156 a007 Real Root Of -449*x^4+935*x^3+946*x^2+965*x+568 6524753050000201 a007 Real Root Of -114*x^4-687*x^3+346*x^2-287*x-819 6524753066153129 m001 (-Magata+Weierstrass)/(5^(1/2)-Khinchin) 6524753069592708 m001 1/ln(GAMMA(11/24))/GAMMA(1/24)*Zeta(7) 6524753091413991 k002 Champernowne real with 101/2*n^2+61/2*n-16 6524753093590605 m001 GaussKuzminWirsing*Riemann3rdZero*Thue 6524753095420828 m005 (1/2*2^(1/2)+1/3)/(43/48+5/16*5^(1/2)) 6524753102690587 a007 Real Root Of 901*x^4-572*x^3+531*x^2-487*x-866 6524753113161317 m001 (GAMMA(11/24)+5)/(Zeta(1,2)+2) 6524753123297528 r005 Im(z^2+c),c=-55/114+33/62*I,n=27 6524753167219066 l006 ln(4579/8793) 6524753172106063 m001 (Cahen+Weierstrass)/(cos(1)+GAMMA(19/24)) 6524753172239821 r009 Re(z^3+c),c=-14/23+29/61*I,n=10 6524753173663166 m001 (-Artin+MertensB1)/(2^(1/3)+arctan(1/2)) 6524753177326277 r009 Im(z^3+c),c=-11/28+1/57*I,n=7 6524753177837571 a001 377/103682*843^(3/7) 6524753180232557 a001 36/109801*322^(11/12) 6524753182715159 a007 Real Root Of -827*x^4+603*x^3+982*x^2+659*x+39 6524753191714051 k002 Champernowne real with 51*n^2+29*n-15 6524753204587255 a007 Real Root Of 715*x^4-106*x^3-358*x^2-835*x-53 6524753230413676 r009 Re(z^3+c),c=-13/114+23/60*I,n=2 6524753282766495 q001 4/61305 6524753283502642 a007 Real Root Of -890*x^4+832*x^3+427*x^2+934*x-861 6524753292014112 k002 Champernowne real with 103/2*n^2+55/2*n-14 6524753292477076 r005 Im(z^2+c),c=23/82+25/44*I,n=23 6524753334972162 m005 (1/3*Zeta(3)-2/5)/(19/5+3*5^(1/2)) 6524753348498220 a007 Real Root Of -828*x^4-98*x^3+206*x^2+668*x+471 6524753349410137 a003 cos(Pi*16/67)*sin(Pi*27/77) 6524753351295101 m001 (2^(1/3)+Otter)^Conway 6524753353211994 m001 (FeigenbaumMu-Magata)/(MertensB2+MinimumGamma) 6524753383085449 a007 Real Root Of 670*x^4-16*x^3+410*x^2-617*x-703 6524753383219926 a001 329/13201*521^(2/13) 6524753388963207 a001 1597/103682*521^(3/13) 6524753392314172 k002 Champernowne real with 52*n^2+26*n-13 6524753395813212 a007 Real Root Of -834*x^4+125*x^3+556*x^2+576*x+325 6524753404624953 a003 cos(Pi*15/97)-cos(Pi*20/47) 6524753408318975 l006 ln(4717/9058) 6524753408882098 a007 Real Root Of 238*x^4-833*x^3-176*x^2-130*x+348 6524753425695422 m001 (3^(1/3)-Riemann1stZero)/DuboisRaymond 6524753434032580 r005 Re(z^2+c),c=9/40+27/50*I,n=19 6524753492614232 k002 Champernowne real with 105/2*n^2+49/2*n-12 6524753578437184 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^35 6524753589933753 a005 (1/cos(5/72*Pi))^1134 6524753592914292 k002 Champernowne real with 53*n^2+23*n-11 6524753602791533 m008 (1/4*Pi+2/3)/(3/4*Pi^3-1) 6524753608218612 a003 sin(Pi*26/99)-sin(Pi*18/61) 6524753623589299 r009 Re(z^3+c),c=-17/29+19/45*I,n=5 6524753635712683 l006 ln(4855/9323) 6524753642459832 m001 (5^(1/2))^Bloch-AlladiGrinstead 6524753643264704 r005 Re(z^2+c),c=39/98+7/12*I,n=8 6524753665978886 m001 Thue^ln(2)/(BesselI(1,2)^ln(2)) 6524753666878709 m005 (1/3*2^(1/2)-1/3)/(8/11*Catalan-5/11) 6524753669141077 s002 sum(A094932[n]/((2*n)!),n=1..infinity) 6524753670804258 a007 Real Root Of -608*x^4-345*x^3-432*x^2+818*x+732 6524753685735750 m001 Catalan*BesselJ(1,1)-GAMMA(11/12) 6524753693214352 k002 Champernowne real with 107/2*n^2+43/2*n-10 6524753710343032 m001 FeigenbaumD^arctan(1/3)*Weierstrass 6524753721067033 a001 199/2178309*8^(52/55) 6524753766537166 a001 9349/144*196418^(31/41) 6524753770227099 m005 (1/3*gamma-1/6)/(6/11*3^(1/2)+3) 6524753784285676 m001 (Catalan+Kac)/(KhinchinLevy+Salem) 6524753793514412 k002 Champernowne real with 54*n^2+20*n-9 6524753794666468 s002 sum(A156843[n]/((exp(n)+1)/n),n=1..infinity) 6524753812236749 a001 329/4250681*1364^(14/15) 6524753833727723 m001 (ArtinRank2-cos(1))/(MadelungNaCl+Robbin) 6524753834492112 a001 377/167761*843^(1/2) 6524753850536656 l006 ln(4993/9588) 6524753880049932 m005 (1/3*Zeta(3)+3/7)/(14/55+5/11*5^(1/2)) 6524753893814472 k002 Champernowne real with 109/2*n^2+37/2*n-8 6524753897041791 a007 Real Root Of -933*x^4+295*x^3+490*x^2+525*x-464 6524753917712553 a007 Real Root Of -434*x^4+565*x^3+45*x^2-462*x-85 6524753927851357 a007 Real Root Of -109*x^4+750*x^3-110*x^2+135*x+363 6524753939907689 m001 (LambertW(1)-Psi(1,1/3))/Zeta(1/2) 6524753953408189 r005 Re(z^2+c),c=-23/40+40/61*I,n=8 6524753975826720 m004 -6+5*Pi-2*Cot[Sqrt[5]*Pi]-Tanh[Sqrt[5]*Pi] 6524753990978513 r009 Im(z^3+c),c=-33/94+31/47*I,n=22 6524753994114532 k002 Champernowne real with 55*n^2+17*n-7 6524754007017170 m004 3+5*Sqrt[5]*Pi+20*Sec[Sqrt[5]*Pi] 6524754011768751 a007 Real Root Of 83*x^4-771*x^3+588*x^2-265*x+15 6524754019887997 s002 sum(A230356[n]/(pi^n),n=1..infinity) 6524754036732305 m001 (-FeigenbaumC+Porter)/(Psi(2,1/3)-ln(2)) 6524754045407284 m002 -Pi^2+24*Pi*Tanh[Pi] 6524754046036507 a001 987/7881196*1364^(13/15) 6524754050071048 m001 (Zeta(1,-1)+gamma(2))/(Khinchin-ZetaQ(4)) 6524754053805097 l006 ln(5131/9853) 6524754054867216 m006 (1/3/Pi-4/5)/(1/5*exp(2*Pi)-3/4) 6524754058474869 r002 2th iterates of z^2 + 6524754075156596 a007 Real Root Of 381*x^4-309*x^3+485*x^2+45*x-332 6524754094414592 k002 Champernowne real with 111/2*n^2+31/2*n-6 6524754104335098 m001 1/Zeta(7)^2*GAMMA(19/24)*exp(sqrt(3)) 6524754108091249 a007 Real Root Of -677*x^4+445*x^3+266*x^2+498*x+458 6524754135703251 a007 Real Root Of 363*x^4+45*x^3+253*x^2-869*x-728 6524754159154596 r005 Re(z^2+c),c=11/78+28/55*I,n=33 6524754174997989 a001 199/365435296162*6557470319842^(17/24) 6524754174997990 a001 199/102334155*63245986^(17/24) 6524754175637468 m001 1/exp(GAMMA(5/24))^2/ArtinRank2*sqrt(3)^2 6524754182871096 a007 Real Root Of 218*x^4+222*x^3+597*x^2-282*x-416 6524754194714652 k002 Champernowne real with 56*n^2+14*n-5 6524754223093500 m001 1/ln(Rabbit)*FeigenbaumDelta^2*GAMMA(23/24) 6524754235248889 m001 ln(2)^polylog(4,1/2)-ZetaP(3) 6524754244897518 a003 sin(Pi*13/83)/sin(Pi*25/97) 6524754279835748 a001 987/4870847*1364^(4/5) 6524754295014712 k002 Champernowne real with 113/2*n^2+25/2*n-4 6524754296491103 m001 exp(Riemann2ndZero)^2*Bloch/GAMMA(1/4)^2 6524754306300251 a003 sin(Pi*7/62)-sin(Pi*37/75) 6524754323525900 r005 Im(z^2+c),c=35/106+23/64*I,n=12 6524754324308322 a007 Real Root Of 202*x^4-10*x^3+641*x^2-847*x-58 6524754342664560 r005 Re(z^2+c),c=2/9+26/55*I,n=26 6524754351597646 a007 Real Root Of -956*x^4+166*x^3-157*x^2+438*x+572 6524754352308883 m001 (Robbin+ZetaQ(3))/(3^(1/3)-PrimesInBinary) 6524754375602787 a001 7/13*2178309^(18/37) 6524754380776654 m001 (GAMMA(1/4)*sin(Pi/5)-MadelungNaCl)/sin(Pi/5) 6524754395314772 k002 Champernowne real with 57*n^2+11*n-3 6524754442219894 m005 (1/2*gamma-7/10)/(8/9*3^(1/2)-10/11) 6524754483868830 p003 LerchPhi(1/10,5,109/100) 6524754486460910 r005 Re(z^2+c),c=9/52+19/40*I,n=15 6524754489987536 a001 377/271443*843^(4/7) 6524754494144901 a007 Real Root Of 886*x^4+149*x^3+174*x^2-786*x-52 6524754494549831 s002 sum(A006048[n]/(n^2*2^n+1),n=1..infinity) 6524754495614832 k002 Champernowne real with 115/2*n^2+19/2*n-2 6524754511654623 a001 2/987*6557470319842^(2/17) 6524754513636373 a001 987/3010349*1364^(11/15) 6524754524673893 a003 cos(Pi*23/79)/sin(Pi*5/13) 6524754530887437 a001 1292/51841*521^(2/13) 6524754537110371 m001 (Mills-Totient)/(FellerTornier-GaussAGM) 6524754537462448 a001 610/64079*521^(4/13) 6524754554617236 m005 (1/2*Zeta(3)+5/8)/(4/9*gamma-4/9) 6524754560253525 m001 FeigenbaumB^2/exp(FeigenbaumDelta)*Zeta(9)^2 6524754562378542 a001 377/9349*322^(1/12) 6524754571934732 m001 (Magata-Sierpinski)/(Ei(1)-HardyLittlewoodC3) 6524754579789024 s002 sum(A263171[n]/(n^3*10^n+1),n=1..infinity) 6524754595914892 k002 Champernowne real with 58*n^2+8*n-1 6524754608415366 m001 Magata^(GAMMA(19/24)*Conway) 6524754610977933 m001 PrimesInBinary^Champernowne/exp(1/Pi) 6524754619434434 m005 (1/2*2^(1/2)+3/4)/(29/24+11/24*5^(1/2)) 6524754621115840 m006 (3/5*Pi^2+1/6)/(4*exp(Pi)+3/4) 6524754624467338 a003 sin(Pi*6/101)+sin(Pi*15/97) 6524754633244212 a007 Real Root Of -108*x^4-633*x^3+502*x^2+92*x-862 6524754633308756 a007 Real Root Of 763*x^4+10*x^3+298*x^2-919*x-862 6524754636196597 r002 12th iterates of z^2 + 6524754641965651 r009 Re(z^3+c),c=-27/46+13/57*I,n=11 6524754650516171 m005 (1/2*Zeta(3)-11/12)/(3/4*gamma-11/12) 6524754689570642 b008 383/6+Sqrt[2] 6524754691942640 a001 4/89*55^(4/43) 6524754696214952 k002 Champernowne real with 117/2*n^2+13/2*n 6524754697167793 r005 Re(z^2+c),c=-1/15+25/33*I,n=38 6524754698329871 a001 2255/90481*521^(2/13) 6524754699241572 m001 (GAMMA(1/3)+2/3)/(GAMMA(5/12)+3) 6524754722551546 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^37 6524754722759393 a001 17711/710647*521^(2/13) 6524754725205666 r005 Re(z^2+c),c=-13/90+37/51*I,n=11 6524754726323612 a001 2576/103361*521^(2/13) 6524754726843624 a001 121393/4870847*521^(2/13) 6524754726919493 a001 105937/4250681*521^(2/13) 6524754726930562 a001 416020/16692641*521^(2/13) 6524754726932177 a001 726103/29134601*521^(2/13) 6524754726932413 a001 5702887/228826127*521^(2/13) 6524754726932447 a001 829464/33281921*521^(2/13) 6524754726932452 a001 39088169/1568397607*521^(2/13) 6524754726932453 a001 34111385/1368706081*521^(2/13) 6524754726932453 a001 133957148/5374978561*521^(2/13) 6524754726932453 a001 233802911/9381251041*521^(2/13) 6524754726932453 a001 1836311903/73681302247*521^(2/13) 6524754726932453 a001 267084832/10716675201*521^(2/13) 6524754726932453 a001 12586269025/505019158607*521^(2/13) 6524754726932453 a001 10983760033/440719107401*521^(2/13) 6524754726932453 a001 43133785636/1730726404001*521^(2/13) 6524754726932453 a001 75283811239/3020733700601*521^(2/13) 6524754726932453 a001 182717648081/7331474697802*521^(2/13) 6524754726932453 a001 139583862445/5600748293801*521^(2/13) 6524754726932453 a001 53316291173/2139295485799*521^(2/13) 6524754726932453 a001 10182505537/408569081798*521^(2/13) 6524754726932453 a001 7778742049/312119004989*521^(2/13) 6524754726932453 a001 2971215073/119218851371*521^(2/13) 6524754726932453 a001 567451585/22768774562*521^(2/13) 6524754726932453 a001 433494437/17393796001*521^(2/13) 6524754726932453 a001 165580141/6643838879*521^(2/13) 6524754726932453 a001 31622993/1268860318*521^(2/13) 6524754726932455 a001 24157817/969323029*521^(2/13) 6524754726932468 a001 9227465/370248451*521^(2/13) 6524754726932558 a001 1762289/70711162*521^(2/13) 6524754726933175 a001 1346269/54018521*521^(2/13) 6524754726937403 a001 514229/20633239*521^(2/13) 6524754726966383 a001 98209/3940598*521^(2/13) 6524754727165010 a001 75025/3010349*521^(2/13) 6524754727303267 a007 Real Root Of -78*x^4-14*x^3-889*x^2+74*x+437 6524754728526420 a001 28657/1149851*521^(2/13) 6524754736176444 h001 (1/5*exp(2)+4/7)/(9/11*exp(1)+11/12) 6524754737857667 a001 5473/219602*521^(2/13) 6524754747433406 a001 329/620166*1364^(2/3) 6524754796515012 k002 Champernowne real with 59*n^2+5*n+1 6524754801814986 a001 4181/167761*521^(2/13) 6524754828251330 r009 Im(z^3+c),c=-8/21+47/62*I,n=2 6524754828806124 a007 Real Root Of -810*x^4+503*x^3+681*x^2+724*x+469 6524754843338914 a001 1364/4181*8^(1/3) 6524754875678944 l006 ln(1498/1599) 6524754889475582 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^39 6524754896815072 k002 Champernowne real with 119/2*n^2+7/2*n+2 6524754913829470 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^41 6524754917382655 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^43 6524754917901057 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^45 6524754917976691 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^47 6524754917987726 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^49 6524754917989336 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^51 6524754917989571 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^53 6524754917989605 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^55 6524754917989610 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^57 6524754917989611 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^59 6524754917989611 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^61 6524754917989611 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^63 6524754917989611 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^65 6524754917989611 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^67 6524754917989611 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^69 6524754917989611 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^71 6524754917989611 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^73 6524754917989611 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^75 6524754917989611 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^77 6524754917989611 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^79 6524754917989611 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^81 6524754917989611 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^83 6524754917989611 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^85 6524754917989611 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^87 6524754917989611 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^89 6524754917989611 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^91 6524754917989611 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^93 6524754917989611 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^95 6524754917989611 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^97 6524754917989611 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^99 6524754917989611 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^100 6524754917989611 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^98 6524754917989611 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^96 6524754917989611 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^94 6524754917989611 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^92 6524754917989611 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^90 6524754917989611 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^88 6524754917989611 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^86 6524754917989611 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^84 6524754917989611 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^82 6524754917989611 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^80 6524754917989611 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^78 6524754917989611 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^76 6524754917989611 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^74 6524754917989611 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^72 6524754917989611 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^70 6524754917989611 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^68 6524754917989611 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^66 6524754917989611 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^64 6524754917989611 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^62 6524754917989611 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^60 6524754917989611 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^58 6524754917989613 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^56 6524754917989626 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^54 6524754917989716 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^52 6524754917990331 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^50 6524754917991496 a001 1/305*(1/2+1/2*5^(1/2))^11 6524754917994546 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^48 6524754918023435 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^46 6524754918221448 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^44 6524754919206229 a007 Real Root Of -150*x^4-876*x^3+818*x^2+974*x+62 6524754919578643 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^42 6524754928881001 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^40 6524754931895522 a007 Real Root Of 940*x^4-807*x^3-35*x^2-153*x+1 6524754950386427 r009 Im(z^3+c),c=-9/58+26/35*I,n=38 6524754956351185 a001 1292/16692641*1364^(14/15) 6524754960259176 a007 Real Root Of -126*x^4+649*x^3+515*x^2+883*x+560 6524754974889789 m001 1/GAMMA(1/4)*Ei(1)^2*ln(GAMMA(11/24)) 6524754978520975 r005 Im(z^2+c),c=29/86+21/59*I,n=12 6524754981239872 a001 987/1149851*1364^(3/5) 6524754992640309 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^38 6524754997015112 k004 Champernowne real with floor(exp(1)*(22*n^2+n+1)) 6524754997115132 k002 Champernowne real with 60*n^2+2*n+3 6524755012286278 a007 Real Root Of 557*x^4-484*x^3-416*x^2-629*x+621 6524755026262351 h001 (-3*exp(1)-5)/(-5*exp(6)+1) 6524755078514047 a007 Real Root Of 244*x^4-760*x^3-535*x^2-445*x+685 6524755097415192 k002 Champernowne real with 121/2*n^2+1/2*n+4 6524755110912754 a007 Real Root Of 18*x^4-303*x^3+895*x^2-666*x-903 6524755123275232 a001 2255/29134601*1364^(14/15) 6524755145925794 a001 377/439204*843^(9/14) 6524755147629122 a001 17711/228826127*1364^(14/15) 6524755148331290 m001 exp(-Pi)^BesselI(1,1)/(exp(-Pi)^Ei(1)) 6524755148331290 m001 exp(Pi)^Ei(1)/(exp(Pi)^BesselI(1,1)) 6524755150919088 r005 Im(z^2+c),c=-5/118+27/34*I,n=50 6524755151182307 a001 2576/33281921*1364^(14/15) 6524755151700710 a001 121393/1568397607*1364^(14/15) 6524755151776344 a001 105937/1368706081*1364^(14/15) 6524755151787378 a001 416020/5374978561*1364^(14/15) 6524755151788988 a001 726103/9381251041*1364^(14/15) 6524755151789223 a001 5702887/73681302247*1364^(14/15) 6524755151789258 a001 2584/33385281*1364^(14/15) 6524755151789263 a001 39088169/505019158607*1364^(14/15) 6524755151789263 a001 34111385/440719107401*1364^(14/15) 6524755151789263 a001 133957148/1730726404001*1364^(14/15) 6524755151789263 a001 233802911/3020733700601*1364^(14/15) 6524755151789263 a001 1836311903/23725150497407*1364^(14/15) 6524755151789263 a001 567451585/7331474697802*1364^(14/15) 6524755151789263 a001 433494437/5600748293801*1364^(14/15) 6524755151789264 a001 165580141/2139295485799*1364^(14/15) 6524755151789264 a001 31622993/408569081798*1364^(14/15) 6524755151789266 a001 24157817/312119004989*1364^(14/15) 6524755151789279 a001 9227465/119218851371*1364^(14/15) 6524755151789369 a001 1762289/22768774562*1364^(14/15) 6524755151789983 a001 1346269/17393796001*1364^(14/15) 6524755151794198 a001 514229/6643838879*1364^(14/15) 6524755151823088 a001 98209/1268860318*1364^(14/15) 6524755152021100 a001 75025/969323029*1364^(14/15) 6524755153378296 a001 28657/370248451*1364^(14/15) 6524755162680654 a001 5473/70711162*1364^(14/15) 6524755163018548 r009 Re(z^3+c),c=-65/122+3/17*I,n=40 6524755189391501 m001 exp(1/Pi)/gamma*Trott2nd 6524755190150861 a001 2584/20633239*1364^(13/15) 6524755197715252 k002 Champernowne real with 61*n^2-n+5 6524755215021672 a001 141/101521*1364^(8/15) 6524755226439967 a001 4181/54018521*1364^(14/15) 6524755229268753 a007 Real Root Of -321*x^4+990*x^3-925*x^2-190*x+603 6524755240184968 a001 1597/64079*521^(2/13) 6524755247297227 a001 987/24476*521^(1/13) 6524755255576552 m001 Zeta(1/2)/(StolarskyHarborth^Gompertz) 6524755257450892 r002 14th iterates of z^2 + 6524755266628594 m005 (1/2*Zeta(3)-1/9)/(1/8*Catalan+7/11) 6524755276130556 m001 GAMMA(23/24)^2/exp(CopelandErdos)/GAMMA(5/6)^2 6524755298015312 k002 Champernowne real with 123/2*n^2-5/2*n+6 6524755300260111 m001 1/BesselJ(1,1)^2/ln((2^(1/3)))*cos(1)^2 6524755303203524 a007 Real Root Of -146*x^4-983*x^3-335*x^2-904*x-77 6524755314505048 a003 cos(Pi*19/109)-sin(Pi*37/115) 6524755338938768 s002 sum(A021851[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755351187881 m005 (1/2*3^(1/2)+5)/(5/7*2^(1/2)-1/9) 6524755353021675 m001 (3^(1/2)+ln(3))/((1+3^(1/2))^(1/2)+Khinchin) 6524755357074895 a001 6765/54018521*1364^(13/15) 6524755381350428 s001 sum(exp(-2*Pi)^n*A021851[n],n=1..infinity) 6524755381428784 a001 17711/141422324*1364^(13/15) 6524755384981968 a001 46368/370248451*1364^(13/15) 6524755385500371 a001 121393/969323029*1364^(13/15) 6524755385576005 a001 317811/2537720636*1364^(13/15) 6524755385587039 a001 832040/6643838879*1364^(13/15) 6524755385588649 a001 2178309/17393796001*1364^(13/15) 6524755385588884 a001 1597/12752044*1364^(13/15) 6524755385588919 a001 14930352/119218851371*1364^(13/15) 6524755385588924 a001 39088169/312119004989*1364^(13/15) 6524755385588924 a001 102334155/817138163596*1364^(13/15) 6524755385588924 a001 267914296/2139295485799*1364^(13/15) 6524755385588924 a001 701408733/5600748293801*1364^(13/15) 6524755385588924 a001 1836311903/14662949395604*1364^(13/15) 6524755385588924 a001 2971215073/23725150497407*1364^(13/15) 6524755385588924 a001 1134903170/9062201101803*1364^(13/15) 6524755385588924 a001 433494437/3461452808002*1364^(13/15) 6524755385588924 a001 165580141/1322157322203*1364^(13/15) 6524755385588925 a001 63245986/505019158607*1364^(13/15) 6524755385588927 a001 24157817/192900153618*1364^(13/15) 6524755385588940 a001 9227465/73681302247*1364^(13/15) 6524755385589029 a001 3524578/28143753123*1364^(13/15) 6524755385589644 a001 1346269/10749957122*1364^(13/15) 6524755385593859 a001 514229/4106118243*1364^(13/15) 6524755385622749 a001 196418/1568397607*1364^(13/15) 6524755385820761 a001 75025/599074578*1364^(13/15) 6524755387177957 a001 28657/228826127*1364^(13/15) 6524755394212390 a007 Real Root Of 580*x^4-256*x^3+36*x^2-462*x-493 6524755396016815 r009 Im(z^3+c),c=-23/62+24/41*I,n=4 6524755396480314 a001 10946/87403803*1364^(13/15) 6524755398315372 k002 Champernowne real with 62*n^2-4*n+7 6524755423286584 s002 sum(A021850[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755423762088 s002 sum(A021851[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755423950467 a001 2584/12752043*1364^(4/5) 6524755429653108 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^36 6524755434653123 m001 1/FeigenbaumD^2/Bloch^2*exp(GAMMA(19/24))^2 6524755448868080 a001 987/439204*1364^(7/15) 6524755460239622 a001 4181/33385282*1364^(13/15) 6524755465698244 s001 sum(exp(-2*Pi)^n*A021850[n],n=1..infinity) 6524755466014900 s002 sum(A021849[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755466731339 h001 (5/6*exp(1)+7/11)/(6/11*exp(2)+5/12) 6524755476473543 s002 sum(A131502[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755498615432 k002 Champernowne real with 125/2*n^2-11/2*n+8 6524755499621772 m001 Stephens^LandauRamanujan/(Stephens^gamma(2)) 6524755508109904 s002 sum(A021850[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755508426559 s001 sum(exp(-2*Pi)^n*A021849[n],n=1..infinity) 6524755508743217 s002 sum(A021848[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755517646158 m001 (MertensB3+TwinPrimes)/(2^(1/2)+GAMMA(13/24)) 6524755518885202 s001 sum(exp(-2*Pi)^n*A131502[n],n=1..infinity) 6524755521445058 m001 (GAMMA(3/4)+Bloch)/(Pi-cos(1)) 6524755550838219 s002 sum(A021849[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755551154876 s001 sum(exp(-2*Pi)^n*A021848[n],n=1..infinity) 6524755559072835 m004 -10-Log[Sqrt[5]*Pi]+4*Sec[Sqrt[5]*Pi] 6524755561296862 s002 sum(A131502[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755567594566 r002 10th iterates of z^2 + 6524755578967268 m001 Zeta(5)/ErdosBorwein^2/ln(cos(1)) 6524755590014318 m001 gamma(3)/(Gompertz^(5^(1/2))) 6524755590874555 a001 6765/33385282*1364^(4/5) 6524755593091035 s002 sum(A021847[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755593566536 s002 sum(A021848[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755597603279 q001 2069/3171 6524755598915492 k002 Champernowne real with 63*n^2-7*n+9 6524755600402048 m005 (1/2*exp(1)+1/7)/(11/12*3^(1/2)+5/7) 6524755600859617 m001 Zeta(1,2)/(BesselI(0,2)^TreeGrowth2nd) 6524755603415803 m001 (GAMMA(13/24)-FeigenbaumB)/(Robbin+Stephens) 6524755604524599 r005 Re(z^2+c),c=-17/26+52/89*I,n=5 6524755615228451 a001 17711/87403803*1364^(4/5) 6524755617491408 r005 Re(z^2+c),c=-63/82+1/42*I,n=33 6524755618781637 a001 46368/228826127*1364^(4/5) 6524755619300040 a001 121393/599074578*1364^(4/5) 6524755619375674 a001 317811/1568397607*1364^(4/5) 6524755619386709 a001 832040/4106118243*1364^(4/5) 6524755619388319 a001 987/4870846*1364^(4/5) 6524755619388554 a001 5702887/28143753123*1364^(4/5) 6524755619388588 a001 14930352/73681302247*1364^(4/5) 6524755619388593 a001 39088169/192900153618*1364^(4/5) 6524755619388594 a001 102334155/505019158607*1364^(4/5) 6524755619388594 a001 267914296/1322157322203*1364^(4/5) 6524755619388594 a001 701408733/3461452808002*1364^(4/5) 6524755619388594 a001 1836311903/9062201101803*1364^(4/5) 6524755619388594 a001 4807526976/23725150497407*1364^(4/5) 6524755619388594 a001 2971215073/14662949395604*1364^(4/5) 6524755619388594 a001 1134903170/5600748293801*1364^(4/5) 6524755619388594 a001 433494437/2139295485799*1364^(4/5) 6524755619388594 a001 165580141/817138163596*1364^(4/5) 6524755619388594 a001 63245986/312119004989*1364^(4/5) 6524755619388596 a001 24157817/119218851371*1364^(4/5) 6524755619388609 a001 9227465/45537549124*1364^(4/5) 6524755619388699 a001 3524578/17393796001*1364^(4/5) 6524755619389314 a001 1346269/6643838879*1364^(4/5) 6524755619393529 a001 514229/2537720636*1364^(4/5) 6524755619422418 a001 196418/969323029*1364^(4/5) 6524755619620430 a001 75025/370248451*1364^(4/5) 6524755620977627 a001 28657/141422324*1364^(4/5) 6524755621488022 a001 6643838879/610*144^(14/17) 6524755629882889 a003 sin(Pi*3/59)-sin(Pi*22/73) 6524755630279987 a001 10946/54018521*1364^(4/5) 6524755635502695 s001 sum(exp(-2*Pi)^n*A021847[n],n=1..infinity) 6524755635819499 s002 sum(A021846[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755653415897 a001 228826127/377*144^(16/17) 6524755657750283 a001 646/1970299*1364^(11/15) 6524755663452794 a001 1597/20633239*1364^(14/15) 6524755667450617 a007 Real Root Of 494*x^4-122*x^3-493*x^2-510*x+487 6524755677914355 s002 sum(A021847[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755678231159 s001 sum(exp(-2*Pi)^n*A021846[n],n=1..infinity) 6524755682545373 a001 329/90481*1364^(2/5) 6524755690447537 s002 sum(A135808[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755691211667 m001 (Pi-LambertW(1))/(arctan(1/3)-gamma(1)) 6524755694039315 a001 4181/20633239*1364^(4/5) 6524755699215552 k002 Champernowne real with 127/2*n^2-17/2*n+10 6524755699744430 r005 Re(z^2+c),c=1/26+13/35*I,n=24 6524755720167610 s002 sum(A021845[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755720642819 s002 sum(A021846[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755732859196 s001 sum(exp(-2*Pi)^n*A135808[n],n=1..infinity) 6524755735670834 a007 Real Root Of 369*x^4+430*x^3+606*x^2+252*x-41 6524755744513139 a007 Real Root Of -929*x^4+829*x^3-537*x^2-5*x+624 6524755745879266 a001 108241/1658928 6524755745879535 a004 Fibonacci(16)/Lucas(16)/(1/2+sqrt(5)/2)^4 6524755750260311 m001 FeigenbaumMu^Psi(1,1/3)/LandauRamanujan2nd 6524755754683636 a001 89*76^(23/50) 6524755762579269 s001 sum(exp(-2*Pi)^n*A021845[n],n=1..infinity) 6524755768377452 m001 Pi*Paris/Weierstrass 6524755775270856 s002 sum(A135808[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755780056619 p001 sum((-1)^n/(542*n+153)/(128^n),n=0..infinity) 6524755799515612 k002 Champernowne real with 64*n^2-10*n+11 6524755801694996 a001 377/710647*843^(5/7) 6524755804990929 s002 sum(A021845[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755824674253 a001 615/1875749*1364^(11/15) 6524755834486516 a007 Real Root Of -518*x^4+203*x^3+85*x^2+589*x-383 6524755849028132 a001 17711/54018521*1364^(11/15) 6524755850659204 s002 sum(A092179[n]/(exp(2*pi*n)+1),n=1..infinity) 6524755852581315 a001 11592/35355581*1364^(11/15) 6524755853099718 a001 121393/370248451*1364^(11/15) 6524755853175351 a001 317811/969323029*1364^(11/15) 6524755853186386 a001 610/1860499*1364^(11/15) 6524755853187996 a001 2178309/6643838879*1364^(11/15) 6524755853188231 a001 5702887/17393796001*1364^(11/15) 6524755853188265 a001 3732588/11384387281*1364^(11/15) 6524755853188270 a001 39088169/119218851371*1364^(11/15) 6524755853188271 a001 9303105/28374454999*1364^(11/15) 6524755853188271 a001 66978574/204284540899*1364^(11/15) 6524755853188271 a001 701408733/2139295485799*1364^(11/15) 6524755853188271 a001 1836311903/5600748293801*1364^(11/15) 6524755853188271 a001 1201881744/3665737348901*1364^(11/15) 6524755853188271 a001 7778742049/23725150497407*1364^(11/15) 6524755853188271 a001 2971215073/9062201101803*1364^(11/15) 6524755853188271 a001 567451585/1730726404001*1364^(11/15) 6524755853188271 a001 433494437/1322157322203*1364^(11/15) 6524755853188271 a001 165580141/505019158607*1364^(11/15) 6524755853188272 a001 31622993/96450076809*1364^(11/15) 6524755853188274 a001 24157817/73681302247*1364^(11/15) 6524755853188287 a001 9227465/28143753123*1364^(11/15) 6524755853188376 a001 1762289/5374978561*1364^(11/15) 6524755853188991 a001 1346269/4106118243*1364^(11/15) 6524755853193206 a001 514229/1568397607*1364^(11/15) 6524755853222096 a001 98209/299537289*1364^(11/15) 6524755853420108 a001 75025/228826127*1364^(11/15) 6524755854777303 a001 28657/87403803*1364^(11/15) 6524755864079657 a001 5473/16692641*1364^(11/15) 6524755889005783 r005 Re(z^2+c),c=-1/24+3/4*I,n=20 6524755891549582 a001 2584/4870847*1364^(2/3) 6524755893070864 s001 sum(exp(-2*Pi)^n*A092179[n],n=1..infinity) 6524755897252418 a001 1597/12752043*1364^(13/15) 6524755899815672 k002 Champernowne real with 129/2*n^2-23/2*n+12 6524755910011573 k002 Champernowne real with 65*n^2-13*n+13 6524755912959704 m001 1/exp(Salem)^2/Magata*GAMMA(7/12)^2 6524755916665443 a001 987/167761*1364^(1/3) 6524755927838940 a001 4181/12752043*1364^(11/15) 6524755935482524 s002 sum(A092179[n]/(exp(2*pi*n)-1),n=1..infinity) 6524755958494319 m001 MasserGramain^gamma/(GAMMA(2/3)^gamma) 6524756010041579 k002 Champernowne real with 131/2*n^2-29/2*n+14 6524756029657088 m001 GAMMA(1/12)^ln(5)/(GAMMA(1/12)^sin(1)) 6524756045634442 m001 (Ei(1)+ln(2+3^(1/2)))/(2*Pi/GAMMA(5/6)-Cahen) 6524756055653572 r002 13th iterates of z^2 + 6524756058473883 a001 2255/4250681*1364^(2/3) 6524756068664260 m001 (Kac-Kolakoski)/(Sierpinski+ZetaQ(4)) 6524756079854981 m003 1/12+(33*Sqrt[5])/64-Tan[1/2+Sqrt[5]/2]/4 6524756082827810 a001 17711/33385282*1364^(2/3) 6524756086381000 a001 15456/29134601*1364^(2/3) 6524756086899403 a001 121393/228826127*1364^(2/3) 6524756086975037 a001 377/710646*1364^(2/3) 6524756086986072 a001 832040/1568397607*1364^(2/3) 6524756086987682 a001 726103/1368706081*1364^(2/3) 6524756086987917 a001 5702887/10749957122*1364^(2/3) 6524756086987951 a001 4976784/9381251041*1364^(2/3) 6524756086987956 a001 39088169/73681302247*1364^(2/3) 6524756086987957 a001 34111385/64300051206*1364^(2/3) 6524756086987957 a001 267914296/505019158607*1364^(2/3) 6524756086987957 a001 233802911/440719107401*1364^(2/3) 6524756086987957 a001 1836311903/3461452808002*1364^(2/3) 6524756086987957 a001 1602508992/3020733700601*1364^(2/3) 6524756086987957 a001 12586269025/23725150497407*1364^(2/3) 6524756086987957 a001 7778742049/14662949395604*1364^(2/3) 6524756086987957 a001 2971215073/5600748293801*1364^(2/3) 6524756086987957 a001 1134903170/2139295485799*1364^(2/3) 6524756086987957 a001 433494437/817138163596*1364^(2/3) 6524756086987957 a001 165580141/312119004989*1364^(2/3) 6524756086987958 a001 63245986/119218851371*1364^(2/3) 6524756086987960 a001 24157817/45537549124*1364^(2/3) 6524756086987973 a001 9227465/17393796001*1364^(2/3) 6524756086988062 a001 3524578/6643838879*1364^(2/3) 6524756086988677 a001 1346269/2537720636*1364^(2/3) 6524756086992892 a001 514229/969323029*1364^(2/3) 6524756087021782 a001 196418/370248451*1364^(2/3) 6524756087219794 a001 75025/141422324*1364^(2/3) 6524756088576992 a001 28657/54018521*1364^(2/3) 6524756090744672 a007 Real Root Of -407*x^4+912*x^3+3*x^2+457*x+624 6524756097879365 a001 10946/20633239*1364^(2/3) 6524756102267075 s002 sum(A163900[n]/(exp(2*pi*n)+1),n=1..infinity) 6524756110071585 k002 Champernowne real with 66*n^2-16*n+15 6524756125350265 a001 2584/3010349*1364^(3/5) 6524756126020555 m001 sin(1)^TwinPrimes/(ErdosBorwein^TwinPrimes) 6524756131052251 a001 1597/7881196*1364^(4/5) 6524756132048945 a001 2504730781961/18*141422324^(16/17) 6524756132048945 a001 591286729879/18*2537720636^(15/17) 6524756132048945 a001 956722026041/18*6643838879^(14/17) 6524756132048945 a001 3278735159921/9*2139295485799^(10/17) 6524756132048945 a001 2504730781961/18*73681302247^(12/17) 6524756132048945 a001 2504730781961/18*10749957122^(13/17) 6524756132048945 a001 567451585/9*23725150497407^(14/17) 6524756132048945 a001 567451585/9*505019158607^(16/17) 6524756132048945 a001 433494437/18*9062201101803^(15/17) 6524756144678734 s001 sum(exp(-2*Pi)^n*A163900[n],n=1..infinity) 6524756149626338 a001 21/2206*1364^(4/15) 6524756157858266 a007 Real Root Of 295*x^4-476*x^3-53*x^2-455*x-460 6524756161638774 a001 4181/7881196*1364^(2/3) 6524756162833562 a005 (1/sin(18/143*Pi))^43 6524756166135068 r009 Im(z^3+c),c=-13/66+22/29*I,n=5 6524756185160910 r005 Im(z^2+c),c=-25/44+29/45*I,n=50 6524756187090394 s002 sum(A163900[n]/(exp(2*pi*n)-1),n=1..infinity) 6524756201268725 a007 Real Root Of -897*x^4-550*x^3-85*x^2+774*x+551 6524756210101591 k002 Champernowne real with 133/2*n^2-35/2*n+16 6524756231031437 r005 Im(z^2+c),c=1/66+33/52*I,n=51 6524756236597111 a007 Real Root Of 861*x^4+233*x^3+316*x^2-765*x-725 6524756250354524 r008 a(0)=0,K{-n^6,-65+52*n^3-75*n^2+73*n} 6524756257714514 r005 Im(z^2+c),c=-69/106+4/29*I,n=35 6524756261772812 a007 Real Root Of 419*x^4-105*x^3+206*x^2-644*x-613 6524756278104690 a007 Real Root Of -331*x^4+191*x^3-336*x^2-440*x-31 6524756281477031 r009 Re(z^3+c),c=-5/44+31/52*I,n=13 6524756292273721 a001 6765/7881196*1364^(3/5) 6524756296817409 m005 (1/3*Pi+3/7)/(1/12*Pi+2) 6524756310131597 k002 Champernowne real with 67*n^2-19*n+17 6524756316627525 a001 17711/20633239*1364^(3/5) 6524756317678766 m001 (Bloch+Champernowne)/(ln(2)-BesselK(1,1)) 6524756320180697 a001 46368/54018521*1364^(3/5) 6524756320699098 a001 233/271444*1364^(3/5) 6524756320774732 a001 317811/370248451*1364^(3/5) 6524756320785767 a001 832040/969323029*1364^(3/5) 6524756320787377 a001 2178309/2537720636*1364^(3/5) 6524756320787612 a001 5702887/6643838879*1364^(3/5) 6524756320787646 a001 14930352/17393796001*1364^(3/5) 6524756320787651 a001 39088169/45537549124*1364^(3/5) 6524756320787652 a001 102334155/119218851371*1364^(3/5) 6524756320787652 a001 267914296/312119004989*1364^(3/5) 6524756320787652 a001 701408733/817138163596*1364^(3/5) 6524756320787652 a001 1836311903/2139295485799*1364^(3/5) 6524756320787652 a001 4807526976/5600748293801*1364^(3/5) 6524756320787652 a001 12586269025/14662949395604*1364^(3/5) 6524756320787652 a001 20365011074/23725150497407*1364^(3/5) 6524756320787652 a001 7778742049/9062201101803*1364^(3/5) 6524756320787652 a001 2971215073/3461452808002*1364^(3/5) 6524756320787652 a001 1134903170/1322157322203*1364^(3/5) 6524756320787652 a001 433494437/505019158607*1364^(3/5) 6524756320787652 a001 165580141/192900153618*1364^(3/5) 6524756320787652 a001 63245986/73681302247*1364^(3/5) 6524756320787654 a001 24157817/28143753123*1364^(3/5) 6524756320787667 a001 9227465/10749957122*1364^(3/5) 6524756320787757 a001 3524578/4106118243*1364^(3/5) 6524756320788372 a001 1346269/1568397607*1364^(3/5) 6524756320792587 a001 514229/599074578*1364^(3/5) 6524756320821476 a001 196418/228826127*1364^(3/5) 6524756321019488 a001 75025/87403803*1364^(3/5) 6524756322376679 a001 28657/33385282*1364^(3/5) 6524756331421005 b008 LogGamma[5*(5/2+Pi)] 6524756331679004 a001 10946/12752043*1364^(3/5) 6524756359147355 a001 1292/930249*1364^(8/15) 6524756364851567 a001 1597/4870847*1364^(11/15) 6524756380739370 a001 610/39603*521^(3/13) 6524756382085496 a007 Real Root Of 152*x^4+923*x^3-481*x^2-211*x 6524756382109522 a001 2584/64079*521^(1/13) 6524756385622024 a001 987/64079*1364^(1/5) 6524756395438091 a001 4181/4870847*1364^(3/5) 6524756410161603 k002 Champernowne real with 135/2*n^2-41/2*n+18 6524756431475766 a003 cos(Pi*26/115)*sin(Pi*32/97) 6524756441583934 m001 (-gamma(1)+Otter)/(BesselJ(0,1)-ln(2)/ln(10)) 6524756448084937 a007 Real Root Of -518*x^4+740*x^3+432*x^2+859*x+676 6524756450256783 s001 sum(exp(-2*Pi)^(n-1)*A135942[n],n=1..infinity) 6524756457528862 a001 377/1149851*843^(11/14) 6524756467157038 r005 Im(z^2+c),c=-7/114+35/47*I,n=44 6524756473357107 r005 Im(z^2+c),c=23/58+23/64*I,n=4 6524756509921333 m001 1/LaplaceLimit^2*Si(Pi)*exp(GAMMA(1/24)) 6524756510191609 k002 Champernowne real with 68*n^2-22*n+19 6524756517977749 r002 15th iterates of z^2 + 6524756518086419 a007 Real Root Of -578*x^4+260*x^3-694*x^2-134*x+385 6524756526073043 a001 6765/4870847*1364^(8/15) 6524756536783469 r005 Re(z^2+c),c=-6/13+24/41*I,n=45 6524756547676404 a001 615/15251*521^(1/13) 6524756550427172 a001 17711/12752043*1364^(8/15) 6524756553980392 a001 144/103681*1364^(8/15) 6524756554498800 a001 121393/87403803*1364^(8/15) 6524756554574435 a001 317811/228826127*1364^(8/15) 6524756554585469 a001 416020/299537289*1364^(8/15) 6524756554587079 a001 311187/224056801*1364^(8/15) 6524756554587314 a001 5702887/4106118243*1364^(8/15) 6524756554587349 a001 7465176/5374978561*1364^(8/15) 6524756554587354 a001 39088169/28143753123*1364^(8/15) 6524756554587354 a001 14619165/10525900321*1364^(8/15) 6524756554587354 a001 133957148/96450076809*1364^(8/15) 6524756554587354 a001 701408733/505019158607*1364^(8/15) 6524756554587354 a001 1836311903/1322157322203*1364^(8/15) 6524756554587354 a001 14930208/10749853441*1364^(8/15) 6524756554587354 a001 12586269025/9062201101803*1364^(8/15) 6524756554587354 a001 32951280099/23725150497407*1364^(8/15) 6524756554587354 a001 10182505537/7331474697802*1364^(8/15) 6524756554587354 a001 7778742049/5600748293801*1364^(8/15) 6524756554587354 a001 2971215073/2139295485799*1364^(8/15) 6524756554587354 a001 567451585/408569081798*1364^(8/15) 6524756554587354 a001 433494437/312119004989*1364^(8/15) 6524756554587355 a001 165580141/119218851371*1364^(8/15) 6524756554587355 a001 31622993/22768774562*1364^(8/15) 6524756554587357 a001 24157817/17393796001*1364^(8/15) 6524756554587370 a001 9227465/6643838879*1364^(8/15) 6524756554587460 a001 1762289/1268860318*1364^(8/15) 6524756554588074 a001 1346269/969323029*1364^(8/15) 6524756554592289 a001 514229/370248451*1364^(8/15) 6524756554621179 a001 98209/70711162*1364^(8/15) 6524756554819193 a001 75025/54018521*1364^(8/15) 6524756556176403 a001 28657/20633239*1364^(8/15) 6524756565478852 a001 5473/3940598*1364^(8/15) 6524756571832286 a001 17711/439204*521^(1/13) 6524756573768465 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^37 6524756575356582 a001 46368/1149851*521^(1/13) 6524756575870770 a001 121393/3010349*521^(1/13) 6524756575945789 a001 317811/7881196*521^(1/13) 6524756575956734 a001 75640/1875749*521^(1/13) 6524756575958331 a001 2178309/54018521*521^(1/13) 6524756575958564 a001 5702887/141422324*521^(1/13) 6524756575958598 a001 14930352/370248451*521^(1/13) 6524756575958603 a001 39088169/969323029*521^(1/13) 6524756575958604 a001 9303105/230701876*521^(1/13) 6524756575958604 a001 267914296/6643838879*521^(1/13) 6524756575958604 a001 701408733/17393796001*521^(1/13) 6524756575958604 a001 1836311903/45537549124*521^(1/13) 6524756575958604 a001 4807526976/119218851371*521^(1/13) 6524756575958604 a001 1144206275/28374454999*521^(1/13) 6524756575958604 a001 32951280099/817138163596*521^(1/13) 6524756575958604 a001 86267571272/2139295485799*521^(1/13) 6524756575958604 a001 225851433717/5600748293801*521^(1/13) 6524756575958604 a001 591286729879/14662949395604*521^(1/13) 6524756575958604 a001 365435296162/9062201101803*521^(1/13) 6524756575958604 a001 139583862445/3461452808002*521^(1/13) 6524756575958604 a001 53316291173/1322157322203*521^(1/13) 6524756575958604 a001 20365011074/505019158607*521^(1/13) 6524756575958604 a001 7778742049/192900153618*521^(1/13) 6524756575958604 a001 2971215073/73681302247*521^(1/13) 6524756575958604 a001 1134903170/28143753123*521^(1/13) 6524756575958604 a001 433494437/10749957122*521^(1/13) 6524756575958604 a001 165580141/4106118243*521^(1/13) 6524756575958604 a001 63245986/1568397607*521^(1/13) 6524756575958606 a001 24157817/599074578*521^(1/13) 6524756575958619 a001 9227465/228826127*521^(1/13) 6524756575958708 a001 3524578/87403803*521^(1/13) 6524756575959318 a001 1346269/33385282*521^(1/13) 6524756575963498 a001 514229/12752043*521^(1/13) 6524756575992153 a001 196418/4870847*521^(1/13) 6524756576188555 a001 75025/1860498*521^(1/13) 6524756577534717 a001 28657/710647*521^(1/13) 6524756577763380 r005 Re(z^2+c),c=-16/21+17/35*I,n=3 6524756586761443 a001 10946/271443*521^(1/13) 6524756586927040 a007 Real Root Of -759*x^4+387*x^3+334*x^2+578*x+480 6524756592953879 a001 2584/1149851*1364^(7/15) 6524756598652266 a001 1597/3010349*1364^(2/3) 6524756603866320 a001 141/4769326*3571^(16/17) 6524756610221615 k002 Champernowne real with 137/2*n^2-47/2*n+20 6524756610999455 a007 Real Root Of 225*x^4-395*x^3+307*x^2-487*x+256 6524756613286303 a007 Real Root Of -422*x^4+546*x^3-622*x^2-121*x+414 6524756613672555 a001 329/13201*1364^(2/15) 6524756629238791 a001 4181/3010349*1364^(8/15) 6524756633964203 a001 987/20633239*3571^(15/17) 6524756634960416 m005 (1/2*Zeta(3)-7/9)/(5/6*Pi+1/11) 6524756638778051 m005 (1/2*gamma+6/7)/(5/7*Pi-4) 6524756650002364 a001 4181/103682*521^(1/13) 6524756657529075 a001 199/28657*610^(17/24) 6524756664062010 a001 329/4250681*3571^(14/17) 6524756690470082 m006 (-1+1/6*Pi^2)/(3/5*exp(Pi)-4) 6524756694160017 a001 987/7881196*3571^(13/17) 6524756702897530 b008 -1/2+(1+Erfi[1])^2 6524756710251621 k002 Champernowne real with 69*n^2-25*n+21 6524756724257499 a001 987/4870847*3571^(12/17) 6524756743135822 m001 BesselK(1,1)*FellerTornier*ReciprocalFibonacci 6524756744801703 m001 (Trott-ZetaQ(4))/(Salem-Sierpinski) 6524756747173529 m002 -3+3*E^Pi-Cosh[Pi]/Pi^2 6524756754356357 a001 987/3010349*3571^(11/17) 6524756759873748 a001 6765/3010349*1364^(7/15) 6524756764713437 a007 Real Root Of 866*x^4+706*x^3+646*x^2-883*x-812 6524756784227029 a001 89/39604*1364^(7/15) 6524756784451614 a001 329/620166*3571^(10/17) 6524756787761489 p004 log(15683/8167) 6524756787780124 a001 46368/20633239*1364^(7/15) 6524756788298514 a001 121393/54018521*1364^(7/15) 6524756788374146 a001 317811/141422324*1364^(7/15) 6524756788385181 a001 832040/370248451*1364^(7/15) 6524756788386791 a001 2178309/969323029*1364^(7/15) 6524756788387025 a001 5702887/2537720636*1364^(7/15) 6524756788387060 a001 14930352/6643838879*1364^(7/15) 6524756788387065 a001 39088169/17393796001*1364^(7/15) 6524756788387065 a001 102334155/45537549124*1364^(7/15) 6524756788387066 a001 267914296/119218851371*1364^(7/15) 6524756788387066 a001 3524667/1568437211*1364^(7/15) 6524756788387066 a001 1836311903/817138163596*1364^(7/15) 6524756788387066 a001 4807526976/2139295485799*1364^(7/15) 6524756788387066 a001 12586269025/5600748293801*1364^(7/15) 6524756788387066 a001 32951280099/14662949395604*1364^(7/15) 6524756788387066 a001 53316291173/23725150497407*1364^(7/15) 6524756788387066 a001 20365011074/9062201101803*1364^(7/15) 6524756788387066 a001 7778742049/3461452808002*1364^(7/15) 6524756788387066 a001 2971215073/1322157322203*1364^(7/15) 6524756788387066 a001 1134903170/505019158607*1364^(7/15) 6524756788387066 a001 433494437/192900153618*1364^(7/15) 6524756788387066 a001 165580141/73681302247*1364^(7/15) 6524756788387066 a001 63245986/28143753123*1364^(7/15) 6524756788387068 a001 24157817/10749957122*1364^(7/15) 6524756788387081 a001 9227465/4106118243*1364^(7/15) 6524756788387171 a001 3524578/1568397607*1364^(7/15) 6524756788387786 a001 1346269/599074578*1364^(7/15) 6524756788392000 a001 514229/228826127*1364^(7/15) 6524756788420889 a001 196418/87403803*1364^(7/15) 6524756788618897 a001 75025/33385282*1364^(7/15) 6524756789976058 a001 28657/12752043*1364^(7/15) 6524756791538249 m001 1/Sierpinski*ArtinRank2^2*ln(cos(Pi/12)) 6524756792406942 r005 Re(z^2+c),c=-121/106+13/64*I,n=52 6524756794472407 m001 1/Zeta(5)/MertensB1/exp(sqrt(3)) 6524756798610482 r009 Re(z^3+c),c=-2/17+28/43*I,n=43 6524756799189994 a007 Real Root Of -911*x^4+742*x^3-547*x^2-158*x+501 6524756799278184 a001 10946/4870847*1364^(7/15) 6524756805297675 a001 76/1597*121393^(29/47) 6524756810281627 k002 Champernowne real with 139/2*n^2-53/2*n+22 6524756811990510 m001 (Kac-Magata)/(2*Pi/GAMMA(5/6)-Conway) 6524756814556297 a001 987/1149851*3571^(9/17) 6524756826735737 a001 2584/710647*1364^(2/5) 6524756832449374 a001 1597/1860498*1364^(3/5) 6524756844636305 a001 141/101521*3571^(8/17) 6524756862523803 a001 987/24476*1364^(1/15) 6524756863035900 a001 4181/1860498*1364^(7/15) 6524756873590636 a007 Real Root Of 898*x^4+192*x^3+413*x^2-769*x-787 6524756874780912 a001 987/439204*3571^(7/17) 6524756889994003 a001 2550408/39088169 6524756889994008 a004 Fibonacci(16)/Lucas(18)/(1/2+sqrt(5)/2)^2 6524756889994277 a004 Fibonacci(18)/Lucas(16)/(1/2+sqrt(5)/2)^6 6524756895696665 r009 Re(z^3+c),c=-25/56+35/62*I,n=28 6524756904756397 a001 329/90481*3571^(6/17) 6524756910311633 k002 Champernowne real with 70*n^2-28*n+23 6524756927593616 s002 sum(A201452[n]/(exp(2*pi*n)+1),n=1..infinity) 6524756934733381 a007 Real Root Of -321*x^4+763*x^3+656*x^2+224*x+137 6524756935174650 a001 987/167761*3571^(5/17) 6524756964433720 a001 21/2206*3571^(4/17) 6524756969014968 g007 Psi(2,7/12)+Psi(2,2/5)-Psi(2,7/11)-Psi(2,3/11) 6524756970005275 s001 sum(exp(-2*Pi)^n*A201452[n],n=1..infinity) 6524756973499517 r009 Im(z^3+c),c=-71/122+19/49*I,n=5 6524756991680690 m001 (gamma+BesselJ(0,1))/(-FeigenbaumD+Kac) 6524756993670862 a001 55/15126*1364^(2/5) 6524756996727573 a001 987/64079*3571^(3/17) 6524757000643929 r009 Im(z^3+c),c=-23/66+31/47*I,n=41 6524757010018543 a007 Real Root Of -994*x^4+620*x^3-329*x^2-298*x+298 6524757010341639 k002 Champernowne real with 141/2*n^2-59/2*n+24 6524757010781409 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^39 6524757012416935 s002 sum(A201452[n]/(exp(2*pi*n)-1),n=1..infinity) 6524757014710393 a001 329/29134601*9349^(18/19) 6524757016838912 p003 LerchPhi(1/8,5,29/106) 6524757018026368 a001 17711/4870847*1364^(2/5) 6524757018639382 a001 987/54018521*9349^(17/19) 6524757021076262 a001 329/13201*3571^(2/17) 6524757021579788 a001 15456/4250681*1364^(2/5) 6524757021940397 a007 Real Root Of 889*x^4-782*x^3-573*x^2-167*x+409 6524757022098226 a001 121393/33385282*1364^(2/5) 6524757022173864 a001 105937/29134601*1364^(2/5) 6524757022184900 a001 832040/228826127*1364^(2/5) 6524757022186510 a001 726103/199691526*1364^(2/5) 6524757022186745 a001 5702887/1568397607*1364^(2/5) 6524757022186779 a001 4976784/1368706081*1364^(2/5) 6524757022186784 a001 39088169/10749957122*1364^(2/5) 6524757022186785 a001 831985/228811001*1364^(2/5) 6524757022186785 a001 267914296/73681302247*1364^(2/5) 6524757022186785 a001 233802911/64300051206*1364^(2/5) 6524757022186785 a001 1836311903/505019158607*1364^(2/5) 6524757022186785 a001 1602508992/440719107401*1364^(2/5) 6524757022186785 a001 12586269025/3461452808002*1364^(2/5) 6524757022186785 a001 10983760033/3020733700601*1364^(2/5) 6524757022186785 a001 86267571272/23725150497407*1364^(2/5) 6524757022186785 a001 53316291173/14662949395604*1364^(2/5) 6524757022186785 a001 20365011074/5600748293801*1364^(2/5) 6524757022186785 a001 7778742049/2139295485799*1364^(2/5) 6524757022186785 a001 2971215073/817138163596*1364^(2/5) 6524757022186785 a001 1134903170/312119004989*1364^(2/5) 6524757022186785 a001 433494437/119218851371*1364^(2/5) 6524757022186785 a001 165580141/45537549124*1364^(2/5) 6524757022186785 a001 63245986/17393796001*1364^(2/5) 6524757022186787 a001 24157817/6643838879*1364^(2/5) 6524757022186800 a001 9227465/2537720636*1364^(2/5) 6524757022186890 a001 3524578/969323029*1364^(2/5) 6524757022187505 a001 1346269/370248451*1364^(2/5) 6524757022191720 a001 514229/141422324*1364^(2/5) 6524757022220612 a001 196418/54018521*1364^(2/5) 6524757022418637 a001 75025/20633239*1364^(2/5) 6524757022568359 a001 141/4769326*9349^(16/19) 6524757023775923 a001 28657/7881196*1364^(2/5) 6524757026497366 a001 987/20633239*9349^(15/19) 6524757028198351 a007 Real Root Of -876*x^4+196*x^3+32*x^2-76*x+150 6524757030426296 a001 329/4250681*9349^(14/19) 6524757033078899 a001 10946/3010349*1364^(2/5) 6524757034355426 a001 987/7881196*9349^(13/19) 6524757038284032 a001 987/4870847*9349^(12/19) 6524757042214012 a001 987/3010349*9349^(11/19) 6524757046140392 a001 329/620166*9349^(10/19) 6524757050076198 a001 987/1149851*9349^(9/19) 6524757053987328 a001 141/101521*9349^(8/19) 6524757056918093 a001 141/2161 6524757056918093 q001 141/2161 6524757056918368 a004 Fibonacci(20)/Lucas(16)/(1/2+sqrt(5)/2)^8 6524757057963058 a001 987/439204*9349^(7/19) 6524757060582202 a001 34/5779*1364^(1/3) 6524757061769665 a001 329/90481*9349^(6/19) 6524757066019041 a001 987/167761*9349^(5/19) 6524757066225662 a001 987/24476*3571^(1/17) 6524757066255915 a001 1597/1149851*1364^(8/15) 6524757069109233 a001 21/2206*9349^(4/19) 6524757073414019 a001 329/13201*9349^(2/19) 6524757074540738 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^41 6524757074817920 g001 Re(GAMMA(37/20+I*19/20)) 6524757075059376 a001 21/4868641*24476^(20/21) 6524757075234208 a001 987/64079*9349^(3/19) 6524757075578014 a001 987/141422324*24476^(19/21) 6524757076096651 a001 329/29134601*24476^(6/7) 6524757076615291 a001 987/54018521*24476^(17/21) 6524757077133921 a001 141/4769326*24476^(16/21) 6524757077652580 a001 987/20633239*24476^(5/7) 6524757078171162 a001 329/4250681*24476^(2/3) 6524757078689945 a001 987/7881196*24476^(13/21) 6524757079208203 a001 987/4870847*24476^(4/7) 6524757079727836 a001 987/3010349*24476^(11/21) 6524757080234714 a001 329/13201*24476^(2/21) 6524757080243869 a001 329/620166*24476^(10/21) 6524757080769327 a001 987/1149851*24476^(3/7) 6524757081133813 a001 329/13201*64079^(2/23) 6524757081270110 a001 141/101521*24476^(8/21) 6524757081271990 a001 329/13201*(1/2+1/2*5^(1/2))^2 6524757081271990 a001 329/13201*10749957122^(1/24) 6524757081271990 a001 329/13201*4106118243^(1/23) 6524757081271990 a001 329/13201*1568397607^(1/22) 6524757081271990 a001 329/13201*599074578^(1/21) 6524757081271990 a001 329/13201*228826127^(1/20) 6524757081271990 a001 17480757/267914296 6524757081271990 a001 329/13201*87403803^(1/19) 6524757081271990 a001 329/13201*33385282^(1/18) 6524757081271992 a001 329/13201*12752043^(1/17) 6524757081272007 a001 329/13201*4870847^(1/16) 6524757081272115 a001 329/13201*1860498^(1/15) 6524757081272265 a004 Fibonacci(22)/Lucas(16)/(1/2+sqrt(5)/2)^10 6524757081272912 a001 329/13201*710647^(1/14) 6524757081278801 a001 329/13201*271443^(1/13) 6524757081322569 a001 329/13201*103682^(1/12) 6524757081650184 a001 329/13201*39603^(1/11) 6524757081835492 a001 987/439204*24476^(1/3) 6524757082231751 a001 329/90481*24476^(2/7) 6524757082750624 a001 21/2206*24476^(4/21) 6524757083070780 a001 987/167761*24476^(5/21) 6524757083462089 a001 1597/39603*521^(1/13) 6524757083843099 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^43 6524757083912187 a001 329/199691526*64079^(22/23) 6524757083981276 a001 987/370248451*64079^(21/23) 6524757084050364 a001 21/4868641*64079^(20/23) 6524757084119453 a001 987/141422324*64079^(19/23) 6524757084123393 a001 329/13201*15127^(1/10) 6524757084188540 a001 329/29134601*64079^(18/23) 6524757084257631 a001 987/54018521*64079^(17/23) 6524757084326712 a001 141/4769326*64079^(16/23) 6524757084395821 a001 987/20633239*64079^(15/23) 6524757084464854 a001 329/4250681*64079^(14/23) 6524757084534088 a001 987/7881196*64079^(13/23) 6524757084548822 a001 21/2206*64079^(4/23) 6524757084602796 a001 987/4870847*64079^(12/23) 6524757084672879 a001 987/3010349*64079^(11/23) 6524757084739363 a001 329/620166*64079^(10/23) 6524757084815271 a001 987/1149851*64079^(9/23) 6524757084825175 a001 21/2206*(1/2+1/2*5^(1/2))^4 6524757084825175 a001 21/2206*23725150497407^(1/16) 6524757084825175 a001 21/2206*73681302247^(1/13) 6524757084825175 a001 21/2206*10749957122^(1/12) 6524757084825175 a001 21/2206*4106118243^(2/23) 6524757084825175 a001 21/2206*1568397607^(1/11) 6524757084825175 a001 21/2206*599074578^(2/21) 6524757084825175 a001 15255072/233802911 6524757084825175 a001 21/2206*228826127^(1/10) 6524757084825175 a001 21/2206*87403803^(2/19) 6524757084825176 a001 21/2206*33385282^(1/9) 6524757084825180 a001 21/2206*12752043^(2/17) 6524757084825210 a001 21/2206*4870847^(1/8) 6524757084825427 a001 21/2206*1860498^(2/15) 6524757084825450 a004 Fibonacci(24)/Lucas(16)/(1/2+sqrt(5)/2)^12 6524757084827021 a001 21/2206*710647^(1/7) 6524757084838799 a001 21/2206*271443^(2/13) 6524757084866505 a001 141/101521*64079^(8/23) 6524757084926335 a001 21/2206*103682^(1/6) 6524757084929048 a001 329/90481*64079^(6/23) 6524757084982338 a001 987/439204*64079^(7/23) 6524757085200295 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^45 6524757085246662 a001 21/4868641*167761^(4/5) 6524757085293045 a001 987/20633239*167761^(3/5) 6524757085318527 a001 987/167761*64079^(5/23) 6524757085336061 a001 329/90481*439204^(2/9) 6524757085337512 a001 329/620166*167761^(2/5) 6524757085343559 a001 329/90481*7881196^(2/11) 6524757085343578 a001 329/90481*141422324^(2/13) 6524757085343578 a001 329/90481*2537720636^(2/15) 6524757085343578 a001 329/90481*45537549124^(2/17) 6524757085343578 a001 329/90481*14662949395604^(2/21) 6524757085343578 a001 329/90481*(1/2+1/2*5^(1/2))^6 6524757085343578 a001 329/90481*10749957122^(1/8) 6524757085343578 a001 329/90481*4106118243^(3/23) 6524757085343578 a001 329/90481*1568397607^(3/22) 6524757085343578 a001 119814891/1836311903 6524757085343578 a001 329/90481*599074578^(1/7) 6524757085343578 a001 329/90481*228826127^(3/20) 6524757085343578 a001 329/90481*87403803^(3/19) 6524757085343579 a001 329/90481*33385282^(1/6) 6524757085343585 a001 329/90481*12752043^(3/17) 6524757085343630 a001 329/90481*4870847^(3/16) 6524757085343853 a004 Fibonacci(26)/Lucas(16)/(1/2+sqrt(5)/2)^14 6524757085343955 a001 329/90481*1860498^(1/5) 6524757085346347 a001 329/90481*710647^(3/14) 6524757085364013 a001 329/90481*271443^(3/13) 6524757085398307 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^47 6524757085402065 a001 141/224056801*439204^(8/9) 6524757085405824 a001 987/370248451*439204^(7/9) 6524757085409581 a001 329/29134601*439204^(2/3) 6524757085413356 a001 987/20633239*439204^(5/9) 6524757085416824 a001 987/4870847*439204^(4/9) 6524757085419212 a001 141/101521*(1/2+1/2*5^(1/2))^8 6524757085419212 a001 141/101521*23725150497407^(1/8) 6524757085419212 a001 141/101521*505019158607^(1/7) 6524757085419212 a001 141/101521*73681302247^(2/13) 6524757085419212 a001 141/101521*10749957122^(1/6) 6524757085419212 a001 105937/1623616 6524757085419212 a001 141/101521*4106118243^(4/23) 6524757085419212 a001 141/101521*1568397607^(2/11) 6524757085419212 a001 141/101521*599074578^(4/21) 6524757085419212 a001 141/101521*228826127^(1/5) 6524757085419212 a001 141/101521*87403803^(4/19) 6524757085419213 a001 141/101521*33385282^(2/9) 6524757085419221 a001 141/101521*12752043^(4/17) 6524757085419281 a001 141/101521*4870847^(1/4) 6524757085419487 a004 Fibonacci(28)/Lucas(16)/(1/2+sqrt(5)/2)^16 6524757085419715 a001 141/101521*1860498^(4/15) 6524757085422903 a001 141/101521*710647^(2/7) 6524757085425792 a001 987/1149851*439204^(1/3) 6524757085427197 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^49 6524757085430242 a001 329/620166*20633239^(2/7) 6524757085430247 a001 329/620166*2537720636^(2/9) 6524757085430247 a001 329/620166*312119004989^(2/11) 6524757085430247 a001 329/620166*(1/2+1/2*5^(1/2))^10 6524757085430247 a001 329/620166*28143753123^(1/5) 6524757085430247 a001 14931336/228841255 6524757085430247 a001 329/620166*10749957122^(5/24) 6524757085430247 a001 329/620166*4106118243^(5/23) 6524757085430247 a001 329/620166*1568397607^(5/22) 6524757085430247 a001 329/620166*599074578^(5/21) 6524757085430247 a001 329/620166*228826127^(1/4) 6524757085430247 a001 329/620166*87403803^(5/19) 6524757085430248 a001 329/620166*33385282^(5/18) 6524757085430259 a001 329/620166*12752043^(5/17) 6524757085430333 a001 329/620166*4870847^(5/16) 6524757085430522 a004 Fibonacci(30)/Lucas(16)/(1/2+sqrt(5)/2)^18 6524757085430875 a001 329/620166*1860498^(1/3) 6524757085431412 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^51 6524757085431819 a001 987/4870847*7881196^(4/11) 6524757085431857 a001 987/4870847*141422324^(4/13) 6524757085431857 a001 987/4870847*2537720636^(4/15) 6524757085431857 a001 987/4870847*45537549124^(4/17) 6524757085431857 a001 987/4870847*817138163596^(4/19) 6524757085431857 a001 987/4870847*14662949395604^(4/21) 6524757085431857 a001 987/4870847*(1/2+1/2*5^(1/2))^12 6524757085431857 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^12/Lucas(32) 6524757085431857 a001 987/4870847*192900153618^(2/9) 6524757085431857 a001 987/4870847*73681302247^(3/13) 6524757085431857 a001 716663661/10983760033 6524757085431857 a001 987/4870847*10749957122^(1/4) 6524757085431857 a001 987/4870847*4106118243^(6/23) 6524757085431857 a001 987/4870847*1568397607^(3/11) 6524757085431857 a001 987/4870847*599074578^(2/7) 6524757085431857 a001 987/4870847*228826127^(3/10) 6524757085431857 a001 987/4870847*87403803^(6/19) 6524757085431859 a001 987/4870847*33385282^(1/3) 6524757085431871 a001 987/4870847*12752043^(6/17) 6524757085431960 a001 987/4870847*4870847^(3/8) 6524757085432027 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^53 6524757085432036 a001 329/9381251041*7881196^(10/11) 6524757085432046 a001 987/6643838879*7881196^(9/11) 6524757085432055 a001 141/224056801*7881196^(8/11) 6524757085432062 a001 329/199691526*7881196^(2/3) 6524757085432065 a001 987/370248451*7881196^(7/11) 6524757085432074 a001 329/29134601*7881196^(6/11) 6524757085432085 a001 329/4250681*20633239^(2/5) 6524757085432092 a001 329/4250681*17393796001^(2/7) 6524757085432092 a001 329/4250681*14662949395604^(2/9) 6524757085432092 a001 329/4250681*(1/2+1/2*5^(1/2))^14 6524757085432092 a001 329/4250681*505019158607^(1/4) 6524757085432092 a001 5628749469/86267571272 6524757085432092 a001 329/4250681*10749957122^(7/24) 6524757085432092 a001 329/4250681*4106118243^(7/23) 6524757085432092 a001 329/4250681*1568397607^(7/22) 6524757085432092 a001 329/4250681*599074578^(1/3) 6524757085432092 a001 329/4250681*228826127^(7/20) 6524757085432092 a001 329/4250681*87403803^(7/19) 6524757085432094 a001 329/4250681*33385282^(7/18) 6524757085432099 a001 987/20633239*7881196^(5/11) 6524757085432108 a001 329/4250681*12752043^(7/17) 6524757085432116 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^55 6524757085432119 a001 329/9381251041*20633239^(6/7) 6524757085432119 a001 987/10749957122*20633239^(4/5) 6524757085432121 a001 987/2537720636*20633239^(5/7) 6524757085432123 a001 987/370248451*20633239^(3/5) 6524757085432123 a001 21/4868641*20633239^(4/7) 6524757085432126 a001 141/4769326*(1/2+1/2*5^(1/2))^16 6524757085432126 a001 141/4769326*23725150497407^(1/4) 6524757085432126 a001 701726544/10754830177 6524757085432126 a001 141/4769326*73681302247^(4/13) 6524757085432126 a001 141/4769326*10749957122^(1/3) 6524757085432126 a001 141/4769326*4106118243^(8/23) 6524757085432126 a001 141/4769326*1568397607^(4/11) 6524757085432126 a001 141/4769326*599074578^(8/21) 6524757085432126 a001 141/4769326*228826127^(2/5) 6524757085432126 a001 141/4769326*87403803^(8/19) 6524757085432128 a001 141/4769326*33385282^(4/9) 6524757085432130 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^57 6524757085432131 a001 329/29134601*141422324^(6/13) 6524757085432131 a001 329/29134601*2537720636^(2/5) 6524757085432131 a001 329/29134601*45537549124^(6/17) 6524757085432131 a001 329/29134601*14662949395604^(2/7) 6524757085432131 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^18/Lucas(38) 6524757085432131 a001 38580022803/591286729879 6524757085432131 a001 329/29134601*192900153618^(1/3) 6524757085432131 a001 329/29134601*10749957122^(3/8) 6524757085432131 a001 329/29134601*4106118243^(9/23) 6524757085432131 a001 329/29134601*1568397607^(9/22) 6524757085432131 a001 329/29134601*599074578^(3/7) 6524757085432131 a001 329/29134601*228826127^(9/20) 6524757085432131 a001 329/29134601*87403803^(9/19) 6524757085432131 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^59 6524757085432131 a001 21/10745088481*141422324^(12/13) 6524757085432131 a001 987/119218851371*141422324^(11/13) 6524757085432131 a001 329/9381251041*141422324^(10/13) 6524757085432132 a001 987/6643838879*141422324^(9/13) 6524757085432132 a001 329/1368706081*141422324^(2/3) 6524757085432132 a001 141/224056801*141422324^(8/13) 6524757085432132 a001 987/370248451*141422324^(7/13) 6524757085432132 a001 21/4868641*2537720636^(4/9) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^20/Lucas(40) 6524757085432132 a001 21/4868641*23725150497407^(5/16) 6524757085432132 a001 4976783/76275376 6524757085432132 a001 21/4868641*505019158607^(5/14) 6524757085432132 a001 21/4868641*73681302247^(5/13) 6524757085432132 a001 21/4868641*28143753123^(2/5) 6524757085432132 a001 21/4868641*10749957122^(5/12) 6524757085432132 a001 21/4868641*4106118243^(10/23) 6524757085432132 a001 21/4868641*1568397607^(5/11) 6524757085432132 a001 21/4868641*599074578^(10/21) 6524757085432132 a001 21/4868641*228826127^(1/2) 6524757085432132 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^61 6524757085432132 a001 329/199691526*312119004989^(2/5) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^22/Lucas(42) 6524757085432132 a001 264431410152/4052739537881 6524757085432132 a001 329/199691526*10749957122^(11/24) 6524757085432132 a001 329/199691526*4106118243^(11/23) 6524757085432132 a001 329/199691526*1568397607^(1/2) 6524757085432132 a001 329/199691526*599074578^(11/21) 6524757085432132 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^63 6524757085432132 a001 141/224056801*2537720636^(8/15) 6524757085432132 a001 141/224056801*45537549124^(8/17) 6524757085432132 a001 141/224056801*14662949395604^(8/21) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^24/Lucas(44) 6524757085432132 a001 701408733/10749959329 6524757085432132 a001 141/224056801*192900153618^(4/9) 6524757085432132 a001 141/224056801*73681302247^(6/13) 6524757085432132 a001 141/224056801*10749957122^(1/2) 6524757085432132 a001 141/224056801*4106118243^(12/23) 6524757085432132 a001 141/224056801*1568397607^(6/11) 6524757085432132 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^65 6524757085432132 a001 329/3020733700601*2537720636^(14/15) 6524757085432132 a001 141/494493258286*2537720636^(8/9) 6524757085432132 a001 987/2139295485799*2537720636^(13/15) 6524757085432132 a001 21/10745088481*2537720636^(4/5) 6524757085432132 a001 987/312119004989*2537720636^(7/9) 6524757085432132 a001 987/119218851371*2537720636^(11/15) 6524757085432132 a001 329/9381251041*2537720636^(2/3) 6524757085432132 a001 987/6643838879*2537720636^(3/5) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^26/Lucas(46) 6524757085432132 a001 329/1368706081*73681302247^(1/2) 6524757085432132 a001 329/1368706081*10749957122^(13/24) 6524757085432132 a001 329/1368706081*4106118243^(13/23) 6524757085432132 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^67 6524757085432132 a001 987/10749957122*17393796001^(4/7) 6524757085432132 a001 987/10749957122*14662949395604^(4/9) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^28/Lucas(48) 6524757085432132 a001 987/10749957122*505019158607^(1/2) 6524757085432132 a001 987/10749957122*73681302247^(7/13) 6524757085432132 a001 987/10749957122*10749957122^(7/12) 6524757085432132 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^69 6524757085432132 a001 329/3020733700601*17393796001^(6/7) 6524757085432132 a001 987/312119004989*17393796001^(5/7) 6524757085432132 a001 329/9381251041*45537549124^(10/17) 6524757085432132 a001 329/9381251041*312119004989^(6/11) 6524757085432132 a001 329/9381251041*14662949395604^(10/21) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^30/Lucas(50) 6524757085432132 a001 329/9381251041*192900153618^(5/9) 6524757085432132 a001 329/9381251041*28143753123^(3/5) 6524757085432132 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^71 6524757085432132 a001 329/3020733700601*45537549124^(14/17) 6524757085432132 a001 987/2139295485799*45537549124^(13/17) 6524757085432132 a001 329/64300051206*45537549124^(2/3) 6524757085432132 a001 21/10745088481*45537549124^(12/17) 6524757085432132 a001 987/119218851371*45537549124^(11/17) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^32/Lucas(52) 6524757085432132 a001 141/10525900321*23725150497407^(1/2) 6524757085432132 a001 141/10525900321*505019158607^(4/7) 6524757085432132 a001 141/10525900321*73681302247^(8/13) 6524757085432132 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^73 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^34/Lucas(54) 6524757085432132 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^75 6524757085432132 a001 987/23725150497407*312119004989^(4/5) 6524757085432132 a001 141/494493258286*312119004989^(8/11) 6524757085432132 a001 21/10745088481*14662949395604^(4/7) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(56) 6524757085432132 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^77 6524757085432132 a001 21/10745088481*505019158607^(9/14) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(58) 6524757085432132 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^79 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(60) 6524757085432132 a001 141/494493258286*23725150497407^(5/8) 6524757085432132 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^81 6524757085432132 a001 329/3020733700601*14662949395604^(2/3) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(62) 6524757085432132 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^83 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(64) 6524757085432132 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^85 6524757085432132 a001 987/23725150497407*23725150497407^(11/16) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(66) 6524757085432132 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^87 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(68) 6524757085432132 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^89 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(70) 6524757085432132 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^91 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(72) 6524757085432132 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^93 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(74) 6524757085432132 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^95 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(76) 6524757085432132 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^97 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(78) 6524757085432132 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^99 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(80) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(82) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(84) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(86) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(88) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(90) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(92) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(94) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(96) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(98) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(100) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(99) 6524757085432132 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2)^20 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(97) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(95) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(93) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(91) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(89) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(87) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(85) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(83) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(81) 6524757085432132 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^100 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(79) 6524757085432132 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^98 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(77) 6524757085432132 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^96 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(75) 6524757085432132 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^94 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(73) 6524757085432132 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^92 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(71) 6524757085432132 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^90 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(69) 6524757085432132 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^88 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(67) 6524757085432132 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^86 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(65) 6524757085432132 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^84 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(63) 6524757085432132 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^82 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(61) 6524757085432132 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^80 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(59) 6524757085432132 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^78 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(57) 6524757085432132 a001 329/3020733700601*505019158607^(3/4) 6524757085432132 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^76 6524757085432132 a001 987/312119004989*14662949395604^(5/9) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^35/Lucas(55) 6524757085432132 a001 987/312119004989*505019158607^(5/8) 6524757085432132 a001 21/10745088481*192900153618^(2/3) 6524757085432132 a001 987/2139295485799*192900153618^(13/18) 6524757085432132 a001 329/3020733700601*192900153618^(7/9) 6524757085432132 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^74 6524757085432132 a001 987/119218851371*312119004989^(3/5) 6524757085432132 a001 987/119218851371*817138163596^(11/19) 6524757085432132 a001 987/119218851371*14662949395604^(11/21) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^33/Lucas(53) 6524757085432132 a001 987/119218851371*192900153618^(11/18) 6524757085432132 a001 21/10745088481*73681302247^(9/13) 6524757085432132 a001 987/2139295485799*73681302247^(3/4) 6524757085432132 a001 141/494493258286*73681302247^(10/13) 6524757085432132 a001 987/23725150497407*73681302247^(11/13) 6524757085432132 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^72 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^31/Lucas(51) 6524757085432132 a001 987/45537549124*9062201101803^(1/2) 6524757085432132 a001 987/312119004989*28143753123^(7/10) 6524757085432132 a001 141/494493258286*28143753123^(4/5) 6524757085432132 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^70 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^29/Lucas(49) 6524757085432132 a001 987/17393796001*1322157322203^(1/2) 6524757085432132 a001 329/9381251041*10749957122^(5/8) 6524757085432132 a001 141/10525900321*10749957122^(2/3) 6524757085432132 a001 987/119218851371*10749957122^(11/16) 6524757085432132 a001 329/64300051206*10749957122^(17/24) 6524757085432132 a001 21/10745088481*10749957122^(3/4) 6524757085432132 a001 329/440719107401*10749957122^(19/24) 6524757085432132 a001 987/2139295485799*10749957122^(13/16) 6524757085432132 a001 141/494493258286*10749957122^(5/6) 6524757085432132 a001 329/3020733700601*10749957122^(7/8) 6524757085432132 a001 987/23725150497407*10749957122^(11/12) 6524757085432132 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^68 6524757085432132 a001 987/6643838879*45537549124^(9/17) 6524757085432132 a001 987/6643838879*817138163596^(9/19) 6524757085432132 a001 987/6643838879*14662949395604^(3/7) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^27/Lucas(47) 6524757085432132 a001 987/6643838879*192900153618^(1/2) 6524757085432132 a001 987/10749957122*4106118243^(14/23) 6524757085432132 a001 987/6643838879*10749957122^(9/16) 6524757085432132 a001 329/9381251041*4106118243^(15/23) 6524757085432132 a001 141/10525900321*4106118243^(16/23) 6524757085432132 a001 329/64300051206*4106118243^(17/23) 6524757085432132 a001 21/10745088481*4106118243^(18/23) 6524757085432132 a001 329/440719107401*4106118243^(19/23) 6524757085432132 a001 141/494493258286*4106118243^(20/23) 6524757085432132 a001 329/3020733700601*4106118243^(21/23) 6524757085432132 a001 987/23725150497407*4106118243^(22/23) 6524757085432132 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^66 6524757085432132 a001 987/2537720636*2537720636^(5/9) 6524757085432132 a001 987/2537720636*312119004989^(5/11) 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^25/Lucas(45) 6524757085432132 a001 987/2537720636*3461452808002^(5/12) 6524757085432132 a001 987/2537720636*28143753123^(1/2) 6524757085432132 a001 329/1368706081*1568397607^(13/22) 6524757085432132 a001 987/10749957122*1568397607^(7/11) 6524757085432132 a001 329/9381251041*1568397607^(15/22) 6524757085432132 a001 141/10525900321*1568397607^(8/11) 6524757085432132 a001 987/119218851371*1568397607^(3/4) 6524757085432132 a001 329/64300051206*1568397607^(17/22) 6524757085432132 a001 21/10745088481*1568397607^(9/11) 6524757085432132 a001 329/440719107401*1568397607^(19/22) 6524757085432132 a001 141/494493258286*1568397607^(10/11) 6524757085432132 a001 329/3020733700601*1568397607^(21/22) 6524757085432132 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^64 6524757085432132 a001 427859009319/6557470319842 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^23/Lucas(43) 6524757085432132 a001 987/969323029*4106118243^(1/2) 6524757085432132 a001 141/224056801*599074578^(4/7) 6524757085432132 a001 329/1368706081*599074578^(13/21) 6524757085432132 a001 987/6643838879*599074578^(9/14) 6524757085432132 a001 987/10749957122*599074578^(2/3) 6524757085432132 a001 329/9381251041*599074578^(5/7) 6524757085432132 a001 141/10525900321*599074578^(16/21) 6524757085432132 a001 987/119218851371*599074578^(11/14) 6524757085432132 a001 329/64300051206*599074578^(17/21) 6524757085432132 a001 987/312119004989*599074578^(5/6) 6524757085432132 a001 21/10745088481*599074578^(6/7) 6524757085432132 a001 329/440719107401*599074578^(19/21) 6524757085432132 a001 987/2139295485799*599074578^(13/14) 6524757085432132 a001 141/494493258286*599074578^(20/21) 6524757085432132 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^62 6524757085432132 a001 987/370248451*2537720636^(7/15) 6524757085432132 a001 987/370248451*17393796001^(3/7) 6524757085432132 a001 987/370248451*45537549124^(7/17) 6524757085432132 a001 163427599167/2504730781961 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^21/Lucas(41) 6524757085432132 a001 987/370248451*192900153618^(7/18) 6524757085432132 a001 987/370248451*10749957122^(7/16) 6524757085432132 a001 329/199691526*228826127^(11/20) 6524757085432132 a001 987/370248451*599074578^(1/2) 6524757085432132 a001 141/224056801*228826127^(3/5) 6524757085432132 a001 987/2537720636*228826127^(5/8) 6524757085432132 a001 329/1368706081*228826127^(13/20) 6524757085432132 a001 987/10749957122*228826127^(7/10) 6524757085432132 a001 329/9381251041*228826127^(3/4) 6524757085432132 a001 141/10525900321*228826127^(4/5) 6524757085432132 a001 329/64300051206*228826127^(17/20) 6524757085432132 a001 987/312119004989*228826127^(7/8) 6524757085432132 a001 21/10745088481*228826127^(9/10) 6524757085432132 a001 329/440719107401*228826127^(19/20) 6524757085432132 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^60 6524757085432132 a001 21/4868641*87403803^(10/19) 6524757085432132 a001 62423788182/956722026041 6524757085432132 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^19/Lucas(39) 6524757085432132 a001 329/199691526*87403803^(11/19) 6524757085432132 a001 141/224056801*87403803^(12/19) 6524757085432132 a001 329/1368706081*87403803^(13/19) 6524757085432132 a001 987/10749957122*87403803^(14/19) 6524757085432132 a001 329/9381251041*87403803^(15/19) 6524757085432132 a001 141/10525900321*87403803^(16/19) 6524757085432132 a001 987/141422324*87403803^(1/2) 6524757085432133 a001 329/64300051206*87403803^(17/19) 6524757085432133 a001 21/10745088481*87403803^(18/19) 6524757085432133 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^58 6524757085432134 a001 329/29134601*33385282^(1/2) 6524757085432134 a001 987/54018521*45537549124^(1/3) 6524757085432134 a001 23843765379/365435296162 6524757085432134 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^17/Lucas(37) 6524757085432135 a001 21/4868641*33385282^(5/9) 6524757085432135 a001 987/370248451*33385282^(7/12) 6524757085432135 a001 329/199691526*33385282^(11/18) 6524757085432136 a001 141/224056801*33385282^(2/3) 6524757085432136 a001 329/1368706081*33385282^(13/18) 6524757085432136 a001 987/6643838879*33385282^(3/4) 6524757085432136 a001 987/10749957122*33385282^(7/9) 6524757085432137 a001 329/9381251041*33385282^(5/6) 6524757085432137 a001 141/10525900321*33385282^(8/9) 6524757085432137 a001 987/119218851371*33385282^(11/12) 6524757085432137 a001 329/64300051206*33385282^(17/18) 6524757085432138 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^56 6524757085432141 a001 987/20633239*20633239^(3/7) 6524757085432145 a001 141/4769326*12752043^(8/17) 6524757085432147 a001 987/20633239*141422324^(5/13) 6524757085432147 a001 987/20633239*2537720636^(1/3) 6524757085432147 a001 987/20633239*45537549124^(5/17) 6524757085432147 a001 1821501591/27916772489 6524757085432147 a001 987/20633239*312119004989^(3/11) 6524757085432147 a001 987/20633239*14662949395604^(5/21) 6524757085432147 a001 987/20633239*(1/2+1/2*5^(1/2))^15 6524757085432147 a001 987/20633239*192900153618^(5/18) 6524757085432147 a001 987/20633239*28143753123^(3/10) 6524757085432147 a001 987/20633239*10749957122^(5/16) 6524757085432147 a001 987/20633239*599074578^(5/14) 6524757085432147 a001 987/20633239*228826127^(3/8) 6524757085432150 a001 987/20633239*33385282^(5/12) 6524757085432152 a001 329/29134601*12752043^(9/17) 6524757085432154 a001 987/54018521*12752043^(1/2) 6524757085432155 a001 21/4868641*12752043^(10/17) 6524757085432158 a001 329/199691526*12752043^(11/17) 6524757085432160 a001 141/224056801*12752043^(12/17) 6524757085432162 a001 329/1368706081*12752043^(13/17) 6524757085432165 a001 987/10749957122*12752043^(14/17) 6524757085432167 a001 329/9381251041*12752043^(15/17) 6524757085432170 a001 141/10525900321*12752043^(16/17) 6524757085432172 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^54 6524757085432212 a001 329/4250681*4870847^(7/16) 6524757085432237 a001 987/7881196*141422324^(1/3) 6524757085432237 a001 3478758486/53316291173 6524757085432237 a001 987/7881196*(1/2+1/2*5^(1/2))^13 6524757085432237 a001 987/7881196*73681302247^(1/4) 6524757085432263 a001 141/4769326*4870847^(1/2) 6524757085432286 a001 329/29134601*4870847^(9/16) 6524757085432304 a001 21/4868641*4870847^(5/8) 6524757085432321 a001 329/199691526*4870847^(11/16) 6524757085432338 a001 141/224056801*4870847^(3/4) 6524757085432355 a001 329/1368706081*4870847^(13/16) 6524757085432367 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^22 6524757085432372 a001 987/10749957122*4870847^(7/8) 6524757085432390 a001 329/9381251041*4870847^(15/16) 6524757085432401 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^24 6524757085432406 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^26 6524757085432407 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^28 6524757085432407 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^30 6524757085432407 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^32 6524757085432407 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^34 6524757085432407 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^36 6524757085432407 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^38 6524757085432407 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^40 6524757085432407 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^42 6524757085432407 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^44 6524757085432407 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^46 6524757085432407 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^48 6524757085432407 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^50 6524757085432407 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^52 6524757085432407 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^54 6524757085432407 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^56 6524757085432407 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^58 6524757085432407 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^60 6524757085432407 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^62 6524757085432407 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^64 6524757085432407 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^66 6524757085432407 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^68 6524757085432407 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^70 6524757085432407 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^72 6524757085432407 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^74 6524757085432407 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^76 6524757085432407 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^78 6524757085432407 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^80 6524757085432407 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^82 6524757085432407 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^84 6524757085432407 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^86 6524757085432407 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^88 6524757085432407 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^87 6524757085432407 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^85 6524757085432407 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^83 6524757085432407 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^81 6524757085432407 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^79 6524757085432407 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^77 6524757085432407 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^75 6524757085432407 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^73 6524757085432407 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^71 6524757085432407 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^69 6524757085432407 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^67 6524757085432407 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^65 6524757085432407 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^63 6524757085432407 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^61 6524757085432407 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^59 6524757085432407 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^57 6524757085432407 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^55 6524757085432407 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^53 6524757085432407 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^51 6524757085432407 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^49 6524757085432407 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^47 6524757085432407 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^45 6524757085432407 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^43 6524757085432407 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^41 6524757085432407 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^39 6524757085432407 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^37 6524757085432407 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^35 6524757085432407 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^33 6524757085432407 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^31 6524757085432407 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^29 6524757085432407 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^27 6524757085432409 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^25 6524757085432422 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^23 6524757085432512 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^21 6524757085432611 a001 987/4870847*1860498^(2/5) 6524757085432817 a001 987/3010349*7881196^(1/3) 6524757085432852 a001 1328767503/20365011074 6524757085432852 a001 987/3010349*312119004989^(1/5) 6524757085432852 a001 987/3010349*(1/2+1/2*5^(1/2))^11 6524757085432852 a001 987/3010349*1568397607^(1/4) 6524757085432971 a001 329/4250681*1860498^(7/15) 6524757085433090 a001 987/20633239*1860498^(1/2) 6524757085433127 a004 Fibonacci(31)/Lucas(16)/(1/2+sqrt(5)/2)^19 6524757085433131 a001 141/4769326*1860498^(8/15) 6524757085433262 a001 329/29134601*1860498^(3/5) 6524757085433388 a001 21/4868641*1860498^(2/3) 6524757085433451 a001 987/370248451*1860498^(7/10) 6524757085433514 a001 329/199691526*1860498^(11/15) 6524757085433640 a001 141/224056801*1860498^(4/5) 6524757085433703 a001 987/2537720636*1860498^(5/6) 6524757085433765 a001 329/1368706081*1860498^(13/15) 6524757085433828 a001 987/6643838879*1860498^(9/10) 6524757085433891 a001 987/10749957122*1860498^(14/15) 6524757085434017 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^50 6524757085434861 a001 329/620166*710647^(5/14) 6524757085437038 a001 987/1149851*7881196^(3/11) 6524757085437067 a001 987/1149851*141422324^(3/13) 6524757085437067 a001 987/1149851*2537720636^(1/5) 6524757085437067 a001 507544023/7778742049 6524757085437067 a001 987/1149851*45537549124^(3/17) 6524757085437067 a001 987/1149851*817138163596^(3/19) 6524757085437067 a001 987/1149851*14662949395604^(1/7) 6524757085437067 a001 987/1149851*(1/2+1/2*5^(1/2))^9 6524757085437067 a001 987/1149851*192900153618^(1/6) 6524757085437067 a001 987/1149851*10749957122^(3/16) 6524757085437067 a001 987/1149851*599074578^(3/14) 6524757085437068 a001 987/1149851*33385282^(1/4) 6524757085437342 a004 Fibonacci(29)/Lucas(16)/(1/2+sqrt(5)/2)^17 6524757085437394 a001 987/4870847*710647^(3/7) 6524757085437632 a001 987/1149851*1860498^(3/10) 6524757085438552 a001 329/4250681*710647^(1/2) 6524757085439509 a001 141/4769326*710647^(4/7) 6524757085440436 a001 329/29134601*710647^(9/14) 6524757085441360 a001 21/4868641*710647^(5/7) 6524757085441822 a001 987/370248451*710647^(3/4) 6524757085442283 a001 329/199691526*710647^(11/14) 6524757085443206 a001 141/224056801*710647^(6/7) 6524757085444129 a001 329/1368706081*710647^(13/14) 6524757085445052 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^48 6524757085446459 a001 141/101521*271443^(4/13) 6524757085464306 a001 329/620166*271443^(5/13) 6524757085465251 a001 987/64079*24476^(1/7) 6524757085465953 a001 987/439204*20633239^(1/5) 6524757085465956 a001 193864566/2971215073 6524757085465956 a001 987/439204*17393796001^(1/7) 6524757085465956 a001 987/439204*14662949395604^(1/9) 6524757085465956 a001 987/439204*(1/2+1/2*5^(1/2))^7 6524757085465956 a001 987/439204*599074578^(1/6) 6524757085466231 a004 Fibonacci(27)/Lucas(16)/(1/2+sqrt(5)/2)^15 6524757085469186 a001 987/439204*710647^(1/4) 6524757085472728 a001 987/4870847*271443^(6/13) 6524757085476514 a001 987/7881196*271443^(1/2) 6524757085479774 a001 329/4250681*271443^(7/13) 6524757085486621 a001 141/4769326*271443^(8/13) 6524757085493437 a001 329/29134601*271443^(9/13) 6524757085495317 a001 329/90481*103682^(1/4) 6524757085500250 a001 21/4868641*271443^(10/13) 6524757085507062 a001 329/199691526*271443^(11/13) 6524757085513874 a001 141/224056801*271443^(12/13) 6524757085520686 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^46 6524757085581565 a001 21/2206*39603^(2/11) 6524757085617601 a001 987/167761*167761^(1/5) 6524757085621531 a001 141/101521*103682^(1/3) 6524757085642985 a001 987/439204*103682^(7/24) 6524757085663966 a001 987/167761*20633239^(1/7) 6524757085663969 a001 14809935/226980634 6524757085663969 a001 987/167761*2537720636^(1/9) 6524757085663969 a001 987/167761*312119004989^(1/11) 6524757085663969 a001 987/167761*(1/2+1/2*5^(1/2))^5 6524757085663969 a001 987/167761*28143753123^(1/10) 6524757085663969 a001 987/167761*228826127^(1/8) 6524757085664244 a004 Fibonacci(25)/Lucas(16)/(1/2+sqrt(5)/2)^13 6524757085664283 a001 987/167761*1860498^(1/6) 6524757085664675 a001 987/1149851*103682^(3/8) 6524757085683145 a001 329/620166*103682^(5/12) 6524757085711040 a001 987/3010349*103682^(11/24) 6524757085735335 a001 987/4870847*103682^(1/2) 6524757085761005 a001 987/7881196*103682^(13/24) 6524757085786150 a001 329/4250681*103682^(7/12) 6524757085790418 a001 987/167761*103682^(5/24) 6524757085811495 a001 987/20633239*103682^(5/8) 6524757085836764 a001 141/4769326*103682^(2/3) 6524757085862062 a001 987/54018521*103682^(17/24) 6524757085887348 a001 329/29134601*103682^(3/4) 6524757085912639 a001 987/141422324*103682^(19/24) 6524757085937929 a001 21/4868641*103682^(5/6) 6524757085963219 a001 987/370248451*103682^(7/8) 6524757085988509 a001 329/199691526*103682^(11/12) 6524757086013798 a001 987/969323029*103682^(23/24) 6524757086039088 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^44 6524757086478162 a001 329/90481*39603^(3/11) 6524757086609455 a001 987/167761*39603^(5/22) 6524757086789638 a001 987/439204*39603^(7/22) 6524757086813900 a001 987/64079*64079^(3/23) 6524757086931991 a001 141/101521*39603^(4/11) 6524757087017406 a001 987/64079*439204^(1/9) 6524757087021155 a001 987/64079*7881196^(1/11) 6524757087021165 a001 987/64079*141422324^(1/13) 6524757087021165 a001 28284459/433494437 6524757087021165 a001 987/64079*2537720636^(1/15) 6524757087021165 a001 987/64079*45537549124^(1/17) 6524757087021165 a001 987/64079*14662949395604^(1/21) 6524757087021165 a001 987/64079*(1/2+1/2*5^(1/2))^3 6524757087021165 a001 987/64079*192900153618^(1/18) 6524757087021165 a001 987/64079*10749957122^(1/16) 6524757087021165 a001 987/64079*599074578^(1/14) 6524757087021165 a001 987/64079*33385282^(1/12) 6524757087021353 a001 987/64079*1860498^(1/10) 6524757087021440 a004 Fibonacci(23)/Lucas(16)/(1/2+sqrt(5)/2)^11 6524757087097034 a001 987/64079*103682^(1/8) 6524757087138943 a001 987/1149851*39603^(9/22) 6524757087321221 a001 329/620166*39603^(5/11) 6524757087512923 a001 987/3010349*39603^(1/2) 6524757087588457 a001 987/64079*39603^(3/22) 6524757087701025 a001 987/4870847*39603^(6/11) 6524757087890503 a001 987/7881196*39603^(13/22) 6524757088079455 a001 329/4250681*39603^(7/11) 6524757088268608 a001 987/20633239*39603^(15/22) 6524757088457684 a001 141/4769326*39603^(8/11) 6524757088646789 a001 987/54018521*39603^(17/22) 6524757088835884 a001 329/29134601*39603^(9/11) 6524757089024982 a001 987/141422324*39603^(19/22) 6524757089214079 a001 21/4868641*39603^(10/11) 6524757089403177 a001 987/370248451*39603^(21/22) 6524757089592274 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^42 6524757090417229 h001 (-5*exp(1)-7)/(-6*exp(4)+12) 6524757090527983 a001 21/2206*15127^(1/5) 6524757091298270 a001 987/64079*15127^(3/20) 6524757092394540 a001 987/24476*9349^(1/19) 6524757092792478 a001 987/167761*15127^(1/4) 6524757093897790 a001 329/90481*15127^(3/10) 6524757095445870 a001 987/439204*15127^(7/20) 6524757095804888 a001 987/24476*24476^(1/21) 6524757096254437 a001 987/24476*64079^(1/23) 6524757096323525 a001 10803702/165580141 6524757096323525 a001 987/48952+987/48952*5^(1/2) 6524757096323800 a004 Fibonacci(21)/Lucas(16)/(1/2+sqrt(5)/2)^9 6524757096348815 a001 987/24476*103682^(1/24) 6524757096512623 a001 987/24476*39603^(1/22) 6524757096824827 a001 141/101521*15127^(2/5) 6524757096842442 a001 4181/1149851*1364^(2/5) 6524757097749227 a001 987/24476*15127^(1/20) 6524757098268384 a001 987/1149851*15127^(9/20) 6524757099687266 a001 329/620166*15127^(1/2) 6524757101115573 a001 987/3010349*15127^(11/20) 6524757102540280 a001 987/4870847*15127^(3/5) 6524757102987337 a001 329/13201*5778^(1/9) 6524757103966362 a001 987/7881196*15127^(13/20) 6524757105391919 a001 329/4250681*15127^(7/10) 6524757106817676 a001 987/20633239*15127^(3/4) 6524757107181199 a001 987/24476*5778^(1/18) 6524757108243357 a001 141/4769326*15127^(4/5) 6524757109669067 a001 987/54018521*15127^(17/20) 6524757110371645 k002 Champernowne real with 71*n^2-31*n+25 6524757111094766 a001 329/29134601*15127^(9/10) 6524757112520469 a001 987/141422324*15127^(19/20) 6524757113338120 a001 377/1860498*843^(6/7) 6524757113946171 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^40 6524757119594186 a001 987/64079*5778^(1/6) 6524757122887413 a007 Real Root Of -794*x^4-268*x^3-904*x^2-330*x+239 6524757128255870 a001 21/2206*5778^(2/9) 6524757136368187 m003 -17/6+Sqrt[5]/2+3*Sec[1/2+Sqrt[5]/2] 6524757139952337 a001 987/167761*5778^(5/18) 6524757150489621 a001 329/90481*5778^(1/3) 6524757160082854 a001 4126647/63245986 6524757160082856 a004 Fibonacci(16)/Lucas(19)/(1/2+sqrt(5)/2) 6524757160083130 a004 Fibonacci(19)/Lucas(16)/(1/2+sqrt(5)/2)^7 6524757161469673 a001 987/439204*5778^(7/18) 6524757163718758 m001 ln(Kolakoski)^2/ErdosBorwein^2/Pi 6524757172280602 a001 141/101521*5778^(4/9) 6524757179567251 m001 HardHexagonsEntropy^ln(5)-Shi(1) 6524757180045572 a001 987/24476*2207^(1/16) 6524757183156131 a001 987/1149851*5778^(1/2) 6524757194006985 a001 329/620166*5778^(5/9) 6524757196761889 r005 Im(z^2+c),c=-45/86+7/15*I,n=19 6524757204867264 a001 987/3010349*5778^(11/18) 6524757210401651 k002 Champernowne real with 143/2*n^2-65/2*n+26 6524757214181958 r005 Im(z^2+c),c=-1/17+21/29*I,n=44 6524757215723943 a001 987/4870847*5778^(2/3) 6524757226581997 a001 987/7881196*5778^(13/18) 6524757227477408 a001 6765/1149851*1364^(1/3) 6524757231151266 a007 Real Root Of -685*x^4+875*x^3+908*x^2+22*x-5 6524757237439526 a001 329/4250681*5778^(7/9) 6524757248297255 a001 987/20633239*5778^(5/6) 6524757248716083 a001 329/13201*2207^(1/8) 6524757251827091 a001 17711/3010349*1364^(1/3) 6524757255379662 a001 11592/1970299*1364^(1/3) 6524757255897975 a001 121393/20633239*1364^(1/3) 6524757255973595 a001 317811/54018521*1364^(1/3) 6524757255984628 a001 208010/35355581*1364^(1/3) 6524757255986238 a001 2178309/370248451*1364^(1/3) 6524757255986473 a001 5702887/969323029*1364^(1/3) 6524757255986507 a001 196452/33391061*1364^(1/3) 6524757255986512 a001 39088169/6643838879*1364^(1/3) 6524757255986513 a001 102334155/17393796001*1364^(1/3) 6524757255986513 a001 66978574/11384387281*1364^(1/3) 6524757255986513 a001 701408733/119218851371*1364^(1/3) 6524757255986513 a001 1836311903/312119004989*1364^(1/3) 6524757255986513 a001 1201881744/204284540899*1364^(1/3) 6524757255986513 a001 12586269025/2139295485799*1364^(1/3) 6524757255986513 a001 32951280099/5600748293801*1364^(1/3) 6524757255986513 a001 1135099622/192933544679*1364^(1/3) 6524757255986513 a001 139583862445/23725150497407*1364^(1/3) 6524757255986513 a001 53316291173/9062201101803*1364^(1/3) 6524757255986513 a001 10182505537/1730726404001*1364^(1/3) 6524757255986513 a001 7778742049/1322157322203*1364^(1/3) 6524757255986513 a001 2971215073/505019158607*1364^(1/3) 6524757255986513 a001 567451585/96450076809*1364^(1/3) 6524757255986513 a001 433494437/73681302247*1364^(1/3) 6524757255986513 a001 165580141/28143753123*1364^(1/3) 6524757255986513 a001 31622993/5374978561*1364^(1/3) 6524757255986515 a001 24157817/4106118243*1364^(1/3) 6524757255986528 a001 9227465/1568397607*1364^(1/3) 6524757255986618 a001 1762289/299537289*1364^(1/3) 6524757255987233 a001 1346269/228826127*1364^(1/3) 6524757255991447 a001 514229/87403803*1364^(1/3) 6524757256020332 a001 98209/16692641*1364^(1/3) 6524757256218310 a001 75025/12752043*1364^(1/3) 6524757257575271 a001 28657/4870847*1364^(1/3) 6524757257785445 h001 (2/11*exp(1)+3/8)/(2/7*exp(1)+5/9) 6524757259154908 a001 141/4769326*5778^(8/9) 6524757264251669 m001 (CareFree+Conway)/(5^(1/2)+sin(1)) 6524757266876022 a001 5473/930249*1364^(1/3) 6524757270012590 a001 987/54018521*5778^(17/18) 6524757274928736 a001 4181/18*199^(8/41) 6524757280089834 a007 Real Root Of -916*x^4+744*x^3+665*x^2+382*x-573 6524757280870262 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^38 6524757294259553 a001 2584/271443*1364^(4/15) 6524757300037790 a001 1597/710647*1364^(7/15) 6524757310431657 k002 Champernowne real with 72*n^2-34*n+27 6524757330624318 a001 4181/710647*1364^(1/3) 6524757338187307 a001 987/64079*2207^(3/16) 6524757347601962 a007 Real Root Of -434*x^4+600*x^3-617*x^2+446*x+799 6524757360052367 r005 Im(z^2+c),c=-37/94+24/37*I,n=15 6524757382671740 r005 Re(z^2+c),c=41/114+1/12*I,n=5 6524757410461663 k002 Champernowne real with 145/2*n^2-71/2*n+28 6524757419713367 a001 21/2206*2207^(1/4) 6524757425356413 a007 Real Root Of 896*x^4+857*x^3+983*x^2-575*x-718 6524757459258058 a007 Real Root Of -216*x^4+795*x^3-27*x^2+879*x+845 6524757461259289 a001 6765/710647*1364^(4/15) 6524757473719043 r009 Im(z^3+c),c=-61/118+25/63*I,n=2 6524757485624222 a001 17711/1860498*1364^(4/15) 6524757489179018 a001 46368/4870847*1364^(4/15) 6524757489697655 a001 121393/12752043*1364^(4/15) 6524757489773324 a001 317811/33385282*1364^(4/15) 6524757489784364 a001 832040/87403803*1364^(4/15) 6524757489785974 a001 46347/4868641*1364^(4/15) 6524757489786209 a001 5702887/599074578*1364^(4/15) 6524757489786243 a001 14930352/1568397607*1364^(4/15) 6524757489786248 a001 39088169/4106118243*1364^(4/15) 6524757489786249 a001 102334155/10749957122*1364^(4/15) 6524757489786249 a001 267914296/28143753123*1364^(4/15) 6524757489786249 a001 701408733/73681302247*1364^(4/15) 6524757489786249 a001 1836311903/192900153618*1364^(4/15) 6524757489786249 a001 102287808/10745088481*1364^(4/15) 6524757489786249 a001 12586269025/1322157322203*1364^(4/15) 6524757489786249 a001 32951280099/3461452808002*1364^(4/15) 6524757489786249 a001 86267571272/9062201101803*1364^(4/15) 6524757489786249 a001 225851433717/23725150497407*1364^(4/15) 6524757489786249 a001 139583862445/14662949395604*1364^(4/15) 6524757489786249 a001 53316291173/5600748293801*1364^(4/15) 6524757489786249 a001 20365011074/2139295485799*1364^(4/15) 6524757489786249 a001 7778742049/817138163596*1364^(4/15) 6524757489786249 a001 2971215073/312119004989*1364^(4/15) 6524757489786249 a001 1134903170/119218851371*1364^(4/15) 6524757489786249 a001 433494437/45537549124*1364^(4/15) 6524757489786249 a001 165580141/17393796001*1364^(4/15) 6524757489786250 a001 63245986/6643838879*1364^(4/15) 6524757489786252 a001 24157817/2537720636*1364^(4/15) 6524757489786265 a001 9227465/969323029*1364^(4/15) 6524757489786354 a001 3524578/370248451*1364^(4/15) 6524757489786970 a001 1346269/141422324*1364^(4/15) 6524757489791186 a001 514229/54018521*1364^(4/15) 6524757489820089 a001 196418/20633239*1364^(4/15) 6524757490018191 a001 75025/7881196*1364^(4/15) 6524757491376002 a001 28657/3010349*1364^(4/15) 6524757500682579 a001 10946/1149851*1364^(4/15) 6524757504274211 a001 987/167761*2207^(5/16) 6524757510491669 k002 Champernowne real with 73*n^2-37*n+29 6524757523863978 m004 25*Pi+8*Csc[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 6524757528379682 a001 2584/167761*1364^(1/5) 6524757533884272 a001 1597/439204*1364^(2/5) 6524757537934341 m001 Salem^2/ln(ErdosBorwein)*sqrt(5) 6524757564470801 a001 4181/439204*1364^(4/15) 6524757567328562 m001 (Khinchin+Tribonacci)/(Catalan-ln(5)) 6524757587675873 a001 329/90481*2207^(3/8) 6524757596435158 m001 1/FeigenbaumD/DuboisRaymond*exp(GAMMA(3/4)) 6524757597095797 a001 1576239/24157817 6524757597095839 a004 Fibonacci(16)/Lucas(17)/(1/2+sqrt(5)/2)^3 6524757597096074 a004 Fibonacci(17)/Lucas(16)/(1/2+sqrt(5)/2)^5 6524757598324022 l003 KelvinHer(2,41/93) 6524757602026258 m001 (-MertensB3+Stephens)/(Chi(1)+arctan(1/3)) 6524757610521675 k002 Champernowne real with 147/2*n^2-77/2*n+30 6524757670770541 r005 Re(z^2+c),c=-19/25+1/21*I,n=17 6524757671520304 a001 987/439204*2207^(7/16) 6524757695105777 a001 6765/439204*1364^(1/5) 6524757699051373 m001 exp(Khintchine)^2*CopelandErdos^2/FeigenbaumC 6524757708725227 a007 Real Root Of -772*x^4+859*x^3-780*x^2-522*x+370 6524757710551681 k002 Champernowne real with 74*n^2-40*n+31 6524757717883351 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^39 6524757719430786 a001 17711/1149851*1364^(1/5) 6524757722979757 a001 46368/3010349*1364^(1/5) 6524757723497545 a001 121393/7881196*1364^(1/5) 6524757723573089 a001 10959/711491*1364^(1/5) 6524757723584111 a001 832040/54018521*1364^(1/5) 6524757723585719 a001 2178309/141422324*1364^(1/5) 6524757723585954 a001 5702887/370248451*1364^(1/5) 6524757723585988 a001 14930352/969323029*1364^(1/5) 6524757723585993 a001 39088169/2537720636*1364^(1/5) 6524757723585994 a001 102334155/6643838879*1364^(1/5) 6524757723585994 a001 9238424/599786069*1364^(1/5) 6524757723585994 a001 701408733/45537549124*1364^(1/5) 6524757723585994 a001 1836311903/119218851371*1364^(1/5) 6524757723585994 a001 4807526976/312119004989*1364^(1/5) 6524757723585994 a001 12586269025/817138163596*1364^(1/5) 6524757723585994 a001 32951280099/2139295485799*1364^(1/5) 6524757723585994 a001 86267571272/5600748293801*1364^(1/5) 6524757723585994 a001 7787980473/505618944676*1364^(1/5) 6524757723585994 a001 365435296162/23725150497407*1364^(1/5) 6524757723585994 a001 139583862445/9062201101803*1364^(1/5) 6524757723585994 a001 53316291173/3461452808002*1364^(1/5) 6524757723585994 a001 20365011074/1322157322203*1364^(1/5) 6524757723585994 a001 7778742049/505019158607*1364^(1/5) 6524757723585994 a001 2971215073/192900153618*1364^(1/5) 6524757723585994 a001 1134903170/73681302247*1364^(1/5) 6524757723585994 a001 433494437/28143753123*1364^(1/5) 6524757723585994 a001 165580141/10749957122*1364^(1/5) 6524757723585994 a001 63245986/4106118243*1364^(1/5) 6524757723585996 a001 24157817/1568397607*1364^(1/5) 6524757723586009 a001 9227465/599074578*1364^(1/5) 6524757723586099 a001 3524578/228826127*1364^(1/5) 6524757723586713 a001 1346269/87403803*1364^(1/5) 6524757723590923 a001 514229/33385282*1364^(1/5) 6524757723619778 a001 196418/12752043*1364^(1/5) 6524757723817556 a001 75025/4870847*1364^(1/5) 6524757725173142 a001 28657/1860498*1364^(1/5) 6524757729040307 m001 GAMMA(5/12)*Backhouse^2/ln(Zeta(7))^2 6524757734464469 a001 10946/710647*1364^(1/5) 6524757737469472 m005 (1/2*5^(1/2)+4/7)/(9/10*exp(1)+1/7) 6524757747981217 a001 2584/87403803*3571^(16/17) 6524757752139667 a001 987/24476*843^(1/14) 6524757755195613 a001 141/101521*2207^(1/2) 6524757755926098 m005 (1/3*5^(1/2)-1/6)/(3*exp(1)+5/7) 6524757760109104 r005 Im(z^2+c),c=37/98+14/45*I,n=49 6524757761340634 a001 1292/51841*1364^(2/15) 6524757767561640 a001 1597/271443*1364^(1/3) 6524757769156869 a001 377/3010349*843^(13/14) 6524757778079087 a001 2584/54018521*3571^(15/17) 6524757786449950 r009 Im(z^3+c),c=-19/102+55/56*I,n=50 6524757786897887 h001 (1/5*exp(2)+1/5)/(9/10*exp(1)+1/8) 6524757796062598 r005 Im(z^2+c),c=-3/4+41/166*I,n=9 6524757798148170 a001 4181/271443*1364^(1/5) 6524757808176947 a001 1292/16692641*3571^(14/17) 6524757810581687 k002 Champernowne real with 149/2*n^2-83/2*n+32 6524757814859983 a007 Real Root Of 212*x^4-498*x^3+658*x^2-391*x-712 6524757823304309 a007 Real Root Of 141*x^4+876*x^3-203*x^2+620*x+468 6524757828263751 m001 (Paris+ZetaQ(2))/(gamma(3)-CopelandErdos) 6524757838274835 a001 2584/20633239*3571^(13/17) 6524757838935523 a001 987/1149851*2207^(9/16) 6524757846212043 a007 Real Root Of 200*x^4-358*x^3+662*x^2-577*x-794 6524757861821136 a007 Real Root Of -750*x^4-893*x^3-707*x^2+14*x+198 6524757862324497 a007 Real Root Of -291*x^4+442*x^3-455*x^2+415*x+640 6524757868372647 a001 2584/12752043*3571^(12/17) 6524757884807464 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^41 6524757898470660 a001 646/1970299*3571^(11/17) 6524757902430111 a001 3571/10946*8^(1/3) 6524757906558054 r005 Im(z^2+c),c=11/38+20/53*I,n=3 6524757909161363 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^43 6524757910611693 k002 Champernowne real with 75*n^2-43*n+33 6524757912714549 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^45 6524757913232952 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^47 6524757913308586 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^49 6524757913319621 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^51 6524757913321231 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^53 6524757913321466 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^55 6524757913321500 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^57 6524757913321505 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^59 6524757913321506 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^61 6524757913321506 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^63 6524757913321506 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^65 6524757913321506 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^67 6524757913321506 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^69 6524757913321506 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^71 6524757913321506 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^73 6524757913321506 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^75 6524757913321506 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^77 6524757913321506 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^79 6524757913321506 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^81 6524757913321506 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^83 6524757913321506 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^85 6524757913321506 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^87 6524757913321506 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^89 6524757913321506 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^91 6524757913321506 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^93 6524757913321506 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^95 6524757913321506 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^97 6524757913321506 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^99 6524757913321506 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^100 6524757913321506 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^98 6524757913321506 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^96 6524757913321506 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^94 6524757913321506 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^92 6524757913321506 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^90 6524757913321506 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^88 6524757913321506 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^86 6524757913321506 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^84 6524757913321506 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^82 6524757913321506 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^80 6524757913321506 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^78 6524757913321506 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^76 6524757913321506 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^74 6524757913321506 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^72 6524757913321506 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^70 6524757913321506 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^68 6524757913321506 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^66 6524757913321506 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^64 6524757913321506 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^62 6524757913321506 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^60 6524757913321508 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^58 6524757913321521 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^56 6524757913321546 a001 2/1597*(1/2+1/2*5^(1/2))^13 6524757913321611 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^54 6524757913322226 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^52 6524757913326441 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^50 6524757913355331 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^48 6524757913553343 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^46 6524757914217832 m001 (2^(1/3)+ln(2^(1/2)+1))/(Gompertz+Khinchin) 6524757914905331 a001 6765/228826127*3571^(16/17) 6524757914910539 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^44 6524757915565568 m005 (1/2*Catalan+1/8)/(2/11*2^(1/2)+7/11) 6524757922650759 a001 329/620166*2207^(5/8) 6524757923262067 r002 5th iterates of z^2 + 6524757923956605 m001 Backhouse+MinimumGamma^exp(Pi) 6524757924212901 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^42 6524757927459322 a007 Real Root Of 378*x^4-752*x^3+324*x^2+376*x-170 6524757928568148 a001 2584/4870847*3571^(10/17) 6524757928783151 a001 2255/90481*1364^(2/15) 6524757936392226 m001 (arctan(1/2)+gamma(3))/(Lehmer-Mills) 6524757939259231 a001 17711/599074578*3571^(16/17) 6524757942812417 a001 6624/224056801*3571^(16/17) 6524757943330820 a001 121393/4106118243*3571^(16/17) 6524757943406454 a001 317811/10749957122*3571^(16/17) 6524757943417489 a001 832040/28143753123*3571^(16/17) 6524757943419099 a001 311187/10525900321*3571^(16/17) 6524757943419334 a001 5702887/192900153618*3571^(16/17) 6524757943419368 a001 14930352/505019158607*3571^(16/17) 6524757943419373 a001 39088169/1322157322203*3571^(16/17) 6524757943419374 a001 6765/228826126*3571^(16/17) 6524757943419374 a001 267914296/9062201101803*3571^(16/17) 6524757943419374 a001 701408733/23725150497407*3571^(16/17) 6524757943419374 a001 433494437/14662949395604*3571^(16/17) 6524757943419374 a001 165580141/5600748293801*3571^(16/17) 6524757943419374 a001 63245986/2139295485799*3571^(16/17) 6524757943419376 a001 24157817/817138163596*3571^(16/17) 6524757943419389 a001 9227465/312119004989*3571^(16/17) 6524757943419479 a001 3524578/119218851371*3571^(16/17) 6524757943420094 a001 1346269/45537549124*3571^(16/17) 6524757943424309 a001 514229/17393796001*3571^(16/17) 6524757943453198 a001 196418/6643838879*3571^(16/17) 6524757943651211 a001 75025/2537720636*3571^(16/17) 6524757945003199 a001 6765/141422324*3571^(15/17) 6524757945008407 a001 28657/969323029*3571^(16/17) 6524757953212684 a001 17711/710647*1364^(2/15) 6524757954310769 a001 10946/370248451*3571^(16/17) 6524757956776905 a001 2576/103361*1364^(2/15) 6524757957296918 a001 121393/4870847*1364^(2/15) 6524757957372787 a001 105937/4250681*1364^(2/15) 6524757957383856 a001 416020/16692641*1364^(2/15) 6524757957385471 a001 726103/29134601*1364^(2/15) 6524757957385707 a001 5702887/228826127*1364^(2/15) 6524757957385741 a001 829464/33281921*1364^(2/15) 6524757957385746 a001 39088169/1568397607*1364^(2/15) 6524757957385747 a001 34111385/1368706081*1364^(2/15) 6524757957385747 a001 133957148/5374978561*1364^(2/15) 6524757957385747 a001 233802911/9381251041*1364^(2/15) 6524757957385747 a001 1836311903/73681302247*1364^(2/15) 6524757957385747 a001 267084832/10716675201*1364^(2/15) 6524757957385747 a001 12586269025/505019158607*1364^(2/15) 6524757957385747 a001 10983760033/440719107401*1364^(2/15) 6524757957385747 a001 43133785636/1730726404001*1364^(2/15) 6524757957385747 a001 75283811239/3020733700601*1364^(2/15) 6524757957385747 a001 182717648081/7331474697802*1364^(2/15) 6524757957385747 a001 139583862445/5600748293801*1364^(2/15) 6524757957385747 a001 53316291173/2139295485799*1364^(2/15) 6524757957385747 a001 10182505537/408569081798*1364^(2/15) 6524757957385747 a001 7778742049/312119004989*1364^(2/15) 6524757957385747 a001 2971215073/119218851371*1364^(2/15) 6524757957385747 a001 567451585/22768774562*1364^(2/15) 6524757957385747 a001 433494437/17393796001*1364^(2/15) 6524757957385747 a001 165580141/6643838879*1364^(2/15) 6524757957385747 a001 31622993/1268860318*1364^(2/15) 6524757957385749 a001 24157817/969323029*1364^(2/15) 6524757957385762 a001 9227465/370248451*1364^(2/15) 6524757957385852 a001 1762289/70711162*1364^(2/15) 6524757957386469 a001 1346269/54018521*1364^(2/15) 6524757957390697 a001 514229/20633239*1364^(2/15) 6524757957419677 a001 98209/3940598*1364^(2/15) 6524757957618304 a001 75025/3010349*1364^(2/15) 6524757958667011 a001 2584/3010349*3571^(9/17) 6524757958979715 a001 28657/1149851*1364^(2/15) 6524757965703302 s001 sum(exp(-3*Pi/5)^n*A240422[n],n=1..infinity) 6524757968310967 a001 5473/219602*1364^(2/15) 6524757969357099 a001 17711/370248451*3571^(15/17) 6524757971308524 p003 LerchPhi(1/256,6,428/185) 6524757972910285 a001 46368/969323029*3571^(15/17) 6524757973428688 a001 121393/2537720636*3571^(15/17) 6524757973504322 a001 317811/6643838879*3571^(15/17) 6524757973515357 a001 832040/17393796001*3571^(15/17) 6524757973516967 a001 2178309/45537549124*3571^(15/17) 6524757973517202 a001 5702887/119218851371*3571^(15/17) 6524757973517236 a001 14930352/312119004989*3571^(15/17) 6524757973517241 a001 4181/87403804*3571^(15/17) 6524757973517242 a001 102334155/2139295485799*3571^(15/17) 6524757973517242 a001 267914296/5600748293801*3571^(15/17) 6524757973517242 a001 701408733/14662949395604*3571^(15/17) 6524757973517242 a001 1134903170/23725150497407*3571^(15/17) 6524757973517242 a001 433494437/9062201101803*3571^(15/17) 6524757973517242 a001 165580141/3461452808002*3571^(15/17) 6524757973517242 a001 63245986/1322157322203*3571^(15/17) 6524757973517244 a001 24157817/505019158607*3571^(15/17) 6524757973517257 a001 9227465/192900153618*3571^(15/17) 6524757973517347 a001 3524578/73681302247*3571^(15/17) 6524757973517962 a001 1346269/28143753123*3571^(15/17) 6524757973522177 a001 514229/10749957122*3571^(15/17) 6524757973551066 a001 196418/4106118243*3571^(15/17) 6524757973749079 a001 75025/1568397607*3571^(15/17) 6524757975101066 a001 2255/29134601*3571^(14/17) 6524757975106275 a001 28657/599074578*3571^(15/17) 6524757976672441 m005 (1/3*exp(1)-2/11)/(5/6*3^(1/2)-1/3) 6524757984408637 a001 10946/228826127*3571^(15/17) 6524757987972238 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^40 6524757988762274 a001 1292/930249*3571^(8/17) 6524757997336378 a001 2584/64079*1364^(1/15) 6524757999454967 a001 17711/228826127*3571^(14/17) 6524758001681785 a001 1597/167761*1364^(4/15) 6524758003008153 a001 2576/33281921*3571^(14/17) 6524758003526556 a001 121393/1568397607*3571^(14/17) 6524758003602190 a001 105937/1368706081*3571^(14/17) 6524758003613225 a001 416020/5374978561*3571^(14/17) 6524758003614835 a001 726103/9381251041*3571^(14/17) 6524758003615070 a001 5702887/73681302247*3571^(14/17) 6524758003615104 a001 2584/33385281*3571^(14/17) 6524758003615109 a001 39088169/505019158607*3571^(14/17) 6524758003615110 a001 34111385/440719107401*3571^(14/17) 6524758003615110 a001 133957148/1730726404001*3571^(14/17) 6524758003615110 a001 233802911/3020733700601*3571^(14/17) 6524758003615110 a001 1836311903/23725150497407*3571^(14/17) 6524758003615110 a001 567451585/7331474697802*3571^(14/17) 6524758003615110 a001 433494437/5600748293801*3571^(14/17) 6524758003615110 a001 165580141/2139295485799*3571^(14/17) 6524758003615110 a001 31622993/408569081798*3571^(14/17) 6524758003615112 a001 24157817/312119004989*3571^(14/17) 6524758003615125 a001 9227465/119218851371*3571^(14/17) 6524758003615215 a001 1762289/22768774562*3571^(14/17) 6524758003615830 a001 1346269/17393796001*3571^(14/17) 6524758003620045 a001 514229/6643838879*3571^(14/17) 6524758003648935 a001 98209/1268860318*3571^(14/17) 6524758003846947 a001 75025/969323029*3571^(14/17) 6524758005198937 a001 6765/54018521*3571^(13/17) 6524758005204143 a001 28657/370248451*3571^(14/17) 6524758006375421 a001 987/3010349*2207^(11/16) 6524758010641699 k002 Champernowne real with 151/2*n^2-89/2*n+34 6524758014506506 a001 5473/70711162*3571^(14/17) 6524758018070107 a001 4181/141422324*3571^(16/17) 6524758018342533 a007 Real Root Of -845*x^4-342*x^3-550*x^2-989*x-353 6524758018866962 a001 2584/1149851*3571^(7/17) 6524758024629457 r005 Im(z^2+c),c=5/78+25/41*I,n=29 6524758029552836 a001 17711/141422324*3571^(13/17) 6524758032268317 a001 4181/167761*1364^(2/15) 6524758033106022 a001 46368/370248451*3571^(13/17) 6524758033624424 a001 121393/969323029*3571^(13/17) 6524758033700058 a001 317811/2537720636*3571^(13/17) 6524758033711093 a001 832040/6643838879*3571^(13/17) 6524758033712703 a001 2178309/17393796001*3571^(13/17) 6524758033712938 a001 1597/12752044*3571^(13/17) 6524758033712972 a001 14930352/119218851371*3571^(13/17) 6524758033712977 a001 39088169/312119004989*3571^(13/17) 6524758033712978 a001 102334155/817138163596*3571^(13/17) 6524758033712978 a001 267914296/2139295485799*3571^(13/17) 6524758033712978 a001 701408733/5600748293801*3571^(13/17) 6524758033712978 a001 1836311903/14662949395604*3571^(13/17) 6524758033712978 a001 2971215073/23725150497407*3571^(13/17) 6524758033712978 a001 1134903170/9062201101803*3571^(13/17) 6524758033712978 a001 433494437/3461452808002*3571^(13/17) 6524758033712978 a001 165580141/1322157322203*3571^(13/17) 6524758033712979 a001 63245986/505019158607*3571^(13/17) 6524758033712980 a001 24157817/192900153618*3571^(13/17) 6524758033712994 a001 9227465/73681302247*3571^(13/17) 6524758033713083 a001 3524578/28143753123*3571^(13/17) 6524758033713698 a001 1346269/10749957122*3571^(13/17) 6524758033717913 a001 514229/4106118243*3571^(13/17) 6524758033746803 a001 196418/1568397607*3571^(13/17) 6524758033944815 a001 75025/599074578*3571^(13/17) 6524758034108944 a001 6677056/102334155 6524758034108950 a004 Fibonacci(18)/Lucas(18)/(1/2+sqrt(5)/2)^4 6524758035296798 a001 6765/33385282*3571^(12/17) 6524758035302011 a001 28657/228826127*3571^(13/17) 6524758044604373 a001 10946/87403803*3571^(13/17) 6524758048167974 a001 4181/87403803*3571^(15/17) 6524758048946975 a001 2584/710647*3571^(6/17) 6524758059650703 a001 17711/87403803*3571^(12/17) 6524758063203890 a001 46368/228826127*3571^(12/17) 6524758063722293 a001 121393/599074578*3571^(12/17) 6524758063797927 a001 317811/1568397607*3571^(12/17) 6524758063808962 a001 832040/4106118243*3571^(12/17) 6524758063810572 a001 987/4870846*3571^(12/17) 6524758063810807 a001 5702887/28143753123*3571^(12/17) 6524758063810841 a001 14930352/73681302247*3571^(12/17) 6524758063810846 a001 39088169/192900153618*3571^(12/17) 6524758063810847 a001 102334155/505019158607*3571^(12/17) 6524758063810847 a001 267914296/1322157322203*3571^(12/17) 6524758063810847 a001 701408733/3461452808002*3571^(12/17) 6524758063810847 a001 1836311903/9062201101803*3571^(12/17) 6524758063810847 a001 4807526976/23725150497407*3571^(12/17) 6524758063810847 a001 2971215073/14662949395604*3571^(12/17) 6524758063810847 a001 1134903170/5600748293801*3571^(12/17) 6524758063810847 a001 433494437/2139295485799*3571^(12/17) 6524758063810847 a001 165580141/817138163596*3571^(12/17) 6524758063810847 a001 63245986/312119004989*3571^(12/17) 6524758063810849 a001 24157817/119218851371*3571^(12/17) 6524758063810862 a001 9227465/45537549124*3571^(12/17) 6524758063810952 a001 3524578/17393796001*3571^(12/17) 6524758063811567 a001 1346269/6643838879*3571^(12/17) 6524758063815782 a001 514229/2537720636*3571^(12/17) 6524758063844671 a001 196418/969323029*3571^(12/17) 6524758064042683 a001 75025/370248451*3571^(12/17) 6524758065394687 a001 615/1875749*3571^(11/17) 6524758065399880 a001 28657/141422324*3571^(12/17) 6524758074702244 a001 10946/54018521*3571^(12/17) 6524758078043971 a007 Real Root Of 620*x^4-741*x^3+829*x^2+132*x-585 6524758078265846 a001 4181/54018521*3571^(14/17) 6524758079091588 a001 34/5779*3571^(5/17) 6524758089748575 a001 17711/54018521*3571^(11/17) 6524758090096485 a001 987/4870847*2207^(3/4) 6524758093301759 a001 11592/35355581*3571^(11/17) 6524758093820161 a001 121393/370248451*3571^(11/17) 6524758093895795 a001 317811/969323029*3571^(11/17) 6524758093906830 a001 610/1860499*3571^(11/17) 6524758093908440 a001 2178309/6643838879*3571^(11/17) 6524758093908675 a001 5702887/17393796001*3571^(11/17) 6524758093908709 a001 3732588/11384387281*3571^(11/17) 6524758093908714 a001 39088169/119218851371*3571^(11/17) 6524758093908715 a001 9303105/28374454999*3571^(11/17) 6524758093908715 a001 66978574/204284540899*3571^(11/17) 6524758093908715 a001 701408733/2139295485799*3571^(11/17) 6524758093908715 a001 1836311903/5600748293801*3571^(11/17) 6524758093908715 a001 1201881744/3665737348901*3571^(11/17) 6524758093908715 a001 7778742049/23725150497407*3571^(11/17) 6524758093908715 a001 2971215073/9062201101803*3571^(11/17) 6524758093908715 a001 567451585/1730726404001*3571^(11/17) 6524758093908715 a001 433494437/1322157322203*3571^(11/17) 6524758093908715 a001 165580141/505019158607*3571^(11/17) 6524758093908715 a001 31622993/96450076809*3571^(11/17) 6524758093908717 a001 24157817/73681302247*3571^(11/17) 6524758093908730 a001 9227465/28143753123*3571^(11/17) 6524758093908820 a001 1762289/5374978561*3571^(11/17) 6524758093909435 a001 1346269/4106118243*3571^(11/17) 6524758093913650 a001 514229/1568397607*3571^(11/17) 6524758093942540 a001 98209/299537289*3571^(11/17) 6524758094140552 a001 75025/228826127*3571^(11/17) 6524758095492500 a001 2255/4250681*3571^(10/17) 6524758095497747 a001 28657/87403803*3571^(11/17) 6524758104355499 a007 Real Root Of 839*x^4-349*x^3-119*x^2+563*x+169 6524758104800105 a001 5473/16692641*3571^(11/17) 6524758108363706 a001 4181/33385282*3571^(13/17) 6524758109067078 a001 2584/271443*3571^(4/17) 6524758110671705 k002 Champernowne real with 76*n^2-46*n+35 6524758119846435 a001 17711/33385282*3571^(10/17) 6524758123399626 a001 15456/29134601*3571^(10/17) 6524758123918030 a001 121393/228826127*3571^(10/17) 6524758123993664 a001 377/710646*3571^(10/17) 6524758124004699 a001 832040/1568397607*3571^(10/17) 6524758124006309 a001 726103/1368706081*3571^(10/17) 6524758124006544 a001 5702887/10749957122*3571^(10/17) 6524758124006578 a001 4976784/9381251041*3571^(10/17) 6524758124006583 a001 39088169/73681302247*3571^(10/17) 6524758124006584 a001 34111385/64300051206*3571^(10/17) 6524758124006584 a001 267914296/505019158607*3571^(10/17) 6524758124006584 a001 233802911/440719107401*3571^(10/17) 6524758124006584 a001 1836311903/3461452808002*3571^(10/17) 6524758124006584 a001 1602508992/3020733700601*3571^(10/17) 6524758124006584 a001 12586269025/23725150497407*3571^(10/17) 6524758124006584 a001 7778742049/14662949395604*3571^(10/17) 6524758124006584 a001 2971215073/5600748293801*3571^(10/17) 6524758124006584 a001 1134903170/2139295485799*3571^(10/17) 6524758124006584 a001 433494437/817138163596*3571^(10/17) 6524758124006584 a001 165580141/312119004989*3571^(10/17) 6524758124006584 a001 63245986/119218851371*3571^(10/17) 6524758124006586 a001 24157817/45537549124*3571^(10/17) 6524758124006599 a001 9227465/17393796001*3571^(10/17) 6524758124006689 a001 3524578/6643838879*3571^(10/17) 6524758124007304 a001 1346269/2537720636*3571^(10/17) 6524758124011519 a001 514229/969323029*3571^(10/17) 6524758124040408 a001 196418/370248451*3571^(10/17) 6524758124238421 a001 75025/141422324*3571^(10/17) 6524758125590514 a001 6765/7881196*3571^(9/17) 6524758125595619 a001 28657/54018521*3571^(10/17) 6524758134897995 a001 10946/20633239*3571^(10/17) 6524758138461596 a001 4181/20633239*3571^(12/17) 6524758139485338 a001 2584/167761*3571^(3/17) 6524758149944325 a001 17711/20633239*3571^(9/17) 6524758153497498 a001 46368/54018521*3571^(9/17) 6524758154015899 a001 233/271444*3571^(9/17) 6524758154091533 a001 317811/370248451*3571^(9/17) 6524758154102568 a001 832040/969323029*3571^(9/17) 6524758154104178 a001 2178309/2537720636*3571^(9/17) 6524758154104413 a001 5702887/6643838879*3571^(9/17) 6524758154104447 a001 14930352/17393796001*3571^(9/17) 6524758154104452 a001 39088169/45537549124*3571^(9/17) 6524758154104453 a001 102334155/119218851371*3571^(9/17) 6524758154104453 a001 267914296/312119004989*3571^(9/17) 6524758154104453 a001 701408733/817138163596*3571^(9/17) 6524758154104453 a001 1836311903/2139295485799*3571^(9/17) 6524758154104453 a001 4807526976/5600748293801*3571^(9/17) 6524758154104453 a001 12586269025/14662949395604*3571^(9/17) 6524758154104453 a001 20365011074/23725150497407*3571^(9/17) 6524758154104453 a001 7778742049/9062201101803*3571^(9/17) 6524758154104453 a001 2971215073/3461452808002*3571^(9/17) 6524758154104453 a001 1134903170/1322157322203*3571^(9/17) 6524758154104453 a001 433494437/505019158607*3571^(9/17) 6524758154104453 a001 165580141/192900153618*3571^(9/17) 6524758154104453 a001 63245986/73681302247*3571^(9/17) 6524758154104455 a001 24157817/28143753123*3571^(9/17) 6524758154104468 a001 9227465/10749957122*3571^(9/17) 6524758154104558 a001 3524578/4106118243*3571^(9/17) 6524758154105173 a001 1346269/1568397607*3571^(9/17) 6524758154109388 a001 514229/599074578*3571^(9/17) 6524758154138277 a001 196418/228826127*3571^(9/17) 6524758154336289 a001 75025/87403803*3571^(9/17) 6524758154896372 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^41 6524758155688003 a001 6765/4870847*3571^(8/17) 6524758155693480 a001 28657/33385282*3571^(9/17) 6524758158825358 a001 2584/228826127*9349^(18/19) 6524758162754345 a001 646/35355581*9349^(17/19) 6524758162903302 a001 615/15251*1364^(1/15) 6524758164995808 a001 10946/12752043*3571^(9/17) 6524758166683329 a001 2584/87403803*9349^(16/19) 6524758167433601 a007 Real Root Of -917*x^4-306*x^3+16*x^2+732*x+552 6524758168559410 a001 4181/12752043*3571^(11/17) 6524758168744413 a001 1292/51841*3571^(2/17) 6524758170612319 a001 2584/54018521*9349^(15/19) 6524758173818924 a001 987/7881196*2207^(13/16) 6524758174541297 a001 1292/16692641*9349^(14/19) 6524758178470304 a001 2584/20633239*9349^(13/19) 6524758180042139 a001 17711/12752043*3571^(8/17) 6524758182399235 a001 2584/12752043*9349^(12/19) 6524758183595359 a001 144/103681*3571^(8/17) 6524758184113767 a001 121393/87403803*3571^(8/17) 6524758184189402 a001 317811/228826127*3571^(8/17) 6524758184200437 a001 416020/299537289*3571^(8/17) 6524758184202047 a001 311187/224056801*3571^(8/17) 6524758184202281 a001 5702887/4106118243*3571^(8/17) 6524758184202316 a001 7465176/5374978561*3571^(8/17) 6524758184202321 a001 39088169/28143753123*3571^(8/17) 6524758184202321 a001 14619165/10525900321*3571^(8/17) 6524758184202322 a001 133957148/96450076809*3571^(8/17) 6524758184202322 a001 701408733/505019158607*3571^(8/17) 6524758184202322 a001 1836311903/1322157322203*3571^(8/17) 6524758184202322 a001 14930208/10749853441*3571^(8/17) 6524758184202322 a001 12586269025/9062201101803*3571^(8/17) 6524758184202322 a001 32951280099/23725150497407*3571^(8/17) 6524758184202322 a001 10182505537/7331474697802*3571^(8/17) 6524758184202322 a001 7778742049/5600748293801*3571^(8/17) 6524758184202322 a001 2971215073/2139295485799*3571^(8/17) 6524758184202322 a001 567451585/408569081798*3571^(8/17) 6524758184202322 a001 433494437/312119004989*3571^(8/17) 6524758184202322 a001 165580141/119218851371*3571^(8/17) 6524758184202322 a001 31622993/22768774562*3571^(8/17) 6524758184202324 a001 24157817/17393796001*3571^(8/17) 6524758184202337 a001 9227465/6643838879*3571^(8/17) 6524758184202427 a001 1762289/1268860318*3571^(8/17) 6524758184203042 a001 1346269/969323029*3571^(8/17) 6524758184207257 a001 514229/370248451*3571^(8/17) 6524758184236146 a001 98209/70711162*3571^(8/17) 6524758184434161 a001 75025/54018521*3571^(8/17) 6524758185786867 a001 6765/3010349*3571^(7/17) 6524758185791370 a001 28657/20633239*3571^(8/17) 6524758186328366 a001 646/1970299*9349^(11/19) 6524758187059190 a001 17711/439204*1364^(1/15) 6524758190256972 a001 2584/4870847*9349^(10/19) 6524758190583487 a001 46368/1149851*1364^(1/15) 6524758191097675 a001 121393/3010349*1364^(1/15) 6524758191172694 a001 317811/7881196*1364^(1/15) 6524758191183639 a001 75640/1875749*1364^(1/15) 6524758191185236 a001 2178309/54018521*1364^(1/15) 6524758191185469 a001 5702887/141422324*1364^(1/15) 6524758191185503 a001 14930352/370248451*1364^(1/15) 6524758191185508 a001 39088169/969323029*1364^(1/15) 6524758191185508 a001 9303105/230701876*1364^(1/15) 6524758191185508 a001 267914296/6643838879*1364^(1/15) 6524758191185508 a001 701408733/17393796001*1364^(1/15) 6524758191185508 a001 1836311903/45537549124*1364^(1/15) 6524758191185508 a001 4807526976/119218851371*1364^(1/15) 6524758191185508 a001 1144206275/28374454999*1364^(1/15) 6524758191185508 a001 32951280099/817138163596*1364^(1/15) 6524758191185508 a001 86267571272/2139295485799*1364^(1/15) 6524758191185508 a001 225851433717/5600748293801*1364^(1/15) 6524758191185508 a001 591286729879/14662949395604*1364^(1/15) 6524758191185508 a001 365435296162/9062201101803*1364^(1/15) 6524758191185508 a001 139583862445/3461452808002*1364^(1/15) 6524758191185508 a001 53316291173/1322157322203*1364^(1/15) 6524758191185508 a001 20365011074/505019158607*1364^(1/15) 6524758191185508 a001 7778742049/192900153618*1364^(1/15) 6524758191185508 a001 2971215073/73681302247*1364^(1/15) 6524758191185508 a001 1134903170/28143753123*1364^(1/15) 6524758191185508 a001 433494437/10749957122*1364^(1/15) 6524758191185508 a001 165580141/4106118243*1364^(1/15) 6524758191185509 a001 63245986/1568397607*1364^(1/15) 6524758191185511 a001 24157817/599074578*1364^(1/15) 6524758191185524 a001 9227465/228826127*1364^(1/15) 6524758191185613 a001 3524578/87403803*1364^(1/15) 6524758191186223 a001 1346269/33385282*1364^(1/15) 6524758191190403 a001 514229/12752043*1364^(1/15) 6524758191219058 a001 196418/4870847*1364^(1/15) 6524758191415460 a001 75025/1860498*1364^(1/15) 6524758192761622 a001 28657/710647*1364^(1/15) 6524758194186953 a001 2584/3010349*9349^(9/19) 6524758195093822 a001 5473/3940598*3571^(8/17) 6524758198113334 a001 1292/930249*9349^(8/19) 6524758198657424 a001 4181/7881196*3571^(10/17) 6524758201033064 a001 2185095/33489287 6524758201033064 a004 Fibonacci(18)/Lucas(20)/(1/2+sqrt(5)/2)^2 6524758201033070 a004 Fibonacci(20)/Lucas(18)/(1/2+sqrt(5)/2)^6 6524758201038272 a001 2584/64079*3571^(1/17) 6524758201988350 a001 10946/271443*1364^(1/15) 6524758202049140 a001 2584/1149851*9349^(7/19) 6524758205960271 a001 2584/710647*9349^(6/19) 6524758209936002 a001 34/5779*9349^(5/19) 6524758210140153 a001 89/39604*3571^(7/17) 6524758210701711 k002 Champernowne real with 153/2*n^2-95/2*n+36 6524758213693249 a001 46368/20633239*3571^(7/17) 6524758213742610 a001 2584/271443*9349^(4/19) 6524758214211639 a001 121393/54018521*3571^(7/17) 6524758214287271 a001 317811/141422324*3571^(7/17) 6524758214298306 a001 832040/370248451*3571^(7/17) 6524758214299916 a001 2178309/969323029*3571^(7/17) 6524758214300151 a001 5702887/2537720636*3571^(7/17) 6524758214300185 a001 14930352/6643838879*3571^(7/17) 6524758214300190 a001 39088169/17393796001*3571^(7/17) 6524758214300191 a001 102334155/45537549124*3571^(7/17) 6524758214300191 a001 267914296/119218851371*3571^(7/17) 6524758214300191 a001 3524667/1568437211*3571^(7/17) 6524758214300191 a001 1836311903/817138163596*3571^(7/17) 6524758214300191 a001 4807526976/2139295485799*3571^(7/17) 6524758214300191 a001 12586269025/5600748293801*3571^(7/17) 6524758214300191 a001 32951280099/14662949395604*3571^(7/17) 6524758214300191 a001 53316291173/23725150497407*3571^(7/17) 6524758214300191 a001 20365011074/9062201101803*3571^(7/17) 6524758214300191 a001 7778742049/3461452808002*3571^(7/17) 6524758214300191 a001 2971215073/1322157322203*3571^(7/17) 6524758214300191 a001 1134903170/505019158607*3571^(7/17) 6524758214300191 a001 433494437/192900153618*3571^(7/17) 6524758214300191 a001 165580141/73681302247*3571^(7/17) 6524758214300191 a001 63245986/28143753123*3571^(7/17) 6524758214300193 a001 24157817/10749957122*3571^(7/17) 6524758214300206 a001 9227465/4106118243*3571^(7/17) 6524758214300296 a001 3524578/1568397607*3571^(7/17) 6524758214300911 a001 1346269/599074578*3571^(7/17) 6524758214305126 a001 514229/228826127*3571^(7/17) 6524758214334014 a001 196418/87403803*3571^(7/17) 6524758214532022 a001 75025/33385282*3571^(7/17) 6524758215388377 m001 Porter^2*ln(GAMMA(2/3)) 6524758215882131 a001 55/15126*3571^(6/17) 6524758215889184 a001 28657/12752043*3571^(7/17) 6524758217991987 a001 2584/167761*9349^(3/19) 6524758218655712 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^43 6524758219174350 a001 1292/299537289*24476^(20/21) 6524758219692988 a001 2584/370248451*24476^(19/21) 6524758220211626 a001 2584/228826127*24476^(6/7) 6524758220730264 a001 646/35355581*24476^(17/21) 6524758221082179 a001 1292/51841*9349^(2/19) 6524758221248901 a001 2584/87403803*24476^(16/21) 6524758221767542 a001 2584/54018521*24476^(5/7) 6524758222286172 a001 1292/16692641*24476^(2/3) 6524758222804831 a001 2584/20633239*24476^(13/21) 6524758223323413 a001 2584/12752043*24476^(4/7) 6524758223842196 a001 646/1970299*24476^(11/21) 6524758224360454 a001 2584/4870847*24476^(10/21) 6524758224880087 a001 2584/3010349*24476^(3/7) 6524758225191311 a001 10946/4870847*3571^(7/17) 6524758225386965 a001 2584/39603 6524758225386971 a004 Fibonacci(22)/Lucas(18)/(1/2+sqrt(5)/2)^8 6524758225396120 a001 1292/930249*24476^(8/21) 6524758225921578 a001 2584/1149851*24476^(1/3) 6524758226422361 a001 2584/710647*24476^(2/7) 6524758226987743 a001 34/5779*24476^(5/21) 6524758227207155 a001 2584/64079*9349^(1/19) 6524758227384003 a001 2584/271443*24476^(4/21) 6524758227902876 a001 1292/51841*24476^(2/21) 6524758227958075 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^45 6524758228027163 a001 2584/1568397607*64079^(22/23) 6524758228096252 a001 2584/969323029*64079^(21/23) 6524758228165340 a001 1292/299537289*64079^(20/23) 6524758228223031 a001 2584/167761*24476^(1/7) 6524758228234429 a001 2584/370248451*64079^(19/23) 6524758228303517 a001 2584/228826127*64079^(18/23) 6524758228372606 a001 646/35355581*64079^(17/23) 6524758228441693 a001 2584/87403803*64079^(16/23) 6524758228510784 a001 2584/54018521*64079^(15/23) 6524758228579865 a001 1292/16692641*64079^(14/23) 6524758228648974 a001 2584/20633239*64079^(13/23) 6524758228718007 a001 2584/12752043*64079^(12/23) 6524758228754913 a001 4181/4870847*3571^(9/17) 6524758228787241 a001 646/1970299*64079^(11/23) 6524758228801975 a001 1292/51841*64079^(2/23) 6524758228855949 a001 2584/4870847*64079^(10/23) 6524758228926032 a001 2584/3010349*64079^(9/23) 6524758228940151 a001 1292/51841*(1/2+1/2*5^(1/2))^2 6524758228940151 a001 1292/51841*10749957122^(1/24) 6524758228940151 a001 1292/51841*4106118243^(1/23) 6524758228940151 a001 1292/51841*1568397607^(1/22) 6524758228940151 a001 119814912/1836311903 6524758228940151 a001 1292/51841*599074578^(1/21) 6524758228940151 a001 1292/51841*228826127^(1/20) 6524758228940151 a001 1292/51841*87403803^(1/19) 6524758228940152 a001 1292/51841*33385282^(1/18) 6524758228940154 a001 1292/51841*12752043^(1/17) 6524758228940157 a004 Fibonacci(24)/Lucas(18)/(1/2+sqrt(5)/2)^10 6524758228940169 a001 1292/51841*4870847^(1/16) 6524758228940277 a001 1292/51841*1860498^(1/15) 6524758228941074 a001 1292/51841*710647^(1/14) 6524758228946963 a001 1292/51841*271443^(1/13) 6524758228990731 a001 1292/51841*103682^(1/12) 6524758228992516 a001 1292/930249*64079^(8/23) 6524758229068424 a001 2584/1149851*64079^(7/23) 6524758229119658 a001 2584/710647*64079^(6/23) 6524758229182201 a001 2584/271443*64079^(4/23) 6524758229235491 a001 34/5779*64079^(5/23) 6524758229315271 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^47 6524758229318346 a001 1292/51841*39603^(1/11) 6524758229361639 a001 1292/299537289*167761^(4/5) 6524758229408008 a001 2584/54018521*167761^(3/5) 6524758229454098 a001 2584/4870847*167761^(2/5) 6524758229458554 a001 2584/271443*(1/2+1/2*5^(1/2))^4 6524758229458554 a001 2584/271443*23725150497407^(1/16) 6524758229458554 a001 2584/271443*73681302247^(1/13) 6524758229458554 a001 2584/271443*10749957122^(1/12) 6524758229458554 a001 2584/271443*4106118243^(2/23) 6524758229458554 a001 39209939/600940872 6524758229458554 a001 2584/271443*1568397607^(1/11) 6524758229458554 a001 2584/271443*599074578^(2/21) 6524758229458554 a001 2584/271443*228826127^(1/10) 6524758229458554 a001 2584/271443*87403803^(2/19) 6524758229458555 a001 2584/271443*33385282^(1/9) 6524758229458559 a001 2584/271443*12752043^(2/17) 6524758229458560 a004 Fibonacci(26)/Lucas(18)/(1/2+sqrt(5)/2)^12 6524758229458589 a001 2584/271443*4870847^(1/8) 6524758229458806 a001 2584/271443*1860498^(2/15) 6524758229460400 a001 2584/271443*710647^(1/7) 6524758229472178 a001 2584/271443*271443^(2/13) 6524758229513284 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^49 6524758229517042 a001 2584/4106118243*439204^(8/9) 6524758229520800 a001 2584/969323029*439204^(7/9) 6524758229524558 a001 2584/228826127*439204^(2/3) 6524758229526672 a001 2584/710647*439204^(2/9) 6524758229528319 a001 2584/54018521*439204^(5/9) 6524758229532035 a001 2584/12752043*439204^(4/9) 6524758229534169 a001 2584/710647*7881196^(2/11) 6524758229534188 a001 2584/710647*141422324^(2/13) 6524758229534188 a001 2584/710647*2537720636^(2/15) 6524758229534188 a001 2584/710647*45537549124^(2/17) 6524758229534188 a001 2584/710647*14662949395604^(2/21) 6524758229534188 a001 2584/710647*(1/2+1/2*5^(1/2))^6 6524758229534188 a001 2584/710647*10749957122^(1/8) 6524758229534188 a001 821223624/12586269025 6524758229534188 a001 2584/710647*4106118243^(3/23) 6524758229534188 a001 2584/710647*1568397607^(3/22) 6524758229534188 a001 2584/710647*599074578^(1/7) 6524758229534188 a001 2584/710647*228826127^(3/20) 6524758229534188 a001 2584/710647*87403803^(3/19) 6524758229534189 a001 2584/710647*33385282^(1/6) 6524758229534194 a004 Fibonacci(28)/Lucas(18)/(1/2+sqrt(5)/2)^14 6524758229534195 a001 2584/710647*12752043^(3/17) 6524758229534240 a001 2584/710647*4870847^(3/16) 6524758229534565 a001 34/5779*167761^(1/5) 6524758229534565 a001 2584/710647*1860498^(1/5) 6524758229536553 a001 2584/3010349*439204^(1/3) 6524758229536957 a001 2584/710647*710647^(3/14) 6524758229542173 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^51 6524758229545223 a001 1292/930249*(1/2+1/2*5^(1/2))^8 6524758229545223 a001 1292/930249*23725150497407^(1/8) 6524758229545223 a001 1292/930249*505019158607^(1/7) 6524758229545223 a001 1292/930249*73681302247^(2/13) 6524758229545223 a001 2149991360/32951280099 6524758229545223 a001 1292/930249*10749957122^(1/6) 6524758229545223 a001 1292/930249*4106118243^(4/23) 6524758229545223 a001 1292/930249*1568397607^(2/11) 6524758229545223 a001 1292/930249*599074578^(4/21) 6524758229545223 a001 1292/930249*228826127^(1/5) 6524758229545223 a001 1292/930249*87403803^(4/19) 6524758229545224 a001 1292/930249*33385282^(2/9) 6524758229545229 a004 Fibonacci(30)/Lucas(18)/(1/2+sqrt(5)/2)^16 6524758229545233 a001 1292/930249*12752043^(4/17) 6524758229545292 a001 1292/930249*4870847^(1/4) 6524758229545726 a001 1292/930249*1860498^(4/15) 6524758229546388 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^53 6524758229546829 a001 2584/4870847*20633239^(2/7) 6524758229546833 a001 2584/4870847*2537720636^(2/9) 6524758229546833 a001 2584/4870847*312119004989^(2/11) 6524758229546833 a001 2584/4870847*(1/2+1/2*5^(1/2))^10 6524758229546833 a001 2178309/33385283 6524758229546833 a001 2584/4870847*28143753123^(1/5) 6524758229546833 a001 2584/4870847*10749957122^(5/24) 6524758229546833 a001 2584/4870847*4106118243^(5/23) 6524758229546833 a001 2584/4870847*1568397607^(5/22) 6524758229546833 a001 2584/4870847*599074578^(5/21) 6524758229546833 a001 2584/4870847*228826127^(1/4) 6524758229546833 a001 2584/4870847*87403803^(5/19) 6524758229546835 a001 2584/4870847*33385282^(5/18) 6524758229546839 a004 Fibonacci(32)/Lucas(18)/(1/2+sqrt(5)/2)^18 6524758229546845 a001 2584/4870847*12752043^(5/17) 6524758229546919 a001 2584/4870847*4870847^(5/16) 6524758229547003 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^55 6524758229547013 a001 2584/73681302247*7881196^(10/11) 6524758229547022 a001 2584/17393796001*7881196^(9/11) 6524758229547030 a001 2584/12752043*7881196^(4/11) 6524758229547032 a001 2584/4106118243*7881196^(8/11) 6524758229547038 a001 2584/1568397607*7881196^(2/3) 6524758229547041 a001 2584/969323029*7881196^(7/11) 6524758229547051 a001 2584/228826127*7881196^(6/11) 6524758229547063 a001 2584/54018521*7881196^(5/11) 6524758229547068 a001 2584/12752043*141422324^(4/13) 6524758229547068 a001 2584/12752043*2537720636^(4/15) 6524758229547068 a001 2584/12752043*45537549124^(4/17) 6524758229547068 a001 2584/12752043*817138163596^(4/19) 6524758229547068 a001 2584/12752043*14662949395604^(4/21) 6524758229547068 a001 2584/12752043*(1/2+1/2*5^(1/2))^12 6524758229547068 a001 14736260008/225851433717 6524758229547068 a001 2584/12752043*192900153618^(2/9) 6524758229547068 a001 2584/12752043*73681302247^(3/13) 6524758229547068 a001 2584/12752043*10749957122^(1/4) 6524758229547068 a001 2584/12752043*4106118243^(6/23) 6524758229547068 a001 2584/12752043*1568397607^(3/11) 6524758229547068 a001 2584/12752043*599074578^(2/7) 6524758229547068 a001 2584/12752043*228826127^(3/10) 6524758229547068 a001 2584/12752043*87403803^(6/19) 6524758229547070 a001 2584/12752043*33385282^(1/3) 6524758229547074 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2)^20 6524758229547082 a001 2584/12752043*12752043^(6/17) 6524758229547093 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^57 6524758229547095 a001 2584/73681302247*20633239^(6/7) 6524758229547096 a001 2584/28143753123*20633239^(4/5) 6524758229547096 a001 1292/16692641*20633239^(2/5) 6524758229547097 a001 2584/6643838879*20633239^(5/7) 6524758229547099 a001 2584/969323029*20633239^(3/5) 6524758229547099 a001 1292/299537289*20633239^(4/7) 6524758229547102 a001 1292/16692641*17393796001^(2/7) 6524758229547102 a001 1292/16692641*14662949395604^(2/9) 6524758229547102 a001 1292/16692641*(1/2+1/2*5^(1/2))^14 6524758229547102 a001 1292/16692641*505019158607^(1/4) 6524758229547102 a001 1292/16692641*10749957122^(7/24) 6524758229547102 a001 1292/16692641*4106118243^(7/23) 6524758229547102 a001 1292/16692641*1568397607^(7/22) 6524758229547102 a001 1292/16692641*599074578^(1/3) 6524758229547102 a001 1292/16692641*228826127^(7/20) 6524758229547103 a001 1292/16692641*87403803^(7/19) 6524758229547104 a001 2584/54018521*20633239^(3/7) 6524758229547104 a001 1292/16692641*33385282^(7/18) 6524758229547106 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^59 6524758229547107 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^16/Lucas(38) 6524758229547107 a001 12625478587/193501094490 6524758229547107 a001 2584/87403803*73681302247^(4/13) 6524758229547107 a001 2584/87403803*10749957122^(1/3) 6524758229547107 a001 2584/87403803*4106118243^(8/23) 6524758229547107 a001 2584/87403803*1568397607^(4/11) 6524758229547107 a001 2584/87403803*599074578^(8/21) 6524758229547107 a001 2584/87403803*228826127^(2/5) 6524758229547108 a001 2584/87403803*87403803^(8/19) 6524758229547108 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^61 6524758229547108 a001 2584/1322157322203*141422324^(12/13) 6524758229547108 a001 2584/312119004989*141422324^(11/13) 6524758229547108 a001 2584/228826127*141422324^(6/13) 6524758229547108 a001 2584/73681302247*141422324^(10/13) 6524758229547108 a001 2584/17393796001*141422324^(9/13) 6524758229547108 a001 1292/5374978561*141422324^(2/3) 6524758229547108 a001 2584/4106118243*141422324^(8/13) 6524758229547108 a001 2584/969323029*141422324^(7/13) 6524758229547108 a001 2584/228826127*2537720636^(2/5) 6524758229547108 a001 2584/228826127*45537549124^(6/17) 6524758229547108 a001 2584/228826127*14662949395604^(2/7) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^18/Lucas(40) 6524758229547108 a001 264431456520/4052739537881 6524758229547108 a001 2584/228826127*192900153618^(1/3) 6524758229547108 a001 2584/228826127*10749957122^(3/8) 6524758229547108 a001 2584/228826127*4106118243^(9/23) 6524758229547108 a001 2584/228826127*1568397607^(9/22) 6524758229547108 a001 2584/228826127*599074578^(3/7) 6524758229547108 a001 2584/228826127*228826127^(9/20) 6524758229547108 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^63 6524758229547108 a001 1292/299537289*2537720636^(4/9) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^20/Lucas(42) 6524758229547108 a001 1292/299537289*23725150497407^(5/16) 6524758229547108 a001 692290540864/10610209857723 6524758229547108 a001 1292/299537289*505019158607^(5/14) 6524758229547108 a001 1292/299537289*73681302247^(5/13) 6524758229547108 a001 1292/299537289*28143753123^(2/5) 6524758229547108 a001 1292/299537289*10749957122^(5/12) 6524758229547108 a001 1292/299537289*4106118243^(10/23) 6524758229547108 a001 1292/299537289*1568397607^(5/11) 6524758229547108 a001 1292/299537289*599074578^(10/21) 6524758229547108 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^65 6524758229547108 a001 2584/1568397607*312119004989^(2/5) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^22/Lucas(44) 6524758229547108 a001 2584/1568397607*10749957122^(11/24) 6524758229547108 a001 2584/1568397607*4106118243^(11/23) 6524758229547108 a001 2584/1568397607*1568397607^(1/2) 6524758229547108 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^67 6524758229547108 a001 2584/23725150497407*2537720636^(14/15) 6524758229547108 a001 2584/4106118243*2537720636^(8/15) 6524758229547108 a001 2584/9062201101803*2537720636^(8/9) 6524758229547108 a001 2584/5600748293801*2537720636^(13/15) 6524758229547108 a001 2584/1322157322203*2537720636^(4/5) 6524758229547108 a001 646/204284540899*2537720636^(7/9) 6524758229547108 a001 2584/312119004989*2537720636^(11/15) 6524758229547108 a001 2584/73681302247*2537720636^(2/3) 6524758229547108 a001 2584/17393796001*2537720636^(3/5) 6524758229547108 a001 2584/6643838879*2537720636^(5/9) 6524758229547108 a001 2584/4106118243*45537549124^(8/17) 6524758229547108 a001 2584/4106118243*14662949395604^(8/21) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^24/Lucas(46) 6524758229547108 a001 2584/4106118243*192900153618^(4/9) 6524758229547108 a001 2584/4106118243*73681302247^(6/13) 6524758229547108 a001 2584/4106118243*10749957122^(1/2) 6524758229547108 a001 2584/4106118243*4106118243^(12/23) 6524758229547108 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^69 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^26/Lucas(48) 6524758229547108 a001 1292/5374978561*73681302247^(1/2) 6524758229547108 a001 1292/5374978561*10749957122^(13/24) 6524758229547108 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^71 6524758229547108 a001 2584/28143753123*17393796001^(4/7) 6524758229547108 a001 2584/23725150497407*17393796001^(6/7) 6524758229547108 a001 646/204284540899*17393796001^(5/7) 6524758229547108 a001 2584/28143753123*14662949395604^(4/9) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^28/Lucas(50) 6524758229547108 a001 2584/28143753123*505019158607^(1/2) 6524758229547108 a001 2584/28143753123*73681302247^(7/13) 6524758229547108 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^73 6524758229547108 a001 2584/73681302247*45537549124^(10/17) 6524758229547108 a001 2584/23725150497407*45537549124^(14/17) 6524758229547108 a001 2584/5600748293801*45537549124^(13/17) 6524758229547108 a001 2584/1322157322203*45537549124^(12/17) 6524758229547108 a001 2584/505019158607*45537549124^(2/3) 6524758229547108 a001 2584/312119004989*45537549124^(11/17) 6524758229547108 a001 2584/73681302247*312119004989^(6/11) 6524758229547108 a001 2584/73681302247*14662949395604^(10/21) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^30/Lucas(52) 6524758229547108 a001 2584/73681302247*192900153618^(5/9) 6524758229547108 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^75 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^32/Lucas(54) 6524758229547108 a001 1292/96450076809*23725150497407^(1/2) 6524758229547108 a001 1292/96450076809*505019158607^(4/7) 6524758229547108 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^77 6524758229547108 a001 2584/9062201101803*312119004989^(8/11) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(56) 6524758229547108 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^79 6524758229547108 a001 2584/23725150497407*817138163596^(14/19) 6524758229547108 a001 1292/1730726404001*817138163596^(2/3) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(58) 6524758229547108 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^81 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(60) 6524758229547108 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^83 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(62) 6524758229547108 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^85 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(64) 6524758229547108 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^87 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(66) 6524758229547108 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^89 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(68) 6524758229547108 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^91 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(70) 6524758229547108 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^93 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(72) 6524758229547108 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^95 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(74) 6524758229547108 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^97 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(76) 6524758229547108 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^99 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(78) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(80) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(82) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(84) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(86) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(88) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(90) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(92) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(94) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(96) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(98) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(100) 6524758229547108 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^22 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(99) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(97) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(95) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(93) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(91) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(89) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(87) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(85) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(83) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(81) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(79) 6524758229547108 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^100 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(77) 6524758229547108 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^98 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(75) 6524758229547108 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^96 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(73) 6524758229547108 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^94 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(71) 6524758229547108 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^92 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(69) 6524758229547108 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^90 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(67) 6524758229547108 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^88 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(65) 6524758229547108 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^86 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(63) 6524758229547108 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^84 6524758229547108 a001 2584/5600748293801*14662949395604^(13/21) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(61) 6524758229547108 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^82 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(59) 6524758229547108 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^80 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(57) 6524758229547108 a001 2584/1322157322203*505019158607^(9/14) 6524758229547108 a001 2584/23725150497407*505019158607^(3/4) 6524758229547108 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^78 6524758229547108 a001 646/204284540899*505019158607^(5/8) 6524758229547108 a001 2584/312119004989*312119004989^(3/5) 6524758229547108 a001 2584/312119004989*14662949395604^(11/21) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(55) 6524758229547108 a001 2584/1322157322203*192900153618^(2/3) 6524758229547108 a001 2584/23725150497407*192900153618^(7/9) 6524758229547108 a001 2584/312119004989*192900153618^(11/18) 6524758229547108 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^76 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^31/Lucas(53) 6524758229547108 a001 2584/119218851371*9062201101803^(1/2) 6524758229547108 a001 1292/96450076809*73681302247^(8/13) 6524758229547108 a001 2584/1322157322203*73681302247^(9/13) 6524758229547108 a001 2584/5600748293801*73681302247^(3/4) 6524758229547108 a001 2584/9062201101803*73681302247^(10/13) 6524758229547108 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^74 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^29/Lucas(51) 6524758229547108 a001 646/11384387281*1322157322203^(1/2) 6524758229547108 a001 2584/73681302247*28143753123^(3/5) 6524758229547108 a001 646/204284540899*28143753123^(7/10) 6524758229547108 a001 2584/9062201101803*28143753123^(4/5) 6524758229547108 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^72 6524758229547108 a001 2584/17393796001*45537549124^(9/17) 6524758229547108 a001 2584/17393796001*817138163596^(9/19) 6524758229547108 a001 2584/17393796001*14662949395604^(3/7) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^27/Lucas(49) 6524758229547108 a001 2584/17393796001*192900153618^(1/2) 6524758229547108 a001 2584/28143753123*10749957122^(7/12) 6524758229547108 a001 2584/73681302247*10749957122^(5/8) 6524758229547108 a001 1292/96450076809*10749957122^(2/3) 6524758229547108 a001 2584/312119004989*10749957122^(11/16) 6524758229547108 a001 2584/505019158607*10749957122^(17/24) 6524758229547108 a001 2584/1322157322203*10749957122^(3/4) 6524758229547108 a001 1292/1730726404001*10749957122^(19/24) 6524758229547108 a001 2584/5600748293801*10749957122^(13/16) 6524758229547108 a001 2584/9062201101803*10749957122^(5/6) 6524758229547108 a001 2584/23725150497407*10749957122^(7/8) 6524758229547108 a001 2584/17393796001*10749957122^(9/16) 6524758229547108 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^70 6524758229547108 a001 2584/6643838879*312119004989^(5/11) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^25/Lucas(47) 6524758229547108 a001 2584/6643838879*3461452808002^(5/12) 6524758229547108 a001 2584/6643838879*28143753123^(1/2) 6524758229547108 a001 1292/5374978561*4106118243^(13/23) 6524758229547108 a001 2584/28143753123*4106118243^(14/23) 6524758229547108 a001 2584/73681302247*4106118243^(15/23) 6524758229547108 a001 1292/96450076809*4106118243^(16/23) 6524758229547108 a001 2584/505019158607*4106118243^(17/23) 6524758229547108 a001 2584/1322157322203*4106118243^(18/23) 6524758229547108 a001 1292/1730726404001*4106118243^(19/23) 6524758229547108 a001 2584/9062201101803*4106118243^(20/23) 6524758229547108 a001 2584/23725150497407*4106118243^(21/23) 6524758229547108 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^68 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^23/Lucas(45) 6524758229547108 a001 2584/4106118243*1568397607^(6/11) 6524758229547108 a001 34/33391061*4106118243^(1/2) 6524758229547108 a001 1292/5374978561*1568397607^(13/22) 6524758229547108 a001 2584/28143753123*1568397607^(7/11) 6524758229547108 a001 2584/73681302247*1568397607^(15/22) 6524758229547108 a001 1292/96450076809*1568397607^(8/11) 6524758229547108 a001 2584/312119004989*1568397607^(3/4) 6524758229547108 a001 2584/505019158607*1568397607^(17/22) 6524758229547108 a001 2584/1322157322203*1568397607^(9/11) 6524758229547108 a001 1292/1730726404001*1568397607^(19/22) 6524758229547108 a001 2584/9062201101803*1568397607^(10/11) 6524758229547108 a001 2584/23725150497407*1568397607^(21/22) 6524758229547108 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^66 6524758229547108 a001 2584/969323029*2537720636^(7/15) 6524758229547108 a001 2584/1568397607*599074578^(11/21) 6524758229547108 a001 2584/969323029*17393796001^(3/7) 6524758229547108 a001 2584/969323029*45537549124^(7/17) 6524758229547108 a001 2584/969323029*14662949395604^(1/3) 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^21/Lucas(43) 6524758229547108 a001 2584/969323029*192900153618^(7/18) 6524758229547108 a001 2584/969323029*10749957122^(7/16) 6524758229547108 a001 2584/4106118243*599074578^(4/7) 6524758229547108 a001 1292/5374978561*599074578^(13/21) 6524758229547108 a001 2584/17393796001*599074578^(9/14) 6524758229547108 a001 2584/28143753123*599074578^(2/3) 6524758229547108 a001 2584/73681302247*599074578^(5/7) 6524758229547108 a001 1292/96450076809*599074578^(16/21) 6524758229547108 a001 2584/312119004989*599074578^(11/14) 6524758229547108 a001 2584/505019158607*599074578^(17/21) 6524758229547108 a001 646/204284540899*599074578^(5/6) 6524758229547108 a001 2584/1322157322203*599074578^(6/7) 6524758229547108 a001 2584/969323029*599074578^(1/2) 6524758229547108 a001 1292/1730726404001*599074578^(19/21) 6524758229547108 a001 2584/5600748293801*599074578^(13/14) 6524758229547108 a001 2584/9062201101803*599074578^(20/21) 6524758229547108 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^64 6524758229547108 a001 1292/299537289*228826127^(1/2) 6524758229547108 a001 2584/370248451*817138163596^(1/3) 6524758229547108 a001 12584090716/192866774113 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^19/Lucas(41) 6524758229547108 a001 2584/1568397607*228826127^(11/20) 6524758229547108 a001 2584/4106118243*228826127^(3/5) 6524758229547108 a001 2584/6643838879*228826127^(5/8) 6524758229547108 a001 1292/5374978561*228826127^(13/20) 6524758229547108 a001 2584/28143753123*228826127^(7/10) 6524758229547108 a001 2584/73681302247*228826127^(3/4) 6524758229547108 a001 1292/96450076809*228826127^(4/5) 6524758229547108 a001 2584/505019158607*228826127^(17/20) 6524758229547108 a001 646/204284540899*228826127^(7/8) 6524758229547108 a001 2584/1322157322203*228826127^(9/10) 6524758229547108 a001 1292/1730726404001*228826127^(19/20) 6524758229547108 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^62 6524758229547108 a001 2584/228826127*87403803^(9/19) 6524758229547108 a001 646/35355581*45537549124^(1/3) 6524758229547108 a001 163427627824/2504730781961 6524758229547108 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^17/Lucas(39) 6524758229547109 a001 1292/299537289*87403803^(10/19) 6524758229547109 a001 2584/370248451*87403803^(1/2) 6524758229547109 a001 2584/1568397607*87403803^(11/19) 6524758229547109 a001 2584/4106118243*87403803^(12/19) 6524758229547109 a001 1292/5374978561*87403803^(13/19) 6524758229547109 a001 2584/28143753123*87403803^(14/19) 6524758229547109 a001 2584/73681302247*87403803^(15/19) 6524758229547109 a001 1292/96450076809*87403803^(16/19) 6524758229547109 a001 2584/505019158607*87403803^(17/19) 6524758229547109 a001 2584/1322157322203*87403803^(18/19) 6524758229547109 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^60 6524758229547110 a001 2584/87403803*33385282^(4/9) 6524758229547110 a001 2584/54018521*141422324^(5/13) 6524758229547110 a001 2584/54018521*2537720636^(1/3) 6524758229547110 a001 2584/54018521*45537549124^(5/17) 6524758229547110 a001 2584/54018521*312119004989^(3/11) 6524758229547110 a001 62423799128/956722026041 6524758229547110 a001 2584/54018521*14662949395604^(5/21) 6524758229547110 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^15/Lucas(37) 6524758229547110 a001 2584/54018521*192900153618^(5/18) 6524758229547110 a001 2584/54018521*28143753123^(3/10) 6524758229547110 a001 2584/54018521*10749957122^(5/16) 6524758229547110 a001 2584/54018521*599074578^(5/14) 6524758229547110 a001 2584/54018521*228826127^(3/8) 6524758229547111 a001 2584/228826127*33385282^(1/2) 6524758229547111 a001 1292/299537289*33385282^(5/9) 6524758229547111 a001 2584/969323029*33385282^(7/12) 6524758229547112 a001 2584/1568397607*33385282^(11/18) 6524758229547112 a001 2584/4106118243*33385282^(2/3) 6524758229547112 a001 1292/5374978561*33385282^(13/18) 6524758229547112 a001 2584/17393796001*33385282^(3/4) 6524758229547113 a001 2584/28143753123*33385282^(7/9) 6524758229547113 a001 2584/54018521*33385282^(5/12) 6524758229547113 a001 2584/73681302247*33385282^(5/6) 6524758229547113 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^24 6524758229547113 a001 1292/96450076809*33385282^(8/9) 6524758229547113 a001 2584/312119004989*33385282^(11/12) 6524758229547114 a001 2584/505019158607*33385282^(17/18) 6524758229547114 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^26 6524758229547114 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^28 6524758229547114 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^30 6524758229547114 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^32 6524758229547114 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^34 6524758229547114 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^36 6524758229547114 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^38 6524758229547114 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^40 6524758229547114 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^42 6524758229547114 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^44 6524758229547114 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^46 6524758229547114 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^48 6524758229547114 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^50 6524758229547114 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^52 6524758229547114 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^54 6524758229547114 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^56 6524758229547114 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^58 6524758229547114 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^60 6524758229547114 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^62 6524758229547114 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^64 6524758229547114 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^66 6524758229547114 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^68 6524758229547114 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^70 6524758229547114 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^72 6524758229547114 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^74 6524758229547114 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^76 6524758229547114 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^78 6524758229547114 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^80 6524758229547114 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^82 6524758229547114 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^84 6524758229547114 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^86 6524758229547114 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^85 6524758229547114 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^83 6524758229547114 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^81 6524758229547114 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^79 6524758229547114 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^77 6524758229547114 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^75 6524758229547114 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^73 6524758229547114 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^71 6524758229547114 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^69 6524758229547114 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^67 6524758229547114 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^65 6524758229547114 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^63 6524758229547114 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^61 6524758229547114 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^59 6524758229547114 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^57 6524758229547114 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^55 6524758229547114 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^53 6524758229547114 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^51 6524758229547114 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^49 6524758229547114 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^47 6524758229547114 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^45 6524758229547114 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^43 6524758229547114 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^41 6524758229547114 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^39 6524758229547114 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^37 6524758229547114 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^35 6524758229547114 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^33 6524758229547114 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^31 6524758229547114 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^29 6524758229547114 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^27 6524758229547114 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^25 6524758229547116 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^23 6524758229547119 a001 1292/16692641*12752043^(7/17) 6524758229547123 a001 2584/20633239*141422324^(1/3) 6524758229547123 a001 11921884780/182717648081 6524758229547123 a001 2584/20633239*(1/2+1/2*5^(1/2))^13 6524758229547123 a001 2584/20633239*73681302247^(1/4) 6524758229547126 a001 2584/87403803*12752043^(8/17) 6524758229547128 a001 646/35355581*12752043^(1/2) 6524758229547129 a001 2584/228826127*12752043^(9/17) 6524758229547129 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^21 6524758229547132 a001 1292/299537289*12752043^(10/17) 6524758229547134 a001 2584/1568397607*12752043^(11/17) 6524758229547136 a001 2584/4106118243*12752043^(12/17) 6524758229547139 a001 1292/5374978561*12752043^(13/17) 6524758229547141 a001 2584/28143753123*12752043^(14/17) 6524758229547143 a001 2584/73681302247*12752043^(15/17) 6524758229547146 a001 1292/96450076809*12752043^(16/17) 6524758229547148 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^56 6524758229547171 a001 2584/12752043*4870847^(3/8) 6524758229547178 a001 646/1970299*7881196^(1/3) 6524758229547213 a001 102331568/1568358005 6524758229547213 a001 646/1970299*312119004989^(1/5) 6524758229547213 a001 646/1970299*(1/2+1/2*5^(1/2))^11 6524758229547213 a001 646/1970299*1568397607^(1/4) 6524758229547219 a004 Fibonacci(33)/Lucas(18)/(1/2+sqrt(5)/2)^19 6524758229547223 a001 1292/16692641*4870847^(7/16) 6524758229547245 a001 2584/87403803*4870847^(1/2) 6524758229547263 a001 2584/228826127*4870847^(9/16) 6524758229547280 a001 1292/299537289*4870847^(5/8) 6524758229547297 a001 2584/1568397607*4870847^(11/16) 6524758229547314 a001 2584/4106118243*4870847^(3/4) 6524758229547332 a001 1292/5374978561*4870847^(13/16) 6524758229547349 a001 2584/28143753123*4870847^(7/8) 6524758229547366 a001 2584/73681302247*4870847^(15/16) 6524758229547383 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^54 6524758229547461 a001 2584/4870847*1860498^(1/3) 6524758229547799 a001 2584/3010349*7881196^(3/11) 6524758229547822 a001 2584/12752043*1860498^(2/5) 6524758229547828 a001 2584/3010349*141422324^(3/13) 6524758229547828 a001 2584/3010349*2537720636^(1/5) 6524758229547828 a001 2584/3010349*45537549124^(3/17) 6524758229547828 a001 3478759096/53316291173 6524758229547828 a001 2584/3010349*817138163596^(3/19) 6524758229547828 a001 2584/3010349*14662949395604^(1/7) 6524758229547828 a001 2584/3010349*(1/2+1/2*5^(1/2))^9 6524758229547828 a001 2584/3010349*192900153618^(1/6) 6524758229547828 a001 2584/3010349*10749957122^(3/16) 6524758229547828 a001 2584/3010349*599074578^(3/14) 6524758229547830 a001 2584/3010349*33385282^(1/4) 6524758229547834 a004 Fibonacci(31)/Lucas(18)/(1/2+sqrt(5)/2)^17 6524758229547982 a001 1292/16692641*1860498^(7/15) 6524758229548053 a001 2584/54018521*1860498^(1/2) 6524758229548113 a001 2584/87403803*1860498^(8/15) 6524758229548239 a001 2584/228826127*1860498^(3/5) 6524758229548365 a001 1292/299537289*1860498^(2/3) 6524758229548394 a001 2584/3010349*1860498^(3/10) 6524758229548428 a001 2584/969323029*1860498^(7/10) 6524758229548490 a001 2584/1568397607*1860498^(11/15) 6524758229548616 a001 2584/4106118243*1860498^(4/5) 6524758229548679 a001 2584/6643838879*1860498^(5/6) 6524758229548742 a001 1292/5374978561*1860498^(13/15) 6524758229548805 a001 2584/17393796001*1860498^(9/10) 6524758229548867 a001 2584/28143753123*1860498^(14/15) 6524758229548914 a001 1292/930249*710647^(2/7) 6524758229548993 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^52 6524758229551447 a001 2584/4870847*710647^(5/14) 6524758229552040 a001 2584/1149851*20633239^(1/5) 6524758229552043 a001 664383868/10182505537 6524758229552043 a001 2584/1149851*17393796001^(1/7) 6524758229552043 a001 2584/1149851*14662949395604^(1/9) 6524758229552043 a001 2584/1149851*(1/2+1/2*5^(1/2))^7 6524758229552043 a001 2584/1149851*599074578^(1/6) 6524758229552049 a004 Fibonacci(29)/Lucas(18)/(1/2+sqrt(5)/2)^15 6524758229552605 a001 2584/12752043*710647^(3/7) 6524758229553562 a001 1292/16692641*710647^(1/2) 6524758229554490 a001 2584/87403803*710647^(4/7) 6524758229554624 a001 2584/710647*271443^(3/13) 6524758229555273 a001 2584/1149851*710647^(1/4) 6524758229555414 a001 2584/228826127*710647^(9/14) 6524758229556336 a001 1292/299537289*710647^(5/7) 6524758229556798 a001 2584/969323029*710647^(3/4) 6524758229557259 a001 2584/1568397607*710647^(11/14) 6524758229558182 a001 2584/4106118243*710647^(6/7) 6524758229559105 a001 1292/5374978561*710647^(13/14) 6524758229559714 a001 2584/271443*103682^(1/6) 6524758229560028 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^50 6524758229571680 a001 2584/167761*64079^(3/23) 6524758229572470 a001 1292/930249*271443^(4/13) 6524758229580892 a001 2584/4870847*271443^(5/13) 6524758229580930 a001 34/5779*20633239^(1/7) 6524758229580933 a001 34/5779*2537720636^(1/9) 6524758229580933 a001 507544112/7778742049 6524758229580933 a001 34/5779*312119004989^(1/11) 6524758229580933 a001 34/5779*(1/2+1/2*5^(1/2))^5 6524758229580933 a001 34/5779*28143753123^(1/10) 6524758229580933 a001 34/5779*228826127^(1/8) 6524758229580938 a004 Fibonacci(27)/Lucas(18)/(1/2+sqrt(5)/2)^13 6524758229581247 a001 34/5779*1860498^(1/6) 6524758229587939 a001 2584/12752043*271443^(6/13) 6524758229591400 a001 2584/20633239*271443^(1/2) 6524758229594785 a001 1292/16692641*271443^(7/13) 6524758229601602 a001 2584/87403803*271443^(8/13) 6524758229608414 a001 2584/228826127*271443^(9/13) 6524758229615226 a001 1292/299537289*271443^(10/13) 6524758229622038 a001 2584/1568397607*271443^(11/13) 6524758229628850 a001 2584/4106118243*271443^(12/13) 6524758229635662 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^48 6524758229685927 a001 2584/710647*103682^(1/4) 6524758229707382 a001 34/5779*103682^(5/24) 6524758229729072 a001 2584/1149851*103682^(7/24) 6524758229747542 a001 1292/930249*103682^(1/3) 6524758229775187 a001 2584/167761*439204^(1/9) 6524758229775437 a001 2584/3010349*103682^(3/8) 6524758229778935 a001 2584/167761*7881196^(1/11) 6524758229778945 a001 2584/167761*141422324^(1/13) 6524758229778945 a001 193864600/2971215073 6524758229778945 a001 2584/167761*2537720636^(1/15) 6524758229778945 a001 2584/167761*45537549124^(1/17) 6524758229778945 a001 2584/167761*14662949395604^(1/21) 6524758229778945 a001 2584/167761*(1/2+1/2*5^(1/2))^3 6524758229778945 a001 2584/167761*192900153618^(1/18) 6524758229778945 a001 2584/167761*10749957122^(1/16) 6524758229778945 a001 2584/167761*599074578^(1/14) 6524758229778945 a001 2584/167761*33385282^(1/12) 6524758229778951 a004 Fibonacci(25)/Lucas(18)/(1/2+sqrt(5)/2)^11 6524758229779133 a001 2584/167761*1860498^(1/10) 6524758229799732 a001 2584/4870847*103682^(5/12) 6524758229825402 a001 646/1970299*103682^(11/24) 6524758229850546 a001 2584/12752043*103682^(1/2) 6524758229854814 a001 2584/167761*103682^(1/8) 6524758229875892 a001 2584/20633239*103682^(13/24) 6524758229901160 a001 1292/16692641*103682^(7/12) 6524758229926458 a001 2584/54018521*103682^(5/8) 6524758229951745 a001 2584/87403803*103682^(2/3) 6524758229977036 a001 646/35355581*103682^(17/24) 6524758230002325 a001 2584/228826127*103682^(3/4) 6524758230027615 a001 2584/370248451*103682^(19/24) 6524758230052905 a001 1292/299537289*103682^(5/6) 6524758230078195 a001 2584/969323029*103682^(7/8) 6524758230103485 a001 2584/1568397607*103682^(11/12) 6524758230128775 a001 34/33391061*103682^(23/24) 6524758230154065 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^46 6524758230214944 a001 2584/271443*39603^(2/11) 6524758230346237 a001 2584/167761*39603^(3/22) 6524758230526420 a001 34/5779*39603^(5/22) 6524758230617503 a001 2584/64079*24476^(1/21) 6524758230668773 a001 2584/710647*39603^(3/11) 6524758230875725 a001 2584/1149851*39603^(7/22) 6524758231058002 a001 1292/930249*39603^(4/11) 6524758231067053 a001 2584/64079*64079^(1/23) 6524758231136141 a001 2177932/33379505 6524758231136141 a001 1292/64079+1292/64079*5^(1/2) 6524758231136147 a004 Fibonacci(23)/Lucas(18)/(1/2+sqrt(5)/2)^9 6524758231161431 a001 2584/64079*103682^(1/24) 6524758231249705 a001 2584/3010349*39603^(9/22) 6524758231325239 a001 2584/64079*39603^(1/22) 6524758231437807 a001 2584/4870847*39603^(5/11) 6524758231627285 a001 646/1970299*39603^(1/2) 6524758231791556 a001 1292/51841*15127^(1/10) 6524758231816237 a001 2584/12752043*39603^(6/11) 6524758232005390 a001 2584/20633239*39603^(13/22) 6524758232194466 a001 1292/16692641*39603^(7/11) 6524758232383571 a001 2584/54018521*39603^(15/22) 6524758232561843 a001 2584/64079*15127^(1/20) 6524758232572666 a001 2584/87403803*39603^(8/11) 6524758232761764 a001 646/35355581*39603^(17/22) 6524758232950861 a001 2584/228826127*39603^(9/11) 6524758233139959 a001 2584/370248451*39603^(19/22) 6524758233329056 a001 1292/299537289*39603^(10/11) 6524758233518154 a001 2584/969323029*39603^(21/22) 6524758233707251 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^44 6524758234056051 a001 2584/167761*15127^(3/20) 6524758234642755 a001 1597/103682*1364^(1/5) 6524758235161363 a001 2584/271443*15127^(1/5) 6524758236709444 a001 34/5779*15127^(1/4) 6524758238088401 a001 2584/710647*15127^(3/10) 6524758239531958 a001 2584/1149851*15127^(7/20) 6524758240237642 a001 17711/4870847*3571^(6/17) 6524758240438504 a001 28284464/433494437 6524758240438504 a004 Fibonacci(18)/Lucas(21)/(1/2+sqrt(5)/2) 6524758240438510 a004 Fibonacci(21)/Lucas(18)/(1/2+sqrt(5)/2)^7 6524758240950841 a001 1292/930249*15127^(2/5) 6524758241993817 a001 2584/64079*5778^(1/18) 6524758242379148 a001 2584/3010349*15127^(9/20) 6524758243791063 a001 15456/4250681*3571^(6/17) 6524758243803855 a001 2584/4870847*15127^(1/2) 6524758244309500 a001 121393/33385282*3571^(6/17) 6524758244385139 a001 105937/29134601*3571^(6/17) 6524758244396175 a001 832040/228826127*3571^(6/17) 6524758244397785 a001 726103/199691526*3571^(6/17) 6524758244398020 a001 5702887/1568397607*3571^(6/17) 6524758244398054 a001 4976784/1368706081*3571^(6/17) 6524758244398059 a001 39088169/10749957122*3571^(6/17) 6524758244398060 a001 831985/228811001*3571^(6/17) 6524758244398060 a001 267914296/73681302247*3571^(6/17) 6524758244398060 a001 233802911/64300051206*3571^(6/17) 6524758244398060 a001 1836311903/505019158607*3571^(6/17) 6524758244398060 a001 1602508992/440719107401*3571^(6/17) 6524758244398060 a001 12586269025/3461452808002*3571^(6/17) 6524758244398060 a001 10983760033/3020733700601*3571^(6/17) 6524758244398060 a001 86267571272/23725150497407*3571^(6/17) 6524758244398060 a001 53316291173/14662949395604*3571^(6/17) 6524758244398060 a001 20365011074/5600748293801*3571^(6/17) 6524758244398060 a001 7778742049/2139295485799*3571^(6/17) 6524758244398060 a001 2971215073/817138163596*3571^(6/17) 6524758244398060 a001 1134903170/312119004989*3571^(6/17) 6524758244398060 a001 433494437/119218851371*3571^(6/17) 6524758244398060 a001 165580141/45537549124*3571^(6/17) 6524758244398060 a001 63245986/17393796001*3571^(6/17) 6524758244398062 a001 24157817/6643838879*3571^(6/17) 6524758244398075 a001 9227465/2537720636*3571^(6/17) 6524758244398165 a001 3524578/969323029*3571^(6/17) 6524758244398780 a001 1346269/370248451*3571^(6/17) 6524758244402995 a001 514229/141422324*3571^(6/17) 6524758244431887 a001 196418/54018521*3571^(6/17) 6524758244629912 a001 75025/20633239*3571^(6/17) 6524758244817528 a001 305/12238*521^(2/13) 6524758245229937 a001 646/1970299*15127^(11/20) 6524758245986820 a001 6765/1149851*3571^(5/17) 6524758245987198 a001 28657/7881196*3571^(6/17) 6524758246655494 a001 2584/12752043*15127^(3/5) 6524758248081252 a001 2584/20633239*15127^(13/20) 6524758249506933 a001 1292/16692641*15127^(7/10) 6524758250655503 a001 1292/51841*5778^(1/9) 6524758250932643 a001 2584/54018521*15127^(3/4) 6524758252358342 a001 2584/87403803*15127^(4/5) 6524758253784046 a001 646/35355581*15127^(17/20) 6524758255209747 a001 2584/228826127*15127^(9/10) 6524758255290176 a001 10946/3010349*3571^(6/17) 6524758256506484 m001 GAMMA(19/24)/(LandauRamanujan+MertensB2) 6524758256635450 a001 2584/370248451*15127^(19/20) 6524758257540839 a001 329/4250681*2207^(7/8) 6524758258061152 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^42 6524758258853777 a001 4181/3010349*3571^(8/17) 6524758262351972 a001 2584/167761*5778^(1/6) 6524758265229287 a001 4181/103682*1364^(1/15) 6524758270336506 a001 17711/3010349*3571^(5/17) 6524758272889257 a001 2584/271443*5778^(2/9) 6524758273889078 a001 11592/1970299*3571^(5/17) 6524758274407391 a001 121393/20633239*3571^(5/17) 6524758274483012 a001 317811/54018521*3571^(5/17) 6524758274494045 a001 208010/35355581*3571^(5/17) 6524758274495654 a001 2178309/370248451*3571^(5/17) 6524758274495889 a001 5702887/969323029*3571^(5/17) 6524758274495923 a001 196452/33391061*3571^(5/17) 6524758274495928 a001 39088169/6643838879*3571^(5/17) 6524758274495929 a001 102334155/17393796001*3571^(5/17) 6524758274495929 a001 66978574/11384387281*3571^(5/17) 6524758274495929 a001 701408733/119218851371*3571^(5/17) 6524758274495929 a001 1836311903/312119004989*3571^(5/17) 6524758274495929 a001 1201881744/204284540899*3571^(5/17) 6524758274495929 a001 12586269025/2139295485799*3571^(5/17) 6524758274495929 a001 32951280099/5600748293801*3571^(5/17) 6524758274495929 a001 1135099622/192933544679*3571^(5/17) 6524758274495929 a001 139583862445/23725150497407*3571^(5/17) 6524758274495929 a001 53316291173/9062201101803*3571^(5/17) 6524758274495929 a001 10182505537/1730726404001*3571^(5/17) 6524758274495929 a001 7778742049/1322157322203*3571^(5/17) 6524758274495929 a001 2971215073/505019158607*3571^(5/17) 6524758274495929 a001 567451585/96450076809*3571^(5/17) 6524758274495929 a001 433494437/73681302247*3571^(5/17) 6524758274495929 a001 165580141/28143753123*3571^(5/17) 6524758274495930 a001 31622993/5374978561*3571^(5/17) 6524758274495932 a001 24157817/4106118243*3571^(5/17) 6524758274495945 a001 9227465/1568397607*3571^(5/17) 6524758274496034 a001 1762289/299537289*3571^(5/17) 6524758274496649 a001 1346269/228826127*3571^(5/17) 6524758274500863 a001 514229/87403803*3571^(5/17) 6524758274529748 a001 98209/16692641*3571^(5/17) 6524758274727726 a001 75025/12752043*3571^(5/17) 6524758276066835 a001 6765/710647*3571^(4/17) 6524758276084688 a001 28657/4870847*3571^(5/17) 6524758283869311 a001 34/5779*5778^(5/18) 6524758285185329 a007 Real Root Of -901*x^4-326*x^3-421*x^2+374*x+496 6524758285385440 a001 5473/930249*3571^(5/17) 6524758288949042 a001 4181/1860498*3571^(7/17) 6524758294680242 a001 2584/710647*5778^(1/3) 6524758300431771 a001 17711/1860498*3571^(4/17) 6524758303986567 a001 46368/4870847*3571^(4/17) 6524758304197844 a001 10803704/165580141 6524758304197845 a004 Fibonacci(18)/Lucas(19)/(1/2+sqrt(5)/2)^3 6524758304197850 a004 Fibonacci(19)/Lucas(18)/(1/2+sqrt(5)/2)^5 6524758304505205 a001 121393/12752043*3571^(4/17) 6524758304580873 a001 317811/33385282*3571^(4/17) 6524758304591913 a001 832040/87403803*3571^(4/17) 6524758304593524 a001 46347/4868641*3571^(4/17) 6524758304593759 a001 5702887/599074578*3571^(4/17) 6524758304593793 a001 14930352/1568397607*3571^(4/17) 6524758304593798 a001 39088169/4106118243*3571^(4/17) 6524758304593799 a001 102334155/10749957122*3571^(4/17) 6524758304593799 a001 267914296/28143753123*3571^(4/17) 6524758304593799 a001 701408733/73681302247*3571^(4/17) 6524758304593799 a001 1836311903/192900153618*3571^(4/17) 6524758304593799 a001 102287808/10745088481*3571^(4/17) 6524758304593799 a001 12586269025/1322157322203*3571^(4/17) 6524758304593799 a001 32951280099/3461452808002*3571^(4/17) 6524758304593799 a001 86267571272/9062201101803*3571^(4/17) 6524758304593799 a001 225851433717/23725150497407*3571^(4/17) 6524758304593799 a001 139583862445/14662949395604*3571^(4/17) 6524758304593799 a001 53316291173/5600748293801*3571^(4/17) 6524758304593799 a001 20365011074/2139295485799*3571^(4/17) 6524758304593799 a001 7778742049/817138163596*3571^(4/17) 6524758304593799 a001 2971215073/312119004989*3571^(4/17) 6524758304593799 a001 1134903170/119218851371*3571^(4/17) 6524758304593799 a001 433494437/45537549124*3571^(4/17) 6524758304593799 a001 165580141/17393796001*3571^(4/17) 6524758304593799 a001 63245986/6643838879*3571^(4/17) 6524758304593801 a001 24157817/2537720636*3571^(4/17) 6524758304593814 a001 9227465/969323029*3571^(4/17) 6524758304593904 a001 3524578/370248451*3571^(4/17) 6524758304594519 a001 1346269/141422324*3571^(4/17) 6524758304598736 a001 514229/54018521*3571^(4/17) 6524758304627639 a001 196418/20633239*3571^(4/17) 6524758304825741 a001 75025/7881196*3571^(4/17) 6524758305555773 a001 2584/1149851*5778^(7/18) 6524758306183552 a001 28657/3010349*3571^(4/17) 6524758306211449 a001 6765/439204*3571^(3/17) 6524758310731717 k002 Champernowne real with 77*n^2-49*n+37 6524758314858202 a001 2584/64079*2207^(1/16) 6524758315490129 a001 10946/1149851*3571^(4/17) 6524758316406629 a001 1292/930249*5778^(4/9) 6524758317165693 a001 843/34*6557470319842^(11/19) 6524758318901719 r005 Im(z^2+c),c=25/94+29/61*I,n=60 6524758319053731 a001 4181/1149851*3571^(6/17) 6524758321820496 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^43 6524758325272796 m001 (Magata+ThueMorse)/(Bloch-Shi(1)) 6524758325749482 a001 2255/199691526*9349^(18/19) 6524758327266909 a001 2584/3010349*5778^(1/2) 6524758329678468 a001 6765/370248451*9349^(17/19) 6524758330536460 a001 17711/1149851*3571^(3/17) 6524758330768984 a007 Real Root Of -718*x^4-355*x^3+91*x^2+946*x-62 6524758333607454 a001 6765/228826127*9349^(16/19) 6524758334085432 a001 46368/3010349*3571^(3/17) 6524758334603220 a001 121393/7881196*3571^(3/17) 6524758334678764 a001 10959/711491*3571^(3/17) 6524758334689786 a001 832040/54018521*3571^(3/17) 6524758334691394 a001 2178309/141422324*3571^(3/17) 6524758334691628 a001 5702887/370248451*3571^(3/17) 6524758334691663 a001 14930352/969323029*3571^(3/17) 6524758334691668 a001 39088169/2537720636*3571^(3/17) 6524758334691668 a001 102334155/6643838879*3571^(3/17) 6524758334691668 a001 9238424/599786069*3571^(3/17) 6524758334691668 a001 701408733/45537549124*3571^(3/17) 6524758334691668 a001 1836311903/119218851371*3571^(3/17) 6524758334691668 a001 4807526976/312119004989*3571^(3/17) 6524758334691668 a001 12586269025/817138163596*3571^(3/17) 6524758334691668 a001 32951280099/2139295485799*3571^(3/17) 6524758334691668 a001 86267571272/5600748293801*3571^(3/17) 6524758334691668 a001 7787980473/505618944676*3571^(3/17) 6524758334691668 a001 365435296162/23725150497407*3571^(3/17) 6524758334691668 a001 139583862445/9062201101803*3571^(3/17) 6524758334691668 a001 53316291173/3461452808002*3571^(3/17) 6524758334691668 a001 20365011074/1322157322203*3571^(3/17) 6524758334691668 a001 7778742049/505019158607*3571^(3/17) 6524758334691668 a001 2971215073/192900153618*3571^(3/17) 6524758334691668 a001 1134903170/73681302247*3571^(3/17) 6524758334691668 a001 433494437/28143753123*3571^(3/17) 6524758334691669 a001 165580141/10749957122*3571^(3/17) 6524758334691669 a001 63245986/4106118243*3571^(3/17) 6524758334691671 a001 24157817/1568397607*3571^(3/17) 6524758334691684 a001 9227465/599074578*3571^(3/17) 6524758334691773 a001 3524578/228826127*3571^(3/17) 6524758334692388 a001 1346269/87403803*3571^(3/17) 6524758334696598 a001 514229/33385282*3571^(3/17) 6524758334725453 a001 196418/12752043*3571^(3/17) 6524758334923230 a001 75025/4870847*3571^(3/17) 6524758336186940 a001 2255/90481*3571^(2/17) 6524758336278817 a001 28657/1860498*3571^(3/17) 6524758337536441 a001 6765/141422324*9349^(15/19) 6524758338123590 a001 2584/4870847*5778^(5/9) 6524758339403913 m005 (1/2*Pi-9/10)/(4/11*gamma+9/11) 6524758339824562 a007 Real Root Of 582*x^4-727*x^3+865*x^2-494*x-998 6524758341262956 a001 987/20633239*2207^(15/16) 6524758341465426 a001 2255/29134601*9349^(14/19) 6524758345394415 a001 6765/54018521*9349^(13/19) 6524758345570144 a001 10946/710647*3571^(3/17) 6524758346174397 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^45 6524758348745507 a001 9349/28657*8^(1/3) 6524758348981646 a001 646/1970299*5778^(11/18) 6524758349133746 a001 4181/710647*3571^(5/17) 6524758349323393 a001 6765/33385282*9349^(12/19) 6524758349727583 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^47 6524758350103383 a001 17711/1568397607*9349^(18/19) 6524758350245986 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^49 6524758350321620 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^51 6524758350332655 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^53 6524758350334265 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^55 6524758350334500 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^57 6524758350334534 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^59 6524758350334539 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^61 6524758350334540 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^63 6524758350334540 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^65 6524758350334540 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^67 6524758350334540 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^69 6524758350334540 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^71 6524758350334540 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^73 6524758350334540 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^75 6524758350334540 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^77 6524758350334540 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^79 6524758350334540 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^81 6524758350334540 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^83 6524758350334540 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^85 6524758350334540 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^87 6524758350334540 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^89 6524758350334540 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^91 6524758350334540 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^93 6524758350334540 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^95 6524758350334540 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^97 6524758350334540 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^99 6524758350334540 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^100 6524758350334540 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^98 6524758350334540 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^96 6524758350334540 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^94 6524758350334540 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^92 6524758350334540 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^90 6524758350334540 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^88 6524758350334540 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^86 6524758350334540 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^84 6524758350334540 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^82 6524758350334540 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^80 6524758350334540 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^78 6524758350334540 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^76 6524758350334540 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^74 6524758350334540 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^72 6524758350334540 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^70 6524758350334540 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^68 6524758350334540 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^66 6524758350334540 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^64 6524758350334540 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^62 6524758350334541 a001 2/4181*(1/2+1/2*5^(1/2))^15 6524758350334542 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^60 6524758350334555 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^58 6524758350334645 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^56 6524758350335260 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^54 6524758350339475 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^52 6524758350368364 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^50 6524758350566377 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^48 6524758351923573 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^46 6524758353252400 a001 615/1875749*9349^(11/19) 6524758353656569 a001 15456/1368706081*9349^(18/19) 6524758354032369 a001 17711/969323029*9349^(17/19) 6524758354174972 a001 121393/10749957122*9349^(18/19) 6524758354250606 a001 105937/9381251041*9349^(18/19) 6524758354261641 a001 832040/73681302247*9349^(18/19) 6524758354263251 a001 726103/64300051206*9349^(18/19) 6524758354263486 a001 5702887/505019158607*9349^(18/19) 6524758354263520 a001 4976784/440719107401*9349^(18/19) 6524758354263525 a001 39088169/3461452808002*9349^(18/19) 6524758354263526 a001 34111385/3020733700601*9349^(18/19) 6524758354263526 a001 267914296/23725150497407*9349^(18/19) 6524758354263526 a001 165580141/14662949395604*9349^(18/19) 6524758354263526 a001 63245986/5600748293801*9349^(18/19) 6524758354263528 a001 24157817/2139295485799*9349^(18/19) 6524758354263541 a001 9227465/817138163596*9349^(18/19) 6524758354263631 a001 3524578/312119004989*9349^(18/19) 6524758354264246 a001 1346269/119218851371*9349^(18/19) 6524758354268461 a001 514229/45537549124*9349^(18/19) 6524758354297351 a001 196418/17393796001*9349^(18/19) 6524758354495363 a001 75025/6643838879*9349^(18/19) 6524758355852559 a001 28657/2537720636*9349^(18/19) 6524758357181331 a001 2255/4250681*9349^(10/19) 6524758357585556 a001 11592/634430159*9349^(17/19) 6524758357961356 a001 17711/599074578*9349^(16/19) 6524758358103959 a001 121393/6643838879*9349^(17/19) 6524758358179593 a001 10959/599786069*9349^(17/19) 6524758358190627 a001 208010/11384387281*9349^(17/19) 6524758358192237 a001 2178309/119218851371*9349^(17/19) 6524758358192472 a001 5702887/312119004989*9349^(17/19) 6524758358192506 a001 3732588/204284540899*9349^(17/19) 6524758358192511 a001 39088169/2139295485799*9349^(17/19) 6524758358192512 a001 102334155/5600748293801*9349^(17/19) 6524758358192512 a001 10946/599074579*9349^(17/19) 6524758358192512 a001 433494437/23725150497407*9349^(17/19) 6524758358192512 a001 165580141/9062201101803*9349^(17/19) 6524758358192513 a001 31622993/1730726404001*9349^(17/19) 6524758358192515 a001 24157817/1322157322203*9349^(17/19) 6524758358192528 a001 9227465/505019158607*9349^(17/19) 6524758358192617 a001 1762289/96450076809*9349^(17/19) 6524758358193232 a001 1346269/73681302247*9349^(17/19) 6524758358197447 a001 514229/28143753123*9349^(17/19) 6524758358226337 a001 98209/5374978561*9349^(17/19) 6524758358424349 a001 75025/4106118243*9349^(17/19) 6524758359781546 a001 28657/1568397607*9349^(17/19) 6524758359839177 a001 2584/12752043*5778^(2/3) 6524758360616475 a001 17711/710647*3571^(2/17) 6524758361110463 a001 6765/7881196*9349^(9/19) 6524758361225936 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^44 6524758361514542 a001 6624/224056801*9349^(16/19) 6524758361890342 a001 17711/370248451*9349^(15/19) 6524758362032945 a001 121393/4106118243*9349^(16/19) 6524758362108579 a001 317811/10749957122*9349^(16/19) 6524758362119614 a001 832040/28143753123*9349^(16/19) 6524758362121224 a001 311187/10525900321*9349^(16/19) 6524758362121458 a001 5702887/192900153618*9349^(16/19) 6524758362121493 a001 14930352/505019158607*9349^(16/19) 6524758362121498 a001 39088169/1322157322203*9349^(16/19) 6524758362121498 a001 6765/228826126*9349^(16/19) 6524758362121499 a001 267914296/9062201101803*9349^(16/19) 6524758362121499 a001 701408733/23725150497407*9349^(16/19) 6524758362121499 a001 433494437/14662949395604*9349^(16/19) 6524758362121499 a001 165580141/5600748293801*9349^(16/19) 6524758362121499 a001 63245986/2139295485799*9349^(16/19) 6524758362121501 a001 24157817/817138163596*9349^(16/19) 6524758362121514 a001 9227465/312119004989*9349^(16/19) 6524758362121604 a001 3524578/119218851371*9349^(16/19) 6524758362122219 a001 1346269/45537549124*9349^(16/19) 6524758362126433 a001 514229/17393796001*9349^(16/19) 6524758362155323 a001 196418/6643838879*9349^(16/19) 6524758362353335 a001 75025/2537720636*9349^(16/19) 6524758363710532 a001 28657/969323029*9349^(16/19) 6524758364180697 a001 2576/103361*3571^(2/17) 6524758364700709 a001 121393/4870847*3571^(2/17) 6524758364776578 a001 105937/4250681*3571^(2/17) 6524758364787647 a001 416020/16692641*3571^(2/17) 6524758364789262 a001 726103/29134601*3571^(2/17) 6524758364789498 a001 5702887/228826127*3571^(2/17) 6524758364789532 a001 829464/33281921*3571^(2/17) 6524758364789537 a001 39088169/1568397607*3571^(2/17) 6524758364789538 a001 34111385/1368706081*3571^(2/17) 6524758364789538 a001 133957148/5374978561*3571^(2/17) 6524758364789538 a001 233802911/9381251041*3571^(2/17) 6524758364789538 a001 1836311903/73681302247*3571^(2/17) 6524758364789538 a001 267084832/10716675201*3571^(2/17) 6524758364789538 a001 12586269025/505019158607*3571^(2/17) 6524758364789538 a001 10983760033/440719107401*3571^(2/17) 6524758364789538 a001 43133785636/1730726404001*3571^(2/17) 6524758364789538 a001 75283811239/3020733700601*3571^(2/17) 6524758364789538 a001 182717648081/7331474697802*3571^(2/17) 6524758364789538 a001 139583862445/5600748293801*3571^(2/17) 6524758364789538 a001 53316291173/2139295485799*3571^(2/17) 6524758364789538 a001 10182505537/408569081798*3571^(2/17) 6524758364789538 a001 7778742049/312119004989*3571^(2/17) 6524758364789538 a001 2971215073/119218851371*3571^(2/17) 6524758364789538 a001 567451585/22768774562*3571^(2/17) 6524758364789538 a001 433494437/17393796001*3571^(2/17) 6524758364789538 a001 165580141/6643838879*3571^(2/17) 6524758364789539 a001 31622993/1268860318*3571^(2/17) 6524758364789540 a001 24157817/969323029*3571^(2/17) 6524758364789554 a001 9227465/370248451*3571^(2/17) 6524758364789644 a001 1762289/70711162*3571^(2/17) 6524758364790260 a001 1346269/54018521*3571^(2/17) 6524758364794489 a001 514229/20633239*3571^(2/17) 6524758364823468 a001 98209/3940598*3571^(2/17) 6524758365022095 a001 75025/3010349*3571^(2/17) 6524758365039069 a001 6765/4870847*9349^(8/19) 6524758365154922 a001 10946/969323029*9349^(18/19) 6524758365443528 a001 46368/969323029*9349^(15/19) 6524758365819328 a001 17711/228826127*9349^(14/19) 6524758365961931 a001 121393/2537720636*9349^(15/19) 6524758366037565 a001 317811/6643838879*9349^(15/19) 6524758366048600 a001 832040/17393796001*9349^(15/19) 6524758366050210 a001 2178309/45537549124*9349^(15/19) 6524758366050445 a001 5702887/119218851371*9349^(15/19) 6524758366050479 a001 14930352/312119004989*9349^(15/19) 6524758366050484 a001 4181/87403804*9349^(15/19) 6524758366050485 a001 102334155/2139295485799*9349^(15/19) 6524758366050485 a001 267914296/5600748293801*9349^(15/19) 6524758366050485 a001 701408733/14662949395604*9349^(15/19) 6524758366050485 a001 1134903170/23725150497407*9349^(15/19) 6524758366050485 a001 433494437/9062201101803*9349^(15/19) 6524758366050485 a001 165580141/3461452808002*9349^(15/19) 6524758366050485 a001 63245986/1322157322203*9349^(15/19) 6524758366050487 a001 24157817/505019158607*9349^(15/19) 6524758366050500 a001 9227465/192900153618*9349^(15/19) 6524758366050590 a001 3524578/73681302247*9349^(15/19) 6524758366051205 a001 1346269/28143753123*9349^(15/19) 6524758366055420 a001 514229/10749957122*9349^(15/19) 6524758366084309 a001 196418/4106118243*9349^(15/19) 6524758366282322 a001 75025/1568397607*9349^(15/19) 6524758366383506 a001 28657/1149851*3571^(2/17) 6524758366605200 a001 615/15251*3571^(1/17) 6524758367639518 a001 28657/599074578*9349^(15/19) 6524758367957189 a001 15255075/233802911 6524758367957189 a004 Fibonacci(20)/Lucas(20)/(1/2+sqrt(5)/2)^4 6524758368969050 a001 6765/3010349*9349^(7/19) 6524758369083908 a001 5473/299537289*9349^(17/19) 6524758369372514 a001 2576/33281921*9349^(14/19) 6524758369748315 a001 17711/141422324*9349^(13/19) 6524758369890917 a001 121393/1568397607*9349^(14/19) 6524758369966551 a001 105937/1368706081*9349^(14/19) 6524758369977586 a001 416020/5374978561*9349^(14/19) 6524758369979196 a001 726103/9381251041*9349^(14/19) 6524758369979431 a001 5702887/73681302247*9349^(14/19) 6524758369979465 a001 2584/33385281*9349^(14/19) 6524758369979470 a001 39088169/505019158607*9349^(14/19) 6524758369979471 a001 34111385/440719107401*9349^(14/19) 6524758369979471 a001 133957148/1730726404001*9349^(14/19) 6524758369979471 a001 233802911/3020733700601*9349^(14/19) 6524758369979471 a001 1836311903/23725150497407*9349^(14/19) 6524758369979471 a001 567451585/7331474697802*9349^(14/19) 6524758369979471 a001 433494437/5600748293801*9349^(14/19) 6524758369979471 a001 165580141/2139295485799*9349^(14/19) 6524758369979471 a001 31622993/408569081798*9349^(14/19) 6524758369979473 a001 24157817/312119004989*9349^(14/19) 6524758369979486 a001 9227465/119218851371*9349^(14/19) 6524758369979576 a001 1762289/22768774562*9349^(14/19) 6524758369980191 a001 1346269/17393796001*9349^(14/19) 6524758369984406 a001 514229/6643838879*9349^(14/19) 6524758370013296 a001 98209/1268860318*9349^(14/19) 6524758370211308 a001 75025/969323029*9349^(14/19) 6524758370696908 a001 2584/20633239*5778^(13/18) 6524758371568504 a001 28657/370248451*9349^(14/19) 6524758372895431 a001 55/15126*9349^(6/19) 6524758373012894 a001 10946/370248451*9349^(16/19) 6524758373301501 a001 46368/370248451*9349^(13/19) 6524758373677300 a001 17711/87403803*9349^(12/19) 6524758373819903 a001 121393/969323029*9349^(13/19) 6524758373895537 a001 317811/2537720636*9349^(13/19) 6524758373906572 a001 832040/6643838879*9349^(13/19) 6524758373908182 a001 2178309/17393796001*9349^(13/19) 6524758373908417 a001 1597/12752044*9349^(13/19) 6524758373908451 a001 14930352/119218851371*9349^(13/19) 6524758373908456 a001 39088169/312119004989*9349^(13/19) 6524758373908457 a001 102334155/817138163596*9349^(13/19) 6524758373908457 a001 267914296/2139295485799*9349^(13/19) 6524758373908457 a001 701408733/5600748293801*9349^(13/19) 6524758373908457 a001 1836311903/14662949395604*9349^(13/19) 6524758373908457 a001 2971215073/23725150497407*9349^(13/19) 6524758373908457 a001 1134903170/9062201101803*9349^(13/19) 6524758373908457 a001 433494437/3461452808002*9349^(13/19) 6524758373908457 a001 165580141/1322157322203*9349^(13/19) 6524758373908458 a001 63245986/505019158607*9349^(13/19) 6524758373908459 a001 24157817/192900153618*9349^(13/19) 6524758373908473 a001 9227465/73681302247*9349^(13/19) 6524758373908562 a001 3524578/28143753123*9349^(13/19) 6524758373909177 a001 1346269/10749957122*9349^(13/19) 6524758373913392 a001 514229/4106118243*9349^(13/19) 6524758373942282 a001 196418/1568397607*9349^(13/19) 6524758374140294 a001 75025/599074578*9349^(13/19) 6524758375497490 a001 28657/228826127*9349^(13/19) 6524758375714759 a001 5473/219602*3571^(2/17) 6524758376831237 a001 6765/1149851*9349^(5/19) 6524758376941880 a001 10946/228826127*9349^(15/19) 6524758377230487 a001 46368/228826127*9349^(12/19) 6524758377606289 a001 17711/54018521*9349^(11/19) 6524758377748890 a001 121393/599074578*9349^(12/19) 6524758377824524 a001 317811/1568397607*9349^(12/19) 6524758377835558 a001 832040/4106118243*9349^(12/19) 6524758377837168 a001 987/4870846*9349^(12/19) 6524758377837403 a001 5702887/28143753123*9349^(12/19) 6524758377837438 a001 14930352/73681302247*9349^(12/19) 6524758377837443 a001 39088169/192900153618*9349^(12/19) 6524758377837443 a001 102334155/505019158607*9349^(12/19) 6524758377837443 a001 267914296/1322157322203*9349^(12/19) 6524758377837443 a001 701408733/3461452808002*9349^(12/19) 6524758377837443 a001 1836311903/9062201101803*9349^(12/19) 6524758377837443 a001 4807526976/23725150497407*9349^(12/19) 6524758377837443 a001 2971215073/14662949395604*9349^(12/19) 6524758377837443 a001 1134903170/5600748293801*9349^(12/19) 6524758377837443 a001 433494437/2139295485799*9349^(12/19) 6524758377837443 a001 165580141/817138163596*9349^(12/19) 6524758377837444 a001 63245986/312119004989*9349^(12/19) 6524758377837446 a001 24157817/119218851371*9349^(12/19) 6524758377837459 a001 9227465/45537549124*9349^(12/19) 6524758377837548 a001 3524578/17393796001*9349^(12/19) 6524758377838163 a001 1346269/6643838879*9349^(12/19) 6524758377842378 a001 514229/2537720636*9349^(12/19) 6524758377871268 a001 196418/969323029*9349^(12/19) 6524758378069280 a001 75025/370248451*9349^(12/19) 6524758378478449 r005 Re(z^2+c),c=1/22+11/57*I,n=4 6524758379278360 a001 4181/439204*3571^(4/17) 6524758379426477 a001 28657/141422324*9349^(12/19) 6524758380742369 a001 6765/710647*9349^(4/19) 6524758380870867 a001 5473/70711162*9349^(14/19) 6524758381159473 a001 11592/35355581*9349^(11/19) 6524758381535267 a001 17711/33385282*9349^(10/19) 6524758381554563 a001 1292/16692641*5778^(7/9) 6524758381677876 a001 121393/370248451*9349^(11/19) 6524758381753510 a001 317811/969323029*9349^(11/19) 6524758381764545 a001 610/1860499*9349^(11/19) 6524758381766155 a001 2178309/6643838879*9349^(11/19) 6524758381766390 a001 5702887/17393796001*9349^(11/19) 6524758381766424 a001 3732588/11384387281*9349^(11/19) 6524758381766429 a001 39088169/119218851371*9349^(11/19) 6524758381766430 a001 9303105/28374454999*9349^(11/19) 6524758381766430 a001 66978574/204284540899*9349^(11/19) 6524758381766430 a001 701408733/2139295485799*9349^(11/19) 6524758381766430 a001 1836311903/5600748293801*9349^(11/19) 6524758381766430 a001 1201881744/3665737348901*9349^(11/19) 6524758381766430 a001 7778742049/23725150497407*9349^(11/19) 6524758381766430 a001 2971215073/9062201101803*9349^(11/19) 6524758381766430 a001 567451585/1730726404001*9349^(11/19) 6524758381766430 a001 433494437/1322157322203*9349^(11/19) 6524758381766430 a001 165580141/505019158607*9349^(11/19) 6524758381766430 a001 31622993/96450076809*9349^(11/19) 6524758381766432 a001 24157817/73681302247*9349^(11/19) 6524758381766445 a001 9227465/28143753123*9349^(11/19) 6524758381766535 a001 1762289/5374978561*9349^(11/19) 6524758381767150 a001 1346269/4106118243*9349^(11/19) 6524758381771365 a001 514229/1568397607*9349^(11/19) 6524758381800254 a001 98209/299537289*9349^(11/19) 6524758381998266 a001 75025/228826127*9349^(11/19) 6524758383355462 a001 28657/87403803*9349^(11/19) 6524758384718099 a001 6765/439204*9349^(3/19) 6524758384799852 a001 10946/87403803*9349^(13/19) 6524758385088458 a001 15456/29134601*9349^(10/19) 6524758385464274 a001 17711/20633239*9349^(9/19) 6524758385579838 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^45 6524758385606862 a001 121393/228826127*9349^(10/19) 6524758385682496 a001 377/710646*9349^(10/19) 6524758385693531 a001 832040/1568397607*9349^(10/19) 6524758385695141 a001 726103/1368706081*9349^(10/19) 6524758385695376 a001 5702887/10749957122*9349^(10/19) 6524758385695410 a001 4976784/9381251041*9349^(10/19) 6524758385695415 a001 39088169/73681302247*9349^(10/19) 6524758385695416 a001 34111385/64300051206*9349^(10/19) 6524758385695416 a001 267914296/505019158607*9349^(10/19) 6524758385695416 a001 233802911/440719107401*9349^(10/19) 6524758385695416 a001 1836311903/3461452808002*9349^(10/19) 6524758385695416 a001 1602508992/3020733700601*9349^(10/19) 6524758385695416 a001 12586269025/23725150497407*9349^(10/19) 6524758385695416 a001 7778742049/14662949395604*9349^(10/19) 6524758385695416 a001 2971215073/5600748293801*9349^(10/19) 6524758385695416 a001 1134903170/2139295485799*9349^(10/19) 6524758385695416 a001 433494437/817138163596*9349^(10/19) 6524758385695416 a001 165580141/312119004989*9349^(10/19) 6524758385695416 a001 63245986/119218851371*9349^(10/19) 6524758385695418 a001 24157817/45537549124*9349^(10/19) 6524758385695431 a001 9227465/17393796001*9349^(10/19) 6524758385695521 a001 3524578/6643838879*9349^(10/19) 6524758385696136 a001 1346269/2537720636*9349^(10/19) 6524758385700351 a001 514229/969323029*9349^(10/19) 6524758385729240 a001 196418/370248451*9349^(10/19) 6524758385927253 a001 75025/141422324*9349^(10/19) 6524758386098476 a001 6765/1568397607*24476^(20/21) 6524758386617113 a001 6765/969323029*24476^(19/21) 6524758387135751 a001 2255/199691526*24476^(6/7) 6524758387284451 a001 28657/54018521*9349^(10/19) 6524758387654389 a001 6765/370248451*24476^(17/21) 6524758388173027 a001 6765/228826127*24476^(16/21) 6524758388524707 a001 2255/90481*9349^(2/19) 6524758388691665 a001 6765/141422324*24476^(5/7) 6524758388728842 a001 10946/54018521*9349^(12/19) 6524758389017448 a001 46368/54018521*9349^(9/19) 6524758389210302 a001 2255/29134601*24476^(2/3) 6524758389393205 a001 17711/12752043*9349^(8/19) 6524758389535849 a001 233/271444*9349^(9/19) 6524758389611482 a001 317811/370248451*9349^(9/19) 6524758389622517 a001 832040/969323029*9349^(9/19) 6524758389624127 a001 2178309/2537720636*9349^(9/19) 6524758389624362 a001 5702887/6643838879*9349^(9/19) 6524758389624396 a001 14930352/17393796001*9349^(9/19) 6524758389624401 a001 39088169/45537549124*9349^(9/19) 6524758389624402 a001 102334155/119218851371*9349^(9/19) 6524758389624402 a001 267914296/312119004989*9349^(9/19) 6524758389624402 a001 701408733/817138163596*9349^(9/19) 6524758389624402 a001 1836311903/2139295485799*9349^(9/19) 6524758389624402 a001 4807526976/5600748293801*9349^(9/19) 6524758389624402 a001 12586269025/14662949395604*9349^(9/19) 6524758389624402 a001 20365011074/23725150497407*9349^(9/19) 6524758389624402 a001 7778742049/9062201101803*9349^(9/19) 6524758389624402 a001 2971215073/3461452808002*9349^(9/19) 6524758389624402 a001 1134903170/1322157322203*9349^(9/19) 6524758389624402 a001 433494437/505019158607*9349^(9/19) 6524758389624402 a001 165580141/192900153618*9349^(9/19) 6524758389624402 a001 63245986/73681302247*9349^(9/19) 6524758389624404 a001 24157817/28143753123*9349^(9/19) 6524758389624417 a001 9227465/10749957122*9349^(9/19) 6524758389624507 a001 3524578/4106118243*9349^(9/19) 6524758389625122 a001 1346269/1568397607*9349^(9/19) 6524758389629337 a001 514229/599074578*9349^(9/19) 6524758389658227 a001 196418/228826127*9349^(9/19) 6524758389728943 a001 6765/54018521*24476^(13/21) 6524758389856238 a001 75025/87403803*9349^(9/19) 6524758390247573 a001 6765/33385282*24476^(4/7) 6524758390761090 a001 17711/439204*3571^(1/17) 6524758390766232 a001 615/1875749*24476^(11/21) 6524758391213429 a001 28657/33385282*9349^(9/19) 6524758391284814 a001 2255/4250681*24476^(10/21) 6524758391803597 a001 6765/7881196*24476^(3/7) 6524758392311090 a001 119814915/1836311903 6524758392311090 a004 Fibonacci(20)/Lucas(22)/(1/2+sqrt(5)/2)^2 6524758392311091 a004 Fibonacci(22)/Lucas(20)/(1/2+sqrt(5)/2)^6 6524758392321855 a001 6765/4870847*24476^(8/21) 6524758392412247 a001 2584/54018521*5778^(5/6) 6524758392657820 a001 5473/16692641*9349^(11/19) 6524758392774084 a001 615/15251*9349^(1/19) 6524758392841488 a001 6765/3010349*24476^(1/3) 6524758392904336 a001 329/13201*843^(1/7) 6524758392946426 a001 144/103681*9349^(8/19) 6524758393322337 a001 89/39604*9349^(7/19) 6524758393357521 a001 55/15126*24476^(2/7) 6524758393464834 a001 121393/87403803*9349^(8/19) 6524758393540468 a001 317811/228826127*9349^(8/19) 6524758393551503 a001 416020/299537289*9349^(8/19) 6524758393553113 a001 311187/224056801*9349^(8/19) 6524758393553348 a001 5702887/4106118243*9349^(8/19) 6524758393553382 a001 7465176/5374978561*9349^(8/19) 6524758393553387 a001 39088169/28143753123*9349^(8/19) 6524758393553388 a001 14619165/10525900321*9349^(8/19) 6524758393553388 a001 133957148/96450076809*9349^(8/19) 6524758393553388 a001 701408733/505019158607*9349^(8/19) 6524758393553388 a001 1836311903/1322157322203*9349^(8/19) 6524758393553388 a001 14930208/10749853441*9349^(8/19) 6524758393553388 a001 12586269025/9062201101803*9349^(8/19) 6524758393553388 a001 32951280099/23725150497407*9349^(8/19) 6524758393553388 a001 10182505537/7331474697802*9349^(8/19) 6524758393553388 a001 7778742049/5600748293801*9349^(8/19) 6524758393553388 a001 2971215073/2139295485799*9349^(8/19) 6524758393553388 a001 567451585/408569081798*9349^(8/19) 6524758393553388 a001 433494437/312119004989*9349^(8/19) 6524758393553388 a001 165580141/119218851371*9349^(8/19) 6524758393553389 a001 31622993/22768774562*9349^(8/19) 6524758393553391 a001 24157817/17393796001*9349^(8/19) 6524758393553404 a001 9227465/6643838879*9349^(8/19) 6524758393553493 a001 1762289/1268860318*9349^(8/19) 6524758393554108 a001 1346269/969323029*9349^(8/19) 6524758393558323 a001 514229/370248451*9349^(8/19) 6524758393587213 a001 98209/70711162*9349^(8/19) 6524758393785227 a001 75025/54018521*9349^(8/19) 6524758393882979 a001 6765/1149851*24476^(5/21) 6524758394285386 a001 46368/1149851*3571^(1/17) 6524758394383762 a001 6765/710647*24476^(4/21) 6524758394799574 a001 121393/3010349*3571^(1/17) 6524758394874593 a001 317811/7881196*3571^(1/17) 6524758394882200 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^47 6524758394885539 a001 75640/1875749*3571^(1/17) 6524758394887135 a001 2178309/54018521*3571^(1/17) 6524758394887368 a001 5702887/141422324*3571^(1/17) 6524758394887402 a001 14930352/370248451*3571^(1/17) 6524758394887407 a001 39088169/969323029*3571^(1/17) 6524758394887408 a001 9303105/230701876*3571^(1/17) 6524758394887408 a001 267914296/6643838879*3571^(1/17) 6524758394887408 a001 701408733/17393796001*3571^(1/17) 6524758394887408 a001 1836311903/45537549124*3571^(1/17) 6524758394887408 a001 4807526976/119218851371*3571^(1/17) 6524758394887408 a001 1144206275/28374454999*3571^(1/17) 6524758394887408 a001 32951280099/817138163596*3571^(1/17) 6524758394887408 a001 86267571272/2139295485799*3571^(1/17) 6524758394887408 a001 225851433717/5600748293801*3571^(1/17) 6524758394887408 a001 591286729879/14662949395604*3571^(1/17) 6524758394887408 a001 365435296162/9062201101803*3571^(1/17) 6524758394887408 a001 139583862445/3461452808002*3571^(1/17) 6524758394887408 a001 53316291173/1322157322203*3571^(1/17) 6524758394887408 a001 20365011074/505019158607*3571^(1/17) 6524758394887408 a001 7778742049/192900153618*3571^(1/17) 6524758394887408 a001 2971215073/73681302247*3571^(1/17) 6524758394887408 a001 1134903170/28143753123*3571^(1/17) 6524758394887408 a001 433494437/10749957122*3571^(1/17) 6524758394887408 a001 165580141/4106118243*3571^(1/17) 6524758394887409 a001 63245986/1568397607*3571^(1/17) 6524758394887410 a001 24157817/599074578*3571^(1/17) 6524758394887423 a001 9227465/228826127*3571^(1/17) 6524758394887512 a001 3524578/87403803*3571^(1/17) 6524758394888122 a001 1346269/33385282*3571^(1/17) 6524758394892303 a001 514229/12752043*3571^(1/17) 6524758394920958 a001 196418/4870847*3571^(1/17) 6524758394949144 a001 6765/439204*24476^(1/7) 6524758394951289 a001 2255/1368706081*64079^(22/23) 6524758395020377 a001 615/230701876*64079^(21/23) 6524758395089465 a001 6765/1568397607*64079^(20/23) 6524758395117360 a001 75025/1860498*3571^(1/17) 6524758395142437 a001 28657/20633239*9349^(8/19) 6524758395158554 a001 6765/969323029*64079^(19/23) 6524758395227642 a001 2255/199691526*64079^(18/23) 6524758395296731 a001 6765/370248451*64079^(17/23) 6524758395345404 a001 2255/90481*24476^(2/21) 6524758395365819 a001 6765/228826127*64079^(16/23) 6524758395434908 a001 6765/141422324*64079^(15/23) 6524758395503995 a001 2255/29134601*64079^(14/23) 6524758395573087 a001 6765/54018521*64079^(13/23) 6524758395642167 a001 6765/33385282*64079^(12/23) 6524758395711276 a001 615/1875749*64079^(11/23) 6524758395780309 a001 2255/4250681*64079^(10/23) 6524758395849543 a001 6765/7881196*64079^(9/23) 6524758395864277 a001 6765/103682 6524758395864277 a004 Fibonacci(24)/Lucas(20)/(1/2+sqrt(5)/2)^8 6524758395918251 a001 6765/4870847*64079^(8/23) 6524758395988335 a001 6765/3010349*64079^(7/23) 6524758396054818 a001 55/15126*64079^(6/23) 6524758396130726 a001 6765/1149851*64079^(5/23) 6524758396181960 a001 6765/710647*64079^(4/23) 6524758396184432 a001 615/15251*24476^(1/21) 6524758396239397 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^49 6524758396244503 a001 2255/90481*64079^(2/23) 6524758396285764 a001 6765/1568397607*167761^(4/5) 6524758396297793 a001 6765/439204*64079^(3/23) 6524758396332132 a001 6765/141422324*167761^(3/5) 6524758396378459 a001 2255/4250681*167761^(2/5) 6524758396382680 a001 2255/90481*(1/2+1/2*5^(1/2))^2 6524758396382680 a001 2255/90481*10749957122^(1/24) 6524758396382680 a001 14931339/228841255 6524758396382680 a001 2255/90481*4106118243^(1/23) 6524758396382680 a001 2255/90481*1568397607^(1/22) 6524758396382680 a001 2255/90481*599074578^(1/21) 6524758396382680 a001 2255/90481*228826127^(1/20) 6524758396382680 a001 2255/90481*87403803^(1/19) 6524758396382680 a004 Fibonacci(26)/Lucas(20)/(1/2+sqrt(5)/2)^10 6524758396382680 a001 2255/90481*33385282^(1/18) 6524758396382682 a001 2255/90481*12752043^(1/17) 6524758396382697 a001 2255/90481*4870847^(1/16) 6524758396382805 a001 2255/90481*1860498^(1/15) 6524758396383603 a001 2255/90481*710647^(1/14) 6524758396384275 a001 1292/51841*2207^(1/8) 6524758396389492 a001 2255/90481*271443^(1/13) 6524758396429801 a001 6765/1149851*167761^(1/5) 6524758396433259 a001 2255/90481*103682^(1/12) 6524758396437409 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^51 6524758396441167 a001 6765/10749957122*439204^(8/9) 6524758396444926 a001 615/230701876*439204^(7/9) 6524758396448684 a001 2255/199691526*439204^(2/3) 6524758396452442 a001 6765/141422324*439204^(5/9) 6524758396456195 a001 6765/33385282*439204^(4/9) 6524758396458314 a001 6765/710647*(1/2+1/2*5^(1/2))^4 6524758396458314 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^4/Lucas(28) 6524758396458314 a001 6765/710647*23725150497407^(1/16) 6524758396458314 a001 6765/710647*73681302247^(1/13) 6524758396458314 a001 716663805/10983760033 6524758396458314 a001 6765/710647*10749957122^(1/12) 6524758396458314 a001 6765/710647*4106118243^(2/23) 6524758396458314 a001 6765/710647*1568397607^(1/11) 6524758396458314 a001 6765/710647*599074578^(2/21) 6524758396458314 a001 6765/710647*228826127^(1/10) 6524758396458314 a001 6765/710647*87403803^(2/19) 6524758396458314 a004 Fibonacci(28)/Lucas(20)/(1/2+sqrt(5)/2)^12 6524758396458314 a001 6765/710647*33385282^(1/9) 6524758396458318 a001 6765/710647*12752043^(2/17) 6524758396458348 a001 6765/710647*4870847^(1/8) 6524758396458565 a001 6765/710647*1860498^(2/15) 6524758396460064 a001 6765/7881196*439204^(1/3) 6524758396460159 a001 6765/710647*710647^(1/7) 6524758396461832 a001 55/15126*439204^(2/9) 6524758396463522 a001 28657/710647*3571^(1/17) 6524758396466299 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^53 6524758396469329 a001 55/15126*7881196^(2/11) 6524758396469348 a001 55/15126*141422324^(2/13) 6524758396469349 a001 55/15126*2537720636^(2/15) 6524758396469349 a001 55/15126*45537549124^(2/17) 6524758396469349 a001 55/15126*14662949395604^(2/21) 6524758396469349 a001 55/15126*(1/2+1/2*5^(1/2))^6 6524758396469349 a001 703593825/10783446409 6524758396469349 a001 55/15126*10749957122^(1/8) 6524758396469349 a001 55/15126*4106118243^(3/23) 6524758396469349 a001 55/15126*1568397607^(3/22) 6524758396469349 a001 55/15126*599074578^(1/7) 6524758396469349 a001 55/15126*228826127^(3/20) 6524758396469349 a004 Fibonacci(30)/Lucas(20)/(1/2+sqrt(5)/2)^14 6524758396469349 a001 55/15126*87403803^(3/19) 6524758396469349 a001 55/15126*33385282^(1/6) 6524758396469356 a001 55/15126*12752043^(3/17) 6524758396469400 a001 55/15126*4870847^(3/16) 6524758396469726 a001 55/15126*1860498^(1/5) 6524758396470514 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^55 6524758396470958 a001 6765/4870847*(1/2+1/2*5^(1/2))^8 6524758396470958 a001 6765/4870847*23725150497407^(1/8) 6524758396470958 a001 6765/4870847*505019158607^(1/7) 6524758396470958 a001 701726685/10754830177 6524758396470958 a001 6765/4870847*73681302247^(2/13) 6524758396470958 a001 6765/4870847*10749957122^(1/6) 6524758396470958 a001 6765/4870847*4106118243^(4/23) 6524758396470958 a001 6765/4870847*1568397607^(2/11) 6524758396470958 a001 6765/4870847*599074578^(4/21) 6524758396470959 a001 6765/4870847*228826127^(1/5) 6524758396470959 a004 Fibonacci(32)/Lucas(20)/(1/2+sqrt(5)/2)^16 6524758396470959 a001 6765/4870847*87403803^(4/19) 6524758396470960 a001 6765/4870847*33385282^(2/9) 6524758396470968 a001 6765/4870847*12752043^(4/17) 6524758396471027 a001 6765/4870847*4870847^(1/4) 6524758396471128 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^57 6524758396471138 a001 2255/64300051206*7881196^(10/11) 6524758396471148 a001 6765/45537549124*7881196^(9/11) 6524758396471157 a001 6765/10749957122*7881196^(8/11) 6524758396471163 a001 2255/1368706081*7881196^(2/3) 6524758396471167 a001 615/230701876*7881196^(7/11) 6524758396471176 a001 2255/199691526*7881196^(6/11) 6524758396471186 a001 6765/141422324*7881196^(5/11) 6524758396471189 a001 2255/4250681*20633239^(2/7) 6524758396471189 a001 6765/33385282*7881196^(4/11) 6524758396471193 a001 2255/4250681*2537720636^(2/9) 6524758396471193 a001 2255/4250681*312119004989^(2/11) 6524758396471193 a001 2255/4250681*(1/2+1/2*5^(1/2))^10 6524758396471193 a001 38580030555/591286729879 6524758396471193 a001 2255/4250681*28143753123^(1/5) 6524758396471193 a001 2255/4250681*10749957122^(5/24) 6524758396471193 a001 2255/4250681*4106118243^(5/23) 6524758396471193 a001 2255/4250681*1568397607^(5/22) 6524758396471193 a001 2255/4250681*599074578^(5/21) 6524758396471193 a001 2255/4250681*228826127^(1/4) 6524758396471194 a004 Fibonacci(34)/Lucas(20)/(1/2+sqrt(5)/2)^18 6524758396471194 a001 2255/4250681*87403803^(5/19) 6524758396471195 a001 2255/4250681*33385282^(5/18) 6524758396471205 a001 2255/4250681*12752043^(5/17) 6524758396471214 a001 615/1875749*7881196^(1/3) 6524758396471218 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^59 6524758396471220 a001 2255/64300051206*20633239^(6/7) 6524758396471221 a001 6765/73681302247*20633239^(4/5) 6524758396471223 a001 6765/17393796001*20633239^(5/7) 6524758396471224 a001 615/230701876*20633239^(3/5) 6524758396471225 a001 6765/1568397607*20633239^(4/7) 6524758396471227 a001 2255/29134601*20633239^(2/5) 6524758396471227 a001 6765/141422324*20633239^(3/7) 6524758396471228 a001 6765/33385282*141422324^(4/13) 6524758396471228 a001 6765/33385282*2537720636^(4/15) 6524758396471228 a001 6765/33385282*45537549124^(4/17) 6524758396471228 a001 6765/33385282*14662949395604^(4/21) 6524758396471228 a001 6765/33385282*(1/2+1/2*5^(1/2))^12 6524758396471228 a001 311049/4767211 6524758396471228 a001 6765/33385282*192900153618^(2/9) 6524758396471228 a001 6765/33385282*73681302247^(3/13) 6524758396471228 a001 6765/33385282*10749957122^(1/4) 6524758396471228 a001 6765/33385282*4106118243^(6/23) 6524758396471228 a001 6765/33385282*1568397607^(3/11) 6524758396471228 a001 6765/33385282*599074578^(2/7) 6524758396471228 a001 6765/33385282*228826127^(3/10) 6524758396471228 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2)^20 6524758396471228 a001 6765/33385282*87403803^(6/19) 6524758396471230 a001 6765/33385282*33385282^(1/3) 6524758396471231 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^61 6524758396471233 a001 2255/29134601*17393796001^(2/7) 6524758396471233 a001 2255/29134601*14662949395604^(2/9) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^14/Lucas(38) 6524758396471233 a001 2255/29134601*505019158607^(1/4) 6524758396471233 a001 2255/29134601*10749957122^(7/24) 6524758396471233 a001 2255/29134601*4106118243^(7/23) 6524758396471233 a001 2255/29134601*1568397607^(7/22) 6524758396471233 a001 2255/29134601*599074578^(1/3) 6524758396471233 a001 2255/29134601*228826127^(7/20) 6524758396471233 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^22 6524758396471233 a001 2255/29134601*87403803^(7/19) 6524758396471233 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^63 6524758396471233 a001 6765/3461452808002*141422324^(12/13) 6524758396471233 a001 6765/817138163596*141422324^(11/13) 6524758396471233 a001 2255/64300051206*141422324^(10/13) 6524758396471233 a001 6765/45537549124*141422324^(9/13) 6524758396471233 a001 55/228811001*141422324^(2/3) 6524758396471233 a001 6765/10749957122*141422324^(8/13) 6524758396471233 a001 615/230701876*141422324^(7/13) 6524758396471233 a001 2255/199691526*141422324^(6/13) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^16/Lucas(40) 6524758396471233 a001 6765/228826127*23725150497407^(1/4) 6524758396471233 a001 32966217075/505248088463 6524758396471233 a001 6765/228826127*73681302247^(4/13) 6524758396471233 a001 6765/228826127*10749957122^(1/3) 6524758396471233 a001 6765/228826127*4106118243^(8/23) 6524758396471233 a001 6765/228826127*1568397607^(4/11) 6524758396471233 a001 6765/228826127*599074578^(8/21) 6524758396471233 a001 6765/228826127*228826127^(2/5) 6524758396471233 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^65 6524758396471233 a001 2255/199691526*2537720636^(2/5) 6524758396471233 a001 2255/199691526*45537549124^(6/17) 6524758396471233 a001 2255/199691526*14662949395604^(2/7) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^18/Lucas(42) 6524758396471233 a001 2255/199691526*192900153618^(1/3) 6524758396471233 a001 2255/199691526*10749957122^(3/8) 6524758396471233 a001 2255/199691526*4106118243^(9/23) 6524758396471233 a001 2255/199691526*1568397607^(9/22) 6524758396471233 a001 2255/199691526*599074578^(3/7) 6524758396471233 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^67 6524758396471233 a001 6765/1568397607*2537720636^(4/9) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^20/Lucas(44) 6524758396471233 a001 6765/1568397607*23725150497407^(5/16) 6524758396471233 a001 6765/1568397607*505019158607^(5/14) 6524758396471233 a001 6765/1568397607*73681302247^(5/13) 6524758396471233 a001 6765/1568397607*28143753123^(2/5) 6524758396471233 a001 6765/1568397607*10749957122^(5/12) 6524758396471233 a001 6765/1568397607*4106118243^(10/23) 6524758396471233 a001 6765/1568397607*1568397607^(5/11) 6524758396471233 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^69 6524758396471233 a001 6765/23725150497407*2537720636^(8/9) 6524758396471233 a001 6765/14662949395604*2537720636^(13/15) 6524758396471233 a001 6765/3461452808002*2537720636^(4/5) 6524758396471233 a001 6765/2139295485799*2537720636^(7/9) 6524758396471233 a001 6765/817138163596*2537720636^(11/15) 6524758396471233 a001 2255/64300051206*2537720636^(2/3) 6524758396471233 a001 6765/45537549124*2537720636^(3/5) 6524758396471233 a001 6765/10749957122*2537720636^(8/15) 6524758396471233 a001 6765/17393796001*2537720636^(5/9) 6524758396471233 a001 2255/1368706081*312119004989^(2/5) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^22/Lucas(46) 6524758396471233 a001 2255/1368706081*10749957122^(11/24) 6524758396471233 a001 2255/1368706081*4106118243^(11/23) 6524758396471233 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^71 6524758396471233 a001 6765/10749957122*45537549124^(8/17) 6524758396471233 a001 6765/10749957122*14662949395604^(8/21) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^24/Lucas(48) 6524758396471233 a001 6765/10749957122*192900153618^(4/9) 6524758396471233 a001 6765/10749957122*73681302247^(6/13) 6524758396471233 a001 6765/10749957122*10749957122^(1/2) 6524758396471233 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^73 6524758396471233 a001 6765/2139295485799*17393796001^(5/7) 6524758396471233 a001 6765/73681302247*17393796001^(4/7) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^26/Lucas(50) 6524758396471233 a001 55/228811001*73681302247^(1/2) 6524758396471233 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^75 6524758396471233 a001 6765/14662949395604*45537549124^(13/17) 6524758396471233 a001 6765/3461452808002*45537549124^(12/17) 6524758396471233 a001 2255/440719107401*45537549124^(2/3) 6524758396471233 a001 2255/64300051206*45537549124^(10/17) 6524758396471233 a001 6765/73681302247*14662949395604^(4/9) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^28/Lucas(52) 6524758396471233 a001 6765/73681302247*505019158607^(1/2) 6524758396471233 a001 6765/73681302247*73681302247^(7/13) 6524758396471233 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^77 6524758396471233 a001 2255/64300051206*312119004989^(6/11) 6524758396471233 a001 2255/64300051206*14662949395604^(10/21) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^30/Lucas(54) 6524758396471233 a001 2255/64300051206*192900153618^(5/9) 6524758396471233 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^79 6524758396471233 a001 6765/2139295485799*312119004989^(7/11) 6524758396471233 a001 6765/817138163596*312119004989^(3/5) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(56) 6524758396471233 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^81 6524758396471233 a001 2255/3020733700601*817138163596^(2/3) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(58) 6524758396471233 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^83 6524758396471233 a001 6765/3461452808002*14662949395604^(4/7) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(60) 6524758396471233 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^85 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(62) 6524758396471233 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^87 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(64) 6524758396471233 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^89 6524758396471233 a001 6765/23725150497407*23725150497407^(5/8) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(66) 6524758396471233 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^91 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(68) 6524758396471233 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^93 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(70) 6524758396471233 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^95 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(72) 6524758396471233 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^97 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(74) 6524758396471233 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^99 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(76) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(78) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(80) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(82) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(84) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(86) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(88) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(90) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(92) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(94) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(96) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(98) 6524758396471233 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^24 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(99) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(100) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(97) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(95) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(93) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(91) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(89) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(87) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(85) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(83) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(81) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(79) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(77) 6524758396471233 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^100 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(75) 6524758396471233 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^98 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(73) 6524758396471233 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^96 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(71) 6524758396471233 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^94 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(69) 6524758396471233 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^92 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(67) 6524758396471233 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^90 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(65) 6524758396471233 a001 6765/14662949395604*14662949395604^(13/21) 6524758396471233 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^88 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(63) 6524758396471233 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^86 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(61) 6524758396471233 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^84 6524758396471233 a001 6765/2139295485799*14662949395604^(5/9) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(59) 6524758396471233 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^82 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(57) 6524758396471233 a001 6765/2139295485799*505019158607^(5/8) 6524758396471233 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^80 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^31/Lucas(55) 6524758396471233 a001 615/28374454999*9062201101803^(1/2) 6524758396471233 a001 6765/14662949395604*192900153618^(13/18) 6524758396471233 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^78 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^29/Lucas(53) 6524758396471233 a001 6765/119218851371*1322157322203^(1/2) 6524758396471233 a001 6765/505019158607*73681302247^(8/13) 6524758396471233 a001 6765/3461452808002*73681302247^(9/13) 6524758396471233 a001 6765/14662949395604*73681302247^(3/4) 6524758396471233 a001 6765/23725150497407*73681302247^(10/13) 6524758396471233 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^76 6524758396471233 a001 6765/45537549124*45537549124^(9/17) 6524758396471233 a001 6765/45537549124*817138163596^(9/19) 6524758396471233 a001 6765/45537549124*14662949395604^(3/7) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^27/Lucas(51) 6524758396471233 a001 6765/45537549124*192900153618^(1/2) 6524758396471233 a001 2255/64300051206*28143753123^(3/5) 6524758396471233 a001 6765/2139295485799*28143753123^(7/10) 6524758396471233 a001 6765/23725150497407*28143753123^(4/5) 6524758396471233 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^74 6524758396471233 a001 6765/17393796001*312119004989^(5/11) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^25/Lucas(49) 6524758396471233 a001 6765/17393796001*3461452808002^(5/12) 6524758396471233 a001 55/228811001*10749957122^(13/24) 6524758396471233 a001 6765/17393796001*28143753123^(1/2) 6524758396471233 a001 6765/73681302247*10749957122^(7/12) 6524758396471233 a001 6765/45537549124*10749957122^(9/16) 6524758396471233 a001 2255/64300051206*10749957122^(5/8) 6524758396471233 a001 6765/505019158607*10749957122^(2/3) 6524758396471233 a001 6765/817138163596*10749957122^(11/16) 6524758396471233 a001 2255/440719107401*10749957122^(17/24) 6524758396471233 a001 6765/3461452808002*10749957122^(3/4) 6524758396471233 a001 2255/3020733700601*10749957122^(19/24) 6524758396471233 a001 6765/14662949395604*10749957122^(13/16) 6524758396471233 a001 6765/23725150497407*10749957122^(5/6) 6524758396471233 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^72 6524758396471233 a001 6765/10749957122*4106118243^(12/23) 6524758396471233 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^23/Lucas(47) 6524758396471233 a001 55/228811001*4106118243^(13/23) 6524758396471234 a001 6765/73681302247*4106118243^(14/23) 6524758396471234 a001 2255/64300051206*4106118243^(15/23) 6524758396471234 a001 6765/505019158607*4106118243^(16/23) 6524758396471234 a001 2255/440719107401*4106118243^(17/23) 6524758396471234 a001 6765/3461452808002*4106118243^(18/23) 6524758396471234 a001 2255/3020733700601*4106118243^(19/23) 6524758396471234 a001 6765/23725150497407*4106118243^(20/23) 6524758396471234 a001 6765/6643838879*4106118243^(1/2) 6524758396471234 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^70 6524758396471234 a001 615/230701876*2537720636^(7/15) 6524758396471234 a001 2255/1368706081*1568397607^(1/2) 6524758396471234 a001 615/230701876*17393796001^(3/7) 6524758396471234 a001 615/230701876*45537549124^(7/17) 6524758396471234 a001 615/230701876*14662949395604^(1/3) 6524758396471234 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^21/Lucas(45) 6524758396471234 a001 615/230701876*192900153618^(7/18) 6524758396471234 a001 615/230701876*10749957122^(7/16) 6524758396471234 a001 6765/10749957122*1568397607^(6/11) 6524758396471234 a001 55/228811001*1568397607^(13/22) 6524758396471234 a001 6765/73681302247*1568397607^(7/11) 6524758396471234 a001 2255/64300051206*1568397607^(15/22) 6524758396471234 a001 6765/505019158607*1568397607^(8/11) 6524758396471234 a001 6765/817138163596*1568397607^(3/4) 6524758396471234 a001 2255/440719107401*1568397607^(17/22) 6524758396471234 a001 6765/3461452808002*1568397607^(9/11) 6524758396471234 a001 2255/3020733700601*1568397607^(19/22) 6524758396471234 a001 6765/23725150497407*1568397607^(10/11) 6524758396471234 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^68 6524758396471234 a001 6765/1568397607*599074578^(10/21) 6524758396471234 a001 6765/969323029*817138163596^(1/3) 6524758396471234 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^19/Lucas(43) 6524758396471234 a001 2255/1368706081*599074578^(11/21) 6524758396471234 a001 615/230701876*599074578^(1/2) 6524758396471234 a001 6765/10749957122*599074578^(4/7) 6524758396471234 a001 55/228811001*599074578^(13/21) 6524758396471234 a001 6765/45537549124*599074578^(9/14) 6524758396471234 a001 6765/73681302247*599074578^(2/3) 6524758396471234 a001 2255/64300051206*599074578^(5/7) 6524758396471234 a001 6765/505019158607*599074578^(16/21) 6524758396471234 a001 6765/817138163596*599074578^(11/14) 6524758396471234 a001 2255/440719107401*599074578^(17/21) 6524758396471234 a001 6765/2139295485799*599074578^(5/6) 6524758396471234 a001 6765/3461452808002*599074578^(6/7) 6524758396471234 a001 2255/3020733700601*599074578^(19/21) 6524758396471234 a001 6765/14662949395604*599074578^(13/14) 6524758396471234 a001 6765/23725150497407*599074578^(20/21) 6524758396471234 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^66 6524758396471234 a001 2255/199691526*228826127^(9/20) 6524758396471234 a001 6765/370248451*45537549124^(1/3) 6524758396471234 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^17/Lucas(41) 6524758396471234 a001 6765/1568397607*228826127^(1/2) 6524758396471234 a001 2255/1368706081*228826127^(11/20) 6524758396471234 a001 6765/10749957122*228826127^(3/5) 6524758396471234 a001 6765/17393796001*228826127^(5/8) 6524758396471234 a001 55/228811001*228826127^(13/20) 6524758396471234 a001 6765/73681302247*228826127^(7/10) 6524758396471234 a001 2255/64300051206*228826127^(3/4) 6524758396471234 a001 6765/505019158607*228826127^(4/5) 6524758396471234 a001 2255/440719107401*228826127^(17/20) 6524758396471234 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^26 6524758396471234 a001 6765/2139295485799*228826127^(7/8) 6524758396471234 a001 6765/3461452808002*228826127^(9/10) 6524758396471234 a001 2255/3020733700601*228826127^(19/20) 6524758396471234 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^28 6524758396471234 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^30 6524758396471234 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^32 6524758396471234 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^34 6524758396471234 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^36 6524758396471234 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^38 6524758396471234 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^40 6524758396471234 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^42 6524758396471234 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^44 6524758396471234 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^46 6524758396471234 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^48 6524758396471234 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^50 6524758396471234 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^52 6524758396471234 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^54 6524758396471234 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^56 6524758396471234 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^58 6524758396471234 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^60 6524758396471234 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^62 6524758396471234 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^64 6524758396471234 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^66 6524758396471234 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^68 6524758396471234 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^70 6524758396471234 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^72 6524758396471234 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^74 6524758396471234 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^76 6524758396471234 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^78 6524758396471234 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^80 6524758396471234 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^82 6524758396471234 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^84 6524758396471234 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^83 6524758396471234 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^81 6524758396471234 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^79 6524758396471234 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^77 6524758396471234 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^75 6524758396471234 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^73 6524758396471234 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^71 6524758396471234 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^69 6524758396471234 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^67 6524758396471234 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^65 6524758396471234 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^63 6524758396471234 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^61 6524758396471234 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^59 6524758396471234 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^57 6524758396471234 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^55 6524758396471234 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^53 6524758396471234 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^51 6524758396471234 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^49 6524758396471234 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^47 6524758396471234 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^45 6524758396471234 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^43 6524758396471234 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^41 6524758396471234 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^39 6524758396471234 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^37 6524758396471234 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^35 6524758396471234 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^33 6524758396471234 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^31 6524758396471234 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^29 6524758396471234 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^27 6524758396471234 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^25 6524758396471234 a001 6765/141422324*141422324^(5/13) 6524758396471234 a001 6765/228826127*87403803^(8/19) 6524758396471234 a001 6765/141422324*2537720636^(1/3) 6524758396471234 a001 6765/141422324*45537549124^(5/17) 6524758396471234 a001 6765/141422324*312119004989^(3/11) 6524758396471234 a001 213929547645/3278735159921 6524758396471234 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^15/Lucas(39) 6524758396471234 a001 6765/141422324*192900153618^(5/18) 6524758396471234 a001 6765/141422324*28143753123^(3/10) 6524758396471234 a001 6765/141422324*10749957122^(5/16) 6524758396471234 a001 6765/141422324*599074578^(5/14) 6524758396471234 a001 6765/141422324*228826127^(3/8) 6524758396471234 a001 2255/199691526*87403803^(9/19) 6524758396471234 a001 6765/969323029*87403803^(1/2) 6524758396471234 a001 6765/1568397607*87403803^(10/19) 6524758396471234 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^23 6524758396471234 a001 2255/1368706081*87403803^(11/19) 6524758396471234 a001 6765/10749957122*87403803^(12/19) 6524758396471234 a001 55/228811001*87403803^(13/19) 6524758396471234 a001 6765/73681302247*87403803^(14/19) 6524758396471234 a001 2255/64300051206*87403803^(15/19) 6524758396471234 a001 6765/505019158607*87403803^(16/19) 6524758396471234 a001 2255/440719107401*87403803^(17/19) 6524758396471234 a001 6765/3461452808002*87403803^(18/19) 6524758396471234 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^62 6524758396471235 a001 2255/29134601*33385282^(7/18) 6524758396471236 a001 6765/54018521*141422324^(1/3) 6524758396471236 a001 163427632005/2504730781961 6524758396471236 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^13/Lucas(37) 6524758396471236 a001 6765/54018521*73681302247^(1/4) 6524758396471236 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^21 6524758396471236 a001 6765/228826127*33385282^(4/9) 6524758396471236 a001 6765/141422324*33385282^(5/12) 6524758396471236 a001 2255/199691526*33385282^(1/2) 6524758396471237 a001 6765/1568397607*33385282^(5/9) 6524758396471237 a001 615/230701876*33385282^(7/12) 6524758396471237 a001 2255/1368706081*33385282^(11/18) 6524758396471237 a001 6765/10749957122*33385282^(2/3) 6524758396471238 a001 55/228811001*33385282^(13/18) 6524758396471238 a001 6765/45537549124*33385282^(3/4) 6524758396471238 a001 6765/73681302247*33385282^(7/9) 6524758396471238 a001 2255/64300051206*33385282^(5/6) 6524758396471239 a001 6765/505019158607*33385282^(8/9) 6524758396471239 a001 6765/817138163596*33385282^(11/12) 6524758396471239 a001 2255/440719107401*33385282^(17/18) 6524758396471239 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^60 6524758396471242 a001 6765/33385282*12752043^(6/17) 6524758396471249 a001 615/1875749*312119004989^(1/5) 6524758396471249 a001 62423800725/956722026041 6524758396471249 a001 615/1875749*(1/2+1/2*5^(1/2))^11 6524758396471249 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^11/Lucas(35) 6524758396471249 a001 615/1875749*1568397607^(1/4) 6524758396471249 a004 Fibonacci(35)/Lucas(20)/(1/2+sqrt(5)/2)^19 6524758396471249 a001 2255/29134601*12752043^(7/17) 6524758396471252 a001 6765/228826127*12752043^(8/17) 6524758396471254 a001 6765/370248451*12752043^(1/2) 6524758396471255 a001 2255/199691526*12752043^(9/17) 6524758396471257 a001 6765/1568397607*12752043^(10/17) 6524758396471259 a001 2255/1368706081*12752043^(11/17) 6524758396471262 a001 6765/10749957122*12752043^(12/17) 6524758396471264 a001 55/228811001*12752043^(13/17) 6524758396471267 a001 6765/73681302247*12752043^(14/17) 6524758396471269 a001 2255/64300051206*12752043^(15/17) 6524758396471271 a001 6765/505019158607*12752043^(16/17) 6524758396471274 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^58 6524758396471279 a001 2255/4250681*4870847^(5/16) 6524758396471310 a001 6765/7881196*7881196^(3/11) 6524758396471331 a001 6765/33385282*4870847^(3/8) 6524758396471338 a001 6765/7881196*141422324^(3/13) 6524758396471339 a001 6765/7881196*2537720636^(1/5) 6524758396471339 a001 6765/7881196*45537549124^(3/17) 6524758396471339 a001 11921885085/182717648081 6524758396471339 a001 6765/7881196*817138163596^(3/19) 6524758396471339 a001 6765/7881196*14662949395604^(1/7) 6524758396471339 a001 6765/7881196*(1/2+1/2*5^(1/2))^9 6524758396471339 a001 6765/7881196*192900153618^(1/6) 6524758396471339 a001 6765/7881196*10749957122^(3/16) 6524758396471339 a001 6765/7881196*599074578^(3/14) 6524758396471339 a004 Fibonacci(33)/Lucas(20)/(1/2+sqrt(5)/2)^17 6524758396471340 a001 6765/7881196*33385282^(1/4) 6524758396471353 a001 2255/29134601*4870847^(7/16) 6524758396471371 a001 6765/228826127*4870847^(1/2) 6524758396471388 a001 2255/199691526*4870847^(9/16) 6524758396471405 a001 6765/1568397607*4870847^(5/8) 6524758396471423 a001 2255/1368706081*4870847^(11/16) 6524758396471440 a001 6765/10749957122*4870847^(3/4) 6524758396471457 a001 55/228811001*4870847^(13/16) 6524758396471461 a001 6765/4870847*1860498^(4/15) 6524758396471474 a001 6765/73681302247*4870847^(7/8) 6524758396471491 a001 2255/64300051206*4870847^(15/16) 6524758396471509 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^56 6524758396471822 a001 2255/4250681*1860498^(1/3) 6524758396471904 a001 6765/7881196*1860498^(3/10) 6524758396471937 a001 6765/710647*271443^(2/13) 6524758396471950 a001 6765/3010349*20633239^(1/5) 6524758396471953 a001 6765/3010349*17393796001^(1/7) 6524758396471953 a001 1821501957/27916772489 6524758396471953 a001 6765/3010349*14662949395604^(1/9) 6524758396471953 a001 6765/3010349*(1/2+1/2*5^(1/2))^7 6524758396471953 a001 6765/3010349*599074578^(1/6) 6524758396471954 a004 Fibonacci(31)/Lucas(20)/(1/2+sqrt(5)/2)^15 6524758396471982 a001 6765/33385282*1860498^(2/5) 6524758396472112 a001 2255/29134601*1860498^(7/15) 6524758396472117 a001 55/15126*710647^(3/14) 6524758396472176 a001 6765/141422324*1860498^(1/2) 6524758396472239 a001 6765/228826127*1860498^(8/15) 6524758396472364 a001 2255/199691526*1860498^(3/5) 6524758396472490 a001 6765/1568397607*1860498^(2/3) 6524758396472553 a001 615/230701876*1860498^(7/10) 6524758396472616 a001 2255/1368706081*1860498^(11/15) 6524758396472741 a001 6765/10749957122*1860498^(4/5) 6524758396472804 a001 6765/17393796001*1860498^(5/6) 6524758396472867 a001 55/228811001*1860498^(13/15) 6524758396472930 a001 6765/45537549124*1860498^(9/10) 6524758396472993 a001 6765/73681302247*1860498^(14/15) 6524758396473118 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^54 6524758396474650 a001 6765/4870847*710647^(2/7) 6524758396475183 a001 6765/3010349*710647^(1/4) 6524758396475808 a001 2255/4250681*710647^(5/14) 6524758396476166 a001 6765/1149851*20633239^(1/7) 6524758396476168 a001 6765/1149851*2537720636^(1/9) 6524758396476168 a001 3478759185/53316291173 6524758396476168 a001 6765/1149851*312119004989^(1/11) 6524758396476168 a001 6765/1149851*(1/2+1/2*5^(1/2))^5 6524758396476168 a001 6765/1149851*28143753123^(1/10) 6524758396476168 a001 6765/1149851*228826127^(1/8) 6524758396476169 a004 Fibonacci(29)/Lucas(20)/(1/2+sqrt(5)/2)^13 6524758396476483 a001 6765/1149851*1860498^(1/6) 6524758396476765 a001 6765/33385282*710647^(3/7) 6524758396477693 a001 2255/29134601*710647^(1/2) 6524758396478616 a001 6765/228826127*710647^(4/7) 6524758396479539 a001 2255/199691526*710647^(9/14) 6524758396480462 a001 6765/1568397607*710647^(5/7) 6524758396480923 a001 615/230701876*710647^(3/4) 6524758396481385 a001 2255/1368706081*710647^(11/14) 6524758396482308 a001 6765/10749957122*710647^(6/7) 6524758396483230 a001 55/228811001*710647^(13/14) 6524758396484153 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^52 6524758396489784 a001 55/15126*271443^(3/13) 6524758396498206 a001 6765/4870847*271443^(4/13) 6524758396501300 a001 6765/439204*439204^(1/9) 6524758396505048 a001 6765/439204*7881196^(1/11) 6524758396505058 a001 6765/439204*141422324^(1/13) 6524758396505058 a001 6765/439204*2537720636^(1/15) 6524758396505058 a001 664383885/10182505537 6524758396505058 a001 6765/439204*45537549124^(1/17) 6524758396505058 a001 6765/439204*14662949395604^(1/21) 6524758396505058 a001 6765/439204*(1/2+1/2*5^(1/2))^3 6524758396505058 a001 6765/439204*192900153618^(1/18) 6524758396505058 a001 6765/439204*10749957122^(1/16) 6524758396505058 a001 6765/439204*599074578^(1/14) 6524758396505058 a004 Fibonacci(27)/Lucas(20)/(1/2+sqrt(5)/2)^11 6524758396505059 a001 6765/439204*33385282^(1/12) 6524758396505247 a001 6765/439204*1860498^(1/10) 6524758396505253 a001 2255/4250681*271443^(5/13) 6524758396512099 a001 6765/33385282*271443^(6/13) 6524758396515513 a001 6765/54018521*271443^(1/2) 6524758396518915 a001 2255/29134601*271443^(7/13) 6524758396525728 a001 6765/228826127*271443^(8/13) 6524758396532540 a001 2255/199691526*271443^(9/13) 6524758396539352 a001 6765/1568397607*271443^(10/13) 6524758396546164 a001 2255/1368706081*271443^(11/13) 6524758396552975 a001 6765/10749957122*271443^(12/13) 6524758396559473 a001 6765/710647*103682^(1/6) 6524758396559787 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^50 6524758396580928 a001 6765/439204*103682^(1/8) 6524758396586827 a001 10946/20633239*9349^(10/19) 6524758396602618 a001 6765/1149851*103682^(5/24) 6524758396621088 a001 55/15126*103682^(1/4) 6524758396633982 a001 615/15251*64079^(1/23) 6524758396648983 a001 6765/3010349*103682^(7/24) 6524758396673277 a001 6765/4870847*103682^(1/3) 6524758396698947 a001 6765/7881196*103682^(3/8) 6524758396703070 a001 507544125/7778742049 6524758396703070 a001 615/30502+615/30502*5^(1/2) 6524758396703070 a004 Fibonacci(25)/Lucas(20)/(1/2+sqrt(5)/2)^9 6524758396724092 a001 2255/4250681*103682^(5/12) 6524758396728360 a001 615/15251*103682^(1/24) 6524758396749437 a001 615/1875749*103682^(11/24) 6524758396760875 a001 2255/90481*39603^(1/11) 6524758396774706 a001 6765/33385282*103682^(1/2) 6524758396800004 a001 6765/54018521*103682^(13/24) 6524758396825291 a001 2255/29134601*103682^(7/12) 6524758396850582 a001 6765/141422324*103682^(5/8) 6524758396875433 a001 46368/20633239*9349^(7/19) 6524758396875871 a001 6765/228826127*103682^(2/3) 6524758396892168 a001 615/15251*39603^(1/22) 6524758396901161 a001 6765/370248451*103682^(17/24) 6524758396926451 a001 2255/199691526*103682^(3/4) 6524758396951741 a001 6765/969323029*103682^(19/24) 6524758396977031 a001 6765/1568397607*103682^(5/6) 6524758397002321 a001 615/230701876*103682^(7/8) 6524758397027610 a001 2255/1368706081*103682^(11/12) 6524758397052900 a001 6765/6643838879*103682^(23/24) 6524758397072350 a001 6765/439204*39603^(3/22) 6524758397078190 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^48 6524758397214703 a001 6765/710647*39603^(2/11) 6524758397250943 a001 17711/4870847*9349^(6/19) 6524758397393823 a001 121393/54018521*9349^(7/19) 6524758397421655 a001 6765/1149851*39603^(5/22) 6524758397469455 a001 317811/141422324*9349^(7/19) 6524758397480490 a001 832040/370248451*9349^(7/19) 6524758397482100 a001 2178309/969323029*9349^(7/19) 6524758397482334 a001 5702887/2537720636*9349^(7/19) 6524758397482369 a001 14930352/6643838879*9349^(7/19) 6524758397482374 a001 39088169/17393796001*9349^(7/19) 6524758397482374 a001 102334155/45537549124*9349^(7/19) 6524758397482375 a001 267914296/119218851371*9349^(7/19) 6524758397482375 a001 3524667/1568437211*9349^(7/19) 6524758397482375 a001 1836311903/817138163596*9349^(7/19) 6524758397482375 a001 4807526976/2139295485799*9349^(7/19) 6524758397482375 a001 12586269025/5600748293801*9349^(7/19) 6524758397482375 a001 32951280099/14662949395604*9349^(7/19) 6524758397482375 a001 53316291173/23725150497407*9349^(7/19) 6524758397482375 a001 20365011074/9062201101803*9349^(7/19) 6524758397482375 a001 7778742049/3461452808002*9349^(7/19) 6524758397482375 a001 2971215073/1322157322203*9349^(7/19) 6524758397482375 a001 1134903170/505019158607*9349^(7/19) 6524758397482375 a001 433494437/192900153618*9349^(7/19) 6524758397482375 a001 165580141/73681302247*9349^(7/19) 6524758397482375 a001 63245986/28143753123*9349^(7/19) 6524758397482377 a001 24157817/10749957122*9349^(7/19) 6524758397482390 a001 9227465/4106118243*9349^(7/19) 6524758397482480 a001 3524578/1568397607*9349^(7/19) 6524758397483095 a001 1346269/599074578*9349^(7/19) 6524758397487309 a001 514229/228826127*9349^(7/19) 6524758397516198 a001 196418/87403803*9349^(7/19) 6524758397603933 a001 55/15126*39603^(3/11) 6524758397714206 a001 75025/33385282*9349^(7/19) 6524758397795635 a001 6765/3010349*39603^(7/22) 6524758397983738 a001 6765/4870847*39603^(4/11) 6524758398060267 a001 193864605/2971215073 6524758398060267 a004 Fibonacci(20)/Lucas(23)/(1/2+sqrt(5)/2) 6524758398060267 a004 Fibonacci(23)/Lucas(20)/(1/2+sqrt(5)/2)^7 6524758398128773 a001 615/15251*15127^(1/20) 6524758398173215 a001 6765/7881196*39603^(9/22) 6524758398362167 a001 2255/4250681*39603^(5/11) 6524758398551320 a001 615/1875749*39603^(1/2) 6524758398740397 a001 6765/33385282*39603^(6/11) 6524758398929502 a001 6765/54018521*39603^(13/22) 6524758399071368 a001 28657/12752043*9349^(7/19) 6524758399118596 a001 2255/29134601*39603^(7/11) 6524758399234084 a001 2255/90481*15127^(1/10) 6524758399307695 a001 6765/141422324*39603^(15/22) 6524758399496792 a001 6765/228826127*39603^(8/11) 6524758399685890 a001 6765/370248451*39603^(17/22) 6524758399874987 a001 2255/199691526*39603^(9/11) 6524758400064084 a001 6765/969323029*39603^(19/22) 6524758400253182 a001 6765/1568397607*39603^(10/11) 6524758400442279 a001 615/230701876*39603^(21/22) 6524758400515758 a001 10946/12752043*9349^(9/19) 6524758400631377 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^46 6524758400782165 a001 6765/439204*15127^(3/20) 6524758400804364 a001 15456/4250681*9349^(6/19) 6524758401180924 a001 17711/3010349*9349^(5/19) 6524758401322801 a001 121393/33385282*9349^(6/19) 6524758401398440 a001 105937/29134601*9349^(6/19) 6524758401409476 a001 832040/228826127*9349^(6/19) 6524758401411086 a001 726103/199691526*9349^(6/19) 6524758401411321 a001 5702887/1568397607*9349^(6/19) 6524758401411355 a001 4976784/1368706081*9349^(6/19) 6524758401411360 a001 39088169/10749957122*9349^(6/19) 6524758401411361 a001 831985/228811001*9349^(6/19) 6524758401411361 a001 267914296/73681302247*9349^(6/19) 6524758401411361 a001 233802911/64300051206*9349^(6/19) 6524758401411361 a001 1836311903/505019158607*9349^(6/19) 6524758401411361 a001 1602508992/440719107401*9349^(6/19) 6524758401411361 a001 12586269025/3461452808002*9349^(6/19) 6524758401411361 a001 10983760033/3020733700601*9349^(6/19) 6524758401411361 a001 86267571272/23725150497407*9349^(6/19) 6524758401411361 a001 53316291173/14662949395604*9349^(6/19) 6524758401411361 a001 20365011074/5600748293801*9349^(6/19) 6524758401411361 a001 7778742049/2139295485799*9349^(6/19) 6524758401411361 a001 2971215073/817138163596*9349^(6/19) 6524758401411361 a001 1134903170/312119004989*9349^(6/19) 6524758401411361 a001 433494437/119218851371*9349^(6/19) 6524758401411361 a001 165580141/45537549124*9349^(6/19) 6524758401411361 a001 63245986/17393796001*9349^(6/19) 6524758401411363 a001 24157817/6643838879*9349^(6/19) 6524758401411376 a001 9227465/2537720636*9349^(6/19) 6524758401411466 a001 3524578/969323029*9349^(6/19) 6524758401412081 a001 1346269/370248451*9349^(6/19) 6524758401416296 a001 514229/141422324*9349^(6/19) 6524758401445188 a001 196418/54018521*9349^(6/19) 6524758401643213 a001 75025/20633239*9349^(6/19) 6524758402161123 a001 6765/710647*15127^(1/5) 6524758403000499 a001 28657/7881196*9349^(6/19) 6524758403269920 a001 2584/87403803*5778^(8/9) 6524758403295159 a007 Real Root Of -318*x^4-27*x^3-939*x^2-501*x+123 6524758403604680 a001 6765/1149851*15127^(1/4) 6524758404054883 r002 27th iterates of z^2 + 6524758404444889 a001 5473/3940598*9349^(8/19) 6524758404733495 a001 11592/1970299*9349^(5/19) 6524758405023562 a001 55/15126*15127^(3/10) 6524758405107305 a001 17711/1860498*9349^(4/19) 6524758405251809 a001 121393/20633239*9349^(5/19) 6524758405327429 a001 317811/54018521*9349^(5/19) 6524758405338462 a001 208010/35355581*9349^(5/19) 6524758405340072 a001 2178309/370248451*9349^(5/19) 6524758405340307 a001 5702887/969323029*9349^(5/19) 6524758405340341 a001 196452/33391061*9349^(5/19) 6524758405340346 a001 39088169/6643838879*9349^(5/19) 6524758405340347 a001 102334155/17393796001*9349^(5/19) 6524758405340347 a001 66978574/11384387281*9349^(5/19) 6524758405340347 a001 701408733/119218851371*9349^(5/19) 6524758405340347 a001 1836311903/312119004989*9349^(5/19) 6524758405340347 a001 1201881744/204284540899*9349^(5/19) 6524758405340347 a001 12586269025/2139295485799*9349^(5/19) 6524758405340347 a001 32951280099/5600748293801*9349^(5/19) 6524758405340347 a001 1135099622/192933544679*9349^(5/19) 6524758405340347 a001 139583862445/23725150497407*9349^(5/19) 6524758405340347 a001 53316291173/9062201101803*9349^(5/19) 6524758405340347 a001 10182505537/1730726404001*9349^(5/19) 6524758405340347 a001 7778742049/1322157322203*9349^(5/19) 6524758405340347 a001 2971215073/505019158607*9349^(5/19) 6524758405340347 a001 567451585/96450076809*9349^(5/19) 6524758405340347 a001 433494437/73681302247*9349^(5/19) 6524758405340347 a001 165580141/28143753123*9349^(5/19) 6524758405340347 a001 31622993/5374978561*9349^(5/19) 6524758405340349 a001 24157817/4106118243*9349^(5/19) 6524758405340362 a001 9227465/1568397607*9349^(5/19) 6524758405340452 a001 1762289/299537289*9349^(5/19) 6524758405341067 a001 1346269/228826127*9349^(5/19) 6524758405345281 a001 514229/87403803*9349^(5/19) 6524758405374166 a001 98209/16692641*9349^(5/19) 6524758405572144 a001 75025/12752043*9349^(5/19) 6524758405690250 a001 10946/271443*3571^(1/17) 6524758406451869 a001 6765/3010349*15127^(7/20) 6524758406929105 a001 28657/4870847*9349^(5/19) 6524758407362629 a001 7404969/113490317 6524758407362629 a004 Fibonacci(20)/Lucas(21)/(1/2+sqrt(5)/2)^3 6524758407362630 a004 Fibonacci(21)/Lucas(20)/(1/2+sqrt(5)/2)^5 6524758407560746 a001 615/15251*5778^(1/18) 6524758407876576 a001 6765/4870847*15127^(2/5) 6524758408373495 a001 10946/4870847*9349^(7/19) 6524758408662102 a001 46368/4870847*9349^(4/19) 6524758409043111 a001 17711/1149851*9349^(3/19) 6524758409180739 a001 121393/12752043*9349^(4/19) 6524758409253852 a001 4181/271443*3571^(3/17) 6524758409256408 a001 317811/33385282*9349^(4/19) 6524758409267447 a001 832040/87403803*9349^(4/19) 6524758409269058 a001 46347/4868641*9349^(4/19) 6524758409269293 a001 5702887/599074578*9349^(4/19) 6524758409269327 a001 14930352/1568397607*9349^(4/19) 6524758409269332 a001 39088169/4106118243*9349^(4/19) 6524758409269333 a001 102334155/10749957122*9349^(4/19) 6524758409269333 a001 267914296/28143753123*9349^(4/19) 6524758409269333 a001 701408733/73681302247*9349^(4/19) 6524758409269333 a001 1836311903/192900153618*9349^(4/19) 6524758409269333 a001 102287808/10745088481*9349^(4/19) 6524758409269333 a001 12586269025/1322157322203*9349^(4/19) 6524758409269333 a001 32951280099/3461452808002*9349^(4/19) 6524758409269333 a001 86267571272/9062201101803*9349^(4/19) 6524758409269333 a001 225851433717/23725150497407*9349^(4/19) 6524758409269333 a001 139583862445/14662949395604*9349^(4/19) 6524758409269333 a001 53316291173/5600748293801*9349^(4/19) 6524758409269333 a001 20365011074/2139295485799*9349^(4/19) 6524758409269333 a001 7778742049/817138163596*9349^(4/19) 6524758409269333 a001 2971215073/312119004989*9349^(4/19) 6524758409269333 a001 1134903170/119218851371*9349^(4/19) 6524758409269333 a001 433494437/45537549124*9349^(4/19) 6524758409269333 a001 165580141/17393796001*9349^(4/19) 6524758409269334 a001 63245986/6643838879*9349^(4/19) 6524758409269336 a001 24157817/2537720636*9349^(4/19) 6524758409269349 a001 9227465/969323029*9349^(4/19) 6524758409269438 a001 3524578/370248451*9349^(4/19) 6524758409270054 a001 1346269/141422324*9349^(4/19) 6524758409274270 a001 514229/54018521*9349^(4/19) 6524758409302659 a001 6765/7881196*15127^(9/20) 6524758409303173 a001 196418/20633239*9349^(4/19) 6524758409501275 a001 75025/7881196*9349^(4/19) 6524758409933739 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^47 6524758410452377 a001 17711/4106118243*24476^(20/21) 6524758410728216 a001 2255/4250681*15127^(1/2) 6524758410761723 k002 Champernowne real with 155/2*n^2-101/2*n+38 6524758410859087 a001 28657/3010349*9349^(4/19) 6524758410971015 a001 17711/2537720636*24476^(19/21) 6524758411489653 a001 17711/1568397607*24476^(6/7) 6524758412008291 a001 17711/969323029*24476^(17/21) 6524758412153973 a001 615/1875749*15127^(11/20) 6524758412303477 a001 10946/3010349*9349^(6/19) 6524758412526929 a001 17711/599074578*24476^(16/21) 6524758412592083 a001 46368/3010349*9349^(3/19) 6524758412954243 a001 17711/710647*9349^(2/19) 6524758413045567 a001 17711/370248451*24476^(5/7) 6524758413109871 a001 121393/7881196*9349^(3/19) 6524758413185415 a001 10959/711491*9349^(3/19) 6524758413196437 a001 832040/54018521*9349^(3/19) 6524758413198045 a001 2178309/141422324*9349^(3/19) 6524758413198279 a001 5702887/370248451*9349^(3/19) 6524758413198314 a001 14930352/969323029*9349^(3/19) 6524758413198319 a001 39088169/2537720636*9349^(3/19) 6524758413198319 a001 102334155/6643838879*9349^(3/19) 6524758413198319 a001 9238424/599786069*9349^(3/19) 6524758413198320 a001 701408733/45537549124*9349^(3/19) 6524758413198320 a001 1836311903/119218851371*9349^(3/19) 6524758413198320 a001 4807526976/312119004989*9349^(3/19) 6524758413198320 a001 12586269025/817138163596*9349^(3/19) 6524758413198320 a001 32951280099/2139295485799*9349^(3/19) 6524758413198320 a001 86267571272/5600748293801*9349^(3/19) 6524758413198320 a001 7787980473/505618944676*9349^(3/19) 6524758413198320 a001 365435296162/23725150497407*9349^(3/19) 6524758413198320 a001 139583862445/9062201101803*9349^(3/19) 6524758413198320 a001 53316291173/3461452808002*9349^(3/19) 6524758413198320 a001 20365011074/1322157322203*9349^(3/19) 6524758413198320 a001 7778742049/505019158607*9349^(3/19) 6524758413198320 a001 2971215073/192900153618*9349^(3/19) 6524758413198320 a001 1134903170/73681302247*9349^(3/19) 6524758413198320 a001 433494437/28143753123*9349^(3/19) 6524758413198320 a001 165580141/10749957122*9349^(3/19) 6524758413198320 a001 63245986/4106118243*9349^(3/19) 6524758413198322 a001 24157817/1568397607*9349^(3/19) 6524758413198335 a001 9227465/599074578*9349^(3/19) 6524758413198424 a001 3524578/228826127*9349^(3/19) 6524758413199039 a001 1346269/87403803*9349^(3/19) 6524758413203249 a001 514229/33385282*9349^(3/19) 6524758413232104 a001 196418/12752043*9349^(3/19) 6524758413429881 a001 75025/4870847*9349^(3/19) 6524758413486926 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^49 6524758413564204 a001 17711/228826127*24476^(2/3) 6524758413579654 a001 6765/33385282*15127^(3/5) 6524758413862045 a001 24476/75025*8^(1/3) 6524758414005329 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^51 6524758414005564 a001 23184/5374978561*24476^(20/21) 6524758414080962 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^53 6524758414082843 a001 17711/141422324*24476^(13/21) 6524758414091997 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^55 6524758414093607 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^57 6524758414093842 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^59 6524758414093876 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^61 6524758414093881 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^63 6524758414093882 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^65 6524758414093882 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^67 6524758414093882 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^69 6524758414093882 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^71 6524758414093882 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^73 6524758414093882 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^75 6524758414093882 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^77 6524758414093882 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^79 6524758414093882 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^81 6524758414093882 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^83 6524758414093882 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^85 6524758414093882 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^87 6524758414093882 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^89 6524758414093882 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^91 6524758414093882 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^93 6524758414093882 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^95 6524758414093882 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^97 6524758414093882 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^99 6524758414093882 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^100 6524758414093882 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^98 6524758414093882 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^96 6524758414093882 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^94 6524758414093882 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^92 6524758414093882 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^90 6524758414093882 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^88 6524758414093882 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^86 6524758414093882 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^84 6524758414093882 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^82 6524758414093882 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^80 6524758414093882 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^78 6524758414093882 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^76 6524758414093882 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^74 6524758414093882 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^72 6524758414093882 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^70 6524758414093882 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^68 6524758414093882 a001 1/5473*(1/2+1/2*5^(1/2))^17 6524758414093882 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^66 6524758414093883 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^64 6524758414093885 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^62 6524758414093898 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^60 6524758414093987 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^58 6524758414094602 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^56 6524758414098817 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^54 6524758414127597 a001 646/35355581*5778^(17/18) 6524758414127707 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^52 6524758414325719 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^50 6524758414523966 a001 121393/28143753123*24476^(20/21) 6524758414524201 a001 46368/6643838879*24476^(19/21) 6524758414599600 a001 317811/73681302247*24476^(20/21) 6524758414601480 a001 17711/87403803*24476^(4/7) 6524758414610635 a001 416020/96450076809*24476^(20/21) 6524758414612245 a001 46347/10745088481*24476^(20/21) 6524758414612480 a001 5702887/1322157322203*24476^(20/21) 6524758414612514 a001 7465176/1730726404001*24476^(20/21) 6524758414612519 a001 39088169/9062201101803*24476^(20/21) 6524758414612520 a001 102334155/23725150497407*24476^(20/21) 6524758414612521 a001 31622993/7331474697802*24476^(20/21) 6524758414612522 a001 24157817/5600748293801*24476^(20/21) 6524758414612536 a001 9227465/2139295485799*24476^(20/21) 6524758414612625 a001 1762289/408569081798*24476^(20/21) 6524758414613240 a001 1346269/312119004989*24476^(20/21) 6524758414617455 a001 514229/119218851371*24476^(20/21) 6524758414646345 a001 98209/22768774562*24476^(20/21) 6524758414785468 a001 28657/1860498*9349^(3/19) 6524758414844357 a001 75025/17393796001*24476^(20/21) 6524758415005365 a001 6765/54018521*15127^(13/20) 6524758415042604 a001 121393/17393796001*24476^(19/21) 6524758415042839 a001 15456/1368706081*24476^(6/7) 6524758415118238 a001 317811/45537549124*24476^(19/21) 6524758415120121 a001 17711/54018521*24476^(11/21) 6524758415129273 a001 832040/119218851371*24476^(19/21) 6524758415130883 a001 2178309/312119004989*24476^(19/21) 6524758415131118 a001 5702887/817138163596*24476^(19/21) 6524758415131152 a001 14930352/2139295485799*24476^(19/21) 6524758415131157 a001 39088169/5600748293801*24476^(19/21) 6524758415131158 a001 102334155/14662949395604*24476^(19/21) 6524758415131158 a001 165580141/23725150497407*24476^(19/21) 6524758415131158 a001 63245986/9062201101803*24476^(19/21) 6524758415131160 a001 24157817/3461452808002*24476^(19/21) 6524758415131173 a001 9227465/1322157322203*24476^(19/21) 6524758415131263 a001 3524578/505019158607*24476^(19/21) 6524758415131878 a001 1346269/192900153618*24476^(19/21) 6524758415136093 a001 514229/73681302247*24476^(19/21) 6524758415164983 a001 196418/28143753123*24476^(19/21) 6524758415362995 a001 75025/10749957122*24476^(19/21) 6524758415561242 a001 121393/10749957122*24476^(6/7) 6524758415561477 a001 11592/634430159*24476^(17/21) 6524758415636876 a001 105937/9381251041*24476^(6/7) 6524758415638750 a001 17711/33385282*24476^(10/21) 6524758415647911 a001 832040/73681302247*24476^(6/7) 6524758415649521 a001 726103/64300051206*24476^(6/7) 6524758415649756 a001 5702887/505019158607*24476^(6/7) 6524758415649790 a001 4976784/440719107401*24476^(6/7) 6524758415649795 a001 39088169/3461452808002*24476^(6/7) 6524758415649796 a001 34111385/3020733700601*24476^(6/7) 6524758415649796 a001 267914296/23725150497407*24476^(6/7) 6524758415649796 a001 165580141/14662949395604*24476^(6/7) 6524758415649796 a001 63245986/5600748293801*24476^(6/7) 6524758415649798 a001 24157817/2139295485799*24476^(6/7) 6524758415649811 a001 9227465/817138163596*24476^(6/7) 6524758415649901 a001 3524578/312119004989*24476^(6/7) 6524758415650516 a001 1346269/119218851371*24476^(6/7) 6524758415654731 a001 514229/45537549124*24476^(6/7) 6524758415682916 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^48 6524758415683621 a001 196418/17393796001*24476^(6/7) 6524758415881633 a001 75025/6643838879*24476^(6/7) 6524758416079880 a001 121393/6643838879*24476^(17/21) 6524758416080115 a001 6624/224056801*24476^(16/21) 6524758416155514 a001 10959/599786069*24476^(17/21) 6524758416157409 a001 17711/20633239*24476^(3/7) 6524758416166549 a001 208010/11384387281*24476^(17/21) 6524758416168159 a001 2178309/119218851371*24476^(17/21) 6524758416168394 a001 5702887/312119004989*24476^(17/21) 6524758416168428 a001 3732588/204284540899*24476^(17/21) 6524758416168433 a001 39088169/2139295485799*24476^(17/21) 6524758416168434 a001 102334155/5600748293801*24476^(17/21) 6524758416168434 a001 10946/599074579*24476^(17/21) 6524758416168434 a001 433494437/23725150497407*24476^(17/21) 6524758416168434 a001 165580141/9062201101803*24476^(17/21) 6524758416168434 a001 31622993/1730726404001*24476^(17/21) 6524758416168436 a001 24157817/1322157322203*24476^(17/21) 6524758416168449 a001 9227465/505019158607*24476^(17/21) 6524758416168539 a001 1762289/96450076809*24476^(17/21) 6524758416169154 a001 1346269/73681302247*24476^(17/21) 6524758416173369 a001 514229/28143753123*24476^(17/21) 6524758416201553 a001 28657/6643838879*24476^(20/21) 6524758416202258 a001 98209/5374978561*24476^(17/21) 6524758416229858 a001 5473/930249*9349^(5/19) 6524758416400271 a001 75025/4106118243*24476^(17/21) 6524758416431064 a001 2255/29134601*15127^(7/10) 6524758416518464 a001 2576/103361*9349^(2/19) 6524758416598518 a001 121393/4106118243*24476^(16/21) 6524758416598753 a001 46368/969323029*24476^(5/7) 6524758416664992 a001 313679521/4807526976 6524758416664992 a004 Fibonacci(22)/Lucas(22)/(1/2+sqrt(5)/2)^4 6524758416674152 a001 317811/10749957122*24476^(16/21) 6524758416675992 a001 17711/12752043*24476^(8/21) 6524758416685187 a001 832040/28143753123*24476^(16/21) 6524758416686797 a001 311187/10525900321*24476^(16/21) 6524758416687032 a001 5702887/192900153618*24476^(16/21) 6524758416687066 a001 14930352/505019158607*24476^(16/21) 6524758416687071 a001 39088169/1322157322203*24476^(16/21) 6524758416687072 a001 6765/228826126*24476^(16/21) 6524758416687072 a001 267914296/9062201101803*24476^(16/21) 6524758416687072 a001 701408733/23725150497407*24476^(16/21) 6524758416687072 a001 433494437/14662949395604*24476^(16/21) 6524758416687072 a001 165580141/5600748293801*24476^(16/21) 6524758416687072 a001 63245986/2139295485799*24476^(16/21) 6524758416687074 a001 24157817/817138163596*24476^(16/21) 6524758416687087 a001 9227465/312119004989*24476^(16/21) 6524758416687177 a001 3524578/119218851371*24476^(16/21) 6524758416687792 a001 1346269/45537549124*24476^(16/21) 6524758416692007 a001 514229/17393796001*24476^(16/21) 6524758416720191 a001 28657/4106118243*24476^(19/21) 6524758416720896 a001 196418/6643838879*24476^(16/21) 6524758416918909 a001 75025/2537720636*24476^(16/21) 6524758416929973 a001 17711/439204*9349^(1/19) 6524758417038477 a001 121393/4870847*9349^(2/19) 6524758417114346 a001 105937/4250681*9349^(2/19) 6524758417117156 a001 121393/2537720636*24476^(5/7) 6524758417117391 a001 2576/33281921*24476^(2/3) 6524758417125415 a001 416020/16692641*9349^(2/19) 6524758417127030 a001 726103/29134601*9349^(2/19) 6524758417127266 a001 5702887/228826127*9349^(2/19) 6524758417127300 a001 829464/33281921*9349^(2/19) 6524758417127305 a001 39088169/1568397607*9349^(2/19) 6524758417127306 a001 34111385/1368706081*9349^(2/19) 6524758417127306 a001 133957148/5374978561*9349^(2/19) 6524758417127306 a001 233802911/9381251041*9349^(2/19) 6524758417127306 a001 1836311903/73681302247*9349^(2/19) 6524758417127306 a001 267084832/10716675201*9349^(2/19) 6524758417127306 a001 12586269025/505019158607*9349^(2/19) 6524758417127306 a001 10983760033/440719107401*9349^(2/19) 6524758417127306 a001 43133785636/1730726404001*9349^(2/19) 6524758417127306 a001 75283811239/3020733700601*9349^(2/19) 6524758417127306 a001 182717648081/7331474697802*9349^(2/19) 6524758417127306 a001 139583862445/5600748293801*9349^(2/19) 6524758417127306 a001 53316291173/2139295485799*9349^(2/19) 6524758417127306 a001 10182505537/408569081798*9349^(2/19) 6524758417127306 a001 7778742049/312119004989*9349^(2/19) 6524758417127306 a001 2971215073/119218851371*9349^(2/19) 6524758417127306 a001 567451585/22768774562*9349^(2/19) 6524758417127306 a001 433494437/17393796001*9349^(2/19) 6524758417127306 a001 165580141/6643838879*9349^(2/19) 6524758417127306 a001 31622993/1268860318*9349^(2/19) 6524758417127308 a001 24157817/969323029*9349^(2/19) 6524758417127321 a001 9227465/370248451*9349^(2/19) 6524758417127411 a001 1762289/70711162*9349^(2/19) 6524758417128028 a001 1346269/54018521*9349^(2/19) 6524758417132256 a001 514229/20633239*9349^(2/19) 6524758417161235 a001 98209/3940598*9349^(2/19) 6524758417192790 a001 317811/6643838879*24476^(5/7) 6524758417194775 a001 89/39604*24476^(1/3) 6524758417203825 a001 832040/17393796001*24476^(5/7) 6524758417205435 a001 2178309/45537549124*24476^(5/7) 6524758417205670 a001 5702887/119218851371*24476^(5/7) 6524758417205704 a001 14930352/312119004989*24476^(5/7) 6524758417205709 a001 4181/87403804*24476^(5/7) 6524758417205710 a001 102334155/2139295485799*24476^(5/7) 6524758417205710 a001 267914296/5600748293801*24476^(5/7) 6524758417205710 a001 701408733/14662949395604*24476^(5/7) 6524758417205710 a001 1134903170/23725150497407*24476^(5/7) 6524758417205710 a001 433494437/9062201101803*24476^(5/7) 6524758417205710 a001 165580141/3461452808002*24476^(5/7) 6524758417205710 a001 63245986/1322157322203*24476^(5/7) 6524758417205712 a001 24157817/505019158607*24476^(5/7) 6524758417205725 a001 9227465/192900153618*24476^(5/7) 6524758417205815 a001 3524578/73681302247*24476^(5/7) 6524758417206430 a001 1346269/28143753123*24476^(5/7) 6524758417210645 a001 514229/10749957122*24476^(5/7) 6524758417238829 a001 28657/2537720636*24476^(6/7) 6524758417239534 a001 196418/4106118243*24476^(5/7) 6524758417359863 a001 75025/3010349*9349^(2/19) 6524758417437547 a001 75025/1568397607*24476^(5/7) 6524758417635794 a001 121393/1568397607*24476^(2/3) 6524758417636029 a001 46368/370248451*24476^(13/21) 6524758417711428 a001 105937/1368706081*24476^(2/3) 6524758417713033 a001 17711/4870847*24476^(2/7) 6524758417722463 a001 416020/5374978561*24476^(2/3) 6524758417724073 a001 726103/9381251041*24476^(2/3) 6524758417724307 a001 5702887/73681302247*24476^(2/3) 6524758417724342 a001 2584/33385281*24476^(2/3) 6524758417724347 a001 39088169/505019158607*24476^(2/3) 6524758417724347 a001 34111385/440719107401*24476^(2/3) 6524758417724348 a001 133957148/1730726404001*24476^(2/3) 6524758417724348 a001 233802911/3020733700601*24476^(2/3) 6524758417724348 a001 1836311903/23725150497407*24476^(2/3) 6524758417724348 a001 567451585/7331474697802*24476^(2/3) 6524758417724348 a001 433494437/5600748293801*24476^(2/3) 6524758417724348 a001 165580141/2139295485799*24476^(2/3) 6524758417724348 a001 31622993/408569081798*24476^(2/3) 6524758417724350 a001 24157817/312119004989*24476^(2/3) 6524758417724363 a001 9227465/119218851371*24476^(2/3) 6524758417724453 a001 1762289/22768774562*24476^(2/3) 6524758417725068 a001 1346269/17393796001*24476^(2/3) 6524758417729283 a001 514229/6643838879*24476^(2/3) 6524758417757467 a001 28657/1568397607*24476^(17/21) 6524758417758172 a001 98209/1268860318*24476^(2/3) 6524758417856767 a001 6765/141422324*15127^(3/4) 6524758417956184 a001 75025/969323029*24476^(2/3) 6524758418098032 a001 2255/90481*5778^(1/9) 6524758418154432 a001 121393/969323029*24476^(13/21) 6524758418154667 a001 46368/228826127*24476^(4/7) 6524758418230066 a001 317811/2537720636*24476^(13/21) 6524758418232666 a001 17711/3010349*24476^(5/21) 6524758418241101 a001 832040/6643838879*24476^(13/21) 6524758418242711 a001 2178309/17393796001*24476^(13/21) 6524758418242945 a001 1597/12752044*24476^(13/21) 6524758418242980 a001 14930352/119218851371*24476^(13/21) 6524758418242985 a001 39088169/312119004989*24476^(13/21) 6524758418242985 a001 102334155/817138163596*24476^(13/21) 6524758418242986 a001 267914296/2139295485799*24476^(13/21) 6524758418242986 a001 701408733/5600748293801*24476^(13/21) 6524758418242986 a001 1836311903/14662949395604*24476^(13/21) 6524758418242986 a001 2971215073/23725150497407*24476^(13/21) 6524758418242986 a001 1134903170/9062201101803*24476^(13/21) 6524758418242986 a001 433494437/3461452808002*24476^(13/21) 6524758418242986 a001 165580141/1322157322203*24476^(13/21) 6524758418242986 a001 63245986/505019158607*24476^(13/21) 6524758418242988 a001 24157817/192900153618*24476^(13/21) 6524758418243001 a001 9227465/73681302247*24476^(13/21) 6524758418243091 a001 3524578/28143753123*24476^(13/21) 6524758418243706 a001 1346269/10749957122*24476^(13/21) 6524758418247920 a001 514229/4106118243*24476^(13/21) 6524758418276105 a001 28657/969323029*24476^(16/21) 6524758418276810 a001 196418/1568397607*24476^(13/21) 6524758418474822 a001 75025/599074578*24476^(13/21) 6524758418673070 a001 121393/599074578*24476^(4/7) 6524758418673305 a001 11592/35355581*24476^(11/21) 6524758418721274 a001 28657/1149851*9349^(2/19) 6524758418748699 a001 17711/1860498*24476^(4/21) 6524758418748704 a001 317811/1568397607*24476^(4/7) 6524758418759738 a001 832040/4106118243*24476^(4/7) 6524758418761348 a001 987/4870846*24476^(4/7) 6524758418761583 a001 5702887/28143753123*24476^(4/7) 6524758418761618 a001 14930352/73681302247*24476^(4/7) 6524758418761623 a001 39088169/192900153618*24476^(4/7) 6524758418761623 a001 102334155/505019158607*24476^(4/7) 6524758418761623 a001 267914296/1322157322203*24476^(4/7) 6524758418761623 a001 701408733/3461452808002*24476^(4/7) 6524758418761623 a001 1836311903/9062201101803*24476^(4/7) 6524758418761623 a001 4807526976/23725150497407*24476^(4/7) 6524758418761623 a001 2971215073/14662949395604*24476^(4/7) 6524758418761623 a001 1134903170/5600748293801*24476^(4/7) 6524758418761623 a001 433494437/2139295485799*24476^(4/7) 6524758418761623 a001 165580141/817138163596*24476^(4/7) 6524758418761624 a001 63245986/312119004989*24476^(4/7) 6524758418761626 a001 24157817/119218851371*24476^(4/7) 6524758418761639 a001 9227465/45537549124*24476^(4/7) 6524758418761728 a001 3524578/17393796001*24476^(4/7) 6524758418762343 a001 1346269/6643838879*24476^(4/7) 6524758418766558 a001 514229/2537720636*24476^(4/7) 6524758418794743 a001 28657/599074578*24476^(5/7) 6524758418795448 a001 196418/969323029*24476^(4/7) 6524758418993460 a001 75025/370248451*24476^(4/7) 6524758419191708 a001 121393/370248451*24476^(11/21) 6524758419191942 a001 15456/29134601*24476^(10/21) 6524758419236102 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^49 6524758419267342 a001 317811/969323029*24476^(11/21) 6524758419274156 a001 17711/1149851*24476^(1/7) 6524758419278376 a001 610/1860499*24476^(11/21) 6524758419279986 a001 2178309/6643838879*24476^(11/21) 6524758419280221 a001 5702887/17393796001*24476^(11/21) 6524758419280255 a001 3732588/11384387281*24476^(11/21) 6524758419280260 a001 39088169/119218851371*24476^(11/21) 6524758419280261 a001 9303105/28374454999*24476^(11/21) 6524758419280261 a001 66978574/204284540899*24476^(11/21) 6524758419280261 a001 701408733/2139295485799*24476^(11/21) 6524758419280261 a001 1836311903/5600748293801*24476^(11/21) 6524758419280261 a001 1201881744/3665737348901*24476^(11/21) 6524758419280261 a001 7778742049/23725150497407*24476^(11/21) 6524758419280261 a001 2971215073/9062201101803*24476^(11/21) 6524758419280261 a001 567451585/1730726404001*24476^(11/21) 6524758419280261 a001 433494437/1322157322203*24476^(11/21) 6524758419280261 a001 165580141/505019158607*24476^(11/21) 6524758419280262 a001 31622993/96450076809*24476^(11/21) 6524758419280264 a001 24157817/73681302247*24476^(11/21) 6524758419280277 a001 9227465/28143753123*24476^(11/21) 6524758419280366 a001 1762289/5374978561*24476^(11/21) 6524758419280981 a001 1346269/4106118243*24476^(11/21) 6524758419282469 a001 6765/228826127*15127^(4/5) 6524758419285196 a001 514229/1568397607*24476^(11/21) 6524758419305190 a001 17711/10749957122*64079^(22/23) 6524758419313381 a001 28657/370248451*24476^(2/3) 6524758419314086 a001 98209/299537289*24476^(11/21) 6524758419374279 a001 17711/6643838879*64079^(21/23) 6524758419443367 a001 17711/4106118243*64079^(20/23) 6524758419512098 a001 75025/228826127*24476^(11/21) 6524758419512456 a001 17711/2537720636*64079^(19/23) 6524758419581544 a001 17711/1568397607*64079^(18/23) 6524758419650632 a001 17711/969323029*64079^(17/23) 6524758419710345 a001 121393/228826127*24476^(10/21) 6524758419710583 a001 46368/54018521*24476^(3/7) 6524758419719721 a001 17711/599074578*64079^(16/23) 6524758419774940 a001 17711/710647*24476^(2/21) 6524758419785979 a001 377/710646*24476^(10/21) 6524758419788809 a001 17711/370248451*64079^(15/23) 6524758419797014 a001 832040/1568397607*24476^(10/21) 6524758419798624 a001 726103/1368706081*24476^(10/21) 6524758419798859 a001 5702887/10749957122*24476^(10/21) 6524758419798893 a001 4976784/9381251041*24476^(10/21) 6524758419798898 a001 39088169/73681302247*24476^(10/21) 6524758419798899 a001 34111385/64300051206*24476^(10/21) 6524758419798899 a001 267914296/505019158607*24476^(10/21) 6524758419798899 a001 233802911/440719107401*24476^(10/21) 6524758419798899 a001 1836311903/3461452808002*24476^(10/21) 6524758419798899 a001 1602508992/3020733700601*24476^(10/21) 6524758419798899 a001 12586269025/23725150497407*24476^(10/21) 6524758419798899 a001 7778742049/14662949395604*24476^(10/21) 6524758419798899 a001 2971215073/5600748293801*24476^(10/21) 6524758419798899 a001 1134903170/2139295485799*24476^(10/21) 6524758419798899 a001 433494437/817138163596*24476^(10/21) 6524758419798899 a001 165580141/312119004989*24476^(10/21) 6524758419798900 a001 63245986/119218851371*24476^(10/21) 6524758419798901 a001 24157817/45537549124*24476^(10/21) 6524758419798915 a001 9227465/17393796001*24476^(10/21) 6524758419799004 a001 3524578/6643838879*24476^(10/21) 6524758419799619 a001 1346269/2537720636*24476^(10/21) 6524758419803834 a001 514229/969323029*24476^(10/21) 6524758419832019 a001 28657/228826127*24476^(13/21) 6524758419832724 a001 196418/370248451*24476^(10/21) 6524758419857897 a001 17711/228826127*64079^(14/23) 6524758419926986 a001 17711/141422324*64079^(13/23) 6524758419996074 a001 17711/87403803*64079^(12/23) 6524758420030736 a001 75025/141422324*24476^(10/21) 6524758420065165 a001 17711/54018521*64079^(11/23) 6524758420134245 a001 17711/33385282*64079^(10/23) 6524758420165664 a001 10946/1149851*9349^(4/19) 6524758420203355 a001 17711/20633239*64079^(9/23) 6524758420218178 a001 821223648/12586269025 6524758420218178 a004 Fibonacci(22)/Lucas(24)/(1/2+sqrt(5)/2)^2 6524758420218178 a004 Fibonacci(24)/Lucas(22)/(1/2+sqrt(5)/2)^6 6524758420228984 a001 233/271444*24476^(3/7) 6524758420229212 a001 144/103681*24476^(8/21) 6524758420272388 a001 17711/12752043*64079^(8/23) 6524758420304617 a001 317811/370248451*24476^(3/7) 6524758420315652 a001 832040/969323029*24476^(3/7) 6524758420317262 a001 2178309/2537720636*24476^(3/7) 6524758420317497 a001 5702887/6643838879*24476^(3/7) 6524758420317531 a001 14930352/17393796001*24476^(3/7) 6524758420317536 a001 39088169/45537549124*24476^(3/7) 6524758420317537 a001 102334155/119218851371*24476^(3/7) 6524758420317537 a001 267914296/312119004989*24476^(3/7) 6524758420317537 a001 701408733/817138163596*24476^(3/7) 6524758420317537 a001 1836311903/2139295485799*24476^(3/7) 6524758420317537 a001 4807526976/5600748293801*24476^(3/7) 6524758420317537 a001 12586269025/14662949395604*24476^(3/7) 6524758420317537 a001 20365011074/23725150497407*24476^(3/7) 6524758420317537 a001 7778742049/9062201101803*24476^(3/7) 6524758420317537 a001 2971215073/3461452808002*24476^(3/7) 6524758420317537 a001 1134903170/1322157322203*24476^(3/7) 6524758420317537 a001 433494437/505019158607*24476^(3/7) 6524758420317537 a001 165580141/192900153618*24476^(3/7) 6524758420317537 a001 63245986/73681302247*24476^(3/7) 6524758420317539 a001 24157817/28143753123*24476^(3/7) 6524758420317552 a001 9227465/10749957122*24476^(3/7) 6524758420317642 a001 3524578/4106118243*24476^(3/7) 6524758420318257 a001 1346269/1568397607*24476^(3/7) 6524758420322472 a001 514229/599074578*24476^(3/7) 6524758420340322 a001 17711/439204*24476^(1/21) 6524758420341621 a001 89/39604*64079^(7/23) 6524758420350657 a001 28657/141422324*24476^(4/7) 6524758420351362 a001 196418/228826127*24476^(3/7) 6524758420410330 a001 17711/4870847*64079^(6/23) 6524758420454270 a001 46368/1149851*9349^(1/19) 6524758420480413 a001 17711/3010349*64079^(5/23) 6524758420546897 a001 17711/1860498*64079^(4/23) 6524758420549373 a001 75025/87403803*24476^(3/7) 6524758420593298 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^51 6524758420622805 a001 17711/1149851*64079^(3/23) 6524758420639666 a001 17711/4106118243*167761^(4/5) 6524758420674039 a001 17711/710647*64079^(2/23) 6524758420686033 a001 17711/370248451*167761^(3/5) 6524758420708171 a001 6765/370248451*15127^(17/20) 6524758420732395 a001 17711/33385282*167761^(2/5) 6524758420736581 a001 17711/271443 6524758420736581 a004 Fibonacci(26)/Lucas(22)/(1/2+sqrt(5)/2)^8 6524758420747620 a001 121393/87403803*24476^(8/21) 6524758420747872 a001 46368/20633239*24476^(1/3) 6524758420779488 a001 17711/3010349*167761^(1/5) 6524758420789871 a001 17711/439204*64079^(1/23) 6524758420791311 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^53 6524758420795069 a001 17711/28143753123*439204^(8/9) 6524758420798827 a001 17711/6643838879*439204^(7/9) 6524758420802585 a001 17711/1568397607*439204^(2/3) 6524758420806344 a001 17711/370248451*439204^(5/9) 6524758420810101 a001 17711/87403803*439204^(4/9) 6524758420812215 a001 17711/710647*(1/2+1/2*5^(1/2))^2 6524758420812215 a001 5628750621/86267571272 6524758420812215 a001 17711/710647*10749957122^(1/24) 6524758420812215 a001 17711/710647*4106118243^(1/23) 6524758420812215 a001 17711/710647*1568397607^(1/22) 6524758420812215 a001 17711/710647*599074578^(1/21) 6524758420812215 a004 Fibonacci(28)/Lucas(22)/(1/2+sqrt(5)/2)^10 6524758420812215 a001 17711/710647*228826127^(1/20) 6524758420812215 a001 17711/710647*87403803^(1/19) 6524758420812216 a001 17711/710647*33385282^(1/18) 6524758420812218 a001 17711/710647*12752043^(1/17) 6524758420812233 a001 17711/710647*4870847^(1/16) 6524758420812341 a001 17711/710647*1860498^(1/15) 6524758420813138 a001 17711/710647*710647^(1/14) 6524758420813876 a001 17711/20633239*439204^(1/3) 6524758420817344 a001 17711/4870847*439204^(2/9) 6524758420819027 a001 17711/710647*271443^(1/13) 6524758420820200 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^55 6524758420823250 a001 17711/1860498*(1/2+1/2*5^(1/2))^4 6524758420823250 a001 17711/1860498*23725150497407^(1/16) 6524758420823250 a001 14736260440/225851433717 6524758420823250 a001 17711/1860498*73681302247^(1/13) 6524758420823250 a001 17711/1860498*10749957122^(1/12) 6524758420823250 a001 17711/1860498*4106118243^(2/23) 6524758420823250 a001 17711/1860498*1568397607^(1/11) 6524758420823250 a001 17711/1860498*599074578^(2/21) 6524758420823250 a004 Fibonacci(30)/Lucas(22)/(1/2+sqrt(5)/2)^12 6524758420823250 a001 17711/1860498*228826127^(1/10) 6524758420823250 a001 17711/1860498*87403803^(2/19) 6524758420823251 a001 17711/1860498*33385282^(1/9) 6524758420823255 a001 17711/1860498*12752043^(2/17) 6524758420823255 a001 317811/228826127*24476^(8/21) 6524758420823285 a001 17711/1860498*4870847^(1/8) 6524758420823502 a001 17711/1860498*1860498^(2/15) 6524758420824415 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^57 6524758420824841 a001 17711/4870847*7881196^(2/11) 6524758420824860 a001 17711/4870847*141422324^(2/13) 6524758420824860 a001 17711/4870847*2537720636^(2/15) 6524758420824860 a001 17711/4870847*45537549124^(2/17) 6524758420824860 a001 17711/4870847*14662949395604^(2/21) 6524758420824860 a001 17711/4870847*(1/2+1/2*5^(1/2))^6 6524758420824860 a001 17711/4870847*10749957122^(1/8) 6524758420824860 a001 17711/4870847*4106118243^(3/23) 6524758420824860 a001 17711/4870847*1568397607^(3/22) 6524758420824860 a001 17711/4870847*599074578^(1/7) 6524758420824860 a004 Fibonacci(32)/Lucas(22)/(1/2+sqrt(5)/2)^14 6524758420824860 a001 17711/4870847*228826127^(3/20) 6524758420824860 a001 17711/4870847*87403803^(3/19) 6524758420824861 a001 17711/4870847*33385282^(1/6) 6524758420824867 a001 17711/4870847*12752043^(3/17) 6524758420824912 a001 17711/4870847*4870847^(3/16) 6524758420825030 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^59 6524758420825040 a001 17711/505019158607*7881196^(10/11) 6524758420825049 a001 17711/119218851371*7881196^(9/11) 6524758420825059 a001 17711/28143753123*7881196^(8/11) 6524758420825065 a001 17711/10749957122*7881196^(2/3) 6524758420825068 a001 17711/6643838879*7881196^(7/11) 6524758420825078 a001 17711/1568397607*7881196^(6/11) 6524758420825087 a001 17711/370248451*7881196^(5/11) 6524758420825095 a001 17711/12752043*(1/2+1/2*5^(1/2))^8 6524758420825095 a001 101003831657/1548008755920 6524758420825095 a001 17711/12752043*505019158607^(1/7) 6524758420825095 a001 17711/12752043*73681302247^(2/13) 6524758420825095 a001 17711/12752043*10749957122^(1/6) 6524758420825095 a001 17711/12752043*4106118243^(4/23) 6524758420825095 a001 17711/12752043*1568397607^(2/11) 6524758420825095 a004 Fibonacci(34)/Lucas(22)/(1/2+sqrt(5)/2)^16 6524758420825095 a001 17711/12752043*599074578^(4/21) 6524758420825095 a001 17711/12752043*228826127^(1/5) 6524758420825095 a001 17711/12752043*87403803^(4/19) 6524758420825096 a001 17711/1860498*710647^(1/7) 6524758420825096 a001 17711/87403803*7881196^(4/11) 6524758420825096 a001 17711/12752043*33385282^(2/9) 6524758420825102 a001 17711/54018521*7881196^(1/3) 6524758420825105 a001 17711/12752043*12752043^(4/17) 6524758420825120 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^61 6524758420825122 a001 17711/20633239*7881196^(3/11) 6524758420825122 a001 17711/505019158607*20633239^(6/7) 6524758420825123 a001 17711/192900153618*20633239^(4/5) 6524758420825124 a001 17711/45537549124*20633239^(5/7) 6524758420825125 a001 17711/33385282*20633239^(2/7) 6524758420825126 a001 17711/6643838879*20633239^(3/5) 6524758420825126 a001 17711/4106118243*20633239^(4/7) 6524758420825129 a001 17711/370248451*20633239^(3/7) 6524758420825129 a001 17711/228826127*20633239^(2/5) 6524758420825129 a001 17711/33385282*2537720636^(2/9) 6524758420825129 a001 17711/33385282*312119004989^(2/11) 6524758420825129 a001 17711/33385282*(1/2+1/2*5^(1/2))^10 6524758420825129 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^10/Lucas(36) 6524758420825129 a001 264431464272/4052739537881 6524758420825129 a001 17711/33385282*28143753123^(1/5) 6524758420825129 a001 17711/33385282*10749957122^(5/24) 6524758420825129 a001 17711/33385282*4106118243^(5/23) 6524758420825129 a001 17711/33385282*1568397607^(5/22) 6524758420825129 a004 Fibonacci(36)/Lucas(22)/(1/2+sqrt(5)/2)^18 6524758420825129 a001 17711/33385282*599074578^(5/21) 6524758420825129 a001 17711/33385282*228826127^(1/4) 6524758420825130 a001 17711/33385282*87403803^(5/19) 6524758420825131 a001 17711/33385282*33385282^(5/18) 6524758420825133 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^63 6524758420825134 a001 17711/87403803*141422324^(4/13) 6524758420825134 a001 17711/87403803*2537720636^(4/15) 6524758420825134 a001 17711/87403803*45537549124^(4/17) 6524758420825134 a001 17711/87403803*817138163596^(4/19) 6524758420825134 a001 17711/87403803*14662949395604^(4/21) 6524758420825134 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^12/Lucas(38) 6524758420825134 a001 17711/87403803*192900153618^(2/9) 6524758420825134 a001 17711/87403803*73681302247^(3/13) 6524758420825134 a001 17711/87403803*10749957122^(1/4) 6524758420825134 a001 17711/87403803*4106118243^(6/23) 6524758420825134 a001 17711/87403803*1568397607^(3/11) 6524758420825134 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2)^20 6524758420825134 a001 17711/87403803*599074578^(2/7) 6524758420825134 a001 17711/87403803*228826127^(3/10) 6524758420825135 a001 17711/87403803*87403803^(6/19) 6524758420825135 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^65 6524758420825135 a001 17711/9062201101803*141422324^(12/13) 6524758420825135 a001 17711/2139295485799*141422324^(11/13) 6524758420825135 a001 17711/505019158607*141422324^(10/13) 6524758420825135 a001 17711/119218851371*141422324^(9/13) 6524758420825135 a001 17711/73681302247*141422324^(2/3) 6524758420825135 a001 17711/28143753123*141422324^(8/13) 6524758420825135 a001 17711/6643838879*141422324^(7/13) 6524758420825135 a001 17711/1568397607*141422324^(6/13) 6524758420825135 a001 17711/228826127*17393796001^(2/7) 6524758420825135 a001 17711/228826127*14662949395604^(2/9) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^14/Lucas(40) 6524758420825135 a001 17711/228826127*505019158607^(1/4) 6524758420825135 a001 17711/228826127*10749957122^(7/24) 6524758420825135 a001 17711/228826127*4106118243^(7/23) 6524758420825135 a001 17711/228826127*1568397607^(7/22) 6524758420825135 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^22 6524758420825135 a001 17711/228826127*599074578^(1/3) 6524758420825135 a001 17711/228826127*228826127^(7/20) 6524758420825135 a001 17711/370248451*141422324^(5/13) 6524758420825135 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^67 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^16/Lucas(42) 6524758420825135 a001 17711/599074578*23725150497407^(1/4) 6524758420825135 a001 17711/599074578*73681302247^(4/13) 6524758420825135 a001 17711/599074578*10749957122^(1/3) 6524758420825135 a001 17711/599074578*4106118243^(8/23) 6524758420825135 a001 17711/599074578*1568397607^(4/11) 6524758420825135 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^24 6524758420825135 a001 17711/599074578*599074578^(8/21) 6524758420825135 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^69 6524758420825135 a001 17711/1568397607*2537720636^(2/5) 6524758420825135 a001 17711/1568397607*45537549124^(6/17) 6524758420825135 a001 17711/1568397607*14662949395604^(2/7) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^18/Lucas(44) 6524758420825135 a001 17711/1568397607*192900153618^(1/3) 6524758420825135 a001 17711/1568397607*10749957122^(3/8) 6524758420825135 a001 17711/1568397607*4106118243^(9/23) 6524758420825135 a001 17711/1568397607*1568397607^(9/22) 6524758420825135 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^71 6524758420825135 a001 17711/4106118243*2537720636^(4/9) 6524758420825135 a001 17711/9062201101803*2537720636^(4/5) 6524758420825135 a001 17711/5600748293801*2537720636^(7/9) 6524758420825135 a001 17711/2139295485799*2537720636^(11/15) 6524758420825135 a001 17711/505019158607*2537720636^(2/3) 6524758420825135 a001 17711/119218851371*2537720636^(3/5) 6524758420825135 a001 17711/45537549124*2537720636^(5/9) 6524758420825135 a001 17711/28143753123*2537720636^(8/15) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^20/Lucas(46) 6524758420825135 a001 17711/4106118243*23725150497407^(5/16) 6524758420825135 a001 17711/4106118243*505019158607^(5/14) 6524758420825135 a001 17711/4106118243*73681302247^(5/13) 6524758420825135 a001 17711/4106118243*28143753123^(2/5) 6524758420825135 a001 17711/4106118243*10749957122^(5/12) 6524758420825135 a001 17711/6643838879*2537720636^(7/15) 6524758420825135 a001 17711/4106118243*4106118243^(10/23) 6524758420825135 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^73 6524758420825135 a001 17711/10749957122*312119004989^(2/5) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^22/Lucas(48) 6524758420825135 a001 17711/10749957122*10749957122^(11/24) 6524758420825135 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^75 6524758420825135 a001 17711/5600748293801*17393796001^(5/7) 6524758420825135 a001 17711/192900153618*17393796001^(4/7) 6524758420825135 a001 17711/28143753123*45537549124^(8/17) 6524758420825135 a001 17711/28143753123*14662949395604^(8/21) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^24/Lucas(50) 6524758420825135 a001 17711/28143753123*192900153618^(4/9) 6524758420825135 a001 17711/28143753123*73681302247^(6/13) 6524758420825135 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^77 6524758420825135 a001 17711/9062201101803*45537549124^(12/17) 6524758420825135 a001 17711/3461452808002*45537549124^(2/3) 6524758420825135 a001 17711/2139295485799*45537549124^(11/17) 6524758420825135 a001 17711/505019158607*45537549124^(10/17) 6524758420825135 a001 17711/119218851371*45537549124^(9/17) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^26/Lucas(52) 6524758420825135 a001 17711/73681302247*73681302247^(1/2) 6524758420825135 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^79 6524758420825135 a001 17711/192900153618*14662949395604^(4/9) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^28/Lucas(54) 6524758420825135 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^81 6524758420825135 a001 17711/505019158607*312119004989^(6/11) 6524758420825135 a001 17711/2139295485799*312119004989^(3/5) 6524758420825135 a001 17711/505019158607*14662949395604^(10/21) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(56) 6524758420825135 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^83 6524758420825135 a001 17711/2139295485799*817138163596^(11/19) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(58) 6524758420825135 a001 17711/1322157322203*23725150497407^(1/2) 6524758420825135 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^85 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(60) 6524758420825135 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^87 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(62) 6524758420825135 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^89 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(64) 6524758420825135 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^91 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(66) 6524758420825135 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^93 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(68) 6524758420825135 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^95 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(70) 6524758420825135 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^97 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(72) 6524758420825135 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^99 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(74) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(76) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(78) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(80) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(82) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(84) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(86) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(88) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(90) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(92) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(94) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(96) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(98) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(100) 6524758420825135 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^26 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(99) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(97) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(95) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(93) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(91) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(89) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(87) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(85) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(83) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(81) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(79) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(77) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(75) 6524758420825135 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^100 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(73) 6524758420825135 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^98 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(71) 6524758420825135 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^96 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(69) 6524758420825135 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^94 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(67) 6524758420825135 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^92 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(65) 6524758420825135 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^90 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(63) 6524758420825135 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^88 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(61) 6524758420825135 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^86 6524758420825135 a001 17711/2139295485799*14662949395604^(11/21) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(59) 6524758420825135 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^84 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(57) 6524758420825135 a001 17711/1322157322203*505019158607^(4/7) 6524758420825135 a001 17711/5600748293801*505019158607^(5/8) 6524758420825135 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^82 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^29/Lucas(55) 6524758420825135 a001 17711/505019158607*192900153618^(5/9) 6524758420825135 a001 17711/2139295485799*192900153618^(11/18) 6524758420825135 a001 17711/9062201101803*192900153618^(2/3) 6524758420825135 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^80 6524758420825135 a001 17711/119218851371*817138163596^(9/19) 6524758420825135 a001 17711/119218851371*14662949395604^(3/7) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^27/Lucas(53) 6524758420825135 a001 17711/119218851371*192900153618^(1/2) 6524758420825135 a001 17711/1322157322203*73681302247^(8/13) 6524758420825135 a001 17711/9062201101803*73681302247^(9/13) 6524758420825135 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^78 6524758420825135 a001 17711/45537549124*312119004989^(5/11) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^25/Lucas(51) 6524758420825135 a001 17711/45537549124*3461452808002^(5/12) 6524758420825135 a001 17711/505019158607*28143753123^(3/5) 6524758420825135 a001 17711/5600748293801*28143753123^(7/10) 6524758420825135 a001 17711/45537549124*28143753123^(1/2) 6524758420825135 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^76 6524758420825135 a001 17711/28143753123*10749957122^(1/2) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^23/Lucas(49) 6524758420825135 a001 17711/73681302247*10749957122^(13/24) 6524758420825135 a001 17711/119218851371*10749957122^(9/16) 6524758420825135 a001 17711/192900153618*10749957122^(7/12) 6524758420825135 a001 17711/505019158607*10749957122^(5/8) 6524758420825135 a001 17711/1322157322203*10749957122^(2/3) 6524758420825135 a001 17711/2139295485799*10749957122^(11/16) 6524758420825135 a001 17711/3461452808002*10749957122^(17/24) 6524758420825135 a001 17711/9062201101803*10749957122^(3/4) 6524758420825135 a001 17711/23725150497407*10749957122^(19/24) 6524758420825135 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^74 6524758420825135 a001 17711/10749957122*4106118243^(11/23) 6524758420825135 a001 17711/6643838879*17393796001^(3/7) 6524758420825135 a001 17711/6643838879*45537549124^(7/17) 6524758420825135 a001 17711/6643838879*14662949395604^(1/3) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^21/Lucas(47) 6524758420825135 a001 17711/6643838879*192900153618^(7/18) 6524758420825135 a001 17711/6643838879*10749957122^(7/16) 6524758420825135 a001 17711/28143753123*4106118243^(12/23) 6524758420825135 a001 17711/17393796001*4106118243^(1/2) 6524758420825135 a001 17711/73681302247*4106118243^(13/23) 6524758420825135 a001 17711/192900153618*4106118243^(14/23) 6524758420825135 a001 17711/505019158607*4106118243^(15/23) 6524758420825135 a001 17711/1322157322203*4106118243^(16/23) 6524758420825135 a001 17711/3461452808002*4106118243^(17/23) 6524758420825135 a001 17711/9062201101803*4106118243^(18/23) 6524758420825135 a001 17711/23725150497407*4106118243^(19/23) 6524758420825135 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^72 6524758420825135 a001 17711/4106118243*1568397607^(5/11) 6524758420825135 a001 17711/2537720636*817138163596^(1/3) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^19/Lucas(45) 6524758420825135 a001 17711/10749957122*1568397607^(1/2) 6524758420825135 a001 17711/28143753123*1568397607^(6/11) 6524758420825135 a001 17711/73681302247*1568397607^(13/22) 6524758420825135 a001 17711/192900153618*1568397607^(7/11) 6524758420825135 a001 17711/505019158607*1568397607^(15/22) 6524758420825135 a001 17711/1322157322203*1568397607^(8/11) 6524758420825135 a001 17711/2139295485799*1568397607^(3/4) 6524758420825135 a001 17711/3461452808002*1568397607^(17/22) 6524758420825135 a001 17711/9062201101803*1568397607^(9/11) 6524758420825135 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^28 6524758420825135 a001 17711/23725150497407*1568397607^(19/22) 6524758420825135 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^30 6524758420825135 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^32 6524758420825135 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^34 6524758420825135 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^36 6524758420825135 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^38 6524758420825135 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^40 6524758420825135 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^42 6524758420825135 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^44 6524758420825135 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^46 6524758420825135 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^48 6524758420825135 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^50 6524758420825135 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^52 6524758420825135 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^54 6524758420825135 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^56 6524758420825135 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^58 6524758420825135 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^60 6524758420825135 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^62 6524758420825135 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^64 6524758420825135 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^66 6524758420825135 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^68 6524758420825135 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^70 6524758420825135 a004 Fibonacci(88)/Lucas(22)/(1/2+sqrt(5)/2)^70 6524758420825135 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^72 6524758420825135 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^74 6524758420825135 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^76 6524758420825135 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^78 6524758420825135 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^80 6524758420825135 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^82 6524758420825135 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^81 6524758420825135 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^79 6524758420825135 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^77 6524758420825135 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^75 6524758420825135 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^73 6524758420825135 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^71 6524758420825135 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^69 6524758420825135 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^67 6524758420825135 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^65 6524758420825135 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^63 6524758420825135 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^61 6524758420825135 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^59 6524758420825135 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^57 6524758420825135 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^55 6524758420825135 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^53 6524758420825135 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^51 6524758420825135 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^49 6524758420825135 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^47 6524758420825135 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^45 6524758420825135 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^43 6524758420825135 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^41 6524758420825135 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^39 6524758420825135 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^37 6524758420825135 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^35 6524758420825135 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^33 6524758420825135 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^31 6524758420825135 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^29 6524758420825135 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^27 6524758420825135 a001 17711/1568397607*599074578^(3/7) 6524758420825135 a001 17711/969323029*45537549124^(1/3) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^17/Lucas(43) 6524758420825135 a001 17711/4106118243*599074578^(10/21) 6524758420825135 a001 17711/6643838879*599074578^(1/2) 6524758420825135 a001 17711/10749957122*599074578^(11/21) 6524758420825135 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^25 6524758420825135 a001 17711/28143753123*599074578^(4/7) 6524758420825135 a001 17711/73681302247*599074578^(13/21) 6524758420825135 a001 17711/119218851371*599074578^(9/14) 6524758420825135 a001 17711/192900153618*599074578^(2/3) 6524758420825135 a001 17711/505019158607*599074578^(5/7) 6524758420825135 a001 17711/1322157322203*599074578^(16/21) 6524758420825135 a001 17711/2139295485799*599074578^(11/14) 6524758420825135 a001 17711/3461452808002*599074578^(17/21) 6524758420825135 a001 17711/5600748293801*599074578^(5/6) 6524758420825135 a001 17711/9062201101803*599074578^(6/7) 6524758420825135 a001 17711/23725150497407*599074578^(19/21) 6524758420825135 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^68 6524758420825135 a001 17711/599074578*228826127^(2/5) 6524758420825135 a001 17711/370248451*2537720636^(1/3) 6524758420825135 a001 17711/370248451*45537549124^(5/17) 6524758420825135 a001 17711/370248451*312119004989^(3/11) 6524758420825135 a001 17711/370248451*14662949395604^(5/21) 6524758420825135 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^15/Lucas(41) 6524758420825135 a001 17711/370248451*192900153618^(5/18) 6524758420825135 a001 17711/370248451*28143753123^(3/10) 6524758420825135 a001 17711/370248451*10749957122^(5/16) 6524758420825135 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^23 6524758420825135 a001 17711/1568397607*228826127^(9/20) 6524758420825135 a001 17711/370248451*599074578^(5/14) 6524758420825135 a001 17711/4106118243*228826127^(1/2) 6524758420825135 a001 17711/10749957122*228826127^(11/20) 6524758420825135 a001 17711/28143753123*228826127^(3/5) 6524758420825135 a001 17711/45537549124*228826127^(5/8) 6524758420825135 a001 17711/73681302247*228826127^(13/20) 6524758420825135 a001 17711/192900153618*228826127^(7/10) 6524758420825135 a001 17711/505019158607*228826127^(3/4) 6524758420825135 a001 17711/370248451*228826127^(3/8) 6524758420825135 a001 17711/1322157322203*228826127^(4/5) 6524758420825135 a001 17711/3461452808002*228826127^(17/20) 6524758420825135 a001 17711/5600748293801*228826127^(7/8) 6524758420825135 a001 17711/9062201101803*228826127^(9/10) 6524758420825135 a001 17711/23725150497407*228826127^(19/20) 6524758420825135 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^66 6524758420825135 a001 17711/228826127*87403803^(7/19) 6524758420825135 a001 17711/141422324*141422324^(1/3) 6524758420825136 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^13/Lucas(39) 6524758420825136 a001 17711/141422324*73681302247^(1/4) 6524758420825136 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^21 6524758420825136 a001 17711/599074578*87403803^(8/19) 6524758420825136 a001 17711/1568397607*87403803^(9/19) 6524758420825136 a001 17711/2537720636*87403803^(1/2) 6524758420825136 a001 17711/4106118243*87403803^(10/19) 6524758420825136 a001 17711/10749957122*87403803^(11/19) 6524758420825136 a001 17711/28143753123*87403803^(12/19) 6524758420825136 a001 17711/73681302247*87403803^(13/19) 6524758420825136 a001 17711/192900153618*87403803^(14/19) 6524758420825136 a001 17711/505019158607*87403803^(15/19) 6524758420825136 a001 17711/1322157322203*87403803^(16/19) 6524758420825136 a001 17711/3461452808002*87403803^(17/19) 6524758420825136 a001 17711/9062201101803*87403803^(18/19) 6524758420825136 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^64 6524758420825136 a001 17711/87403803*33385282^(1/3) 6524758420825137 a001 17711/228826127*33385282^(7/18) 6524758420825137 a001 17711/54018521*312119004989^(1/5) 6524758420825137 a001 427859096887/6557470319842 6524758420825137 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^11/Lucas(37) 6524758420825137 a001 17711/54018521*1568397607^(1/4) 6524758420825137 a004 Fibonacci(37)/Lucas(22)/(1/2+sqrt(5)/2)^19 6524758420825138 a001 17711/370248451*33385282^(5/12) 6524758420825138 a001 17711/599074578*33385282^(4/9) 6524758420825138 a001 17711/1568397607*33385282^(1/2) 6524758420825138 a001 17711/4106118243*33385282^(5/9) 6524758420825139 a001 17711/6643838879*33385282^(7/12) 6524758420825139 a001 17711/10749957122*33385282^(11/18) 6524758420825139 a001 17711/28143753123*33385282^(2/3) 6524758420825139 a001 17711/73681302247*33385282^(13/18) 6524758420825140 a001 17711/119218851371*33385282^(3/4) 6524758420825140 a001 17711/192900153618*33385282^(7/9) 6524758420825140 a001 17711/505019158607*33385282^(5/6) 6524758420825140 a001 17711/1322157322203*33385282^(8/9) 6524758420825141 a001 17711/2139295485799*33385282^(11/12) 6524758420825141 a001 17711/3461452808002*33385282^(17/18) 6524758420825141 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^62 6524758420825141 a001 17711/33385282*12752043^(5/17) 6524758420825148 a001 17711/87403803*12752043^(6/17) 6524758420825150 a001 17711/20633239*141422324^(3/13) 6524758420825151 a001 17711/20633239*2537720636^(1/5) 6524758420825151 a001 17711/20633239*45537549124^(3/17) 6524758420825151 a001 17711/20633239*817138163596^(3/19) 6524758420825151 a001 163427632615/2504730781961 6524758420825151 a001 17711/20633239*(1/2+1/2*5^(1/2))^9 6524758420825151 a001 17711/20633239*192900153618^(1/6) 6524758420825151 a001 17711/20633239*10749957122^(3/16) 6524758420825151 a004 Fibonacci(35)/Lucas(22)/(1/2+sqrt(5)/2)^17 6524758420825151 a001 17711/20633239*599074578^(3/14) 6524758420825152 a001 17711/228826127*12752043^(7/17) 6524758420825152 a001 17711/20633239*33385282^(1/4) 6524758420825154 a001 17711/599074578*12752043^(8/17) 6524758420825155 a001 17711/969323029*12752043^(1/2) 6524758420825156 a001 17711/1568397607*12752043^(9/17) 6524758420825159 a001 17711/4106118243*12752043^(10/17) 6524758420825161 a001 17711/10749957122*12752043^(11/17) 6524758420825164 a001 17711/28143753123*12752043^(12/17) 6524758420825164 a001 17711/12752043*4870847^(1/4) 6524758420825166 a001 17711/73681302247*12752043^(13/17) 6524758420825168 a001 17711/192900153618*12752043^(14/17) 6524758420825171 a001 17711/505019158607*12752043^(15/17) 6524758420825173 a001 17711/1322157322203*12752043^(16/17) 6524758420825175 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^60 6524758420825215 a001 17711/33385282*4870847^(5/16) 6524758420825237 a001 17711/4870847*1860498^(1/5) 6524758420825237 a001 89/39604*20633239^(1/5) 6524758420825237 a001 17711/87403803*4870847^(3/8) 6524758420825240 a001 89/39604*17393796001^(1/7) 6524758420825240 a001 62423800958/956722026041 6524758420825240 a001 89/39604*14662949395604^(1/9) 6524758420825240 a001 89/39604*(1/2+1/2*5^(1/2))^7 6524758420825240 a004 Fibonacci(33)/Lucas(22)/(1/2+sqrt(5)/2)^15 6524758420825240 a001 89/39604*599074578^(1/6) 6524758420825255 a001 17711/228826127*4870847^(7/16) 6524758420825273 a001 17711/599074578*4870847^(1/2) 6524758420825290 a001 17711/1568397607*4870847^(9/16) 6524758420825307 a001 17711/4106118243*4870847^(5/8) 6524758420825324 a001 17711/10749957122*4870847^(11/16) 6524758420825341 a001 17711/28143753123*4870847^(3/4) 6524758420825359 a001 17711/73681302247*4870847^(13/16) 6524758420825376 a001 17711/192900153618*4870847^(7/8) 6524758420825393 a001 17711/505019158607*4870847^(15/16) 6524758420825410 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^58 6524758420825598 a001 17711/12752043*1860498^(4/15) 6524758420825716 a001 17711/20633239*1860498^(3/10) 6524758420825758 a001 17711/33385282*1860498^(1/3) 6524758420825853 a001 17711/3010349*20633239^(1/7) 6524758420825855 a001 17711/3010349*2537720636^(1/9) 6524758420825855 a001 23843770259/365435296162 6524758420825855 a001 17711/3010349*312119004989^(1/11) 6524758420825855 a001 17711/3010349*(1/2+1/2*5^(1/2))^5 6524758420825855 a001 17711/3010349*28143753123^(1/10) 6524758420825855 a004 Fibonacci(31)/Lucas(22)/(1/2+sqrt(5)/2)^13 6524758420825855 a001 17711/3010349*228826127^(1/8) 6524758420825888 a001 17711/87403803*1860498^(2/5) 6524758420826015 a001 17711/228826127*1860498^(7/15) 6524758420826078 a001 17711/370248451*1860498^(1/2) 6524758420826140 a001 17711/599074578*1860498^(8/15) 6524758420826169 a001 17711/3010349*1860498^(1/6) 6524758420826266 a001 17711/1568397607*1860498^(3/5) 6524758420826312 a001 17711/1149851*439204^(1/9) 6524758420826392 a001 17711/4106118243*1860498^(2/3) 6524758420826455 a001 17711/6643838879*1860498^(7/10) 6524758420826518 a001 17711/10749957122*1860498^(11/15) 6524758420826643 a001 17711/28143753123*1860498^(4/5) 6524758420826706 a001 17711/45537549124*1860498^(5/6) 6524758420826769 a001 17711/73681302247*1860498^(13/15) 6524758420826832 a001 17711/119218851371*1860498^(9/10) 6524758420826894 a001 17711/192900153618*1860498^(14/15) 6524758420827020 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^56 6524758420827629 a001 17711/4870847*710647^(3/14) 6524758420828470 a001 89/39604*710647^(1/4) 6524758420828786 a001 17711/12752043*710647^(2/7) 6524758420829744 a001 17711/33385282*710647^(5/14) 6524758420830061 a001 17711/1149851*7881196^(1/11) 6524758420830070 a001 17711/1149851*141422324^(1/13) 6524758420830070 a001 17711/1149851*2537720636^(1/15) 6524758420830070 a001 17711/1149851*45537549124^(1/17) 6524758420830070 a001 102331571/1568358005 6524758420830070 a001 17711/1149851*14662949395604^(1/21) 6524758420830070 a001 17711/1149851*(1/2+1/2*5^(1/2))^3 6524758420830070 a001 17711/1149851*192900153618^(1/18) 6524758420830070 a001 17711/1149851*10749957122^(1/16) 6524758420830070 a001 17711/1149851*599074578^(1/14) 6524758420830070 a004 Fibonacci(29)/Lucas(22)/(1/2+sqrt(5)/2)^11 6524758420830071 a001 17711/1149851*33385282^(1/12) 6524758420830259 a001 17711/1149851*1860498^(1/10) 6524758420830671 a001 17711/87403803*710647^(3/7) 6524758420831595 a001 17711/228826127*710647^(1/2) 6524758420832518 a001 17711/599074578*710647^(4/7) 6524758420833441 a001 17711/1568397607*710647^(9/14) 6524758420834290 a001 416020/299537289*24476^(8/21) 6524758420834364 a001 17711/4106118243*710647^(5/7) 6524758420834825 a001 17711/6643838879*710647^(3/4) 6524758420835286 a001 17711/10749957122*710647^(11/14) 6524758420835900 a001 311187/224056801*24476^(8/21) 6524758420836135 a001 5702887/4106118243*24476^(8/21) 6524758420836169 a001 7465176/5374978561*24476^(8/21) 6524758420836174 a001 39088169/28143753123*24476^(8/21) 6524758420836175 a001 14619165/10525900321*24476^(8/21) 6524758420836175 a001 133957148/96450076809*24476^(8/21) 6524758420836175 a001 701408733/505019158607*24476^(8/21) 6524758420836175 a001 1836311903/1322157322203*24476^(8/21) 6524758420836175 a001 14930208/10749853441*24476^(8/21) 6524758420836175 a001 12586269025/9062201101803*24476^(8/21) 6524758420836175 a001 32951280099/23725150497407*24476^(8/21) 6524758420836175 a001 10182505537/7331474697802*24476^(8/21) 6524758420836175 a001 7778742049/5600748293801*24476^(8/21) 6524758420836175 a001 2971215073/2139295485799*24476^(8/21) 6524758420836175 a001 567451585/408569081798*24476^(8/21) 6524758420836175 a001 433494437/312119004989*24476^(8/21) 6524758420836175 a001 165580141/119218851371*24476^(8/21) 6524758420836175 a001 31622993/22768774562*24476^(8/21) 6524758420836177 a001 24157817/17393796001*24476^(8/21) 6524758420836190 a001 9227465/6643838879*24476^(8/21) 6524758420836209 a001 17711/28143753123*710647^(6/7) 6524758420836280 a001 1762289/1268860318*24476^(8/21) 6524758420836874 a001 17711/1860498*271443^(2/13) 6524758420836895 a001 1346269/969323029*24476^(8/21) 6524758420837132 a001 17711/73681302247*710647^(13/14) 6524758420838055 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^54 6524758420841110 a001 514229/370248451*24476^(8/21) 6524758420845296 a001 17711/4870847*271443^(3/13) 6524758420852342 a001 17711/12752043*271443^(4/13) 6524758420858960 a001 3478759198/53316291173 6524758420858960 a001 17711/878408+17711/878408*5^(1/2) 6524758420858960 a004 Fibonacci(27)/Lucas(22)/(1/2+sqrt(5)/2)^9 6524758420859188 a001 17711/33385282*271443^(5/13) 6524758420862795 a001 17711/710647*103682^(1/12) 6524758420866005 a001 17711/87403803*271443^(6/13) 6524758420869294 a001 28657/87403803*24476^(11/21) 6524758420869412 a001 17711/141422324*271443^(1/2) 6524758420870000 a001 98209/70711162*24476^(8/21) 6524758420872818 a001 17711/228826127*271443^(7/13) 6524758420879630 a001 17711/599074578*271443^(8/13) 6524758420884250 a001 17711/439204*103682^(1/24) 6524758420886442 a001 17711/1568397607*271443^(9/13) 6524758420893253 a001 17711/4106118243*271443^(10/13) 6524758420900065 a001 17711/10749957122*271443^(11/13) 6524758420905940 a001 17711/1149851*103682^(1/8) 6524758420906877 a001 17711/28143753123*271443^(12/13) 6524758420913689 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^52 6524758420924410 a001 17711/1860498*103682^(1/6) 6524758420952304 a001 17711/3010349*103682^(5/24) 6524758420968458 a001 121393/3010349*9349^(1/19) 6524758420976599 a001 17711/4870847*103682^(1/4) 6524758421002269 a001 89/39604*103682^(7/24) 6524758421027414 a001 17711/12752043*103682^(1/3) 6524758421043477 a001 317811/7881196*9349^(1/19) 6524758421048057 a001 17711/439204*39603^(1/22) 6524758421052759 a001 17711/20633239*103682^(3/8) 6524758421054422 a001 75640/1875749*9349^(1/19) 6524758421056019 a001 2178309/54018521*9349^(1/19) 6524758421056252 a001 5702887/141422324*9349^(1/19) 6524758421056286 a001 14930352/370248451*9349^(1/19) 6524758421056291 a001 39088169/969323029*9349^(1/19) 6524758421056292 a001 9303105/230701876*9349^(1/19) 6524758421056292 a001 267914296/6643838879*9349^(1/19) 6524758421056292 a001 701408733/17393796001*9349^(1/19) 6524758421056292 a001 1836311903/45537549124*9349^(1/19) 6524758421056292 a001 4807526976/119218851371*9349^(1/19) 6524758421056292 a001 1144206275/28374454999*9349^(1/19) 6524758421056292 a001 32951280099/817138163596*9349^(1/19) 6524758421056292 a001 86267571272/2139295485799*9349^(1/19) 6524758421056292 a001 225851433717/5600748293801*9349^(1/19) 6524758421056292 a001 591286729879/14662949395604*9349^(1/19) 6524758421056292 a001 365435296162/9062201101803*9349^(1/19) 6524758421056292 a001 139583862445/3461452808002*9349^(1/19) 6524758421056292 a001 53316291173/1322157322203*9349^(1/19) 6524758421056292 a001 20365011074/505019158607*9349^(1/19) 6524758421056292 a001 7778742049/192900153618*9349^(1/19) 6524758421056292 a001 2971215073/73681302247*9349^(1/19) 6524758421056292 a001 1134903170/28143753123*9349^(1/19) 6524758421056292 a001 433494437/10749957122*9349^(1/19) 6524758421056292 a001 165580141/4106118243*9349^(1/19) 6524758421056292 a001 63245986/1568397607*9349^(1/19) 6524758421056294 a001 24157817/599074578*9349^(1/19) 6524758421056307 a001 9227465/228826127*9349^(1/19) 6524758421056396 a001 3524578/87403803*9349^(1/19) 6524758421056972 a001 1328767775/20365011074 6524758421056972 a004 Fibonacci(22)/Lucas(25)/(1/2+sqrt(5)/2) 6524758421056972 a004 Fibonacci(25)/Lucas(22)/(1/2+sqrt(5)/2)^7 6524758421057006 a001 1346269/33385282*9349^(1/19) 6524758421061187 a001 514229/12752043*9349^(1/19) 6524758421068014 a001 75025/54018521*24476^(8/21) 6524758421078028 a001 17711/33385282*103682^(5/12) 6524758421089842 a001 196418/4870847*9349^(1/19) 6524758421103326 a001 17711/54018521*103682^(11/24) 6524758421128613 a001 17711/87403803*103682^(1/2) 6524758421153904 a001 17711/141422324*103682^(13/24) 6524758421179193 a001 17711/228826127*103682^(7/12) 6524758421190410 a001 17711/710647*39603^(1/11) 6524758421204483 a001 17711/370248451*103682^(5/8) 6524758421229773 a001 17711/599074578*103682^(2/3) 6524758421255063 a001 17711/969323029*103682^(17/24) 6524758421266261 a001 121393/54018521*24476^(1/3) 6524758421266454 a001 15456/4250681*24476^(2/7) 6524758421280353 a001 17711/1568397607*103682^(3/4) 6524758421286244 a001 75025/1860498*9349^(1/19) 6524758421305643 a001 17711/2537720636*103682^(19/24) 6524758421330932 a001 17711/4106118243*103682^(5/6) 6524758421341893 a001 317811/141422324*24476^(1/3) 6524758421352928 a001 832040/370248451*24476^(1/3) 6524758421354538 a001 2178309/969323029*24476^(1/3) 6524758421354773 a001 5702887/2537720636*24476^(1/3) 6524758421354807 a001 14930352/6643838879*24476^(1/3) 6524758421354812 a001 39088169/17393796001*24476^(1/3) 6524758421354813 a001 102334155/45537549124*24476^(1/3) 6524758421354813 a001 267914296/119218851371*24476^(1/3) 6524758421354813 a001 3524667/1568437211*24476^(1/3) 6524758421354813 a001 1836311903/817138163596*24476^(1/3) 6524758421354813 a001 4807526976/2139295485799*24476^(1/3) 6524758421354813 a001 12586269025/5600748293801*24476^(1/3) 6524758421354813 a001 32951280099/14662949395604*24476^(1/3) 6524758421354813 a001 53316291173/23725150497407*24476^(1/3) 6524758421354813 a001 20365011074/9062201101803*24476^(1/3) 6524758421354813 a001 7778742049/3461452808002*24476^(1/3) 6524758421354813 a001 2971215073/1322157322203*24476^(1/3) 6524758421354813 a001 1134903170/505019158607*24476^(1/3) 6524758421354813 a001 433494437/192900153618*24476^(1/3) 6524758421354813 a001 165580141/73681302247*24476^(1/3) 6524758421354813 a001 63245986/28143753123*24476^(1/3) 6524758421354815 a001 24157817/10749957122*24476^(1/3) 6524758421354828 a001 9227465/4106118243*24476^(1/3) 6524758421354918 a001 3524578/1568397607*24476^(1/3) 6524758421355533 a001 1346269/599074578*24476^(1/3) 6524758421356222 a001 17711/6643838879*103682^(7/8) 6524758421359748 a001 514229/228826127*24476^(1/3) 6524758421381512 a001 17711/10749957122*103682^(11/12) 6524758421387935 a001 28657/54018521*24476^(10/21) 6524758421388637 a001 196418/87403803*24476^(1/3) 6524758421397362 a001 17711/1149851*39603^(3/22) 6524758421406802 a001 17711/17393796001*103682^(23/24) 6524758421432092 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^50 6524758421579640 a001 17711/1860498*39603^(2/11) 6524758421586644 a001 75025/33385282*24476^(1/3) 6524758421771342 a001 17711/3010349*39603^(5/22) 6524758421784891 a001 121393/33385282*24476^(2/7) 6524758421785237 a001 11592/1970299*24476^(5/21) 6524758421860530 a001 105937/29134601*24476^(2/7) 6524758421871566 a001 832040/228826127*24476^(2/7) 6524758421873176 a001 726103/199691526*24476^(2/7) 6524758421873411 a001 5702887/1568397607*24476^(2/7) 6524758421873445 a001 4976784/1368706081*24476^(2/7) 6524758421873450 a001 39088169/10749957122*24476^(2/7) 6524758421873451 a001 831985/228811001*24476^(2/7) 6524758421873451 a001 267914296/73681302247*24476^(2/7) 6524758421873451 a001 233802911/64300051206*24476^(2/7) 6524758421873451 a001 1836311903/505019158607*24476^(2/7) 6524758421873451 a001 1602508992/440719107401*24476^(2/7) 6524758421873451 a001 12586269025/3461452808002*24476^(2/7) 6524758421873451 a001 10983760033/3020733700601*24476^(2/7) 6524758421873451 a001 86267571272/23725150497407*24476^(2/7) 6524758421873451 a001 53316291173/14662949395604*24476^(2/7) 6524758421873451 a001 20365011074/5600748293801*24476^(2/7) 6524758421873451 a001 7778742049/2139295485799*24476^(2/7) 6524758421873451 a001 2971215073/817138163596*24476^(2/7) 6524758421873451 a001 1134903170/312119004989*24476^(2/7) 6524758421873451 a001 433494437/119218851371*24476^(2/7) 6524758421873451 a001 165580141/45537549124*24476^(2/7) 6524758421873451 a001 63245986/17393796001*24476^(2/7) 6524758421873453 a001 24157817/6643838879*24476^(2/7) 6524758421873466 a001 9227465/2537720636*24476^(2/7) 6524758421873556 a001 3524578/969323029*24476^(2/7) 6524758421874171 a001 1346269/370248451*24476^(2/7) 6524758421878386 a001 514229/141422324*24476^(2/7) 6524758421906565 a001 28657/33385282*24476^(3/7) 6524758421907278 a001 196418/54018521*24476^(2/7) 6524758421959445 a001 17711/4870847*39603^(3/11) 6524758422105303 a001 75025/20633239*24476^(2/7) 6524758422133874 a001 2255/199691526*15127^(9/10) 6524758422148922 a001 89/39604*39603^(7/22) 6524758422284662 a001 17711/439204*15127^(1/20) 6524758422303495 a001 46368/4870847*24476^(4/21) 6524758422303550 a001 121393/20633239*24476^(5/21) 6524758422337874 a001 17711/12752043*39603^(4/11) 6524758422379171 a001 317811/54018521*24476^(5/21) 6524758422390204 a001 208010/35355581*24476^(5/21) 6524758422391814 a001 2178309/370248451*24476^(5/21) 6524758422392049 a001 5702887/969323029*24476^(5/21) 6524758422392083 a001 196452/33391061*24476^(5/21) 6524758422392088 a001 39088169/6643838879*24476^(5/21) 6524758422392089 a001 102334155/17393796001*24476^(5/21) 6524758422392089 a001 66978574/11384387281*24476^(5/21) 6524758422392089 a001 701408733/119218851371*24476^(5/21) 6524758422392089 a001 1836311903/312119004989*24476^(5/21) 6524758422392089 a001 1201881744/204284540899*24476^(5/21) 6524758422392089 a001 12586269025/2139295485799*24476^(5/21) 6524758422392089 a001 32951280099/5600748293801*24476^(5/21) 6524758422392089 a001 1135099622/192933544679*24476^(5/21) 6524758422392089 a001 139583862445/23725150497407*24476^(5/21) 6524758422392089 a001 53316291173/9062201101803*24476^(5/21) 6524758422392089 a001 10182505537/1730726404001*24476^(5/21) 6524758422392089 a001 7778742049/1322157322203*24476^(5/21) 6524758422392089 a001 2971215073/505019158607*24476^(5/21) 6524758422392089 a001 567451585/96450076809*24476^(5/21) 6524758422392089 a001 433494437/73681302247*24476^(5/21) 6524758422392089 a001 165580141/28143753123*24476^(5/21) 6524758422392089 a001 31622993/5374978561*24476^(5/21) 6524758422392091 a001 24157817/4106118243*24476^(5/21) 6524758422392104 a001 9227465/1568397607*24476^(5/21) 6524758422392194 a001 1762289/299537289*24476^(5/21) 6524758422392809 a001 1346269/228826127*24476^(5/21) 6524758422397023 a001 514229/87403803*24476^(5/21) 6524758422414168 a001 507544127/7778742049 6524758422414168 a004 Fibonacci(22)/Lucas(23)/(1/2+sqrt(5)/2)^3 6524758422414168 a004 Fibonacci(23)/Lucas(22)/(1/2+sqrt(5)/2)^5 6524758422425224 a001 28657/20633239*24476^(8/21) 6524758422425907 a001 98209/16692641*24476^(5/21) 6524758422527027 a001 17711/20633239*39603^(9/22) 6524758422623885 a001 75025/12752043*24476^(5/21) 6524758422632405 a001 28657/710647*9349^(1/19) 6524758422716103 a001 17711/33385282*39603^(5/11) 6524758422789288 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^51 6524758422822133 a001 121393/12752043*24476^(4/21) 6524758422823128 a001 46368/3010349*24476^(1/7) 6524758422858377 a001 15456/9381251041*64079^(22/23) 6524758422897801 a001 317811/33385282*24476^(4/21) 6524758422905209 a001 17711/54018521*39603^(1/2) 6524758422908841 a001 832040/87403803*24476^(4/21) 6524758422910452 a001 46347/4868641*24476^(4/21) 6524758422910686 a001 5702887/599074578*24476^(4/21) 6524758422910721 a001 14930352/1568397607*24476^(4/21) 6524758422910726 a001 39088169/4106118243*24476^(4/21) 6524758422910727 a001 102334155/10749957122*24476^(4/21) 6524758422910727 a001 267914296/28143753123*24476^(4/21) 6524758422910727 a001 701408733/73681302247*24476^(4/21) 6524758422910727 a001 1836311903/192900153618*24476^(4/21) 6524758422910727 a001 102287808/10745088481*24476^(4/21) 6524758422910727 a001 12586269025/1322157322203*24476^(4/21) 6524758422910727 a001 32951280099/3461452808002*24476^(4/21) 6524758422910727 a001 86267571272/9062201101803*24476^(4/21) 6524758422910727 a001 225851433717/23725150497407*24476^(4/21) 6524758422910727 a001 139583862445/14662949395604*24476^(4/21) 6524758422910727 a001 53316291173/5600748293801*24476^(4/21) 6524758422910727 a001 20365011074/2139295485799*24476^(4/21) 6524758422910727 a001 7778742049/817138163596*24476^(4/21) 6524758422910727 a001 2971215073/312119004989*24476^(4/21) 6524758422910727 a001 1134903170/119218851371*24476^(4/21) 6524758422910727 a001 433494437/45537549124*24476^(4/21) 6524758422910727 a001 165580141/17393796001*24476^(4/21) 6524758422910727 a001 63245986/6643838879*24476^(4/21) 6524758422910729 a001 24157817/2537720636*24476^(4/21) 6524758422910742 a001 9227465/969323029*24476^(4/21) 6524758422910832 a001 3524578/370248451*24476^(4/21) 6524758422911447 a001 1346269/141422324*24476^(4/21) 6524758422915664 a001 514229/54018521*24476^(4/21) 6524758422927465 a001 46368/17393796001*64079^(21/23) 6524758422943806 a001 28657/12752043*24476^(1/3) 6524758422944567 a001 196418/20633239*24476^(4/21) 6524758422996554 a001 23184/5374978561*64079^(20/23) 6524758423065642 a001 46368/6643838879*64079^(19/23) 6524758423094303 a001 17711/87403803*39603^(6/11) 6524758423134730 a001 15456/1368706081*64079^(18/23) 6524758423142669 a001 75025/7881196*24476^(4/21) 6524758423203819 a001 11592/634430159*64079^(17/23) 6524758423272907 a001 6624/224056801*64079^(16/23) 6524758423283402 a001 17711/141422324*39603^(13/22) 6524758423307691 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^53 6524758423339161 a001 2576/103361*24476^(2/21) 6524758423340916 a001 121393/7881196*24476^(1/7) 6524758423341996 a001 46368/969323029*64079^(15/23) 6524758423362420 a001 64079/196418*8^(1/3) 6524758423376780 a001 121393/73681302247*64079^(22/23) 6524758423383325 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^55 6524758423394360 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^57 6524758423395970 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^59 6524758423396205 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^61 6524758423396239 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^63 6524758423396244 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^65 6524758423396245 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^67 6524758423396245 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^69 6524758423396245 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^71 6524758423396245 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^73 6524758423396245 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^75 6524758423396245 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^77 6524758423396245 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^79 6524758423396245 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^81 6524758423396245 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^83 6524758423396245 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^85 6524758423396245 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^87 6524758423396245 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^89 6524758423396245 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^91 6524758423396245 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^93 6524758423396245 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^95 6524758423396245 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^97 6524758423396245 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^99 6524758423396245 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^100 6524758423396245 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^98 6524758423396245 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^96 6524758423396245 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^94 6524758423396245 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^92 6524758423396245 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^90 6524758423396245 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^88 6524758423396245 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^86 6524758423396245 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^84 6524758423396245 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^82 6524758423396245 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^80 6524758423396245 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^78 6524758423396245 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^76 6524758423396245 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^74 6524758423396245 a001 2/28657*(1/2+1/2*5^(1/2))^19 6524758423396245 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^72 6524758423396245 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^70 6524758423396245 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^68 6524758423396245 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^66 6524758423396247 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^64 6524758423396260 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^62 6524758423396350 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^60 6524758423396965 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^58 6524758423401180 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^56 6524758423411084 a001 2576/33281921*64079^(14/23) 6524758423416460 a001 10959/711491*24476^(1/7) 6524758423427482 a001 832040/54018521*24476^(1/7) 6524758423429090 a001 2178309/141422324*24476^(1/7) 6524758423429324 a001 5702887/370248451*24476^(1/7) 6524758423429359 a001 14930352/969323029*24476^(1/7) 6524758423429364 a001 39088169/2537720636*24476^(1/7) 6524758423429364 a001 102334155/6643838879*24476^(1/7) 6524758423429365 a001 9238424/599786069*24476^(1/7) 6524758423429365 a001 701408733/45537549124*24476^(1/7) 6524758423429365 a001 1836311903/119218851371*24476^(1/7) 6524758423429365 a001 4807526976/312119004989*24476^(1/7) 6524758423429365 a001 12586269025/817138163596*24476^(1/7) 6524758423429365 a001 32951280099/2139295485799*24476^(1/7) 6524758423429365 a001 86267571272/5600748293801*24476^(1/7) 6524758423429365 a001 7787980473/505618944676*24476^(1/7) 6524758423429365 a001 365435296162/23725150497407*24476^(1/7) 6524758423429365 a001 139583862445/9062201101803*24476^(1/7) 6524758423429365 a001 53316291173/3461452808002*24476^(1/7) 6524758423429365 a001 20365011074/1322157322203*24476^(1/7) 6524758423429365 a001 7778742049/505019158607*24476^(1/7) 6524758423429365 a001 2971215073/192900153618*24476^(1/7) 6524758423429365 a001 1134903170/73681302247*24476^(1/7) 6524758423429365 a001 433494437/28143753123*24476^(1/7) 6524758423429365 a001 165580141/10749957122*24476^(1/7) 6524758423429365 a001 63245986/4106118243*24476^(1/7) 6524758423429367 a001 24157817/1568397607*24476^(1/7) 6524758423429380 a001 9227465/599074578*24476^(1/7) 6524758423429469 a001 3524578/228826127*24476^(1/7) 6524758423430070 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^54 6524758423430084 a001 1346269/87403803*24476^(1/7) 6524758423434294 a001 514229/33385282*24476^(1/7) 6524758423445868 a001 121393/45537549124*64079^(21/23) 6524758423452414 a001 105937/64300051206*64079^(22/23) 6524758423462589 a001 28657/7881196*24476^(2/7) 6524758423463149 a001 196418/12752043*24476^(1/7) 6524758423463448 a001 832040/505019158607*64079^(22/23) 6524758423465058 a001 726103/440719107401*64079^(22/23) 6524758423465293 a001 5702887/3461452808002*64079^(22/23) 6524758423465328 a001 4976784/3020733700601*64079^(22/23) 6524758423465333 a001 39088169/23725150497407*64079^(22/23) 6524758423465336 a001 24157817/14662949395604*64079^(22/23) 6524758423465349 a001 9227465/5600748293801*64079^(22/23) 6524758423465438 a001 3524578/2139295485799*64079^(22/23) 6524758423466053 a001 1346269/817138163596*64079^(22/23) 6524758423470268 a001 514229/312119004989*64079^(22/23) 6524758423472499 a001 17711/228826127*39603^(7/11) 6524758423480172 a001 46368/370248451*64079^(13/23) 6524758423499158 a001 196418/119218851371*64079^(22/23) 6524758423514956 a001 121393/28143753123*64079^(20/23) 6524758423521502 a001 317811/119218851371*64079^(21/23) 6524758423532537 a001 75640/28374454999*64079^(21/23) 6524758423534147 a001 2178309/817138163596*64079^(21/23) 6524758423534382 a001 5702887/2139295485799*64079^(21/23) 6524758423534416 a001 14930352/5600748293801*64079^(21/23) 6524758423534421 a001 39088169/14662949395604*64079^(21/23) 6524758423534422 a001 63245986/23725150497407*64079^(21/23) 6524758423534424 a001 24157817/9062201101803*64079^(21/23) 6524758423534437 a001 9227465/3461452808002*64079^(21/23) 6524758423534527 a001 3524578/1322157322203*64079^(21/23) 6524758423535142 a001 1346269/505019158607*64079^(21/23) 6524758423539357 a001 514229/192900153618*64079^(21/23) 6524758423549261 a001 46368/228826127*64079^(12/23) 6524758423559576 a001 6765/969323029*15127^(19/20) 6524758423568246 a001 196418/73681302247*64079^(21/23) 6524758423584045 a001 121393/17393796001*64079^(19/23) 6524758423590590 a001 317811/73681302247*64079^(20/23) 6524758423601625 a001 416020/96450076809*64079^(20/23) 6524758423603235 a001 46347/10745088481*64079^(20/23) 6524758423603470 a001 5702887/1322157322203*64079^(20/23) 6524758423603504 a001 7465176/1730726404001*64079^(20/23) 6524758423603509 a001 39088169/9062201101803*64079^(20/23) 6524758423603510 a001 102334155/23725150497407*64079^(20/23) 6524758423603511 a001 31622993/7331474697802*64079^(20/23) 6524758423603512 a001 24157817/5600748293801*64079^(20/23) 6524758423603526 a001 9227465/2139295485799*64079^(20/23) 6524758423603615 a001 1762289/408569081798*64079^(20/23) 6524758423604230 a001 1346269/312119004989*64079^(20/23) 6524758423608445 a001 514229/119218851371*64079^(20/23) 6524758423618349 a001 11592/35355581*64079^(11/23) 6524758423628082 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^52 6524758423637335 a001 98209/22768774562*64079^(20/23) 6524758423653133 a001 121393/10749957122*64079^(18/23) 6524758423659679 a001 317811/45537549124*64079^(19/23) 6524758423660926 a001 75025/4870847*24476^(1/7) 6524758423661596 a001 17711/370248451*39603^(15/22) 6524758423663620 a001 17711/710647*15127^(1/10) 6524758423670714 a001 832040/119218851371*64079^(19/23) 6524758423672324 a001 2178309/312119004989*64079^(19/23) 6524758423672558 a001 5702887/817138163596*64079^(19/23) 6524758423672593 a001 14930352/2139295485799*64079^(19/23) 6524758423672598 a001 39088169/5600748293801*64079^(19/23) 6524758423672598 a001 102334155/14662949395604*64079^(19/23) 6524758423672599 a001 165580141/23725150497407*64079^(19/23) 6524758423672599 a001 63245986/9062201101803*64079^(19/23) 6524758423672601 a001 24157817/3461452808002*64079^(19/23) 6524758423672614 a001 9227465/1322157322203*64079^(19/23) 6524758423672704 a001 3524578/505019158607*64079^(19/23) 6524758423673319 a001 1346269/192900153618*64079^(19/23) 6524758423677534 a001 514229/73681302247*64079^(19/23) 6524758423687437 a001 15456/29134601*64079^(10/23) 6524758423697170 a001 75025/45537549124*64079^(22/23) 6524758423706423 a001 196418/28143753123*64079^(19/23) 6524758423722222 a001 121393/6643838879*64079^(17/23) 6524758423728767 a001 105937/9381251041*64079^(18/23) 6524758423739802 a001 832040/73681302247*64079^(18/23) 6524758423741412 a001 726103/64300051206*64079^(18/23) 6524758423741647 a001 5702887/505019158607*64079^(18/23) 6524758423741681 a001 4976784/440719107401*64079^(18/23) 6524758423741686 a001 39088169/3461452808002*64079^(18/23) 6524758423741687 a001 34111385/3020733700601*64079^(18/23) 6524758423741687 a001 267914296/23725150497407*64079^(18/23) 6524758423741687 a001 165580141/14662949395604*64079^(18/23) 6524758423741687 a001 63245986/5600748293801*64079^(18/23) 6524758423741689 a001 24157817/2139295485799*64079^(18/23) 6524758423741702 a001 9227465/817138163596*64079^(18/23) 6524758423741792 a001 3524578/312119004989*64079^(18/23) 6524758423742407 a001 1346269/119218851371*64079^(18/23) 6524758423746622 a001 514229/45537549124*64079^(18/23) 6524758423756528 a001 46368/54018521*64079^(9/23) 6524758423766259 a001 75025/28143753123*64079^(21/23) 6524758423771365 a001 716663808/10983760033 6524758423771365 a004 Fibonacci(24)/Lucas(24)/(1/2+sqrt(5)/2)^4 6524758423775512 a001 196418/17393796001*64079^(18/23) 6524758423791310 a001 121393/4106118243*64079^(16/23) 6524758423797856 a001 10959/599786069*64079^(17/23) 6524758423808890 a001 208010/11384387281*64079^(17/23) 6524758423810500 a001 2178309/119218851371*64079^(17/23) 6524758423810735 a001 5702887/312119004989*64079^(17/23) 6524758423810770 a001 3732588/204284540899*64079^(17/23) 6524758423810775 a001 39088169/2139295485799*64079^(17/23) 6524758423810775 a001 102334155/5600748293801*64079^(17/23) 6524758423810775 a001 10946/599074579*64079^(17/23) 6524758423810775 a001 433494437/23725150497407*64079^(17/23) 6524758423810775 a001 165580141/9062201101803*64079^(17/23) 6524758423810776 a001 31622993/1730726404001*64079^(17/23) 6524758423810778 a001 24157817/1322157322203*64079^(17/23) 6524758423810791 a001 9227465/505019158607*64079^(17/23) 6524758423810880 a001 1762289/96450076809*64079^(17/23) 6524758423811495 a001 1346269/73681302247*64079^(17/23) 6524758423815710 a001 514229/28143753123*64079^(17/23) 6524758423825608 a001 144/103681*64079^(8/23) 6524758423835347 a001 75025/17393796001*64079^(20/23) 6524758423844600 a001 98209/5374978561*64079^(17/23) 6524758423850694 a001 17711/599074578*39603^(8/11) 6524758423859174 a001 121393/4870847*24476^(2/21) 6524758423860398 a001 121393/2537720636*64079^(15/23) 6524758423864619 a001 46368/1149851*24476^(1/21) 6524758423866944 a001 317811/10749957122*64079^(16/23) 6524758423877979 a001 832040/28143753123*64079^(16/23) 6524758423879589 a001 311187/10525900321*64079^(16/23) 6524758423879824 a001 5702887/192900153618*64079^(16/23) 6524758423879858 a001 14930352/505019158607*64079^(16/23) 6524758423879863 a001 39088169/1322157322203*64079^(16/23) 6524758423879864 a001 6765/228826126*64079^(16/23) 6524758423879864 a001 267914296/9062201101803*64079^(16/23) 6524758423879864 a001 701408733/23725150497407*64079^(16/23) 6524758423879864 a001 433494437/14662949395604*64079^(16/23) 6524758423879864 a001 165580141/5600748293801*64079^(16/23) 6524758423879864 a001 63245986/2139295485799*64079^(16/23) 6524758423879866 a001 24157817/817138163596*64079^(16/23) 6524758423879879 a001 9227465/312119004989*64079^(16/23) 6524758423879969 a001 3524578/119218851371*64079^(16/23) 6524758423880584 a001 1346269/45537549124*64079^(16/23) 6524758423884799 a001 514229/17393796001*64079^(16/23) 6524758423894718 a001 46368/20633239*64079^(7/23) 6524758423904435 a001 75025/10749957122*64079^(19/23) 6524758423913688 a001 196418/6643838879*64079^(16/23) 6524758423929487 a001 121393/1568397607*64079^(14/23) 6524758423935042 a001 105937/4250681*24476^(2/21) 6524758423936032 a001 317811/6643838879*64079^(15/23) 6524758423946112 a001 416020/16692641*24476^(2/21) 6524758423947067 a001 832040/17393796001*64079^(15/23) 6524758423947727 a001 726103/29134601*24476^(2/21) 6524758423947962 a001 5702887/228826127*24476^(2/21) 6524758423947997 a001 829464/33281921*24476^(2/21) 6524758423948002 a001 39088169/1568397607*24476^(2/21) 6524758423948002 a001 34111385/1368706081*24476^(2/21) 6524758423948002 a001 133957148/5374978561*24476^(2/21) 6524758423948002 a001 233802911/9381251041*24476^(2/21) 6524758423948002 a001 1836311903/73681302247*24476^(2/21) 6524758423948002 a001 267084832/10716675201*24476^(2/21) 6524758423948002 a001 12586269025/505019158607*24476^(2/21) 6524758423948002 a001 10983760033/440719107401*24476^(2/21) 6524758423948002 a001 43133785636/1730726404001*24476^(2/21) 6524758423948002 a001 75283811239/3020733700601*24476^(2/21) 6524758423948002 a001 182717648081/7331474697802*24476^(2/21) 6524758423948002 a001 139583862445/5600748293801*24476^(2/21) 6524758423948002 a001 53316291173/2139295485799*24476^(2/21) 6524758423948002 a001 10182505537/408569081798*24476^(2/21) 6524758423948002 a001 7778742049/312119004989*24476^(2/21) 6524758423948002 a001 2971215073/119218851371*24476^(2/21) 6524758423948002 a001 567451585/22768774562*24476^(2/21) 6524758423948002 a001 433494437/17393796001*24476^(2/21) 6524758423948002 a001 165580141/6643838879*24476^(2/21) 6524758423948003 a001 31622993/1268860318*24476^(2/21) 6524758423948005 a001 24157817/969323029*24476^(2/21) 6524758423948018 a001 9227465/370248451*24476^(2/21) 6524758423948108 a001 1762289/70711162*24476^(2/21) 6524758423948677 a001 2178309/45537549124*64079^(15/23) 6524758423948725 a001 1346269/54018521*24476^(2/21) 6524758423948912 a001 5702887/119218851371*64079^(15/23) 6524758423948946 a001 14930352/312119004989*64079^(15/23) 6524758423948951 a001 4181/87403804*64079^(15/23) 6524758423948952 a001 102334155/2139295485799*64079^(15/23) 6524758423948952 a001 267914296/5600748293801*64079^(15/23) 6524758423948952 a001 701408733/14662949395604*64079^(15/23) 6524758423948952 a001 1134903170/23725150497407*64079^(15/23) 6524758423948952 a001 433494437/9062201101803*64079^(15/23) 6524758423948952 a001 165580141/3461452808002*64079^(15/23) 6524758423948953 a001 63245986/1322157322203*64079^(15/23) 6524758423948954 a001 24157817/505019158607*64079^(15/23) 6524758423948968 a001 9227465/192900153618*64079^(15/23) 6524758423949057 a001 3524578/73681302247*64079^(15/23) 6524758423949672 a001 1346269/28143753123*64079^(15/23) 6524758423952953 a001 514229/20633239*24476^(2/21) 6524758423953887 a001 514229/10749957122*64079^(15/23) 6524758423963751 a001 15456/4250681*64079^(6/23) 6524758423973524 a001 75025/6643838879*64079^(18/23) 6524758423980847 a001 28657/4870847*24476^(5/21) 6524758423981932 a001 98209/3940598*24476^(2/21) 6524758423982777 a001 196418/4106118243*64079^(15/23) 6524758423998575 a001 121393/969323029*64079^(13/23) 6524758424005121 a001 105937/1368706081*64079^(14/23) 6524758424016156 a001 416020/5374978561*64079^(14/23) 6524758424017766 a001 726103/9381251041*64079^(14/23) 6524758424018000 a001 5702887/73681302247*64079^(14/23) 6524758424018035 a001 2584/33385281*64079^(14/23) 6524758424018040 a001 39088169/505019158607*64079^(14/23) 6524758424018040 a001 34111385/440719107401*64079^(14/23) 6524758424018041 a001 133957148/1730726404001*64079^(14/23) 6524758424018041 a001 233802911/3020733700601*64079^(14/23) 6524758424018041 a001 1836311903/23725150497407*64079^(14/23) 6524758424018041 a001 567451585/7331474697802*64079^(14/23) 6524758424018041 a001 433494437/5600748293801*64079^(14/23) 6524758424018041 a001 165580141/2139295485799*64079^(14/23) 6524758424018041 a001 31622993/408569081798*64079^(14/23) 6524758424018043 a001 24157817/312119004989*64079^(14/23) 6524758424018056 a001 9227465/119218851371*64079^(14/23) 6524758424018146 a001 1762289/22768774562*64079^(14/23) 6524758424018761 a001 1346269/17393796001*64079^(14/23) 6524758424022976 a001 514229/6643838879*64079^(14/23) 6524758424032985 a001 11592/1970299*64079^(5/23) 6524758424039791 a001 17711/969323029*39603^(17/22) 6524758424042612 a001 75025/4106118243*64079^(17/23) 6524758424051865 a001 98209/1268860318*64079^(14/23) 6524758424067664 a001 121393/599074578*64079^(12/23) 6524758424074209 a001 317811/2537720636*64079^(13/23) 6524758424076796 a001 10946/710647*9349^(3/19) 6524758424085244 a001 832040/6643838879*64079^(13/23) 6524758424086854 a001 2178309/17393796001*64079^(13/23) 6524758424087089 a001 1597/12752044*64079^(13/23) 6524758424087123 a001 14930352/119218851371*64079^(13/23) 6524758424087128 a001 39088169/312119004989*64079^(13/23) 6524758424087129 a001 102334155/817138163596*64079^(13/23) 6524758424087129 a001 267914296/2139295485799*64079^(13/23) 6524758424087129 a001 701408733/5600748293801*64079^(13/23) 6524758424087129 a001 1836311903/14662949395604*64079^(13/23) 6524758424087129 a001 2971215073/23725150497407*64079^(13/23) 6524758424087129 a001 1134903170/9062201101803*64079^(13/23) 6524758424087129 a001 433494437/3461452808002*64079^(13/23) 6524758424087129 a001 165580141/1322157322203*64079^(13/23) 6524758424087129 a001 63245986/505019158607*64079^(13/23) 6524758424087131 a001 24157817/192900153618*64079^(13/23) 6524758424087144 a001 9227465/73681302247*64079^(13/23) 6524758424087234 a001 3524578/28143753123*64079^(13/23) 6524758424087849 a001 1346269/10749957122*64079^(13/23) 6524758424092064 a001 514229/4106118243*64079^(13/23) 6524758424101693 a001 46368/4870847*64079^(4/23) 6524758424111701 a001 75025/2537720636*64079^(16/23) 6524758424120954 a001 196418/1568397607*64079^(13/23) 6524758424136752 a001 121393/370248451*64079^(11/23) 6524758424143298 a001 317811/1568397607*64079^(12/23) 6524758424146485 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^53 6524758424154332 a001 832040/4106118243*64079^(12/23) 6524758424155942 a001 987/4870846*64079^(12/23) 6524758424156177 a001 5702887/28143753123*64079^(12/23) 6524758424156212 a001 14930352/73681302247*64079^(12/23) 6524758424156217 a001 39088169/192900153618*64079^(12/23) 6524758424156217 a001 102334155/505019158607*64079^(12/23) 6524758424156217 a001 267914296/1322157322203*64079^(12/23) 6524758424156217 a001 701408733/3461452808002*64079^(12/23) 6524758424156217 a001 1836311903/9062201101803*64079^(12/23) 6524758424156217 a001 4807526976/23725150497407*64079^(12/23) 6524758424156217 a001 2971215073/14662949395604*64079^(12/23) 6524758424156217 a001 1134903170/5600748293801*64079^(12/23) 6524758424156217 a001 433494437/2139295485799*64079^(12/23) 6524758424156217 a001 165580141/817138163596*64079^(12/23) 6524758424156218 a001 63245986/312119004989*64079^(12/23) 6524758424156220 a001 24157817/119218851371*64079^(12/23) 6524758424156233 a001 9227465/45537549124*64079^(12/23) 6524758424156322 a001 3524578/17393796001*64079^(12/23) 6524758424156937 a001 1346269/6643838879*64079^(12/23) 6524758424161152 a001 514229/2537720636*64079^(12/23) 6524758424171776 a001 46368/3010349*64079^(3/23) 6524758424180559 a001 75025/3010349*24476^(2/21) 6524758424180789 a001 75025/1568397607*64079^(15/23) 6524758424190042 a001 196418/969323029*64079^(12/23) 6524758424192852 a001 23184/5374978561*167761^(4/5) 6524758424205840 a001 121393/228826127*64079^(10/23) 6524758424212386 a001 317811/969323029*64079^(11/23) 6524758424223421 a001 610/1860499*64079^(11/23) 6524758424225031 a001 2178309/6643838879*64079^(11/23) 6524758424225266 a001 5702887/17393796001*64079^(11/23) 6524758424225300 a001 3732588/11384387281*64079^(11/23) 6524758424225305 a001 39088169/119218851371*64079^(11/23) 6524758424225306 a001 9303105/28374454999*64079^(11/23) 6524758424225306 a001 66978574/204284540899*64079^(11/23) 6524758424225306 a001 701408733/2139295485799*64079^(11/23) 6524758424225306 a001 1836311903/5600748293801*64079^(11/23) 6524758424225306 a001 1201881744/3665737348901*64079^(11/23) 6524758424225306 a001 7778742049/23725150497407*64079^(11/23) 6524758424225306 a001 2971215073/9062201101803*64079^(11/23) 6524758424225306 a001 567451585/1730726404001*64079^(11/23) 6524758424225306 a001 433494437/1322157322203*64079^(11/23) 6524758424225306 a001 165580141/505019158607*64079^(11/23) 6524758424225306 a001 31622993/96450076809*64079^(11/23) 6524758424225308 a001 24157817/73681302247*64079^(11/23) 6524758424225321 a001 9227465/28143753123*64079^(11/23) 6524758424225411 a001 1762289/5374978561*64079^(11/23) 6524758424226026 a001 1346269/4106118243*64079^(11/23) 6524758424228889 a001 17711/1568397607*39603^(9/11) 6524758424230241 a001 514229/1568397607*64079^(11/23) 6524758424238260 a001 2576/103361*64079^(2/23) 6524758424239219 a001 46368/969323029*167761^(3/5) 6524758424249877 a001 75025/969323029*64079^(14/23) 6524758424259130 a001 98209/299537289*64079^(11/23) 6524758424274929 a001 233/271444*64079^(9/23) 6524758424281474 a001 377/710646*64079^(10/23) 6524758424285586 a001 15456/29134601*167761^(2/5) 6524758424289768 a001 703593828/10783446409 6524758424289768 a004 Fibonacci(24)/Lucas(26)/(1/2+sqrt(5)/2)^2 6524758424289768 a004 Fibonacci(26)/Lucas(24)/(1/2+sqrt(5)/2)^6 6524758424292509 a001 832040/1568397607*64079^(10/23) 6524758424294119 a001 726103/1368706081*64079^(10/23) 6524758424294354 a001 5702887/10749957122*64079^(10/23) 6524758424294388 a001 4976784/9381251041*64079^(10/23) 6524758424294393 a001 39088169/73681302247*64079^(10/23) 6524758424294394 a001 34111385/64300051206*64079^(10/23) 6524758424294394 a001 267914296/505019158607*64079^(10/23) 6524758424294394 a001 233802911/440719107401*64079^(10/23) 6524758424294394 a001 1836311903/3461452808002*64079^(10/23) 6524758424294394 a001 1602508992/3020733700601*64079^(10/23) 6524758424294394 a001 12586269025/23725150497407*64079^(10/23) 6524758424294394 a001 7778742049/14662949395604*64079^(10/23) 6524758424294394 a001 2971215073/5600748293801*64079^(10/23) 6524758424294394 a001 1134903170/2139295485799*64079^(10/23) 6524758424294394 a001 433494437/817138163596*64079^(10/23) 6524758424294394 a001 165580141/312119004989*64079^(10/23) 6524758424294395 a001 63245986/119218851371*64079^(10/23) 6524758424294396 a001 24157817/45537549124*64079^(10/23) 6524758424294410 a001 9227465/17393796001*64079^(10/23) 6524758424294499 a001 3524578/6643838879*64079^(10/23) 6524758424295114 a001 1346269/2537720636*64079^(10/23) 6524758424299329 a001 514229/969323029*64079^(10/23) 6524758424314168 a001 46368/1149851*64079^(1/23) 6524758424318966 a001 75025/599074578*64079^(13/23) 6524758424328219 a001 196418/370248451*64079^(10/23) 6524758424332059 a001 11592/1970299*167761^(1/5) 6524758424344016 a001 121393/87403803*64079^(8/23) 6524758424344497 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^55 6524758424348255 a001 6624/10525900321*439204^(8/9) 6524758424350563 a001 317811/370248451*64079^(9/23) 6524758424352014 a001 46368/17393796001*439204^(7/9) 6524758424355772 a001 15456/1368706081*439204^(2/3) 6524758424359530 a001 46368/969323029*439204^(5/9) 6524758424361598 a001 832040/969323029*64079^(9/23) 6524758424363208 a001 2178309/2537720636*64079^(9/23) 6524758424363288 a001 46368/228826127*439204^(4/9) 6524758424363443 a001 5702887/6643838879*64079^(9/23) 6524758424363477 a001 14930352/17393796001*64079^(9/23) 6524758424363482 a001 39088169/45537549124*64079^(9/23) 6524758424363483 a001 102334155/119218851371*64079^(9/23) 6524758424363483 a001 267914296/312119004989*64079^(9/23) 6524758424363483 a001 701408733/817138163596*64079^(9/23) 6524758424363483 a001 1836311903/2139295485799*64079^(9/23) 6524758424363483 a001 4807526976/5600748293801*64079^(9/23) 6524758424363483 a001 12586269025/14662949395604*64079^(9/23) 6524758424363483 a001 20365011074/23725150497407*64079^(9/23) 6524758424363483 a001 7778742049/9062201101803*64079^(9/23) 6524758424363483 a001 2971215073/3461452808002*64079^(9/23) 6524758424363483 a001 1134903170/1322157322203*64079^(9/23) 6524758424363483 a001 433494437/505019158607*64079^(9/23) 6524758424363483 a001 165580141/192900153618*64079^(9/23) 6524758424363483 a001 63245986/73681302247*64079^(9/23) 6524758424363485 a001 24157817/28143753123*64079^(9/23) 6524758424363498 a001 9227465/10749957122*64079^(9/23) 6524758424363588 a001 3524578/4106118243*64079^(9/23) 6524758424364203 a001 1346269/1568397607*64079^(9/23) 6524758424365402 a001 6624/101521 6524758424365402 a004 Fibonacci(28)/Lucas(24)/(1/2+sqrt(5)/2)^8 6524758424367049 a001 46368/54018521*439204^(1/3) 6524758424368418 a001 514229/599074578*64079^(9/23) 6524758424370765 a001 15456/4250681*439204^(2/9) 6524758424373387 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^57 6524758424375283 a001 46368/3010349*439204^(1/9) 6524758424376437 a001 2576/103361*(1/2+1/2*5^(1/2))^2 6524758424376437 a001 38580030720/591286729879 6524758424376437 a001 2576/103361*10749957122^(1/24) 6524758424376437 a001 2576/103361*4106118243^(1/23) 6524758424376437 a004 Fibonacci(30)/Lucas(24)/(1/2+sqrt(5)/2)^10 6524758424376437 a001 2576/103361*1568397607^(1/22) 6524758424376437 a001 2576/103361*599074578^(1/21) 6524758424376437 a001 2576/103361*228826127^(1/20) 6524758424376437 a001 2576/103361*87403803^(1/19) 6524758424376437 a001 2576/103361*33385282^(1/18) 6524758424376439 a001 2576/103361*12752043^(1/17) 6524758424376454 a001 2576/103361*4870847^(1/16) 6524758424376562 a001 2576/103361*1860498^(1/15) 6524758424377359 a001 2576/103361*710647^(1/14) 6524758424377602 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^59 6524758424378047 a001 46368/4870847*(1/2+1/2*5^(1/2))^4 6524758424378047 a001 46368/4870847*23725150497407^(1/16) 6524758424378047 a001 46368/4870847*73681302247^(1/13) 6524758424378047 a001 46368/4870847*10749957122^(1/12) 6524758424378047 a001 46368/4870847*4106118243^(2/23) 6524758424378047 a004 Fibonacci(32)/Lucas(24)/(1/2+sqrt(5)/2)^12 6524758424378047 a001 46368/4870847*1568397607^(1/11) 6524758424378047 a001 46368/4870847*599074578^(2/21) 6524758424378047 a001 46368/4870847*228826127^(1/10) 6524758424378047 a001 46368/4870847*87403803^(2/19) 6524758424378047 a001 46368/4870847*33385282^(1/9) 6524758424378051 a001 46368/4870847*12752043^(2/17) 6524758424378081 a001 46368/4870847*4870847^(1/8) 6524758424378217 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^61 6524758424378226 a001 15456/440719107401*7881196^(10/11) 6524758424378236 a001 46368/312119004989*7881196^(9/11) 6524758424378245 a001 6624/10525900321*7881196^(8/11) 6524758424378252 a001 15456/9381251041*7881196^(2/3) 6524758424378255 a001 46368/17393796001*7881196^(7/11) 6524758424378262 a001 15456/4250681*7881196^(2/11) 6524758424378264 a001 15456/1368706081*7881196^(6/11) 6524758424378274 a001 46368/969323029*7881196^(5/11) 6524758424378281 a001 15456/4250681*141422324^(2/13) 6524758424378281 a001 15456/4250681*2537720636^(2/15) 6524758424378281 a001 15456/4250681*45537549124^(2/17) 6524758424378281 a001 15456/4250681*14662949395604^(2/21) 6524758424378281 a001 15456/4250681*(1/2+1/2*5^(1/2))^6 6524758424378281 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^6/Lucas(34) 6524758424378281 a001 15456/4250681*10749957122^(1/8) 6524758424378281 a001 15456/4250681*4106118243^(3/23) 6524758424378281 a004 Fibonacci(34)/Lucas(24)/(1/2+sqrt(5)/2)^14 6524758424378281 a001 15456/4250681*1568397607^(3/22) 6524758424378281 a001 15456/4250681*599074578^(1/7) 6524758424378281 a001 15456/4250681*228826127^(3/20) 6524758424378282 a001 15456/4250681*87403803^(3/19) 6524758424378282 a001 15456/4250681*33385282^(1/6) 6524758424378283 a001 46368/228826127*7881196^(4/11) 6524758424378287 a001 11592/35355581*7881196^(1/3) 6524758424378289 a001 15456/4250681*12752043^(3/17) 6524758424378295 a001 46368/54018521*7881196^(3/11) 6524758424378298 a001 46368/4870847*1860498^(2/15) 6524758424378306 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^63 6524758424378308 a001 15456/440719107401*20633239^(6/7) 6524758424378309 a001 46368/505019158607*20633239^(4/5) 6524758424378311 a001 46368/119218851371*20633239^(5/7) 6524758424378312 a001 46368/17393796001*20633239^(3/5) 6524758424378313 a001 23184/5374978561*20633239^(4/7) 6524758424378315 a001 46368/969323029*20633239^(3/7) 6524758424378315 a001 2576/33281921*20633239^(2/5) 6524758424378316 a001 144/103681*(1/2+1/2*5^(1/2))^8 6524758424378316 a001 144/103681*23725150497407^(1/8) 6524758424378316 a001 32966217216/505248088463 6524758424378316 a001 144/103681*505019158607^(1/7) 6524758424378316 a001 144/103681*73681302247^(2/13) 6524758424378316 a001 144/103681*10749957122^(1/6) 6524758424378316 a004 Fibonacci(36)/Lucas(24)/(1/2+sqrt(5)/2)^16 6524758424378316 a001 144/103681*4106118243^(4/23) 6524758424378316 a001 144/103681*1568397607^(2/11) 6524758424378316 a001 144/103681*599074578^(4/21) 6524758424378316 a001 144/103681*228826127^(1/5) 6524758424378316 a001 144/103681*87403803^(4/19) 6524758424378316 a001 15456/29134601*20633239^(2/7) 6524758424378317 a001 144/103681*33385282^(2/9) 6524758424378319 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^65 6524758424378321 a001 15456/29134601*2537720636^(2/9) 6524758424378321 a001 15456/29134601*312119004989^(2/11) 6524758424378321 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^10/Lucas(38) 6524758424378321 a001 15456/29134601*28143753123^(1/5) 6524758424378321 a001 15456/29134601*10749957122^(5/24) 6524758424378321 a004 Fibonacci(38)/Lucas(24)/(1/2+sqrt(5)/2)^18 6524758424378321 a001 15456/29134601*4106118243^(5/23) 6524758424378321 a001 15456/29134601*1568397607^(5/22) 6524758424378321 a001 15456/29134601*599074578^(5/21) 6524758424378321 a001 15456/29134601*228826127^(1/4) 6524758424378321 a001 15456/29134601*87403803^(5/19) 6524758424378321 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^67 6524758424378321 a001 46368/23725150497407*141422324^(12/13) 6524758424378321 a001 46368/5600748293801*141422324^(11/13) 6524758424378321 a001 15456/440719107401*141422324^(10/13) 6524758424378321 a001 46368/312119004989*141422324^(9/13) 6524758424378321 a001 46368/228826127*141422324^(4/13) 6524758424378321 a001 2576/10716675201*141422324^(2/3) 6524758424378321 a001 6624/10525900321*141422324^(8/13) 6524758424378321 a001 46368/17393796001*141422324^(7/13) 6524758424378321 a001 15456/1368706081*141422324^(6/13) 6524758424378321 a001 46368/228826127*2537720636^(4/15) 6524758424378321 a001 46368/228826127*45537549124^(4/17) 6524758424378321 a001 46368/228826127*817138163596^(4/19) 6524758424378321 a001 46368/228826127*14662949395604^(4/21) 6524758424378321 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^12/Lucas(40) 6524758424378321 a001 46368/228826127*192900153618^(2/9) 6524758424378321 a001 46368/228826127*73681302247^(3/13) 6524758424378321 a001 46368/228826127*10749957122^(1/4) 6524758424378321 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2)^20 6524758424378321 a001 46368/228826127*4106118243^(6/23) 6524758424378321 a001 46368/228826127*1568397607^(3/11) 6524758424378321 a001 46368/228826127*599074578^(2/7) 6524758424378321 a001 46368/969323029*141422324^(5/13) 6524758424378321 a001 46368/228826127*228826127^(3/10) 6524758424378321 a001 46368/370248451*141422324^(1/3) 6524758424378322 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^69 6524758424378322 a001 2576/33281921*17393796001^(2/7) 6524758424378322 a001 2576/33281921*14662949395604^(2/9) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^14/Lucas(42) 6524758424378322 a001 2576/33281921*10749957122^(7/24) 6524758424378322 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^22 6524758424378322 a001 2576/33281921*4106118243^(7/23) 6524758424378322 a001 2576/33281921*1568397607^(7/22) 6524758424378322 a001 2576/33281921*599074578^(1/3) 6524758424378322 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^71 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^16/Lucas(44) 6524758424378322 a001 6624/224056801*23725150497407^(1/4) 6524758424378322 a001 6624/224056801*73681302247^(4/13) 6524758424378322 a001 6624/224056801*10749957122^(1/3) 6524758424378322 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^24 6524758424378322 a001 6624/224056801*4106118243^(8/23) 6524758424378322 a001 6624/224056801*1568397607^(4/11) 6524758424378322 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^73 6524758424378322 a001 46368/23725150497407*2537720636^(4/5) 6524758424378322 a001 15456/1368706081*2537720636^(2/5) 6524758424378322 a001 11592/3665737348901*2537720636^(7/9) 6524758424378322 a001 46368/5600748293801*2537720636^(11/15) 6524758424378322 a001 15456/440719107401*2537720636^(2/3) 6524758424378322 a001 46368/312119004989*2537720636^(3/5) 6524758424378322 a001 46368/119218851371*2537720636^(5/9) 6524758424378322 a001 6624/10525900321*2537720636^(8/15) 6524758424378322 a001 23184/5374978561*2537720636^(4/9) 6524758424378322 a001 46368/17393796001*2537720636^(7/15) 6524758424378322 a001 15456/1368706081*45537549124^(6/17) 6524758424378322 a001 15456/1368706081*14662949395604^(2/7) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^18/Lucas(46) 6524758424378322 a001 15456/1368706081*192900153618^(1/3) 6524758424378322 a001 15456/1368706081*10749957122^(3/8) 6524758424378322 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^26 6524758424378322 a001 15456/1368706081*4106118243^(9/23) 6524758424378322 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^75 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^20/Lucas(48) 6524758424378322 a001 23184/5374978561*23725150497407^(5/16) 6524758424378322 a001 23184/5374978561*505019158607^(5/14) 6524758424378322 a001 23184/5374978561*73681302247^(5/13) 6524758424378322 a001 23184/5374978561*28143753123^(2/5) 6524758424378322 a001 23184/5374978561*10749957122^(5/12) 6524758424378322 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^77 6524758424378322 a001 11592/3665737348901*17393796001^(5/7) 6524758424378322 a001 46368/505019158607*17393796001^(4/7) 6524758424378322 a001 15456/9381251041*312119004989^(2/5) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^22/Lucas(50) 6524758424378322 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^79 6524758424378322 a001 6624/10525900321*45537549124^(8/17) 6524758424378322 a001 46368/23725150497407*45537549124^(12/17) 6524758424378322 a001 15456/3020733700601*45537549124^(2/3) 6524758424378322 a001 46368/5600748293801*45537549124^(11/17) 6524758424378322 a001 15456/440719107401*45537549124^(10/17) 6524758424378322 a001 46368/312119004989*45537549124^(9/17) 6524758424378322 a001 6624/10525900321*14662949395604^(8/21) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^24/Lucas(52) 6524758424378322 a001 6624/10525900321*192900153618^(4/9) 6524758424378322 a001 6624/10525900321*73681302247^(6/13) 6524758424378322 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^81 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^26/Lucas(54) 6524758424378322 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^83 6524758424378322 a001 11592/3665737348901*312119004989^(7/11) 6524758424378322 a001 46368/5600748293801*312119004989^(3/5) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(56) 6524758424378322 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^85 6524758424378322 a001 15456/440719107401*14662949395604^(10/21) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(58) 6524758424378322 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^87 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(60) 6524758424378322 a001 144/10749853441*23725150497407^(1/2) 6524758424378322 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^89 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(62) 6524758424378322 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^91 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(64) 6524758424378322 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^93 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(66) 6524758424378322 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^95 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(68) 6524758424378322 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^97 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(70) 6524758424378322 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^99 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(72) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(74) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(76) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(78) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(80) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(82) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(84) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(86) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(88) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(90) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(92) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(94) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(96) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(98) 6524758424378322 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^28 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(99) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(100) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(97) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(95) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(93) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(91) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(89) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(87) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(85) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(83) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(81) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(79) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(77) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(75) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(73) 6524758424378322 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^100 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(71) 6524758424378322 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^98 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(69) 6524758424378322 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^96 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(67) 6524758424378322 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^94 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(65) 6524758424378322 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^92 6524758424378322 a001 11592/3665737348901*14662949395604^(5/9) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(63) 6524758424378322 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^90 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(61) 6524758424378322 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^88 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(59) 6524758424378322 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^86 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(57) 6524758424378322 a001 11592/204284540899*1322157322203^(1/2) 6524758424378322 a001 144/10749853441*505019158607^(4/7) 6524758424378322 a001 11592/3665737348901*505019158607^(5/8) 6524758424378322 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^84 6524758424378322 a001 46368/312119004989*817138163596^(9/19) 6524758424378322 a001 46368/312119004989*14662949395604^(3/7) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^27/Lucas(55) 6524758424378322 a001 15456/440719107401*192900153618^(5/9) 6524758424378322 a001 46368/5600748293801*192900153618^(11/18) 6524758424378322 a001 46368/23725150497407*192900153618^(2/3) 6524758424378322 a001 46368/312119004989*192900153618^(1/2) 6524758424378322 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^82 6524758424378322 a001 2576/10716675201*73681302247^(1/2) 6524758424378322 a001 46368/119218851371*312119004989^(5/11) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^25/Lucas(53) 6524758424378322 a001 46368/119218851371*3461452808002^(5/12) 6524758424378322 a001 46368/505019158607*73681302247^(7/13) 6524758424378322 a001 144/10749853441*73681302247^(8/13) 6524758424378322 a001 46368/23725150497407*73681302247^(9/13) 6524758424378322 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^80 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^23/Lucas(51) 6524758424378322 a001 46368/119218851371*28143753123^(1/2) 6524758424378322 a001 15456/440719107401*28143753123^(3/5) 6524758424378322 a001 11592/3665737348901*28143753123^(7/10) 6524758424378322 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^78 6524758424378322 a001 46368/17393796001*17393796001^(3/7) 6524758424378322 a001 15456/9381251041*10749957122^(11/24) 6524758424378322 a001 46368/17393796001*45537549124^(7/17) 6524758424378322 a001 46368/17393796001*14662949395604^(1/3) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^21/Lucas(49) 6524758424378322 a001 46368/17393796001*192900153618^(7/18) 6524758424378322 a001 6624/10525900321*10749957122^(1/2) 6524758424378322 a001 2576/10716675201*10749957122^(13/24) 6524758424378322 a001 46368/312119004989*10749957122^(9/16) 6524758424378322 a001 46368/505019158607*10749957122^(7/12) 6524758424378322 a001 15456/440719107401*10749957122^(5/8) 6524758424378322 a001 144/10749853441*10749957122^(2/3) 6524758424378322 a001 46368/5600748293801*10749957122^(11/16) 6524758424378322 a001 15456/3020733700601*10749957122^(17/24) 6524758424378322 a001 46368/23725150497407*10749957122^(3/4) 6524758424378322 a001 46368/17393796001*10749957122^(7/16) 6524758424378322 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^30 6524758424378322 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^32 6524758424378322 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^34 6524758424378322 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^36 6524758424378322 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^38 6524758424378322 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^40 6524758424378322 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^42 6524758424378322 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^44 6524758424378322 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^46 6524758424378322 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^48 6524758424378322 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^50 6524758424378322 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^52 6524758424378322 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^54 6524758424378322 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^56 6524758424378322 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^58 6524758424378322 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^60 6524758424378322 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^62 6524758424378322 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^64 6524758424378322 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^66 6524758424378322 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^68 6524758424378322 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^70 6524758424378322 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^72 6524758424378322 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^74 6524758424378322 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^76 6524758424378322 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^80 6524758424378322 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^78 6524758424378322 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^79 6524758424378322 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^77 6524758424378322 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^75 6524758424378322 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^73 6524758424378322 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^71 6524758424378322 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^69 6524758424378322 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^67 6524758424378322 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^65 6524758424378322 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^63 6524758424378322 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^61 6524758424378322 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^59 6524758424378322 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^57 6524758424378322 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^55 6524758424378322 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^53 6524758424378322 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^51 6524758424378322 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^49 6524758424378322 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^47 6524758424378322 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^45 6524758424378322 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^43 6524758424378322 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^41 6524758424378322 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^39 6524758424378322 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^37 6524758424378322 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^35 6524758424378322 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^33 6524758424378322 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^31 6524758424378322 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^29 6524758424378322 a001 23184/5374978561*4106118243^(10/23) 6524758424378322 a001 46368/6643838879*817138163596^(1/3) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^19/Lucas(47) 6524758424378322 a001 15456/9381251041*4106118243^(11/23) 6524758424378322 a001 11592/11384387281*4106118243^(1/2) 6524758424378322 a001 6624/10525900321*4106118243^(12/23) 6524758424378322 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^27 6524758424378322 a001 2576/10716675201*4106118243^(13/23) 6524758424378322 a001 46368/505019158607*4106118243^(14/23) 6524758424378322 a001 15456/440719107401*4106118243^(15/23) 6524758424378322 a001 144/10749853441*4106118243^(16/23) 6524758424378322 a001 15456/3020733700601*4106118243^(17/23) 6524758424378322 a001 46368/23725150497407*4106118243^(18/23) 6524758424378322 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^74 6524758424378322 a001 15456/1368706081*1568397607^(9/22) 6524758424378322 a001 11592/634430159*45537549124^(1/3) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^17/Lucas(45) 6524758424378322 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^25 6524758424378322 a001 23184/5374978561*1568397607^(5/11) 6524758424378322 a001 15456/9381251041*1568397607^(1/2) 6524758424378322 a001 6624/10525900321*1568397607^(6/11) 6524758424378322 a001 2576/10716675201*1568397607^(13/22) 6524758424378322 a001 46368/505019158607*1568397607^(7/11) 6524758424378322 a001 15456/440719107401*1568397607^(15/22) 6524758424378322 a001 144/10749853441*1568397607^(8/11) 6524758424378322 a001 46368/5600748293801*1568397607^(3/4) 6524758424378322 a001 15456/3020733700601*1568397607^(17/22) 6524758424378322 a001 46368/23725150497407*1568397607^(9/11) 6524758424378322 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^72 6524758424378322 a001 6624/224056801*599074578^(8/21) 6524758424378322 a001 46368/969323029*2537720636^(1/3) 6524758424378322 a001 46368/969323029*45537549124^(5/17) 6524758424378322 a001 46368/969323029*312119004989^(3/11) 6524758424378322 a001 46368/969323029*14662949395604^(5/21) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^15/Lucas(43) 6524758424378322 a001 46368/969323029*192900153618^(5/18) 6524758424378322 a001 46368/969323029*28143753123^(3/10) 6524758424378322 a001 46368/969323029*10749957122^(5/16) 6524758424378322 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^23 6524758424378322 a001 15456/1368706081*599074578^(3/7) 6524758424378322 a001 23184/5374978561*599074578^(10/21) 6524758424378322 a001 46368/17393796001*599074578^(1/2) 6524758424378322 a001 15456/9381251041*599074578^(11/21) 6524758424378322 a001 6624/10525900321*599074578^(4/7) 6524758424378322 a001 2576/10716675201*599074578^(13/21) 6524758424378322 a001 46368/312119004989*599074578^(9/14) 6524758424378322 a001 46368/505019158607*599074578^(2/3) 6524758424378322 a001 15456/440719107401*599074578^(5/7) 6524758424378322 a001 46368/969323029*599074578^(5/14) 6524758424378322 a001 144/10749853441*599074578^(16/21) 6524758424378322 a001 46368/5600748293801*599074578^(11/14) 6524758424378322 a001 15456/3020733700601*599074578^(17/21) 6524758424378322 a001 11592/3665737348901*599074578^(5/6) 6524758424378322 a001 46368/23725150497407*599074578^(6/7) 6524758424378322 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^70 6524758424378322 a001 2576/33281921*228826127^(7/20) 6524758424378322 a001 6624/224056801*228826127^(2/5) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^13/Lucas(41) 6524758424378322 a001 46368/370248451*73681302247^(1/4) 6524758424378322 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^21 6524758424378322 a001 46368/969323029*228826127^(3/8) 6524758424378322 a001 15456/1368706081*228826127^(9/20) 6524758424378322 a001 23184/5374978561*228826127^(1/2) 6524758424378322 a001 15456/9381251041*228826127^(11/20) 6524758424378322 a001 6624/10525900321*228826127^(3/5) 6524758424378322 a001 46368/119218851371*228826127^(5/8) 6524758424378322 a001 2576/10716675201*228826127^(13/20) 6524758424378322 a001 46368/505019158607*228826127^(7/10) 6524758424378322 a001 15456/440719107401*228826127^(3/4) 6524758424378322 a001 144/10749853441*228826127^(4/5) 6524758424378322 a001 15456/3020733700601*228826127^(17/20) 6524758424378322 a001 11592/3665737348901*228826127^(7/8) 6524758424378322 a001 46368/23725150497407*228826127^(9/10) 6524758424378322 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^68 6524758424378322 a001 46368/228826127*87403803^(6/19) 6524758424378322 a001 2576/33281921*87403803^(7/19) 6524758424378322 a001 11592/35355581*312119004989^(1/5) 6524758424378322 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^11/Lucas(39) 6524758424378322 a004 Fibonacci(39)/Lucas(24)/(1/2+sqrt(5)/2)^19 6524758424378322 a001 11592/35355581*1568397607^(1/4) 6524758424378322 a001 6624/224056801*87403803^(8/19) 6524758424378322 a001 15456/1368706081*87403803^(9/19) 6524758424378322 a001 46368/6643838879*87403803^(1/2) 6524758424378322 a001 23184/5374978561*87403803^(10/19) 6524758424378322 a001 15456/9381251041*87403803^(11/19) 6524758424378322 a001 6624/10525900321*87403803^(12/19) 6524758424378322 a001 2576/10716675201*87403803^(13/19) 6524758424378322 a001 46368/505019158607*87403803^(14/19) 6524758424378322 a001 15456/440719107401*87403803^(15/19) 6524758424378322 a001 144/10749853441*87403803^(16/19) 6524758424378322 a001 15456/3020733700601*87403803^(17/19) 6524758424378322 a001 15456/29134601*33385282^(5/18) 6524758424378322 a001 46368/23725150497407*87403803^(18/19) 6524758424378322 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^66 6524758424378323 a001 46368/228826127*33385282^(1/3) 6524758424378324 a001 46368/54018521*141422324^(3/13) 6524758424378324 a001 46368/54018521*2537720636^(1/5) 6524758424378324 a001 46368/54018521*45537549124^(3/17) 6524758424378324 a001 46368/54018521*817138163596^(3/19) 6524758424378324 a001 46368/54018521*14662949395604^(1/7) 6524758424378324 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^9/Lucas(37) 6524758424378324 a001 46368/54018521*192900153618^(1/6) 6524758424378324 a001 46368/54018521*10749957122^(3/16) 6524758424378324 a004 Fibonacci(37)/Lucas(24)/(1/2+sqrt(5)/2)^17 6524758424378324 a001 46368/54018521*599074578^(3/14) 6524758424378324 a001 2576/33281921*33385282^(7/18) 6524758424378324 a001 46368/969323029*33385282^(5/12) 6524758424378324 a001 6624/224056801*33385282^(4/9) 6524758424378324 a001 15456/1368706081*33385282^(1/2) 6524758424378325 a001 23184/5374978561*33385282^(5/9) 6524758424378325 a001 46368/17393796001*33385282^(7/12) 6524758424378325 a001 15456/9381251041*33385282^(11/18) 6524758424378325 a001 144/103681*12752043^(4/17) 6524758424378325 a001 46368/54018521*33385282^(1/4) 6524758424378325 a001 6624/10525900321*33385282^(2/3) 6524758424378326 a001 2576/10716675201*33385282^(13/18) 6524758424378326 a001 46368/312119004989*33385282^(3/4) 6524758424378326 a001 46368/505019158607*33385282^(7/9) 6524758424378326 a001 15456/440719107401*33385282^(5/6) 6524758424378327 a001 144/10749853441*33385282^(8/9) 6524758424378327 a001 46368/5600748293801*33385282^(11/12) 6524758424378327 a001 15456/3020733700601*33385282^(17/18) 6524758424378327 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^64 6524758424378333 a001 15456/29134601*12752043^(5/17) 6524758424378333 a001 15456/4250681*4870847^(3/16) 6524758424378334 a001 46368/20633239*20633239^(1/5) 6524758424378336 a001 46368/228826127*12752043^(6/17) 6524758424378337 a001 46368/20633239*17393796001^(1/7) 6524758424378337 a001 16456119120/252210396917 6524758424378337 a001 46368/20633239*(1/2+1/2*5^(1/2))^7 6524758424378337 a004 Fibonacci(35)/Lucas(24)/(1/2+sqrt(5)/2)^15 6524758424378337 a001 46368/20633239*599074578^(1/6) 6524758424378338 a001 2576/33281921*12752043^(7/17) 6524758424378340 a001 6624/224056801*12752043^(8/17) 6524758424378342 a001 11592/634430159*12752043^(1/2) 6524758424378343 a001 15456/1368706081*12752043^(9/17) 6524758424378345 a001 23184/5374978561*12752043^(10/17) 6524758424378348 a001 15456/9381251041*12752043^(11/17) 6524758424378350 a001 6624/10525900321*12752043^(12/17) 6524758424378352 a001 2576/10716675201*12752043^(13/17) 6524758424378355 a001 46368/505019158607*12752043^(14/17) 6524758424378357 a001 15456/440719107401*12752043^(15/17) 6524758424378359 a001 144/10749853441*12752043^(16/17) 6524758424378362 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^62 6524758424378384 a001 144/103681*4870847^(1/4) 6524758424378407 a001 15456/29134601*4870847^(5/16) 6524758424378424 a001 11592/1970299*20633239^(1/7) 6524758424378425 a001 46368/228826127*4870847^(3/8) 6524758424378427 a001 11592/1970299*2537720636^(1/9) 6524758424378427 a001 11592/1970299*312119004989^(1/11) 6524758424378427 a001 163427632704/2504730781961 6524758424378427 a001 11592/1970299*(1/2+1/2*5^(1/2))^5 6524758424378427 a001 11592/1970299*28143753123^(1/10) 6524758424378427 a004 Fibonacci(33)/Lucas(24)/(1/2+sqrt(5)/2)^13 6524758424378427 a001 11592/1970299*228826127^(1/8) 6524758424378442 a001 2576/33281921*4870847^(7/16) 6524758424378459 a001 6624/224056801*4870847^(1/2) 6524758424378476 a001 15456/1368706081*4870847^(9/16) 6524758424378493 a001 23184/5374978561*4870847^(5/8) 6524758424378511 a001 15456/9381251041*4870847^(11/16) 6524758424378528 a001 6624/10525900321*4870847^(3/4) 6524758424378545 a001 2576/10716675201*4870847^(13/16) 6524758424378562 a001 46368/505019158607*4870847^(7/8) 6524758424378579 a001 15456/440719107401*4870847^(15/16) 6524758424378597 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^60 6524758424378658 a001 15456/4250681*1860498^(1/5) 6524758424378741 a001 11592/1970299*1860498^(1/6) 6524758424378807 a001 121393/3010349*24476^(1/21) 6524758424378818 a001 144/103681*1860498^(4/15) 6524758424378889 a001 46368/54018521*1860498^(3/10) 6524758424378949 a001 15456/29134601*1860498^(1/3) 6524758424379032 a001 46368/3010349*7881196^(1/11) 6524758424379042 a001 46368/3010349*141422324^(1/13) 6524758424379042 a001 46368/3010349*2537720636^(1/15) 6524758424379042 a001 46368/3010349*45537549124^(1/17) 6524758424379042 a001 46368/3010349*14662949395604^(1/21) 6524758424379042 a001 46368/3010349*(1/2+1/2*5^(1/2))^3 6524758424379042 a001 46368/3010349*192900153618^(1/18) 6524758424379042 a001 46368/3010349*10749957122^(1/16) 6524758424379042 a004 Fibonacci(31)/Lucas(24)/(1/2+sqrt(5)/2)^11 6524758424379042 a001 46368/3010349*599074578^(1/14) 6524758424379042 a001 46368/3010349*33385282^(1/12) 6524758424379075 a001 46368/228826127*1860498^(2/5) 6524758424379201 a001 2576/33281921*1860498^(7/15) 6524758424379230 a001 46368/3010349*1860498^(1/10) 6524758424379264 a001 46368/969323029*1860498^(1/2) 6524758424379327 a001 6624/224056801*1860498^(8/15) 6524758424379453 a001 15456/1368706081*1860498^(3/5) 6524758424379578 a001 23184/5374978561*1860498^(2/3) 6524758424379641 a001 46368/17393796001*1860498^(7/10) 6524758424379704 a001 15456/9381251041*1860498^(11/15) 6524758424379830 a001 6624/10525900321*1860498^(4/5) 6524758424379892 a001 46368/4870847*710647^(1/7) 6524758424379892 a001 46368/119218851371*1860498^(5/6) 6524758424379955 a001 2576/10716675201*1860498^(13/15) 6524758424380018 a001 46368/312119004989*1860498^(9/10) 6524758424380081 a001 46368/505019158607*1860498^(14/15) 6524758424380207 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^58 6524758424381050 a001 15456/4250681*710647^(3/14) 6524758424381567 a001 46368/20633239*710647^(1/4) 6524758424382007 a001 144/103681*710647^(2/7) 6524758424382935 a001 15456/29134601*710647^(5/14) 6524758424383248 a001 2576/103361*271443^(1/13) 6524758424383256 a001 11921885136/182717648081 6524758424383256 a001 23184/1149851+23184/1149851*5^(1/2) 6524758424383256 a004 Fibonacci(29)/Lucas(24)/(1/2+sqrt(5)/2)^9 6524758424383858 a001 46368/228826127*710647^(3/7) 6524758424384781 a001 2576/33281921*710647^(1/2) 6524758424385704 a001 6624/224056801*710647^(4/7) 6524758424386627 a001 15456/1368706081*710647^(9/14) 6524758424387550 a001 23184/5374978561*710647^(5/7) 6524758424388011 a001 46368/17393796001*710647^(3/4) 6524758424388054 a001 75025/370248451*64079^(12/23) 6524758424388473 a001 15456/9381251041*710647^(11/14) 6524758424389396 a001 6624/10525900321*710647^(6/7) 6524758424390319 a001 2576/10716675201*710647^(13/14) 6524758424391241 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^56 6524758424391670 a001 46368/4870847*271443^(2/13) 6524758424397307 a001 196418/228826127*64079^(9/23) 6524758424398717 a001 15456/4250681*271443^(3/13) 6524758424405563 a001 144/103681*271443^(4/13) 6524758424408546 a001 46368/1149851*103682^(1/24) 6524758424412146 a001 9107509824/139583862445 6524758424412146 a004 Fibonacci(24)/Lucas(27)/(1/2+sqrt(5)/2) 6524758424412146 a004 Fibonacci(27)/Lucas(24)/(1/2+sqrt(5)/2)^7 6524758424412380 a001 15456/29134601*271443^(5/13) 6524758424413108 a001 121393/54018521*64079^(7/23) 6524758424417986 a001 17711/2537720636*39603^(19/22) 6524758424419192 a001 46368/228826127*271443^(6/13) 6524758424419651 a001 317811/228826127*64079^(8/23) 6524758424422598 a001 46368/370248451*271443^(1/2) 6524758424426004 a001 2576/33281921*271443^(7/13) 6524758424427016 a001 2576/103361*103682^(1/12) 6524758424430686 a001 416020/299537289*64079^(8/23) 6524758424432296 a001 311187/224056801*64079^(8/23) 6524758424432531 a001 5702887/4106118243*64079^(8/23) 6524758424432565 a001 7465176/5374978561*64079^(8/23) 6524758424432570 a001 39088169/28143753123*64079^(8/23) 6524758424432571 a001 14619165/10525900321*64079^(8/23) 6524758424432571 a001 133957148/96450076809*64079^(8/23) 6524758424432571 a001 701408733/505019158607*64079^(8/23) 6524758424432571 a001 1836311903/1322157322203*64079^(8/23) 6524758424432571 a001 14930208/10749853441*64079^(8/23) 6524758424432571 a001 12586269025/9062201101803*64079^(8/23) 6524758424432571 a001 32951280099/23725150497407*64079^(8/23) 6524758424432571 a001 10182505537/7331474697802*64079^(8/23) 6524758424432571 a001 7778742049/5600748293801*64079^(8/23) 6524758424432571 a001 2971215073/2139295485799*64079^(8/23) 6524758424432571 a001 567451585/408569081798*64079^(8/23) 6524758424432571 a001 433494437/312119004989*64079^(8/23) 6524758424432571 a001 165580141/119218851371*64079^(8/23) 6524758424432571 a001 31622993/22768774562*64079^(8/23) 6524758424432573 a001 24157817/17393796001*64079^(8/23) 6524758424432586 a001 9227465/6643838879*64079^(8/23) 6524758424432676 a001 1762289/1268860318*64079^(8/23) 6524758424432816 a001 6624/224056801*271443^(8/13) 6524758424433291 a001 1346269/969323029*64079^(8/23) 6524758424437506 a001 514229/370248451*64079^(8/23) 6524758424439628 a001 15456/1368706081*271443^(9/13) 6524758424446440 a001 23184/5374978561*271443^(10/13) 6524758424453252 a001 15456/9381251041*271443^(11/13) 6524758424453826 a001 317811/7881196*24476^(1/21) 6524758424454911 a001 46368/3010349*103682^(1/8) 6524758424457143 a001 75025/228826127*64079^(11/23) 6524758424460064 a001 6624/10525900321*271443^(12/13) 6524758424464771 a001 75640/1875749*24476^(1/21) 6524758424466368 a001 2178309/54018521*24476^(1/21) 6524758424466396 a001 98209/70711162*64079^(8/23) 6524758424466601 a001 5702887/141422324*24476^(1/21) 6524758424466635 a001 14930352/370248451*24476^(1/21) 6524758424466639 a001 39088169/969323029*24476^(1/21) 6524758424466640 a001 9303105/230701876*24476^(1/21) 6524758424466640 a001 267914296/6643838879*24476^(1/21) 6524758424466640 a001 701408733/17393796001*24476^(1/21) 6524758424466640 a001 1836311903/45537549124*24476^(1/21) 6524758424466640 a001 4807526976/119218851371*24476^(1/21) 6524758424466640 a001 1144206275/28374454999*24476^(1/21) 6524758424466640 a001 32951280099/817138163596*24476^(1/21) 6524758424466640 a001 86267571272/2139295485799*24476^(1/21) 6524758424466640 a001 225851433717/5600748293801*24476^(1/21) 6524758424466640 a001 591286729879/14662949395604*24476^(1/21) 6524758424466640 a001 365435296162/9062201101803*24476^(1/21) 6524758424466640 a001 139583862445/3461452808002*24476^(1/21) 6524758424466640 a001 53316291173/1322157322203*24476^(1/21) 6524758424466640 a001 20365011074/505019158607*24476^(1/21) 6524758424466640 a001 7778742049/192900153618*24476^(1/21) 6524758424466640 a001 2971215073/73681302247*24476^(1/21) 6524758424466640 a001 1134903170/28143753123*24476^(1/21) 6524758424466640 a001 433494437/10749957122*24476^(1/21) 6524758424466640 a001 165580141/4106118243*24476^(1/21) 6524758424466641 a001 63245986/1568397607*24476^(1/21) 6524758424466643 a001 24157817/599074578*24476^(1/21) 6524758424466656 a001 9227465/228826127*24476^(1/21) 6524758424466745 a001 3524578/87403803*24476^(1/21) 6524758424466875 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^54 6524758424467354 a001 1346269/33385282*24476^(1/21) 6524758424471535 a001 514229/12752043*24476^(1/21) 6524758424479206 a001 46368/4870847*103682^(1/6) 6524758424482188 a001 121393/33385282*64079^(6/23) 6524758424488740 a001 317811/141422324*64079^(7/23) 6524758424499775 a001 832040/370248451*64079^(7/23) 6524758424500190 a001 196418/4870847*24476^(1/21) 6524758424500480 a001 28657/3010349*24476^(4/21) 6524758424501384 a001 2178309/969323029*64079^(7/23) 6524758424501619 a001 5702887/2537720636*64079^(7/23) 6524758424501654 a001 14930352/6643838879*64079^(7/23) 6524758424501659 a001 39088169/17393796001*64079^(7/23) 6524758424501659 a001 102334155/45537549124*64079^(7/23) 6524758424501659 a001 267914296/119218851371*64079^(7/23) 6524758424501659 a001 3524667/1568437211*64079^(7/23) 6524758424501659 a001 1836311903/817138163596*64079^(7/23) 6524758424501659 a001 4807526976/2139295485799*64079^(7/23) 6524758424501659 a001 12586269025/5600748293801*64079^(7/23) 6524758424501659 a001 32951280099/14662949395604*64079^(7/23) 6524758424501659 a001 53316291173/23725150497407*64079^(7/23) 6524758424501659 a001 20365011074/9062201101803*64079^(7/23) 6524758424501659 a001 7778742049/3461452808002*64079^(7/23) 6524758424501659 a001 2971215073/1322157322203*64079^(7/23) 6524758424501659 a001 1134903170/505019158607*64079^(7/23) 6524758424501659 a001 433494437/192900153618*64079^(7/23) 6524758424501659 a001 165580141/73681302247*64079^(7/23) 6524758424501660 a001 63245986/28143753123*64079^(7/23) 6524758424501662 a001 24157817/10749957122*64079^(7/23) 6524758424501675 a001 9227465/4106118243*64079^(7/23) 6524758424501764 a001 3524578/1568397607*64079^(7/23) 6524758424502379 a001 1346269/599074578*64079^(7/23) 6524758424504876 a001 11592/1970299*103682^(5/24) 6524758424506594 a001 514229/228826127*64079^(7/23) 6524758424526231 a001 75025/141422324*64079^(10/23) 6524758424530021 a001 15456/4250681*103682^(1/4) 6524758424535483 a001 196418/87403803*64079^(7/23) 6524758424551298 a001 121393/20633239*64079^(5/23) 6524758424555366 a001 46368/20633239*103682^(7/24) 6524758424557827 a001 105937/29134601*64079^(6/23) 6524758424568863 a001 832040/228826127*64079^(6/23) 6524758424570473 a001 726103/199691526*64079^(6/23) 6524758424570708 a001 5702887/1568397607*64079^(6/23) 6524758424570742 a001 4976784/1368706081*64079^(6/23) 6524758424570747 a001 39088169/10749957122*64079^(6/23) 6524758424570748 a001 831985/228811001*64079^(6/23) 6524758424570748 a001 267914296/73681302247*64079^(6/23) 6524758424570748 a001 233802911/64300051206*64079^(6/23) 6524758424570748 a001 1836311903/505019158607*64079^(6/23) 6524758424570748 a001 1602508992/440719107401*64079^(6/23) 6524758424570748 a001 12586269025/3461452808002*64079^(6/23) 6524758424570748 a001 10983760033/3020733700601*64079^(6/23) 6524758424570748 a001 86267571272/23725150497407*64079^(6/23) 6524758424570748 a001 53316291173/14662949395604*64079^(6/23) 6524758424570748 a001 20365011074/5600748293801*64079^(6/23) 6524758424570748 a001 7778742049/2139295485799*64079^(6/23) 6524758424570748 a001 2971215073/817138163596*64079^(6/23) 6524758424570748 a001 1134903170/312119004989*64079^(6/23) 6524758424570748 a001 433494437/119218851371*64079^(6/23) 6524758424570748 a001 165580141/45537549124*64079^(6/23) 6524758424570748 a001 63245986/17393796001*64079^(6/23) 6524758424570750 a001 24157817/6643838879*64079^(6/23) 6524758424570763 a001 9227465/2537720636*64079^(6/23) 6524758424570853 a001 3524578/969323029*64079^(6/23) 6524758424571468 a001 1346269/370248451*64079^(6/23) 6524758424572354 a001 46368/1149851*39603^(1/22) 6524758424575683 a001 514229/141422324*64079^(6/23) 6524758424580635 a001 144/103681*103682^(1/3) 6524758424595319 a001 75025/87403803*64079^(9/23) 6524758424604575 a001 196418/54018521*64079^(6/23) 6524758424605933 a001 46368/54018521*103682^(3/8) 6524758424607083 a001 17711/4106118243*39603^(10/11) 6524758424610158 a001 3478759200/53316291173 6524758424610158 a004 Fibonacci(24)/Lucas(25)/(1/2+sqrt(5)/2)^3 6524758424610158 a004 Fibonacci(25)/Lucas(24)/(1/2+sqrt(5)/2)^5 6524758424620331 a001 121393/12752043*64079^(4/23) 6524758424626919 a001 317811/54018521*64079^(5/23) 6524758424631219 a001 15456/29134601*103682^(5/12) 6524758424637952 a001 208010/35355581*64079^(5/23) 6524758424639561 a001 2178309/370248451*64079^(5/23) 6524758424639796 a001 5702887/969323029*64079^(5/23) 6524758424639830 a001 196452/33391061*64079^(5/23) 6524758424639835 a001 39088169/6643838879*64079^(5/23) 6524758424639836 a001 102334155/17393796001*64079^(5/23) 6524758424639836 a001 66978574/11384387281*64079^(5/23) 6524758424639836 a001 701408733/119218851371*64079^(5/23) 6524758424639836 a001 1836311903/312119004989*64079^(5/23) 6524758424639836 a001 1201881744/204284540899*64079^(5/23) 6524758424639836 a001 12586269025/2139295485799*64079^(5/23) 6524758424639836 a001 32951280099/5600748293801*64079^(5/23) 6524758424639836 a001 1135099622/192933544679*64079^(5/23) 6524758424639836 a001 139583862445/23725150497407*64079^(5/23) 6524758424639836 a001 53316291173/9062201101803*64079^(5/23) 6524758424639836 a001 10182505537/1730726404001*64079^(5/23) 6524758424639836 a001 7778742049/1322157322203*64079^(5/23) 6524758424639836 a001 2971215073/505019158607*64079^(5/23) 6524758424639836 a001 567451585/96450076809*64079^(5/23) 6524758424639836 a001 433494437/73681302247*64079^(5/23) 6524758424639836 a001 165580141/28143753123*64079^(5/23) 6524758424639837 a001 31622993/5374978561*64079^(5/23) 6524758424639838 a001 24157817/4106118243*64079^(5/23) 6524758424639852 a001 9227465/1568397607*64079^(5/23) 6524758424639941 a001 1762289/299537289*64079^(5/23) 6524758424640556 a001 1346269/228826127*64079^(5/23) 6524758424644770 a001 514229/87403803*64079^(5/23) 6524758424656510 a001 11592/35355581*103682^(11/24) 6524758424664410 a001 75025/54018521*64079^(8/23) 6524758424664888 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^55 6524758424673655 a001 98209/16692641*64079^(5/23) 6524758424681800 a001 46368/228826127*103682^(1/2) 6524758424689564 a001 121393/7881196*64079^(3/23) 6524758424695999 a001 317811/33385282*64079^(4/23) 6524758424696592 a001 75025/1860498*24476^(1/21) 6524758424707039 a001 832040/87403803*64079^(4/23) 6524758424707090 a001 46368/370248451*103682^(13/24) 6524758424708650 a001 46347/4868641*64079^(4/23) 6524758424708884 a001 5702887/599074578*64079^(4/23) 6524758424708919 a001 14930352/1568397607*64079^(4/23) 6524758424708924 a001 39088169/4106118243*64079^(4/23) 6524758424708925 a001 102334155/10749957122*64079^(4/23) 6524758424708925 a001 267914296/28143753123*64079^(4/23) 6524758424708925 a001 701408733/73681302247*64079^(4/23) 6524758424708925 a001 1836311903/192900153618*64079^(4/23) 6524758424708925 a001 102287808/10745088481*64079^(4/23) 6524758424708925 a001 12586269025/1322157322203*64079^(4/23) 6524758424708925 a001 32951280099/3461452808002*64079^(4/23) 6524758424708925 a001 86267571272/9062201101803*64079^(4/23) 6524758424708925 a001 225851433717/23725150497407*64079^(4/23) 6524758424708925 a001 139583862445/14662949395604*64079^(4/23) 6524758424708925 a001 53316291173/5600748293801*64079^(4/23) 6524758424708925 a001 20365011074/2139295485799*64079^(4/23) 6524758424708925 a001 7778742049/817138163596*64079^(4/23) 6524758424708925 a001 2971215073/312119004989*64079^(4/23) 6524758424708925 a001 1134903170/119218851371*64079^(4/23) 6524758424708925 a001 433494437/45537549124*64079^(4/23) 6524758424708925 a001 165580141/17393796001*64079^(4/23) 6524758424708925 a001 63245986/6643838879*64079^(4/23) 6524758424708927 a001 24157817/2537720636*64079^(4/23) 6524758424708940 a001 9227465/969323029*64079^(4/23) 6524758424709030 a001 3524578/370248451*64079^(4/23) 6524758424709645 a001 1346269/141422324*64079^(4/23) 6524758424711255 a001 121393/28143753123*167761^(4/5) 6524758424713862 a001 514229/54018521*64079^(4/23) 6524758424732380 a001 2576/33281921*103682^(7/12) 6524758424733490 a001 75025/33385282*64079^(7/23) 6524758424740522 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^57 6524758424742765 a001 196418/20633239*64079^(4/23) 6524758424748506 a001 167761/514229*8^(1/3) 6524758424751556 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^59 6524758424753166 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^61 6524758424753401 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^63 6524758424753436 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^65 6524758424753441 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^67 6524758424753441 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^69 6524758424753441 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^71 6524758424753441 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^73 6524758424753441 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^75 6524758424753441 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^77 6524758424753441 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^79 6524758424753441 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^81 6524758424753441 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^83 6524758424753441 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^85 6524758424753441 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^87 6524758424753441 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^89 6524758424753441 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^91 6524758424753441 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^93 6524758424753441 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^95 6524758424753441 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^97 6524758424753441 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^99 6524758424753441 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^100 6524758424753441 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^98 6524758424753441 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^96 6524758424753441 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^94 6524758424753441 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^92 6524758424753441 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^90 6524758424753441 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^88 6524758424753441 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^86 6524758424753441 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^84 6524758424753441 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^82 6524758424753441 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^80 6524758424753441 a001 2/75025*(1/2+1/2*5^(1/2))^21 6524758424753441 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^78 6524758424753441 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^76 6524758424753441 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^74 6524758424753441 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^72 6524758424753441 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^70 6524758424753442 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^68 6524758424753444 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^66 6524758424753457 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^64 6524758424753546 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^62 6524758424754161 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^60 6524758424754631 a001 2576/103361*39603^(1/11) 6524758424757622 a001 121393/2537720636*167761^(3/5) 6524758424757669 a001 46368/969323029*103682^(5/8) 6524758424758273 a001 121393/4870847*64079^(2/23) 6524758424758376 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^58 6524758424765109 a001 10959/711491*64079^(3/23) 6524758424776130 a001 832040/54018521*64079^(3/23) 6524758424777738 a001 2178309/141422324*64079^(3/23) 6524758424777973 a001 5702887/370248451*64079^(3/23) 6524758424778007 a001 14930352/969323029*64079^(3/23) 6524758424778012 a001 39088169/2537720636*64079^(3/23) 6524758424778013 a001 102334155/6643838879*64079^(3/23) 6524758424778013 a001 9238424/599786069*64079^(3/23) 6524758424778013 a001 701408733/45537549124*64079^(3/23) 6524758424778013 a001 1836311903/119218851371*64079^(3/23) 6524758424778013 a001 4807526976/312119004989*64079^(3/23) 6524758424778013 a001 12586269025/817138163596*64079^(3/23) 6524758424778013 a001 32951280099/2139295485799*64079^(3/23) 6524758424778013 a001 86267571272/5600748293801*64079^(3/23) 6524758424778013 a001 7787980473/505618944676*64079^(3/23) 6524758424778013 a001 365435296162/23725150497407*64079^(3/23) 6524758424778013 a001 139583862445/9062201101803*64079^(3/23) 6524758424778013 a001 53316291173/3461452808002*64079^(3/23) 6524758424778013 a001 20365011074/1322157322203*64079^(3/23) 6524758424778013 a001 7778742049/505019158607*64079^(3/23) 6524758424778013 a001 2971215073/192900153618*64079^(3/23) 6524758424778013 a001 1134903170/73681302247*64079^(3/23) 6524758424778013 a001 433494437/28143753123*64079^(3/23) 6524758424778013 a001 165580141/10749957122*64079^(3/23) 6524758424778013 a001 63245986/4106118243*64079^(3/23) 6524758424778015 a001 24157817/1568397607*64079^(3/23) 6524758424778028 a001 9227465/599074578*64079^(3/23) 6524758424778118 a001 3524578/228826127*64079^(3/23) 6524758424778732 a001 1346269/87403803*64079^(3/23) 6524758424782942 a001 514229/33385282*64079^(3/23) 6524758424782959 a001 6624/224056801*103682^(2/3) 6524758424786889 a001 317811/73681302247*167761^(4/5) 6524758424787266 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^56 6524758424796181 a001 17711/6643838879*39603^(21/22) 6524758424797924 a001 416020/96450076809*167761^(4/5) 6524758424799534 a001 46347/10745088481*167761^(4/5) 6524758424799769 a001 5702887/1322157322203*167761^(4/5) 6524758424799803 a001 7465176/1730726404001*167761^(4/5) 6524758424799808 a001 39088169/9062201101803*167761^(4/5) 6524758424799809 a001 102334155/23725150497407*167761^(4/5) 6524758424799809 a001 31622993/7331474697802*167761^(4/5) 6524758424799811 a001 24157817/5600748293801*167761^(4/5) 6524758424799824 a001 9227465/2139295485799*167761^(4/5) 6524758424799914 a001 1762289/408569081798*167761^(4/5) 6524758424800529 a001 1346269/312119004989*167761^(4/5) 6524758424802600 a001 75025/20633239*64079^(6/23) 6524758424803990 a001 121393/228826127*167761^(2/5) 6524758424804744 a001 514229/119218851371*167761^(4/5) 6524758424808171 a001 14736260449/225851433717 6524758424808171 a004 Fibonacci(26)/Lucas(26)/(1/2+sqrt(5)/2)^4 6524758424808249 a001 11592/634430159*103682^(17/24) 6524758424811797 a001 196418/12752043*64079^(3/23) 6524758424828356 a001 121393/3010349*64079^(1/23) 6524758424833256 a001 317811/6643838879*167761^(3/5) 6524758424833539 a001 15456/1368706081*103682^(3/4) 6524758424833633 a001 98209/22768774562*167761^(4/5) 6524758424834141 a001 105937/4250681*64079^(2/23) 6524758424844291 a001 832040/17393796001*167761^(3/5) 6524758424845211 a001 416020/16692641*64079^(2/23) 6524758424845901 a001 2178309/45537549124*167761^(3/5) 6524758424846136 a001 5702887/119218851371*167761^(3/5) 6524758424846170 a001 14930352/312119004989*167761^(3/5) 6524758424846175 a001 4181/87403804*167761^(3/5) 6524758424846176 a001 102334155/2139295485799*167761^(3/5) 6524758424846176 a001 267914296/5600748293801*167761^(3/5) 6524758424846176 a001 701408733/14662949395604*167761^(3/5) 6524758424846176 a001 1134903170/23725150497407*167761^(3/5) 6524758424846176 a001 433494437/9062201101803*167761^(3/5) 6524758424846176 a001 165580141/3461452808002*167761^(3/5) 6524758424846176 a001 63245986/1322157322203*167761^(3/5) 6524758424846178 a001 24157817/505019158607*167761^(3/5) 6524758424846191 a001 9227465/192900153618*167761^(3/5) 6524758424846281 a001 3524578/73681302247*167761^(3/5) 6524758424846826 a001 726103/29134601*64079^(2/23) 6524758424846896 a001 1346269/28143753123*167761^(3/5) 6524758424847061 a001 5702887/228826127*64079^(2/23) 6524758424847096 a001 829464/33281921*64079^(2/23) 6524758424847101 a001 39088169/1568397607*64079^(2/23) 6524758424847101 a001 34111385/1368706081*64079^(2/23) 6524758424847101 a001 133957148/5374978561*64079^(2/23) 6524758424847101 a001 233802911/9381251041*64079^(2/23) 6524758424847101 a001 1836311903/73681302247*64079^(2/23) 6524758424847101 a001 267084832/10716675201*64079^(2/23) 6524758424847101 a001 12586269025/505019158607*64079^(2/23) 6524758424847101 a001 10983760033/440719107401*64079^(2/23) 6524758424847101 a001 43133785636/1730726404001*64079^(2/23) 6524758424847101 a001 75283811239/3020733700601*64079^(2/23) 6524758424847101 a001 182717648081/7331474697802*64079^(2/23) 6524758424847101 a001 139583862445/5600748293801*64079^(2/23) 6524758424847101 a001 53316291173/2139295485799*64079^(2/23) 6524758424847101 a001 10182505537/408569081798*64079^(2/23) 6524758424847101 a001 7778742049/312119004989*64079^(2/23) 6524758424847101 a001 2971215073/119218851371*64079^(2/23) 6524758424847101 a001 567451585/22768774562*64079^(2/23) 6524758424847101 a001 433494437/17393796001*64079^(2/23) 6524758424847101 a001 165580141/6643838879*64079^(2/23) 6524758424847102 a001 31622993/1268860318*64079^(2/23) 6524758424847104 a001 24157817/969323029*64079^(2/23) 6524758424847117 a001 9227465/370248451*64079^(2/23) 6524758424847207 a001 1762289/70711162*64079^(2/23) 6524758424847824 a001 1346269/54018521*64079^(2/23) 6524758424850372 a001 121393/20633239*167761^(1/5) 6524758424851111 a001 514229/10749957122*167761^(3/5) 6524758424852052 a001 514229/20633239*64079^(2/23) 6524758424858829 a001 46368/6643838879*103682^(19/24) 6524758424862900 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^57 6524758424866658 a001 121393/192900153618*439204^(8/9) 6524758424870416 a001 121393/45537549124*439204^(7/9) 6524758424871633 a001 75025/12752043*64079^(5/23) 6524758424874175 a001 121393/10749957122*439204^(2/3) 6524758424877933 a001 121393/2537720636*439204^(5/9) 6524758424879624 a001 377/710646*167761^(2/5) 6524758424880001 a001 196418/4106118243*167761^(3/5) 6524758424881031 a001 98209/3940598*64079^(2/23) 6524758424881691 a001 121393/599074578*439204^(4/9) 6524758424883805 a001 38580030723/591286729879 6524758424883805 a004 Fibonacci(26)/Lucas(28)/(1/2+sqrt(5)/2)^2 6524758424883805 a004 Fibonacci(28)/Lucas(26)/(1/2+sqrt(5)/2)^6 6524758424884119 a001 23184/5374978561*103682^(5/6) 6524758424885450 a001 233/271444*439204^(1/3) 6524758424889202 a001 121393/33385282*439204^(2/9) 6524758424890659 a001 832040/1568397607*167761^(2/5) 6524758424891790 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^59 6524758424892269 a001 726103/1368706081*167761^(2/5) 6524758424892503 a001 5702887/10749957122*167761^(2/5) 6524758424892538 a001 4976784/9381251041*167761^(2/5) 6524758424892543 a001 39088169/73681302247*167761^(2/5) 6524758424892543 a001 34111385/64300051206*167761^(2/5) 6524758424892543 a001 267914296/505019158607*167761^(2/5) 6524758424892544 a001 233802911/440719107401*167761^(2/5) 6524758424892544 a001 1836311903/3461452808002*167761^(2/5) 6524758424892544 a001 1602508992/3020733700601*167761^(2/5) 6524758424892544 a001 12586269025/23725150497407*167761^(2/5) 6524758424892544 a001 7778742049/14662949395604*167761^(2/5) 6524758424892544 a001 2971215073/5600748293801*167761^(2/5) 6524758424892544 a001 1134903170/2139295485799*167761^(2/5) 6524758424892544 a001 433494437/817138163596*167761^(2/5) 6524758424892544 a001 165580141/312119004989*167761^(2/5) 6524758424892544 a001 63245986/119218851371*167761^(2/5) 6524758424892546 a001 24157817/45537549124*167761^(2/5) 6524758424892559 a001 9227465/17393796001*167761^(2/5) 6524758424892649 a001 3524578/6643838879*167761^(2/5) 6524758424893071 a001 121393/7881196*439204^(1/9) 6524758424893264 a001 1346269/2537720636*167761^(2/5) 6524758424894839 a001 121393/1860498 6524758424894839 a004 Fibonacci(30)/Lucas(26)/(1/2+sqrt(5)/2)^8 6524758424896004 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^61 6524758424896449 a001 121393/4870847*(1/2+1/2*5^(1/2))^2 6524758424896449 a001 264431464437/4052739537881 6524758424896449 a004 Fibonacci(32)/Lucas(26)/(1/2+sqrt(5)/2)^10 6524758424896449 a001 121393/4870847*10749957122^(1/24) 6524758424896449 a001 121393/4870847*4106118243^(1/23) 6524758424896449 a001 121393/4870847*1568397607^(1/22) 6524758424896449 a001 121393/4870847*599074578^(1/21) 6524758424896449 a001 121393/4870847*228826127^(1/20) 6524758424896449 a001 121393/4870847*87403803^(1/19) 6524758424896450 a001 121393/4870847*33385282^(1/18) 6524758424896452 a001 121393/4870847*12752043^(1/17) 6524758424896467 a001 121393/4870847*4870847^(1/16) 6524758424896575 a001 121393/4870847*1860498^(1/15) 6524758424896619 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^63 6524758424896629 a001 121393/3461452808002*7881196^(10/11) 6524758424896639 a001 121393/817138163596*7881196^(9/11) 6524758424896648 a001 121393/192900153618*7881196^(8/11) 6524758424896654 a001 121393/73681302247*7881196^(2/3) 6524758424896658 a001 121393/45537549124*7881196^(7/11) 6524758424896667 a001 121393/10749957122*7881196^(6/11) 6524758424896677 a001 121393/2537720636*7881196^(5/11) 6524758424896684 a001 121393/12752043*(1/2+1/2*5^(1/2))^4 6524758424896684 a001 121393/12752043*23725150497407^(1/16) 6524758424896684 a001 121393/12752043*73681302247^(1/13) 6524758424896684 a004 Fibonacci(34)/Lucas(26)/(1/2+sqrt(5)/2)^12 6524758424896684 a001 121393/12752043*10749957122^(1/12) 6524758424896684 a001 121393/12752043*4106118243^(2/23) 6524758424896684 a001 121393/12752043*1568397607^(1/11) 6524758424896684 a001 121393/12752043*599074578^(2/21) 6524758424896684 a001 121393/12752043*228826127^(1/10) 6524758424896684 a001 121393/12752043*87403803^(2/19) 6524758424896685 a001 121393/12752043*33385282^(1/9) 6524758424896686 a001 121393/599074578*7881196^(4/11) 6524758424896689 a001 121393/12752043*12752043^(2/17) 6524758424896689 a001 121393/370248451*7881196^(1/3) 6524758424896696 a001 233/271444*7881196^(3/11) 6524758424896700 a001 121393/33385282*7881196^(2/11) 6524758424896709 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^65 6524758424896711 a001 121393/3461452808002*20633239^(6/7) 6524758424896712 a001 121393/1322157322203*20633239^(4/5) 6524758424896714 a001 121393/312119004989*20633239^(5/7) 6524758424896715 a001 121393/45537549124*20633239^(3/5) 6524758424896716 a001 121393/28143753123*20633239^(4/7) 6524758424896718 a001 121393/2537720636*20633239^(3/7) 6524758424896718 a001 121393/1568397607*20633239^(2/5) 6524758424896719 a001 121393/33385282*141422324^(2/13) 6524758424896719 a001 121393/33385282*2537720636^(2/15) 6524758424896719 a001 121393/33385282*45537549124^(2/17) 6524758424896719 a001 121393/33385282*14662949395604^(2/21) 6524758424896719 a001 121393/33385282*(1/2+1/2*5^(1/2))^6 6524758424896719 a004 Fibonacci(36)/Lucas(26)/(1/2+sqrt(5)/2)^14 6524758424896719 a001 121393/33385282*10749957122^(1/8) 6524758424896719 a001 121393/33385282*4106118243^(3/23) 6524758424896719 a001 121393/33385282*1568397607^(3/22) 6524758424896719 a001 121393/33385282*599074578^(1/7) 6524758424896719 a001 121393/33385282*228826127^(3/20) 6524758424896719 a001 121393/12752043*4870847^(1/8) 6524758424896719 a001 121393/33385282*87403803^(3/19) 6524758424896720 a001 121393/33385282*33385282^(1/6) 6524758424896720 a001 121393/228826127*20633239^(2/7) 6524758424896722 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^67 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^8/Lucas(38) 6524758424896724 a001 121393/87403803*23725150497407^(1/8) 6524758424896724 a001 121393/87403803*505019158607^(1/7) 6524758424896724 a001 121393/87403803*73681302247^(2/13) 6524758424896724 a004 Fibonacci(38)/Lucas(26)/(1/2+sqrt(5)/2)^16 6524758424896724 a001 121393/87403803*10749957122^(1/6) 6524758424896724 a001 121393/87403803*4106118243^(4/23) 6524758424896724 a001 121393/87403803*1568397607^(2/11) 6524758424896724 a001 121393/87403803*599074578^(4/21) 6524758424896724 a001 121393/54018521*20633239^(1/5) 6524758424896724 a001 121393/87403803*228826127^(1/5) 6524758424896724 a001 121393/87403803*87403803^(4/19) 6524758424896724 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^69 6524758424896724 a001 121393/14662949395604*141422324^(11/13) 6524758424896724 a001 121393/3461452808002*141422324^(10/13) 6524758424896724 a001 121393/817138163596*141422324^(9/13) 6524758424896724 a001 121393/505019158607*141422324^(2/3) 6524758424896724 a001 121393/192900153618*141422324^(8/13) 6524758424896724 a001 121393/45537549124*141422324^(7/13) 6524758424896724 a001 121393/10749957122*141422324^(6/13) 6524758424896724 a001 121393/228826127*2537720636^(2/9) 6524758424896724 a001 121393/228826127*312119004989^(2/11) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^10/Lucas(40) 6524758424896724 a004 Fibonacci(40)/Lucas(26)/(1/2+sqrt(5)/2)^18 6524758424896724 a001 121393/228826127*28143753123^(1/5) 6524758424896724 a001 121393/228826127*10749957122^(5/24) 6524758424896724 a001 121393/228826127*4106118243^(5/23) 6524758424896724 a001 121393/2537720636*141422324^(5/13) 6524758424896724 a001 121393/228826127*1568397607^(5/22) 6524758424896724 a001 121393/228826127*599074578^(5/21) 6524758424896724 a001 121393/599074578*141422324^(4/13) 6524758424896724 a001 121393/969323029*141422324^(1/3) 6524758424896724 a001 121393/228826127*228826127^(1/4) 6524758424896724 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^71 6524758424896724 a001 121393/599074578*2537720636^(4/15) 6524758424896724 a001 121393/599074578*45537549124^(4/17) 6524758424896724 a001 121393/599074578*817138163596^(4/19) 6524758424896724 a001 121393/599074578*14662949395604^(4/21) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^12/Lucas(42) 6524758424896724 a001 121393/599074578*192900153618^(2/9) 6524758424896724 a001 121393/599074578*73681302247^(3/13) 6524758424896724 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2)^20 6524758424896724 a001 121393/599074578*10749957122^(1/4) 6524758424896724 a001 121393/599074578*4106118243^(6/23) 6524758424896724 a001 121393/599074578*1568397607^(3/11) 6524758424896724 a001 121393/599074578*599074578^(2/7) 6524758424896724 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^73 6524758424896724 a001 121393/1568397607*17393796001^(2/7) 6524758424896724 a001 121393/1568397607*14662949395604^(2/9) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^14/Lucas(44) 6524758424896724 a001 121393/1568397607*505019158607^(1/4) 6524758424896724 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^22 6524758424896724 a001 121393/1568397607*10749957122^(7/24) 6524758424896724 a001 121393/1568397607*4106118243^(7/23) 6524758424896724 a001 121393/1568397607*1568397607^(7/22) 6524758424896724 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^75 6524758424896724 a001 121393/14662949395604*2537720636^(11/15) 6524758424896724 a001 121393/3461452808002*2537720636^(2/3) 6524758424896724 a001 121393/817138163596*2537720636^(3/5) 6524758424896724 a001 121393/312119004989*2537720636^(5/9) 6524758424896724 a001 121393/192900153618*2537720636^(8/15) 6524758424896724 a001 121393/45537549124*2537720636^(7/15) 6524758424896724 a001 121393/10749957122*2537720636^(2/5) 6524758424896724 a001 121393/28143753123*2537720636^(4/9) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^16/Lucas(46) 6524758424896724 a001 121393/4106118243*23725150497407^(1/4) 6524758424896724 a001 121393/4106118243*73681302247^(4/13) 6524758424896724 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^24 6524758424896724 a001 121393/4106118243*10749957122^(1/3) 6524758424896724 a001 121393/4106118243*4106118243^(8/23) 6524758424896724 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^77 6524758424896724 a001 121393/10749957122*45537549124^(6/17) 6524758424896724 a001 121393/10749957122*14662949395604^(2/7) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^18/Lucas(48) 6524758424896724 a001 121393/10749957122*192900153618^(1/3) 6524758424896724 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^26 6524758424896724 a001 121393/10749957122*10749957122^(3/8) 6524758424896724 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^79 6524758424896724 a001 121393/1322157322203*17393796001^(4/7) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^20/Lucas(50) 6524758424896724 a001 121393/28143753123*23725150497407^(5/16) 6524758424896724 a001 121393/28143753123*505019158607^(5/14) 6524758424896724 a001 121393/28143753123*73681302247^(5/13) 6524758424896724 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^28 6524758424896724 a001 121393/45537549124*17393796001^(3/7) 6524758424896724 a001 121393/28143753123*28143753123^(2/5) 6524758424896724 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^81 6524758424896724 a001 121393/23725150497407*45537549124^(2/3) 6524758424896724 a001 121393/14662949395604*45537549124^(11/17) 6524758424896724 a001 121393/3461452808002*45537549124^(10/17) 6524758424896724 a001 121393/192900153618*45537549124^(8/17) 6524758424896724 a001 121393/817138163596*45537549124^(9/17) 6524758424896724 a001 121393/73681302247*312119004989^(2/5) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^22/Lucas(52) 6524758424896724 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^83 6524758424896724 a001 121393/192900153618*14662949395604^(8/21) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^24/Lucas(54) 6524758424896724 a001 121393/192900153618*192900153618^(4/9) 6524758424896724 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^85 6524758424896724 a001 121393/14662949395604*312119004989^(3/5) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(56) 6524758424896724 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^87 6524758424896724 a001 121393/1322157322203*14662949395604^(4/9) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(58) 6524758424896724 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^89 6524758424896724 a001 121393/3461452808002*14662949395604^(10/21) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(60) 6524758424896724 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^91 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(62) 6524758424896724 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^93 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(64) 6524758424896724 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^95 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(66) 6524758424896724 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^97 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(68) 6524758424896724 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^99 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(70) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(72) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(74) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(76) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(78) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(80) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(82) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(84) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(86) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(88) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(90) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(92) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(94) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(96) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(98) 6524758424896724 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^30 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(99) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(100) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(97) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(95) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(93) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(91) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(89) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(87) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(85) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(83) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(81) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(79) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(77) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(75) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(73) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(71) 6524758424896724 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^100 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(69) 6524758424896724 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^98 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(67) 6524758424896724 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^96 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(65) 6524758424896724 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^94 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(63) 6524758424896724 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^92 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(61) 6524758424896724 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^90 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(59) 6524758424896724 a001 121393/2139295485799*1322157322203^(1/2) 6524758424896724 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^88 6524758424896724 a001 121393/1322157322203*505019158607^(1/2) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(57) 6524758424896724 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^86 6524758424896724 a001 121393/312119004989*312119004989^(5/11) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^25/Lucas(55) 6524758424896724 a001 121393/312119004989*3461452808002^(5/12) 6524758424896724 a001 121393/3461452808002*192900153618^(5/9) 6524758424896724 a001 121393/817138163596*192900153618^(1/2) 6524758424896724 a001 121393/14662949395604*192900153618^(11/18) 6524758424896724 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^84 6524758424896724 a001 121393/192900153618*73681302247^(6/13) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^23/Lucas(53) 6524758424896724 a001 121393/505019158607*73681302247^(1/2) 6524758424896724 a001 121393/1322157322203*73681302247^(7/13) 6524758424896724 a001 121393/9062201101803*73681302247^(8/13) 6524758424896724 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^32 6524758424896724 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^34 6524758424896724 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^36 6524758424896724 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^38 6524758424896724 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^40 6524758424896724 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^42 6524758424896724 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^44 6524758424896724 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^46 6524758424896724 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^48 6524758424896724 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^50 6524758424896724 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^52 6524758424896724 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^54 6524758424896724 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^56 6524758424896724 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^58 6524758424896724 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^60 6524758424896724 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^62 6524758424896724 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^64 6524758424896724 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^66 6524758424896724 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^68 6524758424896724 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^70 6524758424896724 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^72 6524758424896724 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^74 6524758424896724 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^76 6524758424896724 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^78 6524758424896724 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^82 6524758424896724 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^77 6524758424896724 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^75 6524758424896724 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^73 6524758424896724 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^71 6524758424896724 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^69 6524758424896724 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^67 6524758424896724 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^65 6524758424896724 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^63 6524758424896724 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^61 6524758424896724 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^59 6524758424896724 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^57 6524758424896724 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^55 6524758424896724 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^53 6524758424896724 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^51 6524758424896724 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^49 6524758424896724 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^47 6524758424896724 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^45 6524758424896724 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^43 6524758424896724 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^41 6524758424896724 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^39 6524758424896724 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^37 6524758424896724 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^35 6524758424896724 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^33 6524758424896724 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^31 6524758424896724 a001 121393/45537549124*45537549124^(7/17) 6524758424896724 a001 121393/45537549124*14662949395604^(1/3) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^21/Lucas(51) 6524758424896724 a001 121393/45537549124*192900153618^(7/18) 6524758424896724 a001 121393/312119004989*28143753123^(1/2) 6524758424896724 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^29 6524758424896724 a001 121393/3461452808002*28143753123^(3/5) 6524758424896724 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^80 6524758424896724 a001 121393/28143753123*10749957122^(5/12) 6524758424896724 a001 121393/17393796001*817138163596^(1/3) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^19/Lucas(49) 6524758424896724 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^27 6524758424896724 a001 121393/73681302247*10749957122^(11/24) 6524758424896724 a001 121393/45537549124*10749957122^(7/16) 6524758424896724 a001 121393/192900153618*10749957122^(1/2) 6524758424896724 a001 121393/505019158607*10749957122^(13/24) 6524758424896724 a001 121393/817138163596*10749957122^(9/16) 6524758424896724 a001 121393/1322157322203*10749957122^(7/12) 6524758424896724 a001 121393/3461452808002*10749957122^(5/8) 6524758424896724 a001 121393/9062201101803*10749957122^(2/3) 6524758424896724 a001 121393/14662949395604*10749957122^(11/16) 6524758424896724 a001 121393/23725150497407*10749957122^(17/24) 6524758424896724 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^78 6524758424896724 a001 121393/10749957122*4106118243^(9/23) 6524758424896724 a001 121393/6643838879*45537549124^(1/3) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^17/Lucas(47) 6524758424896724 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^25 6524758424896724 a001 121393/28143753123*4106118243^(10/23) 6524758424896724 a001 121393/73681302247*4106118243^(11/23) 6524758424896724 a001 121393/119218851371*4106118243^(1/2) 6524758424896724 a001 121393/192900153618*4106118243^(12/23) 6524758424896724 a001 121393/505019158607*4106118243^(13/23) 6524758424896724 a001 121393/1322157322203*4106118243^(14/23) 6524758424896724 a001 121393/3461452808002*4106118243^(15/23) 6524758424896724 a001 121393/9062201101803*4106118243^(16/23) 6524758424896724 a001 121393/23725150497407*4106118243^(17/23) 6524758424896724 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^76 6524758424896724 a001 121393/4106118243*1568397607^(4/11) 6524758424896724 a001 121393/2537720636*2537720636^(1/3) 6524758424896724 a001 121393/2537720636*45537549124^(5/17) 6524758424896724 a001 121393/2537720636*312119004989^(3/11) 6524758424896724 a001 121393/2537720636*14662949395604^(5/21) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^15/Lucas(45) 6524758424896724 a001 121393/2537720636*192900153618^(5/18) 6524758424896724 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^23 6524758424896724 a001 121393/2537720636*28143753123^(3/10) 6524758424896724 a001 121393/10749957122*1568397607^(9/22) 6524758424896724 a001 121393/2537720636*10749957122^(5/16) 6524758424896724 a001 121393/28143753123*1568397607^(5/11) 6524758424896724 a001 121393/73681302247*1568397607^(1/2) 6524758424896724 a001 121393/192900153618*1568397607^(6/11) 6524758424896724 a001 121393/505019158607*1568397607^(13/22) 6524758424896724 a001 121393/1322157322203*1568397607^(7/11) 6524758424896724 a001 121393/3461452808002*1568397607^(15/22) 6524758424896724 a001 121393/9062201101803*1568397607^(8/11) 6524758424896724 a001 121393/14662949395604*1568397607^(3/4) 6524758424896724 a001 121393/23725150497407*1568397607^(17/22) 6524758424896724 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^74 6524758424896724 a001 121393/1568397607*599074578^(1/3) 6524758424896724 a001 121393/4106118243*599074578^(8/21) 6524758424896724 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^13/Lucas(43) 6524758424896724 a001 121393/969323029*73681302247^(1/4) 6524758424896724 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^21 6524758424896724 a001 121393/2537720636*599074578^(5/14) 6524758424896724 a001 121393/10749957122*599074578^(3/7) 6524758424896724 a001 121393/28143753123*599074578^(10/21) 6524758424896724 a001 121393/45537549124*599074578^(1/2) 6524758424896724 a001 121393/73681302247*599074578^(11/21) 6524758424896724 a001 121393/192900153618*599074578^(4/7) 6524758424896724 a001 121393/505019158607*599074578^(13/21) 6524758424896724 a001 121393/817138163596*599074578^(9/14) 6524758424896724 a001 121393/1322157322203*599074578^(2/3) 6524758424896724 a001 121393/3461452808002*599074578^(5/7) 6524758424896724 a001 121393/9062201101803*599074578^(16/21) 6524758424896724 a001 121393/14662949395604*599074578^(11/14) 6524758424896724 a001 121393/23725150497407*599074578^(17/21) 6524758424896724 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^72 6524758424896724 a001 121393/599074578*228826127^(3/10) 6524758424896725 a001 121393/1568397607*228826127^(7/20) 6524758424896725 a001 121393/370248451*312119004989^(1/5) 6524758424896725 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^11/Lucas(41) 6524758424896725 a004 Fibonacci(41)/Lucas(26)/(1/2+sqrt(5)/2)^19 6524758424896725 a001 121393/2537720636*228826127^(3/8) 6524758424896725 a001 121393/370248451*1568397607^(1/4) 6524758424896725 a001 121393/4106118243*228826127^(2/5) 6524758424896725 a001 121393/10749957122*228826127^(9/20) 6524758424896725 a001 121393/28143753123*228826127^(1/2) 6524758424896725 a001 121393/73681302247*228826127^(11/20) 6524758424896725 a001 121393/192900153618*228826127^(3/5) 6524758424896725 a001 121393/312119004989*228826127^(5/8) 6524758424896725 a001 121393/505019158607*228826127^(13/20) 6524758424896725 a001 121393/1322157322203*228826127^(7/10) 6524758424896725 a001 121393/3461452808002*228826127^(3/4) 6524758424896725 a001 121393/9062201101803*228826127^(4/5) 6524758424896725 a001 121393/228826127*87403803^(5/19) 6524758424896725 a001 121393/23725150497407*228826127^(17/20) 6524758424896725 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^70 6524758424896725 a001 233/271444*141422324^(3/13) 6524758424896725 a001 121393/599074578*87403803^(6/19) 6524758424896725 a001 121393/1568397607*87403803^(7/19) 6524758424896725 a001 233/271444*2537720636^(1/5) 6524758424896725 a001 233/271444*45537549124^(3/17) 6524758424896725 a001 233/271444*14662949395604^(1/7) 6524758424896725 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^9/Lucas(39) 6524758424896725 a001 233/271444*192900153618^(1/6) 6524758424896725 a004 Fibonacci(39)/Lucas(26)/(1/2+sqrt(5)/2)^17 6524758424896725 a001 233/271444*10749957122^(3/16) 6524758424896725 a001 233/271444*599074578^(3/14) 6524758424896725 a001 121393/4106118243*87403803^(8/19) 6524758424896725 a001 121393/10749957122*87403803^(9/19) 6524758424896725 a001 121393/17393796001*87403803^(1/2) 6524758424896725 a001 121393/87403803*33385282^(2/9) 6524758424896725 a001 121393/28143753123*87403803^(10/19) 6524758424896725 a001 121393/73681302247*87403803^(11/19) 6524758424896725 a001 121393/192900153618*87403803^(12/19) 6524758424896725 a001 121393/505019158607*87403803^(13/19) 6524758424896725 a001 121393/1322157322203*87403803^(14/19) 6524758424896725 a001 121393/3461452808002*87403803^(15/19) 6524758424896725 a001 121393/9062201101803*87403803^(16/19) 6524758424896725 a001 121393/23725150497407*87403803^(17/19) 6524758424896725 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^68 6524758424896726 a001 121393/33385282*12752043^(3/17) 6524758424896726 a001 121393/228826127*33385282^(5/18) 6524758424896726 a001 233/271444*33385282^(1/4) 6524758424896726 a001 121393/599074578*33385282^(1/3) 6524758424896727 a001 121393/54018521*17393796001^(1/7) 6524758424896727 a001 121393/54018521*14662949395604^(1/9) 6524758424896727 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^7/Lucas(37) 6524758424896727 a004 Fibonacci(37)/Lucas(26)/(1/2+sqrt(5)/2)^15 6524758424896727 a001 121393/54018521*599074578^(1/6) 6524758424896727 a001 121393/1568397607*33385282^(7/18) 6524758424896727 a001 121393/2537720636*33385282^(5/12) 6524758424896727 a001 121393/4106118243*33385282^(4/9) 6524758424896727 a001 121393/10749957122*33385282^(1/2) 6524758424896728 a001 121393/28143753123*33385282^(5/9) 6524758424896728 a001 121393/45537549124*33385282^(7/12) 6524758424896728 a001 121393/73681302247*33385282^(11/18) 6524758424896728 a001 121393/192900153618*33385282^(2/3) 6524758424896729 a001 121393/505019158607*33385282^(13/18) 6524758424896729 a001 121393/817138163596*33385282^(3/4) 6524758424896729 a001 121393/1322157322203*33385282^(7/9) 6524758424896729 a001 121393/3461452808002*33385282^(5/6) 6524758424896730 a001 121393/9062201101803*33385282^(8/9) 6524758424896730 a001 121393/14662949395604*33385282^(11/12) 6524758424896730 a001 121393/23725150497407*33385282^(17/18) 6524758424896730 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^66 6524758424896733 a001 121393/87403803*12752043^(4/17) 6524758424896736 a001 121393/228826127*12752043^(5/17) 6524758424896738 a001 121393/20633239*20633239^(1/7) 6524758424896739 a001 121393/599074578*12752043^(6/17) 6524758424896740 a001 121393/20633239*2537720636^(1/9) 6524758424896740 a001 121393/20633239*312119004989^(1/11) 6524758424896740 a001 121393/20633239*(1/2+1/2*5^(1/2))^5 6524758424896740 a001 121393/20633239*28143753123^(1/10) 6524758424896740 a004 Fibonacci(35)/Lucas(26)/(1/2+sqrt(5)/2)^13 6524758424896740 a001 121393/20633239*228826127^(1/8) 6524758424896741 a001 121393/1568397607*12752043^(7/17) 6524758424896743 a001 121393/4106118243*12752043^(8/17) 6524758424896745 a001 121393/6643838879*12752043^(1/2) 6524758424896746 a001 121393/10749957122*12752043^(9/17) 6524758424896748 a001 121393/28143753123*12752043^(10/17) 6524758424896750 a001 121393/73681302247*12752043^(11/17) 6524758424896753 a001 121393/192900153618*12752043^(12/17) 6524758424896755 a001 121393/505019158607*12752043^(13/17) 6524758424896758 a001 121393/1322157322203*12752043^(14/17) 6524758424896760 a001 121393/3461452808002*12752043^(15/17) 6524758424896762 a001 121393/9062201101803*12752043^(16/17) 6524758424896765 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^64 6524758424896770 a001 121393/33385282*4870847^(3/16) 6524758424896792 a001 121393/87403803*4870847^(1/4) 6524758424896810 a001 121393/228826127*4870847^(5/16) 6524758424896820 a001 121393/7881196*7881196^(1/11) 6524758424896828 a001 121393/599074578*4870847^(3/8) 6524758424896829 a001 121393/7881196*141422324^(1/13) 6524758424896830 a001 121393/7881196*2537720636^(1/15) 6524758424896830 a001 121393/7881196*45537549124^(1/17) 6524758424896830 a001 213929548577/3278735159921 6524758424896830 a001 121393/7881196*14662949395604^(1/21) 6524758424896830 a001 121393/7881196*(1/2+1/2*5^(1/2))^3 6524758424896830 a001 121393/7881196*192900153618^(1/18) 6524758424896830 a004 Fibonacci(33)/Lucas(26)/(1/2+sqrt(5)/2)^11 6524758424896830 a001 121393/7881196*10749957122^(1/16) 6524758424896830 a001 121393/7881196*599074578^(1/14) 6524758424896830 a001 121393/7881196*33385282^(1/12) 6524758424896845 a001 121393/1568397607*4870847^(7/16) 6524758424896862 a001 121393/4106118243*4870847^(1/2) 6524758424896879 a001 121393/10749957122*4870847^(9/16) 6524758424896896 a001 121393/28143753123*4870847^(5/8) 6524758424896914 a001 121393/73681302247*4870847^(11/16) 6524758424896931 a001 121393/192900153618*4870847^(3/4) 6524758424896936 a001 121393/12752043*1860498^(2/15) 6524758424896948 a001 121393/505019158607*4870847^(13/16) 6524758424896965 a001 121393/1322157322203*4870847^(7/8) 6524758424896982 a001 121393/3461452808002*4870847^(15/16) 6524758424896999 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^62 6524758424897018 a001 121393/7881196*1860498^(1/10) 6524758424897054 a001 121393/20633239*1860498^(1/6) 6524758424897096 a001 121393/33385282*1860498^(1/5) 6524758424897226 a001 121393/87403803*1860498^(4/15) 6524758424897290 a001 233/271444*1860498^(3/10) 6524758424897353 a001 121393/228826127*1860498^(1/3) 6524758424897372 a001 121393/4870847*710647^(1/14) 6524758424897444 a001 163427632717/2504730781961 6524758424897444 a001 121393/6020698+121393/6020698*5^(1/2) 6524758424897444 a004 Fibonacci(31)/Lucas(26)/(1/2+sqrt(5)/2)^9 6524758424897478 a001 121393/599074578*1860498^(2/5) 6524758424897478 a001 514229/969323029*167761^(2/5) 6524758424897604 a001 121393/1568397607*1860498^(7/15) 6524758424897667 a001 121393/2537720636*1860498^(1/2) 6524758424897730 a001 121393/4106118243*1860498^(8/15) 6524758424897855 a001 121393/10749957122*1860498^(3/5) 6524758424897981 a001 121393/28143753123*1860498^(2/3) 6524758424898044 a001 121393/45537549124*1860498^(7/10) 6524758424898107 a001 121393/73681302247*1860498^(11/15) 6524758424898232 a001 121393/192900153618*1860498^(4/5) 6524758424898295 a001 121393/312119004989*1860498^(5/6) 6524758424898358 a001 121393/505019158607*1860498^(13/15) 6524758424898421 a001 121393/817138163596*1860498^(9/10) 6524758424898484 a001 121393/1322157322203*1860498^(14/15) 6524758424898530 a001 121393/12752043*710647^(1/7) 6524758424898609 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^60 6524758424899487 a001 121393/33385282*710647^(3/14) 6524758424899957 a001 121393/54018521*710647^(1/4) 6524758424900415 a001 121393/87403803*710647^(2/7) 6524758424901339 a001 121393/228826127*710647^(5/14) 6524758424901659 a001 62423800997/956722026041 6524758424901659 a004 Fibonacci(26)/Lucas(29)/(1/2+sqrt(5)/2) 6524758424901659 a004 Fibonacci(29)/Lucas(26)/(1/2+sqrt(5)/2)^7 6524758424902262 a001 121393/599074578*710647^(3/7) 6524758424903184 a001 121393/1568397607*710647^(1/2) 6524758424903261 a001 121393/4870847*271443^(1/13) 6524758424903375 a001 317811/7881196*64079^(1/23) 6524758424904107 a001 121393/4106118243*710647^(4/7) 6524758424905030 a001 121393/10749957122*710647^(9/14) 6524758424905953 a001 121393/28143753123*710647^(5/7) 6524758424906414 a001 121393/45537549124*710647^(3/4) 6524758424906876 a001 121393/73681302247*710647^(11/14) 6524758424907799 a001 121393/192900153618*710647^(6/7) 6524758424908721 a001 121393/505019158607*710647^(13/14) 6524758424909409 a001 46368/17393796001*103682^(7/8) 6524758424909644 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^58 6524758424910308 a001 121393/12752043*271443^(2/13) 6524758424914320 a001 75640/1875749*64079^(1/23) 6524758424915917 a001 2178309/54018521*64079^(1/23) 6524758424916150 a001 5702887/141422324*64079^(1/23) 6524758424916184 a001 14930352/370248451*64079^(1/23) 6524758424916189 a001 39088169/969323029*64079^(1/23) 6524758424916190 a001 9303105/230701876*64079^(1/23) 6524758424916190 a001 267914296/6643838879*64079^(1/23) 6524758424916190 a001 701408733/17393796001*64079^(1/23) 6524758424916190 a001 1836311903/45537549124*64079^(1/23) 6524758424916190 a001 4807526976/119218851371*64079^(1/23) 6524758424916190 a001 1144206275/28374454999*64079^(1/23) 6524758424916190 a001 32951280099/817138163596*64079^(1/23) 6524758424916190 a001 86267571272/2139295485799*64079^(1/23) 6524758424916190 a001 225851433717/5600748293801*64079^(1/23) 6524758424916190 a001 591286729879/14662949395604*64079^(1/23) 6524758424916190 a001 365435296162/9062201101803*64079^(1/23) 6524758424916190 a001 139583862445/3461452808002*64079^(1/23) 6524758424916190 a001 53316291173/1322157322203*64079^(1/23) 6524758424916190 a001 20365011074/505019158607*64079^(1/23) 6524758424916190 a001 7778742049/192900153618*64079^(1/23) 6524758424916190 a001 2971215073/73681302247*64079^(1/23) 6524758424916190 a001 1134903170/28143753123*64079^(1/23) 6524758424916190 a001 433494437/10749957122*64079^(1/23) 6524758424916190 a001 165580141/4106118243*64079^(1/23) 6524758424916190 a001 63245986/1568397607*64079^(1/23) 6524758424916192 a001 24157817/599074578*64079^(1/23) 6524758424916205 a001 9227465/228826127*64079^(1/23) 6524758424916294 a001 3524578/87403803*64079^(1/23) 6524758424916904 a001 1346269/33385282*64079^(1/23) 6524758424917154 a001 121393/33385282*271443^(3/13) 6524758424921085 a001 514229/12752043*64079^(1/23) 6524758424922734 a001 121393/3010349*103682^(1/24) 6524758424923971 a001 121393/87403803*271443^(4/13) 6524758424925993 a001 317811/54018521*167761^(1/5) 6524758424926368 a001 196418/370248451*167761^(2/5) 6524758424930549 a001 11921885137/182717648081 6524758424930549 a004 Fibonacci(26)/Lucas(27)/(1/2+sqrt(5)/2)^3 6524758424930549 a004 Fibonacci(27)/Lucas(26)/(1/2+sqrt(5)/2)^5 6524758424930783 a001 121393/228826127*271443^(5/13) 6524758424934699 a001 15456/9381251041*103682^(11/12) 6524758424937026 a001 208010/35355581*167761^(1/5) 6524758424937595 a001 121393/599074578*271443^(6/13) 6524758424938534 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^59 6524758424938636 a001 2178309/370248451*167761^(1/5) 6524758424938871 a001 5702887/969323029*167761^(1/5) 6524758424938905 a001 196452/33391061*167761^(1/5) 6524758424938910 a001 39088169/6643838879*167761^(1/5) 6524758424938911 a001 102334155/17393796001*167761^(1/5) 6524758424938911 a001 66978574/11384387281*167761^(1/5) 6524758424938911 a001 701408733/119218851371*167761^(1/5) 6524758424938911 a001 1836311903/312119004989*167761^(1/5) 6524758424938911 a001 1201881744/204284540899*167761^(1/5) 6524758424938911 a001 12586269025/2139295485799*167761^(1/5) 6524758424938911 a001 32951280099/5600748293801*167761^(1/5) 6524758424938911 a001 1135099622/192933544679*167761^(1/5) 6524758424938911 a001 139583862445/23725150497407*167761^(1/5) 6524758424938911 a001 53316291173/9062201101803*167761^(1/5) 6524758424938911 a001 10182505537/1730726404001*167761^(1/5) 6524758424938911 a001 7778742049/1322157322203*167761^(1/5) 6524758424938911 a001 2971215073/505019158607*167761^(1/5) 6524758424938911 a001 567451585/96450076809*167761^(1/5) 6524758424938911 a001 433494437/73681302247*167761^(1/5) 6524758424938911 a001 165580141/28143753123*167761^(1/5) 6524758424938911 a001 31622993/5374978561*167761^(1/5) 6524758424938913 a001 24157817/4106118243*167761^(1/5) 6524758424938926 a001 9227465/1568397607*167761^(1/5) 6524758424939016 a001 1762289/299537289*167761^(1/5) 6524758424939631 a001 1346269/228826127*167761^(1/5) 6524758424940867 a001 75025/7881196*64079^(4/23) 6524758424941001 a001 121393/969323029*271443^(1/2) 6524758424942292 a001 317811/505019158607*439204^(8/9) 6524758424943845 a001 514229/87403803*167761^(1/5) 6524758424944407 a001 121393/1568397607*271443^(7/13) 6524758424946050 a001 317811/119218851371*439204^(7/9) 6524758424946334 a001 46368/3010349*39603^(3/22) 6524758424947029 a001 121393/4870847*103682^(1/12) 6524758424949569 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^61 6524758424949739 a001 196418/4870847*64079^(1/23) 6524758424949809 a001 105937/9381251041*439204^(2/3) 6524758424950734 a001 439204/1346269*8^(1/3) 6524758424951179 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^63 6524758424951219 a001 121393/4106118243*271443^(8/13) 6524758424951414 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^65 6524758424951448 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^67 6524758424951453 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^69 6524758424951454 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^71 6524758424951454 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^73 6524758424951454 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^75 6524758424951454 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^77 6524758424951454 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^79 6524758424951454 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^81 6524758424951454 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^83 6524758424951454 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^85 6524758424951454 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^87 6524758424951454 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^89 6524758424951454 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^91 6524758424951454 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^93 6524758424951454 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^95 6524758424951454 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^97 6524758424951454 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^99 6524758424951454 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^100 6524758424951454 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^98 6524758424951454 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^96 6524758424951454 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^94 6524758424951454 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^92 6524758424951454 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^90 6524758424951454 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^88 6524758424951454 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^86 6524758424951454 a001 1/98209*(1/2+1/2*5^(1/2))^23 6524758424951454 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^84 6524758424951454 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^82 6524758424951454 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^80 6524758424951454 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^78 6524758424951454 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^76 6524758424951454 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^74 6524758424951454 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^72 6524758424951454 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^70 6524758424951456 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^68 6524758424951469 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^66 6524758424951559 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^64 6524758424952174 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^62 6524758424953327 a001 832040/1322157322203*439204^(8/9) 6524758424953567 a001 317811/6643838879*439204^(5/9) 6524758424954937 a001 311187/494493258286*439204^(8/9) 6524758424955172 a001 5702887/9062201101803*439204^(8/9) 6524758424955206 a001 14930352/23725150497407*439204^(8/9) 6524758424955227 a001 9227465/14662949395604*439204^(8/9) 6524758424955317 a001 3524578/5600748293801*439204^(8/9) 6524758424955932 a001 1346269/2139295485799*439204^(8/9) 6524758424956389 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^60 6524758424957085 a001 75640/28374454999*439204^(7/9) 6524758424957325 a001 317811/1568397607*439204^(4/9) 6524758424958031 a001 121393/10749957122*271443^(9/13) 6524758424958695 a001 2178309/817138163596*439204^(7/9) 6524758424958930 a001 5702887/2139295485799*439204^(7/9) 6524758424958964 a001 14930352/5600748293801*439204^(7/9) 6524758424958969 a001 39088169/14662949395604*439204^(7/9) 6524758424958971 a001 63245986/23725150497407*439204^(7/9) 6524758424958973 a001 24157817/9062201101803*439204^(7/9) 6524758424958986 a001 9227465/3461452808002*439204^(7/9) 6524758424959075 a001 3524578/1322157322203*439204^(7/9) 6524758424959439 a001 11222647969/172000972880 6524758424959439 a004 Fibonacci(28)/Lucas(28)/(1/2+sqrt(5)/2)^4 6524758424959690 a001 1346269/505019158607*439204^(7/9) 6524758424959988 a001 11592/11384387281*103682^(23/24) 6524758424960147 a001 514229/817138163596*439204^(8/9) 6524758424960844 a001 832040/73681302247*439204^(2/3) 6524758424961084 a001 317811/370248451*439204^(1/3) 6524758424962454 a001 726103/64300051206*439204^(2/3) 6524758424962688 a001 5702887/505019158607*439204^(2/3) 6524758424962723 a001 4976784/440719107401*439204^(2/3) 6524758424962728 a001 39088169/3461452808002*439204^(2/3) 6524758424962728 a001 34111385/3020733700601*439204^(2/3) 6524758424962729 a001 267914296/23725150497407*439204^(2/3) 6524758424962729 a001 165580141/14662949395604*439204^(2/3) 6524758424962729 a001 63245986/5600748293801*439204^(2/3) 6524758424962731 a001 24157817/2139295485799*439204^(2/3) 6524758424962744 a001 9227465/817138163596*439204^(2/3) 6524758424962834 a001 3524578/312119004989*439204^(2/3) 6524758424963449 a001 1346269/119218851371*439204^(2/3) 6524758424963905 a001 514229/192900153618*439204^(7/9) 6524758424964602 a001 832040/17393796001*439204^(5/9) 6524758424964841 a001 105937/29134601*439204^(2/9) 6524758424964843 a001 121393/28143753123*271443^(10/13) 6524758424966212 a001 2178309/45537549124*439204^(5/9) 6524758424966447 a001 5702887/119218851371*439204^(5/9) 6524758424966481 a001 14930352/312119004989*439204^(5/9) 6524758424966486 a001 4181/87403804*439204^(5/9) 6524758424966487 a001 102334155/2139295485799*439204^(5/9) 6524758424966487 a001 267914296/5600748293801*439204^(5/9) 6524758424966487 a001 701408733/14662949395604*439204^(5/9) 6524758424966487 a001 1134903170/23725150497407*439204^(5/9) 6524758424966487 a001 433494437/9062201101803*439204^(5/9) 6524758424966487 a001 165580141/3461452808002*439204^(5/9) 6524758424966487 a001 63245986/1322157322203*439204^(5/9) 6524758424966489 a001 24157817/505019158607*439204^(5/9) 6524758424966502 a001 9227465/192900153618*439204^(5/9) 6524758424966592 a001 3524578/73681302247*439204^(5/9) 6524758424967207 a001 1346269/28143753123*439204^(5/9) 6524758424967423 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^61 6524758424967663 a001 514229/45537549124*439204^(2/3) 6524758424968360 a001 832040/4106118243*439204^(4/9) 6524758424968615 a001 10959/711491*439204^(1/9) 6524758424969970 a001 987/4870846*439204^(4/9) 6524758424970205 a001 5702887/28143753123*439204^(4/9) 6524758424970239 a001 14930352/73681302247*439204^(4/9) 6524758424970244 a001 39088169/192900153618*439204^(4/9) 6524758424970245 a001 102334155/505019158607*439204^(4/9) 6524758424970245 a001 267914296/1322157322203*439204^(4/9) 6524758424970245 a001 701408733/3461452808002*439204^(4/9) 6524758424970245 a001 1836311903/9062201101803*439204^(4/9) 6524758424970245 a001 4807526976/23725150497407*439204^(4/9) 6524758424970245 a001 2971215073/14662949395604*439204^(4/9) 6524758424970245 a001 1134903170/5600748293801*439204^(4/9) 6524758424970245 a001 433494437/2139295485799*439204^(4/9) 6524758424970245 a001 165580141/817138163596*439204^(4/9) 6524758424970245 a001 63245986/312119004989*439204^(4/9) 6524758424970247 a001 24157817/119218851371*439204^(4/9) 6524758424970260 a001 9227465/45537549124*439204^(4/9) 6524758424970350 a001 3524578/17393796001*439204^(4/9) 6524758424970473 a001 264431464440/4052739537881 6524758424970473 a004 Fibonacci(28)/Lucas(30)/(1/2+sqrt(5)/2)^2 6524758424970473 a004 Fibonacci(30)/Lucas(28)/(1/2+sqrt(5)/2)^6 6524758424970965 a001 1346269/6643838879*439204^(4/9) 6524758424971422 a001 514229/10749957122*439204^(5/9) 6524758424971638 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^63 6524758424971655 a001 121393/73681302247*271443^(11/13) 6524758424972083 a001 317811/4870847 6524758424972083 a004 Fibonacci(32)/Lucas(28)/(1/2+sqrt(5)/2)^8 6524758424972118 a001 832040/969323029*439204^(1/3) 6524758424972253 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^65 6524758424972263 a001 105937/3020733700601*7881196^(10/11) 6524758424972272 a001 317811/2139295485799*7881196^(9/11) 6524758424972282 a001 317811/505019158607*7881196^(8/11) 6524758424972288 a001 105937/64300051206*7881196^(2/3) 6524758424972292 a001 317811/119218851371*7881196^(7/11) 6524758424972301 a001 105937/9381251041*7881196^(6/11) 6524758424972311 a001 317811/6643838879*7881196^(5/11) 6524758424972318 a001 105937/4250681*(1/2+1/2*5^(1/2))^2 6524758424972318 a004 Fibonacci(34)/Lucas(28)/(1/2+sqrt(5)/2)^10 6524758424972318 a001 105937/4250681*10749957122^(1/24) 6524758424972318 a001 105937/4250681*4106118243^(1/23) 6524758424972318 a001 105937/4250681*1568397607^(1/22) 6524758424972318 a001 105937/4250681*599074578^(1/21) 6524758424972318 a001 105937/4250681*228826127^(1/20) 6524758424972318 a001 105937/4250681*87403803^(1/19) 6524758424972319 a001 105937/4250681*33385282^(1/18) 6524758424972320 a001 317811/1568397607*7881196^(4/11) 6524758424972321 a001 105937/4250681*12752043^(1/17) 6524758424972323 a001 317811/969323029*7881196^(1/3) 6524758424972330 a001 317811/370248451*7881196^(3/11) 6524758424972335 a001 105937/4250681*4870847^(1/16) 6524758424972338 a001 105937/29134601*7881196^(2/11) 6524758424972343 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^67 6524758424972345 a001 105937/3020733700601*20633239^(6/7) 6524758424972346 a001 317811/3461452808002*20633239^(4/5) 6524758424972347 a001 317811/817138163596*20633239^(5/7) 6524758424972349 a001 317811/119218851371*20633239^(3/5) 6524758424972350 a001 317811/73681302247*20633239^(4/7) 6524758424972352 a001 317811/6643838879*20633239^(3/7) 6524758424972352 a001 105937/1368706081*20633239^(2/5) 6524758424972353 a001 317811/33385282*(1/2+1/2*5^(1/2))^4 6524758424972353 a001 317811/33385282*23725150497407^(1/16) 6524758424972353 a004 Fibonacci(36)/Lucas(28)/(1/2+sqrt(5)/2)^12 6524758424972353 a001 317811/33385282*73681302247^(1/13) 6524758424972353 a001 317811/33385282*10749957122^(1/12) 6524758424972353 a001 317811/33385282*4106118243^(2/23) 6524758424972353 a001 317811/33385282*1568397607^(1/11) 6524758424972353 a001 317811/33385282*599074578^(2/21) 6524758424972353 a001 317811/33385282*228826127^(1/10) 6524758424972353 a001 317811/33385282*87403803^(2/19) 6524758424972353 a001 317811/33385282*33385282^(1/9) 6524758424972354 a001 377/710646*20633239^(2/7) 6524758424972356 a001 317811/141422324*20633239^(1/5) 6524758424972356 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^69 6524758424972357 a001 317811/33385282*12752043^(2/17) 6524758424972358 a001 105937/29134601*141422324^(2/13) 6524758424972358 a001 105937/29134601*2537720636^(2/15) 6524758424972358 a001 105937/29134601*45537549124^(2/17) 6524758424972358 a001 105937/29134601*14662949395604^(2/21) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^6/Lucas(38) 6524758424972358 a004 Fibonacci(38)/Lucas(28)/(1/2+sqrt(5)/2)^14 6524758424972358 a001 105937/29134601*10749957122^(1/8) 6524758424972358 a001 105937/29134601*4106118243^(3/23) 6524758424972358 a001 105937/29134601*1568397607^(3/22) 6524758424972358 a001 105937/29134601*599074578^(1/7) 6524758424972358 a001 105937/29134601*228826127^(3/20) 6524758424972358 a001 105937/29134601*87403803^(3/19) 6524758424972358 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^71 6524758424972358 a001 105937/3020733700601*141422324^(10/13) 6524758424972358 a001 317811/2139295485799*141422324^(9/13) 6524758424972358 a001 105937/440719107401*141422324^(2/3) 6524758424972358 a001 317811/505019158607*141422324^(8/13) 6524758424972358 a001 317811/119218851371*141422324^(7/13) 6524758424972358 a001 105937/9381251041*141422324^(6/13) 6524758424972358 a001 317811/6643838879*141422324^(5/13) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^8/Lucas(40) 6524758424972358 a001 317811/228826127*23725150497407^(1/8) 6524758424972358 a001 317811/228826127*505019158607^(1/7) 6524758424972358 a004 Fibonacci(40)/Lucas(28)/(1/2+sqrt(5)/2)^16 6524758424972358 a001 317811/228826127*73681302247^(2/13) 6524758424972358 a001 317811/228826127*10749957122^(1/6) 6524758424972358 a001 317811/228826127*4106118243^(4/23) 6524758424972358 a001 317811/228826127*1568397607^(2/11) 6524758424972358 a001 317811/228826127*599074578^(4/21) 6524758424972358 a001 317811/2537720636*141422324^(1/3) 6524758424972358 a001 317811/1568397607*141422324^(4/13) 6524758424972358 a001 317811/228826127*228826127^(1/5) 6524758424972358 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^73 6524758424972358 a001 317811/370248451*141422324^(3/13) 6524758424972358 a001 377/710646*2537720636^(2/9) 6524758424972358 a001 377/710646*312119004989^(2/11) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^10/Lucas(42) 6524758424972358 a004 Fibonacci(42)/Lucas(28)/(1/2+sqrt(5)/2)^18 6524758424972358 a001 377/710646*28143753123^(1/5) 6524758424972358 a001 377/710646*10749957122^(5/24) 6524758424972358 a001 377/710646*4106118243^(5/23) 6524758424972358 a001 377/710646*1568397607^(5/22) 6524758424972358 a001 377/710646*599074578^(5/21) 6524758424972358 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^75 6524758424972358 a001 317811/1568397607*2537720636^(4/15) 6524758424972358 a001 317811/1568397607*45537549124^(4/17) 6524758424972358 a001 317811/1568397607*817138163596^(4/19) 6524758424972358 a001 317811/1568397607*14662949395604^(4/21) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^12/Lucas(44) 6524758424972358 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2)^20 6524758424972358 a001 317811/1568397607*192900153618^(2/9) 6524758424972358 a001 317811/1568397607*73681302247^(3/13) 6524758424972358 a001 317811/1568397607*10749957122^(1/4) 6524758424972358 a001 317811/1568397607*4106118243^(6/23) 6524758424972358 a001 317811/1568397607*1568397607^(3/11) 6524758424972358 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^77 6524758424972358 a001 105937/3020733700601*2537720636^(2/3) 6524758424972358 a001 317811/2139295485799*2537720636^(3/5) 6524758424972358 a001 317811/817138163596*2537720636^(5/9) 6524758424972358 a001 317811/505019158607*2537720636^(8/15) 6524758424972358 a001 317811/119218851371*2537720636^(7/15) 6524758424972358 a001 317811/73681302247*2537720636^(4/9) 6524758424972358 a001 105937/9381251041*2537720636^(2/5) 6524758424972358 a001 105937/1368706081*17393796001^(2/7) 6524758424972358 a001 105937/1368706081*14662949395604^(2/9) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^14/Lucas(46) 6524758424972358 a001 105937/1368706081*505019158607^(1/4) 6524758424972358 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^22 6524758424972358 a001 105937/1368706081*10749957122^(7/24) 6524758424972358 a001 105937/1368706081*4106118243^(7/23) 6524758424972358 a001 317811/6643838879*2537720636^(1/3) 6524758424972358 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^79 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^16/Lucas(48) 6524758424972358 a001 317811/10749957122*23725150497407^(1/4) 6524758424972358 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^24 6524758424972358 a001 317811/10749957122*73681302247^(4/13) 6524758424972358 a001 317811/10749957122*10749957122^(1/3) 6524758424972358 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^81 6524758424972358 a001 317811/3461452808002*17393796001^(4/7) 6524758424972358 a001 105937/9381251041*45537549124^(6/17) 6524758424972358 a001 317811/119218851371*17393796001^(3/7) 6524758424972358 a001 105937/9381251041*14662949395604^(2/7) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^18/Lucas(50) 6524758424972358 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^26 6524758424972358 a001 105937/9381251041*192900153618^(1/3) 6524758424972358 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^83 6524758424972358 a001 105937/3020733700601*45537549124^(10/17) 6524758424972358 a001 317811/2139295485799*45537549124^(9/17) 6524758424972358 a001 317811/505019158607*45537549124^(8/17) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^20/Lucas(52) 6524758424972358 a001 317811/73681302247*23725150497407^(5/16) 6524758424972358 a001 317811/73681302247*505019158607^(5/14) 6524758424972358 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^28 6524758424972358 a001 317811/119218851371*45537549124^(7/17) 6524758424972358 a001 317811/73681302247*73681302247^(5/13) 6524758424972358 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^85 6524758424972358 a001 105937/64300051206*312119004989^(2/5) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^22/Lucas(54) 6524758424972358 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^30 6524758424972358 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^87 6524758424972358 a001 105937/3020733700601*312119004989^(6/11) 6524758424972358 a001 317811/505019158607*14662949395604^(8/21) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(56) 6524758424972358 a001 317811/817138163596*312119004989^(5/11) 6524758424972358 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^89 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(58) 6524758424972358 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^91 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(60) 6524758424972358 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^93 6524758424972358 a001 105937/3020733700601*14662949395604^(10/21) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(62) 6524758424972358 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^95 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(64) 6524758424972358 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^97 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(66) 6524758424972358 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^99 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(68) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(70) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(72) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(74) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(76) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(78) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(80) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(82) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(84) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(86) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(88) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(90) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(92) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(94) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(96) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(98) 6524758424972358 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^32 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(99) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(100) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(97) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(95) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(93) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(91) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(89) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(87) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(85) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(83) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(81) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(79) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(77) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(75) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(73) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(71) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(69) 6524758424972358 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^100 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(67) 6524758424972358 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^98 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(65) 6524758424972358 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^96 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(63) 6524758424972358 a001 10959/505618944676*9062201101803^(1/2) 6524758424972358 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^94 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(61) 6524758424972358 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^92 6524758424972358 a001 317811/2139295485799*14662949395604^(3/7) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(59) 6524758424972358 a001 317811/5600748293801*1322157322203^(1/2) 6524758424972358 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^90 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(57) 6524758424972358 a001 317811/23725150497407*505019158607^(4/7) 6524758424972358 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^34 6524758424972358 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^36 6524758424972358 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^38 6524758424972358 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^40 6524758424972358 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^42 6524758424972358 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^44 6524758424972358 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^46 6524758424972358 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^48 6524758424972358 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^50 6524758424972358 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^52 6524758424972358 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^54 6524758424972358 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^56 6524758424972358 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^58 6524758424972358 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^60 6524758424972358 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^62 6524758424972358 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^64 6524758424972358 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^66 6524758424972358 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^68 6524758424972358 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^70 6524758424972358 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^72 6524758424972358 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^74 6524758424972358 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^76 6524758424972358 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^88 6524758424972358 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^75 6524758424972358 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^73 6524758424972358 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^71 6524758424972358 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^69 6524758424972358 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^67 6524758424972358 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^65 6524758424972358 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^63 6524758424972358 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^61 6524758424972358 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^59 6524758424972358 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^57 6524758424972358 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^55 6524758424972358 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^53 6524758424972358 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^51 6524758424972358 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^49 6524758424972358 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^47 6524758424972358 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^45 6524758424972358 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^43 6524758424972358 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^41 6524758424972358 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^39 6524758424972358 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^37 6524758424972358 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^35 6524758424972358 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^33 6524758424972358 a001 317811/505019158607*192900153618^(4/9) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^23/Lucas(55) 6524758424972358 a001 317811/2139295485799*192900153618^(1/2) 6524758424972358 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^31 6524758424972358 a001 105937/3020733700601*192900153618^(5/9) 6524758424972358 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^86 6524758424972358 a001 317811/119218851371*14662949395604^(1/3) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^21/Lucas(53) 6524758424972358 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^29 6524758424972358 a001 317811/119218851371*192900153618^(7/18) 6524758424972358 a001 317811/505019158607*73681302247^(6/13) 6524758424972358 a001 105937/440719107401*73681302247^(1/2) 6524758424972358 a001 317811/3461452808002*73681302247^(7/13) 6524758424972358 a001 317811/23725150497407*73681302247^(8/13) 6524758424972358 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^84 6524758424972358 a001 317811/73681302247*28143753123^(2/5) 6524758424972358 a001 317811/45537549124*817138163596^(1/3) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^19/Lucas(51) 6524758424972358 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^27 6524758424972358 a001 317811/817138163596*28143753123^(1/2) 6524758424972358 a001 105937/3020733700601*28143753123^(3/5) 6524758424972358 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^82 6524758424972358 a001 105937/9381251041*10749957122^(3/8) 6524758424972358 a001 10959/599786069*45537549124^(1/3) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^17/Lucas(49) 6524758424972358 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^25 6524758424972358 a001 317811/73681302247*10749957122^(5/12) 6524758424972358 a001 317811/119218851371*10749957122^(7/16) 6524758424972358 a001 105937/64300051206*10749957122^(11/24) 6524758424972358 a001 317811/505019158607*10749957122^(1/2) 6524758424972358 a001 105937/440719107401*10749957122^(13/24) 6524758424972358 a001 317811/2139295485799*10749957122^(9/16) 6524758424972358 a001 317811/3461452808002*10749957122^(7/12) 6524758424972358 a001 105937/3020733700601*10749957122^(5/8) 6524758424972358 a001 317811/23725150497407*10749957122^(2/3) 6524758424972358 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^80 6524758424972358 a001 317811/10749957122*4106118243^(8/23) 6524758424972358 a001 105937/9381251041*4106118243^(9/23) 6524758424972358 a001 317811/6643838879*45537549124^(5/17) 6524758424972358 a001 317811/6643838879*312119004989^(3/11) 6524758424972358 a001 317811/6643838879*14662949395604^(5/21) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^15/Lucas(47) 6524758424972358 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^23 6524758424972358 a001 317811/6643838879*192900153618^(5/18) 6524758424972358 a001 317811/6643838879*28143753123^(3/10) 6524758424972358 a001 317811/6643838879*10749957122^(5/16) 6524758424972358 a001 317811/73681302247*4106118243^(10/23) 6524758424972358 a001 105937/64300051206*4106118243^(11/23) 6524758424972358 a001 317811/312119004989*4106118243^(1/2) 6524758424972358 a001 317811/505019158607*4106118243^(12/23) 6524758424972358 a001 105937/440719107401*4106118243^(13/23) 6524758424972358 a001 317811/3461452808002*4106118243^(14/23) 6524758424972358 a001 105937/3020733700601*4106118243^(15/23) 6524758424972358 a001 317811/23725150497407*4106118243^(16/23) 6524758424972358 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^78 6524758424972358 a001 105937/1368706081*1568397607^(7/22) 6524758424972358 a001 317811/10749957122*1568397607^(4/11) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^13/Lucas(45) 6524758424972358 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^21 6524758424972358 a001 317811/2537720636*73681302247^(1/4) 6524758424972358 a001 105937/9381251041*1568397607^(9/22) 6524758424972358 a001 317811/73681302247*1568397607^(5/11) 6524758424972358 a001 105937/64300051206*1568397607^(1/2) 6524758424972358 a001 317811/505019158607*1568397607^(6/11) 6524758424972358 a001 105937/440719107401*1568397607^(13/22) 6524758424972358 a001 317811/3461452808002*1568397607^(7/11) 6524758424972358 a001 105937/3020733700601*1568397607^(15/22) 6524758424972358 a001 317811/23725150497407*1568397607^(8/11) 6524758424972358 a001 317811/1568397607*599074578^(2/7) 6524758424972358 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^76 6524758424972358 a001 105937/1368706081*599074578^(1/3) 6524758424972358 a001 317811/6643838879*599074578^(5/14) 6524758424972358 a001 317811/10749957122*599074578^(8/21) 6524758424972358 a001 317811/969323029*312119004989^(1/5) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^11/Lucas(43) 6524758424972358 a004 Fibonacci(43)/Lucas(28)/(1/2+sqrt(5)/2)^19 6524758424972358 a001 317811/969323029*1568397607^(1/4) 6524758424972358 a001 105937/9381251041*599074578^(3/7) 6524758424972358 a001 317811/73681302247*599074578^(10/21) 6524758424972358 a001 317811/119218851371*599074578^(1/2) 6524758424972358 a001 105937/64300051206*599074578^(11/21) 6524758424972358 a001 317811/505019158607*599074578^(4/7) 6524758424972358 a001 105937/440719107401*599074578^(13/21) 6524758424972358 a001 317811/2139295485799*599074578^(9/14) 6524758424972358 a001 317811/3461452808002*599074578^(2/3) 6524758424972358 a001 377/710646*228826127^(1/4) 6524758424972358 a001 105937/3020733700601*599074578^(5/7) 6524758424972358 a001 317811/23725150497407*599074578^(16/21) 6524758424972358 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^74 6524758424972358 a001 317811/1568397607*228826127^(3/10) 6524758424972358 a001 105937/1368706081*228826127^(7/20) 6524758424972358 a001 317811/54018521*20633239^(1/7) 6524758424972358 a001 317811/6643838879*228826127^(3/8) 6524758424972358 a001 317811/370248451*2537720636^(1/5) 6524758424972358 a001 317811/370248451*45537549124^(3/17) 6524758424972358 a001 317811/370248451*817138163596^(3/19) 6524758424972358 a001 317811/370248451*14662949395604^(1/7) 6524758424972358 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^9/Lucas(41) 6524758424972358 a004 Fibonacci(41)/Lucas(28)/(1/2+sqrt(5)/2)^17 6524758424972358 a001 317811/370248451*192900153618^(1/6) 6524758424972358 a001 317811/370248451*10749957122^(3/16) 6524758424972358 a001 317811/10749957122*228826127^(2/5) 6524758424972358 a001 317811/370248451*599074578^(3/14) 6524758424972358 a001 317811/228826127*87403803^(4/19) 6524758424972358 a001 105937/9381251041*228826127^(9/20) 6524758424972358 a001 317811/73681302247*228826127^(1/2) 6524758424972358 a001 105937/64300051206*228826127^(11/20) 6524758424972358 a001 317811/505019158607*228826127^(3/5) 6524758424972359 a001 317811/817138163596*228826127^(5/8) 6524758424972359 a001 105937/440719107401*228826127^(13/20) 6524758424972359 a001 317811/3461452808002*228826127^(7/10) 6524758424972359 a001 105937/3020733700601*228826127^(3/4) 6524758424972359 a001 317811/23725150497407*228826127^(4/5) 6524758424972359 a001 105937/29134601*33385282^(1/6) 6524758424972359 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^72 6524758424972359 a001 377/710646*87403803^(5/19) 6524758424972359 a001 317811/1568397607*87403803^(6/19) 6524758424972359 a001 105937/1368706081*87403803^(7/19) 6524758424972359 a001 317811/141422324*17393796001^(1/7) 6524758424972359 a001 317811/141422324*14662949395604^(1/9) 6524758424972359 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^7/Lucas(39) 6524758424972359 a004 Fibonacci(39)/Lucas(28)/(1/2+sqrt(5)/2)^15 6524758424972359 a001 317811/141422324*599074578^(1/6) 6524758424972359 a001 317811/10749957122*87403803^(8/19) 6524758424972359 a001 105937/9381251041*87403803^(9/19) 6524758424972359 a001 317811/45537549124*87403803^(1/2) 6524758424972359 a001 317811/73681302247*87403803^(10/19) 6524758424972359 a001 105937/64300051206*87403803^(11/19) 6524758424972359 a001 317811/505019158607*87403803^(12/19) 6524758424972359 a001 105937/440719107401*87403803^(13/19) 6524758424972359 a001 317811/3461452808002*87403803^(14/19) 6524758424972359 a001 105937/3020733700601*87403803^(15/19) 6524758424972359 a001 317811/23725150497407*87403803^(16/19) 6524758424972359 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^70 6524758424972360 a001 317811/228826127*33385282^(2/9) 6524758424972360 a001 317811/370248451*33385282^(1/4) 6524758424972360 a001 377/710646*33385282^(5/18) 6524758424972360 a001 317811/1568397607*33385282^(1/3) 6524758424972361 a001 317811/54018521*2537720636^(1/9) 6524758424972361 a001 317811/54018521*312119004989^(1/11) 6524758424972361 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^5/Lucas(37) 6524758424972361 a004 Fibonacci(37)/Lucas(28)/(1/2+sqrt(5)/2)^13 6524758424972361 a001 317811/54018521*28143753123^(1/10) 6524758424972361 a001 317811/54018521*228826127^(1/8) 6524758424972361 a001 105937/1368706081*33385282^(7/18) 6524758424972361 a001 317811/6643838879*33385282^(5/12) 6524758424972361 a001 317811/10749957122*33385282^(4/9) 6524758424972361 a001 105937/9381251041*33385282^(1/2) 6524758424972362 a001 317811/73681302247*33385282^(5/9) 6524758424972362 a001 317811/119218851371*33385282^(7/12) 6524758424972362 a001 105937/64300051206*33385282^(11/18) 6524758424972362 a001 317811/505019158607*33385282^(2/3) 6524758424972363 a001 105937/440719107401*33385282^(13/18) 6524758424972363 a001 317811/2139295485799*33385282^(3/4) 6524758424972363 a001 317811/3461452808002*33385282^(7/9) 6524758424972363 a001 105937/3020733700601*33385282^(5/6) 6524758424972364 a001 317811/23725150497407*33385282^(8/9) 6524758424972364 a001 10959/711491*7881196^(1/11) 6524758424972364 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^68 6524758424972365 a001 105937/29134601*12752043^(3/17) 6524758424972368 a001 317811/228826127*12752043^(4/17) 6524758424972370 a001 377/710646*12752043^(5/17) 6524758424972373 a001 317811/1568397607*12752043^(6/17) 6524758424972374 a001 10959/711491*141422324^(1/13) 6524758424972374 a001 10959/711491*2537720636^(1/15) 6524758424972374 a001 10959/711491*45537549124^(1/17) 6524758424972374 a001 10959/711491*14662949395604^(1/21) 6524758424972374 a001 10959/711491*(1/2+1/2*5^(1/2))^3 6524758424972374 a001 10959/711491*192900153618^(1/18) 6524758424972374 a004 Fibonacci(35)/Lucas(28)/(1/2+sqrt(5)/2)^11 6524758424972374 a001 10959/711491*10749957122^(1/16) 6524758424972374 a001 10959/711491*599074578^(1/14) 6524758424972374 a001 10959/711491*33385282^(1/12) 6524758424972375 a001 105937/1368706081*12752043^(7/17) 6524758424972377 a001 317811/10749957122*12752043^(8/17) 6524758424972378 a001 10959/599786069*12752043^(1/2) 6524758424972380 a001 105937/9381251041*12752043^(9/17) 6524758424972382 a001 317811/73681302247*12752043^(10/17) 6524758424972384 a001 105937/64300051206*12752043^(11/17) 6524758424972387 a001 317811/505019158607*12752043^(12/17) 6524758424972387 a001 317811/33385282*4870847^(1/8) 6524758424972389 a001 105937/440719107401*12752043^(13/17) 6524758424972391 a001 317811/3461452808002*12752043^(14/17) 6524758424972394 a001 105937/3020733700601*12752043^(15/17) 6524758424972396 a001 317811/23725150497407*12752043^(16/17) 6524758424972399 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^66 6524758424972409 a001 105937/29134601*4870847^(3/16) 6524758424972427 a001 317811/228826127*4870847^(1/4) 6524758424972444 a001 105937/4250681*1860498^(1/15) 6524758424972444 a001 377/710646*4870847^(5/16) 6524758424972462 a001 317811/1568397607*4870847^(3/8) 6524758424972463 a001 317811/15762392+317811/15762392*5^(1/2) 6524758424972463 a004 Fibonacci(33)/Lucas(28)/(1/2+sqrt(5)/2)^9 6524758424972479 a001 105937/1368706081*4870847^(7/16) 6524758424972496 a001 317811/10749957122*4870847^(1/2) 6524758424972513 a001 105937/9381251041*4870847^(9/16) 6524758424972530 a001 317811/73681302247*4870847^(5/8) 6524758424972547 a001 105937/64300051206*4870847^(11/16) 6524758424972562 a001 10959/711491*1860498^(1/10) 6524758424972565 a001 317811/505019158607*4870847^(3/4) 6524758424972582 a001 105937/440719107401*4870847^(13/16) 6524758424972599 a001 317811/3461452808002*4870847^(7/8) 6524758424972604 a001 317811/33385282*1860498^(2/15) 6524758424972616 a001 105937/3020733700601*4870847^(15/16) 6524758424972633 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^64 6524758424972675 a001 317811/54018521*1860498^(1/6) 6524758424972699 a001 121393/7881196*103682^(1/8) 6524758424972730 a001 98209/16692641*167761^(1/5) 6524758424972735 a001 105937/29134601*1860498^(1/5) 6524758424972861 a001 317811/228826127*1860498^(4/15) 6524758424972924 a001 317811/370248451*1860498^(3/10) 6524758424972987 a001 377/710646*1860498^(1/3) 6524758424973078 a001 32912238243/504420793834 6524758424973078 a004 Fibonacci(28)/Lucas(31)/(1/2+sqrt(5)/2) 6524758424973078 a004 Fibonacci(31)/Lucas(28)/(1/2+sqrt(5)/2)^7 6524758424973112 a001 317811/1568397607*1860498^(2/5) 6524758424973238 a001 105937/1368706081*1860498^(7/15) 6524758424973241 a001 105937/4250681*710647^(1/14) 6524758424973301 a001 317811/6643838879*1860498^(1/2) 6524758424973364 a001 317811/10749957122*1860498^(8/15) 6524758424973489 a001 105937/9381251041*1860498^(3/5) 6524758424973615 a001 317811/73681302247*1860498^(2/3) 6524758424973678 a001 317811/119218851371*1860498^(7/10) 6524758424973728 a001 2178309/2537720636*439204^(1/3) 6524758424973741 a001 105937/64300051206*1860498^(11/15) 6524758424973866 a001 317811/505019158607*1860498^(4/5) 6524758424973929 a001 317811/817138163596*1860498^(5/6) 6524758424973963 a001 5702887/6643838879*439204^(1/3) 6524758424973992 a001 105937/440719107401*1860498^(13/15) 6524758424973998 a001 14930352/17393796001*439204^(1/3) 6524758424974003 a001 39088169/45537549124*439204^(1/3) 6524758424974003 a001 102334155/119218851371*439204^(1/3) 6524758424974003 a001 267914296/312119004989*439204^(1/3) 6524758424974003 a001 701408733/817138163596*439204^(1/3) 6524758424974003 a001 1836311903/2139295485799*439204^(1/3) 6524758424974003 a001 4807526976/5600748293801*439204^(1/3) 6524758424974003 a001 12586269025/14662949395604*439204^(1/3) 6524758424974003 a001 20365011074/23725150497407*439204^(1/3) 6524758424974003 a001 7778742049/9062201101803*439204^(1/3) 6524758424974003 a001 2971215073/3461452808002*439204^(1/3) 6524758424974003 a001 1134903170/1322157322203*439204^(1/3) 6524758424974003 a001 433494437/505019158607*439204^(1/3) 6524758424974003 a001 165580141/192900153618*439204^(1/3) 6524758424974004 a001 63245986/73681302247*439204^(1/3) 6524758424974006 a001 24157817/28143753123*439204^(1/3) 6524758424974019 a001 9227465/10749957122*439204^(1/3) 6524758424974055 a001 317811/2139295485799*1860498^(9/10) 6524758424974108 a001 3524578/4106118243*439204^(1/3) 6524758424974118 a001 317811/3461452808002*1860498^(14/15) 6524758424974198 a001 317811/33385282*710647^(1/7) 6524758424974243 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^62 6524758424974723 a001 1346269/1568397607*439204^(1/3) 6524758424975126 a001 105937/29134601*710647^(3/14) 6524758424975180 a001 514229/2537720636*439204^(4/9) 6524758424975589 a001 317811/141422324*710647^(1/4) 6524758424975877 a001 832040/228826127*439204^(2/9) 6524758424976050 a001 317811/228826127*710647^(2/7) 6524758424976973 a001 377/710646*710647^(5/14) 6524758424977293 a001 163427632719/2504730781961 6524758424977293 a004 Fibonacci(28)/Lucas(29)/(1/2+sqrt(5)/2)^3 6524758424977293 a004 Fibonacci(29)/Lucas(28)/(1/2+sqrt(5)/2)^5 6524758424977487 a001 726103/199691526*439204^(2/9) 6524758424977722 a001 5702887/1568397607*439204^(2/9) 6524758424977756 a001 4976784/1368706081*439204^(2/9) 6524758424977761 a001 39088169/10749957122*439204^(2/9) 6524758424977762 a001 831985/228811001*439204^(2/9) 6524758424977762 a001 267914296/73681302247*439204^(2/9) 6524758424977762 a001 233802911/64300051206*439204^(2/9) 6524758424977762 a001 1836311903/505019158607*439204^(2/9) 6524758424977762 a001 1602508992/440719107401*439204^(2/9) 6524758424977762 a001 12586269025/3461452808002*439204^(2/9) 6524758424977762 a001 10983760033/3020733700601*439204^(2/9) 6524758424977762 a001 86267571272/23725150497407*439204^(2/9) 6524758424977762 a001 53316291173/14662949395604*439204^(2/9) 6524758424977762 a001 20365011074/5600748293801*439204^(2/9) 6524758424977762 a001 7778742049/2139295485799*439204^(2/9) 6524758424977762 a001 2971215073/817138163596*439204^(2/9) 6524758424977762 a001 1134903170/312119004989*439204^(2/9) 6524758424977762 a001 433494437/119218851371*439204^(2/9) 6524758424977762 a001 165580141/45537549124*439204^(2/9) 6524758424977762 a001 63245986/17393796001*439204^(2/9) 6524758424977764 a001 24157817/6643838879*439204^(2/9) 6524758424977777 a001 9227465/2537720636*439204^(2/9) 6524758424977867 a001 3524578/969323029*439204^(2/9) 6524758424977895 a001 317811/1568397607*710647^(3/7) 6524758424978458 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^63 6524758424978466 a001 121393/192900153618*271443^(12/13) 6524758424978482 a001 1346269/370248451*439204^(2/9) 6524758424978818 a001 105937/1368706081*710647^(1/2) 6524758424978938 a001 514229/599074578*439204^(1/3) 6524758424979130 a001 105937/4250681*271443^(1/13) 6524758424979637 a001 832040/54018521*439204^(1/9) 6524758424979741 a001 317811/10749957122*710647^(4/7) 6524758424980068 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^65 6524758424980238 a001 1149851/3524578*8^(1/3) 6524758424980303 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^67 6524758424980337 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^69 6524758424980342 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^71 6524758424980343 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^73 6524758424980343 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^75 6524758424980343 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^77 6524758424980343 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^79 6524758424980343 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^81 6524758424980343 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^83 6524758424980343 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^85 6524758424980343 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^87 6524758424980343 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^89 6524758424980343 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^91 6524758424980343 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^93 6524758424980343 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^95 6524758424980343 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^97 6524758424980343 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^99 6524758424980343 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^100 6524758424980343 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^98 6524758424980343 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^96 6524758424980343 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^94 6524758424980343 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^92 6524758424980343 a001 2/514229*(1/2+1/2*5^(1/2))^25 6524758424980343 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^90 6524758424980343 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^88 6524758424980343 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^86 6524758424980343 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^84 6524758424980343 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^82 6524758424980343 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^80 6524758424980343 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^78 6524758424980343 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^76 6524758424980343 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^74 6524758424980344 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^72 6524758424980346 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^70 6524758424980359 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^68 6524758424980448 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^66 6524758424980664 a001 105937/9381251041*710647^(9/14) 6524758424981063 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^64 6524758424981245 a001 2178309/141422324*439204^(1/9) 6524758424981480 a001 5702887/370248451*439204^(1/9) 6524758424981508 a001 692290561600/10610209857723 6524758424981508 a004 Fibonacci(30)/Lucas(30)/(1/2+sqrt(5)/2)^4 6524758424981514 a001 14930352/969323029*439204^(1/9) 6524758424981519 a001 39088169/2537720636*439204^(1/9) 6524758424981520 a001 102334155/6643838879*439204^(1/9) 6524758424981520 a001 9238424/599786069*439204^(1/9) 6524758424981520 a001 701408733/45537549124*439204^(1/9) 6524758424981520 a001 1836311903/119218851371*439204^(1/9) 6524758424981520 a001 4807526976/312119004989*439204^(1/9) 6524758424981520 a001 12586269025/817138163596*439204^(1/9) 6524758424981520 a001 32951280099/2139295485799*439204^(1/9) 6524758424981520 a001 86267571272/5600748293801*439204^(1/9) 6524758424981520 a001 7787980473/505618944676*439204^(1/9) 6524758424981520 a001 365435296162/23725150497407*439204^(1/9) 6524758424981520 a001 139583862445/9062201101803*439204^(1/9) 6524758424981520 a001 53316291173/3461452808002*439204^(1/9) 6524758424981520 a001 20365011074/1322157322203*439204^(1/9) 6524758424981520 a001 7778742049/505019158607*439204^(1/9) 6524758424981520 a001 2971215073/192900153618*439204^(1/9) 6524758424981520 a001 1134903170/73681302247*439204^(1/9) 6524758424981520 a001 433494437/28143753123*439204^(1/9) 6524758424981520 a001 165580141/10749957122*439204^(1/9) 6524758424981520 a001 63245986/4106118243*439204^(1/9) 6524758424981522 a001 24157817/1568397607*439204^(1/9) 6524758424981535 a001 9227465/599074578*439204^(1/9) 6524758424981587 a001 317811/73681302247*710647^(5/7) 6524758424981625 a001 3524578/228826127*439204^(1/9) 6524758424982048 a001 317811/119218851371*710647^(3/4) 6524758424982239 a001 1346269/87403803*439204^(1/9) 6524758424982510 a001 105937/64300051206*710647^(11/14) 6524758424982673 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^65 6524758424982697 a001 514229/141422324*439204^(2/9) 6524758424983118 a004 Fibonacci(30)/Lucas(32)/(1/2+sqrt(5)/2)^2 6524758424983118 a004 Fibonacci(32)/Lucas(30)/(1/2+sqrt(5)/2)^6 6524758424983288 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^67 6524758424983298 a001 832040/23725150497407*7881196^(10/11) 6524758424983307 a001 832040/5600748293801*7881196^(9/11) 6524758424983317 a001 832040/1322157322203*7881196^(8/11) 6524758424983323 a001 832040/505019158607*7881196^(2/3) 6524758424983326 a001 75640/28374454999*7881196^(7/11) 6524758424983336 a001 832040/73681302247*7881196^(6/11) 6524758424983346 a001 832040/17393796001*7881196^(5/11) 6524758424983353 a004 Fibonacci(34)/Lucas(30)/(1/2+sqrt(5)/2)^8 6524758424983355 a001 832040/4106118243*7881196^(4/11) 6524758424983358 a001 610/1860499*7881196^(1/3) 6524758424983365 a001 832040/969323029*7881196^(3/11) 6524758424983374 a001 832040/228826127*7881196^(2/11) 6524758424983378 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^69 6524758424983380 a001 832040/23725150497407*20633239^(6/7) 6524758424983381 a001 832040/9062201101803*20633239^(4/5) 6524758424983382 a001 832040/2139295485799*20633239^(5/7) 6524758424983384 a001 75640/28374454999*20633239^(3/5) 6524758424983385 a001 416020/96450076809*20633239^(4/7) 6524758424983386 a001 832040/54018521*7881196^(1/11) 6524758424983387 a001 832040/17393796001*20633239^(3/7) 6524758424983387 a001 416020/5374978561*20633239^(2/5) 6524758424983387 a001 416020/16692641*(1/2+1/2*5^(1/2))^2 6524758424983387 a004 Fibonacci(36)/Lucas(30)/(1/2+sqrt(5)/2)^10 6524758424983387 a001 416020/16692641*10749957122^(1/24) 6524758424983387 a001 416020/16692641*4106118243^(1/23) 6524758424983387 a001 416020/16692641*1568397607^(1/22) 6524758424983387 a001 416020/16692641*599074578^(1/21) 6524758424983387 a001 416020/16692641*228826127^(1/20) 6524758424983387 a001 416020/16692641*87403803^(1/19) 6524758424983388 a001 416020/16692641*33385282^(1/18) 6524758424983389 a001 832040/1568397607*20633239^(2/7) 6524758424983390 a001 416020/16692641*12752043^(1/17) 6524758424983390 a001 832040/370248451*20633239^(1/5) 6524758424983391 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^71 6524758424983391 a001 208010/35355581*20633239^(1/7) 6524758424983392 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^4/Lucas(38) 6524758424983392 a001 832040/87403803*23725150497407^(1/16) 6524758424983392 a004 Fibonacci(38)/Lucas(30)/(1/2+sqrt(5)/2)^12 6524758424983392 a001 832040/87403803*73681302247^(1/13) 6524758424983392 a001 832040/87403803*10749957122^(1/12) 6524758424983392 a001 832040/87403803*4106118243^(2/23) 6524758424983392 a001 832040/87403803*1568397607^(1/11) 6524758424983392 a001 832040/87403803*599074578^(2/21) 6524758424983392 a001 832040/87403803*228826127^(1/10) 6524758424983393 a001 832040/87403803*87403803^(2/19) 6524758424983393 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^73 6524758424983393 a001 832040/23725150497407*141422324^(10/13) 6524758424983393 a001 832040/5600748293801*141422324^(9/13) 6524758424983393 a001 416020/1730726404001*141422324^(2/3) 6524758424983393 a001 832040/87403803*33385282^(1/9) 6524758424983393 a001 832040/1322157322203*141422324^(8/13) 6524758424983393 a001 75640/28374454999*141422324^(7/13) 6524758424983393 a001 832040/228826127*141422324^(2/13) 6524758424983393 a001 832040/73681302247*141422324^(6/13) 6524758424983393 a001 832040/17393796001*141422324^(5/13) 6524758424983393 a001 832040/228826127*2537720636^(2/15) 6524758424983393 a001 832040/228826127*45537549124^(2/17) 6524758424983393 a001 832040/228826127*14662949395604^(2/21) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^6/Lucas(40) 6524758424983393 a004 Fibonacci(40)/Lucas(30)/(1/2+sqrt(5)/2)^14 6524758424983393 a001 832040/228826127*10749957122^(1/8) 6524758424983393 a001 832040/228826127*4106118243^(3/23) 6524758424983393 a001 832040/228826127*1568397607^(3/22) 6524758424983393 a001 832040/228826127*599074578^(1/7) 6524758424983393 a001 832040/6643838879*141422324^(1/3) 6524758424983393 a001 832040/228826127*228826127^(3/20) 6524758424983393 a001 832040/4106118243*141422324^(4/13) 6524758424983393 a001 832040/969323029*141422324^(3/13) 6524758424983393 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^75 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^8/Lucas(42) 6524758424983393 a001 416020/299537289*23725150497407^(1/8) 6524758424983393 a004 Fibonacci(42)/Lucas(30)/(1/2+sqrt(5)/2)^16 6524758424983393 a001 416020/299537289*505019158607^(1/7) 6524758424983393 a001 416020/299537289*73681302247^(2/13) 6524758424983393 a001 416020/299537289*10749957122^(1/6) 6524758424983393 a001 416020/299537289*4106118243^(4/23) 6524758424983393 a001 416020/299537289*1568397607^(2/11) 6524758424983393 a001 416020/299537289*599074578^(4/21) 6524758424983393 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^77 6524758424983393 a001 832040/1568397607*2537720636^(2/9) 6524758424983393 a001 832040/1568397607*312119004989^(2/11) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^10/Lucas(44) 6524758424983393 a004 Fibonacci(44)/Lucas(30)/(1/2+sqrt(5)/2)^18 6524758424983393 a001 832040/1568397607*28143753123^(1/5) 6524758424983393 a001 832040/1568397607*10749957122^(5/24) 6524758424983393 a001 832040/1568397607*4106118243^(5/23) 6524758424983393 a001 832040/1568397607*1568397607^(5/22) 6524758424983393 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^79 6524758424983393 a001 832040/23725150497407*2537720636^(2/3) 6524758424983393 a001 832040/4106118243*2537720636^(4/15) 6524758424983393 a001 832040/5600748293801*2537720636^(3/5) 6524758424983393 a001 832040/2139295485799*2537720636^(5/9) 6524758424983393 a001 832040/1322157322203*2537720636^(8/15) 6524758424983393 a001 75640/28374454999*2537720636^(7/15) 6524758424983393 a001 416020/96450076809*2537720636^(4/9) 6524758424983393 a001 832040/73681302247*2537720636^(2/5) 6524758424983393 a001 832040/4106118243*45537549124^(4/17) 6524758424983393 a001 832040/4106118243*817138163596^(4/19) 6524758424983393 a001 832040/4106118243*14662949395604^(4/21) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^12/Lucas(46) 6524758424983393 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2)^20 6524758424983393 a001 832040/4106118243*192900153618^(2/9) 6524758424983393 a001 832040/4106118243*73681302247^(3/13) 6524758424983393 a001 832040/4106118243*10749957122^(1/4) 6524758424983393 a001 832040/17393796001*2537720636^(1/3) 6524758424983393 a001 832040/4106118243*4106118243^(6/23) 6524758424983393 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^81 6524758424983393 a001 416020/5374978561*17393796001^(2/7) 6524758424983393 a001 416020/5374978561*14662949395604^(2/9) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^14/Lucas(48) 6524758424983393 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^22 6524758424983393 a001 416020/5374978561*505019158607^(1/4) 6524758424983393 a001 416020/5374978561*10749957122^(7/24) 6524758424983393 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^83 6524758424983393 a001 832040/9062201101803*17393796001^(4/7) 6524758424983393 a001 75640/28374454999*17393796001^(3/7) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^16/Lucas(50) 6524758424983393 a001 832040/28143753123*23725150497407^(1/4) 6524758424983393 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^24 6524758424983393 a001 832040/28143753123*73681302247^(4/13) 6524758424983393 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^85 6524758424983393 a001 832040/73681302247*45537549124^(6/17) 6524758424983393 a001 832040/23725150497407*45537549124^(10/17) 6524758424983393 a001 832040/5600748293801*45537549124^(9/17) 6524758424983393 a001 832040/1322157322203*45537549124^(8/17) 6524758424983393 a001 75640/28374454999*45537549124^(7/17) 6524758424983393 a001 832040/73681302247*14662949395604^(2/7) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^18/Lucas(52) 6524758424983393 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^26 6524758424983393 a001 832040/73681302247*192900153618^(1/3) 6524758424983393 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^87 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^20/Lucas(54) 6524758424983393 a001 416020/96450076809*23725150497407^(5/16) 6524758424983393 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^28 6524758424983393 a001 416020/96450076809*505019158607^(5/14) 6524758424983393 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^89 6524758424983393 a001 832040/23725150497407*312119004989^(6/11) 6524758424983393 a001 832040/2139295485799*312119004989^(5/11) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(56) 6524758424983393 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^30 6524758424983393 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^91 6524758424983393 a001 832040/1322157322203*14662949395604^(8/21) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(58) 6524758424983393 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^32 6524758424983393 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^93 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(60) 6524758424983393 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^95 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(62) 6524758424983393 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^97 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(64) 6524758424983393 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^99 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(66) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(68) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(70) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(72) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(74) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(76) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(78) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(80) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(82) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(84) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(86) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(88) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(90) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(92) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(94) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(96) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(98) 6524758424983393 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^34 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(99) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(100) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(97) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(95) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(93) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(91) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(89) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(87) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(85) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(83) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(81) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(79) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(77) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(75) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(73) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(71) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(69) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(67) 6524758424983393 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^100 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(65) 6524758424983393 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^98 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(63) 6524758424983393 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^96 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(61) 6524758424983393 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^36 6524758424983393 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^38 6524758424983393 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^40 6524758424983393 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^42 6524758424983393 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^44 6524758424983393 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^46 6524758424983393 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^48 6524758424983393 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^50 6524758424983393 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^52 6524758424983393 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^54 6524758424983393 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^56 6524758424983393 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^58 6524758424983393 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^60 6524758424983393 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^62 6524758424983393 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^64 6524758424983393 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^66 6524758424983393 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^68 6524758424983393 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^70 6524758424983393 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^72 6524758424983393 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^74 6524758424983393 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^94 6524758424983393 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^73 6524758424983393 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^71 6524758424983393 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^69 6524758424983393 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^67 6524758424983393 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^65 6524758424983393 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^63 6524758424983393 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^61 6524758424983393 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^59 6524758424983393 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^57 6524758424983393 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^55 6524758424983393 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^53 6524758424983393 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^51 6524758424983393 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^49 6524758424983393 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^47 6524758424983393 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^45 6524758424983393 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^43 6524758424983393 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^41 6524758424983393 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^39 6524758424983393 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^37 6524758424983393 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^35 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(59) 6524758424983393 a001 832040/2139295485799*3461452808002^(5/12) 6524758424983393 a001 208010/3665737348901*1322157322203^(1/2) 6524758424983393 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^33 6524758424983393 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^92 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(57) 6524758424983393 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^31 6524758424983393 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^90 6524758424983393 a001 75640/28374454999*14662949395604^(1/3) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^21/Lucas(55) 6524758424983393 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^29 6524758424983393 a001 832040/1322157322203*192900153618^(4/9) 6524758424983393 a001 832040/5600748293801*192900153618^(1/2) 6524758424983393 a001 832040/23725150497407*192900153618^(5/9) 6524758424983393 a001 75640/28374454999*192900153618^(7/18) 6524758424983393 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^88 6524758424983393 a001 416020/96450076809*73681302247^(5/13) 6524758424983393 a001 832040/119218851371*817138163596^(1/3) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^19/Lucas(53) 6524758424983393 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^27 6524758424983393 a001 832040/1322157322203*73681302247^(6/13) 6524758424983393 a001 416020/1730726404001*73681302247^(1/2) 6524758424983393 a001 832040/9062201101803*73681302247^(7/13) 6524758424983393 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^86 6524758424983393 a001 208010/11384387281*45537549124^(1/3) 6524758424983393 a001 416020/96450076809*28143753123^(2/5) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^17/Lucas(51) 6524758424983393 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^25 6524758424983393 a001 832040/2139295485799*28143753123^(1/2) 6524758424983393 a001 832040/23725150497407*28143753123^(3/5) 6524758424983393 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^84 6524758424983393 a001 832040/28143753123*10749957122^(1/3) 6524758424983393 a001 832040/73681302247*10749957122^(3/8) 6524758424983393 a001 832040/17393796001*45537549124^(5/17) 6524758424983393 a001 832040/17393796001*312119004989^(3/11) 6524758424983393 a001 832040/17393796001*14662949395604^(5/21) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^15/Lucas(49) 6524758424983393 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^23 6524758424983393 a001 832040/17393796001*192900153618^(5/18) 6524758424983393 a001 416020/96450076809*10749957122^(5/12) 6524758424983393 a001 832040/17393796001*28143753123^(3/10) 6524758424983393 a001 75640/28374454999*10749957122^(7/16) 6524758424983393 a001 832040/505019158607*10749957122^(11/24) 6524758424983393 a001 832040/1322157322203*10749957122^(1/2) 6524758424983393 a001 416020/1730726404001*10749957122^(13/24) 6524758424983393 a001 832040/5600748293801*10749957122^(9/16) 6524758424983393 a001 832040/9062201101803*10749957122^(7/12) 6524758424983393 a001 832040/23725150497407*10749957122^(5/8) 6524758424983393 a001 832040/17393796001*10749957122^(5/16) 6524758424983393 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^82 6524758424983393 a001 416020/5374978561*4106118243^(7/23) 6524758424983393 a001 832040/28143753123*4106118243^(8/23) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^13/Lucas(47) 6524758424983393 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^21 6524758424983393 a001 832040/6643838879*73681302247^(1/4) 6524758424983393 a001 832040/73681302247*4106118243^(9/23) 6524758424983393 a001 416020/96450076809*4106118243^(10/23) 6524758424983393 a001 832040/505019158607*4106118243^(11/23) 6524758424983393 a001 208010/204284540899*4106118243^(1/2) 6524758424983393 a001 832040/1322157322203*4106118243^(12/23) 6524758424983393 a001 416020/1730726404001*4106118243^(13/23) 6524758424983393 a001 832040/9062201101803*4106118243^(14/23) 6524758424983393 a001 832040/23725150497407*4106118243^(15/23) 6524758424983393 a001 832040/4106118243*1568397607^(3/11) 6524758424983393 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^80 6524758424983393 a001 416020/5374978561*1568397607^(7/22) 6524758424983393 a001 832040/28143753123*1568397607^(4/11) 6524758424983393 a001 610/1860499*312119004989^(1/5) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^11/Lucas(45) 6524758424983393 a004 Fibonacci(45)/Lucas(30)/(1/2+sqrt(5)/2)^19 6524758424983393 a001 832040/73681302247*1568397607^(9/22) 6524758424983393 a001 416020/96450076809*1568397607^(5/11) 6524758424983393 a001 832040/505019158607*1568397607^(1/2) 6524758424983393 a001 832040/1322157322203*1568397607^(6/11) 6524758424983393 a001 416020/1730726404001*1568397607^(13/22) 6524758424983393 a001 832040/1568397607*599074578^(5/21) 6524758424983393 a001 610/1860499*1568397607^(1/4) 6524758424983393 a001 832040/9062201101803*1568397607^(7/11) 6524758424983393 a001 832040/23725150497407*1568397607^(15/22) 6524758424983393 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^78 6524758424983393 a001 832040/4106118243*599074578^(2/7) 6524758424983393 a001 416020/5374978561*599074578^(1/3) 6524758424983393 a001 832040/17393796001*599074578^(5/14) 6524758424983393 a001 416020/299537289*228826127^(1/5) 6524758424983393 a001 832040/969323029*2537720636^(1/5) 6524758424983393 a001 832040/28143753123*599074578^(8/21) 6524758424983393 a001 832040/969323029*45537549124^(3/17) 6524758424983393 a001 832040/969323029*817138163596^(3/19) 6524758424983393 a001 832040/969323029*14662949395604^(1/7) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^9/Lucas(43) 6524758424983393 a004 Fibonacci(43)/Lucas(30)/(1/2+sqrt(5)/2)^17 6524758424983393 a001 832040/969323029*192900153618^(1/6) 6524758424983393 a001 832040/969323029*10749957122^(3/16) 6524758424983393 a001 832040/73681302247*599074578^(3/7) 6524758424983393 a001 416020/96450076809*599074578^(10/21) 6524758424983393 a001 75640/28374454999*599074578^(1/2) 6524758424983393 a001 832040/505019158607*599074578^(11/21) 6524758424983393 a001 832040/228826127*87403803^(3/19) 6524758424983393 a001 832040/1322157322203*599074578^(4/7) 6524758424983393 a001 832040/969323029*599074578^(3/14) 6524758424983393 a001 416020/1730726404001*599074578^(13/21) 6524758424983393 a001 832040/5600748293801*599074578^(9/14) 6524758424983393 a001 832040/9062201101803*599074578^(2/3) 6524758424983393 a001 832040/23725150497407*599074578^(5/7) 6524758424983393 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^76 6524758424983393 a001 832040/1568397607*228826127^(1/4) 6524758424983393 a001 832040/4106118243*228826127^(3/10) 6524758424983393 a001 416020/5374978561*228826127^(7/20) 6524758424983393 a001 832040/17393796001*228826127^(3/8) 6524758424983393 a001 832040/370248451*17393796001^(1/7) 6524758424983393 a001 832040/370248451*14662949395604^(1/9) 6524758424983393 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^7/Lucas(41) 6524758424983393 a004 Fibonacci(41)/Lucas(30)/(1/2+sqrt(5)/2)^15 6524758424983393 a001 832040/28143753123*228826127^(2/5) 6524758424983393 a001 832040/370248451*599074578^(1/6) 6524758424983393 a001 832040/73681302247*228826127^(9/20) 6524758424983393 a001 416020/96450076809*228826127^(1/2) 6524758424983393 a001 832040/505019158607*228826127^(11/20) 6524758424983393 a001 832040/1322157322203*228826127^(3/5) 6524758424983393 a001 832040/2139295485799*228826127^(5/8) 6524758424983393 a001 416020/1730726404001*228826127^(13/20) 6524758424983393 a001 832040/9062201101803*228826127^(7/10) 6524758424983393 a001 832040/23725150497407*228826127^(3/4) 6524758424983393 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^74 6524758424983393 a001 416020/299537289*87403803^(4/19) 6524758424983393 a001 832040/1568397607*87403803^(5/19) 6524758424983394 a001 832040/4106118243*87403803^(6/19) 6524758424983394 a001 416020/5374978561*87403803^(7/19) 6524758424983394 a001 208010/35355581*2537720636^(1/9) 6524758424983394 a001 208010/35355581*312119004989^(1/11) 6524758424983394 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^5/Lucas(39) 6524758424983394 a004 Fibonacci(39)/Lucas(30)/(1/2+sqrt(5)/2)^13 6524758424983394 a001 208010/35355581*28143753123^(1/10) 6524758424983394 a001 208010/35355581*228826127^(1/8) 6524758424983394 a001 832040/28143753123*87403803^(8/19) 6524758424983394 a001 832040/73681302247*87403803^(9/19) 6524758424983394 a001 832040/119218851371*87403803^(1/2) 6524758424983394 a001 416020/96450076809*87403803^(10/19) 6524758424983394 a001 832040/505019158607*87403803^(11/19) 6524758424983394 a001 832040/1322157322203*87403803^(12/19) 6524758424983394 a001 416020/1730726404001*87403803^(13/19) 6524758424983394 a001 832040/9062201101803*87403803^(14/19) 6524758424983394 a001 832040/23725150497407*87403803^(15/19) 6524758424983394 a001 832040/228826127*33385282^(1/6) 6524758424983394 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^72 6524758424983395 a001 416020/299537289*33385282^(2/9) 6524758424983395 a001 832040/969323029*33385282^(1/4) 6524758424983395 a001 832040/1568397607*33385282^(5/18) 6524758424983395 a001 832040/4106118243*33385282^(1/3) 6524758424983395 a001 832040/54018521*141422324^(1/13) 6524758424983396 a001 832040/54018521*2537720636^(1/15) 6524758424983396 a001 832040/54018521*45537549124^(1/17) 6524758424983396 a001 832040/54018521*14662949395604^(1/21) 6524758424983396 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^3/Lucas(37) 6524758424983396 a004 Fibonacci(37)/Lucas(30)/(1/2+sqrt(5)/2)^11 6524758424983396 a001 832040/54018521*192900153618^(1/18) 6524758424983396 a001 832040/54018521*10749957122^(1/16) 6524758424983396 a001 832040/54018521*599074578^(1/14) 6524758424983396 a001 416020/5374978561*33385282^(7/18) 6524758424983396 a001 832040/17393796001*33385282^(5/12) 6524758424983396 a001 832040/28143753123*33385282^(4/9) 6524758424983396 a001 832040/54018521*33385282^(1/12) 6524758424983396 a001 832040/73681302247*33385282^(1/2) 6524758424983397 a001 416020/96450076809*33385282^(5/9) 6524758424983397 a001 75640/28374454999*33385282^(7/12) 6524758424983397 a001 832040/505019158607*33385282^(11/18) 6524758424983397 a001 832040/87403803*12752043^(2/17) 6524758424983397 a001 832040/1322157322203*33385282^(2/3) 6524758424983397 a001 416020/1730726404001*33385282^(13/18) 6524758424983398 a001 832040/5600748293801*33385282^(3/4) 6524758424983398 a001 832040/9062201101803*33385282^(7/9) 6524758424983398 a001 832040/23725150497407*33385282^(5/6) 6524758424983399 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^70 6524758424983400 a001 832040/228826127*12752043^(3/17) 6524758424983403 a001 416020/299537289*12752043^(4/17) 6524758424983405 a001 416020/16692641*4870847^(1/16) 6524758424983405 a001 832040/1568397607*12752043^(5/17) 6524758424983407 a001 832040/4106118243*12752043^(6/17) 6524758424983409 a001 37820/1875749+37820/1875749*5^(1/2) 6524758424983409 a004 Fibonacci(35)/Lucas(30)/(1/2+sqrt(5)/2)^9 6524758424983410 a001 416020/5374978561*12752043^(7/17) 6524758424983412 a001 832040/28143753123*12752043^(8/17) 6524758424983413 a001 208010/11384387281*12752043^(1/2) 6524758424983415 a001 832040/73681302247*12752043^(9/17) 6524758424983417 a001 416020/96450076809*12752043^(10/17) 6524758424983419 a001 832040/505019158607*12752043^(11/17) 6524758424983422 a001 832040/1322157322203*12752043^(12/17) 6524758424983424 a001 416020/1730726404001*12752043^(13/17) 6524758424983426 a001 832040/9062201101803*12752043^(14/17) 6524758424983427 a001 832040/87403803*4870847^(1/8) 6524758424983429 a001 832040/23725150497407*12752043^(15/17) 6524758424983433 a001 317811/505019158607*710647^(6/7) 6524758424983433 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^68 6524758424983445 a001 832040/228826127*4870847^(3/16) 6524758424983462 a001 416020/299537289*4870847^(1/4) 6524758424983479 a001 832040/1568397607*4870847^(5/16) 6524758424983496 a001 832040/4106118243*4870847^(3/8) 6524758424983498 a004 Fibonacci(30)/Lucas(33)/(1/2+sqrt(5)/2) 6524758424983498 a004 Fibonacci(33)/Lucas(30)/(1/2+sqrt(5)/2)^7 6524758424983513 a001 416020/16692641*1860498^(1/15) 6524758424983514 a001 416020/5374978561*4870847^(7/16) 6524758424983531 a001 832040/28143753123*4870847^(1/2) 6524758424983548 a001 832040/73681302247*4870847^(9/16) 6524758424983565 a001 416020/96450076809*4870847^(5/8) 6524758424983582 a001 832040/505019158607*4870847^(11/16) 6524758424983584 a001 832040/54018521*1860498^(1/10) 6524758424983600 a001 832040/1322157322203*4870847^(3/4) 6524758424983617 a001 416020/1730726404001*4870847^(13/16) 6524758424983634 a001 832040/9062201101803*4870847^(7/8) 6524758424983644 a001 832040/87403803*1860498^(2/15) 6524758424983651 a001 832040/23725150497407*4870847^(15/16) 6524758424983668 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^66 6524758424983708 a001 208010/35355581*1860498^(1/6) 6524758424983770 a001 832040/228826127*1860498^(1/5) 6524758424983896 a001 416020/299537289*1860498^(4/15) 6524758424983959 a001 832040/969323029*1860498^(3/10) 6524758424984022 a001 832040/1568397607*1860498^(1/3) 6524758424984113 a004 Fibonacci(30)/Lucas(31)/(1/2+sqrt(5)/2)^3 6524758424984113 a004 Fibonacci(31)/Lucas(30)/(1/2+sqrt(5)/2)^5 6524758424984147 a001 832040/4106118243*1860498^(2/5) 6524758424984273 a001 416020/5374978561*1860498^(7/15) 6524758424984283 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^67 6524758424984310 a001 416020/16692641*710647^(1/14) 6524758424984336 a001 832040/17393796001*1860498^(1/2) 6524758424984355 a001 105937/440719107401*710647^(13/14) 6524758424984399 a001 832040/28143753123*1860498^(8/15) 6524758424984518 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^69 6524758424984524 a001 832040/73681302247*1860498^(3/5) 6524758424984543 a001 3010349/9227465*8^(1/3) 6524758424984552 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^71 6524758424984557 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^73 6524758424984558 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^75 6524758424984558 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^77 6524758424984558 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^79 6524758424984558 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^81 6524758424984558 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^83 6524758424984558 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^85 6524758424984558 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^87 6524758424984558 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^89 6524758424984558 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^91 6524758424984558 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^93 6524758424984558 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^95 6524758424984558 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^97 6524758424984558 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^99 6524758424984558 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^100 6524758424984558 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^98 6524758424984558 a001 2/1346269*(1/2+1/2*5^(1/2))^27 6524758424984558 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^96 6524758424984558 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^94 6524758424984558 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^92 6524758424984558 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^90 6524758424984558 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^88 6524758424984558 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^86 6524758424984558 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^84 6524758424984558 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^82 6524758424984558 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^80 6524758424984558 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^78 6524758424984558 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^76 6524758424984559 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^74 6524758424984560 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^72 6524758424984574 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^70 6524758424984650 a001 416020/96450076809*1860498^(2/3) 6524758424984663 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^68 6524758424984713 a001 75640/28374454999*1860498^(7/10) 6524758424984728 a004 Fibonacci(32)/Lucas(32)/(1/2+sqrt(5)/2)^4 6524758424984776 a001 832040/505019158607*1860498^(11/15) 6524758424984898 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^69 6524758424984901 a001 832040/1322157322203*1860498^(4/5) 6524758424984917 a001 2178309/14662949395604*7881196^(9/11) 6524758424984927 a001 311187/494493258286*7881196^(8/11) 6524758424984933 a001 726103/440719107401*7881196^(2/3) 6524758424984936 a001 2178309/817138163596*7881196^(7/11) 6524758424984946 a001 726103/64300051206*7881196^(6/11) 6524758424984955 a001 2178309/45537549124*7881196^(5/11) 6524758424984963 a004 Fibonacci(32)/Lucas(34)/(1/2+sqrt(5)/2)^2 6524758424984963 a004 Fibonacci(34)/Lucas(32)/(1/2+sqrt(5)/2)^6 6524758424984964 a001 832040/2139295485799*1860498^(5/6) 6524758424984965 a001 987/4870846*7881196^(4/11) 6524758424984968 a001 2178309/6643838879*7881196^(1/3) 6524758424984975 a001 2178309/2537720636*7881196^(3/11) 6524758424984984 a001 726103/199691526*7881196^(2/11) 6524758424984988 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^71 6524758424984991 a001 2178309/23725150497407*20633239^(4/5) 6524758424984992 a001 2178309/5600748293801*20633239^(5/7) 6524758424984994 a001 2178309/141422324*7881196^(1/11) 6524758424984994 a001 2178309/817138163596*20633239^(3/5) 6524758424984994 a001 46347/10745088481*20633239^(4/7) 6524758424984997 a001 2178309/45537549124*20633239^(3/7) 6524758424984997 a001 726103/9381251041*20633239^(2/5) 6524758424984997 a004 Fibonacci(36)/Lucas(32)/(1/2+sqrt(5)/2)^8 6524758424984999 a001 726103/1368706081*20633239^(2/7) 6524758424985000 a001 2178309/969323029*20633239^(1/5) 6524758424985001 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^73 6524758424985001 a001 2178309/370248451*20633239^(1/7) 6524758424985002 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^2/Lucas(38) 6524758424985002 a004 Fibonacci(38)/Lucas(32)/(1/2+sqrt(5)/2)^10 6524758424985002 a001 726103/29134601*10749957122^(1/24) 6524758424985002 a001 726103/29134601*4106118243^(1/23) 6524758424985002 a001 726103/29134601*1568397607^(1/22) 6524758424985002 a001 726103/29134601*599074578^(1/21) 6524758424985002 a001 726103/29134601*228826127^(1/20) 6524758424985002 a001 726103/29134601*87403803^(1/19) 6524758424985003 a001 726103/29134601*33385282^(1/18) 6524758424985003 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^75 6524758424985003 a001 2178309/14662949395604*141422324^(9/13) 6524758424985003 a001 726103/3020733700601*141422324^(2/3) 6524758424985003 a001 311187/494493258286*141422324^(8/13) 6524758424985003 a001 2178309/817138163596*141422324^(7/13) 6524758424985003 a001 726103/64300051206*141422324^(6/13) 6524758424985003 a001 2178309/45537549124*141422324^(5/13) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^4/Lucas(40) 6524758424985003 a001 46347/4868641*23725150497407^(1/16) 6524758424985003 a004 Fibonacci(40)/Lucas(32)/(1/2+sqrt(5)/2)^12 6524758424985003 a001 46347/4868641*73681302247^(1/13) 6524758424985003 a001 46347/4868641*10749957122^(1/12) 6524758424985003 a001 46347/4868641*4106118243^(2/23) 6524758424985003 a001 46347/4868641*1568397607^(1/11) 6524758424985003 a001 46347/4868641*599074578^(2/21) 6524758424985003 a001 46347/4868641*228826127^(1/10) 6524758424985003 a001 2178309/17393796001*141422324^(1/3) 6524758424985003 a001 987/4870846*141422324^(4/13) 6524758424985003 a001 2178309/2537720636*141422324^(3/13) 6524758424985003 a001 726103/199691526*141422324^(2/13) 6524758424985003 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^77 6524758424985003 a001 46347/4868641*87403803^(2/19) 6524758424985003 a001 726103/199691526*2537720636^(2/15) 6524758424985003 a001 726103/199691526*45537549124^(2/17) 6524758424985003 a001 726103/199691526*14662949395604^(2/21) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^6/Lucas(42) 6524758424985003 a004 Fibonacci(42)/Lucas(32)/(1/2+sqrt(5)/2)^14 6524758424985003 a001 726103/199691526*10749957122^(1/8) 6524758424985003 a001 726103/199691526*4106118243^(3/23) 6524758424985003 a001 726103/199691526*1568397607^(3/22) 6524758424985003 a001 726103/199691526*599074578^(1/7) 6524758424985003 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^79 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^8/Lucas(44) 6524758424985003 a001 311187/224056801*23725150497407^(1/8) 6524758424985003 a004 Fibonacci(44)/Lucas(32)/(1/2+sqrt(5)/2)^16 6524758424985003 a001 311187/224056801*505019158607^(1/7) 6524758424985003 a001 311187/224056801*73681302247^(2/13) 6524758424985003 a001 311187/224056801*10749957122^(1/6) 6524758424985003 a001 311187/224056801*4106118243^(4/23) 6524758424985003 a001 311187/224056801*1568397607^(2/11) 6524758424985003 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^81 6524758424985003 a001 726103/1368706081*2537720636^(2/9) 6524758424985003 a001 2178309/14662949395604*2537720636^(3/5) 6524758424985003 a001 2178309/5600748293801*2537720636^(5/9) 6524758424985003 a001 311187/494493258286*2537720636^(8/15) 6524758424985003 a001 2178309/817138163596*2537720636^(7/15) 6524758424985003 a001 46347/10745088481*2537720636^(4/9) 6524758424985003 a001 726103/64300051206*2537720636^(2/5) 6524758424985003 a001 726103/1368706081*312119004989^(2/11) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^10/Lucas(46) 6524758424985003 a004 Fibonacci(46)/Lucas(32)/(1/2+sqrt(5)/2)^18 6524758424985003 a001 726103/1368706081*28143753123^(1/5) 6524758424985003 a001 726103/1368706081*10749957122^(5/24) 6524758424985003 a001 2178309/45537549124*2537720636^(1/3) 6524758424985003 a001 987/4870846*2537720636^(4/15) 6524758424985003 a001 726103/1368706081*4106118243^(5/23) 6524758424985003 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^83 6524758424985003 a001 987/4870846*45537549124^(4/17) 6524758424985003 a001 987/4870846*817138163596^(4/19) 6524758424985003 a001 987/4870846*14662949395604^(4/21) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^12/Lucas(48) 6524758424985003 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2)^20 6524758424985003 a001 987/4870846*192900153618^(2/9) 6524758424985003 a001 987/4870846*73681302247^(3/13) 6524758424985003 a001 987/4870846*10749957122^(1/4) 6524758424985003 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^85 6524758424985003 a001 726103/9381251041*17393796001^(2/7) 6524758424985003 a001 2178309/23725150497407*17393796001^(4/7) 6524758424985003 a001 2178309/817138163596*17393796001^(3/7) 6524758424985003 a001 726103/9381251041*14662949395604^(2/9) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^14/Lucas(50) 6524758424985003 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^22 6524758424985003 a001 726103/9381251041*505019158607^(1/4) 6524758424985003 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^87 6524758424985003 a001 2178309/14662949395604*45537549124^(9/17) 6524758424985003 a001 311187/494493258286*45537549124^(8/17) 6524758424985003 a001 726103/64300051206*45537549124^(6/17) 6524758424985003 a001 2178309/817138163596*45537549124^(7/17) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^16/Lucas(52) 6524758424985003 a001 311187/10525900321*23725150497407^(1/4) 6524758424985003 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^24 6524758424985003 a001 311187/10525900321*73681302247^(4/13) 6524758424985003 a001 2178309/119218851371*45537549124^(1/3) 6524758424985003 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^89 6524758424985003 a001 726103/64300051206*14662949395604^(2/7) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^18/Lucas(54) 6524758424985003 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^26 6524758424985003 a001 726103/64300051206*192900153618^(1/3) 6524758424985003 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^91 6524758424985003 a001 2178309/5600748293801*312119004989^(5/11) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(56) 6524758424985003 a001 46347/10745088481*23725150497407^(5/16) 6524758424985003 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^28 6524758424985003 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^93 6524758424985003 a001 2178309/14662949395604*817138163596^(9/19) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(58) 6524758424985003 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^30 6524758424985003 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^95 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(60) 6524758424985003 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^32 6524758424985003 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^97 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(62) 6524758424985003 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^34 6524758424985003 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^99 6524758424985003 a001 2178309/23725150497407*14662949395604^(4/9) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(64) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(66) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(68) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(70) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(72) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(74) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(76) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(78) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(80) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(82) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(84) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(86) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(88) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(90) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(92) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(94) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(96) 6524758424985003 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^36 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(98) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(100) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(99) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(97) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(95) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(93) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(91) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(89) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(87) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(85) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(83) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(81) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(79) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(77) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(75) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(73) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(71) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(69) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(67) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(65) 6524758424985003 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^38 6524758424985003 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^40 6524758424985003 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^42 6524758424985003 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^44 6524758424985003 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^46 6524758424985003 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^48 6524758424985003 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^50 6524758424985003 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^52 6524758424985003 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^54 6524758424985003 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^56 6524758424985003 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^58 6524758424985003 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^60 6524758424985003 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^62 6524758424985003 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^64 6524758424985003 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^66 6524758424985003 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^68 6524758424985003 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^70 6524758424985003 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^72 6524758424985003 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^100 6524758424985003 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^71 6524758424985003 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^69 6524758424985003 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^67 6524758424985003 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^65 6524758424985003 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^63 6524758424985003 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^61 6524758424985003 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^59 6524758424985003 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^57 6524758424985003 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^55 6524758424985003 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^53 6524758424985003 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^51 6524758424985003 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^49 6524758424985003 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^47 6524758424985003 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^45 6524758424985003 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^43 6524758424985003 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^41 6524758424985003 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^39 6524758424985003 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^37 6524758424985003 a001 2178309/14662949395604*14662949395604^(3/7) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(63) 6524758424985003 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^35 6524758424985003 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^98 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(61) 6524758424985003 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^33 6524758424985003 a001 2178309/5600748293801*3461452808002^(5/12) 6524758424985003 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^96 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(59) 6524758424985003 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^31 6524758424985003 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^94 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(57) 6524758424985003 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^29 6524758424985003 a001 2178309/23725150497407*505019158607^(1/2) 6524758424985003 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^92 6524758424985003 a001 2178309/312119004989*817138163596^(1/3) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(55) 6524758424985003 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^27 6524758424985003 a001 311187/494493258286*192900153618^(4/9) 6524758424985003 a001 2178309/817138163596*192900153618^(7/18) 6524758424985003 a001 2178309/14662949395604*192900153618^(1/2) 6524758424985003 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^90 6524758424985003 a001 46347/10745088481*73681302247^(5/13) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^17/Lucas(53) 6524758424985003 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^25 6524758424985003 a001 311187/494493258286*73681302247^(6/13) 6524758424985003 a001 726103/3020733700601*73681302247^(1/2) 6524758424985003 a001 2178309/23725150497407*73681302247^(7/13) 6524758424985003 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^88 6524758424985003 a001 2178309/45537549124*45537549124^(5/17) 6524758424985003 a001 2178309/45537549124*312119004989^(3/11) 6524758424985003 a001 2178309/45537549124*14662949395604^(5/21) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^15/Lucas(51) 6524758424985003 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^23 6524758424985003 a001 2178309/45537549124*192900153618^(5/18) 6524758424985003 a001 46347/10745088481*28143753123^(2/5) 6524758424985003 a001 2178309/5600748293801*28143753123^(1/2) 6524758424985003 a001 2178309/45537549124*28143753123^(3/10) 6524758424985003 a001 726103/9381251041*10749957122^(7/24) 6524758424985003 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^86 6524758424985003 a001 311187/10525900321*10749957122^(1/3) 6524758424985003 a001 2178309/45537549124*10749957122^(5/16) 6524758424985003 a001 726103/64300051206*10749957122^(3/8) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^13/Lucas(49) 6524758424985003 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^21 6524758424985003 a001 2178309/17393796001*73681302247^(1/4) 6524758424985003 a001 46347/10745088481*10749957122^(5/12) 6524758424985003 a001 2178309/817138163596*10749957122^(7/16) 6524758424985003 a001 726103/440719107401*10749957122^(11/24) 6524758424985003 a001 311187/494493258286*10749957122^(1/2) 6524758424985003 a001 726103/3020733700601*10749957122^(13/24) 6524758424985003 a001 2178309/14662949395604*10749957122^(9/16) 6524758424985003 a001 2178309/23725150497407*10749957122^(7/12) 6524758424985003 a001 987/4870846*4106118243^(6/23) 6524758424985003 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^84 6524758424985003 a001 726103/9381251041*4106118243^(7/23) 6524758424985003 a001 311187/10525900321*4106118243^(8/23) 6524758424985003 a001 2178309/6643838879*312119004989^(1/5) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^11/Lucas(47) 6524758424985003 a004 Fibonacci(47)/Lucas(32)/(1/2+sqrt(5)/2)^19 6524758424985003 a001 726103/64300051206*4106118243^(9/23) 6524758424985003 a001 46347/10745088481*4106118243^(10/23) 6524758424985003 a001 726103/440719107401*4106118243^(11/23) 6524758424985003 a001 2178309/2139295485799*4106118243^(1/2) 6524758424985003 a001 311187/494493258286*4106118243^(12/23) 6524758424985003 a001 726103/1368706081*1568397607^(5/22) 6524758424985003 a001 726103/3020733700601*4106118243^(13/23) 6524758424985003 a001 2178309/23725150497407*4106118243^(14/23) 6524758424985003 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^82 6524758424985003 a001 726103/199691526*228826127^(3/20) 6524758424985003 a001 987/4870846*1568397607^(3/11) 6524758424985003 a001 311187/224056801*599074578^(4/21) 6524758424985003 a001 2178309/2537720636*2537720636^(1/5) 6524758424985003 a001 2178309/6643838879*1568397607^(1/4) 6524758424985003 a001 726103/9381251041*1568397607^(7/22) 6524758424985003 a001 311187/10525900321*1568397607^(4/11) 6524758424985003 a001 2178309/2537720636*45537549124^(3/17) 6524758424985003 a001 2178309/2537720636*14662949395604^(1/7) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^9/Lucas(45) 6524758424985003 a004 Fibonacci(45)/Lucas(32)/(1/2+sqrt(5)/2)^17 6524758424985003 a001 2178309/2537720636*192900153618^(1/6) 6524758424985003 a001 2178309/2537720636*10749957122^(3/16) 6524758424985003 a001 726103/64300051206*1568397607^(9/22) 6524758424985003 a001 46347/10745088481*1568397607^(5/11) 6524758424985003 a001 726103/440719107401*1568397607^(1/2) 6524758424985003 a001 311187/494493258286*1568397607^(6/11) 6524758424985003 a001 726103/3020733700601*1568397607^(13/22) 6524758424985003 a001 2178309/23725150497407*1568397607^(7/11) 6524758424985003 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^80 6524758424985003 a001 726103/1368706081*599074578^(5/21) 6524758424985003 a001 2178309/2537720636*599074578^(3/14) 6524758424985003 a001 987/4870846*599074578^(2/7) 6524758424985003 a001 726103/9381251041*599074578^(1/3) 6524758424985003 a001 2178309/45537549124*599074578^(5/14) 6524758424985003 a001 311187/10525900321*599074578^(8/21) 6524758424985003 a001 2178309/969323029*17393796001^(1/7) 6524758424985003 a001 2178309/969323029*14662949395604^(1/9) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^7/Lucas(43) 6524758424985003 a004 Fibonacci(43)/Lucas(32)/(1/2+sqrt(5)/2)^15 6524758424985003 a001 726103/64300051206*599074578^(3/7) 6524758424985003 a001 46347/10745088481*599074578^(10/21) 6524758424985003 a001 2178309/817138163596*599074578^(1/2) 6524758424985003 a001 726103/440719107401*599074578^(11/21) 6524758424985003 a001 2178309/969323029*599074578^(1/6) 6524758424985003 a001 311187/494493258286*599074578^(4/7) 6524758424985003 a001 726103/3020733700601*599074578^(13/21) 6524758424985003 a001 2178309/14662949395604*599074578^(9/14) 6524758424985003 a001 2178309/23725150497407*599074578^(2/3) 6524758424985003 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^78 6524758424985003 a001 311187/224056801*228826127^(1/5) 6524758424985003 a001 726103/1368706081*228826127^(1/4) 6524758424985003 a001 987/4870846*228826127^(3/10) 6524758424985003 a001 726103/9381251041*228826127^(7/20) 6524758424985003 a001 2178309/45537549124*228826127^(3/8) 6524758424985003 a001 2178309/370248451*2537720636^(1/9) 6524758424985003 a001 2178309/370248451*312119004989^(1/11) 6524758424985003 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^5/Lucas(41) 6524758424985003 a004 Fibonacci(41)/Lucas(32)/(1/2+sqrt(5)/2)^13 6524758424985003 a001 2178309/370248451*28143753123^(1/10) 6524758424985003 a001 311187/10525900321*228826127^(2/5) 6524758424985003 a001 726103/64300051206*228826127^(9/20) 6524758424985003 a001 46347/10745088481*228826127^(1/2) 6524758424985003 a001 2178309/370248451*228826127^(1/8) 6524758424985003 a001 726103/440719107401*228826127^(11/20) 6524758424985003 a001 311187/494493258286*228826127^(3/5) 6524758424985003 a001 2178309/5600748293801*228826127^(5/8) 6524758424985003 a001 726103/3020733700601*228826127^(13/20) 6524758424985003 a001 2178309/23725150497407*228826127^(7/10) 6524758424985003 a001 726103/199691526*87403803^(3/19) 6524758424985003 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^76 6524758424985003 a001 311187/224056801*87403803^(4/19) 6524758424985003 a001 726103/1368706081*87403803^(5/19) 6524758424985004 a001 987/4870846*87403803^(6/19) 6524758424985004 a001 2178309/141422324*141422324^(1/13) 6524758424985004 a001 726103/9381251041*87403803^(7/19) 6524758424985004 a001 2178309/141422324*2537720636^(1/15) 6524758424985004 a001 2178309/141422324*45537549124^(1/17) 6524758424985004 a001 2178309/141422324*14662949395604^(1/21) 6524758424985004 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^3/Lucas(39) 6524758424985004 a004 Fibonacci(39)/Lucas(32)/(1/2+sqrt(5)/2)^11 6524758424985004 a001 2178309/141422324*192900153618^(1/18) 6524758424985004 a001 2178309/141422324*10749957122^(1/16) 6524758424985004 a001 2178309/141422324*599074578^(1/14) 6524758424985004 a001 311187/10525900321*87403803^(8/19) 6524758424985004 a001 726103/64300051206*87403803^(9/19) 6524758424985004 a001 2178309/312119004989*87403803^(1/2) 6524758424985004 a001 46347/10745088481*87403803^(10/19) 6524758424985004 a001 726103/440719107401*87403803^(11/19) 6524758424985004 a001 46347/4868641*33385282^(1/9) 6524758424985004 a001 311187/494493258286*87403803^(12/19) 6524758424985004 a001 726103/3020733700601*87403803^(13/19) 6524758424985004 a001 2178309/23725150497407*87403803^(14/19) 6524758424985004 a001 2178309/141422324*33385282^(1/12) 6524758424985004 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^74 6524758424985004 a001 726103/199691526*33385282^(1/6) 6524758424985005 a001 311187/224056801*33385282^(2/9) 6524758424985005 a001 2178309/2537720636*33385282^(1/4) 6524758424985005 a001 726103/29134601*12752043^(1/17) 6524758424985005 a001 726103/1368706081*33385282^(5/18) 6524758424985005 a001 987/4870846*33385282^(1/3) 6524758424985005 a004 Fibonacci(32)*(1/2+sqrt(5)/2)/Lucas(37) 6524758424985005 a004 Fibonacci(37)/Lucas(32)/(1/2+sqrt(5)/2)^9 6524758424985006 a001 726103/9381251041*33385282^(7/18) 6524758424985006 a001 2178309/45537549124*33385282^(5/12) 6524758424985006 a001 311187/10525900321*33385282^(4/9) 6524758424985006 a001 726103/64300051206*33385282^(1/2) 6524758424985006 a001 46347/10745088481*33385282^(5/9) 6524758424985007 a001 2178309/817138163596*33385282^(7/12) 6524758424985007 a001 726103/440719107401*33385282^(11/18) 6524758424985007 a001 311187/494493258286*33385282^(2/3) 6524758424985007 a001 726103/3020733700601*33385282^(13/18) 6524758424985008 a001 2178309/14662949395604*33385282^(3/4) 6524758424985008 a001 2178309/23725150497407*33385282^(7/9) 6524758424985008 a001 46347/4868641*12752043^(2/17) 6524758424985009 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^72 6524758424985010 a001 726103/199691526*12752043^(3/17) 6524758424985013 a001 311187/224056801*12752043^(4/17) 6524758424985015 a001 726103/1368706081*12752043^(5/17) 6524758424985017 a001 987/4870846*12752043^(6/17) 6524758424985019 a004 Fibonacci(32)/Lucas(35)/(1/2+sqrt(5)/2) 6524758424985019 a004 Fibonacci(35)/Lucas(32)/(1/2+sqrt(5)/2)^7 6524758424985020 a001 726103/29134601*4870847^(1/16) 6524758424985020 a001 726103/9381251041*12752043^(7/17) 6524758424985022 a001 311187/10525900321*12752043^(8/17) 6524758424985023 a001 2178309/119218851371*12752043^(1/2) 6524758424985024 a001 726103/64300051206*12752043^(9/17) 6524758424985027 a001 46347/10745088481*12752043^(10/17) 6524758424985027 a001 416020/1730726404001*1860498^(13/15) 6524758424985029 a001 726103/440719107401*12752043^(11/17) 6524758424985032 a001 311187/494493258286*12752043^(12/17) 6524758424985034 a001 726103/3020733700601*12752043^(13/17) 6524758424985036 a001 2178309/23725150497407*12752043^(14/17) 6524758424985037 a001 46347/4868641*4870847^(1/8) 6524758424985043 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^70 6524758424985055 a001 726103/199691526*4870847^(3/16) 6524758424985072 a001 311187/224056801*4870847^(1/4) 6524758424985089 a001 726103/1368706081*4870847^(5/16) 6524758424985090 a001 832040/5600748293801*1860498^(9/10) 6524758424985106 a001 987/4870846*4870847^(3/8) 6524758424985108 a004 Fibonacci(32)/Lucas(33)/(1/2+sqrt(5)/2)^3 6524758424985108 a004 Fibonacci(33)/Lucas(32)/(1/2+sqrt(5)/2)^5 6524758424985124 a001 726103/9381251041*4870847^(7/16) 6524758424985128 a001 726103/29134601*1860498^(1/15) 6524758424985133 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^71 6524758424985141 a001 311187/10525900321*4870847^(1/2) 6524758424985153 a001 832040/9062201101803*1860498^(14/15) 6524758424985158 a001 726103/64300051206*4870847^(9/16) 6524758424985162 a001 5702887/9062201101803*7881196^(8/11) 6524758424985167 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^73 6524758424985168 a001 5702887/3461452808002*7881196^(2/3) 6524758424985171 a001 7881196/24157817*8^(1/3) 6524758424985171 a001 5702887/2139295485799*7881196^(7/11) 6524758424985172 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^75 6524758424985173 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^77 6524758424985173 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^79 6524758424985173 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^81 6524758424985173 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^83 6524758424985173 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^85 6524758424985173 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^87 6524758424985173 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^89 6524758424985173 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^91 6524758424985173 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^93 6524758424985173 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^95 6524758424985173 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^97 6524758424985173 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^99 6524758424985173 a001 1/1762289*(1/2+1/2*5^(1/2))^29 6524758424985173 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^100 6524758424985173 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^98 6524758424985173 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^96 6524758424985173 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^94 6524758424985173 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^92 6524758424985173 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^90 6524758424985173 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^88 6524758424985173 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^86 6524758424985173 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^84 6524758424985173 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^82 6524758424985173 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^80 6524758424985173 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^78 6524758424985174 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^76 6524758424985175 a001 46347/10745088481*4870847^(5/8) 6524758424985175 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^74 6524758424985181 a001 5702887/505019158607*7881196^(6/11) 6524758424985189 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^72 6524758424985190 a001 5702887/119218851371*7881196^(5/11) 6524758424985192 a001 2178309/141422324*1860498^(1/10) 6524758424985192 a001 726103/440719107401*4870847^(11/16) 6524758424985196 a001 14930352/23725150497407*7881196^(8/11) 6524758424985198 a004 Fibonacci(34)/Lucas(34)/(1/2+sqrt(5)/2)^4 6524758424985200 a001 5702887/28143753123*7881196^(4/11) 6524758424985202 a001 4976784/3020733700601*7881196^(2/3) 6524758424985203 a001 5702887/17393796001*7881196^(1/3) 6524758424985206 a001 14930352/5600748293801*7881196^(7/11) 6524758424985207 a001 39088169/23725150497407*7881196^(2/3) 6524758424985209 a001 5702887/6643838879*7881196^(3/11) 6524758424985209 a001 311187/494493258286*4870847^(3/4) 6524758424985210 a001 24157817/14662949395604*7881196^(2/3) 6524758424985211 a001 39088169/14662949395604*7881196^(7/11) 6524758424985212 a001 63245986/23725150497407*7881196^(7/11) 6524758424985214 a001 24157817/9062201101803*7881196^(7/11) 6524758424985215 a001 4976784/440719107401*7881196^(6/11) 6524758424985217 a001 9227465/14662949395604*7881196^(8/11) 6524758424985219 a001 5702887/1568397607*7881196^(2/11) 6524758424985220 a001 39088169/3461452808002*7881196^(6/11) 6524758424985221 a001 34111385/3020733700601*7881196^(6/11) 6524758424985221 a001 267914296/23725150497407*7881196^(6/11) 6524758424985221 a001 165580141/14662949395604*7881196^(6/11) 6524758424985221 a001 63245986/5600748293801*7881196^(6/11) 6524758424985223 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^73 6524758424985223 a001 24157817/2139295485799*7881196^(6/11) 6524758424985224 a001 9227465/5600748293801*7881196^(2/3) 6524758424985225 a001 14930352/312119004989*7881196^(5/11) 6524758424985227 a001 726103/3020733700601*4870847^(13/16) 6524758424985227 a001 9227465/3461452808002*7881196^(7/11) 6524758424985227 a001 5702887/14662949395604*20633239^(5/7) 6524758424985229 a001 5702887/370248451*7881196^(1/11) 6524758424985229 a001 5702887/2139295485799*20633239^(3/5) 6524758424985229 a001 5702887/1322157322203*20633239^(4/7) 6524758424985230 a001 4181/87403804*7881196^(5/11) 6524758424985230 a001 102334155/2139295485799*7881196^(5/11) 6524758424985230 a001 267914296/5600748293801*7881196^(5/11) 6524758424985230 a001 701408733/14662949395604*7881196^(5/11) 6524758424985231 a001 1134903170/23725150497407*7881196^(5/11) 6524758424985231 a001 433494437/9062201101803*7881196^(5/11) 6524758424985231 a001 165580141/3461452808002*7881196^(5/11) 6524758424985231 a001 63245986/1322157322203*7881196^(5/11) 6524758424985232 a001 5702887/119218851371*20633239^(3/7) 6524758424985232 a001 5702887/73681302247*20633239^(2/5) 6524758424985232 a004 Fibonacci(34)/Lucas(36)/(1/2+sqrt(5)/2)^2 6524758424985232 a004 Fibonacci(36)/Lucas(34)/(1/2+sqrt(5)/2)^6 6524758424985233 a001 24157817/505019158607*7881196^(5/11) 6524758424985234 a001 5702887/10749957122*20633239^(2/7) 6524758424985234 a001 14930352/73681302247*7881196^(4/11) 6524758424985235 a001 5702887/2537720636*20633239^(1/5) 6524758424985236 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^75 6524758424985236 a001 5702887/969323029*20633239^(1/7) 6524758424985236 a001 9227465/817138163596*7881196^(6/11) 6524758424985237 a004 Fibonacci(38)/Lucas(34)/(1/2+sqrt(5)/2)^8 6524758424985237 a001 3732588/11384387281*7881196^(1/3) 6524758424985238 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^77 6524758424985238 a001 5702887/23725150497407*141422324^(2/3) 6524758424985238 a001 5702887/9062201101803*141422324^(8/13) 6524758424985238 a001 5702887/2139295485799*141422324^(7/13) 6524758424985238 a001 5702887/505019158607*141422324^(6/13) 6524758424985238 a001 5702887/119218851371*141422324^(5/13) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^2/Lucas(40) 6524758424985238 a004 Fibonacci(40)/Lucas(34)/(1/2+sqrt(5)/2)^10 6524758424985238 a001 5702887/228826127*10749957122^(1/24) 6524758424985238 a001 5702887/228826127*4106118243^(1/23) 6524758424985238 a001 5702887/228826127*1568397607^(1/22) 6524758424985238 a001 5702887/228826127*599074578^(1/21) 6524758424985238 a001 5702887/228826127*228826127^(1/20) 6524758424985238 a001 1597/12752044*141422324^(1/3) 6524758424985238 a001 5702887/28143753123*141422324^(4/13) 6524758424985238 a001 5702887/228826127*87403803^(1/19) 6524758424985238 a001 5702887/6643838879*141422324^(3/13) 6524758424985238 a001 5702887/1568397607*141422324^(2/13) 6524758424985238 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^79 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^4/Lucas(42) 6524758424985238 a004 Fibonacci(42)/Lucas(34)/(1/2+sqrt(5)/2)^12 6524758424985238 a001 5702887/599074578*23725150497407^(1/16) 6524758424985238 a001 5702887/599074578*73681302247^(1/13) 6524758424985238 a001 5702887/599074578*10749957122^(1/12) 6524758424985238 a001 5702887/599074578*4106118243^(2/23) 6524758424985238 a001 5702887/599074578*1568397607^(1/11) 6524758424985238 a001 832040/87403803*710647^(1/7) 6524758424985238 a001 5702887/599074578*599074578^(2/21) 6524758424985238 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^81 6524758424985238 a001 5702887/599074578*228826127^(1/10) 6524758424985238 a001 5702887/1568397607*2537720636^(2/15) 6524758424985238 a001 5702887/1568397607*45537549124^(2/17) 6524758424985238 a001 5702887/1568397607*14662949395604^(2/21) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^6/Lucas(44) 6524758424985238 a004 Fibonacci(44)/Lucas(34)/(1/2+sqrt(5)/2)^14 6524758424985238 a001 5702887/1568397607*10749957122^(1/8) 6524758424985238 a001 5702887/1568397607*4106118243^(3/23) 6524758424985238 a001 5702887/1568397607*1568397607^(3/22) 6524758424985238 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^83 6524758424985238 a001 5702887/14662949395604*2537720636^(5/9) 6524758424985238 a001 5702887/9062201101803*2537720636^(8/15) 6524758424985238 a001 5702887/2139295485799*2537720636^(7/15) 6524758424985238 a001 5702887/1322157322203*2537720636^(4/9) 6524758424985238 a001 5702887/505019158607*2537720636^(2/5) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^8/Lucas(46) 6524758424985238 a004 Fibonacci(46)/Lucas(34)/(1/2+sqrt(5)/2)^16 6524758424985238 a001 5702887/4106118243*23725150497407^(1/8) 6524758424985238 a001 5702887/4106118243*505019158607^(1/7) 6524758424985238 a001 5702887/4106118243*73681302247^(2/13) 6524758424985238 a001 5702887/4106118243*10749957122^(1/6) 6524758424985238 a001 5702887/119218851371*2537720636^(1/3) 6524758424985238 a001 5702887/4106118243*4106118243^(4/23) 6524758424985238 a001 5702887/10749957122*2537720636^(2/9) 6524758424985238 a001 5702887/28143753123*2537720636^(4/15) 6524758424985238 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^85 6524758424985238 a001 5702887/10749957122*312119004989^(2/11) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^10/Lucas(48) 6524758424985238 a004 Fibonacci(48)/Lucas(34)/(1/2+sqrt(5)/2)^18 6524758424985238 a001 5702887/1568397607*599074578^(1/7) 6524758424985238 a001 5702887/6643838879*2537720636^(1/5) 6524758424985238 a001 5702887/10749957122*28143753123^(1/5) 6524758424985238 a001 5702887/10749957122*10749957122^(5/24) 6524758424985238 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^87 6524758424985238 a001 5702887/2139295485799*17393796001^(3/7) 6524758424985238 a001 5702887/28143753123*45537549124^(4/17) 6524758424985238 a001 5702887/28143753123*817138163596^(4/19) 6524758424985238 a001 5702887/28143753123*14662949395604^(4/21) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^12/Lucas(50) 6524758424985238 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2)^20 6524758424985238 a001 5702887/28143753123*192900153618^(2/9) 6524758424985238 a001 5702887/28143753123*73681302247^(3/13) 6524758424985238 a001 5702887/73681302247*17393796001^(2/7) 6524758424985238 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^89 6524758424985238 a001 5702887/9062201101803*45537549124^(8/17) 6524758424985238 a001 5702887/2139295485799*45537549124^(7/17) 6524758424985238 a001 5702887/73681302247*14662949395604^(2/9) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^14/Lucas(52) 6524758424985238 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^22 6524758424985238 a001 5702887/73681302247*505019158607^(1/4) 6524758424985238 a001 5702887/505019158607*45537549124^(6/17) 6524758424985238 a001 5702887/312119004989*45537549124^(1/3) 6524758424985238 a001 5702887/119218851371*45537549124^(5/17) 6524758424985238 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^91 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^16/Lucas(54) 6524758424985238 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^24 6524758424985238 a001 5702887/192900153618*23725150497407^(1/4) 6524758424985238 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^93 6524758424985238 a001 5702887/14662949395604*312119004989^(5/11) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(56) 6524758424985238 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^26 6524758424985238 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^95 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(58) 6524758424985238 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^28 6524758424985238 a001 5702887/1322157322203*23725150497407^(5/16) 6524758424985238 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^97 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(60) 6524758424985238 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^30 6524758424985238 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^99 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(62) 6524758424985238 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^32 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(64) 6524758424985238 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^34 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(66) 6524758424985238 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^36 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(68) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(70) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(72) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(74) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(76) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(78) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(80) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(82) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(84) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(86) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(88) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(90) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(92) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(94) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(96) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(98) 6524758424985238 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^38 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(99) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(100) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(97) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(95) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(93) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(91) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(89) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(87) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(85) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(83) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(81) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(79) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(77) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(75) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(73) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(71) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(69) 6524758424985238 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^40 6524758424985238 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^42 6524758424985238 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^44 6524758424985238 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^46 6524758424985238 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^48 6524758424985238 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^50 6524758424985238 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^52 6524758424985238 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^54 6524758424985238 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^56 6524758424985238 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^58 6524758424985238 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^60 6524758424985238 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^62 6524758424985238 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^64 6524758424985238 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^66 6524758424985238 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^68 6524758424985238 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^70 6524758424985238 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^69 6524758424985238 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^67 6524758424985238 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^65 6524758424985238 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^63 6524758424985238 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^61 6524758424985238 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^59 6524758424985238 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^57 6524758424985238 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^55 6524758424985238 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^53 6524758424985238 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^51 6524758424985238 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^49 6524758424985238 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^47 6524758424985238 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^45 6524758424985238 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^43 6524758424985238 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^41 6524758424985238 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^39 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(67) 6524758424985238 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^37 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(65) 6524758424985238 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^35 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(63) 6524758424985238 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^33 6524758424985238 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^100 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(61) 6524758424985238 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^31 6524758424985238 a001 5702887/14662949395604*3461452808002^(5/12) 6524758424985238 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^98 6524758424985238 a001 5702887/2139295485799*14662949395604^(1/3) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(59) 6524758424985238 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^29 6524758424985238 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^96 6524758424985238 a001 5702887/1322157322203*505019158607^(5/14) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(57) 6524758424985238 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^27 6524758424985238 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^94 6524758424985238 a001 5702887/505019158607*192900153618^(1/3) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^17/Lucas(55) 6524758424985238 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^25 6524758424985238 a001 5702887/2139295485799*192900153618^(7/18) 6524758424985238 a001 5702887/9062201101803*192900153618^(4/9) 6524758424985238 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^92 6524758424985238 a001 5702887/192900153618*73681302247^(4/13) 6524758424985238 a001 5702887/119218851371*312119004989^(3/11) 6524758424985238 a001 5702887/119218851371*14662949395604^(5/21) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^15/Lucas(53) 6524758424985238 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^23 6524758424985238 a001 5702887/119218851371*192900153618^(5/18) 6524758424985238 a001 5702887/9062201101803*73681302247^(6/13) 6524758424985238 a001 5702887/23725150497407*73681302247^(1/2) 6524758424985238 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^90 6524758424985238 a001 5702887/119218851371*28143753123^(3/10) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^13/Lucas(51) 6524758424985238 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^21 6524758424985238 a001 5702887/1322157322203*28143753123^(2/5) 6524758424985238 a001 1597/12752044*73681302247^(1/4) 6524758424985238 a001 5702887/14662949395604*28143753123^(1/2) 6524758424985238 a001 5702887/28143753123*10749957122^(1/4) 6524758424985238 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^88 6524758424985238 a001 5702887/73681302247*10749957122^(7/24) 6524758424985238 a001 5702887/119218851371*10749957122^(5/16) 6524758424985238 a001 5702887/192900153618*10749957122^(1/3) 6524758424985238 a001 5702887/505019158607*10749957122^(3/8) 6524758424985238 a001 5702887/17393796001*312119004989^(1/5) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^11/Lucas(49) 6524758424985238 a004 Fibonacci(49)/Lucas(34)/(1/2+sqrt(5)/2)^19 6524758424985238 a001 5702887/1322157322203*10749957122^(5/12) 6524758424985238 a001 5702887/2139295485799*10749957122^(7/16) 6524758424985238 a001 5702887/3461452808002*10749957122^(11/24) 6524758424985238 a001 5702887/10749957122*4106118243^(5/23) 6524758424985238 a001 5702887/9062201101803*10749957122^(1/2) 6524758424985238 a001 5702887/23725150497407*10749957122^(13/24) 6524758424985238 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^86 6524758424985238 a001 5702887/28143753123*4106118243^(6/23) 6524758424985238 a001 5702887/4106118243*1568397607^(2/11) 6524758424985238 a001 5702887/73681302247*4106118243^(7/23) 6524758424985238 a001 5702887/192900153618*4106118243^(8/23) 6524758424985238 a001 5702887/6643838879*45537549124^(3/17) 6524758424985238 a001 5702887/6643838879*817138163596^(3/19) 6524758424985238 a001 5702887/6643838879*14662949395604^(1/7) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^9/Lucas(47) 6524758424985238 a004 Fibonacci(47)/Lucas(34)/(1/2+sqrt(5)/2)^17 6524758424985238 a001 5702887/6643838879*192900153618^(1/6) 6524758424985238 a001 5702887/505019158607*4106118243^(9/23) 6524758424985238 a001 5702887/6643838879*10749957122^(3/16) 6524758424985238 a001 5702887/1322157322203*4106118243^(10/23) 6524758424985238 a001 5702887/3461452808002*4106118243^(11/23) 6524758424985238 a001 5702887/5600748293801*4106118243^(1/2) 6524758424985238 a001 5702887/9062201101803*4106118243^(12/23) 6524758424985238 a001 5702887/23725150497407*4106118243^(13/23) 6524758424985238 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^84 6524758424985238 a001 5702887/10749957122*1568397607^(5/22) 6524758424985238 a001 5702887/17393796001*1568397607^(1/4) 6524758424985238 a001 5702887/28143753123*1568397607^(3/11) 6524758424985238 a001 5702887/73681302247*1568397607^(7/22) 6524758424985238 a001 5702887/192900153618*1568397607^(4/11) 6524758424985238 a001 5702887/2537720636*17393796001^(1/7) 6524758424985238 a001 5702887/2537720636*14662949395604^(1/9) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^7/Lucas(45) 6524758424985238 a004 Fibonacci(45)/Lucas(34)/(1/2+sqrt(5)/2)^15 6524758424985238 a001 5702887/505019158607*1568397607^(9/22) 6524758424985238 a001 5702887/1322157322203*1568397607^(5/11) 6524758424985238 a001 5702887/3461452808002*1568397607^(1/2) 6524758424985238 a001 5702887/9062201101803*1568397607^(6/11) 6524758424985238 a001 5702887/23725150497407*1568397607^(13/22) 6524758424985238 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^82 6524758424985238 a001 5702887/4106118243*599074578^(4/21) 6524758424985238 a001 5702887/2537720636*599074578^(1/6) 6524758424985238 a001 5702887/6643838879*599074578^(3/14) 6524758424985238 a001 5702887/10749957122*599074578^(5/21) 6524758424985238 a001 5702887/28143753123*599074578^(2/7) 6524758424985238 a001 5702887/73681302247*599074578^(1/3) 6524758424985238 a001 5702887/119218851371*599074578^(5/14) 6524758424985238 a001 5702887/969323029*2537720636^(1/9) 6524758424985238 a001 5702887/192900153618*599074578^(8/21) 6524758424985238 a001 5702887/969323029*312119004989^(1/11) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^5/Lucas(43) 6524758424985238 a004 Fibonacci(43)/Lucas(34)/(1/2+sqrt(5)/2)^13 6524758424985238 a001 5702887/969323029*28143753123^(1/10) 6524758424985238 a001 5702887/505019158607*599074578^(3/7) 6524758424985238 a001 5702887/1322157322203*599074578^(10/21) 6524758424985238 a001 5702887/2139295485799*599074578^(1/2) 6524758424985238 a001 5702887/3461452808002*599074578^(11/21) 6524758424985238 a001 5702887/9062201101803*599074578^(4/7) 6524758424985238 a001 5702887/23725150497407*599074578^(13/21) 6524758424985238 a001 5702887/1568397607*228826127^(3/20) 6524758424985238 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^80 6524758424985238 a001 5702887/370248451*141422324^(1/13) 6524758424985238 a001 5702887/969323029*228826127^(1/8) 6524758424985238 a001 5702887/4106118243*228826127^(1/5) 6524758424985238 a001 5702887/10749957122*228826127^(1/4) 6524758424985238 a001 5702887/28143753123*228826127^(3/10) 6524758424985238 a001 5702887/73681302247*228826127^(7/20) 6524758424985238 a001 5702887/119218851371*228826127^(3/8) 6524758424985238 a001 5702887/370248451*2537720636^(1/15) 6524758424985238 a001 5702887/370248451*45537549124^(1/17) 6524758424985238 a001 5702887/370248451*14662949395604^(1/21) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^3/Lucas(41) 6524758424985238 a004 Fibonacci(41)/Lucas(34)/(1/2+sqrt(5)/2)^11 6524758424985238 a001 5702887/370248451*192900153618^(1/18) 6524758424985238 a001 5702887/370248451*10749957122^(1/16) 6524758424985238 a001 5702887/370248451*599074578^(1/14) 6524758424985238 a001 5702887/192900153618*228826127^(2/5) 6524758424985238 a001 5702887/505019158607*228826127^(9/20) 6524758424985238 a001 5702887/1322157322203*228826127^(1/2) 6524758424985238 a001 5702887/3461452808002*228826127^(11/20) 6524758424985238 a001 5702887/599074578*87403803^(2/19) 6524758424985238 a001 5702887/9062201101803*228826127^(3/5) 6524758424985238 a001 5702887/14662949395604*228826127^(5/8) 6524758424985238 a001 5702887/23725150497407*228826127^(13/20) 6524758424985238 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^78 6524758424985238 a001 5702887/1568397607*87403803^(3/19) 6524758424985238 a001 5702887/4106118243*87403803^(4/19) 6524758424985238 a001 5702887/228826127*33385282^(1/18) 6524758424985238 a001 5702887/10749957122*87403803^(5/19) 6524758424985238 a001 5702887/28143753123*87403803^(6/19) 6524758424985238 a001 5702887/73681302247*87403803^(7/19) 6524758424985238 a004 Fibonacci(34)*(1/2+sqrt(5)/2)/Lucas(39) 6524758424985238 a004 Fibonacci(39)/Lucas(34)/(1/2+sqrt(5)/2)^9 6524758424985238 a001 5702887/192900153618*87403803^(8/19) 6524758424985239 a001 5702887/505019158607*87403803^(9/19) 6524758424985239 a001 5702887/817138163596*87403803^(1/2) 6524758424985239 a001 5702887/1322157322203*87403803^(10/19) 6524758424985239 a001 5702887/3461452808002*87403803^(11/19) 6524758424985239 a001 5702887/370248451*33385282^(1/12) 6524758424985239 a001 5702887/9062201101803*87403803^(12/19) 6524758424985239 a001 5702887/23725150497407*87403803^(13/19) 6524758424985239 a001 5702887/599074578*33385282^(1/9) 6524758424985239 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^76 6524758424985239 a001 5702887/1568397607*33385282^(1/6) 6524758424985239 a001 39088169/192900153618*7881196^(4/11) 6524758424985239 a001 5702887/4106118243*33385282^(2/9) 6524758424985240 a001 5702887/6643838879*33385282^(1/4) 6524758424985240 a001 5702887/10749957122*33385282^(5/18) 6524758424985240 a001 102334155/505019158607*7881196^(4/11) 6524758424985240 a001 267914296/1322157322203*7881196^(4/11) 6524758424985240 a001 701408733/3461452808002*7881196^(4/11) 6524758424985240 a001 1836311903/9062201101803*7881196^(4/11) 6524758424985240 a001 4807526976/23725150497407*7881196^(4/11) 6524758424985240 a001 2971215073/14662949395604*7881196^(4/11) 6524758424985240 a001 1134903170/5600748293801*7881196^(4/11) 6524758424985240 a001 433494437/2139295485799*7881196^(4/11) 6524758424985240 a001 5702887/28143753123*33385282^(1/3) 6524758424985240 a001 165580141/817138163596*7881196^(4/11) 6524758424985240 a001 5702887/228826127*12752043^(1/17) 6524758424985240 a004 Fibonacci(34)/Lucas(37)/(1/2+sqrt(5)/2) 6524758424985240 a004 Fibonacci(37)/Lucas(34)/(1/2+sqrt(5)/2)^7 6524758424985240 a001 63245986/312119004989*7881196^(4/11) 6524758424985240 a001 5702887/73681302247*33385282^(7/18) 6524758424985241 a001 5702887/119218851371*33385282^(5/12) 6524758424985241 a001 5702887/192900153618*33385282^(4/9) 6524758424985241 a001 5702887/505019158607*33385282^(1/2) 6524758424985241 a001 5702887/1322157322203*33385282^(5/9) 6524758424985242 a001 5702887/2139295485799*33385282^(7/12) 6524758424985242 a001 5702887/3461452808002*33385282^(11/18) 6524758424985242 a001 5702887/9062201101803*33385282^(2/3) 6524758424985242 a001 24157817/119218851371*7881196^(4/11) 6524758424985242 a001 5702887/23725150497407*33385282^(13/18) 6524758424985242 a001 39088169/119218851371*7881196^(1/3) 6524758424985243 a001 5702887/599074578*12752043^(2/17) 6524758424985243 a001 9303105/28374454999*7881196^(1/3) 6524758424985243 a001 66978574/204284540899*7881196^(1/3) 6524758424985243 a001 701408733/2139295485799*7881196^(1/3) 6524758424985243 a001 1836311903/5600748293801*7881196^(1/3) 6524758424985243 a001 1201881744/3665737348901*7881196^(1/3) 6524758424985243 a001 7778742049/23725150497407*7881196^(1/3) 6524758424985243 a001 2971215073/9062201101803*7881196^(1/3) 6524758424985243 a001 567451585/1730726404001*7881196^(1/3) 6524758424985243 a001 433494437/1322157322203*7881196^(1/3) 6524758424985243 a001 165580141/505019158607*7881196^(1/3) 6524758424985244 a001 31622993/96450076809*7881196^(1/3) 6524758424985244 a001 14930352/17393796001*7881196^(3/11) 6524758424985244 a001 2178309/23725150497407*4870847^(7/8) 6524758424985244 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^74 6524758424985245 a001 5702887/1568397607*12752043^(3/17) 6524758424985245 a001 24157817/73681302247*7881196^(1/3) 6524758424985246 a001 9227465/192900153618*7881196^(5/11) 6524758424985248 a001 5702887/4106118243*12752043^(4/17) 6524758424985249 a001 39088169/45537549124*7881196^(3/11) 6524758424985249 a001 102334155/119218851371*7881196^(3/11) 6524758424985250 a001 267914296/312119004989*7881196^(3/11) 6524758424985250 a001 701408733/817138163596*7881196^(3/11) 6524758424985250 a001 1836311903/2139295485799*7881196^(3/11) 6524758424985250 a001 4807526976/5600748293801*7881196^(3/11) 6524758424985250 a001 12586269025/14662949395604*7881196^(3/11) 6524758424985250 a001 20365011074/23725150497407*7881196^(3/11) 6524758424985250 a001 7778742049/9062201101803*7881196^(3/11) 6524758424985250 a001 2971215073/3461452808002*7881196^(3/11) 6524758424985250 a001 1134903170/1322157322203*7881196^(3/11) 6524758424985250 a001 433494437/505019158607*7881196^(3/11) 6524758424985250 a001 165580141/192900153618*7881196^(3/11) 6524758424985250 a001 5702887/10749957122*12752043^(5/17) 6524758424985250 a001 63245986/73681302247*7881196^(3/11) 6524758424985252 a001 24157817/28143753123*7881196^(3/11) 6524758424985252 a001 5702887/28143753123*12752043^(6/17) 6524758424985253 a001 4976784/1368706081*7881196^(2/11) 6524758424985253 a004 Fibonacci(34)/Lucas(35)/(1/2+sqrt(5)/2)^3 6524758424985253 a004 Fibonacci(35)/Lucas(34)/(1/2+sqrt(5)/2)^5 6524758424985254 a001 46347/4868641*1860498^(2/15) 6524758424985255 a001 5702887/73681302247*12752043^(7/17) 6524758424985255 a001 5702887/228826127*4870847^(1/16) 6524758424985255 a001 9227465/45537549124*7881196^(4/11) 6524758424985257 a001 5702887/192900153618*12752043^(8/17) 6524758424985257 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^75 6524758424985258 a001 5702887/312119004989*12752043^(1/2) 6524758424985258 a001 39088169/10749957122*7881196^(2/11) 6524758424985259 a001 9227465/28143753123*7881196^(1/3) 6524758424985259 a001 831985/228811001*7881196^(2/11) 6524758424985259 a001 267914296/73681302247*7881196^(2/11) 6524758424985259 a001 233802911/64300051206*7881196^(2/11) 6524758424985259 a001 1836311903/505019158607*7881196^(2/11) 6524758424985259 a001 1602508992/440719107401*7881196^(2/11) 6524758424985259 a001 12586269025/3461452808002*7881196^(2/11) 6524758424985259 a001 10983760033/3020733700601*7881196^(2/11) 6524758424985259 a001 86267571272/23725150497407*7881196^(2/11) 6524758424985259 a001 53316291173/14662949395604*7881196^(2/11) 6524758424985259 a001 20365011074/5600748293801*7881196^(2/11) 6524758424985259 a001 7778742049/2139295485799*7881196^(2/11) 6524758424985259 a001 2971215073/817138163596*7881196^(2/11) 6524758424985259 a001 1134903170/312119004989*7881196^(2/11) 6524758424985259 a001 433494437/119218851371*7881196^(2/11) 6524758424985259 a001 165580141/45537549124*7881196^(2/11) 6524758424985259 a001 5702887/505019158607*12752043^(9/17) 6524758424985259 a001 63245986/17393796001*7881196^(2/11) 6524758424985261 a001 24157817/6643838879*7881196^(2/11) 6524758424985262 a001 5702887/1322157322203*12752043^(10/17) 6524758424985262 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^77 6524758424985263 a001 20633239/63245986*8^(1/3) 6524758424985263 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^79 6524758424985263 a001 14930352/969323029*7881196^(1/11) 6524758424985263 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^81 6524758424985263 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^83 6524758424985263 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^85 6524758424985263 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^87 6524758424985263 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^89 6524758424985263 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^91 6524758424985263 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^93 6524758424985263 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^95 6524758424985263 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^97 6524758424985263 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^99 6524758424985263 a001 2/9227465*(1/2+1/2*5^(1/2))^31 6524758424985263 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^100 6524758424985263 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^98 6524758424985263 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^96 6524758424985263 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^94 6524758424985263 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^92 6524758424985263 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^90 6524758424985263 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^88 6524758424985263 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^86 6524758424985263 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^84 6524758424985263 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^82 6524758424985263 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^80 6524758424985263 a001 14930352/5600748293801*20633239^(3/5) 6524758424985263 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^78 6524758424985264 a001 7465176/1730726404001*20633239^(4/7) 6524758424985264 a001 5702887/3461452808002*12752043^(11/17) 6524758424985265 a001 9227465/10749957122*7881196^(3/11) 6524758424985265 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^76 6524758424985266 a001 14930352/312119004989*20633239^(3/7) 6524758424985266 a001 2584/33385281*20633239^(2/5) 6524758424985266 a001 5702887/9062201101803*12752043^(12/17) 6524758424985267 a004 Fibonacci(36)/Lucas(36)/(1/2+sqrt(5)/2)^4 6524758424985268 a001 39088169/2537720636*7881196^(1/11) 6524758424985268 a001 4976784/9381251041*20633239^(2/7) 6524758424985268 a001 39088169/14662949395604*20633239^(3/5) 6524758424985269 a001 102334155/6643838879*7881196^(1/11) 6524758424985269 a001 39088169/9062201101803*20633239^(4/7) 6524758424985269 a001 9238424/599786069*7881196^(1/11) 6524758424985269 a001 701408733/45537549124*7881196^(1/11) 6524758424985269 a001 1836311903/119218851371*7881196^(1/11) 6524758424985269 a001 4807526976/312119004989*7881196^(1/11) 6524758424985269 a001 12586269025/817138163596*7881196^(1/11) 6524758424985269 a001 32951280099/2139295485799*7881196^(1/11) 6524758424985269 a001 86267571272/5600748293801*7881196^(1/11) 6524758424985269 a001 7787980473/505618944676*7881196^(1/11) 6524758424985269 a001 365435296162/23725150497407*7881196^(1/11) 6524758424985269 a001 139583862445/9062201101803*7881196^(1/11) 6524758424985269 a001 53316291173/3461452808002*7881196^(1/11) 6524758424985269 a001 20365011074/1322157322203*7881196^(1/11) 6524758424985269 a001 7778742049/505019158607*7881196^(1/11) 6524758424985269 a001 2971215073/192900153618*7881196^(1/11) 6524758424985269 a001 1134903170/73681302247*7881196^(1/11) 6524758424985269 a001 433494437/28143753123*7881196^(1/11) 6524758424985269 a001 165580141/10749957122*7881196^(1/11) 6524758424985269 a001 5702887/23725150497407*12752043^(13/17) 6524758424985269 a001 63245986/4106118243*7881196^(1/11) 6524758424985269 a001 14930352/6643838879*20633239^(1/5) 6524758424985269 a001 102334155/23725150497407*20633239^(4/7) 6524758424985269 a001 63245986/23725150497407*20633239^(3/5) 6524758424985270 a001 31622993/7331474697802*20633239^(4/7) 6524758424985270 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^77 6524758424985270 a001 196452/33391061*20633239^(1/7) 6524758424985271 a001 4181/87403804*20633239^(3/7) 6524758424985271 a001 24157817/1568397607*7881196^(1/11) 6524758424985271 a001 39088169/505019158607*20633239^(2/5) 6524758424985271 a001 24157817/9062201101803*20633239^(3/5) 6524758424985272 a004 Fibonacci(36)/Lucas(38)/(1/2+sqrt(5)/2)^2 6524758424985272 a004 Fibonacci(38)/Lucas(36)/(1/2+sqrt(5)/2)^6 6524758424985272 a001 102334155/2139295485799*20633239^(3/7) 6524758424985272 a001 267914296/5600748293801*20633239^(3/7) 6524758424985272 a001 701408733/14662949395604*20633239^(3/7) 6524758424985272 a001 1134903170/23725150497407*20633239^(3/7) 6524758424985272 a001 433494437/9062201101803*20633239^(3/7) 6524758424985272 a001 24157817/5600748293801*20633239^(4/7) 6524758424985272 a001 165580141/3461452808002*20633239^(3/7) 6524758424985272 a001 34111385/440719107401*20633239^(2/5) 6524758424985272 a001 63245986/1322157322203*20633239^(3/7) 6524758424985272 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^79 6524758424985272 a001 133957148/1730726404001*20633239^(2/5) 6524758424985272 a001 233802911/3020733700601*20633239^(2/5) 6524758424985272 a001 1836311903/23725150497407*20633239^(2/5) 6524758424985272 a001 567451585/7331474697802*20633239^(2/5) 6524758424985272 a001 433494437/5600748293801*20633239^(2/5) 6524758424985272 a001 165580141/2139295485799*20633239^(2/5) 6524758424985272 a001 14930352/23725150497407*141422324^(8/13) 6524758424985272 a001 14930352/5600748293801*141422324^(7/13) 6524758424985272 a001 4976784/440719107401*141422324^(6/13) 6524758424985272 a001 14930352/312119004989*141422324^(5/13) 6524758424985272 a004 Fibonacci(40)/Lucas(36)/(1/2+sqrt(5)/2)^8 6524758424985272 a001 14930352/119218851371*141422324^(1/3) 6524758424985272 a001 14930352/73681302247*141422324^(4/13) 6524758424985272 a001 14930352/17393796001*141422324^(3/13) 6524758424985272 a001 4976784/1368706081*141422324^(2/13) 6524758424985272 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^81 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^2/Lucas(42) 6524758424985272 a004 Fibonacci(42)/Lucas(36)/(1/2+sqrt(5)/2)^10 6524758424985272 a001 829464/33281921*10749957122^(1/24) 6524758424985272 a001 829464/33281921*4106118243^(1/23) 6524758424985272 a001 14930352/969323029*141422324^(1/13) 6524758424985272 a001 829464/33281921*1568397607^(1/22) 6524758424985272 a001 829464/33281921*599074578^(1/21) 6524758424985272 a001 829464/33281921*228826127^(1/20) 6524758424985272 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^83 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^4/Lucas(44) 6524758424985272 a004 Fibonacci(44)/Lucas(36)/(1/2+sqrt(5)/2)^12 6524758424985272 a001 14930352/1568397607*23725150497407^(1/16) 6524758424985272 a001 14930352/1568397607*73681302247^(1/13) 6524758424985272 a001 14930352/1568397607*10749957122^(1/12) 6524758424985272 a001 14930352/1568397607*4106118243^(2/23) 6524758424985272 a001 14930352/1568397607*1568397607^(1/11) 6524758424985272 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^85 6524758424985272 a001 14930352/1568397607*599074578^(2/21) 6524758424985272 a001 14930352/23725150497407*2537720636^(8/15) 6524758424985272 a001 4976784/1368706081*2537720636^(2/15) 6524758424985272 a001 14930352/5600748293801*2537720636^(7/15) 6524758424985272 a001 7465176/1730726404001*2537720636^(4/9) 6524758424985272 a001 4976784/440719107401*2537720636^(2/5) 6524758424985272 a001 4976784/1368706081*45537549124^(2/17) 6524758424985272 a001 4976784/1368706081*14662949395604^(2/21) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^6/Lucas(46) 6524758424985272 a004 Fibonacci(46)/Lucas(36)/(1/2+sqrt(5)/2)^14 6524758424985272 a001 4976784/1368706081*10749957122^(1/8) 6524758424985272 a001 14930352/312119004989*2537720636^(1/3) 6524758424985272 a001 4976784/1368706081*4106118243^(3/23) 6524758424985272 a001 14930352/73681302247*2537720636^(4/15) 6524758424985272 a001 4976784/9381251041*2537720636^(2/9) 6524758424985272 a001 14930352/17393796001*2537720636^(1/5) 6524758424985272 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^87 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^8/Lucas(48) 6524758424985272 a004 Fibonacci(48)/Lucas(36)/(1/2+sqrt(5)/2)^16 6524758424985272 a001 7465176/5374978561*23725150497407^(1/8) 6524758424985272 a001 7465176/5374978561*505019158607^(1/7) 6524758424985272 a001 7465176/5374978561*73681302247^(2/13) 6524758424985272 a001 7465176/5374978561*10749957122^(1/6) 6524758424985272 a001 4976784/1368706081*1568397607^(3/22) 6524758424985272 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^89 6524758424985272 a001 14930352/5600748293801*17393796001^(3/7) 6524758424985272 a001 4976784/9381251041*312119004989^(2/11) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^10/Lucas(50) 6524758424985272 a004 Fibonacci(50)/Lucas(36)/(1/2+sqrt(5)/2)^18 6524758424985272 a001 4976784/9381251041*28143753123^(1/5) 6524758424985272 a001 2584/33385281*17393796001^(2/7) 6524758424985272 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^91 6524758424985272 a001 14930352/73681302247*45537549124^(4/17) 6524758424985272 a001 14930352/23725150497407*45537549124^(8/17) 6524758424985272 a001 14930352/5600748293801*45537549124^(7/17) 6524758424985272 a001 14930352/73681302247*817138163596^(4/19) 6524758424985272 a001 14930352/73681302247*14662949395604^(4/21) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^12/Lucas(52) 6524758424985272 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2)^20 6524758424985272 a001 14930352/73681302247*192900153618^(2/9) 6524758424985272 a001 4976784/440719107401*45537549124^(6/17) 6524758424985272 a001 3732588/204284540899*45537549124^(1/3) 6524758424985272 a001 14930352/73681302247*73681302247^(3/13) 6524758424985272 a001 14930352/312119004989*45537549124^(5/17) 6524758424985272 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^93 6524758424985272 a001 2584/33385281*14662949395604^(2/9) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^14/Lucas(54) 6524758424985272 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^22 6524758424985272 a001 2584/33385281*505019158607^(1/4) 6524758424985272 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^95 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(56) 6524758424985272 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^24 6524758424985272 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^97 6524758424985272 a001 4976784/440719107401*14662949395604^(2/7) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(58) 6524758424985272 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^26 6524758424985272 a001 14930352/2139295485799*817138163596^(1/3) 6524758424985272 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^99 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(60) 6524758424985272 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^28 6524758424985272 a001 7465176/1730726404001*23725150497407^(5/16) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(62) 6524758424985272 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^30 6524758424985272 a001 14930352/23725150497407*14662949395604^(8/21) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(64) 6524758424985272 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^32 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(66) 6524758424985272 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^34 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(68) 6524758424985272 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^36 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(70) 6524758424985272 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^38 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(72) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(74) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(76) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(78) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(80) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(82) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(84) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(86) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(88) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(90) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(92) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(94) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(96) 6524758424985272 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^40 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(98) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(100) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(99) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(97) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(95) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(93) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(91) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(89) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(87) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(85) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(83) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(81) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(79) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(77) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(75) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(73) 6524758424985272 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^42 6524758424985272 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^44 6524758424985272 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^46 6524758424985272 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^48 6524758424985272 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^50 6524758424985272 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^52 6524758424985272 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^54 6524758424985272 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^56 6524758424985272 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^58 6524758424985272 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^60 6524758424985272 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^62 6524758424985272 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^64 6524758424985272 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^66 6524758424985272 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^68 6524758424985272 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^67 6524758424985272 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^65 6524758424985272 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^63 6524758424985272 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^61 6524758424985272 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^59 6524758424985272 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^57 6524758424985272 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^55 6524758424985272 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^53 6524758424985272 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^51 6524758424985272 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^49 6524758424985272 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^47 6524758424985272 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^45 6524758424985272 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^43 6524758424985272 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^41 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(71) 6524758424985272 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^39 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(69) 6524758424985272 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^37 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(67) 6524758424985272 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^35 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(65) 6524758424985272 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^33 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(63) 6524758424985272 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^31 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(61) 6524758424985272 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^29 6524758424985272 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^100 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(59) 6524758424985272 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^27 6524758424985272 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^98 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(57) 6524758424985272 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^25 6524758424985272 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^96 6524758424985272 a001 14930352/312119004989*312119004989^(3/11) 6524758424985272 a001 14930352/312119004989*14662949395604^(5/21) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^15/Lucas(55) 6524758424985272 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^23 6524758424985272 a001 14930352/23725150497407*192900153618^(4/9) 6524758424985272 a001 14930352/312119004989*192900153618^(5/18) 6524758424985272 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^94 6524758424985272 a001 14930352/505019158607*73681302247^(4/13) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^13/Lucas(53) 6524758424985272 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^21 6524758424985272 a001 7465176/1730726404001*73681302247^(5/13) 6524758424985272 a001 14930352/23725150497407*73681302247^(6/13) 6524758424985272 a001 14930352/119218851371*73681302247^(1/4) 6524758424985272 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^92 6524758424985272 a001 14930352/312119004989*28143753123^(3/10) 6524758424985272 a001 3732588/11384387281*312119004989^(1/5) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^11/Lucas(51) 6524758424985272 a004 Fibonacci(51)/Lucas(36)/(1/2+sqrt(5)/2)^19 6524758424985272 a001 7465176/1730726404001*28143753123^(2/5) 6524758424985272 a001 4976784/9381251041*10749957122^(5/24) 6524758424985272 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^90 6524758424985272 a001 7465176/5374978561*4106118243^(4/23) 6524758424985272 a001 14930352/73681302247*10749957122^(1/4) 6524758424985272 a001 2584/33385281*10749957122^(7/24) 6524758424985272 a001 14930352/312119004989*10749957122^(5/16) 6524758424985272 a001 14930352/505019158607*10749957122^(1/3) 6524758424985272 a001 14930352/17393796001*45537549124^(3/17) 6524758424985272 a001 4976784/440719107401*10749957122^(3/8) 6524758424985272 a001 14930352/17393796001*817138163596^(3/19) 6524758424985272 a001 14930352/17393796001*14662949395604^(1/7) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^9/Lucas(49) 6524758424985272 a004 Fibonacci(49)/Lucas(36)/(1/2+sqrt(5)/2)^17 6524758424985272 a001 14930352/17393796001*192900153618^(1/6) 6524758424985272 a001 7465176/1730726404001*10749957122^(5/12) 6524758424985272 a001 14930352/5600748293801*10749957122^(7/16) 6524758424985272 a001 4976784/3020733700601*10749957122^(11/24) 6524758424985272 a001 14930352/23725150497407*10749957122^(1/2) 6524758424985272 a001 14930352/17393796001*10749957122^(3/16) 6524758424985272 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^88 6524758424985272 a001 4976784/9381251041*4106118243^(5/23) 6524758424985272 a001 14930352/73681302247*4106118243^(6/23) 6524758424985272 a001 2584/33385281*4106118243^(7/23) 6524758424985272 a001 14930352/505019158607*4106118243^(8/23) 6524758424985272 a001 14930352/6643838879*17393796001^(1/7) 6524758424985272 a001 14930352/6643838879*14662949395604^(1/9) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^7/Lucas(47) 6524758424985272 a004 Fibonacci(47)/Lucas(36)/(1/2+sqrt(5)/2)^15 6524758424985272 a001 4976784/440719107401*4106118243^(9/23) 6524758424985272 a001 7465176/1730726404001*4106118243^(10/23) 6524758424985272 a001 4976784/3020733700601*4106118243^(11/23) 6524758424985272 a001 196452/192933544679*4106118243^(1/2) 6524758424985272 a001 14930352/23725150497407*4106118243^(12/23) 6524758424985272 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^86 6524758424985272 a001 7465176/5374978561*1568397607^(2/11) 6524758424985272 a001 4976784/9381251041*1568397607^(5/22) 6524758424985272 a001 3732588/11384387281*1568397607^(1/4) 6524758424985272 a001 14930352/73681302247*1568397607^(3/11) 6524758424985272 a001 2584/33385281*1568397607^(7/22) 6524758424985272 a001 196452/33391061*2537720636^(1/9) 6524758424985272 a001 14930352/505019158607*1568397607^(4/11) 6524758424985272 a001 196452/33391061*312119004989^(1/11) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^5/Lucas(45) 6524758424985272 a004 Fibonacci(45)/Lucas(36)/(1/2+sqrt(5)/2)^13 6524758424985272 a001 196452/33391061*28143753123^(1/10) 6524758424985272 a001 4976784/440719107401*1568397607^(9/22) 6524758424985272 a001 7465176/1730726404001*1568397607^(5/11) 6524758424985272 a001 4976784/3020733700601*1568397607^(1/2) 6524758424985272 a001 14930352/23725150497407*1568397607^(6/11) 6524758424985272 a001 4976784/1368706081*599074578^(1/7) 6524758424985272 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^84 6524758424985272 a001 14930352/6643838879*599074578^(1/6) 6524758424985272 a001 7465176/5374978561*599074578^(4/21) 6524758424985272 a001 14930352/17393796001*599074578^(3/14) 6524758424985272 a001 4976784/9381251041*599074578^(5/21) 6524758424985272 a001 14930352/73681302247*599074578^(2/7) 6524758424985272 a001 2584/33385281*599074578^(1/3) 6524758424985272 a001 14930352/312119004989*599074578^(5/14) 6524758424985272 a001 14930352/969323029*2537720636^(1/15) 6524758424985272 a001 14930352/505019158607*599074578^(8/21) 6524758424985272 a001 14930352/969323029*45537549124^(1/17) 6524758424985272 a001 14930352/969323029*14662949395604^(1/21) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^3/Lucas(43) 6524758424985272 a004 Fibonacci(43)/Lucas(36)/(1/2+sqrt(5)/2)^11 6524758424985272 a001 14930352/969323029*192900153618^(1/18) 6524758424985272 a001 14930352/969323029*10749957122^(1/16) 6524758424985272 a001 4976784/440719107401*599074578^(3/7) 6524758424985272 a001 14930352/969323029*599074578^(1/14) 6524758424985272 a001 7465176/1730726404001*599074578^(10/21) 6524758424985272 a001 14930352/5600748293801*599074578^(1/2) 6524758424985272 a001 4976784/3020733700601*599074578^(11/21) 6524758424985272 a001 14930352/1568397607*228826127^(1/10) 6524758424985272 a001 14930352/23725150497407*599074578^(4/7) 6524758424985272 a001 196452/33391061*228826127^(1/8) 6524758424985272 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^82 6524758424985272 a001 4976784/1368706081*228826127^(3/20) 6524758424985272 a001 7465176/5374978561*228826127^(1/5) 6524758424985272 a001 829464/33281921*87403803^(1/19) 6524758424985272 a001 4976784/9381251041*228826127^(1/4) 6524758424985272 a001 14930352/73681302247*228826127^(3/10) 6524758424985272 a001 2584/33385281*228826127^(7/20) 6524758424985272 a001 14930352/312119004989*228826127^(3/8) 6524758424985272 a004 Fibonacci(36)*(1/2+sqrt(5)/2)/Lucas(41) 6524758424985272 a004 Fibonacci(41)/Lucas(36)/(1/2+sqrt(5)/2)^9 6524758424985272 a001 14930352/505019158607*228826127^(2/5) 6524758424985272 a001 31622993/408569081798*20633239^(2/5) 6524758424985272 a001 4976784/440719107401*228826127^(9/20) 6524758424985272 a001 7465176/1730726404001*228826127^(1/2) 6524758424985272 a001 4976784/3020733700601*228826127^(11/20) 6524758424985272 a001 14930352/23725150497407*228826127^(3/5) 6524758424985272 a001 14930352/1568397607*87403803^(2/19) 6524758424985272 a001 5702887/599074578*4870847^(1/8) 6524758424985273 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^80 6524758424985273 a001 4976784/1368706081*87403803^(3/19) 6524758424985273 a001 7465176/5374978561*87403803^(4/19) 6524758424985273 a001 4976784/9381251041*87403803^(5/19) 6524758424985273 a001 14930352/73681302247*87403803^(6/19) 6524758424985273 a001 829464/33281921*33385282^(1/18) 6524758424985273 a001 2584/33385281*87403803^(7/19) 6524758424985273 a004 Fibonacci(36)/Lucas(39)/(1/2+sqrt(5)/2) 6524758424985273 a004 Fibonacci(39)/Lucas(36)/(1/2+sqrt(5)/2)^7 6524758424985273 a001 14930352/505019158607*87403803^(8/19) 6524758424985273 a001 4976784/440719107401*87403803^(9/19) 6524758424985273 a001 14930352/2139295485799*87403803^(1/2) 6524758424985273 a001 7465176/1730726404001*87403803^(10/19) 6524758424985273 a001 4976784/3020733700601*87403803^(11/19) 6524758424985273 a001 14930352/969323029*33385282^(1/12) 6524758424985273 a001 14930352/23725150497407*87403803^(12/19) 6524758424985273 a001 39088169/73681302247*20633239^(2/7) 6524758424985273 a001 14930352/1568397607*33385282^(1/9) 6524758424985273 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^78 6524758424985273 a001 4976784/1368706081*33385282^(1/6) 6524758424985274 a001 7465176/5374978561*33385282^(2/9) 6524758424985274 a001 34111385/64300051206*20633239^(2/7) 6524758424985274 a001 267914296/505019158607*20633239^(2/7) 6524758424985274 a001 14930352/17393796001*33385282^(1/4) 6524758424985274 a001 233802911/440719107401*20633239^(2/7) 6524758424985274 a001 1836311903/3461452808002*20633239^(2/7) 6524758424985274 a001 1602508992/3020733700601*20633239^(2/7) 6524758424985274 a001 12586269025/23725150497407*20633239^(2/7) 6524758424985274 a001 7778742049/14662949395604*20633239^(2/7) 6524758424985274 a001 2971215073/5600748293801*20633239^(2/7) 6524758424985274 a001 1134903170/2139295485799*20633239^(2/7) 6524758424985274 a001 433494437/817138163596*20633239^(2/7) 6524758424985274 a001 24157817/505019158607*20633239^(3/7) 6524758424985274 a001 165580141/312119004989*20633239^(2/7) 6524758424985274 a001 4976784/9381251041*33385282^(5/18) 6524758424985274 a001 63245986/119218851371*20633239^(2/7) 6524758424985274 a001 39088169/17393796001*20633239^(1/5) 6524758424985274 a001 14930352/73681302247*33385282^(1/3) 6524758424985274 a001 24157817/312119004989*20633239^(2/5) 6524758424985274 a001 9227465/2537720636*7881196^(2/11) 6524758424985275 a004 Fibonacci(36)/Lucas(37)/(1/2+sqrt(5)/2)^3 6524758424985275 a004 Fibonacci(37)/Lucas(36)/(1/2+sqrt(5)/2)^5 6524758424985275 a001 2584/33385281*33385282^(7/18) 6524758424985275 a001 829464/33281921*12752043^(1/17) 6524758424985275 a001 14930352/312119004989*33385282^(5/12) 6524758424985275 a001 14930352/505019158607*33385282^(4/9) 6524758424985275 a001 102334155/45537549124*20633239^(1/5) 6524758424985275 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^79 6524758424985275 a001 267914296/119218851371*20633239^(1/5) 6524758424985275 a001 3524667/1568437211*20633239^(1/5) 6524758424985275 a001 1836311903/817138163596*20633239^(1/5) 6524758424985275 a001 4807526976/2139295485799*20633239^(1/5) 6524758424985275 a001 12586269025/5600748293801*20633239^(1/5) 6524758424985275 a001 32951280099/14662949395604*20633239^(1/5) 6524758424985275 a001 53316291173/23725150497407*20633239^(1/5) 6524758424985275 a001 20365011074/9062201101803*20633239^(1/5) 6524758424985275 a001 7778742049/3461452808002*20633239^(1/5) 6524758424985275 a001 2971215073/1322157322203*20633239^(1/5) 6524758424985275 a001 1134903170/505019158607*20633239^(1/5) 6524758424985275 a001 433494437/192900153618*20633239^(1/5) 6524758424985275 a001 39088169/6643838879*20633239^(1/7) 6524758424985275 a001 165580141/73681302247*20633239^(1/5) 6524758424985275 a001 4976784/440719107401*33385282^(1/2) 6524758424985276 a001 63245986/28143753123*20633239^(1/5) 6524758424985276 a001 7465176/1730726404001*33385282^(5/9) 6524758424985276 a001 14930352/5600748293801*33385282^(7/12) 6524758424985276 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^81 6524758424985276 a001 102334155/17393796001*20633239^(1/7) 6524758424985276 a001 54018521/165580141*8^(1/3) 6524758424985276 a001 4976784/3020733700601*33385282^(11/18) 6524758424985276 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^83 6524758424985276 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^85 6524758424985276 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^87 6524758424985276 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^89 6524758424985276 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^91 6524758424985276 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^93 6524758424985276 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^95 6524758424985276 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^97 6524758424985276 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^99 6524758424985276 a001 2/24157817*(1/2+1/2*5^(1/2))^33 6524758424985276 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^100 6524758424985276 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^98 6524758424985276 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^96 6524758424985276 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^94 6524758424985276 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^92 6524758424985276 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^90 6524758424985276 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^88 6524758424985276 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^86 6524758424985276 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^84 6524758424985276 a001 66978574/11384387281*20633239^(1/7) 6524758424985276 a001 701408733/119218851371*20633239^(1/7) 6524758424985276 a001 1836311903/312119004989*20633239^(1/7) 6524758424985276 a001 1201881744/204284540899*20633239^(1/7) 6524758424985276 a001 12586269025/2139295485799*20633239^(1/7) 6524758424985276 a001 32951280099/5600748293801*20633239^(1/7) 6524758424985276 a001 1135099622/192933544679*20633239^(1/7) 6524758424985276 a001 139583862445/23725150497407*20633239^(1/7) 6524758424985276 a001 53316291173/9062201101803*20633239^(1/7) 6524758424985276 a001 10182505537/1730726404001*20633239^(1/7) 6524758424985276 a001 7778742049/1322157322203*20633239^(1/7) 6524758424985276 a001 2971215073/505019158607*20633239^(1/7) 6524758424985276 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^82 6524758424985276 a001 567451585/96450076809*20633239^(1/7) 6524758424985276 a001 433494437/73681302247*20633239^(1/7) 6524758424985276 a001 24157817/45537549124*20633239^(2/7) 6524758424985276 a001 165580141/28143753123*20633239^(1/7) 6524758424985276 a001 14930352/23725150497407*33385282^(2/3) 6524758424985276 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^80 6524758424985276 a001 31622993/5374978561*20633239^(1/7) 6524758424985277 a004 Fibonacci(38)/Lucas(38)/(1/2+sqrt(5)/2)^4 6524758424985277 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^81 6524758424985277 a001 14930352/1568397607*12752043^(2/17) 6524758424985277 a001 39088169/14662949395604*141422324^(7/13) 6524758424985277 a001 39088169/3461452808002*141422324^(6/13) 6524758424985277 a001 4181/87403804*141422324^(5/13) 6524758424985277 a004 Fibonacci(38)/Lucas(40)/(1/2+sqrt(5)/2)^2 6524758424985277 a004 Fibonacci(40)/Lucas(38)/(1/2+sqrt(5)/2)^6 6524758424985277 a001 39088169/312119004989*141422324^(1/3) 6524758424985277 a001 39088169/192900153618*141422324^(4/13) 6524758424985277 a001 39088169/45537549124*141422324^(3/13) 6524758424985277 a001 39088169/10749957122*141422324^(2/13) 6524758424985277 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^83 6524758424985277 a001 39088169/2537720636*141422324^(1/13) 6524758424985277 a004 Fibonacci(42)/Lucas(38)/(1/2+sqrt(5)/2)^8 6524758424985277 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^85 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^2/Lucas(44) 6524758424985277 a004 Fibonacci(44)/Lucas(38)/(1/2+sqrt(5)/2)^10 6524758424985277 a001 39088169/1568397607*10749957122^(1/24) 6524758424985277 a001 39088169/1568397607*4106118243^(1/23) 6524758424985277 a001 39088169/1568397607*1568397607^(1/22) 6524758424985277 a001 39088169/1568397607*599074578^(1/21) 6524758424985277 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^87 6524758424985277 a001 39088169/14662949395604*2537720636^(7/15) 6524758424985277 a001 39088169/9062201101803*2537720636^(4/9) 6524758424985277 a001 39088169/3461452808002*2537720636^(2/5) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^4/Lucas(46) 6524758424985277 a004 Fibonacci(46)/Lucas(38)/(1/2+sqrt(5)/2)^12 6524758424985277 a001 39088169/4106118243*23725150497407^(1/16) 6524758424985277 a001 39088169/4106118243*73681302247^(1/13) 6524758424985277 a001 39088169/4106118243*10749957122^(1/12) 6524758424985277 a001 39088169/4106118243*4106118243^(2/23) 6524758424985277 a001 4181/87403804*2537720636^(1/3) 6524758424985277 a001 39088169/192900153618*2537720636^(4/15) 6524758424985277 a001 39088169/73681302247*2537720636^(2/9) 6524758424985277 a001 39088169/45537549124*2537720636^(1/5) 6524758424985277 a001 39088169/10749957122*2537720636^(2/15) 6524758424985277 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^89 6524758424985277 a001 39088169/4106118243*1568397607^(1/11) 6524758424985277 a001 39088169/10749957122*45537549124^(2/17) 6524758424985277 a001 39088169/10749957122*14662949395604^(2/21) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^6/Lucas(48) 6524758424985277 a004 Fibonacci(48)/Lucas(38)/(1/2+sqrt(5)/2)^14 6524758424985277 a001 39088169/10749957122*10749957122^(1/8) 6524758424985277 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^91 6524758424985277 a001 39088169/14662949395604*17393796001^(3/7) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^8/Lucas(50) 6524758424985277 a004 Fibonacci(50)/Lucas(38)/(1/2+sqrt(5)/2)^16 6524758424985277 a001 39088169/28143753123*23725150497407^(1/8) 6524758424985277 a001 39088169/28143753123*505019158607^(1/7) 6524758424985277 a001 39088169/28143753123*73681302247^(2/13) 6524758424985277 a001 39088169/505019158607*17393796001^(2/7) 6524758424985277 a001 39088169/10749957122*4106118243^(3/23) 6524758424985277 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^93 6524758424985277 a001 39088169/14662949395604*45537549124^(7/17) 6524758424985277 a001 39088169/73681302247*312119004989^(2/11) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^10/Lucas(52) 6524758424985277 a004 Fibonacci(52)/Lucas(38)/(1/2+sqrt(5)/2)^18 6524758424985277 a001 39088169/3461452808002*45537549124^(6/17) 6524758424985277 a001 39088169/2139295485799*45537549124^(1/3) 6524758424985277 a001 39088169/192900153618*45537549124^(4/17) 6524758424985277 a001 4181/87403804*45537549124^(5/17) 6524758424985277 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^95 6524758424985277 a001 39088169/192900153618*817138163596^(4/19) 6524758424985277 a001 39088169/192900153618*14662949395604^(4/21) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^12/Lucas(54) 6524758424985277 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2)^20 6524758424985277 a001 39088169/192900153618*192900153618^(2/9) 6524758424985277 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^97 6524758424985277 a001 39088169/505019158607*14662949395604^(2/9) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(56) 6524758424985277 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^22 6524758424985277 a001 39088169/505019158607*505019158607^(1/4) 6524758424985277 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^99 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(58) 6524758424985277 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^24 6524758424985277 a001 39088169/1322157322203*23725150497407^(1/4) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(60) 6524758424985277 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^26 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(62) 6524758424985277 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^28 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(64) 6524758424985277 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^30 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(66) 6524758424985277 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^32 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(68) 6524758424985277 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^34 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(70) 6524758424985277 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^36 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(72) 6524758424985277 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^38 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(74) 6524758424985277 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^40 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(76) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(78) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(80) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(82) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(84) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(86) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(88) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(90) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(92) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(94) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(96) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(98) 6524758424985277 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^42 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(99) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(100) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(97) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(95) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(93) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(91) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(89) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(87) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(85) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(83) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(81) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(79) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(77) 6524758424985277 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^44 6524758424985277 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^46 6524758424985277 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^48 6524758424985277 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^50 6524758424985277 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^52 6524758424985277 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^54 6524758424985277 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^56 6524758424985277 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^58 6524758424985277 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^60 6524758424985277 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^62 6524758424985277 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^64 6524758424985277 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^66 6524758424985277 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^65 6524758424985277 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^63 6524758424985277 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^61 6524758424985277 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^59 6524758424985277 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^57 6524758424985277 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^55 6524758424985277 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^53 6524758424985277 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^51 6524758424985277 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^49 6524758424985277 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^47 6524758424985277 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^45 6524758424985277 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^43 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(75) 6524758424985277 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^41 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(73) 6524758424985277 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^39 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(71) 6524758424985277 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^37 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(69) 6524758424985277 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^35 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(67) 6524758424985277 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^33 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(65) 6524758424985277 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^31 6524758424985277 a001 39088169/14662949395604*14662949395604^(1/3) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(63) 6524758424985277 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^29 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(61) 6524758424985277 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^27 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(59) 6524758424985277 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^25 6524758424985277 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^100 6524758424985277 a001 39088169/9062201101803*505019158607^(5/14) 6524758424985277 a001 4181/87403804*14662949395604^(5/21) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(57) 6524758424985277 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^23 6524758424985277 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^98 6524758424985277 a001 39088169/3461452808002*192900153618^(1/3) 6524758424985277 a001 4181/87403804*192900153618^(5/18) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^13/Lucas(55) 6524758424985277 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^21 6524758424985277 a001 39088169/14662949395604*192900153618^(7/18) 6524758424985277 a001 39088169/192900153618*73681302247^(3/13) 6524758424985277 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^96 6524758424985277 a001 39088169/1322157322203*73681302247^(4/13) 6524758424985277 a001 39088169/312119004989*73681302247^(1/4) 6524758424985277 a001 39088169/119218851371*312119004989^(1/5) 6524758424985277 a001 39088169/73681302247*28143753123^(1/5) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^11/Lucas(53) 6524758424985277 a004 Fibonacci(53)/Lucas(38)/(1/2+sqrt(5)/2)^19 6524758424985277 a001 39088169/9062201101803*73681302247^(5/13) 6524758424985277 a001 39088169/28143753123*10749957122^(1/6) 6524758424985277 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^94 6524758424985277 a001 4181/87403804*28143753123^(3/10) 6524758424985277 a001 39088169/45537549124*45537549124^(3/17) 6524758424985277 a001 39088169/45537549124*817138163596^(3/19) 6524758424985277 a001 39088169/45537549124*14662949395604^(1/7) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^9/Lucas(51) 6524758424985277 a004 Fibonacci(51)/Lucas(38)/(1/2+sqrt(5)/2)^17 6524758424985277 a001 39088169/45537549124*192900153618^(1/6) 6524758424985277 a001 39088169/9062201101803*28143753123^(2/5) 6524758424985277 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^92 6524758424985277 a001 39088169/73681302247*10749957122^(5/24) 6524758424985277 a001 39088169/45537549124*10749957122^(3/16) 6524758424985277 a001 39088169/192900153618*10749957122^(1/4) 6524758424985277 a001 39088169/505019158607*10749957122^(7/24) 6524758424985277 a001 4181/87403804*10749957122^(5/16) 6524758424985277 a001 39088169/17393796001*17393796001^(1/7) 6524758424985277 a001 39088169/1322157322203*10749957122^(1/3) 6524758424985277 a001 39088169/3461452808002*10749957122^(3/8) 6524758424985277 a001 39088169/17393796001*14662949395604^(1/9) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^7/Lucas(49) 6524758424985277 a004 Fibonacci(49)/Lucas(38)/(1/2+sqrt(5)/2)^15 6524758424985277 a001 39088169/9062201101803*10749957122^(5/12) 6524758424985277 a001 39088169/14662949395604*10749957122^(7/16) 6524758424985277 a001 39088169/23725150497407*10749957122^(11/24) 6524758424985277 a001 39088169/6643838879*2537720636^(1/9) 6524758424985277 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^90 6524758424985277 a001 39088169/28143753123*4106118243^(4/23) 6524758424985277 a001 39088169/73681302247*4106118243^(5/23) 6524758424985277 a001 39088169/192900153618*4106118243^(6/23) 6524758424985277 a001 39088169/505019158607*4106118243^(7/23) 6524758424985277 a001 39088169/1322157322203*4106118243^(8/23) 6524758424985277 a001 39088169/6643838879*312119004989^(1/11) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^5/Lucas(47) 6524758424985277 a004 Fibonacci(47)/Lucas(38)/(1/2+sqrt(5)/2)^13 6524758424985277 a001 39088169/6643838879*28143753123^(1/10) 6524758424985277 a001 39088169/3461452808002*4106118243^(9/23) 6524758424985277 a001 39088169/9062201101803*4106118243^(10/23) 6524758424985277 a001 39088169/23725150497407*4106118243^(11/23) 6524758424985277 a001 39088169/10749957122*1568397607^(3/22) 6524758424985277 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^88 6524758424985277 a001 39088169/28143753123*1568397607^(2/11) 6524758424985277 a001 39088169/73681302247*1568397607^(5/22) 6524758424985277 a001 39088169/119218851371*1568397607^(1/4) 6524758424985277 a001 39088169/192900153618*1568397607^(3/11) 6524758424985277 a001 39088169/505019158607*1568397607^(7/22) 6524758424985277 a001 39088169/2537720636*2537720636^(1/15) 6524758424985277 a001 39088169/1322157322203*1568397607^(4/11) 6524758424985277 a001 39088169/2537720636*45537549124^(1/17) 6524758424985277 a001 39088169/2537720636*14662949395604^(1/21) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^3/Lucas(45) 6524758424985277 a004 Fibonacci(45)/Lucas(38)/(1/2+sqrt(5)/2)^11 6524758424985277 a001 39088169/2537720636*192900153618^(1/18) 6524758424985277 a001 39088169/2537720636*10749957122^(1/16) 6524758424985277 a001 39088169/3461452808002*1568397607^(9/22) 6524758424985277 a001 39088169/9062201101803*1568397607^(5/11) 6524758424985277 a001 39088169/23725150497407*1568397607^(1/2) 6524758424985277 a001 39088169/4106118243*599074578^(2/21) 6524758424985277 a001 39088169/2537720636*599074578^(1/14) 6524758424985277 a001 39088169/10749957122*599074578^(1/7) 6524758424985277 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^86 6524758424985277 a001 39088169/17393796001*599074578^(1/6) 6524758424985277 a001 39088169/28143753123*599074578^(4/21) 6524758424985277 a001 39088169/1568397607*228826127^(1/20) 6524758424985277 a001 39088169/45537549124*599074578^(3/14) 6524758424985277 a001 39088169/73681302247*599074578^(5/21) 6524758424985277 a001 39088169/192900153618*599074578^(2/7) 6524758424985277 a001 39088169/505019158607*599074578^(1/3) 6524758424985277 a001 4181/87403804*599074578^(5/14) 6524758424985277 a001 39088169/1322157322203*599074578^(8/21) 6524758424985277 a004 Fibonacci(38)*(1/2+sqrt(5)/2)/Lucas(43) 6524758424985277 a004 Fibonacci(43)/Lucas(38)/(1/2+sqrt(5)/2)^9 6524758424985277 a001 39088169/3461452808002*599074578^(3/7) 6524758424985277 a001 39088169/9062201101803*599074578^(10/21) 6524758424985277 a001 39088169/14662949395604*599074578^(1/2) 6524758424985277 a001 39088169/23725150497407*599074578^(11/21) 6524758424985277 a001 39088169/4106118243*228826127^(1/10) 6524758424985277 a001 39088169/6643838879*228826127^(1/8) 6524758424985277 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^84 6524758424985277 a001 39088169/10749957122*228826127^(3/20) 6524758424985277 a001 24157817/10749957122*20633239^(1/5) 6524758424985277 a001 39088169/28143753123*228826127^(1/5) 6524758424985277 a001 39088169/73681302247*228826127^(1/4) 6524758424985277 a001 39088169/192900153618*228826127^(3/10) 6524758424985277 a001 39088169/1568397607*87403803^(1/19) 6524758424985277 a001 39088169/505019158607*228826127^(7/20) 6524758424985277 a001 4181/87403804*228826127^(3/8) 6524758424985277 a004 Fibonacci(38)/Lucas(41)/(1/2+sqrt(5)/2) 6524758424985277 a004 Fibonacci(41)/Lucas(38)/(1/2+sqrt(5)/2)^7 6524758424985277 a001 39088169/1322157322203*228826127^(2/5) 6524758424985277 a001 39088169/3461452808002*228826127^(9/20) 6524758424985277 a001 39088169/9062201101803*228826127^(1/2) 6524758424985277 a001 39088169/23725150497407*228826127^(11/20) 6524758424985277 a001 39088169/4106118243*87403803^(2/19) 6524758424985278 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^82 6524758424985278 a001 39088169/10749957122*87403803^(3/19) 6524758424985278 a001 39088169/28143753123*87403803^(4/19) 6524758424985278 a001 39088169/73681302247*87403803^(5/19) 6524758424985278 a001 39088169/192900153618*87403803^(6/19) 6524758424985278 a001 39088169/505019158607*87403803^(7/19) 6524758424985278 a001 39088169/1568397607*33385282^(1/18) 6524758424985278 a004 Fibonacci(38)/Lucas(39)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(39)/Lucas(38)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 39088169/1322157322203*87403803^(8/19) 6524758424985278 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^83 6524758424985278 a001 39088169/3461452808002*87403803^(9/19) 6524758424985278 a001 39088169/5600748293801*87403803^(1/2) 6524758424985278 a001 39088169/9062201101803*87403803^(10/19) 6524758424985278 a001 39088169/2537720636*33385282^(1/12) 6524758424985278 a001 39088169/23725150497407*87403803^(11/19) 6524758424985278 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^85 6524758424985278 a001 141422324/433494437*8^(1/3) 6524758424985278 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^87 6524758424985278 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^89 6524758424985278 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^91 6524758424985278 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^93 6524758424985278 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 1/31622993*(1/2+1/2*5^(1/2))^35 6524758424985278 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^100 6524758424985278 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^94 6524758424985278 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^92 6524758424985278 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^90 6524758424985278 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^88 6524758424985278 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^86 6524758424985278 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^84 6524758424985278 a001 34111385/3020733700601*141422324^(6/13) 6524758424985278 a001 102334155/2139295485799*141422324^(5/13) 6524758424985278 a004 Fibonacci(40)/Lucas(40)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 102334155/817138163596*141422324^(1/3) 6524758424985278 a001 102334155/505019158607*141422324^(4/13) 6524758424985278 a001 39088169/4106118243*33385282^(1/9) 6524758424985278 a001 102334155/119218851371*141422324^(3/13) 6524758424985278 a001 831985/228811001*141422324^(2/13) 6524758424985278 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^85 6524758424985278 a001 267914296/23725150497407*141422324^(6/13) 6524758424985278 a001 102334155/6643838879*141422324^(1/13) 6524758424985278 a001 267914296/5600748293801*141422324^(5/13) 6524758424985278 a004 Fibonacci(40)/Lucas(42)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(42)/Lucas(40)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^87 6524758424985278 a001 701408733/14662949395604*141422324^(5/13) 6524758424985278 a004 Fibonacci(44)/Lucas(40)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 267914296/2139295485799*141422324^(1/3) 6524758424985278 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^89 6524758424985278 a001 102334155/23725150497407*2537720636^(4/9) 6524758424985278 a001 34111385/3020733700601*2537720636^(2/5) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^2/Lucas(46) 6524758424985278 a004 Fibonacci(46)/Lucas(40)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 34111385/1368706081*10749957122^(1/24) 6524758424985278 a001 34111385/1368706081*4106118243^(1/23) 6524758424985278 a001 102334155/2139295485799*2537720636^(1/3) 6524758424985278 a001 102334155/505019158607*2537720636^(4/15) 6524758424985278 a001 34111385/1368706081*1568397607^(1/22) 6524758424985278 a001 34111385/64300051206*2537720636^(2/9) 6524758424985278 a001 102334155/119218851371*2537720636^(1/5) 6524758424985278 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^91 6524758424985278 a001 831985/228811001*2537720636^(2/15) 6524758424985278 a001 102334155/17393796001*2537720636^(1/9) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^4/Lucas(48) 6524758424985278 a004 Fibonacci(48)/Lucas(40)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 102334155/10749957122*23725150497407^(1/16) 6524758424985278 a001 102334155/10749957122*73681302247^(1/13) 6524758424985278 a001 102334155/10749957122*10749957122^(1/12) 6524758424985278 a001 102334155/10749957122*4106118243^(2/23) 6524758424985278 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 831985/228811001*45537549124^(2/17) 6524758424985278 a001 831985/228811001*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^6/Lucas(50) 6524758424985278 a004 Fibonacci(50)/Lucas(40)/(1/2+sqrt(5)/2)^14 6524758424985278 a001 34111385/440719107401*17393796001^(2/7) 6524758424985278 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^8/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(40)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 14619165/10525900321*23725150497407^(1/8) 6524758424985278 a001 14619165/10525900321*505019158607^(1/7) 6524758424985278 a001 34111385/3020733700601*45537549124^(6/17) 6524758424985278 a001 102334155/5600748293801*45537549124^(1/3) 6524758424985278 a001 14619165/10525900321*73681302247^(2/13) 6524758424985278 a001 102334155/2139295485799*45537549124^(5/17) 6524758424985278 a001 102334155/505019158607*45537549124^(4/17) 6524758424985278 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 34111385/64300051206*312119004989^(2/11) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^10/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(40)/(1/2+sqrt(5)/2)^18 6524758424985278 a001 102334155/119218851371*45537549124^(3/17) 6524758424985278 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 102334155/505019158607*817138163596^(4/19) 6524758424985278 a001 102334155/505019158607*14662949395604^(4/21) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2)^20 6524758424985278 a001 102334155/2139295485799*312119004989^(3/11) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^22 6524758424985278 a001 102334155/14662949395604*817138163596^(1/3) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^24 6524758424985278 a001 6765/228826126*23725150497407^(1/4) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^28 6524758424985278 a001 102334155/23725150497407*23725150497407^(5/16) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(80) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(82) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(84) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(86) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(88) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(90) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(92) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(94) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(96) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(98) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(100) 6524758424985278 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(99) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(97) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(95) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(93) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(91) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(89) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(87) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(85) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(83) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(81) 6524758424985278 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^60 6524758424985278 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^62 6524758424985278 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^64 6524758424985278 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^63 6524758424985278 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^61 6524758424985278 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^25 6524758424985278 a001 102334155/2139295485799*14662949395604^(5/21) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^23 6524758424985278 a001 102334155/23725150497407*505019158607^(5/14) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 102334155/2139295485799*192900153618^(5/18) 6524758424985278 a001 102334155/45537549124*17393796001^(1/7) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^11/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(40)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 102334155/505019158607*73681302247^(3/13) 6524758424985278 a001 102334155/817138163596*73681302247^(1/4) 6524758424985278 a001 6765/228826126*73681302247^(4/13) 6524758424985278 a001 102334155/119218851371*14662949395604^(1/7) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^9/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(40)/(1/2+sqrt(5)/2)^17 6524758424985278 a001 102334155/119218851371*192900153618^(1/6) 6524758424985278 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 34111385/64300051206*28143753123^(1/5) 6524758424985278 a001 102334155/2139295485799*28143753123^(3/10) 6524758424985278 a001 102334155/45537549124*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^7/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(40)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 102334155/23725150497407*28143753123^(2/5) 6524758424985278 a001 14619165/10525900321*10749957122^(1/6) 6524758424985278 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^94 6524758424985278 a001 102334155/119218851371*10749957122^(3/16) 6524758424985278 a001 34111385/64300051206*10749957122^(5/24) 6524758424985278 a001 102334155/505019158607*10749957122^(1/4) 6524758424985278 a001 34111385/440719107401*10749957122^(7/24) 6524758424985278 a001 102334155/2139295485799*10749957122^(5/16) 6524758424985278 a001 6765/228826126*10749957122^(1/3) 6524758424985278 a001 34111385/3020733700601*10749957122^(3/8) 6524758424985278 a001 102334155/17393796001*312119004989^(1/11) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^5/Lucas(49) 6524758424985278 a004 Fibonacci(49)/Lucas(40)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 102334155/17393796001*28143753123^(1/10) 6524758424985278 a001 102334155/23725150497407*10749957122^(5/12) 6524758424985278 a001 831985/228811001*4106118243^(3/23) 6524758424985278 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^92 6524758424985278 a001 14619165/10525900321*4106118243^(4/23) 6524758424985278 a001 102334155/6643838879*2537720636^(1/15) 6524758424985278 a001 34111385/64300051206*4106118243^(5/23) 6524758424985278 a001 102334155/505019158607*4106118243^(6/23) 6524758424985278 a001 34111385/440719107401*4106118243^(7/23) 6524758424985278 a001 6765/228826126*4106118243^(8/23) 6524758424985278 a001 102334155/6643838879*45537549124^(1/17) 6524758424985278 a001 102334155/6643838879*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^3/Lucas(47) 6524758424985278 a004 Fibonacci(47)/Lucas(40)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 102334155/6643838879*192900153618^(1/18) 6524758424985278 a001 1134903170/23725150497407*141422324^(5/13) 6524758424985278 a001 102334155/6643838879*10749957122^(1/16) 6524758424985278 a001 34111385/3020733700601*4106118243^(9/23) 6524758424985278 a001 102334155/23725150497407*4106118243^(10/23) 6524758424985278 a001 102334155/10749957122*1568397607^(1/11) 6524758424985278 a001 831985/228811001*1568397607^(3/22) 6524758424985278 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^90 6524758424985278 a001 34111385/1368706081*599074578^(1/21) 6524758424985278 a001 14619165/10525900321*1568397607^(2/11) 6524758424985278 a001 34111385/64300051206*1568397607^(5/22) 6524758424985278 a001 9303105/28374454999*1568397607^(1/4) 6524758424985278 a001 102334155/505019158607*1568397607^(3/11) 6524758424985278 a001 34111385/440719107401*1568397607^(7/22) 6524758424985278 a001 6765/228826126*1568397607^(4/11) 6524758424985278 a004 Fibonacci(40)*(1/2+sqrt(5)/2)/Lucas(45) 6524758424985278 a004 Fibonacci(45)/Lucas(40)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 34111385/3020733700601*1568397607^(9/22) 6524758424985278 a001 102334155/23725150497407*1568397607^(5/11) 6524758424985278 a001 102334155/6643838879*599074578^(1/14) 6524758424985278 a001 102334155/10749957122*599074578^(2/21) 6524758424985278 a001 831985/228811001*599074578^(1/7) 6524758424985278 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^88 6524758424985278 a001 102334155/45537549124*599074578^(1/6) 6524758424985278 a001 14619165/10525900321*599074578^(4/21) 6524758424985278 a001 102334155/119218851371*599074578^(3/14) 6524758424985278 a001 34111385/64300051206*599074578^(5/21) 6524758424985278 a001 102334155/505019158607*599074578^(2/7) 6524758424985278 a001 34111385/1368706081*228826127^(1/20) 6524758424985278 a001 267914296/1322157322203*141422324^(4/13) 6524758424985278 a001 34111385/440719107401*599074578^(1/3) 6524758424985278 a001 433494437/9062201101803*141422324^(5/13) 6524758424985278 a001 102334155/2139295485799*599074578^(5/14) 6524758424985278 a001 6765/228826126*599074578^(8/21) 6524758424985278 a004 Fibonacci(40)/Lucas(43)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(43)/Lucas(40)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 34111385/3020733700601*599074578^(3/7) 6524758424985278 a001 102334155/23725150497407*599074578^(10/21) 6524758424985278 a001 102334155/10749957122*228826127^(1/10) 6524758424985278 a001 701408733/5600748293801*141422324^(1/3) 6524758424985278 a001 1836311903/14662949395604*141422324^(1/3) 6524758424985278 a001 102334155/17393796001*228826127^(1/8) 6524758424985278 a001 2971215073/23725150497407*141422324^(1/3) 6524758424985278 a001 1134903170/9062201101803*141422324^(1/3) 6524758424985278 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^86 6524758424985278 a001 831985/228811001*228826127^(3/20) 6524758424985278 a001 701408733/3461452808002*141422324^(4/13) 6524758424985278 a001 165580141/14662949395604*141422324^(6/13) 6524758424985278 a001 433494437/3461452808002*141422324^(1/3) 6524758424985278 a001 1836311903/9062201101803*141422324^(4/13) 6524758424985278 a001 4807526976/23725150497407*141422324^(4/13) 6524758424985278 a001 2971215073/14662949395604*141422324^(4/13) 6524758424985278 a001 14619165/10525900321*228826127^(1/5) 6524758424985278 a001 1134903170/5600748293801*141422324^(4/13) 6524758424985278 a001 267914296/312119004989*141422324^(3/13) 6524758424985278 a001 34111385/64300051206*228826127^(1/4) 6524758424985278 a001 433494437/2139295485799*141422324^(4/13) 6524758424985278 a001 102334155/505019158607*228826127^(3/10) 6524758424985278 a001 34111385/440719107401*228826127^(7/20) 6524758424985278 a001 34111385/1368706081*87403803^(1/19) 6524758424985278 a001 701408733/817138163596*141422324^(3/13) 6524758424985278 a001 102334155/2139295485799*228826127^(3/8) 6524758424985278 a001 165580141/3461452808002*141422324^(5/13) 6524758424985278 a004 Fibonacci(40)/Lucas(41)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(41)/Lucas(40)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 1836311903/2139295485799*141422324^(3/13) 6524758424985278 a001 4807526976/5600748293801*141422324^(3/13) 6524758424985278 a001 12586269025/14662949395604*141422324^(3/13) 6524758424985278 a001 20365011074/23725150497407*141422324^(3/13) 6524758424985278 a001 7778742049/9062201101803*141422324^(3/13) 6524758424985278 a001 2971215073/3461452808002*141422324^(3/13) 6524758424985278 a001 6765/228826126*228826127^(2/5) 6524758424985278 a001 1134903170/1322157322203*141422324^(3/13) 6524758424985278 a001 34111385/3020733700601*228826127^(9/20) 6524758424985278 a001 267914296/73681302247*141422324^(2/13) 6524758424985278 a001 433494437/505019158607*141422324^(3/13) 6524758424985278 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^87 6524758424985278 a001 102334155/23725150497407*228826127^(1/2) 6524758424985278 a001 165580141/1322157322203*141422324^(1/3) 6524758424985278 a001 233802911/64300051206*141422324^(2/13) 6524758424985278 a001 165580141/817138163596*141422324^(4/13) 6524758424985278 a001 1836311903/505019158607*141422324^(2/13) 6524758424985278 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^89 6524758424985278 a001 1602508992/440719107401*141422324^(2/13) 6524758424985278 a001 12586269025/3461452808002*141422324^(2/13) 6524758424985278 a001 10983760033/3020733700601*141422324^(2/13) 6524758424985278 a001 86267571272/23725150497407*141422324^(2/13) 6524758424985278 a001 53316291173/14662949395604*141422324^(2/13) 6524758424985278 a001 20365011074/5600748293801*141422324^(2/13) 6524758424985278 a001 7778742049/2139295485799*141422324^(2/13) 6524758424985278 a001 2971215073/817138163596*141422324^(2/13) 6524758424985278 a001 1134903170/312119004989*141422324^(2/13) 6524758424985278 a001 370248451/1134903170*8^(1/3) 6524758424985278 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^91 6524758424985278 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^93 6524758424985278 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 2/165580141*(1/2+1/2*5^(1/2))^37 6524758424985278 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^100 6524758424985278 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^94 6524758424985278 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^92 6524758424985278 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^90 6524758424985278 a001 9238424/599786069*141422324^(1/13) 6524758424985278 a001 433494437/119218851371*141422324^(2/13) 6524758424985278 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^88 6524758424985278 a004 Fibonacci(42)/Lucas(42)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 102334155/10749957122*87403803^(2/19) 6524758424985278 a001 701408733/45537549124*141422324^(1/13) 6524758424985278 a001 165580141/192900153618*141422324^(3/13) 6524758424985278 a001 1836311903/119218851371*141422324^(1/13) 6524758424985278 a001 4807526976/312119004989*141422324^(1/13) 6524758424985278 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^89 6524758424985278 a001 12586269025/817138163596*141422324^(1/13) 6524758424985278 a001 32951280099/2139295485799*141422324^(1/13) 6524758424985278 a001 86267571272/5600748293801*141422324^(1/13) 6524758424985278 a001 7787980473/505618944676*141422324^(1/13) 6524758424985278 a001 365435296162/23725150497407*141422324^(1/13) 6524758424985278 a001 139583862445/9062201101803*141422324^(1/13) 6524758424985278 a001 53316291173/3461452808002*141422324^(1/13) 6524758424985278 a001 20365011074/1322157322203*141422324^(1/13) 6524758424985278 a001 7778742049/505019158607*141422324^(1/13) 6524758424985278 a001 2971215073/192900153618*141422324^(1/13) 6524758424985278 a001 1134903170/73681302247*141422324^(1/13) 6524758424985278 a004 Fibonacci(42)/Lucas(44)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(44)/Lucas(42)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^91 6524758424985278 a001 267914296/23725150497407*2537720636^(2/5) 6524758424985278 a004 Fibonacci(46)/Lucas(42)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 267914296/5600748293801*2537720636^(1/3) 6524758424985278 a001 267914296/1322157322203*2537720636^(4/15) 6524758424985278 a001 267914296/505019158607*2537720636^(2/9) 6524758424985278 a001 267914296/312119004989*2537720636^(1/5) 6524758424985278 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 267914296/73681302247*2537720636^(2/15) 6524758424985278 a001 66978574/11384387281*2537720636^(1/9) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^2/Lucas(48) 6524758424985278 a004 Fibonacci(48)/Lucas(42)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 133957148/5374978561*10749957122^(1/24) 6524758424985278 a001 9238424/599786069*2537720636^(1/15) 6524758424985278 a001 133957148/5374978561*4106118243^(1/23) 6524758424985278 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^4/Lucas(50) 6524758424985278 a004 Fibonacci(50)/Lucas(42)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 267914296/28143753123*23725150497407^(1/16) 6524758424985278 a001 267914296/28143753123*73681302247^(1/13) 6524758424985278 a001 133957148/1730726404001*17393796001^(2/7) 6524758424985278 a001 267914296/28143753123*10749957122^(1/12) 6524758424985278 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 267914296/119218851371*17393796001^(1/7) 6524758424985278 a001 267914296/73681302247*45537549124^(2/17) 6524758424985278 a001 267914296/73681302247*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^6/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(42)/(1/2+sqrt(5)/2)^14 6524758424985278 a001 267914296/23725150497407*45537549124^(6/17) 6524758424985278 a001 10946/599074579*45537549124^(1/3) 6524758424985278 a001 267914296/5600748293801*45537549124^(5/17) 6524758424985278 a001 267914296/1322157322203*45537549124^(4/17) 6524758424985278 a001 267914296/312119004989*45537549124^(3/17) 6524758424985278 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^99 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(42)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 133957148/96450076809*23725150497407^(1/8) 6524758424985278 a001 133957148/96450076809*505019158607^(1/7) 6524758424985278 a001 267914296/505019158607*312119004989^(2/11) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(42)/(1/2+sqrt(5)/2)^18 6524758424985278 a001 267914296/5600748293801*312119004989^(3/11) 6524758424985278 a001 267914296/1322157322203*817138163596^(4/19) 6524758424985278 a001 267914296/1322157322203*14662949395604^(4/21) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2)^20 6524758424985278 a001 133957148/1730726404001*14662949395604^(2/9) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(84) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(86) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(88) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(90) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(92) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(94) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(96) 6524758424985278 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(98) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(100) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(99) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(97) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(95) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(93) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(91) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(89) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(87) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(85) 6524758424985278 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^60 6524758424985278 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^62 6524758424985278 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^61 6524758424985278 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^21 6524758424985278 a001 133957148/96450076809*73681302247^(2/13) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(42)/(1/2+sqrt(5)/2)^19 6524758424985278 a001 267914296/1322157322203*192900153618^(2/9) 6524758424985278 a001 267914296/23725150497407*192900153618^(1/3) 6524758424985278 a001 267914296/312119004989*817138163596^(3/19) 6524758424985278 a001 267914296/312119004989*14662949395604^(1/7) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^9/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(42)/(1/2+sqrt(5)/2)^17 6524758424985278 a001 267914296/312119004989*192900153618^(1/6) 6524758424985278 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 267914296/1322157322203*73681302247^(3/13) 6524758424985278 a001 267914296/2139295485799*73681302247^(1/4) 6524758424985278 a001 267914296/9062201101803*73681302247^(4/13) 6524758424985278 a001 267914296/119218851371*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^7/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(42)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 267914296/505019158607*28143753123^(1/5) 6524758424985278 a001 267914296/5600748293801*28143753123^(3/10) 6524758424985278 a001 66978574/11384387281*312119004989^(1/11) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^5/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(42)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 66978574/11384387281*28143753123^(1/10) 6524758424985278 a001 267914296/73681302247*10749957122^(1/8) 6524758424985278 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 133957148/96450076809*10749957122^(1/6) 6524758424985278 a001 267914296/312119004989*10749957122^(3/16) 6524758424985278 a001 267914296/505019158607*10749957122^(5/24) 6524758424985278 a001 267914296/1322157322203*10749957122^(1/4) 6524758424985278 a001 133957148/1730726404001*10749957122^(7/24) 6524758424985278 a001 267914296/5600748293801*10749957122^(5/16) 6524758424985278 a001 267914296/9062201101803*10749957122^(1/3) 6524758424985278 a001 267914296/23725150497407*10749957122^(3/8) 6524758424985278 a001 9238424/599786069*45537549124^(1/17) 6524758424985278 a001 433494437/28143753123*141422324^(1/13) 6524758424985278 a001 9238424/599786069*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^3/Lucas(49) 6524758424985278 a004 Fibonacci(49)/Lucas(42)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 9238424/599786069*192900153618^(1/18) 6524758424985278 a001 9238424/599786069*10749957122^(1/16) 6524758424985278 a001 267914296/28143753123*4106118243^(2/23) 6524758424985278 a001 267914296/73681302247*4106118243^(3/23) 6524758424985278 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^94 6524758424985278 a001 133957148/5374978561*1568397607^(1/22) 6524758424985278 a001 133957148/96450076809*4106118243^(4/23) 6524758424985278 a001 267914296/505019158607*4106118243^(5/23) 6524758424985278 a001 267914296/1322157322203*4106118243^(6/23) 6524758424985278 a001 133957148/1730726404001*4106118243^(7/23) 6524758424985278 a001 267914296/9062201101803*4106118243^(8/23) 6524758424985278 a004 Fibonacci(42)*(1/2+sqrt(5)/2)/Lucas(47) 6524758424985278 a004 Fibonacci(47)/Lucas(42)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 267914296/23725150497407*4106118243^(9/23) 6524758424985278 a001 267914296/28143753123*1568397607^(1/11) 6524758424985278 a001 267914296/73681302247*1568397607^(3/22) 6524758424985278 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^92 6524758424985278 a001 133957148/96450076809*1568397607^(2/11) 6524758424985278 a001 267914296/505019158607*1568397607^(5/22) 6524758424985278 a001 66978574/204284540899*1568397607^(1/4) 6524758424985278 a001 267914296/1322157322203*1568397607^(3/11) 6524758424985278 a001 133957148/5374978561*599074578^(1/21) 6524758424985278 a001 133957148/1730726404001*1568397607^(7/22) 6524758424985278 a001 267914296/9062201101803*1568397607^(4/11) 6524758424985278 a004 Fibonacci(42)/Lucas(45)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(45)/Lucas(42)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 267914296/23725150497407*1568397607^(9/22) 6524758424985278 a001 9238424/599786069*599074578^(1/14) 6524758424985278 a001 267914296/28143753123*599074578^(2/21) 6524758424985278 a001 267914296/73681302247*599074578^(1/7) 6524758424985278 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^90 6524758424985278 a001 267914296/119218851371*599074578^(1/6) 6524758424985278 a001 133957148/96450076809*599074578^(4/21) 6524758424985278 a001 267914296/312119004989*599074578^(3/14) 6524758424985278 a001 267914296/505019158607*599074578^(5/21) 6524758424985278 a001 267914296/1322157322203*599074578^(2/7) 6524758424985278 a001 133957148/1730726404001*599074578^(1/3) 6524758424985278 a001 133957148/5374978561*228826127^(1/20) 6524758424985278 a001 267914296/5600748293801*599074578^(5/14) 6524758424985278 a001 267914296/9062201101803*599074578^(8/21) 6524758424985278 a004 Fibonacci(42)/Lucas(43)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(43)/Lucas(42)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 267914296/23725150497407*599074578^(3/7) 6524758424985278 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^91 6524758424985278 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 969323029/2971215073*8^(1/3) 6524758424985278 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 2/433494437*(1/2+1/2*5^(1/2))^39 6524758424985278 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^100 6524758424985278 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^94 6524758424985278 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^92 6524758424985278 a001 267914296/28143753123*228826127^(1/10) 6524758424985278 a004 Fibonacci(44)/Lucas(44)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^93 6524758424985278 a004 Fibonacci(44)/Lucas(46)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(46)/Lucas(44)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 701408733/14662949395604*2537720636^(1/3) 6524758424985278 a001 701408733/3461452808002*2537720636^(4/15) 6524758424985278 a001 233802911/440719107401*2537720636^(2/9) 6524758424985278 a001 701408733/817138163596*2537720636^(1/5) 6524758424985278 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 233802911/64300051206*2537720636^(2/15) 6524758424985278 a001 701408733/119218851371*2537720636^(1/9) 6524758424985278 a001 701408733/45537549124*2537720636^(1/15) 6524758424985278 a004 Fibonacci(48)/Lucas(44)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^2/Lucas(50) 6524758424985278 a004 Fibonacci(50)/Lucas(44)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 233802911/3020733700601*17393796001^(2/7) 6524758424985278 a001 233802911/9381251041*10749957122^(1/24) 6524758424985278 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 3524667/1568437211*17393796001^(1/7) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^4/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(44)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 701408733/73681302247*23725150497407^(1/16) 6524758424985278 a001 701408733/73681302247*73681302247^(1/13) 6524758424985278 a001 701408733/14662949395604*45537549124^(5/17) 6524758424985278 a001 701408733/3461452808002*45537549124^(4/17) 6524758424985278 a001 233802911/64300051206*45537549124^(2/17) 6524758424985278 a001 701408733/817138163596*45537549124^(3/17) 6524758424985278 a001 233802911/64300051206*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^6/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(44)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(44)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 701408733/505019158607*23725150497407^(1/8) 6524758424985278 a001 701408733/14662949395604*312119004989^(3/11) 6524758424985278 a001 233802911/440719107401*312119004989^(2/11) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(44)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2)^20 6524758424985278 a001 233802911/3020733700601*14662949395604^(2/9) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(88) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(90) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(92) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(94) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(96) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(98) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(100) 6524758424985278 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(99) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(97) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(95) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(93) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(91) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(89) 6524758424985278 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^60 6524758424985278 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^25 6524758424985278 a001 701408733/14662949395604*14662949395604^(5/21) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(44)/(1/2+sqrt(5)/2)^19 6524758424985278 a001 233802911/3020733700601*505019158607^(1/4) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(44)/(1/2+sqrt(5)/2)^17 6524758424985278 a001 701408733/3461452808002*192900153618^(2/9) 6524758424985278 a001 3524667/1568437211*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^7/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(44)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 701408733/505019158607*73681302247^(2/13) 6524758424985278 a001 701408733/3461452808002*73681302247^(3/13) 6524758424985278 a001 701408733/5600748293801*73681302247^(1/4) 6524758424985278 a001 701408733/23725150497407*73681302247^(4/13) 6524758424985278 a001 701408733/119218851371*312119004989^(1/11) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^5/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(44)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 701408733/119218851371*28143753123^(1/10) 6524758424985278 a001 233802911/440719107401*28143753123^(1/5) 6524758424985278 a001 701408733/14662949395604*28143753123^(3/10) 6524758424985278 a001 701408733/45537549124*45537549124^(1/17) 6524758424985278 a001 701408733/45537549124*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^3/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(44)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 701408733/45537549124*192900153618^(1/18) 6524758424985278 a001 701408733/73681302247*10749957122^(1/12) 6524758424985278 a001 701408733/45537549124*10749957122^(1/16) 6524758424985278 a001 233802911/64300051206*10749957122^(1/8) 6524758424985278 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 233802911/9381251041*4106118243^(1/23) 6524758424985278 a001 701408733/505019158607*10749957122^(1/6) 6524758424985278 a001 701408733/817138163596*10749957122^(3/16) 6524758424985278 a001 233802911/440719107401*10749957122^(5/24) 6524758424985278 a001 701408733/3461452808002*10749957122^(1/4) 6524758424985278 a001 233802911/3020733700601*10749957122^(7/24) 6524758424985278 a001 701408733/14662949395604*10749957122^(5/16) 6524758424985278 a001 701408733/23725150497407*10749957122^(1/3) 6524758424985278 a004 Fibonacci(44)*(1/2+sqrt(5)/2)/Lucas(49) 6524758424985278 a004 Fibonacci(49)/Lucas(44)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 701408733/73681302247*4106118243^(2/23) 6524758424985278 a001 233802911/64300051206*4106118243^(3/23) 6524758424985278 a001 66978574/11384387281*228826127^(1/8) 6524758424985278 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 165580141/45537549124*141422324^(2/13) 6524758424985278 a001 701408733/505019158607*4106118243^(4/23) 6524758424985278 a001 233802911/440719107401*4106118243^(5/23) 6524758424985278 a001 701408733/3461452808002*4106118243^(6/23) 6524758424985278 a001 233802911/9381251041*1568397607^(1/22) 6524758424985278 a001 233802911/3020733700601*4106118243^(7/23) 6524758424985278 a001 701408733/23725150497407*4106118243^(8/23) 6524758424985278 a004 Fibonacci(44)/Lucas(47)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(47)/Lucas(44)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 701408733/73681302247*1568397607^(1/11) 6524758424985278 a001 233802911/64300051206*1568397607^(3/22) 6524758424985278 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^94 6524758424985278 a001 701408733/505019158607*1568397607^(2/11) 6524758424985278 a001 233802911/440719107401*1568397607^(5/22) 6524758424985278 a001 701408733/2139295485799*1568397607^(1/4) 6524758424985278 a001 701408733/3461452808002*1568397607^(3/11) 6524758424985278 a001 233802911/3020733700601*1568397607^(7/22) 6524758424985278 a001 233802911/9381251041*599074578^(1/21) 6524758424985278 a001 701408733/23725150497407*1568397607^(4/11) 6524758424985278 a004 Fibonacci(44)/Lucas(45)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(45)/Lucas(44)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 701408733/45537549124*599074578^(1/14) 6524758424985278 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 2537720636/7778742049*8^(1/3) 6524758424985278 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 1/567451585*(1/2+1/2*5^(1/2))^41 6524758424985278 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^100 6524758424985278 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 701408733/73681302247*599074578^(2/21) 6524758424985278 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(46)/Lucas(46)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 1836311903/9062201101803*2537720636^(4/15) 6524758424985278 a001 1836311903/3461452808002*2537720636^(2/9) 6524758424985278 a001 1836311903/2139295485799*2537720636^(1/5) 6524758424985278 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 1836311903/505019158607*2537720636^(2/15) 6524758424985278 a001 1836311903/312119004989*2537720636^(1/9) 6524758424985278 a001 1836311903/119218851371*2537720636^(1/15) 6524758424985278 a004 Fibonacci(46)/Lucas(48)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(48)/Lucas(46)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^99 6524758424985278 a004 Fibonacci(50)/Lucas(46)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 1836311903/23725150497407*17393796001^(2/7) 6524758424985278 a001 1836311903/817138163596*17393796001^(1/7) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^2/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(46)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 1836311903/9062201101803*45537549124^(4/17) 6524758424985278 a001 1836311903/2139295485799*45537549124^(3/17) 6524758424985278 a001 1836311903/505019158607*45537549124^(2/17) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^4/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(46)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 1836311903/192900153618*23725150497407^(1/16) 6524758424985278 a001 1836311903/192900153618*73681302247^(1/13) 6524758424985278 a001 1836311903/505019158607*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(46)/(1/2+sqrt(5)/2)^14 6524758424985278 a001 1836311903/3461452808002*312119004989^(2/11) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(46)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 1836311903/1322157322203*23725150497407^(1/8) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(46)/(1/2+sqrt(5)/2)^18 6524758424985278 a001 1836311903/2139295485799*817138163596^(3/19) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2)^20 6524758424985278 a001 1836311903/1322157322203*505019158607^(1/7) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(92) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(94) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(96) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(98) 6524758424985278 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(99) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(100) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(97) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(95) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(93) 6524758424985278 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(46)/(1/2+sqrt(5)/2)^19 6524758424985278 a001 1836311903/2139295485799*14662949395604^(1/7) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(46)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(46)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 1836311903/2139295485799*192900153618^(1/6) 6524758424985278 a001 1836311903/312119004989*312119004989^(1/11) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^5/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(46)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 1836311903/1322157322203*73681302247^(2/13) 6524758424985278 a001 1836311903/119218851371*45537549124^(1/17) 6524758424985278 a001 1836311903/9062201101803*73681302247^(3/13) 6524758424985278 a001 1836311903/14662949395604*73681302247^(1/4) 6524758424985278 a001 1836311903/119218851371*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^3/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(46)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 1836311903/119218851371*192900153618^(1/18) 6524758424985278 a001 1836311903/312119004989*28143753123^(1/10) 6524758424985278 a001 1836311903/73681302247*10749957122^(1/24) 6524758424985278 a001 1836311903/3461452808002*28143753123^(1/5) 6524758424985278 a004 Fibonacci(46)*(1/2+sqrt(5)/2)/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(46)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 1836311903/119218851371*10749957122^(1/16) 6524758424985278 a001 1836311903/192900153618*10749957122^(1/12) 6524758424985278 a001 1836311903/505019158607*10749957122^(1/8) 6524758424985278 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 1836311903/1322157322203*10749957122^(1/6) 6524758424985278 a001 1836311903/2139295485799*10749957122^(3/16) 6524758424985278 a001 1836311903/3461452808002*10749957122^(5/24) 6524758424985278 a001 1836311903/9062201101803*10749957122^(1/4) 6524758424985278 a001 1836311903/73681302247*4106118243^(1/23) 6524758424985278 a001 1836311903/23725150497407*10749957122^(7/24) 6524758424985278 a004 Fibonacci(46)/Lucas(49)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(49)/Lucas(46)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 1836311903/192900153618*4106118243^(2/23) 6524758424985278 a001 1836311903/505019158607*4106118243^(3/23) 6524758424985278 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 4807526976/23725150497407*2537720636^(4/15) 6524758424985278 a001 1836311903/1322157322203*4106118243^(4/23) 6524758424985278 a001 1836311903/3461452808002*4106118243^(5/23) 6524758424985278 a001 1836311903/9062201101803*4106118243^(6/23) 6524758424985278 a001 1602508992/3020733700601*2537720636^(2/9) 6524758424985278 a001 1836311903/23725150497407*4106118243^(7/23) 6524758424985278 a001 1836311903/73681302247*1568397607^(1/22) 6524758424985278 a001 4807526976/5600748293801*2537720636^(1/5) 6524758424985278 a004 Fibonacci(46)/Lucas(47)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(47)/Lucas(46)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 12586269025/23725150497407*2537720636^(2/9) 6524758424985278 a001 12586269025/14662949395604*2537720636^(1/5) 6524758424985278 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 7778742049/14662949395604*2537720636^(2/9) 6524758424985278 a001 20365011074/23725150497407*2537720636^(1/5) 6524758424985278 a001 1602508992/440719107401*2537720636^(2/15) 6524758424985278 a001 7778742049/9062201101803*2537720636^(1/5) 6524758424985278 a001 1201881744/204284540899*2537720636^(1/9) 6524758424985278 a001 6643838879/20365011074*8^(1/3) 6524758424985278 a001 2/2971215073*(1/2+1/2*5^(1/2))^43 6524758424985278 a001 1836311903/192900153618*1568397607^(1/11) 6524758424985278 a001 12586269025/3461452808002*2537720636^(2/15) 6524758424985278 a001 10983760033/3020733700601*2537720636^(2/15) 6524758424985278 a001 86267571272/23725150497407*2537720636^(2/15) 6524758424985278 a001 53316291173/14662949395604*2537720636^(2/15) 6524758424985278 a001 20365011074/5600748293801*2537720636^(2/15) 6524758424985278 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 4807526976/312119004989*2537720636^(1/15) 6524758424985278 a001 2971215073/14662949395604*2537720636^(4/15) 6524758424985278 a001 12586269025/2139295485799*2537720636^(1/9) 6524758424985278 a001 32951280099/5600748293801*2537720636^(1/9) 6524758424985278 a001 7778742049/2139295485799*2537720636^(2/15) 6524758424985278 a004 Fibonacci(48)/Lucas(48)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 1135099622/192933544679*2537720636^(1/9) 6524758424985278 a001 139583862445/23725150497407*2537720636^(1/9) 6524758424985278 a001 53316291173/9062201101803*2537720636^(1/9) 6524758424985278 a001 10182505537/1730726404001*2537720636^(1/9) 6524758424985278 a001 7778742049/1322157322203*2537720636^(1/9) 6524758424985278 a001 2971215073/5600748293801*2537720636^(2/9) 6524758424985278 a001 12586269025/817138163596*2537720636^(1/15) 6524758424985278 a001 32951280099/2139295485799*2537720636^(1/15) 6524758424985278 a001 86267571272/5600748293801*2537720636^(1/15) 6524758424985278 a001 7787980473/505618944676*2537720636^(1/15) 6524758424985278 a001 365435296162/23725150497407*2537720636^(1/15) 6524758424985278 a001 139583862445/9062201101803*2537720636^(1/15) 6524758424985278 a001 53316291173/3461452808002*2537720636^(1/15) 6524758424985278 a004 Fibonacci(48)/Lucas(50)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(50)/Lucas(48)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 20365011074/1322157322203*2537720636^(1/15) 6524758424985278 a001 4807526976/2139295485799*17393796001^(1/7) 6524758424985278 a004 Fibonacci(52)/Lucas(48)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 4807526976/23725150497407*45537549124^(4/17) 6524758424985278 a001 4807526976/5600748293801*45537549124^(3/17) 6524758424985278 a001 1602508992/440719107401*45537549124^(2/17) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^2/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(48)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 4807526976/312119004989*45537549124^(1/17) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(48)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 102287808/10745088481*23725150497407^(1/16) 6524758424985278 a001 1602508992/440719107401*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(48)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(48)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(48)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(96) 6524758424985278 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(98) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(100) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(99) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(97) 6524758424985278 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(48)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(48)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(48)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 14930208/10749853441*505019158607^(1/7) 6524758424985278 a001 1201881744/204284540899*312119004989^(1/11) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(48)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 4807526976/23725150497407*192900153618^(2/9) 6524758424985278 a001 102287808/10745088481*73681302247^(1/13) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(48)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 14930208/10749853441*73681302247^(2/13) 6524758424985278 a001 4807526976/23725150497407*73681302247^(3/13) 6524758424985278 a004 Fibonacci(48)*(1/2+sqrt(5)/2)/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(48)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 1201881744/204284540899*28143753123^(1/10) 6524758424985278 a001 233802911/64300051206*599074578^(1/7) 6524758424985278 a001 2971215073/3461452808002*2537720636^(1/5) 6524758424985278 a001 1602508992/3020733700601*28143753123^(1/5) 6524758424985278 a001 267084832/10716675201*10749957122^(1/24) 6524758424985278 a004 Fibonacci(48)/Lucas(51)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(51)/Lucas(48)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 4807526976/312119004989*10749957122^(1/16) 6524758424985278 a001 102287808/10745088481*10749957122^(1/12) 6524758424985278 a001 1602508992/440719107401*10749957122^(1/8) 6524758424985278 a001 14930208/10749853441*10749957122^(1/6) 6524758424985278 a001 7778742049/505019158607*2537720636^(1/15) 6524758424985278 a001 4807526976/5600748293801*10749957122^(3/16) 6524758424985278 a001 1602508992/3020733700601*10749957122^(5/24) 6524758424985278 a001 4807526976/23725150497407*10749957122^(1/4) 6524758424985278 a001 267084832/10716675201*4106118243^(1/23) 6524758424985278 a004 Fibonacci(48)/Lucas(49)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(49)/Lucas(48)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 1836311903/505019158607*1568397607^(3/22) 6524758424985278 a001 102287808/10745088481*4106118243^(2/23) 6524758424985278 a001 17393796001/53316291173*8^(1/3) 6524758424985278 a001 2/7778742049*(1/2+1/2*5^(1/2))^45 6524758424985278 a004 Fibonacci(50)/Lucas(50)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 12586269025/5600748293801*17393796001^(1/7) 6524758424985278 a004 Fibonacci(50)/Lucas(52)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(52)/Lucas(50)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 12586269025/14662949395604*45537549124^(3/17) 6524758424985278 a001 12586269025/3461452808002*45537549124^(2/17) 6524758424985278 a004 Fibonacci(54)/Lucas(50)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 12586269025/817138163596*45537549124^(1/17) 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(50)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 12586269025/2139295485799*312119004989^(1/11) 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(50)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 12586269025/14662949395604*817138163596^(3/19) 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(50)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(50)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(50)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(99) 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(50)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(50)/(1/2+sqrt(5)/2)^17 6524758424985278 a001 12586269025/5600748293801*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(50)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(50)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(50)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 12586269025/14662949395604*192900153618^(1/6) 6524758424985278 a004 Fibonacci(50)*(1/2+sqrt(5)/2)/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(50)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 12586269025/1322157322203*73681302247^(1/13) 6524758424985278 a001 12586269025/9062201101803*73681302247^(2/13) 6524758424985278 a004 Fibonacci(50)/Lucas(53)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(53)/Lucas(50)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 12586269025/2139295485799*28143753123^(1/10) 6524758424985278 a001 12586269025/23725150497407*28143753123^(1/5) 6524758424985278 a001 1602508992/440719107401*4106118243^(3/23) 6524758424985278 a001 12586269025/505019158607*10749957122^(1/24) 6524758424985278 a004 Fibonacci(50)/Lucas(51)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(51)/Lucas(50)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 12586269025/817138163596*10749957122^(1/16) 6524758424985278 a001 32951280099/14662949395604*17393796001^(1/7) 6524758424985278 a001 12586269025/1322157322203*10749957122^(1/12) 6524758424985278 a001 45537549124/139583862445*8^(1/3) 6524758424985278 a001 1/10182505537*(1/2+1/2*5^(1/2))^47 6524758424985278 a001 53316291173/23725150497407*17393796001^(1/7) 6524758424985278 a004 Fibonacci(52)/Lucas(52)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 10983760033/3020733700601*45537549124^(2/17) 6524758424985278 a001 32951280099/2139295485799*45537549124^(1/17) 6524758424985278 a004 Fibonacci(52)/Lucas(54)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(54)/Lucas(52)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(56)/Lucas(52)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 32951280099/5600748293801*312119004989^(1/11) 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(52)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(52)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(52)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(52)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(52)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(99) 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(52)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(52)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(52)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(52)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(52)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 32951280099/23725150497407*505019158607^(1/7) 6524758424985278 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(52)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 12586269025/3461452808002*10749957122^(1/8) 6524758424985278 a004 Fibonacci(52)/Lucas(55)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(55)/Lucas(52)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 32951280099/3461452808002*73681302247^(1/13) 6524758424985278 a001 32951280099/23725150497407*73681302247^(2/13) 6524758424985278 a004 Fibonacci(52)/Lucas(53)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(53)/Lucas(52)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 86267571272/23725150497407*45537549124^(2/17) 6524758424985278 a001 119218851371/365435296162*8^(1/3) 6524758424985278 a001 2/53316291173*(1/2+1/2*5^(1/2))^49 6524758424985278 a001 32951280099/5600748293801*28143753123^(1/10) 6524758424985278 a001 86267571272/5600748293801*45537549124^(1/17) 6524758424985278 a004 Fibonacci(54)/Lucas(54)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 7787980473/505618944676*45537549124^(1/17) 6524758424985278 a004 Fibonacci(54)/Lucas(56)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(56)/Lucas(54)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 1135099622/192933544679*312119004989^(1/11) 6524758424985278 a004 Fibonacci(58)/Lucas(54)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(54)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(54)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(54)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(54)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(54)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(98) 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(100) 6524758424985278 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(54)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(54)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(54)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 365435296162/23725150497407*45537549124^(1/17) 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(54)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(54)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(54)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(54)/Lucas(57)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(57)/Lucas(54)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 86267571272/5600748293801*192900153618^(1/18) 6524758424985278 a001 139583862445/9062201101803*45537549124^(1/17) 6524758424985278 a004 Fibonacci(54)/Lucas(55)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(55)/Lucas(54)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 312119004989/956722026041*8^(1/3) 6524758424985278 a001 2/139583862445*(1/2+1/2*5^(1/2))^51 6524758424985278 a004 Fibonacci(56)/Lucas(56)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(56)/Lucas(58)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(58)/Lucas(56)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(60)/Lucas(56)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(56)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(56)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(56)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(56)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(56)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^60 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(99) 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(56)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(56)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(56)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(56)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(56)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(56)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(56)/Lucas(59)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(59)/Lucas(56)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(56)/Lucas(57)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(57)/Lucas(56)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 817138163596/2504730781961*8^(1/3) 6524758424985278 a001 1/182717648081*(1/2+1/2*5^(1/2))^53 6524758424985278 a004 Fibonacci(58)/Lucas(58)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(58)/Lucas(60)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(60)/Lucas(58)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(62)/Lucas(58)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(58)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(58)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(58)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(58)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(58)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(98) 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(100) 6524758424985278 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^62 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(58)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(58)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(58)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(58)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(58)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(58)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(58)/Lucas(61)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(61)/Lucas(58)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(58)/Lucas(59)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(59)/Lucas(58)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 2/956722026041*(1/2+1/2*5^(1/2))^55 6524758424985278 a004 Fibonacci(60)/Lucas(60)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(60)/Lucas(62)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(62)/Lucas(60)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(64)/Lucas(60)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(60)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(60)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(60)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(60)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(60)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^64 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(99) 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(60)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(60)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(60)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(60)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(60)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(60)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(60)/Lucas(63)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(63)/Lucas(60)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(60)/Lucas(61)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(61)/Lucas(60)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 2/2504730781961*(1/2+1/2*5^(1/2))^57 6524758424985278 a004 Fibonacci(62)/Lucas(62)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(62)/Lucas(64)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(64)/Lucas(62)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(66)/Lucas(62)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(62)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(62)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(62)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(62)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(62)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^66 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(98) 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(100) 6524758424985278 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(62)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(62)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(62)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(62)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(62)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(62)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(62)/Lucas(65)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(65)/Lucas(62)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(62)/Lucas(63)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(63)/Lucas(62)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 1/3278735159921*(1/2+1/2*5^(1/2))^59 6524758424985278 a004 Fibonacci(64)/Lucas(64)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(64)/Lucas(66)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(66)/Lucas(64)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(68)/Lucas(64)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(64)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(64)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(64)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(64)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(64)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^68 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(99) 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(64)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(64)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(64)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(64)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(64)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(64)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(64)/Lucas(67)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(67)/Lucas(64)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(64)/Lucas(65)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(65)/Lucas(64)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(66)/Lucas(66)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(66)/Lucas(68)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(68)/Lucas(66)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(70)/Lucas(66)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(66)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(66)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(66)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(66)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(66)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^70 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(99) 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(66)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(66)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(66)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(66)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(66)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(66)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(66)/Lucas(69)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(69)/Lucas(66)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(66)/Lucas(67)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(67)/Lucas(66)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(68)/Lucas(68)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(68)/Lucas(70)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(70)/Lucas(68)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(72)/Lucas(68)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(68)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(68)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(68)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(68)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(68)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^72 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(98) 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(100) 6524758424985278 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(68)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(68)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(68)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(68)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(68)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(68)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(68)/Lucas(71)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(71)/Lucas(68)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(68)/Lucas(69)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(69)/Lucas(68)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(70)/Lucas(70)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(70)/Lucas(72)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(72)/Lucas(70)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(74)/Lucas(70)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(70)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(70)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(70)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(70)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(70)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(98) 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(100) 6524758424985278 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^74 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(70)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(70)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(70)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(70)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(70)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(70)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(70)/Lucas(73)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(73)/Lucas(70)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(70)/Lucas(71)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(71)/Lucas(70)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(72)/Lucas(72)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(72)/Lucas(74)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(74)/Lucas(72)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(76)/Lucas(72)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(72)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(72)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(72)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(72)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(72)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^76 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(99) 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(100) 6524758424985278 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(72)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(72)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(72)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(72)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(72)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(72)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(72)/Lucas(75)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(75)/Lucas(72)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(72)/Lucas(73)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(73)/Lucas(72)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(74)/Lucas(74)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(74)/Lucas(76)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(78)/Lucas(74)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(80) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(82) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(84) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(74)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(74)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(90) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(92) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(94) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(96) 6524758424985278 a004 Fibonacci(100)/Lucas(74)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(98) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(100) 6524758424985278 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^78 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(99) 6524758424985278 a004 Fibonacci(74)*Lucas(1)/(1/2+sqrt(5)/2)^78 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(97) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(95) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(93) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(91) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(89) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(87) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^7/Lucas(85) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(83) 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(74)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(79) 6524758424985278 a004 Fibonacci(74)/Lucas(77)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(74)/Lucas(75)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(76)/Lucas(76)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(76)/Lucas(78)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(80)/Lucas(76)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(82) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(84) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^6/Lucas(86) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(88) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(90) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(92) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(94) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(96) 6524758424985278 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^80 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(98) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(100) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(99) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(97) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(95) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(93) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(91) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(89) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^7/Lucas(87) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^5/Lucas(85) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(83) 6524758424985278 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(81) 6524758424985278 a004 Fibonacci(76)/Lucas(79)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(76)/Lucas(77)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(78)/Lucas(78)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(78)/Lucas(80)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(82)/Lucas(78)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(84) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^4/Lucas(86) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^6/Lucas(88) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(90) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(92) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(94) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(96) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(98) 6524758424985278 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^82 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(99) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(100) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(97) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(95) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(93) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(78)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^7/Lucas(89) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^5/Lucas(87) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^3/Lucas(85) 6524758424985278 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(83) 6524758424985278 a004 Fibonacci(78)/Lucas(81)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(78)/Lucas(79)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(80)/Lucas(80)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(82)/Lucas(80)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(84)/Lucas(80)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^2/Lucas(86) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^4/Lucas(88) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^6/Lucas(90) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(92) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(94) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^12/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(80)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^14/Lucas(98) 6524758424985278 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^84 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^15/Lucas(99) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^16/Lucas(100) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^13/Lucas(97) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^11/Lucas(95) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(93) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^7/Lucas(91) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^5/Lucas(89) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^3/Lucas(87) 6524758424985278 a004 Fibonacci(80)*(1/2+sqrt(5)/2)/Lucas(85) 6524758424985278 a004 Fibonacci(80)/Lucas(83)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(81)/Lucas(80)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(82)/Lucas(82)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(82)/Lucas(84)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(86)/Lucas(82)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^2/Lucas(88) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^4/Lucas(90) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^6/Lucas(92) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(94) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^10/Lucas(96) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^12/Lucas(98) 6524758424985278 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^86 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^13/Lucas(99) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(100) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^11/Lucas(97) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^9/Lucas(95) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^7/Lucas(93) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^5/Lucas(91) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^3/Lucas(89) 6524758424985278 a004 Fibonacci(82)*(1/2+sqrt(5)/2)/Lucas(87) 6524758424985278 a004 Fibonacci(82)/Lucas(85)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(82)/Lucas(83)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(84)/Lucas(84)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(84)/Lucas(86)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(88)/Lucas(84)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^2/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(84)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^4/Lucas(92) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^6/Lucas(94) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^8/Lucas(96) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^10/Lucas(98) 6524758424985278 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^88 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^11/Lucas(99) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^12/Lucas(100) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^9/Lucas(97) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^7/Lucas(95) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^5/Lucas(93) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^3/Lucas(91) 6524758424985278 a004 Fibonacci(84)*(1/2+sqrt(5)/2)/Lucas(89) 6524758424985278 a004 Fibonacci(84)/Lucas(87)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(85)/Lucas(84)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(86)/Lucas(86)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(86)/Lucas(88)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(90)/Lucas(86)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^2/Lucas(92) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^4/Lucas(94) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^6/Lucas(96) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^10/Lucas(100) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^8/Lucas(98) 6524758424985278 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^90 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^9/Lucas(99) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^7/Lucas(97) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^5/Lucas(95) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^3/Lucas(93) 6524758424985278 a004 Fibonacci(86)*(1/2+sqrt(5)/2)/Lucas(91) 6524758424985278 a004 Fibonacci(86)/Lucas(89)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(86)/Lucas(87)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(88)/Lucas(88)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(90)/Lucas(88)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(92)/Lucas(88)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^2/Lucas(94) 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^4/Lucas(96) 6524758424985278 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^92 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^6/Lucas(98) 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^8/Lucas(100) 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^7/Lucas(99) 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^5/Lucas(97) 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^3/Lucas(95) 6524758424985278 a004 Fibonacci(88)*(1/2+sqrt(5)/2)/Lucas(93) 6524758424985278 a004 Fibonacci(88)/Lucas(91)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(88)/Lucas(89)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(90)/Lucas(90)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(90)/Lucas(92)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(94)/Lucas(90)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^2/Lucas(96) 6524758424985278 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^4/Lucas(98) 6524758424985278 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^94 6524758424985278 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^5/Lucas(99) 6524758424985278 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^6/Lucas(100) 6524758424985278 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^3/Lucas(97) 6524758424985278 a004 Fibonacci(90)*(1/2+sqrt(5)/2)/Lucas(95) 6524758424985278 a004 Fibonacci(90)/Lucas(93)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(90)/Lucas(91)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(92)/Lucas(92)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(94)/Lucas(92)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(96)/Lucas(92)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^2/Lucas(98) 6524758424985278 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^3/Lucas(99) 6524758424985278 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^4/Lucas(100) 6524758424985278 a004 Fibonacci(92)*Lucas(1)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(92)*(1/2+sqrt(5)/2)/Lucas(97) 6524758424985278 a004 Fibonacci(92)/Lucas(95)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(93)/Lucas(92)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(94)/Lucas(94)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(94)/Lucas(96)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(98)/Lucas(94)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(94)*(1/2+sqrt(5)/2)/Lucas(99) 6524758424985278 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^2/Lucas(100) 6524758424985278 a004 Fibonacci(94)*Lucas(1)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(94)/Lucas(97)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(94)/Lucas(95)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(96)/Lucas(96)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(100)/Lucas(96)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^100 6524758424985278 a004 Fibonacci(96)/Lucas(98)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(96)/Lucas(99)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(96)/Lucas(97)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(98)/Lucas(98)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(100)/Lucas(100)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(98)/Lucas(100)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(98)/Lucas(99)/(1/2+sqrt(5)/2)^3 6524758424985278 b008 15-7*Sqrt[5] 6524758424985278 m005 (-11/20+1/4*5^(1/2))/(-1/4+1/20*5^(1/2)) 6524758424985278 a004 Fibonacci(100)/Lucas(99)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(99)/Lucas(99)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(97)/Lucas(100)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(97)/Lucas(98)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(97)/Lucas(99)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(97)/Lucas(97)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(95)/Lucas(96)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(95)/Lucas(98)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(95)*(1/2+sqrt(5)/2)/Lucas(100) 6524758424985278 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^99 6524758424985278 a004 Fibonacci(99)/Lucas(95)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(95)/Lucas(97)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(95)/Lucas(95)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(93)/Lucas(94)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(93)/Lucas(96)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(93)*(1/2+sqrt(5)/2)/Lucas(98) 6524758424985278 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^2/Lucas(99) 6524758424985278 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^3/Lucas(100) 6524758424985278 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(97)/Lucas(93)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(93)/Lucas(95)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(93)/Lucas(93)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(91)/Lucas(92)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(94)/Lucas(91)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(91)*(1/2+sqrt(5)/2)/Lucas(96) 6524758424985278 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^3/Lucas(98) 6524758424985278 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^5/Lucas(100) 6524758424985278 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^4/Lucas(99) 6524758424985278 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^2/Lucas(97) 6524758424985278 a004 Fibonacci(95)/Lucas(91)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(93)/Lucas(91)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(91)/Lucas(91)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(90)/Lucas(89)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(89)/Lucas(92)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)/Lucas(94) 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^3/Lucas(96) 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^5/Lucas(98) 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^6/Lucas(99) 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^7/Lucas(100) 6524758424985278 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^93 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^4/Lucas(97) 6524758424985278 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^2/Lucas(95) 6524758424985278 a004 Fibonacci(93)/Lucas(89)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(89)/Lucas(91)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(89)/Lucas(89)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(87)/Lucas(88)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(87)/Lucas(90)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)/Lucas(92) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^3/Lucas(94) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^5/Lucas(96) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^7/Lucas(98) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^8/Lucas(99) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^9/Lucas(100) 6524758424985278 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^91 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^6/Lucas(97) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^4/Lucas(95) 6524758424985278 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^2/Lucas(93) 6524758424985278 a004 Fibonacci(91)/Lucas(87)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(87)/Lucas(89)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(87)/Lucas(87)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(85)/Lucas(86)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(85)/Lucas(88)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)/Lucas(90) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^3/Lucas(92) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^5/Lucas(94) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^7/Lucas(96) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^11/Lucas(100) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^9/Lucas(98) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^10/Lucas(99) 6524758424985278 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^89 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^8/Lucas(97) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^6/Lucas(95) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^4/Lucas(93) 6524758424985278 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^2/Lucas(91) 6524758424985278 a004 Fibonacci(89)/Lucas(85)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(85)/Lucas(87)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(85)/Lucas(85)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(83)/Lucas(84)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(83)/Lucas(86)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)/Lucas(88) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^3/Lucas(90) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(92) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^7/Lucas(94) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^9/Lucas(96) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^11/Lucas(98) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^12/Lucas(99) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^13/Lucas(100) 6524758424985278 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^87 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^10/Lucas(97) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^8/Lucas(95) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^6/Lucas(93) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^4/Lucas(91) 6524758424985278 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^2/Lucas(89) 6524758424985278 a004 Fibonacci(87)/Lucas(83)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(83)/Lucas(85)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(83)/Lucas(83)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(81)/Lucas(82)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(81)/Lucas(84)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)/Lucas(86) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^3/Lucas(88) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^5/Lucas(90) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^7/Lucas(92) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(94) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^11/Lucas(96) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^13/Lucas(98) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(99) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(100) 6524758424985278 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^85 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^12/Lucas(97) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^10/Lucas(95) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(93) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^6/Lucas(91) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^4/Lucas(89) 6524758424985278 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^2/Lucas(87) 6524758424985278 a004 Fibonacci(85)/Lucas(81)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(81)/Lucas(83)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(81)/Lucas(81)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(79)/Lucas(80)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(79)/Lucas(82)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(84) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^3/Lucas(86) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^5/Lucas(88) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^7/Lucas(90) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(92) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(94) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^13/Lucas(96) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(98) 6524758424985278 a004 Fibonacci(100)/Lucas(79)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(99) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(100) 6524758424985278 a004 Fibonacci(79)*Lucas(1)/(1/2+sqrt(5)/2)^83 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(97) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^12/Lucas(95) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(93) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(91) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^6/Lucas(89) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^4/Lucas(87) 6524758424985278 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(85) 6524758424985278 a004 Fibonacci(83)/Lucas(79)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(79)/Lucas(81)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(79)/Lucas(79)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(78)/Lucas(77)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(77)/Lucas(80)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(82) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(84) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^5/Lucas(86) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^7/Lucas(88) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(90) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(92) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(94) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(96) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(98) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(100) 6524758424985278 a004 Fibonacci(77)*Lucas(1)/(1/2+sqrt(5)/2)^81 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(99) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(97) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(95) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(93) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(91) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(89) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^6/Lucas(87) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^4/Lucas(85) 6524758424985278 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(83) 6524758424985278 a004 Fibonacci(81)/Lucas(77)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(77)/Lucas(79)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(77)/Lucas(77)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(75)/Lucas(76)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(75)/Lucas(78)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(80) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(82) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(84) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^7/Lucas(86) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(88) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(90) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(92) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(94) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(96) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(98) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(100) 6524758424985278 a004 Fibonacci(75)*Lucas(1)/(1/2+sqrt(5)/2)^79 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(75)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(97) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(95) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(93) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(91) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(89) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(87) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^6/Lucas(85) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(83) 6524758424985278 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(81) 6524758424985278 a004 Fibonacci(79)/Lucas(75)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(75)/Lucas(77)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(75)/Lucas(75)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(73)/Lucas(74)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(74)/Lucas(73)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(73)/Lucas(76)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(78) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(73)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(82) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(73)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(86) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(73)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(90) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(73)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(73)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(96) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(73)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(100)/Lucas(73)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(99) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(100) 6524758424985278 a004 Fibonacci(73)*Lucas(1)/(1/2+sqrt(5)/2)^77 6524758424985278 a004 Fibonacci(99)/Lucas(73)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(97) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(73)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(73)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(73)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(73)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(87) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(85) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(83) 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(73)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(73)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(77)/Lucas(73)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(73)/Lucas(75)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(73)/Lucas(73)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(71)/Lucas(72)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(72)/Lucas(71)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(71)/Lucas(74)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(74)/Lucas(71)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(71)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(71)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(71)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(71)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(71)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(71)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(98) 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(100) 6524758424985278 a004 Fibonacci(71)*Lucas(1)/(1/2+sqrt(5)/2)^75 6524758424985278 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(71)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(71)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(71)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(71)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(71)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(75)/Lucas(71)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(71)/Lucas(73)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(73)/Lucas(71)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(71)/Lucas(71)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(69)/Lucas(70)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(70)/Lucas(69)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(69)/Lucas(72)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(72)/Lucas(69)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(69)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(69)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(69)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(69)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(69)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(69)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(99) 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(100) 6524758424985278 a004 Fibonacci(69)*Lucas(1)/(1/2+sqrt(5)/2)^73 6524758424985278 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(69)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(69)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(69)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(69)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(69)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(73)/Lucas(69)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(69)/Lucas(71)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(71)/Lucas(69)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(69)/Lucas(69)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(67)/Lucas(68)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(68)/Lucas(67)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(67)/Lucas(70)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(70)/Lucas(67)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(67)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(67)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(67)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(67)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(67)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(67)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(99) 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(100) 6524758424985278 a004 Fibonacci(67)*Lucas(1)/(1/2+sqrt(5)/2)^71 6524758424985278 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(67)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(67)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(67)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(67)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(67)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(71)/Lucas(67)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(67)/Lucas(69)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(69)/Lucas(67)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(67)/Lucas(67)/(1/2+sqrt(5)/2)^4 6524758424985278 a004 Fibonacci(65)/Lucas(66)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(66)/Lucas(65)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(65)/Lucas(68)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(68)/Lucas(65)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(65)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(65)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(65)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(65)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(65)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(65)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(99) 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(100) 6524758424985278 a004 Fibonacci(65)*Lucas(1)/(1/2+sqrt(5)/2)^69 6524758424985278 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(65)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(65)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(65)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(65)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(65)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(69)/Lucas(65)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(65)/Lucas(67)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(67)/Lucas(65)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(65)/Lucas(65)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 2/10610209857723*(1/2+1/2*5^(1/2))^60 6524758424985278 a004 Fibonacci(63)/Lucas(64)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(64)/Lucas(63)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(63)/Lucas(66)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(66)/Lucas(63)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(63)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(63)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(63)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(63)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(63)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(63)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(99) 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(100) 6524758424985278 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^67 6524758424985278 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(63)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(63)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(63)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(63)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(63)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(67)/Lucas(63)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(63)/Lucas(65)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(65)/Lucas(63)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(63)/Lucas(63)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 2/4052739537881*(1/2+1/2*5^(1/2))^58 6524758424985278 a004 Fibonacci(61)/Lucas(62)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(62)/Lucas(61)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(61)/Lucas(64)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(64)/Lucas(61)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(61)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(61)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(61)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(61)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(61)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(61)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(99) 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(100) 6524758424985278 a004 Fibonacci(61)*Lucas(1)/(1/2+sqrt(5)/2)^65 6524758424985278 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(61)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(61)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(61)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(61)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(61)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(65)/Lucas(61)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(61)/Lucas(63)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(63)/Lucas(61)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(61)/Lucas(61)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 1/774004377960*(1/2+1/2*5^(1/2))^56 6524758424985278 a004 Fibonacci(59)/Lucas(60)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(60)/Lucas(59)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(59)/Lucas(62)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(62)/Lucas(59)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(59)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(59)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(59)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(59)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(59)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(59)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(99) 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(100) 6524758424985278 a004 Fibonacci(59)*Lucas(1)/(1/2+sqrt(5)/2)^63 6524758424985278 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(59)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(59)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(59)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(59)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(59)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(63)/Lucas(59)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(59)/Lucas(61)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(61)/Lucas(59)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(59)/Lucas(59)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 2/591286729879*(1/2+1/2*5^(1/2))^54 6524758424985278 a001 1322157322203/4052739537881*8^(1/3) 6524758424985278 a004 Fibonacci(57)/Lucas(58)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(58)/Lucas(57)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(57)/Lucas(60)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(60)/Lucas(57)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(57)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(57)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(57)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(57)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(57)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(57)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(98) 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(100) 6524758424985278 a004 Fibonacci(57)*Lucas(1)/(1/2+sqrt(5)/2)^61 6524758424985278 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(57)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(57)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(57)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(57)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(57)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(61)/Lucas(57)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(57)/Lucas(59)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(59)/Lucas(57)/(1/2+sqrt(5)/2)^6 6524758424985278 a004 Fibonacci(57)/Lucas(57)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 2/225851433717*(1/2+1/2*5^(1/2))^52 6524758424985278 a001 505019158607/1548008755920*8^(1/3) 6524758424985278 a004 Fibonacci(55)/Lucas(56)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(56)/Lucas(55)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(55)/Lucas(58)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(58)/Lucas(55)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(55)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(55)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(55)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(55)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(55)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(55)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(98) 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(100) 6524758424985278 a004 Fibonacci(55)*Lucas(1)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(99) 6524758424985278 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(55)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(55)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(55)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(55)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(55)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(59)/Lucas(55)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 139583862445/9062201101803*192900153618^(1/18) 6524758424985278 a004 Fibonacci(55)/Lucas(57)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(57)/Lucas(55)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 53316291173/14662949395604*45537549124^(2/17) 6524758424985278 a004 Fibonacci(55)/Lucas(55)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 139583862445/14662949395604*73681302247^(1/13) 6524758424985278 a001 1/43133785636*(1/2+1/2*5^(1/2))^50 6524758424985278 a001 192900153618/591286729879*8^(1/3) 6524758424985278 a001 53316291173/3461452808002*45537549124^(1/17) 6524758424985278 a004 Fibonacci(53)/Lucas(54)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(54)/Lucas(53)/(1/2+sqrt(5)/2)^5 6524758424985278 a004 Fibonacci(53)/Lucas(56)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(56)/Lucas(53)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(53)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(53)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(53)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(53)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(53)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(53)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(99) 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(100) 6524758424985278 a004 Fibonacci(53)*Lucas(1)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(53)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(53)/(1/2+sqrt(5)/2)^16 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(53)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(53)/(1/2+sqrt(5)/2)^12 6524758424985278 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(53)/(1/2+sqrt(5)/2)^10 6524758424985278 a004 Fibonacci(57)/Lucas(53)/(1/2+sqrt(5)/2)^8 6524758424985278 a004 Fibonacci(53)/Lucas(55)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(55)/Lucas(53)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 53316291173/5600748293801*73681302247^(1/13) 6524758424985278 a001 1135099622/192933544679*28143753123^(1/10) 6524758424985278 a001 139583862445/23725150497407*28143753123^(1/10) 6524758424985278 a004 Fibonacci(53)/Lucas(53)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 10983760033/440719107401*10749957122^(1/24) 6524758424985278 a001 12586269025/9062201101803*10749957122^(1/6) 6524758424985278 a001 2/32951280099*(1/2+1/2*5^(1/2))^48 6524758424985278 a001 10525900321/32264490531*8^(1/3) 6524758424985278 a001 53316291173/9062201101803*28143753123^(1/10) 6524758424985278 a004 Fibonacci(51)/Lucas(52)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(52)/Lucas(51)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 43133785636/1730726404001*10749957122^(1/24) 6524758424985278 a001 75283811239/3020733700601*10749957122^(1/24) 6524758424985278 a001 32951280099/2139295485799*10749957122^(1/16) 6524758424985278 a001 12586269025/14662949395604*10749957122^(3/16) 6524758424985278 a001 182717648081/7331474697802*10749957122^(1/24) 6524758424985278 a001 139583862445/5600748293801*10749957122^(1/24) 6524758424985278 a001 20365011074/23725150497407*45537549124^(3/17) 6524758424985278 a001 20365011074/5600748293801*45537549124^(2/17) 6524758424985278 a001 53316291173/2139295485799*10749957122^(1/24) 6524758424985278 a001 20365011074/1322157322203*45537549124^(1/17) 6524758424985278 a004 Fibonacci(51)/Lucas(54)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(54)/Lucas(51)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(51)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 10182505537/1730726404001*312119004989^(1/11) 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(51)/(1/2+sqrt(5)/2)^11 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(51)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(51)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(51)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(51)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(98) 6524758424985278 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(99) 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(100) 6524758424985278 a004 Fibonacci(51)*Lucas(1)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(51)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(51)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 10182505537/7331474697802*23725150497407^(1/8) 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(51)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(51)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 10182505537/7331474697802*505019158607^(1/7) 6524758424985278 a001 20365011074/1322157322203*192900153618^(1/18) 6524758424985278 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(51)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 20365011074/23725150497407*192900153618^(1/6) 6524758424985278 a004 Fibonacci(55)/Lucas(51)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 20365011074/2139295485799*73681302247^(1/13) 6524758424985278 a001 10182505537/7331474697802*73681302247^(2/13) 6524758424985278 a001 32951280099/3461452808002*10749957122^(1/12) 6524758424985278 a001 7787980473/505618944676*10749957122^(1/16) 6524758424985278 a001 12586269025/23725150497407*10749957122^(5/24) 6524758424985278 a001 365435296162/23725150497407*10749957122^(1/16) 6524758424985278 a001 139583862445/9062201101803*10749957122^(1/16) 6524758424985278 a004 Fibonacci(51)/Lucas(53)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(53)/Lucas(51)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 10182505537/1730726404001*28143753123^(1/10) 6524758424985278 a001 53316291173/3461452808002*10749957122^(1/16) 6524758424985278 a001 86267571272/9062201101803*10749957122^(1/12) 6524758424985278 a001 225851433717/23725150497407*10749957122^(1/12) 6524758424985278 a001 139583862445/14662949395604*10749957122^(1/12) 6524758424985278 a001 53316291173/5600748293801*10749957122^(1/12) 6524758424985278 a001 10182505537/408569081798*10749957122^(1/24) 6524758424985278 a001 10983760033/3020733700601*10749957122^(1/8) 6524758424985278 a004 Fibonacci(51)/Lucas(51)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 20365011074/1322157322203*10749957122^(1/16) 6524758424985278 a001 86267571272/23725150497407*10749957122^(1/8) 6524758424985278 a001 53316291173/14662949395604*10749957122^(1/8) 6524758424985278 a001 20365011074/2139295485799*10749957122^(1/12) 6524758424985278 a001 32951280099/23725150497407*10749957122^(1/6) 6524758424985278 a001 2/12586269025*(1/2+1/2*5^(1/2))^46 6524758424985278 a001 28143753123/86267571272*8^(1/3) 6524758424985278 a001 12586269025/505019158607*4106118243^(1/23) 6524758424985278 a001 20365011074/5600748293801*10749957122^(1/8) 6524758424985278 a001 14930208/10749853441*4106118243^(4/23) 6524758424985278 a001 10182505537/7331474697802*10749957122^(1/6) 6524758424985278 a001 2971215073/817138163596*2537720636^(2/15) 6524758424985278 a004 Fibonacci(49)/Lucas(50)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(50)/Lucas(49)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 20365011074/23725150497407*10749957122^(3/16) 6524758424985278 a001 10983760033/440719107401*4106118243^(1/23) 6524758424985278 a001 43133785636/1730726404001*4106118243^(1/23) 6524758424985278 a001 75283811239/3020733700601*4106118243^(1/23) 6524758424985278 a001 182717648081/7331474697802*4106118243^(1/23) 6524758424985278 a001 139583862445/5600748293801*4106118243^(1/23) 6524758424985278 a001 53316291173/2139295485799*4106118243^(1/23) 6524758424985278 a001 7778742049/3461452808002*17393796001^(1/7) 6524758424985278 a001 10182505537/408569081798*4106118243^(1/23) 6524758424985278 a004 Fibonacci(49)/Lucas(52)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(52)/Lucas(49)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 7778742049/9062201101803*45537549124^(3/17) 6524758424985278 a001 7778742049/2139295485799*45537549124^(2/17) 6524758424985278 a001 7778742049/505019158607*45537549124^(1/17) 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(49)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 7778742049/505019158607*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(49)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 7778742049/14662949395604*312119004989^(2/11) 6524758424985278 a001 7778742049/1322157322203*312119004989^(1/11) 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(49)/(1/2+sqrt(5)/2)^13 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(49)/(1/2+sqrt(5)/2)^15 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(49)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(49)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(94) 6524758424985278 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(96) 6524758424985278 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(98) 6524758424985278 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(99) 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(100) 6524758424985278 a004 Fibonacci(49)*Lucas(1)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(97) 6524758424985278 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(95) 6524758424985278 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(49)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(49)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 7778742049/2139295485799*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(49)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(49)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 7778742049/817138163596*23725150497407^(1/16) 6524758424985278 a001 7778742049/9062201101803*192900153618^(1/6) 6524758424985278 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^2/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(49)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 7778742049/817138163596*73681302247^(1/13) 6524758424985278 a001 7778742049/5600748293801*73681302247^(2/13) 6524758424985278 a004 Fibonacci(53)/Lucas(49)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 7778742049/1322157322203*28143753123^(1/10) 6524758424985278 a001 7778742049/14662949395604*28143753123^(1/5) 6524758424985278 a001 7778742049/312119004989*10749957122^(1/24) 6524758424985278 a004 Fibonacci(49)/Lucas(51)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(51)/Lucas(49)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 7778742049/505019158607*10749957122^(1/16) 6524758424985278 a001 12586269025/1322157322203*4106118243^(2/23) 6524758424985278 a001 7778742049/817138163596*10749957122^(1/12) 6524758424985278 a001 1602508992/3020733700601*4106118243^(5/23) 6524758424985278 a001 7778742049/2139295485799*10749957122^(1/8) 6524758424985278 a001 7778742049/5600748293801*10749957122^(1/6) 6524758424985278 a001 7778742049/9062201101803*10749957122^(3/16) 6524758424985278 a001 32951280099/3461452808002*4106118243^(2/23) 6524758424985278 a001 7778742049/14662949395604*10749957122^(5/24) 6524758424985278 a001 86267571272/9062201101803*4106118243^(2/23) 6524758424985278 a001 225851433717/23725150497407*4106118243^(2/23) 6524758424985278 a001 139583862445/14662949395604*4106118243^(2/23) 6524758424985278 a001 53316291173/5600748293801*4106118243^(2/23) 6524758424985278 a001 2971215073/505019158607*2537720636^(1/9) 6524758424985278 a001 20365011074/2139295485799*4106118243^(2/23) 6524758424985278 a001 7778742049/312119004989*4106118243^(1/23) 6524758424985278 a001 12586269025/3461452808002*4106118243^(3/23) 6524758424985278 a004 Fibonacci(49)/Lucas(49)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 4807526976/23725150497407*4106118243^(6/23) 6524758424985278 a001 10983760033/3020733700601*4106118243^(3/23) 6524758424985278 a001 86267571272/23725150497407*4106118243^(3/23) 6524758424985278 a001 53316291173/14662949395604*4106118243^(3/23) 6524758424985278 a001 20365011074/5600748293801*4106118243^(3/23) 6524758424985278 a001 7778742049/817138163596*4106118243^(2/23) 6524758424985278 a001 1/2403763488*(1/2+1/2*5^(1/2))^44 6524758424985278 a001 10749957122/32951280099*8^(1/3) 6524758424985278 a001 12586269025/9062201101803*4106118243^(4/23) 6524758424985278 a001 267084832/10716675201*1568397607^(1/22) 6524758424985278 a001 32951280099/23725150497407*4106118243^(4/23) 6524758424985278 a001 10182505537/7331474697802*4106118243^(4/23) 6524758424985278 a001 7778742049/2139295485799*4106118243^(3/23) 6524758424985278 a001 12586269025/23725150497407*4106118243^(5/23) 6524758424985278 a001 2971215073/192900153618*2537720636^(1/15) 6524758424985278 a001 7778742049/5600748293801*4106118243^(4/23) 6524758424985278 a004 Fibonacci(47)/Lucas(48)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(48)/Lucas(47)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 1836311903/1322157322203*1568397607^(2/11) 6524758424985278 a001 7778742049/14662949395604*4106118243^(5/23) 6524758424985278 a001 12586269025/505019158607*1568397607^(1/22) 6524758424985278 a001 10983760033/440719107401*1568397607^(1/22) 6524758424985278 a001 43133785636/1730726404001*1568397607^(1/22) 6524758424985278 a001 75283811239/3020733700601*1568397607^(1/22) 6524758424985278 a001 182717648081/7331474697802*1568397607^(1/22) 6524758424985278 a001 139583862445/5600748293801*1568397607^(1/22) 6524758424985278 a001 53316291173/2139295485799*1568397607^(1/22) 6524758424985278 a001 10182505537/408569081798*1568397607^(1/22) 6524758424985278 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^100 6524758424985278 a004 Fibonacci(47)/Lucas(50)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(50)/Lucas(47)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 7778742049/312119004989*1568397607^(1/22) 6524758424985278 a001 2971215073/1322157322203*17393796001^(1/7) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(47)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 2971215073/14662949395604*45537549124^(4/17) 6524758424985278 a001 2971215073/3461452808002*45537549124^(3/17) 6524758424985278 a001 2971215073/192900153618*45537549124^(1/17) 6524758424985278 a001 2971215073/817138163596*45537549124^(2/17) 6524758424985278 a001 2971215073/192900153618*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^3/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(47)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 2971215073/192900153618*192900153618^(1/18) 6524758424985278 a001 2971215073/505019158607*312119004989^(1/11) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(47)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 2971215073/1322157322203*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(47)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 2971215073/3461452808002*817138163596^(3/19) 6524758424985278 a001 2971215073/14662949395604*817138163596^(4/19) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(47)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(47)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(90) 6524758424985278 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(92) 6524758424985278 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(94) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(96) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(98) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(99) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(100) 6524758424985278 a004 Fibonacci(47)*Lucas(1)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(97) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(95) 6524758424985278 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(93) 6524758424985278 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(91) 6524758424985278 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(47)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(47)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 2971215073/2139295485799*505019158607^(1/7) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(47)/(1/2+sqrt(5)/2)^14 6524758424985278 a001 2971215073/14662949395604*192900153618^(2/9) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^4/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(47)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 2971215073/312119004989*23725150497407^(1/16) 6524758424985278 a001 2971215073/312119004989*73681302247^(1/13) 6524758424985278 a001 2971215073/2139295485799*73681302247^(2/13) 6524758424985278 a001 2971215073/14662949395604*73681302247^(3/13) 6524758424985278 a001 2971215073/23725150497407*73681302247^(1/4) 6524758424985278 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^2/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(47)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 2971215073/505019158607*28143753123^(1/10) 6524758424985278 a001 2971215073/5600748293801*28143753123^(1/5) 6524758424985278 a001 2971215073/119218851371*10749957122^(1/24) 6524758424985278 a004 Fibonacci(51)/Lucas(47)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 2971215073/192900153618*10749957122^(1/16) 6524758424985278 a001 2971215073/312119004989*10749957122^(1/12) 6524758424985278 a001 2971215073/817138163596*10749957122^(1/8) 6524758424985278 a001 2971215073/2139295485799*10749957122^(1/6) 6524758424985278 a001 2971215073/3461452808002*10749957122^(3/16) 6524758424985278 a001 2971215073/5600748293801*10749957122^(5/24) 6524758424985278 a001 2971215073/14662949395604*10749957122^(1/4) 6524758424985278 a001 2971215073/119218851371*4106118243^(1/23) 6524758424985278 a004 Fibonacci(47)/Lucas(49)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(49)/Lucas(47)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 2971215073/312119004989*4106118243^(2/23) 6524758424985278 a001 102287808/10745088481*1568397607^(1/11) 6524758424985278 a001 2971215073/817138163596*4106118243^(3/23) 6524758424985278 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 2971215073/2139295485799*4106118243^(4/23) 6524758424985278 a001 1836311903/3461452808002*1568397607^(5/22) 6524758424985278 a001 2971215073/5600748293801*4106118243^(5/23) 6524758424985278 a001 12586269025/1322157322203*1568397607^(1/11) 6524758424985278 a001 32951280099/3461452808002*1568397607^(1/11) 6524758424985278 a001 86267571272/9062201101803*1568397607^(1/11) 6524758424985278 a001 225851433717/23725150497407*1568397607^(1/11) 6524758424985278 a001 139583862445/14662949395604*1568397607^(1/11) 6524758424985278 a001 53316291173/5600748293801*1568397607^(1/11) 6524758424985278 a001 20365011074/2139295485799*1568397607^(1/11) 6524758424985278 a001 2971215073/14662949395604*4106118243^(6/23) 6524758424985278 a001 7778742049/817138163596*1568397607^(1/11) 6524758424985278 a001 2971215073/119218851371*1568397607^(1/22) 6524758424985278 a001 1836311903/5600748293801*1568397607^(1/4) 6524758424985278 a004 Fibonacci(47)/Lucas(47)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 1602508992/440719107401*1568397607^(3/22) 6524758424985278 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 1836311903/9062201101803*1568397607^(3/11) 6524758424985278 a001 12586269025/3461452808002*1568397607^(3/22) 6524758424985278 a001 10983760033/3020733700601*1568397607^(3/22) 6524758424985278 a001 86267571272/23725150497407*1568397607^(3/22) 6524758424985278 a001 53316291173/14662949395604*1568397607^(3/22) 6524758424985278 a001 20365011074/5600748293801*1568397607^(3/22) 6524758424985278 a001 3524667/1568437211*599074578^(1/6) 6524758424985278 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 7778742049/2139295485799*1568397607^(3/22) 6524758424985278 a001 2/1836311903*(1/2+1/2*5^(1/2))^42 6524758424985278 a001 2971215073/312119004989*1568397607^(1/11) 6524758424985278 a001 4106118243/12586269025*8^(1/3) 6524758424985278 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 14930208/10749853441*1568397607^(2/11) 6524758424985278 a001 1836311903/23725150497407*1568397607^(7/22) 6524758424985278 a001 12586269025/9062201101803*1568397607^(2/11) 6524758424985278 a001 1836311903/73681302247*599074578^(1/21) 6524758424985278 a001 32951280099/23725150497407*1568397607^(2/11) 6524758424985278 a001 10182505537/7331474697802*1568397607^(2/11) 6524758424985278 a001 7778742049/5600748293801*1568397607^(2/11) 6524758424985278 a001 2971215073/817138163596*1568397607^(3/22) 6524758424985278 a001 267914296/73681302247*228826127^(3/20) 6524758424985278 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 1602508992/3020733700601*1568397607^(5/22) 6524758424985278 a001 12586269025/23725150497407*1568397607^(5/22) 6524758424985278 a001 1201881744/3665737348901*1568397607^(1/4) 6524758424985278 a001 7778742049/14662949395604*1568397607^(5/22) 6524758424985278 a004 Fibonacci(45)/Lucas(46)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(46)/Lucas(45)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 2971215073/2139295485799*1568397607^(2/11) 6524758424985278 a001 4807526976/23725150497407*1568397607^(3/11) 6524758424985278 a001 1134903170/23725150497407*2537720636^(1/3) 6524758424985278 a001 7778742049/23725150497407*1568397607^(1/4) 6524758424985278 a001 1134903170/5600748293801*2537720636^(4/15) 6524758424985278 a001 2971215073/5600748293801*1568397607^(5/22) 6524758424985278 a001 1134903170/2139295485799*2537720636^(2/9) 6524758424985278 a001 267084832/10716675201*599074578^(1/21) 6524758424985278 a001 701408733/505019158607*599074578^(4/21) 6524758424985278 a001 1134903170/1322157322203*2537720636^(1/5) 6524758424985278 a001 2971215073/9062201101803*1568397607^(1/4) 6524758424985278 a001 12586269025/505019158607*599074578^(1/21) 6524758424985278 a001 10983760033/440719107401*599074578^(1/21) 6524758424985278 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 43133785636/1730726404001*599074578^(1/21) 6524758424985278 a001 75283811239/3020733700601*599074578^(1/21) 6524758424985278 a001 182717648081/7331474697802*599074578^(1/21) 6524758424985278 a001 139583862445/5600748293801*599074578^(1/21) 6524758424985278 a001 53316291173/2139295485799*599074578^(1/21) 6524758424985278 a001 10182505537/408569081798*599074578^(1/21) 6524758424985278 a001 2971215073/14662949395604*1568397607^(3/11) 6524758424985278 a001 1134903170/312119004989*2537720636^(2/15) 6524758424985278 a001 7778742049/312119004989*599074578^(1/21) 6524758424985278 a001 567451585/96450076809*2537720636^(1/9) 6524758424985278 a001 1836311903/119218851371*599074578^(1/14) 6524758424985278 a001 1134903170/73681302247*2537720636^(1/15) 6524758424985278 a004 Fibonacci(45)/Lucas(48)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(48)/Lucas(45)/(1/2+sqrt(5)/2)^7 6524758424985278 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)/Lucas(50) 6524758424985278 a004 Fibonacci(50)/Lucas(45)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 567451585/7331474697802*17393796001^(2/7) 6524758424985278 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 1134903170/505019158607*17393796001^(1/7) 6524758424985278 a001 1134903170/73681302247*45537549124^(1/17) 6524758424985278 a001 1134903170/73681302247*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^3/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(45)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 1134903170/73681302247*192900153618^(1/18) 6524758424985278 a001 1134903170/23725150497407*45537549124^(5/17) 6524758424985278 a001 1134903170/5600748293801*45537549124^(4/17) 6524758424985278 a001 1134903170/1322157322203*45537549124^(3/17) 6524758424985278 a001 1134903170/312119004989*45537549124^(2/17) 6524758424985278 a001 567451585/96450076809*312119004989^(1/11) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^5/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(45)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 1134903170/505019158607*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(45)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 1134903170/23725150497407*312119004989^(3/11) 6524758424985278 a001 1134903170/2139295485799*312119004989^(2/11) 6524758424985278 a001 1134903170/1322157322203*817138163596^(3/19) 6524758424985278 a001 1134903170/1322157322203*14662949395604^(1/7) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(45)/(1/2+sqrt(5)/2)^17 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(45)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(86) 6524758424985278 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(88) 6524758424985278 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(90) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(92) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(94) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(96) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(98) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(99) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(100) 6524758424985278 a004 Fibonacci(45)*Lucas(1)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(97) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(95) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(93) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(91) 6524758424985278 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(89) 6524758424985278 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(87) 6524758424985278 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^24 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^22 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(45)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(45)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 1134903170/1322157322203*192900153618^(1/6) 6524758424985278 a001 1134903170/5600748293801*192900153618^(2/9) 6524758424985278 a001 1134903170/23725150497407*192900153618^(5/18) 6524758424985278 a001 1134903170/312119004989*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^6/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(45)/(1/2+sqrt(5)/2)^14 6524758424985278 a001 567451585/408569081798*73681302247^(2/13) 6524758424985278 a001 1134903170/5600748293801*73681302247^(3/13) 6524758424985278 a001 1134903170/9062201101803*73681302247^(1/4) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^4/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(45)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 1134903170/119218851371*23725150497407^(1/16) 6524758424985278 a001 1134903170/119218851371*73681302247^(1/13) 6524758424985278 a001 567451585/96450076809*28143753123^(1/10) 6524758424985278 a001 2971215073/119218851371*599074578^(1/21) 6524758424985278 a001 1134903170/2139295485799*28143753123^(1/5) 6524758424985278 a001 1134903170/73681302247*10749957122^(1/16) 6524758424985278 a001 1134903170/23725150497407*28143753123^(3/10) 6524758424985278 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^2/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(45)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 1134903170/119218851371*10749957122^(1/12) 6524758424985278 a001 567451585/22768774562*10749957122^(1/24) 6524758424985278 a001 1134903170/312119004989*10749957122^(1/8) 6524758424985278 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 567451585/408569081798*10749957122^(1/6) 6524758424985278 a001 1134903170/1322157322203*10749957122^(3/16) 6524758424985278 a001 1134903170/2139295485799*10749957122^(5/24) 6524758424985278 a001 1134903170/5600748293801*10749957122^(1/4) 6524758424985278 a001 567451585/7331474697802*10749957122^(7/24) 6524758424985278 a001 1134903170/23725150497407*10749957122^(5/16) 6524758424985278 a001 567451585/22768774562*4106118243^(1/23) 6524758424985278 a004 Fibonacci(49)/Lucas(45)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 1134903170/119218851371*4106118243^(2/23) 6524758424985278 a001 1134903170/312119004989*4106118243^(3/23) 6524758424985278 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 567451585/408569081798*4106118243^(4/23) 6524758424985278 a001 1134903170/2139295485799*4106118243^(5/23) 6524758424985278 a001 1134903170/5600748293801*4106118243^(6/23) 6524758424985278 a001 567451585/7331474697802*4106118243^(7/23) 6524758424985278 a001 567451585/22768774562*1568397607^(1/22) 6524758424985278 a004 Fibonacci(45)/Lucas(47)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(47)/Lucas(45)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 4807526976/312119004989*599074578^(1/14) 6524758424985278 a001 701408733/817138163596*599074578^(3/14) 6524758424985278 a001 1134903170/119218851371*1568397607^(1/11) 6524758424985278 a001 12586269025/817138163596*599074578^(1/14) 6524758424985278 a001 32951280099/2139295485799*599074578^(1/14) 6524758424985278 a001 86267571272/5600748293801*599074578^(1/14) 6524758424985278 a001 7787980473/505618944676*599074578^(1/14) 6524758424985278 a001 365435296162/23725150497407*599074578^(1/14) 6524758424985278 a001 139583862445/9062201101803*599074578^(1/14) 6524758424985278 a001 53316291173/3461452808002*599074578^(1/14) 6524758424985278 a001 20365011074/1322157322203*599074578^(1/14) 6524758424985278 a001 7778742049/505019158607*599074578^(1/14) 6524758424985278 a001 1836311903/192900153618*599074578^(2/21) 6524758424985278 a001 1134903170/312119004989*1568397607^(3/22) 6524758424985278 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 2971215073/192900153618*599074578^(1/14) 6524758424985278 a001 567451585/408569081798*1568397607^(2/11) 6524758424985278 a001 1134903170/2139295485799*1568397607^(5/22) 6524758424985278 a001 102287808/10745088481*599074578^(2/21) 6524758424985278 a001 233802911/440719107401*599074578^(5/21) 6524758424985278 a001 567451585/1730726404001*1568397607^(1/4) 6524758424985278 a001 12586269025/1322157322203*599074578^(2/21) 6524758424985278 a001 32951280099/3461452808002*599074578^(2/21) 6524758424985278 a001 86267571272/9062201101803*599074578^(2/21) 6524758424985278 a001 225851433717/23725150497407*599074578^(2/21) 6524758424985278 a001 139583862445/14662949395604*599074578^(2/21) 6524758424985278 a001 53316291173/5600748293801*599074578^(2/21) 6524758424985278 a001 20365011074/2139295485799*599074578^(2/21) 6524758424985278 a001 1134903170/5600748293801*1568397607^(3/11) 6524758424985278 a001 7778742049/817138163596*599074578^(2/21) 6524758424985278 a001 567451585/7331474697802*1568397607^(7/22) 6524758424985278 a001 2971215073/312119004989*599074578^(2/21) 6524758424985278 a001 567451585/22768774562*599074578^(1/21) 6524758424985278 a004 Fibonacci(45)/Lucas(45)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 1836311903/505019158607*599074578^(1/7) 6524758424985278 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^94 6524758424985278 a001 1134903170/73681302247*599074578^(1/14) 6524758424985278 a001 1602508992/440719107401*599074578^(1/7) 6524758424985278 a001 701408733/3461452808002*599074578^(2/7) 6524758424985278 a001 12586269025/3461452808002*599074578^(1/7) 6524758424985278 a001 10983760033/3020733700601*599074578^(1/7) 6524758424985278 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 86267571272/23725150497407*599074578^(1/7) 6524758424985278 a001 53316291173/14662949395604*599074578^(1/7) 6524758424985278 a001 20365011074/5600748293801*599074578^(1/7) 6524758424985278 a001 7778742049/2139295485799*599074578^(1/7) 6524758424985278 a001 1836311903/817138163596*599074578^(1/6) 6524758424985278 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 2/701408733*(1/2+1/2*5^(1/2))^40 6524758424985278 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^99 6524758424985278 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 224056801/686789568*8^(1/3) 6524758424985278 a001 2971215073/817138163596*599074578^(1/7) 6524758424985278 a001 1134903170/119218851371*599074578^(2/21) 6524758424985278 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 4807526976/2139295485799*599074578^(1/6) 6524758424985278 a001 12586269025/5600748293801*599074578^(1/6) 6524758424985278 a001 32951280099/14662949395604*599074578^(1/6) 6524758424985278 a001 53316291173/23725150497407*599074578^(1/6) 6524758424985278 a001 20365011074/9062201101803*599074578^(1/6) 6524758424985278 a001 7778742049/3461452808002*599074578^(1/6) 6524758424985278 a001 1836311903/1322157322203*599074578^(4/21) 6524758424985278 a001 2971215073/1322157322203*599074578^(1/6) 6524758424985278 a001 14930208/10749853441*599074578^(4/21) 6524758424985278 a001 233802911/3020733700601*599074578^(1/3) 6524758424985278 a001 12586269025/9062201101803*599074578^(4/21) 6524758424985278 a001 32951280099/23725150497407*599074578^(4/21) 6524758424985278 a001 10182505537/7331474697802*599074578^(4/21) 6524758424985278 a001 7778742049/5600748293801*599074578^(4/21) 6524758424985278 a001 1836311903/2139295485799*599074578^(3/14) 6524758424985278 a001 233802911/9381251041*228826127^(1/20) 6524758424985278 a001 1134903170/312119004989*599074578^(1/7) 6524758424985278 a001 2971215073/2139295485799*599074578^(4/21) 6524758424985278 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 4807526976/5600748293801*599074578^(3/14) 6524758424985278 a001 701408733/14662949395604*599074578^(5/14) 6524758424985278 a001 12586269025/14662949395604*599074578^(3/14) 6524758424985278 a001 20365011074/23725150497407*599074578^(3/14) 6524758424985278 a001 7778742049/9062201101803*599074578^(3/14) 6524758424985278 a001 1836311903/3461452808002*599074578^(5/21) 6524758424985278 a001 1134903170/505019158607*599074578^(1/6) 6524758424985278 a001 2971215073/3461452808002*599074578^(3/14) 6524758424985278 a001 1602508992/3020733700601*599074578^(5/21) 6524758424985278 a001 701408733/23725150497407*599074578^(8/21) 6524758424985278 a004 Fibonacci(43)/Lucas(44)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(44)/Lucas(43)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 12586269025/23725150497407*599074578^(5/21) 6524758424985278 a001 7778742049/14662949395604*599074578^(5/21) 6524758424985278 a001 567451585/408569081798*599074578^(4/21) 6524758424985278 a001 2971215073/5600748293801*599074578^(5/21) 6524758424985278 a001 1836311903/9062201101803*599074578^(2/7) 6524758424985278 a001 1134903170/1322157322203*599074578^(3/14) 6524758424985278 a001 4807526976/23725150497407*599074578^(2/7) 6524758424985278 a001 1134903170/2139295485799*599074578^(5/21) 6524758424985278 a001 2971215073/14662949395604*599074578^(2/7) 6524758424985278 a001 1836311903/23725150497407*599074578^(1/3) 6524758424985278 a001 1836311903/73681302247*228826127^(1/20) 6524758424985278 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^92 6524758424985278 a001 267084832/10716675201*228826127^(1/20) 6524758424985278 a001 1134903170/5600748293801*599074578^(2/7) 6524758424985278 a001 12586269025/505019158607*228826127^(1/20) 6524758424985278 a001 10983760033/440719107401*228826127^(1/20) 6524758424985278 a001 43133785636/1730726404001*228826127^(1/20) 6524758424985278 a001 75283811239/3020733700601*228826127^(1/20) 6524758424985278 a001 182717648081/7331474697802*228826127^(1/20) 6524758424985278 a001 139583862445/5600748293801*228826127^(1/20) 6524758424985278 a001 53316291173/2139295485799*228826127^(1/20) 6524758424985278 a001 10182505537/408569081798*228826127^(1/20) 6524758424985278 a001 7778742049/312119004989*228826127^(1/20) 6524758424985278 a001 2971215073/119218851371*228826127^(1/20) 6524758424985278 a004 Fibonacci(43)/Lucas(46)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(46)/Lucas(43)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 433494437/9062201101803*2537720636^(1/3) 6524758424985278 a001 433494437/2139295485799*2537720636^(4/15) 6524758424985278 a001 433494437/817138163596*2537720636^(2/9) 6524758424985278 a001 133957148/96450076809*228826127^(1/5) 6524758424985278 a001 433494437/505019158607*2537720636^(1/5) 6524758424985278 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^94 6524758424985278 a001 433494437/119218851371*2537720636^(2/15) 6524758424985278 a001 433494437/73681302247*2537720636^(1/9) 6524758424985278 a001 433494437/28143753123*2537720636^(1/15) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)/Lucas(48) 6524758424985278 a004 Fibonacci(48)/Lucas(43)/(1/2+sqrt(5)/2)^9 6524758424985278 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 433494437/28143753123*45537549124^(1/17) 6524758424985278 a001 433494437/28143753123*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^3/Lucas(50) 6524758424985278 a004 Fibonacci(50)/Lucas(43)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 433494437/28143753123*192900153618^(1/18) 6524758424985278 a001 433494437/5600748293801*17393796001^(2/7) 6524758424985278 a001 433494437/28143753123*10749957122^(1/16) 6524758424985278 a001 433494437/192900153618*17393796001^(1/7) 6524758424985278 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 433494437/73681302247*312119004989^(1/11) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^5/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(43)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 433494437/23725150497407*45537549124^(1/3) 6524758424985278 a001 433494437/9062201101803*45537549124^(5/17) 6524758424985278 a001 433494437/2139295485799*45537549124^(4/17) 6524758424985278 a001 433494437/505019158607*45537549124^(3/17) 6524758424985278 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 433494437/73681302247*28143753123^(1/10) 6524758424985278 a001 433494437/192900153618*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^7/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(43)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 433494437/505019158607*817138163596^(3/19) 6524758424985278 a001 433494437/505019158607*14662949395604^(1/7) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(43)/(1/2+sqrt(5)/2)^17 6524758424985278 a001 433494437/1322157322203*312119004989^(1/5) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(43)/(1/2+sqrt(5)/2)^19 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^21 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(82) 6524758424985278 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(84) 6524758424985278 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(86) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(88) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(90) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(92) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(94) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(96) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(98) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(99) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(100) 6524758424985278 a004 Fibonacci(43)*Lucas(1)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(97) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(95) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(93) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(91) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(89) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(87) 6524758424985278 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^61 6524758424985278 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^60 6524758424985278 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(85) 6524758424985278 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(83) 6524758424985278 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^28 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^24 6524758424985278 a001 433494437/14662949395604*23725150497407^(1/4) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^22 6524758424985278 a001 433494437/2139295485799*14662949395604^(4/21) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2)^20 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(43)/(1/2+sqrt(5)/2)^18 6524758424985278 a001 433494437/2139295485799*192900153618^(2/9) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^8/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(43)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 433494437/312119004989*23725150497407^(1/8) 6524758424985278 a001 433494437/312119004989*505019158607^(1/7) 6524758424985278 a001 433494437/119218851371*45537549124^(2/17) 6524758424985278 a001 433494437/312119004989*73681302247^(2/13) 6524758424985278 a001 433494437/2139295485799*73681302247^(3/13) 6524758424985278 a001 433494437/3461452808002*73681302247^(1/4) 6524758424985278 a001 433494437/14662949395604*73681302247^(4/13) 6524758424985278 a001 433494437/119218851371*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^6/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(43)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 433494437/817138163596*28143753123^(1/5) 6524758424985278 a001 433494437/9062201101803*28143753123^(3/10) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^4/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(43)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 433494437/45537549124*23725150497407^(1/16) 6524758424985278 a001 433494437/45537549124*73681302247^(1/13) 6524758424985278 a001 433494437/119218851371*10749957122^(1/8) 6524758424985278 a001 433494437/45537549124*10749957122^(1/12) 6524758424985278 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 433494437/312119004989*10749957122^(1/6) 6524758424985278 a001 433494437/505019158607*10749957122^(3/16) 6524758424985278 a001 433494437/817138163596*10749957122^(5/24) 6524758424985278 a001 433494437/2139295485799*10749957122^(1/4) 6524758424985278 a001 433494437/5600748293801*10749957122^(7/24) 6524758424985278 a001 433494437/9062201101803*10749957122^(5/16) 6524758424985278 a001 433494437/14662949395604*10749957122^(1/3) 6524758424985278 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^2/Lucas(49) 6524758424985278 a004 Fibonacci(49)/Lucas(43)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 433494437/17393796001*10749957122^(1/24) 6524758424985278 a001 433494437/45537549124*4106118243^(2/23) 6524758424985278 a001 433494437/17393796001*4106118243^(1/23) 6524758424985278 a001 433494437/119218851371*4106118243^(3/23) 6524758424985278 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 433494437/312119004989*4106118243^(4/23) 6524758424985278 a001 433494437/817138163596*4106118243^(5/23) 6524758424985278 a001 433494437/2139295485799*4106118243^(6/23) 6524758424985278 a001 433494437/5600748293801*4106118243^(7/23) 6524758424985278 a001 567451585/7331474697802*599074578^(1/3) 6524758424985278 a001 433494437/14662949395604*4106118243^(8/23) 6524758424985278 a001 433494437/17393796001*1568397607^(1/22) 6524758424985278 a004 Fibonacci(47)/Lucas(43)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 433494437/45537549124*1568397607^(1/11) 6524758424985278 a001 567451585/22768774562*228826127^(1/20) 6524758424985278 a001 433494437/119218851371*1568397607^(3/22) 6524758424985278 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 433494437/312119004989*1568397607^(2/11) 6524758424985278 a001 1134903170/23725150497407*599074578^(5/14) 6524758424985278 a001 433494437/817138163596*1568397607^(5/22) 6524758424985278 a001 433494437/1322157322203*1568397607^(1/4) 6524758424985278 a001 433494437/2139295485799*1568397607^(3/11) 6524758424985278 a001 433494437/5600748293801*1568397607^(7/22) 6524758424985278 a001 433494437/17393796001*599074578^(1/21) 6524758424985278 a001 433494437/14662949395604*1568397607^(4/11) 6524758424985278 a004 Fibonacci(43)/Lucas(45)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(45)/Lucas(43)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 433494437/28143753123*599074578^(1/14) 6524758424985278 a001 433494437/45537549124*599074578^(2/21) 6524758424985278 a001 433494437/119218851371*599074578^(1/7) 6524758424985278 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^91 6524758424985278 a001 701408733/73681302247*228826127^(1/10) 6524758424985278 a001 433494437/192900153618*599074578^(1/6) 6524758424985278 a001 831985/228811001*87403803^(3/19) 6524758424985278 a001 433494437/312119004989*599074578^(4/21) 6524758424985278 a001 433494437/505019158607*599074578^(3/14) 6524758424985278 a001 433494437/817138163596*599074578^(5/21) 6524758424985278 a001 1836311903/192900153618*228826127^(1/10) 6524758424985278 a001 433494437/2139295485799*599074578^(2/7) 6524758424985278 a001 102287808/10745088481*228826127^(1/10) 6524758424985278 a001 12586269025/1322157322203*228826127^(1/10) 6524758424985278 a001 32951280099/3461452808002*228826127^(1/10) 6524758424985278 a001 86267571272/9062201101803*228826127^(1/10) 6524758424985278 a001 225851433717/23725150497407*228826127^(1/10) 6524758424985278 a001 139583862445/14662949395604*228826127^(1/10) 6524758424985278 a001 53316291173/5600748293801*228826127^(1/10) 6524758424985278 a001 20365011074/2139295485799*228826127^(1/10) 6524758424985278 a001 7778742049/817138163596*228826127^(1/10) 6524758424985278 a001 2971215073/312119004989*228826127^(1/10) 6524758424985278 a001 701408733/119218851371*228826127^(1/8) 6524758424985278 a001 267914296/505019158607*228826127^(1/4) 6524758424985278 a001 433494437/5600748293801*599074578^(1/3) 6524758424985278 a001 433494437/17393796001*228826127^(1/20) 6524758424985278 a001 433494437/9062201101803*599074578^(5/14) 6524758424985278 a001 1134903170/119218851371*228826127^(1/10) 6524758424985278 a001 433494437/14662949395604*599074578^(8/21) 6524758424985278 a004 Fibonacci(43)/Lucas(43)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 1836311903/312119004989*228826127^(1/8) 6524758424985278 a001 1201881744/204284540899*228826127^(1/8) 6524758424985278 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^90 6524758424985278 a001 12586269025/2139295485799*228826127^(1/8) 6524758424985278 a001 32951280099/5600748293801*228826127^(1/8) 6524758424985278 a001 1135099622/192933544679*228826127^(1/8) 6524758424985278 a001 139583862445/23725150497407*228826127^(1/8) 6524758424985278 a001 53316291173/9062201101803*228826127^(1/8) 6524758424985278 a001 10182505537/1730726404001*228826127^(1/8) 6524758424985278 a001 7778742049/1322157322203*228826127^(1/8) 6524758424985278 a001 2971215073/505019158607*228826127^(1/8) 6524758424985278 a001 233802911/64300051206*228826127^(3/20) 6524758424985278 a001 567451585/96450076809*228826127^(1/8) 6524758424985278 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^92 6524758424985278 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^94 6524758424985278 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 1/133957148*(1/2+1/2*5^(1/2))^38 6524758424985278 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^99 6524758424985278 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 1836311903/505019158607*228826127^(3/20) 6524758424985278 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 599074578/1836311903*8^(1/3) 6524758424985278 a001 1602508992/440719107401*228826127^(3/20) 6524758424985278 a001 12586269025/3461452808002*228826127^(3/20) 6524758424985278 a001 10983760033/3020733700601*228826127^(3/20) 6524758424985278 a001 86267571272/23725150497407*228826127^(3/20) 6524758424985278 a001 53316291173/14662949395604*228826127^(3/20) 6524758424985278 a001 20365011074/5600748293801*228826127^(3/20) 6524758424985278 a001 7778742049/2139295485799*228826127^(3/20) 6524758424985278 a001 2971215073/817138163596*228826127^(3/20) 6524758424985278 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^91 6524758424985278 a001 267914296/1322157322203*228826127^(3/10) 6524758424985278 a001 433494437/45537549124*228826127^(1/10) 6524758424985278 a001 1134903170/312119004989*228826127^(3/20) 6524758424985278 a001 701408733/505019158607*228826127^(1/5) 6524758424985278 a001 165580141/10749957122*141422324^(1/13) 6524758424985278 a001 433494437/73681302247*228826127^(1/8) 6524758424985278 a001 1836311903/1322157322203*228826127^(1/5) 6524758424985278 a001 14930208/10749853441*228826127^(1/5) 6524758424985278 a001 12586269025/9062201101803*228826127^(1/5) 6524758424985278 a001 32951280099/23725150497407*228826127^(1/5) 6524758424985278 a001 10182505537/7331474697802*228826127^(1/5) 6524758424985278 a001 7778742049/5600748293801*228826127^(1/5) 6524758424985278 a001 2971215073/2139295485799*228826127^(1/5) 6524758424985278 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^89 6524758424985278 a001 133957148/1730726404001*228826127^(7/20) 6524758424985278 a001 433494437/119218851371*228826127^(3/20) 6524758424985278 a001 567451585/408569081798*228826127^(1/5) 6524758424985278 a001 133957148/5374978561*87403803^(1/19) 6524758424985278 a001 233802911/440719107401*228826127^(1/4) 6524758424985278 a001 267914296/5600748293801*228826127^(3/8) 6524758424985278 a004 Fibonacci(41)/Lucas(42)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(42)/Lucas(41)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 1836311903/3461452808002*228826127^(1/4) 6524758424985278 a001 1602508992/3020733700601*228826127^(1/4) 6524758424985278 a001 12586269025/23725150497407*228826127^(1/4) 6524758424985278 a001 7778742049/14662949395604*228826127^(1/4) 6524758424985278 a001 2971215073/5600748293801*228826127^(1/4) 6524758424985278 a001 267914296/9062201101803*228826127^(2/5) 6524758424985278 a001 433494437/312119004989*228826127^(1/5) 6524758424985278 a001 1134903170/2139295485799*228826127^(1/4) 6524758424985278 a001 701408733/3461452808002*228826127^(3/10) 6524758424985278 a001 1836311903/9062201101803*228826127^(3/10) 6524758424985278 a001 4807526976/23725150497407*228826127^(3/10) 6524758424985278 a001 2971215073/14662949395604*228826127^(3/10) 6524758424985278 a001 267914296/23725150497407*228826127^(9/20) 6524758424985278 a001 433494437/817138163596*228826127^(1/4) 6524758424985278 a001 1134903170/5600748293801*228826127^(3/10) 6524758424985278 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^88 6524758424985278 a001 233802911/3020733700601*228826127^(7/20) 6524758424985278 a001 233802911/9381251041*87403803^(1/19) 6524758424985278 a001 1836311903/23725150497407*228826127^(7/20) 6524758424985278 a001 701408733/14662949395604*228826127^(3/8) 6524758424985278 a001 433494437/2139295485799*228826127^(3/10) 6524758424985278 a001 1836311903/73681302247*87403803^(1/19) 6524758424985278 a001 567451585/7331474697802*228826127^(7/20) 6524758424985278 a001 267084832/10716675201*87403803^(1/19) 6524758424985278 a001 12586269025/505019158607*87403803^(1/19) 6524758424985278 a004 Fibonacci(41)/Lucas(44)/(1/2+sqrt(5)/2) 6524758424985278 a004 Fibonacci(44)/Lucas(41)/(1/2+sqrt(5)/2)^7 6524758424985278 a001 10983760033/440719107401*87403803^(1/19) 6524758424985278 a001 43133785636/1730726404001*87403803^(1/19) 6524758424985278 a001 75283811239/3020733700601*87403803^(1/19) 6524758424985278 a001 182717648081/7331474697802*87403803^(1/19) 6524758424985278 a001 139583862445/5600748293801*87403803^(1/19) 6524758424985278 a001 53316291173/2139295485799*87403803^(1/19) 6524758424985278 a001 10182505537/408569081798*87403803^(1/19) 6524758424985278 a001 7778742049/312119004989*87403803^(1/19) 6524758424985278 a001 2971215073/119218851371*87403803^(1/19) 6524758424985278 a001 567451585/22768774562*87403803^(1/19) 6524758424985278 a001 24157817/4106118243*20633239^(1/7) 6524758424985278 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^90 6524758424985278 a001 165580141/14662949395604*2537720636^(2/5) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)/Lucas(46) 6524758424985278 a004 Fibonacci(46)/Lucas(41)/(1/2+sqrt(5)/2)^9 6524758424985278 a001 165580141/3461452808002*2537720636^(1/3) 6524758424985278 a001 165580141/817138163596*2537720636^(4/15) 6524758424985278 a001 165580141/312119004989*2537720636^(2/9) 6524758424985278 a001 165580141/192900153618*2537720636^(1/5) 6524758424985278 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^92 6524758424985278 a001 165580141/45537549124*2537720636^(2/15) 6524758424985278 a001 165580141/10749957122*2537720636^(1/15) 6524758424985278 a001 165580141/28143753123*2537720636^(1/9) 6524758424985278 a001 165580141/10749957122*45537549124^(1/17) 6524758424985278 a001 165580141/10749957122*14662949395604^(1/21) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^3/Lucas(48) 6524758424985278 a004 Fibonacci(48)/Lucas(41)/(1/2+sqrt(5)/2)^11 6524758424985278 a001 165580141/10749957122*192900153618^(1/18) 6524758424985278 a001 165580141/10749957122*10749957122^(1/16) 6524758424985278 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^94 6524758424985278 a001 165580141/28143753123*312119004989^(1/11) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^5/Lucas(50) 6524758424985278 a004 Fibonacci(50)/Lucas(41)/(1/2+sqrt(5)/2)^13 6524758424985278 a001 165580141/28143753123*28143753123^(1/10) 6524758424985278 a001 165580141/2139295485799*17393796001^(2/7) 6524758424985278 a001 165580141/73681302247*17393796001^(1/7) 6524758424985278 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^96 6524758424985278 a001 165580141/73681302247*14662949395604^(1/9) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^7/Lucas(52) 6524758424985278 a004 Fibonacci(52)/Lucas(41)/(1/2+sqrt(5)/2)^15 6524758424985278 a001 165580141/14662949395604*45537549124^(6/17) 6524758424985278 a001 165580141/9062201101803*45537549124^(1/3) 6524758424985278 a001 165580141/3461452808002*45537549124^(5/17) 6524758424985278 a001 165580141/192900153618*45537549124^(3/17) 6524758424985278 a001 165580141/817138163596*45537549124^(4/17) 6524758424985278 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^98 6524758424985278 a001 165580141/192900153618*817138163596^(3/19) 6524758424985278 a001 165580141/192900153618*14662949395604^(1/7) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^9/Lucas(54) 6524758424985278 a004 Fibonacci(54)/Lucas(41)/(1/2+sqrt(5)/2)^17 6524758424985278 a001 165580141/192900153618*192900153618^(1/6) 6524758424985278 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 165580141/505019158607*312119004989^(1/5) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(56) 6524758424985278 a004 Fibonacci(56)/Lucas(41)/(1/2+sqrt(5)/2)^19 6524758424985278 a001 165580141/3461452808002*312119004989^(3/11) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(58) 6524758424985278 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^21 6524758424985278 a001 165580141/23725150497407*817138163596^(1/3) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(60) 6524758424985278 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^23 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(62) 6524758424985278 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^25 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(64) 6524758424985278 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^27 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(66) 6524758424985278 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^29 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(68) 6524758424985278 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^31 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(70) 6524758424985278 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^33 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(72) 6524758424985278 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^35 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(74) 6524758424985278 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^37 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(76) 6524758424985278 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^39 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(78) 6524758424985278 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^41 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(80) 6524758424985278 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^43 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(82) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(84) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(86) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(88) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(90) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(92) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(94) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(96) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(98) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(99) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(100) 6524758424985278 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^45 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(97) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(95) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(93) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(91) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(89) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(87) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(85) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(83) 6524758424985278 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^47 6524758424985278 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^49 6524758424985278 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^51 6524758424985278 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^53 6524758424985278 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^55 6524758424985278 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^57 6524758424985278 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^59 6524758424985278 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^61 6524758424985278 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^63 6524758424985278 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^62 6524758424985278 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^60 6524758424985278 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^58 6524758424985278 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^56 6524758424985278 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^54 6524758424985278 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^52 6524758424985278 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^50 6524758424985278 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^48 6524758424985278 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^46 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(81) 6524758424985278 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^44 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(79) 6524758424985278 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^42 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(77) 6524758424985278 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^40 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(75) 6524758424985278 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^38 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(73) 6524758424985278 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^36 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(71) 6524758424985278 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^34 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(69) 6524758424985278 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^32 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(67) 6524758424985278 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^30 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(65) 6524758424985278 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^28 6524758424985278 a001 165580141/14662949395604*14662949395604^(2/7) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(63) 6524758424985278 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^26 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(61) 6524758424985278 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^24 6524758424985278 a001 165580141/2139295485799*14662949395604^(2/9) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(59) 6524758424985278 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^22 6524758424985278 a001 165580141/2139295485799*505019158607^(1/4) 6524758424985278 a001 165580141/817138163596*14662949395604^(4/21) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(57) 6524758424985278 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2)^20 6524758424985278 a001 165580141/3461452808002*192900153618^(5/18) 6524758424985278 a001 165580141/14662949395604*192900153618^(1/3) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^10/Lucas(55) 6524758424985278 a004 Fibonacci(55)/Lucas(41)/(1/2+sqrt(5)/2)^18 6524758424985278 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^99 6524758424985278 a001 165580141/1322157322203*73681302247^(1/4) 6524758424985278 a001 165580141/5600748293801*73681302247^(4/13) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^8/Lucas(53) 6524758424985278 a004 Fibonacci(53)/Lucas(41)/(1/2+sqrt(5)/2)^16 6524758424985278 a001 165580141/119218851371*23725150497407^(1/8) 6524758424985278 a001 165580141/119218851371*505019158607^(1/7) 6524758424985278 a001 165580141/119218851371*73681302247^(2/13) 6524758424985278 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^97 6524758424985278 a001 165580141/312119004989*28143753123^(1/5) 6524758424985278 a001 165580141/3461452808002*28143753123^(3/10) 6524758424985278 a001 165580141/45537549124*45537549124^(2/17) 6524758424985278 a001 165580141/45537549124*14662949395604^(2/21) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^6/Lucas(51) 6524758424985278 a004 Fibonacci(51)/Lucas(41)/(1/2+sqrt(5)/2)^14 6524758424985278 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^95 6524758424985278 a001 165580141/119218851371*10749957122^(1/6) 6524758424985278 a001 165580141/45537549124*10749957122^(1/8) 6524758424985278 a001 165580141/192900153618*10749957122^(3/16) 6524758424985278 a001 165580141/312119004989*10749957122^(5/24) 6524758424985278 a001 165580141/817138163596*10749957122^(1/4) 6524758424985278 a001 165580141/2139295485799*10749957122^(7/24) 6524758424985278 a001 165580141/3461452808002*10749957122^(5/16) 6524758424985278 a001 165580141/5600748293801*10749957122^(1/3) 6524758424985278 a001 165580141/14662949395604*10749957122^(3/8) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^4/Lucas(49) 6524758424985278 a004 Fibonacci(49)/Lucas(41)/(1/2+sqrt(5)/2)^12 6524758424985278 a001 165580141/17393796001*23725150497407^(1/16) 6524758424985278 a001 165580141/17393796001*73681302247^(1/13) 6524758424985278 a001 165580141/17393796001*10749957122^(1/12) 6524758424985278 a001 165580141/45537549124*4106118243^(3/23) 6524758424985278 a001 165580141/17393796001*4106118243^(2/23) 6524758424985278 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^93 6524758424985278 a001 165580141/119218851371*4106118243^(4/23) 6524758424985278 a001 165580141/312119004989*4106118243^(5/23) 6524758424985278 a001 165580141/817138163596*4106118243^(6/23) 6524758424985278 a001 165580141/2139295485799*4106118243^(7/23) 6524758424985278 a001 165580141/5600748293801*4106118243^(8/23) 6524758424985278 a001 1134903170/23725150497407*228826127^(3/8) 6524758424985278 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^2/Lucas(47) 6524758424985278 a004 Fibonacci(47)/Lucas(41)/(1/2+sqrt(5)/2)^10 6524758424985278 a001 165580141/6643838879*10749957122^(1/24) 6524758424985278 a001 165580141/14662949395604*4106118243^(9/23) 6524758424985278 a001 165580141/6643838879*4106118243^(1/23) 6524758424985278 a001 165580141/17393796001*1568397607^(1/11) 6524758424985278 a001 165580141/6643838879*1568397607^(1/22) 6524758424985278 a001 165580141/45537549124*1568397607^(3/22) 6524758424985278 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^91 6524758424985278 a001 165580141/119218851371*1568397607^(2/11) 6524758424985278 a001 165580141/312119004989*1568397607^(5/22) 6524758424985278 a001 165580141/505019158607*1568397607^(1/4) 6524758424985278 a001 165580141/817138163596*1568397607^(3/11) 6524758424985278 a001 165580141/2139295485799*1568397607^(7/22) 6524758424985278 a001 165580141/5600748293801*1568397607^(4/11) 6524758424985278 a004 Fibonacci(45)/Lucas(41)/(1/2+sqrt(5)/2)^8 6524758424985278 a001 165580141/6643838879*599074578^(1/21) 6524758424985278 a001 165580141/14662949395604*1568397607^(9/22) 6524758424985278 a001 165580141/10749957122*599074578^(1/14) 6524758424985278 a001 165580141/17393796001*599074578^(2/21) 6524758424985278 a001 165580141/45537549124*599074578^(1/7) 6524758424985278 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^89 6524758424985278 a001 433494437/5600748293801*228826127^(7/20) 6524758424985278 a001 165580141/73681302247*599074578^(1/6) 6524758424985278 a001 165580141/119218851371*599074578^(4/21) 6524758424985278 a001 165580141/192900153618*599074578^(3/14) 6524758424985278 a001 433494437/17393796001*87403803^(1/19) 6524758424985278 a001 165580141/312119004989*599074578^(5/21) 6524758424985278 a001 165580141/817138163596*599074578^(2/7) 6524758424985278 a001 165580141/2139295485799*599074578^(1/3) 6524758424985278 a001 433494437/9062201101803*228826127^(3/8) 6524758424985278 a001 165580141/6643838879*228826127^(1/20) 6524758424985278 a001 165580141/3461452808002*599074578^(5/14) 6524758424985278 a001 165580141/5600748293801*599074578^(8/21) 6524758424985278 a004 Fibonacci(41)/Lucas(43)/(1/2+sqrt(5)/2)^2 6524758424985278 a004 Fibonacci(43)/Lucas(41)/(1/2+sqrt(5)/2)^6 6524758424985278 a001 14619165/10525900321*87403803^(4/19) 6524758424985278 a001 165580141/14662949395604*599074578^(3/7) 6524758424985278 a001 433494437/14662949395604*228826127^(2/5) 6524758424985278 a001 165580141/17393796001*228826127^(1/10) 6524758424985278 a001 165580141/28143753123*228826127^(1/8) 6524758424985278 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^87 6524758424985278 a001 165580141/45537549124*228826127^(3/20) 6524758424985278 a001 267914296/28143753123*87403803^(2/19) 6524758424985278 a001 165580141/119218851371*228826127^(1/5) 6524758424985278 a001 165580141/312119004989*228826127^(1/4) 6524758424985278 a001 165580141/817138163596*228826127^(3/10) 6524758424985278 a001 701408733/73681302247*87403803^(2/19) 6524758424985278 a001 1836311903/192900153618*87403803^(2/19) 6524758424985278 a001 102287808/10745088481*87403803^(2/19) 6524758424985278 a001 12586269025/1322157322203*87403803^(2/19) 6524758424985278 a001 32951280099/3461452808002*87403803^(2/19) 6524758424985278 a001 86267571272/9062201101803*87403803^(2/19) 6524758424985278 a001 225851433717/23725150497407*87403803^(2/19) 6524758424985278 a001 139583862445/14662949395604*87403803^(2/19) 6524758424985278 a001 53316291173/5600748293801*87403803^(2/19) 6524758424985278 a001 20365011074/2139295485799*87403803^(2/19) 6524758424985278 a001 7778742049/817138163596*87403803^(2/19) 6524758424985278 a001 2971215073/312119004989*87403803^(2/19) 6524758424985278 a001 1134903170/119218851371*87403803^(2/19) 6524758424985278 a001 165580141/2139295485799*228826127^(7/20) 6524758424985278 a001 165580141/6643838879*87403803^(1/19) 6524758424985278 a001 165580141/3461452808002*228826127^(3/8) 6524758424985278 a004 Fibonacci(41)/Lucas(41)/(1/2+sqrt(5)/2)^4 6524758424985278 a001 433494437/45537549124*87403803^(2/19) 6524758424985278 a001 165580141/5600748293801*228826127^(2/5) 6524758424985278 a001 34111385/64300051206*87403803^(5/19) 6524758424985278 a001 165580141/14662949395604*228826127^(9/20) 6524758424985278 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^86 6524758424985278 a001 267914296/73681302247*87403803^(3/19) 6524758424985278 a001 39088169/10749957122*33385282^(1/6) 6524758424985278 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^88 6524758424985278 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^90 6524758424985278 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^92 6524758424985278 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^94 6524758424985278 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^96 6524758424985278 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^98 6524758424985278 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^100 6524758424985278 a001 2/102334155*(1/2+1/2*5^(1/2))^36 6524758424985278 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^99 6524758424985278 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^97 6524758424985278 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^95 6524758424985278 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^93 6524758424985278 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^91 6524758424985278 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^89 6524758424985278 a001 228826127/701408733*8^(1/3) 6524758424985278 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^87 6524758424985278 a001 233802911/64300051206*87403803^(3/19) 6524758424985278 a001 1836311903/505019158607*87403803^(3/19) 6524758424985278 a001 1602508992/440719107401*87403803^(3/19) 6524758424985278 a001 12586269025/3461452808002*87403803^(3/19) 6524758424985278 a001 10983760033/3020733700601*87403803^(3/19) 6524758424985278 a001 86267571272/23725150497407*87403803^(3/19) 6524758424985278 a001 53316291173/14662949395604*87403803^(3/19) 6524758424985278 a001 20365011074/5600748293801*87403803^(3/19) 6524758424985278 a001 7778742049/2139295485799*87403803^(3/19) 6524758424985278 a001 2971215073/817138163596*87403803^(3/19) 6524758424985278 a001 1134903170/312119004989*87403803^(3/19) 6524758424985278 a001 165580141/17393796001*87403803^(2/19) 6524758424985278 a001 433494437/119218851371*87403803^(3/19) 6524758424985278 a001 102334155/505019158607*87403803^(6/19) 6524758424985278 a001 63245986/23725150497407*141422324^(7/13) 6524758424985278 a001 133957148/96450076809*87403803^(4/19) 6524758424985278 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^85 6524758424985278 a001 63245986/5600748293801*141422324^(6/13) 6524758424985278 a001 701408733/505019158607*87403803^(4/19) 6524758424985278 a001 1836311903/1322157322203*87403803^(4/19) 6524758424985278 a001 14930208/10749853441*87403803^(4/19) 6524758424985278 a001 12586269025/9062201101803*87403803^(4/19) 6524758424985278 a001 32951280099/23725150497407*87403803^(4/19) 6524758424985278 a001 10182505537/7331474697802*87403803^(4/19) 6524758424985278 a001 7778742049/5600748293801*87403803^(4/19) 6524758424985278 a001 2971215073/2139295485799*87403803^(4/19) 6524758424985278 a001 567451585/408569081798*87403803^(4/19) 6524758424985278 a001 165580141/45537549124*87403803^(3/19) 6524758424985278 a001 433494437/312119004989*87403803^(4/19) 6524758424985278 a001 34111385/440719107401*87403803^(7/19) 6524758424985278 a001 34111385/1368706081*33385282^(1/18) 6524758424985278 a001 63245986/1322157322203*141422324^(5/13) 6524758424985278 a004 Fibonacci(39)/Lucas(40)/(1/2+sqrt(5)/2)^3 6524758424985278 a004 Fibonacci(40)/Lucas(39)/(1/2+sqrt(5)/2)^5 6524758424985278 a001 267914296/505019158607*87403803^(5/19) 6524758424985278 a001 63245986/505019158607*141422324^(1/3) 6524758424985278 a001 233802911/440719107401*87403803^(5/19) 6524758424985278 a001 1836311903/3461452808002*87403803^(5/19) 6524758424985278 a001 1602508992/3020733700601*87403803^(5/19) 6524758424985278 a001 12586269025/23725150497407*87403803^(5/19) 6524758424985278 a001 7778742049/14662949395604*87403803^(5/19) 6524758424985278 a001 2971215073/5600748293801*87403803^(5/19) 6524758424985278 a001 1134903170/2139295485799*87403803^(5/19) 6524758424985278 a001 63245986/312119004989*141422324^(4/13) 6524758424985278 a001 165580141/119218851371*87403803^(4/19) 6524758424985278 a001 433494437/817138163596*87403803^(5/19) 6524758424985278 a001 6765/228826126*87403803^(8/19) 6524758424985278 a001 63245986/73681302247*141422324^(3/13) 6524758424985279 a001 267914296/1322157322203*87403803^(6/19) 6524758424985279 a001 701408733/3461452808002*87403803^(6/19) 6524758424985279 a001 1836311903/9062201101803*87403803^(6/19) 6524758424985279 a001 4807526976/23725150497407*87403803^(6/19) 6524758424985279 a001 2971215073/14662949395604*87403803^(6/19) 6524758424985279 a001 1134903170/5600748293801*87403803^(6/19) 6524758424985279 a001 165580141/312119004989*87403803^(5/19) 6524758424985279 a001 63245986/17393796001*141422324^(2/13) 6524758424985279 a001 433494437/2139295485799*87403803^(6/19) 6524758424985279 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^84 6524758424985279 a001 34111385/3020733700601*87403803^(9/19) 6524758424985279 a001 133957148/1730726404001*87403803^(7/19) 6524758424985279 a001 63245986/4106118243*141422324^(1/13) 6524758424985279 a001 102334155/14662949395604*87403803^(1/2) 6524758424985279 a001 133957148/5374978561*33385282^(1/18) 6524758424985279 a004 Fibonacci(39)/Lucas(42)/(1/2+sqrt(5)/2) 6524758424985279 a004 Fibonacci(42)/Lucas(39)/(1/2+sqrt(5)/2)^7 6524758424985279 a001 233802911/3020733700601*87403803^(7/19) 6524758424985279 a001 1836311903/23725150497407*87403803^(7/19) 6524758424985279 a001 567451585/7331474697802*87403803^(7/19) 6524758424985279 a001 165580141/817138163596*87403803^(6/19) 6524758424985279 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^86 6524758424985279 a001 433494437/5600748293801*87403803^(7/19) 6524758424985279 a001 233802911/9381251041*33385282^(1/18) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)/Lucas(44) 6524758424985279 a004 Fibonacci(44)/Lucas(39)/(1/2+sqrt(5)/2)^9 6524758424985279 a001 1836311903/73681302247*33385282^(1/18) 6524758424985279 a001 102334155/23725150497407*87403803^(10/19) 6524758424985279 a001 267084832/10716675201*33385282^(1/18) 6524758424985279 a001 12586269025/505019158607*33385282^(1/18) 6524758424985279 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^88 6524758424985279 a001 10983760033/440719107401*33385282^(1/18) 6524758424985279 a001 43133785636/1730726404001*33385282^(1/18) 6524758424985279 a001 75283811239/3020733700601*33385282^(1/18) 6524758424985279 a001 182717648081/7331474697802*33385282^(1/18) 6524758424985279 a001 139583862445/5600748293801*33385282^(1/18) 6524758424985279 a001 53316291173/2139295485799*33385282^(1/18) 6524758424985279 a001 10182505537/408569081798*33385282^(1/18) 6524758424985279 a001 7778742049/312119004989*33385282^(1/18) 6524758424985279 a001 2971215073/119218851371*33385282^(1/18) 6524758424985279 a001 63245986/23725150497407*2537720636^(7/15) 6524758424985279 a001 63245986/4106118243*2537720636^(1/15) 6524758424985279 a001 31622993/7331474697802*2537720636^(4/9) 6524758424985279 a001 63245986/5600748293801*2537720636^(2/5) 6524758424985279 a001 63245986/4106118243*45537549124^(1/17) 6524758424985279 a001 63245986/4106118243*14662949395604^(1/21) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^3/Lucas(46) 6524758424985279 a004 Fibonacci(46)/Lucas(39)/(1/2+sqrt(5)/2)^11 6524758424985279 a001 63245986/4106118243*192900153618^(1/18) 6524758424985279 a001 63245986/4106118243*10749957122^(1/16) 6524758424985279 a001 63245986/1322157322203*2537720636^(1/3) 6524758424985279 a001 63245986/312119004989*2537720636^(4/15) 6524758424985279 a001 63245986/119218851371*2537720636^(2/9) 6524758424985279 a001 63245986/73681302247*2537720636^(1/5) 6524758424985279 a001 31622993/5374978561*2537720636^(1/9) 6524758424985279 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^90 6524758424985279 a001 63245986/17393796001*2537720636^(2/15) 6524758424985279 a001 31622993/5374978561*312119004989^(1/11) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^5/Lucas(48) 6524758424985279 a004 Fibonacci(48)/Lucas(39)/(1/2+sqrt(5)/2)^13 6524758424985279 a001 31622993/5374978561*28143753123^(1/10) 6524758424985279 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^92 6524758424985279 a001 63245986/28143753123*17393796001^(1/7) 6524758424985279 a001 63245986/23725150497407*17393796001^(3/7) 6524758424985279 a001 63245986/28143753123*14662949395604^(1/9) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^7/Lucas(50) 6524758424985279 a004 Fibonacci(50)/Lucas(39)/(1/2+sqrt(5)/2)^15 6524758424985279 a001 31622993/408569081798*17393796001^(2/7) 6524758424985279 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^94 6524758424985279 a001 63245986/73681302247*45537549124^(3/17) 6524758424985279 a001 63245986/23725150497407*45537549124^(7/17) 6524758424985279 a001 63245986/73681302247*817138163596^(3/19) 6524758424985279 a001 63245986/73681302247*14662949395604^(1/7) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^9/Lucas(52) 6524758424985279 a004 Fibonacci(52)/Lucas(39)/(1/2+sqrt(5)/2)^17 6524758424985279 a001 63245986/73681302247*192900153618^(1/6) 6524758424985279 a001 63245986/5600748293801*45537549124^(6/17) 6524758424985279 a001 31622993/1730726404001*45537549124^(1/3) 6524758424985279 a001 63245986/1322157322203*45537549124^(5/17) 6524758424985279 a001 63245986/312119004989*45537549124^(4/17) 6524758424985279 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^96 6524758424985279 a001 31622993/96450076809*312119004989^(1/5) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^11/Lucas(54) 6524758424985279 a004 Fibonacci(54)/Lucas(39)/(1/2+sqrt(5)/2)^19 6524758424985279 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^98 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(56) 6524758424985279 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^21 6524758424985279 a001 63245986/1322157322203*312119004989^(3/11) 6524758424985279 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^100 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(58) 6524758424985279 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^23 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(60) 6524758424985279 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^25 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(62) 6524758424985279 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^27 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(64) 6524758424985279 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^29 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(66) 6524758424985279 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^31 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(68) 6524758424985279 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^33 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(70) 6524758424985279 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^35 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(72) 6524758424985279 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^37 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(74) 6524758424985279 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^39 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(76) 6524758424985279 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^41 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(78) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(80) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(82) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(84) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(86) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(88) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(90) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(92) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(94) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(96) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(98) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(99) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(100) 6524758424985279 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^43 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(97) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(95) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(93) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(91) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(89) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(87) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(85) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(83) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(81) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(79) 6524758424985279 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^45 6524758424985279 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^47 6524758424985279 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^49 6524758424985279 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^51 6524758424985279 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^53 6524758424985279 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^55 6524758424985279 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^57 6524758424985279 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^59 6524758424985279 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^61 6524758424985279 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^63 6524758424985279 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^65 6524758424985279 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^64 6524758424985279 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^62 6524758424985279 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^60 6524758424985279 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^58 6524758424985279 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^56 6524758424985279 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^54 6524758424985279 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^52 6524758424985279 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^50 6524758424985279 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^48 6524758424985279 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^46 6524758424985279 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^44 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(77) 6524758424985279 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^42 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(75) 6524758424985279 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^40 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(73) 6524758424985279 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^38 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(71) 6524758424985279 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^36 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(69) 6524758424985279 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^34 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(67) 6524758424985279 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^32 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(65) 6524758424985279 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^30 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(63) 6524758424985279 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^28 6524758424985279 a001 31622993/7331474697802*23725150497407^(5/16) 6524758424985279 a001 63245986/5600748293801*14662949395604^(2/7) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(61) 6524758424985279 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^26 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(59) 6524758424985279 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^24 6524758424985279 a001 31622993/7331474697802*505019158607^(5/14) 6524758424985279 a001 31622993/408569081798*14662949395604^(2/9) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(57) 6524758424985279 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^22 6524758424985279 a001 31622993/408569081798*505019158607^(1/4) 6524758424985279 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^99 6524758424985279 a001 63245986/1322157322203*192900153618^(5/18) 6524758424985279 a001 63245986/312119004989*817138163596^(4/19) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^12/Lucas(55) 6524758424985279 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2)^20 6524758424985279 a001 63245986/23725150497407*192900153618^(7/18) 6524758424985279 a001 63245986/312119004989*192900153618^(2/9) 6524758424985279 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^97 6524758424985279 a001 63245986/505019158607*73681302247^(1/4) 6524758424985279 a001 63245986/312119004989*73681302247^(3/13) 6524758424985279 a001 63245986/2139295485799*73681302247^(4/13) 6524758424985279 a001 63245986/119218851371*312119004989^(2/11) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^10/Lucas(53) 6524758424985279 a004 Fibonacci(53)/Lucas(39)/(1/2+sqrt(5)/2)^18 6524758424985279 a001 31622993/7331474697802*73681302247^(5/13) 6524758424985279 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^95 6524758424985279 a001 63245986/119218851371*28143753123^(1/5) 6524758424985279 a001 63245986/1322157322203*28143753123^(3/10) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^8/Lucas(51) 6524758424985279 a004 Fibonacci(51)/Lucas(39)/(1/2+sqrt(5)/2)^16 6524758424985279 a001 31622993/22768774562*23725150497407^(1/8) 6524758424985279 a001 31622993/22768774562*505019158607^(1/7) 6524758424985279 a001 31622993/7331474697802*28143753123^(2/5) 6524758424985279 a001 31622993/22768774562*73681302247^(2/13) 6524758424985279 a001 567451585/22768774562*33385282^(1/18) 6524758424985279 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^93 6524758424985279 a001 63245986/73681302247*10749957122^(3/16) 6524758424985279 a001 63245986/119218851371*10749957122^(5/24) 6524758424985279 a001 31622993/22768774562*10749957122^(1/6) 6524758424985279 a001 63245986/312119004989*10749957122^(1/4) 6524758424985279 a001 31622993/408569081798*10749957122^(7/24) 6524758424985279 a001 63245986/1322157322203*10749957122^(5/16) 6524758424985279 a001 63245986/2139295485799*10749957122^(1/3) 6524758424985279 a001 63245986/5600748293801*10749957122^(3/8) 6524758424985279 a001 63245986/17393796001*45537549124^(2/17) 6524758424985279 a001 63245986/17393796001*14662949395604^(2/21) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^6/Lucas(49) 6524758424985279 a004 Fibonacci(49)/Lucas(39)/(1/2+sqrt(5)/2)^14 6524758424985279 a001 31622993/7331474697802*10749957122^(5/12) 6524758424985279 a001 63245986/23725150497407*10749957122^(7/16) 6524758424985279 a001 63245986/17393796001*10749957122^(1/8) 6524758424985279 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^91 6524758424985279 a001 31622993/22768774562*4106118243^(4/23) 6524758424985279 a001 63245986/17393796001*4106118243^(3/23) 6524758424985279 a001 63245986/119218851371*4106118243^(5/23) 6524758424985279 a001 63245986/312119004989*4106118243^(6/23) 6524758424985279 a001 31622993/408569081798*4106118243^(7/23) 6524758424985279 a001 63245986/2139295485799*4106118243^(8/23) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^4/Lucas(47) 6524758424985279 a004 Fibonacci(47)/Lucas(39)/(1/2+sqrt(5)/2)^12 6524758424985279 a001 63245986/6643838879*23725150497407^(1/16) 6524758424985279 a001 63245986/6643838879*73681302247^(1/13) 6524758424985279 a001 63245986/5600748293801*4106118243^(9/23) 6524758424985279 a001 63245986/6643838879*10749957122^(1/12) 6524758424985279 a001 31622993/7331474697802*4106118243^(10/23) 6524758424985279 a001 63245986/6643838879*4106118243^(2/23) 6524758424985279 a001 63245986/17393796001*1568397607^(3/22) 6524758424985279 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^89 6524758424985279 a001 63245986/6643838879*1568397607^(1/11) 6524758424985279 a001 31622993/22768774562*1568397607^(2/11) 6524758424985279 a001 63245986/119218851371*1568397607^(5/22) 6524758424985279 a001 31622993/96450076809*1568397607^(1/4) 6524758424985279 a001 63245986/312119004989*1568397607^(3/11) 6524758424985279 a001 31622993/408569081798*1568397607^(7/22) 6524758424985279 a001 63245986/4106118243*599074578^(1/14) 6524758424985279 a001 63245986/2139295485799*1568397607^(4/11) 6524758424985279 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^2/Lucas(45) 6524758424985279 a004 Fibonacci(45)/Lucas(39)/(1/2+sqrt(5)/2)^10 6524758424985279 a001 31622993/1268860318*10749957122^(1/24) 6524758424985279 a001 31622993/1268860318*4106118243^(1/23) 6524758424985279 a001 63245986/5600748293801*1568397607^(9/22) 6524758424985279 a001 31622993/1268860318*1568397607^(1/22) 6524758424985279 a001 31622993/7331474697802*1568397607^(5/11) 6524758424985279 a001 31622993/1268860318*599074578^(1/21) 6524758424985279 a001 63245986/6643838879*599074578^(2/21) 6524758424985279 a001 63245986/17393796001*599074578^(1/7) 6524758424985279 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^87 6524758424985279 a001 63245986/28143753123*599074578^(1/6) 6524758424985279 a001 31622993/22768774562*599074578^(4/21) 6524758424985279 a001 63245986/73681302247*599074578^(3/14) 6524758424985279 a001 63245986/119218851371*599074578^(5/21) 6524758424985279 a001 63245986/312119004989*599074578^(2/7) 6524758424985279 a001 433494437/17393796001*33385282^(1/18) 6524758424985279 a001 31622993/408569081798*599074578^(1/3) 6524758424985279 a001 63245986/1322157322203*599074578^(5/14) 6524758424985279 a001 63245986/2139295485799*599074578^(8/21) 6524758424985279 a004 Fibonacci(43)/Lucas(39)/(1/2+sqrt(5)/2)^8 6524758424985279 a001 31622993/1268860318*228826127^(1/20) 6524758424985279 a001 63245986/5600748293801*599074578^(3/7) 6524758424985279 a001 31622993/7331474697802*599074578^(10/21) 6524758424985279 a001 63245986/23725150497407*599074578^(1/2) 6524758424985279 a001 63245986/6643838879*228826127^(1/10) 6524758424985279 a001 267914296/9062201101803*87403803^(8/19) 6524758424985279 a001 31622993/5374978561*228826127^(1/8) 6524758424985279 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^85 6524758424985279 a001 63245986/17393796001*228826127^(3/20) 6524758424985279 a001 31622993/22768774562*228826127^(1/5) 6524758424985279 a001 701408733/23725150497407*87403803^(8/19) 6524758424985279 a001 63245986/119218851371*228826127^(1/4) 6524758424985279 a001 165580141/2139295485799*87403803^(7/19) 6524758424985279 a001 102334155/6643838879*33385282^(1/12) 6524758424985279 a001 63245986/312119004989*228826127^(3/10) 6524758424985279 a001 433494437/14662949395604*87403803^(8/19) 6524758424985279 a001 31622993/408569081798*228826127^(7/20) 6524758424985279 a001 31622993/1268860318*87403803^(1/19) 6524758424985279 a001 63245986/1322157322203*228826127^(3/8) 6524758424985279 a001 165580141/6643838879*33385282^(1/18) 6524758424985279 a004 Fibonacci(39)/Lucas(41)/(1/2+sqrt(5)/2)^2 6524758424985279 a004 Fibonacci(41)/Lucas(39)/(1/2+sqrt(5)/2)^6 6524758424985279 a001 63245986/2139295485799*228826127^(2/5) 6524758424985279 a001 63245986/5600748293801*228826127^(9/20) 6524758424985279 a001 267914296/23725150497407*87403803^(9/19) 6524758424985279 a001 31622993/7331474697802*228826127^(1/2) 6524758424985279 a001 165580141/5600748293801*87403803^(8/19) 6524758424985279 a001 63245986/6643838879*87403803^(2/19) 6524758424985279 a001 39088169/28143753123*33385282^(2/9) 6524758424985279 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^83 6524758424985279 a001 165580141/14662949395604*87403803^(9/19) 6524758424985279 a001 63245986/17393796001*87403803^(3/19) 6524758424985279 a001 9238424/599786069*33385282^(1/12) 6524758424985279 a001 165580141/23725150497407*87403803^(1/2) 6524758424985279 a001 701408733/45537549124*33385282^(1/12) 6524758424985279 a001 1836311903/119218851371*33385282^(1/12) 6524758424985279 a001 4807526976/312119004989*33385282^(1/12) 6524758424985279 a001 12586269025/817138163596*33385282^(1/12) 6524758424985279 a001 32951280099/2139295485799*33385282^(1/12) 6524758424985279 a001 86267571272/5600748293801*33385282^(1/12) 6524758424985279 a001 7787980473/505618944676*33385282^(1/12) 6524758424985279 a001 365435296162/23725150497407*33385282^(1/12) 6524758424985279 a001 139583862445/9062201101803*33385282^(1/12) 6524758424985279 a001 53316291173/3461452808002*33385282^(1/12) 6524758424985279 a001 20365011074/1322157322203*33385282^(1/12) 6524758424985279 a001 7778742049/505019158607*33385282^(1/12) 6524758424985279 a001 2971215073/192900153618*33385282^(1/12) 6524758424985279 a001 1134903170/73681302247*33385282^(1/12) 6524758424985279 a001 433494437/28143753123*33385282^(1/12) 6524758424985279 a001 31622993/22768774562*87403803^(4/19) 6524758424985279 a001 102334155/10749957122*33385282^(1/9) 6524758424985279 a001 165580141/10749957122*33385282^(1/12) 6524758424985279 a001 63245986/119218851371*87403803^(5/19) 6524758424985279 a001 63245986/312119004989*87403803^(6/19) 6524758424985279 a001 39088169/45537549124*33385282^(1/4) 6524758424985279 a001 267914296/28143753123*33385282^(1/9) 6524758424985279 a001 31622993/408569081798*87403803^(7/19) 6524758424985279 a001 701408733/73681302247*33385282^(1/9) 6524758424985279 a001 1836311903/192900153618*33385282^(1/9) 6524758424985279 a001 102287808/10745088481*33385282^(1/9) 6524758424985279 a001 12586269025/1322157322203*33385282^(1/9) 6524758424985279 a001 32951280099/3461452808002*33385282^(1/9) 6524758424985279 a001 86267571272/9062201101803*33385282^(1/9) 6524758424985279 a001 225851433717/23725150497407*33385282^(1/9) 6524758424985279 a001 139583862445/14662949395604*33385282^(1/9) 6524758424985279 a001 53316291173/5600748293801*33385282^(1/9) 6524758424985279 a001 20365011074/2139295485799*33385282^(1/9) 6524758424985279 a001 7778742049/817138163596*33385282^(1/9) 6524758424985279 a001 2971215073/312119004989*33385282^(1/9) 6524758424985279 a001 1134903170/119218851371*33385282^(1/9) 6524758424985279 a004 Fibonacci(39)/Lucas(39)/(1/2+sqrt(5)/2)^4 6524758424985279 a001 31622993/1268860318*33385282^(1/18) 6524758424985279 a001 433494437/45537549124*33385282^(1/9) 6524758424985279 a001 63245986/2139295485799*87403803^(8/19) 6524758424985279 a001 165580141/17393796001*33385282^(1/9) 6524758424985279 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^82 6524758424985279 a001 63245986/5600748293801*87403803^(9/19) 6524758424985279 a001 63245986/9062201101803*87403803^(1/2) 6524758424985279 a001 39088169/73681302247*33385282^(5/18) 6524758424985279 a001 31622993/7331474697802*87403803^(10/19) 6524758424985279 a001 63245986/4106118243*33385282^(1/12) 6524758424985279 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^84 6524758424985279 a001 831985/228811001*33385282^(1/6) 6524758424985279 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^86 6524758424985279 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^88 6524758424985279 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^90 6524758424985279 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^92 6524758424985279 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^94 6524758424985279 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^96 6524758424985279 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^98 6524758424985279 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^100 6524758424985279 a001 2/39088169*(1/2+1/2*5^(1/2))^34 6524758424985279 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^99 6524758424985279 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^97 6524758424985279 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^95 6524758424985279 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^93 6524758424985279 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^91 6524758424985279 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^89 6524758424985279 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^87 6524758424985279 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^85 6524758424985279 a001 87403803/267914296*8^(1/3) 6524758424985279 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^83 6524758424985279 a001 267914296/73681302247*33385282^(1/6) 6524758424985279 a001 233802911/64300051206*33385282^(1/6) 6524758424985279 a001 1836311903/505019158607*33385282^(1/6) 6524758424985279 a001 1602508992/440719107401*33385282^(1/6) 6524758424985279 a001 12586269025/3461452808002*33385282^(1/6) 6524758424985279 a001 10983760033/3020733700601*33385282^(1/6) 6524758424985279 a001 86267571272/23725150497407*33385282^(1/6) 6524758424985279 a001 53316291173/14662949395604*33385282^(1/6) 6524758424985279 a001 20365011074/5600748293801*33385282^(1/6) 6524758424985279 a001 7778742049/2139295485799*33385282^(1/6) 6524758424985279 a001 2971215073/817138163596*33385282^(1/6) 6524758424985279 a001 1134903170/312119004989*33385282^(1/6) 6524758424985279 a001 63245986/6643838879*33385282^(1/9) 6524758424985279 a001 433494437/119218851371*33385282^(1/6) 6524758424985279 a001 165580141/45537549124*33385282^(1/6) 6524758424985279 a001 39088169/192900153618*33385282^(1/3) 6524758424985279 a001 14619165/10525900321*33385282^(2/9) 6524758424985279 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^81 6524758424985279 a001 4976784/1368706081*12752043^(3/17) 6524758424985280 a001 133957148/96450076809*33385282^(2/9) 6524758424985280 a001 701408733/505019158607*33385282^(2/9) 6524758424985280 a001 1836311903/1322157322203*33385282^(2/9) 6524758424985280 a001 14930208/10749853441*33385282^(2/9) 6524758424985280 a001 12586269025/9062201101803*33385282^(2/9) 6524758424985280 a001 32951280099/23725150497407*33385282^(2/9) 6524758424985280 a001 10182505537/7331474697802*33385282^(2/9) 6524758424985280 a001 7778742049/5600748293801*33385282^(2/9) 6524758424985280 a001 2971215073/2139295485799*33385282^(2/9) 6524758424985280 a001 567451585/408569081798*33385282^(2/9) 6524758424985280 a001 63245986/17393796001*33385282^(1/6) 6524758424985280 a001 433494437/312119004989*33385282^(2/9) 6524758424985280 a001 102334155/119218851371*33385282^(1/4) 6524758424985280 a001 165580141/119218851371*33385282^(2/9) 6524758424985280 a004 Fibonacci(37)/Lucas(38)/(1/2+sqrt(5)/2)^3 6524758424985280 a004 Fibonacci(38)/Lucas(37)/(1/2+sqrt(5)/2)^5 6524758424985280 a001 39088169/505019158607*33385282^(7/18) 6524758424985280 a001 267914296/312119004989*33385282^(1/4) 6524758424985280 a001 701408733/817138163596*33385282^(1/4) 6524758424985280 a001 1836311903/2139295485799*33385282^(1/4) 6524758424985280 a001 4807526976/5600748293801*33385282^(1/4) 6524758424985280 a001 12586269025/14662949395604*33385282^(1/4) 6524758424985280 a001 20365011074/23725150497407*33385282^(1/4) 6524758424985280 a001 7778742049/9062201101803*33385282^(1/4) 6524758424985280 a001 2971215073/3461452808002*33385282^(1/4) 6524758424985280 a001 1134903170/1322157322203*33385282^(1/4) 6524758424985280 a001 433494437/505019158607*33385282^(1/4) 6524758424985280 a001 34111385/64300051206*33385282^(5/18) 6524758424985280 a001 39088169/1568397607*12752043^(1/17) 6524758424985280 a001 165580141/192900153618*33385282^(1/4) 6524758424985280 a001 4181/87403804*33385282^(5/12) 6524758424985280 a001 267914296/505019158607*33385282^(5/18) 6524758424985280 a001 233802911/440719107401*33385282^(5/18) 6524758424985280 a001 1836311903/3461452808002*33385282^(5/18) 6524758424985280 a001 1602508992/3020733700601*33385282^(5/18) 6524758424985280 a001 12586269025/23725150497407*33385282^(5/18) 6524758424985280 a001 7778742049/14662949395604*33385282^(5/18) 6524758424985280 a001 2971215073/5600748293801*33385282^(5/18) 6524758424985280 a001 1134903170/2139295485799*33385282^(5/18) 6524758424985280 a001 31622993/22768774562*33385282^(2/9) 6524758424985280 a001 433494437/817138163596*33385282^(5/18) 6524758424985280 a001 165580141/312119004989*33385282^(5/18) 6524758424985280 a001 39088169/1322157322203*33385282^(4/9) 6524758424985280 a001 63245986/73681302247*33385282^(1/4) 6524758424985280 a001 102334155/505019158607*33385282^(1/3) 6524758424985280 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^80 6524758424985280 a001 267914296/1322157322203*33385282^(1/3) 6524758424985280 a001 701408733/3461452808002*33385282^(1/3) 6524758424985280 a001 1836311903/9062201101803*33385282^(1/3) 6524758424985280 a001 4807526976/23725150497407*33385282^(1/3) 6524758424985280 a001 2971215073/14662949395604*33385282^(1/3) 6524758424985280 a001 63245986/119218851371*33385282^(5/18) 6524758424985280 a001 1134903170/5600748293801*33385282^(1/3) 6524758424985280 a001 433494437/2139295485799*33385282^(1/3) 6524758424985280 a001 165580141/817138163596*33385282^(1/3) 6524758424985280 a001 24157817/9062201101803*141422324^(7/13) 6524758424985280 a001 39088169/3461452808002*33385282^(1/2) 6524758424985280 a001 24157817/2139295485799*141422324^(6/13) 6524758424985280 a001 24157817/505019158607*141422324^(5/13) 6524758424985280 a004 Fibonacci(37)/Lucas(40)/(1/2+sqrt(5)/2) 6524758424985280 a004 Fibonacci(40)/Lucas(37)/(1/2+sqrt(5)/2)^7 6524758424985280 a001 24157817/192900153618*141422324^(1/3) 6524758424985280 a001 24157817/119218851371*141422324^(4/13) 6524758424985280 a001 34111385/440719107401*33385282^(7/18) 6524758424985280 a001 24157817/28143753123*141422324^(3/13) 6524758424985280 a001 24157817/6643838879*141422324^(2/13) 6524758424985280 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^82 6524758424985280 a001 24157817/1568397607*141422324^(1/13) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)/Lucas(42) 6524758424985280 a004 Fibonacci(42)/Lucas(37)/(1/2+sqrt(5)/2)^9 6524758424985280 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^84 6524758424985280 a001 24157817/1568397607*2537720636^(1/15) 6524758424985280 a001 24157817/1568397607*45537549124^(1/17) 6524758424985280 a001 24157817/1568397607*14662949395604^(1/21) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^3/Lucas(44) 6524758424985280 a004 Fibonacci(44)/Lucas(37)/(1/2+sqrt(5)/2)^11 6524758424985280 a001 24157817/1568397607*192900153618^(1/18) 6524758424985280 a001 24157817/1568397607*10749957122^(1/16) 6524758424985280 a001 24157817/1568397607*599074578^(1/14) 6524758424985280 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^86 6524758424985280 a001 34111385/1368706081*12752043^(1/17) 6524758424985280 a001 24157817/4106118243*2537720636^(1/9) 6524758424985280 a001 24157817/9062201101803*2537720636^(7/15) 6524758424985280 a001 24157817/5600748293801*2537720636^(4/9) 6524758424985280 a001 24157817/2139295485799*2537720636^(2/5) 6524758424985280 a001 24157817/4106118243*312119004989^(1/11) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^5/Lucas(46) 6524758424985280 a004 Fibonacci(46)/Lucas(37)/(1/2+sqrt(5)/2)^13 6524758424985280 a001 24157817/4106118243*28143753123^(1/10) 6524758424985280 a001 24157817/505019158607*2537720636^(1/3) 6524758424985280 a001 24157817/119218851371*2537720636^(4/15) 6524758424985280 a001 24157817/45537549124*2537720636^(2/9) 6524758424985280 a001 24157817/28143753123*2537720636^(1/5) 6524758424985280 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^88 6524758424985280 a001 24157817/10749957122*17393796001^(1/7) 6524758424985280 a001 24157817/10749957122*14662949395604^(1/9) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^7/Lucas(48) 6524758424985280 a004 Fibonacci(48)/Lucas(37)/(1/2+sqrt(5)/2)^15 6524758424985280 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^90 6524758424985280 a001 24157817/9062201101803*17393796001^(3/7) 6524758424985280 a001 24157817/28143753123*45537549124^(3/17) 6524758424985280 a001 24157817/28143753123*14662949395604^(1/7) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^9/Lucas(50) 6524758424985280 a004 Fibonacci(50)/Lucas(37)/(1/2+sqrt(5)/2)^17 6524758424985280 a001 24157817/28143753123*192900153618^(1/6) 6524758424985280 a001 24157817/312119004989*17393796001^(2/7) 6524758424985280 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^92 6524758424985280 a001 24157817/9062201101803*45537549124^(7/17) 6524758424985280 a001 24157817/73681302247*312119004989^(1/5) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^11/Lucas(52) 6524758424985280 a004 Fibonacci(52)/Lucas(37)/(1/2+sqrt(5)/2)^19 6524758424985280 a001 24157817/2139295485799*45537549124^(6/17) 6524758424985280 a001 24157817/1322157322203*45537549124^(1/3) 6524758424985280 a001 24157817/505019158607*45537549124^(5/17) 6524758424985280 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^94 6524758424985280 a001 24157817/119218851371*45537549124^(4/17) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^13/Lucas(54) 6524758424985280 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^21 6524758424985280 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^96 6524758424985280 a001 24157817/505019158607*312119004989^(3/11) 6524758424985280 a001 24157817/14662949395604*312119004989^(2/5) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(56) 6524758424985280 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^23 6524758424985280 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^98 6524758424985280 a001 24157817/3461452808002*817138163596^(1/3) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(58) 6524758424985280 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^25 6524758424985280 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^100 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(60) 6524758424985280 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^27 6524758424985280 a001 24157817/9062201101803*14662949395604^(1/3) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(62) 6524758424985280 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^29 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(64) 6524758424985280 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^31 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(66) 6524758424985280 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^33 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(68) 6524758424985280 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^35 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(70) 6524758424985280 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^37 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(72) 6524758424985280 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^39 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(74) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(76) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(78) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(80) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(82) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(84) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(86) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(88) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(90) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(92) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(94) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(96) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(98) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(99) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(100) 6524758424985280 a004 Fibonacci(37)*Lucas(1)/(1/2+sqrt(5)/2)^41 6524758424985280 a004 Fibonacci(74)/Lucas(37)/(1/2+sqrt(5)/2)^41 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(97) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(95) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(93) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(91) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(89) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(87) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(85) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(83) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(81) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(79) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(77) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(75) 6524758424985280 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^43 6524758424985280 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^45 6524758424985280 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^47 6524758424985280 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^49 6524758424985280 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^51 6524758424985280 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^53 6524758424985280 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^55 6524758424985280 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^57 6524758424985280 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^59 6524758424985280 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^61 6524758424985280 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^63 6524758424985280 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^65 6524758424985280 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^67 6524758424985280 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^66 6524758424985280 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^64 6524758424985280 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^62 6524758424985280 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^60 6524758424985280 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^58 6524758424985280 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^56 6524758424985280 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^54 6524758424985280 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^52 6524758424985280 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^50 6524758424985280 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^48 6524758424985280 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^46 6524758424985280 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^44 6524758424985280 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^42 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(73) 6524758424985280 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^40 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(71) 6524758424985280 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^38 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(69) 6524758424985280 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^36 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(67) 6524758424985280 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^34 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(65) 6524758424985280 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^32 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(63) 6524758424985280 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^30 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(61) 6524758424985280 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^28 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(59) 6524758424985280 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^26 6524758424985280 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^99 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(57) 6524758424985280 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^24 6524758424985280 a001 24157817/505019158607*192900153618^(5/18) 6524758424985280 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^97 6524758424985280 a001 24157817/2139295485799*192900153618^(1/3) 6524758424985280 a001 24157817/312119004989*14662949395604^(2/9) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^14/Lucas(55) 6524758424985280 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^22 6524758424985280 a001 24157817/9062201101803*192900153618^(7/18) 6524758424985280 a001 24157817/192900153618*73681302247^(1/4) 6524758424985280 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^95 6524758424985280 a001 24157817/817138163596*73681302247^(4/13) 6524758424985280 a001 24157817/119218851371*817138163596^(4/19) 6524758424985280 a001 24157817/119218851371*14662949395604^(4/21) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^12/Lucas(53) 6524758424985280 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2)^20 6524758424985280 a001 24157817/5600748293801*73681302247^(5/13) 6524758424985280 a001 24157817/119218851371*192900153618^(2/9) 6524758424985280 a001 24157817/119218851371*73681302247^(3/13) 6524758424985280 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^93 6524758424985280 a001 24157817/28143753123*10749957122^(3/16) 6524758424985280 a001 24157817/505019158607*28143753123^(3/10) 6524758424985280 a001 24157817/45537549124*312119004989^(2/11) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^10/Lucas(51) 6524758424985280 a004 Fibonacci(51)/Lucas(37)/(1/2+sqrt(5)/2)^18 6524758424985280 a001 24157817/5600748293801*28143753123^(2/5) 6524758424985280 a001 24157817/45537549124*28143753123^(1/5) 6524758424985280 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^91 6524758424985280 a001 24157817/6643838879*2537720636^(2/15) 6524758424985280 a001 24157817/119218851371*10749957122^(1/4) 6524758424985280 a001 24157817/45537549124*10749957122^(5/24) 6524758424985280 a001 24157817/312119004989*10749957122^(7/24) 6524758424985280 a001 24157817/505019158607*10749957122^(5/16) 6524758424985280 a001 24157817/817138163596*10749957122^(1/3) 6524758424985280 a001 24157817/2139295485799*10749957122^(3/8) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^8/Lucas(49) 6524758424985280 a004 Fibonacci(49)/Lucas(37)/(1/2+sqrt(5)/2)^16 6524758424985280 a001 24157817/17393796001*23725150497407^(1/8) 6524758424985280 a001 24157817/17393796001*505019158607^(1/7) 6524758424985280 a001 24157817/17393796001*73681302247^(2/13) 6524758424985280 a001 24157817/5600748293801*10749957122^(5/12) 6524758424985280 a001 24157817/9062201101803*10749957122^(7/16) 6524758424985280 a001 24157817/14662949395604*10749957122^(11/24) 6524758424985280 a001 24157817/17393796001*10749957122^(1/6) 6524758424985280 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^89 6524758424985280 a001 24157817/45537549124*4106118243^(5/23) 6524758424985280 a001 24157817/17393796001*4106118243^(4/23) 6524758424985280 a001 24157817/119218851371*4106118243^(6/23) 6524758424985280 a001 24157817/312119004989*4106118243^(7/23) 6524758424985280 a001 24157817/817138163596*4106118243^(8/23) 6524758424985280 a001 24157817/6643838879*45537549124^(2/17) 6524758424985280 a001 24157817/6643838879*14662949395604^(2/21) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^6/Lucas(47) 6524758424985280 a004 Fibonacci(47)/Lucas(37)/(1/2+sqrt(5)/2)^14 6524758424985280 a001 24157817/2139295485799*4106118243^(9/23) 6524758424985280 a001 24157817/6643838879*10749957122^(1/8) 6524758424985280 a001 24157817/5600748293801*4106118243^(10/23) 6524758424985280 a001 24157817/14662949395604*4106118243^(11/23) 6524758424985280 a001 24157817/23725150497407*4106118243^(1/2) 6524758424985280 a001 24157817/6643838879*4106118243^(3/23) 6524758424985280 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^87 6524758424985280 a001 24157817/17393796001*1568397607^(2/11) 6524758424985280 a001 24157817/6643838879*1568397607^(3/22) 6524758424985280 a001 24157817/45537549124*1568397607^(5/22) 6524758424985280 a001 24157817/73681302247*1568397607^(1/4) 6524758424985280 a001 24157817/119218851371*1568397607^(3/11) 6524758424985280 a001 24157817/312119004989*1568397607^(7/22) 6524758424985280 a001 24157817/817138163596*1568397607^(4/11) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^4/Lucas(45) 6524758424985280 a004 Fibonacci(45)/Lucas(37)/(1/2+sqrt(5)/2)^12 6524758424985280 a001 24157817/2537720636*23725150497407^(1/16) 6524758424985280 a001 24157817/2537720636*73681302247^(1/13) 6524758424985280 a001 24157817/2537720636*10749957122^(1/12) 6524758424985280 a001 24157817/2537720636*4106118243^(2/23) 6524758424985280 a001 24157817/2139295485799*1568397607^(9/22) 6524758424985280 a001 24157817/5600748293801*1568397607^(5/11) 6524758424985280 a001 24157817/2537720636*1568397607^(1/11) 6524758424985280 a001 24157817/14662949395604*1568397607^(1/2) 6524758424985280 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^85 6524758424985280 a001 24157817/2537720636*599074578^(2/21) 6524758424985280 a001 24157817/6643838879*599074578^(1/7) 6524758424985280 a001 24157817/10749957122*599074578^(1/6) 6524758424985280 a001 24157817/17393796001*599074578^(4/21) 6524758424985280 a001 24157817/28143753123*599074578^(3/14) 6524758424985280 a001 24157817/45537549124*599074578^(5/21) 6524758424985280 a001 24157817/119218851371*599074578^(2/7) 6524758424985280 a001 24157817/312119004989*599074578^(1/3) 6524758424985280 a001 24157817/505019158607*599074578^(5/14) 6524758424985280 a001 24157817/817138163596*599074578^(8/21) 6524758424985280 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^2/Lucas(43) 6524758424985280 a004 Fibonacci(43)/Lucas(37)/(1/2+sqrt(5)/2)^10 6524758424985280 a001 24157817/969323029*10749957122^(1/24) 6524758424985280 a001 24157817/969323029*4106118243^(1/23) 6524758424985280 a001 24157817/969323029*1568397607^(1/22) 6524758424985280 a001 24157817/2139295485799*599074578^(3/7) 6524758424985280 a001 24157817/969323029*599074578^(1/21) 6524758424985280 a001 24157817/5600748293801*599074578^(10/21) 6524758424985280 a001 24157817/9062201101803*599074578^(1/2) 6524758424985280 a001 24157817/14662949395604*599074578^(11/21) 6524758424985280 a001 24157817/969323029*228826127^(1/20) 6524758424985280 a001 24157817/2537720636*228826127^(1/10) 6524758424985280 a001 24157817/4106118243*228826127^(1/8) 6524758424985281 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^83 6524758424985281 a001 24157817/6643838879*228826127^(3/20) 6524758424985281 a001 133957148/1730726404001*33385282^(7/18) 6524758424985281 a001 24157817/17393796001*228826127^(1/5) 6524758424985281 a001 24157817/45537549124*228826127^(1/4) 6524758424985281 a001 24157817/119218851371*228826127^(3/10) 6524758424985281 a001 233802911/3020733700601*33385282^(7/18) 6524758424985281 a001 1836311903/23725150497407*33385282^(7/18) 6524758424985281 a001 63245986/312119004989*33385282^(1/3) 6524758424985281 a001 567451585/7331474697802*33385282^(7/18) 6524758424985281 a001 24157817/312119004989*228826127^(7/20) 6524758424985281 a001 24157817/505019158607*228826127^(3/8) 6524758424985281 a001 433494437/5600748293801*33385282^(7/18) 6524758424985281 a004 Fibonacci(41)/Lucas(37)/(1/2+sqrt(5)/2)^8 6524758424985281 a001 24157817/817138163596*228826127^(2/5) 6524758424985281 a001 24157817/969323029*87403803^(1/19) 6524758424985281 a001 24157817/2139295485799*228826127^(9/20) 6524758424985281 a001 24157817/5600748293801*228826127^(1/2) 6524758424985281 a001 24157817/14662949395604*228826127^(11/20) 6524758424985281 a001 102334155/2139295485799*33385282^(5/12) 6524758424985281 a001 165580141/2139295485799*33385282^(7/18) 6524758424985281 a001 24157817/2537720636*87403803^(2/19) 6524758424985281 a001 133957148/5374978561*12752043^(1/17) 6524758424985281 a001 233802911/9381251041*12752043^(1/17) 6524758424985281 a001 1836311903/73681302247*12752043^(1/17) 6524758424985281 a001 267084832/10716675201*12752043^(1/17) 6524758424985281 a001 12586269025/505019158607*12752043^(1/17) 6524758424985281 a001 10983760033/440719107401*12752043^(1/17) 6524758424985281 a001 43133785636/1730726404001*12752043^(1/17) 6524758424985281 a001 75283811239/3020733700601*12752043^(1/17) 6524758424985281 a001 182717648081/7331474697802*12752043^(1/17) 6524758424985281 a001 139583862445/5600748293801*12752043^(1/17) 6524758424985281 a001 53316291173/2139295485799*12752043^(1/17) 6524758424985281 a001 10182505537/408569081798*12752043^(1/17) 6524758424985281 a001 7778742049/312119004989*12752043^(1/17) 6524758424985281 a001 2971215073/119218851371*12752043^(1/17) 6524758424985281 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^81 6524758424985281 a001 567451585/22768774562*12752043^(1/17) 6524758424985281 a001 433494437/17393796001*12752043^(1/17) 6524758424985281 a001 24157817/6643838879*87403803^(3/19) 6524758424985281 a001 39088169/9062201101803*33385282^(5/9) 6524758424985281 a001 165580141/6643838879*12752043^(1/17) 6524758424985281 a001 24157817/17393796001*87403803^(4/19) 6524758424985281 a001 267914296/5600748293801*33385282^(5/12) 6524758424985281 a001 701408733/14662949395604*33385282^(5/12) 6524758424985281 a001 1134903170/23725150497407*33385282^(5/12) 6524758424985281 a001 433494437/9062201101803*33385282^(5/12) 6524758424985281 a001 24157817/45537549124*87403803^(5/19) 6524758424985281 a001 6765/228826126*33385282^(4/9) 6524758424985281 a001 165580141/3461452808002*33385282^(5/12) 6524758424985281 a001 24157817/119218851371*87403803^(6/19) 6524758424985281 a001 24157817/312119004989*87403803^(7/19) 6524758424985281 a001 39088169/14662949395604*33385282^(7/12) 6524758424985281 a004 Fibonacci(37)/Lucas(39)/(1/2+sqrt(5)/2)^2 6524758424985281 a004 Fibonacci(39)/Lucas(37)/(1/2+sqrt(5)/2)^6 6524758424985281 a001 24157817/969323029*33385282^(1/18) 6524758424985281 a001 267914296/9062201101803*33385282^(4/9) 6524758424985281 a001 24157817/817138163596*87403803^(8/19) 6524758424985281 a001 701408733/23725150497407*33385282^(4/9) 6524758424985281 a001 31622993/408569081798*33385282^(7/18) 6524758424985281 a001 433494437/14662949395604*33385282^(4/9) 6524758424985281 a001 24157817/2139295485799*87403803^(9/19) 6524758424985281 a001 165580141/5600748293801*33385282^(4/9) 6524758424985281 a001 24157817/3461452808002*87403803^(1/2) 6524758424985281 a001 24157817/5600748293801*87403803^(10/19) 6524758424985281 a001 31622993/1268860318*12752043^(1/17) 6524758424985281 a001 24157817/1568397607*33385282^(1/12) 6524758424985281 a001 39088169/23725150497407*33385282^(11/18) 6524758424985281 a001 24157817/14662949395604*87403803^(11/19) 6524758424985281 a001 63245986/1322157322203*33385282^(5/12) 6524758424985281 a001 34111385/3020733700601*33385282^(1/2) 6524758424985281 a001 24157817/2537720636*33385282^(1/9) 6524758424985281 a001 267914296/23725150497407*33385282^(1/2) 6524758424985281 a001 63245986/2139295485799*33385282^(4/9) 6524758424985281 a001 165580141/14662949395604*33385282^(1/2) 6524758424985281 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^79 6524758424985281 a001 102334155/23725150497407*33385282^(5/9) 6524758424985281 a001 24157817/6643838879*33385282^(1/6) 6524758424985282 a001 63245986/5600748293801*33385282^(1/2) 6524758424985282 a001 24157817/17393796001*33385282^(2/9) 6524758424985282 a001 31622993/7331474697802*33385282^(5/9) 6524758424985282 a001 7465176/5374978561*12752043^(4/17) 6524758424985282 a001 24157817/28143753123*33385282^(1/4) 6524758424985282 a001 63245986/23725150497407*33385282^(7/12) 6524758424985282 a001 24157817/45537549124*33385282^(5/18) 6524758424985282 a001 39088169/4106118243*12752043^(2/17) 6524758424985282 a001 24157817/119218851371*33385282^(1/3) 6524758424985283 a001 9227465/23725150497407*20633239^(5/7) 6524758424985283 a004 Fibonacci(37)/Lucas(37)/(1/2+sqrt(5)/2)^4 6524758424985283 a001 24157817/312119004989*33385282^(7/18) 6524758424985283 a001 102334155/10749957122*12752043^(2/17) 6524758424985283 a001 24157817/969323029*12752043^(1/17) 6524758424985283 a001 24157817/505019158607*33385282^(5/12) 6524758424985283 a001 267914296/28143753123*12752043^(2/17) 6524758424985283 a001 701408733/73681302247*12752043^(2/17) 6524758424985283 a001 1836311903/192900153618*12752043^(2/17) 6524758424985283 a001 102287808/10745088481*12752043^(2/17) 6524758424985283 a001 12586269025/1322157322203*12752043^(2/17) 6524758424985283 a001 32951280099/3461452808002*12752043^(2/17) 6524758424985283 a001 86267571272/9062201101803*12752043^(2/17) 6524758424985283 a001 225851433717/23725150497407*12752043^(2/17) 6524758424985283 a001 139583862445/14662949395604*12752043^(2/17) 6524758424985283 a001 53316291173/5600748293801*12752043^(2/17) 6524758424985283 a001 20365011074/2139295485799*12752043^(2/17) 6524758424985283 a001 7778742049/817138163596*12752043^(2/17) 6524758424985283 a001 2971215073/312119004989*12752043^(2/17) 6524758424985283 a001 1134903170/119218851371*12752043^(2/17) 6524758424985283 a001 433494437/45537549124*12752043^(2/17) 6524758424985283 a001 165580141/17393796001*12752043^(2/17) 6524758424985283 a001 24157817/817138163596*33385282^(4/9) 6524758424985283 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^78 6524758424985283 a001 63245986/6643838879*12752043^(2/17) 6524758424985283 a001 24157817/2139295485799*33385282^(1/2) 6524758424985284 a001 24157817/5600748293801*33385282^(5/9) 6524758424985284 a001 24157817/9062201101803*33385282^(7/12) 6524758424985284 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^80 6524758424985284 a001 9227465/599074578*7881196^(1/11) 6524758424985284 a001 24157817/14662949395604*33385282^(11/18) 6524758424985284 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^82 6524758424985284 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^84 6524758424985284 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^86 6524758424985284 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^88 6524758424985284 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^90 6524758424985284 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^92 6524758424985284 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^94 6524758424985284 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^96 6524758424985284 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^98 6524758424985284 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^100 6524758424985284 a001 1/7465176*(1/2+1/2*5^(1/2))^32 6524758424985284 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^99 6524758424985284 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^97 6524758424985284 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^95 6524758424985284 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^93 6524758424985284 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^91 6524758424985284 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^89 6524758424985284 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^87 6524758424985284 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^85 6524758424985284 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^83 6524758424985284 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^81 6524758424985284 a001 4976784/9381251041*12752043^(5/17) 6524758424985284 a001 4769326/14619165*8^(1/3) 6524758424985284 a001 9227465/3461452808002*20633239^(3/5) 6524758424985284 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^79 6524758424985284 a001 39088169/10749957122*12752043^(3/17) 6524758424985285 a001 9227465/2139295485799*20633239^(4/7) 6524758424985285 a001 831985/228811001*12752043^(3/17) 6524758424985285 a001 24157817/2537720636*12752043^(2/17) 6524758424985285 a001 267914296/73681302247*12752043^(3/17) 6524758424985285 a001 233802911/64300051206*12752043^(3/17) 6524758424985285 a001 1836311903/505019158607*12752043^(3/17) 6524758424985285 a001 1602508992/440719107401*12752043^(3/17) 6524758424985285 a001 12586269025/3461452808002*12752043^(3/17) 6524758424985285 a001 10983760033/3020733700601*12752043^(3/17) 6524758424985285 a001 86267571272/23725150497407*12752043^(3/17) 6524758424985285 a001 53316291173/14662949395604*12752043^(3/17) 6524758424985285 a001 20365011074/5600748293801*12752043^(3/17) 6524758424985285 a001 7778742049/2139295485799*12752043^(3/17) 6524758424985285 a001 2971215073/817138163596*12752043^(3/17) 6524758424985285 a001 1134903170/312119004989*12752043^(3/17) 6524758424985285 a001 433494437/119218851371*12752043^(3/17) 6524758424985285 a001 165580141/45537549124*12752043^(3/17) 6524758424985286 a001 63245986/17393796001*12752043^(3/17) 6524758424985286 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^77 6524758424985287 a001 14930352/73681302247*12752043^(6/17) 6524758424985287 a001 39088169/28143753123*12752043^(4/17) 6524758424985287 a001 9227465/192900153618*20633239^(3/7) 6524758424985287 a001 9227465/119218851371*20633239^(2/5) 6524758424985288 a001 14619165/10525900321*12752043^(4/17) 6524758424985288 a001 24157817/6643838879*12752043^(3/17) 6524758424985288 a001 133957148/96450076809*12752043^(4/17) 6524758424985288 a001 701408733/505019158607*12752043^(4/17) 6524758424985288 a001 1836311903/1322157322203*12752043^(4/17) 6524758424985288 a001 14930208/10749853441*12752043^(4/17) 6524758424985288 a001 12586269025/9062201101803*12752043^(4/17) 6524758424985288 a001 32951280099/23725150497407*12752043^(4/17) 6524758424985288 a001 10182505537/7331474697802*12752043^(4/17) 6524758424985288 a001 7778742049/5600748293801*12752043^(4/17) 6524758424985288 a001 2971215073/2139295485799*12752043^(4/17) 6524758424985288 a001 567451585/408569081798*12752043^(4/17) 6524758424985288 a001 433494437/312119004989*12752043^(4/17) 6524758424985288 a004 Fibonacci(35)/Lucas(36)/(1/2+sqrt(5)/2)^3 6524758424985288 a004 Fibonacci(36)/Lucas(35)/(1/2+sqrt(5)/2)^5 6524758424985288 a001 165580141/119218851371*12752043^(4/17) 6524758424985288 a001 31622993/22768774562*12752043^(4/17) 6524758424985289 a001 2584/33385281*12752043^(7/17) 6524758424985289 a001 39088169/73681302247*12752043^(5/17) 6524758424985289 a001 9227465/17393796001*20633239^(2/7) 6524758424985290 a001 829464/33281921*4870847^(1/16) 6524758424985290 a001 5702887/1568397607*4870847^(3/16) 6524758424985290 a001 34111385/64300051206*12752043^(5/17) 6524758424985290 a001 24157817/17393796001*12752043^(4/17) 6524758424985290 a001 267914296/505019158607*12752043^(5/17) 6524758424985290 a001 233802911/440719107401*12752043^(5/17) 6524758424985290 a001 1836311903/3461452808002*12752043^(5/17) 6524758424985290 a001 1602508992/3020733700601*12752043^(5/17) 6524758424985290 a001 12586269025/23725150497407*12752043^(5/17) 6524758424985290 a001 7778742049/14662949395604*12752043^(5/17) 6524758424985290 a001 2971215073/5600748293801*12752043^(5/17) 6524758424985290 a001 1134903170/2139295485799*12752043^(5/17) 6524758424985290 a001 433494437/817138163596*12752043^(5/17) 6524758424985290 a001 165580141/312119004989*12752043^(5/17) 6524758424985290 a001 63245986/119218851371*12752043^(5/17) 6524758424985291 a001 9227465/4106118243*20633239^(1/5) 6524758424985291 a001 14930352/505019158607*12752043^(8/17) 6524758424985291 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^76 6524758424985291 a001 9227465/1568397607*20633239^(1/7) 6524758424985292 a001 39088169/192900153618*12752043^(6/17) 6524758424985292 a001 102334155/505019158607*12752043^(6/17) 6524758424985292 a001 24157817/45537549124*12752043^(5/17) 6524758424985292 a001 267914296/1322157322203*12752043^(6/17) 6524758424985292 a001 701408733/3461452808002*12752043^(6/17) 6524758424985292 a001 1836311903/9062201101803*12752043^(6/17) 6524758424985292 a001 4807526976/23725150497407*12752043^(6/17) 6524758424985292 a001 2971215073/14662949395604*12752043^(6/17) 6524758424985292 a001 1134903170/5600748293801*12752043^(6/17) 6524758424985292 a001 433494437/2139295485799*12752043^(6/17) 6524758424985292 a001 3732588/204284540899*12752043^(1/2) 6524758424985292 a001 165580141/817138163596*12752043^(6/17) 6524758424985293 a004 Fibonacci(35)/Lucas(38)/(1/2+sqrt(5)/2) 6524758424985293 a004 Fibonacci(38)/Lucas(35)/(1/2+sqrt(5)/2)^7 6524758424985293 a001 63245986/312119004989*12752043^(6/17) 6524758424985293 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^78 6524758424985293 a001 9227465/14662949395604*141422324^(8/13) 6524758424985293 a001 9227465/3461452808002*141422324^(7/13) 6524758424985293 a001 9227465/817138163596*141422324^(6/13) 6524758424985293 a001 9227465/192900153618*141422324^(5/13) 6524758424985293 a004 Fibonacci(35)*(1/2+sqrt(5)/2)/Lucas(40) 6524758424985293 a004 Fibonacci(40)/Lucas(35)/(1/2+sqrt(5)/2)^9 6524758424985293 a001 9227465/73681302247*141422324^(1/3) 6524758424985293 a001 9227465/45537549124*141422324^(4/13) 6524758424985293 a001 9227465/10749957122*141422324^(3/13) 6524758424985294 a001 9227465/2537720636*141422324^(2/13) 6524758424985294 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^80 6524758424985294 a001 9227465/599074578*141422324^(1/13) 6524758424985294 a001 9227465/599074578*2537720636^(1/15) 6524758424985294 a001 9227465/599074578*45537549124^(1/17) 6524758424985294 a001 9227465/599074578*14662949395604^(1/21) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^3/Lucas(42) 6524758424985294 a004 Fibonacci(42)/Lucas(35)/(1/2+sqrt(5)/2)^11 6524758424985294 a001 9227465/599074578*192900153618^(1/18) 6524758424985294 a001 9227465/599074578*10749957122^(1/16) 6524758424985294 a001 9227465/599074578*599074578^(1/14) 6524758424985294 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^82 6524758424985294 a001 9227465/1568397607*2537720636^(1/9) 6524758424985294 a001 9227465/1568397607*312119004989^(1/11) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^5/Lucas(44) 6524758424985294 a004 Fibonacci(44)/Lucas(35)/(1/2+sqrt(5)/2)^13 6524758424985294 a001 9227465/1568397607*28143753123^(1/10) 6524758424985294 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^84 6524758424985294 a001 9227465/23725150497407*2537720636^(5/9) 6524758424985294 a001 9227465/14662949395604*2537720636^(8/15) 6524758424985294 a001 9227465/3461452808002*2537720636^(7/15) 6524758424985294 a001 9227465/2139295485799*2537720636^(4/9) 6524758424985294 a001 9227465/817138163596*2537720636^(2/5) 6524758424985294 a001 9227465/4106118243*17393796001^(1/7) 6524758424985294 a001 9227465/4106118243*14662949395604^(1/9) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^7/Lucas(46) 6524758424985294 a004 Fibonacci(46)/Lucas(35)/(1/2+sqrt(5)/2)^15 6524758424985294 a001 9227465/192900153618*2537720636^(1/3) 6524758424985294 a001 9227465/45537549124*2537720636^(4/15) 6524758424985294 a001 9227465/10749957122*2537720636^(1/5) 6524758424985294 a001 9227465/17393796001*2537720636^(2/9) 6524758424985294 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^86 6524758424985294 a001 9227465/10749957122*45537549124^(3/17) 6524758424985294 a001 9227465/10749957122*14662949395604^(1/7) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^9/Lucas(48) 6524758424985294 a004 Fibonacci(48)/Lucas(35)/(1/2+sqrt(5)/2)^17 6524758424985294 a001 9227465/10749957122*192900153618^(1/6) 6524758424985294 a001 9227465/10749957122*10749957122^(3/16) 6524758424985294 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^88 6524758424985294 a001 9227465/3461452808002*17393796001^(3/7) 6524758424985294 a001 9227465/28143753123*312119004989^(1/5) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^11/Lucas(50) 6524758424985294 a004 Fibonacci(50)/Lucas(35)/(1/2+sqrt(5)/2)^19 6524758424985294 a001 9227465/119218851371*17393796001^(2/7) 6524758424985294 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^90 6524758424985294 a001 9227465/14662949395604*45537549124^(8/17) 6524758424985294 a001 9227465/3461452808002*45537549124^(7/17) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^13/Lucas(52) 6524758424985294 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^21 6524758424985294 a001 9227465/192900153618*45537549124^(5/17) 6524758424985294 a001 9227465/817138163596*45537549124^(6/17) 6524758424985294 a001 9227465/505019158607*45537549124^(1/3) 6524758424985294 a001 9227465/73681302247*73681302247^(1/4) 6524758424985294 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^92 6524758424985294 a001 9227465/192900153618*312119004989^(3/11) 6524758424985294 a001 9227465/192900153618*14662949395604^(5/21) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^15/Lucas(54) 6524758424985294 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^23 6524758424985294 a001 9227465/192900153618*192900153618^(5/18) 6524758424985294 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^94 6524758424985294 a001 9227465/23725150497407*312119004989^(5/11) 6524758424985294 a001 9227465/5600748293801*312119004989^(2/5) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(56) 6524758424985294 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^25 6524758424985294 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^96 6524758424985294 a001 9227465/1322157322203*817138163596^(1/3) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(58) 6524758424985294 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^27 6524758424985294 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^98 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(60) 6524758424985294 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^29 6524758424985294 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^100 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(62) 6524758424985294 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^31 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(64) 6524758424985294 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^33 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(66) 6524758424985294 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^35 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(68) 6524758424985294 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^37 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(70) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(72) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(74) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(76) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(78) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(80) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(82) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(84) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(86) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(88) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(90) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(92) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(94) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(96) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(98) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(99) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(100) 6524758424985294 a004 Fibonacci(35)*Lucas(1)/(1/2+sqrt(5)/2)^39 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(97) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(95) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(93) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(91) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(89) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(87) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(85) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(83) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(81) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(79) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(77) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(75) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(73) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(71) 6524758424985294 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^41 6524758424985294 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^43 6524758424985294 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^45 6524758424985294 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^47 6524758424985294 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^49 6524758424985294 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^51 6524758424985294 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^53 6524758424985294 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^55 6524758424985294 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^57 6524758424985294 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^59 6524758424985294 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^61 6524758424985294 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^63 6524758424985294 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^65 6524758424985294 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^67 6524758424985294 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^69 6524758424985294 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^68 6524758424985294 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^66 6524758424985294 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^64 6524758424985294 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^62 6524758424985294 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^60 6524758424985294 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^58 6524758424985294 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^56 6524758424985294 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^54 6524758424985294 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^52 6524758424985294 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^50 6524758424985294 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^48 6524758424985294 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^46 6524758424985294 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^44 6524758424985294 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^42 6524758424985294 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^40 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(69) 6524758424985294 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^38 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(67) 6524758424985294 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^36 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(65) 6524758424985294 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^34 6524758424985294 a001 9227465/14662949395604*14662949395604^(8/21) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(63) 6524758424985294 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^32 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(61) 6524758424985294 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^30 6524758424985294 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^99 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(59) 6524758424985294 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^28 6524758424985294 a001 9227465/2139295485799*23725150497407^(5/16) 6524758424985294 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^97 6524758424985294 a001 9227465/817138163596*14662949395604^(2/7) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(57) 6524758424985294 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^26 6524758424985294 a001 9227465/2139295485799*505019158607^(5/14) 6524758424985294 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^95 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^16/Lucas(55) 6524758424985294 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^24 6524758424985294 a001 9227465/312119004989*23725150497407^(1/4) 6524758424985294 a001 9227465/3461452808002*192900153618^(7/18) 6524758424985294 a001 9227465/817138163596*192900153618^(1/3) 6524758424985294 a001 9227465/14662949395604*192900153618^(4/9) 6524758424985294 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^93 6524758424985294 a001 9227465/312119004989*73681302247^(4/13) 6524758424985294 a001 9227465/119218851371*14662949395604^(2/9) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^14/Lucas(53) 6524758424985294 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^22 6524758424985294 a001 9227465/2139295485799*73681302247^(5/13) 6524758424985294 a001 9227465/14662949395604*73681302247^(6/13) 6524758424985294 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^91 6524758424985294 a001 9227465/192900153618*28143753123^(3/10) 6524758424985294 a001 9227465/45537549124*45537549124^(4/17) 6524758424985294 a001 9227465/45537549124*817138163596^(4/19) 6524758424985294 a001 9227465/45537549124*14662949395604^(4/21) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^12/Lucas(51) 6524758424985294 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2)^20 6524758424985294 a001 9227465/45537549124*192900153618^(2/9) 6524758424985294 a001 9227465/2139295485799*28143753123^(2/5) 6524758424985294 a001 9227465/45537549124*73681302247^(3/13) 6524758424985294 a001 9227465/23725150497407*28143753123^(1/2) 6524758424985294 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^89 6524758424985294 a001 9227465/119218851371*10749957122^(7/24) 6524758424985294 a001 9227465/45537549124*10749957122^(1/4) 6524758424985294 a001 9227465/192900153618*10749957122^(5/16) 6524758424985294 a001 9227465/312119004989*10749957122^(1/3) 6524758424985294 a001 9227465/817138163596*10749957122^(3/8) 6524758424985294 a001 9227465/17393796001*312119004989^(2/11) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^10/Lucas(49) 6524758424985294 a004 Fibonacci(49)/Lucas(35)/(1/2+sqrt(5)/2)^18 6524758424985294 a001 9227465/17393796001*28143753123^(1/5) 6524758424985294 a001 9227465/2139295485799*10749957122^(5/12) 6524758424985294 a001 9227465/3461452808002*10749957122^(7/16) 6524758424985294 a001 9227465/5600748293801*10749957122^(11/24) 6524758424985294 a001 9227465/14662949395604*10749957122^(1/2) 6524758424985294 a001 9227465/17393796001*10749957122^(5/24) 6524758424985294 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^87 6524758424985294 a001 9227465/45537549124*4106118243^(6/23) 6524758424985294 a001 9227465/17393796001*4106118243^(5/23) 6524758424985294 a001 9227465/119218851371*4106118243^(7/23) 6524758424985294 a001 9227465/312119004989*4106118243^(8/23) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^8/Lucas(47) 6524758424985294 a004 Fibonacci(47)/Lucas(35)/(1/2+sqrt(5)/2)^16 6524758424985294 a001 9227465/6643838879*23725150497407^(1/8) 6524758424985294 a001 9227465/6643838879*505019158607^(1/7) 6524758424985294 a001 9227465/6643838879*73681302247^(2/13) 6524758424985294 a001 9227465/817138163596*4106118243^(9/23) 6524758424985294 a001 9227465/6643838879*10749957122^(1/6) 6524758424985294 a001 9227465/2139295485799*4106118243^(10/23) 6524758424985294 a001 9227465/5600748293801*4106118243^(11/23) 6524758424985294 a001 9227465/9062201101803*4106118243^(1/2) 6524758424985294 a001 9227465/14662949395604*4106118243^(12/23) 6524758424985294 a001 9227465/6643838879*4106118243^(4/23) 6524758424985294 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^85 6524758424985294 a001 9227465/17393796001*1568397607^(5/22) 6524758424985294 a001 9227465/6643838879*1568397607^(2/11) 6524758424985294 a001 9227465/28143753123*1568397607^(1/4) 6524758424985294 a001 9227465/45537549124*1568397607^(3/11) 6524758424985294 a001 9227465/119218851371*1568397607^(7/22) 6524758424985294 a001 9227465/2537720636*2537720636^(2/15) 6524758424985294 a001 9227465/312119004989*1568397607^(4/11) 6524758424985294 a001 9227465/2537720636*45537549124^(2/17) 6524758424985294 a001 9227465/2537720636*14662949395604^(2/21) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^6/Lucas(45) 6524758424985294 a004 Fibonacci(45)/Lucas(35)/(1/2+sqrt(5)/2)^14 6524758424985294 a001 9227465/2537720636*10749957122^(1/8) 6524758424985294 a001 9227465/2537720636*4106118243^(3/23) 6524758424985294 a001 9227465/817138163596*1568397607^(9/22) 6524758424985294 a001 9227465/2139295485799*1568397607^(5/11) 6524758424985294 a001 9227465/5600748293801*1568397607^(1/2) 6524758424985294 a001 9227465/2537720636*1568397607^(3/22) 6524758424985294 a001 9227465/14662949395604*1568397607^(6/11) 6524758424985294 a001 9227465/4106118243*599074578^(1/6) 6524758424985294 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^83 6524758424985294 a001 9227465/2537720636*599074578^(1/7) 6524758424985294 a001 9227465/6643838879*599074578^(4/21) 6524758424985294 a001 9227465/10749957122*599074578^(3/14) 6524758424985294 a001 9227465/17393796001*599074578^(5/21) 6524758424985294 a001 9227465/45537549124*599074578^(2/7) 6524758424985294 a001 9227465/119218851371*599074578^(1/3) 6524758424985294 a001 9227465/192900153618*599074578^(5/14) 6524758424985294 a001 9227465/312119004989*599074578^(8/21) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^4/Lucas(43) 6524758424985294 a004 Fibonacci(43)/Lucas(35)/(1/2+sqrt(5)/2)^12 6524758424985294 a001 9227465/969323029*23725150497407^(1/16) 6524758424985294 a001 9227465/969323029*73681302247^(1/13) 6524758424985294 a001 9227465/969323029*10749957122^(1/12) 6524758424985294 a001 9227465/969323029*4106118243^(2/23) 6524758424985294 a001 9227465/969323029*1568397607^(1/11) 6524758424985294 a001 9227465/817138163596*599074578^(3/7) 6524758424985294 a001 9227465/2139295485799*599074578^(10/21) 6524758424985294 a001 9227465/969323029*599074578^(2/21) 6524758424985294 a001 9227465/3461452808002*599074578^(1/2) 6524758424985294 a001 9227465/5600748293801*599074578^(11/21) 6524758424985294 a001 9227465/14662949395604*599074578^(4/7) 6524758424985294 a001 9227465/1568397607*228826127^(1/8) 6524758424985294 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^81 6524758424985294 a001 9227465/969323029*228826127^(1/10) 6524758424985294 a001 9227465/2537720636*228826127^(3/20) 6524758424985294 a001 9227465/6643838879*228826127^(1/5) 6524758424985294 a001 9227465/17393796001*228826127^(1/4) 6524758424985294 a001 9227465/45537549124*228826127^(3/10) 6524758424985294 a001 9227465/119218851371*228826127^(7/20) 6524758424985294 a001 9227465/192900153618*228826127^(3/8) 6524758424985294 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^2/Lucas(41) 6524758424985294 a004 Fibonacci(41)/Lucas(35)/(1/2+sqrt(5)/2)^10 6524758424985294 a001 9227465/370248451*10749957122^(1/24) 6524758424985294 a001 9227465/370248451*4106118243^(1/23) 6524758424985294 a001 9227465/370248451*1568397607^(1/22) 6524758424985294 a001 9227465/370248451*599074578^(1/21) 6524758424985294 a001 9227465/312119004989*228826127^(2/5) 6524758424985294 a001 9227465/370248451*228826127^(1/20) 6524758424985294 a001 9227465/817138163596*228826127^(9/20) 6524758424985294 a001 4976784/440719107401*12752043^(9/17) 6524758424985294 a001 9227465/2139295485799*228826127^(1/2) 6524758424985294 a001 9227465/5600748293801*228826127^(11/20) 6524758424985294 a001 9227465/14662949395604*228826127^(3/5) 6524758424985294 a001 9227465/23725150497407*228826127^(5/8) 6524758424985294 a001 9227465/370248451*87403803^(1/19) 6524758424985294 a001 9227465/969323029*87403803^(2/19) 6524758424985294 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^79 6524758424985294 a001 9227465/2537720636*87403803^(3/19) 6524758424985294 a001 9227465/6643838879*87403803^(4/19) 6524758424985294 a001 9227465/17393796001*87403803^(5/19) 6524758424985294 a001 9227465/45537549124*87403803^(6/19) 6524758424985294 a001 9227465/119218851371*87403803^(7/19) 6524758424985294 a004 Fibonacci(39)/Lucas(35)/(1/2+sqrt(5)/2)^8 6524758424985294 a001 39088169/505019158607*12752043^(7/17) 6524758424985294 a001 9227465/312119004989*87403803^(8/19) 6524758424985294 a001 9227465/370248451*33385282^(1/18) 6524758424985294 a001 9227465/817138163596*87403803^(9/19) 6524758424985294 a001 9227465/1322157322203*87403803^(1/2) 6524758424985294 a001 9227465/2139295485799*87403803^(10/19) 6524758424985294 a001 9227465/599074578*33385282^(1/12) 6524758424985294 a001 9227465/5600748293801*87403803^(11/19) 6524758424985294 a001 9227465/14662949395604*87403803^(12/19) 6524758424985294 a001 9227465/969323029*33385282^(1/9) 6524758424985294 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^77 6524758424985295 a001 9227465/2537720636*33385282^(1/6) 6524758424985295 a001 39088169/1568397607*4870847^(1/16) 6524758424985295 a001 34111385/440719107401*12752043^(7/17) 6524758424985295 a001 24157817/119218851371*12752043^(6/17) 6524758424985295 a001 133957148/1730726404001*12752043^(7/17) 6524758424985295 a001 233802911/3020733700601*12752043^(7/17) 6524758424985295 a001 1836311903/23725150497407*12752043^(7/17) 6524758424985295 a001 567451585/7331474697802*12752043^(7/17) 6524758424985295 a001 433494437/5600748293801*12752043^(7/17) 6524758424985295 a001 165580141/2139295485799*12752043^(7/17) 6524758424985295 a001 9227465/6643838879*33385282^(2/9) 6524758424985295 a001 9227465/10749957122*33385282^(1/4) 6524758424985295 a001 31622993/408569081798*12752043^(7/17) 6524758424985295 a001 9227465/17393796001*33385282^(5/18) 6524758424985295 a001 34111385/1368706081*4870847^(1/16) 6524758424985295 a001 133957148/5374978561*4870847^(1/16) 6524758424985295 a001 233802911/9381251041*4870847^(1/16) 6524758424985295 a001 1836311903/73681302247*4870847^(1/16) 6524758424985295 a001 267084832/10716675201*4870847^(1/16) 6524758424985295 a001 12586269025/505019158607*4870847^(1/16) 6524758424985295 a001 10983760033/440719107401*4870847^(1/16) 6524758424985295 a001 43133785636/1730726404001*4870847^(1/16) 6524758424985295 a001 75283811239/3020733700601*4870847^(1/16) 6524758424985295 a001 182717648081/7331474697802*4870847^(1/16) 6524758424985295 a001 139583862445/5600748293801*4870847^(1/16) 6524758424985295 a001 53316291173/2139295485799*4870847^(1/16) 6524758424985295 a001 10182505537/408569081798*4870847^(1/16) 6524758424985295 a001 7778742049/312119004989*4870847^(1/16) 6524758424985295 a001 2971215073/119218851371*4870847^(1/16) 6524758424985295 a001 567451585/22768774562*4870847^(1/16) 6524758424985295 a001 433494437/17393796001*4870847^(1/16) 6524758424985295 a001 165580141/6643838879*4870847^(1/16) 6524758424985296 a001 9227465/45537549124*33385282^(1/3) 6524758424985296 a001 31622993/1268860318*4870847^(1/16) 6524758424985296 a004 Fibonacci(35)/Lucas(37)/(1/2+sqrt(5)/2)^2 6524758424985296 a004 Fibonacci(37)/Lucas(35)/(1/2+sqrt(5)/2)^6 6524758424985296 a001 9227465/119218851371*33385282^(7/18) 6524758424985296 a001 9227465/370248451*12752043^(1/17) 6524758424985296 a001 7465176/1730726404001*12752043^(10/17) 6524758424985296 a001 9227465/192900153618*33385282^(5/12) 6524758424985296 a001 9227465/312119004989*33385282^(4/9) 6524758424985296 a001 39088169/1322157322203*12752043^(8/17) 6524758424985297 a001 9227465/817138163596*33385282^(1/2) 6524758424985297 a001 9227465/2139295485799*33385282^(5/9) 6524758424985297 a001 9227465/3461452808002*33385282^(7/12) 6524758424985297 a001 6765/228826126*12752043^(8/17) 6524758424985297 a001 24157817/312119004989*12752043^(7/17) 6524758424985297 a001 267914296/9062201101803*12752043^(8/17) 6524758424985297 a001 701408733/23725150497407*12752043^(8/17) 6524758424985297 a001 433494437/14662949395604*12752043^(8/17) 6524758424985297 a001 9227465/5600748293801*33385282^(11/18) 6524758424985297 a001 165580141/5600748293801*12752043^(8/17) 6524758424985297 a001 3524578/23725150497407*7881196^(9/11) 6524758424985297 a001 39088169/2139295485799*12752043^(1/2) 6524758424985297 a001 63245986/2139295485799*12752043^(8/17) 6524758424985297 a001 9227465/14662949395604*33385282^(2/3) 6524758424985298 a001 24157817/969323029*4870847^(1/16) 6524758424985298 a001 102334155/5600748293801*12752043^(1/2) 6524758424985298 a001 10946/599074579*12752043^(1/2) 6524758424985298 a001 9227465/969323029*12752043^(2/17) 6524758424985298 a001 433494437/23725150497407*12752043^(1/2) 6524758424985298 a001 4976784/3020733700601*12752043^(11/17) 6524758424985298 a001 165580141/9062201101803*12752043^(1/2) 6524758424985299 a001 39088169/3461452808002*12752043^(9/17) 6524758424985299 a001 31622993/1730726404001*12752043^(1/2) 6524758424985299 a001 34111385/3020733700601*12752043^(9/17) 6524758424985299 a001 24157817/817138163596*12752043^(8/17) 6524758424985299 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^75 6524758424985299 a001 267914296/23725150497407*12752043^(9/17) 6524758424985300 a001 165580141/14662949395604*12752043^(9/17) 6524758424985300 a001 63245986/5600748293801*12752043^(9/17) 6524758424985301 a001 24157817/1322157322203*12752043^(1/2) 6524758424985301 a001 9227465/2537720636*12752043^(3/17) 6524758424985301 a001 14930352/23725150497407*12752043^(12/17) 6524758424985301 a001 39088169/9062201101803*12752043^(10/17) 6524758424985302 a001 102334155/23725150497407*12752043^(10/17) 6524758424985302 a001 24157817/2139295485799*12752043^(9/17) 6524758424985302 a001 31622993/7331474697802*12752043^(10/17) 6524758424985303 a001 9227465/6643838879*12752043^(4/17) 6524758424985303 a001 39088169/23725150497407*12752043^(11/17) 6524758424985304 a001 24157817/5600748293801*12752043^(10/17) 6524758424985305 a001 9227465/17393796001*12752043^(5/17) 6524758424985306 a001 24157817/14662949395604*12752043^(11/17) 6524758424985307 a001 14930352/1568397607*4870847^(1/8) 6524758424985307 a001 5702887/4106118243*4870847^(1/4) 6524758424985307 a001 3524578/5600748293801*7881196^(8/11) 6524758424985308 a001 9227465/45537549124*12752043^(6/17) 6524758424985309 a004 Fibonacci(35)/Lucas(35)/(1/2+sqrt(5)/2)^4 6524758424985310 a001 9227465/119218851371*12752043^(7/17) 6524758424985311 a001 9227465/370248451*4870847^(1/16) 6524758424985312 a001 39088169/4106118243*4870847^(1/8) 6524758424985312 a001 9227465/312119004989*12752043^(8/17) 6524758424985313 a001 102334155/10749957122*4870847^(1/8) 6524758424985313 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^74 6524758424985313 a001 267914296/28143753123*4870847^(1/8) 6524758424985313 a001 701408733/73681302247*4870847^(1/8) 6524758424985313 a001 1836311903/192900153618*4870847^(1/8) 6524758424985313 a001 102287808/10745088481*4870847^(1/8) 6524758424985313 a001 12586269025/1322157322203*4870847^(1/8) 6524758424985313 a001 32951280099/3461452808002*4870847^(1/8) 6524758424985313 a001 86267571272/9062201101803*4870847^(1/8) 6524758424985313 a001 225851433717/23725150497407*4870847^(1/8) 6524758424985313 a001 139583862445/14662949395604*4870847^(1/8) 6524758424985313 a001 53316291173/5600748293801*4870847^(1/8) 6524758424985313 a001 20365011074/2139295485799*4870847^(1/8) 6524758424985313 a001 7778742049/817138163596*4870847^(1/8) 6524758424985313 a001 2971215073/312119004989*4870847^(1/8) 6524758424985313 a001 1134903170/119218851371*4870847^(1/8) 6524758424985313 a001 433494437/45537549124*4870847^(1/8) 6524758424985313 a001 165580141/17393796001*4870847^(1/8) 6524758424985313 a001 63245986/6643838879*4870847^(1/8) 6524758424985313 a001 3524578/2139295485799*7881196^(2/3) 6524758424985314 a001 9227465/505019158607*12752043^(1/2) 6524758424985315 a001 9227465/817138163596*12752043^(9/17) 6524758424985315 a001 24157817/2537720636*4870847^(1/8) 6524758424985316 a001 3524578/1322157322203*7881196^(7/11) 6524758424985317 a001 9227465/2139295485799*12752043^(10/17) 6524758424985317 a001 2178309/370248451*1860498^(1/6) 6524758424985318 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^76 6524758424985318 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^78 6524758424985318 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^80 6524758424985318 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^82 6524758424985318 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^84 6524758424985318 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^86 6524758424985318 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^88 6524758424985318 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^90 6524758424985318 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^92 6524758424985318 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^94 6524758424985318 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^96 6524758424985318 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^98 6524758424985318 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^100 6524758424985318 a001 2/5702887*(1/2+1/2*5^(1/2))^30 6524758424985318 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^99 6524758424985318 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^97 6524758424985318 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^95 6524758424985318 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^93 6524758424985318 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^91 6524758424985318 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^89 6524758424985318 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^87 6524758424985318 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^85 6524758424985318 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^83 6524758424985318 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^81 6524758424985318 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^79 6524758424985319 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^77 6524758424985319 a001 12752043/39088169*8^(1/3) 6524758424985320 a001 9227465/5600748293801*12752043^(11/17) 6524758424985321 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^75 6524758424985322 a001 9227465/14662949395604*12752043^(12/17) 6524758424985324 a001 4976784/1368706081*4870847^(3/16) 6524758424985324 a001 5702887/10749957122*4870847^(5/16) 6524758424985326 a001 3524578/312119004989*7881196^(6/11) 6524758424985328 a001 9227465/969323029*4870847^(1/8) 6524758424985329 a001 39088169/10749957122*4870847^(3/16) 6524758424985330 a001 831985/228811001*4870847^(3/16) 6524758424985330 a001 267914296/73681302247*4870847^(3/16) 6524758424985330 a001 233802911/64300051206*4870847^(3/16) 6524758424985330 a001 1836311903/505019158607*4870847^(3/16) 6524758424985330 a001 1602508992/440719107401*4870847^(3/16) 6524758424985330 a001 12586269025/3461452808002*4870847^(3/16) 6524758424985330 a001 10983760033/3020733700601*4870847^(3/16) 6524758424985330 a001 86267571272/23725150497407*4870847^(3/16) 6524758424985330 a001 53316291173/14662949395604*4870847^(3/16) 6524758424985330 a001 20365011074/5600748293801*4870847^(3/16) 6524758424985330 a001 7778742049/2139295485799*4870847^(3/16) 6524758424985330 a001 2971215073/817138163596*4870847^(3/16) 6524758424985330 a001 1134903170/312119004989*4870847^(3/16) 6524758424985330 a001 433494437/119218851371*4870847^(3/16) 6524758424985330 a001 165580141/45537549124*4870847^(3/16) 6524758424985330 a001 63245986/17393796001*4870847^(3/16) 6524758424985332 a001 24157817/6643838879*4870847^(3/16) 6524758424985334 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^73 6524758424985336 a001 3524578/73681302247*7881196^(5/11) 6524758424985341 a001 7465176/5374978561*4870847^(1/4) 6524758424985341 a001 5702887/28143753123*4870847^(3/8) 6524758424985343 a004 Fibonacci(33)/Lucas(34)/(1/2+sqrt(5)/2)^3 6524758424985343 a004 Fibonacci(34)/Lucas(33)/(1/2+sqrt(5)/2)^5 6524758424985345 a001 3524578/17393796001*7881196^(4/11) 6524758424985345 a001 9227465/2537720636*4870847^(3/16) 6524758424985346 a001 39088169/28143753123*4870847^(1/4) 6524758424985347 a001 14619165/10525900321*4870847^(1/4) 6524758424985347 a001 133957148/96450076809*4870847^(1/4) 6524758424985347 a001 701408733/505019158607*4870847^(1/4) 6524758424985347 a001 1836311903/1322157322203*4870847^(1/4) 6524758424985347 a001 14930208/10749853441*4870847^(1/4) 6524758424985347 a001 12586269025/9062201101803*4870847^(1/4) 6524758424985347 a001 32951280099/23725150497407*4870847^(1/4) 6524758424985347 a001 10182505537/7331474697802*4870847^(1/4) 6524758424985347 a001 7778742049/5600748293801*4870847^(1/4) 6524758424985347 a001 2971215073/2139295485799*4870847^(1/4) 6524758424985347 a001 567451585/408569081798*4870847^(1/4) 6524758424985347 a001 433494437/312119004989*4870847^(1/4) 6524758424985347 a001 165580141/119218851371*4870847^(1/4) 6524758424985347 a001 31622993/22768774562*4870847^(1/4) 6524758424985348 a001 1762289/5374978561*7881196^(1/3) 6524758424985349 a001 24157817/17393796001*4870847^(1/4) 6524758424985355 a001 3524578/4106118243*7881196^(3/11) 6524758424985358 a001 4976784/9381251041*4870847^(5/16) 6524758424985358 a001 5702887/73681302247*4870847^(7/16) 6524758424985362 a001 9227465/6643838879*4870847^(1/4) 6524758424985363 a001 39088169/73681302247*4870847^(5/16) 6524758424985364 a001 5702887/228826127*1860498^(1/15) 6524758424985364 a001 34111385/64300051206*4870847^(5/16) 6524758424985364 a001 267914296/505019158607*4870847^(5/16) 6524758424985364 a001 233802911/440719107401*4870847^(5/16) 6524758424985364 a001 1836311903/3461452808002*4870847^(5/16) 6524758424985364 a001 1602508992/3020733700601*4870847^(5/16) 6524758424985364 a001 12586269025/23725150497407*4870847^(5/16) 6524758424985364 a001 7778742049/14662949395604*4870847^(5/16) 6524758424985364 a001 2971215073/5600748293801*4870847^(5/16) 6524758424985364 a001 1134903170/2139295485799*4870847^(5/16) 6524758424985364 a001 433494437/817138163596*4870847^(5/16) 6524758424985364 a001 3524578/969323029*7881196^(2/11) 6524758424985364 a001 165580141/312119004989*4870847^(5/16) 6524758424985365 a001 63245986/119218851371*4870847^(5/16) 6524758424985366 a001 24157817/45537549124*4870847^(5/16) 6524758424985368 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^72 6524758424985372 a001 3524578/9062201101803*20633239^(5/7) 6524758424985374 a001 3524578/228826127*7881196^(1/11) 6524758424985374 a001 3524578/1322157322203*20633239^(3/5) 6524758424985375 a001 1762289/408569081798*20633239^(4/7) 6524758424985376 a001 14930352/73681302247*4870847^(3/8) 6524758424985376 a001 5702887/192900153618*4870847^(1/2) 6524758424985377 a001 3524578/73681302247*20633239^(3/7) 6524758424985377 a001 1762289/22768774562*20633239^(2/5) 6524758424985377 a004 Fibonacci(33)/Lucas(36)/(1/2+sqrt(5)/2) 6524758424985377 a004 Fibonacci(36)/Lucas(33)/(1/2+sqrt(5)/2)^7 6524758424985379 a001 3524578/6643838879*20633239^(2/7) 6524758424985380 a001 9227465/17393796001*4870847^(5/16) 6524758424985380 a001 726103/199691526*1860498^(1/5) 6524758424985380 a001 3524578/1568397607*20633239^(1/5) 6524758424985381 a001 39088169/192900153618*4870847^(3/8) 6524758424985381 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^74 6524758424985381 a001 1762289/299537289*20633239^(1/7) 6524758424985381 a001 102334155/505019158607*4870847^(3/8) 6524758424985381 a001 267914296/1322157322203*4870847^(3/8) 6524758424985381 a001 701408733/3461452808002*4870847^(3/8) 6524758424985381 a001 1836311903/9062201101803*4870847^(3/8) 6524758424985381 a001 4807526976/23725150497407*4870847^(3/8) 6524758424985381 a001 2971215073/14662949395604*4870847^(3/8) 6524758424985381 a001 1134903170/5600748293801*4870847^(3/8) 6524758424985381 a001 433494437/2139295485799*4870847^(3/8) 6524758424985381 a001 165580141/817138163596*4870847^(3/8) 6524758424985382 a001 63245986/312119004989*4870847^(3/8) 6524758424985382 a004 Fibonacci(33)*(1/2+sqrt(5)/2)/Lucas(38) 6524758424985382 a004 Fibonacci(38)/Lucas(33)/(1/2+sqrt(5)/2)^9 6524758424985383 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^76 6524758424985383 a001 3524578/23725150497407*141422324^(9/13) 6524758424985383 a001 1762289/7331474697802*141422324^(2/3) 6524758424985383 a001 3524578/5600748293801*141422324^(8/13) 6524758424985383 a001 3524578/1322157322203*141422324^(7/13) 6524758424985383 a001 3524578/312119004989*141422324^(6/13) 6524758424985383 a001 3524578/228826127*141422324^(1/13) 6524758424985383 a001 3524578/73681302247*141422324^(5/13) 6524758424985383 a001 3524578/228826127*2537720636^(1/15) 6524758424985383 a001 3524578/228826127*45537549124^(1/17) 6524758424985383 a001 3524578/228826127*14662949395604^(1/21) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^3/Lucas(40) 6524758424985383 a004 Fibonacci(40)/Lucas(33)/(1/2+sqrt(5)/2)^11 6524758424985383 a001 3524578/228826127*192900153618^(1/18) 6524758424985383 a001 3524578/228826127*10749957122^(1/16) 6524758424985383 a001 3524578/228826127*599074578^(1/14) 6524758424985383 a001 3524578/28143753123*141422324^(1/3) 6524758424985383 a001 3524578/17393796001*141422324^(4/13) 6524758424985383 a001 3524578/4106118243*141422324^(3/13) 6524758424985383 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^78 6524758424985383 a001 3524578/969323029*141422324^(2/13) 6524758424985383 a001 1762289/299537289*2537720636^(1/9) 6524758424985383 a001 1762289/299537289*312119004989^(1/11) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^5/Lucas(42) 6524758424985383 a004 Fibonacci(42)/Lucas(33)/(1/2+sqrt(5)/2)^13 6524758424985383 a001 1762289/299537289*28143753123^(1/10) 6524758424985383 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^80 6524758424985383 a001 3524578/1568397607*17393796001^(1/7) 6524758424985383 a001 3524578/1568397607*14662949395604^(1/9) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^7/Lucas(44) 6524758424985383 a004 Fibonacci(44)/Lucas(33)/(1/2+sqrt(5)/2)^15 6524758424985383 a001 1762289/299537289*228826127^(1/8) 6524758424985383 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^82 6524758424985383 a001 3524578/23725150497407*2537720636^(3/5) 6524758424985383 a001 3524578/4106118243*2537720636^(1/5) 6524758424985383 a001 3524578/9062201101803*2537720636^(5/9) 6524758424985383 a001 3524578/5600748293801*2537720636^(8/15) 6524758424985383 a001 3524578/1322157322203*2537720636^(7/15) 6524758424985383 a001 1762289/408569081798*2537720636^(4/9) 6524758424985383 a001 3524578/312119004989*2537720636^(2/5) 6524758424985383 a001 3524578/4106118243*45537549124^(3/17) 6524758424985383 a001 3524578/4106118243*817138163596^(3/19) 6524758424985383 a001 3524578/4106118243*14662949395604^(1/7) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^9/Lucas(46) 6524758424985383 a004 Fibonacci(46)/Lucas(33)/(1/2+sqrt(5)/2)^17 6524758424985383 a001 3524578/4106118243*192900153618^(1/6) 6524758424985383 a001 3524578/4106118243*10749957122^(3/16) 6524758424985383 a001 3524578/73681302247*2537720636^(1/3) 6524758424985383 a001 3524578/17393796001*2537720636^(4/15) 6524758424985383 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^84 6524758424985383 a001 3524578/6643838879*2537720636^(2/9) 6524758424985383 a001 1762289/5374978561*312119004989^(1/5) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^11/Lucas(48) 6524758424985383 a004 Fibonacci(48)/Lucas(33)/(1/2+sqrt(5)/2)^19 6524758424985383 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^86 6524758424985383 a001 3524578/1322157322203*17393796001^(3/7) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^13/Lucas(50) 6524758424985383 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^21 6524758424985383 a001 3524578/28143753123*73681302247^(1/4) 6524758424985383 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^88 6524758424985383 a001 1762289/22768774562*17393796001^(2/7) 6524758424985383 a001 3524578/73681302247*45537549124^(5/17) 6524758424985383 a001 3524578/23725150497407*45537549124^(9/17) 6524758424985383 a001 3524578/5600748293801*45537549124^(8/17) 6524758424985383 a001 3524578/1322157322203*45537549124^(7/17) 6524758424985383 a001 1762289/96450076809*45537549124^(1/3) 6524758424985383 a001 3524578/73681302247*312119004989^(3/11) 6524758424985383 a001 3524578/73681302247*14662949395604^(5/21) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^15/Lucas(52) 6524758424985383 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^23 6524758424985383 a001 3524578/73681302247*192900153618^(5/18) 6524758424985383 a001 3524578/312119004989*45537549124^(6/17) 6524758424985383 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^90 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^17/Lucas(54) 6524758424985383 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^25 6524758424985383 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^92 6524758424985383 a001 3524578/9062201101803*312119004989^(5/11) 6524758424985383 a001 3524578/505019158607*817138163596^(1/3) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(56) 6524758424985383 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^27 6524758424985383 a001 3524578/2139295485799*312119004989^(2/5) 6524758424985383 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^94 6524758424985383 a001 3524578/1322157322203*14662949395604^(1/3) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(58) 6524758424985383 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^29 6524758424985383 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^96 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(60) 6524758424985383 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^31 6524758424985383 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^98 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(62) 6524758424985383 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^33 6524758424985383 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^100 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(64) 6524758424985383 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^35 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(66) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(68) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(70) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(72) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(74) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(76) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(78) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(80) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(82) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(84) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(86) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(88) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(90) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(92) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(94) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(96) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(98) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(99) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(100) 6524758424985383 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^37 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(97) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(95) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(93) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(91) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(89) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(87) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(85) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(83) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(81) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(79) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(77) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(75) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(73) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(71) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(69) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(67) 6524758424985383 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^39 6524758424985383 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^41 6524758424985383 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^43 6524758424985383 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^45 6524758424985383 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^47 6524758424985383 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^49 6524758424985383 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^51 6524758424985383 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^53 6524758424985383 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^55 6524758424985383 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^57 6524758424985383 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^59 6524758424985383 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^61 6524758424985383 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^63 6524758424985383 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^65 6524758424985383 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^67 6524758424985383 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^69 6524758424985383 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^71 6524758424985383 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^70 6524758424985383 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^68 6524758424985383 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^66 6524758424985383 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^64 6524758424985383 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^62 6524758424985383 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^60 6524758424985383 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^58 6524758424985383 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^56 6524758424985383 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^54 6524758424985383 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^52 6524758424985383 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^50 6524758424985383 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^48 6524758424985383 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^46 6524758424985383 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^44 6524758424985383 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^42 6524758424985383 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^40 6524758424985383 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^38 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(65) 6524758424985383 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^36 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(63) 6524758424985383 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^34 6524758424985383 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^99 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(61) 6524758424985383 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^32 6524758424985383 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^97 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(59) 6524758424985383 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^30 6524758424985383 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^95 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(57) 6524758424985383 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^28 6524758424985383 a001 1762289/408569081798*23725150497407^(5/16) 6524758424985383 a001 1762289/408569081798*505019158607^(5/14) 6524758424985383 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^93 6524758424985383 a001 3524578/1322157322203*192900153618^(7/18) 6524758424985383 a001 3524578/312119004989*14662949395604^(2/7) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^18/Lucas(55) 6524758424985383 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^26 6524758424985383 a001 3524578/5600748293801*192900153618^(4/9) 6524758424985383 a001 3524578/23725150497407*192900153618^(1/2) 6524758424985383 a001 3524578/312119004989*192900153618^(1/3) 6524758424985383 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^91 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^16/Lucas(53) 6524758424985383 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^24 6524758424985383 a001 1762289/408569081798*73681302247^(5/13) 6524758424985383 a001 3524578/5600748293801*73681302247^(6/13) 6524758424985383 a001 1762289/7331474697802*73681302247^(1/2) 6524758424985383 a001 3524578/119218851371*73681302247^(4/13) 6524758424985383 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^89 6524758424985383 a001 3524578/73681302247*28143753123^(3/10) 6524758424985383 a001 1762289/22768774562*14662949395604^(2/9) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^14/Lucas(51) 6524758424985383 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^22 6524758424985383 a001 1762289/408569081798*28143753123^(2/5) 6524758424985383 a001 3524578/9062201101803*28143753123^(1/2) 6524758424985383 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^87 6524758424985383 a001 3524578/73681302247*10749957122^(5/16) 6524758424985383 a001 3524578/119218851371*10749957122^(1/3) 6524758424985383 a001 1762289/22768774562*10749957122^(7/24) 6524758424985383 a001 3524578/17393796001*45537549124^(4/17) 6524758424985383 a001 3524578/312119004989*10749957122^(3/8) 6524758424985383 a001 3524578/17393796001*817138163596^(4/19) 6524758424985383 a001 3524578/17393796001*14662949395604^(4/21) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^12/Lucas(49) 6524758424985383 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2)^20 6524758424985383 a001 3524578/17393796001*192900153618^(2/9) 6524758424985383 a001 3524578/17393796001*73681302247^(3/13) 6524758424985383 a001 1762289/408569081798*10749957122^(5/12) 6524758424985383 a001 3524578/1322157322203*10749957122^(7/16) 6524758424985383 a001 3524578/2139295485799*10749957122^(11/24) 6524758424985383 a001 3524578/5600748293801*10749957122^(1/2) 6524758424985383 a001 1762289/7331474697802*10749957122^(13/24) 6524758424985383 a001 3524578/23725150497407*10749957122^(9/16) 6524758424985383 a001 3524578/17393796001*10749957122^(1/4) 6524758424985383 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^85 6524758424985383 a001 1762289/22768774562*4106118243^(7/23) 6524758424985383 a001 3524578/17393796001*4106118243^(6/23) 6524758424985383 a001 3524578/119218851371*4106118243^(8/23) 6524758424985383 a001 3524578/6643838879*312119004989^(2/11) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^10/Lucas(47) 6524758424985383 a004 Fibonacci(47)/Lucas(33)/(1/2+sqrt(5)/2)^18 6524758424985383 a001 3524578/6643838879*28143753123^(1/5) 6524758424985383 a001 3524578/312119004989*4106118243^(9/23) 6524758424985383 a001 3524578/6643838879*10749957122^(5/24) 6524758424985383 a001 1762289/408569081798*4106118243^(10/23) 6524758424985383 a001 3524578/2139295485799*4106118243^(11/23) 6524758424985383 a001 1762289/1730726404001*4106118243^(1/2) 6524758424985383 a001 3524578/5600748293801*4106118243^(12/23) 6524758424985383 a001 1762289/7331474697802*4106118243^(13/23) 6524758424985383 a001 3524578/6643838879*4106118243^(5/23) 6524758424985383 a001 3524578/1568397607*599074578^(1/6) 6524758424985383 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^83 6524758424985383 a001 1762289/5374978561*1568397607^(1/4) 6524758424985383 a001 3524578/17393796001*1568397607^(3/11) 6524758424985383 a001 3524578/6643838879*1568397607^(5/22) 6524758424985383 a001 1762289/22768774562*1568397607^(7/22) 6524758424985383 a001 3524578/119218851371*1568397607^(4/11) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^8/Lucas(45) 6524758424985383 a001 1762289/1268860318*23725150497407^(1/8) 6524758424985383 a004 Fibonacci(45)/Lucas(33)/(1/2+sqrt(5)/2)^16 6524758424985383 a001 1762289/1268860318*505019158607^(1/7) 6524758424985383 a001 1762289/1268860318*73681302247^(2/13) 6524758424985383 a001 1762289/1268860318*10749957122^(1/6) 6524758424985383 a001 1762289/1268860318*4106118243^(4/23) 6524758424985383 a001 3524578/312119004989*1568397607^(9/22) 6524758424985383 a001 1762289/408569081798*1568397607^(5/11) 6524758424985383 a001 3524578/2139295485799*1568397607^(1/2) 6524758424985383 a001 3524578/5600748293801*1568397607^(6/11) 6524758424985383 a001 1762289/1268860318*1568397607^(2/11) 6524758424985383 a001 1762289/7331474697802*1568397607^(13/22) 6524758424985383 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^81 6524758424985383 a001 3524578/4106118243*599074578^(3/14) 6524758424985383 a001 1762289/1268860318*599074578^(4/21) 6524758424985383 a001 3524578/6643838879*599074578^(5/21) 6524758424985383 a001 3524578/17393796001*599074578^(2/7) 6524758424985383 a001 1762289/22768774562*599074578^(1/3) 6524758424985383 a001 3524578/73681302247*599074578^(5/14) 6524758424985383 a001 3524578/969323029*2537720636^(2/15) 6524758424985383 a001 3524578/119218851371*599074578^(8/21) 6524758424985383 a001 3524578/969323029*45537549124^(2/17) 6524758424985383 a001 3524578/969323029*14662949395604^(2/21) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^6/Lucas(43) 6524758424985383 a004 Fibonacci(43)/Lucas(33)/(1/2+sqrt(5)/2)^14 6524758424985383 a001 3524578/969323029*10749957122^(1/8) 6524758424985383 a001 3524578/969323029*4106118243^(3/23) 6524758424985383 a001 3524578/969323029*1568397607^(3/22) 6524758424985383 a001 3524578/312119004989*599074578^(3/7) 6524758424985383 a001 1762289/408569081798*599074578^(10/21) 6524758424985383 a001 3524578/1322157322203*599074578^(1/2) 6524758424985383 a001 3524578/2139295485799*599074578^(11/21) 6524758424985383 a001 3524578/969323029*599074578^(1/7) 6524758424985383 a001 3524578/5600748293801*599074578^(4/7) 6524758424985383 a001 1762289/7331474697802*599074578^(13/21) 6524758424985383 a001 3524578/23725150497407*599074578^(9/14) 6524758424985383 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^79 6524758424985383 a001 3524578/969323029*228826127^(3/20) 6524758424985383 a001 1762289/1268860318*228826127^(1/5) 6524758424985383 a001 3524578/6643838879*228826127^(1/4) 6524758424985383 a001 3524578/17393796001*228826127^(3/10) 6524758424985383 a001 1762289/22768774562*228826127^(7/20) 6524758424985383 a001 3524578/73681302247*228826127^(3/8) 6524758424985383 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^4/Lucas(41) 6524758424985383 a001 3524578/370248451*23725150497407^(1/16) 6524758424985383 a004 Fibonacci(41)/Lucas(33)/(1/2+sqrt(5)/2)^12 6524758424985383 a001 3524578/370248451*73681302247^(1/13) 6524758424985383 a001 3524578/370248451*10749957122^(1/12) 6524758424985383 a001 3524578/370248451*4106118243^(2/23) 6524758424985383 a001 3524578/370248451*1568397607^(1/11) 6524758424985383 a001 3524578/370248451*599074578^(2/21) 6524758424985383 a001 3524578/119218851371*228826127^(2/5) 6524758424985383 a001 3524578/312119004989*228826127^(9/20) 6524758424985383 a001 3524578/370248451*228826127^(1/10) 6524758424985383 a001 1762289/408569081798*228826127^(1/2) 6524758424985383 a001 3524578/2139295485799*228826127^(11/20) 6524758424985383 a001 3524578/5600748293801*228826127^(3/5) 6524758424985383 a001 3524578/9062201101803*228826127^(5/8) 6524758424985383 a001 1762289/7331474697802*228826127^(13/20) 6524758424985383 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^77 6524758424985383 a001 3524578/370248451*87403803^(2/19) 6524758424985383 a001 3524578/969323029*87403803^(3/19) 6524758424985383 a001 1762289/1268860318*87403803^(4/19) 6524758424985384 a001 3524578/6643838879*87403803^(5/19) 6524758424985384 a001 3524578/17393796001*87403803^(6/19) 6524758424985384 a001 1762289/22768774562*87403803^(7/19) 6524758424985384 a001 24157817/119218851371*4870847^(3/8) 6524758424985384 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^2/Lucas(39) 6524758424985384 a004 Fibonacci(39)/Lucas(33)/(1/2+sqrt(5)/2)^10 6524758424985384 a001 1762289/70711162*10749957122^(1/24) 6524758424985384 a001 1762289/70711162*4106118243^(1/23) 6524758424985384 a001 1762289/70711162*1568397607^(1/22) 6524758424985384 a001 1762289/70711162*599074578^(1/21) 6524758424985384 a001 1762289/70711162*228826127^(1/20) 6524758424985384 a001 3524578/119218851371*87403803^(8/19) 6524758424985384 a001 3524578/228826127*33385282^(1/12) 6524758424985384 a001 1762289/70711162*87403803^(1/19) 6524758424985384 a001 3524578/312119004989*87403803^(9/19) 6524758424985384 a001 3524578/505019158607*87403803^(1/2) 6524758424985384 a001 1762289/408569081798*87403803^(10/19) 6524758424985384 a001 3524578/2139295485799*87403803^(11/19) 6524758424985384 a001 3524578/5600748293801*87403803^(12/19) 6524758424985384 a001 1762289/7331474697802*87403803^(13/19) 6524758424985384 a001 1762289/70711162*33385282^(1/18) 6524758424985384 a001 3524578/370248451*33385282^(1/9) 6524758424985384 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^75 6524758424985384 a001 3524578/969323029*33385282^(1/6) 6524758424985385 a001 1762289/1268860318*33385282^(2/9) 6524758424985385 a001 3524578/4106118243*33385282^(1/4) 6524758424985385 a001 3524578/6643838879*33385282^(5/18) 6524758424985385 a001 3524578/17393796001*33385282^(1/3) 6524758424985386 a004 Fibonacci(37)/Lucas(33)/(1/2+sqrt(5)/2)^8 6524758424985386 a001 1762289/22768774562*33385282^(7/18) 6524758424985386 a001 3524578/73681302247*33385282^(5/12) 6524758424985386 a001 3524578/119218851371*33385282^(4/9) 6524758424985386 a001 1762289/70711162*12752043^(1/17) 6524758424985386 a001 3524578/312119004989*33385282^(1/2) 6524758424985387 a001 1762289/408569081798*33385282^(5/9) 6524758424985387 a001 3524578/1322157322203*33385282^(7/12) 6524758424985387 a001 3524578/2139295485799*33385282^(11/18) 6524758424985387 a001 3524578/5600748293801*33385282^(2/3) 6524758424985388 a001 1762289/7331474697802*33385282^(13/18) 6524758424985388 a001 3524578/23725150497407*33385282^(3/4) 6524758424985388 a001 3524578/370248451*12752043^(2/17) 6524758424985389 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^73 6524758424985390 a001 3524578/969323029*12752043^(3/17) 6524758424985393 a001 2584/33385281*4870847^(7/16) 6524758424985393 a001 1762289/1268860318*12752043^(4/17) 6524758424985393 a001 5702887/505019158607*4870847^(9/16) 6524758424985395 a001 3524578/6643838879*12752043^(5/17) 6524758424985397 a001 9227465/45537549124*4870847^(3/8) 6524758424985397 a001 3524578/17393796001*12752043^(6/17) 6524758424985398 a001 39088169/505019158607*4870847^(7/16) 6524758424985398 a001 829464/33281921*1860498^(1/15) 6524758424985398 a001 34111385/440719107401*4870847^(7/16) 6524758424985399 a001 133957148/1730726404001*4870847^(7/16) 6524758424985399 a001 233802911/3020733700601*4870847^(7/16) 6524758424985399 a001 1836311903/23725150497407*4870847^(7/16) 6524758424985399 a001 567451585/7331474697802*4870847^(7/16) 6524758424985399 a001 433494437/5600748293801*4870847^(7/16) 6524758424985399 a001 165580141/2139295485799*4870847^(7/16) 6524758424985399 a004 Fibonacci(33)/Lucas(35)/(1/2+sqrt(5)/2)^2 6524758424985399 a004 Fibonacci(35)/Lucas(33)/(1/2+sqrt(5)/2)^6 6524758424985399 a001 31622993/408569081798*4870847^(7/16) 6524758424985400 a001 1762289/22768774562*12752043^(7/17) 6524758424985401 a001 24157817/312119004989*4870847^(7/16) 6524758424985401 a001 1762289/70711162*4870847^(1/16) 6524758424985402 a001 3524578/119218851371*12752043^(8/17) 6524758424985403 a001 39088169/1568397607*1860498^(1/15) 6524758424985403 a001 1762289/96450076809*12752043^(1/2) 6524758424985404 a001 34111385/1368706081*1860498^(1/15) 6524758424985404 a001 133957148/5374978561*1860498^(1/15) 6524758424985404 a001 233802911/9381251041*1860498^(1/15) 6524758424985404 a001 1836311903/73681302247*1860498^(1/15) 6524758424985404 a001 267084832/10716675201*1860498^(1/15) 6524758424985404 a001 12586269025/505019158607*1860498^(1/15) 6524758424985404 a001 10983760033/440719107401*1860498^(1/15) 6524758424985404 a001 43133785636/1730726404001*1860498^(1/15) 6524758424985404 a001 75283811239/3020733700601*1860498^(1/15) 6524758424985404 a001 182717648081/7331474697802*1860498^(1/15) 6524758424985404 a001 139583862445/5600748293801*1860498^(1/15) 6524758424985404 a001 53316291173/2139295485799*1860498^(1/15) 6524758424985404 a001 10182505537/408569081798*1860498^(1/15) 6524758424985404 a001 7778742049/312119004989*1860498^(1/15) 6524758424985404 a001 2971215073/119218851371*1860498^(1/15) 6524758424985404 a001 567451585/22768774562*1860498^(1/15) 6524758424985404 a001 433494437/17393796001*1860498^(1/15) 6524758424985404 a001 165580141/6643838879*1860498^(1/15) 6524758424985404 a001 31622993/1268860318*1860498^(1/15) 6524758424985405 a001 3524578/312119004989*12752043^(9/17) 6524758424985406 a001 24157817/969323029*1860498^(1/15) 6524758424985407 a001 1762289/408569081798*12752043^(10/17) 6524758424985409 a001 3524578/2139295485799*12752043^(11/17) 6524758424985410 a001 14930352/505019158607*4870847^(1/2) 6524758424985410 a001 5702887/1322157322203*4870847^(5/8) 6524758424985412 a001 3524578/5600748293801*12752043^(12/17) 6524758424985414 a001 9227465/119218851371*4870847^(7/16) 6524758424985414 a001 1762289/7331474697802*12752043^(13/17) 6524758424985415 a001 39088169/1322157322203*4870847^(1/2) 6524758424985416 a001 6765/228826126*4870847^(1/2) 6524758424985416 a001 267914296/9062201101803*4870847^(1/2) 6524758424985416 a001 701408733/23725150497407*4870847^(1/2) 6524758424985416 a001 433494437/14662949395604*4870847^(1/2) 6524758424985416 a001 165580141/5600748293801*4870847^(1/2) 6524758424985416 a001 63245986/2139295485799*4870847^(1/2) 6524758424985418 a001 3524578/370248451*4870847^(1/8) 6524758424985418 a001 24157817/817138163596*4870847^(1/2) 6524758424985419 a001 9227465/370248451*1860498^(1/15) 6524758424985423 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^71 6524758424985427 a001 5702887/370248451*1860498^(1/10) 6524758424985427 a001 4976784/440719107401*4870847^(9/16) 6524758424985427 a001 5702887/3461452808002*4870847^(11/16) 6524758424985431 a001 9227465/312119004989*4870847^(1/2) 6524758424985432 a001 39088169/3461452808002*4870847^(9/16) 6524758424985433 a001 34111385/3020733700601*4870847^(9/16) 6524758424985433 a001 267914296/23725150497407*4870847^(9/16) 6524758424985433 a001 165580141/14662949395604*4870847^(9/16) 6524758424985433 a001 63245986/5600748293801*4870847^(9/16) 6524758424985435 a001 3524578/969323029*4870847^(3/16) 6524758424985435 a001 24157817/2139295485799*4870847^(9/16) 6524758424985444 a001 7465176/1730726404001*4870847^(5/8) 6524758424985444 a001 5702887/9062201101803*4870847^(3/4) 6524758424985448 a001 9227465/817138163596*4870847^(9/16) 6524758424985449 a001 39088169/9062201101803*4870847^(5/8) 6524758424985450 a001 102334155/23725150497407*4870847^(5/8) 6524758424985450 a001 31622993/7331474697802*4870847^(5/8) 6524758424985452 a001 1762289/1268860318*4870847^(1/4) 6524758424985452 a001 24157817/5600748293801*4870847^(5/8) 6524758424985461 a001 14930352/969323029*1860498^(1/10) 6524758424985461 a001 4976784/3020733700601*4870847^(11/16) 6524758424985462 a001 5702887/23725150497407*4870847^(13/16) 6524758424985465 a001 9227465/2139295485799*4870847^(5/8) 6524758424985466 a001 39088169/2537720636*1860498^(1/10) 6524758424985466 a001 39088169/23725150497407*4870847^(11/16) 6524758424985467 a001 102334155/6643838879*1860498^(1/10) 6524758424985467 a001 9238424/599786069*1860498^(1/10) 6524758424985467 a001 701408733/45537549124*1860498^(1/10) 6524758424985467 a001 1836311903/119218851371*1860498^(1/10) 6524758424985467 a001 4807526976/312119004989*1860498^(1/10) 6524758424985467 a001 12586269025/817138163596*1860498^(1/10) 6524758424985467 a001 32951280099/2139295485799*1860498^(1/10) 6524758424985467 a001 86267571272/5600748293801*1860498^(1/10) 6524758424985467 a001 7787980473/505618944676*1860498^(1/10) 6524758424985467 a001 365435296162/23725150497407*1860498^(1/10) 6524758424985467 a001 139583862445/9062201101803*1860498^(1/10) 6524758424985467 a001 53316291173/3461452808002*1860498^(1/10) 6524758424985467 a001 20365011074/1322157322203*1860498^(1/10) 6524758424985467 a001 7778742049/505019158607*1860498^(1/10) 6524758424985467 a001 2971215073/192900153618*1860498^(1/10) 6524758424985467 a001 1134903170/73681302247*1860498^(1/10) 6524758424985467 a001 433494437/28143753123*1860498^(1/10) 6524758424985467 a001 165580141/10749957122*1860498^(1/10) 6524758424985467 a001 63245986/4106118243*1860498^(1/10) 6524758424985469 a001 24157817/1568397607*1860498^(1/10) 6524758424985469 a001 3524578/6643838879*4870847^(5/16) 6524758424985470 a001 24157817/14662949395604*4870847^(11/16) 6524758424985479 a001 14930352/23725150497407*4870847^(3/4) 6524758424985482 a001 9227465/599074578*1860498^(1/10) 6524758424985483 a001 9227465/5600748293801*4870847^(11/16) 6524758424985486 a001 3524578/17393796001*4870847^(3/8) 6524758424985488 a004 Fibonacci(33)/Lucas(33)/(1/2+sqrt(5)/2)^4 6524758424985489 a001 5702887/599074578*1860498^(2/15) 6524758424985500 a001 9227465/14662949395604*4870847^(3/4) 6524758424985504 a001 1762289/22768774562*4870847^(7/16) 6524758424985506 a001 311187/224056801*1860498^(4/15) 6524758424985509 a001 1762289/70711162*1860498^(1/15) 6524758424985513 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^70 6524758424985521 a001 3524578/119218851371*4870847^(1/2) 6524758424985524 a001 14930352/1568397607*1860498^(2/15) 6524758424985529 a001 39088169/4106118243*1860498^(2/15) 6524758424985529 a001 102334155/10749957122*1860498^(2/15) 6524758424985530 a001 267914296/28143753123*1860498^(2/15) 6524758424985530 a001 701408733/73681302247*1860498^(2/15) 6524758424985530 a001 1836311903/192900153618*1860498^(2/15) 6524758424985530 a001 102287808/10745088481*1860498^(2/15) 6524758424985530 a001 12586269025/1322157322203*1860498^(2/15) 6524758424985530 a001 32951280099/3461452808002*1860498^(2/15) 6524758424985530 a001 86267571272/9062201101803*1860498^(2/15) 6524758424985530 a001 225851433717/23725150497407*1860498^(2/15) 6524758424985530 a001 139583862445/14662949395604*1860498^(2/15) 6524758424985530 a001 53316291173/5600748293801*1860498^(2/15) 6524758424985530 a001 20365011074/2139295485799*1860498^(2/15) 6524758424985530 a001 7778742049/817138163596*1860498^(2/15) 6524758424985530 a001 2971215073/312119004989*1860498^(2/15) 6524758424985530 a001 1134903170/119218851371*1860498^(2/15) 6524758424985530 a001 433494437/45537549124*1860498^(2/15) 6524758424985530 a001 165580141/17393796001*1860498^(2/15) 6524758424985530 a001 63245986/6643838879*1860498^(2/15) 6524758424985532 a001 24157817/2537720636*1860498^(2/15) 6524758424985538 a001 3524578/312119004989*4870847^(9/16) 6524758424985545 a001 9227465/969323029*1860498^(2/15) 6524758424985547 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^72 6524758424985552 a001 5702887/969323029*1860498^(1/6) 6524758424985552 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^74 6524758424985553 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^76 6524758424985553 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^78 6524758424985553 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^80 6524758424985553 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^82 6524758424985553 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^84 6524758424985553 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^86 6524758424985553 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^88 6524758424985553 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^90 6524758424985553 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^92 6524758424985553 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^94 6524758424985553 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^96 6524758424985553 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^98 6524758424985553 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^100 6524758424985553 a001 2/2178309*(1/2+1/2*5^(1/2))^28 6524758424985553 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^99 6524758424985553 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^97 6524758424985553 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^95 6524758424985553 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^93 6524758424985553 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^91 6524758424985553 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^89 6524758424985553 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^87 6524758424985553 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^85 6524758424985553 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^83 6524758424985553 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^81 6524758424985553 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^79 6524758424985553 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^77 6524758424985554 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^75 6524758424985555 a001 1762289/408569081798*4870847^(5/8) 6524758424985555 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^73 6524758424985559 a001 4870847/14930352*8^(1/3) 6524758424985569 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^71 6524758424985569 a001 2178309/2537720636*1860498^(3/10) 6524758424985572 a001 3524578/228826127*1860498^(1/10) 6524758424985572 a001 3524578/2139295485799*4870847^(11/16) 6524758424985587 a001 196452/33391061*1860498^(1/6) 6524758424985590 a001 3524578/5600748293801*4870847^(3/4) 6524758424985592 a001 39088169/6643838879*1860498^(1/6) 6524758424985592 a001 102334155/17393796001*1860498^(1/6) 6524758424985592 a001 66978574/11384387281*1860498^(1/6) 6524758424985592 a001 701408733/119218851371*1860498^(1/6) 6524758424985592 a001 1836311903/312119004989*1860498^(1/6) 6524758424985592 a001 1201881744/204284540899*1860498^(1/6) 6524758424985592 a001 12586269025/2139295485799*1860498^(1/6) 6524758424985592 a001 32951280099/5600748293801*1860498^(1/6) 6524758424985592 a001 1135099622/192933544679*1860498^(1/6) 6524758424985592 a001 139583862445/23725150497407*1860498^(1/6) 6524758424985592 a001 53316291173/9062201101803*1860498^(1/6) 6524758424985592 a001 10182505537/1730726404001*1860498^(1/6) 6524758424985592 a001 7778742049/1322157322203*1860498^(1/6) 6524758424985592 a001 2971215073/505019158607*1860498^(1/6) 6524758424985592 a001 567451585/96450076809*1860498^(1/6) 6524758424985592 a001 433494437/73681302247*1860498^(1/6) 6524758424985592 a001 165580141/28143753123*1860498^(1/6) 6524758424985593 a001 31622993/5374978561*1860498^(1/6) 6524758424985595 a001 24157817/4106118243*1860498^(1/6) 6524758424985607 a001 1762289/7331474697802*4870847^(13/16) 6524758424985608 a001 9227465/1568397607*1860498^(1/6) 6524758424985615 a001 5702887/1568397607*1860498^(1/5) 6524758424985632 a001 726103/1368706081*1860498^(1/3) 6524758424985635 a001 3524578/370248451*1860498^(2/15) 6524758424985649 a001 4976784/1368706081*1860498^(1/5) 6524758424985654 a001 39088169/10749957122*1860498^(1/5) 6524758424985655 a001 831985/228811001*1860498^(1/5) 6524758424985655 a001 267914296/73681302247*1860498^(1/5) 6524758424985655 a001 233802911/64300051206*1860498^(1/5) 6524758424985655 a001 1836311903/505019158607*1860498^(1/5) 6524758424985655 a001 1602508992/440719107401*1860498^(1/5) 6524758424985655 a001 12586269025/3461452808002*1860498^(1/5) 6524758424985655 a001 10983760033/3020733700601*1860498^(1/5) 6524758424985655 a001 86267571272/23725150497407*1860498^(1/5) 6524758424985655 a001 53316291173/14662949395604*1860498^(1/5) 6524758424985655 a001 20365011074/5600748293801*1860498^(1/5) 6524758424985655 a001 7778742049/2139295485799*1860498^(1/5) 6524758424985655 a001 2971215073/817138163596*1860498^(1/5) 6524758424985655 a001 1134903170/312119004989*1860498^(1/5) 6524758424985655 a001 433494437/119218851371*1860498^(1/5) 6524758424985655 a001 165580141/45537549124*1860498^(1/5) 6524758424985656 a001 63245986/17393796001*1860498^(1/5) 6524758424985657 a001 24157817/6643838879*1860498^(1/5) 6524758424985658 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^69 6524758424985671 a001 9227465/2537720636*1860498^(1/5) 6524758424985697 a001 1762289/299537289*1860498^(1/6) 6524758424985723 a004 Fibonacci(31)/Lucas(32)/(1/2+sqrt(5)/2)^3 6524758424985723 a004 Fibonacci(32)/Lucas(31)/(1/2+sqrt(5)/2)^5 6524758424985741 a001 5702887/4106118243*1860498^(4/15) 6524758424985757 a001 987/4870846*1860498^(2/5) 6524758424985760 a001 3524578/969323029*1860498^(1/5) 6524758424985775 a001 7465176/5374978561*1860498^(4/15) 6524758424985780 a001 39088169/28143753123*1860498^(4/15) 6524758424985781 a001 14619165/10525900321*1860498^(4/15) 6524758424985781 a001 133957148/96450076809*1860498^(4/15) 6524758424985781 a001 701408733/505019158607*1860498^(4/15) 6524758424985781 a001 1836311903/1322157322203*1860498^(4/15) 6524758424985781 a001 14930208/10749853441*1860498^(4/15) 6524758424985781 a001 12586269025/9062201101803*1860498^(4/15) 6524758424985781 a001 32951280099/23725150497407*1860498^(4/15) 6524758424985781 a001 10182505537/7331474697802*1860498^(4/15) 6524758424985781 a001 7778742049/5600748293801*1860498^(4/15) 6524758424985781 a001 2971215073/2139295485799*1860498^(4/15) 6524758424985781 a001 567451585/408569081798*1860498^(4/15) 6524758424985781 a001 433494437/312119004989*1860498^(4/15) 6524758424985781 a001 165580141/119218851371*1860498^(4/15) 6524758424985781 a001 31622993/22768774562*1860498^(4/15) 6524758424985783 a001 24157817/17393796001*1860498^(4/15) 6524758424985796 a001 9227465/6643838879*1860498^(4/15) 6524758424985804 a001 5702887/6643838879*1860498^(3/10) 6524758424985838 a001 14930352/17393796001*1860498^(3/10) 6524758424985843 a001 39088169/45537549124*1860498^(3/10) 6524758424985844 a001 102334155/119218851371*1860498^(3/10) 6524758424985844 a001 267914296/312119004989*1860498^(3/10) 6524758424985844 a001 701408733/817138163596*1860498^(3/10) 6524758424985844 a001 1836311903/2139295485799*1860498^(3/10) 6524758424985844 a001 4807526976/5600748293801*1860498^(3/10) 6524758424985844 a001 12586269025/14662949395604*1860498^(3/10) 6524758424985844 a001 20365011074/23725150497407*1860498^(3/10) 6524758424985844 a001 7778742049/9062201101803*1860498^(3/10) 6524758424985844 a001 2971215073/3461452808002*1860498^(3/10) 6524758424985844 a001 1134903170/1322157322203*1860498^(3/10) 6524758424985844 a001 433494437/505019158607*1860498^(3/10) 6524758424985844 a001 165580141/192900153618*1860498^(3/10) 6524758424985844 a001 63245986/73681302247*1860498^(3/10) 6524758424985846 a001 24157817/28143753123*1860498^(3/10) 6524758424985859 a001 9227465/10749957122*1860498^(3/10) 6524758424985866 a001 5702887/10749957122*1860498^(1/3) 6524758424985883 a001 726103/9381251041*1860498^(7/15) 6524758424985886 a001 1762289/1268860318*1860498^(4/15) 6524758424985893 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^68 6524758424985901 a001 4976784/9381251041*1860498^(1/3) 6524758424985906 a001 39088169/73681302247*1860498^(1/3) 6524758424985906 a001 34111385/64300051206*1860498^(1/3) 6524758424985907 a001 267914296/505019158607*1860498^(1/3) 6524758424985907 a001 233802911/440719107401*1860498^(1/3) 6524758424985907 a001 1836311903/3461452808002*1860498^(1/3) 6524758424985907 a001 1602508992/3020733700601*1860498^(1/3) 6524758424985907 a001 12586269025/23725150497407*1860498^(1/3) 6524758424985907 a001 7778742049/14662949395604*1860498^(1/3) 6524758424985907 a001 2971215073/5600748293801*1860498^(1/3) 6524758424985907 a001 1134903170/2139295485799*1860498^(1/3) 6524758424985907 a001 433494437/817138163596*1860498^(1/3) 6524758424985907 a001 165580141/312119004989*1860498^(1/3) 6524758424985907 a001 63245986/119218851371*1860498^(1/3) 6524758424985909 a001 24157817/45537549124*1860498^(1/3) 6524758424985912 a001 1346269/9062201101803*7881196^(9/11) 6524758424985922 a001 1346269/2139295485799*7881196^(8/11) 6524758424985922 a001 9227465/17393796001*1860498^(1/3) 6524758424985925 a001 726103/29134601*710647^(1/14) 6524758424985928 a001 1346269/817138163596*7881196^(2/3) 6524758424985931 a001 1346269/505019158607*7881196^(7/11) 6524758424985941 a001 1346269/119218851371*7881196^(6/11) 6524758424985946 a001 2178309/45537549124*1860498^(1/2) 6524758424985949 a001 3524578/4106118243*1860498^(3/10) 6524758424985950 a001 1346269/28143753123*7881196^(5/11) 6524758424985958 a004 Fibonacci(31)/Lucas(34)/(1/2+sqrt(5)/2) 6524758424985958 a004 Fibonacci(34)/Lucas(31)/(1/2+sqrt(5)/2)^7 6524758424985960 a001 1346269/6643838879*7881196^(4/11) 6524758424985963 a001 1346269/4106118243*7881196^(1/3) 6524758424985970 a001 1346269/1568397607*7881196^(3/11) 6524758424985976 a001 317811/33385282*271443^(2/13) 6524758424985979 a001 1346269/370248451*7881196^(2/11) 6524758424985983 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^70 6524758424985986 a001 1346269/14662949395604*20633239^(4/5) 6524758424985987 a001 1346269/3461452808002*20633239^(5/7) 6524758424985988 a001 1346269/87403803*7881196^(1/11) 6524758424985989 a001 1346269/505019158607*20633239^(3/5) 6524758424985989 a001 1346269/312119004989*20633239^(4/7) 6524758424985992 a001 1346269/28143753123*20633239^(3/7) 6524758424985992 a001 5702887/28143753123*1860498^(2/5) 6524758424985992 a001 1346269/17393796001*20633239^(2/5) 6524758424985992 a001 1346269/66770564+1346269/66770564*5^(1/2) 6524758424985992 a004 Fibonacci(36)/Lucas(31)/(1/2+sqrt(5)/2)^9 6524758424985994 a001 1346269/2537720636*20633239^(2/7) 6524758424985995 a001 1346269/599074578*20633239^(1/5) 6524758424985996 a001 1346269/228826127*20633239^(1/7) 6524758424985996 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^72 6524758424985997 a001 1346269/87403803*141422324^(1/13) 6524758424985997 a001 1346269/87403803*2537720636^(1/15) 6524758424985997 a001 1346269/87403803*45537549124^(1/17) 6524758424985997 a001 1346269/87403803*14662949395604^(1/21) 6524758424985997 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^3/Lucas(38) 6524758424985997 a004 Fibonacci(38)/Lucas(31)/(1/2+sqrt(5)/2)^11 6524758424985997 a001 1346269/87403803*192900153618^(1/18) 6524758424985997 a001 1346269/87403803*10749957122^(1/16) 6524758424985997 a001 1346269/87403803*599074578^(1/14) 6524758424985998 a001 1346269/87403803*33385282^(1/12) 6524758424985998 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^74 6524758424985998 a001 1346269/9062201101803*141422324^(9/13) 6524758424985998 a001 1346269/5600748293801*141422324^(2/3) 6524758424985998 a001 1346269/2139295485799*141422324^(8/13) 6524758424985998 a001 1346269/505019158607*141422324^(7/13) 6524758424985998 a001 1346269/119218851371*141422324^(6/13) 6524758424985998 a001 1346269/28143753123*141422324^(5/13) 6524758424985998 a001 1346269/228826127*2537720636^(1/9) 6524758424985998 a001 1346269/228826127*312119004989^(1/11) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^5/Lucas(40) 6524758424985998 a004 Fibonacci(40)/Lucas(31)/(1/2+sqrt(5)/2)^13 6524758424985998 a001 1346269/228826127*28143753123^(1/10) 6524758424985998 a001 1346269/228826127*228826127^(1/8) 6524758424985998 a001 1346269/10749957122*141422324^(1/3) 6524758424985998 a001 1346269/6643838879*141422324^(4/13) 6524758424985998 a001 1346269/1568397607*141422324^(3/13) 6524758424985998 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^76 6524758424985998 a001 1346269/599074578*17393796001^(1/7) 6524758424985998 a001 1346269/599074578*14662949395604^(1/9) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^7/Lucas(42) 6524758424985998 a004 Fibonacci(42)/Lucas(31)/(1/2+sqrt(5)/2)^15 6524758424985998 a001 1346269/599074578*599074578^(1/6) 6524758424985998 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^78 6524758424985998 a001 1346269/1568397607*2537720636^(1/5) 6524758424985998 a001 1346269/1568397607*45537549124^(3/17) 6524758424985998 a001 1346269/1568397607*817138163596^(3/19) 6524758424985998 a001 1346269/1568397607*14662949395604^(1/7) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^9/Lucas(44) 6524758424985998 a004 Fibonacci(44)/Lucas(31)/(1/2+sqrt(5)/2)^17 6524758424985998 a001 1346269/1568397607*192900153618^(1/6) 6524758424985998 a001 1346269/1568397607*10749957122^(3/16) 6524758424985998 a001 1346269/370248451*141422324^(2/13) 6524758424985998 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^80 6524758424985998 a001 1346269/9062201101803*2537720636^(3/5) 6524758424985998 a001 1346269/3461452808002*2537720636^(5/9) 6524758424985998 a001 1346269/2139295485799*2537720636^(8/15) 6524758424985998 a001 1346269/505019158607*2537720636^(7/15) 6524758424985998 a001 1346269/312119004989*2537720636^(4/9) 6524758424985998 a001 1346269/119218851371*2537720636^(2/5) 6524758424985998 a001 1346269/4106118243*312119004989^(1/5) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^11/Lucas(46) 6524758424985998 a004 Fibonacci(46)/Lucas(31)/(1/2+sqrt(5)/2)^19 6524758424985998 a001 1346269/28143753123*2537720636^(1/3) 6524758424985998 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^82 6524758424985998 a001 1346269/6643838879*2537720636^(4/15) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^13/Lucas(48) 6524758424985998 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^21 6524758424985998 a001 1346269/10749957122*73681302247^(1/4) 6524758424985998 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^84 6524758424985998 a001 1346269/14662949395604*17393796001^(4/7) 6524758424985998 a001 1346269/505019158607*17393796001^(3/7) 6524758424985998 a001 1346269/28143753123*45537549124^(5/17) 6524758424985998 a001 1346269/28143753123*312119004989^(3/11) 6524758424985998 a001 1346269/28143753123*14662949395604^(5/21) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^15/Lucas(50) 6524758424985998 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^23 6524758424985998 a001 1346269/28143753123*192900153618^(5/18) 6524758424985998 a001 1346269/28143753123*28143753123^(3/10) 6524758424985998 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^86 6524758424985998 a001 1346269/73681302247*45537549124^(1/3) 6524758424985998 a001 1346269/9062201101803*45537549124^(9/17) 6524758424985998 a001 1346269/2139295485799*45537549124^(8/17) 6524758424985998 a001 1346269/505019158607*45537549124^(7/17) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^17/Lucas(52) 6524758424985998 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^25 6524758424985998 a001 1346269/119218851371*45537549124^(6/17) 6524758424985998 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^88 6524758424985998 a001 1346269/192900153618*817138163596^(1/3) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^19/Lucas(54) 6524758424985998 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^27 6524758424985998 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^90 6524758424985998 a001 1346269/3461452808002*312119004989^(5/11) 6524758424985998 a001 1346269/505019158607*14662949395604^(1/3) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(56) 6524758424985998 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^29 6524758424985998 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^92 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(58) 6524758424985998 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^31 6524758424985998 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^94 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(60) 6524758424985998 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^33 6524758424985998 a001 1346269/3461452808002*3461452808002^(5/12) 6524758424985998 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^96 6524758424985998 a001 1346269/9062201101803*14662949395604^(3/7) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(62) 6524758424985998 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^98 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(64) 6524758424985998 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^100 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(66) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(68) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(70) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(72) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(74) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(76) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(78) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(80) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(82) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(84) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(86) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(88) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(90) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(92) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(94) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(96) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(98) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(99) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(100) 6524758424985998 a004 Fibonacci(31)*Lucas(1)/(1/2+sqrt(5)/2)^35 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(97) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(95) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(93) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(91) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(89) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(87) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(85) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(83) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(81) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(79) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(77) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(75) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(73) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(71) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(69) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(67) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(65) 6524758424985998 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^99 6524758424985998 a001 1346269/14662949395604*14662949395604^(4/9) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(63) 6524758424985998 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^37 6524758424985998 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^39 6524758424985998 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^41 6524758424985998 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^43 6524758424985998 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^45 6524758424985998 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^47 6524758424985998 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^49 6524758424985998 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^51 6524758424985998 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^53 6524758424985998 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^55 6524758424985998 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^57 6524758424985998 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^59 6524758424985998 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^61 6524758424985998 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^63 6524758424985998 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^65 6524758424985998 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^67 6524758424985998 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^69 6524758424985998 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^73 6524758424985998 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^71 6524758424985998 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^97 6524758424985998 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^72 6524758424985998 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^70 6524758424985998 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^68 6524758424985998 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^66 6524758424985998 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^64 6524758424985998 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^62 6524758424985998 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^60 6524758424985998 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^58 6524758424985998 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^56 6524758424985998 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^54 6524758424985998 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^52 6524758424985998 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^50 6524758424985998 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^48 6524758424985998 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^46 6524758424985998 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^44 6524758424985998 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^42 6524758424985998 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^40 6524758424985998 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^38 6524758424985998 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^36 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(61) 6524758424985998 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^34 6524758424985998 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^95 6524758424985998 a001 1346269/2139295485799*14662949395604^(8/21) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(59) 6524758424985998 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^32 6524758424985998 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^93 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(57) 6524758424985998 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^30 6524758424985998 a001 1346269/14662949395604*505019158607^(1/2) 6524758424985998 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^91 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^20/Lucas(55) 6524758424985998 a001 1346269/312119004989*23725150497407^(5/16) 6524758424985998 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^28 6524758424985998 a001 1346269/312119004989*505019158607^(5/14) 6524758424985998 a001 1346269/2139295485799*192900153618^(4/9) 6524758424985998 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^89 6524758424985998 a001 1346269/119218851371*14662949395604^(2/7) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^18/Lucas(53) 6524758424985998 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^26 6524758424985998 a001 1346269/119218851371*192900153618^(1/3) 6524758424985998 a001 1346269/312119004989*73681302247^(5/13) 6524758424985998 a001 1346269/2139295485799*73681302247^(6/13) 6524758424985998 a001 1346269/5600748293801*73681302247^(1/2) 6524758424985998 a001 1346269/14662949395604*73681302247^(7/13) 6524758424985998 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^87 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^16/Lucas(51) 6524758424985998 a001 1346269/45537549124*23725150497407^(1/4) 6524758424985998 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^24 6524758424985998 a001 1346269/312119004989*28143753123^(2/5) 6524758424985998 a001 1346269/45537549124*73681302247^(4/13) 6524758424985998 a001 1346269/3461452808002*28143753123^(1/2) 6524758424985998 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^85 6524758424985998 a001 1346269/28143753123*10749957122^(5/16) 6524758424985998 a001 1346269/17393796001*17393796001^(2/7) 6524758424985998 a001 1346269/17393796001*14662949395604^(2/9) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^14/Lucas(49) 6524758424985998 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^22 6524758424985998 a001 1346269/17393796001*505019158607^(1/4) 6524758424985998 a001 1346269/119218851371*10749957122^(3/8) 6524758424985998 a001 1346269/45537549124*10749957122^(1/3) 6524758424985998 a001 1346269/312119004989*10749957122^(5/12) 6524758424985998 a001 1346269/505019158607*10749957122^(7/16) 6524758424985998 a001 1346269/817138163596*10749957122^(11/24) 6524758424985998 a001 1346269/2139295485799*10749957122^(1/2) 6524758424985998 a001 1346269/5600748293801*10749957122^(13/24) 6524758424985998 a001 1346269/9062201101803*10749957122^(9/16) 6524758424985998 a001 1346269/14662949395604*10749957122^(7/12) 6524758424985998 a001 1346269/17393796001*10749957122^(7/24) 6524758424985998 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^83 6524758424985998 a001 1346269/45537549124*4106118243^(8/23) 6524758424985998 a001 1346269/17393796001*4106118243^(7/23) 6524758424985998 a001 1346269/6643838879*45537549124^(4/17) 6524758424985998 a001 1346269/6643838879*817138163596^(4/19) 6524758424985998 a001 1346269/6643838879*14662949395604^(4/21) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^12/Lucas(47) 6524758424985998 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2)^20 6524758424985998 a001 1346269/6643838879*192900153618^(2/9) 6524758424985998 a001 1346269/6643838879*73681302247^(3/13) 6524758424985998 a001 1346269/119218851371*4106118243^(9/23) 6524758424985998 a001 1346269/6643838879*10749957122^(1/4) 6524758424985998 a001 1346269/312119004989*4106118243^(10/23) 6524758424985998 a001 1346269/817138163596*4106118243^(11/23) 6524758424985998 a001 1346269/1322157322203*4106118243^(1/2) 6524758424985998 a001 1346269/2139295485799*4106118243^(12/23) 6524758424985998 a001 1346269/5600748293801*4106118243^(13/23) 6524758424985998 a001 1346269/14662949395604*4106118243^(14/23) 6524758424985998 a001 1346269/6643838879*4106118243^(6/23) 6524758424985998 a001 1346269/4106118243*1568397607^(1/4) 6524758424985998 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^81 6524758424985998 a001 1346269/2537720636*2537720636^(2/9) 6524758424985998 a001 1346269/17393796001*1568397607^(7/22) 6524758424985998 a001 1346269/6643838879*1568397607^(3/11) 6524758424985998 a001 1346269/45537549124*1568397607^(4/11) 6524758424985998 a001 1346269/2537720636*312119004989^(2/11) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^10/Lucas(45) 6524758424985998 a004 Fibonacci(45)/Lucas(31)/(1/2+sqrt(5)/2)^18 6524758424985998 a001 1346269/2537720636*28143753123^(1/5) 6524758424985998 a001 1346269/2537720636*10749957122^(5/24) 6524758424985998 a001 1346269/119218851371*1568397607^(9/22) 6524758424985998 a001 1346269/2537720636*4106118243^(5/23) 6524758424985998 a001 1346269/312119004989*1568397607^(5/11) 6524758424985998 a001 1346269/1568397607*599074578^(3/14) 6524758424985998 a001 1346269/817138163596*1568397607^(1/2) 6524758424985998 a001 1346269/2139295485799*1568397607^(6/11) 6524758424985998 a001 1346269/5600748293801*1568397607^(13/22) 6524758424985998 a001 1346269/2537720636*1568397607^(5/22) 6524758424985998 a001 1346269/14662949395604*1568397607^(7/11) 6524758424985998 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^79 6524758424985998 a001 1346269/2537720636*599074578^(5/21) 6524758424985998 a001 1346269/6643838879*599074578^(2/7) 6524758424985998 a001 1346269/17393796001*599074578^(1/3) 6524758424985998 a001 1346269/28143753123*599074578^(5/14) 6524758424985998 a001 1346269/45537549124*599074578^(8/21) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^8/Lucas(43) 6524758424985998 a001 1346269/969323029*23725150497407^(1/8) 6524758424985998 a004 Fibonacci(43)/Lucas(31)/(1/2+sqrt(5)/2)^16 6524758424985998 a001 1346269/969323029*505019158607^(1/7) 6524758424985998 a001 1346269/969323029*73681302247^(2/13) 6524758424985998 a001 1346269/969323029*10749957122^(1/6) 6524758424985998 a001 1346269/969323029*4106118243^(4/23) 6524758424985998 a001 1346269/969323029*1568397607^(2/11) 6524758424985998 a001 1346269/119218851371*599074578^(3/7) 6524758424985998 a001 1346269/312119004989*599074578^(10/21) 6524758424985998 a001 1346269/505019158607*599074578^(1/2) 6524758424985998 a001 1346269/817138163596*599074578^(11/21) 6524758424985998 a001 1346269/2139295485799*599074578^(4/7) 6524758424985998 a001 1346269/969323029*599074578^(4/21) 6524758424985998 a001 1346269/5600748293801*599074578^(13/21) 6524758424985998 a001 1346269/9062201101803*599074578^(9/14) 6524758424985998 a001 1346269/14662949395604*599074578^(2/3) 6524758424985998 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^77 6524758424985998 a001 1346269/969323029*228826127^(1/5) 6524758424985998 a001 1346269/2537720636*228826127^(1/4) 6524758424985998 a001 1346269/6643838879*228826127^(3/10) 6524758424985998 a001 1346269/17393796001*228826127^(7/20) 6524758424985998 a001 1346269/28143753123*228826127^(3/8) 6524758424985998 a001 1346269/370248451*2537720636^(2/15) 6524758424985998 a001 1346269/370248451*45537549124^(2/17) 6524758424985998 a001 1346269/370248451*14662949395604^(2/21) 6524758424985998 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^6/Lucas(41) 6524758424985998 a004 Fibonacci(41)/Lucas(31)/(1/2+sqrt(5)/2)^14 6524758424985998 a001 1346269/370248451*10749957122^(1/8) 6524758424985998 a001 1346269/370248451*4106118243^(3/23) 6524758424985998 a001 1346269/370248451*1568397607^(3/22) 6524758424985998 a001 1346269/45537549124*228826127^(2/5) 6524758424985998 a001 1346269/370248451*599074578^(1/7) 6524758424985998 a001 1346269/119218851371*228826127^(9/20) 6524758424985998 a001 1346269/312119004989*228826127^(1/2) 6524758424985998 a001 1346269/370248451*228826127^(3/20) 6524758424985998 a001 1346269/817138163596*228826127^(11/20) 6524758424985998 a001 1346269/2139295485799*228826127^(3/5) 6524758424985998 a001 1346269/3461452808002*228826127^(5/8) 6524758424985998 a001 1346269/5600748293801*228826127^(13/20) 6524758424985998 a001 1346269/14662949395604*228826127^(7/10) 6524758424985998 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^75 6524758424985998 a001 1346269/370248451*87403803^(3/19) 6524758424985998 a001 1346269/969323029*87403803^(4/19) 6524758424985998 a001 1346269/2537720636*87403803^(5/19) 6524758424985999 a001 1346269/6643838879*87403803^(6/19) 6524758424985999 a001 1346269/17393796001*87403803^(7/19) 6524758424985999 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^4/Lucas(39) 6524758424985999 a001 1346269/141422324*23725150497407^(1/16) 6524758424985999 a004 Fibonacci(39)/Lucas(31)/(1/2+sqrt(5)/2)^12 6524758424985999 a001 1346269/141422324*73681302247^(1/13) 6524758424985999 a001 1346269/141422324*10749957122^(1/12) 6524758424985999 a001 1346269/141422324*4106118243^(2/23) 6524758424985999 a001 1346269/141422324*1568397607^(1/11) 6524758424985999 a001 1346269/141422324*599074578^(2/21) 6524758424985999 a001 1346269/141422324*228826127^(1/10) 6524758424985999 a001 1346269/45537549124*87403803^(8/19) 6524758424985999 a001 1346269/119218851371*87403803^(9/19) 6524758424985999 a001 1346269/141422324*87403803^(2/19) 6524758424985999 a001 1346269/192900153618*87403803^(1/2) 6524758424985999 a001 1346269/312119004989*87403803^(10/19) 6524758424985999 a001 1346269/817138163596*87403803^(11/19) 6524758424985999 a001 1346269/2139295485799*87403803^(12/19) 6524758424985999 a001 1346269/5600748293801*87403803^(13/19) 6524758424985999 a001 1346269/14662949395604*87403803^(14/19) 6524758424985999 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^73 6524758424985999 a001 1346269/141422324*33385282^(1/9) 6524758424985999 a001 1346269/370248451*33385282^(1/6) 6524758424986000 a001 1346269/969323029*33385282^(2/9) 6524758424986000 a001 1346269/1568397607*33385282^(1/4) 6524758424986000 a001 1346269/2537720636*33385282^(5/18) 6524758424986000 a001 1346269/6643838879*33385282^(1/3) 6524758424986000 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^2/Lucas(37) 6524758424986000 a004 Fibonacci(37)/Lucas(31)/(1/2+sqrt(5)/2)^10 6524758424986000 a001 1346269/54018521*10749957122^(1/24) 6524758424986000 a001 1346269/54018521*4106118243^(1/23) 6524758424986000 a001 1346269/54018521*1568397607^(1/22) 6524758424986000 a001 1346269/54018521*599074578^(1/21) 6524758424986000 a001 1346269/54018521*228826127^(1/20) 6524758424986001 a001 1346269/17393796001*33385282^(7/18) 6524758424986001 a001 1346269/54018521*87403803^(1/19) 6524758424986001 a001 1346269/28143753123*33385282^(5/12) 6524758424986001 a001 1346269/54018521*33385282^(1/18) 6524758424986001 a001 1346269/45537549124*33385282^(4/9) 6524758424986001 a001 1346269/119218851371*33385282^(1/2) 6524758424986001 a001 1346269/312119004989*33385282^(5/9) 6524758424986002 a001 1346269/505019158607*33385282^(7/12) 6524758424986002 a001 1346269/817138163596*33385282^(11/18) 6524758424986002 a001 1346269/2139295485799*33385282^(2/3) 6524758424986002 a001 1346269/5600748293801*33385282^(13/18) 6524758424986003 a001 1346269/9062201101803*33385282^(3/4) 6524758424986003 a001 1346269/14662949395604*33385282^(7/9) 6524758424986003 a001 1346269/54018521*12752043^(1/17) 6524758424986003 a001 1346269/141422324*12752043^(2/17) 6524758424986004 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^71 6524758424986005 a001 1346269/370248451*12752043^(3/17) 6524758424986008 a001 1346269/969323029*12752043^(4/17) 6524758424986009 a001 311187/10525900321*1860498^(8/15) 6524758424986010 a001 1346269/2537720636*12752043^(5/17) 6524758424986012 a001 3524578/6643838879*1860498^(1/3) 6524758424986012 a001 1346269/6643838879*12752043^(6/17) 6524758424986014 a004 Fibonacci(35)/Lucas(31)/(1/2+sqrt(5)/2)^8 6524758424986015 a001 1346269/17393796001*12752043^(7/17) 6524758424986017 a001 1346269/45537549124*12752043^(8/17) 6524758424986018 a001 1346269/54018521*4870847^(1/16) 6524758424986018 a001 1346269/73681302247*12752043^(1/2) 6524758424986019 a001 1346269/119218851371*12752043^(9/17) 6524758424986022 a001 1346269/312119004989*12752043^(10/17) 6524758424986024 a001 1346269/817138163596*12752043^(11/17) 6524758424986026 a001 14930352/73681302247*1860498^(2/5) 6524758424986027 a001 1346269/2139295485799*12752043^(12/17) 6524758424986029 a001 1346269/5600748293801*12752043^(13/17) 6524758424986031 a001 1346269/14662949395604*12752043^(14/17) 6524758424986031 a001 39088169/192900153618*1860498^(2/5) 6524758424986032 a001 102334155/505019158607*1860498^(2/5) 6524758424986032 a001 267914296/1322157322203*1860498^(2/5) 6524758424986032 a001 701408733/3461452808002*1860498^(2/5) 6524758424986032 a001 1836311903/9062201101803*1860498^(2/5) 6524758424986032 a001 4807526976/23725150497407*1860498^(2/5) 6524758424986032 a001 2971215073/14662949395604*1860498^(2/5) 6524758424986032 a001 1134903170/5600748293801*1860498^(2/5) 6524758424986032 a001 433494437/2139295485799*1860498^(2/5) 6524758424986032 a001 165580141/817138163596*1860498^(2/5) 6524758424986033 a001 63245986/312119004989*1860498^(2/5) 6524758424986033 a001 1346269/141422324*4870847^(1/8) 6524758424986034 a001 24157817/119218851371*1860498^(2/5) 6524758424986038 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^69 6524758424986048 a001 9227465/45537549124*1860498^(2/5) 6524758424986050 a001 1346269/370248451*4870847^(3/16) 6524758424986067 a001 1346269/969323029*4870847^(1/4) 6524758424986084 a001 1346269/2537720636*4870847^(5/16) 6524758424986101 a001 1346269/6643838879*4870847^(3/8) 6524758424986103 a004 Fibonacci(31)/Lucas(33)/(1/2+sqrt(5)/2)^2 6524758424986103 a004 Fibonacci(33)/Lucas(31)/(1/2+sqrt(5)/2)^6 6524758424986118 a001 5702887/73681302247*1860498^(7/15) 6524758424986119 a001 1346269/17393796001*4870847^(7/16) 6524758424986126 a001 1346269/54018521*1860498^(1/15) 6524758424986134 a001 726103/64300051206*1860498^(3/5) 6524758424986136 a001 1346269/45537549124*4870847^(1/2) 6524758424986137 a001 3524578/17393796001*1860498^(2/5) 6524758424986152 a001 2584/33385281*1860498^(7/15) 6524758424986153 a001 1346269/119218851371*4870847^(9/16) 6524758424986157 a001 39088169/505019158607*1860498^(7/15) 6524758424986158 a001 34111385/440719107401*1860498^(7/15) 6524758424986158 a001 133957148/1730726404001*1860498^(7/15) 6524758424986158 a001 233802911/3020733700601*1860498^(7/15) 6524758424986158 a001 1836311903/23725150497407*1860498^(7/15) 6524758424986158 a001 567451585/7331474697802*1860498^(7/15) 6524758424986158 a001 433494437/5600748293801*1860498^(7/15) 6524758424986158 a001 165580141/2139295485799*1860498^(7/15) 6524758424986158 a001 31622993/408569081798*1860498^(7/15) 6524758424986160 a001 24157817/312119004989*1860498^(7/15) 6524758424986161 a001 5702887/228826127*710647^(1/14) 6524758424986162 a001 832040/228826127*710647^(3/14) 6524758424986170 a001 1346269/312119004989*4870847^(5/8) 6524758424986173 a001 9227465/119218851371*1860498^(7/15) 6524758424986181 a001 5702887/119218851371*1860498^(1/2) 6524758424986186 a001 1346269/87403803*1860498^(1/10) 6524758424986187 a001 1346269/817138163596*4870847^(11/16) 6524758424986195 a001 829464/33281921*710647^(1/14) 6524758424986200 a001 39088169/1568397607*710647^(1/14) 6524758424986201 a001 34111385/1368706081*710647^(1/14) 6524758424986201 a001 133957148/5374978561*710647^(1/14) 6524758424986201 a001 233802911/9381251041*710647^(1/14) 6524758424986201 a001 1836311903/73681302247*710647^(1/14) 6524758424986201 a001 267084832/10716675201*710647^(1/14) 6524758424986201 a001 12586269025/505019158607*710647^(1/14) 6524758424986201 a001 10983760033/440719107401*710647^(1/14) 6524758424986201 a001 43133785636/1730726404001*710647^(1/14) 6524758424986201 a001 75283811239/3020733700601*710647^(1/14) 6524758424986201 a001 182717648081/7331474697802*710647^(1/14) 6524758424986201 a001 139583862445/5600748293801*710647^(1/14) 6524758424986201 a001 53316291173/2139295485799*710647^(1/14) 6524758424986201 a001 10182505537/408569081798*710647^(1/14) 6524758424986201 a001 7778742049/312119004989*710647^(1/14) 6524758424986201 a001 2971215073/119218851371*710647^(1/14) 6524758424986201 a001 567451585/22768774562*710647^(1/14) 6524758424986201 a001 433494437/17393796001*710647^(1/14) 6524758424986201 a001 165580141/6643838879*710647^(1/14) 6524758424986201 a001 31622993/1268860318*710647^(1/14) 6524758424986203 a001 24157817/969323029*710647^(1/14) 6524758424986205 a001 1346269/2139295485799*4870847^(3/4) 6524758424986215 a001 14930352/312119004989*1860498^(1/2) 6524758424986216 a001 9227465/370248451*710647^(1/14) 6524758424986220 a001 4181/87403804*1860498^(1/2) 6524758424986221 a001 102334155/2139295485799*1860498^(1/2) 6524758424986221 a001 267914296/5600748293801*1860498^(1/2) 6524758424986221 a001 701408733/14662949395604*1860498^(1/2) 6524758424986221 a001 1134903170/23725150497407*1860498^(1/2) 6524758424986221 a001 433494437/9062201101803*1860498^(1/2) 6524758424986221 a001 165580141/3461452808002*1860498^(1/2) 6524758424986221 a001 63245986/1322157322203*1860498^(1/2) 6524758424986222 a001 1346269/5600748293801*4870847^(13/16) 6524758424986223 a001 24157817/505019158607*1860498^(1/2) 6524758424986236 a001 9227465/192900153618*1860498^(1/2) 6524758424986239 a001 1346269/14662949395604*4870847^(7/8) 6524758424986243 a001 5702887/192900153618*1860498^(8/15) 6524758424986250 a001 1346269/141422324*1860498^(2/15) 6524758424986260 a001 46347/10745088481*1860498^(2/3) 6524758424986263 a001 1762289/22768774562*1860498^(7/15) 6524758424986273 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^67 6524758424986278 a001 14930352/505019158607*1860498^(8/15) 6524758424986283 a001 39088169/1322157322203*1860498^(8/15) 6524758424986283 a001 6765/228826126*1860498^(8/15) 6524758424986284 a001 267914296/9062201101803*1860498^(8/15) 6524758424986284 a001 701408733/23725150497407*1860498^(8/15) 6524758424986284 a001 433494437/14662949395604*1860498^(8/15) 6524758424986284 a001 165580141/5600748293801*1860498^(8/15) 6524758424986284 a001 63245986/2139295485799*1860498^(8/15) 6524758424986286 a001 24157817/817138163596*1860498^(8/15) 6524758424986299 a001 9227465/312119004989*1860498^(8/15) 6524758424986306 a001 1762289/70711162*710647^(1/14) 6524758424986312 a001 1346269/228826127*1860498^(1/6) 6524758424986323 a001 2178309/817138163596*1860498^(7/10) 6524758424986326 a001 3524578/73681302247*1860498^(1/2) 6524758424986369 a001 5702887/505019158607*1860498^(3/5) 6524758424986375 a001 1346269/370248451*1860498^(1/5) 6524758424986386 a001 726103/440719107401*1860498^(11/15) 6524758424986389 a001 3524578/119218851371*1860498^(8/15) 6524758424986403 a001 4976784/440719107401*1860498^(3/5) 6524758424986408 a001 39088169/3461452808002*1860498^(3/5) 6524758424986409 a001 34111385/3020733700601*1860498^(3/5) 6524758424986409 a001 267914296/23725150497407*1860498^(3/5) 6524758424986409 a001 165580141/14662949395604*1860498^(3/5) 6524758424986410 a001 63245986/5600748293801*1860498^(3/5) 6524758424986411 a001 24157817/2139295485799*1860498^(3/5) 6524758424986425 a001 9227465/817138163596*1860498^(3/5) 6524758424986449 a001 514229/33385282*439204^(1/9) 6524758424986495 a001 5702887/1322157322203*1860498^(2/3) 6524758424986501 a001 1346269/969323029*1860498^(4/15) 6524758424986511 a001 311187/494493258286*1860498^(4/5) 6524758424986514 a001 3524578/312119004989*1860498^(3/5) 6524758424986529 a001 7465176/1730726404001*1860498^(2/3) 6524758424986534 a001 39088169/9062201101803*1860498^(2/3) 6524758424986535 a001 102334155/23725150497407*1860498^(2/3) 6524758424986535 a001 31622993/7331474697802*1860498^(2/3) 6524758424986537 a001 24157817/5600748293801*1860498^(2/3) 6524758424986550 a001 9227465/2139295485799*1860498^(2/3) 6524758424986558 a001 5702887/2139295485799*1860498^(7/10) 6524758424986564 a001 1346269/1568397607*1860498^(3/10) 6524758424986574 a001 2178309/5600748293801*1860498^(5/6) 6524758424986592 a001 14930352/5600748293801*1860498^(7/10) 6524758424986597 a001 39088169/14662949395604*1860498^(7/10) 6524758424986598 a001 63245986/23725150497407*1860498^(7/10) 6524758424986600 a001 24157817/9062201101803*1860498^(7/10) 6524758424986613 a001 9227465/3461452808002*1860498^(7/10) 6524758424986620 a001 5702887/3461452808002*1860498^(11/15) 6524758424986623 a001 832040/370248451*710647^(1/4) 6524758424986627 a001 1346269/2537720636*1860498^(1/3) 6524758424986637 a001 726103/3020733700601*1860498^(13/15) 6524758424986640 a001 1762289/408569081798*1860498^(2/3) 6524758424986655 a001 4976784/3020733700601*1860498^(11/15) 6524758424986660 a001 39088169/23725150497407*1860498^(11/15) 6524758424986663 a001 24157817/14662949395604*1860498^(11/15) 6524758424986676 a001 9227465/5600748293801*1860498^(11/15) 6524758424986700 a001 2178309/14662949395604*1860498^(9/10) 6524758424986703 a001 3524578/1322157322203*1860498^(7/10) 6524758424986718 a004 Fibonacci(31)/Lucas(31)/(1/2+sqrt(5)/2)^4 6524758424986746 a001 5702887/9062201101803*1860498^(4/5) 6524758424986752 a001 1346269/6643838879*1860498^(2/5) 6524758424986763 a001 2178309/23725150497407*1860498^(14/15) 6524758424986766 a001 3524578/2139295485799*1860498^(11/15) 6524758424986780 a001 14930352/23725150497407*1860498^(4/5) 6524758424986802 a001 9227465/14662949395604*1860498^(4/5) 6524758424986809 a001 5702887/14662949395604*1860498^(5/6) 6524758424986849 a001 46347/4868641*710647^(1/7) 6524758424986864 a001 9227465/23725150497407*1860498^(5/6) 6524758424986872 a001 5702887/23725150497407*1860498^(13/15) 6524758424986878 a001 1346269/17393796001*1860498^(7/15) 6524758424986888 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^66 6524758424986891 a001 3524578/5600748293801*1860498^(4/5) 6524758424986923 a001 1346269/54018521*710647^(1/14) 6524758424986941 a001 1346269/28143753123*1860498^(1/2) 6524758424986954 a001 3524578/9062201101803*1860498^(5/6) 6524758424987004 a001 1346269/45537549124*1860498^(8/15) 6524758424987017 a001 1762289/7331474697802*1860498^(13/15) 6524758424987080 a001 3524578/23725150497407*1860498^(9/10) 6524758424987084 a001 5702887/599074578*710647^(1/7) 6524758424987085 a001 416020/299537289*710647^(2/7) 6524758424987118 a001 14930352/1568397607*710647^(1/7) 6524758424987123 a001 39088169/4106118243*710647^(1/7) 6524758424987123 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^68 6524758424987124 a001 102334155/10749957122*710647^(1/7) 6524758424987124 a001 267914296/28143753123*710647^(1/7) 6524758424987124 a001 701408733/73681302247*710647^(1/7) 6524758424987124 a001 1836311903/192900153618*710647^(1/7) 6524758424987124 a001 102287808/10745088481*710647^(1/7) 6524758424987124 a001 12586269025/1322157322203*710647^(1/7) 6524758424987124 a001 32951280099/3461452808002*710647^(1/7) 6524758424987124 a001 86267571272/9062201101803*710647^(1/7) 6524758424987124 a001 225851433717/23725150497407*710647^(1/7) 6524758424987124 a001 139583862445/14662949395604*710647^(1/7) 6524758424987124 a001 53316291173/5600748293801*710647^(1/7) 6524758424987124 a001 20365011074/2139295485799*710647^(1/7) 6524758424987124 a001 7778742049/817138163596*710647^(1/7) 6524758424987124 a001 2971215073/312119004989*710647^(1/7) 6524758424987124 a001 1134903170/119218851371*710647^(1/7) 6524758424987124 a001 433494437/45537549124*710647^(1/7) 6524758424987124 a001 165580141/17393796001*710647^(1/7) 6524758424987124 a001 63245986/6643838879*710647^(1/7) 6524758424987126 a001 24157817/2537720636*710647^(1/7) 6524758424987129 a001 1346269/119218851371*1860498^(3/5) 6524758424987139 a001 9227465/969323029*710647^(1/7) 6524758424987157 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^70 6524758424987162 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^72 6524758424987163 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^74 6524758424987163 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^76 6524758424987163 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^78 6524758424987163 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^80 6524758424987163 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^82 6524758424987163 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^84 6524758424987163 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^86 6524758424987163 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^88 6524758424987163 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^90 6524758424987163 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^92 6524758424987163 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^94 6524758424987163 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^96 6524758424987163 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^98 6524758424987163 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^100 6524758424987163 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^99 6524758424987163 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^97 6524758424987163 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^95 6524758424987163 a001 1/416020*(1/2+1/2*5^(1/2))^26 6524758424987163 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^93 6524758424987163 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^91 6524758424987163 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^89 6524758424987163 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^87 6524758424987163 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^85 6524758424987163 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^83 6524758424987163 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^81 6524758424987163 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^79 6524758424987163 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^77 6524758424987163 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^75 6524758424987164 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^73 6524758424987165 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^71 6524758424987179 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^69 6524758424987203 a001 1860498/5702887*8^(1/3) 6524758424987229 a001 3524578/370248451*710647^(1/7) 6524758424987255 a001 1346269/312119004989*1860498^(2/3) 6524758424987268 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^67 6524758424987318 a001 1346269/505019158607*1860498^(7/10) 6524758424987381 a001 1346269/817138163596*1860498^(11/15) 6524758424987506 a001 1346269/2139295485799*1860498^(4/5) 6524758424987569 a001 1346269/3461452808002*1860498^(5/6) 6524758424987632 a001 1346269/5600748293801*1860498^(13/15) 6524758424987695 a001 1346269/9062201101803*1860498^(9/10) 6524758424987758 a001 1346269/14662949395604*1860498^(14/15) 6524758424987772 a001 726103/199691526*710647^(3/14) 6524758424987844 a001 1346269/141422324*710647^(1/7) 6524758424987883 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^65 6524758424988007 a001 5702887/1568397607*710647^(3/14) 6524758424988007 a001 832040/1568397607*710647^(5/14) 6524758424988041 a001 4976784/1368706081*710647^(3/14) 6524758424988046 a001 39088169/10749957122*710647^(3/14) 6524758424988047 a001 831985/228811001*710647^(3/14) 6524758424988047 a001 267914296/73681302247*710647^(3/14) 6524758424988047 a001 233802911/64300051206*710647^(3/14) 6524758424988047 a001 1836311903/505019158607*710647^(3/14) 6524758424988047 a001 1602508992/440719107401*710647^(3/14) 6524758424988047 a001 12586269025/3461452808002*710647^(3/14) 6524758424988047 a001 10983760033/3020733700601*710647^(3/14) 6524758424988047 a001 86267571272/23725150497407*710647^(3/14) 6524758424988047 a001 53316291173/14662949395604*710647^(3/14) 6524758424988047 a001 20365011074/5600748293801*710647^(3/14) 6524758424988047 a001 7778742049/2139295485799*710647^(3/14) 6524758424988047 a001 2971215073/817138163596*710647^(3/14) 6524758424988047 a001 1134903170/312119004989*710647^(3/14) 6524758424988047 a001 433494437/119218851371*710647^(3/14) 6524758424988047 a001 165580141/45537549124*710647^(3/14) 6524758424988047 a001 63245986/17393796001*710647^(3/14) 6524758424988049 a001 24157817/6643838879*710647^(3/14) 6524758424988062 a001 9227465/2537720636*710647^(3/14) 6524758424988152 a001 3524578/969323029*710647^(3/14) 6524758424988233 a001 2178309/969323029*710647^(1/4) 6524758424988328 a001 213929548580/3278735159921 6524758424988328 a004 Fibonacci(29)/Lucas(30)/(1/2+sqrt(5)/2)^3 6524758424988328 a004 Fibonacci(30)/Lucas(29)/(1/2+sqrt(5)/2)^5 6524758424988468 a001 5702887/2537720636*710647^(1/4) 6524758424988502 a001 14930352/6643838879*710647^(1/4) 6524758424988507 a001 39088169/17393796001*710647^(1/4) 6524758424988508 a001 102334155/45537549124*710647^(1/4) 6524758424988508 a001 267914296/119218851371*710647^(1/4) 6524758424988508 a001 3524667/1568437211*710647^(1/4) 6524758424988508 a001 1836311903/817138163596*710647^(1/4) 6524758424988508 a001 4807526976/2139295485799*710647^(1/4) 6524758424988508 a001 12586269025/5600748293801*710647^(1/4) 6524758424988508 a001 32951280099/14662949395604*710647^(1/4) 6524758424988508 a001 53316291173/23725150497407*710647^(1/4) 6524758424988508 a001 20365011074/9062201101803*710647^(1/4) 6524758424988508 a001 7778742049/3461452808002*710647^(1/4) 6524758424988508 a001 2971215073/1322157322203*710647^(1/4) 6524758424988508 a001 1134903170/505019158607*710647^(1/4) 6524758424988508 a001 433494437/192900153618*710647^(1/4) 6524758424988508 a001 165580141/73681302247*710647^(1/4) 6524758424988509 a001 63245986/28143753123*710647^(1/4) 6524758424988510 a001 24157817/10749957122*710647^(1/4) 6524758424988524 a001 9227465/4106118243*710647^(1/4) 6524758424988613 a001 3524578/1568397607*710647^(1/4) 6524758424988695 a001 311187/224056801*710647^(2/7) 6524758424988767 a001 1346269/370248451*710647^(3/14) 6524758424988930 a001 5702887/4106118243*710647^(2/7) 6524758424988930 a001 832040/4106118243*710647^(3/7) 6524758424988964 a001 7465176/5374978561*710647^(2/7) 6524758424988969 a001 39088169/28143753123*710647^(2/7) 6524758424988970 a001 14619165/10525900321*710647^(2/7) 6524758424988970 a001 133957148/96450076809*710647^(2/7) 6524758424988970 a001 701408733/505019158607*710647^(2/7) 6524758424988970 a001 1836311903/1322157322203*710647^(2/7) 6524758424988970 a001 14930208/10749853441*710647^(2/7) 6524758424988970 a001 12586269025/9062201101803*710647^(2/7) 6524758424988970 a001 32951280099/23725150497407*710647^(2/7) 6524758424988970 a001 10182505537/7331474697802*710647^(2/7) 6524758424988970 a001 7778742049/5600748293801*710647^(2/7) 6524758424988970 a001 2971215073/2139295485799*710647^(2/7) 6524758424988970 a001 567451585/408569081798*710647^(2/7) 6524758424988970 a001 433494437/312119004989*710647^(2/7) 6524758424988970 a001 165580141/119218851371*710647^(2/7) 6524758424988970 a001 31622993/22768774562*710647^(2/7) 6524758424988972 a001 24157817/17393796001*710647^(2/7) 6524758424988985 a001 9227465/6643838879*710647^(2/7) 6524758424989037 a001 196418/312119004989*439204^(8/9) 6524758424989075 a001 1762289/1268860318*710647^(2/7) 6524758424989228 a001 1346269/599074578*710647^(1/4) 6524758424989493 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^64 6524758424989617 a001 726103/1368706081*710647^(5/14) 6524758424989690 a001 1346269/969323029*710647^(2/7) 6524758424989852 a001 5702887/10749957122*710647^(5/14) 6524758424989853 a001 416020/5374978561*710647^(1/2) 6524758424989887 a001 4976784/9381251041*710647^(5/14) 6524758424989892 a001 39088169/73681302247*710647^(5/14) 6524758424989892 a001 34111385/64300051206*710647^(5/14) 6524758424989892 a001 267914296/505019158607*710647^(5/14) 6524758424989892 a001 233802911/440719107401*710647^(5/14) 6524758424989892 a001 1836311903/3461452808002*710647^(5/14) 6524758424989892 a001 1602508992/3020733700601*710647^(5/14) 6524758424989892 a001 12586269025/23725150497407*710647^(5/14) 6524758424989892 a001 7778742049/14662949395604*710647^(5/14) 6524758424989892 a001 2971215073/5600748293801*710647^(5/14) 6524758424989892 a001 1134903170/2139295485799*710647^(5/14) 6524758424989892 a001 433494437/817138163596*710647^(5/14) 6524758424989893 a001 165580141/312119004989*710647^(5/14) 6524758424989893 a001 63245986/119218851371*710647^(5/14) 6524758424989895 a001 24157817/45537549124*710647^(5/14) 6524758424989908 a001 9227465/17393796001*710647^(5/14) 6524758424989938 a004 Fibonacci(29)/Lucas(32)/(1/2+sqrt(5)/2) 6524758424989938 a004 Fibonacci(32)/Lucas(29)/(1/2+sqrt(5)/2)^7 6524758424989998 a001 3524578/6643838879*710647^(5/14) 6524758424990108 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^66 6524758424990118 a001 514229/14662949395604*7881196^(10/11) 6524758424990127 a001 514229/3461452808002*7881196^(9/11) 6524758424990137 a001 514229/817138163596*7881196^(8/11) 6524758424990143 a001 514229/312119004989*7881196^(2/3) 6524758424990146 a001 514229/192900153618*7881196^(7/11) 6524758424990156 a001 514229/45537549124*7881196^(6/11) 6524758424990165 a001 514229/10749957122*7881196^(5/11) 6524758424990173 a001 514229/25504086+514229/25504086*5^(1/2) 6524758424990173 a004 Fibonacci(29)*(1/2+sqrt(5)/2)/Lucas(34) 6524758424990173 a004 Fibonacci(34)/Lucas(29)/(1/2+sqrt(5)/2)^9 6524758424990175 a001 514229/2537720636*7881196^(4/11) 6524758424990178 a001 514229/1568397607*7881196^(1/3) 6524758424990185 a001 514229/599074578*7881196^(3/11) 6524758424990194 a001 514229/141422324*7881196^(2/11) 6524758424990198 a001 514229/33385282*7881196^(1/11) 6524758424990198 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^68 6524758424990199 a001 416020/16692641*271443^(1/13) 6524758424990200 a001 514229/14662949395604*20633239^(6/7) 6524758424990201 a001 514229/5600748293801*20633239^(4/5) 6524758424990202 a001 514229/1322157322203*20633239^(5/7) 6524758424990204 a001 514229/192900153618*20633239^(3/5) 6524758424990204 a001 514229/119218851371*20633239^(4/7) 6524758424990207 a001 514229/10749957122*20633239^(3/7) 6524758424990207 a001 514229/6643838879*20633239^(2/5) 6524758424990207 a001 514229/33385282*141422324^(1/13) 6524758424990207 a001 514229/33385282*2537720636^(1/15) 6524758424990207 a001 514229/33385282*45537549124^(1/17) 6524758424990207 a001 514229/33385282*14662949395604^(1/21) 6524758424990207 a001 514229/33385282*(1/2+1/2*5^(1/2))^3 6524758424990207 a004 Fibonacci(36)/Lucas(29)/(1/2+sqrt(5)/2)^11 6524758424990207 a001 514229/33385282*192900153618^(1/18) 6524758424990207 a001 514229/33385282*10749957122^(1/16) 6524758424990207 a001 514229/33385282*599074578^(1/14) 6524758424990208 a001 514229/33385282*33385282^(1/12) 6524758424990209 a001 514229/969323029*20633239^(2/7) 6524758424990210 a001 514229/228826127*20633239^(1/5) 6524758424990210 a001 514229/87403803*20633239^(1/7) 6524758424990211 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^70 6524758424990212 a001 514229/87403803*2537720636^(1/9) 6524758424990212 a001 514229/87403803*312119004989^(1/11) 6524758424990212 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^5/Lucas(38) 6524758424990212 a004 Fibonacci(38)/Lucas(29)/(1/2+sqrt(5)/2)^13 6524758424990212 a001 514229/87403803*28143753123^(1/10) 6524758424990212 a001 514229/87403803*228826127^(1/8) 6524758424990213 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^72 6524758424990213 a001 514229/14662949395604*141422324^(10/13) 6524758424990213 a001 514229/3461452808002*141422324^(9/13) 6524758424990213 a001 514229/2139295485799*141422324^(2/3) 6524758424990213 a001 514229/817138163596*141422324^(8/13) 6524758424990213 a001 514229/192900153618*141422324^(7/13) 6524758424990213 a001 514229/45537549124*141422324^(6/13) 6524758424990213 a001 514229/10749957122*141422324^(5/13) 6524758424990213 a001 514229/228826127*17393796001^(1/7) 6524758424990213 a001 514229/228826127*14662949395604^(1/9) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^7/Lucas(40) 6524758424990213 a004 Fibonacci(40)/Lucas(29)/(1/2+sqrt(5)/2)^15 6524758424990213 a001 514229/228826127*599074578^(1/6) 6524758424990213 a001 514229/4106118243*141422324^(1/3) 6524758424990213 a001 514229/2537720636*141422324^(4/13) 6524758424990213 a001 514229/599074578*141422324^(3/13) 6524758424990213 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^74 6524758424990213 a001 514229/599074578*2537720636^(1/5) 6524758424990213 a001 514229/599074578*45537549124^(3/17) 6524758424990213 a001 514229/599074578*817138163596^(3/19) 6524758424990213 a001 514229/599074578*14662949395604^(1/7) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^9/Lucas(42) 6524758424990213 a004 Fibonacci(42)/Lucas(29)/(1/2+sqrt(5)/2)^17 6524758424990213 a001 514229/599074578*192900153618^(1/6) 6524758424990213 a001 514229/599074578*10749957122^(3/16) 6524758424990213 a001 514229/599074578*599074578^(3/14) 6524758424990213 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^76 6524758424990213 a001 514229/1568397607*312119004989^(1/5) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^11/Lucas(44) 6524758424990213 a004 Fibonacci(44)/Lucas(29)/(1/2+sqrt(5)/2)^19 6524758424990213 a001 514229/1568397607*1568397607^(1/4) 6524758424990213 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^78 6524758424990213 a001 514229/14662949395604*2537720636^(2/3) 6524758424990213 a001 514229/3461452808002*2537720636^(3/5) 6524758424990213 a001 514229/1322157322203*2537720636^(5/9) 6524758424990213 a001 514229/817138163596*2537720636^(8/15) 6524758424990213 a001 514229/192900153618*2537720636^(7/15) 6524758424990213 a001 514229/119218851371*2537720636^(4/9) 6524758424990213 a001 514229/45537549124*2537720636^(2/5) 6524758424990213 a001 514229/10749957122*2537720636^(1/3) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^13/Lucas(46) 6524758424990213 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^21 6524758424990213 a001 514229/4106118243*73681302247^(1/4) 6524758424990213 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^80 6524758424990213 a001 514229/10749957122*45537549124^(5/17) 6524758424990213 a001 514229/10749957122*312119004989^(3/11) 6524758424990213 a001 514229/10749957122*14662949395604^(5/21) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^15/Lucas(48) 6524758424990213 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^23 6524758424990213 a001 514229/10749957122*192900153618^(5/18) 6524758424990213 a001 514229/10749957122*28143753123^(3/10) 6524758424990213 a001 514229/10749957122*10749957122^(5/16) 6524758424990213 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^82 6524758424990213 a001 514229/5600748293801*17393796001^(4/7) 6524758424990213 a001 514229/192900153618*17393796001^(3/7) 6524758424990213 a001 514229/28143753123*45537549124^(1/3) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^17/Lucas(50) 6524758424990213 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^25 6524758424990213 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^84 6524758424990213 a001 514229/14662949395604*45537549124^(10/17) 6524758424990213 a001 514229/3461452808002*45537549124^(9/17) 6524758424990213 a001 514229/192900153618*45537549124^(7/17) 6524758424990213 a001 514229/817138163596*45537549124^(8/17) 6524758424990213 a001 514229/73681302247*817138163596^(1/3) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^19/Lucas(52) 6524758424990213 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^27 6524758424990213 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^86 6524758424990213 a001 514229/192900153618*14662949395604^(1/3) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^21/Lucas(54) 6524758424990213 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^29 6524758424990213 a001 514229/192900153618*192900153618^(7/18) 6524758424990213 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^88 6524758424990213 a001 514229/14662949395604*312119004989^(6/11) 6524758424990213 a001 514229/1322157322203*312119004989^(5/11) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(56) 6524758424990213 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^31 6524758424990213 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^90 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(58) 6524758424990213 a001 514229/1322157322203*3461452808002^(5/12) 6524758424990213 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^92 6524758424990213 a001 514229/3461452808002*14662949395604^(3/7) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(60) 6524758424990213 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^94 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(62) 6524758424990213 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^96 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(64) 6524758424990213 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^98 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(66) 6524758424990213 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^100 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(68) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(70) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(72) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(74) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(76) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(78) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(80) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(82) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(84) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(86) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(88) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(90) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(92) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(94) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(96) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(98) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(99) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(100) 6524758424990213 a004 Fibonacci(29)*Lucas(1)/(1/2+sqrt(5)/2)^33 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(97) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(95) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(93) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(91) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(89) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(87) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(85) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(83) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(81) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(79) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(77) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(75) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(73) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(71) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(69) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(67) 6524758424990213 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^99 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(65) 6524758424990213 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^97 6524758424990213 a001 514229/23725150497407*9062201101803^(1/2) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(63) 6524758424990213 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^95 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(61) 6524758424990213 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^93 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(59) 6524758424990213 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^35 6524758424990213 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^37 6524758424990213 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^39 6524758424990213 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^41 6524758424990213 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^43 6524758424990213 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^45 6524758424990213 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^47 6524758424990213 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^49 6524758424990213 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^51 6524758424990213 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^53 6524758424990213 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^55 6524758424990213 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^57 6524758424990213 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^59 6524758424990213 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^61 6524758424990213 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^63 6524758424990213 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^65 6524758424990213 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^67 6524758424990213 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^69 6524758424990213 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^71 6524758424990213 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^73 6524758424990213 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^75 6524758424990213 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^91 6524758424990213 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^74 6524758424990213 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^72 6524758424990213 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^70 6524758424990213 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^68 6524758424990213 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^66 6524758424990213 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^64 6524758424990213 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^62 6524758424990213 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^60 6524758424990213 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^58 6524758424990213 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^56 6524758424990213 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^54 6524758424990213 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^52 6524758424990213 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^50 6524758424990213 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^48 6524758424990213 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^46 6524758424990213 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^44 6524758424990213 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^42 6524758424990213 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^40 6524758424990213 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^38 6524758424990213 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^36 6524758424990213 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^34 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(57) 6524758424990213 a001 514229/5600748293801*505019158607^(1/2) 6524758424990213 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^32 6524758424990213 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^89 6524758424990213 a001 514229/312119004989*312119004989^(2/5) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(55) 6524758424990213 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^30 6524758424990213 a001 514229/817138163596*192900153618^(4/9) 6524758424990213 a001 514229/14662949395604*192900153618^(5/9) 6524758424990213 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^87 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^20/Lucas(53) 6524758424990213 a001 514229/119218851371*23725150497407^(5/16) 6524758424990213 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^28 6524758424990213 a001 514229/119218851371*505019158607^(5/14) 6524758424990213 a001 514229/817138163596*73681302247^(6/13) 6524758424990213 a001 514229/2139295485799*73681302247^(1/2) 6524758424990213 a001 514229/5600748293801*73681302247^(7/13) 6524758424990213 a001 514229/119218851371*73681302247^(5/13) 6524758424990213 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^85 6524758424990213 a001 514229/45537549124*45537549124^(6/17) 6524758424990213 a001 514229/45537549124*14662949395604^(2/7) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^18/Lucas(51) 6524758424990213 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^26 6524758424990213 a001 514229/45537549124*192900153618^(1/3) 6524758424990213 a001 514229/119218851371*28143753123^(2/5) 6524758424990213 a001 514229/1322157322203*28143753123^(1/2) 6524758424990213 a001 514229/14662949395604*28143753123^(3/5) 6524758424990213 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^83 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^16/Lucas(49) 6524758424990213 a001 514229/17393796001*23725150497407^(1/4) 6524758424990213 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^24 6524758424990213 a001 514229/17393796001*73681302247^(4/13) 6524758424990213 a001 514229/119218851371*10749957122^(5/12) 6524758424990213 a001 514229/45537549124*10749957122^(3/8) 6524758424990213 a001 514229/192900153618*10749957122^(7/16) 6524758424990213 a001 514229/312119004989*10749957122^(11/24) 6524758424990213 a001 514229/817138163596*10749957122^(1/2) 6524758424990213 a001 514229/2139295485799*10749957122^(13/24) 6524758424990213 a001 514229/3461452808002*10749957122^(9/16) 6524758424990213 a001 514229/5600748293801*10749957122^(7/12) 6524758424990213 a001 514229/14662949395604*10749957122^(5/8) 6524758424990213 a001 514229/17393796001*10749957122^(1/3) 6524758424990213 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^81 6524758424990213 a001 514229/6643838879*17393796001^(2/7) 6524758424990213 a001 514229/6643838879*14662949395604^(2/9) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^14/Lucas(47) 6524758424990213 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^22 6524758424990213 a001 514229/6643838879*505019158607^(1/4) 6524758424990213 a001 514229/45537549124*4106118243^(9/23) 6524758424990213 a001 514229/17393796001*4106118243^(8/23) 6524758424990213 a001 514229/6643838879*10749957122^(7/24) 6524758424990213 a001 514229/119218851371*4106118243^(10/23) 6524758424990213 a001 514229/312119004989*4106118243^(11/23) 6524758424990213 a001 514229/505019158607*4106118243^(1/2) 6524758424990213 a001 514229/817138163596*4106118243^(12/23) 6524758424990213 a001 514229/2139295485799*4106118243^(13/23) 6524758424990213 a001 514229/5600748293801*4106118243^(14/23) 6524758424990213 a001 514229/14662949395604*4106118243^(15/23) 6524758424990213 a001 514229/6643838879*4106118243^(7/23) 6524758424990213 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^79 6524758424990213 a001 514229/2537720636*2537720636^(4/15) 6524758424990213 a001 514229/17393796001*1568397607^(4/11) 6524758424990213 a001 514229/6643838879*1568397607^(7/22) 6524758424990213 a001 514229/2537720636*45537549124^(4/17) 6524758424990213 a001 514229/2537720636*817138163596^(4/19) 6524758424990213 a001 514229/2537720636*14662949395604^(4/21) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^12/Lucas(45) 6524758424990213 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2)^20 6524758424990213 a001 514229/2537720636*192900153618^(2/9) 6524758424990213 a001 514229/2537720636*73681302247^(3/13) 6524758424990213 a001 514229/2537720636*10749957122^(1/4) 6524758424990213 a001 514229/45537549124*1568397607^(9/22) 6524758424990213 a001 514229/2537720636*4106118243^(6/23) 6524758424990213 a001 514229/119218851371*1568397607^(5/11) 6524758424990213 a001 514229/312119004989*1568397607^(1/2) 6524758424990213 a001 514229/817138163596*1568397607^(6/11) 6524758424990213 a001 514229/2139295485799*1568397607^(13/22) 6524758424990213 a001 514229/5600748293801*1568397607^(7/11) 6524758424990213 a001 514229/2537720636*1568397607^(3/11) 6524758424990213 a001 514229/14662949395604*1568397607^(15/22) 6524758424990213 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^77 6524758424990213 a001 514229/2537720636*599074578^(2/7) 6524758424990213 a001 514229/6643838879*599074578^(1/3) 6524758424990213 a001 514229/10749957122*599074578^(5/14) 6524758424990213 a001 514229/969323029*2537720636^(2/9) 6524758424990213 a001 514229/969323029*312119004989^(2/11) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^10/Lucas(43) 6524758424990213 a004 Fibonacci(43)/Lucas(29)/(1/2+sqrt(5)/2)^18 6524758424990213 a001 514229/969323029*28143753123^(1/5) 6524758424990213 a001 514229/17393796001*599074578^(8/21) 6524758424990213 a001 514229/969323029*10749957122^(5/24) 6524758424990213 a001 514229/969323029*4106118243^(5/23) 6524758424990213 a001 514229/969323029*1568397607^(5/22) 6524758424990213 a001 514229/45537549124*599074578^(3/7) 6524758424990213 a001 514229/119218851371*599074578^(10/21) 6524758424990213 a001 514229/192900153618*599074578^(1/2) 6524758424990213 a001 514229/312119004989*599074578^(11/21) 6524758424990213 a001 514229/817138163596*599074578^(4/7) 6524758424990213 a001 514229/2139295485799*599074578^(13/21) 6524758424990213 a001 514229/969323029*599074578^(5/21) 6524758424990213 a001 514229/3461452808002*599074578^(9/14) 6524758424990213 a001 514229/5600748293801*599074578^(2/3) 6524758424990213 a001 514229/14662949395604*599074578^(5/7) 6524758424990213 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^75 6524758424990213 a001 514229/969323029*228826127^(1/4) 6524758424990213 a001 514229/2537720636*228826127^(3/10) 6524758424990213 a001 514229/6643838879*228826127^(7/20) 6524758424990213 a001 514229/10749957122*228826127^(3/8) 6524758424990213 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^8/Lucas(41) 6524758424990213 a001 514229/370248451*23725150497407^(1/8) 6524758424990213 a001 514229/370248451*505019158607^(1/7) 6524758424990213 a004 Fibonacci(41)/Lucas(29)/(1/2+sqrt(5)/2)^16 6524758424990213 a001 514229/370248451*73681302247^(2/13) 6524758424990213 a001 514229/370248451*10749957122^(1/6) 6524758424990213 a001 514229/370248451*4106118243^(4/23) 6524758424990213 a001 514229/370248451*1568397607^(2/11) 6524758424990213 a001 514229/17393796001*228826127^(2/5) 6524758424990213 a001 514229/370248451*599074578^(4/21) 6524758424990213 a001 514229/45537549124*228826127^(9/20) 6524758424990213 a001 514229/119218851371*228826127^(1/2) 6524758424990213 a001 514229/312119004989*228826127^(11/20) 6524758424990213 a001 514229/370248451*228826127^(1/5) 6524758424990213 a001 514229/817138163596*228826127^(3/5) 6524758424990213 a001 514229/1322157322203*228826127^(5/8) 6524758424990213 a001 514229/2139295485799*228826127^(13/20) 6524758424990213 a001 514229/5600748293801*228826127^(7/10) 6524758424990213 a001 514229/14662949395604*228826127^(3/4) 6524758424990213 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^73 6524758424990213 a001 514229/370248451*87403803^(4/19) 6524758424990213 a001 514229/969323029*87403803^(5/19) 6524758424990213 a001 514229/2537720636*87403803^(6/19) 6524758424990213 a001 514229/141422324*141422324^(2/13) 6524758424990213 a001 514229/6643838879*87403803^(7/19) 6524758424990214 a001 514229/141422324*2537720636^(2/15) 6524758424990214 a001 514229/141422324*45537549124^(2/17) 6524758424990214 a001 514229/141422324*14662949395604^(2/21) 6524758424990214 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^6/Lucas(39) 6524758424990214 a004 Fibonacci(39)/Lucas(29)/(1/2+sqrt(5)/2)^14 6524758424990214 a001 514229/141422324*10749957122^(1/8) 6524758424990214 a001 514229/141422324*4106118243^(3/23) 6524758424990214 a001 514229/141422324*1568397607^(3/22) 6524758424990214 a001 514229/141422324*599074578^(1/7) 6524758424990214 a001 514229/141422324*228826127^(3/20) 6524758424990214 a001 514229/17393796001*87403803^(8/19) 6524758424990214 a001 514229/45537549124*87403803^(9/19) 6524758424990214 a001 514229/73681302247*87403803^(1/2) 6524758424990214 a001 514229/119218851371*87403803^(10/19) 6524758424990214 a001 514229/141422324*87403803^(3/19) 6524758424990214 a001 514229/312119004989*87403803^(11/19) 6524758424990214 a001 514229/817138163596*87403803^(12/19) 6524758424990214 a001 514229/2139295485799*87403803^(13/19) 6524758424990214 a001 514229/5600748293801*87403803^(14/19) 6524758424990214 a001 514229/14662949395604*87403803^(15/19) 6524758424990214 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^71 6524758424990214 a001 514229/141422324*33385282^(1/6) 6524758424990215 a001 514229/370248451*33385282^(2/9) 6524758424990215 a001 514229/599074578*33385282^(1/4) 6524758424990215 a001 514229/969323029*33385282^(5/18) 6524758424990215 a001 514229/2537720636*33385282^(1/3) 6524758424990215 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^4/Lucas(37) 6524758424990215 a001 514229/54018521*23725150497407^(1/16) 6524758424990215 a004 Fibonacci(37)/Lucas(29)/(1/2+sqrt(5)/2)^12 6524758424990215 a001 514229/54018521*73681302247^(1/13) 6524758424990215 a001 514229/54018521*10749957122^(1/12) 6524758424990215 a001 514229/54018521*4106118243^(2/23) 6524758424990215 a001 514229/54018521*1568397607^(1/11) 6524758424990215 a001 514229/54018521*599074578^(2/21) 6524758424990215 a001 514229/54018521*228826127^(1/10) 6524758424990215 a001 514229/6643838879*33385282^(7/18) 6524758424990216 a001 514229/54018521*87403803^(2/19) 6524758424990216 a001 514229/10749957122*33385282^(5/12) 6524758424990216 a001 514229/17393796001*33385282^(4/9) 6524758424990216 a001 514229/54018521*33385282^(1/9) 6524758424990216 a001 514229/45537549124*33385282^(1/2) 6524758424990216 a001 514229/119218851371*33385282^(5/9) 6524758424990217 a001 514229/192900153618*33385282^(7/12) 6524758424990217 a001 514229/312119004989*33385282^(11/18) 6524758424990217 a001 514229/817138163596*33385282^(2/3) 6524758424990217 a001 514229/2139295485799*33385282^(13/18) 6524758424990218 a001 514229/3461452808002*33385282^(3/4) 6524758424990218 a001 514229/5600748293801*33385282^(7/9) 6524758424990218 a001 514229/14662949395604*33385282^(5/6) 6524758424990219 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^69 6524758424990220 a001 514229/54018521*12752043^(2/17) 6524758424990221 a001 514229/141422324*12752043^(3/17) 6524758424990223 a001 514229/370248451*12752043^(4/17) 6524758424990225 a001 514229/969323029*12752043^(5/17) 6524758424990227 a001 514229/2537720636*12752043^(6/17) 6524758424990229 a001 514229/20633239*(1/2+1/2*5^(1/2))^2 6524758424990229 a004 Fibonacci(35)/Lucas(29)/(1/2+sqrt(5)/2)^10 6524758424990229 a001 514229/20633239*10749957122^(1/24) 6524758424990229 a001 514229/20633239*4106118243^(1/23) 6524758424990229 a001 514229/20633239*1568397607^(1/22) 6524758424990229 a001 514229/20633239*599074578^(1/21) 6524758424990229 a001 514229/20633239*228826127^(1/20) 6524758424990229 a001 514229/20633239*87403803^(1/19) 6524758424990229 a001 514229/20633239*33385282^(1/18) 6524758424990230 a001 514229/6643838879*12752043^(7/17) 6524758424990231 a001 514229/20633239*12752043^(1/17) 6524758424990232 a001 514229/17393796001*12752043^(8/17) 6524758424990233 a001 514229/28143753123*12752043^(1/2) 6524758424990234 a001 514229/45537549124*12752043^(9/17) 6524758424990237 a001 514229/119218851371*12752043^(10/17) 6524758424990239 a001 514229/312119004989*12752043^(11/17) 6524758424990242 a001 514229/817138163596*12752043^(12/17) 6524758424990244 a001 514229/2139295485799*12752043^(13/17) 6524758424990246 a001 514229/20633239*4870847^(1/16) 6524758424990246 a001 514229/5600748293801*12752043^(14/17) 6524758424990249 a001 514229/14662949395604*12752043^(15/17) 6524758424990250 a001 514229/54018521*4870847^(1/8) 6524758424990253 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^67 6524758424990265 a001 514229/141422324*4870847^(3/16) 6524758424990282 a001 514229/370248451*4870847^(1/4) 6524758424990299 a001 514229/969323029*4870847^(5/16) 6524758424990316 a001 514229/2537720636*4870847^(3/8) 6524758424990318 a004 Fibonacci(33)/Lucas(29)/(1/2+sqrt(5)/2)^8 6524758424990334 a001 514229/6643838879*4870847^(7/16) 6524758424990351 a001 514229/17393796001*4870847^(1/2) 6524758424990354 a001 514229/20633239*1860498^(1/15) 6524758424990368 a001 514229/45537549124*4870847^(9/16) 6524758424990385 a001 514229/119218851371*4870847^(5/8) 6524758424990396 a001 514229/33385282*1860498^(1/10) 6524758424990402 a001 514229/312119004989*4870847^(11/16) 6524758424990419 a001 514229/817138163596*4870847^(3/4) 6524758424990437 a001 514229/2139295485799*4870847^(13/16) 6524758424990454 a001 514229/5600748293801*4870847^(7/8) 6524758424990467 a001 514229/54018521*1860498^(2/15) 6524758424990471 a001 514229/14662949395604*4870847^(15/16) 6524758424990488 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^65 6524758424990526 a001 514229/87403803*1860498^(1/6) 6524758424990540 a001 987/4870846*710647^(3/7) 6524758424990591 a001 514229/141422324*1860498^(1/5) 6524758424990612 a001 1346269/2537720636*710647^(5/14) 6524758424990716 a001 514229/370248451*1860498^(4/15) 6524758424990775 a001 5702887/28143753123*710647^(3/7) 6524758424990776 a001 832040/28143753123*710647^(4/7) 6524758424990779 a001 514229/599074578*1860498^(3/10) 6524758424990809 a001 14930352/73681302247*710647^(3/7) 6524758424990814 a001 39088169/192900153618*710647^(3/7) 6524758424990815 a001 102334155/505019158607*710647^(3/7) 6524758424990815 a001 267914296/1322157322203*710647^(3/7) 6524758424990815 a001 701408733/3461452808002*710647^(3/7) 6524758424990815 a001 1836311903/9062201101803*710647^(3/7) 6524758424990815 a001 4807526976/23725150497407*710647^(3/7) 6524758424990815 a001 2971215073/14662949395604*710647^(3/7) 6524758424990815 a001 1134903170/5600748293801*710647^(3/7) 6524758424990815 a001 433494437/2139295485799*710647^(3/7) 6524758424990815 a001 165580141/817138163596*710647^(3/7) 6524758424990816 a001 63245986/312119004989*710647^(3/7) 6524758424990818 a001 24157817/119218851371*710647^(3/7) 6524758424990831 a001 9227465/45537549124*710647^(3/7) 6524758424990842 a001 514229/969323029*1860498^(1/3) 6524758424990920 a001 3524578/17393796001*710647^(3/7) 6524758424990933 a001 692290561601/10610209857723 6524758424990933 a004 Fibonacci(29)/Lucas(31)/(1/2+sqrt(5)/2)^2 6524758424990933 a004 Fibonacci(31)/Lucas(29)/(1/2+sqrt(5)/2)^6 6524758424990967 a001 514229/2537720636*1860498^(2/5) 6524758424991093 a001 514229/6643838879*1860498^(7/15) 6524758424991151 a001 514229/20633239*710647^(1/14) 6524758424991156 a001 514229/10749957122*1860498^(1/2) 6524758424991219 a001 514229/17393796001*1860498^(8/15) 6524758424991344 a001 514229/45537549124*1860498^(3/5) 6524758424991463 a001 726103/9381251041*710647^(1/2) 6524758424991470 a001 514229/119218851371*1860498^(2/3) 6524758424991533 a001 514229/192900153618*1860498^(7/10) 6524758424991535 a001 1346269/6643838879*710647^(3/7) 6524758424991595 a001 514229/312119004989*1860498^(11/15) 6524758424991698 a001 5702887/73681302247*710647^(1/2) 6524758424991699 a001 832040/73681302247*710647^(9/14) 6524758424991721 a001 514229/817138163596*1860498^(4/5) 6524758424991732 a001 2584/33385281*710647^(1/2) 6524758424991737 a001 39088169/505019158607*710647^(1/2) 6524758424991738 a001 34111385/440719107401*710647^(1/2) 6524758424991738 a001 133957148/1730726404001*710647^(1/2) 6524758424991738 a001 233802911/3020733700601*710647^(1/2) 6524758424991738 a001 1836311903/23725150497407*710647^(1/2) 6524758424991738 a001 567451585/7331474697802*710647^(1/2) 6524758424991738 a001 433494437/5600748293801*710647^(1/2) 6524758424991738 a001 165580141/2139295485799*710647^(1/2) 6524758424991738 a001 31622993/408569081798*710647^(1/2) 6524758424991740 a001 24157817/312119004989*710647^(1/2) 6524758424991753 a001 9227465/119218851371*710647^(1/2) 6524758424991784 a001 514229/1322157322203*1860498^(5/6) 6524758424991814 a001 726103/29134601*271443^(1/13) 6524758424991843 a001 1762289/22768774562*710647^(1/2) 6524758424991847 a001 514229/2139295485799*1860498^(13/15) 6524758424991910 a001 514229/3461452808002*1860498^(9/10) 6524758424991972 a001 514229/5600748293801*1860498^(14/15) 6524758424992050 a001 5702887/228826127*271443^(1/13) 6524758424992061 a001 514229/54018521*710647^(1/7) 6524758424992084 a001 829464/33281921*271443^(1/13) 6524758424992089 a001 39088169/1568397607*271443^(1/13) 6524758424992090 a001 34111385/1368706081*271443^(1/13) 6524758424992090 a001 133957148/5374978561*271443^(1/13) 6524758424992090 a001 233802911/9381251041*271443^(1/13) 6524758424992090 a001 1836311903/73681302247*271443^(1/13) 6524758424992090 a001 267084832/10716675201*271443^(1/13) 6524758424992090 a001 12586269025/505019158607*271443^(1/13) 6524758424992090 a001 10983760033/440719107401*271443^(1/13) 6524758424992090 a001 43133785636/1730726404001*271443^(1/13) 6524758424992090 a001 75283811239/3020733700601*271443^(1/13) 6524758424992090 a001 182717648081/7331474697802*271443^(1/13) 6524758424992090 a001 139583862445/5600748293801*271443^(1/13) 6524758424992090 a001 53316291173/2139295485799*271443^(1/13) 6524758424992090 a001 10182505537/408569081798*271443^(1/13) 6524758424992090 a001 7778742049/312119004989*271443^(1/13) 6524758424992090 a001 2971215073/119218851371*271443^(1/13) 6524758424992090 a001 567451585/22768774562*271443^(1/13) 6524758424992090 a001 433494437/17393796001*271443^(1/13) 6524758424992090 a001 165580141/6643838879*271443^(1/13) 6524758424992090 a001 31622993/1268860318*271443^(1/13) 6524758424992092 a001 24157817/969323029*271443^(1/13) 6524758424992098 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^63 6524758424992105 a001 9227465/370248451*271443^(1/13) 6524758424992195 a001 1762289/70711162*271443^(1/13) 6524758424992386 a001 311187/10525900321*710647^(4/7) 6524758424992458 a001 1346269/17393796001*710647^(1/2) 6524758424992621 a001 5702887/192900153618*710647^(4/7) 6524758424992622 a001 416020/96450076809*710647^(5/7) 6524758424992655 a001 14930352/505019158607*710647^(4/7) 6524758424992660 a001 39088169/1322157322203*710647^(4/7) 6524758424992661 a001 6765/228826126*710647^(4/7) 6524758424992661 a001 267914296/9062201101803*710647^(4/7) 6524758424992661 a001 701408733/23725150497407*710647^(4/7) 6524758424992661 a001 433494437/14662949395604*710647^(4/7) 6524758424992661 a001 165580141/5600748293801*710647^(4/7) 6524758424992661 a001 63245986/2139295485799*710647^(4/7) 6524758424992663 a001 24157817/817138163596*710647^(4/7) 6524758424992676 a001 9227465/312119004989*710647^(4/7) 6524758424992766 a001 3524578/119218851371*710647^(4/7) 6524758424992793 a001 105937/29134601*271443^(3/13) 6524758424992795 a001 196418/73681302247*439204^(7/9) 6524758424992812 a001 1346269/54018521*271443^(1/13) 6524758424992982 a001 514229/141422324*710647^(3/14) 6524758424993083 a001 75640/28374454999*710647^(3/4) 6524758424993309 a001 726103/64300051206*710647^(9/14) 6524758424993381 a001 1346269/45537549124*710647^(4/7) 6524758424993443 a001 514229/228826127*710647^(1/4) 6524758424993544 a001 5702887/505019158607*710647^(9/14) 6524758424993545 a001 832040/505019158607*710647^(11/14) 6524758424993578 a001 4976784/440719107401*710647^(9/14) 6524758424993583 a001 39088169/3461452808002*710647^(9/14) 6524758424993584 a001 34111385/3020733700601*710647^(9/14) 6524758424993584 a001 267914296/23725150497407*710647^(9/14) 6524758424993584 a001 165580141/14662949395604*710647^(9/14) 6524758424993584 a001 63245986/5600748293801*710647^(9/14) 6524758424993586 a001 24157817/2139295485799*710647^(9/14) 6524758424993599 a001 9227465/817138163596*710647^(9/14) 6524758424993689 a001 3524578/312119004989*710647^(9/14) 6524758424993905 a001 514229/370248451*710647^(2/7) 6524758424994232 a001 46347/10745088481*710647^(5/7) 6524758424994304 a001 1346269/119218851371*710647^(9/14) 6524758424994467 a001 5702887/1322157322203*710647^(5/7) 6524758424994467 a001 832040/1322157322203*710647^(6/7) 6524758424994501 a001 7465176/1730726404001*710647^(5/7) 6524758424994506 a001 39088169/9062201101803*710647^(5/7) 6524758424994507 a001 102334155/23725150497407*710647^(5/7) 6524758424994507 a001 31622993/7331474697802*710647^(5/7) 6524758424994509 a001 24157817/5600748293801*710647^(5/7) 6524758424994522 a001 9227465/2139295485799*710647^(5/7) 6524758424994612 a001 1762289/408569081798*710647^(5/7) 6524758424994693 a001 2178309/817138163596*710647^(3/4) 6524758424994827 a001 514229/969323029*710647^(5/14) 6524758424994928 a001 5702887/2139295485799*710647^(3/4) 6524758424994962 a001 14930352/5600748293801*710647^(3/4) 6524758424994967 a001 39088169/14662949395604*710647^(3/4) 6524758424994968 a001 63245986/23725150497407*710647^(3/4) 6524758424994970 a001 24157817/9062201101803*710647^(3/4) 6524758424994983 a001 9227465/3461452808002*710647^(3/4) 6524758424995073 a001 3524578/1322157322203*710647^(3/4) 6524758424995148 a001 264431464441/4052739537881 6524758424995148 a004 Fibonacci(29)/Lucas(29)/(1/2+sqrt(5)/2)^4 6524758424995155 a001 726103/440719107401*710647^(11/14) 6524758424995227 a001 1346269/312119004989*710647^(5/7) 6524758424995389 a001 5702887/3461452808002*710647^(11/14) 6524758424995390 a001 416020/1730726404001*710647^(13/14) 6524758424995424 a001 4976784/3020733700601*710647^(11/14) 6524758424995429 a001 39088169/23725150497407*710647^(11/14) 6524758424995432 a001 24157817/14662949395604*710647^(11/14) 6524758424995445 a001 9227465/5600748293801*710647^(11/14) 6524758424995535 a001 3524578/2139295485799*710647^(11/14) 6524758424995688 a001 1346269/505019158607*710647^(3/4) 6524758424995750 a001 514229/2537720636*710647^(3/7) 6524758424996077 a001 311187/494493258286*710647^(6/7) 6524758424996150 a001 1346269/817138163596*710647^(11/14) 6524758424996312 a001 5702887/9062201101803*710647^(6/7) 6524758424996313 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^62 6524758424996347 a001 14930352/23725150497407*710647^(6/7) 6524758424996368 a001 9227465/14662949395604*710647^(6/7) 6524758424996457 a001 3524578/5600748293801*710647^(6/7) 6524758424996553 a001 196418/17393796001*439204^(2/3) 6524758424996673 a001 514229/6643838879*710647^(1/2) 6524758424997000 a001 726103/3020733700601*710647^(13/14) 6524758424997016 a001 832040/87403803*271443^(2/13) 6524758424997040 a001 514229/20633239*271443^(1/13) 6524758424997072 a001 1346269/2139295485799*710647^(6/7) 6524758424997235 a001 5702887/23725150497407*710647^(13/14) 6524758424997380 a001 1762289/7331474697802*710647^(13/14) 6524758424997596 a001 514229/17393796001*710647^(4/7) 6524758424997753 a001 317811/7881196*103682^(1/24) 6524758424997844 a001 121393/12752043*103682^(1/6) 6524758424997923 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^64 6524758424997995 a001 1346269/5600748293801*710647^(13/14) 6524758424998158 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^66 6524758424998192 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^68 6524758424998197 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^70 6524758424998198 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^72 6524758424998198 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^74 6524758424998198 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^76 6524758424998198 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^78 6524758424998198 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^80 6524758424998198 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^82 6524758424998198 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^84 6524758424998198 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^86 6524758424998198 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^88 6524758424998198 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^90 6524758424998198 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^92 6524758424998198 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^94 6524758424998198 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^96 6524758424998198 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^98 6524758424998198 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^100 6524758424998198 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^99 6524758424998198 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^97 6524758424998198 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^95 6524758424998198 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^93 6524758424998198 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^91 6524758424998198 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^89 6524758424998198 a001 2/317811*(1/2+1/2*5^(1/2))^24 6524758424998198 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^87 6524758424998198 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^85 6524758424998198 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^83 6524758424998198 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^81 6524758424998198 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^79 6524758424998198 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^77 6524758424998198 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^75 6524758424998198 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^73 6524758424998198 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^71 6524758424998200 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^69 6524758424998213 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^67 6524758424998303 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^65 6524758424998473 a001 101521/311187*8^(1/3) 6524758424998519 a001 514229/45537549124*710647^(9/14) 6524758424998627 a001 46347/4868641*271443^(2/13) 6524758424998862 a001 5702887/599074578*271443^(2/13) 6524758424998896 a001 14930352/1568397607*271443^(2/13) 6524758424998901 a001 39088169/4106118243*271443^(2/13) 6524758424998902 a001 102334155/10749957122*271443^(2/13) 6524758424998902 a001 267914296/28143753123*271443^(2/13) 6524758424998902 a001 701408733/73681302247*271443^(2/13) 6524758424998902 a001 1836311903/192900153618*271443^(2/13) 6524758424998902 a001 102287808/10745088481*271443^(2/13) 6524758424998902 a001 12586269025/1322157322203*271443^(2/13) 6524758424998902 a001 32951280099/3461452808002*271443^(2/13) 6524758424998902 a001 86267571272/9062201101803*271443^(2/13) 6524758424998902 a001 225851433717/23725150497407*271443^(2/13) 6524758424998902 a001 139583862445/14662949395604*271443^(2/13) 6524758424998902 a001 53316291173/5600748293801*271443^(2/13) 6524758424998902 a001 20365011074/2139295485799*271443^(2/13) 6524758424998902 a001 7778742049/817138163596*271443^(2/13) 6524758424998902 a001 2971215073/312119004989*271443^(2/13) 6524758424998902 a001 1134903170/119218851371*271443^(2/13) 6524758424998902 a001 433494437/45537549124*271443^(2/13) 6524758424998902 a001 165580141/17393796001*271443^(2/13) 6524758424998902 a001 63245986/6643838879*271443^(2/13) 6524758424998904 a001 24157817/2537720636*271443^(2/13) 6524758424998917 a001 9227465/969323029*271443^(2/13) 6524758424998918 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^63 6524758424999007 a001 3524578/370248451*271443^(2/13) 6524758424999442 a001 514229/119218851371*710647^(5/7) 6524758424999606 a001 317811/228826127*271443^(4/13) 6524758424999622 a001 1346269/141422324*271443^(2/13) 6524758424999903 a001 514229/192900153618*710647^(3/4) 6524758425000311 a001 196418/4106118243*439204^(5/9) 6524758425000364 a001 514229/312119004989*710647^(11/14) 6524758425001287 a001 514229/817138163596*710647^(6/7) 6524758425002210 a001 514229/2139295485799*710647^(13/14) 6524758425003133 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^61 6524758425003829 a001 832040/228826127*271443^(3/13) 6524758425003839 a001 514229/54018521*271443^(2/13) 6524758425004070 a001 196418/969323029*439204^(4/9) 6524758425005439 a001 726103/199691526*271443^(3/13) 6524758425005674 a001 5702887/1568397607*271443^(3/13) 6524758425005708 a001 4976784/1368706081*271443^(3/13) 6524758425005713 a001 39088169/10749957122*271443^(3/13) 6524758425005714 a001 831985/228811001*271443^(3/13) 6524758425005714 a001 267914296/73681302247*271443^(3/13) 6524758425005714 a001 233802911/64300051206*271443^(3/13) 6524758425005714 a001 1836311903/505019158607*271443^(3/13) 6524758425005714 a001 1602508992/440719107401*271443^(3/13) 6524758425005714 a001 12586269025/3461452808002*271443^(3/13) 6524758425005714 a001 10983760033/3020733700601*271443^(3/13) 6524758425005714 a001 86267571272/23725150497407*271443^(3/13) 6524758425005714 a001 53316291173/14662949395604*271443^(3/13) 6524758425005714 a001 20365011074/5600748293801*271443^(3/13) 6524758425005714 a001 7778742049/2139295485799*271443^(3/13) 6524758425005714 a001 2971215073/817138163596*271443^(3/13) 6524758425005714 a001 1134903170/312119004989*271443^(3/13) 6524758425005714 a001 433494437/119218851371*271443^(3/13) 6524758425005714 a001 165580141/45537549124*271443^(3/13) 6524758425005714 a001 63245986/17393796001*271443^(3/13) 6524758425005716 a001 24157817/6643838879*271443^(3/13) 6524758425005729 a001 9227465/2537720636*271443^(3/13) 6524758425005819 a001 3524578/969323029*271443^(3/13) 6524758425006183 a001 62423800998/956722026041 6524758425006183 a004 Fibonacci(27)/Lucas(28)/(1/2+sqrt(5)/2)^3 6524758425006183 a004 Fibonacci(28)/Lucas(27)/(1/2+sqrt(5)/2)^5 6524758425006418 a001 377/710646*271443^(5/13) 6524758425006434 a001 1346269/370248451*271443^(3/13) 6524758425007828 a001 196418/228826127*439204^(1/3) 6524758425008698 a001 75640/1875749*103682^(1/24) 6524758425009575 a001 75025/4870847*64079^(3/23) 6524758425010295 a001 2178309/54018521*103682^(1/24) 6524758425010528 a001 5702887/141422324*103682^(1/24) 6524758425010562 a001 14930352/370248451*103682^(1/24) 6524758425010567 a001 39088169/969323029*103682^(1/24) 6524758425010568 a001 9303105/230701876*103682^(1/24) 6524758425010568 a001 267914296/6643838879*103682^(1/24) 6524758425010568 a001 701408733/17393796001*103682^(1/24) 6524758425010568 a001 1836311903/45537549124*103682^(1/24) 6524758425010568 a001 4807526976/119218851371*103682^(1/24) 6524758425010568 a001 1144206275/28374454999*103682^(1/24) 6524758425010568 a001 32951280099/817138163596*103682^(1/24) 6524758425010568 a001 86267571272/2139295485799*103682^(1/24) 6524758425010568 a001 225851433717/5600748293801*103682^(1/24) 6524758425010568 a001 591286729879/14662949395604*103682^(1/24) 6524758425010568 a001 365435296162/9062201101803*103682^(1/24) 6524758425010568 a001 139583862445/3461452808002*103682^(1/24) 6524758425010568 a001 53316291173/1322157322203*103682^(1/24) 6524758425010568 a001 20365011074/505019158607*103682^(1/24) 6524758425010568 a001 7778742049/192900153618*103682^(1/24) 6524758425010568 a001 2971215073/73681302247*103682^(1/24) 6524758425010568 a001 1134903170/28143753123*103682^(1/24) 6524758425010568 a001 433494437/10749957122*103682^(1/24) 6524758425010568 a001 165580141/4106118243*103682^(1/24) 6524758425010568 a001 63245986/1568397607*103682^(1/24) 6524758425010570 a001 24157817/599074578*103682^(1/24) 6524758425010583 a001 9227465/228826127*103682^(1/24) 6524758425010641 a001 416020/299537289*271443^(4/13) 6524758425010649 a001 514229/141422324*271443^(3/13) 6524758425010672 a001 3524578/87403803*103682^(1/24) 6524758425011282 a001 1346269/33385282*103682^(1/24) 6524758425011588 a001 196418/54018521*439204^(2/9) 6524758425012251 a001 311187/224056801*271443^(4/13) 6524758425012485 a001 5702887/4106118243*271443^(4/13) 6524758425012520 a001 7465176/5374978561*271443^(4/13) 6524758425012525 a001 39088169/28143753123*271443^(4/13) 6524758425012525 a001 14619165/10525900321*271443^(4/13) 6524758425012526 a001 133957148/96450076809*271443^(4/13) 6524758425012526 a001 701408733/505019158607*271443^(4/13) 6524758425012526 a001 1836311903/1322157322203*271443^(4/13) 6524758425012526 a001 14930208/10749853441*271443^(4/13) 6524758425012526 a001 12586269025/9062201101803*271443^(4/13) 6524758425012526 a001 32951280099/23725150497407*271443^(4/13) 6524758425012526 a001 10182505537/7331474697802*271443^(4/13) 6524758425012526 a001 7778742049/5600748293801*271443^(4/13) 6524758425012526 a001 2971215073/2139295485799*271443^(4/13) 6524758425012526 a001 567451585/408569081798*271443^(4/13) 6524758425012526 a001 433494437/312119004989*271443^(4/13) 6524758425012526 a001 165580141/119218851371*271443^(4/13) 6524758425012526 a001 31622993/22768774562*271443^(4/13) 6524758425012528 a001 24157817/17393796001*271443^(4/13) 6524758425012541 a001 9227465/6643838879*271443^(4/13) 6524758425012631 a001 1762289/1268860318*271443^(4/13) 6524758425013229 a001 317811/1568397607*271443^(6/13) 6524758425013246 a001 1346269/969323029*271443^(4/13) 6524758425014168 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^60 6524758425015304 a001 196418/12752043*439204^(1/9) 6524758425015463 a001 514229/12752043*103682^(1/24) 6524758425016513 a001 28657/1860498*24476^(1/7) 6524758425016635 a001 317811/2537720636*271443^(1/2) 6524758425017218 a001 163427632720/2504730781961 6524758425017218 a004 Fibonacci(27)/Lucas(30)/(1/2+sqrt(5)/2) 6524758425017218 a004 Fibonacci(30)/Lucas(27)/(1/2+sqrt(5)/2)^7 6524758425017452 a001 832040/1568397607*271443^(5/13) 6524758425017461 a001 514229/370248451*271443^(4/13) 6524758425018383 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^62 6524758425018828 a001 12584091093/192866774113 6524758425018828 a001 98209/4870847+98209/4870847*5^(1/2) 6524758425018828 a004 Fibonacci(32)/Lucas(27)/(1/2+sqrt(5)/2)^9 6524758425018998 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^64 6524758425019007 a001 196418/5600748293801*7881196^(10/11) 6524758425019017 a001 196418/1322157322203*7881196^(9/11) 6524758425019026 a001 196418/312119004989*7881196^(8/11) 6524758425019033 a001 196418/119218851371*7881196^(2/3) 6524758425019036 a001 196418/73681302247*7881196^(7/11) 6524758425019045 a001 196418/17393796001*7881196^(6/11) 6524758425019053 a001 196418/12752043*7881196^(1/11) 6524758425019055 a001 196418/4106118243*7881196^(5/11) 6524758425019062 a001 726103/1368706081*271443^(5/13) 6524758425019063 a001 196418/12752043*141422324^(1/13) 6524758425019063 a001 196418/12752043*2537720636^(1/15) 6524758425019063 a001 196418/12752043*45537549124^(1/17) 6524758425019063 a001 196418/12752043*14662949395604^(1/21) 6524758425019063 a001 196418/12752043*(1/2+1/2*5^(1/2))^3 6524758425019063 a001 196418/12752043*192900153618^(1/18) 6524758425019063 a004 Fibonacci(34)/Lucas(27)/(1/2+sqrt(5)/2)^11 6524758425019063 a001 196418/12752043*10749957122^(1/16) 6524758425019063 a001 196418/12752043*599074578^(1/14) 6524758425019063 a001 196418/12752043*33385282^(1/12) 6524758425019065 a001 196418/969323029*7881196^(4/11) 6524758425019068 a001 98209/299537289*7881196^(1/3) 6524758425019074 a001 196418/228826127*7881196^(3/11) 6524758425019086 a001 196418/54018521*7881196^(2/11) 6524758425019087 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^66 6524758425019090 a001 196418/5600748293801*20633239^(6/7) 6524758425019091 a001 196418/2139295485799*20633239^(4/5) 6524758425019092 a001 196418/505019158607*20633239^(5/7) 6524758425019094 a001 196418/73681302247*20633239^(3/5) 6524758425019094 a001 98209/22768774562*20633239^(4/7) 6524758425019095 a001 98209/16692641*20633239^(1/7) 6524758425019096 a001 196418/4106118243*20633239^(3/7) 6524758425019097 a001 98209/1268860318*20633239^(2/5) 6524758425019097 a001 98209/16692641*2537720636^(1/9) 6524758425019097 a001 98209/16692641*312119004989^(1/11) 6524758425019097 a001 98209/16692641*(1/2+1/2*5^(1/2))^5 6524758425019097 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^5/Lucas(36) 6524758425019097 a004 Fibonacci(36)/Lucas(27)/(1/2+sqrt(5)/2)^13 6524758425019097 a001 98209/16692641*28143753123^(1/10) 6524758425019097 a001 98209/16692641*228826127^(1/8) 6524758425019098 a001 196418/370248451*20633239^(2/7) 6524758425019099 a001 196418/87403803*20633239^(1/5) 6524758425019101 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^68 6524758425019102 a001 196418/87403803*17393796001^(1/7) 6524758425019102 a001 196418/87403803*14662949395604^(1/9) 6524758425019102 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^7/Lucas(38) 6524758425019102 a004 Fibonacci(38)/Lucas(27)/(1/2+sqrt(5)/2)^15 6524758425019102 a001 196418/87403803*599074578^(1/6) 6524758425019102 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^70 6524758425019103 a001 196418/23725150497407*141422324^(11/13) 6524758425019103 a001 196418/5600748293801*141422324^(10/13) 6524758425019103 a001 196418/1322157322203*141422324^(9/13) 6524758425019103 a001 98209/408569081798*141422324^(2/3) 6524758425019103 a001 196418/312119004989*141422324^(8/13) 6524758425019103 a001 196418/228826127*141422324^(3/13) 6524758425019103 a001 196418/73681302247*141422324^(7/13) 6524758425019103 a001 196418/17393796001*141422324^(6/13) 6524758425019103 a001 196418/4106118243*141422324^(5/13) 6524758425019103 a001 196418/228826127*2537720636^(1/5) 6524758425019103 a001 196418/228826127*45537549124^(3/17) 6524758425019103 a001 196418/228826127*14662949395604^(1/7) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^9/Lucas(40) 6524758425019103 a001 196418/228826127*192900153618^(1/6) 6524758425019103 a004 Fibonacci(40)/Lucas(27)/(1/2+sqrt(5)/2)^17 6524758425019103 a001 196418/228826127*10749957122^(3/16) 6524758425019103 a001 196418/228826127*599074578^(3/14) 6524758425019103 a001 196418/1568397607*141422324^(1/3) 6524758425019103 a001 196418/969323029*141422324^(4/13) 6524758425019103 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^72 6524758425019103 a001 98209/299537289*312119004989^(1/5) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^11/Lucas(42) 6524758425019103 a004 Fibonacci(42)/Lucas(27)/(1/2+sqrt(5)/2)^19 6524758425019103 a001 98209/299537289*1568397607^(1/4) 6524758425019103 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^74 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^13/Lucas(44) 6524758425019103 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^21 6524758425019103 a001 196418/1568397607*73681302247^(1/4) 6524758425019103 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^76 6524758425019103 a001 196418/23725150497407*2537720636^(11/15) 6524758425019103 a001 196418/4106118243*2537720636^(1/3) 6524758425019103 a001 196418/5600748293801*2537720636^(2/3) 6524758425019103 a001 196418/1322157322203*2537720636^(3/5) 6524758425019103 a001 196418/505019158607*2537720636^(5/9) 6524758425019103 a001 196418/312119004989*2537720636^(8/15) 6524758425019103 a001 196418/73681302247*2537720636^(7/15) 6524758425019103 a001 98209/22768774562*2537720636^(4/9) 6524758425019103 a001 196418/4106118243*45537549124^(5/17) 6524758425019103 a001 196418/4106118243*312119004989^(3/11) 6524758425019103 a001 196418/4106118243*14662949395604^(5/21) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^15/Lucas(46) 6524758425019103 a001 196418/4106118243*192900153618^(5/18) 6524758425019103 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^23 6524758425019103 a001 196418/4106118243*28143753123^(3/10) 6524758425019103 a001 196418/17393796001*2537720636^(2/5) 6524758425019103 a001 196418/4106118243*10749957122^(5/16) 6524758425019103 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^78 6524758425019103 a001 98209/5374978561*45537549124^(1/3) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^17/Lucas(48) 6524758425019103 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^25 6524758425019103 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^80 6524758425019103 a001 196418/2139295485799*17393796001^(4/7) 6524758425019103 a001 196418/73681302247*17393796001^(3/7) 6524758425019103 a001 196418/28143753123*817138163596^(1/3) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^19/Lucas(50) 6524758425019103 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^27 6524758425019103 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^82 6524758425019103 a001 196418/73681302247*45537549124^(7/17) 6524758425019103 a001 196418/23725150497407*45537549124^(11/17) 6524758425019103 a001 196418/5600748293801*45537549124^(10/17) 6524758425019103 a001 196418/1322157322203*45537549124^(9/17) 6524758425019103 a001 196418/312119004989*45537549124^(8/17) 6524758425019103 a001 196418/73681302247*14662949395604^(1/3) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^21/Lucas(52) 6524758425019103 a001 196418/73681302247*192900153618^(7/18) 6524758425019103 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^29 6524758425019103 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^84 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^23/Lucas(54) 6524758425019103 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^86 6524758425019103 a001 196418/505019158607*312119004989^(5/11) 6524758425019103 a001 196418/23725150497407*312119004989^(3/5) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(56) 6524758425019103 a001 196418/505019158607*3461452808002^(5/12) 6524758425019103 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^88 6524758425019103 a001 196418/1322157322203*817138163596^(9/19) 6524758425019103 a001 196418/23725150497407*817138163596^(11/19) 6524758425019103 a001 196418/1322157322203*14662949395604^(3/7) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(58) 6524758425019103 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^90 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(60) 6524758425019103 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^92 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(62) 6524758425019103 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^94 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(64) 6524758425019103 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^96 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(66) 6524758425019103 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^98 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(68) 6524758425019103 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^100 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(70) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(72) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(74) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(76) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(78) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(80) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(82) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(84) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(86) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(88) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(90) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(92) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(94) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(96) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(98) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(100) 6524758425019103 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^31 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(99) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(97) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(95) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(93) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(91) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(89) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(87) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(85) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(83) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(81) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(79) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(77) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(75) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(73) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(71) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(69) 6524758425019103 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^99 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(67) 6524758425019103 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^97 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(65) 6524758425019103 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^95 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(63) 6524758425019103 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^93 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(61) 6524758425019103 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^91 6524758425019103 a001 98209/1730726404001*1322157322203^(1/2) 6524758425019103 a001 196418/2139295485799*14662949395604^(4/9) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(59) 6524758425019103 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^89 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(57) 6524758425019103 a001 196418/2139295485799*505019158607^(1/2) 6524758425019103 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^87 6524758425019103 a001 196418/312119004989*14662949395604^(8/21) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(55) 6524758425019103 a001 196418/1322157322203*192900153618^(1/2) 6524758425019103 a001 196418/5600748293801*192900153618^(5/9) 6524758425019103 a001 196418/23725150497407*192900153618^(11/18) 6524758425019103 a001 196418/312119004989*192900153618^(4/9) 6524758425019103 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^33 6524758425019103 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^35 6524758425019103 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^37 6524758425019103 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^39 6524758425019103 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^41 6524758425019103 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^43 6524758425019103 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^45 6524758425019103 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^47 6524758425019103 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^49 6524758425019103 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^51 6524758425019103 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^53 6524758425019103 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^55 6524758425019103 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^57 6524758425019103 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^59 6524758425019103 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^61 6524758425019103 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^63 6524758425019103 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^65 6524758425019103 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^67 6524758425019103 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^69 6524758425019103 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^71 6524758425019103 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^73 6524758425019103 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^77 6524758425019103 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^85 6524758425019103 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^75 6524758425019103 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^76 6524758425019103 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^74 6524758425019103 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^72 6524758425019103 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^70 6524758425019103 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^68 6524758425019103 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^66 6524758425019103 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^64 6524758425019103 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^62 6524758425019103 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^60 6524758425019103 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^58 6524758425019103 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^56 6524758425019103 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^54 6524758425019103 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^52 6524758425019103 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^50 6524758425019103 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^48 6524758425019103 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^46 6524758425019103 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^44 6524758425019103 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^42 6524758425019103 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^40 6524758425019103 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^38 6524758425019103 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^36 6524758425019103 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^34 6524758425019103 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^32 6524758425019103 a001 196418/119218851371*312119004989^(2/5) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^22/Lucas(53) 6524758425019103 a001 98209/408569081798*73681302247^(1/2) 6524758425019103 a001 196418/312119004989*73681302247^(6/13) 6524758425019103 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^30 6524758425019103 a001 196418/2139295485799*73681302247^(7/13) 6524758425019103 a001 98209/7331474697802*73681302247^(8/13) 6524758425019103 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^83 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^20/Lucas(51) 6524758425019103 a001 98209/22768774562*23725150497407^(5/16) 6524758425019103 a001 98209/22768774562*505019158607^(5/14) 6524758425019103 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^28 6524758425019103 a001 98209/22768774562*73681302247^(5/13) 6524758425019103 a001 196418/505019158607*28143753123^(1/2) 6524758425019103 a001 196418/5600748293801*28143753123^(3/5) 6524758425019103 a001 98209/22768774562*28143753123^(2/5) 6524758425019103 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^81 6524758425019103 a001 196418/17393796001*45537549124^(6/17) 6524758425019103 a001 196418/17393796001*14662949395604^(2/7) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^18/Lucas(49) 6524758425019103 a001 196418/17393796001*192900153618^(1/3) 6524758425019103 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^26 6524758425019103 a001 196418/73681302247*10749957122^(7/16) 6524758425019103 a001 196418/119218851371*10749957122^(11/24) 6524758425019103 a001 98209/22768774562*10749957122^(5/12) 6524758425019103 a001 196418/312119004989*10749957122^(1/2) 6524758425019103 a001 98209/408569081798*10749957122^(13/24) 6524758425019103 a001 196418/1322157322203*10749957122^(9/16) 6524758425019103 a001 196418/2139295485799*10749957122^(7/12) 6524758425019103 a001 196418/5600748293801*10749957122^(5/8) 6524758425019103 a001 98209/7331474697802*10749957122^(2/3) 6524758425019103 a001 196418/23725150497407*10749957122^(11/16) 6524758425019103 a001 196418/17393796001*10749957122^(3/8) 6524758425019103 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^79 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^16/Lucas(47) 6524758425019103 a001 196418/6643838879*23725150497407^(1/4) 6524758425019103 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^24 6524758425019103 a001 196418/6643838879*73681302247^(4/13) 6524758425019103 a001 196418/6643838879*10749957122^(1/3) 6524758425019103 a001 98209/22768774562*4106118243^(10/23) 6524758425019103 a001 196418/17393796001*4106118243^(9/23) 6524758425019103 a001 196418/119218851371*4106118243^(11/23) 6524758425019103 a001 98209/96450076809*4106118243^(1/2) 6524758425019103 a001 196418/312119004989*4106118243^(12/23) 6524758425019103 a001 98209/408569081798*4106118243^(13/23) 6524758425019103 a001 196418/2139295485799*4106118243^(14/23) 6524758425019103 a001 196418/5600748293801*4106118243^(15/23) 6524758425019103 a001 98209/7331474697802*4106118243^(16/23) 6524758425019103 a001 196418/6643838879*4106118243^(8/23) 6524758425019103 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^77 6524758425019103 a001 98209/1268860318*17393796001^(2/7) 6524758425019103 a001 98209/1268860318*14662949395604^(2/9) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^14/Lucas(45) 6524758425019103 a001 98209/1268860318*505019158607^(1/4) 6524758425019103 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^22 6524758425019103 a001 98209/1268860318*10749957122^(7/24) 6524758425019103 a001 196418/17393796001*1568397607^(9/22) 6524758425019103 a001 196418/6643838879*1568397607^(4/11) 6524758425019103 a001 98209/1268860318*4106118243^(7/23) 6524758425019103 a001 98209/22768774562*1568397607^(5/11) 6524758425019103 a001 196418/119218851371*1568397607^(1/2) 6524758425019103 a001 196418/312119004989*1568397607^(6/11) 6524758425019103 a001 98209/408569081798*1568397607^(13/22) 6524758425019103 a001 196418/2139295485799*1568397607^(7/11) 6524758425019103 a001 196418/5600748293801*1568397607^(15/22) 6524758425019103 a001 98209/1268860318*1568397607^(7/22) 6524758425019103 a001 98209/7331474697802*1568397607^(8/11) 6524758425019103 a001 196418/23725150497407*1568397607^(3/4) 6524758425019103 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^75 6524758425019103 a001 196418/4106118243*599074578^(5/14) 6524758425019103 a001 196418/969323029*2537720636^(4/15) 6524758425019103 a001 196418/969323029*45537549124^(4/17) 6524758425019103 a001 196418/969323029*817138163596^(4/19) 6524758425019103 a001 196418/969323029*14662949395604^(4/21) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^12/Lucas(43) 6524758425019103 a001 196418/969323029*192900153618^(2/9) 6524758425019103 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2)^20 6524758425019103 a001 196418/969323029*73681302247^(3/13) 6524758425019103 a001 196418/969323029*10749957122^(1/4) 6524758425019103 a001 196418/969323029*4106118243^(6/23) 6524758425019103 a001 98209/1268860318*599074578^(1/3) 6524758425019103 a001 196418/6643838879*599074578^(8/21) 6524758425019103 a001 196418/969323029*1568397607^(3/11) 6524758425019103 a001 196418/17393796001*599074578^(3/7) 6524758425019103 a001 98209/22768774562*599074578^(10/21) 6524758425019103 a001 196418/73681302247*599074578^(1/2) 6524758425019103 a001 196418/119218851371*599074578^(11/21) 6524758425019103 a001 196418/312119004989*599074578^(4/7) 6524758425019103 a001 98209/408569081798*599074578^(13/21) 6524758425019103 a001 196418/1322157322203*599074578^(9/14) 6524758425019103 a001 196418/2139295485799*599074578^(2/3) 6524758425019103 a001 196418/969323029*599074578^(2/7) 6524758425019103 a001 196418/5600748293801*599074578^(5/7) 6524758425019103 a001 98209/7331474697802*599074578^(16/21) 6524758425019103 a001 196418/23725150497407*599074578^(11/14) 6524758425019103 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^73 6524758425019103 a001 196418/969323029*228826127^(3/10) 6524758425019103 a001 98209/1268860318*228826127^(7/20) 6524758425019103 a001 196418/4106118243*228826127^(3/8) 6524758425019103 a001 196418/370248451*2537720636^(2/9) 6524758425019103 a001 196418/370248451*312119004989^(2/11) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^10/Lucas(41) 6524758425019103 a004 Fibonacci(41)/Lucas(27)/(1/2+sqrt(5)/2)^18 6524758425019103 a001 196418/370248451*28143753123^(1/5) 6524758425019103 a001 196418/370248451*10749957122^(5/24) 6524758425019103 a001 196418/370248451*4106118243^(5/23) 6524758425019103 a001 196418/370248451*1568397607^(5/22) 6524758425019103 a001 196418/6643838879*228826127^(2/5) 6524758425019103 a001 196418/370248451*599074578^(5/21) 6524758425019103 a001 196418/17393796001*228826127^(9/20) 6524758425019103 a001 98209/22768774562*228826127^(1/2) 6524758425019103 a001 196418/119218851371*228826127^(11/20) 6524758425019103 a001 196418/312119004989*228826127^(3/5) 6524758425019103 a001 196418/505019158607*228826127^(5/8) 6524758425019103 a001 196418/370248451*228826127^(1/4) 6524758425019103 a001 98209/408569081798*228826127^(13/20) 6524758425019103 a001 196418/2139295485799*228826127^(7/10) 6524758425019103 a001 196418/5600748293801*228826127^(3/4) 6524758425019103 a001 98209/7331474697802*228826127^(4/5) 6524758425019103 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^71 6524758425019103 a001 196418/370248451*87403803^(5/19) 6524758425019103 a001 196418/969323029*87403803^(6/19) 6524758425019103 a001 98209/1268860318*87403803^(7/19) 6524758425019103 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^8/Lucas(39) 6524758425019103 a001 98209/70711162*23725150497407^(1/8) 6524758425019103 a001 98209/70711162*505019158607^(1/7) 6524758425019103 a004 Fibonacci(39)/Lucas(27)/(1/2+sqrt(5)/2)^16 6524758425019103 a001 98209/70711162*73681302247^(2/13) 6524758425019103 a001 98209/70711162*10749957122^(1/6) 6524758425019103 a001 98209/70711162*4106118243^(4/23) 6524758425019103 a001 98209/70711162*1568397607^(2/11) 6524758425019103 a001 98209/70711162*599074578^(4/21) 6524758425019103 a001 98209/70711162*228826127^(1/5) 6524758425019103 a001 196418/6643838879*87403803^(8/19) 6524758425019103 a001 196418/17393796001*87403803^(9/19) 6524758425019103 a001 196418/28143753123*87403803^(1/2) 6524758425019103 a001 98209/22768774562*87403803^(10/19) 6524758425019103 a001 196418/119218851371*87403803^(11/19) 6524758425019103 a001 98209/70711162*87403803^(4/19) 6524758425019103 a001 196418/312119004989*87403803^(12/19) 6524758425019103 a001 98209/408569081798*87403803^(13/19) 6524758425019103 a001 196418/2139295485799*87403803^(14/19) 6524758425019103 a001 196418/5600748293801*87403803^(15/19) 6524758425019104 a001 98209/7331474697802*87403803^(16/19) 6524758425019104 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^69 6524758425019104 a001 196418/228826127*33385282^(1/4) 6524758425019104 a001 98209/70711162*33385282^(2/9) 6524758425019104 a001 196418/370248451*33385282^(5/18) 6524758425019105 a001 196418/969323029*33385282^(1/3) 6524758425019105 a001 196418/54018521*141422324^(2/13) 6524758425019105 a001 196418/54018521*2537720636^(2/15) 6524758425019105 a001 196418/54018521*45537549124^(2/17) 6524758425019105 a001 196418/54018521*14662949395604^(2/21) 6524758425019105 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^6/Lucas(37) 6524758425019105 a004 Fibonacci(37)/Lucas(27)/(1/2+sqrt(5)/2)^14 6524758425019105 a001 196418/54018521*10749957122^(1/8) 6524758425019105 a001 196418/54018521*4106118243^(3/23) 6524758425019105 a001 196418/54018521*1568397607^(3/22) 6524758425019105 a001 196418/54018521*599074578^(1/7) 6524758425019105 a001 196418/54018521*228826127^(3/20) 6524758425019105 a001 98209/1268860318*33385282^(7/18) 6524758425019105 a001 196418/54018521*87403803^(3/19) 6524758425019105 a001 196418/4106118243*33385282^(5/12) 6524758425019105 a001 196418/6643838879*33385282^(4/9) 6524758425019106 a001 196418/17393796001*33385282^(1/2) 6524758425019106 a001 196418/54018521*33385282^(1/6) 6524758425019106 a001 98209/22768774562*33385282^(5/9) 6524758425019106 a001 196418/73681302247*33385282^(7/12) 6524758425019106 a001 196418/119218851371*33385282^(11/18) 6524758425019107 a001 196418/312119004989*33385282^(2/3) 6524758425019107 a001 98209/408569081798*33385282^(13/18) 6524758425019107 a001 196418/1322157322203*33385282^(3/4) 6524758425019107 a001 196418/2139295485799*33385282^(7/9) 6524758425019108 a001 196418/5600748293801*33385282^(5/6) 6524758425019108 a001 98209/7331474697802*33385282^(8/9) 6524758425019108 a001 196418/23725150497407*33385282^(11/12) 6524758425019109 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^67 6524758425019112 a001 196418/54018521*12752043^(3/17) 6524758425019113 a001 98209/70711162*12752043^(4/17) 6524758425019115 a001 196418/370248451*12752043^(5/17) 6524758425019117 a001 196418/969323029*12752043^(6/17) 6524758425019118 a001 196418/20633239*(1/2+1/2*5^(1/2))^4 6524758425019118 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^4/Lucas(35) 6524758425019118 a001 196418/20633239*23725150497407^(1/16) 6524758425019118 a001 196418/20633239*73681302247^(1/13) 6524758425019118 a004 Fibonacci(35)/Lucas(27)/(1/2+sqrt(5)/2)^12 6524758425019118 a001 196418/20633239*10749957122^(1/12) 6524758425019118 a001 196418/20633239*4106118243^(2/23) 6524758425019118 a001 196418/20633239*1568397607^(1/11) 6524758425019118 a001 196418/20633239*599074578^(2/21) 6524758425019118 a001 196418/20633239*228826127^(1/10) 6524758425019118 a001 196418/20633239*87403803^(2/19) 6524758425019119 a001 196418/20633239*33385282^(1/9) 6524758425019119 a001 98209/1268860318*12752043^(7/17) 6524758425019122 a001 196418/6643838879*12752043^(8/17) 6524758425019123 a001 196418/20633239*12752043^(2/17) 6524758425019123 a001 98209/5374978561*12752043^(1/2) 6524758425019124 a001 196418/17393796001*12752043^(9/17) 6524758425019126 a001 98209/22768774562*12752043^(10/17) 6524758425019129 a001 196418/119218851371*12752043^(11/17) 6524758425019131 a001 196418/312119004989*12752043^(12/17) 6524758425019133 a001 98209/408569081798*12752043^(13/17) 6524758425019136 a001 196418/2139295485799*12752043^(14/17) 6524758425019138 a001 196418/5600748293801*12752043^(15/17) 6524758425019141 a001 98209/7331474697802*12752043^(16/17) 6524758425019143 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^65 6524758425019152 a001 196418/20633239*4870847^(1/8) 6524758425019157 a001 196418/54018521*4870847^(3/16) 6524758425019172 a001 98209/70711162*4870847^(1/4) 6524758425019189 a001 196418/370248451*4870847^(5/16) 6524758425019206 a001 196418/969323029*4870847^(3/8) 6524758425019208 a001 98209/3940598*(1/2+1/2*5^(1/2))^2 6524758425019208 a001 692290561604/10610209857723 6524758425019208 a004 Fibonacci(33)/Lucas(27)/(1/2+sqrt(5)/2)^10 6524758425019208 a001 98209/3940598*10749957122^(1/24) 6524758425019208 a001 98209/3940598*4106118243^(1/23) 6524758425019208 a001 98209/3940598*1568397607^(1/22) 6524758425019208 a001 98209/3940598*599074578^(1/21) 6524758425019208 a001 98209/3940598*228826127^(1/20) 6524758425019208 a001 98209/3940598*87403803^(1/19) 6524758425019208 a001 98209/3940598*33385282^(1/18) 6524758425019210 a001 98209/3940598*12752043^(1/17) 6524758425019223 a001 98209/1268860318*4870847^(7/16) 6524758425019225 a001 98209/3940598*4870847^(1/16) 6524758425019240 a001 196418/6643838879*4870847^(1/2) 6524758425019251 a001 196418/12752043*1860498^(1/10) 6524758425019257 a001 196418/17393796001*4870847^(9/16) 6524758425019275 a001 98209/22768774562*4870847^(5/8) 6524758425019292 a001 196418/119218851371*4870847^(11/16) 6524758425019297 a001 5702887/10749957122*271443^(5/13) 6524758425019309 a001 196418/312119004989*4870847^(3/4) 6524758425019326 a001 98209/408569081798*4870847^(13/16) 6524758425019332 a001 4976784/9381251041*271443^(5/13) 6524758425019333 a001 98209/3940598*1860498^(1/15) 6524758425019337 a001 39088169/73681302247*271443^(5/13) 6524758425019337 a001 34111385/64300051206*271443^(5/13) 6524758425019337 a001 267914296/505019158607*271443^(5/13) 6524758425019337 a001 233802911/440719107401*271443^(5/13) 6524758425019337 a001 1836311903/3461452808002*271443^(5/13) 6524758425019337 a001 1602508992/3020733700601*271443^(5/13) 6524758425019337 a001 12586269025/23725150497407*271443^(5/13) 6524758425019337 a001 7778742049/14662949395604*271443^(5/13) 6524758425019337 a001 2971215073/5600748293801*271443^(5/13) 6524758425019337 a001 1134903170/2139295485799*271443^(5/13) 6524758425019337 a001 433494437/817138163596*271443^(5/13) 6524758425019337 a001 165580141/312119004989*271443^(5/13) 6524758425019338 a001 63245986/119218851371*271443^(5/13) 6524758425019340 a001 24157817/45537549124*271443^(5/13) 6524758425019343 a001 196418/2139295485799*4870847^(7/8) 6524758425019353 a001 9227465/17393796001*271443^(5/13) 6524758425019361 a001 196418/5600748293801*4870847^(15/16) 6524758425019369 a001 196418/20633239*1860498^(2/15) 6524758425019378 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^63 6524758425019411 a001 98209/16692641*1860498^(1/6) 6524758425019442 a001 3524578/6643838879*271443^(5/13) 6524758425019482 a001 196418/54018521*1860498^(1/5) 6524758425019606 a001 98209/70711162*1860498^(4/15) 6524758425019668 a001 196418/228826127*1860498^(3/10) 6524758425019731 a001 196418/370248451*1860498^(1/3) 6524758425019823 a001 196418/3010349 6524758425019823 a004 Fibonacci(31)/Lucas(27)/(1/2+sqrt(5)/2)^8 6524758425019857 a001 196418/969323029*1860498^(2/5) 6524758425019982 a001 98209/1268860318*1860498^(7/15) 6524758425020041 a001 105937/1368706081*271443^(7/13) 6524758425020045 a001 196418/4106118243*1860498^(1/2) 6524758425020057 a001 1346269/2537720636*271443^(5/13) 6524758425020108 a001 196418/6643838879*1860498^(8/15) 6524758425020131 a001 98209/3940598*710647^(1/14) 6524758425020234 a001 196418/17393796001*1860498^(3/5) 6524758425020359 a001 98209/22768774562*1860498^(2/3) 6524758425020422 a001 196418/73681302247*1860498^(7/10) 6524758425020485 a001 196418/119218851371*1860498^(11/15) 6524758425020611 a001 196418/312119004989*1860498^(4/5) 6524758425020674 a001 196418/505019158607*1860498^(5/6) 6524758425020736 a001 98209/408569081798*1860498^(13/15) 6524758425020799 a001 196418/1322157322203*1860498^(9/10) 6524758425020862 a001 196418/2139295485799*1860498^(14/15) 6524758425020964 a001 196418/20633239*710647^(1/7) 6524758425020988 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^61 6524758425021874 a001 196418/54018521*710647^(3/14) 6524758425022332 a001 196418/87403803*710647^(1/4) 6524758425022794 a001 98209/70711162*710647^(2/7) 6524758425022898 a001 105937/4250681*103682^(1/12) 6524758425023189 a001 121393/20633239*103682^(5/24) 6524758425023717 a001 196418/370248451*710647^(5/14) 6524758425024038 a001 50501915861/774004377960 6524758425024038 a004 Fibonacci(27)/Lucas(29)/(1/2+sqrt(5)/2)^2 6524758425024038 a004 Fibonacci(29)/Lucas(27)/(1/2+sqrt(5)/2)^6 6524758425024264 a001 832040/4106118243*271443^(6/13) 6524758425024272 a001 514229/969323029*271443^(5/13) 6524758425024640 a001 196418/969323029*710647^(3/7) 6524758425025563 a001 98209/1268860318*710647^(1/2) 6524758425025874 a001 987/4870846*271443^(6/13) 6524758425026020 a001 98209/3940598*271443^(1/13) 6524758425026109 a001 5702887/28143753123*271443^(6/13) 6524758425026143 a001 14930352/73681302247*271443^(6/13) 6524758425026148 a001 39088169/192900153618*271443^(6/13) 6524758425026149 a001 102334155/505019158607*271443^(6/13) 6524758425026149 a001 267914296/1322157322203*271443^(6/13) 6524758425026149 a001 701408733/3461452808002*271443^(6/13) 6524758425026149 a001 1836311903/9062201101803*271443^(6/13) 6524758425026149 a001 4807526976/23725150497407*271443^(6/13) 6524758425026149 a001 2971215073/14662949395604*271443^(6/13) 6524758425026149 a001 1134903170/5600748293801*271443^(6/13) 6524758425026149 a001 433494437/2139295485799*271443^(6/13) 6524758425026149 a001 165580141/817138163596*271443^(6/13) 6524758425026150 a001 63245986/312119004989*271443^(6/13) 6524758425026151 a001 24157817/119218851371*271443^(6/13) 6524758425026165 a001 9227465/45537549124*271443^(6/13) 6524758425026254 a001 3524578/17393796001*271443^(6/13) 6524758425026486 a001 196418/6643838879*710647^(4/7) 6524758425026853 a001 317811/10749957122*271443^(8/13) 6524758425026869 a001 1346269/6643838879*271443^(6/13) 6524758425027408 a001 196418/17393796001*710647^(9/14) 6524758425027670 a001 832040/6643838879*271443^(1/2) 6524758425028331 a001 98209/22768774562*710647^(5/7) 6524758425028793 a001 196418/73681302247*710647^(3/4) 6524758425029254 a001 196418/119218851371*710647^(11/14) 6524758425029280 a001 2178309/17393796001*271443^(1/2) 6524758425029515 a001 1597/12752044*271443^(1/2) 6524758425029549 a001 14930352/119218851371*271443^(1/2) 6524758425029554 a001 39088169/312119004989*271443^(1/2) 6524758425029555 a001 102334155/817138163596*271443^(1/2) 6524758425029555 a001 267914296/2139295485799*271443^(1/2) 6524758425029555 a001 701408733/5600748293801*271443^(1/2) 6524758425029555 a001 1836311903/14662949395604*271443^(1/2) 6524758425029555 a001 2971215073/23725150497407*271443^(1/2) 6524758425029555 a001 1134903170/9062201101803*271443^(1/2) 6524758425029555 a001 433494437/3461452808002*271443^(1/2) 6524758425029555 a001 165580141/1322157322203*271443^(1/2) 6524758425029555 a001 63245986/505019158607*271443^(1/2) 6524758425029557 a001 24157817/192900153618*271443^(1/2) 6524758425029570 a001 9227465/73681302247*271443^(1/2) 6524758425029660 a001 3524578/28143753123*271443^(1/2) 6524758425030177 a001 196418/312119004989*710647^(6/7) 6524758425030275 a001 1346269/10749957122*271443^(1/2) 6524758425031076 a001 416020/5374978561*271443^(7/13) 6524758425031084 a001 514229/2537720636*271443^(6/13) 6524758425031100 a001 98209/408569081798*710647^(13/14) 6524758425031646 a001 75025/17393796001*167761^(4/5) 6524758425032023 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^59 6524758425032686 a001 726103/9381251041*271443^(7/13) 6524758425032742 a001 196418/20633239*271443^(2/13) 6524758425032921 a001 5702887/73681302247*271443^(7/13) 6524758425032955 a001 2584/33385281*271443^(7/13) 6524758425032960 a001 39088169/505019158607*271443^(7/13) 6524758425032961 a001 34111385/440719107401*271443^(7/13) 6524758425032961 a001 133957148/1730726404001*271443^(7/13) 6524758425032961 a001 233802911/3020733700601*271443^(7/13) 6524758425032961 a001 1836311903/23725150497407*271443^(7/13) 6524758425032961 a001 567451585/7331474697802*271443^(7/13) 6524758425032961 a001 433494437/5600748293801*271443^(7/13) 6524758425032961 a001 165580141/2139295485799*271443^(7/13) 6524758425032961 a001 31622993/408569081798*271443^(7/13) 6524758425032963 a001 24157817/312119004989*271443^(7/13) 6524758425032976 a001 9227465/119218851371*271443^(7/13) 6524758425033066 a001 1762289/22768774562*271443^(7/13) 6524758425033665 a001 105937/9381251041*271443^(9/13) 6524758425033681 a001 1346269/17393796001*271443^(7/13) 6524758425033967 a001 416020/16692641*103682^(1/12) 6524758425034490 a001 514229/4106118243*271443^(1/2) 6524758425035582 a001 726103/29134601*103682^(1/12) 6524758425035818 a001 5702887/228826127*103682^(1/12) 6524758425035852 a001 829464/33281921*103682^(1/12) 6524758425035857 a001 39088169/1568397607*103682^(1/12) 6524758425035858 a001 34111385/1368706081*103682^(1/12) 6524758425035858 a001 133957148/5374978561*103682^(1/12) 6524758425035858 a001 233802911/9381251041*103682^(1/12) 6524758425035858 a001 1836311903/73681302247*103682^(1/12) 6524758425035858 a001 267084832/10716675201*103682^(1/12) 6524758425035858 a001 12586269025/505019158607*103682^(1/12) 6524758425035858 a001 10983760033/440719107401*103682^(1/12) 6524758425035858 a001 43133785636/1730726404001*103682^(1/12) 6524758425035858 a001 75283811239/3020733700601*103682^(1/12) 6524758425035858 a001 182717648081/7331474697802*103682^(1/12) 6524758425035858 a001 139583862445/5600748293801*103682^(1/12) 6524758425035858 a001 53316291173/2139295485799*103682^(1/12) 6524758425035858 a001 10182505537/408569081798*103682^(1/12) 6524758425035858 a001 7778742049/312119004989*103682^(1/12) 6524758425035858 a001 2971215073/119218851371*103682^(1/12) 6524758425035858 a001 567451585/22768774562*103682^(1/12) 6524758425035858 a001 433494437/17393796001*103682^(1/12) 6524758425035858 a001 165580141/6643838879*103682^(1/12) 6524758425035858 a001 31622993/1268860318*103682^(1/12) 6524758425035860 a001 24157817/969323029*103682^(1/12) 6524758425035873 a001 9227465/370248451*103682^(1/12) 6524758425035963 a001 1762289/70711162*103682^(1/12) 6524758425036580 a001 1346269/54018521*103682^(1/12) 6524758425037888 a001 832040/28143753123*271443^(8/13) 6524758425037896 a001 514229/6643838879*271443^(7/13) 6524758425039498 a001 311187/10525900321*271443^(8/13) 6524758425039541 a001 196418/54018521*271443^(3/13) 6524758425039733 a001 5702887/192900153618*271443^(8/13) 6524758425039767 a001 14930352/505019158607*271443^(8/13) 6524758425039772 a001 39088169/1322157322203*271443^(8/13) 6524758425039773 a001 6765/228826126*271443^(8/13) 6524758425039773 a001 267914296/9062201101803*271443^(8/13) 6524758425039773 a001 701408733/23725150497407*271443^(8/13) 6524758425039773 a001 433494437/14662949395604*271443^(8/13) 6524758425039773 a001 165580141/5600748293801*271443^(8/13) 6524758425039773 a001 63245986/2139295485799*271443^(8/13) 6524758425039775 a001 24157817/817138163596*271443^(8/13) 6524758425039788 a001 9227465/312119004989*271443^(8/13) 6524758425039878 a001 3524578/119218851371*271443^(8/13) 6524758425040477 a001 317811/73681302247*271443^(10/13) 6524758425040493 a001 1346269/45537549124*271443^(8/13) 6524758425040808 a001 514229/20633239*103682^(1/12) 6524758425044118 a001 196418/4870847*103682^(1/24) 6524758425044700 a001 832040/73681302247*271443^(9/13) 6524758425044708 a001 514229/17393796001*271443^(8/13) 6524758425046310 a001 726103/64300051206*271443^(9/13) 6524758425046350 a001 98209/70711162*271443^(4/13) 6524758425046545 a001 5702887/505019158607*271443^(9/13) 6524758425046579 a001 4976784/440719107401*271443^(9/13) 6524758425046584 a001 39088169/3461452808002*271443^(9/13) 6524758425046585 a001 34111385/3020733700601*271443^(9/13) 6524758425046585 a001 267914296/23725150497407*271443^(9/13) 6524758425046585 a001 165580141/14662949395604*271443^(9/13) 6524758425046585 a001 63245986/5600748293801*271443^(9/13) 6524758425046587 a001 24157817/2139295485799*271443^(9/13) 6524758425046600 a001 9227465/817138163596*271443^(9/13) 6524758425046690 a001 3524578/312119004989*271443^(9/13) 6524758425047289 a001 105937/64300051206*271443^(11/13) 6524758425047305 a001 1346269/119218851371*271443^(9/13) 6524758425048243 a001 10959/711491*103682^(1/8) 6524758425048458 a001 121393/33385282*103682^(1/4) 6524758425051512 a001 416020/96450076809*271443^(10/13) 6524758425051520 a001 514229/45537549124*271443^(9/13) 6524758425052927 a001 38580030724/591286729879 6524758425052927 a004 Fibonacci(27)/Lucas(27)/(1/2+sqrt(5)/2)^4 6524758425053122 a001 46347/10745088481*271443^(10/13) 6524758425053162 a001 196418/370248451*271443^(5/13) 6524758425053356 a001 5702887/1322157322203*271443^(10/13) 6524758425053391 a001 7465176/1730726404001*271443^(10/13) 6524758425053396 a001 39088169/9062201101803*271443^(10/13) 6524758425053396 a001 102334155/23725150497407*271443^(10/13) 6524758425053397 a001 31622993/7331474697802*271443^(10/13) 6524758425053399 a001 24157817/5600748293801*271443^(10/13) 6524758425053412 a001 9227465/2139295485799*271443^(10/13) 6524758425053502 a001 1762289/408569081798*271443^(10/13) 6524758425054100 a001 317811/505019158607*271443^(12/13) 6524758425054117 a001 1346269/312119004989*271443^(10/13) 6524758425054367 a001 28657/17393796001*64079^(22/23) 6524758425058323 a001 832040/505019158607*271443^(11/13) 6524758425058331 a001 514229/119218851371*271443^(10/13) 6524758425059265 a001 832040/54018521*103682^(1/8) 6524758425059933 a001 726103/440719107401*271443^(11/13) 6524758425059974 a001 196418/969323029*271443^(6/13) 6524758425060168 a001 5702887/3461452808002*271443^(11/13) 6524758425060203 a001 4976784/3020733700601*271443^(11/13) 6524758425060208 a001 39088169/23725150497407*271443^(11/13) 6524758425060211 a001 24157817/14662949395604*271443^(11/13) 6524758425060224 a001 9227465/5600748293801*271443^(11/13) 6524758425060313 a001 3524578/2139295485799*271443^(11/13) 6524758425060873 a001 2178309/141422324*103682^(1/8) 6524758425060912 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^58 6524758425060928 a001 1346269/817138163596*271443^(11/13) 6524758425061108 a001 5702887/370248451*103682^(1/8) 6524758425061142 a001 14930352/969323029*103682^(1/8) 6524758425061147 a001 39088169/2537720636*103682^(1/8) 6524758425061148 a001 102334155/6643838879*103682^(1/8) 6524758425061148 a001 9238424/599786069*103682^(1/8) 6524758425061148 a001 701408733/45537549124*103682^(1/8) 6524758425061148 a001 1836311903/119218851371*103682^(1/8) 6524758425061148 a001 4807526976/312119004989*103682^(1/8) 6524758425061148 a001 12586269025/817138163596*103682^(1/8) 6524758425061148 a001 32951280099/2139295485799*103682^(1/8) 6524758425061148 a001 86267571272/5600748293801*103682^(1/8) 6524758425061148 a001 7787980473/505618944676*103682^(1/8) 6524758425061148 a001 365435296162/23725150497407*103682^(1/8) 6524758425061148 a001 139583862445/9062201101803*103682^(1/8) 6524758425061148 a001 53316291173/3461452808002*103682^(1/8) 6524758425061148 a001 20365011074/1322157322203*103682^(1/8) 6524758425061148 a001 7778742049/505019158607*103682^(1/8) 6524758425061148 a001 2971215073/192900153618*103682^(1/8) 6524758425061148 a001 1134903170/73681302247*103682^(1/8) 6524758425061148 a001 433494437/28143753123*103682^(1/8) 6524758425061148 a001 165580141/10749957122*103682^(1/8) 6524758425061148 a001 63245986/4106118243*103682^(1/8) 6524758425061150 a001 24157817/1568397607*103682^(1/8) 6524758425061163 a001 9227465/599074578*103682^(1/8) 6524758425061253 a001 3524578/228826127*103682^(1/8) 6524758425061867 a001 1346269/87403803*103682^(1/8) 6524758425063380 a001 196418/1568397607*271443^(1/2) 6524758425065135 a001 832040/1322157322203*271443^(12/13) 6524758425065143 a001 514229/312119004989*271443^(11/13) 6524758425066077 a001 514229/33385282*103682^(1/8) 6524758425066745 a001 311187/494493258286*271443^(12/13) 6524758425066786 a001 98209/1268860318*271443^(7/13) 6524758425066980 a001 5702887/9062201101803*271443^(12/13) 6524758425067014 a001 14930352/23725150497407*271443^(12/13) 6524758425067036 a001 9227465/14662949395604*271443^(12/13) 6524758425067125 a001 3524578/5600748293801*271443^(12/13) 6524758425067740 a001 1346269/2139295485799*271443^(12/13) 6524758425069788 a001 98209/3940598*103682^(1/12) 6524758425071947 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^60 6524758425071955 a001 514229/817138163596*271443^(12/13) 6524758425073512 a001 317811/33385282*103682^(1/6) 6524758425073557 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^62 6524758425073597 a001 196418/6643838879*271443^(8/13) 6524758425073756 a001 121393/54018521*103682^(7/24) 6524758425073792 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^64 6524758425073826 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^66 6524758425073831 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^68 6524758425073832 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^70 6524758425073832 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^72 6524758425073832 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^74 6524758425073832 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^76 6524758425073832 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^78 6524758425073832 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^80 6524758425073832 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^82 6524758425073832 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^84 6524758425073832 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^86 6524758425073832 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^88 6524758425073832 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^90 6524758425073832 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^92 6524758425073832 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^94 6524758425073832 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^96 6524758425073832 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^98 6524758425073832 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^100 6524758425073832 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^99 6524758425073832 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^97 6524758425073832 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^95 6524758425073832 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^93 6524758425073832 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^91 6524758425073832 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^89 6524758425073832 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^87 6524758425073832 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^85 6524758425073832 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^83 6524758425073832 a001 2/121393*(1/2+1/2*5^(1/2))^22 6524758425073832 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^81 6524758425073832 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^79 6524758425073832 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^77 6524758425073832 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^75 6524758425073832 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^73 6524758425073832 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^71 6524758425073832 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^69 6524758425073834 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^67 6524758425073847 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^65 6524758425073937 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^63 6524758425074552 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^61 6524758425075717 a001 271443/832040*8^(1/3) 6524758425078013 a001 75025/1568397607*167761^(3/5) 6524758425078767 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^59 6524758425079658 a001 75025/3010349*64079^(2/23) 6524758425080409 a001 196418/17393796001*271443^(9/13) 6524758425084552 a001 832040/87403803*103682^(1/6) 6524758425086163 a001 46347/4868641*103682^(1/6) 6524758425086398 a001 5702887/599074578*103682^(1/6) 6524758425086432 a001 14930352/1568397607*103682^(1/6) 6524758425086437 a001 39088169/4106118243*103682^(1/6) 6524758425086438 a001 102334155/10749957122*103682^(1/6) 6524758425086438 a001 267914296/28143753123*103682^(1/6) 6524758425086438 a001 701408733/73681302247*103682^(1/6) 6524758425086438 a001 1836311903/192900153618*103682^(1/6) 6524758425086438 a001 102287808/10745088481*103682^(1/6) 6524758425086438 a001 12586269025/1322157322203*103682^(1/6) 6524758425086438 a001 32951280099/3461452808002*103682^(1/6) 6524758425086438 a001 86267571272/9062201101803*103682^(1/6) 6524758425086438 a001 225851433717/23725150497407*103682^(1/6) 6524758425086438 a001 139583862445/14662949395604*103682^(1/6) 6524758425086438 a001 53316291173/5600748293801*103682^(1/6) 6524758425086438 a001 20365011074/2139295485799*103682^(1/6) 6524758425086438 a001 7778742049/817138163596*103682^(1/6) 6524758425086438 a001 2971215073/312119004989*103682^(1/6) 6524758425086438 a001 1134903170/119218851371*103682^(1/6) 6524758425086438 a001 433494437/45537549124*103682^(1/6) 6524758425086438 a001 165580141/17393796001*103682^(1/6) 6524758425086438 a001 63245986/6643838879*103682^(1/6) 6524758425086440 a001 24157817/2537720636*103682^(1/6) 6524758425086453 a001 9227465/969323029*103682^(1/6) 6524758425086542 a001 121393/3010349*39603^(1/22) 6524758425086543 a001 3524578/370248451*103682^(1/6) 6524758425087158 a001 1346269/141422324*103682^(1/6) 6524758425087221 a001 98209/22768774562*271443^(10/13) 6524758425091375 a001 514229/54018521*103682^(1/6) 6524758425094033 a001 196418/119218851371*271443^(11/13) 6524758425094932 a001 196418/12752043*103682^(1/8) 6524758425098810 a001 317811/54018521*103682^(5/24) 6524758425099043 a001 121393/87403803*103682^(1/3) 6524758425100845 a001 196418/312119004989*271443^(12/13) 6524758425107177 a001 17711/1149851*15127^(3/20) 6524758425107657 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^57 6524758425109843 a001 208010/35355581*103682^(5/24) 6524758425111453 a001 2178309/370248451*103682^(5/24) 6524758425111687 a001 5702887/969323029*103682^(5/24) 6524758425111722 a001 196452/33391061*103682^(5/24) 6524758425111727 a001 39088169/6643838879*103682^(5/24) 6524758425111727 a001 102334155/17393796001*103682^(5/24) 6524758425111728 a001 66978574/11384387281*103682^(5/24) 6524758425111728 a001 701408733/119218851371*103682^(5/24) 6524758425111728 a001 1836311903/312119004989*103682^(5/24) 6524758425111728 a001 1201881744/204284540899*103682^(5/24) 6524758425111728 a001 12586269025/2139295485799*103682^(5/24) 6524758425111728 a001 32951280099/5600748293801*103682^(5/24) 6524758425111728 a001 1135099622/192933544679*103682^(5/24) 6524758425111728 a001 139583862445/23725150497407*103682^(5/24) 6524758425111728 a001 53316291173/9062201101803*103682^(5/24) 6524758425111728 a001 10182505537/1730726404001*103682^(5/24) 6524758425111728 a001 7778742049/1322157322203*103682^(5/24) 6524758425111728 a001 2971215073/505019158607*103682^(5/24) 6524758425111728 a001 567451585/96450076809*103682^(5/24) 6524758425111728 a001 433494437/73681302247*103682^(5/24) 6524758425111728 a001 165580141/28143753123*103682^(5/24) 6524758425111728 a001 31622993/5374978561*103682^(5/24) 6524758425111730 a001 24157817/4106118243*103682^(5/24) 6524758425111743 a001 9227465/1568397607*103682^(5/24) 6524758425111833 a001 1762289/299537289*103682^(5/24) 6524758425112447 a001 1346269/228826127*103682^(5/24) 6524758425116662 a001 514229/87403803*103682^(5/24) 6524758425120278 a001 196418/20633239*103682^(1/6) 6524758425123455 a001 28657/10749957122*64079^(21/23) 6524758425124097 a001 105937/29134601*103682^(1/4) 6524758425124334 a001 233/271444*103682^(3/8) 6524758425124381 a001 75025/141422324*167761^(2/5) 6524758425128561 a001 1821501965/27916772489 6524758425128561 a004 Fibonacci(25)/Lucas(26)/(1/2+sqrt(5)/2)^3 6524758425128561 a004 Fibonacci(26)/Lucas(25)/(1/2+sqrt(5)/2)^5 6524758425134436 a001 46368/4870847*39603^(2/11) 6524758425135132 a001 832040/228826127*103682^(1/4) 6524758425136742 a001 726103/199691526*103682^(1/4) 6524758425136977 a001 5702887/1568397607*103682^(1/4) 6524758425137012 a001 4976784/1368706081*103682^(1/4) 6524758425137017 a001 39088169/10749957122*103682^(1/4) 6524758425137017 a001 831985/228811001*103682^(1/4) 6524758425137017 a001 267914296/73681302247*103682^(1/4) 6524758425137017 a001 233802911/64300051206*103682^(1/4) 6524758425137017 a001 1836311903/505019158607*103682^(1/4) 6524758425137017 a001 1602508992/440719107401*103682^(1/4) 6524758425137017 a001 12586269025/3461452808002*103682^(1/4) 6524758425137017 a001 10983760033/3020733700601*103682^(1/4) 6524758425137017 a001 86267571272/23725150497407*103682^(1/4) 6524758425137017 a001 53316291173/14662949395604*103682^(1/4) 6524758425137017 a001 20365011074/5600748293801*103682^(1/4) 6524758425137017 a001 7778742049/2139295485799*103682^(1/4) 6524758425137017 a001 2971215073/817138163596*103682^(1/4) 6524758425137017 a001 1134903170/312119004989*103682^(1/4) 6524758425137017 a001 433494437/119218851371*103682^(1/4) 6524758425137017 a001 165580141/45537549124*103682^(1/4) 6524758425137018 a001 63245986/17393796001*103682^(1/4) 6524758425137020 a001 24157817/6643838879*103682^(1/4) 6524758425137033 a001 9227465/2537720636*103682^(1/4) 6524758425137122 a001 3524578/969323029*103682^(1/4) 6524758425137737 a001 1346269/370248451*103682^(1/4) 6524758425141953 a001 514229/141422324*103682^(1/4) 6524758425145546 a001 98209/16692641*103682^(5/24) 6524758425146142 a001 75025/1860498*64079^(1/23) 6524758425149388 a001 317811/141422324*103682^(7/24) 6524758425149623 a001 121393/228826127*103682^(5/12) 6524758425160422 a001 832040/370248451*103682^(7/24) 6524758425161561 a001 317811/7881196*39603^(1/22) 6524758425162032 a001 2178309/969323029*103682^(7/24) 6524758425162267 a001 5702887/2537720636*103682^(7/24) 6524758425162301 a001 14930352/6643838879*103682^(7/24) 6524758425162306 a001 39088169/17393796001*103682^(7/24) 6524758425162307 a001 102334155/45537549124*103682^(7/24) 6524758425162307 a001 267914296/119218851371*103682^(7/24) 6524758425162307 a001 3524667/1568437211*103682^(7/24) 6524758425162307 a001 1836311903/817138163596*103682^(7/24) 6524758425162307 a001 4807526976/2139295485799*103682^(7/24) 6524758425162307 a001 12586269025/5600748293801*103682^(7/24) 6524758425162307 a001 32951280099/14662949395604*103682^(7/24) 6524758425162307 a001 53316291173/23725150497407*103682^(7/24) 6524758425162307 a001 20365011074/9062201101803*103682^(7/24) 6524758425162307 a001 7778742049/3461452808002*103682^(7/24) 6524758425162307 a001 2971215073/1322157322203*103682^(7/24) 6524758425162307 a001 1134903170/505019158607*103682^(7/24) 6524758425162307 a001 433494437/192900153618*103682^(7/24) 6524758425162307 a001 165580141/73681302247*103682^(7/24) 6524758425162308 a001 63245986/28143753123*103682^(7/24) 6524758425162310 a001 24157817/10749957122*103682^(7/24) 6524758425162323 a001 9227465/4106118243*103682^(7/24) 6524758425162412 a001 3524578/1568397607*103682^(7/24) 6524758425163027 a001 1346269/599074578*103682^(7/24) 6524758425167242 a001 514229/228826127*103682^(7/24) 6524758425170708 a001 75025/12752043*167761^(1/5) 6524758425170844 a001 196418/54018521*103682^(1/4) 6524758425172506 a001 75640/1875749*39603^(1/22) 6524758425174103 a001 2178309/54018521*39603^(1/22) 6524758425174336 a001 5702887/141422324*39603^(1/22) 6524758425174370 a001 14930352/370248451*39603^(1/22) 6524758425174375 a001 39088169/969323029*39603^(1/22) 6524758425174376 a001 9303105/230701876*39603^(1/22) 6524758425174376 a001 267914296/6643838879*39603^(1/22) 6524758425174376 a001 701408733/17393796001*39603^(1/22) 6524758425174376 a001 1836311903/45537549124*39603^(1/22) 6524758425174376 a001 4807526976/119218851371*39603^(1/22) 6524758425174376 a001 1144206275/28374454999*39603^(1/22) 6524758425174376 a001 32951280099/817138163596*39603^(1/22) 6524758425174376 a001 86267571272/2139295485799*39603^(1/22) 6524758425174376 a001 225851433717/5600748293801*39603^(1/22) 6524758425174376 a001 591286729879/14662949395604*39603^(1/22) 6524758425174376 a001 365435296162/9062201101803*39603^(1/22) 6524758425174376 a001 139583862445/3461452808002*39603^(1/22) 6524758425174376 a001 53316291173/1322157322203*39603^(1/22) 6524758425174376 a001 20365011074/505019158607*39603^(1/22) 6524758425174376 a001 7778742049/192900153618*39603^(1/22) 6524758425174376 a001 2971215073/73681302247*39603^(1/22) 6524758425174376 a001 1134903170/28143753123*39603^(1/22) 6524758425174376 a001 433494437/10749957122*39603^(1/22) 6524758425174376 a001 165580141/4106118243*39603^(1/22) 6524758425174376 a001 63245986/1568397607*39603^(1/22) 6524758425174378 a001 24157817/599074578*39603^(1/22) 6524758425174391 a001 9227465/228826127*39603^(1/22) 6524758425174480 a001 3524578/87403803*39603^(1/22) 6524758425174677 a001 317811/228826127*103682^(1/3) 6524758425174913 a001 121393/370248451*103682^(11/24) 6524758425175090 a001 1346269/33385282*39603^(1/22) 6524758425179270 a001 514229/12752043*39603^(1/22) 6524758425183291 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^56 6524758425185712 a001 416020/299537289*103682^(1/3) 6524758425187049 a001 75025/119218851371*439204^(8/9) 6524758425187322 a001 311187/224056801*103682^(1/3) 6524758425187557 a001 5702887/4106118243*103682^(1/3) 6524758425187591 a001 7465176/5374978561*103682^(1/3) 6524758425187596 a001 39088169/28143753123*103682^(1/3) 6524758425187597 a001 14619165/10525900321*103682^(1/3) 6524758425187597 a001 133957148/96450076809*103682^(1/3) 6524758425187597 a001 701408733/505019158607*103682^(1/3) 6524758425187597 a001 1836311903/1322157322203*103682^(1/3) 6524758425187597 a001 14930208/10749853441*103682^(1/3) 6524758425187597 a001 12586269025/9062201101803*103682^(1/3) 6524758425187597 a001 32951280099/23725150497407*103682^(1/3) 6524758425187597 a001 10182505537/7331474697802*103682^(1/3) 6524758425187597 a001 7778742049/5600748293801*103682^(1/3) 6524758425187597 a001 2971215073/2139295485799*103682^(1/3) 6524758425187597 a001 567451585/408569081798*103682^(1/3) 6524758425187597 a001 433494437/312119004989*103682^(1/3) 6524758425187597 a001 165580141/119218851371*103682^(1/3) 6524758425187597 a001 31622993/22768774562*103682^(1/3) 6524758425187599 a001 24157817/17393796001*103682^(1/3) 6524758425187612 a001 9227465/6643838879*103682^(1/3) 6524758425187702 a001 1762289/1268860318*103682^(1/3) 6524758425188317 a001 1346269/969323029*103682^(1/3) 6524758425190807 a001 75025/28143753123*439204^(7/9) 6524758425192532 a001 514229/370248451*103682^(1/3) 6524758425192543 a001 28657/6643838879*64079^(20/23) 6524758425194565 a001 75025/6643838879*439204^(2/3) 6524758425196131 a001 196418/87403803*103682^(7/24) 6524758425198324 a001 75025/1568397607*439204^(5/9) 6524758425199967 a001 317811/370248451*103682^(3/8) 6524758425200203 a001 121393/599074578*103682^(1/2) 6524758425202082 a001 75025/370248451*439204^(4/9) 6524758425204195 a001 23843770275/365435296162 6524758425204195 a004 Fibonacci(25)/Lucas(28)/(1/2+sqrt(5)/2) 6524758425204195 a004 Fibonacci(28)/Lucas(25)/(1/2+sqrt(5)/2)^7 6524758425205839 a001 75025/87403803*439204^(1/3) 6524758425207925 a001 196418/4870847*39603^(1/22) 6524758425209614 a001 75025/20633239*439204^(2/9) 6524758425211002 a001 832040/969323029*103682^(3/8) 6524758425212180 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^58 6524758425212612 a001 2178309/2537720636*103682^(3/8) 6524758425212847 a001 5702887/6643838879*103682^(3/8) 6524758425212881 a001 14930352/17393796001*103682^(3/8) 6524758425212886 a001 39088169/45537549124*103682^(3/8) 6524758425212887 a001 102334155/119218851371*103682^(3/8) 6524758425212887 a001 267914296/312119004989*103682^(3/8) 6524758425212887 a001 701408733/817138163596*103682^(3/8) 6524758425212887 a001 1836311903/2139295485799*103682^(3/8) 6524758425212887 a001 4807526976/5600748293801*103682^(3/8) 6524758425212887 a001 12586269025/14662949395604*103682^(3/8) 6524758425212887 a001 20365011074/23725150497407*103682^(3/8) 6524758425212887 a001 7778742049/9062201101803*103682^(3/8) 6524758425212887 a001 2971215073/3461452808002*103682^(3/8) 6524758425212887 a001 1134903170/1322157322203*103682^(3/8) 6524758425212887 a001 433494437/505019158607*103682^(3/8) 6524758425212887 a001 165580141/192900153618*103682^(3/8) 6524758425212887 a001 63245986/73681302247*103682^(3/8) 6524758425212889 a001 24157817/28143753123*103682^(3/8) 6524758425212902 a001 9227465/10749957122*103682^(3/8) 6524758425212992 a001 3524578/4106118243*103682^(3/8) 6524758425213082 a001 75025/4870847*439204^(1/9) 6524758425213607 a001 1346269/1568397607*103682^(3/8) 6524758425215230 a001 62423801000/956722026041 6524758425215230 a004 Fibonacci(25)*(1/2+sqrt(5)/2)/Lucas(30) 6524758425215230 a004 Fibonacci(30)/Lucas(25)/(1/2+sqrt(5)/2)^9 6524758425216395 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^60 6524758425216831 a001 75025/4870847*7881196^(1/11) 6524758425216840 a001 75025/4870847*141422324^(1/13) 6524758425216840 a001 75025/4870847*2537720636^(1/15) 6524758425216840 a001 75025/4870847*45537549124^(1/17) 6524758425216840 a001 163427632725/2504730781961 6524758425216840 a001 75025/4870847*(1/2+1/2*5^(1/2))^3 6524758425216840 a001 75025/4870847*192900153618^(1/18) 6524758425216840 a001 75025/4870847*10749957122^(1/16) 6524758425216840 a004 Fibonacci(32)/Lucas(25)/(1/2+sqrt(5)/2)^11 6524758425216840 a001 75025/4870847*599074578^(1/14) 6524758425216841 a001 75025/4870847*33385282^(1/12) 6524758425217010 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^62 6524758425217020 a001 75025/2139295485799*7881196^(10/11) 6524758425217029 a001 75025/4870847*1860498^(1/10) 6524758425217029 a001 75025/505019158607*7881196^(9/11) 6524758425217039 a001 75025/119218851371*7881196^(8/11) 6524758425217045 a001 75025/45537549124*7881196^(2/3) 6524758425217048 a001 75025/28143753123*7881196^(7/11) 6524758425217058 a001 75025/6643838879*7881196^(6/11) 6524758425217067 a001 75025/1568397607*7881196^(5/11) 6524758425217073 a001 75025/12752043*20633239^(1/7) 6524758425217075 a001 75025/12752043*2537720636^(1/9) 6524758425217075 a001 75025/12752043*312119004989^(1/11) 6524758425217075 a001 427859097175/6557470319842 6524758425217075 a001 75025/12752043*(1/2+1/2*5^(1/2))^5 6524758425217075 a001 75025/12752043*28143753123^(1/10) 6524758425217075 a004 Fibonacci(34)/Lucas(25)/(1/2+sqrt(5)/2)^13 6524758425217075 a001 75025/12752043*228826127^(1/8) 6524758425217077 a001 75025/370248451*7881196^(4/11) 6524758425217080 a001 75025/228826127*7881196^(1/3) 6524758425217086 a001 75025/87403803*7881196^(3/11) 6524758425217100 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^64 6524758425217102 a001 75025/2139295485799*20633239^(6/7) 6524758425217103 a001 75025/817138163596*20633239^(4/5) 6524758425217104 a001 75025/192900153618*20633239^(5/7) 6524758425217106 a001 75025/28143753123*20633239^(3/5) 6524758425217106 a001 75025/33385282*20633239^(1/5) 6524758425217106 a001 75025/17393796001*20633239^(4/7) 6524758425217109 a001 75025/1568397607*20633239^(3/7) 6524758425217109 a001 75025/969323029*20633239^(2/5) 6524758425217109 a001 75025/33385282*17393796001^(1/7) 6524758425217109 a001 75025/33385282*14662949395604^(1/9) 6524758425217109 a001 75025/33385282*(1/2+1/2*5^(1/2))^7 6524758425217109 a004 Fibonacci(36)/Lucas(25)/(1/2+sqrt(5)/2)^15 6524758425217109 a001 75025/33385282*599074578^(1/6) 6524758425217111 a001 75025/141422324*20633239^(2/7) 6524758425217111 a001 75025/20633239*7881196^(2/11) 6524758425217113 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^66 6524758425217114 a001 75025/87403803*141422324^(3/13) 6524758425217114 a001 75025/87403803*2537720636^(1/5) 6524758425217114 a001 75025/87403803*45537549124^(3/17) 6524758425217114 a001 75025/87403803*817138163596^(3/19) 6524758425217114 a001 75025/87403803*14662949395604^(1/7) 6524758425217114 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^9/Lucas(38) 6524758425217114 a001 75025/87403803*192900153618^(1/6) 6524758425217114 a004 Fibonacci(38)/Lucas(25)/(1/2+sqrt(5)/2)^17 6524758425217114 a001 75025/87403803*10749957122^(3/16) 6524758425217114 a001 75025/87403803*599074578^(3/14) 6524758425217115 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^68 6524758425217115 a001 75025/9062201101803*141422324^(11/13) 6524758425217115 a001 75025/2139295485799*141422324^(10/13) 6524758425217115 a001 75025/505019158607*141422324^(9/13) 6524758425217115 a001 75025/312119004989*141422324^(2/3) 6524758425217115 a001 75025/119218851371*141422324^(8/13) 6524758425217115 a001 75025/28143753123*141422324^(7/13) 6524758425217115 a001 75025/6643838879*141422324^(6/13) 6524758425217115 a001 75025/1568397607*141422324^(5/13) 6524758425217115 a001 75025/599074578*141422324^(1/3) 6524758425217115 a001 75025/228826127*312119004989^(1/5) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^11/Lucas(40) 6524758425217115 a004 Fibonacci(40)/Lucas(25)/(1/2+sqrt(5)/2)^19 6524758425217115 a001 75025/228826127*1568397607^(1/4) 6524758425217115 a001 75025/370248451*141422324^(4/13) 6524758425217115 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^70 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^13/Lucas(42) 6524758425217115 a001 75025/599074578*73681302247^(1/4) 6524758425217115 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^21 6524758425217115 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^72 6524758425217115 a001 75025/1568397607*2537720636^(1/3) 6524758425217115 a001 75025/1568397607*45537549124^(5/17) 6524758425217115 a001 75025/1568397607*312119004989^(3/11) 6524758425217115 a001 75025/1568397607*14662949395604^(5/21) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^15/Lucas(44) 6524758425217115 a001 75025/1568397607*192900153618^(5/18) 6524758425217115 a001 75025/1568397607*28143753123^(3/10) 6524758425217115 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^23 6524758425217115 a001 75025/1568397607*10749957122^(5/16) 6524758425217115 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^74 6524758425217115 a001 75025/23725150497407*2537720636^(7/9) 6524758425217115 a001 75025/9062201101803*2537720636^(11/15) 6524758425217115 a001 75025/2139295485799*2537720636^(2/3) 6524758425217115 a001 75025/505019158607*2537720636^(3/5) 6524758425217115 a001 75025/192900153618*2537720636^(5/9) 6524758425217115 a001 75025/119218851371*2537720636^(8/15) 6524758425217115 a001 75025/28143753123*2537720636^(7/15) 6524758425217115 a001 75025/17393796001*2537720636^(4/9) 6524758425217115 a001 75025/4106118243*45537549124^(1/3) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^17/Lucas(46) 6524758425217115 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^25 6524758425217115 a001 75025/6643838879*2537720636^(2/5) 6524758425217115 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^76 6524758425217115 a001 75025/10749957122*817138163596^(1/3) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^19/Lucas(48) 6524758425217115 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^27 6524758425217115 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^78 6524758425217115 a001 75025/28143753123*17393796001^(3/7) 6524758425217115 a001 75025/23725150497407*17393796001^(5/7) 6524758425217115 a001 75025/817138163596*17393796001^(4/7) 6524758425217115 a001 75025/28143753123*45537549124^(7/17) 6524758425217115 a001 75025/28143753123*14662949395604^(1/3) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^21/Lucas(50) 6524758425217115 a001 75025/28143753123*192900153618^(7/18) 6524758425217115 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^80 6524758425217115 a001 75025/14662949395604*45537549124^(2/3) 6524758425217115 a001 75025/9062201101803*45537549124^(11/17) 6524758425217115 a001 75025/2139295485799*45537549124^(10/17) 6524758425217115 a001 75025/505019158607*45537549124^(9/17) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^23/Lucas(52) 6524758425217115 a001 75025/119218851371*45537549124^(8/17) 6524758425217115 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^82 6524758425217115 a001 75025/192900153618*312119004989^(5/11) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^25/Lucas(54) 6524758425217115 a001 75025/192900153618*3461452808002^(5/12) 6524758425217115 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^84 6524758425217115 a001 75025/23725150497407*312119004989^(7/11) 6524758425217115 a001 75025/2139295485799*312119004989^(6/11) 6524758425217115 a001 75025/505019158607*817138163596^(9/19) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(56) 6524758425217115 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^86 6524758425217115 a001 75025/9062201101803*817138163596^(11/19) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(58) 6524758425217115 a001 75025/1322157322203*1322157322203^(1/2) 6524758425217115 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^88 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(60) 6524758425217115 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^90 6524758425217115 a001 75025/9062201101803*14662949395604^(11/21) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(62) 6524758425217115 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^92 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(64) 6524758425217115 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^94 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(66) 6524758425217115 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^96 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(68) 6524758425217115 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^98 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(70) 6524758425217115 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^100 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(72) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(74) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(76) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(78) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(80) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(82) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(84) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(86) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(88) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(90) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(92) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(94) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(96) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(98) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(100) 6524758425217115 a004 Fibonacci(25)*Lucas(1)/(1/2+sqrt(5)/2)^29 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(99) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(97) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(95) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(93) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(91) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(89) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(87) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(85) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(83) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(81) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(79) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(77) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(75) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(73) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(71) 6524758425217115 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^99 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(69) 6524758425217115 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^97 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(67) 6524758425217115 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^95 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(65) 6524758425217115 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^93 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(63) 6524758425217115 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^91 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(61) 6524758425217115 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^89 6524758425217115 a001 75025/2139295485799*14662949395604^(10/21) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(59) 6524758425217115 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^87 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(57) 6524758425217115 a001 75025/23725150497407*505019158607^(5/8) 6524758425217115 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^85 6524758425217115 a001 75025/505019158607*192900153618^(1/2) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^26/Lucas(55) 6524758425217115 a001 75025/2139295485799*192900153618^(5/9) 6524758425217115 a001 75025/9062201101803*192900153618^(11/18) 6524758425217115 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^83 6524758425217115 a001 75025/119218851371*14662949395604^(8/21) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^24/Lucas(53) 6524758425217115 a001 75025/119218851371*192900153618^(4/9) 6524758425217115 a001 75025/817138163596*73681302247^(7/13) 6524758425217115 a001 75025/312119004989*73681302247^(1/2) 6524758425217115 a001 75025/5600748293801*73681302247^(8/13) 6524758425217115 a001 75025/119218851371*73681302247^(6/13) 6524758425217115 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^81 6524758425217115 a001 75025/45537549124*312119004989^(2/5) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^22/Lucas(51) 6524758425217115 a001 75025/192900153618*28143753123^(1/2) 6524758425217115 a001 75025/2139295485799*28143753123^(3/5) 6524758425217115 a001 75025/23725150497407*28143753123^(7/10) 6524758425217115 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^31 6524758425217115 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^33 6524758425217115 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^35 6524758425217115 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^37 6524758425217115 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^39 6524758425217115 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^41 6524758425217115 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^43 6524758425217115 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^45 6524758425217115 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^47 6524758425217115 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^49 6524758425217115 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^51 6524758425217115 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^53 6524758425217115 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^55 6524758425217115 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^57 6524758425217115 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^59 6524758425217115 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^61 6524758425217115 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^63 6524758425217115 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^65 6524758425217115 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^67 6524758425217115 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^69 6524758425217115 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^71 6524758425217115 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^73 6524758425217115 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^75 6524758425217115 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^79 6524758425217115 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^77 6524758425217115 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^78 6524758425217115 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^76 6524758425217115 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^74 6524758425217115 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^72 6524758425217115 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^70 6524758425217115 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^68 6524758425217115 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^66 6524758425217115 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^64 6524758425217115 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^62 6524758425217115 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^60 6524758425217115 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^58 6524758425217115 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^56 6524758425217115 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^54 6524758425217115 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^52 6524758425217115 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^50 6524758425217115 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^48 6524758425217115 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^46 6524758425217115 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^44 6524758425217115 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^42 6524758425217115 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^40 6524758425217115 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^38 6524758425217115 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^36 6524758425217115 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^34 6524758425217115 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^32 6524758425217115 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^30 6524758425217115 a001 75025/28143753123*10749957122^(7/16) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^20/Lucas(49) 6524758425217115 a001 75025/17393796001*23725150497407^(5/16) 6524758425217115 a001 75025/17393796001*505019158607^(5/14) 6524758425217115 a001 75025/17393796001*73681302247^(5/13) 6524758425217115 a001 75025/17393796001*28143753123^(2/5) 6524758425217115 a001 75025/119218851371*10749957122^(1/2) 6524758425217115 a001 75025/45537549124*10749957122^(11/24) 6524758425217115 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^28 6524758425217115 a001 75025/312119004989*10749957122^(13/24) 6524758425217115 a001 75025/505019158607*10749957122^(9/16) 6524758425217115 a001 75025/817138163596*10749957122^(7/12) 6524758425217115 a001 75025/2139295485799*10749957122^(5/8) 6524758425217115 a001 75025/5600748293801*10749957122^(2/3) 6524758425217115 a001 75025/9062201101803*10749957122^(11/16) 6524758425217115 a001 75025/14662949395604*10749957122^(17/24) 6524758425217115 a001 75025/17393796001*10749957122^(5/12) 6524758425217115 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^77 6524758425217115 a001 75025/6643838879*45537549124^(6/17) 6524758425217115 a001 75025/6643838879*14662949395604^(2/7) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^18/Lucas(47) 6524758425217115 a001 75025/6643838879*192900153618^(1/3) 6524758425217115 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^26 6524758425217115 a001 75025/6643838879*10749957122^(3/8) 6524758425217115 a001 75025/45537549124*4106118243^(11/23) 6524758425217115 a001 75025/17393796001*4106118243^(10/23) 6524758425217115 a001 75025/73681302247*4106118243^(1/2) 6524758425217115 a001 75025/119218851371*4106118243^(12/23) 6524758425217115 a001 75025/312119004989*4106118243^(13/23) 6524758425217115 a001 75025/817138163596*4106118243^(14/23) 6524758425217115 a001 75025/2139295485799*4106118243^(15/23) 6524758425217115 a001 75025/5600748293801*4106118243^(16/23) 6524758425217115 a001 75025/14662949395604*4106118243^(17/23) 6524758425217115 a001 75025/6643838879*4106118243^(9/23) 6524758425217115 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^75 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^16/Lucas(45) 6524758425217115 a001 75025/2537720636*23725150497407^(1/4) 6524758425217115 a001 75025/2537720636*73681302247^(4/13) 6524758425217115 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^24 6524758425217115 a001 75025/2537720636*10749957122^(1/3) 6524758425217115 a001 75025/2537720636*4106118243^(8/23) 6524758425217115 a001 75025/17393796001*1568397607^(5/11) 6524758425217115 a001 75025/6643838879*1568397607^(9/22) 6524758425217115 a001 75025/45537549124*1568397607^(1/2) 6524758425217115 a001 75025/119218851371*1568397607^(6/11) 6524758425217115 a001 75025/312119004989*1568397607^(13/22) 6524758425217115 a001 75025/817138163596*1568397607^(7/11) 6524758425217115 a001 75025/2139295485799*1568397607^(15/22) 6524758425217115 a001 75025/5600748293801*1568397607^(8/11) 6524758425217115 a001 75025/2537720636*1568397607^(4/11) 6524758425217115 a001 75025/9062201101803*1568397607^(3/4) 6524758425217115 a001 75025/14662949395604*1568397607^(17/22) 6524758425217115 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^73 6524758425217115 a001 75025/1568397607*599074578^(5/14) 6524758425217115 a001 75025/969323029*17393796001^(2/7) 6524758425217115 a001 75025/969323029*14662949395604^(2/9) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^14/Lucas(43) 6524758425217115 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^22 6524758425217115 a001 75025/969323029*10749957122^(7/24) 6524758425217115 a001 75025/969323029*4106118243^(7/23) 6524758425217115 a001 75025/969323029*1568397607^(7/22) 6524758425217115 a001 75025/2537720636*599074578^(8/21) 6524758425217115 a001 75025/6643838879*599074578^(3/7) 6524758425217115 a001 75025/17393796001*599074578^(10/21) 6524758425217115 a001 75025/28143753123*599074578^(1/2) 6524758425217115 a001 75025/45537549124*599074578^(11/21) 6524758425217115 a001 75025/119218851371*599074578^(4/7) 6524758425217115 a001 75025/312119004989*599074578^(13/21) 6524758425217115 a001 75025/505019158607*599074578^(9/14) 6524758425217115 a001 75025/817138163596*599074578^(2/3) 6524758425217115 a001 75025/2139295485799*599074578^(5/7) 6524758425217115 a001 75025/969323029*599074578^(1/3) 6524758425217115 a001 75025/5600748293801*599074578^(16/21) 6524758425217115 a001 75025/9062201101803*599074578^(11/14) 6524758425217115 a001 75025/14662949395604*599074578^(17/21) 6524758425217115 a001 75025/23725150497407*599074578^(5/6) 6524758425217115 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^71 6524758425217115 a001 75025/1568397607*228826127^(3/8) 6524758425217115 a001 75025/370248451*2537720636^(4/15) 6524758425217115 a001 75025/370248451*45537549124^(4/17) 6524758425217115 a001 75025/370248451*817138163596^(4/19) 6524758425217115 a001 75025/370248451*14662949395604^(4/21) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^12/Lucas(41) 6524758425217115 a001 75025/370248451*192900153618^(2/9) 6524758425217115 a001 75025/370248451*73681302247^(3/13) 6524758425217115 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2)^20 6524758425217115 a001 75025/370248451*10749957122^(1/4) 6524758425217115 a001 75025/370248451*4106118243^(6/23) 6524758425217115 a001 75025/370248451*1568397607^(3/11) 6524758425217115 a001 75025/969323029*228826127^(7/20) 6524758425217115 a001 75025/2537720636*228826127^(2/5) 6524758425217115 a001 75025/370248451*599074578^(2/7) 6524758425217115 a001 75025/6643838879*228826127^(9/20) 6524758425217115 a001 75025/17393796001*228826127^(1/2) 6524758425217115 a001 75025/45537549124*228826127^(11/20) 6524758425217115 a001 75025/119218851371*228826127^(3/5) 6524758425217115 a001 75025/192900153618*228826127^(5/8) 6524758425217115 a001 75025/312119004989*228826127^(13/20) 6524758425217115 a001 75025/370248451*228826127^(3/10) 6524758425217115 a001 75025/817138163596*228826127^(7/10) 6524758425217115 a001 75025/2139295485799*228826127^(3/4) 6524758425217115 a001 75025/5600748293801*228826127^(4/5) 6524758425217115 a001 75025/14662949395604*228826127^(17/20) 6524758425217115 a001 75025/23725150497407*228826127^(7/8) 6524758425217115 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^69 6524758425217115 a001 75025/370248451*87403803^(6/19) 6524758425217115 a001 75025/969323029*87403803^(7/19) 6524758425217115 a001 75025/141422324*2537720636^(2/9) 6524758425217115 a001 75025/141422324*312119004989^(2/11) 6524758425217115 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^10/Lucas(39) 6524758425217115 a001 75025/141422324*28143753123^(1/5) 6524758425217115 a004 Fibonacci(39)/Lucas(25)/(1/2+sqrt(5)/2)^18 6524758425217115 a001 75025/141422324*10749957122^(5/24) 6524758425217115 a001 75025/141422324*4106118243^(5/23) 6524758425217115 a001 75025/141422324*1568397607^(5/22) 6524758425217115 a001 75025/141422324*599074578^(5/21) 6524758425217115 a001 75025/141422324*228826127^(1/4) 6524758425217115 a001 75025/2537720636*87403803^(8/19) 6524758425217115 a001 75025/6643838879*87403803^(9/19) 6524758425217116 a001 75025/10749957122*87403803^(1/2) 6524758425217116 a001 75025/17393796001*87403803^(10/19) 6524758425217116 a001 75025/45537549124*87403803^(11/19) 6524758425217116 a001 75025/119218851371*87403803^(12/19) 6524758425217116 a001 75025/141422324*87403803^(5/19) 6524758425217116 a001 75025/312119004989*87403803^(13/19) 6524758425217116 a001 75025/87403803*33385282^(1/4) 6524758425217116 a001 75025/817138163596*87403803^(14/19) 6524758425217116 a001 75025/2139295485799*87403803^(15/19) 6524758425217116 a001 75025/5600748293801*87403803^(16/19) 6524758425217116 a001 75025/14662949395604*87403803^(17/19) 6524758425217116 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^67 6524758425217117 a001 75025/141422324*33385282^(5/18) 6524758425217117 a001 75025/370248451*33385282^(1/3) 6524758425217117 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^8/Lucas(37) 6524758425217117 a001 75025/54018521*23725150497407^(1/8) 6524758425217117 a001 75025/54018521*505019158607^(1/7) 6524758425217117 a001 75025/54018521*73681302247^(2/13) 6524758425217117 a004 Fibonacci(37)/Lucas(25)/(1/2+sqrt(5)/2)^16 6524758425217117 a001 75025/54018521*10749957122^(1/6) 6524758425217117 a001 75025/54018521*4106118243^(4/23) 6524758425217117 a001 75025/54018521*1568397607^(2/11) 6524758425217117 a001 75025/54018521*599074578^(4/21) 6524758425217117 a001 75025/54018521*228826127^(1/5) 6524758425217117 a001 75025/969323029*33385282^(7/18) 6524758425217117 a001 75025/54018521*87403803^(4/19) 6524758425217118 a001 75025/1568397607*33385282^(5/12) 6524758425217118 a001 75025/2537720636*33385282^(4/9) 6524758425217118 a001 75025/6643838879*33385282^(1/2) 6524758425217118 a001 75025/17393796001*33385282^(5/9) 6524758425217118 a001 75025/28143753123*33385282^(7/12) 6524758425217119 a001 75025/54018521*33385282^(2/9) 6524758425217119 a001 75025/45537549124*33385282^(11/18) 6524758425217119 a001 75025/119218851371*33385282^(2/3) 6524758425217119 a001 75025/312119004989*33385282^(13/18) 6524758425217119 a001 75025/505019158607*33385282^(3/4) 6524758425217120 a001 75025/817138163596*33385282^(7/9) 6524758425217120 a001 75025/2139295485799*33385282^(5/6) 6524758425217120 a001 75025/5600748293801*33385282^(8/9) 6524758425217120 a001 75025/9062201101803*33385282^(11/12) 6524758425217121 a001 75025/14662949395604*33385282^(17/18) 6524758425217121 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^65 6524758425217127 a001 75025/54018521*12752043^(4/17) 6524758425217127 a001 75025/141422324*12752043^(5/17) 6524758425217129 a001 75025/370248451*12752043^(6/17) 6524758425217130 a001 75025/20633239*141422324^(2/13) 6524758425217130 a001 75025/20633239*2537720636^(2/15) 6524758425217130 a001 75025/20633239*45537549124^(2/17) 6524758425217130 a001 75025/20633239*14662949395604^(2/21) 6524758425217130 a001 75025/20633239*(1/2+1/2*5^(1/2))^6 6524758425217130 a001 692290561625/10610209857723 6524758425217130 a001 75025/20633239*10749957122^(1/8) 6524758425217130 a004 Fibonacci(35)/Lucas(25)/(1/2+sqrt(5)/2)^14 6524758425217130 a001 75025/20633239*4106118243^(3/23) 6524758425217130 a001 75025/20633239*1568397607^(3/22) 6524758425217130 a001 75025/20633239*599074578^(1/7) 6524758425217130 a001 75025/20633239*228826127^(3/20) 6524758425217131 a001 75025/20633239*87403803^(3/19) 6524758425217131 a001 75025/20633239*33385282^(1/6) 6524758425217132 a001 75025/969323029*12752043^(7/17) 6524758425217134 a001 75025/2537720636*12752043^(8/17) 6524758425217135 a001 75025/4106118243*12752043^(1/2) 6524758425217136 a001 75025/6643838879*12752043^(9/17) 6524758425217137 a001 75025/20633239*12752043^(3/17) 6524758425217139 a001 75025/17393796001*12752043^(10/17) 6524758425217141 a001 75025/45537549124*12752043^(11/17) 6524758425217143 a001 75025/119218851371*12752043^(12/17) 6524758425217146 a001 75025/312119004989*12752043^(13/17) 6524758425217148 a001 75025/817138163596*12752043^(14/17) 6524758425217150 a001 75025/2139295485799*12752043^(15/17) 6524758425217153 a001 75025/5600748293801*12752043^(16/17) 6524758425217155 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^63 6524758425217182 a001 75025/20633239*4870847^(3/16) 6524758425217186 a001 75025/54018521*4870847^(1/4) 6524758425217201 a001 75025/141422324*4870847^(5/16) 6524758425217218 a001 75025/370248451*4870847^(3/8) 6524758425217220 a001 75025/7881196*(1/2+1/2*5^(1/2))^4 6524758425217220 a001 264431464450/4052739537881 6524758425217220 a001 75025/7881196*73681302247^(1/13) 6524758425217220 a001 75025/7881196*10749957122^(1/12) 6524758425217220 a004 Fibonacci(33)/Lucas(25)/(1/2+sqrt(5)/2)^12 6524758425217220 a001 75025/7881196*4106118243^(2/23) 6524758425217220 a001 75025/7881196*1568397607^(1/11) 6524758425217220 a001 75025/7881196*599074578^(2/21) 6524758425217220 a001 75025/7881196*228826127^(1/10) 6524758425217220 a001 75025/7881196*87403803^(2/19) 6524758425217221 a001 75025/7881196*33385282^(1/9) 6524758425217225 a001 75025/7881196*12752043^(2/17) 6524758425217235 a001 75025/969323029*4870847^(7/16) 6524758425217253 a001 75025/2537720636*4870847^(1/2) 6524758425217254 a001 75025/7881196*4870847^(1/8) 6524758425217270 a001 75025/6643838879*4870847^(9/16) 6524758425217287 a001 75025/17393796001*4870847^(5/8) 6524758425217304 a001 75025/45537549124*4870847^(11/16) 6524758425217321 a001 75025/119218851371*4870847^(3/4) 6524758425217339 a001 75025/312119004989*4870847^(13/16) 6524758425217356 a001 75025/817138163596*4870847^(7/8) 6524758425217373 a001 75025/2139295485799*4870847^(15/16) 6524758425217389 a001 75025/12752043*1860498^(1/6) 6524758425217390 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^61 6524758425217471 a001 75025/7881196*1860498^(2/15) 6524758425217507 a001 75025/20633239*1860498^(1/5) 6524758425217620 a001 75025/54018521*1860498^(4/15) 6524758425217680 a001 75025/87403803*1860498^(3/10) 6524758425217744 a001 75025/141422324*1860498^(1/3) 6524758425217822 a001 514229/599074578*103682^(3/8) 6524758425217835 a001 75025/3010349*(1/2+1/2*5^(1/2))^2 6524758425217835 a001 20200766345/309601751184 6524758425217835 a001 75025/3010349*10749957122^(1/24) 6524758425217835 a004 Fibonacci(31)/Lucas(25)/(1/2+sqrt(5)/2)^10 6524758425217835 a001 75025/3010349*4106118243^(1/23) 6524758425217835 a001 75025/3010349*1568397607^(1/22) 6524758425217835 a001 75025/3010349*599074578^(1/21) 6524758425217835 a001 75025/3010349*228826127^(1/20) 6524758425217835 a001 75025/3010349*87403803^(1/19) 6524758425217835 a001 75025/3010349*33385282^(1/18) 6524758425217837 a001 75025/3010349*12752043^(1/17) 6524758425217852 a001 75025/3010349*4870847^(1/16) 6524758425217869 a001 75025/370248451*1860498^(2/5) 6524758425217961 a001 75025/3010349*1860498^(1/15) 6524758425217995 a001 75025/969323029*1860498^(7/15) 6524758425218058 a001 75025/1568397607*1860498^(1/2) 6524758425218120 a001 75025/2537720636*1860498^(8/15) 6524758425218246 a001 75025/6643838879*1860498^(3/5) 6524758425218372 a001 75025/17393796001*1860498^(2/3) 6524758425218435 a001 75025/28143753123*1860498^(7/10) 6524758425218497 a001 75025/45537549124*1860498^(11/15) 6524758425218623 a001 75025/119218851371*1860498^(4/5) 6524758425218686 a001 75025/192900153618*1860498^(5/6) 6524758425218749 a001 75025/312119004989*1860498^(13/15) 6524758425218758 a001 75025/3010349*710647^(1/14) 6524758425218812 a001 75025/505019158607*1860498^(9/10) 6524758425218874 a001 75025/817138163596*1860498^(14/15) 6524758425219000 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^59 6524758425219066 a001 75025/7881196*710647^(1/7) 6524758425219899 a001 75025/20633239*710647^(3/14) 6524758425220339 a001 75025/33385282*710647^(1/4) 6524758425220809 a001 75025/54018521*710647^(2/7) 6524758425221422 a001 98209/70711162*103682^(1/3) 6524758425221730 a001 75025/141422324*710647^(5/14) 6524758425222050 a001 75025/1149851 6524758425222050 a004 Fibonacci(29)/Lucas(25)/(1/2+sqrt(5)/2)^8 6524758425222652 a001 75025/370248451*710647^(3/7) 6524758425223575 a001 75025/969323029*710647^(1/2) 6524758425224498 a001 75025/2537720636*710647^(4/7) 6524758425224647 a001 75025/3010349*271443^(1/13) 6524758425225257 a001 377/710646*103682^(5/12) 6524758425225421 a001 75025/6643838879*710647^(9/14) 6524758425225493 a001 121393/969323029*103682^(13/24) 6524758425226344 a001 75025/17393796001*710647^(5/7) 6524758425226805 a001 75025/28143753123*710647^(3/4) 6524758425227266 a001 75025/45537549124*710647^(11/14) 6524758425228189 a001 75025/119218851371*710647^(6/7) 6524758425229112 a001 75025/312119004989*710647^(13/14) 6524758425230035 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^57 6524758425230844 a001 75025/7881196*271443^(2/13) 6524758425236292 a001 832040/1568397607*103682^(5/12) 6524758425237566 a001 75025/20633239*271443^(3/13) 6524758425237902 a001 726103/1368706081*103682^(5/12) 6524758425238137 a001 5702887/10749957122*103682^(5/12) 6524758425238171 a001 4976784/9381251041*103682^(5/12) 6524758425238176 a001 39088169/73681302247*103682^(5/12) 6524758425238177 a001 34111385/64300051206*103682^(5/12) 6524758425238177 a001 267914296/505019158607*103682^(5/12) 6524758425238177 a001 233802911/440719107401*103682^(5/12) 6524758425238177 a001 1836311903/3461452808002*103682^(5/12) 6524758425238177 a001 1602508992/3020733700601*103682^(5/12) 6524758425238177 a001 12586269025/23725150497407*103682^(5/12) 6524758425238177 a001 7778742049/14662949395604*103682^(5/12) 6524758425238177 a001 2971215073/5600748293801*103682^(5/12) 6524758425238177 a001 1134903170/2139295485799*103682^(5/12) 6524758425238177 a001 433494437/817138163596*103682^(5/12) 6524758425238177 a001 165580141/312119004989*103682^(5/12) 6524758425238177 a001 63245986/119218851371*103682^(5/12) 6524758425238179 a001 24157817/45537549124*103682^(5/12) 6524758425238192 a001 9227465/17393796001*103682^(5/12) 6524758425238282 a001 3524578/6643838879*103682^(5/12) 6524758425238897 a001 1346269/2537720636*103682^(5/12) 6524758425240520 a001 75025/1860498*103682^(1/24) 6524758425243112 a001 514229/969323029*103682^(5/12) 6524758425244365 a001 75025/54018521*271443^(4/13) 6524758425246711 a001 196418/228826127*103682^(3/8) 6524758425250547 a001 317811/969323029*103682^(11/24) 6524758425250783 a001 121393/1568397607*103682^(7/12) 6524758425250940 a001 14736260450/225851433717 6524758425250940 a004 Fibonacci(25)/Lucas(27)/(1/2+sqrt(5)/2)^2 6524758425250940 a004 Fibonacci(27)/Lucas(25)/(1/2+sqrt(5)/2)^6 6524758425251175 a001 75025/141422324*271443^(5/13) 6524758425257986 a001 75025/370248451*271443^(6/13) 6524758425261392 a001 75025/599074578*271443^(1/2) 6524758425261582 a001 610/1860499*103682^(11/24) 6524758425261632 a001 28657/4106118243*64079^(19/23) 6524758425263192 a001 2178309/6643838879*103682^(11/24) 6524758425263427 a001 5702887/17393796001*103682^(11/24) 6524758425263461 a001 3732588/11384387281*103682^(11/24) 6524758425263466 a001 39088169/119218851371*103682^(11/24) 6524758425263467 a001 9303105/28374454999*103682^(11/24) 6524758425263467 a001 66978574/204284540899*103682^(11/24) 6524758425263467 a001 701408733/2139295485799*103682^(11/24) 6524758425263467 a001 1836311903/5600748293801*103682^(11/24) 6524758425263467 a001 1201881744/3665737348901*103682^(11/24) 6524758425263467 a001 7778742049/23725150497407*103682^(11/24) 6524758425263467 a001 2971215073/9062201101803*103682^(11/24) 6524758425263467 a001 567451585/1730726404001*103682^(11/24) 6524758425263467 a001 433494437/1322157322203*103682^(11/24) 6524758425263467 a001 165580141/505019158607*103682^(11/24) 6524758425263467 a001 31622993/96450076809*103682^(11/24) 6524758425263469 a001 24157817/73681302247*103682^(11/24) 6524758425263482 a001 9227465/28143753123*103682^(11/24) 6524758425263572 a001 1762289/5374978561*103682^(11/24) 6524758425264187 a001 1346269/4106118243*103682^(11/24) 6524758425264798 a001 75025/969323029*271443^(7/13) 6524758425268402 a001 514229/1568397607*103682^(11/24) 6524758425268415 a001 75025/3010349*103682^(1/12) 6524758425271610 a001 75025/2537720636*271443^(8/13) 6524758425272001 a001 196418/370248451*103682^(5/12) 6524758425274644 a001 121393/4870847*39603^(1/11) 6524758425275837 a001 317811/1568397607*103682^(1/2) 6524758425276072 a001 121393/2537720636*103682^(5/8) 6524758425278422 a001 75025/6643838879*271443^(9/13) 6524758425285233 a001 75025/17393796001*271443^(10/13) 6524758425286872 a001 832040/4106118243*103682^(1/2) 6524758425288482 a001 987/4870846*103682^(1/2) 6524758425288716 a001 5702887/28143753123*103682^(1/2) 6524758425288751 a001 14930352/73681302247*103682^(1/2) 6524758425288756 a001 39088169/192900153618*103682^(1/2) 6524758425288756 a001 102334155/505019158607*103682^(1/2) 6524758425288757 a001 267914296/1322157322203*103682^(1/2) 6524758425288757 a001 701408733/3461452808002*103682^(1/2) 6524758425288757 a001 1836311903/9062201101803*103682^(1/2) 6524758425288757 a001 4807526976/23725150497407*103682^(1/2) 6524758425288757 a001 2971215073/14662949395604*103682^(1/2) 6524758425288757 a001 1134903170/5600748293801*103682^(1/2) 6524758425288757 a001 433494437/2139295485799*103682^(1/2) 6524758425288757 a001 165580141/817138163596*103682^(1/2) 6524758425288757 a001 63245986/312119004989*103682^(1/2) 6524758425288759 a001 24157817/119218851371*103682^(1/2) 6524758425288772 a001 9227465/45537549124*103682^(1/2) 6524758425288862 a001 3524578/17393796001*103682^(1/2) 6524758425289477 a001 1346269/6643838879*103682^(1/2) 6524758425292045 a001 75025/45537549124*271443^(11/13) 6524758425292710 a001 75025/4870847*103682^(1/8) 6524758425293692 a001 514229/2537720636*103682^(1/2) 6524758425297291 a001 98209/299537289*103682^(11/24) 6524758425298857 a001 75025/119218851371*271443^(12/13) 6524758425301127 a001 317811/2537720636*103682^(13/24) 6524758425301362 a001 121393/4106118243*103682^(2/3) 6524758425305669 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^55 6524758425312161 a001 832040/6643838879*103682^(13/24) 6524758425313771 a001 2178309/17393796001*103682^(13/24) 6524758425314006 a001 1597/12752044*103682^(13/24) 6524758425314041 a001 14930352/119218851371*103682^(13/24) 6524758425314046 a001 39088169/312119004989*103682^(13/24) 6524758425314046 a001 102334155/817138163596*103682^(13/24) 6524758425314046 a001 267914296/2139295485799*103682^(13/24) 6524758425314046 a001 701408733/5600748293801*103682^(13/24) 6524758425314046 a001 1836311903/14662949395604*103682^(13/24) 6524758425314046 a001 2971215073/23725150497407*103682^(13/24) 6524758425314046 a001 1134903170/9062201101803*103682^(13/24) 6524758425314046 a001 433494437/3461452808002*103682^(13/24) 6524758425314047 a001 165580141/1322157322203*103682^(13/24) 6524758425314047 a001 63245986/505019158607*103682^(13/24) 6524758425314049 a001 24157817/192900153618*103682^(13/24) 6524758425314062 a001 9227465/73681302247*103682^(13/24) 6524758425314152 a001 3524578/28143753123*103682^(13/24) 6524758425314766 a001 1346269/10749957122*103682^(13/24) 6524758425318380 a001 75025/7881196*103682^(1/6) 6524758425318981 a001 514229/4106118243*103682^(13/24) 6524758425322581 a001 196418/969323029*103682^(1/2) 6524758425323914 a001 11592/1970299*39603^(5/22) 6524758425326416 a001 105937/1368706081*103682^(7/12) 6524758425326652 a001 121393/6643838879*103682^(17/24) 6524758425330720 a001 28657/2537720636*64079^(18/23) 6524758425337451 a001 416020/5374978561*103682^(7/12) 6524758425339061 a001 726103/9381251041*103682^(7/12) 6524758425339296 a001 5702887/73681302247*103682^(7/12) 6524758425339330 a001 2584/33385281*103682^(7/12) 6524758425339335 a001 39088169/505019158607*103682^(7/12) 6524758425339336 a001 34111385/440719107401*103682^(7/12) 6524758425339336 a001 133957148/1730726404001*103682^(7/12) 6524758425339336 a001 233802911/3020733700601*103682^(7/12) 6524758425339336 a001 1836311903/23725150497407*103682^(7/12) 6524758425339336 a001 567451585/7331474697802*103682^(7/12) 6524758425339336 a001 433494437/5600748293801*103682^(7/12) 6524758425339336 a001 165580141/2139295485799*103682^(7/12) 6524758425339337 a001 31622993/408569081798*103682^(7/12) 6524758425339339 a001 24157817/312119004989*103682^(7/12) 6524758425339352 a001 9227465/119218851371*103682^(7/12) 6524758425339441 a001 1762289/22768774562*103682^(7/12) 6524758425340056 a001 1346269/17393796001*103682^(7/12) 6524758425343524 a001 75025/12752043*103682^(5/24) 6524758425344271 a001 514229/6643838879*103682^(7/12) 6524758425347871 a001 196418/1568397607*103682^(13/24) 6524758425350513 a001 105937/4250681*39603^(1/11) 6524758425351706 a001 317811/6643838879*103682^(5/8) 6524758425351942 a001 121393/10749957122*103682^(3/4) 6524758425361582 a001 416020/16692641*39603^(1/11) 6524758425362741 a001 832040/17393796001*103682^(5/8) 6524758425363197 a001 726103/29134601*39603^(1/11) 6524758425363433 a001 5702887/228826127*39603^(1/11) 6524758425363467 a001 829464/33281921*39603^(1/11) 6524758425363472 a001 39088169/1568397607*39603^(1/11) 6524758425363473 a001 34111385/1368706081*39603^(1/11) 6524758425363473 a001 133957148/5374978561*39603^(1/11) 6524758425363473 a001 233802911/9381251041*39603^(1/11) 6524758425363473 a001 1836311903/73681302247*39603^(1/11) 6524758425363473 a001 267084832/10716675201*39603^(1/11) 6524758425363473 a001 12586269025/505019158607*39603^(1/11) 6524758425363473 a001 10983760033/440719107401*39603^(1/11) 6524758425363473 a001 43133785636/1730726404001*39603^(1/11) 6524758425363473 a001 75283811239/3020733700601*39603^(1/11) 6524758425363473 a001 182717648081/7331474697802*39603^(1/11) 6524758425363473 a001 139583862445/5600748293801*39603^(1/11) 6524758425363473 a001 53316291173/2139295485799*39603^(1/11) 6524758425363473 a001 10182505537/408569081798*39603^(1/11) 6524758425363473 a001 7778742049/312119004989*39603^(1/11) 6524758425363473 a001 2971215073/119218851371*39603^(1/11) 6524758425363473 a001 567451585/22768774562*39603^(1/11) 6524758425363473 a001 433494437/17393796001*39603^(1/11) 6524758425363473 a001 165580141/6643838879*39603^(1/11) 6524758425363473 a001 31622993/1268860318*39603^(1/11) 6524758425363475 a001 24157817/969323029*39603^(1/11) 6524758425363488 a001 9227465/370248451*39603^(1/11) 6524758425363578 a001 1762289/70711162*39603^(1/11) 6524758425364195 a001 1346269/54018521*39603^(1/11) 6524758425364351 a001 2178309/45537549124*103682^(5/8) 6524758425364586 a001 5702887/119218851371*103682^(5/8) 6524758425364620 a001 14930352/312119004989*103682^(5/8) 6524758425364625 a001 4181/87403804*103682^(5/8) 6524758425364626 a001 102334155/2139295485799*103682^(5/8) 6524758425364626 a001 267914296/5600748293801*103682^(5/8) 6524758425364626 a001 701408733/14662949395604*103682^(5/8) 6524758425364626 a001 1134903170/23725150497407*103682^(5/8) 6524758425364626 a001 433494437/9062201101803*103682^(5/8) 6524758425364626 a001 165580141/3461452808002*103682^(5/8) 6524758425364627 a001 63245986/1322157322203*103682^(5/8) 6524758425364628 a001 24157817/505019158607*103682^(5/8) 6524758425364642 a001 9227465/192900153618*103682^(5/8) 6524758425364731 a001 3524578/73681302247*103682^(5/8) 6524758425365346 a001 1346269/28143753123*103682^(5/8) 6524758425368423 a001 514229/20633239*39603^(1/11) 6524758425368870 a001 75025/20633239*103682^(1/4) 6524758425369561 a001 514229/10749957122*103682^(5/8) 6524758425373161 a001 98209/1268860318*103682^(7/12) 6524758425376996 a001 317811/10749957122*103682^(2/3) 6524758425377232 a001 121393/17393796001*103682^(19/24) 6524758425388031 a001 832040/28143753123*103682^(2/3) 6524758425389641 a001 311187/10525900321*103682^(2/3) 6524758425389876 a001 5702887/192900153618*103682^(2/3) 6524758425389910 a001 14930352/505019158607*103682^(2/3) 6524758425389915 a001 39088169/1322157322203*103682^(2/3) 6524758425389916 a001 6765/228826126*103682^(2/3) 6524758425389916 a001 267914296/9062201101803*103682^(2/3) 6524758425389916 a001 701408733/23725150497407*103682^(2/3) 6524758425389916 a001 433494437/14662949395604*103682^(2/3) 6524758425389916 a001 165580141/5600748293801*103682^(2/3) 6524758425389916 a001 63245986/2139295485799*103682^(2/3) 6524758425389918 a001 24157817/817138163596*103682^(2/3) 6524758425389931 a001 9227465/312119004989*103682^(2/3) 6524758425390021 a001 3524578/119218851371*103682^(2/3) 6524758425390636 a001 1346269/45537549124*103682^(2/3) 6524758425394138 a001 75025/33385282*103682^(7/24) 6524758425394851 a001 514229/17393796001*103682^(2/3) 6524758425397403 a001 98209/3940598*39603^(1/11) 6524758425398451 a001 196418/4106118243*103682^(5/8) 6524758425399809 a001 28657/1568397607*64079^(17/23) 6524758425402286 a001 10959/599786069*103682^(17/24) 6524758425402522 a001 121393/28143753123*103682^(5/6) 6524758425404328 a001 75025/1860498*39603^(1/22) 6524758425413321 a001 208010/11384387281*103682^(17/24) 6524758425414931 a001 2178309/119218851371*103682^(17/24) 6524758425415166 a001 5702887/312119004989*103682^(17/24) 6524758425415200 a001 3732588/204284540899*103682^(17/24) 6524758425415205 a001 39088169/2139295485799*103682^(17/24) 6524758425415206 a001 102334155/5600748293801*103682^(17/24) 6524758425415206 a001 10946/599074579*103682^(17/24) 6524758425415206 a001 433494437/23725150497407*103682^(17/24) 6524758425415206 a001 165580141/9062201101803*103682^(17/24) 6524758425415206 a001 31622993/1730726404001*103682^(17/24) 6524758425415208 a001 24157817/1322157322203*103682^(17/24) 6524758425415221 a001 9227465/505019158607*103682^(17/24) 6524758425415311 a001 1762289/96450076809*103682^(17/24) 6524758425415926 a001 1346269/73681302247*103682^(17/24) 6524758425419436 a001 75025/54018521*103682^(1/3) 6524758425420141 a001 514229/28143753123*103682^(17/24) 6524758425423741 a001 196418/6643838879*103682^(2/3) 6524758425427576 a001 105937/9381251041*103682^(3/4) 6524758425427812 a001 121393/45537549124*103682^(7/8) 6524758425438611 a001 832040/73681302247*103682^(3/4) 6524758425440221 a001 726103/64300051206*103682^(3/4) 6524758425440456 a001 5702887/505019158607*103682^(3/4) 6524758425440490 a001 4976784/440719107401*103682^(3/4) 6524758425440495 a001 39088169/3461452808002*103682^(3/4) 6524758425440496 a001 34111385/3020733700601*103682^(3/4) 6524758425440496 a001 267914296/23725150497407*103682^(3/4) 6524758425440496 a001 165580141/14662949395604*103682^(3/4) 6524758425440496 a001 63245986/5600748293801*103682^(3/4) 6524758425440498 a001 24157817/2139295485799*103682^(3/4) 6524758425440511 a001 9227465/817138163596*103682^(3/4) 6524758425440601 a001 3524578/312119004989*103682^(3/4) 6524758425441216 a001 1346269/119218851371*103682^(3/4) 6524758425444723 a001 75025/87403803*103682^(3/8) 6524758425445431 a001 514229/45537549124*103682^(3/4) 6524758425448952 a001 5628750625/86267571272 6524758425448952 a004 Fibonacci(25)/Lucas(25)/(1/2+sqrt(5)/2)^4 6524758425449030 a001 98209/5374978561*103682^(17/24) 6524758425452866 a001 317811/45537549124*103682^(19/24) 6524758425453101 a001 121393/73681302247*103682^(11/12) 6524758425463901 a001 832040/119218851371*103682^(19/24) 6524758425464122 a001 121393/7881196*39603^(3/22) 6524758425465511 a001 2178309/312119004989*103682^(19/24) 6524758425465746 a001 5702887/817138163596*103682^(19/24) 6524758425465780 a001 14930352/2139295485799*103682^(19/24) 6524758425465785 a001 39088169/5600748293801*103682^(19/24) 6524758425465786 a001 102334155/14662949395604*103682^(19/24) 6524758425465786 a001 165580141/23725150497407*103682^(19/24) 6524758425465786 a001 63245986/9062201101803*103682^(19/24) 6524758425465788 a001 24157817/3461452808002*103682^(19/24) 6524758425465801 a001 9227465/1322157322203*103682^(19/24) 6524758425465891 a001 3524578/505019158607*103682^(19/24) 6524758425466506 a001 1346269/192900153618*103682^(19/24) 6524758425468897 a001 28657/969323029*64079^(16/23) 6524758425470014 a001 75025/141422324*103682^(5/12) 6524758425470721 a001 514229/73681302247*103682^(19/24) 6524758425474320 a001 196418/17393796001*103682^(3/4) 6524758425478156 a001 317811/73681302247*103682^(5/6) 6524758425478391 a001 121393/119218851371*103682^(23/24) 6524758425489191 a001 416020/96450076809*103682^(5/6) 6524758425490800 a001 46347/10745088481*103682^(5/6) 6524758425491035 a001 5702887/1322157322203*103682^(5/6) 6524758425491070 a001 7465176/1730726404001*103682^(5/6) 6524758425491075 a001 39088169/9062201101803*103682^(5/6) 6524758425491075 a001 102334155/23725150497407*103682^(5/6) 6524758425491076 a001 31622993/7331474697802*103682^(5/6) 6524758425491078 a001 24157817/5600748293801*103682^(5/6) 6524758425491091 a001 9227465/2139295485799*103682^(5/6) 6524758425491181 a001 1762289/408569081798*103682^(5/6) 6524758425491795 a001 1346269/312119004989*103682^(5/6) 6524758425495303 a001 75025/228826127*103682^(11/24) 6524758425496010 a001 514229/119218851371*103682^(5/6) 6524758425499610 a001 196418/28143753123*103682^(19/24) 6524758425503446 a001 317811/119218851371*103682^(7/8) 6524758425503681 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^54 6524758425503916 a001 5473/1268860318*24476^(20/21) 6524758425512866 a001 15456/4250681*39603^(3/11) 6524758425514480 a001 75640/28374454999*103682^(7/8) 6524758425516090 a001 2178309/817138163596*103682^(7/8) 6524758425516325 a001 5702887/2139295485799*103682^(7/8) 6524758425516360 a001 14930352/5600748293801*103682^(7/8) 6524758425516365 a001 39088169/14662949395604*103682^(7/8) 6524758425516366 a001 63245986/23725150497407*103682^(7/8) 6524758425516368 a001 24157817/9062201101803*103682^(7/8) 6524758425516381 a001 9227465/3461452808002*103682^(7/8) 6524758425516470 a001 3524578/1322157322203*103682^(7/8) 6524758425517085 a001 1346269/505019158607*103682^(7/8) 6524758425520593 a001 75025/370248451*103682^(1/2) 6524758425521300 a001 514229/192900153618*103682^(7/8) 6524758425524900 a001 98209/22768774562*103682^(5/6) 6524758425528735 a001 105937/64300051206*103682^(11/12) 6524758425537985 a001 28657/599074578*64079^(15/23) 6524758425539666 a001 10959/711491*39603^(3/22) 6524758425539770 a001 832040/505019158607*103682^(11/12) 6524758425541380 a001 726103/440719107401*103682^(11/12) 6524758425541615 a001 5702887/3461452808002*103682^(11/12) 6524758425541649 a001 4976784/3020733700601*103682^(11/12) 6524758425541654 a001 39088169/23725150497407*103682^(11/12) 6524758425541657 a001 24157817/14662949395604*103682^(11/12) 6524758425541671 a001 9227465/5600748293801*103682^(11/12) 6524758425541760 a001 3524578/2139295485799*103682^(11/12) 6524758425541971 a001 28657/1149851*24476^(2/21) 6524758425542375 a001 1346269/817138163596*103682^(11/12) 6524758425545883 a001 75025/599074578*103682^(13/24) 6524758425546590 a001 514229/312119004989*103682^(11/12) 6524758425550190 a001 196418/73681302247*103682^(7/8) 6524758425550688 a001 832040/54018521*39603^(3/22) 6524758425552296 a001 2178309/141422324*39603^(3/22) 6524758425552530 a001 5702887/370248451*39603^(3/22) 6524758425552565 a001 14930352/969323029*39603^(3/22) 6524758425552570 a001 39088169/2537720636*39603^(3/22) 6524758425552570 a001 102334155/6643838879*39603^(3/22) 6524758425552570 a001 9238424/599786069*39603^(3/22) 6524758425552570 a001 701408733/45537549124*39603^(3/22) 6524758425552570 a001 1836311903/119218851371*39603^(3/22) 6524758425552570 a001 4807526976/312119004989*39603^(3/22) 6524758425552570 a001 12586269025/817138163596*39603^(3/22) 6524758425552570 a001 32951280099/2139295485799*39603^(3/22) 6524758425552570 a001 86267571272/5600748293801*39603^(3/22) 6524758425552570 a001 7787980473/505618944676*39603^(3/22) 6524758425552570 a001 365435296162/23725150497407*39603^(3/22) 6524758425552570 a001 139583862445/9062201101803*39603^(3/22) 6524758425552570 a001 53316291173/3461452808002*39603^(3/22) 6524758425552570 a001 20365011074/1322157322203*39603^(3/22) 6524758425552570 a001 7778742049/505019158607*39603^(3/22) 6524758425552570 a001 2971215073/192900153618*39603^(3/22) 6524758425552570 a001 1134903170/73681302247*39603^(3/22) 6524758425552570 a001 433494437/28143753123*39603^(3/22) 6524758425552571 a001 165580141/10749957122*39603^(3/22) 6524758425552571 a001 63245986/4106118243*39603^(3/22) 6524758425552573 a001 24157817/1568397607*39603^(3/22) 6524758425552586 a001 9227465/599074578*39603^(3/22) 6524758425552675 a001 3524578/228826127*39603^(3/22) 6524758425553290 a001 1346269/87403803*39603^(3/22) 6524758425554025 a001 317811/312119004989*103682^(23/24) 6524758425557500 a001 514229/33385282*39603^(3/22) 6524758425565060 a001 208010/204284540899*103682^(23/24) 6524758425566670 a001 2178309/2139295485799*103682^(23/24) 6524758425566905 a001 5702887/5600748293801*103682^(23/24) 6524758425566939 a001 196452/192933544679*103682^(23/24) 6524758425566947 a001 24157817/23725150497407*103682^(23/24) 6524758425566960 a001 9227465/9062201101803*103682^(23/24) 6524758425567050 a001 1762289/1730726404001*103682^(23/24) 6524758425567665 a001 1346269/1322157322203*103682^(23/24) 6524758425571173 a001 75025/969323029*103682^(7/12) 6524758425571880 a001 514229/505019158607*103682^(23/24) 6524758425575480 a001 196418/119218851371*103682^(11/12) 6524758425579315 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^56 6524758425586355 a001 196418/12752043*39603^(3/22) 6524758425590350 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^58 6524758425591960 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^60 6524758425592195 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^62 6524758425592229 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^64 6524758425592234 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^66 6524758425592235 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^68 6524758425592235 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^70 6524758425592235 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^72 6524758425592235 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^74 6524758425592235 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^76 6524758425592235 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^78 6524758425592235 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^80 6524758425592235 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^82 6524758425592235 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^84 6524758425592235 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^86 6524758425592235 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^88 6524758425592235 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^90 6524758425592235 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^92 6524758425592235 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^94 6524758425592235 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^96 6524758425592235 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^98 6524758425592235 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^100 6524758425592235 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^99 6524758425592235 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^97 6524758425592235 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^95 6524758425592235 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^93 6524758425592235 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^91 6524758425592235 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^89 6524758425592235 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^87 6524758425592235 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^85 6524758425592235 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^83 6524758425592235 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^81 6524758425592235 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^79 6524758425592235 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^77 6524758425592235 a001 1/23184*(1/2+1/2*5^(1/2))^20 6524758425592235 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^75 6524758425592235 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^73 6524758425592235 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^71 6524758425592235 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^69 6524758425592235 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^67 6524758425592237 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^65 6524758425592250 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^63 6524758425592340 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^61 6524758425592955 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^59 6524758425596030 a001 75025/3010349*39603^(1/11) 6524758425596463 a001 75025/1568397607*103682^(5/8) 6524758425597170 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^57 6524758425600770 a001 98209/96450076809*103682^(23/24) 6524758425605155 a001 103682/317811*8^(1/3) 6524758425607074 a001 28657/370248451*64079^(14/23) 6524758425621753 a001 75025/2537720636*103682^(2/3) 6524758425626059 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^55 6524758425647043 a001 75025/4106118243*103682^(17/24) 6524758425653074 a001 121393/12752043*39603^(2/11) 6524758425672333 a001 75025/6643838879*103682^(3/4) 6524758425676162 a001 28657/228826127*64079^(13/23) 6524758425697622 a001 75025/10749957122*103682^(19/24) 6524758425702019 a001 46368/20633239*39603^(7/22) 6524758425722912 a001 75025/17393796001*103682^(5/6) 6524758425728742 a001 317811/33385282*39603^(2/11) 6524758425739782 a001 832040/87403803*39603^(2/11) 6524758425741393 a001 46347/4868641*39603^(2/11) 6524758425741628 a001 5702887/599074578*39603^(2/11) 6524758425741662 a001 14930352/1568397607*39603^(2/11) 6524758425741667 a001 39088169/4106118243*39603^(2/11) 6524758425741668 a001 102334155/10749957122*39603^(2/11) 6524758425741668 a001 267914296/28143753123*39603^(2/11) 6524758425741668 a001 701408733/73681302247*39603^(2/11) 6524758425741668 a001 1836311903/192900153618*39603^(2/11) 6524758425741668 a001 102287808/10745088481*39603^(2/11) 6524758425741668 a001 12586269025/1322157322203*39603^(2/11) 6524758425741668 a001 32951280099/3461452808002*39603^(2/11) 6524758425741668 a001 86267571272/9062201101803*39603^(2/11) 6524758425741668 a001 225851433717/23725150497407*39603^(2/11) 6524758425741668 a001 139583862445/14662949395604*39603^(2/11) 6524758425741668 a001 53316291173/5600748293801*39603^(2/11) 6524758425741668 a001 20365011074/2139295485799*39603^(2/11) 6524758425741668 a001 7778742049/817138163596*39603^(2/11) 6524758425741668 a001 2971215073/312119004989*39603^(2/11) 6524758425741668 a001 1134903170/119218851371*39603^(2/11) 6524758425741668 a001 433494437/45537549124*39603^(2/11) 6524758425741668 a001 165580141/17393796001*39603^(2/11) 6524758425741668 a001 63245986/6643838879*39603^(2/11) 6524758425741670 a001 24157817/2537720636*39603^(2/11) 6524758425741683 a001 9227465/969323029*39603^(2/11) 6524758425741773 a001 3524578/370248451*39603^(2/11) 6524758425742388 a001 1346269/141422324*39603^(2/11) 6524758425745251 a001 28657/141422324*64079^(12/23) 6524758425746605 a001 514229/54018521*39603^(2/11) 6524758425748202 a001 75025/28143753123*103682^(7/8) 6524758425773492 a001 75025/45537549124*103682^(11/12) 6524758425775508 a001 196418/20633239*39603^(2/11) 6524758425784132 a001 75025/4870847*39603^(3/22) 6524758425798782 a001 75025/73681302247*103682^(23/24) 6524758425808959 a001 46368/1149851*15127^(1/20) 6524758425814338 a001 28657/87403803*64079^(11/23) 6524758425824072 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^53 6524758425842227 a001 121393/20633239*39603^(5/22) 6524758425883430 a001 28657/54018521*64079^(10/23) 6524758425891095 a001 144/103681*39603^(4/11) 6524758425917848 a001 317811/54018521*39603^(5/22) 6524758425928881 a001 208010/35355581*39603^(5/22) 6524758425930490 a001 2178309/370248451*39603^(5/22) 6524758425930725 a001 5702887/969323029*39603^(5/22) 6524758425930759 a001 196452/33391061*39603^(5/22) 6524758425930764 a001 39088169/6643838879*39603^(5/22) 6524758425930765 a001 102334155/17393796001*39603^(5/22) 6524758425930765 a001 66978574/11384387281*39603^(5/22) 6524758425930765 a001 701408733/119218851371*39603^(5/22) 6524758425930765 a001 1836311903/312119004989*39603^(5/22) 6524758425930765 a001 1201881744/204284540899*39603^(5/22) 6524758425930765 a001 12586269025/2139295485799*39603^(5/22) 6524758425930765 a001 32951280099/5600748293801*39603^(5/22) 6524758425930765 a001 1135099622/192933544679*39603^(5/22) 6524758425930765 a001 139583862445/23725150497407*39603^(5/22) 6524758425930765 a001 53316291173/9062201101803*39603^(5/22) 6524758425930765 a001 10182505537/1730726404001*39603^(5/22) 6524758425930765 a001 7778742049/1322157322203*39603^(5/22) 6524758425930765 a001 2971215073/505019158607*39603^(5/22) 6524758425930765 a001 567451585/96450076809*39603^(5/22) 6524758425930765 a001 433494437/73681302247*39603^(5/22) 6524758425930765 a001 165580141/28143753123*39603^(5/22) 6524758425930766 a001 31622993/5374978561*39603^(5/22) 6524758425930768 a001 24157817/4106118243*39603^(5/22) 6524758425930781 a001 9227465/1568397607*39603^(5/22) 6524758425930870 a001 1762289/299537289*39603^(5/22) 6524758425931485 a001 1346269/228826127*39603^(5/22) 6524758425935699 a001 514229/87403803*39603^(5/22) 6524758425952510 a001 28657/33385282*64079^(9/23) 6524758425964584 a001 98209/16692641*39603^(5/22) 6524758425967355 a001 664383888/10182505537 6524758425967355 a004 Fibonacci(23)/Lucas(24)/(1/2+sqrt(5)/2)^3 6524758425967355 a004 Fibonacci(24)/Lucas(23)/(1/2+sqrt(5)/2)^5 6524758425973610 a001 75025/7881196*39603^(2/11) 6524758426021620 a001 28657/20633239*64079^(8/23) 6524758426022554 a001 10946/1568397607*24476^(19/21) 6524758426031303 a001 121393/33385282*39603^(3/11) 6524758426042754 a001 28657/710647*24476^(1/21) 6524758426080200 a001 46368/54018521*39603^(9/22) 6524758426090653 a001 28657/12752043*64079^(7/23) 6524758426106942 a001 105937/29134601*39603^(3/11) 6524758426117978 a001 832040/228826127*39603^(3/11) 6524758426119588 a001 726103/199691526*39603^(3/11) 6524758426119823 a001 5702887/1568397607*39603^(3/11) 6524758426119857 a001 4976784/1368706081*39603^(3/11) 6524758426119862 a001 39088169/10749957122*39603^(3/11) 6524758426119863 a001 831985/228811001*39603^(3/11) 6524758426119863 a001 267914296/73681302247*39603^(3/11) 6524758426119863 a001 233802911/64300051206*39603^(3/11) 6524758426119863 a001 1836311903/505019158607*39603^(3/11) 6524758426119863 a001 1602508992/440719107401*39603^(3/11) 6524758426119863 a001 12586269025/3461452808002*39603^(3/11) 6524758426119863 a001 10983760033/3020733700601*39603^(3/11) 6524758426119863 a001 86267571272/23725150497407*39603^(3/11) 6524758426119863 a001 53316291173/14662949395604*39603^(3/11) 6524758426119863 a001 20365011074/5600748293801*39603^(3/11) 6524758426119863 a001 7778742049/2139295485799*39603^(3/11) 6524758426119863 a001 2971215073/817138163596*39603^(3/11) 6524758426119863 a001 1134903170/312119004989*39603^(3/11) 6524758426119863 a001 433494437/119218851371*39603^(3/11) 6524758426119863 a001 165580141/45537549124*39603^(3/11) 6524758426119863 a001 63245986/17393796001*39603^(3/11) 6524758426119865 a001 24157817/6643838879*39603^(3/11) 6524758426119878 a001 9227465/2537720636*39603^(3/11) 6524758426119968 a001 3524578/969323029*39603^(3/11) 6524758426120583 a001 1346269/370248451*39603^(3/11) 6524758426124798 a001 514229/141422324*39603^(3/11) 6524758426153689 a001 196418/54018521*39603^(3/11) 6524758426159886 a001 28657/7881196*64079^(6/23) 6524758426162562 a001 75025/12752043*39603^(5/22) 6524758426220409 a001 121393/54018521*39603^(7/22) 6524758426228594 a001 28657/4870847*64079^(5/23) 6524758426269295 a001 15456/29134601*39603^(5/11) 6524758426296041 a001 317811/141422324*39603^(7/22) 6524758426298678 a001 28657/3010349*64079^(4/23) 6524758426307075 a001 832040/370248451*39603^(7/22) 6524758426308685 a001 2178309/969323029*39603^(7/22) 6524758426308920 a001 5702887/2537720636*39603^(7/22) 6524758426308954 a001 14930352/6643838879*39603^(7/22) 6524758426308959 a001 39088169/17393796001*39603^(7/22) 6524758426308960 a001 102334155/45537549124*39603^(7/22) 6524758426308960 a001 267914296/119218851371*39603^(7/22) 6524758426308960 a001 3524667/1568437211*39603^(7/22) 6524758426308960 a001 1836311903/817138163596*39603^(7/22) 6524758426308960 a001 4807526976/2139295485799*39603^(7/22) 6524758426308960 a001 12586269025/5600748293801*39603^(7/22) 6524758426308960 a001 32951280099/14662949395604*39603^(7/22) 6524758426308960 a001 53316291173/23725150497407*39603^(7/22) 6524758426308960 a001 20365011074/9062201101803*39603^(7/22) 6524758426308960 a001 7778742049/3461452808002*39603^(7/22) 6524758426308960 a001 2971215073/1322157322203*39603^(7/22) 6524758426308960 a001 1134903170/505019158607*39603^(7/22) 6524758426308960 a001 433494437/192900153618*39603^(7/22) 6524758426308960 a001 165580141/73681302247*39603^(7/22) 6524758426308960 a001 63245986/28143753123*39603^(7/22) 6524758426308962 a001 24157817/10749957122*39603^(7/22) 6524758426308975 a001 9227465/4106118243*39603^(7/22) 6524758426309065 a001 3524578/1568397607*39603^(7/22) 6524758426309680 a001 1346269/599074578*39603^(7/22) 6524758426313895 a001 514229/228826127*39603^(7/22) 6524758426323147 a001 121393/3010349*15127^(1/20) 6524758426342475 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^52 6524758426342784 a001 196418/87403803*39603^(7/22) 6524758426351715 a001 75025/20633239*39603^(3/11) 6524758426365161 a001 28657/1860498*64079^(3/23) 6524758426388842 a001 28657/6643838879*167761^(4/5) 6524758426398166 a001 317811/7881196*15127^(1/20) 6524758426409111 a001 75640/1875749*15127^(1/20) 6524758426409503 a001 121393/87403803*39603^(4/11) 6524758426410708 a001 2178309/54018521*15127^(1/20) 6524758426410941 a001 5702887/141422324*15127^(1/20) 6524758426410975 a001 14930352/370248451*15127^(1/20) 6524758426410980 a001 39088169/969323029*15127^(1/20) 6524758426410980 a001 9303105/230701876*15127^(1/20) 6524758426410980 a001 267914296/6643838879*15127^(1/20) 6524758426410980 a001 701408733/17393796001*15127^(1/20) 6524758426410980 a001 1836311903/45537549124*15127^(1/20) 6524758426410980 a001 4807526976/119218851371*15127^(1/20) 6524758426410980 a001 1144206275/28374454999*15127^(1/20) 6524758426410980 a001 32951280099/817138163596*15127^(1/20) 6524758426410980 a001 86267571272/2139295485799*15127^(1/20) 6524758426410980 a001 225851433717/5600748293801*15127^(1/20) 6524758426410980 a001 591286729879/14662949395604*15127^(1/20) 6524758426410980 a001 365435296162/9062201101803*15127^(1/20) 6524758426410980 a001 139583862445/3461452808002*15127^(1/20) 6524758426410980 a001 53316291173/1322157322203*15127^(1/20) 6524758426410980 a001 20365011074/505019158607*15127^(1/20) 6524758426410980 a001 7778742049/192900153618*15127^(1/20) 6524758426410980 a001 2971215073/73681302247*15127^(1/20) 6524758426410980 a001 1134903170/28143753123*15127^(1/20) 6524758426410980 a001 433494437/10749957122*15127^(1/20) 6524758426410981 a001 165580141/4106118243*15127^(1/20) 6524758426410981 a001 63245986/1568397607*15127^(1/20) 6524758426410983 a001 24157817/599074578*15127^(1/20) 6524758426410996 a001 9227465/228826127*15127^(1/20) 6524758426411085 a001 3524578/87403803*15127^(1/20) 6524758426411695 a001 1346269/33385282*15127^(1/20) 6524758426415875 a001 514229/12752043*15127^(1/20) 6524758426435209 a001 28657/599074578*167761^(3/5) 6524758426441070 a001 28657/1149851*64079^(2/23) 6524758426444530 a001 196418/4870847*15127^(1/20) 6524758426458393 a001 11592/35355581*39603^(1/2) 6524758426481579 a001 28657/54018521*167761^(2/5) 6524758426485138 a001 317811/228826127*39603^(4/11) 6524758426485758 a001 3478759201/53316291173 6524758426485758 a004 Fibonacci(23)/Lucas(26)/(1/2+sqrt(5)/2) 6524758426485758 a004 Fibonacci(26)/Lucas(23)/(1/2+sqrt(5)/2)^7 6524758426492303 a001 28657/710647*64079^(1/23) 6524758426496173 a001 416020/299537289*39603^(4/11) 6524758426497783 a001 311187/224056801*39603^(4/11) 6524758426498017 a001 5702887/4106118243*39603^(4/11) 6524758426498052 a001 7465176/5374978561*39603^(4/11) 6524758426498057 a001 39088169/28143753123*39603^(4/11) 6524758426498057 a001 14619165/10525900321*39603^(4/11) 6524758426498058 a001 133957148/96450076809*39603^(4/11) 6524758426498058 a001 701408733/505019158607*39603^(4/11) 6524758426498058 a001 1836311903/1322157322203*39603^(4/11) 6524758426498058 a001 14930208/10749853441*39603^(4/11) 6524758426498058 a001 12586269025/9062201101803*39603^(4/11) 6524758426498058 a001 32951280099/23725150497407*39603^(4/11) 6524758426498058 a001 10182505537/7331474697802*39603^(4/11) 6524758426498058 a001 7778742049/5600748293801*39603^(4/11) 6524758426498058 a001 2971215073/2139295485799*39603^(4/11) 6524758426498058 a001 567451585/408569081798*39603^(4/11) 6524758426498058 a001 433494437/312119004989*39603^(4/11) 6524758426498058 a001 165580141/119218851371*39603^(4/11) 6524758426498058 a001 31622993/22768774562*39603^(4/11) 6524758426498060 a001 24157817/17393796001*39603^(4/11) 6524758426498073 a001 9227465/6643838879*39603^(4/11) 6524758426498163 a001 1762289/1268860318*39603^(4/11) 6524758426498778 a001 1346269/969323029*39603^(4/11) 6524758426502993 a001 514229/370248451*39603^(4/11) 6524758426526059 a001 17711/1860498*15127^(1/5) 6524758426527669 a001 28657/4870847*167761^(1/5) 6524758426531882 a001 98209/70711162*39603^(4/11) 6524758426540487 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^54 6524758426540791 a001 75025/33385282*39603^(7/22) 6524758426541192 a001 10946/969323029*24476^(6/7) 6524758426544245 a001 28657/45537549124*439204^(8/9) 6524758426548004 a001 28657/10749957122*439204^(7/9) 6524758426551762 a001 28657/2537720636*439204^(2/3) 6524758426555520 a001 28657/599074578*439204^(5/9) 6524758426559279 a001 28657/141422324*439204^(4/9) 6524758426561392 a001 9107509827/139583862445 6524758426561392 a001 28657/1421294+28657/1421294*5^(1/2) 6524758426561392 a004 Fibonacci(28)/Lucas(23)/(1/2+sqrt(5)/2)^9 6524758426563031 a001 28657/33385282*439204^(1/3) 6524758426566900 a001 28657/7881196*439204^(2/9) 6524758426568668 a001 28657/1860498*439204^(1/9) 6524758426569377 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^56 6524758426572417 a001 28657/1860498*7881196^(1/11) 6524758426572426 a001 28657/1860498*141422324^(1/13) 6524758426572427 a001 28657/1860498*2537720636^(1/15) 6524758426572427 a001 28657/1860498*45537549124^(1/17) 6524758426572427 a001 11921885140/182717648081 6524758426572427 a001 28657/1860498*14662949395604^(1/21) 6524758426572427 a001 28657/1860498*(1/2+1/2*5^(1/2))^3 6524758426572427 a001 28657/1860498*192900153618^(1/18) 6524758426572427 a001 28657/1860498*10749957122^(1/16) 6524758426572427 a004 Fibonacci(30)/Lucas(23)/(1/2+sqrt(5)/2)^11 6524758426572427 a001 28657/1860498*599074578^(1/14) 6524758426572427 a001 28657/1860498*33385282^(1/12) 6524758426572615 a001 28657/1860498*1860498^(1/10) 6524758426573592 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^58 6524758426574034 a001 28657/4870847*20633239^(1/7) 6524758426574036 a001 28657/4870847*2537720636^(1/9) 6524758426574036 a001 28657/4870847*312119004989^(1/11) 6524758426574036 a001 62423801013/956722026041 6524758426574036 a001 28657/4870847*(1/2+1/2*5^(1/2))^5 6524758426574036 a001 28657/4870847*28143753123^(1/10) 6524758426574036 a004 Fibonacci(32)/Lucas(23)/(1/2+sqrt(5)/2)^13 6524758426574037 a001 28657/4870847*228826127^(1/8) 6524758426574206 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^60 6524758426574216 a001 28657/817138163596*7881196^(10/11) 6524758426574226 a001 28657/192900153618*7881196^(9/11) 6524758426574235 a001 28657/45537549124*7881196^(8/11) 6524758426574241 a001 28657/17393796001*7881196^(2/3) 6524758426574245 a001 28657/10749957122*7881196^(7/11) 6524758426574254 a001 28657/2537720636*7881196^(6/11) 6524758426574264 a001 28657/599074578*7881196^(5/11) 6524758426574268 a001 28657/12752043*20633239^(1/5) 6524758426574271 a001 28657/12752043*17393796001^(1/7) 6524758426574271 a001 163427632759/2504730781961 6524758426574271 a001 28657/12752043*14662949395604^(1/9) 6524758426574271 a001 28657/12752043*(1/2+1/2*5^(1/2))^7 6524758426574271 a004 Fibonacci(34)/Lucas(23)/(1/2+sqrt(5)/2)^15 6524758426574271 a001 28657/12752043*599074578^(1/6) 6524758426574274 a001 28657/141422324*7881196^(4/11) 6524758426574276 a001 28657/87403803*7881196^(1/3) 6524758426574277 a001 28657/33385282*7881196^(3/11) 6524758426574296 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^62 6524758426574298 a001 28657/817138163596*20633239^(6/7) 6524758426574299 a001 28657/312119004989*20633239^(4/5) 6524758426574301 a001 28657/73681302247*20633239^(5/7) 6524758426574302 a001 28657/10749957122*20633239^(3/5) 6524758426574303 a001 28657/6643838879*20633239^(4/7) 6524758426574305 a001 28657/599074578*20633239^(3/7) 6524758426574305 a001 28657/370248451*20633239^(2/5) 6524758426574306 a001 28657/33385282*141422324^(3/13) 6524758426574306 a001 28657/33385282*2537720636^(1/5) 6524758426574306 a001 28657/33385282*45537549124^(3/17) 6524758426574306 a001 28657/33385282*817138163596^(3/19) 6524758426574306 a001 12584091096/192866774113 6524758426574306 a001 28657/33385282*(1/2+1/2*5^(1/2))^9 6524758426574306 a001 28657/33385282*192900153618^(1/6) 6524758426574306 a001 28657/33385282*10749957122^(3/16) 6524758426574306 a004 Fibonacci(36)/Lucas(23)/(1/2+sqrt(5)/2)^17 6524758426574306 a001 28657/33385282*599074578^(3/14) 6524758426574307 a001 28657/33385282*33385282^(1/4) 6524758426574309 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^64 6524758426574309 a001 28657/54018521*20633239^(2/7) 6524758426574311 a001 28657/87403803*312119004989^(1/5) 6524758426574311 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^11/Lucas(38) 6524758426574311 a004 Fibonacci(38)/Lucas(23)/(1/2+sqrt(5)/2)^19 6524758426574311 a001 28657/87403803*1568397607^(1/4) 6524758426574311 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^66 6524758426574311 a001 28657/14662949395604*141422324^(12/13) 6524758426574311 a001 28657/3461452808002*141422324^(11/13) 6524758426574311 a001 28657/817138163596*141422324^(10/13) 6524758426574311 a001 28657/228826127*141422324^(1/3) 6524758426574311 a001 28657/192900153618*141422324^(9/13) 6524758426574311 a001 28657/119218851371*141422324^(2/3) 6524758426574311 a001 28657/45537549124*141422324^(8/13) 6524758426574311 a001 28657/10749957122*141422324^(7/13) 6524758426574311 a001 28657/2537720636*141422324^(6/13) 6524758426574311 a001 28657/599074578*141422324^(5/13) 6524758426574311 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^13/Lucas(40) 6524758426574311 a001 28657/228826127*73681302247^(1/4) 6524758426574311 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^21 6524758426574311 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^68 6524758426574311 a001 28657/599074578*2537720636^(1/3) 6524758426574311 a001 28657/599074578*45537549124^(5/17) 6524758426574311 a001 28657/599074578*312119004989^(3/11) 6524758426574311 a001 28657/599074578*14662949395604^(5/21) 6524758426574311 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^15/Lucas(42) 6524758426574311 a001 28657/599074578*192900153618^(5/18) 6524758426574311 a001 28657/599074578*28143753123^(3/10) 6524758426574311 a001 28657/599074578*10749957122^(5/16) 6524758426574311 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^23 6524758426574311 a001 28657/599074578*599074578^(5/14) 6524758426574311 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^70 6524758426574311 a001 28657/1568397607*45537549124^(1/3) 6524758426574311 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^17/Lucas(44) 6524758426574311 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^25 6524758426574311 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^72 6524758426574311 a001 28657/14662949395604*2537720636^(4/5) 6524758426574311 a001 28657/9062201101803*2537720636^(7/9) 6524758426574311 a001 28657/3461452808002*2537720636^(11/15) 6524758426574312 a001 28657/817138163596*2537720636^(2/3) 6524758426574312 a001 28657/192900153618*2537720636^(3/5) 6524758426574312 a001 28657/73681302247*2537720636^(5/9) 6524758426574312 a001 28657/45537549124*2537720636^(8/15) 6524758426574312 a001 28657/10749957122*2537720636^(7/15) 6524758426574312 a001 28657/4106118243*817138163596^(1/3) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^19/Lucas(46) 6524758426574312 a001 28657/6643838879*2537720636^(4/9) 6524758426574312 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^74 6524758426574312 a001 28657/10749957122*17393796001^(3/7) 6524758426574312 a001 28657/10749957122*45537549124^(7/17) 6524758426574312 a001 28657/10749957122*14662949395604^(1/3) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^21/Lucas(48) 6524758426574312 a001 28657/10749957122*192900153618^(7/18) 6524758426574312 a001 28657/10749957122*10749957122^(7/16) 6524758426574312 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^76 6524758426574312 a001 28657/9062201101803*17393796001^(5/7) 6524758426574312 a001 28657/312119004989*17393796001^(4/7) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^23/Lucas(50) 6524758426574312 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^78 6524758426574312 a001 28657/14662949395604*45537549124^(12/17) 6524758426574312 a001 28657/5600748293801*45537549124^(2/3) 6524758426574312 a001 28657/3461452808002*45537549124^(11/17) 6524758426574312 a001 28657/192900153618*45537549124^(9/17) 6524758426574312 a001 28657/817138163596*45537549124^(10/17) 6524758426574312 a001 28657/73681302247*312119004989^(5/11) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^25/Lucas(52) 6524758426574312 a001 28657/73681302247*3461452808002^(5/12) 6524758426574312 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^80 6524758426574312 a001 28657/192900153618*817138163596^(9/19) 6524758426574312 a001 28657/192900153618*14662949395604^(3/7) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^27/Lucas(54) 6524758426574312 a001 28657/192900153618*192900153618^(1/2) 6524758426574312 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^82 6524758426574312 a001 28657/9062201101803*312119004989^(7/11) 6524758426574312 a001 28657/3461452808002*312119004989^(3/5) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(56) 6524758426574312 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^84 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(58) 6524758426574312 a001 28657/1322157322203*9062201101803^(1/2) 6524758426574312 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^86 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(60) 6524758426574312 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^88 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(62) 6524758426574312 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^90 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(64) 6524758426574312 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^92 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(66) 6524758426574312 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^94 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(68) 6524758426574312 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^96 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(70) 6524758426574312 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^98 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(72) 6524758426574312 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^100 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(74) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(76) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(78) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(80) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(82) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(84) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(86) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(88) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(90) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(92) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(94) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(96) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(98) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(99) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(100) 6524758426574312 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^27 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(97) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(95) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(93) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(91) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(89) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(87) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(85) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(83) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(81) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(79) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(77) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(75) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(73) 6524758426574312 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^99 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(71) 6524758426574312 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^97 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(69) 6524758426574312 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^95 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(67) 6524758426574312 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^93 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(65) 6524758426574312 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^91 6524758426574312 a001 28657/14662949395604*14662949395604^(4/7) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(63) 6524758426574312 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^89 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(61) 6524758426574312 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^87 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(59) 6524758426574312 a001 28657/2139295485799*23725150497407^(1/2) 6524758426574312 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^85 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(57) 6524758426574312 a001 28657/9062201101803*505019158607^(5/8) 6524758426574312 a001 28657/14662949395604*505019158607^(9/14) 6524758426574312 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^83 6524758426574312 a001 28657/312119004989*14662949395604^(4/9) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^28/Lucas(55) 6524758426574312 a001 28657/312119004989*505019158607^(1/2) 6524758426574312 a001 28657/3461452808002*192900153618^(11/18) 6524758426574312 a001 28657/817138163596*192900153618^(5/9) 6524758426574312 a001 28657/14662949395604*192900153618^(2/3) 6524758426574312 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^81 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^26/Lucas(53) 6524758426574312 a001 28657/312119004989*73681302247^(7/13) 6524758426574312 a001 28657/2139295485799*73681302247^(8/13) 6524758426574312 a001 28657/14662949395604*73681302247^(9/13) 6524758426574312 a001 28657/119218851371*73681302247^(1/2) 6524758426574312 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^79 6524758426574312 a001 28657/45537549124*45537549124^(8/17) 6524758426574312 a001 28657/73681302247*28143753123^(1/2) 6524758426574312 a001 28657/45537549124*14662949395604^(8/21) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^24/Lucas(51) 6524758426574312 a001 28657/45537549124*192900153618^(4/9) 6524758426574312 a001 28657/45537549124*73681302247^(6/13) 6524758426574312 a001 28657/817138163596*28143753123^(3/5) 6524758426574312 a001 28657/9062201101803*28143753123^(7/10) 6524758426574312 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^77 6524758426574312 a001 28657/17393796001*312119004989^(2/5) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^22/Lucas(49) 6524758426574312 a001 28657/119218851371*10749957122^(13/24) 6524758426574312 a001 28657/45537549124*10749957122^(1/2) 6524758426574312 a001 28657/192900153618*10749957122^(9/16) 6524758426574312 a001 28657/312119004989*10749957122^(7/12) 6524758426574312 a001 28657/817138163596*10749957122^(5/8) 6524758426574312 a001 28657/2139295485799*10749957122^(2/3) 6524758426574312 a001 28657/3461452808002*10749957122^(11/16) 6524758426574312 a001 28657/5600748293801*10749957122^(17/24) 6524758426574312 a001 28657/14662949395604*10749957122^(3/4) 6524758426574312 a001 28657/17393796001*10749957122^(11/24) 6524758426574312 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^75 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^20/Lucas(47) 6524758426574312 a001 28657/6643838879*23725150497407^(5/16) 6524758426574312 a001 28657/6643838879*505019158607^(5/14) 6524758426574312 a001 28657/6643838879*73681302247^(5/13) 6524758426574312 a001 28657/6643838879*28143753123^(2/5) 6524758426574312 a001 28657/6643838879*10749957122^(5/12) 6524758426574312 a001 28657/28143753123*4106118243^(1/2) 6524758426574312 a001 28657/45537549124*4106118243^(12/23) 6524758426574312 a001 28657/17393796001*4106118243^(11/23) 6524758426574312 a001 28657/119218851371*4106118243^(13/23) 6524758426574312 a001 28657/312119004989*4106118243^(14/23) 6524758426574312 a001 28657/817138163596*4106118243^(15/23) 6524758426574312 a001 28657/2139295485799*4106118243^(16/23) 6524758426574312 a001 28657/5600748293801*4106118243^(17/23) 6524758426574312 a001 28657/14662949395604*4106118243^(18/23) 6524758426574312 a001 28657/6643838879*4106118243^(10/23) 6524758426574312 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^29 6524758426574312 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^31 6524758426574312 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^33 6524758426574312 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^35 6524758426574312 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^37 6524758426574312 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^39 6524758426574312 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^41 6524758426574312 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^43 6524758426574312 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^45 6524758426574312 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^47 6524758426574312 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^49 6524758426574312 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^51 6524758426574312 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^53 6524758426574312 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^55 6524758426574312 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^57 6524758426574312 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^59 6524758426574312 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^61 6524758426574312 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^63 6524758426574312 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^65 6524758426574312 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^67 6524758426574312 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^69 6524758426574312 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^71 6524758426574312 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^73 6524758426574312 a004 Fibonacci(92)/Lucas(23)/(1/2+sqrt(5)/2)^73 6524758426574312 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^75 6524758426574312 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^77 6524758426574312 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^79 6524758426574312 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^81 6524758426574312 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^80 6524758426574312 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^78 6524758426574312 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^76 6524758426574312 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^74 6524758426574312 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^72 6524758426574312 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^70 6524758426574312 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^68 6524758426574312 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^66 6524758426574312 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^64 6524758426574312 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^62 6524758426574312 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^60 6524758426574312 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^58 6524758426574312 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^56 6524758426574312 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^54 6524758426574312 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^52 6524758426574312 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^50 6524758426574312 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^48 6524758426574312 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^46 6524758426574312 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^44 6524758426574312 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^42 6524758426574312 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^40 6524758426574312 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^38 6524758426574312 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^36 6524758426574312 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^34 6524758426574312 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^32 6524758426574312 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^30 6524758426574312 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^28 6524758426574312 a001 28657/2537720636*2537720636^(2/5) 6524758426574312 a001 28657/2537720636*45537549124^(6/17) 6524758426574312 a001 28657/2537720636*14662949395604^(2/7) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^18/Lucas(45) 6524758426574312 a001 28657/2537720636*192900153618^(1/3) 6524758426574312 a001 28657/2537720636*10749957122^(3/8) 6524758426574312 a001 28657/2537720636*4106118243^(9/23) 6524758426574312 a001 28657/17393796001*1568397607^(1/2) 6524758426574312 a001 28657/6643838879*1568397607^(5/11) 6524758426574312 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^26 6524758426574312 a001 28657/45537549124*1568397607^(6/11) 6524758426574312 a001 28657/119218851371*1568397607^(13/22) 6524758426574312 a001 28657/312119004989*1568397607^(7/11) 6524758426574312 a001 28657/817138163596*1568397607^(15/22) 6524758426574312 a001 28657/2139295485799*1568397607^(8/11) 6524758426574312 a001 28657/3461452808002*1568397607^(3/4) 6524758426574312 a001 28657/5600748293801*1568397607^(17/22) 6524758426574312 a001 28657/2537720636*1568397607^(9/22) 6524758426574312 a001 28657/14662949395604*1568397607^(9/11) 6524758426574312 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^71 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^16/Lucas(43) 6524758426574312 a001 28657/969323029*23725150497407^(1/4) 6524758426574312 a001 28657/969323029*73681302247^(4/13) 6524758426574312 a001 28657/969323029*10749957122^(1/3) 6524758426574312 a001 28657/969323029*4106118243^(8/23) 6524758426574312 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^24 6524758426574312 a001 28657/969323029*1568397607^(4/11) 6524758426574312 a001 28657/2537720636*599074578^(3/7) 6524758426574312 a001 28657/6643838879*599074578^(10/21) 6524758426574312 a001 28657/10749957122*599074578^(1/2) 6524758426574312 a001 28657/17393796001*599074578^(11/21) 6524758426574312 a001 28657/45537549124*599074578^(4/7) 6524758426574312 a001 28657/119218851371*599074578^(13/21) 6524758426574312 a001 28657/192900153618*599074578^(9/14) 6524758426574312 a001 28657/312119004989*599074578^(2/3) 6524758426574312 a001 28657/817138163596*599074578^(5/7) 6524758426574312 a001 28657/2139295485799*599074578^(16/21) 6524758426574312 a001 28657/969323029*599074578^(8/21) 6524758426574312 a001 28657/3461452808002*599074578^(11/14) 6524758426574312 a001 28657/5600748293801*599074578^(17/21) 6524758426574312 a001 28657/9062201101803*599074578^(5/6) 6524758426574312 a001 28657/14662949395604*599074578^(6/7) 6524758426574312 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^69 6524758426574312 a001 28657/599074578*228826127^(3/8) 6524758426574312 a001 28657/370248451*17393796001^(2/7) 6524758426574312 a001 28657/370248451*14662949395604^(2/9) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^14/Lucas(41) 6524758426574312 a001 28657/370248451*505019158607^(1/4) 6524758426574312 a001 28657/370248451*10749957122^(7/24) 6524758426574312 a001 28657/370248451*4106118243^(7/23) 6524758426574312 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^22 6524758426574312 a001 28657/370248451*1568397607^(7/22) 6524758426574312 a001 28657/370248451*599074578^(1/3) 6524758426574312 a001 28657/969323029*228826127^(2/5) 6524758426574312 a001 28657/2537720636*228826127^(9/20) 6524758426574312 a001 28657/6643838879*228826127^(1/2) 6524758426574312 a001 28657/17393796001*228826127^(11/20) 6524758426574312 a001 28657/45537549124*228826127^(3/5) 6524758426574312 a001 28657/73681302247*228826127^(5/8) 6524758426574312 a001 28657/119218851371*228826127^(13/20) 6524758426574312 a001 28657/312119004989*228826127^(7/10) 6524758426574312 a001 28657/370248451*228826127^(7/20) 6524758426574312 a001 28657/817138163596*228826127^(3/4) 6524758426574312 a001 28657/2139295485799*228826127^(4/5) 6524758426574312 a001 28657/5600748293801*228826127^(17/20) 6524758426574312 a001 28657/9062201101803*228826127^(7/8) 6524758426574312 a001 28657/14662949395604*228826127^(9/10) 6524758426574312 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^67 6524758426574312 a001 28657/141422324*141422324^(4/13) 6524758426574312 a001 28657/141422324*2537720636^(4/15) 6524758426574312 a001 28657/141422324*45537549124^(4/17) 6524758426574312 a001 28657/141422324*817138163596^(4/19) 6524758426574312 a001 28657/141422324*14662949395604^(4/21) 6524758426574312 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^12/Lucas(39) 6524758426574312 a001 28657/141422324*192900153618^(2/9) 6524758426574312 a001 28657/141422324*73681302247^(3/13) 6524758426574312 a001 28657/141422324*10749957122^(1/4) 6524758426574312 a001 28657/141422324*4106118243^(6/23) 6524758426574312 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2)^20 6524758426574312 a001 28657/141422324*1568397607^(3/11) 6524758426574312 a001 28657/141422324*599074578^(2/7) 6524758426574312 a001 28657/370248451*87403803^(7/19) 6524758426574312 a001 28657/141422324*228826127^(3/10) 6524758426574312 a001 28657/969323029*87403803^(8/19) 6524758426574312 a001 28657/2537720636*87403803^(9/19) 6524758426574312 a001 28657/4106118243*87403803^(1/2) 6524758426574312 a001 28657/6643838879*87403803^(10/19) 6524758426574312 a001 28657/17393796001*87403803^(11/19) 6524758426574312 a001 28657/45537549124*87403803^(12/19) 6524758426574312 a001 28657/119218851371*87403803^(13/19) 6524758426574312 a001 28657/141422324*87403803^(6/19) 6524758426574312 a001 28657/312119004989*87403803^(14/19) 6524758426574312 a001 28657/817138163596*87403803^(15/19) 6524758426574312 a001 28657/2139295485799*87403803^(16/19) 6524758426574312 a001 28657/5600748293801*87403803^(17/19) 6524758426574312 a001 28657/14662949395604*87403803^(18/19) 6524758426574312 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^65 6524758426574314 a001 28657/54018521*2537720636^(2/9) 6524758426574314 a001 28657/54018521*312119004989^(2/11) 6524758426574314 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^10/Lucas(37) 6524758426574314 a001 692290561769/10610209857723 6524758426574314 a001 28657/54018521*28143753123^(1/5) 6524758426574314 a001 28657/54018521*10749957122^(5/24) 6524758426574314 a001 28657/54018521*4106118243^(5/23) 6524758426574314 a004 Fibonacci(37)/Lucas(23)/(1/2+sqrt(5)/2)^18 6524758426574314 a001 28657/54018521*1568397607^(5/22) 6524758426574314 a001 28657/54018521*599074578^(5/21) 6524758426574314 a001 28657/54018521*228826127^(1/4) 6524758426574314 a001 28657/141422324*33385282^(1/3) 6524758426574314 a001 28657/370248451*33385282^(7/18) 6524758426574314 a001 28657/599074578*33385282^(5/12) 6524758426574314 a001 28657/54018521*87403803^(5/19) 6524758426574314 a001 28657/969323029*33385282^(4/9) 6524758426574314 a001 28657/2537720636*33385282^(1/2) 6524758426574315 a001 28657/6643838879*33385282^(5/9) 6524758426574315 a001 28657/10749957122*33385282^(7/12) 6524758426574315 a001 28657/17393796001*33385282^(11/18) 6524758426574315 a001 28657/54018521*33385282^(5/18) 6524758426574315 a001 28657/45537549124*33385282^(2/3) 6524758426574316 a001 28657/119218851371*33385282^(13/18) 6524758426574316 a001 28657/192900153618*33385282^(3/4) 6524758426574316 a001 28657/312119004989*33385282^(7/9) 6524758426574316 a001 28657/817138163596*33385282^(5/6) 6524758426574317 a001 28657/2139295485799*33385282^(8/9) 6524758426574317 a001 28657/3461452808002*33385282^(11/12) 6524758426574317 a001 28657/5600748293801*33385282^(17/18) 6524758426574317 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^63 6524758426574326 a001 28657/54018521*12752043^(5/17) 6524758426574326 a001 28657/141422324*12752043^(6/17) 6524758426574327 a001 28657/20633239*(1/2+1/2*5^(1/2))^8 6524758426574327 a001 28657/20633239*23725150497407^(1/8) 6524758426574327 a001 264431464505/4052739537881 6524758426574327 a001 28657/20633239*73681302247^(2/13) 6524758426574327 a001 28657/20633239*10749957122^(1/6) 6524758426574327 a001 28657/20633239*4106118243^(4/23) 6524758426574327 a004 Fibonacci(35)/Lucas(23)/(1/2+sqrt(5)/2)^16 6524758426574327 a001 28657/20633239*1568397607^(2/11) 6524758426574327 a001 28657/20633239*599074578^(4/21) 6524758426574327 a001 28657/20633239*228826127^(1/5) 6524758426574327 a001 28657/20633239*87403803^(4/19) 6524758426574328 a001 28657/370248451*12752043^(7/17) 6524758426574328 a001 28657/20633239*33385282^(2/9) 6524758426574330 a001 28657/969323029*12752043^(8/17) 6524758426574332 a001 28657/1568397607*12752043^(1/2) 6524758426574333 a001 28657/2537720636*12752043^(9/17) 6524758426574335 a001 28657/6643838879*12752043^(10/17) 6524758426574336 a001 28657/20633239*12752043^(4/17) 6524758426574337 a001 28657/17393796001*12752043^(11/17) 6524758426574340 a001 28657/45537549124*12752043^(12/17) 6524758426574342 a001 28657/119218851371*12752043^(13/17) 6524758426574345 a001 28657/312119004989*12752043^(14/17) 6524758426574347 a001 28657/817138163596*12752043^(15/17) 6524758426574349 a001 28657/2139295485799*12752043^(16/17) 6524758426574351 a001 28657/4870847*1860498^(1/6) 6524758426574352 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^61 6524758426574396 a001 28657/20633239*4870847^(1/4) 6524758426574397 a001 28657/7881196*7881196^(2/11) 6524758426574400 a001 28657/54018521*4870847^(5/16) 6524758426574415 a001 28657/141422324*4870847^(3/8) 6524758426574416 a001 28657/7881196*141422324^(2/13) 6524758426574417 a001 28657/7881196*2537720636^(2/15) 6524758426574417 a001 28657/7881196*45537549124^(2/17) 6524758426574417 a001 28657/7881196*14662949395604^(2/21) 6524758426574417 a001 28657/7881196*(1/2+1/2*5^(1/2))^6 6524758426574417 a001 50501915873/774004377960 6524758426574417 a001 28657/7881196*10749957122^(1/8) 6524758426574417 a001 28657/7881196*4106118243^(3/23) 6524758426574417 a001 28657/7881196*1568397607^(3/22) 6524758426574417 a004 Fibonacci(33)/Lucas(23)/(1/2+sqrt(5)/2)^14 6524758426574417 a001 28657/7881196*599074578^(1/7) 6524758426574417 a001 28657/7881196*228826127^(3/20) 6524758426574417 a001 28657/7881196*87403803^(3/19) 6524758426574418 a001 28657/7881196*33385282^(1/6) 6524758426574424 a001 28657/7881196*12752043^(3/17) 6524758426574432 a001 28657/370248451*4870847^(7/16) 6524758426574449 a001 28657/969323029*4870847^(1/2) 6524758426574466 a001 28657/2537720636*4870847^(9/16) 6524758426574468 a001 28657/7881196*4870847^(3/16) 6524758426574483 a001 28657/6643838879*4870847^(5/8) 6524758426574501 a001 28657/17393796001*4870847^(11/16) 6524758426574518 a001 28657/45537549124*4870847^(3/4) 6524758426574535 a001 28657/119218851371*4870847^(13/16) 6524758426574552 a001 28657/312119004989*4870847^(7/8) 6524758426574569 a001 28657/817138163596*4870847^(15/16) 6524758426574587 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^59 6524758426574794 a001 28657/7881196*1860498^(1/5) 6524758426574829 a001 28657/20633239*1860498^(4/15) 6524758426574871 a001 28657/33385282*1860498^(3/10) 6524758426574942 a001 28657/54018521*1860498^(1/3) 6524758426575031 a001 28657/3010349*(1/2+1/2*5^(1/2))^4 6524758426575031 a001 28657/3010349*23725150497407^(1/16) 6524758426575031 a001 28657/3010349*73681302247^(1/13) 6524758426575031 a001 28657/3010349*10749957122^(1/12) 6524758426575031 a001 28657/3010349*4106118243^(2/23) 6524758426575031 a001 28657/3010349*1568397607^(1/11) 6524758426575031 a004 Fibonacci(31)/Lucas(23)/(1/2+sqrt(5)/2)^12 6524758426575031 a001 28657/3010349*599074578^(2/21) 6524758426575032 a001 28657/3010349*228826127^(1/10) 6524758426575032 a001 28657/3010349*87403803^(2/19) 6524758426575032 a001 28657/3010349*33385282^(1/9) 6524758426575036 a001 28657/3010349*12752043^(2/17) 6524758426575066 a001 28657/141422324*1860498^(2/5) 6524758426575066 a001 28657/3010349*4870847^(1/8) 6524758426575191 a001 28657/370248451*1860498^(7/15) 6524758426575254 a001 28657/599074578*1860498^(1/2) 6524758426575283 a001 28657/3010349*1860498^(2/15) 6524758426575317 a001 28657/969323029*1860498^(8/15) 6524758426575442 a001 28657/2537720636*1860498^(3/5) 6524758426575568 a001 28657/6643838879*1860498^(2/3) 6524758426575631 a001 28657/10749957122*1860498^(7/10) 6524758426575694 a001 28657/17393796001*1860498^(11/15) 6524758426575819 a001 28657/45537549124*1860498^(4/5) 6524758426575882 a001 28657/73681302247*1860498^(5/6) 6524758426575945 a001 28657/119218851371*1860498^(13/15) 6524758426576008 a001 28657/192900153618*1860498^(9/10) 6524758426576071 a001 28657/312119004989*1860498^(14/15) 6524758426576196 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^57 6524758426576877 a001 28657/3010349*710647^(1/7) 6524758426577185 a001 28657/7881196*710647^(3/14) 6524758426577501 a001 28657/12752043*710647^(1/4) 6524758426578018 a001 28657/20633239*710647^(2/7) 6524758426578928 a001 28657/54018521*710647^(5/14) 6524758426579246 a001 28657/1149851*(1/2+1/2*5^(1/2))^2 6524758426579246 a001 14736260453/225851433717 6524758426579246 a001 28657/1149851*10749957122^(1/24) 6524758426579246 a001 28657/1149851*4106118243^(1/23) 6524758426579246 a001 28657/1149851*1568397607^(1/22) 6524758426579246 a004 Fibonacci(29)/Lucas(23)/(1/2+sqrt(5)/2)^10 6524758426579246 a001 28657/1149851*599074578^(1/21) 6524758426579246 a001 28657/1149851*228826127^(1/20) 6524758426579246 a001 28657/1149851*87403803^(1/19) 6524758426579247 a001 28657/1149851*33385282^(1/18) 6524758426579249 a001 28657/1149851*12752043^(1/17) 6524758426579264 a001 28657/1149851*4870847^(1/16) 6524758426579372 a001 28657/1149851*1860498^(1/15) 6524758426579849 a001 28657/141422324*710647^(3/7) 6524758426580169 a001 28657/1149851*710647^(1/14) 6524758426580771 a001 28657/370248451*710647^(1/2) 6524758426581694 a001 28657/969323029*710647^(4/7) 6524758426582617 a001 28657/2537720636*710647^(9/14) 6524758426583540 a001 28657/6643838879*710647^(5/7) 6524758426584001 a001 28657/10749957122*710647^(3/4) 6524758426584463 a001 28657/17393796001*710647^(11/14) 6524758426585386 a001 28657/45537549124*710647^(6/7) 6524758426586058 a001 28657/1149851*271443^(1/13) 6524758426586308 a001 28657/119218851371*710647^(13/14) 6524758426586682 a001 28657/710647*103682^(1/24) 6524758426587231 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^55 6524758426588655 a001 28657/3010349*271443^(2/13) 6524758426594852 a001 28657/7881196*271443^(3/13) 6524758426598601 a001 233/271444*39603^(9/22) 6524758426601574 a001 28657/20633239*271443^(4/13) 6524758426608136 a001 28657/439204 6524758426608136 a004 Fibonacci(27)/Lucas(23)/(1/2+sqrt(5)/2)^8 6524758426608373 a001 28657/54018521*271443^(5/13) 6524758426615183 a001 28657/141422324*271443^(6/13) 6524758426618588 a001 28657/228826127*271443^(1/2) 6524758426621994 a001 28657/370248451*271443^(7/13) 6524758426628806 a001 28657/969323029*271443^(8/13) 6524758426629826 a001 28657/1149851*103682^(1/12) 6524758426635618 a001 28657/2537720636*271443^(9/13) 6524758426640932 a001 75025/1860498*15127^(1/20) 6524758426642430 a001 28657/6643838879*271443^(10/13) 6524758426647490 a001 46368/228826127*39603^(6/11) 6524758426648296 a001 28657/1860498*103682^(1/8) 6524758426649242 a001 28657/17393796001*271443^(11/13) 6524758426656053 a001 28657/45537549124*271443^(12/13) 6524758426662865 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^53 6524758426674235 a001 317811/370248451*39603^(9/22) 6524758426676191 a001 28657/3010349*103682^(1/6) 6524758426685270 a001 832040/969323029*39603^(9/22) 6524758426686880 a001 2178309/2537720636*39603^(9/22) 6524758426687115 a001 5702887/6643838879*39603^(9/22) 6524758426687149 a001 14930352/17393796001*39603^(9/22) 6524758426687154 a001 39088169/45537549124*39603^(9/22) 6524758426687155 a001 102334155/119218851371*39603^(9/22) 6524758426687155 a001 267914296/312119004989*39603^(9/22) 6524758426687155 a001 701408733/817138163596*39603^(9/22) 6524758426687155 a001 1836311903/2139295485799*39603^(9/22) 6524758426687155 a001 4807526976/5600748293801*39603^(9/22) 6524758426687155 a001 12586269025/14662949395604*39603^(9/22) 6524758426687155 a001 20365011074/23725150497407*39603^(9/22) 6524758426687155 a001 7778742049/9062201101803*39603^(9/22) 6524758426687155 a001 2971215073/3461452808002*39603^(9/22) 6524758426687155 a001 1134903170/1322157322203*39603^(9/22) 6524758426687155 a001 433494437/505019158607*39603^(9/22) 6524758426687155 a001 165580141/192900153618*39603^(9/22) 6524758426687155 a001 63245986/73681302247*39603^(9/22) 6524758426687157 a001 24157817/28143753123*39603^(9/22) 6524758426687170 a001 9227465/10749957122*39603^(9/22) 6524758426687260 a001 3524578/4106118243*39603^(9/22) 6524758426687875 a001 1346269/1568397607*39603^(9/22) 6524758426692090 a001 514229/599074578*39603^(9/22) 6524758426700486 a001 28657/4870847*103682^(5/24) 6524758426720979 a001 196418/228826127*39603^(9/22) 6524758426726156 a001 28657/7881196*103682^(1/4) 6524758426729897 a001 75025/54018521*39603^(4/11) 6524758426750489 a001 28657/710647*39603^(1/22) 6524758426751300 a001 28657/12752043*103682^(7/24) 6524758426776646 a001 28657/20633239*103682^(1/3) 6524758426787698 a001 121393/228826127*39603^(5/11) 6524758426801914 a001 28657/33385282*103682^(3/8) 6524758426806148 a001 2149991425/32951280099 6524758426806148 a004 Fibonacci(23)/Lucas(25)/(1/2+sqrt(5)/2)^2 6524758426806148 a004 Fibonacci(25)/Lucas(23)/(1/2+sqrt(5)/2)^6 6524758426827212 a001 28657/54018521*103682^(5/12) 6524758426836588 a001 46368/370248451*39603^(13/22) 6524758426852499 a001 28657/87403803*103682^(11/24) 6524758426863333 a001 377/710646*39603^(5/11) 6524758426874367 a001 832040/1568397607*39603^(5/11) 6524758426875977 a001 726103/1368706081*39603^(5/11) 6524758426876212 a001 5702887/10749957122*39603^(5/11) 6524758426876247 a001 4976784/9381251041*39603^(5/11) 6524758426876252 a001 39088169/73681302247*39603^(5/11) 6524758426876252 a001 34111385/64300051206*39603^(5/11) 6524758426876252 a001 267914296/505019158607*39603^(5/11) 6524758426876252 a001 233802911/440719107401*39603^(5/11) 6524758426876252 a001 1836311903/3461452808002*39603^(5/11) 6524758426876252 a001 1602508992/3020733700601*39603^(5/11) 6524758426876252 a001 12586269025/23725150497407*39603^(5/11) 6524758426876252 a001 7778742049/14662949395604*39603^(5/11) 6524758426876252 a001 2971215073/5600748293801*39603^(5/11) 6524758426876252 a001 1134903170/2139295485799*39603^(5/11) 6524758426876252 a001 433494437/817138163596*39603^(5/11) 6524758426876252 a001 165580141/312119004989*39603^(5/11) 6524758426876253 a001 63245986/119218851371*39603^(5/11) 6524758426876255 a001 24157817/45537549124*39603^(5/11) 6524758426876268 a001 9227465/17393796001*39603^(5/11) 6524758426876357 a001 3524578/6643838879*39603^(5/11) 6524758426876972 a001 1346269/2537720636*39603^(5/11) 6524758426877790 a001 28657/141422324*103682^(1/2) 6524758426881187 a001 514229/969323029*39603^(5/11) 6524758426903080 a001 28657/228826127*103682^(13/24) 6524758426910077 a001 196418/370248451*39603^(5/11) 6524758426918991 a001 75025/87403803*39603^(9/22) 6524758426928370 a001 28657/370248451*103682^(7/12) 6524758426953659 a001 28657/599074578*103682^(5/8) 6524758426957441 a001 28657/1149851*39603^(1/11) 6524758426976796 a001 121393/370248451*39603^(1/2) 6524758426978949 a001 28657/969323029*103682^(2/3) 6524758427004239 a001 28657/1568397607*103682^(17/24) 6524758427025685 a001 2576/33281921*39603^(7/11) 6524758427029529 a001 28657/2537720636*103682^(3/4) 6524758427052430 a001 317811/969323029*39603^(1/2) 6524758427054819 a001 28657/4106118243*103682^(19/24) 6524758427059830 a001 5473/299537289*24476^(17/21) 6524758427063465 a001 610/1860499*39603^(1/2) 6524758427065075 a001 2178309/6643838879*39603^(1/2) 6524758427065310 a001 5702887/17393796001*39603^(1/2) 6524758427065344 a001 3732588/11384387281*39603^(1/2) 6524758427065349 a001 39088169/119218851371*39603^(1/2) 6524758427065350 a001 9303105/28374454999*39603^(1/2) 6524758427065350 a001 66978574/204284540899*39603^(1/2) 6524758427065350 a001 701408733/2139295485799*39603^(1/2) 6524758427065350 a001 1836311903/5600748293801*39603^(1/2) 6524758427065350 a001 1201881744/3665737348901*39603^(1/2) 6524758427065350 a001 7778742049/23725150497407*39603^(1/2) 6524758427065350 a001 2971215073/9062201101803*39603^(1/2) 6524758427065350 a001 567451585/1730726404001*39603^(1/2) 6524758427065350 a001 433494437/1322157322203*39603^(1/2) 6524758427065350 a001 165580141/505019158607*39603^(1/2) 6524758427065350 a001 31622993/96450076809*39603^(1/2) 6524758427065352 a001 24157817/73681302247*39603^(1/2) 6524758427065365 a001 9227465/28143753123*39603^(1/2) 6524758427065455 a001 1762289/5374978561*39603^(1/2) 6524758427066070 a001 1346269/4106118243*39603^(1/2) 6524758427070285 a001 514229/1568397607*39603^(1/2) 6524758427080109 a001 28657/6643838879*103682^(5/6) 6524758427099174 a001 98209/299537289*39603^(1/2) 6524758427105399 a001 28657/10749957122*103682^(7/8) 6524758427108090 a001 75025/141422324*39603^(5/11) 6524758427130688 a001 28657/17393796001*103682^(11/12) 6524758427139719 a001 28657/1860498*39603^(3/22) 6524758427155978 a001 28657/28143753123*103682^(23/24) 6524758427165893 a001 121393/599074578*39603^(6/11) 6524758427181268 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^51 6524758427214783 a001 46368/969323029*39603^(15/22) 6524758427227841 a001 2576/103361*15127^(1/10) 6524758427241527 a001 317811/1568397607*39603^(6/11) 6524758427252562 a001 832040/4106118243*39603^(6/11) 6524758427254172 a001 987/4870846*39603^(6/11) 6524758427254407 a001 5702887/28143753123*39603^(6/11) 6524758427254441 a001 14930352/73681302247*39603^(6/11) 6524758427254446 a001 39088169/192900153618*39603^(6/11) 6524758427254447 a001 102334155/505019158607*39603^(6/11) 6524758427254447 a001 267914296/1322157322203*39603^(6/11) 6524758427254447 a001 701408733/3461452808002*39603^(6/11) 6524758427254447 a001 1836311903/9062201101803*39603^(6/11) 6524758427254447 a001 4807526976/23725150497407*39603^(6/11) 6524758427254447 a001 2971215073/14662949395604*39603^(6/11) 6524758427254447 a001 1134903170/5600748293801*39603^(6/11) 6524758427254447 a001 433494437/2139295485799*39603^(6/11) 6524758427254447 a001 165580141/817138163596*39603^(6/11) 6524758427254448 a001 63245986/312119004989*39603^(6/11) 6524758427254449 a001 24157817/119218851371*39603^(6/11) 6524758427254463 a001 9227465/45537549124*39603^(6/11) 6524758427254552 a001 3524578/17393796001*39603^(6/11) 6524758427255167 a001 1346269/6643838879*39603^(6/11) 6524758427259382 a001 514229/2537720636*39603^(6/11) 6524758427288272 a001 196418/969323029*39603^(6/11) 6524758427297186 a001 75025/228826127*39603^(1/2) 6524758427331421 a001 28657/3010349*39603^(2/11) 6524758427354991 a001 121393/969323029*39603^(13/22) 6524758427403880 a001 6624/224056801*39603^(8/11) 6524758427430625 a001 317811/2537720636*39603^(13/22) 6524758427441660 a001 832040/6643838879*39603^(13/22) 6524758427443270 a001 2178309/17393796001*39603^(13/22) 6524758427443504 a001 1597/12752044*39603^(13/22) 6524758427443539 a001 14930352/119218851371*39603^(13/22) 6524758427443544 a001 39088169/312119004989*39603^(13/22) 6524758427443544 a001 102334155/817138163596*39603^(13/22) 6524758427443545 a001 267914296/2139295485799*39603^(13/22) 6524758427443545 a001 701408733/5600748293801*39603^(13/22) 6524758427443545 a001 1836311903/14662949395604*39603^(13/22) 6524758427443545 a001 2971215073/23725150497407*39603^(13/22) 6524758427443545 a001 1134903170/9062201101803*39603^(13/22) 6524758427443545 a001 433494437/3461452808002*39603^(13/22) 6524758427443545 a001 165580141/1322157322203*39603^(13/22) 6524758427443545 a001 63245986/505019158607*39603^(13/22) 6524758427443547 a001 24157817/192900153618*39603^(13/22) 6524758427443560 a001 9227465/73681302247*39603^(13/22) 6524758427443650 a001 3524578/28143753123*39603^(13/22) 6524758427444265 a001 1346269/10749957122*39603^(13/22) 6524758427448480 a001 514229/4106118243*39603^(13/22) 6524758427477369 a001 196418/1568397607*39603^(13/22) 6524758427486284 a001 75025/370248451*39603^(6/11) 6524758427519524 a001 28657/4870847*39603^(5/22) 6524758427544088 a001 121393/1568397607*39603^(7/11) 6524758427578468 a001 10946/370248451*24476^(16/21) 6524758427592978 a001 11592/634430159*39603^(17/22) 6524758427619722 a001 105937/1368706081*39603^(7/11) 6524758427630757 a001 416020/5374978561*39603^(7/11) 6524758427632367 a001 726103/9381251041*39603^(7/11) 6524758427632602 a001 5702887/73681302247*39603^(7/11) 6524758427632636 a001 2584/33385281*39603^(7/11) 6524758427632641 a001 39088169/505019158607*39603^(7/11) 6524758427632642 a001 34111385/440719107401*39603^(7/11) 6524758427632642 a001 133957148/1730726404001*39603^(7/11) 6524758427632642 a001 233802911/3020733700601*39603^(7/11) 6524758427632642 a001 1836311903/23725150497407*39603^(7/11) 6524758427632642 a001 567451585/7331474697802*39603^(7/11) 6524758427632642 a001 433494437/5600748293801*39603^(7/11) 6524758427632642 a001 165580141/2139295485799*39603^(7/11) 6524758427632642 a001 31622993/408569081798*39603^(7/11) 6524758427632644 a001 24157817/312119004989*39603^(7/11) 6524758427632657 a001 9227465/119218851371*39603^(7/11) 6524758427632747 a001 1762289/22768774562*39603^(7/11) 6524758427633362 a001 1346269/17393796001*39603^(7/11) 6524758427637577 a001 514229/6643838879*39603^(7/11) 6524758427666467 a001 98209/1268860318*39603^(7/11) 6524758427675381 a001 75025/599074578*39603^(13/22) 6524758427704461 m001 Ei(1,1)^(ZetaP(2)/ErdosBorwein) 6524758427709001 a001 28657/7881196*39603^(3/11) 6524758427733186 a001 121393/2537720636*39603^(15/22) 6524758427747854 a001 121393/4870847*15127^(1/10) 6524758427782075 a001 15456/1368706081*39603^(9/11) 6524758427808820 a001 317811/6643838879*39603^(15/22) 6524758427819854 a001 832040/17393796001*39603^(15/22) 6524758427821464 a001 2178309/45537549124*39603^(15/22) 6524758427821699 a001 5702887/119218851371*39603^(15/22) 6524758427821734 a001 14930352/312119004989*39603^(15/22) 6524758427821739 a001 4181/87403804*39603^(15/22) 6524758427821739 a001 102334155/2139295485799*39603^(15/22) 6524758427821739 a001 267914296/5600748293801*39603^(15/22) 6524758427821739 a001 701408733/14662949395604*39603^(15/22) 6524758427821739 a001 1134903170/23725150497407*39603^(15/22) 6524758427821739 a001 433494437/9062201101803*39603^(15/22) 6524758427821739 a001 165580141/3461452808002*39603^(15/22) 6524758427821740 a001 63245986/1322157322203*39603^(15/22) 6524758427821742 a001 24157817/505019158607*39603^(15/22) 6524758427821755 a001 9227465/192900153618*39603^(15/22) 6524758427821844 a001 3524578/73681302247*39603^(15/22) 6524758427822459 a001 1346269/28143753123*39603^(15/22) 6524758427823723 a001 105937/4250681*15127^(1/10) 6524758427826674 a001 514229/10749957122*39603^(15/22) 6524758427834792 a001 416020/16692641*15127^(1/10) 6524758427836407 a001 726103/29134601*15127^(1/10) 6524758427836642 a001 5702887/228826127*15127^(1/10) 6524758427836677 a001 829464/33281921*15127^(1/10) 6524758427836682 a001 39088169/1568397607*15127^(1/10) 6524758427836683 a001 34111385/1368706081*15127^(1/10) 6524758427836683 a001 133957148/5374978561*15127^(1/10) 6524758427836683 a001 233802911/9381251041*15127^(1/10) 6524758427836683 a001 1836311903/73681302247*15127^(1/10) 6524758427836683 a001 267084832/10716675201*15127^(1/10) 6524758427836683 a001 12586269025/505019158607*15127^(1/10) 6524758427836683 a001 10983760033/440719107401*15127^(1/10) 6524758427836683 a001 43133785636/1730726404001*15127^(1/10) 6524758427836683 a001 75283811239/3020733700601*15127^(1/10) 6524758427836683 a001 182717648081/7331474697802*15127^(1/10) 6524758427836683 a001 139583862445/5600748293801*15127^(1/10) 6524758427836683 a001 53316291173/2139295485799*15127^(1/10) 6524758427836683 a001 10182505537/408569081798*15127^(1/10) 6524758427836683 a001 7778742049/312119004989*15127^(1/10) 6524758427836683 a001 2971215073/119218851371*15127^(1/10) 6524758427836683 a001 567451585/22768774562*15127^(1/10) 6524758427836683 a001 433494437/17393796001*15127^(1/10) 6524758427836683 a001 165580141/6643838879*15127^(1/10) 6524758427836683 a001 31622993/1268860318*15127^(1/10) 6524758427836685 a001 24157817/969323029*15127^(1/10) 6524758427836698 a001 9227465/370248451*15127^(1/10) 6524758427836788 a001 1762289/70711162*15127^(1/10) 6524758427837405 a001 1346269/54018521*15127^(1/10) 6524758427841633 a001 514229/20633239*15127^(1/10) 6524758427855564 a001 196418/4106118243*39603^(15/22) 6524758427864479 a001 75025/969323029*39603^(7/11) 6524758427870612 a001 98209/3940598*15127^(1/10) 6524758427897953 a001 28657/12752043*39603^(7/22) 6524758427922283 a001 121393/4106118243*39603^(8/11) 6524758427954366 a001 17711/3010349*15127^(1/4) 6524758427971172 a001 46368/6643838879*39603^(19/22) 6524758427987094 a001 28657/710647*15127^(1/20) 6524758427997917 a001 317811/10749957122*39603^(8/11) 6524758428008952 a001 832040/28143753123*39603^(8/11) 6524758428010562 a001 311187/10525900321*39603^(8/11) 6524758428010797 a001 5702887/192900153618*39603^(8/11) 6524758428010831 a001 14930352/505019158607*39603^(8/11) 6524758428010836 a001 39088169/1322157322203*39603^(8/11) 6524758428010837 a001 6765/228826126*39603^(8/11) 6524758428010837 a001 267914296/9062201101803*39603^(8/11) 6524758428010837 a001 701408733/23725150497407*39603^(8/11) 6524758428010837 a001 433494437/14662949395604*39603^(8/11) 6524758428010837 a001 165580141/5600748293801*39603^(8/11) 6524758428010837 a001 63245986/2139295485799*39603^(8/11) 6524758428010839 a001 24157817/817138163596*39603^(8/11) 6524758428010852 a001 9227465/312119004989*39603^(8/11) 6524758428010942 a001 3524578/119218851371*39603^(8/11) 6524758428011557 a001 1346269/45537549124*39603^(8/11) 6524758428015772 a001 514229/17393796001*39603^(8/11) 6524758428044661 a001 196418/6643838879*39603^(8/11) 6524758428052526 a001 5473/219602*9349^(2/19) 6524758428053576 a001 75025/1568397607*39603^(15/22) 6524758428069240 a001 75025/3010349*15127^(1/10) 6524758428087106 a001 28657/20633239*39603^(4/11) 6524758428097106 a001 10946/228826127*24476^(5/7) 6524758428111380 a001 121393/6643838879*39603^(17/22) 6524758428160270 a001 23184/5374978561*39603^(10/11) 6524758428163345 a001 821223649/12586269025 6524758428163345 a004 Fibonacci(23)/Lucas(23)/(1/2+sqrt(5)/2)^4 6524758428187014 a001 10959/599786069*39603^(17/22) 6524758428198049 a001 208010/11384387281*39603^(17/22) 6524758428199659 a001 2178309/119218851371*39603^(17/22) 6524758428199894 a001 5702887/312119004989*39603^(17/22) 6524758428199928 a001 3732588/204284540899*39603^(17/22) 6524758428199933 a001 39088169/2139295485799*39603^(17/22) 6524758428199934 a001 102334155/5600748293801*39603^(17/22) 6524758428199934 a001 10946/599074579*39603^(17/22) 6524758428199934 a001 433494437/23725150497407*39603^(17/22) 6524758428199934 a001 165580141/9062201101803*39603^(17/22) 6524758428199935 a001 31622993/1730726404001*39603^(17/22) 6524758428199936 a001 24157817/1322157322203*39603^(17/22) 6524758428199950 a001 9227465/505019158607*39603^(17/22) 6524758428200039 a001 1762289/96450076809*39603^(17/22) 6524758428200654 a001 1346269/73681302247*39603^(17/22) 6524758428204869 a001 514229/28143753123*39603^(17/22) 6524758428233759 a001 98209/5374978561*39603^(17/22) 6524758428242674 a001 75025/2537720636*39603^(8/11) 6524758428276182 a001 28657/33385282*39603^(9/22) 6524758428300478 a001 121393/10749957122*39603^(9/11) 6524758428349367 a001 46368/17393796001*39603^(21/22) 6524758428376112 a001 105937/9381251041*39603^(9/11) 6524758428387147 a001 832040/73681302247*39603^(9/11) 6524758428388757 a001 726103/64300051206*39603^(9/11) 6524758428388992 a001 5702887/505019158607*39603^(9/11) 6524758428389026 a001 4976784/440719107401*39603^(9/11) 6524758428389031 a001 39088169/3461452808002*39603^(9/11) 6524758428389032 a001 34111385/3020733700601*39603^(9/11) 6524758428389032 a001 267914296/23725150497407*39603^(9/11) 6524758428389032 a001 165580141/14662949395604*39603^(9/11) 6524758428389032 a001 63245986/5600748293801*39603^(9/11) 6524758428389034 a001 24157817/2139295485799*39603^(9/11) 6524758428389047 a001 9227465/817138163596*39603^(9/11) 6524758428389137 a001 3524578/312119004989*39603^(9/11) 6524758428389752 a001 1346269/119218851371*39603^(9/11) 6524758428393967 a001 514229/45537549124*39603^(9/11) 6524758428422856 a001 196418/17393796001*39603^(9/11) 6524758428431771 a001 75025/4106118243*39603^(17/22) 6524758428465288 a001 28657/54018521*39603^(5/11) 6524758428489575 a001 121393/17393796001*39603^(19/22) 6524758428538465 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^50 6524758428565209 a001 317811/45537549124*39603^(19/22) 6524758428576244 a001 832040/119218851371*39603^(19/22) 6524758428577854 a001 2178309/312119004989*39603^(19/22) 6524758428578089 a001 5702887/817138163596*39603^(19/22) 6524758428578123 a001 14930352/2139295485799*39603^(19/22) 6524758428578128 a001 39088169/5600748293801*39603^(19/22) 6524758428578129 a001 102334155/14662949395604*39603^(19/22) 6524758428578129 a001 165580141/23725150497407*39603^(19/22) 6524758428578129 a001 63245986/9062201101803*39603^(19/22) 6524758428578131 a001 24157817/3461452808002*39603^(19/22) 6524758428578144 a001 9227465/1322157322203*39603^(19/22) 6524758428578234 a001 3524578/505019158607*39603^(19/22) 6524758428578849 a001 1346269/192900153618*39603^(19/22) 6524758428583064 a001 514229/73681302247*39603^(19/22) 6524758428611954 a001 196418/28143753123*39603^(19/22) 6524758428615744 a001 5473/70711162*24476^(2/3) 6524758428620868 a001 75025/6643838879*39603^(9/11) 6524758428654382 a001 28657/87403803*39603^(1/2) 6524758428656148 a001 46368/3010349*15127^(3/20) 6524758428678673 a001 121393/28143753123*39603^(10/11) 6524758428754307 a001 317811/73681302247*39603^(10/11) 6524758428765342 a001 416020/96450076809*39603^(10/11) 6524758428766951 a001 46347/10745088481*39603^(10/11) 6524758428767186 a001 5702887/1322157322203*39603^(10/11) 6524758428767221 a001 7465176/1730726404001*39603^(10/11) 6524758428767226 a001 39088169/9062201101803*39603^(10/11) 6524758428767226 a001 102334155/23725150497407*39603^(10/11) 6524758428767227 a001 31622993/7331474697802*39603^(10/11) 6524758428767229 a001 24157817/5600748293801*39603^(10/11) 6524758428767242 a001 9227465/2139295485799*39603^(10/11) 6524758428767332 a001 1762289/408569081798*39603^(10/11) 6524758428767946 a001 1346269/312119004989*39603^(10/11) 6524758428772161 a001 514229/119218851371*39603^(10/11) 6524758428801051 a001 98209/22768774562*39603^(10/11) 6524758428809966 a001 75025/10749957122*39603^(19/22) 6524758428843481 a001 28657/141422324*39603^(6/11) 6524758428867770 a001 121393/45537549124*39603^(21/22) 6524758428914264 a001 4181/370248451*9349^(18/19) 6524758428943404 a001 317811/119218851371*39603^(21/22) 6524758428954439 a001 75640/28374454999*39603^(21/22) 6524758428956049 a001 2178309/817138163596*39603^(21/22) 6524758428956284 a001 5702887/2139295485799*39603^(21/22) 6524758428956318 a001 14930352/5600748293801*39603^(21/22) 6524758428956323 a001 39088169/14662949395604*39603^(21/22) 6524758428956324 a001 63245986/23725150497407*39603^(21/22) 6524758428956326 a001 24157817/9062201101803*39603^(21/22) 6524758428956339 a001 9227465/3461452808002*39603^(21/22) 6524758428956429 a001 3524578/1322157322203*39603^(21/22) 6524758428957044 a001 1346269/505019158607*39603^(21/22) 6524758428961259 a001 514229/192900153618*39603^(21/22) 6524758428990148 a001 196418/73681302247*39603^(21/22) 6524758428999063 a001 75025/17393796001*39603^(10/11) 6524758429032578 a001 28657/228826127*39603^(13/22) 6524758429056868 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^52 6524758429078086 a001 6765/439204*5778^(1/6) 6524758429132501 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^54 6524758429134381 a001 10946/87403803*24476^(13/21) 6524758429143536 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^56 6524758429145146 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^58 6524758429145381 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^60 6524758429145415 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^62 6524758429145420 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^64 6524758429145421 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^66 6524758429145421 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^68 6524758429145421 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^70 6524758429145421 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^72 6524758429145421 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^74 6524758429145421 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^76 6524758429145421 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^78 6524758429145421 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^80 6524758429145421 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^82 6524758429145421 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^84 6524758429145421 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^86 6524758429145421 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^88 6524758429145421 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^90 6524758429145421 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^92 6524758429145421 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^94 6524758429145421 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^96 6524758429145421 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^98 6524758429145421 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^100 6524758429145421 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^99 6524758429145421 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^97 6524758429145421 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^95 6524758429145421 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^93 6524758429145421 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^91 6524758429145421 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^89 6524758429145421 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^87 6524758429145421 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^85 6524758429145421 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^83 6524758429145421 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^81 6524758429145421 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^79 6524758429145421 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^77 6524758429145421 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^75 6524758429145421 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^73 6524758429145421 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^71 6524758429145421 a001 2/17711*(1/2+1/2*5^(1/2))^18 6524758429145421 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^69 6524758429145421 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^67 6524758429145422 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^65 6524758429145424 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^63 6524758429145437 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^61 6524758429145526 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^59 6524758429146141 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^57 6524758429150356 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^55 6524758429173936 a001 121393/7881196*15127^(3/20) 6524758429179246 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^53 6524758429188161 a001 75025/28143753123*39603^(21/22) 6524758429221675 a001 28657/370248451*39603^(7/11) 6524758429233975 a001 39603/121393*8^(1/3) 6524758429249480 a001 10959/711491*15127^(3/20) 6524758429260502 a001 832040/54018521*15127^(3/20) 6524758429262110 a001 2178309/141422324*15127^(3/20) 6524758429262345 a001 5702887/370248451*15127^(3/20) 6524758429262379 a001 14930352/969323029*15127^(3/20) 6524758429262384 a001 39088169/2537720636*15127^(3/20) 6524758429262385 a001 102334155/6643838879*15127^(3/20) 6524758429262385 a001 9238424/599786069*15127^(3/20) 6524758429262385 a001 701408733/45537549124*15127^(3/20) 6524758429262385 a001 1836311903/119218851371*15127^(3/20) 6524758429262385 a001 4807526976/312119004989*15127^(3/20) 6524758429262385 a001 12586269025/817138163596*15127^(3/20) 6524758429262385 a001 32951280099/2139295485799*15127^(3/20) 6524758429262385 a001 86267571272/5600748293801*15127^(3/20) 6524758429262385 a001 7787980473/505618944676*15127^(3/20) 6524758429262385 a001 365435296162/23725150497407*15127^(3/20) 6524758429262385 a001 139583862445/9062201101803*15127^(3/20) 6524758429262385 a001 53316291173/3461452808002*15127^(3/20) 6524758429262385 a001 20365011074/1322157322203*15127^(3/20) 6524758429262385 a001 7778742049/505019158607*15127^(3/20) 6524758429262385 a001 2971215073/192900153618*15127^(3/20) 6524758429262385 a001 1134903170/73681302247*15127^(3/20) 6524758429262385 a001 433494437/28143753123*15127^(3/20) 6524758429262385 a001 165580141/10749957122*15127^(3/20) 6524758429262385 a001 63245986/4106118243*15127^(3/20) 6524758429262387 a001 24157817/1568397607*15127^(3/20) 6524758429262400 a001 9227465/599074578*15127^(3/20) 6524758429262490 a001 3524578/228826127*15127^(3/20) 6524758429263104 a001 1346269/87403803*15127^(3/20) 6524758429267314 a001 514229/33385282*15127^(3/20) 6524758429296169 a001 196418/12752043*15127^(3/20) 6524758429377258 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^51 6524758429379074 a001 17711/4870847*15127^(3/10) 6524758429410773 a001 28657/599074578*39603^(15/22) 6524758429430651 a001 28657/1149851*15127^(1/10) 6524758429493947 a001 75025/4870847*15127^(3/20) 6524758429599870 a001 28657/969323029*39603^(8/11) 6524758429653022 a001 10946/54018521*24476^(4/7) 6524758429788968 a001 28657/1568397607*39603^(17/22) 6524758429978065 a001 28657/2537720636*39603^(9/11) 6524758430080855 a001 46368/4870847*15127^(1/5) 6524758430167162 a001 28657/4106118243*39603^(19/22) 6524758430171651 a001 5473/16692641*24476^(11/21) 6524758430356260 a001 28657/6643838879*39603^(10/11) 6524758430545357 a001 28657/10749957122*39603^(21/22) 6524758430599493 a001 121393/12752043*15127^(1/5) 6524758430675162 a001 317811/33385282*15127^(1/5) 6524758430686201 a001 832040/87403803*15127^(1/5) 6524758430687812 a001 46347/4868641*15127^(1/5) 6524758430688047 a001 5702887/599074578*15127^(1/5) 6524758430688081 a001 14930352/1568397607*15127^(1/5) 6524758430688086 a001 39088169/4106118243*15127^(1/5) 6524758430688087 a001 102334155/10749957122*15127^(1/5) 6524758430688087 a001 267914296/28143753123*15127^(1/5) 6524758430688087 a001 701408733/73681302247*15127^(1/5) 6524758430688087 a001 1836311903/192900153618*15127^(1/5) 6524758430688087 a001 102287808/10745088481*15127^(1/5) 6524758430688087 a001 12586269025/1322157322203*15127^(1/5) 6524758430688087 a001 32951280099/3461452808002*15127^(1/5) 6524758430688087 a001 86267571272/9062201101803*15127^(1/5) 6524758430688087 a001 225851433717/23725150497407*15127^(1/5) 6524758430688087 a001 139583862445/14662949395604*15127^(1/5) 6524758430688087 a001 53316291173/5600748293801*15127^(1/5) 6524758430688087 a001 20365011074/2139295485799*15127^(1/5) 6524758430688087 a001 7778742049/817138163596*15127^(1/5) 6524758430688087 a001 2971215073/312119004989*15127^(1/5) 6524758430688087 a001 1134903170/119218851371*15127^(1/5) 6524758430688087 a001 433494437/45537549124*15127^(1/5) 6524758430688087 a001 165580141/17393796001*15127^(1/5) 6524758430688088 a001 63245986/6643838879*15127^(1/5) 6524758430688089 a001 24157817/2537720636*15127^(1/5) 6524758430688103 a001 9227465/969323029*15127^(1/5) 6524758430688192 a001 3524578/370248451*15127^(1/5) 6524758430688808 a001 1346269/141422324*15127^(1/5) 6524758430690310 a001 10946/20633239*24476^(10/21) 6524758430693024 a001 514229/54018521*15127^(1/5) 6524758430721927 a001 196418/20633239*15127^(1/5) 6524758430734455 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^49 6524758430805156 a001 89/39604*15127^(7/20) 6524758430849533 a001 28657/1860498*15127^(3/20) 6524758430920029 a001 75025/7881196*15127^(1/5) 6524758431208893 a001 10946/12752043*24476^(3/7) 6524758431506938 a001 11592/1970299*15127^(1/4) 6524758431716531 a001 193864606/2971215073 6524758431716531 a004 Fibonacci(21)/Lucas(22)/(1/2+sqrt(5)/2)^3 6524758431716531 a004 Fibonacci(22)/Lucas(21)/(1/2+sqrt(5)/2)^5 6524758431716636 a001 17711/439204*5778^(1/18) 6524758431727676 a001 5473/3940598*24476^(8/21) 6524758431859134 a001 10946/271443*9349^(1/19) 6524758432025251 a001 121393/20633239*15127^(1/4) 6524758432100872 a001 317811/54018521*15127^(1/4) 6524758432111905 a001 208010/35355581*15127^(1/4) 6524758432113514 a001 2178309/370248451*15127^(1/4) 6524758432113749 a001 5702887/969323029*15127^(1/4) 6524758432113784 a001 196452/33391061*15127^(1/4) 6524758432113789 a001 39088169/6643838879*15127^(1/4) 6524758432113789 a001 102334155/17393796001*15127^(1/4) 6524758432113789 a001 66978574/11384387281*15127^(1/4) 6524758432113789 a001 701408733/119218851371*15127^(1/4) 6524758432113789 a001 1836311903/312119004989*15127^(1/4) 6524758432113789 a001 1201881744/204284540899*15127^(1/4) 6524758432113789 a001 12586269025/2139295485799*15127^(1/4) 6524758432113789 a001 32951280099/5600748293801*15127^(1/4) 6524758432113789 a001 1135099622/192933544679*15127^(1/4) 6524758432113789 a001 139583862445/23725150497407*15127^(1/4) 6524758432113789 a001 53316291173/9062201101803*15127^(1/4) 6524758432113789 a001 10182505537/1730726404001*15127^(1/4) 6524758432113789 a001 7778742049/1322157322203*15127^(1/4) 6524758432113789 a001 2971215073/505019158607*15127^(1/4) 6524758432113789 a001 567451585/96450076809*15127^(1/4) 6524758432113789 a001 433494437/73681302247*15127^(1/4) 6524758432113789 a001 165580141/28143753123*15127^(1/4) 6524758432113790 a001 31622993/5374978561*15127^(1/4) 6524758432113792 a001 24157817/4106118243*15127^(1/4) 6524758432113805 a001 9227465/1568397607*15127^(1/4) 6524758432113894 a001 1762289/299537289*15127^(1/4) 6524758432114509 a001 1346269/228826127*15127^(1/4) 6524758432118724 a001 514229/87403803*15127^(1/4) 6524758432147608 a001 98209/16692641*15127^(1/4) 6524758432230713 a001 17711/12752043*15127^(2/5) 6524758432245934 a001 10946/4870847*24476^(1/3) 6524758432277840 a001 28657/3010349*15127^(1/5) 6524758432345586 a001 75025/12752043*15127^(1/4) 6524758432765567 a001 10946/3010349*24476^(2/7) 6524758432843250 a001 4181/228826127*9349^(17/19) 6524758432932495 a001 15456/4250681*15127^(3/10) 6524758433281600 a001 5473/930249*24476^(5/21) 6524758433450932 a001 121393/33385282*15127^(3/10) 6524758433466922 m008 (1/2*Pi^6+1/3)/(3/4*Pi^4+2/3) 6524758433526571 a001 105937/29134601*15127^(3/10) 6524758433537607 a001 832040/228826127*15127^(3/10) 6524758433539217 a001 726103/199691526*15127^(3/10) 6524758433539452 a001 5702887/1568397607*15127^(3/10) 6524758433539486 a001 4976784/1368706081*15127^(3/10) 6524758433539491 a001 39088169/10749957122*15127^(3/10) 6524758433539492 a001 831985/228811001*15127^(3/10) 6524758433539492 a001 267914296/73681302247*15127^(3/10) 6524758433539492 a001 233802911/64300051206*15127^(3/10) 6524758433539492 a001 1836311903/505019158607*15127^(3/10) 6524758433539492 a001 1602508992/440719107401*15127^(3/10) 6524758433539492 a001 12586269025/3461452808002*15127^(3/10) 6524758433539492 a001 10983760033/3020733700601*15127^(3/10) 6524758433539492 a001 86267571272/23725150497407*15127^(3/10) 6524758433539492 a001 53316291173/14662949395604*15127^(3/10) 6524758433539492 a001 20365011074/5600748293801*15127^(3/10) 6524758433539492 a001 7778742049/2139295485799*15127^(3/10) 6524758433539492 a001 2971215073/817138163596*15127^(3/10) 6524758433539492 a001 1134903170/312119004989*15127^(3/10) 6524758433539492 a001 433494437/119218851371*15127^(3/10) 6524758433539492 a001 165580141/45537549124*15127^(3/10) 6524758433539492 a001 63245986/17393796001*15127^(3/10) 6524758433539494 a001 24157817/6643838879*15127^(3/10) 6524758433539507 a001 9227465/2537720636*15127^(3/10) 6524758433539597 a001 3524578/969323029*15127^(3/10) 6524758433540212 a001 1346269/370248451*15127^(3/10) 6524758433544427 a001 514229/141422324*15127^(3/10) 6524758433573318 a001 196418/54018521*15127^(3/10) 6524758433656471 a001 17711/20633239*15127^(9/20) 6524758433702548 a001 28657/4870847*15127^(1/4) 6524758433771344 a001 75025/20633239*15127^(3/10) 6524758433807058 a001 10946/1149851*24476^(4/21) 6524758434287641 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^48 6524758434307841 a001 10946/710647*24476^(1/7) 6524758434356729 a001 10946/6643838879*64079^(22/23) 6524758434358253 a001 46368/20633239*15127^(7/20) 6524758434425818 a001 10946/4106118243*64079^(21/23) 6524758434494906 a001 5473/1268860318*64079^(20/23) 6524758434563995 a001 10946/1568397607*64079^(19/23) 6524758434633083 a001 10946/969323029*64079^(18/23) 6524758434702171 a001 5473/299537289*64079^(17/23) 6524758434771260 a001 10946/370248451*64079^(16/23) 6524758434840348 a001 10946/228826127*64079^(15/23) 6524758434873223 a001 5473/219602*24476^(2/21) 6524758434876642 a001 121393/54018521*15127^(7/20) 6524758434909437 a001 5473/70711162*64079^(14/23) 6524758434952274 a001 317811/141422324*15127^(7/20) 6524758434963309 a001 832040/370248451*15127^(7/20) 6524758434964919 a001 2178309/969323029*15127^(7/20) 6524758434965154 a001 5702887/2537720636*15127^(7/20) 6524758434965188 a001 14930352/6643838879*15127^(7/20) 6524758434965193 a001 39088169/17393796001*15127^(7/20) 6524758434965194 a001 102334155/45537549124*15127^(7/20) 6524758434965194 a001 267914296/119218851371*15127^(7/20) 6524758434965194 a001 3524667/1568437211*15127^(7/20) 6524758434965194 a001 1836311903/817138163596*15127^(7/20) 6524758434965194 a001 4807526976/2139295485799*15127^(7/20) 6524758434965194 a001 12586269025/5600748293801*15127^(7/20) 6524758434965194 a001 32951280099/14662949395604*15127^(7/20) 6524758434965194 a001 53316291173/23725150497407*15127^(7/20) 6524758434965194 a001 20365011074/9062201101803*15127^(7/20) 6524758434965194 a001 7778742049/3461452808002*15127^(7/20) 6524758434965194 a001 2971215073/1322157322203*15127^(7/20) 6524758434965194 a001 1134903170/505019158607*15127^(7/20) 6524758434965194 a001 433494437/192900153618*15127^(7/20) 6524758434965194 a001 165580141/73681302247*15127^(7/20) 6524758434965194 a001 63245986/28143753123*15127^(7/20) 6524758434965196 a001 24157817/10749957122*15127^(7/20) 6524758434965209 a001 9227465/4106118243*15127^(7/20) 6524758434965299 a001 3524578/1568397607*15127^(7/20) 6524758434965914 a001 1346269/599074578*15127^(7/20) 6524758434970129 a001 514229/228826127*15127^(7/20) 6524758434978524 a001 10946/87403803*64079^(13/23) 6524758434999018 a001 196418/87403803*15127^(7/20) 6524758435047616 a001 10946/54018521*64079^(12/23) 6524758435082152 a001 17711/33385282*15127^(1/2) 6524758435116696 a001 5473/16692641*64079^(11/23) 6524758435128630 a001 28657/7881196*15127^(3/10) 6524758435185805 a001 10946/20633239*64079^(10/23) 6524758435197025 a001 75025/33385282*15127^(7/20) 6524758435240932 a001 46368/1149851*5778^(1/18) 6524758435254838 a001 10946/12752043*64079^(9/23) 6524758435269482 a001 10946/271443*24476^(1/21) 6524758435269717 a001 39041856/598364773 6524758435269717 a004 Fibonacci(21)/Lucas(24)/(1/2+sqrt(5)/2) 6524758435269718 a004 Fibonacci(24)/Lucas(21)/(1/2+sqrt(5)/2)^7 6524758435324072 a001 5473/3940598*64079^(8/23) 6524758435330746 r002 3th iterates of z^2 + 6524758435392780 a001 10946/4870847*64079^(7/23) 6524758435462864 a001 10946/3010349*64079^(6/23) 6524758435529347 a001 5473/930249*64079^(5/23) 6524758435605256 a001 10946/1149851*64079^(4/23) 6524758435644837 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^50 6524758435656489 a001 10946/710647*64079^(3/23) 6524758435691205 a001 5473/1268860318*167761^(4/5) 6524758435719032 a001 10946/271443*64079^(1/23) 6524758435737572 a001 10946/228826127*167761^(3/5) 6524758435755120 a001 121393/3010349*5778^(1/18) 6524758435772322 a001 5473/219602*64079^(2/23) 6524758435783934 a001 144/103681*15127^(2/5) 6524758435783955 a001 10946/20633239*167761^(2/5) 6524758435788120 a001 664383889/10182505537 6524758435788120 a001 5473/271443+5473/271443*5^(1/2) 6524758435788120 a004 Fibonacci(21)*(1/2+sqrt(5)/2)/Lucas(26) 6524758435788120 a004 Fibonacci(26)/Lucas(21)/(1/2+sqrt(5)/2)^9 6524758435813410 a001 10946/271443*103682^(1/24) 6524758435828422 a001 5473/930249*167761^(1/5) 6524758435830139 a001 317811/7881196*5778^(1/18) 6524758435841085 a001 75640/1875749*5778^(1/18) 6524758435842681 a001 2178309/54018521*5778^(1/18) 6524758435842850 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^52 6524758435842914 a001 5702887/141422324*5778^(1/18) 6524758435842948 a001 14930352/370248451*5778^(1/18) 6524758435842953 a001 39088169/969323029*5778^(1/18) 6524758435842954 a001 9303105/230701876*5778^(1/18) 6524758435842954 a001 267914296/6643838879*5778^(1/18) 6524758435842954 a001 701408733/17393796001*5778^(1/18) 6524758435842954 a001 1836311903/45537549124*5778^(1/18) 6524758435842954 a001 4807526976/119218851371*5778^(1/18) 6524758435842954 a001 1144206275/28374454999*5778^(1/18) 6524758435842954 a001 32951280099/817138163596*5778^(1/18) 6524758435842954 a001 86267571272/2139295485799*5778^(1/18) 6524758435842954 a001 225851433717/5600748293801*5778^(1/18) 6524758435842954 a001 591286729879/14662949395604*5778^(1/18) 6524758435842954 a001 365435296162/9062201101803*5778^(1/18) 6524758435842954 a001 139583862445/3461452808002*5778^(1/18) 6524758435842954 a001 53316291173/1322157322203*5778^(1/18) 6524758435842954 a001 20365011074/505019158607*5778^(1/18) 6524758435842954 a001 7778742049/192900153618*5778^(1/18) 6524758435842954 a001 2971215073/73681302247*5778^(1/18) 6524758435842954 a001 1134903170/28143753123*5778^(1/18) 6524758435842954 a001 433494437/10749957122*5778^(1/18) 6524758435842954 a001 165580141/4106118243*5778^(1/18) 6524758435842955 a001 63245986/1568397607*5778^(1/18) 6524758435842956 a001 24157817/599074578*5778^(1/18) 6524758435842969 a001 9227465/228826127*5778^(1/18) 6524758435843058 a001 3524578/87403803*5778^(1/18) 6524758435843668 a001 1346269/33385282*5778^(1/18) 6524758435846608 a001 10946/17393796001*439204^(8/9) 6524758435847849 a001 514229/12752043*5778^(1/18) 6524758435850366 a001 10946/4106118243*439204^(7/9) 6524758435854125 a001 10946/969323029*439204^(2/3) 6524758435857883 a001 10946/228826127*439204^(5/9) 6524758435859996 a001 10946/710647*439204^(1/9) 6524758435861643 a001 10946/54018521*439204^(4/9) 6524758435863745 a001 10946/710647*7881196^(1/11) 6524758435863754 a001 10946/710647*141422324^(1/13) 6524758435863754 a001 10946/710647*2537720636^(1/15) 6524758435863754 a001 3478759206/53316291173 6524758435863754 a001 10946/710647*45537549124^(1/17) 6524758435863754 a001 10946/710647*14662949395604^(1/21) 6524758435863754 a001 10946/710647*(1/2+1/2*5^(1/2))^3 6524758435863754 a001 10946/710647*192900153618^(1/18) 6524758435863754 a001 10946/710647*10749957122^(1/16) 6524758435863754 a001 10946/710647*599074578^(1/14) 6524758435863754 a004 Fibonacci(28)/Lucas(21)/(1/2+sqrt(5)/2)^11 6524758435863755 a001 10946/710647*33385282^(1/12) 6524758435863943 a001 10946/710647*1860498^(1/10) 6524758435865359 a001 10946/12752043*439204^(1/3) 6524758435869878 a001 10946/3010349*439204^(2/9) 6524758435871739 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^54 6524758435874787 a001 5473/930249*20633239^(1/7) 6524758435874789 a001 5473/930249*2537720636^(1/9) 6524758435874789 a001 1821501968/27916772489 6524758435874789 a001 5473/930249*312119004989^(1/11) 6524758435874789 a001 5473/930249*(1/2+1/2*5^(1/2))^5 6524758435874789 a001 5473/930249*28143753123^(1/10) 6524758435874789 a001 5473/930249*228826127^(1/8) 6524758435874789 a004 Fibonacci(30)/Lucas(21)/(1/2+sqrt(5)/2)^13 6524758435875103 a001 5473/930249*1860498^(1/6) 6524758435875954 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^56 6524758435876396 a001 10946/4870847*20633239^(1/5) 6524758435876399 a001 10946/4870847*17393796001^(1/7) 6524758435876399 a001 11921885157/182717648081 6524758435876399 a001 10946/4870847*14662949395604^(1/9) 6524758435876399 a001 10946/4870847*(1/2+1/2*5^(1/2))^7 6524758435876399 a001 10946/4870847*599074578^(1/6) 6524758435876399 a004 Fibonacci(32)/Lucas(21)/(1/2+sqrt(5)/2)^15 6524758435876504 a001 196418/4870847*5778^(1/18) 6524758435876569 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^58 6524758435876579 a001 10946/312119004989*7881196^(10/11) 6524758435876588 a001 10946/73681302247*7881196^(9/11) 6524758435876598 a001 10946/17393796001*7881196^(8/11) 6524758435876604 a001 10946/6643838879*7881196^(2/3) 6524758435876605 a001 10946/12752043*7881196^(3/11) 6524758435876607 a001 10946/4106118243*7881196^(7/11) 6524758435876617 a001 10946/969323029*7881196^(6/11) 6524758435876626 a001 10946/228826127*7881196^(5/11) 6524758435876633 a001 5473/16692641*7881196^(1/3) 6524758435876634 a001 10946/12752043*141422324^(3/13) 6524758435876634 a001 10946/12752043*2537720636^(1/5) 6524758435876634 a001 10946/12752043*45537549124^(3/17) 6524758435876634 a001 10946/12752043*14662949395604^(1/7) 6524758435876634 a001 10946/12752043*(1/2+1/2*5^(1/2))^9 6524758435876634 a001 10946/12752043*192900153618^(1/6) 6524758435876634 a001 10946/12752043*10749957122^(3/16) 6524758435876634 a001 10946/12752043*599074578^(3/14) 6524758435876634 a004 Fibonacci(34)/Lucas(21)/(1/2+sqrt(5)/2)^17 6524758435876636 a001 10946/12752043*33385282^(1/4) 6524758435876638 a001 10946/54018521*7881196^(4/11) 6524758435876659 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^60 6524758435876661 a001 10946/312119004989*20633239^(6/7) 6524758435876662 a001 10946/119218851371*20633239^(4/5) 6524758435876663 a001 10946/28143753123*20633239^(5/7) 6524758435876665 a001 10946/4106118243*20633239^(3/5) 6524758435876665 a001 5473/1268860318*20633239^(4/7) 6524758435876667 a001 10946/228826127*20633239^(3/7) 6524758435876668 a001 163427632992/2504730781961 6524758435876668 a001 5473/16692641*(1/2+1/2*5^(1/2))^11 6524758435876668 a001 5473/16692641*1568397607^(1/4) 6524758435876668 a004 Fibonacci(36)/Lucas(21)/(1/2+sqrt(5)/2)^19 6524758435876668 a001 5473/70711162*20633239^(2/5) 6524758435876672 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^62 6524758435876673 a001 10946/87403803*141422324^(1/3) 6524758435876673 a001 39088169/599074577 6524758435876673 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^13/Lucas(38) 6524758435876673 a001 10946/87403803*73681302247^(1/4) 6524758435876673 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^21 6524758435876674 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^64 6524758435876674 a001 10946/5600748293801*141422324^(12/13) 6524758435876674 a001 10946/1322157322203*141422324^(11/13) 6524758435876674 a001 10946/312119004989*141422324^(10/13) 6524758435876674 a001 10946/228826127*141422324^(5/13) 6524758435876674 a001 10946/73681302247*141422324^(9/13) 6524758435876674 a001 5473/22768774562*141422324^(2/3) 6524758435876674 a001 10946/17393796001*141422324^(8/13) 6524758435876674 a001 10946/4106118243*141422324^(7/13) 6524758435876674 a001 10946/969323029*141422324^(6/13) 6524758435876674 a001 10946/228826127*2537720636^(1/3) 6524758435876674 a001 10946/228826127*45537549124^(5/17) 6524758435876674 a001 10946/228826127*312119004989^(3/11) 6524758435876674 a001 10946/228826127*14662949395604^(5/21) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^15/Lucas(40) 6524758435876674 a001 10946/228826127*192900153618^(5/18) 6524758435876674 a001 10946/228826127*28143753123^(3/10) 6524758435876674 a001 10946/228826127*10749957122^(5/16) 6524758435876674 a001 10946/228826127*599074578^(5/14) 6524758435876674 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^23 6524758435876674 a001 10946/228826127*228826127^(3/8) 6524758435876674 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^66 6524758435876674 a001 5473/299537289*45537549124^(1/3) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^17/Lucas(42) 6524758435876674 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^68 6524758435876674 a001 10946/1568397607*817138163596^(1/3) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^19/Lucas(44) 6524758435876674 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^70 6524758435876674 a001 10946/23725150497407*2537720636^(13/15) 6524758435876674 a001 10946/4106118243*2537720636^(7/15) 6524758435876674 a001 10946/5600748293801*2537720636^(4/5) 6524758435876674 a001 5473/1730726404001*2537720636^(7/9) 6524758435876674 a001 10946/1322157322203*2537720636^(11/15) 6524758435876674 a001 10946/312119004989*2537720636^(2/3) 6524758435876674 a001 10946/73681302247*2537720636^(3/5) 6524758435876674 a001 10946/28143753123*2537720636^(5/9) 6524758435876674 a001 10946/17393796001*2537720636^(8/15) 6524758435876674 a001 10946/4106118243*17393796001^(3/7) 6524758435876674 a001 10946/4106118243*45537549124^(7/17) 6524758435876674 a001 10946/4106118243*14662949395604^(1/3) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^21/Lucas(46) 6524758435876674 a001 10946/4106118243*192900153618^(7/18) 6524758435876674 a001 10946/4106118243*10749957122^(7/16) 6524758435876674 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^72 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^23/Lucas(48) 6524758435876674 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^74 6524758435876674 a001 5473/1730726404001*17393796001^(5/7) 6524758435876674 a001 10946/119218851371*17393796001^(4/7) 6524758435876674 a001 10946/28143753123*312119004989^(5/11) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^25/Lucas(50) 6524758435876674 a001 10946/28143753123*3461452808002^(5/12) 6524758435876674 a001 10946/28143753123*28143753123^(1/2) 6524758435876674 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^76 6524758435876674 a001 10946/73681302247*45537549124^(9/17) 6524758435876674 a001 10946/23725150497407*45537549124^(13/17) 6524758435876674 a001 10946/5600748293801*45537549124^(12/17) 6524758435876674 a001 10946/2139295485799*45537549124^(2/3) 6524758435876674 a001 10946/1322157322203*45537549124^(11/17) 6524758435876674 a001 10946/312119004989*45537549124^(10/17) 6524758435876674 a001 10946/73681302247*817138163596^(9/19) 6524758435876674 a001 10946/73681302247*14662949395604^(3/7) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^27/Lucas(52) 6524758435876674 a001 10946/73681302247*192900153618^(1/2) 6524758435876674 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^78 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^29/Lucas(54) 6524758435876674 a001 5473/96450076809*1322157322203^(1/2) 6524758435876674 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^80 6524758435876674 a001 10946/1322157322203*312119004989^(3/5) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(56) 6524758435876674 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^82 6524758435876674 a001 10946/1322157322203*817138163596^(11/19) 6524758435876674 a001 10946/1322157322203*14662949395604^(11/21) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(58) 6524758435876674 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^84 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(60) 6524758435876674 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^86 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(62) 6524758435876674 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^88 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(64) 6524758435876674 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^90 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(66) 6524758435876674 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^92 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(68) 6524758435876674 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^94 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(70) 6524758435876674 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^96 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(72) 6524758435876674 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^98 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(74) 6524758435876674 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^100 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(76) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(78) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(80) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(82) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(84) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(86) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(88) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(90) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(92) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(94) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(96) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(98) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(100) 6524758435876674 a004 Fibonacci(21)*Lucas(1)/(1/2+sqrt(5)/2)^25 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(99) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(97) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(95) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(93) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(91) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(89) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(87) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(85) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(83) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(81) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(79) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(77) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(75) 6524758435876674 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^99 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(73) 6524758435876674 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^97 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(71) 6524758435876674 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^95 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(69) 6524758435876674 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^93 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(67) 6524758435876674 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^91 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(65) 6524758435876674 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^89 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(63) 6524758435876674 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^87 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(61) 6524758435876674 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^85 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(59) 6524758435876674 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^83 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(57) 6524758435876674 a001 10946/5600748293801*505019158607^(9/14) 6524758435876674 a001 5473/408569081798*505019158607^(4/7) 6524758435876674 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^81 6524758435876674 a001 10946/312119004989*312119004989^(6/11) 6524758435876674 a001 10946/312119004989*14662949395604^(10/21) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(55) 6524758435876674 a001 10946/1322157322203*192900153618^(11/18) 6524758435876674 a001 10946/5600748293801*192900153618^(2/3) 6524758435876674 a001 10946/23725150497407*192900153618^(13/18) 6524758435876674 a001 10946/312119004989*192900153618^(5/9) 6524758435876674 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^79 6524758435876674 a001 10946/119218851371*14662949395604^(4/9) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^28/Lucas(53) 6524758435876674 a001 10946/119218851371*505019158607^(1/2) 6524758435876674 a001 5473/408569081798*73681302247^(8/13) 6524758435876674 a001 10946/5600748293801*73681302247^(9/13) 6524758435876674 a001 10946/23725150497407*73681302247^(3/4) 6524758435876674 a001 10946/119218851371*73681302247^(7/13) 6524758435876674 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^77 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^26/Lucas(51) 6524758435876674 a001 5473/22768774562*73681302247^(1/2) 6524758435876674 a001 10946/312119004989*28143753123^(3/5) 6524758435876674 a001 5473/1730726404001*28143753123^(7/10) 6524758435876674 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^75 6524758435876674 a001 10946/17393796001*45537549124^(8/17) 6524758435876674 a001 10946/17393796001*14662949395604^(8/21) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^24/Lucas(49) 6524758435876674 a001 10946/17393796001*192900153618^(4/9) 6524758435876674 a001 10946/17393796001*73681302247^(6/13) 6524758435876674 a001 10946/73681302247*10749957122^(9/16) 6524758435876674 a001 10946/119218851371*10749957122^(7/12) 6524758435876674 a001 5473/22768774562*10749957122^(13/24) 6524758435876674 a001 10946/312119004989*10749957122^(5/8) 6524758435876674 a001 5473/408569081798*10749957122^(2/3) 6524758435876674 a001 10946/1322157322203*10749957122^(11/16) 6524758435876674 a001 10946/2139295485799*10749957122^(17/24) 6524758435876674 a001 10946/5600748293801*10749957122^(3/4) 6524758435876674 a001 5473/7331474697802*10749957122^(19/24) 6524758435876674 a001 10946/23725150497407*10749957122^(13/16) 6524758435876674 a001 10946/17393796001*10749957122^(1/2) 6524758435876674 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^73 6524758435876674 a001 5473/5374978561*4106118243^(1/2) 6524758435876674 a001 10946/6643838879*312119004989^(2/5) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^22/Lucas(47) 6524758435876674 a001 10946/6643838879*10749957122^(11/24) 6524758435876674 a001 5473/22768774562*4106118243^(13/23) 6524758435876674 a001 10946/17393796001*4106118243^(12/23) 6524758435876674 a001 10946/119218851371*4106118243^(14/23) 6524758435876674 a001 10946/312119004989*4106118243^(15/23) 6524758435876674 a001 5473/408569081798*4106118243^(16/23) 6524758435876674 a001 10946/2139295485799*4106118243^(17/23) 6524758435876674 a001 10946/5600748293801*4106118243^(18/23) 6524758435876674 a001 5473/7331474697802*4106118243^(19/23) 6524758435876674 a001 10946/6643838879*4106118243^(11/23) 6524758435876674 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^71 6524758435876674 a001 5473/1268860318*2537720636^(4/9) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^20/Lucas(45) 6524758435876674 a001 5473/1268860318*23725150497407^(5/16) 6524758435876674 a001 5473/1268860318*505019158607^(5/14) 6524758435876674 a001 5473/1268860318*73681302247^(5/13) 6524758435876674 a001 5473/1268860318*28143753123^(2/5) 6524758435876674 a001 5473/1268860318*10749957122^(5/12) 6524758435876674 a001 5473/1268860318*4106118243^(10/23) 6524758435876674 a001 10946/17393796001*1568397607^(6/11) 6524758435876674 a001 10946/6643838879*1568397607^(1/2) 6524758435876674 a001 5473/22768774562*1568397607^(13/22) 6524758435876674 a001 10946/119218851371*1568397607^(7/11) 6524758435876674 a001 10946/312119004989*1568397607^(15/22) 6524758435876674 a001 5473/408569081798*1568397607^(8/11) 6524758435876674 a001 10946/1322157322203*1568397607^(3/4) 6524758435876674 a001 10946/2139295485799*1568397607^(17/22) 6524758435876674 a001 10946/5600748293801*1568397607^(9/11) 6524758435876674 a001 5473/1268860318*1568397607^(5/11) 6524758435876674 a001 5473/7331474697802*1568397607^(19/22) 6524758435876674 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^69 6524758435876674 a001 10946/969323029*2537720636^(2/5) 6524758435876674 a001 10946/969323029*45537549124^(6/17) 6524758435876674 a001 10946/969323029*14662949395604^(2/7) 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^18/Lucas(43) 6524758435876674 a001 10946/969323029*192900153618^(1/3) 6524758435876674 a001 10946/969323029*10749957122^(3/8) 6524758435876674 a001 10946/969323029*4106118243^(9/23) 6524758435876674 a001 10946/969323029*1568397607^(9/22) 6524758435876674 a001 10946/4106118243*599074578^(1/2) 6524758435876674 a001 5473/1268860318*599074578^(10/21) 6524758435876674 a001 10946/6643838879*599074578^(11/21) 6524758435876674 a001 10946/17393796001*599074578^(4/7) 6524758435876674 a001 5473/22768774562*599074578^(13/21) 6524758435876674 a001 10946/73681302247*599074578^(9/14) 6524758435876674 a001 10946/119218851371*599074578^(2/3) 6524758435876674 a001 10946/312119004989*599074578^(5/7) 6524758435876674 a001 5473/408569081798*599074578^(16/21) 6524758435876674 a001 10946/1322157322203*599074578^(11/14) 6524758435876674 a001 10946/2139295485799*599074578^(17/21) 6524758435876674 a001 10946/969323029*599074578^(3/7) 6524758435876674 a001 5473/1730726404001*599074578^(5/6) 6524758435876674 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^27 6524758435876674 a001 10946/5600748293801*599074578^(6/7) 6524758435876674 a001 5473/7331474697802*599074578^(19/21) 6524758435876674 a001 10946/23725150497407*599074578^(13/14) 6524758435876674 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^29 6524758435876674 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^31 6524758435876674 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^33 6524758435876674 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^35 6524758435876674 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^37 6524758435876674 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^39 6524758435876674 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^41 6524758435876674 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^43 6524758435876674 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^45 6524758435876674 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^47 6524758435876674 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^49 6524758435876674 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^51 6524758435876674 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^53 6524758435876674 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^55 6524758435876674 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^57 6524758435876674 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^59 6524758435876674 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^61 6524758435876674 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^63 6524758435876674 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^65 6524758435876674 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^67 6524758435876674 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^69 6524758435876674 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^71 6524758435876674 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^73 6524758435876674 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^75 6524758435876674 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^77 6524758435876674 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^79 6524758435876674 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^83 6524758435876674 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^81 6524758435876674 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^82 6524758435876674 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^80 6524758435876674 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^78 6524758435876674 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^76 6524758435876674 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^74 6524758435876674 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^72 6524758435876674 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^70 6524758435876674 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^68 6524758435876674 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^66 6524758435876674 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^64 6524758435876674 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^62 6524758435876674 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^60 6524758435876674 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^58 6524758435876674 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^56 6524758435876674 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^54 6524758435876674 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^52 6524758435876674 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^50 6524758435876674 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^48 6524758435876674 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^46 6524758435876674 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^44 6524758435876674 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^42 6524758435876674 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^40 6524758435876674 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^38 6524758435876674 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^36 6524758435876674 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^34 6524758435876674 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^32 6524758435876674 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^30 6524758435876674 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^28 6524758435876674 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^26 6524758435876674 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^16/Lucas(41) 6524758435876674 a001 10946/370248451*23725150497407^(1/4) 6524758435876674 a001 10946/370248451*73681302247^(4/13) 6524758435876674 a001 10946/370248451*10749957122^(1/3) 6524758435876674 a001 10946/370248451*4106118243^(8/23) 6524758435876674 a001 10946/370248451*1568397607^(4/11) 6524758435876674 a001 10946/370248451*599074578^(8/21) 6524758435876674 a001 10946/969323029*228826127^(9/20) 6524758435876674 a001 5473/1268860318*228826127^(1/2) 6524758435876674 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^24 6524758435876674 a001 10946/6643838879*228826127^(11/20) 6524758435876674 a001 10946/17393796001*228826127^(3/5) 6524758435876674 a001 10946/28143753123*228826127^(5/8) 6524758435876674 a001 5473/22768774562*228826127^(13/20) 6524758435876674 a001 10946/119218851371*228826127^(7/10) 6524758435876674 a001 10946/312119004989*228826127^(3/4) 6524758435876674 a001 10946/370248451*228826127^(2/5) 6524758435876674 a001 5473/408569081798*228826127^(4/5) 6524758435876674 a001 10946/2139295485799*228826127^(17/20) 6524758435876674 a001 5473/1730726404001*228826127^(7/8) 6524758435876674 a001 10946/5600748293801*228826127^(9/10) 6524758435876674 a001 5473/7331474697802*228826127^(19/20) 6524758435876674 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^65 6524758435876675 a001 5473/70711162*17393796001^(2/7) 6524758435876675 a001 5473/70711162*14662949395604^(2/9) 6524758435876675 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^14/Lucas(39) 6524758435876675 a001 5473/70711162*505019158607^(1/4) 6524758435876675 a001 5473/70711162*10749957122^(7/24) 6524758435876675 a001 5473/70711162*4106118243^(7/23) 6524758435876675 a001 5473/70711162*1568397607^(7/22) 6524758435876675 a001 5473/70711162*599074578^(1/3) 6524758435876675 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^22 6524758435876675 a001 5473/70711162*228826127^(7/20) 6524758435876675 a001 10946/370248451*87403803^(8/19) 6524758435876675 a001 10946/969323029*87403803^(9/19) 6524758435876675 a001 10946/1568397607*87403803^(1/2) 6524758435876675 a001 5473/1268860318*87403803^(10/19) 6524758435876675 a001 10946/6643838879*87403803^(11/19) 6524758435876675 a001 10946/17393796001*87403803^(12/19) 6524758435876675 a001 5473/22768774562*87403803^(13/19) 6524758435876675 a001 10946/119218851371*87403803^(14/19) 6524758435876675 a001 5473/70711162*87403803^(7/19) 6524758435876675 a001 10946/312119004989*87403803^(15/19) 6524758435876675 a001 5473/408569081798*87403803^(16/19) 6524758435876675 a001 10946/2139295485799*87403803^(17/19) 6524758435876675 a001 10946/5600748293801*87403803^(18/19) 6524758435876675 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^63 6524758435876676 a001 10946/54018521*141422324^(4/13) 6524758435876676 a001 10946/54018521*2537720636^(4/15) 6524758435876676 a001 10946/54018521*45537549124^(4/17) 6524758435876676 a001 10946/54018521*817138163596^(4/19) 6524758435876676 a001 10946/54018521*14662949395604^(4/21) 6524758435876676 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^12/Lucas(37) 6524758435876676 a001 264431464882/4052739537881 6524758435876676 a001 10946/54018521*192900153618^(2/9) 6524758435876676 a001 10946/54018521*73681302247^(3/13) 6524758435876676 a001 10946/54018521*10749957122^(1/4) 6524758435876676 a001 10946/54018521*4106118243^(6/23) 6524758435876676 a001 10946/54018521*1568397607^(3/11) 6524758435876676 a001 10946/54018521*599074578^(2/7) 6524758435876676 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2)^20 6524758435876676 a001 10946/54018521*228826127^(3/10) 6524758435876677 a001 10946/228826127*33385282^(5/12) 6524758435876677 a001 10946/54018521*87403803^(6/19) 6524758435876677 a001 5473/70711162*33385282^(7/18) 6524758435876677 a001 10946/370248451*33385282^(4/9) 6524758435876677 a001 10946/969323029*33385282^(1/2) 6524758435876677 a001 5473/1268860318*33385282^(5/9) 6524758435876678 a001 10946/4106118243*33385282^(7/12) 6524758435876678 a001 10946/6643838879*33385282^(11/18) 6524758435876678 a001 10946/17393796001*33385282^(2/3) 6524758435876678 a001 10946/54018521*33385282^(1/3) 6524758435876678 a001 5473/22768774562*33385282^(13/18) 6524758435876679 a001 10946/73681302247*33385282^(3/4) 6524758435876679 a001 10946/119218851371*33385282^(7/9) 6524758435876679 a001 10946/312119004989*33385282^(5/6) 6524758435876679 a001 5473/408569081798*33385282^(8/9) 6524758435876680 a001 10946/1322157322203*33385282^(11/12) 6524758435876680 a001 10946/2139295485799*33385282^(17/18) 6524758435876680 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^61 6524758435876685 a001 10946/20633239*20633239^(2/7) 6524758435876690 a001 10946/20633239*2537720636^(2/9) 6524758435876690 a001 10946/20633239*312119004989^(2/11) 6524758435876690 a001 10946/20633239*(1/2+1/2*5^(1/2))^10 6524758435876690 a001 10100383189/154800875592 6524758435876690 a001 10946/20633239*28143753123^(1/5) 6524758435876690 a001 10946/20633239*10749957122^(5/24) 6524758435876690 a001 10946/20633239*4106118243^(5/23) 6524758435876690 a001 10946/20633239*1568397607^(5/22) 6524758435876690 a001 10946/20633239*599074578^(5/21) 6524758435876690 a004 Fibonacci(35)/Lucas(21)/(1/2+sqrt(5)/2)^18 6524758435876690 a001 10946/20633239*228826127^(1/4) 6524758435876690 a001 10946/20633239*87403803^(5/19) 6524758435876691 a001 10946/54018521*12752043^(6/17) 6524758435876691 a001 5473/70711162*12752043^(7/17) 6524758435876691 a001 10946/20633239*33385282^(5/18) 6524758435876693 a001 10946/370248451*12752043^(8/17) 6524758435876694 a001 5473/299537289*12752043^(1/2) 6524758435876695 a001 10946/969323029*12752043^(9/17) 6524758435876698 a001 5473/1268860318*12752043^(10/17) 6524758435876700 a001 10946/6643838879*12752043^(11/17) 6524758435876701 a001 10946/20633239*12752043^(5/17) 6524758435876703 a001 10946/17393796001*12752043^(12/17) 6524758435876705 a001 5473/22768774562*12752043^(13/17) 6524758435876707 a001 10946/119218851371*12752043^(14/17) 6524758435876710 a001 10946/312119004989*12752043^(15/17) 6524758435876712 a001 5473/408569081798*12752043^(16/17) 6524758435876714 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^59 6524758435876775 a001 10946/20633239*4870847^(5/16) 6524758435876779 a001 5473/3940598*(1/2+1/2*5^(1/2))^8 6524758435876779 a001 5473/3940598*23725150497407^(1/8) 6524758435876779 a001 5473/3940598*505019158607^(1/7) 6524758435876779 a001 38580030788/591286729879 6524758435876779 a001 5473/3940598*73681302247^(2/13) 6524758435876779 a001 5473/3940598*10749957122^(1/6) 6524758435876779 a001 5473/3940598*4106118243^(4/23) 6524758435876779 a001 5473/3940598*1568397607^(2/11) 6524758435876779 a001 5473/3940598*599074578^(4/21) 6524758435876779 a004 Fibonacci(33)/Lucas(21)/(1/2+sqrt(5)/2)^16 6524758435876779 a001 5473/3940598*228826127^(1/5) 6524758435876779 a001 5473/3940598*87403803^(4/19) 6524758435876780 a001 10946/54018521*4870847^(3/8) 6524758435876781 a001 5473/3940598*33385282^(2/9) 6524758435876789 a001 5473/3940598*12752043^(4/17) 6524758435876795 a001 5473/70711162*4870847^(7/16) 6524758435876812 a001 10946/370248451*4870847^(1/2) 6524758435876829 a001 10946/969323029*4870847^(9/16) 6524758435876846 a001 5473/1268860318*4870847^(5/8) 6524758435876848 a001 5473/3940598*4870847^(1/4) 6524758435876863 a001 10946/6643838879*4870847^(11/16) 6524758435876880 a001 10946/17393796001*4870847^(3/4) 6524758435876898 a001 5473/22768774562*4870847^(13/16) 6524758435876915 a001 10946/119218851371*4870847^(7/8) 6524758435876932 a001 10946/312119004989*4870847^(15/16) 6524758435876949 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^57 6524758435877200 a001 10946/12752043*1860498^(3/10) 6524758435877282 a001 5473/3940598*1860498^(4/15) 6524758435877318 a001 10946/20633239*1860498^(1/3) 6524758435877375 a001 10946/3010349*7881196^(2/11) 6524758435877394 a001 10946/3010349*141422324^(2/13) 6524758435877394 a001 10946/3010349*2537720636^(2/15) 6524758435877394 a001 10946/3010349*45537549124^(2/17) 6524758435877394 a001 10946/3010349*14662949395604^(2/21) 6524758435877394 a001 10946/3010349*(1/2+1/2*5^(1/2))^6 6524758435877394 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^6/Lucas(31) 6524758435877394 a001 1133558498/17373187209 6524758435877394 a001 10946/3010349*10749957122^(1/8) 6524758435877394 a001 10946/3010349*4106118243^(3/23) 6524758435877394 a001 10946/3010349*1568397607^(3/22) 6524758435877394 a001 10946/3010349*599074578^(1/7) 6524758435877394 a004 Fibonacci(31)/Lucas(21)/(1/2+sqrt(5)/2)^14 6524758435877394 a001 10946/3010349*228826127^(3/20) 6524758435877394 a001 10946/3010349*87403803^(3/19) 6524758435877395 a001 10946/3010349*33385282^(1/6) 6524758435877401 a001 10946/3010349*12752043^(3/17) 6524758435877430 a001 10946/54018521*1860498^(2/5) 6524758435877446 a001 10946/3010349*4870847^(3/16) 6524758435877554 a001 5473/70711162*1860498^(7/15) 6524758435877617 a001 10946/228826127*1860498^(1/2) 6524758435877680 a001 10946/370248451*1860498^(8/15) 6524758435877771 a001 10946/3010349*1860498^(1/5) 6524758435877805 a001 10946/969323029*1860498^(3/5) 6524758435877931 a001 5473/1268860318*1860498^(2/3) 6524758435877994 a001 10946/4106118243*1860498^(7/10) 6524758435878057 a001 10946/6643838879*1860498^(11/15) 6524758435878182 a001 10946/17393796001*1860498^(4/5) 6524758435878245 a001 10946/28143753123*1860498^(5/6) 6524758435878308 a001 5473/22768774562*1860498^(13/15) 6524758435878371 a001 10946/73681302247*1860498^(9/10) 6524758435878433 a001 10946/119218851371*1860498^(14/15) 6524758435878559 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^55 6524758435879629 a001 10946/4870847*710647^(1/4) 6524758435880163 a001 10946/3010349*710647^(3/14) 6524758435880471 a001 5473/3940598*710647^(2/7) 6524758435881304 a001 10946/20633239*710647^(5/14) 6524758435881609 a001 10946/1149851*(1/2+1/2*5^(1/2))^4 6524758435881609 a001 10946/1149851*23725150497407^(1/16) 6524758435881609 a001 10946/1149851*73681302247^(1/13) 6524758435881609 a001 2814375317/43133785636 6524758435881609 a001 10946/1149851*10749957122^(1/12) 6524758435881609 a001 10946/1149851*4106118243^(2/23) 6524758435881609 a001 10946/1149851*1568397607^(1/11) 6524758435881609 a001 10946/1149851*599074578^(2/21) 6524758435881609 a001 10946/1149851*228826127^(1/10) 6524758435881609 a004 Fibonacci(29)/Lucas(21)/(1/2+sqrt(5)/2)^12 6524758435881609 a001 10946/1149851*87403803^(2/19) 6524758435881610 a001 10946/1149851*33385282^(1/9) 6524758435881614 a001 10946/1149851*12752043^(2/17) 6524758435881643 a001 10946/1149851*4870847^(1/8) 6524758435881860 a001 10946/1149851*1860498^(2/15) 6524758435882213 a001 10946/54018521*710647^(3/7) 6524758435883134 a001 5473/70711162*710647^(1/2) 6524758435883455 a001 10946/1149851*710647^(1/7) 6524758435884057 a001 10946/370248451*710647^(4/7) 6524758435884980 a001 10946/969323029*710647^(9/14) 6524758435885903 a001 5473/1268860318*710647^(5/7) 6524758435886364 a001 10946/4106118243*710647^(3/4) 6524758435886825 a001 10946/6643838879*710647^(11/14) 6524758435887748 a001 10946/17393796001*710647^(6/7) 6524758435888671 a001 5473/22768774562*710647^(13/14) 6524758435889594 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^53 6524758435895233 a001 10946/1149851*271443^(2/13) 6524758435897830 a001 10946/3010349*271443^(3/13) 6524758435904027 a001 5473/3940598*271443^(4/13) 6524758435910499 a001 5473/219602*(1/2+1/2*5^(1/2))^2 6524758435910499 a001 2149991428/32951280099 6524758435910499 a001 5473/219602*10749957122^(1/24) 6524758435910499 a001 5473/219602*4106118243^(1/23) 6524758435910499 a001 5473/219602*1568397607^(1/22) 6524758435910499 a001 5473/219602*599074578^(1/21) 6524758435910499 a001 5473/219602*228826127^(1/20) 6524758435910499 a004 Fibonacci(27)/Lucas(21)/(1/2+sqrt(5)/2)^10 6524758435910499 a001 5473/219602*87403803^(1/19) 6524758435910499 a001 5473/219602*33385282^(1/18) 6524758435910501 a001 5473/219602*12752043^(1/17) 6524758435910516 a001 5473/219602*4870847^(1/16) 6524758435910624 a001 5473/219602*1860498^(1/15) 6524758435910749 a001 10946/20633239*271443^(5/13) 6524758435911422 a001 5473/219602*710647^(1/14) 6524758435917311 a001 5473/219602*271443^(1/13) 6524758435917547 a001 10946/54018521*271443^(6/13) 6524758435920950 a001 10946/87403803*271443^(1/2) 6524758435924357 a001 5473/70711162*271443^(7/13) 6524758435931169 a001 10946/370248451*271443^(8/13) 6524758435937981 a001 10946/969323029*271443^(9/13) 6524758435939624 a001 10946/710647*103682^(1/8) 6524758435944792 a001 5473/1268860318*271443^(10/13) 6524758435951604 a001 10946/6643838879*271443^(11/13) 6524758435958416 a001 10946/17393796001*271443^(12/13) 6524758435961078 a001 5473/219602*103682^(1/12) 6524758435965228 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^51 6524758435977218 a001 10946/271443*39603^(1/22) 6524758435982769 a001 10946/1149851*103682^(1/6) 6524758435999554 a007 Real Root Of 503*x^4-556*x^3+395*x^2+674*x+26 6524758436001239 a001 5473/930249*103682^(5/24) 6524758436029133 a001 10946/3010349*103682^(1/4) 6524758436053428 a001 10946/4870847*103682^(7/24) 6524758436072906 a001 75025/1860498*5778^(1/18) 6524758436079098 a001 5473/3940598*103682^(1/3) 6524758436104243 a001 10946/12752043*103682^(3/8) 6524758436108511 a001 10946/167761 6524758436108511 a004 Fibonacci(25)/Lucas(21)/(1/2+sqrt(5)/2)^8 6524758436129588 a001 10946/20633239*103682^(5/12) 6524758436154857 a001 5473/16692641*103682^(11/24) 6524758436180155 a001 10946/54018521*103682^(1/2) 6524758436205442 a001 10946/87403803*103682^(13/24) 6524758436230733 a001 5473/70711162*103682^(7/12) 6524758436256022 a001 10946/228826127*103682^(5/8) 6524758436281312 a001 10946/370248451*103682^(2/3) 6524758436288694 a001 5473/219602*39603^(1/11) 6524758436302341 a001 121393/87403803*15127^(2/5) 6524758436306602 a001 5473/299537289*103682^(17/24) 6524758436331892 a001 10946/969323029*103682^(3/4) 6524758436357182 a001 10946/1568397607*103682^(19/24) 6524758436377976 a001 317811/228826127*15127^(2/5) 6524758436382471 a001 5473/1268860318*103682^(5/6) 6524758436389011 a001 416020/299537289*15127^(2/5) 6524758436390621 a001 311187/224056801*15127^(2/5) 6524758436390856 a001 5702887/4106118243*15127^(2/5) 6524758436390890 a001 7465176/5374978561*15127^(2/5) 6524758436390895 a001 39088169/28143753123*15127^(2/5) 6524758436390896 a001 14619165/10525900321*15127^(2/5) 6524758436390896 a001 133957148/96450076809*15127^(2/5) 6524758436390896 a001 701408733/505019158607*15127^(2/5) 6524758436390896 a001 1836311903/1322157322203*15127^(2/5) 6524758436390896 a001 14930208/10749853441*15127^(2/5) 6524758436390896 a001 12586269025/9062201101803*15127^(2/5) 6524758436390896 a001 32951280099/23725150497407*15127^(2/5) 6524758436390896 a001 10182505537/7331474697802*15127^(2/5) 6524758436390896 a001 7778742049/5600748293801*15127^(2/5) 6524758436390896 a001 2971215073/2139295485799*15127^(2/5) 6524758436390896 a001 567451585/408569081798*15127^(2/5) 6524758436390896 a001 433494437/312119004989*15127^(2/5) 6524758436390896 a001 165580141/119218851371*15127^(2/5) 6524758436390896 a001 31622993/22768774562*15127^(2/5) 6524758436390898 a001 24157817/17393796001*15127^(2/5) 6524758436390911 a001 9227465/6643838879*15127^(2/5) 6524758436391001 a001 1762289/1268860318*15127^(2/5) 6524758436391616 a001 1346269/969323029*15127^(2/5) 6524758436395831 a001 514229/370248451*15127^(2/5) 6524758436407761 a001 10946/4106118243*103682^(7/8) 6524758436424721 a001 98209/70711162*15127^(2/5) 6524758436431047 a001 10946/710647*39603^(3/22) 6524758436433051 a001 10946/6643838879*103682^(11/12) 6524758436458341 a001 5473/5374978561*103682^(23/24) 6524758436483631 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^49 6524758436507862 a001 17711/54018521*15127^(11/20) 6524758436554187 a001 28657/12752043*15127^(7/20) 6524758436622735 a001 75025/54018521*15127^(2/5) 6524758436637999 a001 10946/1149851*39603^(2/11) 6524758436772236 a001 4181/141422324*9349^(16/19) 6524758436820276 a001 5473/930249*39603^(5/22) 6524758437011979 a001 10946/3010349*39603^(3/11) 6524758437200081 a001 10946/4870847*39603^(7/22) 6524758437209644 a001 46368/54018521*15127^(9/20) 6524758437213823 a001 10946/271443*15127^(1/20) 6524758437389559 a001 5473/3940598*39603^(4/11) 6524758437419068 a001 28657/710647*5778^(1/18) 6524758437465707 a001 156839761/2403763488 6524758437465707 a004 Fibonacci(21)/Lucas(23)/(1/2+sqrt(5)/2)^2 6524758437465707 a004 Fibonacci(23)/Lucas(21)/(1/2+sqrt(5)/2)^6 6524758437578511 a001 10946/12752043*39603^(9/22) 6524758437728045 a001 233/271444*15127^(9/20) 6524758437767664 a001 10946/20633239*39603^(5/11) 6524758437803679 a001 317811/370248451*15127^(9/20) 6524758437814713 a001 832040/969323029*15127^(9/20) 6524758437816323 a001 2178309/2537720636*15127^(9/20) 6524758437816558 a001 5702887/6643838879*15127^(9/20) 6524758437816593 a001 14930352/17393796001*15127^(9/20) 6524758437816598 a001 39088169/45537549124*15127^(9/20) 6524758437816598 a001 102334155/119218851371*15127^(9/20) 6524758437816598 a001 267914296/312119004989*15127^(9/20) 6524758437816598 a001 701408733/817138163596*15127^(9/20) 6524758437816598 a001 1836311903/2139295485799*15127^(9/20) 6524758437816598 a001 4807526976/5600748293801*15127^(9/20) 6524758437816598 a001 12586269025/14662949395604*15127^(9/20) 6524758437816598 a001 20365011074/23725150497407*15127^(9/20) 6524758437816598 a001 7778742049/9062201101803*15127^(9/20) 6524758437816598 a001 2971215073/3461452808002*15127^(9/20) 6524758437816598 a001 1134903170/1322157322203*15127^(9/20) 6524758437816598 a001 433494437/505019158607*15127^(9/20) 6524758437816598 a001 165580141/192900153618*15127^(9/20) 6524758437816599 a001 63245986/73681302247*15127^(9/20) 6524758437816601 a001 24157817/28143753123*15127^(9/20) 6524758437816614 a001 9227465/10749957122*15127^(9/20) 6524758437816703 a001 3524578/4106118243*15127^(9/20) 6524758437817318 a001 1346269/1568397607*15127^(9/20) 6524758437821533 a001 514229/599074578*15127^(9/20) 6524758437850423 a001 196418/228826127*15127^(9/20) 6524758437933561 a001 17711/87403803*15127^(3/5) 6524758437956740 a001 5473/16692641*39603^(1/2) 6524758437979945 a001 28657/20633239*15127^(2/5) 6524758438048434 a001 75025/87403803*15127^(9/20) 6524758438145845 a001 10946/54018521*39603^(6/11) 6524758438334940 a001 10946/87403803*39603^(13/22) 6524758438524038 a001 5473/70711162*39603^(7/11) 6524758438635343 a001 15456/29134601*15127^(1/2) 6524758438713135 a001 10946/228826127*39603^(15/22) 6524758438761903 a001 5473/219602*15127^(1/10) 6524758438902233 a001 10946/370248451*39603^(8/11) 6524758439091330 a001 5473/299537289*39603^(17/22) 6524758439153747 a001 121393/228826127*15127^(1/2) 6524758439229381 a001 377/710646*15127^(1/2) 6524758439240416 a001 832040/1568397607*15127^(1/2) 6524758439242026 a001 726103/1368706081*15127^(1/2) 6524758439242260 a001 5702887/10749957122*15127^(1/2) 6524758439242295 a001 4976784/9381251041*15127^(1/2) 6524758439242300 a001 39088169/73681302247*15127^(1/2) 6524758439242300 a001 34111385/64300051206*15127^(1/2) 6524758439242301 a001 267914296/505019158607*15127^(1/2) 6524758439242301 a001 233802911/440719107401*15127^(1/2) 6524758439242301 a001 1836311903/3461452808002*15127^(1/2) 6524758439242301 a001 1602508992/3020733700601*15127^(1/2) 6524758439242301 a001 12586269025/23725150497407*15127^(1/2) 6524758439242301 a001 7778742049/14662949395604*15127^(1/2) 6524758439242301 a001 2971215073/5600748293801*15127^(1/2) 6524758439242301 a001 1134903170/2139295485799*15127^(1/2) 6524758439242301 a001 433494437/817138163596*15127^(1/2) 6524758439242301 a001 165580141/312119004989*15127^(1/2) 6524758439242301 a001 63245986/119218851371*15127^(1/2) 6524758439242303 a001 24157817/45537549124*15127^(1/2) 6524758439242316 a001 9227465/17393796001*15127^(1/2) 6524758439242406 a001 3524578/6643838879*15127^(1/2) 6524758439243021 a001 1346269/2537720636*15127^(1/2) 6524758439247236 a001 514229/969323029*15127^(1/2) 6524758439276125 a001 196418/370248451*15127^(1/2) 6524758439280428 a001 10946/969323029*39603^(9/11) 6524758439359265 a001 17711/141422324*15127^(13/20) 6524758439405626 a001 28657/33385282*15127^(9/20) 6524758439469525 a001 10946/1568397607*39603^(19/22) 6524758439474138 a001 75025/141422324*15127^(1/2) 6524758439658622 a001 5473/1268860318*39603^(10/11) 6524758439672113 a001 4181/167761*3571^(2/17) 6524758439847720 a001 10946/4106118243*39603^(21/22) 6524758439889017 a001 6765/710647*5778^(2/9) 6524758440036817 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^47 6524758440061046 a001 11592/35355581*15127^(11/20) 6524758440140861 a001 10946/710647*15127^(3/20) 6524758440579449 a001 121393/370248451*15127^(11/20) 6524758440655083 a001 317811/969323029*15127^(11/20) 6524758440666118 a001 610/1860499*15127^(11/20) 6524758440667728 a001 2178309/6643838879*15127^(11/20) 6524758440667963 a001 5702887/17393796001*15127^(11/20) 6524758440667997 a001 3732588/11384387281*15127^(11/20) 6524758440668002 a001 39088169/119218851371*15127^(11/20) 6524758440668003 a001 9303105/28374454999*15127^(11/20) 6524758440668003 a001 66978574/204284540899*15127^(11/20) 6524758440668003 a001 701408733/2139295485799*15127^(11/20) 6524758440668003 a001 1836311903/5600748293801*15127^(11/20) 6524758440668003 a001 1201881744/3665737348901*15127^(11/20) 6524758440668003 a001 7778742049/23725150497407*15127^(11/20) 6524758440668003 a001 2971215073/9062201101803*15127^(11/20) 6524758440668003 a001 567451585/1730726404001*15127^(11/20) 6524758440668003 a001 433494437/1322157322203*15127^(11/20) 6524758440668003 a001 165580141/505019158607*15127^(11/20) 6524758440668003 a001 31622993/96450076809*15127^(11/20) 6524758440668005 a001 24157817/73681302247*15127^(11/20) 6524758440668018 a001 9227465/28143753123*15127^(11/20) 6524758440668108 a001 1762289/5374978561*15127^(11/20) 6524758440668723 a001 1346269/4106118243*15127^(11/20) 6524758440672938 a001 514229/1568397607*15127^(11/20) 6524758440701222 a001 4181/87403803*9349^(15/19) 6524758440701827 a001 98209/299537289*15127^(11/20) 6524758440784966 a001 17711/228826127*15127^(7/10) 6524758440831336 a001 28657/54018521*15127^(1/2) 6524758440899840 a001 75025/228826127*15127^(11/20) 6524758441486748 a001 46368/228826127*15127^(3/5) 6524758441584418 a001 10946/1149851*15127^(1/5) 6524758442005151 a001 121393/599074578*15127^(3/5) 6524758442080785 a001 317811/1568397607*15127^(3/5) 6524758442091820 a001 832040/4106118243*15127^(3/5) 6524758442093430 a001 987/4870846*15127^(3/5) 6524758442093665 a001 5702887/28143753123*15127^(3/5) 6524758442093699 a001 14930352/73681302247*15127^(3/5) 6524758442093704 a001 39088169/192900153618*15127^(3/5) 6524758442093705 a001 102334155/505019158607*15127^(3/5) 6524758442093705 a001 267914296/1322157322203*15127^(3/5) 6524758442093705 a001 701408733/3461452808002*15127^(3/5) 6524758442093705 a001 1836311903/9062201101803*15127^(3/5) 6524758442093705 a001 4807526976/23725150497407*15127^(3/5) 6524758442093705 a001 2971215073/14662949395604*15127^(3/5) 6524758442093705 a001 1134903170/5600748293801*15127^(3/5) 6524758442093705 a001 433494437/2139295485799*15127^(3/5) 6524758442093705 a001 165580141/817138163596*15127^(3/5) 6524758442093705 a001 63245986/312119004989*15127^(3/5) 6524758442093707 a001 24157817/119218851371*15127^(3/5) 6524758442093720 a001 9227465/45537549124*15127^(3/5) 6524758442093810 a001 3524578/17393796001*15127^(3/5) 6524758442094425 a001 1346269/6643838879*15127^(3/5) 6524758442098640 a001 514229/2537720636*15127^(3/5) 6524758442127530 a001 196418/969323029*15127^(3/5) 6524758442210669 a001 17711/370248451*15127^(3/4) 6524758442257035 a001 28657/87403803*15127^(11/20) 6524758442325542 a001 75025/370248451*15127^(3/5) 6524758442527567 a001 17711/710647*5778^(1/9) 6524758442912451 a001 46368/370248451*15127^(13/20) 6524758443003300 a001 5473/930249*15127^(1/4) 6524758443430854 a001 121393/969323029*15127^(13/20) 6524758443506487 a001 317811/2537720636*15127^(13/20) 6524758443517522 a001 832040/6643838879*15127^(13/20) 6524758443519132 a001 2178309/17393796001*15127^(13/20) 6524758443519367 a001 1597/12752044*15127^(13/20) 6524758443519401 a001 14930352/119218851371*15127^(13/20) 6524758443519406 a001 39088169/312119004989*15127^(13/20) 6524758443519407 a001 102334155/817138163596*15127^(13/20) 6524758443519407 a001 267914296/2139295485799*15127^(13/20) 6524758443519407 a001 701408733/5600748293801*15127^(13/20) 6524758443519407 a001 1836311903/14662949395604*15127^(13/20) 6524758443519407 a001 2971215073/23725150497407*15127^(13/20) 6524758443519407 a001 1134903170/9062201101803*15127^(13/20) 6524758443519407 a001 433494437/3461452808002*15127^(13/20) 6524758443519407 a001 165580141/1322157322203*15127^(13/20) 6524758443519408 a001 63245986/505019158607*15127^(13/20) 6524758443519410 a001 24157817/192900153618*15127^(13/20) 6524758443519423 a001 9227465/73681302247*15127^(13/20) 6524758443519512 a001 3524578/28143753123*15127^(13/20) 6524758443520127 a001 1346269/10749957122*15127^(13/20) 6524758443524342 a001 514229/4106118243*15127^(13/20) 6524758443553232 a001 196418/1568397607*15127^(13/20) 6524758443636371 a001 17711/599074578*15127^(4/5) 6524758443682739 a001 28657/141422324*15127^(3/5) 6524758443751244 a001 75025/599074578*15127^(13/20) 6524758444338153 a001 2576/33281921*15127^(7/10) 6524758444431608 a001 10946/3010349*15127^(3/10) 6524758444630211 a001 4181/54018521*9349^(14/19) 6524758444856556 a001 121393/1568397607*15127^(7/10) 6524758444932190 a001 105937/1368706081*15127^(7/10) 6524758444943225 a001 416020/5374978561*15127^(7/10) 6524758444944835 a001 726103/9381251041*15127^(7/10) 6524758444945069 a001 5702887/73681302247*15127^(7/10) 6524758444945104 a001 2584/33385281*15127^(7/10) 6524758444945109 a001 39088169/505019158607*15127^(7/10) 6524758444945109 a001 34111385/440719107401*15127^(7/10) 6524758444945110 a001 133957148/1730726404001*15127^(7/10) 6524758444945110 a001 233802911/3020733700601*15127^(7/10) 6524758444945110 a001 1836311903/23725150497407*15127^(7/10) 6524758444945110 a001 567451585/7331474697802*15127^(7/10) 6524758444945110 a001 433494437/5600748293801*15127^(7/10) 6524758444945110 a001 165580141/2139295485799*15127^(7/10) 6524758444945110 a001 31622993/408569081798*15127^(7/10) 6524758444945112 a001 24157817/312119004989*15127^(7/10) 6524758444945125 a001 9227465/119218851371*15127^(7/10) 6524758444945215 a001 1762289/22768774562*15127^(7/10) 6524758444945830 a001 1346269/17393796001*15127^(7/10) 6524758444950044 a001 514229/6643838879*15127^(7/10) 6524758444978934 a001 98209/1268860318*15127^(7/10) 6524758445062073 a001 17711/969323029*15127^(17/20) 6524758445108440 a001 28657/228826127*15127^(13/20) 6524758445176946 a001 75025/969323029*15127^(7/10) 6524758445763855 a001 46368/969323029*15127^(3/4) 6524758445856315 a001 10946/4870847*15127^(7/20) 6524758446091789 a001 2576/103361*5778^(1/9) 6524758446282258 a001 121393/2537720636*15127^(3/4) 6524758446357892 a001 317811/6643838879*15127^(3/4) 6524758446368927 a001 832040/17393796001*15127^(3/4) 6524758446370537 a001 2178309/45537549124*15127^(3/4) 6524758446370772 a001 5702887/119218851371*15127^(3/4) 6524758446370806 a001 14930352/312119004989*15127^(3/4) 6524758446370811 a001 4181/87403804*15127^(3/4) 6524758446370812 a001 102334155/2139295485799*15127^(3/4) 6524758446370812 a001 267914296/5600748293801*15127^(3/4) 6524758446370812 a001 701408733/14662949395604*15127^(3/4) 6524758446370812 a001 1134903170/23725150497407*15127^(3/4) 6524758446370812 a001 433494437/9062201101803*15127^(3/4) 6524758446370812 a001 165580141/3461452808002*15127^(3/4) 6524758446370812 a001 63245986/1322157322203*15127^(3/4) 6524758446370814 a001 24157817/505019158607*15127^(3/4) 6524758446370827 a001 9227465/192900153618*15127^(3/4) 6524758446370917 a001 3524578/73681302247*15127^(3/4) 6524758446371532 a001 1346269/28143753123*15127^(3/4) 6524758446375747 a001 514229/10749957122*15127^(3/4) 6524758446404636 a001 196418/4106118243*15127^(3/4) 6524758446487775 a001 17711/1568397607*15127^(9/10) 6524758446534143 a001 28657/370248451*15127^(7/10) 6524758446602649 a001 75025/1568397607*15127^(3/4) 6524758446611801 a001 121393/4870847*5778^(1/9) 6524758446645796 a001 10946/271443*5778^(1/18) 6524758446687670 a001 105937/4250681*5778^(1/9) 6524758446698739 a001 416020/16692641*5778^(1/9) 6524758446700354 a001 726103/29134601*5778^(1/9) 6524758446700590 a001 5702887/228826127*5778^(1/9) 6524758446700624 a001 829464/33281921*5778^(1/9) 6524758446700629 a001 39088169/1568397607*5778^(1/9) 6524758446700630 a001 34111385/1368706081*5778^(1/9) 6524758446700630 a001 133957148/5374978561*5778^(1/9) 6524758446700630 a001 233802911/9381251041*5778^(1/9) 6524758446700630 a001 1836311903/73681302247*5778^(1/9) 6524758446700630 a001 267084832/10716675201*5778^(1/9) 6524758446700630 a001 12586269025/505019158607*5778^(1/9) 6524758446700630 a001 10983760033/440719107401*5778^(1/9) 6524758446700630 a001 43133785636/1730726404001*5778^(1/9) 6524758446700630 a001 75283811239/3020733700601*5778^(1/9) 6524758446700630 a001 182717648081/7331474697802*5778^(1/9) 6524758446700630 a001 139583862445/5600748293801*5778^(1/9) 6524758446700630 a001 53316291173/2139295485799*5778^(1/9) 6524758446700630 a001 10182505537/408569081798*5778^(1/9) 6524758446700630 a001 7778742049/312119004989*5778^(1/9) 6524758446700630 a001 2971215073/119218851371*5778^(1/9) 6524758446700630 a001 567451585/22768774562*5778^(1/9) 6524758446700630 a001 433494437/17393796001*5778^(1/9) 6524758446700630 a001 165580141/6643838879*5778^(1/9) 6524758446700631 a001 31622993/1268860318*5778^(1/9) 6524758446700632 a001 24157817/969323029*5778^(1/9) 6524758446700646 a001 9227465/370248451*5778^(1/9) 6524758446700736 a001 1762289/70711162*5778^(1/9) 6524758446701352 a001 1346269/54018521*5778^(1/9) 6524758446705580 a001 514229/20633239*5778^(1/9) 6524758446734560 a001 98209/3940598*5778^(1/9) 6524758446768070 a001 119814916/1836311903 6524758446768070 a004 Fibonacci(21)/Lucas(21)/(1/2+sqrt(5)/2)^4 6524758446933187 a001 75025/3010349*5778^(1/9) 6524758447189557 a001 6624/224056801*15127^(4/5) 6524758447282397 a001 5473/3940598*15127^(2/5) 6524758447707960 a001 121393/4106118243*15127^(4/5) 6524758447783594 a001 317811/10749957122*15127^(4/5) 6524758447794629 a001 832040/28143753123*15127^(4/5) 6524758447796239 a001 311187/10525900321*15127^(4/5) 6524758447796474 a001 5702887/192900153618*15127^(4/5) 6524758447796508 a001 14930352/505019158607*15127^(4/5) 6524758447796513 a001 39088169/1322157322203*15127^(4/5) 6524758447796514 a001 6765/228826126*15127^(4/5) 6524758447796514 a001 267914296/9062201101803*15127^(4/5) 6524758447796514 a001 701408733/23725150497407*15127^(4/5) 6524758447796514 a001 433494437/14662949395604*15127^(4/5) 6524758447796514 a001 165580141/5600748293801*15127^(4/5) 6524758447796514 a001 63245986/2139295485799*15127^(4/5) 6524758447796516 a001 24157817/817138163596*15127^(4/5) 6524758447796529 a001 9227465/312119004989*15127^(4/5) 6524758447796619 a001 3524578/119218851371*15127^(4/5) 6524758447797234 a001 1346269/45537549124*15127^(4/5) 6524758447801449 a001 514229/17393796001*15127^(4/5) 6524758447830339 a001 196418/6643838879*15127^(4/5) 6524758447913478 a001 17711/2537720636*15127^(19/20) 6524758447959845 a001 28657/599074578*15127^(3/4) 6524758448028351 a001 75025/2537720636*15127^(4/5) 6524758448294598 a001 28657/1149851*5778^(1/9) 6524758448559189 a001 4181/33385282*9349^(13/19) 6524758448615260 a001 11592/634430159*15127^(17/20) 6524758448707954 a001 10946/12752043*15127^(9/20) 6524758449133662 a001 121393/6643838879*15127^(17/20) 6524758449209296 a001 10959/599786069*15127^(17/20) 6524758449220331 a001 208010/11384387281*15127^(17/20) 6524758449221941 a001 2178309/119218851371*15127^(17/20) 6524758449222176 a001 5702887/312119004989*15127^(17/20) 6524758449222210 a001 3732588/204284540899*15127^(17/20) 6524758449222215 a001 39088169/2139295485799*15127^(17/20) 6524758449222216 a001 102334155/5600748293801*15127^(17/20) 6524758449222216 a001 10946/599074579*15127^(17/20) 6524758449222216 a001 433494437/23725150497407*15127^(17/20) 6524758449222216 a001 165580141/9062201101803*15127^(17/20) 6524758449222217 a001 31622993/1730726404001*15127^(17/20) 6524758449222219 a001 24157817/1322157322203*15127^(17/20) 6524758449222232 a001 9227465/505019158607*15127^(17/20) 6524758449222321 a001 1762289/96450076809*15127^(17/20) 6524758449222936 a001 1346269/73681302247*15127^(17/20) 6524758449227151 a001 514229/28143753123*15127^(17/20) 6524758449256041 a001 98209/5374978561*15127^(17/20) 6524758449339180 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^46 6524758449385547 a001 28657/969323029*15127^(4/5) 6524758449454053 a001 75025/4106118243*15127^(17/20) 6524758450040962 a001 15456/1368706081*15127^(9/10) 6524758450133712 a001 10946/20633239*15127^(1/2) 6524758450559365 a001 121393/10749957122*15127^(9/10) 6524758450634999 a001 105937/9381251041*15127^(9/10) 6524758450646034 a001 832040/73681302247*15127^(9/10) 6524758450647644 a001 726103/64300051206*15127^(9/10) 6524758450647878 a001 5702887/505019158607*15127^(9/10) 6524758450647913 a001 4976784/440719107401*15127^(9/10) 6524758450647918 a001 39088169/3461452808002*15127^(9/10) 6524758450647918 a001 34111385/3020733700601*15127^(9/10) 6524758450647918 a001 267914296/23725150497407*15127^(9/10) 6524758450647919 a001 165580141/14662949395604*15127^(9/10) 6524758450647919 a001 63245986/5600748293801*15127^(9/10) 6524758450647921 a001 24157817/2139295485799*15127^(9/10) 6524758450647934 a001 9227465/817138163596*15127^(9/10) 6524758450648024 a001 3524578/312119004989*15127^(9/10) 6524758450648639 a001 1346269/119218851371*15127^(9/10) 6524758450652853 a001 514229/45537549124*15127^(9/10) 6524758450681743 a001 196418/17393796001*15127^(9/10) 6524758450764548 a001 6765/1149851*5778^(5/18) 6524758450811250 a001 28657/1568397607*15127^(17/20) 6524758450879755 a001 75025/6643838879*15127^(9/10) 6524758451466664 a001 46368/6643838879*15127^(19/20) 6524758451559393 a001 5473/16692641*15127^(11/20) 6524758451985067 a001 121393/17393796001*15127^(19/20) 6524758452060701 a001 317811/45537549124*15127^(19/20) 6524758452071736 a001 832040/119218851371*15127^(19/20) 6524758452073346 a001 2178309/312119004989*15127^(19/20) 6524758452073581 a001 5702887/817138163596*15127^(19/20) 6524758452073615 a001 14930352/2139295485799*15127^(19/20) 6524758452073620 a001 39088169/5600748293801*15127^(19/20) 6524758452073621 a001 102334155/14662949395604*15127^(19/20) 6524758452073621 a001 165580141/23725150497407*15127^(19/20) 6524758452073621 a001 63245986/9062201101803*15127^(19/20) 6524758452073623 a001 24157817/3461452808002*15127^(19/20) 6524758452073636 a001 9227465/1322157322203*15127^(19/20) 6524758452073726 a001 3524578/505019158607*15127^(19/20) 6524758452074341 a001 1346269/192900153618*15127^(19/20) 6524758452078556 a001 514229/73681302247*15127^(19/20) 6524758452107445 a001 196418/28143753123*15127^(19/20) 6524758452236952 a001 28657/2537720636*15127^(9/10) 6524758452305458 a001 75025/10749957122*15127^(19/20) 6524758452488197 a001 4181/20633239*9349^(12/19) 6524758452892366 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^48 6524758452985103 a001 10946/54018521*15127^(3/5) 6524758453403098 a001 17711/1149851*5778^(1/6) 6524758453410769 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^50 6524758453486403 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^52 6524758453497438 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^54 6524758453499048 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^56 6524758453499283 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^58 6524758453499317 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^60 6524758453499322 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^62 6524758453499323 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^64 6524758453499323 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^66 6524758453499323 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^68 6524758453499323 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^70 6524758453499323 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^72 6524758453499323 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^74 6524758453499323 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^76 6524758453499323 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^78 6524758453499323 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^80 6524758453499323 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^82 6524758453499323 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^84 6524758453499323 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^86 6524758453499323 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^88 6524758453499323 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^90 6524758453499323 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^92 6524758453499323 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^94 6524758453499323 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^96 6524758453499323 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^98 6524758453499323 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^100 6524758453499323 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^99 6524758453499323 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^97 6524758453499323 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^95 6524758453499323 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^93 6524758453499323 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^91 6524758453499323 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^89 6524758453499323 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^87 6524758453499323 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^85 6524758453499323 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^83 6524758453499323 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^81 6524758453499323 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^79 6524758453499323 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^77 6524758453499323 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^75 6524758453499323 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^73 6524758453499323 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^71 6524758453499323 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^69 6524758453499323 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^67 6524758453499323 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^65 6524758453499323 a001 2/6765*(1/2+1/2*5^(1/2))^16 6524758453499323 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^63 6524758453499325 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^61 6524758453499338 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^59 6524758453499428 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^57 6524758453500043 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^55 6524758453504258 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^53 6524758453533148 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^51 6524758453662654 a001 28657/4106118243*15127^(19/20) 6524758453731160 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^49 6524758454106280 a001 2161/6624*8^(1/3) 6524758454106280 q001 2161/3312 6524758454410802 a001 10946/87403803*15127^(13/20) 6524758455083111 a001 1597/54018521*3571^(16/17) 6524758455088356 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^47 6524758455836506 a001 5473/70711162*15127^(7/10) 6524758456417127 a001 4181/12752043*9349^(11/19) 6524758456952070 a001 46368/3010349*5778^(1/6) 6524758457262208 a001 10946/228826127*15127^(3/4) 6524758457469857 a001 121393/7881196*5778^(1/6) 6524758457545402 a001 10959/711491*5778^(1/6) 6524758457556423 a001 832040/54018521*5778^(1/6) 6524758457558032 a001 2178309/141422324*5778^(1/6) 6524758457558266 a001 5702887/370248451*5778^(1/6) 6524758457558300 a001 14930352/969323029*5778^(1/6) 6524758457558305 a001 39088169/2537720636*5778^(1/6) 6524758457558306 a001 102334155/6643838879*5778^(1/6) 6524758457558306 a001 9238424/599786069*5778^(1/6) 6524758457558306 a001 701408733/45537549124*5778^(1/6) 6524758457558306 a001 1836311903/119218851371*5778^(1/6) 6524758457558306 a001 4807526976/312119004989*5778^(1/6) 6524758457558306 a001 12586269025/817138163596*5778^(1/6) 6524758457558306 a001 32951280099/2139295485799*5778^(1/6) 6524758457558306 a001 86267571272/5600748293801*5778^(1/6) 6524758457558306 a001 7787980473/505618944676*5778^(1/6) 6524758457558306 a001 365435296162/23725150497407*5778^(1/6) 6524758457558306 a001 139583862445/9062201101803*5778^(1/6) 6524758457558306 a001 53316291173/3461452808002*5778^(1/6) 6524758457558306 a001 20365011074/1322157322203*5778^(1/6) 6524758457558306 a001 7778742049/505019158607*5778^(1/6) 6524758457558306 a001 2971215073/192900153618*5778^(1/6) 6524758457558306 a001 1134903170/73681302247*5778^(1/6) 6524758457558306 a001 433494437/28143753123*5778^(1/6) 6524758457558306 a001 165580141/10749957122*5778^(1/6) 6524758457558307 a001 63245986/4106118243*5778^(1/6) 6524758457558308 a001 24157817/1568397607*5778^(1/6) 6524758457558322 a001 9227465/599074578*5778^(1/6) 6524758457558411 a001 3524578/228826127*5778^(1/6) 6524758457559025 a001 1346269/87403803*5778^(1/6) 6524758457563235 a001 514229/33385282*5778^(1/6) 6524758457592091 a001 196418/12752043*5778^(1/6) 6524758457625851 a001 5473/219602*5778^(1/9) 6524758457789868 a001 75025/4870847*5778^(1/6) 6524758458687910 a001 10946/370248451*15127^(4/5) 6524758459145454 a001 28657/1860498*5778^(1/6) 6524758459194077 r002 40th iterates of z^2 + 6524758460113612 a001 5473/299537289*15127^(17/20) 6524758460346259 a001 4181/7881196*9349^(10/19) 6524758461539315 a001 10946/969323029*15127^(9/10) 6524758461615404 a001 55/15126*5778^(1/3) 6524758462965017 a001 10946/1568397607*15127^(19/20) 6524758464253954 a001 17711/1860498*5778^(2/9) 6524758464274865 a001 4181/4870847*9349^(9/19) 6524758464390719 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^45 6524758467808751 a001 46368/4870847*5778^(2/9) 6524758468204846 a001 4181/3010349*9349^(8/19) 6524758468327388 a001 121393/12752043*5778^(2/9) 6524758468403057 a001 317811/33385282*5778^(2/9) 6524758468414096 a001 832040/87403803*5778^(2/9) 6524758468415707 a001 46347/4868641*5778^(2/9) 6524758468415942 a001 5702887/599074578*5778^(2/9) 6524758468415976 a001 14930352/1568397607*5778^(2/9) 6524758468415981 a001 39088169/4106118243*5778^(2/9) 6524758468415982 a001 102334155/10749957122*5778^(2/9) 6524758468415982 a001 267914296/28143753123*5778^(2/9) 6524758468415982 a001 701408733/73681302247*5778^(2/9) 6524758468415982 a001 1836311903/192900153618*5778^(2/9) 6524758468415982 a001 102287808/10745088481*5778^(2/9) 6524758468415982 a001 12586269025/1322157322203*5778^(2/9) 6524758468415982 a001 32951280099/3461452808002*5778^(2/9) 6524758468415982 a001 86267571272/9062201101803*5778^(2/9) 6524758468415982 a001 225851433717/23725150497407*5778^(2/9) 6524758468415982 a001 139583862445/14662949395604*5778^(2/9) 6524758468415982 a001 53316291173/5600748293801*5778^(2/9) 6524758468415982 a001 20365011074/2139295485799*5778^(2/9) 6524758468415982 a001 7778742049/817138163596*5778^(2/9) 6524758468415982 a001 2971215073/312119004989*5778^(2/9) 6524758468415982 a001 1134903170/119218851371*5778^(2/9) 6524758468415982 a001 433494437/45537549124*5778^(2/9) 6524758468415982 a001 165580141/17393796001*5778^(2/9) 6524758468415983 a001 63245986/6643838879*5778^(2/9) 6524758468415984 a001 24157817/2537720636*5778^(2/9) 6524758468415998 a001 9227465/969323029*5778^(2/9) 6524758468416087 a001 3524578/370248451*5778^(2/9) 6524758468416703 a001 1346269/141422324*5778^(2/9) 6524758468420919 a001 514229/54018521*5778^(2/9) 6524758468436782 a001 10946/710647*5778^(1/6) 6524758468449822 a001 196418/20633239*5778^(2/9) 6524758468647924 a001 75025/7881196*5778^(2/9) 6524758468931189 a001 4181/103682*3571^(1/17) 6524758470005735 a001 28657/3010349*5778^(2/9) 6524758470638516 a001 1597/64079*1364^(2/15) 6524758471121971 a001 28284465/433494437 6524758471121972 a004 Fibonacci(19)/Lucas(20)/(1/2+sqrt(5)/2)^3 6524758471121972 a004 Fibonacci(20)/Lucas(19)/(1/2+sqrt(5)/2)^5 6524758472131228 a001 4181/1860498*9349^(7/19) 6524758472475685 a001 6765/3010349*5778^(7/18) 6524758475114235 a001 17711/3010349*5778^(5/18) 6524758476067034 a001 4181/1149851*9349^(6/19) 6524758477766690 r005 Im(z^2+c),c=-1+5/76*I,n=12 6524758478666807 a001 11592/1970299*5778^(5/18) 6524758479185120 a001 121393/20633239*5778^(5/18) 6524758479260741 a001 317811/54018521*5778^(5/18) 6524758479271774 a001 208010/35355581*5778^(5/18) 6524758479273383 a001 2178309/370248451*5778^(5/18) 6524758479273618 a001 5702887/969323029*5778^(5/18) 6524758479273652 a001 196452/33391061*5778^(5/18) 6524758479273657 a001 39088169/6643838879*5778^(5/18) 6524758479273658 a001 102334155/17393796001*5778^(5/18) 6524758479273658 a001 66978574/11384387281*5778^(5/18) 6524758479273658 a001 701408733/119218851371*5778^(5/18) 6524758479273658 a001 1836311903/312119004989*5778^(5/18) 6524758479273658 a001 1201881744/204284540899*5778^(5/18) 6524758479273658 a001 12586269025/2139295485799*5778^(5/18) 6524758479273658 a001 32951280099/5600748293801*5778^(5/18) 6524758479273658 a001 1135099622/192933544679*5778^(5/18) 6524758479273658 a001 139583862445/23725150497407*5778^(5/18) 6524758479273658 a001 53316291173/9062201101803*5778^(5/18) 6524758479273658 a001 10182505537/1730726404001*5778^(5/18) 6524758479273658 a001 7778742049/1322157322203*5778^(5/18) 6524758479273658 a001 2971215073/505019158607*5778^(5/18) 6524758479273658 a001 567451585/96450076809*5778^(5/18) 6524758479273658 a001 433494437/73681302247*5778^(5/18) 6524758479273658 a001 165580141/28143753123*5778^(5/18) 6524758479273659 a001 31622993/5374978561*5778^(5/18) 6524758479273661 a001 24157817/4106118243*5778^(5/18) 6524758479273674 a001 9227465/1568397607*5778^(5/18) 6524758479273763 a001 1762289/299537289*5778^(5/18) 6524758479274378 a001 1346269/228826127*5778^(5/18) 6524758479278592 a001 514229/87403803*5778^(5/18) 6524758479307477 a001 98209/16692641*5778^(5/18) 6524758479312313 a001 10946/1149851*5778^(2/9) 6524758479505455 a001 75025/12752043*5778^(5/18) 6524758479978165 a001 4181/710647*9349^(5/19) 6524758480425134 a001 615/15251*2207^(1/16) 6524758480862417 a001 28657/4870847*5778^(5/18) 6524758480945131 a001 2584/167761*2207^(3/16) 6524758483332366 a001 6765/4870847*5778^(4/9) 6524758483953896 a001 4181/439204*9349^(4/19) 6524758485180973 a001 1597/33385282*3571^(15/17) 6524758485970916 a001 17711/4870847*5778^(1/3) 6524758487760504 a001 4181/271443*9349^(3/19) 6524758488744620 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^44 6524758489263258 a001 4181/969323029*24476^(20/21) 6524758489524338 a001 15456/4250681*5778^(1/3) 6524758489781896 a001 4181/599074578*24476^(19/21) 6524758490042775 a001 121393/33385282*5778^(1/3) 6524758490118414 a001 105937/29134601*5778^(1/3) 6524758490129449 a001 832040/228826127*5778^(1/3) 6524758490131059 a001 726103/199691526*5778^(1/3) 6524758490131294 a001 5702887/1568397607*5778^(1/3) 6524758490131328 a001 4976784/1368706081*5778^(1/3) 6524758490131333 a001 39088169/10749957122*5778^(1/3) 6524758490131334 a001 831985/228811001*5778^(1/3) 6524758490131334 a001 267914296/73681302247*5778^(1/3) 6524758490131334 a001 233802911/64300051206*5778^(1/3) 6524758490131334 a001 1836311903/505019158607*5778^(1/3) 6524758490131334 a001 1602508992/440719107401*5778^(1/3) 6524758490131334 a001 12586269025/3461452808002*5778^(1/3) 6524758490131334 a001 10983760033/3020733700601*5778^(1/3) 6524758490131334 a001 86267571272/23725150497407*5778^(1/3) 6524758490131334 a001 53316291173/14662949395604*5778^(1/3) 6524758490131334 a001 20365011074/5600748293801*5778^(1/3) 6524758490131334 a001 7778742049/2139295485799*5778^(1/3) 6524758490131334 a001 2971215073/817138163596*5778^(1/3) 6524758490131334 a001 1134903170/312119004989*5778^(1/3) 6524758490131334 a001 433494437/119218851371*5778^(1/3) 6524758490131334 a001 165580141/45537549124*5778^(1/3) 6524758490131335 a001 63245986/17393796001*5778^(1/3) 6524758490131337 a001 24157817/6643838879*5778^(1/3) 6524758490131350 a001 9227465/2537720636*5778^(1/3) 6524758490131439 a001 3524578/969323029*5778^(1/3) 6524758490132054 a001 1346269/370248451*5778^(1/3) 6524758490136270 a001 514229/141422324*5778^(1/3) 6524758490163169 a001 5473/930249*5778^(5/18) 6524758490165161 a001 196418/54018521*5778^(1/3) 6524758490300534 a001 4181/370248451*24476^(6/7) 6524758490363186 a001 75025/20633239*5778^(1/3) 6524758490819172 a001 4181/228826127*24476^(17/21) 6524758491337810 a001 4181/141422324*24476^(16/21) 6524758491720473 a001 28657/7881196*5778^(1/3) 6524758491856447 a001 4181/87403803*24476^(5/7) 6524758492009881 a001 4181/167761*9349^(2/19) 6524758492375088 a001 4181/54018521*24476^(2/3) 6524758492893718 a001 4181/33385282*24476^(13/21) 6524758493412377 a001 4181/20633239*24476^(4/7) 6524758493930959 a001 4181/12752043*24476^(11/21) 6524758494190422 a001 6765/7881196*5778^(1/2) 6524758494449743 a001 4181/7881196*24476^(10/21) 6524758494968000 a001 4181/4870847*24476^(3/7) 6524758495100074 a001 4181/103682*9349^(1/19) 6524758495475873 a001 74049691/1134903170 6524758495475873 a004 Fibonacci(19)/Lucas(22)/(1/2+sqrt(5)/2) 6524758495475874 a004 Fibonacci(22)/Lucas(19)/(1/2+sqrt(5)/2)^7 6524758495487633 a001 4181/3010349*24476^(8/21) 6524758496003666 a001 4181/1860498*24476^(1/3) 6524758496529124 a001 4181/1149851*24476^(2/7) 6524758496828972 a001 89/39604*5778^(7/18) 6524758497029907 a001 4181/710647*24476^(5/21) 6524758497595289 a001 4181/439204*24476^(4/21) 6524758497991549 a001 4181/271443*24476^(1/7) 6524758498046983 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^46 6524758498116072 a001 4181/2537720636*64079^(22/23) 6524758498185160 a001 4181/1568397607*64079^(21/23) 6524758498254249 a001 4181/969323029*64079^(20/23) 6524758498323337 a001 4181/599074578*64079^(19/23) 6524758498392425 a001 4181/370248451*64079^(18/23) 6524758498461514 a001 4181/228826127*64079^(17/23) 6524758498510422 a001 4181/103682*24476^(1/21) 6524758498530602 a001 4181/141422324*64079^(16/23) 6524758498599690 a001 4181/87403803*64079^(15/23) 6524758498668781 a001 4181/54018521*64079^(14/23) 6524758498737861 a001 4181/33385282*64079^(13/23) 6524758498806971 a001 4181/20633239*64079^(12/23) 6524758498830578 a001 4181/167761*24476^(2/21) 6524758498876004 a001 4181/12752043*64079^(11/23) 6524758498945238 a001 4181/7881196*64079^(10/23) 6524758498959971 a001 4181/103682*64079^(1/23) 6524758499013946 a001 4181/4870847*64079^(9/23) 6524758499029060 a001 193864608/2971215073 6524758499029060 a001 4181/207364+4181/207364*5^(1/2) 6524758499029061 a004 Fibonacci(24)/Lucas(19)/(1/2+sqrt(5)/2)^9 6524758499054350 a001 4181/103682*103682^(1/24) 6524758499084029 a001 4181/3010349*64079^(8/23) 6524758499150513 a001 4181/1860498*64079^(7/23) 6524758499218157 a001 4181/103682*39603^(1/22) 6524758499226421 a001 4181/1149851*64079^(6/23) 6524758499277655 a001 4181/710647*64079^(5/23) 6524758499340198 a001 4181/271443*64079^(3/23) 6524758499393487 a001 4181/439204*64079^(4/23) 6524758499404180 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^48 6524758499450547 a001 4181/969323029*167761^(4/5) 6524758499496914 a001 4181/87403803*167761^(3/5) 6524758499543387 a001 4181/7881196*167761^(2/5) 6524758499543704 a001 4181/271443*439204^(1/9) 6524758499547453 a001 4181/271443*7881196^(1/11) 6524758499547463 a001 4181/271443*141422324^(1/13) 6524758499547463 a001 4181/271443*2537720636^(1/15) 6524758499547463 a001 507544133/7778742049 6524758499547463 a001 4181/271443*45537549124^(1/17) 6524758499547463 a001 4181/271443*14662949395604^(1/21) 6524758499547463 a001 4181/271443*(1/2+1/2*5^(1/2))^3 6524758499547463 a001 4181/271443*192900153618^(1/18) 6524758499547463 a001 4181/271443*10749957122^(1/16) 6524758499547463 a001 4181/271443*599074578^(1/14) 6524758499547463 a001 4181/271443*33385282^(1/12) 6524758499547464 a004 Fibonacci(26)/Lucas(19)/(1/2+sqrt(5)/2)^11 6524758499547651 a001 4181/271443*1860498^(1/10) 6524758499576729 a001 4181/710647*167761^(1/5) 6524758499602192 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^50 6524758499605950 a001 4181/6643838879*439204^(8/9) 6524758499609709 a001 4181/1568397607*439204^(7/9) 6524758499613467 a001 4181/370248451*439204^(2/3) 6524758499617224 a001 4181/87403803*439204^(5/9) 6524758499620999 a001 4181/20633239*439204^(4/9) 6524758499623095 a001 4181/710647*20633239^(1/7) 6524758499623097 a001 4181/710647*2537720636^(1/9) 6524758499623097 a001 1328767791/20365011074 6524758499623097 a001 4181/710647*312119004989^(1/11) 6524758499623097 a001 4181/710647*(1/2+1/2*5^(1/2))^5 6524758499623097 a001 4181/710647*28143753123^(1/10) 6524758499623097 a001 4181/710647*228826127^(1/8) 6524758499623098 a004 Fibonacci(28)/Lucas(19)/(1/2+sqrt(5)/2)^13 6524758499623332 a001 4181/271443*103682^(1/8) 6524758499623411 a001 4181/710647*1860498^(1/6) 6524758499624467 a001 4181/4870847*439204^(1/3) 6524758499631082 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^52 6524758499633435 a001 4181/1149851*439204^(2/9) 6524758499634129 a001 4181/1860498*20633239^(1/5) 6524758499634132 a001 4181/1860498*17393796001^(1/7) 6524758499634132 a001 3478759240/53316291173 6524758499634132 a001 4181/1860498*14662949395604^(1/9) 6524758499634132 a001 4181/1860498*(1/2+1/2*5^(1/2))^7 6524758499634132 a001 4181/1860498*599074578^(1/6) 6524758499634132 a004 Fibonacci(30)/Lucas(19)/(1/2+sqrt(5)/2)^15 6524758499635297 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^54 6524758499635713 a001 4181/4870847*7881196^(3/11) 6524758499635741 a001 4181/4870847*141422324^(3/13) 6524758499635742 a001 4181/4870847*2537720636^(1/5) 6524758499635742 a001 4181/4870847*45537549124^(3/17) 6524758499635742 a001 9107509929/139583862445 6524758499635742 a001 4181/4870847*817138163596^(3/19) 6524758499635742 a001 4181/4870847*14662949395604^(1/7) 6524758499635742 a001 4181/4870847*(1/2+1/2*5^(1/2))^9 6524758499635742 a001 4181/4870847*192900153618^(1/6) 6524758499635742 a001 4181/4870847*10749957122^(3/16) 6524758499635742 a001 4181/4870847*599074578^(3/14) 6524758499635742 a004 Fibonacci(32)/Lucas(19)/(1/2+sqrt(5)/2)^17 6524758499635743 a001 4181/4870847*33385282^(1/4) 6524758499635912 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^56 6524758499635921 a001 4181/119218851371*7881196^(10/11) 6524758499635931 a001 4181/28143753123*7881196^(9/11) 6524758499635940 a001 4181/6643838879*7881196^(8/11) 6524758499635941 a001 4181/12752043*7881196^(1/3) 6524758499635947 a001 4181/2537720636*7881196^(2/3) 6524758499635950 a001 4181/1568397607*7881196^(7/11) 6524758499635959 a001 4181/370248451*7881196^(6/11) 6524758499635968 a001 4181/87403803*7881196^(5/11) 6524758499635976 a001 4181/12752043*312119004989^(1/5) 6524758499635976 a001 4181/12752043*(1/2+1/2*5^(1/2))^11 6524758499635976 a001 4181/12752043*1568397607^(1/4) 6524758499635977 a004 Fibonacci(34)/Lucas(19)/(1/2+sqrt(5)/2)^19 6524758499635994 a001 4181/20633239*7881196^(4/11) 6524758499636001 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^58 6524758499636003 a001 4181/119218851371*20633239^(6/7) 6524758499636004 a001 4181/45537549124*20633239^(4/5) 6524758499636006 a001 4181/10749957122*20633239^(5/7) 6524758499636007 a001 4181/1568397607*20633239^(3/5) 6524758499636008 a001 4181/969323029*20633239^(4/7) 6524758499636009 a001 4181/87403803*20633239^(3/7) 6524758499636011 a001 4181/33385282*141422324^(1/3) 6524758499636011 a001 62423801712/956722026041 6524758499636011 a001 4181/33385282*(1/2+1/2*5^(1/2))^13 6524758499636011 a001 4181/33385282*73681302247^(1/4) 6524758499636012 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^21 6524758499636013 a001 4181/54018521*20633239^(2/5) 6524758499636014 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^60 6524758499636016 a001 4181/87403803*141422324^(5/13) 6524758499636016 a001 4181/87403803*2537720636^(1/3) 6524758499636016 a001 4181/87403803*45537549124^(5/17) 6524758499636016 a001 4181/87403803*312119004989^(3/11) 6524758499636016 a001 163427634589/2504730781961 6524758499636016 a001 4181/87403803*14662949395604^(5/21) 6524758499636016 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^15/Lucas(38) 6524758499636016 a001 4181/87403803*192900153618^(5/18) 6524758499636016 a001 4181/87403803*28143753123^(3/10) 6524758499636016 a001 4181/87403803*10749957122^(5/16) 6524758499636016 a001 4181/87403803*599074578^(5/14) 6524758499636016 a001 4181/87403803*228826127^(3/8) 6524758499636016 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^62 6524758499636016 a001 4181/2139295485799*141422324^(12/13) 6524758499636016 a001 4181/505019158607*141422324^(11/13) 6524758499636016 a001 4181/119218851371*141422324^(10/13) 6524758499636016 a001 4181/28143753123*141422324^(9/13) 6524758499636016 a001 4181/17393796001*141422324^(2/3) 6524758499636016 a001 4181/6643838879*141422324^(8/13) 6524758499636016 a001 4181/1568397607*141422324^(7/13) 6524758499636016 a001 4181/228826127*45537549124^(1/3) 6524758499636016 a001 427859102055/6557470319842 6524758499636016 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^17/Lucas(40) 6524758499636016 a001 4181/370248451*141422324^(6/13) 6524758499636017 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^64 6524758499636017 a001 4181/599074578*817138163596^(1/3) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^19/Lucas(42) 6524758499636017 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^66 6524758499636017 a001 4181/1568397607*2537720636^(7/15) 6524758499636017 a001 4181/1568397607*17393796001^(3/7) 6524758499636017 a001 4181/1568397607*45537549124^(7/17) 6524758499636017 a001 4181/1568397607*14662949395604^(1/3) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^21/Lucas(44) 6524758499636017 a001 4181/1568397607*192900153618^(7/18) 6524758499636017 a001 4181/1568397607*10749957122^(7/16) 6524758499636017 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^68 6524758499636017 a001 4181/14662949395604*2537720636^(8/9) 6524758499636017 a001 4181/9062201101803*2537720636^(13/15) 6524758499636017 a001 4181/2139295485799*2537720636^(4/5) 6524758499636017 a001 4181/1322157322203*2537720636^(7/9) 6524758499636017 a001 4181/505019158607*2537720636^(11/15) 6524758499636017 a001 4181/119218851371*2537720636^(2/3) 6524758499636017 a001 4181/10749957122*2537720636^(5/9) 6524758499636017 a001 4181/28143753123*2537720636^(3/5) 6524758499636017 a001 4181/6643838879*2537720636^(8/15) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^23/Lucas(46) 6524758499636017 a001 4181/4106118243*4106118243^(1/2) 6524758499636017 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^70 6524758499636017 a001 4181/10749957122*312119004989^(5/11) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^25/Lucas(48) 6524758499636017 a001 4181/10749957122*3461452808002^(5/12) 6524758499636017 a001 4181/10749957122*28143753123^(1/2) 6524758499636017 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^72 6524758499636017 a001 4181/1322157322203*17393796001^(5/7) 6524758499636017 a001 4181/28143753123*45537549124^(9/17) 6524758499636017 a001 4181/45537549124*17393796001^(4/7) 6524758499636017 a001 4181/28143753123*817138163596^(9/19) 6524758499636017 a001 4181/28143753123*14662949395604^(3/7) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^27/Lucas(50) 6524758499636017 a001 4181/28143753123*192900153618^(1/2) 6524758499636017 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^74 6524758499636017 a001 4181/9062201101803*45537549124^(13/17) 6524758499636017 a001 4181/2139295485799*45537549124^(12/17) 6524758499636017 a001 4181/817138163596*45537549124^(2/3) 6524758499636017 a001 4181/505019158607*45537549124^(11/17) 6524758499636017 a001 4181/119218851371*45537549124^(10/17) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^29/Lucas(52) 6524758499636017 a001 4181/73681302247*1322157322203^(1/2) 6524758499636017 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^76 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^31/Lucas(54) 6524758499636017 a001 4181/192900153618*9062201101803^(1/2) 6524758499636017 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^78 6524758499636017 a001 4181/505019158607*312119004989^(3/5) 6524758499636017 a001 4181/1322157322203*312119004989^(7/11) 6524758499636017 a001 4181/505019158607*817138163596^(11/19) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(56) 6524758499636017 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^80 6524758499636017 a001 4181/5600748293801*817138163596^(2/3) 6524758499636017 a001 4181/1322157322203*14662949395604^(5/9) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(58) 6524758499636017 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^82 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(60) 6524758499636017 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^84 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(62) 6524758499636017 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^86 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(64) 6524758499636017 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^88 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(66) 6524758499636017 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^90 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(68) 6524758499636017 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^92 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(70) 6524758499636017 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^94 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(72) 6524758499636017 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^96 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(74) 6524758499636017 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^98 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(76) 6524758499636017 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^100 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(78) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(80) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(82) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(84) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(86) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(88) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(90) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(92) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(94) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(96) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(98) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(99) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(100) 6524758499636017 a004 Fibonacci(19)*Lucas(1)/(1/2+sqrt(5)/2)^23 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(97) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(95) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(93) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(91) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(89) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(87) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(85) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(83) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(81) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(79) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(77) 6524758499636017 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^99 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(75) 6524758499636017 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^97 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(73) 6524758499636017 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^95 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(71) 6524758499636017 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^93 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(69) 6524758499636017 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^91 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(67) 6524758499636017 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^89 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(65) 6524758499636017 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^87 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(63) 6524758499636017 a001 4181/14662949395604*23725150497407^(5/8) 6524758499636017 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^85 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(61) 6524758499636017 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^83 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(59) 6524758499636017 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^81 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(57) 6524758499636017 a001 4181/1322157322203*505019158607^(5/8) 6524758499636017 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^79 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(55) 6524758499636017 a001 4181/312119004989*23725150497407^(1/2) 6524758499636017 a001 4181/2139295485799*192900153618^(2/3) 6524758499636017 a001 4181/9062201101803*192900153618^(13/18) 6524758499636017 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^77 6524758499636017 a001 4181/119218851371*312119004989^(6/11) 6524758499636017 a001 4181/119218851371*14662949395604^(10/21) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^30/Lucas(53) 6524758499636017 a001 4181/119218851371*192900153618^(5/9) 6524758499636017 a001 4181/2139295485799*73681302247^(9/13) 6524758499636017 a001 4181/9062201101803*73681302247^(3/4) 6524758499636017 a001 4181/14662949395604*73681302247^(10/13) 6524758499636017 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^75 6524758499636017 a001 4181/45537549124*14662949395604^(4/9) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^28/Lucas(51) 6524758499636017 a001 4181/45537549124*73681302247^(7/13) 6524758499636017 a001 4181/119218851371*28143753123^(3/5) 6524758499636017 a001 4181/1322157322203*28143753123^(7/10) 6524758499636017 a001 4181/14662949395604*28143753123^(4/5) 6524758499636017 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^73 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^26/Lucas(49) 6524758499636017 a001 4181/17393796001*73681302247^(1/2) 6524758499636017 a001 4181/28143753123*10749957122^(9/16) 6524758499636017 a001 4181/119218851371*10749957122^(5/8) 6524758499636017 a001 4181/45537549124*10749957122^(7/12) 6524758499636017 a001 4181/312119004989*10749957122^(2/3) 6524758499636017 a001 4181/505019158607*10749957122^(11/16) 6524758499636017 a001 4181/817138163596*10749957122^(17/24) 6524758499636017 a001 4181/2139295485799*10749957122^(3/4) 6524758499636017 a001 4181/5600748293801*10749957122^(19/24) 6524758499636017 a001 4181/9062201101803*10749957122^(13/16) 6524758499636017 a001 4181/14662949395604*10749957122^(5/6) 6524758499636017 a001 4181/17393796001*10749957122^(13/24) 6524758499636017 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^71 6524758499636017 a001 4181/6643838879*45537549124^(8/17) 6524758499636017 a001 4181/6643838879*14662949395604^(8/21) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^24/Lucas(47) 6524758499636017 a001 4181/6643838879*192900153618^(4/9) 6524758499636017 a001 4181/6643838879*73681302247^(6/13) 6524758499636017 a001 4181/6643838879*10749957122^(1/2) 6524758499636017 a001 4181/45537549124*4106118243^(14/23) 6524758499636017 a001 4181/17393796001*4106118243^(13/23) 6524758499636017 a001 4181/119218851371*4106118243^(15/23) 6524758499636017 a001 4181/312119004989*4106118243^(16/23) 6524758499636017 a001 4181/817138163596*4106118243^(17/23) 6524758499636017 a001 4181/2139295485799*4106118243^(18/23) 6524758499636017 a001 4181/5600748293801*4106118243^(19/23) 6524758499636017 a001 4181/14662949395604*4106118243^(20/23) 6524758499636017 a001 4181/6643838879*4106118243^(12/23) 6524758499636017 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^69 6524758499636017 a001 4181/2537720636*312119004989^(2/5) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^22/Lucas(45) 6524758499636017 a001 4181/2537720636*10749957122^(11/24) 6524758499636017 a001 4181/2537720636*4106118243^(11/23) 6524758499636017 a001 4181/17393796001*1568397607^(13/22) 6524758499636017 a001 4181/6643838879*1568397607^(6/11) 6524758499636017 a001 4181/45537549124*1568397607^(7/11) 6524758499636017 a001 4181/119218851371*1568397607^(15/22) 6524758499636017 a001 4181/312119004989*1568397607^(8/11) 6524758499636017 a001 4181/505019158607*1568397607^(3/4) 6524758499636017 a001 4181/817138163596*1568397607^(17/22) 6524758499636017 a001 4181/2139295485799*1568397607^(9/11) 6524758499636017 a001 4181/5600748293801*1568397607^(19/22) 6524758499636017 a001 4181/2537720636*1568397607^(1/2) 6524758499636017 a001 4181/14662949395604*1568397607^(10/11) 6524758499636017 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^67 6524758499636017 a001 4181/1568397607*599074578^(1/2) 6524758499636017 a001 4181/969323029*2537720636^(4/9) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^20/Lucas(43) 6524758499636017 a001 4181/969323029*23725150497407^(5/16) 6524758499636017 a001 4181/969323029*505019158607^(5/14) 6524758499636017 a001 4181/969323029*73681302247^(5/13) 6524758499636017 a001 4181/969323029*28143753123^(2/5) 6524758499636017 a001 4181/969323029*10749957122^(5/12) 6524758499636017 a001 4181/969323029*4106118243^(10/23) 6524758499636017 a001 4181/969323029*1568397607^(5/11) 6524758499636017 a001 4181/2537720636*599074578^(11/21) 6524758499636017 a001 4181/6643838879*599074578^(4/7) 6524758499636017 a001 4181/17393796001*599074578^(13/21) 6524758499636017 a001 4181/28143753123*599074578^(9/14) 6524758499636017 a001 4181/45537549124*599074578^(2/3) 6524758499636017 a001 4181/119218851371*599074578^(5/7) 6524758499636017 a001 4181/312119004989*599074578^(16/21) 6524758499636017 a001 4181/505019158607*599074578^(11/14) 6524758499636017 a001 4181/817138163596*599074578^(17/21) 6524758499636017 a001 4181/1322157322203*599074578^(5/6) 6524758499636017 a001 4181/2139295485799*599074578^(6/7) 6524758499636017 a001 4181/969323029*599074578^(10/21) 6524758499636017 a001 4181/5600748293801*599074578^(19/21) 6524758499636017 a001 4181/9062201101803*599074578^(13/14) 6524758499636017 a001 4181/14662949395604*599074578^(20/21) 6524758499636017 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^65 6524758499636017 a001 4181/370248451*2537720636^(2/5) 6524758499636017 a001 4181/370248451*45537549124^(6/17) 6524758499636017 a001 4181/370248451*14662949395604^(2/7) 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^18/Lucas(41) 6524758499636017 a001 692290569521/10610209857723 6524758499636017 a001 4181/370248451*192900153618^(1/3) 6524758499636017 a001 4181/370248451*10749957122^(3/8) 6524758499636017 a001 4181/370248451*4106118243^(9/23) 6524758499636017 a001 4181/370248451*1568397607^(9/22) 6524758499636017 a001 4181/370248451*599074578^(3/7) 6524758499636017 a001 4181/969323029*228826127^(1/2) 6524758499636017 a001 4181/2537720636*228826127^(11/20) 6524758499636017 a001 4181/6643838879*228826127^(3/5) 6524758499636017 a001 4181/10749957122*228826127^(5/8) 6524758499636017 a001 4181/17393796001*228826127^(13/20) 6524758499636017 a001 4181/45537549124*228826127^(7/10) 6524758499636017 a001 4181/119218851371*228826127^(3/4) 6524758499636017 a001 4181/312119004989*228826127^(4/5) 6524758499636017 a001 4181/370248451*228826127^(9/20) 6524758499636017 a001 4181/817138163596*228826127^(17/20) 6524758499636017 a001 4181/1322157322203*228826127^(7/8) 6524758499636017 a001 4181/2139295485799*228826127^(9/10) 6524758499636017 a001 4181/5600748293801*228826127^(19/20) 6524758499636017 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^63 6524758499636017 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^16/Lucas(39) 6524758499636017 a001 4181/141422324*23725150497407^(1/4) 6524758499636017 a001 264431467466/4052739537881 6524758499636017 a001 4181/141422324*73681302247^(4/13) 6524758499636017 a001 4181/141422324*10749957122^(1/3) 6524758499636017 a001 4181/141422324*4106118243^(8/23) 6524758499636017 a001 4181/141422324*1568397607^(4/11) 6524758499636017 a001 4181/141422324*599074578^(8/21) 6524758499636017 a001 4181/141422324*228826127^(2/5) 6524758499636017 a001 4181/599074578*87403803^(1/2) 6524758499636017 a001 4181/370248451*87403803^(9/19) 6524758499636017 a001 4181/969323029*87403803^(10/19) 6524758499636017 a001 4181/2537720636*87403803^(11/19) 6524758499636017 a001 4181/6643838879*87403803^(12/19) 6524758499636017 a001 4181/17393796001*87403803^(13/19) 6524758499636017 a001 4181/45537549124*87403803^(14/19) 6524758499636017 a001 4181/119218851371*87403803^(15/19) 6524758499636017 a001 4181/141422324*87403803^(8/19) 6524758499636017 a001 4181/312119004989*87403803^(16/19) 6524758499636017 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^25 6524758499636017 a001 4181/817138163596*87403803^(17/19) 6524758499636017 a001 4181/2139295485799*87403803^(18/19) 6524758499636017 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^27 6524758499636017 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^29 6524758499636017 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^31 6524758499636017 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^33 6524758499636017 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^35 6524758499636017 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^37 6524758499636017 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^39 6524758499636017 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^41 6524758499636017 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^43 6524758499636017 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^45 6524758499636017 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^47 6524758499636017 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^49 6524758499636017 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^51 6524758499636017 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^53 6524758499636017 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^55 6524758499636017 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^57 6524758499636017 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^59 6524758499636017 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^61 6524758499636017 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^63 6524758499636017 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^65 6524758499636017 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^67 6524758499636017 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^69 6524758499636017 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^71 6524758499636017 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^73 6524758499636017 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^75 6524758499636017 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^77 6524758499636017 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^79 6524758499636017 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^81 6524758499636017 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^85 6524758499636017 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^83 6524758499636017 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^84 6524758499636017 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^82 6524758499636017 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^80 6524758499636017 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^78 6524758499636017 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^76 6524758499636017 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^74 6524758499636017 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^72 6524758499636017 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^70 6524758499636017 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^68 6524758499636017 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^66 6524758499636017 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^64 6524758499636017 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^62 6524758499636017 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^60 6524758499636017 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^58 6524758499636017 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^56 6524758499636017 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^54 6524758499636017 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^52 6524758499636017 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^50 6524758499636017 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^48 6524758499636017 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^46 6524758499636017 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^44 6524758499636017 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^42 6524758499636017 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^40 6524758499636017 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^38 6524758499636017 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^36 6524758499636017 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^34 6524758499636017 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^32 6524758499636017 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^30 6524758499636017 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^28 6524758499636017 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^26 6524758499636018 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^24 6524758499636018 a001 4181/87403803*33385282^(5/12) 6524758499636019 a001 4181/54018521*17393796001^(2/7) 6524758499636019 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^14/Lucas(37) 6524758499636019 a001 101003832877/1548008755920 6524758499636019 a001 4181/54018521*505019158607^(1/4) 6524758499636019 a001 4181/54018521*10749957122^(7/24) 6524758499636019 a001 4181/54018521*4106118243^(7/23) 6524758499636019 a001 4181/54018521*1568397607^(7/22) 6524758499636019 a001 4181/54018521*599074578^(1/3) 6524758499636019 a001 4181/54018521*228826127^(7/20) 6524758499636019 a001 4181/54018521*87403803^(7/19) 6524758499636019 a001 4181/141422324*33385282^(4/9) 6524758499636020 a001 4181/370248451*33385282^(1/2) 6524758499636020 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^22 6524758499636020 a001 4181/969323029*33385282^(5/9) 6524758499636020 a001 4181/1568397607*33385282^(7/12) 6524758499636020 a001 4181/2537720636*33385282^(11/18) 6524758499636020 a001 4181/6643838879*33385282^(2/3) 6524758499636021 a001 4181/17393796001*33385282^(13/18) 6524758499636021 a001 4181/28143753123*33385282^(3/4) 6524758499636021 a001 4181/54018521*33385282^(7/18) 6524758499636021 a001 4181/45537549124*33385282^(7/9) 6524758499636021 a001 4181/119218851371*33385282^(5/6) 6524758499636022 a001 4181/312119004989*33385282^(8/9) 6524758499636022 a001 4181/505019158607*33385282^(11/12) 6524758499636022 a001 4181/817138163596*33385282^(17/18) 6524758499636022 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^59 6524758499636032 a001 4181/20633239*141422324^(4/13) 6524758499636032 a001 4181/20633239*2537720636^(4/15) 6524758499636032 a001 4181/20633239*45537549124^(4/17) 6524758499636032 a001 4181/20633239*817138163596^(4/19) 6524758499636032 a001 4181/20633239*14662949395604^(4/21) 6524758499636032 a001 4181/20633239*(1/2+1/2*5^(1/2))^12 6524758499636032 a001 38580031165/591286729879 6524758499636032 a001 4181/20633239*192900153618^(2/9) 6524758499636032 a001 4181/20633239*73681302247^(3/13) 6524758499636032 a001 4181/20633239*10749957122^(1/4) 6524758499636032 a001 4181/20633239*4106118243^(6/23) 6524758499636032 a001 4181/20633239*1568397607^(3/11) 6524758499636032 a001 4181/20633239*599074578^(2/7) 6524758499636032 a001 4181/20633239*228826127^(3/10) 6524758499636032 a001 4181/20633239*87403803^(6/19) 6524758499636033 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2)^20 6524758499636034 a001 4181/20633239*33385282^(1/3) 6524758499636035 a001 4181/54018521*12752043^(7/17) 6524758499636036 a001 4181/141422324*12752043^(8/17) 6524758499636036 a001 4181/228826127*12752043^(1/2) 6524758499636038 a001 4181/370248451*12752043^(9/17) 6524758499636040 a001 4181/969323029*12752043^(10/17) 6524758499636043 a001 4181/2537720636*12752043^(11/17) 6524758499636045 a001 4181/6643838879*12752043^(12/17) 6524758499636046 a001 4181/20633239*12752043^(6/17) 6524758499636047 a001 4181/17393796001*12752043^(13/17) 6524758499636050 a001 4181/45537549124*12752043^(14/17) 6524758499636052 a001 4181/119218851371*12752043^(15/17) 6524758499636054 a001 4181/312119004989*12752043^(16/17) 6524758499636057 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^57 6524758499636117 a001 4181/7881196*20633239^(2/7) 6524758499636122 a001 4181/7881196*2537720636^(2/9) 6524758499636122 a001 4181/7881196*312119004989^(2/11) 6524758499636122 a001 4181/7881196*(1/2+1/2*5^(1/2))^10 6524758499636122 a001 14736260618/225851433717 6524758499636122 a001 4181/7881196*28143753123^(1/5) 6524758499636122 a001 4181/7881196*10749957122^(5/24) 6524758499636122 a001 4181/7881196*4106118243^(5/23) 6524758499636122 a001 4181/7881196*1568397607^(5/22) 6524758499636122 a001 4181/7881196*599074578^(5/21) 6524758499636122 a001 4181/7881196*228826127^(1/4) 6524758499636122 a001 4181/7881196*87403803^(5/19) 6524758499636122 a004 Fibonacci(33)/Lucas(19)/(1/2+sqrt(5)/2)^18 6524758499636123 a001 4181/7881196*33385282^(5/18) 6524758499636133 a001 4181/7881196*12752043^(5/17) 6524758499636135 a001 4181/20633239*4870847^(3/8) 6524758499636139 a001 4181/54018521*4870847^(7/16) 6524758499636154 a001 4181/141422324*4870847^(1/2) 6524758499636171 a001 4181/370248451*4870847^(9/16) 6524758499636188 a001 4181/969323029*4870847^(5/8) 6524758499636206 a001 4181/2537720636*4870847^(11/16) 6524758499636208 a001 4181/7881196*4870847^(5/16) 6524758499636223 a001 4181/6643838879*4870847^(3/4) 6524758499636240 a001 4181/17393796001*4870847^(13/16) 6524758499636257 a001 4181/45537549124*4870847^(7/8) 6524758499636274 a001 4181/119218851371*4870847^(15/16) 6524758499636292 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^55 6524758499636307 a001 4181/4870847*1860498^(3/10) 6524758499636737 a001 4181/3010349*(1/2+1/2*5^(1/2))^8 6524758499636737 a001 4181/3010349*23725150497407^(1/8) 6524758499636737 a001 4181/3010349*505019158607^(1/7) 6524758499636737 a001 5628750689/86267571272 6524758499636737 a001 4181/3010349*73681302247^(2/13) 6524758499636737 a001 4181/3010349*10749957122^(1/6) 6524758499636737 a001 4181/3010349*4106118243^(4/23) 6524758499636737 a001 4181/3010349*1568397607^(2/11) 6524758499636737 a001 4181/3010349*599074578^(4/21) 6524758499636737 a001 4181/3010349*228826127^(1/5) 6524758499636737 a001 4181/3010349*87403803^(4/19) 6524758499636737 a004 Fibonacci(31)/Lucas(19)/(1/2+sqrt(5)/2)^16 6524758499636738 a001 4181/3010349*33385282^(2/9) 6524758499636746 a001 4181/3010349*12752043^(4/17) 6524758499636750 a001 4181/7881196*1860498^(1/3) 6524758499636786 a001 4181/20633239*1860498^(2/5) 6524758499636805 a001 4181/3010349*4870847^(1/4) 6524758499636898 a001 4181/54018521*1860498^(7/15) 6524758499636958 a001 4181/87403803*1860498^(1/2) 6524758499637022 a001 4181/141422324*1860498^(8/15) 6524758499637148 a001 4181/370248451*1860498^(3/5) 6524758499637239 a001 4181/3010349*1860498^(4/15) 6524758499637273 a001 4181/969323029*1860498^(2/3) 6524758499637336 a001 4181/1568397607*1860498^(7/10) 6524758499637362 a001 4181/1860498*710647^(1/4) 6524758499637399 a001 4181/2537720636*1860498^(11/15) 6524758499637525 a001 4181/6643838879*1860498^(4/5) 6524758499637587 a001 4181/10749957122*1860498^(5/6) 6524758499637650 a001 4181/17393796001*1860498^(13/15) 6524758499637713 a001 4181/28143753123*1860498^(9/10) 6524758499637776 a001 4181/45537549124*1860498^(14/15) 6524758499637902 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^53 6524758499640428 a001 4181/3010349*710647^(2/7) 6524758499640736 a001 4181/7881196*710647^(5/14) 6524758499640932 a001 4181/1149851*7881196^(2/11) 6524758499640951 a001 4181/1149851*141422324^(2/13) 6524758499640951 a001 4181/1149851*2537720636^(2/15) 6524758499640951 a001 4181/1149851*45537549124^(2/17) 6524758499640951 a001 4181/1149851*14662949395604^(2/21) 6524758499640951 a001 4181/1149851*(1/2+1/2*5^(1/2))^6 6524758499640951 a001 2149991449/32951280099 6524758499640951 a001 4181/1149851*10749957122^(1/8) 6524758499640951 a001 4181/1149851*4106118243^(3/23) 6524758499640951 a001 4181/1149851*1568397607^(3/22) 6524758499640951 a001 4181/1149851*599074578^(1/7) 6524758499640952 a001 4181/1149851*228826127^(3/20) 6524758499640952 a001 4181/1149851*87403803^(3/19) 6524758499640952 a004 Fibonacci(29)/Lucas(19)/(1/2+sqrt(5)/2)^14 6524758499640952 a001 4181/1149851*33385282^(1/6) 6524758499640959 a001 4181/1149851*12752043^(3/17) 6524758499641003 a001 4181/1149851*4870847^(3/16) 6524758499641328 a001 4181/1149851*1860498^(1/5) 6524758499641569 a001 4181/20633239*710647^(3/7) 6524758499642479 a001 4181/54018521*710647^(1/2) 6524758499643400 a001 4181/141422324*710647^(4/7) 6524758499643720 a001 4181/1149851*710647^(3/14) 6524758499644322 a001 4181/370248451*710647^(9/14) 6524758499645245 a001 4181/969323029*710647^(5/7) 6524758499645706 a001 4181/1568397607*710647^(3/4) 6524758499646168 a001 4181/2537720636*710647^(11/14) 6524758499647091 a001 4181/6643838879*710647^(6/7) 6524758499648014 a001 4181/17393796001*710647^(13/14) 6524758499648936 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^51 6524758499661387 a001 4181/1149851*271443^(3/13) 6524758499663984 a001 4181/3010349*271443^(4/13) 6524758499669841 a001 4181/439204*(1/2+1/2*5^(1/2))^4 6524758499669841 a001 4181/439204*23725150497407^(1/16) 6524758499669841 a001 4181/439204*73681302247^(1/13) 6524758499669841 a001 4181/439204*10749957122^(1/12) 6524758499669841 a001 821223658/12586269025 6524758499669841 a001 4181/439204*4106118243^(2/23) 6524758499669841 a001 4181/439204*1568397607^(1/11) 6524758499669841 a001 4181/439204*599074578^(2/21) 6524758499669841 a001 4181/439204*228826127^(1/10) 6524758499669841 a001 4181/439204*87403803^(2/19) 6524758499669842 a001 4181/439204*33385282^(1/9) 6524758499669842 a004 Fibonacci(27)/Lucas(19)/(1/2+sqrt(5)/2)^12 6524758499669846 a001 4181/439204*12752043^(2/17) 6524758499669875 a001 4181/439204*4870847^(1/8) 6524758499670092 a001 4181/439204*1860498^(2/15) 6524758499670181 a001 4181/7881196*271443^(5/13) 6524758499671687 a001 4181/439204*710647^(1/7) 6524758499676903 a001 4181/20633239*271443^(6/13) 6524758499680288 a001 4181/33385282*271443^(1/2) 6524758499683465 a001 4181/439204*271443^(2/13) 6524758499683702 a001 4181/54018521*271443^(7/13) 6524758499690512 a001 4181/141422324*271443^(8/13) 6524758499697323 a001 4181/370248451*271443^(9/13) 6524758499704135 a001 4181/969323029*271443^(10/13) 6524758499710947 a001 4181/2537720636*271443^(11/13) 6524758499717759 a001 4181/6643838879*271443^(12/13) 6524758499724570 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^49 6524758499729677 a001 4181/167761*64079^(2/23) 6524758499749546 a001 4181/710647*103682^(5/24) 6524758499771001 a001 4181/439204*103682^(1/6) 6524758499792691 a001 4181/1149851*103682^(1/4) 6524758499811161 a001 4181/1860498*103682^(7/24) 6524758499839055 a001 4181/3010349*103682^(1/3) 6524758499863350 a001 4181/4870847*103682^(3/8) 6524758499867853 a001 4181/167761*(1/2+1/2*5^(1/2))^2 6524758499867853 a001 4181/167761*10749957122^(1/24) 6524758499867853 a001 4181/167761*4106118243^(1/23) 6524758499867853 a001 313679525/4807526976 6524758499867853 a001 4181/167761*1568397607^(1/22) 6524758499867853 a001 4181/167761*599074578^(1/21) 6524758499867853 a001 4181/167761*228826127^(1/20) 6524758499867853 a001 4181/167761*87403803^(1/19) 6524758499867854 a001 4181/167761*33385282^(1/18) 6524758499867854 a004 Fibonacci(25)/Lucas(19)/(1/2+sqrt(5)/2)^10 6524758499867856 a001 4181/167761*12752043^(1/17) 6524758499867871 a001 4181/167761*4870847^(1/16) 6524758499867979 a001 4181/167761*1860498^(1/15) 6524758499868776 a001 4181/167761*710647^(1/14) 6524758499874665 a001 4181/167761*271443^(1/13) 6524758499889020 a001 4181/7881196*103682^(5/12) 6524758499914165 a001 4181/12752043*103682^(11/24) 6524758499918433 a001 4181/167761*103682^(1/12) 6524758499939510 a001 4181/20633239*103682^(1/2) 6524758499964779 a001 4181/33385282*103682^(13/24) 6524758499990077 a001 4181/54018521*103682^(7/12) 6524758500015364 a001 4181/87403803*103682^(5/8) 6524758500040655 a001 4181/141422324*103682^(2/3) 6524758500065944 a001 4181/228826127*103682^(17/24) 6524758500091234 a001 4181/370248451*103682^(3/4) 6524758500114755 a001 4181/271443*39603^(3/22) 6524758500116524 a001 4181/599074578*103682^(19/24) 6524758500141814 a001 4181/969323029*103682^(5/6) 6524758500167104 a001 4181/1568397607*103682^(7/8) 6524758500192394 a001 4181/2537720636*103682^(11/12) 6524758500217683 a001 4181/4106118243*103682^(23/24) 6524758500242973 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^47 6524758500246048 a001 4181/167761*39603^(1/11) 6524758500382069 a001 46368/20633239*5778^(7/18) 6524758500426231 a001 4181/439204*39603^(2/11) 6524758500454762 a001 4181/103682*15127^(1/20) 6524758500568584 a001 4181/710647*39603^(5/22) 6524758500775536 a001 4181/1149851*39603^(3/11) 6524758500900459 a001 121393/54018521*5778^(7/18) 6524758500957813 a001 4181/1860498*39603^(7/22) 6524758500976091 a001 317811/141422324*5778^(7/18) 6524758500987125 a001 832040/370248451*5778^(7/18) 6524758500988735 a001 2178309/969323029*5778^(7/18) 6524758500988970 a001 5702887/2537720636*5778^(7/18) 6524758500989005 a001 14930352/6643838879*5778^(7/18) 6524758500989010 a001 39088169/17393796001*5778^(7/18) 6524758500989010 a001 102334155/45537549124*5778^(7/18) 6524758500989010 a001 267914296/119218851371*5778^(7/18) 6524758500989010 a001 3524667/1568437211*5778^(7/18) 6524758500989010 a001 1836311903/817138163596*5778^(7/18) 6524758500989010 a001 4807526976/2139295485799*5778^(7/18) 6524758500989010 a001 12586269025/5600748293801*5778^(7/18) 6524758500989010 a001 32951280099/14662949395604*5778^(7/18) 6524758500989010 a001 53316291173/23725150497407*5778^(7/18) 6524758500989010 a001 20365011074/9062201101803*5778^(7/18) 6524758500989010 a001 7778742049/3461452808002*5778^(7/18) 6524758500989010 a001 2971215073/1322157322203*5778^(7/18) 6524758500989010 a001 1134903170/505019158607*5778^(7/18) 6524758500989010 a001 433494437/192900153618*5778^(7/18) 6524758500989010 a001 165580141/73681302247*5778^(7/18) 6524758500989011 a001 63245986/28143753123*5778^(7/18) 6524758500989013 a001 24157817/10749957122*5778^(7/18) 6524758500989026 a001 9227465/4106118243*5778^(7/18) 6524758500989115 a001 3524578/1568397607*5778^(7/18) 6524758500989730 a001 1346269/599074578*5778^(7/18) 6524758500993945 a001 514229/228826127*5778^(7/18) 6524758501022834 a001 196418/87403803*5778^(7/18) 6524758501023450 a001 10946/3010349*5778^(1/3) 6524758501149516 a001 4181/3010349*39603^(4/11) 6524758501220841 a001 75025/33385282*5778^(7/18) 6524758501225050 a001 4181/64079 6524758501225051 a004 Fibonacci(23)/Lucas(19)/(1/2+sqrt(5)/2)^8 6524758501337618 a001 4181/4870847*39603^(9/22) 6524758501527096 a001 4181/7881196*39603^(5/11) 6524758501716048 a001 4181/12752043*39603^(1/2) 6524758501905201 a001 4181/20633239*39603^(6/11) 6524758502094277 a001 4181/33385282*39603^(13/22) 6524758502283383 a001 4181/54018521*39603^(7/11) 6524758502472477 a001 4181/87403803*39603^(15/22) 6524758502578004 a001 28657/12752043*5778^(7/18) 6524758502661576 a001 4181/141422324*39603^(8/11) 6524758502719258 a001 4181/167761*15127^(1/10) 6524758502850672 a001 4181/228826127*39603^(17/22) 6524758503039770 a001 4181/370248451*39603^(9/11) 6524758503228867 a001 4181/599074578*39603^(19/22) 6524758503417965 a001 4181/969323029*39603^(10/11) 6524758503607062 a001 4181/1568397607*39603^(21/22) 6524758503796160 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^45 6524758503824570 a001 4181/271443*15127^(3/20) 6524758504581023 a001 17711/439204*2207^(1/16) 6524758505047953 a001 2255/4250681*5778^(5/9) 6524758505372650 a001 4181/439204*15127^(1/5) 6524758506751608 a001 4181/710647*15127^(1/4) 6524758507686503 a001 17711/12752043*5778^(4/9) 6524758508105320 a001 46368/1149851*2207^(1/16) 6524758508195165 a001 4181/1149851*15127^(3/10) 6524758508619508 a001 121393/3010349*2207^(1/16) 6524758508694527 a001 317811/7881196*2207^(1/16) 6524758508705472 a001 75640/1875749*2207^(1/16) 6524758508707069 a001 2178309/54018521*2207^(1/16) 6524758508707302 a001 5702887/141422324*2207^(1/16) 6524758508707336 a001 14930352/370248451*2207^(1/16) 6524758508707341 a001 39088169/969323029*2207^(1/16) 6524758508707342 a001 9303105/230701876*2207^(1/16) 6524758508707342 a001 267914296/6643838879*2207^(1/16) 6524758508707342 a001 701408733/17393796001*2207^(1/16) 6524758508707342 a001 1836311903/45537549124*2207^(1/16) 6524758508707342 a001 4807526976/119218851371*2207^(1/16) 6524758508707342 a001 1144206275/28374454999*2207^(1/16) 6524758508707342 a001 32951280099/817138163596*2207^(1/16) 6524758508707342 a001 86267571272/2139295485799*2207^(1/16) 6524758508707342 a001 225851433717/5600748293801*2207^(1/16) 6524758508707342 a001 591286729879/14662949395604*2207^(1/16) 6524758508707342 a001 365435296162/9062201101803*2207^(1/16) 6524758508707342 a001 139583862445/3461452808002*2207^(1/16) 6524758508707342 a001 53316291173/1322157322203*2207^(1/16) 6524758508707342 a001 20365011074/505019158607*2207^(1/16) 6524758508707342 a001 7778742049/192900153618*2207^(1/16) 6524758508707342 a001 2971215073/73681302247*2207^(1/16) 6524758508707342 a001 1134903170/28143753123*2207^(1/16) 6524758508707342 a001 433494437/10749957122*2207^(1/16) 6524758508707342 a001 165580141/4106118243*2207^(1/16) 6524758508707342 a001 63245986/1568397607*2207^(1/16) 6524758508707344 a001 24157817/599074578*2207^(1/16) 6524758508707357 a001 9227465/228826127*2207^(1/16) 6524758508707446 a001 3524578/87403803*2207^(1/16) 6524758508708056 a001 1346269/33385282*2207^(1/16) 6524758508712237 a001 514229/12752043*2207^(1/16) 6524758508740891 a001 196418/4870847*2207^(1/16) 6524758508937294 a001 75025/1860498*2207^(1/16) 6524758509614047 a001 4181/1860498*15127^(7/20) 6524758509886736 a001 4181/103682*5778^(1/18) 6524758510283455 a001 28657/710647*2207^(1/16) 6524758510527413 a001 45765226/701408733 6524758510527413 a004 Fibonacci(19)/Lucas(21)/(1/2+sqrt(5)/2)^2 6524758510527413 a004 Fibonacci(21)/Lucas(19)/(1/2+sqrt(5)/2)^6 6524758510791729 k002 Champernowne real with 78*n^2-52*n+39 6524758511042355 a001 4181/3010349*15127^(2/5) 6524758511239724 a001 144/103681*5778^(4/9) 6524758511758132 a001 121393/87403803*5778^(4/9) 6524758511833767 a001 317811/228826127*5778^(4/9) 6524758511844801 a001 416020/299537289*5778^(4/9) 6524758511846411 a001 311187/224056801*5778^(4/9) 6524758511846646 a001 5702887/4106118243*5778^(4/9) 6524758511846681 a001 7465176/5374978561*5778^(4/9) 6524758511846686 a001 39088169/28143753123*5778^(4/9) 6524758511846686 a001 14619165/10525900321*5778^(4/9) 6524758511846686 a001 133957148/96450076809*5778^(4/9) 6524758511846686 a001 701408733/505019158607*5778^(4/9) 6524758511846686 a001 1836311903/1322157322203*5778^(4/9) 6524758511846686 a001 14930208/10749853441*5778^(4/9) 6524758511846686 a001 12586269025/9062201101803*5778^(4/9) 6524758511846686 a001 32951280099/23725150497407*5778^(4/9) 6524758511846686 a001 10182505537/7331474697802*5778^(4/9) 6524758511846686 a001 7778742049/5600748293801*5778^(4/9) 6524758511846686 a001 2971215073/2139295485799*5778^(4/9) 6524758511846686 a001 567451585/408569081798*5778^(4/9) 6524758511846687 a001 433494437/312119004989*5778^(4/9) 6524758511846687 a001 165580141/119218851371*5778^(4/9) 6524758511846687 a001 31622993/22768774562*5778^(4/9) 6524758511846689 a001 24157817/17393796001*5778^(4/9) 6524758511846702 a001 9227465/6643838879*5778^(4/9) 6524758511846792 a001 1762289/1268860318*5778^(4/9) 6524758511847406 a001 1346269/969323029*5778^(4/9) 6524758511851621 a001 514229/370248451*5778^(4/9) 6524758511880131 a001 10946/4870847*5778^(7/18) 6524758511880511 a001 98209/70711162*5778^(4/9) 6524758512078526 a001 75025/54018521*5778^(4/9) 6524758512467062 a001 4181/4870847*15127^(9/20) 6524758513435735 a001 28657/20633239*5778^(4/9) 6524758513893144 a001 4181/7881196*15127^(1/2) 6524758515278864 a001 1597/20633239*3571^(14/17) 6524758515318701 a001 4181/12752043*15127^(11/20) 6524758515905685 a001 615/1875749*5778^(11/18) 6524758516744459 a001 4181/20633239*15127^(3/5) 6524758518170140 a001 4181/33385282*15127^(13/20) 6524758518544235 a001 17711/20633239*5778^(1/2) 6524758519510184 a001 10946/271443*2207^(1/16) 6524758519595850 a001 4181/54018521*15127^(7/10) 6524758521021549 a001 4181/87403803*15127^(3/4) 6524758521583206 a001 4181/167761*5778^(1/9) 6524758521688176 h001 (1/3*exp(2)+3/4)/(7/11*exp(2)+2/9) 6524758522097408 a001 46368/54018521*5778^(1/2) 6524758522447253 a001 4181/141422324*15127^(4/5) 6524758522615809 a001 233/271444*5778^(1/2) 6524758522691443 a001 317811/370248451*5778^(1/2) 6524758522702478 a001 832040/969323029*5778^(1/2) 6524758522704088 a001 2178309/2537720636*5778^(1/2) 6524758522704322 a001 5702887/6643838879*5778^(1/2) 6524758522704357 a001 14930352/17393796001*5778^(1/2) 6524758522704362 a001 39088169/45537549124*5778^(1/2) 6524758522704362 a001 102334155/119218851371*5778^(1/2) 6524758522704363 a001 267914296/312119004989*5778^(1/2) 6524758522704363 a001 701408733/817138163596*5778^(1/2) 6524758522704363 a001 1836311903/2139295485799*5778^(1/2) 6524758522704363 a001 4807526976/5600748293801*5778^(1/2) 6524758522704363 a001 12586269025/14662949395604*5778^(1/2) 6524758522704363 a001 20365011074/23725150497407*5778^(1/2) 6524758522704363 a001 7778742049/9062201101803*5778^(1/2) 6524758522704363 a001 2971215073/3461452808002*5778^(1/2) 6524758522704363 a001 1134903170/1322157322203*5778^(1/2) 6524758522704363 a001 433494437/505019158607*5778^(1/2) 6524758522704363 a001 165580141/192900153618*5778^(1/2) 6524758522704363 a001 63245986/73681302247*5778^(1/2) 6524758522704365 a001 24157817/28143753123*5778^(1/2) 6524758522704378 a001 9227465/10749957122*5778^(1/2) 6524758522704468 a001 3524578/4106118243*5778^(1/2) 6524758522705083 a001 1346269/1568397607*5778^(1/2) 6524758522709298 a001 514229/599074578*5778^(1/2) 6524758522738187 a001 196418/228826127*5778^(1/2) 6524758522738188 a001 5473/3940598*5778^(4/9) 6524758522936199 a001 75025/87403803*5778^(1/2) 6524758523872955 a001 4181/228826127*15127^(17/20) 6524758524293390 a001 28657/33385282*5778^(1/2) 6524758525298657 a001 4181/370248451*15127^(9/10) 6524758526724359 a001 4181/599074578*15127^(19/20) 6524758526763340 a001 6765/33385282*5778^(2/3) 6524758528150062 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^43 6524758529401890 a001 17711/33385282*5778^(5/9) 6524758532120491 a001 4181/271443*5778^(1/6) 6524758532452293 a007 Real Root Of 116*x^4+686*x^3-380*x^2+684*x+954 6524758532955081 a001 15456/29134601*5778^(5/9) 6524758533473485 a001 121393/228826127*5778^(5/9) 6524758533549119 a001 377/710646*5778^(5/9) 6524758533560154 a001 832040/1568397607*5778^(5/9) 6524758533561764 a001 726103/1368706081*5778^(5/9) 6524758533561999 a001 5702887/10749957122*5778^(5/9) 6524758533562033 a001 4976784/9381251041*5778^(5/9) 6524758533562038 a001 39088169/73681302247*5778^(5/9) 6524758533562039 a001 34111385/64300051206*5778^(5/9) 6524758533562039 a001 267914296/505019158607*5778^(5/9) 6524758533562039 a001 233802911/440719107401*5778^(5/9) 6524758533562039 a001 1836311903/3461452808002*5778^(5/9) 6524758533562039 a001 1602508992/3020733700601*5778^(5/9) 6524758533562039 a001 12586269025/23725150497407*5778^(5/9) 6524758533562039 a001 7778742049/14662949395604*5778^(5/9) 6524758533562039 a001 2971215073/5600748293801*5778^(5/9) 6524758533562039 a001 1134903170/2139295485799*5778^(5/9) 6524758533562039 a001 433494437/817138163596*5778^(5/9) 6524758533562039 a001 165580141/312119004989*5778^(5/9) 6524758533562039 a001 63245986/119218851371*5778^(5/9) 6524758533562041 a001 24157817/45537549124*5778^(5/9) 6524758533562054 a001 9227465/17393796001*5778^(5/9) 6524758533562144 a001 3524578/6643838879*5778^(5/9) 6524758533562759 a001 1346269/2537720636*5778^(5/9) 6524758533566974 a001 514229/969323029*5778^(5/9) 6524758533595719 a001 10946/12752043*5778^(1/2) 6524758533595863 a001 196418/370248451*5778^(5/9) 6524758533793876 a001 75025/141422324*5778^(5/9) 6524758535151074 a001 28657/54018521*5778^(5/9) 6524758537621024 a001 6765/54018521*5778^(13/18) 6524758540259574 a001 17711/54018521*5778^(11/18) 6524758543100546 a001 4181/439204*5778^(2/9) 6524758543812759 a001 11592/35355581*5778^(11/18) 6524758544331161 a001 121393/370248451*5778^(11/18) 6524758544406795 a001 317811/969323029*5778^(11/18) 6524758544417830 a001 610/1860499*5778^(11/18) 6524758544419440 a001 2178309/6643838879*5778^(11/18) 6524758544419675 a001 5702887/17393796001*5778^(11/18) 6524758544419709 a001 3732588/11384387281*5778^(11/18) 6524758544419714 a001 39088169/119218851371*5778^(11/18) 6524758544419715 a001 9303105/28374454999*5778^(11/18) 6524758544419715 a001 66978574/204284540899*5778^(11/18) 6524758544419715 a001 701408733/2139295485799*5778^(11/18) 6524758544419715 a001 1836311903/5600748293801*5778^(11/18) 6524758544419715 a001 1201881744/3665737348901*5778^(11/18) 6524758544419715 a001 7778742049/23725150497407*5778^(11/18) 6524758544419715 a001 2971215073/9062201101803*5778^(11/18) 6524758544419715 a001 567451585/1730726404001*5778^(11/18) 6524758544419715 a001 433494437/1322157322203*5778^(11/18) 6524758544419715 a001 165580141/505019158607*5778^(11/18) 6524758544419715 a001 31622993/96450076809*5778^(11/18) 6524758544419717 a001 24157817/73681302247*5778^(11/18) 6524758544419730 a001 9227465/28143753123*5778^(11/18) 6524758544419820 a001 1762289/5374978561*5778^(11/18) 6524758544420435 a001 1346269/4106118243*5778^(11/18) 6524758544424650 a001 514229/1568397607*5778^(11/18) 6524758544453450 a001 10946/20633239*5778^(5/9) 6524758544453539 a001 98209/299537289*5778^(11/18) 6524758544651552 a001 75025/228826127*5778^(11/18) 6524758545376680 a001 1597/12752043*3571^(13/17) 6524758546008747 a001 28657/87403803*5778^(11/18) 6524758548478697 a001 2255/29134601*5778^(7/9) 6524758551117247 a001 17711/87403803*5778^(2/3) 6524758553911477 a001 4181/710647*5778^(5/18) 6524758554670434 a001 46368/228826127*5778^(2/3) 6524758555188837 a001 121393/599074578*5778^(2/3) 6524758555264471 a001 317811/1568397607*5778^(2/3) 6524758555275506 a001 832040/4106118243*5778^(2/3) 6524758555277116 a001 987/4870846*5778^(2/3) 6524758555277351 a001 5702887/28143753123*5778^(2/3) 6524758555277385 a001 14930352/73681302247*5778^(2/3) 6524758555277390 a001 39088169/192900153618*5778^(2/3) 6524758555277391 a001 102334155/505019158607*5778^(2/3) 6524758555277391 a001 267914296/1322157322203*5778^(2/3) 6524758555277391 a001 701408733/3461452808002*5778^(2/3) 6524758555277391 a001 1836311903/9062201101803*5778^(2/3) 6524758555277391 a001 4807526976/23725150497407*5778^(2/3) 6524758555277391 a001 2971215073/14662949395604*5778^(2/3) 6524758555277391 a001 1134903170/5600748293801*5778^(2/3) 6524758555277391 a001 433494437/2139295485799*5778^(2/3) 6524758555277391 a001 165580141/817138163596*5778^(2/3) 6524758555277391 a001 63245986/312119004989*5778^(2/3) 6524758555277393 a001 24157817/119218851371*5778^(2/3) 6524758555277406 a001 9227465/45537549124*5778^(2/3) 6524758555277496 a001 3524578/17393796001*5778^(2/3) 6524758555278111 a001 1346269/6643838879*5778^(2/3) 6524758555282326 a001 514229/2537720636*5778^(2/3) 6524758555311105 a001 5473/16692641*5778^(11/18) 6524758555311216 a001 196418/969323029*5778^(2/3) 6524758555509228 a001 75025/370248451*5778^(2/3) 6524758556866425 a001 28657/141422324*5778^(2/3) 6524758559336375 a001 6765/141422324*5778^(5/6) 6524758561974924 a001 17711/141422324*5778^(13/18) 6524758563826807 a001 2255/90481*2207^(1/8) 6524758564346805 a001 2584/271443*2207^(1/4) 6524758564787008 a001 4181/1149851*5778^(1/3) 6524758565528111 a001 46368/370248451*5778^(13/18) 6524758566046513 a001 121393/969323029*5778^(13/18) 6524758566061204 m001 (-Riemann1stZero+Thue)/(1+MertensB2) 6524758566122147 a001 317811/2537720636*5778^(13/18) 6524758566133182 a001 832040/6643838879*5778^(13/18) 6524758566134792 a001 2178309/17393796001*5778^(13/18) 6524758566135027 a001 1597/12752044*5778^(13/18) 6524758566135061 a001 14930352/119218851371*5778^(13/18) 6524758566135066 a001 39088169/312119004989*5778^(13/18) 6524758566135067 a001 102334155/817138163596*5778^(13/18) 6524758566135067 a001 267914296/2139295485799*5778^(13/18) 6524758566135067 a001 701408733/5600748293801*5778^(13/18) 6524758566135067 a001 1836311903/14662949395604*5778^(13/18) 6524758566135067 a001 2971215073/23725150497407*5778^(13/18) 6524758566135067 a001 1134903170/9062201101803*5778^(13/18) 6524758566135067 a001 433494437/3461452808002*5778^(13/18) 6524758566135067 a001 165580141/1322157322203*5778^(13/18) 6524758566135068 a001 63245986/505019158607*5778^(13/18) 6524758566135069 a001 24157817/192900153618*5778^(13/18) 6524758566135083 a001 9227465/73681302247*5778^(13/18) 6524758566135172 a001 3524578/28143753123*5778^(13/18) 6524758566135787 a001 1346269/10749957122*5778^(13/18) 6524758566140002 a001 514229/4106118243*5778^(13/18) 6524758566168789 a001 10946/54018521*5778^(2/3) 6524758566168892 a001 196418/1568397607*5778^(13/18) 6524758566366904 a001 75025/599074578*5778^(13/18) 6524758567724100 a001 28657/228826127*5778^(13/18) 6524758570194050 a001 6765/228826127*5778^(8/9) 6524758572832600 a001 17711/228826127*5778^(7/9) 6524758574286756 a001 17480761/267914296 6524758574286757 a004 Fibonacci(19)/Lucas(19)/(1/2+sqrt(5)/2)^4 6524758575474696 a001 1597/7881196*3571^(12/17) 6524758575637865 a001 4181/1860498*5778^(7/18) 6524758576385787 a001 2576/33281921*5778^(7/9) 6524758576904190 a001 121393/1568397607*5778^(7/9) 6524758576979824 a001 105937/1368706081*5778^(7/9) 6524758576990858 a001 416020/5374978561*5778^(7/9) 6524758576992468 a001 726103/9381251041*5778^(7/9) 6524758576992703 a001 5702887/73681302247*5778^(7/9) 6524758576992738 a001 2584/33385281*5778^(7/9) 6524758576992743 a001 39088169/505019158607*5778^(7/9) 6524758576992743 a001 34111385/440719107401*5778^(7/9) 6524758576992743 a001 133957148/1730726404001*5778^(7/9) 6524758576992743 a001 233802911/3020733700601*5778^(7/9) 6524758576992743 a001 1836311903/23725150497407*5778^(7/9) 6524758576992743 a001 567451585/7331474697802*5778^(7/9) 6524758576992743 a001 433494437/5600748293801*5778^(7/9) 6524758576992743 a001 165580141/2139295485799*5778^(7/9) 6524758576992744 a001 31622993/408569081798*5778^(7/9) 6524758576992746 a001 24157817/312119004989*5778^(7/9) 6524758576992759 a001 9227465/119218851371*5778^(7/9) 6524758576992848 a001 1762289/22768774562*5778^(7/9) 6524758576993463 a001 1346269/17393796001*5778^(7/9) 6524758576997678 a001 514229/6643838879*5778^(7/9) 6524758577026463 a001 10946/87403803*5778^(13/18) 6524758577026568 a001 98209/1268860318*5778^(7/9) 6524758577224580 a001 75025/969323029*5778^(7/9) 6524758578581777 a001 28657/370248451*5778^(7/9) 6524758581051727 a001 6765/370248451*5778^(17/18) 6524758582751124 a001 4181/103682*2207^(1/16) 6524758583690277 a001 17711/370248451*5778^(5/6) 6524758586498146 a001 4181/3010349*5778^(4/9) 6524758587243463 a001 46368/969323029*5778^(5/6) 6524758587761866 a001 121393/2537720636*5778^(5/6) 6524758587837500 a001 317811/6643838879*5778^(5/6) 6524758587848535 a001 832040/17393796001*5778^(5/6) 6524758587850145 a001 2178309/45537549124*5778^(5/6) 6524758587850380 a001 5702887/119218851371*5778^(5/6) 6524758587850414 a001 14930352/312119004989*5778^(5/6) 6524758587850419 a001 4181/87403804*5778^(5/6) 6524758587850420 a001 102334155/2139295485799*5778^(5/6) 6524758587850420 a001 267914296/5600748293801*5778^(5/6) 6524758587850420 a001 701408733/14662949395604*5778^(5/6) 6524758587850420 a001 1134903170/23725150497407*5778^(5/6) 6524758587850420 a001 433494437/9062201101803*5778^(5/6) 6524758587850420 a001 165580141/3461452808002*5778^(5/6) 6524758587850420 a001 63245986/1322157322203*5778^(5/6) 6524758587850422 a001 24157817/505019158607*5778^(5/6) 6524758587850435 a001 9227465/192900153618*5778^(5/6) 6524758587850525 a001 3524578/73681302247*5778^(5/6) 6524758587851140 a001 1346269/28143753123*5778^(5/6) 6524758587855355 a001 514229/10749957122*5778^(5/6) 6524758587884140 a001 5473/70711162*5778^(7/9) 6524758587884244 a001 196418/4106118243*5778^(5/6) 6524758588082256 a001 75025/1568397607*5778^(5/6) 6524758588256344 a001 17711/710647*2207^(1/8) 6524758589439453 a001 28657/599074578*5778^(5/6) 6524758591820565 a001 2576/103361*2207^(1/8) 6524758591909403 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^42 6524758592340578 a001 121393/4870847*2207^(1/8) 6524758592416447 a001 105937/4250681*2207^(1/8) 6524758592427516 a001 416020/16692641*2207^(1/8) 6524758592429131 a001 726103/29134601*2207^(1/8) 6524758592429366 a001 5702887/228826127*2207^(1/8) 6524758592429401 a001 829464/33281921*2207^(1/8) 6524758592429406 a001 39088169/1568397607*2207^(1/8) 6524758592429406 a001 34111385/1368706081*2207^(1/8) 6524758592429407 a001 133957148/5374978561*2207^(1/8) 6524758592429407 a001 233802911/9381251041*2207^(1/8) 6524758592429407 a001 1836311903/73681302247*2207^(1/8) 6524758592429407 a001 267084832/10716675201*2207^(1/8) 6524758592429407 a001 12586269025/505019158607*2207^(1/8) 6524758592429407 a001 10983760033/440719107401*2207^(1/8) 6524758592429407 a001 43133785636/1730726404001*2207^(1/8) 6524758592429407 a001 75283811239/3020733700601*2207^(1/8) 6524758592429407 a001 182717648081/7331474697802*2207^(1/8) 6524758592429407 a001 139583862445/5600748293801*2207^(1/8) 6524758592429407 a001 53316291173/2139295485799*2207^(1/8) 6524758592429407 a001 10182505537/408569081798*2207^(1/8) 6524758592429407 a001 7778742049/312119004989*2207^(1/8) 6524758592429407 a001 2971215073/119218851371*2207^(1/8) 6524758592429407 a001 567451585/22768774562*2207^(1/8) 6524758592429407 a001 433494437/17393796001*2207^(1/8) 6524758592429407 a001 165580141/6643838879*2207^(1/8) 6524758592429407 a001 31622993/1268860318*2207^(1/8) 6524758592429409 a001 24157817/969323029*2207^(1/8) 6524758592429422 a001 9227465/370248451*2207^(1/8) 6524758592429512 a001 1762289/70711162*2207^(1/8) 6524758592430129 a001 1346269/54018521*2207^(1/8) 6524758592434357 a001 514229/20633239*2207^(1/8) 6524758592463336 a001 98209/3940598*2207^(1/8) 6524758592661963 a001 75025/3010349*2207^(1/8) 6524758594023375 a001 28657/1149851*2207^(1/8) 6524758594547953 a001 17711/599074578*5778^(8/9) 6524758597354827 a001 4181/4870847*5778^(1/2) 6524758598101139 a001 6624/224056801*5778^(8/9) 6524758598619542 a001 121393/4106118243*5778^(8/9) 6524758598695176 a001 317811/10749957122*5778^(8/9) 6524758598706211 a001 832040/28143753123*5778^(8/9) 6524758598707821 a001 311187/10525900321*5778^(8/9) 6524758598708056 a001 5702887/192900153618*5778^(8/9) 6524758598708090 a001 14930352/505019158607*5778^(8/9) 6524758598708095 a001 39088169/1322157322203*5778^(8/9) 6524758598708096 a001 6765/228826126*5778^(8/9) 6524758598708096 a001 267914296/9062201101803*5778^(8/9) 6524758598708096 a001 701408733/23725150497407*5778^(8/9) 6524758598708096 a001 433494437/14662949395604*5778^(8/9) 6524758598708096 a001 165580141/5600748293801*5778^(8/9) 6524758598708096 a001 63245986/2139295485799*5778^(8/9) 6524758598708098 a001 24157817/817138163596*5778^(8/9) 6524758598708111 a001 9227465/312119004989*5778^(8/9) 6524758598708201 a001 3524578/119218851371*5778^(8/9) 6524758598708816 a001 1346269/45537549124*5778^(8/9) 6524758598713031 a001 514229/17393796001*5778^(8/9) 6524758598741816 a001 10946/228826127*5778^(5/6) 6524758598741920 a001 196418/6643838879*5778^(8/9) 6524758598939933 a001 75025/2537720636*5778^(8/9) 6524758600297129 a001 28657/969323029*5778^(8/9) 6524758601187685 r009 Re(z^3+c),c=-1/20+27/38*I,n=13 6524758603354627 a001 5473/219602*2207^(1/8) 6524758605405629 a001 17711/969323029*5778^(17/18) 6524758605572186 a001 1597/4870847*3571^(11/17) 6524758608212883 a001 4181/7881196*5778^(5/9) 6524758608958815 a001 11592/634430159*5778^(17/18) 6524758609477218 a001 121393/6643838879*5778^(17/18) 6524758609552852 a001 10959/599786069*5778^(17/18) 6524758609563887 a001 208010/11384387281*5778^(17/18) 6524758609565497 a001 2178309/119218851371*5778^(17/18) 6524758609565732 a001 5702887/312119004989*5778^(17/18) 6524758609565766 a001 3732588/204284540899*5778^(17/18) 6524758609565771 a001 39088169/2139295485799*5778^(17/18) 6524758609565772 a001 102334155/5600748293801*5778^(17/18) 6524758609565772 a001 10946/599074579*5778^(17/18) 6524758609565772 a001 433494437/23725150497407*5778^(17/18) 6524758609565772 a001 165580141/9062201101803*5778^(17/18) 6524758609565772 a001 31622993/1730726404001*5778^(17/18) 6524758609565774 a001 24157817/1322157322203*5778^(17/18) 6524758609565787 a001 9227465/505019158607*5778^(17/18) 6524758609565877 a001 1762289/96450076809*5778^(17/18) 6524758609566492 a001 1346269/73681302247*5778^(17/18) 6524758609570707 a001 514229/28143753123*5778^(17/18) 6524758609599492 a001 10946/370248451*5778^(8/9) 6524758609599597 a001 98209/5374978561*5778^(17/18) 6524758609797609 a001 75025/4106118243*5778^(17/18) 6524758610821735 k002 Champernowne real with 157/2*n^2-107/2*n+40 6524758611154805 a001 28657/1568397607*5778^(17/18) 6524758616263305 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^44 6524758616818395 a001 17393796001/1597*144^(14/17) 6524758619070414 a001 4181/12752043*5778^(11/18) 6524758619816492 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^46 6524758620334895 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^48 6524758620410529 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^50 6524758620421563 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^52 6524758620423173 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^54 6524758620423408 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^56 6524758620423443 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^58 6524758620423448 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^60 6524758620423448 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^62 6524758620423448 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^64 6524758620423448 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^66 6524758620423448 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^68 6524758620423448 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^70 6524758620423448 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^72 6524758620423448 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^74 6524758620423448 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^76 6524758620423448 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^78 6524758620423448 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^80 6524758620423448 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^82 6524758620423448 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^84 6524758620423448 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^86 6524758620423448 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^88 6524758620423448 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^90 6524758620423448 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^92 6524758620423448 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^94 6524758620423448 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^96 6524758620423448 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^98 6524758620423448 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^100 6524758620423448 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^99 6524758620423448 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^97 6524758620423448 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^95 6524758620423448 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^93 6524758620423448 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^91 6524758620423448 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^89 6524758620423448 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^87 6524758620423448 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^85 6524758620423448 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^83 6524758620423448 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^81 6524758620423448 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^79 6524758620423448 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^77 6524758620423448 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^75 6524758620423448 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^73 6524758620423448 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^71 6524758620423448 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^69 6524758620423448 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^67 6524758620423448 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^65 6524758620423448 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^63 6524758620423449 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^61 6524758620423451 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^59 6524758620423454 a001 1/1292*(1/2+1/2*5^(1/2))^14 6524758620423464 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^57 6524758620423553 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^55 6524758620424168 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^53 6524758620428383 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^51 6524758620457168 a001 5473/299537289*5778^(17/18) 6524758620457273 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^49 6524758620655285 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^47 6524758622012482 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^45 6524758624583592 a001 5778/17711*8^(1/3) 6524758629928146 a001 4181/20633239*5778^(2/3) 6524758631314845 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^43 6524758635671052 a001 1597/3010349*3571^(10/17) 6524758640785801 a001 4181/33385282*5778^(13/18) 6524758647671251 a001 6765/439204*2207^(3/16) 6524758648191249 a001 34/5779*2207^(5/16) 6524758648842754 a007 Real Root Of 142*x^4-866*x^3-617*x^2+36*x+454 6524758651643486 a001 4181/54018521*5778^(7/9) 6524758658783276 a001 305/3940598*1364^(14/15) 6524758662501159 a001 4181/87403803*5778^(5/6) 6524758665766319 a001 1597/1860498*3571^(9/17) 6524758667311984 a001 4181/167761*2207^(1/8) 6524758671996264 a001 17711/1149851*2207^(3/16) 6524758673358837 a001 4181/141422324*5778^(8/9) 6524758675545236 a001 46368/3010349*2207^(3/16) 6524758676063024 a001 121393/7881196*2207^(3/16) 6524758676138568 a001 10959/711491*2207^(3/16) 6524758676149590 a001 832040/54018521*2207^(3/16) 6524758676151198 a001 2178309/141422324*2207^(3/16) 6524758676151432 a001 5702887/370248451*2207^(3/16) 6524758676151466 a001 14930352/969323029*2207^(3/16) 6524758676151471 a001 39088169/2537720636*2207^(3/16) 6524758676151472 a001 102334155/6643838879*2207^(3/16) 6524758676151472 a001 9238424/599786069*2207^(3/16) 6524758676151472 a001 701408733/45537549124*2207^(3/16) 6524758676151472 a001 1836311903/119218851371*2207^(3/16) 6524758676151472 a001 4807526976/312119004989*2207^(3/16) 6524758676151472 a001 12586269025/817138163596*2207^(3/16) 6524758676151472 a001 32951280099/2139295485799*2207^(3/16) 6524758676151472 a001 86267571272/5600748293801*2207^(3/16) 6524758676151472 a001 7787980473/505618944676*2207^(3/16) 6524758676151472 a001 365435296162/23725150497407*2207^(3/16) 6524758676151472 a001 139583862445/9062201101803*2207^(3/16) 6524758676151472 a001 53316291173/3461452808002*2207^(3/16) 6524758676151472 a001 20365011074/1322157322203*2207^(3/16) 6524758676151472 a001 7778742049/505019158607*2207^(3/16) 6524758676151472 a001 2971215073/192900153618*2207^(3/16) 6524758676151472 a001 1134903170/73681302247*2207^(3/16) 6524758676151472 a001 433494437/28143753123*2207^(3/16) 6524758676151472 a001 165580141/10749957122*2207^(3/16) 6524758676151473 a001 63245986/4106118243*2207^(3/16) 6524758676151475 a001 24157817/1568397607*2207^(3/16) 6524758676151488 a001 9227465/599074578*2207^(3/16) 6524758676151577 a001 3524578/228826127*2207^(3/16) 6524758676152191 a001 1346269/87403803*2207^(3/16) 6524758676156401 a001 514229/33385282*2207^(3/16) 6524758676185257 a001 196418/12752043*2207^(3/16) 6524758676383034 a001 75025/4870847*2207^(3/16) 6524758677738621 a001 28657/1860498*2207^(3/16) 6524758682761852 a008 Real Root of x^2-x-4192 6524758684216512 a001 4181/228826127*5778^(17/18) 6524758684479817 r005 Im(z^2+c),c=-53/48+5/64*I,n=27 6524758687029949 a001 10946/710647*2207^(3/16) 6524758695074189 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^41 6524758695871010 a001 1597/1149851*3571^(8/17) 6524758697547029 a007 Real Root Of 132*x^4-231*x^3+174*x^2-458*x-461 6524758698689119 a001 1597/39603*1364^(1/15) 6524758705729539 p004 log(26813/13963) 6524758710851741 k002 Champernowne real with 79*n^2-55*n+41 6524758718854226 r005 Im(z^2+c),c=-27/86+6/61*I,n=16 6524758725951027 a001 1597/710647*3571^(7/17) 6524758731346573 a001 6765/710647*2207^(1/4) 6524758731866571 a001 2584/710647*2207^(3/8) 6524758733082698 m001 2*Pi/GAMMA(5/6)/(Lehmer^GaussKuzminWirsing) 6524758733082698 m001 GAMMA(1/6)/(Lehmer^GaussKuzminWirsing) 6524758737517581 s002 sum(A229744[n]/(n*10^n-1),n=1..infinity) 6524758741210865 a001 2063324/31622993 6524758741210871 a004 Fibonacci(17)/Lucas(18)/(1/2+sqrt(5)/2)^3 6524758741210905 a004 Fibonacci(18)/Lucas(17)/(1/2+sqrt(5)/2)^5 6524758743507003 m001 (Zeta(1,2)+FeigenbaumDelta)/(Kac-ZetaQ(2)) 6524758746180200 m001 (-CopelandErdos+Robbin)/((1+3^(1/2))^(1/2)-1) 6524758750713660 a001 4181/271443*2207^(3/16) 6524758755711511 a001 17711/1860498*2207^(1/4) 6524758756095643 a001 1597/439204*3571^(6/17) 6524758759266307 a001 46368/4870847*2207^(1/4) 6524758759784945 a001 121393/12752043*2207^(1/4) 6524758759860613 a001 317811/33385282*2207^(1/4) 6524758759871653 a001 832040/87403803*2207^(1/4) 6524758759873264 a001 46347/4868641*2207^(1/4) 6524758759873499 a001 5702887/599074578*2207^(1/4) 6524758759873533 a001 14930352/1568397607*2207^(1/4) 6524758759873538 a001 39088169/4106118243*2207^(1/4) 6524758759873539 a001 102334155/10749957122*2207^(1/4) 6524758759873539 a001 267914296/28143753123*2207^(1/4) 6524758759873539 a001 701408733/73681302247*2207^(1/4) 6524758759873539 a001 1836311903/192900153618*2207^(1/4) 6524758759873539 a001 102287808/10745088481*2207^(1/4) 6524758759873539 a001 12586269025/1322157322203*2207^(1/4) 6524758759873539 a001 32951280099/3461452808002*2207^(1/4) 6524758759873539 a001 86267571272/9062201101803*2207^(1/4) 6524758759873539 a001 225851433717/23725150497407*2207^(1/4) 6524758759873539 a001 139583862445/14662949395604*2207^(1/4) 6524758759873539 a001 53316291173/5600748293801*2207^(1/4) 6524758759873539 a001 20365011074/2139295485799*2207^(1/4) 6524758759873539 a001 7778742049/817138163596*2207^(1/4) 6524758759873539 a001 2971215073/312119004989*2207^(1/4) 6524758759873539 a001 1134903170/119218851371*2207^(1/4) 6524758759873539 a001 433494437/45537549124*2207^(1/4) 6524758759873539 a001 165580141/17393796001*2207^(1/4) 6524758759873539 a001 63245986/6643838879*2207^(1/4) 6524758759873541 a001 24157817/2537720636*2207^(1/4) 6524758759873554 a001 9227465/969323029*2207^(1/4) 6524758759873644 a001 3524578/370248451*2207^(1/4) 6524758759874259 a001 1346269/141422324*2207^(1/4) 6524758759878476 a001 514229/54018521*2207^(1/4) 6524758759907379 a001 196418/20633239*2207^(1/4) 6524758760105481 a001 75025/7881196*2207^(1/4) 6524758761463292 a001 28657/3010349*2207^(1/4) 6524758770769871 a001 10946/1149851*2207^(1/4) 6524758783575521 a005 (1/sin(69/163*Pi))^64 6524758786071136 a001 1597/271443*3571^(5/17) 6524758786167734 m005 (1/2*exp(1)-4/9)/(11/12*Zeta(3)+3/10) 6524758805413113 m001 (Si(Pi)+GAMMA(1/6)*GAMMA(11/24))/GAMMA(11/24) 6524758810881747 k002 Champernowne real with 159/2*n^2-113/2*n+42 6524758815086495 a001 6765/1149851*2207^(5/16) 6524758815606493 a001 2584/1149851*2207^(7/16) 6524758816489398 a001 1597/167761*3571^(4/17) 6524758820665957 a001 843/514229*4181^(28/39) 6524758833617830 r009 Im(z^3+c),c=-47/86+10/33*I,n=3 6524758834558106 a001 4181/439204*2207^(1/4) 6524758839436184 a001 17711/3010349*2207^(5/16) 6524758842988755 a001 11592/1970299*2207^(5/16) 6524758843507069 a001 121393/20633239*2207^(5/16) 6524758843582689 a001 317811/54018521*2207^(5/16) 6524758843593722 a001 208010/35355581*2207^(5/16) 6524758843595332 a001 2178309/370248451*2207^(5/16) 6524758843595567 a001 5702887/969323029*2207^(5/16) 6524758843595601 a001 196452/33391061*2207^(5/16) 6524758843595606 a001 39088169/6643838879*2207^(5/16) 6524758843595607 a001 102334155/17393796001*2207^(5/16) 6524758843595607 a001 66978574/11384387281*2207^(5/16) 6524758843595607 a001 701408733/119218851371*2207^(5/16) 6524758843595607 a001 1836311903/312119004989*2207^(5/16) 6524758843595607 a001 1201881744/204284540899*2207^(5/16) 6524758843595607 a001 12586269025/2139295485799*2207^(5/16) 6524758843595607 a001 32951280099/5600748293801*2207^(5/16) 6524758843595607 a001 1135099622/192933544679*2207^(5/16) 6524758843595607 a001 139583862445/23725150497407*2207^(5/16) 6524758843595607 a001 53316291173/9062201101803*2207^(5/16) 6524758843595607 a001 10182505537/1730726404001*2207^(5/16) 6524758843595607 a001 7778742049/1322157322203*2207^(5/16) 6524758843595607 a001 2971215073/505019158607*2207^(5/16) 6524758843595607 a001 567451585/96450076809*2207^(5/16) 6524758843595607 a001 433494437/73681302247*2207^(5/16) 6524758843595607 a001 165580141/28143753123*2207^(5/16) 6524758843595607 a001 31622993/5374978561*2207^(5/16) 6524758843595609 a001 24157817/4106118243*2207^(5/16) 6524758843595622 a001 9227465/1568397607*2207^(5/16) 6524758843595712 a001 1762289/299537289*2207^(5/16) 6524758843596327 a001 1346269/228826127*2207^(5/16) 6524758843600541 a001 514229/87403803*2207^(5/16) 6524758843629426 a001 98209/16692641*2207^(5/16) 6524758843827404 a001 75025/12752043*2207^(5/16) 6524758845184365 a001 28657/4870847*2207^(5/16) 6524758845748477 a001 1597/103682*3571^(3/17) 6524758852693358 a007 Real Root Of 99*x^4-731*x^3-605*x^2-71*x+489 6524758854485119 a001 5473/930249*2207^(5/16) 6524758861998306 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^40 6524758865927293 a001 1597/141422324*9349^(18/19) 6524758867991818 r005 Im(z^2+c),c=-47/102+13/58*I,n=4 6524758869856278 a001 1597/87403803*9349^(17/19) 6524758873785268 a001 1597/54018521*9349^(16/19) 6524758877714247 a001 1597/33385282*9349^(15/19) 6524758878042339 a001 1597/64079*3571^(2/17) 6524758878068498 m001 ln(5)*Artin*Trott 6524758881643254 a001 1597/20633239*9349^(14/19) 6524758885572185 a001 1597/12752043*9349^(13/19) 6524758886952397 a001 2584/64079*843^(1/14) 6524758888327604 a007 Real Root Of 111*x^4-360*x^3-424*x^2-873*x+830 6524758889501317 a001 1597/7881196*9349^(12/19) 6524758892582683 a001 610/4870847*1364^(13/15) 6524758893429923 a001 1597/4870847*9349^(11/19) 6524758893700133 m001 (TreeGrowth2nd+ZetaP(4))/(ln(2)+Paris) 6524758896411962 r005 Re(z^2+c),c=-83/114+17/47*I,n=11 6524758897359905 a001 1597/3010349*9349^(10/19) 6524758898801744 a001 55/15126*2207^(3/8) 6524758899321742 a001 1292/930249*2207^(1/2) 6524758901286287 a001 1597/1860498*9349^(9/19) 6524758902391035 a001 1597/39603*3571^(1/17) 6524758905222093 a001 1597/1149851*9349^(8/19) 6524758908135003 a001 10803705/165580141 6524758908135004 a004 Fibonacci(17)/Lucas(20)/(1/2+sqrt(5)/2) 6524758908135044 a004 Fibonacci(20)/Lucas(17)/(1/2+sqrt(5)/2)^7 6524758909133225 a001 1597/710647*9349^(7/19) 6524758910911753 k002 Champernowne real with 80*n^2-58*n+43 6524758913108956 a001 1597/439204*9349^(6/19) 6524758916915564 a001 1597/271443*9349^(5/19) 6524758918233430 a001 4181/710647*2207^(5/16) 6524758921164941 a001 1597/167761*9349^(4/19) 6524758923157258 a001 17711/4870847*2207^(3/8) 6524758924255134 a001 1597/103682*9349^(3/19) 6524758925757654 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^42 6524758926276292 a001 1597/370248451*24476^(20/21) 6524758926710679 a001 15456/4250681*2207^(3/8) 6524758926794929 a001 1597/228826127*24476^(19/21) 6524758927229116 a001 121393/33385282*2207^(3/8) 6524758927304755 a001 105937/29134601*2207^(3/8) 6524758927313568 a001 1597/141422324*24476^(6/7) 6524758927315791 a001 832040/228826127*2207^(3/8) 6524758927317401 a001 726103/199691526*2207^(3/8) 6524758927317636 a001 5702887/1568397607*2207^(3/8) 6524758927317670 a001 4976784/1368706081*2207^(3/8) 6524758927317675 a001 39088169/10749957122*2207^(3/8) 6524758927317676 a001 831985/228811001*2207^(3/8) 6524758927317676 a001 267914296/73681302247*2207^(3/8) 6524758927317676 a001 233802911/64300051206*2207^(3/8) 6524758927317676 a001 1836311903/505019158607*2207^(3/8) 6524758927317676 a001 1602508992/440719107401*2207^(3/8) 6524758927317676 a001 12586269025/3461452808002*2207^(3/8) 6524758927317676 a001 10983760033/3020733700601*2207^(3/8) 6524758927317676 a001 86267571272/23725150497407*2207^(3/8) 6524758927317676 a001 53316291173/14662949395604*2207^(3/8) 6524758927317676 a001 20365011074/5600748293801*2207^(3/8) 6524758927317676 a001 7778742049/2139295485799*2207^(3/8) 6524758927317676 a001 2971215073/817138163596*2207^(3/8) 6524758927317676 a001 1134903170/312119004989*2207^(3/8) 6524758927317676 a001 433494437/119218851371*2207^(3/8) 6524758927317676 a001 165580141/45537549124*2207^(3/8) 6524758927317676 a001 63245986/17393796001*2207^(3/8) 6524758927317678 a001 24157817/6643838879*2207^(3/8) 6524758927317691 a001 9227465/2537720636*2207^(3/8) 6524758927317781 a001 3524578/969323029*2207^(3/8) 6524758927318396 a001 1346269/370248451*2207^(3/8) 6524758927322611 a001 514229/141422324*2207^(3/8) 6524758927351503 a001 196418/54018521*2207^(3/8) 6524758927549528 a001 75025/20633239*2207^(3/8) 6524758927832205 a001 1597/87403803*24476^(17/21) 6524758928350846 a001 1597/54018521*24476^(16/21) 6524758928559921 a001 1597/39603*9349^(1/19) 6524758928869475 a001 1597/33385282*24476^(5/7) 6524758928906814 a001 28657/7881196*2207^(3/8) 6524758929388135 a001 1597/20633239*24476^(2/3) 6524758929906717 a001 1597/12752043*24476^(13/21) 6524758930380111 a001 1597/64079*9349^(2/19) 6524758930425500 a001 1597/7881196*24476^(4/7) 6524758930943758 a001 1597/4870847*24476^(11/21) 6524758931463391 a001 1597/3010349*24476^(10/21) 6524758931970269 a001 1597/39603*24476^(1/21) 6524758931979424 a001 1597/1860498*24476^(3/7) 6524758932419819 a001 1597/39603*64079^(1/23) 6524758932488907 a001 28284467/433494437 6524758932488907 a001 1597/79206+1597/79206*5^(1/2) 6524758932488947 a004 Fibonacci(22)/Lucas(17)/(1/2+sqrt(5)/2)^9 6524758932504882 a001 1597/1149851*24476^(8/21) 6524758932514197 a001 1597/39603*103682^(1/24) 6524758932678005 a001 1597/39603*39603^(1/22) 6524758933005665 a001 1597/710647*24476^(1/3) 6524758933571047 a001 1597/439204*24476^(2/7) 6524758933914609 a001 1597/39603*15127^(1/20) 6524758933967307 a001 1597/271443*24476^(5/21) 6524758934486180 a001 1597/103682*24476^(1/7) 6524758934806336 a001 1597/167761*24476^(4/21) 6524758935060017 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^44 6524758935129106 a001 1597/969323029*64079^(22/23) 6524758935198194 a001 1597/599074578*64079^(21/23) 6524758935267282 a001 1597/370248451*64079^(20/23) 6524758935336371 a001 1597/228826127*64079^(19/23) 6524758935405459 a001 1597/141422324*64079^(18/23) 6524758935474547 a001 1597/87403803*64079^(17/23) 6524758935543638 a001 1597/54018521*64079^(16/23) 6524758935612719 a001 1597/33385282*64079^(15/23) 6524758935681828 a001 1597/20633239*64079^(14/23) 6524758935750861 a001 1597/12752043*64079^(13/23) 6524758935820095 a001 1597/7881196*64079^(12/23) 6524758935834829 a001 1597/103682*64079^(3/23) 6524758935888803 a001 1597/4870847*64079^(11/23) 6524758935958886 a001 1597/3010349*64079^(10/23) 6524758936025370 a001 1597/1860498*64079^(9/23) 6524758936038335 a001 1597/103682*439204^(1/9) 6524758936042084 a001 1597/103682*7881196^(1/11) 6524758936042094 a001 1597/103682*141422324^(1/13) 6524758936042094 a001 37024848/567451585 6524758936042094 a001 1597/103682*2537720636^(1/15) 6524758936042094 a001 1597/103682*45537549124^(1/17) 6524758936042094 a001 1597/103682*14662949395604^(1/21) 6524758936042094 a001 1597/103682*(1/2+1/2*5^(1/2))^3 6524758936042094 a001 1597/103682*192900153618^(1/18) 6524758936042094 a001 1597/103682*10749957122^(1/16) 6524758936042094 a001 1597/103682*599074578^(1/14) 6524758936042094 a001 1597/103682*33385282^(1/12) 6524758936042134 a004 Fibonacci(24)/Lucas(17)/(1/2+sqrt(5)/2)^11 6524758936042282 a001 1597/103682*1860498^(1/10) 6524758936101278 a001 1597/1149851*64079^(8/23) 6524758936117963 a001 1597/103682*103682^(1/8) 6524758936152512 a001 1597/710647*64079^(7/23) 6524758936215055 a001 1597/271443*64079^(5/23) 6524758936268345 a001 1597/439204*64079^(6/23) 6524758936417214 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^46 6524758936463581 a001 1597/370248451*167761^(4/5) 6524758936509943 a001 1597/33385282*167761^(3/5) 6524758936514129 a001 1597/271443*167761^(1/5) 6524758936557036 a001 1597/3010349*167761^(2/5) 6524758936560494 a001 1597/271443*20633239^(1/7) 6524758936560497 a001 193864621/2971215073 6524758936560497 a001 1597/271443*2537720636^(1/9) 6524758936560497 a001 1597/271443*312119004989^(1/11) 6524758936560497 a001 1597/271443*(1/2+1/2*5^(1/2))^5 6524758936560497 a001 1597/271443*28143753123^(1/10) 6524758936560497 a001 1597/271443*228826127^(1/8) 6524758936560537 a004 Fibonacci(26)/Lucas(17)/(1/2+sqrt(5)/2)^13 6524758936560811 a001 1597/271443*1860498^(1/6) 6524758936604534 a001 1597/167761*64079^(4/23) 6524758936609386 a001 1597/103682*39603^(3/22) 6524758936615226 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^48 6524758936618984 a001 1597/2537720636*439204^(8/9) 6524758936622742 a001 1597/599074578*439204^(7/9) 6524758936626501 a001 1597/141422324*439204^(2/3) 6524758936630253 a001 1597/33385282*439204^(5/9) 6524758936634122 a001 1597/7881196*439204^(4/9) 6524758936635891 a001 1597/1860498*439204^(1/3) 6524758936636128 a001 1597/710647*20633239^(1/5) 6524758936636131 a001 39041859/598364773 6524758936636131 a001 1597/710647*17393796001^(1/7) 6524758936636131 a001 1597/710647*14662949395604^(1/9) 6524758936636131 a001 1597/710647*(1/2+1/2*5^(1/2))^7 6524758936636131 a001 1597/710647*599074578^(1/6) 6524758936636171 a004 Fibonacci(28)/Lucas(17)/(1/2+sqrt(5)/2)^15 6524758936639361 a001 1597/710647*710647^(1/4) 6524758936644116 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^50 6524758936647137 a001 1597/1860498*7881196^(3/11) 6524758936647165 a001 1597/1860498*141422324^(3/13) 6524758936647165 a001 1597/1860498*2537720636^(1/5) 6524758936647165 a001 416020/6376021 6524758936647165 a001 1597/1860498*45537549124^(3/17) 6524758936647165 a001 1597/1860498*14662949395604^(1/7) 6524758936647165 a001 1597/1860498*(1/2+1/2*5^(1/2))^9 6524758936647165 a001 1597/1860498*192900153618^(1/6) 6524758936647165 a001 1597/1860498*10749957122^(3/16) 6524758936647166 a001 1597/1860498*599074578^(3/14) 6524758936647167 a001 1597/1860498*33385282^(1/4) 6524758936647206 a004 Fibonacci(30)/Lucas(17)/(1/2+sqrt(5)/2)^17 6524758936647731 a001 1597/1860498*1860498^(3/10) 6524758936648330 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^52 6524758936648740 a001 1597/4870847*7881196^(1/3) 6524758936648775 a001 3478759473/53316291173 6524758936648775 a001 1597/4870847*312119004989^(1/5) 6524758936648775 a001 1597/4870847*(1/2+1/2*5^(1/2))^11 6524758936648775 a001 1597/4870847*1568397607^(1/4) 6524758936648816 a004 Fibonacci(32)/Lucas(17)/(1/2+sqrt(5)/2)^19 6524758936648945 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^54 6524758936648955 a001 1597/45537549124*7881196^(10/11) 6524758936648965 a001 1597/10749957122*7881196^(9/11) 6524758936648974 a001 1597/2537720636*7881196^(8/11) 6524758936648980 a001 1597/969323029*7881196^(2/3) 6524758936648984 a001 1597/599074578*7881196^(7/11) 6524758936648994 a001 1597/141422324*7881196^(6/11) 6524758936648997 a001 1597/33385282*7881196^(5/11) 6524758936649010 a001 1597/12752043*141422324^(1/3) 6524758936649010 a001 9107510539/139583862445 6524758936649010 a001 1597/12752043*(1/2+1/2*5^(1/2))^13 6524758936649010 a001 1597/12752043*73681302247^(1/4) 6524758936649035 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^56 6524758936649037 a001 1597/45537549124*20633239^(6/7) 6524758936649038 a001 1597/33385282*20633239^(3/7) 6524758936649038 a001 1597/17393796001*20633239^(4/5) 6524758936649040 a001 1597/4106118243*20633239^(5/7) 6524758936649041 a001 1597/599074578*20633239^(3/5) 6524758936649042 a001 1597/370248451*20633239^(4/7) 6524758936649044 a001 1597/33385282*141422324^(5/13) 6524758936649045 a001 1597/33385282*2537720636^(1/3) 6524758936649045 a001 1597/33385282*45537549124^(5/17) 6524758936649045 a001 1597/33385282*312119004989^(3/11) 6524758936649045 a001 11921886072/182717648081 6524758936649045 a001 1597/33385282*14662949395604^(5/21) 6524758936649045 a001 1597/33385282*(1/2+1/2*5^(1/2))^15 6524758936649045 a001 1597/33385282*192900153618^(5/18) 6524758936649045 a001 1597/33385282*28143753123^(3/10) 6524758936649045 a001 1597/33385282*10749957122^(5/16) 6524758936649045 a001 1597/33385282*599074578^(5/14) 6524758936649045 a001 1597/33385282*228826127^(3/8) 6524758936649047 a001 1597/33385282*33385282^(5/12) 6524758936649048 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^58 6524758936649050 a001 1597/87403803*45537549124^(1/3) 6524758936649050 a001 62423805893/956722026041 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^17/Lucas(38) 6524758936649050 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^60 6524758936649050 a001 1597/817138163596*141422324^(12/13) 6524758936649050 a001 1597/192900153618*141422324^(11/13) 6524758936649050 a001 1597/45537549124*141422324^(10/13) 6524758936649050 a001 1597/10749957122*141422324^(9/13) 6524758936649050 a001 1597/6643838879*141422324^(2/3) 6524758936649050 a001 1597/2537720636*141422324^(8/13) 6524758936649050 a001 1597/599074578*141422324^(7/13) 6524758936649050 a001 1597/228826127*817138163596^(1/3) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^19/Lucas(40) 6524758936649050 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^62 6524758936649050 a001 1597/599074578*2537720636^(7/15) 6524758936649050 a001 1597/599074578*17393796001^(3/7) 6524758936649050 a001 1597/599074578*45537549124^(7/17) 6524758936649050 a001 39088172/599074577 6524758936649050 a001 1597/599074578*14662949395604^(1/3) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^21/Lucas(42) 6524758936649050 a001 1597/599074578*192900153618^(7/18) 6524758936649050 a001 1597/599074578*10749957122^(7/16) 6524758936649050 a001 1597/599074578*599074578^(1/2) 6524758936649050 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^64 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^23/Lucas(44) 6524758936649050 a001 1597/1568397607*4106118243^(1/2) 6524758936649050 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^66 6524758936649050 a001 1597/4106118243*2537720636^(5/9) 6524758936649050 a001 1597/14662949395604*2537720636^(14/15) 6524758936649050 a001 1597/5600748293801*2537720636^(8/9) 6524758936649050 a001 1597/3461452808002*2537720636^(13/15) 6524758936649050 a001 1597/817138163596*2537720636^(4/5) 6524758936649050 a001 1597/505019158607*2537720636^(7/9) 6524758936649050 a001 1597/192900153618*2537720636^(11/15) 6524758936649050 a001 1597/45537549124*2537720636^(2/3) 6524758936649050 a001 1597/10749957122*2537720636^(3/5) 6524758936649050 a001 1597/4106118243*312119004989^(5/11) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^25/Lucas(46) 6524758936649050 a001 1597/4106118243*3461452808002^(5/12) 6524758936649050 a001 1597/4106118243*28143753123^(1/2) 6524758936649050 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^68 6524758936649050 a001 1597/10749957122*45537549124^(9/17) 6524758936649050 a001 1597/10749957122*817138163596^(9/19) 6524758936649050 a001 1597/10749957122*14662949395604^(3/7) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^27/Lucas(48) 6524758936649050 a001 1597/10749957122*192900153618^(1/2) 6524758936649050 a001 1597/10749957122*10749957122^(9/16) 6524758936649050 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^70 6524758936649050 a001 1597/14662949395604*17393796001^(6/7) 6524758936649050 a001 1597/505019158607*17393796001^(5/7) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^29/Lucas(50) 6524758936649050 a001 1597/28143753123*1322157322203^(1/2) 6524758936649050 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^72 6524758936649050 a001 1597/14662949395604*45537549124^(14/17) 6524758936649050 a001 1597/3461452808002*45537549124^(13/17) 6524758936649050 a001 1597/192900153618*45537549124^(11/17) 6524758936649050 a001 1597/817138163596*45537549124^(12/17) 6524758936649050 a001 1597/312119004989*45537549124^(2/3) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^31/Lucas(52) 6524758936649050 a001 1597/73681302247*9062201101803^(1/2) 6524758936649050 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^74 6524758936649050 a001 1597/192900153618*312119004989^(3/5) 6524758936649050 a001 1597/192900153618*817138163596^(11/19) 6524758936649050 a001 1597/192900153618*14662949395604^(11/21) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^33/Lucas(54) 6524758936649050 a001 1597/505019158607*312119004989^(7/11) 6524758936649050 a001 1597/192900153618*192900153618^(11/18) 6524758936649050 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^76 6524758936649050 a001 1597/505019158607*14662949395604^(5/9) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(56) 6524758936649050 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^78 6524758936649050 a001 1597/14662949395604*817138163596^(14/19) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(58) 6524758936649050 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^80 6524758936649050 a001 1597/3461452808002*14662949395604^(13/21) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(60) 6524758936649050 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^82 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(62) 6524758936649050 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^84 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(64) 6524758936649050 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^86 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(66) 6524758936649050 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^88 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(68) 6524758936649050 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^90 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(70) 6524758936649050 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^92 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(72) 6524758936649050 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^94 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(74) 6524758936649050 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^96 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(76) 6524758936649050 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^98 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(78) 6524758936649050 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^100 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(80) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(82) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(84) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(86) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(88) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(90) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(92) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(94) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(96) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(98) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(100) 6524758936649050 a004 Fibonacci(17)*Lucas(1)/(1/2+sqrt(5)/2)^21 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(99) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(97) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(95) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(93) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(91) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(89) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(87) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(85) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(83) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(81) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(79) 6524758936649050 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^99 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(77) 6524758936649050 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^97 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(75) 6524758936649050 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^95 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(73) 6524758936649050 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^93 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(71) 6524758936649050 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^91 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(69) 6524758936649050 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^89 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(67) 6524758936649050 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^87 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(65) 6524758936649050 a001 1597/14662949395604*14662949395604^(2/3) 6524758936649050 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^85 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(63) 6524758936649050 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^83 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(61) 6524758936649050 a001 1597/5600748293801*23725150497407^(5/8) 6524758936649050 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^81 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(59) 6524758936649050 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^79 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(57) 6524758936649050 a001 1597/14662949395604*505019158607^(3/4) 6524758936649050 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^77 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^34/Lucas(55) 6524758936649050 a001 1597/3461452808002*192900153618^(13/18) 6524758936649050 a001 1597/14662949395604*192900153618^(7/9) 6524758936649050 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^75 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^32/Lucas(53) 6524758936649050 a001 1597/119218851371*23725150497407^(1/2) 6524758936649050 a001 1597/119218851371*505019158607^(4/7) 6524758936649050 a001 1597/817138163596*73681302247^(9/13) 6524758936649050 a001 1597/3461452808002*73681302247^(3/4) 6524758936649050 a001 1597/5600748293801*73681302247^(10/13) 6524758936649050 a001 1597/119218851371*73681302247^(8/13) 6524758936649050 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^73 6524758936649050 a001 1597/45537549124*45537549124^(10/17) 6524758936649050 a001 1597/45537549124*312119004989^(6/11) 6524758936649050 a001 1597/45537549124*14662949395604^(10/21) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^30/Lucas(51) 6524758936649050 a001 1597/45537549124*192900153618^(5/9) 6524758936649050 a001 1597/505019158607*28143753123^(7/10) 6524758936649050 a001 1597/5600748293801*28143753123^(4/5) 6524758936649050 a001 1597/45537549124*28143753123^(3/5) 6524758936649050 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^71 6524758936649050 a001 1597/17393796001*17393796001^(4/7) 6524758936649050 a001 1597/17393796001*14662949395604^(4/9) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^28/Lucas(49) 6524758936649050 a001 1597/17393796001*505019158607^(1/2) 6524758936649050 a001 1597/17393796001*73681302247^(7/13) 6524758936649050 a001 1597/119218851371*10749957122^(2/3) 6524758936649050 a001 1597/45537549124*10749957122^(5/8) 6524758936649050 a001 1597/192900153618*10749957122^(11/16) 6524758936649050 a001 1597/312119004989*10749957122^(17/24) 6524758936649050 a001 1597/817138163596*10749957122^(3/4) 6524758936649050 a001 1597/2139295485799*10749957122^(19/24) 6524758936649050 a001 1597/3461452808002*10749957122^(13/16) 6524758936649050 a001 1597/5600748293801*10749957122^(5/6) 6524758936649050 a001 1597/14662949395604*10749957122^(7/8) 6524758936649050 a001 1597/17393796001*10749957122^(7/12) 6524758936649050 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^69 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^26/Lucas(47) 6524758936649050 a001 1597/6643838879*73681302247^(1/2) 6524758936649050 a001 1597/6643838879*10749957122^(13/24) 6524758936649050 a001 1597/45537549124*4106118243^(15/23) 6524758936649050 a001 1597/17393796001*4106118243^(14/23) 6524758936649050 a001 1597/119218851371*4106118243^(16/23) 6524758936649050 a001 1597/312119004989*4106118243^(17/23) 6524758936649050 a001 1597/817138163596*4106118243^(18/23) 6524758936649050 a001 1597/2139295485799*4106118243^(19/23) 6524758936649050 a001 1597/5600748293801*4106118243^(20/23) 6524758936649050 a001 1597/14662949395604*4106118243^(21/23) 6524758936649050 a001 1597/6643838879*4106118243^(13/23) 6524758936649050 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^67 6524758936649050 a001 1597/2537720636*2537720636^(8/15) 6524758936649050 a001 1597/2537720636*45537549124^(8/17) 6524758936649050 a001 1597/2537720636*14662949395604^(8/21) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^24/Lucas(45) 6524758936649050 a001 1597/2537720636*192900153618^(4/9) 6524758936649050 a001 1597/2537720636*73681302247^(6/13) 6524758936649050 a001 1597/2537720636*10749957122^(1/2) 6524758936649050 a001 1597/2537720636*4106118243^(12/23) 6524758936649050 a001 1597/17393796001*1568397607^(7/11) 6524758936649050 a001 1597/6643838879*1568397607^(13/22) 6524758936649050 a001 1597/45537549124*1568397607^(15/22) 6524758936649050 a001 1597/119218851371*1568397607^(8/11) 6524758936649050 a001 1597/192900153618*1568397607^(3/4) 6524758936649050 a001 1597/312119004989*1568397607^(17/22) 6524758936649050 a001 1597/817138163596*1568397607^(9/11) 6524758936649050 a001 1597/2139295485799*1568397607^(19/22) 6524758936649050 a001 1597/5600748293801*1568397607^(10/11) 6524758936649050 a001 1597/2537720636*1568397607^(6/11) 6524758936649050 a001 1597/14662949395604*1568397607^(21/22) 6524758936649050 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^65 6524758936649050 a001 1597/969323029*312119004989^(2/5) 6524758936649050 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^22/Lucas(43) 6524758936649050 a001 692290615889/10610209857723 6524758936649050 a001 1597/969323029*10749957122^(11/24) 6524758936649050 a001 1597/969323029*4106118243^(11/23) 6524758936649050 a001 1597/969323029*1568397607^(1/2) 6524758936649050 a001 1597/2537720636*599074578^(4/7) 6524758936649050 a001 1597/6643838879*599074578^(13/21) 6524758936649050 a001 1597/10749957122*599074578^(9/14) 6524758936649050 a001 1597/17393796001*599074578^(2/3) 6524758936649050 a001 1597/45537549124*599074578^(5/7) 6524758936649050 a001 1597/119218851371*599074578^(16/21) 6524758936649050 a001 1597/192900153618*599074578^(11/14) 6524758936649050 a001 1597/312119004989*599074578^(17/21) 6524758936649050 a001 1597/505019158607*599074578^(5/6) 6524758936649050 a001 1597/817138163596*599074578^(6/7) 6524758936649050 a001 1597/2139295485799*599074578^(19/21) 6524758936649050 a001 1597/969323029*599074578^(11/21) 6524758936649050 a001 1597/3461452808002*599074578^(13/14) 6524758936649050 a001 1597/5600748293801*599074578^(20/21) 6524758936649050 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^63 6524758936649051 a001 1597/370248451*2537720636^(4/9) 6524758936649051 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^20/Lucas(41) 6524758936649051 a001 1597/370248451*23725150497407^(5/16) 6524758936649051 a001 264431485177/4052739537881 6524758936649051 a001 1597/370248451*505019158607^(5/14) 6524758936649051 a001 1597/370248451*73681302247^(5/13) 6524758936649051 a001 1597/370248451*28143753123^(2/5) 6524758936649051 a001 1597/370248451*10749957122^(5/12) 6524758936649051 a001 1597/370248451*4106118243^(10/23) 6524758936649051 a001 1597/370248451*1568397607^(5/11) 6524758936649051 a001 1597/370248451*599074578^(10/21) 6524758936649051 a001 1597/969323029*228826127^(11/20) 6524758936649051 a001 1597/2537720636*228826127^(3/5) 6524758936649051 a001 1597/4106118243*228826127^(5/8) 6524758936649051 a001 1597/6643838879*228826127^(13/20) 6524758936649051 a001 1597/17393796001*228826127^(7/10) 6524758936649051 a001 1597/45537549124*228826127^(3/4) 6524758936649051 a001 1597/119218851371*228826127^(4/5) 6524758936649051 a001 1597/312119004989*228826127^(17/20) 6524758936649051 a001 1597/505019158607*228826127^(7/8) 6524758936649051 a001 1597/370248451*228826127^(1/2) 6524758936649051 a001 1597/817138163596*228826127^(9/10) 6524758936649051 a001 1597/2139295485799*228826127^(19/20) 6524758936649051 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^61 6524758936649051 a001 1597/141422324*141422324^(6/13) 6524758936649051 a001 1597/228826127*87403803^(1/2) 6524758936649051 a001 1597/141422324*2537720636^(2/5) 6524758936649051 a001 1597/141422324*45537549124^(6/17) 6524758936649051 a001 1597/141422324*14662949395604^(2/7) 6524758936649051 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^18/Lucas(39) 6524758936649051 a001 50501919821/774004377960 6524758936649051 a001 1597/141422324*192900153618^(1/3) 6524758936649051 a001 1597/141422324*10749957122^(3/8) 6524758936649051 a001 1597/141422324*4106118243^(9/23) 6524758936649051 a001 1597/141422324*1568397607^(9/22) 6524758936649051 a001 1597/141422324*599074578^(3/7) 6524758936649051 a001 1597/141422324*228826127^(9/20) 6524758936649051 a001 1597/370248451*87403803^(10/19) 6524758936649051 a001 1597/969323029*87403803^(11/19) 6524758936649051 a001 1597/2537720636*87403803^(12/19) 6524758936649051 a001 1597/6643838879*87403803^(13/19) 6524758936649051 a001 1597/17393796001*87403803^(14/19) 6524758936649051 a001 1597/45537549124*87403803^(15/19) 6524758936649051 a001 1597/119218851371*87403803^(16/19) 6524758936649051 a001 1597/141422324*87403803^(9/19) 6524758936649051 a001 1597/312119004989*87403803^(17/19) 6524758936649051 a001 1597/817138163596*87403803^(18/19) 6524758936649051 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^59 6524758936649053 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^16/Lucas(37) 6524758936649053 a001 1597/54018521*23725150497407^(1/4) 6524758936649053 a001 38580033749/591286729879 6524758936649053 a001 1597/54018521*73681302247^(4/13) 6524758936649053 a001 1597/54018521*10749957122^(1/3) 6524758936649053 a001 1597/54018521*4106118243^(8/23) 6524758936649053 a001 1597/54018521*1568397607^(4/11) 6524758936649053 a001 1597/54018521*599074578^(8/21) 6524758936649053 a001 1597/54018521*228826127^(2/5) 6524758936649053 a001 1597/54018521*87403803^(8/19) 6524758936649054 a001 1597/141422324*33385282^(1/2) 6524758936649054 a001 1597/370248451*33385282^(5/9) 6524758936649054 a001 1597/599074578*33385282^(7/12) 6524758936649054 a001 1597/969323029*33385282^(11/18) 6524758936649054 a001 1597/2537720636*33385282^(2/3) 6524758936649055 a001 1597/6643838879*33385282^(13/18) 6524758936649055 a001 1597/10749957122*33385282^(3/4) 6524758936649055 a001 1597/17393796001*33385282^(7/9) 6524758936649055 a001 1597/54018521*33385282^(4/9) 6524758936649055 a001 1597/45537549124*33385282^(5/6) 6524758936649056 a001 1597/119218851371*33385282^(8/9) 6524758936649056 a001 1597/192900153618*33385282^(11/12) 6524758936649056 a001 1597/312119004989*33385282^(17/18) 6524758936649056 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^57 6524758936649060 a001 1597/20633239*20633239^(2/5) 6524758936649066 a001 1597/20633239*17393796001^(2/7) 6524758936649066 a001 1597/20633239*14662949395604^(2/9) 6524758936649066 a001 1597/20633239*(1/2+1/2*5^(1/2))^14 6524758936649066 a001 1597/20633239*505019158607^(1/4) 6524758936649066 a001 1133558585/17373187209 6524758936649066 a001 1597/20633239*10749957122^(7/24) 6524758936649066 a001 1597/20633239*4106118243^(7/23) 6524758936649066 a001 1597/20633239*1568397607^(7/22) 6524758936649066 a001 1597/20633239*599074578^(1/3) 6524758936649066 a001 1597/20633239*228826127^(7/20) 6524758936649066 a001 1597/20633239*87403803^(7/19) 6524758936649068 a001 1597/20633239*33385282^(7/18) 6524758936649070 a001 1597/87403803*12752043^(1/2) 6524758936649072 a001 1597/54018521*12752043^(8/17) 6524758936649072 a001 1597/141422324*12752043^(9/17) 6524758936649074 a001 1597/370248451*12752043^(10/17) 6524758936649076 a001 1597/969323029*12752043^(11/17) 6524758936649079 a001 1597/2537720636*12752043^(12/17) 6524758936649081 a001 1597/6643838879*12752043^(13/17) 6524758936649082 a001 1597/20633239*12752043^(7/17) 6524758936649084 a001 1597/17393796001*12752043^(14/17) 6524758936649085 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^23 6524758936649086 a001 1597/45537549124*12752043^(15/17) 6524758936649088 a001 1597/119218851371*12752043^(16/17) 6524758936649090 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^25 6524758936649090 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^27 6524758936649091 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^29 6524758936649091 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^31 6524758936649091 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^33 6524758936649091 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^35 6524758936649091 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^37 6524758936649091 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^39 6524758936649091 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^41 6524758936649091 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^43 6524758936649091 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^45 6524758936649091 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^47 6524758936649091 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^49 6524758936649091 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^51 6524758936649091 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^53 6524758936649091 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^55 6524758936649091 a004 Fibonacci(68)/Lucas(17)/(1/2+sqrt(5)/2)^55 6524758936649091 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^57 6524758936649091 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^59 6524758936649091 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^61 6524758936649091 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^63 6524758936649091 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^65 6524758936649091 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^67 6524758936649091 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^69 6524758936649091 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^71 6524758936649091 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^73 6524758936649091 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^75 6524758936649091 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^77 6524758936649091 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^79 6524758936649091 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^81 6524758936649091 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^83 6524758936649091 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^85 6524758936649091 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^87 6524758936649091 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^86 6524758936649091 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^84 6524758936649091 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^82 6524758936649091 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^80 6524758936649091 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^78 6524758936649091 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^76 6524758936649091 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^74 6524758936649091 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^72 6524758936649091 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^70 6524758936649091 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^68 6524758936649091 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^66 6524758936649091 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^64 6524758936649091 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^62 6524758936649091 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^60 6524758936649091 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^58 6524758936649091 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^56 6524758936649091 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^54 6524758936649091 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^52 6524758936649091 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^50 6524758936649091 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^48 6524758936649091 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^46 6524758936649091 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^44 6524758936649091 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^42 6524758936649091 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^40 6524758936649091 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^38 6524758936649091 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^36 6524758936649091 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^34 6524758936649091 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^32 6524758936649091 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^30 6524758936649091 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^28 6524758936649091 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^26 6524758936649093 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^24 6524758936649106 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^22 6524758936649117 a001 1597/7881196*7881196^(4/11) 6524758936649155 a001 1597/7881196*141422324^(4/13) 6524758936649156 a001 1597/7881196*2537720636^(4/15) 6524758936649156 a001 1597/7881196*45537549124^(4/17) 6524758936649156 a001 1597/7881196*817138163596^(4/19) 6524758936649156 a001 1597/7881196*14662949395604^(4/21) 6524758936649156 a001 1597/7881196*(1/2+1/2*5^(1/2))^12 6524758936649156 a001 1597/7881196*192900153618^(2/9) 6524758936649156 a001 2814375533/43133785636 6524758936649156 a001 1597/7881196*73681302247^(3/13) 6524758936649156 a001 1597/7881196*10749957122^(1/4) 6524758936649156 a001 1597/7881196*4106118243^(6/23) 6524758936649156 a001 1597/7881196*1568397607^(3/11) 6524758936649156 a001 1597/7881196*599074578^(2/7) 6524758936649156 a001 1597/7881196*228826127^(3/10) 6524758936649156 a001 1597/7881196*87403803^(6/19) 6524758936649157 a001 1597/7881196*33385282^(1/3) 6524758936649170 a001 1597/7881196*12752043^(6/17) 6524758936649186 a001 1597/20633239*4870847^(7/16) 6524758936649190 a001 1597/54018521*4870847^(1/2) 6524758936649196 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2)^20 6524758936649205 a001 1597/141422324*4870847^(9/16) 6524758936649222 a001 1597/370248451*4870847^(5/8) 6524758936649240 a001 1597/969323029*4870847^(11/16) 6524758936649257 a001 1597/2537720636*4870847^(3/4) 6524758936649259 a001 1597/7881196*4870847^(3/8) 6524758936649274 a001 1597/6643838879*4870847^(13/16) 6524758936649291 a001 1597/17393796001*4870847^(7/8) 6524758936649308 a001 1597/45537549124*4870847^(15/16) 6524758936649325 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^53 6524758936649766 a001 1597/3010349*20633239^(2/7) 6524758936649770 a001 1597/3010349*2537720636^(2/9) 6524758936649770 a001 1597/3010349*312119004989^(2/11) 6524758936649770 a001 1597/3010349*(1/2+1/2*5^(1/2))^10 6524758936649770 a001 2149991593/32951280099 6524758936649770 a001 1597/3010349*28143753123^(1/5) 6524758936649770 a001 1597/3010349*10749957122^(5/24) 6524758936649770 a001 1597/3010349*4106118243^(5/23) 6524758936649770 a001 1597/3010349*1568397607^(5/22) 6524758936649770 a001 1597/3010349*599074578^(5/21) 6524758936649771 a001 1597/3010349*228826127^(1/4) 6524758936649771 a001 1597/3010349*87403803^(5/19) 6524758936649772 a001 1597/3010349*33385282^(5/18) 6524758936649782 a001 1597/3010349*12752043^(5/17) 6524758936649811 a004 Fibonacci(31)/Lucas(17)/(1/2+sqrt(5)/2)^18 6524758936649856 a001 1597/3010349*4870847^(5/16) 6524758936649910 a001 1597/7881196*1860498^(2/5) 6524758936649945 a001 1597/20633239*1860498^(7/15) 6524758936649987 a001 1597/33385282*1860498^(1/2) 6524758936650058 a001 1597/54018521*1860498^(8/15) 6524758936650182 a001 1597/141422324*1860498^(3/5) 6524758936650307 a001 1597/370248451*1860498^(2/3) 6524758936650370 a001 1597/599074578*1860498^(7/10) 6524758936650399 a001 1597/3010349*1860498^(1/3) 6524758936650433 a001 1597/969323029*1860498^(11/15) 6524758936650558 a001 1597/2537720636*1860498^(4/5) 6524758936650621 a001 1597/4106118243*1860498^(5/6) 6524758936650684 a001 1597/6643838879*1860498^(13/15) 6524758936650747 a001 1597/10749957122*1860498^(9/10) 6524758936650810 a001 1597/17393796001*1860498^(14/15) 6524758936650935 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^51 6524758936653985 a001 1597/1149851*(1/2+1/2*5^(1/2))^8 6524758936653985 a001 1597/1149851*23725150497407^(1/8) 6524758936653985 a001 1597/1149851*505019158607^(1/7) 6524758936653985 a001 1597/1149851*73681302247^(2/13) 6524758936653985 a001 821223713/12586269025 6524758936653985 a001 1597/1149851*10749957122^(1/6) 6524758936653985 a001 1597/1149851*4106118243^(4/23) 6524758936653985 a001 1597/1149851*1568397607^(2/11) 6524758936653985 a001 1597/1149851*599074578^(4/21) 6524758936653985 a001 1597/1149851*228826127^(1/5) 6524758936653986 a001 1597/1149851*87403803^(4/19) 6524758936653987 a001 1597/1149851*33385282^(2/9) 6524758936653995 a001 1597/1149851*12752043^(4/17) 6524758936654026 a004 Fibonacci(29)/Lucas(17)/(1/2+sqrt(5)/2)^16 6524758936654054 a001 1597/1149851*4870847^(1/4) 6524758936654385 a001 1597/3010349*710647^(5/14) 6524758936654488 a001 1597/1149851*1860498^(4/15) 6524758936654693 a001 1597/7881196*710647^(3/7) 6524758936655526 a001 1597/20633239*710647^(1/2) 6524758936656435 a001 1597/54018521*710647^(4/7) 6524758936657356 a001 1597/141422324*710647^(9/14) 6524758936657677 a001 1597/1149851*710647^(2/7) 6524758936658279 a001 1597/370248451*710647^(5/7) 6524758936658740 a001 1597/599074578*710647^(3/4) 6524758936659202 a001 1597/969323029*710647^(11/14) 6524758936660125 a001 1597/2537720636*710647^(6/7) 6524758936661047 a001 1597/6643838879*710647^(13/14) 6524758936661970 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^49 6524758936675358 a001 1597/439204*439204^(2/9) 6524758936681233 a001 1597/1149851*271443^(4/13) 6524758936682856 a001 1597/439204*7881196^(2/11) 6524758936682875 a001 1597/439204*141422324^(2/13) 6524758936682875 a001 1597/439204*2537720636^(2/15) 6524758936682875 a001 1597/439204*45537549124^(2/17) 6524758936682875 a001 1597/439204*14662949395604^(2/21) 6524758936682875 a001 1597/439204*(1/2+1/2*5^(1/2))^6 6524758936682875 a001 1597/439204*10749957122^(1/8) 6524758936682875 a001 1597/439204*4106118243^(3/23) 6524758936682875 a001 156839773/2403763488 6524758936682875 a001 1597/439204*1568397607^(3/22) 6524758936682875 a001 1597/439204*599074578^(1/7) 6524758936682875 a001 1597/439204*228826127^(3/20) 6524758936682875 a001 1597/439204*87403803^(3/19) 6524758936682876 a001 1597/439204*33385282^(1/6) 6524758936682882 a001 1597/439204*12752043^(3/17) 6524758936682915 a004 Fibonacci(27)/Lucas(17)/(1/2+sqrt(5)/2)^14 6524758936682927 a001 1597/439204*4870847^(3/16) 6524758936683252 a001 1597/439204*1860498^(1/5) 6524758936683830 a001 1597/3010349*271443^(5/13) 6524758936685644 a001 1597/439204*710647^(3/14) 6524758936686946 a001 1597/271443*103682^(5/24) 6524758936690027 a001 1597/7881196*271443^(6/13) 6524758936693287 a001 1597/12752043*271443^(1/2) 6524758936696749 a001 1597/20633239*271443^(7/13) 6524758936703311 a001 1597/439204*271443^(3/13) 6524758936703547 a001 1597/54018521*271443^(8/13) 6524758936710357 a001 1597/141422324*271443^(9/13) 6524758936717169 a001 1597/370248451*271443^(10/13) 6524758936723981 a001 1597/969323029*271443^(11/13) 6524758936730792 a001 1597/2537720636*271443^(12/13) 6524758936737604 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^47 6524758936813160 a001 1597/710647*103682^(7/24) 6524758936834614 a001 1597/439204*103682^(1/4) 6524758936856304 a001 1597/1149851*103682^(1/3) 6524758936874774 a001 1597/1860498*103682^(3/8) 6524758936880887 a001 1597/167761*(1/2+1/2*5^(1/2))^4 6524758936880887 a001 1597/167761*23725150497407^(1/16) 6524758936880887 a001 1597/167761*73681302247^(1/13) 6524758936880887 a001 1597/167761*10749957122^(1/12) 6524758936880887 a001 1597/167761*4106118243^(2/23) 6524758936880887 a001 1597/167761*1568397607^(1/11) 6524758936880887 a001 119814925/1836311903 6524758936880887 a001 1597/167761*599074578^(2/21) 6524758936880887 a001 1597/167761*228826127^(1/10) 6524758936880887 a001 1597/167761*87403803^(2/19) 6524758936880888 a001 1597/167761*33385282^(1/9) 6524758936880892 a001 1597/167761*12752043^(2/17) 6524758936880922 a001 1597/167761*4870847^(1/8) 6524758936880927 a004 Fibonacci(25)/Lucas(17)/(1/2+sqrt(5)/2)^12 6524758936881139 a001 1597/167761*1860498^(2/15) 6524758936882733 a001 1597/167761*710647^(1/7) 6524758936894511 a001 1597/167761*271443^(2/13) 6524758936902669 a001 1597/3010349*103682^(5/12) 6524758936926964 a001 1597/4870847*103682^(11/24) 6524758936952634 a001 1597/7881196*103682^(1/2) 6524758936977779 a001 1597/12752043*103682^(13/24) 6524758936982047 a001 1597/167761*103682^(1/6) 6524758937003124 a001 1597/20633239*103682^(7/12) 6524758937028393 a001 1597/33385282*103682^(5/8) 6524758937053691 a001 1597/54018521*103682^(2/3) 6524758937078977 a001 1597/87403803*103682^(17/24) 6524758937104268 a001 1597/141422324*103682^(3/4) 6524758937129558 a001 1597/228826127*103682^(19/24) 6524758937154848 a001 1597/370248451*103682^(5/6) 6524758937180138 a001 1597/599074578*103682^(7/8) 6524758937200808 a001 1597/64079*24476^(2/21) 6524758937205427 a001 1597/969323029*103682^(11/12) 6524758937230717 a001 1597/1568397607*103682^(23/24) 6524758937256007 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^45 6524758937505984 a001 1597/271443*39603^(5/22) 6524758937637277 a001 1597/167761*39603^(2/11) 6524758937817460 a001 1597/439204*39603^(3/11) 6524758937959813 a001 1597/710647*39603^(7/22) 6524758938099907 a001 1597/64079*64079^(2/23) 6524758938166765 a001 1597/1149851*39603^(4/11) 6524758938209793 a001 10946/3010349*2207^(3/8) 6524758938238084 a001 1597/64079*(1/2+1/2*5^(1/2))^2 6524758938238084 a001 1597/64079*10749957122^(1/24) 6524758938238084 a001 1597/64079*4106118243^(1/23) 6524758938238084 a001 1597/64079*1568397607^(1/22) 6524758938238084 a001 1597/64079*599074578^(1/21) 6524758938238084 a001 45765229/701408733 6524758938238084 a001 1597/64079*228826127^(1/20) 6524758938238084 a001 1597/64079*87403803^(1/19) 6524758938238084 a001 1597/64079*33385282^(1/18) 6524758938238086 a001 1597/64079*12752043^(1/17) 6524758938238101 a001 1597/64079*4870847^(1/16) 6524758938238124 a004 Fibonacci(23)/Lucas(17)/(1/2+sqrt(5)/2)^10 6524758938238210 a001 1597/64079*1860498^(1/15) 6524758938239007 a001 1597/64079*710647^(1/14) 6524758938244896 a001 1597/64079*271443^(1/13) 6524758938288664 a001 1597/64079*103682^(1/12) 6524758938349042 a001 1597/1860498*39603^(9/22) 6524758938540745 a001 1597/3010349*39603^(5/11) 6524758938616279 a001 1597/64079*39603^(1/11) 6524758938728847 a001 1597/4870847*39603^(1/2) 6524758938918325 a001 1597/7881196*39603^(6/11) 6524758939107277 a001 1597/12752043*39603^(13/22) 6524758939296430 a001 1597/20633239*39603^(7/11) 6524758939485506 a001 1597/33385282*39603^(15/22) 6524758939674612 a001 1597/54018521*39603^(8/11) 6524758939863706 a001 1597/87403803*39603^(17/22) 6524758940052804 a001 1597/141422324*39603^(9/11) 6524758940241901 a001 1597/228826127*39603^(19/22) 6524758940319201 a001 1597/103682*15127^(3/20) 6524758940430999 a001 1597/370248451*39603^(10/11) 6524758940620096 a001 1597/599074578*39603^(21/22) 6524758940809194 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^43 6524758941089489 a001 1597/64079*15127^(1/10) 6524758942583697 a001 1597/167761*15127^(1/5) 6524758943346584 a001 1597/39603*5778^(1/18) 6524758943689008 a001 1597/271443*15127^(1/4) 6524758945237089 a001 1597/439204*15127^(3/10) 6524758946616047 a001 1597/710647*15127^(7/20) 6524758947540447 a001 1597/24476 6524758947540487 a004 Fibonacci(21)/Lucas(17)/(1/2+sqrt(5)/2)^8 6524758948059604 a001 1597/1149851*15127^(2/5) 6524758949478487 a001 1597/1860498*15127^(9/20) 6524758950906794 a001 1597/3010349*15127^(1/2) 6524758951818457 a001 144/167761*18^(40/57) 6524758952331501 a001 1597/4870847*15127^(11/20) 6524758953757584 a001 1597/7881196*15127^(3/5) 6524758955183141 a001 1597/12752043*15127^(13/20) 6524758956608899 a001 1597/20633239*15127^(7/10) 6524758958034580 a001 1597/33385282*15127^(3/4) 6524758959460290 a001 1597/54018521*15127^(4/5) 6524758959953438 a001 1597/64079*5778^(1/9) 6524758960801506 r005 Im(z^2+c),c=-10/9+8/115*I,n=6 6524758960885990 a001 1597/87403803*15127^(17/20) 6524758962311693 a001 1597/141422324*15127^(9/10) 6524758963737395 a001 1597/228826127*15127^(19/20) 6524758965163097 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^41 6524758968615124 a001 1597/103682*5778^(1/6) 6524758980311595 a001 1597/167761*5778^(2/9) 6524758982526419 a001 6765/3010349*2207^(7/16) 6524758983046417 a001 2584/3010349*2207^(9/16) 6524758985544073 a001 11/233*377^(3/55) 6524758990848881 a001 1597/271443*5778^(5/18) 6524759001828936 a001 1597/439204*5778^(1/3) 6524759001973355 a001 4181/1149851*2207^(3/8) 6524759004428913 m001 (polylog(4,1/2)+Porter)/(gamma-ln(2^(1/2)+1)) 6524759006879708 a001 89/39604*2207^(7/16) 6524759010432805 a001 46368/20633239*2207^(7/16) 6524759010941759 k002 Champernowne real with 161/2*n^2-119/2*n+44 6524759010951194 a001 121393/54018521*2207^(7/16) 6524759011026827 a001 317811/141422324*2207^(7/16) 6524759011037861 a001 832040/370248451*2207^(7/16) 6524759011039471 a001 2178309/969323029*2207^(7/16) 6524759011039706 a001 5702887/2537720636*2207^(7/16) 6524759011039740 a001 14930352/6643838879*2207^(7/16) 6524759011039745 a001 39088169/17393796001*2207^(7/16) 6524759011039746 a001 102334155/45537549124*2207^(7/16) 6524759011039746 a001 267914296/119218851371*2207^(7/16) 6524759011039746 a001 3524667/1568437211*2207^(7/16) 6524759011039746 a001 1836311903/817138163596*2207^(7/16) 6524759011039746 a001 4807526976/2139295485799*2207^(7/16) 6524759011039746 a001 12586269025/5600748293801*2207^(7/16) 6524759011039746 a001 32951280099/14662949395604*2207^(7/16) 6524759011039746 a001 53316291173/23725150497407*2207^(7/16) 6524759011039746 a001 20365011074/9062201101803*2207^(7/16) 6524759011039746 a001 7778742049/3461452808002*2207^(7/16) 6524759011039746 a001 2971215073/1322157322203*2207^(7/16) 6524759011039746 a001 1134903170/505019158607*2207^(7/16) 6524759011039746 a001 433494437/192900153618*2207^(7/16) 6524759011039746 a001 165580141/73681302247*2207^(7/16) 6524759011039746 a001 63245986/28143753123*2207^(7/16) 6524759011039748 a001 24157817/10749957122*2207^(7/16) 6524759011039761 a001 9227465/4106118243*2207^(7/16) 6524759011039851 a001 3524578/1568397607*2207^(7/16) 6524759011040466 a001 1346269/599074578*2207^(7/16) 6524759011044681 a001 514229/228826127*2207^(7/16) 6524759011073570 a001 196418/87403803*2207^(7/16) 6524759011271577 a001 75025/33385282*2207^(7/16) 6524759011299795 a001 6677057/102334155 6524759011299795 a004 Fibonacci(17)/Lucas(19)/(1/2+sqrt(5)/2)^2 6524759011299835 a004 Fibonacci(19)/Lucas(17)/(1/2+sqrt(5)/2)^6 6524759012628739 a001 28657/12752043*2207^(7/16) 6524759012639869 a001 1597/710647*5778^(7/18) 6524759012956687 a001 11/5*144^(7/32) 6524759016210977 a001 1597/39603*2207^(1/16) 6524759021930868 a001 10946/4870847*2207^(7/16) 6524759023515400 a001 1597/1149851*5778^(4/9) 6524759026030296 m001 (Otter+Rabbit)/(Psi(2,1/3)-Shi(1)) 6524759031653392 m002 5-Sinh[Pi]+(E^Pi*Tanh[Pi])/Pi^6 6524759034366258 a001 1597/1860498*5778^(1/2) 6524759042555651 s002 sum(A277399[n]/(n^3*10^n-1),n=1..infinity) 6524759045226539 a001 1597/3010349*5778^(5/9) 6524759052519343 a001 615/15251*843^(1/14) 6524759053831437 a001 45537549124/4181*144^(14/17) 6524759054469785 a001 987/64079*843^(3/14) 6524759056083221 a001 1597/4870847*5778^(11/18) 6524759056099758 m005 (1/3*3^(1/2)-3/7)/(1/12*exp(1)-5/11) 6524759066247494 a001 6765/4870847*2207^(1/2) 6524759066767492 a001 2584/4870847*2207^(5/8) 6524759066941279 a001 1597/7881196*5778^(2/3) 6524759069147486 a001 843/8*75025^(7/9) 6524759072203230 r005 Re(z^2+c),c=1/26+11/27*I,n=8 6524759076675235 a001 17711/439204*843^(1/14) 6524759077798810 a001 1597/12752043*5778^(13/18) 6524759080199532 a001 46368/1149851*843^(1/14) 6524759080713720 a001 121393/3010349*843^(1/14) 6524759080788739 a001 317811/7881196*843^(1/14) 6524759080799684 a001 75640/1875749*843^(1/14) 6524759080801281 a001 2178309/54018521*843^(1/14) 6524759080801514 a001 5702887/141422324*843^(1/14) 6524759080801548 a001 14930352/370248451*843^(1/14) 6524759080801553 a001 39088169/969323029*843^(1/14) 6524759080801554 a001 9303105/230701876*843^(1/14) 6524759080801554 a001 267914296/6643838879*843^(1/14) 6524759080801554 a001 701408733/17393796001*843^(1/14) 6524759080801554 a001 1836311903/45537549124*843^(1/14) 6524759080801554 a001 4807526976/119218851371*843^(1/14) 6524759080801554 a001 1144206275/28374454999*843^(1/14) 6524759080801554 a001 32951280099/817138163596*843^(1/14) 6524759080801554 a001 86267571272/2139295485799*843^(1/14) 6524759080801554 a001 225851433717/5600748293801*843^(1/14) 6524759080801554 a001 591286729879/14662949395604*843^(1/14) 6524759080801554 a001 365435296162/9062201101803*843^(1/14) 6524759080801554 a001 139583862445/3461452808002*843^(1/14) 6524759080801554 a001 53316291173/1322157322203*843^(1/14) 6524759080801554 a001 20365011074/505019158607*843^(1/14) 6524759080801554 a001 7778742049/192900153618*843^(1/14) 6524759080801554 a001 2971215073/73681302247*843^(1/14) 6524759080801554 a001 1134903170/28143753123*843^(1/14) 6524759080801554 a001 433494437/10749957122*843^(1/14) 6524759080801554 a001 165580141/4106118243*843^(1/14) 6524759080801554 a001 63245986/1568397607*843^(1/14) 6524759080801556 a001 24157817/599074578*843^(1/14) 6524759080801569 a001 9227465/228826127*843^(1/14) 6524759080801658 a001 3524578/87403803*843^(1/14) 6524759080802268 a001 1346269/33385282*843^(1/14) 6524759080806449 a001 514229/12752043*843^(1/14) 6524759080835103 a001 196418/4870847*843^(1/14) 6524759081031506 a001 75025/1860498*843^(1/14) 6524759082377667 a001 28657/710647*843^(1/14) 6524759083243645 m001 (1+3^(1/2))^(1/2)/(arctan(1/3)+Riemann3rdZero) 6524759085688606 a001 4181/1860498*2207^(7/16) 6524759088656543 a001 1597/20633239*5778^(7/9) 6524759090601634 a001 17711/12752043*2207^(1/2) 6524759091604397 a001 10946/271443*843^(1/14) 6524759094154855 a001 144/103681*2207^(1/2) 6524759094673262 a001 121393/87403803*2207^(1/2) 6524759094748897 a001 317811/228826127*2207^(1/2) 6524759094759932 a001 416020/299537289*2207^(1/2) 6524759094761542 a001 311187/224056801*2207^(1/2) 6524759094761777 a001 5702887/4106118243*2207^(1/2) 6524759094761811 a001 7465176/5374978561*2207^(1/2) 6524759094761816 a001 39088169/28143753123*2207^(1/2) 6524759094761817 a001 14619165/10525900321*2207^(1/2) 6524759094761817 a001 133957148/96450076809*2207^(1/2) 6524759094761817 a001 701408733/505019158607*2207^(1/2) 6524759094761817 a001 1836311903/1322157322203*2207^(1/2) 6524759094761817 a001 14930208/10749853441*2207^(1/2) 6524759094761817 a001 12586269025/9062201101803*2207^(1/2) 6524759094761817 a001 32951280099/23725150497407*2207^(1/2) 6524759094761817 a001 10182505537/7331474697802*2207^(1/2) 6524759094761817 a001 7778742049/5600748293801*2207^(1/2) 6524759094761817 a001 2971215073/2139295485799*2207^(1/2) 6524759094761817 a001 567451585/408569081798*2207^(1/2) 6524759094761817 a001 433494437/312119004989*2207^(1/2) 6524759094761817 a001 165580141/119218851371*2207^(1/2) 6524759094761817 a001 31622993/22768774562*2207^(1/2) 6524759094761819 a001 24157817/17393796001*2207^(1/2) 6524759094761832 a001 9227465/6643838879*2207^(1/2) 6524759094761922 a001 1762289/1268860318*2207^(1/2) 6524759094762537 a001 1346269/969323029*2207^(1/2) 6524759094766752 a001 514229/370248451*2207^(1/2) 6524759094795642 a001 98209/70711162*2207^(1/2) 6524759094993656 a001 75025/54018521*2207^(1/2) 6524759096350866 a001 28657/20633239*2207^(1/2) 6524759099514199 a001 1597/33385282*5778^(5/6) 6524759105653319 a001 5473/3940598*2207^(1/2) 6524759105682225 a001 1597/64079*2207^(1/8) 6524759110371884 a001 1597/54018521*5778^(8/9) 6524759110971765 k002 Champernowne real with 81*n^2-61*n+45 6524759113898894 p004 log(31583/16447) 6524759116155890 m001 (gamma(1)-GolombDickman)/(Tetranacci-Thue) 6524759117590785 a001 119218851371/10946*144^(14/17) 6524759121229558 a001 1597/87403803*5778^(17/18) 6524759126383473 a001 610/3010349*1364^(4/5) 6524759126893149 a001 312119004989/28657*144^(14/17) 6524759128250345 a001 817138163596/75025*144^(14/17) 6524759128448358 a001 2139295485799/196418*144^(14/17) 6524759128477247 a001 5600748293801/514229*144^(14/17) 6524759128481462 a001 14662949395604/1346269*144^(14/17) 6524759128482457 a001 23725150497407/2178309*144^(14/17) 6524759128484067 a001 9062201101803/832040*144^(14/17) 6524759128495102 a001 3461452808002/317811*144^(14/17) 6524759128570736 a001 1322157322203/121393*144^(14/17) 6524759129089139 a001 505019158607/46368*144^(14/17) 6524759132087236 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^39 6524759132642326 a001 192900153618/17711*144^(14/17) 6524759149775138 m001 LandauRamanujan2nd/(sin(1)^LaplaceLimit) 6524759149969946 a001 6765/7881196*2207^(9/16) 6524759150489944 a001 646/1970299*2207^(11/16) 6524759154845343 a001 4181/103682*843^(1/14) 6524759156996230 a001 73681302247/6765*144^(14/17) 6524759169413283 a001 4181/3010349*2207^(1/2) 6524759172488306 m001 1/ln(Magata)*ErdosBorwein^2*GAMMA(1/6)^2 6524759174323761 a001 17711/20633239*2207^(9/16) 6524759177876935 a001 46368/54018521*2207^(9/16) 6524759178395336 a001 233/271444*2207^(9/16) 6524759178470970 a001 317811/370248451*2207^(9/16) 6524759178482004 a001 832040/969323029*2207^(9/16) 6524759178483614 a001 2178309/2537720636*2207^(9/16) 6524759178483849 a001 5702887/6643838879*2207^(9/16) 6524759178483883 a001 14930352/17393796001*2207^(9/16) 6524759178483888 a001 39088169/45537549124*2207^(9/16) 6524759178483889 a001 102334155/119218851371*2207^(9/16) 6524759178483889 a001 267914296/312119004989*2207^(9/16) 6524759178483889 a001 701408733/817138163596*2207^(9/16) 6524759178483889 a001 1836311903/2139295485799*2207^(9/16) 6524759178483889 a001 4807526976/5600748293801*2207^(9/16) 6524759178483889 a001 12586269025/14662949395604*2207^(9/16) 6524759178483889 a001 20365011074/23725150497407*2207^(9/16) 6524759178483889 a001 7778742049/9062201101803*2207^(9/16) 6524759178483889 a001 2971215073/3461452808002*2207^(9/16) 6524759178483889 a001 1134903170/1322157322203*2207^(9/16) 6524759178483889 a001 433494437/505019158607*2207^(9/16) 6524759178483889 a001 165580141/192900153618*2207^(9/16) 6524759178483890 a001 63245986/73681302247*2207^(9/16) 6524759178483892 a001 24157817/28143753123*2207^(9/16) 6524759178483905 a001 9227465/10749957122*2207^(9/16) 6524759178483994 a001 3524578/4106118243*2207^(9/16) 6524759178484609 a001 1346269/1568397607*2207^(9/16) 6524759178488824 a001 514229/599074578*2207^(9/16) 6524759178517714 a001 196418/228826127*2207^(9/16) 6524759178715725 a001 75025/87403803*2207^(9/16) 6524759180072917 a001 28657/33385282*2207^(9/16) 6524759187208307 a001 1597/103682*2207^(3/16) 6524759189095523 a007 Real Root Of 677*x^4-726*x^3-475*x^2-976*x+918 6524759189375246 a001 10946/12752043*2207^(9/16) 6524759189929594 a001 843/53316291173*89^(6/19) 6524759211001771 k002 Champernowne real with 163/2*n^2-125/2*n+46 6524759225327216 m005 (1/2*2^(1/2)+2/5)/(11/12*Catalan+6/7) 6524759233691874 a001 2255/4250681*2207^(5/8) 6524759234211872 a001 2584/12752043*2207^(3/4) 6524759253134361 a001 4181/4870847*2207^(9/16) 6524759254632226 r005 Im(z^2+c),c=-1/17+44/61*I,n=62 6524759258045813 a001 17711/33385282*2207^(5/8) 6524759258221625 p004 log(33703/17551) 6524759261599005 a001 15456/29134601*2207^(5/8) 6524759262117409 a001 121393/228826127*2207^(5/8) 6524759262193043 a001 377/710646*2207^(5/8) 6524759262204078 a001 832040/1568397607*2207^(5/8) 6524759262205688 a001 726103/1368706081*2207^(5/8) 6524759262205922 a001 5702887/10749957122*2207^(5/8) 6524759262205957 a001 4976784/9381251041*2207^(5/8) 6524759262205962 a001 39088169/73681302247*2207^(5/8) 6524759262205962 a001 34111385/64300051206*2207^(5/8) 6524759262205963 a001 267914296/505019158607*2207^(5/8) 6524759262205963 a001 233802911/440719107401*2207^(5/8) 6524759262205963 a001 1836311903/3461452808002*2207^(5/8) 6524759262205963 a001 1602508992/3020733700601*2207^(5/8) 6524759262205963 a001 12586269025/23725150497407*2207^(5/8) 6524759262205963 a001 7778742049/14662949395604*2207^(5/8) 6524759262205963 a001 2971215073/5600748293801*2207^(5/8) 6524759262205963 a001 1134903170/2139295485799*2207^(5/8) 6524759262205963 a001 433494437/817138163596*2207^(5/8) 6524759262205963 a001 165580141/312119004989*2207^(5/8) 6524759262205963 a001 63245986/119218851371*2207^(5/8) 6524759262205965 a001 24157817/45537549124*2207^(5/8) 6524759262205978 a001 9227465/17393796001*2207^(5/8) 6524759262206068 a001 3524578/6643838879*2207^(5/8) 6524759262206683 a001 1346269/2537720636*2207^(5/8) 6524759262210898 a001 514229/969323029*2207^(5/8) 6524759262239787 a001 196418/370248451*2207^(5/8) 6524759262437800 a001 75025/141422324*2207^(5/8) 6524759263794998 a001 28657/54018521*2207^(5/8) 6524759264076162 a007 Real Root Of 11*x^4+711*x^3-430*x^2+582*x+964 6524759267086475 a007 Real Root Of -56*x^4-244*x^3+914*x^2+791*x-32 6524759271769174 a001 1597/167761*2207^(1/4) 6524759273097375 a001 10946/20633239*2207^(5/8) 6524759283937836 m008 (1/5*Pi^6+2)/(3*Pi^2+1/6) 6524759306830793 a007 Real Root Of 51*x^4+267*x^3-486*x^2-322*x+322 6524759311031777 k002 Champernowne real with 82*n^2-64*n+47 6524759317414003 a001 615/1875749*2207^(11/16) 6524759317934001 a001 2584/20633239*2207^(13/16) 6524759323920379 a001 28143753123/2584*144^(14/17) 6524759325725693 r005 Im(z^2+c),c=-4/19+31/48*I,n=18 6524759336856816 a001 4181/7881196*2207^(5/8) 6524759341767896 a001 17711/54018521*2207^(11/16) 6524759342166097 m005 (1/2*Pi+2/7)/(7/12*Zeta(3)-5/12) 6524759345321080 a001 11592/35355581*2207^(11/16) 6524759345839483 a001 121393/370248451*2207^(11/16) 6524759345915117 a001 317811/969323029*2207^(11/16) 6524759345926152 a001 610/1860499*2207^(11/16) 6524759345927762 a001 2178309/6643838879*2207^(11/16) 6524759345927997 a001 5702887/17393796001*2207^(11/16) 6524759345928031 a001 3732588/11384387281*2207^(11/16) 6524759345928036 a001 39088169/119218851371*2207^(11/16) 6524759345928037 a001 9303105/28374454999*2207^(11/16) 6524759345928037 a001 66978574/204284540899*2207^(11/16) 6524759345928037 a001 701408733/2139295485799*2207^(11/16) 6524759345928037 a001 1836311903/5600748293801*2207^(11/16) 6524759345928037 a001 1201881744/3665737348901*2207^(11/16) 6524759345928037 a001 7778742049/23725150497407*2207^(11/16) 6524759345928037 a001 2971215073/9062201101803*2207^(11/16) 6524759345928037 a001 567451585/1730726404001*2207^(11/16) 6524759345928037 a001 433494437/1322157322203*2207^(11/16) 6524759345928037 a001 165580141/505019158607*2207^(11/16) 6524759345928037 a001 31622993/96450076809*2207^(11/16) 6524759345928039 a001 24157817/73681302247*2207^(11/16) 6524759345928052 a001 9227465/28143753123*2207^(11/16) 6524759345928142 a001 1762289/5374978561*2207^(11/16) 6524759345928757 a001 1346269/4106118243*2207^(11/16) 6524759345932972 a001 514229/1568397607*2207^(11/16) 6524759345961861 a001 98209/299537289*2207^(11/16) 6524759346159874 a001 75025/228826127*2207^(11/16) 6524759347517070 a001 28657/87403803*2207^(11/16) 6524759355170858 a001 1597/271443*2207^(5/16) 6524759356819429 a001 5473/16692641*2207^(11/16) 6524759360180671 a001 305/930249*1364^(11/15) 6524759370796176 a003 cos(Pi*3/71)/sin(Pi*5/103) 6524759375711189 m005 (1/2*Pi-3/5)/(2/11*Pi+11/12) 6524759398421444 r002 8th iterates of z^2 + 6524759401136057 a001 6765/33385282*2207^(3/4) 6524759401656055 a001 1292/16692641*2207^(7/8) 6524759401954032 m001 (1+sin(1/5*Pi))/(KomornikLoreti+MasserGramain) 6524759411061783 k002 Champernowne real with 165/2*n^2-131/2*n+48 6524759420578746 a001 4181/12752043*2207^(11/16) 6524759423691418 a007 Real Root Of -312*x^4-414*x^3+423*x^2+531*x-355 6524759425489968 a001 17711/87403803*2207^(3/4) 6524759429043155 a001 46368/228826127*2207^(3/4) 6524759429561559 a001 121393/599074578*2207^(3/4) 6524759429637193 a001 317811/1568397607*2207^(3/4) 6524759429648227 a001 832040/4106118243*2207^(3/4) 6524759429649837 a001 987/4870846*2207^(3/4) 6524759429650072 a001 5702887/28143753123*2207^(3/4) 6524759429650106 a001 14930352/73681302247*2207^(3/4) 6524759429650111 a001 39088169/192900153618*2207^(3/4) 6524759429650112 a001 102334155/505019158607*2207^(3/4) 6524759429650112 a001 267914296/1322157322203*2207^(3/4) 6524759429650112 a001 701408733/3461452808002*2207^(3/4) 6524759429650112 a001 1836311903/9062201101803*2207^(3/4) 6524759429650112 a001 4807526976/23725150497407*2207^(3/4) 6524759429650112 a001 2971215073/14662949395604*2207^(3/4) 6524759429650112 a001 1134903170/5600748293801*2207^(3/4) 6524759429650112 a001 433494437/2139295485799*2207^(3/4) 6524759429650112 a001 165580141/817138163596*2207^(3/4) 6524759429650113 a001 63245986/312119004989*2207^(3/4) 6524759429650115 a001 24157817/119218851371*2207^(3/4) 6524759429650128 a001 9227465/45537549124*2207^(3/4) 6524759429650217 a001 3524578/17393796001*2207^(3/4) 6524759429650832 a001 1346269/6643838879*2207^(3/4) 6524759429655047 a001 514229/2537720636*2207^(3/4) 6524759429683937 a001 196418/969323029*2207^(3/4) 6524759429881949 a001 75025/370248451*2207^(3/4) 6524759431239146 a001 28657/141422324*2207^(3/4) 6524759439015312 a001 1597/439204*2207^(3/8) 6524759440541512 a001 10946/54018521*2207^(3/4) 6524759448312864 a001 2550409/39088169 6524759448312903 a004 Fibonacci(17)/Lucas(17)/(1/2+sqrt(5)/2)^4 6524759467145650 r005 Im(z^2+c),c=-11/118+1/13*I,n=8 6524759471058298 m001 (-FellerTornier+Sarnak)/(Backhouse-sin(1)) 6524759484858142 a001 6765/54018521*2207^(13/16) 6524759485378139 a001 2584/54018521*2207^(15/16) 6524759493959890 a001 514229/3*123^(5/18) 6524759504235032 a007 Real Root Of 723*x^4-843*x^3-175*x^2-848*x-844 6524759504300877 a001 4181/20633239*2207^(3/4) 6524759509212045 a001 17711/141422324*2207^(13/16) 6524759511091789 k002 Champernowne real with 83*n^2-67*n+49 6524759512765232 a001 46368/370248451*2207^(13/16) 6524759513283635 a001 121393/969323029*2207^(13/16) 6524759513359269 a001 317811/2537720636*2207^(13/16) 6524759513370304 a001 832040/6643838879*2207^(13/16) 6524759513371914 a001 2178309/17393796001*2207^(13/16) 6524759513372149 a001 1597/12752044*2207^(13/16) 6524759513372183 a001 14930352/119218851371*2207^(13/16) 6524759513372188 a001 39088169/312119004989*2207^(13/16) 6524759513372189 a001 102334155/817138163596*2207^(13/16) 6524759513372189 a001 267914296/2139295485799*2207^(13/16) 6524759513372189 a001 701408733/5600748293801*2207^(13/16) 6524759513372189 a001 1836311903/14662949395604*2207^(13/16) 6524759513372189 a001 2971215073/23725150497407*2207^(13/16) 6524759513372189 a001 1134903170/9062201101803*2207^(13/16) 6524759513372189 a001 433494437/3461452808002*2207^(13/16) 6524759513372189 a001 165580141/1322157322203*2207^(13/16) 6524759513372189 a001 63245986/505019158607*2207^(13/16) 6524759513372191 a001 24157817/192900153618*2207^(13/16) 6524759513372204 a001 9227465/73681302247*2207^(13/16) 6524759513372294 a001 3524578/28143753123*2207^(13/16) 6524759513372909 a001 1346269/10749957122*2207^(13/16) 6524759513377124 a001 514229/4106118243*2207^(13/16) 6524759513406013 a001 196418/1568397607*2207^(13/16) 6524759513604026 a001 75025/599074578*2207^(13/16) 6524759514961222 a001 28657/228826127*2207^(13/16) 6524759517307793 m001 (ln(3)+arctan(1/3))/(Porter+Rabbit) 6524759522690644 a001 1597/710647*2207^(7/16) 6524759524263586 a001 10946/87403803*2207^(13/16) 6524759528406775 r005 Im(z^2+c),c=-3/52+16/23*I,n=62 6524759540572729 a001 1292/51841*843^(1/7) 6524759567082631 a007 Real Root Of 660*x^4-429*x^3-479*x^2-33*x+225 6524759568580216 a001 2255/29134601*2207^(7/8) 6524759569100214 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^38 6524759572197323 a003 cos(Pi*26/107)*sin(Pi*33/92) 6524759585740300 m001 Lehmer*exp(1/exp(1))^MertensB1 6524759588022934 a001 4181/33385282*2207^(13/16) 6524759588305234 a001 1597/39603*843^(1/14) 6524759592934122 a001 17711/228826127*2207^(7/8) 6524759593987303 a001 610/1149851*1364^(2/3) 6524759596487310 a001 2576/33281921*2207^(7/8) 6524759597005713 a001 121393/1568397607*2207^(7/8) 6524759597081347 a001 105937/1368706081*2207^(7/8) 6524759597092381 a001 416020/5374978561*2207^(7/8) 6524759597093991 a001 726103/9381251041*2207^(7/8) 6524759597094226 a001 5702887/73681302247*2207^(7/8) 6524759597094261 a001 2584/33385281*2207^(7/8) 6524759597094266 a001 39088169/505019158607*2207^(7/8) 6524759597094266 a001 34111385/440719107401*2207^(7/8) 6524759597094266 a001 133957148/1730726404001*2207^(7/8) 6524759597094266 a001 233802911/3020733700601*2207^(7/8) 6524759597094266 a001 1836311903/23725150497407*2207^(7/8) 6524759597094266 a001 567451585/7331474697802*2207^(7/8) 6524759597094266 a001 433494437/5600748293801*2207^(7/8) 6524759597094266 a001 165580141/2139295485799*2207^(7/8) 6524759597094267 a001 31622993/408569081798*2207^(7/8) 6524759597094269 a001 24157817/312119004989*2207^(7/8) 6524759597094282 a001 9227465/119218851371*2207^(7/8) 6524759597094371 a001 1762289/22768774562*2207^(7/8) 6524759597094986 a001 1346269/17393796001*2207^(7/8) 6524759597099201 a001 514229/6643838879*2207^(7/8) 6524759597128091 a001 98209/1268860318*2207^(7/8) 6524759597326103 a001 75025/969323029*2207^(7/8) 6524759598683300 a001 28657/370248451*2207^(7/8) 6524759606430577 a001 1597/1149851*2207^(1/2) 6524759607985665 a001 5473/70711162*2207^(7/8) 6524759611121795 k002 Champernowne real with 167/2*n^2-137/2*n+50 6524759613954281 m001 (Riemann1stZero+Trott)/(Zeta(3)+cos(1/12*Pi)) 6524759613969277 r005 Im(z^2+c),c=-27/22+5/31*I,n=19 6524759624716628 r009 Re(z^3+c),c=-5/52+27/59*I,n=20 6524759632763325 r002 4th iterates of z^2 + 6524759636673782 r005 Im(z^2+c),c=-8/27+38/59*I,n=20 6524759652302295 a001 6765/141422324*2207^(15/16) 6524759671745020 a001 4181/54018521*2207^(7/8) 6524759672011004 r005 Im(z^2+c),c=9/26+1/13*I,n=10 6524759676656201 a001 17711/370248451*2207^(15/16) 6524759680209388 a001 46368/969323029*2207^(15/16) 6524759680727791 a001 121393/2537720636*2207^(15/16) 6524759680803425 a001 317811/6643838879*2207^(15/16) 6524759680814460 a001 832040/17393796001*2207^(15/16) 6524759680816070 a001 2178309/45537549124*2207^(15/16) 6524759680816305 a001 5702887/119218851371*2207^(15/16) 6524759680816339 a001 14930352/312119004989*2207^(15/16) 6524759680816344 a001 4181/87403804*2207^(15/16) 6524759680816345 a001 102334155/2139295485799*2207^(15/16) 6524759680816345 a001 267914296/5600748293801*2207^(15/16) 6524759680816345 a001 701408733/14662949395604*2207^(15/16) 6524759680816345 a001 1134903170/23725150497407*2207^(15/16) 6524759680816345 a001 433494437/9062201101803*2207^(15/16) 6524759680816345 a001 165580141/3461452808002*2207^(15/16) 6524759680816345 a001 63245986/1322157322203*2207^(15/16) 6524759680816347 a001 24157817/505019158607*2207^(15/16) 6524759680816360 a001 9227465/192900153618*2207^(15/16) 6524759680816450 a001 3524578/73681302247*2207^(15/16) 6524759680817065 a001 1346269/28143753123*2207^(15/16) 6524759680821280 a001 514229/10749957122*2207^(15/16) 6524759680850170 a001 196418/4106118243*2207^(15/16) 6524759681048182 a001 75025/1568397607*2207^(15/16) 6524759682405379 a001 28657/599074578*2207^(15/16) 6524759690145836 a001 1597/1860498*2207^(9/16) 6524759691707743 a001 10946/228826127*2207^(15/16) 6524759694918769 m001 1/Riemann1stZero^2*Porter/ln(GAMMA(7/24)) 6524759698059027 a007 Real Root Of -400*x^4-192*x^3-579*x^2-165*x+158 6524759703394438 a001 377/15127*322^(1/6) 6524759708015291 a001 2255/90481*843^(1/7) 6524759708090134 a001 21/2206*843^(2/7) 6524759711151801 k002 Champernowne real with 84*n^2-70*n+51 6524759715688002 r005 Re(z^2+c),c=-1/38+16/21*I,n=49 6524759715938069 a007 Real Root Of -765*x^4+525*x^3+587*x^2+734*x-736 6524759732444831 a001 17711/710647*843^(1/7) 6524759736009053 a001 2576/103361*843^(1/7) 6524759736024374 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^40 6524759736529066 a001 121393/4870847*843^(1/7) 6524759736604935 a001 105937/4250681*843^(1/7) 6524759736616004 a001 416020/16692641*843^(1/7) 6524759736617619 a001 726103/29134601*843^(1/7) 6524759736617855 a001 5702887/228826127*843^(1/7) 6524759736617889 a001 829464/33281921*843^(1/7) 6524759736617894 a001 39088169/1568397607*843^(1/7) 6524759736617895 a001 34111385/1368706081*843^(1/7) 6524759736617895 a001 133957148/5374978561*843^(1/7) 6524759736617895 a001 233802911/9381251041*843^(1/7) 6524759736617895 a001 1836311903/73681302247*843^(1/7) 6524759736617895 a001 267084832/10716675201*843^(1/7) 6524759736617895 a001 12586269025/505019158607*843^(1/7) 6524759736617895 a001 10983760033/440719107401*843^(1/7) 6524759736617895 a001 43133785636/1730726404001*843^(1/7) 6524759736617895 a001 75283811239/3020733700601*843^(1/7) 6524759736617895 a001 182717648081/7331474697802*843^(1/7) 6524759736617895 a001 139583862445/5600748293801*843^(1/7) 6524759736617895 a001 53316291173/2139295485799*843^(1/7) 6524759736617895 a001 10182505537/408569081798*843^(1/7) 6524759736617895 a001 7778742049/312119004989*843^(1/7) 6524759736617895 a001 2971215073/119218851371*843^(1/7) 6524759736617895 a001 567451585/22768774562*843^(1/7) 6524759736617895 a001 433494437/17393796001*843^(1/7) 6524759736617895 a001 165580141/6643838879*843^(1/7) 6524759736617895 a001 31622993/1268860318*843^(1/7) 6524759736617897 a001 24157817/969323029*843^(1/7) 6524759736617911 a001 9227465/370248451*843^(1/7) 6524759736618001 a001 1762289/70711162*843^(1/7) 6524759736618617 a001 1346269/54018521*843^(1/7) 6524759736622845 a001 514229/20633239*843^(1/7) 6524759736651825 a001 98209/3940598*843^(1/7) 6524759736850452 a001 75025/3010349*843^(1/7) 6524759738211864 a001 28657/1149851*843^(1/7) 6524759747543118 a001 5473/219602*843^(1/7) 6524759755467097 a001 4181/87403803*2207^(15/16) 6524759760378281 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^42 6524759763931468 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^44 6524759764449871 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^46 6524759764525505 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^48 6524759764536540 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^50 6524759764538150 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^52 6524759764538385 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^54 6524759764538419 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^56 6524759764538424 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^58 6524759764538425 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^60 6524759764538425 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^62 6524759764538425 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^64 6524759764538425 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^66 6524759764538425 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^68 6524759764538425 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^70 6524759764538425 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^72 6524759764538425 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^74 6524759764538425 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^76 6524759764538425 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^78 6524759764538425 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^80 6524759764538425 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^82 6524759764538425 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^84 6524759764538425 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^86 6524759764538425 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^88 6524759764538425 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^90 6524759764538425 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^92 6524759764538425 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^94 6524759764538425 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^96 6524759764538425 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^98 6524759764538425 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^100 6524759764538425 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^99 6524759764538425 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^97 6524759764538425 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^95 6524759764538425 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^93 6524759764538425 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^91 6524759764538425 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^89 6524759764538425 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^87 6524759764538425 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^85 6524759764538425 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^83 6524759764538425 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^81 6524759764538425 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^79 6524759764538425 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^77 6524759764538425 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^75 6524759764538425 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^73 6524759764538425 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^71 6524759764538425 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^69 6524759764538425 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^67 6524759764538425 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^65 6524759764538425 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^63 6524759764538425 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^61 6524759764538425 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^59 6524759764538427 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^57 6524759764538440 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^55 6524759764538530 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^53 6524759764538700 a001 2/987*(1/2+1/2*5^(1/2))^12 6524759764539145 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^51 6524759764543360 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^49 6524759764572249 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^47 6524759764770262 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^45 6524759766127458 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^43 6524759773870520 a001 1597/3010349*2207^(5/8) 6524759775429823 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^41 6524759787414087 r002 41th iterates of z^2 + 6524759793052475 a001 2207/6765*8^(1/3) 6524759807766032 p003 LerchPhi(1/512,4,19/54) 6524759811181807 k002 Champernowne real with 169/2*n^2-143/2*n+52 6524759811500485 a001 4181/167761*843^(1/7) 6524759816669572 r004 Re(z^2+c),c=-13/38-3/14*I,z(0)=-1,n=4 6524759827769268 a001 610/710647*1364^(3/5) 6524759839189178 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^39 6524759854263857 a007 Real Root Of 68*x^4+569*x^3+728*x^2-707*x-796 6524759857591606 a001 1597/4870847*2207^(11/16) 6524759870874119 g007 Psi(2,3/7)+14*Zeta(3)-Psi(2,5/7)-Psi(2,3/5) 6524759885088689 a007 Real Root Of -369*x^4+272*x^3-284*x^2+893*x+846 6524759892048156 a007 Real Root Of -931*x^4+290*x^3-665*x^2+122*x+612 6524759905487722 r005 Re(z^2+c),c=3/38+27/62*I,n=35 6524759911211813 k002 Champernowne real with 85*n^2-73*n+53 6524759915635606 r002 57th iterates of z^2 + 6524759926559224 a007 Real Root Of -97*x^4+958*x^3-818*x^2-639*x+215 6524759929289523 a007 Real Root Of 547*x^4-893*x^3+358*x^2+122*x-420 6524759941314068 a001 1597/7881196*2207^(3/4) 6524759975712793 r002 11th iterates of z^2 + 6524760003857443 p001 sum(1/(398*n+249)/n/(24^n),n=1..infinity) 6524760009942508 g007 Psi(2,6/7)-Psi(2,4/5)-2*Psi(2,2/5) 6524760011241819 k002 Champernowne real with 171/2*n^2-149/2*n+54 6524760025036006 a001 1597/12752043*2207^(13/16) 6524760054439225 a001 610/15127*521^(1/13) 6524760061615841 a001 305/219602*1364^(8/15) 6524760078547616 m001 GAMMA(1/3)/exp(ErdosBorwein)^2/GAMMA(17/24)^2 6524760103398743 a007 Real Root Of 892*x^4-902*x^3+699*x^2+930*x-103 6524760108758146 a001 1597/20633239*2207^(7/8) 6524760111271825 k002 Champernowne real with 86*n^2-76*n+55 6524760121577684 m001 (gamma+ln(2))/(Cahen+Conway) 6524760127112253 a001 3/8*233^(53/56) 6524760151055883 r005 Re(z^2+c),c=-57/74+1/50*I,n=61 6524760156601655 a001 4/317811*233^(16/53) 6524760174507219 m005 (1/2*5^(1/2)-4/11)/(1/11*exp(1)+10/11) 6524760184409392 a007 Real Root Of 114*x^4-566*x^3+48*x^2-821*x-734 6524760192480210 a001 1597/33385282*2207^(15/16) 6524760197227910 a001 2584/167761*843^(3/14) 6524760200660788 r009 Re(z^3+c),c=-5/122+53/57*I,n=2 6524760208858527 a003 cos(Pi*1/99)-cos(Pi*13/112) 6524760211301831 k002 Champernowne real with 173/2*n^2-155/2*n+56 6524760236955304 a007 Real Root Of 97*x^4+606*x^3-209*x^2-162*x+368 6524760249870804 a001 1597/64079*843^(1/7) 6524760268308970 a007 Real Root Of 658*x^4-987*x^3-834*x^2-801*x-561 6524760273928858 a001 233/1149851*521^(12/13) 6524760276202302 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^37 6524760285706162 m001 HeathBrownMoroz*(GAMMA(13/24)-ln(Pi)) 6524760295293299 a001 610/271443*1364^(7/15) 6524760311331837 k002 Champernowne real with 87*n^2-79*n+57 6524760319801730 a008 Real Root of (-3-x+5*x^2-3*x^3-6*x^4-4*x^5) 6524760335774906 m001 (MertensB2-Porter)/LaplaceLimit 6524760363954074 a001 6765/439204*843^(3/14) 6524760364745332 a001 987/167761*843^(5/14) 6524760379347334 a001 3/2584*46368^(33/56) 6524760388279093 a001 17711/1149851*843^(3/14) 6524760391575043 a007 Real Root Of -350*x^4-117*x^3-209*x^2+581*x+499 6524760391828066 a001 46368/3010349*843^(3/14) 6524760392345854 a001 121393/7881196*843^(3/14) 6524760392421398 a001 10959/711491*843^(3/14) 6524760392432420 a001 832040/54018521*843^(3/14) 6524760392434028 a001 2178309/141422324*843^(3/14) 6524760392434262 a001 5702887/370248451*843^(3/14) 6524760392434297 a001 14930352/969323029*843^(3/14) 6524760392434302 a001 39088169/2537720636*843^(3/14) 6524760392434302 a001 102334155/6643838879*843^(3/14) 6524760392434302 a001 9238424/599786069*843^(3/14) 6524760392434302 a001 701408733/45537549124*843^(3/14) 6524760392434302 a001 1836311903/119218851371*843^(3/14) 6524760392434302 a001 4807526976/312119004989*843^(3/14) 6524760392434302 a001 12586269025/817138163596*843^(3/14) 6524760392434302 a001 32951280099/2139295485799*843^(3/14) 6524760392434302 a001 86267571272/5600748293801*843^(3/14) 6524760392434302 a001 7787980473/505618944676*843^(3/14) 6524760392434302 a001 365435296162/23725150497407*843^(3/14) 6524760392434302 a001 139583862445/9062201101803*843^(3/14) 6524760392434302 a001 53316291173/3461452808002*843^(3/14) 6524760392434302 a001 20365011074/1322157322203*843^(3/14) 6524760392434302 a001 7778742049/505019158607*843^(3/14) 6524760392434302 a001 2971215073/192900153618*843^(3/14) 6524760392434302 a001 1134903170/73681302247*843^(3/14) 6524760392434302 a001 433494437/28143753123*843^(3/14) 6524760392434303 a001 165580141/10749957122*843^(3/14) 6524760392434303 a001 63245986/4106118243*843^(3/14) 6524760392434305 a001 24157817/1568397607*843^(3/14) 6524760392434318 a001 9227465/599074578*843^(3/14) 6524760392434407 a001 3524578/228826127*843^(3/14) 6524760392435022 a001 1346269/87403803*843^(3/14) 6524760392439232 a001 514229/33385282*843^(3/14) 6524760392468087 a001 196418/12752043*843^(3/14) 6524760392665864 a001 75025/4870847*843^(3/14) 6524760394021451 a001 28657/1860498*843^(3/14) 6524760403312782 a001 10946/710647*843^(3/14) 6524760404235124 a001 817138163596/233*144^(10/17) 6524760411361843 k002 Champernowne real with 175/2*n^2-161/2*n+58 6524760463831341 r005 Im(z^2+c),c=-129/118+1/13*I,n=31 6524760465367646 m001 GAMMA(11/12)^sin(1/12*Pi)*Cahen 6524760465367646 m001 GAMMA(11/12)^sin(Pi/12)*Cahen 6524760466996509 a001 4181/271443*843^(3/14) 6524760468035748 a001 10749957122/987*144^(14/17) 6524760484183926 a007 Real Root Of -45*x^4+608*x^3-649*x^2-258*x+285 6524760488350821 a007 Real Root Of 676*x^4-201*x^3+161*x^2-63*x-288 6524760511391849 k002 Champernowne real with 88*n^2-82*n+59 6524760529413535 a001 610/167761*1364^(2/5) 6524760545987326 a001 7/75025*75025^(14/37) 6524760553111724 r005 Im(z^2+c),c=-99/106+18/47*I,n=5 6524760575072601 m001 arctan(1/2)-cos(1/12*Pi)*ThueMorse 6524760575072601 m001 arctan(1/2)-cos(Pi/12)*ThueMorse 6524760591619223 m005 (1/3*2^(1/2)-1/7)/(4/9*2^(1/2)-1/8) 6524760592427064 a001 120414/1845493 6524760592427354 a004 Fibonacci(15)/Lucas(16)/(1/2+sqrt(5)/2)^3 6524760592428964 a004 Fibonacci(16)/Lucas(15)/(1/2+sqrt(5)/2)^5 6524760603569437 r002 13th iterates of z^2 + 6524760611421855 k002 Champernowne real with 177/2*n^2-167/2*n+60 6524760637771640 m005 (-1/8+1/4*5^(1/2))/(9/10*Zeta(3)-5/12) 6524760642915967 m005 (2/3+1/4*5^(1/2))/(5/6*2^(1/2)+7/10) 6524760651614031 r009 Im(z^3+c),c=-19/70+25/37*I,n=18 6524760659644868 m001 (Porter+RenyiParking)/(Zeta(5)-ArtinRank2) 6524760700958640 p003 LerchPhi(1/64,4,37/187) 6524760711451861 k002 Champernowne real with 89*n^2-85*n+61 6524760753753716 a007 Real Root Of 344*x^4-698*x^3+442*x^2-99*x-509 6524760754747559 m001 (2^(1/3)-sin(1/12*Pi))/(DuboisRaymond+Totient) 6524760762374595 a001 305/51841*1364^(1/3) 6524760811481867 k002 Champernowne real with 179/2*n^2-173/2*n+62 6524760825748323 m001 (Sarnak-ThueMorse)/(HeathBrownMoroz+PlouffeB) 6524760826382877 a005 (1/cos(25/128*Pi))^318 6524760852723973 a001 2584/271443*843^(2/7) 6524760867567988 a007 Real Root Of -48*x^4+814*x^3-323*x^2-189*x+249 6524760893308881 m001 (KomornikLoreti-Rabbit)/(Zeta(3)-Zeta(5)) 6524760899809064 a002 7^(10/3)-7^(2/3) 6524760903491272 a001 1597/103682*843^(3/14) 6524760903989336 a007 Real Root Of 580*x^4-560*x^3-892*x^2-553*x+791 6524760907015891 m001 (gamma(1)-Conway)/(Khinchin-Stephens) 6524760911511873 k002 Champernowne real with 90*n^2-88*n+63 6524760911714316 a001 161/182717648081*832040^(6/19) 6524760911714911 a001 161/3278735159921*7778742049^(6/19) 6524760916856892 m001 GaussAGM(1,1/sqrt(2))/(ln(Pi)^GAMMA(11/24)) 6524760979059904 a007 Real Root Of -664*x^4-377*x^3-488*x^2+191*x+348 6524760992670675 m008 (5/6*Pi^3-1/4)/(3/5*Pi^2-2) 6524760998370448 a001 610/64079*1364^(4/15) 6524761002941623 m001 1/Sierpinski/ln(PrimesInBinary)^2/BesselJ(0,1) 6524761011541879 k002 Champernowne real with 181/2*n^2-179/2*n+64 6524761019723800 a001 6765/710647*843^(2/7) 6524761020241412 a001 329/90481*843^(3/7) 6524761044088746 a001 17711/1860498*843^(2/7) 6524761047643544 a001 46368/4870847*843^(2/7) 6524761048162182 a001 121393/12752043*843^(2/7) 6524761048237850 a001 317811/33385282*843^(2/7) 6524761048248890 a001 832040/87403803*843^(2/7) 6524761048250501 a001 46347/4868641*843^(2/7) 6524761048250736 a001 5702887/599074578*843^(2/7) 6524761048250770 a001 14930352/1568397607*843^(2/7) 6524761048250775 a001 39088169/4106118243*843^(2/7) 6524761048250776 a001 102334155/10749957122*843^(2/7) 6524761048250776 a001 267914296/28143753123*843^(2/7) 6524761048250776 a001 701408733/73681302247*843^(2/7) 6524761048250776 a001 1836311903/192900153618*843^(2/7) 6524761048250776 a001 102287808/10745088481*843^(2/7) 6524761048250776 a001 12586269025/1322157322203*843^(2/7) 6524761048250776 a001 32951280099/3461452808002*843^(2/7) 6524761048250776 a001 86267571272/9062201101803*843^(2/7) 6524761048250776 a001 225851433717/23725150497407*843^(2/7) 6524761048250776 a001 139583862445/14662949395604*843^(2/7) 6524761048250776 a001 53316291173/5600748293801*843^(2/7) 6524761048250776 a001 20365011074/2139295485799*843^(2/7) 6524761048250776 a001 7778742049/817138163596*843^(2/7) 6524761048250776 a001 2971215073/312119004989*843^(2/7) 6524761048250776 a001 1134903170/119218851371*843^(2/7) 6524761048250776 a001 433494437/45537549124*843^(2/7) 6524761048250776 a001 165580141/17393796001*843^(2/7) 6524761048250776 a001 63245986/6643838879*843^(2/7) 6524761048250778 a001 24157817/2537720636*843^(2/7) 6524761048250791 a001 9227465/969323029*843^(2/7) 6524761048250881 a001 3524578/370248451*843^(2/7) 6524761048251496 a001 1346269/141422324*843^(2/7) 6524761048255713 a001 514229/54018521*843^(2/7) 6524761048284616 a001 196418/20633239*843^(2/7) 6524761048482718 a001 75025/7881196*843^(2/7) 6524761049840530 a001 28657/3010349*843^(2/7) 6524761059147111 a001 10946/1149851*843^(2/7) 6524761077324066 q001 751/1151 6524761096575049 p003 LerchPhi(1/32,1,25/16) 6524761111571885 k002 Champernowne real with 91*n^2-91*n+65 6524761122935369 a001 4181/439204*843^(2/7) 6524761147466863 a007 Real Root Of 872*x^4-489*x^3-545*x^2+527*x+282 6524761148109924 r009 Re(z^3+c),c=-5/52+27/59*I,n=22 6524761156056508 a003 cos(Pi*29/74)-sin(Pi*33/74) 6524761162522619 r005 Im(z^2+c),c=7/48+19/34*I,n=20 6524761167605124 a005 (1/cos(24/233*Pi))^208 6524761179277969 a007 Real Root Of -614*x^4-561*x^3-993*x^2+648*x+801 6524761211601891 k002 Champernowne real with 183/2*n^2-185/2*n+66 6524761225250949 m001 ln(3)^HardHexagonsEntropy/MadelungNaCl 6524761226421139 a001 610/39603*1364^(1/5) 6524761292760867 m001 1/ln(GAMMA(5/24))/MinimumGamma/sin(1)^2 6524761311631897 k002 Champernowne real with 92*n^2-94*n+67 6524761325670623 m001 1/cosh(1)/exp(Ei(1))*sin(Pi/12)^2 6524761336711233 m001 (-sin(1)+gamma(2))/(Psi(1,1/3)-exp(Pi)) 6524761345882984 a007 Real Root Of -523*x^4-33*x^3+415*x^2+607*x+305 6524761360384174 a007 Real Root Of 952*x^4-269*x^3-493*x^2-896*x-622 6524761389733044 h001 (7/9*exp(1)+2/9)/(5/11*exp(2)+2/9) 6524761408290175 l006 ln(138/265) 6524761411661903 k002 Champernowne real with 185/2*n^2-191/2*n+68 6524761414545089 h001 (4/9*exp(2)+2/11)/(1/7*exp(1)+1/7) 6524761420316898 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^36 6524761429103175 m001 Conway*GaussAGM(1,1/sqrt(2))*ln(arctan(1/2))^2 6524761450414798 a001 610/20633239*3571^(16/17) 6524761466241995 m001 (5^(1/2)-exp(1/Pi))/(Gompertz+Sarnak) 6524761475272564 a001 305/12238*1364^(2/15) 6524761476720403 a007 Real Root Of -125*x^4+856*x^3+538*x^2+763*x-942 6524761479562221 m001 FellerTornier*ZetaR(2)^Chi(1) 6524761480512626 a001 610/12752043*3571^(15/17) 6524761508662871 a001 34/5779*843^(5/14) 6524761510610656 a001 305/3940598*3571^(14/17) 6524761510879731 a007 Real Root Of 510*x^4-693*x^3+50*x^2-861*x-868 6524761511691909 k002 Champernowne real with 93*n^2-97*n+69 6524761520182029 a007 Real Root Of -66*x^4-466*x^3-193*x^2+353*x+696 6524761539171127 m001 (Artin+Kac)/(KhinchinLevy-Totient) 6524761540708160 a001 610/4870847*3571^(13/17) 6524761560146591 a001 1597/167761*843^(2/7) 6524761562424611 r002 20th iterates of z^2 + 6524761570807040 a001 610/3010349*3571^(12/17) 6524761600902320 a001 305/930249*3571^(11/17) 6524761611721915 k002 Champernowne real with 187/2*n^2-197/2*n+70 6524761631007024 a001 610/1149851*3571^(10/17) 6524761661087055 a001 610/710647*3571^(9/17) 6524761669666991 a001 610/15127*1364^(1/15) 6524761671057239 r009 Im(z^3+c),c=-55/102+11/27*I,n=43 6524761675558191 a001 6765/1149851*843^(5/14) 6524761676180327 a001 987/439204*843^(1/2) 6524761691231684 a001 305/219602*3571^(8/17) 6524761695024134 a007 Real Root Of -263*x^4+283*x^3-110*x^2+78*x+224 6524761699907890 a001 17711/3010349*843^(5/14) 6524761703460463 a001 11592/1970299*843^(5/14) 6524761703978776 a001 121393/20633239*843^(5/14) 6524761704054397 a001 317811/54018521*843^(5/14) 6524761704065430 a001 208010/35355581*843^(5/14) 6524761704067040 a001 2178309/370248451*843^(5/14) 6524761704067275 a001 5702887/969323029*843^(5/14) 6524761704067309 a001 196452/33391061*843^(5/14) 6524761704067314 a001 39088169/6643838879*843^(5/14) 6524761704067315 a001 102334155/17393796001*843^(5/14) 6524761704067315 a001 66978574/11384387281*843^(5/14) 6524761704067315 a001 701408733/119218851371*843^(5/14) 6524761704067315 a001 1836311903/312119004989*843^(5/14) 6524761704067315 a001 1201881744/204284540899*843^(5/14) 6524761704067315 a001 12586269025/2139295485799*843^(5/14) 6524761704067315 a001 32951280099/5600748293801*843^(5/14) 6524761704067315 a001 1135099622/192933544679*843^(5/14) 6524761704067315 a001 139583862445/23725150497407*843^(5/14) 6524761704067315 a001 53316291173/9062201101803*843^(5/14) 6524761704067315 a001 10182505537/1730726404001*843^(5/14) 6524761704067315 a001 7778742049/1322157322203*843^(5/14) 6524761704067315 a001 2971215073/505019158607*843^(5/14) 6524761704067315 a001 567451585/96450076809*843^(5/14) 6524761704067315 a001 433494437/73681302247*843^(5/14) 6524761704067315 a001 165580141/28143753123*843^(5/14) 6524761704067315 a001 31622993/5374978561*843^(5/14) 6524761704067317 a001 24157817/4106118243*843^(5/14) 6524761704067330 a001 9227465/1568397607*843^(5/14) 6524761704067420 a001 1762289/299537289*843^(5/14) 6524761704068035 a001 1346269/228826127*843^(5/14) 6524761704072249 a001 514229/87403803*843^(5/14) 6524761704101134 a001 98209/16692641*843^(5/14) 6524761704299112 a001 75025/12752043*843^(5/14) 6524761705656074 a001 28657/4870847*843^(5/14) 6524761711751921 k002 Champernowne real with 94*n^2-100*n+71 6524761714956831 a001 5473/930249*843^(5/14) 6524761718420223 a007 Real Root Of -535*x^4-617*x^3-721*x^2-10*x+226 6524761721207191 a001 610/271443*3571^(7/17) 6524761723192931 a003 sin(Pi*26/115)/sin(Pi*21/43) 6524761736542668 a001 1576240/24157817 6524761736542676 a004 Fibonacci(15)/Lucas(18)/(1/2+sqrt(5)/2) 6524761736544555 a004 Fibonacci(18)/Lucas(15)/(1/2+sqrt(5)/2)^7 6524761751625467 a001 610/167761*3571^(6/17) 6524761762948217 r002 61th iterates of z^2 + 6524761769296384 r002 47i'th iterates of 2*x/(1-x^2) of 6524761778705171 a001 4181/710647*843^(5/14) 6524761780884559 a001 305/51841*3571^(5/17) 6524761791140027 a001 196418/123*521^(9/40) 6524761802908475 m001 (-MertensB1+Niven)/(Chi(1)+exp(1/Pi)) 6524761811781927 k002 Champernowne real with 189/2*n^2-203/2*n+72 6524761813178435 a001 610/64079*3571^(4/17) 6524761833336111 p001 sum((-1)^n/(559*n+153)/(125^n),n=0..infinity) 6524761837527142 a001 610/39603*3571^(3/17) 6524761855323875 m001 (ln(3)-exp(1/Pi))/(Trott+ThueMorse) 6524761856707893 r005 Re(z^2+c),c=-125/86+4/49*I,n=2 6524761857330167 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^38 6524761861259158 a001 610/54018521*9349^(18/19) 6524761861298799 m001 1/2*2^(1/2)*ln(2)^Ei(1,1) 6524761865188138 a001 305/16692641*9349^(17/19) 6524761869117147 a001 610/20633239*9349^(16/19) 6524761873046080 a001 610/12752043*9349^(15/19) 6524761873368999 a001 610/15127*3571^(1/17) 6524761876975214 a001 305/3940598*9349^(14/19) 6524761880903822 a001 610/4870847*9349^(13/19) 6524761882676575 a001 305/12238*3571^(2/17) 6524761884833805 a001 610/3010349*9349^(12/19) 6524761888760189 a001 305/930249*9349^(11/19) 6524761892695997 a001 610/1149851*9349^(10/19) 6524761896607131 a001 610/710647*9349^(9/19) 6524761899537897 a001 610/15127*9349^(1/19) 6524761900582863 a001 305/219602*9349^(8/19) 6524761901622517 m001 Bloch^2*Conway^2*ln(TwinPrimes)^2 6524761902948247 a001 610/15127*24476^(1/21) 6524761903332021 l006 ln(8899/9499) 6524761903397797 a001 610/15127*64079^(1/23) 6524761903466885 a001 2063325/31622993 6524761903466886 a001 305/15127+305/15127*5^(1/2) 6524761903468770 a004 Fibonacci(20)/Lucas(15)/(1/2+sqrt(5)/2)^9 6524761903492175 a001 610/15127*103682^(1/24) 6524761903655983 a001 610/15127*39603^(1/22) 6524761904389473 a001 610/271443*9349^(7/19) 6524761904892589 a001 610/15127*15127^(1/20) 6524761908638852 a001 610/167761*9349^(6/19) 6524761911729047 a001 305/51841*9349^(5/19) 6524761911811933 k002 Champernowne real with 95*n^2-103*n+73 6524761914324567 a001 610/15127*5778^(1/18) 6524761916033835 a001 610/39603*9349^(3/19) 6524761917854026 a001 610/64079*9349^(4/19) 6524761921089544 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^40 6524761921608182 a001 305/70711162*24476^(20/21) 6524761922126819 a001 610/87403803*24476^(19/21) 6524761922645461 a001 610/54018521*24476^(6/7) 6524761923164091 a001 305/16692641*24476^(17/21) 6524761923682750 a001 610/20633239*24476^(16/21) 6524761924201333 a001 610/12752043*24476^(5/7) 6524761924720116 a001 305/3940598*24476^(2/3) 6524761925238374 a001 610/4870847*24476^(13/21) 6524761925758007 a001 610/3010349*24476^(4/7) 6524761926264886 a001 610/39603*24476^(1/7) 6524761926274041 a001 305/930249*24476^(11/21) 6524761926799499 a001 610/1149851*24476^(10/21) 6524761927300282 a001 610/710647*24476^(3/7) 6524761927543063 a007 Real Root Of 344*x^4+187*x^3+292*x^2-943*x-750 6524761927613535 a001 610/39603*64079^(3/23) 6524761927817042 a001 610/39603*439204^(1/9) 6524761927820791 a001 610/39603*7881196^(1/11) 6524761927820800 a001 10803710/165580141 6524761927820800 a001 610/39603*141422324^(1/13) 6524761927820800 a001 610/39603*2537720636^(1/15) 6524761927820800 a001 610/39603*45537549124^(1/17) 6524761927820800 a001 610/39603*14662949395604^(1/21) 6524761927820800 a001 610/39603*(1/2+1/2*5^(1/2))^3 6524761927820800 a001 610/39603*192900153618^(1/18) 6524761927820800 a001 610/39603*10749957122^(1/16) 6524761927820800 a001 610/39603*599074578^(1/14) 6524761927820801 a001 610/39603*33385282^(1/12) 6524761927820989 a001 610/39603*1860498^(1/10) 6524761927822685 a004 Fibonacci(22)/Lucas(15)/(1/2+sqrt(5)/2)^11 6524761927865665 a001 305/219602*24476^(8/21) 6524761927896670 a001 610/39603*103682^(1/8) 6524761928261924 a001 610/271443*24476^(1/3) 6524761928388093 a001 610/39603*39603^(3/22) 6524761928780798 a001 305/51841*24476^(5/21) 6524761929100953 a001 610/167761*24476^(2/7) 6524761930391911 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^42 6524761930461000 a001 610/370248451*64079^(22/23) 6524761930530088 a001 610/228826127*64079^(21/23) 6524761930599177 a001 305/70711162*64079^(20/23) 6524761930668264 a001 610/87403803*64079^(19/23) 6524761930737356 a001 610/54018521*64079^(18/23) 6524761930806436 a001 305/16692641*64079^(17/23) 6524761930875546 a001 610/20633239*64079^(16/23) 6524761930944579 a001 610/12752043*64079^(15/23) 6524761931013812 a001 305/3940598*64079^(14/23) 6524761931028546 a001 305/51841*64079^(5/23) 6524761931082521 a001 610/4870847*64079^(13/23) 6524761931152604 a001 610/3010349*64079^(12/23) 6524761931219088 a001 305/930249*64079^(11/23) 6524761931294996 a001 610/1149851*64079^(10/23) 6524761931327621 a001 305/51841*167761^(1/5) 6524761931346230 a001 610/710647*64079^(9/23) 6524761931373986 a001 305/51841*20633239^(1/7) 6524761931373989 a001 28284480/433494437 6524761931373989 a001 305/51841*2537720636^(1/9) 6524761931373989 a001 305/51841*312119004989^(1/11) 6524761931373989 a001 305/51841*(1/2+1/2*5^(1/2))^5 6524761931373989 a001 305/51841*28143753123^(1/10) 6524761931373989 a001 305/51841*228826127^(1/8) 6524761931374303 a001 305/51841*1860498^(1/6) 6524761931375873 a004 Fibonacci(24)/Lucas(15)/(1/2+sqrt(5)/2)^13 6524761931408773 a001 610/271443*64079^(7/23) 6524761931462063 a001 305/219602*64079^(8/23) 6524761931495427 a001 610/64079*24476^(4/21) 6524761931500438 a001 305/51841*103682^(5/24) 6524761931749109 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^44 6524761931795476 a001 305/70711162*167761^(4/5) 6524761931798252 a001 610/167761*64079^(6/23) 6524761931841803 a001 610/12752043*167761^(3/5) 6524761931892389 a001 610/271443*20633239^(1/5) 6524761931892392 a001 121393/1860497 6524761931892392 a001 610/271443*17393796001^(1/7) 6524761931892392 a001 610/271443*14662949395604^(1/9) 6524761931892392 a001 610/271443*(1/2+1/2*5^(1/2))^7 6524761931892392 a001 610/271443*599074578^(1/6) 6524761931893146 a001 610/1149851*167761^(2/5) 6524761931894277 a004 Fibonacci(26)/Lucas(15)/(1/2+sqrt(5)/2)^15 6524761931895622 a001 610/271443*710647^(1/4) 6524761931947121 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^46 6524761931950879 a001 610/969323029*439204^(8/9) 6524761931954637 a001 610/228826127*439204^(7/9) 6524761931956751 a001 610/710647*439204^(1/3) 6524761931958398 a001 610/54018521*439204^(2/3) 6524761931962114 a001 610/12752043*439204^(5/9) 6524761931966632 a001 610/3010349*439204^(4/9) 6524761931967997 a001 610/710647*7881196^(3/11) 6524761931968026 a001 610/710647*141422324^(3/13) 6524761931968026 a001 610/710647*2537720636^(1/5) 6524761931968026 a001 193864710/2971215073 6524761931968026 a001 610/710647*45537549124^(3/17) 6524761931968026 a001 610/710647*817138163596^(3/19) 6524761931968026 a001 610/710647*14662949395604^(1/7) 6524761931968026 a001 610/710647*(1/2+1/2*5^(1/2))^9 6524761931968026 a001 610/710647*192900153618^(1/6) 6524761931968026 a001 610/710647*10749957122^(3/16) 6524761931968026 a001 610/710647*599074578^(3/14) 6524761931968027 a001 610/710647*33385282^(1/4) 6524761931968591 a001 610/710647*1860498^(3/10) 6524761931969911 a004 Fibonacci(28)/Lucas(15)/(1/2+sqrt(5)/2)^17 6524761931976011 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^48 6524761931979026 a001 305/930249*7881196^(1/3) 6524761931979061 a001 507544400/7778742049 6524761931979061 a001 305/930249*312119004989^(1/5) 6524761931979061 a001 305/930249*(1/2+1/2*5^(1/2))^11 6524761931979061 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^11/Lucas(30) 6524761931979061 a001 305/930249*1568397607^(1/4) 6524761931980226 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^50 6524761931980670 a001 610/4870847*141422324^(1/3) 6524761931980671 a001 664384245/10182505537 6524761931980671 a001 610/4870847*(1/2+1/2*5^(1/2))^13 6524761931980671 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^13/Lucas(32) 6524761931980671 a001 610/4870847*73681302247^(1/4) 6524761931980840 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^52 6524761931980850 a001 610/17393796001*7881196^(10/11) 6524761931980858 a001 610/12752043*7881196^(5/11) 6524761931980860 a001 610/4106118243*7881196^(9/11) 6524761931980869 a001 610/969323029*7881196^(8/11) 6524761931980876 a001 610/370248451*7881196^(2/3) 6524761931980879 a001 610/228826127*7881196^(7/11) 6524761931980890 a001 610/54018521*7881196^(6/11) 6524761931980899 a001 610/12752043*20633239^(3/7) 6524761931980905 a001 610/12752043*141422324^(5/13) 6524761931980905 a001 610/12752043*2537720636^(1/3) 6524761931980905 a001 610/12752043*45537549124^(5/17) 6524761931980905 a001 3478761070/53316291173 6524761931980905 a001 610/12752043*312119004989^(3/11) 6524761931980905 a001 610/12752043*14662949395604^(5/21) 6524761931980905 a001 610/12752043*(1/2+1/2*5^(1/2))^15 6524761931980905 a001 610/12752043*192900153618^(5/18) 6524761931980905 a001 610/12752043*28143753123^(3/10) 6524761931980905 a001 610/12752043*10749957122^(5/16) 6524761931980905 a001 610/12752043*599074578^(5/14) 6524761931980905 a001 610/12752043*228826127^(3/8) 6524761931980908 a001 610/12752043*33385282^(5/12) 6524761931980930 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^54 6524761931980932 a001 610/17393796001*20633239^(6/7) 6524761931980933 a001 610/6643838879*20633239^(4/5) 6524761931980935 a001 610/1568397607*20633239^(5/7) 6524761931980936 a001 610/228826127*20633239^(3/5) 6524761931980937 a001 305/70711162*20633239^(4/7) 6524761931980940 a001 305/16692641*45537549124^(1/3) 6524761931980940 a001 1821502944/27916772489 6524761931980940 a001 305/16692641*(1/2+1/2*5^(1/2))^17 6524761931980943 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^56 6524761931980945 a001 2851445/43701901 6524761931980945 a001 610/87403803*817138163596^(1/3) 6524761931980945 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^19/Lucas(38) 6524761931980945 a001 610/87403803*87403803^(1/2) 6524761931980945 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^58 6524761931980945 a001 610/312119004989*141422324^(12/13) 6524761931980945 a001 610/228826127*141422324^(7/13) 6524761931980945 a001 610/73681302247*141422324^(11/13) 6524761931980945 a001 610/17393796001*141422324^(10/13) 6524761931980945 a001 610/4106118243*141422324^(9/13) 6524761931980945 a001 305/1268860318*141422324^(2/3) 6524761931980945 a001 610/969323029*141422324^(8/13) 6524761931980945 a001 610/228826127*2537720636^(7/15) 6524761931980945 a001 610/228826127*17393796001^(3/7) 6524761931980945 a001 610/228826127*45537549124^(7/17) 6524761931980945 a001 62423834550/956722026041 6524761931980945 a001 610/228826127*14662949395604^(1/3) 6524761931980945 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^21/Lucas(40) 6524761931980945 a001 610/228826127*192900153618^(7/18) 6524761931980945 a001 610/228826127*10749957122^(7/16) 6524761931980945 a001 610/228826127*599074578^(1/2) 6524761931980945 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^60 6524761931980946 a001 163427720560/2504730781961 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^23/Lucas(42) 6524761931980946 a001 305/299537289*4106118243^(1/2) 6524761931980946 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^62 6524761931980946 a001 610/1568397607*2537720636^(5/9) 6524761931980946 a001 610/1568397607*312119004989^(5/11) 6524761931980946 a001 213929663565/3278735159921 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^25/Lucas(44) 6524761931980946 a001 610/1568397607*3461452808002^(5/12) 6524761931980946 a001 610/1568397607*28143753123^(1/2) 6524761931980946 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^64 6524761931980946 a001 610/4106118243*2537720636^(3/5) 6524761931980946 a001 610/5600748293801*2537720636^(14/15) 6524761931980946 a001 610/2139295485799*2537720636^(8/9) 6524761931980946 a001 610/1322157322203*2537720636^(13/15) 6524761931980946 a001 610/312119004989*2537720636^(4/5) 6524761931980946 a001 305/96450076809*2537720636^(7/9) 6524761931980946 a001 610/73681302247*2537720636^(11/15) 6524761931980946 a001 610/17393796001*2537720636^(2/3) 6524761931980946 a001 610/4106118243*45537549124^(9/17) 6524761931980946 a001 610/4106118243*817138163596^(9/19) 6524761931980946 a001 610/4106118243*14662949395604^(3/7) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^27/Lucas(46) 6524761931980946 a001 610/4106118243*192900153618^(1/2) 6524761931980946 a001 610/4106118243*10749957122^(9/16) 6524761931980946 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^66 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^29/Lucas(48) 6524761931980946 a001 305/5374978561*1322157322203^(1/2) 6524761931980946 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^68 6524761931980946 a001 610/5600748293801*17393796001^(6/7) 6524761931980946 a001 305/96450076809*17393796001^(5/7) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^31/Lucas(50) 6524761931980946 a001 610/28143753123*9062201101803^(1/2) 6524761931980946 a001 610/73681302247*45537549124^(11/17) 6524761931980946 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^70 6524761931980946 a001 610/23725150497407*45537549124^(15/17) 6524761931980946 a001 610/5600748293801*45537549124^(14/17) 6524761931980946 a001 610/1322157322203*45537549124^(13/17) 6524761931980946 a001 610/312119004989*45537549124^(12/17) 6524761931980946 a001 610/119218851371*45537549124^(2/3) 6524761931980946 a001 610/73681302247*312119004989^(3/5) 6524761931980946 a001 610/73681302247*817138163596^(11/19) 6524761931980946 a001 610/73681302247*14662949395604^(11/21) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^33/Lucas(52) 6524761931980946 a001 610/73681302247*192900153618^(11/18) 6524761931980946 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^72 6524761931980946 a001 305/96450076809*312119004989^(7/11) 6524761931980946 a001 305/96450076809*14662949395604^(5/9) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^35/Lucas(54) 6524761931980946 a001 305/96450076809*505019158607^(5/8) 6524761931980946 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^74 6524761931980946 a001 610/23725150497407*312119004989^(9/11) 6524761931980946 a001 305/7331474697802*312119004989^(4/5) 6524761931980946 a001 610/2139295485799*312119004989^(8/11) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^37/Lucas(56) 6524761931980946 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^76 6524761931980946 a001 610/1322157322203*14662949395604^(13/21) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(58) 6524761931980946 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^78 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(60) 6524761931980946 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^80 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(62) 6524761931980946 a001 610/23725150497407*14662949395604^(5/7) 6524761931980946 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^82 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(64) 6524761931980946 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^84 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(66) 6524761931980946 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^86 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(68) 6524761931980946 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^88 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(70) 6524761931980946 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^90 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(72) 6524761931980946 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^92 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(74) 6524761931980946 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^94 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(76) 6524761931980946 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^96 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(78) 6524761931980946 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^98 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(80) 6524761931980946 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^100 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(82) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(84) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(86) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(88) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(90) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(92) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(94) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(96) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(98) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(99) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(100) 6524761931980946 a004 Fibonacci(15)*Lucas(1)/(1/2+sqrt(5)/2)^19 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(97) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(95) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(93) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(91) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(89) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(87) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(85) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(83) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(81) 6524761931980946 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^99 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(79) 6524761931980946 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^97 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(77) 6524761931980946 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^95 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(75) 6524761931980946 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^93 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(73) 6524761931980946 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^91 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(71) 6524761931980946 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^89 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(69) 6524761931980946 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^87 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(67) 6524761931980946 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^85 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(65) 6524761931980946 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^83 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(63) 6524761931980946 a001 305/7331474697802*23725150497407^(11/16) 6524761931980946 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^81 6524761931980946 a001 610/5600748293801*14662949395604^(2/3) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(61) 6524761931980946 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^79 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(59) 6524761931980946 a001 305/408569081798*817138163596^(2/3) 6524761931980946 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^77 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(57) 6524761931980946 a001 610/5600748293801*505019158607^(3/4) 6524761931980946 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^75 6524761931980946 a001 610/312119004989*14662949395604^(4/7) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^36/Lucas(55) 6524761931980946 a001 610/312119004989*505019158607^(9/14) 6524761931980946 a001 610/1322157322203*192900153618^(13/18) 6524761931980946 a001 610/23725150497407*192900153618^(5/6) 6524761931980946 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^73 6524761931980946 a001 610/312119004989*192900153618^(2/3) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^34/Lucas(53) 6524761931980946 a001 610/1322157322203*73681302247^(3/4) 6524761931980946 a001 610/2139295485799*73681302247^(10/13) 6524761931980946 a001 305/7331474697802*73681302247^(11/13) 6524761931980946 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^71 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^32/Lucas(51) 6524761931980946 a001 305/22768774562*23725150497407^(1/2) 6524761931980946 a001 305/22768774562*505019158607^(4/7) 6524761931980946 a001 305/22768774562*73681302247^(8/13) 6524761931980946 a001 305/96450076809*28143753123^(7/10) 6524761931980946 a001 610/2139295485799*28143753123^(4/5) 6524761931980946 a001 610/23725150497407*28143753123^(9/10) 6524761931980946 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^69 6524761931980946 a001 610/17393796001*45537549124^(10/17) 6524761931980946 a001 610/17393796001*312119004989^(6/11) 6524761931980946 a001 610/17393796001*14662949395604^(10/21) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^30/Lucas(49) 6524761931980946 a001 610/17393796001*192900153618^(5/9) 6524761931980946 a001 610/17393796001*28143753123^(3/5) 6524761931980946 a001 610/73681302247*10749957122^(11/16) 6524761931980946 a001 610/119218851371*10749957122^(17/24) 6524761931980946 a001 305/22768774562*10749957122^(2/3) 6524761931980946 a001 610/312119004989*10749957122^(3/4) 6524761931980946 a001 305/408569081798*10749957122^(19/24) 6524761931980946 a001 610/1322157322203*10749957122^(13/16) 6524761931980946 a001 610/2139295485799*10749957122^(5/6) 6524761931980946 a001 610/5600748293801*10749957122^(7/8) 6524761931980946 a001 305/7331474697802*10749957122^(11/12) 6524761931980946 a001 610/23725150497407*10749957122^(15/16) 6524761931980946 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^67 6524761931980946 a001 610/17393796001*10749957122^(5/8) 6524761931980946 a001 610/6643838879*17393796001^(4/7) 6524761931980946 a001 610/6643838879*14662949395604^(4/9) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^28/Lucas(47) 6524761931980946 a001 610/6643838879*505019158607^(1/2) 6524761931980946 a001 610/6643838879*73681302247^(7/13) 6524761931980946 a001 610/6643838879*10749957122^(7/12) 6524761931980946 a001 305/22768774562*4106118243^(16/23) 6524761931980946 a001 610/17393796001*4106118243^(15/23) 6524761931980946 a001 610/119218851371*4106118243^(17/23) 6524761931980946 a001 610/312119004989*4106118243^(18/23) 6524761931980946 a001 305/408569081798*4106118243^(19/23) 6524761931980946 a001 610/2139295485799*4106118243^(20/23) 6524761931980946 a001 610/5600748293801*4106118243^(21/23) 6524761931980946 a001 305/7331474697802*4106118243^(22/23) 6524761931980946 a001 610/6643838879*4106118243^(14/23) 6524761931980946 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^65 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^26/Lucas(45) 6524761931980946 a001 692290933700/10610209857723 6524761931980946 a001 305/1268860318*73681302247^(1/2) 6524761931980946 a001 305/1268860318*10749957122^(13/24) 6524761931980946 a001 305/1268860318*4106118243^(13/23) 6524761931980946 a001 610/17393796001*1568397607^(15/22) 6524761931980946 a001 610/6643838879*1568397607^(7/11) 6524761931980946 a001 305/22768774562*1568397607^(8/11) 6524761931980946 a001 610/73681302247*1568397607^(3/4) 6524761931980946 a001 610/119218851371*1568397607^(17/22) 6524761931980946 a001 610/312119004989*1568397607^(9/11) 6524761931980946 a001 305/408569081798*1568397607^(19/22) 6524761931980946 a001 610/2139295485799*1568397607^(10/11) 6524761931980946 a001 610/5600748293801*1568397607^(21/22) 6524761931980946 a001 305/1268860318*1568397607^(13/22) 6524761931980946 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^63 6524761931980946 a001 610/969323029*2537720636^(8/15) 6524761931980946 a001 610/969323029*45537549124^(8/17) 6524761931980946 a001 610/969323029*14662949395604^(8/21) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^24/Lucas(43) 6524761931980946 a001 264431606570/4052739537881 6524761931980946 a001 610/969323029*192900153618^(4/9) 6524761931980946 a001 610/969323029*73681302247^(6/13) 6524761931980946 a001 610/969323029*10749957122^(1/2) 6524761931980946 a001 610/969323029*4106118243^(12/23) 6524761931980946 a001 610/969323029*1568397607^(6/11) 6524761931980946 a001 610/4106118243*599074578^(9/14) 6524761931980946 a001 305/1268860318*599074578^(13/21) 6524761931980946 a001 610/6643838879*599074578^(2/3) 6524761931980946 a001 610/17393796001*599074578^(5/7) 6524761931980946 a001 305/22768774562*599074578^(16/21) 6524761931980946 a001 610/73681302247*599074578^(11/14) 6524761931980946 a001 610/119218851371*599074578^(17/21) 6524761931980946 a001 305/96450076809*599074578^(5/6) 6524761931980946 a001 610/312119004989*599074578^(6/7) 6524761931980946 a001 305/408569081798*599074578^(19/21) 6524761931980946 a001 610/1322157322203*599074578^(13/14) 6524761931980946 a001 610/2139295485799*599074578^(20/21) 6524761931980946 a001 610/969323029*599074578^(4/7) 6524761931980946 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^61 6524761931980946 a001 610/370248451*312119004989^(2/5) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^22/Lucas(41) 6524761931980946 a001 165580141/2537719272 6524761931980946 a001 610/370248451*10749957122^(11/24) 6524761931980946 a001 610/370248451*4106118243^(11/23) 6524761931980946 a001 610/370248451*1568397607^(1/2) 6524761931980946 a001 610/370248451*599074578^(11/21) 6524761931980946 a001 610/1568397607*228826127^(5/8) 6524761931980946 a001 610/969323029*228826127^(3/5) 6524761931980946 a001 305/1268860318*228826127^(13/20) 6524761931980946 a001 610/6643838879*228826127^(7/10) 6524761931980946 a001 610/17393796001*228826127^(3/4) 6524761931980946 a001 305/22768774562*228826127^(4/5) 6524761931980946 a001 610/119218851371*228826127^(17/20) 6524761931980946 a001 305/96450076809*228826127^(7/8) 6524761931980946 a001 610/312119004989*228826127^(9/10) 6524761931980946 a001 610/370248451*228826127^(11/20) 6524761931980946 a001 305/408569081798*228826127^(19/20) 6524761931980946 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^59 6524761931980946 a001 305/70711162*2537720636^(4/9) 6524761931980946 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^20/Lucas(39) 6524761931980946 a001 305/70711162*23725150497407^(5/16) 6524761931980946 a001 38580051460/591286729879 6524761931980946 a001 305/70711162*505019158607^(5/14) 6524761931980946 a001 305/70711162*73681302247^(5/13) 6524761931980946 a001 305/70711162*28143753123^(2/5) 6524761931980946 a001 305/70711162*10749957122^(5/12) 6524761931980946 a001 305/70711162*4106118243^(10/23) 6524761931980946 a001 305/70711162*1568397607^(5/11) 6524761931980946 a001 305/70711162*599074578^(10/21) 6524761931980946 a001 305/70711162*228826127^(1/2) 6524761931980946 a001 610/370248451*87403803^(11/19) 6524761931980946 a001 610/969323029*87403803^(12/19) 6524761931980946 a001 305/1268860318*87403803^(13/19) 6524761931980946 a001 610/6643838879*87403803^(14/19) 6524761931980946 a001 610/17393796001*87403803^(15/19) 6524761931980946 a001 305/22768774562*87403803^(16/19) 6524761931980946 a001 610/119218851371*87403803^(17/19) 6524761931980946 a001 305/70711162*87403803^(10/19) 6524761931980946 a001 610/312119004989*87403803^(18/19) 6524761931980946 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^57 6524761931980948 a001 610/54018521*141422324^(6/13) 6524761931980948 a001 610/54018521*2537720636^(2/5) 6524761931980948 a001 610/54018521*45537549124^(6/17) 6524761931980948 a001 610/54018521*14662949395604^(2/7) 6524761931980948 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^18/Lucas(37) 6524761931980948 a001 14736268370/225851433717 6524761931980948 a001 610/54018521*192900153618^(1/3) 6524761931980948 a001 610/54018521*10749957122^(3/8) 6524761931980948 a001 610/54018521*4106118243^(9/23) 6524761931980948 a001 610/54018521*1568397607^(9/22) 6524761931980948 a001 610/54018521*599074578^(3/7) 6524761931980948 a001 610/54018521*228826127^(9/20) 6524761931980948 a001 610/54018521*87403803^(9/19) 6524761931980949 a001 610/228826127*33385282^(7/12) 6524761931980949 a001 305/70711162*33385282^(5/9) 6524761931980949 a001 610/370248451*33385282^(11/18) 6524761931980949 a001 610/969323029*33385282^(2/3) 6524761931980950 a001 305/1268860318*33385282^(13/18) 6524761931980950 a001 610/4106118243*33385282^(3/4) 6524761931980950 a001 610/6643838879*33385282^(7/9) 6524761931980950 a001 610/17393796001*33385282^(5/6) 6524761931980951 a001 610/54018521*33385282^(1/2) 6524761931980951 a001 305/22768774562*33385282^(8/9) 6524761931980951 a001 610/73681302247*33385282^(11/12) 6524761931980951 a001 610/119218851371*33385282^(17/18) 6524761931980951 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^55 6524761931980960 a001 305/16692641*12752043^(1/2) 6524761931980961 a001 610/20633239*(1/2+1/2*5^(1/2))^16 6524761931980961 a001 610/20633239*23725150497407^(1/4) 6524761931980961 a001 2814376825/43133785636 6524761931980961 a001 610/20633239*73681302247^(4/13) 6524761931980961 a001 610/20633239*10749957122^(1/3) 6524761931980961 a001 610/20633239*4106118243^(8/23) 6524761931980961 a001 610/20633239*1568397607^(4/11) 6524761931980961 a001 610/20633239*599074578^(8/21) 6524761931980961 a001 610/20633239*228826127^(2/5) 6524761931980961 a001 610/20633239*87403803^(8/19) 6524761931980963 a001 610/20633239*33385282^(4/9) 6524761931980969 a001 610/54018521*12752043^(9/17) 6524761931980969 a001 305/70711162*12752043^(10/17) 6524761931980972 a001 610/370248451*12752043^(11/17) 6524761931980974 a001 610/969323029*12752043^(12/17) 6524761931980976 a001 305/1268860318*12752043^(13/17) 6524761931980979 a001 610/6643838879*12752043^(14/17) 6524761931980980 a001 610/20633239*12752043^(8/17) 6524761931980981 a001 610/17393796001*12752043^(15/17) 6524761931980983 a001 305/22768774562*12752043^(16/17) 6524761931980986 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^53 6524761931981044 a001 305/3940598*20633239^(2/5) 6524761931981051 a001 305/3940598*17393796001^(2/7) 6524761931981051 a001 305/3940598*14662949395604^(2/9) 6524761931981051 a001 305/3940598*(1/2+1/2*5^(1/2))^14 6524761931981051 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^14/Lucas(33) 6524761931981051 a001 305/3940598*505019158607^(1/4) 6524761931981051 a001 2149992580/32951280099 6524761931981051 a001 305/3940598*10749957122^(7/24) 6524761931981051 a001 305/3940598*4106118243^(7/23) 6524761931981051 a001 305/3940598*1568397607^(7/22) 6524761931981051 a001 305/3940598*599074578^(1/3) 6524761931981051 a001 305/3940598*228826127^(7/20) 6524761931981051 a001 305/3940598*87403803^(7/19) 6524761931981053 a001 305/3940598*33385282^(7/18) 6524761931981067 a001 305/3940598*12752043^(7/17) 6524761931981098 a001 610/20633239*4870847^(1/2) 6524761931981102 a001 610/54018521*4870847^(9/16) 6524761931981118 a001 305/70711162*4870847^(5/8) 6524761931981135 a001 610/370248451*4870847^(11/16) 6524761931981152 a001 610/969323029*4870847^(3/4) 6524761931981169 a001 305/1268860318*4870847^(13/16) 6524761931981171 a001 305/3940598*4870847^(7/16) 6524761931981186 a001 610/6643838879*4870847^(7/8) 6524761931981203 a001 610/17393796001*4870847^(15/16) 6524761931981221 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^51 6524761931981627 a001 610/3010349*7881196^(4/11) 6524761931981665 a001 610/3010349*141422324^(4/13) 6524761931981666 a001 610/3010349*2537720636^(4/15) 6524761931981666 a001 610/3010349*45537549124^(4/17) 6524761931981666 a001 610/3010349*817138163596^(4/19) 6524761931981666 a001 610/3010349*14662949395604^(4/21) 6524761931981666 a001 610/3010349*(1/2+1/2*5^(1/2))^12 6524761931981666 a001 610/3010349*192900153618^(2/9) 6524761931981666 a001 610/3010349*73681302247^(3/13) 6524761931981666 a001 164244818/2517253805 6524761931981666 a001 610/3010349*10749957122^(1/4) 6524761931981666 a001 610/3010349*4106118243^(6/23) 6524761931981666 a001 610/3010349*1568397607^(3/11) 6524761931981666 a001 610/3010349*599074578^(2/7) 6524761931981666 a001 610/3010349*228826127^(3/10) 6524761931981666 a001 610/3010349*87403803^(6/19) 6524761931981667 a001 610/3010349*33385282^(1/3) 6524761931981680 a001 610/3010349*12752043^(6/17) 6524761931981769 a001 610/3010349*4870847^(3/8) 6524761931981848 a001 610/12752043*1860498^(1/2) 6524761931981930 a001 305/3940598*1860498^(7/15) 6524761931981966 a001 610/20633239*1860498^(8/15) 6524761931982079 a001 610/54018521*1860498^(3/5) 6524761931982203 a001 305/70711162*1860498^(2/3) 6524761931982265 a001 610/228826127*1860498^(7/10) 6524761931982328 a001 610/370248451*1860498^(11/15) 6524761931982420 a001 610/3010349*1860498^(2/5) 6524761931982454 a001 610/969323029*1860498^(4/5) 6524761931982516 a001 610/1568397607*1860498^(5/6) 6524761931982555 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2)^21 6524761931982579 a001 305/1268860318*1860498^(13/15) 6524761931982642 a001 610/4106118243*1860498^(9/10) 6524761931982705 a001 610/6643838879*1860498^(14/15) 6524761931982790 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^23 6524761931982825 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^25 6524761931982830 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^27 6524761931982830 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^29 6524761931982830 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^31 6524761931982831 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^33 6524761931982831 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^35 6524761931982831 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^37 6524761931982831 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^39 6524761931982831 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^41 6524761931982831 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^43 6524761931982831 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^45 6524761931982831 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^47 6524761931982831 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^49 6524761931982831 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^51 6524761931982831 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^53 6524761931982831 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^55 6524761931982831 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^57 6524761931982831 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^59 6524761931982831 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^61 6524761931982831 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^63 6524761931982831 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^65 6524761931982831 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^67 6524761931982831 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^69 6524761931982831 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^71 6524761931982831 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^73 6524761931982831 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^75 6524761931982831 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^77 6524761931982831 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^79 6524761931982831 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^81 6524761931982831 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^83 6524761931982831 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^85 6524761931982831 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^87 6524761931982831 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^89 6524761931982831 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^88 6524761931982831 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^86 6524761931982831 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^84 6524761931982831 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^82 6524761931982831 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^80 6524761931982831 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^78 6524761931982831 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^76 6524761931982831 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^74 6524761931982831 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^72 6524761931982831 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^70 6524761931982831 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^68 6524761931982831 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^66 6524761931982831 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^64 6524761931982831 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^62 6524761931982831 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^60 6524761931982831 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^58 6524761931982831 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^56 6524761931982831 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^54 6524761931982831 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^52 6524761931982831 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^50 6524761931982831 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^48 6524761931982831 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^46 6524761931982831 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^44 6524761931982831 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^42 6524761931982831 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^40 6524761931982831 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^38 6524761931982831 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^36 6524761931982831 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^34 6524761931982831 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^32 6524761931982831 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^30 6524761931982831 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^28 6524761931982833 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^26 6524761931982846 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^24 6524761931982936 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^22 6524761931983551 a004 Fibonacci(31)/Lucas(15)/(1/2+sqrt(5)/2)^20 6524761931985876 a001 610/1149851*20633239^(2/7) 6524761931985880 a001 610/1149851*2537720636^(2/9) 6524761931985880 a001 610/1149851*312119004989^(2/11) 6524761931985880 a001 610/1149851*(1/2+1/2*5^(1/2))^10 6524761931985880 a001 610/1149851*28143753123^(1/5) 6524761931985880 a001 610/1149851*10749957122^(5/24) 6524761931985880 a001 156839845/2403763488 6524761931985880 a001 610/1149851*4106118243^(5/23) 6524761931985880 a001 610/1149851*1568397607^(5/22) 6524761931985880 a001 610/1149851*599074578^(5/21) 6524761931985880 a001 610/1149851*228826127^(1/4) 6524761931985881 a001 610/1149851*87403803^(5/19) 6524761931985882 a001 610/1149851*33385282^(5/18) 6524761931985892 a001 610/1149851*12752043^(5/17) 6524761931985966 a001 610/1149851*4870847^(5/16) 6524761931986509 a001 610/1149851*1860498^(1/3) 6524761931987203 a001 610/3010349*710647^(3/7) 6524761931987510 a001 305/3940598*710647^(1/2) 6524761931987765 a004 Fibonacci(29)/Lucas(15)/(1/2+sqrt(5)/2)^18 6524761931988344 a001 610/20633239*710647^(4/7) 6524761931989253 a001 610/54018521*710647^(9/14) 6524761931990174 a001 305/70711162*710647^(5/7) 6524761931990495 a001 610/1149851*710647^(5/14) 6524761931990635 a001 610/228826127*710647^(3/4) 6524761931991097 a001 610/370248451*710647^(11/14) 6524761931992020 a001 610/969323029*710647^(6/7) 6524761931992943 a001 305/1268860318*710647^(13/14) 6524761931993865 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^47 6524761932014770 a001 305/219602*(1/2+1/2*5^(1/2))^8 6524761932014770 a001 305/219602*23725150497407^(1/8) 6524761932014770 a001 305/219602*505019158607^(1/7) 6524761932014770 a001 305/219602*73681302247^(2/13) 6524761932014770 a001 305/219602*10749957122^(1/6) 6524761932014770 a001 305/219602*4106118243^(4/23) 6524761932014770 a001 119814980/1836311903 6524761932014770 a001 305/219602*1568397607^(2/11) 6524761932014770 a001 305/219602*599074578^(4/21) 6524761932014770 a001 305/219602*228826127^(1/5) 6524761932014770 a001 305/219602*87403803^(4/19) 6524761932014771 a001 305/219602*33385282^(2/9) 6524761932014780 a001 305/219602*12752043^(4/17) 6524761932014839 a001 305/219602*4870847^(1/4) 6524761932015273 a001 305/219602*1860498^(4/15) 6524761932016655 a004 Fibonacci(27)/Lucas(15)/(1/2+sqrt(5)/2)^16 6524761932018461 a001 305/219602*710647^(2/7) 6524761932019940 a001 610/1149851*271443^(5/13) 6524761932022537 a001 610/3010349*271443^(6/13) 6524761932024947 a001 610/4870847*271443^(1/2) 6524761932028733 a001 305/3940598*271443^(7/13) 6524761932035456 a001 610/20633239*271443^(8/13) 6524761932042017 a001 305/219602*271443^(4/13) 6524761932042254 a001 610/54018521*271443^(9/13) 6524761932049064 a001 305/70711162*271443^(10/13) 6524761932055876 a001 610/370248451*271443^(11/13) 6524761932062688 a001 610/969323029*271443^(12/13) 6524761932069421 a001 610/271443*103682^(7/24) 6524761932069499 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^45 6524761932097909 a001 610/39603*15127^(3/20) 6524761932195635 a001 610/710647*103682^(3/8) 6524761932205266 a001 610/167761*439204^(2/9) 6524761932212763 a001 610/167761*7881196^(2/11) 6524761932212782 a001 610/167761*141422324^(2/13) 6524761932212782 a001 610/167761*2537720636^(2/15) 6524761932212782 a001 610/167761*45537549124^(2/17) 6524761932212782 a001 610/167761*14662949395604^(2/21) 6524761932212782 a001 610/167761*(1/2+1/2*5^(1/2))^6 6524761932212782 a001 610/167761*10749957122^(1/8) 6524761932212782 a001 610/167761*4106118243^(3/23) 6524761932212782 a001 610/167761*1568397607^(3/22) 6524761932212782 a001 610/167761*599074578^(1/7) 6524761932212782 a001 45765250/701408733 6524761932212783 a001 610/167761*228826127^(3/20) 6524761932212783 a001 610/167761*87403803^(3/19) 6524761932212783 a001 610/167761*33385282^(1/6) 6524761932212790 a001 610/167761*12752043^(3/17) 6524761932212834 a001 610/167761*4870847^(3/16) 6524761932213159 a001 610/167761*1860498^(1/5) 6524761932214667 a004 Fibonacci(25)/Lucas(15)/(1/2+sqrt(5)/2)^14 6524761932215551 a001 610/167761*710647^(3/14) 6524761932217089 a001 305/219602*103682^(1/3) 6524761932233218 a001 610/167761*271443^(3/13) 6524761932238779 a001 610/1149851*103682^(5/12) 6524761932257249 a001 305/930249*103682^(11/24) 6524761932285144 a001 610/3010349*103682^(1/2) 6524761932309439 a001 610/4870847*103682^(13/24) 6524761932319476 a001 305/51841*39603^(5/22) 6524761932335109 a001 305/3940598*103682^(7/12) 6524761932360254 a001 610/12752043*103682^(5/8) 6524761932364522 a001 610/167761*103682^(1/4) 6524761932385599 a001 610/20633239*103682^(2/3) 6524761932410868 a001 305/16692641*103682^(17/24) 6524761932436166 a001 610/54018521*103682^(3/4) 6524761932461452 a001 610/87403803*103682^(19/24) 6524761932486743 a001 305/70711162*103682^(5/6) 6524761932512033 a001 610/228826127*103682^(7/8) 6524761932537323 a001 610/370248451*103682^(11/12) 6524761932562613 a001 305/299537289*103682^(23/24) 6524761932587903 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^43 6524761933216074 a001 610/271443*39603^(7/22) 6524761933293626 a001 610/64079*64079^(4/23) 6524761933347368 a001 610/167761*39603^(3/11) 6524761933527550 a001 305/219602*39603^(4/11) 6524761933569980 a001 610/64079*(1/2+1/2*5^(1/2))^4 6524761933569980 a001 610/64079*23725150497407^(1/16) 6524761933569980 a001 610/64079*73681302247^(1/13) 6524761933569980 a001 610/64079*10749957122^(1/12) 6524761933569980 a001 610/64079*4106118243^(2/23) 6524761933569980 a001 610/64079*1568397607^(1/11) 6524761933569980 a001 610/64079*599074578^(2/21) 6524761933569980 a001 610/64079*228826127^(1/10) 6524761933569980 a001 8740385/133957148 6524761933569980 a001 610/64079*87403803^(2/19) 6524761933569980 a001 610/64079*33385282^(1/9) 6524761933569984 a001 610/64079*12752043^(2/17) 6524761933570014 a001 610/64079*4870847^(1/8) 6524761933570231 a001 610/64079*1860498^(2/15) 6524761933571825 a001 610/64079*710647^(1/7) 6524761933571865 a004 Fibonacci(23)/Lucas(15)/(1/2+sqrt(5)/2)^12 6524761933583603 a001 610/64079*271443^(2/13) 6524761933669903 a001 610/710647*39603^(9/22) 6524761933671139 a001 610/64079*103682^(1/6) 6524761933876856 a001 610/1149851*39603^(5/11) 6524761934059133 a001 305/930249*39603^(1/2) 6524761934250836 a001 610/3010349*39603^(6/11) 6524761934326370 a001 610/64079*39603^(2/11) 6524761934438938 a001 610/4870847*39603^(13/22) 6524761934628416 a001 305/3940598*39603^(7/11) 6524761934817368 a001 610/12752043*39603^(15/22) 6524761935006521 a001 610/20633239*39603^(8/11) 6524761935014371 a001 305/12238*9349^(2/19) 6524761935195597 a001 305/16692641*39603^(17/22) 6524761935384703 a001 610/54018521*39603^(9/11) 6524761935573797 a001 610/87403803*39603^(19/22) 6524761935762896 a001 305/70711162*39603^(10/11) 6524761935951993 a001 610/228826127*39603^(21/22) 6524761936141091 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^41 6524761938502504 a001 305/51841*15127^(1/4) 6524761939272792 a001 610/64079*15127^(1/5) 6524761939658130 r005 Re(z^2+c),c=-5/8+43/136*I,n=8 6524761940767000 a001 610/167761*15127^(3/10) 6524761941835071 a001 305/12238*24476^(2/21) 6524761941872313 a001 610/271443*15127^(7/20) 6524761942364629 a007 Real Root Of -854*x^4-690*x^3-834*x^2+12*x+326 6524761942734170 a001 305/12238*64079^(2/23) 6524761942872347 a001 305/12238*(1/2+1/2*5^(1/2))^2 6524761942872347 a001 305/12238*10749957122^(1/24) 6524761942872347 a001 305/12238*4106118243^(1/23) 6524761942872347 a001 305/12238*1568397607^(1/22) 6524761942872347 a001 305/12238*599074578^(1/21) 6524761942872347 a001 305/12238*228826127^(1/20) 6524761942872347 a001 305/12238*87403803^(1/19) 6524761942872347 a001 1335412/20466831 6524761942872348 a001 305/12238*33385282^(1/18) 6524761942872350 a001 305/12238*12752043^(1/17) 6524761942872365 a001 305/12238*4870847^(1/16) 6524761942872473 a001 305/12238*1860498^(1/15) 6524761942873270 a001 305/12238*710647^(1/14) 6524761942874232 a004 Fibonacci(21)/Lucas(15)/(1/2+sqrt(5)/2)^10 6524761942879159 a001 305/12238*271443^(1/13) 6524761942922927 a001 305/12238*103682^(1/12) 6524761943250542 a001 305/12238*39603^(1/11) 6524761943420394 a001 305/219602*15127^(2/5) 6524761944799353 a001 610/710647*15127^(9/20) 6524761945723753 a001 305/12238*15127^(1/10) 6524761946242910 a001 610/1149851*15127^(1/2) 6524761947661794 a001 305/930249*15127^(11/20) 6524761949090102 a001 610/3010349*15127^(3/5) 6524761950514810 a001 610/4870847*15127^(13/20) 6524761951940893 a001 305/3940598*15127^(7/10) 6524761953366450 a001 610/12752043*15127^(3/4) 6524761954792209 a001 610/20633239*15127^(4/5) 6524761956217891 a001 305/16692641*15127^(17/20) 6524761957643602 a001 610/54018521*15127^(9/10) 6524761957867210 a007 Real Root Of -321*x^4+566*x^3-515*x^2+445*x+725 6524761959069302 a001 610/87403803*15127^(19/20) 6524761960393846 a001 610/39603*5778^(1/6) 6524761960495006 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^39 6524761964587711 a001 305/12238*5778^(1/9) 6524761968272333 a003 cos(Pi*11/67)-cos(Pi*37/86) 6524761977000707 a001 610/64079*5778^(2/9) 6524761982310154 r009 Im(z^3+c),c=-17/31+36/47*I,n=3 6524761985662398 a001 305/51841*5778^(5/18) 6524761987188994 a001 610/15127*2207^(1/16) 6524761997358874 a001 610/167761*5778^(1/3) 6524762006631725 a001 610/9349 6524762006633609 a004 Fibonacci(19)/Lucas(15)/(1/2+sqrt(5)/2)^8 6524762007896165 a001 610/271443*5778^(7/18) 6524762010942994 a007 Real Root Of 224*x^4-568*x^3-450*x^2-667*x-442 6524762011841939 k002 Champernowne real with 191/2*n^2-209/2*n+74 6524762018876225 a001 305/219602*5778^(4/9) 6524762029687163 a001 610/710647*5778^(1/2) 6524762036701535 a007 Real Root Of -890*x^4-301*x^3-644*x^2-550*x-7 6524762040562699 a001 610/1149851*5778^(5/9) 6524762051413561 a001 305/930249*5778^(11/18) 6524762061072903 m001 (BesselI(1,2)-Zeta(5)*QuadraticClass)/Zeta(5) 6524762062273848 a001 610/3010349*5778^(2/3) 6524762065569699 m001 exp(FeigenbaumC)*MertensB1^2*GAMMA(7/12) 6524762073130535 a001 610/4870847*5778^(13/18) 6524762083109665 m001 (ln(2)+FeigenbaumB)/(KhinchinHarmonic+Lehmer) 6524762083988597 a001 305/3940598*5778^(7/9) 6524762088062470 p001 sum(1/(537*n+109)/n/(24^n),n=1..infinity) 6524762093328366 m001 (exp(1/exp(1))+GAMMA(5/24))^GAMMA(1/12) 6524762094846134 a001 610/12752043*5778^(5/6) 6524762095509469 p003 LerchPhi(1/16,3,383/153) 6524762105703872 a001 610/20633239*5778^(8/9) 6524762110316566 a001 305/12238*2207^(1/8) 6524762111871945 k002 Champernowne real with 96*n^2-106*n+75 6524762116561533 a001 305/16692641*5778^(17/18) 6524762117564268 a003 cos(Pi*5/87)-cos(Pi*42/107) 6524762122938726 a001 233/710647*521^(11/13) 6524762127419221 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^37 6524762164432712 a001 2584/710647*843^(3/7) 6524762178987129 a001 610/39603*2207^(3/16) 6524762199632912 a007 Real Root Of 666*x^4-578*x^3+324*x^2-722*x+373 6524762203516832 m001 Zeta(1/2)-MinimumGamma^exp(Pi) 6524762211001014 s001 sum(exp(-2*Pi/5)^n*A091656[n],n=1..infinity) 6524762211001014 s002 sum(A091656[n]/(exp(2/5*pi*n)),n=1..infinity) 6524762211901951 k002 Champernowne real with 193/2*n^2-215/2*n+76 6524762215642790 a001 1597/271443*843^(5/14) 6524762245887733 r002 34th iterates of z^2 + 6524762260747411 a007 Real Root Of 756*x^4-809*x^3+509*x^2-148*x-675 6524762268458421 a001 610/64079*2207^(1/4) 6524762280092836 a007 Real Root Of 973*x^4+998*x^3+14*x^2-570*x-277 6524762291207598 a003 cos(Pi*19/93)*sin(Pi*10/33) 6524762293560703 m001 (OneNinth-Trott)/(HardyLittlewoodC5-MertensB1) 6524762301840359 a001 5/29*969323029^(21/22) 6524762308195484 a007 Real Root Of 54*x^4-828*x^3-399*x^2-757*x+884 6524762311931957 k002 Champernowne real with 97*n^2-109*n+77 6524762316686350 r005 Im(z^2+c),c=-6/23+28/43*I,n=35 6524762327309931 r004 Im(z^2+c),c=9/22+2/15*I,z(0)=exp(3/8*I*Pi),n=7 6524762331367973 a001 55/15126*843^(3/7) 6524762331950184 a001 141/101521*843^(4/7) 6524762336994799 a001 11/21*10946^(16/59) 6524762340506262 a001 987/24476*322^(1/12) 6524762346354535 r009 Im(z^3+c),c=-31/58+7/46*I,n=29 6524762349984542 a001 305/51841*2207^(5/16) 6524762353541663 a001 2/377*1836311903^(2/17) 6524762355723499 a001 17711/4870847*843^(3/7) 6524762359276923 a001 15456/4250681*843^(3/7) 6524762359795360 a001 121393/33385282*843^(3/7) 6524762359870999 a001 105937/29134601*843^(3/7) 6524762359882035 a001 832040/228826127*843^(3/7) 6524762359883645 a001 726103/199691526*843^(3/7) 6524762359883880 a001 5702887/1568397607*843^(3/7) 6524762359883914 a001 4976784/1368706081*843^(3/7) 6524762359883919 a001 39088169/10749957122*843^(3/7) 6524762359883920 a001 831985/228811001*843^(3/7) 6524762359883920 a001 267914296/73681302247*843^(3/7) 6524762359883920 a001 233802911/64300051206*843^(3/7) 6524762359883920 a001 1836311903/505019158607*843^(3/7) 6524762359883920 a001 1602508992/440719107401*843^(3/7) 6524762359883920 a001 12586269025/3461452808002*843^(3/7) 6524762359883920 a001 10983760033/3020733700601*843^(3/7) 6524762359883920 a001 86267571272/23725150497407*843^(3/7) 6524762359883920 a001 53316291173/14662949395604*843^(3/7) 6524762359883920 a001 20365011074/5600748293801*843^(3/7) 6524762359883920 a001 7778742049/2139295485799*843^(3/7) 6524762359883920 a001 2971215073/817138163596*843^(3/7) 6524762359883920 a001 1134903170/312119004989*843^(3/7) 6524762359883920 a001 433494437/119218851371*843^(3/7) 6524762359883920 a001 165580141/45537549124*843^(3/7) 6524762359883920 a001 63245986/17393796001*843^(3/7) 6524762359883922 a001 24157817/6643838879*843^(3/7) 6524762359883935 a001 9227465/2537720636*843^(3/7) 6524762359884025 a001 3524578/969323029*843^(3/7) 6524762359884640 a001 1346269/370248451*843^(3/7) 6524762359888855 a001 514229/141422324*843^(3/7) 6524762359917747 a001 196418/54018521*843^(3/7) 6524762360115772 a001 75025/20633239*843^(3/7) 6524762361473059 a001 28657/7881196*843^(3/7) 6524762370776042 a001 10946/3010349*843^(3/7) 6524762374201997 a007 Real Root Of -829*x^4+118*x^3-686*x^2+616*x+877 6524762400211871 a007 Real Root Of -195*x^4+436*x^3-329*x^2+882*x+872 6524762411961963 k002 Champernowne real with 195/2*n^2-221/2*n+78 6524762434539638 a001 4181/1149851*843^(3/7) 6524762434545450 a001 610/167761*2207^(3/8) 6524762443644999 a001 487085/7465176 6524762443645033 a004 Fibonacci(15)/Lucas(17)/(1/2+sqrt(5)/2)^2 6524762443646878 a004 Fibonacci(17)/Lucas(15)/(1/2+sqrt(5)/2)^6 6524762456719554 m001 (Psi(2,1/3)-gamma(2))/(Zeta(1,2)+Grothendieck) 6524762468955188 m001 (MertensB2-Mills)/(exp(-1/2*Pi)-GolombDickman) 6524762480745735 m005 (1/3*Zeta(3)-2/11)/(3/8*gamma-1/4) 6524762487864636 a007 Real Root Of -866*x^4-22*x^3-510*x^2-26*x+351 6524762489386922 a007 Real Root Of 447*x^4-959*x^3-628*x^2-615*x+854 6524762511991969 k002 Champernowne real with 98*n^2-112*n+79 6524762514880118 a007 Real Root Of 888*x^4-494*x^3-69*x^2+884*x+308 6524762517947174 a001 610/271443*2207^(7/16) 6524762527053624 r002 17th iterates of z^2 + 6524762559283511 a001 610/15127*843^(1/14) 6524762562662109 a007 Real Root Of 484*x^4-120*x^3+570*x^2-215*x-504 6524762570951671 a007 Real Root Of -102*x^4-671*x^3-123*x^2-457*x+734 6524762573300068 a007 Real Root Of -954*x^4-715*x^3-918*x^2+783*x+876 6524762580992795 m005 (1/2*gamma-6/7)/(3/8*Zeta(3)-4/11) 6524762583743628 r009 Re(z^3+c),c=-5/52+27/59*I,n=24 6524762589461376 a007 Real Root Of 745*x^4-485*x^3-331*x^2-270*x-305 6524762593073234 m001 Zeta(1,-1)^Grothendieck*Paris^Grothendieck 6524762601791669 a001 305/219602*2207^(1/2) 6524762612021975 k002 Champernowne real with 197/2*n^2-227/2*n+80 6524762616050056 m001 (Niven+ZetaQ(4))/(3^(1/3)+GAMMA(19/24)) 6524762619589604 m004 3+5*Pi+(75*Log[Sqrt[5]*Pi])/Pi 6524762631196575 a007 Real Root Of 508*x^4+46*x^3-268*x^2-769*x+511 6524762633143654 a005 (1/cos(18/191*Pi))^1388 6524762641992531 r009 Re(z^3+c),c=-41/70+16/57*I,n=8 6524762654085186 a007 Real Root Of 997*x^4+606*x^3+664*x^2+302*x-98 6524762672433935 m001 Si(Pi)^2/ErdosBorwein/exp(Lehmer)^2 6524762685467042 a001 610/710647*2207^(9/16) 6524762686015577 m009 (1/3*Pi^2+2/3)/(Psi(1,2/3)+3) 6524762700544535 a007 Real Root Of -70*x^4-395*x^3+438*x^2+272*x+276 6524762712051981 k002 Champernowne real with 99*n^2-115*n+81 6524762724942029 r002 45th iterates of z^2 + 6524762726204386 m001 (Pi-exp(1))/(gamma(1)-Stephens) 6524762768311038 a007 Real Root Of -75*x^4-352*x^3+882*x^2-243*x-980 6524762769207015 a001 610/1149851*2207^(5/8) 6524762771024456 r009 Re(z^3+c),c=-73/122+17/59*I,n=6 6524762776206971 a007 Real Root Of -673*x^4+200*x^3-66*x^2+796*x+725 6524762787119302 r005 Im(z^2+c),c=-83/74+2/25*I,n=36 6524762806780007 m001 (arctan(1/2)+gamma(3))/(MertensB1+ZetaP(2)) 6524762810387826 m005 (1/2*exp(1)+1/7)/(4/9*3^(1/2)-1) 6524762811501366 a007 Real Root Of -64*x^4-61*x^3-604*x^2-179*x+135 6524762812081987 k002 Champernowne real with 199/2*n^2-233/2*n+82 6524762820267218 a001 2584/1149851*843^(1/2) 6524762831378654 m005 (1/2*3^(1/2)+5)/(7/10*2^(1/2)-1/11) 6524762831529695 a007 Real Root Of -155*x^4-970*x^3+251*x^2-204*x-534 6524762846404912 r005 Im(z^2+c),c=8/29+29/63*I,n=32 6524762848305317 m001 (-Zeta(1/2)+2/3)/(2^(1/3)+2) 6524762852922314 a001 305/930249*2207^(11/16) 6524762871581825 a001 1597/439204*843^(3/7) 6524762900004493 r005 Re(z^2+c),c=-9/14+43/107*I,n=15 6524762912111993 k002 Champernowne real with 100*n^2-118*n+83 6524762936647040 a001 610/3010349*2207^(3/4) 6524762946464713 m006 (4*Pi^2-1/2)/(1/5*Pi^2+4) 6524762946464713 m008 (4*Pi^2-1/2)/(1/5*Pi^2+4) 6524762946464713 m009 (2*Pi^2-1/4)/(1/10*Pi^2+2) 6524762950746959 a001 41/726103*3^(5/38) 6524762952581277 a007 Real Root Of 684*x^4-135*x^3+905*x^2+182*x-428 6524762956528645 m001 (Porter+ZetaP(2))/(GAMMA(5/6)-GaussAGM) 6524762987187246 a001 6765/3010349*843^(1/2) 6524762987784707 a001 987/1149851*843^(9/14) 6524762989570982 a007 Real Root Of 61*x^4+370*x^3-302*x^2-919*x-920 6524763003133938 m001 gamma(1)^MertensB1*FeigenbaumD^MertensB1 6524763009331634 a007 Real Root Of 239*x^4+604*x^3+226*x^2-845*x+54 6524763011540550 a001 89/39604*843^(1/2) 6524763012141999 k002 Champernowne real with 201/2*n^2-239/2*n+84 6524763015093649 a001 46368/20633239*843^(1/2) 6524763015612039 a001 121393/54018521*843^(1/2) 6524763015687671 a001 317811/141422324*843^(1/2) 6524763015698706 a001 832040/370248451*843^(1/2) 6524763015700316 a001 2178309/969323029*843^(1/2) 6524763015700551 a001 5702887/2537720636*843^(1/2) 6524763015700585 a001 14930352/6643838879*843^(1/2) 6524763015700590 a001 39088169/17393796001*843^(1/2) 6524763015700591 a001 102334155/45537549124*843^(1/2) 6524763015700591 a001 267914296/119218851371*843^(1/2) 6524763015700591 a001 3524667/1568437211*843^(1/2) 6524763015700591 a001 1836311903/817138163596*843^(1/2) 6524763015700591 a001 4807526976/2139295485799*843^(1/2) 6524763015700591 a001 12586269025/5600748293801*843^(1/2) 6524763015700591 a001 32951280099/14662949395604*843^(1/2) 6524763015700591 a001 53316291173/23725150497407*843^(1/2) 6524763015700591 a001 20365011074/9062201101803*843^(1/2) 6524763015700591 a001 7778742049/3461452808002*843^(1/2) 6524763015700591 a001 2971215073/1322157322203*843^(1/2) 6524763015700591 a001 1134903170/505019158607*843^(1/2) 6524763015700591 a001 433494437/192900153618*843^(1/2) 6524763015700591 a001 165580141/73681302247*843^(1/2) 6524763015700591 a001 63245986/28143753123*843^(1/2) 6524763015700593 a001 24157817/10749957122*843^(1/2) 6524763015700606 a001 9227465/4106118243*843^(1/2) 6524763015700696 a001 3524578/1568397607*843^(1/2) 6524763015701311 a001 1346269/599074578*843^(1/2) 6524763015705526 a001 514229/228826127*843^(1/2) 6524763015734415 a001 196418/87403803*843^(1/2) 6524763015932422 a001 75025/33385282*843^(1/2) 6524763017289585 a001 28657/12752043*843^(1/2) 6524763020368166 a001 610/4870847*2207^(13/16) 6524763022493473 a007 Real Root Of -977*x^4+659*x^3+12*x^2+800*x+877 6524763026591720 a001 10946/4870847*843^(1/2) 6524763026726031 l006 ln(11/7500) 6524763046581576 r009 Re(z^3+c),c=-5/52+27/59*I,n=26 6524763052681955 r002 19th iterates of z^2 + 6524763059449075 s002 sum(A125437[n]/((10^n-1)/n),n=1..infinity) 6524763090349497 a001 4181/1860498*843^(1/2) 6524763103750481 a007 Real Root Of -521*x^4+692*x^3-270*x^2+647*x-405 6524763104090669 a001 305/3940598*2207^(7/8) 6524763105284716 h001 (-4*exp(1/3)+5)/(-4*exp(3/2)+9) 6524763112172005 k002 Champernowne real with 101*n^2-121*n+85 6524763125873670 a007 Real Root Of -150*x^4-869*x^3+866*x^2+840*x-911 6524763128122883 r002 37th iterates of z^2 + 6524763136732238 a007 Real Root Of -806*x^4+839*x^3+49*x^2+818*x+892 6524763141034607 r009 Re(z^3+c),c=-5/52+27/59*I,n=28 6524763144134954 r009 Re(z^3+c),c=-5/52+27/59*I,n=31 6524763144578346 r009 Re(z^3+c),c=-5/52+27/59*I,n=29 6524763145969661 r009 Re(z^3+c),c=-5/52+27/59*I,n=33 6524763146699745 r009 Re(z^3+c),c=-5/52+27/59*I,n=35 6524763146873660 r009 Re(z^3+c),c=-5/52+27/59*I,n=37 6524763146891519 r009 Re(z^3+c),c=-5/52+27/59*I,n=40 6524763146893513 r009 Re(z^3+c),c=-5/52+27/59*I,n=42 6524763146894601 r009 Re(z^3+c),c=-5/52+27/59*I,n=44 6524763146894904 r009 Re(z^3+c),c=-5/52+27/59*I,n=46 6524763146894953 r009 Re(z^3+c),c=-5/52+27/59*I,n=49 6524763146894954 r009 Re(z^3+c),c=-5/52+27/59*I,n=51 6524763146894955 r009 Re(z^3+c),c=-5/52+27/59*I,n=53 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=55 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=57 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=60 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=58 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=62 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=64 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=63 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=61 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=59 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=56 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=54 6524763146894956 r009 Re(z^3+c),c=-5/52+27/59*I,n=48 6524763146894957 r009 Re(z^3+c),c=-5/52+27/59*I,n=52 6524763146894959 r009 Re(z^3+c),c=-5/52+27/59*I,n=50 6524763146894969 r009 Re(z^3+c),c=-5/52+27/59*I,n=47 6524763146895104 r009 Re(z^3+c),c=-5/52+27/59*I,n=45 6524763146895711 r009 Re(z^3+c),c=-5/52+27/59*I,n=43 6524763146897090 r009 Re(z^3+c),c=-5/52+27/59*I,n=38 6524763146897397 r009 Re(z^3+c),c=-5/52+27/59*I,n=41 6524763146898099 r009 Re(z^3+c),c=-5/52+27/59*I,n=39 6524763146968373 r009 Re(z^3+c),c=-5/52+27/59*I,n=36 6524763147344278 r009 Re(z^3+c),c=-5/52+27/59*I,n=34 6524763148603911 r009 Re(z^3+c),c=-5/52+27/59*I,n=32 6524763150461270 r009 Re(z^3+c),c=-5/52+27/59*I,n=30 6524763160103682 r002 4th iterates of z^2 + 6524763179157878 r009 Re(z^3+c),c=-5/52+27/59*I,n=27 6524763184713364 m001 Khinchin^BesselJZeros(0,1)/exp(1/2) 6524763187812647 a001 610/12752043*2207^(15/16) 6524763199471977 m001 MadelungNaCl-gamma-MasserGramainDelta 6524763202088077 m001 1/GAMMA(1/4)^2/CopelandErdos/ln(GAMMA(13/24)) 6524763212202011 k002 Champernowne real with 203/2*n^2-245/2*n+86 6524763237516352 a007 Real Root Of -147*x^4-976*x^3-139*x^2-155*x+223 6524763241525463 m001 (-Khinchin+Porter)/(sin(1)+GAMMA(23/24)) 6524763254505671 a001 305/12238*843^(1/7) 6524763268147529 m005 (1/2*Zeta(3)-4/5)/(2/11*gamma+1/5) 6524763271534812 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^35 6524763277763782 m001 (1+GAMMA(19/24))/(OrthogonalArrays+Tetranacci) 6524763278720599 r005 Re(z^2+c),c=-79/122+9/29*I,n=17 6524763312232017 k002 Champernowne real with 102*n^2-124*n+87 6524763313215962 r005 Im(z^2+c),c=-11/74+22/25*I,n=10 6524763325764647 l006 ln(7401/7900) 6524763328627928 a007 Real Root Of 250*x^4-762*x^3+339*x^2-895*x+606 6524763334274728 s002 sum(A022577[n]/(n^3*pi^n+1),n=1..infinity) 6524763372515698 r005 Re(z^2+c),c=-28/27+8/39*I,n=58 6524763378110363 p004 log(36787/19157) 6524763400479325 r009 Re(z^3+c),c=-5/52+27/59*I,n=25 6524763412262023 k002 Champernowne real with 205/2*n^2-251/2*n+88 6524763422732613 a007 Real Root Of -688*x^4+758*x^3-397*x^2-146*x+409 6524763440121902 r005 Re(z^2+c),c=-13/74+39/56*I,n=32 6524763452784743 m001 Trott/(KhinchinLevy+Weierstrass) 6524763454788497 m001 1/Zeta(5)*Magata^2*exp(log(1+sqrt(2)))^2 6524763455549351 a007 Real Root Of -94*x^4+932*x^3+636*x^2+278*x-694 6524763458619754 m001 (1+cos(1))/(Riemann2ndZero+Sierpinski) 6524763471592655 m001 MertensB1^2*Cahen^2/ln(GAMMA(11/24))^2 6524763473694183 m001 (cos(1)+ln(2+3^(1/2)))/(MertensB1+Sierpinski) 6524763475319790 a001 2584/64079*322^(1/12) 6524763476077116 a001 1292/930249*843^(4/7) 6524763494713411 q001 2345/3594 6524763512036250 m005 (2/3+1/6*5^(1/2))/(7/8*5^(1/2)-4/11) 6524763512292029 k002 Champernowne real with 103*n^2-127*n+89 6524763527351803 a001 1597/710647*843^(1/2) 6524763529796772 m001 Lehmer*Riemann1stZero-Si(Pi) 6524763591742145 a007 Real Root Of 84*x^4+654*x^3+698*x^2+47*x+13 6524763612322035 k002 Champernowne real with 207/2*n^2-257/2*n+90 6524763615340324 m001 (2^(1/2)-Psi(1,1/3))/(-gamma(3)+MertensB3) 6524763624824170 a007 Real Root Of 69*x^4-904*x^3+583*x^2-240*x+147 6524763640886852 a001 615/15251*322^(1/12) 6524763643002985 a001 6765/4870847*843^(4/7) 6524763643594622 a001 329/620166*843^(5/7) 6524763652428047 m001 1/Porter^2/ln(Backhouse)/Ei(1) 6524763654816564 s002 sum(A047234[n]/(n*10^n-1),n=1..infinity) 6524763664689027 r005 Re(z^2+c),c=5/94+21/53*I,n=16 6524763665042761 a001 17711/439204*322^(1/12) 6524763667357141 a001 17711/12752043*843^(4/7) 6524763668567061 a001 46368/1149851*322^(1/12) 6524763669081249 a001 121393/3010349*322^(1/12) 6524763669156268 a001 317811/7881196*322^(1/12) 6524763669167213 a001 75640/1875749*322^(1/12) 6524763669168810 a001 2178309/54018521*322^(1/12) 6524763669169043 a001 5702887/141422324*322^(1/12) 6524763669169077 a001 14930352/370248451*322^(1/12) 6524763669169082 a001 39088169/969323029*322^(1/12) 6524763669169083 a001 9303105/230701876*322^(1/12) 6524763669169083 a001 267914296/6643838879*322^(1/12) 6524763669169083 a001 701408733/17393796001*322^(1/12) 6524763669169083 a001 1836311903/45537549124*322^(1/12) 6524763669169083 a001 4807526976/119218851371*322^(1/12) 6524763669169083 a001 1144206275/28374454999*322^(1/12) 6524763669169083 a001 32951280099/817138163596*322^(1/12) 6524763669169083 a001 86267571272/2139295485799*322^(1/12) 6524763669169083 a001 225851433717/5600748293801*322^(1/12) 6524763669169083 a001 591286729879/14662949395604*322^(1/12) 6524763669169083 a001 365435296162/9062201101803*322^(1/12) 6524763669169083 a001 139583862445/3461452808002*322^(1/12) 6524763669169083 a001 53316291173/1322157322203*322^(1/12) 6524763669169083 a001 20365011074/505019158607*322^(1/12) 6524763669169083 a001 7778742049/192900153618*322^(1/12) 6524763669169083 a001 2971215073/73681302247*322^(1/12) 6524763669169083 a001 1134903170/28143753123*322^(1/12) 6524763669169083 a001 433494437/10749957122*322^(1/12) 6524763669169083 a001 165580141/4106118243*322^(1/12) 6524763669169083 a001 63245986/1568397607*322^(1/12) 6524763669169085 a001 24157817/599074578*322^(1/12) 6524763669169098 a001 9227465/228826127*322^(1/12) 6524763669169187 a001 3524578/87403803*322^(1/12) 6524763669169797 a001 1346269/33385282*322^(1/12) 6524763669173978 a001 514229/12752043*322^(1/12) 6524763669202632 a001 196418/4870847*322^(1/12) 6524763669399035 a001 75025/1860498*322^(1/12) 6524763670745197 a001 28657/710647*322^(1/12) 6524763670910365 a001 144/103681*843^(4/7) 6524763671428773 a001 121393/87403803*843^(4/7) 6524763671504408 a001 317811/228826127*843^(4/7) 6524763671515443 a001 416020/299537289*843^(4/7) 6524763671517053 a001 311187/224056801*843^(4/7) 6524763671517288 a001 5702887/4106118243*843^(4/7) 6524763671517322 a001 7465176/5374978561*843^(4/7) 6524763671517327 a001 39088169/28143753123*843^(4/7) 6524763671517328 a001 14619165/10525900321*843^(4/7) 6524763671517328 a001 133957148/96450076809*843^(4/7) 6524763671517328 a001 701408733/505019158607*843^(4/7) 6524763671517328 a001 1836311903/1322157322203*843^(4/7) 6524763671517328 a001 14930208/10749853441*843^(4/7) 6524763671517328 a001 12586269025/9062201101803*843^(4/7) 6524763671517328 a001 32951280099/23725150497407*843^(4/7) 6524763671517328 a001 10182505537/7331474697802*843^(4/7) 6524763671517328 a001 7778742049/5600748293801*843^(4/7) 6524763671517328 a001 2971215073/2139295485799*843^(4/7) 6524763671517328 a001 567451585/408569081798*843^(4/7) 6524763671517328 a001 433494437/312119004989*843^(4/7) 6524763671517328 a001 165580141/119218851371*843^(4/7) 6524763671517328 a001 31622993/22768774562*843^(4/7) 6524763671517330 a001 24157817/17393796001*843^(4/7) 6524763671517343 a001 9227465/6643838879*843^(4/7) 6524763671517433 a001 1762289/1268860318*843^(4/7) 6524763671518048 a001 1346269/969323029*843^(4/7) 6524763671522263 a001 514229/370248451*843^(4/7) 6524763671551153 a001 98209/70711162*843^(4/7) 6524763671749167 a001 75025/54018521*843^(4/7) 6524763673106378 a001 28657/20633239*843^(4/7) 6524763679971934 a001 10946/271443*322^(1/12) 6524763680277109 m001 sin(1/12*Pi)/LandauRamanujan2nd*Porter 6524763682408838 a001 5473/3940598*843^(4/7) 6524763694711048 a003 sin(Pi*7/31)/sin(Pi*13/27) 6524763705103969 r004 Re(z^2+c),c=-2/5+18/23*I,z(0)=-1,n=2 6524763707807876 m001 1/ln(GAMMA(3/4))^2/Khintchine/sinh(1)^2 6524763712352041 k002 Champernowne real with 104*n^2-130*n+91 6524763743212924 a001 4181/103682*322^(1/12) 6524763746168846 a001 4181/3010349*843^(4/7) 6524763796159299 r005 Re(z^2+c),c=7/32+19/48*I,n=14 6524763796794139 m001 (Pi-Psi(1,1/3))/(BesselJ(1,1)+Kac) 6524763812382047 k002 Champernowne real with 209/2*n^2-263/2*n+92 6524763814611416 b008 19*InverseJacobiNS[Pi,3] 6524763850090942 a001 47/521*(1/2*5^(1/2)+1/2)^15*521^(4/15) 6524763891453952 a007 Real Root Of -68*x^4+177*x^3+285*x^2+576*x-534 6524763895270881 a001 610/39603*843^(3/14) 6524763902186567 m001 (Pi-ln(5))/(GAMMA(7/12)-Riemann3rdZero) 6524763910761901 h001 (1/11*exp(2)+5/9)/(3/5*exp(1)+1/4) 6524763912412053 k002 Champernowne real with 105*n^2-133*n+93 6524763921165204 p004 log(28837/15017) 6524763934264873 r002 5th iterates of z^2 + 6524763968214483 p004 log(28307/14741) 6524763972013717 a001 233/439204*521^(10/13) 6524764012442059 k002 Champernowne real with 211/2*n^2-269/2*n+94 6524764022366805 a007 Real Root Of 916*x^4-586*x^3+659*x^2-x-610 6524764046616682 r009 Re(z^3+c),c=-5/52+27/59*I,n=19 6524764083725667 a007 Real Root Of -353*x^4+918*x^3-192*x^2+654*x-536 6524764103764700 r005 Re(z^2+c),c=-11/10+52/249*I,n=8 6524764112472065 k002 Champernowne real with 106*n^2-136*n+95 6524764116008791 m001 QuadraticClass^(Tribonacci/Landau) 6524764120562434 p004 log(26717/13913) 6524764124842134 m005 (13/6+2*5^(1/2))/(3*Pi+3/4) 6524764131282260 r005 Im(z^2+c),c=-10/29+27/43*I,n=12 6524764131896504 a001 2584/3010349*843^(9/14) 6524764133996882 a001 281/48*233^(23/52) 6524764134296131 a007 Real Root Of -434*x^4-222*x^3-832*x^2-362*x+135 6524764163964044 m001 1/ln(BesselK(0,1))^2/Cahen*Pi 6524764176673119 a001 1597/39603*322^(1/12) 6524764180641954 a005 (1/cos(2/131*Pi))^1630 6524764183186446 a001 1597/1149851*843^(4/7) 6524764198771092 r002 49th iterates of z^2 + 6524764209419828 r005 Re(z^2+c),c=-41/60+10/39*I,n=34 6524764212502071 k002 Champernowne real with 213/2*n^2-275/2*n+96 6524764220296342 m001 (Paris+Trott)/(3^(1/3)+CopelandErdos) 6524764220979926 m001 (exp(Pi)+GAMMA(3/4))/(Ei(1)+Tribonacci) 6524764233678115 m001 ln(Niven)*Si(Pi)*TwinPrimes 6524764255510972 m001 Zeta(3)-ln(Pi)-Rabbit 6524764255823090 m001 (Porter+Trott)/(cos(1/5*Pi)+Backhouse) 6524764255926532 a001 1/36*10946^(27/46) 6524764269560602 r009 Re(z^3+c),c=-5/52+27/59*I,n=23 6524764274614759 r005 Re(z^2+c),c=-7/10+103/249*I,n=4 6524764293321220 r005 Im(z^2+c),c=-59/106+1/39*I,n=10 6524764298820165 a001 6765/7881196*843^(9/14) 6524764299414027 a001 987/3010349*843^(11/14) 6524764308879194 a007 Real Root Of 360*x^4-520*x^3+482*x^2-650*x-839 6524764312532077 k002 Champernowne real with 107*n^2-139*n+97 6524764317841469 m001 (MadelungNaCl+1/2)/(exp(1/exp(1))+2) 6524764323173999 a001 17711/20633239*843^(9/14) 6524764326727176 a001 46368/54018521*843^(9/14) 6524764327245577 a001 233/271444*843^(9/14) 6524764327321211 a001 317811/370248451*843^(9/14) 6524764327332246 a001 832040/969323029*843^(9/14) 6524764327333856 a001 2178309/2537720636*843^(9/14) 6524764327334091 a001 5702887/6643838879*843^(9/14) 6524764327334125 a001 14930352/17393796001*843^(9/14) 6524764327334130 a001 39088169/45537549124*843^(9/14) 6524764327334131 a001 102334155/119218851371*843^(9/14) 6524764327334131 a001 267914296/312119004989*843^(9/14) 6524764327334131 a001 701408733/817138163596*843^(9/14) 6524764327334131 a001 1836311903/2139295485799*843^(9/14) 6524764327334131 a001 4807526976/5600748293801*843^(9/14) 6524764327334131 a001 12586269025/14662949395604*843^(9/14) 6524764327334131 a001 20365011074/23725150497407*843^(9/14) 6524764327334131 a001 7778742049/9062201101803*843^(9/14) 6524764327334131 a001 2971215073/3461452808002*843^(9/14) 6524764327334131 a001 1134903170/1322157322203*843^(9/14) 6524764327334131 a001 433494437/505019158607*843^(9/14) 6524764327334131 a001 165580141/192900153618*843^(9/14) 6524764327334131 a001 63245986/73681302247*843^(9/14) 6524764327334133 a001 24157817/28143753123*843^(9/14) 6524764327334146 a001 9227465/10749957122*843^(9/14) 6524764327334236 a001 3524578/4106118243*843^(9/14) 6524764327334851 a001 1346269/1568397607*843^(9/14) 6524764327339066 a001 514229/599074578*843^(9/14) 6524764327367955 a001 196418/228826127*843^(9/14) 6524764327565967 a001 75025/87403803*843^(9/14) 6524764328923160 a001 28657/33385282*843^(9/14) 6524764333677685 r002 2th iterates of z^2 + 6524764338225496 a001 10946/12752043*843^(9/14) 6524764351650359 m005 (1/2*5^(1/2)-7/8)/(1/8*Zeta(3)+2/9) 6524764354453411 a007 Real Root Of -426*x^4+744*x^3-144*x^2+271*x+522 6524764356801861 m001 exp(BesselK(1,1))^2/Si(Pi)*GAMMA(1/4) 6524764383784369 a007 Real Root Of -977*x^4+735*x^3+919*x^2+728*x+465 6524764390864746 r002 17th iterates of z^2 + 6524764399689533 a007 Real Root Of -717*x^4+835*x^3+973*x^2+556*x-879 6524764401984662 a001 4181/4870847*843^(9/14) 6524764412562083 k002 Champernowne real with 215/2*n^2-281/2*n+98 6524764461417428 a007 Real Root Of 48*x^4-571*x^3-83*x^2-769*x+687 6524764462018740 m001 (Backhouse-Gompertz)/(Kolakoski-LaplaceLimit) 6524764469472918 r002 27th iterates of z^2 + 6524764512592089 k002 Champernowne real with 108*n^2-142*n+99 6524764514932559 r002 22th iterates of z^2 + 6524764522680583 r009 Re(z^3+c),c=-7/17+62/63*I,n=3 6524764527930609 m001 (1+3^(1/2))^(1/2)/(FellerTornier-Stephens) 6524764538136594 m001 (Thue+ZetaQ(3))/(gamma(2)+Totient) 6524764556836888 a001 610/64079*843^(2/7) 6524764568761880 m001 (ThueMorse-ZetaP(2))/(3^(1/3)-FeigenbaumB) 6524764585984282 r005 Im(z^2+c),c=3/110+7/11*I,n=54 6524764604793872 m001 (exp(-1/2*Pi)+Niven)/(Zeta(5)+Ei(1)) 6524764607967604 r002 22th iterates of z^2 + 6524764612622095 k002 Champernowne real with 217/2*n^2-287/2*n+100 6524764615783739 a001 5473*3^(4/25) 6524764633647155 q001 1594/2443 6524764636473005 r002 44th iterates of z^2 + 6524764644460188 r009 Im(z^3+c),c=-11/60+34/35*I,n=4 6524764652362581 s002 sum(A187751[n]/(n*2^n-1),n=1..infinity) 6524764659852191 r005 Re(z^2+c),c=-3/25+33/40*I,n=42 6524764662676412 r002 6th iterates of z^2 + 6524764683631282 a007 Real Root Of 390*x^4-277*x^3-635*x^2+99*x+212 6524764708516210 a001 5/5778*123^(53/59) 6524764710695292 a007 Real Root Of 653*x^4-465*x^3+274*x^2-458*x-663 6524764712652101 k002 Champernowne real with 109*n^2-145*n+101 6524764752734343 r002 61th iterates of z^2 + 6524764779795507 m001 1/ln(LambertW(1))^2*GAMMA(5/12)^2*arctan(1/2) 6524764787712358 a001 2584/4870847*843^(5/7) 6524764812682107 k002 Champernowne real with 219/2*n^2-293/2*n+102 6524764838996481 a001 1597/1860498*843^(9/14) 6524764842692024 r002 47th iterates of z^2 + 6524764852806896 m009 (1/12*Pi^2-3/4)/(1/6*Psi(1,2/3)+3/5) 6524764854322652 r005 Im(z^2+c),c=-13/22+7/106*I,n=9 6524764902853040 m001 ln(arctan(1/2))^2/Lehmer*cos(Pi/5)^2 6524764906823938 r005 Re(z^2+c),c=-8/11+5/43*I,n=22 6524764912712113 k002 Champernowne real with 110*n^2-148*n+103 6524764919898687 a007 Real Root Of -344*x^4-262*x^3-786*x^2-198*x+195 6524764922595297 a003 cos(Pi*8/67)*cos(Pi*24/95) 6524764947730698 m001 (Cahen-Paris)/(TwinPrimes+ZetaP(3)) 6524764950356734 a007 Real Root Of 287*x^4-898*x^3-592*x^2-735*x-529 6524764954636886 a001 2255/4250681*843^(5/7) 6524764955229897 a001 987/4870847*843^(6/7) 6524764967939485 p004 log(20357/10601) 6524764971906234 m001 (ln(5)-BesselI(1,2))/(Niven+Salem) 6524764978990846 a001 17711/33385282*843^(5/7) 6524764982544041 a001 15456/29134601*843^(5/7) 6524764983062445 a001 121393/228826127*843^(5/7) 6524764983138080 a001 377/710646*843^(5/7) 6524764983149114 a001 832040/1568397607*843^(5/7) 6524764983150724 a001 726103/1368706081*843^(5/7) 6524764983150959 a001 5702887/10749957122*843^(5/7) 6524764983150994 a001 4976784/9381251041*843^(5/7) 6524764983150999 a001 39088169/73681302247*843^(5/7) 6524764983150999 a001 34111385/64300051206*843^(5/7) 6524764983150999 a001 267914296/505019158607*843^(5/7) 6524764983150999 a001 233802911/440719107401*843^(5/7) 6524764983150999 a001 1836311903/3461452808002*843^(5/7) 6524764983150999 a001 1602508992/3020733700601*843^(5/7) 6524764983150999 a001 12586269025/23725150497407*843^(5/7) 6524764983150999 a001 7778742049/14662949395604*843^(5/7) 6524764983150999 a001 2971215073/5600748293801*843^(5/7) 6524764983150999 a001 1134903170/2139295485799*843^(5/7) 6524764983150999 a001 433494437/817138163596*843^(5/7) 6524764983150999 a001 165580141/312119004989*843^(5/7) 6524764983151000 a001 63245986/119218851371*843^(5/7) 6524764983151002 a001 24157817/45537549124*843^(5/7) 6524764983151015 a001 9227465/17393796001*843^(5/7) 6524764983151104 a001 3524578/6643838879*843^(5/7) 6524764983151719 a001 1346269/2537720636*843^(5/7) 6524764983155934 a001 514229/969323029*843^(5/7) 6524764983184824 a001 196418/370248451*843^(5/7) 6524764983382837 a001 75025/141422324*843^(5/7) 6524764984740037 a001 28657/54018521*843^(5/7) 6524764986984750 a001 13/844*322^(1/4) 6524764994042422 a001 10946/20633239*843^(5/7) 6524765012742119 k002 Champernowne real with 221/2*n^2-299/2*n+104 6524765015513288 a001 39603/55*55^(11/20) 6524765017574474 a007 Real Root Of 629*x^4+72*x^3+343*x^2+515*x+96 6524765036177002 m001 LambertW(1)^Zeta(3)/(cos(1/5*Pi)^Zeta(3)) 6524765036177002 m001 LambertW(1)^Zeta(3)/(cos(Pi/5)^Zeta(3)) 6524765057801918 a001 4181/7881196*843^(5/7) 6524765078913370 m001 (Pi-5^(1/2))/(Catalan+Bloch) 6524765085573973 m001 (exp(-1/2*Pi)-sin(1))/(Zeta(1,2)+MertensB2) 6524765093556013 r002 43th iterates of z^2 + 6524765103682362 a007 Real Root Of 121*x^4-431*x^3-237*x^2-523*x-382 6524765112772125 k002 Champernowne real with 111*n^2-151*n+105 6524765138435871 m001 (5^(1/2)-Catalan)/(LambertW(1)+Backhouse) 6524765164030954 s001 sum(1/10^(n-1)*A196650[n]/n^n,n=1..infinity) 6524765174674217 m005 (1/2*5^(1/2)-7/12)/(9/10*gamma+3/10) 6524765179149876 a007 Real Root Of 518*x^4-810*x^3+992*x^2+667*x-306 6524765209052749 m001 Thue/(Rabbit-sin(1)) 6524765209734776 m003 4+30*Sec[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 6524765210457787 a001 305/51841*843^(5/14) 6524765212802131 k002 Champernowne real with 223/2*n^2-305/2*n+106 6524765215947225 m001 1/ln(GAMMA(5/12))^3*FransenRobinson 6524765240852008 r005 Re(z^2+c),c=-67/94+6/31*I,n=61 6524765274842207 m001 BesselI(1,2)/(Catalan+GAMMA(1/24)) 6524765281536628 a007 Real Root Of -907*x^4+942*x^3+682*x^2+825*x+674 6524765283612661 a007 Real Root Of -374*x^4+887*x^3-258*x^2-87*x-12 6524765312832137 k002 Champernowne real with 112*n^2-154*n+107 6524765322021684 b008 -5*Sqrt[2]+Tan[1/2] 6524765329372423 m005 (1/3*gamma+3/7)/(7/8*2^(1/2)-2/7) 6524765350016350 a007 Real Root Of 327*x^4-843*x^3+947*x^2+381*x-448 6524765377429792 a008 Real Root of (-5+2*x-3*x^2+6*x^3+x^4) 6524765386435744 m002 6-E^Pi+E^Pi/Pi^3+Pi^2 6524765390572625 m005 (1/3*5^(1/2)-1/8)/(3/8*Zeta(3)+1/2) 6524765396253390 a007 Real Root Of 300*x^4-855*x^3-624*x^2+274*x+270 6524765405737857 m001 1/ln(Pi)^2/GAMMA(5/24)^2*sqrt(1+sqrt(3)) 6524765407089508 r005 Re(z^2+c),c=-15/31+33/52*I,n=2 6524765409628647 m001 arctan(1/3)^Magata/arctan(1/3) 6524765412862143 k002 Champernowne real with 225/2*n^2-311/2*n+108 6524765422575591 a007 Real Root Of -760*x^4-45*x^3-888*x^2-379*x+256 6524765435383734 r002 14th iterates of z^2 + 6524765438978538 a001 372100/5702887 6524765438980383 a004 Fibonacci(15)/Lucas(15)/(1/2+sqrt(5)/2)^4 6524765443529653 a001 646/1970299*843^(11/14) 6524765455714870 r002 12th iterates of z^2 + 6524765465406593 a001 1/36*28657^(25/47) 6524765470136612 l006 ln(5903/6301) 6524765470136612 p004 log(6301/5903) 6524765494816006 a001 1597/3010349*843^(5/7) 6524765500670755 p004 log(17707/9221) 6524765506840815 r002 53th iterates of z^2 + 6524765512892149 k002 Champernowne real with 113*n^2-157*n+109 6524765525413342 r002 29th iterates of z^2 + 6524765529293485 m001 FeigenbaumD/Conway^2*ln(GAMMA(3/4))^2 6524765581868769 m006 (2/5*exp(2*Pi)-3)/(2/3*ln(Pi)-4) 6524765610453873 a001 615/1875749*843^(11/14) 6524765611047209 a001 987/7881196*843^(13/14) 6524765612922155 k002 Champernowne real with 227/2*n^2-317/2*n+110 6524765613253860 m005 (1/2*5^(1/2)+5/9)/(3*gamma+5/6) 6524765631770661 m001 (KhinchinLevy+Trott)/(ZetaP(3)+ZetaQ(3)) 6524765633348071 m001 (Zeta(1/2)+PisotVijayaraghavan)/exp(-1/2*Pi) 6524765634807789 a001 17711/54018521*843^(11/14) 6524765638360977 a001 11592/35355581*843^(11/14) 6524765638879380 a001 121393/370248451*843^(11/14) 6524765638955014 a001 317811/969323029*843^(11/14) 6524765638966049 a001 610/1860499*843^(11/14) 6524765638967659 a001 2178309/6643838879*843^(11/14) 6524765638967894 a001 5702887/17393796001*843^(11/14) 6524765638967928 a001 3732588/11384387281*843^(11/14) 6524765638967933 a001 39088169/119218851371*843^(11/14) 6524765638967934 a001 9303105/28374454999*843^(11/14) 6524765638967934 a001 66978574/204284540899*843^(11/14) 6524765638967934 a001 701408733/2139295485799*843^(11/14) 6524765638967934 a001 1836311903/5600748293801*843^(11/14) 6524765638967934 a001 1201881744/3665737348901*843^(11/14) 6524765638967934 a001 7778742049/23725150497407*843^(11/14) 6524765638967934 a001 2971215073/9062201101803*843^(11/14) 6524765638967934 a001 567451585/1730726404001*843^(11/14) 6524765638967934 a001 433494437/1322157322203*843^(11/14) 6524765638967934 a001 165580141/505019158607*843^(11/14) 6524765638967934 a001 31622993/96450076809*843^(11/14) 6524765638967936 a001 24157817/73681302247*843^(11/14) 6524765638967949 a001 9227465/28143753123*843^(11/14) 6524765638968039 a001 1762289/5374978561*843^(11/14) 6524765638968654 a001 1346269/4106118243*843^(11/14) 6524765638972869 a001 514229/1568397607*843^(11/14) 6524765639001759 a001 98209/299537289*843^(11/14) 6524765639199771 a001 75025/228826127*843^(11/14) 6524765640556968 a001 28657/87403803*843^(11/14) 6524765642458422 a007 Real Root Of 245*x^4-830*x^3-57*x^2-730*x-727 6524765649859336 a001 5473/16692641*843^(11/14) 6524765676200606 m001 (Zeta(1,-1)-ln(2)/ln(10))/(-Sarnak+ZetaQ(3)) 6524765698381646 m001 Trott^2/ln(ArtinRank2)*sqrt(2)^2 6524765712952161 k002 Champernowne real with 114*n^2-160*n+111 6524765713618715 a001 4181/12752043*843^(11/14) 6524765714391613 r009 Re(z^3+c),c=-1/23+21/29*I,n=9 6524765726462098 a007 Real Root Of -894*x^4+504*x^3+876*x^2+604*x-745 6524765729585006 q001 2437/3735 6524765730286433 m001 (Zeta(3)-GAMMA(17/24))/(Kac+MasserGramain) 6524765745107183 a007 Real Root Of -543*x^4+584*x^3+238*x^2+291*x-355 6524765751476140 a007 Real Root Of 671*x^4-920*x^3-488*x^2-181*x-10 6524765764539964 a007 Real Root Of -256*x^4+681*x^3+688*x^2+822*x+479 6524765766536140 m001 1/Backhouse^2*Artin^2/exp(Trott) 6524765772285792 r002 32i'th iterates of 2*x/(1-x^2) of 6524765783968666 a007 Real Root Of -849*x^4-482*x^3-967*x^2+681*x+876 6524765799768330 h001 (3/8*exp(1)+9/11)/(8/9*exp(1)+2/5) 6524765808450633 a007 Real Root Of 149*x^4+545*x^3+525*x^2-455*x-396 6524765812982167 k002 Champernowne real with 229/2*n^2-323/2*n+112 6524765820920109 a001 233/271443*521^(9/13) 6524765835130712 a007 Real Root Of 88*x^4-198*x^3+907*x^2-734*x-936 6524765864148812 r005 Re(z^2+c),c=-25/62+22/37*I,n=17 6524765865443100 r005 Im(z^2+c),c=-23/18+2/67*I,n=50 6524765867113539 a001 610/167761*843^(3/7) 6524765870307629 a007 Real Root Of 280*x^4-694*x^3-453*x^2-532*x+682 6524765884903043 m001 1/exp(BesselJ(0,1))^2/OneNinth/GAMMA(7/24) 6524765907204961 m001 gamma(3)^(gamma/Rabbit) 6524765913012173 k002 Champernowne real with 115*n^2-163*n+113 6524765913348925 m001 (Zeta(1,2)+Bloch)/(Cahen-TravellingSalesman) 6524765919217667 m001 FeigenbaumKappa^2*exp(KhintchineLevy)*Trott 6524765978851227 a008 Real Root of (1+8*x-12*x^2-4*x^3) 6524765986289682 a003 sin(Pi*16/95)/sin(Pi*29/103) 6524765993282408 r005 Im(z^2+c),c=-8/29+43/60*I,n=8 6524766013042179 k002 Champernowne real with 231/2*n^2-329/2*n+114 6524766031369761 a007 Real Root Of -541*x^4+529*x^3-517*x^2-604*x+71 6524766069423845 a003 sin(Pi*30/107)*sin(Pi*26/81) 6524766095983064 r005 Re(z^2+c),c=-19/34+47/101*I,n=6 6524766099346489 a001 2584/12752043*843^(6/7) 6524766113072185 k002 Champernowne real with 116*n^2-166*n+115 6524766119971200 m001 1/Catalan^2/ln(FeigenbaumD)*cos(1) 6524766148492499 r005 Im(z^2+c),c=-3/44+24/29*I,n=11 6524766149463775 r005 Im(z^2+c),c=-13/24+29/50*I,n=28 6524766150631997 a001 1597/4870847*843^(11/14) 6524766154339803 a001 1/7*(1/2*5^(1/2)+1/2)^12*3^(7/22) 6524766157638468 m001 (GAMMA(3/4)+FeigenbaumDelta)^Shi(1) 6524766207010301 r009 Re(z^3+c),c=-5/52+27/59*I,n=21 6524766208749524 a001 3/377*514229^(4/25) 6524766213102191 k002 Champernowne real with 233/2*n^2-335/2*n+116 6524766214325075 r005 Im(z^2+c),c=-27/86+5/64*I,n=3 6524766225771676 a007 Real Root Of 597*x^4-551*x^3-190*x^2-569*x+497 6524766236605255 a003 cos(Pi*8/115)*sin(Pi*24/103) 6524766266270850 a001 6765/33385282*843^(6/7) 6524766266864102 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^34 6524766271186569 a005 (1/cos(7/207*Pi))^739 6524766271420814 r005 Re(z^2+c),c=-31/94+38/61*I,n=7 6524766282766425 a007 Real Root Of -865*x^4+799*x^3+92*x^2-384*x+89 6524766290624786 a001 17711/87403803*843^(6/7) 6524766294177977 a001 46368/228826127*843^(6/7) 6524766294696381 a001 121393/599074578*843^(6/7) 6524766294772015 a001 317811/1568397607*843^(6/7) 6524766294783050 a001 832040/4106118243*843^(6/7) 6524766294784660 a001 987/4870846*843^(6/7) 6524766294784895 a001 5702887/28143753123*843^(6/7) 6524766294784929 a001 14930352/73681302247*843^(6/7) 6524766294784934 a001 39088169/192900153618*843^(6/7) 6524766294784935 a001 102334155/505019158607*843^(6/7) 6524766294784935 a001 267914296/1322157322203*843^(6/7) 6524766294784935 a001 701408733/3461452808002*843^(6/7) 6524766294784935 a001 1836311903/9062201101803*843^(6/7) 6524766294784935 a001 4807526976/23725150497407*843^(6/7) 6524766294784935 a001 2971215073/14662949395604*843^(6/7) 6524766294784935 a001 1134903170/5600748293801*843^(6/7) 6524766294784935 a001 433494437/2139295485799*843^(6/7) 6524766294784935 a001 165580141/817138163596*843^(6/7) 6524766294784935 a001 63245986/312119004989*843^(6/7) 6524766294784937 a001 24157817/119218851371*843^(6/7) 6524766294784950 a001 9227465/45537549124*843^(6/7) 6524766294785040 a001 3524578/17393796001*843^(6/7) 6524766294785655 a001 1346269/6643838879*843^(6/7) 6524766294789870 a001 514229/2537720636*843^(6/7) 6524766294818759 a001 196418/969323029*843^(6/7) 6524766295016772 a001 75025/370248451*843^(6/7) 6524766295304296 m005 (1/2*gamma+8/11)/(1/4*gamma-3/10) 6524766296373970 a001 28657/141422324*843^(6/7) 6524766305676346 a001 10946/54018521*843^(6/7) 6524766313132197 k002 Champernowne real with 117*n^2-169*n+117 6524766321531356 r005 Im(z^2+c),c=-21/50+3/28*I,n=24 6524766342455336 m001 (cos(1)+BesselJ(1,1))/(Cahen+Thue) 6524766348879637 m004 (-75*Sqrt[5])/Pi+25*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 6524766357607159 a007 Real Root Of 912*x^4-599*x^3+800*x^2+146*x-577 6524766367155121 a007 Real Root Of 948*x^4+497*x^3-260*x^2-616*x-325 6524766369435778 a001 4181/20633239*843^(6/7) 6524766413162203 k002 Champernowne real with 235/2*n^2-341/2*n+118 6524766419187049 m004 25*Pi+Cosh[Sqrt[5]*Pi]+8*Csc[Sqrt[5]*Pi] 6524766429086557 p001 sum((-1)^n/(477*n+149)/(8^n),n=0..infinity) 6524766452026007 a007 Real Root Of 799*x^4-785*x^3-529*x^2-986*x-781 6524766471757992 r005 Re(z^2+c),c=45/122+5/54*I,n=4 6524766473818384 a007 Real Root Of 626*x^4+832*x^3+967*x^2-636*x-709 6524766474176968 m005 (1/3*Pi+3/5)/(1/10*2^(1/2)-1/6) 6524766480203211 a007 Real Root Of -380*x^4+74*x^3+510*x^2+362*x-405 6524766487389477 a007 Real Root Of -601*x^4+827*x^3-410*x^2+648*x+936 6524766507383460 m005 (1/2*gamma-7/8)/(3^(1/2)-5/6) 6524766513192209 k002 Champernowne real with 118*n^2-172*n+119 6524766522610172 a001 610/271443*843^(1/2) 6524766530027957 g007 2*Psi(2,2/11)-Psi(2,7/12)-Psi(2,3/4) 6524766563261226 r009 Im(z^3+c),c=-23/98+37/54*I,n=13 6524766566984740 p003 LerchPhi(1/12,4,151/76) 6524766575843655 m009 (5*Psi(1,1/3)+1/2)/(5/6*Psi(1,1/3)-3/5) 6524766580413872 r005 Re(z^2+c),c=5/114+8/21*I,n=19 6524766602256151 m001 (StronglyCareFree+Totient)^FeigenbaumAlpha 6524766605517100 m001 (Conway-ZetaP(3))/(ln(gamma)+BesselI(0,2)) 6524766608343629 m001 (Zeta(3)+FeigenbaumB)/(Si(Pi)+BesselI(0,1)) 6524766613222215 k002 Champernowne real with 237/2*n^2-347/2*n+120 6524766613404765 m001 (-Ei(1)+Weierstrass)/(LambertW(1)+ln(5)) 6524766615206872 a007 Real Root Of 731*x^4-714*x^3-106*x^2+280*x-103 6524766615608709 m005 (7/24+1/6*5^(1/2))/(1/5*Zeta(3)+7/9) 6524766616680102 a007 Real Root Of -234*x^4+39*x^3-658*x^2+496*x+657 6524766633362405 a007 Real Root Of 117*x^4+642*x^3-892*x^2-721*x-451 6524766642682424 a007 Real Root Of -940*x^4-391*x^3-910*x^2-411*x+181 6524766671402486 m001 (-GAMMA(19/24)+Mills)/(ln(2)/ln(10)+3^(1/2)) 6524766684172677 r005 Re(z^2+c),c=-6/25+10/11*I,n=4 6524766694995215 b008 2+3*ArcSec[16] 6524766713252221 k002 Champernowne real with 119*n^2-175*n+121 6524766724090909 r005 Im(z^2+c),c=-5/48+5/64*I,n=8 6524766750806010 a007 Real Root Of -907*x^4+961*x^3-185*x^2+711*x+974 6524766754531316 a007 Real Root Of 107*x^4+722*x^3+221*x^2+468*x+270 6524766755163591 a001 2584/20633239*843^(13/14) 6524766756626706 r009 Im(z^3+c),c=-41/98+14/25*I,n=7 6524766768240552 m001 (Totient-ThueMorse)/(ln(3)+FellerTornier) 6524766781395627 r002 44i'th iterates of 2*x/(1-x^2) of 6524766783135720 m001 1/Robbin^2*DuboisRaymond^2*ln(GAMMA(5/12)) 6524766806449429 a001 1597/7881196*843^(6/7) 6524766813282227 k002 Champernowne real with 239/2*n^2-353/2*n+122 6524766817328843 a007 Real Root Of 376*x^4-704*x^3+779*x^2+986*x+48 6524766832363727 b008 2+Sqrt[3]*Zeta[3/2] 6524766871094942 a007 Real Root Of 142*x^4+948*x^3+158*x^2+221*x+683 6524766880991081 a007 Real Root Of 123*x^4+833*x^3+326*x^2+721*x-715 6524766882382744 a007 Real Root Of -153*x^4-115*x^3-100*x^2+683*x+484 6524766908809259 a007 Real Root Of -9*x^4-584*x^3+205*x^2-369*x+131 6524766912190976 r005 Im(z^2+c),c=-53/56+2/33*I,n=4 6524766913312233 k002 Champernowne real with 120*n^2-178*n+123 6524766922087921 a001 6765/54018521*843^(13/14) 6524766930122671 m001 (OrthogonalArrays-ln(5)*Porter)/Porter 6524766941782587 a001 10946/123*3571^(21/40) 6524766946441853 a001 17711/141422324*843^(13/14) 6524766949995044 a001 46368/370248451*843^(13/14) 6524766950513447 a001 121393/969323029*843^(13/14) 6524766950589081 a001 317811/2537720636*843^(13/14) 6524766950600116 a001 832040/6643838879*843^(13/14) 6524766950601726 a001 2178309/17393796001*843^(13/14) 6524766950601961 a001 1597/12752044*843^(13/14) 6524766950601995 a001 14930352/119218851371*843^(13/14) 6524766950602000 a001 39088169/312119004989*843^(13/14) 6524766950602001 a001 102334155/817138163596*843^(13/14) 6524766950602001 a001 267914296/2139295485799*843^(13/14) 6524766950602001 a001 701408733/5600748293801*843^(13/14) 6524766950602001 a001 1836311903/14662949395604*843^(13/14) 6524766950602001 a001 2971215073/23725150497407*843^(13/14) 6524766950602001 a001 1134903170/9062201101803*843^(13/14) 6524766950602001 a001 433494437/3461452808002*843^(13/14) 6524766950602001 a001 165580141/1322157322203*843^(13/14) 6524766950602002 a001 63245986/505019158607*843^(13/14) 6524766950602003 a001 24157817/192900153618*843^(13/14) 6524766950602017 a001 9227465/73681302247*843^(13/14) 6524766950602106 a001 3524578/28143753123*843^(13/14) 6524766950602721 a001 1346269/10749957122*843^(13/14) 6524766950606936 a001 514229/4106118243*843^(13/14) 6524766950635826 a001 196418/1568397607*843^(13/14) 6524766950833838 a001 75025/599074578*843^(13/14) 6524766952191036 a001 28657/228826127*843^(13/14) 6524766961493410 a001 10946/87403803*843^(13/14) 6524766972589234 m001 exp(1)+Conway+FeigenbaumAlpha 6524766978601445 r002 60th iterates of z^2 + 6524766981406064 a007 Real Root Of -826*x^4+883*x^3-566*x^2+43*x+664 6524766983700765 a003 sin(Pi*16/111)/cos(Pi*29/109) 6524766983905889 a008 Real Root of x^4-x^3-28*x^2+56*x+48 6524766994110739 m001 Zeta(1,2)^Kolakoski/Backhouse 6524766998890620 m008 (2/5*Pi^5+3)/(2*Pi^6-3/4) 6524767025252831 a001 4181/33385282*843^(13/14) 6524767059632690 r004 Re(z^2+c),c=-31/30+4/17*I,z(0)=-1,n=53 6524767094447975 m001 (cos(1/5*Pi)+ln(2))/(Ei(1,1)+Trott) 6524767111563410 a007 Real Root Of 538*x^4-911*x^3+401*x^2-372*x-764 6524767120806797 m001 (PolyaRandomWalk3D-Salem)/(cos(1/5*Pi)+Bloch) 6524767147653486 a001 610/15127*322^(1/12) 6524767153526196 m001 Tribonacci^2*MertensB1^2*exp(Zeta(5)) 6524767171319865 r005 Re(z^2+c),c=3/40+22/41*I,n=4 6524767178549640 a001 305/219602*843^(4/7) 6524767205777585 a001 10946/123*24476^(17/40) 6524767231241630 a001 4181/123*9349^(23/40) 6524767288976051 a001 233/5778*199^(1/11) 6524767311131183 k006 concat of cont frac of 6524767316600186 r005 Re(z^2+c),c=-3/118+33/38*I,n=8 6524767329188889 r002 8th iterates of z^2 + 6524767356472797 m005 (1/3*exp(1)-3/5)/(-1/36+2/9*5^(1/2)) 6524767394021394 m004 (55*Pi)/6+(125*Tan[Sqrt[5]*Pi])/Pi 6524767402524829 m001 (Artin-Landau)/(cos(1/5*Pi)+ln(gamma)) 6524767410980688 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^36 6524767411123529 l006 ln(9013/9072) 6524767417457135 m001 FeigenbaumMu+Magata-ZetaP(2) 6524767421534521 r009 Re(z^3+c),c=-1/9+19/32*I,n=34 6524767424631245 a007 Real Root Of -343*x^4+589*x^3+591*x^2+990*x-999 6524767432822281 a007 Real Root Of -52*x^4-388*x^3-257*x^2+400*x+20 6524767454001834 m001 1/(2^(1/3))/ln(Riemann3rdZero)^2/GAMMA(19/24) 6524767462266402 a001 1597/12752043*843^(13/14) 6524767467488832 a007 Real Root Of -823*x^4+166*x^3-863*x^2+212*x+701 6524767486825463 a007 Real Root Of -426*x^4-903*x^3-963*x^2+706*x+697 6524767519794256 m001 ln(GaussKuzminWirsing)*Cahen/Trott^2 6524767549472433 r005 Im(z^2+c),c=-5/36+33/49*I,n=28 6524767557320481 m001 cos(Pi/5)^2*exp(GAMMA(1/4))^2/sqrt(2) 6524767568458888 a007 Real Root Of -696*x^4-90*x^3-731*x^2-727*x-62 6524767569641654 a001 329/13201*322^(1/6) 6524767577905049 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^38 6524767602258985 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^40 6524767602697358 b008 E^(1/3)+Sqrt[2]*Sinh[2] 6524767605812176 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^42 6524767605914914 m001 Trott^2/ln(LandauRamanujan)/sin(Pi/12)^2 6524767606330580 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^44 6524767606406214 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^46 6524767606417249 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^48 6524767606418859 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^50 6524767606419093 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^52 6524767606419128 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^54 6524767606419133 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^56 6524767606419133 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^58 6524767606419134 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^60 6524767606419134 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^62 6524767606419134 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^64 6524767606419134 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^66 6524767606419134 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^68 6524767606419134 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^70 6524767606419134 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^72 6524767606419134 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^74 6524767606419134 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^76 6524767606419134 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^78 6524767606419134 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^80 6524767606419134 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^82 6524767606419134 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^84 6524767606419134 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^86 6524767606419134 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^88 6524767606419134 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^90 6524767606419134 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^92 6524767606419134 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^94 6524767606419134 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^96 6524767606419134 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^98 6524767606419134 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^100 6524767606419134 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^99 6524767606419134 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^97 6524767606419134 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^95 6524767606419134 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^93 6524767606419134 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^91 6524767606419134 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^89 6524767606419134 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^87 6524767606419134 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^85 6524767606419134 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^83 6524767606419134 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^81 6524767606419134 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^79 6524767606419134 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^77 6524767606419134 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^75 6524767606419134 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^73 6524767606419134 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^71 6524767606419134 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^69 6524767606419134 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^67 6524767606419134 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^65 6524767606419134 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^63 6524767606419134 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^61 6524767606419134 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^59 6524767606419134 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^57 6524767606419136 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^55 6524767606419149 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^53 6524767606419239 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^51 6524767606419854 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^49 6524767606424069 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^47 6524767606432053 a001 2/377*(1/2+1/2*5^(1/2))^10 6524767606452958 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^45 6524767606650971 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^43 6524767608008169 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^41 6524767617310545 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^39 6524767618085896 a007 Real Root Of 116*x^4-950*x^3+402*x^2-685*x-903 6524767618737226 a007 Real Root Of -318*x^4+774*x^3+240*x^2-197*x-131 6524767670269794 a001 233/167761*521^(8/13) 6524767681069977 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^37 6524767692663616 r009 Im(z^3+c),c=-15/64+26/37*I,n=29 6524767700310129 a005 (1/cos(4/233*Pi))^1289 6524767711930402 a007 Real Root Of 130*x^4-931*x^3-508*x^2-322*x-276 6524767714774326 a007 Real Root Of 886*x^4+357*x^3+583*x^2-560*x-675 6524767743914344 a007 Real Root Of 39*x^4-597*x^3-895*x^2-267*x+714 6524767753435510 r002 16th iterates of z^2 + 6524767756756592 m001 exp(BesselJ(1,1))/Si(Pi)/GAMMA(17/24) 6524767776641223 m005 (1/3*3^(1/2)+3/5)/(1/5*Catalan-4/11) 6524767801857585 a001 843/2584*8^(1/3) 6524767801857585 q001 843/1292 6524767803976664 r005 Im(z^2+c),c=-19/40+14/23*I,n=13 6524767805765580 m001 (Kolakoski+Porter)/(BesselI(0,2)+KhinchinLevy) 6524767834320051 a001 610/710647*843^(9/14) 6524767846038863 a007 Real Root Of -777*x^4+894*x^3+224*x^2+103*x+361 6524767871952666 r002 4th iterates of z^2 + 6524767886982497 m001 1/exp(sqrt(2))/Riemann2ndZero/sqrt(Pi) 6524767941497580 m001 exp(OneNinth)^2*FeigenbaumB^2/log(2+sqrt(3)) 6524767955074870 m005 (1/2*gamma-1/6)/(4/7*Zeta(3)-1/2) 6524767955856538 h001 (2/11*exp(2)+7/8)/(2/5*exp(2)+4/9) 6524767958168071 a001 843*144^(7/17) 6524767972953559 a007 Real Root Of -967*x^4-404*x^3-484*x^2-158*x+166 6524768011126178 a007 Real Root Of -479*x^4-171*x^3-881*x^2-537*x+64 6524768023511871 r005 Re(z^2+c),c=-7/10+13/116*I,n=3 6524768024268040 a003 sin(Pi*10/109)/cos(Pi*41/115) 6524768068281226 m001 (-CareFree+Salem)/(GAMMA(5/6)-Si(Pi)) 6524768068393772 r005 Im(z^2+c),c=-103/90+3/11*I,n=62 6524768070309754 a007 Real Root Of 97*x^4-832*x^3+25*x^2-47*x-290 6524768089301769 h001 (1/6*exp(1)+1/3)/(2/7*exp(1)+3/7) 6524768089301769 m005 (1/3*exp(1)+2/3)/(4/7*exp(1)+6/7) 6524768098658722 r005 Re(z^2+c),c=25/102+19/51*I,n=44 6524768116895162 m001 TwinPrimes^2*ln(PrimesInBinary)^2*GAMMA(11/24) 6524768118083626 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^35 6524768133489738 m005 (1/2*2^(1/2)+1/6)/(7/9*5^(1/2)-2/5) 6524768154208636 r002 8th iterates of z^2 + 6524768172302693 m001 (Conway+HeathBrownMoroz)/(Pi-exp(Pi)) 6524768187511799 a007 Real Root Of 559*x^4+996*x^3+394*x^2-450*x-286 6524768193691394 a007 Real Root Of 887*x^4-646*x^3+452*x^2-491*x-853 6524768214796767 s002 sum(A243385[n]/(n^3*exp(n)+1),n=1..infinity) 6524768234645850 a001 1/11592*10946^(20/43) 6524768276128356 r005 Im(z^2+c),c=-9/14+5/41*I,n=55 6524768278002010 a001 119218851371/610*144^(12/17) 6524768291019344 a007 Real Root Of -71*x^4-483*x^3-173*x^2-317*x-187 6524768309929947 a001 4106118243/377*144^(14/17) 6524768336961217 r002 48th iterates of z^2 + 6524768353590317 a007 Real Root Of 112*x^4+727*x^3+8*x^2+219*x+40 6524768354246565 m001 (Porter-TreeGrowth2nd)/(ln(3)+PlouffeB) 6524768354462565 a007 Real Root Of -866*x^4-105*x^3-704*x^2+787*x+941 6524768354933125 m001 (Rabbit+Tribonacci)/(Pi+BesselJ(0,1)) 6524768378286463 a007 Real Root Of 377*x^4-864*x^3+31*x^2+10*x-315 6524768485664687 m001 arctan(1/2)^(sin(1)*TwinPrimes) 6524768490155127 a001 610/1149851*843^(5/7) 6524768507744564 h003 exp(Pi*(17^(6/5)-18^(1/7))) 6524768507744564 h008 exp(Pi*(17^(6/5)-18^(1/7))) 6524768509368113 m001 (ln(Pi)-MertensB3)/(Otter-ZetaP(4)) 6524768546891756 r002 17th iterates of z^2 + 6524768551718945 a001 514229/322*76^(13/40) 6524768573998038 s001 sum(exp(-Pi/4)^n*A111318[n],n=1..infinity) 6524768577092201 m001 (-Ei(1)+exp(-1/2*Pi))/(exp(Pi)+exp(1)) 6524768631391611 s002 sum(A151731[n]/((10^n-1)/n),n=1..infinity) 6524768631595264 r005 Im(z^2+c),c=-7/6+37/136*I,n=40 6524768633983431 a007 Real Root Of -158*x^4-898*x^3+948*x^2+489*x-248 6524768637113591 m001 (gamma+(1+3^(1/2))^(1/2))/(Magata+Trott) 6524768638762567 l006 ln(5219/10022) 6524768642685354 r002 7th iterates of z^2 + 6524768645915018 a007 Real Root Of -141*x^4-842*x^3+528*x^2+137*x+80 6524768646445304 r005 Re(z^2+c),c=-31/26+77/82*I,n=2 6524768659940837 b008 5+EulerGamma*(-1/2+Pi) 6524768661615169 m005 (1/6*exp(1)+1/2)/(3/4*2^(1/2)+2/5) 6524768661741433 a007 Real Root Of 149*x^4+373*x^3+187*x^2-987*x-647 6524768703205202 m001 1/GAMMA(1/4)*ln(DuboisRaymond)*Zeta(3)^2 6524768717311660 a001 1292/51841*322^(1/6) 6524768739173678 m005 (1/2*2^(1/2)+2/5)/(7/12*exp(1)+1/9) 6524768747467281 r005 Im(z^2+c),c=11/82+41/64*I,n=22 6524768752380930 r005 Re(z^2+c),c=-7/31+20/31*I,n=16 6524768753045670 s002 sum(A229561[n]/((pi^n-1)/n),n=1..infinity) 6524768815668594 m002 -6*Pi+Pi^4/Log[Pi]-Tanh[Pi] 6524768817329380 a007 Real Root Of -255*x^4-474*x^3-848*x^2-148*x+179 6524768828637224 m002 (5*Pi^3)/4+E^Pi*Log[Pi] 6524768835142181 l006 ln(5081/9757) 6524768860946745 r005 Re(z^2+c),c=-11/16+43/65*I,n=2 6524768884754458 a001 2255/90481*322^(1/6) 6524768909184033 a001 17711/710647*322^(1/6) 6524768912748260 a001 2576/103361*322^(1/6) 6524768913268273 a001 121393/4870847*322^(1/6) 6524768913344142 a001 105937/4250681*322^(1/6) 6524768913355211 a001 416020/16692641*322^(1/6) 6524768913356826 a001 726103/29134601*322^(1/6) 6524768913357062 a001 5702887/228826127*322^(1/6) 6524768913357096 a001 829464/33281921*322^(1/6) 6524768913357101 a001 39088169/1568397607*322^(1/6) 6524768913357102 a001 34111385/1368706081*322^(1/6) 6524768913357102 a001 133957148/5374978561*322^(1/6) 6524768913357102 a001 233802911/9381251041*322^(1/6) 6524768913357102 a001 1836311903/73681302247*322^(1/6) 6524768913357102 a001 267084832/10716675201*322^(1/6) 6524768913357102 a001 12586269025/505019158607*322^(1/6) 6524768913357102 a001 10983760033/440719107401*322^(1/6) 6524768913357102 a001 43133785636/1730726404001*322^(1/6) 6524768913357102 a001 75283811239/3020733700601*322^(1/6) 6524768913357102 a001 182717648081/7331474697802*322^(1/6) 6524768913357102 a001 139583862445/5600748293801*322^(1/6) 6524768913357102 a001 53316291173/2139295485799*322^(1/6) 6524768913357102 a001 10182505537/408569081798*322^(1/6) 6524768913357102 a001 7778742049/312119004989*322^(1/6) 6524768913357102 a001 2971215073/119218851371*322^(1/6) 6524768913357102 a001 567451585/22768774562*322^(1/6) 6524768913357102 a001 433494437/17393796001*322^(1/6) 6524768913357102 a001 165580141/6643838879*322^(1/6) 6524768913357103 a001 31622993/1268860318*322^(1/6) 6524768913357104 a001 24157817/969323029*322^(1/6) 6524768913357118 a001 9227465/370248451*322^(1/6) 6524768913357208 a001 1762289/70711162*322^(1/6) 6524768913357824 a001 1346269/54018521*322^(1/6) 6524768913362052 a001 514229/20633239*322^(1/6) 6524768913391032 a001 98209/3940598*322^(1/6) 6524768913589659 a001 75025/3010349*322^(1/6) 6524768914951073 a001 28657/1149851*322^(1/6) 6524768919770316 a007 Real Root Of -130*x^4-818*x^3+143*x^2-283*x+460 6524768924282340 a001 5473/219602*322^(1/6) 6524768927087456 m001 MinimumGamma^exp(Pi)+Porter 6524768932700929 m005 (-7/20+1/4*5^(1/2))/(7/8*Pi+5/11) 6524768944615472 m001 Catalan^cos(1)/MinimumGamma 6524768963561787 m001 (BesselI(1,2)+FeigenbaumAlpha)/(Kac+ZetaQ(4)) 6524768988239798 a001 4181/167761*322^(1/6) 6524768994223601 m001 (exp(1)-gamma(1))/(Artin+ZetaQ(2)) 6524769010510729 a007 Real Root Of 667*x^4-503*x^3-21*x^2-658*x-681 6524769014848663 m001 (polylog(4,1/2)+Stephens)/(gamma+ln(3)) 6524769016180790 g002 -2*gamma-4*ln(2)+Psi(8/11)+Psi(5/8) 6524769026532192 m005 (1/2*Pi-8/9)/(4/5*gamma+7/12) 6524769042486948 l006 ln(4943/9492) 6524769047122618 r005 Im(z^2+c),c=-7/23+16/25*I,n=4 6524769061498069 a007 Real Root Of 999*x^4-345*x^3-949*x^2-995*x+968 6524769064952781 a007 Real Root Of 839*x^4-677*x^3-327*x^2+547*x+156 6524769072973493 l006 ln(4405/4702) 6524769109672297 m001 GAMMA(19/24)-Lehmer*GAMMA(7/24) 6524769130519630 r005 Re(z^2+c),c=23/90+21/55*I,n=9 6524769132475321 m001 (GAMMA(5/6)+Rabbit)/(Si(Pi)+cos(1/12*Pi)) 6524769134285226 a007 Real Root Of 964*x^4-903*x^3-543*x^2+396*x+64 6524769136646028 s002 sum(A043477[n]/(exp(n)),n=1..infinity) 6524769138517393 h001 (-3*exp(1)+3)/(-2*exp(-3)+8) 6524769140563323 a007 Real Root Of 289*x^4-680*x^3-768*x^2-844*x-465 6524769145965594 a001 305/930249*843^(11/14) 6524769216996856 m001 (-ln(2^(1/2)+1)+GAMMA(23/24))/(1-exp(Pi)) 6524769222109255 m002 -E^Pi/8-Pi^5+Pi^6 6524769261741629 l006 ln(4805/9227) 6524769285334515 m001 (GAMMA(17/24)+MadelungNaCl)/(PlouffeB-Trott) 6524769286234245 r005 Im(z^2+c),c=-3/52+37/51*I,n=33 6524769290204144 m005 (1/2*Pi-7/11)/(8/9*Zeta(3)+4/11) 6524769294319173 r005 Im(z^2+c),c=-1/19+31/46*I,n=4 6524769328387188 r002 6th iterates of z^2 + 6524769351057913 m005 (1/2*Zeta(3)-4/5)/(5/12*gamma-6/11) 6524769359769283 m001 (ln(2)/ln(10)+2^(1/2))/(3^(1/3)+KhinchinLevy) 6524769371095790 a007 Real Root Of 207*x^4-609*x^3-546*x^2-547*x+721 6524769380905617 m001 (exp(-1/2*Pi)+Trott2nd)/(Zeta(3)-sin(1)) 6524769405169536 m001 Chi(1)*GAMMA(11/12)/FeigenbaumKappa 6524769412733910 a007 Real Root Of -460*x^4-341*x^3-398*x^2+711*x+622 6524769426610733 a001 1597/64079*322^(1/6) 6524769446363660 m001 (1-Weierstrass)^LaplaceLimit 6524769446485333 m005 (-1/2+1/4*5^(1/2))/(4/11*Catalan+4/7) 6524769452222508 m001 (cos(1/5*Pi)-sin(1))/(FellerTornier+ZetaP(3)) 6524769475050532 a007 Real Root Of -888*x^4+746*x^3+290*x^2+402*x+507 6524769479062053 a007 Real Root Of 847*x^4-466*x^3-649*x^2-117*x-83 6524769493962727 l006 ln(4667/8962) 6524769518460818 a001 233/103682*521^(7/13) 6524769572143832 r005 Im(z^2+c),c=-11/10+9/104*I,n=3 6524769586338846 m001 3^(1/3)-HardyLittlewoodC4-KomornikLoreti 6524769599568447 s002 sum(A271778[n]/((pi^n+1)/n),n=1..infinity) 6524769607093505 a007 Real Root Of -810*x^4+318*x^3+533*x^2+110*x+80 6524769612062502 b008 -20/3+ArcCot[7] 6524769612167510 a007 Real Root Of -572*x^4-163*x^3-965*x^2-149*x+372 6524769621711445 a007 Real Root Of 92*x^4+550*x^3-229*x^2+793*x+957 6524769627496047 b008 2/3-Sech[3]/7 6524769637363192 m001 (Zeta(5)+exp(1/Pi))/(FeigenbaumC-MinimumGamma) 6524769648311010 a007 Real Root Of -738*x^4+57*x^3+615*x^2+768*x-645 6524769653873924 a007 Real Root Of -982*x^4+888*x^3-852*x^2-773*x+283 6524769662713492 r005 Re(z^2+c),c=-27/46+9/20*I,n=25 6524769672783849 a008 Real Root of (-5+5*x+x^2+6*x^3-3*x^5) 6524769675733744 m001 (Porter+QuadraticClass)/(Si(Pi)+MadelungNaCl) 6524769703065582 a003 sin(Pi*16/73)/sin(Pi*41/96) 6524769704322757 a001 682*317811^(9/25) 6524769728653223 q001 2621/4017 6524769735806221 a001 23725150497407/3*53316291173^(11/24) 6524769737385411 a007 Real Root Of -177*x^4+940*x^3+696*x^2+955*x+620 6524769740335513 l006 ln(4529/8697) 6524769745981435 a007 Real Root Of 208*x^4+126*x^3+320*x^2-371*x-381 6524769751557843 a007 Real Root Of 627*x^4-499*x^3+660*x^2-392*x-789 6524769764664202 m001 (cos(1/5*Pi)-ln(5))/FibonacciFactorial 6524769770007864 a001 1364/9227465*34^(8/19) 6524769801785552 a001 610/3010349*843^(6/7) 6524769804516568 m001 (ln(5)-Ei(1,1))/(sin(1/12*Pi)-Bloch) 6524769815134202 a007 Real Root Of 206*x^4-972*x^3+872*x^2-134*x-766 6524769841554883 m002 -Pi-Pi^5+Pi^6+Tanh[Pi]/4 6524769873798993 a007 Real Root Of -300*x^4+471*x^3+777*x^2+182*x-526 6524769881185306 a007 Real Root Of 135*x^4-926*x^3+202*x^2-894*x-951 6524769884181177 r002 13th iterates of z^2 + 6524769896449785 a003 sin(Pi*2/45)/cos(Pi*41/95) 6524769897640428 a001 1364/233*13^(47/50) 6524769926310281 r005 Im(z^2+c),c=-61/74+1/27*I,n=24 6524769929376387 a005 (1/sin(101/211*Pi))^835 6524769939811501 r005 Im(z^2+c),c=5/23+15/29*I,n=22 6524769949645013 g007 Psi(2,7/12)+Psi(2,5/9)+Psi(2,1/3)-Psi(2,6/11) 6524769976100751 r005 Re(z^2+c),c=-9/10+32/187*I,n=48 6524770001689546 a007 Real Root Of 992*x^4-4*x^3-291*x^2-659*x-487 6524770002194261 l006 ln(4391/8432) 6524770015103903 m001 (Ei(1)-Pi^(1/2))/(Niven+ZetaP(3)) 6524770027520720 m001 1/Rabbit/exp(Khintchine)^2/Zeta(9)^2 6524770041652127 a007 Real Root Of -5*x^4+418*x^3+26*x^2+889*x+686 6524770041863128 a001 4181/76*521^(17/43) 6524770049988950 m001 exp(Pi)^GAMMA(5/24)/GAMMA(7/12) 6524770078231575 m001 (2^(1/3)-5^(1/2))/(3^(1/3)+ZetaQ(2)) 6524770097893728 a007 Real Root Of 269*x^4-642*x^3-113*x^2-210*x-316 6524770103471362 m001 (Psi(2,1/3)+CareFree)/(FeigenbaumB+ZetaQ(4)) 6524770108514282 h001 (-7*exp(-2)-3)/(-exp(-3)-6) 6524770120148062 s002 sum(A165409[n]/(n*exp(n)+1),n=1..infinity) 6524770126052282 a007 Real Root Of -154*x^4-898*x^3+737*x^2+199*x-407 6524770143813825 a001 64079/21*55^(11/58) 6524770153225765 a007 Real Root Of -197*x^4+446*x^3+721*x^2+855*x-953 6524770159780715 r005 Re(z^2+c),c=17/90+13/42*I,n=17 6524770175085224 g006 Psi(1,9/10)+Psi(1,6/7)+1/2*Pi^2-Psi(1,7/9) 6524770215010742 b008 6+ArcSinh[ArcSinh[EulerGamma]] 6524770216122262 a001 377/39603*322^(1/3) 6524770235230173 r005 Im(z^2+c),c=1/70+5/8*I,n=44 6524770275461433 s002 sum(A036420[n]/(n^3*2^n-1),n=1..infinity) 6524770281046421 l006 ln(4253/8167) 6524770281046421 p004 log(8167/4253) 6524770293414910 a007 Real Root Of 36*x^4+125*x^3-736*x^2-105*x+123 6524770310355388 m001 Psi(2,1/3)*GAMMA(19/24)+ln(gamma) 6524770316007953 m001 (exp(Pi)+LambertW(1))/(-BesselJ(1,1)+ZetaP(4)) 6524770319750978 a007 Real Root Of 690*x^4+389*x^3+743*x^2-962*x-961 6524770354167530 a005 (1/cos(14/141*Pi))^969 6524770409450300 m001 1/GAMMA(7/24)^2/ln(BesselK(0,1))^2*arctan(1/2) 6524770431588613 r005 Re(z^2+c),c=-61/60+9/11*I,n=2 6524770437580898 a003 sin(Pi*7/74)-sin(Pi*41/104) 6524770450180069 m007 (-4/5*gamma-1/4)/(-1/4*gamma-1/2*ln(2)-3/5) 6524770457601976 a001 610/4870847*843^(13/14) 6524770484862674 m001 Ei(1)*(FransenRobinson+HardyLittlewoodC3) 6524770510675478 h001 (1/2*exp(1)+1/8)/(4/5*exp(1)+1/10) 6524770510675478 m005 (1/2*exp(1)+1/8)/(4/5*exp(1)+1/10) 6524770525960765 r005 Im(z^2+c),c=-55/102+28/47*I,n=43 6524770533581805 a007 Real Root Of 992*x^4+374*x^3+790*x^2-251*x-576 6524770547318434 m001 1/Rabbit/exp(Backhouse)^2/GAMMA(19/24) 6524770566699415 r009 Im(z^3+c),c=-47/50+11/61*I,n=2 6524770577416461 m001 (2^(1/3))^cosh(1)-StronglyCareFree 6524770578601658 l006 ln(4115/7902) 6524770597932323 p002 log(8/11+1/11*14^(1/2)) 6524770604302225 r005 Im(z^2+c),c=-187/126+1/60*I,n=7 6524770609105271 r005 Im(z^2+c),c=6/17+32/55*I,n=19 6524770624438514 a007 Real Root Of -24*x^4+252*x^3+227*x^2+965*x-64 6524770626858182 m005 (1/6*gamma-3)/(3/5*Catalan-5) 6524770642201834 q001 1778/2725 6524770650362298 r002 6th iterates of z^2 + 6524770730713930 m001 (ln(gamma)+Ei(1))/(Zeta(1/2)-BesselK(1,1)) 6524770752150982 a007 Real Root Of 130*x^4+733*x^3-661*x^2+665*x+474 6524770785927887 a007 Real Root Of -454*x^4+175*x^3+747*x^2+729*x-760 6524770788881376 m001 polylog(4,1/2)*Grothendieck/Riemann1stZero 6524770792791690 a003 cos(Pi*11/111)*sin(Pi*25/104) 6524770802213963 a001 5/4*521^(14/53) 6524770806391336 r005 Im(z^2+c),c=37/106+20/31*I,n=4 6524770807149065 r008 a(0)=8,K{-n^6,7-7*n^3+4*n^2-5*n} 6524770822560616 a001 55/7*123^(45/49) 6524770825868605 r002 6th iterates of z^2 + 6524770831551393 r009 Im(z^3+c),c=-29/64+22/37*I,n=4 6524770839808544 a007 Real Root Of 147*x^4+983*x^3+220*x^2+468*x+315 6524770869785945 m001 (Lehmer+QuadraticClass)/(Shi(1)+Zeta(3)) 6524770870521838 a007 Real Root Of -411*x^4+901*x^3-577*x^2+76*x+620 6524770896806934 l006 ln(3977/7637) 6524770898775128 m001 sin(1)/(Cahen+MasserGramain) 6524770902905966 a007 Real Root Of -588*x^4+736*x^3+196*x^2-453*x-68 6524770928779675 r002 2th iterates of z^2 + 6524770960136601 a007 Real Root Of -956*x^4+68*x^3+594*x^2-192*x-186 6524770979183314 a007 Real Root Of 378*x^4-118*x^3-691*x^2-971*x+892 6524770995537116 a007 Real Root Of -92*x^4+528*x^3-884*x^2+330*x+755 6524771013411955 a008 Real Root of (4+12*x-18*x^2-15*x^3) 6524771013806619 m005 (1/3*2^(1/2)+2/11)/(5/9*Zeta(3)+1/3) 6524771015672705 r005 Im(z^2+c),c=-1+11/170*I,n=3 6524771016329688 r005 Re(z^2+c),c=-23/18+1/142*I,n=16 6524771019116622 b008 EulerGamma*(5+Sqrt[10]+Pi) 6524771030741067 a007 Real Root Of -450*x^4-366*x^3-904*x^2+969*x+997 6524771049395548 a007 Real Root Of -159*x^4+922*x^3+567*x^2+367*x+283 6524771056848241 a007 Real Root Of 997*x^4+177*x^3+922*x^2-544*x-879 6524771067567529 m001 exp(Paris)^2/FeigenbaumDelta*Riemann3rdZero 6524771080131300 r005 Im(z^2+c),c=-7/82+19/25*I,n=9 6524771080627591 a001 11/514229*377^(27/28) 6524771093506972 a007 Real Root Of -985*x^4-661*x^3-647*x^2+824*x+808 6524771094612432 a003 cos(Pi*11/105)-cos(Pi*32/79) 6524771113419736 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^33 6524771130881318 m001 (GaussAGM+Landau)/(GAMMA(13/24)+Bloch) 6524771138526675 r005 Im(z^2+c),c=-3/86+9/14*I,n=20 6524771164135356 a007 Real Root Of 19*x^4-513*x^3+174*x^2+351*x+9 6524771213415867 a007 Real Root Of -640*x^4+854*x^3-326*x^2+705*x+952 6524771214849435 r005 Im(z^2+c),c=7/114+37/59*I,n=9 6524771215267893 m001 (Niven-ZetaQ(2))/(ln(2)-BesselJ(1,1)) 6524771237889161 l006 ln(3839/7372) 6524771239194851 r005 Re(z^2+c),c=-21/34+41/98*I,n=39 6524771252850552 m005 (1/2*Catalan-7/12)/(5/8*exp(1)+2/9) 6524771252867412 m001 BesselJ(1,1)^2*Backhouse*exp(Pi) 6524771257524070 m001 (CopelandErdos+MertensB2)/(Cahen+Conway) 6524771265251636 m001 (ErdosBorwein+Tribonacci)/(1-Bloch) 6524771270380476 a007 Real Root Of -716*x^4+237*x^3-179*x^2-84*x+217 6524771272454140 s002 sum(A177920[n]/(n^2*2^n+1),n=1..infinity) 6524771273338193 a001 312119004989/1597*144^(12/17) 6524771285557157 a007 Real Root Of -867*x^4+722*x^3-967*x^2+214*x+909 6524771299278070 a007 Real Root Of -820*x^4-164*x^3-584*x^2+25*x+368 6524771315259465 a007 Real Root Of 27*x^4-239*x^3-707*x^2-269*x+538 6524771322471220 a001 76/1346269*89^(1/31) 6524771324188002 a007 Real Root Of -580*x^4+835*x^3-251*x^2-29*x+425 6524771332521058 a007 Real Root Of 254*x^4-756*x^3+562*x^2-467*x-800 6524771336156470 m001 (Pi^(1/2)-MertensB2)/(cos(1/5*Pi)+arctan(1/3)) 6524771362024919 a007 Real Root Of -509*x^4-497*x^3-559*x^2+271*x+369 6524771369132626 a007 Real Root Of 53*x^4-888*x^3-61*x^2-867*x-796 6524771369687155 a001 233/64079*521^(6/13) 6524771373879766 r005 Im(z^2+c),c=5/13+17/48*I,n=64 6524771381144873 s002 sum(A266725[n]/(n^2*exp(n)+1),n=1..infinity) 6524771406503515 r005 Re(z^2+c),c=-2/11+43/63*I,n=26 6524771461767931 a001 15127*144^(5/17) 6524771470490087 r005 Im(z^2+c),c=-27/26+31/66*I,n=3 6524771476321490 m001 1/GAMMA(11/24)*exp(CopelandErdos)/Zeta(9)^2 6524771500921521 r008 a(0)=6,K{-n^6,31+n^3+26*n^2-57*n} 6524771526868004 r005 Re(z^2+c),c=-13/14+17/191*I,n=18 6524771538838662 r005 Re(z^2+c),c=9/26+2/63*I,n=4 6524771550024065 m004 30/Pi-Log[Sqrt[5]*Pi]-(5*Sin[Sqrt[5]*Pi])/Pi 6524771554834957 a007 Real Root Of -119*x^4-707*x^3+413*x^2-161*x+658 6524771594200631 m002 6-Cosh[Pi]/Pi^6+ProductLog[Pi]/2 6524771604407391 l006 ln(3701/7107) 6524771604507609 a007 Real Root Of 145*x^4-837*x^3+488*x^2-390*x-721 6524771606033601 m005 (1/2*Zeta(3)+1/9)/(7/10*Zeta(3)+1/4) 6524771621718391 h001 (4/5*exp(1)+7/8)/(7/12*exp(2)+4/11) 6524771630823291 m001 (5^(1/2)+Bloch)/(FeigenbaumD+Porter) 6524771643487842 a007 Real Root Of -761*x^4+933*x^3-632*x^2+363*x+903 6524771676049107 a007 Real Root Of 745*x^4-613*x^3-538*x^2+5*x-73 6524771710352083 a001 817138163596/4181*144^(12/17) 6524771721100405 m001 (ZetaP(4)+ZetaQ(2))/(GaussAGM-MertensB2) 6524771727376504 m005 (1/2*Pi+4/9)/(5/11*3^(1/2)-9/11) 6524771742857558 m001 BesselK(0,1)^MasserGramainDelta-Thue 6524771744454531 a007 Real Root Of -854*x^4+186*x^3-305*x^2+749*x+825 6524771754482601 a007 Real Root Of 906*x^4-949*x^3+806*x^2-302*x-968 6524771766574308 r005 Im(z^2+c),c=-11/16+14/101*I,n=60 6524771768910831 m001 (-Niven+Paris)/(LambertW(1)+Ei(1)) 6524771774111555 a001 2139295485799/10946*144^(12/17) 6524771783413936 a001 5600748293801/28657*144^(12/17) 6524771784771136 a001 14662949395604/75025*144^(12/17) 6524771785091527 a001 23725150497407/121393*144^(12/17) 6524771785609931 a001 3020733700601/15456*144^(12/17) 6524771789163125 a001 3461452808002/17711*144^(12/17) 6524771799017087 r002 10th iterates of z^2 + 6524771813517076 a001 440719107401/2255*144^(12/17) 6524771813575381 a007 Real Root Of -266*x^4+447*x^3+724*x^2+835*x-929 6524771857903332 a007 Real Root Of -567*x^4+818*x^3+376*x^2+977*x-922 6524771906495674 a007 Real Root Of 970*x^4-467*x^3-331*x^2-419*x-438 6524771912536482 b008 3*E^(5/21)+E 6524771924461317 r005 Re(z^2+c),c=-65/98+8/27*I,n=28 6524771928828629 a007 Real Root Of 172*x^4-753*x^3-384*x^2-597*x+731 6524771929899864 r005 Im(z^2+c),c=-63/110+7/59*I,n=51 6524771940236537 m001 (Shi(1)+MasserGramainDelta)/(-Trott+ZetaP(2)) 6524771947636171 m001 (polylog(4,1/2)+Cahen)/(Conway+PlouffeB) 6524771964357724 a007 Real Root Of -166*x^4+125*x^3+893*x^2+198*x-514 6524771974112270 r002 3th iterates of z^2 + 6524771980441549 a001 505019158607/2584*144^(12/17) 6524771981554650 l006 ln(7312/7805) 6524771999317139 l006 ln(3563/6842) 6524772011446228 m001 Zeta(9)^2/GlaisherKinkelin^2/exp(sqrt(5)) 6524772025834961 a001 34/843*29^(1/7) 6524772026105314 m001 (QuadraticClass+Sarnak)/(Zeta(1/2)-exp(Pi)) 6524772037723485 a007 Real Root Of -841*x^4+390*x^3+282*x^2+984*x-718 6524772039136408 r009 Re(z^3+c),c=-67/110+23/40*I,n=7 6524772042271563 m001 Weierstrass^(Conway*TreeGrowth2nd) 6524772048960620 a003 cos(Pi*29/75)+cos(Pi*47/117) 6524772136526881 a007 Real Root Of 21*x^4-469*x^3+897*x^2+872*x+53 6524772139142850 a003 sin(Pi*6/29)/sin(Pi*31/82) 6524772156666922 m005 (1/2*exp(1)-4)/(2*3^(1/2)+7/12) 6524772164621658 a007 Real Root Of 90*x^4+612*x^3+76*x^2-652*x-609 6524772182771198 r002 31th iterates of z^2 + 6524772261755256 m001 (Psi(1,1/3)+Zeta(5))/(-MasserGramain+PlouffeB) 6524772265699752 r002 38th iterates of z^2 + 6524772282334592 m005 (1/3*Zeta(3)+1/11)/(1/6*Zeta(3)-1/8) 6524772297163509 a007 Real Root Of 782*x^4-684*x^3-382*x^2+486*x+148 6524772302097746 m001 (2^(1/3))/ln(Porter)^2/GAMMA(1/4)^2 6524772308684192 r009 Im(z^3+c),c=-49/94+11/28*I,n=2 6524772313298715 a001 7/55*55^(56/57) 6524772331401064 a003 cos(Pi*6/59)-cos(Pi*40/99) 6524772332375717 a001 7/3524578*2584^(4/9) 6524772336238872 a001 64079/233*34^(44/49) 6524772356225903 a007 Real Root Of 371*x^4+489*x^3+696*x^2-943*x-843 6524772361922788 m001 (Mills-Psi(2,1/3))/(-Totient+Weierstrass) 6524772377463547 a007 Real Root Of 317*x^4-635*x^3-563*x^2-255*x+525 6524772382861095 r002 7th iterates of z^2 + 6524772395510220 a007 Real Root Of -6*x^4-396*x^3-307*x^2-820*x-312 6524772398936947 g005 GAMMA(5/6)/GAMMA(1/11)/GAMMA(6/7)/GAMMA(3/5) 6524772401655977 p003 LerchPhi(1/100,1,202/131) 6524772419237416 a001 7/165580141*14930352^(4/9) 6524772419237419 a001 7/1134903170*1134903170^(4/9) 6524772419237419 a001 7/7778742049*86267571272^(4/9) 6524772419237419 a001 7/53316291173*6557470319842^(4/9) 6524772419252449 a001 7/24157817*196418^(4/9) 6524772423133335 a007 Real Root Of 167*x^4-271*x^3+798*x^2+333*x-228 6524772426050253 l006 ln(3425/6577) 6524772431249826 a001 305/12238*322^(1/6) 6524772434226113 m008 (4*Pi^6+1/2)/(3/5*Pi^4+1/2) 6524772438676556 a007 Real Root Of 985*x^4-578*x^3-940*x^2-156*x+484 6524772446520577 h001 (-7*exp(-1)+3)/(-8*exp(2)-6) 6524772457233435 a007 Real Root Of 435*x^4+141*x^3+604*x^2-903*x-886 6524772461894211 r005 Im(z^2+c),c=-17/66+29/45*I,n=49 6524772492464905 r005 Re(z^2+c),c=-119/82+3/62*I,n=2 6524772496761369 a007 Real Root Of 981*x^4-879*x^3+841*x^2-282*x-964 6524772533093965 a007 Real Root Of 881*x^4+463*x^3+524*x^2-668*x-690 6524772557485112 a007 Real Root Of 893*x^4-491*x^3+410*x^2+156*x-371 6524772559386932 a003 cos(Pi*33/113)/sin(Pi*29/76) 6524772564982766 a007 Real Root Of -814*x^4+401*x^3-484*x^2+92*x+525 6524772573987556 r005 Re(z^2+c),c=-9/122+28/43*I,n=4 6524772593215988 a001 832040/29*7^(19/45) 6524772593990943 p003 LerchPhi(1/5,2,178/139) 6524772597088539 a007 Real Root Of -918*x^4+626*x^3+250*x^2+579*x-39 6524772600152091 m005 (1/2*Catalan+1/9)/(4*5^(1/2)-2/9) 6524772600494802 r009 Im(z^3+c),c=-61/98+15/49*I,n=26 6524772603825030 a007 Real Root Of -701*x^4+868*x^3-562*x^2+335*x+826 6524772626259978 m001 Psi(1,1/3)^Lehmer/(ZetaQ(3)^Lehmer) 6524772635488456 s002 sum(A247245[n]/((10^n+1)/n),n=1..infinity) 6524772636524682 m002 Log[Pi]+Log[Pi]/Pi^4+5*ProductLog[Pi] 6524772651879656 r005 Im(z^2+c),c=-4/3+65/244*I,n=3 6524772667370692 p001 sum(1/(307*n+177)/(3^n),n=0..infinity) 6524772674262790 m005 (9/20+1/4*5^(1/2))/(1/3*5^(1/2)-9/10) 6524772690967755 r009 Im(z^3+c),c=-1/31+45/59*I,n=60 6524772708237746 m001 (sin(1/12*Pi)+PrimesInBinary)/(gamma-ln(5)) 6524772710043197 r005 Re(z^2+c),c=5/27+19/62*I,n=23 6524772711320068 r002 26th iterates of z^2 + 6524772715233875 m001 Trott2nd*(GaussKuzminWirsing-Khinchin) 6524772739157914 a003 sin(Pi*7/81)-sin(Pi*35/94) 6524772751914360 m001 (ln(5)-GAMMA(11/12))/(Artin+Weierstrass) 6524772756528101 m001 (Zeta(5)-ln(Pi))^GAMMA(3/4) 6524772765346591 a001 3571/24157817*34^(8/19) 6524772767387990 m001 Sarnak/(exp(-1/2*Pi)-ln(2+3^(1/2))) 6524772790500783 a007 Real Root Of 94*x^4+584*x^3-114*x^2+607*x+667 6524772802366074 m001 (GAMMA(2/3)-gamma(2))/(GAMMA(11/12)+MertensB2) 6524772819581997 a001 987/64079*322^(1/4) 6524772844464460 m001 sin(1)/(Si(Pi)-Pi) 6524772846476238 r005 Re(z^2+c),c=-26/31+33/46*I,n=3 6524772848800117 m002 -Pi^6+Pi^5*Coth[Pi]+2/Log[Pi] 6524772855584101 m001 Trott^HardyLittlewoodC5-cos(1/5*Pi) 6524772859491196 a007 Real Root Of -729*x^4+274*x^3-758*x^2+348*x+758 6524772884180997 b008 7+Zeta[-1/36] 6524772888614907 l006 ln(3287/6312) 6524772910366920 a001 41/105937*377^(10/21) 6524772918143719 m001 (GAMMA(13/24)-Lehmer)/(ln(gamma)-GAMMA(11/12)) 6524772928376312 m001 1/GAMMA(23/24)^2/exp(Artin)/Zeta(9) 6524772962546329 a007 Real Root Of 599*x^4-795*x^3+432*x^2+166*x-405 6524772965808913 r002 7th iterates of z^2 + 6524772968716208 m001 Cahen+ZetaQ(2)^ln(5) 6524772994423385 r009 Re(z^3+c),c=-4/19+43/64*I,n=2 6524772998768555 h001 (3/11*exp(2)+1/12)/(8/9*exp(1)+4/5) 6524773027866483 m001 Trott2nd^(FellerTornier/exp(1)) 6524773029759586 a007 Real Root Of 409*x^4-684*x^3-19*x^2-731*x-733 6524773043468015 r008 a(0)=0,K{-n^6,15+43*n^3-8*n^2-65*n} 6524773059324574 r009 Im(z^3+c),c=-9/44+27/37*I,n=46 6524773060758390 a001 14662949395604/233*144^(8/17) 6524773109520769 a007 Real Root Of -125*x^4+214*x^3-48*x^2+531*x+449 6524773112650440 m009 (3/4*Psi(1,1/3)-3)/(2*Catalan+1/4*Pi^2-5) 6524773114655482 r005 Re(z^2+c),c=1/23+19/50*I,n=29 6524773114993739 r005 Im(z^2+c),c=-1/19+43/64*I,n=13 6524773124559137 a001 64300051206/329*144^(12/17) 6524773134416972 a007 Real Root Of 399*x^4+853*x^3+989*x^2-922*x-858 6524773145539831 m001 (Shi(1)+Ei(1,1))/(-Backhouse+Riemann2ndZero) 6524773161374119 a007 Real Root Of -892*x^4+530*x^3+657*x^2+822*x+51 6524773163015767 a007 Real Root Of 488*x^4-674*x^3-132*x^2-879*x-793 6524773166135451 a007 Real Root Of -506*x^4+558*x^3+278*x^2+401*x+390 6524773171302568 m009 (5/6*Psi(1,1/3)-5/6)/(3/5*Psi(1,2/3)-3) 6524773179877223 a007 Real Root Of -15*x^4+988*x^3+906*x^2+148*x-754 6524773190410862 m005 (1/2*Pi+2/11)/(11/12*5^(1/2)+7/11) 6524773202360621 a001 9349/63245986*34^(8/19) 6524773203070481 q001 187/2866 6524773205704665 m001 FeigenbaumB/(Bloch-MadelungNaCl) 6524773212968832 a001 233/39603*521^(5/13) 6524773213280461 m005 (-1/66+1/6*5^(1/2))/(7/11*5^(1/2)-7/8) 6524773214730989 g002 Psi(2/11)+Psi(8/9)+Psi(4/7)-Psi(5/9) 6524773219688785 a001 29*46368^(4/53) 6524773227346740 m001 (Paris-QuadraticClass)/(RenyiParking+ZetaP(2)) 6524773243264190 r009 Im(z^3+c),c=-8/15+9/58*I,n=4 6524773250600629 m001 (Totient+Trott2nd)/(sin(1/5*Pi)-FeigenbaumD) 6524773251208681 a007 Real Root Of 332*x^4-730*x^3+388*x^2-855*x-986 6524773262002921 h001 (2/9*exp(2)+1/4)/(10/11*exp(1)+3/7) 6524773262882230 a007 Real Root Of -332*x^4+338*x^3-921*x^2-83*x+492 6524773266120109 a001 24476/165580141*34^(8/19) 6524773275422493 a001 64079/433494437*34^(8/19) 6524773276779692 a001 167761/1134903170*34^(8/19) 6524773276977705 a001 439204/2971215073*34^(8/19) 6524773277006595 a001 1149851/7778742049*34^(8/19) 6524773277010810 a001 3010349/20365011074*34^(8/19) 6524773277011425 a001 7881196/53316291173*34^(8/19) 6524773277011514 a001 20633239/139583862445*34^(8/19) 6524773277011527 a001 54018521/365435296162*34^(8/19) 6524773277011529 a001 141422324/956722026041*34^(8/19) 6524773277011530 a001 370248451/2504730781961*34^(8/19) 6524773277011530 a001 969323029/6557470319842*34^(8/19) 6524773277011530 a001 224056801/1515744265389*34^(8/19) 6524773277011530 a001 599074578/4052739537881*34^(8/19) 6524773277011530 a001 228826127/1548008755920*34^(8/19) 6524773277011530 a001 87403803/591286729879*34^(8/19) 6524773277011535 a001 4769326/32264490531*34^(8/19) 6524773277011570 a001 12752043/86267571272*34^(8/19) 6524773277011805 a001 4870847/32951280099*34^(8/19) 6524773277013415 a001 1860498/12586269025*34^(8/19) 6524773277024449 a001 101521/686789568*34^(8/19) 6524773277100084 a001 271443/1836311903*34^(8/19) 6524773277618488 a001 103682/701408733*34^(8/19) 6524773280822777 a001 87841/1346269 6524773280836417 a004 Fibonacci(13)/Lucas(14)/(1/2+sqrt(5)/2)^3 6524773280912051 a004 Fibonacci(14)/Lucas(13)/(1/2+sqrt(5)/2)^5 6524773281171682 a001 39603/267914296*34^(8/19) 6524773299963716 m001 sin(Pi/12)^2*exp(MertensB1)^2/sqrt(3) 6524773302881719 a007 Real Root Of 267*x^4-448*x^3-272*x^2-590*x-442 6524773305525639 a001 1/6765*34^(8/19) 6524773307979865 a001 18/591286729879*5^(9/19) 6524773335961700 r002 61th iterates of z^2 + 6524773387747269 r008 a(0)=8,K{-n^6,-68+4*n^3+53*n^2+12*n} 6524773391721882 l006 ln(3149/6047) 6524773398912857 a001 89/167761*199^(10/11) 6524773405377160 h001 (4/7*exp(2)+2/11)/(8/9*exp(2)+2/11) 6524773424448158 a007 Real Root Of -65*x^4+387*x^3+630*x^2+958*x-989 6524773437985122 a007 Real Root Of -780*x^4-745*x^3-931*x^2+877*x+903 6524773462325626 m001 (ln(Pi)+FellerTornier)/(Porter+Riemann2ndZero) 6524773468167833 a007 Real Root Of 974*x^4-945*x^3-743*x^2+74*x+354 6524773472450146 a001 5778/39088169*34^(8/19) 6524773472899734 b008 -20/3+Tanh[1/7] 6524773490732894 a007 Real Root Of -474*x^4+702*x^3-230*x^2+576*x-387 6524773504054416 r002 57th iterates of z^2 + 6524773517072259 a007 Real Root Of 988*x^4-421*x^3-917*x^2-819*x-440 6524773524205856 a001 521/13*2584^(35/54) 6524773534829608 a007 Real Root Of -932*x^4+963*x^3+964*x^2+659*x+456 6524773573353208 a007 Real Root Of -485*x^4+531*x^3-348*x^2+462*x+685 6524773579360658 r005 Im(z^2+c),c=8/25+27/61*I,n=14 6524773581963918 a007 Real Root Of 707*x^4-515*x^3-757*x^2-840*x-497 6524773586177836 m001 (gamma+cos(1))/(-gamma(1)+GAMMA(13/24)) 6524773592383673 a007 Real Root Of 189*x^4-178*x^3+752*x^2-365*x-642 6524773608546943 a008 Real Root of x^5-x^4-12*x^3+8*x^2+16*x+4 6524773612904663 a007 Real Root Of -137*x^4-856*x^3+133*x^2-602*x+936 6524773613763172 m001 GAMMA(19/24)*Bloch+Paris 6524773632497918 s002 sum(A261155[n]/(64^n),n=1..infinity) 6524773634604572 a001 2/3*29^(21/31) 6524773652391976 a001 199/7*(1/2*5^(1/2)+1/2)^19*7^(6/13) 6524773671707269 m001 (-Sarnak+Trott)/(2^(1/2)-arctan(1/3)) 6524773700318041 m001 (cos(1/5*Pi)-exp(Pi))/(-Kolakoski+ZetaP(2)) 6524773709797297 r005 Re(z^2+c),c=-11/16+6/25*I,n=25 6524773732972669 s002 sum(A270684[n]/(64^n-1),n=1..infinity) 6524773747447707 r009 Re(z^3+c),c=-69/110+23/42*I,n=4 6524773755170087 r002 9th iterates of z^2 + 6524773786717299 r005 Im(z^2+c),c=-19/52+17/27*I,n=30 6524773793828944 a007 Real Root Of 492*x^4-736*x^3-284*x^2-271*x+413 6524773817332510 a007 Real Root Of -117*x^4-428*x^3-692*x^2-452*x-98 6524773829623036 a007 Real Root Of -164*x^4-989*x^3+521*x^2-204*x-994 6524773850814020 m001 (Bloch-gamma)/(OneNinth+ZetaQ(2)) 6524773879335382 a007 Real Root Of -156*x^4+892*x^3-785*x^2+562*x-252 6524773885796455 a007 Real Root Of 143*x^4+928*x^3-53*x^2-45*x+562 6524773924147264 r005 Re(z^2+c),c=-15/94+38/43*I,n=12 6524773940945575 l006 ln(3011/5782) 6524773943812933 a003 sin(Pi*32/71)/cos(Pi*14/31) 6524773955403057 a007 Real Root Of 154*x^4+960*x^3-239*x^2+495*x+956 6524773962342533 a001 2584/167761*322^(1/4) 6524773965553867 r005 Im(z^2+c),c=-127/102+1/11*I,n=20 6524774007800364 a007 Real Root Of 798*x^4-780*x^3+325*x^2+24*x-484 6524774023326836 a007 Real Root Of -833*x^4+864*x^3+291*x^2+711*x+731 6524774045875658 m001 (1-ln(2))/(Ei(1)+FransenRobinson) 6524774060998403 r002 22th iterates of z^2 + 6524774067904958 m001 Stephens^(ln(3)*CareFree) 6524774071349981 m001 1/GAMMA(1/12)^2/ln(Salem)^2/GAMMA(5/24) 6524774091969554 m001 FeigenbaumKappa/exp(Conway)*BesselK(0,1)^2 6524774097485483 r001 8i'th iterates of 2*x^2-1 of 6524774098184299 m001 (RenyiParking+Sarnak)/(Zeta(1/2)-Kolakoski) 6524774111602421 s002 sum(A248104[n]/(64^n),n=1..infinity) 6524774129069048 a001 6765/439204*322^(1/4) 6524774140912772 m001 (Tribonacci+Trott2nd)/(Catalan-Zeta(3)) 6524774150912439 m005 (1/3*Catalan+1/9)/(10/11*Zeta(3)-5/11) 6524774153394118 a001 17711/1149851*322^(1/4) 6524774156943098 a001 46368/3010349*322^(1/4) 6524774157460888 a001 121393/7881196*322^(1/4) 6524774157536432 a001 10959/711491*322^(1/4) 6524774157547454 a001 832040/54018521*322^(1/4) 6524774157549062 a001 2178309/141422324*322^(1/4) 6524774157549297 a001 5702887/370248451*322^(1/4) 6524774157549331 a001 14930352/969323029*322^(1/4) 6524774157549336 a001 39088169/2537720636*322^(1/4) 6524774157549336 a001 102334155/6643838879*322^(1/4) 6524774157549337 a001 9238424/599786069*322^(1/4) 6524774157549337 a001 701408733/45537549124*322^(1/4) 6524774157549337 a001 1836311903/119218851371*322^(1/4) 6524774157549337 a001 4807526976/312119004989*322^(1/4) 6524774157549337 a001 12586269025/817138163596*322^(1/4) 6524774157549337 a001 32951280099/2139295485799*322^(1/4) 6524774157549337 a001 86267571272/5600748293801*322^(1/4) 6524774157549337 a001 7787980473/505618944676*322^(1/4) 6524774157549337 a001 365435296162/23725150497407*322^(1/4) 6524774157549337 a001 139583862445/9062201101803*322^(1/4) 6524774157549337 a001 53316291173/3461452808002*322^(1/4) 6524774157549337 a001 20365011074/1322157322203*322^(1/4) 6524774157549337 a001 7778742049/505019158607*322^(1/4) 6524774157549337 a001 2971215073/192900153618*322^(1/4) 6524774157549337 a001 1134903170/73681302247*322^(1/4) 6524774157549337 a001 433494437/28143753123*322^(1/4) 6524774157549337 a001 165580141/10749957122*322^(1/4) 6524774157549337 a001 63245986/4106118243*322^(1/4) 6524774157549339 a001 24157817/1568397607*322^(1/4) 6524774157549352 a001 9227465/599074578*322^(1/4) 6524774157549442 a001 3524578/228826127*322^(1/4) 6524774157550056 a001 1346269/87403803*322^(1/4) 6524774157554266 a001 514229/33385282*322^(1/4) 6524774157583121 a001 196418/12752043*322^(1/4) 6524774157780899 a001 75025/4870847*322^(1/4) 6524774159136489 a001 28657/1860498*322^(1/4) 6524774168427839 a001 10946/710647*322^(1/4) 6524774181732884 a007 Real Root Of -646*x^4+652*x^3-469*x^2+319*x+706 6524774182294014 m001 1/Robbin/CareFree*ln(FeigenbaumKappa) 6524774184119216 m005 (1/6*gamma+5/6)/(4/5*exp(1)-3/4) 6524774202009786 g006 -Psi(1,7/8)-2*Psi(1,3/7)-Psi(1,1/7) 6524774229185739 m005 (1/2*2^(1/2)-6/7)/(2/11*gamma+1/8) 6524774232111701 a001 4181/271443*322^(1/4) 6524774241258391 r004 Re(z^2+c),c=-21/20+3/19*I,z(0)=-1,n=47 6524774266566274 m001 Pi+2^(1/3)*(Psi(2,1/3)+sin(1)) 6524774269081793 a007 Real Root Of -978*x^4-119*x^3-629*x^2-659*x-18 6524774289533129 r005 Im(z^2+c),c=-3/98+16/21*I,n=50 6524774295437229 m001 (Weierstrass+ZetaP(4))/(GaussAGM+Trott) 6524774298273404 r009 Re(z^3+c),c=-5/52+27/59*I,n=18 6524774313042070 h001 (-4*exp(3/2)-3)/(-6*exp(-1)-1) 6524774317303682 r004 Im(z^2+c),c=-45/46-5/11*I,z(0)=-1,n=5 6524774325637273 m001 (Tribonacci-ZetaP(3))/(exp(1/Pi)+Salem) 6524774340185335 a007 Real Root Of 197*x^4-239*x^3+463*x^2+103*x-232 6524774373048830 m001 (GolombDickman+Salem)/(Backhouse+Conway) 6524774373748393 m003 -1+6*Cos[1/2+Sqrt[5]/2]-2*Cosh[1/2+Sqrt[5]/2] 6524774382817186 p001 sum(1/(421*n+62)/n/(32^n),n=1..infinity) 6524774411950745 r002 27th iterates of z^2 + 6524774413166811 m001 (Rabbit+ThueMorse)/(Shi(1)+LaplaceLimit) 6524774466679369 m001 (ln(2+3^(1/2))+polylog(4,1/2))/(Zeta(3)+ln(5)) 6524774475308537 a007 Real Root Of 606*x^4-962*x^3-839*x^2+312*x+311 6524774509449343 a007 Real Root Of -575*x^4+234*x^3+564*x^2+744*x-51 6524774529408199 a007 Real Root Of 806*x^4-959*x^3+222*x^2-633*x-920 6524774535427234 m005 (1/2*5^(1/2)-5/7)/(4/11*Catalan+2/7) 6524774542931412 l006 ln(2873/5517) 6524774551898497 a007 Real Root Of -634*x^4-539*x^3+33*x^2+550*x+310 6524774558298165 r009 Re(z^3+c),c=-59/114+25/49*I,n=21 6524774569038639 q001 5/76631 6524774570298756 a007 Real Root Of 711*x^4-811*x^3-534*x^2-362*x-363 6524774581436398 m001 (Paris+Porter)/(cos(1/5*Pi)+BesselI(1,2)) 6524774586192635 r005 Re(z^2+c),c=-19/106+29/43*I,n=56 6524774590040612 h001 (9/10*exp(1)+7/10)/(4/7*exp(2)+3/5) 6524774601418634 m001 (MertensB3+RenyiParking)/(3^(1/2)+Backhouse) 6524774608865888 a008 Real Root of (3+4*x-6*x^2-11*x^3) 6524774616567731 a001 2207/14930352*34^(8/19) 6524774650272586 a007 Real Root Of -196*x^4+946*x^3-735*x^2-549*x+253 6524774668607384 a001 1597/103682*322^(1/4) 6524774684798398 m001 (ln(2)/ln(10)+AlladiGrinstead)/(-Magata+Niven) 6524774708044555 m001 Catalan/((Pi^(1/2))^Lehmer) 6524774708044555 m001 Catalan/(sqrt(Pi)^Lehmer) 6524774713675906 r009 Im(z^3+c),c=-37/64+21/58*I,n=3 6524774756830960 r002 36th iterates of z^2 + 6524774763164723 m005 (1/2*Zeta(3)+1/10)/(9/11*Zeta(3)+1/11) 6524774822796832 m001 (LaplaceLimit-Porter)/(Artin-ErdosBorwein) 6524774831528207 r005 Im(z^2+c),c=-1/82+18/23*I,n=22 6524774858753075 a007 Real Root Of -867*x^4-480*x^3-440*x^2+878*x+784 6524774878913300 a007 Real Root Of 334*x^4-831*x^3+970*x^2+635*x-290 6524774968968656 r005 Im(z^2+c),c=27/118+21/41*I,n=61 6524774971815957 m008 (1/6*Pi^3+3/4)/(Pi^2-4/5) 6524774989403938 r009 Re(z^3+c),c=-5/86+21/23*I,n=7 6524775004745970 a001 13/7*843^(28/53) 6524775015828574 r005 Im(z^2+c),c=-53/98+5/43*I,n=34 6524775027069891 a003 sin(Pi*16/85)/sin(Pi*15/46) 6524775032696782 r005 Im(z^2+c),c=-16/21+13/54*I,n=9 6524775045599284 a007 Real Root Of 355*x^4-739*x^3-533*x^2-929*x+974 6524775066568868 a007 Real Root Of 445*x^4-714*x^3+761*x^2+26*x-586 6524775077051799 a001 233/24476*521^(4/13) 6524775079212538 m001 (Lehmer-PrimesInBinary)/(3^(1/3)+GAMMA(17/24)) 6524775085264509 m001 exp(Rabbit)/GaussAGM(1,1/sqrt(2))*exp(1) 6524775085429428 r009 Im(z^3+c),c=-19/74+43/61*I,n=51 6524775093614300 m009 (5*Psi(1,3/4)-2/5)/(5/6*Psi(1,2/3)-2/3) 6524775096341687 a003 cos(Pi*2/79)-cos(Pi*9/76) 6524775111562647 m001 (-MertensB3+Trott2nd)/(5^(1/2)-CopelandErdos) 6524775134980492 r005 Re(z^2+c),c=-7/10+60/229*I,n=36 6524775189192318 m005 (1/2*Zeta(3)-1/9)/(5/12*Zeta(3)+1/4) 6524775205666052 l006 ln(2735/5252) 6524775237669786 m009 (5/6*Psi(1,2/3)-3)/(1/3*Psi(1,3/4)+6) 6524775247281073 a007 Real Root Of -867*x^4+796*x^3-535*x^2-328*x+392 6524775257658035 m001 Robbin^2/exp(FeigenbaumB)/cos(1)^2 6524775263084313 a007 Real Root Of -501*x^4+763*x^3-639*x^2-156*x+473 6524775305425072 a001 9/133957148*225851433717^(2/23) 6524775305425082 a001 6/34111385*3524578^(2/23) 6524775327146417 m001 1/CareFree^2*exp(GolombDickman)^2/OneNinth 6524775330345627 m005 (1/2*2^(1/2)-2/3)/(8/11*gamma+1/5) 6524775367437996 r005 Re(z^2+c),c=3/44+7/15*I,n=11 6524775398139087 m001 (Lehmer-MadelungNaCl)/(GAMMA(19/24)+Gompertz) 6524775410853259 r002 6th iterates of z^2 + 6524775421263650 a007 Real Root Of 502*x^4-709*x^3+203*x^2-706*x-835 6524775466064735 a001 377/64079*322^(5/12) 6524775486319897 a003 -1+cos(1/7*Pi)-cos(10/21*Pi)+cos(4/21*Pi) 6524775486319897 a003 sin(Pi*3/14)/sin(Pi*17/42) 6524775494484387 m005 (1/3*Pi-1/6)/(3/8*3^(1/2)+7/10) 6524775510620917 p004 log(35969/18731) 6524775522212080 m005 (-5/28+1/4*5^(1/2))/(4/11*Catalan+1/4) 6524775523777851 q001 1962/3007 6524775559396837 m001 1/Kolakoski^2/FeigenbaumDelta^2/exp(OneNinth) 6524775604024043 r005 Im(z^2+c),c=-111/122+11/36*I,n=10 6524775610220211 m002 -4-3/Pi^2+6*Cosh[Pi] 6524775611295722 r002 20th iterates of z^2 + 6524775619597249 r005 Im(z^2+c),c=-51/74+18/37*I,n=3 6524775637592434 a001 6643838879/13*13^(2/21) 6524775649059345 a007 Real Root Of 863*x^4-990*x^3+14*x^2+655*x-10 6524775677260954 a001 219602/17*2504730781961^(18/23) 6524775677294778 a001 1268860318/17*39088169^(18/23) 6524775678885593 m005 (1/2*3^(1/2)-2/5)/(4/11*Pi+6) 6524775687249029 m001 GAMMA(1/4)/BesselJ(1,1)/ln(log(1+sqrt(2))) 6524775715863540 h001 (1/10*exp(2)+11/12)/(9/10*exp(1)+1/11) 6524775729827977 a007 Real Root Of -162*x^4-286*x^3-36*x^2+336*x+22 6524775759504625 r005 Im(z^2+c),c=25/78+2/51*I,n=54 6524775759665896 r005 Im(z^2+c),c=-11/24+1/13*I,n=5 6524775777899907 m001 1/GAMMA(13/24)^2*ln(LaplaceLimit)^2*Zeta(5) 6524775800309291 m001 (GAMMA(19/24)+Gompertz)/(Khinchin+Trott2nd) 6524775825985325 m005 (1/2*3^(1/2)+1)/(-13/22+3/22*5^(1/2)) 6524775858649547 m001 1/exp(KhintchineLevy)/FeigenbaumDelta/Zeta(9) 6524775869345882 m005 (1/2*Catalan+9/11)/(3/8*Pi+7/9) 6524775879713677 a007 Real Root Of -195*x^4+917*x^3+741*x^2-199*x-405 6524775894576159 a001 64079/21*5^(17/36) 6524775901004277 r002 36th iterates of z^2 + 6524775922254380 m001 ln(GAMMA(3/4))/FeigenbaumC*sin(Pi/5) 6524775923345205 a007 Real Root Of 78*x^4+506*x^3-44*x^2-287*x-814 6524775938833741 l006 ln(2597/4987) 6524775941758407 a007 Real Root Of 987*x^4-146*x^3-922*x^2-112*x+100 6524775966239747 r002 5th iterates of z^2 + 6524775973973330 m001 1/gamma*Zeta(5)/ln(log(2+sqrt(3))) 6524775998659564 m001 (PlouffeB+Totient)/(Zeta(5)+KhinchinHarmonic) 6524775999453733 r005 Re(z^2+c),c=-9/31+47/55*I,n=17 6524775999685493 a001 29/13*8^(16/31) 6524775999854679 a007 Real Root Of -984*x^4+911*x^3+566*x^2+994*x+839 6524776007055602 m001 ZetaQ(4)/(BesselI(1,2)-Zeta(1,2)) 6524776016245107 r005 Re(z^2+c),c=-53/78+23/63*I,n=25 6524776025166607 m005 (1/2*5^(1/2)-7/8)/(-19/33+1/11*5^(1/2)) 6524776027595652 r005 Re(z^2+c),c=-5/29+44/63*I,n=23 6524776049843435 p003 LerchPhi(1/16,1,32/207) 6524776070090983 a007 Real Root Of -322*x^4-33*x^3+867*x^2+816*x-834 6524776090936874 a001 1/233802911*34^(17/22) 6524776123141581 r005 Im(z^2+c),c=-105/118+1/16*I,n=4 6524776126196938 m005 (1/2*2^(1/2)+7/10)/(7/8*5^(1/2)+1/5) 6524776126473014 r005 Re(z^2+c),c=1/23+19/50*I,n=25 6524776157666774 a007 Real Root Of -279*x^4+758*x^3-894*x^2+720*x+51 6524776174308527 a001 4/6765*4181^(22/39) 6524776212483214 a007 Real Root Of 11*x^4-661*x^3+81*x^2-711*x-684 6524776228194143 a007 Real Root Of -340*x^4-164*x^3+326*x^2+795*x+396 6524776230472931 a001 3/11*7^(13/29) 6524776231694859 r005 Im(z^2+c),c=25/94+32/61*I,n=20 6524776239258774 a007 Real Root Of -969*x^4+134*x^3-357*x^2+411*x+633 6524776251246383 m001 (3^(1/2)+exp(1/exp(1)))/(Magata+MinimumGamma) 6524776256511057 a007 Real Root Of 154*x^4+962*x^3-285*x^2-82*x-295 6524776264377449 a007 Real Root Of 489*x^4-108*x^3+524*x^2+44*x-313 6524776276560419 r002 36th iterates of z^2 + 6524776277434351 a007 Real Root Of 403*x^4-519*x^3+352*x^2+66*x-324 6524776311364530 m005 (1/3*gamma-1/10)/(7/11*Catalan+5/6) 6524776318534589 a007 Real Root Of 156*x^4+907*x^3-857*x^2-827*x+293 6524776335434515 l006 ln(5056/9709) 6524776354543590 a007 Real Root Of -543*x^4+824*x^3+394*x^2-7*x+155 6524776357935514 s002 sum(A099246[n]/(exp(n)),n=1..infinity) 6524776384493249 r005 Re(z^2+c),c=-35/26+4/107*I,n=60 6524776388950427 l006 ln(2907/3103) 6524776411786828 m008 (1/4*Pi^4+3/4)/(2/5*Pi^6+1/6) 6524776418505131 m002 -Pi^5+Pi^6-2/Log[Pi]-Log[Pi] 6524776429474132 m001 (Lehmer+Sarnak)/(Si(Pi)-Zeta(1,-1)) 6524776451721500 a007 Real Root Of -622*x^4+46*x^3+450*x^2+960*x-718 6524776453136166 a007 Real Root Of -691*x^4+699*x^3-14*x^2-632*x-87 6524776476179329 r005 Re(z^2+c),c=-11/18+38/59*I,n=2 6524776495682431 r005 Im(z^2+c),c=-35/94+34/53*I,n=47 6524776515155475 a008 Real Root of x^4-2*x^3-32*x^2+18*x-12 6524776516230551 s002 sum(A108829[n]/((2^n-1)/n),n=1..infinity) 6524776517876447 a007 Real Root Of -715*x^4-117*x^3-580*x^2+823*x+881 6524776550384135 a007 Real Root Of 475*x^4-810*x^3-849*x^2-586*x-332 6524776555882710 a007 Real Root Of 350*x^4-293*x^3+954*x^2-679*x-994 6524776566744961 a007 Real Root Of 164*x^4+439*x^3+623*x^2-118*x-250 6524776578555941 a007 Real Root Of -649*x^4+709*x^3-74*x^2+898*x+932 6524776594680445 r002 18th iterates of z^2 + 6524776600141223 a007 Real Root Of -399*x^4+956*x^3-958*x^2+356*x+978 6524776605722950 a007 Real Root Of 714*x^4-644*x^3+393*x^2+568*x-105 6524776607921284 a008 Real Root of x^3-x^2+133*x-1103 6524776611857309 a007 Real Root Of 379*x^4-159*x^3+855*x^2-765*x-976 6524776614862405 r009 Re(z^3+c),c=-17/46+27/43*I,n=10 6524776705667791 a001 322/139583862445*8^(1/2) 6524776746008461 r001 61i'th iterates of 2*x^2-1 of 6524776752634198 m005 (1/3*3^(1/2)-2/7)/(3/8*2^(1/2)-5) 6524776752651215 m001 Catalan^2*ln(PisotVijayaraghavan)^2/Zeta(7)^2 6524776754292656 l006 ln(2459/4722) 6524776813861068 m006 (4/Pi+3/4)/(3*ln(Pi)-1/3) 6524776831185450 r005 Im(z^2+c),c=-31/38+1/29*I,n=46 6524776831250014 a007 Real Root Of 681*x^4-496*x^3+646*x^2+595*x-148 6524776846200507 m001 2^(1/3)/(ln(3)+FeigenbaumB) 6524776854416743 r005 Re(z^2+c),c=-4/3+117/190*I,n=2 6524776855724973 r005 Im(z^2+c),c=-7/90+41/59*I,n=39 6524776878339546 m005 (1/2*gamma+5)/(1/11*Catalan+8/11) 6524776886678164 a001 233/15127*521^(3/13) 6524776891621562 r005 Im(z^2+c),c=37/106+1/13*I,n=15 6524776929591704 m001 MasserGramain+StolarskyHarborth*ZetaP(4) 6524776934042318 r005 Re(z^2+c),c=-19/118+42/59*I,n=23 6524776936019284 r005 Im(z^2+c),c=-5/6+23/121*I,n=55 6524777009862954 a007 Real Root Of 553*x^4-437*x^3+504*x^2+316*x-230 6524777019999339 m001 (HeathBrownMoroz-Sarnak)/(arctan(1/2)+Cahen) 6524777069483522 b008 5*Haversine[(4*Pi)/17] 6524777071284044 a007 Real Root Of 679*x^4-205*x^3+341*x^2-976*x-962 6524777075265052 a007 Real Root Of -290*x^4+133*x^3-529*x^2-349*x+87 6524777081080450 a001 322/5*2^(1/53) 6524777090271926 m001 Psi(1,1/3)^AlladiGrinstead+Trott2nd 6524777094624447 m001 MasserGramain/(CareFree^Trott2nd) 6524777099831633 r002 4th iterates of z^2 + 6524777119381660 m005 (1/2*Pi-9/11)/(5/8*exp(1)-6/11) 6524777149033846 m001 BesselI(0,1)*Lehmer/GAMMA(1/12) 6524777184275267 r009 Re(z^3+c),c=-11/86+9/14*I,n=13 6524777197335893 l006 ln(4780/9179) 6524777206106773 m001 GAMMA(1/4)^2/exp(FibonacciFactorial)^2*gamma 6524777211958685 m001 BesselI(1,1)/(sin(1)^FeigenbaumB) 6524777241981633 r002 27th iterates of z^2 + 6524777244271114 r005 Re(z^2+c),c=-59/94+20/51*I,n=8 6524777277078868 a007 Real Root Of -735*x^4+385*x^3+574*x^2+831*x+538 6524777277355456 a007 Real Root Of -133*x^4-769*x^3+553*x^2-582*x+103 6524777282479607 a001 41/1602508992*225851433717^(10/21) 6524777282479615 a001 123/39088169*9227465^(10/21) 6524777290905161 h001 (1/2*exp(2)+7/12)/(7/8*exp(2)+1/11) 6524777308879241 m005 (1/2*5^(1/2)-7/10)/(3/8*gamma-6/7) 6524777335752323 r005 Re(z^2+c),c=-73/106+12/61*I,n=14 6524777349360033 m001 exp(1)^MertensB2/(exp(1)^MinimumGamma) 6524777349360033 m001 exp(MertensB2-MinimumGamma) 6524777385567341 r008 a(0)=0,K{-n^6,67-48*n^3+66*n^2+69*n} 6524777418509789 a007 Real Root Of -249*x^4+548*x^3+218*x^2+931*x+712 6524777422234779 a007 Real Root Of 624*x^4-460*x^3-541*x^2-462*x-312 6524777451201673 r005 Re(z^2+c),c=-2/3+79/245*I,n=15 6524777467092576 h001 (1/5*exp(1)+7/8)/(7/11*exp(1)+4/9) 6524777472871454 r005 Im(z^2+c),c=-7/78+31/46*I,n=37 6524777478232675 m001 (-ln(2)+2)/(-FeigenbaumAlpha+1/2) 6524777479984069 m001 (5^(1/2)-Ei(1,1))/(Conway+KomornikLoreti) 6524777482285390 r002 64th iterates of z^2 + 6524777511410515 m001 (polylog(4,1/2)+Cahen)/(KhinchinLevy+Lehmer) 6524777513383071 p001 sum((-1)^n/(560*n+153)/(125^n),n=0..infinity) 6524777521747218 r001 47i'th iterates of 2*x^2-1 of 6524777532546580 r005 Re(z^2+c),c=-77/78+12/49*I,n=50 6524777568630951 r005 Re(z^2+c),c=7/32+23/49*I,n=59 6524777570166736 m001 Pi*(exp(Pi)-Pi*2^(1/2)/GAMMA(3/4)/GAMMA(7/12)) 6524777570323248 m001 1/ArtinRank2^2/exp(Champernowne)*Ei(1)^2 6524777600385691 a005 (1/sin(97/239*Pi))^146 6524777612433514 m001 Sierpinski/(BesselK(1,1)+ReciprocalFibonacci) 6524777636594663 q001 1027/1574 6524777646759210 a007 Real Root Of -451*x^4+948*x^3-470*x^2+599*x+936 6524777650016469 a001 123/8*46368^(15/43) 6524777651697292 m001 1/ln(GAMMA(5/24))^2*Magata/cosh(1)^2 6524777660393305 a001 610/39603*322^(1/4) 6524777666721187 l006 ln(2321/4457) 6524777686310417 a007 Real Root Of 516*x^4+400*x^3+914*x^2-131*x-457 6524777689109795 m001 (Totient-Thue)/(Zeta(1/2)+Sarnak) 6524777722787336 a007 Real Root Of -566*x^4+195*x^3-672*x^2+529*x+788 6524777743611393 m001 OneNinth/(2^(1/2)+CopelandErdos) 6524777769824421 a007 Real Root Of -913*x^4+906*x^3+891*x^2+741*x-949 6524777770094779 m001 (Zeta(1,-1)-gamma)/(Artin+LandauRamanujan) 6524777777914337 a007 Real Root Of -635*x^4-386*x^3+158*x^2+962*x+62 6524777779456343 m001 1/Khintchine*ln(CopelandErdos)^2*Catalan^2 6524777784810263 g007 Psi(2,10/11)+Psi(2,1/7)-Psi(2,5/7)-Psi(2,2/5) 6524777802515959 m004 -30+30*Pi+Tanh[Sqrt[5]*Pi] 6524777817187652 r002 17i'th iterates of 2*x/(1-x^2) of 6524777871195684 m001 1/Si(Pi)^2*Backhouse/ln(GAMMA(23/24))^2 6524777871922060 m001 (-GolombDickman+Trott)/(Psi(1,1/3)-ln(2)) 6524777876836852 m001 (gamma-sin(1/12*Pi))/(-LaplaceLimit+ZetaP(3)) 6524777877349390 a003 cos(Pi*32/115)/sin(Pi*19/43) 6524777953738302 m001 Sierpinski*FeigenbaumDelta*ln(GAMMA(11/12)) 6524777960769379 b008 1+30*(-1+Pi) 6524777979789225 a007 Real Root Of -806*x^4+526*x^3-565*x^2-254*x+367 6524778009550007 m001 GAMMA(1/4)*FeigenbaumDelta^2/ln(GAMMA(5/6)) 6524778027355553 a001 2207/89*46368^(7/23) 6524778061581374 a001 21/2206*322^(1/3) 6524778065290787 h001 (-3*exp(2)+6)/(-2*exp(2)-10) 6524778070661369 m001 Psi(1,1/3)^ErdosBorwein/(Pi^ErdosBorwein) 6524778092520252 s002 sum(A021843[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778101524164 m001 1/CareFree^2*MertensB1^2/exp(RenyiParking) 6524778111696651 a007 Real Root Of 856*x^4-649*x^3-419*x^2-3*x-159 6524778120719169 a007 Real Root Of -513*x^4-261*x^3-860*x^2+160*x+491 6524778126183413 m005 (1/2*Catalan-1/3)/(203/180+7/20*5^(1/2)) 6524778134931912 s001 sum(exp(-2*Pi)^n*A021843[n],n=1..infinity) 6524778141709358 r005 Im(z^2+c),c=-15/14+7/90*I,n=3 6524778142709752 a001 1/47*(1/2*5^(1/2)+1/2)^11*7^(2/9) 6524778145503229 a007 Real Root Of -513*x^4+452*x^3-34*x^2+259*x+402 6524778162916016 g006 Psi(1,3/7)+1/2*Pi^2-Psi(1,1/7)-Psi(1,1/5) 6524778164869855 l006 ln(4504/8649) 6524778176946088 s002 sum(A021842[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778177343572 s002 sum(A021843[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778219357747 s001 sum(exp(-2*Pi)^n*A021842[n],n=1..infinity) 6524778219674846 s002 sum(A021841[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778222642483 m001 LandauRamanujan2nd*(MasserGramain+Weierstrass) 6524778249957050 a003 sin(Pi*5/81)-sin(Pi*25/78) 6524778251767616 a001 29/10946*5^(14/25) 6524778261769407 s002 sum(A021842[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778262086506 s001 sum(exp(-2*Pi)^n*A021841[n],n=1..infinity) 6524778276501587 a007 Real Root Of -258*x^4+741*x^3+697*x^2+644*x-876 6524778297298710 m001 Paris^2*exp(Si(Pi))*GAMMA(23/24)^2 6524778304023107 s002 sum(A021840[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778304498166 s002 sum(A021841[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778320803282 m001 1/exp(Ei(1))*Magata*GAMMA(5/6)^2 6524778332053994 a001 3*34^(13/59) 6524778346434767 s001 sum(exp(-2*Pi)^n*A021840[n],n=1..infinity) 6524778346829590 s002 sum(A021839[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778358275332 a007 Real Root Of 573*x^4-704*x^3-342*x^2-198*x-283 6524778367983701 a003 cos(Pi*45/113)-sin(Pi*33/79) 6524778380789089 a007 Real Root Of 110*x^4+655*x^3-506*x^2-667*x-234 6524778384549509 a008 Real Root of (-5+3*x+3*x^2+4*x^3+x^4+4*x^5) 6524778388846427 s002 sum(A021840[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778389241249 s001 sum(exp(-2*Pi)^n*A021839[n],n=1..infinity) 6524778391824439 m001 1/ln(GlaisherKinkelin)*sinh(1)^3 6524778392531472 a007 Real Root Of -323*x^4+295*x^3-936*x^2+538*x+890 6524778395208065 m001 GaussKuzminWirsing^2/Champernowne/ln(Pi) 6524778398590029 a007 Real Root Of -967*x^4+805*x^3+514*x^2+435*x-551 6524778421907181 a001 7331474697802/17*610^(18/23) 6524778431177997 s002 sum(A021838[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778431652909 s002 sum(A021839[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778431732257 s002 sum(A277587[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778457705736 a007 Real Root Of -864*x^4-500*x^3-833*x^2+752*x+863 6524778458664635 r002 18th iterates of z^2 + 6524778473589657 s001 sum(exp(-2*Pi)^n*A021838[n],n=1..infinity) 6524778474143917 s001 sum(exp(-2*Pi)^n*A277587[n],n=1..infinity) 6524778508185108 a008 Real Root of x^4-2*x^3+3*x^2+46*x+28 6524778516001317 s002 sum(A021838[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778516555577 s002 sum(A277587[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778519988534 m001 (1+3^(1/2))^(1/2)-GAMMA(17/24)^ZetaQ(4) 6524778520952955 m001 (HardyLittlewoodC5-exp(Pi))/(Magata+ZetaP(4)) 6524778522382918 m005 (1/2*2^(1/2)+7/12)/(4/7*5^(1/2)+7/10) 6524778530845298 r005 Re(z^2+c),c=-23/34+11/40*I,n=12 6524778539012806 b008 2+503^(2/3) 6524778550405924 a007 Real Root Of 133*x^4+846*x^3-258*x^2-906*x-982 6524778553458341 a007 Real Root Of 127*x^4+948*x^3+785*x^2+160*x+778 6524778561509854 s002 sum(A120991[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778563640705 a007 Real Root Of 697*x^4-669*x^3+452*x^2-65*x-547 6524778600817374 m001 (Mills+Otter)/(cos(1/12*Pi)+2*Pi/GAMMA(5/6)) 6524778603921514 s001 sum(exp(-2*Pi)^n*A120991[n],n=1..infinity) 6524778605988950 s002 sum(A099580[n]/(exp(2*pi*n)+1),n=1..infinity) 6524778606408995 m001 ln(Zeta(9))^2*Riemann3rdZero/cosh(1) 6524778633566549 a007 Real Root Of -803*x^4-206*x^3-841*x^2-304*x+248 6524778634461401 m006 (1/5*exp(Pi)+4)/(1/2*ln(Pi)+3/4) 6524778638933213 a007 Real Root Of 284*x^4-778*x^3-296*x^2-140*x+382 6524778646333174 s002 sum(A120991[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778648400609 s001 sum(exp(-2*Pi)^n*A099580[n],n=1..infinity) 6524778649384158 m001 (PisotVijayaraghavan+Stephens)/(ln(5)+Conway) 6524778655458004 m001 (-TravellingSalesman+Trott)/(Psi(1,1/3)+ln(2)) 6524778690812269 s002 sum(A099580[n]/(exp(2*pi*n)-1),n=1..infinity) 6524778694509341 l006 ln(2183/4192) 6524778724969009 a007 Real Root Of -574*x^4+712*x^3-733*x^2-573*x+240 6524778726195772 a007 Real Root Of -466*x^4+986*x^3-492*x^2-507*x+237 6524778747240988 a001 5473/38*1364^(9/43) 6524778756797438 m001 (Ei(1)+Tetranacci)/(BesselI(0,1)-Si(Pi)) 6524778773443427 s001 sum(1/10^(n-1)*A020387[n]/n^n,n=1..infinity) 6524778800275816 r005 Im(z^2+c),c=-4/3+3/65*I,n=42 6524778827473213 m001 (3^(1/2))^Bloch-Cahen 6524778838875700 a001 233/9349*521^(2/13) 6524778882330018 s002 sum(A023916[n]/(16^n),n=1..infinity) 6524778901536726 m002 -6+Pi/(5*Log[Pi])-ProductLog[Pi] 6524778907328878 s001 sum(exp(-2*Pi)^(n-1)*A240120[n],n=1..infinity) 6524778921228859 r005 Re(z^2+c),c=-9/22+35/59*I,n=46 6524778929905440 m005 (1/3*gamma+2/3)/(5/7*exp(1)-5/8) 6524778933842684 a007 Real Root Of -18*x^4-115*x^3-120*x^2-774*x+738 6524778940253306 m001 MertensB1/Bloch^2/exp(sin(Pi/5)) 6524778953455915 a001 1/329*(1/2*5^(1/2)+1/2)^20*47^(1/11) 6524778955282590 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^32 6524778968527023 r002 44i'th iterates of 2*x/(1-x^2) of 6524778994517582 r005 Im(z^2+c),c=-53/70+3/64*I,n=14 6524778994778648 a007 Real Root Of 606*x^4+104*x^3+999*x^2+382*x-257 6524779003376817 r002 13th iterates of z^2 + 6524779006984094 a001 29/17711*987^(31/58) 6524779030737260 m001 sin(1/12*Pi)/(Si(Pi)^(5^(1/2))) 6524779030737260 m001 sin(Pi/12)/(Si(Pi)^sqrt(5)) 6524779037279675 a001 10749957122/233*2^(1/2) 6524779037441298 m007 (-gamma-3*ln(2)-1/2*Pi-2)/(-2*gamma+1/5) 6524779044278188 m005 (1/2*5^(1/2)-7/8)/(5/8*Catalan-1/5) 6524779071467189 r005 Re(z^2+c),c=-9/16+20/41*I,n=6 6524779096594223 m005 (1/3*exp(1)-2/7)/(37/220+7/20*5^(1/2)) 6524779103887616 a007 Real Root Of 529*x^4-891*x^3-990*x^2+17*x+562 6524779110139016 a003 sin(Pi*8/101)-sin(Pi*12/119) 6524779110255621 b008 E*Sqrt[5+Tanh[1]] 6524779136289077 a007 Real Root Of -657*x^4-179*x^3-706*x^2+840*x+918 6524779136422890 r005 Im(z^2+c),c=-39/34+27/122*I,n=60 6524779139439899 a007 Real Root Of 841*x^4-37*x^3+391*x^2-35*x-352 6524779157392052 a007 Real Root Of -354*x^4+753*x^3+346*x^2+918*x+725 6524779161364331 m002 -1/4+Pi+Pi^5-Pi^6 6524779175876690 p004 log(28549/14867) 6524779180962608 a007 Real Root Of 937*x^4-458*x^3+589*x^2+61*x-508 6524779182303830 a007 Real Root Of 61*x^4-700*x^3+435*x^2-871*x-959 6524779189083824 a001 233/3010349*1364^(14/15) 6524779198751620 a007 Real Root Of -463*x^4+913*x^3-881*x^2-663*x+280 6524779204326524 r005 Im(z^2+c),c=-7/106+42/55*I,n=23 6524779206218433 a001 2584/271443*322^(1/3) 6524779233381848 a007 Real Root Of -69*x^4+158*x^3-808*x^2-114*x+326 6524779233692406 a001 3/47*3^(1/50) 6524779234338444 r005 Im(z^2+c),c=-61/50+5/62*I,n=59 6524779256453945 a003 sin(Pi*19/84)/sin(Pi*32/65) 6524779258723182 l006 ln(4228/8119) 6524779276096604 a001 34*39603^(12/43) 6524779281279605 m005 (1/4*exp(1)+3/5)/(16/15+2/5*5^(1/2)) 6524779286068970 m001 (FeigenbaumB+Stephens)/(sin(1)+ln(2+3^(1/2))) 6524779288832836 m001 (Artin-CareFree)/(Niven+ReciprocalFibonacci) 6524779331788200 m001 (-Otter+Porter)/(3^(1/2)-ln(gamma)) 6524779373218730 a001 6765/710647*322^(1/3) 6524779373464387 m001 exp(Zeta(1,2))^2*Riemann3rdZero/sin(Pi/5) 6524779377788715 a005 (1/cos(55/211*Pi))^17 6524779390335857 a001 4181/76*3571^(13/43) 6524779395549001 r005 Re(z^2+c),c=-1/6+21/29*I,n=54 6524779397583745 a001 17711/1860498*322^(1/3) 6524779401138552 a001 46368/4870847*322^(1/3) 6524779401657192 a001 121393/12752043*322^(1/3) 6524779401732860 a001 317811/33385282*322^(1/3) 6524779401743900 a001 832040/87403803*322^(1/3) 6524779401745511 a001 46347/4868641*322^(1/3) 6524779401745746 a001 5702887/599074578*322^(1/3) 6524779401745780 a001 14930352/1568397607*322^(1/3) 6524779401745785 a001 39088169/4106118243*322^(1/3) 6524779401745786 a001 102334155/10749957122*322^(1/3) 6524779401745786 a001 267914296/28143753123*322^(1/3) 6524779401745786 a001 701408733/73681302247*322^(1/3) 6524779401745786 a001 1836311903/192900153618*322^(1/3) 6524779401745786 a001 102287808/10745088481*322^(1/3) 6524779401745786 a001 12586269025/1322157322203*322^(1/3) 6524779401745786 a001 32951280099/3461452808002*322^(1/3) 6524779401745786 a001 86267571272/9062201101803*322^(1/3) 6524779401745786 a001 225851433717/23725150497407*322^(1/3) 6524779401745786 a001 139583862445/14662949395604*322^(1/3) 6524779401745786 a001 53316291173/5600748293801*322^(1/3) 6524779401745786 a001 20365011074/2139295485799*322^(1/3) 6524779401745786 a001 7778742049/817138163596*322^(1/3) 6524779401745786 a001 2971215073/312119004989*322^(1/3) 6524779401745786 a001 1134903170/119218851371*322^(1/3) 6524779401745786 a001 433494437/45537549124*322^(1/3) 6524779401745786 a001 165580141/17393796001*322^(1/3) 6524779401745786 a001 63245986/6643838879*322^(1/3) 6524779401745788 a001 24157817/2537720636*322^(1/3) 6524779401745801 a001 9227465/969323029*322^(1/3) 6524779401745891 a001 3524578/370248451*322^(1/3) 6524779401746506 a001 1346269/141422324*322^(1/3) 6524779401750723 a001 514229/54018521*322^(1/3) 6524779401779626 a001 196418/20633239*322^(1/3) 6524779401948105 a008 Real Root of (5+18*x^3) 6524779401977729 a001 75025/7881196*322^(1/3) 6524779403335544 a001 28657/3010349*322^(1/3) 6524779403772904 a001 5/4*843^(13/53) 6524779409836694 m001 (Bloch-Catalan)/(-Kac+Mills) 6524779412642152 a001 10946/1149851*322^(1/3) 6524779413925316 m001 BesselI(0,1)*Cahen-Porter 6524779417582600 m001 (MadelungNaCl+Trott2nd)/(exp(1)+gamma(3)) 6524779422881741 a001 233/1860498*1364^(13/15) 6524779425274098 a001 322/165580141*102334155^(4/21) 6524779425274098 a001 161/567451585*2504730781961^(4/21) 6524779430288252 a007 Real Root Of 696*x^4-865*x^3-959*x^2-99*x+587 6524779439493330 a001 322/24157817*4181^(4/21) 6524779464114059 a007 Real Root Of 44*x^4+416*x^3+826*x^2-168*x-453 6524779476430589 a001 4181/439204*322^(1/3) 6524779482316779 r005 Im(z^2+c),c=19/50+13/63*I,n=5 6524779490146368 a007 Real Root Of -941*x^4+864*x^3-668*x^2+66*x+738 6524779502387604 m005 (1/2*3^(1/2)+5)/(3/4*3^(1/2)-2/5) 6524779511004237 a007 Real Root Of -296*x^4+572*x^3-154*x^2-40*x+252 6524779511963966 p004 log(28019/14591) 6524779568257829 q001 2146/3289 6524779626899152 r005 Re(z^2+c),c=-53/78+8/31*I,n=8 6524779656689091 a001 233/1149851*1364^(4/5) 6524779664593799 r005 Im(z^2+c),c=-3/50+36/49*I,n=62 6524779683625866 a007 Real Root Of 115*x^4+603*x^3-851*x^2+648*x-473 6524779725349250 r008 a(0)=6,K{-n^6,96-69*n^3-82*n^2+53*n} 6524779726604136 r009 Re(z^3+c),c=-1/9+19/32*I,n=37 6524779730246467 r005 Im(z^2+c),c=-81/122+7/58*I,n=23 6524779740390896 r005 Re(z^2+c),c=11/50+9/26*I,n=30 6524779771268706 h001 (4/7*exp(2)+1/11)/(1/7*exp(1)+3/11) 6524779774645104 a001 29/75025*610^(4/49) 6524779789580583 b008 -4/13+Cos[6] 6524779819105596 m001 (exp(1)+ln(3))/(-MertensB3+RenyiParking) 6524779834170674 m005 (1/3*gamma+2/3)/(6/7*5^(1/2)-3/5) 6524779845478825 a003 sin(Pi*1/106)-sin(Pi*27/113) 6524779847507735 m001 ln((3^(1/3)))/CopelandErdos/cosh(1)^2 6524779861011075 l006 ln(2045/3927) 6524779861422218 a007 Real Root Of 453*x^4+25*x^3-111*x^2-604*x-422 6524779890471776 a001 233/710647*1364^(11/15) 6524779913643041 a001 1597/167761*322^(1/3) 6524779923492559 m001 GAMMA(1/4)^2*ln(Robbin)*Zeta(3) 6524779942692877 m001 LambertW(1)*ln((3^(1/3)))*Pi 6524779958267094 b008 1/13-4*Erfi[1] 6524779964199884 r005 Re(z^2+c),c=15/118+13/61*I,n=3 6524779977232231 h002 exp(17^(2/7)+17^(7/6)) 6524779977232231 h007 exp(17^(2/7)+17^(7/6)) 6524779985090651 m005 (1/2*Pi-5/11)/(7/9*3^(1/2)+4/11) 6524780009669281 a007 Real Root Of -79*x^4+542*x^3-256*x^2+460*x+574 6524780024799181 m001 (ReciprocalLucas-Salem)/(FeigenbaumC-Kac) 6524780029751803 a007 Real Root Of -281*x^4+373*x^3-283*x^2+72*x+322 6524780051391217 m005 (1/2*Catalan-2/5)/(1/3*Catalan+7/12) 6524780051619072 m003 2+Sqrt[5]/4+20*E^(-1/2-Sqrt[5]/2) 6524780058917534 a007 Real Root Of 531*x^4-13*x^3+738*x^2-731*x-891 6524780068030250 a007 Real Root Of 841*x^4-624*x^3-698*x^2+263*x+143 6524780068077764 a007 Real Root Of -86*x^4-497*x^3+464*x^2+285*x-80 6524780110638814 p001 sum((-1)^n/(107*n+42)/n/(10^n),n=0..infinity) 6524780124319067 a001 233/439204*1364^(2/3) 6524780125297994 a008 Real Root of (-8+7*x+4*x^2+9*x^4+3*x^8) 6524780145655097 a007 Real Root Of -99*x^4-726*x^3-679*x^2-996*x+173 6524780153448143 a007 Real Root Of 560*x^4+16*x^3+942*x^2-570*x-870 6524780173383937 m005 (1/2*Zeta(3)+3/10)/(7/10*Pi-9/11) 6524780177761244 r005 Re(z^2+c),c=-69/118+38/61*I,n=16 6524780212049307 m001 (Totient-ZetaP(3))/(BesselJ(1,1)-MertensB1) 6524780218919636 m001 (gamma(3)-KhinchinLevy)/(PlouffeB+Totient) 6524780222856869 b008 -9*E^(1/14)+Pi 6524780238238391 a007 Real Root Of 639*x^4-129*x^3+206*x^2-142*x-332 6524780240376522 a007 Real Root Of -603*x^4+176*x^3-156*x^2+911*x+819 6524780241139062 m005 (2/5*Catalan-1/6)/(1/3*exp(1)-3/5) 6524780252378920 m001 Bloch*PisotVijayaraghavan+Trott2nd 6524780257560779 m001 PrimesInBinary^2*Magata*exp(OneNinth) 6524780336870642 m005 (1/2*Catalan+7/8)/(1/4*exp(1)-7/10) 6524780353350479 r005 Re(z^2+c),c=-11/28+13/19*I,n=9 6524780357997244 a001 233/271443*1364^(3/5) 6524780371480943 r005 Re(z^2+c),c=-9/14+113/192*I,n=5 6524780417818862 a001 233/5778*521^(1/13) 6524780424506384 m001 Kolakoski^2*exp(DuboisRaymond)/sinh(1) 6524780432447592 m001 MertensB1*(MadelungNaCl+RenyiParking) 6524780459055131 r002 42th iterates of z^2 + 6524780471292309 m001 TwinPrimes/ln(Riemann1stZero)^2/(3^(1/3)) 6524780482398521 a003 sin(Pi*9/115)-sin(Pi*41/116) 6524780505361543 l006 ln(3952/7589) 6524780516333619 h001 (5/9*exp(2)+7/9)/(9/10*exp(2)+5/6) 6524780540508843 r005 Re(z^2+c),c=-17/30+53/111*I,n=57 6524780592118200 a001 233/167761*1364^(8/15) 6524780599835322 m001 (Zeta(5)+Ei(1))/(GAMMA(5/6)-GAMMA(19/24)) 6524780603087621 a007 Real Root Of -711*x^4+941*x^3-107*x^2-507*x+105 6524780617714746 b008 14+PolyLog[3,-14] 6524780631288261 m001 (3^(1/2)-GlaisherKinkelin)/(Robbin+Trott2nd) 6524780635043451 m001 (Ei(1)-gamma(1))/(gamma(3)-GaussKuzminWirsing) 6524780636633869 p004 log(36137/53) 6524780637579557 a007 Real Root Of -932*x^4+948*x^3+518*x^2+615*x+613 6524780664870743 a007 Real Root Of 425*x^4+146*x^3+209*x^2-807*x-652 6524780677021501 a003 sin(Pi*17/94)/sin(Pi*25/81) 6524780684877500 b008 51+Sqrt[203] 6524780708066239 a001 377/103682*322^(1/2) 6524780713946763 p003 LerchPhi(1/25,4,206/185) 6524780715563904 r009 Im(z^3+c),c=-1/30+44/61*I,n=5 6524780723185475 a007 Real Root Of 585*x^4-754*x^3+478*x^2-981*x+540 6524780751723656 m005 (1/2*Zeta(3)-7/12)/(2/11*Pi-3/10) 6524780761979172 m001 ln(GAMMA(3/4))^2*CopelandErdos*sin(Pi/12)^2 6524780769093053 a007 Real Root Of -895*x^4+865*x^3-252*x^2+608*x+41 6524780781570122 m005 (1/2*3^(1/2)-3)/(Zeta(3)-7/8) 6524780782288890 r005 Im(z^2+c),c=27/118+35/59*I,n=5 6524780796212032 m002 -4+Pi^2+3/(4*Log[Pi]) 6524780798552129 m001 FeigenbaumC^FransenRobinson/Chi(1) 6524780825079976 a001 233/103682*1364^(7/15) 6524780842284867 m008 (5*Pi^6-1)/(3/4*Pi^4+3/5) 6524780847498755 a007 Real Root Of 251*x^4-689*x^3+762*x^2-490*x-881 6524780850652836 l006 ln(7223/7710) 6524780857155942 a001 47*(1/2*5^(1/2)+1/2)^24*7^(3/20) 6524780870348716 a007 Real Root Of 501*x^4-202*x^3-651*x^2-643*x+662 6524780877103203 a007 Real Root Of 200*x^4+233*x^3+903*x^2-279*x-538 6524780900428153 a001 341/36*317811^(51/58) 6524780913396566 m001 1/(3^(1/3))/ArtinRank2/exp(BesselK(0,1)) 6524780919312363 m001 (Zeta(5)-Backhouse)/(Sarnak-StolarskyHarborth) 6524780934540549 a001 2139295485799/610*144^(10/17) 6524780934900419 a007 Real Root Of -487*x^4+499*x^3+554*x^2+636*x+406 6524780946657838 m005 (1/2*Zeta(3)+4/7)/(6/11*Pi+1/12) 6524780956894133 r005 Im(z^2+c),c=-15/86+16/19*I,n=5 6524780960473121 r005 Re(z^2+c),c=-18/25+7/24*I,n=38 6524780966468548 a001 73681302247/377*144^(12/17) 6524780977864364 m001 (BesselI(0,1)-Zeta(1/2))/(-exp(-1/2*Pi)+Kac) 6524780985639446 a007 Real Root Of -133*x^4-891*x^3-173*x^2-262*x-790 6524781025078936 a007 Real Root Of 872*x^4-541*x^3-841*x^2-490*x-270 6524781032716266 m001 (Porter+ZetaQ(2))/(Kac+Niven) 6524781050585597 m001 (Landau+Weierstrass)/(Artin+KhinchinLevy) 6524781061076555 a001 233/64079*1364^(2/5) 6524781090265165 r005 Im(z^2+c),c=-37/28+4/51*I,n=32 6524781113710857 a007 Real Root Of -688*x^4+43*x^3+665*x^2+683*x-616 6524781122732991 a001 229971/3524578 6524781122733371 a004 Fibonacci(13)/Lucas(16)/(1/2+sqrt(5)/2) 6524781122821650 a004 Fibonacci(16)/Lucas(13)/(1/2+sqrt(5)/2)^7 6524781134087030 a007 Real Root Of 497*x^4+494*x^3+854*x^2-453*x-612 6524781165603481 a007 Real Root Of 402*x^4-932*x^3-422*x^2+17*x-141 6524781165989472 r005 Im(z^2+c),c=-13/14+13/233*I,n=16 6524781174546178 m005 (1/3*2^(1/2)+3/4)/(5/6*3^(1/2)+3/7) 6524781196340369 l006 ln(1907/3662) 6524781270152912 a007 Real Root Of 501*x^4-963*x^3+134*x^2-847*x-968 6524781288674167 m001 GAMMA(2/3)^2*exp(TwinPrimes)^2/GAMMA(23/24)^2 6524781289127948 a001 233/39603*1364^(1/3) 6524781314443832 m001 (-sin(1)+2)/(3^(1/3)+1/3) 6524781318180486 r002 2th iterates of z^2 + 6524781331543012 a007 Real Root Of 375*x^4-97*x^3+249*x^2-558*x-565 6524781341107871 q001 1119/1715 6524781352856604 s001 sum(exp(-2*Pi/3)^n*A272542[n],n=1..infinity) 6524781417144833 b008 (-3*E)/8+Sinh[E] 6524781427214431 r005 Re(z^2+c),c=-43/48+4/23*I,n=34 6524781432885019 r002 30th iterates of z^2 + 6524781445289410 m001 1/GAMMA(3/4)*ln(TwinPrimes)^2*arctan(1/2) 6524781446064232 a007 Real Root Of -779*x^4-62*x^3+630*x^2+667*x-545 6524781508938555 m005 (1/3*Zeta(3)+2/9)/(2/11*Pi-2/3) 6524781528153084 r005 Re(z^2+c),c=-5/86+31/41*I,n=17 6524781537980137 a001 233/24476*1364^(4/15) 6524781541113342 m001 (HardyLittlewoodC3+Mills)/(Chi(1)-cos(1)) 6524781557261929 r005 Re(z^2+c),c=-10/13+1/49*I,n=37 6524781562340141 a001 8/321*123^(1/5) 6524781564068302 r009 Im(z^3+c),c=-55/98+9/25*I,n=16 6524781585806760 a007 Real Root Of 103*x^4-544*x^3-886*x^2+96*x+447 6524781588991500 a001 521/4181*1836311903^(16/17) 6524781590887730 a007 Real Root Of 399*x^4-974*x^3+452*x^2-480*x+319 6524781601725770 a007 Real Root Of -119*x^4+438*x^3-408*x^2+653*x+743 6524781604189061 a003 cos(Pi*15/98)-cos(Pi*48/113) 6524781610201101 a008 Real Root of x^4-31*x^2-68*x-49 6524781618196118 a007 Real Root Of 951*x^4-734*x^3+117*x^2+348*x-199 6524781638166422 a007 Real Root Of -708*x^4+267*x^3+725*x^2+505*x-584 6524781641117176 r005 Im(z^2+c),c=-129/118+1/13*I,n=32 6524781662146663 a001 64079/233*514229^(16/17) 6524781663642488 a001 521/9227465*6557470319842^(16/17) 6524781685131734 p001 sum(1/(407*n+157)/(12^n),n=0..infinity) 6524781687898649 a005 (1/cos(11/240*Pi))^623 6524781697106668 m001 (Niven-OneNinth)/(Pi-ln(2)) 6524781732375162 a001 233/15127*1364^(1/5) 6524781736174648 a007 Real Root Of 521*x^4+361*x^3+224*x^2-937*x-62 6524781740462989 s001 sum(exp(-Pi/4)^(n-1)*A053339[n],n=1..infinity) 6524781747657382 r002 19th iterates of z^2 + 6524781756872642 h001 (-5*exp(2)-6)/(-8*exp(2/3)+9) 6524781771205622 a007 Real Root Of 591*x^4+591*x^3+450*x^2-272*x-312 6524781779478805 m001 MadelungNaCl*LandauRamanujan^2*ln(Ei(1)) 6524781779887507 r009 Im(z^3+c),c=-39/62+27/53*I,n=3 6524781797880903 a007 Real Root Of 852*x^4-785*x^3+227*x^2-619*x-873 6524781811068395 s001 sum(exp(-Pi)^n*A264671[n],n=1..infinity) 6524781811068395 s002 sum(A264671[n]/(exp(pi*n)),n=1..infinity) 6524781812180481 m001 (Ei(1)+sin(1/12*Pi))/(Pi^(1/2)+GAMMA(7/12)) 6524781817092082 r005 Im(z^2+c),c=-3/31+37/38*I,n=3 6524781827007365 r005 Im(z^2+c),c=-29/44+27/64*I,n=25 6524781838836401 r008 a(0)=1,K{-n^6,68-64*n^3-15*n^2+11*n} 6524781847925462 a007 Real Root Of -889*x^4-388*x^3-576*x^2-7*x+294 6524781848559853 m002 -Pi^(-4)-Pi^3+Pi^4-Log[Pi] 6524781863998735 r008 a(0)=1,K{-n^6,98-69*n^3+15*n^2-44*n} 6524781922579540 a007 Real Root Of 915*x^4-658*x^3+178*x^2+301*x-228 6524781939198945 l006 ln(3676/7059) 6524781948001265 a007 Real Root Of 561*x^4-532*x^3+740*x^2+482*x-250 6524781950625520 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^34 6524781950656381 r005 Re(z^2+c),c=-3/4+10/179*I,n=11 6524781968119252 r005 Re(z^2+c),c=-15/16+3/77*I,n=6 6524781978820955 a007 Real Root Of 478*x^4-792*x^3-487*x^2-139*x-190 6524781980723604 a001 233/7881196*3571^(16/17) 6524781986237316 a007 Real Root Of -763*x^4+831*x^3+312*x^2+637*x-641 6524782010821202 a001 233/4870847*3571^(15/17) 6524782016826022 m005 (1/2*gamma+1)/(7/9*2^(1/2)+7/8) 6524782026825395 a007 Real Root Of 975*x^4-982*x^3+606*x^2+13*x-699 6524782030652316 m001 GAMMA(5/6)-Pi^ZetaQ(2) 6524782032737034 h001 (7/8*exp(1)+7/10)/(5/8*exp(2)+1/10) 6524782033051669 a001 233/5778*1364^(1/15) 6524782034767514 a007 Real Root Of -807*x^4+470*x^3-634*x^2+169*x+657 6524782038361992 r002 3th iterates of z^2 + 6524782040920176 a001 233/3010349*3571^(14/17) 6524782069340932 a001 233/9349*1364^(2/15) 6524782069826603 a007 Real Root Of -91*x^4+984*x^3+248*x^2+617*x-765 6524782070266357 r002 59th iterates of z^2 + 6524782071015551 a001 233/1860498*3571^(13/17) 6524782100464840 m001 1/Salem^2*exp(FeigenbaumAlpha)*exp(1)^2 6524782101120350 a001 233/1149851*3571^(12/17) 6524782109534364 m001 GAMMA(1/3)/CareFree/exp(log(1+sqrt(2)))^2 6524782112850612 a007 Real Root Of -271*x^4+589*x^3-630*x^2+207*x+616 6524782123832445 a007 Real Root Of 408*x^4-633*x^3+123*x^2-950*x-922 6524782131200474 a001 233/710647*3571^(11/17) 6524782161345198 a001 233/439204*3571^(10/17) 6524782175032269 m001 (5^(1/2))^GaussKuzminWirsing-GolombDickman 6524782175032269 m001 sqrt(5)^GaussKuzminWirsing-GolombDickman 6524782175042139 m004 36+5*Sqrt[5]*Pi+125*Pi*Csc[Sqrt[5]*Pi] 6524782191320799 a001 233/271443*3571^(9/17) 6524782209222388 a007 Real Root Of -47*x^4-447*x^3-977*x^2-466*x-429 6524782221739171 a001 233/167761*3571^(8/17) 6524782229319664 m004 -9+4*Sin[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 6524782235506866 r005 Im(z^2+c),c=-10/9+4/51*I,n=16 6524782236754313 a001 233/5778*3571^(1/17) 6524782243644392 a007 Real Root Of 274*x^4-407*x^3-988*x^2-926*x-6 6524782250998354 a001 233/103682*3571^(7/17) 6524782262923292 a001 233/5778*9349^(1/19) 6524782266333653 a001 233/5778*24476^(1/21) 6524782266783204 a001 233/5778*64079^(1/23) 6524782266852271 a001 602072/9227465 6524782266852293 a001 233/11556+233/11556*5^(1/2) 6524782266877583 a001 233/5778*103682^(1/24) 6524782266940841 a004 Fibonacci(18)/Lucas(13)/(1/2+sqrt(5)/2)^9 6524782267041391 a001 233/5778*39603^(1/22) 6524782268278000 a001 233/5778*15127^(1/20) 6524782277710008 a001 233/5778*5778^(1/18) 6524782283292332 a001 233/64079*3571^(6/17) 6524782290833864 m001 (Si(Pi)-gamma(3))/(FransenRobinson+Trott2nd) 6524782296486769 h001 (-8*exp(7)+6)/(-2*exp(1)-8) 6524782307641115 a001 233/39603*3571^(5/17) 6524782314797050 r005 Re(z^2+c),c=1/16+23/56*I,n=27 6524782331033769 a007 Real Root Of -358*x^4+842*x^3-84*x^2+954*x+957 6524782336423775 h001 (5/8*exp(2)+10/11)/(1/11*exp(1)+3/5) 6524782343483085 a001 233/15127*3571^(3/17) 6524782347369860 m001 (1-5^(1/2))/(cos(1)+GAMMA(2/3)) 6524782350574662 a001 233/5778*2207^(1/16) 6524782352790690 a001 233/24476*3571^(4/17) 6524782353500749 a007 Real Root Of 625*x^4-465*x^3-766*x^2-893*x-499 6524782356096766 a007 Real Root Of 467*x^4-774*x^3+586*x^2+673*x-110 6524782357020442 a007 Real Root Of -161*x^4+379*x^3+199*x^2+457*x-459 6524782373370174 a007 Real Root Of -699*x^4+968*x^3-271*x^2+918*x-59 6524782387485823 r005 Re(z^2+c),c=-16/25+15/52*I,n=8 6524782387640164 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^36 6524782388544147 m001 (Porter+Sarnak)/(ThueMorse-ZetaP(4)) 6524782391569180 a001 233/20633239*9349^(18/19) 6524782395498125 a001 233/12752043*9349^(17/19) 6524782399427271 a001 233/7881196*9349^(16/19) 6524782403355891 a001 233/4870847*9349^(15/19) 6524782404070598 a001 2504730781961/47*18^(13/15) 6524782407285887 a001 233/3010349*9349^(14/19) 6524782411212283 a001 233/1860498*9349^(13/19) 6524782415148103 a001 233/1149851*9349^(12/19) 6524782419059249 a001 233/710647*9349^(11/19) 6524782421990025 a001 233/15127*9349^(3/19) 6524782423034995 a001 233/439204*9349^(10/19) 6524782426841616 a001 233/271443*9349^(9/19) 6524782431091009 a001 233/167761*9349^(8/19) 6524782432221108 a001 233/15127*24476^(1/7) 6524782433569761 a001 233/15127*64079^(3/23) 6524782433773269 a001 233/15127*439204^(1/9) 6524782433777018 a001 233/15127*7881196^(1/11) 6524782433777025 a001 1576245/24157817 6524782433777027 a001 233/15127*141422324^(1/13) 6524782433777027 a001 233/15127*2537720636^(1/15) 6524782433777027 a001 233/15127*45537549124^(1/17) 6524782433777027 a001 233/15127*14662949395604^(1/21) 6524782433777027 a001 233/15127*(1/2+1/2*5^(1/2))^3 6524782433777027 a001 233/15127*192900153618^(1/18) 6524782433777027 a001 233/15127*10749957122^(1/16) 6524782433777027 a001 233/15127*599074578^(1/14) 6524782433777028 a001 233/15127*33385282^(1/12) 6524782433777216 a001 233/15127*1860498^(1/10) 6524782433852897 a001 233/15127*103682^(1/8) 6524782433865581 a004 Fibonacci(20)/Lucas(13)/(1/2+sqrt(5)/2)^11 6524782434181213 a001 233/103682*9349^(7/19) 6524782434344322 a001 233/15127*39603^(3/22) 6524782434372929 m001 (5^(1/2)+HardyLittlewoodC3)/BesselJ(1,1) 6524782438054150 a001 233/15127*15127^(3/20) 6524782438486015 a001 233/39603*9349^(5/19) 6524782440306212 a001 233/64079*9349^(6/19) 6524782451399741 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^38 6524782451918383 a001 233/54018521*24476^(20/21) 6524782452437015 a001 233/33385282*24476^(19/21) 6524782452955676 a001 233/20633239*24476^(6/7) 6524782453474260 a001 233/12752043*24476^(17/21) 6524782453993045 a001 233/7881196*24476^(16/21) 6524782454511305 a001 233/4870847*24476^(5/7) 6524782455030940 a001 233/3010349*24476^(2/3) 6524782455537820 a001 233/39603*24476^(5/21) 6524782455546974 a001 233/1860498*24476^(13/21) 6524782456072434 a001 233/1149851*24476^(4/7) 6524782456573219 a001 233/710647*24476^(11/21) 6524782457138604 a001 233/439204*24476^(10/21) 6524782457466610 a001 233/24476*9349^(4/19) 6524782457534865 a001 233/271443*24476^(3/7) 6524782457785575 a001 233/39603*64079^(5/23) 6524782458053739 a001 233/103682*24476^(1/3) 6524782458084651 a001 233/39603*167761^(1/5) 6524782458131016 a001 233/39603*20633239^(1/7) 6524782458131018 a001 17711/271442 6524782458131019 a001 233/39603*2537720636^(1/9) 6524782458131019 a001 233/39603*312119004989^(1/11) 6524782458131019 a001 233/39603*(1/2+1/2*5^(1/2))^5 6524782458131019 a001 233/39603*28143753123^(1/10) 6524782458131019 a001 233/39603*228826127^(1/8) 6524782458131333 a001 233/39603*1860498^(1/6) 6524782458219573 a004 Fibonacci(22)/Lucas(13)/(1/2+sqrt(5)/2)^13 6524782458257468 a001 233/39603*103682^(5/24) 6524782458373896 a001 233/167761*24476^(8/21) 6524782458466324 a001 843/5702887*34^(8/19) 6524782459076509 a001 233/39603*39603^(5/22) 6524782460702138 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^40 6524782460768377 a001 233/64079*24476^(2/7) 6524782460771227 a001 233/141422324*64079^(22/23) 6524782460840314 a001 233/87403803*64079^(21/23) 6524782460909406 a001 233/54018521*64079^(20/23) 6524782460978487 a001 233/33385282*64079^(19/23) 6524782461047597 a001 233/20633239*64079^(18/23) 6524782461116630 a001 233/12752043*64079^(17/23) 6524782461185864 a001 233/7881196*64079^(16/23) 6524782461200597 a001 233/103682*64079^(7/23) 6524782461254572 a001 233/4870847*64079^(15/23) 6524782461324656 a001 233/3010349*64079^(14/23) 6524782461391139 a001 233/1860498*64079^(13/23) 6524782461467048 a001 233/1149851*64079^(12/23) 6524782461518282 a001 233/710647*64079^(11/23) 6524782461580825 a001 233/271443*64079^(9/23) 6524782461634115 a001 233/439204*64079^(10/23) 6524782461684215 a001 233/103682*20633239^(1/5) 6524782461684218 a001 10803744/165580141 6524782461684218 a001 233/103682*17393796001^(1/7) 6524782461684218 a001 233/103682*14662949395604^(1/9) 6524782461684218 a001 233/103682*(1/2+1/2*5^(1/2))^7 6524782461684218 a001 233/103682*599074578^(1/6) 6524782461687448 a001 233/103682*710647^(1/4) 6524782461772772 a004 Fibonacci(24)/Lucas(13)/(1/2+sqrt(5)/2)^15 6524782461861248 a001 233/103682*103682^(7/24) 6524782461970305 a001 233/167761*64079^(8/23) 6524782462059339 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^42 6524782462105709 a001 233/54018521*167761^(4/5) 6524782462151799 a001 233/4870847*167761^(3/5) 6524782462191348 a001 233/271443*439204^(1/3) 6524782462202594 a001 233/271443*7881196^(3/11) 6524782462202623 a001 233/271443*141422324^(3/13) 6524782462202623 a001 28284569/433494437 6524782462202623 a001 233/271443*2537720636^(1/5) 6524782462202623 a001 233/271443*45537549124^(3/17) 6524782462202623 a001 233/271443*817138163596^(3/19) 6524782462202623 a001 233/271443*14662949395604^(1/7) 6524782462202623 a001 233/271443*(1/2+1/2*5^(1/2))^9 6524782462202623 a001 233/271443*192900153618^(1/6) 6524782462202623 a001 233/271443*10749957122^(3/16) 6524782462202623 a001 233/271443*599074578^(3/14) 6524782462202624 a001 233/271443*33385282^(1/4) 6524782462203188 a001 233/271443*1860498^(3/10) 6524782462232267 a001 233/439204*167761^(2/5) 6524782462257352 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^44 6524782462261111 a001 233/370248451*439204^(8/9) 6524782462264868 a001 233/87403803*439204^(7/9) 6524782462268643 a001 233/20633239*439204^(2/3) 6524782462272111 a001 233/4870847*439204^(5/9) 6524782462278222 a001 233/710647*7881196^(1/3) 6524782462278257 a001 74049963/1134903170 6524782462278257 a001 233/710647*312119004989^(1/5) 6524782462278257 a001 233/710647*(1/2+1/2*5^(1/2))^11 6524782462278257 a001 233/710647*1568397607^(1/4) 6524782462281079 a001 233/1149851*439204^(4/9) 6524782462286242 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^46 6524782462289292 a001 233/1860498*141422324^(1/3) 6524782462289292 a001 193865320/2971215073 6524782462289292 a001 233/1860498*(1/2+1/2*5^(1/2))^13 6524782462289292 a001 233/1860498*73681302247^(1/4) 6524782462290457 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^48 6524782462290854 a001 233/4870847*7881196^(5/11) 6524782462290895 a001 233/4870847*20633239^(3/7) 6524782462290902 a001 233/4870847*141422324^(5/13) 6524782462290902 a001 233/4870847*2537720636^(1/3) 6524782462290902 a001 507545997/7778742049 6524782462290902 a001 233/4870847*45537549124^(5/17) 6524782462290902 a001 233/4870847*312119004989^(3/11) 6524782462290902 a001 233/4870847*14662949395604^(5/21) 6524782462290902 a001 233/4870847*(1/2+1/2*5^(1/2))^15 6524782462290902 a001 233/4870847*192900153618^(5/18) 6524782462290902 a001 233/4870847*28143753123^(3/10) 6524782462290902 a001 233/4870847*10749957122^(5/16) 6524782462290902 a001 233/4870847*599074578^(5/14) 6524782462290902 a001 233/4870847*228826127^(3/8) 6524782462290904 a001 233/4870847*33385282^(5/12) 6524782462291072 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^50 6524782462291081 a001 233/6643838879*7881196^(10/11) 6524782462291091 a001 233/1568397607*7881196^(9/11) 6524782462291101 a001 233/370248451*7881196^(8/11) 6524782462291107 a001 233/141422324*7881196^(2/3) 6524782462291109 a001 233/87403803*7881196^(7/11) 6524782462291135 a001 233/20633239*7881196^(6/11) 6524782462291137 a001 832043/12752042 6524782462291137 a001 233/12752043*45537549124^(1/3) 6524782462291137 a001 233/12752043*(1/2+1/2*5^(1/2))^17 6524782462291157 a001 233/12752043*12752043^(1/2) 6524782462291162 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^52 6524782462291164 a001 233/6643838879*20633239^(6/7) 6524782462291165 a001 233/2537720636*20633239^(4/5) 6524782462291166 a001 233/599074578*20633239^(5/7) 6524782462291167 a001 233/87403803*20633239^(3/5) 6524782462291170 a001 233/54018521*20633239^(4/7) 6524782462291171 a001 3478772016/53316291173 6524782462291171 a001 233/33385282*817138163596^(1/3) 6524782462291171 a001 233/33385282*(1/2+1/2*5^(1/2))^19 6524782462291172 a001 233/33385282*87403803^(1/2) 6524782462291175 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^54 6524782462291176 a001 233/87403803*141422324^(7/13) 6524782462291176 a001 233/87403803*2537720636^(7/15) 6524782462291176 a001 233/87403803*17393796001^(3/7) 6524782462291176 a001 233/87403803*45537549124^(7/17) 6524782462291176 a001 9107543377/139583862445 6524782462291176 a001 233/87403803*14662949395604^(1/3) 6524782462291176 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^21/Lucas(38) 6524782462291176 a001 233/87403803*192900153618^(7/18) 6524782462291176 a001 233/87403803*10749957122^(7/16) 6524782462291176 a001 233/87403803*599074578^(1/2) 6524782462291177 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^56 6524782462291177 a001 233/119218851371*141422324^(12/13) 6524782462291177 a001 233/28143753123*141422324^(11/13) 6524782462291177 a001 233/6643838879*141422324^(10/13) 6524782462291177 a001 233/1568397607*141422324^(9/13) 6524782462291177 a001 233/969323029*141422324^(2/3) 6524782462291177 a001 233/370248451*141422324^(8/13) 6524782462291177 a001 23843858115/365435296162 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^23/Lucas(40) 6524782462291177 a001 233/228826127*4106118243^(1/2) 6524782462291177 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^58 6524782462291177 a001 233/599074578*2537720636^(5/9) 6524782462291177 a001 233/599074578*312119004989^(5/11) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^25/Lucas(42) 6524782462291177 a001 233/599074578*3461452808002^(5/12) 6524782462291177 a001 233/599074578*28143753123^(1/2) 6524782462291177 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^60 6524782462291177 a001 233/1568397607*2537720636^(3/5) 6524782462291177 a001 233/1568397607*45537549124^(9/17) 6524782462291177 a001 233/1568397607*817138163596^(9/19) 6524782462291177 a001 163428234789/2504730781961 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^27/Lucas(44) 6524782462291177 a001 233/1568397607*192900153618^(1/2) 6524782462291177 a001 233/1568397607*10749957122^(9/16) 6524782462291177 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^62 6524782462291177 a001 233/2139295485799*2537720636^(14/15) 6524782462291177 a001 233/817138163596*2537720636^(8/9) 6524782462291177 a001 233/505019158607*2537720636^(13/15) 6524782462291177 a001 233/119218851371*2537720636^(4/5) 6524782462291177 a001 233/73681302247*2537720636^(7/9) 6524782462291177 a001 233/28143753123*2537720636^(11/15) 6524782462291177 a001 233/6643838879*2537720636^(2/3) 6524782462291177 a001 427860673399/6557470319842 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^29/Lucas(46) 6524782462291177 a001 233/4106118243*1322157322203^(1/2) 6524782462291177 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^64 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^31/Lucas(48) 6524782462291177 a001 233/10749957122*9062201101803^(1/2) 6524782462291177 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^66 6524782462291177 a001 233/2139295485799*17393796001^(6/7) 6524782462291177 a001 233/73681302247*17393796001^(5/7) 6524782462291177 a001 233/28143753123*45537549124^(11/17) 6524782462291177 a001 233/28143753123*312119004989^(3/5) 6524782462291177 a001 233/28143753123*817138163596^(11/19) 6524782462291177 a001 233/28143753123*14662949395604^(11/21) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^33/Lucas(50) 6524782462291177 a001 233/28143753123*192900153618^(11/18) 6524782462291177 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^68 6524782462291177 a001 233/9062201101803*45537549124^(15/17) 6524782462291177 a001 233/2139295485799*45537549124^(14/17) 6524782462291177 a001 233/505019158607*45537549124^(13/17) 6524782462291177 a001 233/119218851371*45537549124^(12/17) 6524782462291177 a001 233/73681302247*312119004989^(7/11) 6524782462291177 a001 233/73681302247*14662949395604^(5/9) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^35/Lucas(52) 6524782462291177 a001 233/73681302247*505019158607^(5/8) 6524782462291177 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^70 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^37/Lucas(54) 6524782462291177 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^72 6524782462291177 a001 233/5600748293801*312119004989^(4/5) 6524782462291177 a001 233/817138163596*312119004989^(8/11) 6524782462291177 a001 233/505019158607*14662949395604^(13/21) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^39/Lucas(56) 6524782462291177 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^74 6524782462291177 a001 233/2139295485799*817138163596^(14/19) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^41/Lucas(58) 6524782462291177 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^76 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(60) 6524782462291177 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^78 6524782462291177 a001 233/9062201101803*14662949395604^(5/7) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(62) 6524782462291177 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^80 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(64) 6524782462291177 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^82 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(66) 6524782462291177 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^84 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(68) 6524782462291177 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^86 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(70) 6524782462291177 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^88 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(72) 6524782462291177 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^90 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(74) 6524782462291177 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^92 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(76) 6524782462291177 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^94 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(78) 6524782462291177 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^96 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(80) 6524782462291177 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^98 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(82) 6524782462291177 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^100 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(84) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(86) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(88) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(90) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(92) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(94) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(96) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(98) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(100) 6524782462291177 a004 Fibonacci(13)*Lucas(1)/(1/2+sqrt(5)/2)^17 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(99) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(97) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(95) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(93) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(91) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(89) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(87) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(85) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(83) 6524782462291177 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^99 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(81) 6524782462291177 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^97 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(79) 6524782462291177 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^95 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(77) 6524782462291177 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^93 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(75) 6524782462291177 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^91 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(73) 6524782462291177 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^89 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(71) 6524782462291177 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^87 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(69) 6524782462291177 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^85 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(67) 6524782462291177 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^83 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(65) 6524782462291177 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^81 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(63) 6524782462291177 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^79 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(61) 6524782462291177 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^77 6524782462291177 a001 233/2139295485799*14662949395604^(2/3) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(59) 6524782462291177 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^75 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(57) 6524782462291177 a001 233/817138163596*23725150497407^(5/8) 6524782462291177 a001 233/2139295485799*505019158607^(3/4) 6524782462291177 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^73 6524782462291177 a001 233/312119004989*817138163596^(2/3) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^38/Lucas(55) 6524782462291177 a001 233/505019158607*192900153618^(13/18) 6524782462291177 a001 233/2139295485799*192900153618^(7/9) 6524782462291177 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^71 6524782462291177 a001 233/119218851371*14662949395604^(4/7) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^36/Lucas(53) 6524782462291177 a001 233/119218851371*505019158607^(9/14) 6524782462291177 a001 233/119218851371*192900153618^(2/3) 6524782462291177 a001 233/505019158607*73681302247^(3/4) 6524782462291177 a001 233/817138163596*73681302247^(10/13) 6524782462291177 a001 233/5600748293801*73681302247^(11/13) 6524782462291177 a001 233/45537549124*45537549124^(2/3) 6524782462291177 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^69 6524782462291177 a001 233/119218851371*73681302247^(9/13) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^34/Lucas(51) 6524782462291177 a001 233/73681302247*28143753123^(7/10) 6524782462291177 a001 233/817138163596*28143753123^(4/5) 6524782462291177 a001 233/9062201101803*28143753123^(9/10) 6524782462291177 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^67 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^32/Lucas(49) 6524782462291177 a001 233/17393796001*23725150497407^(1/2) 6524782462291177 a001 233/17393796001*505019158607^(4/7) 6524782462291177 a001 233/17393796001*73681302247^(8/13) 6524782462291177 a001 233/28143753123*10749957122^(11/16) 6524782462291177 a001 233/119218851371*10749957122^(3/4) 6524782462291177 a001 233/45537549124*10749957122^(17/24) 6524782462291177 a001 233/312119004989*10749957122^(19/24) 6524782462291177 a001 233/505019158607*10749957122^(13/16) 6524782462291177 a001 233/817138163596*10749957122^(5/6) 6524782462291177 a001 233/2139295485799*10749957122^(7/8) 6524782462291177 a001 233/5600748293801*10749957122^(11/12) 6524782462291177 a001 233/9062201101803*10749957122^(15/16) 6524782462291177 a001 233/14662949395604*10749957122^(23/24) 6524782462291177 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^65 6524782462291177 a001 233/17393796001*10749957122^(2/3) 6524782462291177 a001 233/6643838879*45537549124^(10/17) 6524782462291177 a001 233/6643838879*312119004989^(6/11) 6524782462291177 a001 233/6643838879*14662949395604^(10/21) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^30/Lucas(47) 6524782462291177 a001 692293112009/10610209857723 6524782462291177 a001 233/6643838879*192900153618^(5/9) 6524782462291177 a001 233/6643838879*28143753123^(3/5) 6524782462291177 a001 233/6643838879*10749957122^(5/8) 6524782462291177 a001 233/45537549124*4106118243^(17/23) 6524782462291177 a001 233/17393796001*4106118243^(16/23) 6524782462291177 a001 233/119218851371*4106118243^(18/23) 6524782462291177 a001 233/312119004989*4106118243^(19/23) 6524782462291177 a001 233/817138163596*4106118243^(20/23) 6524782462291177 a001 233/2139295485799*4106118243^(21/23) 6524782462291177 a001 233/5600748293801*4106118243^(22/23) 6524782462291177 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^63 6524782462291177 a001 233/6643838879*4106118243^(15/23) 6524782462291177 a001 233/2537720636*17393796001^(4/7) 6524782462291177 a001 233/2537720636*14662949395604^(4/9) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^28/Lucas(45) 6524782462291177 a001 233/2537720636*505019158607^(1/2) 6524782462291177 a001 233/2537720636*73681302247^(7/13) 6524782462291177 a001 233/2537720636*10749957122^(7/12) 6524782462291177 a001 233/2537720636*4106118243^(14/23) 6524782462291177 a001 233/17393796001*1568397607^(8/11) 6524782462291177 a001 233/6643838879*1568397607^(15/22) 6524782462291177 a001 233/28143753123*1568397607^(3/4) 6524782462291177 a001 233/45537549124*1568397607^(17/22) 6524782462291177 a001 233/119218851371*1568397607^(9/11) 6524782462291177 a001 233/312119004989*1568397607^(19/22) 6524782462291177 a001 233/817138163596*1568397607^(10/11) 6524782462291177 a001 233/2139295485799*1568397607^(21/22) 6524782462291177 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^61 6524782462291177 a001 233/2537720636*1568397607^(7/11) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^26/Lucas(43) 6524782462291177 a001 101004203821/1548008755920 6524782462291177 a001 233/969323029*73681302247^(1/2) 6524782462291177 a001 233/969323029*10749957122^(13/24) 6524782462291177 a001 233/969323029*4106118243^(13/23) 6524782462291177 a001 233/969323029*1568397607^(13/22) 6524782462291177 a001 233/1568397607*599074578^(9/14) 6524782462291177 a001 233/2537720636*599074578^(2/3) 6524782462291177 a001 233/6643838879*599074578^(5/7) 6524782462291177 a001 233/17393796001*599074578^(16/21) 6524782462291177 a001 233/28143753123*599074578^(11/14) 6524782462291177 a001 233/45537549124*599074578^(17/21) 6524782462291177 a001 233/73681302247*599074578^(5/6) 6524782462291177 a001 233/119218851371*599074578^(6/7) 6524782462291177 a001 233/312119004989*599074578^(19/21) 6524782462291177 a001 233/505019158607*599074578^(13/14) 6524782462291177 a001 233/817138163596*599074578^(20/21) 6524782462291177 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^59 6524782462291177 a001 233/969323029*599074578^(13/21) 6524782462291177 a001 233/370248451*2537720636^(8/15) 6524782462291177 a001 233/370248451*45537549124^(8/17) 6524782462291177 a001 233/370248451*14662949395604^(8/21) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^24/Lucas(41) 6524782462291177 a001 38580172853/591286729879 6524782462291177 a001 233/370248451*192900153618^(4/9) 6524782462291177 a001 233/370248451*73681302247^(6/13) 6524782462291177 a001 233/370248451*10749957122^(1/2) 6524782462291177 a001 233/370248451*4106118243^(12/23) 6524782462291177 a001 233/370248451*1568397607^(6/11) 6524782462291177 a001 233/370248451*599074578^(4/7) 6524782462291177 a001 233/599074578*228826127^(5/8) 6524782462291177 a001 233/969323029*228826127^(13/20) 6524782462291177 a001 233/2537720636*228826127^(7/10) 6524782462291177 a001 233/6643838879*228826127^(3/4) 6524782462291177 a001 233/17393796001*228826127^(4/5) 6524782462291177 a001 233/45537549124*228826127^(17/20) 6524782462291177 a001 233/73681302247*228826127^(7/8) 6524782462291177 a001 233/119218851371*228826127^(9/10) 6524782462291177 a001 233/312119004989*228826127^(19/20) 6524782462291177 a001 233/370248451*228826127^(3/5) 6524782462291177 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^57 6524782462291177 a001 233/141422324*312119004989^(2/5) 6524782462291177 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^22/Lucas(39) 6524782462291177 a001 14736314738/225851433717 6524782462291177 a001 233/141422324*10749957122^(11/24) 6524782462291177 a001 233/141422324*4106118243^(11/23) 6524782462291177 a001 233/141422324*1568397607^(1/2) 6524782462291177 a001 233/141422324*599074578^(11/21) 6524782462291177 a001 233/141422324*228826127^(11/20) 6524782462291178 a001 233/370248451*87403803^(12/19) 6524782462291178 a001 233/969323029*87403803^(13/19) 6524782462291178 a001 233/2537720636*87403803^(14/19) 6524782462291178 a001 233/6643838879*87403803^(15/19) 6524782462291178 a001 233/17393796001*87403803^(16/19) 6524782462291178 a001 233/45537549124*87403803^(17/19) 6524782462291178 a001 233/119218851371*87403803^(18/19) 6524782462291178 a001 233/141422324*87403803^(11/19) 6524782462291178 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^55 6524782462291179 a001 233/54018521*2537720636^(4/9) 6524782462291179 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^20/Lucas(37) 6524782462291179 a001 233/54018521*23725150497407^(5/16) 6524782462291179 a001 233/54018521*505019158607^(5/14) 6524782462291179 a001 5628771361/86267571272 6524782462291179 a001 233/54018521*73681302247^(5/13) 6524782462291179 a001 233/54018521*28143753123^(2/5) 6524782462291179 a001 233/54018521*10749957122^(5/12) 6524782462291179 a001 233/54018521*4106118243^(10/23) 6524782462291179 a001 233/54018521*1568397607^(5/11) 6524782462291179 a001 233/54018521*599074578^(10/21) 6524782462291179 a001 233/54018521*228826127^(1/2) 6524782462291180 a001 233/87403803*33385282^(7/12) 6524782462291180 a001 233/54018521*87403803^(10/19) 6524782462291181 a001 233/141422324*33385282^(11/18) 6524782462291181 a001 233/370248451*33385282^(2/3) 6524782462291181 a001 233/969323029*33385282^(13/18) 6524782462291181 a001 233/1568397607*33385282^(3/4) 6524782462291182 a001 233/2537720636*33385282^(7/9) 6524782462291182 a001 233/6643838879*33385282^(5/6) 6524782462291182 a001 233/17393796001*33385282^(8/9) 6524782462291182 a001 233/28143753123*33385282^(11/12) 6524782462291182 a001 233/54018521*33385282^(5/9) 6524782462291183 a001 233/45537549124*33385282^(17/18) 6524782462291183 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^53 6524782462291192 a001 233/20633239*141422324^(6/13) 6524782462291192 a001 233/20633239*2537720636^(2/5) 6524782462291192 a001 233/20633239*45537549124^(6/17) 6524782462291192 a001 233/20633239*14662949395604^(2/7) 6524782462291192 a001 233/20633239*(1/2+1/2*5^(1/2))^18 6524782462291192 a001 233/20633239*192900153618^(1/3) 6524782462291192 a001 9227465/141421803 6524782462291192 a001 233/20633239*10749957122^(3/8) 6524782462291192 a001 233/20633239*4106118243^(9/23) 6524782462291192 a001 233/20633239*1568397607^(9/22) 6524782462291192 a001 233/20633239*599074578^(3/7) 6524782462291192 a001 233/20633239*228826127^(9/20) 6524782462291193 a001 233/20633239*87403803^(9/19) 6524782462291195 a001 233/20633239*33385282^(1/2) 6524782462291203 a001 233/54018521*12752043^(10/17) 6524782462291203 a001 233/141422324*12752043^(11/17) 6524782462291205 a001 233/370248451*12752043^(12/17) 6524782462291208 a001 233/969323029*12752043^(13/17) 6524782462291210 a001 233/2537720636*12752043^(14/17) 6524782462291212 a001 233/6643838879*12752043^(15/17) 6524782462291214 a001 233/20633239*12752043^(9/17) 6524782462291215 a001 233/17393796001*12752043^(16/17) 6524782462291217 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^51 6524782462291282 a001 233/7881196*(1/2+1/2*5^(1/2))^16 6524782462291282 a001 233/7881196*23725150497407^(1/4) 6524782462291282 a001 233/7881196*73681302247^(4/13) 6524782462291282 a001 821226674/12586269025 6524782462291282 a001 233/7881196*10749957122^(1/3) 6524782462291282 a001 233/7881196*4106118243^(8/23) 6524782462291282 a001 233/7881196*1568397607^(4/11) 6524782462291282 a001 233/7881196*599074578^(8/21) 6524782462291282 a001 233/7881196*228826127^(2/5) 6524782462291282 a001 233/7881196*87403803^(8/19) 6524782462291285 a001 233/7881196*33385282^(4/9) 6524782462291301 a001 233/7881196*12752043^(8/17) 6524782462291347 a001 233/20633239*4870847^(9/16) 6524782462291351 a001 233/54018521*4870847^(5/8) 6524782462291366 a001 233/141422324*4870847^(11/16) 6524782462291383 a001 233/370248451*4870847^(3/4) 6524782462291400 a001 233/969323029*4870847^(13/16) 6524782462291418 a001 233/2537720636*4870847^(7/8) 6524782462291420 a001 233/7881196*4870847^(1/2) 6524782462291435 a001 233/6643838879*4870847^(15/16) 6524782462291452 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^49 6524782462291844 a001 233/4870847*1860498^(1/2) 6524782462291891 a001 233/3010349*20633239^(2/5) 6524782462291897 a001 233/3010349*17393796001^(2/7) 6524782462291897 a001 233/3010349*14662949395604^(2/9) 6524782462291897 a001 233/3010349*(1/2+1/2*5^(1/2))^14 6524782462291897 a001 233/3010349*505019158607^(1/4) 6524782462291897 a001 233/3010349*10749957122^(7/24) 6524782462291897 a001 313680677/4807526976 6524782462291897 a001 233/3010349*4106118243^(7/23) 6524782462291897 a001 233/3010349*1568397607^(7/22) 6524782462291897 a001 233/3010349*599074578^(1/3) 6524782462291897 a001 233/3010349*228826127^(7/20) 6524782462291897 a001 233/3010349*87403803^(7/19) 6524782462291899 a001 233/3010349*33385282^(7/18) 6524782462291914 a001 233/3010349*12752043^(7/17) 6524782462292017 a001 233/3010349*4870847^(7/16) 6524782462292287 a001 233/7881196*1860498^(8/15) 6524782462292323 a001 233/20633239*1860498^(3/5) 6524782462292436 a001 233/54018521*1860498^(2/3) 6524782462292496 a001 233/87403803*1860498^(7/10) 6524782462292560 a001 233/141422324*1860498^(11/15) 6524782462292685 a001 233/370248451*1860498^(4/5) 6524782462292748 a001 233/599074578*1860498^(5/6) 6524782462292777 a001 233/3010349*1860498^(7/15) 6524782462292811 a001 233/969323029*1860498^(13/15) 6524782462292873 a001 233/1568397607*1860498^(9/10) 6524782462292936 a001 233/2537720636*1860498^(14/15) 6524782462293062 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^47 6524782462296074 a001 233/1149851*7881196^(4/11) 6524782462296112 a001 233/1149851*141422324^(4/13) 6524782462296112 a001 233/1149851*2537720636^(4/15) 6524782462296112 a001 233/1149851*45537549124^(4/17) 6524782462296112 a001 233/1149851*817138163596^(4/19) 6524782462296112 a001 233/1149851*14662949395604^(4/21) 6524782462296112 a001 233/1149851*(1/2+1/2*5^(1/2))^12 6524782462296112 a001 233/1149851*192900153618^(2/9) 6524782462296112 a001 233/1149851*73681302247^(3/13) 6524782462296112 a001 233/1149851*10749957122^(1/4) 6524782462296112 a001 233/1149851*4106118243^(6/23) 6524782462296112 a001 119815357/1836311903 6524782462296112 a001 233/1149851*1568397607^(3/11) 6524782462296112 a001 233/1149851*599074578^(2/7) 6524782462296112 a001 233/1149851*228826127^(3/10) 6524782462296112 a001 233/1149851*87403803^(6/19) 6524782462296114 a001 233/1149851*33385282^(1/3) 6524782462296126 a001 233/1149851*12752043^(6/17) 6524782462296215 a001 233/1149851*4870847^(3/8) 6524782462296866 a001 233/1149851*1860498^(2/5) 6524782462298357 a001 233/3010349*710647^(1/2) 6524782462298665 a001 233/7881196*710647^(4/7) 6524782462299498 a001 233/20633239*710647^(9/14) 6524782462300408 a001 233/54018521*710647^(5/7) 6524782462300866 a001 233/87403803*710647^(3/4) 6524782462301329 a001 233/141422324*710647^(11/14) 6524782462301649 a001 233/1149851*710647^(3/7) 6524782462302251 a001 233/370248451*710647^(6/7) 6524782462303174 a001 233/969323029*710647^(13/14) 6524782462304097 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^45 6524782462324997 a001 233/439204*20633239^(2/7) 6524782462325002 a001 233/439204*2537720636^(2/9) 6524782462325002 a001 233/439204*312119004989^(2/11) 6524782462325002 a001 233/439204*(1/2+1/2*5^(1/2))^10 6524782462325002 a001 233/439204*28143753123^(1/5) 6524782462325002 a001 233/439204*10749957122^(5/24) 6524782462325002 a001 233/439204*4106118243^(5/23) 6524782462325002 a001 233/439204*1568397607^(5/22) 6524782462325002 a001 45765394/701408733 6524782462325002 a001 233/439204*599074578^(5/21) 6524782462325002 a001 233/439204*228826127^(1/4) 6524782462325002 a001 233/439204*87403803^(5/19) 6524782462325003 a001 233/439204*33385282^(5/18) 6524782462325013 a001 233/439204*12752043^(5/17) 6524782462325088 a001 233/439204*4870847^(5/16) 6524782462325630 a001 233/439204*1860498^(1/3) 6524782462329616 a001 233/439204*710647^(5/14) 6524782462333569 a001 233/1860498*271443^(1/2) 6524782462336983 a001 233/1149851*271443^(6/13) 6524782462339580 a001 233/3010349*271443^(7/13) 6524782462345777 a001 233/7881196*271443^(8/13) 6524782462352499 a001 233/20633239*271443^(9/13) 6524782462359061 a001 233/439204*271443^(5/13) 6524782462359298 a001 233/54018521*271443^(10/13) 6524782462366108 a001 233/141422324*271443^(11/13) 6524782462366811 a004 Fibonacci(28)/Lucas(13)/(1/2+sqrt(5)/2)^19 6524782462372919 a001 233/370248451*271443^(12/13) 6524782462377846 a004 Fibonacci(30)/Lucas(13)/(1/2+sqrt(5)/2)^21 6524782462379456 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2)^23 6524782462379691 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^25 6524782462379725 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^27 6524782462379730 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^29 6524782462379731 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^31 6524782462379731 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^33 6524782462379731 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^35 6524782462379731 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^37 6524782462379731 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^39 6524782462379731 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^41 6524782462379731 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^43 6524782462379731 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^45 6524782462379731 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^47 6524782462379731 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^49 6524782462379731 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^51 6524782462379731 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^53 6524782462379731 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^55 6524782462379731 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^57 6524782462379731 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^59 6524782462379731 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^61 6524782462379731 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^63 6524782462379731 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^65 6524782462379731 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^67 6524782462379731 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^69 6524782462379731 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^71 6524782462379731 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^73 6524782462379731 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^75 6524782462379731 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^77 6524782462379731 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^79 6524782462379731 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^81 6524782462379731 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^83 6524782462379731 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^85 6524782462379731 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^87 6524782462379731 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^89 6524782462379731 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^91 6524782462379731 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^90 6524782462379731 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^88 6524782462379731 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^86 6524782462379731 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^84 6524782462379731 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^82 6524782462379731 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^80 6524782462379731 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^78 6524782462379731 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^76 6524782462379731 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^74 6524782462379731 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^72 6524782462379731 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^70 6524782462379731 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^68 6524782462379731 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^66 6524782462379731 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^64 6524782462379731 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^62 6524782462379731 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^60 6524782462379731 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^58 6524782462379731 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^56 6524782462379731 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^54 6524782462379731 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^52 6524782462379731 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^50 6524782462379731 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^48 6524782462379731 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^46 6524782462379731 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^44 6524782462379731 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^42 6524782462379731 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^40 6524782462379731 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^38 6524782462379731 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^36 6524782462379731 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^34 6524782462379731 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^32 6524782462379731 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^30 6524782462379733 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^28 6524782462379746 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^26 6524782462379836 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^24 6524782462380451 a004 Fibonacci(31)/Lucas(13)/(1/2+sqrt(5)/2)^22 6524782462384666 a004 Fibonacci(29)/Lucas(13)/(1/2+sqrt(5)/2)^20 6524782462413556 a004 Fibonacci(27)/Lucas(13)/(1/2+sqrt(5)/2)^18 6524782462430232 a001 233/271443*103682^(3/8) 6524782462523015 a001 233/167761*(1/2+1/2*5^(1/2))^8 6524782462523015 a001 233/167761*23725150497407^(1/8) 6524782462523015 a001 233/167761*505019158607^(1/7) 6524782462523015 a001 233/167761*73681302247^(2/13) 6524782462523015 a001 233/167761*10749957122^(1/6) 6524782462523015 a001 233/167761*4106118243^(4/23) 6524782462523015 a001 233/167761*1568397607^(2/11) 6524782462523015 a001 233/167761*599074578^(4/21) 6524782462523015 a001 17480825/267914296 6524782462523015 a001 233/167761*228826127^(1/5) 6524782462523015 a001 233/167761*87403803^(4/19) 6524782462523016 a001 233/167761*33385282^(2/9) 6524782462523024 a001 233/167761*12752043^(4/17) 6524782462523083 a001 233/167761*4870847^(1/4) 6524782462523517 a001 233/167761*1860498^(4/15) 6524782462526706 a001 233/167761*710647^(2/7) 6524782462550262 a001 233/167761*271443^(4/13) 6524782462556447 a001 233/710647*103682^(11/24) 6524782462577901 a001 233/439204*103682^(5/12) 6524782462599591 a001 233/1149851*103682^(1/2) 6524782462611569 a004 Fibonacci(25)/Lucas(13)/(1/2+sqrt(5)/2)^16 6524782462618061 a001 233/1860498*103682^(13/24) 6524782462645956 a001 233/3010349*103682^(7/12) 6524782462670251 a001 233/4870847*103682^(5/8) 6524782462695921 a001 233/7881196*103682^(2/3) 6524782462721066 a001 233/12752043*103682^(17/24) 6524782462725334 a001 233/167761*103682^(1/3) 6524782462746412 a001 233/20633239*103682^(3/4) 6524782462771680 a001 233/33385282*103682^(19/24) 6524782462796978 a001 233/54018521*103682^(5/6) 6524782462822265 a001 233/87403803*103682^(7/8) 6524782462847556 a001 233/141422324*103682^(11/12) 6524782462872846 a001 233/228826127*103682^(23/24) 6524782462898136 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^41 6524782463007905 a001 233/103682*39603^(7/22) 6524782463465684 a001 233/64079*64079^(6/23) 6524782463872700 a001 233/64079*439204^(2/9) 6524782463880197 a001 233/64079*7881196^(2/11) 6524782463880216 a001 233/64079*141422324^(2/13) 6524782463880216 a001 233/64079*2537720636^(2/15) 6524782463880216 a001 233/64079*45537549124^(2/17) 6524782463880216 a001 233/64079*14662949395604^(2/21) 6524782463880216 a001 233/64079*(1/2+1/2*5^(1/2))^6 6524782463880216 a001 233/64079*10749957122^(1/8) 6524782463880216 a001 233/64079*4106118243^(3/23) 6524782463880216 a001 233/64079*1568397607^(3/22) 6524782463880216 a001 233/64079*599074578^(1/7) 6524782463880216 a001 233/64079*228826127^(3/20) 6524782463880216 a001 6677081/102334155 6524782463880216 a001 233/64079*87403803^(3/19) 6524782463880217 a001 233/64079*33385282^(1/6) 6524782463880223 a001 233/64079*12752043^(3/17) 6524782463880268 a001 233/64079*4870847^(3/16) 6524782463880593 a001 233/64079*1860498^(1/5) 6524782463882985 a001 233/64079*710647^(3/14) 6524782463900652 a001 233/64079*271443^(3/13) 6524782463904506 a001 233/271443*39603^(9/22) 6524782463968770 a004 Fibonacci(23)/Lucas(13)/(1/2+sqrt(5)/2)^14 6524782464031956 a001 233/64079*103682^(1/4) 6524782464035800 a001 233/167761*39603^(4/11) 6524782464215983 a001 233/439204*39603^(5/11) 6524782464358336 a001 233/710647*39603^(1/2) 6524782464565289 a001 233/1149851*39603^(6/11) 6524782464747567 a001 233/1860498*39603^(13/22) 6524782464939271 a001 233/3010349*39603^(7/11) 6524782465014805 a001 233/64079*39603^(3/11) 6524782465049366 r002 4th iterates of z^2 + 6524782465127374 a001 233/4870847*39603^(15/22) 6524782465259556 a001 233/39603*15127^(1/4) 6524782465316852 a001 233/7881196*39603^(8/11) 6524782465505805 a001 233/12752043*39603^(17/22) 6524782465694958 a001 233/20633239*39603^(9/11) 6524782465884035 a001 233/33385282*39603^(19/22) 6524782466073141 a001 233/54018521*39603^(10/11) 6524782466262236 a001 233/87403803*39603^(21/22) 6524782466350175 a001 233/15127*5778^(1/6) 6524782466451335 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^39 6524782471108054 a001 233/24476*24476^(4/21) 6524782471664170 a001 233/103682*15127^(7/20) 6524782472434461 a001 233/64079*15127^(3/10) 6524782472906258 a001 233/24476*64079^(4/23) 6524782473182613 a001 233/24476*(1/2+1/2*5^(1/2))^4 6524782473182613 a001 233/24476*23725150497407^(1/16) 6524782473182613 a001 233/24476*73681302247^(1/13) 6524782473182613 a001 233/24476*10749957122^(1/12) 6524782473182613 a001 233/24476*4106118243^(2/23) 6524782473182613 a001 233/24476*1568397607^(1/11) 6524782473182613 a001 233/24476*599074578^(2/21) 6524782473182613 a001 233/24476*228826127^(1/10) 6524782473182613 a001 233/24476*87403803^(2/19) 6524782473182614 a001 233/24476*33385282^(1/9) 6524782473182614 a001 2550418/39088169 6524782473182618 a001 233/24476*12752043^(2/17) 6524782473182647 a001 233/24476*4870847^(1/8) 6524782473182864 a001 233/24476*1860498^(2/15) 6524782473184459 a001 233/24476*710647^(1/7) 6524782473196237 a001 233/24476*271443^(2/13) 6524782473271167 a004 Fibonacci(21)/Lucas(13)/(1/2+sqrt(5)/2)^12 6524782473283773 a001 233/24476*103682^(1/6) 6524782473928675 a001 233/167761*15127^(2/5) 6524782473939006 a001 233/24476*39603^(2/11) 6524782475033990 a001 233/271443*15127^(9/20) 6524782476582077 a001 233/439204*15127^(1/2) 6524782476746229 a001 233/9349*3571^(2/17) 6524782477961039 a001 233/710647*15127^(11/20) 6524782478885443 a001 233/24476*15127^(1/5) 6524782479404602 a001 233/1149851*15127^(3/5) 6524782480823489 a001 233/1860498*15127^(13/20) 6524782482227613 m006 (4/5/Pi-2)/(1/2*exp(2*Pi)-1/4) 6524782482251802 a001 233/3010349*15127^(7/10) 6524782483676514 a001 233/4870847*15127^(3/4) 6524782485102602 a001 233/7881196*15127^(4/5) 6524782486528164 a001 233/12752043*15127^(17/20) 6524782487953927 a001 233/20633239*15127^(9/10) 6524782489379613 a001 233/33385282*15127^(19/20) 6524782490805327 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^37 6524782492418751 m005 (1/2*Catalan+7/12)/(51/88+5/11*5^(1/2)) 6524782496300168 a007 Real Root Of -22*x^4+572*x^3-128*x^2+214*x+357 6524782503117987 a003 cos(Pi*11/70)*sin(Pi*17/64) 6524782512419599 a001 233/39603*5778^(5/18) 6524782516613477 a001 233/24476*5778^(2/9) 6524782520197172 r005 Re(z^2+c),c=-133/118+12/55*I,n=42 6524782523888749 h001 (-11*exp(4)+5)/(-11*exp(2)-10) 6524782529026512 a001 233/64079*5778^(1/3) 6524782529084190 a001 233/9349*9349^(2/19) 6524782535904912 a001 233/9349*24476^(2/21) 6524782536804014 a001 233/9349*64079^(2/23) 6524782536942191 a001 233/9349*(1/2+1/2*5^(1/2))^2 6524782536942191 a001 233/9349*10749957122^(1/24) 6524782536942191 a001 233/9349*4106118243^(1/23) 6524782536942191 a001 233/9349*1568397607^(1/22) 6524782536942191 a001 233/9349*599074578^(1/21) 6524782536942191 a001 233/9349*228826127^(1/20) 6524782536942191 a001 233/9349*87403803^(1/19) 6524782536942191 a001 233/9349*33385282^(1/18) 6524782536942194 a001 233/9349*12752043^(1/17) 6524782536942196 a001 974173/14930352 6524782536942208 a001 233/9349*4870847^(1/16) 6524782536942317 a001 233/9349*1860498^(1/15) 6524782536943114 a001 233/9349*710647^(1/14) 6524782536949003 a001 233/9349*271443^(1/13) 6524782536992771 a001 233/9349*103682^(1/12) 6524782537030744 a004 Fibonacci(19)/Lucas(13)/(1/2+sqrt(5)/2)^10 6524782537320387 a001 233/9349*39603^(1/11) 6524782537688230 a001 233/103682*5778^(7/18) 6524782539793606 a001 233/9349*15127^(1/10) 6524782544480275 r005 Im(z^2+c),c=27/106+23/36*I,n=5 6524782549384743 a001 233/167761*5778^(4/9) 6524782553908214 s001 sum(1/10^(n-1)*A171251[n]/n!,n=1..infinity) 6524782558657623 a001 233/9349*5778^(1/9) 6524782559922067 a001 233/271443*5778^(1/2) 6524782560096938 m001 Trott2nd^HardyLittlewoodC5-ln(2^(1/2)+1) 6524782570902162 a001 233/439204*5778^(5/9) 6524782573499840 r002 21th iterates of z^2 + 6524782581713134 a001 233/710647*5778^(11/18) 6524782587860679 a007 Real Root Of -388*x^4+544*x^3-182*x^2+417*x+571 6524782592588705 a001 233/1149851*5778^(2/3) 6524782603439601 a001 233/1860498*5778^(13/18) 6524782614299922 a001 233/3010349*5778^(7/9) 6524782625156643 a001 233/4870847*5778^(5/6) 6524782627291282 h001 (-8*exp(4)+11)/(-3*exp(3)-5) 6524782636014740 a001 233/7881196*5778^(8/9) 6524782646872311 a001 233/12752043*5778^(17/18) 6524782657730067 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^35 6524782658659752 r002 4th iterates of z^2 + 6524782668981315 m001 ln(exp(1/exp(1))+PlouffeB) 6524782684944146 a001 233/15127*2207^(3/16) 6524782690356417 p003 LerchPhi(1/512,5,539/197) 6524782704386938 a001 233/9349*2207^(1/8) 6524782707720243 r005 Re(z^2+c),c=-13/22+51/124*I,n=20 6524782708031846 m001 BesselJ(1,1)^ErdosBorwein/HardyLittlewoodC5 6524782725154860 m001 (ln(gamma)+OneNinth)/(Paris-StronglyCareFree) 6524782740007986 l006 ln(1769/3397) 6524782756938133 a001 1322157322203/55*10610209857723^(21/22) 6524782783357921 m001 (-ln(gamma)+ln(3))/(2^(1/3)+BesselI(0,1)) 6524782795862309 r002 20th iterates of z^2 + 6524782808072108 a001 233/24476*2207^(1/4) 6524782842499228 r002 8th iterates of z^2 + 6524782853603153 r009 Re(z^3+c),c=-7/78+21/53*I,n=13 6524782858212858 m001 (5^(1/2)+gamma)/(-TreeGrowth2nd+ZetaQ(3)) 6524782874458516 a001 1/199*(1/2*5^(1/2)+1/2)^28*4^(10/23) 6524782876742889 a001 233/39603*2207^(5/16) 6524782880956924 h001 (3/7*exp(1)+1/10)/(5/9*exp(1)+3/7) 6524782910341767 a001 610/64079*322^(1/3) 6524782922670965 a001 233/5778*843^(1/14) 6524782931091470 m002 -3-Pi^5+Pi^6+ProductLog[Pi]/Pi^2 6524782936596222 p001 sum((-1)^n/(196*n+153)/(256^n),n=0..infinity) 6524782947072579 a003 cos(Pi*11/92)-sin(Pi*39/83) 6524782966214465 a001 233/64079*2207^(3/8) 6524782969202714 m005 (1/3*2^(1/2)-2/11)/(31/9+4/9*5^(1/2)) 6524782973616340 m001 polylog(4,1/2)/BesselK(1,1)/HeathBrownMoroz 6524782973956874 a001 233/3571 6524782973956874 q001 233/3571 6524782974045388 a004 Fibonacci(17)/Lucas(13)/(1/2+sqrt(5)/2)^8 6524783042162678 m001 DuboisRaymond^Trott2nd-GaussKuzminWirsing 6524783047740845 a001 233/103682*2207^(7/16) 6524783087624368 a001 4181/7*76^(1/49) 6524783095472198 r005 Im(z^2+c),c=-10/21+7/62*I,n=14 6524783098162786 r002 21th iterates of z^2 + 6524783122850682 h001 (4/9*exp(1)+3/5)/(10/11*exp(1)+3/10) 6524783129072154 a003 sin(Pi*4/107)-sin(Pi*26/93) 6524783132302021 a001 233/167761*2207^(1/2) 6524783141880698 a007 Real Root Of 235*x^4-894*x^3+392*x^2-762*x-955 6524783179200010 h001 (7/11*exp(2)+10/11)/(2/7*exp(1)+1/12) 6524783183541765 m001 GaussKuzminWirsing^exp(1/exp(1))/Trott2nd 6524783194058706 a007 Real Root Of 136*x^4-367*x^3+832*x^2+484*x-165 6524783203642284 m009 (1/5*Psi(1,2/3)+1/6)/(2/3*Psi(1,3/4)-1/2) 6524783215704010 a001 233/271443*2207^(9/16) 6524783227500652 a007 Real Root Of 385*x^4-661*x^3+122*x^2-775*x-811 6524783246973227 r005 Re(z^2+c),c=-31/38+17/26*I,n=3 6524783256223715 a001 11*(1/2*5^(1/2)+1/2)^29*11^(13/19) 6524783264902953 a007 Real Root Of 110*x^4-986*x^3+836*x^2+700*x-193 6524783273404869 m005 (1/2*5^(1/2)+6)/(9/10*gamma+4/7) 6524783284421096 r002 4th iterates of z^2 + 6524783299548770 a001 233/439204*2207^(5/8) 6524783301179304 m005 (49/60+5/12*5^(1/2))/(1/4*exp(1)+2) 6524783306619758 a001 987/167761*322^(5/12) 6524783309513468 l006 ln(5169/9926) 6524783314318927 a007 Real Root Of -403*x^4+150*x^3-415*x^2+591*x+677 6524783325454431 r005 Re(z^2+c),c=-37/50+3/26*I,n=61 6524783326458458 m001 (ErdosBorwein+Totient)/(ln(2)-ln(Pi)) 6524783376829818 m001 FibonacciFactorial/DuboisRaymond*MertensB2 6524783379729514 r005 Im(z^2+c),c=-17/30+71/106*I,n=7 6524783383224409 a001 233/710647*2207^(11/16) 6524783392763328 m001 Bloch*(BesselJ(1,1)-MasserGramainDelta) 6524783401321472 a007 Real Root Of 798*x^4-305*x^3+659*x^2-581*x-889 6524783413581731 m001 (GolombDickman+ZetaP(4))^Zeta(3) 6524783414919522 m001 MinimumGamma/Khintchine^2*ln(Riemann3rdZero) 6524783423433502 m001 (Salem+Tribonacci)/(gamma(2)+Bloch) 6524783458849071 m001 (ln(3)-sqrt(2)*(3^(1/3)))/(3^(1/3)) 6524783458849071 m001 1/3*(2^(1/2)*3^(1/3)-ln(3))*3^(2/3) 6524783466964647 a001 233/1149851*2207^(3/4) 6524783468874452 a001 987/76*843^(25/43) 6524783550680212 a001 233/1860498*2207^(13/16) 6524783559602483 r005 Im(z^2+c),c=41/118+17/31*I,n=22 6524783566741886 m001 Porter/(Landau+Niven) 6524783569729989 h001 (-8*exp(-3)+5)/(-7*exp(-2)+8) 6524783578208424 a007 Real Root Of -6*x^4+263*x^3-134*x^2-198*x+2 6524783578637970 m001 FellerTornier/(exp(1/Pi)+FeigenbaumMu) 6524783586215305 r002 5th iterates of z^2 + 6524783594297078 m001 (exp(1/Pi)+MertensB2)/(1-Zeta(5)) 6524783596462432 r009 Re(z^3+c),c=-25/56+1/37*I,n=13 6524783600302026 r002 13th iterates of z^2 + 6524783605823807 l006 ln(3400/6529) 6524783634405203 a001 233/3010349*2207^(7/8) 6524783655124206 a007 Real Root Of -703*x^4+243*x^3+794*x^2+86*x-87 6524783661807951 m001 (Artin-ZetaP(4))/(Pi+2^(1/2)) 6524783666302052 r002 4th iterates of z^2 + 6524783668909762 r005 Im(z^2+c),c=-99/82+2/23*I,n=47 6524783718126595 a001 233/4870847*2207^(15/16) 6524783718335183 r002 56th iterates of z^2 + 6524783761943414 b008 5/E^(3/11)+E 6524783762724487 m001 Zeta(1,-1)^PisotVijayaraghavan/Riemann1stZero 6524783765791526 m006 (1/4*exp(2*Pi)+5)/(5/6*exp(Pi)+2) 6524783801849258 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^33 6524783812607607 r005 Im(z^2+c),c=-135/118+5/61*I,n=26 6524783813327655 m001 (-CareFree+Tribonacci)/(BesselI(0,2)-cos(1)) 6524783825568934 a007 Real Root Of 97*x^4-834*x^3-284*x^2-628*x-40 6524783848579655 a001 233/9349*843^(1/7) 6524783855789170 l006 ln(4316/4607) 6524783860694743 r005 Re(z^2+c),c=-45/98+31/45*I,n=6 6524783863612921 r002 18th iterates of z^2 + 6524783879698851 r009 Re(z^3+c),c=-5/94+25/29*I,n=2 6524783882256116 m001 sin(1/5*Pi)^MertensB3*Ei(1,1)^MertensB3 6524783891294679 a001 36/19*64079^(39/53) 6524783910261910 l006 ln(5031/9661) 6524783929882542 a001 5600748293801/1597*144^(10/17) 6524783932221115 r009 Re(z^3+c),c=-13/110+17/24*I,n=48 6524783943382684 a001 29*(1/2*5^(1/2)+1/2)^27*18^(13/23) 6524783955715638 a007 Real Root Of -625*x^4+695*x^3+167*x^2+792*x+752 6524783974319088 a007 Real Root Of -780*x^4+681*x^3-265*x^2+260*x+613 6524784001216934 a007 Real Root Of -197*x^4+554*x^3-493*x^2+585*x-290 6524784011975230 a007 Real Root Of -338*x^4-113*x^3-590*x^2+403*x+544 6524784013457434 m001 (Artin-GolombDickman)/(Otter+QuadraticClass) 6524784018352890 m005 (1/3*2^(1/2)+3/4)/(5/11*exp(1)+7/11) 6524784040584495 a007 Real Root Of -24*x^4+854*x^3+218*x^2+189*x-449 6524784046500167 m001 ln(GAMMA(3/4))*(3^(1/3))^2*cosh(1) 6524784058277518 r009 Im(z^3+c),c=-53/122+34/59*I,n=34 6524784065404001 m001 (-GaussAGM+OneNinth)/(BesselK(0,1)+ln(2)) 6524784070913467 r009 Im(z^3+c),c=-37/94+31/53*I,n=15 6524784089887043 a001 271443*144^(3/17) 6524784113319992 s002 sum(A107369[n]/((10^n-1)/n),n=1..infinity) 6524784143577024 b008 Pi*Gamma[5/2,4] 6524784149579794 m001 1/exp(Lehmer)*Bloch*Riemann3rdZero 6524784180067646 m004 2+(25*Pi)/2+5*Pi*ProductLog[Sqrt[5]*Pi] 6524784225747787 m001 3^(1/2)*Kolakoski-Sarnak 6524784233966693 a003 sin(Pi*4/55)-sin(Pi*27/79) 6524784239711007 a007 Real Root Of 446*x^4-804*x^3+513*x^2+7*x-518 6524784261490464 a007 Real Root Of 301*x^4-173*x^3+908*x^2-294*x-681 6524784267973651 m001 (ln(Pi)+Zeta(1,-1))/(DuboisRaymond+Mills) 6524784286618504 r004 Re(z^2+c),c=-31/34+1/7*I,z(0)=-1,n=23 6524784292924182 r002 32th iterates of z^2 + 6524784294350571 a007 Real Root Of 58*x^4-442*x^3+795*x^2+159*x-368 6524784312332121 a007 Real Root Of -962*x^4+353*x^3+128*x^2-593*x-169 6524784319320706 m001 (5^(1/2)-HardyLittlewoodC4)/Otter 6524784325421064 r002 3th iterates of z^2 + 6524784357045390 r002 28th iterates of z^2 + 6524784364496796 m001 (ln(gamma)-ln(5))/(FeigenbaumD+Kac) 6524784366897279 a001 14662949395604/4181*144^(10/17) 6524784372863281 m001 sin(Pi/12)^2*ln(gamma)*sqrt(Pi) 6524784376381781 r002 7th iterates of z^2 + 6524784381392789 r005 Im(z^2+c),c=-4/7+7/59*I,n=44 6524784386105561 a001 2/3*14930352^(16/23) 6524784390922386 m001 (HardyLittlewoodC3+LandauRamanujan)/(1+ln(Pi)) 6524784401233291 a001 233/15127*843^(3/14) 6524784403964711 b008 2+E+ProductLog[11] 6524784422346635 r009 Re(z^3+c),c=-3/10+25/36*I,n=21 6524784434439232 m005 (1/2*exp(1)+8/9)/(Catalan-4/7) 6524784445775458 r005 Im(z^2+c),c=-11/14+47/250*I,n=13 6524784448014098 h001 (-9*exp(1)+6)/(-5*exp(4)-10) 6524784448257266 r002 53th iterates of z^2 + 6524784450541319 a001 34/5779*322^(5/12) 6524784465915329 m001 LandauRamanujan/(Porter^ThueMorse) 6524784470062473 a001 23725150497407/6765*144^(10/17) 6524784482758620 q001 1211/1856 6524784509601725 m001 Zeta(9)/GAMMA(11/24)^2/exp(sqrt(2)) 6524784522455976 r005 Im(z^2+c),c=-171/118+5/63*I,n=7 6524784544896798 l006 ln(1631/3132) 6524784547904451 r002 15th iterates of z^2 + 6524784552513201 a007 Real Root Of -893*x^4+714*x^3+63*x^2+660*x+764 6524784565968513 r005 Re(z^2+c),c=11/122+17/52*I,n=5 6524784578137301 m001 (Pi+1/3*Psi(1,1/3)*3^(1/2))/exp(1/Pi) 6524784590471559 a007 Real Root Of -152*x^4-847*x^3+805*x^2-892*x+122 6524784598906313 r002 37th iterates of z^2 + 6524784617437226 a001 6765/1149851*322^(5/12) 6524784622076892 a007 Real Root Of 318*x^4-83*x^3-480*x^2-900*x+757 6524784629587680 a007 Real Root Of -141*x^4-849*x^3+405*x^2-516*x-888 6524784636987270 a001 9062201101803/2584*144^(10/17) 6524784638314955 m005 (2/5*Catalan+5/6)/(3/4*exp(1)-1/5) 6524784641787010 a001 17711/3010349*322^(5/12) 6524784645339596 a001 11592/1970299*322^(5/12) 6524784645857911 a001 121393/20633239*322^(5/12) 6524784645933533 a001 317811/54018521*322^(5/12) 6524784645944566 a001 208010/35355581*322^(5/12) 6524784645946175 a001 2178309/370248451*322^(5/12) 6524784645946410 a001 5702887/969323029*322^(5/12) 6524784645946444 a001 196452/33391061*322^(5/12) 6524784645946449 a001 39088169/6643838879*322^(5/12) 6524784645946450 a001 102334155/17393796001*322^(5/12) 6524784645946450 a001 66978574/11384387281*322^(5/12) 6524784645946450 a001 701408733/119218851371*322^(5/12) 6524784645946450 a001 1836311903/312119004989*322^(5/12) 6524784645946450 a001 1201881744/204284540899*322^(5/12) 6524784645946450 a001 12586269025/2139295485799*322^(5/12) 6524784645946450 a001 32951280099/5600748293801*322^(5/12) 6524784645946450 a001 1135099622/192933544679*322^(5/12) 6524784645946450 a001 139583862445/23725150497407*322^(5/12) 6524784645946450 a001 53316291173/9062201101803*322^(5/12) 6524784645946450 a001 10182505537/1730726404001*322^(5/12) 6524784645946450 a001 7778742049/1322157322203*322^(5/12) 6524784645946450 a001 2971215073/505019158607*322^(5/12) 6524784645946450 a001 567451585/96450076809*322^(5/12) 6524784645946450 a001 433494437/73681302247*322^(5/12) 6524784645946450 a001 165580141/28143753123*322^(5/12) 6524784645946451 a001 31622993/5374978561*322^(5/12) 6524784645946452 a001 24157817/4106118243*322^(5/12) 6524784645946466 a001 9227465/1568397607*322^(5/12) 6524784645946555 a001 1762289/299537289*322^(5/12) 6524784645947170 a001 1346269/228826127*322^(5/12) 6524784645951384 a001 514229/87403803*322^(5/12) 6524784645980269 a001 98209/16692641*322^(5/12) 6524784646178248 a001 75025/12752043*322^(5/12) 6524784647535215 a001 28657/4870847*322^(5/12) 6524784656836005 a001 5473/930249*322^(5/12) 6524784666328081 b008 5+ArcTan[19+E] 6524784680258750 r009 Re(z^3+c),c=-7/62+22/35*I,n=20 6524784688476937 r005 Re(z^2+c),c=-7/34+49/53*I,n=6 6524784689463705 a001 1836311903^(7/17) 6524784695236078 a007 Real Root Of -891*x^4+913*x^3+856*x^2+917*x+649 6524784713026412 m005 (1/2*Zeta(3)+2/5)/(3/4*5^(1/2)-1/7) 6524784720584569 a001 4181/710647*322^(5/12) 6524784725806631 m001 (GaussAGM+HardHexagonsEntropy)/(Magata+Trott) 6524784809255783 r002 3th iterates of z^2 + 6524784817208403 s002 sum(A270558[n]/(n*pi^n-1),n=1..infinity) 6524784821951818 r005 Im(z^2+c),c=1/110+29/45*I,n=51 6524784839624728 r005 Re(z^2+c),c=1/22+23/60*I,n=26 6524784855014659 m001 (Backhouse+1)/(LandauRamanujan+3) 6524784857448877 r005 Re(z^2+c),c=-41/58+13/31*I,n=8 6524784867781257 a001 47/514229*987^(13/21) 6524784873657301 a007 Real Root Of 441*x^4+351*x^3+347*x^2-58*x-168 6524784885112998 r005 Re(z^2+c),c=-9/10+96/251*I,n=6 6524784885773091 m005 (1/2*2^(1/2)-11/12)/(1/24+1/8*5^(1/2)) 6524784894563383 m006 (1/4*exp(Pi)-4)/(1/6*Pi-1/4) 6524784927026421 m001 log(1+sqrt(2))^2/(3^(1/3))^2/ln(sqrt(Pi)) 6524784934276998 a001 7*4181^(31/57) 6524784966957245 a003 cos(Pi*24/89)*sin(Pi*41/92) 6524784968333739 a003 sin(Pi*1/69)/cos(Pi*43/90) 6524785030444851 a007 Real Root Of -266*x^4-574*x^3-653*x^2+195*x+294 6524785048722438 m001 (gamma+HardyLittlewoodC3)/(-Kac+TreeGrowth2nd) 6524785053547355 m001 (Ei(1)-Psi(1,1/3))/(-FeigenbaumKappa+Paris) 6524785065424864 r005 Im(z^2+c),c=-5/8+34/241*I,n=27 6524785096457779 a001 233/24476*843^(2/7) 6524785123216401 p003 LerchPhi(1/64,5,553/202) 6524785130462549 a007 Real Root Of -983*x^4+584*x^3-287*x^2+698*x+918 6524785143110563 m004 -25*Pi+5*Sqrt[5]*Pi-20*Cot[Sqrt[5]*Pi] 6524785147669419 b008 3*Sqrt[Pi]+AiryBi[1] 6524785148129838 m005 (1/2*5^(1/2)+3/10)/(2/5*Pi+11/12) 6524785157523725 a001 1597/271443*322^(5/12) 6524785165062142 m005 (1/2*Zeta(3)+2/3)/(3/11*3^(1/2)-2/3) 6524785168781744 m001 (exp(-1/2*Pi)-exp(Pi))/(Magata+OneNinth) 6524785190042926 a007 Real Root Of 243*x^4-756*x^3+503*x^2+34*x-446 6524785216368494 l006 ln(4755/9131) 6524785219633135 r005 Im(z^2+c),c=3/70+3/50*I,n=6 6524785239120037 r005 Re(z^2+c),c=-77/106+7/53*I,n=5 6524785244391653 m001 (1+Shi(1))/(GAMMA(3/4)+Tetranacci) 6524785248701343 l006 ln(6/4091) 6524785259710385 a003 sin(Pi*7/100)-sin(Pi*38/113) 6524785284500546 p001 sum((-1)^n/(505*n+434)/n/(16^n),n=1..infinity) 6524785333085062 b008 -7+LogGamma[11/4] 6524785369207054 m009 (4*Psi(1,3/4)-3)/(24/5*Catalan+3/5*Pi^2+2/3) 6524785397102616 m001 (Catalan-Shi(1))/(-CopelandErdos+ZetaP(2)) 6524785397452515 s002 sum(A083487[n]/(64^n-1),n=1..infinity) 6524785412096805 a007 Real Root Of 14*x^4+910*x^3-232*x^2-358*x+451 6524785448677923 a007 Real Root Of 681*x^4-817*x^3-274*x^2+90*x-175 6524785462629668 r005 Im(z^2+c),c=-1/17+33/49*I,n=4 6524785464865107 a007 Real Root Of 15*x^4-169*x^3+745*x^2-270*x-543 6524785468272544 s002 sum(A239465[n]/(n^3*2^n-1),n=1..infinity) 6524785528169365 m001 gamma/cos(Pi/5)^2/ln(sin(Pi/12)) 6524785554699778 a007 Real Root Of 690*x^4-862*x^3+59*x^2+614*x+11 6524785566935165 l006 ln(3124/5999) 6524785573644503 r002 31th iterates of z^2 + 6524785575997406 m001 (Zeta(1/2)-gamma(2))/(GAMMA(7/12)-Mills) 6524785607374346 m001 Zeta(1,2)*CareFree^MertensB2 6524785631295993 a007 Real Root Of -326*x^4-662*x^3-860*x^2+939*x+854 6524785633028989 r005 Re(z^2+c),c=8/21+23/63*I,n=23 6524785648955099 s001 sum(1/10^(n-1)*A074980[n]/n!,n=1..infinity) 6524785665294924 r009 Im(z^3+c),c=-19/48+2/45*I,n=2 6524785675639789 m002 -Pi^3+Pi^4-Log[Pi]-Tanh[Pi]/Pi^4 6524785697036876 a001 47/139583862445*591286729879^(13/21) 6524785697036878 a001 47/267914296*24157817^(13/21) 6524785709597610 r005 Im(z^2+c),c=-51/64+1/34*I,n=60 6524785710712685 m001 FeigenbaumB^Kolakoski/PisotVijayaraghavan 6524785721116944 a007 Real Root Of 997*x^4-996*x^3+63*x^2+621*x-79 6524785725140462 a007 Real Root Of 115*x^4+896*x^3+819*x^2-795*x+404 6524785737225133 a001 233/39603*843^(5/14) 6524785746619264 p004 log(36761/34439) 6524785781107077 a001 494493258286/141*144^(10/17) 6524785783131056 a007 Real Root Of -604*x^4-241*x^3-979*x^2+821*x+995 6524785788612707 r002 36th iterates of z^2 + 6524785806361671 a007 Real Root Of 79*x^4+394*x^3-693*x^2+544*x-686 6524785808194633 a007 Real Root Of -677*x^4+614*x^3-243*x^2+379*x+644 6524785841340972 a007 Real Root Of 601*x^4-457*x^3-12*x^2+510*x+102 6524785849305024 a007 Real Root Of 780*x^4-977*x^3+42*x^2-750*x-920 6524785881096002 r005 Re(z^2+c),c=1/44+13/20*I,n=9 6524785881131585 q001 2514/3853 6524785896784749 m001 Zeta(3)^BesselI(1,2)/gamma(3) 6524785903242820 r009 Im(z^3+c),c=-7/50+58/59*I,n=6 6524785908994240 m001 sin(1/12*Pi)/(KomornikLoreti-MadelungNaCl) 6524785910926900 r002 27th iterates of z^2 + 6524785914472279 r005 Re(z^2+c),c=-19/34+29/65*I,n=6 6524785921023437 r005 Re(z^2+c),c=-25/34+7/102*I,n=7 6524785927980099 l006 ln(4617/8866) 6524785949504977 a007 Real Root Of -604*x^4+977*x^3+559*x^2-32*x+122 6524785953106750 a001 377/167761*322^(7/12) 6524785957480502 m001 (ln(2+3^(1/2))+Kolakoski)/(5^(1/2)+1) 6524785963262286 r002 7th iterates of z^2 + 6524785969300039 a001 142130/2178309 6524785969301649 a004 Fibonacci(13)/Lucas(15)/(1/2+sqrt(5)/2)^2 6524785969388318 a004 Fibonacci(15)/Lucas(13)/(1/2+sqrt(5)/2)^6 6524786045898163 m001 TwinPrimes^2/ln(MinimumGamma)^2/arctan(1/2) 6524786053738590 a007 Real Root Of -346*x^4+734*x^3-8*x^2-305*x+71 6524786062762538 m008 (Pi^5+2/3)/(1/6*Pi^5-4) 6524786069005576 m001 ZetaQ(2)^(exp(Pi)*ErdosBorwein) 6524786071654138 a007 Real Root Of -393*x^4+483*x^3-952*x^2+448*x+903 6524786097393203 m001 (BesselI(0,1)-GAMMA(11/12))/(-Bloch+Kolakoski) 6524786100630009 a007 Real Root Of -687*x^4+781*x^3+127*x^2+709*x+750 6524786119142627 a007 Real Root Of -548*x^4+926*x^3-537*x^2-529*x+240 6524786135823515 m001 BesselJ(0,1)*LandauRamanujan^Lehmer 6524786136133970 a003 cos(Pi*2/117)*sin(Pi*17/75) 6524786141703154 r005 Im(z^2+c),c=-17/30+11/93*I,n=46 6524786150496823 a007 Real Root Of -637*x^4+709*x^3-365*x^2+408*x+734 6524786174024409 r009 Re(z^3+c),c=-1/9+19/32*I,n=39 6524786179737120 a007 Real Root Of -428*x^4+439*x^3-694*x^2+374*x+739 6524786222994099 m001 (ln(5)-arctan(1/2))/(Zeta(1,-1)-BesselI(1,2)) 6524786243856296 r002 19th iterates of z^2 + 6524786245548333 m001 (-Sarnak+TreeGrowth2nd)/(1-BesselI(1,1)) 6524786288716141 m001 Zeta(3)^2*ln(KhintchineLevy)^2*cosh(1) 6524786303130260 a007 Real Root Of 820*x^4-774*x^3+502*x^2-763*x-5 6524786305128962 r009 Re(z^3+c),c=-5/122+51/61*I,n=21 6524786310054367 m006 (1/5*ln(Pi)-3/5)/(3/5*ln(Pi)+5) 6524786337275026 m001 sin(1/12*Pi)^(3^(1/3))*sin(1/12*Pi)^gamma 6524786337275026 m001 sin(Pi/12)^(3^(1/3))*sin(Pi/12)^gamma 6524786361798554 a005 (1/cos(1/33*Pi))^1428 6524786362249828 m001 (5^(1/2)-exp(Pi))/(-Chi(1)+polylog(4,1/2)) 6524786398793355 a001 233/64079*843^(3/7) 6524786404970987 a001 3571/233*1836311903^(14/17) 6524786405711544 m001 1/exp(GAMMA(3/4))*Bloch^2/Zeta(9) 6524786431811225 r005 Im(z^2+c),c=1/12+10/11*I,n=3 6524786435360921 a001 1364*514229^(5/17) 6524786464057068 m001 (MertensB3-Mills)/(Trott-ThueMorse) 6524786483327441 a003 cos(Pi*20/71)/sin(Pi*41/97) 6524786495707835 r005 Re(z^2+c),c=7/20+17/53*I,n=14 6524786499955267 h001 (-2*exp(-3)-9)/(-3*exp(1/2)-9) 6524786501042280 m008 (1/6*Pi+3)/(1/6*Pi^5+3) 6524786518949754 m001 (Zeta(3)+gamma(1))/(BesselK(1,1)+GAMMA(5/6)) 6524786528149326 a007 Real Root Of -871*x^4+558*x^3-225*x^2+281*x+592 6524786547608860 m002 Pi/5+(E^Pi*Coth[Pi])/Pi^6 6524786562556928 m001 Riemann1stZero^3*ln((2^(1/3))) 6524786577213425 a007 Real Root Of -150*x^4-904*x^3+484*x^2+48*x+463 6524786587909389 a007 Real Root Of -73*x^4-567*x^3-536*x^2+499*x+883 6524786590937143 r005 Im(z^2+c),c=-7/82+33/49*I,n=43 6524786608984112 a007 Real Root Of -872*x^4+961*x^3+990*x^2+637*x-946 6524786611829710 m005 (1/2*Catalan+7/12)/(2/7*2^(1/2)-2) 6524786620892847 a007 Real Root Of -266*x^4-277*x^3-897*x^2+809*x+881 6524786630740464 m001 exp(GAMMA(5/12))*Khintchine/sin(Pi/5)^2 6524786643347648 r005 Re(z^2+c),c=-59/64+5/44*I,n=22 6524786643979094 m001 (sin(1/5*Pi)-Stephens)^((1+3^(1/2))^(1/2)) 6524786654104852 m001 (ln(3)-gamma(2))/(Bloch+FibonacciFactorial) 6524786675905684 m001 1/Riemann1stZero*Bloch^2/exp(log(1+sqrt(2))) 6524786683441794 l006 ln(1493/2867) 6524786683752537 a007 Real Root Of 716*x^4+269*x^3+522*x^2-654*x-704 6524786695081550 m005 (1/2*exp(1)-3/5)/(3/11*2^(1/2)+7/9) 6524786787814785 a007 Real Root Of 54*x^4+499*x^3+892*x^2-483*x-387 6524786877079834 a001 2/5473*4181^(44/49) 6524786879582627 a007 Real Root Of -916*x^4+98*x^3-38*x^2+476*x+520 6524786900483870 a007 Real Root Of 127*x^4+711*x^3-841*x^2-390*x+579 6524786914959399 a001 521/28657*6557470319842^(14/17) 6524786916640338 a001 3010349/233*514229^(14/17) 6524786939998639 m001 (Trott-ZetaQ(4))/(ErdosBorwein-MadelungNaCl) 6524786945141171 s001 sum(exp(-Pi/3)^(n-1)*A273327[n],n=1..infinity) 6524786953950395 a001 322/165580141*4807526976^(6/23) 6524786954010859 a001 322/9227465*75025^(6/23) 6524786963812836 r009 Im(z^3+c),c=-13/64+46/63*I,n=12 6524786975738100 m001 (Rabbit+Sarnak)/(sin(1)+FeigenbaumKappa) 6524786980643819 r005 Re(z^2+c),c=-11/14+83/147*I,n=3 6524786989924537 a007 Real Root Of -120*x^4-747*x^3+358*x^2+732*x-472 6524786996959294 v003 sum((1/3*n^3+62/3*n-8)*n!/n^n,n=1..infinity) 6524787002250218 a001 3/89*32951280099^(5/16) 6524787013476696 a007 Real Root Of -935*x^4-248*x^3-297*x^2+518*x+565 6524787024436067 m001 Pi+ln(2)/ln(10)+3^(1/3)+GAMMA(13/24) 6524787036058374 r005 Im(z^2+c),c=-4/5+1/33*I,n=56 6524787052066022 m001 (exp(Pi)+gamma)/(BesselI(0,2)+FeigenbaumKappa) 6524787052416443 a001 233/103682*843^(1/2) 6524787101810585 m006 (5*exp(Pi)+4/5)/(3/4*exp(Pi)+1/2) 6524787110343369 m009 (3/5*Psi(1,1/3)+1/2)/(3/5*Psi(1,2/3)-5/6) 6524787124723459 m001 Otter^GAMMA(5/6)*Grothendieck^GAMMA(5/6) 6524787126313915 m009 (2/3*Psi(1,1/3)+1/3)/(1/6*Psi(1,1/3)-3/5) 6524787141032124 a007 Real Root Of 193*x^4-374*x^3+710*x^2-550*x-800 6524787164296514 a007 Real Root Of -951*x^4+36*x^3+659*x^2+57*x-61 6524787173813112 r005 Im(z^2+c),c=1/19+42/61*I,n=4 6524787180771156 q001 1303/1997 6524787193504374 a007 Real Root Of -117*x^4-757*x^3+161*x^2+864*x+561 6524787209387146 a007 Real Root Of -537*x^4+531*x^3+592*x^2+949*x+612 6524787230794833 m001 (gamma+BesselK(0,1))/(-FellerTornier+PlouffeB) 6524787245949791 r002 14th iterates of z^2 + 6524787256172821 a007 Real Root Of -473*x^4+646*x^3-455*x^2+250*x+622 6524787267489046 s002 sum(A286261[n]/(exp(n)-1),n=1..infinity) 6524787293033852 a003 sin(Pi*14/81)/cos(Pi*23/110) 6524787293674023 s002 sum(A136037[n]/(exp(n)-1),n=1..infinity) 6524787294152015 r002 33th iterates of z^2 + 6524787311501615 m001 (exp(1/exp(1))-GAMMA(19/24))/(Khinchin+Porter) 6524787320085382 r005 Re(z^2+c),c=-91/118+1/64*I,n=63 6524787346594043 r005 Re(z^2+c),c=-85/118+1/21*I,n=5 6524787352627815 m001 CopelandErdos+FransenRobinson*ZetaR(2) 6524787362058846 r005 Re(z^2+c),c=-11/19+28/57*I,n=32 6524787373239702 a008 Real Root of x^4-20*x^2-60*x+4 6524787375350214 s002 sum(A036113[n]/(n^2*pi^n+1),n=1..infinity) 6524787376825731 m001 FeigenbaumKappa*Riemann1stZero*exp(GAMMA(3/4)) 6524787376909673 m001 OneNinth^2/FeigenbaumKappa/ln(Pi)^2 6524787398993739 m001 GAMMA(1/6)/Rabbit/ln(cos(Pi/12))^2 6524787443479698 m001 Sarnak-ZetaQ(4)^ThueMorse 6524787461790834 m005 (1/2*3^(1/2)+1/10)/(31/30+1/5*5^(1/2)) 6524787468081744 m001 Trott/(Porter^PisotVijayaraghavan) 6524787480781167 m001 (Otter+Sarnak)/(gamma(1)-2*Pi/GAMMA(5/6)) 6524787485153966 m001 (Kolakoski+Niven)/(PolyaRandomWalk3D-Sarnak) 6524787486935546 l006 ln(4341/8336) 6524787511055260 a001 233/5778*322^(1/12) 6524787527225281 r009 Re(z^3+c),c=-39/46+9/16*I,n=2 6524787571788674 r002 34th iterates of z^2 + 6524787586356971 r005 Im(z^2+c),c=-9/70+19/28*I,n=46 6524787646086123 r009 Im(z^3+c),c=-11/29+28/41*I,n=32 6524787647247511 l006 ln(5725/6111) 6524787655880804 a001 11/514229*2971215073^(11/19) 6524787684375860 a007 Real Root Of -390*x^4+924*x^3-364*x^2+800*x-553 6524787688800131 r005 Im(z^2+c),c=-7/12+13/109*I,n=38 6524787709074393 a001 233/167761*843^(4/7) 6524787741140995 m005 (1/3*Catalan+1/7)/(1/4*2^(1/2)+1/3) 6524787747561157 m001 exp(arctan(1/2))^2*Trott*cosh(1)^2 6524787750662346 b008 1/2+5*Erfi[5/2] 6524787755487144 r008 a(0)=0,K{-n^6,27-20*n+62*n^2-54*n^3} 6524787760522797 a007 Real Root Of 5*x^4-14*x^3-318*x^2-122*x-209 6524787791307534 s002 sum(A263298[n]/((pi^n-1)/n),n=1..infinity) 6524787851317311 a001 11/2584*317811^(11/19) 6524787883389969 a007 Real Root Of -336*x^4-68*x^3-763*x^2+952*x+988 6524787908149063 l006 ln(2848/5469) 6524787919109592 m001 (gamma(1)-MertensB3)/(Ei(1)+sin(1/12*Pi)) 6524787933587050 r002 50th iterates of z^2 + 6524787975305537 m001 1/log(1+sqrt(2))*gamma^2*ln(sin(1)) 6524787988740737 r005 Re(z^2+c),c=-61/60+14/53*I,n=8 6524788047543981 a007 Real Root Of 978*x^4+778*x^3+794*x^2-178*x+8 6524788053055803 a007 Real Root Of 859*x^4-927*x^3+655*x^2-3*x-694 6524788092852590 m001 GAMMA(7/24)*FibonacciFactorial*ln(sin(1)) 6524788095579731 h001 (3/7*exp(1)+7/10)/(5/7*exp(1)+11/12) 6524788152349252 a001 305/51841*322^(5/12) 6524788175476255 m001 (Mills-Sierpinski)/(Trott+ZetaQ(3)) 6524788211074093 r005 Im(z^2+c),c=-5/56+33/49*I,n=34 6524788219660502 a003 cos(Pi*22/69)+cos(Pi*32/69) 6524788231404705 m001 (Catalan-arctan(1/3))/(-Kolakoski+Niven) 6524788234336401 r009 Im(z^3+c),c=-9/82+46/61*I,n=61 6524788246543989 r005 Im(z^2+c),c=-97/114+1/20*I,n=5 6524788247949164 m001 MertensB1^exp(1/Pi)*MertensB1^TwinPrimes 6524788251127524 r005 Re(z^2+c),c=-97/126+1/45*I,n=55 6524788274406076 r002 2th iterates of z^2 + 6524788274406076 r002 2th iterates of z^2 + 6524788308352595 r005 Im(z^2+c),c=-2/19+29/35*I,n=20 6524788317600136 a007 Real Root Of -954*x^4+848*x^3-456*x^2+183*x+722 6524788327009051 m005 (1/2*gamma+2/9)/(-16/33+2/11*5^(1/2)) 6524788331417002 a007 Real Root Of 841*x^4+133*x^3+4*x^2-248*x-279 6524788343192556 l006 ln(4203/8071) 6524788364573220 a001 233/271443*843^(9/14) 6524788365472241 m001 (Pi-Zeta(3))/(Artin-ZetaP(4)) 6524788375964327 a001 89/103682*199^(9/11) 6524788383974227 m001 (1+cos(1/12*Pi))/(GAMMA(19/24)+Tribonacci) 6524788389094616 m001 exp(GAMMA(11/24))/MadelungNaCl*GAMMA(17/24)^2 6524788391475550 m001 Paris*(HardHexagonsEntropy-MinimumGamma) 6524788404981729 a007 Real Root Of 398*x^4-984*x^3+309*x^2+351*x-248 6524788410112640 m001 1/ln(LandauRamanujan)*Si(Pi)/GAMMA(11/12) 6524788421967067 r005 Re(z^2+c),c=-31/34+17/118*I,n=30 6524788453347857 a007 Real Root Of -715*x^4-293*x^3+218*x^2+568*x+326 6524788474865039 a007 Real Root Of -722*x^4+481*x^3+514*x^2+163*x+152 6524788487377621 a007 Real Root Of 739*x^4-989*x^3-530*x^2-335*x+585 6524788497617507 r002 45th iterates of z^2 + 6524788510568386 a003 sin(Pi*4/43)/cos(Pi*28/79) 6524788550503169 a001 329/90481*322^(1/2) 6524788554827597 a007 Real Root Of 663*x^4-581*x^3-329*x^2-246*x-302 6524788573114031 m001 HardHexagonsEntropy/(FeigenbaumB+Mills) 6524788627337951 r009 Re(z^3+c),c=-6/13+19/31*I,n=6 6524788631633884 m001 Zeta(1/2)/exp(GAMMA(19/24))*Zeta(3)^2 6524788662533354 a001 1364/233*6557470319842^(12/17) 6524788671068805 a007 Real Root Of -321*x^4+79*x^3+112*x^2+830*x+574 6524788694573962 m001 Chi(1)-ErdosBorwein^sin(1) 6524788711000637 m001 cos(1/12*Pi)/FeigenbaumMu/PrimesInBinary 6524788738618767 s002 sum(A253129[n]/(64^n-1),n=1..infinity) 6524788746311365 m001 (-gamma(1)+GAMMA(19/24))/(ln(2)/ln(10)+ln(5)) 6524788751899666 a007 Real Root Of 163*x^4+915*x^3-926*x^2+261*x-136 6524788759963896 q001 6/91957 6524788766673216 m001 (AlladiGrinstead+Robbin)/(arctan(1/2)-exp(1)) 6524788771242616 a007 Real Root Of -10*x^4+982*x^3+35*x^2+871*x+828 6524788783840058 s002 sum(A266951[n]/(n^3*10^n+1),n=1..infinity) 6524788839268873 r008 a(0)=0,K{-n^6,-42+26*n+41*n^2-9*n^3} 6524788852258377 m001 (-GaussAGM+ZetaQ(4))/(Shi(1)+Ei(1,1)) 6524788854553841 m001 BesselJ(0,1)^(GAMMA(1/4)*BesselJ(1,1)) 6524788886754134 a007 Real Root Of -126*x^4+353*x^3+878*x^2+541*x-802 6524788901005763 m001 ZetaP(2)^MertensB3/(ZetaP(2)^Kolakoski) 6524788901404229 r002 58th iterates of z^2 + 6524788905273298 a007 Real Root Of -509*x^4+784*x^3+757*x^2+80*x-500 6524788914053212 a007 Real Root Of -278*x^4+893*x^3+781*x^2+458*x-829 6524788930304709 m001 MadelungNaCl^OneNinth*Trott^OneNinth 6524788959288259 m001 (-Ei(1)+arctan(1/3))/(Shi(1)+GAMMA(2/3)) 6524788967022058 r005 Im(z^2+c),c=-4/3+13/77*I,n=3 6524789003280343 m005 (-1/30+1/6*5^(1/2))/(3/7*3^(1/2)-2/9) 6524789008399242 a007 Real Root Of -6*x^4+446*x^3+579*x^2+303*x-567 6524789016241171 a007 Real Root Of 796*x^4-797*x^3-177*x^2-562*x-657 6524789020514883 a001 233/439204*843^(5/7) 6524789066352715 a007 Real Root Of -750*x^4+783*x^3-537*x^2+403*x+845 6524789117270624 a007 Real Root Of 737*x^4+113*x^3+769*x^2+171*x-318 6524789122073303 a007 Real Root Of 595*x^4+346*x^3-779*x^2-730*x+604 6524789150260280 m001 1/CareFree/CopelandErdos^2/exp(Zeta(1,2)) 6524789152366206 r002 12th iterates of z^2 + 6524789154571843 r005 Re(z^2+c),c=-6/19+25/38*I,n=7 6524789174200728 r005 Im(z^2+c),c=5/38+11/18*I,n=41 6524789177959677 m001 (GAMMA(3/4)+3)/(-BesselK(1,1)+2/3) 6524789257586493 l006 ln(1355/2602) 6524789284213825 p004 log(21341/19993) 6524789286056425 m005 (3*Pi+1/4)/(4/5*Catalan+3/4) 6524789288166240 r009 Re(z^3+c),c=-9/74+44/63*I,n=27 6524789290836443 a001 47/89*4052739537881^(9/16) 6524789313754789 m002 Pi^2+Pi^3+E^Pi*Coth[Pi]+Log[Pi] 6524789335712142 r005 Re(z^2+c),c=-11/12+13/100*I,n=32 6524789346696601 r002 45th iterates of z^2 + 6524789366190145 a007 Real Root Of 505*x^4-735*x^3-210*x^2-749*x-695 6524789413769160 r005 Im(z^2+c),c=-35/122+41/64*I,n=7 6524789422964375 a001 4181/18*39603^(4/41) 6524789423501946 a003 cos(Pi*5/96)*sin(Pi*23/100) 6524789427629445 a007 Real Root Of 652*x^4-580*x^3+282*x^2+399*x-139 6524789428529461 r002 6th iterates of z^2 + 6524789439963819 a007 Real Root Of -24*x^4+570*x^3+446*x^2+319*x-552 6524789455793549 s002 sum(A166809[n]/(exp(n)),n=1..infinity) 6524789458503806 a007 Real Root Of -720*x^4+436*x^3-980*x^2-130*x+584 6524789478130888 a007 Real Root Of 871*x^4-108*x^3-45*x^2+749*x+320 6524789479522889 m002 6+Pi/6+Log[Pi]/Pi^6 6524789484574357 a007 Real Root Of -671*x^4+995*x^3-236*x^2+715*x+965 6524789487208545 r005 Re(z^2+c),c=2/9+22/63*I,n=41 6524789501699040 m001 1/gamma^2*ln(Bloch)/sin(Pi/5)^2 6524789503147712 a007 Real Root Of 685*x^4+840*x^3+378*x^2-948*x+60 6524789507224965 a007 Real Root Of 615*x^4-861*x^3+109*x^2-731*x-874 6524789522918615 q001 1395/2138 6524789525062183 a007 Real Root Of 573*x^4-851*x^3-16*x^2+275*x-154 6524789557750267 p004 log(36571/34261) 6524789569835702 r009 Re(z^3+c),c=-65/122+9/59*I,n=3 6524789579562288 r005 Re(z^2+c),c=-47/64+15/53*I,n=19 6524789585628165 r009 Re(z^3+c),c=-25/46+23/37*I,n=8 6524789613087567 m001 ln(Sierpinski)^2/Salem/sinh(1) 6524789613377235 a007 Real Root Of -821*x^4+202*x^3-523*x^2+698*x+883 6524789632991534 m001 (gamma(3)+GAMMA(19/24))/(Kac+Salem) 6524789637949074 m001 (Si(Pi)-Zeta(5))/(-gamma(1)+Salem) 6524789656918077 a007 Real Root Of 222*x^4-621*x^3+398*x^2+11*x-375 6524789676287489 a001 233/710647*843^(11/14) 6524789681756088 p001 sum((-1)^n/(414*n+61)/n/(32^n),n=1..infinity) 6524789694699297 a001 2584/710647*322^(1/2) 6524789695818499 h001 (9/11*exp(1)+1/5)/(5/12*exp(2)+7/11) 6524789699692092 m001 1/LaplaceLimit^2/exp(Cahen)/GAMMA(2/3)^2 6524789727039332 r002 7th iterates of z^2 + 6524789734776963 a001 1597/18*3571^(10/41) 6524789759455972 a005 (1/cos(7/73*Pi))^1240 6524789760769022 m005 (1/3*Catalan-2/9)/(1/6*Pi+3/4) 6524789762204701 r005 Im(z^2+c),c=-5/38+35/41*I,n=18 6524789780953977 a007 Real Root Of 98*x^4+550*x^3-496*x^2+624*x+346 6524789791106935 a007 Real Root Of 897*x^4-857*x^3-2*x^2-572*x-773 6524789795798332 a007 Real Root Of -872*x^4+794*x^3+306*x^2+916*x+846 6524789810373392 r005 Im(z^2+c),c=-7/94+50/63*I,n=50 6524789816763753 r005 Im(z^2+c),c=-17/40+11/17*I,n=4 6524789817981878 a001 3524578/29*7^(19/22) 6524789831444486 m001 Chi(1)-MadelungNaCl^TravellingSalesman 6524789858852692 r005 Im(z^2+c),c=-11/42+3/32*I,n=10 6524789861635262 a001 55/15126*322^(1/2) 6524789885990891 a001 17711/4870847*322^(1/2) 6524789889544330 a001 15456/4250681*322^(1/2) 6524789890062769 a001 121393/33385282*322^(1/2) 6524789890138409 a001 105937/29134601*322^(1/2) 6524789890149444 a001 832040/228826127*322^(1/2) 6524789890151054 a001 726103/199691526*322^(1/2) 6524789890151289 a001 5702887/1568397607*322^(1/2) 6524789890151324 a001 4976784/1368706081*322^(1/2) 6524789890151329 a001 39088169/10749957122*322^(1/2) 6524789890151329 a001 831985/228811001*322^(1/2) 6524789890151329 a001 267914296/73681302247*322^(1/2) 6524789890151329 a001 233802911/64300051206*322^(1/2) 6524789890151329 a001 1836311903/505019158607*322^(1/2) 6524789890151329 a001 1602508992/440719107401*322^(1/2) 6524789890151329 a001 12586269025/3461452808002*322^(1/2) 6524789890151329 a001 10983760033/3020733700601*322^(1/2) 6524789890151329 a001 86267571272/23725150497407*322^(1/2) 6524789890151329 a001 53316291173/14662949395604*322^(1/2) 6524789890151329 a001 20365011074/5600748293801*322^(1/2) 6524789890151329 a001 7778742049/2139295485799*322^(1/2) 6524789890151329 a001 2971215073/817138163596*322^(1/2) 6524789890151329 a001 1134903170/312119004989*322^(1/2) 6524789890151329 a001 433494437/119218851371*322^(1/2) 6524789890151330 a001 165580141/45537549124*322^(1/2) 6524789890151330 a001 63245986/17393796001*322^(1/2) 6524789890151332 a001 24157817/6643838879*322^(1/2) 6524789890151345 a001 9227465/2537720636*322^(1/2) 6524789890151435 a001 3524578/969323029*322^(1/2) 6524789890152050 a001 1346269/370248451*322^(1/2) 6524789890156265 a001 514229/141422324*322^(1/2) 6524789890185156 a001 196418/54018521*322^(1/2) 6524789890383183 a001 75025/20633239*322^(1/2) 6524789891740475 a001 28657/7881196*322^(1/2) 6524789892876291 m002 -23/5-Sinh[Pi]/6 6524789900482221 a007 Real Root Of -95*x^4-450*x^3+999*x^2-842*x-842 6524789901043498 a001 10946/3010349*322^(1/2) 6524789941042535 l006 ln(7134/7615) 6524789943018336 m005 (1/2*2^(1/2)+4)/(8/9*3^(1/2)-9/11) 6524789963393944 a007 Real Root Of -351*x^4+709*x^3-51*x^2-615*x-119 6524789964807363 a001 4181/1149851*322^(1/2) 6524789974070668 m001 Pi*MadelungNaCl+MertensB2 6524789981185281 m001 (-polylog(4,1/2)+Salem)/(1-gamma(2)) 6524789997843838 a007 Real Root Of 48*x^4-715*x^3-415*x^2-347*x+593 6524790007992199 a007 Real Root Of -579*x^4+889*x^3+276*x^2+732*x+712 6524790016667423 m001 (MinimumGamma-Otter)/(polylog(4,1/2)+Pi^(1/2)) 6524790034521662 a007 Real Root Of -638*x^4+522*x^3+171*x^2+881*x-677 6524790058385960 a007 Real Root Of 913*x^4+659*x^3+881*x^2+600*x+34 6524790060465387 m001 1/sin(Pi/5)^2*GAMMA(5/6)^2/exp(sqrt(3)) 6524790155785448 m001 (Salem+ZetaQ(3))/(3^(1/3)+Artin) 6524790164814293 a003 sin(Pi*21/104)/sin(Pi*33/91) 6524790185163746 a007 Real Root Of -727*x^4+745*x^3+126*x^2-653*x-141 6524790185670624 m001 (3^(1/3)-FransenRobinson)/(Khinchin-Lehmer) 6524790204578814 m001 (LambertW(1)+GAMMA(5/6))/(1-2^(1/3)) 6524790211480793 a007 Real Root Of 296*x^4-369*x^3+193*x^2-821*x-774 6524790220425648 r005 Im(z^2+c),c=-89/98+25/56*I,n=3 6524790224885960 h001 (9/10*exp(2)+1/3)/(1/12*exp(2)+5/11) 6524790235538685 r005 Im(z^2+c),c=-107/94+5/61*I,n=28 6524790236246373 l006 ln(3927/7541) 6524790256003907 a007 Real Root Of 728*x^4-666*x^3+492*x^2-522*x-867 6524790258274630 m005 (1/4*exp(1)+3/4)/(-11/4+1/4*5^(1/2)) 6524790258853535 a007 Real Root Of 454*x^4-182*x^3+378*x^2-195*x-421 6524790260307410 m001 1/exp(Niven)/FibonacciFactorial^2*cos(1) 6524790278847435 a007 Real Root Of -309*x^4+224*x^3+846*x^2+450*x-660 6524790310650015 m008 (1/2*Pi^2+2/3)/(1/4*Pi^3+5/6) 6524790332124761 a001 233/1149851*843^(6/7) 6524790345550967 m001 (Robbin+ZetaP(2))/(gamma(3)+Niven) 6524790351022677 r009 Im(z^3+c),c=-57/118+20/41*I,n=11 6524790378439484 m001 (-OneNinth+3)/(-LambertW(1)+5) 6524790401851394 a001 1597/439204*322^(1/2) 6524790464970375 m001 (Otter+PlouffeB)/(Si(Pi)+Magata) 6524790490701714 a007 Real Root Of 714*x^4-898*x^3+953*x^2+30*x-765 6524790540850133 a007 Real Root Of 103*x^4+590*x^3-449*x^2+565*x+9 6524790541316566 s002 sum(A260885[n]/(pi^n),n=1..infinity) 6524790573226072 m001 (Ei(1,1)+TreeGrowth2nd)/(Si(Pi)-sin(1)) 6524790576483760 a001 5778/13*317811^(1/33) 6524790593773096 r005 Im(z^2+c),c=41/114+16/25*I,n=41 6524790642676910 a007 Real Root Of -942*x^4-31*x^3-628*x^2-859*x-131 6524790646246295 r005 Re(z^2+c),c=8/29+15/28*I,n=10 6524790690131567 r005 Im(z^2+c),c=31/86+41/57*I,n=3 6524790698366519 a007 Real Root Of -132*x^4+487*x^3+483*x^2+774*x-822 6524790698883199 r009 Re(z^3+c),c=-13/118+24/41*I,n=33 6524790704926001 h001 (1/4*exp(1)+8/9)/(7/12*exp(1)+9/11) 6524790712676453 r005 Re(z^2+c),c=11/64+11/38*I,n=22 6524790727251506 a007 Real Root Of -869*x^4+46*x^3-564*x^2+286*x+597 6524790738043083 p003 LerchPhi(1/3,5,29/168) 6524790751831148 l006 ln(2572/4939) 6524790756628118 r005 Re(z^2+c),c=-1/27+11/54*I,n=14 6524790764605991 r002 62i'th iterates of 2*x/(1-x^2) of 6524790782156862 r005 Re(z^2+c),c=-43/56+1/37*I,n=63 6524790786548090 r005 Im(z^2+c),c=-41/66+1/15*I,n=13 6524790792592173 a001 1364/3*21^(7/59) 6524790803243369 r009 Im(z^3+c),c=-10/19+11/28*I,n=23 6524790818180243 m001 ln(2)^GAMMA(19/24)/(ln(2)^ZetaQ(3)) 6524790845256084 m001 (Zeta(5)-BesselJ(1,1))/(MertensB1-Salem) 6524790878700883 r005 Re(z^2+c),c=-7/10+27/241*I,n=3 6524790894329739 a007 Real Root Of -36*x^4+176*x^3-718*x^2+711*x+825 6524790898989257 r002 26th iterates of z^2 + 6524790923913984 m003 2/3+(5*Sqrt[5])/64+4*Cos[1/2+Sqrt[5]/2] 6524790929221041 m001 (gamma+Kolakoski)/(Tetranacci+ZetaP(3)) 6524790950955566 b008 -8+Sqrt[1+Zeta[Pi]] 6524790966115423 r005 Re(z^2+c),c=-11/29+31/52*I,n=23 6524790969525431 a007 Real Root Of 135*x^4+823*x^3-374*x^2-106*x-838 6524790979134610 m001 1/ln(PrimesInBinary)^2*CareFree*GAMMA(1/3)^2 6524790987937423 a001 233/1860498*843^(13/14) 6524790992522350 r009 Re(z^3+c),c=-55/106+1/16*I,n=2 6524791023246561 m001 1/BesselK(1,1)^2*BesselK(0,1)/exp(gamma) 6524791027267524 a001 7/121393*46368^(7/31) 6524791038781404 m001 GAMMA(13/24)^2*Khintchine/exp(Zeta(3))^2 6524791044880054 r009 Im(z^3+c),c=-17/94+44/61*I,n=6 6524791059409503 a001 76*(1/2*5^(1/2)+1/2)^28*4^(3/22) 6524791061559646 m001 1/sin(1)^2/exp(Conway)/sin(Pi/5) 6524791064465334 m005 (1/2*5^(1/2)+7/10)/(5/12*Zeta(3)-2/9) 6524791080735981 a001 34/9062201101803*11^(3/13) 6524791106868634 a003 cos(Pi*7/36)*sin(Pi*22/75) 6524791109027535 r005 Re(z^2+c),c=-81/110+5/42*I,n=32 6524791115031958 r005 Re(z^2+c),c=-79/110+7/38*I,n=29 6524791122624596 r005 Re(z^2+c),c=7/20+35/59*I,n=3 6524791139491993 a007 Real Root Of -836*x^4+440*x^3-803*x^2+442*x+904 6524791157083312 m005 (5*2^(1/2)+1/3)/(2/3*gamma+3/4) 6524791158817106 a007 Real Root Of -90*x^4-490*x^3+676*x^2+281*x+63 6524791164332724 a007 Real Root Of -126*x^4-782*x^3+223*x^2-253*x+1 6524791196992287 a001 377/271443*322^(2/3) 6524791235860838 m001 (Zeta(5)+cos(1/5*Pi))/(ln(gamma)-BesselI(0,2)) 6524791241422903 r002 23th iterates of z^2 + 6524791241481245 m001 GAMMA(11/24)*(2^(1/3))^2*exp(GAMMA(7/12))^2 6524791276390633 m001 (1+cos(1))/(-OrthogonalArrays+Riemann3rdZero) 6524791286194120 l006 ln(3789/7276) 6524791314536795 r005 Im(z^2+c),c=5/36+26/45*I,n=63 6524791370777515 r005 Im(z^2+c),c=-17/14+5/198*I,n=3 6524791383642080 m001 (3^(1/3)-Bloch)/(PlouffeB-ReciprocalLucas) 6524791385649424 a007 Real Root Of 598*x^4-850*x^3+49*x^2-578*x+484 6524791389862840 a007 Real Root Of 9*x^4-252*x^3+465*x^2-505*x-35 6524791400229357 a007 Real Root Of -132*x^4-765*x^3+740*x^2+603*x-827 6524791410092216 m001 1/exp(GAMMA(1/24))/Paris/Zeta(9)^2 6524791414010925 r002 4th iterates of z^2 + 6524791431408221 m001 (HeathBrownMoroz+Landau)/GaussAGM 6524791439011728 a007 Real Root Of 400*x^4-486*x^3-226*x^2-356*x+391 6524791470496218 a007 Real Root Of 378*x^4-674*x^3-994*x^2-227*x+690 6524791478204686 l006 ln(8543/9119) 6524791496448437 m001 exp(GAMMA(1/24))*PrimesInBinary*Zeta(7)^2 6524791501975072 m001 1/Catalan/FransenRobinson*exp(sin(Pi/12))^2 6524791502597438 a007 Real Root Of -113*x^4+576*x^3-374*x^2+684*x+786 6524791508395149 m001 1/exp(OneNinth)^2*Magata/BesselK(0,1) 6524791560740966 l006 ln(5006/9613) 6524791575252303 q001 1487/2279 6524791634976930 r002 5th iterates of z^2 + 6524791642762284 a007 Real Root Of -924*x^4+933*x^3+100*x^2+639*x+801 6524791643758857 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^31 6524791649690598 a001 1/4*46368^(5/56) 6524791661083238 a003 cos(Pi*34/113)/sin(Pi*39/110) 6524791666164068 a007 Real Root Of 916*x^4-508*x^3+4*x^2+458*x-10 6524791670805768 m005 (1/2*Pi-4/7)/(3*gamma-1/5) 6524791686461411 m001 FeigenbaumKappa/FeigenbaumC*QuadraticClass 6524791689823830 a007 Real Root Of 635*x^4-651*x^3+595*x^2+54*x-514 6524791701024572 m006 (4/5*Pi+2/5)/(5/6*exp(2*Pi)+1/4) 6524791701352005 h001 (2/3*exp(1)+1/11)/(3/10*exp(2)+7/10) 6524791741448990 a007 Real Root Of 127*x^4+759*x^3-449*x^2+28*x-49 6524791766307772 v002 sum(1/(2^n+(10*n^2-29*n+76)),n=1..infinity) 6524791779466888 r005 Re(z^2+c),c=-13/28+9/10*I,n=3 6524791826103847 a003 cos(Pi*6/31)-sin(Pi*35/101) 6524791830906441 r005 Im(z^2+c),c=-11/70+39/46*I,n=50 6524791851934314 m001 Porter^PrimesInBinary/(Porter^GAMMA(7/12)) 6524791858872118 a007 Real Root Of -109*x^4-802*x^3-524*x^2+384*x-408 6524791883862655 p004 log(30911/16097) 6524791891068481 r005 Re(z^2+c),c=-61/48+2/59*I,n=4 6524791891489694 p003 LerchPhi(1/5,1,393/223) 6524791892193977 m001 DuboisRaymond/ln(Artin)^2/GAMMA(7/24) 6524791932520222 m001 (-Gompertz+Salem)/(ln(2)/ln(10)+sin(1/5*Pi)) 6524791935639904 m001 GAMMA(5/6)/(gamma(3)-3^(1/2)) 6524791967324536 a007 Real Root Of 298*x^4-248*x^3+224*x^2-418*x-491 6524791978601807 a007 Real Root Of -123*x^4+415*x^3+260*x^2+353*x-434 6524791992905265 s002 sum(A156244[n]/(64^n),n=1..infinity) 6524791995354055 m005 (1/3*Catalan+1/7)/(-19/70+3/7*5^(1/2)) 6524791997793053 r005 Im(z^2+c),c=-23/122+2/23*I,n=6 6524792013440723 a007 Real Root Of 178*x^4-793*x^3-103*x^2-871*x-777 6524792015968094 m001 BesselJ(1,1)^(ln(2)/MertensB3) 6524792038629029 a003 sin(Pi*15/73)/sin(Pi*31/83) 6524792054044320 r005 Re(z^2+c),c=3/13+13/36*I,n=28 6524792060708382 r005 Im(z^2+c),c=21/62+33/58*I,n=7 6524792099202371 m005 (11/6+2*5^(1/2))/(2/5*Catalan+3/5) 6524792101674371 m008 (1/6*Pi^6-4/5)/(1/4*Pi^6+4) 6524792113893674 r005 Im(z^2+c),c=-6/5+11/122*I,n=64 6524792134675258 a007 Real Root Of 836*x^4-342*x^3+808*x^2-36*x-614 6524792136049246 a007 Real Root Of 109*x^4-569*x^3-746*x^2-345*x+681 6524792139077853 r005 Re(z^2+c),c=-107/90+59/63*I,n=2 6524792144156103 m001 GAMMA(1/24)/Sierpinski^2/exp(sin(1))^2 6524792146868348 a003 cos(Pi*43/104)*cos(Pi*27/64) 6524792161746079 m001 (Stephens+Weierstrass)/(ln(3)+Zeta(1,2)) 6524792169513334 a001 439204/233*1836311903^(12/17) 6524792169550642 a001 141422324/233*514229^(12/17) 6524792173429705 m001 (Psi(2,1/3)+ln(2^(1/2)+1))/(OneNinth+Sarnak) 6524792177299989 a007 Real Root Of 258*x^4-789*x^3-434*x^2+106*x-12 6524792187994574 a007 Real Root Of -641*x^4+906*x^3-271*x^2-290*x+294 6524792204376225 a007 Real Root Of 855*x^4-589*x^3-573*x^2-488*x+571 6524792223037626 h001 (-6*exp(1/2)-9)/(-2*exp(2/3)+1) 6524792228524731 a001 317811/2*47^(55/57) 6524792246388639 m001 sin(Pi/5)*ln(FeigenbaumB)/sqrt(1+sqrt(3)) 6524792258214328 m001 (Paris-ZetaP(2))/(HeathBrownMoroz-Landau) 6524792261296438 a007 Real Root Of -344*x^4-367*x^3+249*x^2+830*x+53 6524792292923538 a001 1322157322203/5*34^(10/11) 6524792308033854 h001 (3/10*exp(2)+5/7)/(7/12*exp(2)+2/11) 6524792342062503 r005 Re(z^2+c),c=-16/29+29/51*I,n=29 6524792391465512 r005 Im(z^2+c),c=-39/56+13/36*I,n=27 6524792415513307 l006 ln(1217/2337) 6524792417377009 m005 (1/2*exp(1)-3/8)/(5/11*exp(1)+3/11) 6524792433831390 m001 (2^(1/3)+Backhouse)/(FeigenbaumMu+Lehmer) 6524792444062311 m001 GAMMA(5/12)^2/GAMMA(19/24)*exp(sqrt(2))^2 6524792450054081 a001 377/9349*123^(1/10) 6524792467674185 m001 ln(FeigenbaumDelta)*Champernowne*Si(Pi)^2 6524792472648550 r008 a(0)=0,K{-n^6,5+50*n^3-34*n^2-36*n} 6524792476464499 g006 -Psi(1,6/11)-Psi(1,4/11)-Psi(1,7/8)-Psi(1,1/7) 6524792497039220 m004 -1/2+Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi]^2 6524792513452391 m005 (1/3*Pi-1/12)/(10/11*5^(1/2)-5/9) 6524792538324525 h001 (-5*exp(3)-7)/(-9*exp(1)+8) 6524792541339729 a007 Real Root Of -33*x^4-241*x^3-254*x^2-449*x+750 6524792550545894 a003 sin(Pi*13/47)*sin(Pi*15/46) 6524792578273404 m001 (ln(Pi)+BesselJ(1,1))/(Niven+Sarnak) 6524792614791013 a007 Real Root Of -886*x^4+757*x^3-306*x^2+268*x+676 6524792640243027 b008 1-67*Sin[5] 6524792651074840 r002 10th iterates of z^2 + 6524792673929390 h001 (1/9*exp(2)+1/5)/(3/8*exp(1)+6/11) 6524792707182699 m005 (1/3*gamma+2/9)/(1/10*exp(1)+4/11) 6524792745093559 m001 1/ln(KhintchineLevy)^2*ErdosBorwein/sin(1) 6524792758968515 a003 sin(Pi*27/82)/cos(Pi*49/107) 6524792773377171 a001 5778/13*233^(54/59) 6524792779418776 a007 Real Root Of -543*x^4+104*x^3-960*x^2-587*x+153 6524792784692673 r005 Re(z^2+c),c=-7/10+65/256*I,n=56 6524792810568173 a007 Real Root Of 256*x^4+329*x^3-271*x^2-934*x+587 6524792817016892 a007 Real Root Of 2*x^4-792*x^3+98*x^2-840*x+726 6524792837370191 m005 (1/2*3^(1/2)+1/11)/(8/11*Pi-9/11) 6524792839619735 m001 (Zeta(5)-GAMMA(3/4))/(Lehmer-QuadraticClass) 6524792851731959 a001 305/9*24476^(12/41) 6524792900175072 a007 Real Root Of -608*x^4+346*x^3+17*x^2+193*x+325 6524792921655038 a001 305/9*5778^(14/41) 6524792934620999 a007 Real Root Of -213*x^4+950*x^3-390*x^2+887*x-638 6524792960025354 a001 969323029/3*4807526976^(5/21) 6524792960033408 a001 10749957122/3*196418^(5/21) 6524792976956846 a007 Real Root Of -668*x^4-187*x^3-968*x^2-336*x+262 6524793023113777 a007 Real Root Of 528*x^4-971*x^3+850*x^2-185*x-848 6524793025352774 a001 233/9349*322^(1/6) 6524793039462286 m001 (ReciprocalLucas+Thue)/(exp(1)+ErdosBorwein) 6524793061030249 a007 Real Root Of -846*x^4+982*x^3-39*x^2+74*x+491 6524793077264502 m001 1/ln(GAMMA(3/4))^2*Khintchine*Zeta(9)^2 6524793101111849 m005 (1/2*Catalan+2/5)/(9/11*exp(1)-10/11) 6524793115678952 a003 sin(Pi*3/109)/sin(Pi*3/71) 6524793135959245 b008 11/2+Cosh[2/9] 6524793149132380 a007 Real Root Of 764*x^4+110*x^3+347*x^2+542*x+98 6524793151406118 a007 Real Root Of -671*x^4+666*x^3-862*x^2-99*x+609 6524793153714509 r005 Im(z^2+c),c=-35/38+3/55*I,n=9 6524793174169928 m005 (1/2*5^(1/2)-7/10)/(4*2^(1/2)+3/4) 6524793189627883 m005 (1/2*Catalan-7/10)/(8/9*Pi+11/12) 6524793217992555 r005 Re(z^2+c),c=-119/118+13/47*I,n=4 6524793242062424 r005 Im(z^2+c),c=-5/6+57/127*I,n=3 6524793303650255 m001 (GAMMA(19/24)+KhinchinLevy)/(ln(3)+Zeta(1/2)) 6524793313965776 a007 Real Root Of -97*x^4-495*x^3+812*x^2-684*x-725 6524793320162349 l006 ln(4730/9083) 6524793331038558 m001 1/Tribonacci^2/TreeGrowth2nd*ln(GAMMA(1/3))^2 6524793341464190 r005 Re(z^2+c),c=-1/6+21/29*I,n=57 6524793388429752 q001 1579/2420 6524793393067636 m001 (exp(1/Pi)+2/3)/(GAMMA(5/6)+2) 6524793397395747 a001 610/167761*322^(1/2) 6524793414901246 r005 Re(z^2+c),c=-4/25+37/50*I,n=6 6524793416116931 a007 Real Root Of -277*x^4+88*x^3-638*x^2+841*x+895 6524793423323920 a001 3571/610*13^(47/50) 6524793450985299 r005 Im(z^2+c),c=-5/7+7/96*I,n=62 6524793453482525 a001 1/119218851371*76^(9/19) 6524793492342679 a001 13/4*199^(17/30) 6524793492492411 m001 (LandauRamanujan+Riemann3rdZero)^gamma 6524793498729783 m004 -3/2-20*Pi-Tan[Sqrt[5]*Pi] 6524793520011361 r005 Re(z^2+c),c=-103/110+1/22*I,n=10 6524793575777853 r005 Im(z^2+c),c=-13/34+5/48*I,n=15 6524793588168989 r005 Im(z^2+c),c=-7/122+39/56*I,n=59 6524793594924776 a001 29/89*21^(13/57) 6524793610953196 m001 Gompertz/(ZetaQ(2)^ErdosBorwein) 6524793623031699 a001 1322157322203/377*144^(10/17) 6524793628006378 m001 (LambertW(1)-cos(1))/(GAMMA(7/12)+Sierpinski) 6524793633557685 l006 ln(3513/6746) 6524793687522621 a007 Real Root Of 911*x^4-698*x^3-591*x^2-545*x-463 6524793693273490 m005 (1/2*Pi-3/8)/(10/11*Catalan+1) 6524793712172991 a007 Real Root Of -870*x^4+979*x^3+835*x^2+687*x-918 6524793756400990 a001 1346269/3*2^(27/50) 6524793760573168 r002 51th iterates of z^2 + 6524793774329027 a007 Real Root Of -146*x^4-933*x^3+136*x^2+57*x+32 6524793784267814 m005 (1/3*2^(1/2)-1/12)/(3/8*Pi-7/12) 6524793789335928 m002 (3*Pi^2)/E^Pi-Cosh[Pi]/6 6524793794833565 a001 987/439204*322^(7/12) 6524793796679261 m009 (1/3*Psi(1,2/3)-2/5)/(1/2*Psi(1,1/3)-6) 6524793809035988 r002 44i'th iterates of 2*x/(1-x^2) of 6524793821003571 a007 Real Root Of 676*x^4-956*x^3+303*x^2+958*x+108 6524793834529446 m005 (1/3*exp(1)-1/3)/(8/11*gamma-3/7) 6524793960814083 a007 Real Root Of -862*x^4+525*x^3-100*x^2+891*x+926 6524793969393745 a003 cos(Pi*26/95)*sin(Pi*43/87) 6524794012165961 a007 Real Root Of -128*x^4-789*x^3+326*x^2+209*x+311 6524794014983884 r009 Re(z^3+c),c=-6/11+27/58*I,n=15 6524794018867694 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)+GAMMA(5/6)*Magata 6524794041797684 m002 -Pi^3+Pi^4-Sinh[Pi]/10 6524794048079391 m005 (1/3*exp(1)-1/12)/(17/72+11/24*5^(1/2)) 6524794071683512 a007 Real Root Of -398*x^4-309*x^3+81*x^2+739*x+434 6524794113807548 r002 41th iterates of z^2 + 6524794138064250 r002 21th iterates of z^2 + 6524794138064250 r002 21th iterates of z^2 + 6524794153754535 r009 Re(z^3+c),c=-11/102+35/62*I,n=30 6524794164388478 a001 55/6643838879*18^(5/7) 6524794172935486 a007 Real Root Of 738*x^4-692*x^3-269*x^2+95*x+111 6524794221415633 a007 Real Root Of 732*x^4-920*x^3-799*x^2-285*x+649 6524794243951583 m001 (GAMMA(2/3)+gamma(2))/(GAMMA(23/24)+MertensB2) 6524794259585048 a007 Real Root Of 194*x^4-427*x^3+437*x^2-804*x+422 6524794279184805 l006 ln(2296/4409) 6524794288123851 a007 Real Root Of 106*x^4-52*x^3-521*x^2-731*x+694 6524794310966180 a001 1364/21*317811^(10/11) 6524794348393444 a007 Real Root Of -378*x^4+345*x^3+957*x^2+546*x-791 6524794357246326 m005 (1/2*exp(1)+3/4)/(Pi+1/11) 6524794370173486 m001 1/ln(Kolakoski)*Cahen^2*GAMMA(1/4) 6524794405734289 a003 cos(Pi*8/87)*cos(Pi*28/107) 6524794421623276 g007 Psi(2,5/9)-Psi(2,8/11)-Psi(2,9/10)-Psi(2,3/5) 6524794425561398 m001 1/TreeGrowth2nd^2*Bloch^2*ln(LambertW(1)) 6524794474918365 r009 Im(z^3+c),c=-3/70+49/64*I,n=58 6524794493975001 a007 Real Root Of -934*x^4-785*x^3-865*x^2-13*x+311 6524794572709455 r005 Re(z^2+c),c=7/54+9/43*I,n=4 6524794586835882 m001 (Chi(1)-Psi(1,1/3))/(Riemann1stZero+ZetaQ(2)) 6524794590466488 a007 Real Root Of -143*x^4-928*x^3+113*x^2+511*x-75 6524794593019215 m001 (1-Otter)/(Sierpinski+ThueMorse) 6524794596777368 r002 41th iterates of z^2 + 6524794604818466 a001 123/13*144^(23/27) 6524794637001550 s002 sum(A224329[n]/(n^2*pi^n-1),n=1..infinity) 6524794683618023 a001 3571*6557470319842^(3/17) 6524794683656811 a008 Real Root of (-4+x+5*x^2+6*x^4+4*x^8) 6524794733892420 m001 (GAMMA(2/3)+exp(-1/2*Pi)*Trott)/exp(-1/2*Pi) 6524794736235789 m001 (Grothendieck-ZetaQ(4))/(GAMMA(2/3)+exp(1/Pi)) 6524794765011016 m001 (Zeta(5)-Ei(1,1))/(Salem+ZetaP(4)) 6524794802558033 r005 Im(z^2+c),c=-7/6+16/195*I,n=19 6524794807467898 m001 (-Trott+ZetaP(4))/(Psi(1,1/3)-gamma(3)) 6524794821087019 m001 1/exp(LandauRamanujan)^2/Bloch^2*sin(Pi/12)^2 6524794821493416 m001 (-Ei(1)+ThueMorse)/(3^(1/2)+cos(1)) 6524794832249279 m005 (1/2*Catalan+6)/(5/12*exp(1)-1/7) 6524794846168194 a007 Real Root Of -771*x^4-673*x^3+385*x^2+791*x+305 6524794908377058 a007 Real Root Of -254*x^4+552*x^3+971*x^2+189*x-644 6524794921314228 a007 Real Root Of 547*x^4-601*x^3+983*x^2+899*x-98 6524794938926089 a001 2584/1149851*322^(7/12) 6524794951210857 l006 ln(3375/6481) 6524794987251540 a007 Real Root Of 466*x^4-915*x^3+342*x^2-533*x-832 6524795001952362 q001 1671/2561 6524795002607673 r005 Re(z^2+c),c=17/42+8/61*I,n=3 6524795029114045 r002 28th iterates of z^2 + 6524795053281307 s002 sum(A076146[n]/(n^2*10^n+1),n=1..infinity) 6524795067872429 a007 Real Root Of -576*x^4+26*x^3-354*x^2+634*x+676 6524795079111448 m005 (3/5*gamma+1/5)/(2/5*exp(1)-1/4) 6524795079913144 s002 sum(A076146[n]/(n^2*10^n-1),n=1..infinity) 6524795087005494 a008 Real Root of x^4-25*x^2-86*x-187 6524795105846939 a001 6765/3010349*322^(7/12) 6524795123079166 m006 (1/6*exp(2*Pi)-5/6)/(1/6*Pi^2-3) 6524795130200362 a001 89/39604*322^(7/12) 6524795132728361 m001 arctan(1/2)+(1/2)^BesselJZeros(0,1) 6524795133753479 a001 46368/20633239*322^(7/12) 6524795134271872 a001 121393/54018521*322^(7/12) 6524795134347504 a001 317811/141422324*322^(7/12) 6524795134358539 a001 832040/370248451*322^(7/12) 6524795134360149 a001 2178309/969323029*322^(7/12) 6524795134360384 a001 5702887/2537720636*322^(7/12) 6524795134360418 a001 14930352/6643838879*322^(7/12) 6524795134360423 a001 39088169/17393796001*322^(7/12) 6524795134360424 a001 102334155/45537549124*322^(7/12) 6524795134360424 a001 267914296/119218851371*322^(7/12) 6524795134360424 a001 3524667/1568437211*322^(7/12) 6524795134360424 a001 1836311903/817138163596*322^(7/12) 6524795134360424 a001 4807526976/2139295485799*322^(7/12) 6524795134360424 a001 12586269025/5600748293801*322^(7/12) 6524795134360424 a001 32951280099/14662949395604*322^(7/12) 6524795134360424 a001 53316291173/23725150497407*322^(7/12) 6524795134360424 a001 20365011074/9062201101803*322^(7/12) 6524795134360424 a001 7778742049/3461452808002*322^(7/12) 6524795134360424 a001 2971215073/1322157322203*322^(7/12) 6524795134360424 a001 1134903170/505019158607*322^(7/12) 6524795134360424 a001 433494437/192900153618*322^(7/12) 6524795134360424 a001 165580141/73681302247*322^(7/12) 6524795134360424 a001 63245986/28143753123*322^(7/12) 6524795134360426 a001 24157817/10749957122*322^(7/12) 6524795134360439 a001 9227465/4106118243*322^(7/12) 6524795134360529 a001 3524578/1568397607*322^(7/12) 6524795134361144 a001 1346269/599074578*322^(7/12) 6524795134365359 a001 514229/228826127*322^(7/12) 6524795134394248 a001 196418/87403803*322^(7/12) 6524795134592256 a001 75025/33385282*322^(7/12) 6524795135949426 a001 28657/12752043*322^(7/12) 6524795145251606 a001 10946/4870847*322^(7/12) 6524795166107905 r005 Re(z^2+c),c=-79/66+10/27*I,n=5 6524795174479105 b008 5+ArcSec[8*E] 6524795176462657 r009 Im(z^3+c),c=-55/98+7/48*I,n=28 6524795176471780 m001 1/FeigenbaumC/Cahen^2*ln(GAMMA(13/24)) 6524795193696507 a001 64079*514229^(3/17) 6524795209009697 a001 4181/1860498*322^(7/12) 6524795223798884 a001 15127*1836311903^(3/17) 6524795230457853 a007 Real Root Of 909*x^4-235*x^3+855*x^2-331*x-810 6524795253602778 r005 Im(z^2+c),c=-9/14+31/255*I,n=51 6524795258491403 r002 3th iterates of z^2 + 6524795275061227 a007 Real Root Of -175*x^4-979*x^3+994*x^2-400*x+306 6524795291097461 a007 Real Root Of -46*x^4-345*x^3-411*x^2-885*x-738 6524795297634687 l006 ln(4454/8553) 6524795322916645 a007 Real Root Of 962*x^4-598*x^3+991*x^2+68*x-718 6524795346858720 a007 Real Root Of -103*x^4-653*x^3+164*x^2+269*x+66 6524795362406636 a007 Real Root Of 652*x^4-112*x^3+34*x^2+205*x-30 6524795378578920 m005 (1/2*Zeta(3)+1/6)/(1/7*5^(1/2)+6/7) 6524795390067378 m001 (GAMMA(5/6)+Kolakoski)/(QuadraticClass-Salem) 6524795396154590 a007 Real Root Of 265*x^4-693*x^3+331*x^2-603*x+397 6524795416338739 a007 Real Root Of 144*x^4-575*x^3+504*x^2-145*x-495 6524795436810491 m001 (GAMMA(13/24)+DuboisRaymond)/(Zeta(3)+ln(5)) 6524795446216713 m005 (23/30+1/6*5^(1/2))/(9/11*5^(1/2)-1/12) 6524795477418112 r002 6th iterates of z^2 + 6524795478439958 a003 cos(Pi*16/75)*sin(Pi*31/99) 6524795488149917 r005 Im(z^2+c),c=-7/29+4/41*I,n=4 6524795498820405 a007 Real Root Of 80*x^4+44*x^3+851*x^2-914*x+56 6524795510049788 a007 Real Root Of -720*x^4+381*x^3-345*x^2+743*x+868 6524795555092685 m005 (1/2*exp(1)+4/7)/(11/12*5^(1/2)+10/11) 6524795561721583 a007 Real Root Of 810*x^4+94*x^3+106*x^2-857*x-725 6524795565310661 a007 Real Root Of -359*x^4+464*x^3-119*x^2+678*x+687 6524795575588820 r009 Re(z^3+c),c=-61/114+5/34*I,n=32 6524795638072610 a003 cos(Pi*5/23)-cos(Pi*41/89) 6524795646014155 a001 1597/710647*322^(7/12) 6524795699513987 m001 GAMMA(23/24)/BesselJ(1,1)^2/exp(GAMMA(5/24)) 6524795709205456 m001 FeigenbaumAlpha-exp(1/Pi)-PlouffeB 6524795718666450 r005 Re(z^2+c),c=-14/29+29/54*I,n=59 6524795741803059 a001 7/17711*10946^(47/59) 6524795749880066 r002 4th iterates of z^2 + 6524795777757159 r002 15th iterates of z^2 + 6524795792156991 r009 Re(z^3+c),c=-59/126+1/57*I,n=3 6524795804408799 m001 Artin*(TravellingSalesman-cos(1)) 6524795819607667 m001 (Chi(1)-cos(1/5*Pi))/(-ln(Pi)+2*Pi/GAMMA(5/6)) 6524795822993979 a007 Real Root Of -566*x^4+26*x^3-400*x^2-40*x+254 6524795835781416 r005 Re(z^2+c),c=-77/62+41/42*I,n=2 6524795900021074 a007 Real Root Of -623*x^4+564*x^3-424*x^2+406*x+715 6524795907199003 r009 Im(z^3+c),c=-35/94+1/42*I,n=8 6524795924876392 a005 (1/cos(41/221*Pi))^406 6524795953940126 r005 Im(z^2+c),c=-17/14+10/99*I,n=54 6524795979258952 p004 log(23057/12007) 6524795981328833 l004 Shi(405/119) 6524795987161495 m001 exp(Trott)*Sierpinski^2*cos(Pi/12) 6524796035560095 a001 41/329*377^(12/43) 6524796094678953 r002 2th iterates of z^2 + 6524796094678953 r002 2th iterates of z^2 + 6524796114784581 m002 (-5*Pi^3)/E^Pi+Pi^5/E^Pi 6524796115598918 m005 (1/2+3/2*5^(1/2))/(4*2^(1/2)+1/4) 6524796124624030 r005 Im(z^2+c),c=-61/102+16/43*I,n=25 6524796134705867 m001 exp(Robbin)*Rabbit^2*Sierpinski^2 6524796141505170 m001 (2^(1/2)-LambertW(1))/(-GAMMA(3/4)+gamma(1)) 6524796148085153 m001 (Rabbit-Thue)/(BesselI(1,2)+ArtinRank2) 6524796155282660 b008 9*(1/13+Sech[1]) 6524796158097815 r005 Im(z^2+c),c=-11/10+8/103*I,n=31 6524796160644713 p003 LerchPhi(1/8,4,139/222) 6524796170034136 a008 Real Root of (2+4*x+6*x^2+7*x^3) 6524796192453562 a007 Real Root Of 479*x^4+765*x^3+926*x^2-649*x-692 6524796212757182 m005 (1/2*Zeta(3)+5/9)/(2/7*Pi+7/8) 6524796226548454 a007 Real Root Of 920*x^4-112*x^3-245*x^2-180*x-211 6524796228490492 a007 Real Root Of 964*x^4-848*x^3+498*x^2-326*x-835 6524796250320995 r002 26th iterates of z^2 + 6524796252854024 r002 44i'th iterates of 2*x/(1-x^2) of 6524796312026182 a007 Real Root Of 795*x^4-983*x^3+855*x^2+765*x-282 6524796342633983 a007 Real Root Of 17*x^4+176*x^3+505*x^2+579*x+356 6524796342939413 m005 (1/2*exp(1)-1/4)/(2*gamma+6/11) 6524796355447681 a001 89/2207*76^(1/9) 6524796359314420 r002 12th iterates of z^2 + 6524796370478946 a007 Real Root Of -835*x^4+460*x^3+908*x^2+423*x-639 6524796377978482 r005 Re(z^2+c),c=-17/18+13/115*I,n=2 6524796380867872 a007 Real Root Of -460*x^4+747*x^3+857*x^2+69*x-534 6524796381212390 l006 ln(1079/2072) 6524796426299769 a007 Real Root Of 736*x^4-336*x^3-932*x^2-356*x+589 6524796434966067 m006 (3*exp(2*Pi)-4/5)/(3*Pi^2-5) 6524796441324811 a001 377/439204*322^(3/4) 6524796447076239 q001 1763/2702 6524796467542072 a001 47/10946*12586269025^(10/11) 6524796478432812 a001 47/1346269*2504730781961^(10/11) 6524796491353759 a007 Real Root Of 334*x^4-962*x^3+396*x^2-706*x-957 6524796499054072 s002 sum(A019954[n]/((exp(n)+1)*n),n=1..infinity) 6524796541471058 a007 Real Root Of 945*x^4+558*x^3+473*x^2-304*x-416 6524796542668568 a001 55/3*11^(9/17) 6524796549475457 a007 Real Root Of -104*x^4-686*x^3-146*x^2-593*x+285 6524796568555057 m001 (3^(1/3)-AlladiGrinstead)/(Paris-ZetaQ(4)) 6524796595952618 a007 Real Root Of 367*x^4-469*x^3-18*x^2+719*x+280 6524796597890282 r005 Im(z^2+c),c=23/66+3/31*I,n=6 6524796611323579 r005 Re(z^2+c),c=-1/31+12/55*I,n=14 6524796626023452 m005 (1/2*Catalan+2)/(5/6*Zeta(3)-5/8) 6524796635064324 m001 (BesselJ(1,1)+Conway)/(FeigenbaumD-Trott) 6524796679449333 a007 Real Root Of -668*x^4-931*x^3-630*x^2+799*x+652 6524796680660959 m001 CareFree*FransenRobinson^2*ln(Rabbit)^2 6524796685023184 r002 14th iterates of z^2 + 6524796697211453 a007 Real Root Of 628*x^4-801*x^3-153*x^2-175*x+288 6524796712273713 a007 Real Root Of 793*x^4-762*x^3+147*x^2+72*x-371 6524796739052411 a007 Real Root Of 511*x^4-610*x^3-474*x^2-373*x+522 6524796746367973 a001 4870847*144^(1/17) 6524796756497106 r002 48th iterates of z^2 + 6524796771398825 r005 Re(z^2+c),c=-25/18+20/231*I,n=12 6524796775020956 a007 Real Root Of -567*x^4+817*x^3-732*x^2-281*x+458 6524796776646982 m001 ln(GAMMA(1/3))/CopelandErdos^2/exp(1) 6524796809166224 m001 1/ln(BesselK(0,1))/OneNinth^2/GAMMA(7/12) 6524796821254893 r009 Re(z^3+c),c=-61/110+7/37*I,n=6 6524796841786867 s002 sum(A022607[n]/(exp(n)),n=1..infinity) 6524796855687260 a001 9349/1597*13^(47/50) 6524796858289931 h001 (3/11*exp(1)+3/4)/(7/12*exp(1)+7/10) 6524796885812780 a001 305/9*843^(18/41) 6524796888378763 a007 Real Root Of 124*x^4+870*x^3+480*x^2+473*x-425 6524796899902563 a007 Real Root Of -73*x^4-442*x^3+65*x^2-925*x+728 6524796925352600 m005 (1/2*Catalan+7/10)/(1/11*gamma+1/8) 6524796963359153 r004 Im(z^2+c),c=-4/5-3/7*I,z(0)=exp(1/8*I*Pi),n=4 6524796972669295 a007 Real Root Of 196*x^4-635*x^3-8*x^2-959*x+770 6524796973907774 m001 (ln(2)+2)/(GAMMA(5/12)+2) 6524796980868035 a001 1568397607/5*3^(2/3) 6524796991768394 a005 (1/cos(22/193*Pi))^661 6524796991922213 m001 exp(BesselK(1,1))^2*Rabbit/GAMMA(1/4) 6524796996176740 a007 Real Root Of x^4-269*x^3-18*x^2+77*x-17 6524797010901721 r005 Re(z^2+c),c=-17/16+8/75*I,n=8 6524797037335379 a007 Real Root Of 358*x^4-970*x^3+41*x^2-126*x-434 6524797038077137 a007 Real Root Of 923*x^4-945*x^3-917*x^2-263*x-211 6524797074501072 m001 (GAMMA(3/4)+Riemann1stZero)/(1+GAMMA(2/3)) 6524797076610296 a007 Real Root Of 586*x^4-644*x^3+596*x^2+599*x-148 6524797077406792 a007 Real Root Of -191*x^4+817*x^3+689*x^2+933*x+577 6524797078271477 a007 Real Root Of 810*x^4-714*x^3-722*x^2-477*x-349 6524797091932743 m005 (1/3*exp(1)-3/5)/(1/12*Catalan-6/11) 6524797108849971 m005 (1/2*Catalan-3/4)/(6/11*3^(1/2)-9/10) 6524797112492327 a007 Real Root Of 44*x^4-607*x^3-907*x^2-595*x+935 6524797166585873 m001 (FeigenbaumC-Riemann2ndZero)^(2^(1/2)) 6524797167597366 s002 sum(A255996[n]/(n*10^n+1),n=1..infinity) 6524797188773542 p004 log(34429/17929) 6524797191718625 m001 1/exp(Porter)*Si(Pi)/cos(Pi/5)^2 6524797223059221 m001 (1-ln(gamma))/(Grothendieck+Lehmer) 6524797241065531 a001 11/610*832040^(5/53) 6524797247569230 a007 Real Root Of -65*x^4-367*x^3-661*x^2+769*x+693 6524797258652271 m001 (cos(1/5*Pi)+GAMMA(3/4))/(Si(Pi)+BesselI(0,1)) 6524797262926087 r005 Re(z^2+c),c=-47/64+7/60*I,n=57 6524797270283133 m001 CopelandErdos^Niven*ZetaP(4) 6524797283704144 a003 cos(Pi*4/87)*sin(Pi*11/48) 6524797285529669 m001 (FeigenbaumDelta+GaussAGM)/(sin(1)+gamma(3)) 6524797287459405 r002 11th iterates of z^2 + 6524797289390083 m001 (GAMMA(17/24)-ZetaP(4))/Si(Pi) 6524797299274898 l006 ln(5257/10095) 6524797315644928 a007 Real Root Of 706*x^4-701*x^3-111*x^2-735*x-755 6524797328948732 g002 Psi(1/8)-Psi(1/10)-Psi(7/8)-Psi(2/7) 6524797330048045 m001 gamma^FeigenbaumD-ln(2^(1/2)+1) 6524797356462586 a001 24476/4181*13^(47/50) 6524797402869395 a007 Real Root Of 154*x^4-455*x^3-274*x^2-150*x+313 6524797410401756 a007 Real Root Of 941*x^4-365*x^3+908*x^2-482*x-973 6524797421326173 r005 Re(z^2+c),c=-25/34+16/77*I,n=46 6524797422427729 a001 439204/233*6557470319842^(10/17) 6524797422461551 a001 54018521/233*1836311903^(10/17) 6524797422464456 a001 6643838879/233*514229^(10/17) 6524797428717020 h001 (1/8*exp(1)+5/7)/(3/10*exp(1)+4/5) 6524797429524727 a001 64079/10946*13^(47/50) 6524797444024059 m005 (1/3*Catalan+2/7)/(7/9*5^(1/2)-5/6) 6524797444810693 p004 log(26141/13613) 6524797445858266 a007 Real Root Of 883*x^4+256*x^3+716*x^2+323*x-183 6524797452792579 a007 Real Root Of -9*x^4+323*x^3-886*x^2-948*x-150 6524797457763166 a001 4/55*75025^(30/37) 6524797463564570 a007 Real Root Of 565*x^4-421*x^3-822*x^2-810*x+893 6524797473235200 a007 Real Root Of -209*x^4+869*x^3-571*x^2+519*x+861 6524797474679614 a001 13201/2255*13^(47/50) 6524797487747363 r002 60i'th iterates of 2*x/(1-x^2) of 6524797513499744 a001 416020/161*3^(43/51) 6524797536371448 l006 ln(4178/8023) 6524797575774931 m001 Porter*exp(Backhouse)*Zeta(5) 6524797577932124 m001 1/Catalan*ln(Khintchine)/sqrt(1+sqrt(3)) 6524797580639699 a003 cos(Pi*1/97)*sin(Pi*12/53) 6524797597217419 m001 Zeta(1,2)^(2^(1/2))*TravellingSalesman 6524797597316992 m002 E^Pi+5*Pi+Pi^5*Sech[Pi] 6524797612497496 r005 Re(z^2+c),c=-1/6+21/29*I,n=42 6524797641563524 r002 31th iterates of z^2 + 6524797649536653 a007 Real Root Of -497*x^4+872*x^3+165*x^2+521*x+602 6524797665958792 a001 15127/2584*13^(47/50) 6524797691653160 r005 Im(z^2+c),c=7/30+1/53*I,n=18 6524797698572940 m001 (2^(1/3)+gamma(1))/(FibonacciFactorial+Lehmer) 6524797698705748 m001 (Bloch+Riemann2ndZero)/(Si(Pi)+3^(1/3)) 6524797715989121 m005 (1/2*Catalan+7/10)/(7/8*5^(1/2)-2/11) 6524797729019014 a007 Real Root Of 533*x^4-793*x^3+799*x^2+279*x-475 6524797737582238 m001 (cos(1)+Kolakoski)/(Niven+PolyaRandomWalk3D) 6524797740074522 a007 Real Root Of -363*x^4-115*x^3+795*x^2+779*x-749 6524797748856841 q001 1855/2843 6524797800690439 a007 Real Root Of 847*x^4-468*x^3+794*x^2+79*x-570 6524797823965662 a007 Real Root Of 661*x^4-560*x^3+938*x^2-2*x-676 6524797860087896 r005 Im(z^2+c),c=-2/23+41/61*I,n=40 6524797871811673 a007 Real Root Of -714*x^4-442*x^3-542*x^2+191*x+362 6524797877495916 a007 Real Root Of 739*x^4-508*x^3-72*x^2-575*x+413 6524797895815071 m001 (LandauRamanujan+Rabbit)/(exp(Pi)+ln(gamma)) 6524797914591045 a007 Real Root Of 346*x^4+79*x^3-849*x^2-690*x+727 6524797918709180 m001 Ei(1)*exp(Catalan)*GAMMA(19/24)^2 6524797920834252 h005 exp(sin(Pi*13/37)+sin(Pi*26/59)) 6524797938571038 l006 ln(3099/5951) 6524797947327685 r002 54th iterates of z^2 + 6524797970025227 m002 (-5*Pi^5)/E^Pi+Log[Pi]^(-1) 6524797974655442 v003 sum((5/3*n^3+7/3*n+4)*n!/n^n,n=1..infinity) 6524797982922905 a007 Real Root Of -949*x^4-100*x^3-763*x^2-184*x+349 6524798017102249 r002 2th iterates of z^2 + 6524798039560320 r005 Im(z^2+c),c=1/118+39/61*I,n=15 6524798045743774 r005 Re(z^2+c),c=-73/110+13/27*I,n=13 6524798055526402 m004 -5-5*Sqrt[5]*Pi+15*Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 6524798057094239 r009 Re(z^3+c),c=-37/62+17/24*I,n=11 6524798063925487 r004 Re(z^2+c),c=-39/34+8/19*I,z(0)=-1,n=10 6524798089125201 r005 Im(z^2+c),c=-24/23+6/17*I,n=13 6524798099861987 r005 Im(z^2+c),c=37/126+37/63*I,n=3 6524798116922171 a007 Real Root Of -708*x^4+305*x^3-308*x^2-129*x+260 6524798133261444 m005 (1/2*Pi-6/11)/(9/10*exp(1)-7/8) 6524798133334539 a007 Real Root Of -297*x^4+840*x^3+395*x^2+846*x+671 6524798166398976 a001 233/15127*322^(1/4) 6524798175054967 a007 Real Root Of -545*x^4+432*x^3-149*x^2+438*x+568 6524798181268825 a007 Real Root Of 403*x^4-508*x^3+88*x^2-678*x-694 6524798225979223 r009 Re(z^3+c),c=-53/102+5/62*I,n=8 6524798228747749 m005 (1/2*5^(1/2)-2/9)/(8/9*3^(1/2)-1/6) 6524798234313034 s002 sum(A020961[n]/(64^n),n=1..infinity) 6524798243689638 m001 (Gompertz+Khinchin)/(ArtinRank2-DuboisRaymond) 6524798258053346 a007 Real Root Of 104*x^4+541*x^3-932*x^2-355*x-855 6524798266836289 l006 ln(5119/9830) 6524798267121605 r005 Im(z^2+c),c=-33/34+4/65*I,n=5 6524798269073757 m001 (ln(Pi)+arctan(1/2))/(Kac+Tribonacci) 6524798282683623 r005 Re(z^2+c),c=-61/114+35/57*I,n=59 6524798282914618 a001 167761/21*1597^(10/11) 6524798329870773 h001 (5/7*exp(2)+1/3)/(2/7*exp(1)+1/12) 6524798400887860 a007 Real Root Of 64*x^4-726*x^3+481*x^2-708*x-880 6524798426259615 a007 Real Root Of -996*x^4+859*x^3+22*x^2+900*x+997 6524798428303202 r009 Im(z^3+c),c=-5/14+17/26*I,n=51 6524798431457425 m001 TreeGrowth2nd^2*Si(Pi)/ln(sqrt(3)) 6524798432030007 r005 Im(z^2+c),c=-14/29+29/50*I,n=27 6524798453943995 r005 Re(z^2+c),c=-41/32+3/56*I,n=28 6524798459266610 a007 Real Root Of 648*x^4-20*x^3+709*x^2-647*x-847 6524798460449698 a007 Real Root Of 6*x^4-500*x^3+793*x^2+53*x-443 6524798478733397 s002 sum(A006096[n]/((10^n+1)/n),n=1..infinity) 6524798484079316 m001 (Backhouse+Gompertz)/(Magata-MertensB1) 6524798494035071 a007 Real Root Of 166*x^4+351*x^3+525*x^2-829*x-697 6524798532351062 m007 (-3/4*gamma-3/2*ln(2)+4/5)/(-2/5*gamma-4/5) 6524798543205941 h001 (7/12*exp(1)+1/6)/(7/9*exp(1)+4/7) 6524798555368021 m001 1/Riemann2ndZero^2*ln(Si(Pi))^2/log(2+sqrt(3)) 6524798576691440 r002 10th iterates of z^2 + 6524798598907918 m005 (1/2*Pi+1/8)/(2/9*3^(1/2)-1/8) 6524798608867744 m001 Cahen^MertensB1*GaussKuzminWirsing^MertensB1 6524798628055813 a007 Real Root Of -734*x^4-428*x^3-961*x^2+677*x+865 6524798630259722 a003 cos(Pi*18/95)*sin(Pi*13/45) 6524798641287268 a001 610/271443*322^(7/12) 6524798667783827 r005 Re(z^2+c),c=-3/22+39/58*I,n=9 6524798675976556 m001 (-OneNinth+Thue)/(Catalan+CopelandErdos) 6524798678418912 m001 ErdosBorwein^FeigenbaumD+Otter 6524798689594408 a007 Real Root Of -87*x^4+324*x^3-388*x^2+866*x+836 6524798734012235 a003 cos(Pi*8/115)-cos(Pi*32/81) 6524798749250628 a007 Real Root Of 420*x^4-431*x^3+631*x^2+13*x-456 6524798750822991 m005 (1/2*5^(1/2)+1/5)/(5/9*5^(1/2)+7/9) 6524798770447167 l006 ln(2020/3879) 6524798775424240 a005 (1/cos(3/191*Pi))^1540 6524798814417448 g006 Psi(1,5/9)+Psi(1,3/8)-Psi(1,7/12)-Psi(1,8/9) 6524798819483871 a007 Real Root Of 220*x^4-923*x^3-7*x^2-631*x-705 6524798827421080 r009 Im(z^3+c),c=-17/86+7/8*I,n=48 6524798828161043 h001 (-8*exp(3)+10)/(-11*exp(3)-10) 6524798834544618 a001 141*521^(12/49) 6524798851830351 m001 (1+BesselI(1,1))/(MasserGramainDelta+Stephens) 6524798872023415 a007 Real Root Of 512*x^4-191*x^3+948*x^2+321*x-340 6524798927613941 q001 1947/2984 6524798943985187 m001 (ln(1+sqrt(2))+5)/(-ln(3)+2) 6524798972009942 m005 (-7/4+1/4*5^(1/2))/(5/8*3^(1/2)-9/10) 6524798977006042 a001 1926/329*13^(47/50) 6524799006694571 h001 (4/9*exp(1)+7/9)/(3/8*exp(2)+3/11) 6524799009720002 h001 (5/7*exp(1)+2/9)/(3/8*exp(2)+6/11) 6524799038999053 a001 141/101521*322^(2/3) 6524799113831540 m001 exp(Zeta(1,2))^2*GAMMA(5/12)*sqrt(2)^2 6524799117298495 a007 Real Root Of -143*x^4+938*x^3-133*x^2-463*x+41 6524799152220068 m001 (BesselI(1,2)-Cahen)/(Lehmer+Thue) 6524799164318766 r002 32th iterates of z^2 + 6524799175774736 a007 Real Root Of 770*x^4-93*x^3-581*x^2-567*x-288 6524799182021645 r005 Re(z^2+c),c=-1/6+21/29*I,n=51 6524799219994423 r009 Im(z^3+c),c=-61/102+31/45*I,n=47 6524799234633049 a007 Real Root Of 597*x^4-781*x^3-73*x^2-475*x-604 6524799261110491 l006 ln(1409/1504) 6524799288010698 l006 ln(4981/9565) 6524799307668042 a001 322/89*1346269^(17/32) 6524799360611556 r005 Re(z^2+c),c=-35/74+8/13*I,n=11 6524799421537788 m001 ln(2)^GAMMA(13/24)/(ln(2)^Weierstrass) 6524799427466013 a007 Real Root Of 906*x^4-392*x^3+423*x^2+739*x+29 6524799455396315 a007 Real Root Of 529*x^4-584*x^3+552*x^2+204*x-360 6524799466362626 r002 17th iterates of z^2 + 6524799480682668 r005 Re(z^2+c),c=-1/19+35/46*I,n=53 6524799491351636 r005 Re(z^2+c),c=-7/10+45/167*I,n=47 6524799494391156 s002 sum(A038533[n]/(n^2*10^n+1),n=1..infinity) 6524799506679278 a007 Real Root Of -631*x^4+788*x^3+157*x^2-370*x+25 6524799516695857 m001 (GAMMA(5/6)-Tribonacci)/(ln(3)+gamma(2)) 6524799527194519 h001 (-3*exp(-2)+1)/(-3*exp(-1)-8) 6524799540668846 m001 (Totient+ZetaQ(2))/(Grothendieck-exp(Pi)) 6524799545762232 a007 Real Root Of 716*x^4-968*x^3+195*x^2-48*x-513 6524799562009080 a007 Real Root Of 617*x^4-990*x^3+568*x^2-304*x-827 6524799567643729 a001 28143753123/610*2^(1/2) 6524799573901409 m008 (1/2*Pi^5+1)/(3/5*Pi^3+5) 6524799583019591 m001 AlladiGrinstead^Champernowne-arctan(1/3) 6524799592294722 m005 (1/2*5^(1/2)+7/9)/(-13/63+2/9*5^(1/2)) 6524799595784853 m001 Trott/Porter^2*exp(sin(Pi/12)) 6524799599358919 a007 Real Root Of -15*x^4-987*x^3-539*x^2+88*x+389 6524799601046453 m005 (-4/5+1/5*5^(1/2))/(4*2^(1/2)-1/4) 6524799614114233 s002 sum(A019906[n]/(n^3*exp(n)-1),n=1..infinity) 6524799628455897 a007 Real Root Of -238*x^4+332*x^3-720*x^2+396*x+29 6524799630197620 a007 Real Root Of 486*x^4-573*x^3+548*x^2-995*x+487 6524799641093538 l006 ln(2961/5686) 6524799644548620 m001 (Lehmer+MertensB2)/(FeigenbaumC+LaplaceLimit) 6524799668660348 a007 Real Root Of -344*x^4+330*x^3-889*x^2+387*x+785 6524799689398887 r009 Im(z^3+c),c=-1/62+44/63*I,n=3 6524799691519927 r005 Im(z^2+c),c=19/42+22/51*I,n=6 6524799701650241 m001 (ln(2)*ln(5)+Magata)/ln(2) 6524799704194779 a007 Real Root Of -417*x^4+973*x^3+660*x^2-596*x-324 6524799726596425 m005 (1/2*Zeta(3)+3)/(5/6*gamma-6) 6524799743540096 r002 6th iterates of z^2 + 6524799745060148 a007 Real Root Of 723*x^4-603*x^3-259*x^2-795*x-707 6524799751130881 r005 Re(z^2+c),c=7/66+14/41*I,n=3 6524799804756343 r005 Im(z^2+c),c=-25/44+1/8*I,n=16 6524799816232966 a007 Real Root Of 745*x^4+814*x^3+935*x^2-515*x-643 6524799819419884 m001 OneNinth^GAMMA(11/12)-RenyiParking 6524799838314535 m002 Pi^5+Pi^5*Log[Pi]-Sinh[Pi]/3 6524799841893419 a007 Real Root Of -888*x^4+807*x^3-109*x^2+880*x-591 6524799846846780 m001 (-polylog(4,1/2)+Kac)/(Shi(1)+BesselK(1,1)) 6524799849922712 a007 Real Root Of 457*x^4-279*x^3-403*x^2-923*x-591 6524799860471723 m005 (1/2*Catalan-1/3)/(5/12*exp(1)+7/9) 6524799874606919 m005 (1/2*Catalan+5/8)/(8/11*Pi-5/8) 6524799886547471 m006 (1/2*exp(Pi)-1/4)/(1/3*exp(2*Pi)-5) 6524799890569923 r005 Im(z^2+c),c=27/74+13/41*I,n=54 6524799916666739 r005 Im(z^2+c),c=-17/26+4/37*I,n=32 6524799942264379 r009 Im(z^3+c),c=-17/29+31/50*I,n=7 6524799942456507 r008 a(0)=7,K{-n^6,-14-15*n^3+68*n^2-36*n} 6524799954633992 v002 sum(1/(5^n+(19+5/2*n^2-1/2*n)),n=1..infinity) 6524799970173340 a007 Real Root Of 204*x^4-727*x^3-56*x^2-734*x-694 6524799991116014 a007 Real Root Of 101*x^4-681*x^3-773*x^2-725*x+973 6524799992862936 r009 Im(z^3+c),c=-3/16+37/49*I,n=5