6541000038135611 r001 42i'th iterates of 2*x^2-1 of 6541000048399397 r005 Re(z^2+c),c=-31/42+4/17*I,n=25 6541000074797377 m001 StronglyCareFree*(BesselI(1,2)-RenyiParking) 6541000078711179 a007 Real Root Of -978*x^4-53*x^3+637*x^2+956*x-704 6541000128963670 m005 (1/2*5^(1/2)+6/11)/(8/9*5^(1/2)+5/9) 6541000134616922 k001 Champernowne real with 346*n+308 6541000139915625 m001 BesselK(0,1)/(ln(2)^Zeta(3)) 6541000144551393 m005 (1/6*exp(1)+2/5)/(19/30+3/10*5^(1/2)) 6541000183327597 m004 -4+(Sqrt[5]*E^(Sqrt[5]*Pi)*Pi)/12 6541000188340876 r008 a(0)=0,K{-n^6,-68-57*n^3+19*n^2-47*n} 6541000197842550 r002 23th iterates of z^2 + 6541000216180824 s001 sum(exp(-Pi/3)^n*A078696[n],n=1..infinity) 6541000244339516 m001 GAMMA(7/12)*Magata+MertensB3 6541000257877999 l006 ln(4609/8865) 6541000258268992 a003 cos(Pi*4/89)*sin(Pi*17/74) 6541000259258735 r009 Im(z^3+c),c=-29/60+21/43*I,n=11 6541000271349224 a001 2207/1548008755920*987^(8/9) 6541000283063273 m001 (Catalan-cos(1/5*Pi))/(-Zeta(1,2)+ArtinRank2) 6541000294569241 a001 1/198*(1/2*5^(1/2)+1/2)^9*11^(2/9) 6541000295246067 r008 a(0)=0,K{-n^6,-96-46*n^3-28*n^2+17*n} 6541000309637403 r009 Im(z^3+c),c=-13/122+35/36*I,n=12 6541000322785354 m001 BesselJ(0,1)/(GAMMA(2/3)^polylog(4,1/2)) 6541000334140062 m001 (ln(Pi)+GAMMA(5/6))/(ArtinRank2-LaplaceLimit) 6541000337108272 a007 Real Root Of -823*x^4-666*x^3+756*x^2+935*x-598 6541000352370438 g007 Psi(2,11/12)+Psi(2,3/8)-Psi(2,7/11)-Psi(2,1/7) 6541000356294791 a007 Real Root Of -475*x^4+614*x^3+446*x^2-183*x-156 6541000359226731 h001 (-8*exp(1/2)+8)/(-4*exp(3)+1) 6541000359634109 p001 sum(1/(164*n+153)/(625^n),n=0..infinity) 6541000359755374 a007 Real Root Of -224*x^4+647*x^3+403*x^2+516*x-650 6541000379014715 a001 610/11*322^(19/23) 6541000383306465 a007 Real Root Of 220*x^4-378*x^3-197*x^2-751*x-553 6541000398945922 a007 Real Root Of -919*x^4+354*x^3-276*x^2-739*x-98 6541000425390658 m001 gamma(1)/LambertW(1)/ReciprocalLucas 6541000428483594 a007 Real Root Of 207*x^4-509*x^3-704*x^2-382*x-129 6541000456190589 r005 Im(z^2+c),c=19/54+12/19*I,n=6 6541000456564386 r008 a(0)=0,K{-n^6,-72-41*n^3-31*n^2-9*n} 6541000462547995 a007 Real Root Of 159*x^4+175*x^3+715*x^2-746*x-774 6541000477165856 m001 1/Rabbit^2*Paris^2*ln(Zeta(3))^2 6541000486372735 m005 (1/2*Zeta(3)+2/9)/(2/5*Zeta(3)+7/9) 6541000501027238 v002 sum(1/(2^n+(10*n^2-18*n+54)),n=1..infinity) 6541000519339665 r008 a(0)=0,K{-n^6,-58-28*n-27*n^2-40*n^3} 6541000545861550 l006 ln(3917/7534) 6541000564463334 a007 Real Root Of 112*x^4+595*x^3-827*x^2+484*x+43 6541000568698587 r009 Im(z^3+c),c=-3/5+11/16*I,n=27 6541000583861904 r008 a(0)=0,K{-n^6,44+39*n^3+23*n^2+47*n} 6541000583870326 r008 a(0)=0,K{-n^6,50+38*n^3+29*n^2+36*n} 6541000601911453 m001 (1+Ei(1,1))/(-Paris+ReciprocalLucas) 6541000620084527 l006 ln(5181/5215) 6541000622758526 m001 Artin^RenyiParking+ZetaP(3) 6541000636833982 r008 a(0)=0,K{-n^6,64+33*n^3+51*n^2+5*n} 6541000650250895 r008 a(0)=0,K{-n^6,60+33*n^3+49*n^2+11*n} 6541000667433768 m001 1/ln((3^(1/3)))*KhintchineLevy^2/sin(Pi/5) 6541000669499513 a007 Real Root Of 618*x^4-251*x^3+786*x^2+319*x-311 6541000685097544 m001 (Zeta(3)-BesselJ(1,1))/(GAMMA(19/24)-ZetaQ(3)) 6541000704463804 m005 (-7/10+1/10*5^(1/2))/(2*Pi+1) 6541000718487507 r008 a(0)=0,K{-n^6,40+41*n+39*n^2+33*n^3} 6541000725438700 r008 a(0)=0,K{-n^6,50+31*n^3+50*n^2+22*n} 6541000726828723 r005 Re(z^2+c),c=-79/56+1/13*I,n=6 6541000745150272 m001 cos(1/12*Pi)^gamma(3)/GAMMA(7/12) 6541000757216449 a001 1/24447*(1/2*5^(1/2)+1/2)^8*843^(2/11) 6541000760385443 r008 a(0)=0,K{-n^6,34+32*n^3+39*n^2+48*n} 6541000765421036 a007 Real Root Of -266*x^4+164*x^3+31*x^2+886*x-590 6541000767739128 m001 Otter*StolarskyHarborth-ZetaP(3) 6541000776327592 s002 sum(A133558[n]/((pi^n+1)/n),n=1..infinity) 6541000791670792 m004 3+(5*Coth[Sqrt[5]*Pi])/Pi+Log[Sqrt[5]*Pi] 6541000795541849 r005 Re(z^2+c),c=-37/48+1/60*I,n=43 6541000803016352 r008 a(0)=0,K{-n^6,28+31*n^3+39*n^2+55*n} 6541000810203233 r008 a(0)=0,K{-n^6,32+30*n^3+44*n^2+47*n} 6541000839117945 r008 a(0)=0,K{-n^6,24+30*n^3+40*n^2+59*n} 6541000842579876 m001 FeigenbaumB^(5^(1/2)*MertensB2) 6541000858057515 s001 sum(exp(-Pi/2)^n*A182926[n],n=1..infinity) 6541000858221238 a007 Real Root Of 984*x^4-557*x^3+43*x^2+366*x-115 6541000883191593 r008 a(0)=0,K{-n^6,42+25*n^3+64*n^2+22*n} 6541000889567849 m004 -5-3/Log[Sqrt[5]*Pi]+25*Pi*Tan[Sqrt[5]*Pi] 6541000898013824 r008 a(0)=0,K{-n^6,-26-50*n-50*n^2-27*n^3} 6541000907754996 r009 Re(z^3+c),c=-15/29+3/29*I,n=4 6541000945609066 p003 LerchPhi(1/256,2,70/179) 6541000949352182 m001 (Sarnak+Tetranacci)/(Zeta(5)-3^(1/3)) 6541000957432446 l006 ln(3225/6203) 6541000963086882 r005 Im(z^2+c),c=15/74+33/62*I,n=48 6541000993752834 m001 FellerTornier*KhinchinLevy-Zeta(5) 6541000996759943 r008 a(0)=0,K{-n^6,24+23*n^3+61*n^2+45*n} 6541001003246379 p003 LerchPhi(1/6,4,349/175) 6541001012873905 h001 (7/12*exp(1)+1/5)/(6/7*exp(1)+2/5) 6541001023687333 r005 Re(z^2+c),c=3/11+24/41*I,n=58 6541001037881815 r005 Im(z^2+c),c=-13/18+8/125*I,n=14 6541001054037304 a001 47/1597*89^(38/55) 6541001068329719 m005 (1/2*Pi+3/5)/(gamma-10/11) 6541001082485645 r005 Re(z^2+c),c=-3/62+35/47*I,n=8 6541001103461128 a007 Real Root Of -139*x^4-794*x^3+659*x^2-754*x-888 6541001131232039 r005 Re(z^2+c),c=-9/14+73/188*I,n=14 6541001134716932 k005 Champernowne real with floor(sqrt(3)*(200*n+178)) 6541001134816952 k001 Champernowne real with 347*n+307 6541001154878240 a007 Real Root Of 432*x^4-710*x^3+x^2+196*x-150 6541001160514175 r005 Re(z^2+c),c=-11/28+38/55*I,n=6 6541001171413765 m001 (OrthogonalArrays-Robbin)/(GAMMA(2/3)-Ei(1,1)) 6541001225172202 a007 Real Root Of -196*x^4+901*x^3+82*x^2+877*x-825 6541001252783712 r002 43th iterates of z^2 + 6541001271723042 r002 6th iterates of z^2 + 6541001281909789 a007 Real Root Of -817*x^4-228*x^3-775*x^2+371*x+660 6541001308047212 a001 1/9353*(1/2*5^(1/2)+1/2)^29*199^(6/19) 6541001324130454 a003 cos(Pi*24/89)*sin(Pi*50/111) 6541001332047205 m005 (1/2*Catalan-1/11)/(5/12*exp(1)-4/7) 6541001332833900 m001 1/Riemann2ndZero^2/exp(Si(Pi))^2*GAMMA(19/24) 6541001334961305 r002 3th iterates of z^2 + 6541001350256803 r005 Im(z^2+c),c=-9/17+3/32*I,n=11 6541001358059746 m004 3+5/Pi+Coth[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 6541001432033019 r005 Im(z^2+c),c=-5/86+25/39*I,n=14 6541001454584412 m001 (ln(2)+ln(5))/(BesselI(0,2)-Tetranacci) 6541001457726951 h001 (-5*exp(5)-6)/(-2*exp(1)-6) 6541001481693008 m005 (1/2*exp(1)+4)/(-53/90+3/10*5^(1/2)) 6541001533247756 r002 4th iterates of z^2 + 6541001552963929 m001 (Cahen+Riemann1stZero)/(Shi(1)+Zeta(3)) 6541001575771177 r002 25th iterates of z^2 + 6541001581519948 m001 (Landau-TwinPrimes)/KomornikLoreti 6541001593880577 l006 ln(2533/4872) 6541001608650256 a007 Real Root Of -25*x^4+153*x^3+522*x^2+603*x-656 6541001651073197 q001 2377/3634 6541001663294195 a003 sin(Pi*22/79)*sin(Pi*38/117) 6541001678349980 m005 (1/3*3^(1/2)+3/5)/(7/11*2^(1/2)+9/10) 6541001685738596 m006 (3*Pi^2+4)/(1/4*ln(Pi)-4/5) 6541001707332955 r005 Re(z^2+c),c=-3/70+13/17*I,n=44 6541001732662395 r005 Re(z^2+c),c=-19/36+28/59*I,n=16 6541001745641773 a007 Real Root Of 10*x^4-374*x^3+914*x^2-415*x-769 6541001754403083 m005 (1/2*gamma-1/10)/(1/11*exp(1)-1/4) 6541001761522526 h001 (2/5*exp(1)+1/10)/(1/3*exp(1)+10/11) 6541001772009214 m001 1/ln(GAMMA(5/12))*Khintchine^2/Zeta(1/2) 6541001774900415 a007 Real Root Of 680*x^4-940*x^3+579*x^2+430*x-354 6541001784186199 a007 Real Root Of 510*x^4+205*x^3+776*x^2-318*x-576 6541001833877704 a001 2/165580141*317811^(2/15) 6541001833879431 a001 2/433494437*433494437^(2/15) 6541001833879431 a001 1/567451585*591286729879^(2/15) 6541001902739764 m001 (FeigenbaumD+OrthogonalArrays)/(Zeta(3)-gamma) 6541001908537741 m001 (exp(Pi)+sin(1/5*Pi))/(-Bloch+GaussAGM) 6541001920756377 a001 38/17*34^(45/47) 6541001926717257 m003 -7/6+Sqrt[5]/64-5*Coth[1/2+Sqrt[5]/2] 6541001929736884 r005 Im(z^2+c),c=-11/122+44/53*I,n=59 6541001956035977 a007 Real Root Of 491*x^4-826*x^3-410*x^2-580*x-525 6541001962070150 m002 -22/5-Log[Pi]-Tanh[Pi] 6541002000966394 h001 (1/5*exp(2)+5/6)/(5/12*exp(2)+5/11) 6541002003325388 m001 (Lehmer-Mills)/(sin(1/12*Pi)+FeigenbaumB) 6541002020950967 a001 18/4181*610^(3/46) 6541002022243139 m001 Rabbit/ln(MertensB1)/cos(Pi/5) 6541002026584909 a007 Real Root Of -961*x^4+176*x^3-433*x^2-921*x-192 6541002029347008 m005 (1/2*3^(1/2)+8/11)/(2/9*Pi-5/11) 6541002039514036 m002 -4+3*E^Pi-Cosh[Pi]/Pi^6 6541002061103327 m001 GaussAGM-sin(1/12*Pi)*ArtinRank2 6541002063141004 l006 ln(4374/8413) 6541002120516898 m001 (GAMMA(11/12)+MasserGramainDelta)/BesselJ(1,1) 6541002135016982 k001 Champernowne real with 348*n+306 6541002135016992 k005 Champernowne real with floor(sqrt(3)*(201*n+177)) 6541002135368453 a001 39088169/843*199^(1/2) 6541002158419425 r009 Re(z^3+c),c=-61/126+37/58*I,n=2 6541002188781982 p003 LerchPhi(1/64,5,249/91) 6541002205748662 r005 Im(z^2+c),c=-107/94+5/61*I,n=47 6541002208564847 r005 Im(z^2+c),c=19/106+19/32*I,n=24 6541002212348809 r005 Re(z^2+c),c=7/74+11/24*I,n=54 6541002224543339 m001 GaussAGM/(Riemann1stZero-exp(1/Pi)) 6541002251658296 m005 (1/2*gamma+4/9)/(4/9*Zeta(3)-6/11) 6541002297419070 a007 Real Root Of 47*x^4+229*x^3-451*x^2+544*x+906 6541002307442051 r009 Im(z^3+c),c=-49/94+21/52*I,n=12 6541002307561853 m005 (1/2*5^(1/2)+5/12)/(5/7*Catalan-8/9) 6541002307792577 m009 (3/4*Psi(1,1/3)-5/6)/(48*Catalan+6*Pi^2-1/6) 6541002317087292 s002 sum(A206668[n]/((exp(n)+1)/n),n=1..infinity) 6541002327793297 m001 1/RenyiParking*CareFree^2*ln(GAMMA(1/3)) 6541002336309857 m001 (ln(5)+PrimesInBinary)/(Catalan-GAMMA(3/4)) 6541002351076041 a007 Real Root Of 834*x^4+625*x^3+728*x^2-761*x-787 6541002354130488 p003 LerchPhi(1/64,1,71/46) 6541002377559953 m001 (GAMMA(2/3)+ln(2))/(BesselJ(1,1)-FeigenbaumMu) 6541002425460130 m005 (1/2*exp(1)+3)/(6/7*3^(1/2)-9/11) 6541002479758991 a001 199/89*514229^(19/44) 6541002489624925 m001 (CareFree+Kac)/(BesselJ(1,1)-Cahen) 6541002493098034 a007 Real Root Of -793*x^4+177*x^3-84*x^2-984*x-413 6541002497214071 r005 Re(z^2+c),c=-13/27+36/55*I,n=6 6541002512425262 m001 (Khinchin-Rabbit)/(ln(gamma)+FeigenbaumMu) 6541002519972319 r005 Im(z^2+c),c=-101/122+2/51*I,n=18 6541002524626706 m001 Totient/(sin(1/12*Pi)-arctan(1/2)) 6541002530727108 a007 Real Root Of -460*x^4+907*x^3-453*x^2-914*x-66 6541002541872610 a001 34/710647*7^(9/56) 6541002544607567 a007 Real Root Of -701*x^4+518*x^3-634*x^2-461*x+243 6541002556678854 m001 Zeta(1,2)*GolombDickman^LandauRamanujan 6541002561029606 r009 Re(z^3+c),c=-11/90+45/61*I,n=43 6541002570744215 r005 Im(z^2+c),c=7/54+31/51*I,n=13 6541002577170754 r005 Im(z^2+c),c=-11/19+13/45*I,n=6 6541002619240241 r002 2th iterates of z^2 + 6541002623273359 a003 cos(Pi*12/119)*sin(Pi*29/120) 6541002627304082 a007 Real Root Of 682*x^4+111*x^3-552*x^2-923*x+684 6541002630607462 a007 Real Root Of 170*x^4-639*x^3+100*x^2-907*x-846 6541002631128208 m001 (Catalan+HeathBrownMoroz)/(Landau+Thue) 6541002631140052 r009 Im(z^3+c),c=-11/82+10/13*I,n=9 6541002650500735 m008 (5/6*Pi^6+1/6)/(4*Pi^5+1) 6541002659081659 a007 Real Root Of 668*x^4-839*x^3-722*x^2-836*x-595 6541002660047678 m001 (Niven-Paris)/(GAMMA(19/24)+GlaisherKinkelin) 6541002661695104 a003 cos(Pi*32/119)-cos(Pi*21/71) 6541002664600985 r005 Im(z^2+c),c=47/118+4/13*I,n=54 6541002675525820 r005 Re(z^2+c),c=-5/44+29/39*I,n=8 6541002684637407 a001 521/267914296*8^(7/12) 6541002687390675 m001 (Kolakoski+PlouffeB)/(Catalan+GAMMA(23/24)) 6541002705157643 a007 Real Root Of 702*x^4-849*x^3+12*x^2-894*x-956 6541002705535586 a007 Real Root Of -548*x^4-322*x^3-819*x^2+791*x+878 6541002708788258 l006 ln(1841/3541) 6541002720559657 q001 1683/2573 6541002727628616 a007 Real Root Of -987*x^4+221*x^3+451*x^2+814*x+582 6541002730413110 a007 Real Root Of -679*x^4+417*x^3-523*x^2+352*x+695 6541002745513899 m005 (1/3*gamma-3/4)/(3/11*exp(1)+1/9) 6541002764405722 a003 cos(Pi*41/102)-sin(Pi*37/91) 6541002769336280 r009 Re(z^3+c),c=-11/90+29/42*I,n=53 6541002771974000 a003 sin(Pi*17/66)*sin(Pi*37/103) 6541002774412389 r005 Re(z^2+c),c=-7/62+22/31*I,n=39 6541002781341103 r002 62th iterates of z^2 + 6541002791525516 a001 2161/3*514229^(12/35) 6541002801392194 m001 (Psi(2,1/3)-gamma(3))/(-GolombDickman+Porter) 6541002822999476 a001 6/105937*514229^(8/43) 6541002852656928 r005 Im(z^2+c),c=-11/52+5/56*I,n=18 6541002859232977 a007 Real Root Of 219*x^4-406*x^3+759*x^2-62*x-519 6541002868280356 b008 ArcCot[8*Sqrt[1/2+Pi]] 6541002869935612 h001 (4/11*exp(1)+5/7)/(4/5*exp(1)+3/7) 6541002878193825 r005 Im(z^2+c),c=-11/52+5/56*I,n=17 6541002879819683 m001 (Totient+Thue)/(exp(1)+Cahen) 6541002889282942 r004 Im(z^2+c),c=1/14+13/20*I,z(0)=I,n=43 6541002889282942 r004 Im(z^2+c),c=1/14-13/20*I,z(0)=I,n=43 6541002895900015 r005 Im(z^2+c),c=-29/54+3/5*I,n=3 6541002897187097 r005 Im(z^2+c),c=27/82+5/9*I,n=23 6541002909656251 r005 Im(z^2+c),c=-11/52+5/56*I,n=20 6541002936782249 a007 Real Root Of 951*x^4-931*x^3+733*x^2+644*x-327 6541002943590691 m005 (1/2*3^(1/2)+1/7)/(4/11*Pi+2/5) 6541002946273138 m001 ln(3)/(KomornikLoreti-OneNinth) 6541002950274042 r005 Im(z^2+c),c=-11/52+5/56*I,n=22 6541002958418842 r005 Im(z^2+c),c=-11/52+5/56*I,n=24 6541002958991556 r005 Im(z^2+c),c=-1/16+22/29*I,n=29 6541002959392258 r005 Im(z^2+c),c=-11/52+5/56*I,n=26 6541002959399808 r005 Im(z^2+c),c=-11/52+5/56*I,n=27 6541002959407961 r005 Im(z^2+c),c=-11/52+5/56*I,n=29 6541002959415686 r005 Im(z^2+c),c=-11/52+5/56*I,n=31 6541002959417296 r005 Im(z^2+c),c=-11/52+5/56*I,n=33 6541002959417495 r005 Im(z^2+c),c=-11/52+5/56*I,n=35 6541002959417499 r005 Im(z^2+c),c=-11/52+5/56*I,n=36 6541002959417500 r005 Im(z^2+c),c=-11/52+5/56*I,n=38 6541002959417501 r005 Im(z^2+c),c=-11/52+5/56*I,n=40 6541002959417501 r005 Im(z^2+c),c=-11/52+5/56*I,n=42 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=44 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=45 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=47 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=49 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=51 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=53 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=56 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=54 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=58 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=60 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=62 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=63 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=64 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=61 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=59 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=57 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=55 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=52 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=50 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=48 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=46 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=43 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=41 6541002959417502 r005 Im(z^2+c),c=-11/52+5/56*I,n=39 6541002959417505 r005 Im(z^2+c),c=-11/52+5/56*I,n=37 6541002959417553 r005 Im(z^2+c),c=-11/52+5/56*I,n=34 6541002959418158 r005 Im(z^2+c),c=-11/52+5/56*I,n=32 6541002959421953 r005 Im(z^2+c),c=-11/52+5/56*I,n=30 6541002959434214 r005 Im(z^2+c),c=-11/52+5/56*I,n=28 6541002959657755 r005 Im(z^2+c),c=-11/52+5/56*I,n=25 6541002962668570 r005 Im(z^2+c),c=-11/52+5/56*I,n=23 6541002982190606 r005 Im(z^2+c),c=-11/52+5/56*I,n=21 6541002986536814 g006 Psi(1,10/11)+2*Psi(1,7/11)-Psi(1,8/9) 6541003002503330 m001 (Cahen-KomornikLoreti)/(ln(2)+GAMMA(11/12)) 6541003020595512 m004 5/Pi+3*Coth[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 6541003044622904 a003 cos(Pi*14/57)-cos(Pi*17/62) 6541003049568069 r005 Im(z^2+c),c=-11/52+5/56*I,n=19 6541003062107489 s002 sum(A151264[n]/(n*exp(n)-1),n=1..infinity) 6541003067545568 p001 sum((-1)^n/(541*n+89)/n/(24^n),n=1..infinity) 6541003095211302 r002 38th iterates of z^2 + 6541003115270969 r005 Im(z^2+c),c=-15/74+29/45*I,n=16 6541003135217012 k001 Champernowne real with 349*n+305 6541003162675397 a007 Real Root Of -705*x^4-345*x^3-926*x^2-290*x+239 6541003193173175 m001 (FeigenbaumB+Stephens)/(3^(1/2)+BesselK(0,1)) 6541003207589507 m001 (-Pi^(1/2)+ZetaQ(4))/(Chi(1)-LambertW(1)) 6541003216373082 a007 Real Root Of 114*x^4-328*x^3+419*x^2+324*x-80 6541003217755283 s002 sum(A153680[n]/(n^2*2^n-1),n=1..infinity) 6541003291955519 m001 (BesselI(1,1)+Paris)/(Porter-ZetaP(2)) 6541003293358930 l006 ln(4831/9292) 6541003296338683 m002 4/Pi^3-Log[Pi]/18 6541003327040583 a007 Real Root Of 278*x^4-762*x^3+336*x^2-867*x-975 6541003354269675 a007 Real Root Of 283*x^4-636*x^3+11*x^2-915*x-833 6541003355226419 r005 Re(z^2+c),c=-12/29+25/42*I,n=21 6541003355633126 r005 Re(z^2+c),c=-71/106+3/11*I,n=21 6541003358083090 a007 Real Root Of 155*x^4+936*x^3-668*x^2-974*x+421 6541003362016351 m001 (3^(1/3))^Trott2nd/((3^(1/3))^KhinchinLevy) 6541003362605087 a007 Real Root Of -83*x^4-561*x^3-186*x^2-439*x+22 6541003409394374 a007 Real Root Of -342*x^4+191*x^3+190*x^2+966*x-704 6541003411082380 m005 (1/3*3^(1/2)-1/8)/(1/11*exp(1)+4/9) 6541003411210402 m001 (cos(1)+Lehmer)/sqrt(3) 6541003411210402 m001 1/3*3^(1/2)*(cos(1)+Lehmer) 6541003416397183 r002 4th iterates of z^2 + 6541003424351226 a007 Real Root Of -787*x^4+904*x^3+864*x^2+418*x-752 6541003445294844 r009 Im(z^3+c),c=-27/50+11/53*I,n=27 6541003451376222 a005 (1/cos(13/207*Pi))^566 6541003486195665 m004 1-(7*Cosh[Sqrt[5]*Pi])/6+Sin[Sqrt[5]*Pi] 6541003495808159 a007 Real Root Of 615*x^4+511*x^3+459*x^2-182*x-285 6541003535091863 a007 Real Root Of 18*x^4-721*x^3-902*x^2+207*x+449 6541003545437152 m001 (ln(2)+gamma(2))/(MertensB1-Mills) 6541003553245609 s002 sum(A000856[n]/(n^3*2^n+1),n=1..infinity) 6541003554262856 m005 (1/3*Pi+1/8)/(7/9*Zeta(3)+6/7) 6541003596475898 a007 Real Root Of 723*x^4-281*x^3-12*x^2-731*x-684 6541003601402926 r005 Re(z^2+c),c=-79/126+29/63*I,n=5 6541003626452657 r005 Re(z^2+c),c=-3/46+42/55*I,n=11 6541003634526825 a001 2/341*18^(2/53) 6541003636978149 l003 Fresnelg(33/34) 6541003638058965 m005 (17/20+1/4*5^(1/2))/(1/2*Pi+7/12) 6541003646019318 l006 ln(8817/9413) 6541003653290220 l006 ln(2990/5751) 6541003662626295 r005 Re(z^2+c),c=-7/110+50/61*I,n=44 6541003668412272 m001 Stephens^BesselJ(1,1)*Robbin^BesselJ(1,1) 6541003671970624 q001 2672/4085 6541003677081956 m001 BesselI(0,1)^GaussAGM(1,1/sqrt(2))-LambertW(1) 6541003697820177 r002 25th iterates of z^2 + 6541003715735073 a007 Real Root Of -61*x^4-265*x^3+914*x^2+398*x+999 6541003730151805 m005 (1/2*Zeta(3)+1/7)/(6/11*gamma-3/7) 6541003757964513 a007 Real Root Of -565*x^4+328*x^3-106*x^2-273*x+62 6541003808519977 m001 (sin(1)+Zeta(3))/(GaussKuzminWirsing+ZetaQ(3)) 6541003821544332 m005 (1/2*exp(1)-1/7)/(2/3*2^(1/2)+11/12) 6541003861558609 m001 (1+ln(Pi))/(Backhouse+MasserGramainDelta) 6541003884996072 a001 8/2207*521^(49/59) 6541003900465591 a007 Real Root Of -689*x^4+168*x^3-470*x^2+920*x+976 6541003904115719 m001 StronglyCareFree^exp(1)/ZetaP(4) 6541003910585104 r005 Im(z^2+c),c=-35/86+5/47*I,n=25 6541003924965061 r005 Im(z^2+c),c=7/26+27/61*I,n=7 6541003948314149 m001 Thue^(ReciprocalFibonacci/Zeta(3)) 6541003954593007 a001 1/324*(1/2*5^(1/2)+1/2)^16*18^(18/23) 6541003965952517 v002 sum(1/(2^n+(9*n^2-20*n+63)),n=1..infinity) 6541003986056072 a001 5/123*7^(11/45) 6541003989145747 a007 Real Root Of 301*x^4-760*x^3-267*x^2-999*x-807 6541003996873741 r005 Im(z^2+c),c=-29/24+5/43*I,n=41 6541004020737715 m005 (1/2*Zeta(3)-1/8)/(2/5*5^(1/2)-1/6) 6541004031561739 a007 Real Root Of 651*x^4-269*x^3-7*x^2-938*x-805 6541004063880951 r005 Im(z^2+c),c=-11/52+5/56*I,n=16 6541004067815928 a007 Real Root Of 676*x^4-163*x^3-134*x^2-801*x+53 6541004073398457 l006 ln(4139/7961) 6541004088474832 a007 Real Root Of 678*x^4-896*x^3-634*x^2+111*x-31 6541004095576330 m001 FeigenbaumC/(MertensB3+Porter) 6541004095647982 a007 Real Root Of 502*x^4-122*x^3+31*x^2-793*x-658 6541004117613365 b008 ArcSech[ArcCsch[7]^3] 6541004120249953 a003 sin(Pi*8/81)+sin(Pi*11/97) 6541004133825506 b008 85*Sqrt[6]*Pi 6541004135417042 k005 Champernowne real with floor(sqrt(3)*(202*n+176)) 6541004135417042 k001 Champernowne real with 350*n+304 6541004142332076 a007 Real Root Of 986*x^4-520*x^3-31*x^2-219*x-456 6541004148500264 m001 1/Lehmer^2/exp(Cahen)^2/Zeta(3) 6541004149547886 r002 4th iterates of z^2 + 6541004168218812 m001 (Chi(1)-Si(Pi))/(-MertensB2+Sierpinski) 6541004204250513 m001 (MasserGramain-Sarnak)/(AlladiGrinstead+Artin) 6541004234882165 m005 (1/2*5^(1/2)+5/6)/(2/3*Pi+8/9) 6541004264661979 m001 cos(Pi/12)*exp(Trott)*sin(Pi/12)^2 6541004278953184 a007 Real Root Of 791*x^4-104*x^3+252*x^2-959*x-909 6541004303717861 r002 50th iterates of z^2 + 6541004312428630 m001 1/cos(Pi/5)*Sierpinski^2/ln(log(1+sqrt(2))) 6541004348883916 a007 Real Root Of 680*x^4+462*x^3+433*x^2+71*x-134 6541004358998060 m005 (1/2*Catalan+5/12)/(5/7*3^(1/2)+1/10) 6541004361186802 p003 LerchPhi(1/6,1,34/217) 6541004384501803 m005 (1/2*Zeta(3)+4/5)/(8/9*Catalan-3/5) 6541004385026569 m005 (1/3*2^(1/2)-1/9)/(4*Zeta(3)+7/10) 6541004398252818 r009 Im(z^3+c),c=-27/98+13/18*I,n=10 6541004412572867 m001 exp(Robbin)*Rabbit^2*sin(Pi/12)^2 6541004428419468 r005 Im(z^2+c),c=47/118+4/31*I,n=9 6541004430447950 m001 FeigenbaumDelta*exp(Cahen)^2/Sierpinski 6541004442159935 a007 Real Root Of -34*x^4+456*x^3-503*x^2+428*x+629 6541004452585716 a007 Real Root Of 340*x^4-56*x^3-768*x^2-373*x+526 6541004505409848 m001 (Lehmer+Porter)/(BesselK(0,1)-FeigenbaumMu) 6541004506136781 r005 Re(z^2+c),c=-3/86+40/57*I,n=16 6541004526621583 a007 Real Root Of -76*x^4-350*x^3+974*x^2+26*x-331 6541004567254742 r005 Re(z^2+c),c=-7/10+67/254*I,n=14 6541004575752330 m001 (ln(2)/ln(10))^(cos(1/5*Pi)*FransenRobinson) 6541004592250430 m001 (gamma(2)-GAMMA(11/12))/(MertensB1-Paris) 6541004613592923 m001 GAMMA(19/24)-Stephens^KhinchinLevy 6541004688011336 m001 (1-Zeta(1,2))/(ErdosBorwein+FeigenbaumKappa) 6541004701621219 a007 Real Root Of 680*x^4+29*x^3+825*x^2+106*x-400 6541004704672450 m001 GAMMA(2/3)/(FellerTornier+MadelungNaCl) 6541004706722517 r009 Im(z^3+c),c=-11/50+17/24*I,n=24 6541004712480822 m005 (1/2*2^(1/2)+6/7)/(5/8*Catalan-1/3) 6541004727956950 m001 (Kolakoski+ZetaP(2))/(1-AlladiGrinstead) 6541004780938976 m001 1/Trott^2/exp(Backhouse)^2*sqrt(2) 6541004788844846 m005 (1/2*5^(1/2)+2/5)/(1/2*Pi+3/4) 6541004793011296 s002 sum(A249819[n]/(exp(2*pi*n)+1),n=1..infinity) 6541004816844469 a001 329*29^(10/49) 6541004816967849 m001 (PlouffeB+Rabbit)/(Kac+KhinchinLevy) 6541004819501065 a007 Real Root Of 81*x^4-64*x^3+918*x^2-597*x-816 6541004835262310 a007 Real Root Of -236*x^4+481*x^3+259*x^2+336*x-422 6541004923708664 a007 Real Root Of -966*x^4+942*x^3-394*x^2+506*x+940 6541004941343858 a007 Real Root Of -240*x^4-533*x^3-710*x^2+441*x+487 6541004969333654 m008 (4*Pi^6-5/6)/(3/5*Pi^4+1/3) 6541004973801026 r005 Im(z^2+c),c=-21/16+3/71*I,n=18 6541004978921323 a005 (1/sin(73/161*Pi))^389 6541004993337718 l006 ln(7885/8418) 6541005012125540 a007 Real Root Of -762*x^4+488*x^3+876*x^2+786*x-886 6541005013702756 a007 Real Root Of -986*x^4+903*x^3-152*x^2-8*x+493 6541005024388603 a007 Real Root Of -720*x^4+698*x^3-294*x^2-6*x+449 6541005032893126 a007 Real Root Of -201*x^4-529*x^3-808*x^2+646*x+657 6541005046827215 a001 1/31622993*233^(2/15) 6541005062417046 a007 Real Root Of -132*x^4-873*x^3+10*x^2+510*x+225 6541005071595637 a007 Real Root Of -99*x^4-543*x^3+626*x^2-531*x-995 6541005073869588 m002 -Pi^3+Pi^4+ProductLog[Pi]/Pi^5-Tanh[Pi] 6541005082283323 m001 (-cos(1)+BesselI(0,1))/(Psi(1,1/3)+1) 6541005085366049 a007 Real Root Of 728*x^4-203*x^3+636*x^2-333*x-680 6541005087116258 r005 Im(z^2+c),c=-17/82+4/45*I,n=9 6541005088466361 m005 (1/2*Zeta(3)+2/7)/(6/11*Zeta(3)+7/10) 6541005103589227 h001 (-12*exp(3)-7)/(-7*exp(4)+3) 6541005111251878 a007 Real Root Of -92*x^4-659*x^3-483*x^2-844*x-871 6541005117740949 m001 GAMMA(7/12)-exp(1)*arctan(1/3) 6541005127512415 v002 sum(1/(5^n+(15+6*n^2-2*n)),n=1..infinity) 6541005130430270 m001 1/BesselK(0,1)^2*exp(ArtinRank2)*gamma 6541005135617072 k001 Champernowne real with 351*n+303 6541005139436367 a007 Real Root Of 556*x^4+538*x^3+951*x^2-671*x-797 6541005166630428 l006 ln(1149/2210) 6541005203857584 g001 Psi(10/11,5/56) 6541005226800101 m001 PrimesInBinary*ln(FransenRobinson)/cos(Pi/5)^2 6541005267205798 a007 Real Root Of 413*x^4-467*x^3-309*x^2+46*x-44 6541005291005291 q001 989/1512 6541005291005291 r002 2th iterates of z^2 + 6541005291005291 r002 2th iterates of z^2 + 6541005291005291 r002 2th iterates of z^2 + 6541005291005291 r002 2th iterates of z^2 + 6541005291005291 r002 2th iterates of z^2 + 6541005291005291 r005 Im(z^2+c),c=-109/126+43/48*I,n=2 6541005308101909 m001 (GAMMA(23/24)-sin(1))/(FransenRobinson+Trott) 6541005311405471 m001 HardyLittlewoodC5*(ErdosBorwein-Trott) 6541005339882111 m001 (GolombDickman+TwinPrimes)/(2^(1/2)-ln(gamma)) 6541005359359606 a001 1/24447*(1/2*5^(1/2)+1/2)*843^(15/22) 6541005390660642 m004 -4+(Sqrt[5]*Pi*Cosh[Sqrt[5]*Pi])/6 6541005406593103 a001 9227465/521*199^(15/22) 6541005408923881 a007 Real Root Of 470*x^4-116*x^3-703*x^2-641*x-237 6541005409436411 m001 (1+3^(1/2))^(1/2)/Zeta(3)/Riemann2ndZero 6541005418407344 a007 Real Root Of 311*x^4+87*x^3+543*x^2-682*x-711 6541005428360758 m001 (LaplaceLimit+Magata)/(MertensB2-ThueMorse) 6541005432399455 a007 Real Root Of 124*x^4+871*x^3+502*x^2+581*x-910 6541005467443779 r005 Re(z^2+c),c=-13/44+19/29*I,n=63 6541005493213681 a001 199/144*4181^(11/59) 6541005493576015 a007 Real Root Of 141*x^4-296*x^3-102*x^2-425*x-343 6541005495084255 m001 Riemann2ndZero/ln(Bloch)*GAMMA(7/12)^2 6541005499623861 a007 Real Root Of -x^4+874*x^3-404*x^2-348*x+190 6541005531544544 m001 FeigenbaumD*(ReciprocalLucas+Weierstrass) 6541005595464044 a003 cos(Pi*10/51)/cos(Pi*52/113) 6541005614503567 m001 ln(Ei(1))*BesselK(0,1)^2*gamma 6541005618484298 m001 1/Magata*FibonacciFactorial^2*ln(GAMMA(5/24)) 6541005656522714 r005 Re(z^2+c),c=-17/30+62/97*I,n=2 6541005665755064 a007 Real Root Of -7*x^4+959*x^3+614*x^2+37*x-554 6541005692628566 r005 Re(z^2+c),c=5/52+8/49*I,n=6 6541005700953187 s002 sum(A090188[n]/((2^n+1)/n),n=1..infinity) 6541005710935697 m003 -1/50+Sqrt[5]/32+6*Coth[1/2+Sqrt[5]/2] 6541005712883303 m001 Thue^(Grothendieck/ZetaQ(2)) 6541005715946986 a007 Real Root Of -278*x^4-149*x^3-677*x^2+465*x+603 6541005721440641 r002 3th iterates of z^2 + 6541005742848475 a007 Real Root Of -162*x^4+72*x^3-679*x^2+885*x-55 6541005765358586 a001 2/3*7778742049^(10/11) 6541005766741955 r002 12i'th iterates of 2*x/(1-x^2) of 6541005777403854 p003 LerchPhi(1/32,2,92/235) 6541005781200719 m003 11/2+Sqrt[5]/2-Tanh[1/2+Sqrt[5]/2]/12 6541005840066268 s001 sum(exp(-Pi/3)^(n-1)*A050882[n],n=1..infinity) 6541005842556999 m001 ln(FeigenbaumC)/GaussAGM(1,1/sqrt(2))*Catalan 6541005851931162 r002 2th iterates of z^2 + 6541005888276670 a007 Real Root Of 94*x^4-967*x^3+578*x^2+786*x-21 6541005914946978 m008 (1/6*Pi^3-1/6)/(4/5*Pi^2-1/4) 6541005929392909 a007 Real Root Of 512*x^4+238*x^3-347*x^2-450*x-173 6541005932193736 a007 Real Root Of 960*x^4-465*x^3+916*x^2+920*x-96 6541005955753105 a007 Real Root Of 450*x^4+163*x^3-216*x^2-750*x+455 6541006000223427 r005 Im(z^2+c),c=33/118+35/64*I,n=39 6541006007359040 a007 Real Root Of -512*x^4+206*x^3-909*x^2-826*x 6541006009083254 a007 Real Root Of 149*x^4-567*x^3+952*x^2-21*x-607 6541006023861569 a007 Real Root Of 82*x^4+646*x^3+779*x^2+480*x+493 6541006062115620 l006 ln(5053/9719) 6541006072099960 m001 (GaussAGM+Thue)/(ln(Pi)+exp(1/exp(1))) 6541006102091421 a007 Real Root Of 562*x^4-553*x^3-472*x^2-676*x+696 6541006102166761 b008 Sech[1/6-2*EulerGamma] 6541006102698543 a007 Real Root Of 282*x^4-423*x^3-474*x^2-681*x+715 6541006103449368 m001 Catalan^PlouffeB/((5^(1/2))^PlouffeB) 6541006116468088 a001 2/29*199^(17/40) 6541006135717092 k005 Champernowne real with floor(sqrt(3)*(203*n+175)) 6541006135817102 k001 Champernowne real with 352*n+302 6541006186911986 r002 39th iterates of z^2 + 6541006191384749 b008 -25/4+Tan[6] 6541006243089003 r009 Im(z^3+c),c=-1/15+28/37*I,n=34 6541006243343926 m005 (1/2*Zeta(3)+1/7)/(2/5*3^(1/2)+4/9) 6541006260376933 a007 Real Root Of 251*x^4+293*x^3+8*x^2-958*x-594 6541006262643871 a007 Real Root Of -978*x^4+765*x^3-996*x^2-537*x+468 6541006301731777 m005 (-19/36+1/4*5^(1/2))/(5/6*Catalan-2/7) 6541006320046311 b008 -7+Sqrt[Erf[1]]/2 6541006325669008 l006 ln(3904/7509) 6541006350784953 m001 (ln(Pi)-gamma(3))/(Zeta(1,2)-AlladiGrinstead) 6541006353378785 a007 Real Root Of -959*x^4+553*x^3-946*x^2-659*x+304 6541006363988880 a007 Real Root Of 867*x^4-942*x^3+868*x^2-109*x-865 6541006365540122 a007 Real Root Of -652*x^4+489*x^3-190*x^2+941*x+953 6541006395214236 r005 Re(z^2+c),c=-63/106+12/17*I,n=3 6541006395337645 a005 (1/cos(47/147*Pi))^40 6541006403188176 r005 Im(z^2+c),c=27/74+3/23*I,n=56 6541006415719433 a007 Real Root Of -226*x^4-174*x^3+667*x^2+900*x-784 6541006440127758 a003 sin(Pi*1/84)/cos(Pi*34/111) 6541006443589511 m001 (2*Pi/GAMMA(5/6))^Porter*MasserGramain^Porter 6541006452428801 m007 (-3/5*gamma-4/5)/(-gamma-3*ln(2)+1/2*Pi-2/3) 6541006455696923 a007 Real Root Of 148*x^4-752*x^3-343*x^2-168*x+440 6541006463534852 r009 Re(z^3+c),c=-11/18+8/31*I,n=31 6541006522498651 a005 (1/cos(28/141*Pi))^351 6541006527678890 m002 5+ProductLog[Pi]/(6*E^Pi)-Sinh[Pi] 6541006534459325 m002 -4+3*E^Pi-Sinh[Pi]/Pi^6 6541006660925116 q001 6/91729 6541006701852912 l006 ln(6953/7423) 6541006710653740 a007 Real Root Of -485*x^4+195*x^3-969*x^2-509*x+225 6541006739527610 r009 Re(z^3+c),c=-29/62+16/27*I,n=5 6541006809057472 l006 ln(2755/5299) 6541006835503207 r002 10th iterates of z^2 + 6541006868711850 r005 Im(z^2+c),c=-3/46+25/37*I,n=34 6541006880621953 m001 (ln(2)+gamma(2))/(Lehmer+ZetaP(2)) 6541006894777260 a007 Real Root Of -728*x^4-51*x^3-239*x^2-60*x+182 6541006911055054 a007 Real Root Of 996*x^4-691*x^3-192*x^2-389*x-548 6541006911935255 m005 (1/2*3^(1/2)-8/11)/(6/7*2^(1/2)+10/11) 6541006915055106 r005 Im(z^2+c),c=1/28+38/61*I,n=21 6541006925544932 r008 a(0)=0,K{-n^6,-27-61*n+53*n^2+20*n^3} 6541006946380838 a007 Real Root Of 44*x^4+265*x^3-246*x^2-540*x+611 6541006994238156 m001 Bloch*MertensB2*Totient 6541007015922148 m005 (1/3*2^(1/2)-1/10)/(5/9*Zeta(3)-1/10) 6541007034635255 m001 Sarnak^exp(1/exp(1))+Trott2nd 6541007040124417 a007 Real Root Of 806*x^4-232*x^3+543*x^2+229*x-295 6541007094108043 r008 a(0)=1,K{-n^6,89-97*n^3+94*n^2-86*n} 6541007103766452 a008 Real Root of x^3-x^2-40*x+61 6541007111202135 m001 (gamma-ZetaP(4))/BesselJ(0,1) 6541007136017132 k001 Champernowne real with 353*n+301 6541007165728305 a007 Real Root Of -103*x^4+781*x^3-783*x^2+591*x+959 6541007173441587 r002 3th iterates of z^2 + 6541007188504969 m001 1/ln(Lehmer)^2/LaplaceLimit*KhintchineLevy 6541007192346254 a007 Real Root Of -639*x^4-333*x^3-836*x^2+912*x+978 6541007194244604 q001 2273/3475 6541007205507799 m001 FeigenbaumB^GAMMA(19/24)+Zeta(1/2) 6541007210167263 r005 Re(z^2+c),c=-3/98+47/58*I,n=62 6541007210352471 a007 Real Root Of -920*x^4-80*x^3-676*x^2-60*x+396 6541007210794748 a007 Real Root Of -209*x^4+767*x^3-573*x^2-101*x+432 6541007229554139 a007 Real Root Of -605*x^4-704*x^3-694*x^2-611*x-189 6541007241790441 l006 ln(4361/8388) 6541007280816487 m001 gamma(2)^Paris*HardHexagonsEntropy^Paris 6541007285598641 r005 Re(z^2+c),c=-1+203/251*I,n=2 6541007289692456 m001 1/3/(Cahen^GAMMA(7/12)) 6541007292138650 a007 Real Root Of -310*x^4-295*x^3+452*x^2+882*x-631 6541007295622242 p001 sum((-1)^n/(348*n+151)/(24^n),n=0..infinity) 6541007326668038 m001 (Champernowne-Psi(1,1/3))/(Paris+ZetaQ(2)) 6541007328619670 a007 Real Root Of 957*x^4+422*x^3+658*x^2+270*x-162 6541007336292256 a007 Real Root Of 601*x^4-186*x^3+929*x^2-149*x-657 6541007340221601 a007 Real Root Of 876*x^4-572*x^3+208*x^2+762*x+89 6541007352398449 a007 Real Root Of -439*x^4+924*x^3+494*x^2-325*x-177 6541007367166414 a007 Real Root Of 965*x^4+133*x^3-11*x^2+712*x+331 6541007371813746 r002 4th iterates of z^2 + 6541007379509141 m001 (KomornikLoreti-OrthogonalArrays)/(Pi+exp(1)) 6541007390760904 a007 Real Root Of 307*x^4-111*x^3-57*x^2-816*x+533 6541007394142197 m001 GAMMA(1/12)^(GAMMA(11/24)/GAMMA(5/6)) 6541007405254200 a007 Real Root Of -845*x^4+776*x^3-52*x^2+830*x+937 6541007412083731 a003 cos(Pi*24/83)/sin(Pi*44/113) 6541007475639163 a007 Real Root Of -436*x^4+477*x^3-80*x^2+334*x+466 6541007478543921 m002 -Pi^2+Cosh[Pi]+(Pi^4*Log[Pi])/E^Pi 6541007494472485 a001 1/64003*(1/2*5^(1/2)+1/2)^6*2207^(9/22) 6541007501604223 m001 1/Zeta(1,2)^2*ln(Si(Pi))*cos(Pi/12)^2 6541007508624980 a007 Real Root Of 102*x^4+541*x^3-710*x^2+750*x-30 6541007523946574 a007 Real Root Of -134*x^4-811*x^3+315*x^2-791*x-322 6541007541579648 r005 Im(z^2+c),c=5/26+13/24*I,n=62 6541007598311539 r005 Im(z^2+c),c=-31/26+5/59*I,n=33 6541007627930840 r005 Im(z^2+c),c=-26/21+1/26*I,n=34 6541007627964257 r005 Re(z^2+c),c=-7/10+75/181*I,n=4 6541007639136243 a007 Real Root Of 389*x^4-908*x^3+956*x^2-27*x-752 6541007654581414 a007 Real Root Of 105*x^4-851*x^3-862*x^2-563*x+956 6541007665632587 a001 514229/322*521^(25/26) 6541007671864363 a001 6*(1/2*5^(1/2)+1/2)^32*3^(11/15) 6541007674775562 r005 Re(z^2+c),c=5/28+14/47*I,n=28 6541007698818800 m001 (2^(1/2)+GAMMA(13/24))/FeigenbaumDelta 6541007698818800 m001 (sqrt(2)+GAMMA(13/24))/FeigenbaumDelta 6541007722857052 p004 log(23833/12391) 6541007726125527 a007 Real Root Of -302*x^4+30*x^3-235*x^2+336*x+384 6541007739294445 m001 ln(TreeGrowth2nd)*Sierpinski*GAMMA(7/24) 6541007772642731 m001 Trott^2*exp(CopelandErdos)*GAMMA(5/24) 6541007794435465 m002 -ProductLog[Pi]+(E^Pi*ProductLog[Pi])/(6*Pi^2) 6541007805754715 m002 -4-Pi+Pi^3+Pi^6/E^Pi 6541007826569632 r009 Im(z^3+c),c=-9/86+47/63*I,n=35 6541007847263022 a003 sin(Pi*17/108)/sin(Pi*23/89) 6541007852704187 m001 exp(GAMMA(5/24))*Khintchine*sqrt(3)^2 6541007864563175 r009 Re(z^3+c),c=-2/19+23/47*I,n=6 6541007866368127 a007 Real Root Of 723*x^4-511*x^3+208*x^2-452*x-660 6541007875236420 a008 Real Root of (-4+4*x+3*x^2-x^3+6*x^4-6*x^5) 6541007896436060 a007 Real Root Of 13*x^4-857*x^3+392*x^2-870*x-979 6541007914226508 r005 Im(z^2+c),c=-7/6+59/255*I,n=24 6541007941985729 m001 1/Sierpinski/Champernowne^2*ln(BesselK(1,1))^2 6541007964348036 a001 123/7*(1/2*5^(1/2)+1/2)^6*7^(3/8) 6541007971474255 m001 MinimumGamma*Trott-StolarskyHarborth 6541007984118747 l006 ln(1606/3089) 6541007999786520 m001 MertensB2-sin(1)*ZetaP(2) 6541008047696769 m001 (-Bloch+Thue)/(2^(1/3)-Si(Pi)) 6541008048706320 a007 Real Root Of -939*x^4-6*x^3+591*x^2+819*x-615 6541008058105866 m001 LambertW(1)/Ei(1)^2/exp(log(1+sqrt(2))) 6541008080260524 m001 FeigenbaumDelta+FeigenbaumD^HardyLittlewoodC3 6541008085071832 r005 Im(z^2+c),c=-3/46+35/54*I,n=45 6541008089788189 m001 BesselK(1,1)^(5^(1/2)*Artin) 6541008089788189 m001 BesselK(1,1)^(sqrt(5)*Artin) 6541008090489987 a001 47/317811*53316291173^(10/19) 6541008105461020 a007 Real Root Of -494*x^4+977*x^3-391*x^2+674*x+972 6541008132748830 a001 843/591286729879*987^(8/9) 6541008133226941 m001 (gamma+sin(Pi/5))/exp(gamma) 6541008134080258 m001 (ln(2)+polylog(4,1/2))/(GaussAGM-Khinchin) 6541008136117142 k005 Champernowne real with floor(sqrt(3)*(204*n+174)) 6541008136217162 k001 Champernowne real with 354*n+300 6541008163318363 a001 1/167562*(1/2*5^(1/2)+1/2)^8*5778^(4/11) 6541008178541225 r005 Im(z^2+c),c=-7/10+1/238*I,n=15 6541008182304228 r002 4th iterates of z^2 + 6541008220513835 m001 (exp(1/Pi)+gamma(3))/(LaplaceLimit-ZetaP(2)) 6541008238765156 a007 Real Root Of 476*x^4-485*x^3-288*x^2-343*x-324 6541008263595397 a007 Real Root Of -112*x^4+596*x^3-357*x^2+3*x+342 6541008265909392 a001 1/438683*(1/2*5^(1/2)+1/2)^12*15127^(5/22) 6541008280201922 a001 1/438683*(1/2*5^(1/2)+1/2)^2*15127^(8/11) 6541008282317923 b008 ArcCsch[ArcCsch[7]^3] 6541008286401922 a001 47/2584*5702887^(10/19) 6541008288721933 a001 1/1858291*(1/2*5^(1/2)+1/2)^7*64079^(6/11) 6541008293953404 a001 1/709804*(1/2*5^(1/2)+1/2)^8*24476^(5/11) 6541008298135107 a007 Real Root Of -368*x^4+516*x^3-737*x^2+87*x+584 6541008302006524 r009 Re(z^3+c),c=-5/42+41/62*I,n=49 6541008302630420 r001 62i'th iterates of 2*x^2-1 of 6541008310600571 m005 (1/2*2^(1/2)-5)/(23/11+2*5^(1/2)) 6541008312482459 a001 123/55*34^(7/23) 6541008313315317 a001 14619165/46*199^(3/22) 6541008319624613 r002 4th iterates of z^2 + 6541008342688512 m005 (1/2*gamma+4/9)/(8/11*Catalan+5/11) 6541008342909056 b008 EulerGamma^(-1+Sqrt[Pi]) 6541008342909056 m001 gamma^(Pi^(1/2))/gamma 6541008357715799 m001 exp(FeigenbaumB)^2/LaplaceLimit^2/Tribonacci 6541008358203779 r009 Re(z^3+c),c=-57/106+9/47*I,n=7 6541008361037585 a001 843/377*89^(11/46) 6541008372164280 r009 Re(z^3+c),c=-57/106+3/19*I,n=52 6541008393789681 a001 1926/7*4181^(19/50) 6541008398216633 m001 (FibonacciFactorial-Otter)/(Porter+Salem) 6541008399422568 m001 ZetaR(2)^cos(1/12*Pi)*ZetaR(2)^arctan(1/2) 6541008427560760 a007 Real Root Of -767*x^4+319*x^3-613*x^2+208*x+628 6541008446266777 a007 Real Root Of -545*x^4+281*x^3-562*x^2+572*x+793 6541008448662952 p001 sum((-1)^n/(409*n+61)/n/(3^n),n=1..infinity) 6541008451494780 a001 17711/322*2^(1/4) 6541008465591042 r005 Im(z^2+c),c=-43/36+4/43*I,n=31 6541008480876044 a007 Real Root Of -142*x^4+208*x^3-326*x^2+632*x-40 6541008501998889 a007 Real Root Of -153*x^4+753*x^3-259*x^2-805*x-177 6541008562015183 a003 cos(Pi*18/83)*sin(Pi*29/91) 6541008585067211 r009 Im(z^3+c),c=-79/126+25/47*I,n=7 6541008589759894 m001 (Psi(1,1/3)+ln(5))/(exp(1/Pi)+PrimesInBinary) 6541008609228501 l001 sinh(9/46*Pi) 6541008609228501 l003 sinh(Pi*9/46) 6541008609228501 l004 sinh(9/46*Pi) 6541008627188758 r009 Im(z^3+c),c=-17/90+40/57*I,n=6 6541008636452163 l005 171/41/(exp(171/41)-1) 6541008660213958 q001 1284/1963 6541008693200001 a003 sin(Pi*1/10)+sin(Pi*12/107) 6541008702657001 r005 Re(z^2+c),c=-13/18+20/109*I,n=54 6541008737821653 a001 1597/47*3^(31/52) 6541008739409142 r005 Im(z^2+c),c=-181/122+1/59*I,n=9 6541008749523040 a007 Real Root Of -662*x^4-287*x^3-195*x^2+660*x+556 6541008751952524 m001 (Lehmer-Thue)/(BesselK(1,1)-DuboisRaymond) 6541008753704583 b008 -16/3+Sqrt[141] 6541008754305215 a001 1/103559*(1/2*5^(1/2)+1/2)^12*3571^(1/11) 6541008829863735 r005 Re(z^2+c),c=-17/70+28/43*I,n=48 6541008858951757 m005 (1/2*gamma-2/11)/(5/12*exp(1)+1/2) 6541008862010815 m005 (1/2*Zeta(3)+5/9)/(3/8*Catalan-1/6) 6541008866455481 l006 ln(3669/7057) 6541008877646972 r002 49th iterates of z^2 + 6541008929045876 a007 Real Root Of -134*x^4-733*x^3+852*x^2-483*x+546 6541008938193431 r005 Re(z^2+c),c=-149/122+9/47*I,n=12 6541008939295537 l006 ln(6021/6428) 6541008940997071 r005 Re(z^2+c),c=-7/8+79/251*I,n=8 6541008941352713 r005 Im(z^2+c),c=-99/74+6/25*I,n=5 6541009006244105 m005 (1/3*gamma-1/9)/(3/11*2^(1/2)+6/7) 6541009016078300 a001 45537549124/55*2178309^(17/22) 6541009016078553 a001 12752043/55*86267571272^(17/22) 6541009047830621 r005 Im(z^2+c),c=-25/42+13/37*I,n=18 6541009056444135 a007 Real Root Of -554*x^4+587*x^3+945*x^2+507*x+193 6541009062803335 h001 (-8*exp(4)+3)/(-12*exp(4)-8) 6541009077917141 m001 (Pi^(1/2)-sin(1/12*Pi))/exp(Pi) 6541009077917141 m001 (sin(Pi/12)-sqrt(Pi))/exp(Pi) 6541009077917141 m001 exp(-Pi)*(sin(Pi/12)-sqrt(Pi)) 6541009090732612 a001 11/2178309*2584^(13/21) 6541009095266011 m001 ln(3)/(Si(Pi)^sin(1)) 6541009098642434 m001 (2^(1/3)+Ei(1,1))/(Kolakoski+Porter) 6541009103082259 a007 Real Root Of -440*x^4+921*x^3+863*x^2+376*x+215 6541009103204244 r005 Re(z^2+c),c=-7/10+17/207*I,n=3 6541009108618019 s001 sum(exp(-4*Pi/5)^n*A268947[n],n=1..infinity) 6541009127161895 m001 (FeigenbaumB+Landau)/(Riemann2ndZero+ZetaQ(3)) 6541009136417192 k001 Champernowne real with 355*n+299 6541009136417192 k005 Champernowne real with floor(sqrt(3)*(205*n+173)) 6541009140540596 r002 3th iterates of z^2 + 6541009157025768 r002 28th iterates of z^2 + 6541009191758076 a007 Real Root Of -760*x^4-724*x^3-440*x^2+193*x+251 6541009194528400 a007 Real Root Of 440*x^4-909*x^3-269*x^2-552*x+650 6541009201370611 m001 (arctan(1/3)+FellerTornier)/(MertensB1+Sarnak) 6541009212019202 a001 11/591286729879*1548008755920^(13/21) 6541009212019202 a001 11/1134903170*63245986^(13/21) 6541009214918923 m009 (1/2*Psi(1,2/3)+1/2)/(1/6*Psi(1,2/3)-1/5) 6541009215721214 b008 -1/20+LogIntegral[11] 6541009242306689 m005 (1/3*Zeta(3)+2/7)/(2/7*exp(1)+3/11) 6541009243831911 m001 (ln(gamma)+GAMMA(7/12))/(Backhouse-Mills) 6541009252285533 a003 cos(Pi*15/68)*sin(Pi*11/34) 6541009291804066 a007 Real Root Of 626*x^4-405*x^3-229*x^2-474*x-440 6541009295085578 m001 Sierpinski^BesselI(0,1)*Niven^BesselI(0,1) 6541009296052519 a007 Real Root Of -468*x^4+460*x^3+15*x^2+662*x+641 6541009309854745 m001 (ln(3)-MadelungNaCl)/(Porter-Weierstrass) 6541009310413532 m001 Catalan*GolombDickman^TravellingSalesman 6541009310786671 r002 12th iterates of z^2 + 6541009327234757 a007 Real Root Of -70*x^4-393*x^3+300*x^2-780*x+217 6541009347856465 a007 Real Root Of -564*x^4-213*x^3-424*x^2+746*x+713 6541009406279585 r005 Im(z^2+c),c=2/15+33/49*I,n=21 6541009412855029 a007 Real Root Of -85*x^4+375*x^3-272*x^2+558*x-338 6541009415542846 m005 (15/28+1/4*5^(1/2))/(7/11*3^(1/2)+4/7) 6541009424694985 s002 sum(A244084[n]/(n*2^n+1),n=1..infinity) 6541009452526213 b008 -20/3+ArcCoth[8] 6541009460191042 v003 sum((12+3*n^2+5*n)*n!/n^n,n=1..infinity) 6541009500013314 r009 Re(z^3+c),c=-17/64+24/35*I,n=40 6541009503234214 r005 Im(z^2+c),c=-49/40+1/28*I,n=10 6541009518151081 m001 Bloch^(GAMMA(7/12)/BesselK(0,1)) 6541009519257761 a001 416020/161*521^(23/26) 6541009537095388 m005 (5/18+1/6*5^(1/2))/(1/10+2/5*5^(1/2)) 6541009537295798 a007 Real Root Of -168*x^4+907*x^3-277*x^2+830*x+946 6541009548071533 r005 Im(z^2+c),c=-55/62+3/61*I,n=24 6541009553335115 l006 ln(2063/3968) 6541009566445521 a001 1/39556*(1/2*5^(1/2)+1/2)^2*1364^(7/11) 6541009567843735 a007 Real Root Of -992*x^4+986*x^3-396*x^2-428*x+347 6541009588351139 m001 exp(Pi)^Pi/Otter 6541009612372365 m001 FeigenbaumDelta*Riemann1stZero-sin(1/5*Pi) 6541009615355644 r005 Re(z^2+c),c=-3/94+41/56*I,n=8 6541009623777482 m005 (1/3*3^(1/2)+3/5)/(2/3*2^(1/2)+6/7) 6541009626740336 r002 38th iterates of z^2 + 6541009627537518 r005 Im(z^2+c),c=-15/26+1/89*I,n=27 6541009655804907 r008 a(0)=0,K{-n^6,-97-46*n^3-28*n^2+18*n} 6541009693171306 a007 Real Root Of -777*x^4+598*x^3-952*x^2+98*x+781 6541009695760564 r005 Re(z^2+c),c=-57/74+1/55*I,n=39 6541009709950737 r005 Re(z^2+c),c=-2/29+51/59*I,n=31 6541009720509092 r008 a(0)=0,K{-n^6,-57-48*n+n^2-49*n^3} 6541009735788223 a007 Real Root Of -586*x^4-217*x^3-795*x^2-556*x+23 6541009761468139 a007 Real Root Of 166*x^4-121*x^3+677*x^2-231*x-505 6541009790533638 m001 Zeta(1,2)/Pi/csc(5/12*Pi)*GAMMA(7/12)*ZetaR(2) 6541009802828814 m001 (Conway+Trott2nd)/(GAMMA(3/4)+AlladiGrinstead) 6541009806013932 m001 Tribonacci*(Pi+PrimesInBinary) 6541009823033476 a007 Real Root Of 69*x^4-483*x^3+882*x^2+942*x+91 6541009823164404 m001 GAMMA(17/24)/((ln(2)/ln(10))^FeigenbaumKappa) 6541009832703988 a007 Real Root Of 660*x^4+433*x^3+556*x^2-519*x-577 6541009845980492 m005 (1/2*2^(1/2)-8/9)/(2*Zeta(3)+3/8) 6541009861548287 m001 (FeigenbaumB-ZetaP(2))/(ln(3)-polylog(4,1/2)) 6541009881331601 r008 a(0)=0,K{-n^6,-59-27*n-27*n^2-40*n^3} 6541009893731807 a007 Real Root Of -106*x^4-109*x^3+28*x^2+775*x-469 6541009920400590 a001 1/3*377^(5/44) 6541009941979303 m001 (FeigenbaumC-FeigenbaumMu)/(Zeta(3)+Backhouse) 6541009972912015 m001 (ln(5)+Zeta(1/2))/(TreeGrowth2nd+Tribonacci) 6541009973419872 m001 1/BesselJ(1,1)^2/GlaisherKinkelin/ln(cos(1)) 6541009975470079 g006 Psi(1,1/8)+Psi(1,1/3)-Psi(1,6/11)-Psi(1,5/11) 6541009984197611 m001 (5^(1/2)+FransenRobinson)/(Gompertz+ZetaP(3)) 6541009995689377 m001 (GolombDickman+Riemann2ndZero)/(2^(1/2)+Ei(1)) 6541009996770301 a001 102334155/2207*199^(1/2) 6541009999571132 r008 a(0)=0,K{-n^6,53+35*n^3+39*n^2+26*n} 6541010002068384 m001 FeigenbaumD^2/ln(Khintchine)/GAMMA(11/12)^2 6541010005876843 r005 Re(z^2+c),c=-3/14+23/33*I,n=38 6541010026747668 b008 65*Zeta[E^2] 6541010046167098 m005 (1/2*3^(1/2)-10/11)/(1/6*5^(1/2)+2/7) 6541010056661578 m001 Pi/(2^(1/3)-Psi(2,1/3))-gamma(2) 6541010060986726 r008 a(0)=0,K{-n^6,59+31*n^3+54*n^2+9*n} 6541010103228465 l006 ln(4583/8815) 6541010136617222 k001 Champernowne real with 356*n+298 6541010145672183 a007 Real Root Of -230*x^4+984*x^3+101*x^2+649*x-701 6541010152503127 r008 a(0)=0,K{-n^6,45+29*n^3+53*n^2+26*n} 6541010156353870 m005 (1/2*5^(1/2)+1/11)/(6/7*3^(1/2)+4/11) 6541010157852633 m002 -Pi^5+Pi^6-(4*Tanh[Pi])/Pi 6541010158464462 r009 Re(z^3+c),c=-29/52+17/43*I,n=38 6541010166788935 a007 Real Root Of -353*x^4+896*x^3-531*x^2-221*x+398 6541010167271327 a007 Real Root Of -456*x^4+659*x^3-321*x^2-326*x+192 6541010174100160 r008 a(0)=0,K{-n^6,33+30*n^3+44*n^2+46*n} 6541010180916579 m001 GAMMA(5/6)/((1+3^(1/2))^(1/2)-gamma(1)) 6541010192964880 a001 55/15127*11^(12/49) 6541010198540323 m001 (ln(5)-AlladiGrinstead)/(CareFree-Tetranacci) 6541010203241328 r008 a(0)=0,K{-n^6,-43-27*n^3-58*n^2-25*n} 6541010205006997 a007 Real Root Of -444*x^4+754*x^3-903*x^2+77*x+729 6541010207755871 m001 ln(2)^Artin*arctan(1/2)^Artin 6541010259944514 r005 Im(z^2+c),c=15/52+5/11*I,n=44 6541010279201027 m001 ln((3^(1/3)))^2/Robbin/GAMMA(1/6)^2 6541010289917608 m001 (MertensB2+Tetranacci)/(Ei(1)-3^(1/3)) 6541010303913081 a007 Real Root Of -152*x^4-968*x^3+154*x^2-116*x-6 6541010312267485 p003 LerchPhi(1/8,1,337/203) 6541010323190377 r008 a(0)=0,K{-n^6,17+62*n+48*n^2+26*n^3} 6541010361905485 r008 a(0)=0,K{-n^6,25+23*n^3+61*n^2+44*n} 6541010371191683 r002 22th iterates of z^2 + 6541010374018215 m001 (gamma(2)-FeigenbaumC)/(GAMMA(2/3)-Zeta(1/2)) 6541010398854320 a007 Real Root Of 569*x^4-366*x^3+855*x^2-562*x-940 6541010401201118 r008 a(0)=0,K{-n^6,27+21*n^3+68*n^2+37*n} 6541010401808530 m002 -5*Log[Pi]^2+ProductLog[Pi]/Pi^4 6541010414951844 m001 1/Zeta(1,2)^2*Riemann2ndZero^2/ln(arctan(1/2)) 6541010425321131 m005 (1/2*5^(1/2)+2/7)/(-2/11+1/11*5^(1/2)) 6541010430444734 m002 (-4*E^Pi)/3+Pi^4-Log[Pi] 6541010431583978 a007 Real Root Of -801*x^4+4*x^3-568*x^2+777*x+899 6541010433030006 m002 6+ProductLog[Pi]/Pi+Tanh[Pi]/5 6541010435753181 s002 sum(A153157[n]/((exp(n)+1)/n),n=1..infinity) 6541010436432991 p001 sum(1/(405*n+172)/(3^n),n=0..infinity) 6541010446460075 m001 FeigenbaumAlpha/ArtinRank2*MasserGramainDelta 6541010454552027 a007 Real Root Of 580*x^4-915*x^3+76*x^2+99*x-330 6541010455653133 m001 1/Pi/exp(Backhouse)*log(1+sqrt(2)) 6541010481390503 m005 (3*exp(1)+4/5)/(3/5*exp(1)-3) 6541010518091730 m005 (1/2*2^(1/2)-5/11)/(1/5*5^(1/2)-5/6) 6541010519766850 m006 (4*ln(Pi)-1)/(1/4*ln(Pi)-5/6) 6541010544979911 m005 (1/3*Zeta(3)-2/11)/(2/11*Catalan-1/5) 6541010553399069 l006 ln(2520/4847) 6541010579126323 m005 (1/42+1/6*5^(1/2))/(2*exp(1)+5/8) 6541010579504339 m001 (ln(Pi)+Khinchin)/(Porter-QuadraticClass) 6541010585659739 r005 Im(z^2+c),c=-2/29+29/37*I,n=32 6541010598486489 m005 (2/3+1/4*5^(1/2))/(6*Pi-1/9) 6541010616215434 a001 843/34*55^(49/60) 6541010637390746 m001 (gamma(1)-Artin)/(arctan(1/2)+Ei(1,1)) 6541010645670103 r005 Im(z^2+c),c=7/30+25/49*I,n=49 6541010649752371 m004 4/E^(Sqrt[5]*Pi)+Sqrt[5]*Pi-Log[Sqrt[5]*Pi]/4 6541010676345351 r008 a(0)=0,K{-n^6,3-15*n^3-71*n^2-70*n} 6541010684415217 m002 2/Pi+(2*Sech[Pi])/Pi^2 6541010699318084 m001 GaussKuzminWirsing^2*ln(Artin)*Khintchine^2 6541010703567635 a007 Real Root Of 976*x^4-760*x^3-911*x^2-736*x-483 6541010725210868 m001 (ln(2)+OrthogonalArrays)/(Si(Pi)+GAMMA(2/3)) 6541010728113780 m001 GAMMA(5/24)*Sierpinski^2/ln(cos(Pi/5))^2 6541010741601402 m001 FibonacciFactorial^ln(2^(1/2)+1)-Landau 6541010770505385 q001 1579/2414 6541010780873737 r002 41th iterates of z^2 + 6541010780873737 r002 41th iterates of z^2 + 6541010781548460 m001 (GaussAGM-Robbin)/(Zeta(5)+ErdosBorwein) 6541010784779974 a007 Real Root Of 539*x^4-799*x^3+158*x^2-481*x+31 6541010802850714 m009 (2/5*Pi^2-3/5)/(5/6*Psi(1,3/4)+3) 6541010810473826 a001 11/233*17711^(1/30) 6541010818907927 m005 (1/2*Pi-4)/(2/3*2^(1/2)-4/7) 6541010820092256 a003 sin(Pi*17/101)/sin(Pi*30/107) 6541010823700942 m001 Grothendieck/(3^(1/3)+GlaisherKinkelin) 6541010829346568 a007 Real Root Of -151*x^4+12*x^3-295*x^2+906*x-58 6541010838329540 m001 1/exp(Tribonacci)^2/Conway^2*BesselJ(1,1) 6541010847927170 a007 Real Root Of 407*x^4-811*x^3+926*x^2+452*x-402 6541010860610173 p003 LerchPhi(1/16,2,236/189) 6541010861174124 m005 (1/2*Catalan-3/8)/(101/99+1/9*5^(1/2)) 6541010880629776 m001 (Trott2nd+ZetaP(4))/(sin(1/12*Pi)+MertensB3) 6541010885981821 a007 Real Root Of -204*x^4+989*x^3-499*x^2+393*x-283 6541010894425613 b008 LogGamma[Sqrt[2]+Cosh[1]] 6541010917767156 a007 Real Root Of 504*x^4-575*x^3-40*x^2-509*x-569 6541010939517598 m001 GAMMA(1/12)*exp(BesselK(0,1))*GAMMA(11/24)^2 6541010941585206 a007 Real Root Of 69*x^4-973*x^3-708*x^2-850*x-538 6541010942413239 m002 -1-Pi^5+Pi^6-ProductLog[Pi]/4 6541010957990787 r005 Re(z^2+c),c=-43/62+1/4*I,n=14 6541011002755219 a007 Real Root Of 960*x^4-998*x^3+24*x^2+560*x-99 6541011022128115 k006 concat of cont frac of 6541011036641584 r005 Re(z^2+c),c=5/78+17/41*I,n=16 6541011037024036 m005 (1/3*2^(1/2)-1/10)/(2/3*2^(1/2)-3/8) 6541011040614426 m001 (GaussAGM-HardHexagonsEntropy)/(Thue-ZetaQ(4)) 6541011046960145 a003 sin(Pi*1/104)/cos(Pi*25/72) 6541011049717800 r009 Re(z^3+c),c=-7/58+23/34*I,n=59 6541011058011005 r005 Im(z^2+c),c=-1/16+28/37*I,n=38 6541011069239988 r005 Re(z^2+c),c=-19/18+25/186*I,n=22 6541011098413390 a007 Real Root Of -996*x^4+793*x^3-488*x^2+3*x+615 6541011129231142 k007 concat of cont frac of 6541011136817252 k005 Champernowne real with floor(sqrt(3)*(206*n+172)) 6541011136817252 k001 Champernowne real with 357*n+297 6541011143734952 a001 133957148/2889*199^(1/2) 6541011149702188 a007 Real Root Of -901*x^4+838*x^3+622*x^2+965*x-66 6541011156203051 a007 Real Root Of -220*x^4+520*x^3-523*x^2+814*x+942 6541011167511779 r009 Re(z^3+c),c=-10/21+3/52*I,n=59 6541011186798199 a007 Real Root Of 759*x^4-236*x^3+520*x^2+467*x-122 6541011188937414 m001 (Psi(2,1/3)-Zeta(5))/(-ln(2)+Zeta(1,-1)) 6541011194111512 k008 concat of cont frac of 6541011194116536 a007 Real Root Of -894*x^4+255*x^3+74*x^2+426*x+482 6541011207041228 a007 Real Root Of 120*x^4+725*x^3-262*x^2+737*x-739 6541011211112121 k008 concat of cont frac of 6541011212159013 a007 Real Root Of -647*x^4+796*x^3-225*x^2-626*x+28 6541011225523324 r005 Im(z^2+c),c=-135/118+6/31*I,n=28 6541011234294682 m001 (-Artin+Grothendieck)/(ln(2)/ln(10)+Si(Pi)) 6541011246422839 l006 ln(2977/5726) 6541011246811237 m001 ln(1+sqrt(2))^exp(1)*ln(1+sqrt(2))^Cahen 6541011246811237 m001 ln(2^(1/2)+1)^exp(1)*ln(2^(1/2)+1)^Cahen 6541011255052088 m001 1/GAMMA(1/6)^2*Kolakoski*ln(GAMMA(23/24)) 6541011264502550 a007 Real Root Of 502*x^4-568*x^3+490*x^2-464*x-764 6541011300978752 m001 1/exp(gamma)^2*Si(Pi)^2/sqrt(1+sqrt(3)) 6541011311074873 a001 701408733/15127*199^(1/2) 6541011314520072 a007 Real Root Of 820*x^4-660*x^3+820*x^2+267*x-511 6541011317020487 m005 (1/3*Catalan+2/3)/(5/9*Zeta(3)+9/11) 6541011326807521 a007 Real Root Of 447*x^4-980*x^3+212*x^2-456*x+400 6541011335489440 a001 1836311903/39603*199^(1/2) 6541011339051477 a001 46368*199^(1/2) 6541011339571171 a001 12586269025/271443*199^(1/2) 6541011339646993 a001 32951280099/710647*199^(1/2) 6541011339658056 a001 43133785636/930249*199^(1/2) 6541011339659670 a001 225851433717/4870847*199^(1/2) 6541011339659905 a001 591286729879/12752043*199^(1/2) 6541011339659940 a001 774004377960/16692641*199^(1/2) 6541011339659945 a001 4052739537881/87403803*199^(1/2) 6541011339659945 a001 225749145909/4868641*199^(1/2) 6541011339659946 a001 3278735159921/70711162*199^(1/2) 6541011339659948 a001 2504730781961/54018521*199^(1/2) 6541011339659961 a001 956722026041/20633239*199^(1/2) 6541011339660051 a001 182717648081/3940598*199^(1/2) 6541011339660667 a001 139583862445/3010349*199^(1/2) 6541011339664893 a001 53316291173/1149851*199^(1/2) 6541011339693854 a001 10182505537/219602*199^(1/2) 6541011339892360 a001 7778742049/167761*199^(1/2) 6541011341252937 a001 2971215073/64079*199^(1/2) 6541011342574370 m006 (5*exp(2*Pi)-4/5)/(1/6*ln(Pi)-3/5) 6541011350578471 a001 567451585/12238*199^(1/2) 6541011354873488 a007 Real Root Of -376*x^4-820*x^3-323*x^2+441*x+266 6541011370949746 a007 Real Root Of 425*x^4+232*x^3+957*x^2-848*x-977 6541011372892908 a001 1346269/322*521^(21/26) 6541011414496637 a001 433494437/9349*199^(1/2) 6541011428401164 m001 (MertensB3+Tetranacci)/(2^(1/2)+FeigenbaumMu) 6541011430042154 a007 Real Root Of 648*x^4+871*x^3+894*x^2+661*x+175 6541011438638274 m005 (-9/44+1/4*5^(1/2))/(4/11*Catalan-7/8) 6541011451018351 a007 Real Root Of -664*x^4-190*x^3-919*x^2+337*x+682 6541011471639074 a007 Real Root Of -518*x^4+959*x^3+576*x^2+777*x+625 6541011475970615 a007 Real Root Of -772*x^4-521*x^3-929*x^2-691*x-59 6541011497417663 m001 1/ln(log(2+sqrt(3)))^2*Niven^3 6541011509293557 a007 Real Root Of 683*x^4-353*x^3-244*x^2-888*x+659 6541011589470820 m005 (1/3*gamma+3/7)/(1/2*3^(1/2)+1/12) 6541011621731929 r005 Re(z^2+c),c=-67/94+10/41*I,n=42 6541011655876572 p001 sum(1/(566*n+409)/n/(16^n),n=1..infinity) 6541011663323773 a007 Real Root Of -41*x^4+872*x^3-747*x^2+648*x+995 6541011667122824 a007 Real Root Of 431*x^4-347*x^3+216*x^2-458*x-568 6541011671681421 r005 Im(z^2+c),c=-7/54+53/60*I,n=5 6541011671686006 a007 Real Root Of -211*x^4+207*x^3+559*x^2+860*x-821 6541011676237858 r005 Im(z^2+c),c=-81/118+5/49*I,n=48 6541011705293410 a007 Real Root Of -198*x^4+462*x^3+861*x^2+591*x-848 6541011736877142 a007 Real Root Of -301*x^4+265*x^3+106*x^2+205*x+218 6541011748633737 r009 Re(z^3+c),c=-57/106+3/19*I,n=57 6541011754990048 l006 ln(3434/6605) 6541011760649946 r005 Im(z^2+c),c=-15/26+1/83*I,n=36 6541011838777183 s002 sum(A211550[n]/(n^3*2^n+1),n=1..infinity) 6541011852598292 a001 165580141/3571*199^(1/2) 6541011863039197 a007 Real Root Of -686*x^4+692*x^3-947*x^2+59*x+763 6541011913141332 k009 concat of cont frac of 6541011937107490 a007 Real Root Of -375*x^4+288*x^3+760*x^2+593*x-725 6541011956472023 m001 (MadelungNaCl-Robbin)/(ZetaP(3)-ZetaQ(3)) 6541011991048847 m001 ln(ErdosBorwein)*Artin^2*Paris 6541011993173558 a007 Real Root Of -255*x^4+63*x^3+176*x^2+816*x-580 6541011996269040 l006 ln(5089/5433) 6541012007746476 r005 Im(z^2+c),c=-25/44+15/32*I,n=57 6541012021683611 a007 Real Root Of 446*x^4-523*x^3+396*x^2-406*x-663 6541012053816981 m005 (1/3*exp(1)-3/7)/(1/11*Pi+4/9) 6541012060323725 a001 199/2*2178309^(4/31) 6541012076588201 m002 -Pi^5+Pi^6-Pi*Csch[Pi]-Tanh[Pi] 6541012080076074 a003 cos(Pi*19/73)*sin(Pi*43/106) 6541012082796003 a007 Real Root Of -794*x^4-348*x^3-348*x^2+636*x-40 6541012115232233 k006 concat of cont frac of 6541012137017282 k001 Champernowne real with 358*n+296 6541012144094266 l006 ln(3891/7484) 6541012170360440 m001 1/Paris*LaplaceLimit^2*ln(Porter)^2 6541012192748573 m009 (5*Psi(1,1/3)-1/4)/(16/5*Catalan+2/5*Pi^2+4/5) 6541012198499921 r005 Im(z^2+c),c=-7/12+22/35*I,n=11 6541012216404886 q001 1874/2865 6541012221668200 r002 6th iterates of z^2 + 6541012223937149 m001 Rabbit/(2^(1/3)-ZetaP(3)) 6541012229760072 h001 (4/7*exp(1)+8/9)/(5/11*exp(2)+3/8) 6541012233222861 r009 Re(z^3+c),c=-57/106+3/19*I,n=47 6541012233868206 m001 ln(2)/ln(10)/(BesselK(1,1)^GAMMA(7/12)) 6541012244265852 m001 (Porter+ReciprocalLucas)/(1-PlouffeB) 6541012246774785 a007 Real Root Of 355*x^4-561*x^3+933*x^2+199*x-491 6541012253003370 a007 Real Root Of -209*x^4-194*x^3-832*x^2+552*x+701 6541012261121969 r005 Re(z^2+c),c=-7/46+17/26*I,n=59 6541012307404136 a003 cos(Pi*32/105)/sin(Pi*25/73) 6541012311084420 r005 Im(z^2+c),c=-15/58+38/59*I,n=49 6541012337760009 r009 Im(z^3+c),c=-19/32+30/49*I,n=4 6541012368885904 r005 Re(z^2+c),c=9/118+27/47*I,n=35 6541012411513215 k006 concat of cont frac of 6541012411940701 a003 sin(Pi*19/100)/sin(Pi*26/79) 6541012424897389 m001 1/FeigenbaumD*LandauRamanujan*exp(exp(1))^2 6541012432173688 a007 Real Root Of 943*x^4+187*x^3+385*x^2+185*x-164 6541012444029112 m001 TreeGrowth2nd^ReciprocalFibonacci+gamma(3) 6541012451404257 l006 ln(4348/8363) 6541012453557936 m001 (FransenRobinson+Thue)/(Psi(2,1/3)+Zeta(1,2)) 6541012465098015 a007 Real Root Of -40*x^4-200*x^3+385*x^2+29*x+968 6541012473104442 a007 Real Root Of -316*x^4+333*x^3-186*x^2+898*x+818 6541012530642247 r005 Re(z^2+c),c=-53/58+8/63*I,n=12 6541012532824332 a001 55/2139295485799*3^(17/20) 6541012554158520 m001 (Psi(2,1/3)-exp(Pi))/(-Pi^(1/2)+Stephens) 6541012568687589 r005 Re(z^2+c),c=-5/8+58/151*I,n=8 6541012618877093 r005 Re(z^2+c),c=25/56+7/29*I,n=9 6541012627182247 m005 (1/2*exp(1)-3)/(5/12*Zeta(3)-1/4) 6541012634557047 r005 Im(z^2+c),c=-7/6+8/89*I,n=13 6541012641005076 a007 Real Root Of -478*x^4-176*x^3+481*x^2+746*x-557 6541012662927211 a007 Real Root Of -680*x^4+360*x^3-467*x^2-873*x-146 6541012672504724 a007 Real Root Of 644*x^4-944*x^3-238*x^2+803*x+245 6541012699953933 m002 -1-Pi+6*Cosh[Pi] 6541012700258188 l006 ln(4805/9242) 6541012734849327 m005 (1/3*gamma-1/3)/(1/4*Catalan-4/9) 6541012773737949 a007 Real Root Of 718*x^4-889*x^3+192*x^2+554*x-100 6541012775279864 m002 -3+6*Pi^2+Pi^2/ProductLog[Pi] 6541012775704218 b008 7+ExpIntegralEi[4/15] 6541012783285194 a007 Real Root Of 106*x^4+256*x^3-484*x^2-931*x+725 6541012808304162 r002 6th iterates of z^2 + 6541012817260669 a005 (1/cos(52/225*Pi))^54 6541012833877763 a007 Real Root Of 88*x^4+560*x^3-191*x^2-685*x-677 6541012853118913 s002 sum(A246992[n]/(exp(n)),n=1..infinity) 6541012900850394 m001 (LambertW(1)-ln(Pi))/(ln(2^(1/2)+1)+ZetaQ(4)) 6541012940918416 h001 (2/9*exp(2)+5/8)/(4/9*exp(2)+2/11) 6541012948309127 a007 Real Root Of -137*x^4-768*x^3+908*x^2+556*x+643 6541012969764460 a007 Real Root Of -101*x^4-577*x^3+555*x^2-91*x-933 6541012976196780 a007 Real Root Of 898*x^4-477*x^3+975*x^2+104*x-647 6541012982287362 m005 (1/2*3^(1/2)-3/10)/(3/10*gamma-2/11) 6541013014255229 a001 121393/7*47^(33/35) 6541013024672467 a007 Real Root Of -45*x^4+983*x^3-860*x^2-216*x+510 6541013045008090 a003 cos(Pi*15/89)-cos(Pi*42/97) 6541013095174699 a007 Real Root Of -587*x^4+506*x^3+949*x^2+763*x+46 6541013117808201 r002 7th iterates of z^2 + 6541013137117302 k005 Champernowne real with floor(sqrt(3)*(207*n+171)) 6541013137217312 k001 Champernowne real with 359*n+295 6541013140158520 h001 (4/9*exp(1)+4/9)/(2/3*exp(1)+5/7) 6541013155444301 r005 Re(z^2+c),c=-19/60+37/49*I,n=6 6541013187676797 a001 76/1346269*6765^(5/18) 6541013195617819 a001 76/165580141*225851433717^(5/18) 6541013195617825 a001 1/196452*39088169^(5/18) 6541013226524972 a001 311187/46*521^(19/26) 6541013228084896 m005 (1/2*3^(1/2)+3)/(3*3^(1/2)+5/7) 6541013233709525 a008 Real Root of (-5+6*x+x^3+5*x^4-x^5) 6541013234976467 r009 Im(z^3+c),c=-33/122+34/53*I,n=4 6541013242557651 a007 Real Root Of -831*x^4-764*x^3-587*x^2+779*x+699 6541013256699541 r009 Im(z^3+c),c=-31/82+34/49*I,n=7 6541013268998793 q001 2169/3316 6541013290432819 m001 log(2+sqrt(3))^2/ln((3^(1/3)))*sinh(1)^2 6541013321870613 r005 Im(z^2+c),c=-7/27+34/53*I,n=63 6541013328043972 m009 (4/5*Psi(1,2/3)+5/6)/(1/3*Psi(1,2/3)+4) 6541013332167493 m001 (Rabbit-Riemann1stZero)/(Backhouse+Gompertz) 6541013332746985 m001 (ZetaP(4)-ZetaQ(3))/(cos(1/12*Pi)-gamma(1)) 6541013378463999 a007 Real Root Of -860*x^4+685*x^3+717*x^2+136*x-430 6541013386967792 h001 (1/12*exp(1)+9/10)/(1/7*exp(2)+2/3) 6541013412875547 a007 Real Root Of -523*x^4+696*x^3+870*x^2+446*x-763 6541013419989888 a007 Real Root Of 167*x^4-530*x^3+619*x^2-748*x-933 6541013428665608 m001 (FeigenbaumD-Salem)/(Pi-Chi(1)) 6541013431800677 r005 Im(z^2+c),c=-15/28+5/43*I,n=48 6541013439994499 m001 1/Trott^2/ln(Si(Pi))^2*cos(1)^2 6541013456124977 m001 (Pi+Psi(2,1/3))/(Si(Pi)-Shi(1)) 6541013468151787 a007 Real Root Of -720*x^4+342*x^3-477*x^2-669*x-6 6541013504468099 m001 (Lehmer+1)/(-BesselI(1,1)+3) 6541013511085393 m001 (Shi(1)-exp(-1/2*Pi))/(-GAMMA(19/24)+Conway) 6541013525262256 m001 (GAMMA(13/24)+ZetaQ(2))/(ln(Pi)+exp(1/exp(1))) 6541013526814574 r005 Im(z^2+c),c=-7/102+34/43*I,n=8 6541013562828212 a007 Real Root Of 796*x^4-345*x^3+279*x^2+666*x+74 6541013569581375 a007 Real Root Of 140*x^4+913*x^3+16*x^2+351*x+844 6541013577633209 m001 (MertensB3+Paris)/(2^(1/3)-exp(Pi)) 6541013584299416 m001 (Pi-Ei(1))/(BesselI(0,2)-Artin) 6541013586811753 a007 Real Root Of 135*x^4+836*x^3-398*x^2-471*x+784 6541013596030573 a001 196418/521*29^(9/55) 6541013601580256 r005 Im(z^2+c),c=-21/110+21/32*I,n=7 6541013604549504 s002 sum(A053424[n]/(pi^n+1),n=1..infinity) 6541013605085485 a007 Real Root Of -826*x^4+605*x^3-890*x^2-427*x+422 6541013606281055 r005 Im(z^2+c),c=-47/50+9/34*I,n=30 6541013628214732 a007 Real Root Of 34*x^4+176*x^3-152*x^2+914*x-502 6541013636510052 a001 199/8*6765^(25/28) 6541013652960602 m001 FeigenbaumAlpha/ln(Conway)*FeigenbaumB^2 6541013659770691 m001 (FeigenbaumKappa-Sarnak)/cos(1/12*Pi) 6541013688577758 m001 (-Lehmer+TwinPrimes)/(Chi(1)+DuboisRaymond) 6541013693782891 m001 (Backhouse-MertensB1)/(GAMMA(5/6)+ArtinRank2) 6541013694991804 r005 Im(z^2+c),c=-11/48+11/17*I,n=64 6541013699684880 a007 Real Root Of -241*x^4+608*x^3-647*x^2+564*x+860 6541013767505176 a007 Real Root Of 177*x^4+221*x^3+570*x^2-591*x-601 6541013777284940 r005 Im(z^2+c),c=-45/74+3/37*I,n=15 6541013782031492 m001 1/Paris^2*MinimumGamma/exp(exp(1))^2 6541013784602928 a005 (1/cos(44/195*Pi))^82 6541013787363496 r005 Re(z^2+c),c=5/86+30/49*I,n=21 6541013793180299 p001 sum(1/(233*n+153)/(512^n),n=0..infinity) 6541013800089309 a007 Real Root Of 661*x^4-11*x^3-729*x^2-969*x-446 6541013825247495 m005 (1/2*5^(1/2)+3/4)/(Pi-2/7) 6541013854765698 r009 Im(z^3+c),c=-5/102+3/46*I,n=2 6541013855558186 m001 1/ln(Rabbit)*LaplaceLimit*Tribonacci^2 6541013883282769 p004 log(36943/19207) 6541013921302079 a001 24476/89*55^(8/37) 6541013982637683 a007 Real Root Of -673*x^4-325*x^3-924*x^2+311*x+631 6541013986971722 l006 ln(9246/9871) 6541013999146041 a007 Real Root Of -83*x^4+698*x^3-778*x^2+695*x+998 6541014003491973 m005 (1/2*exp(1)-5/12)/(6/11*Pi-3/11) 6541014007573721 m001 1/exp(FeigenbaumB)*Artin^2*Zeta(5)^2 6541014016652244 h001 (1/5*exp(2)+8/11)/(10/11*exp(1)+9/10) 6541014020422792 a003 cos(Pi*35/111)/sin(Pi*31/98) 6541014023866018 a007 Real Root Of -322*x^4+947*x^3-951*x^2+280*x+914 6541014069551367 q001 2464/3767 6541014070637341 m001 (gamma(3)-MertensB2)/(QuadraticClass-Sarnak) 6541014070735067 r005 Re(z^2+c),c=-37/86+23/41*I,n=12 6541014101477308 m008 (2/3*Pi^2-2)/(1/4*Pi^3-3/4) 6541014102128471 r002 7th iterates of z^2 + 6541014102371438 r009 Im(z^3+c),c=-55/102+13/64*I,n=35 6541014103719522 a007 Real Root Of -466*x^4-209*x^3-840*x^2+96*x+449 6541014133469127 m001 (-GlaisherKinkelin+PlouffeB)/(cos(1)+ln(2)) 6541014137417342 k001 Champernowne real with 360*n+294 6541014137517352 k005 Champernowne real with floor(sqrt(3)*(208*n+170)) 6541014145292933 a007 Real Root Of 172*x^4-124*x^3+682*x^2-529*x-704 6541014152379586 a007 Real Root Of -547*x^4+160*x^3+436*x^2-77*x-92 6541014156058514 a007 Real Root Of 532*x^4+428*x^3+532*x^2-336*x-425 6541014176364538 m001 exp(sqrt(3))/GAMMA(11/24)*sqrt(5) 6541014205901543 m005 (Catalan+3/4)/(1/6*exp(1)-3) 6541014211248285 s002 sum(A126275[n]/(16^n),n=1..infinity) 6541014218303013 a005 (1/sin(116/239*Pi))^1774 6541014226417522 b008 63+14^(1/3) 6541014230064500 a001 199/3*1346269^(6/37) 6541014264788826 a007 Real Root Of 316*x^4-655*x^3-794*x^2-539*x-254 6541014268035043 a007 Real Root Of -364*x^4-357*x^3-918*x^2+649*x+784 6541014272764299 m005 (1/2*Catalan-3/10)/(2*Catalan+7/12) 6541014273941063 r002 8th iterates of z^2 + 6541014276092048 m005 (1/2*2^(1/2)+5/11)/(9/11*exp(1)-4) 6541014277225429 m005 (1/2*2^(1/2)-9/11)/(2/9*Pi+1) 6541014314640216 r005 Re(z^2+c),c=5/28+14/47*I,n=29 6541014334589623 m001 Ei(1)^2*exp(Magata)^2*sqrt(2)^2 6541014366563094 m001 (Gompertz+Rabbit)/(Pi-ln(Pi)) 6541014392944964 m001 (BesselI(0,1)-sin(1/12*Pi))/(-gamma(1)+Porter) 6541014404921490 a005 (1/cos(35/188*Pi))^251 6541014410183982 m005 (1/2*2^(1/2)-1/9)/(3/11*Zeta(3)+7/12) 6541014410624125 r005 Im(z^2+c),c=21/86+1/53*I,n=8 6541014426849216 a007 Real Root Of -505*x^4+967*x^3-119*x^2-214*x+274 6541014440270154 m005 (1/3*3^(1/2)-1/5)/(1/12*gamma-5/8) 6541014492228989 a007 Real Root Of -672*x^4+239*x^3-204*x^2-251*x+113 6541014502996528 a007 Real Root Of 107*x^4+649*x^3-238*x^2+602*x-121 6541014523873205 m001 BesselI(1,2)/(Pi-Rabbit) 6541014542127202 a007 Real Root Of -347*x^4+455*x^3+312*x^2-77*x+7 6541014560912461 a001 17/408569081798*3^(7/17) 6541014561073401 a007 Real Root Of -400*x^4+765*x^3-491*x^2-155*x+396 6541014579153288 m001 Cahen^ln(2^(1/2)+1)*Cahen^StolarskyHarborth 6541014580960501 a007 Real Root Of -755*x^4-266*x^3-413*x^2+435*x+525 6541014584435439 m001 sin(1/5*Pi)/(gamma^DuboisRaymond) 6541014586811350 a002 7^(10/3)-12^(2/7) 6541014591509505 r005 Re(z^2+c),c=-31/50+13/36*I,n=8 6541014597662940 a003 1/2-1/2*2^(1/2)+2*cos(8/21*Pi)+cos(11/24*Pi) 6541014607914528 a007 Real Root Of 139*x^4+950*x^3+415*x^2+972*x+20 6541014613299678 a007 Real Root Of 552*x^4-488*x^3+298*x^2+601*x+28 6541014617027441 a007 Real Root Of 560*x^4-720*x^3+450*x^2-600*x-889 6541014617798319 a007 Real Root Of -447*x^4+843*x^3+704*x^2+149*x+114 6541014621525329 r005 Re(z^2+c),c=-1/9+35/47*I,n=14 6541014625374244 m001 Conway*arctan(1/3)^FeigenbaumDelta 6541014626608478 m008 (5*Pi^3-1/5)/(2/3*Pi^3+3) 6541014635320415 r005 Im(z^2+c),c=6/23+26/55*I,n=31 6541014639557539 a007 Real Root Of -410*x^4+970*x^3-106*x^2+679*x+836 6541014652784482 a007 Real Root Of 87*x^4+485*x^3-514*x^2+125*x-718 6541014657042846 r002 13th iterates of z^2 + 6541014664764766 a001 55/4*6643838879^(10/21) 6541014686786769 r009 Re(z^3+c),c=-57/106+3/19*I,n=62 6541014691149292 m001 Mills/(GlaisherKinkelin+TravellingSalesman) 6541014719669059 r005 Re(z^2+c),c=13/94+29/37*I,n=3 6541014743769930 r005 Im(z^2+c),c=-5/82+25/33*I,n=20 6541014754715353 a007 Real Root Of -795*x^4+897*x^3+166*x^2+308*x+527 6541014767960702 r009 Re(z^3+c),c=-17/70+20/21*I,n=30 6541014825066790 a007 Real Root Of 962*x^4-988*x^3-228*x^2-500*x+525 6541014837403560 m005 (1/3*Catalan-1/3)/(5/11*2^(1/2)-3/5) 6541014847245568 m001 (1-cos(1))/(-CareFree+ZetaQ(4)) 6541014855393290 a001 31622993/682*199^(1/2) 6541014872348339 a007 Real Root Of 127*x^4-102*x^3+240*x^2-542*x-509 6541014888037919 r002 61th iterates of z^2 + 6541014918579169 r009 Im(z^3+c),c=-33/106+34/49*I,n=13 6541014931252083 a007 Real Root Of 300*x^4-842*x^3-59*x^2+320*x-56 6541014971992906 a007 Real Root Of 869*x^4+640*x^3+993*x^2+651*x+21 6541014992491098 r005 Re(z^2+c),c=-45/46+8/47*I,n=22 6541015002262538 m001 1/exp(Zeta(1/2))^2*GAMMA(13/24)*arctan(1/2)^2 6541015008558998 m001 (Ei(1)+GAMMA(13/24))/(ln(2)/ln(10)-sin(1)) 6541015014991747 m005 (1/2*gamma-1/9)/(6/11*Pi+1) 6541015017690682 m001 1/RenyiParking/DuboisRaymond/exp(Salem)^2 6541015052295389 a007 Real Root Of -491*x^4+40*x^3-280*x^2+653*x+648 6541015067909722 l006 ln(457/879) 6541015082743097 m005 (1/3*2^(1/2)+1/11)/(8/11*3^(1/2)-2/5) 6541015084351131 p001 sum((-1)^n/(461*n+211)/n/(2^n),n=1..infinity) 6541015097788863 a007 Real Root Of 84*x^4+442*x^3-629*x^2+465*x-116 6541015112802451 r009 Im(z^3+c),c=-33/122+29/42*I,n=32 6541015137617372 k001 Champernowne real with 361*n+293 6541015156933813 h001 (4/11*exp(1)+3/8)/(5/7*exp(1)+1/7) 6541015184030659 a007 Real Root Of -831*x^4+917*x^3-818*x^2-287*x+571 6541015230562626 m001 (PolyaRandomWalk3D-Stephens)/(Cahen+Otter) 6541015268438699 m001 (ln(5)-DuboisRaymond)/(cos(1/5*Pi)+GAMMA(2/3)) 6541015275323130 a001 312119004989/144*39088169^(11/24) 6541015275323131 a001 1568397607/144*4052739537881^(11/24) 6541015278420101 a007 Real Root Of -13*x^4-845*x^3+358*x^2+613*x+589 6541015290538764 m001 FeigenbaumB-ReciprocalLucas^sin(1/5*Pi) 6541015295169191 r005 Re(z^2+c),c=-14/19+1/5*I,n=5 6541015295482948 a007 Real Root Of 872*x^4-420*x^3-383*x^2-342*x-337 6541015323297576 m001 1/2/(ln(1+sqrt(2))^GAMMA(5/12)) 6541015324415867 r002 7th iterates of z^2 + 6541015330057924 a007 Real Root Of 226*x^4-627*x^3-419*x^2-666*x+749 6541015337921206 r001 11i'th iterates of 2*x^2-1 of 6541015355393563 a007 Real Root Of 964*x^4-407*x^3+677*x^2+78*x-529 6541015368401692 m001 Pi^2*LaplaceLimit 6541015399922114 a007 Real Root Of -575*x^4+370*x^3-703*x^2+285*x+696 6541015415458707 m002 2*Pi^3*ProductLog[Pi]-Sinh[Pi]/Pi^2 6541015419637284 r005 Re(z^2+c),c=-21/122+30/43*I,n=24 6541015430716883 b008 5/11+SinIntegral[1/5] 6541015433864239 a007 Real Root Of -65*x^4+148*x^3+634*x^2+725*x-775 6541015457672396 a007 Real Root Of -585*x^4+519*x^3-518*x^2+766*x+975 6541015508188494 h001 (-4*exp(1)-8)/(-8*exp(3/2)+7) 6541015519108537 a007 Real Root Of 386*x^4-666*x^3-309*x^2-332*x-342 6541015532810379 m001 (Zeta(5)+sin(1/12*Pi))/(GAMMA(7/12)+ZetaP(2)) 6541015576157213 r005 Re(z^2+c),c=-37/78+30/49*I,n=42 6541015591561334 r005 Re(z^2+c),c=13/48+15/38*I,n=61 6541015605696373 p001 sum(1/(323*n+155)/(24^n),n=0..infinity) 6541015620768624 m001 gamma(2)/(BesselI(0,1)-2^(1/2)) 6541015626802408 r005 Im(z^2+c),c=3/44+31/50*I,n=46 6541015631752672 m001 (3^(1/3))*Lehmer/exp(GAMMA(17/24))^2 6541015635997893 a007 Real Root Of -508*x^4-365*x^3-792*x^2-634*x-85 6541015643934838 r002 9th iterates of z^2 + 6541015644053392 p001 sum(1/(571*n+47)/n/(25^n),n=1..infinity) 6541015644138150 r002 26th iterates of z^2 + 6541015662292584 r005 Re(z^2+c),c=-19/14+1/209*I,n=32 6541015673282139 r005 Re(z^2+c),c=-45/106+29/49*I,n=4 6541015683250742 m005 (1/2*Pi-6/7)/(3/10*3^(1/2)+4/7) 6541015719090508 r009 Im(z^3+c),c=-17/70+15/22*I,n=13 6541015748023746 r005 Re(z^2+c),c=-73/126+41/64*I,n=2 6541015752684503 a007 Real Root Of 305*x^4-890*x^3-835*x^2-172*x+663 6541015771839957 m005 (1/2*2^(1/2)+5/9)/(6/11*Zeta(3)-7/11) 6541015783049481 a007 Real Root Of 928*x^4-186*x^3-762*x^2-815*x-429 6541015809671431 m002 -5-E^(2*Pi)+E^Pi*Pi^5 6541015820560650 r009 Im(z^3+c),c=-35/64+13/43*I,n=3 6541015829406201 m005 (1/2*Pi-1/3)/(3/7*Pi+6/11) 6541015875060104 a007 Real Root Of 102*x^4-924*x^3-779*x^2-740*x-428 6541015885870318 m001 GAMMA(5/24)^2*ErdosBorwein/exp(GAMMA(7/24))^2 6541015912905586 a005 (1/sin(99/205*Pi))^1305 6541015938569416 r005 Re(z^2+c),c=-33/56+21/46*I,n=31 6541015942258141 r005 Re(z^2+c),c=-5/38+36/49*I,n=5 6541015954085052 r005 Im(z^2+c),c=-13/14+58/219*I,n=51 6541015961393233 r005 Im(z^2+c),c=3/25+31/47*I,n=33 6541015971729564 m005 (1/2*Zeta(3)+1/3)/(97/154+5/14*5^(1/2)) 6541015984252151 r005 Re(z^2+c),c=9/56+17/62*I,n=18 6541015992960713 r009 Im(z^3+c),c=-17/56+9/13*I,n=14 6541015996307464 m001 1/ln(FeigenbaumB)*Si(Pi)/cosh(1) 6541016001024058 a007 Real Root Of -64*x^4+929*x^3-991*x^2-183*x+576 6541016020375283 a007 Real Root Of 182*x^4+120*x^3-712*x^2-456*x+536 6541016021916716 m001 ln(2)/ln(10)/(BesselJ(0,1)-GAMMA(3/4)) 6541016046558374 b008 5+3*ArcCot[Sqrt[Pi]] 6541016065249185 m005 (1/3*exp(1)-1/5)/(-13/66+3/22*5^(1/2)) 6541016091702608 a001 161/416020*1597^(23/60) 6541016129119351 r009 Im(z^3+c),c=-4/5+13/57*I,n=2 6541016135908213 m001 StolarskyHarborth/(MinimumGamma-Ei(1,1)) 6541016137817402 k001 Champernowne real with 362*n+292 6541016137817402 k005 Champernowne real with floor(sqrt(3)*(209*n+169)) 6541016229931461 a007 Real Root Of 444*x^4+145*x^3+92*x^2-603*x+39 6541016238496205 a007 Real Root Of 224*x^4-986*x^3-610*x^2+298*x+301 6541016239563358 m001 HardHexagonsEntropy-Rabbit-Totient 6541016240209107 m001 (5^(1/2)+ln(2^(1/2)+1))/(Weierstrass+ZetaQ(4)) 6541016288131451 r002 9th iterates of z^2 + 6541016301604233 a007 Real Root Of -74*x^4-487*x^3-101*x^2-489*x+293 6541016314406681 a003 cos(Pi*18/77)-cos(Pi*42/89) 6541016322514930 a007 Real Root Of -462*x^4+210*x^3-299*x^2-748*x-218 6541016332299806 m009 (20/3*Catalan+5/6*Pi^2+1/2)/(5/2*Pi^2-2) 6541016354413396 p001 sum(1/(163*n+153)/(625^n),n=0..infinity) 6541016362390624 r005 Re(z^2+c),c=-1/9+35/47*I,n=17 6541016373796116 r002 9th iterates of z^2 + 6541016375877304 r005 Re(z^2+c),c=-1/9+35/47*I,n=26 6541016376255798 r005 Re(z^2+c),c=-1/9+35/47*I,n=23 6541016376262356 r005 Re(z^2+c),c=-1/9+35/47*I,n=35 6541016376262367 r005 Re(z^2+c),c=-1/9+35/47*I,n=38 6541016376262450 r005 Re(z^2+c),c=-1/9+35/47*I,n=47 6541016376262450 r005 Re(z^2+c),c=-1/9+35/47*I,n=50 6541016376262450 r005 Re(z^2+c),c=-1/9+35/47*I,n=59 6541016376262450 r005 Re(z^2+c),c=-1/9+35/47*I,n=62 6541016376262450 r005 Re(z^2+c),c=-1/9+35/47*I,n=56 6541016376262450 r005 Re(z^2+c),c=-1/9+35/47*I,n=53 6541016376262451 r005 Re(z^2+c),c=-1/9+35/47*I,n=44 6541016376262452 r005 Re(z^2+c),c=-1/9+35/47*I,n=41 6541016376265678 r005 Re(z^2+c),c=-1/9+35/47*I,n=29 6541016376268118 r005 Re(z^2+c),c=-1/9+35/47*I,n=32 6541016377021601 a007 Real Root Of 101*x^4+603*x^3-487*x^2-611*x+708 6541016395650188 m001 KhintchineLevy^2/Lehmer*ln(log(2+sqrt(3))) 6541016402317444 r005 Re(z^2+c),c=-1/9+35/47*I,n=20 6541016420546564 a007 Real Root Of 128*x^4-395*x^3+960*x^2+368*x-304 6541016423990178 l006 ln(4157/4438) 6541016432179068 a007 Real Root Of -470*x^4+537*x^3-994*x^2-695*x+207 6541016462998286 a001 9349/8*377^(9/31) 6541016472838336 a005 (1/cos(44/227*Pi))^300 6541016480568544 r005 Re(z^2+c),c=-19/26+11/69*I,n=5 6541016493584550 a007 Real Root Of 755*x^4-796*x^3+938*x^2+852*x-205 6541016500263479 m006 (4/5*exp(2*Pi)+1/2)/(5*ln(Pi)+5/6) 6541016569872828 m001 1/GAMMA(1/3)^2*exp(ArtinRank2)*GAMMA(7/12)^2 6541016604908085 r005 Im(z^2+c),c=23/90+27/55*I,n=34 6541016676930632 a007 Real Root Of -249*x^4+636*x^3-494*x^2+286*x+622 6541016694199852 a003 cos(Pi*1/57)/cos(Pi*37/82) 6541016711672402 r005 Im(z^2+c),c=1/50+17/27*I,n=60 6541016725535562 r005 Im(z^2+c),c=37/78+14/37*I,n=6 6541016741841550 a007 Real Root Of 174*x^4+170*x^3+506*x^2-910*x-796 6541016747725507 r009 Re(z^3+c),c=-23/56+27/46*I,n=54 6541016759486719 a007 Real Root Of -252*x^4+755*x^3+823*x^2+553*x-879 6541016774823672 m006 (2/5/Pi+2/3)/(1/3*Pi+1/6) 6541016775572306 r005 Re(z^2+c),c=-5/8+71/171*I,n=46 6541016821555459 a007 Real Root Of 798*x^4-274*x^3-325*x^2-693*x-537 6541016830937542 r005 Re(z^2+c),c=-2/11+37/54*I,n=50 6541016841777640 r005 Im(z^2+c),c=43/122+5/58*I,n=14 6541016875815273 a007 Real Root Of 336*x^4-231*x^3+601*x^2-368*x-624 6541016879730406 m001 (Shi(1)+Zeta(1,2))/(Artin+Backhouse) 6541016889263467 h001 (-8*exp(2)-4)/(-exp(1/2)-8) 6541016899239654 a007 Real Root Of -12*x^4+843*x^3-880*x^2-30*x+595 6541016899879476 m005 (1/2*3^(1/2)-1/9)/(1/12*exp(1)-1/9) 6541016904600906 p001 sum((-1)^n/(530*n+407)/n/(16^n),n=1..infinity) 6541016931452585 m001 HeathBrownMoroz/exp(-1/2*Pi)/gamma(2) 6541016967138333 r005 Im(z^2+c),c=-25/54+23/31*I,n=3 6541016967803995 r005 Im(z^2+c),c=-129/110+5/31*I,n=26 6541016997129097 s002 sum(A271241[n]/(exp(2/5*pi*n)),n=1..infinity) 6541017024532233 m001 (2*Pi/GAMMA(5/6)+PlouffeB)/(cos(1)+ln(gamma)) 6541017026597848 m001 Zeta(5)*exp(Conway)^2/arctan(1/2)^2 6541017049412647 a003 sin(Pi*11/54)/sin(Pi*26/71) 6541017067777453 g004 Im(GAMMA(-53/20+I*59/20)) 6541017106143948 a007 Real Root Of 112*x^4-970*x^3+859*x^2+94*x-598 6541017109280131 a003 sin(Pi*7/38)/cos(Pi*17/92) 6541017138017432 k001 Champernowne real with 363*n+291 6541017149577824 m001 1/GAMMA(23/24)/ln(OneNinth)^2/sqrt(3)^2 6541017150512465 a001 63245986/843*199^(9/22) 6541017160578565 r005 Re(z^2+c),c=-7/10+51/217*I,n=62 6541017173292407 a001 3/1346269*46368^(45/47) 6541017187772447 r005 Re(z^2+c),c=-71/98+7/38*I,n=12 6541017193943501 a007 Real Root Of 164*x^4+69*x^3-739*x^2-439*x+554 6541017211340543 m001 exp(GAMMA(17/24))^2/Catalan^2/cosh(1)^2 6541017217202097 a003 cos(Pi*16/119)*sin(Pi*14/55) 6541017225162748 r005 Im(z^2+c),c=-47/58+1/30*I,n=34 6541017231266121 a007 Real Root Of -921*x^4+615*x^3+870*x^2+91*x+28 6541017235286946 l006 ln(5249/10096) 6541017254639140 m005 (1/2*Catalan-2/3)/(5/12*Zeta(3)-2/11) 6541017258187484 a007 Real Root Of -372*x^4-809*x^2+469*x+721 6541017263226362 a007 Real Root Of -149*x^4+874*x^3+202*x^2+696*x-759 6541017331480175 m002 -3*E^Pi+Pi+Tanh[Pi]/Log[Pi] 6541017343532013 r005 Re(z^2+c),c=-9/19+27/50*I,n=19 6541017381389345 r002 25th iterates of z^2 + 6541017393900699 m001 FeigenbaumMu^ZetaP(2)/exp(1) 6541017441983789 l006 ln(4792/9217) 6541017457987438 r005 Re(z^2+c),c=1/4+17/45*I,n=51 6541017466108026 a007 Real Root Of 290*x^4-574*x^3+61*x^2+359*x-5 6541017476206516 r005 Re(z^2+c),c=7/114+37/57*I,n=11 6541017500281773 a007 Real Root Of 398*x^4-477*x^3-693*x^2-223*x+503 6541017505239472 m001 (2^(1/3)-exp(1/Pi))/(MadelungNaCl+ZetaQ(3)) 6541017508960828 a007 Real Root Of -878*x^4-492*x^3-515*x^2+640*x+662 6541017522644507 m001 (-PlouffeB+TreeGrowth2nd)/(Psi(2,1/3)+cos(1)) 6541017564259874 m005 (1/3*Zeta(3)+1/6)/(-33/20+7/20*5^(1/2)) 6541017566272561 a007 Real Root Of 352*x^4+123*x^3+742*x^2-993*x-997 6541017577549999 a001 377/969323029*2^(3/4) 6541017578019744 a007 Real Root Of -955*x^4+423*x^3+83*x^2+930*x+866 6541017592073299 m001 1/ln(RenyiParking)^2*ArtinRank2^2/Zeta(1,2)^2 6541017615504616 r009 Re(z^3+c),c=-3/62+21/25*I,n=5 6541017616566818 a007 Real Root Of 197*x^4-931*x^3-140*x^2-906*x+877 6541017617451175 p003 LerchPhi(1/12,4,186/167) 6541017645408106 a007 Real Root Of 60*x^4+465*x^3+421*x^2-209*x+921 6541017662389297 m006 (2/3/Pi-1/6)/(3*exp(Pi)+1/5) 6541017664286497 r005 Im(z^2+c),c=-43/98+51/59*I,n=3 6541017692260999 l006 ln(4335/8338) 6541017692996486 m002 6+(4*Pi*Tanh[Pi])/E^Pi 6541017701591432 a007 Real Root Of -259*x^4+332*x^3+402*x^2+822*x+506 6541017724857545 a007 Real Root Of 131*x^4-888*x^3-815*x^2-196*x-52 6541017738282603 m001 (GAMMA(7/12)-Niven)/(Tribonacci+Thue) 6541017745467461 a003 sin(Pi*1/48)/sin(Pi*53/107) 6541017746131975 a007 Real Root Of 309*x^4-295*x^3-104*x^2-490*x+391 6541017755176270 m005 (1/3*Zeta(3)-2/9)/(3/10*Zeta(3)-1/3) 6541017764188538 r005 Im(z^2+c),c=33/118+35/64*I,n=51 6541017783825940 m003 4+Sqrt[5]/32-4*Csc[1/2+Sqrt[5]/2] 6541017800718119 r005 Re(z^2+c),c=-33/122+33/52*I,n=38 6541017810396985 m001 ln(2^(1/2)+1)/(Riemann1stZero-TwinPrimes) 6541017810761047 a007 Real Root Of 724*x^4-573*x^3-594*x^2-537*x-390 6541017855438619 m005 (1/2*5^(1/2)-4/9)/(8/11*Catalan+4/11) 6541017858445337 a003 cos(Pi*26/87)/sin(Pi*33/92) 6541017895398274 s002 sum(A118037[n]/(pi^n),n=1..infinity) 6541017898584442 a007 Real Root Of 369*x^4-874*x^3-260*x^2-978*x+928 6541017974108362 a007 Real Root Of 516*x^4-774*x^3+338*x^2-505*x-786 6541017979066592 h001 (1/6*exp(2)+1/5)/(7/10*exp(1)+2/7) 6541017987653301 b008 ArcTan[ProductLog[Erfi[1]]] 6541018000580528 r005 Re(z^2+c),c=3/28+11/59*I,n=15 6541018001525661 l006 ln(3878/7459) 6541018043734210 a007 Real Root Of 663*x^4-246*x^3-56*x^2-524*x-509 6541018044009304 m001 1/PisotVijayaraghavan^2*ln(Khintchine)^2*Salem 6541018070815601 r002 2th iterates of z^2 + 6541018082009367 r009 Im(z^3+c),c=-7/18+33/52*I,n=44 6541018084414354 m001 BesselK(0,1)/BesselJ(1,1)*exp(GAMMA(1/6))^2 6541018087250617 r005 Re(z^2+c),c=5/54+17/33*I,n=8 6541018089256313 a007 Real Root Of -810*x^4-447*x^3-938*x^2-756*x-70 6541018138217452 k005 Champernowne real with floor(sqrt(3)*(210*n+168)) 6541018138217462 k001 Champernowne real with 364*n+290 6541018149135620 m005 (4/5*Pi-2)/(-1/3+1/2*5^(1/2)) 6541018159999059 m001 1/exp(Tribonacci)^2/CareFree^2*GAMMA(17/24) 6541018167533449 r009 Im(z^3+c),c=-37/56+27/64*I,n=3 6541018176825793 r009 Re(z^3+c),c=-21/34+18/61*I,n=10 6541018189416923 a007 Real Root Of -640*x^4+521*x^3+35*x^2+749*x+49 6541018193254922 a007 Real Root Of 757*x^4-728*x^3-23*x^2-276*x-513 6541018208495848 a007 Real Root Of -619*x^4+834*x^3-599*x^2+26*x+620 6541018224421419 m001 (-gamma(3)+FellerTornier)/(LambertW(1)-Shi(1)) 6541018241908535 h001 (11/12*exp(1)+9/11)/(7/12*exp(2)+3/4) 6541018258349194 m002 12/E^Pi+6*Coth[Pi] 6541018258620723 a007 Real Root Of -602*x^4-700*x^3-98*x^2+310*x+159 6541018279023961 r005 Re(z^2+c),c=-1/9+35/47*I,n=11 6541018302477750 r005 Im(z^2+c),c=-7/50+37/55*I,n=40 6541018311393013 a005 (1/cos(2/143*Pi))^1945 6541018393417582 l006 ln(3421/6580) 6541018395084579 r005 Re(z^2+c),c=-5/8+83/230*I,n=22 6541018403388700 r005 Im(z^2+c),c=33/118+35/64*I,n=63 6541018414673843 s002 sum(A129255[n]/((2*n)!),n=1..infinity) 6541018426057441 r002 35th iterates of z^2 + 6541018442142374 r005 Im(z^2+c),c=33/118+35/64*I,n=59 6541018451162251 m001 1/2*2^(1/2)*GAMMA(3/4)/PisotVijayaraghavan 6541018468662182 m001 (MinimumGamma+Trott2nd)/(2^(1/2)-KhinchinLevy) 6541018473835855 m001 (-BesselJ(1,1)+Artin)/(Si(Pi)-sin(1)) 6541018486926956 r009 Re(z^3+c),c=-73/122+13/43*I,n=46 6541018497462326 m001 (Zeta(1,2)-ZetaQ(3))/(exp(1/exp(1))+gamma(3)) 6541018567884471 m001 BesselK(0,1)*PrimesInBinary^2/exp(Zeta(3))^2 6541018569840414 a007 Real Root Of 929*x^4-700*x^3-200*x^2-588*x-665 6541018584382310 m001 LandauRamanujan^2/ln(Kolakoski)^2*Lehmer 6541018586140008 r005 Re(z^2+c),c=29/82+1/8*I,n=14 6541018612754777 r005 Re(z^2+c),c=-7/52+33/49*I,n=60 6541018622794285 a007 Real Root Of 696*x^4+492*x^3+955*x^2-131*x-484 6541018624529454 m001 (AlladiGrinstead-Cahen)/(FeigenbaumB+Niven) 6541018629943603 a007 Real Root Of -96*x^4-469*x^3+977*x^2-353*x+370 6541018643237737 r005 Im(z^2+c),c=33/118+35/64*I,n=47 6541018649032375 m003 3+(2049*Sqrt[5])/4096+Sinh[1/2+Sqrt[5]/2] 6541018651042462 a007 Real Root Of 907*x^4+517*x^3+938*x^2+53*x-388 6541018673450432 a001 161/38*(1/2*5^(1/2)+1/2)^4*76^(3/16) 6541018677064071 a003 cos(Pi*47/120)-sin(Pi*50/111) 6541018679925151 m001 (ReciprocalLucas-Trott)/(Zeta(3)+Grothendieck) 6541018681041605 r005 Im(z^2+c),c=33/118+35/64*I,n=55 6541018700316452 r005 Im(z^2+c),c=-5/9+24/37*I,n=26 6541018716335315 r008 a(0)=0,K{-n^6,84+69*n^3-48*n^2+48*n} 6541018716794401 m001 (ErdosBorwein-gamma)/(TravellingSalesman+Thue) 6541018721936819 r009 Re(z^3+c),c=-1/86+23/35*I,n=33 6541018738619225 a007 Real Root Of -908*x^4+976*x^3+897*x^2-209*x-354 6541018763872782 m001 (BesselI(0,2)+Rabbit)/(exp(1)+Si(Pi)) 6541018764146839 a007 Real Root Of 514*x^4-631*x^3-407*x^2-77*x+307 6541018785237266 a007 Real Root Of -654*x^4+684*x^3+121*x^2+958*x+886 6541018787427600 a001 9227465/322*521^(1/2) 6541018816479431 a007 Real Root Of 674*x^4-868*x^3-227*x^2-583*x+598 6541018820542371 a007 Real Root Of -833*x^4+964*x^3+577*x^2+703*x-824 6541018825474561 r009 Im(z^3+c),c=-21/86+47/64*I,n=52 6541018837635928 m001 exp((3^(1/3)))*KhintchineHarmonic/GAMMA(5/6) 6541018839792773 r008 a(0)=0,K{-n^6,-96-59*n^3+12*n^2-10*n} 6541018854482421 a003 sin(Pi*5/33)/sin(Pi*21/85) 6541018857386088 m001 (Catalan-Stephens)/(Pi+Psi(2,1/3)) 6541018868869903 a008 Real Root of x^4-38*x^2-42*x+70 6541018870588892 a007 Real Root Of -911*x^4+93*x^3+296*x^2+781*x+577 6541018886978146 m001 sin(1)^(2/3)/BesselI(1,2)^(2/3) 6541018906156043 l006 ln(2964/5701) 6541018915584138 r005 Re(z^2+c),c=-61/114+16/33*I,n=26 6541018997685553 r005 Im(z^2+c),c=-2/3+124/249*I,n=3 6541019006378808 r002 20th iterates of z^2 + 6541019029460208 r005 Im(z^2+c),c=-11/52+5/56*I,n=14 6541019057733203 r005 Im(z^2+c),c=-89/82+11/30*I,n=4 6541019080382352 m001 GAMMA(17/24)^2/ln(GolombDickman)^2*Zeta(1,2)^2 6541019089170462 m007 (-3/4*gamma+1/5)/(-gamma-3*ln(2)-1/2*Pi+2/3) 6541019097041860 a003 cos(Pi*9/91)*sin(Pi*27/112) 6541019101103881 m001 (gamma(2)+GAMMA(17/24))/(Cahen+Mills) 6541019106178550 m001 (-FeigenbaumMu+Totient)/(5^(1/2)-Ei(1)) 6541019116242062 r008 a(0)=0,K{-n^6,-58-47*n+n^2-49*n^3} 6541019118110755 r005 Re(z^2+c),c=-1/56+9/35*I,n=5 6541019128296122 r008 a(0)=0,K{-n^6,60+48*n^3+3*n^2+42*n} 6541019138417492 k001 Champernowne real with 365*n+289 6541019150505562 a008 Real Root of (-1+4*x+6*x^2+5*x^4+4*x^8) 6541019156559464 r005 Re(z^2+c),c=1/64+31/41*I,n=9 6541019158711180 r008 a(0)=0,K{-n^6,62+46*n^3+10*n^2+35*n} 6541019191161848 r009 Re(z^3+c),c=-12/23+43/63*I,n=2 6541019207380827 r005 Re(z^2+c),c=-15/122+43/53*I,n=33 6541019209921104 r002 14th iterates of z^2 + 6541019214495565 r008 a(0)=0,K{-n^6,62+43*n^3+19*n^2+29*n} 6541019220790605 r008 a(0)=0,K{-n^6,-72-41*n^3-30*n^2-10*n} 6541019234136560 r005 Re(z^2+c),c=5/54+29/63*I,n=23 6541019266445492 r005 Re(z^2+c),c=13/46+23/45*I,n=44 6541019288231722 a003 cos(Pi*23/79)+cos(Pi*52/107) 6541019310564875 r008 a(0)=0,K{-n^6,62+38*n^3+34*n^2+19*n} 6541019317084160 r008 a(0)=0,K{-n^6,42+41*n^3+15*n^2+55*n} 6541019353978689 m001 1/exp(FeigenbaumB)*Cahen*GAMMA(7/12)^2 6541019357722537 r002 4th iterates of z^2 + 6541019418997185 a007 Real Root Of 26*x^4-789*x^3-358*x^2-708*x-45 6541019438117364 r008 a(0)=0,K{-n^6,42+35*n^3+33*n^2+43*n} 6541019443564945 a007 Real Root Of -895*x^4-43*x^3+226*x^2+937*x+668 6541019448661470 p001 sum((-1)^n/(359*n+245)/n/(25^n),n=1..infinity) 6541019451674643 a007 Real Root Of -210*x^4+334*x^3+747*x^2+528*x-720 6541019460960973 a001 21/47*123^(29/52) 6541019476370567 l006 ln(7382/7881) 6541019486876913 r008 a(0)=0,K{-n^6,40+42*n+38*n^2+33*n^3} 6541019489253366 a001 55/4870847*1364^(52/59) 6541019514197428 m001 cos(1)^2/Ei(1)^2*ln(sqrt(5)) 6541019517717371 a007 Real Root Of -568*x^4+422*x^3-603*x^2+723*x+50 6541019522359937 r008 a(0)=0,K{-n^6,-66-27*n^3-69*n^2+9*n} 6541019525343823 p003 LerchPhi(1/3,1,361/182) 6541019541142220 m001 GAMMA(7/12)-TwinPrimes^FellerTornier 6541019551225616 r005 Re(z^2+c),c=27/74+5/63*I,n=8 6541019555020660 m001 (Zeta(5)+GAMMA(19/24))/(Magata-Trott2nd) 6541019565526576 r008 a(0)=0,K{-n^6,42+29*n^3+51*n^2+31*n} 6541019571599670 a007 Real Root Of -409*x^4+596*x^3-817*x^2+203*x+724 6541019572776004 r008 a(0)=0,K{-n^6,28+31*n^3+38*n^2+56*n} 6541019575116789 a007 Real Root Of -841*x^4+500*x^3-574*x^2+143*x+633 6541019579716982 m002 6+E^Pi*Pi*Sech[Pi]^2 6541019587413993 a007 Real Root Of 915*x^4-430*x^3-473*x^2-302*x-283 6541019591030370 m001 GAMMA(1/6)^2*Kolakoski*exp(GAMMA(13/24))^2 6541019598441558 m001 BesselJ(1,1)^PlouffeB/MertensB2 6541019602099187 r008 a(0)=0,K{-n^6,32+29*n^3+46*n^2+46*n} 6541019603309386 a007 Real Root Of -625*x^4+149*x^3-971*x^2-195*x+444 6541019605828229 l006 ln(2507/4822) 6541019609466815 r008 a(0)=0,K{-n^6,24+30*n^3+39*n^2+60*n} 6541019609466815 r008 a(0)=0,K{-n^6,30*n^3+39*n^2+60*n+24} 6541019614850387 p003 LerchPhi(1/3,4,52/83) 6541019616891095 r008 a(0)=0,K{-n^6,34+28*n^3+50*n^2+41*n} 6541019621712870 s002 sum(A152505[n]/(n^2*2^n-1),n=1..infinity) 6541019631831398 r008 a(0)=0,K{-n^6,66+22*n^3+84*n^2-19*n} 6541019654263429 r008 a(0)=0,K{-n^6,42+25*n^3+63*n^2+23*n} 6541019661760506 r008 a(0)=0,K{-n^6,28*n^3+44*n^2+59*n+22} 6541019661785143 r008 a(0)=0,K{-n^6,34+26*n^3+56*n^2+37*n} 6541019661836939 m001 GAMMA(7/24)/exp(Ei(1))/sin(1)^2 6541019662496845 b008 3+15*(-2+Sqrt[5]) 6541019662496845 m005 (1/2*5^(1/2)-1/6)/(5/6+5/18*5^(1/2)) 6541019670079312 r008 a(0)=7,K{-n^6,23+21*n^3-47*n^2-3*n} 6541019673611523 m006 (2*Pi^2+3)/(1/6*Pi-4) 6541019673611523 m008 (2*Pi^2+3)/(1/6*Pi-4) 6541019691185059 m001 (Artin+MertensB2)/(ln(2)-Zeta(1/2)) 6541019715158398 r008 a(0)=0,K{-n^6,26*n^3+49*n^2+58*n+20} 6541019722875112 r008 a(0)=0,K{-n^6,18+61*n+48*n^2+26*n^3} 6541019747875455 s002 sum(A167737[n]/(n^3*pi^n-1),n=1..infinity) 6541019751193628 m001 GAMMA(17/24)^2*Porter^2*ln(Zeta(3)) 6541019769696117 r008 a(0)=0,K{-n^6,24*n^3+54*n^2+57*n+18} 6541019801413337 r008 a(0)=0,K{-n^6,28+21*n^3+68*n^2+36*n} 6541019817320269 a003 sin(Pi*30/101)*sin(Pi*33/109) 6541019819334719 m006 (4*Pi-1/5)/(2*Pi^2-5/6) 6541019819334719 m008 (4*Pi-1/5)/(2*Pi^2-5/6) 6541019825410861 r008 a(0)=0,K{-n^6,22*n^3+59*n^2+56*n+16} 6541019830419875 a007 Real Root Of 837*x^4-26*x^3-47*x^2-813*x-53 6541019847274728 m001 (MertensB1-Niven)/(exp(1/Pi)+FeigenbaumB) 6541019851589363 a007 Real Root Of 145*x^4-619*x^3-640*x^2-704*x+881 6541019875070254 a007 Real Root Of -311*x^4+407*x^3-19*x^2+916*x-648 6541019879280116 m001 Cahen^BesselI(0,2)/(Cahen^ln(2+3^(1/2))) 6541019879280116 m001 Cahen^BesselI(0,2)/(Cahen^ln(2+sqrt(3))) 6541019882310163 r008 a(0)=0,K{-n^6,-2-22*n^3-52*n^2-77*n} 6541019882341494 r008 a(0)=0,K{-n^6,14+20*n^3+64*n^2+55*n} 6541019882341494 r008 a(0)=0,K{-n^6,20*n^3+64*n^2+55*n+14} 6541019940528639 r008 a(0)=0,K{-n^6,18*n^3+69*n^2+54*n+12} 6541019955654101 q001 295/451 6541019955654101 r002 2th iterates of z^2 + 6541019955654101 r005 Im(z^2+c),c=-21/22+59/82*I,n=2 6541019956739662 m005 (1/2*2^(1/2)-3/5)/(5*Pi+2/3) 6541019958537300 m001 Sarnak^Totient/(Sarnak^Trott2nd) 6541019975759910 r005 Im(z^2+c),c=-3/38+31/38*I,n=56 6541019981461844 r005 Re(z^2+c),c=11/74+21/43*I,n=22 6541020000014784 r008 a(0)=0,K{-n^6,16*n^3+74*n^2+53*n+10} 6541020033844970 a007 Real Root Of -526*x^4-908*x^3-831*x^2+617*x-4 6541020039682386 m005 (1/2*5^(1/2)-5)/(1/8*Zeta(3)-1/11) 6541020060844396 r008 a(0)=0,K{-n^6,14*n^3+79*n^2+52*n+8} 6541020060914523 l006 ln(4557/8765) 6541020123064039 r008 a(0)=0,K{-n^6,12*n^3+84*n^2+51*n+6} 6541020126937327 m001 Ei(1,1)*Riemann1stZero^ThueMorse 6541020138517512 k005 Champernowne real with floor(sqrt(3)*(211*n+167)) 6541020138617522 k001 Champernowne real with 366*n+288 6541020145477803 a007 Real Root Of -414*x^4-621*x^3-754*x^2+843*x+776 6541020186722509 r008 a(0)=0,K{-n^6,10*n^3+89*n^2+50*n+4} 6541020199830865 a007 Real Root Of 9*x^4+589*x^3+14*x^2-395*x+511 6541020209475291 a003 sin(Pi*17/99)/cos(Pi*17/80) 6541020225593346 r005 Im(z^2+c),c=-71/60+2/23*I,n=45 6541020238705984 m001 GAMMA(1/12)^2*ln(GAMMA(13/24)) 6541020250695335 m001 (exp(Pi)+BesselJ(1,1))/(-Bloch+FeigenbaumB) 6541020251093359 m001 MertensB1^2/Backhouse*exp(log(2+sqrt(3)))^2 6541020251870970 r008 a(0)=0,K{-n^6,8*n^3+94*n^2+49*n+2} 6541020257467590 a005 (1/cos(33/97*Pi))^97 6541020277935911 a007 Real Root Of -249*x^4+944*x^3+567*x^2+440*x-749 6541020280385815 a003 cos(Pi*25/91)/sin(Pi*33/71) 6541020289639406 a007 Real Root Of -716*x^4+260*x^3-213*x^2-3*x+293 6541020314035491 a007 Real Root Of -860*x^4+32*x^3+108*x^2+969*x+754 6541020331986179 m001 exp(GAMMA(19/24))*FeigenbaumB^2*cos(1)^2 6541020337977607 a007 Real Root Of 192*x^4+181*x^3+554*x^2-519*x-561 6541020353273455 r005 Re(z^2+c),c=-53/86+18/43*I,n=11 6541020356732065 a007 Real Root Of -95*x^4-474*x^3+959*x^2-69*x-232 6541020384238866 r002 19th iterates of z^2 + 6541020408163265 r005 Re(z^2+c),c=-29/28+8/25*I,n=2 6541020418523453 a007 Real Root Of 517*x^4-269*x^3+186*x^2+305*x-50 6541020421744602 a001 14930352/521*199^(13/22) 6541020448021936 r005 Im(z^2+c),c=1/17+19/30*I,n=9 6541020452757867 r005 Re(z^2+c),c=-11/12+8/59*I,n=16 6541020465859377 a007 Real Root Of -870*x^4-278*x^3-392*x^2+755*x+51 6541020473305692 a007 Real Root Of 438*x^4-540*x^3+48*x^2-510*x+384 6541020488664109 a007 Real Root Of 153*x^4+912*x^3-675*x^2-468*x+974 6541020504069065 a007 Real Root Of 75*x^4+299*x^3+712*x^2-797*x-756 6541020522399920 b008 Sqrt[2]*CosIntegral[7/4] 6541020529460608 r005 Re(z^2+c),c=-3/44+40/53*I,n=12 6541020608157710 a007 Real Root Of 498*x^4-711*x^3-924*x^2-754*x-388 6541020613979056 m001 (Ei(1,1)-Psi(1,1/3))/(Backhouse+ZetaQ(2)) 6541020617451733 l006 ln(2050/3943) 6541020629110317 a007 Real Root Of 493*x^4+365*x^3+761*x^2-2*x-315 6541020631498993 a007 Real Root Of 256*x^4-188*x^3+611*x^2-124*x-442 6541020644532029 m001 Stephens^Khinchin-ln(2^(1/2)+1) 6541020651463255 m005 (2/3*Catalan-5/6)/(25/8+1/8*5^(1/2)) 6541020658948811 r005 Re(z^2+c),c=3/46+1/18*I,n=7 6541020672627240 r005 Im(z^2+c),c=-95/118+2/55*I,n=15 6541020683987556 r002 9th iterates of z^2 + 6541020692062753 r005 Im(z^2+c),c=-5/78+42/55*I,n=41 6541020734706168 m002 2*Pi+3*Sech[Pi]*Tanh[Pi] 6541020739224726 m005 (1/3*3^(1/2)+1/8)/(4/9*Catalan+2/3) 6541020765581625 a007 Real Root Of -190*x^4-267*x^3-413*x^2+936*x+749 6541020787619464 m001 BesselI(0,1)-Riemann1stZero^StronglyCareFree 6541020819433355 a007 Real Root Of -265*x^4+449*x^3+527*x^2+872*x-873 6541020826877070 r005 Im(z^2+c),c=-9/8+13/164*I,n=16 6541020828329252 m001 (BesselI(0,2)-cos(1))/(Conway+FeigenbaumKappa) 6541020845668587 h001 (11/12*exp(2)+5/12)/(1/5*exp(1)+5/9) 6541020855759205 r005 Im(z^2+c),c=-20/29+9/44*I,n=30 6541020859878033 r005 Im(z^2+c),c=-4/9+7/64*I,n=25 6541020868998985 m001 (ErdosBorwein+KhinchinLevy)/(Pi+GAMMA(5/6)) 6541020880044656 r005 Im(z^2+c),c=-1/24+44/63*I,n=50 6541020886607379 m001 2*Pi/GAMMA(5/6)/HardyLittlewoodC3/Totient 6541020889402574 a003 cos(Pi*15/109)-sin(Pi*37/116) 6541020900313483 m001 1/MadelungNaCl*ln(KhintchineLevy)*Sierpinski^2 6541020927423402 m001 (ln(2)+ln(3))/(Khinchin+ZetaQ(2)) 6541020933000776 p003 LerchPhi(1/2,4,291/143) 6541020960079602 r005 Im(z^2+c),c=-9/122+39/49*I,n=62 6541020971409053 r005 Im(z^2+c),c=-11/114+36/53*I,n=34 6541020978552605 a001 9*832040^(29/60) 6541021005871350 r002 45th iterates of z^2 + 6541021008987710 h001 (-2*exp(-3)-3)/(-5*exp(2/3)+5) 6541021012329705 a007 Real Root Of -262*x^4+912*x^3-423*x^2+385*x+736 6541021059049063 m001 (-GolombDickman+ZetaQ(3))/(LambertW(1)+Artin) 6541021094742910 b008 1/3+11*Sqrt[35] 6541021099884061 r005 Re(z^2+c),c=-4/5+45/101*I,n=4 6541021138817552 k001 Champernowne real with 367*n+287 6541021138917562 k005 Champernowne real with floor(sqrt(3)*(212*n+166)) 6541021141705263 r005 Im(z^2+c),c=-125/106+5/31*I,n=30 6541021173659441 a007 Real Root Of -57*x^4-409*x^3-347*x^2-664*x+383 6541021177121456 r005 Im(z^2+c),c=-9/8+8/67*I,n=4 6541021181983107 m001 1/Tribonacci^2/exp(RenyiParking)^2*Pi^2 6541021204205281 m001 PlouffeB^BesselK(0,1)/(Conway^BesselK(0,1)) 6541021209090246 m001 2*Pi/GAMMA(5/6)+sin(1)^ZetaR(2) 6541021227312111 m001 (HardyLittlewoodC3-HeathBrownMoroz)/gamma(2) 6541021231192101 k006 concat of cont frac of 6541021250486341 m001 (FeigenbaumD+Niven)/(RenyiParking-ZetaP(4)) 6541021261003783 a001 7/7778742049*34^(9/16) 6541021290094643 m001 (CareFree+Landau)/(MertensB1-ZetaP(2)) 6541021291828783 r002 5th iterates of z^2 + 6541021313619700 l006 ln(3643/7007) 6541021364154044 a007 Real Root Of -517*x^4-404*x^3-987*x^2-223*x+258 6541021403319579 m001 (Psi(1,1/3)+5^(1/2))^RenyiParking 6541021411509371 m005 (1/3*gamma+2/7)/(7/11*gamma+4/11) 6541021414282481 a007 Real Root Of -129*x^4-663*x^3-779*x^2+533*x+520 6541021423664559 a003 cos(Pi*1/14)-cos(Pi*40/101) 6541021477431785 m005 (1/2*2^(1/2)+1/12)/(2/11*5^(1/2)-2/7) 6541021486132114 a007 Real Root Of -816*x^4+875*x^3+26*x^2-335*x+164 6541021538841899 m001 (CareFree-Conway)/Catalan 6541021557033759 m005 (1/3*Catalan+3/4)/(5/6*5^(1/2)-1/4) 6541021579514788 r005 Im(z^2+c),c=17/50+2/5*I,n=53 6541021586183540 l006 ln(5236/10071) 6541021587101450 m001 (sin(1/5*Pi)-gamma(1))/(Artin-Weierstrass) 6541021596516214 m005 (17/20+1/4*5^(1/2))/(5/6*exp(1)-1/9) 6541021596812945 a007 Real Root Of 387*x^4-199*x^3+550*x^2-731*x-840 6541021597565850 p003 LerchPhi(1/25,4,32/91) 6541021622366771 r002 10th iterates of z^2 + 6541021631138035 a001 48/281*7881196^(21/22) 6541021631138122 a001 48/281*20633239^(9/10) 6541021631138136 a001 48/281*2537720636^(7/10) 6541021631138136 a001 48/281*17393796001^(9/14) 6541021631138136 a001 48/281*14662949395604^(1/2) 6541021631138136 a001 48/281*505019158607^(9/16) 6541021631138136 a001 48/281*192900153618^(7/12) 6541021631138136 a001 48/281*599074578^(3/4) 6541021631138141 a001 48/281*33385282^(7/8) 6541021631733565 a001 377/322*7881196^(5/6) 6541021631733641 a001 377/322*20633239^(11/14) 6541021631733653 a001 377/322*2537720636^(11/18) 6541021631733653 a001 377/322*312119004989^(1/2) 6541021631733653 a001 377/322*3461452808002^(11/24) 6541021631733653 a001 377/322*28143753123^(11/20) 6541021631733653 a001 377/322*1568397607^(5/8) 6541021631733653 a001 377/322*228826127^(11/16) 6541021631735385 a001 377/322*1860498^(11/12) 6541021637057519 a007 Real Root Of -470*x^4+72*x^3+736*x^2+107*x-319 6541021642149781 m001 (-Kac+Khinchin)/(BesselK(0,1)-FeigenbaumMu) 6541021645181253 a001 4/10610209857723*75025^(20/23) 6541021647715656 m005 (1+1/6*5^(1/2))/(5/6*exp(1)-1/6) 6541021667454320 r005 Re(z^2+c),c=3/38+14/25*I,n=21 6541021678869615 r009 Re(z^3+c),c=-13/110+13/18*I,n=63 6541021686617619 a007 Real Root Of -292*x^4+919*x^3-180*x^2+450*x+682 6541021702887111 r002 8th iterates of z^2 + 6541021703086215 a007 Real Root Of -72*x^4-329*x^3+827*x^2-770*x-693 6541021709211253 m002 2+2*Csch[Pi]+5/Log[Pi] 6541021709561309 m001 (1-BesselI(1,2))/(-GAMMA(7/12)+Kac) 6541021723387264 m001 1/cosh(1)/ln(Riemann1stZero)^2*sin(1)^2 6541021724273898 h001 (6/11*exp(2)+5/11)/(11/12*exp(2)+1/12) 6541021740151280 m001 (OneNinth-Stephens)/(ln(2^(1/2)+1)+Zeta(1,-1)) 6541021759998473 m001 (Cahen-Lehmer)/(sin(1/12*Pi)+polylog(4,1/2)) 6541021771544173 m001 ReciprocalLucas/PrimesInBinary/Sarnak 6541021817865912 r002 63th iterates of z^2 + 6541021821318099 a001 433494437/843*76^(1/18) 6541021822414541 a007 Real Root Of 409*x^4-938*x^3-757*x^2-227*x+660 6541021824780862 r009 Im(z^3+c),c=-31/98+19/28*I,n=27 6541021832023911 a001 28657/843*3^(28/47) 6541021871821390 a007 Real Root Of -720*x^4+839*x^3-694*x^2-860*x+101 6541021875561359 b008 1/3+3*AiryAi[-6] 6541021885837742 m001 (Riemann3rdZero+Trott2nd)/(ln(Pi)+FeigenbaumD) 6541021892268915 s001 sum(exp(-3*Pi)^n*A236876[n],n=1..infinity) 6541021894323541 a007 Real Root Of 98*x^4+729*x^3+680*x^2+767*x+545 6541021902332338 m001 (ZetaQ(2)-ZetaQ(3))/(GAMMA(5/6)-TreeGrowth2nd) 6541021939761549 r002 23th iterates of z^2 + 6541021941843349 a001 13/9349*18^(15/28) 6541021950578449 m005 (-7/4+1/4*5^(1/2))/(5/6*exp(1)-4/9) 6541021956599055 a007 Real Root Of -531*x^4+997*x^3-660*x^2-695*x+204 6541021989172228 m001 (-Artin+Totient)/(BesselK(0,1)+GAMMA(11/12)) 6541022016228382 a007 Real Root Of -986*x^4-228*x^3+854*x^2+475*x+62 6541022067363680 r005 Im(z^2+c),c=-3/44+31/46*I,n=4 6541022080577935 r002 11th iterates of z^2 + 6541022081522626 m001 KhinchinHarmonic/(FeigenbaumAlpha-5^(1/2)) 6541022091107328 r005 Im(z^2+c),c=-37/106+27/43*I,n=62 6541022109194286 a007 Real Root Of -15*x^4-980*x^3+68*x^2-486*x+37 6541022113755658 m005 1/6*5^(1/2)/(6/11*3^(1/2)-3/8) 6541022115543287 r005 Re(z^2+c),c=19/82+14/39*I,n=62 6541022133127892 r005 Im(z^2+c),c=-11/17+3/50*I,n=15 6541022139017582 k001 Champernowne real with 368*n+286 6541022144723627 a007 Real Root Of 66*x^4+268*x^3-967*x^2+748*x+451 6541022166029348 m001 Si(Pi)^gamma/(Si(Pi)^BesselI(0,1)) 6541022209504333 l006 ln(1593/3064) 6541022217624028 m002 -Pi^5+Pi^6-Pi*Sech[Pi]-Tanh[Pi] 6541022223945298 a007 Real Root Of 627*x^4-434*x^3+639*x^2+507*x-178 6541022229046564 a007 Real Root Of -148*x^4-955*x^3-83*x^2-969*x+871 6541022231735441 k007 concat of cont frac of 6541022235182581 r005 Im(z^2+c),c=-13/62+37/45*I,n=41 6541022237097815 m001 Tribonacci*Riemann2ndZero^2/exp((2^(1/3)))^2 6541022247386784 r009 Im(z^3+c),c=-61/118+23/52*I,n=30 6541022254278404 a001 55/9349*521^(1/59) 6541022257589793 r005 Im(z^2+c),c=-7/118+20/29*I,n=50 6541022299928986 m005 (19/20+1/5*5^(1/2))/(5*gamma-3/4) 6541022309652580 a001 55/710647*3571^(32/59) 6541022311752949 m001 (-ln(2+3^(1/2))+GAMMA(5/6))/(3^(1/2)+ln(Pi)) 6541022312500330 p001 sum((-1)^n/(542*n+147)/(5^n),n=0..infinity) 6541022316316121 a001 21/199*7^(15/16) 6541022317630595 r002 57i'th iterates of 2*x/(1-x^2) of 6541022343265231 b008 3+EulerGamma+CosIntegral[1]^(-1) 6541022344859410 h001 (1/6*exp(2)+4/7)/(1/4*exp(2)+10/11) 6541022420433535 p004 log(29761/15473) 6541022424550830 m004 2+4*Cos[Sqrt[5]*Pi]+(5*Tanh[Sqrt[5]*Pi])/Pi 6541022443661736 a007 Real Root Of -85*x^4+388*x^3-659*x^2+671*x+845 6541022446456178 m001 CareFree*ZetaR(2)-ln(gamma) 6541022448266659 a007 Real Root Of -78*x^4-106*x^3+16*x^2+231*x-114 6541022456334866 r005 Im(z^2+c),c=-15/118+47/54*I,n=50 6541022484216821 r005 Im(z^2+c),c=33/118+35/64*I,n=43 6541022506687360 a001 2/29*199^(43/50) 6541022519039793 m001 (GAMMA(7/12)-OneNinth)/(Sierpinski-ThueMorse) 6541022533054256 a001 76/89*233^(39/49) 6541022557584690 a007 Real Root Of 780*x^4-604*x^3+239*x^2+286*x-227 6541022571015123 a001 55/39603*9349^(10/59) 6541022572567795 a001 55/15127*5778^(4/59) 6541022588250986 a001 55/103682*39603^(14/59) 6541022606764817 a001 55/4870847*15127^(39/59) 6541022616434121 g003 Im(GAMMA(-61/15+I*(-2))) 6541022617230649 s002 sum(A289515[n]/(exp(2*pi*n)+1),n=1..infinity) 6541022622703017 m001 (Grothendieck-PlouffeB)/(GAMMA(2/3)+Cahen) 6541022624001462 a007 Real Root Of 680*x^4-741*x^3+184*x^2-152*x-510 6541022629206547 a001 1/46347*2584^(8/11) 6541022646350616 m001 Cahen-LaplaceLimit^MertensB3 6541022700059735 a007 Real Root Of -835*x^4+960*x^3+183*x^2+778*x-703 6541022720385329 a003 cos(Pi*16/95)*sin(Pi*26/95) 6541022728189177 a007 Real Root Of 378*x^4-901*x^3+638*x^2-423*x-871 6541022735391183 r005 Im(z^2+c),c=-125/106+11/42*I,n=6 6541022751262000 a001 18/11*(1/2*5^(1/2)+1/2)^7*11^(2/15) 6541022764500996 r009 Im(z^3+c),c=-15/52+37/55*I,n=9 6541022771697430 a001 1/102287808*102334155^(8/11) 6541022771697430 a001 1/225749145909*4052739537881^(8/11) 6541022771697430 a001 47/225851433717*20365011074^(8/11) 6541022771701028 a001 47/102334155*514229^(8/11) 6541022777111614 a007 Real Root Of 777*x^4-21*x^3+54*x^2-362*x-408 6541022798117294 a007 Real Root Of 68*x^4+326*x^3-630*x^2+990*x+186 6541022803374753 r005 Im(z^2+c),c=7/48+34/47*I,n=4 6541022807276858 a007 Real Root Of -247*x^4+331*x^3+873*x^2+870*x-990 6541022808433552 r005 Re(z^2+c),c=-29/28+3/14*I,n=60 6541022823911459 r005 Im(z^2+c),c=25/66+1/4*I,n=16 6541022828029452 m001 (-GaussAGM+Riemann3rdZero)/(Bloch-sin(1)) 6541022851880123 m005 (1/3*Catalan+3)/(1/3*Catalan+1/5) 6541022858596640 r002 24i'th iterates of 2*x/(1-x^2) of 6541022869358945 a007 Real Root Of -96*x^4-628*x^3-44*x^2-335*x-326 6541022878436971 a007 Real Root Of 375*x^4-786*x^3+443*x^2-540*x+315 6541022892505343 a007 Real Root Of -306*x^4+107*x^3-197*x^2-60*x+131 6541022942416081 r005 Re(z^2+c),c=23/78+23/58*I,n=18 6541022947440041 m001 (Trott+Trott2nd)/(FeigenbaumDelta+Salem) 6541022956548028 r009 Re(z^3+c),c=-13/27+34/59*I,n=23 6541022957727645 a007 Real Root Of 241*x^4+128*x^3+24*x^2-655*x-447 6541022958153584 s001 sum(exp(-2*Pi)^n*A289515[n],n=1..infinity) 6541022964642568 l006 ln(4322/8313) 6541023001762073 a007 Real Root Of 865*x^4-886*x^3+23*x^2-515*x-753 6541023008825335 r002 13th iterates of z^2 + 6541023042712418 m001 FeigenbaumC^2*Cahen*ln(GAMMA(2/3)) 6541023081923458 a007 Real Root Of -229*x^4+981*x^3-562*x^2-856*x-3 6541023084789248 a007 Real Root Of -210*x^4-179*x^3+335*x^2+806*x-582 6541023124092858 m001 Pi^(Si(Pi)/GAMMA(5/6)) 6541023132457431 r005 Im(z^2+c),c=-1/22+47/59*I,n=8 6541023139217612 k001 Champernowne real with 369*n+285 6541023139217612 k005 Champernowne real with floor(sqrt(3)*(213*n+165)) 6541023142422154 r005 Im(z^2+c),c=-5/4+3/208*I,n=58 6541023158149738 a003 sin(Pi*34/117)*sin(Pi*35/113) 6541023260049666 r009 Im(z^3+c),c=-8/29+43/59*I,n=52 6541023262662003 a007 Real Root Of 200*x^4-462*x^3-695*x^2-707*x-331 6541023266136417 a001 1364/701408733*8^(7/12) 6541023285062728 r005 Re(z^2+c),c=-5/31+33/35*I,n=6 6541023300378956 s002 sum(A289515[n]/(exp(2*pi*n)-1),n=1..infinity) 6541023328473510 a001 165580141/322*199^(1/22) 6541023355668017 r002 9th iterates of z^2 + 6541023361726955 a001 55/710647*2207^(34/59) 6541023387263764 a007 Real Root Of 548*x^4-710*x^3+630*x^2-71*x-615 6541023405439613 l006 ln(2729/5249) 6541023410865089 l006 ln(3225/3443) 6541023413886276 m002 -6/Pi^3-Pi^5+Pi^6-ProductLog[Pi] 6541023439004926 s002 sum(A244084[n]/(n*2^n-1),n=1..infinity) 6541023450490596 a007 Real Root Of -484*x^4+975*x^3+362*x^2+489*x-659 6541023465595903 a007 Real Root Of -284*x^4-120*x^3-623*x^2+925*x+890 6541023481862123 r005 Im(z^2+c),c=-107/94+5/61*I,n=51 6541023483811161 a007 Real Root Of -615*x^4+418*x^3-917*x^2+98*x+686 6541023499759026 l006 ln(8381/8436) 6541023500113389 a007 Real Root Of 121*x^4-282*x^3+389*x^2-438*x-554 6541023504153346 v003 sum((n^3+11/2*n^2-23/2*n+6)/n^n,n=1..infinity) 6541023515542216 a008 Real Root of (1+2*x+3*x^2+2*x^3+x^4+5*x^5) 6541023538624567 a007 Real Root Of 325*x^4-540*x^3+780*x^2-478*x-857 6541023593894600 r002 45th iterates of z^2 + 6541023595081921 a007 Real Root Of -529*x^4-101*x^3-769*x^2+959*x+66 6541023614491995 s002 sum(A200196[n]/(n^3*2^n+1),n=1..infinity) 6541023619077786 m005 (1/3*Catalan+1/5)/(5/8*5^(1/2)-5/8) 6541023630363917 m005 (1/2*3^(1/2)-7/9)/(5*exp(1)-1/10) 6541023638798639 r002 16th iterates of z^2 + 6541023640381592 v002 sum(1/(3^n+(21/2*n^2+9/2*n+9)),n=1..infinity) 6541023659745989 a007 Real Root Of 206*x^4-866*x^3+754*x^2-557*x-967 6541023731639524 r002 12th iterates of z^2 + 6541023733407166 a005 (1/cos(5/82*Pi))^1349 6541023747317094 r005 Re(z^2+c),c=-15/26+61/111*I,n=7 6541023753444161 m001 (Catalan-StronglyCareFree)/(Pi-1) 6541023769743036 p004 log(20117/10459) 6541023801586841 m001 KhinchinLevy-Riemann3rdZero^HardyLittlewoodC3 6541023824006023 m001 (GAMMA(3/4)+Sierpinski)^OrthogonalArrays 6541023859211714 p003 LerchPhi(1/1024,5,443/162) 6541023882211942 a007 Real Root Of -538*x^4+555*x^3+99*x^2+354*x+443 6541023883522450 s002 sum(A041241[n]/(exp(n)+1),n=1..infinity) 6541023885772820 a001 514229/199*7^(21/44) 6541023886088030 a007 Real Root Of -782*x^4+844*x^3+400*x^2+758*x-760 6541023898356751 l006 ln(3865/7434) 6541023941320509 m001 Rabbit^sin(1/12*Pi)*TravellingSalesman 6541023950009672 m002 E^Pi/(4*ProductLog[Pi])+ProductLog[Pi]^2 6541023955288465 a007 Real Root Of 55*x^4+352*x^3-109*x^2-351*x+197 6541023970000255 s002 sum(A041241[n]/(exp(n)),n=1..infinity) 6541023992371676 m009 (32/5*Catalan+4/5*Pi^2-4)/(6*Psi(1,3/4)-1/3) 6541024021284976 a007 Real Root Of 763*x^4-383*x^3+399*x^2-767*x+5 6541024043110961 a007 Real Root Of -551*x^4-548*x^3-817*x^2+986*x+942 6541024070387936 s002 sum(A041241[n]/(exp(n)-1),n=1..infinity) 6541024071981333 m001 gamma(1)-gamma(2)*LandauRamanujan 6541024086156105 a007 Real Root Of 382*x^4-457*x^3+726*x^2+71*x-462 6541024093355465 r005 Re(z^2+c),c=1/30+39/47*I,n=2 6541024094203783 a007 Real Root Of 52*x^4+401*x^3+297*x^2-765*x-677 6541024097442174 r002 12th iterates of z^2 + 6541024098881104 m006 (2/3*Pi^2-5/6)/(1/4*exp(Pi)+3) 6541024115412764 a003 sin(Pi*4/99)*sin(Pi*14/81) 6541024126584212 a007 Real Root Of -220*x^4-302*x^3-143*x^2+393*x+274 6541024139417642 k001 Champernowne real with 370*n+284 6541024157088263 m005 (1/3*3^(1/2)+2/7)/(7/10*exp(1)-7/12) 6541024165797224 m008 (5/6*Pi^2-1/6)/(4*Pi^3-5/6) 6541024167337118 l006 ln(5001/9619) 6541024175573211 a001 233/76*47^(31/39) 6541024184317286 r005 Im(z^2+c),c=-65/122+23/38*I,n=3 6541024220010050 s002 sum(A121269[n]/(pi^n),n=1..infinity) 6541024239547820 m001 BesselI(0,1)-KhinchinHarmonic-ZetaP(3) 6541024252666792 r005 Re(z^2+c),c=7/60+37/41*I,n=3 6541024257736944 a007 Real Root Of 900*x^4+494*x^3+66*x^2+180*x+63 6541024260617862 p003 LerchPhi(1/1024,6,282/179) 6541024270120865 a007 Real Root Of -157*x^4+617*x^3-599*x^2-157*x+355 6541024276085913 r005 Im(z^2+c),c=-17/56+7/62*I,n=4 6541024289782882 a007 Real Root Of 112*x^4-979*x^3-26*x^2-851*x-840 6541024309919415 r002 31th iterates of z^2 + 6541024354567707 r009 Im(z^3+c),c=-47/118+39/56*I,n=31 6541024359680077 a007 Real Root Of -693*x^4+58*x^3-163*x^2+968*x+846 6541024386667862 h001 (-3*exp(3)+8)/(-10*exp(2)-6) 6541024396469085 a007 Real Root Of 734*x^4-971*x^3-931*x^2+628*x+403 6541024403075473 m001 sin(1)^(3^(1/3)*Niven) 6541024409299357 a003 cos(Pi*4/107)-sin(Pi*12/109) 6541024434052467 m001 (ln(2^(1/2)+1)-Stephens)/FeigenbaumDelta 6541024461182592 a007 Real Root Of 387*x^4-222*x^3+22*x^2-945*x+600 6541024487118209 m001 1/exp(GAMMA(5/24))/Si(Pi)/Zeta(7)^2 6541024513077780 m005 (1/2*Pi+7/8)/(7/9*5^(1/2)+2) 6541024563775046 a007 Real Root Of -210*x^4+481*x^3-951*x^2+165*x+15 6541024573094543 r002 2th iterates of z^2 + 6541024577767760 a003 sin(Pi*5/48)-sin(Pi*11/87) 6541024608334616 m009 (2*Psi(1,1/3)+1/6)/(5/12*Pi^2-1) 6541024621675941 a007 Real Root Of 553*x^4+448*x^3-376*x^2-485*x-30 6541024628072118 r009 Im(z^3+c),c=-3/44+23/30*I,n=15 6541024642591921 r005 Re(z^2+c),c=-7/10+32/149*I,n=25 6541024644563951 m001 (Trott2nd+ThueMorse)/(Chi(1)+Zeta(1,-1)) 6541024675449319 m001 (cos(1)+AlladiGrinstead)/(Sarnak+Totient) 6541024675706596 s002 sum(A087353[n]/(pi^n),n=1..infinity) 6541024707868364 r005 Re(z^2+c),c=3/28+11/59*I,n=18 6541024714032906 m001 (MertensB1+Sierpinski)/(5^(1/2)-BesselI(0,2)) 6541024716396873 r005 Im(z^2+c),c=-43/118+32/51*I,n=30 6541024716830054 a003 sin(Pi*26/81)/cos(Pi*50/109) 6541024738095821 m001 Salem^RenyiParking-Weierstrass 6541024747051058 a007 Real Root Of -906*x^4+683*x^3+478*x^2-68*x+108 6541024769971885 a007 Real Root Of 155*x^4+863*x^3-991*x^2-59*x-205 6541024782996750 a007 Real Root Of 956*x^4-958*x^3+737*x^2+629*x-347 6541024802756148 p004 log(31469/16361) 6541024839824216 a007 Real Root Of 422*x^4-461*x^3+611*x^2-797*x-989 6541024841597411 m001 FeigenbaumB^2*Backhouse^2/exp(cos(Pi/5)) 6541024897253089 r005 Im(z^2+c),c=33/118+35/64*I,n=35 6541024918994354 a007 Real Root Of -623*x^4+486*x^3-595*x^2-189*x+381 6541024943232232 m004 2+5/Pi+4*Cos[Sqrt[5]*Pi] 6541024962909190 s002 sum(A153862[n]/(exp(2/5*pi*n)),n=1..infinity) 6541024969904893 r009 Re(z^3+c),c=-49/82+12/41*I,n=58 6541024991797935 p003 LerchPhi(1/25,4,217/195) 6541025011932358 a001 165580141/2207*199^(9/22) 6541025044888975 m005 (1/2*gamma-6)/(3/10*gamma+7/10) 6541025048184707 m005 (1/3*exp(1)-1/6)/(1/4*5^(1/2)+4/7) 6541025050492622 m001 1/Lehmer/CareFree/ln((3^(1/3))) 6541025062760149 m009 (2*Pi^2+2/3)/(1/4*Psi(1,3/4)-2/3) 6541025067239086 m001 (gamma+ln(Pi))/(GAMMA(23/24)+ErdosBorwein) 6541025071495214 a007 Real Root Of 57*x^4-990*x^3-262*x^2-403*x-439 6541025076852634 r009 Im(z^3+c),c=-47/90+11/26*I,n=33 6541025082088102 a007 Real Root Of 771*x^4+175*x^3+419*x^2-273*x-450 6541025082485938 l006 ln(1136/2185) 6541025083491048 a007 Real Root Of -59*x^4-355*x^3+259*x^2+292*x-518 6541025085341221 r005 Re(z^2+c),c=-43/98+16/29*I,n=22 6541025086319852 r002 16th iterates of z^2 + 6541025099106342 m001 1/exp(KhintchineHarmonic)^2*Si(Pi)*OneNinth^2 6541025121454927 r004 Im(z^2+c),c=-15/22-3/20*I,z(0)=-1,n=60 6541025134817848 m006 (2/3/Pi-2/3)/(2/5*Pi^2+3) 6541025139617662 k005 Champernowne real with floor(sqrt(3)*(214*n+164)) 6541025139617672 k001 Champernowne real with 371*n+283 6541025150074004 a001 233/29*18^(37/51) 6541025151951718 m001 Trott^2*KhintchineHarmonic^2*ln(sin(Pi/12))^2 6541025183531882 a007 Real Root Of 987*x^4+114*x^3+490*x^2-617*x-762 6541025185392852 r005 Re(z^2+c),c=3/28+11/59*I,n=19 6541025190787584 r005 Re(z^2+c),c=11/36+10/17*I,n=11 6541025198403688 m001 BesselK(1,1)-Salem^OrthogonalArrays 6541025224222046 m001 1/Riemann1stZero*GolombDickman*ln(GAMMA(5/24)) 6541025230821644 a007 Real Root Of 253*x^4-315*x^3+836*x^2+439*x-205 6541025233186990 a001 8/64079*24476^(50/59) 6541025235640496 m001 (HardyLittlewoodC3+ZetaQ(3))/(Shi(1)+gamma(1)) 6541025248145918 m001 (-Bloch+FeigenbaumD)/(Si(Pi)+GAMMA(7/12)) 6541025294027066 r005 Re(z^2+c),c=-7/10+11/134*I,n=3 6541025297565052 m001 (3^(1/3)-exp(1/Pi))/(HardyLittlewoodC4+Sarnak) 6541025318299261 a001 8/9349*39603^(37/59) 6541025321477615 a007 Real Root Of 345*x^4-812*x^3+196*x^2+404*x-110 6541025345950383 a007 Real Root Of 803*x^4+400*x^3+859*x^2-762*x-901 6541025349103655 a007 Real Root Of 68*x^4+436*x^3+9*x^2+486*x+334 6541025351582024 m001 (ln(gamma)+cos(1/12*Pi))/(Kac+Trott) 6541025358458700 m001 (GaussAGM-Rabbit)/(arctan(1/2)+exp(1/exp(1))) 6541025372669215 m001 (Gompertz+MinimumGamma)/(2^(1/2)+3^(1/2)) 6541025389505419 m005 (1/2*Pi-3/10)/(2/3*2^(1/2)+1) 6541025407974212 a007 Real Root Of -650*x^4+596*x^3+336*x^2+957*x+768 6541025425758047 m005 (1/6*2^(1/2)+3)/(1/3*Catalan-4/5) 6541025428785444 r002 33th iterates of z^2 + 6541025432248739 a007 Real Root Of 765*x^4+871*x^3+683*x^2-438*x-475 6541025438983081 a001 987/2537720636*2^(3/4) 6541025461503831 r005 Im(z^2+c),c=29/110+15/32*I,n=10 6541025474466653 a007 Real Root Of -965*x^4+943*x^3+446*x^2+589*x+635 6541025501669862 a007 Real Root Of 287*x^4+482*x^3+589*x^2-768*x-672 6541025509053213 r005 Im(z^2+c),c=-3/26+23/27*I,n=62 6541025555922202 a007 Real Root Of -560*x^4-765*x^3-694*x^2+293*x+377 6541025556700109 m001 exp(OneNinth)^2*Lehmer^2*GAMMA(3/4)^2 6541025600802736 m001 HardyLittlewoodC3^(Pi^(1/2)/Ei(1)) 6541025606747476 m001 1/Rabbit^2/exp(Backhouse)*Riemann1stZero 6541025607290816 m005 (-11/20+1/4*5^(1/2))/(4/7*Pi-5/12) 6541025610769907 m005 (1/2*Zeta(3)+1/11)/(7/10*Catalan+5/12) 6541025611566823 m001 1/Robbin/ln(Riemann3rdZero)/GAMMA(1/3)^2 6541025630384541 m002 -Pi^3+Pi^4-Tanh[Pi]^2 6541025641025641 q001 2551/3900 6541025698956365 g004 Im(GAMMA(-43/20+I*101/60)) 6541025707600697 h001 (-5*exp(2)+5)/(-9*exp(4)+3) 6541025721479174 a007 Real Root Of 224*x^4-487*x^3+254*x^2+480*x+28 6541025725288354 m001 (GAMMA(11/12)-Mills)/(Pi+ln(2)) 6541025727120679 r005 Im(z^2+c),c=29/78+10/17*I,n=12 6541025732371285 m001 Riemann2ndZero^2/exp(Khintchine)^2/Pi 6541025743199694 m001 arctan(1/3)^ZetaP(4)/(arctan(1/3)^Psi(2,1/3)) 6541025813268612 a001 1/15109*(1/2*5^(1/2)+1/2)^6*521^(3/11) 6541025836721128 r005 Im(z^2+c),c=-53/78+30/61*I,n=3 6541025842642092 m001 (-Khinchin+ReciprocalFibonacci)/(Cahen-cos(1)) 6541025844362390 r002 23th iterates of z^2 + 6541025859041144 m005 (1/3*5^(1/2)+3/4)/(9/10*3^(1/2)+8/11) 6541025895413133 a007 Real Root Of 763*x^4+451*x^3-260*x^2-813*x-434 6541025941668493 m009 (3*Psi(1,2/3)+4)/(2/5*Psi(1,3/4)+1) 6541025955226003 m005 (1/2*Zeta(3)-1/12)/(4/9*exp(1)-5/12) 6541025958736912 l006 ln(5223/10046) 6541026019379282 a001 55/103682*843^(22/59) 6541026027230758 p004 log(27953/14533) 6541026033329065 m005 (1/2*Pi+11/12)/(1/6*exp(1)-5/6) 6541026035971212 r005 Im(z^2+c),c=35/94+7/38*I,n=36 6541026069336123 m001 (Kac+ZetaQ(2))/(3^(1/2)-ln(2)) 6541026078934469 r005 Im(z^2+c),c=-41/78+31/50*I,n=45 6541026083317086 r009 Re(z^3+c),c=-41/86+35/61*I,n=11 6541026089168365 r005 Re(z^2+c),c=-75/98+2/41*I,n=25 6541026090479578 r002 4th iterates of z^2 + 6541026090521885 m005 (-3/8+1/4*5^(1/2))/(4/5*Pi+3/10) 6541026107407533 a007 Real Root Of -724*x^4+568*x^3-473*x^2-223*x+348 6541026120206188 m009 (1/2*Pi^2-5)/(4*Psi(1,3/4)-1/5) 6541026139817702 k001 Champernowne real with 372*n+282 6541026158899642 a001 433494437/5778*199^(9/22) 6541026173370749 r005 Im(z^2+c),c=-55/86+6/49*I,n=22 6541026202294791 l006 ln(4087/7861) 6541026203199142 a001 29/610*21^(31/36) 6541026222084254 m005 (1/2*Catalan-9/10)/(1/10*Zeta(3)+5/9) 6541026246567573 m001 ln(CopelandErdos)^2/Cahen/CareFree^2 6541026249841581 a007 Real Root Of 708*x^4-317*x^3-762*x^2-793*x-411 6541026255691669 m001 OneNinth*BesselK(0,1)^Stephens 6541026268936654 a001 3571/1836311903*8^(7/12) 6541026272022220 a007 Real Root Of -854*x^4+222*x^3-372*x^2+288*x+566 6541026281897626 a007 Real Root Of -978*x^4+603*x^3+321*x^2+672*x+650 6541026284538569 m001 (2^(1/2)-gamma(2))/(Porter+Rabbit) 6541026300095750 r002 4th iterates of z^2 + 6541026326239947 a001 1134903170/15127*199^(9/22) 6541026328392500 m001 1/ln(GAMMA(11/12))^2*Trott/LambertW(1) 6541026335438000 m005 (1/3*2^(1/2)+1/11)/(1/5*Pi-5/7) 6541026339083546 a007 Real Root Of -123*x^4+296*x^3-242*x^2-35*x+186 6541026345868358 a003 cos(Pi*35/93)+cos(Pi*44/107) 6541026350654569 a001 2971215073/39603*199^(9/22) 6541026354216615 a001 7778742049/103682*199^(9/22) 6541026354736310 a001 20365011074/271443*199^(9/22) 6541026354812133 a001 53316291173/710647*199^(9/22) 6541026354823195 a001 139583862445/1860498*199^(9/22) 6541026354824809 a001 365435296162/4870847*199^(9/22) 6541026354825045 a001 956722026041/12752043*199^(9/22) 6541026354825079 a001 2504730781961/33385282*199^(9/22) 6541026354825084 a001 6557470319842/87403803*199^(9/22) 6541026354825085 a001 10610209857723/141422324*199^(9/22) 6541026354825087 a001 4052739537881/54018521*199^(9/22) 6541026354825100 a001 140728068720/1875749*199^(9/22) 6541026354825190 a001 591286729879/7881196*199^(9/22) 6541026354825807 a001 225851433717/3010349*199^(9/22) 6541026354830032 a001 86267571272/1149851*199^(9/22) 6541026354858994 a001 32951280099/439204*199^(9/22) 6541026355057500 a001 75025*199^(9/22) 6541026356418080 a001 4807526976/64079*199^(9/22) 6541026365743636 a001 1836311903/24476*199^(9/22) 6541026384074586 r009 Im(z^3+c),c=-11/42+31/42*I,n=3 6541026384234525 m001 Artin^(FellerTornier/RenyiParking) 6541026384459263 q001 2256/3449 6541026391790978 a007 Real Root Of -68*x^4+849*x^3-920*x^2+239*x+800 6541026391981102 m005 (1/2*3^(1/2)+3/10)/(5/7*3^(1/2)+6/11) 6541026413471204 a007 Real Root Of 821*x^4-746*x^3-254*x^2-729*x+644 6541026429661948 a001 701408733/9349*199^(9/22) 6541026452743124 a007 Real Root Of -396*x^4-91*x^3-13*x^2+418*x+326 6541026463563185 r005 Re(z^2+c),c=-3/4+1/27*I,n=11 6541026478315263 m001 (Kolakoski+TwinPrimes)/(Artin-Gompertz) 6541026515722740 m005 (1/3*Catalan+2/3)/(1/6*Pi-3/8) 6541026542966385 a007 Real Root Of 73*x^4-70*x^3+724*x^2+845*x+210 6541026569126972 r005 Re(z^2+c),c=-7/10+29/86*I,n=13 6541026570333788 b008 Coth[7/11]/E 6541026572417423 r005 Im(z^2+c),c=-77/82+3/52*I,n=6 6541026585950710 a001 2584/6643838879*2^(3/4) 6541026587327239 m001 LandauRamanujan^2*CareFree*exp(arctan(1/2)) 6541026612084145 a007 Real Root Of -67*x^4-447*x^3+49*x^2+550*x-948 6541026628187071 r005 Re(z^2+c),c=-37/30+28/87*I,n=5 6541026633369938 l006 ln(2951/5676) 6541026638931194 m001 (2^(1/3)-Bloch)^Grothendieck 6541026651425899 m001 1/Zeta(7)*ln(BesselK(0,1))^2*log(1+sqrt(2)) 6541026662331374 m001 (Pi^(1/2)+Cahen)/(Champernowne+FeigenbaumMu) 6541026675232520 a007 Real Root Of -26*x^4+797*x^3-592*x^2-815*x-52 6541026693435306 a003 cos(Pi*22/91)*sin(Pi*34/95) 6541026705825997 r005 Im(z^2+c),c=17/90+29/51*I,n=5 6541026707039305 a001 9349/4807526976*8^(7/12) 6541026709605778 a007 Real Root Of 589*x^4-314*x^3+750*x^2-126*x-599 6541026717673172 r009 Re(z^3+c),c=-3/110+41/50*I,n=50 6541026718982419 r009 Re(z^3+c),c=-61/110+9/35*I,n=12 6541026719158664 a007 Real Root Of -302*x^4+810*x^3+842*x^2-293*x-340 6541026723998802 a001 1/39621*(1/2*5^(1/2)+1/2)^12*47^(13/24) 6541026732886993 l006 ln(8743/9334) 6541026744473064 r009 Im(z^3+c),c=-45/118+1/57*I,n=11 6541026753291032 a001 6765/17393796001*2^(3/4) 6541026770957620 a001 24476/12586269025*8^(7/12) 6541026777705656 a001 17711/45537549124*2^(3/4) 6541026780283177 a001 64079/32951280099*8^(7/12) 6541026781012267 m001 (2^(1/3))^gamma(3)/((2^(1/3))^Tribonacci) 6541026781267702 a001 46368/119218851371*2^(3/4) 6541026781643757 a001 167761/86267571272*8^(7/12) 6541026781787397 a001 121393/312119004989*2^(3/4) 6541026781842263 a001 439204/225851433717*8^(7/12) 6541026781863220 a001 317811/817138163596*2^(3/4) 6541026781871225 a001 1/514229*8^(7/12) 6541026781874282 a001 832040/2139295485799*2^(3/4) 6541026781875450 a001 3010349/1548008755920*8^(7/12) 6541026781875896 a001 2178309/5600748293801*2^(3/4) 6541026781876066 a001 7881196/4052739537881*8^(7/12) 6541026781876132 a001 5702887/14662949395604*2^(3/4) 6541026781876156 a001 20633239/10610209857723*8^(7/12) 6541026781876187 a001 9227465/23725150497407*2^(3/4) 6541026781876212 a001 12752043/6557470319842*8^(7/12) 6541026781876277 a001 3524578/9062201101803*2^(3/4) 6541026781876447 a001 4870847/2504730781961*8^(7/12) 6541026781876894 a001 1346269/3461452808002*2^(3/4) 6541026781878061 a001 1860498/956722026041*8^(7/12) 6541026781881119 a001 514229/1322157322203*2^(3/4) 6541026781889124 a001 710647/365435296162*8^(7/12) 6541026781910081 a001 196418/505019158607*2^(3/4) 6541026781964946 a001 271443/139583862445*8^(7/12) 6541026782108587 a001 75025/192900153618*2^(3/4) 6541026782484642 a001 103682/53316291173*8^(7/12) 6541026783469167 a001 28657/73681302247*2^(3/4) 6541026786046687 a001 39603/20365011074*8^(7/12) 6541026792794724 a001 10946/28143753123*2^(3/4) 6541026807281558 a007 Real Root Of 772*x^4-229*x^3-74*x^2-447*x-29 6541026810461311 a001 15127/7778742049*8^(7/12) 6541026811141564 m001 (-BesselK(0,1)+exp(-1/2*Pi))/(exp(1)+cos(1)) 6541026833573589 a007 Real Root Of -980*x^4+334*x^3-835*x^2-627*x+220 6541026856713039 a001 4181/10749957122*2^(3/4) 6541026859625343 a007 Real Root Of -463*x^4+906*x^3-158*x^2+364*x+644 6541026861671619 p004 log(14843/7717) 6541026867764609 a001 267914296/3571*199^(9/22) 6541026874893065 a007 Real Root Of -491*x^4+404*x^3+744*x^2+872*x+455 6541026875633721 m005 (17/36+1/4*5^(1/2))/(1/4*Zeta(3)-1/7) 6541026883806026 m001 (cos(1)-exp(1))/(Artin+Otter) 6541026909432621 m001 (ln(Pi)+Bloch)/(2^(1/2)+Shi(1)) 6541026933304825 r002 9th iterates of z^2 + 6541026937559852 a007 Real Root Of 50*x^4+286*x^3-374*x^2-830*x-916 6541026947638321 r005 Im(z^2+c),c=4/25+32/59*I,n=13 6541026949080933 a007 Real Root Of 786*x^4-640*x^3+884*x^2+222*x-556 6541026955809140 p001 sum(1/(232*n+153)/(512^n),n=0..infinity) 6541026977801633 a001 5778/2971215073*8^(7/12) 6541026999720927 r005 Re(z^2+c),c=-7/62+22/31*I,n=36 6541027003030881 l006 ln(4766/9167) 6541027020126111 m002 -1+Pi^3-Pi^4+2*Tanh[Pi] 6541027031890415 r009 Re(z^3+c),c=-1/60+5/7*I,n=42 6541027060088437 r002 26th iterates of z^2 + 6541027061395666 r009 Im(z^3+c),c=-21/64+35/53*I,n=6 6541027126070481 m001 1/FeigenbaumKappa^2/Magata/ln(GAMMA(1/12)) 6541027128852773 m001 1/gamma/LandauRamanujan/ln(sqrt(2)) 6541027139917712 k005 Champernowne real with floor(sqrt(3)*(215*n+163)) 6541027140017732 k001 Champernowne real with 373*n+281 6541027158632594 a003 cos(Pi*33/109)/sin(Pi*8/23) 6541027165660640 m006 (1/4*Pi^2-2)/(4/5*Pi^2-3/4) 6541027165660640 m008 (1/4*Pi^2-2)/(4/5*Pi^2-3/4) 6541027198956069 m001 (ln(2)+gamma(1))/(FellerTornier+Kac) 6541027201570888 m001 3^(1/2)*arctan(1/3)*GAMMA(19/24) 6541027201812043 m005 (1/3*2^(1/2)-2/5)/(3/5*5^(1/2)-1/4) 6541027212750264 m005 (1/3*3^(1/2)+1/7)/(5/7*2^(1/2)+1/11) 6541027215917724 b008 6+2^(-1/2*Sqrt[Pi]) 6541027223856781 a007 Real Root Of -109*x^4-843*x^3-888*x^2-249*x-25 6541027228847965 m005 (1/2*2^(1/2)-1/6)/(8/11*5^(1/2)-4/5) 6541027248495048 r005 Re(z^2+c),c=-12/29+34/53*I,n=2 6541027249208625 r009 Re(z^3+c),c=-1/50+47/60*I,n=36 6541027265272432 m001 (-Pi^(1/2)+Paris)/(2^(1/2)+ln(Pi)) 6541027294815689 a001 1597/4106118243*2^(3/4) 6541027305826572 r001 46i'th iterates of 2*x^2-1 of 6541027331701530 a007 Real Root Of 340*x^4-335*x^3-422*x^2-539*x-328 6541027343785284 r002 20th iterates of z^2 + 6541027347079616 r002 4th iterates of z^2 + 6541027351567711 q001 1961/2998 6541027359537027 a007 Real Root Of -331*x^4+741*x^3+678*x^2+408*x+24 6541027424095945 a003 cos(Pi*14/99)*cos(Pi*23/95) 6541027426483939 r002 36th iterates of z^2 + 6541027437548874 a001 98209/161*1364^(29/30) 6541027441153056 h005 exp(cos(Pi*2/33)+cos(Pi*6/41)) 6541027448488269 r005 Im(z^2+c),c=-45/82+8/63*I,n=14 6541027452956470 r005 Re(z^2+c),c=-35/62+53/57*I,n=3 6541027460074420 b008 Gamma[(3*(9+Pi))/2] 6541027464600860 r002 22th iterates of z^2 + 6541027495949591 a007 Real Root Of 599*x^4-972*x^3+509*x^2-976*x+583 6541027501855246 h001 (1/3*exp(1)+4/5)/(5/7*exp(1)+2/3) 6541027503795382 a007 Real Root Of -112*x^4+935*x^3-698*x^2+144*x+675 6541027561591903 a007 Real Root Of 447*x^4-416*x^3-574*x^2-943*x+897 6541027572694183 a007 Real Root Of 506*x^4-221*x^3-473*x^2-353*x-183 6541027587759979 m005 (1/6+1/4*5^(1/2))/(1/6*Zeta(3)+10/11) 6541027603483803 m005 (11/12+1/6*5^(1/2))/(10/11*exp(1)-1/2) 6541027604060848 l006 ln(1815/3491) 6541027645347979 r005 Re(z^2+c),c=-15/26+64/97*I,n=14 6541027653500144 m001 GAMMA(17/24)^2*Cahen*ln(cos(1)) 6541027656352320 m001 1/Sierpinski/ln(Porter)/cosh(1) 6541027664491154 r005 Im(z^2+c),c=-35/31+3/37*I,n=23 6541027671884754 a001 317811/322*1364^(9/10) 6541027681172665 m001 ln(2+3^(1/2))/(Conway+Rabbit) 6541027707827528 r009 Re(z^3+c),c=-7/58+36/53*I,n=40 6541027747750103 a007 Real Root Of 529*x^4-230*x^3-402*x^2-388*x-243 6541027765126166 m001 1/DuboisRaymond^2/ln(Backhouse)/Zeta(5)^2 6541027778750577 a007 Real Root Of -161*x^4-252*x^3-662*x^2+977*x-61 6541027795013380 r002 4th iterates of z^2 + 6541027798464792 m005 (1/3*exp(1)+1/7)/(11/12*Catalan-1) 6541027800545672 m002 -5-Pi/3+Cosh[Pi]+Tanh[Pi] 6541027806442980 r005 Im(z^2+c),c=13/50+30/49*I,n=19 6541027806877880 a007 Real Root Of 851*x^4-184*x^3-987*x^2-743*x+804 6541027811251894 r005 Re(z^2+c),c=3/28+11/59*I,n=20 6541027812010034 r005 Re(z^2+c),c=3/28+11/59*I,n=23 6541027816152866 r005 Re(z^2+c),c=-19/32+31/50*I,n=50 6541027830482561 r005 Re(z^2+c),c=3/28+11/59*I,n=24 6541027832040970 a007 Real Root Of -101*x^4-715*x^3-384*x^2-169*x+112 6541027876710041 r005 Re(z^2+c),c=3/28+11/59*I,n=28 6541027877220493 r005 Re(z^2+c),c=3/28+11/59*I,n=29 6541027878026363 r005 Re(z^2+c),c=3/28+11/59*I,n=33 6541027878038730 r005 Re(z^2+c),c=3/28+11/59*I,n=34 6541027878052634 r005 Re(z^2+c),c=3/28+11/59*I,n=38 6541027878052913 r005 Re(z^2+c),c=3/28+11/59*I,n=39 6541027878053150 r005 Re(z^2+c),c=3/28+11/59*I,n=43 6541027878053156 r005 Re(z^2+c),c=3/28+11/59*I,n=44 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=48 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=49 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=53 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=54 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=58 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=59 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=63 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=64 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=62 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=57 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=61 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=60 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=56 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=55 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=52 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=51 6541027878053160 r005 Re(z^2+c),c=3/28+11/59*I,n=50 6541027878053161 r005 Re(z^2+c),c=3/28+11/59*I,n=47 6541027878053161 r005 Re(z^2+c),c=3/28+11/59*I,n=45 6541027878053162 r005 Re(z^2+c),c=3/28+11/59*I,n=46 6541027878053168 r005 Re(z^2+c),c=3/28+11/59*I,n=42 6541027878053202 r005 Re(z^2+c),c=3/28+11/59*I,n=40 6541027878053221 r005 Re(z^2+c),c=3/28+11/59*I,n=41 6541027878053706 r005 Re(z^2+c),c=3/28+11/59*I,n=37 6541027878054775 r005 Re(z^2+c),c=3/28+11/59*I,n=35 6541027878056486 r005 Re(z^2+c),c=3/28+11/59*I,n=36 6541027878090042 r005 Re(z^2+c),c=3/28+11/59*I,n=32 6541027878105480 r005 Re(z^2+c),c=3/28+11/59*I,n=30 6541027878234347 r005 Re(z^2+c),c=3/28+11/59*I,n=31 6541027878891862 r005 Re(z^2+c),c=3/28+11/59*I,n=25 6541027880445565 r005 Re(z^2+c),c=3/28+11/59*I,n=27 6541027887841823 r005 Re(z^2+c),c=3/28+11/59*I,n=26 6541027906285402 a001 514229/322*1364^(5/6) 6541027923443706 m001 Porter^2*Si(Pi)/ln(Tribonacci) 6541027925726867 m001 MinimumGamma^2/ErdosBorwein/ln(GAMMA(3/4)) 6541027942543371 a007 Real Root Of 961*x^4-957*x^3-224*x^2+220*x-204 6541027958270405 r009 Im(z^3+c),c=-11/32+27/37*I,n=7 6541027970999711 r002 5th iterates of z^2 + 6541027975755055 a007 Real Root Of -100*x^4+925*x^3-726*x^2-96*x+525 6541027987767764 m008 (3/5*Pi^3+1/2)/(3*Pi^4-1/6) 6541028008844827 r005 Im(z^2+c),c=-5/7+1/90*I,n=50 6541028028636033 r005 Re(z^2+c),c=3/28+11/59*I,n=22 6541028031835091 m001 (Zeta(5)-Conway)/(FeigenbaumDelta-Lehmer) 6541028037958353 m008 (1/6*Pi^5-3/4)/(4/5*Pi^6-5/6) 6541028057571878 r005 Im(z^2+c),c=-2/17+15/22*I,n=31 6541028067818923 r005 Im(z^2+c),c=-3/26+23/27*I,n=56 6541028090312990 a007 Real Root Of 652*x^4-23*x^3-426*x^2-652*x-370 6541028112026557 r005 Re(z^2+c),c=-3/62+27/34*I,n=17 6541028124769262 a001 2207/1134903170*8^(7/12) 6541028127917011 a007 Real Root Of -392*x^4-608*x^3-626*x^2+539*x+522 6541028131619968 m001 (Paris+Robbin)/(Psi(1,1/3)+GAMMA(7/12)) 6541028138389655 m005 (1/2*2^(1/2)+5/12)/(2/3*Zeta(3)+11/12) 6541028140217762 k001 Champernowne real with 374*n+280 6541028140217772 k005 Champernowne real with floor(sqrt(3)*(216*n+162)) 6541028140661323 a001 416020/161*1364^(23/30) 6541028145674268 a001 1/23184*2504730781961^(2/21) 6541028146071941 m005 (1/2*exp(1)-4/9)/(197/264+7/24*5^(1/2)) 6541028149236315 a001 2/17711*102334155^(2/21) 6541028180778266 a001 2/6765*4181^(2/21) 6541028186670991 a001 123/233*3^(8/41) 6541028195402679 m001 GAMMA(13/24)^Backhouse/Pi 6541028205500909 p004 log(36643/19051) 6541028218453751 m001 (Chi(1)+ln(Pi))/(-FellerTornier+Kac) 6541028236364609 m008 (1/3*Pi^6-1/4)/(1/2*Pi^4+1/4) 6541028238208676 r005 Im(z^2+c),c=-2/3+37/141*I,n=35 6541028265249857 r005 Im(z^2+c),c=7/60+31/49*I,n=52 6541028268834262 l006 ln(4309/8288) 6541028289741725 r005 Im(z^2+c),c=-35/31+1/62*I,n=4 6541028298031529 m001 (Chi(1)-Psi(2,1/3))/(Zeta(1/2)+exp(1/Pi)) 6541028298418396 m002 -Pi^3+Pi^4+Log[Pi]/Pi^5-Tanh[Pi] 6541028308052057 m001 (Pi-GAMMA(7/12))/(ErdosBorwein+Thue) 6541028311739599 r002 13th iterates of z^2 + 6541028355760480 r008 a(0)=0,K{-n^6,-83-56*n^3+10*n^2-24*n} 6541028369975567 a007 Real Root Of 993*x^4-864*x^3+942*x^2-181*x-945 6541028375046701 a001 1346269/322*1364^(7/10) 6541028383120742 r002 25th iterates of z^2 + 6541028398271564 h001 (7/10*exp(1)+3/4)/(3/7*exp(2)+8/9) 6541028402226268 r005 Re(z^2+c),c=3/28+11/59*I,n=21 6541028402934662 r005 Re(z^2+c),c=-137/110+25/51*I,n=2 6541028421545486 m001 GAMMA(5/24)*RenyiParking/ln(sqrt(1+sqrt(3))) 6541028460995461 a001 2/341*3571^(34/59) 6541028467822754 r005 Im(z^2+c),c=-29/34+43/96*I,n=3 6541028469447482 a007 Real Root Of 18*x^4-372*x^3-62*x^2-335*x-300 6541028473985567 a001 2/47*199^(39/41) 6541028487286022 r008 a(0)=0,K{-n^6,-97-46*n^3-27*n^2+17*n} 6541028500627940 m001 MadelungNaCl/exp(Kolakoski)^2*GAMMA(2/3)^2 6541028507289841 m001 HardHexagonsEntropy^2*ln(Bloch)/sqrt(5) 6541028512927654 a007 Real Root Of -961*x^4+243*x^3-886*x^2-292*x+432 6541028518155273 h001 (7/8*exp(1)+5/6)/(7/12*exp(2)+3/5) 6541028550857390 a007 Real Root Of 647*x^4-458*x^3-556*x^2-421*x+523 6541028559066317 r008 a(0)=0,K{-n^6,61+48*n^3+3*n^2+41*n} 6541028561882570 m001 (Porter+ZetaQ(4))/(sin(1)+OrthogonalArrays) 6541028571255643 r008 a(0)=0,K{-n^6,57+48*n^3+n^2+47*n} 6541028571269237 r008 a(0)=0,K{-n^6,-69-46*n^3-13*n^2-25*n} 6541028577374773 r008 a(0)=0,K{-n^6,55+48*n^3+50*n} 6541028583252082 a007 Real Root Of 724*x^4-49*x^3+698*x^2+752*x+47 6541028590924303 r002 36th iterates of z^2 + 6541028609428478 a001 311187/46*1364^(19/30) 6541028615170816 m002 24+Pi^3-Log[Pi]+Sinh[Pi] 6541028625608913 r005 Re(z^2+c),c=-109/98+11/54*I,n=6 6541028634277165 m001 FibonacciFactorial/Backhouse/ln(GAMMA(1/4)) 6541028645819206 r008 a(0)=0,K{-n^6,63+43*n^3+19*n^2+28*n} 6541028652154860 r008 a(0)=0,K{-n^6,-73-41*n^3-30*n^2-9*n} 6541028661170003 q001 1666/2547 6541028668870724 a007 Real Root Of 835*x^4-576*x^3-622*x^2-568*x+646 6541028674445594 l006 ln(5518/5891) 6541028677579838 r008 a(0)=0,K{-n^6,-41-45*n^3-2*n^2-65*n} 6541028687358670 m001 (Sarnak+ZetaQ(4))/(exp(1)-ln(5)) 6541028690466901 r008 a(0)=0,K{-n^6,79+38*n^3+42*n^2-6*n} 6541028697673350 m001 ln(FeigenbaumB)/ArtinRank2^2*log(2+sqrt(3))^2 6541028699577321 r005 Im(z^2+c),c=-13/62+29/45*I,n=61 6541028700405285 a007 Real Root Of -875*x^4-88*x^3-896*x^2-512*x+184 6541028716328906 r008 a(0)=0,K{-n^6,-59-28*n-26*n^2-40*n^3} 6541028749072175 r008 a(0)=0,K{-n^6,43+41*n^3+15*n^2+54*n} 6541028752620821 l006 ln(2494/4797) 6541028775125773 p003 LerchPhi(1/512,4,139/125) 6541028782404427 a007 Real Root Of -500*x^4-21*x^3+991*x^2+975*x-68 6541028790785806 m001 exp(1/exp(1))-BesselK(1,1)^Zeta(1/2) 6541028798335279 m001 (Trott-Thue)/(Pi^(1/2)-PlouffeB) 6541028825537460 r005 Im(z^2+c),c=-16/17+10/33*I,n=20 6541028863600937 m002 (5*Pi^2)/4-Cosh[Pi]/2 6541028870897313 r008 a(0)=0,K{-n^6,43+35*n^3+33*n^2+42*n} 6541028887003996 a007 Real Root Of 871*x^4-954*x^3+94*x^2-635*x-882 6541028898821408 r008 a(0)=0,K{-n^6,41+34*n^3+35*n^2+43*n} 6541028898851425 r008 a(0)=0,K{-n^6,59+31*n^3+53*n^2+10*n} 6541028899738362 m001 (-FeigenbaumD+Thue)/(2^(1/3)+GAMMA(7/12)) 6541028901775513 a007 Real Root Of 614*x^4-734*x^3-437*x^2-916*x-730 6541028904630108 m001 (Zeta(5)+polylog(4,1/2))/(Pi-BesselJ(0,1)) 6541028905265241 s002 sum(A213537[n]/(n^3*10^n+1),n=1..infinity) 6541028912960254 r008 a(0)=0,K{-n^6,73+28*n^3+69*n^2-17*n} 6541028919978360 r008 a(0)=0,K{-n^6,41+41*n+38*n^2+33*n^3} 6541028922982017 a007 Real Root Of -759*x^4+181*x^3-982*x^2-498*x+284 6541028934580430 r005 Im(z^2+c),c=9/122+1/18*I,n=4 6541028971671384 a007 Real Root Of -739*x^4+841*x^3+263*x^2+752*x+750 6541028974919579 a001 55/15127*322^(6/59) 6541028989442614 m001 (Lehmer+MinimumGamma)/(BesselK(1,1)-Catalan) 6541028991453706 m001 1/Champernowne*ln(Cahen)*FeigenbaumC 6541029006447246 r008 a(0)=0,K{-n^6,29+31*n^3+38*n^2+55*n} 6541029013799983 r008 a(0)=0,K{-n^6,33+30*n^3+43*n^2+47*n} 6541029043417973 r008 a(0)=0,K{-n^6,-43-27*n^3-57*n^2-26*n} 6541029059381664 a007 Real Root Of 999*x^4-948*x^3+905*x^2-4*x-838 6541029064184373 a001 1346269/123*123^(17/20) 6541029078194288 a001 5702887/322*1364^(1/2) 6541029083007361 r005 Re(z^2+c),c=-14/19+4/53*I,n=7 6541029084989867 m001 (HardyLittlewoodC4+ThueMorse)/(ln(3)+gamma(3)) 6541029094053241 a001 843/2*3^(2/5) 6541029120360213 r009 Re(z^3+c),c=-3/58+29/33*I,n=9 6541029137036930 r005 Im(z^2+c),c=-3/22+46/53*I,n=5 6541029140417792 k001 Champernowne real with 375*n+279 6541029145301239 a008 Real Root of (2+2*x-5*x^2-4*x^3+3*x^4-5*x^5) 6541029158934353 m001 1/Cahen*Artin*ln(GAMMA(7/24)) 6541029195111329 r005 Im(z^2+c),c=1/110+13/16*I,n=7 6541029204704287 r008 a(0)=0,K{-n^6,25+23*n^3+60*n^2+45*n} 6541029243636255 a007 Real Root Of -574*x^4+641*x^3-361*x^2+471*x+747 6541029245685544 a007 Real Root Of 514*x^4-583*x^3+690*x^2-435*x-837 6541029271616774 g002 Psi(5/12)+Psi(8/11)-Psi(6/11)-Psi(5/7) 6541029278209671 r002 8th iterates of z^2 + 6541029282133850 b008 -23/3+Coth[Sqrt[2]] 6541029297398917 m002 -6+Pi+Pi^4*Sech[Pi]+Tanh[Pi] 6541029301591734 r008 a(0)=0,K{-n^6,13+21*n^3+60*n^2+59*n} 6541029303083054 a007 Real Root Of -686*x^4+822*x^3+910*x^2+436*x-779 6541029318102825 r008 a(0)=0,K{-n^6,15+20*n^3+64*n^2+54*n} 6541029325313549 a007 Real Root Of 803*x^4-888*x^3+317*x^2-515*x-868 6541029326777102 m001 (2^(1/2))^Ei(1,1)/ZetaQ(4) 6541029328266507 r009 Im(z^3+c),c=-1/78+36/49*I,n=7 6541029401445668 m001 Grothendieck^Weierstrass-Robbin 6541029409612993 l006 ln(3173/6103) 6541029427471363 s002 sum(A183033[n]/(n^3*exp(n)-1),n=1..infinity) 6541029434021933 a007 Real Root Of 399*x^4-105*x^3+595*x^2+133*x-270 6541029452747549 r009 Im(z^3+c),c=-1/82+46/61*I,n=13 6541029455018259 m001 exp(-Pi)+DuboisRaymond^(ln(2)/ln(10)) 6541029478121899 m004 5-E^(Sqrt[5]*Pi)+100*Pi*Csc[Sqrt[5]*Pi] 6541029491518132 a003 cos(Pi*23/99)*sin(Pi*15/44) 6541029493139583 a001 141/46*439204^(17/18) 6541029493171527 a001 141/46*7881196^(17/22) 6541029493171608 a001 141/46*45537549124^(1/2) 6541029493171612 a001 141/46*33385282^(17/24) 6541029493171638 a001 141/46*12752043^(3/4) 6541029493173214 a001 141/46*1860498^(17/20) 6541029508005625 r005 Re(z^2+c),c=5/56+7/48*I,n=10 6541029523040855 m001 (Psi(2,1/3)+AlladiGrinstead)/(-Backhouse+Kac) 6541029533365273 a007 Real Root Of -850*x^4+913*x^3+203*x^2+206*x+459 6541029551919410 a007 Real Root Of -835*x^4-736*x^3+92*x^2+545*x+264 6541029563057539 r009 Im(z^3+c),c=-27/64+34/59*I,n=46 6541029575338153 a007 Real Root Of -370*x^4+940*x^3+749*x^2-255*x-349 6541029586812894 r009 Im(z^3+c),c=-7/52+47/62*I,n=7 6541029605052124 r002 4th iterates of z^2 + 6541029642994483 m005 (1/2*3^(1/2)-2/11)/(1/9*2^(1/2)+8/9) 6541029649220525 m008 (5/6*Pi^5+1/2)/(4*Pi^4+1) 6541029661182183 m006 (1/2*ln(Pi)+3)/(1/5*exp(Pi)+5/6) 6541029665576116 m001 (Psi(2,1/3)+StolarskyHarborth)/sin(1) 6541029682743605 a001 1134903170/2207*76^(1/18) 6541029692088850 a001 75025/2207*3^(28/47) 6541029698261567 r005 Re(z^2+c),c=-165/122+1/56*I,n=12 6541029711928060 a003 sin(Pi*9/32)*sin(Pi*35/109) 6541029757081212 a007 Real Root Of 412*x^4-415*x^3-535*x^2-872*x+840 6541029764475101 a007 Real Root Of 183*x^4-905*x^3+749*x^2+751*x-116 6541029766035145 r005 Im(z^2+c),c=27/86+22/53*I,n=42 6541029770100952 a003 cos(Pi*15/38)-sin(Pi*43/99) 6541029781342755 a001 24157817/322*1364^(3/10) 6541029787152275 a003 cos(Pi*4/51)/cos(Pi*43/95) 6541029787715600 m001 (cos(1)+3)/(ThueMorse+5) 6541029788652411 a007 Real Root Of 516*x^4-860*x^3-932*x^2-773*x-442 6541029793160191 a003 sin(Pi*53/111)/cos(Pi*51/103) 6541029795870986 r005 Re(z^2+c),c=1/11+29/64*I,n=42 6541029810009725 m002 -3-Pi^3+Pi^4+2*Coth[Pi] 6541029813263356 m001 ln(2)^(LaplaceLimit*MadelungNaCl) 6541029814690261 a007 Real Root Of -467*x^4+839*x^3-381*x^2-268*x+308 6541029815698063 m001 (FeigenbaumMu-GaussKuzminWirsing)/(Pi+Si(Pi)) 6541029834986407 l006 ln(3852/7409) 6541029847589822 a007 Real Root Of 179*x^4-691*x^3-27*x^2+828*x+327 6541029870566499 a001 9303105/124*199^(9/22) 6541029927890877 a007 Real Root Of 879*x^4-667*x^3+462*x^2-417*x-818 6541029932660295 a007 Real Root Of 714*x^4+450*x^3+877*x^2-185*x-501 6541029941774811 a007 Real Root Of 859*x^4-632*x^3-90*x^2-473*x-605 6541029945335386 r005 Re(z^2+c),c=15/98+40/49*I,n=4 6541029998461181 m001 ln(gamma)^Sarnak-ZetaQ(3) 6541029999189903 l003 ln(693) 6541030015293296 a007 Real Root Of -133*x^4-932*x^3-518*x^2-668*x+430 6541030070329188 a007 Real Root Of -916*x^4-6*x^3+366*x^2+961*x+638 6541030094812788 m005 (7/8+1/4*5^(1/2))/(3*Catalan-5/9) 6541030099301454 a007 Real Root Of 529*x^4-72*x^3-121*x^2-654*x-493 6541030116859300 m005 (1/3*5^(1/2)+2/11)/(5*exp(1)+7/12) 6541030124793881 a001 7/1926*3^(23/43) 6541030132869830 l006 ln(4531/8715) 6541030133565364 r005 Im(z^2+c),c=-19/18+81/253*I,n=9 6541030138532793 r009 Im(z^3+c),c=-13/50+38/55*I,n=8 6541030140617822 k005 Champernowne real with floor(sqrt(3)*(217*n+161)) 6541030140617822 k001 Champernowne real with 376*n+278 6541030153084963 m001 (Zeta(5)+LaplaceLimit)/(MertensB1-ZetaQ(4)) 6541030175642933 p001 sum((-1)^n/(73*n+49)/n/(125^n),n=0..infinity) 6541030193654896 m001 (Cahen+LaplaceLimit)/(Pi-ln(Pi)) 6541030203828579 a007 Real Root Of 412*x^4-237*x^3-112*x^2-676*x-536 6541030216411253 m001 (GAMMA(11/12)-Mills)/(PlouffeB-Thue) 6541030250108411 a001 31622993/161*1364^(1/6) 6541030274801365 m001 1/BesselK(0,1)/FeigenbaumC*exp(cos(Pi/5))^2 6541030285605946 m001 ZetaP(3)^Zeta(5)*ThueMorse^Zeta(5) 6541030297615926 a001 610/1568397607*2^(3/4) 6541030302726901 a001 3/7*64079^(47/54) 6541030329004719 m001 (Zeta(5)-sin(1/12*Pi))/(Grothendieck-Lehmer) 6541030338444576 a001 75025/322*3571^(33/34) 6541030353109162 l006 ln(5210/10021) 6541030368296317 a001 121393/322*3571^(31/34) 6541030378930604 m001 (Catalan-GAMMA(2/3))/(-gamma(2)+TwinPrimes) 6541030379311691 m003 5+Sinh[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2]/24 6541030380111597 a007 Real Root Of -793*x^4-769*x^3-976*x^2-435*x+63 6541030386982178 a007 Real Root Of 100*x^4+578*x^3-589*x^2-727*x-853 6541030388785847 a007 Real Root Of -444*x^4-73*x^3-436*x^2-22*x+233 6541030398591931 a001 98209/161*3571^(29/34) 6541030401060365 a007 Real Root Of 911*x^4+490*x^3+908*x^2+176*x-303 6541030428718001 a001 317811/322*3571^(27/34) 6541030451320141 m003 -19/2+Sqrt[5]/16+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/4 6541030456806307 a007 Real Root Of -944*x^4-312*x^3-185*x^2-851*x-392 6541030458908831 a001 514229/322*3571^(25/34) 6541030484491253 a001 14619165/46*1364^(1/10) 6541030489074925 a001 416020/161*3571^(23/34) 6541030491056329 a007 Real Root Of 941*x^4-420*x^3+768*x^2+155*x-517 6541030492439792 m001 (-Paris+Totient)/(3^(1/2)-Zeta(1,-1)) 6541030503422054 m005 (1/2*gamma+5/7)/(26/33+1/3*5^(1/2)) 6541030519250468 a001 1346269/322*3571^(21/34) 6541030534351145 q001 1371/2096 6541030535627277 a001 7/956722026041*39088169^(15/23) 6541030548837018 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^(exp(1)/Bloch) 6541030549422401 a001 311187/46*3571^(19/34) 6541030562061702 m001 sin(1/12*Pi)^ln(5)*Stephens 6541030570213020 a001 199/317811*514229^(19/27) 6541030577685930 a003 sin(Pi*18/101)/sin(Pi*19/63) 6541030579595714 a001 1762289/161*3571^(1/2) 6541030600594163 m001 (Cahen+Khinchin)/(BesselI(0,1)-ln(2+3^(1/2))) 6541030615626768 m001 BesselK(0,1)/(GAMMA(5/6)-Pi^(1/2)) 6541030615626768 m001 BesselK(0,1)/(GAMMA(5/6)-sqrt(Pi)) 6541030630081052 m001 1/GAMMA(23/24)/ln(HardHexagonsEntropy)*sqrt(5) 6541030639091696 m006 (2*Pi+5/6)/(4/5/Pi+5/6) 6541030640139948 a001 1292/161*6643838879^(1/2) 6541030641047223 m001 (1+3^(1/2))^(1/2)-Riemann3rdZero^Mills 6541030643998934 m001 LambertW(1)*GAMMA(2/3)^2/exp(arctan(1/2)) 6541030650184846 r002 21th iterates of z^2 + 6541030653821964 m001 Porter+ReciprocalLucas*Sierpinski 6541030687609454 h001 (1/11*exp(2)+9/11)/(7/10*exp(1)+3/8) 6541030699899392 m005 (1/3*Zeta(3)+1/3)/(7/11*2^(1/2)+2/9) 6541030725216780 m001 (Psi(2,1/3)+BesselK(0,1))/(GaussAGM+ZetaQ(4)) 6541030734258314 m002 1-E^Pi/3+2*Sech[Pi] 6541030764791006 a001 28657/322*9349^(37/38) 6541030766528325 a001 144*9349^(35/38) 6541030770709202 r001 50i'th iterates of 2*x^2-1 of 6541030771307995 a001 75025/322*9349^(33/38) 6541030774925590 a001 121393/322*9349^(31/38) 6541030778987059 a001 98209/161*9349^(29/38) 6541030782878983 a001 317811/322*9349^(27/38) 6541030784422403 a007 Real Root Of -835*x^4+455*x^3+332*x^2+648*x+562 6541030786835667 a001 514229/322*9349^(25/38) 6541030790767615 a001 416020/161*9349^(23/38) 6541030794709011 a001 1346269/322*9349^(21/38) 6541030798646799 a001 311187/46*9349^(1/2) 6541030806871904 a001 144/15127*2537720636^(5/6) 6541030806871904 a001 144/15127*312119004989^(15/22) 6541030806871904 a001 144/15127*3461452808002^(5/8) 6541030806871904 a001 144/15127*28143753123^(3/4) 6541030806871904 a001 144/15127*228826127^(15/16) 6541030807480374 a001 6765/322*969323029^(1/2) 6541030811556108 a001 6765/322*39603^(43/44) 6541030821756351 a001 17711/322*24476^(13/14) 6541030826358262 a001 144*24476^(5/6) 6541030826787262 m005 (-19/4+1/4*5^(1/2))/(1/11*Zeta(3)-3/4) 6541030827719079 a001 75025/322*24476^(11/14) 6541030827917820 a001 121393/322*24476^(31/42) 6541030828039797 a001 28657/322*24476^(37/42) 6541030828560435 a001 98209/161*24476^(29/42) 6541030829033506 a001 317811/322*24476^(9/14) 6541030829571336 a001 514229/322*24476^(25/42) 6541030829711709 a001 2971215073/5778*76^(1/18) 6541030830084431 a001 416020/161*24476^(23/42) 6541030830606974 a001 1346269/322*24476^(1/2) 6541030831125908 a001 311187/46*24476^(19/42) 6541030831870523 a001 17711/322*439204^(13/18) 6541030831894951 a001 17711/322*7881196^(13/22) 6541030831895013 a001 17711/322*141422324^(1/2) 6541030831895013 a001 17711/322*73681302247^(3/8) 6541030831895016 a001 17711/322*33385282^(13/24) 6541030831896241 a001 17711/322*1860498^(13/20) 6541030831961594 a001 17711/322*271443^(3/4) 6541030832166006 a001 5702887/322*24476^(5/14) 6541030832389395 a001 17711/322*103682^(13/16) 6541030833725842 a001 24157817/322*24476^(3/14) 6541030834245771 a001 39088169/322*24476^(1/6) 6541030835267143 a001 416020/161*64079^(1/2) 6541030835285634 a001 14619165/46*24476^(1/14) 6541030835294370 a001 144*167761^(7/10) 6541030835368286 a001 48/90481*1322157322203^(3/4) 6541030835444109 a001 144/710647*17393796001^(13/14) 6541030835444109 a001 144/710647*14662949395604^(13/18) 6541030835444109 a001 144/710647*505019158607^(13/16) 6541030835444109 a001 144/710647*73681302247^(7/8) 6541030835455171 a001 8/103361*312119004989^(19/22) 6541030835455171 a001 8/103361*817138163596^(5/6) 6541030835455171 a001 8/103361*3461452808002^(19/24) 6541030835455171 a001 8/103361*28143753123^(19/20) 6541030835456785 a001 144/4870847*312119004989^(9/10) 6541030835456785 a001 144/4870847*14662949395604^(11/14) 6541030835456785 a001 144/4870847*192900153618^(11/12) 6541030835457053 a001 144*20633239^(1/2) 6541030835457061 a001 144/228826127*3461452808002^(23/24) 6541030835457061 a001 8/33281921*14662949395604^(17/18) 6541030835457061 a001 144*2537720636^(7/18) 6541030835457061 a001 144*17393796001^(5/14) 6541030835457061 a001 144*312119004989^(7/22) 6541030835457061 a001 144*14662949395604^(5/18) 6541030835457061 a001 144*505019158607^(5/16) 6541030835457061 a001 144*28143753123^(7/20) 6541030835457061 a001 144*599074578^(5/12) 6541030835457061 a001 144/370248451*14662949395604^(13/14) 6541030835457061 a001 144*228826127^(7/16) 6541030835457076 a001 144/20633239*312119004989^(21/22) 6541030835457076 a001 144/20633239*14662949395604^(5/6) 6541030835457076 a001 144/20633239*505019158607^(15/16) 6541030835458163 a001 144*1860498^(7/12) 6541030835462008 a001 144/1149851*9062201101803^(3/4) 6541030835465156 a001 144*710647^(5/8) 6541030835591609 a001 17711/322*39603^(39/44) 6541030835689476 a001 144/167761*2537720636^(17/18) 6541030835689476 a001 144/167761*45537549124^(5/6) 6541030835689476 a001 144/167761*312119004989^(17/22) 6541030835689476 a001 144/167761*3461452808002^(17/24) 6541030835689476 a001 144/167761*28143753123^(17/20) 6541030835954271 a001 514229/322*167761^(1/2) 6541030835976396 a001 121393/322*3010349^(1/2) 6541030835976757 a001 121393/322*9062201101803^(1/4) 6541030835995766 a001 5702887/322*167761^(3/10) 6541030836035625 a001 317811/322*439204^(1/2) 6541030836042290 a001 31622993/161*167761^(1/10) 6541030836052536 a001 317811/322*7881196^(9/22) 6541030836052579 a001 317811/322*2537720636^(3/10) 6541030836052579 a001 317811/322*14662949395604^(3/14) 6541030836052579 a001 317811/322*192900153618^(1/4) 6541030836052581 a001 317811/322*33385282^(3/8) 6541030836053066 a001 1346269/322*439204^(7/18) 6541030836053429 a001 317811/322*1860498^(9/20) 6541030836056072 a001 5702887/322*439204^(5/18) 6541030836059882 a001 24157817/322*439204^(1/6) 6541030836063641 a001 416020/161*4106118243^(1/4) 6541030836063647 a001 14619165/46*439204^(1/18) 6541030836065255 a001 311187/46*817138163596^(1/6) 6541030836065256 a001 311187/46*87403803^(1/4) 6541030836065467 a001 5702887/322*7881196^(5/22) 6541030836065488 a001 5702887/322*20633239^(3/14) 6541030836065491 a001 5702887/322*2537720636^(1/6) 6541030836065491 a001 5702887/322*312119004989^(3/22) 6541030836065491 a001 5702887/322*28143753123^(3/20) 6541030836065491 a001 5702887/322*228826127^(3/16) 6541030836065492 a001 5702887/322*33385282^(5/24) 6541030836065508 a001 7465176/161*7881196^(1/6) 6541030836065519 a001 24157817/322*7881196^(3/22) 6541030836065525 a001 7465176/161*312119004989^(1/10) 6541030836065525 a001 7465176/161*1568397607^(1/8) 6541030836065526 a001 14619165/46*7881196^(1/22) 6541030836065529 a001 39088169/322*20633239^(1/10) 6541030836065530 a001 39088169/322*17393796001^(1/14) 6541030836065530 a001 39088169/322*14662949395604^(1/18) 6541030836065530 a001 39088169/322*505019158607^(1/16) 6541030836065530 a001 39088169/322*599074578^(1/12) 6541030836065530 a001 31622993/161*20633239^(1/14) 6541030836065531 a001 14619165/46*33385282^(1/24) 6541030836065531 a001 31622993/161*2537720636^(1/18) 6541030836065531 a001 31622993/161*312119004989^(1/22) 6541030836065531 a001 31622993/161*28143753123^(1/20) 6541030836065531 a001 31622993/161*228826127^(1/16) 6541030836065533 a001 24157817/322*2537720636^(1/10) 6541030836065533 a001 24157817/322*14662949395604^(1/14) 6541030836065533 a001 24157817/322*192900153618^(1/12) 6541030836065534 a001 24157817/322*33385282^(1/8) 6541030836065546 a001 9227465/322*141422324^(1/6) 6541030836065547 a001 9227465/322*73681302247^(1/8) 6541030836065626 a001 14619165/46*1860498^(1/20) 6541030836065636 a001 1762289/161*45537549124^(1/6) 6541030836065647 a001 1762289/161*12752043^(1/4) 6541030836065689 a001 31622993/161*1860498^(1/12) 6541030836065817 a001 24157817/322*1860498^(3/20) 6541030836065963 a001 5702887/322*1860498^(1/4) 6541030836066219 a001 1346269/322*7881196^(7/22) 6541030836066248 a001 1346269/322*20633239^(3/10) 6541030836066253 a001 1346269/322*17393796001^(3/14) 6541030836066253 a001 1346269/322*14662949395604^(1/6) 6541030836066253 a001 1346269/322*599074578^(1/4) 6541030836066255 a001 1346269/322*33385282^(7/24) 6541030836066914 a001 1346269/322*1860498^(7/20) 6541030836067149 a001 39088169/322*710647^(1/8) 6541030836070473 a001 514229/322*20633239^(5/14) 6541030836070478 a001 514229/322*2537720636^(5/18) 6541030836070478 a001 514229/322*312119004989^(5/22) 6541030836070478 a001 514229/322*3461452808002^(5/24) 6541030836070478 a001 514229/322*28143753123^(1/4) 6541030836070478 a001 514229/322*228826127^(5/16) 6541030836071110 a001 1346269/322*710647^(3/8) 6541030836071266 a001 514229/322*1860498^(5/12) 6541030836087740 a001 9227465/322*271443^(1/4) 6541030836096966 a001 98209/161*1149851^(1/2) 6541030836099440 a001 98209/161*1322157322203^(1/4) 6541030836103560 a001 14619165/46*103682^(1/16) 6541030836179622 a001 24157817/322*103682^(3/16) 6541030836255638 a001 5702887/322*103682^(5/16) 6541030836277224 a001 75025/322*439204^(11/18) 6541030836297894 a001 75025/322*7881196^(1/2) 6541030836297946 a001 75025/322*312119004989^(3/10) 6541030836297946 a001 75025/322*1568397607^(3/8) 6541030836297949 a001 75025/322*33385282^(11/24) 6541030836298985 a001 75025/322*1860498^(11/20) 6541030836325497 a001 5473/161*24476^(41/42) 6541030836332459 a001 1346269/322*103682^(7/16) 6541030836394844 a001 317811/322*103682^(9/16) 6541030836716270 a001 75025/322*103682^(11/16) 6541030837050057 a001 144/64079*2537720636^(9/10) 6541030837050057 a001 144/64079*14662949395604^(9/14) 6541030837050057 a001 144/64079*192900153618^(3/4) 6541030837108155 a001 7465176/161*39603^(1/4) 6541030837658526 a001 28657/322*54018521^(1/2) 6541030837866161 a001 311187/46*39603^(19/44) 6541030838056728 a001 1346269/322*39603^(21/44) 6541030838243685 a001 416020/161*39603^(23/44) 6541030838440091 a001 514229/322*39603^(25/44) 6541030838611761 a001 317811/322*39603^(27/44) 6541030838774518 a001 144*39603^(35/44) 6541030838848191 a001 98209/161*39603^(29/44) 6541030838858449 a001 98209/2889*3^(28/47) 6541030838915076 a001 121393/322*39603^(31/44) 6541030839425835 a001 75025/322*39603^(3/4) 6541030839638676 a001 31622993/161*15127^(1/8) 6541030841092839 r005 Re(z^2+c),c=-23/32+10/63*I,n=39 6541030841165554 a001 28657/322*39603^(37/44) 6541030846375619 a001 36/6119*17393796001^(11/14) 6541030846375619 a001 36/6119*14662949395604^(11/18) 6541030846375619 a001 36/6119*505019158607^(11/16) 6541030846375619 a001 36/6119*1568397607^(7/8) 6541030846375619 a001 36/6119*599074578^(11/12) 6541030846784925 a001 5702887/322*15127^(3/8) 6541030846984090 a001 5473/161*370248451^(1/2) 6541030847668804 l006 ln(7811/8339) 6541030849643205 a001 311187/46*15127^(19/40) 6541030850870254 a001 5473/161*39603^(41/44) 6541030851073461 a001 1346269/322*15127^(21/40) 6541030852392663 a001 14619165/46*5778^(1/12) 6541030852500107 a001 416020/161*15127^(23/40) 6541030853936202 a001 514229/322*15127^(5/8) 6541030855347560 a001 317811/322*15127^(27/40) 6541030856823679 a001 98209/161*15127^(29/40) 6541030858130253 a001 121393/322*15127^(31/40) 6541030859765541 a001 17711/322*15127^(39/40) 6541030859880701 a001 75025/322*15127^(33/40) 6541030860469073 a001 144*15127^(7/8) 6541030864099798 a001 28657/322*15127^(37/40) 6541030877528092 m001 (Gompertz-Trott)/(ln(gamma)+exp(1/exp(1))) 6541030879195691 v002 sum(1/(3^n*(27*n^2-75*n+54)),n=1..infinity) 6541030885046929 a001 24157817/322*5778^(1/4) 6541030905716926 q001 1/1528811 6541030910693271 a001 4181/322*167761^(9/10) 6541030910874187 a001 4181/322*439204^(5/6) 6541030910902373 a001 4181/322*7881196^(15/22) 6541030910902435 a001 4181/322*20633239^(9/14) 6541030910902445 a001 4181/322*2537720636^(1/2) 6541030910902445 a001 4181/322*312119004989^(9/22) 6541030910902445 a001 4181/322*14662949395604^(5/14) 6541030910902445 a001 4181/322*192900153618^(5/12) 6541030910902445 a001 4181/322*28143753123^(9/20) 6541030910902445 a001 4181/322*228826127^(9/16) 6541030910902448 a001 4181/322*33385282^(5/8) 6541030910903862 a001 4181/322*1860498^(3/4) 6541030911472886 a001 4181/322*103682^(15/16) 6541030917701150 a001 5702887/322*5778^(5/12) 6541030926050831 m002 -10+Pi^5+Pi^3*Sinh[Pi] 6541030939470423 a001 311187/46*5778^(19/36) 6541030950356176 a001 1346269/322*5778^(7/12) 6541030957725515 a007 Real Root Of -861*x^4+78*x^3+498*x^2+978*x-717 6541030961184712 l004 Pi/sinh(9/61*Pi) 6541030961238319 a001 416020/161*5778^(23/36) 6541030963919678 m001 1/Zeta(9)*exp(BesselJ(1,1))^2*exp(1) 6541030972129910 a001 514229/322*5778^(25/36) 6541030974213746 a008 Real Root of x^4-x^3-44*x^2+57*x-41 6541030982996766 a001 317811/322*5778^(3/4) 6541030983915324 m001 (Trott+TwinPrimes)/GAMMA(23/24) 6541030989039703 a007 Real Root Of 218*x^4-410*x^3-14*x^2-132*x-235 6541030993928381 a001 98209/161*5778^(29/36) 6541030996486788 m001 (Chi(1)-gamma)/(-Catalan+polylog(4,1/2)) 6541030997052134 a001 7778742049/15127*76^(1/18) 6541031004690453 a001 121393/322*5778^(31/36) 6541031006169912 a001 514229/15127*3^(28/47) 6541031008977309 m001 (Ei(1,1)+gamma(2))/(Grothendieck-MinimumGamma) 6541031015896397 a001 75025/322*5778^(11/12) 6541031019483829 r005 Re(z^2+c),c=-13/22+39/107*I,n=6 6541031021466773 a001 20365011074/39603*76^(1/18) 6541031025028821 a001 53316291173/103682*76^(1/18) 6541031025454418 a007 Real Root Of -513*x^4-786*x^3-968*x^2+963*x+918 6541031025548517 a001 139583862445/271443*76^(1/18) 6541031025624340 a001 365435296162/710647*76^(1/18) 6541031025635402 a001 956722026041/1860498*76^(1/18) 6541031025637016 a001 2504730781961/4870847*76^(1/18) 6541031025637251 a001 6557470319842/12752043*76^(1/18) 6541031025637307 a001 10610209857723/20633239*76^(1/18) 6541031025637397 a001 4052739537881/7881196*76^(1/18) 6541031025638013 a001 1548008755920/3010349*76^(1/18) 6541031025642239 a001 514229*76^(1/18) 6541031025671201 a001 225851433717/439204*76^(1/18) 6541031025869707 a001 86267571272/167761*76^(1/18) 6541031025940266 a001 144*5778^(35/36) 6541031026054160 m001 Tribonacci^2*ln(Niven)*BesselK(1,1)^2 6541031027230288 a001 32951280099/64079*76^(1/18) 6541031029563789 a007 Real Root Of -675*x^4+453*x^3-893*x^2+351*x+862 6541031030580326 a001 1346269/39603*3^(28/47) 6541031032045909 r005 Im(z^2+c),c=29/110+1/46*I,n=5 6541031036342844 a001 2178309/64079*3^(28/47) 6541031036555850 a001 12586269025/24476*76^(1/18) 6541031045666792 a001 208010/6119*3^(28/47) 6541031050594111 m005 (1/2*gamma-5/11)/(2/9*Pi-4/9) 6541031070921962 m001 (GAMMA(2/3)-BesselI(1,2))/(Otter+TwinPrimes) 6541031076246794 a007 Real Root Of -510*x^4+980*x^3-115*x^2-359*x+182 6541031078327461 a007 Real Root Of 784*x^4-746*x^3+460*x^2+98*x-485 6541031084662642 r009 Im(z^3+c),c=-41/114+38/63*I,n=7 6541031087043615 r009 Re(z^3+c),c=-1/114+9/13*I,n=25 6541031100474208 a001 4807526976/9349*76^(1/18) 6541031109574087 a001 317811/9349*3^(28/47) 6541031114332466 m005 (1/2*exp(1)-5/11)/(2/7*Catalan-2/5) 6541031133192766 m001 GolombDickman^2/ln(FransenRobinson)/gamma 6541031140817852 k001 Champernowne real with 377*n+277 6541031160326945 a007 Real Root Of -637*x^4-414*x^3-314*x^2+246*x+296 6541031163742312 r005 Im(z^2+c),c=-7/46+25/31*I,n=57 6541031169993837 a007 Real Root Of -603*x^4-448*x^3-763*x^2+169*x+422 6541031172627129 a001 161/10182505537*144^(2/7) 6541031178354580 a007 Real Root Of 747*x^4+37*x^3+356*x^2+342*x-55 6541031183430984 g005 GAMMA(2/11)*GAMMA(2/7)*GAMMA(1/7)/GAMMA(5/9) 6541031202337974 a007 Real Root Of 397*x^4+198*x^3+556*x^2+121*x-176 6541031206010820 a007 Real Root Of 290*x^4-243*x^3+774*x^2+219*x-309 6541031249660972 a007 Real Root Of -977*x^4-424*x^3-971*x^2+395*x+734 6541031252116101 a007 Real Root Of -406*x^4+478*x^3+349*x^2+433*x+342 6541031264587838 a007 Real Root Of 50*x^4+257*x^3-453*x^2+46*x+78 6541031273570018 m005 (1/2*gamma+5)/(6*2^(1/2)-2/5) 6541031310103929 a007 Real Root Of 667*x^4+14*x^3-580*x^2-515*x+459 6541031333249791 a007 Real Root Of -583*x^4+166*x^3-245*x^2+292*x+449 6541031348396936 a001 144/3571*4106118243^(3/4) 6541031348396942 a001 144/3571*33385282^(23/24) 6541031349005356 a001 1597/322*20633239^(7/10) 6541031349005366 a001 1597/322*17393796001^(1/2) 6541031349005366 a001 1597/322*14662949395604^(7/18) 6541031349005366 a001 1597/322*505019158607^(7/16) 6541031349005366 a001 1597/322*599074578^(7/12) 6541031349016699 a001 1597/322*710647^(7/8) 6541031367973535 a003 sin(Pi*26/87)*sin(Pi*34/113) 6541031403344052 a003 sin(Pi*1/115)-sin(Pi*21/88) 6541031414646671 a003 cos(Pi*3/107)-cos(Pi*7/18) 6541031419150887 m001 1/Riemann3rdZero*exp(Magata)^2/GAMMA(1/6) 6541031421635223 a007 Real Root Of 279*x^4-912*x^3+636*x^2+126*x-496 6541031426235828 s002 sum(A164358[n]/((2^n-1)/n),n=1..infinity) 6541031429486546 p004 log(37447/19469) 6541031434806320 m005 (1/2*5^(1/2)+1/12)/(5/6*exp(1)-3/7) 6541031446221811 a007 Real Root Of 468*x^4-645*x^3+765*x^2-357*x-827 6541031457618114 m005 (1/3*3^(1/2)+1/6)/(9/10*5^(1/2)-7/8) 6541031471757756 a007 Real Root Of -813*x^4+217*x^3-960*x^2-534*x+271 6541031499080254 m001 (Magata-Robbin)/(Pi+GAMMA(11/12)) 6541031505365749 m008 (1/4*Pi^4+4/5)/(4*Pi^6-1/4) 6541031521577429 a007 Real Root Of -304*x^4+45*x^3+138*x^2+847*x-56 6541031524724524 m001 Conway-cos(1)*Zeta(3) 6541031529184661 r009 Im(z^3+c),c=-6/11+11/37*I,n=18 6541031532042563 k002 Champernowne real with 1/2*n^2+93/2*n-41 6541031537831740 m001 (3^(1/3)+Zeta(1/2))/(Si(Pi)+Catalan) 6541031538577182 a001 1836311903/3571*76^(1/18) 6541031540702923 m001 (Magata-cos(1))/(-TreeGrowth2nd+ZetaQ(4)) 6541031542082663 k003 Champernowne real with 1/6*n^3-1/2*n^2+145/3*n-42 6541031547601239 a001 121393/3571*3^(28/47) 6541031552122763 k003 Champernowne real with 1/3*n^3-3/2*n^2+301/6*n-43 6541031562162863 k003 Champernowne real with 1/2*n^3-5/2*n^2+52*n-44 6541031572202963 k003 Champernowne real with 2/3*n^3-7/2*n^2+323/6*n-45 6541031575847438 a007 Real Root Of -844*x^4+759*x^3-376*x^2+540*x+881 6541031580730197 r001 40i'th iterates of 2*x^2-1 of 6541031581849625 m001 (Robbin-Sarnak)/(FellerTornier+GolombDickman) 6541031582243064 k003 Champernowne real with 5/6*n^3-9/2*n^2+167/3*n-46 6541031592283164 k003 Champernowne real with n^3-11/2*n^2+115/2*n-47 6541031622403464 k003 Champernowne real with 3/2*n^3-17/2*n^2+63*n-50 6541031633408489 a001 311187/46*2207^(19/32) 6541031636704870 m001 ((3^(1/3))+Lehmer*GAMMA(1/24))/GAMMA(1/24) 6541031652523765 k003 Champernowne real with 2*n^3-23/2*n^2+137/2*n-53 6541031665935955 m001 (exp(1)*gamma(3)+Pi^(1/2))/exp(1) 6541031682644066 k003 Champernowne real with 5/2*n^3-29/2*n^2+74*n-56 6541031683208673 m006 (3*Pi+3/5)/(1/4*Pi^2-4) 6541031683208673 m008 (3*Pi+3/5)/(1/4*Pi^2-4) 6541031691400603 r005 Re(z^2+c),c=-19/106+29/41*I,n=5 6541031709900453 r005 Re(z^2+c),c=-23/34+34/125*I,n=32 6541031712764366 k003 Champernowne real with 3*n^3-35/2*n^2+159/2*n-59 6541031716932422 a007 Real Root Of 962*x^4+232*x^3-72*x^2-215*x-221 6541031717340359 a001 1346269/322*2207^(21/32) 6541031718528859 r005 Im(z^2+c),c=-3/52+44/63*I,n=44 6541031742884667 k003 Champernowne real with 7/2*n^3-41/2*n^2+85*n-62 6541031758959358 r005 Re(z^2+c),c=-4/7+56/97*I,n=14 6541031773004967 k003 Champernowne real with 4*n^3-47/2*n^2+181/2*n-65 6541031778269997 r004 Re(z^2+c),c=-5/6-1/17*I,z(0)=exp(1/8*I*Pi),n=4 6541031781484797 a007 Real Root Of 171*x^4-70*x^3+317*x^2+383*x+64 6541031795488183 p001 sum(1/(617*n+153)/(256^n),n=0..infinity) 6541031798824683 a003 cos(Pi*22/117)*sin(Pi*28/97) 6541031801268621 a001 416020/161*2207^(23/32) 6541031803125268 k003 Champernowne real with 9/2*n^3-53/2*n^2+96*n-68 6541031809676557 q001 2447/3741 6541031822776802 l006 ln(679/1306) 6541031833245569 k003 Champernowne real with 5*n^3-59/2*n^2+203/2*n-71 6541031834233478 r005 Im(z^2+c),c=37/110+17/31*I,n=7 6541031835089496 m001 KhintchineHarmonic*exp(CareFree)^2*Catalan 6541031848276252 m001 (GAMMA(2/3)-sin(1))/(-GAMMA(11/12)+Tribonacci) 6541031863365869 k003 Champernowne real with 11/2*n^3-65/2*n^2+107*n-74 6541031880293823 m001 (-ArtinRank2+Landau)/(exp(Pi)+BesselJ(1,1)) 6541031885206332 a001 514229/322*2207^(25/32) 6541031893486161 k003 Champernowne real with 6*n^3-71/2*n^2+225/2*n-77 6541031923606461 k003 Champernowne real with 13/2*n^3-77/2*n^2+118*n-80 6541031933974987 a007 Real Root Of 548*x^4+433*x^3+74*x^2-939*x-625 6541031953726761 k003 Champernowne real with 7*n^3-83/2*n^2+247/2*n-83 6541031955284099 r008 a(0)=0,K{-n^6,-9+24*n^3+50*n^2-80*n} 6541031968370823 m005 (1/2*Catalan-7/10)/(5/8*Zeta(3)-5/7) 6541031969119308 a001 317811/322*2207^(27/32) 6541031969577315 r009 Im(z^3+c),c=-19/94+41/60*I,n=6 6541031974014411 r005 Im(z^2+c),c=-5/74+7/9*I,n=32 6541031983847061 k003 Champernowne real with 15/2*n^3-89/2*n^2+129*n-86 6541031992307248 a007 Real Root Of -821*x^4+910*x^3+111*x^2+951*x+62 6541032013967361 k003 Champernowne real with 8*n^3-95/2*n^2+269/2*n-89 6541032037400414 m001 Zeta(9)/Zeta(1/2)/exp(sinh(1))^2 6541032053097046 a001 98209/161*2207^(29/32) 6541032063194671 r005 Re(z^2+c),c=3/8+6/59*I,n=4 6541032064326064 a007 Real Root Of -752*x^4+388*x^3-468*x^2+834*x+992 6541032074207961 k003 Champernowne real with 9*n^3-107/2*n^2+291/2*n-95 6541032103659865 a007 Real Root Of -291*x^4+373*x^3-17*x^2+870*x+734 6541032136905240 a001 121393/322*2207^(31/32) 6541032140445085 a007 Real Root Of 137*x^4-155*x^3+953*x^2-573*x-851 6541032140917872 k005 Champernowne real with floor(sqrt(3)*(218*n+160)) 6541032141017882 k001 Champernowne real with 378*n+276 6541032141424453 m001 ZetaQ(3)^Totient/(ZetaQ(3)^LandauRamanujan) 6541032145903546 m009 (3/5*Psi(1,1/3)+1/2)/(3*Psi(1,2/3)+5/6) 6541032165634606 m001 (Otter-Rabbit)/(CopelandErdos+OneNinth) 6541032165690943 a001 34111385/281*199^(7/22) 6541032168925569 r005 Re(z^2+c),c=-11/78+43/59*I,n=14 6541032192786380 m001 (Landau-Lehmer)/(GAMMA(5/6)-Artin) 6541032204703498 a007 Real Root Of -86*x^4-457*x^3+818*x^2+684*x-991 6541032224167921 a007 Real Root Of 921*x^4-354*x^3-801*x^2-333*x+491 6541032224479057 m001 (sin(1/12*Pi)+Sierpinski)/(Ei(1)+Zeta(1/2)) 6541032227633166 b008 ArcCsch[57/40] 6541032239074832 r002 54i'th iterates of 2*x/(1-x^2) of 6541032265754843 a007 Real Root Of -301*x^4+471*x^3-927*x^2+626*x+993 6541032306536438 r002 3th iterates of z^2 + 6541032317849150 a007 Real Root Of -759*x^4+256*x^3-506*x^2+730*x+50 6541032323977711 m001 (Zeta(5)+ArtinRank2)/(TreeGrowth2nd-ZetaP(3)) 6541032331136375 a007 Real Root Of -663*x^4+596*x^3+233*x^2+885*x-724 6541032347448012 m001 1/3*(Otter-MasserGramainDelta)*3^(1/2) 6541032349710470 a003 cos(Pi*19/101)*cos(Pi*15/71) 6541032356460759 m001 ln(GAMMA(13/24))*Conway^2/GAMMA(17/24) 6541032404614026 m001 BesselK(0,1)^2*exp(Porter)/sinh(1) 6541032422756086 m001 exp(Si(Pi))^2*FeigenbaumDelta^2*exp(1)^2 6541032463577094 a003 cos(Pi*11/114)-sin(Pi*10/103) 6541032464806218 m006 (Pi^2+2/3)/(5*Pi+2/5) 6541032464806218 m008 (Pi^2+2/3)/(5*Pi+2/5) 6541032510648308 a001 8/3*9349^(35/41) 6541032537952097 m001 (-Robbin+ZetaQ(3))/(gamma+BesselK(0,1)) 6541032552694850 a007 Real Root Of -872*x^4+827*x^3-744*x^2+429*x+990 6541032569464525 m001 1/cos(Pi/12)/ln(GAMMA(1/12))*cosh(1) 6541032570253008 r002 35i'th iterates of 2*x/(1-x^2) of 6541032612164327 m002 -4+3*E^Pi-Log[Pi]/Pi^4 6541032625791306 m001 (Bloch-Si(Pi))/(Riemann2ndZero+ZetaP(4)) 6541032634866358 m005 (1/3*Pi+1/11)/(7/10*2^(1/2)+3/4) 6541032640156034 b008 -1/28+Sech[Catalan] 6541032662723421 a007 Real Root Of -97*x^4+335*x^3+100*x^2+774*x+575 6541032727090140 a007 Real Root Of -760*x^4+650*x^3-618*x^2+221*x+730 6541032749274115 r002 48th iterates of z^2 + 6541032753073404 a007 Real Root Of -828*x^4-689*x^3-203*x^2+950*x+667 6541032755401186 s002 sum(A091754[n]/(n!^3),n=1..infinity) 6541032771396780 m001 (Backhouse+Conway)/(ReciprocalFibonacci+Thue) 6541032773373402 m001 (-Stephens+ZetaP(4))/(Conway-cos(1)) 6541032797577052 a007 Real Root Of 293*x^4-736*x^3-21*x^2-554*x-613 6541032812331432 h001 (1/8*exp(2)+4/7)/(7/12*exp(1)+7/10) 6541032824018487 m005 (1/2*Catalan-5/6)/(5/12*gamma+1/3) 6541032828502132 a001 7/701408733*610^(15/23) 6541032847069769 r009 Re(z^3+c),c=-7/58+38/55*I,n=27 6541032848613419 m005 (1/3*Zeta(3)-2/5)/(1/10*3^(1/2)+7/8) 6541032865124656 s001 sum(exp(-2*Pi/5)^n*A029671[n],n=1..infinity) 6541032865124656 s002 sum(A029671[n]/(exp(2/5*pi*n)),n=1..infinity) 6541032872856368 r009 Im(z^3+c),c=-15/22+1/12*I,n=3 6541032918447000 h001 (3/7*exp(1)+5/9)/(2/3*exp(1)+9/11) 6541032979824812 a007 Real Root Of -757*x^4+125*x^3-70*x^2-172*x+91 6541032980376542 a007 Real Root Of 92*x^4+538*x^3-388*x^2+119*x-469 6541032999558618 a007 Real Root Of 64*x^4+452*x^3+316*x^2+734*x+621 6541033018137849 a007 Real Root Of -476*x^4-84*x^3+584*x^2+777*x+322 6541033024330398 r009 Im(z^3+c),c=-11/118+27/37*I,n=5 6541033063444461 r002 7th iterates of z^2 + 6541033067072884 m001 (-Totient+ZetaQ(4))/(FeigenbaumD-exp(Pi)) 6541033137147286 a001 39088169/322*843^(1/4) 6541033141217912 k001 Champernowne real with 379*n+275 6541033142232052 m001 (exp(1)+arctan(1/2))/(BesselI(0,2)+Sierpinski) 6541033148934328 a007 Real Root Of -883*x^4+527*x^3+588*x^2+299*x-433 6541033178623281 m001 1/GAMMA(1/24)/exp(PisotVijayaraghavan)*gamma 6541033281989130 a001 3/89*987^(5/52) 6541033335723809 m005 (1/3*3^(1/2)+1/7)/(7/10*2^(1/2)+1/9) 6541033338075502 a007 Real Root Of 215*x^4-682*x^3-862*x^2-423*x+797 6541033349189701 a007 Real Root Of 925*x^4-819*x^3+237*x^2-711*x-965 6541033361865697 l006 ln(4975/9569) 6541033363979255 s002 sum(A026745[n]/(n^3*exp(n)-1),n=1..infinity) 6541033364235163 a007 Real Root Of -192*x^4+81*x^3-646*x^2+839*x+883 6541033364351752 m001 (2^(1/3))^2*exp(Paris)*GAMMA(11/24)^2 6541033372188871 h001 (-7*exp(4)-10)/(-11*exp(4)+1) 6541033381968426 m001 (3^(1/3))^2/MadelungNaCl*ln(gamma) 6541033402158229 a007 Real Root Of 767*x^4+298*x^3+155*x^2-562*x+36 6541033434650455 q001 1076/1645 6541033439586250 a007 Real Root Of 557*x^4+109*x^3+981*x^2+251*x-327 6541033464696267 a001 165580141/322*322^(1/24) 6541033486802596 r005 Re(z^2+c),c=-35/34+91/110*I,n=2 6541033487753642 a007 Real Root Of 670*x^4-949*x^3+487*x^2+828*x-55 6541033494959143 a007 Real Root Of 389*x^4+197*x^3-929*x^2-382*x+521 6541033507473279 m009 (5/6*Psi(1,2/3)-2/5)/(Psi(1,3/4)+3/4) 6541033553523573 m001 (Pi+ln(5))/(GAMMA(7/12)-Backhouse) 6541033604883779 p003 LerchPhi(1/8,2,294/233) 6541033605124837 l006 ln(4296/8263) 6541033606920461 r005 Im(z^2+c),c=-3/50+23/29*I,n=14 6541033609555904 m001 Zeta(9)*Sierpinski*ln(sqrt(1+sqrt(3)))^2 6541033680616749 a007 Real Root Of -974*x^4-221*x^3-447*x^2+427*x+587 6541033713897876 m008 (2*Pi+2/5)/(1/3*Pi^5+1/6) 6541033722886918 a007 Real Root Of -651*x^4+689*x^3+477*x+624 6541033737230033 r009 Im(z^3+c),c=-53/122+4/7*I,n=30 6541033748505439 a007 Real Root Of 66*x^4+366*x^3-558*x^2-952*x-742 6541033751269956 a007 Real Root Of 258*x^4-662*x^3+20*x^2-694*x-695 6541033818676403 r005 Re(z^2+c),c=-29/38+19/39*I,n=3 6541033834284833 m001 1/Ei(1)^2/exp(Tribonacci)^2/Zeta(5)^2 6541033838468710 m001 (BesselK(1,1)+MertensB3)/(3^(1/2)+GAMMA(3/4)) 6541033838553761 r009 Re(z^3+c),c=-11/114+11/24*I,n=13 6541033846705304 a003 sin(Pi*19/79)*sin(Pi*27/67) 6541033850022223 m001 1/exp(Lehmer)/MertensB1^2*cos(Pi/5) 6541033863654249 m001 (BesselK(1,1)+Backhouse)/(2^(1/2)+3^(1/2)) 6541033866422370 m001 ZetaP(2)/Salem/sin(1/5*Pi) 6541033883991261 r005 Im(z^2+c),c=-14/23+25/54*I,n=33 6541033893893897 a007 Real Root Of -136*x^4-913*x^3-37*x^2+867*x+700 6541033910244109 a007 Real Root Of 848*x^4-928*x^3-437*x^2+97*x+228 6541033939715433 l006 ln(3617/6957) 6541033941943497 m001 1/BesselJ(0,1)*ln(ErdosBorwein)*GAMMA(11/12) 6541033945624479 a001 17/930249*18^(15/34) 6541033967801128 a007 Real Root Of -846*x^4+506*x^3-323*x^2-663*x+1 6541033972926461 m005 (1/2*gamma-7/8)/(7/11*exp(1)-5/6) 6541034043360010 r009 Im(z^3+c),c=-13/34+35/61*I,n=7 6541034055563492 r005 Re(z^2+c),c=-51/98+1/2*I,n=16 6541034056082181 s002 sum(A089591[n]/(16^n),n=1..infinity) 6541034069476912 m001 Pi*2^(1/2)/GAMMA(3/4)+FransenRobinson+OneNinth 6541034076298665 a001 3571/8*9227465^(5/11) 6541034141317922 k005 Champernowne real with floor(sqrt(3)*(219*n+159)) 6541034141417942 k001 Champernowne real with 380*n+274 6541034170683318 m009 (5/12*Pi^2-6)/(3*Pi^2-3/4) 6541034173786218 r005 Re(z^2+c),c=-89/106+13/59*I,n=13 6541034183524527 p004 log(23027/21569) 6541034224605338 m001 (GAMMA(3/4)-Psi(2,1/3))/(CopelandErdos+Kac) 6541034236366932 r005 Im(z^2+c),c=-7/50+41/61*I,n=64 6541034242015513 m001 (Ei(1)-BesselI(0,2))/(Tetranacci-Totient) 6541034250887435 m001 (GAMMA(3/4)-Khinchin)/(Otter-Sarnak) 6541034258181006 m001 (-Backhouse+MertensB3)/(2^(1/2)-GAMMA(3/4)) 6541034260362612 m001 (Stephens+ThueMorse)/(exp(1/exp(1))-Otter) 6541034312682962 r002 17th iterates of z^2 + 6541034315846947 r002 7th iterates of z^2 + 6541034325971095 m001 arctan(1/3)^(Tribonacci/PrimesInBinary) 6541034334062041 m001 BesselK(0,1)^Catalan*exp(1/exp(1)) 6541034336267149 a007 Real Root Of -258*x^4+852*x^3+104*x^2+677*x+684 6541034351200869 a001 36/341*20633239^(13/14) 6541034351200883 a001 36/341*141422324^(5/6) 6541034351200884 a001 36/341*2537720636^(13/18) 6541034351200884 a001 36/341*312119004989^(13/22) 6541034351200884 a001 36/341*3461452808002^(13/24) 6541034351200884 a001 36/341*73681302247^(5/8) 6541034351200884 a001 36/341*28143753123^(13/20) 6541034351200884 a001 36/341*228826127^(13/16) 6541034351807465 a001 305/161*119218851371^(1/2) 6541034374577474 r002 2th iterates of z^2 + 6541034412532001 a007 Real Root Of 843*x^4+399*x^3-252*x^2-942*x-551 6541034413278692 m001 ln(OneNinth)^2/Khintchine^2*GAMMA(7/24)^2 6541034416181302 a007 Real Root Of 758*x^4+276*x^3+432*x^2-293*x-438 6541034421581902 a007 Real Root Of 7*x^4-64*x^3-705*x^2+108*x+145 6541034425121731 m005 (1/2*3^(1/2)-5/9)/(5*Catalan+1/6) 6541034428960207 l006 ln(2938/5651) 6541034452578167 r005 Im(z^2+c),c=-3/26+23/27*I,n=50 6541034478333481 a001 29/139583862445*144^(3/13) 6541034514507458 m005 (1/2*5^(1/2)+4/7)/(9/11*3^(1/2)-4) 6541034541381217 a001 701408733/1364*76^(1/18) 6541034549885582 a001 11592/341*3^(28/47) 6541034555133510 r009 Re(z^3+c),c=-33/86+39/40*I,n=2 6541034585430201 a001 1/103729*(1/2*5^(1/2)+1/2)^14*47^(13/24) 6541034589798899 r005 Re(z^2+c),c=5/106+13/42*I,n=3 6541034593132730 a001 39603/8*46368^(5/11) 6541034605279508 a007 Real Root Of 939*x^4+372*x^3+773*x^2-253*x-564 6541034633081134 m001 Sierpinski*(GAMMA(2/3)+Salem) 6541034648962707 a007 Real Root Of -618*x^4-118*x^3-379*x^2+180*x+360 6541034663416619 m001 (exp(-1/2*Pi)-LaplaceLimit)/(Pi-Psi(1,1/3)) 6541034678730758 a007 Real Root Of -656*x^4+859*x^3+311*x^2+750*x+718 6541034688390593 m001 1/Zeta(7)^2/Cahen^2*ln(log(2+sqrt(3))) 6541034698532957 a001 4/591286729879*832040^(16/19) 6541034747238721 a007 Real Root Of 172*x^4-759*x^3+735*x^2-507*x-890 6541034767650169 h001 (-7*exp(-2)-8)/(-exp(-1)-1) 6541034769464011 l006 ln(5197/9996) 6541034836077690 h001 (4/9*exp(2)+1/8)/(2/3*exp(2)+2/7) 6541034845243613 a007 Real Root Of 747*x^4-282*x^3+482*x^2-734*x-902 6541034848528277 p004 log(24337/12653) 6541034851342958 a008 Real Root of (9+8*x-16*x^2-11*x^3) 6541034868870460 a007 Real Root Of 308*x^4-833*x^3-12*x^2-335*x+401 6541034870774739 r002 4th iterates of z^2 + 6541034992630878 a005 (1/sin(50/133*Pi))^349 6541035000696437 a007 Real Root Of -265*x^4+920*x^3-401*x^2+707*x+940 6541035032245655 r005 Im(z^2+c),c=-29/48+4/33*I,n=41 6541035063007730 m005 (1/2*Pi-1/5)/(3^(1/2)+4/11) 6541035103109538 m001 (-OrthogonalArrays+PolyaRandomWalk3D)/(1+Kac) 6541035112214312 m001 (Lehmer-Tribonacci)/(3^(1/3)+arctan(1/2)) 6541035117384289 a007 Real Root Of -889*x^4-813*x^3-764*x^2+246*x+423 6541035131310346 r005 Re(z^2+c),c=-5/12+47/61*I,n=4 6541035141617972 k001 Champernowne real with 381*n+273 6541035141617972 k005 Champernowne real with floor(sqrt(3)*(220*n+158)) 6541035194822673 m001 (AlladiGrinstead+Landau)/(ln(2)+exp(1/Pi)) 6541035212314891 l006 ln(2259/4345) 6541035220916236 a007 Real Root Of 13*x^4+837*x^3-869*x^2+216*x+354 6541035245256809 a007 Real Root Of 357*x^4-492*x^3+498*x^2+734*x+64 6541035254277890 r009 Im(z^3+c),c=-43/78+13/57*I,n=7 6541035256591766 a007 Real Root Of -311*x^4+542*x^3-647*x^2+949*x+65 6541035259026121 m001 (gamma(2)+Artin)/(LambertW(1)-Psi(2,1/3)) 6541035259958120 r005 Re(z^2+c),c=-5/8+70/183*I,n=61 6541035304181567 m001 sin(1/5*Pi)*Otter^Paris 6541035322748257 a007 Real Root Of 116*x^4+690*x^3-463*x^2-58*x+187 6541035331942011 r005 Im(z^2+c),c=31/102+25/58*I,n=25 6541035337431248 m005 (1/2*2^(1/2)+1/4)/(3/7*2^(1/2)+6/7) 6541035406372988 r002 2th iterates of z^2 + 6541035413084953 m001 (ErdosBorwein+Totient)/(1+ln(gamma)) 6541035436930598 a001 24157817/521*199^(1/2) 6541035452842856 a003 cos(Pi*6/59)*sin(Pi*15/62) 6541035454922380 p004 log(36493/18973) 6541035460835512 m001 1/ln(Rabbit)^2*FransenRobinson^2/GAMMA(23/24) 6541035465644839 r009 Im(z^3+c),c=-19/50+31/45*I,n=22 6541035472439933 m001 (TreeGrowth2nd+ZetaQ(2))/(GAMMA(5/6)-Artin) 6541035473573283 r005 Im(z^2+c),c=-3/52+41/57*I,n=50 6541035524557387 a007 Real Root Of 105*x^4-762*x^3-926*x^2-394*x-94 6541035529052363 a007 Real Root Of 128*x^4+810*x^3-185*x^2+3*x+308 6541035533919532 m001 Psi(2,1/3)*(Bloch+TravellingSalesman) 6541035536918915 m001 BesselI(0,2)*gamma(1)^FeigenbaumKappa 6541035541083599 r002 27th iterates of z^2 + 6541035575907009 q001 1857/2839 6541035592126956 m001 Cahen^ReciprocalFibonacci-ln(2^(1/2)+1) 6541035624447361 a001 6/726103*610^(10/31) 6541035628396308 m001 (GAMMA(5/6)+Lehmer)/(Mills+Riemann3rdZero) 6541035629286913 a007 Real Root Of 89*x^4-382*x^3+309*x^2+525*x+88 6541035635754904 r005 Re(z^2+c),c=-12/19+26/63*I,n=11 6541035694970254 r002 2th iterates of z^2 + 6541035732399164 a001 1/271566*(1/2*5^(1/2)+1/2)^16*47^(13/24) 6541035744064904 a001 7/34*34^(51/52) 6541035772090388 r001 17i'th iterates of 2*x^2-1 of 6541035786883757 s002 sum(A073339[n]/(n^3*exp(n)+1),n=1..infinity) 6541035804760105 p003 LerchPhi(1/25,1,268/171) 6541035811818903 l006 ln(3839/7384) 6541035816250608 a007 Real Root Of 817*x^4-954*x^3-463*x^2+91*x+256 6541035888330354 a007 Real Root Of -108*x^4+861*x^3+220*x^2+950*x+788 6541035892749747 m001 (Psi(2,1/3)+GAMMA(19/24))/(-Kac+Landau) 6541035899739715 a001 1/710969*(1/2*5^(1/2)+1/2)^18*47^(13/24) 6541035903739818 a007 Real Root Of 884*x^4-906*x^3+24*x^2+108*x-355 6541035904512325 m006 (1/5*exp(Pi)-2/3)/(1/3/Pi-1/6) 6541035914511553 r002 10th iterates of z^2 + 6541035924154373 a001 1/1861341*(1/2*5^(1/2)+1/2)^20*47^(13/24) 6541035925244857 r009 Re(z^3+c),c=-51/106+35/61*I,n=62 6541035929917891 a001 1/3011713*(1/2*5^(1/2)+1/2)^21*47^(13/24) 6541035932840695 m005 (1/2*exp(1)-5/9)/(1/7*5^(1/2)+10/11) 6541035939243461 a001 1/1150372*(1/2*5^(1/2)+1/2)^19*47^(13/24) 6541035950622832 a007 Real Root Of -699*x^4+329*x^3-208*x^2+506*x+640 6541035958996655 m001 (exp(1)+LambertW(1))/(-Champernowne+Kac) 6541035962079682 a007 Real Root Of 247*x^4-349*x^3-93*x^2-497*x+33 6541035963887493 a007 Real Root Of 405*x^4+341*x^3-861*x^2-887*x+779 6541035976384032 m008 (1/4*Pi^2-3)/(5/6*Pi^4+1/4) 6541035981826790 a007 Real Root Of 188*x^4+576*x^3+351*x^2-637*x+40 6541035986202345 a001 843/433494437*8^(7/12) 6541035987187892 r002 8th iterates of z^2 + 6541036003161867 a001 1/439403*(1/2*5^(1/2)+1/2)^17*47^(13/24) 6541036011564269 s002 sum(A072883[n]/(exp(n)),n=1..infinity) 6541036045640389 r002 59th iterates of z^2 + 6541036045750792 a007 Real Root Of -569*x^4-345*x^3+30*x^2+884*x+573 6541036046562493 m008 (1/5*Pi^3-1/5)/(3*Pi-1/4) 6541036052800127 r009 Im(z^3+c),c=-61/118+17/39*I,n=22 6541036055439864 r005 Re(z^2+c),c=-43/74+14/31*I,n=51 6541036072158966 r005 Re(z^2+c),c=-71/70+3/10*I,n=19 6541036076709323 a001 47/8*377^(13/32) 6541036077431226 l006 ln(2293/2448) 6541036100551917 m001 (Pi+Grothendieck*TwinPrimes)/TwinPrimes 6541036103452267 h001 (7/12*exp(1)+5/8)/(1/3*exp(2)+11/12) 6541036114752850 m005 (1/2*Catalan+5/11)/(5/9*Zeta(3)+8/11) 6541036116960186 r005 Im(z^2+c),c=-53/98+7/60*I,n=42 6541036133692582 r009 Re(z^3+c),c=-13/110+17/26*I,n=62 6541036135321248 a007 Real Root Of 73*x^4-184*x^3+582*x^2-69*x-359 6541036141818002 k001 Champernowne real with 382*n+272 6541036156765009 m001 1/Lehmer*Backhouse/exp(Robbin)^2 6541036161468533 m001 (Bloch+GolombDickman)/(GAMMA(2/3)+arctan(1/3)) 6541036164286015 r005 Im(z^2+c),c=17/42+18/49*I,n=36 6541036172752247 a007 Real Root Of 720*x^4+826*x^3+453*x^2-328*x-309 6541036182535916 a007 Real Root Of -365*x^4+498*x^3-878*x^2+624*x+990 6541036189420822 r005 Re(z^2+c),c=13/118+9/26*I,n=26 6541036191351007 r005 Re(z^2+c),c=-1/122+7/11*I,n=52 6541036211874079 m001 (Rabbit+ZetaQ(4))/(Artin-MinimumGamma) 6541036224042503 s002 sum(A211850[n]/(pi^n-1),n=1..infinity) 6541036253024854 r002 3th iterates of z^2 + 6541036258313046 m001 sin(Pi/12)^Catalan/(sin(Pi/12)^BesselK(1,1)) 6541036274174937 m002 -5*Cosh[Pi]*Log[Pi]+ProductLog[Pi]/Log[Pi] 6541036294840970 r002 12th iterates of z^2 + 6541036324977147 m005 (1/3*3^(1/2)+1/2)/(3/5*Catalan-5/7) 6541036326130519 a007 Real Root Of 263*x^4+175*x^3+889*x^2-785*x-893 6541036345295540 m002 23/3+5*Sinh[Pi] 6541036350085934 m001 (exp(Pi)+FeigenbaumC)/(-Kolakoski+Salem) 6541036418581155 a007 Real Root Of 752*x^4-881*x^3+58*x^2-480*x-723 6541036430882173 a007 Real Root Of 834*x^4-103*x^3+338*x^2+124*x-245 6541036441265169 a001 1/167837*(1/2*5^(1/2)+1/2)^15*47^(13/24) 6541036449293330 q001 2638/4033 6541036451939551 a007 Real Root Of -843*x^4-395*x^3-533*x^2+410*x+540 6541036453723162 a007 Real Root Of 334*x^4-500*x^3-926*x^2-529*x+821 6541036496411791 r009 Re(z^3+c),c=-29/54+4/25*I,n=52 6541036568571807 m001 (Lehmer+MasserGramainDelta)/(1-Zeta(5)) 6541036589786250 m001 (Catalan+BesselI(1,2))/(-Backhouse+Tribonacci) 6541036603268718 r009 Im(z^3+c),c=-49/118+41/59*I,n=19 6541036610353293 r009 Re(z^3+c),c=-71/122+7/22*I,n=20 6541036623822515 r009 Re(z^3+c),c=-23/48+4/59*I,n=3 6541036628899470 a007 Real Root Of -851*x^4-436*x^3-998*x^2-258*x+292 6541036634549614 a001 281/7*55^(39/56) 6541036649023217 r002 61th iterates of z^2 + 6541036667066656 a007 Real Root Of -447*x^4+278*x^3+967*x^2+242*x-568 6541036668957805 l006 ln(1580/3039) 6541036705846551 a007 Real Root Of 202*x^4-743*x^3+523*x^2-797*x-990 6541036746153845 m001 1/ln(TwinPrimes)^2/GolombDickman^2*GAMMA(5/24) 6541036795072125 m005 (5/6*2^(1/2)+1)/(4*Catalan-1/3) 6541036814442773 r005 Im(z^2+c),c=-3/50+39/56*I,n=50 6541036825074867 r005 Im(z^2+c),c=-3/50+38/55*I,n=59 6541036825583998 a007 Real Root Of -12*x^4+331*x^3+809*x+624 6541036827901816 m005 (1/2*3^(1/2)-2/3)/(13/72+1/18*5^(1/2)) 6541036853199958 a007 Real Root Of 911*x^4-708*x^3+709*x^2-365*x-907 6541036891414223 a007 Real Root Of 536*x^4-992*x^3-294*x^2-341*x-473 6541036895550376 a003 sin(Pi*21/89)*sin(Pi*50/119) 6541036964853122 r005 Im(z^2+c),c=-5/78+42/55*I,n=35 6541036975736406 r005 Re(z^2+c),c=-61/58+8/43*I,n=16 6541037009101162 a007 Real Root Of 997*x^4+810*x^3+511*x^2-328*x-389 6541037018018763 m001 (Robbin+Tribonacci)/(Trott+Trott2nd) 6541037029906599 a007 Real Root Of 266*x^4+249*x^3+681*x^2+262*x-99 6541037058536090 a001 2/6765*75025^(8/29) 6541037062951735 m001 (ln(2)-GAMMA(17/24))/(Cahen+MertensB1) 6541037081860474 a001 311187/46*843^(19/28) 6541037123381338 a007 Real Root Of -328*x^4+934*x^3-90*x^2+624*x-571 6541037140450938 r005 Re(z^2+c),c=3/28+11/59*I,n=17 6541037142018032 k005 Champernowne real with floor(sqrt(3)*(221*n+157)) 6541037142018032 k001 Champernowne real with 383*n+271 6541037163340021 a007 Real Root Of 108*x^4-788*x^3-201*x^2-644*x+708 6541037171907588 m001 Trott2nd-ln(2+3^(1/2))*polylog(4,1/2) 6541037185642380 m005 (1/2*5^(1/2)+6)/(3/10*exp(1)+3/11) 6541037213953335 m001 (Zeta(1/2)+exp(1/exp(1)))/(Pi^(1/2)+Kac) 6541037227194387 b008 EulerGamma*ArcCoth[5*Sqrt[Pi]] 6541037255982912 m001 (Pi-BesselK(1,1))/(Magata+PlouffeB) 6541037262345637 m001 Si(Pi)/(1+FeigenbaumC) 6541037269144203 a007 Real Root Of -660*x^4+988*x^3-617*x^2+316*x+868 6541037280547172 r005 Im(z^2+c),c=7/24+17/39*I,n=37 6541037299049903 g002 Psi(1/8)+Psi(2/5)-Psi(11/12)-Psi(2/7) 6541037306039831 r002 3th iterates of z^2 + 6541037310917436 m001 (Magata-Thue)/(cos(1/12*Pi)-FeigenbaumKappa) 6541037311062455 m006 (3/5*ln(Pi)-3/4)/(2/5*exp(Pi)+2/5) 6541037335293736 m001 (1+Bloch)/(FellerTornier+Tetranacci) 6541037358169731 m001 BesselI(0,1)^Bloch-arctan(1/2) 6541037389656078 a007 Real Root Of -639*x^4+445*x^3-490*x^2-465*x+147 6541037390152619 r005 Im(z^2+c),c=-71/118+32/61*I,n=6 6541037391782071 a007 Real Root Of 453*x^4-922*x^3+948*x^2-71*x-793 6541037405100826 a007 Real Root Of -251*x^4+154*x^3-335*x^2+694*x-44 6541037427897274 a007 Real Root Of -204*x^4+906*x^3-169*x^2+231*x-295 6541037432020344 m001 (-sin(1/5*Pi)+ln(5))/(BesselK(0,1)-gamma) 6541037462242658 a007 Real Root Of -694*x^4-10*x^3+613*x^2+714*x+329 6541037463239341 m005 (1/2*Zeta(3)+4/11)/(4/7*2^(1/2)+2/3) 6541037472104852 a007 Real Root Of -749*x^4+87*x^3+750*x^2+629*x+252 6541037479239995 l006 ln(4061/7811) 6541037504166149 m001 1/TwinPrimes*exp(ArtinRank2)*arctan(1/2)^2 6541037541075185 a007 Real Root Of -809*x^4-45*x^3-732*x^2+319*x+24 6541037553511930 a007 Real Root Of -135*x^4-967*x^3-578*x^2-301*x-736 6541037553519423 r005 Im(z^2+c),c=-9/8+17/211*I,n=37 6541037568188539 a007 Real Root Of -612*x^4+674*x^3+11*x^2+792*x+814 6541037605774178 a007 Real Root Of -609*x^4+439*x^3+900*x^2+221*x-541 6541037612904175 r008 a(0)=0,K{-n^6,84+69*n^3-49*n^2+49*n} 6541037627701061 m005 (1/2*Zeta(3)+1/11)/(6/7*Catalan+3/11) 6541037663262277 a001 2178309/11*7^(35/57) 6541037682721847 a007 Real Root Of -646*x^4-320*x^3-739*x^2+916*x+63 6541037688979930 m001 1/ln(Paris)/Cahen/GAMMA(23/24) 6541037695111256 a007 Real Root Of -158*x^4+933*x^3-277*x^2+531*x-461 6541037718213310 a007 Real Root Of -595*x^4+361*x^3-725*x^2+648*x+944 6541037739313947 a001 1346269/322*843^(3/4) 6541037755522748 m005 (1/2*3^(1/2)-7/8)/(3/4*exp(1)-2/3) 6541037758911885 a007 Real Root Of 172*x^4+978*x^3-978*x^2-224*x-777 6541037761165693 a007 Real Root Of -671*x^4+977*x^3-919*x^2+195*x+917 6541037775521849 m001 1/Robbin*LaplaceLimit^2*ln(GAMMA(1/3)) 6541037779874386 a007 Real Root Of -817*x^4+920*x^3-20*x^2+559*x-465 6541037811888819 a007 Real Root Of -141*x^4-928*x^3-2*x^2+206*x-166 6541037817085159 r005 Im(z^2+c),c=-1/52+30/47*I,n=5 6541037826669086 r002 11th iterates of z^2 + 6541037829815826 a007 Real Root Of -108*x^4+219*x^3+125*x^2+444*x+318 6541037842483370 a007 Real Root Of 149*x^4+929*x^3-180*x^2+825*x+332 6541037853733101 m001 (BesselI(0,2)-Tribonacci)^polylog(4,1/2) 6541037865523893 r008 a(0)=0,K{-n^6,-68-56*n^3+18*n^2-47*n} 6541037868822068 a007 Real Root Of -806*x^4+701*x^3+495*x^2+685*x+580 6541037902855636 a007 Real Root Of -686*x^4+699*x^3-287*x^2-717*x-25 6541037934943903 m001 ln(PrimesInBinary)*Champernowne*BesselK(1,1) 6541037938603479 s001 sum(exp(-Pi)^n*A207950[n],n=1..infinity) 6541037938603479 s002 sum(A207950[n]/(exp(pi*n)),n=1..infinity) 6541037938765966 m001 MinimumGamma*KhintchineHarmonic^2*ln(Porter)^2 6541037940129413 m005 (1/2*exp(1)+5)/(5/7*5^(1/2)-5/8) 6541037948157718 r005 Re(z^2+c),c=-17/26+1/3*I,n=60 6541037969203207 r005 Im(z^2+c),c=-4/31+20/23*I,n=14 6541037970399739 m001 1/ln(Ei(1))/GaussAGM(1,1/sqrt(2))^2/gamma^2 6541037977433219 m001 1/sin(1)*Zeta(9)*ln(sqrt(3)) 6541037995260057 l006 ln(2481/4772) 6541038012790272 b008 3*E^(1/8)+Pi 6541038012982586 m001 Lehmer^2/exp(Si(Pi))^2/GAMMA(1/12)^2 6541038018876980 r008 a(0)=0,K{-n^6,-58-48*n+2*n^2-49*n^3} 6541038043418679 r008 a(0)=0,K{-n^6,56+48*n^3+49*n} 6541038043425563 r008 a(0)=0,K{-n^6,62+47*n^3+6*n^2+38*n} 6541038090573007 a001 4976784*521^(7/17) 6541038099610483 r008 a(0)=0,K{-n^6,50+54*n+3*n^2+46*n^3} 6541038125043882 r008 a(0)=0,K{-n^6,60+43*n^3+17*n^2+33*n} 6541038136125052 r005 Im(z^2+c),c=53/122+18/37*I,n=5 6541038142218062 k001 Champernowne real with 384*n+270 6541038143801959 a007 Real Root Of -200*x^4+756*x^3-752*x^2+946*x-472 6541038144277331 r008 a(0)=0,K{-n^6,48+44*n^3+8*n^2+53*n} 6541038150733988 r008 a(0)=0,K{-n^6,52+45*n+13*n^2+43*n^3} 6541038157192779 r008 a(0)=0,K{-n^6,-44-59*n-6*n^2-44*n^3} 6541038164793342 b008 Sech[4^Sech[1/2]] 6541038180104672 m001 1/FeigenbaumD*ln(Champernowne)*Catalan^2 6541038216226427 r008 a(0)=0,K{-n^6,44+41*n^3+15*n^2+53*n} 6541038216251774 r008 a(0)=0,K{-n^6,62+38*n^3+33*n^2+20*n} 6541038234653560 a007 Real Root Of 480*x^4-429*x^3-48*x^2+22*x-173 6541038276759434 r008 a(0)=0,K{-n^6,44+38*n^3+24*n^2+47*n} 6541038281199062 a007 Real Root Of -120*x^4-911*x^3-857*x^2-134*x+507 6541038293390507 s001 sum(1/10^(n-1)*A160031[n],n=1..infinity) 6541038293390507 s001 sum(1/10^n*A160031[n],n=1..infinity) 6541038295292733 m001 (FellerTornier+Trott2nd)/(Psi(2,1/3)+ln(5)) 6541038306794343 r009 Im(z^3+c),c=-19/40+15/29*I,n=17 6541038308601966 a007 Real Root Of -532*x^4+4*x^3-476*x^2+411*x+571 6541038318701948 a007 Real Root Of -392*x^4+174*x^3+892*x^2+736*x-52 6541038334234880 m005 (1/3*Pi-1/7)/(17/22+3/11*5^(1/2)) 6541038345874012 r008 a(0)=0,K{-n^6,60+32*n^3+50*n^2+11*n} 6541038363598404 r005 Im(z^2+c),c=-135/106+3/59*I,n=19 6541038366988635 r008 a(0)=0,K{-n^6,60+31*n^3+53*n^2+9*n} 6541038369047005 a007 Real Root Of 763*x^4-768*x^3-27*x^2+951*x+279 6541038384437782 r002 58th iterates of z^2 + 6541038396381304 r002 9th iterates of z^2 + 6541038396763877 a001 416020/161*843^(23/28) 6541038408365866 p001 sum(1/(616*n+153)/(256^n),n=0..infinity) 6541038417741453 r009 Re(z^3+c),c=-9/70+34/57*I,n=2 6541038424177537 r008 a(0)=0,K{-n^6,50+30*n^3+51*n^2+22*n} 6541038460582684 r008 a(0)=0,K{-n^6,34+31*n^3+40*n^2+48*n} 6541038465862219 m001 (-Conway+Riemann3rdZero)/(Si(Pi)+Pi^(1/2)) 6541038481640041 a007 Real Root Of -306*x^4+933*x^3-11*x^2+358*x+556 6541038481754534 r002 4th iterates of z^2 + 6541038491612452 a007 Real Root Of 107*x^4+651*x^3-406*x^2-442*x+797 6541038497216005 a007 Real Root Of 674*x^4-727*x^3-303*x^2-122*x-277 6541038512516465 r008 a(0)=0,K{-n^6,-44-27*n^3-57*n^2-25*n} 6541038525963149 q001 781/1194 6541038533577758 a007 Real Root Of -413*x^4+682*x^3-900*x^2-727*x+176 6541038542640048 r008 a(0)=0,K{-n^6,-30-48*n-47*n^2-28*n^3} 6541038565503072 r008 a(0)=0,K{-n^6,36+26*n^3+56*n^2+35*n} 6541038578761179 a007 Real Root Of 98*x^4+515*x^3-921*x^2-652*x-128 6541038581718398 m001 1/exp(Kolakoski)*Artin^2/cos(Pi/12) 6541038582786108 a007 Real Root Of -90*x^4-122*x^3-371*x^2+642*x+561 6541038583349337 a007 Real Root Of 894*x^4+133*x^3+860*x^2+447*x-202 6541038583852790 a007 Real Root Of -369*x^4+900*x^3-680*x^2+241*x+768 6541038593110998 a007 Real Root Of 143*x^4+861*x^3-328*x^2+943*x-611 6541038604025602 r008 a(0)=0,K{-n^6,-26-50*n-51*n^2-26*n^3} 6541038614880800 l006 ln(3382/6505) 6541038641871826 m001 1/GAMMA(1/12)^2*exp(MertensB1)/GAMMA(3/4)^2 6541038646445719 m001 (gamma(2)-Bloch)/(cos(1/5*Pi)+gamma(1)) 6541038646462050 m001 (Chi(1)+BesselI(0,2))/(Weierstrass+ZetaQ(4)) 6541038648359643 m001 FellerTornier*MadelungNaCl^BesselI(0,1) 6541038663888327 a007 Real Root Of 283*x^4-771*x^3-505*x^2-253*x-217 6541038666666927 a007 Real Root Of -156*x^4+765*x^3-321*x^2+636*x+796 6541038681726412 r009 Im(z^3+c),c=-11/78+37/51*I,n=14 6541038691986721 a007 Real Root Of 757*x^4+450*x^3+671*x^2-615*x-702 6541038715113900 r008 a(0)=0,K{-n^6,28+21*n^3+67*n^2+37*n} 6541038721960908 a001 14619165/46*322^(1/8) 6541038725015350 m006 (3*exp(Pi)-3/5)/(2/5*Pi^2-5) 6541038735733880 h001 (6/7*exp(1)+8/11)/(7/12*exp(2)+4/11) 6541038747177618 m001 1/cos(Pi/12)/GAMMA(13/24)^2/exp(sqrt(Pi)) 6541038756698743 m001 GAMMA(19/24)^2*exp(FeigenbaumD)/GAMMA(7/24) 6541038756858686 a007 Real Root Of 331*x^4-636*x^3-306*x^2-424*x-385 6541038757176805 m005 (1/3*3^(1/2)+3/5)/(7/9*2^(1/2)+7/10) 6541038781140440 a007 Real Root Of 310*x^4+305*x^3+320*x^2-316*x-315 6541038802123299 m001 Chi(1)^cos(1/5*Pi)*Chi(1)^BesselI(1,2) 6541038808297672 m001 (TwinPrimes+ZetaP(2))/(Shi(1)+Cahen) 6541038808612027 a007 Real Root Of 891*x^4-128*x^3+840*x^2+54*x-523 6541038808651717 a001 377/3*3010349^(15/17) 6541038852762344 a001 317811/11*76^(10/53) 6541038863465610 r005 Im(z^2+c),c=-149/110+21/44*I,n=3 6541038875921238 a007 Real Root Of 611*x^4+397*x^3+587*x^2-416*x-524 6541038886583330 s002 sum(A286955[n]/(exp(n)+1),n=1..infinity) 6541038899018375 p004 log(31219/16231) 6541038908398182 r008 a(0)=0,K{-n^6,24+14*n^3+86*n^2+29*n} 6541038947853795 a007 Real Root Of 879*x^4-991*x^3-329*x^2-357*x-531 6541038960790652 a007 Real Root Of -852*x^4+708*x^3+878*x^2+487*x+297 6541038973806550 l006 ln(4283/8238) 6541038977655507 r005 Re(z^2+c),c=-21/29+5/53*I,n=5 6541039023050029 a007 Real Root Of 363*x^4-443*x^3-770*x^2-847*x+941 6541039023050160 a007 Real Root Of -544*x^4+483*x^3-386*x^2+364*x+638 6541039034829730 m001 (BesselK(0,1)-MertensB3)/(Totient+ZetaQ(2)) 6541039039920270 m002 -3-Pi^3-E^Pi*Pi^3+Pi^4 6541039047819023 a001 832040/199*47^(5/7) 6541039054223321 a001 514229/322*843^(25/28) 6541039057283227 a007 Real Root Of 762*x^4-147*x^3+28*x^2-473*x-502 6541039073530073 m001 (-GAMMA(5/24)+4)/(GAMMA(1/6)+1/2) 6541039094846498 r002 33th iterates of z^2 + 6541039122573208 a001 6557470319842/7*1364^(10/17) 6541039138092838 m002 -Pi^5+Cosh[Pi]/5+Pi^6*Tanh[Pi] 6541039142318082 k005 Champernowne real with floor(sqrt(3)*(222*n+156)) 6541039142418092 k001 Champernowne real with 385*n+269 6541039163857493 r005 Re(z^2+c),c=-13/18+15/49*I,n=3 6541039187372798 a007 Real Root Of 499*x^4-995*x^3+207*x^2-256*x+266 6541039187445536 m001 (-ln(2)+4)/(GAMMA(11/12)+4) 6541039207795158 m001 (1-Kolakoski)/Pi 6541039207966823 l006 ln(5184/9971) 6541039209320971 a007 Real Root Of 372*x^4-809*x^3+818*x^2+545*x-288 6541039228601081 a003 cos(Pi*22/81)*sin(Pi*36/77) 6541039241929076 m001 (Otter+Stephens)/(Psi(2,1/3)+GAMMA(5/6)) 6541039258572361 a003 cos(Pi*3/97)*sin(Pi*21/92) 6541039266985895 a007 Real Root Of 243*x^4-918*x^3-38*x^2+228*x-136 6541039267262277 r005 Im(z^2+c),c=-23/38+5/53*I,n=17 6541039291565388 a008 Real Root of x^4-x^3-26*x^2-56*x-72 6541039314341739 r002 2th iterates of z^2 + 6541039333514676 b008 5+Sqrt[1+E^Pi^(-1)] 6541039356093408 a003 cos(Pi*33/109)+cos(Pi*51/107) 6541039363338561 a007 Real Root Of -37*x^4+293*x^3-745*x^2+811*x+938 6541039393956447 m001 (Pi+Zeta(3))/(HeathBrownMoroz+LaplaceLimit) 6541039414058457 a007 Real Root Of 203*x^4-607*x^3-163*x^2-793*x-656 6541039416668315 r002 6th iterates of z^2 + 6541039416810640 m005 (1/3*Zeta(3)+1/11)/(7/8*3^(1/2)+6) 6541039427841313 r009 Im(z^3+c),c=-29/64+33/34*I,n=2 6541039439594523 m001 Trott2nd^GAMMA(11/12)*Trott2nd^Zeta(1,2) 6541039443781322 a001 11/75025*610^(39/41) 6541039444071454 a001 1/64108*(1/2*5^(1/2)+1/2)^13*47^(13/24) 6541039494514309 r002 4th iterates of z^2 + 6541039517379539 r008 a(0)=7,K{-n^6,-8+18*n^3-69*n^2+60*n} 6541039534841925 a007 Real Root Of -895*x^4-479*x^3-653*x^2-66*x+266 6541039548337252 a008 Real Root of x^4-2*x^3-82*x^2+83*x+1661 6541039556507832 r005 Re(z^2+c),c=-19/18+32/239*I,n=24 6541039562028470 h001 (1/8*exp(2)+3/4)/(7/9*exp(1)+4/9) 6541039563433515 m001 Pi+Psi(1,1/3)*BesselJ(0,1)*BesselJ(1,1) 6541039568395082 a001 3571/233*10946^(28/43) 6541039579594629 a007 Real Root Of -767*x^4+877*x^3-119*x^2-99*x+372 6541039613191130 m001 (MadelungNaCl+Salem)/(3^(1/2)-GAMMA(17/24)) 6541039635168443 r005 Im(z^2+c),c=-14/15+8/21*I,n=4 6541039646747911 m008 (1/5*Pi^6-1)/(3*Pi^4+1/5) 6541039659697007 a007 Real Root Of 18*x^4-970*x^3+782*x^2-27*x-627 6541039662964395 s002 sum(A027609[n]/((10^n-1)/n),n=1..infinity) 6541039678316187 a007 Real Root Of 394*x^4-412*x^3-415*x^2+21*x+207 6541039682151868 a001 7/28657*8^(9/19) 6541039711658096 a001 317811/322*843^(27/28) 6541039742806355 a007 Real Root Of -9*x^4-601*x^3-815*x^2-653*x+209 6541039752285452 a003 sin(Pi*7/48)/cos(Pi*29/110) 6541039779931877 m002 2-Cosh[Pi]/Pi^5+4*Log[Pi] 6541039790460894 r005 Re(z^2+c),c=-43/46+1/18*I,n=20 6541039805082698 a007 Real Root Of -244*x^4+771*x^3+929*x^2+285*x-755 6541039834606977 a007 Real Root Of 80*x^4-327*x^3+343*x^2-789*x-769 6541039870566735 m002 5+3/(4*Pi^4)-Sinh[Pi] 6541039876718961 r005 Re(z^2+c),c=-9/14+80/211*I,n=26 6541039884660303 a007 Real Root Of -765*x^4+984*x^3-87*x^2+635*x+868 6541039899634187 m001 (CopelandErdos+LandauRamanujan)/GAMMA(7/12) 6541039905027055 a007 Real Root Of 117*x^4+163*x^3+871*x^2-753*x-841 6541039905257627 m001 ln(3)^Zeta(1,2)-MertensB1 6541039924780652 b008 Haversine[Csch[11/3]] 6541039927047446 r005 Re(z^2+c),c=-17/30+50/79*I,n=12 6541039935460530 m001 (Backhouse+KhinchinHarmonic)/(Landau-ZetaQ(2)) 6541039945396099 a007 Real Root Of -407*x^4+548*x^3-144*x^2+383*x+540 6541039961543035 a007 Real Root Of -8*x^4+330*x^3+711*x^2+538*x-747 6541039963396169 m005 (1/3*gamma-1/6)/(7/9*Zeta(3)+3) 6541039968223186 a007 Real Root Of 309*x^4+186*x^3+678*x^2-976*x-933 6541039993387331 p003 LerchPhi(1/5,5,389/141) 6541040008580710 r005 Im(z^2+c),c=-17/30+13/110*I,n=19 6541040014373002 r002 32th iterates of z^2 + 6541040020468539 m001 1/Niven*Conway^2/exp(BesselK(0,1)) 6541040021169910 a008 Real Root of (14+9*x-17*x^2+3*x^3) 6541040025135147 m001 (-Ei(1)+Bloch)/(2^(1/3)+Catalan) 6541040027128882 a001 267914296/2207*199^(7/22) 6541040028825429 r005 Re(z^2+c),c=-31/86+38/59*I,n=18 6541040101266894 m005 (1/2*exp(1)+5/7)/(1/4*3^(1/2)-3/4) 6541040108384490 m006 (1/4*exp(2*Pi)-5/6)/(2*Pi^2+3/5) 6541040128174085 s002 sum(A194621[n]/((pi^n+1)/n),n=1..infinity) 6541040130698285 m005 (1/2*Pi-8/11)/(1/3*2^(1/2)+9/11) 6541040142618122 k001 Champernowne real with 386*n+268 6541040142718132 k005 Champernowne real with floor(sqrt(3)*(223*n+155)) 6541040173043906 m006 (1/6*exp(Pi)-4)/(3/4*Pi-1/6) 6541040175234930 a003 cos(Pi*35/89)-sin(Pi*34/77) 6541040178065925 a007 Real Root Of 268*x^4-608*x^3-297*x^2-544*x+604 6541040187712458 a007 Real Root Of -76*x^4-494*x^3-75*x^2-604*x+131 6541040203518681 a007 Real Root Of -942*x^4+463*x^3+192*x^2+812*x+751 6541040231096594 a007 Real Root Of 107*x^4-651*x^3+390*x^2-210*x-506 6541040235320484 m001 1/ln(BesselJ(1,1))*FeigenbaumDelta*GAMMA(1/12) 6541040254708507 a001 7/34*55^(15/52) 6541040274774421 s002 sum(A147874[n]/((pi^n-1)/n),n=1..infinity) 6541040276550159 r009 Im(z^3+c),c=-61/110+7/33*I,n=3 6541040280422068 a007 Real Root Of 62*x^4+519*x^3+696*x^2-198*x+678 6541040290677481 a007 Real Root Of 718*x^4-944*x^3-686*x^2-593*x-490 6541040321072681 l006 ln(901/1733) 6541040332961506 s002 sum(A125331[n]/(n*exp(pi*n)+1),n=1..infinity) 6541040337543161 m001 (cos(1/5*Pi)-exp(Pi))/(-BesselJ(1,1)+Paris) 6541040337946155 m005 (1/2*exp(1)+6/7)/(4/5*Pi+7/8) 6541040358244723 m001 (ln(2^(1/2)+1)-3^(1/3))/(Robbin-Stephens) 6541040386305248 m001 GaussAGM^UniversalParabolic/Psi(1,1/3) 6541040402117087 a007 Real Root Of 344*x^4-432*x^3+437*x^2-14*x-380 6541040415045329 a007 Real Root Of 671*x^4+141*x^3+59*x^2-898*x-696 6541040446761842 h001 (1/5*exp(2)+2/3)/(7/8*exp(1)+9/10) 6541040452316738 a007 Real Root Of 45*x^4-738*x^3+278*x^2+394*x-76 6541040458908892 a007 Real Root Of -773*x^4-77*x^3-513*x^2-522*x-2 6541040527717423 m009 (1/5*Psi(1,2/3)-3/4)/(3/4*Psi(1,2/3)-1/5) 6541040529212616 m001 sin(1/12*Pi)-TwinPrimes^Ei(1,1) 6541040534242501 a005 (1/cos(12/145*Pi))^257 6541040545086874 a007 Real Root Of -483*x^4+307*x^3-903*x^2+479*x+874 6541040563771920 r005 Re(z^2+c),c=-23/30+2/55*I,n=27 6541040580489528 g001 abs(GAMMA(-139/60+I*61/20)) 6541040580859792 a007 Real Root Of -507*x^4+744*x^3-346*x^2+801*x+973 6541040656908158 a001 73681302247/3*34^(5/18) 6541040707624947 m001 (ln(3)+BesselI(1,2))/(Conway+FransenRobinson) 6541040730787185 r005 Re(z^2+c),c=-59/86+21/58*I,n=12 6541040740200095 r005 Im(z^2+c),c=-31/54+5/42*I,n=53 6541040779505568 m005 (-1/6+1/4*5^(1/2))/(1/12*Zeta(3)-7/10) 6541040782476361 r005 Im(z^2+c),c=-11/74+32/49*I,n=52 6541040901458326 a007 Real Root Of 75*x^4+353*x^3-764*x^2+857*x-209 6541040905837417 m005 (1/3*5^(1/2)-1/3)/(3/4*3^(1/2)+5) 6541040907766531 m001 (-ln(2)+Thue)/(ln(2)/ln(10)+5^(1/2)) 6541040919751586 a007 Real Root Of 376*x^4+413*x^3+268*x^2-789*x-584 6541040921004659 a001 3571/144*10946^(19/54) 6541040931657228 a007 Real Root Of 511*x^4-773*x^3+855*x^2+131*x-590 6541040934245965 m001 FeigenbaumB*FeigenbaumMu-Pi*2^(1/2)/GAMMA(3/4) 6541040944937662 r005 Re(z^2+c),c=-99/122+20/57*I,n=6 6541040957483864 m001 (sin(1)+LambertW(1))/(-ln(2)+Zeta(1/2)) 6541040979940043 a001 (5+5^(1/2))^(1073/118) 6541040989769582 a007 Real Root Of 834*x^4-543*x^3+199*x^2+177*x-274 6541040994734308 a001 2584/7*5600748293801^(15/17) 6541041004193760 r002 26th iterates of z^2 + 6541041034915715 l006 ln(8240/8797) 6541041043691721 a007 Real Root Of 724*x^4-768*x^3+494*x^2+67*x-515 6541041067045773 m001 Pi^2*OneNinth*ln(cos(1)) 6541041068419645 a008 Real Root of x^4-137*x^2+4031 6541041101447213 a007 Real Root Of -320*x^4+906*x^3-394*x^2-50*x+448 6541041104161768 m001 Riemann2ndZero*exp(Conway)^2/TwinPrimes^2 6541041109132676 r009 Re(z^3+c),c=-2/5+23/31*I,n=5 6541041118108624 r002 43th iterates of z^2 + 6541041125231072 m005 (1/2*3^(1/2)+7/12)/(1/9*gamma-2/7) 6541041128277966 m001 ErdosBorwein^Zeta(1,-1)/Riemann1stZero 6541041129454004 a007 Real Root Of -349*x^4+985*x^3-45*x^2+811*x-723 6541041135068909 a001 5/3571*11^(9/14) 6541041136974673 a007 Real Root Of -908*x^4+744*x^3-794*x^2-121*x+635 6541041142818152 k001 Champernowne real with 387*n+267 6541041155639546 a007 Real Root Of -135*x^4-991*x^3-757*x^2-436*x-677 6541041156312648 m001 (gamma(3)+ArtinRank2)/(Catalan-cos(1/5*Pi)) 6541041159844952 a001 1515744265389*9349^(7/17) 6541041174098800 a001 233802911/1926*199^(7/22) 6541041182952971 a001 365435296162/7*24476^(12/17) 6541041189910554 a001 2504730781961/7*64079^(8/17) 6541041190578172 a001 6557470319842/7*167761^(6/17) 6541041190630281 a001 686789568*439204^(15/17) 6541041190660188 a001 433494437/7*20633239^(14/17) 6541041190660200 a001 267914296/7*141422324^(13/17) 6541041190660201 a001 701408733/7*969323029^(11/17) 6541041190660201 a001 686789568*2537720636^(9/17) 6541041190660201 a001 591286729879/7*6643838879^(5/17) 6541041190660201 a001 12586269025/7*119218851371^(7/17) 6541041190660201 a001 365435296162/7*14662949395604^(4/17) 6541041190660201 a001 53316291173/7*23725150497407^(5/17) 6541041190660201 a001 6557470319842/7*28143753123^(3/17) 6541041190660201 a001 20365011074/7*2139295485799^(6/17) 6541041190660201 a001 2504730781961/7*4106118243^(4/17) 6541041190660201 a001 1134903170/7*817138163596^(8/17) 6541041190660201 a001 365435296162/7*599074578^(6/17) 6541041190660201 a001 433494437/7*17393796001^(10/17) 6541041190660201 a001 53316291173/7*228826127^(8/17) 6541041190660201 a001 24157817/7*54018521^(16/17) 6541041190660201 a001 63245986/7*9062201101803^(9/17) 6541041190660201 a001 1134903170/7*87403803^(12/17) 6541041190660203 a001 365435296162/7*33385282^(7/17) 6541041190660306 a001 3524578/7*312119004989^(12/17) 6541041190660306 a001 3524578/7*3461452808002^(11/17) 6541041190660306 a001 3524578/7*1568397607^(15/17) 6541041190660363 a001 53316291173/7*4870847^(10/17) 6541041190660756 a001 6557470319842/7*1860498^(5/17) 6541041190665148 a001 514229/7*505019158607^(13/17) 6541041190665148 a001 514229/7*73681302247^(14/17) 6541041190667058 a001 365435296162/7*710647^(9/17) 6541041190717643 a001 139583862445/7*271443^(11/17) 6541041193849426 a001 139583862445/7*39603^(13/17) 6541041200894282 q001 2048/3131 6541041201578776 a001 10946/7*192900153618^(16/17) 6541041217563921 a001 53316291173/7*15127^(16/17) 6541041242754250 a001 1/305*4181^(14/39) 6541041259761395 a001 76/3*(1/2*5^(1/2)+1/2)^5*3^(10/13) 6541041266360170 m001 (ln(2+3^(1/2))+Backhouse)/(FeigenbaumB+Magata) 6541041302891269 m001 (2^(1/2)+sin(1/5*Pi))/(FeigenbaumKappa+Niven) 6541041323081091 a007 Real Root Of 363*x^4-560*x^3+12*x^2-157*x-331 6541041341012850 a007 Real Root Of 853*x^4+219*x^3+496*x^2-908*x-901 6541041341439489 a001 1836311903/15127*199^(7/22) 6541041351647568 m001 Gompertz^(cos(1/12*Pi)/Salem) 6541041352010936 a001 365435296162/7*5778^(14/17) 6541041365854167 a001 1602508992/13201*199^(7/22) 6541041369416221 a001 12586269025/103682*199^(7/22) 6541041369935917 a001 121393*199^(7/22) 6541041370011740 a001 86267571272/710647*199^(7/22) 6541041370022802 a001 75283811239/620166*199^(7/22) 6541041370024416 a001 591286729879/4870847*199^(7/22) 6541041370024652 a001 516002918640/4250681*199^(7/22) 6541041370024686 a001 4052739537881/33385282*199^(7/22) 6541041370024691 a001 3536736619241/29134601*199^(7/22) 6541041370024694 a001 6557470319842/54018521*199^(7/22) 6541041370024707 a001 2504730781961/20633239*199^(7/22) 6541041370024797 a001 956722026041/7881196*199^(7/22) 6541041370025414 a001 365435296162/3010349*199^(7/22) 6541041370029639 a001 139583862445/1149851*199^(7/22) 6541041370058601 a001 53316291173/439204*199^(7/22) 6541041370257107 a001 20365011074/167761*199^(7/22) 6541041371617691 a001 7778742049/64079*199^(7/22) 6541041380943268 a001 2971215073/24476*199^(7/22) 6541041383622708 m001 (Si(Pi)+Pi^(1/2))/(Landau+Trott) 6541041389892589 r002 5th iterates of z^2 + 6541041394487134 m001 (KomornikLoreti-ReciprocalFibonacci)^Zeta(1,2) 6541041416213951 r005 Im(z^2+c),c=29/106+21/41*I,n=23 6541041444861727 a001 1134903170/9349*199^(7/22) 6541041448622878 r005 Re(z^2+c),c=-25/29+3/13*I,n=12 6541041449137075 a007 Real Root Of 563*x^4+772*x^3+737*x^2-186*x-324 6541041469047216 r005 Re(z^2+c),c=-1/54+32/39*I,n=4 6541041470673796 a007 Real Root Of 152*x^4-398*x^3+746*x^2-588*x-843 6541041480647947 a007 Real Root Of 222*x^4-656*x^3+333*x^2-560*x-733 6541041502234273 m001 cos(1)*(ln(2)+polylog(4,1/2)) 6541041518728658 m001 (MertensB3+Trott2nd)/(TwinPrimes-ZetaP(2)) 6541041537618458 r009 Re(z^3+c),c=-7/58+23/32*I,n=59 6541041541332315 r002 10th iterates of z^2 + 6541041541791974 l006 ln(4727/9092) 6541041549852509 m005 (-5/44+1/4*5^(1/2))/(25/4+1/4*5^(1/2)) 6541041551455765 a007 Real Root Of -754*x^4-434*x^3-154*x^2+620*x+488 6541041562102663 k002 Champernowne real with n^2+45*n-40 6541041572142763 k003 Champernowne real with 1/6*n^3+281/6*n-41 6541041579630589 p001 sum(1/(354*n+157)/(12^n),n=0..infinity) 6541041582182863 k003 Champernowne real with 1/3*n^3-n^2+146/3*n-42 6541041590099359 a007 Real Root Of -735*x^4+433*x^3-249*x^2+923*x+966 6541041592038953 m007 (-4/5*gamma+3)/(-1/3*gamma-ln(2)+1/6*Pi+3/4) 6541041592222963 k003 Champernowne real with 1/2*n^3-2*n^2+101/2*n-43 6541041602263064 k003 Champernowne real with 2/3*n^3-3*n^2+157/3*n-44 6541041612303164 k003 Champernowne real with 5/6*n^3-4*n^2+325/6*n-45 6541041622343264 k003 Champernowne real with n^3-5*n^2+56*n-46 6541041626956890 a007 Real Root Of 427*x^4-641*x^3-762*x^2-918*x-532 6541041632383364 k003 Champernowne real with 7/6*n^3-6*n^2+347/6*n-47 6541041642423464 k003 Champernowne real with 4/3*n^3-7*n^2+179/3*n-48 6541041652463565 k003 Champernowne real with 3/2*n^3-8*n^2+123/2*n-49 6541041662503665 k003 Champernowne real with 5/3*n^3-9*n^2+190/3*n-50 6541041672543765 k003 Champernowne real with 11/6*n^3-10*n^2+391/6*n-51 6541041682583865 k003 Champernowne real with 2*n^3-11*n^2+67*n-52 6541041692623965 k003 Champernowne real with 13/6*n^3-12*n^2+413/6*n-53 6541041702664066 k003 Champernowne real with 7/3*n^3-13*n^2+212/3*n-54 6541041712704166 k003 Champernowne real with 5/2*n^3-14*n^2+145/2*n-55 6541041722744266 k003 Champernowne real with 8/3*n^3-15*n^2+223/3*n-56 6541041732784366 k003 Champernowne real with 17/6*n^3-16*n^2+457/6*n-57 6541041735443953 a007 Real Root Of 554*x^4-126*x^3+931*x^2+26*x-518 6541041742824466 k003 Champernowne real with 3*n^3-17*n^2+78*n-58 6541041752864567 k003 Champernowne real with 19/6*n^3-18*n^2+479/6*n-59 6541041755866162 m001 (ln(2)-Conway)/(HardyLittlewoodC4+Kac) 6541041757736607 r005 Re(z^2+c),c=-37/58+17/42*I,n=50 6541041762904667 k003 Champernowne real with 10/3*n^3-19*n^2+245/3*n-60 6541041764831138 r005 Re(z^2+c),c=11/126+25/56*I,n=18 6541041771174569 r005 Im(z^2+c),c=-25/44+7/59*I,n=56 6541041772944767 k003 Champernowne real with 7/2*n^3-20*n^2+167/2*n-61 6541041777216755 r005 Im(z^2+c),c=33/118+32/59*I,n=23 6541041778708268 m001 Porter*(Pi+ln(2+3^(1/2))) 6541041779279510 a007 Real Root Of -386*x^4+871*x^3+348*x^2+944*x+783 6541041782984867 k003 Champernowne real with 11/3*n^3-21*n^2+256/3*n-62 6541041783262397 a007 Real Root Of 346*x^4+320*x^3+324*x^2-510*x-446 6541041793024967 k003 Champernowne real with 23/6*n^3-22*n^2+523/6*n-63 6541041796739722 r002 18th iterates of z^2 + 6541041799343788 a007 Real Root Of -260*x^4+925*x^3+278*x^2+495*x-654 6541041803065068 k003 Champernowne real with 4*n^3-23*n^2+89*n-64 6541041813105168 k003 Champernowne real with 25/6*n^3-24*n^2+545/6*n-65 6541041823145268 k003 Champernowne real with 13/3*n^3-25*n^2+278/3*n-66 6541041829264008 l006 ln(3826/7359) 6541041832948687 m001 Bloch*Grothendieck^BesselI(1,1) 6541041833185368 k003 Champernowne real with 9/2*n^3-26*n^2+189/2*n-67 6541041843225468 k003 Champernowne real with 14/3*n^3-27*n^2+289/3*n-68 6541041853265569 k003 Champernowne real with 29/6*n^3-28*n^2+589/6*n-69 6541041854678310 m001 BesselK(1,1)^(FibonacciFactorial/Porter) 6541041863305669 k003 Champernowne real with 5*n^3-29*n^2+100*n-70 6541041863588995 b008 Sqrt[3]*(1+ArcSinh[8]) 6541041868378408 m001 (OneNinth+Thue)/(Artin-Si(Pi)) 6541041873345769 k003 Champernowne real with 31/6*n^3-30*n^2+611/6*n-71 6541041882604470 a003 sin(Pi*9/67)/sin(Pi*14/65) 6541041882965394 a001 433494437/3571*199^(7/22) 6541041883385869 k003 Champernowne real with 16/3*n^3-31*n^2+311/3*n-72 6541041893425969 k003 Champernowne real with 11/2*n^3-32*n^2+211/2*n-73 6541041903466061 k003 Champernowne real with 17/3*n^3-33*n^2+322/3*n-74 6541041906079302 a007 Real Root Of 695*x^4-658*x^3-318*x^2-78*x+244 6541041908748830 r005 Re(z^2+c),c=-15/14+206/241*I,n=2 6541041913506161 k003 Champernowne real with 35/6*n^3-34*n^2+655/6*n-75 6541041923546261 k003 Champernowne real with 6*n^3-35*n^2+111*n-76 6541041933586361 k003 Champernowne real with 37/6*n^3-36*n^2+677/6*n-77 6541041934878236 m005 (1/2*Catalan+6/11)/(7/11*5^(1/2)+1/9) 6541041943626461 k003 Champernowne real with 19/3*n^3-37*n^2+344/3*n-78 6541041953494426 a007 Real Root Of 983*x^4-748*x^3-944*x^2-880*x-561 6541041953666561 k003 Champernowne real with 13/2*n^3-38*n^2+233/2*n-79 6541041955250552 a007 Real Root Of -425*x^4+176*x^3-560*x^2+901*x+956 6541041963706661 k003 Champernowne real with 20/3*n^3-39*n^2+355/3*n-80 6541041973746761 k003 Champernowne real with 41/6*n^3-40*n^2+721/6*n-81 6541041983786861 k003 Champernowne real with 7*n^3-41*n^2+122*n-82 6541041993826961 k003 Champernowne real with 43/6*n^3-42*n^2+743/6*n-83 6541042003867061 k003 Champernowne real with 22/3*n^3-43*n^2+377/3*n-84 6541042013165964 a007 Real Root Of -212*x^4+344*x^3-752*x^2-67*x+413 6541042013907161 k003 Champernowne real with 15/2*n^3-44*n^2+255/2*n-85 6541042016053640 m001 Sierpinski/MinimumGamma^2*ln(GAMMA(11/12)) 6541042023947261 k003 Champernowne real with 23/3*n^3-45*n^2+388/3*n-86 6541042033987361 k003 Champernowne real with 47/6*n^3-46*n^2+787/6*n-87 6541042044027461 k003 Champernowne real with 8*n^3-47*n^2+133*n-88 6541042054067561 k003 Champernowne real with 49/6*n^3-48*n^2+809/6*n-89 6541042064107661 k003 Champernowne real with 25/3*n^3-49*n^2+410/3*n-90 6541042067672653 r002 35th iterates of z^2 + 6541042074147761 k003 Champernowne real with 17/2*n^3-50*n^2+277/2*n-91 6541042084187861 k003 Champernowne real with 26/3*n^3-51*n^2+421/3*n-92 6541042094227961 k003 Champernowne real with 53/6*n^3-52*n^2+853/6*n-93 6541042102414820 m001 (Zeta(5)-Pi^(1/2))/(GAMMA(23/24)+Paris) 6541042104268061 k003 Champernowne real with 9*n^3-53*n^2+144*n-94 6541042105573514 m005 (1/3*gamma-2/5)/(9/10*exp(1)+8/11) 6541042114308161 k003 Champernowne real with 55/6*n^3-54*n^2+875/6*n-95 6541042117676236 a007 Real Root Of -718*x^4+700*x^3-974*x^2-552*x+383 6541042124348261 k003 Champernowne real with 28/3*n^3-55*n^2+443/3*n-96 6541042130614395 m001 MadelungNaCl*exp(Conway)^2/BesselK(1,1)^2 6541042134388361 k003 Champernowne real with 19/2*n^3-56*n^2+299/2*n-97 6541042136409869 p001 sum((-1)^n/(509*n+96)/n/(25^n),n=1..infinity) 6541042143018182 k001 Champernowne real with 388*n+266 6541042143018182 k005 Champernowne real with floor(sqrt(3)*(224*n+154)) 6541042144428461 k003 Champernowne real with 29/3*n^3-57*n^2+454/3*n-98 6541042154468561 k003 Champernowne real with 59/6*n^3-58*n^2+919/6*n-99 6541042164508661 k003 Champernowne real with 10*n^3-59*n^2+155*n-100 6541042170297727 a007 Real Root Of 337*x^4-928*x^3-877*x^2-518*x-285 6541042174173177 r005 Re(z^2+c),c=-19/44+35/61*I,n=40 6541042174577746 a007 Real Root Of 478*x^4+22*x^3-630*x^2-283*x+361 6541042203899804 r005 Re(z^2+c),c=-7/8+101/205*I,n=4 6541042209479310 a007 Real Root Of 366*x^4-392*x^3-494*x^2-642*x+674 6541042212836593 r009 Im(z^3+c),c=-6/29+17/24*I,n=10 6541042224749261 k003 Champernowne real with 11*n^3-65*n^2+166*n-106 6541042253740806 a001 1/416020*233^(20/33) 6541042279475603 r005 Re(z^2+c),c=19/70+17/45*I,n=18 6541042284989861 k003 Champernowne real with 12*n^3-71*n^2+177*n-112 6541042288848907 r005 Re(z^2+c),c=-29/110+25/37*I,n=5 6541042293838452 l006 ln(2925/5626) 6541042300070266 r005 Im(z^2+c),c=-3/4+16/173*I,n=4 6541042332271667 a007 Real Root Of 995*x^4+295*x^3+886*x^2+27*x-461 6541042334189581 a007 Real Root Of 613*x^4-392*x^3+664*x^2+52*x-472 6541042354150113 a001 1/329*5^(10/21) 6541042358059189 a007 Real Root Of -152*x^4-889*x^3+827*x^2+764*x-934 6541042370063395 a007 Real Root Of -612*x^4+666*x^3-827*x^2+365*x+891 6541042391596521 m001 KhinchinLevy^TwinPrimes/(KhinchinLevy^Pi) 6541042437945393 b008 1/4+(4*(2+E))/3 6541042442461438 m001 (exp(Pi)-ln(3))/(3^(1/3)+Tetranacci) 6541042444728680 a007 Real Root Of -538*x^4-542*x^3-329*x^2+496*x+412 6541042446358759 h001 (-5*exp(-2)+3)/(-9*exp(-3)+4) 6541042458433486 p004 log(20771/10799) 6541042470861214 a007 Real Root Of -4*x^4+320*x^3-711*x^2+782*x+906 6541042472663015 r005 Re(z^2+c),c=-7/10+16/195*I,n=3 6541042510786079 m001 gamma(3)^Weierstrass/cos(1/5*Pi) 6541042513875472 r009 Im(z^3+c),c=-1/27+30/31*I,n=2 6541042518236509 a007 Real Root Of -67*x^4+725*x^3-710*x^2+685*x+967 6541042523336264 m001 (3^(1/3)+Champernowne)/(FeigenbaumMu-Salem) 6541042524707761 a007 Real Root Of 677*x^4-425*x^3+261*x^2-441*x-643 6541042532860367 m001 (3^(1/3)-Champernowne)/(Mills+Rabbit) 6541042539772730 r005 Im(z^2+c),c=-5/8+7/57*I,n=60 6541042549704046 a008 Real Root of x^3-x^2-101*x-338 6541042554233269 a003 cos(Pi*3/65)*sin(Pi*20/87) 6541042559990395 h001 (-5*exp(6)-7)/(-5*exp(2)+6) 6541042560237667 a001 7/610*28657^(13/33) 6541042564215812 h001 (2/7*exp(2)+1/5)/(5/12*exp(2)+5/11) 6541042574838604 a007 Real Root Of 77*x^4+343*x^3-945*x^2+581*x-730 6541042579047202 m005 (1/3*Catalan-3/5)/(7/8*gamma+4) 6541042588773874 m001 (ZetaQ(3)+ZetaR(2))^exp(1) 6541042596024732 a007 Real Root Of 755*x^4-549*x^3-97*x^2-134*x-338 6541042610147533 m001 (-Zeta(1,2)+Stephens)/(exp(Pi)-gamma(3)) 6541042611417363 r005 Im(z^2+c),c=-27/34+61/91*I,n=4 6541042652994191 l006 ln(4949/9519) 6541042659781434 m001 (OneNinth+Totient)/(ln(2)-Bloch) 6541042683752138 m001 (-Khinchin+MertensB2)/(DuboisRaymond-exp(1)) 6541042716444823 a007 Real Root Of -65*x^4-416*x^3-26*x^2-490*x+473 6541042729133935 r005 Im(z^2+c),c=-23/38+18/41*I,n=32 6541042750121486 m002 -6+Pi-Pi^5/6-Sinh[Pi] 6541042760270041 m001 (ln(gamma)+LandauRamanujan)^(Pi^(1/2)) 6541042760270041 m001 (log(gamma)+LandauRamanujan)^sqrt(Pi) 6541042769782629 a007 Real Root Of -143*x^4-917*x^3+143*x^2+256*x+697 6541042774456352 a007 Real Root Of -148*x^4-870*x^3+555*x^2-616*x-328 6541042796957030 m005 (1/2*Zeta(3)-3/10)/(1/8*exp(1)-4/5) 6541042835825899 r005 Im(z^2+c),c=-11/10+19/244*I,n=30 6541042838835756 m001 (StronglyCareFree-ZetaQ(2))^Conway 6541042849767681 q001 1267/1937 6541042864736155 a007 Real Root Of 111*x^4+663*x^3-429*x^2-209*x-659 6541042876867656 m001 1/TwinPrimes*ln(Kolakoski)^2/GAMMA(3/4) 6541042880279457 a007 Real Root Of 92*x^4-998*x^3-129*x^2-901*x+907 6541042889022339 a007 Real Root Of 607*x^4-168*x^3+407*x^2-897*x-919 6541042908848107 m005 (1/2*3^(1/2)-3/8)/(23/12+5/2*5^(1/2)) 6541042918858001 r005 Im(z^2+c),c=-57/110+5/8*I,n=3 6541042920440759 a001 28657/18*18^(22/45) 6541042928263849 r005 Re(z^2+c),c=-3/58+16/21*I,n=59 6541042946385623 l006 ln(5947/6349) 6541043000384108 m001 (GAMMA(11/12)*Otter-KhinchinLevy)/Otter 6541043008191420 s002 sum(A118954[n]/(n^3*exp(n)-1),n=1..infinity) 6541043016805513 a007 Real Root Of -670*x^4+534*x^3+849*x^2+428*x-670 6541043031449280 a007 Real Root Of 208*x^4-x^3-704*x^2-192*x+389 6541043041727260 a007 Real Root Of -87*x^4-595*x^3-82*x^2+455*x-772 6541043073599527 a001 19/208010*832040^(28/43) 6541043083900226 r005 Re(z^2+c),c=-1/14+23/30*I,n=2 6541043133504118 m001 (ArtinRank2+Bloch)/(FeigenbaumMu-Grothendieck) 6541043143218212 k001 Champernowne real with 389*n+265 6541043164523848 m005 (2^(1/2)+5/6)/(5^(1/2)+6/5) 6541043172030995 l006 ln(2024/3893) 6541043183567675 m001 (HardyLittlewoodC3+Trott)/(Ei(1,1)-Psi(1,1/3)) 6541043189246586 a007 Real Root Of 334*x^4-270*x^3-394*x^2-318*x+391 6541043197800622 a007 Real Root Of -85*x^4+663*x^3-823*x^2-592*x+166 6541043202660243 a007 Real Root Of 850*x^4-401*x^3-702*x^2-237*x+412 6541043208434179 a007 Real Root Of -685*x^4-905*x^3-643*x^2+151*x+246 6541043226068668 r002 55th iterates of z^2 + 6541043258851846 a007 Real Root Of 351*x^4-937*x^3-444*x^2-386*x-389 6541043260752317 a007 Real Root Of -586*x^4+891*x^3+80*x^2+987*x+968 6541043302497380 m001 1/GAMMA(1/4)/ln(GAMMA(1/3))*GAMMA(7/12)^2 6541043312713483 k009 concat of cont frac of 6541043318512791 s002 sum(A214742[n]/(n*pi^n-1),n=1..infinity) 6541043341819858 a003 1/2+2*cos(11/27*Pi)+cos(11/30*Pi)-cos(4/21*Pi) 6541043365552050 m001 1/CareFree^2*Artin^2*exp(BesselK(0,1))^2 6541043402059245 a001 317811/76*29^(49/60) 6541043407363994 m001 (Riemann1stZero+TreeGrowth2nd)/(Catalan-ln(2)) 6541043420104057 r009 Im(z^3+c),c=-35/74+23/48*I,n=5 6541043425187987 r009 Re(z^3+c),c=-3/26+37/59*I,n=26 6541043426002027 m001 (gamma+ReciprocalFibonacci)/BesselK(1,1) 6541043439092938 r002 4th iterates of z^2 + 6541043443624733 m001 (exp(Pi)-sin(1))/(gamma(3)+Magata) 6541043484100906 m001 1/Catalan^2/OneNinth*ln(arctan(1/2))^2 6541043496962770 m008 (2/3*Pi^4-2)/(Pi^6+5/6) 6541043504481162 r002 10th iterates of z^2 + 6541043544708787 a007 Real Root Of 559*x^4-390*x^3+928*x^2-686*x+41 6541043591659076 m001 CopelandErdos*Cahen*exp(MinimumGamma) 6541043603533890 a007 Real Root Of 805*x^4-489*x^3+420*x^2-46*x-494 6541043616704331 a007 Real Root Of -293*x^4+4*x^3-181*x^2+281*x+316 6541043642375043 m001 (Pi^(1/2))^Zeta(1/2)/LaplaceLimit 6541043665860988 r002 3th iterates of z^2 + 6541043667729246 m001 Champernowne+Rabbit*RenyiParking 6541043668784623 l006 ln(5171/9946) 6541043670932807 h001 (1/9*exp(1)+8/11)/(6/11*exp(1)+1/11) 6541043686501927 r005 Im(z^2+c),c=-12/17+5/62*I,n=52 6541043686899816 r005 Re(z^2+c),c=1/70+20/61*I,n=15 6541043703272846 a007 Real Root Of -945*x^4+856*x^3-974*x^2-482*x+514 6541043705056909 m001 (GAMMA(3/4)-Riemann3rdZero)^Lehmer 6541043715418969 m001 TreeGrowth2nd/Backhouse^2/exp(gamma)^2 6541043734865973 h001 (1/6*exp(1)+9/11)/(2/11*exp(2)+3/5) 6541043741641993 r002 22th iterates of z^2 + 6541043761280616 g006 Psi(1,1/10)-Psi(1,5/11)-Psi(1,4/7)-Psi(1,1/5) 6541043770053005 m001 1/sinh(1)/ln(Bloch)/sqrt(3) 6541043773217030 m006 (5/6*exp(Pi)+3/5)/(1/3*Pi^2-1/4) 6541043797506959 a008 Real Root of (5+x-x^2+14*x^3) 6541043812731663 a007 Real Root Of -75*x^4+134*x^3-980*x^2-250*x+307 6541043821857019 m001 Champernowne/exp(Backhouse)/BesselJ(1,1) 6541043851220034 a007 Real Root Of -248*x^4-425*x^3+101*x^2+458*x-3 6541043883675035 a007 Real Root Of -235*x^4+489*x^3+556*x^2+641*x-751 6541043912332896 m001 1/Zeta(9)*GAMMA(7/24)^2*exp(cos(Pi/12))^2 6541043931640100 r009 Re(z^3+c),c=-57/106+3/19*I,n=42 6541043965554418 m002 -(E^Pi/Pi^3)-6*Log[Pi]+ProductLog[Pi] 6541043979229775 a001 31622993/161*322^(5/24) 6541043988272803 l006 ln(3147/6053) 6541044016526244 a007 Real Root Of -536*x^4+505*x^3+636*x^2+530*x-662 6541044022239774 a007 Real Root Of -589*x^4+968*x^3+569*x^2+712*x+601 6541044042766575 m001 1/Zeta(1/2)^2*MadelungNaCl^2/exp(cosh(1))^2 6541044075820926 r009 Im(z^3+c),c=-37/70+22/61*I,n=13 6541044089647494 a008 Real Root of x^4-x^3-90*x^2+72*x+1829 6541044094910518 m001 (-ln(3)+ZetaP(2))/(LambertW(1)+BesselK(0,1)) 6541044095405591 a007 Real Root Of 41*x^4-315*x^3+111*x^2-278*x+215 6541044098639459 m001 (exp(-1/2*Pi)+ZetaP(4))/(Chi(1)-ln(2^(1/2)+1)) 6541044103255792 m005 (1/3*Zeta(3)+1/10)/(4/11*gamma+5/9) 6541044132630732 m005 (1/3*Pi-3/8)/(1/6*Catalan+7/8) 6541044137318808 a007 Real Root Of 532*x^4-248*x^3+991*x^2+96*x-528 6541044140946057 m005 (1/2*gamma+7/11)/(1/4*gamma-2/7) 6541044143418232 k005 Champernowne real with floor(sqrt(3)*(225*n+153)) 6541044143418242 k001 Champernowne real with 390*n+264 6541044150476471 a001 2207/13*8^(24/37) 6541044173624266 s002 sum(A165958[n]/(exp(n)-1),n=1..infinity) 6541044178718833 r005 Re(z^2+c),c=-11/13+2/9*I,n=19 6541044262013475 r002 22th iterates of z^2 + 6541044265437286 m004 -6+3/E^(Sqrt[5]*Pi)-Cos[Sqrt[5]*Pi]^2 6541044288485979 a007 Real Root Of -511*x^4+215*x^3-661*x^2-834*x-109 6541044305567513 m001 PrimesInBinary-ReciprocalLucas^Paris 6541044309880815 r005 Re(z^2+c),c=19/40+11/51*I,n=2 6541044314049137 m001 (Niven+Thue)/(exp(1)+Zeta(3)) 6541044348378885 m001 1/(3^(1/3))^2/exp(Paris)*GAMMA(3/4)^2 6541044359522929 s002 sum(A066283[n]/((pi^n-1)/n),n=1..infinity) 6541044375175220 l006 ln(4270/8213) 6541044377463516 r005 Im(z^2+c),c=-37/30+7/81*I,n=54 6541044384878042 a008 Real Root of (-6+6*x+x^2+9*x^4) 6541044454392585 m005 (1/2*exp(1)+6/11)/(2*2^(1/2)+1/12) 6541044455293451 a001 19/36*5^(2/15) 6541044484873300 a007 Real Root Of -894*x^4+199*x^3-854*x^2-154*x+484 6541044515252662 m005 (1/2*Zeta(3)+8/9)/(7/10*exp(1)+3/8) 6541044551585584 r005 Im(z^2+c),c=-5/8+13/95*I,n=29 6541044552937413 b008 Pi+74*Sin[1] 6541044575538494 m005 (1/2*gamma-3/8)/(7/8*2^(1/2)+1/12) 6541044582848821 m002 -1-Pi-Cosh[Pi]+Pi^2/ProductLog[Pi] 6541044616183769 a007 Real Root Of 697*x^4-970*x^3+450*x^2-100*x-657 6541044617126640 r009 Im(z^3+c),c=-15/86+35/47*I,n=47 6541044622676457 m001 (Pi+sin(1))/(MertensB3-Sarnak) 6541044635610140 r002 8th iterates of z^2 + 6541044651249510 a007 Real Root Of 341*x^4-536*x^3-301*x^2+77*x+166 6541044707080693 a001 1/34*4181^(35/54) 6541044715929191 m005 (1/2*Pi-4/9)/(1/3*Pi-7/8) 6541044719467397 a007 Real Root Of 715*x^4-331*x^3+668*x^2-79*x-561 6541044737830661 m001 (PlouffeB-ZetaP(4))/(3^(1/3)-FeigenbaumB) 6541044739688233 h001 (-4*exp(-1)-7)/(-6*exp(3)-9) 6541044749790181 r002 5th iterates of z^2 + 6541044754162719 m001 (Rabbit+ZetaQ(2))/(BesselI(0,1)-Paris) 6541044763425444 r009 Im(z^3+c),c=-41/86+26/53*I,n=8 6541044773491556 r005 Im(z^2+c),c=-133/110+3/29*I,n=35 6541044776119402 q001 1753/2680 6541044797732016 a007 Real Root Of -910*x^4+159*x^3+161*x^2+774*x+50 6541044816081377 m001 1/ln(GAMMA(1/12))*GaussKuzminWirsing^2/gamma 6541044820286312 a007 Real Root Of 274*x^4-746*x^3-843*x^2-634*x+934 6541044821800007 a007 Real Root Of -789*x^4+318*x^3-332*x^2+542*x+730 6541044853533745 r009 Re(z^3+c),c=-29/50+31/54*I,n=18 6541044854092400 a003 sin(Pi*1/48)/sin(Pi*52/105) 6541044874033895 a007 Real Root Of 844*x^4+356*x^3+460*x^2-930*x-860 6541044885774177 a001 165580141/1364*199^(7/22) 6541044918429119 a007 Real Root Of -164*x^4+556*x^3+904*x^2+692*x-965 6541044924843541 m001 Chi(1)+Pi*csc(5/24*Pi)/GAMMA(19/24)+Mills 6541044933988399 s002 sum(A139001[n]/(n^2*2^n+1),n=1..infinity) 6541044947178402 r005 Re(z^2+c),c=1/24+11/36*I,n=3 6541044957962177 a007 Real Root Of -753*x^4-619*x^3-897*x^2-181*x+230 6541044999904591 m005 (1/2*5^(1/2)+5/11)/(9/11*2^(1/2)-11/12) 6541045012833497 r005 Im(z^2+c),c=-17/26+14/113*I,n=63 6541045021225651 r005 Re(z^2+c),c=-21/23+7/48*I,n=14 6541045040235337 m001 Pi*2^(1/3)*(exp(1/exp(1))+exp(-1/2*Pi)) 6541045062399892 a007 Real Root Of 375*x^4-726*x^3-589*x^2-994*x-670 6541045071047456 m001 (3^(1/2)+Zeta(1,-1))/(-GlaisherKinkelin+Mills) 6541045077044041 r002 48th iterates of z^2 + 6541045080080951 a007 Real Root Of 293*x^4-816*x^3-861*x^2-872*x-484 6541045097189044 m001 (Lehmer-Paris)^BesselK(1,1) 6541045117688723 a001 514229/3*1364^(14/17) 6541045132487784 r002 22th iterates of z^2 + 6541045142275367 m005 (1/3*Pi-2/11)/(2/5*5^(1/2)+3/7) 6541045143618272 k001 Champernowne real with 391*n+263 6541045160289371 m001 1/OneNinth^2*ln(FeigenbaumD)^2/GAMMA(17/24) 6541045164165064 a001 73681302247/13*3^(3/23) 6541045168703045 m001 LandauRamanujan/(Kolakoski-ReciprocalLucas) 6541045205396783 r005 Re(z^2+c),c=-23/86+41/51*I,n=6 6541045211924539 r005 Re(z^2+c),c=7/102+39/62*I,n=16 6541045214041286 p004 log(36293/18869) 6541045249456469 a007 Real Root Of -913*x^4+807*x^3-359*x^2-750*x+56 6541045254646349 a007 Real Root Of -882*x^4+456*x^3+736*x^2+518*x+313 6541045262719647 m002 6+4/Pi^2+Pi/E^Pi 6541045266079536 m001 (ln(3)+CopelandErdos)/(Chi(1)+Zeta(3)) 6541045298202342 a007 Real Root Of 589*x^4-836*x^3-488*x^2-552*x+696 6541045305243573 a007 Real Root Of -226*x^4-259*x^3-967*x^2+872*x+953 6541045341896067 a007 Real Root Of 621*x^4-622*x^3-385*x^2-885*x+804 6541045377384365 a007 Real Root Of 672*x^4+193*x^3-626*x^2-595*x+480 6541045405117845 r009 Re(z^3+c),c=-23/40+4/11*I,n=19 6541045427292454 m001 (Psi(1,1/3)-sin(1))/(OrthogonalArrays+Trott) 6541045451946202 a007 Real Root Of 224*x^4-563*x^3-599*x^2-916*x+972 6541045459397675 l006 ln(1123/2160) 6541045474204729 a007 Real Root Of 484*x^4-798*x^3-409*x^2-393*x-394 6541045477881908 a007 Real Root Of 454*x^4-401*x^3+823*x^2-620*x-953 6541045479612845 r009 Im(z^3+c),c=-73/126+5/8*I,n=19 6541045502086238 a007 Real Root Of -153*x^4-853*x^3+841*x^2-849*x-178 6541045507263844 a007 Real Root Of -459*x^4-463*x^3+586*x^2+567*x-408 6541045516382475 a007 Real Root Of -391*x^4+978*x^3+355*x^2-473*x-116 6541045542497295 a001 109801/2*233^(5/11) 6541045597962655 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Backhouse/Gompertz 6541045621500124 r005 Re(z^2+c),c=5/114+5/7*I,n=6 6541045653578058 r002 19th iterates of z^2 + 6541045659335251 m001 1/CopelandErdos^2/Champernowne/ln(OneNinth) 6541045672755779 m001 Catalan^BesselI(0,1)*Catalan^FeigenbaumMu 6541045728206452 m005 (1/2*5^(1/2)-1/4)/(Zeta(3)+1/8) 6541045730461487 m001 (-Porter+StolarskyHarborth)/(2^(1/2)+CareFree) 6541045778111444 m001 (OrthogonalArrays-Weierstrass)/(Kac+Kolakoski) 6541045793693658 b008 3*(-5+Sqrt[Pi])+Pi 6541045816164402 r005 Im(z^2+c),c=-3/56+32/49*I,n=34 6541045817690761 a001 10716675201/8*32951280099^(19/23) 6541045826303703 a007 Real Root Of -341*x^4+319*x^3-157*x^2+945*x+837 6541045826911316 a007 Real Root Of -771*x^4+921*x^3+824*x^2+703*x-929 6541045829195250 a007 Real Root Of -836*x^4-306*x^3-51*x^2+787*x+604 6541045853877983 m006 (2/5*Pi^2-5)/(3/4*ln(Pi)+3/4) 6541045865795142 r005 Re(z^2+c),c=-47/64+1/42*I,n=7 6541045866199240 q001 2239/3423 6541045886779159 r005 Re(z^2+c),c=-41/30+4/113*I,n=52 6541045897376460 m005 (1/3*2^(1/2)+2/9)/(1/11*5^(1/2)+6/7) 6541045901857443 r002 62th iterates of z^2 + 6541045908805739 a007 Real Root Of 324*x^4-54*x^3+489*x^2+108*x-213 6541045910155111 a007 Real Root Of -523*x^4-16*x^3-525*x^2+150*x+414 6541045931104593 m001 (BesselJ(1,1)-BesselI(1,2))/(Niven+ZetaQ(2)) 6541045935889958 m001 LaplaceLimit/(KhinchinLevy^ZetaP(4)) 6541045953440371 m001 (5^(1/2)+gamma)/(-ln(3)+GAMMA(7/12)) 6541045977497116 g006 Psi(1,6/11)+Psi(1,3/8)+Psi(1,5/7)-Psi(1,4/11) 6541045981767114 m001 HardyLittlewoodC5^KhinchinLevy-ThueMorse 6541045984907718 m001 (ArtinRank2-Sarnak)/(Zeta(1,-1)+BesselI(1,1)) 6541045989536695 r005 Re(z^2+c),c=-14/11+1/36*I,n=52 6541046005731967 a007 Real Root Of -44*x^4-408*x^3-921*x^2-955*x-479 6541046041157537 a005 (1/sin(45/161*Pi))^139 6541046054743542 a007 Real Root Of -743*x^4+839*x^3-594*x^2+156*x+727 6541046072022219 m001 Pi/ln(2)*ln(10)*BesselJ(0,1)-exp(1/exp(1)) 6541046089012159 r009 Re(z^3+c),c=-13/110+17/26*I,n=63 6541046101438455 m001 exp(GAMMA(11/12))*BesselJ(1,1)/GAMMA(5/24)^2 6541046120842365 a007 Real Root Of 56*x^4+91*x^3+336*x^2-282*x-313 6541046123828484 r005 Im(z^2+c),c=47/126+12/47*I,n=31 6541046143718292 k005 Champernowne real with floor(sqrt(3)*(226*n+152)) 6541046143818302 k001 Champernowne real with 392*n+262 6541046148917277 r005 Re(z^2+c),c=-25/34+9/101*I,n=38 6541046153928092 m001 (Catalan-Ei(1))/(GaussAGM+Riemann1stZero) 6541046192800302 b008 54+11*Coth[2] 6541046197631088 r002 9th iterates of z^2 + 6541046238600753 r009 Re(z^3+c),c=-13/122+26/47*I,n=16 6541046254986453 a007 Real Root Of -962*x^4+528*x^3+407*x^2-154*x+49 6541046260498456 s002 sum(A128310[n]/((pi^n-1)/n),n=1..infinity) 6541046269605054 r005 Re(z^2+c),c=3/46+1/18*I,n=8 6541046306892646 m005 (1/3*5^(1/2)-2/5)/(5*Catalan+7/10) 6541046308776686 m001 Psi(1,1/3)*ArtinRank2/OneNinth 6541046316691052 a007 Real Root Of -411*x^4+600*x^3+709*x^2+639*x-814 6541046321481393 m001 (Kac+Totient)/(arctan(1/3)+FeigenbaumD) 6541046333222534 a007 Real Root Of -171*x^4+884*x^3-150*x^2+176*x+458 6541046337522776 m008 (5*Pi^3+1/3)/(1/4*Pi^4-3/5) 6541046358401164 m005 (1/2*3^(1/2)+7/9)/(5/7*exp(1)+4/7) 6541046364101935 a007 Real Root Of 888*x^4-500*x^3+209*x^2+87*x-335 6541046378602004 m001 (ln(gamma)+FeigenbaumC)/(FeigenbaumD-Sarnak) 6541046380852353 a007 Real Root Of 482*x^4-335*x^3+995*x^2+926*x-2 6541046421062637 a003 cos(Pi*31/113)/sin(Pi*38/81) 6541046422295073 a008 Real Root of (-2+4*x+9*x^2+4*x^4+x^8) 6541046435690506 r005 Im(z^2+c),c=-7/13+1/60*I,n=12 6541046441235836 m001 1/BesselK(1,1)/FeigenbaumAlpha*ln(GAMMA(1/3)) 6541046441499796 l006 ln(4714/9067) 6541046462504102 r009 Re(z^3+c),c=-19/82+55/56*I,n=13 6541046550578853 a007 Real Root Of 418*x^4+208*x^3+905*x^2-94*x-467 6541046556131701 m001 (Zeta(1,-1)-cos(1))/(-KhinchinLevy+OneNinth) 6541046578566180 a003 sin(Pi*10/113)-sin(Pi*36/95) 6541046591964302 a007 Real Root Of 143*x^4+29*x^3+233*x^2-219*x-261 6541046594694993 h001 (4/11*exp(1)+10/11)/(9/10*exp(1)+5/11) 6541046596372065 r005 Im(z^2+c),c=-35/122+37/44*I,n=8 6541046596903369 m001 exp(Riemann3rdZero)^2*Porter*sin(1) 6541046701569548 a007 Real Root Of 578*x^4+371*x^3+623*x^2-175*x-383 6541046713325719 m001 MertensB3^(OneNinth/gamma(1)) 6541046728376142 m001 (GaussAGM*Gompertz-OneNinth)/Gompertz 6541046744924145 r005 Im(z^2+c),c=-1+63/247*I,n=56 6541046748628900 l006 ln(3591/6907) 6541046753718383 m001 OneNinth^2*ln(Kolakoski)^2/Zeta(1,2) 6541046757042864 m001 ln(gamma)/(LandauRamanujan2nd^arctan(1/3)) 6541046767041103 m005 (1/2*Catalan-1)/(1/5*Pi-6/11) 6541046772339767 m001 (Niven+TreeGrowth2nd)/(FeigenbaumD+Gompertz) 6541046773345045 a007 Real Root Of 362*x^4-655*x^3-231*x^2-404*x-415 6541046780212234 a007 Real Root Of -73*x^4-337*x^3+954*x^2+323*x+615 6541046786369854 a007 Real Root Of -997*x^4+343*x^3-515*x^2+598*x+890 6541046831955922 r009 Re(z^3+c),c=-4/5+25/33*I,n=2 6541046840133303 r005 Im(z^2+c),c=-25/18+14/193*I,n=3 6541046847127118 m001 GAMMA(11/24)/exp(FeigenbaumB)/GAMMA(17/24) 6541046857105124 a007 Real Root Of 98*x^4+586*x^3-289*x^2+541*x+505 6541046859827792 g006 Psi(1,6/11)+Psi(1,2/5)-Psi(1,7/10)-Psi(1,5/6) 6541046869558454 a007 Real Root Of -672*x^4+828*x^3-394*x^2+423*x+800 6541046873580943 m009 (5*Psi(1,2/3)-4/5)/(8*Catalan+Pi^2+5) 6541046926107943 m005 (1/3*3^(1/2)+2/11)/(3^(1/2)-4/7) 6541046932414829 h001 (3/4*exp(1)+6/11)/(4/9*exp(2)+2/3) 6541046939342822 r005 Im(z^2+c),c=-17/14+46/249*I,n=3 6541046943021024 m001 (ln(2)*ZetaQ(4)+ZetaP(2))/ln(2) 6541046956333405 a008 Real Root of (-5+2*x+5*x^2+6*x^3-2*x^4+2*x^5) 6541046959720550 a007 Real Root Of -954*x^4+483*x^3+724*x^2+720*x+471 6541046968499957 a007 Real Root Of -848*x^4+818*x^3+632*x^2+671*x-783 6541046968852078 r005 Re(z^2+c),c=17/60+17/43*I,n=52 6541046988082741 m001 (Bloch-GolombDickman)/(Kac+Niven) 6541046989835773 m001 (Zeta(3)+GAMMA(2/3))/(GAMMA(3/4)-GaussAGM) 6541047006284798 r002 36th iterates of z^2 + 6541047016786648 a007 Real Root Of -153*x^4+566*x^3-379*x^2+45*x+378 6541047038227153 s002 sum(A219463[n]/(n*pi^n-1),n=1..infinity) 6541047090671493 m001 (GAMMA(23/24)+MertensB1)/(Mills+Robbin) 6541047097738493 a007 Real Root Of 265*x^4-127*x^3+685*x^2-382*x-627 6541047104586920 h001 (7/8*exp(2)+6/11)/(1/10*exp(1)+4/5) 6541047111590194 r008 a(0)=0,K{-n^6,85+69*n^3-49*n^2+48*n} 6541047116686236 r008 a(0)=0,K{-n^6,-71-71*n^3+62*n^2-73*n} 6541047118923006 a007 Real Root Of 784*x^4-284*x^3-328*x^2-265*x-256 6541047136219280 m001 PrimesInBinary*Niven*ln(FeigenbaumKappa)^2 6541047142352537 r009 Re(z^3+c),c=-67/114+15/46*I,n=5 6541047144018332 k001 Champernowne real with 393*n+261 6541047144118342 k005 Champernowne real with floor(sqrt(3)*(227*n+151)) 6541047160849381 r005 Im(z^2+c),c=7/34+29/53*I,n=23 6541047161102395 m001 LambertW(1)^(Mills/KhinchinHarmonic) 6541047180903890 a001 165580141/843*199^(5/22) 6541047181562567 a007 Real Root Of 970*x^4-144*x^3-554*x^2-40*x-7 6541047183483127 r005 Im(z^2+c),c=-73/122+7/58*I,n=53 6541047197916936 m001 (Porter+ZetaQ(4))/(BesselJ(1,1)-Khinchin) 6541047227077930 m001 (cos(1)+AlladiGrinstead)/(Gompertz+Porter) 6541047228464201 a007 Real Root Of 438*x^4-771*x^3+431*x^2-108*x-551 6541047235177314 r002 29th iterates of z^2 + 6541047256870448 l006 ln(3654/3901) 6541047259785730 a007 Real Root Of -258*x^4-197*x^3-510*x^2+24*x+226 6541047292774135 a007 Real Root Of 89*x^4+572*x^3-95*x^2-76*x+726 6541047295291070 a007 Real Root Of -248*x^4+848*x^3+142*x^2+581*x+602 6541047305637379 m008 (5/6*Pi^5-4)/(2/5*Pi^6-4/5) 6541047333848236 r009 Im(z^3+c),c=-2/7+47/63*I,n=3 6541047335260396 l006 ln(2468/4747) 6541047406151792 m001 -2^(1/2)/(ln(gamma)+1/3) 6541047406151792 m001 sqrt(2)/(1/3+log(gamma)) 6541047417415672 r002 3th iterates of z^2 + 6541047419882041 m001 (ln(2)+Zeta(1,2))/(Artin-RenyiParking) 6541047443970760 a001 64079/233*8^(5/12) 6541047518334531 a007 Real Root Of 535*x^4-493*x^3+972*x^2+44*x-623 6541047532173018 m001 1/FibonacciFactorial^2*exp(Cahen)^2*exp(1) 6541047532437607 r008 a(0)=0,K{-n^6,61+48*n^3+2*n^2+42*n} 6541047544830807 r008 a(0)=0,K{-n^6,-69-46*n^3-12*n^2-26*n} 6541047563370866 a007 Real Root Of 600*x^4-360*x^3+860*x^2-149*x-676 6541047578885779 m001 (ln(3)-polylog(4,1/2))/(GaussAGM+ZetaQ(2)) 6541047580186942 a007 Real Root Of 158*x^4+958*x^3-383*x^2+820*x+625 6541047591539644 a003 cos(Pi*2/49)*cos(Pi*57/119) 6541047601423970 r005 Im(z^2+c),c=-23/114+29/45*I,n=39 6541047608660835 r005 Im(z^2+c),c=-2/19+4/51*I,n=6 6541047620548599 r008 a(0)=0,K{-n^6,63+43*n^3+18*n^2+29*n} 6541047659711639 r005 Im(z^2+c),c=-19/23+1/27*I,n=31 6541047668795822 a003 sin(Pi*13/100)/cos(Pi*19/65) 6541047673192045 a007 Real Root Of -341*x^4+180*x^3+298*x^2+634*x+400 6541047689177577 r005 Re(z^2+c),c=-7/10+23/110*I,n=16 6541047703207301 a007 Real Root Of -458*x^4+702*x^3-848*x^2-919*x+42 6541047706073358 r005 Re(z^2+c),c=-41/94+23/36*I,n=2 6541047713550653 r005 Re(z^2+c),c=-65/114+20/43*I,n=52 6541047718744031 r008 a(0)=0,K{-n^6,45+41*n^3+15*n^2+52*n} 6541047718769592 r008 a(0)=0,K{-n^6,63+38*n^3+33*n^2+19*n} 6541047722664373 r005 Re(z^2+c),c=-19/22+46/95*I,n=4 6541047725435430 r008 a(0)=0,K{-n^6,43+41*n^3+14*n^2+55*n} 6541047745622090 r008 a(0)=0,K{-n^6,37+41*n^3+11*n^2+64*n} 6541047748482507 a007 Real Root Of 558*x^4-601*x^3-237*x^2-487*x+486 6541047802149818 a007 Real Root Of 319*x^4-441*x^3-150*x^2-233*x+16 6541047803913869 m001 FeigenbaumAlpha^exp(-Pi)/BesselI(1,2) 6541047807278585 r008 a(0)=0,K{-n^6,-61-14*n-44*n^2-34*n^3} 6541047819401434 a007 Real Root Of -366*x^4+985*x^3-828*x^2-749*x+207 6541047821677070 m001 (Tribonacci+ZetaQ(4))/(Lehmer-Magata) 6541047823413802 r009 Im(z^3+c),c=-15/52+25/37*I,n=21 6541047831464998 m009 (5/6*Psi(1,2/3)+1/3)/(5/6*Psi(1,1/3)-4) 6541047835132703 r008 a(0)=0,K{-n^6,35+37*n^3+22*n^2+59*n} 6541047835142376 r008 a(0)=0,K{-n^6,41+48*n+28*n^2+36*n^3} 6541047841243260 a001 1/2*233^(25/53) 6541047849213292 r008 a(0)=0,K{-n^6,43+35*n^3+32*n^2+43*n} 6541047856264205 r008 a(0)=0,K{-n^6,35+36*n^3+25*n^2+57*n} 6541047873748860 a007 Real Root Of -43*x^4+513*x^3+11*x^2+881*x+723 6541047887737075 l006 ln(3813/7334) 6541047891925542 r008 a(0)=0,K{-n^6,-55-31*n^3-50*n^2-17*n} 6541047892606258 a003 sin(Pi*27/119)/sin(Pi*36/73) 6541047897260420 r009 Im(z^3+c),c=-27/122+22/31*I,n=29 6541047916157172 a007 Real Root Of 211*x^4+568*x^3+367*x^2-320*x-246 6541047923653905 m001 GAMMA(5/12)^2*ln(FibonacciFactorial)/sqrt(2) 6541047924163718 a001 1292/9*521^(8/33) 6541047927436683 m009 (4*Psi(1,2/3)+2/3)/(2/5*Psi(1,2/3)+3/4) 6541047949996691 r008 a(0)=0,K{-n^6,45+30*n^3+48*n^2+30*n} 6541047963440835 m001 (GAMMA(19/24)+FellerTornier)/(Catalan-ln(Pi)) 6541047966678795 a007 Real Root Of -772*x^4-662*x^3-690*x^2-456*x-47 6541047969459059 r005 Re(z^2+c),c=-3/110+49/59*I,n=11 6541047984423103 a001 2255*7881196^(11/17) 6541047988471037 a001 2255*39603^(33/34) 6541047998775647 a001 17711/3*24476^(47/51) 6541047999801853 a001 39088169/3*9349^(3/17) 6541048001480947 m005 (3*gamma-1/5)/(Pi-4/5) 6541048006590652 a001 514229/3*24476^(10/17) 6541048008837874 a001 17711/3*6643838879^(7/17) 6541048009477947 r008 a(0)=0,K{-n^6,53+26*n^3+64*n^2+10*n} 6541048012399931 a001 15456*2139295485799^(5/17) 6541048012914697 a001 34111385*64079^(1/17) 6541048012917009 a001 121393/3*1149851^(9/17) 6541048012940005 a001 5702887/3*167761^(5/17) 6541048013000440 a001 9227465/3*439204^(4/17) 6541048013008127 a001 726103*119218851371^(3/17) 6541048013008402 a001 39088169/3*817138163596^(1/17) 6541048013008403 a001 63245986/3*228826127^(1/17) 6541048013008405 a001 24157817/3*54018521^(2/17) 6541048013008418 a001 9227465/3*192900153618^(2/17) 6541048013008420 a001 9227465/3*33385282^(3/17) 6541048013009125 a001 1346269/3*1568397607^(4/17) 6541048013013345 a001 514229/3*20633239^(6/17) 6541048013013350 a001 514229/3*599074578^(5/17) 6541048013014128 a001 514229/3*1860498^(7/17) 6541048013042312 a001 196418/3*5600748293801^(4/17) 6541048014601403 a001 28657/3*141422324^(8/17) 6541048014601404 a001 28657/3*73681302247^(6/17) 6541048014664068 a001 28657/3*271443^(12/17) 6541048014971727 a001 1346269/3*39603^(8/17) 6541048015066706 a001 28657/3*103682^(13/17) 6541048016371372 a001 63245986/3*15127^(2/17) 6541048023259026 r005 Re(z^2+c),c=-23/22+27/119*I,n=52 6541048030668935 a001 514229/3*15127^(21/34) 6541048070337082 r008 a(0)=0,K{-n^6,37+26*n^3+56*n^2+34*n} 6541048082158805 a001 9227465/3*5778^(6/17) 6541048087845514 a001 4181/3*87403803^(10/17) 6541048116916905 m001 exp(1/Pi)*BesselI(0,2)+Magata 6541048116946221 r008 a(0)=0,K{-n^6,-25-26*n^3-50*n^2-52*n} 6541048121137311 k008 concat of cont frac of 6541048144218362 k001 Champernowne real with 394*n+260 6541048146834560 a007 Real Root Of -631*x^4+702*x^3+910*x^2+183*x-590 6541048147472436 a001 514229/3*5778^(35/51) 6541048152086123 l006 ln(5158/9921) 6541048157186688 a007 Real Root Of 130*x^4-495*x^3-9*x^2-418*x+392 6541048172021939 h001 (1/9*exp(2)+5/8)/(7/12*exp(1)+5/8) 6541048180033064 a001 121393/3*5778^(29/34) 6541048189622915 r005 Im(z^2+c),c=-47/60+15/43*I,n=5 6541048208734070 b008 (3+FresnelC[1])!! 6541048209495972 m005 (1/2*2^(1/2)+1)/(3/11*5^(1/2)+2) 6541048221651031 m002 -Pi^5+Pi^6-ProductLog[Pi]/4-Tanh[Pi] 6541048221654038 a007 Real Root Of 987*x^4-540*x^3-30*x^2-422*x-595 6541048251985981 a007 Real Root Of -675*x^4+486*x^3+491*x^2+889*x+631 6541048261356333 a007 Real Root Of -168*x^4-992*x^3+777*x^2+418*x-594 6541048262386349 m001 (Chi(1)+gamma(3))/(GlaisherKinkelin+ZetaQ(4)) 6541048278969968 a007 Real Root Of -144*x^4+318*x^3-700*x^2+121*x+494 6541048303758470 a003 cos(Pi*27/71)+cos(Pi*11/27) 6541048303817043 r008 a(0)=0,K{-n^6,15+20*n^3+63*n^2+55*n} 6541048311825562 a007 Real Root Of -433*x^4+709*x^3-926*x^2+176*x+789 6541048313990845 a007 Real Root Of 664*x^4+612*x^3+388*x^2-558*x-38 6541048325268868 m001 (Landau+MadelungNaCl)/(ln(Pi)-Kolakoski) 6541048336287889 a007 Real Root Of -337*x^4+579*x^3+62*x^2-488*x-122 6541048341498288 m009 (32*Catalan+4*Pi^2+1/3)/(4*Psi(1,3/4)+2/5) 6541048347716766 m003 39/8+Sqrt[5]/16+4*Sech[1/2+Sqrt[5]/2] 6541048353643219 a007 Real Root Of 613*x^4+7*x^3-276*x^2-93*x-53 6541048367027719 a007 Real Root Of 235*x^4-53*x^3-901*x^2-290*x+547 6541048382774761 r005 Re(z^2+c),c=-13/18+7/111*I,n=5 6541048389299359 a007 Real Root Of -591*x^4-666*x^3-708*x^2+933*x+835 6541048396127778 a001 1/36*34^(43/48) 6541048411278920 r009 Im(z^3+c),c=-43/118+37/63*I,n=4 6541048411569880 a007 Real Root Of 287*x^4-336*x^3+11*x^2-712*x-617 6541048423273711 r005 Re(z^2+c),c=-73/82+8/41*I,n=54 6541048476679049 r009 Re(z^3+c),c=-37/58+17/50*I,n=5 6541048485880627 r005 Re(z^2+c),c=-37/86+17/30*I,n=22 6541048486486089 m001 Kolakoski^(Shi(1)*KhinchinHarmonic) 6541048494713240 a007 Real Root Of -519*x^4+220*x^3+729*x^2+276*x-459 6541048500753720 m001 Trott2nd^HardHexagonsEntropy/Psi(1,1/3) 6541048516599375 a007 Real Root Of -629*x^4+729*x^3+499*x^2-186*x-16 6541048519458836 a007 Real Root Of -812*x^4-945*x^3-665*x^2+427*x+448 6541048525949585 a001 1597/3*4106118243^(9/17) 6541048531113939 m001 (2^(1/3)-GAMMA(23/24))/(FeigenbaumMu+ZetaQ(3)) 6541048535722172 a003 sin(Pi*7/34)/sin(Pi*22/59) 6541048536809849 m001 (Pi*exp(Pi)-Chi(1))/ln(3) 6541048543258822 r002 37th iterates of z^2 + 6541048564872215 m001 Gompertz*LandauRamanujan2nd-ThueMorse 6541048581263144 m001 (Psi(1,1/3)+BesselK(0,1))/(-ln(5)+ZetaQ(4)) 6541048598859063 m001 Stephens-HardHexagonsEntropy-Zeta(1,-1) 6541048610791763 m001 Cahen*GAMMA(23/24)^MasserGramain 6541048612036037 a007 Real Root Of -289*x^4+711*x^3+298*x^2+444*x-564 6541048619631206 a007 Real Root Of -70*x^4-400*x^3+345*x^2-367*x-965 6541048629303410 m005 (5/6*2^(1/2)-1/2)/(4*exp(1)-1/2) 6541048633706971 a007 Real Root Of -520*x^4+878*x^3+31*x^2+184*x+448 6541048634858876 r005 Re(z^2+c),c=-109/106+10/41*I,n=10 6541048649741744 p001 sum(1/(161*n+153)/(625^n),n=0..infinity) 6541048669425417 a007 Real Root Of -724*x^4-526*x^3-916*x^2+258*x+546 6541048695117800 s002 sum(A132011[n]/((pi^n+1)/n),n=1..infinity) 6541048701695668 a007 Real Root Of 802*x^4-707*x^3+312*x^2-814*x+450 6541048707333150 m001 FeigenbaumC*LaplaceLimit*exp(Zeta(1/2))^2 6541048719634693 a003 cos(Pi*46/117)*cos(Pi*24/55) 6541048750182291 r005 Im(z^2+c),c=-79/122+2/29*I,n=14 6541048764640074 m008 (5/6*Pi^3-3/4)/(2/5*Pi^6-1) 6541048799515573 a007 Real Root Of 582*x^4-788*x^3-693*x^2-623*x+818 6541048803659930 a007 Real Root Of 854*x^4+227*x^3-515*x^2-753*x-365 6541048828639553 m001 (arctan(1/3)-MertensB3)/(Robbin-TwinPrimes) 6541048831681095 a007 Real Root Of -74*x^4-520*x^3-290*x^2-494*x-888 6541048847405550 m005 (1/2*Catalan-6)/(9/11*gamma+3/8) 6541048850783675 a005 (1/cos(21/191*Pi))^636 6541048881942737 a001 1346269/3*2207^(11/17) 6541048894900897 b008 5-7*Sqrt[E] 6541048900369917 a007 Real Root Of -731*x^4-64*x^3-429*x^2+328*x+514 6541048901500896 l006 ln(1345/2587) 6541048902066599 a007 Real Root Of 838*x^4-799*x^3-574*x^2-591*x-518 6541048905297973 b008 13+BesselY[1,1/10] 6541048914550540 a007 Real Root Of -540*x^4-115*x^3+510*x^2+385*x-339 6541048926664062 a007 Real Root Of -745*x^4-363*x^3-668*x^2+525*x+664 6541048940063679 a001 7/233*17711^(11/14) 6541048965283195 a003 cos(Pi*11/63)-cos(Pi*41/94) 6541048984690795 m003 7/2+(5*Sqrt[5])/32-5/Log[1/2+Sqrt[5]/2] 6541049020850460 a007 Real Root Of -791*x^4+561*x^3+587*x^2-25*x-247 6541049022140889 a007 Real Root Of -282*x^4+323*x^3-714*x^2+279*x+630 6541049026438183 a007 Real Root Of -970*x^4+741*x^3-486*x^2+17*x+604 6541049037065511 a001 29/2504730781961*39088169^(3/13) 6541049037065511 a001 29/10610209857723*20365011074^(3/13) 6541049037119146 a001 29/591286729879*75025^(3/13) 6541049043667321 m001 (GAMMA(5/6)+ZetaP(2))/(Si(Pi)+BesselI(1,1)) 6541049052768173 r002 56th iterates of z^2 + 6541049056421982 m001 DuboisRaymond^(ln(3)/ZetaP(4)) 6541049057151770 a001 1/2255*21^(6/47) 6541049057839802 r005 Re(z^2+c),c=1/23+23/32*I,n=6 6541049064788761 m001 1/Riemann1stZero/Porter^2/ln(sqrt(1+sqrt(3))) 6541049071687449 a007 Real Root Of -187*x^4+358*x^3+99*x^2+642*x+512 6541049103985275 a005 (1/cos(19/214*Pi))^515 6541049104079460 m005 (1/3*2^(1/2)-1/7)/(1/9*Zeta(3)-1/12) 6541049144418392 k005 Champernowne real with floor(sqrt(3)*(228*n+150)) 6541049144418392 k001 Champernowne real with 395*n+259 6541049185740052 r002 3th iterates of z^2 + 6541049188873176 r005 Im(z^2+c),c=-43/118+37/59*I,n=30 6541049197694230 a001 322/139583862445*121393^(2/7) 6541049197719595 a001 322/956722026041*102334155^(2/7) 6541049197719595 a001 161/3278735159921*86267571272^(2/7) 6541049197719595 a001 322/2504730781961*2971215073^(2/7) 6541049197719625 a001 161/182717648081*3524578^(2/7) 6541049219101630 a001 322/53316291173*4181^(2/7) 6541049225878090 r002 36th iterates of z^2 + 6541049236502866 a001 39088169/322*322^(7/24) 6541049236638195 r002 39th iterates of z^2 + 6541049240659930 a007 Real Root Of 695*x^4-366*x^3+937*x^2-389*x-885 6541049249445189 a001 18/4181*610^(14/33) 6541049267393089 a003 sin(Pi*1/8)/cos(Pi*28/93) 6541049275278033 m001 FeigenbaumD/exp(Champernowne)/GAMMA(1/4) 6541049284599998 r002 45th iterates of z^2 + 6541049289493404 m006 (1/4*exp(Pi)-1/6)/(2/5*exp(Pi)-2/3) 6541049320283350 m001 GAMMA(1/12)*ln(Bloch)^2*Zeta(7) 6541049329858697 a001 34/7*39603^(14/57) 6541049337628865 a001 8/521*64079^(20/59) 6541049347208767 r005 Im(z^2+c),c=-113/114+2/31*I,n=6 6541049349312263 a001 8/521*15127^(23/59) 6541049358059596 m006 (1/6*exp(2*Pi)-4)/(2/Pi+2/3) 6541049416109942 g002 Psi(1/9)+Psi(5/7)-Psi(7/12)-Psi(5/12) 6541049423612041 a007 Real Root Of 428*x^4-395*x^3-911*x^2-263*x+594 6541049466394066 r005 Im(z^2+c),c=-7/10+49/250*I,n=14 6541049472020212 m005 (1/2*5^(1/2)+2/5)/(2*Zeta(3)-1/12) 6541049483031652 m001 sin(1/12*Pi)*(CareFree+MasserGramainDelta) 6541049495503391 a007 Real Root Of -751*x^4-713*x^3-833*x^2-265*x+121 6541049520899002 m005 (1/2*Zeta(3)+7/12)/(3/4*2^(1/2)+3/4) 6541049530841720 r005 Im(z^2+c),c=9/25+28/39*I,n=3 6541049599851670 a007 Real Root Of -123*x^4+497*x^3+66*x^2-236*x-21 6541049615487257 r009 Im(z^3+c),c=-27/98+41/56*I,n=38 6541049638033362 s002 sum(A116237[n]/((2^n+1)/n),n=1..infinity) 6541049646334741 m001 (MertensB3+Trott)/gamma(3) 6541049650056688 m001 1/Zeta(9)^2/exp((3^(1/3)))^2*sinh(1) 6541049671264018 m001 (PisotVijayaraghavan+Salem)/(Trott+Trott2nd) 6541049689341153 a007 Real Root Of 687*x^4+36*x^3+284*x^2-281*x-421 6541049699809310 m001 (ln(gamma)-ln(2+3^(1/2)))/(MinimumGamma-Salem) 6541049715885823 a007 Real Root Of 41*x^4-975*x^3+722*x^2+190*x-465 6541049716210659 m001 Zeta(9)/exp(Riemann1stZero)^2/cos(Pi/5) 6541049717337977 r002 12th iterates of z^2 + 6541049740264728 m005 (4*gamma-2/5)/(exp(1)+1/5) 6541049753349205 a007 Real Root Of -560*x^4+643*x^3-917*x^2+11*x+682 6541049762561561 r002 43th iterates of z^2 + 6541049798115746 q001 243/3715 6541049798115746 q001 486/743 6541049806183741 a007 Real Root Of 884*x^4-425*x^3-180*x^2-962*x-833 6541049809530277 l006 ln(4257/8188) 6541049831053204 r005 Im(z^2+c),c=-3/4+6/241*I,n=35 6541049832163363 a007 Real Root Of 221*x^4-653*x^3-215*x^2-946*x-750 6541049867173825 r005 Re(z^2+c),c=29/98+23/36*I,n=7 6541049885997381 r009 Re(z^3+c),c=-53/126+1/55*I,n=9 6541049905802314 r005 Im(z^2+c),c=-5/8+25/128*I,n=19 6541049908268892 m005 (1/2*Catalan-1/11)/(1/7*exp(1)-4/9) 6541049949233144 r009 Re(z^3+c),c=-19/98+2/3*I,n=9 6541049952432717 a007 Real Root Of -566*x^4+209*x^3-608*x^2-618*x+18 6541049959467059 a007 Real Root Of -905*x^4+574*x^3+547*x^2+266*x-403 6541049974315366 m001 Ei(1)^Salem-Porter 6541049996562033 m009 (3/8*Pi^2+6)/(20/3*Catalan+5/6*Pi^2+1/2) 6541050002134419 a007 Real Root Of 175*x^4-457*x^3-809*x^2-318*x+650 6541050023050724 a005 (1/sin(92/229*Pi))^1418 6541050036466235 s002 sum(A151563[n]/(10^n+1),n=1..infinity) 6541050037157567 s001 sum(1/10^(n-1)*A151563[n],n=1..infinity) 6541050037157567 s001 sum(1/10^n*A151563[n],n=1..infinity) 6541050037869110 s002 sum(A151563[n]/(10^n-1),n=1..infinity) 6541050096199656 r005 Im(z^2+c),c=7/54+32/53*I,n=41 6541050100215938 m005 (4/5*Catalan+5/6)/(1/3*exp(1)-2/3) 6541050100341131 a003 sin(Pi*1/58)+sin(Pi*17/83) 6541050105418027 a007 Real Root Of -990*x^4-718*x^3-598*x^2+38*x+261 6541050110989987 m001 GAMMA(11/12)*(GlaisherKinkelin-LaplaceLimit) 6541050131146174 a007 Real Root Of 923*x^4-329*x^3+445*x^2-114*x-526 6541050144618422 k001 Champernowne real with 396*n+258 6541050147665565 a007 Real Root Of -709*x^4+327*x^3-30*x^2-387*x-19 6541050157895296 a007 Real Root Of -238*x^4+754*x^3-908*x^2+457*x+942 6541050161378506 a007 Real Root Of -78*x^4-594*x^3-407*x^2+845*x-511 6541050162016917 r005 Re(z^2+c),c=17/78+5/13*I,n=14 6541050174911851 r005 Im(z^2+c),c=-3/26+23/27*I,n=44 6541050195331439 a007 Real Root Of 497*x^4-900*x^3+649*x^2-495*x+207 6541050213895748 l006 ln(8669/9255) 6541050219877349 h001 (1/4*exp(1)+5/6)/(7/12*exp(1)+8/11) 6541050223216240 a007 Real Root Of -226*x^4+181*x^3+636*x^2+244*x-441 6541050226884838 r005 Im(z^2+c),c=-107/94+5/61*I,n=62 6541050228932557 l006 ln(2912/5601) 6541050232798952 g005 GAMMA(7/11)*GAMMA(4/9)*GAMMA(2/7)/GAMMA(2/3) 6541050237422509 m001 GAMMA(11/12)*exp(GAMMA(1/3))^2*cos(1)^2 6541050253022358 a007 Real Root Of -611*x^4+691*x^3+458*x^2+420*x+384 6541050274130668 a007 Real Root Of 13*x^4-710*x^3-47*x^2+178*x+100 6541050291300272 m005 (1/2*Pi-1/11)/(9/10*5^(1/2)+1/4) 6541050291911741 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=19 6541050328819976 a001 48/13201*3^(31/58) 6541050332445437 m005 (2/5*Pi-3)/(2*Catalan+5/6) 6541050339641024 p004 log(31019/16127) 6541050343536807 h001 (-7*exp(2)-6)/(-6*exp(5)+8) 6541050349418139 m001 (Bloch-Sierpinski)/(BesselI(1,2)+GAMMA(13/24)) 6541050360898628 a005 (1/sin(77/191*Pi))^1215 6541050370251796 g001 Re(GAMMA(29/20+I*49/60)) 6541050414068984 m006 (1/2*exp(Pi)+1)/(3/5*Pi^2-4) 6541050414477938 m001 (ln(2)/ln(10)-ln(2^(1/2)+1))/(Kac+MertensB1) 6541050415663389 a003 cos(Pi*3/89)-cos(Pi*37/95) 6541050434026889 a003 sin(Pi*17/112)/cos(Pi*26/103) 6541050436928869 s002 sum(A212430[n]/((exp(n)-1)/n),n=1..infinity) 6541050444594224 m001 OneNinth^(LandauRamanujan2nd/PlouffeB) 6541050452151050 a001 39088169/521*199^(9/22) 6541050457204671 p004 log(30983/30781) 6541050462627043 a001 29/121393*6765^(7/11) 6541050480728877 a001 29/2971215073*53316291173^(7/11) 6541050480728877 a001 29/86267571272*10610209857723^(7/11) 6541050480728877 a001 29/102334155*267914296^(7/11) 6541050480729231 a001 29/3524578*1346269^(7/11) 6541050501786474 a007 Real Root Of 811*x^4-633*x^3-151*x^2-717*x-730 6541050521898724 m001 gamma^FeigenbaumAlpha*sin(Pi/12) 6541050521898724 m001 sin(1/12*Pi)*gamma^FeigenbaumAlpha 6541050524101133 m001 Tribonacci^2*ln(LaplaceLimit)/GAMMA(5/12) 6541050525288181 h001 (4/11*exp(1)+5/12)/(1/6*exp(2)+11/12) 6541050529571588 m001 (Mills+Rabbit)/(Pi*2^(1/2)/GAMMA(3/4)-Landau) 6541050534402094 m001 MertensB1^(GAMMA(5/6)/ln(2)*ln(10)) 6541050550207858 a007 Real Root Of -828*x^4+464*x^3+890*x^2+908*x-953 6541050563604767 r005 Re(z^2+c),c=3/46+1/18*I,n=9 6541050579027370 a007 Real Root Of -3*x^4+56*x^3+353*x^2-944*x-114 6541050579994863 m005 (1/2*2^(1/2)+5)/(5/9*Catalan+4/11) 6541050586966360 a007 Real Root Of 297*x^4-182*x^3+374*x^2-397*x-525 6541050592378767 r005 Im(z^2+c),c=35/114+29/55*I,n=4 6541050594372416 r005 Re(z^2+c),c=-43/46+1/18*I,n=32 6541050601430602 r005 Re(z^2+c),c=-43/46+1/18*I,n=30 6541050622809186 m002 -Pi^5+Pi^6-Log[Pi]/6-ProductLog[Pi] 6541050627547299 l006 ln(4479/8615) 6541050630707475 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=29 6541050641013393 m001 (BesselJ(1,1)+FeigenbaumB)/DuboisRaymond 6541050646966718 r005 Im(z^2+c),c=9/28+1/28*I,n=57 6541050647285420 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=31 6541050652847635 r009 Im(z^3+c),c=-23/54+49/54*I,n=2 6541050663013830 m002 -E^Pi+Pi*Cosh[Pi]-ProductLog[Pi]-Sinh[Pi] 6541050663576174 a003 sin(Pi*17/75)/sin(Pi*50/103) 6541050664113247 r002 48th iterates of z^2 + 6541050670153859 r005 Re(z^2+c),c=-43/46+1/18*I,n=34 6541050691381505 r002 50th iterates of z^2 + 6541050694322495 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=33 6541050710520885 r005 Re(z^2+c),c=-43/46+1/18*I,n=36 6541050713406119 r002 52th iterates of z^2 + 6541050716916735 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=35 6541050721694956 r002 54th iterates of z^2 + 6541050722682499 r005 Re(z^2+c),c=-43/46+1/18*I,n=38 6541050722866581 r005 Re(z^2+c),c=3/46+1/18*I,n=14 6541050722941682 r005 Re(z^2+c),c=3/46+1/18*I,n=15 6541050722968910 r005 Re(z^2+c),c=-43/46+1/18*I,n=48 6541050722969974 r005 Re(z^2+c),c=-43/46+1/18*I,n=50 6541050722971702 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=47 6541050722972778 r005 Re(z^2+c),c=3/46+1/18*I,n=16 6541050722973618 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=49 6541050722975306 r005 Re(z^2+c),c=-43/46+1/18*I,n=52 6541050722976880 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=51 6541050722977963 r005 Re(z^2+c),c=-43/46+1/18*I,n=54 6541050722978012 r002 64th iterates of z^2 + 6541050722978356 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=53 6541050722978401 r005 Re(z^2+c),c=3/46+1/18*I,n=17 6541050722978715 r005 Re(z^2+c),c=3/46+1/18*I,n=22 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=23 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=24 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=25 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=30 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=31 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=32 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=33 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=38 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=39 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=40 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=41 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=46 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=47 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=48 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=49 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=54 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=55 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=56 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=57 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=58 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=59 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=60 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=61 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=62 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=63 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=64 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=53 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=52 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=51 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=50 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=45 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=44 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=43 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=42 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=37 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=36 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=35 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=34 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=29 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=28 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=27 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=26 6541050722978716 r005 Re(z^2+c),c=3/46+1/18*I,n=21 6541050722978716 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=63 6541050722978717 r005 Re(z^2+c),c=-43/46+1/18*I,n=64 6541050722978722 r005 Re(z^2+c),c=3/46+1/18*I,n=20 6541050722978723 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=61 6541050722978723 r005 Re(z^2+c),c=-43/46+1/18*I,n=56 6541050722978729 r005 Re(z^2+c),c=-43/46+1/18*I,n=62 6541050722978742 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=59 6541050722978744 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=55 6541050722978757 r005 Re(z^2+c),c=3/46+1/18*I,n=19 6541050722978763 r005 Re(z^2+c),c=-43/46+1/18*I,n=60 6541050722978772 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=57 6541050722978808 r005 Re(z^2+c),c=-43/46+1/18*I,n=58 6541050722978832 r005 Re(z^2+c),c=3/46+1/18*I,n=18 6541050722990962 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=45 6541050723009591 r005 Re(z^2+c),c=-43/46+1/18*I,n=46 6541050723010902 r002 62th iterates of z^2 + 6541050723092844 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=43 6541050723127699 r002 60th iterates of z^2 + 6541050723181205 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=37 6541050723199381 r005 Re(z^2+c),c=-43/46+1/18*I,n=44 6541050723208708 r005 Re(z^2+c),c=3/46+1/18*I,n=13 6541050723366541 r002 58th iterates of z^2 + 6541050723381478 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=41 6541050723433092 r002 56th iterates of z^2 + 6541050723696169 r005 Re(z^2+c),c=-43/46+1/18*I,n=42 6541050723796255 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=39 6541050724287161 r005 Re(z^2+c),c=-43/46+1/18*I,n=40 6541050728129095 r005 Re(z^2+c),c=3/46+1/18*I,n=12 6541050730512989 r002 46th iterates of z^2 + 6541050738218949 s002 sum(A249674[n]/(pi^n),n=1..infinity) 6541050738218949 s002 sum(A008585[n]/(pi^n),n=1..infinity) 6541050738218949 b008 3/(-1+Pi)^2 6541050751289441 m001 (Ei(1)-Backhouse)/(HardyLittlewoodC3-Mills) 6541050756382863 r005 Re(z^2+c),c=3/46+1/18*I,n=11 6541050830270965 r005 Re(z^2+c),c=3/46+1/18*I,n=10 6541050850385003 m001 (ln(3)-GAMMA(7/12))/(GAMMA(19/24)-FeigenbaumC) 6541050871762906 r005 Im(z^2+c),c=-35/82+11/60*I,n=4 6541050872452055 p003 LerchPhi(1/125,4,362/183) 6541050875918000 a003 sin(Pi*19/112)/cos(Pi*18/83) 6541050879114936 a001 233/599074578*2^(3/4) 6541050918958001 a007 Real Root Of 255*x^4+768*x^3+856*x^2-636*x-614 6541050957590427 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=27 6541051010320221 r005 Im(z^2+c),c=-107/94+5/61*I,n=56 6541051019450254 r005 Im(z^2+c),c=-23/62+3/29*I,n=21 6541051032098110 r002 4th iterates of z^2 + 6541051048217395 p003 LerchPhi(1/125,3,554/223) 6541051058330548 m001 MadelungNaCl^(BesselJ(0,1)*GAMMA(5/24)) 6541051084553808 a007 Real Root Of -859*x^4-234*x^3-768*x^2-317*x+213 6541051090075668 m001 1/ln(MertensB1)*ErdosBorwein/FeigenbaumC 6541051100725930 m001 ln(Pi)*HardyLittlewoodC4/ZetaQ(2) 6541051130512700 a007 Real Root Of -132*x^4-735*x^3+908*x^2+321*x-810 6541051144718442 k005 Champernowne real with floor(sqrt(3)*(229*n+149)) 6541051144818452 k001 Champernowne real with 397*n+257 6541051145217358 r001 9i'th iterates of 2*x^2-1 of 6541051153359588 a007 Real Root Of -90*x^4+660*x^3-129*x^2+773*x+762 6541051166295420 a007 Real Root Of 870*x^4-503*x^3-465*x^2-882*x-678 6541051166537327 a007 Real Root Of 59*x^4+260*x^3-963*x^2-770*x+925 6541051177665153 b008 (11*(28+Sqrt[3]))/5 6541051178537656 a007 Real Root Of -570*x^4+693*x^3-805*x^2+83*x+697 6541051178748562 a007 Real Root Of 862*x^4-730*x^3+140*x^2+425*x-144 6541051201626756 r005 Im(z^2+c),c=37/102+3/31*I,n=47 6541051224877168 a007 Real Root Of 260*x^4+141*x^3+546*x^2-696*x-697 6541051232265169 a003 cos(Pi*1/78)-sin(Pi*12/107) 6541051238075262 a005 (1/sin(37/101*Pi))^46 6541051257708940 r002 44th iterates of z^2 + 6541051278090305 r005 Re(z^2+c),c=-43/46+1/18*I,n=28 6541051303560745 m001 (Totient-ZetaQ(4))/(Niven+PolyaRandomWalk3D) 6541051337739020 a007 Real Root Of -316*x^4+507*x^3+831*x^2+843*x-991 6541051348625272 a007 Real Root Of -646*x^4+171*x^3+740*x^2+889*x+431 6541051368304199 l006 ln(1567/3014) 6541051379358376 r005 Im(z^2+c),c=-8/19+13/17*I,n=5 6541051382295795 a007 Real Root Of -75*x^4-349*x^3+975*x^2+202*x-772 6541051383764163 m001 Zeta(5)*Robbin/exp(sinh(1))^2 6541051403024212 m001 Backhouse*(HardyLittlewoodC5-Thue) 6541051412801257 r005 Im(z^2+c),c=-7/122+38/53*I,n=35 6541051429906690 a007 Real Root Of -864*x^4+377*x^3+48*x^2-812*x-288 6541051443315905 a007 Real Root Of -35*x^4+743*x^3-320*x^2+47*x+382 6541051452070635 m001 PisotVijayaraghavan^GAMMA(13/24)*ThueMorse 6541051461096853 r005 Re(z^2+c),c=-7/10+21/256*I,n=3 6541051461186773 m006 (3/4*exp(2*Pi)-1/4)/(1/6/Pi-2/3) 6541051514817002 m001 (BesselI(0,1)-arctan(1/2))/FibonacciFactorial 6541051528759569 a001 610/3*23725150497407^(7/17) 6541051528759569 a001 610/3*505019158607^(8/17) 6541051528759796 a001 610/3*4870847^(14/17) 6541051528771759 a001 610/3*710647^(16/17) 6541051542182472 a007 Real Root Of 895*x^4-686*x^3-987*x^2-88*x+508 6541051592162763 k002 Champernowne real with 3/2*n^2+87/2*n-39 6541051602202863 k003 Champernowne real with 1/6*n^3+1/2*n^2+136/3*n-40 6541051612242963 k003 Champernowne real with 1/3*n^3-1/2*n^2+283/6*n-41 6541051622283063 k003 Champernowne real with 1/2*n^3-3/2*n^2+49*n-42 6541051631532548 m001 (Artin-Catalan)/(-Conway+Weierstrass) 6541051631993572 r002 7th iterates of z^2 + 6541051632323164 k003 Champernowne real with 2/3*n^3-5/2*n^2+305/6*n-43 6541051637204986 m001 Robbin-gamma*BesselI(0,2) 6541051642363264 k003 Champernowne real with 5/6*n^3-7/2*n^2+158/3*n-44 6541051652403364 k003 Champernowne real with n^3-9/2*n^2+109/2*n-45 6541051660609875 r009 Im(z^3+c),c=-1/31+37/48*I,n=29 6541051674287632 a007 Real Root Of -377*x^4+522*x^3+640*x^2+871*x+511 6541051682523665 k003 Champernowne real with 3/2*n^3-15/2*n^2+60*n-48 6541051685865520 p001 sum(1/(614*n+153)/(256^n),n=0..infinity) 6541051688351018 r005 Im(z^2+c),c=-5/18+1/11*I,n=5 6541051689613028 a007 Real Root Of 104*x^4+518*x^3-907*x^2+940*x-458 6541051712643965 k003 Champernowne real with 2*n^3-21/2*n^2+131/2*n-51 6541051718294816 p004 log(30671/28729) 6541051742764266 k003 Champernowne real with 5/2*n^3-27/2*n^2+71*n-54 6541051748915284 a007 Real Root Of -639*x^4+486*x^3+940*x^2+754*x+344 6541051769696834 r005 Im(z^2+c),c=-53/66+1/32*I,n=51 6541051772884566 k003 Champernowne real with 3*n^3-33/2*n^2+153/2*n-57 6541051773967249 m001 ln(2)+gamma(1)^GAMMA(19/24) 6541051778422910 m005 (17/20+1/4*5^(1/2))/(2*Zeta(3)-1/4) 6541051803004867 k003 Champernowne real with 7/2*n^3-39/2*n^2+82*n-60 6541051814793267 a007 Real Root Of -107*x^4-758*x^3-332*x^2+348*x+219 6541051828948401 r005 Im(z^2+c),c=-5/54+29/42*I,n=6 6541051829074868 m001 GAMMA(3/4)/(Niven^Salem) 6541051831691945 a007 Real Root Of -363*x^4+268*x^3-446*x^2+420*x+607 6541051832967912 m001 (2^(1/3)-HardyLittlewoodC4)/Backhouse 6541051833125168 k003 Champernowne real with 4*n^3-45/2*n^2+175/2*n-63 6541051836843457 r002 15i'th iterates of 2*x/(1-x^2) of 6541051853794761 m009 (Psi(1,3/4)-2/3)/(4/5*Psi(1,3/4)+5/6) 6541051863245468 k003 Champernowne real with 9/2*n^3-51/2*n^2+93*n-66 6541051869042798 a007 Real Root Of -496*x^4+856*x^3+705*x^2+828*x-992 6541051893365769 k003 Champernowne real with 5*n^3-57/2*n^2+197/2*n-69 6541051920443568 a007 Real Root Of 888*x^4-390*x^3+465*x^2-742*x-956 6541051923486069 k003 Champernowne real with 11/2*n^3-63/2*n^2+104*n-72 6541051923600086 s002 sum(A259055[n]/(n*pi^n-1),n=1..infinity) 6541051940341132 a007 Real Root Of -393*x^4+366*x^3+706*x^2+97*x-396 6541051953606361 k003 Champernowne real with 6*n^3-69/2*n^2+219/2*n-75 6541051983726661 k003 Champernowne real with 13/2*n^3-75/2*n^2+115*n-78 6541052002130113 a007 Real Root Of -85*x^4-497*x^3+298*x^2-434*x+920 6541052004035757 r005 Im(z^2+c),c=1/122+31/43*I,n=9 6541052007663635 m001 ln(GAMMA(5/24))^2/Catalan*sqrt(1+sqrt(3))^2 6541052013846961 k003 Champernowne real with 7*n^3-81/2*n^2+241/2*n-81 6541052021130789 m001 1/Khintchine^2/ln(Backhouse)*sqrt(Pi) 6541052032378742 a007 Real Root Of 189*x^4-387*x^3+936*x^2-481*x-858 6541052037453914 a007 Real Root Of 22*x^4-982*x^3+20*x^2-709*x+726 6541052042252995 l006 ln(4923/9469) 6541052043967261 k003 Champernowne real with 15/2*n^3-87/2*n^2+126*n-84 6541052053124853 a007 Real Root Of -569*x^4+929*x^3-578*x^2-256*x+444 6541052061891231 r005 Im(z^2+c),c=-43/30+11/65*I,n=4 6541052074087561 k003 Champernowne real with 8*n^3-93/2*n^2+263/2*n-87 6541052104207861 k003 Champernowne real with 17/2*n^3-99/2*n^2+137*n-90 6541052119063009 a007 Real Root Of 204*x^4-432*x^3+967*x^2+214*x-432 6541052123736382 a007 Real Root Of 295*x^4-803*x^3+775*x^2-556*x-974 6541052129969747 m002 -5+Pi^2-Sinh[Pi]+Log[Pi]*Sinh[Pi] 6541052134328161 k003 Champernowne real with 9*n^3-105/2*n^2+285/2*n-93 6541052145018482 k001 Champernowne real with 398*n+256 6541052147246515 m002 -5*Coth[Pi]+ProductLog[Pi]/Pi^4+Sinh[Pi] 6541052147979181 a007 Real Root Of 113*x^4+868*x^3+843*x^2+81*x+525 6541052153376702 a007 Real Root Of -861*x^4+603*x^3-820*x^2+229*x+827 6541052161606169 r002 5th iterates of z^2 + 6541052195498235 r009 Im(z^3+c),c=-41/126+41/63*I,n=24 6541052196414556 m001 Kolakoski*ArtinRank2^2*ln(LaplaceLimit)^2 6541052243643259 a007 Real Root Of 291*x^4-232*x^3+639*x^2+669*x+46 6541052270049334 a007 Real Root Of 642*x^4-553*x^3+297*x^2+794*x+120 6541052280312223 m005 (1/3*exp(1)+1/5)/(5/12*Pi-3) 6541052293612756 r009 Re(z^3+c),c=-3/29+12/23*I,n=10 6541052300403026 r005 Re(z^2+c),c=-3/4+25/214*I,n=9 6541052348136859 m001 (3^(1/3))^2/CopelandErdos^2/ln(sqrt(Pi)) 6541052356936460 l006 ln(3356/6455) 6541052363771223 a007 Real Root Of 89*x^4+531*x^3-432*x^2-520*x+766 6541052368426191 l006 ln(5015/5354) 6541052378930876 r005 Re(z^2+c),c=9/74+1/2*I,n=41 6541052389261589 m001 (Cahen+ZetaP(4))/(gamma(1)+GAMMA(19/24)) 6541052431433432 r005 Im(z^2+c),c=-61/98+6/49*I,n=42 6541052444978881 a007 Real Root Of -832*x^4+802*x^3-600*x^2-759*x+137 6541052455770297 a001 165580141/322*123^(1/20) 6541052463541591 a001 329/6*3571^(10/33) 6541052464927662 m001 (1-exp(1))/(KhinchinHarmonic+QuadraticClass) 6541052505462566 a007 Real Root Of -117*x^4-884*x^3-705*x^2+377*x-589 6541052548284868 a007 Real Root Of 114*x^4+612*x^3-886*x^2-109*x-217 6541052551020910 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=25 6541052599480413 m001 cos(Pi/5)^FeigenbaumAlpha/cos(Pi/5)^(1/2) 6541052599817371 r002 18th iterates of z^2 + 6541052611463454 a007 Real Root Of 489*x^4-767*x^3+506*x^2-557*x-885 6541052613072630 m001 (Chi(1)+Ei(1,1))/(BesselJ(1,1)+Salem) 6541052613072630 m001 Shi(1)/(BesselJ(1,1)+Salem) 6541052626602100 r005 Im(z^2+c),c=-3/4+1/166*I,n=10 6541052628634294 m005 (1/2*5^(1/2)+3)/(6*Zeta(3)-11/12) 6541052633033969 m001 (BesselI(0,2)-Bloch)/(Cahen-Magata) 6541052644109592 a007 Real Root Of 722*x^4-191*x^3+766*x^2-400*x-775 6541052649116159 a007 Real Root Of 151*x^4-353*x^3+664*x^2+701*x+48 6541052658041738 l006 ln(5145/9896) 6541052702860926 r005 Im(z^2+c),c=-107/94+5/61*I,n=58 6541052717280683 r009 Im(z^3+c),c=-11/25+16/17*I,n=2 6541052757419310 a007 Real Root Of -462*x^4+756*x^3-653*x^2+600*x+968 6541052790787367 m001 ln(Niven)/GolombDickman*BesselJ(0,1) 6541052797952517 b008 Sech[Sech[1/9]^2] 6541052803635929 a007 Real Root Of -970*x^4+566*x^3-417*x^2+4*x+517 6541052811258788 a007 Real Root Of 656*x^4+411*x^3-465*x^2-460*x-107 6541052812319904 r005 Re(z^2+c),c=3/44+1/2*I,n=5 6541052840450081 r005 Re(z^2+c),c=-21/110+20/29*I,n=29 6541052841800968 r005 Re(z^2+c),c=-7/8+31/161*I,n=38 6541052846095086 m005 (1/2*gamma-10/11)/(25/9+3*5^(1/2)) 6541052850820940 m001 (FeigenbaumMu-Mills)/(ln(3)-exp(1/exp(1))) 6541052863817789 m001 (Conway+Riemann3rdZero)/(Pi+ln(2^(1/2)+1)) 6541052874033308 a001 3/167761*4^(29/31) 6541052880451641 m001 (BesselJ(1,1)+ArtinRank2)/(CareFree+MertensB2) 6541052881392011 a001 34/7*843^(22/57) 6541052893567821 a007 Real Root Of -216*x^4-649*x^3-715*x^2+968*x+797 6541052897389346 m001 FeigenbaumDelta/LambertW(1)*Kolakoski 6541052897389346 m001 Kolakoski*FeigenbaumDelta*exp(LambertW(1)) 6541052900896257 r002 57th iterates of z^2 + 6541052906819520 p001 sum(1/(376*n+195)/n/(3^n),n=1..infinity) 6541052920211310 m001 (Stephens-ZetaQ(2))/(FellerTornier+PlouffeB) 6541052982175582 m005 (1/2*exp(1)+1/7)/(4/9*Pi+9/10) 6541052995070294 a007 Real Root Of -799*x^4-119*x^3-713*x^2-78*x+367 6541052995846067 r002 45i'th iterates of 2*x/(1-x^2) of 6541053001752192 r005 Im(z^2+c),c=-1/16+46/61*I,n=26 6541053023826397 a003 cos(Pi*1/15)-cos(Pi*47/119) 6541053030577800 a007 Real Root Of 535*x^4+92*x^3+341*x^2-405*x-483 6541053034503261 r002 42th iterates of z^2 + 6541053051251793 a007 Real Root Of -425*x^4-783*x^3-886*x^2+86*x+294 6541053057134600 a007 Real Root Of 594*x^4-595*x^3+652*x^2-654*x-982 6541053072888312 r009 Im(z^3+c),c=-7/48+31/41*I,n=20 6541053086934188 h001 (1/7*exp(1)+5/9)/(4/11*exp(1)+5/11) 6541053098670928 m009 (2*Psi(1,1/3)-1/3)/(3*Pi^2+3/4) 6541053145118492 k005 Champernowne real with floor(sqrt(3)*(230*n+148)) 6541053145218512 k001 Champernowne real with 399*n+255 6541053156975293 q001 2621/4007 6541053159052730 a007 Real Root Of -609*x^4+451*x^3-892*x^2+x+620 6541053160465379 a007 Real Root Of -355*x^4+117*x^3-537*x^2+198*x+457 6541053189587820 r009 Re(z^3+c),c=-1/86+31/50*I,n=22 6541053193434185 m001 1/Rabbit^2/ln(KhintchineLevy)^2/Zeta(5) 6541053194505824 m001 1/Pi*GAMMA(5/6)/ln(sqrt(3)) 6541053217434987 m001 (Shi(1)-ln(5))^TravellingSalesman 6541053222887612 l006 ln(1789/3441) 6541053244340034 a007 Real Root Of 94*x^4-431*x^3+346*x^2-481*x+270 6541053270560791 m001 exp(FeigenbaumB)^2*Conway*GAMMA(7/24)^2 6541053273407659 m001 (GAMMA(17/24)-Cahen)/(Conway-FellerTornier) 6541053277338557 a001 64079/3*121393^(15/17) 6541053303279169 a007 Real Root Of -955*x^4+945*x^3-619*x^2+382*x+954 6541053337900582 a008 Real Root of x^4-x^3-32*x^2+93*x-133 6541053352232295 m001 FeigenbaumMu*GlaisherKinkelin+ReciprocalLucas 6541053372937447 m001 (LaplaceLimit-Trott)/(FeigenbaumC-GaussAGM) 6541053379684987 m001 (Pi+exp(Pi)/gamma(1))*exp(-1/2*Pi) 6541053386543478 m001 1/Ei(1)^2/exp((2^(1/3)))^2*cos(1)^2 6541053394499473 a007 Real Root Of -98*x^4+982*x^3+517*x^2+564*x-847 6541053432760423 s002 sum(A070141[n]/(n^3*2^n+1),n=1..infinity) 6541053441317296 s002 sum(A070141[n]/(n^3*2^n-1),n=1..infinity) 6541053487348168 p001 sum(1/(230*n+153)/(512^n),n=0..infinity) 6541053576341898 m001 (Weierstrass+ZetaQ(3))^Psi(1,1/3) 6541053583677887 m001 GAMMA(1/3)^2/exp(CopelandErdos)^2*Zeta(1/2) 6541053592006776 m005 (2/3*gamma-5)/(-8/5+2/5*5^(1/2)) 6541053593748991 r005 Im(z^2+c),c=29/98+24/55*I,n=63 6541053600029478 r005 Re(z^2+c),c=-17/18+43/187*I,n=26 6541053607803679 a007 Real Root Of 709*x^4-885*x^3+968*x^2+348*x-564 6541053621318863 r005 Re(z^2+c),c=29/102+21/34*I,n=3 6541053624779529 m001 ln((2^(1/3)))^2*Magata^2*GAMMA(11/12) 6541053690076693 m001 (PlouffeB+Stephens)/(3^(1/3)-Zeta(1,-1)) 6541053712638814 m001 Landau^CareFree/(Landau^ZetaQ(3)) 6541053731779087 m001 (Si(Pi)+ln(2^(1/2)+1))/(-Lehmer+ZetaP(3)) 6541053747378501 m005 (1/2*3^(1/2)+5/7)/(9/10*3^(1/2)+6/7) 6541053754244715 a007 Real Root Of 920*x^4-516*x^3+778*x^2-294*x-838 6541053785902248 a001 15127/8*75025^(27/29) 6541053832143391 r005 Im(z^2+c),c=11/30+6/61*I,n=15 6541053837997048 a007 Real Root Of 913*x^4+203*x^3-329*x^2-522*x-311 6541053846965527 r002 2th iterates of z^2 + 6541053889332742 r002 59th iterates of z^2 + 6541053921568627 q001 2135/3264 6541053921568627 r002 2th iterates of z^2 + 6541053921568627 r002 2th iterates of z^2 + 6541053924030823 r002 10th iterates of z^2 + 6541053928756252 a001 2255/6*9349^(2/33) 6541053953256254 m001 1/OneNinth/FransenRobinson^2/ln(GAMMA(7/12))^2 6541053974988981 a008 Real Root of x^4-2*x^3-25*x^2-30*x-5 6541053975966870 b008 E^(25/14)+EulerGamma 6541053981406249 m008 (1/6*Pi^5-3/5)/(3/4*Pi^4+4) 6541053987659145 l006 ln(3800/7309) 6541053990435043 m005 (1/2*exp(1)-7/11)/(3/11*exp(1)+4/11) 6541053990472017 m005 (1/2*Zeta(3)+5/9)/(5/7*2^(1/2)-5/6) 6541053998696518 a007 Real Root Of 135*x^4+740*x^3+913*x^2-683*x-655 6541054000829240 m005 (1/2*exp(1)+7/12)/(6/7*Zeta(3)-4) 6541054036517750 a007 Real Root Of -816*x^4+536*x^3-667*x^2+34*x+607 6541054065137517 m001 (Champernowne+Conway)/(Zeta(5)+ln(Pi)) 6541054065251004 m005 (1/4*2^(1/2)-2/3)/(-4/15+1/3*5^(1/2)) 6541054083185406 a007 Real Root Of -617*x^4+212*x^3+98*x^2+585*x+513 6541054090501777 m001 Riemann1stZero/Backhouse*ln(BesselJ(1,1))^2 6541054118883753 r002 10th iterates of z^2 + 6541054135188556 m001 GAMMA(17/24)/(Artin+BesselI(1,2)) 6541054135188556 m001 GAMMA(17/24)/(BesselI(1,2)+Artin) 6541054145418542 k001 Champernowne real with 400*n+254 6541054145418552 k005 Champernowne real with floor(sqrt(3)*(231*n+147)) 6541054158891315 a007 Real Root Of -60*x^4+525*x^3+232*x^2+96*x-298 6541054162331844 m001 BesselJ(1,1)/(3^(1/3))^2*exp(GAMMA(5/6)) 6541054191043082 m001 (Artin+Gompertz)/(cos(1/12*Pi)+polylog(4,1/2)) 6541054191470485 m002 -Pi^6+Cosh[Pi]/Pi^4+Pi^5*Coth[Pi] 6541054195582242 a007 Real Root Of -124*x^4-942*x^3-710*x^2+861*x-627 6541054207770534 a005 (1/cos(11/175*Pi))^565 6541054224227706 r005 Re(z^2+c),c=-43/46+1/18*I,n=26 6541054224232670 a003 sin(Pi*9/110)-sin(Pi*33/91) 6541054226573572 a003 cos(Pi*3/77)-sin(Pi*10/91) 6541054248593276 m001 (-GAMMA(5/6)+FeigenbaumD)/(Catalan-Zeta(1/2)) 6541054263424421 m001 1/exp(arctan(1/2))^2*CareFree^2*gamma^2 6541054272195991 s002 sum(A248649[n]/((2^n-1)/n),n=1..infinity) 6541054275940752 m008 (3/5*Pi^6+2/5)/(3*Pi-3/5) 6541054299653678 m006 (5/6*Pi^2+2)/(2/3*ln(Pi)+4/5) 6541054338338782 a007 Real Root Of -990*x^4+899*x^3-997*x^2+111*x+932 6541054347880166 m001 (Pi^(1/2)-GAMMA(7/12))/(Artin-HeathBrownMoroz) 6541054376354014 r005 Im(z^2+c),c=-21/82+34/53*I,n=21 6541054405082981 p004 log(18913/9833) 6541054455576956 m001 (-cos(1/5*Pi)+Robbin)/(2^(1/2)+Chi(1)) 6541054460505528 r002 10th iterates of z^2 + 6541054477386104 r005 Im(z^2+c),c=-105/118+1/19*I,n=5 6541054493780187 a001 24157817/322*322^(3/8) 6541054497644424 m001 (Ei(1)+gamma(3))/(Zeta(1,2)-ReciprocalLucas) 6541054497958223 m001 GAMMA(5/6)/Porter/Salem 6541054499084296 m001 exp(-1/2*Pi)^ErdosBorwein/GAMMA(3/4) 6541054542994076 m006 (2/5*ln(Pi)-3/4)/(5/6*exp(2*Pi)+1/3) 6541054547433621 a007 Real Root Of 866*x^4+782*x^3+701*x^2-48*x-271 6541054548246160 a003 sin(Pi*27/118)*sin(Pi*44/95) 6541054551682967 a007 Real Root Of 997*x^4-593*x^3-481*x^2-531*x-490 6541054573192887 r005 Im(z^2+c),c=-1/6+41/62*I,n=13 6541054577827018 a007 Real Root Of 39*x^4-849*x^3+464*x^2-977*x+671 6541054589151928 r005 Im(z^2+c),c=33/94+16/59*I,n=4 6541054609985666 r005 Re(z^2+c),c=3/20+15/58*I,n=13 6541054640852828 m005 (5/6*gamma-1/2)/(5^(1/2)+2/3) 6541054643589279 m001 1/sin(Pi/5)*exp(Lehmer)^2*sinh(1) 6541054648325801 r005 Im(z^2+c),c=-107/94+5/61*I,n=55 6541054656055939 a001 1/98209*233^(42/55) 6541054668005328 l006 ln(2011/3868) 6541054674633441 a007 Real Root Of 548*x^4-685*x^3-441*x^2+265*x+70 6541054679724435 m001 1/ArtinRank2/ln(ErdosBorwein)^2*GAMMA(23/24) 6541054686734842 a007 Real Root Of 147*x^4+946*x^3-182*x^2-494*x+208 6541054726083673 m001 (MadelungNaCl+Tribonacci)/(Conway-Si(Pi)) 6541054731622417 m001 exp(BesselK(1,1))*Bloch/log(2+sqrt(3)) 6541054742761476 a007 Real Root Of 407*x^4-201*x^3+610*x^2-378*x-639 6541054759407123 s002 sum(A133934[n]/(exp(n)),n=1..infinity) 6541054780476758 m001 1/ln(Robbin)*Niven^2/OneNinth 6541054793079530 r002 24th iterates of z^2 + 6541054801353703 h001 (-12*exp(1)+9)/(-exp(2)+11) 6541054806246957 r005 Im(z^2+c),c=-9/16+1/85*I,n=41 6541054810666740 m001 (BesselI(0,2)*ZetaQ(3)-Lehmer)/ZetaQ(3) 6541054817318225 r009 Re(z^3+c),c=-29/42+8/15*I,n=5 6541054817966602 r009 Re(z^3+c),c=-25/42+17/57*I,n=14 6541054820621658 a007 Real Root Of 341*x^4-100*x^3+636*x^2-944*x-980 6541054828452622 a007 Real Root Of -792*x^4+721*x^3-283*x^2-888*x-113 6541054843035817 a007 Real Root Of 750*x^4+474*x^3+763*x^2-830*x-874 6541054858734494 a007 Real Root Of -864*x^4+652*x^3+393*x^2+328*x-407 6541054894526476 a007 Real Root Of 28*x^4-304*x^3+319*x^2-161*x-332 6541054932799534 a001 144/521*5600748293801^(1/2) 6541054933319140 a001 233/322*7881196^(19/22) 6541054933319231 a001 233/322*817138163596^(1/2) 6541054933319232 a001 233/322*87403803^(3/4) 6541054933319236 a001 233/322*33385282^(19/24) 6541054933321027 a001 233/322*1860498^(19/20) 6541054951639243 a007 Real Root Of -887*x^4+403*x^3-172*x^2-365*x+110 6541054953515554 a007 Real Root Of 767*x^4-478*x^3+974*x^2+246*x-530 6541054955706360 a007 Real Root Of -515*x^4+947*x^3-201*x^2-427*x+166 6541054967413091 a007 Real Root Of 333*x^4-104*x^3-951*x^2-454*x+672 6541055029193819 m001 (ln(2)/ln(10)+GAMMA(3/4))/(-Kac+Thue) 6541055029600141 m001 1/CareFree^2*ln(ArtinRank2)^2*Riemann3rdZero 6541055042359875 a001 433494437/2207*199^(5/22) 6541055049239163 m005 (1/3*5^(1/2)-3/4)/(3/10*2^(1/2)+2/7) 6541055053384807 m006 (1/6*ln(Pi)+1/6)/(4/5/Pi-1/5) 6541055084872448 a007 Real Root Of -871*x^4-120*x^3-236*x^2-252*x+62 6541055103520690 m006 (1/5*Pi+2)/(3/4*exp(2*Pi)+1/5) 6541055122980465 a001 267914296/521*76^(1/18) 6541055126731757 b008 Sech[Sech[Erfc[1]]] 6541055127061698 m005 (1/2*exp(1)+2/11)/(5/11*exp(1)-1) 6541055127922796 a001 17711/521*3^(28/47) 6541055136850456 q001 1649/2521 6541055145618572 k001 Champernowne real with 401*n+253 6541055155037200 m005 (1/2*Catalan+5/12)/(1/12*gamma-2/11) 6541055167232521 r005 Im(z^2+c),c=-13/94+5/61*I,n=11 6541055180380985 a007 Real Root Of -236*x^4-54*x^3-930*x^2-717*x-43 6541055194582212 r005 Im(z^2+c),c=-107/94+5/61*I,n=61 6541055210218287 a001 1/5778*18^(23/50) 6541055211934859 r005 Re(z^2+c),c=-13/23+23/42*I,n=14 6541055231986513 m001 (Artin-CareFree)/(LandauRamanujan2nd-ZetaP(4)) 6541055253767779 s002 sum(A157864[n]/(n*exp(pi*n)-1),n=1..infinity) 6541055265889451 m001 1/ln(Salem)^2*Porter*Trott^2 6541055277174822 l006 ln(4244/8163) 6541055297790045 l006 ln(6376/6807) 6541055302349573 r005 Im(z^2+c),c=-5/118+37/52*I,n=63 6541055304426231 r002 56th iterates of z^2 + 6541055316443135 a007 Real Root Of -502*x^4+624*x^3+275*x^2-90*x+90 6541055336582208 m001 ln(Pi)^BesselI(0,1)*Psi(2,1/3) 6541055341447040 a007 Real Root Of -736*x^4+393*x^3+345*x^2+327*x+311 6541055361401669 b008 13*FresnelC[Sqrt[10]] 6541055383014027 a007 Real Root Of -807*x^4+499*x^3-11*x^2+113*x+366 6541055413696215 r005 Re(z^2+c),c=-17/98+27/38*I,n=5 6541055418621298 a007 Real Root Of 508*x^4-394*x^3-325*x^2-530*x+503 6541055421615361 a007 Real Root Of -124*x^4+333*x^3-279*x^2+859*x-513 6541055437678934 m001 (gamma(3)*Pi^(1/2)+Totient)/gamma(3) 6541055459971418 r005 Im(z^2+c),c=-115/118+19/56*I,n=6 6541055471422851 a007 Real Root Of -811*x^4+27*x^3+596*x^2+963*x-744 6541055482142286 a001 47/7778742049*17711^(5/7) 6541055485121235 a001 47/956722026041*14930352^(5/7) 6541055485121239 a001 1/225749145909*433494437^(5/7) 6541055485124773 a001 47/86267571272*514229^(5/7) 6541055490828804 a003 cos(Pi*5/101)-cos(Pi*14/111) 6541055516328147 m001 ln(2)/Si(Pi)*ZetaP(3) 6541055558497024 m001 (Catalan+Zeta(3))/(arctan(1/3)+gamma(3)) 6541055621423383 r002 5th iterates of z^2 + 6541055646258761 a003 cos(Pi*10/111)/cos(Pi*53/107) 6541055650960179 h001 (10/11*exp(1)+5/8)/(3/5*exp(2)+3/10) 6541055655320617 m001 (GAMMA(11/12)+GAMMA(17/24))/(Ei(1,1)-gamma) 6541055658736102 a007 Real Root Of 796*x^4-309*x^3+21*x^2-651*x-667 6541055659446217 r005 Im(z^2+c),c=-27/38+17/35*I,n=7 6541055685057121 r005 Re(z^2+c),c=3/28+11/59*I,n=16 6541055723893505 m001 (cos(1)+Zeta(3))/(Grothendieck+QuadraticClass) 6541055738987422 r009 Im(z^3+c),c=-51/122+1/32*I,n=3 6541055743130865 r009 Im(z^3+c),c=-67/122+13/37*I,n=9 6541055770216421 a007 Real Root Of 825*x^4-399*x^3-245*x^2+515*x+179 6541055793780282 r005 Im(z^2+c),c=-53/60+17/48*I,n=5 6541055796509340 a007 Real Root Of -451*x^4-225*x^3-546*x^2+122*x+333 6541055825781978 l006 ln(2233/4295) 6541055830475604 s002 sum(A194904[n]/(pi^n+1),n=1..infinity) 6541055830475604 s002 sum(A194876[n]/(pi^n+1),n=1..infinity) 6541055830971723 s002 sum(A194837[n]/(pi^n+1),n=1..infinity) 6541055854633397 r002 8th iterates of z^2 + 6541055870064842 a007 Real Root Of -314*x^4+890*x^3+531*x^2+673*x-859 6541055890427272 r005 Re(z^2+c),c=13/48+23/61*I,n=18 6541055894554398 m001 1/GAMMA(7/24)*GAMMA(5/12)^2/exp(cos(Pi/5)) 6541055909046332 r001 60i'th iterates of 2*x^2-1 of 6541055927784782 r009 Im(z^3+c),c=-9/25+17/27*I,n=27 6541055949931283 a007 Real Root Of -106*x^4-680*x^3+3*x^2-605*x-349 6541055953418657 m005 (1/2*Catalan+1/10)/(1/6*exp(1)+2/5) 6541055971701582 m001 Rabbit/GlaisherKinkelin/ln(RenyiParking)^2 6541056015705261 a007 Real Root Of -764*x^4+244*x^3-821*x^2+192*x+685 6541056018613067 a007 Real Root Of 836*x^4-468*x^3-539*x^2-536*x-404 6541056099454681 m005 (1/2*Pi-6)/(6/11*2^(1/2)+6) 6541056123765858 m005 (1/2*Catalan+7/12)/(8/9*Catalan+7/9) 6541056130646323 m001 GAMMA(23/24)*(GAMMA(3/4)-sin(1/5*Pi)) 6541056130646323 m001 GAMMA(23/24)*(GAMMA(3/4)-sin(Pi/5)) 6541056132111122 k006 concat of cont frac of 6541056134503309 a001 514229/3*843^(15/17) 6541056137408223 m005 (2/5*exp(1)-3/4)/(4*2^(1/2)-1/2) 6541056145818602 k005 Champernowne real with floor(sqrt(3)*(232*n+146)) 6541056145818602 k001 Champernowne real with 402*n+252 6541056148314538 m001 1/ln(BesselK(0,1))^2/Khintchine*GAMMA(1/4)^2 6541056176919731 m001 2*Pi/GAMMA(5/6)+ZetaQ(2)^ZetaQ(3) 6541056177596805 m001 (5^(1/2)-BesselK(0,1))/(-ZetaP(2)+ZetaP(3)) 6541056189332425 a001 567451585/2889*199^(5/22) 6541056197381817 r002 4th iterates of z^2 + 6541056219574014 s002 sum(A186861[n]/(n^3*exp(n)-1),n=1..infinity) 6541056223544164 m005 (1/3*5^(1/2)+3/4)/(6/11*2^(1/2)-1) 6541056253353293 r002 25th iterates of z^2 + 6541056255305623 m001 (Riemann1stZero-ZetaQ(2))/(ln(5)+Landau) 6541056269972674 h001 (-exp(1)+6)/(-2*exp(3)-10) 6541056286781488 b008 ArcCsc[2*ExpIntegralEi[1/5]] 6541056320539083 a007 Real Root Of 376*x^4-462*x^3+726*x^2+365*x-270 6541056322430581 l006 ln(4688/9017) 6541056322866519 a007 Real Root Of 791*x^4-940*x^3-336*x^2-480*x+576 6541056332930494 a007 Real Root Of 238*x^4+16*x^3-53*x^2-776*x-524 6541056356673499 a001 2971215073/15127*199^(5/22) 6541056362021380 a001 1926*14930352^(12/19) 6541056374708993 a007 Real Root Of -894*x^4+49*x^3-783*x^2+322*x+723 6541056381088233 a001 7778742049/39603*199^(5/22) 6541056384650295 a001 10182505537/51841*199^(5/22) 6541056385169992 a001 53316291173/271443*199^(5/22) 6541056385245815 a001 139583862445/710647*199^(5/22) 6541056385256878 a001 182717648081/930249*199^(5/22) 6541056385258492 a001 956722026041/4870847*199^(5/22) 6541056385258727 a001 2504730781961/12752043*199^(5/22) 6541056385258762 a001 3278735159921/16692641*199^(5/22) 6541056385258770 a001 10610209857723/54018521*199^(5/22) 6541056385258783 a001 4052739537881/20633239*199^(5/22) 6541056385258873 a001 387002188980/1970299*199^(5/22) 6541056385259489 a001 591286729879/3010349*199^(5/22) 6541056385263715 a001 225851433717/1149851*199^(5/22) 6541056385292676 a001 196418*199^(5/22) 6541056385491183 a001 32951280099/167761*199^(5/22) 6541056386851770 a001 12586269025/64079*199^(5/22) 6541056392918647 r009 Im(z^3+c),c=-1/22+59/61*I,n=6 6541056396177369 a001 1201881744/6119*199^(5/22) 6541056401540962 r002 4th iterates of z^2 + 6541056420998375 a007 Real Root Of 887*x^4-865*x^3-315*x^2+397*x-10 6541056431859273 a007 Real Root Of 11*x^4-163*x^3-363*x^2-397*x-152 6541056435305387 r002 38th iterates of z^2 + 6541056439154440 r002 40th iterates of z^2 + 6541056439817360 m001 (-Pi^(1/2)+PlouffeB)/(Chi(1)+ln(Pi)) 6541056460095974 a001 1836311903/9349*199^(5/22) 6541056490060183 a001 620166*1597^(12/19) 6541056511021486 a007 Real Root Of -542*x^4+636*x^3+288*x^2-133*x-115 6541056538274872 m001 1/ln(RenyiParking)/KhintchineLevy^2*GAMMA(1/3) 6541056573686554 a007 Real Root Of -82*x^4-434*x^3+523*x^2-968*x-60 6541056585531442 a007 Real Root Of -560*x^4+342*x^3-944*x^2-760*x+105 6541056595447459 m001 (GAMMA(2/3)-gamma)/(-polylog(4,1/2)+Niven) 6541056604687621 m008 (3*Pi^3+3/4)/(1/3*Pi^3+4) 6541056641227658 m008 (4/5*Pi^3+4/5)/(4*Pi^2-1/3) 6541056670059937 m001 arctan(1/3)^CareFree/(sin(1/5*Pi)^CareFree) 6541056678829322 r002 17th iterates of z^2 + 6541056727483716 h001 (6/7*exp(2)+1/2)/(1/12*exp(1)+9/11) 6541056753508666 r009 Im(z^3+c),c=-59/94+31/63*I,n=18 6541056755666998 m001 MertensB1*ln(DuboisRaymond)/cos(Pi/5)^2 6541056771233824 r009 Im(z^3+c),c=-7/102+20/27*I,n=7 6541056774168372 l006 ln(2455/4722) 6541056778127053 r005 Im(z^2+c),c=-107/94+5/61*I,n=57 6541056794081065 a007 Real Root Of 953*x^4+950*x^3+934*x^2-998*x-961 6541056801744109 r005 Im(z^2+c),c=-16/25+37/63*I,n=4 6541056803597593 a007 Real Root Of 598*x^4-388*x^3-250*x^2-830*x-654 6541056805655985 b008 SphericalBesselY[0,Sqrt[5/2]] 6541056830765744 r005 Re(z^2+c),c=7/74+11/24*I,n=53 6541056846752860 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=23 6541056847456736 m005 (7/6+3/2*5^(1/2))/(4*gamma-3) 6541056873810485 r005 Re(z^2+c),c=5/23+19/50*I,n=3 6541056898200646 a001 701408733/3571*199^(5/22) 6541056907350717 a001 11/21*21^(34/41) 6541056921611387 a003 sin(Pi*3/65)+sin(Pi*8/47) 6541056923694854 a001 1/3572*(1/2*5^(1/2)+1/2)^10*47^(1/6) 6541056945992119 m005 (1/2*3^(1/2)-6)/(5*2^(1/2)+7/9) 6541056967643803 r001 21i'th iterates of 2*x^2-1 of 6541056967840460 a007 Real Root Of 122*x^4+928*x^3+687*x^2-961*x+700 6541056978816433 m005 (1/3*2^(1/2)+2/5)/(2/7*exp(1)+5/9) 6541057002967042 a007 Real Root Of -896*x^4-22*x^3-307*x^2-89*x+231 6541057058851804 a008 Real Root of (-3-2*x+6*x^2+3*x^3+x^4+6*x^5) 6541057081781961 r008 a(0)=0,K{-n^6,-70-46*n^3-12*n^2-25*n} 6541057088022548 r008 a(0)=0,K{-n^6,56+48*n^3+50*n-n^2} 6541057091327854 a007 Real Root Of -60*x^4-357*x^3+276*x^2+412*x+811 6541057098537206 m001 (ln(gamma)+Zeta(1,-1))/(OneNinth+ZetaQ(4)) 6541057099669840 a007 Real Root Of -985*x^4+809*x^3+857*x^2-284*x-227 6541057112579734 m001 (GAMMA(5/24)+GAMMA(7/12))^GAMMA(11/12) 6541057125928562 r008 a(0)=0,K{-n^6,62+35*n+11*n^2+45*n^3} 6541057138872265 m005 (1/3*2^(1/2)-5/6)/(2*Pi-3/4) 6541057143886877 r005 Im(z^2+c),c=25/64+9/38*I,n=22 6541057146018632 k001 Champernowne real with 403*n+251 6541057146765346 m005 (1/2*Zeta(3)+7/8)/(7/8*5^(1/2)+3/10) 6541057153292909 a007 Real Root Of 741*x^4+88*x^3+734*x^2-642*x-845 6541057181326482 a007 Real Root Of -543*x^4-340*x^3+203*x^2+854*x+476 6541057186823609 l006 ln(5132/9871) 6541057191458088 m001 Artin/Zeta(1,2)*GAMMA(13/24) 6541057191458088 m001 GAMMA(13/24)/Zeta(1,2)*Artin 6541057196556928 l006 ln(7737/8260) 6541057203381373 m001 Psi(1,1/3)^ln(Pi)*arctan(1/2) 6541057208836890 m005 (1/2*Catalan-8/9)/(11/12*3^(1/2)+5) 6541057239490446 r005 Im(z^2+c),c=-5/19+17/20*I,n=5 6541057240688053 a003 cos(Pi*8/95)-cos(Pi*9/98) 6541057279959077 a007 Real Root Of 659*x^4-799*x^3+589*x^2+378*x-349 6541057288783984 m001 1/Kolakoski^2*Artin^2/ln(Zeta(3))^2 6541057325060234 r008 a(0)=0,K{-n^6,44+38*n^3+23*n^2+48*n} 6541057340285580 a007 Real Root Of -151*x^4+840*x^3-83*x^2+417*x+571 6541057345939479 r008 a(0)=0,K{-n^6,-62-13*n-44*n^2-34*n^3} 6541057367829021 q001 1163/1778 6541057373977352 r008 a(0)=0,K{-n^6,36+37*n^3+22*n^2+58*n} 6541057381053997 r008 a(0)=0,K{-n^6,40+36*n^3+27*n^2+50*n} 6541057416813323 r001 64i'th iterates of 2*x^2-1 of 6541057438357124 r008 a(0)=0,K{-n^6,42+33*n^3+37*n^2+41*n} 6541057460188988 r008 a(0)=0,K{-n^6,-42-32*n^3-40*n^2-39*n} 6541057460451692 m001 BesselK(0,1)-GAMMA(19/24)^ZetaP(2) 6541057474864633 r008 a(0)=0,K{-n^6,50+30*n^3+50*n^2+23*n} 6541057478195029 m001 (3^(1/2)-ln(2)/ln(10))/(ln(2^(1/2)+1)+Mills) 6541057479467637 a007 Real Root Of -948*x^4+882*x^3+691*x^2-446*x-167 6541057489604316 r008 a(0)=0,K{-n^6,46+30*n^3+48*n^2+29*n} 6541057499344587 r002 60th iterates of z^2 + 6541057511864842 r008 a(0)=0,K{-n^6,34+31*n^3+39*n^2+49*n} 6541057539053509 m005 (1/2*Zeta(3)+4/11)/(Zeta(3)+3/11) 6541057547541845 a005 (1/sin(74/159*Pi))^1485 6541057549459676 r008 a(0)=0,K{-n^6,42+28*n^3+52*n^2+31*n} 6541057565257888 l006 ln(2677/5149) 6541057583723196 a007 Real Root Of -170*x^4-988*x^3+656*x^2-913*x+658 6541057588284451 r005 Im(z^2+c),c=9/23+23/61*I,n=13 6541057595260245 r008 a(0)=0,K{-n^6,24+29*n^3+40*n^2+60*n} 6541057599449981 r009 Re(z^3+c),c=-1/11+15/37*I,n=15 6541057612606547 a007 Real Root Of -164*x^4+920*x^3-679*x^2+266*x+752 6541057614677764 s001 sum(exp(-Pi/4)^(n-1)*A140973[n],n=1..infinity) 6541057618579667 r008 a(0)=0,K{-n^6,66+21*n^3+85*n^2-19*n} 6541057618784139 h002 exp(14^(7/12)-6^(4/7)) 6541057618784139 h007 exp(14^(7/12)-6^(4/7)) 6541057622146003 p003 LerchPhi(1/12,4,35/177) 6541057641967351 r008 a(0)=0,K{-n^6,42+24*n^3+64*n^2+23*n} 6541057647777570 m005 (25/4+1/4*5^(1/2))/(127/180+3/20*5^(1/2)) 6541057649810134 r008 a(0)=0,K{-n^6,34+25*n^3+57*n^2+37*n} 6541057654971900 s002 sum(A207262[n]/((2^n+1)/n),n=1..infinity) 6541057657939331 m005 (-7/4+1/4*5^(1/2))/(2*Zeta(3)-7/12) 6541057664504104 m001 (MertensB3+ZetaQ(3))/(Ei(1,1)+FeigenbaumC) 6541057702209727 r002 7th iterates of z^2 + 6541057704913806 a007 Real Root Of 13*x^4-942*x^3+376*x^2+142*x-334 6541057713537597 r008 a(0)=0,K{-n^6,24+24*n^3+55*n^2+50*n} 6541057722006117 a007 Real Root Of 842*x^4+729*x^3+634*x^2-773*x-727 6541057726137415 r009 Re(z^3+c),c=-9/16+13/34*I,n=22 6541057727003792 r005 Im(z^2+c),c=-79/58+3/29*I,n=10 6541057736723864 a003 sin(Pi*2/99)/cos(Pi*7/89) 6541057761175499 m002 -Pi^5+Pi^6-Cosh[Pi]/Pi^4-Log[Pi] 6541057777639387 m005 (1/2*exp(1)-1/7)/(6/7*Pi-5/6) 6541057788377941 m001 (Zeta(1,2)+ZetaP(4))/(Shi(1)+sin(1/12*Pi)) 6541057788768564 a008 Real Root of (-4+6*x-3*x^2+4*x^3+2*x^5) 6541057790018210 r009 Re(z^3+c),c=-11/90+11/16*I,n=54 6541057797067782 r009 Re(z^3+c),c=-47/86+7/38*I,n=2 6541057800810691 a007 Real Root Of -297*x^4+517*x^3-25*x^2+60*x+249 6541057802200658 a007 Real Root Of 6*x^4-443*x^3-486*x^2-702*x+790 6541057835969668 m001 exp(Zeta(9))/Champernowne^2/sqrt(1+sqrt(3))^2 6541057836429187 m005 (1/2*5^(1/2)+4/5)/(4/11*gamma+1/12) 6541057837414661 r008 a(0)=0,K{-n^6,-36-17*n^3-82*n^2-18*n} 6541057854308452 r008 a(0)=0,K{-n^6,-14-57*n-62*n^2-20*n^3} 6541057860660180 a007 Real Root Of -294*x^4-585*x^3-688*x^2+435*x+469 6541057880597149 m001 (Bloch-Si(Pi))/(FellerTornier+KomornikLoreti) 6541057885797072 r009 Im(z^3+c),c=-11/21+24/61*I,n=19 6541057913984566 r009 Re(z^3+c),c=-2/31+45/47*I,n=7 6541057926460158 m001 (cos(1/5*Pi)+GAMMA(17/24))/(Artin-ZetaQ(2)) 6541057947843388 m001 (2*Pi/GAMMA(5/6)+Stephens)^MertensB2 6541057952066456 r009 Re(z^3+c),c=-19/50+20/29*I,n=52 6541057955626758 a007 Real Root Of -519*x^4-145*x^3-712*x^2+509*x+692 6541057960275322 a001 2/3*6765^(13/25) 6541057960567508 m001 (Paris-Stephens)/(FeigenbaumKappa-Kac) 6541057963228488 m001 1/exp(GAMMA(17/24))^2*ArtinRank2*GAMMA(3/4) 6541057965355615 a007 Real Root Of 277*x^4+652*x^3+470*x^2-955*x-694 6541057996374748 a001 47/701408733*610^(5/7) 6541058001847724 a007 Real Root Of -105*x^4-557*x^3+836*x^2-160*x-486 6541058007251932 m001 (GolombDickman-Kac)/(ln(2)+Backhouse) 6541058011167285 a007 Real Root Of -25*x^4+220*x^3-76*x^2+557*x+463 6541058032126157 m001 (Landau+ReciprocalFibonacci*ZetaQ(3))/ZetaQ(3) 6541058039257531 m001 (ArtinRank2-gamma)/(-Gompertz+ThueMorse) 6541058044879677 r005 Im(z^2+c),c=-31/94+1/10*I,n=13 6541058054503548 r005 Re(z^2+c),c=-65/86+29/63*I,n=3 6541058057694285 m001 (2^(1/3)+gamma(3))/(Conway+Kac) 6541058070870043 r002 4th iterates of z^2 + 6541058096082670 s001 sum(1/10^(n-1)*A110609[n]/n!,n=1..infinity) 6541058097381635 r005 Im(z^2+c),c=39/118+17/56*I,n=3 6541058112162479 m005 (1/4*5^(1/2)+3/4)/(8/11*5^(1/2)+3/8) 6541058127256742 h001 (10/11*exp(2)+1/12)/(2/11*exp(1)+6/11) 6541058146118652 k005 Champernowne real with floor(sqrt(3)*(233*n+145)) 6541058146218662 k001 Champernowne real with 404*n+250 6541058150391082 m001 (-StronglyCareFree+Tribonacci)/(1+Kac) 6541058164498190 r002 57th iterates of z^2 + 6541058170245483 r005 Im(z^2+c),c=9/118+16/23*I,n=4 6541058171030717 m001 (Shi(1)+cos(1))/(BesselI(0,1)+Salem) 6541058227397990 a003 cos(Pi*43/119)/cos(Pi*35/73) 6541058228563503 v002 sum(1/(5^n+(20*n^2-5*n)),n=1..infinity) 6541058235187043 l006 ln(2899/5576) 6541058269266703 m001 (sin(1)*sqrt(1+sqrt(3))+exp(sqrt(2)))/sin(1) 6541058273389016 m001 Porter^2/GlaisherKinkelin/ln(GAMMA(19/24))^2 6541058294590439 a007 Real Root Of 363*x^4-714*x^3-75*x^2-302*x+363 6541058305987503 a007 Real Root Of -574*x^4+30*x^3-816*x^2+499*x+789 6541058315666211 m001 (Gompertz+Salem)/(Zeta(1,2)-Pi^(1/2)) 6541058321850207 a007 Real Root Of -931*x^4-77*x^3-811*x^2+653*x+923 6541058323989428 m001 Mills/(Sierpinski-sin(1/5*Pi)) 6541058344107513 s001 sum(exp(-Pi/4)^n*A059786[n],n=1..infinity) 6541058350622633 p001 sum(1/(613*n+153)/(256^n),n=0..infinity) 6541058356411599 m001 (MadelungNaCl-arctan(1/2))/ReciprocalLucas 6541058357046136 p004 log(28307/14717) 6541058372953539 m001 (ln(2)/ln(10)+exp(1))/(-arctan(1/2)+gamma(3)) 6541058388120817 a007 Real Root Of 111*x^4+773*x^3+400*x^2+554*x-353 6541058430535432 m001 (Cahen+FeigenbaumB)/(ln(2^(1/2)+1)+exp(1/Pi)) 6541058469037180 m001 (gamma(3)+ErdosBorwein)/(exp(1)-sin(1/12*Pi)) 6541058476874939 a007 Real Root Of 890*x^4+85*x^3+710*x^2-628*x+38 6541058477669267 r002 9th iterates of z^2 + 6541058487301907 a007 Real Root Of -779*x^4+874*x^3+132*x^2+907*x+924 6541058519480519 m009 (2*Psi(1,3/4)-2)/(1/2*Psi(1,1/3)-1/3) 6541058524106835 a003 cos(Pi*2/17)*cos(Pi*25/99) 6541058527238116 l006 ln(9098/9713) 6541058534850475 a007 Real Root Of -938*x^4+742*x^3-722*x^2+261*x+859 6541058534851335 m001 (Trott+ZetaQ(4))/(Khinchin-StronglyCareFree) 6541058541773794 a007 Real Root Of -157*x^4+471*x^3+593*x^2+355*x-589 6541058543422607 a001 64079/3*14930352^(13/17) 6541058544124826 m001 (Stephens-Tetranacci)/(Zeta(1,2)-GAMMA(5/6)) 6541058565320695 a007 Real Root Of -113*x^4-635*x^3+679*x^2-71*x-371 6541058572293999 a007 Real Root Of -295*x^4-256*x^3+995*x^2+775*x-807 6541058584386068 m001 (-Backhouse+ZetaQ(3))/(Chi(1)+exp(1/Pi)) 6541058588592191 a008 Real Root of x^3-x^2-148*x+731 6541058601339899 m005 (5/12+1/6*5^(1/2))/(5/9*gamma-1/5) 6541058602244091 a001 33385282/3*4181^(13/17) 6541058606851495 r005 Im(z^2+c),c=-151/126+8/35*I,n=14 6541058608192520 a007 Real Root Of 998*x^4-321*x^3+661*x^2+424*x-278 6541058610222621 a007 Real Root Of -120*x^4-780*x^3+117*x^2+536*x-121 6541058627803666 m002 -Pi^6+Pi^5*Coth[Pi]+Sinh[Pi]/Pi^4 6541058629291901 a007 Real Root Of -930*x^4-124*x^3-71*x^2+604*x+561 6541058640614156 m005 (25/4+1/4*5^(1/2))/(Catalan+1/8) 6541058658474454 r002 39th iterates of z^2 + 6541058672231495 a007 Real Root Of -107*x^4-834*x^3-966*x^2-520*x+398 6541058683596797 a007 Real Root Of 766*x^4+692*x^3+946*x^2-290*x-541 6541058723599463 a007 Real Root Of 301*x^4-955*x^3-890*x^2+7*x+63 6541058728454210 a007 Real Root Of 235*x^4-61*x^3+765*x^2-536*x-738 6541058735965952 a007 Real Root Of -814*x^4+37*x^3+923*x^2+206*x-391 6541058754039397 a007 Real Root Of -722*x^4+780*x^3-806*x^2+131*x+781 6541058780857318 b008 1/3+PolyLog[3,4/13] 6541058789385345 m001 1/GAMMA(19/24)^2/ln(Magata)^2*GAMMA(2/3) 6541058809810636 l006 ln(3121/6003) 6541058822773017 a007 Real Root Of 837*x^4+35*x^3+800*x^2-83*x-540 6541058827805302 m001 1/ln(GAMMA(19/24))/GolombDickman/GAMMA(7/12) 6541058836136922 r005 Im(z^2+c),c=-81/86+16/41*I,n=5 6541058843378571 h001 (-2*exp(-1)-3)/(-8*exp(2)+2) 6541058851374809 a007 Real Root Of -130*x^4-932*x^3-454*x^2+648*x+809 6541058852948631 h002 exp(18^(7/6)-5^(7/6)) 6541058852948631 h007 exp(18^(7/6)-5^(7/6)) 6541058858336074 r002 14th iterates of z^2 + 6541058880037500 m001 BesselI(0,2)/FeigenbaumDelta*Totient 6541058891575345 m005 (1/2*Catalan+7/10)/(6/7*3^(1/2)+2/7) 6541058896291375 a007 Real Root Of -136*x^4-875*x^3+92*x^2-67*x-293 6541058915044553 r005 Im(z^2+c),c=-13/94+5/61*I,n=14 6541058951417617 a007 Real Root Of -233*x^4-26*x^3+979*x^2+526*x-713 6541058968586405 a007 Real Root Of 284*x^4+280*x^3+757*x^2-837*x-845 6541058988139783 m005 (1/2*Catalan-3/5)/(10/11*exp(1)-3/10) 6541059034660584 a007 Real Root Of -528*x^4+552*x^3-822*x^2+40*x+629 6541059036755427 r005 Im(z^2+c),c=-13/94+5/61*I,n=16 6541059037527544 a001 1/3567*(1/2*5^(1/2)+1/2)^20*29^(13/16) 6541059049990197 r005 Im(z^2+c),c=-13/94+5/61*I,n=18 6541059050334111 r005 Im(z^2+c),c=-13/94+5/61*I,n=19 6541059050353986 r005 Im(z^2+c),c=-13/94+5/61*I,n=21 6541059050375578 r005 Im(z^2+c),c=-13/94+5/61*I,n=23 6541059050377475 r005 Im(z^2+c),c=-13/94+5/61*I,n=25 6541059050377484 r005 Im(z^2+c),c=-13/94+5/61*I,n=26 6541059050377496 r005 Im(z^2+c),c=-13/94+5/61*I,n=28 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=30 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=33 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=35 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=37 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=40 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=42 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=44 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=47 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=49 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=51 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=52 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=54 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=56 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=58 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=59 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=61 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=63 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=64 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=62 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=60 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=57 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=55 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=53 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=50 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=48 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=45 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=46 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=43 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=41 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=39 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=38 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=36 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=32 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=34 6541059050377500 r005 Im(z^2+c),c=-13/94+5/61*I,n=31 6541059050377501 r005 Im(z^2+c),c=-13/94+5/61*I,n=29 6541059050377510 r005 Im(z^2+c),c=-13/94+5/61*I,n=27 6541059050377859 r005 Im(z^2+c),c=-13/94+5/61*I,n=24 6541059050385068 r005 Im(z^2+c),c=-13/94+5/61*I,n=22 6541059050430908 r005 Im(z^2+c),c=-13/94+5/61*I,n=20 6541059053327079 r005 Im(z^2+c),c=-13/94+5/61*I,n=17 6541059071667925 r005 Im(z^2+c),c=-3/5+13/108*I,n=38 6541059098988788 r005 Im(z^2+c),c=-13/94+5/61*I,n=15 6541059112642720 a007 Real Root Of -970*x^4+386*x^3+873*x^2+590*x+298 6541059136827576 a007 Real Root Of 249*x^4-597*x^3-393*x^2-635*x+705 6541059146418692 k001 Champernowne real with 405*n+249 6541059161478329 a007 Real Root Of -740*x^4+x^3-491*x^2+543*x+701 6541059161995192 m001 (Stephens+ZetaP(4))/(Zeta(1,-1)-FeigenbaumB) 6541059188910559 r005 Im(z^2+c),c=-13/94+5/61*I,n=12 6541059206586299 b008 1-241*E 6541059213820511 p004 log(31723/16493) 6541059224940638 r008 a(0)=0,K{-n^6,-33-9*n^3+43*n^2+15*n} 6541059225978787 m001 (exp(1/Pi)-Sierpinski)/(Tribonacci+Trott) 6541059288300199 a007 Real Root Of 143*x^4+822*x^3-602*x^2+951*x+249 6541059295068488 m002 -3-Pi^2/4-ProductLog[Pi] 6541059295492869 r005 Im(z^2+c),c=-13/94+5/61*I,n=13 6541059306164830 r009 Im(z^3+c),c=-13/27+29/57*I,n=23 6541059308115664 l006 ln(3343/6430) 6541059326853244 a007 Real Root Of -765*x^4+294*x^3-414*x^2-999*x-254 6541059367223604 q001 184/2813 6541059368080214 a007 Real Root Of 817*x^4+632*x^3-50*x^2-793*x-470 6541059368565065 r009 Re(z^3+c),c=-1/118+10/29*I,n=11 6541059403915918 a007 Real Root Of 464*x^4-678*x^3-898*x^2-993*x-540 6541059405300559 m004 (75*Sqrt[5])/Pi-Cosh[Sqrt[5]*Pi]/12 6541059455575997 s002 sum(A067787[n]/(n!^2),n=1..infinity) 6541059582503214 m001 (RenyiParking+ZetaP(4))/(3^(1/2)-Bloch) 6541059583693187 r009 Re(z^3+c),c=-17/126+20/29*I,n=30 6541059597332555 m001 Gompertz/cos(1)*Lehmer 6541059609484954 a007 Real Root Of 4*x^4-780*x^3-614*x^2-764*x+980 6541059621339547 r005 Im(z^2+c),c=-1/9+53/63*I,n=8 6541059649632268 r009 Im(z^3+c),c=-17/98+25/34*I,n=43 6541059651296535 g007 Psi(2,2/9)-Psi(2,7/11)-Psi(2,3/11)-Psi(2,3/5) 6541059657899374 m001 (-Lehmer+Sierpinski)/(CopelandErdos-cos(1)) 6541059660339996 r009 Im(z^3+c),c=-31/78+22/37*I,n=31 6541059662639005 m001 (exp(1)+ln(Pi))/(-gamma(3)+Lehmer) 6541059670232895 a007 Real Root Of -280*x^4+729*x^3-816*x^2-525*x+261 6541059670554979 b008 EllipticPi[-5/6,-9] 6541059704358038 a007 Real Root Of -387*x^4+629*x^3+721*x^2+111*x+11 6541059744359681 l006 ln(3565/6857) 6541059746380317 r009 Im(z^3+c),c=-13/25+9/22*I,n=52 6541059751061722 a001 7465176/161*322^(11/24) 6541059760055692 m001 (5^(1/2)-Ei(1))/(FeigenbaumDelta+Landau) 6541059764567774 m001 (exp(1/Pi)+gamma(3))/(Riemann2ndZero+Trott2nd) 6541059772437298 a007 Real Root Of -130*x^4-724*x^3+808*x^2-171*x-332 6541059787500490 a007 Real Root Of -135*x^4-980*x^3-553*x^2+590*x+385 6541059797259763 h001 (-8*exp(3/2)-3)/(-3*exp(-2)+1) 6541059828346201 r005 Re(z^2+c),c=-43/56+2/61*I,n=47 6541059846870446 m005 (1/2*Catalan+1/12)/(2/11*exp(1)+1/3) 6541059849102715 m005 (1/3*exp(1)+1/7)/(3/4*Catalan+11/12) 6541059865845324 r005 Im(z^2+c),c=-1/19+30/47*I,n=23 6541059867504637 a008 Real Root of x^4-16*x^2-159*x-106 6541059901016323 a001 66978574/341*199^(5/22) 6541059938626934 m001 (cos(1)+Robbin)/(-Tribonacci+ZetaQ(4)) 6541059940494135 m001 (ln(2)/ln(10)+Rabbit)/(-Robbin+TwinPrimes) 6541059959961202 r005 Im(z^2+c),c=-35/64+22/45*I,n=26 6541059979166413 a007 Real Root Of 511*x^4-548*x^3+203*x^2-618*x-738 6541059987391242 m001 1/ln(GAMMA(2/3))/Trott*arctan(1/2)^2 6541059989073770 a003 cos(Pi*17/95)-sin(Pi*23/63) 6541059997283434 r005 Re(z^2+c),c=-16/21+6/35*I,n=11 6541060006737241 a007 Real Root Of 67*x^4-736*x^3+21*x^2-748*x+674 6541060011812453 a007 Real Root Of 758*x^4+799*x^3+764*x^2-772*x-747 6541060023200951 h001 (2/11*exp(1)+9/10)/(1/6*exp(2)+9/10) 6541060025686129 a001 1/24487*(1/2*5^(1/2)+1/2)^11*47^(13/24) 6541060025719004 r005 Re(z^2+c),c=-13/94+41/63*I,n=3 6541060049108642 a007 Real Root Of -240*x^4+210*x^3-342*x^2-714*x-218 6541060052542327 g001 GAMMA(3/11,31/75) 6541060056092421 p004 log(35993/18713) 6541060057482346 m005 (5/6*Pi+2/5)/(1/2*gamma-3/4) 6541060063524385 a007 Real Root Of 989*x^4-708*x^3+41*x^2-297*x-591 6541060108694152 r005 Im(z^2+c),c=-17/27+4/33*I,n=40 6541060129457037 l006 ln(3787/7284) 6541060136916272 m001 TreeGrowth2nd/Lehmer^2*exp(sqrt(1+sqrt(3))) 6541060146518702 k005 Champernowne real with floor(sqrt(3)*(234*n+144)) 6541060146618722 k001 Champernowne real with 406*n+248 6541060153055329 a007 Real Root Of -336*x^4+703*x^3-57*x^2+439*x-398 6541060157558451 a007 Real Root Of -473*x^4+887*x^3-629*x^2-827*x+63 6541060172346567 a007 Real Root Of -554*x^4+374*x^3+259*x^2+775*x-621 6541060178365239 h001 (10/11*exp(2)+7/9)/(1/8*exp(2)+2/9) 6541060189285107 r005 Im(z^2+c),c=45/122+17/52*I,n=34 6541060196246608 r009 Im(z^3+c),c=-45/122+27/46*I,n=7 6541060201121287 p004 log(36847/19157) 6541060207326737 m001 exp(GAMMA(7/24))/GAMMA(1/6)^2/Zeta(5)^2 6541060232034923 m001 Pi+1/2*(Psi(2,1/3)+GAMMA(3/4))/Pi*GAMMA(5/6) 6541060233594067 h001 (1/7*exp(1)+3/7)/(1/8*exp(1)+10/11) 6541060239143122 a007 Real Root Of 830*x^4-732*x^3+786*x^2+948*x-73 6541060240029197 m001 Si(Pi)^2/Cahen^2/ln(GAMMA(7/24))^2 6541060242940147 r005 Im(z^2+c),c=-5/6+5/72*I,n=4 6541060261756420 a007 Real Root Of -968*x^4+712*x^3-433*x^2+615*x+964 6541060268648050 m001 1/exp(GAMMA(1/24))/Khintchine*exp(1) 6541060270865618 r005 Re(z^2+c),c=-11/118+35/48*I,n=3 6541060285020419 m001 Thue*(LaplaceLimit+Paris) 6541060290592362 m005 (-1/2+1/4*5^(1/2))/(61/80+1/16*5^(1/2)) 6541060291060291 q001 2517/3848 6541060295265922 a001 1364/3*4052739537881^(11/17) 6541060298465528 a007 Real Root Of -126*x^4-953*x^3-895*x^2-337*x+35 6541060303981513 a007 Real Root Of 530*x^4+62*x^3+167*x^2-567*x-522 6541060319532757 r005 Im(z^2+c),c=9/22+5/16*I,n=20 6541060337840742 r005 Re(z^2+c),c=-101/106+32/41*I,n=2 6541060364652542 r005 Re(z^2+c),c=-5/74+22/29*I,n=47 6541060418743186 a007 Real Root Of 548*x^4+269*x^3+198*x^2-670*x-548 6541060419863589 h001 (-6*exp(-2)-7)/(-8*exp(-1)-9) 6541060424277715 s002 sum(A059356[n]/(exp(pi*n)+1),n=1..infinity) 6541060450089360 a007 Real Root Of -918*x^4+982*x^3+194*x^2+945*x+978 6541060471904536 l006 ln(4009/7711) 6541060472340216 a007 Real Root Of 600*x^4+268*x^3+345*x^2-221*x-327 6541060491128182 a003 sin(Pi*15/101)/cos(Pi*15/58) 6541060500783784 a008 Real Root of (-7+6*x+4*x^2+8*x^4-3*x^8) 6541060502753156 g006 Psi(1,3/10)-Psi(1,5/7)-Psi(1,5/6)-Psi(1,2/5) 6541060514398401 a007 Real Root Of -54*x^4-275*x^3+505*x^2+51*x+617 6541060527341067 p001 sum((-1)^n/(517*n+140)/(2^n),n=0..infinity) 6541060543380910 l006 ln(3200/3221) 6541060580433251 m005 (1/2*Zeta(3)+1/2)/(5/8*5^(1/2)+2/7) 6541060582656153 r005 Re(z^2+c),c=-115/78+10/47*I,n=2 6541060582831283 r005 Im(z^2+c),c=-5/4+9/212*I,n=54 6541060588028182 a001 9349/610*10946^(28/43) 6541060608542472 s001 sum(exp(-Pi/2)^(n-1)*A119650[n],n=1..infinity) 6541060630837863 a007 Real Root Of 107*x^4-958*x^3+874*x^2-51*x-695 6541060652420580 r002 4th iterates of z^2 + 6541060657689928 m004 -5+125/Pi+5*Pi*Log[Sqrt[5]*Pi] 6541060679492983 a007 Real Root Of -20*x^4+868*x^3-765*x^2-911*x-22 6541060684999411 m001 Trott/ln(GlaisherKinkelin)^2*GAMMA(11/24)^2 6541060712119570 s002 sum(A117007[n]/(exp(n)-1),n=1..infinity) 6541060729683642 m005 (1/12+1/6*5^(1/2))/(1/8*gamma+5/8) 6541060740173894 r002 62th iterates of z^2 + 6541060760807711 m001 log(2+sqrt(3))/exp(Paris)^2/sqrt(1+sqrt(3)) 6541060778415677 l006 ln(4231/8138) 6541060785165089 m005 (1/2*3^(1/2)-7/11)/(5*gamma+5/8) 6541060796384671 a007 Real Root Of 64*x^4-534*x^3+28*x^2-219*x+269 6541060807870553 a007 Real Root Of -534*x^4-808*x^3-44*x^2+933*x+61 6541060810311770 m001 1/ln(LambertW(1))^2*Backhouse*Zeta(3)^2 6541060885295578 m001 Zeta(9)*FibonacciFactorial^2*ln(cosh(1)) 6541060886441738 a007 Real Root Of -973*x^4+870*x^3-195*x^2+480*x+819 6541060894628119 h001 (7/9*exp(2)+1/3)/(1/4*exp(1)+1/4) 6541060916845644 h001 (3/5*exp(1)+3/8)/(2/5*exp(2)+1/9) 6541060952012250 r005 Im(z^2+c),c=-75/122+1/8*I,n=21 6541060988399382 a007 Real Root Of 136*x^4+730*x^3-908*x^2+936*x+310 6541061012223114 k007 concat of cont frac of 6541061053874961 a007 Real Root Of 63*x^4-917*x^3-867*x^2+49*x+584 6541061054365179 l006 ln(4453/8565) 6541061055753833 a007 Real Root Of 150*x^4+962*x^3-145*x^2-194*x-427 6541061093275694 r002 12th iterates of z^2 + 6541061105708648 m001 exp(1)*GAMMA(1/12)^2/ln(gamma) 6541061108591040 a007 Real Root Of -872*x^4-97*x^3+382*x^2+866*x+55 6541061117567599 m005 (1/2*Pi-3/4)/(4/11*3^(1/2)+5/8) 6541061127662152 m001 (FeigenbaumAlpha+Niven)/(Chi(1)-DuboisRaymond) 6541061130034415 r005 Im(z^2+c),c=1/66+50/59*I,n=20 6541061146818752 k001 Champernowne real with 407*n+247 6541061146818752 k005 Champernowne real with floor(sqrt(3)*(235*n+143)) 6541061153111352 k007 concat of cont frac of 6541061177805951 r005 Re(z^2+c),c=-3/110+14/19*I,n=35 6541061194222236 a007 Real Root Of 496*x^4-679*x^3+740*x^2-539*x-950 6541061201891711 r005 Re(z^2+c),c=-91/118+1/55*I,n=55 6541061206676607 p001 sum(1/(515*n+154)/(32^n),n=0..infinity) 6541061223959794 m001 (Cahen-ZetaQ(4))/(arctan(1/2)+polylog(4,1/2)) 6541061225434960 r002 16th iterates of z^2 + 6541061260842831 a007 Real Root Of 862*x^4+856*x^3+977*x^2-816*x-870 6541061265288400 p003 LerchPhi(1/100,1,363/236) 6541061303261544 a007 Real Root Of 919*x^4-721*x^3+971*x^2+733*x-306 6541061304106849 l006 ln(4675/8992) 6541061314140750 a007 Real Root Of 553*x^4-984*x^3+295*x^2-491*x-824 6541061324519882 m008 (4*Pi^4-4/5)/(3/5*Pi^4+1) 6541061355919463 a007 Real Root Of -203*x^4+691*x^3+274*x^2+169*x-384 6541061368767254 a007 Real Root Of -924*x^4+626*x^3-805*x^2+167*x+798 6541061370426140 a007 Real Root Of -547*x^4-5*x^3-376*x^2+473*x+569 6541061409442473 r005 Im(z^2+c),c=-5/44+5/63*I,n=5 6541061423341563 m001 (Psi(1,1/3)+ln(2))/(-Mills+Otter) 6541061496942949 r005 Im(z^2+c),c=-43/110+41/63*I,n=28 6541061505966679 r005 Im(z^2+c),c=-117/98+4/55*I,n=14 6541061523302919 a007 Real Root Of -342*x^4+349*x^3+534*x^2+754*x+425 6541061524041858 r005 Im(z^2+c),c=-107/94+5/61*I,n=63 6541061526824995 m001 Lehmer^Pi/(Psi(2,1/3)^Pi) 6541061531204997 l006 ln(4897/9419) 6541061532162992 s002 sum(A155733[n]/(n*pi^n+1),n=1..infinity) 6541061534377459 s002 sum(A123632[n]/(exp(n)),n=1..infinity) 6541061542047954 g005 GAMMA(4/7)/GAMMA(9/11)/GAMMA(5/11)/GAMMA(9/10) 6541061548459012 a001 1346269/843*521^(25/26) 6541061551266963 r005 Re(z^2+c),c=-43/46+1/18*I,n=24 6541061575127108 m001 (ln(gamma)+gamma(3))/(2^(1/2)-gamma) 6541061582307926 a007 Real Root Of 873*x^4+757*x^3-446*x^2-754*x+51 6541061588523837 m001 (Si(Pi)+DuboisRaymond)/(FeigenbaumAlpha+Kac) 6541061615652180 r004 Im(z^2+c),c=-41/34+10/21*I,z(0)=-1,n=7 6541061622222863 k002 Champernowne real with 2*n^2+42*n-38 6541061626910419 m001 Landau-ln(Pi)^MertensB3 6541061629267336 a007 Real Root Of 990*x^4-891*x^3+618*x^2-292*x-886 6541061632262963 k003 Champernowne real with 1/6*n^3+n^2+263/6*n-39 6541061642303063 k003 Champernowne real with 1/3*n^3+137/3*n-40 6541061652343164 k003 Champernowne real with 1/2*n^3-n^2+95/2*n-41 6541061662383264 k003 Champernowne real with 2/3*n^3-2*n^2+148/3*n-42 6541061672423364 k003 Champernowne real with 5/6*n^3-3*n^2+307/6*n-43 6541061679134066 m008 (4*Pi^6-4/5)/(3/5*Pi^4+1/3) 6541061680543637 r005 Im(z^2+c),c=-79/122+31/61*I,n=3 6541061682463464 k003 Champernowne real with n^3-4*n^2+53*n-44 6541061692503564 k003 Champernowne real with 7/6*n^3-5*n^2+329/6*n-45 6541061698574503 m005 (1/2*2^(1/2)-3)/(1/3*exp(1)-5/9) 6541061702543665 k003 Champernowne real with 4/3*n^3-6*n^2+170/3*n-46 6541061710532044 m005 (1/2*Catalan-5)/(151/24+7/24*5^(1/2)) 6541061712583765 k003 Champernowne real with 3/2*n^3-7*n^2+117/2*n-47 6541061719030332 r002 8th iterates of z^2 + 6541061720137585 s002 sum(A099128[n]/((2*n)!),n=1..infinity) 6541061722623865 k003 Champernowne real with 5/3*n^3-8*n^2+181/3*n-48 6541061732663965 k003 Champernowne real with 11/6*n^3-9*n^2+373/6*n-49 6541061737958051 a007 Real Root Of 784*x^4-555*x^3-452*x^2-36*x-129 6541061738605626 l006 ln(5119/9846) 6541061742704065 k003 Champernowne real with 2*n^3-10*n^2+64*n-50 6541061752602013 m001 (Totient-ZetaQ(3))/(3^(1/3)+Lehmer) 6541061752744166 k003 Champernowne real with 13/6*n^3-11*n^2+395/6*n-51 6541061762784266 k003 Champernowne real with 7/3*n^3-12*n^2+203/3*n-52 6541061764985055 a007 Real Root Of 677*x^4+250*x^3+997*x^2+143*x-387 6541061772824366 k003 Champernowne real with 5/2*n^3-13*n^2+139/2*n-53 6541061781101553 m001 (-Magata+ZetaQ(2))/(GAMMA(2/3)-sin(1)) 6541061782864466 k003 Champernowne real with 8/3*n^3-14*n^2+214/3*n-54 6541061792904566 k003 Champernowne real with 17/6*n^3-15*n^2+439/6*n-55 6541061798456784 a003 cos(Pi*5/24)-sin(Pi*24/73) 6541061802944667 k003 Champernowne real with 3*n^3-16*n^2+75*n-56 6541061812984767 k003 Champernowne real with 19/6*n^3-17*n^2+461/6*n-57 6541061818472401 a001 5/843*11^(2/49) 6541061823024867 k003 Champernowne real with 10/3*n^3-18*n^2+236/3*n-58 6541061833064967 k003 Champernowne real with 7/2*n^3-19*n^2+161/2*n-59 6541061843105067 k003 Champernowne real with 11/3*n^3-20*n^2+247/3*n-60 6541061853145168 k003 Champernowne real with 23/6*n^3-21*n^2+505/6*n-61 6541061863185268 k003 Champernowne real with 4*n^3-22*n^2+86*n-62 6541061873225368 k003 Champernowne real with 25/6*n^3-23*n^2+527/6*n-63 6541061883265468 k003 Champernowne real with 13/3*n^3-24*n^2+269/3*n-64 6541061893305568 k003 Champernowne real with 9/2*n^3-25*n^2+183/2*n-65 6541061902432385 a007 Real Root Of 632*x^4-413*x^3+868*x^2-291*x-793 6541061903345669 k003 Champernowne real with 14/3*n^3-26*n^2+280/3*n-66 6541061904074748 m001 (Riemann1stZero+ZetaP(4))/(2^(1/2)-exp(Pi)) 6541061908579034 r002 28i'th iterates of 2*x/(1-x^2) of 6541061913385769 k003 Champernowne real with 29/6*n^3-27*n^2+571/6*n-67 6541061923425869 k003 Champernowne real with 5*n^3-28*n^2+97*n-68 6541061933465969 k003 Champernowne real with 31/6*n^3-29*n^2+593/6*n-69 6541061933691813 a007 Real Root Of -858*x^4+30*x^3+921*x^2+802*x+296 6541061943506069 k003 Champernowne real with 16/3*n^3-30*n^2+302/3*n-70 6541061953546161 k003 Champernowne real with 11/2*n^3-31*n^2+205/2*n-71 6541061963586261 k003 Champernowne real with 17/3*n^3-32*n^2+313/3*n-72 6541061973626361 k003 Champernowne real with 35/6*n^3-33*n^2+637/6*n-73 6541061983666461 k003 Champernowne real with 6*n^3-34*n^2+108*n-74 6541061993706561 k003 Champernowne real with 37/6*n^3-35*n^2+659/6*n-75 6541061996820809 b008 Erfi[4^Sqrt[2]] 6541062003746661 k003 Champernowne real with 19/3*n^3-36*n^2+335/3*n-76 6541062013786761 k003 Champernowne real with 13/2*n^3-37*n^2+227/2*n-77 6541062015583329 a001 46/32264490531*987^(8/9) 6541062019520869 m001 1/GAMMA(1/3)^2/Paris^2/exp(cosh(1))^2 6541062023826861 k003 Champernowne real with 20/3*n^3-38*n^2+346/3*n-78 6541062031424193 m001 (Shi(1)+Zeta(1/2))/(2*Pi/GAMMA(5/6)+Gompertz) 6541062032629384 a007 Real Root Of 657*x^4-577*x^3-874*x^2-437*x+701 6541062033866961 k003 Champernowne real with 41/6*n^3-39*n^2+703/6*n-79 6541062038994972 a007 Real Root Of 170*x^4+977*x^3-997*x^2-880*x-875 6541062038998122 a007 Real Root Of 25*x^4-423*x^3-591*x^2+53*x+332 6541062043907061 k003 Champernowne real with 7*n^3-40*n^2+119*n-80 6541062053947161 k003 Champernowne real with 43/6*n^3-41*n^2+725/6*n-81 6541062063987261 k003 Champernowne real with 22/3*n^3-42*n^2+368/3*n-82 6541062070110588 m001 1/PisotVijayaraghavan*ArtinRank2^2*exp(gamma) 6541062074027361 k003 Champernowne real with 15/2*n^3-43*n^2+249/2*n-83 6541062084067461 k003 Champernowne real with 23/3*n^3-44*n^2+379/3*n-84 6541062094107561 k003 Champernowne real with 47/6*n^3-45*n^2+769/6*n-85 6541062104147661 k003 Champernowne real with 8*n^3-46*n^2+130*n-86 6541062114187761 k003 Champernowne real with 49/6*n^3-47*n^2+791/6*n-87 6541062124227861 k003 Champernowne real with 25/3*n^3-48*n^2+401/3*n-88 6541062126546189 r005 Im(z^2+c),c=-5/44+50/59*I,n=50 6541062134267961 k003 Champernowne real with 17/2*n^3-49*n^2+271/2*n-89 6541062144308061 k003 Champernowne real with 26/3*n^3-50*n^2+412/3*n-90 6541062147018782 k001 Champernowne real with 408*n+246 6541062148390150 p003 LerchPhi(1/512,1,75/49) 6541062154348161 k003 Champernowne real with 53/6*n^3-51*n^2+835/6*n-91 6541062164388261 k003 Champernowne real with 9*n^3-52*n^2+141*n-92 6541062174428361 k003 Champernowne real with 55/6*n^3-53*n^2+857/6*n-93 6541062181079584 a007 Real Root Of -291*x^4+263*x^3+882*x^2+852*x-955 6541062184468461 k003 Champernowne real with 28/3*n^3-54*n^2+434/3*n-94 6541062194508561 k003 Champernowne real with 19/2*n^3-55*n^2+293/2*n-95 6541062196151304 a001 267914296/843*199^(3/22) 6541062197508680 m002 -Pi^5+Pi^6-Log[Pi]-Sinh[Pi]/Pi^4 6541062201027093 a007 Real Root Of -330*x^4+863*x^3-373*x^2+360*x-257 6541062202998028 a007 Real Root Of -278*x^4+286*x^3-29*x^2+27*x+161 6541062204548661 k003 Champernowne real with 29/3*n^3-56*n^2+445/3*n-96 6541062214588761 k003 Champernowne real with 59/6*n^3-57*n^2+901/6*n-97 6541062224628861 k003 Champernowne real with 10*n^3-58*n^2+152*n-98 6541062231977443 a007 Real Root Of 771*x^4-144*x^3+222*x^2+444*x+14 6541062234668961 k003 Champernowne real with 61/6*n^3-59*n^2+923/6*n-99 6541062277049100 m005 (1/3*gamma-1/2)/(1/2*exp(1)-8/9) 6541062283570102 m005 (1/36+1/4*5^(1/2))/(35/44+1/22*5^(1/2)) 6541062284869461 k003 Champernowne real with 11*n^3-64*n^2+163*n-104 6541062300008258 r005 Re(z^2+c),c=-19/82+18/25*I,n=17 6541062307794062 a007 Real Root Of -260*x^4+429*x^3+32*x^2+873*x+725 6541062337893970 a001 15456/281*2^(1/4) 6541062345101006 k003 Champernowne real with 12*n^3-70*n^2+174*n-110 6541062355458827 a007 Real Root Of -509*x^4+245*x^3-687*x^2-397*x+196 6541062363165039 r004 Re(z^2+c),c=-43/46+1/18*I,z(0)=-1,n=21 6541062378769576 a007 Real Root Of 149*x^4-722*x^3+78*x^2-583*x+38 6541062383008184 r005 Re(z^2+c),c=1/48+13/38*I,n=11 6541062389366418 r005 Im(z^2+c),c=-7/122+40/53*I,n=11 6541062399569787 m001 RenyiParking^2/FeigenbaumB*ln(FeigenbaumD)^2 6541062428526668 p001 sum(1/(337*n+237)/n/(3^n),n=1..infinity) 6541062450452077 r005 Im(z^2+c),c=-19/36+29/54*I,n=45 6541062454462684 a001 4/433494437*2178309^(12/13) 6541062454462939 a001 4/139583862445*1134903170^(12/13) 6541062454693213 r005 Im(z^2+c),c=11/27+13/57*I,n=18 6541062475188894 b008 1/2+LogGamma[Sqrt[2/Pi]] 6541062476450968 r009 Re(z^3+c),c=-21/122+25/38*I,n=13 6541062479276403 r005 Im(z^2+c),c=-17/30+60/97*I,n=14 6541062485291192 m001 (ZetaP(3)+ZetaP(4))^HardyLittlewoodC4 6541062513523824 r005 Im(z^2+c),c=-1/7+51/64*I,n=3 6541062523542779 a001 4/1346269*4181^(12/13) 6541062537064283 a007 Real Root Of -421*x^4-237*x^3-792*x^2-244*x+190 6541062550963244 a007 Real Root Of 624*x^4-840*x^3+623*x^2-361*x-852 6541062553857535 p004 log(11981/6229) 6541062554089773 m001 GAMMA(13/24)^GAMMA(17/24)-MasserGramainDelta 6541062567026795 m001 2*Pi/GAMMA(5/6)*GAMMA(17/24)^Cahen 6541062567026795 m001 GAMMA(1/6)*GAMMA(17/24)^Cahen 6541062573524983 h001 (3/8*exp(2)+7/8)/(8/11*exp(2)+1/5) 6541062576781072 m001 TwinPrimes-ZetaQ(2)^MadelungNaCl 6541062584990898 m005 (1/2*Zeta(3)-7/10)/(8/9*gamma+1) 6541062609300801 b008 ArcCoth[13]^3/7 6541062630107957 a007 Real Root Of -256*x^4+289*x^3+2*x^2+283*x+312 6541062663298259 a007 Real Root Of -661*x^4+347*x^3+59*x^2-541*x-161 6541062680305326 a007 Real Root Of -590*x^4+577*x^3+64*x^2-841*x-308 6541062681675736 a007 Real Root Of 24*x^4-873*x^3+76*x^2-643*x+628 6541062686785489 m005 (1/2*3^(1/2)+4/11)/(133/110+3/10*5^(1/2)) 6541062691428723 m001 FeigenbaumD^(3^(1/2)*ln(3)) 6541062697968244 r005 Im(z^2+c),c=-3/52+22/31*I,n=47 6541062730134593 m001 (3^(1/3))/LaplaceLimit/exp(Zeta(3)) 6541062745728965 r002 22th iterates of z^2 + 6541062767717202 a007 Real Root Of 915*x^4-625*x^3+879*x^2+438*x-432 6541062779841230 r002 2th iterates of z^2 + 6541062787620356 a007 Real Root Of -445*x^4+412*x^3-352*x^2+56*x+384 6541062795280230 m005 (1/3*Zeta(3)-1/4)/(2/9*5^(1/2)-8/11) 6541062800972252 a007 Real Root Of -873*x^4+338*x^3-265*x^2-362*x+131 6541062801932367 q001 677/1035 6541062806757955 a007 Real Root Of 414*x^4-509*x^3+501*x^2+59*x-394 6541062809816401 p001 sum((-1)^n/(204*n+149)/(16^n),n=0..infinity) 6541062825029688 r005 Re(z^2+c),c=7/36+23/55*I,n=7 6541062867787678 s002 sum(A039220[n]/((2^n+1)/n),n=1..infinity) 6541062920197320 m001 GAMMA(1/6)*ln(FeigenbaumKappa)/sin(Pi/12) 6541062935826355 b008 (2+E^(-5/2))*Pi 6541062940810618 r005 Im(z^2+c),c=-11/98+43/51*I,n=38 6541062962462309 m005 (1/2*2^(1/2)+5)/(5/9*3^(1/2)-7/8) 6541062987543142 a007 Real Root Of -111*x^4-592*x^3+800*x^2-607*x-681 6541063009305810 r005 Re(z^2+c),c=27/118+21/59*I,n=55 6541063016380982 m001 (Ei(1,1)+gamma(2))/(gamma(3)-FellerTornier) 6541063030419805 m001 GAMMA(7/12)/FeigenbaumB/FransenRobinson 6541063038181800 a007 Real Root Of 146*x^4+880*x^3-571*x^2-418*x+708 6541063078411359 a007 Real Root Of -809*x^4-448*x^3-136*x^2+364*x+319 6541063097279646 m001 (exp(1/Pi)-FransenRobinson)/(Porter+Sarnak) 6541063125229149 m005 (1/2*gamma+1/11)/(8/11*gamma-1) 6541063129133987 a007 Real Root Of 149*x^4-315*x^3+740*x^2+766*x+69 6541063133964852 m005 (1/2*exp(1)+4/7)/(8/11*Pi+2/3) 6541063135205825 h001 (2/11*exp(2)+5/7)/(3/8*exp(2)+3/8) 6541063147218812 k005 Champernowne real with floor(sqrt(3)*(236*n+142)) 6541063147218812 k001 Champernowne real with 409*n+245 6541063160456061 a007 Real Root Of -371*x^4+463*x^3-464*x^2-211*x+258 6541063172848224 m001 (Pi-ln(gamma))/(2*Pi/GAMMA(5/6)+ZetaP(4)) 6541063190109869 r009 Re(z^3+c),c=-3/31+6/13*I,n=12 6541063202381608 h001 (10/11*exp(2)+7/8)/(1/10*exp(1)+8/9) 6541063208649000 h001 (-6*exp(3)-1)/(-9*exp(3)-5) 6541063208729700 m005 (1/2*gamma-6/11)/(2*5^(1/2)-6/11) 6541063209479330 a001 46/1515744265389*75025^(8/9) 6541063216194402 p004 log(14543/7561) 6541063220892898 m005 (1/2*5^(1/2)+6/7)/(2*3^(1/2)-4/9) 6541063229142356 a007 Real Root Of -835*x^4+258*x^3-228*x^2+314*x+528 6541063230823271 r005 Re(z^2+c),c=-91/102+7/41*I,n=24 6541063249292027 r002 45i'th iterates of 2*x/(1-x^2) of 6541063254117522 s002 sum(A003670[n]/((exp(n)+1)/n),n=1..infinity) 6541063254367045 p001 sum((-1)^n/(173*n+150)/(24^n),n=0..infinity) 6541063262982948 a007 Real Root Of 489*x^4-709*x^3-283*x^2-928*x+837 6541063263029062 m001 (MertensB2-Sierpinski)/(GAMMA(3/4)+ln(Pi)) 6541063305190826 m001 (Champernowne+KhinchinHarmonic)/(Otter-Paris) 6541063314929771 a007 Real Root Of -225*x^4+587*x^3-690*x^2-131*x+415 6541063330799522 m001 GAMMA(3/4)^2/ln(Kolakoski)*Zeta(9) 6541063346324289 b008 E*Csc[3/7] 6541063383840267 a003 sin(Pi*5/76)-sin(Pi*26/79) 6541063384691551 r005 Im(z^2+c),c=-107/94+5/61*I,n=59 6541063399884990 m001 BesselI(1,2)/(Riemann3rdZero-ln(2)) 6541063402105296 a001 726103/281*521^(23/26) 6541063412693633 a007 Real Root Of 195*x^4-984*x^3-508*x^2-295*x+650 6541063431369602 m001 MasserGramain*(cos(1)+Bloch) 6541063509538432 a007 Real Root Of -226*x^4+358*x^3-989*x^2-368*x+324 6541063557130390 r002 16th iterates of z^2 + 6541063562935609 a001 18/4181*2^(35/58) 6541063584029827 a007 Real Root Of -308*x^4+572*x^3+927*x^2+689*x-951 6541063617635569 a007 Real Root Of 55*x^4+495*x^3+774*x^2-708*x+102 6541063625275711 a001 1/646*4181^(22/49) 6541063654762379 a001 24476/1597*10946^(28/43) 6541063661338705 r005 Re(z^2+c),c=2/25+18/41*I,n=23 6541063678010264 r005 Re(z^2+c),c=23/90+18/47*I,n=53 6541063684794368 s002 sum(A228999[n]/(n^2*exp(n)+1),n=1..infinity) 6541063685173951 s002 sum(A228999[n]/(n^2*exp(n)-1),n=1..infinity) 6541063702660859 m001 1/exp(TwinPrimes)^2/Bloch^2/GAMMA(2/3)^2 6541063719116147 a007 Real Root Of 265*x^4-652*x^3-37*x^2-806*x+677 6541063768994958 a008 Real Root of x^4-32*x^2-60*x-69 6541063794053629 r009 Re(z^3+c),c=-3/22+37/50*I,n=39 6541063805348105 p004 log(17959/9337) 6541063808530438 m005 (13/36+1/4*5^(1/2))/(5/9*3^(1/2)+4/9) 6541063811017197 a001 54018521/3*317811^(11/17) 6541063811114355 a001 90481*1134903170^(11/17) 6541063822253851 m001 Rabbit*exp(ArtinRank2)^2/Robbin^2 6541063839843620 a008 Real Root of (-6+2*x+6*x^2+5*x^3+2*x^4+3*x^5) 6541063841749128 a007 Real Root Of 512*x^4+652*x^3+543*x^2-869*x-712 6541063842706310 m001 1/2*Stephens^FeigenbaumC/Pi*GAMMA(5/6) 6541063842932590 m001 GAMMA(13/24)/Niven^2*exp(GAMMA(3/4))^2 6541063877978197 m001 (Salem+Weierstrass)/(ln(2)+FeigenbaumC) 6541063897122003 m001 ArtinRank2-Paris*TreeGrowth2nd 6541063898350419 a005 (1/cos(7/183*Pi))^1532 6541063919309949 p003 LerchPhi(1/2,1,294/121) 6541063924368149 r009 Re(z^3+c),c=-2/17+37/57*I,n=60 6541063929018737 m002 13/2+4/Pi^4 6541063929657067 a007 Real Root Of 296*x^4-193*x^3-575*x^2-333*x-80 6541063931631508 a007 Real Root Of -156*x^4-877*x^3+881*x^2-486*x-739 6541063936833856 m001 Khinchin*Si(Pi)^exp(1/exp(1)) 6541063936833856 m001 Si(Pi)^exp(1/exp(1))*Khinchin 6541063937557187 a007 Real Root Of -657*x^4+846*x^3+426*x^2+300*x+371 6541063941172074 a007 Real Root Of 16*x^4-316*x^3+597*x^2-196*x-475 6541063945543532 m001 (Tribonacci-ZetaR(2))/Sierpinski 6541063967948566 r005 Re(z^2+c),c=-61/86+11/57*I,n=18 6541063968090304 m001 1/Tribonacci^2*ln(Porter)/sqrt(3) 6541063975159583 a007 Real Root Of -888*x^4+144*x^3-816*x^2+344*x+777 6541063984822106 b008 -1+Sqrt[1/2+Sqrt[5]] 6541064000591253 a007 Real Root Of -790*x^4+400*x^3-102*x^2+547*x+658 6541064007537545 a007 Real Root Of -845*x^4+32*x^3-117*x^2+560*x+580 6541064019939970 a007 Real Root Of -867*x^4+754*x^3-48*x^2-138*x+300 6541064021391092 r005 Im(z^2+c),c=-51/110+29/53*I,n=41 6541064021922031 p003 LerchPhi(1/6,1,238/139) 6541064023932834 a005 (1/cos(14/83*Pi))^122 6541064059074620 a007 Real Root Of -770*x^4-533*x^3-448*x^2+860*x+746 6541064061358077 a007 Real Root Of -639*x^4+380*x^3-663*x^2+477*x+819 6541064073458675 m001 (ln(2)-ln(3))/(ln(2^(1/2)+1)-MertensB1) 6541064078803596 m005 (3/5*Catalan-1/6)/(1/4*Pi-1/5) 6541064084894730 m001 (BesselK(0,1)+Ei(1,1))/(-Artin+Bloch) 6541064100829725 s002 sum(A221961[n]/((2*n)!),n=1..infinity) 6541064124738713 a007 Real Root Of 208*x^4-453*x^3-363*x^2-574*x-385 6541064132638113 a007 Real Root Of 767*x^4+210*x^3-252*x^2-410*x-242 6541064137297316 m006 (1/6/Pi+5/6)/(3/5*exp(Pi)-1/3) 6541064147418842 k001 Champernowne real with 410*n+244 6541064154662452 m001 (arctan(1/3)+FellerTornier)^cos(1/12*Pi) 6541064159817978 r009 Im(z^3+c),c=-9/46+41/57*I,n=24 6541064161004242 b008 -8+Sqrt[ArcSinh[1+Pi]] 6541064162482064 r009 Im(z^3+c),c=-1/38+7/10*I,n=3 6541064172708197 m001 GAMMA(5/24)^2*exp(Kolakoski)*GAMMA(7/12) 6541064173109071 m001 GAMMA(2/3)/(KhinchinHarmonic^Mills) 6541064176861521 m001 polylog(4,1/2)^Lehmer/MertensB2 6541064178165174 r005 Re(z^2+c),c=-165/118+1/43*I,n=31 6541064243718592 a007 Real Root Of 581*x^4-481*x^3-76*x^2-912*x-805 6541064248248560 a007 Real Root Of 60*x^4-146*x^3-107*x^2-875*x+648 6541064249203362 a007 Real Root Of 284*x^4-330*x^3-218*x^2-908*x-645 6541064249503343 a003 cos(Pi*4/55)*sin(Pi*15/64) 6541064260121530 a003 cos(Pi*17/43)-sin(Pi*41/95) 6541064264171878 a007 Real Root Of -11*x^4+12*x^3-654*x^2+307*x+486 6541064277984030 m001 (ln(2)/ln(10)-ln(Pi))/(-arctan(1/2)+Lehmer) 6541064280451251 m002 4+(Cosh[Pi]*Coth[Pi])/(4*Log[Pi]) 6541064284237904 r002 51th iterates of z^2 + 6541064287604985 a007 Real Root Of 283*x^4-785*x^3-548*x^2-905*x-629 6541064299300874 h001 (7/8*exp(1)+2/11)/(5/11*exp(2)+5/9) 6541064306881764 m005 (1/3*gamma+2/5)/(6*2^(1/2)+4/7) 6541064320365426 m001 (ln(2)-Artin)/(LaplaceLimit-ZetaP(3)) 6541064333822568 a007 Real Root Of -63*x^4+814*x^3+420*x^2+688*x-846 6541064338917862 a007 Real Root Of 483*x^4+175*x^3+856*x^2+715*x+62 6541064350421527 r005 Im(z^2+c),c=-67/86+1/42*I,n=61 6541064352918294 m005 (1/3*Pi+1/4)/(3/7*exp(1)+9/11) 6541064378720530 a001 39603/2584*10946^(28/43) 6541064389241500 r005 Re(z^2+c),c=-35/46+2/37*I,n=17 6541064396399023 m001 sin(1)/arctan(1/3)*Riemann3rdZero 6541064415548785 a007 Real Root Of 823*x^4-280*x^3+288*x^2-842*x-903 6541064416052387 s002 sum(A251214[n]/(2^n+1),n=1..infinity) 6541064428534753 a007 Real Root Of x^4+64*x^3-101*x^2-567*x+259 6541064437763337 m001 1/exp(BesselK(0,1))^2/Magata/GAMMA(5/24)^2 6541064446274130 m005 (1/2*exp(1)-3/8)/(1/6*5^(1/2)-2/9) 6541064449944077 a007 Real Root Of 120*x^4-780*x^3+287*x^2-175*x+188 6541064467893503 m001 (Bloch+OneNinth)/(2^(1/3)-Artin) 6541064529453185 a003 sin(Pi*8/75)-sin(Pi*15/34) 6541064533647742 r005 Im(z^2+c),c=-107/94+5/61*I,n=64 6541064542814620 a007 Real Root Of 994*x^4-696*x^3+302*x^2-986*x-66 6541064557413740 m001 KhinchinLevy*Robbin^(3^(1/3)) 6541064570148120 m002 Pi^2+(6*Pi^2*ProductLog[Pi])/Log[Pi] 6541064576687470 r005 Im(z^2+c),c=-53/98+7/60*I,n=40 6541064593300322 r005 Im(z^2+c),c=9/28+29/60*I,n=27 6541064617629254 m001 cos(Pi/12)-3/2*exp(-1/2*Pi) 6541064619385625 m001 (ln(2+3^(1/2))-GAMMA(13/24))/(Landau-Lehmer) 6541064621826106 s001 sum(1/10^(n-1)*A201190[n]/n!,n=1..infinity) 6541064624509588 r009 Im(z^3+c),c=-9/23+35/57*I,n=25 6541064643303918 m001 BesselJ(1,1)/exp(FeigenbaumKappa)^2*sqrt(5) 6541064651640321 s002 sum(A270340[n]/(n^2*exp(n)+1),n=1..infinity) 6541064672366917 a007 Real Root Of 712*x^4-823*x^3+72*x^2+334*x-173 6541064674700120 a007 Real Root Of -174*x^4+476*x^3+359*x^2-3*x-253 6541064677476802 a007 Real Root Of 601*x^4-936*x^3-171*x^2-887*x-879 6541064728908185 r005 Im(z^2+c),c=4/29+17/31*I,n=9 6541064745721568 r005 Im(z^2+c),c=-1/29+45/62*I,n=41 6541064783379623 m001 (3^(1/3)-GAMMA(2/3))^ZetaP(3) 6541064789902563 a003 cos(Pi*11/61)-sin(Pi*23/81) 6541064795716414 r002 41th iterates of z^2 + 6541064830865592 r005 Re(z^2+c),c=-9/14+79/228*I,n=40 6541064877786725 a007 Real Root Of 351*x^4-502*x^3+663*x^2-776*x-996 6541064926212308 m005 (1/2*Catalan+5/8)/(6/11*Zeta(3)+1) 6541064928010900 r005 Im(z^2+c),c=-9/98+21/31*I,n=46 6541064933883386 m001 (Sierpinski-Stephens)/(Ei(1)+Salem) 6541064934560586 a007 Real Root Of 135*x^4+864*x^3-289*x^2-971*x+684 6541064935031905 a007 Real Root Of 849*x^4-44*x^3+917*x^2-6*x-564 6541064948819146 a001 5/843*322^(1/59) 6541064952245768 p001 sum(1/(160*n+153)/(625^n),n=0..infinity) 6541065005092569 m001 Pi*(exp(Pi)-3^(1/2)-sin(1/5*Pi)) 6541065008347512 a001 9227465/322*322^(13/24) 6541065071510177 m001 (ln(3)+Weierstrass)/(exp(Pi)+Catalan) 6541065078450686 a007 Real Root Of -302*x^4-298*x^3-807*x^2-40*x+291 6541065099825893 a007 Real Root Of -423*x^4+657*x^3+252*x^2+649*x+578 6541065147518862 k005 Champernowne real with floor(sqrt(3)*(237*n+141)) 6541065147618872 k001 Champernowne real with 411*n+243 6541065171324404 a007 Real Root Of -746*x^4+269*x^3+285*x^2-87*x+33 6541065179614778 a007 Real Root Of -671*x^4+640*x^3+91*x^2-928*x-344 6541065197601301 a007 Real Root Of 718*x^4-571*x^3-228*x^2+131*x-108 6541065199008266 r002 37th iterates of z^2 + 6541065201176519 p001 sum(1/(327*n+319)/n/(24^n),n=1..infinity) 6541065207046741 a007 Real Root Of -919*x^4+495*x^3+299*x^2+40*x+205 6541065276473906 a007 Real Root Of -915*x^4+446*x^3+458*x^2+533*x+445 6541065294542337 a007 Real Root Of 389*x^4+175*x^3+871*x^2-841*x-945 6541065320776460 a007 Real Root Of -273*x^4+947*x^3-866*x^2+334*x+904 6541065330355557 m001 (Catalan-cos(1/5*Pi))/(-Salem+Totient) 6541065333862384 a007 Real Root Of -152*x^4+943*x^3-685*x^2+425*x-221 6541065341683400 a007 Real Root Of 225*x^4-857*x^3-675*x^2-894*x-577 6541065359032221 m005 (1/2*Catalan+7/11)/(10/11*Catalan-1) 6541065359281153 m001 gamma(3)*(Pi+exp(-Pi)) 6541065371372085 a003 sin(Pi*20/81)*sin(Pi*38/99) 6541065375733086 a003 sin(Pi*12/79)/sin(Pi*28/113) 6541065388424606 a001 29/514229*196418^(43/56) 6541065394381486 m001 Stephens*(arctan(1/2)-gamma) 6541065405629691 m001 cos(1/5*Pi)^ReciprocalFibonacci-ln(Pi) 6541065416049048 r002 31th iterates of z^2 + 6541065433813314 m001 BesselK(1,1)*ln(5)^ZetaP(3) 6541065443798576 r002 40th iterates of z^2 + 6541065447777048 a007 Real Root Of 374*x^4-738*x^3+380*x^2+192*x-312 6541065457839008 m001 1/3*LandauRamanujan2nd^OneNinth*3^(2/3) 6541065467405975 a001 63245986/521*199^(7/22) 6541065474891149 a007 Real Root Of 388*x^4-288*x^3+996*x^2-433*x-861 6541065501729190 r005 Im(z^2+c),c=-2/3+30/247*I,n=49 6541065518126287 m009 (1/8*Pi^2-3/5)/(1/4*Psi(1,3/4)+1/3) 6541065521123850 b008 1/3+7*Sech[1/2] 6541065539590180 r005 Im(z^2+c),c=-11/82+31/36*I,n=11 6541065550109755 a001 2161/141*10946^(28/43) 6541065566015495 b008 1-5*Sqrt[Pi]*Csch[1] 6541065573886858 m001 sin(1)+GAMMA(1/3)*GAMMA(5/12) 6541065599477962 m002 -6+24*Coth[Pi]-Sinh[Pi] 6541065644055742 r005 Re(z^2+c),c=-37/48+1/55*I,n=45 6541065646158375 q001 2222/3397 6541065651946605 a007 Real Root Of 60*x^4-459*x^3+911*x^2-871*x-61 6541065663088008 a007 Real Root Of 215*x^4-300*x^3+25*x^2-983*x-777 6541065666919575 r005 Re(z^2+c),c=5/114+16/27*I,n=31 6541065690049413 a007 Real Root Of -418*x^4+50*x^3-263*x^2+919*x-6 6541065726834846 a007 Real Root Of -417*x^4+833*x^3+505*x^2+403*x+357 6541065812533799 a007 Real Root Of -820*x^4+211*x^3+528*x^2+949*x+604 6541065825513454 m001 log(1+sqrt(2))^2/exp(Zeta(5))^2*sin(Pi/12)^2 6541065826029231 a007 Real Root Of 522*x^4-75*x^3-807*x^2-912*x+6 6541065838773013 a007 Real Root Of -409*x^4+734*x^3+539*x^2+797*x+571 6541065860185327 m001 Si(Pi)*MertensB1^StronglyCareFree 6541065901734155 h001 (7/10*exp(2)+2/11)/(1/11*exp(1)+4/7) 6541065927796941 m001 1/FeigenbaumD^2*exp(Champernowne)^2/exp(1) 6541065929156421 m004 -3+(125*Pi)/6+2*Csc[Sqrt[5]*Pi] 6541065929622829 a007 Real Root Of -726*x^4-520*x^3-986*x^2+709*x+873 6541065930208076 m005 (1/2*exp(1)-3/10)/(7/10*Zeta(3)+7/9) 6541065947576829 b008 53*Sqrt[ArcSec[21]] 6541065966012071 a007 Real Root Of 424*x^4-589*x^3-606*x^2-730*x+824 6541065974127324 r009 Re(z^3+c),c=-17/110+29/41*I,n=10 6541065975737333 m001 (CareFree-Grothendieck)/(ln(5)-exp(1/exp(1))) 6541065976903104 a007 Real Root Of 258*x^4-586*x^3-333*x^2-975*x+897 6541066013083160 a007 Real Root Of 614*x^4-756*x^3-42*x^2-717*x-775 6541066046199958 a007 Real Root Of -862*x^4-840*x^3-866*x^2-167*x+184 6541066056942987 m001 1/GAMMA(23/24)^2/MertensB1*exp(sin(Pi/5)) 6541066075482857 b008 51*E*(2+E) 6541066075810061 r005 Re(z^2+c),c=-113/82+4/51*I,n=10 6541066091881683 l006 ln(1361/1453) 6541066091881683 p004 log(1453/1361) 6541066146560082 a003 cos(Pi*17/61)/sin(Pi*47/108) 6541066147818902 k001 Champernowne real with 412*n+242 6541066147918912 k005 Champernowne real with floor(sqrt(3)*(238*n+140)) 6541066192848833 m005 (1/2*gamma+5/9)/(3/11*3^(1/2)+9/11) 6541066203221936 a007 Real Root Of -992*x^4-37*x^3-89*x^2-638*x-208 6541066233870651 a007 Real Root Of -697*x^4+651*x^3-431*x^2-728*x+18 6541066236648598 r009 Im(z^3+c),c=-5/28+63/64*I,n=28 6541066245972188 m001 (Thue+ZetaQ(2))/(Ei(1,1)+Salem) 6541066295683432 a007 Real Root Of 149*x^4+862*x^3-799*x^2-360*x+313 6541066313563451 l006 ln(222/427) 6541066320103399 m001 (-Sarnak+Trott2nd)/(BesselK(0,1)+Cahen) 6541066323638510 r009 Re(z^3+c),c=-12/25+4/49*I,n=4 6541066330875842 a007 Real Root Of 151*x^4+882*x^3-804*x^2-737*x-3 6541066334538463 a007 Real Root Of -81*x^4-527*x^3+163*x^2+963*x+116 6541066355479750 r005 Re(z^2+c),c=-69/94+3/26*I,n=57 6541066365252160 a001 3010349/34*32951280099^(3/11) 6541066365252364 a001 54018521/34*832040^(3/11) 6541066365252922 a001 12752043/34*165580141^(3/11) 6541066365265833 a001 710647/34*6557470319842^(3/11) 6541066380369096 m001 exp(1)+FeigenbaumAlpha^MinimumGamma 6541066384363536 m005 (1+1/4*5^(1/2))/(7/10*5^(1/2)+9/11) 6541066385663060 a001 228826127/34*4181^(3/11) 6541066414531523 a007 Real Root Of 37*x^4-980*x^3-453*x^2+161*x+356 6541066417817753 r005 Im(z^2+c),c=-43/90+25/46*I,n=37 6541066437290141 r005 Im(z^2+c),c=-15/14+1/138*I,n=5 6541066457921755 a007 Real Root Of -188*x^4+639*x^3+791*x^2+861*x+438 6541066518277901 r005 Re(z^2+c),c=-55/102+28/53*I,n=24 6541066539877145 a003 sin(Pi*11/61)/sin(Pi*34/111) 6541066592375576 a003 cos(Pi*2/93)-cos(Pi*40/103) 6541066592461533 r008 a(0)=0,K{-n^6,-97-45*n^3-28*n^2+17*n} 6541066614227066 m001 (Pi^(1/2)+FibonacciFactorial)^Psi(1,1/3) 6541066615337720 m001 (-Zeta(3)+TravellingSalesman)/(Catalan-sin(1)) 6541066625592968 a007 Real Root Of 274*x^4-678*x^3-243*x^2+221*x+99 6541066649948800 p001 sum(1/(413*n+206)/n/(25^n),n=1..infinity) 6541066653177746 a007 Real Root Of -129*x^4-788*x^3+520*x^2+896*x-772 6541066659809322 a007 Real Root Of 81*x^4+550*x^3-12*x^2-932*x+63 6541066671354445 a007 Real Root Of -710*x^4+597*x^3+684*x^2+244*x+164 6541066684580595 m001 1/LambertW(1)^2*FeigenbaumB*exp(arctan(1/2))^2 6541066693023189 a007 Real Root Of -136*x^4+637*x^3+801*x^2-46*x-466 6541066696121911 a007 Real Root Of 655*x^4-224*x^3-557*x^2-353*x+412 6541066715796830 m001 Trott^2*ln(ErdosBorwein)*GAMMA(19/24) 6541066743804892 a007 Real Root Of 304*x^4-430*x^3-821*x^2-448*x+709 6541066760243930 r008 a(0)=2,K{-n^6,63-64*n^3-50*n^2+51*n} 6541066763475726 m001 HardyLittlewoodC5*Riemann1stZero+RenyiParking 6541066765542962 a007 Real Root Of 798*x^4-641*x^3-835*x^2-946*x-587 6541066771641636 r002 20th iterates of z^2 + 6541066778054927 m005 (1/2*5^(1/2)+1/4)/(1/5*3^(1/2)-5/9) 6541066780943899 b008 E+22*E^(Pi/3) 6541066786906957 a007 Real Root Of -739*x^4+121*x^3+899*x^2+469*x-590 6541066826026844 h001 (3/8*exp(1)+5/11)/(4/7*exp(1)+7/10) 6541066830682445 r008 a(0)=0,K{-n^6,-59-28*n-27*n^2-39*n^3} 6541066837444440 r008 a(0)=0,K{-n^6,45+41*n^3+14*n^2+53*n} 6541066843912405 a007 Real Root Of 342*x^4-952*x^3-780*x^2-290*x-185 6541066857338877 p001 sum(1/(229*n+153)/(512^n),n=0..infinity) 6541066864779203 r008 a(0)=0,K{-n^6,-55-38*n^3-28*n^2-32*n} 6541066873546853 m001 FeigenbaumDelta/(cos(Pi/5)^BesselI(1,2)) 6541066874122900 a007 Real Root Of 761*x^4+219*x^2-850*x-789 6541066892464013 q001 1545/2362 6541066899350158 r008 a(0)=0,K{-n^6,45+38*n^3+23*n^2+47*n} 6541066902234893 a001 9349/233*55^(5/41) 6541066906547650 r009 Im(z^3+c),c=-11/82+47/63*I,n=64 6541066938606033 r002 21th iterates of z^2 + 6541066938804579 s002 sum(A033432[n]/(16^n),n=1..infinity) 6541066961018725 p003 LerchPhi(1/16,6,93/59) 6541066971043970 m001 (2^(1/3))*exp(Paris)^2/GAMMA(1/24) 6541066974708860 a001 199/2178309*55^(28/57) 6541066980441232 g007 Psi(2,1/7)-Psi(2,5/11)-Psi(2,5/7)-Psi(2,3/4) 6541066998171139 b008 Zeta[7/4]/3 6541067004364952 m001 OrthogonalArrays^BesselI(1,1)/Si(Pi) 6541067046850980 a007 Real Root Of -46*x^4-248*x^3+294*x^2-201*x+908 6541067053311614 m005 (1/42+1/6*5^(1/2))/(3/5*gamma-2/7) 6541067082513259 r005 Im(z^2+c),c=5/18+22/39*I,n=55 6541067087396144 r008 a(0)=0,K{-n^6,35+31*n^3+39*n^2+48*n} 6541067094902223 r008 a(0)=0,K{-n^6,32*n^3+32*n^2+62*n+27} 6541067140513501 r008 a(0)=0,K{-n^6,33+29*n^3+44*n^2+47*n} 6541067148018932 k001 Champernowne real with 413*n+241 6541067154623245 a007 Real Root Of 544*x^4-935*x^3+980*x^2-230*x-931 6541067156147887 m005 (1/2*exp(1)-5/9)/(2/3*2^(1/2)+2/7) 6541067194763605 r008 a(0)=0,K{-n^6,37+26*n^3+55*n^2+35*n} 6541067202575469 r008 a(0)=0,K{-n^6,28*n^3+42*n^2+60*n+23} 6541067225130723 a007 Real Root Of -932*x^4-283*x^3-918*x^2+333*x+702 6541067228177235 m005 (1/2*exp(1)+7/8)/(7/8*Pi+2/3) 6541067231677424 a007 Real Root Of 547*x^4+189*x^3+98*x^2-677*x-532 6541067234571868 m005 (1/3*gamma+2/9)/(5/8*2^(1/2)-1/4) 6541067258135455 r008 a(0)=0,K{-n^6,26*n^3+47*n^2+59*n+21} 6541067258459640 a001 28143753123/233*317811^(2/15) 6541067258461367 a001 4106118243/233*591286729879^(2/15) 6541067258461367 a001 10749957122/233*433494437^(2/15) 6541067289792066 m001 Cahen^2/ln(Artin)^2*GAMMA(7/12) 6541067314894311 r008 a(0)=0,K{-n^6,24*n^3+52*n^2+58*n+19} 6541067318692131 a007 Real Root Of -789*x^4+418*x^3-425*x^2-245*x+283 6541067326751876 a007 Real Root Of 739*x^4-465*x^3+675*x^2+699*x-97 6541067328629495 m001 Stephens^(Riemann1stZero/AlladiGrinstead) 6541067339613622 r008 a(0)=0,K{-n^6,25+22*n^3+61*n^2+45*n} 6541067369218419 r002 20th iterates of z^2 + 6541067372891600 r008 a(0)=0,K{-n^6,22*n^3+57*n^2+57*n+17} 6541067374629628 a007 Real Root Of -69*x^4+819*x^3+444*x^2+494*x+375 6541067375939032 a007 Real Root Of 205*x^4-928*x^3-915*x^2+371*x+371 6541067383270104 m001 (Pi+2^(1/2)-LambertW(1))*GAMMA(13/24) 6541067408445707 r009 Re(z^3+c),c=-19/34+5/23*I,n=2 6541067410582551 h001 (3/5*exp(1)+1/7)/(7/8*exp(1)+1/3) 6541067415092255 r008 a(0)=0,K{-n^6,13+21*n^3+58*n^2+61*n} 6541067425487358 a008 Real Root of (2+5*x-3*x^2-5*x^3+5*x^4-2*x^5) 6541067432168675 r008 a(0)=0,K{-n^6,20*n^3+62*n^2+56*n+15} 6541067440738971 r008 a(0)=0,K{-n^6,13+20*n^3+61*n^2+59*n} 6541067441981565 m005 (1/3*Zeta(3)+1/11)/(5*2^(1/2)+4/9) 6541067471620524 r005 Re(z^2+c),c=37/114+2/51*I,n=8 6541067492768783 r008 a(0)=0,K{-n^6,18*n^3+67*n^2+55*n+13} 6541067512521076 m005 (1/3*2^(1/2)+1/7)/(3/7*2^(1/2)-7/10) 6541067520883349 r005 Im(z^2+c),c=-45/82+4/35*I,n=17 6541067541049289 p004 log(36697/19079) 6541067551530425 s002 sum(A250993[n]/(exp(pi*n)+1),n=1..infinity) 6541067554268257 a007 Real Root Of -129*x^4+134*x^3-413*x^2+835*x+784 6541067554737182 r008 a(0)=0,K{-n^6,16*n^3+72*n^2+54*n+11} 6541067557216716 h005 exp(cos(Pi*9/29)/cos(Pi*16/35)) 6541067570470801 r005 Im(z^2+c),c=-31/86+37/59*I,n=22 6541067601766609 a001 416020*7^(10/43) 6541067609936789 r005 Im(z^2+c),c=-9/14+18/145*I,n=43 6541067618121261 r008 a(0)=0,K{-n^6,14*n^3+77*n^2+53*n+9} 6541067623782559 a007 Real Root Of 12*x^4+777*x^3-512*x^2+417*x-891 6541067630806669 a007 Real Root Of -854*x^4-358*x^3-545*x^2-505*x-41 6541067656704329 a001 5/2207*521^(10/59) 6541067682970675 r008 a(0)=0,K{-n^6,12*n^3+82*n^2+52*n+7} 6541067703306913 h001 (4/5*exp(2)+4/9)/(1/7*exp(1)+7/12) 6541067715276560 r009 Re(z^3+c),c=-1/28+41/53*I,n=59 6541067725467345 a003 sin(Pi*6/67)/cos(Pi*31/86) 6541067734352010 m001 GAMMA(7/12)/(GAMMA(13/24)-Riemann3rdZero) 6541067740009551 m008 (1/6*Pi^6-3/4)/(4/5*Pi^5-1) 6541067743444437 a007 Real Root Of 32*x^4+451*x^2-835*x-745 6541067749337485 r008 a(0)=0,K{-n^6,10*n^3+87*n^2+51*n+5} 6541067752734334 a007 Real Root Of -141*x^4+300*x^3-672*x^2+660*x+829 6541067754405347 a007 Real Root Of -649*x^4+665*x^3+717*x^2+6*x-378 6541067780967816 m001 1/GAMMA(1/12)^2/BesselJ(1,1)/exp(cos(Pi/12)) 6541067782239874 m005 (1/2*2^(1/2)-7/10)/(1/9*Catalan-1/11) 6541067817276315 r008 a(0)=0,K{-n^6,8*n^3+92*n^2+50*n+3} 6541067833528762 a007 Real Root Of -525*x^4+872*x^3-88*x^2+686*x-559 6541067838195912 r005 Im(z^2+c),c=-13/19+13/61*I,n=62 6541067839233820 m005 (13/12+1/3*5^(1/2))/(1/4*exp(1)-2/5) 6541067844973146 m005 (1/2*exp(1)+6/11)/(3/4*Pi+5/9) 6541067846114131 a007 Real Root Of -756*x^4+522*x^3-616*x^2+136*x+637 6541067851654318 a007 Real Root Of -551*x^4-216*x^3+864*x^2+426*x-487 6541067854491236 r009 Re(z^3+c),c=-13/24+5/31*I,n=33 6541067854511015 h001 (-7*exp(-2)+9)/(-9*exp(-1)-9) 6541067855058550 a005 (1/cos(13/167*Pi))^672 6541067867775060 a007 Real Root Of -426*x^4+577*x^3-887*x^2+104*x+687 6541067886844522 r008 a(0)=0,K{-n^6,6*n^3+97*n^2+49*n+1} 6541067887097014 a007 Real Root Of 509*x^4+388*x^3+927*x^2+965*x+250 6541067887389399 m001 1/Paris^2*Champernowne^2/exp(GAMMA(1/24))^2 6541067907768714 m001 Rabbit^(BesselI(0,2)*Landau) 6541067923201163 b008 3/5+ArcCoth[37/2] 6541067939253541 a007 Real Root Of -141*x^4-890*x^3+249*x^2+223*x-158 6541067966198383 m001 (FellerTornier+Sierpinski)/(Pi+Conway) 6541067984141439 a007 Real Root Of 4*x^4-923*x^3+25*x^2-988*x-916 6541067993587352 a003 sin(Pi*13/108)/cos(Pi*17/55) 6541067999513682 r009 Im(z^3+c),c=-13/94+37/50*I,n=5 6541068016654262 p004 log(26449/13751) 6541068023795830 a003 cos(Pi*31/79)-sin(Pi*29/65) 6541068026884311 a001 167761/610*8^(5/12) 6541068040119273 q001 2413/3689 6541068042055387 m001 exp(KhintchineLevy)*DuboisRaymond^2/Ei(1) 6541068042849954 p001 sum((-1)^n/(259*n+214)/n/(32^n),n=1..infinity) 6541068072114612 h001 (5/12*exp(2)+2/3)/(2/3*exp(2)+4/5) 6541068073843773 a007 Real Root Of -718*x^4-404*x^3+501*x^2+810*x-55 6541068096106791 m001 (FeigenbaumDelta+Mills)/(ln(2)-ErdosBorwein) 6541068097169951 b008 (3*DawsonF[1/4])/11 6541068120544332 m001 Catalan^2*PisotVijayaraghavan*exp(sqrt(Pi)) 6541068123319119 r005 Im(z^2+c),c=-5/4+4/231*I,n=52 6541068148218962 k001 Champernowne real with 414*n+240 6541068148218962 k005 Champernowne real with floor(sqrt(3)*(239*n+139)) 6541068156859100 m001 gamma(3)*(Shi(1)+Pi*csc(5/12*Pi)/GAMMA(7/12)) 6541068166523937 r002 5th iterates of z^2 + 6541068166774690 m001 1/ln(ArtinRank2)^2/Backhouse/cos(Pi/5) 6541068194010966 r002 42th iterates of z^2 + 6541068218502607 a001 33385282/3*701408733^(2/23) 6541068219452048 a001 29134601*10946^(2/23) 6541068219915928 a007 Real Root Of -510*x^4-873*x^3-761*x^2+502*x+503 6541068226735079 a003 cos(Pi*10/97)/cos(Pi*49/108) 6541068260668208 r005 Re(z^2+c),c=9/40+19/54*I,n=59 6541068263348383 r005 Im(z^2+c),c=-19/122+54/59*I,n=15 6541068270372211 a007 Real Root Of -238*x^4+102*x^3-691*x^2+910*x+963 6541068292557376 r005 Im(z^2+c),c=-7/10+59/220*I,n=42 6541068303744685 m001 (MertensB2+ZetaQ(2))/(Ei(1,1)+exp(1/exp(1))) 6541068305548438 a007 Real Root Of 208*x^4-967*x^3+181*x^2-914*x-984 6541068308521719 h001 (4/9*exp(1)+3/11)/(1/4*exp(2)+5/12) 6541068322985431 r005 Im(z^2+c),c=23/54+5/13*I,n=4 6541068338562713 r002 22th iterates of z^2 + 6541068357955391 r005 Im(z^2+c),c=-4/7+53/80*I,n=10 6541068412133505 a007 Real Root Of -101*x^4-724*x^3-492*x^2-574*x-434 6541068412599418 a007 Real Root Of 816*x^4-208*x^3+367*x^2-898*x-952 6541068462773084 a007 Real Root Of 352*x^4-723*x^3+313*x^2-795*x+524 6541068472789608 a007 Real Root Of 916*x^4+360*x^3-146*x^2+16*x+6 6541068515452758 r005 Im(z^2+c),c=-19/62+37/60*I,n=8 6541068540311620 r005 Im(z^2+c),c=-3/118+23/37*I,n=11 6541068548174124 a007 Real Root Of 361*x^4-97*x^3-960*x^2-754*x+865 6541068657338122 r005 Im(z^2+c),c=-9/56+17/26*I,n=28 6541068706730104 r005 Im(z^2+c),c=-10/17+3/25*I,n=51 6541068707077000 r005 Im(z^2+c),c=-31/24+1/28*I,n=30 6541068727575388 a001 199/514229*46368^(5/19) 6541068727740460 a001 199/63245986*4052739537881^(5/19) 6541068727740501 a001 199/5702887*433494437^(5/19) 6541068741208659 m001 (2^(1/3)+sin(1))/(GAMMA(17/24)+Tetranacci) 6541068780332968 m005 (1/2*Zeta(3)-3/7)/(2/7*gamma-3/7) 6541068784286567 a007 Real Root Of -68*x^4+948*x^3-742*x^2+602*x+989 6541068809184190 r005 Im(z^2+c),c=11/42+12/25*I,n=18 6541068828496284 a007 Real Root Of -975*x^4+64*x^3-865*x^2+331*x+783 6541068828782095 p004 log(17909/9311) 6541068831866487 a007 Real Root Of 152*x^4-879*x^3+344*x^2-266*x-595 6541068844139503 a007 Real Root Of 587*x^4-536*x^3+526*x^2-678*x-926 6541068873777971 a007 Real Root Of 103*x^4-970*x^3+2*x^2+99*x+187 6541068876736848 a007 Real Root Of -793*x^4+903*x^3+447*x^2-507*x-125 6541068892187780 m001 1/RenyiParking^2/MertensB1*exp(GAMMA(5/6))^2 6541068929274137 m001 Zeta(7)^2*Trott^2/ln(sin(Pi/12))^2 6541068952514900 a007 Real Root Of 69*x^4-766*x^3+360*x^2-162*x-487 6541068955203992 a007 Real Root Of -761*x^4+887*x^3-145*x^2+551*x+810 6541068980358476 r005 Im(z^2+c),c=-31/46+11/24*I,n=34 6541069002640364 a003 cos(Pi*1/6)-sin(Pi*37/97) 6541069005730182 r002 47th iterates of z^2 + 6541069016410807 r005 Re(z^2+c),c=-43/46+1/18*I,n=22 6541069046740021 m001 cos(1)/(BesselI(0,1)-BesselJ(1,1)) 6541069048550886 a007 Real Root Of -501*x^4-348*x^3-122*x^2+811*x+577 6541069062955067 m001 2*Pi/GAMMA(5/6)*Porter^BesselK(0,1) 6541069064421629 h001 (7/12*exp(1)+1/11)/(7/11*exp(1)+5/6) 6541069076717651 a001 6643838879/3*46368^(9/17) 6541069077034837 a001 1149851/3*591286729879^(9/17) 6541069077039785 a001 29134601*165580141^(9/17) 6541069095843358 r002 7th iterates of z^2 + 6541069121348174 p003 LerchPhi(1/12,2,213/170) 6541069131460964 m001 Zeta(1,-1)^(Riemann3rdZero*Totient) 6541069146250002 m001 1/(2^(1/3))*Riemann2ndZero/ln(GAMMA(23/24)) 6541069148418992 k001 Champernowne real with 415*n+239 6541069193004736 a007 Real Root Of -138*x^4+941*x^3+325*x^2+947*x+769 6541069210867060 m001 (Magata+RenyiParking)/HardyLittlewoodC3 6541069220451639 m005 (1/3*exp(1)-3/5)/(1/4*exp(1)+4) 6541069222507687 a007 Real Root Of -172*x^4+231*x^3-986*x^2+292*x+709 6541069235381386 a007 Real Root Of 134*x^4-875*x^3-200*x^2-173*x-297 6541069270364067 m008 (2*Pi^3+5/6)/(Pi^6-3/5) 6541069290718514 a007 Real Root Of 445*x^4-927*x^3+209*x^2-848*x-985 6541069292274124 m001 1/arctan(1/2)*ln(FeigenbaumB)*sqrt(1+sqrt(3)) 6541069302186123 m001 FransenRobinson/(FellerTornier^RenyiParking) 6541069336322099 a007 Real Root Of 560*x^4+249*x^3+479*x^2-141*x-330 6541069375979173 a007 Real Root Of -290*x^4+248*x^3-932*x^2-537*x+170 6541069379441653 r005 Re(z^2+c),c=-5/74+43/58*I,n=25 6541069397884189 r005 Im(z^2+c),c=-107/94+5/61*I,n=60 6541069423691832 s002 sum(A034241[n]/(exp(pi*n)+1),n=1..infinity) 6541069472549206 r005 Im(z^2+c),c=-13/46+41/64*I,n=37 6541069481488705 m009 (24/5*Catalan+3/5*Pi^2+5)/(Psi(1,3/4)-1/5) 6541069487514208 a007 Real Root Of 58*x^4+436*x^3+527*x^2+918*x-698 6541069509200189 a007 Real Root Of -152*x^4+430*x^3+335*x^2+731*x-714 6541069524976727 a007 Real Root Of -905*x^4-337*x^3-290*x^2+990*x+843 6541069534320336 m001 (arctan(1/3)-GAMMA(11/12))/(Kac-MadelungNaCl) 6541069546531407 a007 Real Root Of -815*x^4-382*x^3-924*x^2-481*x+123 6541069557189325 r002 4th iterates of z^2 + 6541069630057142 m001 (Zeta(5)-sin(1/5*Pi))^Magata 6541069630624049 r005 Im(z^2+c),c=-1+12/185*I,n=3 6541069633537184 a007 Real Root Of 983*x^4-601*x^3+130*x^2-300*x-600 6541069648100794 r005 Im(z^2+c),c=-1/102+34/45*I,n=10 6541069653208327 r009 Re(z^3+c),c=-1/11+15/37*I,n=18 6541069658572863 p003 LerchPhi(1/12,3,479/191) 6541069668583291 r002 11th iterates of z^2 + 6541069672748373 a007 Real Root Of -912*x^4+739*x^3+470*x^2+54*x+208 6541069683808055 a008 Real Root of x^4-30*x^2-74*x-63 6541069690257407 r002 2th iterates of z^2 + 6541069710463614 m005 (1/2*exp(1)-4/5)/(7/11*exp(1)-7/8) 6541069729958150 m001 Catalan/exp(FeigenbaumD)^2*GAMMA(7/12) 6541069732273900 m001 Zeta(1,2)^2*Artin/ln(sqrt(1+sqrt(3))) 6541069743638794 m001 Niven/GlaisherKinkelin/ln(GAMMA(3/4)) 6541069760042017 a007 Real Root Of -460*x^4+943*x^3-405*x^2+85*x+577 6541069782531437 r005 Im(z^2+c),c=47/114+13/64*I,n=34 6541069789463472 a007 Real Root Of -986*x^4+336*x^3+268*x^2+69*x+205 6541069808778640 a007 Real Root Of 747*x^4+79*x^3+895*x^2+114*x-423 6541069878472222 r002 2th iterates of z^2 + 6541069878472222 r002 2th iterates of z^2 + 6541069880675566 a007 Real Root Of -680*x^4+768*x^3-913*x^2+402*x+993 6541069890448812 r009 Re(z^3+c),c=-1/11+15/37*I,n=20 6541069893467047 m001 (GAMMA(5/6)-ln(5)*FeigenbaumKappa)/ln(5) 6541069917874612 m008 (3/5*Pi^5+5)/(3*Pi^6-2/3) 6541069941520934 a007 Real Root Of -326*x^4+720*x^3+303*x^2+604*x-41 6541069946103945 a007 Real Root Of 307*x^4+529*x^3+980*x^2-779*x-837 6541069984063829 m001 1/ln(Zeta(9))/TreeGrowth2nd/sqrt(3) 6541069987875805 b008 ExpIntegralEi[7+Pi^(1/3)] 6541070015711131 r009 Re(z^3+c),c=-1/11+15/37*I,n=17 6541070020154535 m001 (Gompertz+PlouffeB)/(Zeta(5)+BesselK(1,1)) 6541070037559288 r009 Re(z^3+c),c=-1/11+15/37*I,n=22 6541070057625336 a001 701408733/2207*199^(3/22) 6541070065927504 a007 Real Root Of -501*x^4+760*x^3-756*x^2-382*x+378 6541070067868763 r009 Re(z^3+c),c=-1/11+15/37*I,n=24 6541070071214701 r009 Re(z^3+c),c=-1/11+15/37*I,n=27 6541070071311032 r009 Re(z^3+c),c=-1/11+15/37*I,n=29 6541070071358355 r009 Re(z^3+c),c=-1/11+15/37*I,n=31 6541070071367556 r009 Re(z^3+c),c=-1/11+15/37*I,n=33 6541070071368470 r009 Re(z^3+c),c=-1/11+15/37*I,n=36 6541070071368506 r009 Re(z^3+c),c=-1/11+15/37*I,n=38 6541070071368522 r009 Re(z^3+c),c=-1/11+15/37*I,n=40 6541070071368524 r009 Re(z^3+c),c=-1/11+15/37*I,n=42 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=45 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=47 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=49 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=51 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=54 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=56 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=58 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=60 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=63 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=61 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=64 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=62 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=59 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=57 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=55 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=52 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=53 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=50 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=48 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=46 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=44 6541070071368525 r009 Re(z^3+c),c=-1/11+15/37*I,n=43 6541070071368526 r009 Re(z^3+c),c=-1/11+15/37*I,n=41 6541070071368533 r009 Re(z^3+c),c=-1/11+15/37*I,n=39 6541070071368560 r009 Re(z^3+c),c=-1/11+15/37*I,n=37 6541070071368561 r009 Re(z^3+c),c=-1/11+15/37*I,n=35 6541070071368687 r009 Re(z^3+c),c=-1/11+15/37*I,n=34 6541070071372003 r009 Re(z^3+c),c=-1/11+15/37*I,n=32 6541070071394347 r009 Re(z^3+c),c=-1/11+15/37*I,n=30 6541070071419805 r009 Re(z^3+c),c=-1/11+15/37*I,n=26 6541070071477328 r009 Re(z^3+c),c=-1/11+15/37*I,n=28 6541070071625846 m001 ArtinRank2/ln(Artin)/Trott 6541070072061307 r009 Re(z^3+c),c=-1/11+15/37*I,n=25 6541070082893745 q001 868/1327 6541070083300472 r009 Re(z^3+c),c=-1/11+15/37*I,n=23 6541070098156588 m005 (1/2*3^(1/2)-1/9)/(11/12*gamma+5/8) 6541070139562476 a007 Real Root Of 371*x^4+736*x^3+119*x^2-572*x-287 6541070140705494 a007 Real Root Of -885*x^4+367*x^3-892*x^2-77*x+596 6541070148619012 k005 Champernowne real with floor(sqrt(3)*(240*n+138)) 6541070148619022 k001 Champernowne real with 416*n+238 6541070154996814 r009 Re(z^3+c),c=-1/11+15/37*I,n=21 6541070163523672 r005 Im(z^2+c),c=13/102+32/47*I,n=14 6541070172461254 a007 Real Root Of -417*x^4+747*x^3-558*x^2+821*x-431 6541070185785537 a007 Real Root Of 137*x^4+806*x^3-614*x^2-17*x+936 6541070197716001 m001 (BesselI(1,2)+ReciprocalLucas)/Landau 6541070199887871 a001 121393/2207*2^(1/4) 6541070205667424 a007 Real Root Of -314*x^4+362*x^3-951*x^2-848*x+11 6541070210670699 r005 Re(z^2+c),c=29/110+27/50*I,n=4 6541070223125302 m001 ln(Lehmer)/ErdosBorwein^2/GAMMA(1/6)^2 6541070223546711 a001 5/271443*1364^(48/59) 6541070252851688 m001 cos(1)*GAMMA(7/12)/ln(log(1+sqrt(2))) 6541070265637450 a001 5702887/322*322^(5/8) 6541070271664795 m001 (gamma(2)+Tetranacci)/(Zeta(5)+Ei(1)) 6541070290596166 r005 Im(z^2+c),c=5/74+35/58*I,n=8 6541070292337505 m002 -4/Pi^6+Pi^3-Pi^4+Tanh[Pi] 6541070317851354 a007 Real Root Of 144*x^4-354*x^3-396*x^2-584*x-338 6541070334157285 a008 Real Root of x^5-2*x^4-9*x^3+24*x^2-13*x+1 6541070346558320 m003 (17*Sqrt[5])/64+Log[1/2+Sqrt[5]/2]/8 6541070397769727 a001 63245986/199*76^(1/6) 6541070398435066 a007 Real Root Of -986*x^4+609*x^3-449*x^2-899*x-45 6541070399442932 r009 Re(z^3+c),c=-1/11+15/37*I,n=19 6541070415801204 r005 Im(z^2+c),c=39/110+17/57*I,n=8 6541070423603000 m005 (1/2*2^(1/2)-7/12)/(3/7*exp(1)+8/11) 6541070424674430 a007 Real Root Of -790*x^4-384*x^3+610*x^2+948*x-629 6541070444626202 m001 (ln(2)+FeigenbaumC)/(Magata+ZetaP(2)) 6541070452104536 m001 1/Ei(1)*ln(Trott)^2/GAMMA(17/24)^2 6541070454383317 a007 Real Root Of 502*x^4-994*x^3-209*x^2-375*x+521 6541070460418828 m004 -6-125*Pi+150*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 6541070466806766 m001 (-OneNinth+Thue)/(2^(1/3)-exp(1/Pi)) 6541070471441288 a001 73681302247/233*233^(2/15) 6541070472259995 a007 Real Root Of -219*x^4+932*x^3+440*x^2-292*x-218 6541070482898294 r005 Im(z^2+c),c=-7/8+101/226*I,n=3 6541070509165392 m001 ((3^(1/3))-cos(1))^exp(sqrt(2)) 6541070526617011 a007 Real Root Of 353*x^4-719*x^3+540*x^2-442*x-786 6541070547429911 m001 (-Conway+ZetaP(2))/(Chi(1)+arctan(1/2)) 6541070547448168 m001 Chi(1)/(sin(1/5*Pi)+ln(2)) 6541070594644121 r002 37th iterates of z^2 + 6541070618607274 b008 E*(1/12+Erfc[1]) 6541070621711632 a007 Real Root Of 479*x^4+485*x^3+760*x^2+176*x-162 6541070623368799 m001 ln(FeigenbaumDelta)^2/Conway^2/MinimumGamma^2 6541070627169284 m001 ln(BesselK(0,1))*Cahen*sinh(1) 6541070673520711 a007 Real Root Of 222*x^4-103*x^3-299*x^2-892*x-525 6541070711561290 r005 Re(z^2+c),c=-61/94+12/35*I,n=35 6541070750423875 m001 (Totient-Trott2nd)/(sin(1/12*Pi)+MadelungNaCl) 6541070754585061 r005 Im(z^2+c),c=-17/58+3/31*I,n=12 6541070762764517 a007 Real Root Of 128*x^4+764*x^3-580*x^2-637*x+147 6541070769370071 a007 Real Root Of -915*x^4+682*x^3-859*x^2-486*x+408 6541070785988762 r005 Im(z^2+c),c=-37/30+15/91*I,n=16 6541070800189418 m002 -(Csch[Pi]*Log[Pi])-6*ProductLog[Pi] 6541070814298354 a007 Real Root Of -732*x^4+905*x^3+168*x^2+729*x-668 6541070818890655 a007 Real Root Of 320*x^4-471*x^3-83*x^2+142*x-62 6541070863687906 m001 Artin-gamma*exp(gamma) 6541070868161834 a007 Real Root Of 166*x^4+985*x^3-536*x^2+734*x-481 6541070874613607 a007 Real Root Of -747*x^4-546*x^3+120*x^2+117*x-8 6541070885907169 a007 Real Root Of -933*x^4+785*x^3-198*x^2-488*x+156 6541070891284141 m005 (1/3*Zeta(3)+1/7)/(3/5*exp(1)-4/5) 6541070911874537 l006 ln(5093/9796) 6541070935322892 r005 Im(z^2+c),c=-7/23+31/49*I,n=26 6541070951461783 g001 Re(GAMMA(97/30+I*71/60)) 6541070951989802 s002 sum(A208587[n]/(pi^n+1),n=1..infinity) 6541070964933863 a007 Real Root Of -167*x^4-950*x^3+910*x^2-272*x-873 6541071029901754 a001 439204/1597*8^(5/12) 6541071043421264 m001 (Zeta(1/2)+Totient)/(gamma+BesselI(0,1)) 6541071045683908 r005 Re(z^2+c),c=25/64+5/58*I,n=3 6541071053043806 m001 ln(gamma)^ln(2)/Psi(1,1/3) 6541071064764506 m001 StronglyCareFree^(Kolakoski/Weierstrass) 6541071075259409 m005 (1/3*2^(1/2)-1/2)/(1/5*Pi-5) 6541071084503595 s002 sum(A277219[n]/(pi^n-1),n=1..infinity) 6541071085710703 r005 Im(z^2+c),c=-13/22+32/53*I,n=6 6541071086264827 a001 3/139583862445*2504730781961^(13/19) 6541071086264828 a001 3/267914296*267914296^(13/19) 6541071087349832 a001 3/514229*28657^(13/19) 6541071087585708 a007 Real Root Of -236*x^4+709*x^3-517*x^2+809*x+992 6541071118501643 m001 GAMMA(1/6)^2*exp(FeigenbaumAlpha)^2*sqrt(2) 6541071120007206 a007 Real Root Of -309*x^4+972*x^3+625*x^2+786*x-997 6541071121446456 l006 ln(4871/9369) 6541071148819052 k001 Champernowne real with 417*n+237 6541071187022869 m001 (2^(1/3)+BesselI(0,1))/(Khinchin+Salem) 6541071203032463 a001 124/5*75025^(40/57) 6541071204600519 a001 1836311903/5778*199^(3/22) 6541071211216356 r005 Im(z^2+c),c=-11/14+14/59*I,n=9 6541071217000409 r005 Im(z^2+c),c=-9/8+1/117*I,n=12 6541071228235354 s001 sum(exp(-2*Pi/5)^n*A287195[n],n=1..infinity) 6541071228235354 s002 sum(A287195[n]/(exp(2/5*pi*n)),n=1..infinity) 6541071248322411 m005 (-1/44+1/4*5^(1/2))/(1/9*5^(1/2)+4/7) 6541071265061153 a007 Real Root Of -28*x^4+525*x^3+610*x^2+196*x-531 6541071274025704 a007 Real Root Of 547*x^4-436*x^3-754*x^2-39*x+370 6541071278660148 a007 Real Root Of 941*x^4-206*x^3+58*x^2-748*x-744 6541071280276816 r005 Re(z^2+c),c=-33/34+24/125*I,n=2 6541071300246542 m001 (Otter+Sierpinski)/(2^(1/2)-LambertW(1)) 6541071312140133 m001 exp(Niven)^2/FeigenbaumAlpha^2/exp(1)^2 6541071321337457 a007 Real Root Of -877*x^4+284*x^3-869*x^2+199*x+742 6541071346938902 a001 105937/1926*2^(1/4) 6541071351033412 l006 ln(4649/8942) 6541071351381292 m001 ln(BesselJ(0,1))*CopelandErdos*Zeta(5) 6541071362538177 a007 Real Root Of 224*x^4-514*x^3+249*x^2-562*x-659 6541071365179011 m001 (GAMMA(2/3)+(1+3^(1/2))^(1/2))/(Zeta(5)-gamma) 6541071371941976 a001 686789568/2161*199^(3/22) 6541071396356767 a001 12586269025/39603*199^(3/22) 6541071396784018 m001 (Chi(1)+BesselK(0,1))/(Ei(1,1)+Niven) 6541071399918837 a001 32951280099/103682*199^(3/22) 6541071400438536 a001 86267571272/271443*199^(3/22) 6541071400514359 a001 317811*199^(3/22) 6541071400525421 a001 591286729879/1860498*199^(3/22) 6541071400527035 a001 1548008755920/4870847*199^(3/22) 6541071400527271 a001 4052739537881/12752043*199^(3/22) 6541071400527305 a001 1515744265389/4769326*199^(3/22) 6541071400527326 a001 6557470319842/20633239*199^(3/22) 6541071400527416 a001 2504730781961/7881196*199^(3/22) 6541071400528033 a001 956722026041/3010349*199^(3/22) 6541071400532258 a001 365435296162/1149851*199^(3/22) 6541071400561220 a001 139583862445/439204*199^(3/22) 6541071400759727 a001 53316291173/167761*199^(3/22) 6541071402120317 a001 20365011074/64079*199^(3/22) 6541071411445937 a001 7778742049/24476*199^(3/22) 6541071437852854 r002 9th iterates of z^2 + 6541071459565193 a007 Real Root Of -533*x^4+434*x^3+321*x^2+735*x-642 6541071468036325 a001 1149851/4181*8^(5/12) 6541071475364689 a001 2971215073/9349*199^(3/22) 6541071500684098 m001 (BesselI(0,2)-Robbin)/(ln(3)+exp(1/Pi)) 6541071508529802 m001 (polylog(4,1/2)+Bloch)/(Gompertz-RenyiParking) 6541071514291426 a001 832040/15127*2^(1/4) 6541071524198375 a003 cos(Pi*14/75)*sin(Pi*23/80) 6541071531959302 a001 3010349/10946*8^(5/12) 6541071537512056 a007 Real Root Of 920*x^4+205*x^3-513*x^2-973*x-528 6541071538707831 a001 726103/13201*2^(1/4) 6541071541285539 a001 7881196/28657*8^(5/12) 6541071542270136 a001 5702887/103682*2^(1/4) 6541071542646219 a001 20633239/75025*8^(5/12) 6541071542789869 a001 4976784/90481*2^(1/4) 6541071542844739 a001 54018521/196418*8^(5/12) 6541071542865697 a001 39088169/710647*2^(1/4) 6541071542873703 a001 141422324/514229*8^(5/12) 6541071542876761 a001 831985/15126*2^(1/4) 6541071542877929 a001 370248451/1346269*8^(5/12) 6541071542878375 a001 267914296/4870847*2^(1/4) 6541071542878545 a001 969323029/3524578*8^(5/12) 6541071542878610 a001 233802911/4250681*2^(1/4) 6541071542878635 a001 2537720636/9227465*8^(5/12) 6541071542878645 a001 1836311903/33385282*2^(1/4) 6541071542878648 a001 6643838879/24157817*8^(5/12) 6541071542878650 a001 1602508992/29134601*2^(1/4) 6541071542878650 a001 17393796001/63245986*8^(5/12) 6541071542878650 a001 12586269025/228826127*2^(1/4) 6541071542878650 a001 45537549124/165580141*8^(5/12) 6541071542878650 a001 10983760033/199691526*2^(1/4) 6541071542878650 a001 119218851371/433494437*8^(5/12) 6541071542878650 a001 86267571272/1568397607*2^(1/4) 6541071542878650 a001 312119004989/1134903170*8^(5/12) 6541071542878650 a001 75283811239/1368706081*2^(1/4) 6541071542878650 a001 817138163596/2971215073*8^(5/12) 6541071542878650 a001 591286729879/10749957122*2^(1/4) 6541071542878650 a001 2139295485799/7778742049*8^(5/12) 6541071542878650 a001 12585437040/228811001*2^(1/4) 6541071542878650 a001 5600748293801/20365011074*8^(5/12) 6541071542878650 a001 4052739537881/73681302247*2^(1/4) 6541071542878650 a001 14662949395604/53316291173*8^(5/12) 6541071542878650 a001 3536736619241/64300051206*2^(1/4) 6541071542878650 a001 23725150497407/86267571272*8^(5/12) 6541071542878650 a001 6557470319842/119218851371*2^(1/4) 6541071542878650 a001 3020733700601/10983760033*8^(5/12) 6541071542878650 a001 2504730781961/45537549124*2^(1/4) 6541071542878650 a001 3461452808002/12586269025*8^(5/12) 6541071542878650 a001 956722026041/17393796001*2^(1/4) 6541071542878650 a001 440719107401/1602508992*8^(5/12) 6541071542878650 a001 365435296162/6643838879*2^(1/4) 6541071542878650 a001 505019158607/1836311903*8^(5/12) 6541071542878650 a001 139583862445/2537720636*2^(1/4) 6541071542878650 a001 64300051206/233802911*8^(5/12) 6541071542878650 a001 53316291173/969323029*2^(1/4) 6541071542878650 a001 73681302247/267914296*8^(5/12) 6541071542878650 a001 20365011074/370248451*2^(1/4) 6541071542878651 a001 228811001/831985*8^(5/12) 6541071542878651 a001 7778742049/141422324*2^(1/4) 6541071542878651 a001 10749957122/39088169*8^(5/12) 6541071542878653 a001 2971215073/54018521*2^(1/4) 6541071542878656 a001 1368706081/4976784*8^(5/12) 6541071542878666 a001 1134903170/20633239*2^(1/4) 6541071542878691 a001 1568397607/5702887*8^(5/12) 6541071542878756 a001 433494437/7881196*2^(1/4) 6541071542878926 a001 199691526/726103*8^(5/12) 6541071542879372 a001 165580141/3010349*2^(1/4) 6541071542880540 a001 228826127/832040*8^(5/12) 6541071542883598 a001 63245986/1149851*2^(1/4) 6541071542891603 a001 29134601/105937*8^(5/12) 6541071542912562 a001 24157817/439204*2^(1/4) 6541071542967431 a001 33385282/121393*8^(5/12) 6541071543111082 a001 9227465/167761*2^(1/4) 6541071543487165 a001 4250681/15456*8^(5/12) 6541071544471762 a001 3524578/64079*2^(1/4) 6541071547049470 a001 4870847/17711*8^(5/12) 6541071550770655 m001 (ln(3)-arctan(1/3))/(GAMMA(13/24)-ZetaP(2)) 6541071553150910 r005 Im(z^2+c),c=35/94+9/49*I,n=50 6541071553797999 a001 1346269/24476*2^(1/4) 6541071556414311 a001 5778/89*4181^(26/47) 6541071571465875 a001 15126/55*8^(5/12) 6541071598436760 a003 sin(Pi*4/49)/sin(Pi*9/71) 6541071599856735 r005 Im(z^2+c),c=-5/8+26/207*I,n=37 6541071603646476 l006 ln(4427/8515) 6541071617720978 a001 514229/9349*2^(1/4) 6541071646248257 m005 (1/2*Pi+4/5)/(11/12*gamma-1/6) 6541071652282963 k002 Champernowne real with 5/2*n^2+81/2*n-37 6541071662323063 k003 Champernowne real with 1/6*n^3+3/2*n^2+127/3*n-38 6541071671573382 m005 (1/3*Catalan+3/4)/(4/7*Pi-2/11) 6541071672363164 k003 Champernowne real with 1/3*n^3+1/2*n^2+265/6*n-39 6541071682403264 k003 Champernowne real with 1/2*n^3-1/2*n^2+46*n-40 6541071692443364 k003 Champernowne real with 2/3*n^3-3/2*n^2+287/6*n-41 6541071694887548 r008 a(0)=6,K{-n^6,12-70*n^3+7*n^2+49*n} 6541071702483464 k003 Champernowne real with 5/6*n^3-5/2*n^2+149/3*n-42 6541071709011437 m001 (-Backhouse+FeigenbaumC)/(5^(1/2)-Psi(2,1/3)) 6541071712523564 k003 Champernowne real with n^3-7/2*n^2+103/2*n-43 6541071722563665 k003 Champernowne real with 7/6*n^3-9/2*n^2+160/3*n-44 6541071732491941 p001 sum(1/(611*n+153)/(256^n),n=0..infinity) 6541071738621629 m001 (3^(1/3)+Zeta(1,-1))/(ReciprocalLucas-Trott) 6541071738818411 a001 710647/2584*8^(5/12) 6541071739231556 m006 (1/2*exp(Pi)+2/3)/(5*Pi+3) 6541071742335981 b008 Pi+32*Log[7] 6541071742643865 k003 Champernowne real with 3/2*n^3-13/2*n^2+57*n-46 6541071757705007 r005 Im(z^2+c),c=-5/8+19/155*I,n=61 6541071765940154 a001 2/843*18^(20/57) 6541071769105897 m002 -2+6*Cosh[Pi]-Log[Pi]-Tanh[Pi] 6541071772764166 k003 Champernowne real with 2*n^3-19/2*n^2+125/2*n-49 6541071802884466 k003 Champernowne real with 5/2*n^3-25/2*n^2+68*n-52 6541071824125036 a007 Real Root Of -126*x^4-818*x^3+133*x^2+592*x-90 6541071826962627 a007 Real Root Of 963*x^4+605*x^3-637*x^2-588*x+41 6541071827948068 a007 Real Root Of -176*x^4+884*x^3+401*x^2+511*x-721 6541071833004767 k003 Champernowne real with 3*n^3-31/2*n^2+147/2*n-55 6541071839462120 m005 (1/3*Pi+1/11)/(4/9*2^(1/2)-5/11) 6541071853834948 r005 Im(z^2+c),c=-8/7+8/97*I,n=38 6541071862743812 a007 Real Root Of -518*x^4+819*x^3+995*x^2+848*x+453 6541071863125067 k003 Champernowne real with 7/2*n^3-37/2*n^2+79*n-58 6541071882932589 l006 ln(4205/8088) 6541071884824880 b008 (13*CosIntegral[9])/11 6541071891137388 r005 Re(z^2+c),c=-31/48+23/53*I,n=43 6541071893245368 k003 Champernowne real with 4*n^3-43/2*n^2+169/2*n-61 6541071896894586 m005 (1/2*gamma+3/10)/(-1/8+11/24*5^(1/2)) 6541071901852979 m001 (sin(1)+Kolakoski)/Riemann3rdZero 6541071903373684 m005 (1/2*5^(1/2)-1/4)/(5/9*Catalan+9/11) 6541071910239650 s002 sum(A188855[n]/(exp(2*pi*n)+1),n=1..infinity) 6541071913470367 a001 1134903170/3571*199^(3/22) 6541071923365669 k003 Champernowne real with 9/2*n^3-49/2*n^2+90*n-64 6541071923684401 r002 33th iterates of z^2 + 6541071940204362 a001 3571/89*28657^(1/21) 6541071953485969 k003 Champernowne real with 5*n^3-55/2*n^2+191/2*n-67 6541071971886443 a007 Real Root Of 681*x^4+289*x^3+564*x^2-963*x-915 6541071983606261 k003 Champernowne real with 11/2*n^3-61/2*n^2+101*n-70 6541072009442158 m001 1/Zeta(5)^2/FeigenbaumKappa/exp(sinh(1))^2 6541072011003820 a003 cos(Pi*2/73)/cos(Pi*51/113) 6541072013257089 a007 Real Root Of -966*x^4+703*x^3-482*x^2-148*x+483 6541072013726561 k003 Champernowne real with 6*n^3-67/2*n^2+213/2*n-73 6541072034616854 a007 Real Root Of 26*x^4+37*x^3-838*x^2+293*x+530 6541072043846861 k003 Champernowne real with 13/2*n^3-73/2*n^2+112*n-76 6541072055855627 a001 196418/3571*2^(1/4) 6541072070791020 s002 sum(A207262[n]/((2^n-1)/n),n=1..infinity) 6541072073301703 a007 Real Root Of 15*x^4+985*x^3+266*x^2+987*x+913 6541072073967161 k003 Champernowne real with 7*n^3-79/2*n^2+235/2*n-79 6541072084971570 m001 (Bloch-FeigenbaumC)/(ln(gamma)-GAMMA(7/12)) 6541072088944907 a007 Real Root Of -765*x^4+215*x^3+85*x^2+890*x+746 6541072103964109 a007 Real Root Of -424*x^4+997*x^3+195*x^2+521*x+614 6541072104087461 k003 Champernowne real with 15/2*n^3-85/2*n^2+123*n-82 6541072111322641 m001 (2^(1/2)+Shi(1))/(Zeta(1,-1)+Landau) 6541072134207761 k003 Champernowne real with 8*n^3-91/2*n^2+257/2*n-85 6541072141661591 r008 a(0)=6,K{-n^6,82-79*n^3+69*n^2-74*n} 6541072149019082 k001 Champernowne real with 418*n+236 6541072164328061 k003 Champernowne real with 17/2*n^3-97/2*n^2+134*n-88 6541072193351766 l006 ln(3983/7661) 6541072194448361 k003 Champernowne real with 9*n^3-103/2*n^2+279/2*n-91 6541072209981356 r005 Re(z^2+c),c=-7/94+22/29*I,n=11 6541072214923928 p003 LerchPhi(1/6,3,317/125) 6541072224460234 a007 Real Root Of -34*x^4+792*x^3+751*x^2+670*x-975 6541072225828392 a001 123*(1/2*5^(1/2)+1/2)^24*11^(15/22) 6541072247723857 s001 sum(exp(-Pi/3)^n*A227877[n],n=1..infinity) 6541072262006137 a007 Real Root Of 415*x^4-821*x^3-881*x^2+180*x+413 6541072299395530 v002 sum(1/(2^n+(16*n^2-8*n+20)),n=1..infinity) 6541072303651038 a001 832040/123*123^(19/20) 6541072306204183 m008 (3/5*Pi^4+2)/(Pi^4-5) 6541072322247158 m005 (1/3*2^(1/2)-2/7)/(5/8*2^(1/2)-3/5) 6541072331776200 m004 (25*Pi*Sech[Sqrt[5]*Pi]^2)/Log[Sqrt[5]*Pi]^2 6541072368130488 a003 cos(Pi*1/81)-sin(Pi*28/73) 6541072412898242 a007 Real Root Of 227*x^4-771*x^3-230*x^2-737*x-641 6541072415033715 r005 Re(z^2+c),c=-13/28+23/42*I,n=14 6541072419090799 m005 (4*gamma+3/4)/(-49/10+1/10*5^(1/2)) 6541072420098520 a007 Real Root Of 622*x^4-289*x^3+270*x^2-897*x-897 6541072430447416 a007 Real Root Of 929*x^4-461*x^3+776*x^2+815*x-98 6541072434074946 a007 Real Root Of -754*x^4+560*x^3-76*x^2+738*x+810 6541072438922225 m001 (2^(1/2)+exp(-1/2*Pi))/(Conway+Salem) 6541072463314638 r002 3th iterates of z^2 + 6541072480468224 r002 18th iterates of z^2 + 6541072487193094 m001 BesselI(0,2)*polylog(4,1/2)^Ei(1) 6541072491129643 a007 Real Root Of 537*x^4-606*x^3+712*x^2-308*x-774 6541072497870784 r005 Re(z^2+c),c=23/64+37/61*I,n=11 6541072513857611 r005 Im(z^2+c),c=-25/66+38/61*I,n=29 6541072540417068 l006 ln(3761/7234) 6541072542925729 m001 (-BesselI(1,2)+CareFree)/(Ei(1)-cos(1)) 6541072579433874 m006 (3/5*exp(2*Pi)+1/4)/(4/5*ln(Pi)+4) 6541072607038666 r005 Im(z^2+c),c=-1/15+14/19*I,n=33 6541072622088112 r009 Im(z^3+c),c=-7/78+23/31*I,n=16 6541072640868974 q001 1927/2946 6541072656808525 a001 17/38*76^(5/57) 6541072663696105 m005 (1/2*5^(1/2)-1)/(6/11*Pi+1/11) 6541072670349856 a001 24157817/843*521^(1/2) 6541072720231756 r001 37i'th iterates of 2*x^2-1 of 6541072723958116 r009 Re(z^3+c),c=-13/106+24/35*I,n=47 6541072731898286 a001 11/2*1346269^(10/57) 6541072766786915 g007 Psi(2,7/8)+Psi(2,1/7)-Psi(2,5/12)-Psi(2,7/11) 6541072802063811 r009 Re(z^3+c),c=-7/38+28/43*I,n=11 6541072805167736 m001 (RenyiParking-exp(1/exp(1)))^Salem 6541072812093573 m003 6*Coth[1/2+Sqrt[5]/2]+Sin[1/2+Sqrt[5]/2]/20 6541072815157982 m005 (1/2*5^(1/2)+9/11)/(-79/176+3/16*5^(1/2)) 6541072818311212 m001 (-FeigenbaumKappa+Khinchin)/(gamma+Backhouse) 6541072825418645 m005 (1/3*3^(1/2)+1/10)/(1/4*2^(1/2)-1/4) 6541072827408304 a007 Real Root Of 530*x^4-312*x^3+81*x^2+133*x-132 6541072833779918 m001 (2^(1/2)+ArtinRank2)/(Cahen+Sierpinski) 6541072841076253 r009 Im(z^3+c),c=-57/118+1/22*I,n=31 6541072845109813 a007 Real Root Of -103*x^4+997*x^3+811*x^2-173*x-494 6541072852850856 r009 Re(z^3+c),c=-1/11+15/37*I,n=16 6541072857948544 m001 (HardHexagonsEntropy-MinimumGamma)^Si(Pi) 6541072869362818 a003 cos(Pi*45/116)-sin(Pi*50/103) 6541072874355065 m001 ln(ErdosBorwein)*Backhouse/GAMMA(11/12) 6541072877488560 a001 5/24476*3571^(25/59) 6541072885869982 a001 90481/329*8^(5/12) 6541072913643432 m005 (1/2*gamma-7/12)/(2/11*exp(1)-5) 6541072915416409 a007 Real Root Of 269*x^4+520*x^3-213*x^2-869*x-381 6541072931024880 l006 ln(3539/6807) 6541072946489992 r009 Im(z^3+c),c=-4/11+17/27*I,n=27 6541072950260100 a007 Real Root Of -927*x^4+962*x^3+9*x^2+298*x+630 6541072954947658 h001 (1/2*exp(1)+1/5)/(2/3*exp(1)+4/7) 6541072954947658 m005 (1/2*exp(1)+1/5)/(2/3*exp(1)+4/7) 6541072961464727 m001 (3^(1/2)+ln(Pi))/(Ei(1)+FeigenbaumAlpha) 6541073013298607 a007 Real Root Of 507*x^4-112*x^3-973*x^2-624*x+763 6541073022964736 m001 GAMMA(17/24)*exp(PisotVijayaraghavan)/exp(1)^2 6541073031946988 a001 5/439204*9349^(41/59) 6541073033793975 r005 Im(z^2+c),c=-7/20+6/59*I,n=23 6541073040660916 a001 7/9227465*12586269025^(11/14) 6541073040660932 a001 7/1836311903*10610209857723^(11/14) 6541073041269401 a001 1/6624*14930352^(11/14) 6541073041649054 r005 Im(z^2+c),c=-41/34+9/47*I,n=16 6541073052844596 a007 Real Root Of 675*x^4-311*x^3+774*x^2-459*x-842 6541073068392416 a007 Real Root Of -790*x^4+390*x^3-918*x^2-143*x+553 6541073081303301 a001 5/39603*39603^(22/59) 6541073082870670 a001 5/1149851*64079^(39/59) 6541073099955481 a007 Real Root Of 106*x^4-268*x^3+587*x^2-655*x-774 6541073100484448 r009 Im(z^3+c),c=-29/46+17/60*I,n=10 6541073101271856 a001 5/271443*15127^(36/59) 6541073121137483 m001 1/sin(Pi/5)/BesselJ(1,1)*exp(sqrt(2))^2 6541073135388494 m001 Catalan/(MasserGramainDelta-ReciprocalLucas) 6541073136496052 m001 1/ln(GAMMA(23/24))^2*BesselK(1,1)/sqrt(2) 6541073138310279 m001 (ln(2)-gamma(3))/((1+3^(1/2))^(1/2)-Gompertz) 6541073143507194 r005 Im(z^2+c),c=-53/102+38/61*I,n=3 6541073149219112 k001 Champernowne real with 419*n+235 6541073163902593 a007 Real Root Of -565*x^4+661*x^3-563*x^2+608*x+927 6541073167765654 m001 1/ln(Bloch)^2/FibonacciFactorial*GAMMA(5/12)^2 6541073178856898 a007 Real Root Of -656*x^4+57*x^3-431*x^2-973*x-316 6541073198078659 r005 Im(z^2+c),c=-1/94+12/19*I,n=43 6541073198101438 a007 Real Root Of -521*x^4+192*x^3-290*x^2-569*x-99 6541073206856743 b008 2+Pi*ArcSec[8] 6541073210261271 m001 (PrimesInBinary+Robbin)/(GAMMA(19/24)+Bloch) 6541073216661713 a001 5/271443*5778^(40/59) 6541073229534771 r002 12th iterates of z^2 + 6541073231898158 r009 Im(z^3+c),c=-1/86+36/47*I,n=23 6541073233331929 m005 (1/2*3^(1/2)-1/9)/(1/5*Zeta(3)-1/8) 6541073244530509 a007 Real Root Of 549*x^4+151*x^3+962*x^2-916*x-64 6541073249309301 m001 GAMMA(2/3)/arctan(1/3)/Cahen 6541073263929650 a007 Real Root Of 829*x^4-930*x^3+807*x^2+161*x-652 6541073267243609 r002 50th iterates of z^2 + 6541073317245798 a007 Real Root Of 415*x^4-427*x^3+754*x^2-298*x-713 6541073326800496 m005 (1/3*3^(1/2)-1/2)/(5/8*3^(1/2)+1/10) 6541073344082365 m001 (Magata-MertensB3)/(polylog(4,1/2)-GaussAGM) 6541073371749250 m001 (exp(1)+KhinchinHarmonic)/(-Rabbit+Trott2nd) 6541073373917831 l006 ln(3317/6380) 6541073376226002 a007 Real Root Of 158*x^4-600*x^3-644*x^2-16*x+425 6541073418560131 m008 (4/5*Pi^5+1/3)/(4*Pi^2-2) 6541073421036000 a007 Real Root Of 86*x^4+527*x^3-136*x^2+642*x+74 6541073431039355 r009 Re(z^3+c),c=-7/74+26/59*I,n=15 6541073475951785 m001 ln(Si(Pi))/ArtinRank2^2/BesselJ(1,1)^2 6541073531492999 r002 5th iterates of z^2 + 6541073548369189 m001 (Tribonacci-ZetaQ(4))/(Zeta(5)+Pi^(1/2)) 6541073551283342 h001 (-3*exp(3/2)+3)/(-8*exp(3)+1) 6541073557347909 a003 sin(Pi*1/48)/sin(Pi*51/103) 6541073571713311 a007 Real Root Of -436*x^4+484*x^3-144*x^2+17*x+288 6541073578942008 a001 5778/377*10946^(28/43) 6541073582185552 a003 cos(Pi*5/48)-cos(Pi*15/37) 6541073595196362 a001 5/3571*24476^(9/59) 6541073606149366 a005 (1/cos(7/155*Pi))^870 6541073606159109 m001 (Zeta(5)+FransenRobinson)/(Tetranacci-Totient) 6541073671112205 r009 Re(z^3+c),c=-9/31+39/58*I,n=36 6541073676773987 m001 exp(GAMMA(7/24))/ArtinRank2^2*Zeta(1/2) 6541073704585405 b008 7*EllipticE[Pi/3,2/3] 6541073712493747 m004 (5*Sqrt[5]*Pi)/6+(3*Tan[Sqrt[5]*Pi])/4 6541073740192632 a007 Real Root Of -430*x^4+947*x^3-707*x^2-485*x+329 6541073748228155 m005 (1/2*2^(1/2)-1/2)/(8/9*exp(1)+3/4) 6541073749538723 r005 Re(z^2+c),c=-22/29+6/55*I,n=13 6541073762998134 a007 Real Root Of -119*x^4+764*x^3-553*x^2-196*x+344 6541073767183825 h005 exp(cos(Pi*7/40)/cos(Pi*7/20)) 6541073779528499 a007 Real Root Of -915*x^4+696*x^3-588*x^2-223*x+468 6541073795974071 a001 2207/89*701408733^(1/21) 6541073799436837 a001 17/51841*7^(11/31) 6541073806706279 r004 Im(z^2+c),c=-2/3+1/22*I,z(0)=-1,n=10 6541073820136826 m001 1/Ei(1)^2/exp(MinimumGamma)/Pi^2 6541073880346936 l006 ln(3095/5953) 6541073893862777 m005 (1/3*exp(1)+1/2)/(4/5*Pi-4/11) 6541073900458093 a003 cos(Pi*9/89)*sin(Pi*22/91) 6541073903230143 m002 16/Pi^3-Sinh[Pi]/Pi^2 6541073925987590 m009 (5*Psi(1,3/4)+2/3)/(1/6*Pi^2+2/5) 6541073941790444 a003 sin(Pi*21/83)*sin(Pi*38/103) 6541074028163994 r005 Re(z^2+c),c=-17/46+28/47*I,n=23 6541074061184452 m006 (1/3*exp(2*Pi)-3/4)/(1/4*Pi^2+1/4) 6541074067526484 r002 45th iterates of z^2 + 6541074070040803 m001 (Zeta(1,2)-MertensB1*Otter)/MertensB1 6541074074470069 m001 ln(FeigenbaumB)^2*CareFree/GAMMA(1/4) 6541074083294222 m001 (Conway-Gompertz)^GAMMA(3/4) 6541074091747655 r005 Im(z^2+c),c=-69/110+7/57*I,n=63 6541074099225698 l006 ln(8595/9176) 6541074108077670 a001 5/271443*2207^(45/59) 6541074119241415 a007 Real Root Of 936*x^4-501*x^3+330*x^2+73*x-405 6541074135847655 m001 (ln(2^(1/2)+1)+Landau)/(cos(1)-exp(1)) 6541074136008587 m001 (Otter+Sarnak)/(GAMMA(5/6)-Psi(2,1/3)) 6541074139833239 r005 Im(z^2+c),c=29/94+32/61*I,n=28 6541074143474766 a008 Real Root of (-8+6*x+7*x^2+7*x^4-6*x^8) 6541074149419142 k001 Champernowne real with 420*n+234 6541074187848780 a007 Real Root Of 947*x^4-963*x^3+158*x^2-117*x-587 6541074202851788 p001 sum((-1)^n/(578*n+141)/(2^n),n=0..infinity) 6541074231275852 m001 Magata/FeigenbaumAlpha^2/ln(Zeta(7)) 6541074240924998 a007 Real Root Of -825*x^4-160*x^3-740*x^2+679*x+867 6541074244742445 m001 BesselI(1,1)+(1+3^(1/2))^(1/2)*ZetaQ(2) 6541074247922515 a007 Real Root Of -921*x^4+971*x^3-941*x^2-879*x+268 6541074268598389 a001 2178309/1364*521^(25/26) 6541074296246122 m001 (cos(1)+exp(-1/2*Pi))/(-Cahen+KomornikLoreti) 6541074299335371 a007 Real Root Of 607*x^4+61*x^3-658*x^2-319*x+362 6541074327024879 m001 (-3^(1/3)+ZetaQ(3))/(GAMMA(3/4)-exp(Pi)) 6541074343058228 a001 6643838879/3*267914296^(7/17) 6541074343058229 a001 228826127/3*956722026041^(7/17) 6541074343153929 a001 64300051206*75025^(7/17) 6541074344328666 a007 Real Root Of -951*x^4-381*x^3-468*x^2+560*x+634 6541074364638499 a007 Real Root Of 281*x^4+474*x^3+940*x^2-263*x-493 6541074390623306 a007 Real Root Of 889*x^4-538*x^3-591*x^2-161*x+346 6541074451278666 p003 LerchPhi(1/16,1,326/205) 6541074451348169 m005 (1/2*5^(1/2)-1/12)/(9/10*Zeta(3)+1/2) 6541074454890777 m005 (1/3*exp(1)-1/8)/(4*Pi-5/8) 6541074456537465 a007 Real Root Of -601*x^4-585*x^3-711*x^2+863*x+815 6541074465040722 l006 ln(2873/5526) 6541074465859989 r005 Re(z^2+c),c=9/70+14/29*I,n=25 6541074489876974 r002 32th iterates of z^2 + 6541074508957104 a007 Real Root Of 54*x^4-114*x^3-290*x^2-804*x+672 6541074538099255 m001 gamma/Champernowne/TravellingSalesman 6541074538644750 a007 Real Root Of 474*x^4+825*x^3+855*x^2-852*x-779 6541074559924020 a008 Real Root of (2+2*x+2*x^2+x^3-3*x^4+6*x^5) 6541074569800262 m001 (-Conway+Khinchin)/(5^(1/2)-Champernowne) 6541074606699235 r005 Im(z^2+c),c=21/62+17/47*I,n=31 6541074611813651 a007 Real Root Of -903*x^4+936*x^3+685*x^2+359*x+369 6541074638349121 m001 (Catalan+Kolakoski)/MertensB1 6541074654497534 a007 Real Root Of 276*x^4+675*x^3+174*x^2-934*x-547 6541074661619287 h001 (1/12*exp(2)+5/7)/(1/5*exp(2)+5/9) 6541074664396636 a007 Real Root Of -548*x^4+561*x^3-534*x^2-547*x+128 6541074666572361 m005 (1/2*Pi+1/12)/(10/11*exp(1)-5) 6541074683440818 r002 3th iterates of z^2 + 6541074699776104 r002 3th iterates of z^2 + 6541074700079250 r002 19th iterates of z^2 + 6541074708918368 r004 Re(z^2+c),c=1/20+4/17*I,z(0)=I,n=9 6541074709413488 r009 Re(z^3+c),c=-19/86+40/53*I,n=12 6541074716646957 r005 Im(z^2+c),c=-7/6+121/228*I,n=3 6541074726775560 r009 Im(z^3+c),c=-1/25+44/59*I,n=9 6541074737492279 q001 1059/1619 6541074741617379 m001 (Salem-Tribonacci)/(Ei(1)-QuadraticClass) 6541074766761072 r002 14th iterates of z^2 + 6541074766984785 m001 GAMMA(5/12)/ln(Riemann1stZero)^2/arctan(1/2) 6541074815852415 m001 1/Ei(1)^2/Magata^2*exp(sqrt(1+sqrt(3)))^2 6541074829415964 r005 Im(z^2+c),c=-43/38+2/25*I,n=11 6541074835169097 m001 GAMMA(2/3)*Gompertz-MinimumGamma 6541074838800327 r005 Re(z^2+c),c=-28/31+10/61*I,n=44 6541074846019901 m001 (Zeta(1/2)+gamma(1))/(Gompertz+MadelungNaCl) 6541074851794580 a007 Real Root Of -223*x^4-670*x^3-669*x^2+840*x+689 6541074856393060 r002 3th iterates of z^2 + 6541074889656034 r008 a(0)=7,K{-n^6,-80*n^3+59*n^2+23*n} 6541074908108745 m005 (9/4+1/4*5^(1/2))/(17/5+2/5*5^(1/2)) 6541074910873057 a007 Real Root Of 523*x^4-974*x^3+251*x^2-774*x-982 6541074916292937 a001 433494437/1364*199^(3/22) 6541074919200459 m001 (PisotVijayaraghavan-Stephens)^Porter 6541074928817721 a001 7*(1/2*5^(1/2)+1/2)^9*18^(1/14) 6541074929326902 m001 (Psi(2,1/3)+cos(1/5*Pi))/(-Backhouse+Kac) 6541074932924006 m001 (Chi(1)+ln(2))/(-CopelandErdos+ZetaQ(4)) 6541074941787069 a007 Real Root Of 63*x^4+468*x^3+424*x^2+311*x-459 6541074942746287 s002 sum(A070617[n]/((exp(n)-1)/n),n=1..infinity) 6541074945543941 m001 ZetaQ(4)^sin(1/12*Pi)+arctan(1/2) 6541074946239296 a005 (1/cos(28/207*Pi))^564 6541074953632151 r005 Re(z^2+c),c=19/118+31/64*I,n=22 6541074995862415 m001 ZetaQ(4)^cos(1/12*Pi)/(ZetaQ(4)^cos(1)) 6541075025433170 m001 Riemann1stZero^3*ln(Paris) 6541075036747935 m001 (3^(1/2)-ln(3))/(-exp(-1/2*Pi)+Salem) 6541075044550505 r009 Im(z^3+c),c=-19/66+17/26*I,n=6 6541075058876770 a001 75025/1364*2^(1/4) 6541075072632824 m001 (2^(1/3)-Zeta(5))/(gamma(3)+Magata) 6541075073338292 a005 (1/cos(21/235*Pi))^220 6541075078288508 m005 (1/2*Catalan+3/8)/(3/11*Pi+5/12) 6541075112009417 a007 Real Root Of -345*x^4+154*x^3+532*x^2+496*x-532 6541075112911896 a007 Real Root Of 622*x^4-892*x^3+272*x^2-244*x+179 6541075143082466 g005 Pi*GAMMA(5/11)*GAMMA(9/10) 6541075145126401 m001 (cos(1/12*Pi)+Cahen)/(1-Zeta(1/2)) 6541075147661301 l006 ln(2651/5099) 6541075149619172 k001 Champernowne real with 421*n+233 6541075203974629 m005 (15/44+1/4*5^(1/2))/(5*exp(1)+1/6) 6541075232580281 b008 65+Sinh[2/5] 6541075261085584 a007 Real Root Of -161*x^4-999*x^3+372*x^2+242*x+811 6541075267252707 m001 1/ln(Trott)/Paris*cos(1)^2 6541075270818002 m001 cos(1/5*Pi)^(ln(2^(1/2)+1)/BesselJ(1,1)) 6541075270818002 m001 cos(Pi/5)^(ln(1+sqrt(2))/BesselJ(1,1)) 6541075272629351 a007 Real Root Of 72*x^4+310*x^3-939*x^2+864*x+781 6541075294370345 m005 (3/44+1/4*5^(1/2))/(1/5*Zeta(3)-1/4) 6541075300659055 r002 5th iterates of z^2 + 6541075305112782 a007 Real Root Of -65*x^4+779*x^3-905*x^2+116*x+693 6541075311914260 a003 cos(Pi*25/97)*sin(Pi*29/73) 6541075314104778 r009 Re(z^3+c),c=-11/78+38/53*I,n=54 6541075354161604 m001 exp((2^(1/3)))^2/Si(Pi)/GAMMA(23/24) 6541075382259075 a008 Real Root of x^4-28*x^2-88*x-57 6541075384970480 m001 1/BesselJ(1,1)^2/Porter/exp(sin(1))^2 6541075478383225 a007 Real Root Of 915*x^4+490*x^3+944*x^2-313*x-639 6541075505443347 a007 Real Root Of -141*x^4-132*x^3+416*x^2+868*x-683 6541075510033566 a003 sin(Pi*8/87)-sin(Pi*33/85) 6541075514679353 a001 377/843*2139295485799^(1/2) 6541075522931815 a001 1762289/161*322^(17/24) 6541075533718156 l006 ln(5080/9771) 6541075558103628 m001 (2^(1/2)+1)/(-Catalan+GAMMA(17/24)) 6541075565131211 r005 Re(z^2+c),c=-57/82+10/41*I,n=60 6541075599471340 a007 Real Root Of -334*x^4+877*x^3+31*x^2+204*x-331 6541075605722061 l006 ln(7234/7723) 6541075610705940 r002 56th iterates of z^2 + 6541075611031451 k002 Champernowne real with 1/2*n^2+687/2*n-279 6541075613876862 r002 40th iterates of z^2 + 6541075614229668 r005 Re(z^2+c),c=-1/20+44/57*I,n=20 6541075623195432 b008 E*Pi-2*Tanh[4] 6541075680297273 a007 Real Root Of 347*x^4-943*x^3-7*x^2-588*x+588 6541075690193237 r009 Re(z^3+c),c=-5/94+31/35*I,n=9 6541075707536730 m001 Trott/Niven^2/ln(GAMMA(5/12))^2 6541075710459442 a007 Real Root Of 77*x^4+391*x^3-789*x^2-343*x-16 6541075711061457 k002 Champernowne real with n^2+342*n-278 6541075713956804 a007 Real Root Of 828*x^4-781*x^3+310*x^2-89*x-561 6541075719521722 a008 Real Root of x^5-2*x^4-9*x^3+5*x^2+15*x-1 6541075725336861 b008 15/2+Sin[5] 6541075738166312 m005 (2/5*exp(1)+2)/(1/3*Catalan+1/6) 6541075779899514 m009 (1/2*Pi^2-2/3)/(3/5*Psi(1,3/4)+5) 6541075779926482 a007 Real Root Of 333*x^4+141*x^3-299*x^2-996*x+679 6541075782149724 m005 (1/2*Zeta(3)+2/3)/(4/7*Pi+1/7) 6541075804071038 m001 (GlaisherKinkelin-cos(1))/(-Gompertz+Rabbit) 6541075804537017 a007 Real Root Of 139*x^4+973*x^3+372*x^2-302*x-39 6541075811091463 k002 Champernowne real with 3/2*n^2+681/2*n-277 6541075824254584 m001 (BesselJ(0,1)+Zeta(3))/(FeigenbaumC+Salem) 6541075841929262 r002 16th iterates of z^2 + 6541075877867870 a007 Real Root Of -234*x^4+413*x^3-398*x^2-793*x-190 6541075892935479 r005 Re(z^2+c),c=-5/114+15/29*I,n=4 6541075900406187 a007 Real Root Of -612*x^4+456*x^3+875*x^2+156*x-492 6541075911121469 k002 Champernowne real with 2*n^2+339*n-276 6541075919383332 m005 (Pi-4/5)/(5*Catalan-1) 6541075924755949 r005 Im(z^2+c),c=-5/86+17/24*I,n=41 6541075928936965 r005 Im(z^2+c),c=-33/34+13/43*I,n=10 6541075955058904 l006 ln(2429/4672) 6541075971638663 a001 3/20633239*123^(5/16) 6541075975185727 h002 exp(1/5*(10*5^(1/3)+12^(1/4))*5^(2/3)) 6541076002987901 m001 Pi/(1/2*ln(2)/ln(10)*2^(1/2)-ln(2)) 6541076011151475 k002 Champernowne real with 5/2*n^2+675/2*n-275 6541076018161022 m001 (ln(Pi)-LaplaceLimit)/(TwinPrimes+ZetaP(4)) 6541076027251635 r005 Re(z^2+c),c=2/9+22/63*I,n=33 6541076031837116 r005 Re(z^2+c),c=-9/13+6/23*I,n=25 6541076035911595 m001 (Catalan-ln(2)*GAMMA(1/24))/GAMMA(1/24) 6541076036282950 m005 (1/3*3^(1/2)+2/11)/(3/10*Zeta(3)+4/5) 6541076049591002 a007 Real Root Of -869*x^4+988*x^3-171*x^2-73*x+461 6541076068719829 a007 Real Root Of -200*x^4+985*x^3+939*x^2-15*x-631 6541076090114086 a007 Real Root Of 977*x^4-986*x^3-795*x^2-842*x+988 6541076107564367 m001 (Chi(1)-FransenRobinson)/(Mills+Niven) 6541076111181481 k002 Champernowne real with 3*n^2+336*n-274 6541076114210691 r005 Im(z^2+c),c=-71/122+29/53*I,n=6 6541076118018973 r005 Im(z^2+c),c=-37/50+11/49*I,n=11 6541076118022498 r005 Re(z^2+c),c=15/62+10/19*I,n=30 6541076125309551 a007 Real Root Of -801*x^4+767*x^3-675*x^2-497*x+325 6541076125314453 r009 Im(z^3+c),c=-3/122+4/61*I,n=2 6541076143936711 a007 Real Root Of 276*x^4-814*x^3-587*x^2-831*x+972 6541076149819202 k001 Champernowne real with 422*n+232 6541076166871426 a001 3571*4807526976^(3/23) 6541076171545713 a001 2/29*3571^(11/40) 6541076211211487 k002 Champernowne real with 7/2*n^2+669/2*n-273 6541076216483338 r005 Re(z^2+c),c=-13/74+43/62*I,n=23 6541076250538047 r008 a(0)=0,K{-n^6,88+44*n^3+26*n^2-5*n} 6541076267722375 m009 (1/6*Psi(1,2/3)-4/5)/(1/6*Psi(1,3/4)+4) 6541076269465551 r008 a(0)=0,K{-n^6,-58-48*n+n^2-48*n^3} 6541076275788324 r009 Im(z^3+c),c=-1/36+47/61*I,n=29 6541076289019500 m001 (ln(Pi)-Conway)/(Grothendieck+MasserGramain) 6541076311241493 k002 Champernowne real with 4*n^2+333*n-272 6541076320453702 m001 HardHexagonsEntropy*(CareFree-CopelandErdos) 6541076323176935 r005 Im(z^2+c),c=-107/94+5/61*I,n=53 6541076332154448 m001 (gamma(3)+Champernowne)/(Tetranacci-ZetaQ(3)) 6541076353435392 r008 a(0)=0,K{-n^6,50+54*n+4*n^2+45*n^3} 6541076376983712 r005 Re(z^2+c),c=-61/42+2/37*I,n=2 6541076397093366 s002 sum(A176946[n]/(n^3*exp(n)-1),n=1..infinity) 6541076405813470 a007 Real Root Of -921*x^4+661*x^3-928*x^2+343*x+975 6541076411271499 k002 Champernowne real with 9/2*n^2+663/2*n-271 6541076414660819 a007 Real Root Of 53*x^4-477*x^3-414*x^2-578*x+679 6541076415462593 m001 (exp(1/Pi)+KhinchinLevy)/(Si(Pi)+Zeta(1/2)) 6541076415570404 r005 Re(z^2+c),c=-29/38+11/64*I,n=13 6541076415575231 a007 Real Root Of 7*x^4+454*x^3-248*x^2+371*x+780 6541076416752371 l006 ln(4636/8917) 6541076424883359 a007 Real Root Of -264*x^4+912*x^3-921*x^2+421*x+973 6541076427368173 m001 (ln(2+3^(1/2))+Porter)/(cos(1)-cos(1/12*Pi)) 6541076433682932 r008 a(0)=0,K{-n^6,62+39*n^3+28*n^2+24*n} 6541076444024943 r005 Im(z^2+c),c=-8/27+34/53*I,n=4 6541076447407392 m001 (Kac+MertensB2)/(sin(1/12*Pi)+BesselI(0,2)) 6541076464243003 r002 32i'th iterates of 2*x/(1-x^2) of 6541076477028608 r009 Re(z^3+c),c=-15/31+1/15*I,n=59 6541076487252124 q001 2309/3530 6541076489897684 a001 9/305*13^(9/29) 6541076508266976 m001 (Catalan+sin(1))/(HeathBrownMoroz+Khinchin) 6541076511301505 k002 Champernowne real with 5*n^2+330*n-270 6541076515010044 m005 (1/3*3^(1/2)+2/5)/(11/12*5^(1/2)-5/9) 6541076520469451 g001 GAMMA(3/4,29/72) 6541076523534305 m001 (-GlaisherKinkelin+Kac)/(cos(1)+arctan(1/2)) 6541076526501034 r002 43th iterates of z^2 + 6541076537842903 r008 a(0)=0,K{-n^6,-62-14*n-43*n^2-34*n^3} 6541076540283263 r005 Re(z^2+c),c=-21/32+23/55*I,n=31 6541076560499847 a008 Real Root of x^4-2*x^3-54*x^2+x+1033 6541076566334124 r008 a(0)=0,K{-n^6,36+37*n^3+21*n^2+59*n} 6541076597879665 a007 Real Root Of 874*x^4-726*x^3+123*x^2+573*x-41 6541076599138121 m001 ArtinRank2/Landau/ReciprocalLucas 6541076611331511 k002 Champernowne real with 11/2*n^2+657/2*n-269 6541076614507559 a007 Real Root Of -838*x^4+729*x^3+440*x^2+969*x+803 6541076631602861 b008 Sqrt[6]*SphericalBesselY[2,3] 6541076637364411 r005 Im(z^2+c),c=-22/23+14/31*I,n=3 6541076653690946 a007 Real Root Of -770*x^4+958*x^3-131*x^2+142*x+558 6541076683847094 r008 a(0)=0,K{-n^6,46+30*n^3+47*n^2+30*n} 6541076705701320 m001 (Otter+Riemann3rdZero)/(2^(1/3)-FeigenbaumB) 6541076708430529 a001 15127*75025^(3/23) 6541076711361517 k002 Champernowne real with 6*n^2+327*n-268 6541076712370491 a005 (1/cos(59/234*Pi))^77 6541076713625766 m005 (1/2*exp(1)-5/8)/(5/9*Zeta(3)+5/11) 6541076714063728 r008 a(0)=0,K{-n^6,32+53*n+37*n^2+31*n^3} 6541076714871685 r002 2th iterates of z^2 + 6541076727834454 a007 Real Root Of 435*x^4-314*x^3+435*x^2-103*x-421 6541076729300294 r008 a(0)=0,K{-n^6,22+32*n^3+29*n^2+70*n} 6541076736376152 a007 Real Root Of 183*x^4-336*x^3-440*x^2-63*x+290 6541076741540995 m003 -7/16+Sqrt[5]/2+(Sqrt[5]*Cot[1/2+Sqrt[5]/2])/4 6541076744688037 r008 a(0)=0,K{-n^6,42+28*n^3+51*n^2+32*n} 6541076761803905 r005 Im(z^2+c),c=-23/34+4/81*I,n=7 6541076763223331 a007 Real Root Of 119*x^4-269*x^3-785*x^2-215*x+530 6541076774670400 a001 3/89*3^(35/58) 6541076776342816 m001 (sin(1/12*Pi)-GAMMA(17/24))/(Rabbit+Thue) 6541076788407399 r005 Re(z^2+c),c=-9/13+15/61*I,n=21 6541076790423328 a007 Real Root Of 2*x^4-584*x^3-858*x^2-651*x+956 6541076811391523 k002 Champernowne real with 13/2*n^2+651/2*n-267 6541076814954718 r008 a(0)=0,K{-n^6,66+21*n^3+84*n^2-18*n} 6541076844314077 m001 (FeigenbaumMu-sin(1))/(LandauRamanujan+Magata) 6541076899962943 m001 MadelungNaCl/ln(GolombDickman)/LambertW(1) 6541076911421529 k002 Champernowne real with 7*n^2+324*n-266 6541076915398406 r004 Re(z^2+c),c=-2/3+3/17*I,z(0)=-1,n=11 6541076918917836 a007 Real Root Of -183*x^4-62*x^3-774*x^2+874*x+919 6541076924887112 l006 ln(2207/4245) 6541076957124753 r002 4th iterates of z^2 + 6541076966255135 h001 (7/8*exp(1)+6/7)/(7/12*exp(2)+7/11) 6541076994814642 r008 a(0)=0,K{-n^6,28+20*n^3+68*n^2+37*n} 6541077001625013 a003 cos(Pi*17/93)*sin(Pi*29/102) 6541077011451535 k002 Champernowne real with 15/2*n^2+645/2*n-265 6541077015073807 r005 Re(z^2+c),c=-57/74+1/46*I,n=63 6541077015844021 a007 Real Root Of -668*x^4+81*x^3-337*x^2+781*x+800 6541077028832045 r008 a(0)=0,K{-n^6,14+21*n^3+58*n^2+60*n} 6541077028879128 r005 Re(z^2+c),c=3/20+31/55*I,n=33 6541077031401891 m005 (1/2*Pi-3/10)/(6/7*Pi-3/4) 6541077084544373 m005 (5/6*gamma-4)/(5*Catalan+4/5) 6541077103455661 a007 Real Root Of 969*x^4+290*x^3+790*x^2+8*x-429 6541077111481541 k002 Champernowne real with 8*n^2+321*n-264 6541077113662577 b008 Gamma[9+Sqrt[17]] 6541077121825096 r005 Im(z^2+c),c=-2/15+36/41*I,n=14 6541077139831329 m001 (2^(1/3))^GaussKuzminWirsing/GAMMA(13/24) 6541077150019232 k001 Champernowne real with 423*n+231 6541077171263069 m001 1/TreeGrowth2nd/exp(Si(Pi))*GAMMA(2/3)^2 6541077180137405 m001 (ln(gamma)+Magata)/(BesselJ(0,1)-Zeta(3)) 6541077211433187 a001 433494437/843*199^(1/22) 6541077211511547 k002 Champernowne real with 17/2*n^2+639/2*n-263 6541077212437655 a007 Real Root Of 557*x^4-476*x^3+970*x^2+37*x-626 6541077233054864 m002 -6+Pi^6*Coth[Pi]-Pi^5*Tanh[Pi] 6541077239612992 a007 Real Root Of 521*x^4-109*x^3+936*x^2-703*x+42 6541077292972227 a007 Real Root Of 500*x^4-479*x^3-532*x^2-130*x-83 6541077311541553 k002 Champernowne real with 9*n^2+318*n-262 6541077317057286 r005 Re(z^2+c),c=-19/56+11/18*I,n=7 6541077328982377 a007 Real Root Of 671*x^4-707*x^3-96*x^2-778*x+625 6541077339447300 r002 5th iterates of z^2 + 6541077343339064 r005 Im(z^2+c),c=-23/18+14/185*I,n=3 6541077395749462 g006 Psi(1,10/11)+Psi(1,1/7)+Psi(1,2/3)+Psi(1,1/3) 6541077411571559 k002 Champernowne real with 19/2*n^2+633/2*n-261 6541077430820417 h001 (1/7*exp(2)+5/11)/(2/9*exp(2)+2/3) 6541077433922431 a007 Real Root Of -136*x^4+670*x^3-824*x^2+448*x+858 6541077444327876 a007 Real Root Of -69*x^4-565*x^3-594*x^2+932*x-300 6541077460560520 s002 sum(A187655[n]/(n^2*2^n+1),n=1..infinity) 6541077472287709 a007 Real Root Of 632*x^4+9*x^3+609*x^2-696*x-829 6541077484752193 m001 (GaussAGM-Stephens)/(gamma(1)-FellerTornier) 6541077486841439 l006 ln(4192/8063) 6541077511601565 k002 Champernowne real with 10*n^2+315*n-260 6541077527945740 a007 Real Root Of 860*x^4-387*x^3+923*x^2+877*x-87 6541077552690417 m001 (MertensB2-Sierpinski)/(Zeta(5)-Magata) 6541077571531630 a007 Real Root Of 961*x^4-111*x^3-432*x^2-529*x+386 6541077596331537 a001 1597/4*11^(7/34) 6541077611631571 k002 Champernowne real with 21/2*n^2+627/2*n-259 6541077617983549 a007 Real Root Of 156*x^4-139*x^3-880*x^2-838*x+935 6541077619806713 r005 Im(z^2+c),c=-17/48+5/49*I,n=20 6541077620172103 m002 5+E^Pi/Pi^7-Sinh[Pi] 6541077625106105 m001 1/exp(cos(1))^2*HardHexagonsEntropy*sinh(1)^2 6541077663077724 g001 GAMMA(6/11,35/87) 6541077665250546 r009 Re(z^3+c),c=-9/98+5/12*I,n=7 6541077666030233 m005 (1/2*3^(1/2)+7/12)/(99/80+7/16*5^(1/2)) 6541077684118317 m001 Cahen/(cos(1/12*Pi)^PlouffeB) 6541077685236503 s001 sum(exp(-2*Pi)^n*A054824[n],n=1..infinity) 6541077699741347 m001 BesselJ(0,1)^2/GolombDickman^2/exp(exp(1))^2 6541077711661577 k002 Champernowne real with 11*n^2+312*n-258 6541077720127536 m005 (1/3*Pi+1/7)/(3/8*exp(1)+4/5) 6541077721724396 a007 Real Root Of -57*x^4-353*x^3+89*x^2-377*x-721 6541077756988001 a007 Real Root Of -195*x^4-298*x^3+644*x^2+805*x-683 6541077762620559 r002 16th iterates of z^2 + 6541077769203736 r005 Im(z^2+c),c=-9/14+22/145*I,n=29 6541077782168081 s002 sum(A251439[n]/((10^n+1)/n),n=1..infinity) 6541077789809756 a007 Real Root Of 320*x^4+336*x^3-351*x^2-957*x+64 6541077794685893 r005 Im(z^2+c),c=-3/86+34/49*I,n=23 6541077796310166 s002 sum(A251439[n]/((10^n-1)/n),n=1..infinity) 6541077810444689 l006 ln(5873/6270) 6541077811691583 k002 Champernowne real with 23/2*n^2+621/2*n-257 6541077812569663 m001 LambertW(1)^2*exp(Rabbit) 6541077817213839 s002 sum(A187655[n]/(n^2*2^n-1),n=1..infinity) 6541077832503445 m001 (1+Si(Pi))/(-ArtinRank2+MertensB1) 6541077847020899 a008 Real Root of x^4-x^3-32*x^2-27*x-5 6541077900222685 m005 (-13/28+1/4*5^(1/2))/(7/10*exp(1)-5/11) 6541077901161574 m001 (-Mills+Porter)/(MertensB1-exp(1)) 6541077908259745 m005 (1/2*3^(1/2)-3/7)/(4/7*2^(1/2)-7/8) 6541077911721589 k002 Champernowne real with 12*n^2+309*n-256 6541077926247095 m001 GAMMA(1/3)*FeigenbaumKappa*ln(GAMMA(7/12))^2 6541077958765550 m001 arctan(1/2)/Stephens*StolarskyHarborth 6541077960861228 a008 Real Root of (-4+5*x+x^2+9*x^8) 6541077969649398 q001 1/15288 6541077969649398 q001 125/1911 6541077969649398 r002 2th iterates of z^2 + 6541077969649398 r002 2th iterates of z^2 + 6541077969649398 r005 Im(z^2+c),c=-99/98+25/39*I,n=2 6541077999217306 m001 (Champernowne+Sarnak)/(ln(2)+BesselK(1,1)) 6541078003234899 r002 8th iterates of z^2 + 6541078008321620 h001 (-9*exp(2)-1)/(-2*exp(4)+6) 6541078011751595 k002 Champernowne real with 25/2*n^2+615/2*n-255 6541078018145975 a007 Real Root Of 102*x^4+785*x^3+689*x^2-402*x+862 6541078049323513 m005 (1/3*gamma-1/9)/(5/11*2^(1/2)+3/5) 6541078057024959 p003 LerchPhi(1/5,1,399/227) 6541078066213132 m005 (1/2*5^(1/2)-3/4)/(8/11*gamma+1/7) 6541078094633091 a007 Real Root Of -660*x^4+588*x^3-959*x^2+427*x+975 6541078111644021 l006 ln(1985/3818) 6541078111781601 k002 Champernowne real with 13*n^2+306*n-254 6541078112799944 a001 89/199*843^(37/50) 6541078129050290 b008 65+Sin[E] 6541078141041423 m002 -(ProductLog[Pi]/Log[Pi])+(Pi^2*Sech[Pi])/3 6541078150219262 k001 Champernowne real with 424*n+230 6541078177528443 s002 sum(A047002[n]/(n^3*exp(n)-1),n=1..infinity) 6541078180568247 r005 Im(z^2+c),c=-49/102+29/48*I,n=43 6541078182059452 m001 Riemann3rdZero^2*Cahen^2/exp(Tribonacci)^2 6541078203174608 a007 Real Root Of 462*x^4+410*x^3-694*x^2-447*x+390 6541078211811607 k002 Champernowne real with 27/2*n^2+609/2*n-253 6541078222717680 a007 Real Root Of 76*x^4+368*x^3-812*x^2+199*x-93 6541078234987039 a007 Real Root Of -558*x^4-453*x^3-300*x^2+456*x+402 6541078236744647 h001 (1/6*exp(2)+1/12)/(2/11*exp(2)+2/3) 6541078249827722 h001 (2/11*exp(2)+7/10)/(9/11*exp(1)+9/10) 6541078250671212 r002 5th iterates of z^2 + 6541078253629736 a007 Real Root Of 791*x^4-32*x^3+330*x^2-925*x-900 6541078261879664 r005 Im(z^2+c),c=-113/106+2/27*I,n=16 6541078270898067 r005 Re(z^2+c),c=-65/102+12/29*I,n=4 6541078275003062 a007 Real Root Of 106*x^4-295*x^3+505*x^2-905*x-910 6541078293892086 m001 (gamma(3)-BesselJ(1,1))/(GAMMA(7/12)-Thue) 6541078305301075 m001 (GAMMA(5/6)+GAMMA(19/24))/(GaussAGM+Khinchin) 6541078311841613 k002 Champernowne real with 14*n^2+303*n-252 6541078334131016 a007 Real Root Of 576*x^4-742*x^3+838*x^2-25*x-688 6541078343202492 a007 Real Root Of -207*x^4+517*x^3-733*x^2+547*x+854 6541078353569398 a007 Real Root Of 802*x^4-495*x^3-225*x^2+896*x+397 6541078369806636 a007 Real Root Of -984*x^4-564*x^3-784*x^2-287*x+170 6541078388512951 r005 Re(z^2+c),c=-24/31+9/13*I,n=2 6541078390732386 r005 Im(z^2+c),c=-27/46+39/61*I,n=9 6541078411871619 k002 Champernowne real with 29/2*n^2+603/2*n-251 6541078449741412 p001 sum(1/(610*n+153)/(256^n),n=0..infinity) 6541078500408041 r002 28th iterates of z^2 + 6541078511901625 k002 Champernowne real with 15*n^2+300*n-250 6541078541649480 r002 47th iterates of z^2 + 6541078546749797 a008 Real Root of (-5+6*x-2*x^2+3*x^3+4*x^4+3*x^5) 6541078569101357 m001 Niven*exp(LandauRamanujan)^2/Zeta(3) 6541078582563097 p001 sum((-1)^n/(394*n+235)/n/(24^n),n=1..infinity) 6541078594202126 m005 (1/2*Zeta(3)-7/9)/(2/7*5^(1/2)-10/11) 6541078611931631 k002 Champernowne real with 31/2*n^2+597/2*n-249 6541078627136535 a007 Real Root Of 151*x^4+908*x^3-629*x^2-808*x-679 6541078628009208 a007 Real Root Of -74*x^4-526*x^3-196*x^2+625*x+731 6541078629898612 m001 gamma(3)/PlouffeB/TwinPrimes 6541078711961637 k002 Champernowne real with 16*n^2+297*n-248 6541078728027769 a007 Real Root Of -934*x^4-171*x^3-48*x^2-611*x-256 6541078728528667 a001 1/199*(1/2*5^(1/2)+1/2)^32*3^(17/19) 6541078742565590 m005 (1/2*5^(1/2)-1/3)/(3/11*3^(1/2)+8/11) 6541078780495993 a007 Real Root Of 955*x^4+133*x^3+439*x^2+178*x-209 6541078784365006 r008 a(0)=7,K{-n^6,30-66*n^3+32*n^2+6*n} 6541078794796536 m005 (1/2*gamma+6)/(1/11*exp(1)+5/7) 6541078810462657 l006 ln(3748/7209) 6541078811991643 k002 Champernowne real with 33/2*n^2+591/2*n-247 6541078859679031 r005 Im(z^2+c),c=-1/16+28/37*I,n=53 6541078881196442 m005 (1/3*Pi+2/9)/(7/8*Zeta(3)+8/9) 6541078894521336 a007 Real Root Of 373*x^4-604*x^3-165*x^2+25*x+155 6541078912021649 k002 Champernowne real with 17*n^2+294*n-246 6541078926229583 v002 sum(1/(2^n+(27*n^2-54*n+56)),n=1..infinity) 6541078944165538 a001 39603/34*6765^(9/46) 6541078951391919 r005 Im(z^2+c),c=-61/110+2/17*I,n=51 6541078958497276 m001 Robbin^ThueMorse/(Si(Pi)^ThueMorse) 6541078959658626 a007 Real Root Of -141*x^4+287*x^3-842*x^2+606*x+4 6541079005967484 a007 Real Root Of 232*x^4-579*x^3+155*x^2-650*x-696 6541079012051655 k002 Champernowne real with 35/2*n^2+585/2*n-245 6541079024393963 m002 Pi^3+Pi^9/(4*Log[Pi]) 6541079027355672 a007 Real Root Of -448*x^4+589*x^3+260*x^2-270*x-41 6541079043899345 m001 (3^(1/2))^FransenRobinson/TravellingSalesman 6541079067185678 r009 Re(z^3+c),c=-1/102+19/40*I,n=14 6541079112081661 k002 Champernowne real with 18*n^2+291*n-244 6541079123571515 a007 Real Root Of 245*x^4-937*x^3+16*x^2+143*x+117 6541079148985102 m001 1/Zeta(3)^2/exp((2^(1/3)))*gamma^2 6541079150419292 k001 Champernowne real with 425*n+229 6541079164837269 m001 (FransenRobinson-Porter)/(ln(3)-Conway) 6541079175599141 m001 (2^(1/3))^2*FransenRobinson*ln(GAMMA(5/6))^2 6541079179623512 m001 (Catalan-Si(Pi))/(-ln(gamma)+ln(2^(1/2)+1)) 6541079185716961 a007 Real Root Of -160*x^4-957*x^3+597*x^2+203*x+853 6541079189504559 m001 (Zeta(3)+Lehmer)/(OrthogonalArrays+Totient) 6541079195194733 m004 (-125*Pi)/6+(25*Sqrt[5]*Pi)/(4*E^(Sqrt[5]*Pi)) 6541079198769225 m001 (arctan(1/3)+Kac)/(LambertW(1)+ln(2^(1/2)+1)) 6541079201327138 a007 Real Root Of 697*x^4-890*x^3+467*x^2-65*x-619 6541079212111667 k002 Champernowne real with 37/2*n^2+579/2*n-243 6541079251565212 a007 Real Root Of 77*x^4+643*x^3+965*x^2+249*x-664 6541079261712898 a007 Real Root Of -905*x^4+304*x^3+458*x^2+63*x+96 6541079312141673 k002 Champernowne real with 19*n^2+288*n-242 6541079318030232 a007 Real Root Of -444*x^4+558*x^3+624*x^2+945*x-960 6541079323255861 r002 34th iterates of z^2 + 6541079329201397 m003 13/2+Sqrt[5]/128-Cos[1/2+Sqrt[5]/2]/2 6541079362075133 r009 Re(z^3+c),c=-1/90+25/42*I,n=31 6541079364554591 a007 Real Root Of -615*x^4+683*x^3-573*x^2-619*x+144 6541079373967562 r005 Im(z^2+c),c=-5/4+69/256*I,n=7 6541079380500331 r008 a(0)=7,K{-n^6,70-70*n^3+64*n^2-62*n} 6541079381188997 g001 GAMMA(6/7,49/120) 6541079412171679 k002 Champernowne real with 39/2*n^2+573/2*n-241 6541079428008887 a003 sin(Pi*2/25)-sin(Pi*19/53) 6541079428380944 m001 (Psi(1,1/3)-Si(Pi))/(LambertW(1)+ln(2)) 6541079428846751 m005 (1/2*5^(1/2)-1/7)/(1/6*gamma-1/9) 6541079440562175 m005 (1/2*gamma-1/10)/(8/9*Pi+1/11) 6541079448720970 a007 Real Root Of 921*x^4-77*x^3-611*x^2-348*x+342 6541079448987078 a007 Real Root Of 612*x^4-226*x^3+355*x^2-810*x-857 6541079467009426 r009 Re(z^3+c),c=-17/29+11/36*I,n=38 6541079501158441 a007 Real Root Of -695*x^4+346*x^3-329*x^2+517*x+703 6541079501210333 a001 41/7*144^(1/45) 6541079512201685 k002 Champernowne real with 20*n^2+285*n-240 6541079533611744 g001 Re(GAMMA(97/60+I*13/15)) 6541079569490469 m001 1/Champernowne^2/ErdosBorwein*ln(GAMMA(19/24)) 6541079575494396 m001 (ln(gamma)+Conway)/(KhinchinHarmonic-Lehmer) 6541079589198920 h001 (5/9*exp(2)+3/5)/(8/9*exp(2)+5/8) 6541079597277683 l006 ln(1763/3391) 6541079600673450 a001 14662949395604/3*6765^(5/17) 6541079609080912 a001 119218851371/3*86267571272^(5/17) 6541079609080913 a001 440719107401*24157817^(5/17) 6541079612231691 k002 Champernowne real with 41/2*n^2+567/2*n-239 6541079612570482 b008 2*Pi+BesselI[1,1/2] 6541079639055692 m001 Magata/GolombDickman^2*ln(BesselK(0,1))^2 6541079650031450 a007 Real Root Of 146*x^4-454*x^3-663*x^2-584*x+766 6541079652480892 a007 Real Root Of -125*x^4-774*x^3+357*x^2+587*x+777 6541079670253504 a007 Real Root Of -57*x^4+917*x^3+518*x^2-385*x-216 6541079671624871 a007 Real Root Of -127*x^4-728*x^3+557*x^2-834*x-540 6541079678053997 m001 1/ln(Ei(1))*Tribonacci^2/cos(Pi/5) 6541079702091343 a001 29*(1/2*5^(1/2)+1/2)^20*3^(4/11) 6541079702092946 m005 (1/2*exp(1)-1/10)/(3/5*5^(1/2)+7/12) 6541079711020727 r005 Im(z^2+c),c=-3/52+21/29*I,n=63 6541079712261697 k002 Champernowne real with 21*n^2+282*n-238 6541079744078850 r005 Re(z^2+c),c=-7/62+22/31*I,n=33 6541079768948365 a007 Real Root Of 970*x^4-931*x^3+935*x^2+358*x-604 6541079777214029 a007 Real Root Of -549*x^4-810*x^3-693*x^2+264*x+343 6541079783099616 b008 5/8+Sqrt[35] 6541079791594178 a001 5/103682*843^(43/59) 6541079812291703 k002 Champernowne real with 43/2*n^2+561/2*n-237 6541079812468371 m001 (Zeta(3)+FellerTornier)/(Kac+Niven) 6541079832197050 m001 ln(sin(Pi/5))*GAMMA(1/24)^2*sqrt(5) 6541079860755751 a007 Real Root Of -27*x^4+846*x^3-151*x^2+495*x-491 6541079880625114 b008 4-17*Coth[1/4] 6541079912321709 k002 Champernowne real with 22*n^2+279*n-236 6541079916441830 p003 LerchPhi(1/1024,1,309/202) 6541079917387920 r002 8th iterates of z^2 + 6541079941988184 m001 (ln(5)-gamma(3))/(MadelungNaCl+Rabbit) 6541079962562435 a007 Real Root Of 179*x^4-766*x^3-937*x^2-253*x+748 6541080008631103 a007 Real Root Of 18*x^4-395*x^3+463*x^2-818*x-847 6541080012351715 k002 Champernowne real with 45/2*n^2+555/2*n-235 6541080019081518 a007 Real Root Of -407*x^4-11*x^3+943*x^2+734*x-806 6541080026648319 a007 Real Root Of -791*x^4+714*x^3+953*x^2+468*x+243 6541080029774830 a007 Real Root Of -135*x^4-769*x^3+681*x^2-568*x-935 6541080031824400 a007 Real Root Of -647*x^4-580*x^3+100*x^2+929*x+521 6541080051093922 a007 Real Root Of -86*x^4-455*x^3+781*x^2+608*x+656 6541080052498114 m001 (cos(1/12*Pi)-sin(1))/(GAMMA(7/12)+Artin) 6541080054863220 r005 Im(z^2+c),c=-7/8+37/146*I,n=22 6541080061991496 m001 gamma(2)^BesselJ(0,1)/BesselJ(1,1) 6541080063296025 a007 Real Root Of -834*x^4+242*x^3-170*x^2-228*x+144 6541080065037172 r009 Re(z^3+c),c=-25/38+13/34*I,n=2 6541080077245947 m005 (13/4+1/4*5^(1/2))/(1/8*2^(1/2)-6) 6541080096488694 a007 Real Root Of 717*x^4-497*x^3+28*x^2-838*x+544 6541080104468786 a007 Real Root Of 556*x^4-215*x^3-690*x^2-314*x+459 6541080110564602 a007 Real Root Of 160*x^4-88*x^3-21*x^2-822*x+542 6541080112381721 k002 Champernowne real with 23*n^2+276*n-234 6541080124178169 r002 5th iterates of z^2 + 6541080126751679 m005 (1/2*2^(1/2)+2/7)/(5/11*2^(1/2)+7/8) 6541080135057002 a007 Real Root Of 591*x^4-692*x^3-385*x^2+37*x+226 6541080148309143 m005 (1/2*5^(1/2)-7/12)/(1/9*3^(1/2)+5/8) 6541080150619322 k001 Champernowne real with 426*n+228 6541080161933784 a007 Real Root Of 201*x^4-918*x^3+930*x^2+747*x-203 6541080178444920 r005 Re(z^2+c),c=-7/10+5/61*I,n=3 6541080179275417 l006 ln(5067/9746) 6541080186590756 m001 GaussAGM/(Si(Pi)-Stephens) 6541080197765131 r009 Re(z^3+c),c=-9/20+28/39*I,n=4 6541080210972359 a007 Real Root Of -121*x^4+114*x^3-742*x^2+785*x+885 6541080212411727 k002 Champernowne real with 47/2*n^2+549/2*n-233 6541080225480961 m005 (1/2*gamma+3/4)/(5/11*5^(1/2)+4/7) 6541080241702762 a007 Real Root Of -638*x^4+368*x^3+784*x^2+744*x+371 6541080270085463 r005 Im(z^2+c),c=-37/122+22/35*I,n=53 6541080278629289 r005 Re(z^2+c),c=-1/62+15/62*I,n=3 6541080294182999 s002 sum(A010832[n]/(n^3*2^n+1),n=1..infinity) 6541080307300422 r009 Re(z^3+c),c=-15/52+55/59*I,n=5 6541080312441733 k002 Champernowne real with 24*n^2+273*n-232 6541080314509112 m001 1/GAMMA(3/4)^2/MadelungNaCl*exp(cos(1)) 6541080339041428 m001 (ln(2)+TwinPrimes)/(2^(1/3)+cos(1/5*Pi)) 6541080340810536 a007 Real Root Of 759*x^4+16*x^3+590*x^2-815*x-920 6541080344984112 q001 1441/2203 6541080346712003 h001 (1/2*exp(1)+9/10)/(5/12*exp(2)+3/8) 6541080352918270 a001 1/199*(1/2*5^(1/2)+1/2)^4*29^(4/21) 6541080376244145 r005 Im(z^2+c),c=-45/62+3/43*I,n=10 6541080379332197 a003 cos(Pi*7/85)*sin(Pi*22/93) 6541080400919503 a003 cos(Pi*8/105)-sin(Pi*11/107) 6541080407932744 m001 (Pi+exp(Pi))/(Khinchin+MertensB3) 6541080412471739 k002 Champernowne real with 49/2*n^2+543/2*n-231 6541080457989405 r008 a(0)=0,K{-n^6,-25+38*n+17*n^2-32*n^3} 6541080461824618 p003 LerchPhi(1/6,2,63/160) 6541080467659050 r005 Im(z^2+c),c=2/5+7/26*I,n=6 6541080471561010 r002 53th iterates of z^2 + 6541080477970862 a001 11/4181*55^(5/22) 6541080482695366 a001 102334155/521*199^(5/22) 6541080489418781 a007 Real Root Of -174*x^4+941*x^3+626*x^2+893*x+56 6541080489826857 l006 ln(3304/6355) 6541080506424572 m001 (-Conway+CopelandErdos)/(Ei(1,1)-Si(Pi)) 6541080512501745 k002 Champernowne real with 25*n^2+270*n-230 6541080527003313 r001 21i'th iterates of 2*x^2-1 of 6541080531836474 a001 63245986/2207*521^(1/2) 6541080575508887 r005 Re(z^2+c),c=-1/18+45/59*I,n=23 6541080576951829 p004 log(34739/18061) 6541080586393430 r002 48th iterates of z^2 + 6541080587185477 a007 Real Root Of -864*x^4+394*x^3-31*x^2+427*x+561 6541080592634613 r009 Re(z^3+c),c=-13/110+17/26*I,n=50 6541080597571525 m003 -5/4+Sqrt[5]/16+(Sqrt[5]*Sin[1/2+Sqrt[5]/2])/2 6541080612531751 k002 Champernowne real with 51/2*n^2+537/2*n-229 6541080613705688 m005 (5/12+1/4*5^(1/2))/(7/12*2^(1/2)+2/3) 6541080618694224 r005 Re(z^2+c),c=23/74+19/61*I,n=14 6541080620766102 m001 Otter*(MertensB3-Pi*csc(1/24*Pi)/GAMMA(23/24)) 6541080658254008 a008 Real Root of x^4-x^3-21*x^2+170*x-100 6541080681608244 a007 Real Root Of 81*x^4+564*x^3+161*x^2-418*x-59 6541080695948633 r009 Im(z^3+c),c=-5/126+19/25*I,n=46 6541080704279353 m001 1/ln(GAMMA(5/6))^2*KhintchineLevy*cos(Pi/5) 6541080712561757 k002 Champernowne real with 26*n^2+267*n-228 6541080742880426 r005 Im(z^2+c),c=-7/27+3/32*I,n=15 6541080747889237 a001 103682/377*8^(5/12) 6541080773713395 a007 Real Root Of 2*x^4+133*x^3+157*x^2+941*x-531 6541080780229879 a001 311187/46*322^(19/24) 6541080793314989 m005 (1/2*Zeta(3)+4/11)/(6/7*Zeta(3)+4/9) 6541080803876658 r009 Re(z^3+c),c=-2/17+37/57*I,n=50 6541080811918282 r009 Re(z^3+c),c=-15/29+1/32*I,n=2 6541080812591763 k002 Champernowne real with 53/2*n^2+531/2*n-227 6541080814607888 l006 ln(4845/9319) 6541080818937557 m006 (3*ln(Pi)-5/6)/(3/4*exp(2*Pi)-4) 6541080852855688 a003 sin(Pi*10/79)-sin(Pi*16/107) 6541080882232261 m001 (Sierpinski-Totient)/(GAMMA(2/3)-ln(gamma)) 6541080887036918 m001 (HardyLittlewoodC4+Stephens)/(Totient+Trott) 6541080894767707 r005 Im(z^2+c),c=-29/46+29/51*I,n=4 6541080912621769 k002 Champernowne real with 27*n^2+264*n-226 6541080921006447 a007 Real Root Of -473*x^4+724*x^3-47*x^2-6*x-92 6541080942181875 m001 (Pi+Chi(1))/(polylog(4,1/2)+2*Pi/GAMMA(5/6)) 6541080953406780 r008 a(0)=7,K{-n^6,8-6*n^3-8*n^2+7*n} 6541080984992988 r005 Im(z^2+c),c=-11/122+24/37*I,n=35 6541080990911219 p003 LerchPhi(1/125,3,257/223) 6541080993298312 a007 Real Root Of 676*x^4-475*x^3+341*x^2+325*x-190 6541080997862352 a007 Real Root Of -372*x^4+829*x^3-953*x^2-622*x+301 6541081012651775 k002 Champernowne real with 55/2*n^2+525/2*n-225 6541081015789793 m001 GAMMA(1/4)/ln(MinimumGamma)/Zeta(1/2) 6541081017911118 a001 4/6765*21^(15/19) 6541081054828268 h001 (4/5*exp(1)+3/4)/(1/11*exp(1)+1/5) 6541081056434997 p001 sum(1/(246*n+79)/n/(5^n),n=1..infinity) 6541081069070787 h001 (2/5*exp(1)+3/7)/(4/5*exp(1)+1/7) 6541081090714608 m001 (Zeta(1,2)-FeigenbaumC)/(Trott+ThueMorse) 6541081099329944 r009 Re(z^3+c),c=-37/86+1/50*I,n=16 6541081112681781 k002 Champernowne real with 28*n^2+261*n-224 6541081128561262 r005 Im(z^2+c),c=-53/44+5/56*I,n=44 6541081150819352 k001 Champernowne real with 427*n+227 6541081205358427 a005 (1/cos(32/239*Pi))^677 6541081206021967 m005 (1/2*Pi-5/8)/(3*gamma-2/7) 6541081206617047 a007 Real Root Of -982*x^4+832*x^3-374*x^2-215*x+432 6541081212711787 k002 Champernowne real with 57/2*n^2+519/2*n-223 6541081231866162 m001 exp(cos(Pi/12))^2*Zeta(5)^2*log(1+sqrt(2)) 6541081240934321 a007 Real Root Of 718*x^4-416*x^3+655*x^2+416*x-256 6541081242315144 a007 Real Root Of 914*x^4-895*x^3+90*x^2-157*x-559 6541081243248011 r002 12th iterates of z^2 + 6541081250609370 m001 gamma(1)^ErdosBorwein/(gamma(1)^exp(1/exp(1))) 6541081251990346 m005 (1/2*3^(1/2)-1/2)/(6*Catalan+1/10) 6541081253765553 m001 (BesselI(1,2)+Stephens)/(Si(Pi)-Zeta(1/2)) 6541081268590558 h001 (7/10*exp(2)+1/8)/(1/12*exp(1)+7/12) 6541081311162328 a007 Real Root Of -928*x^4+614*x^3-777*x^2-332*x+457 6541081312741793 k002 Champernowne real with 29*n^2+258*n-222 6541081320115044 m004 -5*Pi+10*Pi*Cos[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi] 6541081320513438 a001 514229/843*1364^(29/30) 6541081333097868 a003 cos(Pi*17/89)*sin(Pi*30/103) 6541081334808865 a003 cos(Pi*1/35)*sin(Pi*13/57) 6541081344594698 m004 5/3-(7*Sinh[Sqrt[5]*Pi])/6 6541081345232596 l006 ln(4512/4817) 6541081345890057 a003 cos(Pi*3/43)*sin(Pi*18/77) 6541081360385602 m001 (1-2*Pi/GAMMA(5/6))/(-GAMMA(19/24)+PlouffeB) 6541081370298270 m001 GAMMA(1/4)*exp(FeigenbaumB)/GAMMA(5/6)^2 6541081407486364 r005 Re(z^2+c),c=-25/44+37/52*I,n=5 6541081408813429 a007 Real Root Of -825*x^4+261*x^3-494*x^2+698*x+892 6541081412247566 a001 9227465/3*322^(9/17) 6541081412771799 k002 Champernowne real with 59/2*n^2+513/2*n-221 6541081442289600 s003 concatenated sequence A153333 6541081451576812 m001 (arctan(1/3)-Zeta(1,2))/(Lehmer+MertensB3) 6541081467941861 m001 (Otter-ZetaP(4))/(Pi+2^(1/3)) 6541081469636673 m001 BesselI(0,1)^BesselJ(0,1)/FeigenbaumC 6541081482803786 r009 Im(z^3+c),c=-7/32+1/18*I,n=4 6541081506413896 a007 Real Root Of -321*x^4+853*x^3+75*x^2-49*x-180 6541081510958617 l006 ln(1541/2964) 6541081512715590 h001 (6/7*exp(2)+7/8)/(1/9*exp(1)+4/5) 6541081512801805 k002 Champernowne real with 30*n^2+255*n-220 6541081554891273 a001 832040/843*1364^(9/10) 6541081558257170 r005 Im(z^2+c),c=-13/94+5/61*I,n=10 6541081589128490 r005 Im(z^2+c),c=35/82+48/59*I,n=3 6541081595355971 a007 Real Root Of 369*x^4-855*x^3-741*x^2+177*x+373 6541081612831811 k002 Champernowne real with 61/2*n^2+507/2*n-219 6541081633470768 m001 (sin(1/5*Pi)+BesselI(1,2))/(Magata-ZetaP(4)) 6541081650435157 a001 29/8*1346269^(25/36) 6541081678813494 a001 165580141/5778*521^(1/2) 6541081682343063 k002 Champernowne real with 3*n^2+39*n-36 6541081687662922 a007 Real Root Of -61*x^4+784*x^3-397*x^2-947*x-219 6541081691451994 r005 Im(z^2+c),c=-7/110+27/40*I,n=62 6541081692383164 k003 Champernowne real with 1/6*n^3+2*n^2+245/6*n-37 6541081697270546 m001 (MertensB2-Paris)/(GaussAGM+Gompertz) 6541081702423264 k003 Champernowne real with 1/3*n^3+n^2+128/3*n-38 6541081712463364 k003 Champernowne real with 1/2*n^3+89/2*n-39 6541081712467129 r005 Re(z^2+c),c=-109/102+2/51*I,n=10 6541081712861817 k002 Champernowne real with 31*n^2+252*n-218 6541081717761881 r005 Im(z^2+c),c=-1/16+28/37*I,n=62 6541081722503464 k003 Champernowne real with 2/3*n^3-n^2+139/3*n-40 6541081732543564 k003 Champernowne real with 5/6*n^3-2*n^2+289/6*n-41 6541081742583665 k003 Champernowne real with n^3-3*n^2+50*n-42 6541081752623765 k003 Champernowne real with 7/6*n^3-4*n^2+311/6*n-43 6541081762663865 k003 Champernowne real with 4/3*n^3-5*n^2+161/3*n-44 6541081772703965 k003 Champernowne real with 3/2*n^3-6*n^2+111/2*n-45 6541081776946949 a007 Real Root Of 965*x^4-987*x^3+34*x^2-565*x-837 6541081782744065 k003 Champernowne real with 5/3*n^3-7*n^2+172/3*n-46 6541081787211273 a007 Real Root Of -218*x^4+998*x^3+308*x^2-92*x-311 6541081789278565 a001 1346269/843*1364^(5/6) 6541081792784166 k003 Champernowne real with 11/6*n^3-8*n^2+355/6*n-47 6541081802824266 k003 Champernowne real with 2*n^3-9*n^2+61*n-48 6541081812864366 k003 Champernowne real with 13/6*n^3-10*n^2+377/6*n-49 6541081812891823 k002 Champernowne real with 63/2*n^2+501/2*n-217 6541081822904466 k003 Champernowne real with 7/3*n^3-11*n^2+194/3*n-50 6541081832944566 k003 Champernowne real with 5/2*n^3-12*n^2+133/2*n-51 6541081842984667 k003 Champernowne real with 8/3*n^3-13*n^2+205/3*n-52 6541081843630011 m005 (1/2*3^(1/2)+3/5)/(10/11*3^(1/2)+2/3) 6541081846155219 a001 433494437/15127*521^(1/2) 6541081849142136 a007 Real Root Of -344*x^4+962*x^3+793*x^2-36*x-522 6541081849320491 a007 Real Root Of 134*x^4+778*x^3-714*x^2-558*x-669 6541081852990083 a007 Real Root Of 631*x^4-331*x^3+646*x^2+753*x+8 6541081853024767 k003 Champernowne real with 17/6*n^3-14*n^2+421/6*n-53 6541081863064867 k003 Champernowne real with 3*n^3-15*n^2+72*n-54 6541081867922377 m005 (1/2*Catalan+6)/(5/11*3^(1/2)+1/5) 6541081870570049 a001 1134903170/39603*521^(1/2) 6541081870608883 r001 36i'th iterates of 2*x^2-1 of 6541081873104967 k003 Champernowne real with 19/6*n^3-16*n^2+443/6*n-55 6541081874132124 a001 2971215073/103682*521^(1/2) 6541081874570511 a007 Real Root Of -966*x^4-531*x^3-165*x^2+517*x+437 6541081874651824 a001 7778742049/271443*521^(1/2) 6541081874727647 a001 20365011074/710647*521^(1/2) 6541081874738710 a001 53316291173/1860498*521^(1/2) 6541081874740324 a001 139583862445/4870847*521^(1/2) 6541081874740559 a001 365435296162/12752043*521^(1/2) 6541081874740593 a001 956722026041/33385282*521^(1/2) 6541081874740598 a001 2504730781961/87403803*521^(1/2) 6541081874740599 a001 6557470319842/228826127*521^(1/2) 6541081874740599 a001 10610209857723/370248451*521^(1/2) 6541081874740600 a001 4052739537881/141422324*521^(1/2) 6541081874740602 a001 1548008755920/54018521*521^(1/2) 6541081874740615 a001 591286729879/20633239*521^(1/2) 6541081874740705 a001 225851433717/7881196*521^(1/2) 6541081874741321 a001 86267571272/3010349*521^(1/2) 6541081874745547 a001 32951280099/1149851*521^(1/2) 6541081874774508 a001 12586269025/439204*521^(1/2) 6541081874973016 a001 4807526976/167761*521^(1/2) 6541081876333608 a001 28657*521^(1/2) 6541081879625011 a007 Real Root Of 171*x^4-989*x^3-830*x-851 6541081883145067 k003 Champernowne real with 10/3*n^3-17*n^2+227/3*n-56 6541081885659243 a001 701408733/24476*521^(1/2) 6541081893185168 k003 Champernowne real with 7/2*n^3-18*n^2+155/2*n-57 6541081893313298 r009 Re(z^3+c),c=-57/110+1/22*I,n=2 6541081903225268 k003 Champernowne real with 11/3*n^3-19*n^2+238/3*n-58 6541081903339447 h001 (3/10*exp(1)+5/7)/(3/4*exp(1)+3/10) 6541081910101929 r002 27th iterates of z^2 + 6541081912921829 k002 Champernowne real with 32*n^2+249*n-216 6541081913265368 k003 Champernowne real with 23/6*n^3-20*n^2+487/6*n-59 6541081915501966 m004 -45/8-Tan[Sqrt[5]*Pi] 6541081916333541 r005 Re(z^2+c),c=-1/22+43/44*I,n=4 6541081923305468 k003 Champernowne real with 4*n^3-21*n^2+83*n-60 6541081933148268 r002 3th iterates of z^2 + 6541081933345568 k003 Champernowne real with 25/6*n^3-22*n^2+509/6*n-61 6541081939472850 m005 (1/3*3^(1/2)-3/7)/(4/5*3^(1/2)+8/9) 6541081943385669 k003 Champernowne real with 13/3*n^3-23*n^2+260/3*n-62 6541081947596503 r005 Re(z^2+c),c=-55/74+1/47*I,n=9 6541081949578098 a001 267914296/9349*521^(1/2) 6541081953425769 k003 Champernowne real with 9/2*n^3-24*n^2+177/2*n-63 6541081955364346 m001 (Zeta(1/2)+gamma(2))/(Pi^(1/2)+Weierstrass) 6541081963465869 k003 Champernowne real with 14/3*n^3-25*n^2+271/3*n-64 6541081973505969 k003 Champernowne real with 29/6*n^3-26*n^2+553/6*n-65 6541081983546069 k003 Champernowne real with 5*n^3-27*n^2+94*n-66 6541081993586161 k003 Champernowne real with 31/6*n^3-28*n^2+575/6*n-67 6541081994898943 a007 Real Root Of 801*x^4-557*x^3-853*x^2-230*x-88 6541082003626261 k003 Champernowne real with 16/3*n^3-29*n^2+293/3*n-68 6541082012951835 k002 Champernowne real with 65/2*n^2+495/2*n-215 6541082013666361 k003 Champernowne real with 11/2*n^3-30*n^2+199/2*n-69 6541082017342666 r005 Im(z^2+c),c=-107/94+5/61*I,n=45 6541082023662256 a001 726103/281*1364^(23/30) 6541082023706461 k003 Champernowne real with 17/3*n^3-31*n^2+304/3*n-70 6541082029772640 r005 Im(z^2+c),c=-5/46+19/21*I,n=43 6541082033746561 k003 Champernowne real with 35/6*n^3-32*n^2+619/6*n-71 6541082036062248 m001 (-Kac+MinimumGamma)/(Chi(1)+BesselJ(1,1)) 6541082043786661 k003 Champernowne real with 6*n^3-33*n^2+105*n-72 6541082053826761 k003 Champernowne real with 37/6*n^3-34*n^2+641/6*n-73 6541082063866861 k003 Champernowne real with 19/3*n^3-35*n^2+326/3*n-74 6541082073906961 k003 Champernowne real with 13/2*n^3-36*n^2+221/2*n-75 6541082083947061 k003 Champernowne real with 20/3*n^3-37*n^2+337/3*n-76 6541082086956255 a008 Real Root of x^4-x^3-110*x^2+53*x+2809 6541082087034823 a005 (1/cos(6/101*Pi))^633 6541082087275770 a003 cos(Pi*3/10)+cos(Pi*34/71) 6541082093987161 k003 Champernowne real with 41/6*n^3-38*n^2+685/6*n-77 6541082101200515 m001 (Catalan-ln(2)/ln(10))/(sin(1)+Paris) 6541082104027261 k003 Champernowne real with 7*n^3-39*n^2+116*n-78 6541082112981841 k002 Champernowne real with 33*n^2+246*n-214 6541082114067361 k003 Champernowne real with 43/6*n^3-40*n^2+707/6*n-79 6541082124107461 k003 Champernowne real with 22/3*n^3-41*n^2+359/3*n-80 6541082125514597 r005 Im(z^2+c),c=35/114+18/43*I,n=33 6541082125791109 h001 (1/5*exp(2)+2/5)/(8/9*exp(1)+5/11) 6541082126118458 a007 Real Root Of 752*x^4-326*x^3+39*x^2+325*x-33 6541082128444135 a007 Real Root Of 500*x^4-748*x^3-796*x^2-801*x+56 6541082134147561 k003 Champernowne real with 15/2*n^3-42*n^2+243/2*n-81 6541082144187661 k003 Champernowne real with 23/3*n^3-43*n^2+370/3*n-82 6541082148234046 a007 Real Root Of -376*x^4+533*x^3+705*x^2+237*x-537 6541082151019382 k001 Champernowne real with 428*n+226 6541082154227761 k003 Champernowne real with 47/6*n^3-44*n^2+751/6*n-83 6541082157545658 m001 1/exp(TwinPrimes)^2/Artin*Catalan 6541082164267861 k003 Champernowne real with 8*n^3-45*n^2+127*n-84 6541082164328657 q001 1632/2495 6541082170419342 a007 Real Root Of 838*x^4-949*x^3+727*x^2+633*x-316 6541082170872711 m001 (Ei(1,1)*Backhouse-PrimesInBinary)/Backhouse 6541082174307961 k003 Champernowne real with 49/6*n^3-46*n^2+773/6*n-85 6541082178140620 r005 Re(z^2+c),c=-11/20+29/45*I,n=14 6541082184348061 k003 Champernowne real with 25/3*n^3-47*n^2+392/3*n-86 6541082194388161 k003 Champernowne real with 17/2*n^3-48*n^2+265/2*n-87 6541082204428261 k003 Champernowne real with 26/3*n^3-49*n^2+403/3*n-88 6541082207050535 h002 exp(19^(4/7)+2^(1/7)) 6541082207050535 h007 exp(19^(4/7)+2^(1/7)) 6541082213011847 k002 Champernowne real with 67/2*n^2+489/2*n-213 6541082214468361 k003 Champernowne real with 53/6*n^3-50*n^2+817/6*n-89 6541082217087274 r005 Re(z^2+c),c=-49/66+7/54*I,n=36 6541082220459049 m001 (Robbin-cos(1))/(Trott+ZetaP(3)) 6541082224508461 k003 Champernowne real with 9*n^3-51*n^2+138*n-90 6541082234548561 k003 Champernowne real with 55/6*n^3-52*n^2+839/6*n-91 6541082242381737 m002 -Pi^6+6*E^Pi*Cosh[Pi]*Coth[Pi] 6541082244588661 k003 Champernowne real with 28/3*n^3-53*n^2+425/3*n-92 6541082248222297 q001 1/1528799 6541082254628761 k003 Champernowne real with 19/2*n^3-54*n^2+287/2*n-93 6541082256285403 r009 Re(z^3+c),c=-13/110+17/26*I,n=64 6541082258047334 a001 3524578/843*1364^(7/10) 6541082264668861 k003 Champernowne real with 29/3*n^3-55*n^2+436/3*n-94 6541082269053939 b008 6+(3/35)^(1/4) 6541082272236242 s002 sum(A243132[n]/((exp(n)-1)/n),n=1..infinity) 6541082274708961 k003 Champernowne real with 59/6*n^3-56*n^2+883/6*n-95 6541082277561442 l006 ln(4401/8465) 6541082279315342 m001 (Conway-KhinchinLevy)/(ln(2+3^(1/2))+Bloch) 6541082284749061 k003 Champernowne real with 10*n^3-57*n^2+149*n-96 6541082294789161 k003 Champernowne real with 61/6*n^3-58*n^2+905/6*n-97 6541082296598969 r005 Im(z^2+c),c=1/42+35/54*I,n=37 6541082304231258 a007 Real Root Of 683*x^4-651*x^3+371*x^2-724*x+372 6541082304829261 k003 Champernowne real with 31/3*n^3-59*n^2+458/3*n-98 6541082309545517 m001 (Pi*csc(1/24*Pi)/GAMMA(23/24)+Thue)/(1+exp(1)) 6541082313041853 k002 Champernowne real with 34*n^2+243*n-212 6541082314869361 k003 Champernowne real with 21/2*n^3-60*n^2+309/2*n-99 6541082334523983 a007 Real Root Of 84*x^4+484*x^3-594*x^2-969*x+759 6541082336304225 m001 Trott^GAMMA(5/6)-TwinPrimes 6541082336379995 m001 MertensB1*exp(FeigenbaumDelta)*GAMMA(1/24) 6541082343819581 a007 Real Root Of 529*x^4+198*x^3+798*x^2-546*x-740 6541082344989661 k003 Champernowne real with 11*n^3-63*n^2+160*n-102 6541082357894970 m001 1/GAMMA(1/3)^2/exp(Artin)^2/Zeta(7) 6541082361867646 m001 GAMMA(1/24)*ThueMorse^(3^(1/3)) 6541082370257203 a003 sin(Pi*9/77)/cos(Pi*23/73) 6541082387684477 a001 102334155/3571*521^(1/2) 6541082393918359 a007 Real Root Of -754*x^4+421*x^3+525*x^2+602*x+425 6541082405221026 k003 Champernowne real with 12*n^3-69*n^2+171*n-108 6541082413071859 k002 Champernowne real with 69/2*n^2+483/2*n-211 6541082422680058 a007 Real Root Of -869*x^4-284*x^3-483*x^2+790*x+803 6541082434462456 a007 Real Root Of 290*x^4-473*x^3-822*x^2-636*x+847 6541082468629785 a007 Real Root Of 668*x^4+7*x^3+540*x^2+236*x-197 6541082500943334 a007 Real Root Of 67*x^4-980*x^3+224*x^2+103*x-315 6541082511289920 a007 Real Root Of 834*x^4-914*x^3-258*x^2-856*x-858 6541082513101865 k002 Champernowne real with 35*n^2+240*n-210 6541082533228662 h001 (1/6*exp(2)+4/5)/(7/8*exp(1)+8/11) 6541082535945875 a007 Real Root Of 494*x^4-675*x^3+191*x^2-642*x-781 6541082541845254 a007 Real Root Of -629*x^4+918*x^3-734*x^2+168*x+796 6541082543046750 r002 9th iterates of z^2 + 6541082543431250 m001 (MertensB1+Porter)/(Backhouse+KhinchinLevy) 6541082574221999 r001 28i'th iterates of 2*x^2-1 of 6541082607392804 m002 -Pi+Pi^2-Cosh[Pi]/(2*Pi^3) 6541082609416647 m005 (1/2*2^(1/2)-1/4)/(11/12*3^(1/2)-8/9) 6541082613131871 k002 Champernowne real with 71/2*n^2+477/2*n-209 6541082641283536 r005 Im(z^2+c),c=-9/16+14/113*I,n=16 6541082652841047 r005 Re(z^2+c),c=-115/126+8/55*I,n=18 6541082690615598 l006 ln(2860/5501) 6541082711953038 r009 Re(z^3+c),c=-1/86+25/39*I,n=52 6541082713161877 k002 Champernowne real with 36*n^2+237*n-208 6541082716214750 a007 Real Root Of 122*x^4+888*x^3+481*x^2-585*x+778 6541082728495463 a001 41/75283811239*13^(1/14) 6541082746695945 r005 Im(z^2+c),c=-33/52*I,n=56 6541082759235780 r009 Im(z^3+c),c=-53/82+31/64*I,n=4 6541082760465729 a007 Real Root Of 932*x^4-309*x^3-797*x^2-538*x-268 6541082771584029 a003 sin(Pi*16/85)/sin(Pi*38/117) 6541082801405370 r002 6i'th iterates of 2*x/(1-x^2) of 6541082813191883 k002 Champernowne real with 73/2*n^2+471/2*n-207 6541082817487711 r001 60i'th iterates of 2*x^2-1 of 6541082819816076 m001 (Tetranacci-Totient)/(FellerTornier+Stephens) 6541082827148543 m004 5/3-Cosh[Sqrt[5]*Pi]/6-Sinh[Sqrt[5]*Pi] 6541082827200511 p001 sum(1/(400*n+161)/(6^n),n=0..infinity) 6541082829502088 m001 ln(2)/ln(10)+exp(1)*UniversalParabolic 6541082833982133 r002 58th iterates of z^2 + 6541082855083759 a007 Real Root Of -345*x^4+20*x^3+404*x^2+634*x-530 6541082884204770 a007 Real Root Of -455*x^4-530*x^3-798*x^2+987*x+922 6541082893843592 h001 (3/5*exp(2)+1/11)/(6/7*exp(2)+7/12) 6541082902188084 r005 Re(z^2+c),c=-13/22+33/76*I,n=63 6541082907284918 a007 Real Root Of 418*x^4-425*x^3-536*x^2-674*x-407 6541082913221889 k002 Champernowne real with 37*n^2+234*n-206 6541082926224503 m005 (1/3*Catalan-1/7)/(2/5*3^(1/2)-4/9) 6541082930313382 a007 Real Root Of 489*x^4-225*x^3+766*x^2-18*x-492 6541082961201364 a001 4976784/281*1364^(1/2) 6541082971655212 m005 (17/20+1/4*5^(1/2))/(7/8*2^(1/2)+11/12) 6541082990235397 m005 (1/2*Pi+6)/(3/11*gamma+1) 6541083004067571 a007 Real Root Of 761*x^4-974*x^3-66*x^2+65*x+119 6541083013251895 k002 Champernowne real with 75/2*n^2+465/2*n-205 6541083022415677 r002 61th iterates of z^2 + 6541083047565247 a003 sin(Pi*6/35)/cos(Pi*13/61) 6541083052061276 a007 Real Root Of 742*x^4+373*x^3+337*x^2-236*x-330 6541083087130598 r005 Re(z^2+c),c=9/98+9/59*I,n=7 6541083109073562 p001 sum((-1)^n/(289*n+139)/(3^n),n=0..infinity) 6541083113281901 k002 Champernowne real with 38*n^2+231*n-204 6541083125612310 l006 ln(4179/8038) 6541083131654999 m002 Pi^5/(2*E^Pi)-Log[Pi]+ProductLog[Pi] 6541083132679388 a007 Real Root Of 617*x^4+285*x^3+878*x^2-731*x-887 6541083151219412 k001 Champernowne real with 429*n+225 6541083152862969 a003 sin(Pi*20/97)/sin(Pi*40/107) 6541083161894541 r002 58th iterates of z^2 + 6541083184288192 m001 (gamma(3)+Grothendieck)/(ln(2)-cos(1/12*Pi)) 6541083206037370 r002 4th iterates of z^2 + 6541083212373877 m005 (1/3*2^(1/2)+1/2)/(5*Pi-6/7) 6541083213311907 k002 Champernowne real with 77/2*n^2+459/2*n-203 6541083243982669 m005 (1/2*Zeta(3)-1/4)/(2*Pi-11/12) 6541083249939420 a007 Real Root Of -29*x^4+963*x^3+470*x^2+50*x-498 6541083251544745 r005 Im(z^2+c),c=1/106+23/38*I,n=8 6541083253818882 a007 Real Root Of -535*x^4+953*x^3-607*x^2-51*x+591 6541083261118701 a007 Real Root Of 753*x^4-623*x^3-79*x^2-377*x-525 6541083276384039 a007 Real Root Of -910*x^4+619*x^3-707*x^2+105*x+711 6541083284929984 r005 Im(z^2+c),c=31/86+15/49*I,n=4 6541083305348349 m001 FeigenbaumAlpha-exp(1/Pi)-Grothendieck 6541083313341913 k002 Champernowne real with 39*n^2+228*n-202 6541083319628874 m001 (QuadraticClass+Stephens)/(Catalan-ln(2)) 6541083346249347 r005 Im(z^2+c),c=10/27+14/43*I,n=4 6541083376169291 a001 377/2207*7881196^(21/22) 6541083376169378 a001 377/2207*20633239^(9/10) 6541083376169392 a001 377/2207*2537720636^(7/10) 6541083376169392 a001 377/2207*17393796001^(9/14) 6541083376169392 a001 377/2207*14662949395604^(1/2) 6541083376169392 a001 377/2207*505019158607^(9/16) 6541083376169392 a001 377/2207*192900153618^(7/12) 6541083376169392 a001 377/2207*599074578^(3/4) 6541083376169397 a001 377/2207*33385282^(7/8) 6541083376181980 a001 329/281*7881196^(5/6) 6541083376182056 a001 329/281*20633239^(11/14) 6541083376182068 a001 329/281*2537720636^(11/18) 6541083376182068 a001 329/281*312119004989^(1/2) 6541083376182068 a001 329/281*3461452808002^(11/24) 6541083376182068 a001 329/281*28143753123^(11/20) 6541083376182068 a001 329/281*1568397607^(5/8) 6541083376182068 a001 329/281*228826127^(11/16) 6541083376183800 a001 329/281*1860498^(11/12) 6541083390442104 g002 -Psi(7/11)-Psi(7/10)-Psi(3/7)-Psi(3/5) 6541083391044625 m001 1/exp(GAMMA(1/3))/ArtinRank2^2*arctan(1/2) 6541083400241223 r005 Im(z^2+c),c=41/114+33/46*I,n=3 6541083402406324 r005 Re(z^2+c),c=25/126+12/47*I,n=4 6541083413371919 k002 Champernowne real with 79/2*n^2+453/2*n-201 6541083443369310 a003 cos(Pi*34/113)/sin(Pi*6/17) 6541083447667125 a007 Real Root Of 99*x^4-169*x^3+283*x^2-571*x-560 6541083470052886 r005 Re(z^2+c),c=-25/34+4/19*I,n=52 6541083481638023 r005 Im(z^2+c),c=-9/29+37/57*I,n=15 6541083487048931 r005 Re(z^2+c),c=-43/42+16/59*I,n=26 6541083492804008 r005 Im(z^2+c),c=-67/122+2/17*I,n=31 6541083508455883 m001 ((2^(1/3))-ln(2))^RenyiParking 6541083508455883 m001 (2^(1/3)-ln(2))^RenyiParking 6541083510787625 r002 29th iterates of z^2 + 6541083513401925 k002 Champernowne real with 40*n^2+225*n-200 6541083516779401 r005 Re(z^2+c),c=-39/62+23/57*I,n=15 6541083518309393 a007 Real Root Of -882*x^4+347*x^3+994*x^2+951*x-983 6541083523381634 r005 Re(z^2+c),c=-7/10+23/97*I,n=40 6541083529000327 a007 Real Root Of -140*x^4+550*x^3+814*x^2+845*x+384 6541083567054041 a007 Real Root Of 569*x^4-634*x^3-214*x^2-809*x+54 6541083570182931 s002 sum(A239602[n]/(10^n+1),n=1..infinity) 6541083582861916 p001 sum(1/(377*n+105)/n/(32^n),n=1..infinity) 6541083588266708 m001 (HardyLittlewoodC3-Robbin)/(Pi+Catalan) 6541083595114621 m009 (5/6*Psi(1,1/3)+2)/(5*Psi(1,2/3)+3/5) 6541083600696693 m001 (Zeta(5)-ln(3))/(Ei(1,1)+Sarnak) 6541083602439899 q001 1823/2787 6541083604860160 m001 cos(1/5*Pi)*polylog(4,1/2)^FellerTornier 6541083613431931 k002 Champernowne real with 81/2*n^2+447/2*n-199 6541083630236455 a007 Real Root Of -109*x^4-787*x^3-601*x^2-915*x-987 6541083648947250 s002 sum(A252235[n]/(exp(2*pi*n)+1),n=1..infinity) 6541083663371839 a007 Real Root Of 821*x^4-436*x^3+662*x^2+805*x-29 6541083664355587 a001 63245986/843*1364^(3/10) 6541083707056529 m001 1/ln(Porter)*HardHexagonsEntropy/GAMMA(1/6) 6541083711860447 m005 (1/2*Catalan+1/9)/(3*exp(1)+6/11) 6541083712801852 r002 40th iterates of z^2 + 6541083713461937 k002 Champernowne real with 41*n^2+222*n-198 6541083762732090 m005 (1/3*5^(1/2)+1/9)/(1/8*Pi+11/12) 6541083769032907 m006 (4/Pi+1/3)/(2*ln(Pi)+1/6) 6541083781616578 r009 Im(z^3+c),c=-27/106+39/53*I,n=3 6541083787987044 r002 60th iterates of z^2 + 6541083798435277 r005 Re(z^2+c),c=-117/110+3/34*I,n=18 6541083804746042 a007 Real Root Of 87*x^4+509*x^3-304*x^2+495*x-568 6541083805092183 r002 6th iterates of z^2 + 6541083813491943 k002 Champernowne real with 83/2*n^2+441/2*n-197 6541083816246304 r005 Im(z^2+c),c=-61/86+16/61*I,n=20 6541083856367143 a003 sin(Pi*21/73)*sin(Pi*31/99) 6541083861108594 m001 (MertensB1-TreeGrowth2nd)/(ln(2)-cos(1/12*Pi)) 6541083882524543 a007 Real Root Of -205*x^4+933*x^3-59*x^2+452*x-494 6541083886542763 m001 1/GAMMA(11/12)*LandauRamanujan/exp(Zeta(3))^2 6541083905470916 a007 Real Root Of 502*x^4-82*x^3+902*x^2+18*x-489 6541083907686081 m001 (3^(1/2)-Ei(1))/(FeigenbaumC+Robbin) 6541083913521949 k002 Champernowne real with 42*n^2+219*n-196 6541083920784331 r005 Im(z^2+c),c=1/98+33/50*I,n=16 6541083951387931 a007 Real Root Of -630*x^4-310*x^3-593*x^2-375*x+37 6541083951963194 m001 (Robbin-ZetaQ(4))/(MertensB1+RenyiParking) 6541083963627098 a007 Real Root Of -647*x^4-54*x^3-544*x^2+856*x+896 6541083964297381 r002 14th iterates of z^2 + 6541083974009865 a007 Real Root Of -595*x^4+467*x^3-28*x^2-85*x+196 6541083996759021 a007 Real Root Of -385*x^4+259*x^3-282*x^2+129*x+348 6541084013551955 k002 Champernowne real with 85/2*n^2+435/2*n-195 6541084023646172 m001 Zeta(5)^GAMMA(11/12)*gamma(1)^GAMMA(11/12) 6541084032546901 m001 (3^(1/3)+PlouffeB)/(Zeta(5)+Ei(1)) 6541084054329390 l006 ln(7663/8181) 6541084054571454 a007 Real Root Of 637*x^4-412*x^3-550*x^2-817*x-531 6541084068819672 l006 ln(1319/2537) 6541084086710287 m001 (-LaplaceLimit+Salem)/(gamma+exp(-1/2*Pi)) 6541084113581961 k002 Champernowne real with 43*n^2+216*n-194 6541084133125106 a001 165580141/843*1364^(1/6) 6541084143652692 r005 Re(z^2+c),c=-8/23+15/26*I,n=3 6541084148730422 m008 (1/4*Pi^3+1/4)/(4*Pi^5-4/5) 6541084151419442 k001 Champernowne real with 430*n+224 6541084166606569 a007 Real Root Of 918*x^4+319*x^3+92*x^2-64*x-160 6541084193572083 a007 Real Root Of 761*x^4-880*x^3+917*x^2+642*x-358 6541084213611967 k002 Champernowne real with 87/2*n^2+429/2*n-193 6541084221263491 a001 196418/843*3571^(33/34) 6541084245145988 m005 (3*Catalan-4)/(2^(1/2)+1/2) 6541084251389809 a001 377*3571^(31/34) 6541084253332402 a007 Real Root Of 276*x^4-339*x^3+147*x^2-952*x-63 6541084257465604 m005 (1/2*3^(1/2)+2/9)/(3/4*exp(1)-3/8) 6541084281580888 a001 514229/843*3571^(29/34) 6541084311747230 a001 832040/843*3571^(27/34) 6541084313641973 k002 Champernowne real with 44*n^2+213*n-192 6541084320431211 a007 Real Root Of 64*x^4+504*x^3+552*x^2-25*x+111 6541084341902200 a007 Real Root Of 683*x^4-273*x^3+257*x^2-403*x-575 6541084341923021 a001 1346269/843*3571^(25/34) 6541084342471925 b008 2*Pi+Erfc[4/5] 6541084365466872 m002 -Pi^6+Pi^5*Coth[Pi]+Log[Pi]/Pi^2 6541084367509879 a001 267914296/843*1364^(1/10) 6541084372095203 a001 726103/281*3571^(23/34) 6541084385917764 r002 2th iterates of z^2 + 6541084413671979 k002 Champernowne real with 89/2*n^2+423/2*n-191 6541084423822364 m001 ((1+3^(1/2))^(1/2)-ZetaQ(2))/(1+exp(1/exp(1))) 6541084462615033 a001 9227465/843*3571^(1/2) 6541084511301541 a007 Real Root Of 805*x^4-606*x^3-686*x^2-537*x+667 6541084513701985 k002 Champernowne real with 45*n^2+210*n-190 6541084523127831 a001 2584/843*439204^(17/18) 6541084523159775 a001 2584/843*7881196^(17/22) 6541084523159857 a001 2584/843*45537549124^(1/2) 6541084523159861 a001 2584/843*33385282^(17/24) 6541084523159887 a001 2584/843*12752043^(3/4) 6541084523161463 a001 2584/843*1860498^(17/20) 6541084523758389 m001 GAMMA(1/4)^2*ln(BesselJ(1,1))^2/GAMMA(2/3) 6541084533005925 r005 Re(z^2+c),c=-35/54+9/22*I,n=50 6541084539882650 m005 (1/3*exp(1)+1/3)/(203/198+7/18*5^(1/2)) 6541084544818383 r005 Im(z^2+c),c=-53/62+8/33*I,n=28 6541084551550883 m001 (Mills+Riemann1stZero)/(Catalan+exp(1/exp(1))) 6541084598153224 a007 Real Root Of -549*x^4-11*x^3-263*x^2+919*x-6 6541084598536578 a007 Real Root Of 133*x^4+839*x^3-327*x^2-782*x+210 6541084600933105 a007 Real Root Of -255*x^4-215*x^3+255*x^2+308*x+19 6541084613731991 k002 Champernowne real with 91/2*n^2+417/2*n-189 6541084621980940 m001 (FransenRobinson-ZetaQ(2))/BesselK(0,1) 6541084625380924 a007 Real Root Of -208*x^4+645*x^3-564*x^2+992*x-550 6541084646451349 a001 75025/843*9349^(37/38) 6541084650068974 a001 121393/843*9349^(35/38) 6541084654130476 a001 196418/843*9349^(33/38) 6541084658022432 a001 377*9349^(31/38) 6541084660885444 a007 Real Root Of -9*x^4+456*x^3-268*x^2+552*x+605 6541084661979149 a001 514229/843*9349^(29/38) 6541084665911129 a001 832040/843*9349^(27/38) 6541084669852558 a001 1346269/843*9349^(25/38) 6541084673790378 a001 726103/281*9349^(23/38) 6541084681668248 a001 5702887/843*9349^(1/2) 6541084690501661 a001 2255/281*6643838879^(1/2) 6541084694102284 r005 Im(z^2+c),c=-5/8+17/89*I,n=19 6541084708339833 a001 15456/281*24476^(13/14) 6541084709700661 a001 75025/843*24476^(37/42) 6541084709899404 a001 121393/843*24476^(5/6) 6541084710021382 a001 28657/843*24476^(41/42) 6541084710542025 a001 196418/843*24476^(11/14) 6541084711015099 a001 377*24476^(31/42) 6541084711552934 a001 514229/843*24476^(29/42) 6541084712066033 a001 832040/843*24476^(9/14) 6541084712588580 a001 1346269/843*24476^(25/42) 6541084713107518 a001 726103/281*24476^(23/42) 6541084713627835 a001 3524578/843*24476^(1/2) 6541084713761997 k002 Champernowne real with 46*n^2+207*n-188 6541084714903549 a001 377/39603*2537720636^(5/6) 6541084714903549 a001 377/39603*312119004989^(15/22) 6541084714903549 a001 377/39603*3461452808002^(5/8) 6541084714903549 a001 377/39603*28143753123^(3/4) 6541084714903549 a001 377/39603*228826127^(15/16) 6541084714916501 a001 17711/843*969323029^(1/2) 6541084715187530 a001 4976784/281*24476^(5/14) 6541084716747343 a001 63245986/843*24476^(3/14) 6541084717267279 a001 34111385/281*24476^(1/6) 6541084718290273 a001 726103/281*64079^(1/2) 6541084718307150 a001 267914296/843*24476^(1/14) 6541084718454088 a001 15456/281*439204^(13/18) 6541084718478516 a001 15456/281*7881196^(13/22) 6541084718478578 a001 15456/281*141422324^(1/2) 6541084718478578 a001 15456/281*73681302247^(3/8) 6541084718478581 a001 15456/281*33385282^(13/24) 6541084718479806 a001 15456/281*1860498^(13/20) 6541084718545160 a001 15456/281*271443^(3/4) 6541084718835586 a001 121393/843*167761^(7/10) 6541084718971567 a001 1346269/843*167761^(1/2) 6541084718972964 a001 15456/281*103682^(13/16) 6541084718992268 a001 17711/843*39603^(43/44) 6541084718998270 a001 121393/843*20633239^(1/2) 6541084718998278 a001 121393/843*2537720636^(7/18) 6541084718998278 a001 121393/843*17393796001^(5/14) 6541084718998278 a001 121393/843*312119004989^(7/22) 6541084718998278 a001 121393/843*14662949395604^(5/18) 6541084718998278 a001 121393/843*505019158607^(5/16) 6541084718998278 a001 121393/843*28143753123^(7/20) 6541084718998278 a001 121393/843*599074578^(5/12) 6541084718998278 a001 121393/843*228826127^(7/16) 6541084718999380 a001 121393/843*1860498^(7/12) 6541084719006373 a001 121393/843*710647^(5/8) 6541084719017323 a001 4976784/281*167761^(3/10) 6541084719061149 a001 377/710647*1322157322203^(3/4) 6541084719063812 a001 165580141/843*167761^(1/10) 6541084719068209 a001 832040/843*439204^(1/2) 6541084719072212 a001 377/1860498*17393796001^(13/14) 6541084719072212 a001 377/1860498*14662949395604^(13/18) 6541084719072212 a001 377/1860498*505019158607^(13/16) 6541084719072212 a001 377/1860498*73681302247^(7/8) 6541084719073740 a001 377*3010349^(1/2) 6541084719073826 a001 377/4870847*312119004989^(19/22) 6541084719073826 a001 377/4870847*817138163596^(5/6) 6541084719073826 a001 377/4870847*3461452808002^(19/24) 6541084719073826 a001 377/4870847*28143753123^(19/20) 6541084719073972 a001 3524578/843*439204^(7/18) 6541084719074061 a001 377/12752043*312119004989^(9/10) 6541084719074061 a001 377/12752043*14662949395604^(11/14) 6541084719074061 a001 377/12752043*192900153618^(11/12) 6541084719074101 a001 377/599074578*3461452808002^(23/24) 6541084719074101 a001 377/1568397607*14662949395604^(17/18) 6541084719074101 a001 377*9062201101803^(1/4) 6541084719074101 a001 377/969323029*14662949395604^(13/14) 6541084719074104 a001 377/54018521*312119004989^(21/22) 6541084719074104 a001 377/54018521*14662949395604^(5/6) 6541084719074104 a001 377/54018521*505019158607^(15/16) 6541084719074823 a001 377/3010349*9062201101803^(3/4) 6541084719077628 a001 4976784/281*439204^(5/18) 6541084719081402 a001 63245986/843*439204^(1/6) 6541084719085121 a001 832040/843*7881196^(9/22) 6541084719085164 a001 832040/843*2537720636^(3/10) 6541084719085164 a001 832040/843*14662949395604^(3/14) 6541084719085164 a001 832040/843*192900153618^(1/4) 6541084719085166 a001 832040/843*33385282^(3/8) 6541084719085170 a001 267914296/843*439204^(1/18) 6541084719086014 a001 832040/843*1860498^(9/20) 6541084719086778 a001 726103/281*4106118243^(1/4) 6541084719087013 a001 5702887/843*817138163596^(1/6) 6541084719087013 a001 5702887/843*87403803^(1/4) 6541084719087024 a001 4976784/281*7881196^(5/22) 6541084719087035 a001 39088169/843*7881196^(1/6) 6541084719087039 a001 63245986/843*7881196^(3/22) 6541084719087044 a001 4976784/281*20633239^(3/14) 6541084719087048 a001 4976784/281*2537720636^(1/6) 6541084719087048 a001 4976784/281*312119004989^(3/22) 6541084719087048 a001 4976784/281*28143753123^(3/20) 6541084719087048 a001 4976784/281*228826127^(3/16) 6541084719087049 a001 267914296/843*7881196^(1/22) 6541084719087049 a001 4976784/281*33385282^(5/24) 6541084719087052 a001 34111385/281*20633239^(1/10) 6541084719087052 a001 165580141/843*20633239^(1/14) 6541084719087053 a001 39088169/843*312119004989^(1/10) 6541084719087053 a001 39088169/843*1568397607^(1/8) 6541084719087053 a001 34111385/281*17393796001^(1/14) 6541084719087053 a001 34111385/281*14662949395604^(1/18) 6541084719087053 a001 34111385/281*505019158607^(1/16) 6541084719087053 a001 34111385/281*599074578^(1/12) 6541084719087054 a001 165580141/843*2537720636^(1/18) 6541084719087054 a001 165580141/843*312119004989^(1/22) 6541084719087054 a001 165580141/843*28143753123^(1/20) 6541084719087054 a001 165580141/843*228826127^(1/16) 6541084719087054 a001 267914296/843*33385282^(1/24) 6541084719087054 a001 63245986/843*2537720636^(1/10) 6541084719087054 a001 63245986/843*14662949395604^(1/14) 6541084719087054 a001 63245986/843*192900153618^(1/12) 6541084719087055 a001 63245986/843*33385282^(1/8) 6541084719087056 a001 24157817/843*141422324^(1/6) 6541084719087056 a001 24157817/843*73681302247^(1/8) 6541084719087069 a001 9227465/843*45537549124^(1/6) 6541084719087079 a001 9227465/843*12752043^(1/4) 6541084719087125 a001 3524578/843*7881196^(7/22) 6541084719087148 a001 267914296/843*1860498^(1/20) 6541084719087154 a001 3524578/843*20633239^(3/10) 6541084719087159 a001 3524578/843*17393796001^(3/14) 6541084719087159 a001 3524578/843*14662949395604^(1/6) 6541084719087159 a001 3524578/843*599074578^(1/4) 6541084719087160 a001 3524578/843*33385282^(7/24) 6541084719087211 a001 165580141/843*1860498^(1/12) 6541084719087337 a001 63245986/843*1860498^(3/20) 6541084719087520 a001 4976784/281*1860498^(1/4) 6541084719087770 a001 1346269/843*20633239^(5/14) 6541084719087775 a001 1346269/843*2537720636^(5/18) 6541084719087775 a001 1346269/843*312119004989^(5/22) 6541084719087775 a001 1346269/843*3461452808002^(5/24) 6541084719087775 a001 1346269/843*28143753123^(1/4) 6541084719087775 a001 1346269/843*228826127^(5/16) 6541084719087820 a001 3524578/843*1860498^(7/20) 6541084719088563 a001 1346269/843*1860498^(5/12) 6541084719088672 a001 34111385/281*710647^(1/8) 6541084719089527 a001 514229/843*1149851^(1/2) 6541084719092001 a001 514229/843*1322157322203^(1/4) 6541084719092016 a001 3524578/843*710647^(3/8) 6541084719100240 a001 196418/843*439204^(11/18) 6541084719108010 a001 377/439204*2537720636^(17/18) 6541084719108010 a001 377/439204*45537549124^(5/6) 6541084719108010 a001 377/439204*312119004989^(17/22) 6541084719108010 a001 377/439204*3461452808002^(17/24) 6541084719108010 a001 377/439204*28143753123^(17/20) 6541084719109250 a001 24157817/843*271443^(1/4) 6541084719120910 a001 196418/843*7881196^(1/2) 6541084719120963 a001 196418/843*312119004989^(3/10) 6541084719120963 a001 196418/843*1568397607^(3/8) 6541084719120965 a001 196418/843*33385282^(11/24) 6541084719122002 a001 196418/843*1860498^(11/20) 6541084719125083 a001 267914296/843*103682^(1/16) 6541084719201143 a001 63245986/843*103682^(3/16) 6541084719277196 a001 4976784/281*103682^(5/16) 6541084719306518 a001 377/167761*2537720636^(9/10) 6541084719306518 a001 377/167761*14662949395604^(9/14) 6541084719306518 a001 377/167761*192900153618^(3/4) 6541084719319469 a001 75025/843*54018521^(1/2) 6541084719353367 a001 3524578/843*103682^(7/16) 6541084719427431 a001 832040/843*103682^(9/16) 6541084719539289 a001 196418/843*103682^(11/16) 6541084720129691 a001 39088169/843*39603^(1/4) 6541084720470598 a007 Real Root Of -240*x^4-359*x^3+839*x^2+921*x-817 6541084720667111 a001 377/64079*17393796001^(11/14) 6541084720667111 a001 377/64079*14662949395604^(11/18) 6541084720667111 a001 377/64079*505019158607^(11/16) 6541084720667111 a001 377/64079*1568397607^(7/8) 6541084720667111 a001 377/64079*599074578^(11/12) 6541084720680063 a001 28657/843*370248451^(1/2) 6541084721266839 a001 726103/281*39603^(23/44) 6541084721457407 a001 1346269/843*39603^(25/44) 6541084721644366 a001 832040/843*39603^(27/44) 6541084721840774 a001 514229/843*39603^(29/44) 6541084722012445 a001 377*39603^(31/44) 6541084722175204 a001 15456/281*39603^(39/44) 6541084722248877 a001 196418/843*39603^(3/4) 6541084722315763 a001 121393/843*39603^(35/44) 6541084722660228 a001 165580141/843*15127^(1/8) 6541084722826526 a001 75025/843*39603^(37/44) 6541084724566260 a001 28657/843*39603^(41/44) 6541084729796527 a001 10946/843*167761^(9/10) 6541084729806570 a001 4976784/281*15127^(3/8) 6541084729977444 a001 10946/843*439204^(5/6) 6541084730005630 a001 10946/843*7881196^(15/22) 6541084730005692 a001 10946/843*20633239^(9/14) 6541084730005702 a001 10946/843*2537720636^(1/2) 6541084730005702 a001 10946/843*312119004989^(9/22) 6541084730005702 a001 10946/843*14662949395604^(5/14) 6541084730005702 a001 10946/843*192900153618^(5/12) 6541084730005702 a001 10946/843*28143753123^(9/20) 6541084730005702 a001 10946/843*228826127^(9/16) 6541084730005706 a001 10946/843*33385282^(5/8) 6541084730007119 a001 10946/843*1860498^(3/4) 6541084730576148 a001 10946/843*103682^(15/16) 6541084735414320 a001 267914296/843*5778^(1/12) 6541084735523379 a001 726103/281*15127^(23/40) 6541084736953646 a001 1346269/843*15127^(5/8) 6541084738380304 a001 832040/843*15127^(27/40) 6541084739816410 a001 514229/843*15127^(29/40) 6541084741227781 a001 377*15127^(31/40) 6541084742703912 a001 196418/843*15127^(33/40) 6541084744010497 a001 121393/843*15127^(7/8) 6541084744163901 a001 76*(1/2*5^(1/2)+1/2)^3*29^(4/19) 6541084745104122 a007 Real Root Of -643*x^4+866*x^3+684*x^2+874*x-989 6541084745760959 a001 75025/843*15127^(37/40) 6541084746349336 a001 15456/281*15127^(39/40) 6541084767781747 q001 2014/3079 6541084768068852 a001 63245986/843*5778^(1/4) 6541084793911632 a001 377/9349*4106118243^(3/4) 6541084793911638 a001 377/9349*33385282^(23/24) 6541084793924573 a001 4181/843*20633239^(7/10) 6541084793924583 a001 4181/843*17393796001^(1/2) 6541084793924583 a001 4181/843*14662949395604^(7/18) 6541084793924583 a001 4181/843*505019158607^(7/16) 6541084793924583 a001 4181/843*599074578^(7/12) 6541084793935916 a001 4181/843*710647^(7/8) 6541084798582815 m001 (ln(2^(1/2)+1)+gamma(1))/(Stephens+TwinPrimes) 6541084800723379 a001 4976784/281*5778^(5/12) 6541084813792003 k002 Champernowne real with 93/2*n^2+411/2*n-187 6541084833378023 a001 3524578/843*5778^(7/12) 6541084844262486 a001 726103/281*5778^(23/36) 6541084848729294 l006 ln(5054/9721) 6541084851248313 r009 Re(z^3+c),c=-9/98+11/15*I,n=45 6541084855148328 a001 1346269/843*5778^(25/36) 6541084860456276 m002 -Pi^5+Pi^6-(Cosh[Pi]*ProductLog[Pi])/Pi^2 6541084865018568 r008 a(0)=0,K{-n^6,-20+7*n+33*n^2-4*n^3} 6541084866030561 a001 832040/843*5778^(3/4) 6541084875208191 m001 ln(FeigenbaumD)^2/Rabbit^2*Tribonacci^2 6541084876922242 a001 514229/843*5778^(29/36) 6541084887789187 a001 377*5778^(31/36) 6541084895607738 a003 sin(Pi*4/49)+sin(Pi*8/61) 6541084898720893 a001 196418/843*5778^(11/12) 6541084907677562 a007 Real Root Of 739*x^4-739*x^3-260*x^2-971*x-866 6541084909483053 a001 121393/843*5778^(35/36) 6541084913822009 k002 Champernowne real with 47*n^2+204*n-186 6541084949794922 m005 (1/3*Pi+1/9)/(11/10+3/10*5^(1/2)) 6541084952194579 a007 Real Root Of 543*x^4-496*x^3-15*x^2-329*x-447 6541084980761030 g006 Psi(1,1/8)+Psi(1,3/7)-Psi(1,6/11)-Psi(1,5/6) 6541085011714664 a007 Real Root Of -288*x^4+211*x^3+427*x^2+931*x-798 6541085013852015 k002 Champernowne real with 95/2*n^2+405/2*n-185 6541085016144435 a007 Real Root Of 337*x^4-677*x^3-325*x^2-911*x-708 6541085027859468 r005 Im(z^2+c),c=35/94+12/53*I,n=39 6541085072925265 a001 1134903170/2207*199^(1/22) 6541085074786302 h001 (1/11*exp(1)+2/11)/(5/6*exp(2)+2/5) 6541085099523235 a007 Real Root Of 139*x^4+891*x^3-184*x^2-353*x+467 6541085109541132 s001 sum(exp(-Pi)^(n-1)*A060479[n],n=1..infinity) 6541085113882021 k002 Champernowne real with 48*n^2+201*n-184 6541085119282443 r005 Re(z^2+c),c=17/114+22/59*I,n=26 6541085124151178 l006 ln(3735/7184) 6541085130830023 r009 Im(z^3+c),c=-25/114+45/62*I,n=3 6541085133980919 a007 Real Root Of -148*x^4+367*x^3-91*x^2+771*x-541 6541085151619472 k001 Champernowne real with 431*n+223 6541085166935570 a001 1/7*(1/2*5^(1/2)+1/2)^16*11^(7/23) 6541085175765048 m005 (1/2*Catalan-5)/(1/7*5^(1/2)-1/4) 6541085213912027 k002 Champernowne real with 97/2*n^2+399/2*n-183 6541085227874584 m002 -1+3*E^Pi-3*Coth[Pi] 6541085231463438 m001 (cos(1)+Artin)/(-HardyLittlewoodC4+Niven) 6541085232018188 a001 377/3571*20633239^(13/14) 6541085232018202 a001 377/3571*141422324^(5/6) 6541085232018202 a001 377/3571*2537720636^(13/18) 6541085232018202 a001 377/3571*312119004989^(13/22) 6541085232018202 a001 377/3571*3461452808002^(13/24) 6541085232018202 a001 377/3571*73681302247^(5/8) 6541085232018202 a001 377/3571*28143753123^(13/20) 6541085232018202 a001 377/3571*228826127^(13/16) 6541085232031114 a001 1597/843*119218851371^(1/2) 6541085286299978 a007 Real Root Of -322*x^4+554*x^3+500*x^2+934*x+611 6541085290049448 m001 (FransenRobinson+Rabbit)/(Pi+5^(1/2)) 6541085313942033 k002 Champernowne real with 49*n^2+198*n-182 6541085350452945 p004 log(11831/6151) 6541085362718061 m001 (1-KhinchinHarmonic)^exp(1/exp(1)) 6541085370525121 m001 (Ei(1)+MadelungNaCl)/(LambertW(1)-Psi(2,1/3)) 6541085390511855 a001 39088169/1364*521^(1/2) 6541085394005540 m002 -6*Cosh[Pi]+(E^Pi*ProductLog[Pi])/6 6541085394754653 a007 Real Root Of -961*x^4+963*x^3+758*x^2+726*x+596 6541085409349365 m008 (5*Pi-1/3)/(3/4*Pi^3+1/4) 6541085410295244 m005 (1/3*Pi+2/11)/(5/9*3^(1/2)+11/12) 6541085413972039 k002 Champernowne real with 99/2*n^2+393/2*n-181 6541085416487348 r005 Re(z^2+c),c=-51/82+19/47*I,n=29 6541085426055058 h001 (3/5*exp(1)+1/9)/(6/7*exp(1)+1/3) 6541085494747546 r005 Im(z^2+c),c=33/118+35/64*I,n=31 6541085496754178 m001 (Shi(1)-gamma)/(2*Pi/GAMMA(5/6)+Pi^(1/2)) 6541085514002045 k002 Champernowne real with 50*n^2+195*n-180 6541085515356438 r005 Im(z^2+c),c=-77/54+7/64*I,n=8 6541085518760879 r002 16th iterates of z^2 + 6541085539976948 r005 Im(z^2+c),c=21/82+26/53*I,n=34 6541085560568384 h001 (-7*exp(2)+2)/(-8*exp(-3)+8) 6541085575933831 r005 Im(z^2+c),c=-7/40+3/35*I,n=11 6541085577396982 m001 exp((2^(1/3)))^2*Riemann3rdZero^2*sin(1) 6541085585686362 a007 Real Root Of 225*x^4-497*x^3+451*x^2+352*x-143 6541085603664052 a003 sin(Pi*9/118)+sin(Pi*13/95) 6541085614032051 k002 Champernowne real with 101/2*n^2+387/2*n-179 6541085614489639 a001 2584/47*7^(5/56) 6541085620488786 r009 Re(z^3+c),c=-5/82+46/61*I,n=36 6541085623739876 r005 Im(z^2+c),c=-5/66+14/17*I,n=53 6541085640515587 r005 Im(z^2+c),c=-27/106+38/59*I,n=46 6541085649210229 a007 Real Root Of 826*x^4-450*x^3+990*x^2+871*x-131 6541085667381056 m003 (1025*Sqrt[5])/4096-2*Cot[1/2+Sqrt[5]/2] 6541085667958254 r005 Re(z^2+c),c=9/94+23/50*I,n=45 6541085684299708 a001 726103/281*2207^(23/32) 6541085700302727 l006 ln(2416/4647) 6541085714062057 k002 Champernowne real with 51*n^2+192*n-178 6541085731237021 q001 2205/3371 6541085731892764 m001 1/2*exp(-Pi)^Kolakoski*2^(2/3) 6541085742580580 r005 Re(z^2+c),c=7/58+7/33*I,n=15 6541085746635279 a007 Real Root Of 122*x^4+739*x^3-300*x^2+458*x-684 6541085746825591 m002 6/Pi^4+6*Log[Pi]*Sech[Pi] 6541085747452807 r009 Re(z^3+c),c=-31/126+27/29*I,n=4 6541085761022464 a007 Real Root Of -895*x^4-192*x^3-828*x^2-103*x+397 6541085761517565 m001 StolarskyHarborth^Salem+BesselK(1,1) 6541085768232271 a001 1346269/843*2207^(25/32) 6541085783734323 m001 (ln(Pi)+GAMMA(17/24))/(Gompertz-Lehmer) 6541085797294603 m004 (625*Pi)/3-Log[Sqrt[5]*Pi]/5 6541085814092063 k002 Champernowne real with 103/2*n^2+381/2*n-177 6541085825360655 m001 (GAMMA(23/24)+Artin)/(BesselJ(0,1)+exp(1/Pi)) 6541085831263800 a007 Real Root Of 286*x^4-478*x^3-341*x^2-981*x+869 6541085832826588 m001 ln(FeigenbaumKappa)*Bloch^2*cos(Pi/12) 6541085852161227 a001 832040/843*2207^(27/32) 6541085856577912 m004 -23/3+Cos[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi] 6541085874772436 r005 Re(z^2+c),c=-25/66+31/49*I,n=32 6541085882603134 r008 a(0)=0,K{-n^6,-63-43*n+2*n^2-49*n^3} 6541085903825135 h001 (1/11*exp(2)+3/10)/(5/11*exp(1)+1/4) 6541085914122069 k002 Champernowne real with 52*n^2+189*n-176 6541085919065526 m001 (1-Conway)/(-Trott+Weierstrass) 6541085927134369 r008 a(0)=0,K{-n^6,61+47*n^3+3*n^2+42*n} 6541085933350805 a007 Real Root Of -651*x^4+719*x^3-961*x^2+178*x+848 6541085936099632 a001 514229/843*2207^(29/32) 6541085950441272 a007 Real Root Of -804*x^4+332*x^3-723*x^2+672*x+989 6541085969032277 r002 63th iterates of z^2 + 6541086006382347 m001 gamma^2*FeigenbaumD^2*exp(sqrt(1+sqrt(3)))^2 6541086014152075 k002 Champernowne real with 105/2*n^2+375/2*n-175 6541086016034803 m001 (polylog(4,1/2)+GAMMA(23/24))/(Gompertz-Otter) 6541086018791182 r008 a(0)=0,K{-n^6,63+42*n^3+19*n^2+29*n} 6541086020013302 a001 377*2207^(31/32) 6541086023683241 r002 4th iterates of z^2 + 6541086025471213 r008 a(0)=0,K{-n^6,61+42*n^3+18*n^2+32*n} 6541086037533547 a001 1346269/322*322^(7/8) 6541086045622231 m001 Zeta(1/2)*exp(GAMMA(1/24))/sin(Pi/5)^2 6541086047589338 a007 Real Root Of -159*x^4+780*x^3-799*x^2+472*x+898 6541086060044275 m005 (1/3*Catalan-3/4)/(4/9*Catalan+3/11) 6541086060755506 m001 (ReciprocalLucas-Trott)/(ln(5)+exp(1/Pi)) 6541086062619906 m002 Pi^2-Log[Pi]-E^Pi/(Pi^2*ProductLog[Pi]) 6541086065942676 r008 a(0)=0,K{-n^6,-49-50*n-12*n^2-42*n^3} 6541086066211127 a007 Real Root Of 566*x^4-190*x^3-622*x^2-453*x+512 6541086079610265 r008 a(0)=0,K{-n^6,63+39*n^3+28*n^2+23*n} 6541086102809366 m001 (-Lehmer+Thue)/(exp(1)+FeigenbaumKappa) 6541086111831289 a007 Real Root Of 19*x^4-794*x^3+986*x^2-653*x+224 6541086114182081 k002 Champernowne real with 53*n^2+186*n-174 6541086127954276 r008 a(0)=0,K{-n^6,43+40*n^3+15*n^2+55*n} 6541086143088589 a007 Real Root Of 307*x^4-932*x^3-123*x^2-935*x-876 6541086147095460 a001 199/610*20365011074^(17/24) 6541086148970857 r008 a(0)=0,K{-n^6,37+40*n^3+12*n^2+64*n} 6541086151819502 k001 Champernowne real with 432*n+222 6541086162759442 m001 (FeigenbaumAlpha+ZetaP(4))/(exp(1)+GAMMA(3/4)) 6541086168802279 a007 Real Root Of 115*x^4-463*x^3-937*x^2-565*x+879 6541086193792282 a007 Real Root Of -190*x^4+958*x^3+964*x^2+381*x-895 6541086213086439 r002 7th iterates of z^2 + 6541086214212087 k002 Champernowne real with 107/2*n^2+369/2*n-173 6541086218073406 m002 -6+6/Pi^2-Coth[Pi]*Log[Pi] 6541086219903081 a001 2971215073/5778*199^(1/22) 6541086226681678 a008 Real Root of (-3-4*x-2*x^3+x^4+3*x^5) 6541086239523430 a007 Real Root Of 673*x^4-178*x^3+811*x^2+185*x-399 6541086244791949 m003 13/2+(129*Sqrt[5])/1024-Log[1/2+Sqrt[5]/2]/2 6541086256858534 r008 a(0)=0,K{-n^6,43+34*n^3+33*n^2+43*n} 6541086267524876 r005 Re(z^2+c),c=4/21+25/48*I,n=44 6541086271634839 r008 a(0)=0,K{-n^6,-63-5*n-55*n^2-30*n^3} 6541086296745856 m001 1/ln((3^(1/3)))^2/MadelungNaCl^2*GAMMA(1/3) 6541086302885106 a007 Real Root Of -90*x^4-467*x^3+787*x^2-51*x+53 6541086312863475 l006 ln(3513/6757) 6541086314242093 k002 Champernowne real with 54*n^2+183*n-172 6541086332969939 m005 (1/3*exp(1)+2/3)/(7/8*3^(1/2)+8/9) 6541086346595035 r008 a(0)=0,K{-n^6,37+31*n^3+39*n^2+46*n} 6541086355058765 m001 (GAMMA(5/6)+Grothendieck)/(exp(1)+3^(1/2)) 6541086363654645 m005 (1/3*5^(1/2)+1/11)/(1/8*gamma-1/5) 6541086373831374 m001 exp(OneNinth)/Niven^2/BesselJ(0,1)^2 6541086387244922 a001 7778742049/15127*199^(1/22) 6541086392686395 r008 a(0)=0,K{-n^6,43+28*n^3+51*n^2+31*n} 6541086397729501 m001 1/(2^(1/3))*FeigenbaumD^2*ln(Pi) 6541086406743626 r005 Re(z^2+c),c=19/56+1/17*I,n=5 6541086411659769 a001 20365011074/39603*199^(1/22) 6541086414272099 k002 Champernowne real with 109/2*n^2+363/2*n-171 6541086415221847 a001 53316291173/103682*199^(1/22) 6541086415741547 a001 139583862445/271443*199^(1/22) 6541086415817370 a001 365435296162/710647*199^(1/22) 6541086415828433 a001 956722026041/1860498*199^(1/22) 6541086415830047 a001 2504730781961/4870847*199^(1/22) 6541086415830282 a001 6557470319842/12752043*199^(1/22) 6541086415830338 a001 10610209857723/20633239*199^(1/22) 6541086415830428 a001 4052739537881/7881196*199^(1/22) 6541086415831044 a001 1548008755920/3010349*199^(1/22) 6541086415835270 a001 514229*199^(1/22) 6541086415864232 a001 225851433717/439204*199^(1/22) 6541086416062739 a001 86267571272/167761*199^(1/22) 6541086417423332 a001 32951280099/64079*199^(1/22) 6541086418662514 m001 GAMMA(5/6)/(arctan(1/3)+OrthogonalArrays) 6541086423888971 r008 a(0)=0,K{-n^6,53+25*n^3+65*n^2+10*n} 6541086426748974 a001 12586269025/24476*199^(1/22) 6541086433214160 m001 GAMMA(5/6)*exp(Niven)/GAMMA(7/24)^2 6541086437112861 p001 sum(1/(191*n+159)/(12^n),n=0..infinity) 6541086462271736 s002 sum(A202758[n]/(n^2*2^n+1),n=1..infinity) 6541086463424457 a001 305/9*2^(37/39) 6541086463428944 r008 a(0)=0,K{-n^6,67+21*n^3+84*n^2-19*n} 6541086480680992 p001 sum(1/(161*n+79)/n/(64^n),n=0..infinity) 6541086482536579 a007 Real Root Of -108*x^4+831*x^3-977*x^2+400*x+932 6541086483474977 r005 Re(z^2+c),c=-3/70+35/46*I,n=59 6541086485979834 v002 sum(1/(5^n+(3/2*n^3+23/2*n+5)),n=1..infinity) 6541086490667873 a001 4807526976/9349*199^(1/22) 6541086492785712 h001 (-12*exp(2)-4)/(-3*exp(2)+8) 6541086514302105 k002 Champernowne real with 55*n^2+180*n-170 6541086517846828 m001 (Lehmer+Porter)/(polylog(4,1/2)-FeigenbaumB) 6541086518261365 h005 exp(cos(Pi*1/60)+cos(Pi*3/19)) 6541086520481155 a007 Real Root Of -878*x^4-435*x^3-124*x^2+720*x+563 6541086541086541 q001 2396/3663 6541086548982524 m001 Zeta(1,-1)*BesselI(1,1)+RenyiParking 6541086553698496 m001 (Conway-sin(1))/(-GlaisherKinkelin+Stephens) 6541086577205395 r008 a(0)=0,K{-n^6,27+23*n^3+58*n^2+45*n} 6541086614332111 k002 Champernowne real with 111/2*n^2+357/2*n-169 6541086621561284 m001 exp(Zeta(7))/Lehmer*sqrt(2) 6541086624449970 r002 45th iterates of z^2 + 6541086632874926 r002 24th iterates of z^2 + 6541086633893128 l006 ln(4610/8867) 6541086643048670 r009 Re(z^3+c),c=-33/74+1/49*I,n=4 6541086664204157 b008 -4+5^Sqrt[-1+Pi] 6541086682977801 r002 4th iterates of z^2 + 6541086684018504 r005 Im(z^2+c),c=-6/11+35/58*I,n=23 6541086705695101 r005 Re(z^2+c),c=-49/90+17/36*I,n=45 6541086713491451 r008 a(0)=0,K{-n^6,13+20*n^3+60*n^2+60*n} 6541086714362117 k002 Champernowne real with 56*n^2+177*n-168 6541086714742419 a007 Real Root Of 555*x^4-779*x^3-345*x^2-717*x-641 6541086716162742 r002 11th iterates of z^2 + 6541086722645436 m005 (1/4*Pi+3/5)/(5/6*Pi-1/2) 6541086722645436 m006 (1/4*Pi+3/5)/(5/6*Pi-1/2) 6541086722645436 m008 (1/4*Pi+3/5)/(5/6*Pi-1/2) 6541086724584666 r005 Re(z^2+c),c=-7/30+26/45*I,n=3 6541086728243390 r005 Im(z^2+c),c=-25/48+7/61*I,n=26 6541086731025845 r008 a(0)=0,K{-n^6,15+19*n^3+64*n^2+55*n} 6541086732312268 v002 sum(1/(2^n+(18*n^2-8*n+16)),n=1..infinity) 6541086763741971 a007 Real Root Of -15*x^4-967*x^3+917*x^2-621*x-337 6541086774029024 r005 Re(z^2+c),c=-11/82+35/44*I,n=30 6541086781821996 r004 Re(z^2+c),c=-3/46+4/21*I,z(0)=-1,n=5 6541086795287422 r005 Re(z^2+c),c=5/114+8/21*I,n=21 6541086799046901 g007 Psi(2,3/10)-Psi(2,5/12)-Psi(2,6/11)-Psi(2,1/7) 6541086799898995 m001 (exp(Pi)-sin(1))/(Khinchin+Sarnak) 6541086804575104 m001 (GAMMA(17/24)-sin(1))/(GolombDickman+ZetaQ(2)) 6541086814392123 k002 Champernowne real with 113/2*n^2+351/2*n-167 6541086829501259 m009 (4/5*Psi(1,1/3)-1/6)/(2/3*Psi(1,2/3)-5/6) 6541086836328423 m005 (1/2*exp(1)+1)/(7/11*Catalan-2/9) 6541086850589680 r005 Im(z^2+c),c=-133/118+32/63*I,n=3 6541086881301404 m001 (Psi(1,1/3)+3^(1/2))/(MertensB3+PlouffeB) 6541086882102890 a007 Real Root Of -99*x^4+216*x^3+206*x^2+539*x+343 6541086885141667 a001 11/13*2504730781961^(5/9) 6541086891640181 a007 Real Root Of -602*x^4+580*x^3+356*x^2-647*x-303 6541086896990688 m001 BesselK(0,1)^2*ln(Bloch)^2/GAMMA(7/12) 6541086904828060 a007 Real Root Of 120*x^4+795*x^3-54*x^2-683*x+661 6541086914422129 k002 Champernowne real with 57*n^2+174*n-166 6541086919931049 a003 cos(Pi*15/94)-sin(Pi*22/73) 6541086927267320 r005 Im(z^2+c),c=-7/118+45/61*I,n=44 6541086928774557 a001 1836311903/3571*199^(1/22) 6541086948726912 a007 Real Root Of -9*x^4+395*x^3-288*x^2-126*x+153 6541086960441456 r005 Im(z^2+c),c=-139/110+1/50*I,n=36 6541086982041376 m001 (Kolakoski+OrthogonalArrays)/(Pi+Ei(1,1)) 6541087001157175 r008 a(0)=0,K{-n^6,-25-14*n-21*n^2+45*n^3} 6541087014452135 k002 Champernowne real with 115/2*n^2+345/2*n-165 6541087020187764 a001 34111385/281*843^(1/4) 6541087089883016 m003 15/2+Sqrt[5]/8-3*Csch[1/2+Sqrt[5]/2] 6541087105893770 r005 Re(z^2+c),c=5/26+17/54*I,n=33 6541087112900363 r002 5th iterates of z^2 + 6541087114482141 k002 Champernowne real with 58*n^2+171*n-164 6541087129556081 m001 (ln(5)+arctan(1/3))/(FellerTornier-Trott2nd) 6541087143682833 a007 Real Root Of -365*x^4+687*x^3-933*x^2-31*x+638 6541087152019532 k001 Champernowne real with 433*n+221 6541087152225633 r008 a(0)=7,K{-n^6,34-34*n^3-62*n^2+64*n} 6541087179588594 m001 FeigenbaumAlpha*FellerTornier-MinimumGamma 6541087189924620 a005 (1/cos(5/161*Pi))^877 6541087201175040 a007 Real Root Of 144*x^4-875*x^3+829*x^2+350*x-397 6541087214512147 k002 Champernowne real with 117/2*n^2+339/2*n-163 6541087220122150 r005 Re(z^2+c),c=9/64+31/59*I,n=44 6541087231352718 q001 2587/3955 6541087250198676 a007 Real Root Of -709*x^4+607*x^3-110*x^2+892*x+59 6541087277397050 r005 Im(z^2+c),c=-3/70+3/4*I,n=11 6541087292531530 a007 Real Root Of -679*x^4+426*x^3+956*x^2+315*x-610 6541087314542153 k002 Champernowne real with 59*n^2+168*n-162 6541087347739443 a001 433494437/843*322^(1/24) 6541087349437467 m001 (2*Pi/GAMMA(5/6)-Catalan)/(-Conway+Lehmer) 6541087362539819 m001 1/ln(Rabbit)*Khintchine^2/LambertW(1)^2 6541087364683934 r005 Re(z^2+c),c=-79/82+5/24*I,n=36 6541087372779317 a003 cos(Pi*3/23)-cos(Pi*49/118) 6541087390821728 a007 Real Root Of -751*x^4+511*x^3-391*x^2-203*x+315 6541087404394945 r005 Re(z^2+c),c=-113/122+5/51*I,n=16 6541087406203912 r009 Im(z^3+c),c=-1/86+24/31*I,n=55 6541087414572159 k002 Champernowne real with 119/2*n^2+333/2*n-161 6541087470901503 m001 Pi^(1/2)-ReciprocalFibonacci^MadelungNaCl 6541087474904480 r005 Re(z^2+c),c=7/122+10/39*I,n=8 6541087512304478 r005 Re(z^2+c),c=-2/3+55/147*I,n=13 6541087514602165 k002 Champernowne real with 60*n^2+165*n-160 6541087522811336 m001 HardyLittlewoodC3*ReciprocalLucas-Lehmer 6541087528387864 m005 (1/2*3^(1/2)-4/11)/(49/90+1/10*5^(1/2)) 6541087547767989 a001 12238/305*55^(5/41) 6541087601485067 m001 (Zeta(3)-ln(3)*BesselJ(1,1))/ln(3) 6541087610191490 a007 Real Root Of -472*x^4-82*x^3-34*x^2+425*x+356 6541087614632171 k002 Champernowne real with 121/2*n^2+327/2*n-159 6541087618273581 a001 29/514229*377^(1/40) 6541087627924053 a007 Real Root Of -772*x^4+958*x^3+669*x^2+347*x-640 6541087656751463 a007 Real Root Of -304*x^4+95*x^3-621*x^2-58*x+310 6541087659428029 a007 Real Root Of -50*x^4-214*x^3+755*x^2+91*x-68 6541087661948819 l006 ln(1097/2110) 6541087664366092 m004 5+5*Sin[Sqrt[5]*Pi]^3 6541087668523227 a008 Real Root of x^4-x^3-29*x^2-48*x+4 6541087669030667 r001 35i'th iterates of 2*x^2-1 of 6541087686082020 a007 Real Root Of 260*x^4-850*x^3-98*x^2-973*x-880 6541087690527482 r005 Re(z^2+c),c=15/58+11/27*I,n=36 6541087692034465 a007 Real Root Of 541*x^4-999*x^3+609*x^2-307*x-840 6541087714662177 k002 Champernowne real with 61*n^2+162*n-158 6541087727933478 r005 Im(z^2+c),c=-35/102+19/31*I,n=36 6541087731459907 m005 (17/30+1/6*5^(1/2))/(5^(1/2)-4/5) 6541087733247342 a003 cos(Pi*23/87)*sin(Pi*43/102) 6541087771883945 a001 8/3571*322^(58/59) 6541087814692183 k002 Champernowne real with 123/2*n^2+321/2*n-157 6541087832928284 a001 8/3*20633239^(14/19) 6541087832928295 a001 8/3*17393796001^(10/19) 6541087840074948 a001 73681302247/610*317811^(2/15) 6541087840076675 a001 5374978561/305*591286729879^(2/15) 6541087840076675 a001 28143753123/610*433494437^(2/15) 6541087914722189 k002 Champernowne real with 62*n^2+159*n-156 6541087930615939 a007 Real Root Of 136*x^4+993*x^3+523*x^2-986*x+115 6541087930633231 s001 sum(exp(-Pi/3)^n*A175076[n],n=1..infinity) 6541087933556406 l006 ln(3151/3364) 6541087935171885 m002 -Pi^5+Pi^6-Log[Pi]-Log[Pi]/Pi^2 6541087945079152 r009 Re(z^3+c),c=-29/86+17/24*I,n=64 6541087984814954 a007 Real Root Of 114*x^4+636*x^3-655*x^2+477*x+448 6541088010422037 m001 BesselK(1,1)^LambertW(1)-OrthogonalArrays 6541088013200618 r005 Re(z^2+c),c=-5/6+37/175*I,n=14 6541088014035694 a001 199/1346269*102334155^(21/22) 6541088014036416 a001 199/32951280099*4052739537881^(21/22) 6541088014752195 k002 Champernowne real with 125/2*n^2+315/2*n-155 6541088017356147 m001 GAMMA(7/12)/(Niven^BesselI(1,2)) 6541088039265634 m001 (Bloch+Stephens)/(1+BesselK(1,1)) 6541088043065132 m001 BesselK(0,1)^(cos(Pi/5)/exp(1/2)) 6541088114782201 k002 Champernowne real with 63*n^2+156*n-154 6541088123835107 r009 Im(z^3+c),c=-53/94+11/64*I,n=25 6541088150726200 a007 Real Root Of -302*x^4+956*x^3+443*x^2-148*x-305 6541088152219562 k001 Champernowne real with 434*n+220 6541088153143901 a007 Real Root Of -954*x^4+687*x^3-299*x^2+465*x+799 6541088164032919 m001 OneNinth*MertensB1^2/ln(GAMMA(7/24)) 6541088165171938 m005 (1/2*Zeta(3)+3)/(6/7*gamma-6) 6541088174145409 m005 (1/2*Pi+5/9)/(5/9*2^(1/2)-9/11) 6541088185549042 s001 sum(exp(-Pi/4)^n*A077614[n],n=1..infinity) 6541088197343707 r005 Im(z^2+c),c=-4/7+12/101*I,n=45 6541088214812207 k002 Champernowne real with 127/2*n^2+309/2*n-153 6541088218392510 a003 cos(Pi*5/116)*sin(Pi*14/61) 6541088234846886 a001 377/1364*5600748293801^(1/2) 6541088234857858 a001 610/843*7881196^(19/22) 6541088234857949 a001 610/843*817138163596^(1/2) 6541088234857949 a001 610/843*87403803^(3/4) 6541088234857953 a001 610/843*33385282^(19/24) 6541088234859744 a001 610/843*1860498^(19/20) 6541088244534473 r009 Re(z^3+c),c=-43/64+2/9*I,n=3 6541088248102912 r005 Im(z^2+c),c=-5/86+8/11*I,n=59 6541088261903889 r005 Im(z^2+c),c=-43/38+3/37*I,n=26 6541088266932303 a007 Real Root Of -872*x^4+205*x^3-779*x^2+157*x+653 6541088300326744 m001 (arctan(1/3)-Pi^(1/2))/(Robbin-TreeGrowth2nd) 6541088302817878 m001 1/exp(TwinPrimes)^2/CopelandErdos/sqrt(3) 6541088314842213 k002 Champernowne real with 64*n^2+153*n-152 6541088330410752 m001 (ln(3)-exp(-1/2*Pi))/(GAMMA(17/24)+ZetaP(4)) 6541088368256701 r005 Im(z^2+c),c=-3/26+23/27*I,n=38 6541088392643980 a007 Real Root Of 128*x^4+793*x^3-159*x^2+833*x-135 6541088394964088 a007 Real Root Of -913*x^4+678*x^3+956*x^2+121*x+27 6541088414872219 k002 Champernowne real with 129/2*n^2+303/2*n-151 6541088471555239 m001 (Mills+PolyaRandomWalk3D)/(Artin-Kac) 6541088485392142 a007 Real Root Of -8*x^4+692*x^3+467*x^2-54*x-40 6541088514902225 k002 Champernowne real with 65*n^2+150*n-150 6541088540414815 a003 sin(Pi*14/47)*sin(Pi*16/53) 6541088565253907 a005 (1/sin(83/202*Pi))^1671 6541088576794216 a007 Real Root Of -751*x^4+568*x^3-71*x^2+92*x+387 6541088584246814 m001 (-Totient+TwinPrimes)/(LambertW(1)+Bloch) 6541088614932231 k002 Champernowne real with 131/2*n^2+297/2*n-149 6541088644887866 a007 Real Root Of 807*x^4-727*x^3-908*x^2-268*x-138 6541088646962611 m001 (Bloch+PlouffeB)/(LambertW(1)+ln(2^(1/2)+1)) 6541088648201822 m001 gamma(1)-Lehmer^Zeta(5) 6541088662153863 a007 Real Root Of 917*x^4-664*x^3-13*x^2-648*x-772 6541088662498759 a007 Real Root Of -491*x^4+390*x^3-92*x^2+987*x+884 6541088678167212 m001 (Cahen+1/2)/(-sin(1)+2/3) 6541088691297839 a007 Real Root Of -452*x^4+749*x^3-35*x^2+27*x+325 6541088692785776 m001 Robbin/(GaussKuzminWirsing^gamma(2)) 6541088714962237 k002 Champernowne real with 66*n^2+147*n-148 6541088731939812 m001 (FellerTornier-Rabbit)/(ln(2)-GAMMA(17/24)) 6541088743322916 a007 Real Root Of -613*x^4+250*x^3-687*x^2-760*x-21 6541088747407040 m005 (1/5*Catalan+1)/(4*gamma-1/2) 6541088761831828 a007 Real Root Of 983*x^4-214*x^3-433*x^2-869*x-623 6541088799571532 l006 ln(4166/8013) 6541088801369078 r002 9th iterates of z^2 + 6541088812895979 a007 Real Root Of 747*x^4-713*x^3-313*x^2-641*x+616 6541088814992243 k002 Champernowne real with 133/2*n^2+291/2*n-147 6541088820611901 r002 6th iterates of z^2 + 6541088826047001 a007 Real Root Of -808*x^4+458*x^3-955*x^2-608*x+287 6541088827646694 a007 Real Root Of 924*x^4-745*x^3+394*x^2-602*x-940 6541088834582213 m001 Bloch*Conway^2/ln(Magata) 6541088852298691 m001 exp(GAMMA(7/24))^2*Bloch*cos(1)^2 6541088855864259 m001 cos(Pi/12)^2*GAMMA(5/24)*ln(log(1+sqrt(2)))^2 6541088895858469 m001 Tribonacci^Ei(1,1)/(Tribonacci^Catalan) 6541088901714240 r009 Re(z^3+c),c=-69/122+7/30*I,n=2 6541088915022249 k002 Champernowne real with 67*n^2+144*n-146 6541088943516686 a001 7/514229*610^(32/53) 6541088950674003 m001 (exp(Pi)+Zeta(5))/(-FeigenbaumC+MinimumGamma) 6541088970665446 r009 Re(z^3+c),c=-15/32+23/34*I,n=4 6541088975313080 m001 Catalan*AlladiGrinstead-HardHexagonsEntropy 6541088986121083 r005 Im(z^2+c),c=-41/64+21/41*I,n=3 6541088995857245 s001 sum(exp(-3*Pi)^(n-1)*A289200[n],n=1..infinity) 6541088998363593 r002 59th iterates of z^2 + 6541089008006654 m005 (5/18+1/6*5^(1/2))/(5/12*3^(1/2)+3/11) 6541089015052255 k002 Champernowne real with 135/2*n^2+285/2*n-145 6541089050559665 m005 (1/5*Catalan+5)/(1/3*gamma+3/5) 6541089073472369 a007 Real Root Of 490*x^4-736*x^3-166*x^2-449*x+481 6541089076859707 m001 (3^(1/2)+ln(Pi))/(3^(1/3)+Otter) 6541089083299684 m005 (1/2*gamma+5/12)/(4*exp(1)-1/11) 6541089098321450 a003 sin(Pi*10/89)-sin(Pi*40/81) 6541089109732938 a007 Real Root Of 403*x^4-858*x^3+546*x^2-404*x+197 6541089114774278 m005 (1/2*gamma+5/9)/(50/63+2/9*5^(1/2)) 6541089115082261 k002 Champernowne real with 68*n^2+141*n-144 6541089131858916 a007 Real Root Of -142*x^4+551*x^3-342*x^2+150*x-80 6541089135107271 a007 Real Root Of -434*x^4-96*x^3+95*x^2+977*x+651 6541089141390735 m001 (Kac+Trott)/(cos(1/5*Pi)-Grothendieck) 6541089149425591 m001 ZetaQ(3)/BesselI(1,2)/sin(1) 6541089152419592 k001 Champernowne real with 435*n+219 6541089177728504 r002 29th iterates of z^2 + 6541089182006229 a001 1346269/2207*1364^(29/30) 6541089206209531 l006 ln(3069/5903) 6541089207710635 r009 Im(z^3+c),c=-9/62+29/39*I,n=40 6541089215112267 k002 Champernowne real with 137/2*n^2+279/2*n-143 6541089233971532 m001 1/MadelungNaCl^2*CareFree^2*ln(Zeta(9))^2 6541089282624242 m005 (1/3*5^(1/2)+2/9)/(7/11*Zeta(3)+5/7) 6541089292326875 a007 Real Root Of -831*x^4+146*x^3-763*x^2-71*x+473 6541089312892830 p001 sum((-1)^n/(393*n+148)/(8^n),n=0..infinity) 6541089315142273 k002 Champernowne real with 69*n^2+138*n-142 6541089333315677 a007 Real Root Of -380*x^4+816*x^3+49*x^2+555*x+640 6541089334389609 a007 Real Root Of -89*x^4+557*x^3+346*x^2+877*x-59 6541089353824433 m005 (1/2*exp(1)-1/8)/(1/6*3^(1/2)-1/10) 6541089357718531 r002 3th iterates of z^2 + 6541089368292319 r005 Im(z^2+c),c=-59/94+2/17*I,n=36 6541089372637479 r009 Re(z^3+c),c=-71/126+7/29*I,n=46 6541089391759731 m001 (MinimumGamma-Porter)/(gamma(3)-GaussAGM) 6541089407077986 r008 a(0)=7,K{-n^6,48-29*n^3-70*n^2+53*n} 6541089412579504 a003 cos(Pi*32/103)/sin(Pi*37/113) 6541089415172279 k002 Champernowne real with 139/2*n^2+273/2*n-141 6541089416390185 a001 987*1364^(9/10) 6541089432110146 m001 (ln(3)-gamma(2))/(Niven-Trott) 6541089450706008 a007 Real Root Of 803*x^4-839*x^3+792*x^2+212*x-582 6541089494792479 m001 exp(Zeta(5))^2*GolombDickman*log(2+sqrt(3)) 6541089515202285 k002 Champernowne real with 70*n^2+135*n-140 6541089515716330 a007 Real Root Of -97*x^4-70*x^3+144*x^2+313*x-229 6541089533527987 r005 Im(z^2+c),c=13/60+7/12*I,n=5 6541089538455830 a001 123/377*13^(16/59) 6541089540581652 a007 Real Root Of 956*x^4-650*x^3+690*x^2+546*x-295 6541089542264648 l006 ln(5041/9696) 6541089560694871 m005 (2*Catalan+4/5)/(1/6*2^(1/2)+1/6) 6541089589373858 m001 BesselK(0,1)^(FransenRobinson*ZetaP(3)) 6541089593926030 a003 sin(Pi*12/71)/cos(Pi*12/55) 6541089595454329 g002 Psi(5/11)+Psi(5/8)+Psi(2/7)-Psi(7/8) 6541089615232291 k002 Champernowne real with 141/2*n^2+267/2*n-139 6541089634024381 r005 Im(z^2+c),c=-67/70+5/17*I,n=11 6541089642482253 b008 Erf[1/3+EulerGamma^2] 6541089650775528 a001 3524578/2207*1364^(5/6) 6541089652438510 h001 (3/10*exp(2)+9/10)/(7/12*exp(2)+5/11) 6541089667670174 a001 103682/89*196418^(17/24) 6541089715262297 k002 Champernowne real with 71*n^2+132*n-138 6541089740569364 a007 Real Root Of -805*x^4+671*x^3+22*x^2-339*x+104 6541089757408101 m001 (HardyLittlewoodC3+HeathBrownMoroz)^Psi(2,1/3) 6541089767672732 m001 (MertensB3-ZetaP(3))/(GAMMA(19/24)+Gompertz) 6541089771524981 a001 39603/8*21^(39/46) 6541089775896667 a007 Real Root Of 792*x^4+708*x^3+542*x^2-404*x-443 6541089777450273 m001 (Zeta(1,-1)-Paris)/(ThueMorse-ZetaQ(3)) 6541089805796339 a007 Real Root Of 634*x^4+562*x^3+872*x^2+90*x-273 6541089815292303 k002 Champernowne real with 143/2*n^2+261/2*n-137 6541089817797844 r009 Im(z^3+c),c=-5/38+37/50*I,n=29 6541089824714215 r005 Re(z^2+c),c=-75/98+10/51*I,n=11 6541089869266292 a001 322/165580141*8^(7/12) 6541089902504013 m001 (BesselK(0,1)+ln(3))/(GAMMA(7/12)+Kolakoski) 6541089915322309 k002 Champernowne real with 72*n^2+129*n-136 6541089928240618 m001 (Pi+sin(1))/(LaplaceLimit-ZetaQ(2)) 6541089931604019 a001 701408733/1364*199^(1/22) 6541089956736125 a007 Real Root Of 139*x^4-339*x^3-216*x^2-731*x+640 6541089962618104 r005 Re(z^2+c),c=7/27+23/60*I,n=43 6541089970828342 m001 (-Niven+Sarnak)/(Chi(1)+LaplaceLimit) 6541089988410168 r002 3th iterates of z^2 + 6541090004244612 a007 Real Root Of -637*x^4-220*x^3+296*x^2+987*x+574 6541090008632014 a007 Real Root Of -725*x^4+909*x^3-488*x^2-697*x+140 6541090011479315 m006 (1/6*Pi^2+2)/(1/2*ln(Pi)+5) 6541090015352315 k002 Champernowne real with 145/2*n^2+255/2*n-135 6541090029756917 h001 (5/9*exp(2)+8/11)/(1/6*exp(1)+2/7) 6541090036850679 a007 Real Root Of 557*x^4-887*x^3+807*x^2+837*x-148 6541090037829357 a001 1/2207*7^(10/53) 6541090039603403 a008 Real Root of (-1-x+x^2+x^3+x^4+x^8+x^9-x^11-x^12) 6541090041238566 a007 Real Root Of -71*x^4+515*x^3-221*x^2+612*x+652 6541090047227256 m001 (Shi(1)-Zeta(5))/(GAMMA(13/24)+Porter) 6541090060965459 a003 cos(Pi*4/105)-cos(Pi*39/100) 6541090065263182 l006 ln(1972/3793) 6541090082866904 r005 Im(z^2+c),c=33/106+17/45*I,n=7 6541090094471188 a007 Real Root Of 127*x^4+699*x^3-815*x^2+403*x+643 6541090096376858 a007 Real Root Of -510*x^4+754*x^3-405*x^2-770*x-26 6541090115382321 k002 Champernowne real with 73*n^2+126*n-134 6541090119545387 a001 9227465/2207*1364^(7/10) 6541090122893122 m001 (ln(5)+Trott)/(ThueMorse-TwinPrimes) 6541090128287576 a007 Real Root Of -176*x^4+843*x^3-530*x^2+630*x+907 6541090147812497 a008 Real Root of (16+11*x-16*x^2+7*x^3) 6541090152619622 k001 Champernowne real with 436*n+218 6541090185678179 s002 sum(A149837[n]/(n^3*exp(n)-1),n=1..infinity) 6541090187907467 a007 Real Root Of -561*x^4+351*x^3-43*x^2+286*x+19 6541090215412327 k002 Champernowne real with 147/2*n^2+249/2*n-133 6541090217348116 r005 Im(z^2+c),c=-10/27+35/57*I,n=46 6541090223598148 p004 log(32027/16651) 6541090233241125 m008 (5/6*Pi^6-1)/(4*Pi^5-4/5) 6541090239917769 m004 5/3-Cosh[Sqrt[5]*Pi]-Sinh[Sqrt[5]*Pi]/6 6541090255722387 m005 (1/2*gamma+3/5)/(9/11*Zeta(3)+3/8) 6541090315442333 k002 Champernowne real with 74*n^2+123*n-132 6541090336883828 m001 (Pi+BesselI(0,1))/(ln(3)-Pi^(1/2)) 6541090354608145 a007 Real Root Of -442*x^4+267*x^3+230*x^2+412*x-28 6541090372074996 m001 (5^(1/2)+cos(1))/(-CopelandErdos+TwinPrimes) 6541090377489425 m001 (-Stephens+Trott)/(Backhouse-Psi(1,1/3)) 6541090415398455 a007 Real Root Of -978*x^4+863*x^3-498*x^2+369*x+875 6541090415472339 k002 Champernowne real with 149/2*n^2+243/2*n-131 6541090420465772 m005 (1/3*gamma+3/7)/(5/12*gamma-1/4) 6541090438605880 r009 Re(z^3+c),c=-41/66+55/61*I,n=2 6541090438703569 m005 (1/2*exp(1)-5/9)/(8/11*2^(1/2)+1/5) 6541090454501790 m001 (Riemann2ndZero+ZetaP(2))/(Khinchin-exp(1)) 6541090467882910 a007 Real Root Of -130*x^4-733*x^3+808*x^2+316*x+336 6541090469778091 r009 Re(z^3+c),c=-1/24+41/54*I,n=7 6541090476321485 r002 5th iterates of z^2 + 6541090495093433 p004 log(35393/18401) 6541090512815824 m001 (2^(1/3)-exp(Pi))/(GAMMA(13/24)+Niven) 6541090515502345 k002 Champernowne real with 75*n^2+120*n-130 6541090530181070 r005 Re(z^2+c),c=-31/29+7/45*I,n=8 6541090548791932 m001 (Pi*2^(1/2)/GAMMA(3/4)+Zeta(5))/(Sarnak-Trott) 6541090559921534 a001 64079/1597*55^(5/41) 6541090563368998 a001 5702887/5778*1364^(9/10) 6541090579862902 m001 Ei(1)/ln(RenyiParking)*Zeta(9)^2 6541090607942579 r005 Re(z^2+c),c=-7/10+88/191*I,n=10 6541090611935716 m001 Backhouse/(GAMMA(1/24)-Zeta(3)) 6541090612354999 l006 ln(4819/9269) 6541090615532351 k002 Champernowne real with 151/2*n^2+237/2*n-129 6541090618450169 m001 1/GAMMA(1/4)*RenyiParking*exp(gamma)^2 6541090620260524 m001 (ln(5)-GAMMA(13/24))/(MinimumGamma-Tetranacci) 6541090623426093 m001 (LaplaceLimit+Salem)/(Zeta(3)+ln(5)) 6541090632432885 r005 Re(z^2+c),c=-65/58+9/52*I,n=6 6541090644612265 a007 Real Root Of -963*x^4-150*x^3-729*x^2-832*x-98 6541090674822685 r009 Im(z^3+c),c=-57/106+11/56*I,n=17 6541090675366442 r005 Im(z^2+c),c=-4/29+36/41*I,n=38 6541090693644523 a007 Real Root Of -61*x^4+690*x^3+548*x^2-233*x-264 6541090715562357 k002 Champernowne real with 76*n^2+117*n-128 6541090722341288 a001 2/39603*199^(15/31) 6541090730710986 a001 14930352/15127*1364^(9/10) 6541090737100869 a007 Real Root Of 712*x^4-777*x^3+380*x^2+580*x-131 6541090746216088 a007 Real Root Of -366*x^4+451*x^3-729*x^2-786*x-9 6541090749840526 m001 MasserGramain^(LaplaceLimit*Porter) 6541090755125853 a001 39088169/39603*1364^(9/10) 6541090757254268 m008 (5/6*Pi^6-4/5)/(2/5*Pi^3-1/6) 6541090758687934 a001 102334155/103682*1364^(9/10) 6541090759207635 a001 267914296/271443*1364^(9/10) 6541090759283458 a001 701408733/710647*1364^(9/10) 6541090759294521 a001 1836311903/1860498*1364^(9/10) 6541090759296135 a001 4807526976/4870847*1364^(9/10) 6541090759296370 a001 12586269025/12752043*1364^(9/10) 6541090759296405 a001 32951280099/33385282*1364^(9/10) 6541090759296410 a001 86267571272/87403803*1364^(9/10) 6541090759296410 a001 225851433717/228826127*1364^(9/10) 6541090759296411 a001 591286729879/599074578*1364^(9/10) 6541090759296411 a001 1548008755920/1568397607*1364^(9/10) 6541090759296411 a001 4052739537881/4106118243*1364^(9/10) 6541090759296411 a001 4807525989/4870846*1364^(9/10) 6541090759296411 a001 6557470319842/6643838879*1364^(9/10) 6541090759296411 a001 2504730781961/2537720636*1364^(9/10) 6541090759296411 a001 956722026041/969323029*1364^(9/10) 6541090759296411 a001 365435296162/370248451*1364^(9/10) 6541090759296411 a001 139583862445/141422324*1364^(9/10) 6541090759296413 a001 53316291173/54018521*1364^(9/10) 6541090759296426 a001 20365011074/20633239*1364^(9/10) 6541090759296516 a001 7778742049/7881196*1364^(9/10) 6541090759297132 a001 2971215073/3010349*1364^(9/10) 6541090759301358 a001 1134903170/1149851*1364^(9/10) 6541090759330320 a001 433494437/439204*1364^(9/10) 6541090759528828 a001 165580141/167761*1364^(9/10) 6541090760889422 a001 63245986/64079*1364^(9/10) 6541090770215071 a001 24157817/24476*1364^(9/10) 6541090770476421 a007 Real Root Of -526*x^4+466*x^3-274*x^2+659*x+775 6541090797754057 a001 9227465/5778*1364^(5/6) 6541090815592363 k002 Champernowne real with 153/2*n^2+231/2*n-127 6541090817699011 m005 (1/2*Catalan-1/12)/(2*Pi-5/9) 6541090822700357 a001 39088169/2207*1364^(1/2) 6541090829547260 a007 Real Root Of -753*x^4+74*x^3-69*x^2+139*x+279 6541090834134026 a001 9227465/9349*1364^(9/10) 6541090842902980 a001 192900153618/1597*317811^(2/15) 6541090842904707 a001 28143753123/1597*591286729879^(2/15) 6541090842904707 a001 73681302247/1597*433494437^(2/15) 6541090852984545 m001 TwinPrimes^Mills-gamma(1) 6541090872086976 a007 Real Root Of 365*x^4-429*x^3+370*x^2-15*x-355 6541090895852812 r005 Im(z^2+c),c=-24/25+9/22*I,n=5 6541090897414915 m001 3^(1/3)/(MasserGramainDelta^ln(2+3^(1/2))) 6541090915622369 k002 Champernowne real with 77*n^2+114*n-126 6541090965096003 a001 24157817/15127*1364^(5/6) 6541090989510864 a001 63245986/39603*1364^(5/6) 6541090991303019 l006 ln(2847/5476) 6541090993072945 a001 165580141/103682*1364^(5/6) 6541090993592645 a001 433494437/271443*1364^(5/6) 6541090993668468 a001 1134903170/710647*1364^(5/6) 6541090993679531 a001 2971215073/1860498*1364^(5/6) 6541090993681145 a001 7778742049/4870847*1364^(5/6) 6541090993681380 a001 20365011074/12752043*1364^(5/6) 6541090993681415 a001 53316291173/33385282*1364^(5/6) 6541090993681420 a001 139583862445/87403803*1364^(5/6) 6541090993681420 a001 365435296162/228826127*1364^(5/6) 6541090993681421 a001 956722026041/599074578*1364^(5/6) 6541090993681421 a001 2504730781961/1568397607*1364^(5/6) 6541090993681421 a001 6557470319842/4106118243*1364^(5/6) 6541090993681421 a001 10610209857723/6643838879*1364^(5/6) 6541090993681421 a001 4052739537881/2537720636*1364^(5/6) 6541090993681421 a001 1548008755920/969323029*1364^(5/6) 6541090993681421 a001 591286729879/370248451*1364^(5/6) 6541090993681421 a001 225851433717/141422324*1364^(5/6) 6541090993681423 a001 86267571272/54018521*1364^(5/6) 6541090993681436 a001 32951280099/20633239*1364^(5/6) 6541090993681526 a001 12586269025/7881196*1364^(5/6) 6541090993682142 a001 4807526976/3010349*1364^(5/6) 6541090993686368 a001 1836311903/1149851*1364^(5/6) 6541090993715330 a001 701408733/439204*1364^(5/6) 6541090993913838 a001 267914296/167761*1364^(5/6) 6541090995274431 a001 102334155/64079*1364^(5/6) 6541091004600079 a001 39088169/24476*1364^(5/6) 6541091015652375 k002 Champernowne real with 155/2*n^2+225/2*n-125 6541091016769453 a007 Real Root Of 636*x^4+23*x^3-893*x^2-946*x+878 6541091037855690 a001 2178309/3571*1364^(29/30) 6541091053066706 a001 96450076809/305*233^(2/15) 6541091059739195 a007 Real Root Of -525*x^4+224*x^3+566*x^2-73*x-161 6541091062126840 a007 Real Root Of -551*x^4+464*x^3-964*x^2+41*x+670 6541091068519017 a001 14930352/9349*1364^(5/6) 6541091068758217 m001 (Bloch+PrimesInBinary)/(Chi(1)+polylog(4,1/2)) 6541091091291344 m001 (-Rabbit+Sierpinski)/(Magata-cos(1)) 6541091092663768 a007 Real Root Of -260*x^4+614*x^3-101*x^2+772*x-586 6541091099158355 r009 Im(z^3+c),c=-43/102+18/29*I,n=41 6541091115682381 k002 Champernowne real with 78*n^2+111*n-124 6541091129994136 a007 Real Root Of -98*x^4-546*x^3+734*x^2+876*x+920 6541091137542302 a007 Real Root Of 155*x^4-784*x^3+223*x^2-839*x-892 6541091148007002 a007 Real Root Of 885*x^4-702*x^3+741*x^2+516*x-338 6541091151281072 m005 (1/2*3^(1/2)-1/5)/(6/11*gamma-5/12) 6541091151375767 r005 Im(z^2+c),c=-19/30+34/125*I,n=11 6541091152819652 k001 Champernowne real with 437*n+217 6541091169266585 m001 (ZetaP(3)+ZetaQ(2))/(cos(1/5*Pi)+Khinchin) 6541091175346259 m001 2*Pi/GAMMA(5/6)*OrthogonalArrays^PlouffeB 6541091194515188 m001 (cos(1/12*Pi)+Champernowne)/(Landau-Rabbit) 6541091195563790 a007 Real Root Of 855*x^4+428*x^3+567*x^2+239*x-123 6541091197630185 a007 Real Root Of -595*x^4+879*x^3-445*x^2+530*x+892 6541091215712387 k002 Champernowne real with 157/2*n^2+219/2*n-123 6541091237681555 a001 987/2207*2139295485799^(1/2) 6541091243336914 h001 (7/8*exp(2)+1/4)/(2/7*exp(1)+1/4) 6541091266524075 a001 24157817/5778*1364^(7/10) 6541091272241091 a001 3524578/3571*1364^(9/10) 6541091272505776 r008 a(0)=6,K{-n^6,-1+7*n^3-8*n^2+3*n} 6541091281009916 a001 505019158607/4181*317811^(2/15) 6541091281011643 a001 73681302247/4181*591286729879^(2/15) 6541091281011643 a001 192900153618/4181*433494437^(2/15) 6541091294837832 a001 416020/161*322^(23/24) 6541091295129404 m001 Catalan^2*ln(GaussKuzminWirsing)/GAMMA(7/12) 6541091297273620 r005 Re(z^2+c),c=-3/4+17/94*I,n=7 6541091312398283 m001 1/Zeta(3)*Ei(1)^2*exp(cosh(1))^2 6541091315742393 k002 Champernowne real with 79*n^2+108*n-122 6541091344928861 a001 1322157322203/10946*317811^(2/15) 6541091344930588 a001 96450076809/5473*591286729879^(2/15) 6541091344930588 a001 505019158607/10946*433494437^(2/15) 6541091354254510 a001 3461452808002/28657*317811^(2/15) 6541091354256237 a001 505019158607/28657*591286729879^(2/15) 6541091354256237 a001 1322157322203/28657*433494437^(2/15) 6541091355615103 a001 9062201101803/75025*317811^(2/15) 6541091355616830 a001 1322157322203/75025*591286729879^(2/15) 6541091355616830 a001 3461452808002/75025*433494437^(2/15) 6541091355813611 a001 23725150497407/196418*317811^(2/15) 6541091355815338 a001 1730726404001/98209*591286729879^(2/15) 6541091355815338 a001 9062201101803/196418*433494437^(2/15) 6541091355844300 a001 9062201101803/514229*591286729879^(2/15) 6541091355844300 a001 23725150497407/514229*433494437^(2/15) 6541091355848526 a001 23725150497407/1346269*591286729879^(2/15) 6541091355851137 a001 3665737348901/208010*591286729879^(2/15) 6541091355862200 a001 5600748293801/317811*591286729879^(2/15) 6541091355862200 a001 505618944676/10959*433494437^(2/15) 6541091355936296 a001 14662949395604/121393*317811^(2/15) 6541091355938023 a001 2139295485799/121393*591286729879^(2/15) 6541091355938023 a001 5600748293801/121393*433494437^(2/15) 6541091356455997 a001 5600748293801/46368*317811^(2/15) 6541091356457724 a001 204284540899/11592*591286729879^(2/15) 6541091356457724 a001 2139295485799/46368*433494437^(2/15) 6541091360018077 a001 2139295485799/17711*317811^(2/15) 6541091360019804 a001 1568437211/89*591286729879^(2/15) 6541091360019804 a001 817138163596/17711*433494437^(2/15) 6541091373917185 a007 Real Root Of -891*x^4+358*x^3-705*x^2+75*x+614 6541091377517390 r005 Im(z^2+c),c=-23/34+9/86*I,n=44 6541091384432942 a001 817138163596/6765*317811^(2/15) 6541091384434669 a001 119218851371/6765*591286729879^(2/15) 6541091384434669 a001 28374454999/615*433494437^(2/15) 6541091401621458 p004 log(32573/47) 6541091415772399 k002 Champernowne real with 159/2*n^2+213/2*n-121 6541091433866044 a001 63245986/15127*1364^(7/10) 6541091437455458 a007 Real Root Of -330*x^4+381*x^3-272*x^2-710*x-181 6541091455150199 m001 1/BesselJ(0,1)^2*ln(FeigenbaumB)^2/Zeta(1,2)^2 6541091458280909 a001 165580141/39603*1364^(7/10) 6541091461842990 a001 433494437/103682*1364^(7/10) 6541091462362690 a001 1134903170/271443*1364^(7/10) 6541091462438514 a001 2971215073/710647*1364^(7/10) 6541091462449576 a001 7778742049/1860498*1364^(7/10) 6541091462451190 a001 20365011074/4870847*1364^(7/10) 6541091462451425 a001 53316291173/12752043*1364^(7/10) 6541091462451460 a001 139583862445/33385282*1364^(7/10) 6541091462451465 a001 365435296162/87403803*1364^(7/10) 6541091462451466 a001 956722026041/228826127*1364^(7/10) 6541091462451466 a001 2504730781961/599074578*1364^(7/10) 6541091462451466 a001 6557470319842/1568397607*1364^(7/10) 6541091462451466 a001 10610209857723/2537720636*1364^(7/10) 6541091462451466 a001 4052739537881/969323029*1364^(7/10) 6541091462451466 a001 1548008755920/370248451*1364^(7/10) 6541091462451466 a001 591286729879/141422324*1364^(7/10) 6541091462451468 a001 225851433717/54018521*1364^(7/10) 6541091462451481 a001 86267571272/20633239*1364^(7/10) 6541091462451571 a001 32951280099/7881196*1364^(7/10) 6541091462452188 a001 12586269025/3010349*1364^(7/10) 6541091462456413 a001 4807526976/1149851*1364^(7/10) 6541091462485375 a001 1836311903/439204*1364^(7/10) 6541091462677671 r005 Im(z^2+c),c=-79/114+4/33*I,n=48 6541091462683883 a001 701408733/167761*1364^(7/10) 6541091464044477 a001 267914296/64079*1364^(7/10) 6541091473370125 a001 102334155/24476*1364^(7/10) 6541091474826725 a007 Real Root Of -564*x^4+878*x^3-696*x^2+904*x-436 6541091477885047 a007 Real Root Of 932*x^4-313*x^3-60*x^2-866*x-799 6541091481939889 l006 ln(3722/7159) 6541091482955320 r005 Im(z^2+c),c=-67/102+32/59*I,n=5 6541091506625973 a001 1597*1364^(5/6) 6541091513148757 a007 Real Root Of 822*x^4-424*x^3-320*x^2-894*x-717 6541091515802405 k002 Champernowne real with 80*n^2+105*n-120 6541091525855420 a001 165580141/2207*1364^(3/10) 6541091534609449 r005 Re(z^2+c),c=-29/40+2/19*I,n=5 6541091537289073 a001 4181*1364^(7/10) 6541091550760784 a007 Real Root Of 288*x^4-203*x^3-558*x^2-624*x+651 6541091551774922 a001 312119004989/2584*317811^(2/15) 6541091551776649 a001 11384387281/646*591286729879^(2/15) 6541091551776649 a001 119218851371/2584*433494437^(2/15) 6541091577145913 a007 Real Root Of -537*x^4+972*x^3+702*x^2-312*x-270 6541091590734437 g001 GAMMA(5/7,43/107) 6541091607124808 l006 ln(8092/8639) 6541091615832411 k002 Champernowne real with 161/2*n^2+207/2*n-119 6541091622391720 a001 3524578/843*843^(3/4) 6541091627942550 a007 Real Root Of 6*x^4-503*x^3+79*x^2-627*x+516 6541091632499450 a007 Real Root Of -331*x^4+455*x^3+990*x^2+371*x-733 6541091636104750 m001 (ErdosBorwein+Stephens)/(Shi(1)+BesselI(0,2)) 6541091671700828 r005 Im(z^2+c),c=-37/58+25/57*I,n=60 6541091693577661 r005 Re(z^2+c),c=-47/98+40/61*I,n=7 6541091712403163 k002 Champernowne real with 7/2*n^2+75/2*n-35 6541091715862417 k002 Champernowne real with 81*n^2+102*n-118 6541091715920638 a005 (1/cos(3/34*Pi))^699 6541091718067545 a007 Real Root Of -624*x^4+134*x^3+58*x^2-272*x-51 6541091722443264 k003 Champernowne real with 1/6*n^3+5/2*n^2+118/3*n-36 6541091722471614 m004 5/3-(7*Cosh[Sqrt[5]*Pi])/6 6541091732483364 k003 Champernowne real with 1/3*n^3+3/2*n^2+247/6*n-37 6541091742523464 k003 Champernowne real with 1/2*n^3+1/2*n^2+43*n-38 6541091752563564 k003 Champernowne real with 2/3*n^3-1/2*n^2+269/6*n-39 6541091762603664 k003 Champernowne real with 5/6*n^3-3/2*n^2+140/3*n-40 6541091772643765 k003 Champernowne real with n^3-5/2*n^2+97/2*n-41 6541091782683865 k003 Champernowne real with 7/6*n^3-7/2*n^2+151/3*n-42 6541091785799605 l006 ln(4597/8842) 6541091792723965 k003 Champernowne real with 4/3*n^3-9/2*n^2+313/6*n-43 6541091793267827 a007 Real Root Of 327*x^4-581*x^3+607*x^2+809*x+47 6541091793672621 m005 (1/2*gamma-1/8)/(8/11*5^(1/2)+7/8) 6541091798088396 r002 17th iterates of z^2 + 6541091802764065 k003 Champernowne real with 3/2*n^3-11/2*n^2+54*n-44 6541091815892423 k002 Champernowne real with 163/2*n^2+201/2*n-117 6541091816563398 m005 (1/3*exp(1)+2/3)/(1/5*gamma+1/8) 6541091828206372 r005 Re(z^2+c),c=-41/34+7/20*I,n=5 6541091831529991 p001 sum((-1)^n/(155*n+147)/(12^n),n=0..infinity) 6541091832884366 k003 Champernowne real with 2*n^3-17/2*n^2+119/2*n-47 6541091844523567 a007 Real Root Of 639*x^4-624*x^3-318*x^2-230*x-306 6541091863004666 k003 Champernowne real with 5/2*n^3-23/2*n^2+65*n-50 6541091867414174 m001 1/GAMMA(1/24)/ln(Trott)^2*Pi 6541091869117335 a005 (1/cos(47/162*Pi))^126 6541091877177484 m001 GAMMA(1/6)*Lehmer/exp(cos(Pi/5))^2 6541091884799212 r005 Re(z^2+c),c=-25/38+8/31*I,n=10 6541091893124967 k003 Champernowne real with 3*n^3-29/2*n^2+141/2*n-53 6541091909316306 m008 (1/4*Pi^2-5/6)/(4/5*Pi^5+5) 6541091914090312 r002 9th iterates of z^2 + 6541091915922429 k002 Champernowne real with 82*n^2+99*n-116 6541091923245268 k003 Champernowne real with 7/2*n^3-35/2*n^2+76*n-56 6541091937215885 p001 sum(1/(608*n+153)/(256^n),n=0..infinity) 6541091953365568 k003 Champernowne real with 4*n^3-41/2*n^2+163/2*n-59 6541091969679182 a001 34111385/1926*1364^(1/2) 6541091975396090 a001 14930352/3571*1364^(7/10) 6541091983485869 k003 Champernowne real with 9/2*n^3-47/2*n^2+87*n-62 6541091994625503 a001 433494437/2207*1364^(1/6) 6541092013606169 k003 Champernowne real with 5*n^3-53/2*n^2+185/2*n-65 6541092015952435 k002 Champernowne real with 165/2*n^2+195/2*n-115 6541092031557687 a007 Real Root Of -561*x^4-460*x^3-816*x^2+671*x+762 6541092042295715 r002 40th iterates of z^2 + 6541092043726461 k003 Champernowne real with 11/2*n^3-59/2*n^2+98*n-68 6541092059837073 m001 (Landau+TreeGrowth2nd)/(ln(2)/ln(10)+Zeta(3)) 6541092073846761 k003 Champernowne real with 6*n^3-65/2*n^2+207/2*n-71 6541092082735032 a001 514229/2207*3571^(33/34) 6541092088709427 a007 Real Root Of -989*x^4+152*x^3+644*x^2+402*x+211 6541092093611927 m001 BesselK(0,1)*Magata/ln(GAMMA(5/24))^2 6541092103967061 k003 Champernowne real with 13/2*n^3-71/2*n^2+109*n-74 6541092112901411 a001 832040/2207*3571^(31/34) 6541092115982441 k002 Champernowne real with 83*n^2+96*n-114 6541092119720788 r002 37th iterates of z^2 + 6541092134087361 k003 Champernowne real with 7*n^3-77/2*n^2+229/2*n-77 6541092134552974 r005 Im(z^2+c),c=17/94+1/28*I,n=7 6541092135340553 a005 (1/cos(4/205*Pi))^999 6541092137021171 a001 267914296/15127*1364^(1/2) 6541092143077237 a001 1346269/2207*3571^(29/34) 6541092153019682 k001 Champernowne real with 438*n+216 6541092161436039 a001 17711*1364^(1/2) 6541092163358265 m005 (21/4+1/4*5^(1/2))/(8/9*gamma+3/8) 6541092164207661 k003 Champernowne real with 15/2*n^3-83/2*n^2+120*n-80 6541092164998120 a001 1836311903/103682*1364^(1/2) 6541092165517821 a001 1602508992/90481*1364^(1/2) 6541092165593644 a001 12586269025/710647*1364^(1/2) 6541092165604707 a001 10983760033/620166*1364^(1/2) 6541092165606321 a001 86267571272/4870847*1364^(1/2) 6541092165606556 a001 75283811239/4250681*1364^(1/2) 6541092165606591 a001 591286729879/33385282*1364^(1/2) 6541092165606596 a001 516002918640/29134601*1364^(1/2) 6541092165606596 a001 4052739537881/228826127*1364^(1/2) 6541092165606596 a001 3536736619241/199691526*1364^(1/2) 6541092165606596 a001 6557470319842/370248451*1364^(1/2) 6541092165606597 a001 2504730781961/141422324*1364^(1/2) 6541092165606599 a001 956722026041/54018521*1364^(1/2) 6541092165606612 a001 365435296162/20633239*1364^(1/2) 6541092165606702 a001 139583862445/7881196*1364^(1/2) 6541092165607318 a001 53316291173/3010349*1364^(1/2) 6541092165611544 a001 20365011074/1149851*1364^(1/2) 6541092165640506 a001 7778742049/439204*1364^(1/2) 6541092165839014 a001 2971215073/167761*1364^(1/2) 6541092167199608 a001 1134903170/64079*1364^(1/2) 6541092173249455 a001 987*3571^(27/34) 6541092176525257 a001 433494437/24476*1364^(1/2) 6541092177004493 r009 Im(z^3+c),c=-19/50+17/27*I,n=28 6541092180556357 a001 365435296162/47*18^(14/19) 6541092194327961 k003 Champernowne real with 8*n^3-89/2*n^2+251/2*n-83 6541092195741464 r002 5th iterates of z^2 + 6541092206707643 a001 9062201101803/233*2^(3/4) 6541092216012447 k002 Champernowne real with 167/2*n^2+189/2*n-113 6541092224448261 k003 Champernowne real with 17/2*n^3-95/2*n^2+131*n-86 6541092229010557 a001 701408733/2207*1364^(1/10) 6541092240444212 a001 165580141/9349*1364^(1/2) 6541092254568561 k003 Champernowne real with 9*n^3-101/2*n^2+273/2*n-89 6541092277100704 m001 Si(Pi)^gamma*sin(1/12*Pi)^gamma 6541092277100704 m001 sin(Pi/12)^gamma*Si(Pi)^gamma 6541092277419954 a007 Real Root Of 544*x^4+585*x^3+343*x^2-713*x-549 6541092279849296 a001 726103/281*843^(23/28) 6541092316042453 k002 Champernowne real with 84*n^2+93*n-112 6541092319900898 m005 (1/2*Zeta(3)+4/11)/(2/5*2^(1/2)+10/11) 6541092324115813 a001 24157817/2207*3571^(1/2) 6541092331948337 r002 6th iterates of z^2 + 6541092349443619 a007 Real Root Of 184*x^4-311*x^3+704*x^2+483*x-106 6541092358378641 a003 cos(Pi*10/71)/cos(Pi*31/68) 6541092384660352 a001 329/1926*7881196^(21/22) 6541092384660439 a001 329/1926*20633239^(9/10) 6541092384660452 a001 329/1926*2537720636^(7/10) 6541092384660452 a001 329/1926*17393796001^(9/14) 6541092384660452 a001 329/1926*14662949395604^(1/2) 6541092384660452 a001 329/1926*505019158607^(9/16) 6541092384660452 a001 329/1926*192900153618^(7/12) 6541092384660452 a001 329/1926*599074578^(3/4) 6541092384660458 a001 329/1926*33385282^(7/8) 6541092384660634 a001 2584/2207*7881196^(5/6) 6541092384660710 a001 2584/2207*20633239^(11/14) 6541092384660722 a001 2584/2207*2537720636^(11/18) 6541092384660722 a001 2584/2207*312119004989^(1/2) 6541092384660722 a001 2584/2207*3461452808002^(11/24) 6541092384660722 a001 2584/2207*28143753123^(11/20) 6541092384660722 a001 2584/2207*1568397607^(5/8) 6541092384660722 a001 2584/2207*228826127^(11/16) 6541092384662454 a001 2584/2207*1860498^(11/12) 6541092415576771 m001 cos(1/12*Pi)^ZetaQ(4)/GAMMA(7/12) 6541092416072459 k002 Champernowne real with 169/2*n^2+183/2*n-111 6541092416448250 a007 Real Root Of -346*x^4+989*x^3-204*x^2+192*x+553 6541092417222536 a007 Real Root Of -562*x^4+415*x^3-515*x^2+481*x+754 6541092421536187 a001 13201/329*55^(5/41) 6541092457823220 r005 Im(z^2+c),c=-13/74+28/43*I,n=38 6541092473937837 a008 Real Root of x^2-x-4344 6541092474451238 r005 Re(z^2+c),c=-17/94+23/38*I,n=3 6541092483136209 r005 Im(z^2+c),c=-23/62+38/63*I,n=22 6541092485978279 m001 (-HardyLittlewoodC4+Niven)/(Pi^(1/2)-exp(Pi)) 6541092507753855 a001 196418/2207*9349^(37/38) 6541092511645816 a001 317811/2207*9349^(35/38) 6541092515602537 a001 514229/2207*9349^(33/38) 6541092516102465 k002 Champernowne real with 85*n^2+90*n-110 6541092519534522 a001 832040/2207*9349^(31/38) 6541092523475956 a001 1346269/2207*9349^(29/38) 6541092527413780 a001 987*9349^(27/38) 6541092543169339 a001 14930352/2207*9349^(1/2) 6541092551970702 a001 6765/2207*439204^(17/18) 6541092552002646 a001 6765/2207*7881196^(17/22) 6541092552002727 a001 6765/2207*45537549124^(1/2) 6541092552002732 a001 6765/2207*33385282^(17/24) 6541092552002758 a001 6765/2207*12752043^(3/4) 6541092552004334 a001 6765/2207*1860498^(17/20) 6541092565206939 m005 (1/3*3^(1/2)-2/5)/(1/6*3^(1/2)-3) 6541092570161878 a001 75025/2207*24476^(41/42) 6541092570360622 a001 121393/2207*24476^(13/14) 6541092571003243 a001 196418/2207*24476^(37/42) 6541092571476318 a001 317811/2207*24476^(5/6) 6541092572014153 a001 514229/2207*24476^(11/14) 6541092572527253 a001 832040/2207*24476^(31/42) 6541092573049801 a001 1346269/2207*24476^(29/42) 6541092573568739 a001 987*24476^(9/14) 6541092575128839 a001 9227465/2207*24476^(1/2) 6541092576417597 a001 17711/2207*6643838879^(1/2) 6541092576688632 a001 39088169/2207*24476^(5/14) 6541092578248441 a001 165580141/2207*24476^(3/14) 6541092578768378 a001 267914296/2207*24476^(1/6) 6541092579791609 a001 5702887/2207*64079^(1/2) 6541092579808250 a001 701408733/2207*24476^(1/14) 6541092579979403 a001 21/2206*2537720636^(5/6) 6541092579979403 a001 21/2206*312119004989^(15/22) 6541092579979403 a001 21/2206*3461452808002^(5/8) 6541092579979403 a001 21/2206*28143753123^(3/4) 6541092579979403 a001 21/2206*228826127^(15/16) 6541092579979678 a001 46368/2207*969323029^(1/2) 6541092580412510 a001 317811/2207*167761^(7/10) 6541092580472051 a001 3524578/2207*167761^(1/2) 6541092580474889 a001 121393/2207*439204^(13/18) 6541092580499317 a001 121393/2207*7881196^(13/22) 6541092580499379 a001 121393/2207*141422324^(1/2) 6541092580499379 a001 121393/2207*73681302247^(3/8) 6541092580499382 a001 121393/2207*33385282^(13/24) 6541092580500607 a001 121393/2207*1860498^(13/20) 6541092580518429 a001 39088169/2207*167761^(3/10) 6541092580564913 a001 433494437/2207*167761^(1/10) 6541092580565961 a001 121393/2207*271443^(3/4) 6541092580570924 a001 987*439204^(1/2) 6541092580572380 a001 514229/2207*439204^(11/18) 6541092580574983 a001 9227465/2207*439204^(7/18) 6541092580575195 a001 317811/2207*20633239^(1/2) 6541092580575202 a001 317811/2207*2537720636^(7/18) 6541092580575202 a001 317811/2207*17393796001^(5/14) 6541092580575202 a001 317811/2207*312119004989^(7/22) 6541092580575202 a001 317811/2207*14662949395604^(5/18) 6541092580575202 a001 317811/2207*505019158607^(5/16) 6541092580575202 a001 317811/2207*28143753123^(7/20) 6541092580575202 a001 317811/2207*599074578^(5/12) 6541092580575202 a001 317811/2207*228826127^(7/16) 6541092580576305 a001 317811/2207*1860498^(7/12) 6541092580578735 a001 39088169/2207*439204^(5/18) 6541092580582503 a001 165580141/2207*439204^(1/6) 6541092580583298 a001 317811/2207*710647^(5/8) 6541092580585904 a001 832040/2207*3010349^(1/2) 6541092580585989 a001 329/620166*1322157322203^(3/4) 6541092580586265 a001 832040/2207*9062201101803^(1/4) 6541092580586271 a001 701408733/2207*439204^(1/18) 6541092580586403 a001 1346269/2207*1149851^(1/2) 6541092580587603 a001 987/4870847*17393796001^(13/14) 6541092580587603 a001 987/4870847*14662949395604^(13/18) 6541092580587603 a001 987/4870847*505019158607^(13/16) 6541092580587603 a001 987/4870847*73681302247^(7/8) 6541092580587836 a001 987*7881196^(9/22) 6541092580587839 a001 329/4250681*312119004989^(19/22) 6541092580587839 a001 329/4250681*817138163596^(5/6) 6541092580587839 a001 329/4250681*3461452808002^(19/24) 6541092580587839 a001 329/4250681*28143753123^(19/20) 6541092580587873 a001 141/4769326*312119004989^(9/10) 6541092580587873 a001 141/4769326*14662949395604^(11/14) 6541092580587873 a001 141/4769326*192900153618^(11/12) 6541092580587879 a001 141/224056801*3461452808002^(23/24) 6541092580587879 a001 329/1368706081*14662949395604^(17/18) 6541092580587879 a001 987*2537720636^(3/10) 6541092580587879 a001 987*14662949395604^(3/14) 6541092580587879 a001 987*192900153618^(1/4) 6541092580587879 a001 987/2537720636*14662949395604^(13/14) 6541092580587879 a001 987/141422324*312119004989^(21/22) 6541092580587879 a001 987/141422324*14662949395604^(5/6) 6541092580587879 a001 987/141422324*505019158607^(15/16) 6541092580587881 a001 987*33385282^(3/8) 6541092580587984 a001 987/7881196*9062201101803^(3/4) 6541092580588114 a001 5702887/2207*4106118243^(1/4) 6541092580588130 a001 39088169/2207*7881196^(5/22) 6541092580588136 a001 9227465/2207*7881196^(7/22) 6541092580588137 a001 102334155/2207*7881196^(1/6) 6541092580588140 a001 165580141/2207*7881196^(3/22) 6541092580588149 a001 14930352/2207*817138163596^(1/6) 6541092580588149 a001 14930352/2207*87403803^(1/4) 6541092580588150 a001 701408733/2207*7881196^(1/22) 6541092580588150 a001 39088169/2207*20633239^(3/14) 6541092580588153 a001 267914296/2207*20633239^(1/10) 6541092580588153 a001 433494437/2207*20633239^(1/14) 6541092580588154 a001 39088169/2207*2537720636^(1/6) 6541092580588154 a001 39088169/2207*312119004989^(3/22) 6541092580588154 a001 39088169/2207*28143753123^(3/20) 6541092580588154 a001 39088169/2207*228826127^(3/16) 6541092580588154 a001 102334155/2207*312119004989^(1/10) 6541092580588154 a001 102334155/2207*1568397607^(1/8) 6541092580588155 a001 267914296/2207*17393796001^(1/14) 6541092580588155 a001 267914296/2207*14662949395604^(1/18) 6541092580588155 a001 267914296/2207*505019158607^(1/16) 6541092580588155 a001 267914296/2207*599074578^(1/12) 6541092580588155 a001 433494437/2207*2537720636^(1/18) 6541092580588155 a001 433494437/2207*312119004989^(1/22) 6541092580588155 a001 433494437/2207*28143753123^(1/20) 6541092580588155 a001 433494437/2207*228826127^(1/16) 6541092580588155 a001 165580141/2207*2537720636^(1/10) 6541092580588155 a001 165580141/2207*14662949395604^(1/14) 6541092580588155 a001 165580141/2207*192900153618^(1/12) 6541092580588155 a001 701408733/2207*33385282^(1/24) 6541092580588155 a001 63245986/2207*141422324^(1/6) 6541092580588155 a001 63245986/2207*73681302247^(1/8) 6541092580588155 a001 39088169/2207*33385282^(5/24) 6541092580588155 a001 165580141/2207*33385282^(1/8) 6541092580588157 a001 24157817/2207*45537549124^(1/6) 6541092580588165 a001 9227465/2207*20633239^(3/10) 6541092580588167 a001 24157817/2207*12752043^(1/4) 6541092580588170 a001 9227465/2207*17393796001^(3/14) 6541092580588170 a001 9227465/2207*14662949395604^(1/6) 6541092580588170 a001 9227465/2207*599074578^(1/4) 6541092580588172 a001 9227465/2207*33385282^(7/24) 6541092580588249 a001 701408733/2207*1860498^(1/20) 6541092580588254 a001 3524578/2207*20633239^(5/14) 6541092580588260 a001 3524578/2207*2537720636^(5/18) 6541092580588260 a001 3524578/2207*312119004989^(5/22) 6541092580588260 a001 3524578/2207*3461452808002^(5/24) 6541092580588260 a001 3524578/2207*28143753123^(1/4) 6541092580588260 a001 3524578/2207*228826127^(5/16) 6541092580588312 a001 433494437/2207*1860498^(1/12) 6541092580588438 a001 165580141/2207*1860498^(3/20) 6541092580588626 a001 39088169/2207*1860498^(1/4) 6541092580588729 a001 987*1860498^(9/20) 6541092580588831 a001 9227465/2207*1860498^(7/20) 6541092580588876 a001 1346269/2207*1322157322203^(1/4) 6541092580589047 a001 3524578/2207*1860498^(5/12) 6541092580589774 a001 267914296/2207*710647^(1/8) 6541092580592826 a001 987/1149851*2537720636^(17/18) 6541092580592826 a001 987/1149851*45537549124^(5/6) 6541092580592826 a001 987/1149851*312119004989^(17/22) 6541092580592826 a001 987/1149851*3461452808002^(17/24) 6541092580592826 a001 987/1149851*28143753123^(17/20) 6541092580593027 a001 9227465/2207*710647^(3/8) 6541092580593049 a001 514229/2207*7881196^(1/2) 6541092580593102 a001 514229/2207*312119004989^(3/10) 6541092580593102 a001 514229/2207*1568397607^(3/8) 6541092580593105 a001 514229/2207*33385282^(11/24) 6541092580594141 a001 514229/2207*1860498^(11/20) 6541092580610349 a001 63245986/2207*271443^(1/4) 6541092580621788 a001 987/439204*2537720636^(9/10) 6541092580621788 a001 987/439204*14662949395604^(9/14) 6541092580621788 a001 987/439204*192900153618^(3/4) 6541092580622063 a001 196418/2207*54018521^(1/2) 6541092580626184 a001 701408733/2207*103682^(1/16) 6541092580702244 a001 165580141/2207*103682^(3/16) 6541092580778303 a001 39088169/2207*103682^(5/16) 6541092580820296 a001 987/167761*17393796001^(11/14) 6541092580820296 a001 987/167761*14662949395604^(11/18) 6541092580820296 a001 987/167761*505019158607^(11/16) 6541092580820296 a001 987/167761*1568397607^(7/8) 6541092580820296 a001 987/167761*599074578^(11/12) 6541092580820572 a001 75025/2207*370248451^(1/2) 6541092580854378 a001 9227465/2207*103682^(7/16) 6541092580930147 a001 987*103682^(9/16) 6541092580993766 a001 121393/2207*103682^(13/16) 6541092581011429 a001 514229/2207*103682^(11/16) 6541092581630794 a001 102334155/2207*39603^(1/4) 6541092581971990 a001 28657/2207*167761^(9/10) 6541092582152908 a001 28657/2207*439204^(5/6) 6541092582181094 a001 28657/2207*7881196^(15/22) 6541092582181156 a001 28657/2207*20633239^(9/14) 6541092582181166 a001 28657/2207*2537720636^(1/2) 6541092582181166 a001 28657/2207*312119004989^(9/22) 6541092582181166 a001 28657/2207*14662949395604^(5/14) 6541092582181166 a001 28657/2207*192900153618^(5/12) 6541092582181166 a001 28657/2207*28143753123^(9/20) 6541092582181166 a001 28657/2207*228826127^(9/16) 6541092582181170 a001 28657/2207*33385282^(5/8) 6541092582182583 a001 28657/2207*1860498^(3/4) 6541092582751612 a001 28657/2207*103682^(15/16) 6541092583147085 a001 987*39603^(27/44) 6541092583337653 a001 1346269/2207*39603^(29/44) 6541092583524612 a001 832040/2207*39603^(31/44) 6541092583721020 a001 514229/2207*39603^(3/4) 6541092583892691 a001 317811/2207*39603^(35/44) 6541092584055451 a001 46368/2207*39603^(43/44) 6541092584129124 a001 196418/2207*39603^(37/44) 6541092584161333 a001 433494437/2207*15127^(1/8) 6541092584196010 a001 121393/2207*39603^(39/44) 6541092584706773 a001 75025/2207*39603^(41/44) 6541092591307689 a001 39088169/2207*15127^(3/8) 6541092591506540 a001 987/24476*4106118243^(3/4) 6541092591506546 a001 987/24476*33385282^(23/24) 6541092591506805 a001 10946/2207*20633239^(7/10) 6541092591506816 a001 10946/2207*17393796001^(1/2) 6541092591506816 a001 10946/2207*14662949395604^(7/18) 6541092591506816 a001 10946/2207*505019158607^(7/16) 6541092591506816 a001 10946/2207*599074578^(7/12) 6541092591518149 a001 10946/2207*710647^(7/8) 6541092596915440 a001 701408733/2207*5778^(1/12) 6541092598454152 a001 3524578/2207*15127^(5/8) 6541092599883042 a001 987*15127^(27/40) 6541092601313311 a001 1346269/2207*15127^(29/40) 6541092602739971 a001 832040/2207*15127^(31/40) 6541092603195698 r005 Im(z^2+c),c=-15/26+13/109*I,n=57 6541092604176079 a001 514229/2207*15127^(33/40) 6541092604457401 a001 521/21*987^(28/59) 6541092605047392 a001 267914296/843*322^(1/8) 6541092605587451 a001 317811/2207*15127^(7/8) 6541092607063584 a001 196418/2207*15127^(37/40) 6541092608370171 a001 121393/2207*15127^(39/40) 6541092616132471 k002 Champernowne real with 171/2*n^2+177/2*n-109 6541092629570012 a001 165580141/2207*5778^(1/4) 6541092645031202 m001 (LandauRamanujan+Totient)/(arctan(1/3)-Cahen) 6541092653426103 m009 (16/3*Catalan+2/3*Pi^2-6)/(1/4*Psi(1,3/4)+1/5) 6541092655425485 a001 987/9349*20633239^(13/14) 6541092655425499 a001 987/9349*141422324^(5/6) 6541092655425500 a001 987/9349*2537720636^(13/18) 6541092655425500 a001 987/9349*312119004989^(13/22) 6541092655425500 a001 987/9349*3461452808002^(13/24) 6541092655425500 a001 987/9349*73681302247^(5/8) 6541092655425500 a001 987/9349*28143753123^(13/20) 6541092655425500 a001 987/9349*228826127^(13/16) 6541092655425774 a001 4181/2207*119218851371^(1/2) 6541092657341049 s002 sum(A062405[n]/(n*pi^n+1),n=1..infinity) 6541092662224583 a001 39088169/2207*5778^(5/12) 6541092672834368 a001 433494437/5778*1364^(3/10) 6541092678551282 a001 63245986/3571*1364^(1/2) 6541092679883012 a001 521/377*4181^(11/59) 6541092680574916 r005 Re(z^2+c),c=11/102+29/61*I,n=39 6541092694879171 a001 9227465/2207*5778^(7/12) 6541092698754144 a001 119218851371/987*317811^(2/15) 6541092698755871 a001 17393796001/987*591286729879^(2/15) 6541092698755871 a001 45537549124/987*433494437^(2/15) 6541092716162477 k002 Champernowne real with 86*n^2+87*n-108 6541092717721663 a005 (1/sin(85/211*Pi))^137 6541092721475653 g006 Psi(1,3/7)-Psi(1,5/8)-Psi(1,1/8)-Psi(1,2/3) 6541092722515080 a007 Real Root Of 847*x^4-836*x^3-672*x^2-247*x+528 6541092727533453 a001 987*5778^(3/4) 6541092731390439 m002 Cosh[Pi]/2+4/(5*ProductLog[Pi]) 6541092732465932 h001 (-7*exp(3/2)-5)/(-9*exp(1/3)+7) 6541092738419308 a001 1346269/2207*5778^(29/36) 6541092746574962 a007 Real Root Of 575*x^4-817*x^3+436*x^2+282*x-336 6541092749301554 a001 832040/2207*5778^(31/36) 6541092760193248 a001 514229/2207*5778^(11/12) 6541092760545477 a007 Real Root Of 790*x^4-826*x^3+470*x^2+434*x-293 6541092763644139 m001 exp(CopelandErdos)^2*Artin^2*cos(1)^2 6541092771060206 a001 317811/2207*5778^(35/36) 6541092816192483 k002 Champernowne real with 173/2*n^2+171/2*n-107 6541092822578876 m001 LandauRamanujan2nd^Otter+ZetaP(2) 6541092826061045 m001 (Psi(2,1/3)-cos(1/12*Pi))/(-Robbin+Stephens) 6541092840176374 a001 1134903170/15127*1364^(3/10) 6541092864591245 a001 2971215073/39603*1364^(3/10) 6541092868153327 a001 7778742049/103682*1364^(3/10) 6541092868673027 a001 20365011074/271443*1364^(3/10) 6541092868748851 a001 53316291173/710647*1364^(3/10) 6541092868759913 a001 139583862445/1860498*1364^(3/10) 6541092868761527 a001 365435296162/4870847*1364^(3/10) 6541092868761763 a001 956722026041/12752043*1364^(3/10) 6541092868761797 a001 2504730781961/33385282*1364^(3/10) 6541092868761802 a001 6557470319842/87403803*1364^(3/10) 6541092868761803 a001 10610209857723/141422324*1364^(3/10) 6541092868761805 a001 4052739537881/54018521*1364^(3/10) 6541092868761818 a001 140728068720/1875749*1364^(3/10) 6541092868761908 a001 591286729879/7881196*1364^(3/10) 6541092868762525 a001 225851433717/3010349*1364^(3/10) 6541092868766750 a001 86267571272/1149851*1364^(3/10) 6541092868795712 a001 32951280099/439204*1364^(3/10) 6541092868994220 a001 75025*1364^(3/10) 6541092870354814 a001 4807526976/64079*1364^(3/10) 6541092879680465 a001 1836311903/24476*1364^(3/10) 6541092885717671 m005 (1/2*5^(1/2)-11/12)/(7/8*exp(1)+7/10) 6541092887397202 a007 Real Root Of 108*x^4+61*x^3+722*x^2-447*x-604 6541092904274799 a003 cos(Pi*16/105)*sin(Pi*24/91) 6541092907221384 r009 Im(z^3+c),c=-13/54+29/41*I,n=4 6541092914251954 a007 Real Root Of -56*x^4-440*x^3-636*x^2-937*x+457 6541092916222489 k002 Champernowne real with 87*n^2+84*n-106 6541092927291277 r005 Re(z^2+c),c=-9/10+40/233*I,n=54 6541092928093449 a007 Real Root Of 757*x^4-868*x^3+50*x^2-766*x+584 6541092937308317 a001 1346269/843*843^(25/28) 6541092941557876 a007 Real Root Of 84*x^4+489*x^3-437*x^2-146*x+824 6541092943599427 a001 701408733/9349*1364^(3/10) 6541092944586067 a007 Real Root Of 156*x^4-233*x^3-875*x^2-772*x+916 6541092944817570 r002 31i'th iterates of 2*x/(1-x^2) of 6541092981064918 a007 Real Root Of -766*x^4+81*x^3-959*x^2+362*x+810 6541092996968897 m006 (1/4*ln(Pi)+4/5)/(3/4*exp(Pi)-3/4) 6541093013251437 a007 Real Root Of -703*x^4+663*x^3+667*x^2+228*x+178 6541093016252495 k002 Champernowne real with 175/2*n^2+165/2*n-105 6541093034766664 m004 (25*Pi*Csch[Sqrt[5]*Pi]^2)/Log[Sqrt[5]*Pi]^2 6541093056203223 a007 Real Root Of -694*x^4+231*x^3-721*x^2-251*x+336 6541093071936069 r005 Im(z^2+c),c=1/58+27/43*I,n=15 6541093078331915 l006 ln(875/1683) 6541093081178819 r009 Im(z^3+c),c=-9/16+23/64*I,n=44 6541093093532596 a001 987/3571*5600748293801^(1/2) 6541093093532741 a001 1597/2207*7881196^(19/22) 6541093093532832 a001 1597/2207*817138163596^(1/2) 6541093093532832 a001 1597/2207*87403803^(3/4) 6541093093532836 a001 1597/2207*33385282^(19/24) 6541093093534627 a001 1597/2207*1860498^(19/20) 6541093096718337 a003 sin(Pi*3/70)/cos(Pi*33/76) 6541093099577885 r008 a(0)=0,K{-n^6,-17-24*n-20*n^2+46*n^3} 6541093104338842 r002 2th iterates of z^2 + 6541093116282501 k002 Champernowne real with 88*n^2+81*n-104 6541093128644909 p001 sum((-1)^n/(434*n+37)/n/(3^n),n=1..infinity) 6541093132721805 m001 (PlouffeB-Rabbit)/(GolombDickman+Otter) 6541093136610407 m001 Ei(1,1)^Shi(1)/HardyLittlewoodC4 6541093139937881 a007 Real Root Of -435*x^4+326*x^3-855*x^2+453*x+833 6541093141604533 a001 567451585/2889*1364^(1/6) 6541093151626577 r005 Re(z^2+c),c=19/110+23/53*I,n=17 6541093153219712 k001 Champernowne real with 439*n+215 6541093160901578 a007 Real Root Of 612*x^4-573*x^3-472*x^2-779*x-580 6541093162636262 r005 Re(z^2+c),c=-51/82+20/51*I,n=14 6541093216312507 k002 Champernowne real with 177/2*n^2+159/2*n-103 6541093229709852 a001 1346269/5778*3571^(33/34) 6541093230655266 h001 (9/10*exp(1)+4/7)/(6/11*exp(2)+7/12) 6541093235138718 m001 (Ei(1)+BesselI(1,1))/(Salem+Sierpinski) 6541093243507655 m001 Lehmer*exp(FeigenbaumDelta)/cos(Pi/12) 6541093245611360 h001 (8/11*exp(2)+8/9)/(1/11*exp(2)+2/7) 6541093249313198 a001 3/167761*199^(17/25) 6541093255070956 a007 Real Root Of -524*x^4+937*x^3-856*x^2-233*x+572 6541093258540642 r005 Im(z^2+c),c=-3/38+47/59*I,n=8 6541093259882075 a001 726103/1926*3571^(31/34) 6541093301624969 m001 MinimumGamma/(ZetaP(3)^Thue) 6541093308946552 a001 2971215073/15127*1364^(1/6) 6541093316342513 k002 Champernowne real with 89*n^2+78*n-102 6541093333361424 a001 7778742049/39603*1364^(1/6) 6541093336923506 a001 10182505537/51841*1364^(1/6) 6541093337443207 a001 53316291173/271443*1364^(1/6) 6541093337519030 a001 139583862445/710647*1364^(1/6) 6541093337530093 a001 182717648081/930249*1364^(1/6) 6541093337531707 a001 956722026041/4870847*1364^(1/6) 6541093337531942 a001 2504730781961/12752043*1364^(1/6) 6541093337531976 a001 3278735159921/16692641*1364^(1/6) 6541093337531984 a001 10610209857723/54018521*1364^(1/6) 6541093337531998 a001 4052739537881/20633239*1364^(1/6) 6541093337532088 a001 387002188980/1970299*1364^(1/6) 6541093337532704 a001 591286729879/3010349*1364^(1/6) 6541093337536930 a001 225851433717/1149851*1364^(1/6) 6541093337565891 a001 196418*1364^(1/6) 6541093337764399 a001 32951280099/167761*1364^(1/6) 6541093339124994 a001 12586269025/64079*1364^(1/6) 6541093348450645 a001 1201881744/6119*1364^(1/6) 6541093364661911 r002 39th iterates of z^2 + 6541093371469054 r002 30th iterates of z^2 + 6541093375989628 a001 1836311903/5778*1364^(1/10) 6541093381706543 a001 267914296/3571*1364^(3/10) 6541093393046124 a001 196418/47*76^(3/29) 6541093410894821 r005 Im(z^2+c),c=-11/14+4/131*I,n=28 6541093412369612 a001 1836311903/9349*1364^(1/6) 6541093416372519 k002 Champernowne real with 179/2*n^2+153/2*n-101 6541093442309515 r009 Re(z^3+c),c=-5/42+23/35*I,n=34 6541093467340540 a007 Real Root Of -183*x^4+909*x^3-163*x^2-241*x+200 6541093471094899 a001 31622993/2889*3571^(1/2) 6541093496953872 m004 -1+20*Pi*Csc[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi] 6541093497658533 m005 (4*Catalan+3/4)/(3*Catalan+4) 6541093500473937 a001 2178309/9349*3571^(33/34) 6541093516402525 k002 Champernowne real with 90*n^2+75*n-100 6541093531639820 a001 1292/2889*2139295485799^(1/2) 6541093539147930 m001 (Ei(1,1)*Champernowne-GaussAGM)/Champernowne 6541093543167940 m001 Zeta(3)^HardyLittlewoodC3*LandauRamanujan2nd 6541093543331653 a001 686789568/2161*1364^(1/10) 6541093567746526 a001 12586269025/39603*1364^(1/10) 6541093571308608 a001 32951280099/103682*1364^(1/10) 6541093571828309 a001 86267571272/271443*1364^(1/10) 6541093571904132 a001 317811*1364^(1/10) 6541093571915195 a001 591286729879/1860498*1364^(1/10) 6541093571916809 a001 1548008755920/4870847*1364^(1/10) 6541093571917044 a001 4052739537881/12752043*1364^(1/10) 6541093571917079 a001 1515744265389/4769326*1364^(1/10) 6541093571917100 a001 6557470319842/20633239*1364^(1/10) 6541093571917190 a001 2504730781961/7881196*1364^(1/10) 6541093571917806 a001 956722026041/3010349*1364^(1/10) 6541093571922032 a001 365435296162/1149851*1364^(1/10) 6541093571950994 a001 139583862445/439204*1364^(1/10) 6541093572149502 a001 53316291173/167761*1364^(1/10) 6541093573510096 a001 20365011074/64079*1364^(1/10) 6541093582835748 a001 7778742049/24476*1364^(1/10) 6541093591609812 m005 (1/2*Catalan+1/5)/(1/3*3^(1/2)+3/7) 6541093594763795 a001 832040/843*843^(27/28) 6541093616432531 k002 Champernowne real with 181/2*n^2+147/2*n-99 6541093638436926 a001 165580141/15127*3571^(1/2) 6541093646754717 a001 2971215073/9349*1364^(1/10) 6541093654704013 a001 514229/5778*9349^(37/38) 6541093658635999 a001 416020/2889*9349^(35/38) 6541093662577433 a001 1346269/5778*9349^(33/38) 6541093662851799 a001 433494437/39603*3571^(1/2) 6541093666413881 a001 567451585/51841*3571^(1/2) 6541093666515258 a001 726103/1926*9349^(31/38) 6541093666933582 a001 2971215073/271443*3571^(1/2) 6541093667009405 a001 7778742049/710647*3571^(1/2) 6541093667020468 a001 10182505537/930249*3571^(1/2) 6541093667022082 a001 53316291173/4870847*3571^(1/2) 6541093667022317 a001 139583862445/12752043*3571^(1/2) 6541093667022352 a001 182717648081/16692641*3571^(1/2) 6541093667022357 a001 956722026041/87403803*3571^(1/2) 6541093667022357 a001 2504730781961/228826127*3571^(1/2) 6541093667022358 a001 3278735159921/299537289*3571^(1/2) 6541093667022358 a001 10610209857723/969323029*3571^(1/2) 6541093667022358 a001 4052739537881/370248451*3571^(1/2) 6541093667022358 a001 387002188980/35355581*3571^(1/2) 6541093667022360 a001 591286729879/54018521*3571^(1/2) 6541093667022373 a001 7787980473/711491*3571^(1/2) 6541093667022463 a001 21566892818/1970299*3571^(1/2) 6541093667023079 a001 32951280099/3010349*3571^(1/2) 6541093667027305 a001 12586269025/1149851*3571^(1/2) 6541093667056267 a001 1201881744/109801*3571^(1/2) 6541093667254775 a001 1836311903/167761*3571^(1/2) 6541093668615369 a001 701408733/64079*3571^(1/2) 6541093677941021 a001 10946*3571^(1/2) 6541093690148470 a001 39088169/5778*9349^(1/2) 6541093698981749 a001 2584/15127*7881196^(21/22) 6541093698981767 a001 2255/1926*7881196^(5/6) 6541093698981835 a001 2584/15127*20633239^(9/10) 6541093698981843 a001 2255/1926*20633239^(11/14) 6541093698981849 a001 2584/15127*2537720636^(7/10) 6541093698981849 a001 2584/15127*17393796001^(9/14) 6541093698981849 a001 2584/15127*14662949395604^(1/2) 6541093698981849 a001 2584/15127*505019158607^(9/16) 6541093698981849 a001 2584/15127*192900153618^(7/12) 6541093698981849 a001 2584/15127*599074578^(3/4) 6541093698981854 a001 2584/15127*33385282^(7/8) 6541093698981855 a001 2255/1926*2537720636^(11/18) 6541093698981855 a001 2255/1926*312119004989^(1/2) 6541093698981855 a001 2255/1926*3461452808002^(11/24) 6541093698981855 a001 2255/1926*28143753123^(11/20) 6541093698981855 a001 2255/1926*1568397607^(5/8) 6541093698981855 a001 2255/1926*228826127^(11/16) 6541093698983587 a001 2255/1926*1860498^(11/12) 6541093713665304 a001 987*2207^(27/32) 6541093716462537 k002 Champernowne real with 91*n^2+72*n-98 6541093716942501 a001 98209/2889*24476^(41/42) 6541093717415576 a001 105937/1926*24476^(13/14) 6541093717953412 a001 514229/5778*24476^(37/42) 6541093718466511 a001 416020/2889*24476^(5/6) 6541093718989059 a001 1346269/5778*24476^(11/14) 6541093719507998 a001 726103/1926*24476^(31/42) 6541093720548106 a001 5702887/5778*24476^(9/14) 6541093722107958 a001 24157817/5778*24476^(1/2) 6541093723364703 a001 17711/5778*439204^(17/18) 6541093723396647 a001 17711/5778*7881196^(17/22) 6541093723396729 a001 17711/5778*45537549124^(1/2) 6541093723396733 a001 17711/5778*33385282^(17/24) 6541093723396759 a001 17711/5778*12752043^(3/4) 6541093723398335 a001 17711/5778*1860498^(17/20) 6541093723667764 a001 34111385/1926*24476^(5/14) 6541093725227574 a001 433494437/5778*24476^(3/14) 6541093725747510 a001 233802911/1926*24476^(1/6) 6541093726770776 a001 2584*64079^(1/2) 6541093726787383 a001 1836311903/5778*24476^(1/14) 6541093726958811 a001 2576/321*6643838879^(1/2) 6541093727402705 a001 416020/2889*167761^(7/10) 6541093727451094 a001 9227465/5778*167761^(1/2) 6541093727478506 a001 2584/271443*2537720636^(5/6) 6541093727478506 a001 2584/271443*312119004989^(15/22) 6541093727478506 a001 2584/271443*3461452808002^(5/8) 6541093727478506 a001 2584/271443*28143753123^(3/4) 6541093727478506 a001 2584/271443*228826127^(15/16) 6541093727478512 a001 121393/5778*969323029^(1/2) 6541093727497562 a001 34111385/1926*167761^(3/10) 6541093727529845 a001 105937/1926*439204^(13/18) 6541093727544045 a001 567451585/2889*167761^(1/10) 6541093727547287 a001 1346269/5778*439204^(11/18) 6541093727550292 a001 5702887/5778*439204^(1/2) 6541093727554103 a001 24157817/5778*439204^(7/18) 6541093727554273 a001 105937/1926*7881196^(13/22) 6541093727554335 a001 105937/1926*141422324^(1/2) 6541093727554335 a001 105937/1926*73681302247^(3/8) 6541093727554338 a001 105937/1926*33385282^(13/24) 6541093727555563 a001 105937/1926*1860498^(13/20) 6541093727557868 a001 34111385/1926*439204^(5/18) 6541093727561636 a001 433494437/5778*439204^(1/6) 6541093727564919 a001 1762289/2889*1149851^(1/2) 6541093727565390 a001 416020/2889*20633239^(1/2) 6541093727565398 a001 416020/2889*2537720636^(7/18) 6541093727565398 a001 416020/2889*17393796001^(5/14) 6541093727565398 a001 416020/2889*312119004989^(7/22) 6541093727565398 a001 416020/2889*14662949395604^(5/18) 6541093727565398 a001 416020/2889*505019158607^(5/16) 6541093727565398 a001 416020/2889*28143753123^(7/20) 6541093727565398 a001 416020/2889*599074578^(5/12) 6541093727565398 a001 416020/2889*228826127^(7/16) 6541093727565403 a001 1836311903/5778*439204^(1/18) 6541093727566500 a001 416020/2889*1860498^(7/12) 6541093727566651 a001 726103/1926*3010349^(1/2) 6541093727567006 a001 2584/4870847*1322157322203^(3/4) 6541093727567011 a001 726103/1926*9062201101803^(1/4) 6541093727567204 a001 5702887/5778*7881196^(9/22) 6541093727567241 a001 2584/12752043*17393796001^(13/14) 6541093727567241 a001 2584/12752043*14662949395604^(13/18) 6541093727567241 a001 2584/12752043*505019158607^(13/16) 6541093727567241 a001 2584/12752043*73681302247^(7/8) 6541093727567247 a001 5702887/5778*2537720636^(3/10) 6541093727567247 a001 5702887/5778*14662949395604^(3/14) 6541093727567247 a001 5702887/5778*192900153618^(1/4) 6541093727567249 a001 5702887/5778*33385282^(3/8) 6541093727567256 a001 24157817/5778*7881196^(7/22) 6541093727567263 a001 34111385/1926*7881196^(5/22) 6541093727567270 a001 133957148/2889*7881196^(1/6) 6541093727567273 a001 433494437/5778*7881196^(3/22) 6541093727567275 a001 1292/16692641*312119004989^(19/22) 6541093727567275 a001 1292/16692641*817138163596^(5/6) 6541093727567275 a001 1292/16692641*3461452808002^(19/24) 6541093727567275 a001 1292/16692641*28143753123^(19/20) 6541093727567280 a001 2584/87403803*312119004989^(9/10) 6541093727567280 a001 2584/87403803*14662949395604^(11/14) 6541093727567280 a001 2584/87403803*192900153618^(11/12) 6541093727567281 a001 2584/4106118243*3461452808002^(23/24) 6541093727567281 a001 1292/5374978561*14662949395604^(17/18) 6541093727567281 a001 2584*4106118243^(1/4) 6541093727567281 a001 2584/6643838879*14662949395604^(13/14) 6541093727567281 a001 2584/370248451*312119004989^(21/22) 6541093727567281 a001 2584/370248451*14662949395604^(5/6) 6541093727567281 a001 2584/370248451*505019158607^(15/16) 6541093727567282 a001 1836311903/5778*7881196^(1/22) 6541093727567284 a001 34111385/1926*20633239^(3/14) 6541093727567285 a001 24157817/5778*20633239^(3/10) 6541093727567286 a001 233802911/1926*20633239^(1/10) 6541093727567286 a001 567451585/2889*20633239^(1/14) 6541093727567286 a001 39088169/5778*817138163596^(1/6) 6541093727567287 a001 39088169/5778*87403803^(1/4) 6541093727567287 a001 34111385/1926*2537720636^(1/6) 6541093727567287 a001 34111385/1926*312119004989^(3/22) 6541093727567287 a001 34111385/1926*28143753123^(3/20) 6541093727567287 a001 34111385/1926*228826127^(3/16) 6541093727567287 a001 133957148/2889*312119004989^(1/10) 6541093727567287 a001 133957148/2889*1568397607^(1/8) 6541093727567287 a001 165580141/5778*141422324^(1/6) 6541093727567287 a001 233802911/1926*17393796001^(1/14) 6541093727567287 a001 233802911/1926*14662949395604^(1/18) 6541093727567287 a001 233802911/1926*505019158607^(1/16) 6541093727567287 a001 233802911/1926*599074578^(1/12) 6541093727567287 a001 567451585/2889*2537720636^(1/18) 6541093727567287 a001 567451585/2889*312119004989^(1/22) 6541093727567287 a001 567451585/2889*28143753123^(1/20) 6541093727567287 a001 433494437/5778*2537720636^(1/10) 6541093727567287 a001 433494437/5778*14662949395604^(1/14) 6541093727567287 a001 433494437/5778*192900153618^(1/12) 6541093727567287 a001 567451585/2889*228826127^(1/16) 6541093727567287 a001 165580141/5778*73681302247^(1/8) 6541093727567287 a001 1836311903/5778*33385282^(1/24) 6541093727567288 a001 31622993/2889*45537549124^(1/6) 6541093727567288 a001 433494437/5778*33385282^(1/8) 6541093727567288 a001 34111385/1926*33385282^(5/24) 6541093727567289 a001 24157817/5778*17393796001^(3/14) 6541093727567289 a001 24157817/5778*14662949395604^(1/6) 6541093727567289 a001 24157817/5778*599074578^(1/4) 6541093727567291 a001 24157817/5778*33385282^(7/24) 6541093727567297 a001 2584/20633239*9062201101803^(3/4) 6541093727567297 a001 9227465/5778*20633239^(5/14) 6541093727567298 a001 31622993/2889*12752043^(1/4) 6541093727567303 a001 9227465/5778*2537720636^(5/18) 6541093727567303 a001 9227465/5778*312119004989^(5/22) 6541093727567303 a001 9227465/5778*3461452808002^(5/24) 6541093727567303 a001 9227465/5778*28143753123^(1/4) 6541093727567303 a001 9227465/5778*228826127^(5/16) 6541093727567382 a001 1836311903/5778*1860498^(1/20) 6541093727567393 a001 1762289/2889*1322157322203^(1/4) 6541093727567445 a001 567451585/2889*1860498^(1/12) 6541093727567571 a001 433494437/5778*1860498^(3/20) 6541093727567759 a001 34111385/1926*1860498^(1/4) 6541093727567951 a001 24157817/5778*1860498^(7/20) 6541093727567956 a001 1346269/5778*7881196^(1/2) 6541093727568003 a001 2584/3010349*2537720636^(17/18) 6541093727568003 a001 2584/3010349*45537549124^(5/6) 6541093727568003 a001 2584/3010349*312119004989^(17/22) 6541093727568003 a001 2584/3010349*3461452808002^(17/24) 6541093727568003 a001 2584/3010349*28143753123^(17/20) 6541093727568009 a001 1346269/5778*312119004989^(3/10) 6541093727568009 a001 1346269/5778*1568397607^(3/8) 6541093727568012 a001 1346269/5778*33385282^(11/24) 6541093727568090 a001 9227465/5778*1860498^(5/12) 6541093727568097 a001 5702887/5778*1860498^(9/20) 6541093727568906 a001 233802911/1926*710647^(1/8) 6541093727569048 a001 1346269/5778*1860498^(11/20) 6541093727572147 a001 24157817/5778*710647^(3/8) 6541093727572229 a001 2584/1149851*2537720636^(9/10) 6541093727572229 a001 2584/1149851*14662949395604^(9/14) 6541093727572229 a001 2584/1149851*192900153618^(3/4) 6541093727572233 a001 514229/5778*54018521^(1/2) 6541093727573493 a001 416020/2889*710647^(5/8) 6541093727589481 a001 165580141/5778*271443^(1/4) 6541093727590529 a001 75025/5778*167761^(9/10) 6541093727601191 a001 34/5779*17393796001^(11/14) 6541093727601191 a001 34/5779*14662949395604^(11/18) 6541093727601191 a001 34/5779*505019158607^(11/16) 6541093727601191 a001 34/5779*1568397607^(7/8) 6541093727601191 a001 34/5779*599074578^(11/12) 6541093727601196 a001 98209/2889*370248451^(1/2) 6541093727605317 a001 1836311903/5778*103682^(1/16) 6541093727620917 a001 105937/1926*271443^(3/4) 6541093727681377 a001 433494437/5778*103682^(3/16) 6541093727757436 a001 34111385/1926*103682^(5/16) 6541093727771447 a001 75025/5778*439204^(5/6) 6541093727799633 a001 75025/5778*7881196^(15/22) 6541093727799695 a001 75025/5778*20633239^(9/14) 6541093727799704 a001 75025/5778*2537720636^(1/2) 6541093727799704 a001 75025/5778*312119004989^(9/22) 6541093727799704 a001 75025/5778*14662949395604^(5/14) 6541093727799704 a001 75025/5778*192900153618^(5/12) 6541093727799704 a001 75025/5778*28143753123^(9/20) 6541093727799705 a001 75025/5778*228826127^(9/16) 6541093727799708 a001 75025/5778*33385282^(5/8) 6541093727801122 a001 75025/5778*1860498^(3/4) 6541093727833498 a001 24157817/5778*103682^(7/16) 6541093727909515 a001 5702887/5778*103682^(9/16) 6541093727986336 a001 1346269/5778*103682^(11/16) 6541093728048722 a001 105937/1926*103682^(13/16) 6541093728370151 a001 75025/5778*103682^(15/16) 6541093728609927 a001 133957148/2889*39603^(1/4) 6541093729160288 a001 28657/5778*20633239^(7/10) 6541093729160293 a001 2584/64079*4106118243^(3/4) 6541093729160298 a001 2584/64079*33385282^(23/24) 6541093729160299 a001 28657/5778*17393796001^(1/2) 6541093729160299 a001 28657/5778*14662949395604^(7/18) 6541093729160299 a001 28657/5778*505019158607^(7/16) 6541093729160299 a001 28657/5778*599074578^(7/12) 6541093729171632 a001 28657/5778*710647^(7/8) 6541093730505359 a001 726103/1926*39603^(31/44) 6541093730695928 a001 1346269/5778*39603^(3/4) 6541093730882887 a001 416020/2889*39603^(35/44) 6541093731079295 a001 514229/5778*39603^(37/44) 6541093731140466 a001 567451585/2889*15127^(1/8) 6541093731250966 a001 105937/1926*39603^(39/44) 6541093731487399 a001 98209/2889*39603^(41/44) 6541093731554285 a001 121393/5778*39603^(43/44) 6541093735817452 m001 (Kac-ZetaQ(3))/(Zeta(3)-sin(1/12*Pi)) 6541093738286824 a001 34111385/1926*15127^(3/8) 6541093738485931 a001 646/6119*20633239^(13/14) 6541093738485945 a001 646/6119*141422324^(5/6) 6541093738485945 a001 646/6119*2537720636^(13/18) 6541093738485945 a001 646/6119*312119004989^(13/22) 6541093738485945 a001 646/6119*3461452808002^(13/24) 6541093738485945 a001 646/6119*73681302247^(5/8) 6541093738485945 a001 646/6119*28143753123^(13/20) 6541093738485945 a001 646/6119*228826127^(13/16) 6541093738485951 a001 5473/2889*119218851371^(1/2) 6541093741859991 a001 102334155/9349*3571^(1/2) 6541093743894576 a001 1836311903/5778*5778^(1/12) 6541093745433198 a001 9227465/5778*15127^(5/8) 6541093749720721 a001 726103/1926*15127^(31/40) 6541093751150991 a001 1346269/5778*15127^(33/40) 6541093752577651 a001 416020/2889*15127^(7/8) 6541093754013759 a001 514229/5778*15127^(37/40) 6541093755425131 a001 105937/1926*15127^(39/40) 6541093767671233 g006 Psi(1,1/9)-Psi(1,9/10)-Psi(1,7/10)-Psi(1,3/10) 6541093776549153 a001 433494437/5778*5778^(1/4) 6541093781554117 a003 cos(Pi*5/67)*sin(Pi*27/115) 6541093794078170 r002 31th iterates of z^2 + 6541093796916558 m001 Artin/(5^(1/2)-FransenRobinson) 6541093797597970 a001 1346269/2207*2207^(29/32) 6541093802404829 a001 4181/5778*7881196^(19/22) 6541093802404915 a001 2584/9349*5600748293801^(1/2) 6541093802404920 a001 4181/5778*817138163596^(1/2) 6541093802404921 a001 4181/5778*87403803^(3/4) 6541093802404925 a001 4181/5778*33385282^(19/24) 6541093802406715 a001 4181/5778*1860498^(19/20) 6541093803031498 m001 (5^(1/2)-BesselK(0,1))/(3^(1/3)+MertensB3) 6541093808506665 p001 sum(1/(227*n+153)/(512^n),n=0..infinity) 6541093809203731 a001 34111385/1926*5778^(5/12) 6541093815106586 m005 (1/3*3^(1/2)+1/8)/(9/11*2^(1/2)-1/12) 6541093816492543 k002 Champernowne real with 183/2*n^2+141/2*n-97 6541093822041819 a001 1346269/15127*9349^(37/38) 6541093825979645 a001 311187/2161*9349^(35/38) 6541093840250518 m001 ArtinRank2^2/Cahen*ln(BesselK(0,1)) 6541093841858311 a001 24157817/5778*5778^(7/12) 6541093842317336 a001 521/233*55^(15/56) 6541093850476759 a001 701408733/3571*1364^(1/6) 6541093850516454 a003 -1/2+2^(1/2)+cos(3/8*Pi)-cos(5/18*Pi) 6541093856155657 a007 Real Root Of -89*x^4-646*x^3-285*x^2+899*x+207 6541093857490503 a001 6765*9349^(1/2) 6541093861544918 a001 2178309/24476*9349^(37/38) 6541093866323888 a001 6765/15127*2139295485799^(1/2) 6541093874512846 a001 5702887/5778*5778^(3/4) 6541093881527029 a001 832040/2207*2207^(31/32) 6541093881905378 a001 267914296/39603*9349^(1/2) 6541093884255573 a001 514229/15127*24476^(41/42) 6541093884768672 a001 832040/15127*24476^(13/14) 6541093885291220 a001 1346269/15127*24476^(37/42) 6541093885467460 a001 701408733/103682*9349^(1/2) 6541093885810159 a001 311187/2161*24476^(5/6) 6541093885987161 a001 1836311903/271443*9349^(1/2) 6541093886062984 a001 686789568/101521*9349^(1/2) 6541093886074047 a001 12586269025/1860498*9349^(1/2) 6541093886075660 a001 32951280099/4870847*9349^(1/2) 6541093886075896 a001 86267571272/12752043*9349^(1/2) 6541093886075930 a001 32264490531/4769326*9349^(1/2) 6541093886075935 a001 591286729879/87403803*9349^(1/2) 6541093886075936 a001 1548008755920/228826127*9349^(1/2) 6541093886075936 a001 4052739537881/599074578*9349^(1/2) 6541093886075936 a001 1515744265389/224056801*9349^(1/2) 6541093886075936 a001 6557470319842/969323029*9349^(1/2) 6541093886075936 a001 2504730781961/370248451*9349^(1/2) 6541093886075937 a001 956722026041/141422324*9349^(1/2) 6541093886075938 a001 365435296162/54018521*9349^(1/2) 6541093886075952 a001 139583862445/20633239*9349^(1/2) 6541093886076042 a001 53316291173/7881196*9349^(1/2) 6541093886076658 a001 20365011074/3010349*9349^(1/2) 6541093886080883 a001 7778742049/1149851*9349^(1/2) 6541093886109845 a001 2971215073/439204*9349^(1/2) 6541093886308353 a001 1134903170/167761*9349^(1/2) 6541093886330476 a001 3524578/15127*24476^(11/14) 6541093887668948 a001 433494437/64079*9349^(1/2) 6541093887890174 a001 14930352/15127*24476^(9/14) 6541093889449989 a001 63245986/15127*24476^(1/2) 6541093889993847 a001 15127/2*233^(9/11) 6541093890738662 a001 2255/13201*7881196^(21/22) 6541093890738675 a001 17711/15127*7881196^(5/6) 6541093890738749 a001 2255/13201*20633239^(9/10) 6541093890738751 a001 17711/15127*20633239^(11/14) 6541093890738762 a001 2255/13201*2537720636^(7/10) 6541093890738762 a001 2255/13201*17393796001^(9/14) 6541093890738762 a001 2255/13201*14662949395604^(1/2) 6541093890738762 a001 2255/13201*505019158607^(9/16) 6541093890738762 a001 2255/13201*192900153618^(7/12) 6541093890738762 a001 2255/13201*599074578^(3/4) 6541093890738763 a001 17711/15127*2537720636^(11/18) 6541093890738763 a001 17711/15127*312119004989^(1/2) 6541093890738763 a001 17711/15127*3461452808002^(11/24) 6541093890738763 a001 17711/15127*28143753123^(11/20) 6541093890738763 a001 17711/15127*1568397607^(5/8) 6541093890738763 a001 17711/15127*228826127^(11/16) 6541093890738768 a001 2255/13201*33385282^(7/8) 6541093890740495 a001 17711/15127*1860498^(11/12) 6541093891009798 a001 267914296/15127*24476^(5/14) 6541093892569607 a001 1134903170/15127*24476^(3/14) 6541093893089544 a001 1836311903/15127*24476^(1/6) 6541093893106105 r002 51th iterates of z^2 + 6541093894112814 a001 39088169/15127*64079^(1/2) 6541093894129416 a001 686789568/2161*24476^(1/14) 6541093894268819 a001 6624/2161*439204^(17/18) 6541093894300763 a001 6624/2161*7881196^(17/22) 6541093894300845 a001 6624/2161*45537549124^(1/2) 6541093894300849 a001 6624/2161*33385282^(17/24) 6541093894300875 a001 6624/2161*12752043^(3/4) 6541093894302451 a001 6624/2161*1860498^(17/20) 6541093894734055 a001 196418/15127*167761^(9/10) 6541093894746353 a001 311187/2161*167761^(7/10) 6541093894793115 a001 24157817/15127*167761^(1/2) 6541093894820546 a001 121393/15127*6643838879^(1/2) 6541093894839596 a001 267914296/15127*167761^(3/10) 6541093894882941 a001 832040/15127*439204^(13/18) 6541093894886079 a001 2971215073/15127*167761^(1/10) 6541093894888704 a001 3524578/15127*439204^(11/18) 6541093894892361 a001 14930352/15127*439204^(1/2) 6541093894896134 a001 63245986/15127*439204^(7/18) 6541093894896369 a001 6765/710647*2537720636^(5/6) 6541093894896369 a001 6765/710647*312119004989^(15/22) 6541093894896369 a001 6765/710647*3461452808002^(5/8) 6541093894896369 a001 6765/710647*28143753123^(3/4) 6541093894896369 a001 6765/710647*228826127^(15/16) 6541093894896369 a001 317811/15127*969323029^(1/2) 6541093894899902 a001 267914296/15127*439204^(5/18) 6541093894903669 a001 1134903170/15127*439204^(1/6) 6541093894906863 a001 9227465/15127*1149851^(1/2) 6541093894907369 a001 832040/15127*7881196^(13/22) 6541093894907431 a001 832040/15127*141422324^(1/2) 6541093894907431 a001 832040/15127*73681302247^(3/8) 6541093894907435 a001 832040/15127*33385282^(13/24) 6541093894907437 a001 686789568/2161*439204^(1/18) 6541093894908660 a001 832040/15127*1860498^(13/20) 6541093894908920 a001 5702887/15127*3010349^(1/2) 6541093894909038 a001 311187/2161*20633239^(1/2) 6541093894909045 a001 311187/2161*2537720636^(7/18) 6541093894909045 a001 311187/2161*17393796001^(5/14) 6541093894909045 a001 311187/2161*312119004989^(7/22) 6541093894909045 a001 311187/2161*14662949395604^(5/18) 6541093894909045 a001 311187/2161*505019158607^(5/16) 6541093894909045 a001 311187/2161*28143753123^(7/20) 6541093894909045 a001 311187/2161*599074578^(5/12) 6541093894909045 a001 311187/2161*228826127^(7/16) 6541093894909272 a001 14930352/15127*7881196^(9/22) 6541093894909281 a001 2255/4250681*1322157322203^(3/4) 6541093894909281 a001 5702887/15127*9062201101803^(1/4) 6541093894909288 a001 63245986/15127*7881196^(7/22) 6541093894909297 a001 267914296/15127*7881196^(5/22) 6541093894909303 a001 701408733/15127*7881196^(1/6) 6541093894909307 a001 1134903170/15127*7881196^(3/22) 6541093894909315 a001 6765/33385282*17393796001^(13/14) 6541093894909315 a001 6765/33385282*14662949395604^(13/18) 6541093894909315 a001 6765/33385282*505019158607^(13/16) 6541093894909315 a001 6765/33385282*73681302247^(7/8) 6541093894909315 a001 14930352/15127*2537720636^(3/10) 6541093894909315 a001 14930352/15127*14662949395604^(3/14) 6541093894909315 a001 14930352/15127*192900153618^(1/4) 6541093894909316 a001 686789568/2161*7881196^(1/22) 6541093894909317 a001 63245986/15127*20633239^(3/10) 6541093894909317 a001 14930352/15127*33385282^(3/8) 6541093894909318 a001 267914296/15127*20633239^(3/14) 6541093894909318 a001 24157817/15127*20633239^(5/14) 6541093894909319 a001 1836311903/15127*20633239^(1/10) 6541093894909320 a001 2971215073/15127*20633239^(1/14) 6541093894909320 a001 2255/29134601*312119004989^(19/22) 6541093894909320 a001 2255/29134601*3461452808002^(19/24) 6541093894909320 a001 2255/29134601*28143753123^(19/20) 6541093894909320 a001 39088169/15127*4106118243^(1/4) 6541093894909321 a001 6765/228826127*312119004989^(9/10) 6541093894909321 a001 6765/228826127*14662949395604^(11/14) 6541093894909321 a001 6765/228826127*192900153618^(11/12) 6541093894909321 a001 6765/10749957122*3461452808002^(23/24) 6541093894909321 a001 55/228811001*14662949395604^(17/18) 6541093894909321 a001 6765*817138163596^(1/6) 6541093894909321 a001 6765/17393796001*14662949395604^(13/14) 6541093894909321 a001 6765/969323029*312119004989^(21/22) 6541093894909321 a001 6765/969323029*14662949395604^(5/6) 6541093894909321 a001 6765/969323029*505019158607^(15/16) 6541093894909321 a001 433494437/15127*141422324^(1/6) 6541093894909321 a001 267914296/15127*2537720636^(1/6) 6541093894909321 a001 267914296/15127*312119004989^(3/22) 6541093894909321 a001 267914296/15127*28143753123^(3/20) 6541093894909321 a001 701408733/15127*312119004989^(1/10) 6541093894909321 a001 701408733/15127*1568397607^(1/8) 6541093894909321 a001 1836311903/15127*17393796001^(1/14) 6541093894909321 a001 1836311903/15127*14662949395604^(1/18) 6541093894909321 a001 1836311903/15127*505019158607^(1/16) 6541093894909321 a001 2971215073/15127*2537720636^(1/18) 6541093894909321 a001 2971215073/15127*312119004989^(1/22) 6541093894909321 a001 2971215073/15127*28143753123^(1/20) 6541093894909321 a001 1134903170/15127*2537720636^(1/10) 6541093894909321 a001 1134903170/15127*14662949395604^(1/14) 6541093894909321 a001 1134903170/15127*192900153618^(1/12) 6541093894909321 a001 1836311903/15127*599074578^(1/12) 6541093894909321 a001 267914296/15127*228826127^(3/16) 6541093894909321 a001 433494437/15127*73681302247^(1/8) 6541093894909321 a001 2971215073/15127*228826127^(1/16) 6541093894909321 a001 165580141/15127*45537549124^(1/6) 6541093894909321 a001 6765*87403803^(1/4) 6541093894909321 a001 686789568/2161*33385282^(1/24) 6541093894909321 a001 63245986/15127*17393796001^(3/14) 6541093894909321 a001 63245986/15127*14662949395604^(1/6) 6541093894909321 a001 63245986/15127*599074578^(1/4) 6541093894909322 a001 1134903170/15127*33385282^(1/8) 6541093894909322 a001 267914296/15127*33385282^(5/24) 6541093894909323 a001 63245986/15127*33385282^(7/24) 6541093894909323 a001 6765/54018521*9062201101803^(3/4) 6541093894909323 a001 24157817/15127*2537720636^(5/18) 6541093894909323 a001 24157817/15127*312119004989^(5/22) 6541093894909323 a001 24157817/15127*3461452808002^(5/24) 6541093894909323 a001 24157817/15127*28143753123^(1/4) 6541093894909323 a001 24157817/15127*228826127^(5/16) 6541093894909331 a001 165580141/15127*12752043^(1/4) 6541093894909336 a001 9227465/15127*1322157322203^(1/4) 6541093894909374 a001 3524578/15127*7881196^(1/2) 6541093894909416 a001 686789568/2161*1860498^(1/20) 6541093894909426 a001 6765/7881196*2537720636^(17/18) 6541093894909426 a001 6765/7881196*45537549124^(5/6) 6541093894909426 a001 6765/7881196*312119004989^(17/22) 6541093894909426 a001 6765/7881196*3461452808002^(17/24) 6541093894909426 a001 6765/7881196*28143753123^(17/20) 6541093894909426 a001 3524578/15127*312119004989^(3/10) 6541093894909426 a001 3524578/15127*1568397607^(3/8) 6541093894909429 a001 3524578/15127*33385282^(11/24) 6541093894909478 a001 2971215073/15127*1860498^(1/12) 6541093894909604 a001 1134903170/15127*1860498^(3/20) 6541093894909793 a001 267914296/15127*1860498^(1/4) 6541093894909983 a001 63245986/15127*1860498^(7/20) 6541093894910042 a001 1346269/15127*54018521^(1/2) 6541093894910043 a001 6765/3010349*2537720636^(9/10) 6541093894910043 a001 6765/3010349*14662949395604^(9/14) 6541093894910043 a001 6765/3010349*192900153618^(3/4) 6541093894910111 a001 24157817/15127*1860498^(5/12) 6541093894910148 a001 311187/2161*1860498^(7/12) 6541093894910166 a001 14930352/15127*1860498^(9/20) 6541093894910466 a001 3524578/15127*1860498^(11/20) 6541093894910940 a001 1836311903/15127*710647^(1/8) 6541093894914178 a001 63245986/15127*710647^(3/8) 6541093894914268 a001 6765/1149851*17393796001^(11/14) 6541093894914268 a001 6765/1149851*14662949395604^(11/18) 6541093894914268 a001 6765/1149851*505019158607^(11/16) 6541093894914268 a001 6765/1149851*1568397607^(7/8) 6541093894914268 a001 6765/1149851*599074578^(11/12) 6541093894914268 a001 514229/15127*370248451^(1/2) 6541093894914973 a001 196418/15127*439204^(5/6) 6541093894917140 a001 311187/2161*710647^(5/8) 6541093894931515 a001 433494437/15127*271443^(1/4) 6541093894943158 a001 196418/15127*7881196^(15/22) 6541093894943220 a001 196418/15127*20633239^(9/14) 6541093894943230 a001 196418/15127*2537720636^(1/2) 6541093894943230 a001 196418/15127*312119004989^(9/22) 6541093894943230 a001 196418/15127*14662949395604^(5/14) 6541093894943230 a001 196418/15127*192900153618^(5/12) 6541093894943230 a001 196418/15127*28143753123^(9/20) 6541093894943230 a001 196418/15127*228826127^(9/16) 6541093894943234 a001 196418/15127*33385282^(5/8) 6541093894944648 a001 196418/15127*1860498^(3/4) 6541093894947351 a001 686789568/2161*103682^(1/16) 6541093894974013 a001 832040/15127*271443^(3/4) 6541093895023410 a001 1134903170/15127*103682^(3/16) 6541093895099470 a001 267914296/15127*103682^(5/16) 6541093895141728 a001 75025/15127*20633239^(7/10) 6541093895141738 a001 615/15251*4106118243^(3/4) 6541093895141738 a001 75025/15127*17393796001^(1/2) 6541093895141738 a001 75025/15127*14662949395604^(7/18) 6541093895141738 a001 75025/15127*505019158607^(7/16) 6541093895141738 a001 75025/15127*599074578^(7/12) 6541093895141744 a001 615/15251*33385282^(23/24) 6541093895153071 a001 75025/15127*710647^(7/8) 6541093895175530 a001 63245986/15127*103682^(7/16) 6541093895251583 a001 14930352/15127*103682^(9/16) 6541093895327754 a001 3524578/15127*103682^(11/16) 6541093895401818 a001 832040/15127*103682^(13/16) 6541093895513677 a001 196418/15127*103682^(15/16) 6541093895951961 a001 701408733/15127*39603^(1/4) 6541093896282330 a001 726103/1926*5778^(31/36) 6541093896502318 a001 6765/64079*20633239^(13/14) 6541093896502332 a001 6765/64079*141422324^(5/6) 6541093896502332 a001 6765/64079*2537720636^(13/18) 6541093896502332 a001 6765/64079*312119004989^(13/22) 6541093896502332 a001 6765/64079*3461452808002^(13/24) 6541093896502332 a001 6765/64079*73681302247^(5/8) 6541093896502332 a001 6765/64079*28143753123^(13/20) 6541093896502333 a001 6765/64079*228826127^(13/16) 6541093896502333 a001 28657/15127*119218851371^(1/2) 6541093896994600 a001 165580141/24476*9349^(1/2) 6541093898037345 a001 3524578/15127*39603^(3/4) 6541093898226535 a001 311187/2161*39603^(35/44) 6541093898417103 a001 1346269/15127*39603^(37/44) 6541093898482500 a001 2971215073/15127*15127^(1/8) 6541093898604063 a001 832040/15127*39603^(39/44) 6541093898800471 a001 514229/15127*39603^(41/44) 6541093898972142 a001 317811/15127*39603^(43/44) 6541093905628858 a001 267914296/15127*15127^(3/8) 6541093905827894 a001 10946/15127*7881196^(19/22) 6541093905827985 a001 6765/24476*5600748293801^(1/2) 6541093905827985 a001 10946/15127*817138163596^(1/2) 6541093905827985 a001 10946/15127*87403803^(3/4) 6541093905827989 a001 10946/15127*33385282^(19/24) 6541093905829780 a001 10946/15127*1860498^(19/20) 6541093907168187 a001 1346269/5778*5778^(11/12) 6541093908666222 a001 1346269/39603*24476^(41/42) 6541093909185160 a001 726103/13201*24476^(13/14) 6541093910225269 a001 5702887/39603*24476^(5/6) 6541093910745261 a001 9227465/39603*24476^(11/14) 6541093911236610 a001 686789568/2161*5778^(1/12) 6541093912305054 a001 39088169/39603*24476^(9/14) 6541093912747478 a001 5702887/103682*24476^(13/14) 6541093912775219 a001 24157817/15127*15127^(5/8) 6541093913267213 a001 4976784/90481*24476^(13/14) 6541093913343042 a001 39088169/710647*24476^(13/14) 6541093913354105 a001 831985/15126*24476^(13/14) 6541093913355719 a001 267914296/4870847*24476^(13/14) 6541093913355954 a001 233802911/4250681*24476^(13/14) 6541093913355989 a001 1836311903/33385282*24476^(13/14) 6541093913355994 a001 1602508992/29134601*24476^(13/14) 6541093913355995 a001 12586269025/228826127*24476^(13/14) 6541093913355995 a001 10983760033/199691526*24476^(13/14) 6541093913355995 a001 86267571272/1568397607*24476^(13/14) 6541093913355995 a001 75283811239/1368706081*24476^(13/14) 6541093913355995 a001 591286729879/10749957122*24476^(13/14) 6541093913355995 a001 12585437040/228811001*24476^(13/14) 6541093913355995 a001 4052739537881/73681302247*24476^(13/14) 6541093913355995 a001 3536736619241/64300051206*24476^(13/14) 6541093913355995 a001 6557470319842/119218851371*24476^(13/14) 6541093913355995 a001 2504730781961/45537549124*24476^(13/14) 6541093913355995 a001 956722026041/17393796001*24476^(13/14) 6541093913355995 a001 365435296162/6643838879*24476^(13/14) 6541093913355995 a001 139583862445/2537720636*24476^(13/14) 6541093913355995 a001 53316291173/969323029*24476^(13/14) 6541093913355995 a001 20365011074/370248451*24476^(13/14) 6541093913355995 a001 7778742049/141422324*24476^(13/14) 6541093913355997 a001 2971215073/54018521*24476^(13/14) 6541093913356010 a001 1134903170/20633239*24476^(13/14) 6541093913356100 a001 433494437/7881196*24476^(13/14) 6541093913356716 a001 165580141/3010349*24476^(13/14) 6541093913360942 a001 63245986/1149851*24476^(13/14) 6541093913389906 a001 24157817/439204*24476^(13/14) 6541093913588427 a001 9227465/167761*24476^(13/14) 6541093913787385 a001 7465176/51841*24476^(5/6) 6541093913864864 a001 165580141/39603*24476^(1/2) 6541093914307091 a001 39088169/271443*24476^(5/6) 6541093914307330 a001 24157817/103682*24476^(11/14) 6541093914382915 a001 14619165/101521*24476^(5/6) 6541093914393978 a001 133957148/930249*24476^(5/6) 6541093914395592 a001 701408733/4870847*24476^(5/6) 6541093914395827 a001 1836311903/12752043*24476^(5/6) 6541093914395862 a001 14930208/103681*24476^(5/6) 6541093914395867 a001 12586269025/87403803*24476^(5/6) 6541093914395867 a001 32951280099/228826127*24476^(5/6) 6541093914395867 a001 43133785636/299537289*24476^(5/6) 6541093914395867 a001 32264490531/224056801*24476^(5/6) 6541093914395867 a001 591286729879/4106118243*24476^(5/6) 6541093914395867 a001 774004377960/5374978561*24476^(5/6) 6541093914395867 a001 4052739537881/28143753123*24476^(5/6) 6541093914395867 a001 1515744265389/10525900321*24476^(5/6) 6541093914395867 a001 3278735159921/22768774562*24476^(5/6) 6541093914395867 a001 2504730781961/17393796001*24476^(5/6) 6541093914395867 a001 956722026041/6643838879*24476^(5/6) 6541093914395867 a001 182717648081/1268860318*24476^(5/6) 6541093914395867 a001 139583862445/969323029*24476^(5/6) 6541093914395867 a001 53316291173/370248451*24476^(5/6) 6541093914395868 a001 10182505537/70711162*24476^(5/6) 6541093914395870 a001 7778742049/54018521*24476^(5/6) 6541093914395883 a001 2971215073/20633239*24476^(5/6) 6541093914395973 a001 567451585/3940598*24476^(5/6) 6541093914396589 a001 433494437/3010349*24476^(5/6) 6541093914400815 a001 165580141/1149851*24476^(5/6) 6541093914428794 a001 2178309/64079*24476^(41/42) 6541093914429777 a001 31622993/219602*24476^(5/6) 6541093914628287 a001 24157817/167761*24476^(5/6) 6541093914827029 a001 63245986/271443*24476^(11/14) 6541093914902852 a001 165580141/710647*24476^(11/14) 6541093914913914 a001 433494437/1860498*24476^(11/14) 6541093914915528 a001 1134903170/4870847*24476^(11/14) 6541093914915764 a001 2971215073/12752043*24476^(11/14) 6541093914915798 a001 7778742049/33385282*24476^(11/14) 6541093914915803 a001 20365011074/87403803*24476^(11/14) 6541093914915804 a001 53316291173/228826127*24476^(11/14) 6541093914915804 a001 139583862445/599074578*24476^(11/14) 6541093914915804 a001 365435296162/1568397607*24476^(11/14) 6541093914915804 a001 956722026041/4106118243*24476^(11/14) 6541093914915804 a001 2504730781961/10749957122*24476^(11/14) 6541093914915804 a001 6557470319842/28143753123*24476^(11/14) 6541093914915804 a001 10610209857723/45537549124*24476^(11/14) 6541093914915804 a001 4052739537881/17393796001*24476^(11/14) 6541093914915804 a001 1548008755920/6643838879*24476^(11/14) 6541093914915804 a001 591286729879/2537720636*24476^(11/14) 6541093914915804 a001 225851433717/969323029*24476^(11/14) 6541093914915804 a001 86267571272/370248451*24476^(11/14) 6541093914915804 a001 63246219/271444*24476^(11/14) 6541093914915806 a001 12586269025/54018521*24476^(11/14) 6541093914915819 a001 4807526976/20633239*24476^(11/14) 6541093914915909 a001 1836311903/7881196*24476^(11/14) 6541093914916526 a001 701408733/3010349*24476^(11/14) 6541093914920751 a001 267914296/1149851*24476^(11/14) 6541093914949112 a001 3524578/64079*24476^(13/14) 6541093914949713 a001 102334155/439204*24476^(11/14) 6541093915148220 a001 39088169/167761*24476^(11/14) 6541093915153637 a001 17711/39603*2139295485799^(1/2) 6541093915424673 a001 17711*24476^(5/14) 6541093915867136 a001 102334155/103682*24476^(9/14) 6541093915988894 a001 9227465/64079*24476^(5/6) 6541093916386837 a001 267914296/271443*24476^(9/14) 6541093916462661 a001 701408733/710647*24476^(9/14) 6541093916473723 a001 1836311903/1860498*24476^(9/14) 6541093916475337 a001 4807526976/4870847*24476^(9/14) 6541093916475573 a001 12586269025/12752043*24476^(9/14) 6541093916475607 a001 32951280099/33385282*24476^(9/14) 6541093916475612 a001 86267571272/87403803*24476^(9/14) 6541093916475613 a001 225851433717/228826127*24476^(9/14) 6541093916475613 a001 591286729879/599074578*24476^(9/14) 6541093916475613 a001 1548008755920/1568397607*24476^(9/14) 6541093916475613 a001 4052739537881/4106118243*24476^(9/14) 6541093916475613 a001 4807525989/4870846*24476^(9/14) 6541093916475613 a001 6557470319842/6643838879*24476^(9/14) 6541093916475613 a001 2504730781961/2537720636*24476^(9/14) 6541093916475613 a001 956722026041/969323029*24476^(9/14) 6541093916475613 a001 365435296162/370248451*24476^(9/14) 6541093916475613 a001 139583862445/141422324*24476^(9/14) 6541093916475615 a001 53316291173/54018521*24476^(9/14) 6541093916475628 a001 20365011074/20633239*24476^(9/14) 6541093916475718 a001 7778742049/7881196*24476^(9/14) 6541093916476335 a001 2971215073/3010349*24476^(9/14) 6541093916480560 a001 1134903170/1149851*24476^(9/14) 6541093916508809 a001 14930352/64079*24476^(11/14) 6541093916509522 a001 433494437/439204*24476^(9/14) 6541093916522549 k002 Champernowne real with 92*n^2+69*n-96 6541093916708030 a001 165580141/167761*24476^(9/14) 6541093916984482 a001 2971215073/39603*24476^(3/14) 6541093917426946 a001 433494437/103682*24476^(1/2) 6541093917504418 a001 1602508992/13201*24476^(1/6) 6541093917946646 a001 1134903170/271443*24476^(1/2) 6541093918022470 a001 2971215073/710647*24476^(1/2) 6541093918033532 a001 7778742049/1860498*24476^(1/2) 6541093918035146 a001 20365011074/4870847*24476^(1/2) 6541093918035382 a001 53316291173/12752043*24476^(1/2) 6541093918035416 a001 139583862445/33385282*24476^(1/2) 6541093918035421 a001 365435296162/87403803*24476^(1/2) 6541093918035422 a001 956722026041/228826127*24476^(1/2) 6541093918035422 a001 2504730781961/599074578*24476^(1/2) 6541093918035422 a001 6557470319842/1568397607*24476^(1/2) 6541093918035422 a001 10610209857723/2537720636*24476^(1/2) 6541093918035422 a001 4052739537881/969323029*24476^(1/2) 6541093918035422 a001 1548008755920/370248451*24476^(1/2) 6541093918035422 a001 591286729879/141422324*24476^(1/2) 6541093918035424 a001 225851433717/54018521*24476^(1/2) 6541093918035437 a001 86267571272/20633239*24476^(1/2) 6541093918035527 a001 32951280099/7881196*24476^(1/2) 6541093918036144 a001 12586269025/3010349*24476^(1/2) 6541093918040369 a001 4807526976/1149851*24476^(1/2) 6541093918050434 a001 416020/2889*5778^(35/36) 6541093918068625 a001 63245986/64079*24476^(9/14) 6541093918069331 a001 1836311903/439204*24476^(1/2) 6541093918267839 a001 701408733/167761*24476^(1/2) 6541093918527690 a001 34111385/13201*64079^(1/2) 6541093918544291 a001 12586269025/39603*24476^(1/14) 6541093918715619 a001 17711/103682*7881196^(21/22) 6541093918715631 a001 15456/13201*7881196^(5/6) 6541093918715705 a001 17711/103682*20633239^(9/10) 6541093918715707 a001 15456/13201*20633239^(11/14) 6541093918715719 a001 17711/103682*2537720636^(7/10) 6541093918715719 a001 17711/103682*17393796001^(9/14) 6541093918715719 a001 17711/103682*14662949395604^(1/2) 6541093918715719 a001 17711/103682*505019158607^(9/16) 6541093918715719 a001 17711/103682*192900153618^(7/12) 6541093918715719 a001 15456/13201*2537720636^(11/18) 6541093918715719 a001 15456/13201*312119004989^(1/2) 6541093918715719 a001 15456/13201*3461452808002^(11/24) 6541093918715719 a001 15456/13201*28143753123^(11/20) 6541093918715719 a001 15456/13201*1568397607^(5/8) 6541093918715719 a001 17711/103682*599074578^(3/4) 6541093918715719 a001 15456/13201*228826127^(11/16) 6541093918715724 a001 17711/103682*33385282^(7/8) 6541093918717451 a001 15456/13201*1860498^(11/12) 6541093918986755 a001 1836311903/103682*24476^(5/14) 6541093919119967 a001 514229/39603*167761^(9/10) 6541093919161463 a001 5702887/39603*167761^(7/10) 6541093919203395 a001 121393/39603*439204^(17/18) 6541093919207987 a001 63245986/39603*167761^(1/2) 6541093919235339 a001 121393/39603*7881196^(17/22) 6541093919235420 a001 121393/39603*45537549124^(1/2) 6541093919235424 a001 121393/39603*33385282^(17/24) 6541093919235450 a001 121393/39603*12752043^(3/4) 6541093919237026 a001 121393/39603*1860498^(17/20) 6541093919254470 a001 17711*167761^(3/10) 6541093919299430 a001 726103/13201*439204^(13/18) 6541093919300885 a001 514229/39603*439204^(5/6) 6541093919300954 a001 7778742049/39603*167761^(1/10) 6541093919303489 a001 9227465/39603*439204^(11/18) 6541093919307240 a001 39088169/39603*439204^(1/2) 6541093919311009 a001 165580141/39603*439204^(7/18) 6541093919311243 a001 105937/13201*6643838879^(1/2) 6541093919314776 a001 17711*439204^(5/18) 6541093919318544 a001 2971215073/39603*439204^(1/6) 6541093919321724 a001 24157817/39603*1149851^(1/2) 6541093919322306 a001 17711/1860498*2537720636^(5/6) 6541093919322306 a001 832040/39603*969323029^(1/2) 6541093919322306 a001 17711/1860498*312119004989^(15/22) 6541093919322306 a001 17711/1860498*3461452808002^(5/8) 6541093919322306 a001 17711/1860498*28143753123^(3/4) 6541093919322306 a001 17711/1860498*228826127^(15/16) 6541093919322312 a001 12586269025/39603*439204^(1/18) 6541093919323829 a001 4976784/13201*3010349^(1/2) 6541093919323858 a001 726103/13201*7881196^(13/22) 6541093919323920 a001 726103/13201*141422324^(1/2) 6541093919323920 a001 726103/13201*73681302247^(3/8) 6541093919323923 a001 726103/13201*33385282^(13/24) 6541093919324148 a001 5702887/39603*20633239^(1/2) 6541093919324152 a001 39088169/39603*7881196^(9/22) 6541093919324155 a001 5702887/39603*2537720636^(7/18) 6541093919324155 a001 5702887/39603*17393796001^(5/14) 6541093919324155 a001 5702887/39603*312119004989^(7/22) 6541093919324155 a001 5702887/39603*14662949395604^(5/18) 6541093919324155 a001 5702887/39603*505019158607^(5/16) 6541093919324155 a001 5702887/39603*28143753123^(7/20) 6541093919324155 a001 5702887/39603*599074578^(5/12) 6541093919324155 a001 5702887/39603*228826127^(7/16) 6541093919324158 a001 9227465/39603*7881196^(1/2) 6541093919324162 a001 165580141/39603*7881196^(7/22) 6541093919324172 a001 17711*7881196^(5/22) 6541093919324178 a001 1836311903/39603*7881196^(1/6) 6541093919324181 a001 2971215073/39603*7881196^(3/22) 6541093919324190 a001 17711/33385282*1322157322203^(3/4) 6541093919324190 a001 4976784/13201*9062201101803^(1/4) 6541093919324190 a001 63245986/39603*20633239^(5/14) 6541093919324191 a001 12586269025/39603*7881196^(1/22) 6541093919324191 a001 165580141/39603*20633239^(3/10) 6541093919324192 a001 17711*20633239^(3/14) 6541093919324194 a001 1602508992/13201*20633239^(1/10) 6541093919324194 a001 7778742049/39603*20633239^(1/14) 6541093919324195 a001 17711/87403803*17393796001^(13/14) 6541093919324195 a001 17711/87403803*14662949395604^(13/18) 6541093919324195 a001 17711/87403803*505019158607^(13/16) 6541093919324195 a001 17711/87403803*73681302247^(7/8) 6541093919324195 a001 39088169/39603*2537720636^(3/10) 6541093919324195 a001 39088169/39603*14662949395604^(3/14) 6541093919324195 a001 39088169/39603*192900153618^(1/4) 6541093919324195 a001 17711/228826127*312119004989^(19/22) 6541093919324195 a001 17711/228826127*817138163596^(5/6) 6541093919324195 a001 17711/228826127*3461452808002^(19/24) 6541093919324195 a001 17711/228826127*28143753123^(19/20) 6541093919324195 a001 34111385/13201*4106118243^(1/4) 6541093919324195 a001 1134903170/39603*141422324^(1/6) 6541093919324195 a001 17711/599074578*312119004989^(9/10) 6541093919324195 a001 17711/599074578*14662949395604^(11/14) 6541093919324195 a001 17711/599074578*192900153618^(11/12) 6541093919324195 a001 267914296/39603*817138163596^(1/6) 6541093919324195 a001 17711*2537720636^(1/6) 6541093919324195 a001 17711/28143753123*3461452808002^(23/24) 6541093919324195 a001 17711/73681302247*14662949395604^(17/18) 6541093919324195 a001 17711*312119004989^(3/22) 6541093919324195 a001 17711*28143753123^(3/20) 6541093919324195 a001 17711/45537549124*14662949395604^(13/14) 6541093919324195 a001 17711/2537720636*312119004989^(21/22) 6541093919324195 a001 17711/2537720636*14662949395604^(5/6) 6541093919324195 a001 17711/2537720636*505019158607^(15/16) 6541093919324195 a001 1836311903/39603*312119004989^(1/10) 6541093919324195 a001 1602508992/13201*17393796001^(1/14) 6541093919324195 a001 1602508992/13201*14662949395604^(1/18) 6541093919324195 a001 1602508992/13201*505019158607^(1/16) 6541093919324195 a001 1836311903/39603*1568397607^(1/8) 6541093919324195 a001 7778742049/39603*2537720636^(1/18) 6541093919324195 a001 7778742049/39603*312119004989^(1/22) 6541093919324195 a001 7778742049/39603*28143753123^(1/20) 6541093919324195 a001 2971215073/39603*2537720636^(1/10) 6541093919324195 a001 2971215073/39603*14662949395604^(1/14) 6541093919324195 a001 2971215073/39603*192900153618^(1/12) 6541093919324195 a001 1134903170/39603*73681302247^(1/8) 6541093919324195 a001 1602508992/13201*599074578^(1/12) 6541093919324195 a001 433494437/39603*45537549124^(1/6) 6541093919324195 a001 7778742049/39603*228826127^(1/16) 6541093919324195 a001 17711*228826127^(3/16) 6541093919324195 a001 165580141/39603*17393796001^(3/14) 6541093919324195 a001 165580141/39603*14662949395604^(1/6) 6541093919324195 a001 165580141/39603*599074578^(1/4) 6541093919324196 a001 267914296/39603*87403803^(1/4) 6541093919324196 a001 12586269025/39603*33385282^(1/24) 6541093919324196 a001 17711/141422324*9062201101803^(3/4) 6541093919324196 a001 63245986/39603*2537720636^(5/18) 6541093919324196 a001 63245986/39603*312119004989^(5/22) 6541093919324196 a001 63245986/39603*3461452808002^(5/24) 6541093919324196 a001 63245986/39603*28143753123^(1/4) 6541093919324196 a001 63245986/39603*228826127^(5/16) 6541093919324196 a001 2971215073/39603*33385282^(1/8) 6541093919324197 a001 17711*33385282^(5/24) 6541093919324197 a001 39088169/39603*33385282^(3/8) 6541093919324197 a001 165580141/39603*33385282^(7/24) 6541093919324198 a001 24157817/39603*1322157322203^(1/4) 6541093919324206 a001 433494437/39603*12752043^(1/4) 6541093919324211 a001 17711/20633239*2537720636^(17/18) 6541093919324211 a001 17711/20633239*45537549124^(5/6) 6541093919324211 a001 17711/20633239*312119004989^(17/22) 6541093919324211 a001 17711/20633239*3461452808002^(17/24) 6541093919324211 a001 17711/20633239*28143753123^(17/20) 6541093919324211 a001 9227465/39603*312119004989^(3/10) 6541093919324211 a001 9227465/39603*1568397607^(3/8) 6541093919324213 a001 9227465/39603*33385282^(11/24) 6541093919324290 a001 12586269025/39603*1860498^(1/20) 6541093919324300 a001 3524578/39603*54018521^(1/2) 6541093919324301 a001 89/39604*2537720636^(9/10) 6541093919324301 a001 89/39604*14662949395604^(9/14) 6541093919324301 a001 89/39604*192900153618^(3/4) 6541093919324353 a001 7778742049/39603*1860498^(1/12) 6541093919324479 a001 2971215073/39603*1860498^(3/20) 6541093919324668 a001 17711*1860498^(1/4) 6541093919324857 a001 165580141/39603*1860498^(7/20) 6541093919324917 a001 1346269/39603*370248451^(1/2) 6541093919324917 a001 17711/3010349*17393796001^(11/14) 6541093919324917 a001 17711/3010349*14662949395604^(11/18) 6541093919324917 a001 17711/3010349*505019158607^(11/16) 6541093919324917 a001 17711/3010349*1568397607^(7/8) 6541093919324917 a001 17711/3010349*599074578^(11/12) 6541093919324983 a001 63245986/39603*1860498^(5/12) 6541093919325045 a001 39088169/39603*1860498^(9/20) 6541093919325148 a001 726103/13201*1860498^(13/20) 6541093919325250 a001 9227465/39603*1860498^(11/20) 6541093919325258 a001 5702887/39603*1860498^(7/12) 6541093919325814 a001 1602508992/13201*710647^(1/8) 6541093919329053 a001 165580141/39603*710647^(3/8) 6541093919329071 a001 514229/39603*7881196^(15/22) 6541093919329133 a001 514229/39603*20633239^(9/14) 6541093919329143 a001 514229/39603*2537720636^(1/2) 6541093919329143 a001 514229/39603*312119004989^(9/22) 6541093919329143 a001 514229/39603*14662949395604^(5/14) 6541093919329143 a001 514229/39603*192900153618^(5/12) 6541093919329143 a001 514229/39603*28143753123^(9/20) 6541093919329143 a001 514229/39603*228826127^(9/16) 6541093919329146 a001 514229/39603*33385282^(5/8) 6541093919330560 a001 514229/39603*1860498^(3/4) 6541093919332250 a001 5702887/39603*710647^(5/8) 6541093919346389 a001 1134903170/39603*271443^(1/4) 6541093919358094 a001 196418/39603*20633239^(7/10) 6541093919358105 a001 17711/439204*4106118243^(3/4) 6541093919358105 a001 196418/39603*17393796001^(1/2) 6541093919358105 a001 196418/39603*14662949395604^(7/18) 6541093919358105 a001 196418/39603*505019158607^(7/16) 6541093919358105 a001 196418/39603*599074578^(7/12) 6541093919358110 a001 17711/439204*33385282^(23/24) 6541093919362225 a001 12586269025/39603*103682^(1/16) 6541093919369438 a001 196418/39603*710647^(7/8) 6541093919390501 a001 726103/13201*271443^(3/4) 6541093919438285 a001 2971215073/39603*103682^(3/16) 6541093919506456 a001 1602508992/90481*24476^(5/14) 6541093919514344 a001 17711*103682^(5/16) 6541093919556598 a001 17711/167761*20633239^(13/14) 6541093919556612 a001 17711/167761*141422324^(5/6) 6541093919556613 a001 17711/167761*2537720636^(13/18) 6541093919556613 a001 17711/167761*312119004989^(13/22) 6541093919556613 a001 17711/167761*3461452808002^(13/24) 6541093919556613 a001 17711/167761*73681302247^(5/8) 6541093919556613 a001 17711/167761*28143753123^(13/20) 6541093919556613 a001 75025/39603*119218851371^(1/2) 6541093919556613 a001 17711/167761*228826127^(13/16) 6541093919582279 a001 12586269025/710647*24476^(5/14) 6541093919590404 a001 165580141/39603*103682^(7/16) 6541093919593341 a001 10983760033/620166*24476^(5/14) 6541093919594955 a001 86267571272/4870847*24476^(5/14) 6541093919595191 a001 75283811239/4250681*24476^(5/14) 6541093919595225 a001 591286729879/33385282*24476^(5/14) 6541093919595230 a001 516002918640/29134601*24476^(5/14) 6541093919595231 a001 4052739537881/228826127*24476^(5/14) 6541093919595231 a001 3536736619241/199691526*24476^(5/14) 6541093919595231 a001 6557470319842/370248451*24476^(5/14) 6541093919595231 a001 2504730781961/141422324*24476^(5/14) 6541093919595233 a001 956722026041/54018521*24476^(5/14) 6541093919595246 a001 365435296162/20633239*24476^(5/14) 6541093919595336 a001 139583862445/7881196*24476^(5/14) 6541093919595953 a001 53316291173/3010349*24476^(5/14) 6541093919600178 a001 20365011074/1149851*24476^(5/14) 6541093919628434 a001 267914296/64079*24476^(1/2) 6541093919629140 a001 7778742049/439204*24476^(5/14) 6541093919666462 a001 39088169/39603*103682^(9/16) 6541093919742538 a001 9227465/39603*103682^(11/16) 6541093919818307 a001 726103/13201*103682^(13/16) 6541093919827648 a001 2971215073/167761*24476^(5/14) 6541093919899589 a001 514229/39603*103682^(15/16) 6541093919921299 a001 311187/2161*15127^(7/8) 6541093920366835 a001 1836311903/39603*39603^(1/4) 6541093920546564 a001 7778742049/103682*24476^(3/14) 6541093920917116 a001 28657/39603*7881196^(19/22) 6541093920917207 a001 17711/64079*5600748293801^(1/2) 6541093920917207 a001 28657/39603*817138163596^(1/2) 6541093920917208 a001 28657/39603*87403803^(3/4) 6541093920917212 a001 28657/39603*33385282^(19/24) 6541093920919002 a001 28657/39603*1860498^(19/20) 6541093921066265 a001 20365011074/271443*24476^(3/14) 6541093921066500 a001 12586269025/103682*24476^(1/6) 6541093921142088 a001 53316291173/710647*24476^(3/14) 6541093921153151 a001 139583862445/1860498*24476^(3/14) 6541093921154765 a001 365435296162/4870847*24476^(3/14) 6541093921155000 a001 956722026041/12752043*24476^(3/14) 6541093921155034 a001 2504730781961/33385282*24476^(3/14) 6541093921155039 a001 6557470319842/87403803*24476^(3/14) 6541093921155041 a001 10610209857723/141422324*24476^(3/14) 6541093921155042 a001 4052739537881/54018521*24476^(3/14) 6541093921155056 a001 140728068720/1875749*24476^(3/14) 6541093921155146 a001 591286729879/7881196*24476^(3/14) 6541093921155762 a001 225851433717/3010349*24476^(3/14) 6541093921159988 a001 86267571272/1149851*24476^(3/14) 6541093921188243 a001 1134903170/64079*24476^(5/14) 6541093921188949 a001 32951280099/439204*24476^(3/14) 6541093921351568 a001 1346269/15127*15127^(37/40) 6541093921387457 a001 75025*24476^(3/14) 6541093921586201 a001 121393*24476^(1/6) 6541093921662024 a001 86267571272/710647*24476^(1/6) 6541093921673087 a001 75283811239/620166*24476^(1/6) 6541093921674701 a001 591286729879/4870847*24476^(1/6) 6541093921674936 a001 516002918640/4250681*24476^(1/6) 6541093921674971 a001 4052739537881/33385282*24476^(1/6) 6541093921674976 a001 3536736619241/29134601*24476^(1/6) 6541093921674979 a001 6557470319842/54018521*24476^(1/6) 6541093921674992 a001 2504730781961/20633239*24476^(1/6) 6541093921675082 a001 956722026041/7881196*24476^(1/6) 6541093921675698 a001 365435296162/3010349*24476^(1/6) 6541093921679924 a001 139583862445/1149851*24476^(1/6) 6541093921708886 a001 53316291173/439204*24476^(1/6) 6541093921907394 a001 20365011074/167761*24476^(1/6) 6541093922089772 a001 133957148/51841*64079^(1/2) 6541093922106373 a001 32951280099/103682*24476^(1/14) 6541093922277801 a001 23184/51841*2139295485799^(1/2) 6541093922452130 a001 9227465/39603*39603^(3/4) 6541093922609473 a001 233802911/90481*64079^(1/2) 6541093922626074 a001 86267571272/271443*24476^(1/14) 6541093922677824 a001 1346269/103682*167761^(9/10) 6541093922685296 a001 1836311903/710647*64079^(1/2) 6541093922696358 a001 267084832/103361*64079^(1/2) 6541093922697972 a001 12586269025/4870847*64079^(1/2) 6541093922698208 a001 10983760033/4250681*64079^(1/2) 6541093922698242 a001 43133785636/16692641*64079^(1/2) 6541093922698247 a001 75283811239/29134601*64079^(1/2) 6541093922698248 a001 591286729879/228826127*64079^(1/2) 6541093922698248 a001 86000486440/33281921*64079^(1/2) 6541093922698248 a001 4052739537881/1568397607*64079^(1/2) 6541093922698248 a001 3536736619241/1368706081*64079^(1/2) 6541093922698248 a001 3278735159921/1268860318*64079^(1/2) 6541093922698248 a001 2504730781961/969323029*64079^(1/2) 6541093922698248 a001 956722026041/370248451*64079^(1/2) 6541093922698248 a001 182717648081/70711162*64079^(1/2) 6541093922698250 a001 139583862445/54018521*64079^(1/2) 6541093922698263 a001 53316291173/20633239*64079^(1/2) 6541093922698353 a001 10182505537/3940598*64079^(1/2) 6541093922698970 a001 7778742049/3010349*64079^(1/2) 6541093922701897 a001 317811*24476^(1/14) 6541093922703195 a001 2971215073/1149851*64079^(1/2) 6541093922712960 a001 591286729879/1860498*24476^(1/14) 6541093922714574 a001 1548008755920/4870847*24476^(1/14) 6541093922714809 a001 4052739537881/12752043*24476^(1/14) 6541093922714843 a001 1515744265389/4769326*24476^(1/14) 6541093922714865 a001 6557470319842/20633239*24476^(1/14) 6541093922714955 a001 2504730781961/7881196*24476^(1/14) 6541093922715571 a001 956722026041/3010349*24476^(1/14) 6541093922719797 a001 365435296162/1149851*24476^(1/14) 6541093922723580 a001 7465176/51841*167761^(7/10) 6541093922732157 a001 567451585/219602*64079^(1/2) 6541093922748052 a001 4807526976/64079*24476^(3/14) 6541093922748759 a001 139583862445/439204*24476^(1/14) 6541093922770069 a001 165580141/103682*167761^(1/2) 6541093922778228 a001 832040/15127*15127^(39/40) 6541093922797402 a001 15456/90481*7881196^(21/22) 6541093922797414 a001 121393/103682*7881196^(5/6) 6541093922797488 a001 15456/90481*20633239^(9/10) 6541093922797490 a001 121393/103682*20633239^(11/14) 6541093922797502 a001 15456/90481*2537720636^(7/10) 6541093922797502 a001 121393/103682*2537720636^(11/18) 6541093922797502 a001 15456/90481*17393796001^(9/14) 6541093922797502 a001 15456/90481*14662949395604^(1/2) 6541093922797502 a001 15456/90481*505019158607^(9/16) 6541093922797502 a001 15456/90481*192900153618^(7/12) 6541093922797502 a001 121393/103682*312119004989^(1/2) 6541093922797502 a001 121393/103682*3461452808002^(11/24) 6541093922797502 a001 121393/103682*28143753123^(11/20) 6541093922797502 a001 121393/103682*1568397607^(5/8) 6541093922797502 a001 15456/90481*599074578^(3/4) 6541093922797502 a001 121393/103682*228826127^(11/16) 6541093922797507 a001 15456/90481*33385282^(7/8) 6541093922799234 a001 121393/103682*1860498^(11/12) 6541093922816552 a001 1836311903/103682*167761^(3/10) 6541093922841300 a001 317811/103682*439204^(17/18) 6541093922858742 a001 1346269/103682*439204^(5/6) 6541093922861747 a001 5702887/103682*439204^(13/18) 6541093922863036 a001 10182505537/51841*167761^(1/10) 6541093922865558 a001 24157817/103682*439204^(11/18) 6541093922869323 a001 102334155/103682*439204^(1/2) 6541093922873091 a001 433494437/103682*439204^(7/18) 6541093922873244 a001 317811/103682*7881196^(17/22) 6541093922873325 a001 317811/103682*45537549124^(1/2) 6541093922873330 a001 317811/103682*33385282^(17/24) 6541093922873356 a001 317811/103682*12752043^(3/4) 6541093922874932 a001 317811/103682*1860498^(17/20) 6541093922876858 a001 1836311903/103682*439204^(5/18) 6541093922880626 a001 7778742049/103682*439204^(1/6) 6541093922883804 a001 31622993/51841*1149851^(1/2) 6541093922884388 a001 416020/51841*6643838879^(1/2) 6541093922884394 a001 32951280099/103682*439204^(1/18) 6541093922885916 a001 39088169/103682*3010349^(1/2) 6541093922886002 a001 46347/2206*969323029^(1/2) 6541093922886002 a001 46368/4870847*2537720636^(5/6) 6541093922886002 a001 46368/4870847*312119004989^(15/22) 6541093922886002 a001 46368/4870847*3461452808002^(5/8) 6541093922886002 a001 46368/4870847*28143753123^(3/4) 6541093922886002 a001 46368/4870847*228826127^(15/16) 6541093922886175 a001 5702887/103682*7881196^(13/22) 6541093922886227 a001 24157817/103682*7881196^(1/2) 6541093922886234 a001 102334155/103682*7881196^(9/22) 6541093922886237 a001 5702887/103682*141422324^(1/2) 6541093922886237 a001 5702887/103682*73681302247^(3/8) 6541093922886241 a001 5702887/103682*33385282^(13/24) 6541093922886244 a001 433494437/103682*7881196^(7/22) 6541093922886254 a001 1836311903/103682*7881196^(5/22) 6541093922886260 a001 46368*7881196^(1/6) 6541093922886263 a001 7778742049/103682*7881196^(3/22) 6541093922886264 a001 7465176/51841*20633239^(1/2) 6541093922886272 a001 7465176/51841*2537720636^(7/18) 6541093922886272 a001 7465176/51841*17393796001^(5/14) 6541093922886272 a001 7465176/51841*312119004989^(7/22) 6541093922886272 a001 7465176/51841*14662949395604^(5/18) 6541093922886272 a001 7465176/51841*505019158607^(5/16) 6541093922886272 a001 7465176/51841*28143753123^(7/20) 6541093922886272 a001 7465176/51841*599074578^(5/12) 6541093922886272 a001 7465176/51841*228826127^(7/16) 6541093922886272 a001 165580141/103682*20633239^(5/14) 6541093922886273 a001 32951280099/103682*7881196^(1/22) 6541093922886273 a001 433494437/103682*20633239^(3/10) 6541093922886274 a001 1836311903/103682*20633239^(3/14) 6541093922886276 a001 12586269025/103682*20633239^(1/10) 6541093922886277 a001 10182505537/51841*20633239^(1/14) 6541093922886277 a001 15456/29134601*1322157322203^(3/4) 6541093922886277 a001 39088169/103682*9062201101803^(1/4) 6541093922886278 a001 102334155/103682*2537720636^(3/10) 6541093922886278 a001 46368/228826127*17393796001^(13/14) 6541093922886278 a001 46368/228826127*14662949395604^(13/18) 6541093922886278 a001 46368/228826127*505019158607^(13/16) 6541093922886278 a001 46368/228826127*73681302247^(7/8) 6541093922886278 a001 102334155/103682*14662949395604^(3/14) 6541093922886278 a001 102334155/103682*192900153618^(1/4) 6541093922886278 a001 2971215073/103682*141422324^(1/6) 6541093922886278 a001 2576/33281921*312119004989^(19/22) 6541093922886278 a001 2576/33281921*817138163596^(5/6) 6541093922886278 a001 2576/33281921*3461452808002^(19/24) 6541093922886278 a001 2576/33281921*28143753123^(19/20) 6541093922886278 a001 133957148/51841*4106118243^(1/4) 6541093922886278 a001 6624/224056801*312119004989^(9/10) 6541093922886278 a001 6624/224056801*14662949395604^(11/14) 6541093922886278 a001 6624/224056801*192900153618^(11/12) 6541093922886278 a001 701408733/103682*817138163596^(1/6) 6541093922886278 a001 1836311903/103682*2537720636^(1/6) 6541093922886278 a001 1836311903/103682*312119004989^(3/22) 6541093922886278 a001 1836311903/103682*28143753123^(3/20) 6541093922886278 a001 7778742049/103682*2537720636^(1/10) 6541093922886278 a001 6624/10525900321*3461452808002^(23/24) 6541093922886278 a001 2576/10716675201*14662949395604^(17/18) 6541093922886278 a001 46368*312119004989^(1/10) 6541093922886278 a001 46368/119218851371*14662949395604^(13/14) 6541093922886278 a001 10182505537/51841*2537720636^(1/18) 6541093922886278 a001 12586269025/103682*17393796001^(1/14) 6541093922886278 a001 12586269025/103682*14662949395604^(1/18) 6541093922886278 a001 12586269025/103682*505019158607^(1/16) 6541093922886278 a001 10182505537/51841*312119004989^(1/22) 6541093922886278 a001 10182505537/51841*28143753123^(1/20) 6541093922886278 a001 7778742049/103682*14662949395604^(1/14) 6541093922886278 a001 7778742049/103682*192900153618^(1/12) 6541093922886278 a001 46368/6643838879*312119004989^(21/22) 6541093922886278 a001 46368/6643838879*14662949395604^(5/6) 6541093922886278 a001 46368/6643838879*505019158607^(15/16) 6541093922886278 a001 2971215073/103682*73681302247^(1/8) 6541093922886278 a001 46368*1568397607^(1/8) 6541093922886278 a001 567451585/51841*45537549124^(1/6) 6541093922886278 a001 12586269025/103682*599074578^(1/12) 6541093922886278 a001 433494437/103682*17393796001^(3/14) 6541093922886278 a001 433494437/103682*14662949395604^(1/6) 6541093922886278 a001 10182505537/51841*228826127^(1/16) 6541093922886278 a001 433494437/103682*599074578^(1/4) 6541093922886278 a001 1836311903/103682*228826127^(3/16) 6541093922886278 a001 165580141/103682*2537720636^(5/18) 6541093922886278 a001 46368/370248451*9062201101803^(3/4) 6541093922886278 a001 165580141/103682*312119004989^(5/22) 6541093922886278 a001 165580141/103682*3461452808002^(5/24) 6541093922886278 a001 165580141/103682*28143753123^(1/4) 6541093922886278 a001 165580141/103682*228826127^(5/16) 6541093922886278 a001 701408733/103682*87403803^(1/4) 6541093922886278 a001 32951280099/103682*33385282^(1/24) 6541093922886278 a001 31622993/51841*1322157322203^(1/4) 6541093922886278 a001 7778742049/103682*33385282^(1/8) 6541093922886279 a001 1836311903/103682*33385282^(5/24) 6541093922886279 a001 433494437/103682*33385282^(7/24) 6541093922886280 a001 102334155/103682*33385282^(3/8) 6541093922886280 a001 46368/54018521*2537720636^(17/18) 6541093922886280 a001 46368/54018521*45537549124^(5/6) 6541093922886280 a001 46368/54018521*312119004989^(17/22) 6541093922886280 a001 46368/54018521*3461452808002^(17/24) 6541093922886280 a001 46368/54018521*28143753123^(17/20) 6541093922886280 a001 24157817/103682*312119004989^(3/10) 6541093922886280 a001 24157817/103682*1568397607^(3/8) 6541093922886283 a001 24157817/103682*33385282^(11/24) 6541093922886288 a001 567451585/51841*12752043^(1/4) 6541093922886292 a001 9227465/103682*54018521^(1/2) 6541093922886293 a001 46368/20633239*2537720636^(9/10) 6541093922886293 a001 46368/20633239*14662949395604^(9/14) 6541093922886293 a001 46368/20633239*192900153618^(3/4) 6541093922886372 a001 32951280099/103682*1860498^(1/20) 6541093922886383 a001 1762289/51841*370248451^(1/2) 6541093922886383 a001 11592/1970299*17393796001^(11/14) 6541093922886383 a001 11592/1970299*14662949395604^(11/18) 6541093922886383 a001 11592/1970299*505019158607^(11/16) 6541093922886383 a001 11592/1970299*1568397607^(7/8) 6541093922886383 a001 11592/1970299*599074578^(11/12) 6541093922886435 a001 10182505537/51841*1860498^(1/12) 6541093922886561 a001 7778742049/103682*1860498^(3/20) 6541093922886750 a001 1836311903/103682*1860498^(1/4) 6541093922886928 a001 1346269/103682*7881196^(15/22) 6541093922886939 a001 433494437/103682*1860498^(7/20) 6541093922886990 a001 1346269/103682*20633239^(9/14) 6541093922886999 a001 1346269/103682*2537720636^(1/2) 6541093922886999 a001 1346269/103682*312119004989^(9/22) 6541093922886999 a001 1346269/103682*14662949395604^(5/14) 6541093922886999 a001 1346269/103682*192900153618^(5/12) 6541093922886999 a001 1346269/103682*28143753123^(9/20) 6541093922886999 a001 1346269/103682*228826127^(9/16) 6541093922887003 a001 1346269/103682*33385282^(5/8) 6541093922887065 a001 165580141/103682*1860498^(5/12) 6541093922887128 a001 102334155/103682*1860498^(9/20) 6541093922887319 a001 24157817/103682*1860498^(11/20) 6541093922887374 a001 7465176/51841*1860498^(7/12) 6541093922887466 a001 5702887/103682*1860498^(13/20) 6541093922887897 a001 12586269025/103682*710647^(1/8) 6541093922888417 a001 1346269/103682*1860498^(3/4) 6541093922891135 a001 433494437/103682*710647^(3/8) 6541093922891214 a001 514229/103682*20633239^(7/10) 6541093922891225 a001 514229/103682*17393796001^(1/2) 6541093922891225 a001 514229/103682*14662949395604^(7/18) 6541093922891225 a001 514229/103682*505019158607^(7/16) 6541093922891225 a001 46368/1149851*4106118243^(3/4) 6541093922891225 a001 514229/103682*599074578^(7/12) 6541093922891231 a001 46368/1149851*33385282^(23/24) 6541093922894367 a001 7465176/51841*710647^(5/8) 6541093922897375 a001 7778742049/39603*15127^(1/8) 6541093922902558 a001 514229/103682*710647^(7/8) 6541093922908471 a001 2971215073/103682*271443^(1/4) 6541093922920173 a001 11592/109801*20633239^(13/14) 6541093922920187 a001 11592/109801*141422324^(5/6) 6541093922920187 a001 11592/109801*2537720636^(13/18) 6541093922920187 a001 11592/109801*312119004989^(13/22) 6541093922920187 a001 11592/109801*3461452808002^(13/24) 6541093922920187 a001 11592/109801*73681302247^(5/8) 6541093922920187 a001 11592/109801*28143753123^(13/20) 6541093922920187 a001 98209/51841*119218851371^(1/2) 6541093922920187 a001 11592/109801*228826127^(13/16) 6541093922924307 a001 32951280099/103682*103682^(1/16) 6541093922930665 a001 433494437/167761*64079^(1/2) 6541093922947267 a001 53316291173/167761*24476^(1/14) 6541093922952819 a001 5702887/103682*271443^(3/4) 6541093923000367 a001 7778742049/103682*103682^(3/16) 6541093923020551 a001 726103/13201*39603^(39/44) 6541093923076426 a001 1836311903/103682*103682^(5/16) 6541093923118604 a001 75025/103682*7881196^(19/22) 6541093923118695 a001 46368/167761*5600748293801^(1/2) 6541093923118695 a001 75025/103682*817138163596^(1/2) 6541093923118696 a001 75025/103682*87403803^(3/4) 6541093923118700 a001 75025/103682*33385282^(19/24) 6541093923120490 a001 75025/103682*1860498^(19/20) 6541093923152486 a001 433494437/103682*103682^(7/16) 6541093923196908 a001 3524578/271443*167761^(9/10) 6541093923211119 a001 1346269/39603*39603^(41/44) 6541093923228545 a001 102334155/103682*103682^(9/16) 6541093923243285 a001 39088169/271443*167761^(7/10) 6541093923267988 a001 7778742049/64079*24476^(1/6) 6541093923272642 a001 9227465/710647*167761^(9/10) 6541093923283691 a001 24157817/1860498*167761^(9/10) 6541093923285303 a001 63245986/4870847*167761^(9/10) 6541093923285538 a001 165580141/12752043*167761^(9/10) 6541093923285573 a001 433494437/33385282*167761^(9/10) 6541093923285578 a001 1134903170/87403803*167761^(9/10) 6541093923285578 a001 2971215073/228826127*167761^(9/10) 6541093923285578 a001 7778742049/599074578*167761^(9/10) 6541093923285578 a001 20365011074/1568397607*167761^(9/10) 6541093923285578 a001 53316291173/4106118243*167761^(9/10) 6541093923285578 a001 139583862445/10749957122*167761^(9/10) 6541093923285578 a001 365435296162/28143753123*167761^(9/10) 6541093923285578 a001 956722026041/73681302247*167761^(9/10) 6541093923285578 a001 2504730781961/192900153618*167761^(9/10) 6541093923285578 a001 10610209857723/817138163596*167761^(9/10) 6541093923285578 a001 4052739537881/312119004989*167761^(9/10) 6541093923285578 a001 1548008755920/119218851371*167761^(9/10) 6541093923285578 a001 591286729879/45537549124*167761^(9/10) 6541093923285578 a001 7787980473/599786069*167761^(9/10) 6541093923285578 a001 86267571272/6643838879*167761^(9/10) 6541093923285578 a001 32951280099/2537720636*167761^(9/10) 6541093923285578 a001 12586269025/969323029*167761^(9/10) 6541093923285578 a001 4807526976/370248451*167761^(9/10) 6541093923285579 a001 1836311903/141422324*167761^(9/10) 6541093923285581 a001 701408733/54018521*167761^(9/10) 6541093923285594 a001 9238424/711491*167761^(9/10) 6541093923285684 a001 102334155/7881196*167761^(9/10) 6541093923286299 a001 39088169/3010349*167761^(9/10) 6541093923289770 a001 433494437/271443*167761^(1/2) 6541093923290520 a001 14930352/1149851*167761^(9/10) 6541093923304607 a001 24157817/103682*103682^(11/16) 6541093923317203 a001 121393/271443*2139295485799^(1/2) 6541093923319110 a001 14619165/101521*167761^(7/10) 6541093923319447 a001 5702887/439204*167761^(9/10) 6541093923330172 a001 133957148/930249*167761^(7/10) 6541093923331786 a001 701408733/4870847*167761^(7/10) 6541093923332022 a001 1836311903/12752043*167761^(7/10) 6541093923332056 a001 14930208/103681*167761^(7/10) 6541093923332061 a001 12586269025/87403803*167761^(7/10) 6541093923332062 a001 32951280099/228826127*167761^(7/10) 6541093923332062 a001 43133785636/299537289*167761^(7/10) 6541093923332062 a001 32264490531/224056801*167761^(7/10) 6541093923332062 a001 591286729879/4106118243*167761^(7/10) 6541093923332062 a001 774004377960/5374978561*167761^(7/10) 6541093923332062 a001 4052739537881/28143753123*167761^(7/10) 6541093923332062 a001 1515744265389/10525900321*167761^(7/10) 6541093923332062 a001 3278735159921/22768774562*167761^(7/10) 6541093923332062 a001 2504730781961/17393796001*167761^(7/10) 6541093923332062 a001 956722026041/6643838879*167761^(7/10) 6541093923332062 a001 182717648081/1268860318*167761^(7/10) 6541093923332062 a001 139583862445/969323029*167761^(7/10) 6541093923332062 a001 53316291173/370248451*167761^(7/10) 6541093923332062 a001 10182505537/70711162*167761^(7/10) 6541093923332064 a001 7778742049/54018521*167761^(7/10) 6541093923332077 a001 2971215073/20633239*167761^(7/10) 6541093923332167 a001 567451585/3940598*167761^(7/10) 6541093923332784 a001 433494437/3010349*167761^(7/10) 6541093923336253 a001 1602508992/90481*167761^(3/10) 6541093923337009 a001 165580141/1149851*167761^(7/10) 6541093923365593 a001 1134903170/710647*167761^(1/2) 6541093923365971 a001 31622993/219602*167761^(7/10) 6541093923372063 a001 832040/271443*439204^(17/18) 6541093923376656 a001 2971215073/1860498*167761^(1/2) 6541093923377826 a001 3524578/271443*439204^(5/6) 6541093923378270 a001 7778742049/4870847*167761^(1/2) 6541093923378505 a001 20365011074/12752043*167761^(1/2) 6541093923378539 a001 53316291173/33385282*167761^(1/2) 6541093923378544 a001 139583862445/87403803*167761^(1/2) 6541093923378545 a001 365435296162/228826127*167761^(1/2) 6541093923378545 a001 956722026041/599074578*167761^(1/2) 6541093923378545 a001 2504730781961/1568397607*167761^(1/2) 6541093923378545 a001 6557470319842/4106118243*167761^(1/2) 6541093923378545 a001 10610209857723/6643838879*167761^(1/2) 6541093923378545 a001 4052739537881/2537720636*167761^(1/2) 6541093923378545 a001 1548008755920/969323029*167761^(1/2) 6541093923378545 a001 591286729879/370248451*167761^(1/2) 6541093923378546 a001 225851433717/141422324*167761^(1/2) 6541093923378548 a001 86267571272/54018521*167761^(1/2) 6541093923378561 a001 32951280099/20633239*167761^(1/2) 6541093923378651 a001 12586269025/7881196*167761^(1/2) 6541093923379267 a001 4807526976/3010349*167761^(1/2) 6541093923380624 a001 5702887/103682*103682^(13/16) 6541093923381483 a001 4976784/90481*439204^(13/18) 6541093923382737 a001 53316291173/271443*167761^(1/10) 6541093923383493 a001 1836311903/1149851*167761^(1/2) 6541093923385256 a001 63245986/271443*439204^(11/18) 6541093923389024 a001 267914296/271443*439204^(1/2) 6541093923392791 a001 1134903170/271443*439204^(7/18) 6541093923392926 a001 121393/710647*7881196^(21/22) 6541093923392938 a001 105937/90481*7881196^(5/6) 6541093923393012 a001 121393/710647*20633239^(9/10) 6541093923393014 a001 105937/90481*20633239^(11/14) 6541093923393026 a001 121393/710647*2537720636^(7/10) 6541093923393026 a001 105937/90481*2537720636^(11/18) 6541093923393026 a001 121393/710647*17393796001^(9/14) 6541093923393026 a001 121393/710647*14662949395604^(1/2) 6541093923393026 a001 121393/710647*505019158607^(9/16) 6541093923393026 a001 121393/710647*192900153618^(7/12) 6541093923393026 a001 105937/90481*312119004989^(1/2) 6541093923393026 a001 105937/90481*3461452808002^(11/24) 6541093923393026 a001 105937/90481*28143753123^(11/20) 6541093923393026 a001 105937/90481*1568397607^(5/8) 6541093923393026 a001 121393/710647*599074578^(3/4) 6541093923393026 a001 105937/90481*228826127^(11/16) 6541093923393031 a001 121393/710647*33385282^(7/8) 6541093923394758 a001 105937/90481*1860498^(11/12) 6541093923396559 a001 1602508992/90481*439204^(5/18) 6541093923398079 a001 832040/39603*39603^(43/44) 6541093923400327 a001 20365011074/271443*439204^(1/6) 6541093923403505 a001 165580141/271443*1149851^(1/2) 6541093923404007 a001 832040/271443*7881196^(17/22) 6541093923404089 a001 832040/271443*45537549124^(1/2) 6541093923404093 a001 832040/271443*33385282^(17/24) 6541093923404095 a001 86267571272/271443*439204^(1/18) 6541093923404119 a001 832040/271443*12752043^(3/4) 6541093923405617 a001 34111385/90481*3010349^(1/2) 6541093923405695 a001 832040/271443*1860498^(17/20) 6541093923405703 a001 726103/90481*6643838879^(1/2) 6541093923405910 a001 4976784/90481*7881196^(13/22) 6541093923405926 a001 63245986/271443*7881196^(1/2) 6541093923405935 a001 267914296/271443*7881196^(9/22) 6541093923405938 a001 5702887/271443*969323029^(1/2) 6541093923405938 a001 121393/12752043*2537720636^(5/6) 6541093923405938 a001 121393/12752043*312119004989^(15/22) 6541093923405938 a001 121393/12752043*3461452808002^(5/8) 6541093923405938 a001 121393/12752043*28143753123^(3/4) 6541093923405938 a001 121393/12752043*228826127^(15/16) 6541093923405945 a001 1134903170/271443*7881196^(7/22) 6541093923405954 a001 1602508992/90481*7881196^(5/22) 6541093923405961 a001 12586269025/271443*7881196^(1/6) 6541093923405964 a001 20365011074/271443*7881196^(3/22) 6541093923405970 a001 39088169/271443*20633239^(1/2) 6541093923405972 a001 4976784/90481*141422324^(1/2) 6541093923405973 a001 4976784/90481*73681302247^(3/8) 6541093923405973 a001 433494437/271443*20633239^(5/14) 6541093923405974 a001 86267571272/271443*7881196^(1/22) 6541093923405974 a001 1134903170/271443*20633239^(3/10) 6541093923405975 a001 1602508992/90481*20633239^(3/14) 6541093923405976 a001 4976784/90481*33385282^(13/24) 6541093923405977 a001 121393*20633239^(1/10) 6541093923405977 a001 53316291173/271443*20633239^(1/14) 6541093923405978 a001 39088169/271443*2537720636^(7/18) 6541093923405978 a001 39088169/271443*17393796001^(5/14) 6541093923405978 a001 39088169/271443*312119004989^(7/22) 6541093923405978 a001 39088169/271443*14662949395604^(5/18) 6541093923405978 a001 39088169/271443*505019158607^(5/16) 6541093923405978 a001 39088169/271443*28143753123^(7/20) 6541093923405978 a001 39088169/271443*599074578^(5/12) 6541093923405978 a001 39088169/271443*228826127^(7/16) 6541093923405978 a001 121393/228826127*1322157322203^(3/4) 6541093923405978 a001 34111385/90481*9062201101803^(1/4) 6541093923405978 a001 7778742049/271443*141422324^(1/6) 6541093923405978 a001 267914296/271443*2537720636^(3/10) 6541093923405978 a001 121393/599074578*17393796001^(13/14) 6541093923405978 a001 121393/599074578*14662949395604^(13/18) 6541093923405978 a001 121393/599074578*505019158607^(13/16) 6541093923405978 a001 121393/599074578*73681302247^(7/8) 6541093923405978 a001 267914296/271443*14662949395604^(3/14) 6541093923405978 a001 267914296/271443*192900153618^(1/4) 6541093923405978 a001 121393/1568397607*312119004989^(19/22) 6541093923405978 a001 121393/1568397607*817138163596^(5/6) 6541093923405978 a001 121393/1568397607*3461452808002^(19/24) 6541093923405978 a001 121393/1568397607*28143753123^(19/20) 6541093923405978 a001 233802911/90481*4106118243^(1/4) 6541093923405978 a001 121393/4106118243*312119004989^(9/10) 6541093923405978 a001 121393/4106118243*14662949395604^(11/14) 6541093923405978 a001 121393/4106118243*192900153618^(11/12) 6541093923405978 a001 1836311903/271443*817138163596^(1/6) 6541093923405978 a001 1602508992/90481*2537720636^(1/6) 6541093923405978 a001 20365011074/271443*2537720636^(1/10) 6541093923405978 a001 1602508992/90481*312119004989^(3/22) 6541093923405978 a001 53316291173/271443*2537720636^(1/18) 6541093923405978 a001 1602508992/90481*28143753123^(3/20) 6541093923405978 a001 12586269025/271443*312119004989^(1/10) 6541093923405978 a001 121393*17393796001^(1/14) 6541093923405978 a001 121393/192900153618*3461452808002^(23/24) 6541093923405978 a001 121393*14662949395604^(1/18) 6541093923405978 a001 121393*505019158607^(1/16) 6541093923405978 a001 121393/312119004989*14662949395604^(13/14) 6541093923405978 a001 53316291173/271443*312119004989^(1/22) 6541093923405978 a001 53316291173/271443*28143753123^(1/20) 6541093923405978 a001 20365011074/271443*14662949395604^(1/14) 6541093923405978 a001 20365011074/271443*192900153618^(1/12) 6541093923405978 a001 121393/17393796001*312119004989^(21/22) 6541093923405978 a001 121393/17393796001*14662949395604^(5/6) 6541093923405978 a001 121393/17393796001*505019158607^(15/16) 6541093923405978 a001 7778742049/271443*73681302247^(1/8) 6541093923405978 a001 2971215073/271443*45537549124^(1/6) 6541093923405978 a001 12586269025/271443*1568397607^(1/8) 6541093923405978 a001 1134903170/271443*17393796001^(3/14) 6541093923405978 a001 1134903170/271443*14662949395604^(1/6) 6541093923405978 a001 121393*599074578^(1/12) 6541093923405978 a001 1134903170/271443*599074578^(1/4) 6541093923405978 a001 433494437/271443*2537720636^(5/18) 6541093923405978 a001 121393/969323029*9062201101803^(3/4) 6541093923405978 a001 433494437/271443*312119004989^(5/22) 6541093923405978 a001 433494437/271443*3461452808002^(5/24) 6541093923405978 a001 433494437/271443*28143753123^(1/4) 6541093923405978 a001 53316291173/271443*228826127^(1/16) 6541093923405978 a001 1602508992/90481*228826127^(3/16) 6541093923405978 a001 433494437/271443*228826127^(5/16) 6541093923405978 a001 165580141/271443*1322157322203^(1/4) 6541093923405979 a001 1836311903/271443*87403803^(1/4) 6541093923405979 a001 86267571272/271443*33385282^(1/24) 6541093923405979 a001 233/271444*2537720636^(17/18) 6541093923405979 a001 233/271444*45537549124^(5/6) 6541093923405979 a001 233/271444*312119004989^(17/22) 6541093923405979 a001 233/271444*3461452808002^(17/24) 6541093923405979 a001 63245986/271443*312119004989^(3/10) 6541093923405979 a001 233/271444*28143753123^(17/20) 6541093923405979 a001 63245986/271443*1568397607^(3/8) 6541093923405979 a001 20365011074/271443*33385282^(1/8) 6541093923405980 a001 24157817/271443*54018521^(1/2) 6541093923405980 a001 1602508992/90481*33385282^(5/24) 6541093923405980 a001 1134903170/271443*33385282^(7/24) 6541093923405981 a001 267914296/271443*33385282^(3/8) 6541093923405981 a001 121393/54018521*2537720636^(9/10) 6541093923405981 a001 121393/54018521*14662949395604^(9/14) 6541093923405981 a001 121393/54018521*192900153618^(3/4) 6541093923405981 a001 63245986/271443*33385282^(11/24) 6541093923405988 a001 2971215073/271443*12752043^(1/4) 6541093923405994 a001 9227465/271443*370248451^(1/2) 6541093923405994 a001 121393/20633239*17393796001^(11/14) 6541093923405994 a001 121393/20633239*14662949395604^(11/18) 6541093923405994 a001 121393/20633239*505019158607^(11/16) 6541093923405994 a001 121393/20633239*1568397607^(7/8) 6541093923405994 a001 121393/20633239*599074578^(11/12) 6541093923406012 a001 3524578/271443*7881196^(15/22) 6541093923406073 a001 86267571272/271443*1860498^(1/20) 6541093923406074 a001 3524578/271443*20633239^(9/14) 6541093923406084 a001 3524578/271443*2537720636^(1/2) 6541093923406084 a001 3524578/271443*312119004989^(9/22) 6541093923406084 a001 3524578/271443*14662949395604^(5/14) 6541093923406084 a001 3524578/271443*192900153618^(5/12) 6541093923406084 a001 3524578/271443*28143753123^(9/20) 6541093923406084 a001 3524578/271443*228826127^(9/16) 6541093923406087 a001 3524578/271443*33385282^(5/8) 6541093923406136 a001 53316291173/271443*1860498^(1/12) 6541093923406262 a001 20365011074/271443*1860498^(3/20) 6541093923406451 a001 1602508992/90481*1860498^(1/4) 6541093923406640 a001 1134903170/271443*1860498^(7/20) 6541093923406689 a001 1346269/271443*20633239^(7/10) 6541093923406700 a001 1346269/271443*17393796001^(1/2) 6541093923406700 a001 1346269/271443*14662949395604^(7/18) 6541093923406700 a001 1346269/271443*505019158607^(7/16) 6541093923406700 a001 121393/3010349*4106118243^(3/4) 6541093923406700 a001 1346269/271443*599074578^(7/12) 6541093923406706 a001 121393/3010349*33385282^(23/24) 6541093923406766 a001 433494437/271443*1860498^(5/12) 6541093923406829 a001 267914296/271443*1860498^(9/20) 6541093923407018 a001 63245986/271443*1860498^(11/20) 6541093923407080 a001 39088169/271443*1860498^(7/12) 6541093923407201 a001 4976784/90481*1860498^(13/20) 6541093923407501 a001 3524578/271443*1860498^(3/4) 6541093923407597 a001 121393*710647^(1/8) 6541093923410835 a001 1134903170/271443*710647^(3/8) 6541093923410911 a001 121393/1149851*20633239^(13/14) 6541093923410925 a001 121393/1149851*141422324^(5/6) 6541093923410926 a001 121393/1149851*2537720636^(13/18) 6541093923410926 a001 121393/1149851*312119004989^(13/22) 6541093923410926 a001 121393/1149851*3461452808002^(13/24) 6541093923410926 a001 121393/1149851*73681302247^(5/8) 6541093923410926 a001 514229/271443*119218851371^(1/2) 6541093923410926 a001 121393/1149851*28143753123^(13/20) 6541093923410926 a001 121393/1149851*228826127^(13/16) 6541093923412077 a001 12586269025/710647*167761^(3/10) 6541093923412454 a001 701408733/439204*167761^(1/2) 6541093923414073 a001 39088169/271443*710647^(5/8) 6541093923418033 a001 1346269/271443*710647^(7/8) 6541093923423139 a001 10983760033/620166*167761^(3/10) 6541093923424753 a001 86267571272/4870847*167761^(3/10) 6541093923424989 a001 75283811239/4250681*167761^(3/10) 6541093923425023 a001 591286729879/33385282*167761^(3/10) 6541093923425028 a001 516002918640/29134601*167761^(3/10) 6541093923425029 a001 4052739537881/228826127*167761^(3/10) 6541093923425029 a001 3536736619241/199691526*167761^(3/10) 6541093923425029 a001 6557470319842/370248451*167761^(3/10) 6541093923425029 a001 2504730781961/141422324*167761^(3/10) 6541093923425031 a001 956722026041/54018521*167761^(3/10) 6541093923425044 a001 365435296162/20633239*167761^(3/10) 6541093923425134 a001 139583862445/7881196*167761^(3/10) 6541093923425751 a001 53316291173/3010349*167761^(3/10) 6541093923428172 a001 7778742049/271443*271443^(1/4) 6541093923429976 a001 20365011074/1149851*167761^(3/10) 6541093923439797 a001 196418/271443*7881196^(19/22) 6541093923439888 a001 121393/439204*5600748293801^(1/2) 6541093923439888 a001 196418/271443*817138163596^(1/2) 6541093923439888 a001 196418/271443*87403803^(3/4) 6541093923439892 a001 196418/271443*33385282^(19/24) 6541093923441683 a001 196418/271443*1860498^(19/20) 6541093923444008 a001 86267571272/271443*103682^(1/16) 6541093923449501 a001 311187/101521*439204^(17/18) 6541093923453559 a001 9227465/710647*439204^(5/6) 6541093923457311 a001 39088169/710647*439204^(13/18) 6541093923457446 a001 1346269/103682*103682^(15/16) 6541093923458560 a001 139583862445/710647*167761^(1/10) 6541093923458938 a001 7778742049/439204*167761^(3/10) 6541093923460799 a001 5702887/1860498*439204^(17/18) 6541093923461079 a001 165580141/710647*439204^(11/18) 6541093923462447 a001 14930352/4870847*439204^(17/18) 6541093923462687 a001 39088169/12752043*439204^(17/18) 6541093923462723 a001 14619165/4769326*439204^(17/18) 6541093923462728 a001 267914296/87403803*439204^(17/18) 6541093923462728 a001 701408733/228826127*439204^(17/18) 6541093923462729 a001 1836311903/599074578*439204^(17/18) 6541093923462729 a001 686789568/224056801*439204^(17/18) 6541093923462729 a001 12586269025/4106118243*439204^(17/18) 6541093923462729 a001 32951280099/10749957122*439204^(17/18) 6541093923462729 a001 86267571272/28143753123*439204^(17/18) 6541093923462729 a001 32264490531/10525900321*439204^(17/18) 6541093923462729 a001 591286729879/192900153618*439204^(17/18) 6541093923462729 a001 1548008755920/505019158607*439204^(17/18) 6541093923462729 a001 1515744265389/494493258286*439204^(17/18) 6541093923462729 a001 2504730781961/817138163596*439204^(17/18) 6541093923462729 a001 956722026041/312119004989*439204^(17/18) 6541093923462729 a001 365435296162/119218851371*439204^(17/18) 6541093923462729 a001 139583862445/45537549124*439204^(17/18) 6541093923462729 a001 53316291173/17393796001*439204^(17/18) 6541093923462729 a001 20365011074/6643838879*439204^(17/18) 6541093923462729 a001 7778742049/2537720636*439204^(17/18) 6541093923462729 a001 2971215073/969323029*439204^(17/18) 6541093923462729 a001 1134903170/370248451*439204^(17/18) 6541093923462729 a001 433494437/141422324*439204^(17/18) 6541093923462731 a001 165580141/54018521*439204^(17/18) 6541093923462744 a001 63245986/20633239*439204^(17/18) 6541093923462836 a001 24157817/7881196*439204^(17/18) 6541093923463466 a001 9227465/3010349*439204^(17/18) 6541093923464609 a001 24157817/1860498*439204^(5/6) 6541093923464847 a001 701408733/710647*439204^(1/2) 6541093923466221 a001 63245986/4870847*439204^(5/6) 6541093923466456 a001 165580141/12752043*439204^(5/6) 6541093923466490 a001 433494437/33385282*439204^(5/6) 6541093923466495 a001 1134903170/87403803*439204^(5/6) 6541093923466496 a001 2971215073/228826127*439204^(5/6) 6541093923466496 a001 7778742049/599074578*439204^(5/6) 6541093923466496 a001 20365011074/1568397607*439204^(5/6) 6541093923466496 a001 53316291173/4106118243*439204^(5/6) 6541093923466496 a001 139583862445/10749957122*439204^(5/6) 6541093923466496 a001 365435296162/28143753123*439204^(5/6) 6541093923466496 a001 956722026041/73681302247*439204^(5/6) 6541093923466496 a001 2504730781961/192900153618*439204^(5/6) 6541093923466496 a001 10610209857723/817138163596*439204^(5/6) 6541093923466496 a001 4052739537881/312119004989*439204^(5/6) 6541093923466496 a001 1548008755920/119218851371*439204^(5/6) 6541093923466496 a001 591286729879/45537549124*439204^(5/6) 6541093923466496 a001 7787980473/599786069*439204^(5/6) 6541093923466496 a001 86267571272/6643838879*439204^(5/6) 6541093923466496 a001 32951280099/2537720636*439204^(5/6) 6541093923466496 a001 12586269025/969323029*439204^(5/6) 6541093923466496 a001 4807526976/370248451*439204^(5/6) 6541093923466497 a001 1836311903/141422324*439204^(5/6) 6541093923466498 a001 701408733/54018521*439204^(5/6) 6541093923466512 a001 9238424/711491*439204^(5/6) 6541093923466601 a001 102334155/7881196*439204^(5/6) 6541093923467217 a001 39088169/3010349*439204^(5/6) 6541093923467781 a001 3524578/1149851*439204^(17/18) 6541093923468374 a001 831985/15126*439204^(13/18) 6541093923468615 a001 2971215073/710647*439204^(7/18) 6541093923468850 a001 317811/710647*2139295485799^(1/2) 6541093923469622 a001 182717648081/930249*167761^(1/10) 6541093923469988 a001 267914296/4870847*439204^(13/18) 6541093923470224 a001 233802911/4250681*439204^(13/18) 6541093923470258 a001 1836311903/33385282*439204^(13/18) 6541093923470263 a001 1602508992/29134601*439204^(13/18) 6541093923470264 a001 12586269025/228826127*439204^(13/18) 6541093923470264 a001 10983760033/199691526*439204^(13/18) 6541093923470264 a001 86267571272/1568397607*439204^(13/18) 6541093923470264 a001 75283811239/1368706081*439204^(13/18) 6541093923470264 a001 591286729879/10749957122*439204^(13/18) 6541093923470264 a001 12585437040/228811001*439204^(13/18) 6541093923470264 a001 4052739537881/73681302247*439204^(13/18) 6541093923470264 a001 3536736619241/64300051206*439204^(13/18) 6541093923470264 a001 6557470319842/119218851371*439204^(13/18) 6541093923470264 a001 2504730781961/45537549124*439204^(13/18) 6541093923470264 a001 956722026041/17393796001*439204^(13/18) 6541093923470264 a001 365435296162/6643838879*439204^(13/18) 6541093923470264 a001 139583862445/2537720636*439204^(13/18) 6541093923470264 a001 53316291173/969323029*439204^(13/18) 6541093923470264 a001 20365011074/370248451*439204^(13/18) 6541093923470264 a001 7778742049/141422324*439204^(13/18) 6541093923470266 a001 2971215073/54018521*439204^(13/18) 6541093923470279 a001 1134903170/20633239*439204^(13/18) 6541093923470369 a001 433494437/7881196*439204^(13/18) 6541093923470986 a001 165580141/3010349*439204^(13/18) 6541093923471236 a001 956722026041/4870847*167761^(1/10) 6541093923471438 a001 14930352/1149851*439204^(5/6) 6541093923471472 a001 2504730781961/12752043*167761^(1/10) 6541093923471506 a001 3278735159921/16692641*167761^(1/10) 6541093923471514 a001 10610209857723/54018521*167761^(1/10) 6541093923471528 a001 4052739537881/20633239*167761^(1/10) 6541093923471617 a001 387002188980/1970299*167761^(1/10) 6541093923472142 a001 433494437/1860498*439204^(11/18) 6541093923472234 a001 591286729879/3010349*167761^(1/10) 6541093923472383 a001 12586269025/710647*439204^(5/18) 6541093923472554 a001 4976784/90481*271443^(3/4) 6541093923473756 a001 1134903170/4870847*439204^(11/18) 6541093923473991 a001 2971215073/12752043*439204^(11/18) 6541093923474026 a001 7778742049/33385282*439204^(11/18) 6541093923474031 a001 20365011074/87403803*439204^(11/18) 6541093923474031 a001 53316291173/228826127*439204^(11/18) 6541093923474032 a001 139583862445/599074578*439204^(11/18) 6541093923474032 a001 365435296162/1568397607*439204^(11/18) 6541093923474032 a001 956722026041/4106118243*439204^(11/18) 6541093923474032 a001 2504730781961/10749957122*439204^(11/18) 6541093923474032 a001 6557470319842/28143753123*439204^(11/18) 6541093923474032 a001 10610209857723/45537549124*439204^(11/18) 6541093923474032 a001 4052739537881/17393796001*439204^(11/18) 6541093923474032 a001 1548008755920/6643838879*439204^(11/18) 6541093923474032 a001 591286729879/2537720636*439204^(11/18) 6541093923474032 a001 225851433717/969323029*439204^(11/18) 6541093923474032 a001 86267571272/370248451*439204^(11/18) 6541093923474032 a001 63246219/271444*439204^(11/18) 6541093923474034 a001 12586269025/54018521*439204^(11/18) 6541093923474047 a001 4807526976/20633239*439204^(11/18) 6541093923474137 a001 1836311903/7881196*439204^(11/18) 6541093923474753 a001 701408733/3010349*439204^(11/18) 6541093923475212 a001 63245986/1149851*439204^(13/18) 6541093923475910 a001 1836311903/1860498*439204^(1/2) 6541093923476150 a001 53316291173/710647*439204^(1/6) 6541093923476459 a001 225851433717/1149851*167761^(1/10) 6541093923477524 a001 4807526976/4870847*439204^(1/2) 6541093923477759 a001 12586269025/12752043*439204^(1/2) 6541093923477793 a001 32951280099/33385282*439204^(1/2) 6541093923477798 a001 86267571272/87403803*439204^(1/2) 6541093923477799 a001 225851433717/228826127*439204^(1/2) 6541093923477799 a001 591286729879/599074578*439204^(1/2) 6541093923477799 a001 1548008755920/1568397607*439204^(1/2) 6541093923477799 a001 4052739537881/4106118243*439204^(1/2) 6541093923477799 a001 4807525989/4870846*439204^(1/2) 6541093923477799 a001 6557470319842/6643838879*439204^(1/2) 6541093923477799 a001 2504730781961/2537720636*439204^(1/2) 6541093923477799 a001 956722026041/969323029*439204^(1/2) 6541093923477799 a001 365435296162/370248451*439204^(1/2) 6541093923477800 a001 139583862445/141422324*439204^(1/2) 6541093923477802 a001 53316291173/54018521*439204^(1/2) 6541093923477815 a001 20365011074/20633239*439204^(1/2) 6541093923477905 a001 7778742049/7881196*439204^(1/2) 6541093923478521 a001 2971215073/3010349*439204^(1/2) 6541093923478979 a001 267914296/1149851*439204^(11/18) 6541093923479328 a001 433494437/710647*1149851^(1/2) 6541093923479677 a001 7778742049/1860498*439204^(7/18) 6541093923479812 a001 105937/620166*7881196^(21/22) 6541093923479824 a001 832040/710647*7881196^(5/6) 6541093923479898 a001 105937/620166*20633239^(9/10) 6541093923479900 a001 832040/710647*20633239^(11/14) 6541093923479912 a001 105937/620166*2537720636^(7/10) 6541093923479912 a001 832040/710647*2537720636^(11/18) 6541093923479912 a001 105937/620166*17393796001^(9/14) 6541093923479912 a001 105937/620166*14662949395604^(1/2) 6541093923479912 a001 105937/620166*505019158607^(9/16) 6541093923479912 a001 832040/710647*3461452808002^(11/24) 6541093923479912 a001 105937/620166*192900153618^(7/12) 6541093923479912 a001 832040/710647*28143753123^(11/20) 6541093923479912 a001 832040/710647*1568397607^(5/8) 6541093923479912 a001 105937/620166*599074578^(3/4) 6541093923479912 a001 832040/710647*228826127^(11/16) 6541093923479917 a001 105937/620166*33385282^(7/8) 6541093923479918 a001 317811*439204^(1/18) 6541093923481291 a001 20365011074/4870847*439204^(7/18) 6541093923481441 a001 267914296/710647*3010349^(1/2) 6541093923481445 a001 311187/101521*7881196^(17/22) 6541093923481526 a001 311187/101521*45537549124^(1/2) 6541093923481527 a001 53316291173/12752043*439204^(7/18) 6541093923481530 a001 311187/101521*33385282^(17/24) 6541093923481556 a001 311187/101521*12752043^(3/4) 6541093923481561 a001 139583862445/33385282*439204^(7/18) 6541093923481566 a001 365435296162/87403803*439204^(7/18) 6541093923481567 a001 956722026041/228826127*439204^(7/18) 6541093923481567 a001 2504730781961/599074578*439204^(7/18) 6541093923481567 a001 6557470319842/1568397607*439204^(7/18) 6541093923481567 a001 10610209857723/2537720636*439204^(7/18) 6541093923481567 a001 4052739537881/969323029*439204^(7/18) 6541093923481567 a001 1548008755920/370248451*439204^(7/18) 6541093923481567 a001 591286729879/141422324*439204^(7/18) 6541093923481569 a001 225851433717/54018521*439204^(7/18) 6541093923481582 a001 86267571272/20633239*439204^(7/18) 6541093923481644 a001 832040/710647*1860498^(11/12) 6541093923481672 a001 32951280099/7881196*439204^(7/18) 6541093923481739 a001 39088169/710647*7881196^(13/22) 6541093923481745 a001 9227465/710647*7881196^(15/22) 6541093923481749 a001 165580141/710647*7881196^(1/2) 6541093923481759 a001 701408733/710647*7881196^(9/22) 6541093923481762 a001 5702887/710647*6643838879^(1/2) 6541093923481768 a001 2971215073/710647*7881196^(7/22) 6541093923481778 a001 12586269025/710647*7881196^(5/22) 6541093923481784 a001 32951280099/710647*7881196^(1/6) 6541093923481787 a001 53316291173/710647*7881196^(3/22) 6541093923481794 a001 14619165/101521*20633239^(1/2) 6541093923481796 a001 14930352/710647*969323029^(1/2) 6541093923481796 a001 317811/33385282*2537720636^(5/6) 6541093923481796 a001 317811/33385282*312119004989^(15/22) 6541093923481796 a001 317811/33385282*3461452808002^(5/8) 6541093923481796 a001 317811/33385282*28143753123^(3/4) 6541093923481796 a001 317811/33385282*228826127^(15/16) 6541093923481796 a001 1134903170/710647*20633239^(5/14) 6541093923481797 a001 317811*7881196^(1/22) 6541093923481797 a001 2971215073/710647*20633239^(3/10) 6541093923481798 a001 12586269025/710647*20633239^(3/14) 6541093923481800 a001 86267571272/710647*20633239^(1/10) 6541093923481801 a001 139583862445/710647*20633239^(1/14) 6541093923481801 a001 39088169/710647*141422324^(1/2) 6541093923481801 a001 39088169/710647*73681302247^(3/8) 6541093923481801 a001 63245986/710647*54018521^(1/2) 6541093923481802 a001 14619165/101521*2537720636^(7/18) 6541093923481802 a001 14619165/101521*17393796001^(5/14) 6541093923481802 a001 14619165/101521*312119004989^(7/22) 6541093923481802 a001 14619165/101521*14662949395604^(5/18) 6541093923481802 a001 14619165/101521*505019158607^(5/16) 6541093923481802 a001 14619165/101521*28143753123^(7/20) 6541093923481802 a001 14619165/101521*599074578^(5/12) 6541093923481802 a001 14619165/101521*228826127^(7/16) 6541093923481802 a001 20365011074/710647*141422324^(1/6) 6541093923481802 a001 267914296/710647*9062201101803^(1/4) 6541093923481802 a001 701408733/710647*2537720636^(3/10) 6541093923481802 a001 317811/1568397607*17393796001^(13/14) 6541093923481802 a001 317811/1568397607*14662949395604^(13/18) 6541093923481802 a001 317811/1568397607*505019158607^(13/16) 6541093923481802 a001 701408733/710647*192900153618^(1/4) 6541093923481802 a001 317811/1568397607*73681302247^(7/8) 6541093923481802 a001 105937/1368706081*312119004989^(19/22) 6541093923481802 a001 105937/1368706081*817138163596^(5/6) 6541093923481802 a001 105937/1368706081*3461452808002^(19/24) 6541093923481802 a001 105937/1368706081*28143753123^(19/20) 6541093923481802 a001 1836311903/710647*4106118243^(1/4) 6541093923481802 a001 12586269025/710647*2537720636^(1/6) 6541093923481802 a001 53316291173/710647*2537720636^(1/10) 6541093923481802 a001 317811/10749957122*312119004989^(9/10) 6541093923481802 a001 317811/10749957122*14662949395604^(11/14) 6541093923481802 a001 686789568/101521*817138163596^(1/6) 6541093923481802 a001 317811/10749957122*192900153618^(11/12) 6541093923481802 a001 139583862445/710647*2537720636^(1/18) 6541093923481802 a001 12586269025/710647*312119004989^(3/22) 6541093923481802 a001 12586269025/710647*28143753123^(3/20) 6541093923481802 a001 86267571272/710647*17393796001^(1/14) 6541093923481802 a001 32951280099/710647*312119004989^(1/10) 6541093923481802 a001 86267571272/710647*14662949395604^(1/18) 6541093923481802 a001 86267571272/710647*505019158607^(1/16) 6541093923481802 a001 317811/505019158607*3461452808002^(23/24) 6541093923481802 a001 105937/440719107401*14662949395604^(17/18) 6541093923481802 a001 317811/817138163596*14662949395604^(13/14) 6541093923481802 a001 139583862445/710647*312119004989^(1/22) 6541093923481802 a001 53316291173/710647*14662949395604^(1/14) 6541093923481802 a001 139583862445/710647*28143753123^(1/20) 6541093923481802 a001 317811/45537549124*312119004989^(21/22) 6541093923481802 a001 317811/45537549124*14662949395604^(5/6) 6541093923481802 a001 317811/45537549124*505019158607^(15/16) 6541093923481802 a001 20365011074/710647*73681302247^(1/8) 6541093923481802 a001 7778742049/710647*45537549124^(1/6) 6541093923481802 a001 2971215073/710647*17393796001^(3/14) 6541093923481802 a001 2971215073/710647*14662949395604^(1/6) 6541093923481802 a001 32951280099/710647*1568397607^(1/8) 6541093923481802 a001 1134903170/710647*2537720636^(5/18) 6541093923481802 a001 317811/2537720636*9062201101803^(3/4) 6541093923481802 a001 1134903170/710647*312119004989^(5/22) 6541093923481802 a001 1134903170/710647*3461452808002^(5/24) 6541093923481802 a001 1134903170/710647*28143753123^(1/4) 6541093923481802 a001 86267571272/710647*599074578^(1/12) 6541093923481802 a001 2971215073/710647*599074578^(1/4) 6541093923481802 a001 433494437/710647*1322157322203^(1/4) 6541093923481802 a001 139583862445/710647*228826127^(1/16) 6541093923481802 a001 12586269025/710647*228826127^(3/16) 6541093923481802 a001 1134903170/710647*228826127^(5/16) 6541093923481802 a001 317811/370248451*2537720636^(17/18) 6541093923481802 a001 317811/370248451*45537549124^(5/6) 6541093923481802 a001 317811/370248451*312119004989^(17/22) 6541093923481802 a001 317811/370248451*3461452808002^(17/24) 6541093923481802 a001 165580141/710647*312119004989^(3/10) 6541093923481802 a001 317811/370248451*28143753123^(17/20) 6541093923481802 a001 165580141/710647*1568397607^(3/8) 6541093923481802 a001 686789568/101521*87403803^(1/4) 6541093923481802 a001 317811*33385282^(1/24) 6541093923481802 a001 317811/141422324*2537720636^(9/10) 6541093923481802 a001 317811/141422324*14662949395604^(9/14) 6541093923481802 a001 317811/141422324*192900153618^(3/4) 6541093923481802 a001 53316291173/710647*33385282^(1/8) 6541093923481803 a001 12586269025/710647*33385282^(5/24) 6541093923481803 a001 2971215073/710647*33385282^(7/24) 6541093923481804 a001 701408733/710647*33385282^(3/8) 6541093923481804 a001 24157817/710647*370248451^(1/2) 6541093923481804 a001 317811/54018521*17393796001^(11/14) 6541093923481804 a001 317811/54018521*14662949395604^(11/18) 6541093923481804 a001 317811/54018521*505019158607^(11/16) 6541093923481804 a001 317811/54018521*1568397607^(7/8) 6541093923481804 a001 317811/54018521*599074578^(11/12) 6541093923481804 a001 39088169/710647*33385282^(13/24) 6541093923481804 a001 165580141/710647*33385282^(11/24) 6541093923481807 a001 9227465/710647*20633239^(9/14) 6541093923481812 a001 7778742049/710647*12752043^(1/4) 6541093923481817 a001 9227465/710647*2537720636^(1/2) 6541093923481817 a001 9227465/710647*312119004989^(9/22) 6541093923481817 a001 9227465/710647*14662949395604^(5/14) 6541093923481817 a001 9227465/710647*192900153618^(5/12) 6541093923481817 a001 9227465/710647*28143753123^(9/20) 6541093923481817 a001 9227465/710647*228826127^(9/16) 6541093923481821 a001 9227465/710647*33385282^(5/8) 6541093923481896 a001 317811*1860498^(1/20) 6541093923481896 a001 3524578/710647*20633239^(7/10) 6541093923481907 a001 3524578/710647*17393796001^(1/2) 6541093923481907 a001 3524578/710647*14662949395604^(7/18) 6541093923481907 a001 3524578/710647*505019158607^(7/16) 6541093923481907 a001 317811/7881196*4106118243^(3/4) 6541093923481907 a001 3524578/710647*599074578^(7/12) 6541093923481913 a001 317811/7881196*33385282^(23/24) 6541093923481959 a001 139583862445/710647*1860498^(1/12) 6541093923482085 a001 53316291173/710647*1860498^(3/20) 6541093923482274 a001 12586269025/710647*1860498^(1/4) 6541093923482289 a001 12586269025/3010349*439204^(7/18) 6541093923482463 a001 2971215073/710647*1860498^(7/20) 6541093923482509 a001 317811/3010349*20633239^(13/14) 6541093923482523 a001 317811/3010349*141422324^(5/6) 6541093923482524 a001 317811/3010349*2537720636^(13/18) 6541093923482524 a001 1346269/710647*119218851371^(1/2) 6541093923482524 a001 317811/3010349*312119004989^(13/22) 6541093923482524 a001 317811/3010349*3461452808002^(13/24) 6541093923482524 a001 317811/3010349*73681302247^(5/8) 6541093923482524 a001 317811/3010349*28143753123^(13/20) 6541093923482524 a001 317811/3010349*228826127^(13/16) 6541093923482589 a001 1134903170/710647*1860498^(5/12) 6541093923482652 a001 701408733/710647*1860498^(9/20) 6541093923482747 a001 1134903170/1149851*439204^(1/2) 6541093923482841 a001 165580141/710647*1860498^(11/20) 6541093923482904 a001 14619165/101521*1860498^(7/12) 6541093923483029 a001 39088169/710647*1860498^(13/20) 6541093923483132 a001 311187/101521*1860498^(17/20) 6541093923483234 a001 9227465/710647*1860498^(3/4) 6541093923483421 a001 86267571272/710647*710647^(1/8) 6541093923483445 a001 10983760033/620166*439204^(5/18) 6541093923485059 a001 86267571272/4870847*439204^(5/18) 6541093923485294 a001 75283811239/4250681*439204^(5/18) 6541093923485329 a001 591286729879/33385282*439204^(5/18) 6541093923485334 a001 516002918640/29134601*439204^(5/18) 6541093923485335 a001 4052739537881/228826127*439204^(5/18) 6541093923485335 a001 3536736619241/199691526*439204^(5/18) 6541093923485335 a001 6557470319842/370248451*439204^(5/18) 6541093923485335 a001 2504730781961/141422324*439204^(5/18) 6541093923485337 a001 956722026041/54018521*439204^(5/18) 6541093923485350 a001 365435296162/20633239*439204^(5/18) 6541093923485440 a001 139583862445/7881196*439204^(5/18) 6541093923486056 a001 53316291173/3010349*439204^(5/18) 6541093923486514 a001 4807526976/1149851*439204^(7/18) 6541093923486658 a001 514229/710647*7881196^(19/22) 6541093923486659 a001 2971215073/710647*710647^(3/8) 6541093923486749 a001 317811/1149851*5600748293801^(1/2) 6541093923486749 a001 514229/710647*817138163596^(1/2) 6541093923486750 a001 514229/710647*87403803^(3/4) 6541093923486754 a001 514229/710647*33385282^(19/24) 6541093923487213 a001 139583862445/1860498*439204^(1/6) 6541093923488544 a001 514229/710647*1860498^(19/20) 6541093923488827 a001 365435296162/4870847*439204^(1/6) 6541093923489062 a001 956722026041/12752043*439204^(1/6) 6541093923489097 a001 2504730781961/33385282*439204^(1/6) 6541093923489102 a001 6557470319842/87403803*439204^(1/6) 6541093923489103 a001 10610209857723/141422324*439204^(1/6) 6541093923489105 a001 4052739537881/54018521*439204^(1/6) 6541093923489118 a001 140728068720/1875749*439204^(1/6) 6541093923489208 a001 591286729879/7881196*439204^(1/6) 6541093923489824 a001 225851433717/3010349*439204^(1/6) 6541093923489897 a001 14619165/101521*710647^(5/8) 6541093923490282 a001 20365011074/1149851*439204^(5/18) 6541093923490391 a001 567451585/930249*1149851^(1/2) 6541093923490975 a001 416020/930249*2139295485799^(1/2) 6541093923490980 a001 591286729879/1860498*439204^(1/18) 6541093923492005 a001 2971215073/4870847*1149851^(1/2) 6541093923492240 a001 7778742049/12752043*1149851^(1/2) 6541093923492274 a001 10182505537/16692641*1149851^(1/2) 6541093923492279 a001 53316291173/87403803*1149851^(1/2) 6541093923492280 a001 139583862445/228826127*1149851^(1/2) 6541093923492280 a001 182717648081/299537289*1149851^(1/2) 6541093923492280 a001 956722026041/1568397607*1149851^(1/2) 6541093923492280 a001 2504730781961/4106118243*1149851^(1/2) 6541093923492280 a001 3278735159921/5374978561*1149851^(1/2) 6541093923492280 a001 10610209857723/17393796001*1149851^(1/2) 6541093923492280 a001 4052739537881/6643838879*1149851^(1/2) 6541093923492280 a001 1134903780/1860499*1149851^(1/2) 6541093923492280 a001 591286729879/969323029*1149851^(1/2) 6541093923492280 a001 225851433717/370248451*1149851^(1/2) 6541093923492281 a001 21566892818/35355581*1149851^(1/2) 6541093923492283 a001 32951280099/54018521*1149851^(1/2) 6541093923492296 a001 1144206275/1875749*1149851^(1/2) 6541093923492386 a001 1201881744/1970299*1149851^(1/2) 6541093923492488 a001 832040/4870847*7881196^(21/22) 6541093923492501 a001 726103/620166*7881196^(5/6) 6541093923492503 a001 233802911/620166*3010349^(1/2) 6541093923492575 a001 832040/4870847*20633239^(9/10) 6541093923492576 a001 726103/620166*20633239^(11/14) 6541093923492589 a001 832040/4870847*2537720636^(7/10) 6541093923492589 a001 726103/620166*2537720636^(11/18) 6541093923492589 a001 832040/4870847*17393796001^(9/14) 6541093923492589 a001 726103/620166*312119004989^(1/2) 6541093923492589 a001 832040/4870847*14662949395604^(1/2) 6541093923492589 a001 726103/620166*3461452808002^(11/24) 6541093923492589 a001 832040/4870847*505019158607^(9/16) 6541093923492589 a001 832040/4870847*192900153618^(7/12) 6541093923492589 a001 726103/620166*28143753123^(11/20) 6541093923492589 a001 726103/620166*1568397607^(5/8) 6541093923492589 a001 832040/4870847*599074578^(3/4) 6541093923492589 a001 726103/620166*228826127^(11/16) 6541093923492594 a001 832040/4870847*33385282^(7/8) 6541093923492594 a001 1548008755920/4870847*439204^(1/18) 6541093923492743 a001 5702887/1860498*7881196^(17/22) 6541093923492795 a001 24157817/1860498*7881196^(15/22) 6541093923492802 a001 831985/15126*7881196^(13/22) 6541093923492812 a001 433494437/1860498*7881196^(1/2) 6541093923492821 a001 1836311903/1860498*7881196^(9/22) 6541093923492824 a001 5702887/1860498*45537549124^(1/2) 6541093923492828 a001 5702887/1860498*33385282^(17/24) 6541093923492830 a001 4052739537881/12752043*439204^(1/18) 6541093923492831 a001 7778742049/1860498*7881196^(7/22) 6541093923492840 a001 10983760033/620166*7881196^(5/22) 6541093923492847 a001 43133785636/930249*7881196^(1/6) 6541093923492850 a001 139583862445/1860498*7881196^(3/22) 6541093923492854 a001 5702887/1860498*12752043^(3/4) 6541093923492857 a001 133957148/930249*20633239^(1/2) 6541093923492857 a001 24157817/1860498*20633239^(9/14) 6541093923492858 a001 829464/103361*6643838879^(1/2) 6541093923492859 a001 2971215073/1860498*20633239^(5/14) 6541093923492859 a001 591286729879/1860498*7881196^(1/22) 6541093923492860 a001 7778742049/1860498*20633239^(3/10) 6541093923492861 a001 10983760033/620166*20633239^(3/14) 6541093923492863 a001 75283811239/620166*20633239^(1/10) 6541093923492863 a001 182717648081/930249*20633239^(1/14) 6541093923492863 a001 165580141/1860498*54018521^(1/2) 6541093923492863 a001 39088169/1860498*969323029^(1/2) 6541093923492863 a001 832040/87403803*2537720636^(5/6) 6541093923492863 a001 832040/87403803*312119004989^(15/22) 6541093923492863 a001 832040/87403803*3461452808002^(5/8) 6541093923492863 a001 832040/87403803*28143753123^(3/4) 6541093923492863 a001 832040/87403803*228826127^(15/16) 6541093923492864 a001 831985/15126*141422324^(1/2) 6541093923492864 a001 831985/15126*73681302247^(3/8) 6541093923492864 a001 53316291173/1860498*141422324^(1/6) 6541093923492864 a001 133957148/930249*2537720636^(7/18) 6541093923492864 a001 133957148/930249*17393796001^(5/14) 6541093923492864 a001 133957148/930249*312119004989^(7/22) 6541093923492864 a001 133957148/930249*14662949395604^(5/18) 6541093923492864 a001 133957148/930249*505019158607^(5/16) 6541093923492864 a001 133957148/930249*28143753123^(7/20) 6541093923492864 a001 1515744265389/4769326*439204^(1/18) 6541093923492864 a001 133957148/930249*599074578^(5/12) 6541093923492864 a001 233802911/620166*9062201101803^(1/4) 6541093923492864 a001 832040/1568397607*1322157322203^(3/4) 6541093923492864 a001 1836311903/1860498*2537720636^(3/10) 6541093923492864 a001 832040/4106118243*17393796001^(13/14) 6541093923492864 a001 832040/4106118243*14662949395604^(13/18) 6541093923492864 a001 1836311903/1860498*14662949395604^(3/14) 6541093923492864 a001 832040/4106118243*505019158607^(13/16) 6541093923492864 a001 1836311903/1860498*192900153618^(1/4) 6541093923492864 a001 832040/4106118243*73681302247^(7/8) 6541093923492864 a001 10983760033/620166*2537720636^(1/6) 6541093923492864 a001 2971215073/1860498*2537720636^(5/18) 6541093923492864 a001 139583862445/1860498*2537720636^(1/10) 6541093923492864 a001 416020/5374978561*312119004989^(19/22) 6541093923492864 a001 416020/5374978561*3461452808002^(19/24) 6541093923492864 a001 182717648081/930249*2537720636^(1/18) 6541093923492864 a001 416020/5374978561*28143753123^(19/20) 6541093923492864 a001 832040/28143753123*312119004989^(9/10) 6541093923492864 a001 12586269025/1860498*817138163596^(1/6) 6541093923492864 a001 832040/28143753123*14662949395604^(11/14) 6541093923492864 a001 832040/28143753123*192900153618^(11/12) 6541093923492864 a001 75283811239/620166*17393796001^(1/14) 6541093923492864 a001 10983760033/620166*312119004989^(3/22) 6541093923492864 a001 43133785636/930249*312119004989^(1/10) 6541093923492864 a001 75283811239/620166*14662949395604^(1/18) 6541093923492864 a001 75283811239/620166*505019158607^(1/16) 6541093923492864 a001 832040/1322157322203*3461452808002^(23/24) 6541093923492864 a001 416020/1730726404001*14662949395604^(17/18) 6541093923492864 a001 832040/2139295485799*14662949395604^(13/14) 6541093923492864 a001 182717648081/930249*312119004989^(1/22) 6541093923492864 a001 10983760033/620166*28143753123^(3/20) 6541093923492864 a001 139583862445/1860498*14662949395604^(1/14) 6541093923492864 a001 139583862445/1860498*192900153618^(1/12) 6541093923492864 a001 832040/119218851371*312119004989^(21/22) 6541093923492864 a001 182717648081/930249*28143753123^(1/20) 6541093923492864 a001 832040/119218851371*14662949395604^(5/6) 6541093923492864 a001 832040/119218851371*505019158607^(15/16) 6541093923492864 a001 53316291173/1860498*73681302247^(1/8) 6541093923492864 a001 10182505537/930249*45537549124^(1/6) 6541093923492864 a001 7778742049/1860498*17393796001^(3/14) 6541093923492864 a001 7778742049/1860498*14662949395604^(1/6) 6541093923492864 a001 267084832/103361*4106118243^(1/4) 6541093923492864 a001 2971215073/1860498*312119004989^(5/22) 6541093923492864 a001 832040/6643838879*9062201101803^(3/4) 6541093923492864 a001 2971215073/1860498*3461452808002^(5/24) 6541093923492864 a001 2971215073/1860498*28143753123^(1/4) 6541093923492864 a001 43133785636/930249*1568397607^(1/8) 6541093923492864 a001 567451585/930249*1322157322203^(1/4) 6541093923492864 a001 75283811239/620166*599074578^(1/12) 6541093923492864 a001 7778742049/1860498*599074578^(1/4) 6541093923492864 a001 832040/969323029*2537720636^(17/18) 6541093923492864 a001 832040/969323029*45537549124^(5/6) 6541093923492864 a001 832040/969323029*312119004989^(17/22) 6541093923492864 a001 433494437/1860498*312119004989^(3/10) 6541093923492864 a001 832040/969323029*3461452808002^(17/24) 6541093923492864 a001 832040/969323029*28143753123^(17/20) 6541093923492864 a001 182717648081/930249*228826127^(1/16) 6541093923492864 a001 433494437/1860498*1568397607^(3/8) 6541093923492864 a001 10983760033/620166*228826127^(3/16) 6541093923492864 a001 133957148/930249*228826127^(7/16) 6541093923492864 a001 2971215073/1860498*228826127^(5/16) 6541093923492864 a001 832040/370248451*2537720636^(9/10) 6541093923492864 a001 832040/370248451*14662949395604^(9/14) 6541093923492864 a001 832040/370248451*192900153618^(3/4) 6541093923492864 a001 12586269025/1860498*87403803^(1/4) 6541093923492864 a001 591286729879/1860498*33385282^(1/24) 6541093923492865 a001 31622993/930249*370248451^(1/2) 6541093923492865 a001 208010/35355581*17393796001^(11/14) 6541093923492865 a001 208010/35355581*14662949395604^(11/18) 6541093923492865 a001 208010/35355581*505019158607^(11/16) 6541093923492865 a001 208010/35355581*1568397607^(7/8) 6541093923492865 a001 208010/35355581*599074578^(11/12) 6541093923492865 a001 139583862445/1860498*33385282^(1/8) 6541093923492865 a001 10983760033/620166*33385282^(5/24) 6541093923492866 a001 7778742049/1860498*33385282^(7/24) 6541093923492866 a001 1836311903/1860498*33385282^(3/8) 6541093923492866 a001 24157817/1860498*2537720636^(1/2) 6541093923492866 a001 24157817/1860498*312119004989^(9/22) 6541093923492866 a001 24157817/1860498*14662949395604^(5/14) 6541093923492866 a001 24157817/1860498*192900153618^(5/12) 6541093923492866 a001 24157817/1860498*28143753123^(9/20) 6541093923492867 a001 24157817/1860498*228826127^(9/16) 6541093923492867 a001 433494437/1860498*33385282^(11/24) 6541093923492867 a001 831985/15126*33385282^(13/24) 6541093923492869 a001 9227465/1860498*20633239^(7/10) 6541093923492870 a001 24157817/1860498*33385282^(5/8) 6541093923492874 a001 10182505537/930249*12752043^(1/4) 6541093923492880 a001 9227465/1860498*17393796001^(1/2) 6541093923492880 a001 9227465/1860498*14662949395604^(7/18) 6541093923492880 a001 9227465/1860498*505019158607^(7/16) 6541093923492880 a001 75640/1875749*4106118243^(3/4) 6541093923492880 a001 9227465/1860498*599074578^(7/12) 6541093923492885 a001 75640/1875749*33385282^(23/24) 6541093923492885 a001 6557470319842/20633239*439204^(1/18) 6541093923492955 a001 208010/1970299*20633239^(13/14) 6541093923492959 a001 591286729879/1860498*1860498^(1/20) 6541093923492969 a001 208010/1970299*141422324^(5/6) 6541093923492970 a001 208010/1970299*2537720636^(13/18) 6541093923492970 a001 1762289/930249*119218851371^(1/2) 6541093923492970 a001 208010/1970299*312119004989^(13/22) 6541093923492970 a001 208010/1970299*3461452808002^(13/24) 6541093923492970 a001 208010/1970299*73681302247^(5/8) 6541093923492970 a001 208010/1970299*28143753123^(13/20) 6541093923492970 a001 208010/1970299*228826127^(13/16) 6541093923492975 a001 2504730781961/7881196*439204^(1/18) 6541093923493002 a001 1836311903/3010349*1149851^(1/2) 6541093923493022 a001 182717648081/930249*1860498^(1/12) 6541093923493148 a001 139583862445/1860498*1860498^(3/20) 6541093923493240 a001 3524578/710647*710647^(7/8) 6541093923493337 a001 10983760033/620166*1860498^(1/4) 6541093923493495 a001 1346269/1860498*7881196^(19/22) 6541093923493526 a001 7778742049/1860498*1860498^(7/20) 6541093923493586 a001 1346269/1860498*817138163596^(1/2) 6541093923493586 a001 832040/3010349*5600748293801^(1/2) 6541093923493587 a001 1346269/1860498*87403803^(3/4) 6541093923493591 a001 1346269/1860498*33385282^(19/24) 6541093923493592 a001 956722026041/3010349*439204^(1/18) 6541093923493652 a001 2971215073/1860498*1860498^(5/12) 6541093923493715 a001 1836311903/1860498*1860498^(9/20) 6541093923493904 a001 433494437/1860498*1860498^(11/20) 6541093923493967 a001 133957148/930249*1860498^(7/12) 6541093923494050 a001 86267571272/1149851*439204^(1/6) 6541093923494092 a001 831985/15126*1860498^(13/20) 6541093923494117 a001 1836311903/4870847*3010349^(1/2) 6541093923494202 a001 2178309/4870847*2139295485799^(1/2) 6541093923494284 a001 24157817/1860498*1860498^(3/4) 6541093923494321 a001 726103/620166*1860498^(11/12) 6541093923494337 a001 726103/4250681*7881196^(21/22) 6541093923494350 a001 5702887/4870847*7881196^(5/6) 6541093923494353 a001 1602508992/4250681*3010349^(1/2) 6541093923494387 a001 12586269025/33385282*3010349^(1/2) 6541093923494391 a001 14930352/4870847*7881196^(17/22) 6541093923494392 a001 10983760033/29134601*3010349^(1/2) 6541093923494393 a001 86267571272/228826127*3010349^(1/2) 6541093923494393 a001 267913919/710646*3010349^(1/2) 6541093923494393 a001 591286729879/1568397607*3010349^(1/2) 6541093923494393 a001 516002918640/1368706081*3010349^(1/2) 6541093923494393 a001 4052739537881/10749957122*3010349^(1/2) 6541093923494393 a001 3536736619241/9381251041*3010349^(1/2) 6541093923494393 a001 6557470319842/17393796001*3010349^(1/2) 6541093923494393 a001 2504730781961/6643838879*3010349^(1/2) 6541093923494393 a001 956722026041/2537720636*3010349^(1/2) 6541093923494393 a001 365435296162/969323029*3010349^(1/2) 6541093923494393 a001 139583862445/370248451*3010349^(1/2) 6541093923494393 a001 53316291173/141422324*3010349^(1/2) 6541093923494395 a001 20365011074/54018521*3010349^(1/2) 6541093923494407 a001 63245986/4870847*7881196^(15/22) 6541093923494408 a001 7778742049/20633239*3010349^(1/2) 6541093923494416 a001 267914296/4870847*7881196^(13/22) 6541093923494424 a001 726103/4250681*20633239^(9/10) 6541093923494426 a001 1134903170/4870847*7881196^(1/2) 6541093923494426 a001 5702887/4870847*20633239^(11/14) 6541093923494430 a001 5702887/1860498*1860498^(17/20) 6541093923494435 a001 4807526976/4870847*7881196^(9/22) 6541093923494438 a001 726103/4250681*2537720636^(7/10) 6541093923494438 a001 5702887/4870847*2537720636^(11/18) 6541093923494438 a001 726103/4250681*17393796001^(9/14) 6541093923494438 a001 5702887/4870847*312119004989^(1/2) 6541093923494438 a001 5702887/4870847*3461452808002^(11/24) 6541093923494438 a001 726103/4250681*505019158607^(9/16) 6541093923494438 a001 726103/4250681*192900153618^(7/12) 6541093923494438 a001 5702887/4870847*28143753123^(11/20) 6541093923494438 a001 5702887/4870847*1568397607^(5/8) 6541093923494438 a001 726103/4250681*599074578^(3/4) 6541093923494438 a001 5702887/4870847*228826127^(11/16) 6541093923494443 a001 726103/4250681*33385282^(7/8) 6541093923494445 a001 20365011074/4870847*7881196^(7/22) 6541093923494454 a001 86267571272/4870847*7881196^(5/22) 6541093923494461 a001 225851433717/4870847*7881196^(1/6) 6541093923494464 a001 365435296162/4870847*7881196^(3/22) 6541093923494469 a001 63245986/4870847*20633239^(9/14) 6541093923494470 a001 24157817/4870847*20633239^(7/10) 6541093923494471 a001 701408733/4870847*20633239^(1/2) 6541093923494472 a001 14930352/4870847*45537549124^(1/2) 6541093923494473 a001 7778742049/4870847*20633239^(5/14) 6541093923494473 a001 1548008755920/4870847*7881196^(1/22) 6541093923494474 a001 20365011074/4870847*20633239^(3/10) 6541093923494475 a001 86267571272/4870847*20633239^(3/14) 6541093923494476 a001 14930352/4870847*33385282^(17/24) 6541093923494477 a001 591286729879/4870847*20633239^(1/10) 6541093923494477 a001 433494437/4870847*54018521^(1/2) 6541093923494477 a001 956722026041/4870847*20633239^(1/14) 6541093923494477 a001 39088169/4870847*6643838879^(1/2) 6541093923494478 a001 267914296/4870847*141422324^(1/2) 6541093923494478 a001 102334155/4870847*969323029^(1/2) 6541093923494478 a001 46347/4868641*2537720636^(5/6) 6541093923494478 a001 46347/4868641*312119004989^(15/22) 6541093923494478 a001 46347/4868641*3461452808002^(5/8) 6541093923494478 a001 46347/4868641*28143753123^(3/4) 6541093923494478 a001 139583862445/4870847*141422324^(1/6) 6541093923494478 a001 267914296/4870847*73681302247^(3/8) 6541093923494478 a001 46347/4868641*228826127^(15/16) 6541093923494478 a001 701408733/4870847*2537720636^(7/18) 6541093923494478 a001 701408733/4870847*17393796001^(5/14) 6541093923494478 a001 701408733/4870847*312119004989^(7/22) 6541093923494478 a001 701408733/4870847*14662949395604^(5/18) 6541093923494478 a001 701408733/4870847*505019158607^(5/16) 6541093923494478 a001 701408733/4870847*28143753123^(7/20) 6541093923494478 a001 1836311903/4870847*9062201101803^(1/4) 6541093923494478 a001 726103/1368706081*1322157322203^(3/4) 6541093923494478 a001 4807526976/4870847*2537720636^(3/10) 6541093923494478 a001 7778742049/4870847*2537720636^(5/18) 6541093923494478 a001 86267571272/4870847*2537720636^(1/6) 6541093923494478 a001 365435296162/4870847*2537720636^(1/10) 6541093923494478 a001 987/4870846*17393796001^(13/14) 6541093923494478 a001 987/4870846*14662949395604^(13/18) 6541093923494478 a001 4807526976/4870847*14662949395604^(3/14) 6541093923494478 a001 987/4870846*505019158607^(13/16) 6541093923494478 a001 4807526976/4870847*192900153618^(1/4) 6541093923494478 a001 956722026041/4870847*2537720636^(1/18) 6541093923494478 a001 987/4870846*73681302247^(7/8) 6541093923494478 a001 726103/9381251041*312119004989^(19/22) 6541093923494478 a001 726103/9381251041*817138163596^(5/6) 6541093923494478 a001 726103/9381251041*3461452808002^(19/24) 6541093923494478 a001 591286729879/4870847*17393796001^(1/14) 6541093923494478 a001 20365011074/4870847*17393796001^(3/14) 6541093923494478 a001 311187/10525900321*312119004989^(9/10) 6541093923494478 a001 32951280099/4870847*817138163596^(1/6) 6541093923494478 a001 311187/10525900321*14662949395604^(11/14) 6541093923494478 a001 311187/10525900321*192900153618^(11/12) 6541093923494478 a001 726103/9381251041*28143753123^(19/20) 6541093923494478 a001 86267571272/4870847*312119004989^(3/22) 6541093923494478 a001 53316291173/4870847*45537549124^(1/6) 6541093923494478 a001 225851433717/4870847*312119004989^(1/10) 6541093923494478 a001 591286729879/4870847*505019158607^(1/16) 6541093923494478 a001 726103/3020733700601*14662949395604^(17/18) 6541093923494478 a001 311187/494493258286*3461452808002^(23/24) 6541093923494478 a001 2178309/312119004989*312119004989^(21/22) 6541093923494478 a001 365435296162/4870847*14662949395604^(1/14) 6541093923494478 a001 365435296162/4870847*192900153618^(1/12) 6541093923494478 a001 2178309/312119004989*14662949395604^(5/6) 6541093923494478 a001 2178309/312119004989*505019158607^(15/16) 6541093923494478 a001 139583862445/4870847*73681302247^(1/8) 6541093923494478 a001 956722026041/4870847*28143753123^(1/20) 6541093923494478 a001 86267571272/4870847*28143753123^(3/20) 6541093923494478 a001 20365011074/4870847*14662949395604^(1/6) 6541093923494478 a001 7778742049/4870847*312119004989^(5/22) 6541093923494478 a001 2178309/17393796001*9062201101803^(3/4) 6541093923494478 a001 7778742049/4870847*3461452808002^(5/24) 6541093923494478 a001 7778742049/4870847*28143753123^(1/4) 6541093923494478 a001 2178309/2537720636*2537720636^(17/18) 6541093923494478 a001 12586269025/4870847*4106118243^(1/4) 6541093923494478 a001 2971215073/4870847*1322157322203^(1/4) 6541093923494478 a001 225851433717/4870847*1568397607^(1/8) 6541093923494478 a001 2178309/2537720636*45537549124^(5/6) 6541093923494478 a001 2178309/2537720636*312119004989^(17/22) 6541093923494478 a001 1134903170/4870847*312119004989^(3/10) 6541093923494478 a001 2178309/2537720636*3461452808002^(17/24) 6541093923494478 a001 2178309/2537720636*28143753123^(17/20) 6541093923494478 a001 591286729879/4870847*599074578^(1/12) 6541093923494478 a001 1134903170/4870847*1568397607^(3/8) 6541093923494478 a001 20365011074/4870847*599074578^(1/4) 6541093923494478 a001 701408733/4870847*599074578^(5/12) 6541093923494478 a001 2178309/969323029*2537720636^(9/10) 6541093923494478 a001 2178309/969323029*14662949395604^(9/14) 6541093923494478 a001 2178309/969323029*192900153618^(3/4) 6541093923494478 a001 956722026041/4870847*228826127^(1/16) 6541093923494478 a001 86267571272/4870847*228826127^(3/16) 6541093923494478 a001 165580141/4870847*370248451^(1/2) 6541093923494478 a001 7778742049/4870847*228826127^(5/16) 6541093923494478 a001 2178309/370248451*17393796001^(11/14) 6541093923494478 a001 2178309/370248451*14662949395604^(11/18) 6541093923494478 a001 2178309/370248451*505019158607^(11/16) 6541093923494478 a001 2178309/370248451*1568397607^(7/8) 6541093923494478 a001 701408733/4870847*228826127^(7/16) 6541093923494478 a001 2178309/370248451*599074578^(11/12) 6541093923494478 a001 32951280099/4870847*87403803^(1/4) 6541093923494478 a001 1548008755920/4870847*33385282^(1/24) 6541093923494479 a001 63245986/4870847*2537720636^(1/2) 6541093923494479 a001 63245986/4870847*312119004989^(9/22) 6541093923494479 a001 63245986/4870847*14662949395604^(5/14) 6541093923494479 a001 63245986/4870847*192900153618^(5/12) 6541093923494479 a001 63245986/4870847*28143753123^(9/20) 6541093923494479 a001 63245986/4870847*228826127^(9/16) 6541093923494479 a001 365435296162/4870847*33385282^(1/8) 6541093923494479 a001 2178309/20633239*20633239^(13/14) 6541093923494479 a001 86267571272/4870847*33385282^(5/24) 6541093923494480 a001 20365011074/4870847*33385282^(7/24) 6541093923494480 a001 4807526976/4870847*33385282^(3/8) 6541093923494480 a001 24157817/4870847*17393796001^(1/2) 6541093923494480 a001 24157817/4870847*14662949395604^(7/18) 6541093923494480 a001 24157817/4870847*505019158607^(7/16) 6541093923494480 a001 2178309/54018521*4106118243^(3/4) 6541093923494480 a001 24157817/4870847*599074578^(7/12) 6541093923494481 a001 1134903170/4870847*33385282^(11/24) 6541093923494481 a001 267914296/4870847*33385282^(13/24) 6541093923494482 a001 63245986/4870847*33385282^(5/8) 6541093923494483 a001 75283811239/620166*710647^(1/8) 6541093923494486 a001 2178309/54018521*33385282^(23/24) 6541093923494488 a001 53316291173/4870847*12752043^(1/4) 6541093923494493 a001 3524578/4870847*7881196^(19/22) 6541093923494493 a001 2178309/20633239*141422324^(5/6) 6541093923494494 a001 2178309/20633239*2537720636^(13/18) 6541093923494494 a001 9227465/4870847*119218851371^(1/2) 6541093923494494 a001 2178309/20633239*312119004989^(13/22) 6541093923494494 a001 2178309/20633239*3461452808002^(13/24) 6541093923494494 a001 2178309/20633239*73681302247^(5/8) 6541093923494494 a001 2178309/20633239*28143753123^(13/20) 6541093923494494 a001 2178309/20633239*228826127^(13/16) 6541093923494498 a001 2971215073/7881196*3010349^(1/2) 6541093923494503 a001 14930352/4870847*12752043^(3/4) 6541093923494573 a001 1548008755920/4870847*1860498^(1/20) 6541093923494584 a001 3524578/4870847*817138163596^(1/2) 6541093923494584 a001 2178309/7881196*5600748293801^(1/2) 6541093923494584 a001 3524578/4870847*87403803^(3/4) 6541093923494588 a001 3524578/4870847*33385282^(19/24) 6541093923494607 a001 5702887/33385282*7881196^(21/22) 6541093923494620 a001 4976784/4250681*7881196^(5/6) 6541093923494631 a001 39088169/12752043*7881196^(17/22) 6541093923494636 a001 956722026041/4870847*1860498^(1/12) 6541093923494638 a001 9227465/12752043*7881196^(19/22) 6541093923494642 a001 165580141/12752043*7881196^(15/22) 6541093923494647 a001 4976784/29134601*7881196^(21/22) 6541093923494651 a001 233802911/4250681*7881196^(13/22) 6541093923494652 a001 39088169/228826127*7881196^(21/22) 6541093923494653 a001 34111385/199691526*7881196^(21/22) 6541093923494653 a001 267914296/1568397607*7881196^(21/22) 6541093923494653 a001 233802911/1368706081*7881196^(21/22) 6541093923494653 a001 1836311903/10749957122*7881196^(21/22) 6541093923494653 a001 1602508992/9381251041*7881196^(21/22) 6541093923494653 a001 12586269025/73681302247*7881196^(21/22) 6541093923494653 a001 10983760033/64300051206*7881196^(21/22) 6541093923494653 a001 86267571272/505019158607*7881196^(21/22) 6541093923494653 a001 75283811239/440719107401*7881196^(21/22) 6541093923494653 a001 2504730781961/14662949395604*7881196^(21/22) 6541093923494653 a001 139583862445/817138163596*7881196^(21/22) 6541093923494653 a001 53316291173/312119004989*7881196^(21/22) 6541093923494653 a001 20365011074/119218851371*7881196^(21/22) 6541093923494653 a001 7778742049/45537549124*7881196^(21/22) 6541093923494653 a001 2971215073/17393796001*7881196^(21/22) 6541093923494653 a001 1134903170/6643838879*7881196^(21/22) 6541093923494653 a001 433494437/2537720636*7881196^(21/22) 6541093923494653 a001 165580141/969323029*7881196^(21/22) 6541093923494654 a001 63245986/370248451*7881196^(21/22) 6541093923494656 a001 24157817/141422324*7881196^(21/22) 6541093923494659 a001 24157817/33385282*7881196^(19/22) 6541093923494659 a001 39088169/33385282*7881196^(5/6) 6541093923494661 a001 2971215073/12752043*7881196^(1/2) 6541093923494662 a001 63245986/87403803*7881196^(19/22) 6541093923494663 a001 165580141/228826127*7881196^(19/22) 6541093923494663 a001 433494437/599074578*7881196^(19/22) 6541093923494663 a001 1134903170/1568397607*7881196^(19/22) 6541093923494663 a001 2971215073/4106118243*7881196^(19/22) 6541093923494663 a001 7778742049/10749957122*7881196^(19/22) 6541093923494663 a001 20365011074/28143753123*7881196^(19/22) 6541093923494663 a001 53316291173/73681302247*7881196^(19/22) 6541093923494663 a001 139583862445/192900153618*7881196^(19/22) 6541093923494663 a001 10610209857723/14662949395604*7881196^(19/22) 6541093923494663 a001 591286729879/817138163596*7881196^(19/22) 6541093923494663 a001 225851433717/312119004989*7881196^(19/22) 6541093923494663 a001 86267571272/119218851371*7881196^(19/22) 6541093923494663 a001 32951280099/45537549124*7881196^(19/22) 6541093923494663 a001 12586269025/17393796001*7881196^(19/22) 6541093923494663 a001 4807526976/6643838879*7881196^(19/22) 6541093923494663 a001 1836311903/2537720636*7881196^(19/22) 6541093923494663 a001 701408733/969323029*7881196^(19/22) 6541093923494663 a001 267914296/370248451*7881196^(19/22) 6541093923494663 a001 102334155/141422324*7881196^(19/22) 6541093923494664 a001 39088169/54018521*7881196^(19/22) 6541093923494665 a001 34111385/29134601*7881196^(5/6) 6541093923494666 a001 267914296/228826127*7881196^(5/6) 6541093923494666 a001 233802911/199691526*7881196^(5/6) 6541093923494666 a001 1836311903/1568397607*7881196^(5/6) 6541093923494666 a001 1602508992/1368706081*7881196^(5/6) 6541093923494666 a001 12586269025/10749957122*7881196^(5/6) 6541093923494666 a001 10983760033/9381251041*7881196^(5/6) 6541093923494666 a001 86267571272/73681302247*7881196^(5/6) 6541093923494666 a001 75283811239/64300051206*7881196^(5/6) 6541093923494666 a001 2504730781961/2139295485799*7881196^(5/6) 6541093923494666 a001 365435296162/312119004989*7881196^(5/6) 6541093923494666 a001 139583862445/119218851371*7881196^(5/6) 6541093923494666 a001 53316291173/45537549124*7881196^(5/6) 6541093923494666 a001 20365011074/17393796001*7881196^(5/6) 6541093923494666 a001 7778742049/6643838879*7881196^(5/6) 6541093923494666 a001 2971215073/2537720636*7881196^(5/6) 6541093923494666 a001 1134903170/969323029*7881196^(5/6) 6541093923494666 a001 433494437/370248451*7881196^(5/6) 6541093923494667 a001 165580141/141422324*7881196^(5/6) 6541093923494667 a001 14619165/4769326*7881196^(17/22) 6541093923494669 a001 63245986/54018521*7881196^(5/6) 6541093923494671 a001 12586269025/12752043*7881196^(9/22) 6541093923494671 a001 9227465/54018521*7881196^(21/22) 6541093923494672 a001 267914296/87403803*7881196^(17/22) 6541093923494672 a001 701408733/228826127*7881196^(17/22) 6541093923494672 a001 14930352/20633239*7881196^(19/22) 6541093923494673 a001 1836311903/599074578*7881196^(17/22) 6541093923494673 a001 686789568/224056801*7881196^(17/22) 6541093923494673 a001 12586269025/4106118243*7881196^(17/22) 6541093923494673 a001 32951280099/10749957122*7881196^(17/22) 6541093923494673 a001 86267571272/28143753123*7881196^(17/22) 6541093923494673 a001 32264490531/10525900321*7881196^(17/22) 6541093923494673 a001 591286729879/192900153618*7881196^(17/22) 6541093923494673 a001 1548008755920/505019158607*7881196^(17/22) 6541093923494673 a001 1515744265389/494493258286*7881196^(17/22) 6541093923494673 a001 2504730781961/817138163596*7881196^(17/22) 6541093923494673 a001 956722026041/312119004989*7881196^(17/22) 6541093923494673 a001 365435296162/119218851371*7881196^(17/22) 6541093923494673 a001 139583862445/45537549124*7881196^(17/22) 6541093923494673 a001 53316291173/17393796001*7881196^(17/22) 6541093923494673 a001 20365011074/6643838879*7881196^(17/22) 6541093923494673 a001 7778742049/2537720636*7881196^(17/22) 6541093923494673 a001 2971215073/969323029*7881196^(17/22) 6541093923494673 a001 1134903170/370248451*7881196^(17/22) 6541093923494673 a001 433494437/141422324*7881196^(17/22) 6541093923494673 a001 5702887/12752043*2139295485799^(1/2) 6541093923494675 a001 165580141/54018521*7881196^(17/22) 6541093923494676 a001 433494437/33385282*7881196^(15/22) 6541093923494680 a001 53316291173/12752043*7881196^(7/22) 6541093923494681 a001 1134903170/87403803*7881196^(15/22) 6541093923494682 a001 2971215073/228826127*7881196^(15/22) 6541093923494682 a001 7778742049/599074578*7881196^(15/22) 6541093923494682 a001 20365011074/1568397607*7881196^(15/22) 6541093923494682 a001 53316291173/4106118243*7881196^(15/22) 6541093923494682 a001 139583862445/10749957122*7881196^(15/22) 6541093923494682 a001 365435296162/28143753123*7881196^(15/22) 6541093923494682 a001 956722026041/73681302247*7881196^(15/22) 6541093923494682 a001 2504730781961/192900153618*7881196^(15/22) 6541093923494682 a001 10610209857723/817138163596*7881196^(15/22) 6541093923494682 a001 4052739537881/312119004989*7881196^(15/22) 6541093923494682 a001 1548008755920/119218851371*7881196^(15/22) 6541093923494682 a001 591286729879/45537549124*7881196^(15/22) 6541093923494682 a001 7787980473/599786069*7881196^(15/22) 6541093923494682 a001 86267571272/6643838879*7881196^(15/22) 6541093923494682 a001 32951280099/2537720636*7881196^(15/22) 6541093923494682 a001 12586269025/969323029*7881196^(15/22) 6541093923494682 a001 4807526976/370248451*7881196^(15/22) 6541093923494682 a001 1836311903/141422324*7881196^(15/22) 6541093923494684 a001 24157817/20633239*7881196^(5/6) 6541093923494684 a001 701408733/54018521*7881196^(15/22) 6541093923494686 a001 1836311903/33385282*7881196^(13/22) 6541093923494688 a001 63245986/20633239*7881196^(17/22) 6541093923494690 a001 75283811239/4250681*7881196^(5/22) 6541093923494691 a001 1602508992/29134601*7881196^(13/22) 6541093923494692 a001 12586269025/228826127*7881196^(13/22) 6541093923494692 a001 10983760033/199691526*7881196^(13/22) 6541093923494692 a001 86267571272/1568397607*7881196^(13/22) 6541093923494692 a001 75283811239/1368706081*7881196^(13/22) 6541093923494692 a001 591286729879/10749957122*7881196^(13/22) 6541093923494692 a001 12585437040/228811001*7881196^(13/22) 6541093923494692 a001 4052739537881/73681302247*7881196^(13/22) 6541093923494692 a001 3536736619241/64300051206*7881196^(13/22) 6541093923494692 a001 6557470319842/119218851371*7881196^(13/22) 6541093923494692 a001 2504730781961/45537549124*7881196^(13/22) 6541093923494692 a001 956722026041/17393796001*7881196^(13/22) 6541093923494692 a001 365435296162/6643838879*7881196^(13/22) 6541093923494692 a001 139583862445/2537720636*7881196^(13/22) 6541093923494692 a001 53316291173/969323029*7881196^(13/22) 6541093923494692 a001 20365011074/370248451*7881196^(13/22) 6541093923494692 a001 7778742049/141422324*7881196^(13/22) 6541093923494694 a001 2971215073/54018521*7881196^(13/22) 6541093923494694 a001 5702887/33385282*20633239^(9/10) 6541093923494695 a001 7778742049/33385282*7881196^(1/2) 6541093923494696 a001 4976784/4250681*20633239^(11/14) 6541093923494696 a001 591286729879/12752043*7881196^(1/6) 6541093923494697 a001 9238424/711491*7881196^(15/22) 6541093923494699 a001 956722026041/12752043*7881196^(3/22) 6541093923494700 a001 20365011074/87403803*7881196^(1/2) 6541093923494701 a001 53316291173/228826127*7881196^(1/2) 6541093923494701 a001 139583862445/599074578*7881196^(1/2) 6541093923494701 a001 365435296162/1568397607*7881196^(1/2) 6541093923494701 a001 956722026041/4106118243*7881196^(1/2) 6541093923494701 a001 2504730781961/10749957122*7881196^(1/2) 6541093923494701 a001 6557470319842/28143753123*7881196^(1/2) 6541093923494701 a001 10610209857723/45537549124*7881196^(1/2) 6541093923494701 a001 4052739537881/17393796001*7881196^(1/2) 6541093923494701 a001 1548008755920/6643838879*7881196^(1/2) 6541093923494701 a001 591286729879/2537720636*7881196^(1/2) 6541093923494701 a001 225851433717/969323029*7881196^(1/2) 6541093923494701 a001 86267571272/370248451*7881196^(1/2) 6541093923494702 a001 63246219/271444*7881196^(1/2) 6541093923494702 a001 5702887/54018521*20633239^(13/14) 6541093923494703 a001 63245986/12752043*20633239^(7/10) 6541093923494703 a001 12586269025/54018521*7881196^(1/2) 6541093923494704 a001 165580141/12752043*20633239^(9/14) 6541093923494705 a001 32951280099/33385282*7881196^(9/22) 6541093923494706 a001 1836311903/12752043*20633239^(1/2) 6541093923494707 a001 1134903170/20633239*7881196^(13/22) 6541093923494708 a001 5702887/33385282*2537720636^(7/10) 6541093923494708 a001 4976784/4250681*2537720636^(11/18) 6541093923494708 a001 5702887/33385282*17393796001^(9/14) 6541093923494708 a001 4976784/4250681*312119004989^(1/2) 6541093923494708 a001 5702887/33385282*14662949395604^(1/2) 6541093923494708 a001 4976784/4250681*3461452808002^(11/24) 6541093923494708 a001 5702887/33385282*505019158607^(9/16) 6541093923494708 a001 5702887/33385282*192900153618^(7/12) 6541093923494708 a001 4976784/4250681*28143753123^(11/20) 6541093923494708 a001 4976784/4250681*1568397607^(5/8) 6541093923494708 a001 5702887/33385282*599074578^(3/4) 6541093923494708 a001 4976784/4250681*228826127^(11/16) 6541093923494708 a001 20365011074/12752043*20633239^(5/14) 6541093923494709 a001 4052739537881/12752043*7881196^(1/22) 6541093923494709 a001 53316291173/12752043*20633239^(3/10) 6541093923494710 a001 86267571272/87403803*7881196^(9/22) 6541093923494710 a001 75283811239/4250681*20633239^(3/14) 6541093923494711 a001 225851433717/228826127*7881196^(9/22) 6541093923494711 a001 591286729879/599074578*7881196^(9/22) 6541093923494711 a001 1548008755920/1568397607*7881196^(9/22) 6541093923494711 a001 4052739537881/4106118243*7881196^(9/22) 6541093923494711 a001 4807525989/4870846*7881196^(9/22) 6541093923494711 a001 6557470319842/6643838879*7881196^(9/22) 6541093923494711 a001 2504730781961/2537720636*7881196^(9/22) 6541093923494711 a001 956722026041/969323029*7881196^(9/22) 6541093923494711 a001 365435296162/370248451*7881196^(9/22) 6541093923494711 a001 139583862445/141422324*7881196^(9/22) 6541093923494712 a001 516002918640/4250681*20633239^(1/10) 6541093923494713 a001 1134903170/12752043*54018521^(1/2) 6541093923494713 a001 2504730781961/12752043*20633239^(1/14) 6541093923494713 a001 39088169/12752043*45537549124^(1/2) 6541093923494713 a001 5702887/33385282*33385282^(7/8) 6541093923494713 a001 53316291173/54018521*7881196^(9/22) 6541093923494714 a001 233802911/4250681*141422324^(1/2) 6541093923494714 a001 34111385/4250681*6643838879^(1/2) 6541093923494714 a001 365435296162/12752043*141422324^(1/6) 6541093923494714 a001 267914296/12752043*969323029^(1/2) 6541093923494714 a001 5702887/599074578*2537720636^(5/6) 6541093923494714 a001 5702887/599074578*312119004989^(15/22) 6541093923494714 a001 5702887/599074578*3461452808002^(5/8) 6541093923494714 a001 5702887/599074578*28143753123^(3/4) 6541093923494714 a001 433494437/12752043*370248451^(1/2) 6541093923494714 a001 233802911/4250681*73681302247^(3/8) 6541093923494714 a001 5702887/6643838879*2537720636^(17/18) 6541093923494714 a001 1836311903/12752043*2537720636^(7/18) 6541093923494714 a001 1836311903/12752043*17393796001^(5/14) 6541093923494714 a001 1836311903/12752043*312119004989^(7/22) 6541093923494714 a001 1836311903/12752043*14662949395604^(5/18) 6541093923494714 a001 1836311903/12752043*505019158607^(5/16) 6541093923494714 a001 1836311903/12752043*28143753123^(7/20) 6541093923494714 a001 12586269025/12752043*2537720636^(3/10) 6541093923494714 a001 20365011074/12752043*2537720636^(5/18) 6541093923494714 a001 75283811239/4250681*2537720636^(1/6) 6541093923494714 a001 956722026041/12752043*2537720636^(1/10) 6541093923494714 a001 1602508992/4250681*9062201101803^(1/4) 6541093923494714 a001 5702887/10749957122*1322157322203^(3/4) 6541093923494714 a001 2504730781961/12752043*2537720636^(1/18) 6541093923494714 a001 5702887/28143753123*17393796001^(13/14) 6541093923494714 a001 5702887/28143753123*14662949395604^(13/18) 6541093923494714 a001 12586269025/12752043*14662949395604^(3/14) 6541093923494714 a001 5702887/28143753123*505019158607^(13/16) 6541093923494714 a001 12586269025/12752043*192900153618^(1/4) 6541093923494714 a001 5702887/28143753123*73681302247^(7/8) 6541093923494714 a001 53316291173/12752043*17393796001^(3/14) 6541093923494714 a001 516002918640/4250681*17393796001^(1/14) 6541093923494714 a001 5702887/73681302247*312119004989^(19/22) 6541093923494714 a001 5702887/73681302247*817138163596^(5/6) 6541093923494714 a001 5702887/73681302247*3461452808002^(19/24) 6541093923494714 a001 139583862445/12752043*45537549124^(1/6) 6541093923494714 a001 5702887/192900153618*312119004989^(9/10) 6541093923494714 a001 86267571272/12752043*817138163596^(1/6) 6541093923494714 a001 5702887/192900153618*14662949395604^(11/14) 6541093923494714 a001 5702887/817138163596*312119004989^(21/22) 6541093923494714 a001 75283811239/4250681*312119004989^(3/22) 6541093923494714 a001 2504730781961/12752043*312119004989^(1/22) 6541093923494714 a001 516002918640/4250681*14662949395604^(1/18) 6541093923494714 a001 5702887/23725150497407*14662949395604^(17/18) 6541093923494714 a001 516002918640/4250681*505019158607^(1/16) 6541093923494714 a001 5702887/817138163596*14662949395604^(5/6) 6541093923494714 a001 956722026041/12752043*192900153618^(1/12) 6541093923494714 a001 5702887/817138163596*505019158607^(15/16) 6541093923494714 a001 365435296162/12752043*73681302247^(1/8) 6541093923494714 a001 2504730781961/12752043*28143753123^(1/20) 6541093923494714 a001 53316291173/12752043*14662949395604^(1/6) 6541093923494714 a001 75283811239/4250681*28143753123^(3/20) 6541093923494714 a001 20365011074/12752043*312119004989^(5/22) 6541093923494714 a001 1597/12752044*9062201101803^(3/4) 6541093923494714 a001 20365011074/12752043*3461452808002^(5/24) 6541093923494714 a001 20365011074/12752043*28143753123^(1/4) 6541093923494714 a001 5702887/73681302247*28143753123^(19/20) 6541093923494714 a001 7778742049/12752043*1322157322203^(1/4) 6541093923494714 a001 10983760033/4250681*4106118243^(1/4) 6541093923494714 a001 5702887/2537720636*2537720636^(9/10) 6541093923494714 a001 5702887/6643838879*45537549124^(5/6) 6541093923494714 a001 5702887/6643838879*312119004989^(17/22) 6541093923494714 a001 2971215073/12752043*312119004989^(3/10) 6541093923494714 a001 5702887/6643838879*3461452808002^(17/24) 6541093923494714 a001 5702887/6643838879*28143753123^(17/20) 6541093923494714 a001 591286729879/12752043*1568397607^(1/8) 6541093923494714 a001 5702887/2537720636*14662949395604^(9/14) 6541093923494714 a001 5702887/2537720636*192900153618^(3/4) 6541093923494714 a001 2971215073/12752043*1568397607^(3/8) 6541093923494714 a001 516002918640/4250681*599074578^(1/12) 6541093923494714 a001 53316291173/12752043*599074578^(1/4) 6541093923494714 a001 5702887/969323029*17393796001^(11/14) 6541093923494714 a001 5702887/969323029*14662949395604^(11/18) 6541093923494714 a001 5702887/969323029*505019158607^(11/16) 6541093923494714 a001 1836311903/12752043*599074578^(5/12) 6541093923494714 a001 2504730781961/12752043*228826127^(1/16) 6541093923494714 a001 5702887/969323029*1568397607^(7/8) 6541093923494714 a001 75283811239/4250681*228826127^(3/16) 6541093923494714 a001 5702887/969323029*599074578^(11/12) 6541093923494714 a001 20365011074/12752043*228826127^(5/16) 6541093923494714 a001 165580141/12752043*2537720636^(1/2) 6541093923494714 a001 165580141/12752043*312119004989^(9/22) 6541093923494714 a001 165580141/12752043*14662949395604^(5/14) 6541093923494714 a001 165580141/12752043*192900153618^(5/12) 6541093923494714 a001 165580141/12752043*28143753123^(9/20) 6541093923494714 a001 1836311903/12752043*228826127^(7/16) 6541093923494714 a001 5702887/599074578*228826127^(15/16) 6541093923494714 a001 165580141/12752043*228826127^(9/16) 6541093923494714 a001 86267571272/12752043*87403803^(1/4) 6541093923494714 a001 4052739537881/12752043*33385282^(1/24) 6541093923494714 a001 63245986/12752043*17393796001^(1/2) 6541093923494714 a001 63245986/12752043*14662949395604^(7/18) 6541093923494714 a001 63245986/12752043*505019158607^(7/16) 6541093923494714 a001 5702887/141422324*4106118243^(3/4) 6541093923494714 a001 63245986/12752043*599074578^(7/12) 6541093923494714 a001 956722026041/12752043*33385282^(1/8) 6541093923494715 a001 139583862445/33385282*7881196^(7/22) 6541093923494715 a001 75283811239/4250681*33385282^(5/24) 6541093923494715 a001 53316291173/12752043*33385282^(7/24) 6541093923494716 a001 5702887/54018521*141422324^(5/6) 6541093923494716 a001 12586269025/12752043*33385282^(3/8) 6541093923494716 a001 5702887/54018521*2537720636^(13/18) 6541093923494716 a001 24157817/12752043*119218851371^(1/2) 6541093923494716 a001 5702887/54018521*312119004989^(13/22) 6541093923494716 a001 5702887/54018521*3461452808002^(13/24) 6541093923494716 a001 5702887/54018521*73681302247^(5/8) 6541093923494716 a001 5702887/54018521*28143753123^(13/20) 6541093923494716 a001 5702887/54018521*228826127^(13/16) 6541093923494716 a001 2971215073/12752043*33385282^(11/24) 6541093923494717 a001 4807526976/20633239*7881196^(1/2) 6541093923494717 a001 233802911/4250681*33385282^(13/24) 6541093923494717 a001 39088169/12752043*33385282^(17/24) 6541093923494717 a001 165580141/12752043*33385282^(5/8) 6541093923494720 a001 365435296162/87403803*7881196^(7/22) 6541093923494720 a001 5702887/141422324*33385282^(23/24) 6541093923494720 a001 956722026041/228826127*7881196^(7/22) 6541093923494720 a001 2504730781961/599074578*7881196^(7/22) 6541093923494720 a001 6557470319842/1568397607*7881196^(7/22) 6541093923494720 a001 10610209857723/2537720636*7881196^(7/22) 6541093923494720 a001 4052739537881/969323029*7881196^(7/22) 6541093923494720 a001 1548008755920/370248451*7881196^(7/22) 6541093923494721 a001 591286729879/141422324*7881196^(7/22) 6541093923494723 a001 225851433717/54018521*7881196^(7/22) 6541093923494724 a001 139583862445/12752043*12752043^(1/4) 6541093923494724 a001 591286729879/33385282*7881196^(5/22) 6541093923494726 a001 20365011074/20633239*7881196^(9/22) 6541093923494728 a001 5702887/7881196*7881196^(19/22) 6541093923494729 a001 9227465/12752043*817138163596^(1/2) 6541093923494729 a001 5702887/20633239*5600748293801^(1/2) 6541093923494729 a001 516002918640/29134601*7881196^(5/22) 6541093923494730 a001 9227465/12752043*87403803^(3/4) 6541093923494730 a001 4052739537881/228826127*7881196^(5/22) 6541093923494730 a001 3536736619241/199691526*7881196^(5/22) 6541093923494730 a001 6557470319842/370248451*7881196^(5/22) 6541093923494730 a001 2504730781961/141422324*7881196^(5/22) 6541093923494730 a001 774004377960/16692641*7881196^(1/6) 6541093923494732 a001 956722026041/54018521*7881196^(5/22) 6541093923494733 a001 4976784/29134601*20633239^(9/10) 6541093923494734 a001 2504730781961/33385282*7881196^(3/22) 6541093923494734 a001 9227465/12752043*33385282^(19/24) 6541093923494734 a001 3732588/35355581*20633239^(13/14) 6541093923494735 a001 39088169/33385282*20633239^(11/14) 6541093923494735 a001 4052739537881/87403803*7881196^(1/6) 6541093923494736 a001 86267571272/20633239*7881196^(7/22) 6541093923494736 a001 225749145909/4868641*7881196^(1/6) 6541093923494737 a001 3278735159921/70711162*7881196^(1/6) 6541093923494737 a001 165580141/33385282*20633239^(7/10) 6541093923494738 a001 433494437/33385282*20633239^(9/14) 6541093923494739 a001 2504730781961/54018521*7881196^(1/6) 6541093923494739 a001 6557470319842/87403803*7881196^(3/22) 6541093923494739 a001 39088169/370248451*20633239^(13/14) 6541093923494739 a001 39088169/228826127*20633239^(9/10) 6541093923494740 a001 102334155/969323029*20633239^(13/14) 6541093923494740 a001 66978574/634430159*20633239^(13/14) 6541093923494740 a001 701408733/6643838879*20633239^(13/14) 6541093923494740 a001 1836311903/17393796001*20633239^(13/14) 6541093923494740 a001 1201881744/11384387281*20633239^(13/14) 6541093923494740 a001 12586269025/119218851371*20633239^(13/14) 6541093923494740 a001 32951280099/312119004989*20633239^(13/14) 6541093923494740 a001 21566892818/204284540899*20633239^(13/14) 6541093923494740 a001 225851433717/2139295485799*20633239^(13/14) 6541093923494740 a001 182717648081/1730726404001*20633239^(13/14) 6541093923494740 a001 139583862445/1322157322203*20633239^(13/14) 6541093923494740 a001 53316291173/505019158607*20633239^(13/14) 6541093923494740 a001 10182505537/96450076809*20633239^(13/14) 6541093923494740 a001 7778742049/73681302247*20633239^(13/14) 6541093923494740 a001 2971215073/28143753123*20633239^(13/14) 6541093923494740 a001 567451585/5374978561*20633239^(13/14) 6541093923494740 a001 433494437/4106118243*20633239^(13/14) 6541093923494740 a001 165580141/1568397607*20633239^(13/14) 6541093923494740 a001 10610209857723/141422324*7881196^(3/22) 6541093923494740 a001 34111385/199691526*20633239^(9/10) 6541093923494740 a001 31622993/299537289*20633239^(13/14) 6541093923494740 a001 267914296/1568397607*20633239^(9/10) 6541093923494740 a001 233802911/1368706081*20633239^(9/10) 6541093923494740 a001 1836311903/10749957122*20633239^(9/10) 6541093923494740 a001 1602508992/9381251041*20633239^(9/10) 6541093923494740 a001 12586269025/73681302247*20633239^(9/10) 6541093923494740 a001 10983760033/64300051206*20633239^(9/10) 6541093923494740 a001 86267571272/505019158607*20633239^(9/10) 6541093923494740 a001 75283811239/440719107401*20633239^(9/10) 6541093923494740 a001 2504730781961/14662949395604*20633239^(9/10) 6541093923494740 a001 139583862445/817138163596*20633239^(9/10) 6541093923494740 a001 53316291173/312119004989*20633239^(9/10) 6541093923494740 a001 20365011074/119218851371*20633239^(9/10) 6541093923494740 a001 7778742049/45537549124*20633239^(9/10) 6541093923494740 a001 2971215073/17393796001*20633239^(9/10) 6541093923494740 a001 1134903170/6643838879*20633239^(9/10) 6541093923494740 a001 433494437/2537720636*20633239^(9/10) 6541093923494740 a001 165580141/969323029*20633239^(9/10) 6541093923494740 a001 14930208/103681*20633239^(1/2) 6541093923494740 a001 63245986/370248451*20633239^(9/10) 6541093923494741 a001 34111385/29134601*20633239^(11/14) 6541093923494742 a001 267914296/228826127*20633239^(11/14) 6541093923494742 a001 24157817/228826127*20633239^(13/14) 6541093923494742 a001 4052739537881/54018521*7881196^(3/22) 6541093923494742 a001 233802911/199691526*20633239^(11/14) 6541093923494742 a001 1836311903/1568397607*20633239^(11/14) 6541093923494742 a001 1602508992/1368706081*20633239^(11/14) 6541093923494742 a001 12586269025/10749957122*20633239^(11/14) 6541093923494742 a001 10983760033/9381251041*20633239^(11/14) 6541093923494742 a001 86267571272/73681302247*20633239^(11/14) 6541093923494742 a001 75283811239/64300051206*20633239^(11/14) 6541093923494742 a001 2504730781961/2139295485799*20633239^(11/14) 6541093923494742 a001 365435296162/312119004989*20633239^(11/14) 6541093923494742 a001 139583862445/119218851371*20633239^(11/14) 6541093923494742 a001 53316291173/45537549124*20633239^(11/14) 6541093923494742 a001 20365011074/17393796001*20633239^(11/14) 6541093923494742 a001 7778742049/6643838879*20633239^(11/14) 6541093923494742 a001 2971215073/2537720636*20633239^(11/14) 6541093923494742 a001 1134903170/969323029*20633239^(11/14) 6541093923494742 a001 433494437/370248451*20633239^(11/14) 6541093923494742 a001 7465176/16692641*2139295485799^(1/2) 6541093923494742 a001 165580141/141422324*20633239^(11/14) 6541093923494742 a001 433494437/87403803*20633239^(7/10) 6541093923494743 a001 53316291173/33385282*20633239^(5/14) 6541093923494743 a001 24157817/141422324*20633239^(9/10) 6541093923494743 a001 39088169/12752043*12752043^(3/4) 6541093923494743 a001 1134903170/228826127*20633239^(7/10) 6541093923494743 a001 2971215073/599074578*20633239^(7/10) 6541093923494743 a001 7778742049/1568397607*20633239^(7/10) 6541093923494743 a001 20365011074/4106118243*20633239^(7/10) 6541093923494743 a001 53316291173/10749957122*20633239^(7/10) 6541093923494743 a001 139583862445/28143753123*20633239^(7/10) 6541093923494743 a001 365435296162/73681302247*20633239^(7/10) 6541093923494743 a001 956722026041/192900153618*20633239^(7/10) 6541093923494743 a001 2504730781961/505019158607*20633239^(7/10) 6541093923494743 a001 10610209857723/2139295485799*20633239^(7/10) 6541093923494743 a001 4052739537881/817138163596*20633239^(7/10) 6541093923494743 a001 140728068720/28374454999*20633239^(7/10) 6541093923494743 a001 591286729879/119218851371*20633239^(7/10) 6541093923494743 a001 225851433717/45537549124*20633239^(7/10) 6541093923494743 a001 86267571272/17393796001*20633239^(7/10) 6541093923494743 a001 32951280099/6643838879*20633239^(7/10) 6541093923494743 a001 1144206275/230701876*20633239^(7/10) 6541093923494743 a001 4807526976/969323029*20633239^(7/10) 6541093923494743 a001 1134903170/87403803*20633239^(9/14) 6541093923494743 a001 1836311903/370248451*20633239^(7/10) 6541093923494743 a001 1515744265389/4769326*7881196^(1/22) 6541093923494743 a001 139583862445/33385282*20633239^(3/10) 6541093923494743 a001 701408733/141422324*20633239^(7/10) 6541093923494744 a001 2971215073/228826127*20633239^(9/14) 6541093923494744 a001 7778742049/599074578*20633239^(9/14) 6541093923494744 a001 20365011074/1568397607*20633239^(9/14) 6541093923494744 a001 53316291173/4106118243*20633239^(9/14) 6541093923494744 a001 139583862445/10749957122*20633239^(9/14) 6541093923494744 a001 365435296162/28143753123*20633239^(9/14) 6541093923494744 a001 956722026041/73681302247*20633239^(9/14) 6541093923494744 a001 2504730781961/192900153618*20633239^(9/14) 6541093923494744 a001 10610209857723/817138163596*20633239^(9/14) 6541093923494744 a001 4052739537881/312119004989*20633239^(9/14) 6541093923494744 a001 1548008755920/119218851371*20633239^(9/14) 6541093923494744 a001 591286729879/45537549124*20633239^(9/14) 6541093923494744 a001 7787980473/599786069*20633239^(9/14) 6541093923494744 a001 86267571272/6643838879*20633239^(9/14) 6541093923494744 a001 32951280099/2537720636*20633239^(9/14) 6541093923494744 a001 12586269025/969323029*20633239^(9/14) 6541093923494744 a001 4807526976/370248451*20633239^(9/14) 6541093923494744 a001 1836311903/141422324*20633239^(9/14) 6541093923494744 a001 63245986/54018521*20633239^(11/14) 6541093923494745 a001 591286729879/33385282*20633239^(3/14) 6541093923494745 a001 365435296162/20633239*7881196^(5/22) 6541093923494745 a001 12586269025/87403803*20633239^(1/2) 6541093923494745 a001 267914296/54018521*20633239^(7/10) 6541093923494746 a001 32951280099/228826127*20633239^(1/2) 6541093923494746 a001 43133785636/299537289*20633239^(1/2) 6541093923494746 a001 32264490531/224056801*20633239^(1/2) 6541093923494746 a001 591286729879/4106118243*20633239^(1/2) 6541093923494746 a001 774004377960/5374978561*20633239^(1/2) 6541093923494746 a001 4052739537881/28143753123*20633239^(1/2) 6541093923494746 a001 1515744265389/10525900321*20633239^(1/2) 6541093923494746 a001 3278735159921/22768774562*20633239^(1/2) 6541093923494746 a001 2504730781961/17393796001*20633239^(1/2) 6541093923494746 a001 956722026041/6643838879*20633239^(1/2) 6541093923494746 a001 182717648081/1268860318*20633239^(1/2) 6541093923494746 a001 139583862445/969323029*20633239^(1/2) 6541093923494746 a001 701408733/54018521*20633239^(9/14) 6541093923494746 a001 53316291173/370248451*20633239^(1/2) 6541093923494747 a001 4052739537881/33385282*20633239^(1/10) 6541093923494747 a001 10182505537/70711162*20633239^(1/2) 6541093923494747 a001 2971215073/33385282*54018521^(1/2) 6541093923494747 a001 3278735159921/16692641*20633239^(1/14) 6541093923494747 a001 4976784/29134601*2537720636^(7/10) 6541093923494747 a001 39088169/33385282*2537720636^(11/18) 6541093923494747 a001 4976784/29134601*17393796001^(9/14) 6541093923494747 a001 39088169/33385282*312119004989^(1/2) 6541093923494747 a001 4976784/29134601*14662949395604^(1/2) 6541093923494747 a001 39088169/33385282*3461452808002^(11/24) 6541093923494747 a001 4976784/29134601*505019158607^(9/16) 6541093923494747 a001 4976784/29134601*192900153618^(7/12) 6541093923494747 a001 39088169/33385282*28143753123^(11/20) 6541093923494747 a001 39088169/33385282*1568397607^(5/8) 6541093923494747 a001 4976784/29134601*599074578^(3/4) 6541093923494747 a001 39088169/33385282*228826127^(11/16) 6541093923494748 a001 139583862445/87403803*20633239^(5/14) 6541093923494748 a001 1836311903/33385282*141422324^(1/2) 6541093923494748 a001 14619165/4769326*45537549124^(1/2) 6541093923494748 a001 956722026041/33385282*141422324^(1/6) 6541093923494748 a001 567451585/16692641*370248451^(1/2) 6541093923494748 a001 133957148/16692641*6643838879^(1/2) 6541093923494748 a001 701408733/33385282*969323029^(1/2) 6541093923494748 a001 14930352/1568397607*2537720636^(5/6) 6541093923494748 a001 14930352/1568397607*312119004989^(15/22) 6541093923494748 a001 14930352/1568397607*3461452808002^(5/8) 6541093923494748 a001 14930352/1568397607*28143753123^(3/4) 6541093923494748 a001 14930352/17393796001*2537720636^(17/18) 6541093923494748 a001 14930352/6643838879*2537720636^(9/10) 6541093923494748 a001 14930208/103681*2537720636^(7/18) 6541093923494748 a001 1836311903/33385282*73681302247^(3/8) 6541093923494748 a001 32951280099/33385282*2537720636^(3/10) 6541093923494748 a001 53316291173/33385282*2537720636^(5/18) 6541093923494748 a001 591286729879/33385282*2537720636^(1/6) 6541093923494748 a001 2504730781961/33385282*2537720636^(1/10) 6541093923494748 a001 14930208/103681*17393796001^(5/14) 6541093923494748 a001 14930208/103681*312119004989^(7/22) 6541093923494748 a001 14930208/103681*14662949395604^(5/18) 6541093923494748 a001 14930208/103681*505019158607^(5/16) 6541093923494748 a001 3278735159921/16692641*2537720636^(1/18) 6541093923494748 a001 14930208/103681*28143753123^(7/20) 6541093923494748 a001 14930352/73681302247*17393796001^(13/14) 6541093923494748 a001 12586269025/33385282*9062201101803^(1/4) 6541093923494748 a001 4976784/9381251041*1322157322203^(3/4) 6541093923494748 a001 139583862445/33385282*17393796001^(3/14) 6541093923494748 a001 4052739537881/33385282*17393796001^(1/14) 6541093923494748 a001 14930352/73681302247*14662949395604^(13/18) 6541093923494748 a001 32951280099/33385282*14662949395604^(3/14) 6541093923494748 a001 14930352/73681302247*505019158607^(13/16) 6541093923494748 a001 32951280099/33385282*192900153618^(1/4) 6541093923494748 a001 182717648081/16692641*45537549124^(1/6) 6541093923494748 a001 2584/33385281*312119004989^(19/22) 6541093923494748 a001 2584/33385281*817138163596^(5/6) 6541093923494748 a001 2584/33385281*3461452808002^(19/24) 6541093923494748 a001 14930352/73681302247*73681302247^(7/8) 6541093923494748 a001 14930352/505019158607*312119004989^(9/10) 6541093923494748 a001 14930352/2139295485799*312119004989^(21/22) 6541093923494748 a001 14930352/505019158607*14662949395604^(11/14) 6541093923494748 a001 3278735159921/16692641*312119004989^(1/22) 6541093923494748 a001 14930352/23725150497407*3461452808002^(23/24) 6541093923494748 a001 14930352/2139295485799*14662949395604^(5/6) 6541093923494748 a001 4052739537881/33385282*505019158607^(1/16) 6541093923494748 a001 2504730781961/33385282*192900153618^(1/12) 6541093923494748 a001 14930352/2139295485799*505019158607^(15/16) 6541093923494748 a001 139583862445/33385282*14662949395604^(1/6) 6541093923494748 a001 14930352/505019158607*192900153618^(11/12) 6541093923494748 a001 3278735159921/16692641*28143753123^(1/20) 6541093923494748 a001 53316291173/33385282*312119004989^(5/22) 6541093923494748 a001 14930352/119218851371*9062201101803^(3/4) 6541093923494748 a001 591286729879/33385282*28143753123^(3/20) 6541093923494748 a001 53316291173/33385282*28143753123^(1/4) 6541093923494748 a001 10182505537/16692641*1322157322203^(1/4) 6541093923494748 a001 2584/33385281*28143753123^(19/20) 6541093923494748 a001 14930352/17393796001*45537549124^(5/6) 6541093923494748 a001 14930352/17393796001*312119004989^(17/22) 6541093923494748 a001 7778742049/33385282*312119004989^(3/10) 6541093923494748 a001 14930352/17393796001*3461452808002^(17/24) 6541093923494748 a001 14930352/17393796001*28143753123^(17/20) 6541093923494748 a001 43133785636/16692641*4106118243^(1/4) 6541093923494748 a001 14930352/6643838879*14662949395604^(9/14) 6541093923494748 a001 14930352/6643838879*192900153618^(3/4) 6541093923494748 a001 774004377960/16692641*1568397607^(1/8) 6541093923494748 a001 196452/33391061*17393796001^(11/14) 6541093923494748 a001 196452/33391061*14662949395604^(11/18) 6541093923494748 a001 196452/33391061*505019158607^(11/16) 6541093923494748 a001 7778742049/33385282*1568397607^(3/8) 6541093923494748 a001 4052739537881/33385282*599074578^(1/12) 6541093923494748 a001 196452/33391061*1568397607^(7/8) 6541093923494748 a001 139583862445/33385282*599074578^(1/4) 6541093923494748 a001 433494437/33385282*2537720636^(1/2) 6541093923494748 a001 433494437/33385282*312119004989^(9/22) 6541093923494748 a001 433494437/33385282*14662949395604^(5/14) 6541093923494748 a001 433494437/33385282*192900153618^(5/12) 6541093923494748 a001 433494437/33385282*28143753123^(9/20) 6541093923494748 a001 14930208/103681*599074578^(5/12) 6541093923494748 a001 3278735159921/16692641*228826127^(1/16) 6541093923494748 a001 196452/33391061*599074578^(11/12) 6541093923494748 a001 591286729879/33385282*228826127^(3/16) 6541093923494748 a001 53316291173/33385282*228826127^(5/16) 6541093923494748 a001 165580141/33385282*17393796001^(1/2) 6541093923494748 a001 165580141/33385282*14662949395604^(7/18) 6541093923494748 a001 165580141/33385282*505019158607^(7/16) 6541093923494748 a001 14930352/370248451*4106118243^(3/4) 6541093923494748 a001 3732588/35355581*141422324^(5/6) 6541093923494748 a001 14930208/103681*228826127^(7/16) 6541093923494748 a001 165580141/33385282*599074578^(7/12) 6541093923494748 a001 433494437/33385282*228826127^(9/16) 6541093923494748 a001 14930352/1568397607*228826127^(15/16) 6541093923494748 a001 32264490531/4769326*87403803^(1/4) 6541093923494748 a001 1515744265389/4769326*33385282^(1/24) 6541093923494748 a001 365435296162/228826127*20633239^(5/14) 6541093923494748 a001 3732588/35355581*2537720636^(13/18) 6541093923494748 a001 31622993/16692641*119218851371^(1/2) 6541093923494748 a001 3732588/35355581*312119004989^(13/22) 6541093923494748 a001 3732588/35355581*3461452808002^(13/24) 6541093923494748 a001 3732588/35355581*73681302247^(5/8) 6541093923494748 a001 3732588/35355581*28143753123^(13/20) 6541093923494748 a001 956722026041/599074578*20633239^(5/14) 6541093923494748 a001 2504730781961/1568397607*20633239^(5/14) 6541093923494748 a001 6557470319842/4106118243*20633239^(5/14) 6541093923494748 a001 10610209857723/6643838879*20633239^(5/14) 6541093923494748 a001 4052739537881/2537720636*20633239^(5/14) 6541093923494748 a001 1548008755920/969323029*20633239^(5/14) 6541093923494748 a001 365435296162/87403803*20633239^(3/10) 6541093923494748 a001 7778742049/54018521*20633239^(1/2) 6541093923494748 a001 3732588/35355581*228826127^(13/16) 6541093923494748 a001 591286729879/370248451*20633239^(5/14) 6541093923494749 a001 225851433717/141422324*20633239^(5/14) 6541093923494749 a001 2504730781961/33385282*33385282^(1/8) 6541093923494749 a001 956722026041/228826127*20633239^(3/10) 6541093923494749 a001 591286729879/33385282*33385282^(5/24) 6541093923494749 a001 2504730781961/599074578*20633239^(3/10) 6541093923494749 a001 6557470319842/1568397607*20633239^(3/10) 6541093923494749 a001 10610209857723/2537720636*20633239^(3/10) 6541093923494749 a001 4052739537881/969323029*20633239^(3/10) 6541093923494749 a001 1548008755920/370248451*20633239^(3/10) 6541093923494750 a001 591286729879/141422324*20633239^(3/10) 6541093923494750 a001 139583862445/33385282*33385282^(7/24) 6541093923494750 a001 516002918640/29134601*20633239^(3/14) 6541093923494750 a001 32951280099/33385282*33385282^(3/8) 6541093923494750 a001 14930352/54018521*5600748293801^(1/2) 6541093923494750 a001 4052739537881/228826127*20633239^(3/14) 6541093923494751 a001 3536736619241/199691526*20633239^(3/14) 6541093923494751 a001 86267571272/54018521*20633239^(5/14) 6541093923494751 a001 6557470319842/370248451*20633239^(3/14) 6541093923494751 a001 7778742049/33385282*33385282^(11/24) 6541093923494751 a001 24157817/33385282*87403803^(3/4) 6541093923494751 a001 2504730781961/141422324*20633239^(3/14) 6541093923494751 a001 1836311903/33385282*33385282^(13/24) 6541093923494752 a001 3536736619241/29134601*20633239^(1/10) 6541093923494752 a001 225851433717/54018521*20633239^(3/10) 6541093923494752 a001 433494437/33385282*33385282^(5/8) 6541093923494752 a001 956722026041/20633239*7881196^(1/6) 6541093923494752 a001 7778742049/87403803*54018521^(1/2) 6541093923494752 a001 14619165/4769326*33385282^(17/24) 6541093923494752 a001 39088169/87403803*2139295485799^(1/2) 6541093923494752 a001 4976784/29134601*33385282^(7/8) 6541093923494753 a001 20365011074/228826127*54018521^(1/2) 6541093923494753 a001 53316291173/599074578*54018521^(1/2) 6541093923494753 a001 139583862445/1568397607*54018521^(1/2) 6541093923494753 a001 365435296162/4106118243*54018521^(1/2) 6541093923494753 a001 956722026041/10749957122*54018521^(1/2) 6541093923494753 a001 2504730781961/28143753123*54018521^(1/2) 6541093923494753 a001 6557470319842/73681302247*54018521^(1/2) 6541093923494753 a001 10610209857723/119218851371*54018521^(1/2) 6541093923494753 a001 4052739537881/45537549124*54018521^(1/2) 6541093923494753 a001 1548008755920/17393796001*54018521^(1/2) 6541093923494753 a001 591286729879/6643838879*54018521^(1/2) 6541093923494753 a001 225851433717/2537720636*54018521^(1/2) 6541093923494753 a001 86267571272/969323029*54018521^(1/2) 6541093923494753 a001 39088169/370248451*141422324^(5/6) 6541093923494753 a001 32951280099/370248451*54018521^(1/2) 6541093923494753 a001 956722026041/54018521*20633239^(3/14) 6541093923494753 a001 1602508992/29134601*141422324^(1/2) 6541093923494753 a001 39088169/228826127*2537720636^(7/10) 6541093923494753 a001 34111385/29134601*2537720636^(11/18) 6541093923494753 a001 39088169/228826127*17393796001^(9/14) 6541093923494753 a001 34111385/29134601*312119004989^(1/2) 6541093923494753 a001 39088169/228826127*14662949395604^(1/2) 6541093923494753 a001 34111385/29134601*3461452808002^(11/24) 6541093923494753 a001 39088169/228826127*505019158607^(9/16) 6541093923494753 a001 39088169/228826127*192900153618^(7/12) 6541093923494753 a001 34111385/29134601*28143753123^(11/20) 6541093923494753 a001 34111385/29134601*1568397607^(5/8) 6541093923494753 a001 39088169/228826127*599074578^(3/4) 6541093923494753 a001 2504730781961/87403803*141422324^(1/6) 6541093923494753 a001 34111385/29134601*228826127^(11/16) 6541093923494753 a001 2971215073/87403803*370248451^(1/2) 6541093923494753 a001 267914296/87403803*45537549124^(1/2) 6541093923494753 a001 1836311903/87403803*969323029^(1/2) 6541093923494753 a001 233802911/29134601*6643838879^(1/2) 6541093923494753 a001 39088169/4106118243*2537720636^(5/6) 6541093923494753 a001 39088169/45537549124*2537720636^(17/18) 6541093923494753 a001 39088169/17393796001*2537720636^(9/10) 6541093923494753 a001 12586269025/87403803*2537720636^(7/18) 6541093923494753 a001 39088169/4106118243*312119004989^(15/22) 6541093923494753 a001 39088169/4106118243*3461452808002^(5/8) 6541093923494753 a001 39088169/4106118243*28143753123^(3/4) 6541093923494753 a001 86267571272/87403803*2537720636^(3/10) 6541093923494753 a001 139583862445/87403803*2537720636^(5/18) 6541093923494753 a001 516002918640/29134601*2537720636^(1/6) 6541093923494753 a001 6557470319842/87403803*2537720636^(1/10) 6541093923494753 a001 1602508992/29134601*73681302247^(3/8) 6541093923494753 a001 39088169/192900153618*17393796001^(13/14) 6541093923494753 a001 12586269025/87403803*17393796001^(5/14) 6541093923494753 a001 12586269025/87403803*312119004989^(7/22) 6541093923494753 a001 12586269025/87403803*14662949395604^(5/18) 6541093923494753 a001 12586269025/87403803*505019158607^(5/16) 6541093923494753 a001 12586269025/87403803*28143753123^(7/20) 6541093923494753 a001 365435296162/87403803*17393796001^(3/14) 6541093923494753 a001 3536736619241/29134601*17393796001^(1/14) 6541093923494753 a001 10983760033/29134601*9062201101803^(1/4) 6541093923494753 a001 39088169/73681302247*1322157322203^(3/4) 6541093923494753 a001 956722026041/87403803*45537549124^(1/6) 6541093923494753 a001 39088169/192900153618*14662949395604^(13/18) 6541093923494753 a001 39088169/192900153618*505019158607^(13/16) 6541093923494753 a001 86267571272/87403803*192900153618^(1/4) 6541093923494753 a001 39088169/1322157322203*312119004989^(9/10) 6541093923494753 a001 39088169/5600748293801*312119004989^(21/22) 6541093923494753 a001 39088169/505019158607*817138163596^(5/6) 6541093923494753 a001 39088169/505019158607*3461452808002^(19/24) 6541093923494753 a001 4052739537881/87403803*312119004989^(1/10) 6541093923494753 a001 39088169/1322157322203*14662949395604^(11/14) 6541093923494753 a001 3536736619241/29134601*14662949395604^(1/18) 6541093923494753 a001 39088169/5600748293801*14662949395604^(5/6) 6541093923494753 a001 3536736619241/29134601*505019158607^(1/16) 6541093923494753 a001 39088169/5600748293801*505019158607^(15/16) 6541093923494753 a001 139583862445/87403803*312119004989^(5/22) 6541093923494753 a001 39088169/312119004989*9062201101803^(3/4) 6541093923494753 a001 139583862445/87403803*3461452808002^(5/24) 6541093923494753 a001 2504730781961/87403803*73681302247^(1/8) 6541093923494753 a001 53316291173/87403803*1322157322203^(1/4) 6541093923494753 a001 39088169/45537549124*45537549124^(5/6) 6541093923494753 a001 39088169/192900153618*73681302247^(7/8) 6541093923494753 a001 516002918640/29134601*28143753123^(3/20) 6541093923494753 a001 139583862445/87403803*28143753123^(1/4) 6541093923494753 a001 39088169/45537549124*312119004989^(17/22) 6541093923494753 a001 20365011074/87403803*312119004989^(3/10) 6541093923494753 a001 39088169/45537549124*3461452808002^(17/24) 6541093923494753 a001 39088169/505019158607*28143753123^(19/20) 6541093923494753 a001 39088169/45537549124*28143753123^(17/20) 6541093923494753 a001 39088169/17393796001*14662949395604^(9/14) 6541093923494753 a001 39088169/17393796001*192900153618^(3/4) 6541093923494753 a001 75283811239/29134601*4106118243^(1/4) 6541093923494753 a001 39088169/6643838879*17393796001^(11/14) 6541093923494753 a001 39088169/6643838879*14662949395604^(11/18) 6541093923494753 a001 39088169/6643838879*505019158607^(11/16) 6541093923494753 a001 4052739537881/87403803*1568397607^(1/8) 6541093923494753 a001 1134903170/87403803*2537720636^(1/2) 6541093923494753 a001 20365011074/87403803*1568397607^(3/8) 6541093923494753 a001 1134903170/87403803*312119004989^(9/22) 6541093923494753 a001 1134903170/87403803*14662949395604^(5/14) 6541093923494753 a001 1134903170/87403803*192900153618^(5/12) 6541093923494753 a001 1134903170/87403803*28143753123^(9/20) 6541093923494753 a001 3536736619241/29134601*599074578^(1/12) 6541093923494753 a001 39088169/6643838879*1568397607^(7/8) 6541093923494753 a001 365435296162/87403803*599074578^(1/4) 6541093923494753 a001 433494437/87403803*17393796001^(1/2) 6541093923494753 a001 433494437/87403803*14662949395604^(7/18) 6541093923494753 a001 433494437/87403803*505019158607^(7/16) 6541093923494753 a001 39088169/969323029*4106118243^(3/4) 6541093923494753 a001 12586269025/87403803*599074578^(5/12) 6541093923494753 a001 39088169/6643838879*599074578^(11/12) 6541093923494753 a001 433494437/87403803*599074578^(7/12) 6541093923494753 a001 516002918640/29134601*228826127^(3/16) 6541093923494753 a001 139583862445/87403803*228826127^(5/16) 6541093923494753 a001 39088169/370248451*2537720636^(13/18) 6541093923494753 a001 165580141/87403803*119218851371^(1/2) 6541093923494753 a001 39088169/370248451*312119004989^(13/22) 6541093923494753 a001 39088169/370248451*3461452808002^(13/24) 6541093923494753 a001 39088169/370248451*73681302247^(5/8) 6541093923494753 a001 39088169/370248451*28143753123^(13/20) 6541093923494753 a001 12586269025/87403803*228826127^(7/16) 6541093923494753 a001 12586269025/141422324*54018521^(1/2) 6541093923494753 a001 1134903170/87403803*228826127^(9/16) 6541093923494753 a001 39088169/4106118243*228826127^(15/16) 6541093923494753 a001 39088169/370248451*228826127^(13/16) 6541093923494753 a001 591286729879/87403803*87403803^(1/4) 6541093923494753 a001 39088169/141422324*5600748293801^(1/2) 6541093923494754 a001 102334155/969323029*141422324^(5/6) 6541093923494754 a001 66978574/634430159*141422324^(5/6) 6541093923494754 a001 12586269025/228826127*141422324^(1/2) 6541093923494754 a001 701408733/6643838879*141422324^(5/6) 6541093923494754 a001 1836311903/17393796001*141422324^(5/6) 6541093923494754 a001 1201881744/11384387281*141422324^(5/6) 6541093923494754 a001 12586269025/119218851371*141422324^(5/6) 6541093923494754 a001 32951280099/312119004989*141422324^(5/6) 6541093923494754 a001 21566892818/204284540899*141422324^(5/6) 6541093923494754 a001 225851433717/2139295485799*141422324^(5/6) 6541093923494754 a001 182717648081/1730726404001*141422324^(5/6) 6541093923494754 a001 139583862445/1322157322203*141422324^(5/6) 6541093923494754 a001 53316291173/505019158607*141422324^(5/6) 6541093923494754 a001 10182505537/96450076809*141422324^(5/6) 6541093923494754 a001 7778742049/73681302247*141422324^(5/6) 6541093923494754 a001 2971215073/28143753123*141422324^(5/6) 6541093923494754 a001 567451585/5374978561*141422324^(5/6) 6541093923494754 a001 433494437/4106118243*141422324^(5/6) 6541093923494754 a001 102334155/228826127*2139295485799^(1/2) 6541093923494754 a001 165580141/1568397607*141422324^(5/6) 6541093923494754 a001 14930352/370248451*33385282^(23/24) 6541093923494754 a001 10983760033/199691526*141422324^(1/2) 6541093923494754 a001 6557470319842/228826127*141422324^(1/6) 6541093923494754 a001 86267571272/1568397607*141422324^(1/2) 6541093923494754 a001 75283811239/1368706081*141422324^(1/2) 6541093923494754 a001 591286729879/10749957122*141422324^(1/2) 6541093923494754 a001 12585437040/228811001*141422324^(1/2) 6541093923494754 a001 4052739537881/73681302247*141422324^(1/2) 6541093923494754 a001 3536736619241/64300051206*141422324^(1/2) 6541093923494754 a001 6557470319842/119218851371*141422324^(1/2) 6541093923494754 a001 2504730781961/45537549124*141422324^(1/2) 6541093923494754 a001 956722026041/17393796001*141422324^(1/2) 6541093923494754 a001 365435296162/6643838879*141422324^(1/2) 6541093923494754 a001 139583862445/2537720636*141422324^(1/2) 6541093923494754 a001 53316291173/969323029*141422324^(1/2) 6541093923494754 a001 7778742049/228826127*370248451^(1/2) 6541093923494754 a001 34111385/199691526*2537720636^(7/10) 6541093923494754 a001 267914296/228826127*2537720636^(11/18) 6541093923494754 a001 34111385/199691526*17393796001^(9/14) 6541093923494754 a001 267914296/228826127*312119004989^(1/2) 6541093923494754 a001 34111385/199691526*14662949395604^(1/2) 6541093923494754 a001 267914296/228826127*3461452808002^(11/24) 6541093923494754 a001 34111385/199691526*505019158607^(9/16) 6541093923494754 a001 34111385/199691526*192900153618^(7/12) 6541093923494754 a001 267914296/228826127*28143753123^(11/20) 6541093923494754 a001 267914296/228826127*1568397607^(5/8) 6541093923494754 a001 34111385/199691526*599074578^(3/4) 6541093923494754 a001 102287808/4868641*969323029^(1/2) 6541093923494754 a001 701408733/228826127*45537549124^(1/2) 6541093923494754 a001 102334155/119218851371*2537720636^(17/18) 6541093923494754 a001 102334155/45537549124*2537720636^(9/10) 6541093923494754 a001 102334155/10749957122*2537720636^(5/6) 6541093923494754 a001 1836311903/228826127*6643838879^(1/2) 6541093923494754 a001 32951280099/228826127*2537720636^(7/18) 6541093923494754 a001 2971215073/228826127*2537720636^(1/2) 6541093923494754 a001 225851433717/228826127*2537720636^(3/10) 6541093923494754 a001 365435296162/228826127*2537720636^(5/18) 6541093923494754 a001 4052739537881/228826127*2537720636^(1/6) 6541093923494754 a001 102334155/10749957122*312119004989^(15/22) 6541093923494754 a001 102334155/10749957122*3461452808002^(5/8) 6541093923494754 a001 102334155/10749957122*28143753123^(3/4) 6541093923494754 a001 102334155/505019158607*17393796001^(13/14) 6541093923494754 a001 32951280099/228826127*17393796001^(5/14) 6541093923494754 a001 12586269025/228826127*73681302247^(3/8) 6541093923494754 a001 956722026041/228826127*17393796001^(3/14) 6541093923494754 a001 102334155/119218851371*45537549124^(5/6) 6541093923494754 a001 32951280099/228826127*312119004989^(7/22) 6541093923494754 a001 32951280099/228826127*14662949395604^(5/18) 6541093923494754 a001 32951280099/228826127*505019158607^(5/16) 6541093923494754 a001 2504730781961/228826127*45537549124^(1/6) 6541093923494754 a001 86267571272/228826127*9062201101803^(1/4) 6541093923494754 a001 34111385/64300051206*1322157322203^(3/4) 6541093923494754 a001 102334155/14662949395604*312119004989^(21/22) 6541093923494754 a001 34111385/440719107401*312119004989^(19/22) 6541093923494754 a001 102334155/505019158607*14662949395604^(13/18) 6541093923494754 a001 225851433717/228826127*14662949395604^(3/14) 6541093923494754 a001 34111385/440719107401*817138163596^(5/6) 6541093923494754 a001 225749145909/4868641*312119004989^(1/10) 6541093923494754 a001 102334155/505019158607*505019158607^(13/16) 6541093923494754 a001 1548008755920/228826127*817138163596^(1/6) 6541093923494754 a001 102334155/14662949395604*14662949395604^(5/6) 6541093923494754 a001 102334155/817138163596*9062201101803^(3/4) 6541093923494754 a001 102334155/14662949395604*505019158607^(15/16) 6541093923494754 a001 139583862445/228826127*1322157322203^(1/4) 6541093923494754 a001 6557470319842/228826127*73681302247^(1/8) 6541093923494754 a001 6765/228826126*192900153618^(11/12) 6541093923494754 a001 102334155/119218851371*312119004989^(17/22) 6541093923494754 a001 53316291173/228826127*312119004989^(3/10) 6541093923494754 a001 102334155/119218851371*3461452808002^(17/24) 6541093923494754 a001 102334155/505019158607*73681302247^(7/8) 6541093923494754 a001 4052739537881/228826127*28143753123^(3/20) 6541093923494754 a001 32951280099/228826127*28143753123^(7/20) 6541093923494754 a001 365435296162/228826127*28143753123^(1/4) 6541093923494754 a001 102334155/45537549124*14662949395604^(9/14) 6541093923494754 a001 102334155/45537549124*192900153618^(3/4) 6541093923494754 a001 102334155/17393796001*17393796001^(11/14) 6541093923494754 a001 102334155/119218851371*28143753123^(17/20) 6541093923494754 a001 34111385/440719107401*28143753123^(19/20) 6541093923494754 a001 102334155/17393796001*14662949395604^(11/18) 6541093923494754 a001 102334155/17393796001*505019158607^(11/16) 6541093923494754 a001 591286729879/228826127*4106118243^(1/4) 6541093923494754 a001 2971215073/228826127*312119004989^(9/22) 6541093923494754 a001 2971215073/228826127*14662949395604^(5/14) 6541093923494754 a001 2971215073/228826127*192900153618^(5/12) 6541093923494754 a001 2971215073/228826127*28143753123^(9/20) 6541093923494754 a001 225749145909/4868641*1568397607^(1/8) 6541093923494754 a001 53316291173/228826127*1568397607^(3/8) 6541093923494754 a001 1134903170/228826127*17393796001^(1/2) 6541093923494754 a001 1134903170/228826127*14662949395604^(7/18) 6541093923494754 a001 1134903170/228826127*505019158607^(7/16) 6541093923494754 a001 9303105/230701876*4106118243^(3/4) 6541093923494754 a001 6557470319842/87403803*33385282^(1/8) 6541093923494754 a001 102334155/17393796001*1568397607^(7/8) 6541093923494754 a001 956722026041/228826127*599074578^(1/4) 6541093923494754 a001 102334155/969323029*2537720636^(13/18) 6541093923494754 a001 433494437/228826127*119218851371^(1/2) 6541093923494754 a001 102334155/969323029*312119004989^(13/22) 6541093923494754 a001 102334155/969323029*3461452808002^(13/24) 6541093923494754 a001 102334155/969323029*73681302247^(5/8) 6541093923494754 a001 102334155/969323029*28143753123^(13/20) 6541093923494754 a001 32951280099/228826127*599074578^(5/12) 6541093923494754 a001 20365011074/370248451*141422324^(1/2) 6541093923494754 a001 1134903170/228826127*599074578^(7/12) 6541093923494754 a001 102334155/17393796001*599074578^(11/12) 6541093923494754 a001 4052739537881/228826127*228826127^(3/16) 6541093923494754 a001 365435296162/228826127*228826127^(5/16) 6541093923494754 a001 102334155/370248451*5600748293801^(1/2) 6541093923494754 a001 32951280099/228826127*228826127^(7/16) 6541093923494754 a001 267914296/228826127*228826127^(11/16) 6541093923494754 a001 2971215073/228826127*228826127^(9/16) 6541093923494754 a001 10182505537/299537289*370248451^(1/2) 6541093923494754 a001 133957148/299537289*2139295485799^(1/2) 6541093923494754 a001 53316291173/1568397607*370248451^(1/2) 6541093923494754 a001 139583862445/4106118243*370248451^(1/2) 6541093923494754 a001 182717648081/5374978561*370248451^(1/2) 6541093923494754 a001 956722026041/28143753123*370248451^(1/2) 6541093923494754 a001 2504730781961/73681302247*370248451^(1/2) 6541093923494754 a001 3278735159921/96450076809*370248451^(1/2) 6541093923494754 a001 10610209857723/312119004989*370248451^(1/2) 6541093923494754 a001 4052739537881/119218851371*370248451^(1/2) 6541093923494754 a001 387002188980/11384387281*370248451^(1/2) 6541093923494754 a001 591286729879/17393796001*370248451^(1/2) 6541093923494754 a001 225851433717/6643838879*370248451^(1/2) 6541093923494754 a001 1135099622/33391061*370248451^(1/2) 6541093923494754 a001 12586269025/599074578*969323029^(1/2) 6541093923494754 a001 267914296/1568397607*2537720636^(7/10) 6541093923494754 a001 233802911/199691526*2537720636^(11/18) 6541093923494754 a001 267914296/1568397607*17393796001^(9/14) 6541093923494754 a001 233802911/199691526*312119004989^(1/2) 6541093923494754 a001 233802911/199691526*3461452808002^(11/24) 6541093923494754 a001 267914296/1568397607*505019158607^(9/16) 6541093923494754 a001 267914296/1568397607*192900153618^(7/12) 6541093923494754 a001 233802911/199691526*28143753123^(11/20) 6541093923494754 a001 233802911/199691526*1568397607^(5/8) 6541093923494754 a001 267914296/312119004989*2537720636^(17/18) 6541093923494754 a001 267914296/119218851371*2537720636^(9/10) 6541093923494754 a001 267914296/28143753123*2537720636^(5/6) 6541093923494754 a001 7778742049/599074578*2537720636^(1/2) 6541093923494754 a001 43133785636/299537289*2537720636^(7/18) 6541093923494754 a001 1836311903/599074578*45537549124^(1/2) 6541093923494754 a001 591286729879/599074578*2537720636^(3/10) 6541093923494754 a001 956722026041/599074578*2537720636^(5/18) 6541093923494754 a001 3536736619241/199691526*2537720636^(1/6) 6541093923494754 a001 267084832/33281921*6643838879^(1/2) 6541093923494754 a001 267914296/1322157322203*17393796001^(13/14) 6541093923494754 a001 66978574/11384387281*17393796001^(11/14) 6541093923494754 a001 267914296/28143753123*312119004989^(15/22) 6541093923494754 a001 267914296/28143753123*3461452808002^(5/8) 6541093923494754 a001 43133785636/299537289*17393796001^(5/14) 6541093923494754 a001 2504730781961/599074578*17393796001^(3/14) 6541093923494754 a001 267914296/312119004989*45537549124^(5/6) 6541093923494754 a001 267914296/28143753123*28143753123^(3/4) 6541093923494754 a001 10983760033/199691526*73681302247^(3/8) 6541093923494754 a001 3278735159921/299537289*45537549124^(1/6) 6541093923494754 a001 43133785636/299537289*312119004989^(7/22) 6541093923494754 a001 43133785636/299537289*14662949395604^(5/18) 6541093923494754 a001 43133785636/299537289*505019158607^(5/16) 6541093923494754 a001 133957148/1730726404001*312119004989^(19/22) 6541093923494754 a001 267913919/710646*9062201101803^(1/4) 6541093923494754 a001 133957148/1730726404001*817138163596^(5/6) 6541093923494754 a001 133957148/1730726404001*3461452808002^(19/24) 6541093923494754 a001 267914296/312119004989*312119004989^(17/22) 6541093923494754 a001 267914296/1322157322203*505019158607^(13/16) 6541093923494754 a001 591286729879/599074578*192900153618^(1/4) 6541093923494754 a001 139583862445/599074578*312119004989^(3/10) 6541093923494754 a001 267914296/312119004989*3461452808002^(17/24) 6541093923494754 a001 267914296/9062201101803*192900153618^(11/12) 6541093923494754 a001 267914296/119218851371*14662949395604^(9/14) 6541093923494754 a001 267914296/119218851371*192900153618^(3/4) 6541093923494754 a001 267914296/1322157322203*73681302247^(7/8) 6541093923494754 a001 3536736619241/199691526*28143753123^(3/20) 6541093923494754 a001 956722026041/599074578*28143753123^(1/4) 6541093923494754 a001 43133785636/299537289*28143753123^(7/20) 6541093923494754 a001 66978574/11384387281*14662949395604^(11/18) 6541093923494754 a001 66978574/11384387281*505019158607^(11/16) 6541093923494754 a001 267914296/312119004989*28143753123^(17/20) 6541093923494754 a001 133957148/1730726404001*28143753123^(19/20) 6541093923494754 a001 7778742049/599074578*312119004989^(9/22) 6541093923494754 a001 7778742049/599074578*14662949395604^(5/14) 6541093923494754 a001 7778742049/599074578*192900153618^(5/12) 6541093923494754 a001 7778742049/599074578*28143753123^(9/20) 6541093923494754 a001 86000486440/33281921*4106118243^(1/4) 6541093923494754 a001 2971215073/599074578*17393796001^(1/2) 6541093923494754 a001 2971215073/599074578*14662949395604^(7/18) 6541093923494754 a001 2971215073/599074578*505019158607^(7/16) 6541093923494754 a001 66978574/634430159*2537720636^(13/18) 6541093923494754 a001 267914296/6643838879*4106118243^(3/4) 6541093923494754 a001 139583862445/599074578*1568397607^(3/8) 6541093923494754 a001 567451585/299537289*119218851371^(1/2) 6541093923494754 a001 66978574/634430159*312119004989^(13/22) 6541093923494754 a001 66978574/634430159*3461452808002^(13/24) 6541093923494754 a001 66978574/634430159*73681302247^(5/8) 6541093923494754 a001 66978574/634430159*28143753123^(13/20) 6541093923494754 a001 32951280099/969323029*370248451^(1/2) 6541093923494754 a001 102334155/969323029*228826127^(13/16) 6541093923494754 a001 66978574/11384387281*1568397607^(7/8) 6541093923494754 a001 2504730781961/599074578*599074578^(1/4) 6541093923494754 a001 267914296/969323029*5600748293801^(1/2) 6541093923494754 a001 43133785636/299537289*599074578^(5/12) 6541093923494754 a001 102334155/10749957122*228826127^(15/16) 6541093923494754 a001 2971215073/599074578*599074578^(7/12) 6541093923494754 a001 267914296/1568397607*599074578^(3/4) 6541093923494754 a001 10610209857723/370248451*141422324^(1/6) 6541093923494754 a001 32951280099/1568397607*969323029^(1/2) 6541093923494754 a001 701408733/1568397607*2139295485799^(1/2) 6541093923494754 a001 86267571272/4106118243*969323029^(1/2) 6541093923494754 a001 233802911/1368706081*2537720636^(7/10) 6541093923494754 a001 1836311903/1568397607*2537720636^(11/18) 6541093923494754 a001 701408733/817138163596*2537720636^(17/18) 6541093923494754 a001 3524667/1568437211*2537720636^(9/10) 6541093923494754 a001 225851433717/10749957122*969323029^(1/2) 6541093923494754 a001 701408733/73681302247*2537720636^(5/6) 6541093923494754 a001 591286729879/28143753123*969323029^(1/2) 6541093923494754 a001 1548008755920/73681302247*969323029^(1/2) 6541093923494754 a001 4052739537881/192900153618*969323029^(1/2) 6541093923494754 a001 225749145909/10745088481*969323029^(1/2) 6541093923494754 a001 6557470319842/312119004989*969323029^(1/2) 6541093923494754 a001 2504730781961/119218851371*969323029^(1/2) 6541093923494754 a001 956722026041/45537549124*969323029^(1/2) 6541093923494754 a001 365435296162/17393796001*969323029^(1/2) 6541093923494754 a001 139583862445/6643838879*969323029^(1/2) 6541093923494754 a001 701408733/6643838879*2537720636^(13/18) 6541093923494754 a001 20365011074/1568397607*2537720636^(1/2) 6541093923494754 a001 233802911/1368706081*17393796001^(9/14) 6541093923494754 a001 32264490531/224056801*2537720636^(7/18) 6541093923494754 a001 1836311903/1568397607*312119004989^(1/2) 6541093923494754 a001 233802911/1368706081*14662949395604^(1/2) 6541093923494754 a001 1836311903/1568397607*3461452808002^(11/24) 6541093923494754 a001 233802911/1368706081*505019158607^(9/16) 6541093923494754 a001 233802911/1368706081*192900153618^(7/12) 6541093923494754 a001 1836311903/1568397607*28143753123^(11/20) 6541093923494754 a001 1548008755920/1568397607*2537720636^(3/10) 6541093923494754 a001 2504730781961/1568397607*2537720636^(5/18) 6541093923494754 a001 12586269025/1568397607*6643838879^(1/2) 6541093923494754 a001 686789568/224056801*45537549124^(1/2) 6541093923494754 a001 701408733/3461452808002*17393796001^(13/14) 6541093923494754 a001 701408733/119218851371*17393796001^(11/14) 6541093923494754 a001 32264490531/224056801*17393796001^(5/14) 6541093923494754 a001 6557470319842/1568397607*17393796001^(3/14) 6541093923494754 a001 701408733/817138163596*45537549124^(5/6) 6541093923494754 a001 701408733/73681302247*312119004989^(15/22) 6541093923494754 a001 701408733/73681302247*3461452808002^(5/8) 6541093923494754 a001 701408733/23725150497407*312119004989^(9/10) 6541093923494754 a001 233802911/3020733700601*312119004989^(19/22) 6541093923494754 a001 701408733/817138163596*312119004989^(17/22) 6541093923494754 a001 2504730781961/1568397607*312119004989^(5/22) 6541093923494754 a001 233802911/3020733700601*817138163596^(5/6) 6541093923494754 a001 1515744265389/224056801*817138163596^(1/6) 6541093923494754 a001 233802911/440719107401*1322157322203^(3/4) 6541093923494754 a001 2504730781961/1568397607*3461452808002^(5/24) 6541093923494754 a001 701408733/3461452808002*505019158607^(13/16) 6541093923494754 a001 1548008755920/1568397607*192900153618^(1/4) 6541093923494754 a001 3524667/1568437211*14662949395604^(9/14) 6541093923494754 a001 701408733/23725150497407*192900153618^(11/12) 6541093923494754 a001 3524667/1568437211*192900153618^(3/4) 6541093923494754 a001 86267571272/1568397607*73681302247^(3/8) 6541093923494754 a001 701408733/119218851371*14662949395604^(11/18) 6541093923494754 a001 701408733/119218851371*505019158607^(11/16) 6541093923494754 a001 701408733/3461452808002*73681302247^(7/8) 6541093923494754 a001 2504730781961/1568397607*28143753123^(1/4) 6541093923494754 a001 32264490531/224056801*28143753123^(7/20) 6541093923494754 a001 20365011074/1568397607*312119004989^(9/22) 6541093923494754 a001 20365011074/1568397607*14662949395604^(5/14) 6541093923494754 a001 20365011074/1568397607*192900153618^(5/12) 6541093923494754 a001 701408733/73681302247*28143753123^(3/4) 6541093923494754 a001 20365011074/1568397607*28143753123^(9/20) 6541093923494754 a001 701408733/817138163596*28143753123^(17/20) 6541093923494754 a001 233802911/3020733700601*28143753123^(19/20) 6541093923494754 a001 7778742049/1568397607*17393796001^(1/2) 6541093923494754 a001 7778742049/1568397607*14662949395604^(7/18) 6541093923494754 a001 7778742049/1568397607*505019158607^(7/16) 6541093923494754 a001 4052739537881/1568397607*4106118243^(1/4) 6541093923494754 a001 2971215073/1568397607*119218851371^(1/2) 6541093923494754 a001 701408733/6643838879*312119004989^(13/22) 6541093923494754 a001 701408733/6643838879*3461452808002^(13/24) 6541093923494754 a001 701408733/6643838879*73681302247^(5/8) 6541093923494754 a001 701408733/6643838879*28143753123^(13/20) 6541093923494754 a001 53316291173/2537720636*969323029^(1/2) 6541093923494754 a001 701408733/17393796001*4106118243^(3/4) 6541093923494754 a001 365435296162/1568397607*1568397607^(3/8) 6541093923494754 a001 1134903170/1568397607*817138163596^(1/2) 6541093923494754 a001 66978574/11384387281*599074578^(11/12) 6541093923494754 a001 1836311903/1568397607*1568397607^(5/8) 6541093923494754 a001 1836311903/2139295485799*2537720636^(17/18) 6541093923494754 a001 1836311903/817138163596*2537720636^(9/10) 6541093923494754 a001 1836311903/192900153618*2537720636^(5/6) 6541093923494754 a001 1836311903/10749957122*2537720636^(7/10) 6541093923494754 a001 1836311903/17393796001*2537720636^(13/18) 6541093923494754 a001 1602508992/1368706081*2537720636^(11/18) 6541093923494754 a001 4807526976/5600748293801*2537720636^(17/18) 6541093923494754 a001 4807526976/2139295485799*2537720636^(9/10) 6541093923494754 a001 12586269025/14662949395604*2537720636^(17/18) 6541093923494754 a001 20365011074/23725150497407*2537720636^(17/18) 6541093923494754 a001 7778742049/9062201101803*2537720636^(17/18) 6541093923494754 a001 12586269025/5600748293801*2537720636^(9/10) 6541093923494754 a001 32951280099/14662949395604*2537720636^(9/10) 6541093923494754 a001 53316291173/23725150497407*2537720636^(9/10) 6541093923494754 a001 20365011074/9062201101803*2537720636^(9/10) 6541093923494754 a001 102287808/10745088481*2537720636^(5/6) 6541093923494754 a001 53316291173/4106118243*2537720636^(1/2) 6541093923494754 a001 7778742049/3461452808002*2537720636^(9/10) 6541093923494754 a001 12586269025/1322157322203*2537720636^(5/6) 6541093923494754 a001 32951280099/3461452808002*2537720636^(5/6) 6541093923494754 a001 86267571272/9062201101803*2537720636^(5/6) 6541093923494754 a001 225851433717/23725150497407*2537720636^(5/6) 6541093923494754 a001 139583862445/14662949395604*2537720636^(5/6) 6541093923494754 a001 53316291173/5600748293801*2537720636^(5/6) 6541093923494754 a001 20365011074/2139295485799*2537720636^(5/6) 6541093923494754 a001 7778742049/817138163596*2537720636^(5/6) 6541093923494754 a001 2971215073/3461452808002*2537720636^(17/18) 6541093923494754 a001 1201881744/11384387281*2537720636^(13/18) 6541093923494754 a001 591286729879/4106118243*2537720636^(7/18) 6541093923494754 a001 1836311903/4106118243*2139295485799^(1/2) 6541093923494754 a001 1602508992/9381251041*2537720636^(7/10) 6541093923494754 a001 2971215073/1322157322203*2537720636^(9/10) 6541093923494754 a001 12586269025/119218851371*2537720636^(13/18) 6541093923494754 a001 32951280099/312119004989*2537720636^(13/18) 6541093923494754 a001 21566892818/204284540899*2537720636^(13/18) 6541093923494754 a001 225851433717/2139295485799*2537720636^(13/18) 6541093923494754 a001 182717648081/1730726404001*2537720636^(13/18) 6541093923494754 a001 139583862445/1322157322203*2537720636^(13/18) 6541093923494754 a001 53316291173/505019158607*2537720636^(13/18) 6541093923494754 a001 10182505537/96450076809*2537720636^(13/18) 6541093923494754 a001 12586269025/73681302247*2537720636^(7/10) 6541093923494754 a001 7778742049/73681302247*2537720636^(13/18) 6541093923494754 a001 10983760033/64300051206*2537720636^(7/10) 6541093923494754 a001 86267571272/505019158607*2537720636^(7/10) 6541093923494754 a001 75283811239/440719107401*2537720636^(7/10) 6541093923494754 a001 2504730781961/14662949395604*2537720636^(7/10) 6541093923494754 a001 139583862445/817138163596*2537720636^(7/10) 6541093923494754 a001 53316291173/312119004989*2537720636^(7/10) 6541093923494754 a001 20365011074/119218851371*2537720636^(7/10) 6541093923494754 a001 2971215073/312119004989*2537720636^(5/6) 6541093923494754 a001 4052739537881/4106118243*2537720636^(3/10) 6541093923494754 a001 7778742049/45537549124*2537720636^(7/10) 6541093923494754 a001 12586269025/10749957122*2537720636^(11/18) 6541093923494754 a001 6557470319842/4106118243*2537720636^(5/18) 6541093923494754 a001 10983760033/9381251041*2537720636^(11/18) 6541093923494754 a001 86267571272/73681302247*2537720636^(11/18) 6541093923494754 a001 75283811239/64300051206*2537720636^(11/18) 6541093923494754 a001 2504730781961/2139295485799*2537720636^(11/18) 6541093923494754 a001 365435296162/312119004989*2537720636^(11/18) 6541093923494754 a001 139583862445/119218851371*2537720636^(11/18) 6541093923494754 a001 53316291173/45537549124*2537720636^(11/18) 6541093923494754 a001 20365011074/17393796001*2537720636^(11/18) 6541093923494754 a001 2971215073/28143753123*2537720636^(13/18) 6541093923494754 a001 139583862445/10749957122*2537720636^(1/2) 6541093923494754 a001 2971215073/17393796001*2537720636^(7/10) 6541093923494754 a001 365435296162/28143753123*2537720636^(1/2) 6541093923494754 a001 956722026041/73681302247*2537720636^(1/2) 6541093923494754 a001 2504730781961/192900153618*2537720636^(1/2) 6541093923494754 a001 10610209857723/817138163596*2537720636^(1/2) 6541093923494754 a001 4052739537881/312119004989*2537720636^(1/2) 6541093923494754 a001 1548008755920/119218851371*2537720636^(1/2) 6541093923494754 a001 591286729879/45537549124*2537720636^(1/2) 6541093923494754 a001 7787980473/599786069*2537720636^(1/2) 6541093923494754 a001 10983760033/1368706081*6643838879^(1/2) 6541093923494754 a001 1836311903/10749957122*17393796001^(9/14) 6541093923494754 a001 774004377960/5374978561*2537720636^(7/18) 6541093923494754 a001 7778742049/6643838879*2537720636^(11/18) 6541093923494754 a001 1602508992/1368706081*312119004989^(1/2) 6541093923494754 a001 1836311903/10749957122*14662949395604^(1/2) 6541093923494754 a001 1602508992/1368706081*3461452808002^(11/24) 6541093923494754 a001 1836311903/10749957122*192900153618^(7/12) 6541093923494754 a001 1602508992/1368706081*28143753123^(11/20) 6541093923494754 a001 1836311903/9062201101803*17393796001^(13/14) 6541093923494754 a001 1836311903/312119004989*17393796001^(11/14) 6541093923494754 a001 4052739537881/28143753123*2537720636^(7/18) 6541093923494754 a001 12586269025/4106118243*45537549124^(1/2) 6541093923494754 a001 1515744265389/10525900321*2537720636^(7/18) 6541093923494754 a001 591286729879/4106118243*17393796001^(5/14) 6541093923494754 a001 20365011074/4106118243*17393796001^(1/2) 6541093923494754 a001 3278735159921/22768774562*2537720636^(7/18) 6541093923494754 a001 1836311903/2139295485799*45537549124^(5/6) 6541093923494754 a001 1836311903/192900153618*312119004989^(15/22) 6541093923494754 a001 1836311903/192900153618*3461452808002^(5/8) 6541093923494754 a001 1836311903/2139295485799*312119004989^(17/22) 6541093923494754 a001 591286729879/4106118243*312119004989^(7/22) 6541093923494754 a001 591286729879/4106118243*14662949395604^(5/18) 6541093923494754 a001 1836311903/14662949395604*9062201101803^(3/4) 6541093923494754 a001 6557470319842/4106118243*3461452808002^(5/24) 6541093923494754 a001 1836311903/2139295485799*3461452808002^(17/24) 6541093923494754 a001 1836311903/3461452808002*1322157322203^(3/4) 6541093923494754 a001 1836311903/817138163596*14662949395604^(9/14) 6541093923494754 a001 4052739537881/4106118243*192900153618^(1/4) 6541093923494754 a001 1836311903/312119004989*14662949395604^(11/18) 6541093923494754 a001 1836311903/312119004989*505019158607^(11/16) 6541093923494754 a001 1836311903/817138163596*192900153618^(3/4) 6541093923494754 a001 53316291173/4106118243*312119004989^(9/22) 6541093923494754 a001 53316291173/4106118243*14662949395604^(5/14) 6541093923494754 a001 53316291173/4106118243*192900153618^(5/12) 6541093923494754 a001 1836311903/9062201101803*73681302247^(7/8) 6541093923494754 a001 6557470319842/4106118243*28143753123^(1/4) 6541093923494754 a001 591286729879/4106118243*28143753123^(7/20) 6541093923494754 a001 20365011074/4106118243*14662949395604^(7/18) 6541093923494754 a001 20365011074/4106118243*505019158607^(7/16) 6541093923494754 a001 53316291173/4106118243*28143753123^(9/20) 6541093923494754 a001 1836311903/192900153618*28143753123^(3/4) 6541093923494754 a001 1836311903/2139295485799*28143753123^(17/20) 6541093923494754 a001 1836311903/23725150497407*28143753123^(19/20) 6541093923494754 a001 2504730781961/17393796001*2537720636^(7/18) 6541093923494754 a001 7778742049/4106118243*119218851371^(1/2) 6541093923494754 a001 1836311903/17393796001*312119004989^(13/22) 6541093923494754 a001 1836311903/17393796001*3461452808002^(13/24) 6541093923494754 a001 1836311903/17393796001*73681302247^(5/8) 6541093923494754 a001 4807525989/4870846*2537720636^(3/10) 6541093923494754 a001 1836311903/17393796001*28143753123^(13/20) 6541093923494754 a001 86267571272/6643838879*2537720636^(1/2) 6541093923494754 a001 701408733/119218851371*1568397607^(7/8) 6541093923494754 a001 3536736619241/1368706081*4106118243^(1/4) 6541093923494754 a001 956722026041/6643838879*2537720636^(7/18) 6541093923494754 a001 1836311903/6643838879*5600748293801^(1/2) 6541093923494754 a001 6557470319842/6643838879*2537720636^(3/10) 6541093923494754 a001 10610209857723/6643838879*2537720636^(5/18) 6541093923494754 a001 43133785636/5374978561*6643838879^(1/2) 6541093923494754 a001 2403763488/5374978561*2139295485799^(1/2) 6541093923494754 a001 1836311903/45537549124*4106118243^(3/4) 6541093923494754 a001 75283811239/9381251041*6643838879^(1/2) 6541093923494754 a001 1602508992/9381251041*17393796001^(9/14) 6541093923494754 a001 4807526976/23725150497407*17393796001^(13/14) 6541093923494754 a001 591286729879/73681302247*6643838879^(1/2) 6541093923494754 a001 86000486440/10716675201*6643838879^(1/2) 6541093923494754 a001 4052739537881/505019158607*6643838879^(1/2) 6541093923494754 a001 3536736619241/440719107401*6643838879^(1/2) 6541093923494754 a001 3278735159921/408569081798*6643838879^(1/2) 6541093923494754 a001 2504730781961/312119004989*6643838879^(1/2) 6541093923494754 a001 956722026041/119218851371*6643838879^(1/2) 6541093923494754 a001 1201881744/204284540899*17393796001^(11/14) 6541093923494754 a001 182717648081/22768774562*6643838879^(1/2) 6541093923494754 a001 53316291173/10749957122*17393796001^(1/2) 6541093923494754 a001 12586269025/10749957122*312119004989^(1/2) 6541093923494754 a001 12586269025/10749957122*3461452808002^(11/24) 6541093923494754 a001 1602508992/9381251041*505019158607^(9/16) 6541093923494754 a001 1602508992/9381251041*192900153618^(7/12) 6541093923494754 a001 774004377960/5374978561*17393796001^(5/14) 6541093923494754 a001 12586269025/10749957122*28143753123^(11/20) 6541093923494754 a001 32951280099/10749957122*45537549124^(1/2) 6541093923494754 a001 4807526976/5600748293801*45537549124^(5/6) 6541093923494754 a001 102287808/10745088481*312119004989^(15/22) 6541093923494754 a001 4807526976/5600748293801*312119004989^(17/22) 6541093923494754 a001 102287808/10745088481*3461452808002^(5/8) 6541093923494754 a001 774004377960/5374978561*312119004989^(7/22) 6541093923494754 a001 3278735159921/5374978561*1322157322203^(1/4) 6541093923494754 a001 4807526976/2139295485799*14662949395604^(9/14) 6541093923494754 a001 1602508992/3020733700601*1322157322203^(3/4) 6541093923494754 a001 1201881744/204284540899*14662949395604^(11/18) 6541093923494754 a001 4807526976/23725150497407*505019158607^(13/16) 6541093923494754 a001 1201881744/204284540899*505019158607^(11/16) 6541093923494754 a001 139583862445/10749957122*14662949395604^(5/14) 6541093923494754 a001 4807526976/2139295485799*192900153618^(3/4) 6541093923494754 a001 139583862445/10749957122*192900153618^(5/12) 6541093923494754 a001 591286729879/10749957122*73681302247^(3/8) 6541093923494754 a001 53316291173/10749957122*14662949395604^(7/18) 6541093923494754 a001 53316291173/10749957122*505019158607^(7/16) 6541093923494754 a001 4807526976/23725150497407*73681302247^(7/8) 6541093923494754 a001 774004377960/5374978561*28143753123^(7/20) 6541093923494754 a001 10182505537/5374978561*119218851371^(1/2) 6541093923494754 a001 1201881744/11384387281*312119004989^(13/22) 6541093923494754 a001 1201881744/11384387281*3461452808002^(13/24) 6541093923494754 a001 139583862445/10749957122*28143753123^(9/20) 6541093923494754 a001 1201881744/11384387281*73681302247^(5/8) 6541093923494754 a001 139583862445/17393796001*6643838879^(1/2) 6541093923494754 a001 102287808/10745088481*28143753123^(3/4) 6541093923494754 a001 4807526976/5600748293801*28143753123^(17/20) 6541093923494754 a001 1201881744/11384387281*28143753123^(13/20) 6541093923494754 a001 4807526976/17393796001*5600748293801^(1/2) 6541093923494754 a001 12586269025/2139295485799*17393796001^(11/14) 6541093923494754 a001 12586269025/73681302247*17393796001^(9/14) 6541093923494754 a001 139583862445/28143753123*17393796001^(1/2) 6541093923494754 a001 32951280099/5600748293801*17393796001^(11/14) 6541093923494754 a001 1135099622/192933544679*17393796001^(11/14) 6541093923494754 a001 53316291173/9062201101803*17393796001^(11/14) 6541093923494754 a001 12586269025/28143753123*2139295485799^(1/2) 6541093923494754 a001 4052739537881/28143753123*17393796001^(5/14) 6541093923494754 a001 10983760033/64300051206*17393796001^(9/14) 6541093923494754 a001 86267571272/505019158607*17393796001^(9/14) 6541093923494754 a001 75283811239/440719107401*17393796001^(9/14) 6541093923494754 a001 10182505537/1730726404001*17393796001^(11/14) 6541093923494754 a001 139583862445/817138163596*17393796001^(9/14) 6541093923494754 a001 53316291173/312119004989*17393796001^(9/14) 6541093923494754 a001 365435296162/73681302247*17393796001^(1/2) 6541093923494754 a001 956722026041/192900153618*17393796001^(1/2) 6541093923494754 a001 12586269025/14662949395604*45537549124^(5/6) 6541093923494754 a001 2504730781961/505019158607*17393796001^(1/2) 6541093923494754 a001 10610209857723/2139295485799*17393796001^(1/2) 6541093923494754 a001 4052739537881/817138163596*17393796001^(1/2) 6541093923494754 a001 140728068720/28374454999*17393796001^(1/2) 6541093923494754 a001 591286729879/119218851371*17393796001^(1/2) 6541093923494754 a001 20365011074/119218851371*17393796001^(9/14) 6541093923494754 a001 86267571272/28143753123*45537549124^(1/2) 6541093923494754 a001 10983760033/9381251041*312119004989^(1/2) 6541093923494754 a001 12586269025/73681302247*14662949395604^(1/2) 6541093923494754 a001 10983760033/9381251041*3461452808002^(11/24) 6541093923494754 a001 12586269025/73681302247*505019158607^(9/16) 6541093923494754 a001 12586269025/73681302247*192900153618^(7/12) 6541093923494754 a001 1515744265389/10525900321*17393796001^(5/14) 6541093923494754 a001 12586269025/1322157322203*312119004989^(15/22) 6541093923494754 a001 365435296162/28143753123*312119004989^(9/22) 6541093923494754 a001 12586269025/1322157322203*3461452808002^(5/8) 6541093923494754 a001 3536736619241/9381251041*9062201101803^(1/4) 6541093923494754 a001 12586269025/23725150497407*1322157322203^(3/4) 6541093923494754 a001 12586269025/2139295485799*505019158607^(11/16) 6541093923494754 a001 139583862445/28143753123*14662949395604^(7/18) 6541093923494754 a001 139583862445/28143753123*505019158607^(7/16) 6541093923494754 a001 365435296162/28143753123*192900153618^(5/12) 6541093923494754 a001 12586269025/5600748293801*192900153618^(3/4) 6541093923494754 a001 53316291173/28143753123*119218851371^(1/2) 6541093923494754 a001 12586269025/119218851371*312119004989^(13/22) 6541093923494754 a001 12585437040/228811001*73681302247^(3/8) 6541093923494754 a001 12586269025/119218851371*3461452808002^(13/24) 6541093923494754 a001 225851433717/45537549124*17393796001^(1/2) 6541093923494754 a001 12586269025/119218851371*73681302247^(5/8) 6541093923494754 a001 4052739537881/28143753123*28143753123^(7/20) 6541093923494754 a001 12586269025/45537549124*5600748293801^(1/2) 6541093923494754 a001 10983760033/9381251041*28143753123^(11/20) 6541093923494754 a001 3278735159921/22768774562*17393796001^(5/14) 6541093923494754 a001 365435296162/28143753123*28143753123^(9/20) 6541093923494754 a001 32264490531/10525900321*45537549124^(1/2) 6541093923494754 a001 12586269025/119218851371*28143753123^(13/20) 6541093923494754 a001 32951280099/73681302247*2139295485799^(1/2) 6541093923494754 a001 12586269025/1322157322203*28143753123^(3/4) 6541093923494754 a001 591286729879/192900153618*45537549124^(1/2) 6541093923494754 a001 1548008755920/505019158607*45537549124^(1/2) 6541093923494754 a001 1515744265389/494493258286*45537549124^(1/2) 6541093923494754 a001 2504730781961/817138163596*45537549124^(1/2) 6541093923494754 a001 956722026041/312119004989*45537549124^(1/2) 6541093923494754 a001 86267571272/73681302247*312119004989^(1/2) 6541093923494754 a001 10983760033/64300051206*14662949395604^(1/2) 6541093923494754 a001 86267571272/73681302247*3461452808002^(11/24) 6541093923494754 a001 139583862445/73681302247*119218851371^(1/2) 6541093923494754 a001 10983760033/64300051206*505019158607^(9/16) 6541093923494754 a001 10983760033/64300051206*192900153618^(7/12) 6541093923494754 a001 32951280099/3461452808002*312119004989^(15/22) 6541093923494754 a001 12586269025/14662949395604*28143753123^(17/20) 6541093923494754 a001 1515744265389/10525900321*312119004989^(7/22) 6541093923494754 a001 1515744265389/10525900321*505019158607^(5/16) 6541093923494754 a001 365435296162/73681302247*14662949395604^(7/18) 6541093923494754 a001 32951280099/5600748293801*505019158607^(11/16) 6541093923494754 a001 365435296162/73681302247*505019158607^(7/16) 6541093923494754 a001 32951280099/312119004989*3461452808002^(13/24) 6541093923494754 a001 956722026041/73681302247*192900153618^(5/12) 6541093923494754 a001 365435296162/119218851371*45537549124^(1/2) 6541093923494754 a001 32951280099/14662949395604*192900153618^(3/4) 6541093923494754 a001 4052739537881/73681302247*73681302247^(3/8) 6541093923494754 a001 32951280099/119218851371*5600748293801^(1/2) 6541093923494754 a001 182717648081/96450076809*119218851371^(1/2) 6541093923494754 a001 32951280099/312119004989*73681302247^(5/8) 6541093923494754 a001 43133785636/96450076809*2139295485799^(1/2) 6541093923494754 a001 956722026041/505019158607*119218851371^(1/2) 6541093923494754 a001 75283811239/64300051206*312119004989^(1/2) 6541093923494754 a001 86267571272/9062201101803*312119004989^(15/22) 6541093923494754 a001 21566892818/204284540899*312119004989^(13/22) 6541093923494754 a001 2504730781961/192900153618*312119004989^(9/22) 6541093923494754 a001 86267571272/505019158607*505019158607^(9/16) 6541093923494754 a001 1135099622/192933544679*14662949395604^(11/18) 6541093923494754 a001 591286729879/312119004989*119218851371^(1/2) 6541093923494754 a001 21566892818/204284540899*3461452808002^(13/24) 6541093923494754 a001 956722026041/192900153618*505019158607^(7/16) 6541093923494754 a001 1135099622/192933544679*505019158607^(11/16) 6541093923494754 a001 139583862445/192900153618*817138163596^(1/2) 6541093923494754 a001 86267571272/505019158607*192900153618^(7/12) 6541093923494754 a001 225851433717/505019158607*2139295485799^(1/2) 6541093923494754 a001 139583862445/312119004989*2139295485799^(1/2) 6541093923494754 a001 4052739537881/312119004989*192900153618^(5/12) 6541093923494754 a001 139583862445/817138163596*192900153618^(7/12) 6541093923494754 a001 225851433717/119218851371*119218851371^(1/2) 6541093923494754 a001 3536736619241/64300051206*73681302247^(3/8) 6541093923494754 a001 53316291173/192900153618*5600748293801^(1/2) 6541093923494754 a001 53316291173/505019158607*312119004989^(13/22) 6541093923494754 a001 53316291173/5600748293801*312119004989^(15/22) 6541093923494754 a001 1548008755920/119218851371*312119004989^(9/22) 6541093923494754 a001 53316291173/5600748293801*3461452808002^(5/8) 6541093923494754 a001 591286729879/119218851371*505019158607^(7/16) 6541093923494754 a001 53316291173/9062201101803*505019158607^(11/16) 6541093923494754 a001 139583862445/119218851371*312119004989^(1/2) 6541093923494754 a001 53316291173/312119004989*14662949395604^(1/2) 6541093923494754 a001 1548008755920/119218851371*192900153618^(5/12) 6541093923494754 a001 21566892818/204284540899*73681302247^(5/8) 6541093923494754 a001 53316291173/23725150497407*192900153618^(3/4) 6541093923494754 a001 53316291173/312119004989*192900153618^(7/12) 6541093923494754 a001 225851433717/2139295485799*73681302247^(5/8) 6541093923494754 a001 182717648081/1730726404001*73681302247^(5/8) 6541093923494754 a001 139583862445/1322157322203*73681302247^(5/8) 6541093923494754 a001 6557470319842/119218851371*73681302247^(3/8) 6541093923494754 a001 53316291173/119218851371*2139295485799^(1/2) 6541093923494754 a001 53316291173/505019158607*73681302247^(5/8) 6541093923494754 a001 139583862445/45537549124*45537549124^(1/2) 6541093923494754 a001 1515744265389/10525900321*28143753123^(7/20) 6541093923494754 a001 20365011074/73681302247*5600748293801^(1/2) 6541093923494754 a001 956722026041/73681302247*28143753123^(9/20) 6541093923494754 a001 21566892818/11384387281*119218851371^(1/2) 6541093923494754 a001 10182505537/96450076809*312119004989^(13/22) 6541093923494754 a001 10182505537/96450076809*3461452808002^(13/24) 6541093923494754 a001 20365011074/2139295485799*312119004989^(15/22) 6541093923494754 a001 3278735159921/22768774562*312119004989^(7/22) 6541093923494754 a001 20365011074/2139295485799*3461452808002^(5/8) 6541093923494754 a001 3278735159921/22768774562*505019158607^(5/16) 6541093923494754 a001 10182505537/1730726404001*505019158607^(11/16) 6541093923494754 a001 591286729879/45537549124*192900153618^(5/12) 6541093923494754 a001 20365011074/9062201101803*192900153618^(3/4) 6541093923494754 a001 2504730781961/192900153618*28143753123^(9/20) 6541093923494754 a001 53316291173/45537549124*312119004989^(1/2) 6541093923494754 a001 20365011074/119218851371*14662949395604^(1/2) 6541093923494754 a001 20365011074/119218851371*505019158607^(9/16) 6541093923494754 a001 20365011074/119218851371*192900153618^(7/12) 6541093923494754 a001 10610209857723/817138163596*28143753123^(9/20) 6541093923494754 a001 10182505537/96450076809*73681302247^(5/8) 6541093923494754 a001 1548008755920/119218851371*28143753123^(9/20) 6541093923494754 a001 32951280099/312119004989*28143753123^(13/20) 6541093923494754 a001 75283811239/64300051206*28143753123^(11/20) 6541093923494754 a001 365435296162/312119004989*28143753123^(11/20) 6541093923494754 a001 7778742049/1322157322203*17393796001^(11/14) 6541093923494754 a001 32951280099/3461452808002*28143753123^(3/4) 6541093923494754 a001 139583862445/119218851371*28143753123^(11/20) 6541093923494754 a001 21566892818/204284540899*28143753123^(13/20) 6541093923494754 a001 225851433717/2139295485799*28143753123^(13/20) 6541093923494754 a001 182717648081/1730726404001*28143753123^(13/20) 6541093923494754 a001 139583862445/1322157322203*28143753123^(13/20) 6541093923494754 a001 53316291173/505019158607*28143753123^(13/20) 6541093923494754 a001 86267571272/9062201101803*28143753123^(3/4) 6541093923494754 a001 3278735159921/22768774562*28143753123^(7/20) 6541093923494754 a001 225851433717/23725150497407*28143753123^(3/4) 6541093923494754 a001 139583862445/14662949395604*28143753123^(3/4) 6541093923494754 a001 10182505537/22768774562*2139295485799^(1/2) 6541093923494754 a001 53316291173/5600748293801*28143753123^(3/4) 6541093923494754 a001 591286729879/45537549124*28143753123^(9/20) 6541093923494754 a001 53316291173/45537549124*28143753123^(11/20) 6541093923494754 a001 10182505537/96450076809*28143753123^(13/20) 6541093923494754 a001 20365011074/2139295485799*28143753123^(3/4) 6541093923494754 a001 20365011074/23725150497407*28143753123^(17/20) 6541093923494754 a001 86267571272/17393796001*17393796001^(1/2) 6541093923494754 a001 7778742049/45537549124*17393796001^(9/14) 6541093923494754 a001 12586269025/17393796001*817138163596^(1/2) 6541093923494754 a001 7778742049/28143753123*5600748293801^(1/2) 6541093923494754 a001 2504730781961/17393796001*17393796001^(5/14) 6541093923494754 a001 7778742049/9062201101803*45537549124^(5/6) 6541093923494754 a001 32951280099/17393796001*119218851371^(1/2) 6541093923494754 a001 7778742049/73681302247*312119004989^(13/22) 6541093923494754 a001 7778742049/73681302247*3461452808002^(13/24) 6541093923494754 a001 53316291173/17393796001*45537549124^(1/2) 6541093923494754 a001 7778742049/73681302247*73681302247^(5/8) 6541093923494754 a001 86267571272/17393796001*14662949395604^(7/18) 6541093923494754 a001 86267571272/17393796001*505019158607^(7/16) 6541093923494754 a001 7778742049/9062201101803*312119004989^(17/22) 6541093923494754 a001 7778742049/817138163596*312119004989^(15/22) 6541093923494754 a001 2504730781961/17393796001*312119004989^(7/22) 6541093923494754 a001 7778742049/3461452808002*14662949395604^(9/14) 6541093923494754 a001 10610209857723/17393796001*1322157322203^(1/4) 6541093923494754 a001 7778742049/14662949395604*1322157322203^(3/4) 6541093923494754 a001 2504730781961/17393796001*505019158607^(5/16) 6541093923494754 a001 7778742049/1322157322203*505019158607^(11/16) 6541093923494754 a001 7787980473/599786069*192900153618^(5/12) 6541093923494754 a001 7778742049/3461452808002*192900153618^(3/4) 6541093923494754 a001 956722026041/17393796001*73681302247^(3/8) 6541093923494754 a001 2504730781961/17393796001*28143753123^(7/20) 6541093923494754 a001 20365011074/17393796001*312119004989^(1/2) 6541093923494754 a001 7778742049/45537549124*14662949395604^(1/2) 6541093923494754 a001 20365011074/17393796001*3461452808002^(11/24) 6541093923494754 a001 7778742049/45537549124*192900153618^(7/12) 6541093923494754 a001 7787980473/599786069*28143753123^(9/20) 6541093923494754 a001 7778742049/73681302247*28143753123^(13/20) 6541093923494754 a001 7778742049/817138163596*28143753123^(3/4) 6541093923494754 a001 7778742049/9062201101803*28143753123^(17/20) 6541093923494754 a001 20365011074/17393796001*28143753123^(11/20) 6541093923494754 a001 7778742049/17393796001*2139295485799^(1/2) 6541093923494754 a001 1134903170/1322157322203*2537720636^(17/18) 6541093923494754 a001 53316291173/6643838879*6643838879^(1/2) 6541093923494754 a001 4807526976/6643838879*817138163596^(1/2) 6541093923494754 a001 2971215073/10749957122*5600748293801^(1/2) 6541093923494754 a001 1134903170/505019158607*2537720636^(9/10) 6541093923494754 a001 2971215073/14662949395604*17393796001^(13/14) 6541093923494754 a001 2971215073/505019158607*17393796001^(11/14) 6541093923494754 a001 32951280099/6643838879*17393796001^(1/2) 6541093923494754 a001 12586269025/6643838879*119218851371^(1/2) 6541093923494754 a001 2971215073/28143753123*312119004989^(13/22) 6541093923494754 a001 2971215073/28143753123*3461452808002^(13/24) 6541093923494754 a001 956722026041/6643838879*17393796001^(5/14) 6541093923494754 a001 2971215073/28143753123*73681302247^(5/8) 6541093923494754 a001 2971215073/28143753123*28143753123^(13/20) 6541093923494754 a001 2971215073/3461452808002*45537549124^(5/6) 6541093923494754 a001 32951280099/6643838879*14662949395604^(7/18) 6541093923494754 a001 32951280099/6643838879*505019158607^(7/16) 6541093923494754 a001 86267571272/6643838879*312119004989^(9/22) 6541093923494754 a001 86267571272/6643838879*14662949395604^(5/14) 6541093923494754 a001 86267571272/6643838879*192900153618^(5/12) 6541093923494754 a001 2971215073/3461452808002*312119004989^(17/22) 6541093923494754 a001 2971215073/505019158607*14662949395604^(11/18) 6541093923494754 a001 1548008755920/6643838879*312119004989^(3/10) 6541093923494754 a001 10610209857723/6643838879*312119004989^(5/22) 6541093923494754 a001 10610209857723/6643838879*3461452808002^(5/24) 6541093923494754 a001 2504730781961/6643838879*9062201101803^(1/4) 6541093923494754 a001 956722026041/6643838879*14662949395604^(5/18) 6541093923494754 a001 6557470319842/6643838879*192900153618^(1/4) 6541093923494754 a001 2971215073/312119004989*3461452808002^(5/8) 6541093923494754 a001 2971215073/1322157322203*192900153618^(3/4) 6541093923494754 a001 365435296162/6643838879*73681302247^(3/8) 6541093923494754 a001 2971215073/14662949395604*73681302247^(7/8) 6541093923494754 a001 20365011074/6643838879*45537549124^(1/2) 6541093923494754 a001 10610209857723/6643838879*28143753123^(1/4) 6541093923494754 a001 956722026041/6643838879*28143753123^(7/20) 6541093923494754 a001 86267571272/6643838879*28143753123^(9/20) 6541093923494754 a001 2971215073/312119004989*28143753123^(3/4) 6541093923494754 a001 2971215073/3461452808002*28143753123^(17/20) 6541093923494754 a001 2971215073/17393796001*17393796001^(9/14) 6541093923494754 a001 1134903170/119218851371*2537720636^(5/6) 6541093923494754 a001 7778742049/6643838879*312119004989^(1/2) 6541093923494754 a001 2971215073/17393796001*14662949395604^(1/2) 6541093923494754 a001 2971215073/17393796001*505019158607^(9/16) 6541093923494754 a001 2971215073/17393796001*192900153618^(7/12) 6541093923494754 a001 7778742049/6643838879*28143753123^(11/20) 6541093923494754 a001 567451585/5374978561*2537720636^(13/18) 6541093923494754 a001 4807526976/119218851371*4106118243^(3/4) 6541093923494754 a001 1144206275/28374454999*4106118243^(3/4) 6541093923494754 a001 32951280099/817138163596*4106118243^(3/4) 6541093923494754 a001 86267571272/2139295485799*4106118243^(3/4) 6541093923494754 a001 225851433717/5600748293801*4106118243^(3/4) 6541093923494754 a001 591286729879/14662949395604*4106118243^(3/4) 6541093923494754 a001 365435296162/9062201101803*4106118243^(3/4) 6541093923494754 a001 139583862445/3461452808002*4106118243^(3/4) 6541093923494754 a001 53316291173/1322157322203*4106118243^(3/4) 6541093923494754 a001 20365011074/505019158607*4106118243^(3/4) 6541093923494754 a001 2971215073/6643838879*2139295485799^(1/2) 6541093923494754 a001 7778742049/192900153618*4106118243^(3/4) 6541093923494754 a001 2971215073/73681302247*4106118243^(3/4) 6541093923494754 a001 1134903170/6643838879*2537720636^(7/10) 6541093923494754 a001 32951280099/2537720636*2537720636^(1/2) 6541093923494754 a001 2971215073/2537720636*2537720636^(11/18) 6541093923494754 a001 956722026041/4106118243*1568397607^(3/8) 6541093923494754 a001 182717648081/1268860318*2537720636^(7/18) 6541093923494754 a001 1134903170/4106118243*5600748293801^(1/2) 6541093923494754 a001 2504730781961/2537720636*2537720636^(3/10) 6541093923494754 a001 4052739537881/2537720636*2537720636^(5/18) 6541093923494754 a001 2504730781961/10749957122*1568397607^(3/8) 6541093923494754 a001 10182505537/1268860318*6643838879^(1/2) 6541093923494754 a001 1201881744/634430159*119218851371^(1/2) 6541093923494754 a001 567451585/5374978561*312119004989^(13/22) 6541093923494754 a001 567451585/5374978561*3461452808002^(13/24) 6541093923494754 a001 567451585/5374978561*73681302247^(5/8) 6541093923494754 a001 567451585/5374978561*28143753123^(13/20) 6541093923494754 a001 6557470319842/28143753123*1568397607^(3/8) 6541093923494754 a001 1134903170/5600748293801*17393796001^(13/14) 6541093923494754 a001 1144206275/230701876*17393796001^(1/2) 6541093923494754 a001 567451585/96450076809*17393796001^(11/14) 6541093923494754 a001 10610209857723/45537549124*1568397607^(3/8) 6541093923494754 a001 1144206275/230701876*14662949395604^(7/18) 6541093923494754 a001 1144206275/230701876*505019158607^(7/16) 6541093923494754 a001 182717648081/1268860318*17393796001^(5/14) 6541093923494754 a001 10610209857723/2537720636*17393796001^(3/14) 6541093923494754 a001 1134903170/1322157322203*45537549124^(5/6) 6541093923494754 a001 32951280099/2537720636*312119004989^(9/22) 6541093923494754 a001 32951280099/2537720636*14662949395604^(5/14) 6541093923494754 a001 32951280099/2537720636*192900153618^(5/12) 6541093923494754 a001 567451585/96450076809*14662949395604^(11/18) 6541093923494754 a001 567451585/96450076809*505019158607^(11/16) 6541093923494754 a001 1134903170/1322157322203*312119004989^(17/22) 6541093923494754 a001 1134903170/505019158607*14662949395604^(9/14) 6541093923494754 a001 1134903170/9062201101803*9062201101803^(3/4) 6541093923494754 a001 10610209857723/2537720636*14662949395604^(1/6) 6541093923494754 a001 1134903170/2139295485799*1322157322203^(3/4) 6541093923494754 a001 1134903170/5600748293801*505019158607^(13/16) 6541093923494754 a001 2504730781961/2537720636*192900153618^(1/4) 6541093923494754 a001 1134903170/505019158607*192900153618^(3/4) 6541093923494754 a001 1134903170/119218851371*312119004989^(15/22) 6541093923494754 a001 1134903170/119218851371*3461452808002^(5/8) 6541093923494754 a001 139583862445/2537720636*73681302247^(3/8) 6541093923494754 a001 1134903170/5600748293801*73681302247^(7/8) 6541093923494754 a001 4052739537881/2537720636*28143753123^(1/4) 6541093923494754 a001 32951280099/2537720636*28143753123^(9/20) 6541093923494754 a001 182717648081/1268860318*28143753123^(7/20) 6541093923494754 a001 4052739537881/17393796001*1568397607^(3/8) 6541093923494754 a001 1134903170/119218851371*28143753123^(3/4) 6541093923494754 a001 1134903170/1322157322203*28143753123^(17/20) 6541093923494754 a001 567451585/7331474697802*28143753123^(19/20) 6541093923494754 a001 7778742049/2537720636*45537549124^(1/2) 6541093923494754 a001 3278735159921/1268860318*4106118243^(1/4) 6541093923494754 a001 1548008755920/6643838879*1568397607^(3/8) 6541093923494754 a001 1134903170/6643838879*17393796001^(9/14) 6541093923494754 a001 2971215073/2537720636*312119004989^(1/2) 6541093923494754 a001 1134903170/6643838879*14662949395604^(1/2) 6541093923494754 a001 2971215073/2537720636*3461452808002^(11/24) 6541093923494754 a001 1134903170/6643838879*505019158607^(9/16) 6541093923494754 a001 1134903170/6643838879*192900153618^(7/12) 6541093923494754 a001 2971215073/2537720636*28143753123^(11/20) 6541093923494754 a001 1602508992/1368706081*1568397607^(5/8) 6541093923494754 a001 1134903170/28143753123*4106118243^(3/4) 6541093923494754 a001 12586269025/10749957122*1568397607^(5/8) 6541093923494754 a001 10983760033/9381251041*1568397607^(5/8) 6541093923494754 a001 86267571272/73681302247*1568397607^(5/8) 6541093923494754 a001 75283811239/64300051206*1568397607^(5/8) 6541093923494754 a001 2504730781961/2139295485799*1568397607^(5/8) 6541093923494754 a001 365435296162/312119004989*1568397607^(5/8) 6541093923494754 a001 139583862445/119218851371*1568397607^(5/8) 6541093923494754 a001 53316291173/45537549124*1568397607^(5/8) 6541093923494754 a001 20365011074/17393796001*1568397607^(5/8) 6541093923494754 a001 7778742049/6643838879*1568397607^(5/8) 6541093923494754 a001 6557470319842/1568397607*599074578^(1/4) 6541093923494754 a001 1836311903/312119004989*1568397607^(7/8) 6541093923494754 a001 591286729879/2537720636*1568397607^(3/8) 6541093923494754 a001 567451585/1268860318*2139295485799^(1/2) 6541093923494754 a001 1201881744/204284540899*1568397607^(7/8) 6541093923494754 a001 12586269025/2139295485799*1568397607^(7/8) 6541093923494754 a001 32951280099/5600748293801*1568397607^(7/8) 6541093923494754 a001 1135099622/192933544679*1568397607^(7/8) 6541093923494754 a001 139583862445/23725150497407*1568397607^(7/8) 6541093923494754 a001 53316291173/9062201101803*1568397607^(7/8) 6541093923494754 a001 10182505537/1730726404001*1568397607^(7/8) 6541093923494754 a001 7778742049/1322157322203*1568397607^(7/8) 6541093923494754 a001 2971215073/505019158607*1568397607^(7/8) 6541093923494754 a001 2971215073/2537720636*1568397607^(5/8) 6541093923494754 a001 567451585/96450076809*1568397607^(7/8) 6541093923494754 a001 20365011074/969323029*969323029^(1/2) 6541093923494754 a001 701408733/969323029*817138163596^(1/2) 6541093923494754 a001 433494437/1568397607*5600748293801^(1/2) 6541093923494754 a001 32264490531/224056801*599074578^(5/12) 6541093923494754 a001 3536736619241/199691526*228826127^(3/16) 6541093923494754 a001 10610209857723/2537720636*599074578^(1/4) 6541093923494754 a001 433494437/4106118243*2537720636^(13/18) 6541093923494754 a001 433494437/505019158607*2537720636^(17/18) 6541093923494754 a001 433494437/192900153618*2537720636^(9/10) 6541093923494754 a001 433494437/45537549124*2537720636^(5/6) 6541093923494754 a001 12586269025/969323029*2537720636^(1/2) 6541093923494754 a001 139583862445/969323029*2537720636^(7/18) 6541093923494754 a001 1836311903/969323029*119218851371^(1/2) 6541093923494754 a001 433494437/4106118243*312119004989^(13/22) 6541093923494754 a001 433494437/4106118243*3461452808002^(13/24) 6541093923494754 a001 433494437/4106118243*73681302247^(5/8) 6541093923494754 a001 433494437/4106118243*28143753123^(13/20) 6541093923494754 a001 956722026041/969323029*2537720636^(3/10) 6541093923494754 a001 1548008755920/969323029*2537720636^(5/18) 6541093923494754 a001 4807526976/969323029*17393796001^(1/2) 6541093923494754 a001 4807526976/969323029*14662949395604^(7/18) 6541093923494754 a001 4807526976/969323029*505019158607^(7/16) 6541093923494754 a001 7778742049/969323029*6643838879^(1/2) 6541093923494754 a001 433494437/2139295485799*17393796001^(13/14) 6541093923494754 a001 433494437/73681302247*17393796001^(11/14) 6541093923494754 a001 12586269025/969323029*312119004989^(9/22) 6541093923494754 a001 12586269025/969323029*14662949395604^(5/14) 6541093923494754 a001 12586269025/969323029*192900153618^(5/12) 6541093923494754 a001 139583862445/969323029*17393796001^(5/14) 6541093923494754 a001 4052739537881/969323029*17393796001^(3/14) 6541093923494754 a001 12586269025/969323029*28143753123^(9/20) 6541093923494754 a001 433494437/505019158607*45537549124^(5/6) 6541093923494754 a001 433494437/73681302247*14662949395604^(11/18) 6541093923494754 a001 433494437/73681302247*505019158607^(11/16) 6541093923494754 a001 10610209857723/969323029*45537549124^(1/6) 6541093923494754 a001 433494437/192900153618*14662949395604^(9/14) 6541093923494754 a001 433494437/505019158607*312119004989^(17/22) 6541093923494754 a001 433494437/5600748293801*312119004989^(19/22) 6541093923494754 a001 225851433717/969323029*312119004989^(3/10) 6541093923494754 a001 433494437/192900153618*192900153618^(3/4) 6541093923494754 a001 433494437/505019158607*3461452808002^(17/24) 6541093923494754 a001 1548008755920/969323029*312119004989^(5/22) 6541093923494754 a001 1548008755920/969323029*3461452808002^(5/24) 6541093923494754 a001 4052739537881/969323029*14662949395604^(1/6) 6541093923494754 a001 433494437/5600748293801*3461452808002^(19/24) 6541093923494754 a001 433494437/817138163596*1322157322203^(3/4) 6541093923494754 a001 139583862445/969323029*312119004989^(7/22) 6541093923494754 a001 139583862445/969323029*14662949395604^(5/18) 6541093923494754 a001 139583862445/969323029*505019158607^(5/16) 6541093923494754 a001 433494437/14662949395604*192900153618^(11/12) 6541093923494754 a001 53316291173/969323029*73681302247^(3/8) 6541093923494754 a001 433494437/2139295485799*73681302247^(7/8) 6541093923494754 a001 1548008755920/969323029*28143753123^(1/4) 6541093923494754 a001 139583862445/969323029*28143753123^(7/20) 6541093923494754 a001 433494437/45537549124*312119004989^(15/22) 6541093923494754 a001 433494437/45537549124*3461452808002^(5/8) 6541093923494754 a001 433494437/505019158607*28143753123^(17/20) 6541093923494754 a001 433494437/5600748293801*28143753123^(19/20) 6541093923494754 a001 433494437/45537549124*28143753123^(3/4) 6541093923494754 a001 2504730781961/969323029*4106118243^(1/4) 6541093923494754 a001 2971215073/969323029*45537549124^(1/2) 6541093923494754 a001 433494437/10749957122*4106118243^(3/4) 6541093923494754 a001 591286729879/4106118243*599074578^(5/12) 6541093923494754 a001 433494437/2537720636*2537720636^(7/10) 6541093923494754 a001 1134903170/969323029*2537720636^(11/18) 6541093923494754 a001 774004377960/5374978561*599074578^(5/12) 6541093923494754 a001 4052739537881/28143753123*599074578^(5/12) 6541093923494754 a001 1515744265389/10525900321*599074578^(5/12) 6541093923494754 a001 3278735159921/22768774562*599074578^(5/12) 6541093923494754 a001 2504730781961/17393796001*599074578^(5/12) 6541093923494754 a001 956722026041/6643838879*599074578^(5/12) 6541093923494754 a001 225851433717/969323029*1568397607^(3/8) 6541093923494754 a001 433494437/2537720636*17393796001^(9/14) 6541093923494754 a001 1134903170/969323029*312119004989^(1/2) 6541093923494754 a001 1134903170/969323029*3461452808002^(11/24) 6541093923494754 a001 433494437/2537720636*505019158607^(9/16) 6541093923494754 a001 433494437/2537720636*192900153618^(7/12) 6541093923494754 a001 1134903170/969323029*28143753123^(11/20) 6541093923494754 a001 7778742049/1568397607*599074578^(7/12) 6541093923494754 a001 182717648081/1268860318*599074578^(5/12) 6541093923494754 a001 433494437/73681302247*1568397607^(7/8) 6541093923494754 a001 1134903170/969323029*1568397607^(5/8) 6541093923494754 a001 20365011074/4106118243*599074578^(7/12) 6541093923494754 a001 53316291173/10749957122*599074578^(7/12) 6541093923494754 a001 233802911/1368706081*599074578^(3/4) 6541093923494754 a001 139583862445/28143753123*599074578^(7/12) 6541093923494754 a001 365435296162/73681302247*599074578^(7/12) 6541093923494754 a001 956722026041/192900153618*599074578^(7/12) 6541093923494754 a001 2504730781961/505019158607*599074578^(7/12) 6541093923494754 a001 10610209857723/2139295485799*599074578^(7/12) 6541093923494754 a001 4052739537881/817138163596*599074578^(7/12) 6541093923494754 a001 140728068720/28374454999*599074578^(7/12) 6541093923494754 a001 591286729879/119218851371*599074578^(7/12) 6541093923494754 a001 225851433717/45537549124*599074578^(7/12) 6541093923494754 a001 86267571272/17393796001*599074578^(7/12) 6541093923494754 a001 32951280099/6643838879*599074578^(7/12) 6541093923494754 a001 4052739537881/969323029*599074578^(1/4) 6541093923494754 a001 1144206275/230701876*599074578^(7/12) 6541093923494754 a001 1836311903/10749957122*599074578^(3/4) 6541093923494754 a001 1602508992/9381251041*599074578^(3/4) 6541093923494754 a001 12586269025/73681302247*599074578^(3/4) 6541093923494754 a001 10983760033/64300051206*599074578^(3/4) 6541093923494754 a001 86267571272/505019158607*599074578^(3/4) 6541093923494754 a001 75283811239/440719107401*599074578^(3/4) 6541093923494754 a001 2504730781961/14662949395604*599074578^(3/4) 6541093923494754 a001 139583862445/817138163596*599074578^(3/4) 6541093923494754 a001 53316291173/312119004989*599074578^(3/4) 6541093923494754 a001 20365011074/119218851371*599074578^(3/4) 6541093923494754 a001 7778742049/45537549124*599074578^(3/4) 6541093923494754 a001 2971215073/17393796001*599074578^(3/4) 6541093923494754 a001 433494437/969323029*2139295485799^(1/2) 6541093923494754 a001 701408733/119218851371*599074578^(11/12) 6541093923494754 a001 139583862445/969323029*599074578^(5/12) 6541093923494754 a001 1134903170/6643838879*599074578^(3/4) 6541093923494754 a001 1836311903/312119004989*599074578^(11/12) 6541093923494754 a001 1201881744/204284540899*599074578^(11/12) 6541093923494754 a001 12586269025/2139295485799*599074578^(11/12) 6541093923494754 a001 32951280099/5600748293801*599074578^(11/12) 6541093923494754 a001 1135099622/192933544679*599074578^(11/12) 6541093923494754 a001 139583862445/23725150497407*599074578^(11/12) 6541093923494754 a001 53316291173/9062201101803*599074578^(11/12) 6541093923494754 a001 10182505537/1730726404001*599074578^(11/12) 6541093923494754 a001 7778742049/1322157322203*599074578^(11/12) 6541093923494754 a001 2971215073/505019158607*599074578^(11/12) 6541093923494754 a001 4807526976/969323029*599074578^(7/12) 6541093923494754 a001 567451585/96450076809*599074578^(11/12) 6541093923494754 a001 956722026041/599074578*228826127^(5/16) 6541093923494754 a001 433494437/2537720636*599074578^(3/4) 6541093923494754 a001 433494437/73681302247*599074578^(11/12) 6541093923494754 a001 12586269025/370248451*370248451^(1/2) 6541093923494754 a001 267914296/370248451*817138163596^(1/2) 6541093923494754 a001 165580141/599074578*5600748293801^(1/2) 6541093923494754 a001 31622993/299537289*141422324^(5/6) 6541093923494754 a001 2504730781961/1568397607*228826127^(5/16) 6541093923494754 a001 43133785636/299537289*228826127^(7/16) 6541093923494754 a001 6557470319842/4106118243*228826127^(5/16) 6541093923494754 a001 10610209857723/6643838879*228826127^(5/16) 6541093923494754 a001 4052739537881/2537720636*228826127^(5/16) 6541093923494754 a001 7778742049/370248451*969323029^(1/2) 6541093923494754 a001 165580141/1568397607*2537720636^(13/18) 6541093923494754 a001 701408733/370248451*119218851371^(1/2) 6541093923494754 a001 165580141/1568397607*312119004989^(13/22) 6541093923494754 a001 165580141/1568397607*3461452808002^(13/24) 6541093923494754 a001 165580141/1568397607*73681302247^(5/8) 6541093923494754 a001 165580141/1568397607*28143753123^(13/20) 6541093923494754 a001 1548008755920/969323029*228826127^(5/16) 6541093923494754 a001 165580141/192900153618*2537720636^(17/18) 6541093923494754 a001 165580141/73681302247*2537720636^(9/10) 6541093923494754 a001 165580141/17393796001*2537720636^(5/6) 6541093923494754 a001 4807526976/370248451*2537720636^(1/2) 6541093923494754 a001 1836311903/370248451*17393796001^(1/2) 6541093923494754 a001 53316291173/370248451*2537720636^(7/18) 6541093923494754 a001 1836311903/370248451*14662949395604^(7/18) 6541093923494754 a001 1836311903/370248451*505019158607^(7/16) 6541093923494754 a001 365435296162/370248451*2537720636^(3/10) 6541093923494754 a001 591286729879/370248451*2537720636^(5/18) 6541093923494754 a001 6557470319842/370248451*2537720636^(1/6) 6541093923494754 a001 165580141/4106118243*4106118243^(3/4) 6541093923494754 a001 4807526976/370248451*312119004989^(9/22) 6541093923494754 a001 4807526976/370248451*14662949395604^(5/14) 6541093923494754 a001 4807526976/370248451*192900153618^(5/12) 6541093923494754 a001 4807526976/370248451*28143753123^(9/20) 6541093923494754 a001 165580141/28143753123*17393796001^(11/14) 6541093923494754 a001 165580141/817138163596*17393796001^(13/14) 6541093923494754 a001 165580141/28143753123*14662949395604^(11/18) 6541093923494754 a001 165580141/28143753123*505019158607^(11/16) 6541093923494754 a001 53316291173/370248451*17393796001^(5/14) 6541093923494754 a001 1548008755920/370248451*17393796001^(3/14) 6541093923494754 a001 165580141/192900153618*45537549124^(5/6) 6541093923494754 a001 165580141/73681302247*14662949395604^(9/14) 6541093923494754 a001 165580141/73681302247*192900153618^(3/4) 6541093923494754 a001 4052739537881/370248451*45537549124^(1/6) 6541093923494754 a001 165580141/192900153618*312119004989^(17/22) 6541093923494754 a001 86267571272/370248451*312119004989^(3/10) 6541093923494754 a001 165580141/192900153618*3461452808002^(17/24) 6541093923494754 a001 165580141/23725150497407*312119004989^(21/22) 6541093923494754 a001 165580141/5600748293801*312119004989^(9/10) 6541093923494754 a001 165580141/2139295485799*312119004989^(19/22) 6541093923494754 a001 225851433717/370248451*1322157322203^(1/4) 6541093923494754 a001 165580141/2139295485799*817138163596^(5/6) 6541093923494754 a001 1548008755920/370248451*14662949395604^(1/6) 6541093923494754 a001 165580141/2139295485799*3461452808002^(19/24) 6541093923494754 a001 165580141/817138163596*14662949395604^(13/18) 6541093923494754 a001 165580141/23725150497407*505019158607^(15/16) 6541093923494754 a001 165580141/817138163596*505019158607^(13/16) 6541093923494754 a001 139583862445/370248451*9062201101803^(1/4) 6541093923494754 a001 165580141/312119004989*1322157322203^(3/4) 6541093923494754 a001 10610209857723/370248451*73681302247^(1/8) 6541093923494754 a001 53316291173/370248451*312119004989^(7/22) 6541093923494754 a001 53316291173/370248451*14662949395604^(5/18) 6541093923494754 a001 53316291173/370248451*505019158607^(5/16) 6541093923494754 a001 165580141/817138163596*73681302247^(7/8) 6541093923494754 a001 6557470319842/370248451*28143753123^(3/20) 6541093923494754 a001 591286729879/370248451*28143753123^(1/4) 6541093923494754 a001 53316291173/370248451*28143753123^(7/20) 6541093923494754 a001 20365011074/370248451*73681302247^(3/8) 6541093923494754 a001 165580141/192900153618*28143753123^(17/20) 6541093923494754 a001 165580141/2139295485799*28143753123^(19/20) 6541093923494754 a001 165580141/17393796001*312119004989^(15/22) 6541093923494754 a001 165580141/17393796001*3461452808002^(5/8) 6541093923494754 a001 165580141/17393796001*28143753123^(3/4) 6541093923494754 a001 2971215073/370248451*6643838879^(1/2) 6541093923494754 a001 956722026041/370248451*4106118243^(1/4) 6541093923494754 a001 86267571272/370248451*1568397607^(3/8) 6541093923494754 a001 1134903170/370248451*45537549124^(1/2) 6541093923494754 a001 165580141/28143753123*1568397607^(7/8) 6541093923494754 a001 32264490531/224056801*228826127^(7/16) 6541093923494754 a001 7778742049/599074578*228826127^(9/16) 6541093923494754 a001 1548008755920/370248451*599074578^(1/4) 6541093923494754 a001 165580141/969323029*2537720636^(7/10) 6541093923494754 a001 433494437/370248451*2537720636^(11/18) 6541093923494754 a001 591286729879/4106118243*228826127^(7/16) 6541093923494754 a001 774004377960/5374978561*228826127^(7/16) 6541093923494754 a001 4052739537881/28143753123*228826127^(7/16) 6541093923494754 a001 1515744265389/10525900321*228826127^(7/16) 6541093923494754 a001 3278735159921/22768774562*228826127^(7/16) 6541093923494754 a001 165580141/969323029*17393796001^(9/14) 6541093923494754 a001 2504730781961/17393796001*228826127^(7/16) 6541093923494754 a001 433494437/370248451*312119004989^(1/2) 6541093923494754 a001 165580141/969323029*14662949395604^(1/2) 6541093923494754 a001 433494437/370248451*3461452808002^(11/24) 6541093923494754 a001 165580141/969323029*505019158607^(9/16) 6541093923494754 a001 165580141/969323029*192900153618^(7/12) 6541093923494754 a001 433494437/370248451*28143753123^(11/20) 6541093923494754 a001 956722026041/6643838879*228826127^(7/16) 6541093923494754 a001 53316291173/370248451*599074578^(5/12) 6541093923494754 a001 182717648081/1268860318*228826127^(7/16) 6541093923494754 a001 433494437/370248451*1568397607^(5/8) 6541093923494754 a001 1836311903/370248451*599074578^(7/12) 6541093923494754 a001 139583862445/969323029*228826127^(7/16) 6541093923494754 a001 165580141/28143753123*599074578^(11/12) 6541093923494754 a001 233802911/199691526*228826127^(11/16) 6541093923494754 a001 20365011074/1568397607*228826127^(9/16) 6541093923494754 a001 165580141/969323029*599074578^(3/4) 6541093923494754 a001 53316291173/4106118243*228826127^(9/16) 6541093923494754 a001 139583862445/10749957122*228826127^(9/16) 6541093923494754 a001 365435296162/28143753123*228826127^(9/16) 6541093923494754 a001 956722026041/73681302247*228826127^(9/16) 6541093923494754 a001 2504730781961/192900153618*228826127^(9/16) 6541093923494754 a001 10610209857723/817138163596*228826127^(9/16) 6541093923494754 a001 4052739537881/312119004989*228826127^(9/16) 6541093923494754 a001 1548008755920/119218851371*228826127^(9/16) 6541093923494754 a001 591286729879/45537549124*228826127^(9/16) 6541093923494754 a001 7787980473/599786069*228826127^(9/16) 6541093923494754 a001 86267571272/6643838879*228826127^(9/16) 6541093923494754 a001 6557470319842/370248451*228826127^(3/16) 6541093923494754 a001 32951280099/2537720636*228826127^(9/16) 6541093923494754 a001 12586269025/969323029*228826127^(9/16) 6541093923494754 a001 1836311903/1568397607*228826127^(11/16) 6541093923494754 a001 66978574/634430159*228826127^(13/16) 6541093923494754 a001 1602508992/1368706081*228826127^(11/16) 6541093923494754 a001 12586269025/10749957122*228826127^(11/16) 6541093923494754 a001 10983760033/9381251041*228826127^(11/16) 6541093923494754 a001 86267571272/73681302247*228826127^(11/16) 6541093923494754 a001 75283811239/64300051206*228826127^(11/16) 6541093923494754 a001 2504730781961/2139295485799*228826127^(11/16) 6541093923494754 a001 365435296162/312119004989*228826127^(11/16) 6541093923494754 a001 139583862445/119218851371*228826127^(11/16) 6541093923494754 a001 53316291173/45537549124*228826127^(11/16) 6541093923494754 a001 20365011074/17393796001*228826127^(11/16) 6541093923494754 a001 7778742049/6643838879*228826127^(11/16) 6541093923494754 a001 591286729879/370248451*228826127^(5/16) 6541093923494754 a001 2971215073/2537720636*228826127^(11/16) 6541093923494754 a001 1548008755920/228826127*87403803^(1/4) 6541093923494754 a001 1134903170/969323029*228826127^(11/16) 6541093923494754 a001 165580141/370248451*2139295485799^(1/2) 6541093923494754 a001 267914296/28143753123*228826127^(15/16) 6541093923494754 a001 701408733/6643838879*228826127^(13/16) 6541093923494754 a001 1836311903/17393796001*228826127^(13/16) 6541093923494754 a001 1201881744/11384387281*228826127^(13/16) 6541093923494754 a001 12586269025/119218851371*228826127^(13/16) 6541093923494754 a001 32951280099/312119004989*228826127^(13/16) 6541093923494754 a001 21566892818/204284540899*228826127^(13/16) 6541093923494754 a001 225851433717/2139295485799*228826127^(13/16) 6541093923494754 a001 182717648081/1730726404001*228826127^(13/16) 6541093923494754 a001 139583862445/1322157322203*228826127^(13/16) 6541093923494754 a001 53316291173/505019158607*228826127^(13/16) 6541093923494754 a001 10182505537/96450076809*228826127^(13/16) 6541093923494754 a001 7778742049/73681302247*228826127^(13/16) 6541093923494754 a001 2971215073/28143753123*228826127^(13/16) 6541093923494754 a001 53316291173/370248451*228826127^(7/16) 6541093923494754 a001 567451585/5374978561*228826127^(13/16) 6541093923494754 a001 433494437/4106118243*228826127^(13/16) 6541093923494754 a001 63245986/87403803*87403803^(3/4) 6541093923494754 a001 701408733/73681302247*228826127^(15/16) 6541093923494754 a001 1836311903/192900153618*228826127^(15/16) 6541093923494754 a001 102287808/10745088481*228826127^(15/16) 6541093923494754 a001 12586269025/1322157322203*228826127^(15/16) 6541093923494754 a001 32951280099/3461452808002*228826127^(15/16) 6541093923494754 a001 86267571272/9062201101803*228826127^(15/16) 6541093923494754 a001 225851433717/23725150497407*228826127^(15/16) 6541093923494754 a001 139583862445/14662949395604*228826127^(15/16) 6541093923494754 a001 53316291173/5600748293801*228826127^(15/16) 6541093923494754 a001 20365011074/2139295485799*228826127^(15/16) 6541093923494754 a001 7778742049/817138163596*228826127^(15/16) 6541093923494754 a001 2971215073/312119004989*228826127^(15/16) 6541093923494754 a001 4807526976/370248451*228826127^(9/16) 6541093923494754 a001 1134903170/119218851371*228826127^(15/16) 6541093923494754 a001 433494437/45537549124*228826127^(15/16) 6541093923494754 a001 433494437/370248451*228826127^(11/16) 6541093923494754 a001 165580141/1568397607*228826127^(13/16) 6541093923494754 a001 7778742049/141422324*141422324^(1/2) 6541093923494754 a001 165580141/17393796001*228826127^(15/16) 6541093923494754 a001 4052739537881/599074578*87403803^(1/4) 6541093923494754 a001 102334155/141422324*817138163596^(1/2) 6541093923494754 a001 1515744265389/224056801*87403803^(1/4) 6541093923494754 a001 6557470319842/969323029*87403803^(1/4) 6541093923494754 a001 9227465/87403803*20633239^(13/14) 6541093923494754 a001 2504730781961/370248451*87403803^(1/4) 6541093923494754 a001 4052739537881/141422324*141422324^(1/6) 6541093923494754 a001 1201881744/35355581*370248451^(1/2) 6541093923494754 a001 31622993/299537289*2537720636^(13/18) 6541093923494754 a001 66978574/35355581*119218851371^(1/2) 6541093923494754 a001 31622993/299537289*312119004989^(13/22) 6541093923494754 a001 31622993/299537289*3461452808002^(13/24) 6541093923494754 a001 31622993/299537289*73681302247^(5/8) 6541093923494754 a001 31622993/299537289*28143753123^(13/20) 6541093923494754 a001 2971215073/141422324*969323029^(1/2) 6541093923494754 a001 701408733/141422324*17393796001^(1/2) 6541093923494754 a001 701408733/141422324*14662949395604^(7/18) 6541093923494754 a001 701408733/141422324*505019158607^(7/16) 6541093923494754 a001 63245986/1568397607*4106118243^(3/4) 6541093923494754 a001 63245986/73681302247*2537720636^(17/18) 6541093923494754 a001 63245986/28143753123*2537720636^(9/10) 6541093923494754 a001 1836311903/141422324*2537720636^(1/2) 6541093923494754 a001 63245986/6643838879*2537720636^(5/6) 6541093923494754 a001 10182505537/70711162*2537720636^(7/18) 6541093923494754 a001 1836311903/141422324*312119004989^(9/22) 6541093923494754 a001 1836311903/141422324*14662949395604^(5/14) 6541093923494754 a001 1836311903/141422324*192900153618^(5/12) 6541093923494754 a001 1836311903/141422324*28143753123^(9/20) 6541093923494754 a001 139583862445/141422324*2537720636^(3/10) 6541093923494754 a001 225851433717/141422324*2537720636^(5/18) 6541093923494754 a001 2504730781961/141422324*2537720636^(1/6) 6541093923494754 a001 10610209857723/141422324*2537720636^(1/10) 6541093923494754 a001 31622993/5374978561*17393796001^(11/14) 6541093923494754 a001 31622993/5374978561*14662949395604^(11/18) 6541093923494754 a001 31622993/5374978561*505019158607^(11/16) 6541093923494754 a001 63245986/312119004989*17393796001^(13/14) 6541093923494754 a001 63245986/28143753123*14662949395604^(9/14) 6541093923494754 a001 63245986/28143753123*192900153618^(3/4) 6541093923494754 a001 591286729879/141422324*17393796001^(3/14) 6541093923494754 a001 10182505537/70711162*17393796001^(5/14) 6541093923494754 a001 63245986/73681302247*45537549124^(5/6) 6541093923494754 a001 63245986/73681302247*312119004989^(17/22) 6541093923494754 a001 63246219/271444*312119004989^(3/10) 6541093923494754 a001 63245986/73681302247*3461452808002^(17/24) 6541093923494754 a001 387002188980/35355581*45537549124^(1/6) 6541093923494754 a001 21566892818/35355581*1322157322203^(1/4) 6541093923494754 a001 63245986/2139295485799*312119004989^(9/10) 6541093923494754 a001 31622993/408569081798*312119004989^(19/22) 6541093923494754 a001 225851433717/141422324*312119004989^(5/22) 6541093923494754 a001 63245986/505019158607*9062201101803^(3/4) 6541093923494754 a001 225851433717/141422324*3461452808002^(5/24) 6541093923494754 a001 2504730781961/141422324*312119004989^(3/22) 6541093923494754 a001 10610209857723/141422324*14662949395604^(1/14) 6541093923494754 a001 31622993/408569081798*3461452808002^(19/24) 6541093923494754 a001 10610209857723/141422324*192900153618^(1/12) 6541093923494754 a001 63245986/9062201101803*505019158607^(15/16) 6541093923494754 a001 63245986/312119004989*14662949395604^(13/18) 6541093923494754 a001 139583862445/141422324*14662949395604^(3/14) 6541093923494754 a001 63245986/312119004989*505019158607^(13/16) 6541093923494754 a001 139583862445/141422324*192900153618^(1/4) 6541093923494754 a001 4052739537881/141422324*73681302247^(1/8) 6541093923494754 a001 63245986/2139295485799*192900153618^(11/12) 6541093923494754 a001 53316291173/141422324*9062201101803^(1/4) 6541093923494754 a001 63245986/119218851371*1322157322203^(3/4) 6541093923494754 a001 63245986/312119004989*73681302247^(7/8) 6541093923494754 a001 2504730781961/141422324*28143753123^(3/20) 6541093923494754 a001 225851433717/141422324*28143753123^(1/4) 6541093923494754 a001 10182505537/70711162*312119004989^(7/22) 6541093923494754 a001 10182505537/70711162*14662949395604^(5/18) 6541093923494754 a001 10182505537/70711162*505019158607^(5/16) 6541093923494754 a001 63245986/73681302247*28143753123^(17/20) 6541093923494754 a001 10182505537/70711162*28143753123^(7/20) 6541093923494754 a001 31622993/408569081798*28143753123^(19/20) 6541093923494754 a001 7778742049/141422324*73681302247^(3/8) 6541093923494754 a001 182717648081/70711162*4106118243^(1/4) 6541093923494754 a001 63245986/6643838879*312119004989^(15/22) 6541093923494754 a001 63245986/6643838879*3461452808002^(5/8) 6541093923494754 a001 63245986/6643838879*28143753123^(3/4) 6541093923494754 a001 3278735159921/70711162*1568397607^(1/8) 6541093923494754 a001 567451585/70711162*6643838879^(1/2) 6541093923494754 a001 63246219/271444*1568397607^(3/8) 6541093923494754 a001 31622993/5374978561*1568397607^(7/8) 6541093923494754 a001 591286729879/141422324*599074578^(1/4) 6541093923494754 a001 433494437/141422324*45537549124^(1/2) 6541093923494754 a001 10182505537/70711162*599074578^(5/12) 6541093923494754 a001 701408733/141422324*599074578^(7/12) 6541093923494754 a001 31622993/5374978561*599074578^(11/12) 6541093923494754 a001 2504730781961/141422324*228826127^(3/16) 6541093923494754 a001 225851433717/141422324*228826127^(5/16) 6541093923494754 a001 516002918640/29134601*33385282^(5/24) 6541093923494754 a001 63245986/370248451*2537720636^(7/10) 6541093923494754 a001 165580141/141422324*2537720636^(11/18) 6541093923494754 a001 63245986/370248451*17393796001^(9/14) 6541093923494754 a001 165580141/141422324*312119004989^(1/2) 6541093923494754 a001 63245986/370248451*14662949395604^(1/2) 6541093923494754 a001 165580141/141422324*3461452808002^(11/24) 6541093923494754 a001 63245986/370248451*505019158607^(9/16) 6541093923494754 a001 63245986/370248451*192900153618^(7/12) 6541093923494754 a001 165580141/141422324*28143753123^(11/20) 6541093923494754 a001 165580141/141422324*1568397607^(5/8) 6541093923494754 a001 10182505537/70711162*228826127^(7/16) 6541093923494754 a001 63245986/370248451*599074578^(3/4) 6541093923494754 a001 1836311903/141422324*228826127^(9/16) 6541093923494754 a001 31622993/299537289*228826127^(13/16) 6541093923494754 a001 63245986/6643838879*228826127^(15/16) 6541093923494754 a001 165580141/141422324*228826127^(11/16) 6541093923494754 a001 956722026041/141422324*87403803^(1/4) 6541093923494754 a001 165580141/228826127*87403803^(3/4) 6541093923494755 a001 433494437/599074578*87403803^(3/4) 6541093923494755 a001 1134903170/1568397607*87403803^(3/4) 6541093923494755 a001 2971215073/4106118243*87403803^(3/4) 6541093923494755 a001 7778742049/10749957122*87403803^(3/4) 6541093923494755 a001 20365011074/28143753123*87403803^(3/4) 6541093923494755 a001 53316291173/73681302247*87403803^(3/4) 6541093923494755 a001 139583862445/192900153618*87403803^(3/4) 6541093923494755 a001 365435296162/505019158607*87403803^(3/4) 6541093923494755 a001 10610209857723/14662949395604*87403803^(3/4) 6541093923494755 a001 591286729879/817138163596*87403803^(3/4) 6541093923494755 a001 225851433717/312119004989*87403803^(3/4) 6541093923494755 a001 86267571272/119218851371*87403803^(3/4) 6541093923494755 a001 32951280099/45537549124*87403803^(3/4) 6541093923494755 a001 12586269025/17393796001*87403803^(3/4) 6541093923494755 a001 4807526976/6643838879*87403803^(3/4) 6541093923494755 a001 1836311903/2537720636*87403803^(3/4) 6541093923494755 a001 701408733/969323029*87403803^(3/4) 6541093923494755 a001 31622993/70711162*2139295485799^(1/2) 6541093923494755 a001 267914296/370248451*87403803^(3/4) 6541093923494755 a001 6557470319842/54018521*20633239^(1/10) 6541093923494755 a001 102334155/141422324*87403803^(3/4) 6541093923494755 a001 365435296162/87403803*33385282^(7/24) 6541093923494755 a001 140728068720/1875749*7881196^(3/22) 6541093923494755 a001 24157817/33385282*33385282^(19/24) 6541093923494755 a001 10610209857723/141422324*33385282^(1/8) 6541093923494755 a001 4052739537881/228826127*33385282^(5/24) 6541093923494755 a001 4807526976/54018521*54018521^(1/2) 6541093923494755 a001 10610209857723/54018521*20633239^(1/14) 6541093923494755 a001 3536736619241/199691526*33385282^(5/24) 6541093923494755 a001 6557470319842/370248451*33385282^(5/24) 6541093923494755 a001 86267571272/87403803*33385282^(3/8) 6541093923494755 a001 24157817/87403803*5600748293801^(1/2) 6541093923494755 a001 2504730781961/141422324*33385282^(5/24) 6541093923494755 a001 956722026041/228826127*33385282^(7/24) 6541093923494756 a001 2504730781961/599074578*33385282^(7/24) 6541093923494756 a001 6557470319842/1568397607*33385282^(7/24) 6541093923494756 a001 10610209857723/2537720636*33385282^(7/24) 6541093923494756 a001 4052739537881/969323029*33385282^(7/24) 6541093923494756 a001 1548008755920/370248451*33385282^(7/24) 6541093923494756 a001 20365011074/87403803*33385282^(11/24) 6541093923494756 a001 24157817/228826127*141422324^(5/6) 6541093923494756 a001 39088169/54018521*87403803^(3/4) 6541093923494756 a001 591286729879/141422324*33385282^(7/24) 6541093923494756 a001 225851433717/228826127*33385282^(3/8) 6541093923494756 a001 2971215073/54018521*141422324^(1/2) 6541093923494756 a001 24157817/228826127*2537720636^(13/18) 6541093923494756 a001 102334155/54018521*119218851371^(1/2) 6541093923494756 a001 24157817/228826127*312119004989^(13/22) 6541093923494756 a001 24157817/228826127*3461452808002^(13/24) 6541093923494756 a001 24157817/228826127*73681302247^(5/8) 6541093923494756 a001 24157817/228826127*28143753123^(13/20) 6541093923494756 a001 591286729879/599074578*33385282^(3/8) 6541093923494756 a001 1548008755920/54018521*141422324^(1/6) 6541093923494756 a001 1548008755920/1568397607*33385282^(3/8) 6541093923494756 a001 4052739537881/4106118243*33385282^(3/8) 6541093923494756 a001 4807525989/4870846*33385282^(3/8) 6541093923494756 a001 6557470319842/6643838879*33385282^(3/8) 6541093923494756 a001 2504730781961/2537720636*33385282^(3/8) 6541093923494756 a001 956722026041/969323029*33385282^(3/8) 6541093923494756 a001 1836311903/54018521*370248451^(1/2) 6541093923494756 a001 24157817/228826127*228826127^(13/16) 6541093923494756 a001 267914296/54018521*17393796001^(1/2) 6541093923494756 a001 267914296/54018521*14662949395604^(7/18) 6541093923494756 a001 267914296/54018521*505019158607^(7/16) 6541093923494756 a001 24157817/599074578*4106118243^(3/4) 6541093923494756 a001 267914296/54018521*599074578^(7/12) 6541093923494756 a001 701408733/54018521*2537720636^(1/2) 6541093923494756 a001 701408733/54018521*312119004989^(9/22) 6541093923494756 a001 701408733/54018521*14662949395604^(5/14) 6541093923494756 a001 701408733/54018521*192900153618^(5/12) 6541093923494756 a001 701408733/54018521*28143753123^(9/20) 6541093923494756 a001 1134903170/54018521*969323029^(1/2) 6541093923494756 a001 24157817/10749957122*2537720636^(9/10) 6541093923494756 a001 24157817/28143753123*2537720636^(17/18) 6541093923494756 a001 24157817/4106118243*17393796001^(11/14) 6541093923494756 a001 24157817/4106118243*14662949395604^(11/18) 6541093923494756 a001 24157817/4106118243*505019158607^(11/16) 6541093923494756 a001 7778742049/54018521*2537720636^(7/18) 6541093923494756 a001 53316291173/54018521*2537720636^(3/10) 6541093923494756 a001 86267571272/54018521*2537720636^(5/18) 6541093923494756 a001 956722026041/54018521*2537720636^(1/6) 6541093923494756 a001 4052739537881/54018521*2537720636^(1/10) 6541093923494756 a001 24157817/10749957122*14662949395604^(9/14) 6541093923494756 a001 24157817/10749957122*192900153618^(3/4) 6541093923494756 a001 10610209857723/54018521*2537720636^(1/18) 6541093923494756 a001 24157817/119218851371*17393796001^(13/14) 6541093923494756 a001 24157817/28143753123*45537549124^(5/6) 6541093923494756 a001 24157817/28143753123*312119004989^(17/22) 6541093923494756 a001 12586269025/54018521*312119004989^(3/10) 6541093923494756 a001 24157817/28143753123*3461452808002^(17/24) 6541093923494756 a001 225851433717/54018521*17393796001^(3/14) 6541093923494756 a001 6557470319842/54018521*17393796001^(1/14) 6541093923494756 a001 24157817/28143753123*28143753123^(17/20) 6541093923494756 a001 32951280099/54018521*1322157322203^(1/4) 6541093923494756 a001 591286729879/54018521*45537549124^(1/6) 6541093923494756 a001 24157817/192900153618*9062201101803^(3/4) 6541093923494756 a001 86267571272/54018521*3461452808002^(5/24) 6541093923494756 a001 24157817/3461452808002*312119004989^(21/22) 6541093923494756 a001 24157817/817138163596*312119004989^(9/10) 6541093923494756 a001 225851433717/54018521*14662949395604^(1/6) 6541093923494756 a001 10610209857723/54018521*312119004989^(1/22) 6541093923494756 a001 24157817/3461452808002*14662949395604^(5/6) 6541093923494756 a001 24157817/312119004989*312119004989^(19/22) 6541093923494756 a001 24157817/3461452808002*505019158607^(15/16) 6541093923494756 a001 24157817/312119004989*817138163596^(5/6) 6541093923494756 a001 24157817/312119004989*3461452808002^(19/24) 6541093923494756 a001 1548008755920/54018521*73681302247^(1/8) 6541093923494756 a001 24157817/817138163596*192900153618^(11/12) 6541093923494756 a001 10610209857723/54018521*28143753123^(1/20) 6541093923494756 a001 24157817/119218851371*14662949395604^(13/18) 6541093923494756 a001 53316291173/54018521*14662949395604^(3/14) 6541093923494756 a001 24157817/119218851371*505019158607^(13/16) 6541093923494756 a001 53316291173/54018521*192900153618^(1/4) 6541093923494756 a001 956722026041/54018521*28143753123^(3/20) 6541093923494756 a001 24157817/119218851371*73681302247^(7/8) 6541093923494756 a001 86267571272/54018521*28143753123^(1/4) 6541093923494756 a001 20365011074/54018521*9062201101803^(1/4) 6541093923494756 a001 24157817/45537549124*1322157322203^(3/4) 6541093923494756 a001 24157817/312119004989*28143753123^(19/20) 6541093923494756 a001 7778742049/54018521*17393796001^(5/14) 6541093923494756 a001 7778742049/54018521*312119004989^(7/22) 6541093923494756 a001 7778742049/54018521*14662949395604^(5/18) 6541093923494756 a001 7778742049/54018521*505019158607^(5/16) 6541093923494756 a001 7778742049/54018521*28143753123^(7/20) 6541093923494756 a001 139583862445/54018521*4106118243^(1/4) 6541093923494756 a001 2971215073/54018521*73681302247^(3/8) 6541093923494756 a001 24157817/2537720636*2537720636^(5/6) 6541093923494756 a001 2504730781961/54018521*1568397607^(1/8) 6541093923494756 a001 12586269025/54018521*1568397607^(3/8) 6541093923494756 a001 24157817/2537720636*312119004989^(15/22) 6541093923494756 a001 24157817/2537720636*3461452808002^(5/8) 6541093923494756 a001 24157817/2537720636*28143753123^(3/4) 6541093923494756 a001 6557470319842/54018521*599074578^(1/12) 6541093923494756 a001 24157817/4106118243*1568397607^(7/8) 6541093923494756 a001 225851433717/54018521*599074578^(1/4) 6541093923494756 a001 365435296162/370248451*33385282^(3/8) 6541093923494756 a001 433494437/54018521*6643838879^(1/2) 6541093923494756 a001 7778742049/54018521*599074578^(5/12) 6541093923494756 a001 10610209857723/54018521*228826127^(1/16) 6541093923494756 a001 24157817/4106118243*599074578^(11/12) 6541093923494756 a001 956722026041/54018521*228826127^(3/16) 6541093923494756 a001 86267571272/54018521*228826127^(5/16) 6541093923494756 a001 165580141/54018521*45537549124^(1/2) 6541093923494756 a001 7778742049/54018521*228826127^(7/16) 6541093923494756 a001 701408733/54018521*228826127^(9/16) 6541093923494756 a001 1602508992/29134601*33385282^(13/24) 6541093923494756 a001 24157817/2537720636*228826127^(15/16) 6541093923494756 a001 365435296162/54018521*87403803^(1/4) 6541093923494756 a001 139583862445/141422324*33385282^(3/8) 6541093923494756 a001 53316291173/228826127*33385282^(11/24) 6541093923494756 a001 24157817/141422324*2537720636^(7/10) 6541093923494756 a001 63245986/54018521*2537720636^(11/18) 6541093923494756 a001 24157817/141422324*17393796001^(9/14) 6541093923494756 a001 63245986/54018521*312119004989^(1/2) 6541093923494756 a001 24157817/141422324*14662949395604^(1/2) 6541093923494756 a001 24157817/141422324*505019158607^(9/16) 6541093923494756 a001 24157817/141422324*192900153618^(7/12) 6541093923494756 a001 63245986/54018521*28143753123^(11/20) 6541093923494756 a001 63245986/54018521*1568397607^(5/8) 6541093923494756 a001 24157817/141422324*599074578^(3/4) 6541093923494757 a001 63245986/54018521*228826127^(11/16) 6541093923494757 a001 139583862445/599074578*33385282^(11/24) 6541093923494757 a001 365435296162/1568397607*33385282^(11/24) 6541093923494757 a001 956722026041/4106118243*33385282^(11/24) 6541093923494757 a001 2504730781961/10749957122*33385282^(11/24) 6541093923494757 a001 6557470319842/28143753123*33385282^(11/24) 6541093923494757 a001 10610209857723/45537549124*33385282^(11/24) 6541093923494757 a001 4052739537881/17393796001*33385282^(11/24) 6541093923494757 a001 1548008755920/6643838879*33385282^(11/24) 6541093923494757 a001 591286729879/2537720636*33385282^(11/24) 6541093923494757 a001 225851433717/969323029*33385282^(11/24) 6541093923494757 a001 86267571272/370248451*33385282^(11/24) 6541093923494757 a001 1134903170/87403803*33385282^(5/8) 6541093923494757 a001 4052739537881/54018521*33385282^(1/8) 6541093923494757 a001 63246219/271444*33385282^(11/24) 6541093923494757 a001 12586269025/228826127*33385282^(13/24) 6541093923494757 a001 10983760033/199691526*33385282^(13/24) 6541093923494757 a001 86267571272/1568397607*33385282^(13/24) 6541093923494757 a001 75283811239/1368706081*33385282^(13/24) 6541093923494757 a001 591286729879/10749957122*33385282^(13/24) 6541093923494757 a001 12585437040/228811001*33385282^(13/24) 6541093923494757 a001 4052739537881/73681302247*33385282^(13/24) 6541093923494757 a001 3536736619241/64300051206*33385282^(13/24) 6541093923494757 a001 6557470319842/119218851371*33385282^(13/24) 6541093923494757 a001 2504730781961/45537549124*33385282^(13/24) 6541093923494757 a001 956722026041/17393796001*33385282^(13/24) 6541093923494757 a001 365435296162/6643838879*33385282^(13/24) 6541093923494757 a001 139583862445/2537720636*33385282^(13/24) 6541093923494757 a001 53316291173/969323029*33385282^(13/24) 6541093923494757 a001 20365011074/370248451*33385282^(13/24) 6541093923494757 a001 267914296/87403803*33385282^(17/24) 6541093923494757 a001 956722026041/54018521*33385282^(5/24) 6541093923494757 a001 7778742049/141422324*33385282^(13/24) 6541093923494757 a001 2971215073/228826127*33385282^(5/8) 6541093923494758 a001 7778742049/599074578*33385282^(5/8) 6541093923494758 a001 20365011074/1568397607*33385282^(5/8) 6541093923494758 a001 53316291173/4106118243*33385282^(5/8) 6541093923494758 a001 139583862445/10749957122*33385282^(5/8) 6541093923494758 a001 365435296162/28143753123*33385282^(5/8) 6541093923494758 a001 956722026041/73681302247*33385282^(5/8) 6541093923494758 a001 2504730781961/192900153618*33385282^(5/8) 6541093923494758 a001 10610209857723/817138163596*33385282^(5/8) 6541093923494758 a001 4052739537881/312119004989*33385282^(5/8) 6541093923494758 a001 1548008755920/119218851371*33385282^(5/8) 6541093923494758 a001 591286729879/45537549124*33385282^(5/8) 6541093923494758 a001 7787980473/599786069*33385282^(5/8) 6541093923494758 a001 86267571272/6643838879*33385282^(5/8) 6541093923494758 a001 32951280099/2537720636*33385282^(5/8) 6541093923494758 a001 12586269025/969323029*33385282^(5/8) 6541093923494758 a001 4807526976/370248451*33385282^(5/8) 6541093923494758 a001 9227465/54018521*20633239^(9/10) 6541093923494758 a001 225851433717/54018521*33385282^(7/24) 6541093923494758 a001 1836311903/141422324*33385282^(5/8) 6541093923494758 a001 701408733/228826127*33385282^(17/24) 6541093923494758 a001 63245986/87403803*33385282^(19/24) 6541093923494758 a001 1836311903/599074578*33385282^(17/24) 6541093923494758 a001 39088169/228826127*33385282^(7/8) 6541093923494758 a001 686789568/224056801*33385282^(17/24) 6541093923494758 a001 12586269025/4106118243*33385282^(17/24) 6541093923494758 a001 32951280099/10749957122*33385282^(17/24) 6541093923494758 a001 86267571272/28143753123*33385282^(17/24) 6541093923494758 a001 32264490531/10525900321*33385282^(17/24) 6541093923494758 a001 591286729879/192900153618*33385282^(17/24) 6541093923494758 a001 1548008755920/505019158607*33385282^(17/24) 6541093923494758 a001 1515744265389/494493258286*33385282^(17/24) 6541093923494758 a001 2504730781961/817138163596*33385282^(17/24) 6541093923494758 a001 956722026041/312119004989*33385282^(17/24) 6541093923494758 a001 365435296162/119218851371*33385282^(17/24) 6541093923494758 a001 139583862445/45537549124*33385282^(17/24) 6541093923494758 a001 53316291173/17393796001*33385282^(17/24) 6541093923494758 a001 20365011074/6643838879*33385282^(17/24) 6541093923494758 a001 7778742049/2537720636*33385282^(17/24) 6541093923494758 a001 2971215073/969323029*33385282^(17/24) 6541093923494758 a001 182717648081/16692641*12752043^(1/4) 6541093923494758 a001 1134903170/370248451*33385282^(17/24) 6541093923494758 a001 53316291173/54018521*33385282^(3/8) 6541093923494758 a001 24157817/54018521*2139295485799^(1/2) 6541093923494758 a001 9303105/1875749*20633239^(7/10) 6541093923494758 a001 433494437/141422324*33385282^(17/24) 6541093923494758 a001 165580141/228826127*33385282^(19/24) 6541093923494759 a001 433494437/599074578*33385282^(19/24) 6541093923494759 a001 1134903170/1568397607*33385282^(19/24) 6541093923494759 a001 2971215073/4106118243*33385282^(19/24) 6541093923494759 a001 7778742049/10749957122*33385282^(19/24) 6541093923494759 a001 20365011074/28143753123*33385282^(19/24) 6541093923494759 a001 53316291173/73681302247*33385282^(19/24) 6541093923494759 a001 139583862445/192900153618*33385282^(19/24) 6541093923494759 a001 365435296162/505019158607*33385282^(19/24) 6541093923494759 a001 10610209857723/14662949395604*33385282^(19/24) 6541093923494759 a001 591286729879/817138163596*33385282^(19/24) 6541093923494759 a001 225851433717/312119004989*33385282^(19/24) 6541093923494759 a001 86267571272/119218851371*33385282^(19/24) 6541093923494759 a001 32951280099/45537549124*33385282^(19/24) 6541093923494759 a001 12586269025/17393796001*33385282^(19/24) 6541093923494759 a001 4807526976/6643838879*33385282^(19/24) 6541093923494759 a001 1836311903/2537720636*33385282^(19/24) 6541093923494759 a001 701408733/969323029*33385282^(19/24) 6541093923494759 a001 267914296/370248451*33385282^(19/24) 6541093923494759 a001 39088169/969323029*33385282^(23/24) 6541093923494759 a001 102334155/141422324*33385282^(19/24) 6541093923494759 a001 12586269025/54018521*33385282^(11/24) 6541093923494759 a001 34111385/199691526*33385282^(7/8) 6541093923494759 a001 267914296/1568397607*33385282^(7/8) 6541093923494759 a001 233802911/1368706081*33385282^(7/8) 6541093923494759 a001 1836311903/10749957122*33385282^(7/8) 6541093923494759 a001 1602508992/9381251041*33385282^(7/8) 6541093923494759 a001 12586269025/73681302247*33385282^(7/8) 6541093923494759 a001 10983760033/64300051206*33385282^(7/8) 6541093923494759 a001 86267571272/505019158607*33385282^(7/8) 6541093923494759 a001 75283811239/440719107401*33385282^(7/8) 6541093923494759 a001 2504730781961/14662949395604*33385282^(7/8) 6541093923494759 a001 139583862445/817138163596*33385282^(7/8) 6541093923494759 a001 53316291173/312119004989*33385282^(7/8) 6541093923494759 a001 20365011074/119218851371*33385282^(7/8) 6541093923494759 a001 7778742049/45537549124*33385282^(7/8) 6541093923494759 a001 2971215073/17393796001*33385282^(7/8) 6541093923494759 a001 1134903170/6643838879*33385282^(7/8) 6541093923494759 a001 433494437/2537720636*33385282^(7/8) 6541093923494759 a001 165580141/969323029*33385282^(7/8) 6541093923494759 a001 2971215073/54018521*33385282^(13/24) 6541093923494759 a001 9238424/711491*20633239^(9/14) 6541093923494759 a001 9303105/230701876*33385282^(23/24) 6541093923494759 a001 63245986/370248451*33385282^(7/8) 6541093923494759 a001 24157817/20633239*20633239^(11/14) 6541093923494760 a001 267914296/6643838879*33385282^(23/24) 6541093923494760 a001 701408733/17393796001*33385282^(23/24) 6541093923494760 a001 1836311903/45537549124*33385282^(23/24) 6541093923494760 a001 4807526976/119218851371*33385282^(23/24) 6541093923494760 a001 1144206275/28374454999*33385282^(23/24) 6541093923494760 a001 32951280099/817138163596*33385282^(23/24) 6541093923494760 a001 86267571272/2139295485799*33385282^(23/24) 6541093923494760 a001 225851433717/5600748293801*33385282^(23/24) 6541093923494760 a001 591286729879/14662949395604*33385282^(23/24) 6541093923494760 a001 365435296162/9062201101803*33385282^(23/24) 6541093923494760 a001 139583862445/3461452808002*33385282^(23/24) 6541093923494760 a001 53316291173/1322157322203*33385282^(23/24) 6541093923494760 a001 20365011074/505019158607*33385282^(23/24) 6541093923494760 a001 7778742049/192900153618*33385282^(23/24) 6541093923494760 a001 2971215073/73681302247*33385282^(23/24) 6541093923494760 a001 1134903170/28143753123*33385282^(23/24) 6541093923494760 a001 433494437/10749957122*33385282^(23/24) 6541093923494760 a001 165580141/4106118243*33385282^(23/24) 6541093923494760 a001 701408733/54018521*33385282^(5/8) 6541093923494760 a001 63245986/1568397607*33385282^(23/24) 6541093923494760 a001 39088169/54018521*33385282^(19/24) 6541093923494760 a001 165580141/54018521*33385282^(17/24) 6541093923494762 a001 2971215073/20633239*20633239^(1/2) 6541093923494762 a001 24157817/141422324*33385282^(7/8) 6541093923494762 a001 365435296162/4870847*1860498^(3/20) 6541093923494762 a001 24157817/599074578*33385282^(23/24) 6541093923494763 a001 956722026041/87403803*12752043^(1/4) 6541093923494763 a001 14930352/20633239*817138163596^(1/2) 6541093923494764 a001 32951280099/20633239*20633239^(5/14) 6541093923494764 a001 2504730781961/228826127*12752043^(1/4) 6541093923494764 a001 3278735159921/299537289*12752043^(1/4) 6541093923494764 a001 10610209857723/969323029*12752043^(1/4) 6541093923494764 a001 4052739537881/370248451*12752043^(1/4) 6541093923494764 a001 14930352/20633239*87403803^(3/4) 6541093923494764 a001 387002188980/35355581*12752043^(1/4) 6541093923494764 a001 6557470319842/20633239*7881196^(1/22) 6541093923494765 a001 86267571272/20633239*20633239^(3/10) 6541093923494766 a001 365435296162/20633239*20633239^(3/14) 6541093923494766 a001 591286729879/54018521*12752043^(1/4) 6541093923494768 a001 2504730781961/20633239*20633239^(1/10) 6541093923494768 a001 14930352/20633239*33385282^(19/24) 6541093923494768 a001 9227465/87403803*141422324^(5/6) 6541093923494768 a001 1836311903/20633239*54018521^(1/2) 6541093923494768 a001 4052739537881/20633239*20633239^(1/14) 6541093923494768 a001 9227465/87403803*2537720636^(13/18) 6541093923494768 a001 39088169/20633239*119218851371^(1/2) 6541093923494768 a001 9227465/87403803*312119004989^(13/22) 6541093923494768 a001 9227465/87403803*3461452808002^(13/24) 6541093923494768 a001 9227465/87403803*73681302247^(5/8) 6541093923494768 a001 9227465/87403803*28143753123^(13/20) 6541093923494769 a001 9227465/87403803*228826127^(13/16) 6541093923494769 a001 1134903170/20633239*141422324^(1/2) 6541093923494769 a001 9303105/1875749*17393796001^(1/2) 6541093923494769 a001 9303105/1875749*14662949395604^(7/18) 6541093923494769 a001 9303105/1875749*505019158607^(7/16) 6541093923494769 a001 9227465/228826127*4106118243^(3/4) 6541093923494769 a001 9303105/1875749*599074578^(7/12) 6541093923494769 a001 591286729879/20633239*141422324^(1/6) 6541093923494769 a001 701408733/20633239*370248451^(1/2) 6541093923494769 a001 9238424/711491*2537720636^(1/2) 6541093923494769 a001 9238424/711491*312119004989^(9/22) 6541093923494769 a001 9238424/711491*14662949395604^(5/14) 6541093923494769 a001 9238424/711491*192900153618^(5/12) 6541093923494769 a001 9238424/711491*28143753123^(9/20) 6541093923494769 a001 9227465/1568397607*17393796001^(11/14) 6541093923494769 a001 9227465/1568397607*14662949395604^(11/18) 6541093923494769 a001 9227465/1568397607*505019158607^(11/16) 6541093923494769 a001 9227465/4106118243*2537720636^(9/10) 6541093923494769 a001 9227465/10749957122*2537720636^(17/18) 6541093923494769 a001 9227465/4106118243*14662949395604^(9/14) 6541093923494769 a001 9227465/4106118243*192900153618^(3/4) 6541093923494769 a001 9227465/1568397607*1568397607^(7/8) 6541093923494769 a001 20365011074/20633239*2537720636^(3/10) 6541093923494769 a001 32951280099/20633239*2537720636^(5/18) 6541093923494769 a001 2971215073/20633239*2537720636^(7/18) 6541093923494769 a001 365435296162/20633239*2537720636^(1/6) 6541093923494769 a001 140728068720/1875749*2537720636^(1/10) 6541093923494769 a001 9227465/10749957122*45537549124^(5/6) 6541093923494769 a001 9227465/10749957122*312119004989^(17/22) 6541093923494769 a001 4807526976/20633239*312119004989^(3/10) 6541093923494769 a001 9227465/10749957122*3461452808002^(17/24) 6541093923494769 a001 4052739537881/20633239*2537720636^(1/18) 6541093923494769 a001 9227465/10749957122*28143753123^(17/20) 6541093923494769 a001 9227465/45537549124*17393796001^(13/14) 6541093923494769 a001 1144206275/1875749*1322157322203^(1/4) 6541093923494769 a001 86267571272/20633239*17393796001^(3/14) 6541093923494769 a001 2504730781961/20633239*17393796001^(1/14) 6541093923494769 a001 32951280099/20633239*312119004989^(5/22) 6541093923494769 a001 32951280099/20633239*3461452808002^(5/24) 6541093923494769 a001 7787980473/711491*45537549124^(1/6) 6541093923494769 a001 86267571272/20633239*14662949395604^(1/6) 6541093923494769 a001 9227465/1322157322203*312119004989^(21/22) 6541093923494769 a001 140728068720/1875749*14662949395604^(1/14) 6541093923494769 a001 2504730781961/20633239*14662949395604^(1/18) 6541093923494769 a001 9227465/14662949395604*3461452808002^(23/24) 6541093923494769 a001 140728068720/1875749*192900153618^(1/12) 6541093923494769 a001 9227465/1322157322203*505019158607^(15/16) 6541093923494769 a001 139583862445/20633239*817138163596^(1/6) 6541093923494769 a001 591286729879/20633239*73681302247^(1/8) 6541093923494769 a001 9227465/312119004989*192900153618^(11/12) 6541093923494769 a001 4052739537881/20633239*28143753123^(1/20) 6541093923494769 a001 9227465/119218851371*817138163596^(5/6) 6541093923494769 a001 9227465/119218851371*3461452808002^(19/24) 6541093923494769 a001 32951280099/20633239*28143753123^(1/4) 6541093923494769 a001 365435296162/20633239*28143753123^(3/20) 6541093923494769 a001 20365011074/20633239*14662949395604^(3/14) 6541093923494769 a001 9227465/45537549124*505019158607^(13/16) 6541093923494769 a001 20365011074/20633239*192900153618^(1/4) 6541093923494769 a001 9227465/45537549124*73681302247^(7/8) 6541093923494769 a001 9227465/119218851371*28143753123^(19/20) 6541093923494769 a001 7778742049/20633239*9062201101803^(1/4) 6541093923494769 a001 9227465/17393796001*1322157322203^(3/4) 6541093923494769 a001 53316291173/20633239*4106118243^(1/4) 6541093923494769 a001 2971215073/20633239*17393796001^(5/14) 6541093923494769 a001 2971215073/20633239*312119004989^(7/22) 6541093923494769 a001 2971215073/20633239*14662949395604^(5/18) 6541093923494769 a001 2971215073/20633239*505019158607^(5/16) 6541093923494769 a001 2971215073/20633239*28143753123^(7/20) 6541093923494769 a001 956722026041/20633239*1568397607^(1/8) 6541093923494769 a001 4807526976/20633239*1568397607^(3/8) 6541093923494769 a001 1134903170/20633239*73681302247^(3/8) 6541093923494769 a001 2504730781961/20633239*599074578^(1/12) 6541093923494769 a001 433494437/20633239*969323029^(1/2) 6541093923494769 a001 86267571272/20633239*599074578^(1/4) 6541093923494769 a001 9227465/969323029*2537720636^(5/6) 6541093923494769 a001 9227465/969323029*312119004989^(15/22) 6541093923494769 a001 9227465/969323029*3461452808002^(5/8) 6541093923494769 a001 9227465/969323029*28143753123^(3/4) 6541093923494769 a001 2971215073/20633239*599074578^(5/12) 6541093923494769 a001 4052739537881/20633239*228826127^(1/16) 6541093923494769 a001 9227465/1568397607*599074578^(11/12) 6541093923494769 a001 365435296162/20633239*228826127^(3/16) 6541093923494769 a001 32951280099/20633239*228826127^(5/16) 6541093923494769 a001 165580141/20633239*6643838879^(1/2) 6541093923494769 a001 9238424/711491*228826127^(9/16) 6541093923494769 a001 2971215073/20633239*228826127^(7/16) 6541093923494769 a001 9227465/969323029*228826127^(15/16) 6541093923494769 a001 139583862445/20633239*87403803^(1/4) 6541093923494770 a001 6557470319842/20633239*33385282^(1/24) 6541093923494770 a001 63245986/20633239*45537549124^(1/2) 6541093923494770 a001 140728068720/1875749*33385282^(1/8) 6541093923494770 a001 365435296162/20633239*33385282^(5/24) 6541093923494771 a001 86267571272/20633239*33385282^(7/24) 6541093923494771 a001 20365011074/20633239*33385282^(3/8) 6541093923494772 a001 9227465/54018521*2537720636^(7/10) 6541093923494772 a001 24157817/20633239*2537720636^(11/18) 6541093923494772 a001 9227465/54018521*17393796001^(9/14) 6541093923494772 a001 24157817/20633239*312119004989^(1/2) 6541093923494772 a001 9227465/54018521*14662949395604^(1/2) 6541093923494772 a001 24157817/20633239*3461452808002^(11/24) 6541093923494772 a001 9227465/54018521*505019158607^(9/16) 6541093923494772 a001 9227465/54018521*192900153618^(7/12) 6541093923494772 a001 24157817/20633239*28143753123^(11/20) 6541093923494772 a001 24157817/20633239*1568397607^(5/8) 6541093923494772 a001 9227465/54018521*599074578^(3/4) 6541093923494772 a001 24157817/20633239*228826127^(11/16) 6541093923494772 a001 4807526976/20633239*33385282^(11/24) 6541093923494772 a001 1134903170/20633239*33385282^(13/24) 6541093923494773 a001 9238424/711491*33385282^(5/8) 6541093923494774 a001 63245986/20633239*33385282^(17/24) 6541093923494774 a001 3524578/20633239*7881196^(21/22) 6541093923494775 a001 9227465/228826127*33385282^(23/24) 6541093923494777 a001 9227465/54018521*33385282^(7/8) 6541093923494778 a001 14619165/4769326*12752043^(3/4) 6541093923494779 a001 7787980473/711491*12752043^(1/4) 6541093923494780 a001 24157817/7881196*7881196^(17/22) 6541093923494783 a001 267914296/87403803*12752043^(3/4) 6541093923494784 a001 701408733/228826127*12752043^(3/4) 6541093923494784 a001 1836311903/599074578*12752043^(3/4) 6541093923494784 a001 686789568/224056801*12752043^(3/4) 6541093923494784 a001 12586269025/4106118243*12752043^(3/4) 6541093923494784 a001 32951280099/10749957122*12752043^(3/4) 6541093923494784 a001 86267571272/28143753123*12752043^(3/4) 6541093923494784 a001 32264490531/10525900321*12752043^(3/4) 6541093923494784 a001 591286729879/192900153618*12752043^(3/4) 6541093923494784 a001 1548008755920/505019158607*12752043^(3/4) 6541093923494784 a001 1515744265389/494493258286*12752043^(3/4) 6541093923494784 a001 2504730781961/817138163596*12752043^(3/4) 6541093923494784 a001 956722026041/312119004989*12752043^(3/4) 6541093923494784 a001 365435296162/119218851371*12752043^(3/4) 6541093923494784 a001 139583862445/45537549124*12752043^(3/4) 6541093923494784 a001 53316291173/17393796001*12752043^(3/4) 6541093923494784 a001 20365011074/6643838879*12752043^(3/4) 6541093923494784 a001 7778742049/2537720636*12752043^(3/4) 6541093923494784 a001 2971215073/969323029*12752043^(3/4) 6541093923494784 a001 1134903170/370248451*12752043^(3/4) 6541093923494784 a001 433494437/141422324*12752043^(3/4) 6541093923494785 a001 9227465/20633239*2139295485799^(1/2) 6541093923494786 a001 165580141/54018521*12752043^(3/4) 6541093923494787 a001 9227465/7881196*7881196^(5/6) 6541093923494787 a001 102334155/7881196*7881196^(15/22) 6541093923494797 a001 433494437/7881196*7881196^(13/22) 6541093923494800 a001 63245986/20633239*12752043^(3/4) 6541093923494807 a001 1836311903/7881196*7881196^(1/2) 6541093923494808 a001 4052739537881/12752043*1860498^(1/20) 6541093923494816 a001 7778742049/7881196*7881196^(9/22) 6541093923494819 a001 5702887/7881196*817138163596^(1/2) 6541093923494819 a001 3524578/12752043*5600748293801^(1/2) 6541093923494820 a001 5702887/7881196*87403803^(3/4) 6541093923494824 a001 5702887/7881196*33385282^(19/24) 6541093923494826 a001 32951280099/7881196*7881196^(7/22) 6541093923494835 a001 139583862445/7881196*7881196^(5/22) 6541093923494839 a001 1762289/16692641*20633239^(13/14) 6541093923494842 a001 182717648081/3940598*7881196^(1/6) 6541093923494843 a001 1515744265389/4769326*1860498^(1/20) 6541093923494845 a001 591286729879/7881196*7881196^(3/22) 6541093923494848 a001 39088169/7881196*20633239^(7/10) 6541093923494849 a001 102334155/7881196*20633239^(9/14) 6541093923494852 a001 567451585/3940598*20633239^(1/2) 6541093923494853 a001 1762289/16692641*141422324^(5/6) 6541093923494853 a001 1762289/16692641*2537720636^(13/18) 6541093923494853 a001 3732588/1970299*119218851371^(1/2) 6541093923494853 a001 1762289/16692641*312119004989^(13/22) 6541093923494853 a001 1762289/16692641*3461452808002^(13/24) 6541093923494853 a001 1762289/16692641*73681302247^(5/8) 6541093923494853 a001 1762289/16692641*28143753123^(13/20) 6541093923494853 a001 1762289/16692641*228826127^(13/16) 6541093923494854 a001 12586269025/7881196*20633239^(5/14) 6541093923494854 a001 2504730781961/7881196*7881196^(1/22) 6541093923494855 a001 32951280099/7881196*20633239^(3/10) 6541093923494856 a001 139583862445/7881196*20633239^(3/14) 6541093923494858 a001 956722026041/7881196*20633239^(1/10) 6541093923494858 a001 3524667/39604*54018521^(1/2) 6541093923494858 a001 387002188980/1970299*20633239^(1/14) 6541093923494858 a001 39088169/7881196*17393796001^(1/2) 6541093923494858 a001 39088169/7881196*14662949395604^(7/18) 6541093923494858 a001 39088169/7881196*505019158607^(7/16) 6541093923494858 a001 3524578/87403803*4106118243^(3/4) 6541093923494858 a001 39088169/7881196*599074578^(7/12) 6541093923494859 a001 433494437/7881196*141422324^(1/2) 6541093923494859 a001 102334155/7881196*2537720636^(1/2) 6541093923494859 a001 102334155/7881196*312119004989^(9/22) 6541093923494859 a001 102334155/7881196*14662949395604^(5/14) 6541093923494859 a001 102334155/7881196*192900153618^(5/12) 6541093923494859 a001 102334155/7881196*28143753123^(9/20) 6541093923494859 a001 102334155/7881196*228826127^(9/16) 6541093923494859 a001 225851433717/7881196*141422324^(1/6) 6541093923494859 a001 66978574/1970299*370248451^(1/2) 6541093923494859 a001 1762289/299537289*17393796001^(11/14) 6541093923494859 a001 1762289/299537289*14662949395604^(11/18) 6541093923494859 a001 1762289/299537289*505019158607^(11/16) 6541093923494859 a001 1762289/299537289*1568397607^(7/8) 6541093923494859 a001 3524578/1568397607*2537720636^(9/10) 6541093923494859 a001 3524578/1568397607*14662949395604^(9/14) 6541093923494859 a001 3524578/1568397607*192900153618^(3/4) 6541093923494859 a001 1762289/299537289*599074578^(11/12) 6541093923494859 a001 3524578/4106118243*2537720636^(17/18) 6541093923494859 a001 3524578/4106118243*45537549124^(5/6) 6541093923494859 a001 3524578/4106118243*312119004989^(17/22) 6541093923494859 a001 1836311903/7881196*312119004989^(3/10) 6541093923494859 a001 3524578/4106118243*3461452808002^(17/24) 6541093923494859 a001 3524578/4106118243*28143753123^(17/20) 6541093923494859 a001 12586269025/7881196*2537720636^(5/18) 6541093923494859 a001 7778742049/7881196*2537720636^(3/10) 6541093923494859 a001 139583862445/7881196*2537720636^(1/6) 6541093923494859 a001 591286729879/7881196*2537720636^(1/10) 6541093923494859 a001 1201881744/1970299*1322157322203^(1/4) 6541093923494859 a001 387002188980/1970299*2537720636^(1/18) 6541093923494859 a001 12586269025/7881196*312119004989^(5/22) 6541093923494859 a001 3524578/28143753123*9062201101803^(3/4) 6541093923494859 a001 12586269025/7881196*3461452808002^(5/24) 6541093923494859 a001 12586269025/7881196*28143753123^(1/4) 6541093923494859 a001 32951280099/7881196*17393796001^(3/14) 6541093923494859 a001 956722026041/7881196*17393796001^(1/14) 6541093923494859 a001 32951280099/7881196*14662949395604^(1/6) 6541093923494859 a001 21566892818/1970299*45537549124^(1/6) 6541093923494859 a001 3524578/505019158607*312119004989^(21/22) 6541093923494859 a001 3524578/505019158607*14662949395604^(5/6) 6541093923494859 a001 387002188980/1970299*312119004989^(1/22) 6541093923494859 a001 3524578/505019158607*505019158607^(15/16) 6541093923494859 a001 3524578/9062201101803*14662949395604^(13/14) 6541093923494859 a001 1762289/7331474697802*14662949395604^(17/18) 6541093923494859 a001 182717648081/3940598*312119004989^(1/10) 6541093923494859 a001 139583862445/7881196*312119004989^(3/22) 6541093923494859 a001 225851433717/7881196*73681302247^(1/8) 6541093923494859 a001 3524578/119218851371*312119004989^(9/10) 6541093923494859 a001 387002188980/1970299*28143753123^(1/20) 6541093923494859 a001 53316291173/7881196*817138163596^(1/6) 6541093923494859 a001 3524578/119218851371*14662949395604^(11/14) 6541093923494859 a001 3524578/119218851371*192900153618^(11/12) 6541093923494859 a001 139583862445/7881196*28143753123^(3/20) 6541093923494859 a001 3524578/17393796001*17393796001^(13/14) 6541093923494859 a001 1762289/22768774562*312119004989^(19/22) 6541093923494859 a001 1762289/22768774562*817138163596^(5/6) 6541093923494859 a001 1762289/22768774562*3461452808002^(19/24) 6541093923494859 a001 1762289/22768774562*28143753123^(19/20) 6541093923494859 a001 3524578/17393796001*14662949395604^(13/18) 6541093923494859 a001 7778742049/7881196*14662949395604^(3/14) 6541093923494859 a001 3524578/17393796001*505019158607^(13/16) 6541093923494859 a001 7778742049/7881196*192900153618^(1/4) 6541093923494859 a001 3524578/17393796001*73681302247^(7/8) 6541093923494859 a001 10182505537/3940598*4106118243^(1/4) 6541093923494859 a001 2971215073/7881196*9062201101803^(1/4) 6541093923494859 a001 3524578/6643838879*1322157322203^(3/4) 6541093923494859 a001 182717648081/3940598*1568397607^(1/8) 6541093923494859 a001 1836311903/7881196*1568397607^(3/8) 6541093923494859 a001 567451585/3940598*2537720636^(7/18) 6541093923494859 a001 567451585/3940598*17393796001^(5/14) 6541093923494859 a001 567451585/3940598*312119004989^(7/22) 6541093923494859 a001 567451585/3940598*14662949395604^(5/18) 6541093923494859 a001 567451585/3940598*505019158607^(5/16) 6541093923494859 a001 567451585/3940598*28143753123^(7/20) 6541093923494859 a001 956722026041/7881196*599074578^(1/12) 6541093923494859 a001 32951280099/7881196*599074578^(1/4) 6541093923494859 a001 433494437/7881196*73681302247^(3/8) 6541093923494859 a001 387002188980/1970299*228826127^(1/16) 6541093923494859 a001 567451585/3940598*599074578^(5/12) 6541093923494859 a001 139583862445/7881196*228826127^(3/16) 6541093923494859 a001 12586269025/7881196*228826127^(5/16) 6541093923494859 a001 165580141/7881196*969323029^(1/2) 6541093923494859 a001 3524578/370248451*2537720636^(5/6) 6541093923494859 a001 3524578/370248451*312119004989^(15/22) 6541093923494859 a001 3524578/370248451*3461452808002^(5/8) 6541093923494859 a001 3524578/370248451*28143753123^(3/4) 6541093923494859 a001 567451585/3940598*228826127^(7/16) 6541093923494859 a001 3524578/370248451*228826127^(15/16) 6541093923494859 a001 53316291173/7881196*87403803^(1/4) 6541093923494859 a001 2504730781961/7881196*33385282^(1/24) 6541093923494860 a001 31622993/3940598*6643838879^(1/2) 6541093923494860 a001 591286729879/7881196*33385282^(1/8) 6541093923494860 a001 139583862445/7881196*33385282^(5/24) 6541093923494861 a001 3524578/20633239*20633239^(9/10) 6541093923494861 a001 32951280099/7881196*33385282^(7/24) 6541093923494861 a001 7778742049/7881196*33385282^(3/8) 6541093923494861 a001 24157817/7881196*45537549124^(1/2) 6541093923494862 a001 1836311903/7881196*33385282^(11/24) 6541093923494862 a001 433494437/7881196*33385282^(13/24) 6541093923494863 a001 9227465/7881196*20633239^(11/14) 6541093923494863 a001 102334155/7881196*33385282^(5/8) 6541093923494864 a001 6557470319842/20633239*1860498^(1/20) 6541093923494864 a001 3524578/87403803*33385282^(23/24) 6541093923494866 a001 24157817/7881196*33385282^(17/24) 6541093923494869 a001 21566892818/1970299*12752043^(1/4) 6541093923494871 a001 2504730781961/12752043*1860498^(1/12) 6541093923494875 a001 3524578/20633239*2537720636^(7/10) 6541093923494875 a001 9227465/7881196*2537720636^(11/18) 6541093923494875 a001 3524578/20633239*17393796001^(9/14) 6541093923494875 a001 9227465/7881196*312119004989^(1/2) 6541093923494875 a001 3524578/20633239*14662949395604^(1/2) 6541093923494875 a001 9227465/7881196*3461452808002^(11/24) 6541093923494875 a001 3524578/20633239*505019158607^(9/16) 6541093923494875 a001 3524578/20633239*192900153618^(7/12) 6541093923494875 a001 9227465/7881196*28143753123^(11/20) 6541093923494875 a001 9227465/7881196*1568397607^(5/8) 6541093923494875 a001 3524578/20633239*599074578^(3/4) 6541093923494875 a001 9227465/7881196*228826127^(11/16) 6541093923494880 a001 3524578/20633239*33385282^(7/8) 6541093923494892 a001 24157817/7881196*12752043^(3/4) 6541093923494906 a001 3278735159921/16692641*1860498^(1/12) 6541093923494914 a001 10610209857723/54018521*1860498^(1/12) 6541093923494927 a001 4052739537881/20633239*1860498^(1/12) 6541093923494951 a001 86267571272/4870847*1860498^(1/4) 6541093923494954 a001 2504730781961/7881196*1860498^(1/20) 6541093923494965 a001 1762289/3940598*2139295485799^(1/2) 6541093923494997 a001 956722026041/12752043*1860498^(3/20) 6541093923495017 a001 387002188980/1970299*1860498^(1/12) 6541093923495031 a001 2504730781961/33385282*1860498^(3/20) 6541093923495037 a001 6557470319842/87403803*1860498^(3/20) 6541093923495038 a001 10610209857723/141422324*1860498^(3/20) 6541093923495040 a001 4052739537881/54018521*1860498^(3/20) 6541093923495053 a001 140728068720/1875749*1860498^(3/20) 6541093923495109 a001 2178309/3010349*7881196^(19/22) 6541093923495115 a001 1134903170/3010349*3010349^(1/2) 6541093923495140 a001 20365011074/4870847*1860498^(7/20) 6541093923495143 a001 591286729879/7881196*1860498^(3/20) 6541093923495186 a001 75283811239/4250681*1860498^(1/4) 6541093923495200 a001 2178309/3010349*817138163596^(1/2) 6541093923495200 a001 1346269/4870847*5600748293801^(1/2) 6541093923495201 a001 2178309/3010349*87403803^(3/4) 6541093923495205 a001 2178309/3010349*33385282^(19/24) 6541093923495220 a001 591286729879/33385282*1860498^(1/4) 6541093923495225 a001 516002918640/29134601*1860498^(1/4) 6541093923495226 a001 4052739537881/228826127*1860498^(1/4) 6541093923495226 a001 3536736619241/199691526*1860498^(1/4) 6541093923495226 a001 6557470319842/370248451*1860498^(1/4) 6541093923495227 a001 2504730781961/141422324*1860498^(1/4) 6541093923495229 a001 956722026041/54018521*1860498^(1/4) 6541093923495242 a001 365435296162/20633239*1860498^(1/4) 6541093923495266 a001 7778742049/4870847*1860498^(5/12) 6541093923495329 a001 4807526976/4870847*1860498^(9/20) 6541093923495332 a001 139583862445/7881196*1860498^(1/4) 6541093923495375 a001 53316291173/12752043*1860498^(7/20) 6541093923495381 a001 1346269/1860498*1860498^(19/20) 6541093923495403 a001 39088169/3010349*7881196^(15/22) 6541093923495409 a001 139583862445/33385282*1860498^(7/20) 6541093923495410 a001 9227465/3010349*7881196^(17/22) 6541093923495414 a001 165580141/3010349*7881196^(13/22) 6541093923495414 a001 365435296162/87403803*1860498^(7/20) 6541093923495415 a001 956722026041/228826127*1860498^(7/20) 6541093923495415 a001 2504730781961/599074578*1860498^(7/20) 6541093923495415 a001 6557470319842/1568397607*1860498^(7/20) 6541093923495415 a001 10610209857723/2537720636*1860498^(7/20) 6541093923495415 a001 4052739537881/969323029*1860498^(7/20) 6541093923495415 a001 1548008755920/370248451*1860498^(7/20) 6541093923495416 a001 591286729879/141422324*1860498^(7/20) 6541093923495418 a001 225851433717/54018521*1860498^(7/20) 6541093923495421 a001 1346269/12752043*20633239^(13/14) 6541093923495423 a001 701408733/3010349*7881196^(1/2) 6541093923495431 a001 86267571272/20633239*1860498^(7/20) 6541093923495433 a001 2971215073/3010349*7881196^(9/22) 6541093923495435 a001 1346269/12752043*141422324^(5/6) 6541093923495435 a001 1346269/12752043*2537720636^(13/18) 6541093923495435 a001 5702887/3010349*119218851371^(1/2) 6541093923495435 a001 1346269/12752043*312119004989^(13/22) 6541093923495435 a001 1346269/12752043*3461452808002^(13/24) 6541093923495435 a001 1346269/12752043*73681302247^(5/8) 6541093923495435 a001 1346269/12752043*28143753123^(13/20) 6541093923495436 a001 1346269/12752043*228826127^(13/16) 6541093923495442 a001 12586269025/3010349*7881196^(7/22) 6541093923495452 a001 53316291173/3010349*7881196^(5/22) 6541093923495458 a001 139583862445/3010349*7881196^(1/6) 6541093923495459 a001 14930352/3010349*20633239^(7/10) 6541093923495461 a001 225851433717/3010349*7881196^(3/22) 6541093923495465 a001 39088169/3010349*20633239^(9/14) 6541093923495468 a001 433494437/3010349*20633239^(1/2) 6541093923495470 a001 14930352/3010349*17393796001^(1/2) 6541093923495470 a001 14930352/3010349*14662949395604^(7/18) 6541093923495470 a001 14930352/3010349*505019158607^(7/16) 6541093923495470 a001 1346269/33385282*4106118243^(3/4) 6541093923495470 a001 14930352/3010349*599074578^(7/12) 6541093923495470 a001 4807526976/3010349*20633239^(5/14) 6541093923495471 a001 956722026041/3010349*7881196^(1/22) 6541093923495471 a001 12586269025/3010349*20633239^(3/10) 6541093923495472 a001 53316291173/3010349*20633239^(3/14) 6541093923495474 a001 365435296162/3010349*20633239^(1/10) 6541093923495475 a001 267914296/3010349*54018521^(1/2) 6541093923495475 a001 591286729879/3010349*20633239^(1/14) 6541093923495475 a001 39088169/3010349*2537720636^(1/2) 6541093923495475 a001 39088169/3010349*312119004989^(9/22) 6541093923495475 a001 39088169/3010349*14662949395604^(5/14) 6541093923495475 a001 39088169/3010349*192900153618^(5/12) 6541093923495475 a001 39088169/3010349*28143753123^(9/20) 6541093923495475 a001 39088169/3010349*228826127^(9/16) 6541093923495475 a001 1346269/33385282*33385282^(23/24) 6541093923495476 a001 102334155/3010349*370248451^(1/2) 6541093923495476 a001 1346269/228826127*17393796001^(11/14) 6541093923495476 a001 1346269/228826127*14662949395604^(11/18) 6541093923495476 a001 1346269/228826127*505019158607^(11/16) 6541093923495476 a001 1346269/228826127*1568397607^(7/8) 6541093923495476 a001 165580141/3010349*141422324^(1/2) 6541093923495476 a001 1346269/228826127*599074578^(11/12) 6541093923495476 a001 86267571272/3010349*141422324^(1/6) 6541093923495476 a001 1346269/599074578*2537720636^(9/10) 6541093923495476 a001 1346269/599074578*14662949395604^(9/14) 6541093923495476 a001 1346269/599074578*192900153618^(3/4) 6541093923495476 a001 1346269/1568397607*2537720636^(17/18) 6541093923495476 a001 1346269/1568397607*45537549124^(5/6) 6541093923495476 a001 1346269/1568397607*312119004989^(17/22) 6541093923495476 a001 701408733/3010349*312119004989^(3/10) 6541093923495476 a001 1346269/1568397607*3461452808002^(17/24) 6541093923495476 a001 1346269/1568397607*28143753123^(17/20) 6541093923495476 a001 701408733/3010349*1568397607^(3/8) 6541093923495476 a001 1836311903/3010349*1322157322203^(1/4) 6541093923495476 a001 4807526976/3010349*2537720636^(5/18) 6541093923495476 a001 53316291173/3010349*2537720636^(1/6) 6541093923495476 a001 2971215073/3010349*2537720636^(3/10) 6541093923495476 a001 225851433717/3010349*2537720636^(1/10) 6541093923495476 a001 4807526976/3010349*312119004989^(5/22) 6541093923495476 a001 1346269/10749957122*9062201101803^(3/4) 6541093923495476 a001 4807526976/3010349*3461452808002^(5/24) 6541093923495476 a001 591286729879/3010349*2537720636^(1/18) 6541093923495476 a001 4807526976/3010349*28143753123^(1/4) 6541093923495476 a001 12586269025/3010349*17393796001^(3/14) 6541093923495476 a001 12586269025/3010349*14662949395604^(1/6) 6541093923495476 a001 32951280099/3010349*45537549124^(1/6) 6541093923495476 a001 365435296162/3010349*17393796001^(1/14) 6541093923495476 a001 1346269/192900153618*312119004989^(21/22) 6541093923495476 a001 1346269/192900153618*14662949395604^(5/6) 6541093923495476 a001 1346269/192900153618*505019158607^(15/16) 6541093923495476 a001 225851433717/3010349*192900153618^(1/12) 6541093923495476 a001 1346269/3461452808002*14662949395604^(13/14) 6541093923495476 a001 1346269/5600748293801*14662949395604^(17/18) 6541093923495476 a001 1346269/2139295485799*3461452808002^(23/24) 6541093923495476 a001 365435296162/3010349*14662949395604^(1/18) 6541093923495476 a001 365435296162/3010349*505019158607^(1/16) 6541093923495476 a001 139583862445/3010349*312119004989^(1/10) 6541093923495476 a001 591286729879/3010349*28143753123^(1/20) 6541093923495476 a001 53316291173/3010349*312119004989^(3/22) 6541093923495476 a001 53316291173/3010349*28143753123^(3/20) 6541093923495476 a001 1346269/45537549124*312119004989^(9/10) 6541093923495476 a001 20365011074/3010349*817138163596^(1/6) 6541093923495476 a001 1346269/45537549124*14662949395604^(11/14) 6541093923495476 a001 1346269/45537549124*192900153618^(11/12) 6541093923495476 a001 1346269/17393796001*312119004989^(19/22) 6541093923495476 a001 1346269/17393796001*817138163596^(5/6) 6541093923495476 a001 1346269/17393796001*3461452808002^(19/24) 6541093923495476 a001 1346269/17393796001*28143753123^(19/20) 6541093923495476 a001 7778742049/3010349*4106118243^(1/4) 6541093923495476 a001 1346269/6643838879*17393796001^(13/14) 6541093923495476 a001 1346269/6643838879*14662949395604^(13/18) 6541093923495476 a001 2971215073/3010349*14662949395604^(3/14) 6541093923495476 a001 1346269/6643838879*505019158607^(13/16) 6541093923495476 a001 2971215073/3010349*192900153618^(1/4) 6541093923495476 a001 1346269/6643838879*73681302247^(7/8) 6541093923495476 a001 139583862445/3010349*1568397607^(1/8) 6541093923495476 a001 1134903170/3010349*9062201101803^(1/4) 6541093923495476 a001 1346269/2537720636*1322157322203^(3/4) 6541093923495476 a001 365435296162/3010349*599074578^(1/12) 6541093923495476 a001 12586269025/3010349*599074578^(1/4) 6541093923495476 a001 433494437/3010349*2537720636^(7/18) 6541093923495476 a001 433494437/3010349*17393796001^(5/14) 6541093923495476 a001 433494437/3010349*312119004989^(7/22) 6541093923495476 a001 433494437/3010349*14662949395604^(5/18) 6541093923495476 a001 433494437/3010349*505019158607^(5/16) 6541093923495476 a001 433494437/3010349*28143753123^(7/20) 6541093923495476 a001 591286729879/3010349*228826127^(1/16) 6541093923495476 a001 433494437/3010349*599074578^(5/12) 6541093923495476 a001 53316291173/3010349*228826127^(3/16) 6541093923495476 a001 4807526976/3010349*228826127^(5/16) 6541093923495476 a001 165580141/3010349*73681302247^(3/8) 6541093923495476 a001 433494437/3010349*228826127^(7/16) 6541093923495476 a001 20365011074/3010349*87403803^(1/4) 6541093923495476 a001 956722026041/3010349*33385282^(1/24) 6541093923495476 a001 63245986/3010349*969323029^(1/2) 6541093923495476 a001 1346269/141422324*2537720636^(5/6) 6541093923495476 a001 1346269/141422324*312119004989^(15/22) 6541093923495476 a001 1346269/141422324*3461452808002^(5/8) 6541093923495476 a001 1346269/141422324*28143753123^(3/4) 6541093923495476 a001 1346269/141422324*228826127^(15/16) 6541093923495476 a001 225851433717/3010349*33385282^(1/8) 6541093923495477 a001 53316291173/3010349*33385282^(5/24) 6541093923495477 a001 12586269025/3010349*33385282^(7/24) 6541093923495478 a001 2971215073/3010349*33385282^(3/8) 6541093923495478 a001 24157817/3010349*6643838879^(1/2) 6541093923495478 a001 701408733/3010349*33385282^(11/24) 6541093923495479 a001 39088169/3010349*33385282^(5/8) 6541093923495479 a001 165580141/3010349*33385282^(13/24) 6541093923495480 a001 1346269/7881196*7881196^(21/22) 6541093923495486 a001 32951280099/3010349*12752043^(1/4) 6541093923495491 a001 9227465/3010349*45537549124^(1/2) 6541093923495493 a001 3524578/3010349*7881196^(5/6) 6541093923495495 a001 9227465/3010349*33385282^(17/24) 6541093923495501 a001 20365011074/12752043*1860498^(5/12) 6541093923495518 a001 1134903170/4870847*1860498^(11/20) 6541093923495521 a001 32951280099/7881196*1860498^(7/20) 6541093923495521 a001 9227465/3010349*12752043^(3/4) 6541093923495535 a001 53316291173/33385282*1860498^(5/12) 6541093923495540 a001 139583862445/87403803*1860498^(5/12) 6541093923495541 a001 365435296162/228826127*1860498^(5/12) 6541093923495541 a001 956722026041/599074578*1860498^(5/12) 6541093923495541 a001 2504730781961/1568397607*1860498^(5/12) 6541093923495541 a001 6557470319842/4106118243*1860498^(5/12) 6541093923495541 a001 10610209857723/6643838879*1860498^(5/12) 6541093923495541 a001 4052739537881/2537720636*1860498^(5/12) 6541093923495541 a001 1548008755920/969323029*1860498^(5/12) 6541093923495541 a001 591286729879/370248451*1860498^(5/12) 6541093923495542 a001 225851433717/141422324*1860498^(5/12) 6541093923495544 a001 86267571272/54018521*1860498^(5/12) 6541093923495557 a001 32951280099/20633239*1860498^(5/12) 6541093923495564 a001 12586269025/12752043*1860498^(9/20) 6541093923495567 a001 1346269/7881196*20633239^(9/10) 6541093923495569 a001 3524578/3010349*20633239^(11/14) 6541093923495570 a001 956722026041/3010349*1860498^(1/20) 6541093923495581 a001 701408733/4870847*1860498^(7/12) 6541093923495581 a001 1346269/7881196*2537720636^(7/10) 6541093923495581 a001 3524578/3010349*2537720636^(11/18) 6541093923495581 a001 1346269/7881196*17393796001^(9/14) 6541093923495581 a001 3524578/3010349*312119004989^(1/2) 6541093923495581 a001 1346269/7881196*14662949395604^(1/2) 6541093923495581 a001 3524578/3010349*3461452808002^(11/24) 6541093923495581 a001 1346269/7881196*505019158607^(9/16) 6541093923495581 a001 1346269/7881196*192900153618^(7/12) 6541093923495581 a001 3524578/3010349*28143753123^(11/20) 6541093923495581 a001 3524578/3010349*1568397607^(5/8) 6541093923495581 a001 1346269/7881196*599074578^(3/4) 6541093923495581 a001 3524578/3010349*228826127^(11/16) 6541093923495586 a001 1346269/7881196*33385282^(7/8) 6541093923495598 a001 32951280099/33385282*1860498^(9/20) 6541093923495603 a001 86267571272/87403803*1860498^(9/20) 6541093923495604 a001 225851433717/228826127*1860498^(9/20) 6541093923495604 a001 591286729879/599074578*1860498^(9/20) 6541093923495604 a001 1548008755920/1568397607*1860498^(9/20) 6541093923495604 a001 4052739537881/4106118243*1860498^(9/20) 6541093923495604 a001 4807525989/4870846*1860498^(9/20) 6541093923495604 a001 6557470319842/6643838879*1860498^(9/20) 6541093923495604 a001 2504730781961/2537720636*1860498^(9/20) 6541093923495604 a001 956722026041/969323029*1860498^(9/20) 6541093923495604 a001 365435296162/370248451*1860498^(9/20) 6541093923495605 a001 139583862445/141422324*1860498^(9/20) 6541093923495607 a001 53316291173/54018521*1860498^(9/20) 6541093923495620 a001 20365011074/20633239*1860498^(9/20) 6541093923495633 a001 591286729879/3010349*1860498^(1/12) 6541093923495647 a001 12586269025/7881196*1860498^(5/12) 6541093923495706 a001 267914296/4870847*1860498^(13/20) 6541093923495710 a001 7778742049/7881196*1860498^(9/20) 6541093923495753 a001 2971215073/12752043*1860498^(11/20) 6541093923495759 a001 225851433717/3010349*1860498^(3/20) 6541093923495787 a001 7778742049/33385282*1860498^(11/20) 6541093923495792 a001 20365011074/87403803*1860498^(11/20) 6541093923495793 a001 53316291173/228826127*1860498^(11/20) 6541093923495793 a001 139583862445/599074578*1860498^(11/20) 6541093923495793 a001 365435296162/1568397607*1860498^(11/20) 6541093923495793 a001 956722026041/4106118243*1860498^(11/20) 6541093923495793 a001 2504730781961/10749957122*1860498^(11/20) 6541093923495793 a001 6557470319842/28143753123*1860498^(11/20) 6541093923495793 a001 10610209857723/45537549124*1860498^(11/20) 6541093923495793 a001 4052739537881/17393796001*1860498^(11/20) 6541093923495793 a001 1548008755920/6643838879*1860498^(11/20) 6541093923495793 a001 591286729879/2537720636*1860498^(11/20) 6541093923495793 a001 225851433717/969323029*1860498^(11/20) 6541093923495793 a001 86267571272/370248451*1860498^(11/20) 6541093923495794 a001 63246219/271444*1860498^(11/20) 6541093923495795 a001 12586269025/54018521*1860498^(11/20) 6541093923495809 a001 4807526976/20633239*1860498^(11/20) 6541093923495816 a001 1836311903/12752043*1860498^(7/12) 6541093923495850 a001 14930208/103681*1860498^(7/12) 6541093923495855 a001 12586269025/87403803*1860498^(7/12) 6541093923495856 a001 32951280099/228826127*1860498^(7/12) 6541093923495856 a001 43133785636/299537289*1860498^(7/12) 6541093923495856 a001 32264490531/224056801*1860498^(7/12) 6541093923495856 a001 591286729879/4106118243*1860498^(7/12) 6541093923495856 a001 774004377960/5374978561*1860498^(7/12) 6541093923495856 a001 4052739537881/28143753123*1860498^(7/12) 6541093923495856 a001 1515744265389/10525900321*1860498^(7/12) 6541093923495856 a001 3278735159921/22768774562*1860498^(7/12) 6541093923495856 a001 2504730781961/17393796001*1860498^(7/12) 6541093923495856 a001 956722026041/6643838879*1860498^(7/12) 6541093923495856 a001 182717648081/1268860318*1860498^(7/12) 6541093923495856 a001 139583862445/969323029*1860498^(7/12) 6541093923495856 a001 53316291173/370248451*1860498^(7/12) 6541093923495857 a001 10182505537/70711162*1860498^(7/12) 6541093923495858 a001 7778742049/54018521*1860498^(7/12) 6541093923495872 a001 2971215073/20633239*1860498^(7/12) 6541093923495896 a001 63245986/4870847*1860498^(3/4) 6541093923495899 a001 1836311903/7881196*1860498^(11/20) 6541093923495942 a001 233802911/4250681*1860498^(13/20) 6541093923495948 a001 53316291173/3010349*1860498^(1/4) 6541093923495962 a001 567451585/3940598*1860498^(7/12) 6541093923495976 a001 1836311903/33385282*1860498^(13/20) 6541093923495981 a001 1602508992/29134601*1860498^(13/20) 6541093923495982 a001 12586269025/228826127*1860498^(13/20) 6541093923495982 a001 10983760033/199691526*1860498^(13/20) 6541093923495982 a001 86267571272/1568397607*1860498^(13/20) 6541093923495982 a001 75283811239/1368706081*1860498^(13/20) 6541093923495982 a001 591286729879/10749957122*1860498^(13/20) 6541093923495982 a001 12585437040/228811001*1860498^(13/20) 6541093923495982 a001 4052739537881/73681302247*1860498^(13/20) 6541093923495982 a001 3536736619241/64300051206*1860498^(13/20) 6541093923495982 a001 6557470319842/119218851371*1860498^(13/20) 6541093923495982 a001 2504730781961/45537549124*1860498^(13/20) 6541093923495982 a001 956722026041/17393796001*1860498^(13/20) 6541093923495982 a001 365435296162/6643838879*1860498^(13/20) 6541093923495982 a001 139583862445/2537720636*1860498^(13/20) 6541093923495982 a001 53316291173/969323029*1860498^(13/20) 6541093923495982 a001 20365011074/370248451*1860498^(13/20) 6541093923495983 a001 7778742049/141422324*1860498^(13/20) 6541093923495984 a001 2971215073/54018521*1860498^(13/20) 6541093923495998 a001 1134903170/20633239*1860498^(13/20) 6541093923496079 a001 14930352/4870847*1860498^(17/20) 6541093923496088 a001 433494437/7881196*1860498^(13/20) 6541093923496097 a001 591286729879/4870847*710647^(1/8) 6541093923496131 a001 165580141/12752043*1860498^(3/4) 6541093923496137 a001 12586269025/3010349*1860498^(7/20) 6541093923496165 a001 433494437/33385282*1860498^(3/4) 6541093923496170 a001 5702887/4870847*1860498^(11/12) 6541093923496170 a001 1134903170/87403803*1860498^(3/4) 6541093923496171 a001 2971215073/228826127*1860498^(3/4) 6541093923496171 a001 7778742049/599074578*1860498^(3/4) 6541093923496171 a001 20365011074/1568397607*1860498^(3/4) 6541093923496171 a001 53316291173/4106118243*1860498^(3/4) 6541093923496171 a001 139583862445/10749957122*1860498^(3/4) 6541093923496171 a001 365435296162/28143753123*1860498^(3/4) 6541093923496171 a001 956722026041/73681302247*1860498^(3/4) 6541093923496171 a001 2504730781961/192900153618*1860498^(3/4) 6541093923496171 a001 10610209857723/817138163596*1860498^(3/4) 6541093923496171 a001 4052739537881/312119004989*1860498^(3/4) 6541093923496171 a001 1548008755920/119218851371*1860498^(3/4) 6541093923496171 a001 591286729879/45537549124*1860498^(3/4) 6541093923496171 a001 7787980473/599786069*1860498^(3/4) 6541093923496171 a001 86267571272/6643838879*1860498^(3/4) 6541093923496171 a001 32951280099/2537720636*1860498^(3/4) 6541093923496171 a001 12586269025/969323029*1860498^(3/4) 6541093923496171 a001 4807526976/370248451*1860498^(3/4) 6541093923496172 a001 1836311903/141422324*1860498^(3/4) 6541093923496173 a001 701408733/54018521*1860498^(3/4) 6541093923496187 a001 9238424/711491*1860498^(3/4) 6541093923496198 a001 1346269/3010349*2139295485799^(1/2) 6541093923496263 a001 4807526976/3010349*1860498^(5/12) 6541093923496276 a001 102334155/7881196*1860498^(3/4) 6541093923496319 a001 39088169/12752043*1860498^(17/20) 6541093923496326 a001 2971215073/3010349*1860498^(9/20) 6541093923496333 a001 516002918640/4250681*710647^(1/8) 6541093923496354 a001 14619165/4769326*1860498^(17/20) 6541093923496359 a001 267914296/87403803*1860498^(17/20) 6541093923496360 a001 701408733/228826127*1860498^(17/20) 6541093923496360 a001 1836311903/599074578*1860498^(17/20) 6541093923496360 a001 686789568/224056801*1860498^(17/20) 6541093923496360 a001 12586269025/4106118243*1860498^(17/20) 6541093923496360 a001 32951280099/10749957122*1860498^(17/20) 6541093923496360 a001 86267571272/28143753123*1860498^(17/20) 6541093923496360 a001 32264490531/10525900321*1860498^(17/20) 6541093923496360 a001 591286729879/192900153618*1860498^(17/20) 6541093923496360 a001 1548008755920/505019158607*1860498^(17/20) 6541093923496360 a001 1515744265389/494493258286*1860498^(17/20) 6541093923496360 a001 2504730781961/817138163596*1860498^(17/20) 6541093923496360 a001 956722026041/312119004989*1860498^(17/20) 6541093923496360 a001 365435296162/119218851371*1860498^(17/20) 6541093923496360 a001 139583862445/45537549124*1860498^(17/20) 6541093923496360 a001 53316291173/17393796001*1860498^(17/20) 6541093923496360 a001 20365011074/6643838879*1860498^(17/20) 6541093923496360 a001 7778742049/2537720636*1860498^(17/20) 6541093923496360 a001 2971215073/969323029*1860498^(17/20) 6541093923496360 a001 1134903170/370248451*1860498^(17/20) 6541093923496360 a001 433494437/141422324*1860498^(17/20) 6541093923496362 a001 165580141/54018521*1860498^(17/20) 6541093923496367 a001 4052739537881/33385282*710647^(1/8) 6541093923496372 a001 3536736619241/29134601*710647^(1/8) 6541093923496375 a001 6557470319842/54018521*710647^(1/8) 6541093923496376 a001 63245986/20633239*1860498^(17/20) 6541093923496379 a001 3524578/4870847*1860498^(19/20) 6541093923496388 a001 2504730781961/20633239*710647^(1/8) 6541093923496440 a001 4976784/4250681*1860498^(11/12) 6541093923496468 a001 24157817/7881196*1860498^(17/20) 6541093923496478 a001 956722026041/7881196*710647^(1/8) 6541093923496479 a001 39088169/33385282*1860498^(11/12) 6541093923496485 a001 34111385/29134601*1860498^(11/12) 6541093923496486 a001 267914296/228826127*1860498^(11/12) 6541093923496486 a001 233802911/199691526*1860498^(11/12) 6541093923496486 a001 1836311903/1568397607*1860498^(11/12) 6541093923496486 a001 1602508992/1368706081*1860498^(11/12) 6541093923496486 a001 12586269025/10749957122*1860498^(11/12) 6541093923496486 a001 10983760033/9381251041*1860498^(11/12) 6541093923496486 a001 86267571272/73681302247*1860498^(11/12) 6541093923496486 a001 75283811239/64300051206*1860498^(11/12) 6541093923496486 a001 2504730781961/2139295485799*1860498^(11/12) 6541093923496486 a001 365435296162/312119004989*1860498^(11/12) 6541093923496486 a001 139583862445/119218851371*1860498^(11/12) 6541093923496486 a001 53316291173/45537549124*1860498^(11/12) 6541093923496486 a001 20365011074/17393796001*1860498^(11/12) 6541093923496486 a001 7778742049/6643838879*1860498^(11/12) 6541093923496486 a001 2971215073/2537720636*1860498^(11/12) 6541093923496486 a001 1134903170/969323029*1860498^(11/12) 6541093923496486 a001 433494437/370248451*1860498^(11/12) 6541093923496487 a001 165580141/141422324*1860498^(11/12) 6541093923496489 a001 63245986/54018521*1860498^(11/12) 6541093923496504 a001 24157817/20633239*1860498^(11/12) 6541093923496515 a001 701408733/3010349*1860498^(11/20) 6541093923496524 a001 9227465/12752043*1860498^(19/20) 6541093923496545 a001 24157817/33385282*1860498^(19/20) 6541093923496549 a001 63245986/87403803*1860498^(19/20) 6541093923496549 a001 165580141/228826127*1860498^(19/20) 6541093923496549 a001 433494437/599074578*1860498^(19/20) 6541093923496549 a001 1134903170/1568397607*1860498^(19/20) 6541093923496549 a001 2971215073/4106118243*1860498^(19/20) 6541093923496549 a001 7778742049/10749957122*1860498^(19/20) 6541093923496549 a001 20365011074/28143753123*1860498^(19/20) 6541093923496549 a001 53316291173/73681302247*1860498^(19/20) 6541093923496549 a001 139583862445/192900153618*1860498^(19/20) 6541093923496549 a001 365435296162/505019158607*1860498^(19/20) 6541093923496549 a001 10610209857723/14662949395604*1860498^(19/20) 6541093923496549 a001 225851433717/312119004989*1860498^(19/20) 6541093923496549 a001 86267571272/119218851371*1860498^(19/20) 6541093923496549 a001 32951280099/45537549124*1860498^(19/20) 6541093923496549 a001 12586269025/17393796001*1860498^(19/20) 6541093923496549 a001 4807526976/6643838879*1860498^(19/20) 6541093923496549 a001 1836311903/2537720636*1860498^(19/20) 6541093923496549 a001 701408733/969323029*1860498^(19/20) 6541093923496549 a001 267914296/370248451*1860498^(19/20) 6541093923496549 a001 102334155/141422324*1860498^(19/20) 6541093923496551 a001 39088169/54018521*1860498^(19/20) 6541093923496559 a001 14930352/20633239*1860498^(19/20) 6541093923496578 a001 433494437/3010349*1860498^(7/12) 6541093923496607 a001 9227465/7881196*1860498^(11/12) 6541093923496614 a001 5702887/7881196*1860498^(19/20) 6541093923496704 a001 165580141/3010349*1860498^(13/20) 6541093923496892 a001 39088169/3010349*1860498^(3/4) 6541093923496995 a001 2178309/3010349*1860498^(19/20) 6541093923497095 a001 365435296162/3010349*710647^(1/8) 6541093923497097 a001 9227465/3010349*1860498^(17/20) 6541093923497228 a001 701408733/1149851*1149851^(1/2) 6541093923497313 a001 3524578/3010349*1860498^(11/12) 6541093923497360 a001 1346269/439204*439204^(17/18) 6541093923497721 a001 832040/1149851*7881196^(19/22) 6541093923497721 a001 7778742049/1860498*710647^(3/8) 6541093923497811 a001 832040/1149851*817138163596^(1/2) 6541093923497811 a001 514229/1860498*5600748293801^(1/2) 6541093923497812 a001 832040/1149851*87403803^(3/4) 6541093923497816 a001 832040/1149851*33385282^(19/24) 6541093923497817 a001 365435296162/1149851*439204^(1/18) 6541093923499335 a001 20365011074/4870847*710647^(3/8) 6541093923499340 a001 433494437/1149851*3010349^(1/2) 6541093923499411 a001 514229/4870847*20633239^(13/14) 6541093923499425 a001 514229/4870847*141422324^(5/6) 6541093923499425 a001 514229/4870847*2537720636^(13/18) 6541093923499425 a001 2178309/1149851*119218851371^(1/2) 6541093923499425 a001 514229/4870847*312119004989^(13/22) 6541093923499425 a001 514229/4870847*3461452808002^(13/24) 6541093923499425 a001 514229/4870847*73681302247^(5/8) 6541093923499425 a001 514229/4870847*28143753123^(13/20) 6541093923499426 a001 514229/4870847*228826127^(13/16) 6541093923499571 a001 53316291173/12752043*710647^(3/8) 6541093923499605 a001 139583862445/33385282*710647^(3/8) 6541093923499607 a001 832040/1149851*1860498^(19/20) 6541093923499610 a001 365435296162/87403803*710647^(3/8) 6541093923499611 a001 956722026041/228826127*710647^(3/8) 6541093923499611 a001 2504730781961/599074578*710647^(3/8) 6541093923499611 a001 6557470319842/1568397607*710647^(3/8) 6541093923499611 a001 10610209857723/2537720636*710647^(3/8) 6541093923499611 a001 4052739537881/969323029*710647^(3/8) 6541093923499611 a001 1548008755920/370248451*710647^(3/8) 6541093923499611 a001 591286729879/141422324*710647^(3/8) 6541093923499613 a001 225851433717/54018521*710647^(3/8) 6541093923499624 a001 14930352/1149851*7881196^(15/22) 6541093923499626 a001 86267571272/20633239*710647^(3/8) 6541093923499639 a001 63245986/1149851*7881196^(13/22) 6541093923499649 a001 267914296/1149851*7881196^(1/2) 6541093923499650 a001 5702887/1149851*20633239^(7/10) 6541093923499658 a001 1134903170/1149851*7881196^(9/22) 6541093923499661 a001 5702887/1149851*17393796001^(1/2) 6541093923499661 a001 5702887/1149851*14662949395604^(7/18) 6541093923499661 a001 5702887/1149851*505019158607^(7/16) 6541093923499661 a001 514229/12752043*4106118243^(3/4) 6541093923499661 a001 5702887/1149851*599074578^(7/12) 6541093923499667 a001 514229/12752043*33385282^(23/24) 6541093923499668 a001 4807526976/1149851*7881196^(7/22) 6541093923499677 a001 20365011074/1149851*7881196^(5/22) 6541093923499684 a001 53316291173/1149851*7881196^(1/6) 6541093923499685 a001 14930352/1149851*20633239^(9/14) 6541093923499687 a001 86267571272/1149851*7881196^(3/22) 6541093923499694 a001 165580141/1149851*20633239^(1/2) 6541093923499695 a001 14930352/1149851*2537720636^(1/2) 6541093923499695 a001 14930352/1149851*312119004989^(9/22) 6541093923499695 a001 14930352/1149851*14662949395604^(5/14) 6541093923499695 a001 14930352/1149851*192900153618^(5/12) 6541093923499695 a001 14930352/1149851*28143753123^(9/20) 6541093923499695 a001 14930352/1149851*228826127^(9/16) 6541093923499696 a001 1836311903/1149851*20633239^(5/14) 6541093923499696 a001 365435296162/1149851*7881196^(1/22) 6541093923499697 a001 4807526976/1149851*20633239^(3/10) 6541093923499698 a001 20365011074/1149851*20633239^(3/14) 6541093923499699 a001 14930352/1149851*33385282^(5/8) 6541093923499700 a001 139583862445/1149851*20633239^(1/10) 6541093923499700 a001 102334155/1149851*54018521^(1/2) 6541093923499700 a001 225851433717/1149851*20633239^(1/14) 6541093923499700 a001 39088169/1149851*370248451^(1/2) 6541093923499700 a001 514229/87403803*17393796001^(11/14) 6541093923499700 a001 514229/87403803*14662949395604^(11/18) 6541093923499700 a001 514229/87403803*505019158607^(11/16) 6541093923499700 a001 514229/87403803*1568397607^(7/8) 6541093923499700 a001 514229/87403803*599074578^(11/12) 6541093923499701 a001 514229/228826127*2537720636^(9/10) 6541093923499701 a001 514229/228826127*14662949395604^(9/14) 6541093923499701 a001 514229/228826127*192900153618^(3/4) 6541093923499701 a001 32951280099/1149851*141422324^(1/6) 6541093923499701 a001 514229/599074578*2537720636^(17/18) 6541093923499701 a001 514229/599074578*45537549124^(5/6) 6541093923499701 a001 514229/599074578*312119004989^(17/22) 6541093923499701 a001 267914296/1149851*312119004989^(3/10) 6541093923499701 a001 514229/599074578*3461452808002^(17/24) 6541093923499701 a001 514229/599074578*28143753123^(17/20) 6541093923499701 a001 267914296/1149851*1568397607^(3/8) 6541093923499701 a001 701408733/1149851*1322157322203^(1/4) 6541093923499701 a001 1836311903/1149851*2537720636^(5/18) 6541093923499701 a001 1836311903/1149851*312119004989^(5/22) 6541093923499701 a001 1836311903/1149851*3461452808002^(5/24) 6541093923499701 a001 1836311903/1149851*28143753123^(1/4) 6541093923499701 a001 20365011074/1149851*2537720636^(1/6) 6541093923499701 a001 86267571272/1149851*2537720636^(1/10) 6541093923499701 a001 4807526976/1149851*17393796001^(3/14) 6541093923499701 a001 4807526976/1149851*14662949395604^(1/6) 6541093923499701 a001 225851433717/1149851*2537720636^(1/18) 6541093923499701 a001 12586269025/1149851*45537549124^(1/6) 6541093923499701 a001 139583862445/1149851*17393796001^(1/14) 6541093923499701 a001 514229/73681302247*312119004989^(21/22) 6541093923499701 a001 514229/73681302247*14662949395604^(5/6) 6541093923499701 a001 514229/73681302247*505019158607^(15/16) 6541093923499701 a001 32951280099/1149851*73681302247^(1/8) 6541093923499701 a001 86267571272/1149851*14662949395604^(1/14) 6541093923499701 a001 86267571272/1149851*192900153618^(1/12) 6541093923499701 a001 225851433717/1149851*312119004989^(1/22) 6541093923499701 a001 514229/1322157322203*14662949395604^(13/14) 6541093923499701 a001 514229/2139295485799*14662949395604^(17/18) 6541093923499701 a001 139583862445/1149851*14662949395604^(1/18) 6541093923499701 a001 139583862445/1149851*505019158607^(1/16) 6541093923499701 a001 225851433717/1149851*28143753123^(1/20) 6541093923499701 a001 53316291173/1149851*312119004989^(1/10) 6541093923499701 a001 20365011074/1149851*312119004989^(3/22) 6541093923499701 a001 20365011074/1149851*28143753123^(3/20) 6541093923499701 a001 514229/17393796001*312119004989^(9/10) 6541093923499701 a001 514229/17393796001*14662949395604^(11/14) 6541093923499701 a001 7778742049/1149851*817138163596^(1/6) 6541093923499701 a001 514229/17393796001*192900153618^(11/12) 6541093923499701 a001 514229/6643838879*312119004989^(19/22) 6541093923499701 a001 514229/6643838879*3461452808002^(19/24) 6541093923499701 a001 514229/6643838879*28143753123^(19/20) 6541093923499701 a001 2971215073/1149851*4106118243^(1/4) 6541093923499701 a001 53316291173/1149851*1568397607^(1/8) 6541093923499701 a001 1134903170/1149851*2537720636^(3/10) 6541093923499701 a001 514229/2537720636*17393796001^(13/14) 6541093923499701 a001 514229/2537720636*14662949395604^(13/18) 6541093923499701 a001 1134903170/1149851*14662949395604^(3/14) 6541093923499701 a001 1134903170/1149851*192900153618^(1/4) 6541093923499701 a001 514229/2537720636*73681302247^(7/8) 6541093923499701 a001 139583862445/1149851*599074578^(1/12) 6541093923499701 a001 4807526976/1149851*599074578^(1/4) 6541093923499701 a001 514229/969323029*1322157322203^(3/4) 6541093923499701 a001 433494437/1149851*9062201101803^(1/4) 6541093923499701 a001 225851433717/1149851*228826127^(1/16) 6541093923499701 a001 20365011074/1149851*228826127^(3/16) 6541093923499701 a001 1836311903/1149851*228826127^(5/16) 6541093923499701 a001 165580141/1149851*2537720636^(7/18) 6541093923499701 a001 165580141/1149851*17393796001^(5/14) 6541093923499701 a001 165580141/1149851*312119004989^(7/22) 6541093923499701 a001 165580141/1149851*14662949395604^(5/18) 6541093923499701 a001 165580141/1149851*505019158607^(5/16) 6541093923499701 a001 165580141/1149851*28143753123^(7/20) 6541093923499701 a001 165580141/1149851*599074578^(5/12) 6541093923499701 a001 165580141/1149851*228826127^(7/16) 6541093923499701 a001 63245986/1149851*141422324^(1/2) 6541093923499701 a001 7778742049/1149851*87403803^(1/4) 6541093923499701 a001 365435296162/1149851*33385282^(1/24) 6541093923499702 a001 63245986/1149851*73681302247^(3/8) 6541093923499702 a001 86267571272/1149851*33385282^(1/8) 6541093923499702 a001 20365011074/1149851*33385282^(5/24) 6541093923499703 a001 4807526976/1149851*33385282^(7/24) 6541093923499703 a001 1134903170/1149851*33385282^(3/8) 6541093923499703 a001 24157817/1149851*969323029^(1/2) 6541093923499703 a001 514229/54018521*2537720636^(5/6) 6541093923499703 a001 514229/54018521*312119004989^(15/22) 6541093923499703 a001 514229/54018521*3461452808002^(5/8) 6541093923499703 a001 514229/54018521*28143753123^(3/4) 6541093923499704 a001 514229/54018521*228826127^(15/16) 6541093923499704 a001 267914296/1149851*33385282^(11/24) 6541093923499705 a001 63245986/1149851*33385282^(13/24) 6541093923499711 a001 12586269025/1149851*12752043^(1/4) 6541093923499716 a001 32951280099/7881196*710647^(3/8) 6541093923499717 a001 9227465/1149851*6643838879^(1/2) 6541093923499725 a001 3524578/1149851*7881196^(17/22) 6541093923499796 a001 365435296162/1149851*1860498^(1/20) 6541093923499807 a001 3524578/1149851*45537549124^(1/2) 6541093923499811 a001 3524578/1149851*33385282^(17/24) 6541093923499837 a001 3524578/1149851*12752043^(3/4) 6541093923499859 a001 225851433717/1149851*1860498^(1/12) 6541093923499985 a001 86267571272/1149851*1860498^(3/20) 6541093923500174 a001 20365011074/1149851*1860498^(1/4) 6541093923500322 a001 514229/3010349*7881196^(21/22) 6541093923500333 a001 12586269025/3010349*710647^(3/8) 6541093923500335 a001 1346269/1149851*7881196^(5/6) 6541093923500363 a001 4807526976/1149851*1860498^(7/20) 6541093923500365 a001 5702887/439204*439204^(5/6) 6541093923500409 a001 514229/3010349*20633239^(9/10) 6541093923500411 a001 1346269/1149851*20633239^(11/14) 6541093923500423 a001 514229/3010349*2537720636^(7/10) 6541093923500423 a001 1346269/1149851*2537720636^(11/18) 6541093923500423 a001 514229/3010349*17393796001^(9/14) 6541093923500423 a001 1346269/1149851*312119004989^(1/2) 6541093923500423 a001 514229/3010349*14662949395604^(1/2) 6541093923500423 a001 1346269/1149851*3461452808002^(11/24) 6541093923500423 a001 514229/3010349*505019158607^(9/16) 6541093923500423 a001 514229/3010349*192900153618^(7/12) 6541093923500423 a001 1346269/1149851*28143753123^(11/20) 6541093923500423 a001 1346269/1149851*1568397607^(5/8) 6541093923500423 a001 514229/3010349*599074578^(3/4) 6541093923500423 a001 1346269/1149851*228826127^(11/16) 6541093923500428 a001 514229/3010349*33385282^(7/8) 6541093923500489 a001 1836311903/1149851*1860498^(5/12) 6541093923500552 a001 1134903170/1149851*1860498^(9/20) 6541093923500741 a001 267914296/1149851*1860498^(11/20) 6541093923500804 a001 165580141/1149851*1860498^(7/12) 6541093923500930 a001 63245986/1149851*1860498^(13/20) 6541093923500959 a001 133957148/930249*710647^(5/8) 6541093923501113 a001 14930352/1149851*1860498^(3/4) 6541093923501320 a001 139583862445/1149851*710647^(1/8) 6541093923501413 a001 3524578/1149851*1860498^(17/20) 6541093923502155 a001 1346269/1149851*1860498^(11/12) 6541093923502573 a001 701408733/4870847*710647^(5/8) 6541093923502809 a001 1836311903/12752043*710647^(5/8) 6541093923502843 a001 14930208/103681*710647^(5/8) 6541093923502848 a001 12586269025/87403803*710647^(5/8) 6541093923502849 a001 32951280099/228826127*710647^(5/8) 6541093923502849 a001 43133785636/299537289*710647^(5/8) 6541093923502849 a001 32264490531/224056801*710647^(5/8) 6541093923502849 a001 591286729879/4106118243*710647^(5/8) 6541093923502849 a001 774004377960/5374978561*710647^(5/8) 6541093923502849 a001 4052739537881/28143753123*710647^(5/8) 6541093923502849 a001 1515744265389/10525900321*710647^(5/8) 6541093923502849 a001 3278735159921/22768774562*710647^(5/8) 6541093923502849 a001 2504730781961/17393796001*710647^(5/8) 6541093923502849 a001 956722026041/6643838879*710647^(5/8) 6541093923502849 a001 182717648081/1268860318*710647^(5/8) 6541093923502849 a001 139583862445/969323029*710647^(5/8) 6541093923502849 a001 53316291173/370248451*710647^(5/8) 6541093923502849 a001 10182505537/70711162*710647^(5/8) 6541093923502851 a001 7778742049/54018521*710647^(5/8) 6541093923502864 a001 2971215073/20633239*710647^(5/8) 6541093923502954 a001 567451585/3940598*710647^(5/8) 6541093923503571 a001 433494437/3010349*710647^(5/8) 6541093923503996 a001 20365011074/710647*271443^(1/4) 6541093923504175 a001 24157817/439204*439204^(13/18) 6541093923504213 a001 9227465/1860498*710647^(7/8) 6541093923504558 a001 4807526976/1149851*710647^(3/8) 6541093923504648 a001 514229/1149851*2139295485799^(1/2) 6541093923505421 a001 196418*167761^(1/10) 6541093923505814 a001 24157817/4870847*710647^(7/8) 6541093923506047 a001 63245986/12752043*710647^(7/8) 6541093923506081 a001 165580141/33385282*710647^(7/8) 6541093923506086 a001 433494437/87403803*710647^(7/8) 6541093923506087 a001 1134903170/228826127*710647^(7/8) 6541093923506087 a001 2971215073/599074578*710647^(7/8) 6541093923506087 a001 7778742049/1568397607*710647^(7/8) 6541093923506087 a001 20365011074/4106118243*710647^(7/8) 6541093923506087 a001 53316291173/10749957122*710647^(7/8) 6541093923506087 a001 139583862445/28143753123*710647^(7/8) 6541093923506087 a001 365435296162/73681302247*710647^(7/8) 6541093923506087 a001 956722026041/192900153618*710647^(7/8) 6541093923506087 a001 2504730781961/505019158607*710647^(7/8) 6541093923506087 a001 10610209857723/2139295485799*710647^(7/8) 6541093923506087 a001 4052739537881/817138163596*710647^(7/8) 6541093923506087 a001 140728068720/28374454999*710647^(7/8) 6541093923506087 a001 591286729879/119218851371*710647^(7/8) 6541093923506087 a001 225851433717/45537549124*710647^(7/8) 6541093923506087 a001 86267571272/17393796001*710647^(7/8) 6541093923506087 a001 32951280099/6643838879*710647^(7/8) 6541093923506087 a001 1144206275/230701876*710647^(7/8) 6541093923506087 a001 4807526976/969323029*710647^(7/8) 6541093923506087 a001 1836311903/370248451*710647^(7/8) 6541093923506087 a001 701408733/141422324*710647^(7/8) 6541093923506089 a001 267914296/54018521*710647^(7/8) 6541093923506102 a001 9303105/1875749*710647^(7/8) 6541093923506192 a001 39088169/7881196*710647^(7/8) 6541093923506803 a001 14930352/3010349*710647^(7/8) 6541093923507796 a001 165580141/1149851*710647^(5/8) 6541093923507941 a001 102334155/439204*439204^(11/18) 6541093923510994 a001 5702887/1149851*710647^(7/8) 6541093923511709 a001 433494437/439204*439204^(1/2) 6541093923515058 a001 53316291173/1860498*271443^(1/4) 6541093923515476 a001 1836311903/439204*439204^(7/18) 6541093923515620 a001 317811/439204*7881196^(19/22) 6541093923515711 a001 196418/710647*5600748293801^(1/2) 6541093923515711 a001 317811/439204*817138163596^(1/2) 6541093923515712 a001 317811/439204*87403803^(3/4) 6541093923515716 a001 317811/439204*33385282^(19/24) 6541093923516672 a001 139583862445/4870847*271443^(1/4) 6541093923516908 a001 365435296162/12752043*271443^(1/4) 6541093923516942 a001 956722026041/33385282*271443^(1/4) 6541093923516947 a001 2504730781961/87403803*271443^(1/4) 6541093923516948 a001 6557470319842/228826127*271443^(1/4) 6541093923516948 a001 10610209857723/370248451*271443^(1/4) 6541093923516948 a001 4052739537881/141422324*271443^(1/4) 6541093923516950 a001 1548008755920/54018521*271443^(1/4) 6541093923516963 a001 591286729879/20633239*271443^(1/4) 6541093923517053 a001 225851433717/7881196*271443^(1/4) 6541093923517506 a001 317811/439204*1860498^(19/20) 6541093923517670 a001 86267571272/3010349*271443^(1/4) 6541093923517720 a001 2178309/167761*167761^(9/10) 6541093923519244 a001 7778742049/439204*439204^(5/18) 6541093923519832 a001 317811*103682^(1/16) 6541093923520068 a001 20365011074/271443*103682^(3/16) 6541093923521895 a001 32951280099/1149851*271443^(1/4) 6541093923523012 a001 32951280099/439204*439204^(1/6) 6541093923526189 a001 66978574/109801*1149851^(1/2) 6541093923526759 a001 98209/930249*20633239^(13/14) 6541093923526773 a001 98209/930249*141422324^(5/6) 6541093923526773 a001 98209/930249*2537720636^(13/18) 6541093923526773 a001 208010/109801*119218851371^(1/2) 6541093923526773 a001 98209/930249*312119004989^(13/22) 6541093923526773 a001 98209/930249*3461452808002^(13/24) 6541093923526773 a001 98209/930249*73681302247^(5/8) 6541093923526773 a001 98209/930249*28143753123^(13/20) 6541093923526774 a001 98209/930249*228826127^(13/16) 6541093923526779 a001 139583862445/439204*439204^(1/18) 6541093923528302 a001 165580141/439204*3010349^(1/2) 6541093923528377 a001 2178309/439204*20633239^(7/10) 6541093923528387 a001 2178309/439204*17393796001^(1/2) 6541093923528387 a001 2178309/439204*14662949395604^(7/18) 6541093923528387 a001 2178309/439204*505019158607^(7/16) 6541093923528387 a001 196418/4870847*4106118243^(3/4) 6541093923528387 a001 2178309/439204*599074578^(7/12) 6541093923528393 a001 196418/4870847*33385282^(23/24) 6541093923528551 a001 5702887/439204*7881196^(15/22) 6541093923528603 a001 24157817/439204*7881196^(13/22) 6541093923528610 a001 102334155/439204*7881196^(1/2) 6541093923528613 a001 5702887/439204*20633239^(9/14) 6541093923528620 a001 433494437/439204*7881196^(9/22) 6541093923528623 a001 5702887/439204*2537720636^(1/2) 6541093923528623 a001 5702887/439204*312119004989^(9/22) 6541093923528623 a001 5702887/439204*14662949395604^(5/14) 6541093923528623 a001 5702887/439204*192900153618^(5/12) 6541093923528623 a001 5702887/439204*28143753123^(9/20) 6541093923528623 a001 5702887/439204*228826127^(9/16) 6541093923528627 a001 5702887/439204*33385282^(5/8) 6541093923528630 a001 1836311903/439204*7881196^(7/22) 6541093923528639 a001 7778742049/439204*7881196^(5/22) 6541093923528646 a001 10182505537/219602*7881196^(1/6) 6541093923528649 a001 32951280099/439204*7881196^(3/22) 6541093923528656 a001 31622993/219602*20633239^(1/2) 6541093923528657 a001 196452/5779*370248451^(1/2) 6541093923528657 a001 98209/16692641*17393796001^(11/14) 6541093923528657 a001 98209/16692641*14662949395604^(11/18) 6541093923528657 a001 98209/16692641*505019158607^(11/16) 6541093923528657 a001 98209/16692641*1568397607^(7/8) 6541093923528657 a001 98209/16692641*599074578^(11/12) 6541093923528658 a001 701408733/439204*20633239^(5/14) 6541093923528658 a001 139583862445/439204*7881196^(1/22) 6541093923528659 a001 1836311903/439204*20633239^(3/10) 6541093923528660 a001 7778742049/439204*20633239^(3/14) 6541093923528661 a001 39088169/439204*54018521^(1/2) 6541093923528662 a001 53316291173/439204*20633239^(1/10) 6541093923528662 a001 196418*20633239^(1/14) 6541093923528662 a001 196418/87403803*2537720636^(9/10) 6541093923528662 a001 196418/87403803*14662949395604^(9/14) 6541093923528662 a001 196418/87403803*192900153618^(3/4) 6541093923528663 a001 196418/228826127*2537720636^(17/18) 6541093923528663 a001 196418/228826127*45537549124^(5/6) 6541093923528663 a001 196418/228826127*312119004989^(17/22) 6541093923528663 a001 196418/228826127*3461452808002^(17/24) 6541093923528663 a001 102334155/439204*312119004989^(3/10) 6541093923528663 a001 196418/228826127*28143753123^(17/20) 6541093923528663 a001 102334155/439204*1568397607^(3/8) 6541093923528663 a001 12586269025/439204*141422324^(1/6) 6541093923528663 a001 66978574/109801*1322157322203^(1/4) 6541093923528663 a001 701408733/439204*2537720636^(5/18) 6541093923528663 a001 196418/1568397607*9062201101803^(3/4) 6541093923528663 a001 701408733/439204*312119004989^(5/22) 6541093923528663 a001 701408733/439204*3461452808002^(5/24) 6541093923528663 a001 701408733/439204*28143753123^(1/4) 6541093923528663 a001 1836311903/439204*17393796001^(3/14) 6541093923528663 a001 1836311903/439204*14662949395604^(1/6) 6541093923528663 a001 7778742049/439204*2537720636^(1/6) 6541093923528663 a001 32951280099/439204*2537720636^(1/10) 6541093923528663 a001 1201881744/109801*45537549124^(1/6) 6541093923528663 a001 196418*2537720636^(1/18) 6541093923528663 a001 196418/28143753123*312119004989^(21/22) 6541093923528663 a001 196418/28143753123*14662949395604^(5/6) 6541093923528663 a001 196418/28143753123*505019158607^(15/16) 6541093923528663 a001 12586269025/439204*73681302247^(1/8) 6541093923528663 a001 32951280099/439204*14662949395604^(1/14) 6541093923528663 a001 32951280099/439204*192900153618^(1/12) 6541093923528663 a001 53316291173/439204*17393796001^(1/14) 6541093923528663 a001 196418/505019158607*14662949395604^(13/14) 6541093923528663 a001 196418*312119004989^(1/22) 6541093923528663 a001 98209/408569081798*14662949395604^(17/18) 6541093923528663 a001 196418/312119004989*3461452808002^(23/24) 6541093923528663 a001 196418*28143753123^(1/20) 6541093923528663 a001 53316291173/439204*14662949395604^(1/18) 6541093923528663 a001 53316291173/439204*505019158607^(1/16) 6541093923528663 a001 10182505537/219602*312119004989^(1/10) 6541093923528663 a001 7778742049/439204*312119004989^(3/22) 6541093923528663 a001 7778742049/439204*28143753123^(3/20) 6541093923528663 a001 196418/6643838879*312119004989^(9/10) 6541093923528663 a001 196418/6643838879*14662949395604^(11/14) 6541093923528663 a001 196418/6643838879*192900153618^(11/12) 6541093923528663 a001 2971215073/439204*817138163596^(1/6) 6541093923528663 a001 10182505537/219602*1568397607^(1/8) 6541093923528663 a001 98209/1268860318*312119004989^(19/22) 6541093923528663 a001 98209/1268860318*817138163596^(5/6) 6541093923528663 a001 98209/1268860318*3461452808002^(19/24) 6541093923528663 a001 98209/1268860318*28143753123^(19/20) 6541093923528663 a001 567451585/219602*4106118243^(1/4) 6541093923528663 a001 53316291173/439204*599074578^(1/12) 6541093923528663 a001 1836311903/439204*599074578^(1/4) 6541093923528663 a001 433494437/439204*2537720636^(3/10) 6541093923528663 a001 196418/969323029*17393796001^(13/14) 6541093923528663 a001 196418/969323029*14662949395604^(13/18) 6541093923528663 a001 196418/969323029*505019158607^(13/16) 6541093923528663 a001 433494437/439204*14662949395604^(3/14) 6541093923528663 a001 433494437/439204*192900153618^(1/4) 6541093923528663 a001 196418/969323029*73681302247^(7/8) 6541093923528663 a001 196418*228826127^(1/16) 6541093923528663 a001 7778742049/439204*228826127^(3/16) 6541093923528663 a001 701408733/439204*228826127^(5/16) 6541093923528663 a001 196418/370248451*1322157322203^(3/4) 6541093923528663 a001 165580141/439204*9062201101803^(1/4) 6541093923528663 a001 2971215073/439204*87403803^(1/4) 6541093923528663 a001 139583862445/439204*33385282^(1/24) 6541093923528663 a001 31622993/219602*2537720636^(7/18) 6541093923528663 a001 31622993/219602*17393796001^(5/14) 6541093923528663 a001 31622993/219602*312119004989^(7/22) 6541093923528663 a001 31622993/219602*14662949395604^(5/18) 6541093923528663 a001 31622993/219602*505019158607^(5/16) 6541093923528663 a001 31622993/219602*28143753123^(7/20) 6541093923528663 a001 31622993/219602*599074578^(5/12) 6541093923528664 a001 31622993/219602*228826127^(7/16) 6541093923528664 a001 32951280099/439204*33385282^(1/8) 6541093923528664 a001 7778742049/439204*33385282^(5/24) 6541093923528665 a001 1836311903/439204*33385282^(7/24) 6541093923528665 a001 24157817/439204*141422324^(1/2) 6541093923528665 a001 433494437/439204*33385282^(3/8) 6541093923528665 a001 24157817/439204*73681302247^(3/8) 6541093923528666 a001 102334155/439204*33385282^(11/24) 6541093923528669 a001 24157817/439204*33385282^(13/24) 6541093923528673 a001 1201881744/109801*12752043^(1/4) 6541093923528678 a001 9227465/439204*969323029^(1/2) 6541093923528678 a001 196418/20633239*2537720636^(5/6) 6541093923528678 a001 196418/20633239*312119004989^(15/22) 6541093923528678 a001 196418/20633239*3461452808002^(5/8) 6541093923528678 a001 196418/20633239*28143753123^(3/4) 6541093923528679 a001 196418/20633239*228826127^(15/16) 6541093923528758 a001 139583862445/439204*1860498^(1/20) 6541093923528768 a001 1762289/219602*6643838879^(1/2) 6541093923528821 a001 196418*1860498^(1/12) 6541093923528947 a001 32951280099/439204*1860498^(3/20) 6541093923529136 a001 7778742049/439204*1860498^(1/4) 6541093923529304 a001 1346269/439204*7881196^(17/22) 6541093923529325 a001 1836311903/439204*1860498^(7/20) 6541093923529385 a001 1346269/439204*45537549124^(1/2) 6541093923529389 a001 1346269/439204*33385282^(17/24) 6541093923529415 a001 1346269/439204*12752043^(3/4) 6541093923529450 a001 701408733/439204*1860498^(5/12) 6541093923529513 a001 433494437/439204*1860498^(9/20) 6541093923529702 a001 102334155/439204*1860498^(11/20) 6541093923529766 a001 31622993/219602*1860498^(7/12) 6541093923529894 a001 24157817/439204*1860498^(13/20) 6541093923530040 a001 5702887/439204*1860498^(3/4) 6541093923530282 a001 53316291173/439204*710647^(1/8) 6541093923530894 a001 591286729879/1860498*103682^(1/16) 6541093923530991 a001 1346269/439204*1860498^(17/20) 6541093923532508 a001 1548008755920/4870847*103682^(1/16) 6541093923532743 a001 4052739537881/12752043*103682^(1/16) 6541093923532778 a001 1515744265389/4769326*103682^(1/16) 6541093923532799 a001 6557470319842/20633239*103682^(1/16) 6541093923532889 a001 2504730781961/7881196*103682^(1/16) 6541093923533505 a001 956722026041/3010349*103682^(1/16) 6541093923533510 a001 196418/1149851*7881196^(21/22) 6541093923533520 a001 1836311903/439204*710647^(3/8) 6541093923533523 a001 514229/439204*7881196^(5/6) 6541093923533597 a001 196418/1149851*20633239^(9/10) 6541093923533598 a001 514229/439204*20633239^(11/14) 6541093923533610 a001 196418/1149851*2537720636^(7/10) 6541093923533610 a001 514229/439204*2537720636^(11/18) 6541093923533610 a001 196418/1149851*17393796001^(9/14) 6541093923533610 a001 196418/1149851*14662949395604^(1/2) 6541093923533610 a001 196418/1149851*505019158607^(9/16) 6541093923533610 a001 196418/1149851*192900153618^(7/12) 6541093923533610 a001 514229/439204*312119004989^(1/2) 6541093923533610 a001 514229/439204*3461452808002^(11/24) 6541093923533610 a001 514229/439204*28143753123^(11/20) 6541093923533610 a001 514229/439204*1568397607^(5/8) 6541093923533610 a001 196418/1149851*599074578^(3/4) 6541093923533611 a001 514229/439204*228826127^(11/16) 6541093923533616 a001 196418/1149851*33385282^(7/8) 6541093923535343 a001 514229/439204*1860498^(11/12) 6541093923536759 a001 31622993/219602*710647^(5/8) 6541093923537731 a001 365435296162/1149851*103682^(1/16) 6541093923539721 a001 2178309/439204*710647^(7/8) 6541093923548382 a001 39088169/710647*271443^(3/4) 6541093923550857 a001 12586269025/439204*271443^(1/4) 6541093923559446 a001 831985/15126*271443^(3/4) 6541093923561060 a001 267914296/4870847*271443^(3/4) 6541093923561295 a001 233802911/4250681*271443^(3/4) 6541093923561330 a001 1836311903/33385282*271443^(3/4) 6541093923561335 a001 1602508992/29134601*271443^(3/4) 6541093923561335 a001 12586269025/228826127*271443^(3/4) 6541093923561336 a001 10983760033/199691526*271443^(3/4) 6541093923561336 a001 86267571272/1568397607*271443^(3/4) 6541093923561336 a001 75283811239/1368706081*271443^(3/4) 6541093923561336 a001 591286729879/10749957122*271443^(3/4) 6541093923561336 a001 12585437040/228811001*271443^(3/4) 6541093923561336 a001 4052739537881/73681302247*271443^(3/4) 6541093923561336 a001 3536736619241/64300051206*271443^(3/4) 6541093923561336 a001 6557470319842/119218851371*271443^(3/4) 6541093923561336 a001 2504730781961/45537549124*271443^(3/4) 6541093923561336 a001 956722026041/17393796001*271443^(3/4) 6541093923561336 a001 365435296162/6643838879*271443^(3/4) 6541093923561336 a001 139583862445/2537720636*271443^(3/4) 6541093923561336 a001 53316291173/969323029*271443^(3/4) 6541093923561336 a001 20365011074/370248451*271443^(3/4) 6541093923561336 a001 7778742049/141422324*271443^(3/4) 6541093923561338 a001 2971215073/54018521*271443^(3/4) 6541093923561351 a001 1134903170/20633239*271443^(3/4) 6541093923561441 a001 433494437/7881196*271443^(3/4) 6541093923562057 a001 165580141/3010349*271443^(3/4) 6541093923562572 a001 98209/219602*2139295485799^(1/2) 6541093923564481 a001 24157817/167761*167761^(7/10) 6541093923566283 a001 63245986/1149851*271443^(3/4) 6541093923566693 a001 139583862445/439204*103682^(1/16) 6541093923595247 a001 24157817/439204*271443^(3/4) 6541093923595891 a001 53316291173/710647*103682^(3/16) 6541093923596127 a001 1602508992/90481*103682^(5/16) 6541093923606954 a001 139583862445/1860498*103682^(3/16) 6541093923608568 a001 365435296162/4870847*103682^(3/16) 6541093923608803 a001 956722026041/12752043*103682^(3/16) 6541093923608837 a001 2504730781961/33385282*103682^(3/16) 6541093923608842 a001 6557470319842/87403803*103682^(3/16) 6541093923608844 a001 10610209857723/141422324*103682^(3/16) 6541093923608845 a001 4052739537881/54018521*103682^(3/16) 6541093923608859 a001 140728068720/1875749*103682^(3/16) 6541093923608949 a001 591286729879/7881196*103682^(3/16) 6541093923609565 a001 225851433717/3010349*103682^(3/16) 6541093923610963 a001 267914296/167761*167761^(1/2) 6541093923613790 a001 86267571272/1149851*103682^(3/16) 6541093923638305 a001 121393/167761*7881196^(19/22) 6541093923638396 a001 75025/271443*5600748293801^(1/2) 6541093923638396 a001 121393/167761*817138163596^(1/2) 6541093923638396 a001 121393/167761*87403803^(3/4) 6541093923638400 a001 121393/167761*33385282^(19/24) 6541093923640191 a001 121393/167761*1860498^(19/20) 6541093923642752 a001 32951280099/439204*103682^(3/16) 6541093923657446 a001 2971215073/167761*167761^(3/10) 6541093923671951 a001 12586269025/710647*103682^(5/16) 6541093923672187 a001 1134903170/271443*103682^(7/16) 6541093923683013 a001 10983760033/620166*103682^(5/16) 6541093923684627 a001 86267571272/4870847*103682^(5/16) 6541093923684863 a001 75283811239/4250681*103682^(5/16) 6541093923684897 a001 591286729879/33385282*103682^(5/16) 6541093923684902 a001 516002918640/29134601*103682^(5/16) 6541093923684903 a001 4052739537881/228826127*103682^(5/16) 6541093923684903 a001 3536736619241/199691526*103682^(5/16) 6541093923684903 a001 6557470319842/370248451*103682^(5/16) 6541093923684903 a001 2504730781961/141422324*103682^(5/16) 6541093923684905 a001 956722026041/54018521*103682^(5/16) 6541093923684918 a001 365435296162/20633239*103682^(5/16) 6541093923685008 a001 139583862445/7881196*103682^(5/16) 6541093923685625 a001 53316291173/3010349*103682^(5/16) 6541093923689850 a001 20365011074/1149851*103682^(5/16) 6541093923698638 a001 2178309/167761*439204^(5/6) 6541093923700093 a001 514229/167761*439204^(17/18) 6541093923702697 a001 9227465/167761*439204^(13/18) 6541093923703929 a001 32951280099/167761*167761^(1/10) 6541093923706448 a001 39088169/167761*439204^(11/18) 6541093923710217 a001 165580141/167761*439204^(1/2) 6541093923713984 a001 701408733/167761*439204^(7/18) 6541093923714205 a001 75025/710647*20633239^(13/14) 6541093923714219 a001 75025/710647*141422324^(5/6) 6541093923714219 a001 75025/710647*2537720636^(13/18) 6541093923714219 a001 75025/710647*312119004989^(13/22) 6541093923714219 a001 75025/710647*3461452808002^(13/24) 6541093923714219 a001 75025/710647*73681302247^(5/8) 6541093923714219 a001 75025/710647*28143753123^(13/20) 6541093923714219 a001 317811/167761*119218851371^(1/2) 6541093923714219 a001 75025/710647*228826127^(13/16) 6541093923717752 a001 2971215073/167761*439204^(5/18) 6541093923718812 a001 7778742049/439204*103682^(5/16) 6541093923721520 a001 75025*439204^(1/6) 6541093923724697 a001 9303105/15251*1149851^(1/2) 6541093923725271 a001 75640/15251*20633239^(7/10) 6541093923725281 a001 75640/15251*17393796001^(1/2) 6541093923725281 a001 75640/15251*14662949395604^(7/18) 6541093923725281 a001 75640/15251*505019158607^(7/16) 6541093923725281 a001 75025/1860498*4106118243^(3/4) 6541093923725281 a001 75640/15251*599074578^(7/12) 6541093923725287 a001 75025/1860498*33385282^(23/24) 6541093923725287 a001 53316291173/167761*439204^(1/18) 6541093923726811 a001 63245986/167761*3010349^(1/2) 6541093923726824 a001 2178309/167761*7881196^(15/22) 6541093923726886 a001 2178309/167761*20633239^(9/14) 6541093923726895 a001 2178309/167761*2537720636^(1/2) 6541093923726895 a001 2178309/167761*312119004989^(9/22) 6541093923726895 a001 2178309/167761*14662949395604^(5/14) 6541093923726895 a001 2178309/167761*192900153618^(5/12) 6541093923726895 a001 2178309/167761*28143753123^(9/20) 6541093923726896 a001 2178309/167761*228826127^(9/16) 6541093923726899 a001 2178309/167761*33385282^(5/8) 6541093923727118 a001 39088169/167761*7881196^(1/2) 6541093923727124 a001 9227465/167761*7881196^(13/22) 6541093923727128 a001 165580141/167761*7881196^(9/22) 6541093923727131 a001 5702887/167761*370248451^(1/2) 6541093923727131 a001 75025/12752043*17393796001^(11/14) 6541093923727131 a001 75025/12752043*14662949395604^(11/18) 6541093923727131 a001 75025/12752043*505019158607^(11/16) 6541093923727131 a001 75025/12752043*1568397607^(7/8) 6541093923727131 a001 75025/12752043*599074578^(11/12) 6541093923727138 a001 701408733/167761*7881196^(7/22) 6541093923727147 a001 2971215073/167761*7881196^(5/22) 6541093923727154 a001 7778742049/167761*7881196^(1/6) 6541093923727157 a001 75025*7881196^(3/22) 6541093923727164 a001 14930352/167761*54018521^(1/2) 6541093923727165 a001 75025/33385282*2537720636^(9/10) 6541093923727165 a001 75025/33385282*14662949395604^(9/14) 6541093923727165 a001 75025/33385282*192900153618^(3/4) 6541093923727166 a001 267914296/167761*20633239^(5/14) 6541093923727166 a001 24157817/167761*20633239^(1/2) 6541093923727166 a001 53316291173/167761*7881196^(1/22) 6541093923727167 a001 701408733/167761*20633239^(3/10) 6541093923727168 a001 2971215073/167761*20633239^(3/14) 6541093923727170 a001 20365011074/167761*20633239^(1/10) 6541093923727170 a001 32951280099/167761*20633239^(1/14) 6541093923727170 a001 75025/87403803*2537720636^(17/18) 6541093923727170 a001 75025/87403803*45537549124^(5/6) 6541093923727170 a001 75025/87403803*312119004989^(17/22) 6541093923727170 a001 75025/87403803*3461452808002^(17/24) 6541093923727170 a001 75025/87403803*28143753123^(17/20) 6541093923727170 a001 39088169/167761*312119004989^(3/10) 6541093923727170 a001 39088169/167761*1568397607^(3/8) 6541093923727171 a001 9303105/15251*1322157322203^(1/4) 6541093923727171 a001 4807526976/167761*141422324^(1/6) 6541093923727171 a001 267914296/167761*2537720636^(5/18) 6541093923727171 a001 75025/599074578*9062201101803^(3/4) 6541093923727171 a001 267914296/167761*312119004989^(5/22) 6541093923727171 a001 267914296/167761*3461452808002^(5/24) 6541093923727171 a001 267914296/167761*28143753123^(1/4) 6541093923727171 a001 701408733/167761*17393796001^(3/14) 6541093923727171 a001 701408733/167761*14662949395604^(1/6) 6541093923727171 a001 1836311903/167761*45537549124^(1/6) 6541093923727171 a001 75025*2537720636^(1/10) 6541093923727171 a001 75025/10749957122*312119004989^(21/22) 6541093923727171 a001 75025/10749957122*14662949395604^(5/6) 6541093923727171 a001 75025/10749957122*505019158607^(15/16) 6541093923727171 a001 32951280099/167761*2537720636^(1/18) 6541093923727171 a001 4807526976/167761*73681302247^(1/8) 6541093923727171 a001 2971215073/167761*2537720636^(1/6) 6541093923727171 a001 75025/192900153618*14662949395604^(13/14) 6541093923727171 a001 75025*14662949395604^(1/14) 6541093923727171 a001 75025*192900153618^(1/12) 6541093923727171 a001 75025/312119004989*14662949395604^(17/18) 6541093923727171 a001 75025/119218851371*3461452808002^(23/24) 6541093923727171 a001 32951280099/167761*312119004989^(1/22) 6541093923727171 a001 32951280099/167761*28143753123^(1/20) 6541093923727171 a001 20365011074/167761*17393796001^(1/14) 6541093923727171 a001 20365011074/167761*14662949395604^(1/18) 6541093923727171 a001 20365011074/167761*505019158607^(1/16) 6541093923727171 a001 7778742049/167761*312119004989^(1/10) 6541093923727171 a001 2971215073/167761*312119004989^(3/22) 6541093923727171 a001 2971215073/167761*28143753123^(3/20) 6541093923727171 a001 7778742049/167761*1568397607^(1/8) 6541093923727171 a001 75025/2537720636*312119004989^(9/10) 6541093923727171 a001 75025/2537720636*14662949395604^(11/14) 6541093923727171 a001 75025/2537720636*192900153618^(11/12) 6541093923727171 a001 1134903170/167761*817138163596^(1/6) 6541093923727171 a001 20365011074/167761*599074578^(1/12) 6541093923727171 a001 701408733/167761*599074578^(1/4) 6541093923727171 a001 75025/969323029*312119004989^(19/22) 6541093923727171 a001 75025/969323029*3461452808002^(19/24) 6541093923727171 a001 75025/969323029*28143753123^(19/20) 6541093923727171 a001 433494437/167761*4106118243^(1/4) 6541093923727171 a001 32951280099/167761*228826127^(1/16) 6541093923727171 a001 267914296/167761*228826127^(5/16) 6541093923727171 a001 2971215073/167761*228826127^(3/16) 6541093923727171 a001 165580141/167761*2537720636^(3/10) 6541093923727171 a001 75025/370248451*17393796001^(13/14) 6541093923727171 a001 75025/370248451*14662949395604^(13/18) 6541093923727171 a001 75025/370248451*505019158607^(13/16) 6541093923727171 a001 75025/370248451*73681302247^(7/8) 6541093923727171 a001 165580141/167761*14662949395604^(3/14) 6541093923727171 a001 165580141/167761*192900153618^(1/4) 6541093923727171 a001 1134903170/167761*87403803^(1/4) 6541093923727171 a001 53316291173/167761*33385282^(1/24) 6541093923727171 a001 75025/141422324*1322157322203^(3/4) 6541093923727171 a001 63245986/167761*9062201101803^(1/4) 6541093923727172 a001 75025*33385282^(1/8) 6541093923727172 a001 2971215073/167761*33385282^(5/24) 6541093923727173 a001 701408733/167761*33385282^(7/24) 6541093923727173 a001 39088169/167761*33385282^(11/24) 6541093923727173 a001 24157817/167761*2537720636^(7/18) 6541093923727173 a001 24157817/167761*17393796001^(5/14) 6541093923727173 a001 24157817/167761*312119004989^(7/22) 6541093923727173 a001 24157817/167761*14662949395604^(5/18) 6541093923727173 a001 24157817/167761*505019158607^(5/16) 6541093923727173 a001 24157817/167761*28143753123^(7/20) 6541093923727173 a001 165580141/167761*33385282^(3/8) 6541093923727173 a001 24157817/167761*599074578^(5/12) 6541093923727173 a001 24157817/167761*228826127^(7/16) 6541093923727181 a001 1836311903/167761*12752043^(1/4) 6541093923727186 a001 9227465/167761*141422324^(1/2) 6541093923727187 a001 9227465/167761*73681302247^(3/8) 6541093923727190 a001 9227465/167761*33385282^(13/24) 6541093923727266 a001 53316291173/167761*1860498^(1/20) 6541093923727276 a001 3524578/167761*969323029^(1/2) 6541093923727276 a001 75025/7881196*2537720636^(5/6) 6541093923727276 a001 75025/7881196*312119004989^(15/22) 6541093923727276 a001 75025/7881196*3461452808002^(5/8) 6541093923727276 a001 75025/7881196*28143753123^(3/4) 6541093923727277 a001 75025/7881196*228826127^(15/16) 6541093923727329 a001 32951280099/167761*1860498^(1/12) 6541093923727455 a001 75025*1860498^(3/20) 6541093923727644 a001 2971215073/167761*1860498^(1/4) 6541093923727833 a001 701408733/167761*1860498^(7/20) 6541093923727893 a001 1346269/167761*6643838879^(1/2) 6541093923727959 a001 267914296/167761*1860498^(5/12) 6541093923728022 a001 165580141/167761*1860498^(9/20) 6541093923728210 a001 39088169/167761*1860498^(11/20) 6541093923728276 a001 24157817/167761*1860498^(7/12) 6541093923728313 a001 2178309/167761*1860498^(3/4) 6541093923728415 a001 9227465/167761*1860498^(13/20) 6541093923728790 a001 20365011074/167761*710647^(1/8) 6541093923732028 a001 701408733/167761*710647^(3/8) 6541093923732037 a001 514229/167761*7881196^(17/22) 6541093923732118 a001 514229/167761*45537549124^(1/2) 6541093923732123 a001 514229/167761*33385282^(17/24) 6541093923732149 a001 514229/167761*12752043^(3/4) 6541093923733725 a001 514229/167761*1860498^(17/20) 6541093923735269 a001 24157817/167761*710647^(5/8) 6541093923736615 a001 75640/15251*710647^(7/8) 6541093923748010 a001 2971215073/710647*103682^(7/16) 6541093923748246 a001 267914296/271443*103682^(9/16) 6541093923749365 a001 4807526976/167761*271443^(1/4) 6541093923752832 a001 208010/6119*24476^(41/42) 6541093923759073 a001 7778742049/1860498*103682^(7/16) 6541093923760687 a001 20365011074/4870847*103682^(7/16) 6541093923760922 a001 53316291173/12752043*103682^(7/16) 6541093923760956 a001 139583862445/33385282*103682^(7/16) 6541093923760961 a001 365435296162/87403803*103682^(7/16) 6541093923760962 a001 956722026041/228826127*103682^(7/16) 6541093923760962 a001 2504730781961/599074578*103682^(7/16) 6541093923760962 a001 6557470319842/1568397607*103682^(7/16) 6541093923760962 a001 10610209857723/2537720636*103682^(7/16) 6541093923760962 a001 4052739537881/969323029*103682^(7/16) 6541093923760962 a001 1548008755920/370248451*103682^(7/16) 6541093923760963 a001 591286729879/141422324*103682^(7/16) 6541093923760965 a001 225851433717/54018521*103682^(7/16) 6541093923760978 a001 86267571272/20633239*103682^(7/16) 6541093923760980 a001 75025/439204*7881196^(21/22) 6541093923760993 a001 196418/167761*7881196^(5/6) 6541093923761067 a001 75025/439204*20633239^(9/10) 6541093923761068 a001 32951280099/7881196*103682^(7/16) 6541093923761068 a001 196418/167761*20633239^(11/14) 6541093923761080 a001 75025/439204*2537720636^(7/10) 6541093923761080 a001 196418/167761*2537720636^(11/18) 6541093923761080 a001 75025/439204*17393796001^(9/14) 6541093923761080 a001 75025/439204*14662949395604^(1/2) 6541093923761080 a001 75025/439204*505019158607^(9/16) 6541093923761080 a001 75025/439204*192900153618^(7/12) 6541093923761080 a001 196418/167761*312119004989^(1/2) 6541093923761080 a001 196418/167761*3461452808002^(11/24) 6541093923761080 a001 196418/167761*28143753123^(11/20) 6541093923761080 a001 196418/167761*1568397607^(5/8) 6541093923761080 a001 75025/439204*599074578^(3/4) 6541093923761080 a001 196418/167761*228826127^(11/16) 6541093923761086 a001 75025/439204*33385282^(7/8) 6541093923761684 a001 12586269025/3010349*103682^(7/16) 6541093923762813 a001 196418/167761*1860498^(11/12) 6541093923765201 a001 53316291173/167761*103682^(1/16) 6541093923765910 a001 4807526976/1149851*103682^(7/16) 6541093923793768 a001 9227465/167761*271443^(3/4) 6541093923794871 a001 1836311903/439204*103682^(7/16) 6541093923824070 a001 701408733/710647*103682^(9/16) 6541093923824306 a001 63245986/271443*103682^(11/16) 6541093923835132 a001 1836311903/1860498*103682^(9/16) 6541093923836746 a001 4807526976/4870847*103682^(9/16) 6541093923836982 a001 12586269025/12752043*103682^(9/16) 6541093923837016 a001 32951280099/33385282*103682^(9/16) 6541093923837021 a001 86267571272/87403803*103682^(9/16) 6541093923837022 a001 225851433717/228826127*103682^(9/16) 6541093923837022 a001 591286729879/599074578*103682^(9/16) 6541093923837022 a001 1548008755920/1568397607*103682^(9/16) 6541093923837022 a001 4052739537881/4106118243*103682^(9/16) 6541093923837022 a001 4807525989/4870846*103682^(9/16) 6541093923837022 a001 6557470319842/6643838879*103682^(9/16) 6541093923837022 a001 2504730781961/2537720636*103682^(9/16) 6541093923837022 a001 956722026041/969323029*103682^(9/16) 6541093923837022 a001 365435296162/370248451*103682^(9/16) 6541093923837022 a001 139583862445/141422324*103682^(9/16) 6541093923837024 a001 53316291173/54018521*103682^(9/16) 6541093923837037 a001 20365011074/20633239*103682^(9/16) 6541093923837127 a001 7778742049/7881196*103682^(9/16) 6541093923837744 a001 2971215073/3010349*103682^(9/16) 6541093923841260 a001 75025*103682^(3/16) 6541093923841969 a001 1134903170/1149851*103682^(9/16) 6541093923870931 a001 433494437/439204*103682^(9/16) 6541093923900129 a001 165580141/710647*103682^(11/16) 6541093923900360 a001 4976784/90481*103682^(13/16) 6541093923911192 a001 433494437/1860498*103682^(11/16) 6541093923912806 a001 1134903170/4870847*103682^(11/16) 6541093923913041 a001 2971215073/12752043*103682^(11/16) 6541093923913075 a001 7778742049/33385282*103682^(11/16) 6541093923913080 a001 20365011074/87403803*103682^(11/16) 6541093923913081 a001 53316291173/228826127*103682^(11/16) 6541093923913081 a001 139583862445/599074578*103682^(11/16) 6541093923913081 a001 365435296162/1568397607*103682^(11/16) 6541093923913081 a001 956722026041/4106118243*103682^(11/16) 6541093923913081 a001 2504730781961/10749957122*103682^(11/16) 6541093923913081 a001 6557470319842/28143753123*103682^(11/16) 6541093923913081 a001 10610209857723/45537549124*103682^(11/16) 6541093923913081 a001 4052739537881/17393796001*103682^(11/16) 6541093923913081 a001 1548008755920/6643838879*103682^(11/16) 6541093923913081 a001 591286729879/2537720636*103682^(11/16) 6541093923913081 a001 225851433717/969323029*103682^(11/16) 6541093923913081 a001 86267571272/370248451*103682^(11/16) 6541093923913082 a001 63246219/271444*103682^(11/16) 6541093923913084 a001 12586269025/54018521*103682^(11/16) 6541093923913097 a001 4807526976/20633239*103682^(11/16) 6541093923913187 a001 1836311903/7881196*103682^(11/16) 6541093923913803 a001 701408733/3010349*103682^(11/16) 6541093923917320 a001 2971215073/167761*103682^(5/16) 6541093923918029 a001 267914296/1149851*103682^(11/16) 6541093923928917 a001 46368*39603^(1/4) 6541093923946990 a001 102334155/439204*103682^(11/16) 6541093923959588 a001 75025/167761*2139295485799^(1/2) 6541093923976188 a001 39088169/710647*103682^(13/16) 6541093923976530 a001 3524578/271443*103682^(15/16) 6541093923987251 a001 831985/15126*103682^(13/16) 6541093923988865 a001 267914296/4870847*103682^(13/16) 6541093923989101 a001 233802911/4250681*103682^(13/16) 6541093923989135 a001 1836311903/33385282*103682^(13/16) 6541093923989140 a001 1602508992/29134601*103682^(13/16) 6541093923989141 a001 12586269025/228826127*103682^(13/16) 6541093923989141 a001 10983760033/199691526*103682^(13/16) 6541093923989141 a001 86267571272/1568397607*103682^(13/16) 6541093923989141 a001 75283811239/1368706081*103682^(13/16) 6541093923989141 a001 591286729879/10749957122*103682^(13/16) 6541093923989141 a001 12585437040/228811001*103682^(13/16) 6541093923989141 a001 4052739537881/73681302247*103682^(13/16) 6541093923989141 a001 3536736619241/64300051206*103682^(13/16) 6541093923989141 a001 6557470319842/119218851371*103682^(13/16) 6541093923989141 a001 2504730781961/45537549124*103682^(13/16) 6541093923989141 a001 956722026041/17393796001*103682^(13/16) 6541093923989141 a001 365435296162/6643838879*103682^(13/16) 6541093923989141 a001 139583862445/2537720636*103682^(13/16) 6541093923989141 a001 53316291173/969323029*103682^(13/16) 6541093923989141 a001 20365011074/370248451*103682^(13/16) 6541093923989141 a001 7778742049/141422324*103682^(13/16) 6541093923989143 a001 2971215073/54018521*103682^(13/16) 6541093923989156 a001 1134903170/20633239*103682^(13/16) 6541093923989246 a001 433494437/7881196*103682^(13/16) 6541093923989863 a001 165580141/3010349*103682^(13/16) 6541093923993380 a001 701408733/167761*103682^(7/16) 6541093923994088 a001 63245986/1149851*103682^(13/16) 6541093924023052 a001 24157817/439204*103682^(13/16) 6541093924052264 a001 9227465/710647*103682^(15/16) 6541093924063313 a001 24157817/1860498*103682^(15/16) 6541093924064925 a001 63245986/4870847*103682^(15/16) 6541093924065160 a001 165580141/12752043*103682^(15/16) 6541093924065195 a001 433494437/33385282*103682^(15/16) 6541093924065200 a001 1134903170/87403803*103682^(15/16) 6541093924065200 a001 2971215073/228826127*103682^(15/16) 6541093924065200 a001 7778742049/599074578*103682^(15/16) 6541093924065200 a001 20365011074/1568397607*103682^(15/16) 6541093924065200 a001 53316291173/4106118243*103682^(15/16) 6541093924065200 a001 139583862445/10749957122*103682^(15/16) 6541093924065200 a001 365435296162/28143753123*103682^(15/16) 6541093924065200 a001 956722026041/73681302247*103682^(15/16) 6541093924065200 a001 2504730781961/192900153618*103682^(15/16) 6541093924065200 a001 10610209857723/817138163596*103682^(15/16) 6541093924065200 a001 4052739537881/312119004989*103682^(15/16) 6541093924065200 a001 1548008755920/119218851371*103682^(15/16) 6541093924065200 a001 591286729879/45537549124*103682^(15/16) 6541093924065200 a001 7787980473/599786069*103682^(15/16) 6541093924065200 a001 86267571272/6643838879*103682^(15/16) 6541093924065200 a001 32951280099/2537720636*103682^(15/16) 6541093924065200 a001 12586269025/969323029*103682^(15/16) 6541093924065200 a001 4807526976/370248451*103682^(15/16) 6541093924065201 a001 1836311903/141422324*103682^(15/16) 6541093924065203 a001 701408733/54018521*103682^(15/16) 6541093924065216 a001 9238424/711491*103682^(15/16) 6541093924065306 a001 102334155/7881196*103682^(15/16) 6541093924065921 a001 39088169/3010349*103682^(15/16) 6541093924069439 a001 165580141/167761*103682^(9/16) 6541093924070142 a001 14930352/1149851*103682^(15/16) 6541093924099069 a001 5702887/439204*103682^(15/16) 6541093924145498 a001 39088169/167761*103682^(11/16) 6541093924221574 a001 9227465/167761*103682^(13/16) 6541093924275380 a001 1346269/24476*24476^(13/14) 6541093924291260 a001 165580141/64079*64079^(1/2) 6541093924297342 a001 2178309/167761*103682^(15/16) 6541093924307861 a001 20365011074/64079*24476^(1/14) 6541093924448618 a001 12586269025/271443*39603^(1/4) 6541093924479198 a001 46368/64079*7881196^(19/22) 6541093924479289 a001 28657/103682*5600748293801^(1/2) 6541093924479289 a001 46368/64079*817138163596^(1/2) 6541093924479290 a001 46368/64079*87403803^(3/4) 6541093924479294 a001 46368/64079*33385282^(19/24) 6541093924481084 a001 46368/64079*1860498^(19/20) 6541093924524441 a001 32951280099/710647*39603^(1/4) 6541093924535504 a001 43133785636/930249*39603^(1/4) 6541093924537118 a001 225851433717/4870847*39603^(1/4) 6541093924537353 a001 591286729879/12752043*39603^(1/4) 6541093924537388 a001 774004377960/16692641*39603^(1/4) 6541093924537393 a001 4052739537881/87403803*39603^(1/4) 6541093924537393 a001 225749145909/4868641*39603^(1/4) 6541093924537394 a001 3278735159921/70711162*39603^(1/4) 6541093924537396 a001 2504730781961/54018521*39603^(1/4) 6541093924537409 a001 956722026041/20633239*39603^(1/4) 6541093924537499 a001 182717648081/3940598*39603^(1/4) 6541093924538115 a001 139583862445/3010349*39603^(1/4) 6541093924542341 a001 53316291173/1149851*39603^(1/4) 6541093924571303 a001 10182505537/219602*39603^(1/4) 6541093924769811 a001 7778742049/167761*39603^(1/4) 6541093924794319 a001 2178309/24476*24476^(37/42) 6541093924876700 a001 832040/64079*167761^(9/10) 6541093924925089 a001 9227465/64079*167761^(7/10) 6541093924971557 a001 102334155/64079*167761^(1/2) 6541093924998976 a001 28657/271443*20633239^(13/14) 6541093924998990 a001 28657/271443*141422324^(5/6) 6541093924998990 a001 28657/271443*2537720636^(13/18) 6541093924998990 a001 28657/271443*312119004989^(13/22) 6541093924998990 a001 28657/271443*3461452808002^(13/24) 6541093924998990 a001 28657/271443*73681302247^(5/8) 6541093924998990 a001 28657/271443*28143753123^(13/20) 6541093924998990 a001 121393/64079*119218851371^(1/2) 6541093924998990 a001 28657/271443*228826127^(13/16) 6541093925018040 a001 1134903170/64079*167761^(3/10) 6541093925057618 a001 832040/64079*439204^(5/6) 6541093925063381 a001 3524578/64079*439204^(13/18) 6541093925064524 a001 12586269025/64079*167761^(1/10) 6541093925067037 a001 14930352/64079*439204^(11/18) 6541093925070811 a001 63245986/64079*439204^(1/2) 6541093925074579 a001 267914296/64079*439204^(7/18) 6541093925074803 a001 317811/64079*20633239^(7/10) 6541093925074813 a001 28657/710647*4106118243^(3/4) 6541093925074813 a001 317811/64079*17393796001^(1/2) 6541093925074813 a001 317811/64079*14662949395604^(7/18) 6541093925074813 a001 317811/64079*505019158607^(7/16) 6541093925074813 a001 317811/64079*599074578^(7/12) 6541093925074819 a001 28657/710647*33385282^(23/24) 6541093925078346 a001 1134903170/64079*439204^(5/18) 6541093925082114 a001 4807526976/64079*439204^(1/6) 6541093925085291 a001 39088169/64079*1149851^(1/2) 6541093925085804 a001 832040/64079*7881196^(15/22) 6541093925085866 a001 832040/64079*20633239^(9/14) 6541093925085876 a001 832040/64079*2537720636^(1/2) 6541093925085876 a001 832040/64079*312119004989^(9/22) 6541093925085876 a001 832040/64079*14662949395604^(5/14) 6541093925085876 a001 832040/64079*192900153618^(5/12) 6541093925085876 a001 832040/64079*28143753123^(9/20) 6541093925085876 a001 832040/64079*228826127^(9/16) 6541093925085879 a001 832040/64079*33385282^(5/8) 6541093925085882 a001 20365011074/64079*439204^(1/18) 6541093925086146 a001 317811/64079*710647^(7/8) 6541093925087293 a001 832040/64079*1860498^(3/4) 6541093925087407 a001 24157817/64079*3010349^(1/2) 6541093925087490 a001 2178309/64079*370248451^(1/2) 6541093925087490 a001 28657/4870847*17393796001^(11/14) 6541093925087490 a001 28657/4870847*14662949395604^(11/18) 6541093925087490 a001 28657/4870847*505019158607^(11/16) 6541093925087490 a001 28657/4870847*1568397607^(7/8) 6541093925087490 a001 28657/4870847*599074578^(11/12) 6541093925087707 a001 14930352/64079*7881196^(1/2) 6541093925087723 a001 63245986/64079*7881196^(9/22) 6541093925087724 a001 5702887/64079*54018521^(1/2) 6541093925087725 a001 28657/12752043*2537720636^(9/10) 6541093925087725 a001 28657/12752043*14662949395604^(9/14) 6541093925087725 a001 28657/12752043*192900153618^(3/4) 6541093925087732 a001 267914296/64079*7881196^(7/22) 6541093925087742 a001 1134903170/64079*7881196^(5/22) 6541093925087748 a001 2971215073/64079*7881196^(1/6) 6541093925087751 a001 4807526976/64079*7881196^(3/22) 6541093925087760 a001 28657/33385282*2537720636^(17/18) 6541093925087760 a001 28657/33385282*45537549124^(5/6) 6541093925087760 a001 28657/33385282*312119004989^(17/22) 6541093925087760 a001 28657/33385282*3461452808002^(17/24) 6541093925087760 a001 28657/33385282*28143753123^(17/20) 6541093925087760 a001 14930352/64079*312119004989^(3/10) 6541093925087760 a001 14930352/64079*1568397607^(3/8) 6541093925087760 a001 102334155/64079*20633239^(5/14) 6541093925087761 a001 20365011074/64079*7881196^(1/22) 6541093925087761 a001 267914296/64079*20633239^(3/10) 6541093925087762 a001 1134903170/64079*20633239^(3/14) 6541093925087762 a001 14930352/64079*33385282^(11/24) 6541093925087764 a001 7778742049/64079*20633239^(1/10) 6541093925087764 a001 12586269025/64079*20633239^(1/14) 6541093925087765 a001 39088169/64079*1322157322203^(1/4) 6541093925087765 a001 28657/228826127*9062201101803^(3/4) 6541093925087765 a001 102334155/64079*2537720636^(5/18) 6541093925087765 a001 102334155/64079*312119004989^(5/22) 6541093925087765 a001 102334155/64079*3461452808002^(5/24) 6541093925087765 a001 102334155/64079*28143753123^(1/4) 6541093925087765 a001 102334155/64079*228826127^(5/16) 6541093925087765 a001 28657*141422324^(1/6) 6541093925087765 a001 267914296/64079*17393796001^(3/14) 6541093925087765 a001 267914296/64079*14662949395604^(1/6) 6541093925087765 a001 267914296/64079*599074578^(1/4) 6541093925087765 a001 701408733/64079*45537549124^(1/6) 6541093925087765 a001 28657/4106118243*312119004989^(21/22) 6541093925087765 a001 28657/4106118243*14662949395604^(5/6) 6541093925087765 a001 28657/4106118243*505019158607^(15/16) 6541093925087765 a001 28657/73681302247*14662949395604^(13/14) 6541093925087765 a001 28657*73681302247^(1/8) 6541093925087765 a001 28657/119218851371*14662949395604^(17/18) 6541093925087765 a001 28657/45537549124*3461452808002^(23/24) 6541093925087765 a001 4807526976/64079*2537720636^(1/10) 6541093925087765 a001 12586269025/64079*2537720636^(1/18) 6541093925087765 a001 4807526976/64079*14662949395604^(1/14) 6541093925087765 a001 4807526976/64079*192900153618^(1/12) 6541093925087765 a001 12586269025/64079*312119004989^(1/22) 6541093925087765 a001 12586269025/64079*28143753123^(1/20) 6541093925087765 a001 7778742049/64079*17393796001^(1/14) 6541093925087765 a001 7778742049/64079*14662949395604^(1/18) 6541093925087765 a001 7778742049/64079*505019158607^(1/16) 6541093925087765 a001 2971215073/64079*312119004989^(1/10) 6541093925087765 a001 2971215073/64079*1568397607^(1/8) 6541093925087765 a001 1134903170/64079*2537720636^(1/6) 6541093925087765 a001 1134903170/64079*312119004989^(3/22) 6541093925087765 a001 1134903170/64079*28143753123^(3/20) 6541093925087765 a001 7778742049/64079*599074578^(1/12) 6541093925087765 a001 28657/969323029*312119004989^(9/10) 6541093925087765 a001 28657/969323029*14662949395604^(11/14) 6541093925087765 a001 28657/969323029*192900153618^(11/12) 6541093925087765 a001 433494437/64079*817138163596^(1/6) 6541093925087765 a001 12586269025/64079*228826127^(1/16) 6541093925087766 a001 1134903170/64079*228826127^(3/16) 6541093925087766 a001 28657/370248451*312119004989^(19/22) 6541093925087766 a001 28657/370248451*817138163596^(5/6) 6541093925087766 a001 28657/370248451*3461452808002^(19/24) 6541093925087766 a001 28657/370248451*28143753123^(19/20) 6541093925087766 a001 165580141/64079*4106118243^(1/4) 6541093925087766 a001 433494437/64079*87403803^(1/4) 6541093925087766 a001 20365011074/64079*33385282^(1/24) 6541093925087766 a001 28657/141422324*17393796001^(13/14) 6541093925087766 a001 28657/141422324*14662949395604^(13/18) 6541093925087766 a001 28657/141422324*505019158607^(13/16) 6541093925087766 a001 28657/141422324*73681302247^(7/8) 6541093925087766 a001 63245986/64079*2537720636^(3/10) 6541093925087766 a001 63245986/64079*14662949395604^(3/14) 6541093925087766 a001 63245986/64079*192900153618^(1/4) 6541093925087766 a001 4807526976/64079*33385282^(1/8) 6541093925087767 a001 1134903170/64079*33385282^(5/24) 6541093925087767 a001 267914296/64079*33385282^(7/24) 6541093925087768 a001 28657/54018521*1322157322203^(3/4) 6541093925087768 a001 24157817/64079*9062201101803^(1/4) 6541093925087768 a001 63245986/64079*33385282^(3/8) 6541093925087773 a001 9227465/64079*20633239^(1/2) 6541093925087776 a001 701408733/64079*12752043^(1/4) 6541093925087781 a001 9227465/64079*2537720636^(7/18) 6541093925087781 a001 9227465/64079*17393796001^(5/14) 6541093925087781 a001 9227465/64079*312119004989^(7/22) 6541093925087781 a001 9227465/64079*14662949395604^(5/18) 6541093925087781 a001 9227465/64079*505019158607^(5/16) 6541093925087781 a001 9227465/64079*28143753123^(7/20) 6541093925087781 a001 9227465/64079*599074578^(5/12) 6541093925087781 a001 9227465/64079*228826127^(7/16) 6541093925087809 a001 3524578/64079*7881196^(13/22) 6541093925087860 a001 20365011074/64079*1860498^(1/20) 6541093925087871 a001 3524578/64079*141422324^(1/2) 6541093925087871 a001 3524578/64079*73681302247^(3/8) 6541093925087874 a001 3524578/64079*33385282^(13/24) 6541093925087923 a001 12586269025/64079*1860498^(1/12) 6541093925088049 a001 4807526976/64079*1860498^(3/20) 6541093925088238 a001 1134903170/64079*1860498^(1/4) 6541093925088427 a001 267914296/64079*1860498^(7/20) 6541093925088487 a001 1346269/64079*969323029^(1/2) 6541093925088487 a001 28657/3010349*2537720636^(5/6) 6541093925088487 a001 28657/3010349*312119004989^(15/22) 6541093925088487 a001 28657/3010349*3461452808002^(5/8) 6541093925088487 a001 28657/3010349*28143753123^(3/4) 6541093925088487 a001 28657/3010349*228826127^(15/16) 6541093925088553 a001 102334155/64079*1860498^(5/12) 6541093925088616 a001 63245986/64079*1860498^(9/20) 6541093925088799 a001 14930352/64079*1860498^(11/20) 6541093925088883 a001 9227465/64079*1860498^(7/12) 6541093925089099 a001 3524578/64079*1860498^(13/20) 6541093925089385 a001 7778742049/64079*710647^(1/8) 6541093925089649 a001 196418/64079*439204^(17/18) 6541093925092623 a001 267914296/64079*710647^(3/8) 6541093925092713 a001 514229/64079*6643838879^(1/2) 6541093925095876 a001 9227465/64079*710647^(5/8) 6541093925109959 a001 28657*271443^(1/4) 6541093925121593 a001 196418/64079*7881196^(17/22) 6541093925121675 a001 196418/64079*45537549124^(1/2) 6541093925121679 a001 196418/64079*33385282^(17/24) 6541093925121705 a001 196418/64079*12752043^(3/4) 6541093925123281 a001 196418/64079*1860498^(17/20) 6541093925125795 a001 20365011074/64079*103682^(1/16) 6541093925154452 a001 3524578/64079*271443^(3/4) 6541093925201855 a001 4807526976/64079*103682^(3/16) 6541093925277914 a001 1134903170/64079*103682^(5/16) 6541093925314637 a001 1762289/12238*24476^(5/6) 6541093925320082 a001 28657/167761*7881196^(21/22) 6541093925320095 a001 75025/64079*7881196^(5/6) 6541093925320169 a001 28657/167761*20633239^(9/10) 6541093925320171 a001 75025/64079*20633239^(11/14) 6541093925320183 a001 28657/167761*2537720636^(7/10) 6541093925320183 a001 75025/64079*2537720636^(11/18) 6541093925320183 a001 28657/167761*17393796001^(9/14) 6541093925320183 a001 28657/167761*14662949395604^(1/2) 6541093925320183 a001 28657/167761*505019158607^(9/16) 6541093925320183 a001 28657/167761*192900153618^(7/12) 6541093925320183 a001 75025/64079*312119004989^(1/2) 6541093925320183 a001 75025/64079*3461452808002^(11/24) 6541093925320183 a001 75025/64079*28143753123^(11/20) 6541093925320183 a001 75025/64079*1568397607^(5/8) 6541093925320183 a001 28657/167761*599074578^(3/4) 6541093925320183 a001 75025/64079*228826127^(11/16) 6541093925320188 a001 28657/167761*33385282^(7/8) 6541093925321915 a001 75025/64079*1860498^(11/12) 6541093925353974 a001 267914296/64079*103682^(7/16) 6541093925430034 a001 63245986/64079*103682^(9/16) 6541093925462276 a001 832040/9349*9349^(37/38) 6541093925506087 a001 14930352/64079*103682^(11/16) 6541093925582258 a001 3524578/64079*103682^(13/16) 6541093925656322 a001 832040/64079*103682^(15/16) 6541093925834427 a001 5702887/24476*24476^(11/14) 6541093926014199 a001 24157817/103682*39603^(3/4) 6541093926130405 a001 2971215073/64079*39603^(1/4) 6541093926459457 a001 10182505537/51841*15127^(1/8) 6541093926533898 a001 63245986/271443*39603^(3/4) 6541093926609721 a001 165580141/710647*39603^(3/4) 6541093926620783 a001 433494437/1860498*39603^(3/4) 6541093926622397 a001 1134903170/4870847*39603^(3/4) 6541093926622633 a001 2971215073/12752043*39603^(3/4) 6541093926622667 a001 7778742049/33385282*39603^(3/4) 6541093926622672 a001 20365011074/87403803*39603^(3/4) 6541093926622673 a001 53316291173/228826127*39603^(3/4) 6541093926622673 a001 139583862445/599074578*39603^(3/4) 6541093926622673 a001 365435296162/1568397607*39603^(3/4) 6541093926622673 a001 956722026041/4106118243*39603^(3/4) 6541093926622673 a001 2504730781961/10749957122*39603^(3/4) 6541093926622673 a001 6557470319842/28143753123*39603^(3/4) 6541093926622673 a001 10610209857723/45537549124*39603^(3/4) 6541093926622673 a001 4052739537881/17393796001*39603^(3/4) 6541093926622673 a001 1548008755920/6643838879*39603^(3/4) 6541093926622673 a001 591286729879/2537720636*39603^(3/4) 6541093926622673 a001 225851433717/969323029*39603^(3/4) 6541093926622673 a001 86267571272/370248451*39603^(3/4) 6541093926622673 a001 63246219/271444*39603^(3/4) 6541093926622675 a001 12586269025/54018521*39603^(3/4) 6541093926622688 a001 4807526976/20633239*39603^(3/4) 6541093926622778 a001 1836311903/7881196*39603^(3/4) 6541093926623395 a001 701408733/3010349*39603^(3/4) 6541093926627620 a001 267914296/1149851*39603^(3/4) 6541093926656582 a001 102334155/439204*39603^(3/4) 6541093926680777 a001 28657/64079*2139295485799^(1/2) 6541093926855089 a001 39088169/167761*39603^(3/4) 6541093926961775 a001 46347/2206*39603^(43/44) 6541093926979158 a001 53316291173/271443*15127^(1/8) 6541093927054981 a001 139583862445/710647*15127^(1/8) 6541093927066043 a001 182717648081/930249*15127^(1/8) 6541093927067657 a001 956722026041/4870847*15127^(1/8) 6541093927067893 a001 2504730781961/12752043*15127^(1/8) 6541093927067927 a001 3278735159921/16692641*15127^(1/8) 6541093927067935 a001 10610209857723/54018521*15127^(1/8) 6541093927067948 a001 4052739537881/20633239*15127^(1/8) 6541093927068038 a001 387002188980/1970299*15127^(1/8) 6541093927068655 a001 591286729879/3010349*15127^(1/8) 6541093927072880 a001 225851433717/1149851*15127^(1/8) 6541093927101842 a001 196418*15127^(1/8) 6541093927300350 a001 32951280099/167761*15127^(1/8) 6541093927394279 a001 24157817/24476*24476^(9/14) 6541093928215678 a001 14930352/64079*39603^(3/4) 6541093928660945 a001 12586269025/64079*15127^(1/8) 6541093928954086 a001 102334155/24476*24476^(1/2) 6541093928973692 a001 2178309/64079*39603^(41/44) 6541093929164260 a001 1346269/64079*39603^(43/44) 6541093929403710 a001 1346269/9349*9349^(35/38) 6541093930043733 a001 17711*15127^(3/8) 6541093930242768 a001 17711/24476*7881196^(19/22) 6541093930242859 a001 10946/39603*5600748293801^(1/2) 6541093930242859 a001 17711/24476*817138163596^(1/2) 6541093930242860 a001 17711/24476*87403803^(3/4) 6541093930242864 a001 17711/24476*33385282^(19/24) 6541093930244654 a001 17711/24476*1860498^(19/20) 6541093930513895 a001 433494437/24476*24476^(5/14) 6541093932073704 a001 1836311903/24476*24476^(3/14) 6541093932593640 a001 2971215073/24476*24476^(1/6) 6541093933341536 a001 2178309/9349*9349^(33/38) 6541093933605815 a001 1836311903/103682*15127^(3/8) 6541093933616912 a001 31622993/12238*64079^(1/2) 6541093933633513 a001 7778742049/24476*24476^(1/14) 6541093933804927 a001 5473/51841*20633239^(13/14) 6541093933804941 a001 5473/51841*141422324^(5/6) 6541093933804941 a001 5473/51841*2537720636^(13/18) 6541093933804941 a001 5473/51841*312119004989^(13/22) 6541093933804941 a001 5473/51841*3461452808002^(13/24) 6541093933804941 a001 5473/51841*73681302247^(5/8) 6541093933804941 a001 5473/51841*28143753123^(13/20) 6541093933804941 a001 11592/6119*119218851371^(1/2) 6541093933804942 a001 5473/51841*228826127^(13/16) 6541093934125516 a001 1602508992/90481*15127^(3/8) 6541093934191290 a001 10959/844*167761^(9/10) 6541093934201339 a001 12586269025/710647*15127^(3/8) 6541093934212402 a001 10983760033/620166*15127^(3/8) 6541093934214016 a001 86267571272/4870847*15127^(3/8) 6541093934214251 a001 75283811239/4250681*15127^(3/8) 6541093934214285 a001 591286729879/33385282*15127^(3/8) 6541093934214290 a001 516002918640/29134601*15127^(3/8) 6541093934214291 a001 4052739537881/228826127*15127^(3/8) 6541093934214291 a001 3536736619241/199691526*15127^(3/8) 6541093934214291 a001 6557470319842/370248451*15127^(3/8) 6541093934214292 a001 2504730781961/141422324*15127^(3/8) 6541093934214294 a001 956722026041/54018521*15127^(3/8) 6541093934214307 a001 365435296162/20633239*15127^(3/8) 6541093934214397 a001 139583862445/7881196*15127^(3/8) 6541093934215013 a001 53316291173/3010349*15127^(3/8) 6541093934219239 a001 20365011074/1149851*15127^(3/8) 6541093934248200 a001 7778742049/439204*15127^(3/8) 6541093934250831 a001 1762289/12238*167761^(7/10) 6541093934297208 a001 39088169/24476*167761^(1/2) 6541093934324632 a001 121393/24476*20633239^(7/10) 6541093934324642 a001 10946/271443*4106118243^(3/4) 6541093934324642 a001 121393/24476*17393796001^(1/2) 6541093934324642 a001 121393/24476*14662949395604^(7/18) 6541093934324642 a001 121393/24476*505019158607^(7/16) 6541093934324642 a001 121393/24476*599074578^(7/12) 6541093934324648 a001 10946/271443*33385282^(23/24) 6541093934335975 a001 121393/24476*710647^(7/8) 6541093934343693 a001 433494437/24476*167761^(3/10) 6541093934372208 a001 10959/844*439204^(5/6) 6541093934389650 a001 1346269/24476*439204^(13/18) 6541093934390176 a001 1201881744/6119*167761^(1/10) 6541093934392655 a001 5702887/24476*439204^(11/18) 6541093934396465 a001 24157817/24476*439204^(1/2) 6541093934400231 a001 102334155/24476*439204^(7/18) 6541093934400394 a001 10959/844*7881196^(15/22) 6541093934400456 a001 10959/844*20633239^(9/14) 6541093934400466 a001 10959/844*2537720636^(1/2) 6541093934400466 a001 10959/844*312119004989^(9/22) 6541093934400466 a001 10959/844*14662949395604^(5/14) 6541093934400466 a001 10959/844*192900153618^(5/12) 6541093934400466 a001 10959/844*28143753123^(9/20) 6541093934400466 a001 10959/844*228826127^(9/16) 6541093934400469 a001 10959/844*33385282^(5/8) 6541093934401883 a001 10959/844*1860498^(3/4) 6541093934403999 a001 433494437/24476*439204^(5/18) 6541093934407766 a001 1836311903/24476*439204^(1/6) 6541093934410938 a001 3732588/6119*1149851^(1/2) 6541093934411528 a001 208010/6119*370248451^(1/2) 6541093934411528 a001 5473/930249*17393796001^(11/14) 6541093934411528 a001 5473/930249*14662949395604^(11/18) 6541093934411528 a001 5473/930249*505019158607^(11/16) 6541093934411528 a001 5473/930249*1568397607^(7/8) 6541093934411528 a001 5473/930249*599074578^(11/12) 6541093934411534 a001 7778742049/24476*439204^(1/18) 6541093934413072 a001 9227465/24476*3010349^(1/2) 6541093934413141 a001 2178309/24476*54018521^(1/2) 6541093934413142 a001 10946/4870847*2537720636^(9/10) 6541093934413142 a001 10946/4870847*14662949395604^(9/14) 6541093934413142 a001 10946/4870847*192900153618^(3/4) 6541093934413325 a001 5702887/24476*7881196^(1/2) 6541093934413377 a001 24157817/24476*7881196^(9/22) 6541093934413378 a001 10946/12752043*2537720636^(17/18) 6541093934413378 a001 10946/12752043*45537549124^(5/6) 6541093934413378 a001 10946/12752043*312119004989^(17/22) 6541093934413378 a001 10946/12752043*3461452808002^(17/24) 6541093934413378 a001 10946/12752043*28143753123^(17/20) 6541093934413378 a001 5702887/24476*312119004989^(3/10) 6541093934413378 a001 5702887/24476*1568397607^(3/8) 6541093934413380 a001 5702887/24476*33385282^(11/24) 6541093934413384 a001 102334155/24476*7881196^(7/22) 6541093934413394 a001 433494437/24476*7881196^(5/22) 6541093934413400 a001 567451585/12238*7881196^(1/6) 6541093934413403 a001 1836311903/24476*7881196^(3/22) 6541093934413411 a001 39088169/24476*20633239^(5/14) 6541093934413412 a001 3732588/6119*1322157322203^(1/4) 6541093934413413 a001 7778742049/24476*7881196^(1/22) 6541093934413413 a001 102334155/24476*20633239^(3/10) 6541093934413414 a001 433494437/24476*20633239^(3/14) 6541093934413416 a001 2971215073/24476*20633239^(1/10) 6541093934413417 a001 1201881744/6119*20633239^(1/14) 6541093934413417 a001 10946/87403803*9062201101803^(3/4) 6541093934413417 a001 39088169/24476*2537720636^(5/18) 6541093934413417 a001 39088169/24476*312119004989^(5/22) 6541093934413417 a001 39088169/24476*3461452808002^(5/24) 6541093934413417 a001 39088169/24476*28143753123^(1/4) 6541093934413417 a001 39088169/24476*228826127^(5/16) 6541093934413418 a001 102334155/24476*17393796001^(3/14) 6541093934413418 a001 102334155/24476*14662949395604^(1/6) 6541093934413418 a001 102334155/24476*599074578^(1/4) 6541093934413418 a001 701408733/24476*141422324^(1/6) 6541093934413418 a001 10946/1568397607*312119004989^(21/22) 6541093934413418 a001 10946/1568397607*14662949395604^(5/6) 6541093934413418 a001 10946/1568397607*505019158607^(15/16) 6541093934413418 a001 10946/28143753123*14662949395604^(13/14) 6541093934413418 a001 10946*45537549124^(1/6) 6541093934413418 a001 5473/22768774562*14662949395604^(17/18) 6541093934413418 a001 10946/17393796001*3461452808002^(23/24) 6541093934413418 a001 701408733/24476*73681302247^(1/8) 6541093934413418 a001 1836311903/24476*2537720636^(1/10) 6541093934413418 a001 1836311903/24476*14662949395604^(1/14) 6541093934413418 a001 1836311903/24476*192900153618^(1/12) 6541093934413418 a001 1201881744/6119*2537720636^(1/18) 6541093934413418 a001 1201881744/6119*312119004989^(1/22) 6541093934413418 a001 1201881744/6119*28143753123^(1/20) 6541093934413418 a001 2971215073/24476*17393796001^(1/14) 6541093934413418 a001 2971215073/24476*14662949395604^(1/18) 6541093934413418 a001 2971215073/24476*505019158607^(1/16) 6541093934413418 a001 567451585/12238*312119004989^(1/10) 6541093934413418 a001 567451585/12238*1568397607^(1/8) 6541093934413418 a001 2971215073/24476*599074578^(1/12) 6541093934413418 a001 433494437/24476*2537720636^(1/6) 6541093934413418 a001 433494437/24476*312119004989^(3/22) 6541093934413418 a001 433494437/24476*28143753123^(3/20) 6541093934413418 a001 1201881744/6119*228826127^(1/16) 6541093934413418 a001 10946/370248451*312119004989^(9/10) 6541093934413418 a001 10946/370248451*14662949395604^(11/14) 6541093934413418 a001 10946/370248451*192900153618^(11/12) 6541093934413418 a001 433494437/24476*228826127^(3/16) 6541093934413418 a001 165580141/24476*817138163596^(1/6) 6541093934413418 a001 7778742049/24476*33385282^(1/24) 6541093934413418 a001 165580141/24476*87403803^(1/4) 6541093934413418 a001 5473/70711162*312119004989^(19/22) 6541093934413418 a001 5473/70711162*3461452808002^(19/24) 6541093934413418 a001 5473/70711162*28143753123^(19/20) 6541093934413418 a001 31622993/12238*4106118243^(1/4) 6541093934413418 a001 1836311903/24476*33385282^(1/8) 6541093934413419 a001 433494437/24476*33385282^(5/24) 6541093934413419 a001 102334155/24476*33385282^(7/24) 6541093934413420 a001 10946/54018521*17393796001^(13/14) 6541093934413420 a001 10946/54018521*14662949395604^(13/18) 6541093934413420 a001 10946/54018521*505019158607^(13/16) 6541093934413420 a001 10946/54018521*73681302247^(7/8) 6541093934413420 a001 24157817/24476*2537720636^(3/10) 6541093934413420 a001 24157817/24476*14662949395604^(3/14) 6541093934413420 a001 24157817/24476*192900153618^(1/4) 6541093934413422 a001 24157817/24476*33385282^(3/8) 6541093934413428 a001 10946*12752043^(1/4) 6541093934413433 a001 10946/20633239*1322157322203^(3/4) 6541093934413433 a001 9227465/24476*9062201101803^(1/4) 6541093934413512 a001 7778742049/24476*1860498^(1/20) 6541093934413515 a001 1762289/12238*20633239^(1/2) 6541093934413523 a001 1762289/12238*2537720636^(7/18) 6541093934413523 a001 1762289/12238*17393796001^(5/14) 6541093934413523 a001 1762289/12238*312119004989^(7/22) 6541093934413523 a001 1762289/12238*14662949395604^(5/18) 6541093934413523 a001 1762289/12238*505019158607^(5/16) 6541093934413523 a001 1762289/12238*28143753123^(7/20) 6541093934413523 a001 1762289/12238*599074578^(5/12) 6541093934413523 a001 1762289/12238*228826127^(7/16) 6541093934413575 a001 1201881744/6119*1860498^(1/12) 6541093934413701 a001 1836311903/24476*1860498^(3/20) 6541093934413890 a001 433494437/24476*1860498^(1/4) 6541093934414077 a001 1346269/24476*7881196^(13/22) 6541093934414079 a001 102334155/24476*1860498^(7/20) 6541093934414139 a001 1346269/24476*141422324^(1/2) 6541093934414140 a001 1346269/24476*73681302247^(3/8) 6541093934414143 a001 1346269/24476*33385282^(13/24) 6541093934414204 a001 39088169/24476*1860498^(5/12) 6541093934414270 a001 24157817/24476*1860498^(9/20) 6541093934414417 a001 5702887/24476*1860498^(11/20) 6541093934414625 a001 1762289/12238*1860498^(7/12) 6541093934415037 a001 2971215073/24476*710647^(1/8) 6541093934415368 a001 1346269/24476*1860498^(13/20) 6541093934418275 a001 102334155/24476*710647^(3/8) 6541093934418365 a001 10946/1149851*2537720636^(5/6) 6541093934418365 a001 10946/1149851*312119004989^(15/22) 6541093934418365 a001 10946/1149851*3461452808002^(5/8) 6541093934418365 a001 10946/1149851*28143753123^(3/4) 6541093934418365 a001 514229/24476*969323029^(1/2) 6541093934418365 a001 10946/1149851*228826127^(15/16) 6541093934421618 a001 1762289/12238*710647^(5/8) 6541093934435612 a001 701408733/24476*271443^(1/4) 6541093934446709 a001 2971215073/167761*15127^(3/8) 6541093934447327 a001 98209/12238*6643838879^(1/2) 6541093934451448 a001 7778742049/24476*103682^(1/16) 6541093934480721 a001 1346269/24476*271443^(3/4) 6541093934527507 a001 1836311903/24476*103682^(3/16) 6541093934603567 a001 433494437/24476*103682^(5/16) 6541093934613810 a001 75025/24476*439204^(17/18) 6541093934645754 a001 75025/24476*7881196^(17/22) 6541093934645835 a001 75025/24476*45537549124^(1/2) 6541093934645839 a001 75025/24476*33385282^(17/24) 6541093934645865 a001 75025/24476*12752043^(3/4) 6541093934647441 a001 75025/24476*1860498^(17/20) 6541093934679626 a001 102334155/24476*103682^(7/16) 6541093934755688 a001 24157817/24476*103682^(9/16) 6541093934831705 a001 5702887/24476*103682^(11/16) 6541093934908527 a001 1346269/24476*103682^(13/16) 6541093934970912 a001 10959/844*103682^(15/16) 6541093935456057 a001 567451585/12238*39603^(1/4) 6541093935651485 a001 12586269025/39603*5778^(1/12) 6541093935807303 a001 1134903170/64079*15127^(3/8) 6541093936006329 a001 10946/64079*7881196^(21/22) 6541093936006342 a001 28657/24476*7881196^(5/6) 6541093936006415 a001 10946/64079*20633239^(9/10) 6541093936006417 a001 28657/24476*20633239^(11/14) 6541093936006429 a001 10946/64079*2537720636^(7/10) 6541093936006429 a001 10946/64079*17393796001^(9/14) 6541093936006429 a001 10946/64079*14662949395604^(1/2) 6541093936006429 a001 10946/64079*505019158607^(9/16) 6541093936006429 a001 10946/64079*192900153618^(7/12) 6541093936006429 a001 10946/64079*599074578^(3/4) 6541093936006429 a001 28657/24476*2537720636^(11/18) 6541093936006429 a001 28657/24476*312119004989^(1/2) 6541093936006429 a001 28657/24476*3461452808002^(11/24) 6541093936006429 a001 28657/24476*28143753123^(11/20) 6541093936006429 a001 28657/24476*1568397607^(5/8) 6541093936006429 a001 28657/24476*228826127^(11/16) 6541093936006434 a001 10946/64079*33385282^(7/8) 6541093936008162 a001 28657/24476*1860498^(11/12) 6541093937190091 a001 63245986/39603*15127^(5/8) 6541093937541296 a001 5702887/24476*39603^(3/4) 6541093937920203 a001 2178309/24476*39603^(37/44) 6541093937986597 a001 1201881744/6119*15127^(1/8) 6541093938110771 a001 1346269/24476*39603^(39/44) 6541093938297730 a001 208010/6119*39603^(41/44) 6541093938494138 a001 514229/24476*39603^(43/44) 6541093938579476 a001 832040/3571*3571^(33/34) 6541093939001289 m009 (5/6*Psi(1,1/3)+1/5)/(4*Psi(1,3/4)+3) 6541093939213567 a001 32951280099/103682*5778^(1/12) 6541093939733268 a001 86267571272/271443*5778^(1/12) 6541093939809091 a001 317811*5778^(1/12) 6541093939820153 a001 591286729879/1860498*5778^(1/12) 6541093939821767 a001 1548008755920/4870847*5778^(1/12) 6541093939822003 a001 4052739537881/12752043*5778^(1/12) 6541093939822037 a001 1515744265389/4769326*5778^(1/12) 6541093939822058 a001 6557470319842/20633239*5778^(1/12) 6541093939822148 a001 2504730781961/7881196*5778^(1/12) 6541093939822765 a001 956722026041/3010349*5778^(1/12) 6541093939826990 a001 365435296162/1149851*5778^(1/12) 6541093939855952 a001 139583862445/439204*5778^(1/12) 6541093940054460 a001 53316291173/167761*5778^(1/12) 6541093940752173 a001 165580141/103682*15127^(5/8) 6541093941271874 a001 433494437/271443*15127^(5/8) 6541093941347697 a001 1134903170/710647*15127^(5/8) 6541093941358760 a001 2971215073/1860498*15127^(5/8) 6541093941360374 a001 7778742049/4870847*15127^(5/8) 6541093941360609 a001 20365011074/12752043*15127^(5/8) 6541093941360644 a001 53316291173/33385282*15127^(5/8) 6541093941360649 a001 139583862445/87403803*15127^(5/8) 6541093941360649 a001 365435296162/228826127*15127^(5/8) 6541093941360650 a001 956722026041/599074578*15127^(5/8) 6541093941360650 a001 2504730781961/1568397607*15127^(5/8) 6541093941360650 a001 6557470319842/4106118243*15127^(5/8) 6541093941360650 a001 10610209857723/6643838879*15127^(5/8) 6541093941360650 a001 4052739537881/2537720636*15127^(5/8) 6541093941360650 a001 1548008755920/969323029*15127^(5/8) 6541093941360650 a001 591286729879/370248451*15127^(5/8) 6541093941360650 a001 225851433717/141422324*15127^(5/8) 6541093941360652 a001 86267571272/54018521*15127^(5/8) 6541093941360665 a001 32951280099/20633239*15127^(5/8) 6541093941360755 a001 12586269025/7881196*15127^(5/8) 6541093941361371 a001 4807526976/3010349*15127^(5/8) 6541093941365597 a001 1836311903/1149851*15127^(5/8) 6541093941394559 a001 701408733/439204*15127^(5/8) 6541093941415055 a001 20365011074/64079*5778^(1/12) 6541093941593067 a001 267914296/167761*15127^(5/8) 6541093942953661 a001 102334155/64079*15127^(5/8) 6541093943891188 a001 1134903170/15127*5778^(1/4) 6541093944336409 a001 5702887/39603*15127^(7/8) 6541093945132955 a001 433494437/24476*15127^(3/8) 6541093945332082 a001 5473/12238*2139295485799^(1/2) 6541093947194717 a001 726103/13201*15127^(39/40) 6541093947898526 a001 7465176/51841*15127^(7/8) 6541093948418231 a001 39088169/271443*15127^(7/8) 6541093948494055 a001 14619165/101521*15127^(7/8) 6541093948505118 a001 133957148/930249*15127^(7/8) 6541093948506732 a001 701408733/4870847*15127^(7/8) 6541093948506968 a001 1836311903/12752043*15127^(7/8) 6541093948507002 a001 14930208/103681*15127^(7/8) 6541093948507007 a001 12586269025/87403803*15127^(7/8) 6541093948507008 a001 32951280099/228826127*15127^(7/8) 6541093948507008 a001 43133785636/299537289*15127^(7/8) 6541093948507008 a001 32264490531/224056801*15127^(7/8) 6541093948507008 a001 591286729879/4106118243*15127^(7/8) 6541093948507008 a001 774004377960/5374978561*15127^(7/8) 6541093948507008 a001 4052739537881/28143753123*15127^(7/8) 6541093948507008 a001 1515744265389/10525900321*15127^(7/8) 6541093948507008 a001 3278735159921/22768774562*15127^(7/8) 6541093948507008 a001 2504730781961/17393796001*15127^(7/8) 6541093948507008 a001 956722026041/6643838879*15127^(7/8) 6541093948507008 a001 182717648081/1268860318*15127^(7/8) 6541093948507008 a001 139583862445/969323029*15127^(7/8) 6541093948507008 a001 53316291173/370248451*15127^(7/8) 6541093948507008 a001 10182505537/70711162*15127^(7/8) 6541093948507010 a001 7778742049/54018521*15127^(7/8) 6541093948507023 a001 2971215073/20633239*15127^(7/8) 6541093948507113 a001 567451585/3940598*15127^(7/8) 6541093948507730 a001 433494437/3010349*15127^(7/8) 6541093948511955 a001 165580141/1149851*15127^(7/8) 6541093948540917 a001 31622993/219602*15127^(7/8) 6541093948739427 a001 24157817/167761*15127^(7/8) 6541093949851723 l006 ln(4941/5275) 6541093950100035 a001 9227465/64079*15127^(7/8) 6541093950740707 a001 7778742049/24476*5778^(1/12) 6541093952279313 a001 39088169/24476*15127^(5/8) 6541093953072997 m001 1/3*(Psi(1,1/3)-Robbin)*3^(2/3) 6541093959425777 a001 1762289/12238*15127^(7/8) 6541093960854668 a001 2178309/24476*15127^(37/40) 6541093960913572 a001 63245986/9349*9349^(1/2) 6541093962284937 a001 1346269/24476*15127^(39/40) 6541093968306063 a001 2971215073/39603*5778^(1/4) 6541093968755311 a001 1346269/3571*3571^(31/34) 6541093969746866 a001 6765/9349*7881196^(19/22) 6541093969746956 a001 4181/15127*5600748293801^(1/2) 6541093969746957 a001 6765/9349*817138163596^(1/2) 6541093969746957 a001 6765/9349*87403803^(3/4) 6541093969746961 a001 6765/9349*33385282^(19/24) 6541093969748752 a001 6765/9349*1860498^(19/20) 6541093971868145 a001 7778742049/103682*5778^(1/4) 6541093972387846 a001 20365011074/271443*5778^(1/4) 6541093972463669 a001 53316291173/710647*5778^(1/4) 6541093972474732 a001 139583862445/1860498*5778^(1/4) 6541093972476346 a001 365435296162/4870847*5778^(1/4) 6541093972476581 a001 956722026041/12752043*5778^(1/4) 6541093972476616 a001 2504730781961/33385282*5778^(1/4) 6541093972476621 a001 6557470319842/87403803*5778^(1/4) 6541093972476622 a001 10610209857723/141422324*5778^(1/4) 6541093972476624 a001 4052739537881/54018521*5778^(1/4) 6541093972476637 a001 140728068720/1875749*5778^(1/4) 6541093972476727 a001 591286729879/7881196*5778^(1/4) 6541093972477343 a001 225851433717/3010349*5778^(1/4) 6541093972481569 a001 86267571272/1149851*5778^(1/4) 6541093972510531 a001 32951280099/439204*5778^(1/4) 6541093972709039 a001 75025*5778^(1/4) 6541093974069633 a001 4807526976/64079*5778^(1/4) 6541093976545767 a001 267914296/15127*5778^(5/12) 6541093979798665 m001 (2^(1/2))^(Zeta(1,2)*Mills) 6541093983395285 a001 1836311903/24476*5778^(1/4) 6541093987660742 a001 317811/9349*24476^(41/42) 6541093988198578 a001 514229/9349*24476^(13/14) 6541093988711677 a001 832040/9349*24476^(37/42) 6541093989234225 a001 1346269/9349*24476^(5/6) 6541093989753164 a001 2178309/9349*24476^(11/14) 6541093991313264 a001 9227465/9349*24476^(9/14) 6541093992873057 a001 4181*24476^(1/2) 6541093993657091 m005 (1/2*5^(1/2)+8/11)/(1/5*gamma+1/6) 6541093994161816 a001 4181/39603*20633239^(13/14) 6541093994161830 a001 4181/39603*141422324^(5/6) 6541093994161831 a001 4181/39603*2537720636^(13/18) 6541093994161831 a001 4181/39603*312119004989^(13/22) 6541093994161831 a001 4181/39603*3461452808002^(13/24) 6541093994161831 a001 4181/39603*73681302247^(5/8) 6541093994161831 a001 4181/39603*28143753123^(13/20) 6541093994161831 a001 4181/39603*228826127^(13/16) 6541093994161831 a001 17711/9349*119218851371^(1/2) 6541093994432867 a001 165580141/9349*24476^(5/14) 6541093995992676 a001 701408733/9349*24476^(3/14) 6541093996512613 a001 1134903170/9349*24476^(1/6) 6541093997535886 a001 24157817/9349*64079^(1/2) 6541093997552485 a001 2971215073/9349*24476^(1/14) 6541093997723903 a001 46368/9349*20633239^(7/10) 6541093997723913 a001 4181/103682*4106118243^(3/4) 6541093997723914 a001 46368/9349*17393796001^(1/2) 6541093997723914 a001 46368/9349*14662949395604^(7/18) 6541093997723914 a001 46368/9349*505019158607^(7/16) 6541093997723914 a001 46368/9349*599074578^(7/12) 6541093997723918 a001 4181/103682*33385282^(23/24) 6541093997735247 a001 46368/9349*710647^(7/8) 6541093998034439 a001 121393/9349*167761^(9/10) 6541093998170420 a001 1346269/9349*167761^(7/10) 6541093998215357 a001 121393/9349*439204^(5/6) 6541093998216175 a001 14930352/9349*167761^(1/2) 6541093998243543 a001 121393/9349*7881196^(15/22) 6541093998243605 a001 121393/9349*20633239^(9/14) 6541093998243614 a001 121393/9349*2537720636^(1/2) 6541093998243614 a001 121393/9349*312119004989^(9/22) 6541093998243614 a001 121393/9349*14662949395604^(5/14) 6541093998243614 a001 121393/9349*192900153618^(5/12) 6541093998243614 a001 121393/9349*28143753123^(9/20) 6541093998243615 a001 121393/9349*228826127^(9/16) 6541093998243618 a001 121393/9349*33385282^(5/8) 6541093998245032 a001 121393/9349*1860498^(3/4) 6541093998262665 a001 165580141/9349*167761^(3/10) 6541093998309148 a001 1836311903/9349*167761^(1/10) 6541093998311392 a001 2178309/9349*439204^(11/18) 6541093998312847 a001 514229/9349*439204^(13/18) 6541093998315451 a001 9227465/9349*439204^(1/2) 6541093998319202 a001 4181*439204^(7/18) 6541093998319437 a001 4181/710647*17393796001^(11/14) 6541093998319437 a001 4181/710647*14662949395604^(11/18) 6541093998319437 a001 4181/710647*505019158607^(11/16) 6541093998319437 a001 4181/710647*1568397607^(7/8) 6541093998319437 a001 4181/710647*599074578^(11/12) 6541093998319438 a001 317811/9349*370248451^(1/2) 6541093998322971 a001 165580141/9349*439204^(5/18) 6541093998326738 a001 701408733/9349*439204^(1/6) 6541093998329876 a001 5702887/9349*1149851^(1/2) 6541093998330499 a001 832040/9349*54018521^(1/2) 6541093998330499 a001 4181/1860498*2537720636^(9/10) 6541093998330499 a001 4181/1860498*14662949395604^(9/14) 6541093998330499 a001 4181/1860498*192900153618^(3/4) 6541093998330506 a001 2971215073/9349*439204^(1/18) 6541093998332062 a001 2178309/9349*7881196^(1/2) 6541093998332113 a001 4181/4870847*2537720636^(17/18) 6541093998332113 a001 4181/4870847*45537549124^(5/6) 6541093998332113 a001 4181/4870847*312119004989^(17/22) 6541093998332113 a001 4181/4870847*3461452808002^(17/24) 6541093998332113 a001 4181/4870847*28143753123^(17/20) 6541093998332114 a001 2178309/9349*312119004989^(3/10) 6541093998332114 a001 2178309/9349*1568397607^(3/8) 6541093998332117 a001 2178309/9349*33385282^(11/24) 6541093998332134 a001 3524578/9349*3010349^(1/2) 6541093998332350 a001 5702887/9349*1322157322203^(1/4) 6541093998332356 a001 4181*7881196^(7/22) 6541093998332362 a001 9227465/9349*7881196^(9/22) 6541093998332366 a001 165580141/9349*7881196^(5/22) 6541093998332372 a001 433494437/9349*7881196^(1/6) 6541093998332376 a001 701408733/9349*7881196^(3/22) 6541093998332379 a001 14930352/9349*20633239^(5/14) 6541093998332383 a001 4181/33385282*9062201101803^(3/4) 6541093998332384 a001 14930352/9349*2537720636^(5/18) 6541093998332384 a001 14930352/9349*312119004989^(5/22) 6541093998332384 a001 14930352/9349*3461452808002^(5/24) 6541093998332384 a001 14930352/9349*28143753123^(1/4) 6541093998332384 a001 14930352/9349*228826127^(5/16) 6541093998332384 a001 4181*20633239^(3/10) 6541093998332385 a001 2971215073/9349*7881196^(1/22) 6541093998332387 a001 165580141/9349*20633239^(3/14) 6541093998332388 a001 1134903170/9349*20633239^(1/10) 6541093998332389 a001 1836311903/9349*20633239^(1/14) 6541093998332389 a001 4181/599074578*312119004989^(21/22) 6541093998332389 a001 4181/599074578*14662949395604^(5/6) 6541093998332389 a001 4181/599074578*505019158607^(15/16) 6541093998332389 a001 4181/10749957122*14662949395604^(13/14) 6541093998332389 a001 4181*17393796001^(3/14) 6541093998332389 a001 4181*14662949395604^(1/6) 6541093998332389 a001 4181/17393796001*14662949395604^(17/18) 6541093998332389 a001 4181/6643838879*3461452808002^(23/24) 6541093998332389 a001 4181*599074578^(1/4) 6541093998332389 a001 4181/141422324*312119004989^(9/10) 6541093998332389 a001 4181/141422324*14662949395604^(11/14) 6541093998332389 a001 4181/141422324*192900153618^(11/12) 6541093998332390 a001 102334155/9349*45537549124^(1/6) 6541093998332390 a001 267914296/9349*141422324^(1/6) 6541093998332390 a001 267914296/9349*73681302247^(1/8) 6541093998332390 a001 701408733/9349*2537720636^(1/10) 6541093998332390 a001 701408733/9349*14662949395604^(1/14) 6541093998332390 a001 701408733/9349*192900153618^(1/12) 6541093998332390 a001 1836311903/9349*2537720636^(1/18) 6541093998332390 a001 1836311903/9349*312119004989^(1/22) 6541093998332390 a001 1836311903/9349*28143753123^(1/20) 6541093998332390 a001 1134903170/9349*17393796001^(1/14) 6541093998332390 a001 1134903170/9349*14662949395604^(1/18) 6541093998332390 a001 1134903170/9349*505019158607^(1/16) 6541093998332390 a001 1134903170/9349*599074578^(1/12) 6541093998332390 a001 433494437/9349*312119004989^(1/10) 6541093998332390 a001 433494437/9349*1568397607^(1/8) 6541093998332390 a001 1836311903/9349*228826127^(1/16) 6541093998332390 a001 165580141/9349*2537720636^(1/6) 6541093998332390 a001 165580141/9349*312119004989^(3/22) 6541093998332390 a001 165580141/9349*28143753123^(3/20) 6541093998332390 a001 165580141/9349*228826127^(3/16) 6541093998332390 a001 2971215073/9349*33385282^(1/24) 6541093998332390 a001 63245986/9349*817138163596^(1/6) 6541093998332390 a001 63245986/9349*87403803^(1/4) 6541093998332391 a001 701408733/9349*33385282^(1/8) 6541093998332391 a001 4181*33385282^(7/24) 6541093998332391 a001 165580141/9349*33385282^(5/24) 6541093998332391 a001 4181/54018521*312119004989^(19/22) 6541093998332391 a001 4181/54018521*817138163596^(5/6) 6541093998332391 a001 4181/54018521*3461452808002^(19/24) 6541093998332391 a001 4181/54018521*28143753123^(19/20) 6541093998332392 a001 24157817/9349*4106118243^(1/4) 6541093998332400 a001 102334155/9349*12752043^(1/4) 6541093998332404 a001 4181/20633239*17393796001^(13/14) 6541093998332404 a001 4181/20633239*14662949395604^(13/18) 6541093998332404 a001 4181/20633239*505019158607^(13/16) 6541093998332404 a001 4181/20633239*73681302247^(7/8) 6541093998332405 a001 9227465/9349*2537720636^(3/10) 6541093998332405 a001 9227465/9349*14662949395604^(3/14) 6541093998332405 a001 9227465/9349*192900153618^(1/4) 6541093998332408 a001 9227465/9349*33385282^(3/8) 6541093998332484 a001 2971215073/9349*1860498^(1/20) 6541093998332494 a001 4181/7881196*1322157322203^(3/4) 6541093998332495 a001 3524578/9349*9062201101803^(1/4) 6541093998332547 a001 1836311903/9349*1860498^(1/12) 6541093998332673 a001 701408733/9349*1860498^(3/20) 6541093998332862 a001 165580141/9349*1860498^(1/4) 6541093998333050 a001 4181*1860498^(7/20) 6541093998333104 a001 1346269/9349*20633239^(1/2) 6541093998333112 a001 1346269/9349*2537720636^(7/18) 6541093998333112 a001 1346269/9349*17393796001^(5/14) 6541093998333112 a001 1346269/9349*312119004989^(7/22) 6541093998333112 a001 1346269/9349*14662949395604^(5/18) 6541093998333112 a001 1346269/9349*505019158607^(5/16) 6541093998333112 a001 1346269/9349*28143753123^(7/20) 6541093998333112 a001 1346269/9349*599074578^(5/12) 6541093998333112 a001 1346269/9349*228826127^(7/16) 6541093998333154 a001 2178309/9349*1860498^(11/20) 6541093998333171 a001 14930352/9349*1860498^(5/12) 6541093998333256 a001 9227465/9349*1860498^(9/20) 6541093998334009 a001 1134903170/9349*710647^(1/8) 6541093998334214 a001 1346269/9349*1860498^(7/12) 6541093998337246 a001 4181*710647^(3/8) 6541093998337275 a001 514229/9349*7881196^(13/22) 6541093998337337 a001 514229/9349*141422324^(1/2) 6541093998337337 a001 514229/9349*73681302247^(3/8) 6541093998337340 a001 514229/9349*33385282^(13/24) 6541093998338566 a001 514229/9349*1860498^(13/20) 6541093998341207 a001 1346269/9349*710647^(5/8) 6541093998354584 a001 267914296/9349*271443^(1/4) 6541093998366298 a001 4181/439204*2537720636^(5/6) 6541093998366298 a001 4181/439204*312119004989^(15/22) 6541093998366298 a001 4181/439204*3461452808002^(5/8) 6541093998366298 a001 4181/439204*28143753123^(3/4) 6541093998366298 a001 4181/439204*228826127^(15/16) 6541093998366299 a001 196418/9349*969323029^(1/2) 6541093998370420 a001 2971215073/9349*103682^(1/16) 6541093998403919 a001 514229/9349*271443^(3/4) 6541093998446479 a001 701408733/9349*103682^(3/16) 6541093998522539 a001 165580141/9349*103682^(5/16) 6541093998564807 a001 75025/9349*6643838879^(1/2) 6541093998598597 a001 4181*103682^(7/16) 6541093998674673 a001 9227465/9349*103682^(9/16) 6541093998750442 a001 2178309/9349*103682^(11/16) 6541093998814061 a001 121393/9349*103682^(15/16) 6541093998831724 a001 514229/9349*103682^(13/16) 6541093998927538 a001 2178309/3571*3571^(29/34) 6541093999375030 a001 433494437/9349*39603^(1/4) 6541093999893376 a001 28657/9349*439204^(17/18) 6541093999925320 a001 28657/9349*7881196^(17/22) 6541093999925402 a001 28657/9349*45537549124^(1/2) 6541093999925406 a001 28657/9349*33385282^(17/24) 6541093999925432 a001 28657/9349*12752043^(3/4) 6541093999927008 a001 28657/9349*1860498^(17/20) 6541094000960642 a001 17711*5778^(5/12) 6541094001460033 a001 2178309/9349*39603^(3/4) 6541094001650601 a001 1346269/9349*39603^(35/44) 6541094001837561 a001 832040/9349*39603^(37/44) 6541094001905569 a001 1836311903/9349*15127^(1/8) 6541094002033969 a001 514229/9349*39603^(39/44) 6541094002205640 a001 317811/9349*39603^(41/44) 6541094002442072 a001 196418/9349*39603^(43/44) 6541094003235016 r009 Im(z^3+c),c=-29/114+39/53*I,n=24 6541094004522724 a001 1836311903/103682*5778^(5/12) 6541094005042425 a001 1602508992/90481*5778^(5/12) 6541094005118248 a001 12586269025/710647*5778^(5/12) 6541094005129310 a001 10983760033/620166*5778^(5/12) 6541094005130924 a001 86267571272/4870847*5778^(5/12) 6541094005131160 a001 75283811239/4250681*5778^(5/12) 6541094005131194 a001 591286729879/33385282*5778^(5/12) 6541094005131199 a001 516002918640/29134601*5778^(5/12) 6541094005131200 a001 4052739537881/228826127*5778^(5/12) 6541094005131200 a001 3536736619241/199691526*5778^(5/12) 6541094005131200 a001 6557470319842/370248451*5778^(5/12) 6541094005131200 a001 2504730781961/141422324*5778^(5/12) 6541094005131202 a001 956722026041/54018521*5778^(5/12) 6541094005131215 a001 365435296162/20633239*5778^(5/12) 6541094005131305 a001 139583862445/7881196*5778^(5/12) 6541094005131922 a001 53316291173/3010349*5778^(5/12) 6541094005136147 a001 20365011074/1149851*5778^(5/12) 6541094005165109 a001 7778742049/439204*5778^(5/12) 6541094005363617 a001 2971215073/167761*5778^(5/12) 6541094006724212 a001 1134903170/64079*5778^(5/12) 6541094009051927 a001 165580141/9349*15127^(3/8) 6541094009200346 a001 63245986/15127*5778^(7/12) 6541094009250953 a001 4181/24476*7881196^(21/22) 6541094009250966 a001 10946/9349*7881196^(5/6) 6541094009251039 a001 4181/24476*20633239^(9/10) 6541094009251042 a001 10946/9349*20633239^(11/14) 6541094009251053 a001 4181/24476*2537720636^(7/10) 6541094009251053 a001 4181/24476*17393796001^(9/14) 6541094009251053 a001 4181/24476*14662949395604^(1/2) 6541094009251053 a001 4181/24476*505019158607^(9/16) 6541094009251053 a001 4181/24476*192900153618^(7/12) 6541094009251053 a001 4181/24476*599074578^(3/4) 6541094009251054 a001 10946/9349*2537720636^(11/18) 6541094009251054 a001 10946/9349*312119004989^(1/2) 6541094009251054 a001 10946/9349*3461452808002^(11/24) 6541094009251054 a001 10946/9349*28143753123^(11/20) 6541094009251054 a001 10946/9349*1568397607^(5/8) 6541094009251054 a001 10946/9349*228826127^(11/16) 6541094009251058 a001 4181/24476*33385282^(7/8) 6541094009252786 a001 10946/9349*1860498^(11/12) 6541094014409103 m001 (BesselI(0,1)-gamma(3))/(Lehmer+Totient) 6541094014659679 a001 2971215073/9349*5778^(1/12) 6541094016049864 a001 433494437/24476*5778^(5/12) 6541094016198280 a001 14930352/9349*15127^(5/8) 6541094016552555 k002 Champernowne real with 185/2*n^2+135/2*n-95 6541094021915097 a001 2178309/9349*15127^(33/40) 6541094023345366 a001 1346269/9349*15127^(7/8) 6541094024772026 a001 832040/9349*15127^(37/40) 6541094026208135 a001 514229/9349*15127^(39/40) 6541094028139858 a007 Real Root Of 135*x^4+817*x^3-526*x^2-641*x-172 6541094030080040 a007 Real Root Of 911*x^4-29*x^3-154*x^2-159*x-213 6541094033615220 a001 165580141/39603*5778^(7/12) 6541094035035476 a007 Real Root Of 564*x^4+112*x^3+777*x^2+450*x-110 6541094037177303 a001 433494437/103682*5778^(7/12) 6541094037697003 a001 1134903170/271443*5778^(7/12) 6541094037772827 a001 2971215073/710647*5778^(7/12) 6541094037783889 a001 7778742049/1860498*5778^(7/12) 6541094037785503 a001 20365011074/4870847*5778^(7/12) 6541094037785739 a001 53316291173/12752043*5778^(7/12) 6541094037785773 a001 139583862445/33385282*5778^(7/12) 6541094037785778 a001 365435296162/87403803*5778^(7/12) 6541094037785779 a001 956722026041/228826127*5778^(7/12) 6541094037785779 a001 2504730781961/599074578*5778^(7/12) 6541094037785779 a001 6557470319842/1568397607*5778^(7/12) 6541094037785779 a001 10610209857723/2537720636*5778^(7/12) 6541094037785779 a001 4052739537881/969323029*5778^(7/12) 6541094037785779 a001 1548008755920/370248451*5778^(7/12) 6541094037785779 a001 591286729879/141422324*5778^(7/12) 6541094037785781 a001 225851433717/54018521*5778^(7/12) 6541094037785794 a001 86267571272/20633239*5778^(7/12) 6541094037785884 a001 32951280099/7881196*5778^(7/12) 6541094037786501 a001 12586269025/3010349*5778^(7/12) 6541094037790726 a001 4807526976/1149851*5778^(7/12) 6541094037819688 a001 1836311903/439204*5778^(7/12) 6541094038018196 a001 701408733/167761*5778^(7/12) 6541094039378790 a001 267914296/64079*5778^(7/12) 6541094040685425 a001 610*1364^(29/30) 6541094041854918 a001 14930352/15127*5778^(3/4) 6541094043228192 m001 (gamma(2)-FeigenbaumC)/(Lehmer-Magata) 6541094045130916 a007 Real Root Of -824*x^4-838*x^3-879*x^2+218*x+435 6541094047314258 a001 701408733/9349*5778^(1/4) 6541094048704443 a001 102334155/24476*5778^(7/12) 6541094053618976 p001 sum((-1)^n/(591*n+151)/(16^n),n=0..infinity) 6541094055896213 a001 505019158607/1597*233^(2/15) 6541094059885716 a007 Real Root Of -191*x^4+824*x^3-429*x^2+541*x+803 6541094063599585 r009 Re(z^3+c),c=-41/110+32/45*I,n=8 6541094066269798 a001 39088169/39603*5778^(3/4) 6541094069831881 a001 102334155/103682*5778^(3/4) 6541094070351582 a001 267914296/271443*5778^(3/4) 6541094070427406 a001 701408733/710647*5778^(3/4) 6541094070438468 a001 1836311903/1860498*5778^(3/4) 6541094070440082 a001 4807526976/4870847*5778^(3/4) 6541094070440318 a001 12586269025/12752043*5778^(3/4) 6541094070440352 a001 32951280099/33385282*5778^(3/4) 6541094070440357 a001 86267571272/87403803*5778^(3/4) 6541094070440358 a001 225851433717/228826127*5778^(3/4) 6541094070440358 a001 591286729879/599074578*5778^(3/4) 6541094070440358 a001 1548008755920/1568397607*5778^(3/4) 6541094070440358 a001 4052739537881/4106118243*5778^(3/4) 6541094070440358 a001 4807525989/4870846*5778^(3/4) 6541094070440358 a001 6557470319842/6643838879*5778^(3/4) 6541094070440358 a001 2504730781961/2537720636*5778^(3/4) 6541094070440358 a001 956722026041/969323029*5778^(3/4) 6541094070440358 a001 365435296162/370248451*5778^(3/4) 6541094070440358 a001 139583862445/141422324*5778^(3/4) 6541094070440360 a001 53316291173/54018521*5778^(3/4) 6541094070440373 a001 20365011074/20633239*5778^(3/4) 6541094070440463 a001 7778742049/7881196*5778^(3/4) 6541094070441080 a001 2971215073/3010349*5778^(3/4) 6541094070445305 a001 1134903170/1149851*5778^(3/4) 6541094070474267 a001 433494437/439204*5778^(3/4) 6541094070672775 a001 165580141/167761*5778^(3/4) 6541094072033370 a001 63245986/64079*5778^(3/4) 6541094073170026 a001 4181/9349*2139295485799^(1/2) 6541094074509609 a001 3524578/15127*5778^(11/12) 6541094079968837 a001 165580141/9349*5778^(5/12) 6541094081359024 a001 24157817/24476*5778^(3/4) 6541094084861880 a001 1134903170/3571*1364^(1/10) 6541094085394087 a001 311187/2161*5778^(35/36) 6541094091239249 h001 (5/12*exp(2)+2/7)/(7/12*exp(2)+5/6) 6541094091392265 h005 exp(sin(Pi*14/41)+sin(Pi*27/55)) 6541094098924394 a001 9227465/39603*5778^(11/12) 6541094101051033 r005 Im(z^2+c),c=33/94+9/38*I,n=4 6541094102349772 a001 11/29*(1/2*5^(1/2)+1/2)^19*29^(2/11) 6541094102486463 a001 24157817/103682*5778^(11/12) 6541094103006162 a001 63245986/271443*5778^(11/12) 6541094103081985 a001 165580141/710647*5778^(11/12) 6541094103093047 a001 433494437/1860498*5778^(11/12) 6541094103094661 a001 1134903170/4870847*5778^(11/12) 6541094103094897 a001 2971215073/12752043*5778^(11/12) 6541094103094931 a001 7778742049/33385282*5778^(11/12) 6541094103094936 a001 20365011074/87403803*5778^(11/12) 6541094103094937 a001 53316291173/228826127*5778^(11/12) 6541094103094937 a001 139583862445/599074578*5778^(11/12) 6541094103094937 a001 365435296162/1568397607*5778^(11/12) 6541094103094937 a001 956722026041/4106118243*5778^(11/12) 6541094103094937 a001 2504730781961/10749957122*5778^(11/12) 6541094103094937 a001 6557470319842/28143753123*5778^(11/12) 6541094103094937 a001 10610209857723/45537549124*5778^(11/12) 6541094103094937 a001 4052739537881/17393796001*5778^(11/12) 6541094103094937 a001 1548008755920/6643838879*5778^(11/12) 6541094103094937 a001 591286729879/2537720636*5778^(11/12) 6541094103094937 a001 225851433717/969323029*5778^(11/12) 6541094103094937 a001 86267571272/370248451*5778^(11/12) 6541094103094937 a001 63246219/271444*5778^(11/12) 6541094103094939 a001 12586269025/54018521*5778^(11/12) 6541094103094952 a001 4807526976/20633239*5778^(11/12) 6541094103095042 a001 1836311903/7881196*5778^(11/12) 6541094103095659 a001 701408733/3010349*5778^(11/12) 6541094103099884 a001 267914296/1149851*5778^(11/12) 6541094103128846 a001 102334155/439204*5778^(11/12) 6541094103327353 a001 39088169/167761*5778^(11/12) 6541094104687943 a001 14930352/64079*5778^(11/12) 6541094105858697 r002 3th iterates of z^2 + 6541094112623415 a001 4181*5778^(7/12) 6541094114013561 a001 5702887/24476*5778^(11/12) 6541094116582561 k002 Champernowne real with 93*n^2+66*n-94 6541094120851620 r005 Re(z^2+c),c=-5/36+57/64*I,n=5 6541094126327390 a007 Real Root Of -221*x^4+283*x^3-975*x^2+92*x+597 6541094145278011 a001 9227465/9349*5778^(3/4) 6541094149271362 m001 (gamma(3)+GolombDickman)/(Niven-RenyiParking) 6541094153419742 k001 Champernowne real with 440*n+214 6541094176352883 m001 (Paris-TreeGrowth2nd)/(GAMMA(2/3)-FeigenbaumB) 6541094177932299 a001 2178309/9349*5778^(11/12) 6541094179967159 a001 39088169/3571*3571^(1/2) 6541094185308492 a001 55/271443*47^(37/41) 6541094188818157 a001 1346269/9349*5778^(35/36) 6541094213962060 a007 Real Root Of 287*x^4-619*x^3+995*x^2+279*x-469 6541094216612567 k002 Champernowne real with 187/2*n^2+129/2*n-93 6541094220658778 m001 Psi(1,1/3)^Thue-RenyiParking 6541094221006728 a007 Real Root Of 584*x^4-895*x^3+918*x^2-252*x-915 6541094224507573 r009 Re(z^3+c),c=-7/62+17/28*I,n=34 6541094227493765 b008 LogIntegral[3*Sinh[2]] 6541094228798704 p003 LerchPhi(1/256,5,68/99) 6541094240511998 a001 2584/3571*7881196^(19/22) 6541094240512054 a001 1597/5778*5600748293801^(1/2) 6541094240512089 a001 2584/3571*817138163596^(1/2) 6541094240512089 a001 2584/3571*87403803^(3/4) 6541094240512093 a001 2584/3571*33385282^(19/24) 6541094240513884 a001 2584/3571*1860498^(19/20) 6541094260068251 l006 ln(5028/9671) 6541094265046723 s002 sum(A231730[n]/(pi^n+1),n=1..infinity) 6541094275073164 a001 1346269/1364*1364^(9/10) 6541094294912737 m001 ln((3^(1/3)))/CopelandErdos*BesselK(0,1) 6541094302098933 a007 Real Root Of 697*x^4+322*x^3+777*x^2-286*x-557 6541094316642573 k002 Champernowne real with 94*n^2+63*n-92 6541094326501946 m001 (CopelandErdos-Trott)/(Zeta(5)-ln(2)) 6541094359301062 r009 Im(z^3+c),c=-57/118+25/49*I,n=41 6541094363558395 a001 317811/3571*9349^(37/38) 6541094364068528 m001 Riemann2ndZero^gamma(2)/ZetaR(2) 6541094367396671 m005 (1/2*Catalan-11/12)/(6*Zeta(3)-1/5) 6541094367515118 a001 514229/3571*9349^(35/38) 6541094371447104 a001 832040/3571*9349^(33/38) 6541094372694243 p004 log(17659/9181) 6541094375388539 a001 1346269/3571*9349^(31/38) 6541094379326364 a001 2178309/3571*9349^(29/38) 6541094399020758 a001 24157817/3571*9349^(1/2) 6541094407854087 a001 1597/15127*20633239^(13/14) 6541094407854101 a001 1597/15127*141422324^(5/6) 6541094407854101 a001 1597/15127*2537720636^(13/18) 6541094407854101 a001 1597/15127*312119004989^(13/22) 6541094407854101 a001 1597/15127*3461452808002^(13/24) 6541094407854101 a001 1597/15127*73681302247^(5/8) 6541094407854101 a001 1597/15127*28143753123^(13/20) 6541094407854101 a001 1597/15127*228826127^(13/16) 6541094407854141 a001 6765/3571*119218851371^(1/2) 6541094408301304 m001 ln(Zeta(3))/MinimumGamma^2/log(2+sqrt(3)) 6541094416672579 k002 Champernowne real with 189/2*n^2+123/2*n-91 6541094423322918 a001 233/11*47^(49/55) 6541094425692105 a001 121393/3571*24476^(41/42) 6541094426334726 a001 196418/3571*24476^(13/14) 6541094426807801 a001 317811/3571*24476^(37/42) 6541094427345637 a001 514229/3571*24476^(5/6) 6541094427858736 a001 832040/3571*24476^(11/14) 6541094428381284 a001 1346269/3571*24476^(31/42) 6541094428900223 a001 2178309/3571*24476^(29/42) 6541094429420540 a001 3524578/3571*24476^(9/14) 6541094430980238 a001 14930352/3571*24476^(1/2) 6541094432268978 a001 1597/39603*4106118243^(3/4) 6541094432268983 a001 1597/39603*33385282^(23/24) 6541094432269007 a001 17711/3571*20633239^(7/10) 6541094432269018 a001 17711/3571*17393796001^(1/2) 6541094432269018 a001 17711/3571*14662949395604^(7/18) 6541094432269018 a001 17711/3571*505019158607^(7/16) 6541094432269018 a001 17711/3571*599074578^(7/12) 6541094432280351 a001 17711/3571*710647^(7/8) 6541094432540054 a001 63245986/3571*24476^(5/14) 6541094434099863 a001 267914296/3571*24476^(3/14) 6541094434619799 a001 433494437/3571*24476^(1/6) 6541094435536757 m001 (ln(3)+KomornikLoreti)/(MadelungNaCl-Mills) 6541094435621925 a001 46368/3571*167761^(9/10) 6541094435643086 a001 9227465/3571*64079^(1/2) 6541094435659672 a001 1134903170/3571*24476^(1/14) 6541094435802843 a001 46368/3571*439204^(5/6) 6541094435831029 a001 46368/3571*7881196^(15/22) 6541094435831090 a001 46368/3571*20633239^(9/14) 6541094435831100 a001 46368/3571*2537720636^(1/2) 6541094435831100 a001 46368/3571*312119004989^(9/22) 6541094435831100 a001 46368/3571*14662949395604^(5/14) 6541094435831100 a001 46368/3571*192900153618^(5/12) 6541094435831100 a001 46368/3571*28143753123^(9/20) 6541094435831100 a001 46368/3571*228826127^(9/16) 6541094435831104 a001 46368/3571*33385282^(5/8) 6541094435832518 a001 46368/3571*1860498^(3/4) 6541094436281832 a001 514229/3571*167761^(7/10) 6541094436323328 a001 1597*167761^(1/2) 6541094436350761 a001 1597/271443*17393796001^(11/14) 6541094436350761 a001 1597/271443*14662949395604^(11/18) 6541094436350761 a001 1597/271443*505019158607^(11/16) 6541094436350761 a001 1597/271443*1568397607^(7/8) 6541094436350761 a001 1597/271443*599074578^(11/12) 6541094436350801 a001 121393/3571*370248451^(1/2) 6541094436369852 a001 63245986/3571*167761^(3/10) 6541094436401547 a001 46368/3571*103682^(15/16) 6541094436416335 a001 701408733/3571*167761^(1/10) 6541094436416965 a001 832040/3571*439204^(11/18) 6541094436422727 a001 3524578/3571*439204^(1/2) 6541094436426384 a001 14930352/3571*439204^(7/18) 6541094436426584 a001 1597/710647*2537720636^(9/10) 6541094436426584 a001 1597/710647*14662949395604^(9/14) 6541094436426584 a001 1597/710647*192900153618^(3/4) 6541094436426623 a001 317811/3571*54018521^(1/2) 6541094436430158 a001 63245986/3571*439204^(5/18) 6541094436433925 a001 267914296/3571*439204^(1/6) 6541094436436827 a001 2178309/3571*1149851^(1/2) 6541094436437634 a001 832040/3571*7881196^(1/2) 6541094436437647 a001 1597/1860498*2537720636^(17/18) 6541094436437647 a001 1597/1860498*45537549124^(5/6) 6541094436437647 a001 1597/1860498*312119004989^(17/22) 6541094436437647 a001 1597/1860498*3461452808002^(17/24) 6541094436437647 a001 1597/1860498*28143753123^(17/20) 6541094436437687 a001 832040/3571*312119004989^(3/10) 6541094436437687 a001 832040/3571*1568397607^(3/8) 6541094436437690 a001 832040/3571*33385282^(11/24) 6541094436437693 a001 1134903170/3571*439204^(1/18) 6541094436438726 a001 832040/3571*1860498^(11/20) 6541094436439301 a001 2178309/3571*1322157322203^(1/4) 6541094436439496 a001 1597/12752043*9062201101803^(3/4) 6541094436439531 a001 1597*20633239^(5/14) 6541094436439536 a001 1597/228826127*312119004989^(21/22) 6541094436439536 a001 1597/228826127*14662949395604^(5/6) 6541094436439536 a001 1597/228826127*505019158607^(15/16) 6541094436439536 a001 1597/4106118243*14662949395604^(13/14) 6541094436439536 a001 1597*2537720636^(5/18) 6541094436439536 a001 1597*312119004989^(5/22) 6541094436439536 a001 1597*3461452808002^(5/24) 6541094436439536 a001 1597*28143753123^(1/4) 6541094436439536 a001 1597/6643838879*14662949395604^(17/18) 6541094436439536 a001 1597/2537720636*3461452808002^(23/24) 6541094436439536 a001 1597*228826127^(5/16) 6541094436439537 a001 14930352/3571*7881196^(7/22) 6541094436439539 a001 1597/54018521*312119004989^(9/10) 6541094436439539 a001 1597/54018521*14662949395604^(11/14) 6541094436439539 a001 1597/54018521*192900153618^(11/12) 6541094436439552 a001 1597/20633239*312119004989^(19/22) 6541094436439552 a001 1597/20633239*817138163596^(5/6) 6541094436439552 a001 1597/20633239*3461452808002^(19/24) 6541094436439552 a001 1597/20633239*28143753123^(19/20) 6541094436439553 a001 63245986/3571*7881196^(5/22) 6541094436439559 a001 165580141/3571*7881196^(1/6) 6541094436439562 a001 267914296/3571*7881196^(3/22) 6541094436439566 a001 14930352/3571*20633239^(3/10) 6541094436439571 a001 14930352/3571*17393796001^(3/14) 6541094436439571 a001 14930352/3571*14662949395604^(1/6) 6541094436439571 a001 14930352/3571*599074578^(1/4) 6541094436439572 a001 1134903170/3571*7881196^(1/22) 6541094436439573 a001 14930352/3571*33385282^(7/24) 6541094436439574 a001 63245986/3571*20633239^(3/14) 6541094436439575 a001 433494437/3571*20633239^(1/10) 6541094436439576 a001 701408733/3571*20633239^(1/14) 6541094436439576 a001 39088169/3571*45537549124^(1/6) 6541094436439576 a001 102334155/3571*141422324^(1/6) 6541094436439577 a001 102334155/3571*73681302247^(1/8) 6541094436439577 a001 267914296/3571*2537720636^(1/10) 6541094436439577 a001 267914296/3571*14662949395604^(1/14) 6541094436439577 a001 267914296/3571*192900153618^(1/12) 6541094436439577 a001 701408733/3571*2537720636^(1/18) 6541094436439577 a001 701408733/3571*312119004989^(1/22) 6541094436439577 a001 701408733/3571*28143753123^(1/20) 6541094436439577 a001 701408733/3571*228826127^(1/16) 6541094436439577 a001 433494437/3571*17393796001^(1/14) 6541094436439577 a001 433494437/3571*14662949395604^(1/18) 6541094436439577 a001 433494437/3571*505019158607^(1/16) 6541094436439577 a001 433494437/3571*599074578^(1/12) 6541094436439577 a001 165580141/3571*312119004989^(1/10) 6541094436439577 a001 165580141/3571*1568397607^(1/8) 6541094436439577 a001 1134903170/3571*33385282^(1/24) 6541094436439577 a001 63245986/3571*2537720636^(1/6) 6541094436439577 a001 63245986/3571*312119004989^(3/22) 6541094436439577 a001 63245986/3571*28143753123^(3/20) 6541094436439577 a001 63245986/3571*228826127^(3/16) 6541094436439577 a001 267914296/3571*33385282^(1/8) 6541094436439578 a001 63245986/3571*33385282^(5/24) 6541094436439579 a001 24157817/3571*817138163596^(1/6) 6541094436439579 a001 24157817/3571*87403803^(1/4) 6541094436439586 a001 39088169/3571*12752043^(1/4) 6541094436439592 a001 9227465/3571*4106118243^(1/4) 6541094436439639 a001 3524578/3571*7881196^(9/22) 6541094436439642 a001 1597/7881196*17393796001^(13/14) 6541094436439642 a001 1597/7881196*14662949395604^(13/18) 6541094436439642 a001 1597/7881196*505019158607^(13/16) 6541094436439642 a001 1597/7881196*73681302247^(7/8) 6541094436439671 a001 1134903170/3571*1860498^(1/20) 6541094436439682 a001 3524578/3571*2537720636^(3/10) 6541094436439682 a001 3524578/3571*14662949395604^(3/14) 6541094436439682 a001 3524578/3571*192900153618^(1/4) 6541094436439684 a001 3524578/3571*33385282^(3/8) 6541094436439734 a001 701408733/3571*1860498^(1/12) 6541094436439860 a001 267914296/3571*1860498^(3/20) 6541094436439938 a001 1346269/3571*3010349^(1/2) 6541094436440049 a001 63245986/3571*1860498^(1/4) 6541094436440232 a001 14930352/3571*1860498^(7/20) 6541094436440258 a001 1597/3010349*1322157322203^(3/4) 6541094436440298 a001 1346269/3571*9062201101803^(1/4) 6541094436440324 a001 1597*1860498^(5/12) 6541094436440532 a001 3524578/3571*1860498^(9/20) 6541094436441196 a001 433494437/3571*710647^(1/8) 6541094436444428 a001 14930352/3571*710647^(3/8) 6541094436444516 a001 514229/3571*20633239^(1/2) 6541094436444524 a001 514229/3571*2537720636^(7/18) 6541094436444524 a001 514229/3571*17393796001^(5/14) 6541094436444524 a001 514229/3571*312119004989^(7/22) 6541094436444524 a001 514229/3571*14662949395604^(5/18) 6541094436444524 a001 514229/3571*505019158607^(5/16) 6541094436444524 a001 514229/3571*28143753123^(7/20) 6541094436444524 a001 514229/3571*599074578^(5/12) 6541094436444524 a001 514229/3571*228826127^(7/16) 6541094436445626 a001 514229/3571*1860498^(7/12) 6541094436448996 a001 196418/3571*439204^(13/18) 6541094436452619 a001 514229/3571*710647^(5/8) 6541094436461770 a001 102334155/3571*271443^(1/4) 6541094436473424 a001 196418/3571*7881196^(13/22) 6541094436473486 a001 196418/3571*141422324^(1/2) 6541094436473486 a001 196418/3571*73681302247^(3/8) 6541094436473489 a001 196418/3571*33385282^(13/24) 6541094436474714 a001 196418/3571*1860498^(13/20) 6541094436477606 a001 1134903170/3571*103682^(1/16) 6541094436540068 a001 196418/3571*271443^(3/4) 6541094436553666 a001 267914296/3571*103682^(3/16) 6541094436629726 a001 63245986/3571*103682^(5/16) 6541094436671954 a001 1597/167761*2537720636^(5/6) 6541094436671954 a001 1597/167761*312119004989^(15/22) 6541094436671954 a001 1597/167761*3461452808002^(5/8) 6541094436671954 a001 1597/167761*28143753123^(3/4) 6541094436671954 a001 1597/167761*228826127^(15/16) 6541094436671994 a001 75025/3571*969323029^(1/2) 6541094436705779 a001 14930352/3571*103682^(7/16) 6541094436781950 a001 3524578/3571*103682^(9/16) 6541094436856014 a001 832040/3571*103682^(11/16) 6541094436967873 a001 196418/3571*103682^(13/16) 6541094437482216 a001 165580141/3571*39603^(1/4) 6541094438032588 a001 28657/3571*6643838879^(1/2) 6541094439188078 a001 2178309/3571*39603^(29/44) 6541094439378647 a001 1346269/3571*39603^(31/44) 6541094439565606 a001 832040/3571*39603^(3/4) 6541094439762014 a001 514229/3571*39603^(35/44) 6541094439933685 a001 317811/3571*39603^(37/44) 6541094440012756 a001 701408733/3571*15127^(1/8) 6541094440170118 a001 196418/3571*39603^(39/44) 6541094440237004 a001 121393/3571*39603^(41/44) 6541094440747767 a001 75025/3571*39603^(43/44) 6541094447159115 a001 63245986/3571*15127^(3/8) 6541094447326216 a001 10946/3571*439204^(17/18) 6541094447358160 a001 10946/3571*7881196^(17/22) 6541094447358241 a001 10946/3571*45537549124^(1/2) 6541094447358246 a001 10946/3571*33385282^(17/24) 6541094447358272 a001 10946/3571*12752043^(3/4) 6541094447359848 a001 10946/3571*1860498^(17/20) 6541094452766867 a001 1134903170/3571*5778^(1/12) 6541094454305433 a001 1597*15127^(5/8) 6541094455473649 r005 Im(z^2+c),c=-57/110+7/61*I,n=28 6541094457163742 a001 2178309/3571*15127^(29/40) 6541094458594011 a001 1346269/3571*15127^(31/40) 6541094460020671 a001 832040/3571*15127^(33/40) 6541094461456780 a001 514229/3571*15127^(7/8) 6541094462868152 a001 317811/3571*15127^(37/40) 6541094464344285 a001 196418/3571*15127^(39/40) 6541094470419373 a007 Real Root Of 158*x^4+905*x^3-892*x^2-259*x+510 6541094472919745 r009 Im(z^3+c),c=-31/126+24/35*I,n=4 6541094485421448 a001 267914296/3571*5778^(1/4) 6541094492737622 r002 41th iterates of z^2 + 6541094494003364 a001 1322157322203/4181*233^(2/15) 6541094507730622 r002 3th iterates of z^2 + 6541094509049522 l006 ln(4153/7988) 6541094509457302 a001 2178309/1364*1364^(5/6) 6541094511277078 a001 1597/9349*7881196^(21/22) 6541094511277130 a001 4181/3571*7881196^(5/6) 6541094511277165 a001 1597/9349*20633239^(9/10) 6541094511277178 a001 1597/9349*2537720636^(7/10) 6541094511277178 a001 1597/9349*17393796001^(9/14) 6541094511277178 a001 1597/9349*14662949395604^(1/2) 6541094511277178 a001 1597/9349*505019158607^(9/16) 6541094511277178 a001 1597/9349*192900153618^(7/12) 6541094511277178 a001 1597/9349*599074578^(3/4) 6541094511277183 a001 1597/9349*33385282^(7/8) 6541094511277206 a001 4181/3571*20633239^(11/14) 6541094511277218 a001 4181/3571*2537720636^(11/18) 6541094511277218 a001 4181/3571*312119004989^(1/2) 6541094511277218 a001 4181/3571*3461452808002^(11/24) 6541094511277218 a001 4181/3571*28143753123^(11/20) 6541094511277218 a001 4181/3571*1568397607^(5/8) 6541094511277218 a001 4181/3571*228826127^(11/16) 6541094511278950 a001 4181/3571*1860498^(11/12) 6541094516702585 k002 Champernowne real with 95*n^2+60*n-90 6541094518076030 a001 63245986/3571*5778^(5/12) 6541094519636951 a007 Real Root Of -324*x^4-252*x^3-746*x^2-613*x-93 6541094523242074 a007 Real Root Of 973*x^4+198*x^3+591*x^2-19*x-388 6541094532458422 m005 (1/2*gamma+2/5)/(5/7*exp(1)-8/9) 6541094534890507 m001 GAMMA(5/6)^BesselI(0,1)/Grothendieck 6541094534978578 a007 Real Root Of -472*x^4+790*x^3+355*x^2-7*x-282 6541094537649578 m005 (1/2*5^(1/2)+1/3)/(6/7*exp(1)-1/9) 6541094550730605 a001 14930352/3571*5778^(7/12) 6541094557922341 a001 1730726404001/5473*233^(2/15) 6541094560134026 r005 Im(z^2+c),c=-7/20+6/59*I,n=25 6541094561834349 m005 (-7/4+1/4*5^(1/2))/(7/8*2^(1/2)+7/12) 6541094567247994 a001 9062201101803/28657*233^(2/15) 6541094568608588 a001 23725150497407/75025*233^(2/15) 6541094569449482 a001 3665737348901/11592*233^(2/15) 6541094573011565 a001 5600748293801/17711*233^(2/15) 6541094579996298 m005 (1/3*3^(1/2)-2/3)/(1/7*Pi+11/12) 6541094583385297 a001 3524578/3571*5778^(3/4) 6541094588599488 p004 log(30269/15737) 6541094589287662 r009 Im(z^3+c),c=-11/62+46/47*I,n=30 6541094594269777 a001 2178309/3571*5778^(29/36) 6541094597426442 a001 2139295485799/6765*233^(2/15) 6541094605155635 a001 1346269/3571*5778^(31/36) 6541094611462499 m005 (1/3*Catalan-1/5)/(5/9*exp(1)+1/10) 6541094616037884 a001 832040/3571*5778^(11/12) 6541094616732591 k002 Champernowne real with 191/2*n^2+117/2*n-89 6541094617914478 a007 Real Root Of -742*x^4-519*x^3+169*x^2+712*x+384 6541094626929582 a001 514229/3571*5778^(35/36) 6541094648616306 m005 (1/2*Zeta(3)-2/9)/(3/4*gamma-3/8) 6541094673606102 r002 6th iterates of z^2 + 6541094675309357 m005 (1/2*Pi+1/8)/(8/9*Pi-1/5) 6541094680955808 a007 Real Root Of 528*x^4+67*x^3-471*x^2-593*x+474 6541094692577456 r005 Re(z^2+c),c=-13/18+8/127*I,n=5 6541094692856572 a007 Real Root Of -901*x^4+130*x^3-987*x^2+421*x+899 6541094696136486 m008 (4/5*Pi^4+1)/(4*Pi-1/2) 6541094711370056 m005 (1/3*3^(1/2)+1/12)/(7/10*2^(1/2)-2) 6541094716762597 k002 Champernowne real with 96*n^2+57*n-88 6541094745261317 b008 11/2+Cosh[2/7] 6541094748475628 a007 Real Root Of -675*x^4+491*x^3+664*x^2+208*x-434 6541094752695288 m006 (2/3*exp(Pi)+1/5)/(exp(Pi)+3/4) 6541094755351922 r005 Re(z^2+c),c=-89/118+1/38*I,n=13 6541094764768504 a001 204284540899/646*233^(2/15) 6541094796452537 h001 (-5*exp(-2)-6)/(-6*exp(-1)-8) 6541094814790763 a007 Real Root Of 89*x^4-703*x^3-268*x^2-859*x+857 6541094816792603 k002 Champernowne real with 193/2*n^2+111/2*n-87 6541094829331759 a007 Real Root Of -131*x^4-757*x^3+542*x^2-732*x-24 6541094834428057 r009 Im(z^3+c),c=-41/50+13/59*I,n=2 6541094847006992 r005 Re(z^2+c),c=-13/10+7/171*I,n=64 6541094850321026 a001 832040/521*521^(25/26) 6541094878346576 g006 Psi(1,10/11)+Psi(1,3/8)+Psi(1,4/5)-Psi(1,5/11) 6541094881691631 a001 267914296/2207*843^(1/4) 6541094890952449 l006 ln(3278/6305) 6541094891423378 a007 Real Root Of 573*x^4-985*x^3+211*x^2-14*x-480 6541094895919625 m001 (3^(1/2)-3^(1/3))/(FeigenbaumAlpha+Tetranacci) 6541094899465085 a007 Real Root Of -79*x^4+135*x^3+191*x^2+136*x-194 6541094902754047 p003 LerchPhi(1/3,5,361/130) 6541094916822609 k002 Champernowne real with 97*n^2+54*n-86 6541094941386283 a007 Real Root Of 527*x^4+292*x^3+829*x^2-487*x-688 6541094942219344 a007 Real Root Of 333*x^4-800*x^3+234*x^2-396*x-644 6541094949384399 a001 1597/3571*2139295485799^(1/2) 6541094951154338 r005 Re(z^2+c),c=15/122+22/43*I,n=27 6541094960070612 r005 Re(z^2+c),c=-31/29+1/49*I,n=6 6541094978227835 a001 5702887/1364*1364^(7/10) 6541094992884851 m001 (Gompertz+Riemann1stZero)/(2^(1/2)+Chi(1)) 6541095016852615 k002 Champernowne real with 195/2*n^2+105/2*n-85 6541095020726029 r005 Im(z^2+c),c=-115/102+8/29*I,n=27 6541095022142814 m001 (ln(2^(1/2)+1)+MertensB2)/(5^(1/2)+ln(2)) 6541095028508004 a001 726103/1926*2207^(31/32) 6541095061296123 m007 (-1/6*gamma+1/6)/(-1/6*gamma-1/3*ln(2)-3/4) 6541095065137761 r002 28th iterates of z^2 + 6541095090201977 a001 (5+5^(1/2))^(93/98) 6541095103779716 m001 (Magata-ZetaQ(3))/(gamma(3)+polylog(4,1/2)) 6541095107530097 m001 (2*Pi/GAMMA(5/6)+Bloch)/(Grothendieck-Thue) 6541095116882621 k002 Champernowne real with 98*n^2+51*n-84 6541095124772591 m001 (sin(1/5*Pi)-GaussKuzminWirsing)/(Pi+Zeta(3)) 6541095131683168 a007 Real Root Of 497*x^4-117*x^3+173*x^2-962*x-827 6541095141347995 a007 Real Root Of 751*x^4-889*x^3-840*x^2-615*x+873 6541095153619772 k001 Champernowne real with 441*n+213 6541095153675097 r005 Im(z^2+c),c=-12/19+11/26*I,n=4 6541095156439854 m001 GAMMA(1/6)/ln(Lehmer)^2*LambertW(1)^2 6541095163832862 m001 ln(GAMMA(2/3))^2*Khintchine^2*Pi^2 6541095171656859 a007 Real Root Of 952*x^4+128*x^3+790*x^2-435*x-761 6541095205077197 m005 (1/2*5^(1/2)+1/12)/(4/5*Zeta(3)+7/8) 6541095209243704 a001 1134903170/2207*322^(1/24) 6541095216912627 k002 Champernowne real with 197/2*n^2+99/2*n-83 6541095218078003 r008 a(0)=0,K{-n^6,83-49*n^3+20*n^2+97*n} 6541095226478699 a007 Real Root Of -752*x^4+844*x^3+239*x^2+155*x+373 6541095235736858 h001 (7/8*exp(1)+1/5)/(5/11*exp(2)+7/12) 6541095275379028 m001 exp(1/exp(1))/(BesselK(1,1)+ErdosBorwein) 6541095277301310 m001 (KhinchinLevy+Stephens)/(Artin-Cahen) 6541095278885697 a003 cos(Pi*17/91)-cos(Pi*31/70) 6541095281908901 r009 Im(z^3+c),c=-47/106+21/37*I,n=46 6541095291675332 m001 (Chi(1)-Grothendieck)/(-MertensB1+Niven) 6541095303829843 a007 Real Root Of 549*x^4-136*x^3-144*x^2+110*x-5 6541095316942633 k002 Champernowne real with 99*n^2+48*n-82 6541095329185202 r009 Re(z^3+c),c=-11/26+1/60*I,n=18 6541095329201829 m001 FeigenbaumB^2*Champernowne^2/ln(sinh(1)) 6541095348603213 a007 Real Root Of 557*x^4-362*x^3+741*x^2-238*x-676 6541095355452013 a007 Real Root Of -904*x^4-531*x^3-415*x^2-71*x+148 6541095356296692 a001 521/2178309*89^(13/58) 6541095378055474 m005 (2/3*gamma-1/5)/(4/5*exp(1)-5) 6541095416972639 k002 Champernowne real with 199/2*n^2+93/2*n-81 6541095427751091 r005 Im(z^2+c),c=7/82+2/37*I,n=3 6541095432916316 r005 Im(z^2+c),c=35/102+19/44*I,n=44 6541095456026596 r009 Re(z^3+c),c=-19/42+1/23*I,n=13 6541095461147052 m001 1/TreeGrowth2nd^2*Paris^2/ln(arctan(1/2)) 6541095481186018 a007 Real Root Of 828*x^4-544*x^3+963*x^2+463*x-413 6541095488705238 r008 a(0)=0,K{-n^6,-58-61*n+20*n^2-54*n^3} 6541095494370727 m005 (1/3*Zeta(3)+1/11)/(1/9*5^(1/2)-1) 6541095498019227 a001 165580141/521*199^(3/22) 6541095512919191 a007 Real Root Of 577*x^4-183*x^3+895*x^2-115*x-615 6541095517002645 k002 Champernowne real with 100*n^2+45*n-80 6541095541551985 a007 Real Root Of 267*x^4-646*x^3-427*x^2-529*x-393 6541095550978571 l006 ln(2403/4622) 6541095565829940 a007 Real Root Of -28*x^4+383*x^3-475*x^2+548*x+674 6541095573697103 m001 (ArtinRank2+Sarnak)/(2^(1/2)-exp(Pi)) 6541095580193286 a007 Real Root Of 377*x^4+991*x^3+429*x^2-450*x-31 6541095582816819 a007 Real Root Of -104*x^4-569*x^3+666*x^2-291*x+743 6541095592822884 r002 27i'th iterates of 2*x/(1-x^2) of 6541095594038697 m005 (1/3*Pi+1/3)/(7/9*2^(1/2)-8/9) 6541095605051527 a007 Real Root Of -377*x^4+397*x^3+644*x^2+369*x-559 6541095611989418 m005 (1/2*gamma-3/10)/(5/7*exp(1)-1/5) 6541095617032651 k002 Champernowne real with 201/2*n^2+87/2*n-79 6541095618175711 h001 (2/7*exp(2)+5/7)/(1/2*exp(2)+5/8) 6541095627900112 r008 a(0)=0,K{-n^6,56+47*n^3+50*n} 6541095641964103 a001 28657/521*2^(1/4) 6541095653448740 a001 2178309/3571*2207^(29/32) 6541095661167632 r002 46th iterates of z^2 + 6541095677927795 a003 cos(Pi*27/89)/sin(Pi*9/26) 6541095681383386 a001 24157817/1364*1364^(1/2) 6541095687274260 r008 a(0)=0,K{-n^6,50+55*n+3*n^2+45*n^3} 6541095695394204 a001 14619165/46*123^(3/20) 6541095711984733 a007 Real Root Of -615*x^4+718*x^3-82*x^2-429*x+68 6541095717062657 k002 Champernowne real with 101*n^2+42*n-78 6541095730994819 s002 sum(A216252[n]/(n^2*2^n+1),n=1..infinity) 6541095737381431 a001 1346269/3571*2207^(31/32) 6541095748151076 r008 a(0)=0,K{-n^6,-50-49*n-12*n^2-42*n^3} 6541095769914100 a007 Real Root Of -740*x^4+910*x^3-117*x^2+680*x+885 6541095817092663 k002 Champernowne real with 203/2*n^2+81/2*n-77 6541095849126816 m001 1/Robbin^2*ln(Champernowne)^2*cos(Pi/5)^2 6541095856002442 m005 (1/2*gamma-2/11)/(7/12*Pi-1/5) 6541095863631553 b008 11/24+Sqrt[37] 6541095887929304 m001 GAMMA(2/3)^2/exp(Tribonacci)^2/sin(1)^2 6541095890410958 q001 191/292 6541095890410958 r005 Im(z^2+c),c=-7/8+191/219*I,n=2 6541095911748289 a001 312119004989/987*233^(2/15) 6541095911929404 r005 Im(z^2+c),c=-107/94+5/61*I,n=54 6541095917122669 k002 Champernowne real with 102*n^2+39*n-76 6541095919403227 h001 (2/11*exp(1)+4/7)/(2/11*exp(2)+2/7) 6541095932429642 m001 (Conway+StronglyCareFree)/(Totient+Tribonacci) 6541095932938117 r008 a(0)=0,K{-n^6,40+35*n^3+28*n^2+50*n} 6541095940353676 r008 a(0)=0,K{-n^6,56+32*n^3+45*n^2+20*n} 6541095955207345 r008 a(0)=0,K{-n^6,-64-4*n-55*n^2-30*n^3} 6541095962644674 r008 a(0)=0,K{-n^6,56+31*n^3+48*n^2+18*n} 6541095968135144 r005 Im(z^2+c),c=-103/94+15/64*I,n=31 6541095978998316 a003 sin(Pi*19/83)*sin(Pi*55/119) 6541095985143419 r008 a(0)=0,K{-n^6,62+5*n+57*n^2+29*n^3} 6541096000226273 r008 a(0)=0,K{-n^6,52+30*n^3+49*n^2+22*n} 6541096000843567 r005 Re(z^2+c),c=-65/106+23/59*I,n=22 6541096002931597 a007 Real Root Of -574*x^4+324*x^3-55*x^2-508*x-113 6541096002935783 m001 (arctan(1/2)+Kac)/(Landau-Rabbit) 6541096003715493 r005 Re(z^2+c),c=-65/118+28/61*I,n=16 6541096007772085 r008 a(0)=0,K{-n^6,32+33*n^3+30*n^2+58*n} 6541096017152675 k002 Champernowne real with 205/2*n^2+75/2*n-75 6541096028671167 a001 233802911/1926*843^(1/4) 6541096030694391 r008 a(0)=0,K{-n^6,50+29*n^3+51*n^2+23*n} 6541096050790043 m005 (1/2*5^(1/2)-1)/(10/11*exp(1)-2/3) 6541096064432448 r002 14i'th iterates of 2*x/(1-x^2) of 6541096077073070 r008 a(0)=0,K{-n^6,44+28*n^3+51*n^2+30*n} 6541096096363275 a001 610/2207*5600748293801^(1/2) 6541096096364798 a001 987/1364*7881196^(19/22) 6541096096364889 a001 987/1364*817138163596^(1/2) 6541096096364890 a001 987/1364*87403803^(3/4) 6541096096364894 a001 987/1364*33385282^(19/24) 6541096096366685 a001 987/1364*1860498^(19/20) 6541096101364095 l006 ln(3931/7561) 6541096101364095 p004 log(7561/3931) 6541096106126264 m001 PlouffeB^Psi(1,1/3)*sin(1/12*Pi)^Psi(1,1/3) 6541096117182681 k002 Champernowne real with 103*n^2+36*n-74 6541096124277215 r008 a(0)=0,K{-n^6,32+28*n^3+45*n^2+48*n} 6541096130507628 m004 4+(375*Cos[Sqrt[5]*Pi])/Pi+Sinh[Sqrt[5]*Pi] 6541096148343610 a007 Real Root Of -997*x^4+745*x^3-38*x^2-748*x-82 6541096152779755 m001 1/2*Magata^CareFree/Pi*2^(1/2)*GAMMA(3/4) 6541096153245465 a007 Real Root Of -77*x^4+680*x^3-882*x^2-177*x+466 6541096153819802 k001 Champernowne real with 442*n+212 6541096171422828 a007 Real Root Of 968*x^4-925*x^3+17*x^2-400*x-705 6541096172972145 a007 Real Root Of 275*x^4-728*x^3+615*x^2-738*x+373 6541096183019183 m001 (exp(1)+5^(1/2))/(-ln(gamma)+exp(-1/2*Pi)) 6541096196013260 a001 1836311903/15127*843^(1/4) 6541096203479329 r005 Im(z^2+c),c=-33/38+3/64*I,n=12 6541096213127243 r008 a(0)=0,K{-n^6,34+24*n^3+58*n^2+37*n} 6541096215975361 m001 1/(Bloch^(2*Pi/GAMMA(5/6))) 6541096217212687 k002 Champernowne real with 207/2*n^2+69/2*n-73 6541096220428143 a001 1602508992/13201*843^(1/4) 6541096223990226 a001 12586269025/103682*843^(1/4) 6541096224509927 a001 121393*843^(1/4) 6541096224585751 a001 86267571272/710647*843^(1/4) 6541096224596813 a001 75283811239/620166*843^(1/4) 6541096224598427 a001 591286729879/4870847*843^(1/4) 6541096224598663 a001 516002918640/4250681*843^(1/4) 6541096224598697 a001 4052739537881/33385282*843^(1/4) 6541096224598702 a001 3536736619241/29134601*843^(1/4) 6541096224598705 a001 6557470319842/54018521*843^(1/4) 6541096224598718 a001 2504730781961/20633239*843^(1/4) 6541096224598808 a001 956722026041/7881196*843^(1/4) 6541096224599425 a001 365435296162/3010349*843^(1/4) 6541096224603650 a001 139583862445/1149851*843^(1/4) 6541096224632612 a001 53316291173/439204*843^(1/4) 6541096224831120 a001 20365011074/167761*843^(1/4) 6541096226191715 a001 7778742049/64079*843^(1/4) 6541096235517370 a001 2971215073/24476*843^(1/4) 6541096243787469 r005 Re(z^2+c),c=-59/110+25/52*I,n=38 6541096263165437 m001 1/cos(Pi/5)^2*ln(ArtinRank2)/sin(1) 6541096268371389 b008 1/15+Csch[2/13] 6541096269035493 s001 sum(exp(-Pi/4)^n*A002529[n],n=1..infinity) 6541096299436365 a001 1134903170/9349*843^(1/4) 6541096317242693 k002 Champernowne real with 104*n^2+33*n-72 6541096330929578 r002 27th iterates of z^2 + 6541096331995831 a007 Real Root Of -721*x^4+528*x^3+569*x^2+576*x-636 6541096344832914 m001 Salem/(cos(1/12*Pi)+FeigenbaumB) 6541096356223297 a001 2971215073/5778*322^(1/24) 6541096358965434 m005 (1/2*Catalan-1/7)/(1/16+3/16*5^(1/2)) 6541096367510830 a007 Real Root Of -575*x^4+140*x^3-236*x^2-126*x+163 6541096373810996 r008 a(0)=0,K{-n^6,14+21*n^3+57*n^2+61*n} 6541096384538968 a001 9303105/124*1364^(3/10) 6541096400077087 r008 a(0)=0,K{-n^6,14+20*n^3+60*n^2+59*n} 6541096417272699 k002 Champernowne real with 209/2*n^2+63/2*n-71 6541096435913336 h001 (1/5*exp(2)+4/11)/(3/11*exp(2)+4/5) 6541096450574246 a007 Real Root Of 190*x^4-681*x^3-319*x^2-926*x+898 6541096458289247 m001 (sin(1/12*Pi)-ZetaP(3))/GAMMA(17/24) 6541096469146686 m004 -E^(Sqrt[5]*Pi)/24+(75*Sqrt[5])/Pi 6541096507716252 r008 a(0)=0,K{-n^6,20+15*n^3+78*n^2+40*n} 6541096517302705 k002 Champernowne real with 105*n^2+30*n-70 6541096523565398 a001 7778742049/15127*322^(1/24) 6541096534782156 r005 Re(z^2+c),c=7/78+14/31*I,n=41 6541096544373506 m001 (Zeta(3)-ln(5))/(2*Pi/GAMMA(5/6)+Robbin) 6541096547980283 a001 20365011074/39603*322^(1/24) 6541096551542366 a001 53316291173/103682*322^(1/24) 6541096552062067 a001 139583862445/271443*322^(1/24) 6541096552137891 a001 365435296162/710647*322^(1/24) 6541096552148953 a001 956722026041/1860498*322^(1/24) 6541096552150567 a001 2504730781961/4870847*322^(1/24) 6541096552150803 a001 6557470319842/12752043*322^(1/24) 6541096552150858 a001 10610209857723/20633239*322^(1/24) 6541096552150948 a001 4052739537881/7881196*322^(1/24) 6541096552151565 a001 1548008755920/3010349*322^(1/24) 6541096552155790 a001 514229*322^(1/24) 6541096552184752 a001 225851433717/439204*322^(1/24) 6541096552383260 a001 86267571272/167761*322^(1/24) 6541096553743855 a001 32951280099/64079*322^(1/24) 6541096563069511 a001 12586269025/24476*322^(1/24) 6541096564523166 a007 Real Root Of -438*x^4+751*x^3+315*x^2+566*x-635 6541096589405658 a007 Real Root Of -439*x^4+793*x^3-868*x^2+187*x+796 6541096591173061 a007 Real Root Of 743*x^4-812*x^3-548*x^2-170*x-240 6541096617332711 k002 Champernowne real with 211/2*n^2+57/2*n-69 6541096626988509 a001 4807526976/9349*322^(1/24) 6541096657919503 r008 a(0)=0,K{-n^6,-24-9*n^3-98*n^2-22*n} 6541096688205223 m005 (1/2*5^(1/2)+2/11)/(113/112+7/16*5^(1/2)) 6541096703980355 a001 1346269/521*521^(23/26) 6541096717362717 k002 Champernowne real with 106*n^2+27*n-68 6541096737543706 a001 433494437/3571*843^(1/4) 6541096742706372 r005 Im(z^2+c),c=-27/38+9/26*I,n=11 6541096752049988 a007 Real Root Of -39*x^4+648*x^3-206*x^2+590*x-472 6541096766275093 l006 ln(6731/7186) 6541096773238860 m001 (Khinchin+Riemann2ndZero)/(Si(Pi)+Pi^(1/2)) 6541096793855390 r005 Im(z^2+c),c=-7/20+6/59*I,n=28 6541096798801825 r009 Re(z^3+c),c=-19/36+4/35*I,n=2 6541096817392723 k002 Champernowne real with 213/2*n^2+51/2*n-67 6541096847613535 a007 Real Root Of -976*x^4+423*x^3-888*x^2-266*x+503 6541096853309400 a001 66978574/341*1364^(1/6) 6541096866827293 r005 Im(z^2+c),c=-7/6+5/64*I,n=16 6541096869468056 r005 Im(z^2+c),c=-9/14+70/239*I,n=33 6541096872337592 a001 41/48*17711^(32/35) 6541096890534180 p001 sum(1/(497*n+437)/n/(2^n),n=1..infinity) 6541096902980975 a001 3/121393*8^(22/47) 6541096917422729 k002 Champernowne real with 107*n^2+24*n-66 6541096941078770 a007 Real Root Of -819*x^4+338*x^3-816*x^2-744*x+107 6541096941401095 a001 317811/1364*3571^(33/34) 6541096945148071 m006 (5*ln(Pi)+1/5)/(2/3*Pi-3) 6541096966924515 l006 ln(1528/2939) 6541096971592232 a001 514229/1364*3571^(31/34) 6541096981907542 r002 7th iterates of z^2 + 6541096990116805 a007 Real Root Of 935*x^4-127*x^3-885*x^2-746*x+731 6541097001758632 a001 610*3571^(29/34) 6541097017452735 k002 Champernowne real with 215/2*n^2+45/2*n-65 6541097025942419 r009 Im(z^3+c),c=-47/74+9/28*I,n=9 6541097026263016 a007 Real Root Of 520*x^4-465*x^3+673*x^2-394*x-771 6541097026985637 r002 4th iterates of z^2 + 6541097031934482 a001 1346269/1364*3571^(27/34) 6541097062106723 a001 2178309/1364*3571^(25/34) 6541097065095872 a001 1836311903/3571*322^(1/24) 6541097071521190 a007 Real Root Of -486*x^4+919*x^3+127*x^2+942*x+908 6541097079172732 a007 Real Root Of 806*x^4-698*x^3-387*x^2-848*x-732 6541097087694628 a001 433494437/1364*1364^(1/10) 6541097117482741 k002 Champernowne real with 108*n^2+21*n-64 6541097118143414 a007 Real Root Of -723*x^4+158*x^3+958*x^2+936*x-934 6541097126388308 r009 Im(z^3+c),c=-5/38+47/63*I,n=51 6541097149371996 m001 CopelandErdos^GAMMA(13/24)-RenyiParking 6541097154019832 k001 Champernowne real with 443*n+211 6541097157611525 r005 Im(z^2+c),c=-7/20+6/59*I,n=30 6541097182799946 a001 3732588/341*3571^(1/2) 6541097191926999 r005 Re(z^2+c),c=25/94+7/12*I,n=54 6541097194734303 a003 cos(Pi*22/109)*sin(Pi*19/63) 6541097207220203 a007 Real Root Of -56*x^4-36*x^3+640*x^2+863*x-818 6541097217512747 k002 Champernowne real with 217/2*n^2+39/2*n-63 6541097227600020 a001 634430159/2*4807526976^(15/23) 6541097227751596 a001 1730726404001/4*75025^(15/23) 6541097243343010 a001 305/2889*20633239^(13/14) 6541097243343024 a001 305/2889*141422324^(5/6) 6541097243343024 a001 305/2889*2537720636^(13/18) 6541097243343024 a001 305/2889*312119004989^(13/22) 6541097243343024 a001 305/2889*3461452808002^(13/24) 6541097243343024 a001 305/2889*73681302247^(5/8) 6541097243343024 a001 305/2889*28143753123^(13/20) 6541097243343025 a001 305/2889*228826127^(13/16) 6541097243344908 a001 646/341*119218851371^(1/2) 6541097257187767 m001 1/Magata*ln(LaplaceLimit)^2*log(2+sqrt(3)) 6541097279389524 b008 6+ArcCosh[23/20] 6541097281588708 a003 cos(Pi*3/38)-sin(Pi*23/64) 6541097316165725 a001 123/8*89^(10/31) 6541097317542753 k002 Champernowne real with 109*n^2+18*n-62 6541097318011599 r005 Re(z^2+c),c=-13/42+31/49*I,n=35 6541097363676356 a007 Real Root Of 82*x^4+427*x^3+805*x^2-101*x-306 6541097366315448 a001 121393/1364*9349^(37/38) 6541097370376957 a001 98209/682*9349^(35/38) 6541097374268921 a001 317811/1364*9349^(33/38) 6541097378225646 a001 514229/1364*9349^(31/38) 6541097382157634 a001 610*9349^(29/38) 6541097386099070 a001 1346269/1364*9349^(27/38) 6541097390036898 a001 2178309/1364*9349^(25/38) 6541097401774328 m002 -1-Pi^5+Pi^6-3*Csch[Pi] 6541097401853664 a001 9227465/1364*9349^(1/2) 6541097410685148 a001 610/15127*4106118243^(3/4) 6541097410685154 a001 610/15127*33385282^(23/24) 6541097410687027 a001 615/124*20633239^(7/10) 6541097410687038 a001 615/124*17393796001^(1/2) 6541097410687038 a001 615/124*14662949395604^(7/18) 6541097410687038 a001 615/124*505019158607^(7/16) 6541097410687038 a001 615/124*599074578^(7/12) 6541097410698371 a001 615/124*710647^(7/8) 6541097417572759 k002 Champernowne real with 219/2*n^2+33/2*n-61 6541097428005308 a001 11592/341*24476^(41/42) 6541097429366139 a001 75025/1364*24476^(13/14) 6541097429564883 a001 121393/1364*24476^(37/42) 6541097430207504 a001 98209/682*24476^(5/6) 6541097430680579 a001 317811/1364*24476^(11/14) 6541097431218415 a001 514229/1364*24476^(31/42) 6541097431731515 a001 610*24476^(29/42) 6541097432254063 a001 1346269/1364*24476^(9/14) 6541097432773002 a001 2178309/1364*24476^(25/42) 6541097433813111 a001 5702887/1364*24476^(1/2) 6541097434892750 a001 17711/1364*167761^(9/10) 6541097435073668 a001 17711/1364*439204^(5/6) 6541097435101854 a001 17711/1364*7881196^(15/22) 6541097435101916 a001 17711/1364*20633239^(9/14) 6541097435101925 a001 17711/1364*2537720636^(1/2) 6541097435101925 a001 17711/1364*312119004989^(9/22) 6541097435101925 a001 17711/1364*14662949395604^(5/14) 6541097435101925 a001 17711/1364*192900153618^(5/12) 6541097435101925 a001 17711/1364*28143753123^(9/20) 6541097435101926 a001 17711/1364*228826127^(9/16) 6541097435101929 a001 17711/1364*33385282^(5/8) 6541097435103343 a001 17711/1364*1860498^(3/4) 6541097435372963 a001 24157817/1364*24476^(5/14) 6541097435672372 a001 17711/1364*103682^(15/16) 6541097436932771 a001 9303105/124*24476^(3/14) 6541097437452708 a001 165580141/1364*24476^(1/6) 6541097437746593 m005 (1/3*Pi+2/7)/(5/9*3^(1/2)-3) 6541097438476085 a001 1762289/682*64079^(1/2) 6541097438492581 a001 433494437/1364*24476^(1/14) 6541097438662120 a001 305/51841*17393796001^(11/14) 6541097438662120 a001 305/51841*14662949395604^(11/18) 6541097438662120 a001 305/51841*505019158607^(11/16) 6541097438662120 a001 305/51841*1568397607^(7/8) 6541097438662120 a001 305/51841*599074578^(11/12) 6541097438664010 a001 11592/341*370248451^(1/2) 6541097439143703 a001 98209/682*167761^(7/10) 6541097439156002 a001 2178309/1364*167761^(1/2) 6541097439181821 a001 610/271443*2537720636^(9/10) 6541097439181821 a001 610/271443*14662949395604^(9/14) 6541097439181821 a001 610/271443*192900153618^(3/4) 6541097439183709 a001 121393/1364*54018521^(1/2) 6541097439202763 a001 24157817/1364*167761^(3/10) 6541097439238812 a001 317811/1364*439204^(11/18) 6541097439249244 a001 66978574/341*167761^(1/10) 6541097439256253 a001 1346269/1364*439204^(1/2) 6541097439257644 a001 610/710647*2537720636^(17/18) 6541097439257644 a001 610/710647*45537549124^(5/6) 6541097439257644 a001 610/710647*312119004989^(17/22) 6541097439257644 a001 610/710647*3461452808002^(17/24) 6541097439257644 a001 610/710647*28143753123^(17/20) 6541097439259259 a001 5702887/1364*439204^(7/18) 6541097439259481 a001 317811/1364*7881196^(1/2) 6541097439259534 a001 317811/1364*312119004989^(3/10) 6541097439259534 a001 317811/1364*1568397607^(3/8) 6541097439259537 a001 317811/1364*33385282^(11/24) 6541097439260573 a001 317811/1364*1860498^(11/20) 6541097439263069 a001 24157817/1364*439204^(5/18) 6541097439266834 a001 9303105/124*439204^(1/6) 6541097439268123 a001 610*1149851^(1/2) 6541097439270321 a001 610/4870847*9062201101803^(3/4) 6541097439270596 a001 610/87403803*312119004989^(21/22) 6541097439270596 a001 610/87403803*14662949395604^(5/6) 6541097439270596 a001 610/87403803*505019158607^(15/16) 6541097439270596 a001 610/1568397607*14662949395604^(13/14) 6541097439270596 a001 610*1322157322203^(1/4) 6541097439270596 a001 305/1268860318*14662949395604^(17/18) 6541097439270596 a001 610/969323029*3461452808002^(23/24) 6541097439270602 a001 433494437/1364*439204^(1/18) 6541097439270612 a001 610/20633239*312119004989^(9/10) 6541097439270612 a001 610/20633239*14662949395604^(11/14) 6541097439270612 a001 610/20633239*192900153618^(11/12) 6541097439270702 a001 305/3940598*312119004989^(19/22) 6541097439270702 a001 305/3940598*817138163596^(5/6) 6541097439270702 a001 305/3940598*3461452808002^(19/24) 6541097439270702 a001 305/3940598*28143753123^(19/20) 6541097439271318 a001 610/3010349*17393796001^(13/14) 6541097439271318 a001 610/3010349*14662949395604^(13/18) 6541097439271318 a001 610/3010349*505019158607^(13/16) 6541097439271318 a001 610/3010349*73681302247^(7/8) 6541097439272205 a001 2178309/1364*20633239^(5/14) 6541097439272210 a001 2178309/1364*2537720636^(5/18) 6541097439272210 a001 2178309/1364*312119004989^(5/22) 6541097439272210 a001 2178309/1364*3461452808002^(5/24) 6541097439272210 a001 2178309/1364*28143753123^(1/4) 6541097439272210 a001 2178309/1364*228826127^(5/16) 6541097439272412 a001 5702887/1364*7881196^(7/22) 6541097439272441 a001 5702887/1364*20633239^(3/10) 6541097439272446 a001 5702887/1364*17393796001^(3/14) 6541097439272446 a001 5702887/1364*14662949395604^(1/6) 6541097439272446 a001 5702887/1364*599074578^(1/4) 6541097439272448 a001 5702887/1364*33385282^(7/24) 6541097439272464 a001 24157817/1364*7881196^(5/22) 6541097439272469 a001 31622993/682*7881196^(1/6) 6541097439272472 a001 9303105/124*7881196^(3/22) 6541097439272480 a001 3732588/341*45537549124^(1/6) 6541097439272481 a001 433494437/1364*7881196^(1/22) 6541097439272485 a001 165580141/1364*20633239^(1/10) 6541097439272485 a001 66978574/341*20633239^(1/14) 6541097439272485 a001 24157817/1364*20633239^(3/14) 6541097439272485 a001 39088169/1364*141422324^(1/6) 6541097439272485 a001 39088169/1364*73681302247^(1/8) 6541097439272486 a001 9303105/124*2537720636^(1/10) 6541097439272486 a001 9303105/124*14662949395604^(1/14) 6541097439272486 a001 9303105/124*192900153618^(1/12) 6541097439272486 a001 66978574/341*2537720636^(1/18) 6541097439272486 a001 66978574/341*312119004989^(1/22) 6541097439272486 a001 66978574/341*28143753123^(1/20) 6541097439272486 a001 66978574/341*228826127^(1/16) 6541097439272486 a001 165580141/1364*17393796001^(1/14) 6541097439272486 a001 165580141/1364*14662949395604^(1/18) 6541097439272486 a001 165580141/1364*505019158607^(1/16) 6541097439272486 a001 165580141/1364*599074578^(1/12) 6541097439272486 a001 433494437/1364*33385282^(1/24) 6541097439272486 a001 31622993/682*312119004989^(1/10) 6541097439272486 a001 31622993/682*1568397607^(1/8) 6541097439272487 a001 9303105/124*33385282^(1/8) 6541097439272488 a001 24157817/1364*2537720636^(1/6) 6541097439272488 a001 24157817/1364*312119004989^(3/22) 6541097439272488 a001 24157817/1364*28143753123^(3/20) 6541097439272488 a001 24157817/1364*228826127^(3/16) 6541097439272490 a001 24157817/1364*33385282^(5/24) 6541097439272490 a001 3732588/341*12752043^(1/4) 6541097439272502 a001 9227465/1364*817138163596^(1/6) 6541097439272502 a001 9227465/1364*87403803^(1/4) 6541097439272581 a001 433494437/1364*1860498^(1/20) 6541097439272591 a001 1762289/682*4106118243^(1/4) 6541097439272644 a001 66978574/341*1860498^(1/12) 6541097439272769 a001 9303105/124*1860498^(3/20) 6541097439272961 a001 24157817/1364*1860498^(1/4) 6541097439272998 a001 2178309/1364*1860498^(5/12) 6541097439273107 a001 5702887/1364*1860498^(7/20) 6541097439273165 a001 1346269/1364*7881196^(9/22) 6541097439273208 a001 1346269/1364*2537720636^(3/10) 6541097439273208 a001 1346269/1364*14662949395604^(3/14) 6541097439273208 a001 1346269/1364*192900153618^(1/4) 6541097439273210 a001 1346269/1364*33385282^(3/8) 6541097439274058 a001 1346269/1364*1860498^(9/20) 6541097439274105 a001 165580141/1364*710647^(1/8) 6541097439275544 a001 610/1149851*1322157322203^(3/4) 6541097439277073 a001 514229/1364*3010349^(1/2) 6541097439277303 a001 5702887/1364*710647^(3/8) 6541097439277433 a001 514229/1364*9062201101803^(1/4) 6541097439294679 a001 39088169/1364*271443^(1/4) 6541097439306388 a001 98209/682*20633239^(1/2) 6541097439306395 a001 98209/682*2537720636^(7/18) 6541097439306395 a001 98209/682*17393796001^(5/14) 6541097439306395 a001 98209/682*312119004989^(7/22) 6541097439306395 a001 98209/682*14662949395604^(5/18) 6541097439306395 a001 98209/682*505019158607^(5/16) 6541097439306395 a001 98209/682*28143753123^(7/20) 6541097439306395 a001 98209/682*599074578^(5/12) 6541097439306395 a001 98209/682*228826127^(7/16) 6541097439307498 a001 98209/682*1860498^(7/12) 6541097439310516 a001 433494437/1364*103682^(1/16) 6541097439314490 a001 98209/682*710647^(5/8) 6541097439386575 a001 9303105/124*103682^(3/16) 6541097439462637 a001 24157817/1364*103682^(5/16) 6541097439480414 a001 75025/1364*439204^(13/18) 6541097439504841 a001 75025/1364*7881196^(13/22) 6541097439504903 a001 75025/1364*141422324^(1/2) 6541097439504904 a001 75025/1364*73681302247^(3/8) 6541097439504907 a001 75025/1364*33385282^(13/24) 6541097439506132 a001 75025/1364*1860498^(13/20) 6541097439538654 a001 5702887/1364*103682^(7/16) 6541097439571485 a001 75025/1364*271443^(3/4) 6541097439615476 a001 1346269/1364*103682^(9/16) 6541097439677862 a001 317811/1364*103682^(11/16) 6541097439999291 a001 75025/1364*103682^(13/16) 6541097440315127 a001 31622993/682*39603^(1/4) 6541097440863609 a001 610/64079*2537720636^(5/6) 6541097440863609 a001 610/64079*312119004989^(15/22) 6541097440863609 a001 610/64079*3461452808002^(5/8) 6541097440863609 a001 610/64079*28143753123^(3/4) 6541097440863609 a001 610/64079*228826127^(15/16) 6541097440865499 a001 28657/1364*969323029^(1/2) 6541097441641847 a001 2178309/1364*39603^(25/44) 6541097441832416 a001 1346269/1364*39603^(27/44) 6541097442019375 a001 610*39603^(29/44) 6541097442215783 a001 514229/1364*39603^(31/44) 6541097442387455 a001 317811/1364*39603^(3/4) 6541097442550214 a001 11592/341*39603^(41/44) 6541097442623887 a001 98209/682*39603^(35/44) 6541097442690773 a001 121393/1364*39603^(37/44) 6541097442845667 a001 66978574/341*15127^(1/8) 6541097443201537 a001 75025/1364*39603^(39/44) 6541097444129936 a007 Real Root Of -525*x^4+423*x^3-289*x^2+914*x+936 6541097444941274 a001 28657/1364*39603^(43/44) 6541097447420248 a003 sin(Pi*2/97)/cos(Pi*4/87) 6541097447798784 r009 Re(z^3+c),c=-35/78+1/27*I,n=22 6541097449992032 a001 24157817/1364*15127^(3/8) 6541097450191156 a001 5473/682*6643838879^(1/2) 6541097455599784 a001 433494437/1364*5778^(1/12) 6541097457138116 a001 2178309/1364*15127^(5/8) 6541097458568386 a001 1346269/1364*15127^(27/40) 6541097459711575 m001 (-Khinchin+Totient)/(1+Shi(1)) 6541097459995047 a001 610*15127^(29/40) 6541097461431156 a001 514229/1364*15127^(31/40) 6541097462842529 a001 317811/1364*15127^(33/40) 6541097464318663 a001 98209/682*15127^(7/8) 6541097465625250 a001 121393/1364*15127^(37/40) 6541097467166324 m001 (Champernowne-Kolakoski)/(MertensB2-ZetaQ(3)) 6541097467375716 a001 75025/1364*15127^(39/40) 6541097473470305 r005 Im(z^2+c),c=-41/70+3/25*I,n=42 6541097488254380 a001 9303105/124*5778^(1/4) 6541097491515954 r005 Im(z^2+c),c=-7/20+6/59*I,n=32 6541097495696935 r005 Im(z^2+c),c=1/98+43/58*I,n=10 6541097509566965 m001 1/Zeta(5)/Zeta(1/2)^2/ln(Zeta(7))^2 6541097514078136 a001 4181/1364*439204^(17/18) 6541097514110080 a001 4181/1364*7881196^(17/22) 6541097514110162 a001 4181/1364*45537549124^(1/2) 6541097514110166 a001 4181/1364*33385282^(17/24) 6541097514110192 a001 4181/1364*12752043^(3/4) 6541097514111768 a001 4181/1364*1860498^(17/20) 6541097517602765 k002 Champernowne real with 110*n^2+15*n-60 6541097520908978 a001 24157817/1364*5778^(5/12) 6541097522233686 a007 Real Root Of 728*x^4-873*x^3+962*x^2+887*x-209 6541097534819310 a007 Real Root Of 114*x^4-296*x^3+697*x^2-127*x-485 6541097541857327 a008 Real Root of x^4-x^3-33*x^2+99*x-51 6541097553563532 a001 5702887/1364*5778^(7/12) 6541097558052612 a007 Real Root Of -561*x^4+264*x^3-299*x^2-198*x+175 6541097575333028 a001 2178309/1364*5778^(25/36) 6541097583298603 a007 Real Root Of -758*x^4+842*x^3+748*x^2-298*x-222 6541097583832881 m001 MasserGramain+MertensB3-PisotVijayaraghavan 6541097586218891 a001 1346269/1364*5778^(3/4) 6541097597101145 a001 610*5778^(29/36) 6541097607992847 a001 514229/1364*5778^(31/36) 6541097614975583 r005 Im(z^2+c),c=-3/50+45/64*I,n=26 6541097616631934 l006 ln(5237/10073) 6541097617632771 k002 Champernowne real with 221/2*n^2+27/2*n-59 6541097618859813 a001 317811/1364*5778^(11/12) 6541097629791540 a001 98209/682*5778^(35/36) 6541097641744034 m001 (DuboisRaymond+Rabbit)/(3^(1/3)-Backhouse) 6541097647193755 r005 Im(z^2+c),c=-7/20+6/59*I,n=34 6541097657375968 m001 (DuboisRaymond+GaussAGM)/(Ei(1)-arctan(1/3)) 6541097674061522 a007 Real Root Of 480*x^4-696*x^3-965*x^2+122*x+440 6541097674808824 p001 sum(1/(569*n+155)/(16^n),n=0..infinity) 6541097676704209 a001 161/4*1836311903^(5/11) 6541097678171121 a007 Real Root Of 941*x^4+262*x^3-186*x^2-984*x-663 6541097702440838 r005 Im(z^2+c),c=-7/20+6/59*I,n=36 6541097717662777 k002 Champernowne real with 111*n^2+12*n-58 6541097718124163 r005 Im(z^2+c),c=-7/20+6/59*I,n=38 6541097720796581 r005 Im(z^2+c),c=-7/20+6/59*I,n=41 6541097720900821 r005 Im(z^2+c),c=-7/20+6/59*I,n=43 6541097721087153 r005 Im(z^2+c),c=-7/20+6/59*I,n=45 6541097721184446 r005 Im(z^2+c),c=-7/20+6/59*I,n=47 6541097721221331 r005 Im(z^2+c),c=-7/20+6/59*I,n=49 6541097721232503 r005 Im(z^2+c),c=-7/20+6/59*I,n=51 6541097721235025 r005 Im(z^2+c),c=-7/20+6/59*I,n=56 6541097721235049 r005 Im(z^2+c),c=-7/20+6/59*I,n=54 6541097721235104 r005 Im(z^2+c),c=-7/20+6/59*I,n=53 6541097721235122 r005 Im(z^2+c),c=-7/20+6/59*I,n=58 6541097721235182 r005 Im(z^2+c),c=-7/20+6/59*I,n=60 6541097721235206 r005 Im(z^2+c),c=-7/20+6/59*I,n=62 6541097721235214 r005 Im(z^2+c),c=-7/20+6/59*I,n=64 6541097721235221 r005 Im(z^2+c),c=-7/20+6/59*I,n=63 6541097721235235 r005 Im(z^2+c),c=-7/20+6/59*I,n=61 6541097721235274 r005 Im(z^2+c),c=-7/20+6/59*I,n=59 6541097721235356 r005 Im(z^2+c),c=-7/20+6/59*I,n=57 6541097721235437 r005 Im(z^2+c),c=-7/20+6/59*I,n=55 6541097721236111 r005 Im(z^2+c),c=-7/20+6/59*I,n=52 6541097721241726 r005 Im(z^2+c),c=-7/20+6/59*I,n=50 6541097721262595 r005 Im(z^2+c),c=-7/20+6/59*I,n=48 6541097721324328 r005 Im(z^2+c),c=-7/20+6/59*I,n=46 6541097721410051 r005 Im(z^2+c),c=-7/20+6/59*I,n=40 6541097721466580 r005 Im(z^2+c),c=-7/20+6/59*I,n=44 6541097721665055 r005 Im(z^2+c),c=-7/20+6/59*I,n=42 6541097721988478 r005 Im(z^2+c),c=-7/20+6/59*I,n=39 6541097724413102 s002 sum(A211419[n]/(2^n-1),n=1..infinity) 6541097729542065 r005 Im(z^2+c),c=-7/20+6/59*I,n=37 6541097740117017 a007 Real Root Of 451*x^4+303*x^3+485*x^2-128*x-289 6541097759853891 r005 Im(z^2+c),c=-7/20+6/59*I,n=35 6541097770878528 m001 (-MadelungNaCl+Thue)/(ln(2)/ln(10)+Shi(1)) 6541097771812298 m001 Zeta(1/2)^ThueMorse/KomornikLoreti 6541097808555335 m001 (FellerTornier+Salem)/(Tribonacci+ZetaP(2)) 6541097817692783 k002 Champernowne real with 223/2*n^2+21/2*n-57 6541097820381990 a007 Real Root Of 110*x^4-346*x^3-191*x^2-657*x-465 6541097828144099 r002 10th iterates of z^2 + 6541097831034581 a007 Real Root Of -958*x^4-4*x^3+666*x^2+900*x+478 6541097840716640 m005 (1/2*gamma+1/7)/(7/10*Zeta(3)-2/11) 6541097843045544 m001 (-GaussKuzminWirsing+3)/(-sin(Pi/5)+1) 6541097855231673 r005 Im(z^2+c),c=-7/20+6/59*I,n=33 6541097862359567 a001 165580141/843*322^(5/24) 6541097865363350 a007 Real Root Of 661*x^4-777*x^3-432*x^2-395*x-412 6541097866515172 h001 (1/10*exp(1)+2/11)/(5/6*exp(2)+7/9) 6541097871915292 p001 sum(1/(158*n+153)/(625^n),n=0..infinity) 6541097884292460 l006 ln(3709/7134) 6541097885020636 a007 Real Root Of -44*x^4-151*x^3+757*x^2-856*x+300 6541097896318184 m009 (3*Pi^2-1/6)/(3/8*Pi^2+4/5) 6541097908171244 r005 Im(z^2+c),c=-131/118+11/48*I,n=41 6541097917722789 k002 Champernowne real with 112*n^2+9*n-56 6541097934790019 a007 Real Root Of 416*x^4-624*x^3-428*x^2-239*x-224 6541097950334158 a007 Real Root Of 512*x^4-962*x^3+163*x^2-109*x-504 6541097952215594 a001 610/3571*7881196^(21/22) 6541097952215681 a001 610/3571*20633239^(9/10) 6541097952215695 a001 610/3571*2537720636^(7/10) 6541097952215695 a001 610/3571*17393796001^(9/14) 6541097952215695 a001 610/3571*14662949395604^(1/2) 6541097952215695 a001 610/3571*505019158607^(9/16) 6541097952215695 a001 610/3571*192900153618^(7/12) 6541097952215695 a001 610/3571*599074578^(3/4) 6541097952215700 a001 610/3571*33385282^(7/8) 6541097952217457 a001 1597/1364*7881196^(5/6) 6541097952217532 a001 1597/1364*20633239^(11/14) 6541097952217544 a001 1597/1364*2537720636^(11/18) 6541097952217544 a001 1597/1364*312119004989^(1/2) 6541097952217544 a001 1597/1364*3461452808002^(11/24) 6541097952217544 a001 1597/1364*28143753123^(11/20) 6541097952217544 a001 1597/1364*1568397607^(5/8) 6541097952217544 a001 1597/1364*228826127^(11/16) 6541097952219277 a001 1597/1364*1860498^(11/12) 6541097954942643 r005 Im(z^2+c),c=-7/20+6/59*I,n=26 6541097960963031 a003 sin(Pi*4/51)*sin(Pi*7/81) 6541097969522323 r002 40th iterates of z^2 + 6541097974117562 r002 4th iterates of z^2 + 6541097981072660 a001 17711/123*199^(31/43) 6541098016363905 m001 AlladiGrinstead-BesselI(1,1)+HardyLittlewoodC5 6541098017752795 k002 Champernowne real with 225/2*n^2+15/2*n-55 6541098037583977 m005 (1/2*3^(1/2)+3)/(1/3*Catalan+2/7) 6541098083879180 m001 (Otter-Totient)/(exp(1/exp(1))+GAMMA(23/24)) 6541098093316547 r005 Im(z^2+c),c=-7/20+6/59*I,n=31 6541098112398449 a007 Real Root Of 804*x^4-618*x^3-534*x^2-690*x-543 6541098112545466 m001 ZetaQ(2)/(Thue^GAMMA(17/24)) 6541098115850025 m005 (1/3*Pi+1/3)/(4/9*Pi+5/7) 6541098117782801 k002 Champernowne real with 113*n^2+6*n-54 6541098133883062 r005 Re(z^2+c),c=-7/40+23/34*I,n=26 6541098144442211 m001 (-Bloch+GaussKuzminWirsing)/(ln(3)-sin(1)) 6541098153152558 m001 LambertW(1)^(ln(2)/ln(10))*StronglyCareFree 6541098154219862 k001 Champernowne real with 444*n+210 6541098177093254 m005 (1/2*Zeta(3)-2/7)/(1/10*3^(1/2)-1/8) 6541098194139064 r005 Re(z^2+c),c=5/86+21/52*I,n=21 6541098200254477 a007 Real Root Of -573*x^4-248*x^3-517*x^2-874*x-315 6541098211056840 a007 Real Root Of -431*x^4+967*x^3+702*x^2+67*x+93 6541098217812807 k002 Champernowne real with 227/2*n^2+9/2*n-53 6541098223266645 h002 exp(19^(9/10)+5^(12/5)) 6541098223266645 h007 exp(19^(9/10)+5^(12/5)) 6541098225777784 m001 (Stephens+ZetaQ(4))/(ErdosBorwein-Sarnak) 6541098245447746 r005 Im(z^2+c),c=-13/10+10/237*I,n=18 6541098258668487 a003 cos(Pi*27/106)-cos(Pi*18/37) 6541098298900579 m004 -125/Pi+5*Pi+5*Pi*Log[Sqrt[5]*Pi] 6541098306855315 m001 ThueMorse^Backhouse/BesselK(0,1) 6541098317842813 k002 Champernowne real with 114*n^2+3*n-52 6541098368690597 a007 Real Root Of -13*x^4-835*x^3+993*x^2-698*x-360 6541098370975922 m001 1/exp(Kolakoski)^2*MertensB1*GAMMA(3/4) 6541098399410589 l006 ln(8521/9097) 6541098406462847 a007 Real Root Of 703*x^4-865*x^3-851*x^2-730*x+955 6541098417872819 k002 Champernowne real with 229/2*n^2+3/2*n-51 6541098440929266 m009 (32*Catalan+4*Pi^2+2/3)/(48*Catalan+6*Pi^2+3) 6541098445144806 r009 Im(z^3+c),c=-8/13+5/23*I,n=5 6541098453433384 a007 Real Root Of -18*x^4-2*x^3-719*x^2-369*x+69 6541098468969967 r005 Im(z^2+c),c=-21/58+27/43*I,n=30 6541098472633759 m001 exp(GAMMA(5/6))*MertensB1*cos(Pi/5) 6541098488418747 a001 2178309/1364*2207^(25/32) 6541098488728722 r005 Im(z^2+c),c=-7/20+6/59*I,n=27 6541098500790676 r005 Im(z^2+c),c=-7/20+6/59*I,n=29 6541098517902825 k002 Champernowne real with 115*n^2-50 6541098523866646 a008 Real Root of x^4-x^3-28*x^2-65*x-31 6541098526996774 l006 ln(2181/4195) 6541098527580322 r005 Im(z^2+c),c=-9/94+40/59*I,n=7 6541098527924368 m001 (gamma+3^(1/3))/(MadelungNaCl+Totient) 6541098544459099 m001 1/Zeta(1/2)^2/exp(Khintchine)^2*sqrt(3)^2 6541098554103450 b008 6/17+SphericalBesselJ[1,1] 6541098557636601 a001 2178309/521*521^(21/26) 6541098572351475 a001 1346269/1364*2207^(27/32) 6541098578247591 r002 27th iterates of z^2 + 6541098582365301 a007 Real Root Of 6*x^4-994*x^3+597*x^2-424*x+299 6541098590577117 m002 -3*Coth[Pi]+2*Pi^5*ProductLog[Pi] 6541098593837344 m005 (1/2*2^(1/2)+1/10)/(3/10*3^(1/2)+5/7) 6541098617932831 k002 Champernowne real with 231/2*n^2-3/2*n-49 6541098627536242 r005 Im(z^2+c),c=-67/98+4/11*I,n=16 6541098630952890 a007 Real Root Of 913*x^4-579*x^3+719*x^2+15*x-627 6541098656280594 a001 610*2207^(29/32) 6541098679138140 m001 1/Tribonacci*ln(FransenRobinson)^2*GAMMA(5/6) 6541098700877425 r005 Re(z^2+c),c=49/118+6/41*I,n=4 6541098707580338 p001 sum(1/(607*n+153)/(256^n),n=0..infinity) 6541098717962837 k002 Champernowne real with 116*n^2-3*n-48 6541098720458211 r005 Re(z^2+c),c=-65/114+13/29*I,n=25 6541098734249221 a007 Real Root Of -763*x^4-353*x^3-452*x^2+553*x+596 6541098740219164 a001 514229/1364*2207^(31/32) 6541098753067559 m001 (LambertW(1)-ln(3))/(-BesselI(0,2)+Porter) 6541098789057685 m001 (Psi(1,1/3)*Robbin-ZetaP(4))/Psi(1,1/3) 6541098794447740 a007 Real Root Of 175*x^4+127*x^3+800*x^2+44*x-310 6541098809732408 r002 3th iterates of z^2 + 6541098817992843 k002 Champernowne real with 233/2*n^2-9/2*n-47 6541098851906947 a007 Real Root Of 808*x^4-564*x^3-383*x^2+460*x+159 6541098857764338 a003 cos(2/5*Pi)+cos(1/24*Pi)-cos(3/7*Pi)-3^(1/2) 6541098862652157 m001 (MadelungNaCl+ZetaP(3))/(Gompertz-Kac) 6541098872494452 m001 (Cahen+FellerTornier)/(Sarnak-Stephens) 6541098879485629 r005 Im(z^2+c),c=-129/122+14/47*I,n=10 6541098918022849 k002 Champernowne real with 117*n^2-6*n-46 6541098988378159 h001 (4/7*exp(2)+7/11)/(9/10*exp(2)+7/9) 6541098995576688 a007 Real Root Of -284*x^4+245*x^3-860*x^2+227*x+637 6541099002328812 l006 ln(5015/9646) 6541099018052855 k002 Champernowne real with 235/2*n^2-15/2*n-45 6541099058799884 a007 Real Root Of 39*x^4+138*x^3-738*x^2+139*x-288 6541099061472549 a001 123/139583862445*144^(13/15) 6541099070093816 a007 Real Root Of -55*x^4-238*x^3+739*x^2-412*x-237 6541099097235037 m005 (1/2*Pi-9/11)/(2/7*Catalan+8/9) 6541099118082861 k002 Champernowne real with 118*n^2-9*n-44 6541099123397296 r005 Re(z^2+c),c=-10/11+3/20*I,n=54 6541099125902576 m001 GaussKuzminWirsing+QuadraticClass-Tribonacci 6541099139373243 a007 Real Root Of 558*x^4-597*x^3+651*x^2+284*x-362 6541099154419892 k001 Champernowne real with 445*n+209 6541099179041291 h001 (9/10*exp(1)+5/6)/(5/9*exp(2)+10/11) 6541099194998286 h001 (9/10*exp(1)+7/10)/(7/12*exp(2)+1/2) 6541099218112867 k002 Champernowne real with 237/2*n^2-21/2*n-43 6541099227160652 m001 BesselI(0,1)-HardHexagonsEntropy^Thue 6541099252646121 a007 Real Root Of -483*x^4+879*x^3+315*x^2+825*x-832 6541099295701176 m001 (TreeGrowth2nd-Thue)/(Conway-LaplaceLimit) 6541099303919627 a008 Real Root of x^4-x^3-29*x^2+37*x-552 6541099318142873 k002 Champernowne real with 119*n^2-12*n-42 6541099321822255 a007 Real Root Of 349*x^4-916*x^3+884*x^2-383*x-949 6541099332884114 r005 Re(z^2+c),c=-5/13+10/17*I,n=49 6541099347593363 a007 Real Root Of 537*x^4-365*x^3+362*x^2-744*x-842 6541099368136551 l006 ln(2834/5451) 6541099379432418 a007 Real Root Of 765*x^4-700*x^3-633*x^2-560*x+693 6541099390232832 h001 (4/11*exp(2)+6/7)/(5/8*exp(2)+4/5) 6541099409041841 r005 Im(z^2+c),c=-25/32+11/27*I,n=6 6541099410879573 a003 sin(Pi*1/51)/cos(Pi*9/82) 6541099418172879 k002 Champernowne real with 239/2*n^2-27/2*n-41 6541099459691951 a007 Real Root Of -724*x^4+245*x^3-645*x^2-286*x+290 6541099483901028 a001 9227465/2207*843^(3/4) 6541099501278145 m001 (MadelungNaCl-ZetaQ(2))/(ln(Pi)+exp(1/exp(1))) 6541099512267640 m001 BesselK(0,1)*FeigenbaumB+GaussKuzminWirsing 6541099518202885 k002 Champernowne real with 120*n^2-15*n-40 6541099520777625 m001 (Zeta(1,-1)-gamma(3))/(Lehmer+Riemann3rdZero) 6541099525957145 b008 6+ArcCos[6/7] 6541099529685207 m002 -4+6*Sinh[Pi]+Sinh[Pi]/Pi^4 6541099551049748 r002 42th iterates of z^2 + 6541099564645433 m005 (1/2*3^(1/2)+3/4)/(6/7*Pi-2/9) 6541099564692862 a001 5/15251*29^(8/39) 6541099594333500 a007 Real Root Of 296*x^4-869*x^3+837*x^2+331*x-439 6541099610248781 a007 Real Root Of 302*x^4-884*x^3-620*x^2+314*x+252 6541099615480018 m001 (Salem-Tribonacci)/(ln(2)-Kolakoski) 6541099618681122 r005 Im(z^2+c),c=-117/86+1/27*I,n=62 6541099632423728 r002 28th iterates of z^2 + 6541099643415023 a007 Real Root Of 20*x^4-973*x^3-134*x^2+81*x+273 6541099643581894 r005 Re(z^2+c),c=-29/38+10/31*I,n=6 6541099646967466 r002 2th iterates of z^2 + 6541099661313467 a007 Real Root Of 524*x^4+479*x^3+937*x^2-566*x-733 6541099663919042 r005 Re(z^2+c),c=33/106+1/46*I,n=6 6541099724254770 m001 1/GAMMA(23/24)*Tribonacci/exp(Zeta(7)) 6541099726980374 m001 (Porter+Riemann2ndZero)/(5^(1/2)+Zeta(3)) 6541099731412285 m001 (Pi-Psi(2,1/3))/(ln(3)-exp(-1/2*Pi)) 6541099740377672 a001 165580141/1364*843^(1/4) 6541099753546749 r009 Re(z^3+c),c=-7/58+43/63*I,n=46 6541099791391015 a008 Real Root of (-5+5*x+4*x^2-x^4+6*x^8) 6541099844244914 a007 Real Root Of -183*x^4-12*x^3-965*x^2+772*x+948 6541099851279191 m005 (1/2*gamma-6/11)/(3/11*Catalan+1/7) 6541099856092786 a003 cos(Pi*14/65)*sin(Pi*32/101) 6541099867666735 r005 Im(z^2+c),c=7/38+31/57*I,n=43 6541099894240860 l006 ln(3487/6707) 6541099895840689 r005 Re(z^2+c),c=-37/34+45/112*I,n=2 6541099928993828 m001 Backhouse/(ReciprocalLucas^KhinchinLevy) 6541099932802575 m001 (Artin-KhinchinHarmonic)/(Otter-Thue) 6541099946271570 a001 199/55*2584^(7/19) 6541099954426013 m001 1/ln(GAMMA(1/4))*TwinPrimes^2*GAMMA(5/24)^2 6541099979473031 m001 Niven*exp(MadelungNaCl)*Sierpinski^2 6541099987533803 r002 15th iterates of z^2 + 6541099987954223 r005 Re(z^2+c),c=-109/102+2/61*I,n=8 6541099995589353 a007 Real Root Of 26*x^4+71*x^3-776*x^2-848*x-71